commit ca6720560851f64a597173b4d86ae6db888890b5 Author: RainBus Date: Tue May 21 19:41:56 2024 +0800 init diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..7b6caf3 --- /dev/null +++ b/.gitignore @@ -0,0 +1,162 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/latest/usage/project/#working-with-version-control +.pdm.toml +.pdm-python +.pdm-build/ + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +.idea/ diff --git a/Adapter.py b/Adapter.py new file mode 100644 index 0000000..7b8f5e4 --- /dev/null +++ b/Adapter.py @@ -0,0 +1,101 @@ +import torch.nn as nn +from clip import clip +import torch + + + +class Weight_Adapter(nn.Module): + def __init__(self, args, classnames,init_weights): + super().__init__() + self.classnames = classnames + if args.name in ["ViT-B/16", "ViT-B/32"]: + n_input = 512 + elif args.name in ["RN50", "RN50x16"]: + n_input = 1024 + n_output = 2 * len(classnames) + self.linear = nn.Linear(n_input, n_output, bias=False) + self.linear.weight.data = init_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear(x) + return x +class Classifier(nn.Module): + def __init__(self, args, classnames,init_weights): + super().__init__() + self.classnames = classnames + if args.name in ["ViT-B/16", "ViT-B/32"]: + n_input = 512 + elif args.name in ["RN50", "RN50x16"]: + n_input = 1024 + n_output = len(classnames) + self.linear = nn.Linear(n_input, n_output, bias=False) + self.linear.weight.data = init_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear(x) + return x + +class Adapter(nn.Module): + def __init__(self, args, classnames,init_weights): + super().__init__() + self.classnames = classnames + if args.name in ["ViT-B/16", "ViT-B/32"]: + n_input = 512 + elif args.name in ["RN50", "RN50x16"]: + n_input = 1024 + n_output = len(classnames) + self.linear = nn.Linear(n_input, n_output, bias=False) + self.linear.weight.data = init_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear(x) + return x + +class Linear(nn.Module): + def __init__(self, args): + super().__init__() + if args.name in ["ViT-B/16", "ViT-B/32"]: + n_input = 512 + elif args.name in ["RN50", "RN50x16"]: + n_input = 1024 + self.linear = nn.Linear(n_input, n_input, bias=False) + + def forward(self, x): + x = self.linear(x) + return x + +class Res_Adapter(nn.Module): + def __init__(self, n_input, ): + super().__init__() + self.residual_ratio = 0.5 + self.fc = nn.Sequential( + nn.Linear(n_input, n_input // 4, bias=False), + nn.ReLU(inplace=True), + nn.Linear(n_input // 4, n_input, bias=False), + nn.ReLU(inplace=True) + + ) + + def forward(self, x): + a = self.fc(x) + x = self.residual_ratio * a + (1 - self.residual_ratio) * x + + return x + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + diff --git a/Average.png b/Average.png new file mode 100644 index 0000000..24f7b50 Binary files /dev/null and b/Average.png differ diff --git a/Caltech101.png b/Caltech101.png new file mode 100644 index 0000000..663071a Binary files /dev/null and b/Caltech101.png differ diff --git a/DTD.png b/DTD.png new file mode 100644 index 0000000..61cbaac Binary files /dev/null and b/DTD.png differ diff --git a/EuroSAT.png b/EuroSAT.png new file mode 100644 index 0000000..e00e203 Binary files /dev/null and b/EuroSAT.png differ diff --git a/FGVCAircraft.png b/FGVCAircraft.png new file mode 100644 index 0000000..3731c80 Binary files /dev/null and b/FGVCAircraft.png differ diff --git a/Flowers102.png b/Flowers102.png new file mode 100644 index 0000000..01cb503 Binary files /dev/null and b/Flowers102.png differ diff --git a/Food101.png b/Food101.png new file mode 100644 index 0000000..afb7004 Binary files /dev/null and b/Food101.png differ diff --git a/GTP-CLIP_ACC.jpg b/GTP-CLIP_ACC.jpg new file mode 100644 index 0000000..7b18c1c Binary files /dev/null and b/GTP-CLIP_ACC.jpg differ diff --git a/ImageNet.png b/ImageNet.png new file mode 100644 index 0000000..01dbf48 Binary files /dev/null and b/ImageNet.png differ diff --git a/OxfordPets.png b/OxfordPets.png new file mode 100644 index 0000000..8177f30 Binary files /dev/null and b/OxfordPets.png differ diff --git a/SUN397.png b/SUN397.png new file mode 100644 index 0000000..f0e9d52 Binary files /dev/null and b/SUN397.png differ diff --git a/StanfordCars.png b/StanfordCars.png new file mode 100644 index 0000000..208e6c1 Binary files /dev/null and b/StanfordCars.png differ diff --git a/UCF101.png b/UCF101.png new file mode 100644 index 0000000..70bbc73 Binary files /dev/null and b/UCF101.png differ diff --git a/checkpoints/log.txt b/checkpoints/log.txt new file mode 100644 index 0000000..e36e75a --- /dev/null +++ b/checkpoints/log.txt @@ -0,0 +1,71112 @@ +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 10, "shot": 16, "test_freq": 10} + +------------------------------------------- +Thu May 25 17:40:56 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 10, "shot": 16, "test_freq": 10} + +------------------------------------------- +Thu May 25 17:46:35 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 10, "shot": 16, "test_freq": 10} + +------------------------------------------- +Thu May 25 17:51:28 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 17:58:17 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.592264, loss@max: 3.914797, Top1S acc: 95.703125, Top1T acc: 53.906250 +Train:epoch: 2, loss@min: 2.921588, loss@max: 2.458490, Top1S acc: 99.218750, Top1T acc: 76.953125 +Train:epoch: 3, loss@min: 2.206959, loss@max: 2.223053, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 2.130434, loss@max: 1.897093, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 5, loss@min: 1.795373, loss@max: 1.872884, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 6, loss@min: 1.873502, loss@max: 1.797982, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 7, loss@min: 1.700737, loss@max: 1.785441, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.827605, loss@max: 1.571535, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 9, loss@min: 1.654991, loss@max: 1.722866, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.619856, loss@max: 1.759010, Top1S acc: 100.000000, Top1T acc: 98.437500{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 18:10:37 2023 +------------------------------------------- + Test:epoch: 0, LS: 6.822233, LT: 10.831208, Top1S: 0.973631, Top1T: 0.405680 + Test:epoch: 0, LS: 5.308005, LT: 6.566936, Top1S: 2.434077, Top1T: 12.048681{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 18:12:38 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.150006, loss@max: 4.091046, Top1S acc: 98.046875, Top1T acc: 54.296875 +Train:epoch: 2, loss@min: 3.104504, loss@max: 2.377982, Top1S acc: 98.437500, Top1T acc: 80.078125 +Train:epoch: 3, loss@min: 2.214773, loss@max: 2.123897, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 4, loss@min: 2.214736, loss@max: 1.868735, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 5, loss@min: 1.851411, loss@max: 2.003973, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 6, loss@min: 1.861929, loss@max: 1.818389, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 7, loss@min: 1.716340, loss@max: 1.732860, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 8, loss@min: 1.713169, loss@max: 1.695664, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 9, loss@min: 1.626997, loss@max: 1.725992, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.648815, loss@max: 1.631628, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 10, LS: 0.003536, LT: 0.299125, Top1S: 100.000000, Top1T: 91.277893Best acc: 91.277893 +Train:epoch: 11, loss@min: 1.597141, loss@max: 1.642050, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 11, LS: 0.003668, LT: 0.307726, Top1S: 100.000000, Top1T: 90.588234 +Train:epoch: 12, loss@min: 1.622227, loss@max: 1.673203, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 12, LS: 0.003090, LT: 0.298925, Top1S: 100.000000, Top1T: 90.791077 +Train:epoch: 13, loss@min: 1.581518, loss@max: 1.593135, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 13, LS: 0.003614, LT: 0.303379, Top1S: 100.000000, Top1T: 90.872208 +Train:epoch: 14, loss@min: 1.684882, loss@max: 1.505130, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 14, LS: 0.002838, LT: 0.329583, Top1S: 100.000000, Top1T: 90.060852 +Train:epoch: 15, loss@min: 1.728632, loss@max: 1.541292, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 15, LS: 0.003273, LT: 0.288812, Top1S: 100.000000, Top1T: 91.115616 +Train:epoch: 16, loss@min: 1.624454, loss@max: 1.551542, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 16, LS: 0.002784, LT: 0.295949, Top1S: 100.000000, Top1T: 91.359024Best acc: 91.359024 +Train:epoch: 17, loss@min: 1.588187, loss@max: 1.604906, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 17, LS: 0.002937, LT: 0.289581, Top1S: 100.000000, Top1T: 91.683571Best acc: 91.683571 +Train:epoch: 18, loss@min: 1.619835, loss@max: 1.562987, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 18, LS: 0.002594, LT: 0.280746, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 19, loss@min: 1.523535, loss@max: 1.619521, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 19, LS: 0.003343, LT: 0.300404, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 20, loss@min: 1.543413, loss@max: 1.601760, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 20, LS: 0.002349, LT: 0.288890, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 21, loss@min: 1.551182, loss@max: 1.600065, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 21, LS: 0.002557, LT: 0.290689, Top1S: 100.000000, Top1T: 91.156189 +Train:epoch: 22, loss@min: 1.603752, loss@max: 1.522224, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 22, LS: 0.002206, LT: 0.265602, Top1S: 100.000000, Top1T: 92.170387Best acc: 92.170387 +Train:epoch: 23, loss@min: 1.580458, loss@max: 1.540191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.002470, LT: 0.309863, Top1S: 100.000000, Top1T: 91.156189 +Train:epoch: 24, loss@min: 1.521982, loss@max: 1.613794, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 24, LS: 0.002045, LT: 0.279201, Top1S: 100.000000, Top1T: 91.926979 +Train:epoch: 25, loss@min: 1.557977, loss@max: 1.542653, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 25, LS: 0.002187, LT: 0.256883, Top1S: 100.000000, Top1T: 92.819473Best acc: 92.819473 +Train:epoch: 26, loss@min: 1.555634, loss@max: 1.590491, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 26, LS: 0.001961, LT: 0.282617, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 27, loss@min: 1.548712, loss@max: 1.480487, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 27, LS: 0.002003, LT: 0.268254, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 28, loss@min: 1.423959, loss@max: 1.590670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.001849, LT: 0.258860, Top1S: 100.000000, Top1T: 92.657204 +Train:epoch: 29, loss@min: 1.555942, loss@max: 1.470724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.001887, LT: 0.268108, Top1S: 100.000000, Top1T: 92.251518 +Train:epoch: 30, loss@min: 1.510406, loss@max: 1.503158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.001761, LT: 0.264480, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 31, loss@min: 1.541412, loss@max: 1.488436, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 31, LS: 0.001858, LT: 0.265316, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 32, loss@min: 1.472993, loss@max: 1.567559, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 32, LS: 0.001669, LT: 0.269874, Top1S: 100.000000, Top1T: 91.805275 +Train:epoch: 33, loss@min: 1.483381, loss@max: 1.511023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.001668, LT: 0.266060, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 34, loss@min: 1.533039, loss@max: 1.460207, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 34, LS: 0.001644, LT: 0.261870, Top1S: 100.000000, Top1T: 92.210953 +Train:epoch: 35, loss@min: 1.460299, loss@max: 1.566936, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.001649, LT: 0.263357, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 36, loss@min: 1.518061, loss@max: 1.472897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001488, LT: 0.267579, Top1S: 100.000000, Top1T: 92.413795 +Train:epoch: 37, loss@min: 1.501104, loss@max: 1.521725, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 37, LS: 0.001543, LT: 0.255140, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 38, loss@min: 1.465690, loss@max: 1.477129, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 38, LS: 0.001506, LT: 0.273722, Top1S: 100.000000, Top1T: 92.373222 +Train:epoch: 39, loss@min: 1.478639, loss@max: 1.481619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.001447, LT: 0.265075, Top1S: 100.000000, Top1T: 92.332657 +Train:epoch: 40, loss@min: 1.472242, loss@max: 1.485573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.001399, LT: 0.261338, Top1S: 100.000000, Top1T: 92.778908 +Train:epoch: 41, loss@min: 1.566724, loss@max: 1.431446, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 0.001389, LT: 0.257516, Top1S: 100.000000, Top1T: 92.657204 +Train:epoch: 42, loss@min: 1.491866, loss@max: 1.456408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.001359, LT: 0.263953, Top1S: 100.000000, Top1T: 92.454361 +Train:epoch: 43, loss@min: 1.536881, loss@max: 1.443946, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.001376, LT: 0.258574, Top1S: 100.000000, Top1T: 92.292091 +Train:epoch: 44, loss@min: 1.442976, loss@max: 1.473462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.001289, LT: 0.260007, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 45, loss@min: 1.445130, loss@max: 1.464693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.001294, LT: 0.261116, Top1S: 100.000000, Top1T: 92.292091 +Train:epoch: 46, loss@min: 1.460454, loss@max: 1.450593, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 46, LS: 0.001289, LT: 0.254596, Top1S: 100.000000, Top1T: 92.981743Best acc: 92.981743 +Train:epoch: 47, loss@min: 1.435565, loss@max: 1.470132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.001225, LT: 0.256075, Top1S: 100.000000, Top1T: 92.738335 +Train:epoch: 48, loss@min: 1.459162, loss@max: 1.426519, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.001265, LT: 0.259698, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 49, loss@min: 1.449944, loss@max: 1.470587, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 49, LS: 0.001171, LT: 0.259110, Top1S: 100.000000, Top1T: 92.738335 +Train:epoch: 50, loss@min: 1.459660, loss@max: 1.424701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001207, LT: 0.253672, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 51, loss@min: 1.466929, loss@max: 1.417786, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 51, LS: 0.001163, LT: 0.250381, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 52, loss@min: 1.438850, loss@max: 1.443656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.001169, LT: 0.251523, Top1S: 100.000000, Top1T: 92.657204 +Train:epoch: 53, loss@min: 1.435648, loss@max: 1.444704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.001133, LT: 0.250287, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 54, loss@min: 1.419117, loss@max: 1.436970, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001151, LT: 0.254758, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 55, loss@min: 1.437288, loss@max: 1.410072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001099, LT: 0.252809, Top1S: 100.000000, Top1T: 92.738335 +Train:epoch: 56, loss@min: 1.410242, loss@max: 1.428988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001120, LT: 0.251539, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 57, loss@min: 1.432532, loss@max: 1.410232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001081, LT: 0.247600, Top1S: 100.000000, Top1T: 93.144020Best acc: 93.144020 +Train:epoch: 58, loss@min: 1.437964, loss@max: 1.404405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001083, LT: 0.250243, Top1S: 100.000000, Top1T: 92.778908 +Train:epoch: 59, loss@min: 1.399563, loss@max: 1.434597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001066, LT: 0.248879, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 60, loss@min: 1.439537, loss@max: 1.394955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001079, LT: 0.248177, Top1S: 100.000000, Top1T: 92.738335 +Train:epoch: 61, loss@min: 1.387463, loss@max: 1.442641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001045, LT: 0.247880, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 62, loss@min: 1.432154, loss@max: 1.391171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001059, LT: 0.249260, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 63, loss@min: 1.402697, loss@max: 1.421475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001037, LT: 0.245223, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 64, loss@min: 1.400169, loss@max: 1.410954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001028, LT: 0.248585, Top1S: 100.000000, Top1T: 93.184586Best acc: 93.184586 +Train:epoch: 65, loss@min: 1.402843, loss@max: 1.410390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001037, LT: 0.249119, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 66, loss@min: 1.394525, loss@max: 1.421306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001013, LT: 0.248824, Top1S: 100.000000, Top1T: 92.778908 +Train:epoch: 67, loss@min: 1.402241, loss@max: 1.410920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001014, LT: 0.247513, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 68, loss@min: 1.389781, loss@max: 1.416290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001003, LT: 0.247463, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 69, loss@min: 1.406472, loss@max: 1.400476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001004, LT: 0.248159, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 70, loss@min: 1.423043, loss@max: 1.382466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000988, LT: 0.247500, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 71, loss@min: 1.389649, loss@max: 1.413299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000990, LT: 0.247938, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 72, loss@min: 1.405157, loss@max: 1.395640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000991, LT: 0.248510, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 73, loss@min: 1.418165, loss@max: 1.382917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000978, LT: 0.248366, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 74, loss@min: 1.390851, loss@max: 1.417458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000980, LT: 0.247681, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 75, loss@min: 1.390456, loss@max: 1.407369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000977, LT: 0.248596, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 76, loss@min: 1.404643, loss@max: 1.399404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000970, LT: 0.247839, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 77, loss@min: 1.410889, loss@max: 1.387455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000966, LT: 0.246736, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 78, loss@min: 1.382871, loss@max: 1.414831, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 19:38:43 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 10.069069, loss@max: 6.880220, Top1S acc: 1.953125, Top1T acc: 45.703125 +Train:epoch: 2, loss@min: 8.251018, loss@max: 5.478951, Top1S acc: 5.859375, Top1T acc: 68.359375 +Train:epoch: 3, loss@min: 6.569750, loss@max: 4.772790, Top1S acc: 16.406250, Top1T acc: 83.593750 +Train:epoch: 4, loss@min: 5.888951, loss@max: 4.086703, Top1S acc: 24.218750, Top1T acc: 85.937500 +Train:epoch: 5, loss@min: 4.702542, loss@max: 3.887639, Top1S acc: 44.921875, Top1T acc: 91.015625 +Train:epoch: 6, loss@min: 3.922385, loss@max: 3.703439, Top1S acc: 64.062500, Top1T acc: 92.187500 +Train:epoch: 7, loss@min: 3.252659, loss@max: 3.512031, Top1S acc: 86.718750, Top1T acc: 94.921875 +Train:epoch: 8, loss@min: 3.087003, loss@max: 3.263797, Top1S acc: 91.015625, Top1T acc: 94.531250 +Train:epoch: 9, loss@min: 2.648849, loss@max: 3.161378, Top1S acc: 96.484375, Top1T acc: 96.093750 +Train:epoch: 10, loss@min: 2.252226, loss@max: 2.974783, Top1S acc: 98.828125, Top1T acc: 98.437500 + Test:epoch: 10, LS: 0.940666, LT: 0.397303, Top1S: 100.000000, Top1T: 88.275864Best acc: 88.275864 +Train:epoch: 11, loss@min: 2.232992, loss@max: 2.660311, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 11, LS: 0.753128, LT: 0.379457, Top1S: 100.000000, Top1T: 88.316429Best acc: 88.316429 +Train:epoch: 12, loss@min: 1.995295, loss@max: 2.683398, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 12, LS: 0.614843, LT: 0.365701, Top1S: 100.000000, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 13, loss@min: 2.063560, loss@max: 2.310182, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 13, LS: 0.512069, LT: 0.354046, Top1S: 100.000000, Top1T: 89.452332Best acc: 89.452332 +Train:epoch: 14, loss@min: 1.942682, loss@max: 2.238120, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 14, LS: 0.433016, LT: 0.371537, Top1S: 100.000000, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 15, loss@min: 1.893304, loss@max: 2.147457, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 15, LS: 0.370955, LT: 0.345722, Top1S: 100.000000, Top1T: 89.614601Best acc: 89.614601 +Train:epoch: 16, loss@min: 1.899824, loss@max: 2.048490, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 16, LS: 0.320727, LT: 0.343660, Top1S: 100.000000, Top1T: 89.776878Best acc: 89.776878 +Train:epoch: 17, loss@min: 1.808399, loss@max: 1.987488, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 17, LS: 0.281878, LT: 0.356650, Top1S: 100.000000, Top1T: 89.614601 +Train:epoch: 18, loss@min: 1.775023, loss@max: 1.893072, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 18, LS: 0.251341, LT: 0.320563, Top1S: 100.000000, Top1T: 90.628807Best acc: 90.628807 +Train:epoch: 19, loss@min: 1.705082, loss@max: 1.876614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 19, LS: 0.225570, LT: 0.355446, Top1S: 100.000000, Top1T: 89.898582 +Train:epoch: 20, loss@min: 1.712134, loss@max: 1.877982, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 20, LS: 0.204468, LT: 0.335564, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 21, loss@min: 1.801441, loss@max: 1.700069, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 21, LS: 0.186239, LT: 0.342562, Top1S: 100.000000, Top1T: 90.588234 +Train:epoch: 22, loss@min: 1.671863, loss@max: 1.832238, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 22, LS: 0.170494, LT: 0.317627, Top1S: 100.000000, Top1T: 90.709938Best acc: 90.709938 +Train:epoch: 23, loss@min: 1.792056, loss@max: 1.616645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.157599, LT: 0.321721, Top1S: 100.000000, Top1T: 91.237320Best acc: 91.237320 +Train:epoch: 24, loss@min: 1.606795, loss@max: 1.775621, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 24, LS: 0.146804, LT: 0.304670, Top1S: 100.000000, Top1T: 91.115616 +Train:epoch: 25, loss@min: 1.735301, loss@max: 1.582720, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 25, LS: 0.136204, LT: 0.294377, Top1S: 100.000000, Top1T: 91.480728Best acc: 91.480728 +Train:epoch: 26, loss@min: 1.610008, loss@max: 1.696609, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 26, LS: 0.127370, LT: 0.322719, Top1S: 100.000000, Top1T: 89.533470{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 19:56:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 14.901186, loss@max: 6.672498, Top1S acc: 99.218750, Top1T acc: 29.296875 +Train:epoch: 2, loss@min: 11.256153, loss@max: 5.990267, Top1S acc: 100.000000, Top1T acc: 37.500000 +Train:epoch: 3, loss@min: 7.759429, loss@max: 4.778853, Top1S acc: 100.000000, Top1T acc: 64.843750 +Train:epoch: 4, loss@min: 5.061498, loss@max: 4.144404, Top1S acc: 100.000000, Top1T acc: 60.546875 +Train:epoch: 5, loss@min: 3.191132, loss@max: 3.426080, Top1S acc: 100.000000, Top1T acc: 79.687500 +Train:epoch: 6, loss@min: 2.830303, loss@max: 2.696871, Top1S acc: 100.000000, Top1T acc: 78.906250 +Train:epoch: 7, loss@min: 2.680600, loss@max: 2.365789, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 8, loss@min: 2.340765, loss@max: 2.015670, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 9, loss@min: 1.899067, loss@max: 2.171689, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 10, loss@min: 2.238853, loss@max: 2.032152, Top1S acc: 100.000000, Top1T acc: 91.796875 + Test:epoch: 10, LS: 0.002903, LT: 0.434716, Top1S: 100.000000, Top1T: 88.356995Best acc: 88.356995 +Train:epoch: 11, loss@min: 2.145779, loss@max: 1.786080, Top1S acc: 100.000000, Top1T acc: 95.312500 + Test:epoch: 11, LS: 0.002708, LT: 0.334701, Top1S: 100.000000, Top1T: 90.304260Best acc: 90.304260 +Train:epoch: 12, loss@min: 1.702297, loss@max: 1.980469, Top1S acc: 100.000000, Top1T acc: 95.312500 + Test:epoch: 12, LS: 0.001765, LT: 0.360030, Top1S: 100.000000, Top1T: 90.020287 +Train:epoch: 13, loss@min: 2.009413, loss@max: 1.780226, Top1S acc: 100.000000, Top1T acc: 95.703125 + Test:epoch: 13, LS: 0.005766, LT: 0.365877, Top1S: 100.000000, Top1T: 89.574036{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 20:10:16 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.743314, loss@max: 3.782790, Top1S acc: 98.046875, Top1T acc: 66.796875 +Train:epoch: 2, loss@min: 3.318401, loss@max: 3.310322, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 3, loss@min: 2.849700, loss@max: 2.374284, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 2.812356, loss@max: 2.187575, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 5, loss@min: 2.161627, loss@max: 2.356052, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 6, loss@min: 2.303549, loss@max: 1.870993, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 7, loss@min: 1.876480, loss@max: 2.183882, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 2.047429, loss@max: 1.827408, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 2.005030, loss@max: 1.970727, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 10, loss@min: 1.865765, loss@max: 1.819709, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 10, LS: 0.001177, LT: 0.334287, Top1S: 100.000000, Top1T: 89.979713Best acc: 89.979713 +Train:epoch: 11, loss@min: 1.816530, loss@max: 1.783346, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 11, LS: 0.000366, LT: 0.326455, Top1S: 100.000000, Top1T: 90.628807Best acc: 90.628807 +Train:epoch: 12, loss@min: 1.862714, loss@max: 1.869065, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 12, LS: 0.000563, LT: 0.336828, Top1S: 100.000000, Top1T: 90.263695{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 20:22:29 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.743307, loss@max: 3.782795, Top1S acc: 98.046875, Top1T acc: 66.796875 +Train:epoch: 2, loss@min: 3.318411, loss@max: 3.310324, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 3, loss@min: 2.849694, loss@max: 2.374274, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 2.812367, loss@max: 2.187580, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 5, loss@min: 2.161582, loss@max: 2.356089, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 6, loss@min: 2.303603, loss@max: 1.871034, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 7, loss@min: 1.876430, loss@max: 2.183930, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 2.047548, loss@max: 1.827362, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 2.004817, loss@max: 1.970858, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 10, loss@min: 1.865783, loss@max: 1.819664, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 10, LS: 0.001176, LT: 0.334284, Top1S: 100.000000, Top1T: 89.979713Best acc: 89.979713 +Train:epoch: 11, loss@min: 1.816507, loss@max: 1.783653, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 11, LS: 0.000366, LT: 0.326461, Top1S: 100.000000, Top1T: 90.628807Best acc: 90.628807 +Train:epoch: 12, loss@min: 1.862865, loss@max: 1.869051, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 12, LS: 0.000563, LT: 0.336845, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 13, loss@min: 1.932699, loss@max: 1.604667, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 13, LS: 0.000375, LT: 0.351090, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 14, loss@min: 1.727092, loss@max: 1.852874, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 14, LS: 0.000356, LT: 0.318247, Top1S: 100.000000, Top1T: 91.075050Best acc: 91.075050 +Train:epoch: 15, loss@min: 2.065369, loss@max: 1.826137, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 15, LS: 0.000562, LT: 0.309340, Top1S: 100.000000, Top1T: 91.602432Best acc: 91.602432 +Train:epoch: 16, loss@min: 1.798635, loss@max: 1.771850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 16, LS: 0.000416, LT: 0.310014, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 17, loss@min: 1.960338, loss@max: 1.697486, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 17, LS: 0.000344, LT: 0.324148, Top1S: 100.000000, Top1T: 91.156189 +Train:epoch: 18, loss@min: 1.938571, loss@max: 1.796464, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 18, LS: 0.000707, LT: 0.319259, Top1S: 100.000000, Top1T: 90.953346 +Train:epoch: 19, loss@min: 1.762961, loss@max: 1.838661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 19, LS: 0.000558, LT: 0.310818, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 20, loss@min: 1.867185, loss@max: 1.723287, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 20, LS: 0.005476, LT: 0.333003, Top1S: 100.000000, Top1T: 90.831642 +Train:epoch: 21, loss@min: 1.960920, loss@max: 1.848937, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 21, LS: 0.000439, LT: 0.338693, Top1S: 100.000000, Top1T: 90.344826 +Train:epoch: 22, loss@min: 1.690969, loss@max: 1.940157, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 22, LS: 0.000458, LT: 0.288321, Top1S: 100.000000, Top1T: 92.170387Best acc: 92.170387 +Train:epoch: 23, loss@min: 1.763474, loss@max: 1.867685, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 23, LS: 0.000263, LT: 0.371664, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 24, loss@min: 1.852102, loss@max: 1.549471, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 24, LS: 0.000280, LT: 0.296018, Top1S: 100.000000, Top1T: 91.075050 +Train:epoch: 25, loss@min: 1.741524, loss@max: 1.695107, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 25, LS: 0.000300, LT: 0.302871, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 26, loss@min: 1.768077, loss@max: 1.646885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.000388, LT: 0.309836, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 27, loss@min: 1.750241, loss@max: 1.677918, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 27, LS: 0.000352, LT: 0.284666, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 28, loss@min: 1.737559, loss@max: 1.601683, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 28, LS: 0.000502, LT: 0.342986, Top1S: 100.000000, Top1T: 91.115616 +Train:epoch: 29, loss@min: 1.581219, loss@max: 1.811053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.000197, LT: 0.273984, Top1S: 100.000000, Top1T: 92.373222Best acc: 92.373222 +Train:epoch: 30, loss@min: 1.668170, loss@max: 1.804487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000332, LT: 0.289182, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 31, loss@min: 1.636534, loss@max: 1.700209, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 31, LS: 0.000350, LT: 0.286918, Top1S: 100.000000, Top1T: 91.845840 +Train:epoch: 32, loss@min: 1.611487, loss@max: 1.649562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000284, LT: 0.306933, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 33, loss@min: 1.725344, loss@max: 1.688614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000289, LT: 0.286343, Top1S: 100.000000, Top1T: 91.967545 +Train:epoch: 34, loss@min: 1.764028, loss@max: 1.645219, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 34, LS: 0.000320, LT: 0.275130, Top1S: 100.000000, Top1T: 92.535500Best acc: 92.535500 +Train:epoch: 35, loss@min: 1.482514, loss@max: 1.649842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.000170, LT: 0.276190, Top1S: 100.000000, Top1T: 92.413795 +Train:epoch: 36, loss@min: 1.581069, loss@max: 1.522915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000221, LT: 0.285292, Top1S: 100.000000, Top1T: 92.251518 +Train:epoch: 37, loss@min: 1.652460, loss@max: 1.685071, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 37, LS: 0.000310, LT: 0.264342, Top1S: 100.000000, Top1T: 92.576065Best acc: 92.576065 +Train:epoch: 38, loss@min: 1.645204, loss@max: 1.672107, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 38, LS: 0.000177, LT: 0.275390, Top1S: 100.000000, Top1T: 91.967545 +Train:epoch: 39, loss@min: 1.542491, loss@max: 1.763491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000232, LT: 0.277567, Top1S: 100.000000, Top1T: 92.494926 +Train:epoch: 40, loss@min: 1.774718, loss@max: 1.635274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.000212, LT: 0.269329, Top1S: 100.000000, Top1T: 92.657204Best acc: 92.657204 +Train:epoch: 41, loss@min: 1.583168, loss@max: 1.622402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.000141, LT: 0.268833, Top1S: 100.000000, Top1T: 92.454361 +Train:epoch: 42, loss@min: 1.560420, loss@max: 1.686353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000273, LT: 0.271207, Top1S: 100.000000, Top1T: 92.332657 +Train:epoch: 43, loss@min: 1.608167, loss@max: 1.521226, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.000145, LT: 0.276959, Top1S: 100.000000, Top1T: 92.454361 +Train:epoch: 44, loss@min: 1.584783, loss@max: 1.551954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.000238, LT: 0.272924, Top1S: 100.000000, Top1T: 92.494926 +Train:epoch: 45, loss@min: 1.542419, loss@max: 1.557225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.000171, LT: 0.268939, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 46, loss@min: 1.487504, loss@max: 1.524567, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 46, LS: 0.000134, LT: 0.258053, Top1S: 100.000000, Top1T: 92.697769Best acc: 92.697769 +Train:epoch: 47, loss@min: 1.501236, loss@max: 1.532432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000187, LT: 0.260883, Top1S: 100.000000, Top1T: 92.738335Best acc: 92.738335 +Train:epoch: 48, loss@min: 1.520668, loss@max: 1.455362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.000138, LT: 0.265873, Top1S: 100.000000, Top1T: 92.778908Best acc: 92.778908 +Train:epoch: 49, loss@min: 1.459415, loss@max: 1.534432, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 49, LS: 0.000188, LT: 0.263685, Top1S: 100.000000, Top1T: 92.981743Best acc: 92.981743 +Train:epoch: 50, loss@min: 1.458471, loss@max: 1.469646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000138, LT: 0.263089, Top1S: 100.000000, Top1T: 92.738335 +Train:epoch: 51, loss@min: 1.524057, loss@max: 1.489542, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 51, LS: 0.000138, LT: 0.257781, Top1S: 100.000000, Top1T: 92.697769 +Train:epoch: 52, loss@min: 1.501636, loss@max: 1.412311, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 52, LS: 0.000164, LT: 0.264479, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 53, loss@min: 1.393033, loss@max: 1.485887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000116, LT: 0.258921, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 54, loss@min: 1.443892, loss@max: 1.416763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000138, LT: 0.259569, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 55, loss@min: 1.442776, loss@max: 1.422641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000132, LT: 0.258127, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 56, loss@min: 1.427839, loss@max: 1.428550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000125, LT: 0.258282, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 57, loss@min: 1.451744, loss@max: 1.431667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000155, LT: 0.255937, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 58, loss@min: 1.424604, loss@max: 1.424972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000133, LT: 0.258661, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 59, loss@min: 1.419292, loss@max: 1.425268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000117, LT: 0.258598, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 60, loss@min: 1.500325, loss@max: 1.383099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000128, LT: 0.255291, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 61, loss@min: 1.400316, loss@max: 1.438273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000117, LT: 0.256420, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 62, loss@min: 1.461747, loss@max: 1.391511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000127, LT: 0.255682, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 63, loss@min: 1.394255, loss@max: 1.434550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000113, LT: 0.252091, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 64, loss@min: 1.425375, loss@max: 1.392054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000122, LT: 0.255041, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 65, loss@min: 1.377684, loss@max: 1.437098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000117, LT: 0.254383, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 66, loss@min: 1.421988, loss@max: 1.393263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000115, LT: 0.255784, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 67, loss@min: 1.404872, loss@max: 1.404960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000118, LT: 0.254636, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 68, loss@min: 1.373943, loss@max: 1.428089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000114, LT: 0.254814, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 69, loss@min: 1.405762, loss@max: 1.396057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000116, LT: 0.256192, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 70, loss@min: 1.392118, loss@max: 1.405608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000111, LT: 0.254610, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 71, loss@min: 1.402151, loss@max: 1.394060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000115, LT: 0.255242, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 72, loss@min: 1.418676, loss@max: 1.386800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000112, LT: 0.257311, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 73, loss@min: 1.400508, loss@max: 1.404979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000114, LT: 0.256748, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 74, loss@min: 1.409225, loss@max: 1.394567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000114, LT: 0.257680, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 75, loss@min: 1.399460, loss@max: 1.392643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000111, LT: 0.258538, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 76, loss@min: 1.404245, loss@max: 1.390285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000114, LT: 0.256888, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 77, loss@min: 1.392709, loss@max: 1.397085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000110, LT: 0.256551, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 78, loss@min: 1.374310, loss@max: 1.417477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000112, LT: 0.257637, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 79, loss@min: 1.406541, loss@max: 1.386922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000111, LT: 0.257620, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 80, loss@min: 1.395880, loss@max: 1.397380, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000111, LT: 0.258179, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 81, loss@min: 1.398413, loss@max: 1.393209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000111, LT: 0.257959, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 82, loss@min: 1.390674, loss@max: 1.400957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000111, LT: 0.257504, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 83, loss@min: 1.396211, loss@max: 1.392886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000110, LT: 0.257341, Top1S: 100.000000, Top1T: 92.860039{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Thu May 25 22:49:31 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.743312, loss@max: 3.782787, Top1S acc: 98.046875, Top1T acc: 66.796875 +Train:epoch: 2, loss@min: 3.318405, loss@max: 3.310320, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 3, loss@min: 2.849690, loss@max: 2.374264, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 2.812372, loss@max: 2.187572, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 5, loss@min: 2.161556, loss@max: 2.356067, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 6, loss@min: 2.303603, loss@max: 1.871040, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 7, loss@min: 1.876446, loss@max: 2.183913, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 2.047576, loss@max: 1.827350, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 2.004827, loss@max: 1.970844, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 10, loss@min: 1.865742, loss@max: 1.819720, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 10, LS: 0.001176, LT: 0.334283, Top1S: 100.000000, Top1T: 89.979713Best acc: 89.979713 +Train:epoch: 11, loss@min: 1.816478, loss@max: 1.783640, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 11, LS: 0.000366, LT: 0.326468, Top1S: 100.000000, Top1T: 90.628807Best acc: 90.628807 +Train:epoch: 12, loss@min: 1.862851, loss@max: 1.869119, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 12, LS: 0.000563, LT: 0.336854, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 13, loss@min: 1.932757, loss@max: 1.604752, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 13, LS: 0.000375, LT: 0.351093, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 14, loss@min: 1.726947, loss@max: 1.852983, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 14, LS: 0.000356, LT: 0.318256, Top1S: 100.000000, Top1T: 91.075050Best acc: 91.075050 +Train:epoch: 15, loss@min: 2.065469, loss@max: 1.826222, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 15, LS: 0.000562, LT: 0.309346, Top1S: 100.000000, Top1T: 91.602432Best acc: 91.602432 +Train:epoch: 16, loss@min: 1.798486, loss@max: 1.772062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 16, LS: 0.000416, LT: 0.310009, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 17, loss@min: 1.961544, loss@max: 1.697624, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 17, LS: 0.000344, LT: 0.324195, Top1S: 100.000000, Top1T: 91.156189 +Train:epoch: 18, loss@min: 1.938068, loss@max: 1.797611, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 18, LS: 0.000707, LT: 0.319282, Top1S: 100.000000, Top1T: 90.953346 +Train:epoch: 19, loss@min: 1.762702, loss@max: 1.839056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 19, LS: 0.000560, LT: 0.310855, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 20, loss@min: 1.867876, loss@max: 1.723072, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 20, LS: 0.005478, LT: 0.333052, Top1S: 100.000000, Top1T: 90.791077 +Train:epoch: 21, loss@min: 1.959544, loss@max: 1.847342, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 21, LS: 0.000437, LT: 0.338657, Top1S: 100.000000, Top1T: 90.344826 +Train:epoch: 22, loss@min: 1.691627, loss@max: 1.938705, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 22, LS: 0.000458, LT: 0.288316, Top1S: 100.000000, Top1T: 92.170387Best acc: 92.170387 +Train:epoch: 23, loss@min: 1.762069, loss@max: 1.867888, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 23, LS: 0.000262, LT: 0.371552, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 24, loss@min: 1.852015, loss@max: 1.546870, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 24, LS: 0.000280, LT: 0.296304, Top1S: 100.000000, Top1T: 91.115616 +Train:epoch: 25, loss@min: 1.739131, loss@max: 1.696976, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 25, LS: 0.000299, LT: 0.302883, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 26, loss@min: 1.765507, loss@max: 1.648887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.000390, LT: 0.309728, Top1S: 100.000000, Top1T: 91.318459 +Train:epoch: 27, loss@min: 1.748566, loss@max: 1.675184, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 27, LS: 0.000351, LT: 0.284803, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 28, loss@min: 1.735049, loss@max: 1.597538, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 28, LS: 0.000501, LT: 0.342983, Top1S: 100.000000, Top1T: 91.115616 +Train:epoch: 29, loss@min: 1.577787, loss@max: 1.805287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.000197, LT: 0.273898, Top1S: 100.000000, Top1T: 92.292091Best acc: 92.292091 +Train:epoch: 30, loss@min: 1.672689, loss@max: 1.800838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000335, LT: 0.289049, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 31, loss@min: 1.633610, loss@max: 1.703564, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 31, LS: 0.000352, LT: 0.286180, Top1S: 100.000000, Top1T: 91.886414 +Train:epoch: 32, loss@min: 1.609758, loss@max: 1.650176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000281, LT: 0.307071, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 33, loss@min: 1.732659, loss@max: 1.684517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000285, LT: 0.287082, Top1S: 100.000000, Top1T: 91.926979 +Train:epoch: 34, loss@min: 1.769384, loss@max: 1.644096, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 34, LS: 0.000317, LT: 0.274615, Top1S: 100.000000, Top1T: 92.535500Best acc: 92.535500 +Train:epoch: 35, loss@min: 1.484523, loss@max: 1.651568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.000172, LT: 0.275604, Top1S: 100.000000, Top1T: 92.413795 +Train:epoch: 36, loss@min: 1.580698, loss@max: 1.516729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000226, LT: 0.284998, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 37, loss@min: 1.657293, loss@max: 1.699051, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 37, LS: 0.000335, LT: 0.265456, Top1S: 100.000000, Top1T: 92.494926 +Train:epoch: 38, loss@min: 1.617232, loss@max: 1.711896, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 38, LS: 0.000169, LT: 0.276934, Top1S: 100.000000, Top1T: 91.886414 +Train:epoch: 39, loss@min: 1.535294, loss@max: 1.750088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000243, LT: 0.278341, Top1S: 100.000000, Top1T: 92.413795 +Train:epoch: 40, loss@min: 1.767534, loss@max: 1.604373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.000195, LT: 0.268238, Top1S: 100.000000, Top1T: 92.616631Best acc: 92.616631 +Train:epoch: 41, loss@min: 1.613173, loss@max: 1.655223, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 0.000150, LT: 0.269223, Top1S: 100.000000, Top1T: 92.657204Best acc: 92.657204 +Train:epoch: 42, loss@min: 1.566651, loss@max: 1.683596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000231, LT: 0.267981, Top1S: 100.000000, Top1T: 92.210953 +Train:epoch: 43, loss@min: 1.679990, loss@max: 1.454672, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.000148, LT: 0.275574, Top1S: 100.000000, Top1T: 92.616631 +Train:epoch: 44, loss@min: 1.566532, loss@max: 1.697672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.000358, LT: 0.272801, Top1S: 100.000000, Top1T: 92.535500 +Train:epoch: 45, loss@min: 1.536264, loss@max: 1.561877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.000150, LT: 0.268959, Top1S: 100.000000, Top1T: 92.494926 +Train:epoch: 46, loss@min: 1.522778, loss@max: 1.519099, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 46, LS: 0.000181, LT: 0.259410, Top1S: 100.000000, Top1T: 92.778908Best acc: 92.778908 +Train:epoch: 47, loss@min: 1.494242, loss@max: 1.569312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000172, LT: 0.259362, Top1S: 100.000000, Top1T: 92.778908 +Train:epoch: 48, loss@min: 1.506898, loss@max: 1.509255, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.000127, LT: 0.269156, Top1S: 100.000000, Top1T: 92.697769 +Train:epoch: 49, loss@min: 1.479105, loss@max: 1.514047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.000190, LT: 0.266637, Top1S: 100.000000, Top1T: 92.900612Best acc: 92.900612 +Train:epoch: 50, loss@min: 1.482311, loss@max: 1.450518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000137, LT: 0.265205, Top1S: 100.000000, Top1T: 92.778908 +Train:epoch: 51, loss@min: 1.486549, loss@max: 1.488516, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 51, LS: 0.000128, LT: 0.257358, Top1S: 100.000000, Top1T: 92.697769 +Train:epoch: 52, loss@min: 1.554168, loss@max: 1.392268, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 52, LS: 0.000170, LT: 0.264743, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 53, loss@min: 1.392221, loss@max: 1.518589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000114, LT: 0.258736, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 54, loss@min: 1.471192, loss@max: 1.401645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000137, LT: 0.260391, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 55, loss@min: 1.418026, loss@max: 1.463490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000131, LT: 0.257565, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 56, loss@min: 1.435777, loss@max: 1.424317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000123, LT: 0.257584, Top1S: 100.000000, Top1T: 92.981743Best acc: 92.981743 +Train:epoch: 57, loss@min: 1.454614, loss@max: 1.420440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000164, LT: 0.255179, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 58, loss@min: 1.427938, loss@max: 1.418821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000130, LT: 0.258360, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 59, loss@min: 1.401804, loss@max: 1.445295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000116, LT: 0.258723, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 60, loss@min: 1.501004, loss@max: 1.377697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000125, LT: 0.255488, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 61, loss@min: 1.398807, loss@max: 1.440172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000115, LT: 0.255552, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 62, loss@min: 1.453015, loss@max: 1.408018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000126, LT: 0.255649, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 63, loss@min: 1.402452, loss@max: 1.434797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000111, LT: 0.252020, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 64, loss@min: 1.431905, loss@max: 1.386537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000122, LT: 0.254829, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 65, loss@min: 1.385350, loss@max: 1.433470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000116, LT: 0.254081, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 66, loss@min: 1.416665, loss@max: 1.399473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000114, LT: 0.255636, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 67, loss@min: 1.394925, loss@max: 1.415709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000117, LT: 0.254762, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 68, loss@min: 1.379967, loss@max: 1.422098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000113, LT: 0.254803, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 69, loss@min: 1.407342, loss@max: 1.393798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000116, LT: 0.256064, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 70, loss@min: 1.394770, loss@max: 1.405547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000111, LT: 0.254519, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 71, loss@min: 1.404355, loss@max: 1.393345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000115, LT: 0.254827, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 72, loss@min: 1.420498, loss@max: 1.385324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000112, LT: 0.256982, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 73, loss@min: 1.398086, loss@max: 1.406559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000113, LT: 0.256446, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 74, loss@min: 1.408414, loss@max: 1.396276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000113, LT: 0.257265, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 75, loss@min: 1.394299, loss@max: 1.397732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000110, LT: 0.257966, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 76, loss@min: 1.403506, loss@max: 1.391066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000113, LT: 0.256429, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 77, loss@min: 1.398141, loss@max: 1.392319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000110, LT: 0.256001, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 78, loss@min: 1.370955, loss@max: 1.422449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000112, LT: 0.257081, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 79, loss@min: 1.411231, loss@max: 1.382665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000111, LT: 0.257064, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 80, loss@min: 1.400185, loss@max: 1.393765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000110, LT: 0.257696, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 81, loss@min: 1.395290, loss@max: 1.397131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000111, LT: 0.257478, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 82, loss@min: 1.391978, loss@max: 1.399684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000110, LT: 0.257017, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 83, loss@min: 1.396477, loss@max: 1.392504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000110, LT: 0.256852, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 84, loss@min: 1.390852, loss@max: 1.400387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000111, LT: 0.256855, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 85, loss@min: 1.398311, loss@max: 1.392000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000110, LT: 0.256605, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 86, loss@min: 1.406076, loss@max: 1.388672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000109, LT: 0.256668, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 87, loss@min: 1.404331, loss@max: 1.386912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000110, LT: 0.256787, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 88, loss@min: 1.409566, loss@max: 1.383256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000110, LT: 0.256676, Top1S: 100.000000, Top1T: 92.778908 +Train:epoch: 89, loss@min: 1.388379, loss@max: 1.401629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000110, LT: 0.256635, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 90, loss@min: 1.391728, loss@max: 1.397804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000109, LT: 0.256406, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 91, loss@min: 1.392697, loss@max: 1.396834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000109, LT: 0.256510, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 92, loss@min: 1.389653, loss@max: 1.399489, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000109, LT: 0.256652, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 93, loss@min: 1.385305, loss@max: 1.402869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000109, LT: 0.256833, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 94, loss@min: 1.396698, loss@max: 1.392032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000109, LT: 0.256929, Top1S: 100.000000, Top1T: 92.860039 +Train:epoch: 95, loss@min: 1.403077, loss@max: 1.386846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000109, LT: 0.256917, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 96, loss@min: 1.391499, loss@max: 1.395445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000109, LT: 0.256896, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 97, loss@min: 1.392692, loss@max: 1.397323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000109, LT: 0.256901, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 98, loss@min: 1.386067, loss@max: 1.399680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000109, LT: 0.256905, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 99, loss@min: 1.404114, loss@max: 1.386961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000109, LT: 0.256908, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 100, loss@min: 1.397743, loss@max: 1.402306, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.000109, LT: 0.256908, Top1S: 100.000000, Top1T: 92.900612 +------------------------------------------- +Fri May 26 00:02:12 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 8, "test_freq": 1} + +------------------------------------------- +Fri May 26 09:16:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 7.036198, loss@max: 4.900888, Top1S acc: 94.140625, Top1T acc: 53.906250 +Train:epoch: 2, loss@min: 5.635015, loss@max: 4.153025, Top1S acc: 98.046875, Top1T acc: 67.578125 +Train:epoch: 3, loss@min: 3.873122, loss@max: 4.094510, Top1S acc: 97.656250, Top1T acc: 80.078125 +Train:epoch: 4, loss@min: 2.730080, loss@max: 4.190421, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 5, loss@min: 3.039811, loss@max: 2.932079, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 6, loss@min: 3.125932, loss@max: 2.625252, Top1S acc: 100.000000, Top1T acc: 80.078125 +Train:epoch: 7, loss@min: 2.780339, loss@max: 2.848475, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 8, loss@min: 2.620913, loss@max: 2.683809, Top1S acc: 97.656250, Top1T acc: 92.578125 +Train:epoch: 9, loss@min: 2.365281, loss@max: 2.310912, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 2.400982, loss@max: 2.545705, Top1S acc: 100.000000, Top1T acc: 93.750000 + Test:epoch: 10, LS: 0.005237, LT: 1.108326, Top1S: 100.000000, Top1T: 72.616631Best acc: 72.616631 +Train:epoch: 11, loss@min: 2.183370, loss@max: 2.361525, Top1S acc: 100.000000, Top1T acc: 95.312500 + Test:epoch: 11, LS: 0.001194, LT: 0.943771, Top1S: 100.000000, Top1T: 75.862068Best acc: 75.862068 +Train:epoch: 12, loss@min: 2.349861, loss@max: 2.203051, Top1S acc: 100.000000, Top1T acc: 96.484375 + Test:epoch: 12, LS: 0.002096, LT: 0.579608, Top1S: 100.000000, Top1T: 85.111565Best acc: 85.111565 +Train:epoch: 13, loss@min: 2.136834, loss@max: 2.197867, Top1S acc: 100.000000, Top1T acc: 94.921875 + Test:epoch: 13, LS: 0.001779, LT: 0.598240, Top1S: 100.000000, Top1T: 84.624748 +Train:epoch: 14, loss@min: 2.059919, loss@max: 2.098881, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 14, LS: 0.003833, LT: 0.598242, Top1S: 100.000000, Top1T: 84.584175 +Train:epoch: 15, loss@min: 2.149941, loss@max: 2.057894, Top1S acc: 100.000000, Top1T acc: 96.484375 + Test:epoch: 15, LS: 0.002514, LT: 0.681379, Top1S: 100.000000, Top1T: 83.245438 +Train:epoch: 16, loss@min: 2.150648, loss@max: 2.068594, Top1S acc: 100.000000, Top1T acc: 97.265625 + Test:epoch: 16, LS: 0.002015, LT: 0.556765, Top1S: 100.000000, Top1T: 84.868156 +Train:epoch: 17, loss@min: 2.007601, loss@max: 2.143200, Top1S acc: 100.000000, Top1T acc: 95.312500 + Test:epoch: 17, LS: 0.001370, LT: 0.554455, Top1S: 100.000000, Top1T: 84.949287 +Train:epoch: 18, loss@min: 2.131129, loss@max: 2.081154, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 18, LS: 0.001402, LT: 0.564167, Top1S: 100.000000, Top1T: 85.070992 +Train:epoch: 19, loss@min: 2.089447, loss@max: 2.092978, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 19, LS: 0.004177, LT: 0.582833, Top1S: 100.000000, Top1T: 84.462479 +Train:epoch: 20, loss@min: 2.133155, loss@max: 2.043505, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 20, LS: 0.007285, LT: 0.570546, Top1S: 100.000000, Top1T: 84.868156 +Train:epoch: 21, loss@min: 1.984089, loss@max: 2.105490, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 21, LS: 0.000995, LT: 0.630761, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 22, loss@min: 2.003403, loss@max: 1.979926, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 22, LS: 0.000851, LT: 0.593715, Top1S: 100.000000, Top1T: 83.691681 +Train:epoch: 23, loss@min: 1.918526, loss@max: 2.132519, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 23, LS: 0.000533, LT: 0.531420, Top1S: 100.000000, Top1T: 85.395538Best acc: 85.395538 +Train:epoch: 24, loss@min: 2.193643, loss@max: 1.837142, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 24, LS: 0.000404, LT: 0.515558, Top1S: 100.000000, Top1T: 85.922920Best acc: 85.922920 +Train:epoch: 25, loss@min: 1.953844, loss@max: 1.951236, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 25, LS: 0.000726, LT: 0.439391, Top1S: 100.000000, Top1T: 87.789047Best acc: 87.789047 +Train:epoch: 26, loss@min: 1.962403, loss@max: 1.745909, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 26, LS: 0.000770, LT: 0.482892, Top1S: 100.000000, Top1T: 86.693710 +Train:epoch: 27, loss@min: 1.902388, loss@max: 1.890684, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 27, LS: 0.000458, LT: 0.494745, Top1S: 100.000000, Top1T: 85.638947 +Train:epoch: 28, loss@min: 1.841463, loss@max: 1.870631, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 28, LS: 0.001607, LT: 0.474567, Top1S: 100.000000, Top1T: 86.409737 +Train:epoch: 29, loss@min: 2.002015, loss@max: 1.835006, Top1S acc: 98.828125, Top1T acc: 98.437500 + Test:epoch: 29, LS: 0.014760, LT: 0.507245, Top1S: 99.391479, Top1T: 85.638947 +Train:epoch: 30, loss@min: 2.047558, loss@max: 1.758341, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 30, LS: 0.002115, LT: 0.521806, Top1S: 100.000000, Top1T: 85.963486 +Train:epoch: 31, loss@min: 1.934619, loss@max: 1.743765, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 31, LS: 0.000634, LT: 0.578910, Top1S: 100.000000, Top1T: 83.367142 +Train:epoch: 32, loss@min: 1.857741, loss@max: 1.940278, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 32, LS: 0.002151, LT: 0.532467, Top1S: 100.000000, Top1T: 85.233269 +Train:epoch: 33, loss@min: 1.762015, loss@max: 2.126160, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 0.001061, LT: 0.447873, Top1S: 100.000000, Top1T: 87.342796 +Train:epoch: 34, loss@min: 1.827565, loss@max: 1.779493, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 34, LS: 0.001025, LT: 0.438338, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 35, loss@min: 2.033120, loss@max: 1.634141, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 35, LS: 0.001342, LT: 0.515758, Top1S: 100.000000, Top1T: 86.125763 +Train:epoch: 36, loss@min: 1.687430, loss@max: 1.834167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001943, LT: 0.436075, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 37, loss@min: 1.836299, loss@max: 1.656908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.002036, LT: 0.429302, Top1S: 100.000000, Top1T: 88.438133Best acc: 88.438133 +Train:epoch: 38, loss@min: 1.769464, loss@max: 1.844460, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 38, LS: 0.000429, LT: 0.476015, Top1S: 100.000000, Top1T: 87.505074 +Train:epoch: 39, loss@min: 1.581654, loss@max: 1.702574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000568, LT: 0.441458, Top1S: 100.000000, Top1T: 87.748482 +Train:epoch: 40, loss@min: 1.795024, loss@max: 1.568330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.005244, LT: 0.424874, Top1S: 100.000000, Top1T: 87.707909 +Train:epoch: 41, loss@min: 1.732487, loss@max: 1.708819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.002042, LT: 0.447725, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 42, loss@min: 1.634223, loss@max: 1.711241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000411, LT: 0.499263, Top1S: 100.000000, Top1T: 86.937119 +Train:epoch: 43, loss@min: 1.698675, loss@max: 1.638350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.000274, LT: 0.429182, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 44, loss@min: 1.650370, loss@max: 1.706712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.002398, LT: 0.387118, Top1S: 100.000000, Top1T: 89.127792Best acc: 89.127792 +Train:epoch: 45, loss@min: 1.654189, loss@max: 1.590482, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 45, LS: 0.005614, LT: 0.394757, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 46, loss@min: 1.482033, loss@max: 1.674290, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 46, LS: 0.000864, LT: 0.416777, Top1S: 100.000000, Top1T: 88.113594 +Train:epoch: 47, loss@min: 1.722148, loss@max: 1.475477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000335, LT: 0.396406, Top1S: 100.000000, Top1T: 88.640976 +Train:epoch: 48, loss@min: 1.580650, loss@max: 1.507458, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.000382, LT: 0.390619, Top1S: 100.000000, Top1T: 88.843811 +Train:epoch: 49, loss@min: 1.542606, loss@max: 1.504091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.000295, LT: 0.399583, Top1S: 100.000000, Top1T: 88.519272 +Train:epoch: 50, loss@min: 1.515710, loss@max: 1.638103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000278, LT: 0.406292, Top1S: 100.000000, Top1T: 87.748482 +Train:epoch: 51, loss@min: 1.519896, loss@max: 1.568223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000257, LT: 0.398164, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 52, loss@min: 1.493133, loss@max: 1.564671, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 52, LS: 0.000331, LT: 0.379632, Top1S: 100.000000, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 53, loss@min: 1.606055, loss@max: 1.518354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000293, LT: 0.372920, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 54, loss@min: 1.565784, loss@max: 1.491795, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 54, LS: 0.000259, LT: 0.373168, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 55, loss@min: 1.587680, loss@max: 1.441457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000280, LT: 0.377267, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 56, loss@min: 1.568979, loss@max: 1.455012, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 56, LS: 0.000251, LT: 0.386895, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 57, loss@min: 1.445984, loss@max: 1.546453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000308, LT: 0.374075, Top1S: 100.000000, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 58, loss@min: 1.508379, loss@max: 1.544695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000269, LT: 0.362143, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 59, loss@min: 1.524022, loss@max: 1.416825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000220, LT: 0.375501, Top1S: 100.000000, Top1T: 88.843811 +Train:epoch: 60, loss@min: 1.456601, loss@max: 1.582513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000226, LT: 0.383369, Top1S: 100.000000, Top1T: 88.803246 +Train:epoch: 61, loss@min: 1.433938, loss@max: 1.502860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000250, LT: 0.374060, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 62, loss@min: 1.561364, loss@max: 1.481606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000320, LT: 0.366536, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 63, loss@min: 1.459565, loss@max: 1.456291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000224, LT: 0.365775, Top1S: 100.000000, Top1T: 88.884384 +Train:epoch: 64, loss@min: 1.499994, loss@max: 1.466829, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 64, LS: 0.000203, LT: 0.369682, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 65, loss@min: 1.467178, loss@max: 1.459951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000235, LT: 0.368848, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 66, loss@min: 1.456909, loss@max: 1.476422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000271, LT: 0.371127, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 67, loss@min: 1.502631, loss@max: 1.440877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000251, LT: 0.368781, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 68, loss@min: 1.476355, loss@max: 1.408693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000224, LT: 0.368307, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 69, loss@min: 1.427987, loss@max: 1.462790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000209, LT: 0.365950, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 70, loss@min: 1.433339, loss@max: 1.421441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000198, LT: 0.360785, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 71, loss@min: 1.433939, loss@max: 1.438743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000211, LT: 0.357886, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 72, loss@min: 1.462968, loss@max: 1.428989, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 72, LS: 0.000226, LT: 0.355659, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 73, loss@min: 1.457051, loss@max: 1.408467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000233, LT: 0.358318, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 74, loss@min: 1.430664, loss@max: 1.430850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000220, LT: 0.359322, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 75, loss@min: 1.396610, loss@max: 1.462729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000205, LT: 0.357007, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 76, loss@min: 1.379877, loss@max: 1.457937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000206, LT: 0.353284, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 77, loss@min: 1.416659, loss@max: 1.418834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000213, LT: 0.350792, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 78, loss@min: 1.416752, loss@max: 1.414370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000215, LT: 0.349461, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 79, loss@min: 1.423256, loss@max: 1.398403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000212, LT: 0.348626, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 80, loss@min: 1.440792, loss@max: 1.382065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000209, LT: 0.348729, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 81, loss@min: 1.431633, loss@max: 1.393649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000206, LT: 0.349000, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 82, loss@min: 1.418083, loss@max: 1.408972, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000206, LT: 0.349291, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 83, loss@min: 1.418179, loss@max: 1.402259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000206, LT: 0.350164, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 84, loss@min: 1.404452, loss@max: 1.407760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000206, LT: 0.351004, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 85, loss@min: 1.401066, loss@max: 1.411416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000206, LT: 0.351021, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 86, loss@min: 1.403906, loss@max: 1.411749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000207, LT: 0.350636, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 87, loss@min: 1.423920, loss@max: 1.404249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000207, LT: 0.350114, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 88, loss@min: 1.398336, loss@max: 1.413275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000207, LT: 0.349854, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 89, loss@min: 1.431642, loss@max: 1.384184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000207, LT: 0.349829, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 90, loss@min: 1.418520, loss@max: 1.393015, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000206, LT: 0.349834, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 91, loss@min: 1.406647, loss@max: 1.405829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000205, LT: 0.349817, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 92, loss@min: 1.408856, loss@max: 1.405913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000205, LT: 0.349679, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 93, loss@min: 1.397083, loss@max: 1.416930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000205, LT: 0.349541, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 94, loss@min: 1.380267, loss@max: 1.429255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000205, LT: 0.349427, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 95, loss@min: 1.386644, loss@max: 1.430405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000205, LT: 0.349251, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 96, loss@min: 1.407120, loss@max: 1.398975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000205, LT: 0.349143, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 97, loss@min: 1.435488, loss@max: 1.412765, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 97, LS: 0.000205, LT: 0.349100, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 98, loss@min: 1.420850, loss@max: 1.397864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000205, LT: 0.349099, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 99, loss@min: 1.383732, loss@max: 1.423757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000205, LT: 0.349100, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 100, loss@min: 1.430335, loss@max: 1.390560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000205, LT: 0.349101, Top1S: 100.000000, Top1T: 89.371201 +------------------------------------------- +Fri May 26 10:14:15 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 8, "test_freq": 1} + +------------------------------------------- +Fri May 26 12:02:29 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.359211, loss@max: 5.504230, Top1S acc: 71.484375, Top1T acc: 39.843750 +Train:epoch: 2, loss@min: 4.149857, loss@max: 3.866805, Top1S acc: 98.828125, Top1T acc: 64.062500 +Train:epoch: 3, loss@min: 2.744628, loss@max: 3.027069, Top1S acc: 99.609375, Top1T acc: 80.859375 +Train:epoch: 4, loss@min: 2.650912, loss@max: 2.646915, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 5, loss@min: 2.547801, loss@max: 2.021755, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 6, loss@min: 2.236230, loss@max: 2.097593, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 7, loss@min: 2.000774, loss@max: 2.047466, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 2.203494, loss@max: 2.048729, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 9, loss@min: 1.854944, loss@max: 2.029658, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 10, loss@min: 1.986147, loss@max: 1.954413, Top1S acc: 100.000000, Top1T acc: 93.750000 + Test:epoch: 10, LS: 0.007594, LT: 0.679184, Top1S: 100.000000, Top1T: 80.527382Best acc: 80.527382 +Train:epoch: 11, loss@min: 1.900935, loss@max: 1.835712, Top1S acc: 100.000000, Top1T acc: 96.484375 + Test:epoch: 11, LS: 0.007067, LT: 0.638759, Top1S: 100.000000, Top1T: 83.002029Best acc: 83.002029 +Train:epoch: 12, loss@min: 1.773744, loss@max: 1.853912, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 12, LS: 0.006785, LT: 0.519373, Top1S: 100.000000, Top1T: 85.233269Best acc: 85.233269 +Train:epoch: 13, loss@min: 1.851035, loss@max: 1.771206, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 13, LS: 0.006344, LT: 0.477600, Top1S: 100.000000, Top1T: 85.801216Best acc: 85.801216 +Train:epoch: 14, loss@min: 1.623812, loss@max: 1.874405, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 14, LS: 0.005499, LT: 0.502415, Top1S: 100.000000, Top1T: 84.908722 +Train:epoch: 15, loss@min: 1.781887, loss@max: 1.739793, Top1S acc: 100.000000, Top1T acc: 96.093750 + Test:epoch: 15, LS: 0.005571, LT: 0.501740, Top1S: 100.000000, Top1T: 85.760651 +Train:epoch: 16, loss@min: 1.695704, loss@max: 1.673151, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 16, LS: 0.005525, LT: 0.460528, Top1S: 100.000000, Top1T: 86.774849Best acc: 86.774849 +Train:epoch: 17, loss@min: 1.627182, loss@max: 1.755141, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 17, LS: 0.004875, LT: 0.446679, Top1S: 100.000000, Top1T: 86.572006 +Train:epoch: 18, loss@min: 1.655140, loss@max: 1.662339, Top1S acc: 100.000000, Top1T acc: 97.265625 + Test:epoch: 18, LS: 0.004827, LT: 0.432187, Top1S: 100.000000, Top1T: 87.261665Best acc: 87.261665 +Train:epoch: 19, loss@min: 1.652065, loss@max: 1.727142, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 19, LS: 0.004974, LT: 0.428159, Top1S: 100.000000, Top1T: 87.789047Best acc: 87.789047 +Train:epoch: 20, loss@min: 1.649282, loss@max: 1.658880, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 20, LS: 0.004834, LT: 0.445859, Top1S: 100.000000, Top1T: 86.572006 +Train:epoch: 21, loss@min: 1.651368, loss@max: 1.700420, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 21, LS: 0.004569, LT: 0.425829, Top1S: 100.000000, Top1T: 87.910751Best acc: 87.910751 +Train:epoch: 22, loss@min: 1.672378, loss@max: 1.582456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.004147, LT: 0.436981, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 23, loss@min: 1.589742, loss@max: 1.683474, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 23, LS: 0.004164, LT: 0.433187, Top1S: 100.000000, Top1T: 87.748482 +Train:epoch: 24, loss@min: 1.713382, loss@max: 1.565679, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 24, LS: 0.004313, LT: 0.411863, Top1S: 100.000000, Top1T: 88.194725Best acc: 88.194725 +Train:epoch: 25, loss@min: 1.698333, loss@max: 1.585907, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 25, LS: 0.004001, LT: 0.414797, Top1S: 100.000000, Top1T: 87.870186 +Train:epoch: 26, loss@min: 1.624173, loss@max: 1.638519, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 26, LS: 0.003894, LT: 0.422028, Top1S: 100.000000, Top1T: 87.464500 +Train:epoch: 27, loss@min: 1.587800, loss@max: 1.523911, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 27, LS: 0.003727, LT: 0.399681, Top1S: 100.000000, Top1T: 88.397568Best acc: 88.397568 +Train:epoch: 28, loss@min: 1.598383, loss@max: 1.587255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.003502, LT: 0.397250, Top1S: 100.000000, Top1T: 88.478699Best acc: 88.478699 +Train:epoch: 29, loss@min: 1.688592, loss@max: 1.602903, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 29, LS: 0.003606, LT: 0.420081, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 30, loss@min: 1.551381, loss@max: 1.619320, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 30, LS: 0.003430, LT: 0.418224, Top1S: 100.000000, Top1T: 88.032455 +Train:epoch: 31, loss@min: 1.585442, loss@max: 1.564978, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 31, LS: 0.003352, LT: 0.403039, Top1S: 100.000000, Top1T: 87.951317 +Train:epoch: 32, loss@min: 1.639116, loss@max: 1.512230, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 32, LS: 0.003610, LT: 0.404104, Top1S: 100.000000, Top1T: 87.991890 +Train:epoch: 33, loss@min: 1.510829, loss@max: 1.621379, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 33, LS: 0.003458, LT: 0.399607, Top1S: 100.000000, Top1T: 88.113594 +Train:epoch: 34, loss@min: 1.483682, loss@max: 1.584361, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 34, LS: 0.003097, LT: 0.422502, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 35, loss@min: 1.583778, loss@max: 1.556345, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 35, LS: 0.003080, LT: 0.404106, Top1S: 100.000000, Top1T: 88.032455 +Train:epoch: 36, loss@min: 1.560929, loss@max: 1.528236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.003147, LT: 0.379833, Top1S: 100.000000, Top1T: 89.046654Best acc: 89.046654 +Train:epoch: 37, loss@min: 1.549192, loss@max: 1.545028, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 37, LS: 0.003134, LT: 0.388430, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 38, loss@min: 1.498206, loss@max: 1.578315, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 38, LS: 0.002963, LT: 0.393292, Top1S: 100.000000, Top1T: 88.640976 +Train:epoch: 39, loss@min: 1.568457, loss@max: 1.484150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.003017, LT: 0.378575, Top1S: 100.000000, Top1T: 88.762680 +Train:epoch: 40, loss@min: 1.515817, loss@max: 1.488755, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 40, LS: 0.002948, LT: 0.384408, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 41, loss@min: 1.476799, loss@max: 1.543923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.002748, LT: 0.407324, Top1S: 100.000000, Top1T: 88.154160 +Train:epoch: 42, loss@min: 1.580829, loss@max: 1.508470, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 42, LS: 0.002942, LT: 0.386088, Top1S: 100.000000, Top1T: 88.519272 +Train:epoch: 43, loss@min: 1.509928, loss@max: 1.480099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.002822, LT: 0.378372, Top1S: 100.000000, Top1T: 88.722107 +Train:epoch: 44, loss@min: 1.490581, loss@max: 1.539867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.002481, LT: 0.395065, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 45, loss@min: 1.473863, loss@max: 1.533323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.002558, LT: 0.376539, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 46, loss@min: 1.481142, loss@max: 1.522435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.002926, LT: 0.367820, Top1S: 100.000000, Top1T: 89.087219Best acc: 89.087219 +Train:epoch: 47, loss@min: 1.537620, loss@max: 1.482826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.002718, LT: 0.375568, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 48, loss@min: 1.580727, loss@max: 1.380973, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.002436, LT: 0.373809, Top1S: 100.000000, Top1T: 88.762680 +Train:epoch: 49, loss@min: 1.515659, loss@max: 1.487386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.002499, LT: 0.359797, Top1S: 100.000000, Top1T: 89.249496Best acc: 89.249496 +Train:epoch: 50, loss@min: 1.465354, loss@max: 1.507059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002683, LT: 0.358501, Top1S: 100.000000, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 51, loss@min: 1.465962, loss@max: 1.471178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002656, LT: 0.375927, Top1S: 100.000000, Top1T: 88.803246 +Train:epoch: 52, loss@min: 1.448295, loss@max: 1.522297, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 52, LS: 0.002406, LT: 0.375148, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 53, loss@min: 1.447649, loss@max: 1.508797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002385, LT: 0.364099, Top1S: 100.000000, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 54, loss@min: 1.434568, loss@max: 1.514785, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 54, LS: 0.002363, LT: 0.364199, Top1S: 100.000000, Top1T: 89.614601Best acc: 89.614601 +Train:epoch: 55, loss@min: 1.487019, loss@max: 1.418521, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 55, LS: 0.002363, LT: 0.363070, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 56, loss@min: 1.458883, loss@max: 1.459321, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 56, LS: 0.002410, LT: 0.357423, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 57, loss@min: 1.441306, loss@max: 1.455027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002356, LT: 0.354605, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 58, loss@min: 1.380412, loss@max: 1.523040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002258, LT: 0.360040, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 59, loss@min: 1.436300, loss@max: 1.443682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002344, LT: 0.354035, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 60, loss@min: 1.419814, loss@max: 1.493111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002341, LT: 0.347485, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 61, loss@min: 1.492543, loss@max: 1.392680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.002207, LT: 0.351878, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 62, loss@min: 1.471401, loss@max: 1.443705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.002137, LT: 0.363042, Top1S: 100.000000, Top1T: 88.640976 +Train:epoch: 63, loss@min: 1.411841, loss@max: 1.481576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.002228, LT: 0.359076, Top1S: 100.000000, Top1T: 88.843811 +Train:epoch: 64, loss@min: 1.379951, loss@max: 1.498522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.002320, LT: 0.355625, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 65, loss@min: 1.418946, loss@max: 1.457730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.002207, LT: 0.359693, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 66, loss@min: 1.436393, loss@max: 1.443589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.002104, LT: 0.359766, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 67, loss@min: 1.477770, loss@max: 1.401459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.002100, LT: 0.356362, Top1S: 100.000000, Top1T: 88.843811 +Train:epoch: 68, loss@min: 1.488674, loss@max: 1.391183, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 68, LS: 0.002148, LT: 0.353598, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 69, loss@min: 1.447749, loss@max: 1.411775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.002189, LT: 0.354369, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 70, loss@min: 1.432745, loss@max: 1.420141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.002194, LT: 0.355464, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 71, loss@min: 1.430656, loss@max: 1.419155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.002166, LT: 0.353395, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 72, loss@min: 1.475498, loss@max: 1.408953, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 72, LS: 0.002140, LT: 0.350474, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 73, loss@min: 1.414274, loss@max: 1.433235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.002111, LT: 0.351363, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 74, loss@min: 1.407165, loss@max: 1.447391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.002108, LT: 0.352384, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 75, loss@min: 1.424224, loss@max: 1.424031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.002113, LT: 0.352351, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 76, loss@min: 1.425066, loss@max: 1.426610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.002115, LT: 0.351314, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 77, loss@min: 1.429849, loss@max: 1.405284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.002115, LT: 0.350057, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 78, loss@min: 1.423679, loss@max: 1.411671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.002112, LT: 0.350134, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 79, loss@min: 1.401577, loss@max: 1.436805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.002106, LT: 0.349692, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 80, loss@min: 1.440732, loss@max: 1.383286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002095, LT: 0.348804, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 81, loss@min: 1.451319, loss@max: 1.388766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002083, LT: 0.348804, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 82, loss@min: 1.428459, loss@max: 1.412145, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.002075, LT: 0.348883, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 83, loss@min: 1.421465, loss@max: 1.404868, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002071, LT: 0.349132, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 84, loss@min: 1.420238, loss@max: 1.406254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002069, LT: 0.348756, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 85, loss@min: 1.408499, loss@max: 1.413815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002067, LT: 0.348723, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 86, loss@min: 1.408962, loss@max: 1.416819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002065, LT: 0.348974, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 87, loss@min: 1.408459, loss@max: 1.417498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002065, LT: 0.348916, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 88, loss@min: 1.405873, loss@max: 1.423904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002065, LT: 0.348803, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 89, loss@min: 1.401642, loss@max: 1.417727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002064, LT: 0.348903, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 90, loss@min: 1.418633, loss@max: 1.400356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002063, LT: 0.348888, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 91, loss@min: 1.407960, loss@max: 1.409492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002062, LT: 0.348659, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 92, loss@min: 1.406557, loss@max: 1.417445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002061, LT: 0.348321, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 93, loss@min: 1.411549, loss@max: 1.418441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002061, LT: 0.347899, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 94, loss@min: 1.385395, loss@max: 1.429645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002061, LT: 0.347591, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 95, loss@min: 1.392638, loss@max: 1.423434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002060, LT: 0.347392, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 96, loss@min: 1.404537, loss@max: 1.412061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002060, LT: 0.347319, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 97, loss@min: 1.441009, loss@max: 1.410088, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 97, LS: 0.002060, LT: 0.347301, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 98, loss@min: 1.425949, loss@max: 1.398924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002060, LT: 0.347309, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 99, loss@min: 1.398777, loss@max: 1.418667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002060, LT: 0.347312, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 100, loss@min: 1.423438, loss@max: 1.402674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002060, LT: 0.347312, Top1S: 100.000000, Top1T: 89.452332 +------------------------------------------- +Fri May 26 13:00:15 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 4, "test_freq": 1} + +------------------------------------------- +Fri May 26 19:21:26 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 9.261492, loss@max: 6.571316, Top1S acc: 15.625000, Top1T acc: 24.218750 +Train:epoch: 2, loss@min: 5.405626, loss@max: 5.002755, Top1S acc: 69.921875, Top1T acc: 61.328125 +Train:epoch: 3, loss@min: 3.849012, loss@max: 3.805435, Top1S acc: 89.843750, Top1T acc: 74.609375 +Train:epoch: 4, loss@min: 2.750181, loss@max: 3.469236, Top1S acc: 97.656250, Top1T acc: 87.500000 +Train:epoch: 5, loss@min: 2.427878, loss@max: 3.166414, Top1S acc: 98.437500, Top1T acc: 89.062500 +Train:epoch: 6, loss@min: 2.343782, loss@max: 2.408977, Top1S acc: 99.218750, Top1T acc: 91.796875 +Train:epoch: 7, loss@min: 2.614435, loss@max: 1.887144, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 2.843012, loss@max: 1.650019, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 9, loss@min: 2.182229, loss@max: 1.824182, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.975000, loss@max: 1.940889, Top1S acc: 100.000000, Top1T acc: 97.265625 + Test:epoch: 10, LS: 0.033381, LT: 0.697618, Top1S: 100.000000, Top1T: 83.407707Best acc: 83.407707 +Train:epoch: 11, loss@min: 1.697584, loss@max: 1.928154, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 11, LS: 0.026044, LT: 0.693132, Top1S: 100.000000, Top1T: 82.677483 +Train:epoch: 12, loss@min: 1.614947, loss@max: 1.855543, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 12, LS: 0.022711, LT: 0.662952, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 13, loss@min: 1.690467, loss@max: 1.760825, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 13, LS: 0.021044, LT: 0.611248, Top1S: 100.000000, Top1T: 83.651115Best acc: 83.651115 +Train:epoch: 14, loss@min: 1.692757, loss@max: 1.638789, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 14, LS: 0.020049, LT: 0.581607, Top1S: 100.000000, Top1T: 84.584175Best acc: 84.584175 +Train:epoch: 15, loss@min: 1.637541, loss@max: 1.652719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 15, LS: 0.018032, LT: 0.552243, Top1S: 100.000000, Top1T: 84.827583Best acc: 84.827583 +Train:epoch: 16, loss@min: 1.632885, loss@max: 1.622582, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 16, LS: 0.013850, LT: 0.518387, Top1S: 100.000000, Top1T: 86.085190Best acc: 86.085190 +Train:epoch: 17, loss@min: 1.530562, loss@max: 1.679754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 17, LS: 0.010018, LT: 0.513790, Top1S: 100.000000, Top1T: 85.760651 +Train:epoch: 18, loss@min: 1.612715, loss@max: 1.626957, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 18, LS: 0.007602, LT: 0.538279, Top1S: 100.000000, Top1T: 85.233269 +Train:epoch: 19, loss@min: 1.693267, loss@max: 1.485854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 19, LS: 0.006273, LT: 0.541520, Top1S: 100.000000, Top1T: 85.517242 +Train:epoch: 20, loss@min: 1.618119, loss@max: 1.491529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.005611, LT: 0.515067, Top1S: 100.000000, Top1T: 85.922920 +Train:epoch: 21, loss@min: 1.529134, loss@max: 1.651400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 21, LS: 0.005204, LT: 0.509149, Top1S: 100.000000, Top1T: 85.598381 +Train:epoch: 22, loss@min: 1.461609, loss@max: 1.653300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.004868, LT: 0.518227, Top1S: 100.000000, Top1T: 85.760651 +Train:epoch: 23, loss@min: 1.455778, loss@max: 1.594412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.004676, LT: 0.519323, Top1S: 100.000000, Top1T: 86.085190 +Train:epoch: 24, loss@min: 1.491552, loss@max: 1.557494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.004620, LT: 0.498130, Top1S: 100.000000, Top1T: 86.572006Best acc: 86.572006 +Train:epoch: 25, loss@min: 1.585353, loss@max: 1.488205, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 25, LS: 0.004545, LT: 0.493908, Top1S: 100.000000, Top1T: 86.612579Best acc: 86.612579 +Train:epoch: 26, loss@min: 1.523842, loss@max: 1.509211, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 26, LS: 0.004303, LT: 0.515689, Top1S: 100.000000, Top1T: 86.044624 +Train:epoch: 27, loss@min: 1.520345, loss@max: 1.495165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.004063, LT: 0.523191, Top1S: 100.000000, Top1T: 85.557808 +Train:epoch: 28, loss@min: 1.427109, loss@max: 1.586601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.003941, LT: 0.506773, Top1S: 100.000000, Top1T: 86.125763 +Train:epoch: 29, loss@min: 1.438623, loss@max: 1.543559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.003875, LT: 0.490666, Top1S: 100.000000, Top1T: 86.409737 +Train:epoch: 30, loss@min: 1.497734, loss@max: 1.466562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.003800, LT: 0.481986, Top1S: 100.000000, Top1T: 86.855988Best acc: 86.855988 +Train:epoch: 31, loss@min: 1.534051, loss@max: 1.439205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.003690, LT: 0.496170, Top1S: 100.000000, Top1T: 86.328598 +Train:epoch: 32, loss@min: 1.458942, loss@max: 1.528827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.003586, LT: 0.497307, Top1S: 100.000000, Top1T: 86.409737 +Train:epoch: 33, loss@min: 1.462657, loss@max: 1.490037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.003550, LT: 0.485574, Top1S: 100.000000, Top1T: 86.572006 +Train:epoch: 34, loss@min: 1.471569, loss@max: 1.488293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.003545, LT: 0.480225, Top1S: 100.000000, Top1T: 86.734283 +Train:epoch: 35, loss@min: 1.485648, loss@max: 1.466595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.003498, LT: 0.471358, Top1S: 100.000000, Top1T: 86.734283 +Train:epoch: 36, loss@min: 1.464738, loss@max: 1.456943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.003414, LT: 0.468965, Top1S: 100.000000, Top1T: 86.896553Best acc: 86.896553 +Train:epoch: 37, loss@min: 1.440008, loss@max: 1.474960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.003333, LT: 0.467220, Top1S: 100.000000, Top1T: 86.855988 +Train:epoch: 38, loss@min: 1.419504, loss@max: 1.519778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.003282, LT: 0.469352, Top1S: 100.000000, Top1T: 87.058823Best acc: 87.058823 +Train:epoch: 39, loss@min: 1.455853, loss@max: 1.464289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.003249, LT: 0.463518, Top1S: 100.000000, Top1T: 87.139961Best acc: 87.139961 +Train:epoch: 40, loss@min: 1.478040, loss@max: 1.411562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.003236, LT: 0.458143, Top1S: 100.000000, Top1T: 87.018257 +Train:epoch: 41, loss@min: 1.449008, loss@max: 1.465667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.003208, LT: 0.452154, Top1S: 100.000000, Top1T: 87.180527Best acc: 87.180527 +Train:epoch: 42, loss@min: 1.441539, loss@max: 1.478117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.003147, LT: 0.452128, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 43, loss@min: 1.443238, loss@max: 1.453714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.003076, LT: 0.458196, Top1S: 100.000000, Top1T: 86.815414 +Train:epoch: 44, loss@min: 1.437979, loss@max: 1.466415, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 44, LS: 0.003040, LT: 0.458926, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 45, loss@min: 1.447145, loss@max: 1.462925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.003046, LT: 0.452666, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 46, loss@min: 1.432698, loss@max: 1.445995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.003046, LT: 0.447917, Top1S: 100.000000, Top1T: 87.342796Best acc: 87.342796 +Train:epoch: 47, loss@min: 1.460094, loss@max: 1.440122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.003034, LT: 0.446019, Top1S: 100.000000, Top1T: 87.302231 +Train:epoch: 48, loss@min: 1.465629, loss@max: 1.431556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.002978, LT: 0.454003, Top1S: 100.000000, Top1T: 86.896553 +Train:epoch: 49, loss@min: 1.431178, loss@max: 1.459226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.002918, LT: 0.453692, Top1S: 100.000000, Top1T: 86.896553 +Train:epoch: 50, loss@min: 1.480041, loss@max: 1.423019, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 50, LS: 0.002899, LT: 0.450252, Top1S: 100.000000, Top1T: 87.302231 +Train:epoch: 51, loss@min: 1.450008, loss@max: 1.439681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002892, LT: 0.449178, Top1S: 100.000000, Top1T: 87.383369Best acc: 87.383369 +Train:epoch: 52, loss@min: 1.447922, loss@max: 1.444400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002885, LT: 0.448197, Top1S: 100.000000, Top1T: 87.545639Best acc: 87.545639 +Train:epoch: 53, loss@min: 1.444501, loss@max: 1.437413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002881, LT: 0.448656, Top1S: 100.000000, Top1T: 87.464500 +Train:epoch: 54, loss@min: 1.430928, loss@max: 1.454208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002867, LT: 0.445206, Top1S: 100.000000, Top1T: 87.626778Best acc: 87.626778 +Train:epoch: 55, loss@min: 1.417887, loss@max: 1.445930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.002834, LT: 0.443884, Top1S: 100.000000, Top1T: 87.505074 +Train:epoch: 56, loss@min: 1.417410, loss@max: 1.453358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.002797, LT: 0.445031, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 57, loss@min: 1.408943, loss@max: 1.456975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002778, LT: 0.441372, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 58, loss@min: 1.421825, loss@max: 1.430620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002764, LT: 0.439902, Top1S: 100.000000, Top1T: 87.586205 +Train:epoch: 59, loss@min: 1.452264, loss@max: 1.402291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002752, LT: 0.441157, Top1S: 100.000000, Top1T: 87.667343Best acc: 87.667343 +Train:epoch: 60, loss@min: 1.433861, loss@max: 1.430253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002742, LT: 0.442018, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 61, loss@min: 1.435251, loss@max: 1.413493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.002738, LT: 0.438933, Top1S: 100.000000, Top1T: 87.383369 +Train:epoch: 62, loss@min: 1.404901, loss@max: 1.444463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.002733, LT: 0.438097, Top1S: 100.000000, Top1T: 87.221092 +Train:epoch: 63, loss@min: 1.414889, loss@max: 1.440636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.002727, LT: 0.438660, Top1S: 100.000000, Top1T: 87.342796 +Train:epoch: 64, loss@min: 1.433157, loss@max: 1.422970, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.002707, LT: 0.438614, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 65, loss@min: 1.428396, loss@max: 1.419799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.002689, LT: 0.438752, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 66, loss@min: 1.439697, loss@max: 1.413967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.002673, LT: 0.438594, Top1S: 100.000000, Top1T: 87.707909Best acc: 87.707909 +Train:epoch: 67, loss@min: 1.395819, loss@max: 1.444181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.002656, LT: 0.438047, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 68, loss@min: 1.392415, loss@max: 1.454379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.002644, LT: 0.437696, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 69, loss@min: 1.429868, loss@max: 1.409913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.002639, LT: 0.438804, Top1S: 100.000000, Top1T: 87.342796 +Train:epoch: 70, loss@min: 1.421649, loss@max: 1.419764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.002639, LT: 0.438324, Top1S: 100.000000, Top1T: 87.342796 +Train:epoch: 71, loss@min: 1.425261, loss@max: 1.424031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.002640, LT: 0.437395, Top1S: 100.000000, Top1T: 87.505074 +Train:epoch: 72, loss@min: 1.411434, loss@max: 1.425544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.002639, LT: 0.435757, Top1S: 100.000000, Top1T: 87.505074 +Train:epoch: 73, loss@min: 1.404444, loss@max: 1.430102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.002630, LT: 0.435550, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 74, loss@min: 1.410429, loss@max: 1.422930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.002621, LT: 0.435665, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 75, loss@min: 1.415600, loss@max: 1.418363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.002613, LT: 0.435712, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 76, loss@min: 1.404590, loss@max: 1.425935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.002607, LT: 0.436247, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 77, loss@min: 1.393100, loss@max: 1.438083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.002601, LT: 0.436186, Top1S: 100.000000, Top1T: 87.505074 +Train:epoch: 78, loss@min: 1.391138, loss@max: 1.436614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.002596, LT: 0.435284, Top1S: 100.000000, Top1T: 87.383369 +Train:epoch: 79, loss@min: 1.418452, loss@max: 1.411616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.002592, LT: 0.434632, Top1S: 100.000000, Top1T: 87.464500 +Train:epoch: 80, loss@min: 1.435164, loss@max: 1.401014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002588, LT: 0.434180, Top1S: 100.000000, Top1T: 87.505074 +Train:epoch: 81, loss@min: 1.443095, loss@max: 1.385709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002587, LT: 0.432551, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 82, loss@min: 1.408527, loss@max: 1.413956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002586, LT: 0.431609, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 83, loss@min: 1.423984, loss@max: 1.401644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002584, LT: 0.431147, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 84, loss@min: 1.435865, loss@max: 1.392520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002582, LT: 0.431132, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 85, loss@min: 1.405878, loss@max: 1.427178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002581, LT: 0.431100, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 86, loss@min: 1.393921, loss@max: 1.432736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002579, LT: 0.431288, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 87, loss@min: 1.407123, loss@max: 1.418642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002578, LT: 0.431310, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 88, loss@min: 1.407923, loss@max: 1.410274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002576, LT: 0.431040, Top1S: 100.000000, Top1T: 87.586205 +Train:epoch: 89, loss@min: 1.420870, loss@max: 1.406442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002574, LT: 0.430627, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 90, loss@min: 1.392917, loss@max: 1.428755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002573, LT: 0.430377, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 91, loss@min: 1.401973, loss@max: 1.415957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002571, LT: 0.430235, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 92, loss@min: 1.416461, loss@max: 1.403516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002570, LT: 0.430136, Top1S: 100.000000, Top1T: 87.586205 +Train:epoch: 93, loss@min: 1.411876, loss@max: 1.408448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002569, LT: 0.430147, Top1S: 100.000000, Top1T: 87.545639 +Train:epoch: 94, loss@min: 1.396600, loss@max: 1.431540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002569, LT: 0.430126, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 95, loss@min: 1.397276, loss@max: 1.423255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002568, LT: 0.430145, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 96, loss@min: 1.404021, loss@max: 1.418562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002568, LT: 0.430141, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 97, loss@min: 1.405694, loss@max: 1.412240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002568, LT: 0.430140, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 98, loss@min: 1.400737, loss@max: 1.428116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002567, LT: 0.430134, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 99, loss@min: 1.408082, loss@max: 1.411506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002567, LT: 0.430133, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 100, loss@min: 1.429061, loss@max: 1.393221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002567, LT: 0.430133, Top1S: 100.000000, Top1T: 87.667343 +------------------------------------------- +Fri May 26 20:12:09 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Sat May 27 09:44:06 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 12.895602, loss@max: 7.723498, Top1S acc: 3.000000, Top1T acc: 14.000000 +Train:epoch: 2, loss@min: 8.297125, loss@max: 6.070341, Top1S acc: 19.000000, Top1T acc: 35.500000 +Train:epoch: 3, loss@min: 5.774012, loss@max: 5.083643, Top1S acc: 45.000000, Top1T acc: 66.500000 +Train:epoch: 4, loss@min: 4.357230, loss@max: 4.585247, Top1S acc: 76.000000, Top1T acc: 76.500000 +Train:epoch: 5, loss@min: 3.592821, loss@max: 3.857838, Top1S acc: 90.000000, Top1T acc: 89.000000 +Train:epoch: 6, loss@min: 3.123429, loss@max: 3.455581, Top1S acc: 95.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 2.600027, loss@max: 3.294461, Top1S acc: 98.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 2.154145, loss@max: 3.208798, Top1S acc: 99.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 1.868033, loss@max: 3.047825, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 2.045707, loss@max: 2.716519, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 10, LS: 0.126739, LT: 1.455492, Top1S: 99.472618, Top1T: 72.413795Best acc: 72.413795 +Train:epoch: 11, loss@min: 2.251048, loss@max: 2.255040, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 11, LS: 0.099670, LT: 1.394971, Top1S: 99.472618, Top1T: 73.184586Best acc: 73.184586 +Train:epoch: 12, loss@min: 2.434280, loss@max: 1.933375, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 12, LS: 0.081066, LT: 1.335035, Top1S: 99.472618, Top1T: 73.387421Best acc: 73.387421 +Train:epoch: 13, loss@min: 2.626066, loss@max: 1.665201, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 13, LS: 0.067581, LT: 1.292039, Top1S: 99.472618, Top1T: 74.645027Best acc: 74.645027 +Train:epoch: 14, loss@min: 2.573903, loss@max: 1.513047, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 14, LS: 0.057953, LT: 1.264198, Top1S: 99.472618, Top1T: 74.239349 +Train:epoch: 15, loss@min: 2.430200, loss@max: 1.573925, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 15, LS: 0.050907, LT: 1.214258, Top1S: 99.472618, Top1T: 74.969574Best acc: 74.969574 +Train:epoch: 16, loss@min: 2.243809, loss@max: 1.672565, Top1S acc: 99.000000, Top1T acc: 97.500000 + Test:epoch: 16, LS: 0.045903, LT: 1.149917, Top1S: 99.472618, Top1T: 75.578094Best acc: 75.578094 +Train:epoch: 17, loss@min: 1.981490, loss@max: 1.806660, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 17, LS: 0.042629, LT: 1.083305, Top1S: 100.000000, Top1T: 75.496956 +Train:epoch: 18, loss@min: 1.867602, loss@max: 1.845426, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 18, LS: 0.040459, LT: 1.032871, Top1S: 100.000000, Top1T: 76.308319Best acc: 76.308319 +Train:epoch: 19, loss@min: 1.804948, loss@max: 1.776203, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 19, LS: 0.039271, LT: 1.013324, Top1S: 100.000000, Top1T: 76.389450Best acc: 76.389450 +Train:epoch: 20, loss@min: 1.670745, loss@max: 1.819218, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 20, LS: 0.038800, LT: 1.002937, Top1S: 100.000000, Top1T: 76.308319 +Train:epoch: 21, loss@min: 1.750566, loss@max: 1.776220, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 21, LS: 0.038816, LT: 0.981168, Top1S: 100.000000, Top1T: 76.308319 +Train:epoch: 22, loss@min: 1.700477, loss@max: 1.699502, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 22, LS: 0.038643, LT: 0.940849, Top1S: 100.000000, Top1T: 76.795135Best acc: 76.795135 +Train:epoch: 23, loss@min: 1.630428, loss@max: 1.688056, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 23, LS: 0.037544, LT: 0.896563, Top1S: 100.000000, Top1T: 76.916840Best acc: 76.916840 +Train:epoch: 24, loss@min: 1.609690, loss@max: 1.634408, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 24, LS: 0.034763, LT: 0.856994, Top1S: 100.000000, Top1T: 77.160240Best acc: 77.160240 +Train:epoch: 25, loss@min: 1.555021, loss@max: 1.660084, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 25, LS: 0.030499, LT: 0.826393, Top1S: 100.000000, Top1T: 77.322517Best acc: 77.322517 +Train:epoch: 26, loss@min: 1.546269, loss@max: 1.681450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.025620, LT: 0.807204, Top1S: 100.000000, Top1T: 77.565926Best acc: 77.565926 +Train:epoch: 27, loss@min: 1.627777, loss@max: 1.571421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.020963, LT: 0.800362, Top1S: 100.000000, Top1T: 78.255577Best acc: 78.255577 +Train:epoch: 28, loss@min: 1.611405, loss@max: 1.520498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.016930, LT: 0.800784, Top1S: 100.000000, Top1T: 78.133873 +Train:epoch: 29, loss@min: 1.608658, loss@max: 1.516697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.013734, LT: 0.798235, Top1S: 100.000000, Top1T: 78.539551Best acc: 78.539551 +Train:epoch: 30, loss@min: 1.611770, loss@max: 1.508773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.011275, LT: 0.794205, Top1S: 100.000000, Top1T: 78.215012 +Train:epoch: 31, loss@min: 1.639987, loss@max: 1.454710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.009418, LT: 0.789066, Top1S: 100.000000, Top1T: 78.539551 +Train:epoch: 32, loss@min: 1.546885, loss@max: 1.557813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.008060, LT: 0.781758, Top1S: 100.000000, Top1T: 79.148071Best acc: 79.148071 +Train:epoch: 33, loss@min: 1.489794, loss@max: 1.569586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.007079, LT: 0.782527, Top1S: 100.000000, Top1T: 79.350914Best acc: 79.350914 +Train:epoch: 34, loss@min: 1.476589, loss@max: 1.597392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.006387, LT: 0.784267, Top1S: 100.000000, Top1T: 78.945236 +Train:epoch: 35, loss@min: 1.435491, loss@max: 1.616481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.005933, LT: 0.780987, Top1S: 100.000000, Top1T: 79.188644 +Train:epoch: 36, loss@min: 1.477523, loss@max: 1.577330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.005653, LT: 0.771873, Top1S: 100.000000, Top1T: 79.350914 +Train:epoch: 37, loss@min: 1.484294, loss@max: 1.528870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.005493, LT: 0.760935, Top1S: 100.000000, Top1T: 79.918861Best acc: 79.918861 +Train:epoch: 38, loss@min: 1.482647, loss@max: 1.491069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.005401, LT: 0.749286, Top1S: 100.000000, Top1T: 79.918861 +Train:epoch: 39, loss@min: 1.514770, loss@max: 1.464344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.005339, LT: 0.740763, Top1S: 100.000000, Top1T: 80.405678Best acc: 80.405678 +Train:epoch: 40, loss@min: 1.496460, loss@max: 1.462611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.005284, LT: 0.734239, Top1S: 100.000000, Top1T: 80.243408 +Train:epoch: 41, loss@min: 1.495276, loss@max: 1.468421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.005226, LT: 0.727095, Top1S: 100.000000, Top1T: 80.486816Best acc: 80.486816 +Train:epoch: 42, loss@min: 1.471927, loss@max: 1.473552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.005148, LT: 0.726401, Top1S: 100.000000, Top1T: 80.811363Best acc: 80.811363 +Train:epoch: 43, loss@min: 1.461679, loss@max: 1.450248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.005045, LT: 0.729669, Top1S: 100.000000, Top1T: 80.770790 +Train:epoch: 44, loss@min: 1.464963, loss@max: 1.478801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.004907, LT: 0.728663, Top1S: 100.000000, Top1T: 80.811363 +Train:epoch: 45, loss@min: 1.456510, loss@max: 1.470250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.004743, LT: 0.728590, Top1S: 100.000000, Top1T: 80.973633Best acc: 80.973633 +Train:epoch: 46, loss@min: 1.460329, loss@max: 1.470421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.004582, LT: 0.724820, Top1S: 100.000000, Top1T: 81.095337Best acc: 81.095337 +Train:epoch: 47, loss@min: 1.526850, loss@max: 1.412649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.004434, LT: 0.717110, Top1S: 100.000000, Top1T: 81.135902Best acc: 81.135902 +Train:epoch: 48, loss@min: 1.490968, loss@max: 1.438739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.004310, LT: 0.709434, Top1S: 100.000000, Top1T: 81.379311Best acc: 81.379311 +Train:epoch: 49, loss@min: 1.445305, loss@max: 1.483620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.004199, LT: 0.705205, Top1S: 100.000000, Top1T: 81.460449Best acc: 81.460449 +Train:epoch: 50, loss@min: 1.435712, loss@max: 1.487241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.004098, LT: 0.704743, Top1S: 100.000000, Top1T: 81.501015Best acc: 81.501015 +Train:epoch: 51, loss@min: 1.424370, loss@max: 1.491235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.004012, LT: 0.703886, Top1S: 100.000000, Top1T: 81.703857Best acc: 81.703857 +Train:epoch: 52, loss@min: 1.430229, loss@max: 1.469977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.003941, LT: 0.706545, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 53, loss@min: 1.435260, loss@max: 1.470220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.003888, LT: 0.709595, Top1S: 100.000000, Top1T: 81.460449 +Train:epoch: 54, loss@min: 1.412786, loss@max: 1.497504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.003851, LT: 0.708855, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 55, loss@min: 1.437651, loss@max: 1.462049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.003827, LT: 0.706341, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 56, loss@min: 1.418876, loss@max: 1.464594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.003813, LT: 0.701897, Top1S: 100.000000, Top1T: 81.703857 +Train:epoch: 57, loss@min: 1.484687, loss@max: 1.415346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.003804, LT: 0.698467, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 58, loss@min: 1.516763, loss@max: 1.386406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.003797, LT: 0.692556, Top1S: 100.000000, Top1T: 81.663284 +Train:epoch: 59, loss@min: 1.459735, loss@max: 1.437288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.003793, LT: 0.687838, Top1S: 100.000000, Top1T: 81.663284 +Train:epoch: 60, loss@min: 1.456019, loss@max: 1.437258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.003789, LT: 0.686602, Top1S: 100.000000, Top1T: 81.906693Best acc: 81.906693 +Train:epoch: 61, loss@min: 1.451813, loss@max: 1.444514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.003785, LT: 0.686844, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 62, loss@min: 1.416947, loss@max: 1.458334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.003781, LT: 0.687908, Top1S: 100.000000, Top1T: 82.068962Best acc: 82.068962 +Train:epoch: 63, loss@min: 1.414014, loss@max: 1.455366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.003776, LT: 0.690229, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 64, loss@min: 1.440141, loss@max: 1.423455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.003769, LT: 0.692478, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 65, loss@min: 1.435686, loss@max: 1.421036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.003757, LT: 0.696482, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 66, loss@min: 1.447793, loss@max: 1.428656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.003743, LT: 0.699862, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 67, loss@min: 1.433451, loss@max: 1.434995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.003730, LT: 0.700224, Top1S: 100.000000, Top1T: 81.947266 +Train:epoch: 68, loss@min: 1.435188, loss@max: 1.434437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.003718, LT: 0.697634, Top1S: 100.000000, Top1T: 82.109535Best acc: 82.109535 +Train:epoch: 69, loss@min: 1.437557, loss@max: 1.430323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.003707, LT: 0.693569, Top1S: 100.000000, Top1T: 82.150101Best acc: 82.150101 +Train:epoch: 70, loss@min: 1.426191, loss@max: 1.434566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.003696, LT: 0.688542, Top1S: 100.000000, Top1T: 81.987831 +Train:epoch: 71, loss@min: 1.413994, loss@max: 1.441765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.003686, LT: 0.682809, Top1S: 100.000000, Top1T: 82.150101 +Train:epoch: 72, loss@min: 1.420412, loss@max: 1.434707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.003676, LT: 0.677951, Top1S: 100.000000, Top1T: 82.231239Best acc: 82.231239 +Train:epoch: 73, loss@min: 1.414087, loss@max: 1.449306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.003665, LT: 0.674407, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 74, loss@min: 1.389616, loss@max: 1.474741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.003655, LT: 0.672881, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 75, loss@min: 1.399184, loss@max: 1.448035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.003645, LT: 0.672160, Top1S: 100.000000, Top1T: 82.231239 +Train:epoch: 76, loss@min: 1.406071, loss@max: 1.451817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.003634, LT: 0.672074, Top1S: 100.000000, Top1T: 82.271805Best acc: 82.271805 +Train:epoch: 77, loss@min: 1.442746, loss@max: 1.416917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.003626, LT: 0.672981, Top1S: 100.000000, Top1T: 82.393509Best acc: 82.393509 +Train:epoch: 78, loss@min: 1.440610, loss@max: 1.408480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.003618, LT: 0.674561, Top1S: 100.000000, Top1T: 82.352943 +Train:epoch: 79, loss@min: 1.429676, loss@max: 1.413792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.003612, LT: 0.676194, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 80, loss@min: 1.456909, loss@max: 1.391022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.003608, LT: 0.677859, Top1S: 100.000000, Top1T: 82.434074Best acc: 82.434074 +Train:epoch: 81, loss@min: 1.438603, loss@max: 1.410668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.003605, LT: 0.678860, Top1S: 100.000000, Top1T: 82.312370 +Train:epoch: 82, loss@min: 1.440517, loss@max: 1.403898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.003602, LT: 0.679604, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 83, loss@min: 1.443363, loss@max: 1.391050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.003600, LT: 0.679668, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 84, loss@min: 1.430217, loss@max: 1.407381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.003598, LT: 0.679953, Top1S: 100.000000, Top1T: 82.109535 +Train:epoch: 85, loss@min: 1.423279, loss@max: 1.417425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.003596, LT: 0.680306, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 86, loss@min: 1.400965, loss@max: 1.435261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.003594, LT: 0.680574, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 87, loss@min: 1.422151, loss@max: 1.415465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.003593, LT: 0.680614, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 88, loss@min: 1.424235, loss@max: 1.415996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.003592, LT: 0.680340, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 89, loss@min: 1.400581, loss@max: 1.435442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.003592, LT: 0.680119, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 90, loss@min: 1.442134, loss@max: 1.400124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.003591, LT: 0.679796, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 91, loss@min: 1.414452, loss@max: 1.419716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.003591, LT: 0.679472, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 92, loss@min: 1.400883, loss@max: 1.432388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.003591, LT: 0.679180, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 93, loss@min: 1.423767, loss@max: 1.411815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.003591, LT: 0.678959, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 94, loss@min: 1.419846, loss@max: 1.418189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.003591, LT: 0.678807, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 95, loss@min: 1.399231, loss@max: 1.441503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.003591, LT: 0.678681, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 96, loss@min: 1.405022, loss@max: 1.430723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.003591, LT: 0.678600, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 97, loss@min: 1.429832, loss@max: 1.414071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.003591, LT: 0.678565, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 98, loss@min: 1.419842, loss@max: 1.413046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.003591, LT: 0.678549, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 99, loss@min: 1.424690, loss@max: 1.407792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.003590, LT: 0.678543, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 100, loss@min: 1.429542, loss@max: 1.401640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.003590, LT: 0.678543, Top1S: 100.000000, Top1T: 82.028397 +------------------------------------------- +Sat May 27 10:30:11 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:06:40 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:07:50 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:08:44 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:09:37 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:10:46 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:13:05 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:14:44 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:15:43 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.956120, loss@max: 7.447930, Top1S acc: 3.000000, Top1T acc: 20.000000 +Train:epoch: 2, loss@min: 7.690345, loss@max: 6.373242, Top1S acc: 12.000000, Top1T acc: 59.500000 +Train:epoch: 3, loss@min: 5.923011, loss@max: 5.103259, Top1S acc: 30.000000, Top1T acc: 80.000000 +Train:epoch: 4, loss@min: 5.307295, loss@max: 4.256114, Top1S acc: 67.000000, Top1T acc: 86.000000 +Train:epoch: 5, loss@min: 4.479798, loss@max: 3.786620, Top1S acc: 79.000000, Top1T acc: 91.000000 +Train:epoch: 6, loss@min: 3.327225, loss@max: 3.951617, Top1S acc: 88.000000, Top1T acc: 96.000000 +Train:epoch: 7, loss@min: 2.439150, loss@max: 4.573302, Top1S acc: 93.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 2.236338, loss@max: 4.323499, Top1S acc: 98.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 2.030364, loss@max: 3.948851, Top1S acc: 98.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 2.306452, loss@max: 3.449025, Top1S acc: 99.000000, Top1T acc: 97.500000 + Test:epoch: 10, LS: 0.297005, LT: 2.175250, Top1S: 99.472618, Top1T: 59.432049Best acc: 59.432049 +Train:epoch: 11, loss@min: 2.395842, loss@max: 3.044479, Top1S acc: 99.000000, Top1T acc: 97.000000 + Test:epoch: 11, LS: 0.225021, LT: 2.170691, Top1S: 99.472618, Top1T: 59.107506 +Train:epoch: 12, loss@min: 2.570539, loss@max: 2.580336, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 12, LS: 0.173574, LT: 2.251551, Top1S: 99.472618, Top1T: 57.444218 +Train:epoch: 13, loss@min: 2.532781, loss@max: 2.597265, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 13, LS: 0.138285, LT: 2.276911, Top1S: 99.472618, Top1T: 56.754562 +Train:epoch: 14, loss@min: 2.408366, loss@max: 2.471717, Top1S acc: 99.000000, Top1T acc: 99.500000 + Test:epoch: 14, LS: 0.113485, LT: 2.255981, Top1S: 100.000000, Top1T: 57.809330 +Train:epoch: 15, loss@min: 2.584461, loss@max: 2.269085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 15, LS: 0.096240, LT: 2.272008, Top1S: 100.000000, Top1T: 58.701824 +Train:epoch: 16, loss@min: 2.481801, loss@max: 2.107145, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 16, LS: 0.083153, LT: 2.286647, Top1S: 100.000000, Top1T: 58.985802 +Train:epoch: 17, loss@min: 2.351311, loss@max: 2.191877, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 17, LS: 0.072609, LT: 2.335205, Top1S: 100.000000, Top1T: 59.310345 +Train:epoch: 18, loss@min: 2.308762, loss@max: 2.143795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 18, LS: 0.063860, LT: 2.366009, Top1S: 100.000000, Top1T: 58.823528 +Train:epoch: 19, loss@min: 2.410218, loss@max: 2.136530, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 19, LS: 0.057025, LT: 2.318746, Top1S: 100.000000, Top1T: 59.148075 +Train:epoch: 20, loss@min: 2.172391, loss@max: 2.121305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.051537, LT: 2.299211, Top1S: 100.000000, Top1T: 59.026371 +Train:epoch: 21, loss@min: 2.197934, loss@max: 2.046041, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 21, LS: 0.047279, LT: 2.299164, Top1S: 100.000000, Top1T: 58.498985 +Train:epoch: 22, loss@min: 1.980032, loss@max: 2.214365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.043814, LT: 2.315618, Top1S: 100.000000, Top1T: 58.133873 +Train:epoch: 23, loss@min: 1.917859, loss@max: 2.180047, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 23, LS: 0.041189, LT: 2.322276, Top1S: 100.000000, Top1T: 57.931034 +Train:epoch: 24, loss@min: 1.969279, loss@max: 2.286385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.039189, LT: 2.312294, Top1S: 100.000000, Top1T: 58.093307 +Train:epoch: 25, loss@min: 1.864962, loss@max: 2.164304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.037286, LT: 2.315712, Top1S: 100.000000, Top1T: 58.661259 +Train:epoch: 26, loss@min: 1.914726, loss@max: 2.017613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.035199, LT: 2.289401, Top1S: 100.000000, Top1T: 59.229210 +Train:epoch: 27, loss@min: 1.900760, loss@max: 1.934865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.033032, LT: 2.309044, Top1S: 100.000000, Top1T: 58.904667 +Train:epoch: 28, loss@min: 1.909734, loss@max: 2.035993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.030975, LT: 2.340503, Top1S: 100.000000, Top1T: 58.661259 +Train:epoch: 29, loss@min: 1.842621, loss@max: 2.008620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.029294, LT: 2.364670, Top1S: 100.000000, Top1T: 57.768764 +Train:epoch: 30, loss@min: 1.919489, loss@max: 1.979860, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 30, LS: 0.027680, LT: 2.393858, Top1S: 100.000000, Top1T: 56.713997 +Train:epoch: 31, loss@min: 1.970282, loss@max: 1.865544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.025989, LT: 2.404857, Top1S: 100.000000, Top1T: 56.146046 +Train:epoch: 32, loss@min: 1.970884, loss@max: 1.976375, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 32, LS: 0.024274, LT: 2.338927, Top1S: 100.000000, Top1T: 58.133873 +Train:epoch: 33, loss@min: 1.849164, loss@max: 1.934009, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 33, LS: 0.022491, LT: 2.256094, Top1S: 100.000000, Top1T: 58.945232 +Train:epoch: 34, loss@min: 1.897720, loss@max: 1.763599, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 34, LS: 0.020816, LT: 2.199536, Top1S: 100.000000, Top1T: 59.391479 +Train:epoch: 35, loss@min: 1.856375, loss@max: 1.735941, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:32:21 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.478855, loss@max: 9.466183, Top1S acc: 1.000000, Top1T acc: 8.500000 +Train:epoch: 2, loss@min: 12.612476, loss@max: 7.847089, Top1S acc: 1.500000, Top1T acc: 26.000000 +Train:epoch: 3, loss@min: 11.021996, loss@max: 7.163404, Top1S acc: 0.500000, Top1T acc: 43.500000 +Train:epoch: 4, loss@min: 10.486470, loss@max: 7.182628, Top1S acc: 1.000000, Top1T acc: 52.500000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:34:02 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:34:52 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:36:01 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:38:57 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:40:25 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 10:47:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 12.895602, loss@max: 7.723498, Top1S acc: 3.000000, Top1T acc: 14.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:11:02 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:16:00 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:17:04 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:26:29 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:26:52 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:27:44 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:29:10 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 38.007744, loss@max: 22.284750, Top1S acc: 6.000000, Top1T acc: 8.000000 +Train:epoch: 2, loss@min: 19.785192, loss@max: 15.266335, Top1S acc: 31.000000, Top1T acc: 25.000000 +Train:epoch: 3, loss@min: 9.875464, loss@max: 11.417375, Top1S acc: 66.000000, Top1T acc: 47.500000 +Train:epoch: 4, loss@min: 6.768771, loss@max: 9.976307, Top1S acc: 82.000000, Top1T acc: 64.500000 +Train:epoch: 5, loss@min: 7.575937, loss@max: 9.423807, Top1S acc: 91.000000, Top1T acc: 79.500000 +Train:epoch: 6, loss@min: 6.935250, loss@max: 8.035846, Top1S acc: 90.000000, Top1T acc: 88.000000 +Train:epoch: 7, loss@min: 5.837999, loss@max: 7.232947, Top1S acc: 98.000000, Top1T acc: 89.500000 +Train:epoch: 8, loss@min: 5.353298, loss@max: 6.652284, Top1S acc: 97.000000, Top1T acc: 93.500000 +Train:epoch: 9, loss@min: 5.592766, loss@max: 5.682748, Top1S acc: 98.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 5.644161, loss@max: 4.999855, Top1S acc: 98.000000, Top1T acc: 97.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:31:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 38.007744, loss@max: 22.284750, Top1S acc: 6.000000, Top1T acc: 8.000000 +Train:epoch: 2, loss@min: 19.785192, loss@max: 15.266335, Top1S acc: 31.000000, Top1T acc: 25.000000 +Train:epoch: 3, loss@min: 9.875464, loss@max: 11.417375, Top1S acc: 66.000000, Top1T acc: 47.500000 +Train:epoch: 4, loss@min: 6.768771, loss@max: 9.976307, Top1S acc: 82.000000, Top1T acc: 64.500000 +Train:epoch: 5, loss@min: 7.575937, loss@max: 9.423807, Top1S acc: 91.000000, Top1T acc: 79.500000 +Train:epoch: 6, loss@min: 6.935250, loss@max: 8.035846, Top1S acc: 90.000000, Top1T acc: 88.000000 +Train:epoch: 7, loss@min: 5.837999, loss@max: 7.232947, Top1S acc: 98.000000, Top1T acc: 89.500000 +Train:epoch: 8, loss@min: 5.353298, loss@max: 6.652284, Top1S acc: 97.000000, Top1T acc: 93.500000 +Train:epoch: 9, loss@min: 5.592766, loss@max: 5.682748, Top1S acc: 98.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 5.644161, loss@max: 4.999855, Top1S acc: 98.000000, Top1T acc: 97.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:33:21 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 38.007744, loss@max: 22.284750, Top1S acc: 6.000000, Top1T acc: 8.000000 +Train:epoch: 2, loss@min: 19.785192, loss@max: 15.266335, Top1S acc: 31.000000, Top1T acc: 25.000000 +Train:epoch: 3, loss@min: 9.875464, loss@max: 11.417375, Top1S acc: 66.000000, Top1T acc: 47.500000 +Train:epoch: 4, loss@min: 6.768771, loss@max: 9.976307, Top1S acc: 82.000000, Top1T acc: 64.500000 +Train:epoch: 5, loss@min: 7.575937, loss@max: 9.423807, Top1S acc: 91.000000, Top1T acc: 79.500000 +Train:epoch: 6, loss@min: 6.935250, loss@max: 8.035846, Top1S acc: 90.000000, Top1T acc: 88.000000 +Train:epoch: 7, loss@min: 5.837999, loss@max: 7.232947, Top1S acc: 98.000000, Top1T acc: 89.500000 +Train:epoch: 8, loss@min: 5.353298, loss@max: 6.652284, Top1S acc: 97.000000, Top1T acc: 93.500000 +Train:epoch: 9, loss@min: 5.592766, loss@max: 5.682748, Top1S acc: 98.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 5.644161, loss@max: 4.999855, Top1S acc: 98.000000, Top1T acc: 97.000000 + Test:epoch: 10, LS: 0.276025, LT: 1.605850, Top1S: 93.711967, Top1T: 68.884384Best acc: 68.884384 +Train:epoch: 11, loss@min: 5.244284, loss@max: 4.182291, Top1S acc: 97.000000, Top1T acc: 97.500000 + Test:epoch: 11, LS: 0.257081, LT: 1.488310, Top1S: 98.539551, Top1T: 70.263695Best acc: 70.263695 +Train:epoch: 12, loss@min: 5.055629, loss@max: 4.246355, Top1S acc: 97.000000, Top1T acc: 98.000000 + Test:epoch: 12, LS: 0.240583, LT: 1.389607, Top1S: 97.971603, Top1T: 71.602432Best acc: 71.602432 +Train:epoch: 13, loss@min: 4.936935, loss@max: 3.924672, Top1S acc: 96.000000, Top1T acc: 99.000000 + Test:epoch: 13, LS: 0.236705, LT: 1.340980, Top1S: 98.823532, Top1T: 72.413795Best acc: 72.413795 +Train:epoch: 14, loss@min: 4.187133, loss@max: 3.343752, Top1S acc: 98.000000, Top1T acc: 99.000000 + Test:epoch: 14, LS: 0.211429, LT: 1.343533, Top1S: 98.823532, Top1T: 72.048683 +Train:epoch: 15, loss@min: 3.613300, loss@max: 3.348045, Top1S acc: 98.000000, Top1T acc: 98.000000 + Test:epoch: 15, LS: 0.184596, LT: 1.328480, Top1S: 98.823532, Top1T: 71.805275 +Train:epoch: 16, loss@min: 3.338733, loss@max: 3.860487, Top1S acc: 98.000000, Top1T acc: 97.000000 + Test:epoch: 16, LS: 0.135143, LT: 1.282468, Top1S: 98.823532, Top1T: 72.413795 +Train:epoch: 17, loss@min: 3.363005, loss@max: 3.794970, Top1S acc: 98.000000, Top1T acc: 98.000000 + Test:epoch: 17, LS: 0.092755, LT: 1.228971, Top1S: 99.391479, Top1T: 73.671402Best acc: 73.671402 +Train:epoch: 18, loss@min: 3.386322, loss@max: 3.145911, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 18, LS: 0.061083, LT: 1.185075, Top1S: 99.391479, Top1T: 74.158218Best acc: 74.158218 +Train:epoch: 19, loss@min: 3.344275, loss@max: 2.432530, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 19, LS: 0.039393, LT: 1.149147, Top1S: 99.391479, Top1T: 74.442192Best acc: 74.442192 +Train:epoch: 20, loss@min: 3.024857, loss@max: 2.544667, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 20, LS: 0.021206, LT: 1.115134, Top1S: 98.782959, Top1T: 74.645027Best acc: 74.645027 +Train:epoch: 21, loss@min: 2.809858, loss@max: 2.926492, Top1S acc: 98.000000, Top1T acc: 97.000000 + Test:epoch: 21, LS: 0.009785, LT: 1.083306, Top1S: 99.391479, Top1T: 74.969574Best acc: 74.969574 +Train:epoch: 22, loss@min: 2.577085, loss@max: 2.944869, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 22, LS: 0.002650, LT: 1.051725, Top1S: 100.000000, Top1T: 75.050713Best acc: 75.050713 +Train:epoch: 23, loss@min: 2.649364, loss@max: 2.356004, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 23, LS: 0.000308, LT: 1.020760, Top1S: 100.000000, Top1T: 75.172417Best acc: 75.172417 +Train:epoch: 24, loss@min: 2.716539, loss@max: 2.153237, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 24, LS: 0.000018, LT: 0.991542, Top1S: 100.000000, Top1T: 75.578094Best acc: 75.578094 +Train:epoch: 25, loss@min: 2.428319, loss@max: 2.316724, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 25, LS: 0.000000, LT: 0.959431, Top1S: 100.000000, Top1T: 76.227180Best acc: 76.227180 +Train:epoch: 26, loss@min: 1.990534, loss@max: 2.630129, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 26, LS: 0.000000, LT: 0.933753, Top1S: 100.000000, Top1T: 76.592293Best acc: 76.592293 +Train:epoch: 27, loss@min: 1.885162, loss@max: 2.531024, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 27, LS: 0.000000, LT: 0.922637, Top1S: 100.000000, Top1T: 76.754562Best acc: 76.754562 +Train:epoch: 28, loss@min: 2.042365, loss@max: 2.306875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.000001, LT: 0.927804, Top1S: 100.000000, Top1T: 76.348885 +Train:epoch: 29, loss@min: 2.238956, loss@max: 2.029464, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 29, LS: 0.000011, LT: 0.929486, Top1S: 100.000000, Top1T: 76.511154 +Train:epoch: 30, loss@min: 2.396392, loss@max: 1.836292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000026, LT: 0.920937, Top1S: 100.000000, Top1T: 76.511154 +Train:epoch: 31, loss@min: 2.217075, loss@max: 1.780622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.000007, LT: 0.903191, Top1S: 100.000000, Top1T: 76.916840Best acc: 76.916840 +Train:epoch: 32, loss@min: 1.900202, loss@max: 2.024293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000001, LT: 0.880536, Top1S: 100.000000, Top1T: 77.768761Best acc: 77.768761 +Train:epoch: 33, loss@min: 1.748696, loss@max: 2.087196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000000, LT: 0.868821, Top1S: 100.000000, Top1T: 77.971603Best acc: 77.971603 +Train:epoch: 34, loss@min: 1.761991, loss@max: 1.980179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.000000, LT: 0.869072, Top1S: 100.000000, Top1T: 78.336716Best acc: 78.336716 +Train:epoch: 35, loss@min: 1.831480, loss@max: 1.819549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.000001, LT: 0.877261, Top1S: 100.000000, Top1T: 78.296150 +Train:epoch: 36, loss@min: 1.902195, loss@max: 1.713492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000003, LT: 0.888804, Top1S: 100.000000, Top1T: 78.133873 +Train:epoch: 37, loss@min: 1.825985, loss@max: 1.757541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.000017, LT: 0.900368, Top1S: 100.000000, Top1T: 77.768761 +Train:epoch: 38, loss@min: 1.654749, loss@max: 1.764974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.000019, LT: 0.908012, Top1S: 100.000000, Top1T: 77.363083 +Train:epoch: 39, loss@min: 1.687519, loss@max: 1.748683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000004, LT: 0.908488, Top1S: 100.000000, Top1T: 77.606491 +Train:epoch: 40, loss@min: 1.633535, loss@max: 1.750486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.000001, LT: 0.898135, Top1S: 100.000000, Top1T: 77.647057 +Train:epoch: 41, loss@min: 1.560795, loss@max: 1.720772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.000001, LT: 0.883789, Top1S: 100.000000, Top1T: 77.931038 +Train:epoch: 42, loss@min: 1.556013, loss@max: 1.744514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000004, LT: 0.876167, Top1S: 100.000000, Top1T: 77.971603 +Train:epoch: 43, loss@min: 1.642754, loss@max: 1.628957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.000023, LT: 0.874167, Top1S: 100.000000, Top1T: 78.052742 +Train:epoch: 44, loss@min: 1.725212, loss@max: 1.469320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.000030, LT: 0.874901, Top1S: 100.000000, Top1T: 78.174446 +Train:epoch: 45, loss@min: 1.682642, loss@max: 1.503327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.000013, LT: 0.882046, Top1S: 100.000000, Top1T: 78.133873 +Train:epoch: 46, loss@min: 1.548870, loss@max: 1.605188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.000005, LT: 0.887457, Top1S: 100.000000, Top1T: 78.215012 +Train:epoch: 47, loss@min: 1.512851, loss@max: 1.580107, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:53:55 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Mon May 29 17:54:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 12.895601, loss@max: 7.723498, Top1S acc: 3.000000, Top1T acc: 14.000000 +Train:epoch: 2, loss@min: 8.297124, loss@max: 6.070341, Top1S acc: 19.000000, Top1T acc: 35.500000 +Train:epoch: 3, loss@min: 5.774012, loss@max: 5.083643, Top1S acc: 45.000000, Top1T acc: 66.500000 +Train:epoch: 4, loss@min: 4.357229, loss@max: 4.585247, Top1S acc: 76.000000, Top1T acc: 76.500000 +Train:epoch: 5, loss@min: 3.592821, loss@max: 3.857838, Top1S acc: 90.000000, Top1T acc: 89.000000 +Train:epoch: 6, loss@min: 3.123429, loss@max: 3.455581, Top1S acc: 95.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 2.600027, loss@max: 3.294461, Top1S acc: 98.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 2.154146, loss@max: 3.208798, Top1S acc: 99.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 1.868033, loss@max: 3.047826, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 2.045706, loss@max: 2.716519, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 10, LS: 0.126739, LT: 1.455492, Top1S: 99.472618, Top1T: 72.413795Best acc: 72.413795 +Train:epoch: 11, loss@min: 2.251047, loss@max: 2.255041, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 11, LS: 0.099670, LT: 1.394971, Top1S: 99.472618, Top1T: 73.184586Best acc: 73.184586 +Train:epoch: 12, loss@min: 2.434280, loss@max: 1.933375, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 12, LS: 0.081066, LT: 1.335035, Top1S: 99.472618, Top1T: 73.387421Best acc: 73.387421 +Train:epoch: 13, loss@min: 2.626067, loss@max: 1.665200, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 13, LS: 0.067581, LT: 1.292039, Top1S: 99.472618, Top1T: 74.645027Best acc: 74.645027 +Train:epoch: 14, loss@min: 2.573904, loss@max: 1.513047, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 14, LS: 0.057953, LT: 1.264198, Top1S: 99.472618, Top1T: 74.239349 +Train:epoch: 15, loss@min: 2.430200, loss@max: 1.573925, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 15, LS: 0.050907, LT: 1.214257, Top1S: 99.472618, Top1T: 74.969574Best acc: 74.969574 +Train:epoch: 16, loss@min: 2.243809, loss@max: 1.672565, Top1S acc: 99.000000, Top1T acc: 97.500000 + Test:epoch: 16, LS: 0.045903, LT: 1.149917, Top1S: 99.472618, Top1T: 75.578094Best acc: 75.578094 +Train:epoch: 17, loss@min: 1.981490, loss@max: 1.806661, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 17, LS: 0.042629, LT: 1.083304, Top1S: 100.000000, Top1T: 75.496956 +Train:epoch: 18, loss@min: 1.867602, loss@max: 1.845426, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 18, LS: 0.040459, LT: 1.032871, Top1S: 100.000000, Top1T: 76.308319Best acc: 76.308319 +Train:epoch: 19, loss@min: 1.804948, loss@max: 1.776203, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 19, LS: 0.039271, LT: 1.013324, Top1S: 100.000000, Top1T: 76.389450Best acc: 76.389450 +Train:epoch: 20, loss@min: 1.670745, loss@max: 1.819218, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 20, LS: 0.038800, LT: 1.002937, Top1S: 100.000000, Top1T: 76.308319 +Train:epoch: 21, loss@min: 1.750566, loss@max: 1.776220, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 21, LS: 0.038816, LT: 0.981168, Top1S: 100.000000, Top1T: 76.308319 +Train:epoch: 22, loss@min: 1.700477, loss@max: 1.699502, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 22, LS: 0.038643, LT: 0.940849, Top1S: 100.000000, Top1T: 76.795135Best acc: 76.795135 +Train:epoch: 23, loss@min: 1.630429, loss@max: 1.688056, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 23, LS: 0.037544, LT: 0.896564, Top1S: 100.000000, Top1T: 76.916840Best acc: 76.916840 +Train:epoch: 24, loss@min: 1.609690, loss@max: 1.634408, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 24, LS: 0.034763, LT: 0.856994, Top1S: 100.000000, Top1T: 77.160240Best acc: 77.160240 +Train:epoch: 25, loss@min: 1.555021, loss@max: 1.660084, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 25, LS: 0.030499, LT: 0.826393, Top1S: 100.000000, Top1T: 77.322517Best acc: 77.322517 +Train:epoch: 26, loss@min: 1.546269, loss@max: 1.681450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.025620, LT: 0.807204, Top1S: 100.000000, Top1T: 77.565926Best acc: 77.565926 +Train:epoch: 27, loss@min: 1.627777, loss@max: 1.571422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.020963, LT: 0.800362, Top1S: 100.000000, Top1T: 78.255577Best acc: 78.255577 +Train:epoch: 28, loss@min: 1.611404, loss@max: 1.520499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.016930, LT: 0.800784, Top1S: 100.000000, Top1T: 78.133873 +Train:epoch: 29, loss@min: 1.608658, loss@max: 1.516697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.013734, LT: 0.798236, Top1S: 100.000000, Top1T: 78.539551Best acc: 78.539551 +Train:epoch: 30, loss@min: 1.611770, loss@max: 1.508773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.011275, LT: 0.794205, Top1S: 100.000000, Top1T: 78.215012 +Train:epoch: 31, loss@min: 1.639987, loss@max: 1.454710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.009418, LT: 0.789066, Top1S: 100.000000, Top1T: 78.539551 +Train:epoch: 32, loss@min: 1.546884, loss@max: 1.557813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.008060, LT: 0.781758, Top1S: 100.000000, Top1T: 79.148071Best acc: 79.148071 +Train:epoch: 33, loss@min: 1.489794, loss@max: 1.569586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.007079, LT: 0.782527, Top1S: 100.000000, Top1T: 79.350914Best acc: 79.350914 +Train:epoch: 34, loss@min: 1.476589, loss@max: 1.597392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.006387, LT: 0.784268, Top1S: 100.000000, Top1T: 78.945236 +Train:epoch: 35, loss@min: 1.435491, loss@max: 1.616482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.005933, LT: 0.780987, Top1S: 100.000000, Top1T: 79.188644 +Train:epoch: 36, loss@min: 1.477524, loss@max: 1.577330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.005653, LT: 0.771873, Top1S: 100.000000, Top1T: 79.350914 +Train:epoch: 37, loss@min: 1.484295, loss@max: 1.528869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.005493, LT: 0.760935, Top1S: 100.000000, Top1T: 79.918861Best acc: 79.918861 +Train:epoch: 38, loss@min: 1.482647, loss@max: 1.491069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.005401, LT: 0.749286, Top1S: 100.000000, Top1T: 79.918861 +Train:epoch: 39, loss@min: 1.514770, loss@max: 1.464344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.005339, LT: 0.740763, Top1S: 100.000000, Top1T: 80.405678Best acc: 80.405678 +Train:epoch: 40, loss@min: 1.496460, loss@max: 1.462612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.005284, LT: 0.734239, Top1S: 100.000000, Top1T: 80.243408 +Train:epoch: 41, loss@min: 1.495276, loss@max: 1.468421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.005226, LT: 0.727096, Top1S: 100.000000, Top1T: 80.486816Best acc: 80.486816 +Train:epoch: 42, loss@min: 1.471926, loss@max: 1.473552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.005148, LT: 0.726401, Top1S: 100.000000, Top1T: 80.811363Best acc: 80.811363 +Train:epoch: 43, loss@min: 1.461679, loss@max: 1.450248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.005045, LT: 0.729669, Top1S: 100.000000, Top1T: 80.770790 +Train:epoch: 44, loss@min: 1.464962, loss@max: 1.478801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.004907, LT: 0.728663, Top1S: 100.000000, Top1T: 80.811363 +Train:epoch: 45, loss@min: 1.456511, loss@max: 1.470250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.004743, LT: 0.728590, Top1S: 100.000000, Top1T: 80.973633Best acc: 80.973633 +Train:epoch: 46, loss@min: 1.460329, loss@max: 1.470421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.004582, LT: 0.724820, Top1S: 100.000000, Top1T: 81.095337Best acc: 81.095337 +Train:epoch: 47, loss@min: 1.526851, loss@max: 1.412649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.004434, LT: 0.717110, Top1S: 100.000000, Top1T: 81.135902Best acc: 81.135902 +Train:epoch: 48, loss@min: 1.490968, loss@max: 1.438739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.004310, LT: 0.709434, Top1S: 100.000000, Top1T: 81.379311Best acc: 81.379311 +Train:epoch: 49, loss@min: 1.445305, loss@max: 1.483620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.004199, LT: 0.705205, Top1S: 100.000000, Top1T: 81.460449Best acc: 81.460449 +Train:epoch: 50, loss@min: 1.435712, loss@max: 1.487240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.004098, LT: 0.704743, Top1S: 100.000000, Top1T: 81.501015Best acc: 81.501015 +Train:epoch: 51, loss@min: 1.424370, loss@max: 1.491234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.004012, LT: 0.703886, Top1S: 100.000000, Top1T: 81.703857Best acc: 81.703857 +Train:epoch: 52, loss@min: 1.430229, loss@max: 1.469977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.003941, LT: 0.706545, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 53, loss@min: 1.435260, loss@max: 1.470220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.003888, LT: 0.709595, Top1S: 100.000000, Top1T: 81.460449 +Train:epoch: 54, loss@min: 1.412786, loss@max: 1.497504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.003851, LT: 0.708855, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 55, loss@min: 1.437651, loss@max: 1.462049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.003827, LT: 0.706341, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 56, loss@min: 1.418876, loss@max: 1.464594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.003813, LT: 0.701897, Top1S: 100.000000, Top1T: 81.703857 +Train:epoch: 57, loss@min: 1.484687, loss@max: 1.415347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.003804, LT: 0.698468, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 58, loss@min: 1.516763, loss@max: 1.386406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.003797, LT: 0.692556, Top1S: 100.000000, Top1T: 81.663284 +Train:epoch: 59, loss@min: 1.459735, loss@max: 1.437288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.003793, LT: 0.687838, Top1S: 100.000000, Top1T: 81.663284 +Train:epoch: 60, loss@min: 1.456019, loss@max: 1.437258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.003789, LT: 0.686602, Top1S: 100.000000, Top1T: 81.906693Best acc: 81.906693 +Train:epoch: 61, loss@min: 1.451813, loss@max: 1.444514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.003785, LT: 0.686844, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 62, loss@min: 1.416947, loss@max: 1.458334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.003781, LT: 0.687908, Top1S: 100.000000, Top1T: 82.068962Best acc: 82.068962 +Train:epoch: 63, loss@min: 1.414015, loss@max: 1.455366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.003776, LT: 0.690229, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 64, loss@min: 1.440141, loss@max: 1.423455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.003769, LT: 0.692478, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 65, loss@min: 1.435686, loss@max: 1.421037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.003757, LT: 0.696482, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 66, loss@min: 1.447793, loss@max: 1.428656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.003743, LT: 0.699862, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 67, loss@min: 1.433451, loss@max: 1.434995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.003730, LT: 0.700224, Top1S: 100.000000, Top1T: 81.947266 +Train:epoch: 68, loss@min: 1.435189, loss@max: 1.434437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.003718, LT: 0.697634, Top1S: 100.000000, Top1T: 82.109535Best acc: 82.109535 +Train:epoch: 69, loss@min: 1.437557, loss@max: 1.430323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.003707, LT: 0.693569, Top1S: 100.000000, Top1T: 82.150101Best acc: 82.150101 +Train:epoch: 70, loss@min: 1.426191, loss@max: 1.434566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.003696, LT: 0.688542, Top1S: 100.000000, Top1T: 81.987831 +Train:epoch: 71, loss@min: 1.413995, loss@max: 1.441764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.003686, LT: 0.682809, Top1S: 100.000000, Top1T: 82.150101 +Train:epoch: 72, loss@min: 1.420412, loss@max: 1.434708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.003676, LT: 0.677952, Top1S: 100.000000, Top1T: 82.231239Best acc: 82.231239 +Train:epoch: 73, loss@min: 1.414087, loss@max: 1.449305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.003665, LT: 0.674407, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 74, loss@min: 1.389615, loss@max: 1.474741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.003655, LT: 0.672881, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 75, loss@min: 1.399184, loss@max: 1.448035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.003645, LT: 0.672160, Top1S: 100.000000, Top1T: 82.231239 +Train:epoch: 76, loss@min: 1.406071, loss@max: 1.451817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.003634, LT: 0.672074, Top1S: 100.000000, Top1T: 82.271805Best acc: 82.271805 +Train:epoch: 77, loss@min: 1.442746, loss@max: 1.416917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.003626, LT: 0.672981, Top1S: 100.000000, Top1T: 82.393509Best acc: 82.393509 +Train:epoch: 78, loss@min: 1.440610, loss@max: 1.408480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.003618, LT: 0.674561, Top1S: 100.000000, Top1T: 82.352943 +Train:epoch: 79, loss@min: 1.429676, loss@max: 1.413792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.003612, LT: 0.676194, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 80, loss@min: 1.456909, loss@max: 1.391022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.003608, LT: 0.677859, Top1S: 100.000000, Top1T: 82.434074Best acc: 82.434074 +Train:epoch: 81, loss@min: 1.438603, loss@max: 1.410668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.003605, LT: 0.678860, Top1S: 100.000000, Top1T: 82.312370 +Train:epoch: 82, loss@min: 1.440517, loss@max: 1.403898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.003602, LT: 0.679604, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 83, loss@min: 1.443363, loss@max: 1.391050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.003600, LT: 0.679668, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 84, loss@min: 1.430217, loss@max: 1.407381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.003598, LT: 0.679953, Top1S: 100.000000, Top1T: 82.109535 +Train:epoch: 85, loss@min: 1.423279, loss@max: 1.417425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.003596, LT: 0.680306, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 86, loss@min: 1.400965, loss@max: 1.435261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.003594, LT: 0.680574, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 87, loss@min: 1.422151, loss@max: 1.415465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.003593, LT: 0.680614, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 88, loss@min: 1.424235, loss@max: 1.415996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.003592, LT: 0.680341, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 89, loss@min: 1.400581, loss@max: 1.435442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.003592, LT: 0.680120, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 90, loss@min: 1.442134, loss@max: 1.400124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.003591, LT: 0.679796, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 91, loss@min: 1.414452, loss@max: 1.419716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.003591, LT: 0.679472, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 92, loss@min: 1.400883, loss@max: 1.432388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.003591, LT: 0.679180, Top1S: 100.000000, Top1T: 82.068962 +Train:epoch: 93, loss@min: 1.423768, loss@max: 1.411815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.003591, LT: 0.678959, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 94, loss@min: 1.419846, loss@max: 1.418189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.003591, LT: 0.678807, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 95, loss@min: 1.399231, loss@max: 1.441503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.003591, LT: 0.678681, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 96, loss@min: 1.405021, loss@max: 1.430723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.003591, LT: 0.678600, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 97, loss@min: 1.429833, loss@max: 1.414071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.003591, LT: 0.678565, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 98, loss@min: 1.419842, loss@max: 1.413046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.003591, LT: 0.678549, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 99, loss@min: 1.424690, loss@max: 1.407792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.003590, LT: 0.678543, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 100, loss@min: 1.429542, loss@max: 1.401640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.003590, LT: 0.678543, Top1S: 100.000000, Top1T: 82.028397 +------------------------------------------- +Mon May 29 18:40:54 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 10:43:51 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 10:46:34 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 10:54:56 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 10:57:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 25.059635, loss@max: 11.682268, Top1S acc: 4.000000, Top1T acc: 12.500000 +Train:epoch: 2, loss@min: 16.271313, loss@max: 9.627412, Top1S acc: 20.000000, Top1T acc: 35.500000 +Train:epoch: 3, loss@min: 10.863556, loss@max: 8.666837, Top1S acc: 53.000000, Top1T acc: 64.000000 +Train:epoch: 4, loss@min: 8.170788, loss@max: 7.565860, Top1S acc: 79.000000, Top1T acc: 79.500000 +Train:epoch: 5, loss@min: 6.468441, loss@max: 6.332682, Top1S acc: 89.000000, Top1T acc: 89.500000 +Train:epoch: 6, loss@min: 5.720758, loss@max: 5.663718, Top1S acc: 92.000000, Top1T acc: 93.500000 +Train:epoch: 7, loss@min: 5.169975, loss@max: 5.184711, Top1S acc: 97.000000, Top1T acc: 95.500000 +Train:epoch: 8, loss@min: 4.643390, loss@max: 4.583659, Top1S acc: 98.000000, Top1T acc: 96.500000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 10:58:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 24.393568, loss@max: 7.573655, Top1S acc: 4.000000, Top1T acc: 14.500000 +Train:epoch: 2, loss@min: 14.986671, loss@max: 6.269003, Top1S acc: 22.000000, Top1T acc: 39.500000 +Train:epoch: 3, loss@min: 9.978617, loss@max: 5.652948, Top1S acc: 60.000000, Top1T acc: 69.000000 +Train:epoch: 4, loss@min: 7.501766, loss@max: 5.159811, Top1S acc: 86.000000, Top1T acc: 80.000000 +Train:epoch: 5, loss@min: 5.802709, loss@max: 4.497446, Top1S acc: 94.000000, Top1T acc: 93.000000 +Train:epoch: 6, loss@min: 5.097817, loss@max: 4.056174, Top1S acc: 98.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 4.753383, loss@max: 3.798148, Top1S acc: 98.000000, Top1T acc: 97.500000 +Train:epoch: 8, loss@min: 4.438299, loss@max: 3.523730, Top1S acc: 99.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 3.929039, loss@max: 3.357398, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 3.750925, loss@max: 3.246833, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 10, LS: 0.079489, LT: 1.474945, Top1S: 99.472618, Top1T: 72.454361Best acc: 72.454361 +Train:epoch: 11, loss@min: 3.557644, loss@max: 2.984576, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 11, LS: 0.066075, LT: 1.395298, Top1S: 99.472618, Top1T: 73.711967Best acc: 73.711967 +Train:epoch: 12, loss@min: 3.400681, loss@max: 2.617835, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 12, LS: 0.056320, LT: 1.337770, Top1S: 99.472618, Top1T: 74.766731Best acc: 74.766731 +Train:epoch: 13, loss@min: 3.352270, loss@max: 2.222547, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 13, LS: 0.048246, LT: 1.294048, Top1S: 99.472618, Top1T: 75.618660Best acc: 75.618660 +Train:epoch: 14, loss@min: 3.396619, loss@max: 1.916045, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 14, LS: 0.041417, LT: 1.253521, Top1S: 100.000000, Top1T: 75.780937Best acc: 75.780937 +Train:epoch: 15, loss@min: 3.488767, loss@max: 1.720210, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 15, LS: 0.035647, LT: 1.190553, Top1S: 100.000000, Top1T: 76.389450Best acc: 76.389450 +Train:epoch: 16, loss@min: 3.493542, loss@max: 1.636771, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 16, LS: 0.030732, LT: 1.111787, Top1S: 100.000000, Top1T: 76.957405Best acc: 76.957405 +Train:epoch: 17, loss@min: 3.300362, loss@max: 1.629795, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 17, LS: 0.026799, LT: 1.036839, Top1S: 100.000000, Top1T: 77.890465Best acc: 77.890465 +Train:epoch: 18, loss@min: 3.188715, loss@max: 1.512494, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 18, LS: 0.023849, LT: 0.981053, Top1S: 100.000000, Top1T: 78.336716Best acc: 78.336716 +Train:epoch: 19, loss@min: 3.039939, loss@max: 1.475220, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 19, LS: 0.021729, LT: 0.958006, Top1S: 100.000000, Top1T: 78.539551Best acc: 78.539551 +Train:epoch: 20, loss@min: 2.909919, loss@max: 1.497603, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 20, LS: 0.019899, LT: 0.953767, Top1S: 100.000000, Top1T: 78.174446 +Train:epoch: 21, loss@min: 2.865676, loss@max: 1.484120, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 21, LS: 0.018305, LT: 0.952358, Top1S: 100.000000, Top1T: 77.849899 +Train:epoch: 22, loss@min: 2.733265, loss@max: 1.434533, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 22, LS: 0.017033, LT: 0.926106, Top1S: 100.000000, Top1T: 77.606491 +Train:epoch: 23, loss@min: 2.619406, loss@max: 1.427946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.016320, LT: 0.882611, Top1S: 100.000000, Top1T: 78.052742 +Train:epoch: 24, loss@min: 2.514876, loss@max: 1.393020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.016077, LT: 0.838959, Top1S: 100.000000, Top1T: 78.782959Best acc: 78.782959 +Train:epoch: 25, loss@min: 2.448388, loss@max: 1.511347, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 25, LS: 0.015961, LT: 0.811869, Top1S: 100.000000, Top1T: 78.701828 +Train:epoch: 26, loss@min: 2.374702, loss@max: 1.608624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.015646, LT: 0.812213, Top1S: 100.000000, Top1T: 78.782959 +Train:epoch: 27, loss@min: 2.340918, loss@max: 1.549742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.014966, LT: 0.836109, Top1S: 100.000000, Top1T: 78.823532Best acc: 78.823532 +Train:epoch: 28, loss@min: 2.279960, loss@max: 1.505062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.013995, LT: 0.860504, Top1S: 100.000000, Top1T: 78.174446 +Train:epoch: 29, loss@min: 2.326493, loss@max: 1.540195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.013077, LT: 0.868906, Top1S: 100.000000, Top1T: 78.052742 +Train:epoch: 30, loss@min: 2.379540, loss@max: 1.454072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.012269, LT: 0.857764, Top1S: 100.000000, Top1T: 78.133873 +Train:epoch: 31, loss@min: 2.406920, loss@max: 1.338360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.011535, LT: 0.841486, Top1S: 100.000000, Top1T: 78.336716 +Train:epoch: 32, loss@min: 2.376734, loss@max: 1.328825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.010774, LT: 0.828901, Top1S: 100.000000, Top1T: 78.864098Best acc: 78.864098 +Train:epoch: 33, loss@min: 2.392163, loss@max: 1.338206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.009863, LT: 0.829234, Top1S: 100.000000, Top1T: 78.823532 +Train:epoch: 34, loss@min: 2.351246, loss@max: 1.326635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.008892, LT: 0.833948, Top1S: 100.000000, Top1T: 78.823532 +Train:epoch: 35, loss@min: 2.310169, loss@max: 1.320642, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 11:12:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 24.393566, loss@max: 7.573658, Top1S acc: 4.000000, Top1T acc: 14.500000 +Train:epoch: 2, loss@min: 14.986668, loss@max: 6.269005, Top1S acc: 22.000000, Top1T acc: 39.500000 +Train:epoch: 3, loss@min: 9.978613, loss@max: 5.652947, Top1S acc: 60.000000, Top1T acc: 69.000000 +Train:epoch: 4, loss@min: 7.501768, loss@max: 5.159806, Top1S acc: 86.000000, Top1T acc: 80.000000 +Train:epoch: 5, loss@min: 5.802712, loss@max: 4.497447, Top1S acc: 94.000000, Top1T acc: 93.000000 +Train:epoch: 6, loss@min: 5.097804, loss@max: 4.056173, Top1S acc: 98.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 4.753373, loss@max: 3.798150, Top1S acc: 98.000000, Top1T acc: 97.500000 +Train:epoch: 8, loss@min: 4.438301, loss@max: 3.523733, Top1S acc: 99.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 3.929034, loss@max: 3.357389, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 3.750927, loss@max: 3.246826, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 10, LS: 0.079489, LT: 1.474945, Top1S: 99.472618, Top1T: 72.454361Best acc: 72.454361 +Train:epoch: 11, loss@min: 3.557646, loss@max: 2.984575, Top1S acc: 99.000000, Top1T acc: 98.500000 + Test:epoch: 11, LS: 0.066075, LT: 1.395299, Top1S: 99.472618, Top1T: 73.711967Best acc: 73.711967 +Train:epoch: 12, loss@min: 3.400676, loss@max: 2.617833, Top1S acc: 99.000000, Top1T acc: 98.500000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 11:14:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 24.393568, loss@max: 7.573655, Top1S acc: 4.000000, Top1T acc: 14.500000 +Train:epoch: 2, loss@min: 14.986671, loss@max: 6.269003, Top1S acc: 22.000000, Top1T acc: 39.500000 +Train:epoch: 3, loss@min: 9.978617, loss@max: 5.652948, Top1S acc: 60.000000, Top1T acc: 69.000000 +Train:epoch: 4, loss@min: 7.501766, loss@max: 5.159811, Top1S acc: 86.000000, Top1T acc: 80.000000 +Train:epoch: 5, loss@min: 5.802709, loss@max: 4.497446, Top1S acc: 94.000000, Top1T acc: 93.000000 +Train:epoch: 6, loss@min: 5.097817, loss@max: 4.056174, Top1S acc: 98.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 4.753383, loss@max: 3.798148, Top1S acc: 98.000000, Top1T acc: 97.500000 +Train:epoch: 8, loss@min: 4.438299, loss@max: 3.523730, Top1S acc: 99.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 3.929039, loss@max: 3.357398, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 3.750925, loss@max: 3.246833, Top1S acc: 99.000000, Top1T acc: 98.500000 +Train:epoch: 11, loss@min: 3.549601, loss@max: 2.967696, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 3.417517, loss@max: 2.620698, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 3.429748, loss@max: 2.246405, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 3.440628, loss@max: 1.956596, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 15, loss@min: 3.463034, loss@max: 1.781636, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 3.423496, loss@max: 1.710034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 3.360620, loss@max: 1.615711, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 3.207406, loss@max: 1.498862, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 3.168209, loss@max: 1.562221, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 3.000053, loss@max: 1.455933, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 2.773040, loss@max: 1.400886, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 2.658216, loss@max: 1.424892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 2.617937, loss@max: 1.519275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 2.493601, loss@max: 1.558964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 2.398207, loss@max: 1.528042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 2.418280, loss@max: 1.539535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 2.407556, loss@max: 1.552431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 2.362322, loss@max: 1.484725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 2.351422, loss@max: 1.465476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 2.307441, loss@max: 1.435713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 2.314730, loss@max: 1.380426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 2.308887, loss@max: 1.328906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 2.327842, loss@max: 1.322694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 2.333872, loss@max: 1.362297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 2.297020, loss@max: 1.252028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 2.311774, loss@max: 1.234708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 2.335450, loss@max: 1.241436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 2.374216, loss@max: 1.245723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 2.336510, loss@max: 1.246337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 2.265666, loss@max: 1.216673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 2.235983, loss@max: 1.246120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 2.228312, loss@max: 1.320918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 2.211557, loss@max: 1.309034, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 2.205235, loss@max: 1.275961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.212896, loss@max: 1.229786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.209241, loss@max: 1.215089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.194419, loss@max: 1.191589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.201385, loss@max: 1.221160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.195030, loss@max: 1.261205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 2.175723, loss@max: 1.209368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 2.158368, loss@max: 1.198468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 2.179856, loss@max: 1.185866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 2.195979, loss@max: 1.167826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 2.191573, loss@max: 1.183545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 2.180369, loss@max: 1.197085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 2.192805, loss@max: 1.173366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 2.185677, loss@max: 1.151811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 2.153229, loss@max: 1.171163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 2.155021, loss@max: 1.180114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 2.166253, loss@max: 1.160121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 2.163112, loss@max: 1.170346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 2.175701, loss@max: 1.156268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 2.167718, loss@max: 1.148805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 2.147931, loss@max: 1.140154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 2.145308, loss@max: 1.153507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 2.147059, loss@max: 1.145686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 2.140798, loss@max: 1.163774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 2.113592, loss@max: 1.156957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 2.128671, loss@max: 1.167555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 2.139572, loss@max: 1.173371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.002888, LT: 0.698185, Top1S: 100.000000, Top1T: 81.176468Best acc: 81.176468 +Train:epoch: 71, loss@min: 2.134867, loss@max: 1.149460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.002879, LT: 0.697723, Top1S: 100.000000, Top1T: 81.379311Best acc: 81.379311 +Train:epoch: 72, loss@min: 2.155201, loss@max: 1.132919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.002871, LT: 0.697800, Top1S: 100.000000, Top1T: 81.460449Best acc: 81.460449 +Train:epoch: 73, loss@min: 2.159312, loss@max: 1.140024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.002865, LT: 0.697348, Top1S: 100.000000, Top1T: 81.501015Best acc: 81.501015 +Train:epoch: 74, loss@min: 2.138205, loss@max: 1.126613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.002859, LT: 0.696687, Top1S: 100.000000, Top1T: 81.460449 +Train:epoch: 75, loss@min: 2.137160, loss@max: 1.152403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.002857, LT: 0.695283, Top1S: 100.000000, Top1T: 81.379311 +Train:epoch: 76, loss@min: 2.145954, loss@max: 1.128735, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 76, LS: 0.002855, LT: 0.694009, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 77, loss@min: 2.129897, loss@max: 1.125108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.002851, LT: 0.693331, Top1S: 100.000000, Top1T: 81.582153Best acc: 81.582153 +Train:epoch: 78, loss@min: 2.135676, loss@max: 1.120109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.002846, LT: 0.693234, Top1S: 100.000000, Top1T: 81.541580 +Train:epoch: 79, loss@min: 2.150137, loss@max: 1.108366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.002840, LT: 0.693001, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 80, loss@min: 2.126033, loss@max: 1.125453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002833, LT: 0.693191, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 81, loss@min: 2.120429, loss@max: 1.128388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002826, LT: 0.693798, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 82, loss@min: 2.114026, loss@max: 1.157784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002819, LT: 0.694151, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 83, loss@min: 2.117986, loss@max: 1.144850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002812, LT: 0.694292, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 84, loss@min: 2.125875, loss@max: 1.132527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002806, LT: 0.694629, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 85, loss@min: 2.125469, loss@max: 1.145133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002802, LT: 0.694648, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 86, loss@min: 2.127556, loss@max: 1.119991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002798, LT: 0.694488, Top1S: 100.000000, Top1T: 81.622719Best acc: 81.622719 +Train:epoch: 87, loss@min: 2.122618, loss@max: 1.104261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002795, LT: 0.694392, Top1S: 100.000000, Top1T: 81.663284Best acc: 81.663284 +Train:epoch: 88, loss@min: 2.129598, loss@max: 1.132939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002793, LT: 0.694025, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 89, loss@min: 2.124299, loss@max: 1.111244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002791, LT: 0.693782, Top1S: 100.000000, Top1T: 81.419876 +Train:epoch: 90, loss@min: 2.135417, loss@max: 1.099211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002790, LT: 0.693545, Top1S: 100.000000, Top1T: 81.460449 +Train:epoch: 91, loss@min: 2.138424, loss@max: 1.123559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002789, LT: 0.693363, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 92, loss@min: 2.120677, loss@max: 1.112525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002789, LT: 0.693155, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 93, loss@min: 2.109583, loss@max: 1.123130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002788, LT: 0.693031, Top1S: 100.000000, Top1T: 81.541580 +Train:epoch: 94, loss@min: 2.128960, loss@max: 1.122876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002788, LT: 0.692967, Top1S: 100.000000, Top1T: 81.541580 +Train:epoch: 95, loss@min: 2.136040, loss@max: 1.108843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002788, LT: 0.692921, Top1S: 100.000000, Top1T: 81.541580 +Train:epoch: 96, loss@min: 2.141968, loss@max: 1.118322, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 11:31:32 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 19.227121, loss@max: 7.599792, Top1S acc: 18.000000, Top1T acc: 23.000000 +Train:epoch: 2, loss@min: 9.808493, loss@max: 6.646708, Top1S acc: 70.000000, Top1T acc: 56.500000 +Train:epoch: 3, loss@min: 7.161374, loss@max: 6.116826, Top1S acc: 90.000000, Top1T acc: 67.000000 +Train:epoch: 4, loss@min: 6.050260, loss@max: 5.060024, Top1S acc: 93.000000, Top1T acc: 70.000000 +Train:epoch: 5, loss@min: 5.133039, loss@max: 4.462950, Top1S acc: 99.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 3.766482, loss@max: 4.474026, Top1S acc: 99.000000, Top1T acc: 88.500000 +Train:epoch: 7, loss@min: 2.312157, loss@max: 4.812621, Top1S acc: 99.000000, Top1T acc: 93.500000 +Train:epoch: 8, loss@min: 1.720399, loss@max: 5.069024, Top1S acc: 99.000000, Top1T acc: 95.000000 +Train:epoch: 9, loss@min: 1.421597, loss@max: 5.041574, Top1S acc: 99.000000, Top1T acc: 96.000000 +Train:epoch: 10, loss@min: 1.391967, loss@max: 4.285950, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 1.580100, loss@max: 3.357777, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.892595, loss@max: 2.693042, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 1.969502, loss@max: 2.369830, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 14, loss@min: 1.835473, loss@max: 2.399076, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 15, loss@min: 1.635696, loss@max: 2.543040, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.370460, loss@max: 2.633526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.353105, loss@max: 2.697465, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 18, loss@min: 1.292887, loss@max: 2.590832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.359440, loss@max: 2.630426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.364452, loss@max: 2.506741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.177736, loss@max: 2.294375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.288609, loss@max: 2.325592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.301260, loss@max: 2.417207, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 1.172916, loss@max: 2.332512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.109878, loss@max: 2.226537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.102045, loss@max: 2.282851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.154153, loss@max: 2.223094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.261303, loss@max: 2.127627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.261766, loss@max: 1.970288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.192592, loss@max: 1.942652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.165022, loss@max: 1.913241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.112098, loss@max: 1.936074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.096322, loss@max: 2.083107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.080301, loss@max: 2.114188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.068957, loss@max: 1.964787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.030492, loss@max: 1.937879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.079865, loss@max: 1.902394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.154209, loss@max: 1.883888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.199379, loss@max: 1.909485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.161012, loss@max: 1.854908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.080336, loss@max: 1.815247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.064304, loss@max: 1.836727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.078484, loss@max: 1.858781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.119102, loss@max: 1.864553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.090180, loss@max: 1.856216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.018755, loss@max: 1.828395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.003057, loss@max: 1.771284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.033092, loss@max: 1.744301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.093426, loss@max: 1.820787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.072621, loss@max: 1.700268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.014361, loss@max: 1.656646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.049830, loss@max: 1.651865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.076146, loss@max: 1.639919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.060474, loss@max: 1.667044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.006964, loss@max: 1.645840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.988744, loss@max: 1.644192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.004227, loss@max: 1.639363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.999434, loss@max: 1.647962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.997498, loss@max: 1.610563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.046507, loss@max: 1.565211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.998340, loss@max: 1.574538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.023088, loss@max: 1.549620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.019754, loss@max: 1.567317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.993107, loss@max: 1.549762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.993955, loss@max: 1.545450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.002183, loss@max: 1.536705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.004596, loss@max: 1.515330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.991759, loss@max: 1.516410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.972346, loss@max: 1.544374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.974655, loss@max: 1.517381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.004261, LT: 0.656610, Top1S: 100.000000, Top1T: 82.271805Best acc: 82.271805 +Train:epoch: 71, loss@min: 0.964162, loss@max: 1.519317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.004253, LT: 0.656670, Top1S: 100.000000, Top1T: 82.555779Best acc: 82.555779 +Train:epoch: 72, loss@min: 0.983646, loss@max: 1.492532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.004230, LT: 0.656274, Top1S: 100.000000, Top1T: 82.474648 +Train:epoch: 73, loss@min: 0.991125, loss@max: 1.486926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.004206, LT: 0.654757, Top1S: 100.000000, Top1T: 82.555779 +Train:epoch: 74, loss@min: 0.970764, loss@max: 1.481172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.004183, LT: 0.653373, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 75, loss@min: 0.971412, loss@max: 1.497356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.004168, LT: 0.652047, Top1S: 100.000000, Top1T: 82.596352Best acc: 82.596352 +Train:epoch: 76, loss@min: 1.001119, loss@max: 1.455055, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 76, LS: 0.004157, LT: 0.651255, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 77, loss@min: 0.991940, loss@max: 1.449457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.004148, LT: 0.651017, Top1S: 100.000000, Top1T: 82.474648 +Train:epoch: 78, loss@min: 0.989558, loss@max: 1.454507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.004139, LT: 0.651257, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 79, loss@min: 0.977112, loss@max: 1.459313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.004125, LT: 0.651939, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 80, loss@min: 0.976684, loss@max: 1.449303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.004110, LT: 0.652807, Top1S: 100.000000, Top1T: 82.434074 +Train:epoch: 81, loss@min: 0.964190, loss@max: 1.460754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.004094, LT: 0.654072, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 82, loss@min: 0.962936, loss@max: 1.481973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.004082, LT: 0.654967, Top1S: 100.000000, Top1T: 82.636917Best acc: 82.636917 +Train:epoch: 83, loss@min: 0.964796, loss@max: 1.470866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.004072, LT: 0.655505, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 84, loss@min: 0.970960, loss@max: 1.448858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.004062, LT: 0.655669, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 85, loss@min: 0.947250, loss@max: 1.482728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.004053, LT: 0.655545, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 86, loss@min: 0.982693, loss@max: 1.439114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.004045, LT: 0.655127, Top1S: 100.000000, Top1T: 82.474648 +Train:epoch: 87, loss@min: 0.979438, loss@max: 1.416052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.004039, LT: 0.654439, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 88, loss@min: 0.978946, loss@max: 1.433404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.004035, LT: 0.653631, Top1S: 100.000000, Top1T: 82.474648 +Train:epoch: 89, loss@min: 0.957898, loss@max: 1.444937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.004033, LT: 0.652967, Top1S: 100.000000, Top1T: 82.555779 +Train:epoch: 90, loss@min: 0.982942, loss@max: 1.432405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.004032, LT: 0.652394, Top1S: 100.000000, Top1T: 82.555779 +Train:epoch: 91, loss@min: 0.996181, loss@max: 1.429009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.004031, LT: 0.651975, Top1S: 100.000000, Top1T: 82.555779 +Train:epoch: 92, loss@min: 0.988543, loss@max: 1.415682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.004031, LT: 0.651596, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 93, loss@min: 0.949171, loss@max: 1.450144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.004031, LT: 0.651297, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 94, loss@min: 0.971983, loss@max: 1.439309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.004030, LT: 0.651110, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 95, loss@min: 0.981304, loss@max: 1.421078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.004030, LT: 0.650999, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 96, loss@min: 0.982342, loss@max: 1.436382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.004030, LT: 0.650928, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 97, loss@min: 0.973866, loss@max: 1.438819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.004031, LT: 0.650897, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 98, loss@min: 0.978380, loss@max: 1.432162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.004031, LT: 0.650885, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 99, loss@min: 0.947281, loss@max: 1.457631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.004031, LT: 0.650882, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 100, loss@min: 0.954943, loss@max: 1.439798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.004031, LT: 0.650882, Top1S: 100.000000, Top1T: 82.596352 +------------------------------------------- +Tue May 30 11:50:59 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 200, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 2, "test_freq": 1} + +------------------------------------------- +Tue May 30 11:59:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 19.227129, loss@max: 7.481373, Top1S acc: 18.000000, Top1T acc: 23.000000 +Train:epoch: 2, loss@min: 9.794399, loss@max: 6.415614, Top1S acc: 70.000000, Top1T acc: 56.500000 +Train:epoch: 3, loss@min: 7.133814, loss@max: 5.855949, Top1S acc: 90.000000, Top1T acc: 67.000000 +Train:epoch: 4, loss@min: 5.968595, loss@max: 4.810531, Top1S acc: 93.000000, Top1T acc: 70.000000 +Train:epoch: 5, loss@min: 4.980105, loss@max: 4.158948, Top1S acc: 99.000000, Top1T acc: 81.000000 +Train:epoch: 6, loss@min: 3.681980, loss@max: 4.118993, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 7, loss@min: 2.289984, loss@max: 4.405571, Top1S acc: 99.000000, Top1T acc: 93.500000 +Train:epoch: 8, loss@min: 1.697114, loss@max: 4.582861, Top1S acc: 99.000000, Top1T acc: 95.000000 +Train:epoch: 9, loss@min: 1.393566, loss@max: 4.538881, Top1S acc: 99.000000, Top1T acc: 96.000000 +Train:epoch: 10, loss@min: 1.325522, loss@max: 3.863239, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 1.474497, loss@max: 3.024595, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.762938, loss@max: 2.377686, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 1.775534, loss@max: 1.971291, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 14, loss@min: 1.748859, loss@max: 1.962667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.632120, loss@max: 2.087017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.322797, loss@max: 2.120047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.269780, loss@max: 2.166492, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 18, loss@min: 1.216016, loss@max: 2.152291, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 19, loss@min: 1.219884, loss@max: 2.245602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.167876, loss@max: 2.165406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.002102, loss@max: 2.053689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.155555, loss@max: 2.034484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.173064, loss@max: 2.027529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.096216, loss@max: 1.927429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.101252, loss@max: 1.866403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.133316, loss@max: 1.983151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.133063, loss@max: 1.930543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.163669, loss@max: 1.833713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.159151, loss@max: 1.761648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.128540, loss@max: 1.780542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.127516, loss@max: 1.773930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.120615, loss@max: 1.862027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.008418, loss@max: 1.880527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959591, loss@max: 1.865748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.064247, loss@max: 1.823079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.071993, loss@max: 1.807899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.135896, loss@max: 1.808020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.161627, loss@max: 1.757826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.122113, loss@max: 1.703548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.133541, loss@max: 1.747699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.095678, loss@max: 1.801768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.080425, loss@max: 1.860093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.042615, loss@max: 1.856069, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 1.053447, loss@max: 1.848571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.059144, loss@max: 1.824199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.084139, loss@max: 1.836905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.102613, loss@max: 1.836143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.123096, loss@max: 1.733739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.123435, loss@max: 1.755150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.137703, loss@max: 1.801079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.062639, loss@max: 1.836558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.069703, loss@max: 1.839863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.041424, loss@max: 1.816361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.059135, loss@max: 1.845964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.072874, loss@max: 1.850695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.073653, loss@max: 1.826652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.097583, loss@max: 1.731890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.089392, loss@max: 1.745478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.088706, loss@max: 1.792848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.124372, loss@max: 1.765697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.085590, loss@max: 1.809446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.050344, loss@max: 1.782089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.018017, loss@max: 1.802262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.011510, loss@max: 1.765176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.079966, loss@max: 1.812473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.113795, loss@max: 1.765513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.093834, loss@max: 1.679008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.080225, loss@max: 1.692697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.085405, loss@max: 1.765019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.028350, loss@max: 1.761743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.003031, LT: 0.708056, Top1S: 100.000000, Top1T: 81.257607Best acc: 81.257607 +Train:epoch: 71, loss@min: 1.031713, loss@max: 1.771155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.003047, LT: 0.711292, Top1S: 100.000000, Top1T: 81.338745Best acc: 81.338745 +Train:epoch: 72, loss@min: 1.063631, loss@max: 1.716148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.003012, LT: 0.709645, Top1S: 100.000000, Top1T: 81.501015Best acc: 81.501015 +Train:epoch: 73, loss@min: 1.073841, loss@max: 1.733797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.002931, LT: 0.696132, Top1S: 100.000000, Top1T: 81.379311 +Train:epoch: 74, loss@min: 1.040044, loss@max: 1.720975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.002854, LT: 0.689222, Top1S: 100.000000, Top1T: 81.501015 +Train:epoch: 75, loss@min: 1.026211, loss@max: 1.768528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.002814, LT: 0.693009, Top1S: 100.000000, Top1T: 81.663284Best acc: 81.663284 +Train:epoch: 76, loss@min: 1.041781, loss@max: 1.758799, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 76, LS: 0.002804, LT: 0.704534, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 77, loss@min: 1.072182, loss@max: 1.691659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.002831, LT: 0.719171, Top1S: 100.000000, Top1T: 81.703857Best acc: 81.703857 +Train:epoch: 78, loss@min: 1.083143, loss@max: 1.688238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.002859, LT: 0.735134, Top1S: 100.000000, Top1T: 80.973633 +Train:epoch: 79, loss@min: 1.079520, loss@max: 1.610454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.002854, LT: 0.747436, Top1S: 100.000000, Top1T: 80.486816 +Train:epoch: 80, loss@min: 1.089911, loss@max: 1.699559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002808, LT: 0.736607, Top1S: 100.000000, Top1T: 80.527382 +Train:epoch: 81, loss@min: 1.067017, loss@max: 1.715962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002744, LT: 0.712229, Top1S: 100.000000, Top1T: 80.567955 +Train:epoch: 82, loss@min: 1.021697, loss@max: 1.764755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002683, LT: 0.690974, Top1S: 100.000000, Top1T: 81.135902 +Train:epoch: 83, loss@min: 0.986688, loss@max: 1.793152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002632, LT: 0.686117, Top1S: 100.000000, Top1T: 81.906693Best acc: 81.906693 +Train:epoch: 84, loss@min: 1.001426, loss@max: 1.767854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002605, LT: 0.696940, Top1S: 100.000000, Top1T: 82.312370Best acc: 82.312370 +Train:epoch: 85, loss@min: 1.039153, loss@max: 1.713978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002607, LT: 0.712598, Top1S: 100.000000, Top1T: 81.582153 +Train:epoch: 86, loss@min: 1.104035, loss@max: 1.653792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002615, LT: 0.720619, Top1S: 100.000000, Top1T: 81.135902 +Train:epoch: 87, loss@min: 1.083322, loss@max: 1.621679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002623, LT: 0.717093, Top1S: 100.000000, Top1T: 80.892494 +Train:epoch: 88, loss@min: 1.056560, loss@max: 1.651630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002638, LT: 0.701822, Top1S: 100.000000, Top1T: 80.933060 +Train:epoch: 89, loss@min: 0.988135, loss@max: 1.691763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002633, LT: 0.686320, Top1S: 100.000000, Top1T: 81.014198 +Train:epoch: 90, loss@min: 1.007961, loss@max: 1.708878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002583, LT: 0.674976, Top1S: 100.000000, Top1T: 82.271805 +Train:epoch: 91, loss@min: 0.992463, loss@max: 1.665649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002518, LT: 0.673847, Top1S: 100.000000, Top1T: 82.434074Best acc: 82.434074 +Train:epoch: 92, loss@min: 1.017302, loss@max: 1.649611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002477, LT: 0.683035, Top1S: 100.000000, Top1T: 82.312370 +Train:epoch: 93, loss@min: 1.024443, loss@max: 1.603296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002461, LT: 0.689369, Top1S: 100.000000, Top1T: 81.987831 +Train:epoch: 94, loss@min: 1.070617, loss@max: 1.614684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002437, LT: 0.685100, Top1S: 100.000000, Top1T: 81.906693 +Train:epoch: 95, loss@min: 1.066606, loss@max: 1.562850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002426, LT: 0.672945, Top1S: 100.000000, Top1T: 81.866127 +Train:epoch: 96, loss@min: 1.054979, loss@max: 1.589665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002449, LT: 0.661118, Top1S: 100.000000, Top1T: 82.555779Best acc: 82.555779 +Train:epoch: 97, loss@min: 0.984535, loss@max: 1.610091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002483, LT: 0.658499, Top1S: 100.000000, Top1T: 82.271805 +Train:epoch: 98, loss@min: 0.975174, loss@max: 1.680459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002473, LT: 0.663351, Top1S: 100.000000, Top1T: 82.109535 +Train:epoch: 99, loss@min: 0.950293, loss@max: 1.675262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002411, LT: 0.671437, Top1S: 100.000000, Top1T: 82.434074 +Train:epoch: 100, loss@min: 0.967440, loss@max: 1.616733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002347, LT: 0.675978, Top1S: 100.000000, Top1T: 82.352943 +Train:epoch: 101, loss@min: 1.017898, loss@max: 1.592188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002313, LT: 0.670576, Top1S: 100.000000, Top1T: 81.866127 +Train:epoch: 102, loss@min: 1.032082, loss@max: 1.528498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002304, LT: 0.659822, Top1S: 100.000000, Top1T: 82.109535 +Train:epoch: 103, loss@min: 1.077353, loss@max: 1.502679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002306, LT: 0.651242, Top1S: 100.000000, Top1T: 82.474648 +Train:epoch: 104, loss@min: 1.062958, loss@max: 1.509927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002308, LT: 0.647471, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 105, loss@min: 1.013601, loss@max: 1.555213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002320, LT: 0.648880, Top1S: 100.000000, Top1T: 82.352943 +Train:epoch: 106, loss@min: 0.962679, loss@max: 1.588477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002336, LT: 0.657105, Top1S: 100.000000, Top1T: 81.947266 +Train:epoch: 107, loss@min: 0.957949, loss@max: 1.585599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002337, LT: 0.667932, Top1S: 100.000000, Top1T: 81.866127 +Train:epoch: 108, loss@min: 0.947858, loss@max: 1.629433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002303, LT: 0.670405, Top1S: 100.000000, Top1T: 82.109535 +Train:epoch: 109, loss@min: 0.976853, loss@max: 1.542314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002258, LT: 0.661724, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 110, loss@min: 0.981859, loss@max: 1.529191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002226, LT: 0.651328, Top1S: 100.000000, Top1T: 82.677483Best acc: 82.677483 +Train:epoch: 111, loss@min: 1.005425, loss@max: 1.500181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002213, LT: 0.644651, Top1S: 100.000000, Top1T: 82.758621Best acc: 82.758621 +Train:epoch: 112, loss@min: 1.060800, loss@max: 1.507590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002213, LT: 0.642776, Top1S: 100.000000, Top1T: 82.839760Best acc: 82.839760 +Train:epoch: 113, loss@min: 1.035637, loss@max: 1.509460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002214, LT: 0.645307, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 114, loss@min: 1.003866, loss@max: 1.486155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002221, LT: 0.650011, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 115, loss@min: 0.979873, loss@max: 1.515328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002236, LT: 0.652315, Top1S: 100.000000, Top1T: 81.947266 +Train:epoch: 116, loss@min: 0.966966, loss@max: 1.555079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002236, LT: 0.650171, Top1S: 100.000000, Top1T: 81.947266 +Train:epoch: 117, loss@min: 0.983590, loss@max: 1.517133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002216, LT: 0.642828, Top1S: 100.000000, Top1T: 82.231239 +Train:epoch: 118, loss@min: 0.970410, loss@max: 1.527730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002182, LT: 0.635611, Top1S: 100.000000, Top1T: 82.677483 +Train:epoch: 119, loss@min: 0.971503, loss@max: 1.504817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002151, LT: 0.633748, Top1S: 100.000000, Top1T: 82.718056 +Train:epoch: 120, loss@min: 0.981489, loss@max: 1.481108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002137, LT: 0.637324, Top1S: 100.000000, Top1T: 82.758621 +Train:epoch: 121, loss@min: 0.980056, loss@max: 1.467654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002134, LT: 0.643978, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 122, loss@min: 0.988304, loss@max: 1.476520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002132, LT: 0.648459, Top1S: 100.000000, Top1T: 82.109535 +Train:epoch: 123, loss@min: 0.980628, loss@max: 1.479575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002130, LT: 0.647289, Top1S: 100.000000, Top1T: 82.028397 +Train:epoch: 124, loss@min: 0.966064, loss@max: 1.494604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002132, LT: 0.641701, Top1S: 100.000000, Top1T: 82.150101 +Train:epoch: 125, loss@min: 0.954614, loss@max: 1.479793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002139, LT: 0.633974, Top1S: 100.000000, Top1T: 82.393509 +Train:epoch: 126, loss@min: 0.968367, loss@max: 1.453493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002138, LT: 0.628334, Top1S: 100.000000, Top1T: 83.002029Best acc: 83.002029 +Train:epoch: 127, loss@min: 0.985086, loss@max: 1.437129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002124, LT: 0.626227, Top1S: 100.000000, Top1T: 83.245438Best acc: 83.245438 +Train:epoch: 128, loss@min: 0.998971, loss@max: 1.440820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002098, LT: 0.627702, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 129, loss@min: 1.005707, loss@max: 1.425404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002072, LT: 0.631076, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 130, loss@min: 0.987486, loss@max: 1.451136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002052, LT: 0.635312, Top1S: 100.000000, Top1T: 82.555779 +Train:epoch: 131, loss@min: 0.947341, loss@max: 1.462735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002043, LT: 0.638975, Top1S: 100.000000, Top1T: 82.312370 +Train:epoch: 132, loss@min: 0.960841, loss@max: 1.442387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002044, LT: 0.640582, Top1S: 100.000000, Top1T: 82.190666 +Train:epoch: 133, loss@min: 0.957228, loss@max: 1.467305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002052, LT: 0.638810, Top1S: 100.000000, Top1T: 82.352943 +Train:epoch: 134, loss@min: 0.945540, loss@max: 1.473814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002060, LT: 0.634991, Top1S: 100.000000, Top1T: 82.596352 +Train:epoch: 135, loss@min: 0.966685, loss@max: 1.455253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002063, LT: 0.630814, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 136, loss@min: 0.986494, loss@max: 1.420409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002063, LT: 0.627157, Top1S: 100.000000, Top1T: 83.204872 +Train:epoch: 137, loss@min: 0.981254, loss@max: 1.416880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002056, LT: 0.625292, Top1S: 100.000000, Top1T: 83.204872 +Train:epoch: 138, loss@min: 0.990870, loss@max: 1.424379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002045, LT: 0.626164, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 139, loss@min: 0.957782, loss@max: 1.431956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002029, LT: 0.628379, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 140, loss@min: 0.955868, loss@max: 1.437966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002012, LT: 0.630998, Top1S: 100.000000, Top1T: 82.636917 +Train:epoch: 141, loss@min: 0.954661, loss@max: 1.427165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001996, LT: 0.632919, Top1S: 100.000000, Top1T: 82.434074 +Train:epoch: 142, loss@min: 0.945651, loss@max: 1.457127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001989, LT: 0.633335, Top1S: 100.000000, Top1T: 82.515213 +Train:epoch: 143, loss@min: 0.950654, loss@max: 1.441771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001988, LT: 0.632397, Top1S: 100.000000, Top1T: 82.636917 +Train:epoch: 144, loss@min: 0.959193, loss@max: 1.425495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001992, LT: 0.630668, Top1S: 100.000000, Top1T: 82.758621 +Train:epoch: 145, loss@min: 0.967358, loss@max: 1.419483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001998, LT: 0.628157, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 146, loss@min: 0.968518, loss@max: 1.423475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002005, LT: 0.625542, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 147, loss@min: 0.969643, loss@max: 1.409595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002009, LT: 0.623739, Top1S: 100.000000, Top1T: 83.164299 +Train:epoch: 148, loss@min: 0.982335, loss@max: 1.414584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002009, LT: 0.622772, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 149, loss@min: 0.982311, loss@max: 1.389953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002004, LT: 0.622520, Top1S: 100.000000, Top1T: 82.839760 +Train:epoch: 150, loss@min: 0.968463, loss@max: 1.404572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001997, LT: 0.622961, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 151, loss@min: 0.965833, loss@max: 1.407550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.001989, LT: 0.623966, Top1S: 100.000000, Top1T: 82.636917 +Train:epoch: 152, loss@min: 0.966896, loss@max: 1.409354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.001979, LT: 0.624771, Top1S: 100.000000, Top1T: 82.677483 +Train:epoch: 153, loss@min: 0.944788, loss@max: 1.431456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.001968, LT: 0.625681, Top1S: 100.000000, Top1T: 82.758621 +Train:epoch: 154, loss@min: 0.938553, loss@max: 1.435442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.001958, LT: 0.626436, Top1S: 100.000000, Top1T: 82.636917 +Train:epoch: 155, loss@min: 0.956263, loss@max: 1.409458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.001951, LT: 0.626901, Top1S: 100.000000, Top1T: 82.839760 +Train:epoch: 156, loss@min: 0.968604, loss@max: 1.402083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.001946, LT: 0.627219, Top1S: 100.000000, Top1T: 82.961464 +Train:epoch: 157, loss@min: 0.953834, loss@max: 1.407432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 0.001943, LT: 0.626530, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 158, loss@min: 0.942788, loss@max: 1.425335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 158, LS: 0.001943, LT: 0.625790, Top1S: 100.000000, Top1T: 83.123734 +Train:epoch: 159, loss@min: 0.961862, loss@max: 1.406410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 159, LS: 0.001944, LT: 0.625024, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 160, loss@min: 0.964033, loss@max: 1.401214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 160, LS: 0.001946, LT: 0.624269, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 161, loss@min: 0.960944, loss@max: 1.407381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 161, LS: 0.001948, LT: 0.623855, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 162, loss@min: 0.967540, loss@max: 1.397588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 162, LS: 0.001950, LT: 0.623727, Top1S: 100.000000, Top1T: 82.920891 +Train:epoch: 163, loss@min: 0.976085, loss@max: 1.387866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 163, LS: 0.001951, LT: 0.623446, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 164, loss@min: 0.969362, loss@max: 1.403324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 164, LS: 0.001950, LT: 0.622847, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 165, loss@min: 0.958372, loss@max: 1.407876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 165, LS: 0.001950, LT: 0.622362, Top1S: 100.000000, Top1T: 82.880325 +Train:epoch: 166, loss@min: 0.948616, loss@max: 1.416046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 166, LS: 0.001949, LT: 0.621768, Top1S: 100.000000, Top1T: 82.961464 +Train:epoch: 167, loss@min: 0.957643, loss@max: 1.406803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 167, LS: 0.001948, LT: 0.621028, Top1S: 100.000000, Top1T: 82.920891 +Train:epoch: 168, loss@min: 0.947292, loss@max: 1.411993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 168, LS: 0.001946, LT: 0.620438, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 169, loss@min: 0.937740, loss@max: 1.414375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 169, LS: 0.001944, LT: 0.620160, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 170, loss@min: 0.950279, loss@max: 1.411247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 170, LS: 0.001941, LT: 0.619971, Top1S: 100.000000, Top1T: 83.123734 +Train:epoch: 171, loss@min: 0.953247, loss@max: 1.399741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 171, LS: 0.001938, LT: 0.619908, Top1S: 100.000000, Top1T: 83.123734 +Train:epoch: 172, loss@min: 0.949657, loss@max: 1.399940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 172, LS: 0.001936, LT: 0.619813, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 173, loss@min: 0.961805, loss@max: 1.397812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 173, LS: 0.001934, LT: 0.619746, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 174, loss@min: 0.957556, loss@max: 1.401111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 174, LS: 0.001932, LT: 0.619751, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 175, loss@min: 0.962626, loss@max: 1.397578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 175, LS: 0.001930, LT: 0.619720, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 176, loss@min: 0.932358, loss@max: 1.425434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 176, LS: 0.001929, LT: 0.619818, Top1S: 100.000000, Top1T: 82.961464 +Train:epoch: 177, loss@min: 0.965112, loss@max: 1.396410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 177, LS: 0.001928, LT: 0.619987, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 178, loss@min: 0.974075, loss@max: 1.385429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 178, LS: 0.001928, LT: 0.620046, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 179, loss@min: 0.967370, loss@max: 1.386808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 179, LS: 0.001928, LT: 0.619994, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 180, loss@min: 0.975510, loss@max: 1.384769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 180, LS: 0.001928, LT: 0.619900, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 181, loss@min: 0.963990, loss@max: 1.391597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 181, LS: 0.001928, LT: 0.619877, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 182, loss@min: 0.968726, loss@max: 1.387470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 182, LS: 0.001929, LT: 0.619879, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 183, loss@min: 0.968070, loss@max: 1.386455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 183, LS: 0.001929, LT: 0.619895, Top1S: 100.000000, Top1T: 83.083168 +Train:epoch: 184, loss@min: 0.957553, loss@max: 1.388003, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 184, LS: 0.001930, LT: 0.619981, Top1S: 100.000000, Top1T: 83.042595 +Train:epoch: 185, loss@min: 0.946482, loss@max: 1.410383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 185, LS: 0.001930, LT: 0.620054, Top1S: 100.000000, Top1T: 83.002029 +Train:epoch: 186, loss@min: 0.965511, loss@max: 1.391608, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 4, "test_freq": 1} + +------------------------------------------- +Tue May 30 17:52:49 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 12.553371, loss@max: 6.650062, Top1S acc: 59.765625, Top1T acc: 39.453125 +Train:epoch: 2, loss@min: 9.131769, loss@max: 5.399580, Top1S acc: 92.968750, Top1T acc: 56.640625 +Train:epoch: 3, loss@min: 6.420299, loss@max: 4.163236, Top1S acc: 98.437500, Top1T acc: 70.703125 +Train:epoch: 4, loss@min: 3.599110, loss@max: 4.084870, Top1S acc: 98.437500, Top1T acc: 81.640625 +Train:epoch: 5, loss@min: 2.293864, loss@max: 4.255766, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 6, loss@min: 1.470416, loss@max: 3.524974, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 7, loss@min: 1.595653, loss@max: 2.664684, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 1.728240, loss@max: 2.044317, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 9, loss@min: 1.527267, loss@max: 2.036558, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.449498, loss@max: 2.005055, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 11, loss@min: 1.193642, loss@max: 2.062162, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 12, loss@min: 1.061212, loss@max: 2.105043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.107198, loss@max: 2.062983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.232457, loss@max: 1.946626, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.152788, loss@max: 1.781353, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.130204, loss@max: 1.918638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.061954, loss@max: 1.843937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.191329, loss@max: 1.770087, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 1.106833, loss@max: 1.840504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.006449, loss@max: 1.912941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.112823, loss@max: 1.887997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.178777, loss@max: 1.717851, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.044645, loss@max: 1.769986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.050288, loss@max: 1.894954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.137691, loss@max: 1.745462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.123450, loss@max: 1.773866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.100630, loss@max: 1.872509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.056937, loss@max: 1.870969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.174734, loss@max: 1.932667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.073703, loss@max: 2.084727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.038189, loss@max: 2.032642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.166277, loss@max: 1.985506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.155993, loss@max: 1.816041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.125256, loss@max: 1.973356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.110263, loss@max: 2.115632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.112540, loss@max: 1.948897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.120199, loss@max: 2.114925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.051554, loss@max: 2.011053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.119456, loss@max: 1.872458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.204665, loss@max: 1.823014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.087063, loss@max: 1.969048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.083722, loss@max: 1.971316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.095897, loss@max: 1.896286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.118905, loss@max: 2.002202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.096026, loss@max: 1.966216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.072835, loss@max: 1.959128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.038375, loss@max: 2.015345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.016021, loss@max: 1.974739, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.116748, loss@max: 1.791673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.155488, loss@max: 1.830956, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.069312, loss@max: 1.862366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.031700, loss@max: 1.961286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.069826, loss@max: 1.814804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.079296, loss@max: 1.791419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.094962, loss@max: 1.855198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.044569, loss@max: 1.809135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.001096, loss@max: 1.776932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.009235, loss@max: 1.773459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.067023, loss@max: 1.635475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.069761, loss@max: 1.767282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.982479, loss@max: 1.787654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.996305, loss@max: 1.785299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.035862, loss@max: 1.731259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.045447, loss@max: 1.712018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.034220, loss@max: 1.649455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.068313, loss@max: 1.692406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.979167, loss@max: 1.738423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.002787, loss@max: 1.684247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.008156, loss@max: 1.675234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.012854, loss@max: 1.643231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001761, LT: 0.462919, Top1S: 100.000000, Top1T: 87.180527Best acc: 87.180527 +Train:epoch: 71, loss@min: 1.016659, loss@max: 1.619803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001772, LT: 0.454700, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 72, loss@min: 0.982576, loss@max: 1.685840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001811, LT: 0.453116, Top1S: 100.000000, Top1T: 86.977692 +Train:epoch: 73, loss@min: 1.015023, loss@max: 1.624744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001764, LT: 0.459728, Top1S: 100.000000, Top1T: 87.302231Best acc: 87.302231 +Train:epoch: 74, loss@min: 1.013485, loss@max: 1.635194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001699, LT: 0.470673, Top1S: 100.000000, Top1T: 87.018257 +Train:epoch: 75, loss@min: 1.057448, loss@max: 1.611830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001623, LT: 0.457271, Top1S: 100.000000, Top1T: 86.937119 +Train:epoch: 76, loss@min: 1.043583, loss@max: 1.657521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001586, LT: 0.443027, Top1S: 100.000000, Top1T: 87.180527 +Train:epoch: 77, loss@min: 1.031446, loss@max: 1.607870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001662, LT: 0.440207, Top1S: 100.000000, Top1T: 87.423935Best acc: 87.423935 +Train:epoch: 78, loss@min: 0.959136, loss@max: 1.604359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001741, LT: 0.441560, Top1S: 100.000000, Top1T: 87.626778Best acc: 87.626778 +Train:epoch: 79, loss@min: 1.003453, loss@max: 1.618114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001618, LT: 0.441709, Top1S: 100.000000, Top1T: 87.667343Best acc: 87.667343 +Train:epoch: 80, loss@min: 1.000888, loss@max: 1.588645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001484, LT: 0.443244, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 81, loss@min: 1.001202, loss@max: 1.549918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001495, LT: 0.447071, Top1S: 100.000000, Top1T: 87.383369 +Train:epoch: 82, loss@min: 0.997339, loss@max: 1.597704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001568, LT: 0.451804, Top1S: 100.000000, Top1T: 87.383369 +Train:epoch: 83, loss@min: 0.974871, loss@max: 1.533713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001635, LT: 0.440530, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 84, loss@min: 0.992953, loss@max: 1.539010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001572, LT: 0.433469, Top1S: 100.000000, Top1T: 87.626778 +Train:epoch: 85, loss@min: 0.990178, loss@max: 1.525964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001477, LT: 0.445354, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 86, loss@min: 0.975481, loss@max: 1.499145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001459, LT: 0.448710, Top1S: 100.000000, Top1T: 87.099388 +Train:epoch: 87, loss@min: 0.973758, loss@max: 1.522250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001498, LT: 0.438122, Top1S: 100.000000, Top1T: 87.667343 +Train:epoch: 88, loss@min: 0.991798, loss@max: 1.508790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001518, LT: 0.419410, Top1S: 100.000000, Top1T: 88.154160Best acc: 88.154160 +Train:epoch: 89, loss@min: 1.003217, loss@max: 1.470599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001485, LT: 0.423831, Top1S: 100.000000, Top1T: 88.154160 +Train:epoch: 90, loss@min: 0.967912, loss@max: 1.500972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001444, LT: 0.440677, Top1S: 100.000000, Top1T: 87.464500 +Train:epoch: 91, loss@min: 0.960567, loss@max: 1.490412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001437, LT: 0.441473, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 92, loss@min: 0.964745, loss@max: 1.481628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001471, LT: 0.426174, Top1S: 100.000000, Top1T: 87.910751 +Train:epoch: 93, loss@min: 0.955539, loss@max: 1.474649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001480, LT: 0.410774, Top1S: 100.000000, Top1T: 88.154160 +Train:epoch: 94, loss@min: 0.948805, loss@max: 1.484531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001440, LT: 0.412268, Top1S: 100.000000, Top1T: 88.154160 +Train:epoch: 95, loss@min: 0.933928, loss@max: 1.489136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001396, LT: 0.422441, Top1S: 100.000000, Top1T: 87.951317 +Train:epoch: 96, loss@min: 0.990977, loss@max: 1.437429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001390, LT: 0.427214, Top1S: 100.000000, Top1T: 87.707909 +Train:epoch: 97, loss@min: 0.974595, loss@max: 1.428246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001416, LT: 0.419532, Top1S: 100.000000, Top1T: 88.113594 +Train:epoch: 98, loss@min: 0.952090, loss@max: 1.474003, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001440, LT: 0.410042, Top1S: 100.000000, Top1T: 88.478699Best acc: 88.478699 +Train:epoch: 99, loss@min: 0.962275, loss@max: 1.457217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001429, LT: 0.405922, Top1S: 100.000000, Top1T: 88.600403Best acc: 88.600403 +Train:epoch: 100, loss@min: 0.959526, loss@max: 1.432853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001385, LT: 0.407150, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 101, loss@min: 0.974026, loss@max: 1.428286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001361, LT: 0.411906, Top1S: 100.000000, Top1T: 88.275864 +Train:epoch: 102, loss@min: 0.947946, loss@max: 1.446926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001359, LT: 0.414121, Top1S: 100.000000, Top1T: 88.235298 +Train:epoch: 103, loss@min: 0.956484, loss@max: 1.442171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001374, LT: 0.407476, Top1S: 100.000000, Top1T: 88.316429 +Train:epoch: 104, loss@min: 0.942315, loss@max: 1.433707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001397, LT: 0.402341, Top1S: 100.000000, Top1T: 88.316429 +Train:epoch: 105, loss@min: 0.927643, loss@max: 1.459688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001378, LT: 0.402042, Top1S: 100.000000, Top1T: 88.478699 +Train:epoch: 106, loss@min: 0.954595, loss@max: 1.432379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001353, LT: 0.406466, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 107, loss@min: 0.943711, loss@max: 1.413864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001339, LT: 0.408061, Top1S: 100.000000, Top1T: 88.316429 +Train:epoch: 108, loss@min: 0.958173, loss@max: 1.405992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001346, LT: 0.407072, Top1S: 100.000000, Top1T: 88.275864 +Train:epoch: 109, loss@min: 0.974549, loss@max: 1.398348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001357, LT: 0.405244, Top1S: 100.000000, Top1T: 88.194725 +Train:epoch: 110, loss@min: 0.950085, loss@max: 1.422646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001364, LT: 0.403491, Top1S: 100.000000, Top1T: 88.316429 +Train:epoch: 111, loss@min: 0.964795, loss@max: 1.400686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001358, LT: 0.402462, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 112, loss@min: 0.964720, loss@max: 1.407972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001345, LT: 0.400444, Top1S: 100.000000, Top1T: 88.275864 +Train:epoch: 113, loss@min: 0.959153, loss@max: 1.404699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001336, LT: 0.399723, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 114, loss@min: 0.955881, loss@max: 1.403323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001335, LT: 0.400852, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 115, loss@min: 0.934557, loss@max: 1.441396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001330, LT: 0.402687, Top1S: 100.000000, Top1T: 88.316429 +Train:epoch: 116, loss@min: 0.948375, loss@max: 1.419816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001329, LT: 0.402052, Top1S: 100.000000, Top1T: 88.235298 +Train:epoch: 117, loss@min: 0.954755, loss@max: 1.415701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001325, LT: 0.402094, Top1S: 100.000000, Top1T: 88.275864 +Train:epoch: 118, loss@min: 0.953764, loss@max: 1.405174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001326, LT: 0.400885, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 119, loss@min: 0.958427, loss@max: 1.414092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001325, LT: 0.399519, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 120, loss@min: 0.963230, loss@max: 1.402791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001322, LT: 0.399176, Top1S: 100.000000, Top1T: 88.519272 +Train:epoch: 121, loss@min: 0.954540, loss@max: 1.406031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001318, LT: 0.399074, Top1S: 100.000000, Top1T: 88.519272 +Train:epoch: 122, loss@min: 0.986742, loss@max: 1.383793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001318, LT: 0.398972, Top1S: 100.000000, Top1T: 88.519272 +Train:epoch: 123, loss@min: 0.950602, loss@max: 1.406631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001317, LT: 0.399642, Top1S: 100.000000, Top1T: 88.478699 +Train:epoch: 124, loss@min: 0.944580, loss@max: 1.416804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001315, LT: 0.400934, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 125, loss@min: 0.963757, loss@max: 1.397010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001312, LT: 0.401521, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 126, loss@min: 0.948726, loss@max: 1.412272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001310, LT: 0.401122, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 127, loss@min: 0.933752, loss@max: 1.417468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001309, LT: 0.399996, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 128, loss@min: 0.957180, loss@max: 1.395758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001310, LT: 0.398940, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 129, loss@min: 0.950297, loss@max: 1.405640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001311, LT: 0.398261, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 130, loss@min: 0.959746, loss@max: 1.388927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001309, LT: 0.397966, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 131, loss@min: 0.959659, loss@max: 1.398118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001308, LT: 0.397997, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 132, loss@min: 0.956830, loss@max: 1.394788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001307, LT: 0.398317, Top1S: 100.000000, Top1T: 88.438133 +Train:epoch: 133, loss@min: 0.937015, loss@max: 1.412163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001305, LT: 0.398516, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 134, loss@min: 0.950535, loss@max: 1.402150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001304, LT: 0.398716, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 135, loss@min: 0.947077, loss@max: 1.417608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001304, LT: 0.398723, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 136, loss@min: 0.950318, loss@max: 1.397973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001304, LT: 0.398529, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 137, loss@min: 0.941178, loss@max: 1.412303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001304, LT: 0.398312, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 138, loss@min: 0.943575, loss@max: 1.410917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001304, LT: 0.398130, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 139, loss@min: 0.952334, loss@max: 1.389820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001304, LT: 0.398136, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 140, loss@min: 0.957630, loss@max: 1.393508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001304, LT: 0.398254, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 141, loss@min: 0.961209, loss@max: 1.383889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001304, LT: 0.398252, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 142, loss@min: 0.953207, loss@max: 1.397784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001304, LT: 0.398247, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 143, loss@min: 0.956549, loss@max: 1.397454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001304, LT: 0.398275, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 144, loss@min: 0.965941, loss@max: 1.382747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001304, LT: 0.398246, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 145, loss@min: 0.941868, loss@max: 1.406459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001304, LT: 0.398224, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 146, loss@min: 0.947687, loss@max: 1.407224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001304, LT: 0.398221, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 147, loss@min: 0.951412, loss@max: 1.412690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001304, LT: 0.398218, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 148, loss@min: 0.948598, loss@max: 1.402847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001304, LT: 0.398217, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 149, loss@min: 0.947753, loss@max: 1.400162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001304, LT: 0.398217, Top1S: 100.000000, Top1T: 88.356995 +Train:epoch: 150, loss@min: 0.956500, loss@max: 1.399204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001304, LT: 0.398217, Top1S: 100.000000, Top1T: 88.356995 +------------------------------------------- +Tue May 30 18:45:01 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 4, "test_freq": 1} + +------------------------------------------- +Tue May 30 21:06:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 12.553222, loss@max: 6.650043, Top1S acc: 59.765625, Top1T acc: 39.453125 +Train:epoch: 2, loss@min: 9.131412, loss@max: 5.399564, Top1S acc: 92.968750, Top1T acc: 56.640625 +Train:epoch: 3, loss@min: 6.420348, loss@max: 4.163269, Top1S acc: 98.437500, Top1T acc: 70.703125 +Train:epoch: 4, loss@min: 3.599230, loss@max: 4.084864, Top1S acc: 98.437500, Top1T acc: 81.640625 +Train:epoch: 5, loss@min: 2.293771, loss@max: 4.255786, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 6, loss@min: 1.470385, loss@max: 3.524955, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 7, loss@min: 1.595666, loss@max: 2.664631, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 1.728363, loss@max: 2.044340, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 9, loss@min: 1.527236, loss@max: 2.036577, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.449436, loss@max: 2.005189, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 11, loss@min: 1.193666, loss@max: 2.062109, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 12, loss@min: 1.061233, loss@max: 2.105003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.107183, loss@max: 2.063162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.232430, loss@max: 1.946655, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.152917, loss@max: 1.781189, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.130226, loss@max: 1.918667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.061896, loss@max: 1.844113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.191405, loss@max: 1.770197, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 1.106801, loss@max: 1.840455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.006530, loss@max: 1.913120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.112933, loss@max: 1.888213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.178490, loss@max: 1.717938, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.044359, loss@max: 1.770003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.049930, loss@max: 1.894155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.138023, loss@max: 1.745260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.123262, loss@max: 1.773566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.100763, loss@max: 1.872756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.056933, loss@max: 1.870367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.174778, loss@max: 1.932450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.073333, loss@max: 2.085657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.038035, loss@max: 2.033338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.166871, loss@max: 1.985343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.156317, loss@max: 1.816171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.124872, loss@max: 1.975416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.110195, loss@max: 2.115890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.112527, loss@max: 1.947902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.120584, loss@max: 2.114242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.052499, loss@max: 2.009884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.118793, loss@max: 1.872588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.204523, loss@max: 1.824883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.086167, loss@max: 1.967815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.083073, loss@max: 1.968226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.096804, loss@max: 1.895196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.118415, loss@max: 1.999184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.095499, loss@max: 1.967434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.072235, loss@max: 1.958026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.038237, loss@max: 2.011070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.018629, loss@max: 1.972486, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.109384, loss@max: 1.786577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.155848, loss@max: 1.818832, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.070689, loss@max: 1.859653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.028303, loss@max: 1.984091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.056086, loss@max: 1.811446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.089141, loss@max: 1.785646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.092915, loss@max: 1.853000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.036409, loss@max: 1.830380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.998534, loss@max: 1.782640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.032635, loss@max: 1.766845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.064747, loss@max: 1.638267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.062139, loss@max: 1.799237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.978019, loss@max: 1.780866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.009231, loss@max: 1.778992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.030040, loss@max: 1.736314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.040541, loss@max: 1.721921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.042336, loss@max: 1.671056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.070864, loss@max: 1.680398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.990723, loss@max: 1.749567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.998839, loss@max: 1.697102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.007921, loss@max: 1.695565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.021672, loss@max: 1.643392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001756, LT: 0.464109, Top1S: 100.000000, Top1T: 87.139961Best acc: 87.139961 +Train:epoch: 71, loss@min: 1.019808, loss@max: 1.625493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001719, LT: 0.455580, Top1S: 100.000000, Top1T: 86.855988 +Train:epoch: 72, loss@min: 0.979058, loss@max: 1.678119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001755, LT: 0.449198, Top1S: 100.000000, Top1T: 87.180527Best acc: 87.180527 +Train:epoch: 73, loss@min: 1.013195, loss@max: 1.624107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001753, LT: 0.459459, Top1S: 100.000000, Top1T: 87.261665Best acc: 87.261665 +Train:epoch: 74, loss@min: 1.016264, loss@max: 1.634899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001722, LT: 0.473663, Top1S: 100.000000, Top1T: 86.734283 +Train:epoch: 75, loss@min: 1.050452, loss@max: 1.600370, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 8, "test_freq": 1} + +------------------------------------------- +Tue May 30 21:16:34 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 13.494823, loss@max: 6.378188, Top1S acc: 91.406250, Top1T acc: 35.546875 +Train:epoch: 2, loss@min: 8.219177, loss@max: 4.165046, Top1S acc: 99.218750, Top1T acc: 63.671875 +Train:epoch: 3, loss@min: 2.985998, loss@max: 4.146810, Top1S acc: 100.000000, Top1T acc: 83.984375 +Train:epoch: 4, loss@min: 2.441152, loss@max: 2.842845, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 5, loss@min: 2.172164, loss@max: 2.488824, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 6, loss@min: 1.792224, loss@max: 2.339845, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 7, loss@min: 1.269037, loss@max: 2.284369, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 8, loss@min: 1.443493, loss@max: 2.081741, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 9, loss@min: 1.364259, loss@max: 1.989346, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 10, loss@min: 1.257716, loss@max: 2.046378, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 11, loss@min: 1.285148, loss@max: 2.116043, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 1.125153, loss@max: 2.027279, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 13, loss@min: 1.180143, loss@max: 1.979996, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 1.193678, loss@max: 1.963357, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.342343, loss@max: 1.941435, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 16, loss@min: 1.438463, loss@max: 2.227512, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 17, loss@min: 1.236332, loss@max: 2.171873, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 18, loss@min: 1.109471, loss@max: 2.383771, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.299110, loss@max: 2.002976, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 20, loss@min: 1.154833, loss@max: 2.177921, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.242124, loss@max: 2.038754, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.281726, loss@max: 2.134337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.179685, loss@max: 2.185935, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 24, loss@min: 1.319753, loss@max: 2.166384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.244494, loss@max: 2.172920, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 1.321753, loss@max: 2.397729, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.228294, loss@max: 2.188363, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.343302, loss@max: 2.153346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.276231, loss@max: 2.164011, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.185265, loss@max: 2.200678, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.269019, loss@max: 2.179669, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 1.259877, loss@max: 2.187476, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.231671, loss@max: 2.695865, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.213772, loss@max: 2.260499, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 1.349698, loss@max: 2.221859, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 36, loss@min: 1.147564, loss@max: 1.984588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.239513, loss@max: 2.190530, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 38, loss@min: 1.387226, loss@max: 2.299478, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.159212, loss@max: 2.137925, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.198622, loss@max: 2.067403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.137512, loss@max: 2.214319, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.224087, loss@max: 2.131048, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.283786, loss@max: 2.029566, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.122628, loss@max: 2.212713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.204091, loss@max: 2.117596, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 1.108620, loss@max: 2.051871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.119535, loss@max: 2.072368, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 1.128314, loss@max: 2.071562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.037125, loss@max: 1.933025, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 1.156878, loss@max: 2.009123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.088270, loss@max: 1.975845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.125023, loss@max: 2.103992, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 1.146513, loss@max: 1.950554, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.006589, loss@max: 2.005398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.237534, loss@max: 1.964151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.998284, loss@max: 1.866313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.029222, loss@max: 1.798439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.084707, loss@max: 1.762347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.025402, loss@max: 1.852028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.154149, loss@max: 1.812901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.066265, loss@max: 1.747379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.042260, loss@max: 1.824056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.112422, loss@max: 1.720489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.013362, loss@max: 1.756192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.049254, loss@max: 1.628981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.047035, loss@max: 1.718925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.016516, loss@max: 1.763674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.011822, loss@max: 1.700174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.038962, loss@max: 1.781880, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 1.052291, loss@max: 1.661849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001130, LT: 0.380598, Top1S: 100.000000, Top1T: 88.965515Best acc: 88.965515 +Train:epoch: 71, loss@min: 0.988780, loss@max: 1.639878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001047, LT: 0.380996, Top1S: 100.000000, Top1T: 88.762680 +Train:epoch: 72, loss@min: 0.967255, loss@max: 1.621747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001050, LT: 0.386045, Top1S: 100.000000, Top1T: 89.087219Best acc: 89.087219 +Train:epoch: 73, loss@min: 1.015700, loss@max: 1.753604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001016, LT: 0.385735, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 74, loss@min: 0.964740, loss@max: 1.629615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001138, LT: 0.384082, Top1S: 100.000000, Top1T: 88.194725 +Train:epoch: 75, loss@min: 1.047877, loss@max: 1.573784, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 75, LS: 0.000993, LT: 0.388440, Top1S: 100.000000, Top1T: 88.640976 +Train:epoch: 76, loss@min: 1.035986, loss@max: 1.617302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001045, LT: 0.387733, Top1S: 100.000000, Top1T: 88.803246 +Train:epoch: 77, loss@min: 1.001555, loss@max: 1.647090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001028, LT: 0.374190, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 78, loss@min: 0.964745, loss@max: 1.634202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001001, LT: 0.373556, Top1S: 100.000000, Top1T: 88.762680 +Train:epoch: 79, loss@min: 1.025739, loss@max: 1.569021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000911, LT: 0.384347, Top1S: 100.000000, Top1T: 88.843811 +Train:epoch: 80, loss@min: 0.999438, loss@max: 1.581657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000997, LT: 0.365548, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 81, loss@min: 1.071380, loss@max: 1.659918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001017, LT: 0.367318, Top1S: 100.000000, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 82, loss@min: 0.990907, loss@max: 1.610700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000848, LT: 0.385315, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 83, loss@min: 0.991622, loss@max: 1.567153, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.000900, LT: 0.389812, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 84, loss@min: 1.013005, loss@max: 1.522312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000912, LT: 0.382911, Top1S: 100.000000, Top1T: 88.803246 +Train:epoch: 85, loss@min: 0.954717, loss@max: 1.536078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000923, LT: 0.372722, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 86, loss@min: 0.941454, loss@max: 1.553998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000912, LT: 0.376438, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 87, loss@min: 1.001738, loss@max: 1.537504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000920, LT: 0.371025, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 88, loss@min: 0.983281, loss@max: 1.482821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000891, LT: 0.370428, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 89, loss@min: 0.993391, loss@max: 1.470168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000864, LT: 0.371272, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 90, loss@min: 0.980094, loss@max: 1.462406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000912, LT: 0.355847, Top1S: 100.000000, Top1T: 89.736305Best acc: 89.736305 +Train:epoch: 91, loss@min: 0.985742, loss@max: 1.522393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000908, LT: 0.356248, Top1S: 100.000000, Top1T: 89.695740 +Train:epoch: 92, loss@min: 0.994607, loss@max: 1.446818, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.000891, LT: 0.356474, Top1S: 100.000000, Top1T: 89.574036 +Train:epoch: 93, loss@min: 1.004245, loss@max: 1.448034, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 0.000860, LT: 0.361996, Top1S: 100.000000, Top1T: 89.533470 +Train:epoch: 94, loss@min: 0.969777, loss@max: 1.456482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000870, LT: 0.364443, Top1S: 100.000000, Top1T: 89.492905 +Train:epoch: 95, loss@min: 0.967235, loss@max: 1.442662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000862, LT: 0.357907, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 96, loss@min: 0.979718, loss@max: 1.472583, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.000835, LT: 0.353208, Top1S: 100.000000, Top1T: 89.655174 +Train:epoch: 97, loss@min: 0.986611, loss@max: 1.439003, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000855, LT: 0.364534, Top1S: 100.000000, Top1T: 89.574036 +Train:epoch: 98, loss@min: 0.971896, loss@max: 1.474631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000858, LT: 0.369282, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 99, loss@min: 0.942466, loss@max: 1.475364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000832, LT: 0.365577, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 100, loss@min: 0.930251, loss@max: 1.456762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000856, LT: 0.362654, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 101, loss@min: 0.959316, loss@max: 1.443442, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 0.000850, LT: 0.366281, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 102, loss@min: 0.963061, loss@max: 1.427737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000820, LT: 0.372415, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 103, loss@min: 0.961844, loss@max: 1.429640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000811, LT: 0.367279, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 104, loss@min: 0.962100, loss@max: 1.423418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000830, LT: 0.359334, Top1S: 100.000000, Top1T: 89.533470 +Train:epoch: 105, loss@min: 0.964062, loss@max: 1.407435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000814, LT: 0.354918, Top1S: 100.000000, Top1T: 89.736305 +Train:epoch: 106, loss@min: 0.948536, loss@max: 1.428711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000806, LT: 0.363453, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 107, loss@min: 0.975258, loss@max: 1.382216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000800, LT: 0.375149, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 108, loss@min: 0.927332, loss@max: 1.428182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000805, LT: 0.374855, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 109, loss@min: 0.940359, loss@max: 1.431861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000811, LT: 0.368332, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 110, loss@min: 0.969189, loss@max: 1.406178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000815, LT: 0.364043, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 111, loss@min: 0.965451, loss@max: 1.390896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000808, LT: 0.364591, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 112, loss@min: 0.954852, loss@max: 1.404540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000800, LT: 0.364218, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 113, loss@min: 0.974803, loss@max: 1.406753, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 113, LS: 0.000797, LT: 0.363159, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 114, loss@min: 0.942699, loss@max: 1.413933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000792, LT: 0.362418, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 115, loss@min: 0.955294, loss@max: 1.402690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000791, LT: 0.366295, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 116, loss@min: 0.947140, loss@max: 1.408941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000796, LT: 0.370704, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 117, loss@min: 0.954202, loss@max: 1.402364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000797, LT: 0.371978, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 118, loss@min: 0.955139, loss@max: 1.400132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000796, LT: 0.370859, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 119, loss@min: 0.947133, loss@max: 1.397309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000790, LT: 0.371495, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 120, loss@min: 0.956801, loss@max: 1.386999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000792, LT: 0.374413, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 121, loss@min: 0.963060, loss@max: 1.382585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000791, LT: 0.379739, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 122, loss@min: 0.943875, loss@max: 1.398351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000792, LT: 0.379121, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 123, loss@min: 0.945245, loss@max: 1.400242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000793, LT: 0.376496, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 124, loss@min: 0.963336, loss@max: 1.386846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000789, LT: 0.376261, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 125, loss@min: 0.942110, loss@max: 1.395248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000785, LT: 0.376982, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 126, loss@min: 0.953503, loss@max: 1.391200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000787, LT: 0.376050, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 127, loss@min: 0.945283, loss@max: 1.395654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000788, LT: 0.374588, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 128, loss@min: 0.936442, loss@max: 1.401387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000789, LT: 0.373485, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 129, loss@min: 0.951869, loss@max: 1.390423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000786, LT: 0.372478, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 130, loss@min: 0.961819, loss@max: 1.376787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000783, LT: 0.372865, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 131, loss@min: 0.955823, loss@max: 1.385231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000782, LT: 0.373730, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 132, loss@min: 0.949318, loss@max: 1.390998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000781, LT: 0.374104, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 133, loss@min: 0.961350, loss@max: 1.378872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000781, LT: 0.373177, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 134, loss@min: 0.960195, loss@max: 1.390059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000782, LT: 0.372155, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 135, loss@min: 0.959192, loss@max: 1.377242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000782, LT: 0.371626, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 136, loss@min: 0.956407, loss@max: 1.386183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000783, LT: 0.371310, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 137, loss@min: 0.953344, loss@max: 1.380231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000782, LT: 0.371525, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 138, loss@min: 0.955133, loss@max: 1.381817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000781, LT: 0.371781, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 139, loss@min: 0.960261, loss@max: 1.382094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000781, LT: 0.371877, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 140, loss@min: 0.948025, loss@max: 1.386600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000780, LT: 0.372041, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 141, loss@min: 0.944321, loss@max: 1.391521, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 8, "test_freq": 1} + +------------------------------------------- +Tue May 30 22:30:30 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 13.494823, loss@max: 6.378188, Top1S acc: 91.406250, Top1T acc: 35.546875{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 8, "test_freq": 1} + +------------------------------------------- +Tue May 30 22:40:13 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 13.494821, loss@max: 6.378189, Top1S acc: 91.406250, Top1T acc: 35.546875 +Train:epoch: 2, loss@min: 8.219189, loss@max: 4.165058, Top1S acc: 99.218750, Top1T acc: 63.671875 +Train:epoch: 3, loss@min: 2.986005, loss@max: 4.146792, Top1S acc: 100.000000, Top1T acc: 83.984375 +Train:epoch: 4, loss@min: 2.441163, loss@max: 2.842843, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 5, loss@min: 2.172160, loss@max: 2.488837, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 6, loss@min: 1.792222, loss@max: 2.339841, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 7, loss@min: 1.269033, loss@max: 2.284363, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 8, loss@min: 1.443500, loss@max: 2.081748, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 9, loss@min: 1.364263, loss@max: 1.989355, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 10, loss@min: 1.257726, loss@max: 2.046369, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 11, loss@min: 1.285154, loss@max: 2.116047, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 1.125155, loss@max: 2.027281, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 13, loss@min: 1.180153, loss@max: 1.979991, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 1.193677, loss@max: 1.963353, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.342351, loss@max: 1.941447, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 16, loss@min: 1.438480, loss@max: 2.227499, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 17, loss@min: 1.236310, loss@max: 2.171867, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 18, loss@min: 1.109519, loss@max: 2.383653, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.299099, loss@max: 2.002950, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 20, loss@min: 1.154825, loss@max: 2.177771, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.242114, loss@max: 2.038780, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.281704, loss@max: 2.134095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.179597, loss@max: 2.186096, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 24, loss@min: 1.320020, loss@max: 2.166288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.244165, loss@max: 2.173008, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 1.322125, loss@max: 2.398349, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.228507, loss@max: 2.187793, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.343090, loss@max: 2.154565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.276698, loss@max: 2.165781, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.185395, loss@max: 2.201062, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.268732, loss@max: 2.180854, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 1.258482, loss@max: 2.187801, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.232578, loss@max: 2.695033, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.213775, loss@max: 2.258359, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 1.349112, loss@max: 2.219596, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 36, loss@min: 1.145894, loss@max: 1.983286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.239877, loss@max: 2.188123, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 38, loss@min: 1.387842, loss@max: 2.297997, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.161602, loss@max: 2.132580, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.202055, loss@max: 2.062643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.140537, loss@max: 2.216292, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.230655, loss@max: 2.128325, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.281566, loss@max: 2.032613, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.118060, loss@max: 2.217593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.213500, loss@max: 2.125357, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 1.108305, loss@max: 2.070716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.128614, loss@max: 2.069849, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 1.121031, loss@max: 2.073994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.043568, loss@max: 1.939615, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 50, loss@min: 1.152010, loss@max: 2.019806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001491, LT: 0.452139, Top1S: 100.000000, Top1T: 86.855988Best acc: 86.855988 +Train:epoch: 51, loss@min: 1.096845, loss@max: 1.963392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.001507, LT: 0.420097, Top1S: 100.000000, Top1T: 87.423935Best acc: 87.423935 +Train:epoch: 52, loss@min: 1.149390, loss@max: 2.127586, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 52, LS: 0.001370, LT: 0.404508, Top1S: 100.000000, Top1T: 88.762680Best acc: 88.762680 +Train:epoch: 53, loss@min: 1.136320, loss@max: 1.947976, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 53, LS: 0.001422, LT: 0.442234, Top1S: 100.000000, Top1T: 87.342796 +Train:epoch: 54, loss@min: 1.019596, loss@max: 1.992083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001614, LT: 0.427611, Top1S: 100.000000, Top1T: 87.423935 +Train:epoch: 55, loss@min: 1.218210, loss@max: 1.984877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001418, LT: 0.406640, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 56, loss@min: 1.018555, loss@max: 1.848828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001262, LT: 0.420025, Top1S: 100.000000, Top1T: 87.951317 +Train:epoch: 57, loss@min: 1.056974, loss@max: 1.807847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001408, LT: 0.397186, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 58, loss@min: 1.101575, loss@max: 1.792513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001216, LT: 0.390738, Top1S: 100.000000, Top1T: 88.803246Best acc: 88.803246 +Train:epoch: 59, loss@min: 1.044062, loss@max: 1.829466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001250, LT: 0.392687, Top1S: 100.000000, Top1T: 88.640976 +Train:epoch: 60, loss@min: 1.138914, loss@max: 1.848741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001324, LT: 0.378531, Top1S: 100.000000, Top1T: 88.843811Best acc: 88.843811 +Train:epoch: 61, loss@min: 1.035364, loss@max: 1.694445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001278, LT: 0.407370, Top1S: 100.000000, Top1T: 87.910751 +Train:epoch: 62, loss@min: 1.059512, loss@max: 1.793467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001098, LT: 0.393315, Top1S: 100.000000, Top1T: 88.397568 +Train:epoch: 63, loss@min: 1.095190, loss@max: 1.685457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001096, LT: 0.387226, Top1S: 100.000000, Top1T: 88.843811 +Train:epoch: 64, loss@min: 1.016414, loss@max: 1.683982, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 64, LS: 0.001226, LT: 0.376231, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 65, loss@min: 1.049961, loss@max: 1.589149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001113, LT: 0.375141, Top1S: 100.000000, Top1T: 88.884384Best acc: 88.884384 +Train:epoch: 66, loss@min: 1.029670, loss@max: 1.718339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001092, LT: 0.378064, Top1S: 100.000000, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 67, loss@min: 1.021410, loss@max: 1.726082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001188, LT: 0.376116, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 68, loss@min: 1.005656, loss@max: 1.721429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001103, LT: 0.392973, Top1S: 100.000000, Top1T: 88.194725 +Train:epoch: 69, loss@min: 1.028906, loss@max: 1.754544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001001, LT: 0.379285, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 70, loss@min: 1.047707, loss@max: 1.675172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001112, LT: 0.379425, Top1S: 100.000000, Top1T: 88.803246 +Train:epoch: 71, loss@min: 0.973169, loss@max: 1.647958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001111, LT: 0.380041, Top1S: 100.000000, Top1T: 88.722107 +Train:epoch: 72, loss@min: 0.976495, loss@max: 1.654558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001003, LT: 0.382032, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 73, loss@min: 1.013958, loss@max: 1.795487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001023, LT: 0.378670, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 74, loss@min: 0.960221, loss@max: 1.656625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001161, LT: 0.385563, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 75, loss@min: 1.084780, loss@max: 1.595825, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 75, LS: 0.001013, LT: 0.388629, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 76, loss@min: 0.990319, loss@max: 1.680153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001053, LT: 0.383722, Top1S: 100.000000, Top1T: 88.884384 +Train:epoch: 77, loss@min: 1.000738, loss@max: 1.702002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001000, LT: 0.378554, Top1S: 100.000000, Top1T: 88.762680 +Train:epoch: 78, loss@min: 0.967694, loss@max: 1.659269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000986, LT: 0.377233, Top1S: 100.000000, Top1T: 88.559837 +Train:epoch: 79, loss@min: 1.004478, loss@max: 1.579513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000929, LT: 0.388407, Top1S: 100.000000, Top1T: 88.681541 +Train:epoch: 80, loss@min: 1.034091, loss@max: 1.589268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001032, LT: 0.367572, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 81, loss@min: 1.077081, loss@max: 1.661565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001003, LT: 0.367687, Top1S: 100.000000, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 82, loss@min: 0.995179, loss@max: 1.599920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000841, LT: 0.386571, Top1S: 100.000000, Top1T: 88.559837 +Train:epoch: 83, loss@min: 0.979362, loss@max: 1.579398, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.000875, LT: 0.393636, Top1S: 100.000000, Top1T: 88.600403 +Train:epoch: 84, loss@min: 1.009019, loss@max: 1.539673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000907, LT: 0.384895, Top1S: 100.000000, Top1T: 88.681541 +Train:epoch: 85, loss@min: 0.977743, loss@max: 1.547125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000941, LT: 0.376833, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 86, loss@min: 0.932589, loss@max: 1.542682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000908, LT: 0.373913, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 87, loss@min: 0.974090, loss@max: 1.552728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000898, LT: 0.372759, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 88, loss@min: 0.983711, loss@max: 1.496711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000888, LT: 0.374419, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 89, loss@min: 0.982195, loss@max: 1.485050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000874, LT: 0.369028, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 90, loss@min: 0.993868, loss@max: 1.456676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000921, LT: 0.358111, Top1S: 100.000000, Top1T: 89.452332Best acc: 89.452332 +Train:epoch: 91, loss@min: 0.972616, loss@max: 1.486428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000890, LT: 0.359471, Top1S: 100.000000, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 92, loss@min: 0.996992, loss@max: 1.456063, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.000876, LT: 0.357789, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 93, loss@min: 0.980514, loss@max: 1.453665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000859, LT: 0.362574, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 94, loss@min: 0.968531, loss@max: 1.448717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000863, LT: 0.366201, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 95, loss@min: 0.973986, loss@max: 1.426726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000850, LT: 0.360764, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 96, loss@min: 0.980504, loss@max: 1.467428, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.000822, LT: 0.357693, Top1S: 100.000000, Top1T: 89.492905 +Train:epoch: 97, loss@min: 0.986772, loss@max: 1.439665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000851, LT: 0.370355, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 98, loss@min: 0.962693, loss@max: 1.452596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000850, LT: 0.370252, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 99, loss@min: 0.952315, loss@max: 1.464112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000824, LT: 0.368719, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 100, loss@min: 0.924660, loss@max: 1.465325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000840, LT: 0.371013, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 101, loss@min: 0.959159, loss@max: 1.447062, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 0.000840, LT: 0.371445, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 102, loss@min: 0.966829, loss@max: 1.405073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000820, LT: 0.371475, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 103, loss@min: 0.968185, loss@max: 1.422008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000812, LT: 0.368498, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 104, loss@min: 0.956236, loss@max: 1.423628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000819, LT: 0.364725, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 105, loss@min: 0.961871, loss@max: 1.408633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000798, LT: 0.360934, Top1S: 100.000000, Top1T: 89.614601Best acc: 89.614601 +Train:epoch: 106, loss@min: 0.948670, loss@max: 1.433779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000794, LT: 0.367470, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 107, loss@min: 0.976149, loss@max: 1.383847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000798, LT: 0.378271, Top1S: 100.000000, Top1T: 88.924950 +Train:epoch: 108, loss@min: 0.929478, loss@max: 1.427945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000802, LT: 0.377724, Top1S: 100.000000, Top1T: 88.884384 +Train:epoch: 109, loss@min: 0.938883, loss@max: 1.426778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000802, LT: 0.371330, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 110, loss@min: 0.973895, loss@max: 1.396861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000803, LT: 0.368170, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 111, loss@min: 0.964354, loss@max: 1.388982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000799, LT: 0.369057, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 112, loss@min: 0.952566, loss@max: 1.406840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000794, LT: 0.368356, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 113, loss@min: 0.973562, loss@max: 1.405420, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 113, LS: 0.000791, LT: 0.366833, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 114, loss@min: 0.943558, loss@max: 1.411458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000785, LT: 0.365758, Top1S: 100.000000, Top1T: 89.330627 +Train:epoch: 115, loss@min: 0.954355, loss@max: 1.400783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000784, LT: 0.369794, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 116, loss@min: 0.947953, loss@max: 1.407453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000790, LT: 0.374715, Top1S: 100.000000, Top1T: 89.208923 +Train:epoch: 117, loss@min: 0.952213, loss@max: 1.401995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000791, LT: 0.376109, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 118, loss@min: 0.955518, loss@max: 1.398897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000790, LT: 0.374451, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 119, loss@min: 0.944366, loss@max: 1.398593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000783, LT: 0.375033, Top1S: 100.000000, Top1T: 88.965515 +Train:epoch: 120, loss@min: 0.955855, loss@max: 1.388699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000784, LT: 0.378195, Top1S: 100.000000, Top1T: 89.006088 +Train:epoch: 121, loss@min: 0.961628, loss@max: 1.382250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000783, LT: 0.383783, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 122, loss@min: 0.945203, loss@max: 1.395846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000784, LT: 0.383458, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 123, loss@min: 0.943469, loss@max: 1.402532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000785, LT: 0.380360, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 124, loss@min: 0.964176, loss@max: 1.385497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000782, LT: 0.379652, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 125, loss@min: 0.942104, loss@max: 1.395628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000779, LT: 0.380487, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 126, loss@min: 0.950818, loss@max: 1.394709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000780, LT: 0.379528, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 127, loss@min: 0.945633, loss@max: 1.395531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000781, LT: 0.377858, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 128, loss@min: 0.940131, loss@max: 1.397640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000782, LT: 0.376719, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 129, loss@min: 0.949813, loss@max: 1.392954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000779, LT: 0.375794, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 130, loss@min: 0.959655, loss@max: 1.378523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000776, LT: 0.376306, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 131, loss@min: 0.955145, loss@max: 1.385481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000775, LT: 0.377334, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 132, loss@min: 0.948762, loss@max: 1.391783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000775, LT: 0.377847, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 133, loss@min: 0.963096, loss@max: 1.376838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000775, LT: 0.376803, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 134, loss@min: 0.959302, loss@max: 1.388447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000775, LT: 0.375517, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 135, loss@min: 0.957654, loss@max: 1.378367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000775, LT: 0.374844, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 136, loss@min: 0.958823, loss@max: 1.384514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000776, LT: 0.374504, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 137, loss@min: 0.954469, loss@max: 1.379016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000775, LT: 0.374759, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 138, loss@min: 0.952324, loss@max: 1.384096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000774, LT: 0.375030, Top1S: 100.000000, Top1T: 89.087219 +Train:epoch: 139, loss@min: 0.959243, loss@max: 1.382596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000774, LT: 0.375163, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 140, loss@min: 0.947517, loss@max: 1.388114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000774, LT: 0.375327, Top1S: 100.000000, Top1T: 89.127792 +Train:epoch: 141, loss@min: 0.946164, loss@max: 1.389685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000773, LT: 0.375330, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 142, loss@min: 0.950708, loss@max: 1.386150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000773, LT: 0.375265, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 143, loss@min: 0.941187, loss@max: 1.393146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000773, LT: 0.375157, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 144, loss@min: 0.953931, loss@max: 1.382039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000773, LT: 0.375165, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 145, loss@min: 0.958867, loss@max: 1.388321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000773, LT: 0.375161, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 146, loss@min: 0.958509, loss@max: 1.380273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000773, LT: 0.375165, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 147, loss@min: 0.948157, loss@max: 1.384091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000773, LT: 0.375178, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 148, loss@min: 0.947116, loss@max: 1.388804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000773, LT: 0.375182, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 149, loss@min: 0.954676, loss@max: 1.381428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000773, LT: 0.375182, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 150, loss@min: 0.956744, loss@max: 1.387804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000773, LT: 0.375182, Top1S: 100.000000, Top1T: 89.168358 +------------------------------------------- +Tue May 30 23:52:49 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Wed May 31 16:09:01 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.979012, loss@max: 4.288597, Top1S acc: 99.218750, Top1T acc: 55.468750 +Train:epoch: 2, loss@min: 3.051378, loss@max: 2.682240, Top1S acc: 100.000000, Top1T acc: 77.734375 +Train:epoch: 3, loss@min: 1.682299, loss@max: 2.247671, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.648322, loss@max: 2.088385, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 5, loss@min: 1.358892, loss@max: 1.937105, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 6, loss@min: 1.389621, loss@max: 1.661043, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.200297, loss@max: 1.779586, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 8, loss@min: 1.332819, loss@max: 1.813848, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.165744, loss@max: 1.889130, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 10, loss@min: 1.106431, loss@max: 1.875374, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.235768, loss@max: 1.740367, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 1.194937, loss@max: 1.873616, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.251449, loss@max: 1.767447, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 1.213035, loss@max: 1.741579, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.298918, loss@max: 1.743990, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 1.314553, loss@max: 1.932902, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.138969, loss@max: 1.959394, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.194905, loss@max: 1.999038, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.274321, loss@max: 1.927655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.110572, loss@max: 1.970052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.338256, loss@max: 2.075130, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.278449, loss@max: 1.862616, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.291778, loss@max: 1.822827, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 24, loss@min: 1.146220, loss@max: 1.816758, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 1.163839, loss@max: 1.825435, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 26, loss@min: 1.107965, loss@max: 1.908876, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.108827, loss@max: 1.821959, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.196637, loss@max: 1.928124, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 1.151265, loss@max: 1.805712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.146435, loss@max: 1.896525, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.247275, loss@max: 1.813507, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 32, loss@min: 1.083675, loss@max: 2.036015, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.168263, loss@max: 1.888087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.226644, loss@max: 1.966803, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 1.119710, loss@max: 2.000958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.011400, loss@max: 2.026006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.299668, loss@max: 1.952274, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 38, loss@min: 1.021044, loss@max: 2.024602, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.227862, loss@max: 1.930692, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.158739, loss@max: 1.964596, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.228519, loss@max: 1.974341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.105643, loss@max: 1.953601, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.274246, loss@max: 1.772099, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 0.999470, loss@max: 1.884896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.097347, loss@max: 1.884226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.060166, loss@max: 1.840939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.121459, loss@max: 1.805985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.050014, loss@max: 1.795133, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.114724, loss@max: 1.775850, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.073813, loss@max: 1.826407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.058668, loss@max: 1.764106, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 1.120127, loss@max: 1.761449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.034431, loss@max: 1.735448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.024869, loss@max: 1.725694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.049799, loss@max: 1.793168, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 1.066851, loss@max: 1.600181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.045163, loss@max: 1.597556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.071969, loss@max: 1.622531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.018296, loss@max: 1.607377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.044324, loss@max: 1.620999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.052478, loss@max: 1.624093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.010159, loss@max: 1.529184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.034348, loss@max: 1.608788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.031720, loss@max: 1.624329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.022016, loss@max: 1.607199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.002053, loss@max: 1.546767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.010613, loss@max: 1.512070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.986888, loss@max: 1.600372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.967659, loss@max: 1.523143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.962484, loss@max: 1.548698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000361, LT: 0.264366, Top1S: 100.000000, Top1T: 93.144020Best acc: 93.144020 +Train:epoch: 71, loss@min: 1.013758, loss@max: 1.508612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000446, LT: 0.258487, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 72, loss@min: 1.023885, loss@max: 1.527532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000374, LT: 0.265436, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 73, loss@min: 0.986072, loss@max: 1.545346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000392, LT: 0.262045, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 74, loss@min: 1.000221, loss@max: 1.537217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000382, LT: 0.264244, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 75, loss@min: 0.960935, loss@max: 1.499428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000381, LT: 0.266520, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 76, loss@min: 0.988579, loss@max: 1.456627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000349, LT: 0.266281, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 77, loss@min: 0.972813, loss@max: 1.455573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000366, LT: 0.266100, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 78, loss@min: 0.977961, loss@max: 1.439475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000346, LT: 0.260802, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 79, loss@min: 0.977267, loss@max: 1.427957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000359, LT: 0.267460, Top1S: 100.000000, Top1T: 93.265724Best acc: 93.265724 +Train:epoch: 80, loss@min: 0.972535, loss@max: 1.430396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000356, LT: 0.265886, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 81, loss@min: 0.960353, loss@max: 1.447356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000335, LT: 0.262605, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 82, loss@min: 0.955135, loss@max: 1.445567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000369, LT: 0.260114, Top1S: 100.000000, Top1T: 92.697769 +Train:epoch: 83, loss@min: 0.975621, loss@max: 1.410998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000333, LT: 0.259471, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 84, loss@min: 0.942798, loss@max: 1.457491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000351, LT: 0.264208, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 85, loss@min: 0.987822, loss@max: 1.424361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000341, LT: 0.261818, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 86, loss@min: 0.990339, loss@max: 1.420485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000329, LT: 0.263482, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 87, loss@min: 0.964019, loss@max: 1.416473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000352, LT: 0.271248, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 88, loss@min: 0.962363, loss@max: 1.429661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000308, LT: 0.263277, Top1S: 100.000000, Top1T: 93.387421Best acc: 93.387421 +Train:epoch: 89, loss@min: 0.960135, loss@max: 1.422525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000329, LT: 0.264058, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 90, loss@min: 0.965542, loss@max: 1.420737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000322, LT: 0.263404, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 91, loss@min: 0.962060, loss@max: 1.403101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000336, LT: 0.275662, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 92, loss@min: 0.946624, loss@max: 1.427550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000314, LT: 0.277147, Top1S: 100.000000, Top1T: 92.697769 +Train:epoch: 93, loss@min: 0.959792, loss@max: 1.381053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000322, LT: 0.268642, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 94, loss@min: 0.961905, loss@max: 1.385525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000312, LT: 0.265123, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 95, loss@min: 0.944127, loss@max: 1.403553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000311, LT: 0.264601, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 96, loss@min: 0.952182, loss@max: 1.396057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000314, LT: 0.264364, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 97, loss@min: 0.943330, loss@max: 1.407671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000309, LT: 0.266043, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 98, loss@min: 0.945651, loss@max: 1.392215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000314, LT: 0.268618, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 99, loss@min: 0.956344, loss@max: 1.390358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000302, LT: 0.272592, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 100, loss@min: 0.957296, loss@max: 1.397111, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.000310, LT: 0.274661, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 101, loss@min: 0.962474, loss@max: 1.367431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000298, LT: 0.272501, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 102, loss@min: 0.949764, loss@max: 1.378845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000303, LT: 0.269936, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 103, loss@min: 0.966115, loss@max: 1.379517, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 103, LS: 0.000296, LT: 0.269497, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 104, loss@min: 0.949157, loss@max: 1.387432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000302, LT: 0.269263, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 105, loss@min: 0.941879, loss@max: 1.379241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000297, LT: 0.269598, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 106, loss@min: 0.956282, loss@max: 1.367514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000298, LT: 0.269418, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 107, loss@min: 0.940263, loss@max: 1.385147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000294, LT: 0.270444, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 108, loss@min: 0.940786, loss@max: 1.378728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000294, LT: 0.270392, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 109, loss@min: 0.941017, loss@max: 1.379748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000294, LT: 0.271584, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 110, loss@min: 0.944826, loss@max: 1.373802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000291, LT: 0.271204, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 111, loss@min: 0.934908, loss@max: 1.382342, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000291, LT: 0.272617, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 112, loss@min: 0.966825, loss@max: 1.373220, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000295, LT: 0.270924, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 113, loss@min: 0.949152, loss@max: 1.377298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000290, LT: 0.271123, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 114, loss@min: 0.947402, loss@max: 1.367983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000291, LT: 0.270497, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 115, loss@min: 0.956409, loss@max: 1.365556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000290, LT: 0.270966, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 116, loss@min: 0.940166, loss@max: 1.375974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000290, LT: 0.270322, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 117, loss@min: 0.945894, loss@max: 1.368769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000291, LT: 0.269772, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 118, loss@min: 0.947217, loss@max: 1.369480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000286, LT: 0.270451, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 119, loss@min: 0.944364, loss@max: 1.372056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000290, LT: 0.270791, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 120, loss@min: 0.945752, loss@max: 1.368108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000288, LT: 0.271864, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 121, loss@min: 0.960015, loss@max: 1.356678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000288, LT: 0.273184, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 122, loss@min: 0.954694, loss@max: 1.362521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000288, LT: 0.273179, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 123, loss@min: 0.947628, loss@max: 1.373353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000286, LT: 0.273945, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 124, loss@min: 0.941651, loss@max: 1.370541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000286, LT: 0.274037, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 125, loss@min: 0.957948, loss@max: 1.360419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000288, LT: 0.273953, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 126, loss@min: 0.946445, loss@max: 1.369978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000286, LT: 0.273869, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 127, loss@min: 0.955220, loss@max: 1.368855, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.000284, LT: 0.274213, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 128, loss@min: 0.947939, loss@max: 1.374745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000285, LT: 0.274168, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 129, loss@min: 0.946201, loss@max: 1.367475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000285, LT: 0.274507, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 130, loss@min: 0.946791, loss@max: 1.365303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000285, LT: 0.274417, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 131, loss@min: 0.945362, loss@max: 1.368319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000285, LT: 0.274388, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 132, loss@min: 0.953436, loss@max: 1.372418, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 132, LS: 0.000283, LT: 0.274355, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 133, loss@min: 0.936242, loss@max: 1.378113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000283, LT: 0.275002, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 134, loss@min: 0.946962, loss@max: 1.371021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000284, LT: 0.275487, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 135, loss@min: 0.951258, loss@max: 1.362581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000284, LT: 0.275348, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 136, loss@min: 0.948765, loss@max: 1.365907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000284, LT: 0.275212, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 137, loss@min: 0.940504, loss@max: 1.373729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000283, LT: 0.275237, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 138, loss@min: 0.943632, loss@max: 1.373455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000283, LT: 0.275262, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 139, loss@min: 0.949158, loss@max: 1.365327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000284, LT: 0.275351, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 140, loss@min: 0.945318, loss@max: 1.367996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000284, LT: 0.275482, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 141, loss@min: 0.939163, loss@max: 1.372637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000284, LT: 0.275552, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 142, loss@min: 0.945944, loss@max: 1.369520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000284, LT: 0.275619, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 143, loss@min: 0.950919, loss@max: 1.362870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000284, LT: 0.275678, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 144, loss@min: 0.935998, loss@max: 1.379625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000284, LT: 0.275740, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 145, loss@min: 0.954809, loss@max: 1.367096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000283, LT: 0.275743, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 146, loss@min: 0.960673, loss@max: 1.374339, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 146, LS: 0.000283, LT: 0.275736, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 147, loss@min: 0.949586, loss@max: 1.362989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000283, LT: 0.275730, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 148, loss@min: 0.970513, loss@max: 1.372293, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.000283, LT: 0.275725, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 149, loss@min: 0.946476, loss@max: 1.364992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000283, LT: 0.275722, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 150, loss@min: 0.955202, loss@max: 1.357502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000283, LT: 0.275722, Top1S: 100.000000, Top1T: 93.103447 +------------------------------------------- +Wed May 31 17:44:49 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Wed May 31 18:50:45 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Wed May 31 18:50:55 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 17.545214, loss@max: 7.489100, Top1S acc: 16.000000, Top1T acc: 25.000000 +Train:epoch: 2, loss@min: 8.259264, loss@max: 6.680640, Top1S acc: 70.000000, Top1T acc: 77.000000 +Train:epoch: 3, loss@min: 5.365762, loss@max: 6.047246, Top1S acc: 91.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 4.409181, loss@max: 4.876236, Top1S acc: 95.000000, Top1T acc: 87.000000 +Train:epoch: 5, loss@min: 4.189940, loss@max: 4.167418, Top1S acc: 98.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 3.074055, loss@max: 4.374917, Top1S acc: 99.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 2.017088, loss@max: 4.929086, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.549696, loss@max: 5.437122, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 1.344644, loss@max: 5.213974, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 1.351759, loss@max: 4.252069, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 2.071996, loss@max: 3.442105, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 2.188839, loss@max: 2.646850, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 2.101943, loss@max: 2.265565, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 1.688460, loss@max: 2.290830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.543105, loss@max: 2.448264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.469872, loss@max: 2.634338, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 1.393003, loss@max: 2.688273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.396810, loss@max: 2.532630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.291382, loss@max: 2.391044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.193401, loss@max: 2.347444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.329765, loss@max: 2.454257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.232159, loss@max: 2.432516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.108245, loss@max: 2.353285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.011276, loss@max: 2.159349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.162085, loss@max: 2.085110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.283437, loss@max: 2.132762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.376823, loss@max: 2.140622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.235518, loss@max: 2.070297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.192748, loss@max: 1.984832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.042111, loss@max: 2.031842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.205722, loss@max: 2.171009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.184105, loss@max: 2.105825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.223266, loss@max: 2.043557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.217992, loss@max: 1.942239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.126192, loss@max: 1.931658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.160379, loss@max: 2.114459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.124517, loss@max: 2.239376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.100816, loss@max: 2.166836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.003348, loss@max: 1.977912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.122324, loss@max: 1.843727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.212866, loss@max: 1.868535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.351196, loss@max: 1.858153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.211353, loss@max: 1.901060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.085249, loss@max: 1.918817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992417, loss@max: 1.992463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.949929, loss@max: 2.042485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.085367, loss@max: 2.067225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.137098, loss@max: 1.947218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.180261, loss@max: 1.831396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.107949, loss@max: 1.797016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.004606, LT: 1.566327, Top1S: 100.000000, Top1T: 64.543610Best acc: 64.543610 +Train:epoch: 51, loss@min: 1.133351, loss@max: 1.834690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.004874, LT: 1.507323, Top1S: 100.000000, Top1T: 65.476677Best acc: 65.476677 +Train:epoch: 52, loss@min: 1.203977, loss@max: 1.891820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.005001, LT: 1.482150, Top1S: 100.000000, Top1T: 65.598381Best acc: 65.598381 +Train:epoch: 53, loss@min: 1.045183, loss@max: 1.862576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.004888, LT: 1.502291, Top1S: 100.000000, Top1T: 65.476677 +Train:epoch: 54, loss@min: 1.044093, loss@max: 1.866953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.004639, LT: 1.549547, Top1S: 100.000000, Top1T: 64.787018 +Train:epoch: 55, loss@min: 1.097573, loss@max: 1.832440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.004383, LT: 1.586311, Top1S: 100.000000, Top1T: 64.746452 +Train:epoch: 56, loss@min: 1.111852, loss@max: 1.734858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.004237, LT: 1.598553, Top1S: 100.000000, Top1T: 64.989861 +Train:epoch: 57, loss@min: 1.137658, loss@max: 1.714194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.004222, LT: 1.586667, Top1S: 100.000000, Top1T: 64.868156 +Train:epoch: 58, loss@min: 1.092677, loss@max: 1.749626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.004302, LT: 1.551414, Top1S: 100.000000, Top1T: 64.827583 +Train:epoch: 59, loss@min: 1.060177, loss@max: 1.944228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.004416, LT: 1.487738, Top1S: 100.000000, Top1T: 66.044624Best acc: 66.044624 +Train:epoch: 60, loss@min: 1.059257, loss@max: 1.888481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.004489, LT: 1.435064, Top1S: 100.000000, Top1T: 67.545639Best acc: 67.545639 +Train:epoch: 61, loss@min: 1.046306, loss@max: 1.852473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.004484, LT: 1.429303, Top1S: 100.000000, Top1T: 67.139961 +Train:epoch: 62, loss@min: 1.031358, loss@max: 1.829945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.004364, LT: 1.456226, Top1S: 100.000000, Top1T: 66.734283 +Train:epoch: 63, loss@min: 1.087605, loss@max: 1.817698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.004152, LT: 1.488607, Top1S: 100.000000, Top1T: 66.085190 +Train:epoch: 64, loss@min: 1.055973, loss@max: 1.810892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.003955, LT: 1.514577, Top1S: 100.000000, Top1T: 65.395538 +Train:epoch: 65, loss@min: 1.063266, loss@max: 1.785889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.003857, LT: 1.529485, Top1S: 100.000000, Top1T: 64.746452 +Train:epoch: 66, loss@min: 1.161462, loss@max: 1.789986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.003896, LT: 1.512309, Top1S: 100.000000, Top1T: 64.503044 +Train:epoch: 67, loss@min: 1.056533, loss@max: 1.774096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.004004, LT: 1.476757, Top1S: 100.000000, Top1T: 64.868156 +Train:epoch: 68, loss@min: 1.107820, loss@max: 1.748612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.004095, LT: 1.437647, Top1S: 100.000000, Top1T: 66.044624 +Train:epoch: 69, loss@min: 1.044935, loss@max: 1.767449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.004105, LT: 1.413708, Top1S: 100.000000, Top1T: 66.815414 +Train:epoch: 70, loss@min: 1.088295, loss@max: 1.688510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.004043, LT: 1.408301, Top1S: 100.000000, Top1T: 66.937119 +Train:epoch: 71, loss@min: 1.006404, loss@max: 1.816778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.003931, LT: 1.417412, Top1S: 100.000000, Top1T: 66.653145 +Train:epoch: 72, loss@min: 1.014326, loss@max: 1.676728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.003813, LT: 1.433759, Top1S: 100.000000, Top1T: 66.288033 +Train:epoch: 73, loss@min: 1.021931, loss@max: 1.684742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.003726, LT: 1.435192, Top1S: 100.000000, Top1T: 65.841782 +Train:epoch: 74, loss@min: 1.038891, loss@max: 1.734345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.003695, LT: 1.417826, Top1S: 100.000000, Top1T: 66.085190 +Train:epoch: 75, loss@min: 1.050982, loss@max: 1.688202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.003711, LT: 1.392836, Top1S: 100.000000, Top1T: 66.247467 +Train:epoch: 76, loss@min: 1.047004, loss@max: 1.708234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.003740, LT: 1.372952, Top1S: 100.000000, Top1T: 66.450302 +Train:epoch: 77, loss@min: 1.042541, loss@max: 1.675417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.003739, LT: 1.368565, Top1S: 100.000000, Top1T: 66.815414 +Train:epoch: 78, loss@min: 1.011929, loss@max: 1.674424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.003689, LT: 1.378627, Top1S: 100.000000, Top1T: 66.693710 +Train:epoch: 79, loss@min: 1.087545, loss@max: 1.639601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.003623, LT: 1.393955, Top1S: 100.000000, Top1T: 66.247467 +Train:epoch: 80, loss@min: 1.117249, loss@max: 1.706633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.003582, LT: 1.402454, Top1S: 100.000000, Top1T: 66.206894 +Train:epoch: 81, loss@min: 1.122968, loss@max: 1.625515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.003576, LT: 1.391920, Top1S: 100.000000, Top1T: 66.288033 +Train:epoch: 82, loss@min: 1.026488, loss@max: 1.593299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.003596, LT: 1.366771, Top1S: 100.000000, Top1T: 66.531441 +Train:epoch: 83, loss@min: 0.956042, loss@max: 1.677678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.003583, LT: 1.347235, Top1S: 100.000000, Top1T: 67.261665 +Train:epoch: 84, loss@min: 0.986455, loss@max: 1.687353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.003547, LT: 1.330687, Top1S: 100.000000, Top1T: 67.626778Best acc: 67.626778 +Train:epoch: 85, loss@min: 0.959276, loss@max: 1.665051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.003512, LT: 1.317841, Top1S: 100.000000, Top1T: 67.586205 +Train:epoch: 86, loss@min: 0.984089, loss@max: 1.646291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.003489, LT: 1.312656, Top1S: 100.000000, Top1T: 67.423935 +Train:epoch: 87, loss@min: 0.985811, loss@max: 1.618860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.003469, LT: 1.315610, Top1S: 100.000000, Top1T: 67.505074 +Train:epoch: 88, loss@min: 0.960336, loss@max: 1.578068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.003441, LT: 1.326827, Top1S: 100.000000, Top1T: 67.180527 +Train:epoch: 89, loss@min: 0.995263, loss@max: 1.543791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.003408, LT: 1.338773, Top1S: 100.000000, Top1T: 66.977692 +Train:epoch: 90, loss@min: 1.047504, loss@max: 1.506326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.003380, LT: 1.343709, Top1S: 100.000000, Top1T: 66.977692 +Train:epoch: 91, loss@min: 1.088737, loss@max: 1.488783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.003358, LT: 1.339497, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 92, loss@min: 1.032596, loss@max: 1.485399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.003346, LT: 1.331924, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 93, loss@min: 1.045462, loss@max: 1.478325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.003339, LT: 1.324141, Top1S: 100.000000, Top1T: 67.545639 +Train:epoch: 94, loss@min: 1.015549, loss@max: 1.560082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.003336, LT: 1.316860, Top1S: 100.000000, Top1T: 67.423935 +Train:epoch: 95, loss@min: 0.964989, loss@max: 1.602069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.003336, LT: 1.312016, Top1S: 100.000000, Top1T: 67.261665 +Train:epoch: 96, loss@min: 0.966273, loss@max: 1.543762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.003335, LT: 1.311294, Top1S: 100.000000, Top1T: 67.910751Best acc: 67.910751 +Train:epoch: 97, loss@min: 0.965979, loss@max: 1.514055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.003324, LT: 1.311354, Top1S: 100.000000, Top1T: 67.991890Best acc: 67.991890 +Train:epoch: 98, loss@min: 0.988900, loss@max: 1.548789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.003302, LT: 1.307806, Top1S: 100.000000, Top1T: 68.154160Best acc: 68.154160 +Train:epoch: 99, loss@min: 0.963407, loss@max: 1.518146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.003275, LT: 1.303895, Top1S: 100.000000, Top1T: 68.478699Best acc: 68.478699 +Train:epoch: 100, loss@min: 0.960966, loss@max: 1.533464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.003250, LT: 1.299599, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 101, loss@min: 0.988316, loss@max: 1.478788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.003230, LT: 1.292772, Top1S: 100.000000, Top1T: 68.438133 +Train:epoch: 102, loss@min: 1.010106, loss@max: 1.444171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.003219, LT: 1.284260, Top1S: 100.000000, Top1T: 68.600403Best acc: 68.600403 +Train:epoch: 103, loss@min: 0.985718, loss@max: 1.454569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.003216, LT: 1.278203, Top1S: 100.000000, Top1T: 68.640976Best acc: 68.640976 +Train:epoch: 104, loss@min: 1.002460, loss@max: 1.464492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.003212, LT: 1.277440, Top1S: 100.000000, Top1T: 68.640976 +Train:epoch: 105, loss@min: 0.980715, loss@max: 1.481134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.003210, LT: 1.280396, Top1S: 100.000000, Top1T: 68.194725 +Train:epoch: 106, loss@min: 0.961494, loss@max: 1.470007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.003211, LT: 1.284427, Top1S: 100.000000, Top1T: 68.316429 +Train:epoch: 107, loss@min: 0.987379, loss@max: 1.463568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.003218, LT: 1.284638, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 108, loss@min: 0.979368, loss@max: 1.466390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.003226, LT: 1.282295, Top1S: 100.000000, Top1T: 68.438133 +Train:epoch: 109, loss@min: 0.974225, loss@max: 1.453676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.003225, LT: 1.276968, Top1S: 100.000000, Top1T: 68.722107Best acc: 68.722107 +Train:epoch: 110, loss@min: 0.932205, loss@max: 1.476140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.003212, LT: 1.271069, Top1S: 100.000000, Top1T: 68.965515Best acc: 68.965515 +Train:epoch: 111, loss@min: 0.945563, loss@max: 1.477786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.003189, LT: 1.267430, Top1S: 100.000000, Top1T: 69.533470Best acc: 69.533470 +Train:epoch: 112, loss@min: 0.977640, loss@max: 1.454262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.003163, LT: 1.264689, Top1S: 100.000000, Top1T: 69.614601Best acc: 69.614601 +Train:epoch: 113, loss@min: 0.943170, loss@max: 1.481972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.003139, LT: 1.262477, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 114, loss@min: 0.995764, loss@max: 1.428916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.003121, LT: 1.261464, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 115, loss@min: 0.970576, loss@max: 1.446012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.003110, LT: 1.261464, Top1S: 100.000000, Top1T: 69.249496 +Train:epoch: 116, loss@min: 0.969782, loss@max: 1.431221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.003107, LT: 1.260316, Top1S: 100.000000, Top1T: 69.006088 +Train:epoch: 117, loss@min: 0.979857, loss@max: 1.432922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.003108, LT: 1.260082, Top1S: 100.000000, Top1T: 69.087219 +Train:epoch: 118, loss@min: 0.998059, loss@max: 1.396122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.003111, LT: 1.259679, Top1S: 100.000000, Top1T: 68.965515 +Train:epoch: 119, loss@min: 0.970904, loss@max: 1.410126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.003116, LT: 1.257811, Top1S: 100.000000, Top1T: 69.087219 +Train:epoch: 120, loss@min: 0.992498, loss@max: 1.420245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.003118, LT: 1.255486, Top1S: 100.000000, Top1T: 69.249496 +Train:epoch: 121, loss@min: 0.967782, loss@max: 1.411797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.003116, LT: 1.253683, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 122, loss@min: 1.005004, loss@max: 1.415750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.003113, LT: 1.252717, Top1S: 100.000000, Top1T: 68.965515 +Train:epoch: 123, loss@min: 0.936643, loss@max: 1.443009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.003107, LT: 1.252903, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 124, loss@min: 0.939425, loss@max: 1.439792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.003100, LT: 1.253922, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 125, loss@min: 0.944769, loss@max: 1.447517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.003093, LT: 1.254695, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 126, loss@min: 0.964490, loss@max: 1.427328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.003087, LT: 1.255417, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 127, loss@min: 0.941524, loss@max: 1.440050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.003080, LT: 1.256244, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 128, loss@min: 0.973861, loss@max: 1.407026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.003075, LT: 1.256955, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 129, loss@min: 0.930739, loss@max: 1.461025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.003069, LT: 1.258070, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 130, loss@min: 0.963935, loss@max: 1.422238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.003062, LT: 1.258787, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 131, loss@min: 0.974539, loss@max: 1.405079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.003057, LT: 1.258953, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 132, loss@min: 0.941870, loss@max: 1.432818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.003054, LT: 1.259157, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 133, loss@min: 0.971559, loss@max: 1.413503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.003052, LT: 1.259018, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 134, loss@min: 0.951094, loss@max: 1.421673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.003052, LT: 1.258686, Top1S: 100.000000, Top1T: 69.411766 +Train:epoch: 135, loss@min: 0.998507, loss@max: 1.364420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.003051, LT: 1.258248, Top1S: 100.000000, Top1T: 69.411766 +Train:epoch: 136, loss@min: 0.932630, loss@max: 1.437584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.003052, LT: 1.257685, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 137, loss@min: 0.969119, loss@max: 1.400771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.003052, LT: 1.256932, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 138, loss@min: 0.985676, loss@max: 1.390323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.003053, LT: 1.256189, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 139, loss@min: 0.968527, loss@max: 1.402997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.003054, LT: 1.255341, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 140, loss@min: 0.956592, loss@max: 1.418046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.003054, LT: 1.254835, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 141, loss@min: 0.943102, loss@max: 1.446275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.003054, LT: 1.254696, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 142, loss@min: 0.985796, loss@max: 1.389714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.003054, LT: 1.254657, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 143, loss@min: 0.974809, loss@max: 1.407105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.003054, LT: 1.254601, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 144, loss@min: 0.977623, loss@max: 1.396934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.003054, LT: 1.254522, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 145, loss@min: 0.963977, loss@max: 1.397369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.003054, LT: 1.254462, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 146, loss@min: 0.974930, loss@max: 1.400394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.003054, LT: 1.254422, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 147, loss@min: 0.954528, loss@max: 1.417583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.003054, LT: 1.254396, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 148, loss@min: 0.944275, loss@max: 1.426301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.003054, LT: 1.254386, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 149, loss@min: 0.970697, loss@max: 1.404474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.003054, LT: 1.254383, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 150, loss@min: 0.991870, loss@max: 1.384845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.003054, LT: 1.254383, Top1S: 100.000000, Top1T: 69.330627 +------------------------------------------- +Wed May 31 19:42:51 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Wed May 31 21:26:51 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Wed May 31 21:29:51 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 17.545214, loss@max: 7.489100, Top1S acc: 16.000000, Top1T acc: 25.000000 +Train:epoch: 2, loss@min: 8.259264, loss@max: 6.680640, Top1S acc: 70.000000, Top1T acc: 77.000000 +Train:epoch: 3, loss@min: 5.365762, loss@max: 6.047246, Top1S acc: 91.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 4.409181, loss@max: 4.876236, Top1S acc: 95.000000, Top1T acc: 87.000000 +Train:epoch: 5, loss@min: 4.189940, loss@max: 4.167418, Top1S acc: 98.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 3.074055, loss@max: 4.374917, Top1S acc: 99.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 2.017088, loss@max: 4.929086, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.549696, loss@max: 5.437122, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 1.344644, loss@max: 5.213974, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 1.351759, loss@max: 4.252069, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 2.071996, loss@max: 3.442105, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 2.188839, loss@max: 2.646850, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 2.101943, loss@max: 2.265565, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 1.688460, loss@max: 2.290830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.543105, loss@max: 2.448264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.469872, loss@max: 2.634338, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 1.393003, loss@max: 2.688273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.396810, loss@max: 2.532630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.291382, loss@max: 2.391044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.193401, loss@max: 2.347444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.329765, loss@max: 2.454257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.232159, loss@max: 2.432516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.108245, loss@max: 2.353285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.011276, loss@max: 2.159349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.162085, loss@max: 2.085110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.283437, loss@max: 2.132762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.376823, loss@max: 2.140622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.235518, loss@max: 2.070297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.192748, loss@max: 1.984832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.042111, loss@max: 2.031842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.205722, loss@max: 2.171009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.184105, loss@max: 2.105825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.223266, loss@max: 2.043557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.217992, loss@max: 1.942239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.126192, loss@max: 1.931658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.160379, loss@max: 2.114459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.124517, loss@max: 2.239376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.100816, loss@max: 2.166836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.003348, loss@max: 1.977912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.122324, loss@max: 1.843727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.212866, loss@max: 1.868535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.351196, loss@max: 1.858153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.211353, loss@max: 1.901060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.085249, loss@max: 1.918817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992417, loss@max: 1.992463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.949929, loss@max: 2.042485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.085367, loss@max: 2.067225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.137098, loss@max: 1.947218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.180261, loss@max: 1.831396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.107949, loss@max: 1.797016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.004606, LT: 1.566327, Top1S: 100.000000, Top1T: 64.543610Best acc: 64.543610 +Train:epoch: 51, loss@min: 1.133351, loss@max: 1.834690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.004874, LT: 1.507323, Top1S: 100.000000, Top1T: 65.476677Best acc: 65.476677 +Train:epoch: 52, loss@min: 1.203977, loss@max: 1.891820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.005001, LT: 1.482150, Top1S: 100.000000, Top1T: 65.598381Best acc: 65.598381 +Train:epoch: 53, loss@min: 1.045183, loss@max: 1.862576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.004888, LT: 1.502291, Top1S: 100.000000, Top1T: 65.476677 +Train:epoch: 54, loss@min: 1.044093, loss@max: 1.866953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.004639, LT: 1.549547, Top1S: 100.000000, Top1T: 64.787018 +Train:epoch: 55, loss@min: 1.097573, loss@max: 1.832440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.004383, LT: 1.586311, Top1S: 100.000000, Top1T: 64.746452 +Train:epoch: 56, loss@min: 1.111852, loss@max: 1.734858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.004237, LT: 1.598553, Top1S: 100.000000, Top1T: 64.989861 +Train:epoch: 57, loss@min: 1.137658, loss@max: 1.714194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.004222, LT: 1.586667, Top1S: 100.000000, Top1T: 64.868156 +Train:epoch: 58, loss@min: 1.092677, loss@max: 1.749626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.004302, LT: 1.551414, Top1S: 100.000000, Top1T: 64.827583 +Train:epoch: 59, loss@min: 1.060177, loss@max: 1.944228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.004416, LT: 1.487738, Top1S: 100.000000, Top1T: 66.044624Best acc: 66.044624 +Train:epoch: 60, loss@min: 1.059257, loss@max: 1.888481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.004489, LT: 1.435064, Top1S: 100.000000, Top1T: 67.545639Best acc: 67.545639 +Train:epoch: 61, loss@min: 1.046306, loss@max: 1.852473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.004484, LT: 1.429303, Top1S: 100.000000, Top1T: 67.139961 +Train:epoch: 62, loss@min: 1.031358, loss@max: 1.829945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.004364, LT: 1.456226, Top1S: 100.000000, Top1T: 66.734283 +Train:epoch: 63, loss@min: 1.087605, loss@max: 1.817698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.004152, LT: 1.488607, Top1S: 100.000000, Top1T: 66.085190 +Train:epoch: 64, loss@min: 1.055973, loss@max: 1.810892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.003955, LT: 1.514577, Top1S: 100.000000, Top1T: 65.395538 +Train:epoch: 65, loss@min: 1.063266, loss@max: 1.785889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.003857, LT: 1.529485, Top1S: 100.000000, Top1T: 64.746452 +Train:epoch: 66, loss@min: 1.161462, loss@max: 1.789986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.003896, LT: 1.512309, Top1S: 100.000000, Top1T: 64.503044 +Train:epoch: 67, loss@min: 1.056533, loss@max: 1.774096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.004004, LT: 1.476757, Top1S: 100.000000, Top1T: 64.868156 +Train:epoch: 68, loss@min: 1.107820, loss@max: 1.748612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.004095, LT: 1.437647, Top1S: 100.000000, Top1T: 66.044624 +Train:epoch: 69, loss@min: 1.044935, loss@max: 1.767449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.004105, LT: 1.413708, Top1S: 100.000000, Top1T: 66.815414 +Train:epoch: 70, loss@min: 1.088295, loss@max: 1.688510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.004043, LT: 1.408301, Top1S: 100.000000, Top1T: 66.937119 +Train:epoch: 71, loss@min: 1.006404, loss@max: 1.816778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.003931, LT: 1.417412, Top1S: 100.000000, Top1T: 66.653145 +Train:epoch: 72, loss@min: 1.014326, loss@max: 1.676728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.003813, LT: 1.433759, Top1S: 100.000000, Top1T: 66.288033 +Train:epoch: 73, loss@min: 1.021931, loss@max: 1.684742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.003726, LT: 1.435192, Top1S: 100.000000, Top1T: 65.841782 +Train:epoch: 74, loss@min: 1.038891, loss@max: 1.734345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.003695, LT: 1.417826, Top1S: 100.000000, Top1T: 66.085190 +Train:epoch: 75, loss@min: 1.050982, loss@max: 1.688202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.003711, LT: 1.392836, Top1S: 100.000000, Top1T: 66.247467 +Train:epoch: 76, loss@min: 1.047004, loss@max: 1.708234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.003740, LT: 1.372952, Top1S: 100.000000, Top1T: 66.450302 +Train:epoch: 77, loss@min: 1.042541, loss@max: 1.675417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.003739, LT: 1.368565, Top1S: 100.000000, Top1T: 66.815414 +Train:epoch: 78, loss@min: 1.011929, loss@max: 1.674424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.003689, LT: 1.378627, Top1S: 100.000000, Top1T: 66.693710 +Train:epoch: 79, loss@min: 1.087545, loss@max: 1.639601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.003623, LT: 1.393955, Top1S: 100.000000, Top1T: 66.247467 +Train:epoch: 80, loss@min: 1.117249, loss@max: 1.706633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.003582, LT: 1.402454, Top1S: 100.000000, Top1T: 66.206894 +Train:epoch: 81, loss@min: 1.122968, loss@max: 1.625515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.003576, LT: 1.391920, Top1S: 100.000000, Top1T: 66.288033 +Train:epoch: 82, loss@min: 1.026488, loss@max: 1.593299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.003596, LT: 1.366771, Top1S: 100.000000, Top1T: 66.531441 +Train:epoch: 83, loss@min: 0.956042, loss@max: 1.677678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.003583, LT: 1.347235, Top1S: 100.000000, Top1T: 67.261665 +Train:epoch: 84, loss@min: 0.986455, loss@max: 1.687353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.003547, LT: 1.330687, Top1S: 100.000000, Top1T: 67.626778Best acc: 67.626778 +Train:epoch: 85, loss@min: 0.959276, loss@max: 1.665051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.003512, LT: 1.317841, Top1S: 100.000000, Top1T: 67.586205 +Train:epoch: 86, loss@min: 0.984089, loss@max: 1.646291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.003489, LT: 1.312656, Top1S: 100.000000, Top1T: 67.423935 +Train:epoch: 87, loss@min: 0.985811, loss@max: 1.618860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.003469, LT: 1.315610, Top1S: 100.000000, Top1T: 67.505074 +Train:epoch: 88, loss@min: 0.960336, loss@max: 1.578068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.003441, LT: 1.326827, Top1S: 100.000000, Top1T: 67.180527 +Train:epoch: 89, loss@min: 0.995263, loss@max: 1.543791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.003408, LT: 1.338773, Top1S: 100.000000, Top1T: 66.977692 +Train:epoch: 90, loss@min: 1.047504, loss@max: 1.506326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.003380, LT: 1.343709, Top1S: 100.000000, Top1T: 66.977692 +Train:epoch: 91, loss@min: 1.088737, loss@max: 1.488783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.003358, LT: 1.339497, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 92, loss@min: 1.032596, loss@max: 1.485399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.003346, LT: 1.331924, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 93, loss@min: 1.045462, loss@max: 1.478325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.003339, LT: 1.324141, Top1S: 100.000000, Top1T: 67.545639 +Train:epoch: 94, loss@min: 1.015549, loss@max: 1.560082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.003336, LT: 1.316860, Top1S: 100.000000, Top1T: 67.423935 +Train:epoch: 95, loss@min: 0.964989, loss@max: 1.602069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.003336, LT: 1.312016, Top1S: 100.000000, Top1T: 67.261665 +Train:epoch: 96, loss@min: 0.966273, loss@max: 1.543762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.003335, LT: 1.311294, Top1S: 100.000000, Top1T: 67.910751Best acc: 67.910751 +Train:epoch: 97, loss@min: 0.965979, loss@max: 1.514055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.003324, LT: 1.311354, Top1S: 100.000000, Top1T: 67.991890Best acc: 67.991890 +Train:epoch: 98, loss@min: 0.988900, loss@max: 1.548789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.003302, LT: 1.307806, Top1S: 100.000000, Top1T: 68.154160Best acc: 68.154160 +Train:epoch: 99, loss@min: 0.963407, loss@max: 1.518146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.003275, LT: 1.303895, Top1S: 100.000000, Top1T: 68.478699Best acc: 68.478699 +Train:epoch: 100, loss@min: 0.960966, loss@max: 1.533464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.003250, LT: 1.299599, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 101, loss@min: 0.988316, loss@max: 1.478788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.003230, LT: 1.292772, Top1S: 100.000000, Top1T: 68.438133 +Train:epoch: 102, loss@min: 1.010106, loss@max: 1.444171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.003219, LT: 1.284260, Top1S: 100.000000, Top1T: 68.600403Best acc: 68.600403 +Train:epoch: 103, loss@min: 0.985718, loss@max: 1.454569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.003216, LT: 1.278203, Top1S: 100.000000, Top1T: 68.640976Best acc: 68.640976 +Train:epoch: 104, loss@min: 1.002460, loss@max: 1.464492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.003212, LT: 1.277440, Top1S: 100.000000, Top1T: 68.640976 +Train:epoch: 105, loss@min: 0.980715, loss@max: 1.481134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.003210, LT: 1.280396, Top1S: 100.000000, Top1T: 68.194725 +Train:epoch: 106, loss@min: 0.961494, loss@max: 1.470007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.003211, LT: 1.284427, Top1S: 100.000000, Top1T: 68.316429 +Train:epoch: 107, loss@min: 0.987379, loss@max: 1.463568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.003218, LT: 1.284638, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 108, loss@min: 0.979368, loss@max: 1.466390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.003226, LT: 1.282295, Top1S: 100.000000, Top1T: 68.438133 +Train:epoch: 109, loss@min: 0.974225, loss@max: 1.453676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.003225, LT: 1.276968, Top1S: 100.000000, Top1T: 68.722107Best acc: 68.722107 +Train:epoch: 110, loss@min: 0.932205, loss@max: 1.476140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.003212, LT: 1.271069, Top1S: 100.000000, Top1T: 68.965515Best acc: 68.965515 +Train:epoch: 111, loss@min: 0.945563, loss@max: 1.477786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.003189, LT: 1.267430, Top1S: 100.000000, Top1T: 69.533470Best acc: 69.533470 +Train:epoch: 112, loss@min: 0.977640, loss@max: 1.454262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.003163, LT: 1.264689, Top1S: 100.000000, Top1T: 69.614601Best acc: 69.614601 +Train:epoch: 113, loss@min: 0.943170, loss@max: 1.481972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.003139, LT: 1.262477, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 114, loss@min: 0.995764, loss@max: 1.428916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.003121, LT: 1.261464, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 115, loss@min: 0.970576, loss@max: 1.446012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.003110, LT: 1.261464, Top1S: 100.000000, Top1T: 69.249496 +Train:epoch: 116, loss@min: 0.969782, loss@max: 1.431221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.003107, LT: 1.260316, Top1S: 100.000000, Top1T: 69.006088 +Train:epoch: 117, loss@min: 0.979857, loss@max: 1.432922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.003108, LT: 1.260082, Top1S: 100.000000, Top1T: 69.087219 +Train:epoch: 118, loss@min: 0.998059, loss@max: 1.396122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.003111, LT: 1.259679, Top1S: 100.000000, Top1T: 68.965515 +Train:epoch: 119, loss@min: 0.970904, loss@max: 1.410126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.003116, LT: 1.257811, Top1S: 100.000000, Top1T: 69.087219 +Train:epoch: 120, loss@min: 0.992498, loss@max: 1.420245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.003118, LT: 1.255486, Top1S: 100.000000, Top1T: 69.249496 +Train:epoch: 121, loss@min: 0.967782, loss@max: 1.411797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.003116, LT: 1.253683, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 122, loss@min: 1.005004, loss@max: 1.415750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.003113, LT: 1.252717, Top1S: 100.000000, Top1T: 68.965515 +Train:epoch: 123, loss@min: 0.936643, loss@max: 1.443009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.003107, LT: 1.252903, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 124, loss@min: 0.939425, loss@max: 1.439792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.003100, LT: 1.253922, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 125, loss@min: 0.944769, loss@max: 1.447517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.003093, LT: 1.254695, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 126, loss@min: 0.964490, loss@max: 1.427328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.003087, LT: 1.255417, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 127, loss@min: 0.941524, loss@max: 1.440050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.003080, LT: 1.256244, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 128, loss@min: 0.973861, loss@max: 1.407026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.003075, LT: 1.256955, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 129, loss@min: 0.930739, loss@max: 1.461025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.003069, LT: 1.258070, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 130, loss@min: 0.963935, loss@max: 1.422238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.003062, LT: 1.258787, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 131, loss@min: 0.974539, loss@max: 1.405079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.003057, LT: 1.258953, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 132, loss@min: 0.941870, loss@max: 1.432818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.003054, LT: 1.259157, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 133, loss@min: 0.971559, loss@max: 1.413503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.003052, LT: 1.259018, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 134, loss@min: 0.951094, loss@max: 1.421673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.003052, LT: 1.258686, Top1S: 100.000000, Top1T: 69.411766 +Train:epoch: 135, loss@min: 0.998507, loss@max: 1.364420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.003051, LT: 1.258248, Top1S: 100.000000, Top1T: 69.411766 +Train:epoch: 136, loss@min: 0.932630, loss@max: 1.437584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.003052, LT: 1.257685, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 137, loss@min: 0.969119, loss@max: 1.400771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.003052, LT: 1.256932, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 138, loss@min: 0.985676, loss@max: 1.390323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.003053, LT: 1.256189, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 139, loss@min: 0.968527, loss@max: 1.402997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.003054, LT: 1.255341, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 140, loss@min: 0.956592, loss@max: 1.418046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.003054, LT: 1.254835, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 141, loss@min: 0.943102, loss@max: 1.446275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.003054, LT: 1.254696, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 142, loss@min: 0.985796, loss@max: 1.389714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.003054, LT: 1.254657, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 143, loss@min: 0.974809, loss@max: 1.407105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.003054, LT: 1.254601, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 144, loss@min: 0.977623, loss@max: 1.396934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.003054, LT: 1.254522, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 145, loss@min: 0.963977, loss@max: 1.397369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.003054, LT: 1.254462, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 146, loss@min: 0.974930, loss@max: 1.400394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.003054, LT: 1.254422, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 147, loss@min: 0.954528, loss@max: 1.417583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.003054, LT: 1.254396, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 148, loss@min: 0.944275, loss@max: 1.426301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.003054, LT: 1.254386, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 149, loss@min: 0.970697, loss@max: 1.404474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.003054, LT: 1.254383, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 150, loss@min: 0.991870, loss@max: 1.384845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.003054, LT: 1.254383, Top1S: 100.000000, Top1T: 69.330627 +------------------------------------------- +Wed May 31 22:20:19 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Thu Jun 1 09:54:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 17.545216, loss@max: 7.489100, Top1S acc: 16.000000, Top1T acc: 25.000000 +Train:epoch: 2, loss@min: 8.259265, loss@max: 6.680640, Top1S acc: 70.000000, Top1T acc: 77.000000 +Train:epoch: 3, loss@min: 5.365761, loss@max: 6.047246, Top1S acc: 91.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 4.409181, loss@max: 4.876236, Top1S acc: 95.000000, Top1T acc: 87.000000 +Train:epoch: 5, loss@min: 4.189940, loss@max: 4.167419, Top1S acc: 98.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 3.074054, loss@max: 4.374916, Top1S acc: 99.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 2.017087, loss@max: 4.929086, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.549695, loss@max: 5.437120, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 1.344644, loss@max: 5.213974, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 1.351759, loss@max: 4.252069, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 2.071997, loss@max: 3.442106, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 2.188840, loss@max: 2.646850, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 2.101943, loss@max: 2.265564, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 1.688459, loss@max: 2.290828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.543106, loss@max: 2.448265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.469870, loss@max: 2.634339, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 1.393001, loss@max: 2.688275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.396807, loss@max: 2.532632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.291379, loss@max: 2.391043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.193403, loss@max: 2.347444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.329767, loss@max: 2.454255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.232160, loss@max: 2.432514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.108244, loss@max: 2.353284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.011275, loss@max: 2.159351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.162085, loss@max: 2.085110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.283437, loss@max: 2.132762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.376821, loss@max: 2.140620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.235518, loss@max: 2.070294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.192748, loss@max: 1.984832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.042111, loss@max: 2.031842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.205722, loss@max: 2.171005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.184107, loss@max: 2.105825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.223266, loss@max: 2.043558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.217992, loss@max: 1.942237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.126191, loss@max: 1.931661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.160376, loss@max: 2.114462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.124512, loss@max: 2.239377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.100815, loss@max: 2.166838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.003346, loss@max: 1.977908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.122325, loss@max: 1.843722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.212866, loss@max: 1.868534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.351197, loss@max: 1.858150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.211355, loss@max: 1.901061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.085248, loss@max: 1.918818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992416, loss@max: 1.992460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.949931, loss@max: 2.042482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.085369, loss@max: 2.067216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.137100, loss@max: 1.947212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.180262, loss@max: 1.831392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.107942, loss@max: 1.797006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.004606, LT: 1.566321, Top1S: 100.000000, Top1T: 64.543610Best acc: 64.543610 +Train:epoch: 51, loss@min: 1.133348, loss@max: 1.834690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.004874, LT: 1.507318, Top1S: 100.000000, Top1T: 65.476677Best acc: 65.476677 +Train:epoch: 52, loss@min: 1.203977, loss@max: 1.891818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.005001, LT: 1.482148, Top1S: 100.000000, Top1T: 65.598381Best acc: 65.598381 +Train:epoch: 53, loss@min: 1.045179, loss@max: 1.862569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.004888, LT: 1.502294, Top1S: 100.000000, Top1T: 65.476677 +Train:epoch: 54, loss@min: 1.044092, loss@max: 1.866942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.004639, LT: 1.549552, Top1S: 100.000000, Top1T: 64.787018 +Train:epoch: 55, loss@min: 1.097574, loss@max: 1.832428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.004383, LT: 1.586318, Top1S: 100.000000, Top1T: 64.746452 +Train:epoch: 56, loss@min: 1.111854, loss@max: 1.734851, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.004237, LT: 1.598558, Top1S: 100.000000, Top1T: 64.989861 +Train:epoch: 57, loss@min: 1.137663, loss@max: 1.714199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.004222, LT: 1.586667, Top1S: 100.000000, Top1T: 64.868156 +Train:epoch: 58, loss@min: 1.092673, loss@max: 1.749615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.004302, LT: 1.551407, Top1S: 100.000000, Top1T: 64.827583 +Train:epoch: 59, loss@min: 1.060169, loss@max: 1.944221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.004416, LT: 1.487729, Top1S: 100.000000, Top1T: 66.044624Best acc: 66.044624 +Train:epoch: 60, loss@min: 1.059248, loss@max: 1.888479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.004489, LT: 1.435062, Top1S: 100.000000, Top1T: 67.545639Best acc: 67.545639 +Train:epoch: 61, loss@min: 1.046304, loss@max: 1.852469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.004484, LT: 1.429308, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 62, loss@min: 1.031367, loss@max: 1.829940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.004364, LT: 1.456235, Top1S: 100.000000, Top1T: 66.734283 +Train:epoch: 63, loss@min: 1.087614, loss@max: 1.817690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.004152, LT: 1.488616, Top1S: 100.000000, Top1T: 66.085190 +Train:epoch: 64, loss@min: 1.055980, loss@max: 1.810879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.003955, LT: 1.514582, Top1S: 100.000000, Top1T: 65.395538 +Train:epoch: 65, loss@min: 1.063272, loss@max: 1.785875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.003857, LT: 1.529486, Top1S: 100.000000, Top1T: 64.746452 +Train:epoch: 66, loss@min: 1.161459, loss@max: 1.789996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.003896, LT: 1.512307, Top1S: 100.000000, Top1T: 64.503044 +Train:epoch: 67, loss@min: 1.056526, loss@max: 1.774112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.004004, LT: 1.476754, Top1S: 100.000000, Top1T: 64.868156 +Train:epoch: 68, loss@min: 1.107808, loss@max: 1.748621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.004095, LT: 1.437649, Top1S: 100.000000, Top1T: 66.044624 +Train:epoch: 69, loss@min: 1.044934, loss@max: 1.767450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.004105, LT: 1.413715, Top1S: 100.000000, Top1T: 66.815414 +Train:epoch: 70, loss@min: 1.088305, loss@max: 1.688509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.004043, LT: 1.408312, Top1S: 100.000000, Top1T: 66.937119 +Train:epoch: 71, loss@min: 1.006414, loss@max: 1.816774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.003931, LT: 1.417422, Top1S: 100.000000, Top1T: 66.653145 +Train:epoch: 72, loss@min: 1.014337, loss@max: 1.676722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.003813, LT: 1.433765, Top1S: 100.000000, Top1T: 66.288033 +Train:epoch: 73, loss@min: 1.021935, loss@max: 1.684739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.003726, LT: 1.435192, Top1S: 100.000000, Top1T: 65.841782 +Train:epoch: 74, loss@min: 1.038888, loss@max: 1.734352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.003695, LT: 1.417822, Top1S: 100.000000, Top1T: 66.085190 +Train:epoch: 75, loss@min: 1.050979, loss@max: 1.688218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.003711, LT: 1.392835, Top1S: 100.000000, Top1T: 66.247467 +Train:epoch: 76, loss@min: 1.047001, loss@max: 1.708245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.003740, LT: 1.372957, Top1S: 100.000000, Top1T: 66.450302 +Train:epoch: 77, loss@min: 1.042534, loss@max: 1.675420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.003739, LT: 1.368577, Top1S: 100.000000, Top1T: 66.815414 +Train:epoch: 78, loss@min: 1.011931, loss@max: 1.674428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.003689, LT: 1.378640, Top1S: 100.000000, Top1T: 66.693710 +Train:epoch: 79, loss@min: 1.087536, loss@max: 1.639591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.003622, LT: 1.393966, Top1S: 100.000000, Top1T: 66.247467 +Train:epoch: 80, loss@min: 1.117246, loss@max: 1.706630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.003582, LT: 1.402459, Top1S: 100.000000, Top1T: 66.206894 +Train:epoch: 81, loss@min: 1.122968, loss@max: 1.625507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.003576, LT: 1.391919, Top1S: 100.000000, Top1T: 66.288033 +Train:epoch: 82, loss@min: 1.026492, loss@max: 1.593307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.003596, LT: 1.366766, Top1S: 100.000000, Top1T: 66.531441 +Train:epoch: 83, loss@min: 0.956040, loss@max: 1.677664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.003583, LT: 1.347231, Top1S: 100.000000, Top1T: 67.261665 +Train:epoch: 84, loss@min: 0.986453, loss@max: 1.687344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.003547, LT: 1.330687, Top1S: 100.000000, Top1T: 67.626778Best acc: 67.626778 +Train:epoch: 85, loss@min: 0.959278, loss@max: 1.665039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.003512, LT: 1.317845, Top1S: 100.000000, Top1T: 67.586205 +Train:epoch: 86, loss@min: 0.984097, loss@max: 1.646289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.003489, LT: 1.312663, Top1S: 100.000000, Top1T: 67.423935 +Train:epoch: 87, loss@min: 0.985811, loss@max: 1.618855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.003469, LT: 1.315620, Top1S: 100.000000, Top1T: 67.505074 +Train:epoch: 88, loss@min: 0.960333, loss@max: 1.578064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.003441, LT: 1.326839, Top1S: 100.000000, Top1T: 67.180527 +Train:epoch: 89, loss@min: 0.995258, loss@max: 1.543788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.003408, LT: 1.338785, Top1S: 100.000000, Top1T: 66.977692 +Train:epoch: 90, loss@min: 1.047499, loss@max: 1.506332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.003380, LT: 1.343716, Top1S: 100.000000, Top1T: 66.977692 +Train:epoch: 91, loss@min: 1.088729, loss@max: 1.488789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.003358, LT: 1.339499, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 92, loss@min: 1.032591, loss@max: 1.485405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.003346, LT: 1.331925, Top1S: 100.000000, Top1T: 67.099388 +Train:epoch: 93, loss@min: 1.045460, loss@max: 1.478320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.003339, LT: 1.324143, Top1S: 100.000000, Top1T: 67.545639 +Train:epoch: 94, loss@min: 1.015553, loss@max: 1.560080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.003336, LT: 1.316863, Top1S: 100.000000, Top1T: 67.423935 +Train:epoch: 95, loss@min: 0.964998, loss@max: 1.602064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.003336, LT: 1.312019, Top1S: 100.000000, Top1T: 67.261665 +Train:epoch: 96, loss@min: 0.966277, loss@max: 1.543761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.003335, LT: 1.311295, Top1S: 100.000000, Top1T: 67.910751Best acc: 67.910751 +Train:epoch: 97, loss@min: 0.965979, loss@max: 1.514051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.003324, LT: 1.311357, Top1S: 100.000000, Top1T: 67.991890Best acc: 67.991890 +Train:epoch: 98, loss@min: 0.988897, loss@max: 1.548789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.003302, LT: 1.307812, Top1S: 100.000000, Top1T: 68.154160Best acc: 68.154160 +Train:epoch: 99, loss@min: 0.963400, loss@max: 1.518148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.003275, LT: 1.303902, Top1S: 100.000000, Top1T: 68.478699Best acc: 68.478699 +Train:epoch: 100, loss@min: 0.960965, loss@max: 1.533470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.003250, LT: 1.299605, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 101, loss@min: 0.988312, loss@max: 1.478788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.003230, LT: 1.292776, Top1S: 100.000000, Top1T: 68.438133 +Train:epoch: 102, loss@min: 1.010104, loss@max: 1.444165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.003219, LT: 1.284262, Top1S: 100.000000, Top1T: 68.600403Best acc: 68.600403 +Train:epoch: 103, loss@min: 0.985718, loss@max: 1.454557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.003216, LT: 1.278204, Top1S: 100.000000, Top1T: 68.640976Best acc: 68.640976 +Train:epoch: 104, loss@min: 1.002462, loss@max: 1.464487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.003212, LT: 1.277441, Top1S: 100.000000, Top1T: 68.640976 +Train:epoch: 105, loss@min: 0.980721, loss@max: 1.481133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.003210, LT: 1.280397, Top1S: 100.000000, Top1T: 68.194725 +Train:epoch: 106, loss@min: 0.961498, loss@max: 1.470008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.003211, LT: 1.284428, Top1S: 100.000000, Top1T: 68.316429 +Train:epoch: 107, loss@min: 0.987382, loss@max: 1.463567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.003218, LT: 1.284639, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 108, loss@min: 0.979368, loss@max: 1.466393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.003226, LT: 1.282296, Top1S: 100.000000, Top1T: 68.438133 +Train:epoch: 109, loss@min: 0.974223, loss@max: 1.453672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.003225, LT: 1.276971, Top1S: 100.000000, Top1T: 68.722107Best acc: 68.722107 +Train:epoch: 110, loss@min: 0.932203, loss@max: 1.476140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.003212, LT: 1.271074, Top1S: 100.000000, Top1T: 68.965515Best acc: 68.965515 +Train:epoch: 111, loss@min: 0.945562, loss@max: 1.477786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.003189, LT: 1.267435, Top1S: 100.000000, Top1T: 69.533470Best acc: 69.533470 +Train:epoch: 112, loss@min: 0.977642, loss@max: 1.454260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.003163, LT: 1.264696, Top1S: 100.000000, Top1T: 69.614601Best acc: 69.614601 +Train:epoch: 113, loss@min: 0.943167, loss@max: 1.481972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.003139, LT: 1.262484, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 114, loss@min: 0.995764, loss@max: 1.428913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.003121, LT: 1.261470, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 115, loss@min: 0.970578, loss@max: 1.446012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.003110, LT: 1.261468, Top1S: 100.000000, Top1T: 69.249496 +Train:epoch: 116, loss@min: 0.969783, loss@max: 1.431217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.003107, LT: 1.260320, Top1S: 100.000000, Top1T: 69.006088 +Train:epoch: 117, loss@min: 0.979856, loss@max: 1.432922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.003108, LT: 1.260085, Top1S: 100.000000, Top1T: 69.087219 +Train:epoch: 118, loss@min: 0.998056, loss@max: 1.396118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.003111, LT: 1.259681, Top1S: 100.000000, Top1T: 68.965515 +Train:epoch: 119, loss@min: 0.970904, loss@max: 1.410122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.003116, LT: 1.257813, Top1S: 100.000000, Top1T: 69.087219 +Train:epoch: 120, loss@min: 0.992499, loss@max: 1.420245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.003118, LT: 1.255488, Top1S: 100.000000, Top1T: 69.249496 +Train:epoch: 121, loss@min: 0.967781, loss@max: 1.411797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.003116, LT: 1.253686, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 122, loss@min: 1.005004, loss@max: 1.415753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.003113, LT: 1.252721, Top1S: 100.000000, Top1T: 68.965515 +Train:epoch: 123, loss@min: 0.936641, loss@max: 1.443012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.003107, LT: 1.252906, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 124, loss@min: 0.939425, loss@max: 1.439791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.003100, LT: 1.253926, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 125, loss@min: 0.944765, loss@max: 1.447518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.003093, LT: 1.254699, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 126, loss@min: 0.964485, loss@max: 1.427329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.003087, LT: 1.255422, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 127, loss@min: 0.941523, loss@max: 1.440049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.003080, LT: 1.256249, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 128, loss@min: 0.973863, loss@max: 1.407022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.003075, LT: 1.256960, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 129, loss@min: 0.930740, loss@max: 1.461022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.003069, LT: 1.258075, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 130, loss@min: 0.963938, loss@max: 1.422235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.003062, LT: 1.258792, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 131, loss@min: 0.974538, loss@max: 1.405081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.003057, LT: 1.258958, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 132, loss@min: 0.941872, loss@max: 1.432817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.003054, LT: 1.259162, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 133, loss@min: 0.971558, loss@max: 1.413502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.003052, LT: 1.259023, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 134, loss@min: 0.951095, loss@max: 1.421671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.003052, LT: 1.258690, Top1S: 100.000000, Top1T: 69.411766 +Train:epoch: 135, loss@min: 0.998507, loss@max: 1.364420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.003051, LT: 1.258252, Top1S: 100.000000, Top1T: 69.411766 +Train:epoch: 136, loss@min: 0.932631, loss@max: 1.437582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.003052, LT: 1.257689, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 137, loss@min: 0.969120, loss@max: 1.400770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.003052, LT: 1.256937, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 138, loss@min: 0.985677, loss@max: 1.390321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.003053, LT: 1.256193, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 139, loss@min: 0.968526, loss@max: 1.402998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.003054, LT: 1.255345, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 140, loss@min: 0.956592, loss@max: 1.418046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.003054, LT: 1.254839, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 141, loss@min: 0.943102, loss@max: 1.446276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.003054, LT: 1.254701, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 142, loss@min: 0.985796, loss@max: 1.389715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.003054, LT: 1.254661, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 143, loss@min: 0.974809, loss@max: 1.407105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.003054, LT: 1.254606, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 144, loss@min: 0.977625, loss@max: 1.396931, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.003054, LT: 1.254527, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 145, loss@min: 0.963976, loss@max: 1.397370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.003054, LT: 1.254466, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 146, loss@min: 0.974931, loss@max: 1.400393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.003054, LT: 1.254426, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 147, loss@min: 0.954528, loss@max: 1.417582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.003054, LT: 1.254400, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 148, loss@min: 0.944271, loss@max: 1.426302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.003054, LT: 1.254390, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 149, loss@min: 0.970696, loss@max: 1.404476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.003054, LT: 1.254387, Top1S: 100.000000, Top1T: 69.330627 +Train:epoch: 150, loss@min: 0.991869, loss@max: 1.384845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.003054, LT: 1.254387, Top1S: 100.000000, Top1T: 69.330627 +------------------------------------------- +Thu Jun 1 10:45:11 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Thu Jun 1 13:41:23 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 20.345844, loss@max: 7.206676, Top1S acc: 16.000000, Top1T acc: 12.000000 +Train:epoch: 2, loss@min: 9.503028, loss@max: 5.416236, Top1S acc: 68.000000, Top1T acc: 49.000000 +Train:epoch: 3, loss@min: 4.104666, loss@max: 4.495502, Top1S acc: 92.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 2.107556, loss@max: 4.250479, Top1S acc: 97.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.408611, loss@max: 4.098397, Top1S acc: 98.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 1.145996, loss@max: 4.009532, Top1S acc: 98.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 1.226076, loss@max: 3.580694, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.164645, loss@max: 3.296869, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.973879, loss@max: 3.069315, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 1.147005, loss@max: 2.693517, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.309847, loss@max: 2.358580, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.451681, loss@max: 1.946404, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 1.766795, loss@max: 1.770954, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 1.748246, loss@max: 1.776969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.608936, loss@max: 1.767684, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 1.472996, loss@max: 1.755267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.441631, loss@max: 2.022002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.333390, loss@max: 2.240651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.218828, loss@max: 2.241722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.063243, loss@max: 2.340694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.134769, loss@max: 2.437234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.214143, loss@max: 2.449697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.170388, loss@max: 2.613066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.167824, loss@max: 2.479708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.332323, loss@max: 2.381283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.543102, loss@max: 2.202068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.598637, loss@max: 2.265003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.602975, loss@max: 2.423131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.514060, loss@max: 2.535901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.279947, loss@max: 2.811157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.185127, loss@max: 2.819181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.458523, loss@max: 2.879836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.419711, loss@max: 2.618569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.418136, loss@max: 2.637356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.582919, loss@max: 2.728825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.436536, loss@max: 2.889289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.295415, loss@max: 2.924306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.125840, loss@max: 2.786180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.225785, loss@max: 2.972825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.531769, loss@max: 2.788637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.684007, loss@max: 2.600442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.759336, loss@max: 2.485475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.378060, loss@max: 2.502131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.351641, loss@max: 2.780192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.259196, loss@max: 2.966588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.383391, loss@max: 3.293996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.292999, loss@max: 3.024364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.435603, loss@max: 2.841741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.608164, loss@max: 2.791596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.552392, loss@max: 2.778328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002967, LT: 1.577874, Top1S: 100.000000, Top1T: 66.937119Best acc: 66.937119 +Train:epoch: 51, loss@min: 1.525296, loss@max: 2.678495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.003063, LT: 1.538443, Top1S: 100.000000, Top1T: 67.342796Best acc: 67.342796 +Train:epoch: 52, loss@min: 1.527649, loss@max: 2.918485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.003165, LT: 1.486075, Top1S: 100.000000, Top1T: 67.505074Best acc: 67.505074 +Train:epoch: 53, loss@min: 1.355151, loss@max: 2.930878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.003272, LT: 1.446383, Top1S: 100.000000, Top1T: 68.275864Best acc: 68.275864 +Train:epoch: 54, loss@min: 1.275780, loss@max: 2.998331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.003363, LT: 1.433641, Top1S: 100.000000, Top1T: 68.397568Best acc: 68.397568 +Train:epoch: 55, loss@min: 1.269548, loss@max: 2.855457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.003266, LT: 1.434220, Top1S: 100.000000, Top1T: 68.154160 +Train:epoch: 56, loss@min: 1.339509, loss@max: 2.888880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.002974, LT: 1.448127, Top1S: 100.000000, Top1T: 68.275864 +Train:epoch: 57, loss@min: 1.743836, loss@max: 2.739247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002679, LT: 1.500506, Top1S: 100.000000, Top1T: 67.951317 +Train:epoch: 58, loss@min: 1.702078, loss@max: 2.797241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002525, LT: 1.540818, Top1S: 100.000000, Top1T: 67.667343 +Train:epoch: 59, loss@min: 1.601121, loss@max: 2.821815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002522, LT: 1.555605, Top1S: 100.000000, Top1T: 67.221092 +Train:epoch: 60, loss@min: 1.351903, loss@max: 2.985292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002655, LT: 1.531457, Top1S: 100.000000, Top1T: 67.180527 +Train:epoch: 61, loss@min: 1.387823, loss@max: 2.972532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.002874, LT: 1.484784, Top1S: 100.000000, Top1T: 67.139961 +Train:epoch: 62, loss@min: 1.509578, loss@max: 3.030629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.003042, LT: 1.439712, Top1S: 100.000000, Top1T: 67.545639 +Train:epoch: 63, loss@min: 1.604048, loss@max: 2.671866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.003054, LT: 1.407068, Top1S: 100.000000, Top1T: 68.843811Best acc: 68.843811 +Train:epoch: 64, loss@min: 1.373668, loss@max: 2.847202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.002955, LT: 1.403068, Top1S: 100.000000, Top1T: 68.519272 +Train:epoch: 65, loss@min: 1.321877, loss@max: 2.711056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.002811, LT: 1.444626, Top1S: 100.000000, Top1T: 68.762680 +Train:epoch: 66, loss@min: 1.524742, loss@max: 2.858429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.002723, LT: 1.469243, Top1S: 100.000000, Top1T: 68.762680 +Train:epoch: 67, loss@min: 1.293123, loss@max: 2.906333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.002620, LT: 1.468780, Top1S: 100.000000, Top1T: 68.924950Best acc: 68.924950 +Train:epoch: 68, loss@min: 1.330864, loss@max: 2.877618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.002567, LT: 1.458172, Top1S: 100.000000, Top1T: 69.006088Best acc: 69.006088 +Train:epoch: 69, loss@min: 1.221130, loss@max: 2.710802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.002581, LT: 1.464927, Top1S: 100.000000, Top1T: 68.722107 +Train:epoch: 70, loss@min: 1.420640, loss@max: 2.301015, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.002673, LT: 1.472786, Top1S: 100.000000, Top1T: 68.154160 +Train:epoch: 71, loss@min: 1.454612, loss@max: 2.504522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.002782, LT: 1.456421, Top1S: 100.000000, Top1T: 67.707909 +Train:epoch: 72, loss@min: 1.425439, loss@max: 2.541271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.002752, LT: 1.431094, Top1S: 100.000000, Top1T: 68.113594 +Train:epoch: 73, loss@min: 1.321996, loss@max: 2.580431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.002640, LT: 1.420862, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 74, loss@min: 1.256231, loss@max: 2.586735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.002586, LT: 1.438177, Top1S: 100.000000, Top1T: 68.681541 +Train:epoch: 75, loss@min: 1.248628, loss@max: 2.673092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.002604, LT: 1.453059, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 76, loss@min: 1.260368, loss@max: 2.685319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.002634, LT: 1.439996, Top1S: 100.000000, Top1T: 68.884384 +Train:epoch: 77, loss@min: 1.245372, loss@max: 2.603104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.002667, LT: 1.399178, Top1S: 100.000000, Top1T: 69.208923Best acc: 69.208923 +Train:epoch: 78, loss@min: 1.209662, loss@max: 2.563119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.002671, LT: 1.367725, Top1S: 100.000000, Top1T: 69.614601Best acc: 69.614601 +Train:epoch: 79, loss@min: 1.358677, loss@max: 2.261168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.002643, LT: 1.359996, Top1S: 100.000000, Top1T: 69.614601 +Train:epoch: 80, loss@min: 1.389315, loss@max: 2.304095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002583, LT: 1.380777, Top1S: 100.000000, Top1T: 68.924950 +Train:epoch: 81, loss@min: 1.473292, loss@max: 2.174893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002539, LT: 1.402758, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 82, loss@min: 1.362339, loss@max: 2.274098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002485, LT: 1.428944, Top1S: 100.000000, Top1T: 68.316429 +Train:epoch: 83, loss@min: 1.244455, loss@max: 2.314229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002477, LT: 1.442600, Top1S: 100.000000, Top1T: 67.748482 +Train:epoch: 84, loss@min: 1.119851, loss@max: 2.342025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002468, LT: 1.452267, Top1S: 100.000000, Top1T: 68.113594 +Train:epoch: 85, loss@min: 1.191265, loss@max: 2.319724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002435, LT: 1.450661, Top1S: 100.000000, Top1T: 68.519272 +Train:epoch: 86, loss@min: 1.167867, loss@max: 2.210753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002395, LT: 1.426666, Top1S: 100.000000, Top1T: 68.924950 +Train:epoch: 87, loss@min: 1.080667, loss@max: 2.232307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002370, LT: 1.389044, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 88, loss@min: 1.099160, loss@max: 2.281035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002347, LT: 1.351976, Top1S: 100.000000, Top1T: 69.979713Best acc: 69.979713 +Train:epoch: 89, loss@min: 1.230744, loss@max: 2.101006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002322, LT: 1.339157, Top1S: 100.000000, Top1T: 69.939148 +Train:epoch: 90, loss@min: 1.133542, loss@max: 1.838111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002308, LT: 1.347406, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 91, loss@min: 1.212712, loss@max: 1.962021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002326, LT: 1.365090, Top1S: 100.000000, Top1T: 69.127792 +Train:epoch: 92, loss@min: 1.208615, loss@max: 1.839550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002368, LT: 1.375469, Top1S: 100.000000, Top1T: 68.519272 +Train:epoch: 93, loss@min: 1.277578, loss@max: 1.910358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002403, LT: 1.384799, Top1S: 100.000000, Top1T: 68.681541 +Train:epoch: 94, loss@min: 1.102877, loss@max: 1.924946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002414, LT: 1.392182, Top1S: 100.000000, Top1T: 68.640976 +Train:epoch: 95, loss@min: 1.083843, loss@max: 2.147345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002406, LT: 1.398668, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 96, loss@min: 1.084149, loss@max: 1.973236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002383, LT: 1.400615, Top1S: 100.000000, Top1T: 68.681541 +Train:epoch: 97, loss@min: 1.090521, loss@max: 2.164442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002355, LT: 1.395650, Top1S: 100.000000, Top1T: 69.046654 +Train:epoch: 98, loss@min: 1.064641, loss@max: 2.022871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002329, LT: 1.389911, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 99, loss@min: 1.155412, loss@max: 2.027943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002310, LT: 1.384522, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 100, loss@min: 1.052396, loss@max: 1.835268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002303, LT: 1.374024, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 101, loss@min: 1.081585, loss@max: 1.750362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002302, LT: 1.362427, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 102, loss@min: 1.021135, loss@max: 1.711550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002299, LT: 1.356712, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 103, loss@min: 1.073375, loss@max: 1.844714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002297, LT: 1.353731, Top1S: 100.000000, Top1T: 69.574036 +Train:epoch: 104, loss@min: 1.168984, loss@max: 1.818254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002282, LT: 1.355316, Top1S: 100.000000, Top1T: 69.817444 +Train:epoch: 105, loss@min: 1.209967, loss@max: 1.786036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002264, LT: 1.359050, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 106, loss@min: 1.127183, loss@max: 1.784705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002258, LT: 1.361665, Top1S: 100.000000, Top1T: 69.939148 +Train:epoch: 107, loss@min: 1.087375, loss@max: 1.757345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002259, LT: 1.360211, Top1S: 100.000000, Top1T: 69.817444 +Train:epoch: 108, loss@min: 1.116405, loss@max: 1.809816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002264, LT: 1.354826, Top1S: 100.000000, Top1T: 69.776878 +Train:epoch: 109, loss@min: 0.990422, loss@max: 1.828719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002266, LT: 1.348204, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 110, loss@min: 0.955669, loss@max: 1.841046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002262, LT: 1.343879, Top1S: 100.000000, Top1T: 70.182556Best acc: 70.182556 +Train:epoch: 111, loss@min: 0.943449, loss@max: 1.825455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002249, LT: 1.345027, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 112, loss@min: 0.999735, loss@max: 1.792462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002231, LT: 1.347511, Top1S: 100.000000, Top1T: 69.817444 +Train:epoch: 113, loss@min: 1.062573, loss@max: 1.743357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002212, LT: 1.350936, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 114, loss@min: 1.080831, loss@max: 1.693228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002198, LT: 1.355688, Top1S: 100.000000, Top1T: 69.776878 +Train:epoch: 115, loss@min: 1.018811, loss@max: 1.721497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002195, LT: 1.356773, Top1S: 100.000000, Top1T: 69.939148 +Train:epoch: 116, loss@min: 1.069993, loss@max: 1.623614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002201, LT: 1.356213, Top1S: 100.000000, Top1T: 70.020287 +Train:epoch: 117, loss@min: 1.087214, loss@max: 1.634552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002210, LT: 1.353698, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 118, loss@min: 1.058102, loss@max: 1.701828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002219, LT: 1.349037, Top1S: 100.000000, Top1T: 70.060852 +Train:epoch: 119, loss@min: 1.057753, loss@max: 1.596012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002229, LT: 1.345197, Top1S: 100.000000, Top1T: 70.020287 +Train:epoch: 120, loss@min: 1.048199, loss@max: 1.750000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002234, LT: 1.340794, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 121, loss@min: 1.003699, loss@max: 1.689174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002230, LT: 1.337848, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 122, loss@min: 1.050632, loss@max: 1.629680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002224, LT: 1.337305, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 123, loss@min: 1.026058, loss@max: 1.675548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002218, LT: 1.336922, Top1S: 100.000000, Top1T: 70.263695Best acc: 70.263695 +Train:epoch: 124, loss@min: 0.967938, loss@max: 1.627011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002211, LT: 1.336373, Top1S: 100.000000, Top1T: 70.263695 +Train:epoch: 125, loss@min: 1.045389, loss@max: 1.666518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002205, LT: 1.336044, Top1S: 100.000000, Top1T: 70.385399Best acc: 70.385399 +Train:epoch: 126, loss@min: 1.053221, loss@max: 1.627165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002202, LT: 1.336638, Top1S: 100.000000, Top1T: 70.344826 +Train:epoch: 127, loss@min: 0.961667, loss@max: 1.624521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002199, LT: 1.338321, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 128, loss@min: 1.032523, loss@max: 1.584182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002196, LT: 1.339140, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 129, loss@min: 0.987555, loss@max: 1.659363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002194, LT: 1.338627, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 130, loss@min: 1.030884, loss@max: 1.617372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002192, LT: 1.337937, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 131, loss@min: 1.053558, loss@max: 1.572926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002190, LT: 1.337924, Top1S: 100.000000, Top1T: 70.223122 +Train:epoch: 132, loss@min: 1.024270, loss@max: 1.589648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002187, LT: 1.338546, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 133, loss@min: 1.098282, loss@max: 1.539647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002186, LT: 1.339190, Top1S: 100.000000, Top1T: 70.060852 +Train:epoch: 134, loss@min: 1.054388, loss@max: 1.604226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002183, LT: 1.340339, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 135, loss@min: 1.092077, loss@max: 1.427773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002180, LT: 1.341685, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 136, loss@min: 0.955614, loss@max: 1.660947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002179, LT: 1.342404, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 137, loss@min: 1.024989, loss@max: 1.586504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002179, LT: 1.342542, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 138, loss@min: 0.980798, loss@max: 1.639685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002179, LT: 1.342525, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 139, loss@min: 1.012636, loss@max: 1.589739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002181, LT: 1.341945, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 140, loss@min: 1.032331, loss@max: 1.567157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002183, LT: 1.341414, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 141, loss@min: 1.000513, loss@max: 1.672252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002184, LT: 1.341064, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 142, loss@min: 1.070664, loss@max: 1.507532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002185, LT: 1.340835, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 143, loss@min: 0.999442, loss@max: 1.574682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002186, LT: 1.340681, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 144, loss@min: 1.050234, loss@max: 1.540818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002186, LT: 1.340616, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 145, loss@min: 0.991436, loss@max: 1.610882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002186, LT: 1.340644, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 146, loss@min: 1.082307, loss@max: 1.530195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002186, LT: 1.340643, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 147, loss@min: 0.974199, loss@max: 1.644339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002186, LT: 1.340680, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 148, loss@min: 0.966294, loss@max: 1.642402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002186, LT: 1.340698, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 149, loss@min: 1.005036, loss@max: 1.588545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002186, LT: 1.340701, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 150, loss@min: 1.110258, loss@max: 1.510664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002186, LT: 1.340701, Top1S: 100.000000, Top1T: 70.141991 +------------------------------------------- +Thu Jun 1 14:30:33 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 1, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 11:03:17 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 20.345842, loss@max: 7.206676, Top1S acc: 16.000000, Top1T acc: 12.000000 +Train:epoch: 2, loss@min: 9.503027, loss@max: 5.416236, Top1S acc: 68.000000, Top1T acc: 49.000000 +Train:epoch: 3, loss@min: 4.104666, loss@max: 4.495501, Top1S acc: 92.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 2.107556, loss@max: 4.250479, Top1S acc: 97.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.408611, loss@max: 4.098397, Top1S acc: 98.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 1.145996, loss@max: 4.009532, Top1S acc: 98.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 1.226076, loss@max: 3.580694, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.164645, loss@max: 3.296869, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.973879, loss@max: 3.069315, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 1.147006, loss@max: 2.693517, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.309847, loss@max: 2.358579, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.451680, loss@max: 1.946405, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 1.766795, loss@max: 1.770954, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 1.748246, loss@max: 1.776970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.608936, loss@max: 1.767684, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 1.472996, loss@max: 1.755267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.441631, loss@max: 2.022002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.333390, loss@max: 2.240652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.218828, loss@max: 2.241722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.063242, loss@max: 2.340694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.134768, loss@max: 2.437235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.214142, loss@max: 2.449697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.170388, loss@max: 2.613065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.167823, loss@max: 2.479706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.332325, loss@max: 2.381282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.543104, loss@max: 2.202067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.598637, loss@max: 2.265002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.602974, loss@max: 2.423131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.514059, loss@max: 2.535900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.279947, loss@max: 2.811155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.185129, loss@max: 2.819180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.458523, loss@max: 2.879834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.419708, loss@max: 2.618568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.418136, loss@max: 2.637361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.582917, loss@max: 2.728829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.436536, loss@max: 2.889295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.295416, loss@max: 2.924313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.125837, loss@max: 2.786177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.225786, loss@max: 2.972825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.531773, loss@max: 2.788643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.684008, loss@max: 2.600450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.759330, loss@max: 2.485479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.378058, loss@max: 2.502141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.351645, loss@max: 2.780203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.259192, loss@max: 2.966588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.383393, loss@max: 3.293990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.293011, loss@max: 3.024372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.435620, loss@max: 2.841762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.608160, loss@max: 2.791610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.552387, loss@max: 2.778361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002967, LT: 1.577872, Top1S: 100.000000, Top1T: 66.937119Best acc: 66.937119 +Train:epoch: 51, loss@min: 1.525286, loss@max: 2.678531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.003063, LT: 1.538439, Top1S: 100.000000, Top1T: 67.342796Best acc: 67.342796 +Train:epoch: 52, loss@min: 1.527636, loss@max: 2.918503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.003165, LT: 1.486072, Top1S: 100.000000, Top1T: 67.505074Best acc: 67.505074 +Train:epoch: 53, loss@min: 1.355158, loss@max: 2.930902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.003272, LT: 1.446381, Top1S: 100.000000, Top1T: 68.275864Best acc: 68.275864 +Train:epoch: 54, loss@min: 1.275820, loss@max: 2.998347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.003363, LT: 1.433639, Top1S: 100.000000, Top1T: 68.397568Best acc: 68.397568 +Train:epoch: 55, loss@min: 1.269589, loss@max: 2.855442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.003266, LT: 1.434218, Top1S: 100.000000, Top1T: 68.154160 +Train:epoch: 56, loss@min: 1.339536, loss@max: 2.888849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.002974, LT: 1.448125, Top1S: 100.000000, Top1T: 68.275864 +Train:epoch: 57, loss@min: 1.743828, loss@max: 2.739220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002679, LT: 1.500506, Top1S: 100.000000, Top1T: 67.951317 +Train:epoch: 58, loss@min: 1.702078, loss@max: 2.797288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002525, LT: 1.540819, Top1S: 100.000000, Top1T: 67.667343 +Train:epoch: 59, loss@min: 1.601109, loss@max: 2.821878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002522, LT: 1.555606, Top1S: 100.000000, Top1T: 67.221092 +Train:epoch: 60, loss@min: 1.351880, loss@max: 2.985384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002655, LT: 1.531458, Top1S: 100.000000, Top1T: 67.180527 +Train:epoch: 61, loss@min: 1.387801, loss@max: 2.972513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.002874, LT: 1.484786, Top1S: 100.000000, Top1T: 67.139961 +Train:epoch: 62, loss@min: 1.509645, loss@max: 3.030652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.003042, LT: 1.439714, Top1S: 100.000000, Top1T: 67.545639 +Train:epoch: 63, loss@min: 1.604176, loss@max: 2.671948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.003054, LT: 1.407068, Top1S: 100.000000, Top1T: 68.843811Best acc: 68.843811 +Train:epoch: 64, loss@min: 1.373761, loss@max: 2.847183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.002955, LT: 1.403067, Top1S: 100.000000, Top1T: 68.519272 +Train:epoch: 65, loss@min: 1.321869, loss@max: 2.710956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.002811, LT: 1.444627, Top1S: 100.000000, Top1T: 68.762680 +Train:epoch: 66, loss@min: 1.524757, loss@max: 2.858475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.002723, LT: 1.469246, Top1S: 100.000000, Top1T: 68.762680 +Train:epoch: 67, loss@min: 1.293144, loss@max: 2.906441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.002621, LT: 1.468782, Top1S: 100.000000, Top1T: 68.924950Best acc: 68.924950 +Train:epoch: 68, loss@min: 1.330890, loss@max: 2.877761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.002567, LT: 1.458171, Top1S: 100.000000, Top1T: 69.006088Best acc: 69.006088 +Train:epoch: 69, loss@min: 1.221131, loss@max: 2.711035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.002581, LT: 1.464927, Top1S: 100.000000, Top1T: 68.722107 +Train:epoch: 70, loss@min: 1.420488, loss@max: 2.300983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.002673, LT: 1.472791, Top1S: 100.000000, Top1T: 68.154160 +Train:epoch: 71, loss@min: 1.454477, loss@max: 2.504472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.002782, LT: 1.456430, Top1S: 100.000000, Top1T: 67.707909 +Train:epoch: 72, loss@min: 1.425460, loss@max: 2.541338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.002752, LT: 1.431103, Top1S: 100.000000, Top1T: 68.113594 +Train:epoch: 73, loss@min: 1.322025, loss@max: 2.580396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.002640, LT: 1.420869, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 74, loss@min: 1.256225, loss@max: 2.586662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.002586, LT: 1.438180, Top1S: 100.000000, Top1T: 68.681541 +Train:epoch: 75, loss@min: 1.248651, loss@max: 2.673055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.002604, LT: 1.453055, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 76, loss@min: 1.260403, loss@max: 2.685285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.002634, LT: 1.439988, Top1S: 100.000000, Top1T: 68.884384 +Train:epoch: 77, loss@min: 1.245379, loss@max: 2.603047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.002667, LT: 1.399171, Top1S: 100.000000, Top1T: 69.208923Best acc: 69.208923 +Train:epoch: 78, loss@min: 1.209698, loss@max: 2.563103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.002671, LT: 1.367721, Top1S: 100.000000, Top1T: 69.614601Best acc: 69.614601 +Train:epoch: 79, loss@min: 1.358704, loss@max: 2.261175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.002643, LT: 1.359995, Top1S: 100.000000, Top1T: 69.614601 +Train:epoch: 80, loss@min: 1.389312, loss@max: 2.304130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002583, LT: 1.380777, Top1S: 100.000000, Top1T: 68.924950 +Train:epoch: 81, loss@min: 1.473268, loss@max: 2.174933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002539, LT: 1.402760, Top1S: 100.000000, Top1T: 68.356995 +Train:epoch: 82, loss@min: 1.362350, loss@max: 2.274265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002485, LT: 1.428950, Top1S: 100.000000, Top1T: 68.316429 +Train:epoch: 83, loss@min: 1.244453, loss@max: 2.314288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002477, LT: 1.442610, Top1S: 100.000000, Top1T: 67.748482 +Train:epoch: 84, loss@min: 1.119825, loss@max: 2.342108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002468, LT: 1.452279, Top1S: 100.000000, Top1T: 68.113594 +Train:epoch: 85, loss@min: 1.191221, loss@max: 2.319716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002435, LT: 1.450668, Top1S: 100.000000, Top1T: 68.519272 +Train:epoch: 86, loss@min: 1.167890, loss@max: 2.210770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002395, LT: 1.426665, Top1S: 100.000000, Top1T: 68.924950 +Train:epoch: 87, loss@min: 1.080701, loss@max: 2.232326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002370, LT: 1.389038, Top1S: 100.000000, Top1T: 69.452332 +Train:epoch: 88, loss@min: 1.099214, loss@max: 2.281074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002347, LT: 1.351969, Top1S: 100.000000, Top1T: 69.979713Best acc: 69.979713 +Train:epoch: 89, loss@min: 1.230728, loss@max: 2.100956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002322, LT: 1.339152, Top1S: 100.000000, Top1T: 69.939148 +Train:epoch: 90, loss@min: 1.133579, loss@max: 1.838155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002308, LT: 1.347406, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 91, loss@min: 1.212733, loss@max: 1.962057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002326, LT: 1.365091, Top1S: 100.000000, Top1T: 69.127792 +Train:epoch: 92, loss@min: 1.208582, loss@max: 1.839581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002368, LT: 1.375467, Top1S: 100.000000, Top1T: 68.519272 +Train:epoch: 93, loss@min: 1.277541, loss@max: 1.910387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002404, LT: 1.384796, Top1S: 100.000000, Top1T: 68.681541 +Train:epoch: 94, loss@min: 1.102833, loss@max: 1.925003, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002414, LT: 1.392181, Top1S: 100.000000, Top1T: 68.640976 +Train:epoch: 95, loss@min: 1.083764, loss@max: 2.147269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002406, LT: 1.398673, Top1S: 100.000000, Top1T: 68.559837 +Train:epoch: 96, loss@min: 1.084130, loss@max: 1.973272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002383, LT: 1.400624, Top1S: 100.000000, Top1T: 68.681541 +Train:epoch: 97, loss@min: 1.090552, loss@max: 2.164443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002355, LT: 1.395658, Top1S: 100.000000, Top1T: 69.046654 +Train:epoch: 98, loss@min: 1.064671, loss@max: 2.022785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002329, LT: 1.389914, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 99, loss@min: 1.155442, loss@max: 2.027960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002310, LT: 1.384514, Top1S: 100.000000, Top1T: 69.168358 +Train:epoch: 100, loss@min: 1.052403, loss@max: 1.835283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002303, LT: 1.374009, Top1S: 100.000000, Top1T: 69.371201 +Train:epoch: 101, loss@min: 1.081560, loss@max: 1.750373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002302, LT: 1.362411, Top1S: 100.000000, Top1T: 69.290062 +Train:epoch: 102, loss@min: 1.021130, loss@max: 1.711546, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002299, LT: 1.356701, Top1S: 100.000000, Top1T: 69.492905 +Train:epoch: 103, loss@min: 1.073359, loss@max: 1.844728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002297, LT: 1.353727, Top1S: 100.000000, Top1T: 69.574036 +Train:epoch: 104, loss@min: 1.168975, loss@max: 1.818242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002282, LT: 1.355318, Top1S: 100.000000, Top1T: 69.817444 +Train:epoch: 105, loss@min: 1.209959, loss@max: 1.786044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002264, LT: 1.359056, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 106, loss@min: 1.127190, loss@max: 1.784679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002258, LT: 1.361670, Top1S: 100.000000, Top1T: 69.939148 +Train:epoch: 107, loss@min: 1.087383, loss@max: 1.757373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002259, LT: 1.360213, Top1S: 100.000000, Top1T: 69.817444 +Train:epoch: 108, loss@min: 1.116412, loss@max: 1.809834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002264, LT: 1.354824, Top1S: 100.000000, Top1T: 69.776878 +Train:epoch: 109, loss@min: 0.990431, loss@max: 1.828745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002266, LT: 1.348198, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 110, loss@min: 0.955675, loss@max: 1.841079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002262, LT: 1.343871, Top1S: 100.000000, Top1T: 70.182556Best acc: 70.182556 +Train:epoch: 111, loss@min: 0.943451, loss@max: 1.825463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002249, LT: 1.345018, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 112, loss@min: 0.999727, loss@max: 1.792454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002231, LT: 1.347503, Top1S: 100.000000, Top1T: 69.817444 +Train:epoch: 113, loss@min: 1.062588, loss@max: 1.743389, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002212, LT: 1.350930, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 114, loss@min: 1.080803, loss@max: 1.693228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002198, LT: 1.355684, Top1S: 100.000000, Top1T: 69.776878 +Train:epoch: 115, loss@min: 1.018829, loss@max: 1.721495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002195, LT: 1.356770, Top1S: 100.000000, Top1T: 69.939148 +Train:epoch: 116, loss@min: 1.069997, loss@max: 1.623589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002201, LT: 1.356210, Top1S: 100.000000, Top1T: 70.020287 +Train:epoch: 117, loss@min: 1.087216, loss@max: 1.634572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002210, LT: 1.353695, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 118, loss@min: 1.058124, loss@max: 1.701811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002219, LT: 1.349034, Top1S: 100.000000, Top1T: 70.060852 +Train:epoch: 119, loss@min: 1.057759, loss@max: 1.595997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002229, LT: 1.345195, Top1S: 100.000000, Top1T: 70.020287 +Train:epoch: 120, loss@min: 1.048199, loss@max: 1.750002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002234, LT: 1.340791, Top1S: 100.000000, Top1T: 69.898582 +Train:epoch: 121, loss@min: 1.003703, loss@max: 1.689173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002230, LT: 1.337845, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 122, loss@min: 1.050644, loss@max: 1.629689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002224, LT: 1.337303, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 123, loss@min: 1.026052, loss@max: 1.675581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002218, LT: 1.336920, Top1S: 100.000000, Top1T: 70.263695Best acc: 70.263695 +Train:epoch: 124, loss@min: 0.967936, loss@max: 1.627014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002211, LT: 1.336371, Top1S: 100.000000, Top1T: 70.263695 +Train:epoch: 125, loss@min: 1.045388, loss@max: 1.666524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002205, LT: 1.336043, Top1S: 100.000000, Top1T: 70.385399Best acc: 70.385399 +Train:epoch: 126, loss@min: 1.053240, loss@max: 1.627154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002202, LT: 1.336637, Top1S: 100.000000, Top1T: 70.344826 +Train:epoch: 127, loss@min: 0.961662, loss@max: 1.624522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002199, LT: 1.338321, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 128, loss@min: 1.032526, loss@max: 1.584190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002196, LT: 1.339139, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 129, loss@min: 0.987554, loss@max: 1.659363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002194, LT: 1.338626, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 130, loss@min: 1.030886, loss@max: 1.617366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002192, LT: 1.337936, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 131, loss@min: 1.053550, loss@max: 1.572929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002190, LT: 1.337922, Top1S: 100.000000, Top1T: 70.223122 +Train:epoch: 132, loss@min: 1.024254, loss@max: 1.589658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002187, LT: 1.338543, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 133, loss@min: 1.098276, loss@max: 1.539672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002186, LT: 1.339187, Top1S: 100.000000, Top1T: 70.060852 +Train:epoch: 134, loss@min: 1.054382, loss@max: 1.604250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002183, LT: 1.340336, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 135, loss@min: 1.092080, loss@max: 1.427768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002180, LT: 1.341681, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 136, loss@min: 0.955607, loss@max: 1.660975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002179, LT: 1.342400, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 137, loss@min: 1.024975, loss@max: 1.586508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002179, LT: 1.342539, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 138, loss@min: 0.980798, loss@max: 1.639692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002179, LT: 1.342521, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 139, loss@min: 1.012639, loss@max: 1.589731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002181, LT: 1.341942, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 140, loss@min: 1.032317, loss@max: 1.567178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002183, LT: 1.341411, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 141, loss@min: 1.000510, loss@max: 1.672262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002184, LT: 1.341061, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 142, loss@min: 1.070661, loss@max: 1.507544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002185, LT: 1.340832, Top1S: 100.000000, Top1T: 70.101418 +Train:epoch: 143, loss@min: 0.999445, loss@max: 1.574682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002186, LT: 1.340677, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 144, loss@min: 1.050232, loss@max: 1.540823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002186, LT: 1.340613, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 145, loss@min: 0.991434, loss@max: 1.610884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002186, LT: 1.340641, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 146, loss@min: 1.082299, loss@max: 1.530208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002186, LT: 1.340640, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 147, loss@min: 0.974195, loss@max: 1.644351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002186, LT: 1.340677, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 148, loss@min: 0.966291, loss@max: 1.642410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002186, LT: 1.340695, Top1S: 100.000000, Top1T: 70.182556 +Train:epoch: 149, loss@min: 1.005024, loss@max: 1.588536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002186, LT: 1.340697, Top1S: 100.000000, Top1T: 70.141991 +Train:epoch: 150, loss@min: 1.110246, loss@max: 1.510668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002186, LT: 1.340697, Top1S: 100.000000, Top1T: 70.141991 +------------------------------------------- +Sat Jun 3 11:58:16 2023 +------------------------------------------- +{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 13:50:55 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 13:52:23 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 13:53:41 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 14:07:47 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 15:37:19 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 1000, "print_freq": 1, "shot": 16, "test_freq": 1} + +------------------------------------------- +Sat Jun 3 15:39:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.725658, loss@max: 3.121952, Top1S acc: 99.609375, Top1T acc: 66.406250{"dataset_dir": "G:\\\\datasets\\\\", "dataset_name": "eurosat", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 10, "print_freq": 1, "savedir": "G:\\\\eurosat_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Tue Jun 20 11:16:25 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 29.217850, loss@max: 10.119287, Top1S acc: 20.000000, Top1T acc: 25.625000 +Train:epoch: 2, loss@min: 34.415855, loss@max: 10.928761, Top1S acc: 30.000000, Top1T acc: 38.125000 +Train:epoch: 3, loss@min: 36.454338, loss@max: 9.668110, Top1S acc: 60.000000, Top1T acc: 33.125000 +Train:epoch: 4, loss@min: 29.480301, loss@max: 5.973465, Top1S acc: 80.000000, Top1T acc: 45.625000 +Train:epoch: 5, loss@min: 24.897280, loss@max: 5.458289, Top1S acc: 70.000000, Top1T acc: 43.125000 +Train:epoch: 6, loss@min: 17.429811, loss@max: 5.090854, Top1S acc: 90.000000, Top1T acc: 51.875000 +Train:epoch: 7, loss@min: 15.303755, loss@max: 6.591131, Top1S acc: 90.000000, Top1T acc: 34.375000 +Train:epoch: 8, loss@min: 6.795787, loss@max: 6.033827, Top1S acc: 90.000000, Top1T acc: 55.625000 +Train:epoch: 9, loss@min: 5.572366, loss@max: 5.935799, Top1S acc: 90.000000, Top1T acc: 66.250000 +Train:epoch: 10, loss@min: 6.468602, loss@max: 6.713006, Top1S acc: 100.000000, Top1T acc: 54.375000 +Train:epoch: 11, loss@min: 8.361647, loss@max: 7.007965, Top1S acc: 100.000000, Top1T acc: 54.375000 +Train:epoch: 12, loss@min: 7.770515, loss@max: 5.180851, Top1S acc: 90.000000, Top1T acc: 53.750000 +Train:epoch: 13, loss@min: 7.479287, loss@max: 4.781219, Top1S acc: 90.000000, Top1T acc: 58.125000 +Train:epoch: 14, loss@min: 5.668051, loss@max: 4.479599, Top1S acc: 100.000000, Top1T acc: 69.375000 +Train:epoch: 15, loss@min: 4.639034, loss@max: 4.730423, Top1S acc: 100.000000, Top1T acc: 69.375000 +Train:epoch: 16, loss@min: 3.159852, loss@max: 4.486763, Top1S acc: 100.000000, Top1T acc: 73.125000 +Train:epoch: 17, loss@min: 2.450238, loss@max: 4.384095, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 18, loss@min: 3.260705, loss@max: 4.900255, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 19, loss@min: 2.771342, loss@max: 3.828694, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 20, loss@min: 2.424041, loss@max: 2.476795, Top1S acc: 100.000000, Top1T acc: 83.125000 +Train:epoch: 21, loss@min: 3.301702, loss@max: 2.371187, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 22, loss@min: 3.483556, loss@max: 2.800974, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 23, loss@min: 2.653780, loss@max: 3.097170, Top1S acc: 100.000000, Top1T acc: 76.875000 +Train:epoch: 24, loss@min: 1.821576, loss@max: 3.246180, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 25, loss@min: 1.520427, loss@max: 3.375611, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 26, loss@min: 1.770901, loss@max: 3.159145, Top1S acc: 100.000000, Top1T acc: 83.125000 +Train:epoch: 27, loss@min: 1.874781, loss@max: 2.742495, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 28, loss@min: 1.958687, loss@max: 2.635835, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 29, loss@min: 2.042323, loss@max: 2.659875, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 30, loss@min: 1.463935, loss@max: 2.426601, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 31, loss@min: 1.672290, loss@max: 2.865916, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 32, loss@min: 1.922359, loss@max: 2.888240, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 33, loss@min: 1.640605, loss@max: 2.414690, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 34, loss@min: 1.489910, loss@max: 2.435239, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 35, loss@min: 1.648862, loss@max: 2.720204, Top1S acc: 100.000000, Top1T acc: 85.625000 +Train:epoch: 36, loss@min: 1.636438, loss@max: 2.545655, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 37, loss@min: 1.657218, loss@max: 2.278810, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 38, loss@min: 1.982876, loss@max: 2.273784, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 39, loss@min: 1.889132, loss@max: 2.365461, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 40, loss@min: 1.544996, loss@max: 2.543406, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 41, loss@min: 1.346899, loss@max: 3.014631, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 42, loss@min: 1.186422, loss@max: 3.058030, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 43, loss@min: 1.328171, loss@max: 3.066477, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 44, loss@min: 1.526007, loss@max: 2.742774, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 45, loss@min: 1.669791, loss@max: 2.264476, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 46, loss@min: 2.080704, loss@max: 2.411282, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 47, loss@min: 1.909705, loss@max: 2.370905, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 48, loss@min: 1.614907, loss@max: 2.473162, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 49, loss@min: 1.365108, loss@max: 2.700683, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 50, loss@min: 1.283939, loss@max: 2.975812, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 51, loss@min: 1.382712, loss@max: 3.165653, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 52, loss@min: 1.351861, loss@max: 2.939979, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 53, loss@min: 1.131374, loss@max: 2.268776, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 54, loss@min: 1.601804, loss@max: 2.442060, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 55, loss@min: 1.999611, loss@max: 2.631399, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 56, loss@min: 1.658674, loss@max: 2.301205, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 57, loss@min: 1.430186, loss@max: 2.115492, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 58, loss@min: 1.366285, loss@max: 2.536754, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 59, loss@min: 1.324136, loss@max: 2.934795, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 60, loss@min: 1.057707, loss@max: 2.782579, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 61, loss@min: 1.143676, loss@max: 2.856944, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 62, loss@min: 1.260123, loss@max: 2.496133, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 63, loss@min: 1.406481, loss@max: 2.051072, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 64, loss@min: 1.753157, loss@max: 2.002942, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 65, loss@min: 1.807322, loss@max: 2.092832, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 66, loss@min: 1.477853, loss@max: 2.032167, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 67, loss@min: 1.149899, loss@max: 2.210889, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 68, loss@min: 1.060227, loss@max: 2.491986, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 69, loss@min: 1.133951, loss@max: 2.655442, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 70, loss@min: 1.085543, loss@max: 2.324313, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 71, loss@min: 1.147151, loss@max: 1.902842, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 72, loss@min: 1.456702, loss@max: 1.992216, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 73, loss@min: 1.538475, loss@max: 1.969761, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 74, loss@min: 1.364943, loss@max: 1.936945, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 75, loss@min: 1.110702, loss@max: 2.051566, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 76, loss@min: 1.052424, loss@max: 2.152299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.117061, loss@max: 2.233595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.239610, loss@max: 2.111938, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 79, loss@min: 1.204272, loss@max: 1.936080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.162714, loss@max: 1.840259, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 80, LS: 0.010998, LT: 0.625688, Top1S: 100.000000, Top1T: 81.296295Best acc: 81.296295 +Train:epoch: 81, loss@min: 1.165265, loss@max: 1.885142, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 81, LS: 0.010887, LT: 0.618150, Top1S: 100.000000, Top1T: 81.407410Best acc: 81.407410 +Train:epoch: 82, loss@min: 1.186774, loss@max: 2.074066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.010797, LT: 0.605737, Top1S: 100.000000, Top1T: 81.654320Best acc: 81.654320 +Train:epoch: 83, loss@min: 1.159893, loss@max: 2.112859, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 83, LS: 0.010732, LT: 0.593036, Top1S: 100.000000, Top1T: 82.012344Best acc: 82.012344 +Train:epoch: 84, loss@min: 1.016063, loss@max: 1.855854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.010700, LT: 0.603799, Top1S: 100.000000, Top1T: 81.666664 +Train:epoch: 85, loss@min: 1.023408, loss@max: 1.651486, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 85, LS: 0.010675, LT: 0.634611, Top1S: 100.000000, Top1T: 80.802467 +Train:epoch: 86, loss@min: 1.280816, loss@max: 1.844435, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 86, LS: 0.010615, LT: 0.650610, Top1S: 100.000000, Top1T: 80.555557 +Train:epoch: 87, loss@min: 1.324632, loss@max: 1.888207, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 87, LS: 0.010518, LT: 0.634450, Top1S: 100.000000, Top1T: 80.790123 +Train:epoch: 88, loss@min: 1.170867, loss@max: 1.796702, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 88, LS: 0.010419, LT: 0.614855, Top1S: 100.000000, Top1T: 81.345680 +Train:epoch: 89, loss@min: 0.955387, loss@max: 1.719153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.010341, LT: 0.610427, Top1S: 100.000000, Top1T: 81.518517 +Train:epoch: 90, loss@min: 0.972634, loss@max: 1.887334, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 90, LS: 0.010276, LT: 0.611512, Top1S: 100.000000, Top1T: 81.567902 +Train:epoch: 91, loss@min: 1.058264, loss@max: 1.967753, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 91, LS: 0.010213, LT: 0.609317, Top1S: 100.000000, Top1T: 81.765434 +Train:epoch: 92, loss@min: 1.118311, loss@max: 1.831564, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 92, LS: 0.010160, LT: 0.610146, Top1S: 100.000000, Top1T: 81.666664 +Train:epoch: 93, loss@min: 1.127951, loss@max: 1.595334, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 93, LS: 0.010126, LT: 0.625686, Top1S: 100.000000, Top1T: 81.469139 +Train:epoch: 94, loss@min: 1.199623, loss@max: 1.502510, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 94, LS: 0.010107, LT: 0.646932, Top1S: 100.000000, Top1T: 80.901237 +Train:epoch: 95, loss@min: 1.220721, loss@max: 1.552033, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 95, LS: 0.010082, LT: 0.659421, Top1S: 100.000000, Top1T: 80.419754 +Train:epoch: 96, loss@min: 1.186226, loss@max: 1.686246, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 96, LS: 0.010035, LT: 0.652645, Top1S: 100.000000, Top1T: 80.617287 +Train:epoch: 97, loss@min: 1.053410, loss@max: 1.725680, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 97, LS: 0.009970, LT: 0.636860, Top1S: 100.000000, Top1T: 81.172836 +Train:epoch: 98, loss@min: 0.914702, loss@max: 1.770133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.009900, LT: 0.624928, Top1S: 100.000000, Top1T: 81.604935 +Train:epoch: 99, loss@min: 0.880035, loss@max: 1.820343, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 99, LS: 0.009835, LT: 0.619796, Top1S: 100.000000, Top1T: 81.555557 +Train:epoch: 100, loss@min: 0.962219, loss@max: 1.783491, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 100, LS: 0.009777, LT: 0.614534, Top1S: 100.000000, Top1T: 81.740738 +Train:epoch: 101, loss@min: 1.038002, loss@max: 1.656203, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 101, LS: 0.009726, LT: 0.612779, Top1S: 100.000000, Top1T: 81.814812 +Train:epoch: 102, loss@min: 1.107328, loss@max: 1.554010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.009686, LT: 0.613154, Top1S: 100.000000, Top1T: 81.938271 +Train:epoch: 103, loss@min: 1.216279, loss@max: 1.495057, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 103, LS: 0.009657, LT: 0.616768, Top1S: 100.000000, Top1T: 81.827164 +Train:epoch: 104, loss@min: 1.198130, loss@max: 1.435237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.009640, LT: 0.622025, Top1S: 100.000000, Top1T: 81.604935 +Train:epoch: 105, loss@min: 1.166062, loss@max: 1.454799, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 105, LS: 0.009625, LT: 0.626744, Top1S: 100.000000, Top1T: 81.530861 +Train:epoch: 106, loss@min: 1.055601, loss@max: 1.494847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.009606, LT: 0.629524, Top1S: 100.000000, Top1T: 81.592590 +Train:epoch: 107, loss@min: 1.008338, loss@max: 1.597580, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 107, LS: 0.009578, LT: 0.631713, Top1S: 100.000000, Top1T: 81.629631 +Train:epoch: 108, loss@min: 0.993816, loss@max: 1.669168, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 108, LS: 0.009543, LT: 0.633360, Top1S: 100.000000, Top1T: 81.604935 +Train:epoch: 109, loss@min: 0.947164, loss@max: 1.667836, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 109, LS: 0.009507, LT: 0.634903, Top1S: 100.000000, Top1T: 81.654320 +Train:epoch: 110, loss@min: 0.939292, loss@max: 1.636153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.009472, LT: 0.636057, Top1S: 100.000000, Top1T: 81.444443 +Train:epoch: 111, loss@min: 0.944577, loss@max: 1.588964, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 111, LS: 0.009440, LT: 0.636727, Top1S: 100.000000, Top1T: 81.567902 +Train:epoch: 112, loss@min: 1.003228, loss@max: 1.515489, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.009411, LT: 0.637645, Top1S: 100.000000, Top1T: 81.481483 +Train:epoch: 113, loss@min: 1.043114, loss@max: 1.484457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.009386, LT: 0.637453, Top1S: 100.000000, Top1T: 81.395065 +Train:epoch: 114, loss@min: 1.093776, loss@max: 1.441837, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 114, LS: 0.009364, LT: 0.635858, Top1S: 100.000000, Top1T: 81.395065 +Train:epoch: 115, loss@min: 1.079056, loss@max: 1.414871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.009344, LT: 0.635194, Top1S: 100.000000, Top1T: 81.395065 +Train:epoch: 116, loss@min: 1.079780, loss@max: 1.431824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.009328, LT: 0.634777, Top1S: 100.000000, Top1T: 81.481483 +Train:epoch: 117, loss@min: 1.056653, loss@max: 1.424171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.009312, LT: 0.634682, Top1S: 100.000000, Top1T: 81.543213 +Train:epoch: 118, loss@min: 1.065535, loss@max: 1.447441, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 118, LS: 0.009298, LT: 0.634477, Top1S: 100.000000, Top1T: 81.604935 +Train:epoch: 119, loss@min: 1.004531, loss@max: 1.492565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.009283, LT: 0.635460, Top1S: 100.000000, Top1T: 81.592590 +Train:epoch: 120, loss@min: 1.007168, loss@max: 1.517423, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 120, LS: 0.009268, LT: 0.636830, Top1S: 100.000000, Top1T: 81.567902 +Train:epoch: 121, loss@min: 1.014918, loss@max: 1.513654, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 121, LS: 0.009253, LT: 0.638763, Top1S: 100.000000, Top1T: 81.506172 +Train:epoch: 122, loss@min: 0.964691, loss@max: 1.511654, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 122, LS: 0.009239, LT: 0.641138, Top1S: 100.000000, Top1T: 81.469139 +Train:epoch: 123, loss@min: 1.015423, loss@max: 1.516505, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 123, LS: 0.009225, LT: 0.641705, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 124, loss@min: 0.974477, loss@max: 1.502798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.009213, LT: 0.641831, Top1S: 100.000000, Top1T: 81.382713 +Train:epoch: 125, loss@min: 1.006966, loss@max: 1.488964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.009201, LT: 0.641514, Top1S: 100.000000, Top1T: 81.345680 +Train:epoch: 126, loss@min: 1.006086, loss@max: 1.485753, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 126, LS: 0.009190, LT: 0.641066, Top1S: 100.000000, Top1T: 81.382713 +Train:epoch: 127, loss@min: 0.998866, loss@max: 1.482328, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 127, LS: 0.009180, LT: 0.641015, Top1S: 100.000000, Top1T: 81.395065 +Train:epoch: 128, loss@min: 1.028215, loss@max: 1.479721, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 128, LS: 0.009171, LT: 0.640936, Top1S: 100.000000, Top1T: 81.395065 +Train:epoch: 129, loss@min: 0.999860, loss@max: 1.459684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.009163, LT: 0.641136, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 130, loss@min: 1.016286, loss@max: 1.471310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.009155, LT: 0.641628, Top1S: 100.000000, Top1T: 81.432098 +Train:epoch: 131, loss@min: 1.027014, loss@max: 1.441123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.009149, LT: 0.641904, Top1S: 100.000000, Top1T: 81.518517 +Train:epoch: 132, loss@min: 1.035102, loss@max: 1.453908, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 132, LS: 0.009143, LT: 0.642420, Top1S: 100.000000, Top1T: 81.506172 +Train:epoch: 133, loss@min: 0.997339, loss@max: 1.446817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.009138, LT: 0.643059, Top1S: 100.000000, Top1T: 81.506172 +Train:epoch: 134, loss@min: 1.029153, loss@max: 1.462104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.009133, LT: 0.643723, Top1S: 100.000000, Top1T: 81.518517 +Train:epoch: 135, loss@min: 1.038449, loss@max: 1.473725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.009129, LT: 0.644321, Top1S: 100.000000, Top1T: 81.481483 +Train:epoch: 136, loss@min: 1.032357, loss@max: 1.457602, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 136, LS: 0.009126, LT: 0.644755, Top1S: 100.000000, Top1T: 81.456787 +Train:epoch: 137, loss@min: 1.016133, loss@max: 1.494791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.009123, LT: 0.645332, Top1S: 100.000000, Top1T: 81.469139 +Train:epoch: 138, loss@min: 1.018661, loss@max: 1.450930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.009120, LT: 0.645940, Top1S: 100.000000, Top1T: 81.456787 +Train:epoch: 139, loss@min: 1.020212, loss@max: 1.471229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.009118, LT: 0.646483, Top1S: 100.000000, Top1T: 81.456787 +Train:epoch: 140, loss@min: 1.011977, loss@max: 1.462318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.009117, LT: 0.646907, Top1S: 100.000000, Top1T: 81.456787 +Train:epoch: 141, loss@min: 1.037242, loss@max: 1.475075, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 141, LS: 0.009115, LT: 0.647153, Top1S: 100.000000, Top1T: 81.432098 +Train:epoch: 142, loss@min: 1.021118, loss@max: 1.457141, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 142, LS: 0.009114, LT: 0.647317, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 143, loss@min: 1.022901, loss@max: 1.464047, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 143, LS: 0.009113, LT: 0.647393, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 144, loss@min: 1.022700, loss@max: 1.471455, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 144, LS: 0.009112, LT: 0.647475, Top1S: 100.000000, Top1T: 81.432098 +Train:epoch: 145, loss@min: 1.003506, loss@max: 1.460438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.009112, LT: 0.647518, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 146, loss@min: 1.033931, loss@max: 1.463139, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 146, LS: 0.009112, LT: 0.647533, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 147, loss@min: 1.010945, loss@max: 1.469082, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 147, LS: 0.009111, LT: 0.647529, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 148, loss@min: 1.021504, loss@max: 1.483065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.009111, LT: 0.647526, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 149, loss@min: 1.050887, loss@max: 1.464599, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 149, LS: 0.009111, LT: 0.647525, Top1S: 100.000000, Top1T: 81.419754 +Train:epoch: 150, loss@min: 1.015649, loss@max: 1.468683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.009111, LT: 0.647525, Top1S: 100.000000, Top1T: 81.419754 +------------------------------------------- +Tue Jun 20 13:07:20 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Thu Jun 29 10:34:29 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Thu Jun 29 10:47:06 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Wed Jul 19 17:15:00 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Wed Jul 19 17:15:39 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Wed Jul 19 17:16:49 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Wed Jul 19 17:19:07 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Wed Jul 19 17:20:23 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Wed Jul 19 17:20:38 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 50} + +------------------------------------------- +Wed Jul 19 17:24:29 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 50} + +------------------------------------------- +Wed Jul 19 17:25:53 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.886360, loss@max: 6.209892, Top1S acc: 44.140625, Top1T acc: 36.718750 +Train:epoch: 2, loss@min: 6.884604, loss@max: 5.061308, Top1S acc: 81.250000, Top1T acc: 55.859375 +Train:epoch: 3, loss@min: 4.295563, loss@max: 4.678268, Top1S acc: 87.890625, Top1T acc: 71.484375 +Train:epoch: 4, loss@min: 2.241615, loss@max: 3.801425, Top1S acc: 98.828125, Top1T acc: 85.156250 +Train:epoch: 5, loss@min: 1.984384, loss@max: 3.494872, Top1S acc: 97.656250, Top1T acc: 83.593750 +Train:epoch: 6, loss@min: 1.760331, loss@max: 2.603333, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 7, loss@min: 1.517195, loss@max: 2.386423, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 8, loss@min: 1.374813, loss@max: 1.964874, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.349985, loss@max: 1.841200, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.111982, loss@max: 1.790298, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.069468, loss@max: 1.788090, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 0.955642, loss@max: 1.745537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.048088, loss@max: 1.592792, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.101822, loss@max: 1.494627, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.968167, loss@max: 1.596585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.049991, loss@max: 1.492546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.966112, loss@max: 1.516941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.016266, loss@max: 1.448825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.957021, loss@max: 1.487039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.038522, loss@max: 1.441118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915329, loss@max: 1.606836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.046878, loss@max: 1.419483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.001713, loss@max: 1.499312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.956009, loss@max: 1.535969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.980948, loss@max: 1.539386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.988105, loss@max: 1.474325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.945680, loss@max: 1.477149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.997708, loss@max: 1.465230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.976163, loss@max: 1.473040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.015704, loss@max: 1.466706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.997776, loss@max: 1.491737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.946232, loss@max: 1.488117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.992287, loss@max: 1.488757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.963401, loss@max: 1.486236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.018786, loss@max: 1.435868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.953817, loss@max: 1.504128, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.016013, loss@max: 1.422939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.972583, loss@max: 1.463474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.969725, loss@max: 1.476330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.066594, loss@max: 1.402224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.911026, loss@max: 1.535661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.021901, loss@max: 1.418931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.912329, loss@max: 1.518656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.023971, loss@max: 1.439849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952446, loss@max: 1.491816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.968003, loss@max: 1.467268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.023715, loss@max: 1.419819, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.920300, loss@max: 1.513477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.043663, loss@max: 1.411295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944744, loss@max: 1.472418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002304, LT: 1.500764, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 51, loss@min: 0.940979, loss@max: 1.505153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002264, LT: 1.493079, Top1S: 100.000000, Top1T: 67.730499Best acc: 67.730499 +Train:epoch: 52, loss@min: 1.030675, loss@max: 1.431685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002238, LT: 1.494313, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 53, loss@min: 0.943439, loss@max: 1.492712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002218, LT: 1.503504, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 54, loss@min: 1.016375, loss@max: 1.438579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002197, LT: 1.509306, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 55, loss@min: 0.921293, loss@max: 1.509379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.002171, LT: 1.493949, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 56, loss@min: 1.024559, loss@max: 1.417947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.002159, LT: 1.496767, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 57, loss@min: 0.940145, loss@max: 1.525604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002138, LT: 1.491870, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 58, loss@min: 1.007904, loss@max: 1.447990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002110, LT: 1.491657, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 59, loss@min: 0.952696, loss@max: 1.475859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002090, LT: 1.497308, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 60, loss@min: 0.981399, loss@max: 1.452785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002069, LT: 1.494959, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 61, loss@min: 0.985386, loss@max: 1.425917, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 17:40:26 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.886358, loss@max: 6.209891, Top1S acc: 44.140625, Top1T acc: 36.718750 +Train:epoch: 2, loss@min: 6.884602, loss@max: 5.061308, Top1S acc: 81.250000, Top1T acc: 55.859375 +Train:epoch: 3, loss@min: 4.295559, loss@max: 4.678268, Top1S acc: 87.890625, Top1T acc: 71.484375 +Train:epoch: 4, loss@min: 2.241615, loss@max: 3.801426, Top1S acc: 98.828125, Top1T acc: 85.156250 +Train:epoch: 5, loss@min: 1.984383, loss@max: 3.494869, Top1S acc: 97.656250, Top1T acc: 83.593750 +Train:epoch: 6, loss@min: 1.760334, loss@max: 2.603330, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 7, loss@min: 1.517191, loss@max: 2.386424, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 8, loss@min: 1.374813, loss@max: 1.964873, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.349985, loss@max: 1.841200, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.111982, loss@max: 1.790299, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.069468, loss@max: 1.788090, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 0.955641, loss@max: 1.745537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.048090, loss@max: 1.592790, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.101821, loss@max: 1.494627, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.968168, loss@max: 1.596584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.049990, loss@max: 1.492547, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.966112, loss@max: 1.516940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.016267, loss@max: 1.448824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.957020, loss@max: 1.487041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.038521, loss@max: 1.441118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915330, loss@max: 1.606833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.046876, loss@max: 1.419486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.001716, loss@max: 1.499310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.956009, loss@max: 1.535973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.980948, loss@max: 1.539387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.003492, LT: 1.518366, Top1S: 100.000000, Top1T: 66.193855Best acc: 66.193855 +Train:epoch: 26, loss@min: 0.987063, loss@max: 1.480178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.003411, LT: 1.495152, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 27, loss@min: 0.948827, loss@max: 1.475789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.003328, LT: 1.502252, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 28, loss@min: 0.998298, loss@max: 1.465024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.003262, LT: 1.482468, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 29, loss@min: 0.971725, loss@max: 1.476125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.003195, LT: 1.480148, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 30, loss@min: 1.019772, loss@max: 1.462525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.003128, LT: 1.496984, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 31, loss@min: 0.995390, loss@max: 1.495807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.003054, LT: 1.501652, Top1S: 100.000000, Top1T: 67.612289Best acc: 67.612289 +Train:epoch: 32, loss@min: 0.948780, loss@max: 1.485622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.002987, LT: 1.496734, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 33, loss@min: 0.985760, loss@max: 1.494526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.002929, LT: 1.502058, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 34, loss@min: 0.967109, loss@max: 1.480052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.002879, LT: 1.498478, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 35, loss@min: 1.014303, loss@max: 1.439038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.002829, LT: 1.494459, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 36, loss@min: 0.983060, loss@max: 1.487063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.002786, LT: 1.494447, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 37, loss@min: 1.019981, loss@max: 1.456037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.002733, LT: 1.493783, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 38, loss@min: 0.989085, loss@max: 1.485182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.002694, LT: 1.493565, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 39, loss@min: 0.982035, loss@max: 1.533563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.002667, LT: 1.483679, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 40, loss@min: 1.013677, loss@max: 1.477001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.002609, LT: 1.477044, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 41, loss@min: 0.971886, loss@max: 1.512667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.002582, LT: 1.479305, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 42, loss@min: 0.993649, loss@max: 1.490870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.002540, LT: 1.474504, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 43, loss@min: 0.959500, loss@max: 1.502118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.002502, LT: 1.481669, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 44, loss@min: 0.977912, loss@max: 1.463422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.002473, LT: 1.491502, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 45, loss@min: 0.944828, loss@max: 1.518225, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 45, LS: 0.002447, LT: 1.487204, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 46, loss@min: 0.957772, loss@max: 1.505990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.002416, LT: 1.496956, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 47, loss@min: 0.980437, loss@max: 1.463766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.002387, LT: 1.501078, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 48, loss@min: 0.967849, loss@max: 1.464019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.002358, LT: 1.489497, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 49, loss@min: 0.936734, loss@max: 1.473696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.002321, LT: 1.500221, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 50, loss@min: 1.007718, loss@max: 1.428372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002292, LT: 1.496468, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 51, loss@min: 0.972621, loss@max: 1.448410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002273, LT: 1.501661, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 52, loss@min: 0.992241, loss@max: 1.426526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002233, LT: 1.511851, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 53, loss@min: 0.999429, loss@max: 1.453753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002211, LT: 1.513082, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 54, loss@min: 0.970203, loss@max: 1.478716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002191, LT: 1.516809, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 55, loss@min: 0.951706, loss@max: 1.472506, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 18:02:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.886359, loss@max: 6.209892, Top1S acc: 44.140625, Top1T acc: 36.718750 +Train:epoch: 2, loss@min: 6.884604, loss@max: 5.061309, Top1S acc: 81.250000, Top1T acc: 55.859375 +Train:epoch: 3, loss@min: 4.295563, loss@max: 4.678269, Top1S acc: 87.890625, Top1T acc: 71.484375 +Train:epoch: 4, loss@min: 2.241615, loss@max: 3.801425, Top1S acc: 98.828125, Top1T acc: 85.156250 +Train:epoch: 5, loss@min: 1.984384, loss@max: 3.494873, Top1S acc: 97.656250, Top1T acc: 83.593750 +Train:epoch: 6, loss@min: 1.760331, loss@max: 2.603332, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 7, loss@min: 1.517196, loss@max: 2.386422, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 8, loss@min: 1.374813, loss@max: 1.964874, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.349984, loss@max: 1.841200, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.111982, loss@max: 1.790298, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.069468, loss@max: 1.788090, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 0.955642, loss@max: 1.745537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.048088, loss@max: 1.592792, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.101822, loss@max: 1.494627, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.968167, loss@max: 1.596585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.049991, loss@max: 1.492546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.966112, loss@max: 1.516940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.016266, loss@max: 1.448825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.957021, loss@max: 1.487039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.038521, loss@max: 1.441118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915331, loss@max: 1.606836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.046878, loss@max: 1.419483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.001713, loss@max: 1.499311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.956008, loss@max: 1.535970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.980949, loss@max: 1.539386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.003492, LT: 1.518366, Top1S: 100.000000, Top1T: 66.193855Best acc: 66.193855 +Train:epoch: 26, loss@min: 0.987060, loss@max: 1.480178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.003411, LT: 1.495153, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 27, loss@min: 0.948828, loss@max: 1.475785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.003328, LT: 1.502253, Top1S: 100.000000, Top1T: 66.489365{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 18:09:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 25.276756, loss@max: 7.181651, Top1S acc: 2.734375, Top1T acc: 1.562500 +Train:epoch: 2, loss@min: 22.181322, loss@max: 6.767602, Top1S acc: 3.125000, Top1T acc: 6.640625 +Train:epoch: 3, loss@min: 18.688616, loss@max: 6.506779, Top1S acc: 3.125000, Top1T acc: 9.375000 +Train:epoch: 4, loss@min: 16.375816, loss@max: 6.329079, Top1S acc: 1.171875, Top1T acc: 16.796875 +Train:epoch: 5, loss@min: 14.456810, loss@max: 6.303411, Top1S acc: 9.765625, Top1T acc: 32.031250 +Train:epoch: 6, loss@min: 13.062470, loss@max: 6.185770, Top1S acc: 12.890625, Top1T acc: 37.500000 +Train:epoch: 7, loss@min: 11.768425, loss@max: 6.188222, Top1S acc: 23.046875, Top1T acc: 43.359375 +Train:epoch: 8, loss@min: 10.501352, loss@max: 5.911122, Top1S acc: 32.812500, Top1T acc: 51.171875 +Train:epoch: 9, loss@min: 9.441472, loss@max: 5.814100, Top1S acc: 39.062500, Top1T acc: 56.640625 +Train:epoch: 10, loss@min: 9.319008, loss@max: 5.675613, Top1S acc: 44.140625, Top1T acc: 57.812500 +Train:epoch: 11, loss@min: 8.423148, loss@max: 5.488369, Top1S acc: 65.234375, Top1T acc: 62.890625 +Train:epoch: 12, loss@min: 7.594829, loss@max: 5.266771, Top1S acc: 71.484375, Top1T acc: 73.828125 +Train:epoch: 13, loss@min: 7.032374, loss@max: 5.196512, Top1S acc: 74.218750, Top1T acc: 73.437500 +Train:epoch: 14, loss@min: 6.796848, loss@max: 5.129719, Top1S acc: 82.421875, Top1T acc: 72.656250 +Train:epoch: 15, loss@min: 5.748477, loss@max: 4.899687, Top1S acc: 94.531250, Top1T acc: 83.593750 +Train:epoch: 16, loss@min: 5.741476, loss@max: 4.853820, Top1S acc: 95.312500, Top1T acc: 77.343750 +Train:epoch: 17, loss@min: 5.176479, loss@max: 4.681869, Top1S acc: 96.484375, Top1T acc: 84.765625 +Train:epoch: 18, loss@min: 4.911319, loss@max: 4.522252, Top1S acc: 96.484375, Top1T acc: 84.765625 +Train:epoch: 19, loss@min: 4.449474, loss@max: 4.542542, Top1S acc: 97.656250, Top1T acc: 87.890625 +Train:epoch: 20, loss@min: 4.197586, loss@max: 4.504327, Top1S acc: 98.437500, Top1T acc: 88.281250 +Train:epoch: 21, loss@min: 3.917427, loss@max: 4.389922, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 22, loss@min: 3.639570, loss@max: 4.182110, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 23, loss@min: 3.403023, loss@max: 4.180530, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 24, loss@min: 3.341629, loss@max: 4.067224, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 25, loss@min: 3.053906, loss@max: 4.020430, Top1S acc: 100.000000, Top1T acc: 91.406250 + Test:epoch: 25, LS: 0.720860, LT: 1.551641, Top1S: 100.000000, Top1T: 59.929077Best acc: 59.929077 +Train:epoch: 26, loss@min: 2.872932, loss@max: 3.864730, Top1S acc: 100.000000, Top1T acc: 92.968750 + Test:epoch: 26, LS: 0.668870, LT: 1.540484, Top1S: 100.000000, Top1T: 60.047283Best acc: 60.047283 +Train:epoch: 27, loss@min: 2.811758, loss@max: 3.788769, Top1S acc: 100.000000, Top1T acc: 89.062500 + Test:epoch: 27, LS: 0.621803, LT: 1.531294, Top1S: 100.000000, Top1T: 60.224586Best acc: 60.224586 +Train:epoch: 28, loss@min: 2.673342, loss@max: 3.763968, Top1S acc: 100.000000, Top1T acc: 95.312500 + Test:epoch: 28, LS: 0.579375, LT: 1.525861, Top1S: 100.000000, Top1T: 60.697399Best acc: 60.697399 +Train:epoch: 29, loss@min: 2.564939, loss@max: 3.627768, Top1S acc: 100.000000, Top1T acc: 94.531250 + Test:epoch: 29, LS: 0.541230, LT: 1.521760, Top1S: 100.000000, Top1T: 60.697399 +Train:epoch: 30, loss@min: 2.420566, loss@max: 3.562300, Top1S acc: 100.000000, Top1T acc: 94.531250 + Test:epoch: 30, LS: 0.506922, LT: 1.516946, Top1S: 100.000000, Top1T: 61.111111Best acc: 61.111111 +Train:epoch: 31, loss@min: 2.263837, loss@max: 3.504171, Top1S acc: 100.000000, Top1T acc: 95.312500 + Test:epoch: 31, LS: 0.475783, LT: 1.513158, Top1S: 100.000000, Top1T: 61.465721Best acc: 61.465721 +Train:epoch: 32, loss@min: 2.262932, loss@max: 3.406342, Top1S acc: 100.000000, Top1T acc: 94.921875 + Test:epoch: 32, LS: 0.447557, LT: 1.510296, Top1S: 100.000000, Top1T: 61.879433Best acc: 61.879433 +Train:epoch: 33, loss@min: 2.076374, loss@max: 3.338855, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 33, LS: 0.421987, LT: 1.510296, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 34, loss@min: 2.008778, loss@max: 3.253535, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 34, LS: 0.398718, LT: 1.509911, Top1S: 100.000000, Top1T: 62.293144Best acc: 62.293144 +Train:epoch: 35, loss@min: 2.137706, loss@max: 3.272414, Top1S acc: 100.000000, Top1T acc: 95.703125 + Test:epoch: 35, LS: 0.377483, LT: 1.511810, Top1S: 100.000000, Top1T: 62.115841 +Train:epoch: 36, loss@min: 2.063796, loss@max: 3.106937, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 36, LS: 0.358170, LT: 1.509532, Top1S: 100.000000, Top1T: 62.352245Best acc: 62.352245 +Train:epoch: 37, loss@min: 1.974274, loss@max: 3.096070, Top1S acc: 100.000000, Top1T acc: 96.093750 + Test:epoch: 37, LS: 0.340627, LT: 1.507994, Top1S: 100.000000, Top1T: 62.706856Best acc: 62.706856 +Train:epoch: 38, loss@min: 1.821097, loss@max: 2.866325, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 38, LS: 0.324566, LT: 1.509606, Top1S: 100.000000, Top1T: 62.647755 +Train:epoch: 39, loss@min: 1.823197, loss@max: 2.947091, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 39, LS: 0.309756, LT: 1.512094, Top1S: 100.000000, Top1T: 62.588654 +Train:epoch: 40, loss@min: 1.762967, loss@max: 2.921431, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 40, LS: 0.296079, LT: 1.511109, Top1S: 100.000000, Top1T: 62.884159Best acc: 62.884159 +Train:epoch: 41, loss@min: 1.753131, loss@max: 2.982700, Top1S acc: 100.000000, Top1T acc: 97.265625 + Test:epoch: 41, LS: 0.283514, LT: 1.512340, Top1S: 100.000000, Top1T: 63.416077Best acc: 63.416077 +Train:epoch: 42, loss@min: 1.744679, loss@max: 2.778691, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 42, LS: 0.271878, LT: 1.514238, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 43, loss@min: 1.616598, loss@max: 2.750161, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.261186, LT: 1.517039, Top1S: 100.000000, Top1T: 63.356976{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 18:23:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 17.890491, loss@max: 7.038836, Top1S acc: 2.734375, Top1T acc: 30.859375 +Train:epoch: 2, loss@min: 14.211691, loss@max: 6.887007, Top1S acc: 3.125000, Top1T acc: 58.593750 +Train:epoch: 3, loss@min: 12.484765, loss@max: 6.509972, Top1S acc: 3.125000, Top1T acc: 62.890625 +Train:epoch: 4, loss@min: 10.862612, loss@max: 5.676864, Top1S acc: 2.734375, Top1T acc: 80.859375 +Train:epoch: 5, loss@min: 9.931361, loss@max: 5.465649, Top1S acc: 8.984375, Top1T acc: 82.031250 +Train:epoch: 6, loss@min: 9.174208, loss@max: 4.767064, Top1S acc: 14.062500, Top1T acc: 89.453125 +Train:epoch: 7, loss@min: 8.078398, loss@max: 4.928185, Top1S acc: 20.703125, Top1T acc: 91.796875 +Train:epoch: 8, loss@min: 7.376956, loss@max: 4.509559, Top1S acc: 32.812500, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 6.838827, loss@max: 4.277079, Top1S acc: 41.015625, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 6.388149, loss@max: 4.015658, Top1S acc: 41.406250, Top1T acc: 98.437500 +Train:epoch: 11, loss@min: 5.820094, loss@max: 4.002990, Top1S acc: 64.453125, Top1T acc: 98.046875 +Train:epoch: 12, loss@min: 5.466330, loss@max: 3.623135, Top1S acc: 68.359375, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 4.902931, loss@max: 3.691315, Top1S acc: 73.046875, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 4.850324, loss@max: 3.586161, Top1S acc: 78.906250, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 4.516383, loss@max: 3.346444, Top1S acc: 92.968750, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 4.178935, loss@max: 3.347988, Top1S acc: 94.140625, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 3.875779, loss@max: 3.250384, Top1S acc: 96.484375, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 3.838912, loss@max: 3.083641, Top1S acc: 94.921875, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 3.365235, loss@max: 3.232019, Top1S acc: 95.312500, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 3.327601, loss@max: 3.127532, Top1S acc: 98.437500, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 3.039302, loss@max: 3.157143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 2.876336, loss@max: 3.019323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 2.707789, loss@max: 3.035017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 2.633487, loss@max: 3.001458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 2.393757, loss@max: 3.014110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.778368, LT: 1.573105, Top1S: 100.000000, Top1T: 65.366432Best acc: 65.366432 +Train:epoch: 26, loss@min: 2.320072, loss@max: 2.907270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.724008, LT: 1.563684, Top1S: 100.000000, Top1T: 64.952721 +Train:epoch: 27, loss@min: 2.306838, loss@max: 2.808198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.674510, LT: 1.542916, Top1S: 100.000000, Top1T: 65.484634Best acc: 65.484634 +Train:epoch: 28, loss@min: 2.195013, loss@max: 2.833271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.629639, LT: 1.565346, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 29, loss@min: 2.153240, loss@max: 2.846420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.588844, LT: 1.529494, Top1S: 100.000000, Top1T: 65.780144Best acc: 65.780144 +Train:epoch: 30, loss@min: 2.066022, loss@max: 2.718100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.551822, LT: 1.552122, Top1S: 100.000000, Top1T: 65.366432 +Train:epoch: 31, loss@min: 1.886379, loss@max: 2.777898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.518248, LT: 1.548438, Top1S: 100.000000, Top1T: 64.952721 +Train:epoch: 32, loss@min: 1.885164, loss@max: 2.676407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.487677, LT: 1.523276, Top1S: 100.000000, Top1T: 65.543732 +Train:epoch: 33, loss@min: 1.825237, loss@max: 2.627119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.459775, LT: 1.521902, Top1S: 100.000000, Top1T: 65.484634 +Train:epoch: 34, loss@min: 1.762381, loss@max: 2.591532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.434352, LT: 1.510592, Top1S: 100.000000, Top1T: 65.484634 +Train:epoch: 35, loss@min: 1.820355, loss@max: 2.527531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.411049, LT: 1.525582, Top1S: 100.000000, Top1T: 65.602837 +Train:epoch: 36, loss@min: 1.712542, loss@max: 2.544048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.389769, LT: 1.496822, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 37, loss@min: 1.679171, loss@max: 2.491856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.370240, LT: 1.507304, Top1S: 100.000000, Top1T: 65.366432 +Train:epoch: 38, loss@min: 1.680827, loss@max: 2.393661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.352376, LT: 1.503951, Top1S: 100.000000, Top1T: 65.425529 +Train:epoch: 39, loss@min: 1.591913, loss@max: 2.411715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.335924, LT: 1.479613, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 40, loss@min: 1.618507, loss@max: 2.332063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.320735, LT: 1.487107, Top1S: 100.000000, Top1T: 65.898346Best acc: 65.898346 +Train:epoch: 41, loss@min: 1.526634, loss@max: 2.444720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.306773, LT: 1.492344, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 42, loss@min: 1.619843, loss@max: 2.311389, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.293747, LT: 1.480368, Top1S: 100.000000, Top1T: 65.721039 +Train:epoch: 43, loss@min: 1.463070, loss@max: 2.323215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.281756, LT: 1.498531, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 44, loss@min: 1.488961, loss@max: 2.292006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.270559, LT: 1.485382, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 45, loss@min: 1.460423, loss@max: 2.283973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.260201, LT: 1.489298, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 46, loss@min: 1.403006, loss@max: 2.237941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.250578, LT: 1.499959, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 47, loss@min: 1.437980, loss@max: 2.212390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.241579, LT: 1.490846, Top1S: 100.000000, Top1T: 65.602837 +Train:epoch: 48, loss@min: 1.439631, loss@max: 2.103412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.233137, LT: 1.504490, Top1S: 100.000000, Top1T: 66.193855Best acc: 66.193855 +Train:epoch: 49, loss@min: 1.377866, loss@max: 2.101809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.225284, LT: 1.485891, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 50, loss@min: 1.335008, loss@max: 2.118668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.217905, LT: 1.523291, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 51, loss@min: 1.416092, loss@max: 1.991796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.210934, LT: 1.496550, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 52, loss@min: 1.415071, loss@max: 2.049774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.204441, LT: 1.501533, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 53, loss@min: 1.317711, loss@max: 2.088185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.198305, LT: 1.533478, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 54, loss@min: 1.394526, loss@max: 1.971802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.192509, LT: 1.495944, Top1S: 100.000000, Top1T: 66.430260Best acc: 66.430260 +Train:epoch: 55, loss@min: 1.318955, loss@max: 1.965613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.187075, LT: 1.509590, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 56, loss@min: 1.285843, loss@max: 2.011949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.181938, LT: 1.511518, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 57, loss@min: 1.319312, loss@max: 1.980298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.177063, LT: 1.495807, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 58, loss@min: 1.327243, loss@max: 1.973030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.172466, LT: 1.512594, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 59, loss@min: 1.280182, loss@max: 2.009366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.168111, LT: 1.518505, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 60, loss@min: 1.313253, loss@max: 1.918401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.163996, LT: 1.498304, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 61, loss@min: 1.296245, loss@max: 1.885241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.160102, LT: 1.504118, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 62, loss@min: 1.259642, loss@max: 1.931672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.156395, LT: 1.514917, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 63, loss@min: 1.269680, loss@max: 1.898545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.152882, LT: 1.489492, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 64, loss@min: 1.260469, loss@max: 1.851526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.149556, LT: 1.495625, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 65, loss@min: 1.275772, loss@max: 1.861409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.146403, LT: 1.513148, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 66, loss@min: 1.249312, loss@max: 1.887555, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.143392, LT: 1.498871, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 67, loss@min: 1.246578, loss@max: 1.861375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.140512, LT: 1.500816, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 68, loss@min: 1.244098, loss@max: 1.829658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.137782, LT: 1.517171, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 69, loss@min: 1.226756, loss@max: 1.828199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.135185, LT: 1.506438, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 70, loss@min: 1.199295, loss@max: 1.831132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.132692, LT: 1.508731, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 71, loss@min: 1.186596, loss@max: 1.818470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.130333, LT: 1.521411, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 72, loss@min: 1.267403, loss@max: 1.744847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.128076, LT: 1.511193, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 73, loss@min: 1.191180, loss@max: 1.795102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.125921, LT: 1.509022, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 74, loss@min: 1.187317, loss@max: 1.832541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.123858, LT: 1.522481, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 75, loss@min: 1.226633, loss@max: 1.739287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.121877, LT: 1.516386, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 76, loss@min: 1.183672, loss@max: 1.771184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.120009, LT: 1.509960, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 77, loss@min: 1.182948, loss@max: 1.770347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.118202, LT: 1.519995, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 78, loss@min: 1.219723, loss@max: 1.718673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.116465, LT: 1.519704, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 79, loss@min: 1.193031, loss@max: 1.727472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.114827, LT: 1.517573, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 80, loss@min: 1.172236, loss@max: 1.755164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.113248, LT: 1.528091, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 81, loss@min: 1.192249, loss@max: 1.735122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.111730, LT: 1.534571, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 82, loss@min: 1.168553, loss@max: 1.731698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.110300, LT: 1.532733, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 83, loss@min: 1.202908, loss@max: 1.689400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.108912, LT: 1.539196, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 84, loss@min: 1.199114, loss@max: 1.704067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.107585, LT: 1.534886, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 85, loss@min: 1.165975, loss@max: 1.731283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.106321, LT: 1.535136, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 86, loss@min: 1.167398, loss@max: 1.698499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.105096, LT: 1.539582, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 87, loss@min: 1.177158, loss@max: 1.684011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.103925, LT: 1.545926, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 88, loss@min: 1.163579, loss@max: 1.667487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.102816, LT: 1.547021, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 89, loss@min: 1.135788, loss@max: 1.683429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.101737, LT: 1.544937, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 90, loss@min: 1.187723, loss@max: 1.650285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.100701, LT: 1.549501, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 91, loss@min: 1.152908, loss@max: 1.690417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.099725, LT: 1.552966, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 92, loss@min: 1.126728, loss@max: 1.685822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.098790, LT: 1.548117, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 93, loss@min: 1.167299, loss@max: 1.661123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.097885, LT: 1.546051, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 94, loss@min: 1.170521, loss@max: 1.646009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.097020, LT: 1.552027, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 95, loss@min: 1.141559, loss@max: 1.679089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.096193, LT: 1.552098, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 96, loss@min: 1.145700, loss@max: 1.656571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.095401, LT: 1.552319, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 97, loss@min: 1.150007, loss@max: 1.654158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.094641, LT: 1.557333, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 98, loss@min: 1.121218, loss@max: 1.651754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.093913, LT: 1.558321, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 99, loss@min: 1.154994, loss@max: 1.636533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.093218, LT: 1.560960, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 100, loss@min: 1.133919, loss@max: 1.643279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.092555, LT: 1.567986, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 101, loss@min: 1.126876, loss@max: 1.644055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.091920, LT: 1.568176, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 102, loss@min: 1.130638, loss@max: 1.639129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.091310, LT: 1.566797, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 103, loss@min: 1.165594, loss@max: 1.604984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.090733, LT: 1.570877, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 104, loss@min: 1.139084, loss@max: 1.631426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.090186, LT: 1.575230, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 105, loss@min: 1.126949, loss@max: 1.628623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.089659, LT: 1.575049, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 106, loss@min: 1.117959, loss@max: 1.642828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.089153, LT: 1.572399, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 107, loss@min: 1.140384, loss@max: 1.622138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.088671, LT: 1.572812, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 108, loss@min: 1.126747, loss@max: 1.622172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.088215, LT: 1.576374, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 109, loss@min: 1.132871, loss@max: 1.613133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.087780, LT: 1.577176, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 110, loss@min: 1.119554, loss@max: 1.605535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.087367, LT: 1.576471, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 111, loss@min: 1.123665, loss@max: 1.630560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.086973, LT: 1.578973, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 112, loss@min: 1.127772, loss@max: 1.629447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.086601, LT: 1.582587, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 113, loss@min: 1.126691, loss@max: 1.622414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.086246, LT: 1.582980, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 114, loss@min: 1.137957, loss@max: 1.588117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.085912, LT: 1.583090, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 115, loss@min: 1.123194, loss@max: 1.615536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.085598, LT: 1.583221, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 116, loss@min: 1.133070, loss@max: 1.586612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.085301, LT: 1.584219, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 117, loss@min: 1.110620, loss@max: 1.591278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.085021, LT: 1.585716, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 118, loss@min: 1.118752, loss@max: 1.603451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.084754, LT: 1.587745, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 119, loss@min: 1.117224, loss@max: 1.608966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.084504, LT: 1.587809, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 120, loss@min: 1.111204, loss@max: 1.611088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.084270, LT: 1.586973, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 121, loss@min: 1.119833, loss@max: 1.595965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.084053, LT: 1.588088, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 122, loss@min: 1.119978, loss@max: 1.588665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.083849, LT: 1.589991, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 123, loss@min: 1.103503, loss@max: 1.606272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.083659, LT: 1.592082, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 124, loss@min: 1.125820, loss@max: 1.597219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.083482, LT: 1.593117, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 125, loss@min: 1.106910, loss@max: 1.615571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.083318, LT: 1.593279, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 126, loss@min: 1.112299, loss@max: 1.601703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.083165, LT: 1.593067, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 127, loss@min: 1.119669, loss@max: 1.594190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.083025, LT: 1.592348, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 128, loss@min: 1.116710, loss@max: 1.584238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.082897, LT: 1.592618, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 129, loss@min: 1.126098, loss@max: 1.584941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.082780, LT: 1.593123, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 130, loss@min: 1.126906, loss@max: 1.596047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.082674, LT: 1.594051, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 131, loss@min: 1.100386, loss@max: 1.606407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.082577, LT: 1.594576, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 132, loss@min: 1.112017, loss@max: 1.598516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.082491, LT: 1.594910, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 133, loss@min: 1.117126, loss@max: 1.600985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.082412, LT: 1.595283, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 134, loss@min: 1.128076, loss@max: 1.571243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.082343, LT: 1.595372, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 135, loss@min: 1.104295, loss@max: 1.592436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.082282, LT: 1.595653, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 136, loss@min: 1.118462, loss@max: 1.605858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.082227, LT: 1.595904, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 137, loss@min: 1.111482, loss@max: 1.604361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.082180, LT: 1.596203, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 138, loss@min: 1.101753, loss@max: 1.592507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.082139, LT: 1.596261, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 139, loss@min: 1.126992, loss@max: 1.582603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.082105, LT: 1.596361, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 140, loss@min: 1.124879, loss@max: 1.572502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.082076, LT: 1.596593, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 141, loss@min: 1.113378, loss@max: 1.592935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.082053, LT: 1.596655, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 142, loss@min: 1.122928, loss@max: 1.575008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.082034, LT: 1.596673, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 143, loss@min: 1.133324, loss@max: 1.580607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.082020, LT: 1.596771, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 144, loss@min: 1.112931, loss@max: 1.590470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.082009, LT: 1.596799, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 145, loss@min: 1.120678, loss@max: 1.574275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.082001, LT: 1.596825, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 146, loss@min: 1.112734, loss@max: 1.605372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.081996, LT: 1.596839, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 147, loss@min: 1.127777, loss@max: 1.582446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.081993, LT: 1.596847, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 148, loss@min: 1.111035, loss@max: 1.605172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.081992, LT: 1.596854, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 149, loss@min: 1.101031, loss@max: 1.593620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.081991, LT: 1.596857, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 150, loss@min: 1.122327, loss@max: 1.581008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.081991, LT: 1.596857, Top1S: 100.000000, Top1T: 66.134750 +------------------------------------------- +Wed Jul 19 19:33:30 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 20:24:38 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.886360, loss@max: 6.209892, Top1S acc: 44.140625, Top1T acc: 36.718750 +Train:epoch: 2, loss@min: 6.884604, loss@max: 5.061308, Top1S acc: 81.250000, Top1T acc: 55.859375 +Train:epoch: 3, loss@min: 4.295563, loss@max: 4.678268, Top1S acc: 87.890625, Top1T acc: 71.484375 +Train:epoch: 4, loss@min: 2.241615, loss@max: 3.801425, Top1S acc: 98.828125, Top1T acc: 85.156250 +Train:epoch: 5, loss@min: 1.984384, loss@max: 3.494872, Top1S acc: 97.656250, Top1T acc: 83.593750 +Train:epoch: 6, loss@min: 1.760331, loss@max: 2.603333, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 7, loss@min: 1.517195, loss@max: 2.386423, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 8, loss@min: 1.374813, loss@max: 1.964874, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.349985, loss@max: 1.841200, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.111982, loss@max: 1.790298, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.069468, loss@max: 1.788090, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 0.955642, loss@max: 1.745537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.048088, loss@max: 1.592792, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.101822, loss@max: 1.494627, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.968167, loss@max: 1.596585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.049991, loss@max: 1.492546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.966112, loss@max: 1.516941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.016266, loss@max: 1.448825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.957021, loss@max: 1.487039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.038522, loss@max: 1.441118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915329, loss@max: 1.606836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.046878, loss@max: 1.419483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.001713, loss@max: 1.499312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.956009, loss@max: 1.535969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.980948, loss@max: 1.539386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.003492, LT: 1.518366, Top1S: 100.000000, Top1T: 66.193855Best acc: 66.193855 +Train:epoch: 26, loss@min: 0.987061, loss@max: 1.480177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.003411, LT: 1.495153, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 27, loss@min: 0.948828, loss@max: 1.475785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.003328, LT: 1.502253, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 28, loss@min: 0.998299, loss@max: 1.465024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.003262, LT: 1.482468, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 29, loss@min: 0.971724, loss@max: 1.476123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.003195, LT: 1.480150, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 30, loss@min: 1.019772, loss@max: 1.462522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.003128, LT: 1.496985, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 31, loss@min: 0.995395, loss@max: 1.495804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.003054, LT: 1.501654, Top1S: 100.000000, Top1T: 67.612289Best acc: 67.612289 +Train:epoch: 32, loss@min: 0.948773, loss@max: 1.485627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.002987, LT: 1.496736, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 33, loss@min: 0.985764, loss@max: 1.494514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.002929, LT: 1.502060, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 34, loss@min: 0.967110, loss@max: 1.480051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.002879, LT: 1.498479, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 35, loss@min: 1.014303, loss@max: 1.439039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.002829, LT: 1.494461, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 36, loss@min: 0.983065, loss@max: 1.487054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.002786, LT: 1.494448, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 37, loss@min: 1.019973, loss@max: 1.456043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.002733, LT: 1.493785, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 38, loss@min: 0.989091, loss@max: 1.485170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.002694, LT: 1.493567, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 39, loss@min: 0.982028, loss@max: 1.533571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.002667, LT: 1.483682, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 40, loss@min: 1.013676, loss@max: 1.476997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.002609, LT: 1.477046, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 41, loss@min: 0.971895, loss@max: 1.512662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.002582, LT: 1.479306, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 42, loss@min: 0.993647, loss@max: 1.490875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.002540, LT: 1.474507, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 43, loss@min: 0.959511, loss@max: 1.502118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.002502, LT: 1.481669, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 44, loss@min: 0.977914, loss@max: 1.463427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.002473, LT: 1.491504, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 45, loss@min: 0.944826, loss@max: 1.518226, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 45, LS: 0.002447, LT: 1.487204, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 46, loss@min: 0.957775, loss@max: 1.505991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.002416, LT: 1.496954, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 47, loss@min: 0.980431, loss@max: 1.463774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.002387, LT: 1.501077, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 48, loss@min: 0.967853, loss@max: 1.464009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.002358, LT: 1.489495, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 49, loss@min: 0.936728, loss@max: 1.473702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.002321, LT: 1.500220, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 50, loss@min: 1.007724, loss@max: 1.428371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002292, LT: 1.496466, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 51, loss@min: 0.972619, loss@max: 1.448414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002273, LT: 1.501659, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 52, loss@min: 0.992241, loss@max: 1.426523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002233, LT: 1.511848, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 53, loss@min: 0.999432, loss@max: 1.453745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002211, LT: 1.513081, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 54, loss@min: 0.970199, loss@max: 1.478712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002191, LT: 1.516807, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 55, loss@min: 0.951709, loss@max: 1.472505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.002160, LT: 1.506477, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 56, loss@min: 0.980739, loss@max: 1.419141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.002136, LT: 1.515281, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 57, loss@min: 0.940767, loss@max: 1.494175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002126, LT: 1.518547, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 58, loss@min: 0.980832, loss@max: 1.441381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002102, LT: 1.513934, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 59, loss@min: 0.956941, loss@max: 1.451449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002078, LT: 1.525063, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 60, loss@min: 0.961727, loss@max: 1.445346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002063, LT: 1.519031, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 61, loss@min: 0.990082, loss@max: 1.419199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.002042, LT: 1.518279, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 62, loss@min: 0.954154, loss@max: 1.505246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.002019, LT: 1.524695, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 63, loss@min: 0.978659, loss@max: 1.436346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.002007, LT: 1.514422, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 64, loss@min: 0.958182, loss@max: 1.438520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001988, LT: 1.517916, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 65, loss@min: 0.966847, loss@max: 1.460338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001968, LT: 1.523384, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 66, loss@min: 0.961470, loss@max: 1.461135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001954, LT: 1.518276, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 67, loss@min: 0.967642, loss@max: 1.453177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001934, LT: 1.521126, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 68, loss@min: 0.946490, loss@max: 1.468300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001916, LT: 1.530866, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 69, loss@min: 0.969520, loss@max: 1.427829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001904, LT: 1.521627, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 70, loss@min: 0.946309, loss@max: 1.465645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001888, LT: 1.527054, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 71, loss@min: 0.948966, loss@max: 1.472068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001876, LT: 1.523133, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 72, loss@min: 1.005156, loss@max: 1.399342, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001861, LT: 1.514467, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 73, loss@min: 0.963155, loss@max: 1.443364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001847, LT: 1.521779, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 74, loss@min: 0.962991, loss@max: 1.433749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001833, LT: 1.518736, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 75, loss@min: 0.977464, loss@max: 1.419629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001821, LT: 1.511818, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 76, loss@min: 0.959385, loss@max: 1.435695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001810, LT: 1.526998, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 77, loss@min: 0.978919, loss@max: 1.419016, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 20:56:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 60.854713, loss@max: 25.137463, Top1S acc: 35.156250, Top1T acc: 19.531250 +Train:epoch: 2, loss@min: nan, loss@max: nan, Top1S acc: 2.343750, Top1T acc: 2.343750 +Train:epoch: 3, loss@min: nan, loss@max: nan, Top1S acc: 2.343750, Top1T acc: 2.343750 +Train:epoch: 4, loss@min: nan, loss@max: nan, Top1S acc: 1.953125, Top1T acc: 1.953125 +Train:epoch: 5, loss@min: nan, loss@max: nan, Top1S acc: 3.515625, Top1T acc: 3.515625 +Train:epoch: 6, loss@min: nan, loss@max: nan, Top1S acc: 3.125000, Top1T acc: 3.125000 +Train:epoch: 7, loss@min: nan, loss@max: nan, Top1S acc: 2.343750, Top1T acc: 2.343750{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 20:57:32 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 13.186735, loss@max: 5.330893, Top1S acc: 45.312500, Top1T acc: 20.703125 +Train:epoch: 2, loss@min: 7.094707, loss@max: 5.035568, Top1S acc: 81.250000, Top1T acc: 51.953125 +Train:epoch: 3, loss@min: 4.265611, loss@max: 4.676091, Top1S acc: 92.578125, Top1T acc: 66.796875 +Train:epoch: 4, loss@min: 2.725021, loss@max: 3.824148, Top1S acc: 98.828125, Top1T acc: 70.312500 +Train:epoch: 5, loss@min: 2.378492, loss@max: 3.256446, Top1S acc: 97.656250, Top1T acc: 80.078125 +Train:epoch: 6, loss@min: 1.917755, loss@max: 2.446500, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 7, loss@min: 1.791347, loss@max: 2.291345, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 8, loss@min: 1.595081, loss@max: 2.061618, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 9, loss@min: 1.528657, loss@max: 1.995740, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 10, loss@min: 1.308483, loss@max: 2.036576, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 11, loss@min: 1.170222, loss@max: 2.033001, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.054541, loss@max: 1.793906, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 1.206059, loss@max: 1.614846, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 1.162175, loss@max: 1.656167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.051536, loss@max: 1.578815, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.055732, loss@max: 1.611068, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 1.002700, loss@max: 1.633516, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 1.057908, loss@max: 1.543346, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.066934, loss@max: 1.485222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.037023, loss@max: 1.539880, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.058445, loss@max: 1.562569, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 0.990079, loss@max: 1.540401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.031921, loss@max: 1.516495, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.993685, loss@max: 1.571860, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 1.005482, loss@max: 1.506953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.003562, LT: 1.536740, Top1S: 100.000000, Top1T: 65.602837Best acc: 65.602837 +Train:epoch: 26, loss@min: 1.043967, loss@max: 1.456066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.003497, LT: 1.543160, Top1S: 100.000000, Top1T: 65.957443Best acc: 65.957443 +Train:epoch: 27, loss@min: 1.003803, loss@max: 1.510881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.003441, LT: 1.562004, Top1S: 100.000000, Top1T: 65.543732 +Train:epoch: 28, loss@min: 1.021146, loss@max: 1.519326, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 28, LS: 0.003352, LT: 1.566590, Top1S: 100.000000, Top1T: 65.366432{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 21:04:05 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 27.939739, loss@max: 8.956368, Top1S acc: 69.531250, Top1T acc: 33.593750 +Train:epoch: 2, loss@min: 13.120187, loss@max: 6.869559, Top1S acc: 88.281250, Top1T acc: 62.500000 +Train:epoch: 3, loss@min: 7.628016, loss@max: 6.982476, Top1S acc: 96.875000, Top1T acc: 71.875000 +Train:epoch: 4, loss@min: 5.872886, loss@max: 5.348311, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 5, loss@min: 3.569726, loss@max: 6.496450, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 6, loss@min: 2.646524, loss@max: 4.708592, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 7, loss@min: 2.823368, loss@max: 3.473346, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 8, loss@min: 2.283837, loss@max: 2.825004, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 9, loss@min: 1.696226, loss@max: 3.363215, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 10, loss@min: 1.399435, loss@max: 3.191422, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 11, loss@min: 2.325015, loss@max: 2.381989, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 12, loss@min: 1.054708, loss@max: 2.911373, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 1.684348, loss@max: 2.054239, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 14, loss@min: 1.619838, loss@max: 1.846577, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.777295, loss@max: 2.581854, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 16, loss@min: 1.478219, loss@max: 1.691536, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 17, loss@min: 1.225235, loss@max: 1.913655, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 1.031639, loss@max: 2.252153, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 1.402558, loss@max: 1.961529, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 20, loss@min: 1.243683, loss@max: 1.955790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.284618, loss@max: 1.784019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.088067, loss@max: 2.000533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.129551, loss@max: 2.306981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.422670, loss@max: 1.911309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.296636, loss@max: 2.151171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.000003, LT: 1.889856, Top1S: 100.000000, Top1T: 63.356976Best acc: 63.356976 +Train:epoch: 26, loss@min: 1.071454, loss@max: 2.355451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.000000, LT: 1.837379, Top1S: 100.000000, Top1T: 63.888889Best acc: 63.888889 +Train:epoch: 27, loss@min: 1.311678, loss@max: 1.805134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.000001, LT: 1.812570, Top1S: 100.000000, Top1T: 64.420807Best acc: 64.420807 +Train:epoch: 28, loss@min: 1.260209, loss@max: 1.709201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.000001, LT: 1.798359, Top1S: 100.000000, Top1T: 64.716309Best acc: 64.716309 +Train:epoch: 29, loss@min: 1.017512, loss@max: 2.215418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.000001, LT: 1.747646, Top1S: 100.000000, Top1T: 64.479904 +Train:epoch: 30, loss@min: 1.046739, loss@max: 1.966414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000001, LT: 1.766434, Top1S: 100.000000, Top1T: 64.539009 +Train:epoch: 31, loss@min: 1.304183, loss@max: 1.776175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.000001, LT: 1.759110, Top1S: 100.000000, Top1T: 63.475178 +Train:epoch: 32, loss@min: 1.038830, loss@max: 1.921674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000001, LT: 1.735349, Top1S: 100.000000, Top1T: 64.007095 +Train:epoch: 33, loss@min: 1.223920, loss@max: 1.749614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000001, LT: 1.679352, Top1S: 100.000000, Top1T: 64.125298 +Train:epoch: 34, loss@min: 1.100092, loss@max: 1.874708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.000000, LT: 1.671653, Top1S: 100.000000, Top1T: 64.361702 +Train:epoch: 35, loss@min: 1.069699, loss@max: 1.752314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.000002, LT: 1.692052, Top1S: 100.000000, Top1T: 65.425529Best acc: 65.425529 +Train:epoch: 36, loss@min: 1.209960, loss@max: 1.777853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000000, LT: 1.668770, Top1S: 100.000000, Top1T: 64.834518 +Train:epoch: 37, loss@min: 0.975627, loss@max: 1.746630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.000001, LT: 1.642689, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 38, loss@min: 1.092012, loss@max: 1.700967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.000002, LT: 1.695381, Top1S: 100.000000, Top1T: 64.479904 +Train:epoch: 39, loss@min: 1.127957, loss@max: 1.678165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000001, LT: 1.661906, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 40, loss@min: 1.126719, loss@max: 1.695427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.000001, LT: 1.640145, Top1S: 100.000000, Top1T: 65.721039Best acc: 65.721039 +Train:epoch: 41, loss@min: 1.095009, loss@max: 1.696345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.000000, LT: 1.668921, Top1S: 100.000000, Top1T: 65.484634 +Train:epoch: 42, loss@min: 1.022262, loss@max: 1.922746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000004, LT: 1.649798, Top1S: 100.000000, Top1T: 65.543732 +Train:epoch: 43, loss@min: 1.184358, loss@max: 1.602350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.000000, LT: 1.650172, Top1S: 100.000000, Top1T: 65.602837 +Train:epoch: 44, loss@min: 1.017848, loss@max: 1.730951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.000001, LT: 1.679999, Top1S: 100.000000, Top1T: 65.307327 +Train:epoch: 45, loss@min: 1.106154, loss@max: 1.733000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.000001, LT: 1.675492, Top1S: 100.000000, Top1T: 64.893616 +Train:epoch: 46, loss@min: 1.076799, loss@max: 1.710640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.000001, LT: 1.659479, Top1S: 100.000000, Top1T: 65.898346Best acc: 65.898346 +Train:epoch: 47, loss@min: 1.149857, loss@max: 1.643230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000001, LT: 1.653921, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 48, loss@min: 1.095445, loss@max: 1.672005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.000000, LT: 1.648764, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 49, loss@min: 1.067239, loss@max: 1.665067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.000001, LT: 1.674614, Top1S: 100.000000, Top1T: 65.543732 +Train:epoch: 50, loss@min: 1.028455, loss@max: 1.643543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000001, LT: 1.635381, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 51, loss@min: 1.104615, loss@max: 1.678131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000001, LT: 1.680111, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 52, loss@min: 1.236371, loss@max: 1.706709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000001, LT: 1.649266, Top1S: 100.000000, Top1T: 65.602837 +Train:epoch: 53, loss@min: 1.102823, loss@max: 1.760180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000001, LT: 1.661700, Top1S: 100.000000, Top1T: 65.957443Best acc: 65.957443 +Train:epoch: 54, loss@min: 0.979351, loss@max: 1.915620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000001, LT: 1.649463, Top1S: 100.000000, Top1T: 65.307327 +Train:epoch: 55, loss@min: 1.166177, loss@max: 1.621573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000001, LT: 1.651659, Top1S: 100.000000, Top1T: 66.193855Best acc: 66.193855 +Train:epoch: 56, loss@min: 1.083003, loss@max: 1.695453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000001, LT: 1.656133, Top1S: 100.000000, Top1T: 64.834518 +Train:epoch: 57, loss@min: 0.903908, loss@max: 1.812154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000001, LT: 1.640845, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 58, loss@min: 1.176782, loss@max: 1.577555, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000000, LT: 1.652812, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 59, loss@min: 1.072743, loss@max: 1.649008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000001, LT: 1.670322, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 60, loss@min: 1.029224, loss@max: 1.655326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000001, LT: 1.639588, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 61, loss@min: 1.181633, loss@max: 1.469004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000000, LT: 1.644747, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 62, loss@min: 1.086629, loss@max: 1.595414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000001, LT: 1.649728, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 63, loss@min: 1.008127, loss@max: 1.634641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000000, LT: 1.640329, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 64, loss@min: 1.107751, loss@max: 1.564065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000001, LT: 1.633450, Top1S: 100.000000, Top1T: 66.371155Best acc: 66.371155 +Train:epoch: 65, loss@min: 1.001350, loss@max: 1.651752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000001, LT: 1.660306, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 66, loss@min: 1.083101, loss@max: 1.532747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000001, LT: 1.670219, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 67, loss@min: 1.107481, loss@max: 1.482520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000001, LT: 1.676555, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 68, loss@min: 0.888274, loss@max: 1.653957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000001, LT: 1.681840, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 69, loss@min: 1.112254, loss@max: 1.433948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000000, LT: 1.672588, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 70, loss@min: 0.888155, loss@max: 1.627094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000001, LT: 1.672349, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 71, loss@min: 1.059545, loss@max: 1.483274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000000, LT: 1.659759, Top1S: 100.000000, Top1T: 66.430260Best acc: 66.430260 +Train:epoch: 72, loss@min: 1.061153, loss@max: 1.536158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000001, LT: 1.666394, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 73, loss@min: 0.951982, loss@max: 1.566953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000000, LT: 1.660430, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 74, loss@min: 1.098077, loss@max: 1.467462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000001, LT: 1.672171, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 75, loss@min: 0.901843, loss@max: 1.650219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000000, LT: 1.665871, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 76, loss@min: 1.086195, loss@max: 1.457494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000001, LT: 1.679109, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 77, loss@min: 0.910536, loss@max: 1.571731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000000, LT: 1.680798, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 78, loss@min: 1.079857, loss@max: 1.392981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000001, LT: 1.677172, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 79, loss@min: 0.874770, loss@max: 1.626482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000000, LT: 1.675751, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 80, loss@min: 1.150407, loss@max: 1.347632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000001, LT: 1.676352, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 81, loss@min: 0.878582, loss@max: 1.573184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000000, LT: 1.672252, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 82, loss@min: 0.996110, loss@max: 1.426466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000001, LT: 1.672625, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 83, loss@min: 0.963699, loss@max: 1.443095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000000, LT: 1.678267, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 84, loss@min: 0.959189, loss@max: 1.444918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000002, LT: 1.681586, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 85, loss@min: 0.962580, loss@max: 1.446351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000000, LT: 1.682345, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 86, loss@min: 0.952631, loss@max: 1.428268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000002, LT: 1.685218, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 87, loss@min: 0.958431, loss@max: 1.427134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000000, LT: 1.685708, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 88, loss@min: 0.956678, loss@max: 1.425229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000001, LT: 1.686033, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 89, loss@min: 0.995304, loss@max: 1.397258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000001, LT: 1.686907, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 90, loss@min: 0.925785, loss@max: 1.450728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000000, LT: 1.694393, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 91, loss@min: 0.982373, loss@max: 1.374169, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000001, LT: 1.700289, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 92, loss@min: 0.948857, loss@max: 1.412297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000001, LT: 1.699435, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 93, loss@min: 0.957216, loss@max: 1.410627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000000, LT: 1.701814, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 94, loss@min: 0.974794, loss@max: 1.398491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000001, LT: 1.705346, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 95, loss@min: 0.954308, loss@max: 1.395102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000000, LT: 1.709022, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 96, loss@min: 0.957680, loss@max: 1.389504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000001, LT: 1.711432, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 97, loss@min: 0.953802, loss@max: 1.393824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000001, LT: 1.712445, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 98, loss@min: 0.943024, loss@max: 1.401686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000000, LT: 1.714230, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 99, loss@min: 0.981106, loss@max: 1.366228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000001, LT: 1.717125, Top1S: 100.000000, Top1T: 66.784866{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 21:47:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.907506, loss@max: 6.355318, Top1S acc: 2.127660, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 9.033180, loss@max: 6.273305, Top1S acc: 19.148933, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 6.694017, loss@max: 6.238124, Top1S acc: 42.553188, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 5.154726, loss@max: 5.607470, Top1S acc: 68.085106, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 4.589194, loss@max: 4.813470, Top1S acc: 78.723404, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 4.232527, loss@max: 4.148111, Top1S acc: 82.978722, Top1T acc: 97.872337 +Train:epoch: 7, loss@min: 3.488237, loss@max: 4.067120, Top1S acc: 87.234039, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 2.769673, loss@max: 4.135376, Top1S acc: 87.234039, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 2.185287, loss@max: 3.982085, Top1S acc: 93.617020, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.840075, loss@max: 3.716122, Top1S acc: 93.617020, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.540198, loss@max: 3.747541, Top1S acc: 95.744675, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.912894, loss@max: 3.130172, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.884583, loss@max: 3.170089, Top1S acc: 97.872337, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 1.452984, loss@max: 2.994762, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.240701, loss@max: 2.994472, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.243492, loss@max: 3.056381, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.322762, loss@max: 2.869005, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.475493, loss@max: 2.392636, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.740942, loss@max: 2.182681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.523725, loss@max: 2.128314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.401407, loss@max: 2.159813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.445522, loss@max: 2.293591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.327772, loss@max: 2.169160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.199491, loss@max: 2.149799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.110139, loss@max: 2.128949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.026396, LT: 3.730750, Top1S: 100.000000, Top1T: 29.846336Best acc: 29.846336 +Train:epoch: 26, loss@min: 1.060695, loss@max: 2.091393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.023049, LT: 3.799755, Top1S: 100.000000, Top1T: 29.018913 +Train:epoch: 27, loss@min: 1.335873, loss@max: 1.856441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.020465, LT: 3.765975, Top1S: 100.000000, Top1T: 28.664303 +Train:epoch: 28, loss@min: 1.249691, loss@max: 1.770559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.018424, LT: 3.662312, Top1S: 100.000000, Top1T: 28.309692 +Train:epoch: 29, loss@min: 1.313105, loss@max: 1.819679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.016795, LT: 3.492232, Top1S: 100.000000, Top1T: 30.141844Best acc: 30.141844 +Train:epoch: 30, loss@min: 1.128618, loss@max: 1.796529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.015474, LT: 3.353161, Top1S: 100.000000, Top1T: 31.146572Best acc: 31.146572 +Train:epoch: 31, loss@min: 1.010509, loss@max: 2.062960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.014380, LT: 3.249047, Top1S: 100.000000, Top1T: 32.624115Best acc: 32.624115 +Train:epoch: 32, loss@min: 0.966151, loss@max: 2.018865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.013458, LT: 3.186547, Top1S: 100.000000, Top1T: 33.156029Best acc: 33.156029 +Train:epoch: 33, loss@min: 0.958710, loss@max: 1.996299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.012673, LT: 3.167622, Top1S: 100.000000, Top1T: 33.392433Best acc: 33.392433 +Train:epoch: 34, loss@min: 1.005105, loss@max: 1.858361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.011996, LT: 3.181410, Top1S: 100.000000, Top1T: 32.624115 +Train:epoch: 35, loss@min: 1.045199, loss@max: 1.831330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.011406, LT: 3.216316, Top1S: 100.000000, Top1T: 31.914894 +Train:epoch: 36, loss@min: 1.181715, loss@max: 1.751022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.010902, LT: 3.220305, Top1S: 100.000000, Top1T: 32.033096 +Train:epoch: 37, loss@min: 1.128242, loss@max: 1.643718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.010455, LT: 3.180418, Top1S: 100.000000, Top1T: 31.973995 +Train:epoch: 38, loss@min: 1.100630, loss@max: 1.584372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.010045, LT: 3.124625, Top1S: 100.000000, Top1T: 32.210403 +Train:epoch: 39, loss@min: 1.053719, loss@max: 1.638883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.009668, LT: 3.078094, Top1S: 100.000000, Top1T: 33.037827 +Train:epoch: 40, loss@min: 1.018356, loss@max: 1.841750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.009316, LT: 3.021246, Top1S: 100.000000, Top1T: 34.042553Best acc: 34.042553 +Train:epoch: 41, loss@min: 0.901752, loss@max: 1.849309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.008983, LT: 2.988716, Top1S: 100.000000, Top1T: 33.924351 +Train:epoch: 42, loss@min: 1.059263, loss@max: 1.664600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.008679, LT: 2.955051, Top1S: 100.000000, Top1T: 34.810875Best acc: 34.810875 +Train:epoch: 43, loss@min: 1.033970, loss@max: 1.550915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.008406, LT: 2.954685, Top1S: 100.000000, Top1T: 34.397163 +Train:epoch: 44, loss@min: 1.100507, loss@max: 1.605381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.008156, LT: 2.966696, Top1S: 100.000000, Top1T: 33.451538 +Train:epoch: 45, loss@min: 1.168035, loss@max: 1.577792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.007932, LT: 2.970814, Top1S: 100.000000, Top1T: 33.569740 +Train:epoch: 46, loss@min: 1.006945, loss@max: 1.629994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.007731, LT: 2.951627, Top1S: 100.000000, Top1T: 33.806145 +Train:epoch: 47, loss@min: 1.136057, loss@max: 1.543579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.007553, LT: 2.935605, Top1S: 100.000000, Top1T: 34.338062 +Train:epoch: 48, loss@min: 1.091196, loss@max: 1.588105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.007393, LT: 2.918880, Top1S: 100.000000, Top1T: 34.692673 +Train:epoch: 49, loss@min: 1.081839, loss@max: 1.616556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.007253, LT: 2.894529, Top1S: 100.000000, Top1T: 34.810875 +Train:epoch: 50, loss@min: 0.987832, loss@max: 1.681303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.007128, LT: 2.880528, Top1S: 100.000000, Top1T: 34.633572 +Train:epoch: 51, loss@min: 0.858742, loss@max: 1.828707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.007011, LT: 2.884172, Top1S: 100.000000, Top1T: 34.574467 +Train:epoch: 52, loss@min: 0.888642, loss@max: 1.824262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.006896, LT: 2.886735, Top1S: 100.000000, Top1T: 34.278961 +Train:epoch: 53, loss@min: 0.949801, loss@max: 1.754336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.006789, LT: 2.864560, Top1S: 100.000000, Top1T: 35.047283Best acc: 35.047283 +Train:epoch: 54, loss@min: 1.080297, loss@max: 1.605803, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Wed Jul 19 21:58:49 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.907506, loss@max: 6.355318, Top1S acc: 2.127660, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 9.033180, loss@max: 6.273305, Top1S acc: 19.148933, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 6.694017, loss@max: 6.238124, Top1S acc: 42.553188, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 5.154726, loss@max: 5.607470, Top1S acc: 68.085106, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 4.589194, loss@max: 4.813470, Top1S acc: 78.723404, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 4.232527, loss@max: 4.148111, Top1S acc: 82.978722, Top1T acc: 97.872337 +Train:epoch: 7, loss@min: 3.488237, loss@max: 4.067120, Top1S acc: 87.234039, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 2.769673, loss@max: 4.135376, Top1S acc: 87.234039, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 2.185287, loss@max: 3.982085, Top1S acc: 93.617020, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.840075, loss@max: 3.716122, Top1S acc: 93.617020, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.540198, loss@max: 3.747541, Top1S acc: 95.744675, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.912894, loss@max: 3.130172, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.884583, loss@max: 3.170089, Top1S acc: 97.872337, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 1.452984, loss@max: 2.994762, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.240701, loss@max: 2.994472, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.243492, loss@max: 3.056381, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.322762, loss@max: 2.869005, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.475493, loss@max: 2.392636, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.740942, loss@max: 2.182681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.523725, loss@max: 2.128314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.401407, loss@max: 2.159813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.445522, loss@max: 2.293591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.327772, loss@max: 2.169160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.199491, loss@max: 2.149799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.110139, loss@max: 2.128949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.141566, loss@max: 1.972745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.226265, loss@max: 1.920041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.260245, loss@max: 1.799594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.209997, loss@max: 1.723940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.119381, loss@max: 1.837008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.088407, loss@max: 1.980409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.914216, loss@max: 1.992102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.872060, loss@max: 2.097474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.915143, loss@max: 1.944278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.068237, loss@max: 1.758600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.149358, loss@max: 1.586374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.154511, loss@max: 1.575404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.275829, loss@max: 1.637667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.203669, loss@max: 1.667494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958970, loss@max: 1.759636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981451, loss@max: 1.723993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.924366, loss@max: 1.987109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.035815, loss@max: 1.840545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.159778, loss@max: 1.622241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.077281, loss@max: 1.516342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.124015, loss@max: 1.533292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.108726, loss@max: 1.684900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.016209, loss@max: 1.665824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.060337, loss@max: 1.647942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.904127, loss@max: 1.701869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.959507, loss@max: 1.624433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.982044, loss@max: 1.641434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.117451, loss@max: 1.594323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.059622, loss@max: 1.593054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.061595, loss@max: 1.642965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.006288, loss@max: 1.563615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.966000, loss@max: 1.584129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.029658, loss@max: 1.594817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.013110, loss@max: 1.515485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.008146, loss@max: 1.584652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.987399, loss@max: 1.494702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.990106, loss@max: 1.525444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.930164, loss@max: 1.607787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.048555, loss@max: 1.551439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.037360, loss@max: 1.463434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.048955, loss@max: 1.492323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.991245, loss@max: 1.532315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.038309, loss@max: 1.491842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.988994, loss@max: 1.518354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.972664, loss@max: 1.570218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.918244, loss@max: 1.627627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.928157, loss@max: 1.552322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.925709, loss@max: 1.566126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.014822, loss@max: 1.427703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.088455, loss@max: 1.443259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.048595, loss@max: 1.428446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.056784, loss@max: 1.402254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.031369, loss@max: 1.464081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.907882, loss@max: 1.573629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944171, loss@max: 1.541991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.005620, LT: 2.708471, Top1S: 100.000000, Top1T: 37.174942Best acc: 37.174942 +Train:epoch: 81, loss@min: 0.941279, loss@max: 1.531123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.005599, LT: 2.715255, Top1S: 100.000000, Top1T: 36.347519 +Train:epoch: 82, loss@min: 0.942727, loss@max: 1.525493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.005577, LT: 2.720854, Top1S: 100.000000, Top1T: 36.938534 +Train:epoch: 83, loss@min: 0.983761, loss@max: 1.477598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.005556, LT: 2.723516, Top1S: 100.000000, Top1T: 36.820332 +Train:epoch: 84, loss@min: 0.967600, loss@max: 1.482401, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 1000, "print_freq": 1, "savedir": "", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 70} + +------------------------------------------- +Wed Jul 19 22:02:28 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 1000, "print_freq": 1, "savedir": "", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 70} + +------------------------------------------- +Wed Jul 19 22:02:54 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 23.310684, loss@max: 7.812155, Top1S acc: 30.078125, Top1T acc: 21.875000 +Train:epoch: 2, loss@min: 6.721107, loss@max: 5.055765, Top1S acc: 80.468750, Top1T acc: 80.078125 +Train:epoch: 3, loss@min: 2.184988, loss@max: 4.326588, Top1S acc: 96.093750, Top1T acc: 94.531250 +Train:epoch: 4, loss@min: 1.199330, loss@max: 4.140046, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 5, loss@min: 1.127598, loss@max: 3.585220, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 6, loss@min: 1.349505, loss@max: 3.137430, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.746162, loss@max: 3.076836, Top1S acc: 99.218750, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.982773, loss@max: 2.905159, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 1.724271, loss@max: 3.409305, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 2.011209, loss@max: 3.820245, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.794153, loss@max: 3.742729, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.869137, loss@max: 3.770051, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 1.963464, loss@max: 3.857318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 2.301840, loss@max: 3.931254, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.942067, loss@max: 4.478577, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.933069, loss@max: 4.730865, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 17, loss@min: 2.294014, loss@max: 5.034386, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 2.198103, loss@max: 4.755720, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 2.443035, loss@max: 5.003241, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 2.495585, loss@max: 5.112150, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 2.636378, loss@max: 5.282465, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 2.736545, loss@max: 5.354982, Top1S acc: 99.218750, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 2.470978, loss@max: 5.363273, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 24, loss@min: 2.587514, loss@max: 5.614434, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 2.329253, loss@max: 5.831058, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 2.728153, loss@max: 5.494223, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 2.842090, loss@max: 5.631300, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 28, loss@min: 2.382347, loss@max: 5.856741, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 2.419075, loss@max: 6.212469, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 2.750238, loss@max: 6.263893, Top1S acc: 99.218750, Top1T acc: 98.828125 +Train:epoch: 31, loss@min: 2.767541, loss@max: 5.519519, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 2.730284, loss@max: 6.498505, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 2.745820, loss@max: 6.492519, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 34, loss@min: 2.423782, loss@max: 6.617040, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 2.800854, loss@max: 5.602646, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 36, loss@min: 2.997896, loss@max: 6.318535, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 37, loss@min: 2.533977, loss@max: 6.308956, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 2.554392, loss@max: 6.141827, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 2.553592, loss@max: 6.030799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 2.430633, loss@max: 6.004865, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 2.638027, loss@max: 6.467285, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 42, loss@min: 2.330682, loss@max: 6.518169, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 2.823321, loss@max: 6.657168, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 2.584529, loss@max: 5.921921, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 2.263471, loss@max: 6.435896, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.618589, loss@max: 5.995687, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 2.766298, loss@max: 6.559908, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 2.434548, loss@max: 6.844301, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.583796, loss@max: 6.143155, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 50, loss@min: 2.940407, loss@max: 6.122622, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 50, LS: 0.009645, LT: 5.766173, Top1S: 99.799995, Top1T: 23.595999Best acc: 23.595999{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 1000, "print_freq": 1, "savedir": "", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 70} + +------------------------------------------- +Wed Jul 19 22:39:11 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 23.310686, loss@max: 7.812155, Top1S acc: 30.078125, Top1T acc: 21.875000 +Train:epoch: 2, loss@min: 6.721107, loss@max: 5.055766, Top1S acc: 80.468750, Top1T acc: 80.078125 +Train:epoch: 3, loss@min: 2.184988, loss@max: 4.326588, Top1S acc: 96.093750, Top1T acc: 94.531250 +Train:epoch: 4, loss@min: 1.199331, loss@max: 4.140045, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 5, loss@min: 1.127598, loss@max: 3.585221, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 6, loss@min: 1.349507, loss@max: 3.137430, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.746176, loss@max: 3.076842, Top1S acc: 99.218750, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.982768, loss@max: 2.905161, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 1.724289, loss@max: 3.409291, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 2.011226, loss@max: 3.820205, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.794164, loss@max: 3.743101, Top1S acc: 99.609375, Top1T acc: 99.609375{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:43:49 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:44:35 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:45:00 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:45:23 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:46:33 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:46:58 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:49:01 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 1000, "print_freq": 1, "savedir": "", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 70} + +------------------------------------------- +Wed Jul 19 22:52:26 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Wed Jul 19 22:54:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.769701, loss@max: 2.062741, Top1S acc: 100.000000, Top1T acc: 70.212761 +Train:epoch: 2, loss@min: 1.849647, loss@max: 1.846849, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 3, loss@min: 1.025522, loss@max: 1.531956, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 4, loss@min: 0.874593, loss@max: 1.326218, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.927130, loss@max: 1.265192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.923753, loss@max: 1.241526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.932732, loss@max: 1.218912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.987199, loss@max: 1.184073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.062138, loss@max: 1.102634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.093396, loss@max: 1.173061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.891564, loss@max: 1.333240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.785287, loss@max: 1.468358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.882267, loss@max: 1.428806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.895783, loss@max: 1.395199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.891038, loss@max: 1.405565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.932154, loss@max: 1.367384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.996934, loss@max: 1.363427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.028201, loss@max: 1.346405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.968602, loss@max: 1.346597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.047663, loss@max: 1.340226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.957525, loss@max: 1.428505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.938369, loss@max: 1.423151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.965617, loss@max: 1.431614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.014481, loss@max: 1.339266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.044442, loss@max: 1.411781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.002201, LT: 4.882364, Top1S: 100.000000, Top1T: 36.702129Best acc: 36.702129 +Train:epoch: 26, loss@min: 0.948138, loss@max: 1.458632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.002187, LT: 4.847678, Top1S: 100.000000, Top1T: 36.820332Best acc: 36.820332 +Train:epoch: 27, loss@min: 0.964019, loss@max: 1.394580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.002148, LT: 4.785159, Top1S: 100.000000, Top1T: 36.938534Best acc: 36.938534 +Train:epoch: 28, loss@min: 1.054537, loss@max: 1.431787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.002084, LT: 4.745613, Top1S: 100.000000, Top1T: 37.234043Best acc: 37.234043 +Train:epoch: 29, loss@min: 0.974400, loss@max: 1.454678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.002037, LT: 4.716299, Top1S: 100.000000, Top1T: 36.997635 +Train:epoch: 30, loss@min: 1.000459, loss@max: 1.497066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.002028, LT: 4.649207, Top1S: 100.000000, Top1T: 36.938534 +Train:epoch: 31, loss@min: 0.942131, loss@max: 1.548987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.002024, LT: 4.568253, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 32, loss@min: 0.871195, loss@max: 1.601079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.001996, LT: 4.487827, Top1S: 100.000000, Top1T: 37.293144Best acc: 37.293144 +Train:epoch: 33, loss@min: 0.930334, loss@max: 1.524673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.001963, LT: 4.414425, Top1S: 100.000000, Top1T: 37.470448Best acc: 37.470448 +Train:epoch: 34, loss@min: 0.958492, loss@max: 1.449913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.001939, LT: 4.337243, Top1S: 100.000000, Top1T: 37.647755Best acc: 37.647755 +Train:epoch: 35, loss@min: 1.011115, loss@max: 1.404846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.001923, LT: 4.264173, Top1S: 100.000000, Top1T: 37.411346 +Train:epoch: 36, loss@min: 1.025864, loss@max: 1.388119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001907, LT: 4.189148, Top1S: 100.000000, Top1T: 37.647755 +Train:epoch: 37, loss@min: 1.099152, loss@max: 1.397639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.001891, LT: 4.120657, Top1S: 100.000000, Top1T: 37.588654 +Train:epoch: 38, loss@min: 0.990954, loss@max: 1.377672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.001870, LT: 4.050975, Top1S: 100.000000, Top1T: 37.470448 +Train:epoch: 39, loss@min: 0.929608, loss@max: 1.505782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.001857, LT: 3.956568, Top1S: 100.000000, Top1T: 37.470448 +Train:epoch: 40, loss@min: 0.985032, loss@max: 1.404281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.001861, LT: 3.895899, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 41, loss@min: 0.918290, loss@max: 1.455344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.001857, LT: 3.855608, Top1S: 100.000000, Top1T: 37.056736 +Train:epoch: 42, loss@min: 0.926092, loss@max: 1.453636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.001839, LT: 3.818614, Top1S: 100.000000, Top1T: 37.115841 +Train:epoch: 43, loss@min: 0.972218, loss@max: 1.391552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.001820, LT: 3.784961, Top1S: 100.000000, Top1T: 37.056736 +Train:epoch: 44, loss@min: 0.985987, loss@max: 1.407961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.001794, LT: 3.743580, Top1S: 100.000000, Top1T: 37.174942 +Train:epoch: 45, loss@min: 0.977201, loss@max: 1.425870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.001767, LT: 3.699451, Top1S: 100.000000, Top1T: 36.938534 +Train:epoch: 46, loss@min: 1.004458, loss@max: 1.394541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.001749, LT: 3.655217, Top1S: 100.000000, Top1T: 37.115841 +Train:epoch: 47, loss@min: 1.007652, loss@max: 1.389983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.001745, LT: 3.612427, Top1S: 100.000000, Top1T: 37.293144 +Train:epoch: 48, loss@min: 0.990141, loss@max: 1.400898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.001736, LT: 3.581149, Top1S: 100.000000, Top1T: 37.647755 +Train:epoch: 49, loss@min: 0.964295, loss@max: 1.463344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.001721, LT: 3.564809, Top1S: 100.000000, Top1T: 37.588654 +Train:epoch: 50, loss@min: 0.959174, loss@max: 1.441657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001710, LT: 3.548752, Top1S: 100.000000, Top1T: 37.293144 +Train:epoch: 51, loss@min: 0.894428, loss@max: 1.488973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.001696, LT: 3.523856, Top1S: 100.000000, Top1T: 36.997635 +Train:epoch: 52, loss@min: 0.951264, loss@max: 1.428723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.001684, LT: 3.491287, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 53, loss@min: 0.981573, loss@max: 1.418781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.001672, LT: 3.452788, Top1S: 100.000000, Top1T: 37.529552 +Train:epoch: 54, loss@min: 1.004372, loss@max: 1.366928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001663, LT: 3.414892, Top1S: 100.000000, Top1T: 37.647755 +Train:epoch: 55, loss@min: 0.984217, loss@max: 1.385773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001654, LT: 3.370220, Top1S: 100.000000, Top1T: 37.765957Best acc: 37.765957 +Train:epoch: 56, loss@min: 0.967703, loss@max: 1.408178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001644, LT: 3.332331, Top1S: 100.000000, Top1T: 37.825058Best acc: 37.825058 +Train:epoch: 57, loss@min: 0.958587, loss@max: 1.412986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001628, LT: 3.294227, Top1S: 100.000000, Top1T: 37.884159Best acc: 37.884159 +Train:epoch: 58, loss@min: 0.935894, loss@max: 1.428758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001610, LT: 3.261765, Top1S: 100.000000, Top1T: 37.825058 +Train:epoch: 59, loss@min: 0.941758, loss@max: 1.398875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001591, LT: 3.229049, Top1S: 100.000000, Top1T: 37.825058 +Train:epoch: 60, loss@min: 0.929023, loss@max: 1.416115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001576, LT: 3.201597, Top1S: 100.000000, Top1T: 37.943264Best acc: 37.943264 +Train:epoch: 61, loss@min: 0.944076, loss@max: 1.388768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001564, LT: 3.170361, Top1S: 100.000000, Top1T: 38.002365Best acc: 38.002365 +Train:epoch: 62, loss@min: 1.000663, loss@max: 1.359341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001558, LT: 3.146531, Top1S: 100.000000, Top1T: 38.061466Best acc: 38.061466 +Train:epoch: 63, loss@min: 0.993796, loss@max: 1.376000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001554, LT: 3.123364, Top1S: 100.000000, Top1T: 38.238770Best acc: 38.238770 +Train:epoch: 64, loss@min: 0.965375, loss@max: 1.401617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001551, LT: 3.100501, Top1S: 100.000000, Top1T: 38.356976Best acc: 38.356976 +Train:epoch: 65, loss@min: 0.965110, loss@max: 1.399062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001546, LT: 3.078129, Top1S: 100.000000, Top1T: 38.534279Best acc: 38.534279 +Train:epoch: 66, loss@min: 0.938705, loss@max: 1.417317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001539, LT: 3.057353, Top1S: 100.000000, Top1T: 38.888889Best acc: 38.888889 +Train:epoch: 67, loss@min: 0.967316, loss@max: 1.386192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001532, LT: 3.036208, Top1S: 100.000000, Top1T: 39.007092Best acc: 39.007092 +Train:epoch: 68, loss@min: 0.943139, loss@max: 1.418046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001525, LT: 3.011342, Top1S: 100.000000, Top1T: 39.125294Best acc: 39.125294 +Train:epoch: 69, loss@min: 0.948982, loss@max: 1.408683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001518, LT: 2.989063, Top1S: 100.000000, Top1T: 39.302601Best acc: 39.302601 +Train:epoch: 70, loss@min: 0.957679, loss@max: 1.370132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001510, LT: 2.971057, Top1S: 100.000000, Top1T: 39.302601 +Train:epoch: 71, loss@min: 0.955257, loss@max: 1.395190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001502, LT: 2.957236, Top1S: 100.000000, Top1T: 39.361702Best acc: 39.361702 +Train:epoch: 72, loss@min: 0.969446, loss@max: 1.374294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001493, LT: 2.948142, Top1S: 100.000000, Top1T: 39.420803Best acc: 39.420803 +Train:epoch: 73, loss@min: 0.957963, loss@max: 1.387691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001483, LT: 2.938990, Top1S: 100.000000, Top1T: 39.420803 +Train:epoch: 74, loss@min: 0.960027, loss@max: 1.376176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001475, LT: 2.930134, Top1S: 100.000000, Top1T: 39.420803 +Train:epoch: 75, loss@min: 0.952518, loss@max: 1.378265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001467, LT: 2.920116, Top1S: 100.000000, Top1T: 39.539005Best acc: 39.539005 +Train:epoch: 76, loss@min: 0.948536, loss@max: 1.386744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001462, LT: 2.907494, Top1S: 100.000000, Top1T: 39.716312Best acc: 39.716312 +Train:epoch: 77, loss@min: 0.947640, loss@max: 1.377027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001459, LT: 2.896216, Top1S: 100.000000, Top1T: 39.893616Best acc: 39.893616 +Train:epoch: 78, loss@min: 0.952852, loss@max: 1.377446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001458, LT: 2.884355, Top1S: 100.000000, Top1T: 39.775414 +Train:epoch: 79, loss@min: 0.947083, loss@max: 1.391401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001456, LT: 2.873037, Top1S: 100.000000, Top1T: 39.893616 +Train:epoch: 80, loss@min: 0.956679, loss@max: 1.380112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001453, LT: 2.862797, Top1S: 100.000000, Top1T: 40.189125Best acc: 40.189125 +Train:epoch: 81, loss@min: 0.961080, loss@max: 1.376570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001448, LT: 2.855390, Top1S: 100.000000, Top1T: 40.307327Best acc: 40.307327 +Train:epoch: 82, loss@min: 0.950064, loss@max: 1.381504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001442, LT: 2.850044, Top1S: 100.000000, Top1T: 40.189125 +Train:epoch: 83, loss@min: 0.947498, loss@max: 1.386890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001435, LT: 2.846110, Top1S: 100.000000, Top1T: 40.070923 +Train:epoch: 84, loss@min: 0.951850, loss@max: 1.382994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001429, LT: 2.843230, Top1S: 100.000000, Top1T: 40.070923 +Train:epoch: 85, loss@min: 0.964449, loss@max: 1.367416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001422, LT: 2.840738, Top1S: 100.000000, Top1T: 40.070923 +Train:epoch: 86, loss@min: 0.942542, loss@max: 1.386054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001415, LT: 2.837830, Top1S: 100.000000, Top1T: 40.189125 +Train:epoch: 87, loss@min: 0.949310, loss@max: 1.374986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001409, LT: 2.834851, Top1S: 100.000000, Top1T: 40.189125 +Train:epoch: 88, loss@min: 0.932777, loss@max: 1.389242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001404, LT: 2.830049, Top1S: 100.000000, Top1T: 40.307327 +Train:epoch: 89, loss@min: 0.935405, loss@max: 1.394494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001400, LT: 2.823627, Top1S: 100.000000, Top1T: 40.425533Best acc: 40.425533 +Train:epoch: 90, loss@min: 0.953077, loss@max: 1.369912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001397, LT: 2.817479, Top1S: 100.000000, Top1T: 40.425533 +Train:epoch: 91, loss@min: 0.959657, loss@max: 1.367150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001395, LT: 2.810611, Top1S: 100.000000, Top1T: 40.366432 +Train:epoch: 92, loss@min: 0.973374, loss@max: 1.352760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001394, LT: 2.803631, Top1S: 100.000000, Top1T: 40.425533 +Train:epoch: 93, loss@min: 0.950776, loss@max: 1.365668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001393, LT: 2.797816, Top1S: 100.000000, Top1T: 40.661938Best acc: 40.661938 +Train:epoch: 94, loss@min: 0.955046, loss@max: 1.366032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001392, LT: 2.792855, Top1S: 100.000000, Top1T: 40.780144Best acc: 40.780144 +Train:epoch: 95, loss@min: 0.952214, loss@max: 1.365954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001391, LT: 2.788954, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 96, loss@min: 0.951427, loss@max: 1.366339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001388, LT: 2.785740, Top1S: 100.000000, Top1T: 40.898346Best acc: 40.898346 +Train:epoch: 97, loss@min: 0.945843, loss@max: 1.369664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001384, LT: 2.783563, Top1S: 100.000000, Top1T: 40.839245 +Train:epoch: 98, loss@min: 0.963554, loss@max: 1.354635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001381, LT: 2.782249, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 99, loss@min: 0.959216, loss@max: 1.358708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001377, LT: 2.781234, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 100, loss@min: 0.948267, loss@max: 1.366372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001373, LT: 2.779822, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 101, loss@min: 0.943637, loss@max: 1.376128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001369, LT: 2.779046, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 102, loss@min: 0.952644, loss@max: 1.363338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001365, LT: 2.778844, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 103, loss@min: 0.939709, loss@max: 1.377308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001362, LT: 2.777938, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 104, loss@min: 0.949140, loss@max: 1.369569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001357, LT: 2.777731, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 105, loss@min: 0.939981, loss@max: 1.371661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001353, LT: 2.777510, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 106, loss@min: 0.932878, loss@max: 1.378044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001350, LT: 2.777037, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 107, loss@min: 0.941056, loss@max: 1.370759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001347, LT: 2.776506, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 108, loss@min: 0.950938, loss@max: 1.364099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001346, LT: 2.776314, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 109, loss@min: 0.955361, loss@max: 1.361004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001345, LT: 2.776230, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 110, loss@min: 0.958831, loss@max: 1.357059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001344, LT: 2.775456, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 111, loss@min: 0.944259, loss@max: 1.370031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001344, LT: 2.773973, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 112, loss@min: 0.961583, loss@max: 1.351006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001344, LT: 2.772329, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 113, loss@min: 0.957552, loss@max: 1.354781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001344, LT: 2.770816, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 114, loss@min: 0.955039, loss@max: 1.357320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001343, LT: 2.769662, Top1S: 100.000000, Top1T: 40.721039 +Train:epoch: 115, loss@min: 0.945279, loss@max: 1.367845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001341, LT: 2.769146, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 116, loss@min: 0.952612, loss@max: 1.360865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001339, LT: 2.768878, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 117, loss@min: 0.958475, loss@max: 1.352828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001338, LT: 2.768793, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 118, loss@min: 0.935194, loss@max: 1.378341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001336, LT: 2.768445, Top1S: 100.000000, Top1T: 40.721039 +Train:epoch: 119, loss@min: 0.937513, loss@max: 1.377388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001334, LT: 2.768188, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 120, loss@min: 0.942135, loss@max: 1.367557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001332, LT: 2.768012, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 121, loss@min: 0.948771, loss@max: 1.365315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001331, LT: 2.767816, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 122, loss@min: 0.945777, loss@max: 1.367897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001329, LT: 2.767685, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 123, loss@min: 0.947416, loss@max: 1.364644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001328, LT: 2.767536, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 124, loss@min: 0.939901, loss@max: 1.372759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001326, LT: 2.767238, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 125, loss@min: 0.938962, loss@max: 1.375279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001325, LT: 2.766977, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 126, loss@min: 0.943886, loss@max: 1.367511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001324, LT: 2.766735, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 127, loss@min: 0.939504, loss@max: 1.373424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001322, LT: 2.766423, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 128, loss@min: 0.940811, loss@max: 1.373143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001321, LT: 2.766062, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 129, loss@min: 0.949296, loss@max: 1.361372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001321, LT: 2.765791, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 130, loss@min: 0.946802, loss@max: 1.362292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001320, LT: 2.765586, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 131, loss@min: 0.929298, loss@max: 1.382469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001320, LT: 2.765468, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 132, loss@min: 0.952861, loss@max: 1.358272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001320, LT: 2.765497, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 133, loss@min: 0.946781, loss@max: 1.364141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001319, LT: 2.765528, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 134, loss@min: 0.949128, loss@max: 1.363221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001319, LT: 2.765550, Top1S: 100.000000, Top1T: 40.602837 +Train:epoch: 135, loss@min: 0.945462, loss@max: 1.369685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001319, LT: 2.765542, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 136, loss@min: 0.975683, loss@max: 1.337270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001319, LT: 2.765536, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 137, loss@min: 0.963211, loss@max: 1.348889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001319, LT: 2.765525, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 138, loss@min: 0.951650, loss@max: 1.357248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001319, LT: 2.765498, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 139, loss@min: 0.954703, loss@max: 1.356877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001319, LT: 2.765470, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 140, loss@min: 0.963219, loss@max: 1.349585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001319, LT: 2.765455, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 141, loss@min: 0.955360, loss@max: 1.355136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001319, LT: 2.765437, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 142, loss@min: 0.952069, loss@max: 1.358880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001319, LT: 2.765422, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 143, loss@min: 0.943104, loss@max: 1.366495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001319, LT: 2.765394, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 144, loss@min: 0.945108, loss@max: 1.363337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001319, LT: 2.765374, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 145, loss@min: 0.949777, loss@max: 1.362571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001319, LT: 2.765363, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 146, loss@min: 0.947815, loss@max: 1.363072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001319, LT: 2.765359, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 147, loss@min: 0.950449, loss@max: 1.361208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001319, LT: 2.765356, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 148, loss@min: 0.953235, loss@max: 1.356952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001319, LT: 2.765354, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 149, loss@min: 0.949766, loss@max: 1.362399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001319, LT: 2.765354, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 150, loss@min: 0.945404, loss@max: 1.365376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001319, LT: 2.765354, Top1S: 100.000000, Top1T: 40.543736 +------------------------------------------- +Wed Jul 19 23:41:11 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Thu Jul 20 00:16:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.769700, loss@max: 2.062741, Top1S acc: 100.000000, Top1T acc: 70.212761 +Train:epoch: 2, loss@min: 1.849650, loss@max: 1.846849, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 3, loss@min: 1.025524, loss@max: 1.531956, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 4, loss@min: 0.874592, loss@max: 1.326218, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.927129, loss@max: 1.265194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.923752, loss@max: 1.241526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.932735, loss@max: 1.218908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.987198, loss@max: 1.184072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.062137, loss@max: 1.102634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.093393, loss@max: 1.173061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.891562, loss@max: 1.333243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.785285, loss@max: 1.468357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.882270, loss@max: 1.428797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.895791, loss@max: 1.395193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.891035, loss@max: 1.405565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.932144, loss@max: 1.367397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.996941, loss@max: 1.363427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.028202, loss@max: 1.346403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.968594, loss@max: 1.346610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.047680, loss@max: 1.340222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.957522, loss@max: 1.428497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.938359, loss@max: 1.423159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.965595, loss@max: 1.431622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.014503, loss@max: 1.339240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.044448, loss@max: 1.411777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.002201, LT: 4.882374, Top1S: 100.000000, Top1T: 36.702129Best acc: 36.702129 +Train:epoch: 26, loss@min: 0.948121, loss@max: 1.458636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.002187, LT: 4.847693, Top1S: 100.000000, Top1T: 36.820332Best acc: 36.820332 +Train:epoch: 27, loss@min: 0.963991, loss@max: 1.394594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.002148, LT: 4.785192, Top1S: 100.000000, Top1T: 36.938534Best acc: 36.938534 +Train:epoch: 28, loss@min: 1.054561, loss@max: 1.431741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.002084, LT: 4.745648, Top1S: 100.000000, Top1T: 37.234043Best acc: 37.234043 +Train:epoch: 29, loss@min: 0.974439, loss@max: 1.454631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.002037, LT: 4.716307, Top1S: 100.000000, Top1T: 36.997635 +Train:epoch: 30, loss@min: 1.000419, loss@max: 1.497089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.002028, LT: 4.649211, Top1S: 100.000000, Top1T: 36.938534 +Train:epoch: 31, loss@min: 0.942110, loss@max: 1.549036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.002024, LT: 4.568268, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 32, loss@min: 0.871227, loss@max: 1.601034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.001996, LT: 4.487840, Top1S: 100.000000, Top1T: 37.293144Best acc: 37.293144 +Train:epoch: 33, loss@min: 0.930372, loss@max: 1.524668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.001963, LT: 4.414415, Top1S: 100.000000, Top1T: 37.470448Best acc: 37.470448 +Train:epoch: 34, loss@min: 0.958458, loss@max: 1.449922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.001939, LT: 4.337225, Top1S: 100.000000, Top1T: 37.647755Best acc: 37.647755 +Train:epoch: 35, loss@min: 1.011084, loss@max: 1.404934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.001923, LT: 4.264169, Top1S: 100.000000, Top1T: 37.411346 +Train:epoch: 36, loss@min: 1.025917, loss@max: 1.388030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001907, LT: 4.189141, Top1S: 100.000000, Top1T: 37.647755 +Train:epoch: 37, loss@min: 1.099146, loss@max: 1.397657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.001891, LT: 4.120650, Top1S: 100.000000, Top1T: 37.588654 +Train:epoch: 38, loss@min: 0.990959, loss@max: 1.377679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.001870, LT: 4.050963, Top1S: 100.000000, Top1T: 37.470448 +Train:epoch: 39, loss@min: 0.929582, loss@max: 1.505789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.001857, LT: 3.956558, Top1S: 100.000000, Top1T: 37.470448 +Train:epoch: 40, loss@min: 0.985008, loss@max: 1.404328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.001861, LT: 3.895898, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 41, loss@min: 0.918301, loss@max: 1.455329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.001857, LT: 3.855609, Top1S: 100.000000, Top1T: 37.056736 +Train:epoch: 42, loss@min: 0.926097, loss@max: 1.453647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.001839, LT: 3.818623, Top1S: 100.000000, Top1T: 37.115841 +Train:epoch: 43, loss@min: 0.972250, loss@max: 1.391493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.001820, LT: 3.784969, Top1S: 100.000000, Top1T: 37.056736 +Train:epoch: 44, loss@min: 0.986074, loss@max: 1.407969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.001794, LT: 3.743562, Top1S: 100.000000, Top1T: 37.174942 +Train:epoch: 45, loss@min: 0.977139, loss@max: 1.425889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.001767, LT: 3.699425, Top1S: 100.000000, Top1T: 36.938534 +Train:epoch: 46, loss@min: 1.004409, loss@max: 1.394572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.001749, LT: 3.655194, Top1S: 100.000000, Top1T: 37.115841 +Train:epoch: 47, loss@min: 1.007654, loss@max: 1.390010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.001745, LT: 3.612413, Top1S: 100.000000, Top1T: 37.293144 +Train:epoch: 48, loss@min: 0.990167, loss@max: 1.400856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.001736, LT: 3.581144, Top1S: 100.000000, Top1T: 37.647755 +Train:epoch: 49, loss@min: 0.964312, loss@max: 1.463306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.001721, LT: 3.564810, Top1S: 100.000000, Top1T: 37.588654 +Train:epoch: 50, loss@min: 0.959216, loss@max: 1.441651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001710, LT: 3.548743, Top1S: 100.000000, Top1T: 37.293144 +Train:epoch: 51, loss@min: 0.894436, loss@max: 1.488994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.001696, LT: 3.523830, Top1S: 100.000000, Top1T: 36.997635 +Train:epoch: 52, loss@min: 0.951215, loss@max: 1.428782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.001684, LT: 3.491260, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 53, loss@min: 0.981537, loss@max: 1.418834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.001672, LT: 3.452768, Top1S: 100.000000, Top1T: 37.529552 +Train:epoch: 54, loss@min: 1.004387, loss@max: 1.366921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001663, LT: 3.414874, Top1S: 100.000000, Top1T: 37.647755 +Train:epoch: 55, loss@min: 0.984237, loss@max: 1.385762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001654, LT: 3.370204, Top1S: 100.000000, Top1T: 37.765957Best acc: 37.765957 +Train:epoch: 56, loss@min: 0.967734, loss@max: 1.408156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001644, LT: 3.332312, Top1S: 100.000000, Top1T: 37.825058Best acc: 37.825058 +Train:epoch: 57, loss@min: 0.958626, loss@max: 1.412949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001628, LT: 3.294197, Top1S: 100.000000, Top1T: 37.884159Best acc: 37.884159 +Train:epoch: 58, loss@min: 0.935889, loss@max: 1.428768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001610, LT: 3.261725, Top1S: 100.000000, Top1T: 37.825058 +Train:epoch: 59, loss@min: 0.941734, loss@max: 1.398902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001591, LT: 3.229006, Top1S: 100.000000, Top1T: 37.825058 +Train:epoch: 60, loss@min: 0.928988, loss@max: 1.416161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001576, LT: 3.201558, Top1S: 100.000000, Top1T: 37.943264Best acc: 37.943264 +Train:epoch: 61, loss@min: 0.944066, loss@max: 1.388779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001564, LT: 3.170324, Top1S: 100.000000, Top1T: 38.002365Best acc: 38.002365 +Train:epoch: 62, loss@min: 1.000660, loss@max: 1.359347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001558, LT: 3.146499, Top1S: 100.000000, Top1T: 38.061466Best acc: 38.061466 +Train:epoch: 63, loss@min: 0.993832, loss@max: 1.375989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001554, LT: 3.123331, Top1S: 100.000000, Top1T: 38.238770Best acc: 38.238770 +Train:epoch: 64, loss@min: 0.965402, loss@max: 1.401591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001551, LT: 3.100464, Top1S: 100.000000, Top1T: 38.356976Best acc: 38.356976 +Train:epoch: 65, loss@min: 0.965119, loss@max: 1.399058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001546, LT: 3.078088, Top1S: 100.000000, Top1T: 38.534279Best acc: 38.534279 +Train:epoch: 66, loss@min: 0.938706, loss@max: 1.417311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001539, LT: 3.057310, Top1S: 100.000000, Top1T: 38.888889Best acc: 38.888889 +Train:epoch: 67, loss@min: 0.967303, loss@max: 1.386203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001532, LT: 3.036165, Top1S: 100.000000, Top1T: 39.007092Best acc: 39.007092 +Train:epoch: 68, loss@min: 0.943122, loss@max: 1.418058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001525, LT: 3.011300, Top1S: 100.000000, Top1T: 39.125294Best acc: 39.125294 +Train:epoch: 69, loss@min: 0.948956, loss@max: 1.408692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001518, LT: 2.989024, Top1S: 100.000000, Top1T: 39.361702Best acc: 39.361702 +Train:epoch: 70, loss@min: 0.957650, loss@max: 1.370146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001510, LT: 2.971023, Top1S: 100.000000, Top1T: 39.302601 +Train:epoch: 71, loss@min: 0.955265, loss@max: 1.395183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001502, LT: 2.957204, Top1S: 100.000000, Top1T: 39.361702 +Train:epoch: 72, loss@min: 0.969464, loss@max: 1.374274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001493, LT: 2.948111, Top1S: 100.000000, Top1T: 39.420803Best acc: 39.420803 +Train:epoch: 73, loss@min: 0.957993, loss@max: 1.387665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001483, LT: 2.938956, Top1S: 100.000000, Top1T: 39.420803 +Train:epoch: 74, loss@min: 0.960042, loss@max: 1.376156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001475, LT: 2.930098, Top1S: 100.000000, Top1T: 39.420803 +Train:epoch: 75, loss@min: 0.952521, loss@max: 1.378262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001467, LT: 2.920077, Top1S: 100.000000, Top1T: 39.539005Best acc: 39.539005 +Train:epoch: 76, loss@min: 0.948541, loss@max: 1.386745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001462, LT: 2.907450, Top1S: 100.000000, Top1T: 39.716312Best acc: 39.716312 +Train:epoch: 77, loss@min: 0.947637, loss@max: 1.377028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001459, LT: 2.896170, Top1S: 100.000000, Top1T: 39.834515Best acc: 39.834515 +Train:epoch: 78, loss@min: 0.952829, loss@max: 1.377466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001458, LT: 2.884307, Top1S: 100.000000, Top1T: 39.775414 +Train:epoch: 79, loss@min: 0.947051, loss@max: 1.391436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001456, LT: 2.872990, Top1S: 100.000000, Top1T: 39.893616Best acc: 39.893616 +Train:epoch: 80, loss@min: 0.956668, loss@max: 1.380127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001453, LT: 2.862753, Top1S: 100.000000, Top1T: 40.189125Best acc: 40.189125 +Train:epoch: 81, loss@min: 0.961079, loss@max: 1.376576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001448, LT: 2.855349, Top1S: 100.000000, Top1T: 40.307327Best acc: 40.307327 +Train:epoch: 82, loss@min: 0.950055, loss@max: 1.381518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001442, LT: 2.850007, Top1S: 100.000000, Top1T: 40.189125 +Train:epoch: 83, loss@min: 0.947518, loss@max: 1.386870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001435, LT: 2.846073, Top1S: 100.000000, Top1T: 40.070923 +Train:epoch: 84, loss@min: 0.951882, loss@max: 1.382974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001429, LT: 2.843191, Top1S: 100.000000, Top1T: 40.070923 +Train:epoch: 85, loss@min: 0.964487, loss@max: 1.367385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001422, LT: 2.840697, Top1S: 100.000000, Top1T: 40.070923 +Train:epoch: 86, loss@min: 0.942540, loss@max: 1.386056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001415, LT: 2.837785, Top1S: 100.000000, Top1T: 40.189125 +Train:epoch: 87, loss@min: 0.949314, loss@max: 1.374983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001409, LT: 2.834805, Top1S: 100.000000, Top1T: 40.189125 +Train:epoch: 88, loss@min: 0.932766, loss@max: 1.389259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001404, LT: 2.830002, Top1S: 100.000000, Top1T: 40.307327 +Train:epoch: 89, loss@min: 0.935391, loss@max: 1.394510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001400, LT: 2.823582, Top1S: 100.000000, Top1T: 40.425533Best acc: 40.425533 +Train:epoch: 90, loss@min: 0.953063, loss@max: 1.369935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001397, LT: 2.817434, Top1S: 100.000000, Top1T: 40.425533 +Train:epoch: 91, loss@min: 0.959649, loss@max: 1.367154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001395, LT: 2.810567, Top1S: 100.000000, Top1T: 40.366432 +Train:epoch: 92, loss@min: 0.973361, loss@max: 1.352771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001394, LT: 2.803588, Top1S: 100.000000, Top1T: 40.425533 +Train:epoch: 93, loss@min: 0.950772, loss@max: 1.365672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001393, LT: 2.797775, Top1S: 100.000000, Top1T: 40.661938Best acc: 40.661938 +Train:epoch: 94, loss@min: 0.955048, loss@max: 1.366033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001392, LT: 2.792815, Top1S: 100.000000, Top1T: 40.780144Best acc: 40.780144 +Train:epoch: 95, loss@min: 0.952224, loss@max: 1.365941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001391, LT: 2.788916, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 96, loss@min: 0.951451, loss@max: 1.366317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001388, LT: 2.785702, Top1S: 100.000000, Top1T: 40.898346Best acc: 40.898346 +Train:epoch: 97, loss@min: 0.945842, loss@max: 1.369664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001385, LT: 2.783525, Top1S: 100.000000, Top1T: 40.839245 +Train:epoch: 98, loss@min: 0.963549, loss@max: 1.354641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001381, LT: 2.782210, Top1S: 100.000000, Top1T: 40.780144 +Train:epoch: 99, loss@min: 0.959228, loss@max: 1.358702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001377, LT: 2.781194, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 100, loss@min: 0.948280, loss@max: 1.366363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001373, LT: 2.779780, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 101, loss@min: 0.943630, loss@max: 1.376140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001369, LT: 2.779003, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 102, loss@min: 0.952635, loss@max: 1.363356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001365, LT: 2.778801, Top1S: 100.000000, Top1T: 40.661938 +Train:epoch: 103, loss@min: 0.939708, loss@max: 1.377312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001362, LT: 2.777894, Top1S: 100.000000, Top1T: 40.543736 +Train:epoch: 104, loss@min: 0.949124, loss@max: 1.369589, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Thu Jul 20 00:49:26 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Thu Jul 20 00:51:59 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 25} + +------------------------------------------- +Thu Jul 20 00:53:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 31.414665, loss@max: 17.171955, Top1S acc: 100.000000, Top1T acc: 40.425533 +Train:epoch: 2, loss@min: 13.810851, loss@max: 9.328197, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 3, loss@min: 9.755646, loss@max: 3.023526, Top1S acc: 100.000000, Top1T acc: 74.468086 +Train:epoch: 4, loss@min: 6.844236, loss@max: 2.501989, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 5, loss@min: 4.341712, loss@max: 4.372353, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 6, loss@min: 1.929257, loss@max: 4.570292, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 7, loss@min: 1.021189, loss@max: 3.868469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.243650, loss@max: 3.105379, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 9, loss@min: 1.353013, loss@max: 2.223726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 2.488775, loss@max: 1.891441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 2.459271, loss@max: 1.927090, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.075986, loss@max: 1.999198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.431832, loss@max: 2.669907, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 1.711948, loss@max: 2.736327, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 15, loss@min: 1.770764, loss@max: 2.446580, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 16, loss@min: 1.369578, loss@max: 2.030984, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.163645, loss@max: 1.898700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.290480, loss@max: 1.884693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.372385, loss@max: 1.790220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.223047, loss@max: 1.715858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.085594, loss@max: 1.722240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.117864, loss@max: 1.775159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.217566, loss@max: 1.705714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.581543, loss@max: 1.778556, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 25, loss@min: 0.961903, loss@max: 1.806649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.000000, LT: 32.044591, Top1S: 100.000000, Top1T: 35.579197Best acc: 35.579197 +Train:epoch: 26, loss@min: 0.896367, loss@max: 1.801133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.000000, LT: 32.771912, Top1S: 100.000000, Top1T: 35.047283 +Train:epoch: 27, loss@min: 0.943262, loss@max: 1.664575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.000000, LT: 33.529978, Top1S: 100.000000, Top1T: 34.397163 +Train:epoch: 28, loss@min: 1.252638, loss@max: 1.513173, Top1S acc: 100.000000, Top1T acc: 97.872337{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 00:55:02 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 31.414654, loss@max: 17.171946, Top1S acc: 100.000000, Top1T acc: 40.425533 +Train:epoch: 2, loss@min: 13.810854, loss@max: 9.328182, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 3, loss@min: 9.755611, loss@max: 3.023518, Top1S acc: 100.000000, Top1T acc: 74.468086 +Train:epoch: 4, loss@min: 6.844229, loss@max: 2.501989, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 5, loss@min: 4.341832, loss@max: 4.372361, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 6, loss@min: 1.929329, loss@max: 4.570244, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 7, loss@min: 1.020993, loss@max: 3.868465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.243669, loss@max: 3.105462, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 9, loss@min: 1.353039, loss@max: 2.223470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 2.488921, loss@max: 1.890985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 2.459444, loss@max: 1.926853, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.074750, loss@max: 1.999396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.431697, loss@max: 2.670528, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 1.711941, loss@max: 2.736159, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 15, loss@min: 1.771196, loss@max: 2.445953, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 16, loss@min: 1.369168, loss@max: 2.030828, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.163056, loss@max: 1.899175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.290358, loss@max: 1.884708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.372673, loss@max: 1.789896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.223495, loss@max: 1.715962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.084778, loss@max: 1.722551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.117923, loss@max: 1.775311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.218100, loss@max: 1.705276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.581832, loss@max: 1.778075, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 25, loss@min: 0.961557, loss@max: 1.806773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.907058, loss@max: 1.792283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.953494, loss@max: 1.629534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.135233, loss@max: 1.496122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.138566, loss@max: 1.419887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.126613, loss@max: 1.477714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.066495, loss@max: 1.489798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.262886, loss@max: 1.514689, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 33, loss@min: 0.987815, loss@max: 1.541149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.916727, loss@max: 1.615113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.897851, loss@max: 1.633343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.948188, loss@max: 1.514199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.336755, loss@max: 1.555952, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 38, loss@min: 1.038145, loss@max: 1.396408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.395713, loss@max: 1.496801, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 40, loss@min: 1.000993, loss@max: 1.421098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.208863, loss@max: 1.464966, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 42, loss@min: 0.997712, loss@max: 1.451431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.949525, loss@max: 1.471127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.927312, loss@max: 1.458911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.986159, loss@max: 1.401997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947080, loss@max: 1.436322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.959536, loss@max: 1.446103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.022280, loss@max: 1.437770, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 49, loss@min: 0.978751, loss@max: 1.405525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.001646, loss@max: 1.394305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.000783, loss@max: 1.395337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.127909, loss@max: 1.453203, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 53, loss@min: 0.967773, loss@max: 1.401095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.963013, loss@max: 1.427851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.164267, loss@max: 1.536744, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 56, loss@min: 1.445529, loss@max: 1.600335, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 57, loss@min: 0.910526, loss@max: 1.441822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943682, loss@max: 1.445728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.020449, loss@max: 1.369724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.018628, loss@max: 1.332970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.999894, loss@max: 1.345726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.968787, loss@max: 1.389628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.965502, loss@max: 1.381130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.926033, loss@max: 1.416230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.519803, loss@max: 1.564231, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 66, loss@min: 0.929374, loss@max: 1.437476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.917201, loss@max: 1.454731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.940978, loss@max: 1.423592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.940413, loss@max: 1.391834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.960512, loss@max: 1.378949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.012685, loss@max: 1.341652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.014145, loss@max: 1.337458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.986993, loss@max: 1.347717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939662, loss@max: 1.395617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.931009, loss@max: 1.402652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.926635, loss@max: 1.437555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.907723, loss@max: 1.434080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.923629, loss@max: 1.423980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.983168, loss@max: 1.386454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.961462, loss@max: 1.372792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000000, LT: 35.183573, Top1S: 100.000000, Top1T: 35.460995Best acc: 35.460995 +Train:epoch: 81, loss@min: 0.998578, loss@max: 1.337513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000000, LT: 35.215410, Top1S: 100.000000, Top1T: 35.460995 +Train:epoch: 82, loss@min: 0.972428, loss@max: 1.372210, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 00:59:43 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 144.491989, loss@max: 46.000893, Top1S acc: 70.212761, Top1T acc: 44.680851 +Train:epoch: 2, loss@min: 110.306396, loss@max: 34.330433, Top1S acc: 72.340424, Top1T acc: 57.446808 +Train:epoch: 3, loss@min: 87.190430, loss@max: 23.361067, Top1S acc: 82.978722, Top1T acc: 78.723404 +Train:epoch: 4, loss@min: 67.929871, loss@max: 18.802891, Top1S acc: 82.978722, Top1T acc: 89.361702 +Train:epoch: 5, loss@min: 55.652542, loss@max: 17.089470, Top1S acc: 82.978722, Top1T acc: 87.234039 +Train:epoch: 6, loss@min: 43.682514, loss@max: 14.302523, Top1S acc: 82.978722, Top1T acc: 93.617020 +Train:epoch: 7, loss@min: 32.190987, loss@max: 11.745637, Top1S acc: 87.234039, Top1T acc: 97.872337 +Train:epoch: 8, loss@min: 24.676609, loss@max: 9.478466, Top1S acc: 89.361702, Top1T acc: 97.872337 +Train:epoch: 9, loss@min: 18.281507, loss@max: 7.419738, Top1S acc: 91.489357, Top1T acc: 95.744675 +Train:epoch: 10, loss@min: 12.742295, loss@max: 5.907627, Top1S acc: 91.489357, Top1T acc: 97.872337 +Train:epoch: 11, loss@min: 6.604439, loss@max: 4.640396, Top1S acc: 91.489357, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 2.632803, loss@max: 3.781785, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.220414, loss@max: 3.212892, Top1S acc: 97.872337, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 2.026699, loss@max: 3.075573, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 15, loss@min: 1.739690, loss@max: 2.784297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.566773, loss@max: 2.461854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 2.968101, loss@max: 2.600320, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 18, loss@min: 1.437253, loss@max: 2.130531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.432625, loss@max: 2.062592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.392982, loss@max: 2.120144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.283518, loss@max: 2.096298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.173136, loss@max: 1.900994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.189813, loss@max: 1.822293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.521554, loss@max: 1.826466, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 25, loss@min: 1.240359, loss@max: 1.842459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.089463, loss@max: 1.909079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938627, loss@max: 1.906520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.021841, loss@max: 1.824203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.195479, loss@max: 1.665839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.280371, loss@max: 1.595334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.087562, loss@max: 1.602764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.757323, loss@max: 1.787514, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 33, loss@min: 1.084023, loss@max: 1.650130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.056926, loss@max: 1.655470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.028668, loss@max: 1.578924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.104308, loss@max: 1.504061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.033515, loss@max: 1.579234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.008772, loss@max: 1.642555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.041644, loss@max: 1.570512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.021381, loss@max: 1.477232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.044561, loss@max: 1.447755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.010835, loss@max: 1.501126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.024619, loss@max: 1.512811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954562, loss@max: 1.500688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.001085, loss@max: 1.445440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.025797, loss@max: 1.455853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.999893, loss@max: 1.489680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.971406, loss@max: 1.488687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.994834, loss@max: 1.434587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.990211, loss@max: 1.392140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.039864, loss@max: 1.471523, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 52, loss@min: 0.935227, loss@max: 1.456280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.909182, loss@max: 1.466945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.989642, loss@max: 1.443089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.988849, loss@max: 1.400410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.988235, loss@max: 1.377961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.994882, loss@max: 1.372703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.988075, loss@max: 1.377765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.959040, loss@max: 1.403710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.920788, loss@max: 1.439692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.924268, loss@max: 1.446271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.971754, loss@max: 1.389869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.979685, loss@max: 1.360034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.964634, loss@max: 1.405763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.955166, loss@max: 1.414751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.954098, loss@max: 1.391764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.938987, loss@max: 1.401393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.958858, loss@max: 1.399048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.982137, loss@max: 1.367121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.981656, loss@max: 1.357425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957970, loss@max: 1.369697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.936007, loss@max: 1.400964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948913, loss@max: 1.403543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.922733, loss@max: 1.409340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.935675, loss@max: 1.407702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.946457, loss@max: 1.374659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.976694, loss@max: 1.347673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.963724, loss@max: 1.366240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.958363, loss@max: 1.375777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.965380, loss@max: 1.363042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000000, LT: 44.130592, Top1S: 100.000000, Top1T: 39.302601Best acc: 39.302601 +Train:epoch: 81, loss@min: 0.951417, loss@max: 1.369884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000000, LT: 44.129287, Top1S: 100.000000, Top1T: 39.302601 +Train:epoch: 82, loss@min: 0.944038, loss@max: 1.373063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000000, LT: 44.128551, Top1S: 100.000000, Top1T: 39.361702Best acc: 39.361702 +Train:epoch: 83, loss@min: 0.938539, loss@max: 1.388365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000000, LT: 44.129136, Top1S: 100.000000, Top1T: 39.479904Best acc: 39.479904 +Train:epoch: 84, loss@min: 0.950527, loss@max: 1.383647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000000, LT: 44.053857, Top1S: 100.000000, Top1T: 39.420803 +Train:epoch: 85, loss@min: 0.936065, loss@max: 1.400118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000000, LT: 43.994427, Top1S: 100.000000, Top1T: 39.479904 +Train:epoch: 86, loss@min: 0.952001, loss@max: 1.368357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000000, LT: 43.948808, Top1S: 100.000000, Top1T: 39.539005Best acc: 39.539005 +Train:epoch: 87, loss@min: 0.948146, loss@max: 1.369228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000000, LT: 43.913108, Top1S: 100.000000, Top1T: 39.539005 +Train:epoch: 88, loss@min: 0.954802, loss@max: 1.363604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000000, LT: 43.882819, Top1S: 100.000000, Top1T: 39.539005 +Train:epoch: 89, loss@min: 0.970380, loss@max: 1.351282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000000, LT: 43.861183, Top1S: 100.000000, Top1T: 39.598110Best acc: 39.598110 +Train:epoch: 90, loss@min: 0.955267, loss@max: 1.361014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000000, LT: 43.845565, Top1S: 100.000000, Top1T: 39.539005 +Train:epoch: 91, loss@min: 0.927410, loss@max: 1.384429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000000, LT: 43.832677, Top1S: 100.000000, Top1T: 39.657211Best acc: 39.657211 +Train:epoch: 92, loss@min: 0.944228, loss@max: 1.374617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000000, LT: 43.822541, Top1S: 100.000000, Top1T: 39.598110 +Train:epoch: 93, loss@min: 0.937263, loss@max: 1.374233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000000, LT: 43.816246, Top1S: 100.000000, Top1T: 39.657211 +Train:epoch: 94, loss@min: 0.951740, loss@max: 1.370739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000000, LT: 43.811301, Top1S: 100.000000, Top1T: 39.657211 +Train:epoch: 95, loss@min: 0.947084, loss@max: 1.362008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000000, LT: 43.810272, Top1S: 100.000000, Top1T: 39.657211 +Train:epoch: 96, loss@min: 0.944723, loss@max: 1.363627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000000, LT: 43.811778, Top1S: 100.000000, Top1T: 39.775414Best acc: 39.775414 +Train:epoch: 97, loss@min: 0.968543, loss@max: 1.341314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000000, LT: 43.814046, Top1S: 100.000000, Top1T: 39.775414 +Train:epoch: 98, loss@min: 0.957259, loss@max: 1.354718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000000, LT: 43.814551, Top1S: 100.000000, Top1T: 39.834515Best acc: 39.834515 +Train:epoch: 99, loss@min: 0.939962, loss@max: 1.375472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000000, LT: 43.813332, Top1S: 100.000000, Top1T: 39.834515 +Train:epoch: 100, loss@min: 0.944118, loss@max: 1.366717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000000, LT: 43.812197, Top1S: 100.000000, Top1T: 39.775414 +Train:epoch: 101, loss@min: 0.939011, loss@max: 1.370001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000000, LT: 43.811096, Top1S: 100.000000, Top1T: 39.775414 +Train:epoch: 102, loss@min: 0.944049, loss@max: 1.369706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000000, LT: 43.809494, Top1S: 100.000000, Top1T: 39.775414 +Train:epoch: 103, loss@min: 0.949701, loss@max: 1.359521, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 01:10:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 13.813072, loss@max: 5.923485, Top1S acc: 6.382978, Top1T acc: 40.425533 +Train:epoch: 2, loss@min: 8.684572, loss@max: 6.148730, Top1S acc: 29.787233, Top1T acc: 85.106377 +Train:epoch: 3, loss@min: 6.981390, loss@max: 6.150578, Top1S acc: 51.063828, Top1T acc: 87.234039 +Train:epoch: 4, loss@min: 5.490473, loss@max: 5.344212, Top1S acc: 72.340424, Top1T acc: 95.744675 +Train:epoch: 5, loss@min: 4.669875, loss@max: 4.403610, Top1S acc: 85.106377, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 4.149633, loss@max: 3.801527, Top1S acc: 91.489357, Top1T acc: 97.872337 +Train:epoch: 7, loss@min: 3.400483, loss@max: 3.449110, Top1S acc: 97.872337, Top1T acc: 97.872337 +Train:epoch: 8, loss@min: 2.384699, loss@max: 3.459041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.475563, loss@max: 3.979004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.137277, loss@max: 3.908786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.973973, loss@max: 3.713643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.168131, loss@max: 3.331244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.249551, loss@max: 2.851042, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 1.335408, loss@max: 2.662167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.372932, loss@max: 2.491436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.150417, loss@max: 2.432773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.986008, loss@max: 2.344169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.068403, loss@max: 2.223908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.236722, loss@max: 2.049959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.356705, loss@max: 2.056016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.346761, loss@max: 1.879644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.288049, loss@max: 1.891646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.299153, loss@max: 1.880631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.208197, loss@max: 1.846504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.193889, loss@max: 1.786535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.090866, loss@max: 1.868569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.086249, loss@max: 1.769167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.167520, loss@max: 1.813895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.231238, loss@max: 1.756599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.120834, loss@max: 1.743870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.922292, loss@max: 1.889859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.934669, loss@max: 1.924871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.936803, loss@max: 1.934701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.920904, loss@max: 1.872685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.921366, loss@max: 1.832774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.039759, loss@max: 1.715593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.099244, loss@max: 1.655713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.271659, loss@max: 1.577074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.148642, loss@max: 1.612856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.144328, loss@max: 1.656077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.048586, loss@max: 1.712122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.985198, loss@max: 1.727143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.999960, loss@max: 1.692763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986881, loss@max: 1.612513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.026315, loss@max: 1.619951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.051925, loss@max: 1.551117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.113582, loss@max: 1.521340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.055303, loss@max: 1.549155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.025477, loss@max: 1.580550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.003094, loss@max: 1.629845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.979748, loss@max: 1.623881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948803, loss@max: 1.675922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.908676, loss@max: 1.661650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.901280, loss@max: 1.619526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.927603, loss@max: 1.677296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.079285, loss@max: 1.530830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.083612, loss@max: 1.451932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.044368, loss@max: 1.458684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.109473, loss@max: 1.433179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.055920, loss@max: 1.558341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959207, loss@max: 1.555893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.933974, loss@max: 1.607143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.972389, loss@max: 1.583611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.980557, loss@max: 1.576895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.994783, loss@max: 1.557785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.996599, loss@max: 1.521859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.049228, loss@max: 1.487531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.972394, loss@max: 1.525558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.967967, loss@max: 1.574003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.974145, loss@max: 1.544637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.010790, loss@max: 1.536158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.034198, loss@max: 1.448764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.049506, loss@max: 1.479782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.982491, loss@max: 1.539453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.012316, loss@max: 1.500814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.959184, loss@max: 1.552083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.973300, loss@max: 1.494758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.938637, loss@max: 1.527048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948119, loss@max: 1.528694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.938524, loss@max: 1.554155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.004263, LT: 2.616278, Top1S: 100.000000, Top1T: 37.588654Best acc: 37.588654 +Train:epoch: 81, loss@min: 0.990075, loss@max: 1.509733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.004247, LT: 2.605252, Top1S: 100.000000, Top1T: 38.061466Best acc: 38.061466 +Train:epoch: 82, loss@min: 0.993611, loss@max: 1.453318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.004231, LT: 2.589682, Top1S: 100.000000, Top1T: 38.416077Best acc: 38.416077 +Train:epoch: 83, loss@min: 1.075478, loss@max: 1.438055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.004216, LT: 2.572059, Top1S: 100.000000, Top1T: 38.770687Best acc: 38.770687 +Train:epoch: 84, loss@min: 1.056596, loss@max: 1.472645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.004201, LT: 2.558602, Top1S: 100.000000, Top1T: 38.356976 +Train:epoch: 85, loss@min: 1.076734, loss@max: 1.417610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.004190, LT: 2.553206, Top1S: 100.000000, Top1T: 37.588654 +Train:epoch: 86, loss@min: 1.011035, loss@max: 1.451213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.004178, LT: 2.554792, Top1S: 100.000000, Top1T: 37.115841 +Train:epoch: 87, loss@min: 0.925395, loss@max: 1.523863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.004166, LT: 2.566945, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 88, loss@min: 0.921468, loss@max: 1.537314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.004153, LT: 2.577224, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 89, loss@min: 1.008563, loss@max: 1.479198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.004141, LT: 2.582320, Top1S: 100.000000, Top1T: 37.056736 +Train:epoch: 90, loss@min: 0.965684, loss@max: 1.519928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.004129, LT: 2.582237, Top1S: 100.000000, Top1T: 36.938534 +Train:epoch: 91, loss@min: 0.914214, loss@max: 1.518951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.004115, LT: 2.579960, Top1S: 100.000000, Top1T: 37.174942 +Train:epoch: 92, loss@min: 0.891553, loss@max: 1.528306, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 01:43:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.083559, loss@max: 2.057126, Top1S acc: 100.000000, Top1T acc: 67.187500 +Train:epoch: 2, loss@min: 2.261189, loss@max: 1.475255, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 3, loss@min: 1.787001, loss@max: 1.348593, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 4, loss@min: 1.281260, loss@max: 1.326329, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 5, loss@min: 1.070572, loss@max: 1.326809, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 6, loss@min: 1.025038, loss@max: 1.264650, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 7, loss@min: 1.101483, loss@max: 1.170155, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 8, loss@min: 0.965160, loss@max: 1.235639, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 0.928126, loss@max: 1.224288, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 0.952602, loss@max: 1.242311, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 0.926935, loss@max: 1.259034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.925161, loss@max: 1.287123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.953513, loss@max: 1.264845, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 0.951288, loss@max: 1.312983, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.932600, loss@max: 1.346041, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.975732, loss@max: 1.300237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.899603, loss@max: 1.402167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991211, loss@max: 1.299091, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.940067, loss@max: 1.355031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.927864, loss@max: 1.351111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.995002, loss@max: 1.312844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.913409, loss@max: 1.340410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.932529, loss@max: 1.358530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.929144, loss@max: 1.348600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.951475, loss@max: 1.339857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.955327, loss@max: 1.336665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.947463, loss@max: 1.326484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.943993, loss@max: 1.364829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.961055, loss@max: 1.314197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.928660, loss@max: 1.354712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.929150, loss@max: 1.369871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.936176, loss@max: 1.359590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974868, loss@max: 1.326532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947634, loss@max: 1.338262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.924808, loss@max: 1.381361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.954031, loss@max: 1.334499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935821, loss@max: 1.369796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.943099, loss@max: 1.355900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949375, loss@max: 1.351108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933782, loss@max: 1.373821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.964586, loss@max: 1.336323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933688, loss@max: 1.383610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.942544, loss@max: 1.373044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.957991, loss@max: 1.348313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.948455, loss@max: 1.359573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.940741, loss@max: 1.365327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.966647, loss@max: 1.345203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.950119, loss@max: 1.358607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944363, loss@max: 1.370577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958216, loss@max: 1.354317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948254, loss@max: 1.355507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949509, loss@max: 1.364450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.951191, loss@max: 1.361116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.937661, loss@max: 1.367852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943710, loss@max: 1.367660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954216, loss@max: 1.355084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.953577, loss@max: 1.364935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.949316, loss@max: 1.365334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953451, loss@max: 1.358471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941882, loss@max: 1.368223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.939109, loss@max: 1.377324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954158, loss@max: 1.364829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955952, loss@max: 1.357227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.935800, loss@max: 1.374500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949229, loss@max: 1.364413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952773, loss@max: 1.356968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.942048, loss@max: 1.371565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943442, loss@max: 1.369851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949839, loss@max: 1.363547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945247, loss@max: 1.366834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943909, loss@max: 1.364900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.946589, loss@max: 1.363232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946614, loss@max: 1.364410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943977, loss@max: 1.367486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.952232, loss@max: 1.361848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943022, loss@max: 1.369074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.949735, loss@max: 1.360714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952572, loss@max: 1.355800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948186, loss@max: 1.362317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.941587, loss@max: 1.370026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000625, LT: 1.775815, Top1S: 100.000000, Top1T: 66.371155Best acc: 66.371155 +Train:epoch: 81, loss@min: 0.940483, loss@max: 1.369138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000619, LT: 1.777553, Top1S: 100.000000, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 82, loss@min: 0.949752, loss@max: 1.359750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000616, LT: 1.780365, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 83, loss@min: 0.949125, loss@max: 1.359702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000614, LT: 1.785958, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 84, loss@min: 0.944947, loss@max: 1.365409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000609, LT: 1.788172, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 85, loss@min: 0.954749, loss@max: 1.353903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000607, LT: 1.790614, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 86, loss@min: 0.946331, loss@max: 1.362966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000606, LT: 1.795141, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 87, loss@min: 0.939355, loss@max: 1.370458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000601, LT: 1.797273, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 88, loss@min: 0.951421, loss@max: 1.356715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000597, LT: 1.798830, Top1S: 100.000000, Top1T: 66.725769Best acc: 66.725769 +Train:epoch: 89, loss@min: 0.948588, loss@max: 1.358010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000596, LT: 1.801299, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 90, loss@min: 0.948218, loss@max: 1.358620, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 02:03:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.328150, loss@max: 4.512946, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 2, loss@min: 16.261015, loss@max: 4.580336, Top1S acc: 100.000000, Top1T acc: 68.085106 +Train:epoch: 3, loss@min: 16.196140, loss@max: 4.648044, Top1S acc: 100.000000, Top1T acc: 78.723404 +Train:epoch: 4, loss@min: 16.133663, loss@max: 4.715710, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 5, loss@min: 16.063293, loss@max: 4.780763, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 6, loss@min: 15.995989, loss@max: 4.846465, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 7, loss@min: 15.925858, loss@max: 4.909388, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 8, loss@min: 15.857934, loss@max: 4.972199, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 9, loss@min: 15.772053, loss@max: 5.030142, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 10, loss@min: 15.706202, loss@max: 5.091008, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 15.617722, loss@max: 5.145719, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 15.559392, loss@max: 5.205604, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 13, loss@min: 15.460615, loss@max: 5.254140, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 15.391162, loss@max: 5.308066, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 15, loss@min: 15.291878, loss@max: 5.352664, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 16, loss@min: 15.189894, loss@max: 5.396318, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 15.106283, loss@max: 5.441863, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 18, loss@min: 15.005235, loss@max: 5.482455, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 19, loss@min: 14.885600, loss@max: 5.515195, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 20, loss@min: 14.814219, loss@max: 5.556555, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 21, loss@min: 14.709263, loss@max: 5.590131, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 22, loss@min: 14.579208, loss@max: 5.612978, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 23, loss@min: 14.481051, loss@max: 5.644549, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 24, loss@min: 14.403831, loss@max: 5.676739, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 25, loss@min: 14.235711, loss@max: 5.688148, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 26, loss@min: 14.145951, loss@max: 5.714910, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 27, loss@min: 14.047199, loss@max: 5.735945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 13.893802, loss@max: 5.743761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 13.787267, loss@max: 5.760173, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 30, loss@min: 13.643105, loss@max: 5.763659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 13.518488, loss@max: 5.775454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 13.405882, loss@max: 5.782739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 13.184337, loss@max: 5.763300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 13.045223, loss@max: 5.759959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 12.892119, loss@max: 5.758545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 12.792786, loss@max: 5.757778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 12.634840, loss@max: 5.745767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 12.503278, loss@max: 5.740042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 12.365284, loss@max: 5.726789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 12.198993, loss@max: 5.704635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 12.092752, loss@max: 5.690920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 11.860440, loss@max: 5.652320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 11.715626, loss@max: 5.628280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 11.550639, loss@max: 5.594938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 11.435122, loss@max: 5.577520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 11.280163, loss@max: 5.544434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 11.091060, loss@max: 5.497083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 10.933363, loss@max: 5.459398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 10.830511, loss@max: 5.430202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 10.664082, loss@max: 5.378185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 10.531384, loss@max: 5.346097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 10.415945, loss@max: 5.308959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 10.224863, loss@max: 5.238180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 10.121119, loss@max: 5.207909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 10.026344, loss@max: 5.160301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 9.866146, loss@max: 5.113201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 9.827221, loss@max: 5.073966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 9.613265, loss@max: 4.993401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 9.579696, loss@max: 4.968929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 9.451100, loss@max: 4.902128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 9.323253, loss@max: 4.842702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 9.221684, loss@max: 4.776122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 9.168050, loss@max: 4.742218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 9.122195, loss@max: 4.711792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 8.980268, loss@max: 4.625170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 8.936785, loss@max: 4.602929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 8.898619, loss@max: 4.552580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 8.855906, loss@max: 4.540994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 8.680837, loss@max: 4.401759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 8.639510, loss@max: 4.377173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 8.558236, loss@max: 4.310897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 8.526956, loss@max: 4.263150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 8.452702, loss@max: 4.209603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 8.419510, loss@max: 4.164507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 8.412061, loss@max: 4.148472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 8.384577, loss@max: 4.120447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 8.324262, loss@max: 4.059886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 8.300221, loss@max: 4.018338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 8.288266, loss@max: 3.997907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 8.236092, loss@max: 3.936531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 3.302777, LT: 2.481982, Top1S: 100.000000, Top1T: 38.593380Best acc: 38.593380 +Train:epoch: 81, loss@min: 8.235271, loss@max: 3.921454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 3.300259, LT: 2.476916, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 82, loss@min: 8.219655, loss@max: 3.910114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 3.297805, LT: 2.472046, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 83, loss@min: 8.155233, loss@max: 3.842684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 3.295415, LT: 2.467473, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 84, loss@min: 8.182042, loss@max: 3.851883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 3.293091, LT: 2.463199, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 85, loss@min: 8.155107, loss@max: 3.804540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 3.290831, LT: 2.459234, Top1S: 100.000000, Top1T: 38.416077 +Train:epoch: 86, loss@min: 8.122036, loss@max: 3.763963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 3.288633, LT: 2.455491, Top1S: 100.000000, Top1T: 38.356976 +Train:epoch: 87, loss@min: 8.078895, loss@max: 3.732944, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 3.286497, LT: 2.452051, Top1S: 100.000000, Top1T: 38.297871 +Train:epoch: 88, loss@min: 8.061296, loss@max: 3.692028, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 90} + +------------------------------------------- +Thu Jul 20 02:08:16 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 2.041420, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.737159, loss@max: 1.743044, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.193694, loss@max: 1.571515, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924670, loss@max: 1.451747, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.894867, loss@max: 1.344644, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.907802, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956321, loss@max: 1.212828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997056, loss@max: 1.158758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.019014, loss@max: 1.143799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044206, loss@max: 1.198156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.918311, loss@max: 1.261195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.851317, loss@max: 1.339796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.869818, loss@max: 1.392550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.913747, loss@max: 1.334041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940439, loss@max: 1.377507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.943502, loss@max: 1.382186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.894018, loss@max: 1.415909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991902, loss@max: 1.380917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.941923, loss@max: 1.324172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.001104, loss@max: 1.261517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952239, loss@max: 1.381375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.958566, loss@max: 1.397288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908015, loss@max: 1.444177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.931090, loss@max: 1.353524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.054458, loss@max: 1.335761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.037380, loss@max: 1.340740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908276, loss@max: 1.477787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.888235, loss@max: 1.542880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.904956, loss@max: 1.503553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949665, loss@max: 1.356651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.972570, loss@max: 1.324167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.004718, loss@max: 1.334219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.028344, loss@max: 1.413501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.981059, loss@max: 1.385595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.916150, loss@max: 1.408244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.958348, loss@max: 1.494203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.961967, loss@max: 1.433822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.024150, loss@max: 1.410594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.929717, loss@max: 1.465096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.889391, loss@max: 1.493654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.995086, loss@max: 1.435091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.025783, loss@max: 1.413154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.047614, loss@max: 1.450505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986051, loss@max: 1.408849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.986801, loss@max: 1.422931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.007356, loss@max: 1.407439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.925179, loss@max: 1.537179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.955289, loss@max: 1.469673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961942, loss@max: 1.590762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.972107, loss@max: 1.476213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.003530, loss@max: 1.463372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.975297, loss@max: 1.480902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.977604, loss@max: 1.483490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.962116, loss@max: 1.560983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.958568, loss@max: 1.525479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.019336, loss@max: 1.476930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.053164, loss@max: 1.461892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.983671, loss@max: 1.503494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.960083, loss@max: 1.469990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.016044, loss@max: 1.472076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.999298, loss@max: 1.480438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.024138, loss@max: 1.393523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939067, loss@max: 1.506033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.901314, loss@max: 1.557124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.966342, loss@max: 1.452810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.960430, loss@max: 1.481168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.925690, loss@max: 1.506518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.981404, loss@max: 1.413909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.073889, loss@max: 1.392771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.050983, loss@max: 1.385977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.940644, loss@max: 1.475853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.974730, loss@max: 1.459664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.949354, loss@max: 1.447625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948254, loss@max: 1.474277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.967811, loss@max: 1.451213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.962283, loss@max: 1.499571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965969, loss@max: 1.433402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.999968, loss@max: 1.424493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952837, loss@max: 1.433368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.973459, loss@max: 1.455119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.992869, loss@max: 1.436133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.964214, loss@max: 1.440542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.961440, loss@max: 1.429722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.964378, loss@max: 1.425385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.983223, loss@max: 1.398739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.968308, loss@max: 1.430763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.966109, loss@max: 1.393559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.954811, loss@max: 1.432392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.964955, loss@max: 1.428416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.995712, loss@max: 1.383207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001245, LT: 2.476249, Top1S: 100.000000, Top1T: 44.267139Best acc: 44.267139 +Train:epoch: 91, loss@min: 0.977418, loss@max: 1.384057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001242, LT: 2.474427, Top1S: 100.000000, Top1T: 44.503548Best acc: 44.503548 +Train:epoch: 92, loss@min: 0.955377, loss@max: 1.450169, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001239, LT: 2.471914, Top1S: 100.000000, Top1T: 44.680851Best acc: 44.680851 +Train:epoch: 93, loss@min: 0.929214, loss@max: 1.469254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001234, LT: 2.468767, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 94, loss@min: 0.953549, loss@max: 1.407104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001229, LT: 2.465494, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 95, loss@min: 0.925300, loss@max: 1.450772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001225, LT: 2.462975, Top1S: 100.000000, Top1T: 44.444443 +Train:epoch: 96, loss@min: 0.925823, loss@max: 1.445717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001221, LT: 2.461895, Top1S: 100.000000, Top1T: 44.503548 +Train:epoch: 97, loss@min: 0.967130, loss@max: 1.389436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001218, LT: 2.461748, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 98, loss@min: 0.972191, loss@max: 1.385454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001215, LT: 2.461343, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 99, loss@min: 0.988440, loss@max: 1.378327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001212, LT: 2.460559, Top1S: 100.000000, Top1T: 44.503548 +Train:epoch: 100, loss@min: 0.967120, loss@max: 1.390177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001210, LT: 2.459313, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 101, loss@min: 0.972790, loss@max: 1.387912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001208, LT: 2.457687, Top1S: 100.000000, Top1T: 44.503548 +Train:epoch: 102, loss@min: 0.966691, loss@max: 1.401239, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 30} + +------------------------------------------- +Thu Jul 20 02:14:19 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 2.041420, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.737159, loss@max: 1.743044, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.193694, loss@max: 1.571515, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924670, loss@max: 1.451747, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.894867, loss@max: 1.344644, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.907802, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956321, loss@max: 1.212828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997056, loss@max: 1.158758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.019014, loss@max: 1.143799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044206, loss@max: 1.198156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.918311, loss@max: 1.261195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.851317, loss@max: 1.339796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.869818, loss@max: 1.392550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.913747, loss@max: 1.334041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940439, loss@max: 1.377507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.943502, loss@max: 1.382186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.894018, loss@max: 1.415909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991902, loss@max: 1.380917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.941923, loss@max: 1.324172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.001104, loss@max: 1.261517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952239, loss@max: 1.381375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.958566, loss@max: 1.397288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908015, loss@max: 1.444177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.931090, loss@max: 1.353524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.054458, loss@max: 1.335761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.037380, loss@max: 1.340740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908276, loss@max: 1.477787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.888235, loss@max: 1.542880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.904956, loss@max: 1.503553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949665, loss@max: 1.356651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.001981, LT: 2.745343, Top1S: 100.000000, Top1T: 43.026005Best acc: 43.026005 +Train:epoch: 31, loss@min: 0.987588, loss@max: 1.346755, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 60} + +------------------------------------------- +Thu Jul 20 02:15:29 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 2.041420, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.737159, loss@max: 1.743044, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.193694, loss@max: 1.571515, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924670, loss@max: 1.451747, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.894867, loss@max: 1.344644, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.907802, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956321, loss@max: 1.212828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997056, loss@max: 1.158758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.019014, loss@max: 1.143799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044206, loss@max: 1.198156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.918311, loss@max: 1.261195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.851317, loss@max: 1.339796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.869818, loss@max: 1.392550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.913747, loss@max: 1.334041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940439, loss@max: 1.377507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.943502, loss@max: 1.382186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.894018, loss@max: 1.415909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991902, loss@max: 1.380917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.941923, loss@max: 1.324172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.001104, loss@max: 1.261517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952239, loss@max: 1.381375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.958566, loss@max: 1.397288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908015, loss@max: 1.444177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.931090, loss@max: 1.353524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.054458, loss@max: 1.335761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.037380, loss@max: 1.340740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908276, loss@max: 1.477787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.888235, loss@max: 1.542880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.904956, loss@max: 1.503553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949665, loss@max: 1.356651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.972570, loss@max: 1.324167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.004718, loss@max: 1.334219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.028344, loss@max: 1.413501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.981059, loss@max: 1.385595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.916150, loss@max: 1.408244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.958348, loss@max: 1.494203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.961967, loss@max: 1.433822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.024150, loss@max: 1.410594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.929717, loss@max: 1.465096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.889391, loss@max: 1.493654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.995086, loss@max: 1.435091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.025783, loss@max: 1.413154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.047614, loss@max: 1.450505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986051, loss@max: 1.408849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.986801, loss@max: 1.422931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.007356, loss@max: 1.407439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.925179, loss@max: 1.537179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.955289, loss@max: 1.469673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961942, loss@max: 1.590762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.972107, loss@max: 1.476213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.003530, loss@max: 1.463372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.975297, loss@max: 1.480902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.977604, loss@max: 1.483490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.962116, loss@max: 1.560983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.958568, loss@max: 1.525479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.019336, loss@max: 1.476930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.053164, loss@max: 1.461892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.983671, loss@max: 1.503494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.960083, loss@max: 1.469990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.016044, loss@max: 1.472076, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001399, LT: 2.576689, Top1S: 100.000000, Top1T: 44.503548Best acc: 44.503548 +Train:epoch: 61, loss@min: 0.957871, loss@max: 1.535522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001390, LT: 2.576231, Top1S: 100.000000, Top1T: 44.503548 +Train:epoch: 62, loss@min: 0.984935, loss@max: 1.507855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001385, LT: 2.573934, Top1S: 100.000000, Top1T: 44.385342 +Train:epoch: 63, loss@min: 0.978730, loss@max: 1.486807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001385, LT: 2.564217, Top1S: 100.000000, Top1T: 44.621750Best acc: 44.621750 +Train:epoch: 64, loss@min: 1.031519, loss@max: 1.461318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001385, LT: 2.556624, Top1S: 100.000000, Top1T: 44.444443 +Train:epoch: 65, loss@min: 0.982194, loss@max: 1.472959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001380, LT: 2.552626, Top1S: 100.000000, Top1T: 44.680851Best acc: 44.680851 +Train:epoch: 66, loss@min: 0.970765, loss@max: 1.490131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001371, LT: 2.554522, Top1S: 100.000000, Top1T: 44.858154Best acc: 44.858154 +Train:epoch: 67, loss@min: 0.984625, loss@max: 1.424069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001360, LT: 2.554144, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 68, loss@min: 0.946308, loss@max: 1.515684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001350, LT: 2.548509, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 69, loss@min: 0.993555, loss@max: 1.498763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001339, LT: 2.537389, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 70, loss@min: 0.943124, loss@max: 1.472978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001331, LT: 2.525730, Top1S: 100.000000, Top1T: 44.917259Best acc: 44.917259 +Train:epoch: 71, loss@min: 1.037575, loss@max: 1.398176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001325, LT: 2.521435, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 72, loss@min: 0.961145, loss@max: 1.491739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001320, LT: 2.516835, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 73, loss@min: 0.967380, loss@max: 1.452605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001314, LT: 2.514968, Top1S: 100.000000, Top1T: 45.153664Best acc: 45.153664 +Train:epoch: 74, loss@min: 0.963699, loss@max: 1.426712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001308, LT: 2.513955, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 75, loss@min: 0.925580, loss@max: 1.518556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001301, LT: 2.513420, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 76, loss@min: 0.929269, loss@max: 1.501054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001296, LT: 2.509831, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 77, loss@min: 1.002565, loss@max: 1.418799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001291, LT: 2.507306, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 78, loss@min: 0.977277, loss@max: 1.448806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001288, LT: 2.501991, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 79, loss@min: 0.960345, loss@max: 1.449975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001286, LT: 2.496761, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 80, loss@min: 1.001133, loss@max: 1.420160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001282, LT: 2.492583, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 81, loss@min: 0.970719, loss@max: 1.450934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001275, LT: 2.487041, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 82, loss@min: 0.992414, loss@max: 1.417270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001268, LT: 2.483320, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 83, loss@min: 0.963517, loss@max: 1.437772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001262, LT: 2.480257, Top1S: 100.000000, Top1T: 45.212765Best acc: 45.212765 +Train:epoch: 84, loss@min: 0.990636, loss@max: 1.403472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001259, LT: 2.475901, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 85, loss@min: 0.984131, loss@max: 1.419930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001256, LT: 2.473348, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 86, loss@min: 0.966790, loss@max: 1.402263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001252, LT: 2.470982, Top1S: 100.000000, Top1T: 45.330971Best acc: 45.330971 +Train:epoch: 87, loss@min: 0.966601, loss@max: 1.448340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001249, LT: 2.470656, Top1S: 100.000000, Top1T: 45.449173Best acc: 45.449173 +Train:epoch: 88, loss@min: 0.958845, loss@max: 1.442835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001247, LT: 2.468264, Top1S: 100.000000, Top1T: 45.330971 +Train:epoch: 89, loss@min: 0.928083, loss@max: 1.464352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001247, LT: 2.463180, Top1S: 100.000000, Top1T: 45.567375Best acc: 45.567375 +Train:epoch: 90, loss@min: 0.948637, loss@max: 1.415457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001247, LT: 2.459171, Top1S: 100.000000, Top1T: 45.449173 +Train:epoch: 91, loss@min: 0.948163, loss@max: 1.412911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001245, LT: 2.456772, Top1S: 100.000000, Top1T: 45.390072 +Train:epoch: 92, loss@min: 0.912016, loss@max: 1.489612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001241, LT: 2.454484, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 93, loss@min: 0.968697, loss@max: 1.423638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001235, LT: 2.453377, Top1S: 100.000000, Top1T: 45.390072 +Train:epoch: 94, loss@min: 0.959015, loss@max: 1.404174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001229, LT: 2.453587, Top1S: 100.000000, Top1T: 45.390072 +Train:epoch: 95, loss@min: 0.982094, loss@max: 1.381058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001223, LT: 2.454229, Top1S: 100.000000, Top1T: 45.271866 +Train:epoch: 96, loss@min: 0.955748, loss@max: 1.406149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001219, LT: 2.454762, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 97, loss@min: 0.971643, loss@max: 1.400274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001214, LT: 2.452713, Top1S: 100.000000, Top1T: 45.271866 +Train:epoch: 98, loss@min: 1.008408, loss@max: 1.374459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001212, LT: 2.450571, Top1S: 100.000000, Top1T: 45.567375 +Train:epoch: 99, loss@min: 0.984348, loss@max: 1.359388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001210, LT: 2.448254, Top1S: 100.000000, Top1T: 45.508274 +Train:epoch: 100, loss@min: 0.971685, loss@max: 1.359049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001209, LT: 2.446500, Top1S: 100.000000, Top1T: 45.508274 +Train:epoch: 101, loss@min: 0.999270, loss@max: 1.378737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001209, LT: 2.445524, Top1S: 100.000000, Top1T: 45.567375 +Train:epoch: 102, loss@min: 0.947139, loss@max: 1.417231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001208, LT: 2.445537, Top1S: 100.000000, Top1T: 45.685577Best acc: 45.685577 +Train:epoch: 103, loss@min: 0.929855, loss@max: 1.418754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001207, LT: 2.444839, Top1S: 100.000000, Top1T: 45.744682Best acc: 45.744682 +Train:epoch: 104, loss@min: 0.922345, loss@max: 1.441969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001206, LT: 2.444356, Top1S: 100.000000, Top1T: 45.626476 +Train:epoch: 105, loss@min: 0.936793, loss@max: 1.399701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001204, LT: 2.443189, Top1S: 100.000000, Top1T: 45.449173 +Train:epoch: 106, loss@min: 0.955874, loss@max: 1.390882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001203, LT: 2.442079, Top1S: 100.000000, Top1T: 45.271866 +Train:epoch: 107, loss@min: 0.931059, loss@max: 1.404534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001201, LT: 2.440576, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 108, loss@min: 0.925867, loss@max: 1.431901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001198, LT: 2.439190, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 109, loss@min: 0.940217, loss@max: 1.434837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001196, LT: 2.438328, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 110, loss@min: 0.965171, loss@max: 1.372153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001194, LT: 2.437419, Top1S: 100.000000, Top1T: 45.330971 +Train:epoch: 111, loss@min: 0.984046, loss@max: 1.355685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001193, LT: 2.437591, Top1S: 100.000000, Top1T: 45.330971 +Train:epoch: 112, loss@min: 0.959223, loss@max: 1.384138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001191, LT: 2.437874, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 113, loss@min: 0.962971, loss@max: 1.374143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001190, LT: 2.438137, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 114, loss@min: 0.940554, loss@max: 1.387444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001190, LT: 2.438201, Top1S: 100.000000, Top1T: 45.330971 +Train:epoch: 115, loss@min: 0.958705, loss@max: 1.368725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001189, LT: 2.438244, Top1S: 100.000000, Top1T: 45.271866 +Train:epoch: 116, loss@min: 0.995082, loss@max: 1.345946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001189, LT: 2.438251, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 117, loss@min: 0.981219, loss@max: 1.366276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001188, LT: 2.438399, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 118, loss@min: 0.950165, loss@max: 1.392163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001187, LT: 2.438068, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 119, loss@min: 0.946000, loss@max: 1.402966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001187, LT: 2.438113, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 120, loss@min: 0.949605, loss@max: 1.380100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001186, LT: 2.438362, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 121, loss@min: 0.933345, loss@max: 1.394054, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 60} + +------------------------------------------- +Thu Jul 20 02:51:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807690, loss@max: 2.132195, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238816, loss@max: 1.612197, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818653, loss@max: 1.355072, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431978, loss@max: 1.457589, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271059, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196052, loss@max: 1.305311, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298017, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133901, loss@max: 1.294018, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008143, loss@max: 1.292642, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019453, loss@max: 1.253726, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006048, loss@max: 1.259361, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950055, loss@max: 1.294760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972028, loss@max: 1.280222, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963695, loss@max: 1.293110, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931030, loss@max: 1.307257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971434, loss@max: 1.285431, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948193, loss@max: 1.315802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943466, loss@max: 1.329109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942532, loss@max: 1.328727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968131, loss@max: 1.319439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932676, loss@max: 1.392961, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014458, loss@max: 1.328951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964474, loss@max: 1.403740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977668, loss@max: 1.374834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961543, loss@max: 1.393626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968752, loss@max: 1.379517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938255, loss@max: 1.409586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982247, loss@max: 1.385039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959366, loss@max: 1.404649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000643, loss@max: 1.388893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962220, loss@max: 1.435753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.952937, loss@max: 1.472977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.005491, loss@max: 1.458949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.966266, loss@max: 1.451641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984046, loss@max: 1.494132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950127, loss@max: 1.515101, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.974992, loss@max: 1.461757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.986003, loss@max: 1.435325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.922787, loss@max: 1.486707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.015853, loss@max: 1.399362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981658, loss@max: 1.427888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.945054, loss@max: 1.452034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.973009, loss@max: 1.431395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935525, loss@max: 1.476740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992954, loss@max: 1.394657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989691, loss@max: 1.393432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.937929, loss@max: 1.459909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987943, loss@max: 1.401063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961547, loss@max: 1.432665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963438, loss@max: 1.425790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972765, loss@max: 1.417540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.972821, loss@max: 1.416069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961378, loss@max: 1.423872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.994560, loss@max: 1.398939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943502, loss@max: 1.428755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.964944, loss@max: 1.399719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957942, loss@max: 1.416741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.958909, loss@max: 1.410702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.969546, loss@max: 1.394513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.979283, loss@max: 1.394478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000697, LT: 1.644043, Top1S: 100.000000, Top1T: 67.375885Best acc: 67.375885 +Train:epoch: 61, loss@min: 0.946095, loss@max: 1.426550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000686, LT: 1.646818, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 62, loss@min: 0.957915, loss@max: 1.404685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000683, LT: 1.652355, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 63, loss@min: 0.962401, loss@max: 1.397677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000676, LT: 1.655494, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 64, loss@min: 0.966098, loss@max: 1.404198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000669, LT: 1.658510, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 65, loss@min: 0.957327, loss@max: 1.401998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000669, LT: 1.659408, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 66, loss@min: 0.951701, loss@max: 1.395738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000660, LT: 1.660467, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 67, loss@min: 0.971468, loss@max: 1.381164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000655, LT: 1.661641, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 68, loss@min: 0.946577, loss@max: 1.408590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000653, LT: 1.664290, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 69, loss@min: 0.953763, loss@max: 1.389215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000649, LT: 1.666843, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 70, loss@min: 0.980788, loss@max: 1.368140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000647, LT: 1.670310, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 71, loss@min: 0.957552, loss@max: 1.385748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000643, LT: 1.670939, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 72, loss@min: 0.940222, loss@max: 1.411104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000638, LT: 1.671685, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 73, loss@min: 0.954900, loss@max: 1.382587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000634, LT: 1.677352, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 74, loss@min: 0.950085, loss@max: 1.388988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000631, LT: 1.683950, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.947345, loss@max: 1.382908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000627, LT: 1.685241, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 76, loss@min: 0.956630, loss@max: 1.377202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000624, LT: 1.686982, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 77, loss@min: 0.952099, loss@max: 1.378703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000619, LT: 1.694552, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 78, loss@min: 0.950890, loss@max: 1.381475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000616, LT: 1.697606, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 79, loss@min: 0.950900, loss@max: 1.378601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000614, LT: 1.701090, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 80, loss@min: 0.950568, loss@max: 1.380206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000611, LT: 1.706709, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 81, loss@min: 0.959366, loss@max: 1.373205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000607, LT: 1.707133, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 82, loss@min: 0.952860, loss@max: 1.379133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000603, LT: 1.706339, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 83, loss@min: 0.961727, loss@max: 1.367386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000602, LT: 1.707995, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 84, loss@min: 0.937398, loss@max: 1.393419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000599, LT: 1.710608, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 85, loss@min: 0.941635, loss@max: 1.387996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000594, LT: 1.713661, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 86, loss@min: 0.954190, loss@max: 1.376192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000592, LT: 1.715481, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 87, loss@min: 0.955925, loss@max: 1.367050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000592, LT: 1.717162, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 88, loss@min: 0.948164, loss@max: 1.377382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000589, LT: 1.717939, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 89, loss@min: 0.955630, loss@max: 1.371455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000585, LT: 1.719916, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 90, loss@min: 0.941974, loss@max: 1.379653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000583, LT: 1.722655, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 91, loss@min: 0.946426, loss@max: 1.379689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000582, LT: 1.723600, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 92, loss@min: 0.949116, loss@max: 1.375965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000578, LT: 1.724469, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 93, loss@min: 0.959811, loss@max: 1.364597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000576, LT: 1.726310, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 94, loss@min: 0.954753, loss@max: 1.379129, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.000575, LT: 1.727987, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 95, loss@min: 0.947325, loss@max: 1.374629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000573, LT: 1.729079, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 96, loss@min: 0.958608, loss@max: 1.364627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000571, LT: 1.729897, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 97, loss@min: 0.943839, loss@max: 1.382287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000570, LT: 1.732069, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 98, loss@min: 0.948772, loss@max: 1.371715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000568, LT: 1.733776, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 99, loss@min: 0.945235, loss@max: 1.376017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000567, LT: 1.734553, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 100, loss@min: 0.955373, loss@max: 1.363425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000566, LT: 1.735814, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 101, loss@min: 0.952730, loss@max: 1.369381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000564, LT: 1.737883, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 102, loss@min: 0.951249, loss@max: 1.368058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000561, LT: 1.739897, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 103, loss@min: 0.956757, loss@max: 1.359974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000560, LT: 1.741099, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 104, loss@min: 0.950217, loss@max: 1.367894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000558, LT: 1.741746, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 105, loss@min: 0.954309, loss@max: 1.365561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000557, LT: 1.742343, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 106, loss@min: 0.953572, loss@max: 1.366205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000556, LT: 1.743512, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 107, loss@min: 0.957587, loss@max: 1.360164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000556, LT: 1.745147, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 108, loss@min: 0.942460, loss@max: 1.375938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000555, LT: 1.746873, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 109, loss@min: 0.942726, loss@max: 1.376317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000553, LT: 1.748403, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 110, loss@min: 0.950317, loss@max: 1.367988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000552, LT: 1.749463, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 111, loss@min: 0.950166, loss@max: 1.369150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000551, LT: 1.751292, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 112, loss@min: 0.952753, loss@max: 1.367471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000550, LT: 1.753406, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 113, loss@min: 0.947465, loss@max: 1.368571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000549, LT: 1.754414, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 114, loss@min: 0.947299, loss@max: 1.371423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000548, LT: 1.754752, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 115, loss@min: 0.945316, loss@max: 1.371514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000548, LT: 1.755280, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 116, loss@min: 0.947870, loss@max: 1.369725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000547, LT: 1.755954, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 117, loss@min: 0.952772, loss@max: 1.364157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000547, LT: 1.756349, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 118, loss@min: 0.953427, loss@max: 1.365269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000546, LT: 1.756747, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 119, loss@min: 0.952995, loss@max: 1.363409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000545, LT: 1.757231, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 120, loss@min: 0.952925, loss@max: 1.365861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000545, LT: 1.757954, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 121, loss@min: 0.949649, loss@max: 1.366210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000544, LT: 1.758645, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 122, loss@min: 0.951330, loss@max: 1.362089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000543, LT: 1.759070, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 123, loss@min: 0.946929, loss@max: 1.370388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000543, LT: 1.759381, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 124, loss@min: 0.948421, loss@max: 1.367869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000542, LT: 1.759405, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 125, loss@min: 0.955373, loss@max: 1.362800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000542, LT: 1.759463, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 126, loss@min: 0.950935, loss@max: 1.366413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000542, LT: 1.759957, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 127, loss@min: 0.949384, loss@max: 1.370566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000541, LT: 1.760497, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.948135, loss@max: 1.365230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000541, LT: 1.760861, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.948639, loss@max: 1.367033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000541, LT: 1.761121, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.948865, loss@max: 1.370864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000541, LT: 1.761135, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 131, loss@min: 0.950313, loss@max: 1.362231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000540, LT: 1.761148, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 132, loss@min: 0.950882, loss@max: 1.364584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000540, LT: 1.761411, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 133, loss@min: 0.949353, loss@max: 1.366439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000540, LT: 1.761769, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 134, loss@min: 0.952658, loss@max: 1.362132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000540, LT: 1.762135, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 135, loss@min: 0.950725, loss@max: 1.364745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000540, LT: 1.762521, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 136, loss@min: 0.950354, loss@max: 1.369567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000539, LT: 1.762876, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 137, loss@min: 0.954491, loss@max: 1.361916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000539, LT: 1.763134, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 138, loss@min: 0.943072, loss@max: 1.368633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000539, LT: 1.763230, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.945455, loss@max: 1.365373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000539, LT: 1.763261, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.945823, loss@max: 1.366511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000539, LT: 1.763264, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 141, loss@min: 0.947261, loss@max: 1.366538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000539, LT: 1.763294, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 142, loss@min: 0.949276, loss@max: 1.367539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000539, LT: 1.763338, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 143, loss@min: 0.954251, loss@max: 1.366164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000539, LT: 1.763348, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 144, loss@min: 0.950258, loss@max: 1.366401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000539, LT: 1.763362, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 145, loss@min: 0.949356, loss@max: 1.361675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000539, LT: 1.763371, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 146, loss@min: 0.947594, loss@max: 1.368010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000539, LT: 1.763378, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 147, loss@min: 0.950951, loss@max: 1.368375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000539, LT: 1.763386, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 148, loss@min: 0.950797, loss@max: 1.362504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000539, LT: 1.763389, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 149, loss@min: 0.950616, loss@max: 1.365341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000539, LT: 1.763389, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 150, loss@min: 0.944727, loss@max: 1.368964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000539, LT: 1.763389, Top1S: 100.000000, Top1T: 67.139481 +------------------------------------------- +Thu Jul 20 03:48:19 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 30} + +------------------------------------------- +Thu Jul 20 05:54:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807690, loss@max: 2.132195, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238816, loss@max: 1.612197, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818653, loss@max: 1.355072, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431978, loss@max: 1.457589, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271059, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196052, loss@max: 1.305311, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298017, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133901, loss@max: 1.294018, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008143, loss@max: 1.292642, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019453, loss@max: 1.253726, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006048, loss@max: 1.259361, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950055, loss@max: 1.294760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972028, loss@max: 1.280222, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963695, loss@max: 1.293110, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931030, loss@max: 1.307257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971434, loss@max: 1.285431, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948193, loss@max: 1.315802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943466, loss@max: 1.329109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942532, loss@max: 1.328727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968131, loss@max: 1.319439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932676, loss@max: 1.392961, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014458, loss@max: 1.328951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964474, loss@max: 1.403740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977668, loss@max: 1.374834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961543, loss@max: 1.393626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968752, loss@max: 1.379517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938255, loss@max: 1.409586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982247, loss@max: 1.385039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959366, loss@max: 1.404649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000643, loss@max: 1.388893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000995, LT: 1.650392, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 31, loss@min: 0.962527, loss@max: 1.434996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.000983, LT: 1.647174, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 32, loss@min: 0.952711, loss@max: 1.472353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000960, LT: 1.655505, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 33, loss@min: 1.005684, loss@max: 1.458542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000938, LT: 1.647694, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 34, loss@min: 0.966121, loss@max: 1.451974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.000927, LT: 1.645386, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 35, loss@min: 0.983557, loss@max: 1.494066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.000906, LT: 1.635379, Top1S: 100.000000, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 36, loss@min: 0.952248, loss@max: 1.484078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000904, LT: 1.628249, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 37, loss@min: 0.977390, loss@max: 1.443898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.000904, LT: 1.633688, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 38, loss@min: 1.006583, loss@max: 1.427625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.000889, LT: 1.618763, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 39, loss@min: 0.912398, loss@max: 1.507820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000874, LT: 1.626764, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 40, loss@min: 1.011095, loss@max: 1.412377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.000856, LT: 1.621633, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 41, loss@min: 0.992762, loss@max: 1.424438, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 0.000851, LT: 1.616692, Top1S: 100.000000, Top1T: 67.789597Best acc: 67.789597 +Train:epoch: 42, loss@min: 0.906943, loss@max: 1.508440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000844, LT: 1.618210, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 43, loss@min: 1.020454, loss@max: 1.368261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.000827, LT: 1.625632, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 44, loss@min: 0.947992, loss@max: 1.446244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.000825, LT: 1.621486, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 45, loss@min: 0.984296, loss@max: 1.431931, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.000812, LT: 1.620364, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 46, loss@min: 0.988445, loss@max: 1.431103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.000794, LT: 1.617305, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 47, loss@min: 0.953274, loss@max: 1.481224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000792, LT: 1.615510, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 48, loss@min: 0.973492, loss@max: 1.422099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.000784, LT: 1.616356, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 49, loss@min: 0.983648, loss@max: 1.413711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.000771, LT: 1.615850, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 50, loss@min: 0.961921, loss@max: 1.441632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000768, LT: 1.616101, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 51, loss@min: 0.954643, loss@max: 1.433381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000762, LT: 1.620005, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 52, loss@min: 0.983414, loss@max: 1.399210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000750, LT: 1.621900, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 53, loss@min: 0.977296, loss@max: 1.429200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000744, LT: 1.621918, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 54, loss@min: 0.952568, loss@max: 1.437308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000734, LT: 1.627272, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 55, loss@min: 0.974508, loss@max: 1.401755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000730, LT: 1.632568, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 56, loss@min: 0.964636, loss@max: 1.425557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000725, LT: 1.627037, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 57, loss@min: 0.949949, loss@max: 1.415594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000717, LT: 1.627428, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 58, loss@min: 0.965900, loss@max: 1.404981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000708, LT: 1.630253, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 59, loss@min: 0.988165, loss@max: 1.388574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000703, LT: 1.626912, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 60, loss@min: 0.943442, loss@max: 1.451669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000699, LT: 1.632877, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 61, loss@min: 0.960933, loss@max: 1.400067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000690, LT: 1.634180, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 62, loss@min: 0.956531, loss@max: 1.421764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000685, LT: 1.638343, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 63, loss@min: 0.973745, loss@max: 1.398190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000679, LT: 1.647546, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 64, loss@min: 0.951666, loss@max: 1.406647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000679, LT: 1.649236, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 65, loss@min: 0.932297, loss@max: 1.431035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000677, LT: 1.647743, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 66, loss@min: 0.969958, loss@max: 1.378536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000667, LT: 1.653807, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 67, loss@min: 0.973188, loss@max: 1.392179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000663, LT: 1.661017, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 68, loss@min: 0.953426, loss@max: 1.432909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000662, LT: 1.658542, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 69, loss@min: 0.951912, loss@max: 1.400108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000661, LT: 1.657000, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 70, loss@min: 0.966276, loss@max: 1.389067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000655, LT: 1.663054, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 71, loss@min: 0.963944, loss@max: 1.381234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000650, LT: 1.662253, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 72, loss@min: 0.938559, loss@max: 1.411080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000646, LT: 1.661744, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 73, loss@min: 0.956270, loss@max: 1.388129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000644, LT: 1.669539, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 74, loss@min: 0.960782, loss@max: 1.380592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000640, LT: 1.673452, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 75, loss@min: 0.940380, loss@max: 1.396573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000635, LT: 1.671525, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 76, loss@min: 0.954282, loss@max: 1.383072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000632, LT: 1.676438, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 77, loss@min: 0.969859, loss@max: 1.367465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000628, LT: 1.683533, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 78, loss@min: 0.954455, loss@max: 1.381967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000625, LT: 1.683878, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 79, loss@min: 0.946667, loss@max: 1.387880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000622, LT: 1.687274, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 80, loss@min: 0.955108, loss@max: 1.381624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000616, LT: 1.691911, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 81, loss@min: 0.961165, loss@max: 1.372467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000613, LT: 1.691849, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 82, loss@min: 0.946526, loss@max: 1.388864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000611, LT: 1.692151, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 83, loss@min: 0.954214, loss@max: 1.375906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000607, LT: 1.696018, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 84, loss@min: 0.941227, loss@max: 1.385869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000604, LT: 1.700355, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 85, loss@min: 0.937017, loss@max: 1.389886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000602, LT: 1.700793, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 86, loss@min: 0.948371, loss@max: 1.381328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000599, LT: 1.703243, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 87, loss@min: 0.958911, loss@max: 1.367692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000597, LT: 1.706591, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 88, loss@min: 0.953920, loss@max: 1.374937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000596, LT: 1.705066, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 89, loss@min: 0.954027, loss@max: 1.375612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000594, LT: 1.706846, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 90, loss@min: 0.951865, loss@max: 1.372650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000591, LT: 1.709693, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 91, loss@min: 0.945879, loss@max: 1.380227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000589, LT: 1.712403, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 92, loss@min: 0.953272, loss@max: 1.373685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000586, LT: 1.714617, Top1S: 100.000000, Top1T: 67.553192{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 30} + +------------------------------------------- +Thu Jul 20 07:15:44 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807830, loss@max: 2.129513, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.245480, loss@max: 1.602491, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.812638, loss@max: 1.356809, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 4, loss@min: 1.428599, loss@max: 1.456176, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.268103, loss@max: 1.407562, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.189361, loss@max: 1.307069, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.120169, loss@max: 1.296196, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.137949, loss@max: 1.286884, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.001200, loss@max: 1.294859, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.012443, loss@max: 1.256653, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.008739, loss@max: 1.254385, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.952344, loss@max: 1.288294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.959779, loss@max: 1.283297, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.957370, loss@max: 1.292079, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.930236, loss@max: 1.304638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.965919, loss@max: 1.282482, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.950147, loss@max: 1.312279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.938386, loss@max: 1.334545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.949843, loss@max: 1.312876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.959093, loss@max: 1.322395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.942749, loss@max: 1.370617, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.007452, loss@max: 1.323591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.945748, loss@max: 1.408221, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.972331, loss@max: 1.367483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.976934, loss@max: 1.356845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.941248, loss@max: 1.404229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.961697, loss@max: 1.391118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978051, loss@max: 1.396369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.953340, loss@max: 1.417962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.975762, loss@max: 1.408605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000217, LT: 1.649029, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 30} + +------------------------------------------- +Thu Jul 20 08:31:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.568613, loss@max: 2.041855, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.734047, loss@max: 1.745458, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.191265, loss@max: 1.571675, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.926011, loss@max: 1.447019, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.900505, loss@max: 1.336651, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.913592, loss@max: 1.304173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.957866, loss@max: 1.207551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.993839, loss@max: 1.158224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.012698, loss@max: 1.146653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.036850, loss@max: 1.200909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.912598, loss@max: 1.263043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.848357, loss@max: 1.339797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.867624, loss@max: 1.390698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.913189, loss@max: 1.333328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.938954, loss@max: 1.375469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.942020, loss@max: 1.378541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.891386, loss@max: 1.412617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.988696, loss@max: 1.379045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.939122, loss@max: 1.322231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.998792, loss@max: 1.260102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952476, loss@max: 1.378383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.955894, loss@max: 1.392997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.904732, loss@max: 1.442265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.927535, loss@max: 1.352550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.049940, loss@max: 1.335489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.036047, loss@max: 1.341521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908578, loss@max: 1.476426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.888236, loss@max: 1.536294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.901877, loss@max: 1.500426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.945483, loss@max: 1.354352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000623, LT: 2.747529, Top1S: 100.000000, Top1T: 43.085106Best acc: 43.085106 +Train:epoch: 31, loss@min: 0.982551, loss@max: 1.345741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.000595, LT: 2.758982, Top1S: 100.000000, Top1T: 42.848701 +Train:epoch: 32, loss@min: 1.019077, loss@max: 1.349505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000564, LT: 2.757481, Top1S: 100.000000, Top1T: 42.730495 +Train:epoch: 33, loss@min: 1.060857, loss@max: 1.426060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000542, LT: 2.742860, Top1S: 100.000000, Top1T: 42.907803 +Train:epoch: 34, loss@min: 0.937430, loss@max: 1.456056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.000523, LT: 2.723407, Top1S: 100.000000, Top1T: 42.789597 +Train:epoch: 35, loss@min: 0.920661, loss@max: 1.428315, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 30} + +------------------------------------------- +Thu Jul 20 08:33:58 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.564231, loss@max: 2.041515, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.732760, loss@max: 1.742365, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.191013, loss@max: 1.570219, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924013, loss@max: 1.449452, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.895615, loss@max: 1.341739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.909062, loss@max: 1.310106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956667, loss@max: 1.211952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.996563, loss@max: 1.159097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.018335, loss@max: 1.144386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044770, loss@max: 1.198734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.917984, loss@max: 1.262385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.850356, loss@max: 1.341900, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 10} + +------------------------------------------- +Thu Jul 20 08:34:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.564231, loss@max: 2.041514, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.732761, loss@max: 1.742367, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.191010, loss@max: 1.570221, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924013, loss@max: 1.449451, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.895615, loss@max: 1.341739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.909062, loss@max: 1.310106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956665, loss@max: 1.211954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.996564, loss@max: 1.159095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.018337, loss@max: 1.144385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044770, loss@max: 1.198734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 10, LS: 0.002910, LT: 2.447932, Top1S: 100.000000, Top1T: 44.858154Best acc: 44.858154 +Train:epoch: 11, loss@min: 0.903600, loss@max: 1.278514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 11, LS: 0.002869, LT: 2.469658, Top1S: 100.000000, Top1T: 44.267139 +Train:epoch: 12, loss@min: 0.928584, loss@max: 1.323494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 12, LS: 0.002840, LT: 2.489052, Top1S: 100.000000, Top1T: 44.089836 +Train:epoch: 13, loss@min: 0.887980, loss@max: 1.393892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 13, LS: 0.002750, LT: 2.511372, Top1S: 100.000000, Top1T: 44.267139 +Train:epoch: 14, loss@min: 0.862204, loss@max: 1.421576, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 10} + +------------------------------------------- +Thu Jul 20 08:36:16 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 2.041421, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.737159, loss@max: 1.743042, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.193693, loss@max: 1.571516, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924669, loss@max: 1.451747, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.894866, loss@max: 1.344643, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.907802, loss@max: 1.312353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956322, loss@max: 1.212827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997054, loss@max: 1.158758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.019013, loss@max: 1.143799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044206, loss@max: 1.198155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 10, LS: 0.002915, LT: 2.446183, Top1S: 100.000000, Top1T: 44.858154Best acc: 44.858154 +Train:epoch: 11, loss@min: 0.904096, loss@max: 1.277311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 11, LS: 0.002873, LT: 2.467833, Top1S: 100.000000, Top1T: 44.267139 +Train:epoch: 12, loss@min: 0.928460, loss@max: 1.322047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 12, LS: 0.002845, LT: 2.486795, Top1S: 100.000000, Top1T: 44.030731 +Train:epoch: 13, loss@min: 0.888579, loss@max: 1.392615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 13, LS: 0.002758, LT: 2.508418, Top1S: 100.000000, Top1T: 44.326241 +Train:epoch: 14, loss@min: 0.861694, loss@max: 1.420367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 14, LS: 0.002652, LT: 2.547451, Top1S: 100.000000, Top1T: 44.030731 +Train:epoch: 15, loss@min: 0.846212, loss@max: 1.432806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 15, LS: 0.002622, LT: 2.582145, Top1S: 100.000000, Top1T: 44.030731 +Train:epoch: 16, loss@min: 0.959324, loss@max: 1.376682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 16, LS: 0.002629, LT: 2.608166, Top1S: 100.000000, Top1T: 44.030731 +Train:epoch: 17, loss@min: 0.959577, loss@max: 1.368177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 17, LS: 0.002610, LT: 2.625454, Top1S: 100.000000, Top1T: 43.794327 +Train:epoch: 18, loss@min: 0.960516, loss@max: 1.324679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 18, LS: 0.002543, LT: 2.638661, Top1S: 100.000000, Top1T: 43.676125 +Train:epoch: 19, loss@min: 1.075121, loss@max: 1.287487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 19, LS: 0.002449, LT: 2.644407, Top1S: 100.000000, Top1T: 43.735226 +Train:epoch: 20, loss@min: 0.962398, loss@max: 1.364823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.002363, LT: 2.652277, Top1S: 100.000000, Top1T: 43.912529 +Train:epoch: 21, loss@min: 0.944691, loss@max: 1.393744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 21, LS: 0.002296, LT: 2.661512, Top1S: 100.000000, Top1T: 43.617020 +Train:epoch: 22, loss@min: 1.003058, loss@max: 1.381883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.002236, LT: 2.676325, Top1S: 100.000000, Top1T: 43.498817 +Train:epoch: 23, loss@min: 0.929792, loss@max: 1.391574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.002183, LT: 2.690623, Top1S: 100.000000, Top1T: 43.498817 +Train:epoch: 24, loss@min: 0.961138, loss@max: 1.327071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.002145, LT: 2.708080, Top1S: 100.000000, Top1T: 43.203308 +Train:epoch: 25, loss@min: 0.929654, loss@max: 1.435601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.002113, LT: 2.718753, Top1S: 100.000000, Top1T: 43.321514 +Train:epoch: 26, loss@min: 0.908560, loss@max: 1.408479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.002073, LT: 2.722731, Top1S: 100.000000, Top1T: 43.498817 +Train:epoch: 27, loss@min: 1.016201, loss@max: 1.354429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.002043, LT: 2.708102, Top1S: 100.000000, Top1T: 43.557919 +Train:epoch: 28, loss@min: 1.027360, loss@max: 1.308313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.002015, LT: 2.704148, Top1S: 100.000000, Top1T: 43.380615 +Train:epoch: 29, loss@min: 0.936386, loss@max: 1.452518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.001972, LT: 2.711940, Top1S: 100.000000, Top1T: 43.498817 +Train:epoch: 30, loss@min: 0.927621, loss@max: 1.410709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.001928, LT: 2.726906, Top1S: 100.000000, Top1T: 43.439716 +Train:epoch: 31, loss@min: 0.913386, loss@max: 1.423554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.001877, LT: 2.736455, Top1S: 100.000000, Top1T: 43.085106 +Train:epoch: 32, loss@min: 0.965253, loss@max: 1.428864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.001838, LT: 2.742991, Top1S: 100.000000, Top1T: 43.262413 +Train:epoch: 33, loss@min: 0.922428, loss@max: 1.415477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.001818, LT: 2.737335, Top1S: 100.000000, Top1T: 43.617020 +Train:epoch: 34, loss@min: 0.952386, loss@max: 1.410117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.001792, LT: 2.724836, Top1S: 100.000000, Top1T: 43.557919 +Train:epoch: 35, loss@min: 1.038878, loss@max: 1.387652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.001768, LT: 2.721284, Top1S: 100.000000, Top1T: 43.735226 +Train:epoch: 36, loss@min: 1.103993, loss@max: 1.396138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001743, LT: 2.728012, Top1S: 100.000000, Top1T: 43.794327 +Train:epoch: 37, loss@min: 0.990169, loss@max: 1.391222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.001708, LT: 2.729870, Top1S: 100.000000, Top1T: 43.735226 +Train:epoch: 38, loss@min: 0.968370, loss@max: 1.463641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.001678, LT: 2.723949, Top1S: 100.000000, Top1T: 43.676125 +Train:epoch: 39, loss@min: 0.923845, loss@max: 1.530502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.001671, LT: 2.713235, Top1S: 100.000000, Top1T: 43.557919 +Train:epoch: 40, loss@min: 0.973613, loss@max: 1.444690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.001670, LT: 2.696376, Top1S: 100.000000, Top1T: 43.971630 +Train:epoch: 41, loss@min: 0.962518, loss@max: 1.461105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.001657, LT: 2.687005, Top1S: 100.000000, Top1T: 44.030731 +Train:epoch: 42, loss@min: 0.968856, loss@max: 1.431799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.001637, LT: 2.687725, Top1S: 100.000000, Top1T: 43.676125 +Train:epoch: 43, loss@min: 0.978771, loss@max: 1.509525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.001614, LT: 2.692425, Top1S: 100.000000, Top1T: 43.617020 +Train:epoch: 44, loss@min: 0.961225, loss@max: 1.451044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.001588, LT: 2.692802, Top1S: 100.000000, Top1T: 43.439716 +Train:epoch: 45, loss@min: 0.937545, loss@max: 1.417140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.001562, LT: 2.691357, Top1S: 100.000000, Top1T: 43.617020 +Train:epoch: 46, loss@min: 0.979729, loss@max: 1.470313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.001544, LT: 2.682097, Top1S: 100.000000, Top1T: 43.853428 +Train:epoch: 47, loss@min: 1.043893, loss@max: 1.444056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.001532, LT: 2.671153, Top1S: 100.000000, Top1T: 43.912529 +Train:epoch: 48, loss@min: 1.001503, loss@max: 1.468256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.001527, LT: 2.665039, Top1S: 100.000000, Top1T: 43.853428 +Train:epoch: 49, loss@min: 0.994861, loss@max: 1.436616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.001521, LT: 2.653533, Top1S: 100.000000, Top1T: 43.735226 +Train:epoch: 50, loss@min: 0.946074, loss@max: 1.466408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001516, LT: 2.632462, Top1S: 100.000000, Top1T: 44.030731 +Train:epoch: 51, loss@min: 0.987210, loss@max: 1.454544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.001504, LT: 2.618499, Top1S: 100.000000, Top1T: 44.267139 +Train:epoch: 52, loss@min: 1.001797, loss@max: 1.463609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.001488, LT: 2.609517, Top1S: 100.000000, Top1T: 44.089836 +Train:epoch: 53, loss@min: 0.944659, loss@max: 1.519964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.001473, LT: 2.610280, Top1S: 100.000000, Top1T: 43.794327 +Train:epoch: 54, loss@min: 0.981481, loss@max: 1.484413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001461, LT: 2.612977, Top1S: 100.000000, Top1T: 44.089836 +Train:epoch: 55, loss@min: 1.025455, loss@max: 1.460741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001454, LT: 2.622643, Top1S: 100.000000, Top1T: 43.794327 +Train:epoch: 56, loss@min: 1.017349, loss@max: 1.481810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001450, LT: 2.624393, Top1S: 100.000000, Top1T: 43.853428 +Train:epoch: 57, loss@min: 0.987967, loss@max: 1.488633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001441, LT: 2.620225, Top1S: 100.000000, Top1T: 43.971630 +Train:epoch: 58, loss@min: 0.933818, loss@max: 1.497139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001428, LT: 2.610704, Top1S: 100.000000, Top1T: 43.912529 +Train:epoch: 59, loss@min: 0.937073, loss@max: 1.576711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001413, LT: 2.601517, Top1S: 100.000000, Top1T: 43.676125 +Train:epoch: 60, loss@min: 0.984264, loss@max: 1.490155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001397, LT: 2.597136, Top1S: 100.000000, Top1T: 43.735226 +Train:epoch: 61, loss@min: 0.952324, loss@max: 1.531434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001388, LT: 2.592877, Top1S: 100.000000, Top1T: 43.203308 +Train:epoch: 62, loss@min: 1.055780, loss@max: 1.460523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001390, LT: 2.584263, Top1S: 100.000000, Top1T: 43.321514 +Train:epoch: 63, loss@min: 1.016207, loss@max: 1.469638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001387, LT: 2.573426, Top1S: 100.000000, Top1T: 43.912529 +Train:epoch: 64, loss@min: 1.066179, loss@max: 1.470693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001376, LT: 2.562398, Top1S: 100.000000, Top1T: 44.267139 +Train:epoch: 65, loss@min: 1.025684, loss@max: 1.419674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001362, LT: 2.558264, Top1S: 100.000000, Top1T: 44.444443 +Train:epoch: 66, loss@min: 0.926900, loss@max: 1.549576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001347, LT: 2.561362, Top1S: 100.000000, Top1T: 43.912529 +Train:epoch: 67, loss@min: 0.945397, loss@max: 1.545648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001338, LT: 2.561434, Top1S: 100.000000, Top1T: 43.794327 +Train:epoch: 68, loss@min: 0.972949, loss@max: 1.468929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001332, LT: 2.560131, Top1S: 100.000000, Top1T: 43.617020 +Train:epoch: 69, loss@min: 0.989648, loss@max: 1.439127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001326, LT: 2.554416, Top1S: 100.000000, Top1T: 43.794327 +Train:epoch: 70, loss@min: 0.957183, loss@max: 1.452135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001323, LT: 2.545742, Top1S: 100.000000, Top1T: 44.208038 +Train:epoch: 71, loss@min: 0.930374, loss@max: 1.507232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001319, LT: 2.533917, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 72, loss@min: 0.948199, loss@max: 1.488268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001311, LT: 2.522893, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 73, loss@min: 0.982603, loss@max: 1.473325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001302, LT: 2.518334, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 74, loss@min: 1.012761, loss@max: 1.424726, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 10} + +------------------------------------------- +Thu Jul 20 09:00:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 2.041420, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.737159, loss@max: 1.743044, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.193694, loss@max: 1.571515, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924670, loss@max: 1.451747, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.894867, loss@max: 1.344644, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.907802, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956321, loss@max: 1.212828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997056, loss@max: 1.158758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.019014, loss@max: 1.143799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044206, loss@max: 1.198156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 10, LS: 0.002915, LT: 2.609087, Top1S: 100.000000, Top1T: 43.528366Best acc: 43.528366 +Train:epoch: 11, loss@min: 0.904096, loss@max: 1.277311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 11, LS: 0.002873, LT: 2.637492, Top1S: 100.000000, Top1T: 43.351063 +Train:epoch: 12, loss@min: 0.928460, loss@max: 1.322047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 12, LS: 0.002845, LT: 2.661325, Top1S: 100.000000, Top1T: 43.528366 +Train:epoch: 13, loss@min: 0.888576, loss@max: 1.392618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 13, LS: 0.002758, LT: 2.682772, Top1S: 100.000000, Top1T: 42.996452 +Train:epoch: 14, loss@min: 0.861693, loss@max: 1.420365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 14, LS: 0.002652, LT: 2.721434, Top1S: 100.000000, Top1T: 42.907799 +Train:epoch: 15, loss@min: 0.846215, loss@max: 1.432803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 15, LS: 0.002622, LT: 2.755489, Top1S: 100.000000, Top1T: 42.907799 +Train:epoch: 16, loss@min: 0.959325, loss@max: 1.376682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 16, LS: 0.002629, LT: 2.785116, Top1S: 100.000000, Top1T: 42.907799 +Train:epoch: 17, loss@min: 0.959577, loss@max: 1.368173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 17, LS: 0.002610, LT: 2.806295, Top1S: 100.000000, Top1T: 42.907799 +Train:epoch: 18, loss@min: 0.960518, loss@max: 1.324677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 18, LS: 0.002543, LT: 2.822772, Top1S: 100.000000, Top1T: 43.351063 +Train:epoch: 19, loss@min: 1.075121, loss@max: 1.287486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 19, LS: 0.002449, LT: 2.830829, Top1S: 100.000000, Top1T: 43.794323Best acc: 43.794323 +Train:epoch: 20, loss@min: 0.962396, loss@max: 1.364824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.002363, LT: 2.838406, Top1S: 100.000000, Top1T: 44.148933Best acc: 44.148933 +Train:epoch: 21, loss@min: 0.944692, loss@max: 1.393740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 21, LS: 0.002296, LT: 2.848173, Top1S: 100.000000, Top1T: 44.414894Best acc: 44.414894 +Train:epoch: 22, loss@min: 1.003061, loss@max: 1.381886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.002236, LT: 2.864822, Top1S: 100.000000, Top1T: 44.326241 +Train:epoch: 23, loss@min: 0.929786, loss@max: 1.391582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.002183, LT: 2.879476, Top1S: 100.000000, Top1T: 44.326241 +Train:epoch: 24, loss@min: 0.961136, loss@max: 1.327072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.002145, LT: 2.896605, Top1S: 100.000000, Top1T: 43.882977 +Train:epoch: 25, loss@min: 0.929652, loss@max: 1.435603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.002113, LT: 2.905938, Top1S: 100.000000, Top1T: 43.705673 +Train:epoch: 26, loss@min: 0.908561, loss@max: 1.408479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.002073, LT: 2.909564, Top1S: 100.000000, Top1T: 43.971630 +Train:epoch: 27, loss@min: 1.016207, loss@max: 1.354427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.002043, LT: 2.893205, Top1S: 100.000000, Top1T: 44.592197Best acc: 44.592197 +Train:epoch: 28, loss@min: 1.027364, loss@max: 1.308311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.002015, LT: 2.890483, Top1S: 100.000000, Top1T: 44.414894 +Train:epoch: 29, loss@min: 0.936388, loss@max: 1.452519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.001972, LT: 2.898396, Top1S: 100.000000, Top1T: 43.882977 +Train:epoch: 30, loss@min: 0.927620, loss@max: 1.410715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.001928, LT: 2.913889, Top1S: 100.000000, Top1T: 44.060284 +Train:epoch: 31, loss@min: 0.913378, loss@max: 1.423561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.001877, LT: 2.921702, Top1S: 100.000000, Top1T: 43.794323 +Train:epoch: 32, loss@min: 0.965246, loss@max: 1.428870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.001838, LT: 2.925996, Top1S: 100.000000, Top1T: 43.794323 +Train:epoch: 33, loss@min: 0.922432, loss@max: 1.415473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.001818, LT: 2.918059, Top1S: 100.000000, Top1T: 43.705673 +Train:epoch: 34, loss@min: 0.952391, loss@max: 1.410110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.001792, LT: 2.903437, Top1S: 100.000000, Top1T: 43.705673 +Train:epoch: 35, loss@min: 1.038876, loss@max: 1.387655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.001768, LT: 2.897386, Top1S: 100.000000, Top1T: 43.971630 +Train:epoch: 36, loss@min: 1.103991, loss@max: 1.396142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001743, LT: 2.903087, Top1S: 100.000000, Top1T: 44.060284 +Train:epoch: 37, loss@min: 0.990165, loss@max: 1.391226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.001708, LT: 2.904693, Top1S: 100.000000, Top1T: 44.060284 +Train:epoch: 38, loss@min: 0.968372, loss@max: 1.463643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.001678, LT: 2.899363, Top1S: 100.000000, Top1T: 44.237587 +Train:epoch: 39, loss@min: 0.923845, loss@max: 1.530505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.001671, LT: 2.889891, Top1S: 100.000000, Top1T: 44.148933 +Train:epoch: 40, loss@min: 0.973612, loss@max: 1.444693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.001670, LT: 2.870957, Top1S: 100.000000, Top1T: 43.794323 +Train:epoch: 41, loss@min: 0.962518, loss@max: 1.461108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.001657, LT: 2.857247, Top1S: 100.000000, Top1T: 44.060284 +Train:epoch: 42, loss@min: 0.968863, loss@max: 1.431802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.001637, LT: 2.854462, Top1S: 100.000000, Top1T: 44.326241 +Train:epoch: 43, loss@min: 0.978763, loss@max: 1.509518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.001614, LT: 2.857769, Top1S: 100.000000, Top1T: 44.148933 +Train:epoch: 44, loss@min: 0.961228, loss@max: 1.451039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.001588, LT: 2.857379, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 45, loss@min: 0.937560, loss@max: 1.417139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.001562, LT: 2.856067, Top1S: 100.000000, Top1T: 44.503544 +Train:epoch: 46, loss@min: 0.979735, loss@max: 1.470304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.001544, LT: 2.847597, Top1S: 100.000000, Top1T: 44.148933 +Train:epoch: 47, loss@min: 1.043895, loss@max: 1.444056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.001532, LT: 2.836177, Top1S: 100.000000, Top1T: 44.148933 +Train:epoch: 48, loss@min: 1.001497, loss@max: 1.468272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.001527, LT: 2.827942, Top1S: 100.000000, Top1T: 44.769501Best acc: 44.769501 +Train:epoch: 49, loss@min: 0.994848, loss@max: 1.436629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.001521, LT: 2.815945, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 50, loss@min: 0.946063, loss@max: 1.466425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001516, LT: 2.794003, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 51, loss@min: 0.987212, loss@max: 1.454543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.001504, LT: 2.780140, Top1S: 100.000000, Top1T: 45.124111Best acc: 45.124111 +Train:epoch: 52, loss@min: 1.001805, loss@max: 1.463601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.001488, LT: 2.770752, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 53, loss@min: 0.944667, loss@max: 1.519961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.001473, LT: 2.770631, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 54, loss@min: 0.981491, loss@max: 1.484422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001461, LT: 2.771144, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 55, loss@min: 1.025455, loss@max: 1.460749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001454, LT: 2.781142, Top1S: 100.000000, Top1T: 44.414894 +Train:epoch: 56, loss@min: 1.017337, loss@max: 1.481800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001450, LT: 2.783351, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 57, loss@min: 0.987954, loss@max: 1.488655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001441, LT: 2.779239, Top1S: 100.000000, Top1T: 44.503544 +Train:epoch: 58, loss@min: 0.933818, loss@max: 1.497137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001428, LT: 2.766366, Top1S: 100.000000, Top1T: 44.503544 +Train:epoch: 59, loss@min: 0.937071, loss@max: 1.576717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001413, LT: 2.753069, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 60, loss@min: 0.984273, loss@max: 1.490168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001397, LT: 2.745547, Top1S: 100.000000, Top1T: 44.414894 +Train:epoch: 61, loss@min: 0.952328, loss@max: 1.531432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001388, LT: 2.740639, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 62, loss@min: 1.055789, loss@max: 1.460517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001390, LT: 2.733193, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 63, loss@min: 1.016208, loss@max: 1.469630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001387, LT: 2.723105, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 64, loss@min: 1.066179, loss@max: 1.470680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001376, LT: 2.711755, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 65, loss@min: 1.025689, loss@max: 1.419666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001362, LT: 2.707920, Top1S: 100.000000, Top1T: 44.503544 +Train:epoch: 66, loss@min: 0.926892, loss@max: 1.549604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001347, LT: 2.711913, Top1S: 100.000000, Top1T: 44.237587 +Train:epoch: 67, loss@min: 0.945393, loss@max: 1.545660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001338, LT: 2.712728, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 68, loss@min: 0.972948, loss@max: 1.468926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001332, LT: 2.711656, Top1S: 100.000000, Top1T: 44.414894 +Train:epoch: 69, loss@min: 0.989656, loss@max: 1.439124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001327, LT: 2.705851, Top1S: 100.000000, Top1T: 44.592197 +Train:epoch: 70, loss@min: 0.957187, loss@max: 1.452129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001323, LT: 2.696185, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 71, loss@min: 0.930382, loss@max: 1.507247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001319, LT: 2.682980, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 72, loss@min: 0.948197, loss@max: 1.488273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001311, LT: 2.670628, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 73, loss@min: 0.982583, loss@max: 1.473338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001302, LT: 2.664783, Top1S: 100.000000, Top1T: 45.390068Best acc: 45.390068 +Train:epoch: 74, loss@min: 1.012751, loss@max: 1.424746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001293, LT: 2.664128, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 75, loss@min: 1.007053, loss@max: 1.439625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001287, LT: 2.663121, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 76, loss@min: 1.040771, loss@max: 1.428596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001284, LT: 2.663031, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 77, loss@min: 1.004550, loss@max: 1.486112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001282, LT: 2.664432, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 78, loss@min: 0.988118, loss@max: 1.480995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001276, LT: 2.662730, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 79, loss@min: 0.974889, loss@max: 1.480917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001269, LT: 2.657899, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 80, loss@min: 0.992180, loss@max: 1.457073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001264, LT: 2.653500, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 81, loss@min: 0.962755, loss@max: 1.461840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001262, LT: 2.646746, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 82, loss@min: 0.920877, loss@max: 1.480731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001260, LT: 2.642590, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 83, loss@min: 0.980157, loss@max: 1.441818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001259, LT: 2.638260, Top1S: 100.000000, Top1T: 45.567375Best acc: 45.567375 +Train:epoch: 84, loss@min: 0.950317, loss@max: 1.469907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001254, LT: 2.633602, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 85, loss@min: 0.968301, loss@max: 1.442139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001247, LT: 2.630246, Top1S: 100.000000, Top1T: 45.567375 +Train:epoch: 86, loss@min: 0.976341, loss@max: 1.455387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001241, LT: 2.628858, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 87, loss@min: 0.996113, loss@max: 1.437486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001237, LT: 2.628379, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 88, loss@min: 0.982329, loss@max: 1.417935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001233, LT: 2.627594, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 89, loss@min: 0.977432, loss@max: 1.389682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001231, LT: 2.627304, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 90, loss@min: 1.004742, loss@max: 1.403775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001230, LT: 2.625342, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 91, loss@min: 0.982262, loss@max: 1.418429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001230, LT: 2.623600, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 92, loss@min: 0.964950, loss@max: 1.427720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001229, LT: 2.621302, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 93, loss@min: 0.967169, loss@max: 1.440797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001227, LT: 2.619097, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 94, loss@min: 0.913885, loss@max: 1.465985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001224, LT: 2.616823, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 95, loss@min: 0.949229, loss@max: 1.397056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001220, LT: 2.615521, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 96, loss@min: 0.928453, loss@max: 1.427354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001217, LT: 2.613328, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 97, loss@min: 0.965425, loss@max: 1.420893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001213, LT: 2.611421, Top1S: 100.000000, Top1T: 45.478722 +Train:epoch: 98, loss@min: 0.970619, loss@max: 1.428635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001210, LT: 2.610208, Top1S: 100.000000, Top1T: 45.567375 +Train:epoch: 99, loss@min: 0.932368, loss@max: 1.470357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001207, LT: 2.608103, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 100, loss@min: 0.966005, loss@max: 1.388147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001205, LT: 2.605464, Top1S: 100.000000, Top1T: 45.478722 +Train:epoch: 101, loss@min: 0.921703, loss@max: 1.451727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001204, LT: 2.604198, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 102, loss@min: 0.919877, loss@max: 1.436018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001202, LT: 2.603111, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 103, loss@min: 0.965075, loss@max: 1.399118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001202, LT: 2.600786, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 104, loss@min: 0.963817, loss@max: 1.432729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001201, LT: 2.598145, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 105, loss@min: 0.984637, loss@max: 1.358582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001201, LT: 2.596428, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 106, loss@min: 0.973031, loss@max: 1.382968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001200, LT: 2.595143, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 107, loss@min: 1.026392, loss@max: 1.345824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001199, LT: 2.594135, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 108, loss@min: 0.982734, loss@max: 1.353276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001198, LT: 2.593313, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 109, loss@min: 0.963662, loss@max: 1.371897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001197, LT: 2.592919, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 110, loss@min: 0.976579, loss@max: 1.376505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001196, LT: 2.593846, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 111, loss@min: 0.937341, loss@max: 1.423606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001195, LT: 2.594380, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 112, loss@min: 0.925777, loss@max: 1.415867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001193, LT: 2.595225, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 113, loss@min: 0.966722, loss@max: 1.375502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001192, LT: 2.595556, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 114, loss@min: 0.941423, loss@max: 1.414469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001191, LT: 2.594852, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 115, loss@min: 0.929615, loss@max: 1.409009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001189, LT: 2.593572, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 116, loss@min: 0.959661, loss@max: 1.370227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001188, LT: 2.591946, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 117, loss@min: 0.926689, loss@max: 1.411157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001187, LT: 2.590433, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 118, loss@min: 0.950235, loss@max: 1.384133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001186, LT: 2.589083, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 119, loss@min: 0.957249, loss@max: 1.384737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001186, LT: 2.587903, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 120, loss@min: 0.940323, loss@max: 1.391490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001185, LT: 2.586933, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 121, loss@min: 0.951078, loss@max: 1.388487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001184, LT: 2.586334, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 122, loss@min: 0.953822, loss@max: 1.374754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001183, LT: 2.585875, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 123, loss@min: 0.960145, loss@max: 1.378050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001183, LT: 2.585457, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 124, loss@min: 0.963652, loss@max: 1.369255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001182, LT: 2.585348, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 125, loss@min: 0.960760, loss@max: 1.359798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001181, LT: 2.585318, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 126, loss@min: 0.962721, loss@max: 1.381008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001181, LT: 2.585260, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 127, loss@min: 0.950951, loss@max: 1.375975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001180, LT: 2.585153, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 128, loss@min: 0.927496, loss@max: 1.399477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001179, LT: 2.585134, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 129, loss@min: 0.964099, loss@max: 1.366477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001179, LT: 2.585193, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 130, loss@min: 0.910742, loss@max: 1.418550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001178, LT: 2.585291, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 131, loss@min: 0.964407, loss@max: 1.371871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001178, LT: 2.585266, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 132, loss@min: 0.939566, loss@max: 1.398523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001177, LT: 2.585152, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 133, loss@min: 0.925172, loss@max: 1.409020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001177, LT: 2.585116, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 134, loss@min: 0.968493, loss@max: 1.365252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001176, LT: 2.585118, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 135, loss@min: 0.968132, loss@max: 1.355892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001176, LT: 2.584984, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 136, loss@min: 0.961847, loss@max: 1.364639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001176, LT: 2.584876, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 137, loss@min: 0.952645, loss@max: 1.369003, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001176, LT: 2.584834, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 138, loss@min: 0.953426, loss@max: 1.370790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001176, LT: 2.584852, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 139, loss@min: 0.960873, loss@max: 1.377988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001175, LT: 2.584846, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 140, loss@min: 0.961792, loss@max: 1.359530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001175, LT: 2.584815, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 141, loss@min: 0.958737, loss@max: 1.366062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001175, LT: 2.584760, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 142, loss@min: 0.962298, loss@max: 1.358515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001175, LT: 2.584713, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 143, loss@min: 0.954486, loss@max: 1.364999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001175, LT: 2.584673, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 144, loss@min: 0.937473, loss@max: 1.387020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001175, LT: 2.584639, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 145, loss@min: 0.956958, loss@max: 1.369112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001175, LT: 2.584622, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 146, loss@min: 0.965404, loss@max: 1.354591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001175, LT: 2.584617, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 147, loss@min: 0.968631, loss@max: 1.352816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001175, LT: 2.584618, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 148, loss@min: 0.948007, loss@max: 1.368793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001175, LT: 2.584617, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 149, loss@min: 0.938581, loss@max: 1.388049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001175, LT: 2.584617, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 150, loss@min: 0.970432, loss@max: 1.354547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001175, LT: 2.584617, Top1S: 100.000000, Top1T: 45.390068 +------------------------------------------- +Thu Jul 20 09:35:35 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 10} + +------------------------------------------- +Thu Jul 20 13:38:53 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.566427, loss@max: 2.040534, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.734218, loss@max: 1.742282, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.191665, loss@max: 1.570980, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.923456, loss@max: 1.451190, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.893931, loss@max: 1.343987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.907328, loss@max: 1.311689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956301, loss@max: 1.212177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997102, loss@max: 1.158330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.018918, loss@max: 1.143359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.043979, loss@max: 1.198034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 10, LS: 0.002913, LT: 2.609586, Top1S: 100.000000, Top1T: 43.528366Best acc: 43.528366 +Train:epoch: 11, loss@min: 0.904075, loss@max: 1.277474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 11, LS: 0.002871, LT: 2.638071, Top1S: 100.000000, Top1T: 43.351063 +Train:epoch: 12, loss@min: 0.928312, loss@max: 1.322062, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 13:39:50 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.566427, loss@max: 2.040534, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.734218, loss@max: 1.742282, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.191665, loss@max: 1.570980, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.923456, loss@max: 1.451190, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.893931, loss@max: 1.343987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.907328, loss@max: 1.311689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956301, loss@max: 1.212177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997102, loss@max: 1.158330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.018918, loss@max: 1.143359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.043979, loss@max: 1.198034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.918293, loss@max: 1.261342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.851337, loss@max: 1.339764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.869666, loss@max: 1.392187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.914027, loss@max: 1.333826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940656, loss@max: 1.377282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.943601, loss@max: 1.382058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.893652, loss@max: 1.415813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991581, loss@max: 1.380558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942264, loss@max: 1.323772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.001512, loss@max: 1.261617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952771, loss@max: 1.380967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.958331, loss@max: 1.396798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.907552, loss@max: 1.444182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.930890, loss@max: 1.353429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.054309, loss@max: 1.335881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.037431, loss@max: 1.340857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908718, loss@max: 1.477339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.888397, loss@max: 1.541942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.905010, loss@max: 1.502759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949410, loss@max: 1.356609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.971976, loss@max: 1.324035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.004321, loss@max: 1.334234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.028635, loss@max: 1.413463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.981027, loss@max: 1.385822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.916272, loss@max: 1.407298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.959429, loss@max: 1.492711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.962918, loss@max: 1.433664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.023278, loss@max: 1.410780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.929562, loss@max: 1.465097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.889302, loss@max: 1.493605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.994231, loss@max: 1.435546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.025005, loss@max: 1.413256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.046880, loss@max: 1.449461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986073, loss@max: 1.408335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.987674, loss@max: 1.422162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.007395, loss@max: 1.406116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.926130, loss@max: 1.535357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.955175, loss@max: 1.468163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961850, loss@max: 1.588980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.971687, loss@max: 1.474434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.003345, loss@max: 1.462810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.972994, loss@max: 1.479995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.975743, loss@max: 1.481994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.961026, loss@max: 1.559853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.958299, loss@max: 1.522723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.020595, loss@max: 1.474074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.053042, loss@max: 1.461104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.982533, loss@max: 1.501007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.960510, loss@max: 1.467218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.015212, loss@max: 1.469857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.999396, loss@max: 1.478889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.023790, loss@max: 1.392515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939595, loss@max: 1.505852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.902065, loss@max: 1.555948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.964767, loss@max: 1.454620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.957685, loss@max: 1.480365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.924424, loss@max: 1.506356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.980483, loss@max: 1.413191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.073570, loss@max: 1.390808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.050588, loss@max: 1.385068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.942090, loss@max: 1.476121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.975118, loss@max: 1.459161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.947622, loss@max: 1.445811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947265, loss@max: 1.472558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.967397, loss@max: 1.450188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.963648, loss@max: 1.496442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.967085, loss@max: 1.431362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.000666, loss@max: 1.423445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952350, loss@max: 1.433183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.971232, loss@max: 1.452681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001276, LT: 2.666785, Top1S: 100.000000, Top1T: 45.035461Best acc: 45.035461 +Train:epoch: 81, loss@min: 0.947115, loss@max: 1.467426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001269, LT: 2.655077, Top1S: 100.000000, Top1T: 45.390068Best acc: 45.390068 +Train:epoch: 82, loss@min: 0.995377, loss@max: 1.445240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001262, LT: 2.641967, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 83, loss@min: 1.010829, loss@max: 1.421604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001258, LT: 2.630598, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 84, loss@min: 0.993027, loss@max: 1.398337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001255, LT: 2.622519, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 85, loss@min: 0.961609, loss@max: 1.419601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001254, LT: 2.618521, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 86, loss@min: 0.951049, loss@max: 1.454955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001252, LT: 2.616114, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 87, loss@min: 0.976179, loss@max: 1.429907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001250, LT: 2.616175, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 88, loss@min: 0.964051, loss@max: 1.439675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001248, LT: 2.618234, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 89, loss@min: 0.945609, loss@max: 1.435756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001245, LT: 2.621459, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 90, loss@min: 0.923586, loss@max: 1.465266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001241, LT: 2.624638, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 91, loss@min: 0.942226, loss@max: 1.417779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001235, LT: 2.626537, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 92, loss@min: 0.958966, loss@max: 1.416925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001230, LT: 2.624885, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 93, loss@min: 0.959169, loss@max: 1.453454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001226, LT: 2.620523, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 94, loss@min: 0.975861, loss@max: 1.423762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001222, LT: 2.616359, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 95, loss@min: 0.985987, loss@max: 1.356030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001219, LT: 2.612933, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 96, loss@min: 0.959333, loss@max: 1.379888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001216, LT: 2.608998, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 97, loss@min: 1.031713, loss@max: 1.358807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001214, LT: 2.606699, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 98, loss@min: 0.940636, loss@max: 1.435430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001211, LT: 2.602485, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 99, loss@min: 0.963279, loss@max: 1.450745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001208, LT: 2.598233, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 100, loss@min: 0.962810, loss@max: 1.424935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001205, LT: 2.595745, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 101, loss@min: 0.960620, loss@max: 1.438987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001203, LT: 2.595458, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 102, loss@min: 0.939749, loss@max: 1.435796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001202, LT: 2.596347, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 103, loss@min: 0.960589, loss@max: 1.399287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001201, LT: 2.598889, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 104, loss@min: 0.946784, loss@max: 1.443212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001199, LT: 2.601145, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 105, loss@min: 0.963767, loss@max: 1.404506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001198, LT: 2.603149, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 106, loss@min: 0.962613, loss@max: 1.402488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001197, LT: 2.605262, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 107, loss@min: 0.950557, loss@max: 1.412187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001195, LT: 2.605013, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 108, loss@min: 0.956988, loss@max: 1.382796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001194, LT: 2.603417, Top1S: 100.000000, Top1T: 44.769501 +Train:epoch: 109, loss@min: 0.972619, loss@max: 1.377137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001193, LT: 2.601351, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 110, loss@min: 0.959301, loss@max: 1.382349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001191, LT: 2.599361, Top1S: 100.000000, Top1T: 44.946808 +Train:epoch: 111, loss@min: 0.993124, loss@max: 1.357884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001190, LT: 2.597016, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 112, loss@min: 0.962679, loss@max: 1.393155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001189, LT: 2.595021, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 113, loss@min: 0.931997, loss@max: 1.402351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001187, LT: 2.593461, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 114, loss@min: 0.930975, loss@max: 1.415480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001185, LT: 2.591828, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 115, loss@min: 0.937523, loss@max: 1.408250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001183, LT: 2.590420, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 116, loss@min: 0.954661, loss@max: 1.374955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001182, LT: 2.588961, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 117, loss@min: 0.936384, loss@max: 1.400521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001180, LT: 2.587713, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 118, loss@min: 0.956179, loss@max: 1.394668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001179, LT: 2.586567, Top1S: 100.000000, Top1T: 45.478722Best acc: 45.478722 +Train:epoch: 119, loss@min: 0.956345, loss@max: 1.377255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001177, LT: 2.585992, Top1S: 100.000000, Top1T: 45.478722 +Train:epoch: 120, loss@min: 0.947132, loss@max: 1.390681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001177, LT: 2.585689, Top1S: 100.000000, Top1T: 45.478722 +Train:epoch: 121, loss@min: 0.966249, loss@max: 1.365680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001176, LT: 2.585548, Top1S: 100.000000, Top1T: 45.390068 +Train:epoch: 122, loss@min: 0.951229, loss@max: 1.379315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001175, LT: 2.585480, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 123, loss@min: 0.946330, loss@max: 1.409798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001175, LT: 2.585613, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 124, loss@min: 0.956343, loss@max: 1.391785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001174, LT: 2.585893, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 125, loss@min: 0.957262, loss@max: 1.369858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001174, LT: 2.586155, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 126, loss@min: 0.942900, loss@max: 1.385669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001174, LT: 2.586419, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 127, loss@min: 0.943635, loss@max: 1.386654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001174, LT: 2.586580, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 128, loss@min: 0.936427, loss@max: 1.390821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001173, LT: 2.586639, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 129, loss@min: 0.958681, loss@max: 1.375967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001173, LT: 2.586592, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 130, loss@min: 0.974072, loss@max: 1.356457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001173, LT: 2.586641, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 131, loss@min: 0.938408, loss@max: 1.389062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001172, LT: 2.586680, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 132, loss@min: 0.941615, loss@max: 1.406454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001172, LT: 2.586445, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 133, loss@min: 0.943980, loss@max: 1.376087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001172, LT: 2.586288, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 134, loss@min: 0.958439, loss@max: 1.363393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001172, LT: 2.586185, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 135, loss@min: 0.932993, loss@max: 1.394302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001171, LT: 2.586053, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 136, loss@min: 0.957270, loss@max: 1.377173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001171, LT: 2.585822, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 137, loss@min: 0.963488, loss@max: 1.357006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001171, LT: 2.585639, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 138, loss@min: 0.953219, loss@max: 1.371002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001171, LT: 2.585477, Top1S: 100.000000, Top1T: 45.124111 +Train:epoch: 139, loss@min: 0.946145, loss@max: 1.384222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001171, LT: 2.585324, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 140, loss@min: 0.968300, loss@max: 1.359983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001170, LT: 2.585229, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 141, loss@min: 0.960715, loss@max: 1.374809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001170, LT: 2.585108, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 142, loss@min: 0.963650, loss@max: 1.364501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001170, LT: 2.585012, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 143, loss@min: 0.972458, loss@max: 1.356739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001170, LT: 2.584937, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 144, loss@min: 0.934170, loss@max: 1.400516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001170, LT: 2.584892, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 145, loss@min: 0.949661, loss@max: 1.378756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001170, LT: 2.584872, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 146, loss@min: 0.956334, loss@max: 1.369949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001170, LT: 2.584869, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 147, loss@min: 0.948405, loss@max: 1.376433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001170, LT: 2.584868, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 148, loss@min: 0.983827, loss@max: 1.348636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001170, LT: 2.584865, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 149, loss@min: 0.960198, loss@max: 1.376898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001170, LT: 2.584865, Top1S: 100.000000, Top1T: 45.301418 +Train:epoch: 150, loss@min: 0.929538, loss@max: 1.395458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001170, LT: 2.584865, Top1S: 100.000000, Top1T: 45.301418 +------------------------------------------- +Thu Jul 20 13:58:52 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 14:05:28 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648182, loss@max: 1.797819, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.166778, loss@max: 1.773278, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.235194, loss@max: 1.683963, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.028994, loss@max: 1.593446, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.921261, loss@max: 1.436838, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.946684, loss@max: 1.276817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.034591, loss@max: 1.184425, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.023074, loss@max: 1.126835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.002227, loss@max: 1.121343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.938759, loss@max: 1.190937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.906956, loss@max: 1.233811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.880394, loss@max: 1.258559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.880084, loss@max: 1.264590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.890884, loss@max: 1.267106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.901909, loss@max: 1.254644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.887575, loss@max: 1.281523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.899222, loss@max: 1.288595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.922746, loss@max: 1.259779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944391, loss@max: 1.244531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.956742, loss@max: 1.237289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950748, loss@max: 1.250382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.917712, loss@max: 1.295383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.889102, loss@max: 1.368311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.910548, loss@max: 1.331684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.942849, loss@max: 1.288057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.947951, loss@max: 1.313601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.949881, loss@max: 1.298122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.950784, loss@max: 1.309326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.945536, loss@max: 1.313426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.917833, loss@max: 1.354212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938493, loss@max: 1.334427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.939438, loss@max: 1.343282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947805, loss@max: 1.332479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.930570, loss@max: 1.356156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.963149, loss@max: 1.331005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952401, loss@max: 1.338298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.928478, loss@max: 1.377292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947357, loss@max: 1.360128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.963285, loss@max: 1.360848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.921177, loss@max: 1.385368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972939, loss@max: 1.345322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.989232, loss@max: 1.340088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.966808, loss@max: 1.372696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.943472, loss@max: 1.383764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.935322, loss@max: 1.403226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.946051, loss@max: 1.406797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954340, loss@max: 1.383298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944793, loss@max: 1.392430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939164, loss@max: 1.397419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.956135, loss@max: 1.394511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.975729, loss@max: 1.358768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.985823, loss@max: 1.345572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.962819, loss@max: 1.385856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939789, loss@max: 1.417659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943452, loss@max: 1.400124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948622, loss@max: 1.409538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.970853, loss@max: 1.381743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.956691, loss@max: 1.406999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.955795, loss@max: 1.408956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963465, loss@max: 1.408538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959291, loss@max: 1.398551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.952713, loss@max: 1.406505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.924184, loss@max: 1.439613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.977845, loss@max: 1.391010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.984626, loss@max: 1.369111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.964991, loss@max: 1.385995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.958296, loss@max: 1.390461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.960186, loss@max: 1.415708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956591, loss@max: 1.412665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945639, loss@max: 1.403135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960754, loss@max: 1.394869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948804, loss@max: 1.410391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.964376, loss@max: 1.404144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.958315, loss@max: 1.399263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956504, loss@max: 1.416838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964112, loss@max: 1.382349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.974331, loss@max: 1.368095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945496, loss@max: 1.396809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.966374, loss@max: 1.406281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.958108, loss@max: 1.394688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001118, LT: 2.730537, Top1S: 100.000000, Top1T: 49.172577Best acc: 49.172577 +Train:epoch: 81, loss@min: 0.949328, loss@max: 1.381706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001113, LT: 2.730120, Top1S: 100.000000, Top1T: 49.349880Best acc: 49.349880 +Train:epoch: 82, loss@min: 0.943821, loss@max: 1.390230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001109, LT: 2.728285, Top1S: 100.000000, Top1T: 49.349880 +Train:epoch: 83, loss@min: 0.953342, loss@max: 1.396736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001104, LT: 2.722591, Top1S: 100.000000, Top1T: 49.468086Best acc: 49.468086 +Train:epoch: 84, loss@min: 0.958198, loss@max: 1.377775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001099, LT: 2.716986, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 85, loss@min: 0.953546, loss@max: 1.389897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001095, LT: 2.713583, Top1S: 100.000000, Top1T: 49.231678 +Train:epoch: 86, loss@min: 0.941850, loss@max: 1.389681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001091, LT: 2.712134, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 87, loss@min: 0.947274, loss@max: 1.385120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001087, LT: 2.712685, Top1S: 100.000000, Top1T: 49.527187Best acc: 49.527187 +Train:epoch: 88, loss@min: 0.963969, loss@max: 1.375852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001084, LT: 2.713945, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 89, loss@min: 0.961470, loss@max: 1.372977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001082, LT: 2.714723, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 90, loss@min: 0.969407, loss@max: 1.371769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001081, LT: 2.714229, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 91, loss@min: 0.945016, loss@max: 1.391929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001079, LT: 2.713282, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 92, loss@min: 0.932547, loss@max: 1.403256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001076, LT: 2.711813, Top1S: 100.000000, Top1T: 49.231678 +Train:epoch: 93, loss@min: 0.949282, loss@max: 1.382260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001073, LT: 2.710069, Top1S: 100.000000, Top1T: 49.172577 +Train:epoch: 94, loss@min: 0.948609, loss@max: 1.387301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001070, LT: 2.707662, Top1S: 100.000000, Top1T: 49.290779 +Train:epoch: 95, loss@min: 0.961886, loss@max: 1.367046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001067, LT: 2.706048, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 96, loss@min: 0.955869, loss@max: 1.372951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001065, LT: 2.704980, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 97, loss@min: 0.957246, loss@max: 1.369206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001062, LT: 2.704131, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 98, loss@min: 0.967569, loss@max: 1.360823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001059, LT: 2.702847, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 99, loss@min: 0.954689, loss@max: 1.372064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001057, LT: 2.702657, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 100, loss@min: 0.933804, loss@max: 1.393981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001054, LT: 2.701996, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 101, loss@min: 0.949056, loss@max: 1.374820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001052, LT: 2.701299, Top1S: 100.000000, Top1T: 49.645390Best acc: 49.645390 +Train:epoch: 102, loss@min: 0.933660, loss@max: 1.391500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001050, LT: 2.700705, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 103, loss@min: 0.950435, loss@max: 1.379913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001048, LT: 2.700684, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 104, loss@min: 0.941478, loss@max: 1.386173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001045, LT: 2.700118, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 105, loss@min: 0.959273, loss@max: 1.364259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001043, LT: 2.699250, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 106, loss@min: 0.968821, loss@max: 1.356528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001042, LT: 2.697651, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 107, loss@min: 0.968155, loss@max: 1.351154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001041, LT: 2.695710, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 108, loss@min: 0.954339, loss@max: 1.368114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001040, LT: 2.694347, Top1S: 100.000000, Top1T: 49.645390 +Train:epoch: 109, loss@min: 0.940742, loss@max: 1.386310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001039, LT: 2.693277, Top1S: 100.000000, Top1T: 49.704491Best acc: 49.704491 +Train:epoch: 110, loss@min: 0.944623, loss@max: 1.374693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001038, LT: 2.692962, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 111, loss@min: 0.953848, loss@max: 1.364411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001037, LT: 2.693215, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 112, loss@min: 0.941161, loss@max: 1.374306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001036, LT: 2.693973, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 113, loss@min: 0.931162, loss@max: 1.386943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001035, LT: 2.694285, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 114, loss@min: 0.937173, loss@max: 1.377760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001033, LT: 2.693923, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 115, loss@min: 0.945998, loss@max: 1.365884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001032, LT: 2.693382, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 116, loss@min: 0.960126, loss@max: 1.357373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001030, LT: 2.693002, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 117, loss@min: 0.953897, loss@max: 1.361747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001029, LT: 2.692391, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 118, loss@min: 0.957637, loss@max: 1.357543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001028, LT: 2.692358, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 119, loss@min: 0.953536, loss@max: 1.363894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001027, LT: 2.692245, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 120, loss@min: 0.960809, loss@max: 1.353702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001026, LT: 2.692280, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 121, loss@min: 0.951549, loss@max: 1.365470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001025, LT: 2.692344, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 122, loss@min: 0.950591, loss@max: 1.366494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001025, LT: 2.692579, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 123, loss@min: 0.941193, loss@max: 1.371309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001024, LT: 2.692631, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 124, loss@min: 0.937237, loss@max: 1.375816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001024, LT: 2.692484, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 125, loss@min: 0.936129, loss@max: 1.377323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001024, LT: 2.692202, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 126, loss@min: 0.951345, loss@max: 1.374651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001023, LT: 2.691514, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 127, loss@min: 0.955535, loss@max: 1.352726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001023, LT: 2.691113, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 128, loss@min: 0.940920, loss@max: 1.370658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001022, LT: 2.690676, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 129, loss@min: 0.939191, loss@max: 1.376173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001022, LT: 2.690176, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 130, loss@min: 0.943317, loss@max: 1.367586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001021, LT: 2.689659, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 131, loss@min: 0.946859, loss@max: 1.367382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001021, LT: 2.689097, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 132, loss@min: 0.944376, loss@max: 1.368159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001021, LT: 2.688640, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 133, loss@min: 0.945539, loss@max: 1.365628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001020, LT: 2.688331, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 134, loss@min: 0.953172, loss@max: 1.358805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001020, LT: 2.688156, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 135, loss@min: 0.930513, loss@max: 1.380201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001020, LT: 2.688124, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 136, loss@min: 0.943810, loss@max: 1.367604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001019, LT: 2.688138, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 137, loss@min: 0.946972, loss@max: 1.365464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001019, LT: 2.688224, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 138, loss@min: 0.953150, loss@max: 1.357819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001019, LT: 2.688340, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 139, loss@min: 0.955883, loss@max: 1.355212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001019, LT: 2.688448, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 140, loss@min: 0.945590, loss@max: 1.366088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001019, LT: 2.688562, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 141, loss@min: 0.955649, loss@max: 1.356432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001019, LT: 2.688662, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 142, loss@min: 0.959575, loss@max: 1.352196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001018, LT: 2.688744, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 143, loss@min: 0.943984, loss@max: 1.367038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001018, LT: 2.688806, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 144, loss@min: 0.948886, loss@max: 1.361976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001018, LT: 2.688846, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 145, loss@min: 0.953712, loss@max: 1.355601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001018, LT: 2.688873, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 146, loss@min: 0.961062, loss@max: 1.350930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001018, LT: 2.688892, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 147, loss@min: 0.951922, loss@max: 1.360833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001018, LT: 2.688900, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 148, loss@min: 0.950763, loss@max: 1.361731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001018, LT: 2.688903, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 149, loss@min: 0.957763, loss@max: 1.352099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001018, LT: 2.688904, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 150, loss@min: 0.948906, loss@max: 1.363184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001018, LT: 2.688904, Top1S: 100.000000, Top1T: 49.527187 +------------------------------------------- +Thu Jul 20 14:34:29 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 16:17:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.797819, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.166775, loss@max: 1.773277, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.235194, loss@max: 1.683964, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.028993, loss@max: 1.593448, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.921261, loss@max: 1.436839, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.946684, loss@max: 1.276816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.034591, loss@max: 1.184424, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.023075, loss@max: 1.126834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.002228, loss@max: 1.121342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.938758, loss@max: 1.190938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.906954, loss@max: 1.233813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.880394, loss@max: 1.258559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.880085, loss@max: 1.264589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.890885, loss@max: 1.267105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.901910, loss@max: 1.254643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.887575, loss@max: 1.281522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.899222, loss@max: 1.288596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.922744, loss@max: 1.259780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944392, loss@max: 1.244531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.956744, loss@max: 1.237288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950749, loss@max: 1.250380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.917711, loss@max: 1.295384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.889101, loss@max: 1.368311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.910547, loss@max: 1.331684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.942848, loss@max: 1.288058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.947952, loss@max: 1.313602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.949883, loss@max: 1.298121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.950784, loss@max: 1.309326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.945536, loss@max: 1.313426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.917833, loss@max: 1.354212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938492, loss@max: 1.334427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.939438, loss@max: 1.343282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947805, loss@max: 1.332476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.930572, loss@max: 1.356156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.963149, loss@max: 1.331005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952402, loss@max: 1.338301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.928475, loss@max: 1.377294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947359, loss@max: 1.360127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.963285, loss@max: 1.360848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.921175, loss@max: 1.385369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972939, loss@max: 1.345321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.989234, loss@max: 1.340086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.966807, loss@max: 1.372698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.943473, loss@max: 1.383762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.935323, loss@max: 1.403227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.946050, loss@max: 1.406796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954339, loss@max: 1.383303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944793, loss@max: 1.392429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939163, loss@max: 1.397419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.956135, loss@max: 1.394512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.975728, loss@max: 1.358769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.985822, loss@max: 1.345575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.962819, loss@max: 1.385855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939792, loss@max: 1.417654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943457, loss@max: 1.400118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948624, loss@max: 1.409543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.970849, loss@max: 1.381748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.956686, loss@max: 1.407008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.955791, loss@max: 1.408959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963468, loss@max: 1.408532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959295, loss@max: 1.398547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.952715, loss@max: 1.406504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.924181, loss@max: 1.439613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.977840, loss@max: 1.391014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.984628, loss@max: 1.369110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.964994, loss@max: 1.385992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.958306, loss@max: 1.390452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.960188, loss@max: 1.415707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956588, loss@max: 1.412671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945628, loss@max: 1.403140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960752, loss@max: 1.394873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948807, loss@max: 1.410388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.964383, loss@max: 1.404136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.958320, loss@max: 1.399257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956504, loss@max: 1.416843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964105, loss@max: 1.382360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.974323, loss@max: 1.368097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945493, loss@max: 1.396811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.966384, loss@max: 1.406281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.958115, loss@max: 1.394685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001118, LT: 2.730539, Top1S: 100.000000, Top1T: 49.172577Best acc: 49.172577 +Train:epoch: 81, loss@min: 0.949334, loss@max: 1.381702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001113, LT: 2.730122, Top1S: 100.000000, Top1T: 49.349880Best acc: 49.349880 +Train:epoch: 82, loss@min: 0.943827, loss@max: 1.390223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001109, LT: 2.728286, Top1S: 100.000000, Top1T: 49.349880 +Train:epoch: 83, loss@min: 0.953339, loss@max: 1.396744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001104, LT: 2.722592, Top1S: 100.000000, Top1T: 49.468086Best acc: 49.468086 +Train:epoch: 84, loss@min: 0.958192, loss@max: 1.377784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001099, LT: 2.716987, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 85, loss@min: 0.953542, loss@max: 1.389906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001095, LT: 2.713585, Top1S: 100.000000, Top1T: 49.231678 +Train:epoch: 86, loss@min: 0.941844, loss@max: 1.389688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001091, LT: 2.712135, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 87, loss@min: 0.947276, loss@max: 1.385120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001087, LT: 2.712687, Top1S: 100.000000, Top1T: 49.527187Best acc: 49.527187 +Train:epoch: 88, loss@min: 0.963975, loss@max: 1.375852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001084, LT: 2.713946, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 89, loss@min: 0.961474, loss@max: 1.372973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001082, LT: 2.714724, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 90, loss@min: 0.969412, loss@max: 1.371766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001081, LT: 2.714229, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 91, loss@min: 0.945018, loss@max: 1.391930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001079, LT: 2.713281, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 92, loss@min: 0.932551, loss@max: 1.403256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001076, LT: 2.711813, Top1S: 100.000000, Top1T: 49.231678 +Train:epoch: 93, loss@min: 0.949282, loss@max: 1.382262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001073, LT: 2.710068, Top1S: 100.000000, Top1T: 49.172577 +Train:epoch: 94, loss@min: 0.948605, loss@max: 1.387304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001070, LT: 2.707662, Top1S: 100.000000, Top1T: 49.290779 +Train:epoch: 95, loss@min: 0.961883, loss@max: 1.367048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001067, LT: 2.706049, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 96, loss@min: 0.955867, loss@max: 1.372953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001065, LT: 2.704982, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 97, loss@min: 0.957245, loss@max: 1.369208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001062, LT: 2.704133, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 98, loss@min: 0.967570, loss@max: 1.360824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001059, LT: 2.702849, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 99, loss@min: 0.954687, loss@max: 1.372066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001057, LT: 2.702658, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 100, loss@min: 0.933801, loss@max: 1.393984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001054, LT: 2.701996, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 101, loss@min: 0.949057, loss@max: 1.374819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001052, LT: 2.701299, Top1S: 100.000000, Top1T: 49.645390Best acc: 49.645390 +Train:epoch: 102, loss@min: 0.933661, loss@max: 1.391500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001050, LT: 2.700705, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 103, loss@min: 0.950435, loss@max: 1.379912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001048, LT: 2.700684, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 104, loss@min: 0.941478, loss@max: 1.386173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001045, LT: 2.700119, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 105, loss@min: 0.959276, loss@max: 1.364256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001043, LT: 2.699251, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 106, loss@min: 0.968821, loss@max: 1.356527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001042, LT: 2.697651, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 107, loss@min: 0.968159, loss@max: 1.351149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001041, LT: 2.695711, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 108, loss@min: 0.954338, loss@max: 1.368115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001040, LT: 2.694348, Top1S: 100.000000, Top1T: 49.645390 +Train:epoch: 109, loss@min: 0.940747, loss@max: 1.386305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001039, LT: 2.693278, Top1S: 100.000000, Top1T: 49.704491Best acc: 49.704491 +Train:epoch: 110, loss@min: 0.944623, loss@max: 1.374696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001038, LT: 2.692962, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 111, loss@min: 0.953846, loss@max: 1.364414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001037, LT: 2.693215, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 112, loss@min: 0.941158, loss@max: 1.374310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001036, LT: 2.693974, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 113, loss@min: 0.931160, loss@max: 1.386946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001035, LT: 2.694285, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 114, loss@min: 0.937173, loss@max: 1.377758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001033, LT: 2.693923, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 115, loss@min: 0.945996, loss@max: 1.365885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001032, LT: 2.693383, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 116, loss@min: 0.960127, loss@max: 1.357371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001030, LT: 2.693002, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 117, loss@min: 0.953899, loss@max: 1.361747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001029, LT: 2.692391, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 118, loss@min: 0.957638, loss@max: 1.357542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001028, LT: 2.692358, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 119, loss@min: 0.953534, loss@max: 1.363896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001027, LT: 2.692246, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 120, loss@min: 0.960809, loss@max: 1.353701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001026, LT: 2.692280, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 121, loss@min: 0.951548, loss@max: 1.365471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001025, LT: 2.692345, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 122, loss@min: 0.950592, loss@max: 1.366494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001025, LT: 2.692580, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 123, loss@min: 0.941193, loss@max: 1.371309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001024, LT: 2.692631, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 124, loss@min: 0.937238, loss@max: 1.375816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001024, LT: 2.692485, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 125, loss@min: 0.936129, loss@max: 1.377323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001024, LT: 2.692202, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 126, loss@min: 0.951346, loss@max: 1.374650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001023, LT: 2.691514, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 127, loss@min: 0.955534, loss@max: 1.352727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001023, LT: 2.691113, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 128, loss@min: 0.940920, loss@max: 1.370659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001022, LT: 2.690677, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 129, loss@min: 0.939192, loss@max: 1.376173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001022, LT: 2.690177, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 130, loss@min: 0.943316, loss@max: 1.367588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001021, LT: 2.689659, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 131, loss@min: 0.946858, loss@max: 1.367384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001021, LT: 2.689098, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 132, loss@min: 0.944375, loss@max: 1.368161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001021, LT: 2.688641, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 133, loss@min: 0.945538, loss@max: 1.365628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001020, LT: 2.688331, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 134, loss@min: 0.953173, loss@max: 1.358803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001020, LT: 2.688156, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 135, loss@min: 0.930511, loss@max: 1.380203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001020, LT: 2.688124, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 136, loss@min: 0.943812, loss@max: 1.367602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001019, LT: 2.688138, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 137, loss@min: 0.946971, loss@max: 1.365464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001019, LT: 2.688225, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 138, loss@min: 0.953150, loss@max: 1.357818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001019, LT: 2.688340, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 139, loss@min: 0.955886, loss@max: 1.355210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001019, LT: 2.688448, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 140, loss@min: 0.945590, loss@max: 1.366089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001019, LT: 2.688562, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 141, loss@min: 0.955650, loss@max: 1.356431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001019, LT: 2.688662, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 142, loss@min: 0.959575, loss@max: 1.352196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001018, LT: 2.688744, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 143, loss@min: 0.943983, loss@max: 1.367039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001018, LT: 2.688806, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 144, loss@min: 0.948885, loss@max: 1.361977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001018, LT: 2.688846, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 145, loss@min: 0.953709, loss@max: 1.355604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001018, LT: 2.688873, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 146, loss@min: 0.961063, loss@max: 1.350928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001018, LT: 2.688892, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 147, loss@min: 0.951923, loss@max: 1.360832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001018, LT: 2.688901, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 148, loss@min: 0.950763, loss@max: 1.361731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001018, LT: 2.688903, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 149, loss@min: 0.957763, loss@max: 1.352100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001018, LT: 2.688904, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 150, loss@min: 0.948906, loss@max: 1.363183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001018, LT: 2.688904, Top1S: 100.000000, Top1T: 49.527187{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 110, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Thu Jul 20 16:47:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.812049, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.169251, loss@max: 1.797428, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.240278, loss@max: 1.711733, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.036534, loss@max: 1.621244, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.931383, loss@max: 1.462962, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.959338, loss@max: 1.301784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.048526, loss@max: 1.210837, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.037346, loss@max: 1.152995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.017000, loss@max: 1.148617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.951418, loss@max: 1.225018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.923238, loss@max: 1.266323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.897942, loss@max: 1.289957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.897131, loss@max: 1.301263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.902692, loss@max: 1.308372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.915119, loss@max: 1.296342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.901514, loss@max: 1.322989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.914844, loss@max: 1.329664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.939061, loss@max: 1.300426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.960894, loss@max: 1.284116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.978850, loss@max: 1.270861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.963426, loss@max: 1.291587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.931530, loss@max: 1.340218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.898571, loss@max: 1.417075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.922160, loss@max: 1.374383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.956010, loss@max: 1.327973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.965722, loss@max: 1.352046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.956578, loss@max: 1.339431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.959863, loss@max: 1.356008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.951303, loss@max: 1.354339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933105, loss@max: 1.392878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.950351, loss@max: 1.370950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.949577, loss@max: 1.375693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.965295, loss@max: 1.357513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.943301, loss@max: 1.380437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.966036, loss@max: 1.369791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.960857, loss@max: 1.374712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.937929, loss@max: 1.408745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948934, loss@max: 1.392834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.961916, loss@max: 1.394392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.923296, loss@max: 1.414718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972388, loss@max: 1.373003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.991142, loss@max: 1.349831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.980434, loss@max: 1.382296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.971323, loss@max: 1.384810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.945410, loss@max: 1.409230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.927262, loss@max: 1.426140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.942857, loss@max: 1.412643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.951135, loss@max: 1.407210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.947229, loss@max: 1.401880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.962534, loss@max: 1.389679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.975808, loss@max: 1.364194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.981670, loss@max: 1.373727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.952147, loss@max: 1.398740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.941291, loss@max: 1.409107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.960982, loss@max: 1.387550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.961036, loss@max: 1.392570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.966889, loss@max: 1.391534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.950507, loss@max: 1.417422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.935705, loss@max: 1.422807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943614, loss@max: 1.405336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.961224, loss@max: 1.396765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.968744, loss@max: 1.388155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.946826, loss@max: 1.382547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.963916, loss@max: 1.384328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.984374, loss@max: 1.364828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946162, loss@max: 1.397715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.949787, loss@max: 1.390733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948249, loss@max: 1.386964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944082, loss@max: 1.391472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.946420, loss@max: 1.385963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957486, loss@max: 1.383807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.947874, loss@max: 1.388803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954507, loss@max: 1.385140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.956378, loss@max: 1.374637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.962004, loss@max: 1.365083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.967699, loss@max: 1.359271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.979549, loss@max: 1.352557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.964769, loss@max: 1.373138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954976, loss@max: 1.370957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.947590, loss@max: 1.383433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.940355, loss@max: 1.388444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947899, loss@max: 1.376322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.938874, loss@max: 1.389586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.935130, loss@max: 1.388263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.941543, loss@max: 1.385015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.935374, loss@max: 1.382221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.949338, loss@max: 1.375032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.948574, loss@max: 1.369246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.948049, loss@max: 1.369348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.952500, loss@max: 1.366440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.951033, loss@max: 1.367016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.962743, loss@max: 1.359050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.955650, loss@max: 1.358541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950717, loss@max: 1.363233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.949798, loss@max: 1.363038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.952639, loss@max: 1.364557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944221, loss@max: 1.371060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.955356, loss@max: 1.362591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.945947, loss@max: 1.373097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950579, loss@max: 1.365767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001227, LT: 2.718350, Top1S: 100.000000, Top1T: 49.822697Best acc: 49.822697 +Train:epoch: 101, loss@min: 0.947788, loss@max: 1.364959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001227, LT: 2.718138, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 102, loss@min: 0.940081, loss@max: 1.372838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001227, LT: 2.717983, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 103, loss@min: 0.956944, loss@max: 1.357047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001227, LT: 2.717889, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 104, loss@min: 0.948916, loss@max: 1.365785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001227, LT: 2.717818, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 105, loss@min: 0.938786, loss@max: 1.375779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001227, LT: 2.717767, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 106, loss@min: 0.947515, loss@max: 1.368224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001227, LT: 2.717740, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 107, loss@min: 0.945120, loss@max: 1.365261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001227, LT: 2.717725, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 108, loss@min: 0.956911, loss@max: 1.361696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001227, LT: 2.717717, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 109, loss@min: 0.954171, loss@max: 1.360106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001227, LT: 2.717716, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 110, loss@min: 0.936529, loss@max: 1.378450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001227, LT: 2.717716, Top1S: 100.000000, Top1T: 49.822697{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 110, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 100} + +------------------------------------------- +Thu Jul 20 16:55:42 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.812049, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.169251, loss@max: 1.797428, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.240278, loss@max: 1.711733, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.036534, loss@max: 1.621244, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.931383, loss@max: 1.462962, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.959338, loss@max: 1.301784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.048526, loss@max: 1.210837, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.037346, loss@max: 1.152995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.017000, loss@max: 1.148617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.951418, loss@max: 1.225018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.923238, loss@max: 1.266323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.897942, loss@max: 1.289957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.897131, loss@max: 1.301263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.902692, loss@max: 1.308372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.915119, loss@max: 1.296342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.901514, loss@max: 1.322989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.914844, loss@max: 1.329664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.939061, loss@max: 1.300426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.960894, loss@max: 1.284116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.978850, loss@max: 1.270861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.963426, loss@max: 1.291587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.931530, loss@max: 1.340218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.898571, loss@max: 1.417075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.922160, loss@max: 1.374383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.956010, loss@max: 1.327973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.965722, loss@max: 1.352046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.956578, loss@max: 1.339431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.959863, loss@max: 1.356008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.951303, loss@max: 1.354339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933105, loss@max: 1.392878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.950351, loss@max: 1.370950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.949577, loss@max: 1.375693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.965295, loss@max: 1.357513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.943301, loss@max: 1.380437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.966036, loss@max: 1.369791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.960857, loss@max: 1.374712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.937929, loss@max: 1.408745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948934, loss@max: 1.392834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.961916, loss@max: 1.394392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.923296, loss@max: 1.414718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972388, loss@max: 1.373003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.991142, loss@max: 1.349831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.980434, loss@max: 1.382296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.971323, loss@max: 1.384810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.945410, loss@max: 1.409230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.927262, loss@max: 1.426140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.942857, loss@max: 1.412643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.951135, loss@max: 1.407210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.947229, loss@max: 1.401880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.962534, loss@max: 1.389679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.975808, loss@max: 1.364194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.981670, loss@max: 1.373727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.952147, loss@max: 1.398740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.941291, loss@max: 1.409107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.960982, loss@max: 1.387550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.961036, loss@max: 1.392570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.966889, loss@max: 1.391534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.950507, loss@max: 1.417422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.935705, loss@max: 1.422807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943614, loss@max: 1.405336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.961224, loss@max: 1.396765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.968744, loss@max: 1.388155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.946826, loss@max: 1.382547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.963916, loss@max: 1.384328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.984374, loss@max: 1.364828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946162, loss@max: 1.397715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.949787, loss@max: 1.390733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948249, loss@max: 1.386964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944082, loss@max: 1.391472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.946420, loss@max: 1.385963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957486, loss@max: 1.383807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.947874, loss@max: 1.388803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954507, loss@max: 1.385140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.956378, loss@max: 1.374637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.962004, loss@max: 1.365083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.967699, loss@max: 1.359271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.979549, loss@max: 1.352557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.964769, loss@max: 1.373138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954976, loss@max: 1.370957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.947590, loss@max: 1.383433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.940355, loss@max: 1.388444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947899, loss@max: 1.376322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.938874, loss@max: 1.389586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.935130, loss@max: 1.388263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.941543, loss@max: 1.385015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.935374, loss@max: 1.382221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.949338, loss@max: 1.375032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.948574, loss@max: 1.369246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.948049, loss@max: 1.369348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.952500, loss@max: 1.366440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.951033, loss@max: 1.367016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.962743, loss@max: 1.359050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.955650, loss@max: 1.358541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950717, loss@max: 1.363233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.949798, loss@max: 1.363038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.952639, loss@max: 1.364557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944221, loss@max: 1.371060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.955356, loss@max: 1.362591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.945947, loss@max: 1.373097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950579, loss@max: 1.365767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001227, LT: 2.718350, Top1S: 100.000000, Top1T: 49.822697Best acc: 49.822697 +Train:epoch: 101, loss@min: 0.947788, loss@max: 1.364959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001227, LT: 2.718138, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 102, loss@min: 0.940081, loss@max: 1.372838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001227, LT: 2.717983, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 103, loss@min: 0.956944, loss@max: 1.357047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001227, LT: 2.717889, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 104, loss@min: 0.948916, loss@max: 1.365785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001227, LT: 2.717818, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 105, loss@min: 0.938786, loss@max: 1.375779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001227, LT: 2.717767, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 106, loss@min: 0.947515, loss@max: 1.368224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001227, LT: 2.717740, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 107, loss@min: 0.945120, loss@max: 1.365261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001227, LT: 2.717725, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 108, loss@min: 0.956911, loss@max: 1.361696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001227, LT: 2.717717, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 109, loss@min: 0.954171, loss@max: 1.360106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001227, LT: 2.717716, Top1S: 100.000000, Top1T: 49.822697 +Train:epoch: 110, loss@min: 0.936529, loss@max: 1.378450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001227, LT: 2.717716, Top1S: 100.000000, Top1T: 49.822697{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 99} + +------------------------------------------- +Thu Jul 20 17:20:00 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.817382, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.170170, loss@max: 1.806445, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.242182, loss@max: 1.722011, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.039329, loss@max: 1.631446, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.934967, loss@max: 1.472590, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.963737, loss@max: 1.311038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.053195, loss@max: 1.220598, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.042046, loss@max: 1.162591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.021799, loss@max: 1.158569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.955594, loss@max: 1.237077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.928604, loss@max: 1.277381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.903648, loss@max: 1.300769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.902096, loss@max: 1.314137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.905968, loss@max: 1.322311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.919244, loss@max: 1.309994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.905276, loss@max: 1.336456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.918988, loss@max: 1.342683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943878, loss@max: 1.312997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.965447, loss@max: 1.296475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.984627, loss@max: 1.281236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.967039, loss@max: 1.304090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.935822, loss@max: 1.352261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.901833, loss@max: 1.428157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.924794, loss@max: 1.386191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.958639, loss@max: 1.339481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968736, loss@max: 1.361407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.957348, loss@max: 1.350781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.961997, loss@max: 1.368254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.952910, loss@max: 1.362873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.938298, loss@max: 1.399137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.952376, loss@max: 1.379454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.949098, loss@max: 1.385494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.969064, loss@max: 1.363113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.950016, loss@max: 1.385371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968181, loss@max: 1.375627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.962875, loss@max: 1.376376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.941371, loss@max: 1.409383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948596, loss@max: 1.400519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952604, loss@max: 1.400099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.919991, loss@max: 1.421489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.967884, loss@max: 1.383582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.990768, loss@max: 1.352874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.982447, loss@max: 1.374106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.982821, loss@max: 1.371470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.959167, loss@max: 1.401548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.931691, loss@max: 1.425747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.931979, loss@max: 1.414544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.937520, loss@max: 1.414824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939347, loss@max: 1.411646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.960571, loss@max: 1.388764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.979233, loss@max: 1.357890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.993383, loss@max: 1.363487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.954156, loss@max: 1.391792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.942525, loss@max: 1.402143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955966, loss@max: 1.389294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952939, loss@max: 1.392257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.965334, loss@max: 1.386807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953590, loss@max: 1.402358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937618, loss@max: 1.409352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947889, loss@max: 1.396893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.946056, loss@max: 1.396379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954344, loss@max: 1.395252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945199, loss@max: 1.388758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.961460, loss@max: 1.372303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.988025, loss@max: 1.356525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.955150, loss@max: 1.373842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.964252, loss@max: 1.372880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959170, loss@max: 1.374465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945092, loss@max: 1.388368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.935613, loss@max: 1.391812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.939603, loss@max: 1.388268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.932533, loss@max: 1.394954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.936023, loss@max: 1.386564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939553, loss@max: 1.388105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949073, loss@max: 1.375927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964232, loss@max: 1.364027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.982938, loss@max: 1.343664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.971116, loss@max: 1.352519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964975, loss@max: 1.353541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967580, loss@max: 1.355529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.960254, loss@max: 1.357421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.960520, loss@max: 1.358212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.959975, loss@max: 1.359361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946023, loss@max: 1.367823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.949321, loss@max: 1.365783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.937052, loss@max: 1.380598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.951977, loss@max: 1.368573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.943036, loss@max: 1.371426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.934580, loss@max: 1.378871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.941309, loss@max: 1.373837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.934683, loss@max: 1.379140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.942342, loss@max: 1.371820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.939161, loss@max: 1.373472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.936485, loss@max: 1.378580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.932741, loss@max: 1.380354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.943008, loss@max: 1.375053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.933069, loss@max: 1.382289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943026, loss@max: 1.374394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.936868, loss@max: 1.381657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001302, LT: 2.721424, Top1S: 100.000000, Top1T: 49.822697Best acc: 49.822697 +Train:epoch: 100, loss@min: 0.935138, loss@max: 1.382751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001302, LT: 2.721424, Top1S: 100.000000, Top1T: 49.822697{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 99} + +------------------------------------------- +Thu Jul 20 17:24:58 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.817382, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.170170, loss@max: 1.806445, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.242182, loss@max: 1.722011, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.039329, loss@max: 1.631446, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.934967, loss@max: 1.472590, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.963737, loss@max: 1.311038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.053195, loss@max: 1.220598, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.042046, loss@max: 1.162591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.021799, loss@max: 1.158569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.955594, loss@max: 1.237077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.928604, loss@max: 1.277381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.903648, loss@max: 1.300769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.902096, loss@max: 1.314137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.905968, loss@max: 1.322311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.919244, loss@max: 1.309994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.905276, loss@max: 1.336456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.918988, loss@max: 1.342683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943878, loss@max: 1.312997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.965447, loss@max: 1.296475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.984627, loss@max: 1.281236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.967039, loss@max: 1.304090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.935822, loss@max: 1.352261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.901833, loss@max: 1.428157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.924794, loss@max: 1.386191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.958639, loss@max: 1.339481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968736, loss@max: 1.361407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.957348, loss@max: 1.350781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.961997, loss@max: 1.368254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.952910, loss@max: 1.362873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.938298, loss@max: 1.399137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.952376, loss@max: 1.379454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.949098, loss@max: 1.385494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.969064, loss@max: 1.363113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.950016, loss@max: 1.385371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968181, loss@max: 1.375627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.962875, loss@max: 1.376376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.941371, loss@max: 1.409383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948596, loss@max: 1.400519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952604, loss@max: 1.400099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.919991, loss@max: 1.421489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.967884, loss@max: 1.383582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.990768, loss@max: 1.352874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.982447, loss@max: 1.374106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.982821, loss@max: 1.371470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.959167, loss@max: 1.401548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.931691, loss@max: 1.425747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.931979, loss@max: 1.414544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.937520, loss@max: 1.414824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939347, loss@max: 1.411646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.960571, loss@max: 1.388764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.979233, loss@max: 1.357890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.993383, loss@max: 1.363487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.954156, loss@max: 1.391792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.942525, loss@max: 1.402143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955966, loss@max: 1.389294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952939, loss@max: 1.392257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.965334, loss@max: 1.386807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953590, loss@max: 1.402358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937618, loss@max: 1.409352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947889, loss@max: 1.396893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.946056, loss@max: 1.396379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954344, loss@max: 1.395252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945199, loss@max: 1.388758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.961460, loss@max: 1.372303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.988025, loss@max: 1.356525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.955150, loss@max: 1.373842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.964252, loss@max: 1.372880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959170, loss@max: 1.374465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945092, loss@max: 1.388368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.935613, loss@max: 1.391812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.939603, loss@max: 1.388268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.932533, loss@max: 1.394954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.936023, loss@max: 1.386564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939553, loss@max: 1.388105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949073, loss@max: 1.375927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964232, loss@max: 1.364027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.982938, loss@max: 1.343664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.971116, loss@max: 1.352519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964975, loss@max: 1.353541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967580, loss@max: 1.355529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.960254, loss@max: 1.357421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.960520, loss@max: 1.358212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.959975, loss@max: 1.359361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946023, loss@max: 1.367823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.949321, loss@max: 1.365783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.937052, loss@max: 1.380598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.951977, loss@max: 1.368573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.943036, loss@max: 1.371426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.934580, loss@max: 1.378871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.941309, loss@max: 1.373837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.934683, loss@max: 1.379140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.942342, loss@max: 1.371820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.939161, loss@max: 1.373472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.936485, loss@max: 1.378580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.932741, loss@max: 1.380354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.943008, loss@max: 1.375053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.933069, loss@max: 1.382289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943026, loss@max: 1.374394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.936868, loss@max: 1.381657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001302, LT: 2.721424, Top1S: 100.000000, Top1T: 49.822697Best acc: 49.822697 +Train:epoch: 100, loss@min: 0.935138, loss@max: 1.382751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001302, LT: 2.721424, Top1S: 100.000000, Top1T: 49.822697{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 100, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 99} + +------------------------------------------- +Thu Jul 20 17:28:51 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.817382, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.170170, loss@max: 1.806445, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.242182, loss@max: 1.722011, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.039329, loss@max: 1.631446, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.934967, loss@max: 1.472590, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.963737, loss@max: 1.311038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.053195, loss@max: 1.220598, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.042046, loss@max: 1.162591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.021799, loss@max: 1.158569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.955594, loss@max: 1.237077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.928604, loss@max: 1.277381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.903648, loss@max: 1.300769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.902096, loss@max: 1.314137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.905968, loss@max: 1.322311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.919244, loss@max: 1.309994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.905276, loss@max: 1.336456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.918988, loss@max: 1.342683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943878, loss@max: 1.312997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.965447, loss@max: 1.296475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.984627, loss@max: 1.281236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.967039, loss@max: 1.304090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.935822, loss@max: 1.352261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.901833, loss@max: 1.428157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.924794, loss@max: 1.386191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.958639, loss@max: 1.339481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968736, loss@max: 1.361407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.957348, loss@max: 1.350781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.961997, loss@max: 1.368254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.952910, loss@max: 1.362873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.938298, loss@max: 1.399137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.952376, loss@max: 1.379454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.949098, loss@max: 1.385494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.969064, loss@max: 1.363113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.950016, loss@max: 1.385371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968181, loss@max: 1.375627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.962875, loss@max: 1.376376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.941371, loss@max: 1.409383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948596, loss@max: 1.400519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952604, loss@max: 1.400099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.919991, loss@max: 1.421489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.967884, loss@max: 1.383582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.990768, loss@max: 1.352874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.982447, loss@max: 1.374106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.982821, loss@max: 1.371470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.959167, loss@max: 1.401548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.931691, loss@max: 1.425747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.931979, loss@max: 1.414544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.937520, loss@max: 1.414824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939347, loss@max: 1.411646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.960571, loss@max: 1.388764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.979233, loss@max: 1.357890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.993383, loss@max: 1.363487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.954156, loss@max: 1.391792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.942525, loss@max: 1.402143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955966, loss@max: 1.389294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952939, loss@max: 1.392257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.965334, loss@max: 1.386807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953590, loss@max: 1.402358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937618, loss@max: 1.409352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947889, loss@max: 1.396893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.946056, loss@max: 1.396379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954344, loss@max: 1.395252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945199, loss@max: 1.388758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.961460, loss@max: 1.372303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.988025, loss@max: 1.356525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.955150, loss@max: 1.373842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.964252, loss@max: 1.372880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959170, loss@max: 1.374465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945092, loss@max: 1.388368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.935613, loss@max: 1.391812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.939603, loss@max: 1.388268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.932533, loss@max: 1.394954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.936023, loss@max: 1.386564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939553, loss@max: 1.388105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949073, loss@max: 1.375927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964232, loss@max: 1.364027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.982938, loss@max: 1.343664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.971116, loss@max: 1.352519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964975, loss@max: 1.353541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967580, loss@max: 1.355529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.960254, loss@max: 1.357421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.960520, loss@max: 1.358212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.959975, loss@max: 1.359361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946023, loss@max: 1.367823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.949321, loss@max: 1.365783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.937052, loss@max: 1.380598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.951977, loss@max: 1.368573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.943036, loss@max: 1.371426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.934580, loss@max: 1.378871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.941309, loss@max: 1.373837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.934683, loss@max: 1.379140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.942342, loss@max: 1.371820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.939161, loss@max: 1.373472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.936485, loss@max: 1.378580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.932741, loss@max: 1.380354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.943008, loss@max: 1.375053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.933069, loss@max: 1.382289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943026, loss@max: 1.374394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.936868, loss@max: 1.381657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001302, LT: 2.721424, Top1S: 100.000000, Top1T: 49.822697Best acc: 49.822697 +Train:epoch: 100, loss@min: 0.935138, loss@max: 1.382751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001302, LT: 2.721424, Top1S: 100.000000, Top1T: 49.822697 +------------------------------------------- +Thu Jul 20 18:14:30 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 18:51:01 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.648179, loss@max: 1.797819, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 2.166775, loss@max: 1.773277, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 3, loss@min: 1.235194, loss@max: 1.683964, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 1.028993, loss@max: 1.593448, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.921261, loss@max: 1.436839, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 6, loss@min: 0.946684, loss@max: 1.276816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.034591, loss@max: 1.184424, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.023075, loss@max: 1.126834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.002228, loss@max: 1.121342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.938758, loss@max: 1.190938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.906954, loss@max: 1.233813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.880394, loss@max: 1.258559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.880085, loss@max: 1.264589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.890885, loss@max: 1.267105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.901910, loss@max: 1.254643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.887575, loss@max: 1.281522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.899222, loss@max: 1.288596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.922744, loss@max: 1.259780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944392, loss@max: 1.244531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.956744, loss@max: 1.237288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950749, loss@max: 1.250380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.917711, loss@max: 1.295384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.889101, loss@max: 1.368311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.910547, loss@max: 1.331684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.942848, loss@max: 1.288058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.947952, loss@max: 1.313602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.949883, loss@max: 1.298121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.950784, loss@max: 1.309326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.945536, loss@max: 1.313426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.917833, loss@max: 1.354212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938492, loss@max: 1.334427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.939438, loss@max: 1.343282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947805, loss@max: 1.332476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.930572, loss@max: 1.356156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.963149, loss@max: 1.331005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952402, loss@max: 1.338301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.928475, loss@max: 1.377294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947359, loss@max: 1.360127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.963285, loss@max: 1.360848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.921175, loss@max: 1.385369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972939, loss@max: 1.345321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.989234, loss@max: 1.340086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.966807, loss@max: 1.372698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.943473, loss@max: 1.383762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.935323, loss@max: 1.403227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.946050, loss@max: 1.406796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954339, loss@max: 1.383303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944793, loss@max: 1.392429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939163, loss@max: 1.397419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.956135, loss@max: 1.394512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.975728, loss@max: 1.358769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.985822, loss@max: 1.345575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.962819, loss@max: 1.385855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939792, loss@max: 1.417654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943457, loss@max: 1.400118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948624, loss@max: 1.409543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.970849, loss@max: 1.381748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.956686, loss@max: 1.407008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.955791, loss@max: 1.408959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963468, loss@max: 1.408532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959295, loss@max: 1.398547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.952715, loss@max: 1.406504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.924181, loss@max: 1.439613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.977840, loss@max: 1.391014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.984628, loss@max: 1.369110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.964994, loss@max: 1.385992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.958306, loss@max: 1.390452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.960188, loss@max: 1.415707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956588, loss@max: 1.412671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945628, loss@max: 1.403140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960752, loss@max: 1.394873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948807, loss@max: 1.410388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.964383, loss@max: 1.404136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.958320, loss@max: 1.399257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956504, loss@max: 1.416843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964105, loss@max: 1.382360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.974323, loss@max: 1.368097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945493, loss@max: 1.396811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.966384, loss@max: 1.406281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.958115, loss@max: 1.394685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001118, LT: 2.730539, Top1S: 100.000000, Top1T: 49.172577Best acc: 49.172577 +Train:epoch: 81, loss@min: 0.949334, loss@max: 1.381702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001113, LT: 2.730122, Top1S: 100.000000, Top1T: 49.349880Best acc: 49.349880 +Train:epoch: 82, loss@min: 0.943827, loss@max: 1.390223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001109, LT: 2.728286, Top1S: 100.000000, Top1T: 49.349880 +Train:epoch: 83, loss@min: 0.953339, loss@max: 1.396744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001104, LT: 2.722592, Top1S: 100.000000, Top1T: 49.468086Best acc: 49.468086 +Train:epoch: 84, loss@min: 0.958192, loss@max: 1.377784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001099, LT: 2.716987, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 85, loss@min: 0.953542, loss@max: 1.389906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001095, LT: 2.713585, Top1S: 100.000000, Top1T: 49.231678 +Train:epoch: 86, loss@min: 0.941844, loss@max: 1.389688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001091, LT: 2.712135, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 87, loss@min: 0.947276, loss@max: 1.385120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001087, LT: 2.712687, Top1S: 100.000000, Top1T: 49.527187Best acc: 49.527187 +Train:epoch: 88, loss@min: 0.963975, loss@max: 1.375852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001084, LT: 2.713946, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 89, loss@min: 0.961474, loss@max: 1.372973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001082, LT: 2.714724, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 90, loss@min: 0.969412, loss@max: 1.371766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001081, LT: 2.714229, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 91, loss@min: 0.945018, loss@max: 1.391930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001079, LT: 2.713281, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 92, loss@min: 0.932551, loss@max: 1.403256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001076, LT: 2.711813, Top1S: 100.000000, Top1T: 49.231678 +Train:epoch: 93, loss@min: 0.949282, loss@max: 1.382262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001073, LT: 2.710068, Top1S: 100.000000, Top1T: 49.172577 +Train:epoch: 94, loss@min: 0.948605, loss@max: 1.387304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001070, LT: 2.707662, Top1S: 100.000000, Top1T: 49.290779 +Train:epoch: 95, loss@min: 0.961883, loss@max: 1.367048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001067, LT: 2.706049, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 96, loss@min: 0.955867, loss@max: 1.372953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001065, LT: 2.704982, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 97, loss@min: 0.957245, loss@max: 1.369208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001062, LT: 2.704133, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 98, loss@min: 0.967570, loss@max: 1.360824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001059, LT: 2.702849, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 99, loss@min: 0.954687, loss@max: 1.372066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001057, LT: 2.702658, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 100, loss@min: 0.933801, loss@max: 1.393984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001054, LT: 2.701996, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 101, loss@min: 0.949057, loss@max: 1.374819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001052, LT: 2.701299, Top1S: 100.000000, Top1T: 49.645390Best acc: 49.645390 +Train:epoch: 102, loss@min: 0.933661, loss@max: 1.391500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001050, LT: 2.700705, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 103, loss@min: 0.950435, loss@max: 1.379912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001048, LT: 2.700684, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 104, loss@min: 0.941478, loss@max: 1.386173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001045, LT: 2.700119, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 105, loss@min: 0.959276, loss@max: 1.364256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001043, LT: 2.699251, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 106, loss@min: 0.968821, loss@max: 1.356527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001042, LT: 2.697651, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 107, loss@min: 0.968159, loss@max: 1.351149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001041, LT: 2.695711, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 108, loss@min: 0.954338, loss@max: 1.368115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001040, LT: 2.694348, Top1S: 100.000000, Top1T: 49.645390 +Train:epoch: 109, loss@min: 0.940747, loss@max: 1.386305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001039, LT: 2.693278, Top1S: 100.000000, Top1T: 49.704491Best acc: 49.704491 +Train:epoch: 110, loss@min: 0.944623, loss@max: 1.374696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001038, LT: 2.692962, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 111, loss@min: 0.953846, loss@max: 1.364414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001037, LT: 2.693215, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 112, loss@min: 0.941158, loss@max: 1.374310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001036, LT: 2.693974, Top1S: 100.000000, Top1T: 49.704491 +Train:epoch: 113, loss@min: 0.931160, loss@max: 1.386946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001035, LT: 2.694285, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 114, loss@min: 0.937173, loss@max: 1.377758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001033, LT: 2.693923, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 115, loss@min: 0.945996, loss@max: 1.365885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001032, LT: 2.693383, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 116, loss@min: 0.960127, loss@max: 1.357371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001030, LT: 2.693002, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 117, loss@min: 0.953899, loss@max: 1.361747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001029, LT: 2.692391, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 118, loss@min: 0.957638, loss@max: 1.357542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001028, LT: 2.692358, Top1S: 100.000000, Top1T: 49.408985 +Train:epoch: 119, loss@min: 0.953534, loss@max: 1.363896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001027, LT: 2.692246, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 120, loss@min: 0.960809, loss@max: 1.353701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001026, LT: 2.692280, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 121, loss@min: 0.951548, loss@max: 1.365471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001025, LT: 2.692345, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 122, loss@min: 0.950592, loss@max: 1.366494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001025, LT: 2.692580, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 123, loss@min: 0.941193, loss@max: 1.371309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001024, LT: 2.692631, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 124, loss@min: 0.937238, loss@max: 1.375816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001024, LT: 2.692485, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 125, loss@min: 0.936129, loss@max: 1.377323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001024, LT: 2.692202, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 126, loss@min: 0.951346, loss@max: 1.374650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001023, LT: 2.691514, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 127, loss@min: 0.955534, loss@max: 1.352727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001023, LT: 2.691113, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 128, loss@min: 0.940920, loss@max: 1.370659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001022, LT: 2.690677, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 129, loss@min: 0.939192, loss@max: 1.376173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001022, LT: 2.690177, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 130, loss@min: 0.943316, loss@max: 1.367588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001021, LT: 2.689659, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 131, loss@min: 0.946858, loss@max: 1.367384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001021, LT: 2.689098, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 132, loss@min: 0.944375, loss@max: 1.368161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001021, LT: 2.688641, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 133, loss@min: 0.945538, loss@max: 1.365628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001020, LT: 2.688331, Top1S: 100.000000, Top1T: 49.468086 +Train:epoch: 134, loss@min: 0.953173, loss@max: 1.358803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001020, LT: 2.688156, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 135, loss@min: 0.930511, loss@max: 1.380203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001020, LT: 2.688124, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 136, loss@min: 0.943812, loss@max: 1.367602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001019, LT: 2.688138, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 137, loss@min: 0.946971, loss@max: 1.365464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001019, LT: 2.688225, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 138, loss@min: 0.953150, loss@max: 1.357818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001019, LT: 2.688340, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 139, loss@min: 0.955886, loss@max: 1.355210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001019, LT: 2.688448, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 140, loss@min: 0.945590, loss@max: 1.366089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001019, LT: 2.688562, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 141, loss@min: 0.955650, loss@max: 1.356431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001019, LT: 2.688662, Top1S: 100.000000, Top1T: 49.586288 +Train:epoch: 142, loss@min: 0.959575, loss@max: 1.352196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001018, LT: 2.688744, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 143, loss@min: 0.943983, loss@max: 1.367039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001018, LT: 2.688806, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 144, loss@min: 0.948885, loss@max: 1.361977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001018, LT: 2.688846, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 145, loss@min: 0.953709, loss@max: 1.355604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001018, LT: 2.688873, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 146, loss@min: 0.961063, loss@max: 1.350928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001018, LT: 2.688892, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 147, loss@min: 0.951923, loss@max: 1.360832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001018, LT: 2.688901, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 148, loss@min: 0.950763, loss@max: 1.361731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001018, LT: 2.688903, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 149, loss@min: 0.957763, loss@max: 1.352100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001018, LT: 2.688904, Top1S: 100.000000, Top1T: 49.527187 +Train:epoch: 150, loss@min: 0.948906, loss@max: 1.363183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001018, LT: 2.688904, Top1S: 100.000000, Top1T: 49.527187 +------------------------------------------- +Thu Jul 20 20:03:36 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 20:37:34 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 2.041421, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.737159, loss@max: 1.743042, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.193693, loss@max: 1.571516, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.924669, loss@max: 1.451747, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.894866, loss@max: 1.344643, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.907802, loss@max: 1.312353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.956322, loss@max: 1.212827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.997054, loss@max: 1.158758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.019013, loss@max: 1.143799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.044206, loss@max: 1.198155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.918312, loss@max: 1.261194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.851317, loss@max: 1.339795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.869817, loss@max: 1.392548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.913750, loss@max: 1.334041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940439, loss@max: 1.377506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.943503, loss@max: 1.382187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.894016, loss@max: 1.415911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991902, loss@max: 1.380918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.941925, loss@max: 1.324173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.001106, loss@max: 1.261514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952239, loss@max: 1.381376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.958564, loss@max: 1.397287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908011, loss@max: 1.444181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.931090, loss@max: 1.353524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.054458, loss@max: 1.335761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.037382, loss@max: 1.340741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908277, loss@max: 1.477788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.888236, loss@max: 1.542876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.904958, loss@max: 1.503552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949667, loss@max: 1.356652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.972569, loss@max: 1.324166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.004714, loss@max: 1.334223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.028346, loss@max: 1.413498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.981062, loss@max: 1.385595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.916152, loss@max: 1.408244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.958349, loss@max: 1.494198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.961969, loss@max: 1.433820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.024155, loss@max: 1.410595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.929711, loss@max: 1.465098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.889381, loss@max: 1.493662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.995083, loss@max: 1.435098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.025784, loss@max: 1.413154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.047615, loss@max: 1.450499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986057, loss@max: 1.408840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.986810, loss@max: 1.422933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.007359, loss@max: 1.407441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.925168, loss@max: 1.537192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.955285, loss@max: 1.469671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961946, loss@max: 1.590765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.972117, loss@max: 1.476211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.003538, loss@max: 1.463366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.975295, loss@max: 1.480894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.977601, loss@max: 1.483489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.962115, loss@max: 1.560997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.958561, loss@max: 1.525483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.019325, loss@max: 1.476929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.053164, loss@max: 1.461893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.983679, loss@max: 1.503495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.960091, loss@max: 1.469981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.016053, loss@max: 1.472062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.999296, loss@max: 1.480440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.024140, loss@max: 1.393526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939058, loss@max: 1.506025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.901304, loss@max: 1.557131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.966337, loss@max: 1.452819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.960434, loss@max: 1.481166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.925687, loss@max: 1.506517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.981405, loss@max: 1.413903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.073892, loss@max: 1.392774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.050985, loss@max: 1.385976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.940649, loss@max: 1.475841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.974729, loss@max: 1.459653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.949359, loss@max: 1.447622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948250, loss@max: 1.474279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.967801, loss@max: 1.451217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.962277, loss@max: 1.499570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965965, loss@max: 1.433400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.999968, loss@max: 1.424485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952834, loss@max: 1.433373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.973463, loss@max: 1.455114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001277, LT: 2.516634, Top1S: 100.000000, Top1T: 44.385342Best acc: 44.385342 +Train:epoch: 81, loss@min: 0.949318, loss@max: 1.469055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001270, LT: 2.506745, Top1S: 100.000000, Top1T: 44.267139 +Train:epoch: 82, loss@min: 0.999150, loss@max: 1.445670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001264, LT: 2.494725, Top1S: 100.000000, Top1T: 44.444443Best acc: 44.444443 +Train:epoch: 83, loss@min: 1.011441, loss@max: 1.422545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001259, LT: 2.484770, Top1S: 100.000000, Top1T: 44.680851Best acc: 44.680851 +Train:epoch: 84, loss@min: 0.992661, loss@max: 1.399579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001256, LT: 2.476834, Top1S: 100.000000, Top1T: 44.799053Best acc: 44.799053 +Train:epoch: 85, loss@min: 0.961058, loss@max: 1.421963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001255, LT: 2.471734, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 86, loss@min: 0.951130, loss@max: 1.457774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001253, LT: 2.468262, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 87, loss@min: 0.976013, loss@max: 1.434139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001252, LT: 2.467536, Top1S: 100.000000, Top1T: 44.503548 +Train:epoch: 88, loss@min: 0.964401, loss@max: 1.443165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001249, LT: 2.468569, Top1S: 100.000000, Top1T: 44.444443 +Train:epoch: 89, loss@min: 0.945703, loss@max: 1.438612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001246, LT: 2.470846, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 90, loss@min: 0.923116, loss@max: 1.467570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001242, LT: 2.473154, Top1S: 100.000000, Top1T: 44.858154Best acc: 44.858154 +Train:epoch: 91, loss@min: 0.942198, loss@max: 1.418729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001237, LT: 2.474379, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 92, loss@min: 0.959974, loss@max: 1.418744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001231, LT: 2.472715, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 93, loss@min: 0.960694, loss@max: 1.455170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001227, LT: 2.468897, Top1S: 100.000000, Top1T: 44.917259Best acc: 44.917259 +Train:epoch: 94, loss@min: 0.977578, loss@max: 1.425696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001223, LT: 2.465144, Top1S: 100.000000, Top1T: 44.976360Best acc: 44.976360 +Train:epoch: 95, loss@min: 0.986871, loss@max: 1.356255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001220, LT: 2.462216, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 96, loss@min: 0.959446, loss@max: 1.380808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001217, LT: 2.459214, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 97, loss@min: 1.032924, loss@max: 1.360074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001215, LT: 2.457399, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 98, loss@min: 0.939700, loss@max: 1.437599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001212, LT: 2.453875, Top1S: 100.000000, Top1T: 45.271866Best acc: 45.271866 +Train:epoch: 99, loss@min: 0.963156, loss@max: 1.452702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001209, LT: 2.449840, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 100, loss@min: 0.962815, loss@max: 1.426889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001206, LT: 2.447208, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 101, loss@min: 0.961668, loss@max: 1.441619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001204, LT: 2.446506, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 102, loss@min: 0.940022, loss@max: 1.437491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001203, LT: 2.446967, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 103, loss@min: 0.961088, loss@max: 1.401831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001202, LT: 2.449003, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 104, loss@min: 0.946918, loss@max: 1.445241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001200, LT: 2.450747, Top1S: 100.000000, Top1T: 45.330971Best acc: 45.330971 +Train:epoch: 105, loss@min: 0.963414, loss@max: 1.405947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001199, LT: 2.452282, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 106, loss@min: 0.962575, loss@max: 1.403672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001198, LT: 2.454228, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 107, loss@min: 0.950624, loss@max: 1.413608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001196, LT: 2.454306, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 108, loss@min: 0.957952, loss@max: 1.383722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001195, LT: 2.452874, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 109, loss@min: 0.973432, loss@max: 1.378029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001194, LT: 2.451116, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 110, loss@min: 0.960249, loss@max: 1.382555, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001193, LT: 2.449479, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 111, loss@min: 0.994308, loss@max: 1.358641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001191, LT: 2.447595, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 112, loss@min: 0.961776, loss@max: 1.394850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001190, LT: 2.446011, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 113, loss@min: 0.931944, loss@max: 1.403442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001188, LT: 2.444804, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 114, loss@min: 0.930740, loss@max: 1.416458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001186, LT: 2.443407, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 115, loss@min: 0.937315, loss@max: 1.409425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001184, LT: 2.442056, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 116, loss@min: 0.955213, loss@max: 1.375312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001183, LT: 2.440592, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 117, loss@min: 0.936436, loss@max: 1.401111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001181, LT: 2.439362, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 118, loss@min: 0.956607, loss@max: 1.395491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001180, LT: 2.438420, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 119, loss@min: 0.956894, loss@max: 1.377353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001179, LT: 2.437854, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 120, loss@min: 0.947379, loss@max: 1.391643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001178, LT: 2.437595, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 121, loss@min: 0.966359, loss@max: 1.366227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001177, LT: 2.437575, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 122, loss@min: 0.951496, loss@max: 1.380049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001176, LT: 2.437660, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 123, loss@min: 0.946660, loss@max: 1.410790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001176, LT: 2.437825, Top1S: 100.000000, Top1T: 45.271866 +Train:epoch: 124, loss@min: 0.956610, loss@max: 1.392733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001176, LT: 2.438072, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 125, loss@min: 0.957538, loss@max: 1.370177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001175, LT: 2.438230, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 126, loss@min: 0.943036, loss@max: 1.386112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001175, LT: 2.438406, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 127, loss@min: 0.943377, loss@max: 1.387484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001175, LT: 2.438565, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 128, loss@min: 0.935511, loss@max: 1.392072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001175, LT: 2.438595, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 129, loss@min: 0.959388, loss@max: 1.375967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001174, LT: 2.438500, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 130, loss@min: 0.974003, loss@max: 1.357149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001174, LT: 2.438473, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 131, loss@min: 0.937537, loss@max: 1.390411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001174, LT: 2.438469, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 132, loss@min: 0.941633, loss@max: 1.407571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001173, LT: 2.438215, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 133, loss@min: 0.943677, loss@max: 1.376593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001173, LT: 2.438055, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 134, loss@min: 0.958614, loss@max: 1.363694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001173, LT: 2.437940, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 135, loss@min: 0.932634, loss@max: 1.395181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001173, LT: 2.437812, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 136, loss@min: 0.957843, loss@max: 1.377414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001172, LT: 2.437606, Top1S: 100.000000, Top1T: 45.035461 +Train:epoch: 137, loss@min: 0.963371, loss@max: 1.357615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001172, LT: 2.437439, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 138, loss@min: 0.953667, loss@max: 1.371098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001172, LT: 2.437302, Top1S: 100.000000, Top1T: 45.094563 +Train:epoch: 139, loss@min: 0.945854, loss@max: 1.385083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001172, LT: 2.437166, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 140, loss@min: 0.968450, loss@max: 1.360585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001172, LT: 2.437072, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 141, loss@min: 0.960999, loss@max: 1.375592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001171, LT: 2.436962, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 142, loss@min: 0.964385, loss@max: 1.364210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001171, LT: 2.436886, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 143, loss@min: 0.973331, loss@max: 1.356162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001171, LT: 2.436823, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 144, loss@min: 0.934559, loss@max: 1.400842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001171, LT: 2.436788, Top1S: 100.000000, Top1T: 45.212765 +Train:epoch: 145, loss@min: 0.949488, loss@max: 1.379569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001171, LT: 2.436775, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 146, loss@min: 0.956932, loss@max: 1.370019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001171, LT: 2.436774, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 147, loss@min: 0.948121, loss@max: 1.377168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001171, LT: 2.436774, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 148, loss@min: 0.984751, loss@max: 1.348306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001171, LT: 2.436773, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 149, loss@min: 0.960236, loss@max: 1.377288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001171, LT: 2.436773, Top1S: 100.000000, Top1T: 45.153664 +Train:epoch: 150, loss@min: 0.929635, loss@max: 1.395873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001171, LT: 2.436773, Top1S: 100.000000, Top1T: 45.153664 +------------------------------------------- +Thu Jul 20 21:50:11 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 22:05:00 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.473384, loss@max: 1.912194, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 2, loss@min: 2.377423, loss@max: 1.942900, Top1S acc: 100.000000, Top1T acc: 76.595734 +Train:epoch: 3, loss@min: 1.769677, loss@max: 1.868451, Top1S acc: 100.000000, Top1T acc: 85.638298 +Train:epoch: 4, loss@min: 1.335117, loss@max: 1.676224, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 5, loss@min: 1.172940, loss@max: 1.478090, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 6, loss@min: 1.164493, loss@max: 1.331423, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 7, loss@min: 1.113678, loss@max: 1.224973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.065926, loss@max: 1.190177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.010004, loss@max: 1.213506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.957196, loss@max: 1.242163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.922025, loss@max: 1.291362, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 12, loss@min: 0.887869, loss@max: 1.296414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.909253, loss@max: 1.261963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.919586, loss@max: 1.257678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940898, loss@max: 1.245305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.931983, loss@max: 1.262966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.946339, loss@max: 1.265705, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 18, loss@min: 0.931392, loss@max: 1.259560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.934526, loss@max: 1.270037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.915115, loss@max: 1.289149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.933191, loss@max: 1.291795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.914353, loss@max: 1.305411, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.919249, loss@max: 1.302169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.943623, loss@max: 1.290515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.945263, loss@max: 1.282704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.942124, loss@max: 1.297224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.950044, loss@max: 1.298029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.931179, loss@max: 1.319055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.928616, loss@max: 1.321588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.927335, loss@max: 1.331340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938811, loss@max: 1.319027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.945062, loss@max: 1.323715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.943266, loss@max: 1.325388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.945049, loss@max: 1.330653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940402, loss@max: 1.337017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.945582, loss@max: 1.332143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.955207, loss@max: 1.326371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.934071, loss@max: 1.350400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.927659, loss@max: 1.358244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.940214, loss@max: 1.356076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.958586, loss@max: 1.328821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.972540, loss@max: 1.332308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.928228, loss@max: 1.369695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935746, loss@max: 1.361329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.948143, loss@max: 1.348969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.970585, loss@max: 1.334864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.955146, loss@max: 1.356112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.929194, loss@max: 1.377543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939454, loss@max: 1.361658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.957333, loss@max: 1.352285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.941699, loss@max: 1.366426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940480, loss@max: 1.366778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.953514, loss@max: 1.367901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.953971, loss@max: 1.361781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949008, loss@max: 1.371556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955755, loss@max: 1.358977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954641, loss@max: 1.366151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.947923, loss@max: 1.371190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.955016, loss@max: 1.363178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.960208, loss@max: 1.365396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945413, loss@max: 1.373233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.935752, loss@max: 1.383074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940737, loss@max: 1.386042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948130, loss@max: 1.377090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.960882, loss@max: 1.370292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.957823, loss@max: 1.364480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.960418, loss@max: 1.370502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.955941, loss@max: 1.369720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950475, loss@max: 1.379263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941258, loss@max: 1.392984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949512, loss@max: 1.373381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.955719, loss@max: 1.369176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.952276, loss@max: 1.374079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.951247, loss@max: 1.380275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.944816, loss@max: 1.384605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949706, loss@max: 1.376653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.942555, loss@max: 1.379936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954958, loss@max: 1.370528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956053, loss@max: 1.368653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959410, loss@max: 1.362149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000997, LT: 2.046848, Top1S: 100.000000, Top1T: 60.460995Best acc: 60.460995 +Train:epoch: 81, loss@min: 0.961775, loss@max: 1.362450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000992, LT: 2.048267, Top1S: 100.000000, Top1T: 60.638298Best acc: 60.638298 +Train:epoch: 82, loss@min: 0.952826, loss@max: 1.375625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000987, LT: 2.049962, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 83, loss@min: 0.946834, loss@max: 1.379370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000982, LT: 2.050426, Top1S: 100.000000, Top1T: 60.283688 +Train:epoch: 84, loss@min: 0.947469, loss@max: 1.373136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000977, LT: 2.049204, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 85, loss@min: 0.943847, loss@max: 1.378752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000971, LT: 2.046461, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 86, loss@min: 0.945669, loss@max: 1.378816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000966, LT: 2.044111, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 87, loss@min: 0.942311, loss@max: 1.380049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000960, LT: 2.044074, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 88, loss@min: 0.952182, loss@max: 1.369570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000955, LT: 2.046629, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 89, loss@min: 0.967224, loss@max: 1.353721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000952, LT: 2.048425, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 90, loss@min: 0.949723, loss@max: 1.370203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000950, LT: 2.049388, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 91, loss@min: 0.951422, loss@max: 1.369813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000949, LT: 2.049322, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 92, loss@min: 0.940742, loss@max: 1.374603, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 22:16:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.473370, loss@max: 1.912198, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 2, loss@min: 2.377418, loss@max: 1.942904, Top1S acc: 100.000000, Top1T acc: 76.595734 +Train:epoch: 3, loss@min: 1.769679, loss@max: 1.868451, Top1S acc: 100.000000, Top1T acc: 85.638298 +Train:epoch: 4, loss@min: 1.335118, loss@max: 1.676221, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 5, loss@min: 1.172943, loss@max: 1.478087, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 6, loss@min: 1.164489, loss@max: 1.331421, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 7, loss@min: 1.113675, loss@max: 1.224973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.065926, loss@max: 1.190177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.010001, loss@max: 1.213508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.957195, loss@max: 1.242161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.922025, loss@max: 1.291362, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 12, loss@min: 0.887869, loss@max: 1.296415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.909253, loss@max: 1.261962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.919583, loss@max: 1.257679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.940897, loss@max: 1.245306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.931982, loss@max: 1.262966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.946345, loss@max: 1.265697, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 18, loss@min: 0.931397, loss@max: 1.259555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.934526, loss@max: 1.270035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.915110, loss@max: 1.289155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.933186, loss@max: 1.291803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.914352, loss@max: 1.305411, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.919253, loss@max: 1.302165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.943624, loss@max: 1.290514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.945261, loss@max: 1.282705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.942122, loss@max: 1.297229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.950044, loss@max: 1.298028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.931182, loss@max: 1.319051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.928620, loss@max: 1.321582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.927337, loss@max: 1.331338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938808, loss@max: 1.319029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.945056, loss@max: 1.323719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.943262, loss@max: 1.325395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.945048, loss@max: 1.330652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940406, loss@max: 1.337014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.945586, loss@max: 1.332142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.955207, loss@max: 1.326371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.934071, loss@max: 1.350401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.927656, loss@max: 1.358246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.940212, loss@max: 1.356076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.958592, loss@max: 1.328820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.972545, loss@max: 1.332309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.928224, loss@max: 1.369697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935742, loss@max: 1.361339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.948143, loss@max: 1.348972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.970587, loss@max: 1.334860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.955156, loss@max: 1.356111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.929197, loss@max: 1.377542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939452, loss@max: 1.361660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.957328, loss@max: 1.352295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.941694, loss@max: 1.366432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940481, loss@max: 1.366777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.953524, loss@max: 1.367894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.953975, loss@max: 1.361776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949007, loss@max: 1.371559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955748, loss@max: 1.358985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954635, loss@max: 1.366160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.947926, loss@max: 1.371190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.955027, loss@max: 1.363170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.960208, loss@max: 1.365394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945410, loss@max: 1.373238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.935749, loss@max: 1.383077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940737, loss@max: 1.386045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948130, loss@max: 1.377088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.960886, loss@max: 1.370285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.957824, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.960416, loss@max: 1.370503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.955939, loss@max: 1.369718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950472, loss@max: 1.379264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941257, loss@max: 1.392982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949516, loss@max: 1.373374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.955721, loss@max: 1.369172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.952272, loss@max: 1.374083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.951246, loss@max: 1.380271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.944815, loss@max: 1.384604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949707, loss@max: 1.376654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.942554, loss@max: 1.379936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954960, loss@max: 1.370525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956053, loss@max: 1.368651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959412, loss@max: 1.362148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000997, LT: 2.046844, Top1S: 100.000000, Top1T: 60.460995Best acc: 60.460995 +Train:epoch: 81, loss@min: 0.961774, loss@max: 1.362451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000992, LT: 2.048263, Top1S: 100.000000, Top1T: 60.638298Best acc: 60.638298 +Train:epoch: 82, loss@min: 0.952822, loss@max: 1.375627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000987, LT: 2.049959, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 83, loss@min: 0.946833, loss@max: 1.379370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000982, LT: 2.050424, Top1S: 100.000000, Top1T: 60.283688 +Train:epoch: 84, loss@min: 0.947467, loss@max: 1.373137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000976, LT: 2.049202, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 85, loss@min: 0.943849, loss@max: 1.378748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000971, LT: 2.046459, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 86, loss@min: 0.945670, loss@max: 1.378812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000966, LT: 2.044108, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 87, loss@min: 0.942313, loss@max: 1.380048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000960, LT: 2.044071, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 88, loss@min: 0.952183, loss@max: 1.369570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000955, LT: 2.046625, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 89, loss@min: 0.967223, loss@max: 1.353721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000952, LT: 2.048421, Top1S: 100.000000, Top1T: 60.342789 +Train:epoch: 90, loss@min: 0.949722, loss@max: 1.370203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000950, LT: 2.049385, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 91, loss@min: 0.951419, loss@max: 1.369815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000949, LT: 2.049320, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 92, loss@min: 0.940742, loss@max: 1.374603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000948, LT: 2.048359, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 93, loss@min: 0.935451, loss@max: 1.383387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000946, LT: 2.046547, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 94, loss@min: 0.951862, loss@max: 1.365598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000943, LT: 2.044690, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 95, loss@min: 0.954365, loss@max: 1.363871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000939, LT: 2.043137, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 96, loss@min: 0.954326, loss@max: 1.365504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000934, LT: 2.042856, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 97, loss@min: 0.951410, loss@max: 1.364006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000930, LT: 2.043808, Top1S: 100.000000, Top1T: 60.638298 +Train:epoch: 98, loss@min: 0.955919, loss@max: 1.362464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000926, LT: 2.044489, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 99, loss@min: 0.941558, loss@max: 1.374350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000924, LT: 2.044692, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 100, loss@min: 0.952902, loss@max: 1.364832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000922, LT: 2.045107, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 101, loss@min: 0.946183, loss@max: 1.370546, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000921, LT: 2.045575, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 102, loss@min: 0.942745, loss@max: 1.374973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000920, LT: 2.045398, Top1S: 100.000000, Top1T: 60.638298 +Train:epoch: 103, loss@min: 0.954903, loss@max: 1.360425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000918, LT: 2.044750, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 104, loss@min: 0.948345, loss@max: 1.365420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000917, LT: 2.044241, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 105, loss@min: 0.939839, loss@max: 1.374551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000914, LT: 2.044178, Top1S: 100.000000, Top1T: 60.638298 +Train:epoch: 106, loss@min: 0.951663, loss@max: 1.363869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000912, LT: 2.044443, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 107, loss@min: 0.951910, loss@max: 1.363860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000910, LT: 2.044807, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 108, loss@min: 0.950339, loss@max: 1.362352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000909, LT: 2.045524, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 109, loss@min: 0.950244, loss@max: 1.366398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000907, LT: 2.045974, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 110, loss@min: 0.944329, loss@max: 1.367573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000906, LT: 2.045955, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 111, loss@min: 0.945979, loss@max: 1.367586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000904, LT: 2.045422, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 112, loss@min: 0.952700, loss@max: 1.359193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000903, LT: 2.044729, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 113, loss@min: 0.949305, loss@max: 1.362544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000902, LT: 2.044101, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 114, loss@min: 0.961044, loss@max: 1.352428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000901, LT: 2.043560, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 115, loss@min: 0.949857, loss@max: 1.363802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000900, LT: 2.043395, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 116, loss@min: 0.939375, loss@max: 1.373675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000899, LT: 2.043640, Top1S: 100.000000, Top1T: 60.638298 +Train:epoch: 117, loss@min: 0.939153, loss@max: 1.372639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000898, LT: 2.044058, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 118, loss@min: 0.946028, loss@max: 1.364488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000897, LT: 2.044599, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 119, loss@min: 0.944628, loss@max: 1.364928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000896, LT: 2.045029, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 120, loss@min: 0.943364, loss@max: 1.368761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000895, LT: 2.045347, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 121, loss@min: 0.944108, loss@max: 1.367563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000894, LT: 2.045475, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 122, loss@min: 0.947744, loss@max: 1.363109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000893, LT: 2.045377, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 123, loss@min: 0.951110, loss@max: 1.359951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000892, LT: 2.045042, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 124, loss@min: 0.948791, loss@max: 1.360204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000891, LT: 2.044541, Top1S: 100.000000, Top1T: 60.579197 +Train:epoch: 125, loss@min: 0.949071, loss@max: 1.361028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000891, LT: 2.044006, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 126, loss@min: 0.953196, loss@max: 1.356714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000891, LT: 2.043485, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 127, loss@min: 0.949992, loss@max: 1.360046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000890, LT: 2.043130, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 128, loss@min: 0.951965, loss@max: 1.357109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000890, LT: 2.042912, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 129, loss@min: 0.951258, loss@max: 1.358618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000890, LT: 2.042868, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 130, loss@min: 0.945840, loss@max: 1.363618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000889, LT: 2.042894, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 131, loss@min: 0.949019, loss@max: 1.360482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000889, LT: 2.042902, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 132, loss@min: 0.948078, loss@max: 1.362646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000889, LT: 2.042959, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 133, loss@min: 0.946969, loss@max: 1.363689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000888, LT: 2.043082, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 134, loss@min: 0.943409, loss@max: 1.365724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000888, LT: 2.043203, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 135, loss@min: 0.945698, loss@max: 1.363281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000888, LT: 2.043314, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 136, loss@min: 0.947421, loss@max: 1.361811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000888, LT: 2.043389, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 137, loss@min: 0.946915, loss@max: 1.361499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000887, LT: 2.043470, Top1S: 100.000000, Top1T: 60.401890 +Train:epoch: 138, loss@min: 0.943621, loss@max: 1.366385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000887, LT: 2.043562, Top1S: 100.000000, Top1T: 60.460995 +Train:epoch: 139, loss@min: 0.949988, loss@max: 1.359150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000887, LT: 2.043638, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 140, loss@min: 0.949946, loss@max: 1.358781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000887, LT: 2.043681, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 141, loss@min: 0.943651, loss@max: 1.365559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000887, LT: 2.043699, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 142, loss@min: 0.949566, loss@max: 1.361041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000887, LT: 2.043708, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 143, loss@min: 0.945669, loss@max: 1.362626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000887, LT: 2.043710, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 144, loss@min: 0.948151, loss@max: 1.360748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000887, LT: 2.043703, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 145, loss@min: 0.946390, loss@max: 1.361239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000887, LT: 2.043699, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 146, loss@min: 0.948470, loss@max: 1.360777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000887, LT: 2.043697, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 147, loss@min: 0.943847, loss@max: 1.363679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000887, LT: 2.043696, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 148, loss@min: 0.948559, loss@max: 1.360863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000887, LT: 2.043696, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 149, loss@min: 0.947785, loss@max: 1.361358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000887, LT: 2.043696, Top1S: 100.000000, Top1T: 60.520096 +Train:epoch: 150, loss@min: 0.947143, loss@max: 1.361351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000887, LT: 2.043696, Top1S: 100.000000, Top1T: 60.520096 +------------------------------------------- +Thu Jul 20 23:31:37 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Thu Jul 20 23:34:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.272624, loss@max: 2.351310, Top1S acc: 100.000000, Top1T acc: 53.191486 +Train:epoch: 2, loss@min: 2.926847, loss@max: 2.032495, Top1S acc: 100.000000, Top1T acc: 71.808510 +Train:epoch: 3, loss@min: 1.841167, loss@max: 1.781330, Top1S acc: 100.000000, Top1T acc: 83.510628 +Train:epoch: 4, loss@min: 1.263510, loss@max: 1.528752, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 5, loss@min: 1.098588, loss@max: 1.353270, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 6, loss@min: 1.072982, loss@max: 1.247110, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 7, loss@min: 1.086017, loss@max: 1.178072, Top1S acc: 100.000000, Top1T acc: 98.404251 +Train:epoch: 8, loss@min: 1.040192, loss@max: 1.141087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.998771, loss@max: 1.171505, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 10, loss@min: 0.936045, loss@max: 1.218475, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 11, loss@min: 0.894522, loss@max: 1.282810, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 12, loss@min: 0.857147, loss@max: 1.297263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.888712, loss@max: 1.259143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.886942, loss@max: 1.266354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.911749, loss@max: 1.242174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.907371, loss@max: 1.262914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.973758, loss@max: 1.241377, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 18, loss@min: 0.943811, loss@max: 1.241647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.927631, loss@max: 1.271729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.903069, loss@max: 1.299991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.992048, loss@max: 1.291339, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 22, loss@min: 0.950295, loss@max: 1.282231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.910566, loss@max: 1.311312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.887399, loss@max: 1.364925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.955276, loss@max: 1.289721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.970719, loss@max: 1.285428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.944688, loss@max: 1.358073, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 28, loss@min: 0.904583, loss@max: 1.368109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.973150, loss@max: 1.318476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.994793, loss@max: 1.296647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.921571, loss@max: 1.368242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.902721, loss@max: 1.385018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.960342, loss@max: 1.335529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.977732, loss@max: 1.325848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.948650, loss@max: 1.361513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.918888, loss@max: 1.388151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.964853, loss@max: 1.346593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957896, loss@max: 1.371768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.928062, loss@max: 1.377585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.947224, loss@max: 1.387063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.989899, loss@max: 1.334340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.970863, loss@max: 1.335282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.937300, loss@max: 1.387310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.915176, loss@max: 1.411143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.956422, loss@max: 1.358479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.999964, loss@max: 1.344803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.946479, loss@max: 1.385352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.926579, loss@max: 1.407399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944706, loss@max: 1.380530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.970471, loss@max: 1.360788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972803, loss@max: 1.365142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940727, loss@max: 1.393362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938000, loss@max: 1.398345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.954082, loss@max: 1.370046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.977032, loss@max: 1.353735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.963695, loss@max: 1.367309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.939862, loss@max: 1.387033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.935468, loss@max: 1.389660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.930359, loss@max: 1.400081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963405, loss@max: 1.360234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.975954, loss@max: 1.350554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.969137, loss@max: 1.358450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.948812, loss@max: 1.388535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.936834, loss@max: 1.389456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.927834, loss@max: 1.407969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.965686, loss@max: 1.367356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.973296, loss@max: 1.358511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.967745, loss@max: 1.356765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949076, loss@max: 1.381797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.927840, loss@max: 1.398475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.931722, loss@max: 1.396896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.957459, loss@max: 1.372499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.967810, loss@max: 1.354042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.971346, loss@max: 1.345737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.954596, loss@max: 1.370680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.944349, loss@max: 1.378012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.919062, loss@max: 1.400699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.950195, loss@max: 1.367960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948216, loss@max: 1.371472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.957346, loss@max: 1.360353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001239, LT: 2.765581, Top1S: 100.000000, Top1T: 57.801418Best acc: 57.801418 +Train:epoch: 81, loss@min: 0.965605, loss@max: 1.351228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001237, LT: 2.761310, Top1S: 100.000000, Top1T: 57.742317 +Train:epoch: 82, loss@min: 0.957902, loss@max: 1.357303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001233, LT: 2.758197, Top1S: 100.000000, Top1T: 57.919621Best acc: 57.919621 +Train:epoch: 83, loss@min: 0.943303, loss@max: 1.374704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001227, LT: 2.752888, Top1S: 100.000000, Top1T: 57.919621 +Train:epoch: 84, loss@min: 0.943634, loss@max: 1.376857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001220, LT: 2.746197, Top1S: 100.000000, Top1T: 57.978722Best acc: 57.978722 +Train:epoch: 85, loss@min: 0.948807, loss@max: 1.365824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001214, LT: 2.739806, Top1S: 100.000000, Top1T: 57.978722 +Train:epoch: 86, loss@min: 0.946496, loss@max: 1.369897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001210, LT: 2.734618, Top1S: 100.000000, Top1T: 57.860519 +Train:epoch: 87, loss@min: 0.946201, loss@max: 1.370250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001207, LT: 2.730343, Top1S: 100.000000, Top1T: 57.919621 +Train:epoch: 88, loss@min: 0.953659, loss@max: 1.363581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001205, LT: 2.727115, Top1S: 100.000000, Top1T: 57.978722 +Train:epoch: 89, loss@min: 0.951331, loss@max: 1.361189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001202, LT: 2.724242, Top1S: 100.000000, Top1T: 58.037827Best acc: 58.037827 +Train:epoch: 90, loss@min: 0.949212, loss@max: 1.366287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001199, LT: 2.721439, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 91, loss@min: 0.947586, loss@max: 1.370325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001195, LT: 2.718284, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 92, loss@min: 0.938936, loss@max: 1.371698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001191, LT: 2.714519, Top1S: 100.000000, Top1T: 57.978722 +Train:epoch: 93, loss@min: 0.944373, loss@max: 1.369833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001189, LT: 2.710847, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 94, loss@min: 0.955997, loss@max: 1.359375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001187, LT: 2.707476, Top1S: 100.000000, Top1T: 58.215130Best acc: 58.215130 +Train:epoch: 95, loss@min: 0.947852, loss@max: 1.366065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001186, LT: 2.704122, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 96, loss@min: 0.954038, loss@max: 1.361480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001183, LT: 2.701048, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 97, loss@min: 0.950812, loss@max: 1.362354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001181, LT: 2.699310, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 98, loss@min: 0.938949, loss@max: 1.371485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001178, LT: 2.698169, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 99, loss@min: 0.949060, loss@max: 1.360901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001175, LT: 2.697232, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 100, loss@min: 0.951207, loss@max: 1.361317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001172, LT: 2.696614, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 101, loss@min: 0.953280, loss@max: 1.357353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001170, LT: 2.695887, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 102, loss@min: 0.952014, loss@max: 1.358079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001168, LT: 2.694883, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 103, loss@min: 0.951485, loss@max: 1.359612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001165, LT: 2.693342, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 104, loss@min: 0.951769, loss@max: 1.358864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001163, LT: 2.691766, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 105, loss@min: 0.945782, loss@max: 1.365104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001161, LT: 2.689840, Top1S: 100.000000, Top1T: 57.978722 +Train:epoch: 106, loss@min: 0.941822, loss@max: 1.367923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001159, LT: 2.687782, Top1S: 100.000000, Top1T: 58.037827 +Train:epoch: 107, loss@min: 0.945428, loss@max: 1.363945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001157, LT: 2.685900, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 108, loss@min: 0.947339, loss@max: 1.361996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001156, LT: 2.684666, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 109, loss@min: 0.939314, loss@max: 1.371403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001154, LT: 2.684076, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 110, loss@min: 0.948553, loss@max: 1.361242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001152, LT: 2.684005, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 111, loss@min: 0.945613, loss@max: 1.362593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001150, LT: 2.684260, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 112, loss@min: 0.945619, loss@max: 1.364089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001149, LT: 2.684405, Top1S: 100.000000, Top1T: 58.096928 +Train:epoch: 113, loss@min: 0.944395, loss@max: 1.364585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001147, LT: 2.684262, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 114, loss@min: 0.954189, loss@max: 1.355751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001146, LT: 2.683810, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 115, loss@min: 0.954263, loss@max: 1.353995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001145, LT: 2.683090, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 116, loss@min: 0.939597, loss@max: 1.370093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001143, LT: 2.682124, Top1S: 100.000000, Top1T: 58.156029 +Train:epoch: 117, loss@min: 0.950322, loss@max: 1.358620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001142, LT: 2.680924, Top1S: 100.000000, Top1T: 58.274231Best acc: 58.274231 +Train:epoch: 118, loss@min: 0.946170, loss@max: 1.361720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001142, LT: 2.679885, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 119, loss@min: 0.948903, loss@max: 1.360001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001141, LT: 2.679004, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 120, loss@min: 0.955606, loss@max: 1.353490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001140, LT: 2.678585, Top1S: 100.000000, Top1T: 58.215130 +Train:epoch: 121, loss@min: 0.947432, loss@max: 1.360492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001139, LT: 2.678351, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 122, loss@min: 0.947973, loss@max: 1.360847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001139, LT: 2.678243, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 123, loss@min: 0.947949, loss@max: 1.359399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001138, LT: 2.678190, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 124, loss@min: 0.944021, loss@max: 1.362451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001137, LT: 2.678058, Top1S: 100.000000, Top1T: 58.333332Best acc: 58.333332 +Train:epoch: 125, loss@min: 0.939852, loss@max: 1.368194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001136, LT: 2.677831, Top1S: 100.000000, Top1T: 58.392433Best acc: 58.392433 +Train:epoch: 126, loss@min: 0.943452, loss@max: 1.363637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001136, LT: 2.677494, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 127, loss@min: 0.947132, loss@max: 1.359605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001135, LT: 2.677164, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 128, loss@min: 0.948678, loss@max: 1.358716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001134, LT: 2.676895, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 129, loss@min: 0.948294, loss@max: 1.358418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001134, LT: 2.676616, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 130, loss@min: 0.948641, loss@max: 1.358576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001133, LT: 2.676317, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 131, loss@min: 0.943602, loss@max: 1.363583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001133, LT: 2.676024, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 132, loss@min: 0.950981, loss@max: 1.356611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001133, LT: 2.675837, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 133, loss@min: 0.948216, loss@max: 1.360004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001132, LT: 2.675682, Top1S: 100.000000, Top1T: 58.392433 +Train:epoch: 134, loss@min: 0.949864, loss@max: 1.356805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001132, LT: 2.675531, Top1S: 100.000000, Top1T: 58.333332 +Train:epoch: 135, loss@min: 0.947188, loss@max: 1.359731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001132, LT: 2.675433, Top1S: 100.000000, Top1T: 58.333332 +Train:epoch: 136, loss@min: 0.947391, loss@max: 1.359593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001132, LT: 2.675397, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 137, loss@min: 0.949840, loss@max: 1.357326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001131, LT: 2.675398, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 138, loss@min: 0.953073, loss@max: 1.353968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001131, LT: 2.675413, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 139, loss@min: 0.948446, loss@max: 1.358078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001131, LT: 2.675432, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 140, loss@min: 0.949419, loss@max: 1.356852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001131, LT: 2.675454, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 141, loss@min: 0.949714, loss@max: 1.356678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001131, LT: 2.675465, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 142, loss@min: 0.946951, loss@max: 1.360575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001131, LT: 2.675481, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 143, loss@min: 0.949473, loss@max: 1.356920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001131, LT: 2.675488, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 144, loss@min: 0.942626, loss@max: 1.364131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001131, LT: 2.675487, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 145, loss@min: 0.943908, loss@max: 1.362188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001131, LT: 2.675489, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 146, loss@min: 0.944949, loss@max: 1.361766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001131, LT: 2.675490, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 147, loss@min: 0.943452, loss@max: 1.362596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001131, LT: 2.675491, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 148, loss@min: 0.947293, loss@max: 1.360224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001131, LT: 2.675490, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 149, loss@min: 0.945214, loss@max: 1.361793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001131, LT: 2.675490, Top1S: 100.000000, Top1T: 58.274231 +Train:epoch: 150, loss@min: 0.943884, loss@max: 1.362919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001131, LT: 2.675490, Top1S: 100.000000, Top1T: 58.274231{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Fri Jul 21 00:45:48 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.169346, loss@max: 2.060075, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 2, loss@min: 3.557128, loss@max: 2.068042, Top1S acc: 100.000000, Top1T acc: 67.021271 +Train:epoch: 3, loss@min: 2.089439, loss@max: 1.966040, Top1S acc: 100.000000, Top1T acc: 84.574463 +Train:epoch: 4, loss@min: 1.527895, loss@max: 1.848328, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 5, loss@min: 1.249304, loss@max: 1.690219, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 6, loss@min: 1.169662, loss@max: 1.538387, Top1S acc: 100.000000, Top1T acc: 97.340424 +Train:epoch: 7, loss@min: 1.048495, loss@max: 1.439091, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 8, loss@min: 1.026238, loss@max: 1.439367, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 9, loss@min: 0.903292, loss@max: 1.480181, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 10, loss@min: 0.861422, loss@max: 1.495868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.880312, loss@max: 1.439629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.938730, loss@max: 1.382625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.021369, loss@max: 1.313701, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 14, loss@min: 1.057544, loss@max: 1.256306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.022649, loss@max: 1.251905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.972594, loss@max: 1.306781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.985713, loss@max: 1.313411, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.923793, loss@max: 1.341279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.939973, loss@max: 1.323091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968658, loss@max: 1.316779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.975046, loss@max: 1.298382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.959859, loss@max: 1.327906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.890335, loss@max: 1.386464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.903940, loss@max: 1.367694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.901290, loss@max: 1.361397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.964440, loss@max: 1.331647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.949366, loss@max: 1.342846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.927688, loss@max: 1.359271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.942191, loss@max: 1.363762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.926491, loss@max: 1.367493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.968103, loss@max: 1.337894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.984344, loss@max: 1.319705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.963512, loss@max: 1.326824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.954576, loss@max: 1.347636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.954163, loss@max: 1.354318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.918962, loss@max: 1.388162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.940792, loss@max: 1.375260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.958026, loss@max: 1.342688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.977400, loss@max: 1.326971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.974966, loss@max: 1.335323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.932480, loss@max: 1.377685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.926140, loss@max: 1.390668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.953070, loss@max: 1.357814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958122, loss@max: 1.354163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.949571, loss@max: 1.359080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947033, loss@max: 1.376051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.947266, loss@max: 1.368853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.930017, loss@max: 1.379855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945231, loss@max: 1.370506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.959730, loss@max: 1.357615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950279, loss@max: 1.370397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.942303, loss@max: 1.372800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.942618, loss@max: 1.372184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.954152, loss@max: 1.364050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.976941, loss@max: 1.342596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.967310, loss@max: 1.353339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.952877, loss@max: 1.368964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.945913, loss@max: 1.376410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.924397, loss@max: 1.395210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945488, loss@max: 1.372715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.964673, loss@max: 1.357640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.962941, loss@max: 1.358805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950635, loss@max: 1.376653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.947043, loss@max: 1.382126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.948266, loss@max: 1.374023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945385, loss@max: 1.373779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.943790, loss@max: 1.372876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947838, loss@max: 1.373906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946523, loss@max: 1.376898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.952183, loss@max: 1.364557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.969340, loss@max: 1.357349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.955956, loss@max: 1.363720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.944392, loss@max: 1.372658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.931670, loss@max: 1.387064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.944020, loss@max: 1.375530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.960947, loss@max: 1.359320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.967506, loss@max: 1.353671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955123, loss@max: 1.363309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.953580, loss@max: 1.364645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944622, loss@max: 1.373183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001244, LT: 2.200487, Top1S: 100.000000, Top1T: 59.929077Best acc: 59.929077 +Train:epoch: 81, loss@min: 0.954782, loss@max: 1.361507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001240, LT: 2.198150, Top1S: 100.000000, Top1T: 59.929077 +Train:epoch: 82, loss@min: 0.945835, loss@max: 1.371718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001237, LT: 2.196644, Top1S: 100.000000, Top1T: 59.929077 +Train:epoch: 83, loss@min: 0.939860, loss@max: 1.377549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001232, LT: 2.196237, Top1S: 100.000000, Top1T: 59.929077 +Train:epoch: 84, loss@min: 0.943508, loss@max: 1.374982, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Fri Jul 21 00:51:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.817227, loss@max: 1.986650, Top1S acc: 100.000000, Top1T acc: 53.723404 +Train:epoch: 2, loss@min: 3.328426, loss@max: 1.994871, Top1S acc: 100.000000, Top1T acc: 64.893616 +Train:epoch: 3, loss@min: 2.482274, loss@max: 2.124331, Top1S acc: 100.000000, Top1T acc: 77.659569 +Train:epoch: 4, loss@min: 1.926564, loss@max: 2.192037, Top1S acc: 100.000000, Top1T acc: 82.446808 +Train:epoch: 5, loss@min: 1.364664, loss@max: 2.107507, Top1S acc: 100.000000, Top1T acc: 90.957443 +Train:epoch: 6, loss@min: 1.112571, loss@max: 1.974981, Top1S acc: 100.000000, Top1T acc: 97.340424 +Train:epoch: 7, loss@min: 1.039614, loss@max: 1.872110, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 8, loss@min: 1.064729, loss@max: 1.737206, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 9, loss@min: 0.996761, loss@max: 1.617570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.999752, loss@max: 1.506460, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 11, loss@min: 1.024380, loss@max: 1.435007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.035638, loss@max: 1.403788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.053443, loss@max: 1.379429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.023563, loss@max: 1.348634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.022258, loss@max: 1.342166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.034937, loss@max: 1.320406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.034764, loss@max: 1.296844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.998763, loss@max: 1.300357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.995992, loss@max: 1.318865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.977440, loss@max: 1.335168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.947366, loss@max: 1.344485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.911402, loss@max: 1.388451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.897334, loss@max: 1.391825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.918073, loss@max: 1.376363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.911227, loss@max: 1.388859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.928329, loss@max: 1.369053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.946370, loss@max: 1.373606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.940736, loss@max: 1.355289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.939468, loss@max: 1.368641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.942078, loss@max: 1.362733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.970825, loss@max: 1.332744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.986598, loss@max: 1.319898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.987031, loss@max: 1.324454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.979251, loss@max: 1.327739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.975820, loss@max: 1.328305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.962018, loss@max: 1.345748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.936922, loss@max: 1.373288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.911000, loss@max: 1.398823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941440, loss@max: 1.372191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.946165, loss@max: 1.365242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.937962, loss@max: 1.374377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.951572, loss@max: 1.359388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.948118, loss@max: 1.372693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.939152, loss@max: 1.374824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.945604, loss@max: 1.368111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.944261, loss@max: 1.374679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.971702, loss@max: 1.351233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.948854, loss@max: 1.362210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.952429, loss@max: 1.365995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.960679, loss@max: 1.352057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.963351, loss@max: 1.355255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.945078, loss@max: 1.373693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.944502, loss@max: 1.378250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.944555, loss@max: 1.381055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.961587, loss@max: 1.359427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.960763, loss@max: 1.360311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950805, loss@max: 1.377822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.954430, loss@max: 1.373334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.945183, loss@max: 1.383177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.935776, loss@max: 1.383051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.953691, loss@max: 1.375773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.948686, loss@max: 1.374362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955275, loss@max: 1.371784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.951240, loss@max: 1.373273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949022, loss@max: 1.377349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.948991, loss@max: 1.369883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951032, loss@max: 1.372872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950886, loss@max: 1.378710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.960444, loss@max: 1.363817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.960532, loss@max: 1.358873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.959621, loss@max: 1.360253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.956814, loss@max: 1.368628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954262, loss@max: 1.369363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.938488, loss@max: 1.380154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.942425, loss@max: 1.380115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.947832, loss@max: 1.374239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950989, loss@max: 1.370852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.951472, loss@max: 1.376776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.966201, loss@max: 1.354204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.941971, loss@max: 1.379140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001227, LT: 1.946061, Top1S: 100.000000, Top1T: 61.170212Best acc: 61.170212 +Train:epoch: 81, loss@min: 0.957084, loss@max: 1.361906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001223, LT: 1.945296, Top1S: 100.000000, Top1T: 61.052010 +Train:epoch: 82, loss@min: 0.939398, loss@max: 1.380180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001218, LT: 1.945052, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 83, loss@min: 0.940523, loss@max: 1.385821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001212, LT: 1.945365, Top1S: 100.000000, Top1T: 61.347519Best acc: 61.347519 +Train:epoch: 84, loss@min: 0.942603, loss@max: 1.380403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001207, LT: 1.945522, Top1S: 100.000000, Top1T: 61.347519 +Train:epoch: 85, loss@min: 0.952371, loss@max: 1.367313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001202, LT: 1.945877, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 86, loss@min: 0.959478, loss@max: 1.360004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001197, LT: 1.946542, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 87, loss@min: 0.958667, loss@max: 1.363261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001191, LT: 1.946771, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 88, loss@min: 0.958091, loss@max: 1.361599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001186, LT: 1.947026, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 89, loss@min: 0.952980, loss@max: 1.367854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001181, LT: 1.946996, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 90, loss@min: 0.951847, loss@max: 1.367292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001176, LT: 1.946339, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 91, loss@min: 0.940659, loss@max: 1.377645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001172, LT: 1.944813, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 92, loss@min: 0.948409, loss@max: 1.371130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001167, LT: 1.943925, Top1S: 100.000000, Top1T: 61.288418 +Train:epoch: 93, loss@min: 0.953772, loss@max: 1.366747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001163, LT: 1.944397, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 94, loss@min: 0.942493, loss@max: 1.379077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001159, LT: 1.945509, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 95, loss@min: 0.947636, loss@max: 1.374201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001155, LT: 1.947531, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 96, loss@min: 0.950884, loss@max: 1.369590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001151, LT: 1.949518, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 97, loss@min: 0.951954, loss@max: 1.365353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001149, LT: 1.950846, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 98, loss@min: 0.961887, loss@max: 1.356542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001147, LT: 1.950661, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 99, loss@min: 0.956021, loss@max: 1.364751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001146, LT: 1.949104, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 100, loss@min: 0.947670, loss@max: 1.374223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001144, LT: 1.947358, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 101, loss@min: 0.941835, loss@max: 1.376523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001141, LT: 1.945941, Top1S: 100.000000, Top1T: 61.347519 +Train:epoch: 102, loss@min: 0.946422, loss@max: 1.373459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001137, LT: 1.945079, Top1S: 100.000000, Top1T: 61.347519 +Train:epoch: 103, loss@min: 0.946487, loss@max: 1.374430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001133, LT: 1.944845, Top1S: 100.000000, Top1T: 61.406620Best acc: 61.406620 +Train:epoch: 104, loss@min: 0.946641, loss@max: 1.369044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001129, LT: 1.944668, Top1S: 100.000000, Top1T: 61.406620 +Train:epoch: 105, loss@min: 0.957016, loss@max: 1.364148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001125, LT: 1.944788, Top1S: 100.000000, Top1T: 61.347519 +Train:epoch: 106, loss@min: 0.946872, loss@max: 1.371951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001123, LT: 1.945174, Top1S: 100.000000, Top1T: 61.288418 +Train:epoch: 107, loss@min: 0.955344, loss@max: 1.360890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001122, LT: 1.945497, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 108, loss@min: 0.950262, loss@max: 1.370446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001121, LT: 1.945682, Top1S: 100.000000, Top1T: 61.288418 +Train:epoch: 109, loss@min: 0.953028, loss@max: 1.365202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001120, LT: 1.945693, Top1S: 100.000000, Top1T: 61.288418 +Train:epoch: 110, loss@min: 0.947742, loss@max: 1.369770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001119, LT: 1.945743, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 111, loss@min: 0.946955, loss@max: 1.370281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001118, LT: 1.945842, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 112, loss@min: 0.937997, loss@max: 1.376498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001116, LT: 1.945901, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 113, loss@min: 0.941333, loss@max: 1.374478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001114, LT: 1.945816, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 114, loss@min: 0.951634, loss@max: 1.365543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001113, LT: 1.945537, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 115, loss@min: 0.954071, loss@max: 1.362450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001111, LT: 1.945270, Top1S: 100.000000, Top1T: 61.288418 +Train:epoch: 116, loss@min: 0.953436, loss@max: 1.361251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001109, LT: 1.945126, Top1S: 100.000000, Top1T: 61.288418 +Train:epoch: 117, loss@min: 0.947072, loss@max: 1.367998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001108, LT: 1.945206, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 118, loss@min: 0.948192, loss@max: 1.368401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001106, LT: 1.945336, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 119, loss@min: 0.952711, loss@max: 1.365896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001105, LT: 1.945373, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 120, loss@min: 0.956760, loss@max: 1.357453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001104, LT: 1.945561, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 121, loss@min: 0.946044, loss@max: 1.367260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001103, LT: 1.945720, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 122, loss@min: 0.946238, loss@max: 1.366629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001102, LT: 1.945979, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 123, loss@min: 0.945790, loss@max: 1.367741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001101, LT: 1.946206, Top1S: 100.000000, Top1T: 61.111111 +Train:epoch: 124, loss@min: 0.951469, loss@max: 1.360883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001101, LT: 1.946448, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 125, loss@min: 0.955863, loss@max: 1.358014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001100, LT: 1.946664, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 126, loss@min: 0.951599, loss@max: 1.361070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001099, LT: 1.946841, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 127, loss@min: 0.942937, loss@max: 1.370259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001099, LT: 1.947003, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 128, loss@min: 0.950122, loss@max: 1.363608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001098, LT: 1.947063, Top1S: 100.000000, Top1T: 61.170212 +Train:epoch: 129, loss@min: 0.948887, loss@max: 1.366305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001098, LT: 1.947093, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 130, loss@min: 0.953976, loss@max: 1.361621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001097, LT: 1.947099, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 131, loss@min: 0.947189, loss@max: 1.367230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001097, LT: 1.947115, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 132, loss@min: 0.952715, loss@max: 1.359515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001096, LT: 1.947094, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 133, loss@min: 0.948803, loss@max: 1.363386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001096, LT: 1.947017, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 134, loss@min: 0.949890, loss@max: 1.362218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001096, LT: 1.946970, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 135, loss@min: 0.941546, loss@max: 1.371207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001095, LT: 1.946909, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 136, loss@min: 0.951396, loss@max: 1.361225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001095, LT: 1.946834, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 137, loss@min: 0.950712, loss@max: 1.367594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001095, LT: 1.946746, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 138, loss@min: 0.949399, loss@max: 1.364053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001095, LT: 1.946683, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 139, loss@min: 0.957246, loss@max: 1.358598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001094, LT: 1.946636, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 140, loss@min: 0.948348, loss@max: 1.365238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001094, LT: 1.946608, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 141, loss@min: 0.950992, loss@max: 1.362406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001094, LT: 1.946586, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 142, loss@min: 0.944873, loss@max: 1.367133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001094, LT: 1.946577, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 143, loss@min: 0.945110, loss@max: 1.366428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001094, LT: 1.946571, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 144, loss@min: 0.942661, loss@max: 1.369443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001094, LT: 1.946563, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 145, loss@min: 0.947908, loss@max: 1.364301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001094, LT: 1.946555, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 146, loss@min: 0.945892, loss@max: 1.366606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001094, LT: 1.946550, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 147, loss@min: 0.951217, loss@max: 1.361777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001094, LT: 1.946549, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 148, loss@min: 0.945451, loss@max: 1.367362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001094, LT: 1.946547, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 149, loss@min: 0.947649, loss@max: 1.364913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001094, LT: 1.946547, Top1S: 100.000000, Top1T: 61.229313 +Train:epoch: 150, loss@min: 0.942036, loss@max: 1.370182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001094, LT: 1.946547, Top1S: 100.000000, Top1T: 61.229313{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Fri Jul 21 01:39:38 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.771604, loss@max: 2.344281, Top1S acc: 100.000000, Top1T acc: 57.421875 +Train:epoch: 2, loss@min: 2.319231, loss@max: 2.410744, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 3, loss@min: 1.974409, loss@max: 1.944598, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 4, loss@min: 1.793675, loss@max: 1.701621, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 5, loss@min: 1.702555, loss@max: 1.471105, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 6, loss@min: 1.428566, loss@max: 1.386528, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.207571, loss@max: 1.413440, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 1.041636, loss@max: 1.490636, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.076326, loss@max: 1.451098, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.042990, loss@max: 1.340429, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.121862, loss@max: 1.293358, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 12, loss@min: 0.961375, loss@max: 1.367535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.991958, loss@max: 1.326154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.975264, loss@max: 1.323314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.932753, loss@max: 1.345448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.989537, loss@max: 1.289395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.972666, loss@max: 1.299333, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.950048, loss@max: 1.336294, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 0.941656, loss@max: 1.330779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.980116, loss@max: 1.329350, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 21, loss@min: 0.973945, loss@max: 1.329765, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.944653, loss@max: 1.328589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.000368, loss@max: 1.322597, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.939076, loss@max: 1.370917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954612, loss@max: 1.332406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.959747, loss@max: 1.372755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.970735, loss@max: 1.341807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.945464, loss@max: 1.390589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.967530, loss@max: 1.364635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.973828, loss@max: 1.386913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.995731, loss@max: 1.419955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.923475, loss@max: 1.471314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.993616, loss@max: 1.422214, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.990589, loss@max: 1.387697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.966848, loss@max: 1.437146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.003624, loss@max: 1.433014, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.014368, loss@max: 1.434909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.924246, loss@max: 1.487142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.991405, loss@max: 1.428780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.990740, loss@max: 1.441557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.942993, loss@max: 1.496062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.984147, loss@max: 1.458615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.984901, loss@max: 1.451943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.978656, loss@max: 1.449144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.996292, loss@max: 1.427343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.953006, loss@max: 1.425790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.990568, loss@max: 1.422736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.981276, loss@max: 1.439772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.974334, loss@max: 1.435228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.950140, loss@max: 1.421980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.982090, loss@max: 1.407766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.958137, loss@max: 1.447578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.007874, loss@max: 1.389328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.957851, loss@max: 1.429464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.968891, loss@max: 1.418573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.991553, loss@max: 1.398304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.948706, loss@max: 1.436877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.966930, loss@max: 1.403210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.995355, loss@max: 1.393371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963592, loss@max: 1.417219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.962830, loss@max: 1.454783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.979810, loss@max: 1.410424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.968385, loss@max: 1.405435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.955340, loss@max: 1.423123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.960049, loss@max: 1.406842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.967226, loss@max: 1.397988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.974284, loss@max: 1.393193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.941662, loss@max: 1.421549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.960947, loss@max: 1.399410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.965355, loss@max: 1.405291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.955536, loss@max: 1.432000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953751, loss@max: 1.397885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.972808, loss@max: 1.385129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947548, loss@max: 1.401755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.960797, loss@max: 1.393029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.958748, loss@max: 1.398603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954163, loss@max: 1.389753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.958476, loss@max: 1.394478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.959981, loss@max: 1.387230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.958110, loss@max: 1.386074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000678, LT: 1.678900, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 81, loss@min: 0.958920, loss@max: 1.382574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000674, LT: 1.681016, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.955380, loss@max: 1.385453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000670, LT: 1.685349, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 83, loss@min: 0.957682, loss@max: 1.383337, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 20} + +------------------------------------------- +Fri Jul 21 01:55:22 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.771604, loss@max: 2.344281, Top1S acc: 100.000000, Top1T acc: 57.421875 +Train:epoch: 2, loss@min: 2.319232, loss@max: 2.410744, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 3, loss@min: 1.974409, loss@max: 1.944598, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 4, loss@min: 1.793676, loss@max: 1.701621, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 5, loss@min: 1.702555, loss@max: 1.471105, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 6, loss@min: 1.428565, loss@max: 1.386530, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.207573, loss@max: 1.413438, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 1.041637, loss@max: 1.490635, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.076326, loss@max: 1.451098, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.042989, loss@max: 1.340430, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.121862, loss@max: 1.293357, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 12, loss@min: 0.961375, loss@max: 1.367533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.991957, loss@max: 1.326155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.975266, loss@max: 1.323313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.932751, loss@max: 1.345448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.989536, loss@max: 1.289395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.972667, loss@max: 1.299333, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.950047, loss@max: 1.336294, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 0.941658, loss@max: 1.330778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.980117, loss@max: 1.329349, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 20, LS: 0.001564, LT: 1.515803, Top1S: 100.000000, Top1T: 66.548462Best acc: 66.548462 +Train:epoch: 21, loss@min: 0.974401, loss@max: 1.329225, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 21, LS: 0.001550, LT: 1.525429, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 22, loss@min: 0.945607, loss@max: 1.326944, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.001475, LT: 1.551643, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 23, loss@min: 0.998431, loss@max: 1.320731, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 23, LS: 0.001422, LT: 1.553310, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 24, loss@min: 0.936938, loss@max: 1.375966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.001410, LT: 1.555311, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 25, loss@min: 0.950990, loss@max: 1.334785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.001346, LT: 1.567341, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 26, loss@min: 0.960565, loss@max: 1.371160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.001316, LT: 1.570636, Top1S: 100.000000, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 27, loss@min: 0.982253, loss@max: 1.340375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.001277, LT: 1.571274, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 28, loss@min: 0.939979, loss@max: 1.403480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.001237, LT: 1.584537, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 29, loss@min: 0.974401, loss@max: 1.369876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.001200, LT: 1.602147, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 30, loss@min: 0.980819, loss@max: 1.388479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.001204, LT: 1.612593, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 31, loss@min: 0.988692, loss@max: 1.427099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.001185, LT: 1.614414, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 32, loss@min: 0.931316, loss@max: 1.460940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.001146, LT: 1.630073, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 33, loss@min: 0.995064, loss@max: 1.430219, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 0.001116, LT: 1.622719, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 34, loss@min: 0.987686, loss@max: 1.386147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.001100, LT: 1.623004, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 35, loss@min: 0.979552, loss@max: 1.424872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.001071, LT: 1.616332, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 36, loss@min: 0.974655, loss@max: 1.460668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.001041, LT: 1.621473, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 37, loss@min: 0.960412, loss@max: 1.457221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.001053, LT: 1.623502, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 38, loss@min: 0.939580, loss@max: 1.454725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.001017, LT: 1.626737, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 39, loss@min: 1.017437, loss@max: 1.390526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.001001, LT: 1.625451, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 40, loss@min: 0.948695, loss@max: 1.504699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.000987, LT: 1.624523, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 41, loss@min: 1.016880, loss@max: 1.450448, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 0.000960, LT: 1.621192, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 42, loss@min: 0.951365, loss@max: 1.470176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000959, LT: 1.625511, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 43, loss@min: 0.985862, loss@max: 1.449810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.000942, LT: 1.621457, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 44, loss@min: 1.031798, loss@max: 1.400619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.000921, LT: 1.631171, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 45, loss@min: 0.973462, loss@max: 1.475957, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 45, LS: 0.000924, LT: 1.620967, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 46, loss@min: 0.976627, loss@max: 1.473835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.000898, LT: 1.615851, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 47, loss@min: 1.007922, loss@max: 1.431396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000894, LT: 1.621738, Top1S: 100.000000, Top1T: 67.375885Best acc: 67.375885 +Train:epoch: 48, loss@min: 0.968222, loss@max: 1.455396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.000891, LT: 1.617015, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 49, loss@min: 0.959020, loss@max: 1.456458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.000865, LT: 1.622528, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 50, loss@min: 0.991458, loss@max: 1.410586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000860, LT: 1.622384, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 51, loss@min: 0.975404, loss@max: 1.419726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000859, LT: 1.632979, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 52, loss@min: 0.953534, loss@max: 1.437927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000853, LT: 1.635327, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 53, loss@min: 1.001379, loss@max: 1.435638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000835, LT: 1.625106, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 54, loss@min: 0.942927, loss@max: 1.472260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000825, LT: 1.637048, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 55, loss@min: 0.953155, loss@max: 1.439777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000815, LT: 1.632799, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 56, loss@min: 0.960475, loss@max: 1.467468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000806, LT: 1.628070, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 57, loss@min: 0.973974, loss@max: 1.431482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000799, LT: 1.631201, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 58, loss@min: 0.966602, loss@max: 1.444406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000795, LT: 1.627269, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 59, loss@min: 0.952668, loss@max: 1.427887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000789, LT: 1.626996, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 60, loss@min: 0.953093, loss@max: 1.443887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000786, LT: 1.630318, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 61, loss@min: 0.981379, loss@max: 1.410130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000777, LT: 1.627961, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 62, loss@min: 0.985656, loss@max: 1.413280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000772, LT: 1.629522, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 63, loss@min: 0.963723, loss@max: 1.418671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000768, LT: 1.638179, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 64, loss@min: 0.964583, loss@max: 1.410173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000754, LT: 1.637286, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 65, loss@min: 0.959372, loss@max: 1.451464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000754, LT: 1.636868, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 66, loss@min: 0.955016, loss@max: 1.434255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000755, LT: 1.644927, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 67, loss@min: 0.935820, loss@max: 1.460688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000745, LT: 1.642940, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 68, loss@min: 1.006702, loss@max: 1.395203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000739, LT: 1.639721, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 69, loss@min: 0.967390, loss@max: 1.394100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000740, LT: 1.649005, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 70, loss@min: 0.949921, loss@max: 1.423663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000729, LT: 1.650707, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 71, loss@min: 0.976533, loss@max: 1.392875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000721, LT: 1.649276, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 72, loss@min: 0.971533, loss@max: 1.390244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000721, LT: 1.650509, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 73, loss@min: 0.953808, loss@max: 1.417045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000715, LT: 1.653177, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 74, loss@min: 0.957298, loss@max: 1.404423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000707, LT: 1.654233, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.969607, loss@max: 1.394304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000708, LT: 1.655162, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 76, loss@min: 0.960243, loss@max: 1.395540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000706, LT: 1.658509, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 77, loss@min: 0.951826, loss@max: 1.407102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000699, LT: 1.663355, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 78, loss@min: 0.953419, loss@max: 1.393107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000694, LT: 1.666365, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 79, loss@min: 0.969556, loss@max: 1.377678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000691, LT: 1.666083, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 80, loss@min: 0.962968, loss@max: 1.383683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000684, LT: 1.669290, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 81, loss@min: 0.944828, loss@max: 1.412197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000678, LT: 1.672603, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.955977, loss@max: 1.386950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000677, LT: 1.673152, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 83, loss@min: 0.968582, loss@max: 1.371365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000677, LT: 1.672705, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 84, loss@min: 0.951721, loss@max: 1.384690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000675, LT: 1.675144, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 85, loss@min: 0.953090, loss@max: 1.381155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000670, LT: 1.678316, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 86, loss@min: 0.958452, loss@max: 1.377952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000666, LT: 1.679515, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 87, loss@min: 0.951272, loss@max: 1.378306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000663, LT: 1.679234, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 88, loss@min: 0.954734, loss@max: 1.376262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000660, LT: 1.680843, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 89, loss@min: 0.966884, loss@max: 1.370691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000658, LT: 1.683556, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 90, loss@min: 0.943521, loss@max: 1.384893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000657, LT: 1.686044, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 91, loss@min: 0.947906, loss@max: 1.388127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000655, LT: 1.687539, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 92, loss@min: 0.950380, loss@max: 1.380292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000651, LT: 1.688043, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 93, loss@min: 0.959837, loss@max: 1.370694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000648, LT: 1.689871, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 94, loss@min: 0.950305, loss@max: 1.392499, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.000646, LT: 1.692228, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 95, loss@min: 0.950729, loss@max: 1.377808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000644, LT: 1.692655, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 96, loss@min: 0.956176, loss@max: 1.376354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000642, LT: 1.693603, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 97, loss@min: 0.963335, loss@max: 1.372196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000640, LT: 1.696647, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 98, loss@min: 0.947946, loss@max: 1.376714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000637, LT: 1.698508, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 99, loss@min: 0.950816, loss@max: 1.373390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000635, LT: 1.699459, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 100, loss@min: 0.953918, loss@max: 1.370711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000633, LT: 1.700893, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 101, loss@min: 0.949775, loss@max: 1.376992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000631, LT: 1.702818, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 102, loss@min: 0.942116, loss@max: 1.382309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000629, LT: 1.704255, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 103, loss@min: 0.955851, loss@max: 1.364823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000628, LT: 1.704821, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 104, loss@min: 0.956261, loss@max: 1.364430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000626, LT: 1.705618, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 105, loss@min: 0.947686, loss@max: 1.376845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000625, LT: 1.706980, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 106, loss@min: 0.949285, loss@max: 1.373946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000623, LT: 1.708930, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 107, loss@min: 0.947178, loss@max: 1.375296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000622, LT: 1.710552, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 108, loss@min: 0.952584, loss@max: 1.369496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000621, LT: 1.711984, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 109, loss@min: 0.947397, loss@max: 1.375637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000620, LT: 1.714171, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 110, loss@min: 0.955073, loss@max: 1.367756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000619, LT: 1.716098, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 111, loss@min: 0.952571, loss@max: 1.370558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000618, LT: 1.717046, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 112, loss@min: 0.953250, loss@max: 1.372425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000617, LT: 1.717513, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 113, loss@min: 0.950374, loss@max: 1.369467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000616, LT: 1.718077, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 114, loss@min: 0.950098, loss@max: 1.371152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000614, LT: 1.719261, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 115, loss@min: 0.951878, loss@max: 1.370713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000613, LT: 1.720457, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 116, loss@min: 0.951607, loss@max: 1.370702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000612, LT: 1.721462, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 117, loss@min: 0.953046, loss@max: 1.366391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000612, LT: 1.722029, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 118, loss@min: 0.949290, loss@max: 1.373744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000611, LT: 1.722598, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 119, loss@min: 0.951444, loss@max: 1.370774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000610, LT: 1.722891, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 120, loss@min: 0.948639, loss@max: 1.376251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000609, LT: 1.723251, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 121, loss@min: 0.944030, loss@max: 1.377409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000608, LT: 1.723478, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 122, loss@min: 0.949369, loss@max: 1.367664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000607, LT: 1.723704, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 123, loss@min: 0.954277, loss@max: 1.367198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000607, LT: 1.724001, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 124, loss@min: 0.949739, loss@max: 1.369954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000606, LT: 1.724262, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 125, loss@min: 0.955692, loss@max: 1.365388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000606, LT: 1.724313, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 126, loss@min: 0.951729, loss@max: 1.371795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000606, LT: 1.724712, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 127, loss@min: 0.952206, loss@max: 1.370541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000605, LT: 1.725078, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 128, loss@min: 0.951712, loss@max: 1.365345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000605, LT: 1.725472, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 129, loss@min: 0.948953, loss@max: 1.370394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000604, LT: 1.725876, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 130, loss@min: 0.953291, loss@max: 1.370385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000604, LT: 1.726236, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 131, loss@min: 0.949153, loss@max: 1.366642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000604, LT: 1.726516, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 132, loss@min: 0.952644, loss@max: 1.368204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000604, LT: 1.726853, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 133, loss@min: 0.955234, loss@max: 1.364248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000604, LT: 1.727137, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 134, loss@min: 0.955681, loss@max: 1.363406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000603, LT: 1.727443, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 135, loss@min: 0.948523, loss@max: 1.371223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000603, LT: 1.727746, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 136, loss@min: 0.950769, loss@max: 1.373540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000603, LT: 1.728024, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 137, loss@min: 0.949443, loss@max: 1.371655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000603, LT: 1.728187, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 138, loss@min: 0.947453, loss@max: 1.367591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000603, LT: 1.728201, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 139, loss@min: 0.951509, loss@max: 1.363622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000603, LT: 1.728246, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 140, loss@min: 0.951195, loss@max: 1.365721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000603, LT: 1.728286, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 141, loss@min: 0.951201, loss@max: 1.366470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000602, LT: 1.728341, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 142, loss@min: 0.951092, loss@max: 1.369633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000602, LT: 1.728416, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 143, loss@min: 0.955976, loss@max: 1.372712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000602, LT: 1.728442, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 144, loss@min: 0.951937, loss@max: 1.368193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000602, LT: 1.728451, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 145, loss@min: 0.948772, loss@max: 1.366310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000602, LT: 1.728452, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 146, loss@min: 0.952078, loss@max: 1.367529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000602, LT: 1.728456, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 147, loss@min: 0.946634, loss@max: 1.376220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000602, LT: 1.728462, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 148, loss@min: 0.953620, loss@max: 1.363010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000602, LT: 1.728466, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 149, loss@min: 0.958357, loss@max: 1.360632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000602, LT: 1.728466, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 150, loss@min: 0.951748, loss@max: 1.365278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000602, LT: 1.728466, Top1S: 100.000000, Top1T: 67.257683 +------------------------------------------- +Fri Jul 21 03:48:55 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Fri Jul 21 11:39:29 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.771605, loss@max: 2.344281, Top1S acc: 100.000000, Top1T acc: 57.421875 +Train:epoch: 2, loss@min: 2.319230, loss@max: 2.410744, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 3, loss@min: 1.974408, loss@max: 1.944598, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 4, loss@min: 1.793676, loss@max: 1.701621, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 5, loss@min: 1.702555, loss@max: 1.471104, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 6, loss@min: 1.428565, loss@max: 1.386529, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.207571, loss@max: 1.413438, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 1.041636, loss@max: 1.490635, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.076325, loss@max: 1.451098, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.042989, loss@max: 1.340430, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.121861, loss@max: 1.293358, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 12, loss@min: 0.961377, loss@max: 1.367532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.991958, loss@max: 1.326154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.975264, loss@max: 1.323314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.932752, loss@max: 1.345448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.989538, loss@max: 1.289394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.972666, loss@max: 1.299334, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.950047, loss@max: 1.336295, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 0.941658, loss@max: 1.330776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.980116, loss@max: 1.329350, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 21, loss@min: 0.973950, loss@max: 1.329762, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.944650, loss@max: 1.328595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.000373, loss@max: 1.322599, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.939072, loss@max: 1.370944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954629, loss@max: 1.332402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.959730, loss@max: 1.372786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.970796, loss@max: 1.341766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.945412, loss@max: 1.390656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.967669, loss@max: 1.364603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.973803, loss@max: 1.387141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.995651, loss@max: 1.419963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.923628, loss@max: 1.470844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.993541, loss@max: 1.423011, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.990988, loss@max: 1.387812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.967024, loss@max: 1.436776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.003436, loss@max: 1.433637, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.014846, loss@max: 1.435115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.924223, loss@max: 1.486857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.991454, loss@max: 1.428760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.990787, loss@max: 1.441514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.943008, loss@max: 1.495688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.984117, loss@max: 1.458569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.984687, loss@max: 1.452033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.978722, loss@max: 1.448877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.996249, loss@max: 1.427359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.952990, loss@max: 1.425794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.990543, loss@max: 1.422763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.981325, loss@max: 1.439757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.974362, loss@max: 1.435234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.950157, loss@max: 1.421886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.982179, loss@max: 1.407721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.958045, loss@max: 1.447687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.007921, loss@max: 1.389211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.957869, loss@max: 1.429456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.968892, loss@max: 1.418583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.991704, loss@max: 1.398098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.948498, loss@max: 1.436962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.966956, loss@max: 1.403202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.995450, loss@max: 1.392972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963473, loss@max: 1.417243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.962717, loss@max: 1.454954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.979827, loss@max: 1.410293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.968394, loss@max: 1.405418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.955257, loss@max: 1.423222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.960103, loss@max: 1.406868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.967361, loss@max: 1.397897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.974214, loss@max: 1.393310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.941648, loss@max: 1.421628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961011, loss@max: 1.399331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.965343, loss@max: 1.405416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.955518, loss@max: 1.432115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953785, loss@max: 1.397938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.972736, loss@max: 1.385274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947500, loss@max: 1.401784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.960881, loss@max: 1.393126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.958701, loss@max: 1.398643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954197, loss@max: 1.389752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.958580, loss@max: 1.394442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.959881, loss@max: 1.387262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.958117, loss@max: 1.386097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000678, LT: 1.678925, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 81, loss@min: 0.959061, loss@max: 1.382337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000674, LT: 1.681047, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.955223, loss@max: 1.385577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000670, LT: 1.685366, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 83, loss@min: 0.957661, loss@max: 1.383350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000669, LT: 1.687549, Top1S: 100.000000, Top1T: 67.021278Best acc: 67.021278 +Train:epoch: 84, loss@min: 0.968225, loss@max: 1.379246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000663, LT: 1.690190, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 85, loss@min: 0.956057, loss@max: 1.375178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000655, LT: 1.692510, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 86, loss@min: 0.961029, loss@max: 1.379078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000655, LT: 1.694048, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 87, loss@min: 0.953142, loss@max: 1.382609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000655, LT: 1.694345, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 88, loss@min: 0.961690, loss@max: 1.371341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000650, LT: 1.694757, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 89, loss@min: 0.948639, loss@max: 1.381289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000648, LT: 1.695263, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 90, loss@min: 0.941767, loss@max: 1.386165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000648, LT: 1.695038, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 91, loss@min: 0.953204, loss@max: 1.376097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000645, LT: 1.697800, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 92, loss@min: 0.957007, loss@max: 1.369428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000641, LT: 1.701159, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 93, loss@min: 0.952748, loss@max: 1.378258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000640, LT: 1.704046, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 94, loss@min: 0.950101, loss@max: 1.379867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000639, LT: 1.705264, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 95, loss@min: 0.951753, loss@max: 1.375897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000637, LT: 1.707759, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 96, loss@min: 0.951574, loss@max: 1.375807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000634, LT: 1.711351, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 97, loss@min: 0.958025, loss@max: 1.374192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000633, LT: 1.714850, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 98, loss@min: 0.947437, loss@max: 1.378951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000630, LT: 1.717347, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 99, loss@min: 0.952525, loss@max: 1.374531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000628, LT: 1.718409, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 100, loss@min: 0.955040, loss@max: 1.370527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000626, LT: 1.719151, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 101, loss@min: 0.949228, loss@max: 1.376615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000624, LT: 1.720297, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 102, loss@min: 0.947312, loss@max: 1.375063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000622, LT: 1.721638, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 103, loss@min: 0.953117, loss@max: 1.368508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000621, LT: 1.721141, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 104, loss@min: 0.953754, loss@max: 1.370902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000619, LT: 1.720632, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 105, loss@min: 0.951185, loss@max: 1.372104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000618, LT: 1.721451, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 106, loss@min: 0.951319, loss@max: 1.374261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000616, LT: 1.722383, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 107, loss@min: 0.946803, loss@max: 1.376030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000615, LT: 1.722685, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 108, loss@min: 0.949147, loss@max: 1.374408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000614, LT: 1.722920, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 109, loss@min: 0.948068, loss@max: 1.370525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000612, LT: 1.722881, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 110, loss@min: 0.949038, loss@max: 1.369879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000611, LT: 1.723595, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 111, loss@min: 0.949686, loss@max: 1.369303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000609, LT: 1.724638, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 112, loss@min: 0.950157, loss@max: 1.366542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000608, LT: 1.725687, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 113, loss@min: 0.946728, loss@max: 1.375332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000607, LT: 1.726582, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 114, loss@min: 0.957563, loss@max: 1.365223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000607, LT: 1.727247, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 115, loss@min: 0.952908, loss@max: 1.369213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000606, LT: 1.727992, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 116, loss@min: 0.951083, loss@max: 1.370098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000605, LT: 1.728693, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 117, loss@min: 0.957658, loss@max: 1.366323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000604, LT: 1.729660, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 118, loss@min: 0.948858, loss@max: 1.373333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000603, LT: 1.730328, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 119, loss@min: 0.948359, loss@max: 1.368031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000602, LT: 1.731040, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 120, loss@min: 0.957765, loss@max: 1.364823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000602, LT: 1.731395, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 121, loss@min: 0.951531, loss@max: 1.364560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000601, LT: 1.731960, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 122, loss@min: 0.948284, loss@max: 1.369942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000601, LT: 1.732425, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 123, loss@min: 0.948960, loss@max: 1.372830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000600, LT: 1.733004, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 124, loss@min: 0.955451, loss@max: 1.364982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000599, LT: 1.733411, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 125, loss@min: 0.951708, loss@max: 1.368039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000599, LT: 1.733617, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 126, loss@min: 0.952183, loss@max: 1.365306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000599, LT: 1.734037, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 127, loss@min: 0.946787, loss@max: 1.373757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000598, LT: 1.734518, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 128, loss@min: 0.948698, loss@max: 1.369102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000598, LT: 1.735189, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 129, loss@min: 0.948076, loss@max: 1.369589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000597, LT: 1.735692, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 130, loss@min: 0.948688, loss@max: 1.367336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000597, LT: 1.735928, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 131, loss@min: 0.948179, loss@max: 1.373369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000597, LT: 1.736037, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 132, loss@min: 0.952991, loss@max: 1.369306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000597, LT: 1.736047, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 133, loss@min: 0.955157, loss@max: 1.369631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000596, LT: 1.736137, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 134, loss@min: 0.952906, loss@max: 1.363970, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000596, LT: 1.736310, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 135, loss@min: 0.949184, loss@max: 1.372144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000596, LT: 1.736590, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 136, loss@min: 0.954031, loss@max: 1.368199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000596, LT: 1.736905, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 137, loss@min: 0.949568, loss@max: 1.369172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000596, LT: 1.737157, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 138, loss@min: 0.947529, loss@max: 1.366703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000596, LT: 1.737320, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 139, loss@min: 0.946938, loss@max: 1.368037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000596, LT: 1.737400, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 140, loss@min: 0.952586, loss@max: 1.365099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000595, LT: 1.737442, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 141, loss@min: 0.951309, loss@max: 1.366029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000595, LT: 1.737460, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 142, loss@min: 0.962060, loss@max: 1.369884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000595, LT: 1.737457, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 143, loss@min: 0.947881, loss@max: 1.370855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000595, LT: 1.737435, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 144, loss@min: 0.951967, loss@max: 1.362996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000595, LT: 1.737426, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 145, loss@min: 0.948016, loss@max: 1.367669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000595, LT: 1.737425, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 146, loss@min: 0.948874, loss@max: 1.367778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000595, LT: 1.737431, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 147, loss@min: 0.948963, loss@max: 1.367108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000595, LT: 1.737436, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 148, loss@min: 0.947958, loss@max: 1.368042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000595, LT: 1.737438, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 149, loss@min: 0.953091, loss@max: 1.363639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000595, LT: 1.737438, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 150, loss@min: 0.947988, loss@max: 1.367532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000595, LT: 1.737438, Top1S: 100.000000, Top1T: 66.725769{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 40, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 10} + +------------------------------------------- +Fri Jul 21 13:08:10 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.771713, loss@max: 2.492224, Top1S acc: 100.000000, Top1T acc: 57.421875 +Train:epoch: 2, loss@min: 2.344797, loss@max: 2.619868, Top1S acc: 100.000000, Top1T acc: 74.609375 +Train:epoch: 3, loss@min: 2.037456, loss@max: 2.149171, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 4, loss@min: 1.850826, loss@max: 1.941986, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 5, loss@min: 1.755437, loss@max: 1.759526, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 6, loss@min: 1.497177, loss@max: 1.653529, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 7, loss@min: 1.267248, loss@max: 1.686821, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 1.123911, loss@max: 1.758549, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.178864, loss@max: 1.692955, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 10, loss@min: 1.100448, loss@max: 1.598336, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 10, LS: 0.002728, LT: 1.372613, Top1S: 100.000000, Top1T: 65.839241Best acc: 65.839241 +Train:epoch: 11, loss@min: 1.166419, loss@max: 1.548838, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 11, LS: 0.002746, LT: 1.389464, Top1S: 100.000000, Top1T: 65.898346Best acc: 65.898346 +Train:epoch: 12, loss@min: 1.070039, loss@max: 1.512499, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 80} + +------------------------------------------- +Fri Jul 21 13:11:34 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.998389, loss@max: 2.131699, Top1S acc: 100.000000, Top1T acc: 57.446808 +Train:epoch: 2, loss@min: 2.584524, loss@max: 1.914264, Top1S acc: 100.000000, Top1T acc: 80.851067 +Train:epoch: 3, loss@min: 1.426268, loss@max: 1.895852, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 4, loss@min: 1.188441, loss@max: 1.951605, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.980094, loss@max: 1.903850, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 0.961334, loss@max: 1.777287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.948484, loss@max: 1.712826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.918802, loss@max: 1.582727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.948752, loss@max: 1.597871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.084975, loss@max: 1.546224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.964124, loss@max: 1.575911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.917424, loss@max: 1.536222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.923189, loss@max: 1.476888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.901050, loss@max: 1.508092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.044464, loss@max: 1.379736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.060202, loss@max: 1.379265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.071140, loss@max: 1.334866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.099979, loss@max: 1.252890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.103024, loss@max: 1.242351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.028356, loss@max: 1.348446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.940705, loss@max: 1.395492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.929649, loss@max: 1.429233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.932988, loss@max: 1.490219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.890171, loss@max: 1.487239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.959316, loss@max: 1.405338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.966625, loss@max: 1.420371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.034651, loss@max: 1.372640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.045707, loss@max: 1.413806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.871171, loss@max: 1.540171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.887620, loss@max: 1.547531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.880394, loss@max: 1.503163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.969859, loss@max: 1.409317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.015957, loss@max: 1.364336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.078525, loss@max: 1.351809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.976168, loss@max: 1.394888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.025746, loss@max: 1.374198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.973726, loss@max: 1.407885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.988373, loss@max: 1.476235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.975581, loss@max: 1.450935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.011439, loss@max: 1.431776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.974925, loss@max: 1.534198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.004175, loss@max: 1.445111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.924781, loss@max: 1.458843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.993605, loss@max: 1.443796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992292, loss@max: 1.511349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.920463, loss@max: 1.504533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.922115, loss@max: 1.508847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.033145, loss@max: 1.426404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.999750, loss@max: 1.426025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.966494, loss@max: 1.468936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.013530, loss@max: 1.400494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.968706, loss@max: 1.485152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.982951, loss@max: 1.478479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.986419, loss@max: 1.446471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.991965, loss@max: 1.425413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952954, loss@max: 1.515276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.968952, loss@max: 1.495376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.954745, loss@max: 1.484055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.977379, loss@max: 1.444838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.955799, loss@max: 1.480460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.979912, loss@max: 1.445105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.986293, loss@max: 1.458076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.983605, loss@max: 1.504456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.069507, loss@max: 1.441042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.008928, loss@max: 1.417002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.987399, loss@max: 1.486667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954260, loss@max: 1.475520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.957764, loss@max: 1.463864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.917290, loss@max: 1.484678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.896364, loss@max: 1.490711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.979708, loss@max: 1.431780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.012249, loss@max: 1.357118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.995734, loss@max: 1.425431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.981347, loss@max: 1.451036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.954901, loss@max: 1.417182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.926319, loss@max: 1.451156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.934739, loss@max: 1.432818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.960715, loss@max: 1.406787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.011989, loss@max: 1.391273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.000234, loss@max: 1.383067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001529, LT: 2.550018, Top1S: 100.000000, Top1T: 44.680851Best acc: 44.680851 +Train:epoch: 81, loss@min: 0.978053, loss@max: 1.415682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001524, LT: 2.551779, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 82, loss@min: 0.996087, loss@max: 1.367771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001520, LT: 2.554639, Top1S: 100.000000, Top1T: 44.739952Best acc: 44.739952 +Train:epoch: 83, loss@min: 0.945336, loss@max: 1.413460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001514, LT: 2.556492, Top1S: 100.000000, Top1T: 44.799053Best acc: 44.799053 +Train:epoch: 84, loss@min: 0.945682, loss@max: 1.456963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001507, LT: 2.554854, Top1S: 100.000000, Top1T: 44.858154Best acc: 44.858154 +Train:epoch: 85, loss@min: 0.947640, loss@max: 1.470279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001498, LT: 2.550332, Top1S: 100.000000, Top1T: 44.976360Best acc: 44.976360 +Train:epoch: 86, loss@min: 0.959002, loss@max: 1.439984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001488, LT: 2.545167, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 87, loss@min: 0.963733, loss@max: 1.444774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001478, LT: 2.539457, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 88, loss@min: 0.968442, loss@max: 1.396269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001470, LT: 2.535087, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 89, loss@min: 0.937228, loss@max: 1.431176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001465, LT: 2.531650, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 90, loss@min: 0.997161, loss@max: 1.383295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001460, LT: 2.530232, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 91, loss@min: 1.007880, loss@max: 1.421739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001457, LT: 2.529207, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 92, loss@min: 0.961598, loss@max: 1.406242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001455, LT: 2.529173, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 93, loss@min: 1.014149, loss@max: 1.376115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001456, LT: 2.531058, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 94, loss@min: 0.935937, loss@max: 1.448684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001456, LT: 2.533608, Top1S: 100.000000, Top1T: 45.094563Best acc: 45.094563 +Train:epoch: 95, loss@min: 0.968143, loss@max: 1.400600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001455, LT: 2.535300, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 96, loss@min: 0.920737, loss@max: 1.481992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001452, LT: 2.535179, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 97, loss@min: 0.940627, loss@max: 1.458497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001447, LT: 2.532956, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 98, loss@min: 0.931395, loss@max: 1.463062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001441, LT: 2.529651, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 99, loss@min: 0.936230, loss@max: 1.435077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001436, LT: 2.525697, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 100, loss@min: 0.941387, loss@max: 1.427535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001431, LT: 2.520773, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 101, loss@min: 0.948759, loss@max: 1.431160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001428, LT: 2.515772, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 102, loss@min: 0.963646, loss@max: 1.407661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001424, LT: 2.511776, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 103, loss@min: 1.016706, loss@max: 1.386490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001420, LT: 2.509950, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 104, loss@min: 0.981971, loss@max: 1.393273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001416, LT: 2.509297, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 105, loss@min: 1.013612, loss@max: 1.372044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001413, LT: 2.508805, Top1S: 100.000000, Top1T: 44.976360 +Train:epoch: 106, loss@min: 0.977771, loss@max: 1.379875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001411, LT: 2.508137, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 107, loss@min: 1.007417, loss@max: 1.368919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001409, LT: 2.508161, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 108, loss@min: 0.937855, loss@max: 1.418852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001408, LT: 2.508899, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 109, loss@min: 0.960417, loss@max: 1.375603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001407, LT: 2.509403, Top1S: 100.000000, Top1T: 44.858154 +Train:epoch: 110, loss@min: 0.930581, loss@max: 1.422282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001406, LT: 2.509105, Top1S: 100.000000, Top1T: 44.917259 +Train:epoch: 111, loss@min: 0.922206, loss@max: 1.428952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001404, LT: 2.508879, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 112, loss@min: 0.918252, loss@max: 1.430469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001402, LT: 2.507619, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 113, loss@min: 0.940401, loss@max: 1.400804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001400, LT: 2.506012, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 114, loss@min: 0.940853, loss@max: 1.395320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001398, LT: 2.504547, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 115, loss@min: 0.963711, loss@max: 1.388857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001396, LT: 2.502773, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 116, loss@min: 0.947808, loss@max: 1.395416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001394, LT: 2.500888, Top1S: 100.000000, Top1T: 44.562649 +Train:epoch: 117, loss@min: 0.941222, loss@max: 1.388050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001392, LT: 2.499053, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 118, loss@min: 0.985969, loss@max: 1.356519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001391, LT: 2.497440, Top1S: 100.000000, Top1T: 44.799053 +Train:epoch: 119, loss@min: 0.951051, loss@max: 1.381864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001390, LT: 2.496577, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 120, loss@min: 0.946297, loss@max: 1.384790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001388, LT: 2.496298, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 121, loss@min: 0.936547, loss@max: 1.395329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001387, LT: 2.496407, Top1S: 100.000000, Top1T: 44.739952 +Train:epoch: 122, loss@min: 0.947635, loss@max: 1.382986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001385, LT: 2.496661, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 123, loss@min: 0.950397, loss@max: 1.373176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001384, LT: 2.497325, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 124, loss@min: 0.973429, loss@max: 1.358661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001384, LT: 2.497729, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 125, loss@min: 0.979727, loss@max: 1.352992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001383, LT: 2.498155, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 126, loss@min: 0.981779, loss@max: 1.345259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001383, LT: 2.498460, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 127, loss@min: 0.951139, loss@max: 1.375411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001383, LT: 2.498672, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 128, loss@min: 0.961785, loss@max: 1.366939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001383, LT: 2.498859, Top1S: 100.000000, Top1T: 44.680851 +Train:epoch: 129, loss@min: 0.976852, loss@max: 1.357795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001383, LT: 2.498886, Top1S: 100.000000, Top1T: 44.621750 +Train:epoch: 130, loss@min: 0.947379, loss@max: 1.381951, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 50} + +------------------------------------------- +Fri Jul 21 13:32:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 12.512281, loss@max: 5.096835, Top1S acc: 51.953125, Top1T acc: 25.781250 +Train:epoch: 2, loss@min: 6.316091, loss@max: 4.792511, Top1S acc: 91.015625, Top1T acc: 55.859375 +Train:epoch: 3, loss@min: 3.828722, loss@max: 4.223326, Top1S acc: 100.000000, Top1T acc: 71.093750 +Train:epoch: 4, loss@min: 2.588626, loss@max: 3.720883, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 5, loss@min: 2.018203, loss@max: 3.146324, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 6, loss@min: 1.971836, loss@max: 2.501296, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 7, loss@min: 1.765729, loss@max: 2.149782, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 8, loss@min: 1.735345, loss@max: 1.895240, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 9, loss@min: 1.422855, loss@max: 1.823511, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 10, loss@min: 1.268628, loss@max: 1.873140, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 11, loss@min: 1.175111, loss@max: 1.846010, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 12, loss@min: 1.093742, loss@max: 1.670310, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 1.186307, loss@max: 1.560073, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 14, loss@min: 1.104767, loss@max: 1.582523, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 1.055651, loss@max: 1.551419, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.051130, loss@max: 1.556282, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.997602, loss@max: 1.583459, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 18, loss@min: 1.043214, loss@max: 1.515179, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.037572, loss@max: 1.457750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.026549, loss@max: 1.506311, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.042081, loss@max: 1.537236, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 0.991179, loss@max: 1.498945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.002122, loss@max: 1.516109, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.983442, loss@max: 1.538953, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 1.006540, loss@max: 1.494115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.064817, loss@max: 1.444094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.988037, loss@max: 1.501084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.027858, loss@max: 1.507299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.011313, loss@max: 1.470314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.022515, loss@max: 1.470628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.981346, loss@max: 1.524341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.017680, loss@max: 1.488740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.001634, loss@max: 1.556404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.979436, loss@max: 1.504398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.037099, loss@max: 1.492873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.991692, loss@max: 1.574429, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.011909, loss@max: 1.525212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.009941, loss@max: 1.556438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.032267, loss@max: 1.501582, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.991664, loss@max: 1.560532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.013369, loss@max: 1.490112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.054360, loss@max: 1.485178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.951286, loss@max: 1.561402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.008597, loss@max: 1.500014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.999171, loss@max: 1.532749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.956769, loss@max: 1.568509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.046298, loss@max: 1.474320, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 1.009989, loss@max: 1.501335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.956611, loss@max: 1.566335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.028044, loss@max: 1.480366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002249, LT: 1.631354, Top1S: 100.000000, Top1T: 65.661942Best acc: 65.661942 +Train:epoch: 51, loss@min: 0.993544, loss@max: 1.519453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002250, LT: 1.641473, Top1S: 100.000000, Top1T: 65.425529 +Train:epoch: 52, loss@min: 0.969399, loss@max: 1.577241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002213, LT: 1.642640, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 53, loss@min: 0.990083, loss@max: 1.521178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002175, LT: 1.643185, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 54, loss@min: 1.044849, loss@max: 1.466961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002166, LT: 1.652256, Top1S: 100.000000, Top1T: 65.543732 +Train:epoch: 55, loss@min: 0.996791, loss@max: 1.512243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.002158, LT: 1.657657, Top1S: 100.000000, Top1T: 65.425529 +Train:epoch: 56, loss@min: 0.973678, loss@max: 1.517375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.002117, LT: 1.649619, Top1S: 100.000000, Top1T: 65.721039Best acc: 65.721039 +Train:epoch: 57, loss@min: 0.999617, loss@max: 1.504311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.002096, LT: 1.646108, Top1S: 100.000000, Top1T: 66.134750Best acc: 66.134750 +Train:epoch: 58, loss@min: 1.015779, loss@max: 1.474811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.002076, LT: 1.648719, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 59, loss@min: 0.980237, loss@max: 1.519447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.002058, LT: 1.647256, Top1S: 100.000000, Top1T: 66.371155Best acc: 66.371155 +Train:epoch: 60, loss@min: 0.969244, loss@max: 1.549632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.002034, LT: 1.638607, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 61, loss@min: 1.044044, loss@max: 1.452798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.002027, LT: 1.643561, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 62, loss@min: 0.990310, loss@max: 1.508020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.002008, LT: 1.652484, Top1S: 100.000000, Top1T: 65.721039 +Train:epoch: 63, loss@min: 0.968303, loss@max: 1.508732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001978, LT: 1.646504, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 64, loss@min: 1.003551, loss@max: 1.507260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001960, LT: 1.647019, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 65, loss@min: 0.991054, loss@max: 1.481927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001960, LT: 1.652215, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 66, loss@min: 0.979347, loss@max: 1.488327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001949, LT: 1.654168, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 67, loss@min: 0.978190, loss@max: 1.494134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001929, LT: 1.646917, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 68, loss@min: 1.005308, loss@max: 1.459514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001917, LT: 1.647205, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 69, loss@min: 0.988517, loss@max: 1.461506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001913, LT: 1.657570, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 70, loss@min: 0.961533, loss@max: 1.480342, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001879, LT: 1.651559, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 71, loss@min: 0.955739, loss@max: 1.493760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001858, LT: 1.643255, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 72, loss@min: 0.998428, loss@max: 1.443085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001849, LT: 1.646699, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 73, loss@min: 0.986751, loss@max: 1.445612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001843, LT: 1.651214, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 74, loss@min: 0.984316, loss@max: 1.474839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001831, LT: 1.651140, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 75, loss@min: 0.956036, loss@max: 1.479937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001809, LT: 1.654979, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 76, loss@min: 0.986951, loss@max: 1.444067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001799, LT: 1.663894, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 77, loss@min: 1.000953, loss@max: 1.427904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001799, LT: 1.664207, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 78, loss@min: 0.963576, loss@max: 1.460235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001785, LT: 1.666807, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 79, loss@min: 0.993377, loss@max: 1.447159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001765, LT: 1.667820, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 80, loss@min: 0.995873, loss@max: 1.422911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001757, LT: 1.666633, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 81, loss@min: 0.982028, loss@max: 1.453945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001750, LT: 1.669674, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 82, loss@min: 0.959510, loss@max: 1.456665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001744, LT: 1.671021, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 83, loss@min: 0.988275, loss@max: 1.432365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001740, LT: 1.671105, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 84, loss@min: 0.969145, loss@max: 1.440383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001734, LT: 1.673447, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 85, loss@min: 0.987870, loss@max: 1.443316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001724, LT: 1.676525, Top1S: 100.000000, Top1T: 65.780144 +Train:epoch: 86, loss@min: 0.953787, loss@max: 1.470308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001714, LT: 1.677809, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 87, loss@min: 0.986023, loss@max: 1.443388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001704, LT: 1.679814, Top1S: 100.000000, Top1T: 65.898346 +Train:epoch: 88, loss@min: 0.994790, loss@max: 1.430991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001696, LT: 1.682648, Top1S: 100.000000, Top1T: 65.721039 +Train:epoch: 89, loss@min: 0.959915, loss@max: 1.449971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001687, LT: 1.678361, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 90, loss@min: 0.958050, loss@max: 1.451034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001678, LT: 1.681338, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 91, loss@min: 0.986103, loss@max: 1.433408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001672, LT: 1.685116, Top1S: 100.000000, Top1T: 65.839241 +Train:epoch: 92, loss@min: 0.970193, loss@max: 1.438715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001666, LT: 1.682895, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 93, loss@min: 0.978077, loss@max: 1.433409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001656, LT: 1.681791, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 94, loss@min: 0.973266, loss@max: 1.435924, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.001646, LT: 1.684236, Top1S: 100.000000, Top1T: 65.661942 +Train:epoch: 95, loss@min: 0.968059, loss@max: 1.432014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001636, LT: 1.684447, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 96, loss@min: 0.980771, loss@max: 1.426223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001634, LT: 1.683071, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 97, loss@min: 0.965860, loss@max: 1.447715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001632, LT: 1.682843, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 98, loss@min: 0.955181, loss@max: 1.432420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001624, LT: 1.683349, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 99, loss@min: 0.995981, loss@max: 1.400087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001618, LT: 1.685640, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 100, loss@min: 0.950658, loss@max: 1.439998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001616, LT: 1.687874, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 101, loss@min: 0.956877, loss@max: 1.443352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001611, LT: 1.688816, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 102, loss@min: 0.957385, loss@max: 1.443040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001602, LT: 1.688570, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 103, loss@min: 0.990816, loss@max: 1.395101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001595, LT: 1.688395, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 104, loss@min: 0.983179, loss@max: 1.409093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001594, LT: 1.690643, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 105, loss@min: 0.969252, loss@max: 1.428682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001595, LT: 1.692635, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 106, loss@min: 0.945896, loss@max: 1.453785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001588, LT: 1.691677, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 107, loss@min: 0.966135, loss@max: 1.425282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001579, LT: 1.690510, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 108, loss@min: 0.967472, loss@max: 1.421587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001573, LT: 1.691469, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 109, loss@min: 0.962300, loss@max: 1.427523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001570, LT: 1.692835, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 110, loss@min: 0.982643, loss@max: 1.405755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001571, LT: 1.694219, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 111, loss@min: 0.959357, loss@max: 1.441282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001571, LT: 1.695645, Top1S: 100.000000, Top1T: 66.489365Best acc: 66.489365 +Train:epoch: 112, loss@min: 0.975194, loss@max: 1.427962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001567, LT: 1.697026, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 113, loss@min: 0.953950, loss@max: 1.432526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001561, LT: 1.697772, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 114, loss@min: 0.978516, loss@max: 1.415628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001556, LT: 1.697560, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 115, loss@min: 0.951553, loss@max: 1.434132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001552, LT: 1.697330, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 116, loss@min: 0.972338, loss@max: 1.412979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001549, LT: 1.697380, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 117, loss@min: 0.969136, loss@max: 1.409262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001548, LT: 1.698612, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 118, loss@min: 0.965964, loss@max: 1.412982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001548, LT: 1.700414, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 119, loss@min: 0.961017, loss@max: 1.418517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001547, LT: 1.700624, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 120, loss@min: 0.949995, loss@max: 1.436081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001545, LT: 1.700028, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 121, loss@min: 0.956787, loss@max: 1.425338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001543, LT: 1.699578, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 122, loss@min: 0.970430, loss@max: 1.406384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001541, LT: 1.699692, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 123, loss@min: 0.953787, loss@max: 1.433661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001538, LT: 1.700613, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 124, loss@min: 0.966524, loss@max: 1.408482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001536, LT: 1.701356, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 125, loss@min: 0.962958, loss@max: 1.417982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001534, LT: 1.701858, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 126, loss@min: 0.963736, loss@max: 1.412524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001533, LT: 1.701972, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 127, loss@min: 0.957381, loss@max: 1.412344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001533, LT: 1.701775, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 128, loss@min: 0.964086, loss@max: 1.403432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001532, LT: 1.701623, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 129, loss@min: 0.969273, loss@max: 1.405644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001532, LT: 1.701692, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 130, loss@min: 0.969981, loss@max: 1.419559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001531, LT: 1.701777, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 131, loss@min: 0.945541, loss@max: 1.423402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001530, LT: 1.701857, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 132, loss@min: 0.956444, loss@max: 1.425853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001529, LT: 1.702283, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 133, loss@min: 0.967995, loss@max: 1.404251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001528, LT: 1.702835, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 134, loss@min: 0.972340, loss@max: 1.404165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001527, LT: 1.703321, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 135, loss@min: 0.963816, loss@max: 1.409815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001526, LT: 1.703620, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 136, loss@min: 0.974570, loss@max: 1.410099, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 136, LS: 0.001526, LT: 1.703857, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 137, loss@min: 0.955710, loss@max: 1.427810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001525, LT: 1.704163, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 138, loss@min: 0.950427, loss@max: 1.418001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001525, LT: 1.704413, Top1S: 100.000000, Top1T: 66.016548 +Train:epoch: 139, loss@min: 0.969328, loss@max: 1.394529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001525, LT: 1.704556, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 140, loss@min: 0.965240, loss@max: 1.406485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001524, LT: 1.704699, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 141, loss@min: 0.963188, loss@max: 1.401769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001524, LT: 1.704788, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 142, loss@min: 0.968754, loss@max: 1.411881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001524, LT: 1.704837, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 143, loss@min: 0.973370, loss@max: 1.409750, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.001524, LT: 1.704857, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 144, loss@min: 0.960692, loss@max: 1.411847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001524, LT: 1.704855, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 145, loss@min: 0.967607, loss@max: 1.400463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001524, LT: 1.704857, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 146, loss@min: 0.959743, loss@max: 1.419181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001524, LT: 1.704851, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 147, loss@min: 0.967912, loss@max: 1.413050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001524, LT: 1.704839, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 148, loss@min: 0.961379, loss@max: 1.408905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001524, LT: 1.704831, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 149, loss@min: 0.959787, loss@max: 1.410012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001524, LT: 1.704828, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 150, loss@min: 0.960436, loss@max: 1.409331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001524, LT: 1.704828, Top1S: 100.000000, Top1T: 66.134750 +------------------------------------------- +Fri Jul 21 15:17:34 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 50} + +------------------------------------------- +Fri Jul 21 17:36:40 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.915180, loss@max: 5.772579, Top1S acc: 50.000000, Top1T acc: 39.062500 +Train:epoch: 2, loss@min: 6.377913, loss@max: 4.616005, Top1S acc: 92.968750, Top1T acc: 65.234375 +Train:epoch: 3, loss@min: 4.523086, loss@max: 4.047046, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 4, loss@min: 2.100648, loss@max: 3.838763, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 5, loss@min: 1.594074, loss@max: 3.406473, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 6, loss@min: 1.611327, loss@max: 2.495275, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 7, loss@min: 1.645392, loss@max: 2.063232, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 8, loss@min: 1.317633, loss@max: 2.004110, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.274298, loss@max: 1.763414, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.100803, loss@max: 1.806536, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 11, loss@min: 1.130862, loss@max: 1.659097, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 0.975680, loss@max: 1.677360, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 1.055825, loss@max: 1.534612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.022616, loss@max: 1.541280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.992758, loss@max: 1.491905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.977809, loss@max: 1.477022, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.967272, loss@max: 1.477287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.011757, loss@max: 1.461777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.945427, loss@max: 1.456739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.049428, loss@max: 1.446193, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 0.949284, loss@max: 1.520325, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.989961, loss@max: 1.471577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963554, loss@max: 1.470581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.993847, loss@max: 1.399538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.899752, loss@max: 1.542316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.982573, loss@max: 1.397316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.985452, loss@max: 1.404068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.972996, loss@max: 1.445316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.003209, loss@max: 1.398534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.975953, loss@max: 1.432595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.951565, loss@max: 1.490881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.004030, loss@max: 1.437904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.929949, loss@max: 1.499635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.007891, loss@max: 1.406289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.941238, loss@max: 1.506514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.012097, loss@max: 1.463030, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.977941, loss@max: 1.483138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.958800, loss@max: 1.486749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.044923, loss@max: 1.410707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.929742, loss@max: 1.530926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.023198, loss@max: 1.453118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.046191, loss@max: 1.484469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.927638, loss@max: 1.555335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.057369, loss@max: 1.435520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.923007, loss@max: 1.558084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.013975, loss@max: 1.472910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.026212, loss@max: 1.502533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.994632, loss@max: 1.434012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.963835, loss@max: 1.481992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.006623, loss@max: 1.428566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002130, LT: 1.472619, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 51, loss@min: 0.955654, loss@max: 1.484760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002107, LT: 1.473739, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 52, loss@min: 1.010884, loss@max: 1.452218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002088, LT: 1.478250, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 53, loss@min: 0.948004, loss@max: 1.489228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002064, LT: 1.491224, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 54, loss@min: 1.019541, loss@max: 1.415344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002031, LT: 1.499699, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 55, loss@min: 0.932084, loss@max: 1.485187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.002010, LT: 1.490170, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 56, loss@min: 0.978070, loss@max: 1.433415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001984, LT: 1.495781, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 57, loss@min: 0.953000, loss@max: 1.457323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001968, LT: 1.496858, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 58, loss@min: 0.977687, loss@max: 1.444554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001948, LT: 1.498933, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 59, loss@min: 0.950399, loss@max: 1.474720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001938, LT: 1.497984, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 60, loss@min: 0.978164, loss@max: 1.441551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001913, LT: 1.499768, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 61, loss@min: 1.004845, loss@max: 1.418247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001890, LT: 1.500626, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 62, loss@min: 0.925240, loss@max: 1.517165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001872, LT: 1.505384, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 63, loss@min: 1.000511, loss@max: 1.432652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001852, LT: 1.512844, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 64, loss@min: 0.981499, loss@max: 1.450542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001836, LT: 1.506976, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 65, loss@min: 0.976622, loss@max: 1.431272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001825, LT: 1.516655, Top1S: 100.000000, Top1T: 67.553192Best acc: 67.553192 +Train:epoch: 66, loss@min: 0.953971, loss@max: 1.467164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001814, LT: 1.514747, Top1S: 100.000000, Top1T: 67.789597Best acc: 67.789597 +Train:epoch: 67, loss@min: 0.979996, loss@max: 1.453143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001797, LT: 1.511911, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 68, loss@min: 0.978302, loss@max: 1.446080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001784, LT: 1.525598, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 69, loss@min: 0.951097, loss@max: 1.447671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001772, LT: 1.517001, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 70, loss@min: 0.940915, loss@max: 1.461595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001755, LT: 1.518069, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 71, loss@min: 0.949933, loss@max: 1.442518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001742, LT: 1.526972, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 72, loss@min: 0.983008, loss@max: 1.430502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001731, LT: 1.517143, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 73, loss@min: 0.960886, loss@max: 1.437538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001720, LT: 1.522447, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 74, loss@min: 0.959865, loss@max: 1.421241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001704, LT: 1.517813, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.982114, loss@max: 1.418919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001692, LT: 1.516845, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 76, loss@min: 0.942011, loss@max: 1.457928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001683, LT: 1.527192, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 77, loss@min: 0.967014, loss@max: 1.419652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001672, LT: 1.519630, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 78, loss@min: 0.971352, loss@max: 1.401031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001655, LT: 1.521502, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 79, loss@min: 0.962450, loss@max: 1.409115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001646, LT: 1.527313, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 80, loss@min: 0.944325, loss@max: 1.420054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001639, LT: 1.530388, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 81, loss@min: 0.981044, loss@max: 1.400545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001626, LT: 1.535135, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.960125, loss@max: 1.398963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001618, LT: 1.538169, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 83, loss@min: 0.972824, loss@max: 1.399196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001608, LT: 1.540511, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 84, loss@min: 0.971935, loss@max: 1.404658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001598, LT: 1.541977, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 85, loss@min: 0.956088, loss@max: 1.399341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001588, LT: 1.550249, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 86, loss@min: 0.951103, loss@max: 1.405427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001579, LT: 1.552764, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 87, loss@min: 0.970557, loss@max: 1.389021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001571, LT: 1.556038, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 88, loss@min: 0.969914, loss@max: 1.384574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001564, LT: 1.564150, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 89, loss@min: 0.934345, loss@max: 1.420713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001554, LT: 1.563372, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 90, loss@min: 0.970990, loss@max: 1.387498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001546, LT: 1.567788, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 91, loss@min: 0.961001, loss@max: 1.400121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001542, LT: 1.575202, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 92, loss@min: 0.949210, loss@max: 1.401950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001534, LT: 1.570460, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 93, loss@min: 0.960472, loss@max: 1.396116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001526, LT: 1.571115, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 94, loss@min: 0.960544, loss@max: 1.394311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001519, LT: 1.578686, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 95, loss@min: 0.955141, loss@max: 1.391538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001511, LT: 1.576228, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 96, loss@min: 0.965730, loss@max: 1.389055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001506, LT: 1.576169, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 97, loss@min: 0.933490, loss@max: 1.418149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001500, LT: 1.582383, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 98, loss@min: 0.954751, loss@max: 1.389131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001493, LT: 1.583794, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 99, loss@min: 0.970445, loss@max: 1.375331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001488, LT: 1.586479, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 100, loss@min: 0.948214, loss@max: 1.395965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001485, LT: 1.591406, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 101, loss@min: 0.950605, loss@max: 1.396360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001479, LT: 1.594683, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 102, loss@min: 0.962829, loss@max: 1.380812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001472, LT: 1.594361, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 103, loss@min: 0.967507, loss@max: 1.373302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001468, LT: 1.596484, Top1S: 100.000000, Top1T: 67.848701Best acc: 67.848701 +Train:epoch: 104, loss@min: 0.959622, loss@max: 1.378908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001465, LT: 1.601494, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 105, loss@min: 0.956225, loss@max: 1.388747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001461, LT: 1.603255, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 106, loss@min: 0.947913, loss@max: 1.394590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001455, LT: 1.602130, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 107, loss@min: 0.955729, loss@max: 1.387898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001451, LT: 1.603534, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 108, loss@min: 0.951529, loss@max: 1.388634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001448, LT: 1.607367, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 109, loss@min: 0.951540, loss@max: 1.388895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001445, LT: 1.609502, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 110, loss@min: 0.955384, loss@max: 1.384242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001441, LT: 1.609688, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 111, loss@min: 0.947079, loss@max: 1.392195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001438, LT: 1.610740, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 112, loss@min: 0.958880, loss@max: 1.393282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001435, LT: 1.612757, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 113, loss@min: 0.952298, loss@max: 1.388859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001431, LT: 1.613699, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 114, loss@min: 0.968723, loss@max: 1.371758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001429, LT: 1.615056, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 115, loss@min: 0.946119, loss@max: 1.396333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001426, LT: 1.615905, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 116, loss@min: 0.959734, loss@max: 1.378747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001424, LT: 1.616184, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 117, loss@min: 0.951967, loss@max: 1.387038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001422, LT: 1.616845, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 118, loss@min: 0.957417, loss@max: 1.377597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001419, LT: 1.618412, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 119, loss@min: 0.953725, loss@max: 1.383242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001417, LT: 1.618987, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 120, loss@min: 0.944591, loss@max: 1.397772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001415, LT: 1.619270, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 121, loss@min: 0.954953, loss@max: 1.381092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001413, LT: 1.620009, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 122, loss@min: 0.952176, loss@max: 1.383080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001412, LT: 1.620642, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 123, loss@min: 0.942046, loss@max: 1.396395, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001410, LT: 1.621702, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 124, loss@min: 0.963117, loss@max: 1.372808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001408, LT: 1.622402, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 125, loss@min: 0.951365, loss@max: 1.383675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001407, LT: 1.623098, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 126, loss@min: 0.948171, loss@max: 1.387335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001406, LT: 1.623812, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 127, loss@min: 0.952451, loss@max: 1.383078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001405, LT: 1.624026, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 128, loss@min: 0.953039, loss@max: 1.376347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001404, LT: 1.623989, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 129, loss@min: 0.957650, loss@max: 1.375000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001402, LT: 1.623962, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 130, loss@min: 0.957504, loss@max: 1.382073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001402, LT: 1.624105, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 131, loss@min: 0.948150, loss@max: 1.385160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001401, LT: 1.624513, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 132, loss@min: 0.948996, loss@max: 1.389226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001400, LT: 1.625536, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 133, loss@min: 0.951062, loss@max: 1.381664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001400, LT: 1.626567, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 134, loss@min: 0.955152, loss@max: 1.377705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001399, LT: 1.627183, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 135, loss@min: 0.940508, loss@max: 1.390456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001398, LT: 1.627495, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 136, loss@min: 0.953778, loss@max: 1.380038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001398, LT: 1.627647, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 137, loss@min: 0.952205, loss@max: 1.384190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001397, LT: 1.627867, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 138, loss@min: 0.949711, loss@max: 1.380108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001397, LT: 1.627993, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 139, loss@min: 0.955137, loss@max: 1.373820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001396, LT: 1.628120, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 140, loss@min: 0.961292, loss@max: 1.371557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001396, LT: 1.628247, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 141, loss@min: 0.957141, loss@max: 1.372277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001396, LT: 1.628364, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 142, loss@min: 0.954566, loss@max: 1.377733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001396, LT: 1.628470, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 143, loss@min: 0.957280, loss@max: 1.374017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001396, LT: 1.628584, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 144, loss@min: 0.947477, loss@max: 1.383469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001396, LT: 1.628649, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 145, loss@min: 0.958010, loss@max: 1.372711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001396, LT: 1.628697, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 146, loss@min: 0.948085, loss@max: 1.385495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001395, LT: 1.628720, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 147, loss@min: 0.959342, loss@max: 1.376470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001395, LT: 1.628729, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 148, loss@min: 0.951178, loss@max: 1.382071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001395, LT: 1.628737, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 149, loss@min: 0.952295, loss@max: 1.379727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001395, LT: 1.628740, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 150, loss@min: 0.954805, loss@max: 1.376956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001395, LT: 1.628740, Top1S: 100.000000, Top1T: 67.494087 +------------------------------------------- +Fri Jul 21 19:22:54 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 30, "valepoch": 50} + +------------------------------------------- +Fri Jul 21 21:29:47 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 13.813072, loss@max: 5.923485, Top1S acc: 6.382978, Top1T acc: 40.425533 +Train:epoch: 2, loss@min: 8.684572, loss@max: 6.148730, Top1S acc: 29.787233, Top1T acc: 85.106377 +Train:epoch: 3, loss@min: 6.981390, loss@max: 6.150578, Top1S acc: 51.063828, Top1T acc: 87.234039 +Train:epoch: 4, loss@min: 5.490473, loss@max: 5.344212, Top1S acc: 72.340424, Top1T acc: 95.744675 +Train:epoch: 5, loss@min: 4.669875, loss@max: 4.403610, Top1S acc: 85.106377, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 4.149633, loss@max: 3.801527, Top1S acc: 91.489357, Top1T acc: 97.872337 +Train:epoch: 7, loss@min: 3.400483, loss@max: 3.449110, Top1S acc: 97.872337, Top1T acc: 97.872337 +Train:epoch: 8, loss@min: 2.384699, loss@max: 3.459041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.475563, loss@max: 3.979004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.137277, loss@max: 3.908786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.973973, loss@max: 3.713643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.168131, loss@max: 3.331244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.249551, loss@max: 2.851042, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 14, loss@min: 1.335408, loss@max: 2.662167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.372932, loss@max: 2.491436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.150417, loss@max: 2.432773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.986008, loss@max: 2.344169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.068403, loss@max: 2.223908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.236722, loss@max: 2.049959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.356705, loss@max: 2.056016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.346761, loss@max: 1.879644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.288049, loss@max: 1.891646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.299153, loss@max: 1.880631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.208197, loss@max: 1.846504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.193889, loss@max: 1.786535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.090866, loss@max: 1.868569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.086249, loss@max: 1.769167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.167520, loss@max: 1.813895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.231238, loss@max: 1.756599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.120834, loss@max: 1.743870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.922292, loss@max: 1.889859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.934669, loss@max: 1.924871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.936803, loss@max: 1.934701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.920904, loss@max: 1.872685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.921366, loss@max: 1.832774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.039759, loss@max: 1.715593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.099244, loss@max: 1.655713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.271659, loss@max: 1.577074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.148642, loss@max: 1.612856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.144328, loss@max: 1.656077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.048586, loss@max: 1.712122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.985198, loss@max: 1.727143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.999960, loss@max: 1.692763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986881, loss@max: 1.612513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.026315, loss@max: 1.619951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.051925, loss@max: 1.551117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.113582, loss@max: 1.521340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.055303, loss@max: 1.549155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.025477, loss@max: 1.580550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.003094, loss@max: 1.629845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.005303, LT: 2.727112, Top1S: 100.000000, Top1T: 35.815601Best acc: 35.815601 +Train:epoch: 51, loss@min: 1.005499, loss@max: 1.635469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.005227, LT: 2.716672, Top1S: 100.000000, Top1T: 36.170212Best acc: 36.170212 +Train:epoch: 52, loss@min: 0.951602, loss@max: 1.690325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.005160, LT: 2.717866, Top1S: 100.000000, Top1T: 36.406620Best acc: 36.406620 +Train:epoch: 53, loss@min: 0.833751, loss@max: 1.759277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.005094, LT: 2.729256, Top1S: 100.000000, Top1T: 36.702129Best acc: 36.702129 +Train:epoch: 54, loss@min: 0.955122, loss@max: 1.622781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.005035, LT: 2.718610, Top1S: 100.000000, Top1T: 36.170212 +Train:epoch: 55, loss@min: 1.068586, loss@max: 1.561383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.004985, LT: 2.690607, Top1S: 100.000000, Top1T: 36.170212 +Train:epoch: 56, loss@min: 1.036619, loss@max: 1.506964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.004945, LT: 2.664879, Top1S: 100.000000, Top1T: 36.524822 +Train:epoch: 57, loss@min: 1.067669, loss@max: 1.444254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.004909, LT: 2.651884, Top1S: 100.000000, Top1T: 36.229313 +Train:epoch: 58, loss@min: 1.013540, loss@max: 1.503997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.004875, LT: 2.659045, Top1S: 100.000000, Top1T: 36.465721 +Train:epoch: 59, loss@min: 0.966734, loss@max: 1.558319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.004841, LT: 2.670207, Top1S: 100.000000, Top1T: 36.938534Best acc: 36.938534 +Train:epoch: 60, loss@min: 1.032833, loss@max: 1.482355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.004807, LT: 2.673968, Top1S: 100.000000, Top1T: 36.583923 +Train:epoch: 61, loss@min: 1.064795, loss@max: 1.495005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.004771, LT: 2.664335, Top1S: 100.000000, Top1T: 37.174942Best acc: 37.174942 +Train:epoch: 62, loss@min: 0.991590, loss@max: 1.513352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.004732, LT: 2.651273, Top1S: 100.000000, Top1T: 37.234043Best acc: 37.234043 +Train:epoch: 63, loss@min: 0.985172, loss@max: 1.518847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.004690, LT: 2.637820, Top1S: 100.000000, Top1T: 37.352245Best acc: 37.352245 +Train:epoch: 64, loss@min: 0.949127, loss@max: 1.563392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.004647, LT: 2.626927, Top1S: 100.000000, Top1T: 37.293144 +Train:epoch: 65, loss@min: 0.969593, loss@max: 1.541600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.004607, LT: 2.621743, Top1S: 100.000000, Top1T: 36.997635 +Train:epoch: 66, loss@min: 0.980462, loss@max: 1.531048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.004573, LT: 2.616591, Top1S: 100.000000, Top1T: 36.347519 +Train:epoch: 67, loss@min: 1.004531, loss@max: 1.557285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.004541, LT: 2.613673, Top1S: 100.000000, Top1T: 36.702129 +Train:epoch: 68, loss@min: 0.948626, loss@max: 1.548675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.004512, LT: 2.620179, Top1S: 100.000000, Top1T: 36.761230 +Train:epoch: 69, loss@min: 1.010359, loss@max: 1.467009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.004485, LT: 2.622159, Top1S: 100.000000, Top1T: 37.352245 +Train:epoch: 70, loss@min: 1.001092, loss@max: 1.443047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.004461, LT: 2.625847, Top1S: 100.000000, Top1T: 37.588654Best acc: 37.588654 +Train:epoch: 71, loss@min: 1.000794, loss@max: 1.468182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.004438, LT: 2.624869, Top1S: 100.000000, Top1T: 37.825058Best acc: 37.825058 +Train:epoch: 72, loss@min: 1.043339, loss@max: 1.493061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.004416, LT: 2.615720, Top1S: 100.000000, Top1T: 37.706856 +Train:epoch: 73, loss@min: 1.031589, loss@max: 1.505046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.004395, LT: 2.596735, Top1S: 100.000000, Top1T: 38.002365Best acc: 38.002365 +Train:epoch: 74, loss@min: 0.937364, loss@max: 1.546348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.004375, LT: 2.586384, Top1S: 100.000000, Top1T: 37.234043 +Train:epoch: 75, loss@min: 0.938751, loss@max: 1.556505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.004354, LT: 2.587729, Top1S: 100.000000, Top1T: 37.115841 +Train:epoch: 76, loss@min: 0.975699, loss@max: 1.568870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.004335, LT: 2.595514, Top1S: 100.000000, Top1T: 37.470448 +Train:epoch: 77, loss@min: 1.014690, loss@max: 1.482804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.004317, LT: 2.607352, Top1S: 100.000000, Top1T: 37.529552 +Train:epoch: 78, loss@min: 0.985068, loss@max: 1.470460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.004299, LT: 2.615849, Top1S: 100.000000, Top1T: 38.120567Best acc: 38.120567 +Train:epoch: 79, loss@min: 1.021134, loss@max: 1.501270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.004283, LT: 2.618053, Top1S: 100.000000, Top1T: 37.943264 +Train:epoch: 80, loss@min: 0.949532, loss@max: 1.545908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.004266, LT: 2.615626, Top1S: 100.000000, Top1T: 37.765957 +Train:epoch: 81, loss@min: 0.971827, loss@max: 1.489424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.004250, LT: 2.606675, Top1S: 100.000000, Top1T: 37.765957 +Train:epoch: 82, loss@min: 0.995444, loss@max: 1.464675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.004234, LT: 2.593547, Top1S: 100.000000, Top1T: 38.179668Best acc: 38.179668 +Train:epoch: 83, loss@min: 0.991649, loss@max: 1.415731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.004218, LT: 2.580944, Top1S: 100.000000, Top1T: 38.297871Best acc: 38.297871 +Train:epoch: 84, loss@min: 0.994792, loss@max: 1.444416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.004204, LT: 2.575869, Top1S: 100.000000, Top1T: 38.179668 +Train:epoch: 85, loss@min: 1.007001, loss@max: 1.477013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.004190, LT: 2.571960, Top1S: 100.000000, Top1T: 38.120567 +Train:epoch: 86, loss@min: 1.003304, loss@max: 1.470812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.004177, LT: 2.574529, Top1S: 100.000000, Top1T: 38.061466 +Train:epoch: 87, loss@min: 0.980695, loss@max: 1.463994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.004164, LT: 2.574850, Top1S: 100.000000, Top1T: 38.061466 +Train:epoch: 88, loss@min: 0.963887, loss@max: 1.459675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.004151, LT: 2.578068, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 89, loss@min: 0.961177, loss@max: 1.482971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.004137, LT: 2.580830, Top1S: 100.000000, Top1T: 38.534279Best acc: 38.534279 +Train:epoch: 90, loss@min: 0.968752, loss@max: 1.516517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.004124, LT: 2.583374, Top1S: 100.000000, Top1T: 38.711582Best acc: 38.711582 +Train:epoch: 91, loss@min: 0.932363, loss@max: 1.516950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.004110, LT: 2.585935, Top1S: 100.000000, Top1T: 38.356976 +Train:epoch: 92, loss@min: 0.973010, loss@max: 1.464820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.004097, LT: 2.586579, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 93, loss@min: 0.984130, loss@max: 1.406874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.004086, LT: 2.584712, Top1S: 100.000000, Top1T: 38.356976 +Train:epoch: 94, loss@min: 0.969307, loss@max: 1.425992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.004076, LT: 2.579583, Top1S: 100.000000, Top1T: 38.061466 +Train:epoch: 95, loss@min: 1.019122, loss@max: 1.435256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.004067, LT: 2.568635, Top1S: 100.000000, Top1T: 38.120567 +Train:epoch: 96, loss@min: 1.009912, loss@max: 1.440461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.004059, LT: 2.557919, Top1S: 100.000000, Top1T: 38.120567 +Train:epoch: 97, loss@min: 0.977523, loss@max: 1.432987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.004051, LT: 2.550896, Top1S: 100.000000, Top1T: 38.061466 +Train:epoch: 98, loss@min: 0.938615, loss@max: 1.467458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.004042, LT: 2.549826, Top1S: 100.000000, Top1T: 38.416077 +Train:epoch: 99, loss@min: 0.941618, loss@max: 1.451404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.004034, LT: 2.552437, Top1S: 100.000000, Top1T: 38.416077 +Train:epoch: 100, loss@min: 0.987173, loss@max: 1.416144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.004025, LT: 2.555847, Top1S: 100.000000, Top1T: 38.356976 +Train:epoch: 101, loss@min: 0.950730, loss@max: 1.454317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.004016, LT: 2.557232, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 102, loss@min: 0.984089, loss@max: 1.440127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.004007, LT: 2.560307, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 103, loss@min: 0.940060, loss@max: 1.467300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.003997, LT: 2.563543, Top1S: 100.000000, Top1T: 38.120567 +Train:epoch: 104, loss@min: 0.947397, loss@max: 1.453790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.003989, LT: 2.564520, Top1S: 100.000000, Top1T: 38.297871 +Train:epoch: 105, loss@min: 0.964943, loss@max: 1.433557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.003982, LT: 2.561972, Top1S: 100.000000, Top1T: 38.297871 +Train:epoch: 106, loss@min: 1.032774, loss@max: 1.383258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.003976, LT: 2.557014, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 107, loss@min: 0.990191, loss@max: 1.384924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.003970, LT: 2.551532, Top1S: 100.000000, Top1T: 38.652481 +Train:epoch: 108, loss@min: 0.969832, loss@max: 1.407952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.003966, LT: 2.546787, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 109, loss@min: 0.983516, loss@max: 1.397793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.003961, LT: 2.544878, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 110, loss@min: 0.955127, loss@max: 1.428581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.003957, LT: 2.544834, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 111, loss@min: 0.931028, loss@max: 1.470138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.003951, LT: 2.547602, Top1S: 100.000000, Top1T: 38.297871 +Train:epoch: 112, loss@min: 0.942545, loss@max: 1.438584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.003946, LT: 2.551648, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 113, loss@min: 0.971447, loss@max: 1.409519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.003941, LT: 2.555425, Top1S: 100.000000, Top1T: 38.179668 +Train:epoch: 114, loss@min: 0.951331, loss@max: 1.432693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.003935, LT: 2.558424, Top1S: 100.000000, Top1T: 38.179668 +Train:epoch: 115, loss@min: 0.976622, loss@max: 1.401073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.003930, LT: 2.559557, Top1S: 100.000000, Top1T: 38.297871 +Train:epoch: 116, loss@min: 0.950740, loss@max: 1.418116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.003926, LT: 2.558798, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 117, loss@min: 0.945828, loss@max: 1.414289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.003921, LT: 2.557284, Top1S: 100.000000, Top1T: 38.179668 +Train:epoch: 118, loss@min: 0.982071, loss@max: 1.399303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.003917, LT: 2.556813, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 119, loss@min: 0.973750, loss@max: 1.389598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.003913, LT: 2.556527, Top1S: 100.000000, Top1T: 38.179668 +Train:epoch: 120, loss@min: 0.979237, loss@max: 1.389618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.003910, LT: 2.555939, Top1S: 100.000000, Top1T: 38.120567 +Train:epoch: 121, loss@min: 0.979011, loss@max: 1.400344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.003907, LT: 2.554984, Top1S: 100.000000, Top1T: 38.120567 +Train:epoch: 122, loss@min: 0.957250, loss@max: 1.419871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.003904, LT: 2.554419, Top1S: 100.000000, Top1T: 38.179668 +Train:epoch: 123, loss@min: 0.969696, loss@max: 1.413959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.003901, LT: 2.553504, Top1S: 100.000000, Top1T: 38.238770 +Train:epoch: 124, loss@min: 0.935395, loss@max: 1.434852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.003899, LT: 2.552456, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 125, loss@min: 0.957032, loss@max: 1.409191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.003896, LT: 2.551097, Top1S: 100.000000, Top1T: 38.297871 +Train:epoch: 126, loss@min: 0.949993, loss@max: 1.421213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.003894, LT: 2.549552, Top1S: 100.000000, Top1T: 38.356976 +Train:epoch: 127, loss@min: 0.965616, loss@max: 1.412828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.003892, LT: 2.548921, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 128, loss@min: 0.985398, loss@max: 1.385691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.003890, LT: 2.549095, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 129, loss@min: 0.966993, loss@max: 1.400339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.003888, LT: 2.549905, Top1S: 100.000000, Top1T: 38.416077 +Train:epoch: 130, loss@min: 0.943212, loss@max: 1.408546, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.003887, LT: 2.550593, Top1S: 100.000000, Top1T: 38.416077 +Train:epoch: 131, loss@min: 0.992068, loss@max: 1.407754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.003885, LT: 2.551103, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 132, loss@min: 0.942919, loss@max: 1.424991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.003884, LT: 2.551736, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 133, loss@min: 0.938083, loss@max: 1.427464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.003883, LT: 2.552179, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 134, loss@min: 0.971146, loss@max: 1.400478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.003882, LT: 2.552566, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 135, loss@min: 0.972595, loss@max: 1.412994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.003881, LT: 2.552916, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 136, loss@min: 0.967388, loss@max: 1.386637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.003880, LT: 2.553207, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 137, loss@min: 0.964064, loss@max: 1.402011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.003880, LT: 2.553533, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 138, loss@min: 0.967966, loss@max: 1.395718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.003879, LT: 2.553747, Top1S: 100.000000, Top1T: 38.593380 +Train:epoch: 139, loss@min: 0.950475, loss@max: 1.419826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.003879, LT: 2.553842, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 140, loss@min: 0.966584, loss@max: 1.400387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.003878, LT: 2.553949, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 141, loss@min: 0.967402, loss@max: 1.396724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.003878, LT: 2.554025, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 142, loss@min: 0.959525, loss@max: 1.398949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.003878, LT: 2.554135, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 143, loss@min: 0.939614, loss@max: 1.417981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.003878, LT: 2.554152, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 144, loss@min: 0.939635, loss@max: 1.417149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.003878, LT: 2.554181, Top1S: 100.000000, Top1T: 38.475178 +Train:epoch: 145, loss@min: 0.968292, loss@max: 1.391685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.003877, LT: 2.554205, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 146, loss@min: 0.945671, loss@max: 1.398638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.003877, LT: 2.554212, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 147, loss@min: 0.947383, loss@max: 1.406132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.003877, LT: 2.554222, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 148, loss@min: 0.946314, loss@max: 1.411259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.003877, LT: 2.554225, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 149, loss@min: 0.937881, loss@max: 1.427886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.003877, LT: 2.554225, Top1S: 100.000000, Top1T: 38.534279 +Train:epoch: 150, loss@min: 0.935798, loss@max: 1.422123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.003877, LT: 2.554225, Top1S: 100.000000, Top1T: 38.534279 +------------------------------------------- +Fri Jul 21 22:54:05 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 30, "valepoch": 50} + +------------------------------------------- +Fri Jul 21 23:01:10 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 11.915181, loss@max: 5.772579, Top1S acc: 50.000000, Top1T acc: 39.062500 +Train:epoch: 2, loss@min: 6.377916, loss@max: 4.616005, Top1S acc: 92.968750, Top1T acc: 65.234375 +Train:epoch: 3, loss@min: 4.523087, loss@max: 4.047046, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 4, loss@min: 2.100650, loss@max: 3.838763, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 5, loss@min: 1.594077, loss@max: 3.406474, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 6, loss@min: 1.611326, loss@max: 2.495276, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 7, loss@min: 1.645394, loss@max: 2.063231, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 8, loss@min: 1.317633, loss@max: 2.004110, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.274297, loss@max: 1.763415, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 1.100804, loss@max: 1.806535, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 11, loss@min: 1.130862, loss@max: 1.659098, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 0.975681, loss@max: 1.677359, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 1.055823, loss@max: 1.534613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.022618, loss@max: 1.541279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.992757, loss@max: 1.491906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.977810, loss@max: 1.477021, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.967271, loss@max: 1.477287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.011757, loss@max: 1.461777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.945428, loss@max: 1.456735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.049423, loss@max: 1.446194, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 0.949286, loss@max: 1.520324, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.989962, loss@max: 1.471575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963549, loss@max: 1.470582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.993850, loss@max: 1.399532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.899753, loss@max: 1.542319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.982569, loss@max: 1.397316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.985453, loss@max: 1.404064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.973003, loss@max: 1.445321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.003208, loss@max: 1.398534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.975953, loss@max: 1.432591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.951559, loss@max: 1.490883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.004033, loss@max: 1.437902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.929949, loss@max: 1.499641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.007888, loss@max: 1.406295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.941241, loss@max: 1.506516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.012095, loss@max: 1.463033, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.977937, loss@max: 1.483144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.958805, loss@max: 1.486746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.044920, loss@max: 1.410715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.929749, loss@max: 1.530920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.023193, loss@max: 1.453127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.046198, loss@max: 1.484468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.927637, loss@max: 1.555327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.057370, loss@max: 1.435516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.923002, loss@max: 1.558082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.013980, loss@max: 1.472899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.026211, loss@max: 1.502530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.994623, loss@max: 1.434016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.963841, loss@max: 1.481978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.006616, loss@max: 1.428573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.002130, LT: 1.472622, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 51, loss@min: 0.955654, loss@max: 1.484758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.002107, LT: 1.473742, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 52, loss@min: 1.010888, loss@max: 1.452207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.002088, LT: 1.478253, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 53, loss@min: 0.947997, loss@max: 1.489229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.002063, LT: 1.491228, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 54, loss@min: 1.019545, loss@max: 1.415344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.002031, LT: 1.499703, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 55, loss@min: 0.932080, loss@max: 1.485191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.002010, LT: 1.490172, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 56, loss@min: 0.978074, loss@max: 1.433414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001984, LT: 1.495784, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 57, loss@min: 0.952992, loss@max: 1.457323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001968, LT: 1.496862, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 58, loss@min: 0.977683, loss@max: 1.444561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001948, LT: 1.498935, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 59, loss@min: 0.950406, loss@max: 1.474717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001938, LT: 1.497988, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 60, loss@min: 0.978156, loss@max: 1.441559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001913, LT: 1.499771, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 61, loss@min: 1.004853, loss@max: 1.418245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001890, LT: 1.500627, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 62, loss@min: 0.925238, loss@max: 1.517159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001872, LT: 1.505386, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 63, loss@min: 1.000503, loss@max: 1.432659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001852, LT: 1.512845, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 64, loss@min: 0.981502, loss@max: 1.450538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001836, LT: 1.506977, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 65, loss@min: 0.976621, loss@max: 1.431273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.001825, LT: 1.516655, Top1S: 100.000000, Top1T: 67.553192Best acc: 67.553192 +Train:epoch: 66, loss@min: 0.953970, loss@max: 1.467163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001814, LT: 1.514747, Top1S: 100.000000, Top1T: 67.789597Best acc: 67.789597 +Train:epoch: 67, loss@min: 0.979996, loss@max: 1.453135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001797, LT: 1.511912, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 68, loss@min: 0.978299, loss@max: 1.446081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001784, LT: 1.525599, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 69, loss@min: 0.951096, loss@max: 1.447667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001773, LT: 1.517002, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 70, loss@min: 0.940917, loss@max: 1.461594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.001755, LT: 1.518069, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 71, loss@min: 0.949929, loss@max: 1.442521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.001742, LT: 1.526973, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 72, loss@min: 0.983006, loss@max: 1.430503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001731, LT: 1.517144, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 73, loss@min: 0.960892, loss@max: 1.437535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001720, LT: 1.522447, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 74, loss@min: 0.959864, loss@max: 1.421240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001704, LT: 1.517814, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.982105, loss@max: 1.418926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001692, LT: 1.516846, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 76, loss@min: 0.942016, loss@max: 1.457920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001683, LT: 1.527193, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 77, loss@min: 0.967017, loss@max: 1.419651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001672, LT: 1.519632, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 78, loss@min: 0.971346, loss@max: 1.401037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001655, LT: 1.521504, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 79, loss@min: 0.962452, loss@max: 1.409114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001646, LT: 1.527314, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 80, loss@min: 0.944326, loss@max: 1.420054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001639, LT: 1.530389, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 81, loss@min: 0.981044, loss@max: 1.400545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001626, LT: 1.535137, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.960124, loss@max: 1.398963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001618, LT: 1.538170, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 83, loss@min: 0.972822, loss@max: 1.399199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001608, LT: 1.540512, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 84, loss@min: 0.971937, loss@max: 1.404657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001598, LT: 1.541978, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 85, loss@min: 0.956089, loss@max: 1.399340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001588, LT: 1.550250, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 86, loss@min: 0.951101, loss@max: 1.405428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001579, LT: 1.552764, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 87, loss@min: 0.970558, loss@max: 1.389020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001571, LT: 1.556039, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 88, loss@min: 0.969917, loss@max: 1.384572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001564, LT: 1.564151, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 89, loss@min: 0.934341, loss@max: 1.420718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001554, LT: 1.563372, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 90, loss@min: 0.970991, loss@max: 1.387499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001546, LT: 1.567788, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 91, loss@min: 0.961004, loss@max: 1.400120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001542, LT: 1.575202, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 92, loss@min: 0.949208, loss@max: 1.401952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001534, LT: 1.570460, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 93, loss@min: 0.960472, loss@max: 1.396117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001526, LT: 1.571115, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 94, loss@min: 0.960545, loss@max: 1.394311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001519, LT: 1.578686, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 95, loss@min: 0.955140, loss@max: 1.391540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001511, LT: 1.576228, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 96, loss@min: 0.965730, loss@max: 1.389055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001506, LT: 1.576169, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 97, loss@min: 0.933490, loss@max: 1.418148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001500, LT: 1.582383, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 98, loss@min: 0.954751, loss@max: 1.389132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001493, LT: 1.583794, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 99, loss@min: 0.970445, loss@max: 1.375330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001488, LT: 1.586478, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 100, loss@min: 0.948214, loss@max: 1.395966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001485, LT: 1.591406, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 101, loss@min: 0.950605, loss@max: 1.396361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001479, LT: 1.594683, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 102, loss@min: 0.962831, loss@max: 1.380812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001472, LT: 1.594361, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 103, loss@min: 0.967507, loss@max: 1.373303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001468, LT: 1.596484, Top1S: 100.000000, Top1T: 67.848701Best acc: 67.848701 +Train:epoch: 104, loss@min: 0.959622, loss@max: 1.378909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001465, LT: 1.601493, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 105, loss@min: 0.956224, loss@max: 1.388748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001461, LT: 1.603255, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 106, loss@min: 0.947914, loss@max: 1.394589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001455, LT: 1.602130, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 107, loss@min: 0.955728, loss@max: 1.387898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001451, LT: 1.603533, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 108, loss@min: 0.951529, loss@max: 1.388634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001448, LT: 1.607366, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 109, loss@min: 0.951539, loss@max: 1.388896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001445, LT: 1.609502, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 110, loss@min: 0.955384, loss@max: 1.384242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001441, LT: 1.609688, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 111, loss@min: 0.947080, loss@max: 1.392194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001438, LT: 1.610739, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 112, loss@min: 0.958881, loss@max: 1.393281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001435, LT: 1.612756, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 113, loss@min: 0.952298, loss@max: 1.388860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001431, LT: 1.613698, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 114, loss@min: 0.968724, loss@max: 1.371758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001429, LT: 1.615056, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 115, loss@min: 0.946119, loss@max: 1.396333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001426, LT: 1.615904, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 116, loss@min: 0.959734, loss@max: 1.378747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001424, LT: 1.616184, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 117, loss@min: 0.951966, loss@max: 1.387038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001422, LT: 1.616845, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 118, loss@min: 0.957417, loss@max: 1.377597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001419, LT: 1.618411, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 119, loss@min: 0.953725, loss@max: 1.383242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001417, LT: 1.618987, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 120, loss@min: 0.944591, loss@max: 1.397773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001415, LT: 1.619269, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 121, loss@min: 0.954954, loss@max: 1.381092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001413, LT: 1.620009, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 122, loss@min: 0.952177, loss@max: 1.383080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001412, LT: 1.620642, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 123, loss@min: 0.942045, loss@max: 1.396396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001410, LT: 1.621702, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 124, loss@min: 0.963117, loss@max: 1.372808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001408, LT: 1.622402, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 125, loss@min: 0.951364, loss@max: 1.383675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001407, LT: 1.623098, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 126, loss@min: 0.948171, loss@max: 1.387335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001406, LT: 1.623812, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 127, loss@min: 0.952451, loss@max: 1.383077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001405, LT: 1.624026, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 128, loss@min: 0.953039, loss@max: 1.376348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001404, LT: 1.623989, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 129, loss@min: 0.957650, loss@max: 1.375000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001402, LT: 1.623962, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 130, loss@min: 0.957503, loss@max: 1.382074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001402, LT: 1.624105, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 131, loss@min: 0.948150, loss@max: 1.385161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001401, LT: 1.624513, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 132, loss@min: 0.948997, loss@max: 1.389226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001400, LT: 1.625536, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 133, loss@min: 0.951062, loss@max: 1.381664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001400, LT: 1.626567, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 134, loss@min: 0.955152, loss@max: 1.377705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001399, LT: 1.627183, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 135, loss@min: 0.940507, loss@max: 1.390456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001398, LT: 1.627495, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 136, loss@min: 0.953778, loss@max: 1.380038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001398, LT: 1.627647, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 137, loss@min: 0.952206, loss@max: 1.384190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001397, LT: 1.627867, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 138, loss@min: 0.949711, loss@max: 1.380108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001397, LT: 1.627992, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 139, loss@min: 0.955137, loss@max: 1.373820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001396, LT: 1.628120, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 140, loss@min: 0.961292, loss@max: 1.371557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001396, LT: 1.628247, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 141, loss@min: 0.957141, loss@max: 1.372277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001396, LT: 1.628364, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 142, loss@min: 0.954566, loss@max: 1.377733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001396, LT: 1.628470, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 143, loss@min: 0.957279, loss@max: 1.374017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001396, LT: 1.628584, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 144, loss@min: 0.947476, loss@max: 1.383470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001396, LT: 1.628649, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 145, loss@min: 0.958009, loss@max: 1.372712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001396, LT: 1.628697, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 146, loss@min: 0.948084, loss@max: 1.385496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001395, LT: 1.628720, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 147, loss@min: 0.959341, loss@max: 1.376470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001395, LT: 1.628729, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 148, loss@min: 0.951178, loss@max: 1.382071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001395, LT: 1.628737, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 149, loss@min: 0.952295, loss@max: 1.379727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001395, LT: 1.628739, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 150, loss@min: 0.954805, loss@max: 1.376957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001395, LT: 1.628740, Top1S: 100.000000, Top1T: 67.494087{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 80, "valepoch": 50} + +------------------------------------------- +Sat Jul 22 01:44:58 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 22 01:46:15 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.063032, loss@max: 2.489254, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 2, loss@min: 1.022406, loss@max: 2.381983, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 3, loss@min: 1.032110, loss@max: 1.683837, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 4, loss@min: 1.434483, loss@max: 1.407595, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 5, loss@min: 1.442280, loss@max: 1.335895, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 6, loss@min: 1.240490, loss@max: 1.425250, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 7, loss@min: 1.128201, loss@max: 1.560467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.013546, loss@max: 1.593847, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 0.951800, loss@max: 1.761201, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 0.968597, loss@max: 1.714344, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 0.963751, loss@max: 1.759606, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.001246, loss@max: 1.679950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.135415, loss@max: 1.570108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.093949, loss@max: 1.611264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.091207, loss@max: 1.718828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.070920, loss@max: 1.762291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.046080, loss@max: 1.727607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.073220, loss@max: 1.753415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.093725, loss@max: 1.747595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.084390, loss@max: 1.755695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.075554, loss@max: 1.780985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.092309, loss@max: 1.772399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.114499, loss@max: 1.825224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.102621, loss@max: 1.803545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.130332, loss@max: 1.738246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.088546, loss@max: 1.793432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.046206, loss@max: 1.779276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.006918, loss@max: 1.961502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.053385, loss@max: 1.865128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.094773, loss@max: 1.866406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.125548, loss@max: 1.861658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.051014, loss@max: 1.847056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.128489, loss@max: 1.766759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.105044, loss@max: 1.744694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.073300, loss@max: 1.746156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.079021, loss@max: 1.816182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.053446, loss@max: 1.838291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.031417, loss@max: 1.799002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.034908, loss@max: 1.757236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.057881, loss@max: 1.745592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.037342, loss@max: 1.743612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.043931, loss@max: 1.668594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.083918, loss@max: 1.674294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.078426, loss@max: 1.638262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.028472, loss@max: 1.622901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.020210, loss@max: 1.612880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.025646, loss@max: 1.680873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.018753, loss@max: 1.673620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.093557, loss@max: 1.603653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.108955, loss@max: 1.620743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.980459, loss@max: 1.652828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.037401, loss@max: 1.625459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.000766, loss@max: 1.696985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.030988, loss@max: 1.663538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.019333, loss@max: 1.639299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.061512, loss@max: 1.601168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.024635, loss@max: 1.614906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.004654, loss@max: 1.615964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.997428, loss@max: 1.608265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.036546, loss@max: 1.602626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.024545, loss@max: 1.554149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.023707, loss@max: 1.554084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.012706, loss@max: 1.588181, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.993800, loss@max: 1.601984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.025799, loss@max: 1.538744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.992926, loss@max: 1.564621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.977536, loss@max: 1.561835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.989696, loss@max: 1.549201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.969703, loss@max: 1.549686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.989913, loss@max: 1.524854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.975947, loss@max: 1.531476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.989928, loss@max: 1.534519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.978951, loss@max: 1.522485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.989235, loss@max: 1.538628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.972942, loss@max: 1.499082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.005157, loss@max: 1.498861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.988526, loss@max: 1.483453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.985237, loss@max: 1.487899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.991668, loss@max: 1.466676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.993131, loss@max: 1.473148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000360, LT: 1.659586, Top1S: 100.000000, Top1T: 57.591938Best acc: 57.591938 +Train:epoch: 81, loss@min: 0.986387, loss@max: 1.477901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000361, LT: 1.658797, Top1S: 100.000000, Top1T: 57.672543Best acc: 57.672543 +Train:epoch: 82, loss@min: 0.969296, loss@max: 1.499131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000362, LT: 1.657897, Top1S: 100.000000, Top1T: 57.617126 +Train:epoch: 83, loss@min: 0.976591, loss@max: 1.498968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000361, LT: 1.657687, Top1S: 100.000000, Top1T: 57.727959Best acc: 57.727959 +Train:epoch: 84, loss@min: 0.972103, loss@max: 1.495875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000360, LT: 1.657023, Top1S: 100.000000, Top1T: 57.727959 +Train:epoch: 85, loss@min: 0.978027, loss@max: 1.456652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000359, LT: 1.655967, Top1S: 100.000000, Top1T: 57.808563Best acc: 57.808563 +Train:epoch: 86, loss@min: 0.968601, loss@max: 1.455000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000357, LT: 1.654229, Top1S: 100.000000, Top1T: 57.793449 +Train:epoch: 87, loss@min: 0.996045, loss@max: 1.436251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000355, LT: 1.653028, Top1S: 100.000000, Top1T: 57.803524 +Train:epoch: 88, loss@min: 0.975014, loss@max: 1.445905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000354, LT: 1.651877, Top1S: 100.000000, Top1T: 57.758183 +Train:epoch: 89, loss@min: 0.976550, loss@max: 1.440515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000355, LT: 1.651071, Top1S: 100.000000, Top1T: 57.738033 +Train:epoch: 90, loss@min: 0.980954, loss@max: 1.451456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000356, LT: 1.650548, Top1S: 100.000000, Top1T: 57.652390 +Train:epoch: 91, loss@min: 0.966633, loss@max: 1.458740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000356, LT: 1.649683, Top1S: 100.000000, Top1T: 57.738033 +Train:epoch: 92, loss@min: 0.953526, loss@max: 1.461577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000355, LT: 1.649646, Top1S: 100.000000, Top1T: 57.682617 +Train:epoch: 93, loss@min: 0.959993, loss@max: 1.452238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000353, LT: 1.648908, Top1S: 100.000000, Top1T: 57.748108 +Train:epoch: 94, loss@min: 0.978886, loss@max: 1.454703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000351, LT: 1.648361, Top1S: 100.000000, Top1T: 57.793449 +Train:epoch: 95, loss@min: 0.974471, loss@max: 1.433589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000350, LT: 1.647154, Top1S: 100.000000, Top1T: 57.833752Best acc: 57.833752 +Train:epoch: 96, loss@min: 0.990681, loss@max: 1.412715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000349, LT: 1.646449, Top1S: 100.000000, Top1T: 57.848866Best acc: 57.848866 +Train:epoch: 97, loss@min: 0.970894, loss@max: 1.430349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000349, LT: 1.645247, Top1S: 100.000000, Top1T: 57.894203Best acc: 57.894203 +Train:epoch: 98, loss@min: 0.974424, loss@max: 1.432178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000348, LT: 1.644297, Top1S: 100.000000, Top1T: 57.929470Best acc: 57.929470 +Train:epoch: 99, loss@min: 0.952357, loss@max: 1.441548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000348, LT: 1.644168, Top1S: 100.000000, Top1T: 57.934505Best acc: 57.934505 +Train:epoch: 100, loss@min: 0.973910, loss@max: 1.423018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000347, LT: 1.643974, Top1S: 100.000000, Top1T: 57.959694Best acc: 57.959694 +Train:epoch: 101, loss@min: 0.968860, loss@max: 1.412874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000347, LT: 1.644035, Top1S: 100.000000, Top1T: 57.954659 +Train:epoch: 102, loss@min: 0.961267, loss@max: 1.420715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000347, LT: 1.643638, Top1S: 100.000000, Top1T: 57.999996Best acc: 57.999996 +Train:epoch: 103, loss@min: 0.969603, loss@max: 1.421996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000347, LT: 1.642689, Top1S: 100.000000, Top1T: 57.974808 +Train:epoch: 104, loss@min: 0.967938, loss@max: 1.436587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000347, LT: 1.642260, Top1S: 100.000000, Top1T: 57.984886 +Train:epoch: 105, loss@min: 0.976737, loss@max: 1.420210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000347, LT: 1.641563, Top1S: 100.000000, Top1T: 58.025188Best acc: 58.025188 +Train:epoch: 106, loss@min: 0.958151, loss@max: 1.414858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000346, LT: 1.641165, Top1S: 100.000000, Top1T: 58.060452Best acc: 58.060452 +Train:epoch: 107, loss@min: 0.964872, loss@max: 1.424162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000345, LT: 1.641195, Top1S: 100.000000, Top1T: 58.005035 +Train:epoch: 108, loss@min: 0.976274, loss@max: 1.407699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000344, LT: 1.641267, Top1S: 100.000000, Top1T: 57.989922 +Train:epoch: 109, loss@min: 0.966585, loss@max: 1.411824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000344, LT: 1.641275, Top1S: 100.000000, Top1T: 57.999996 +Train:epoch: 110, loss@min: 0.959417, loss@max: 1.421233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000343, LT: 1.641257, Top1S: 100.000000, Top1T: 58.020149 +Train:epoch: 111, loss@min: 0.951316, loss@max: 1.413475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000343, LT: 1.641371, Top1S: 100.000000, Top1T: 58.080601Best acc: 58.080601 +Train:epoch: 112, loss@min: 0.984229, loss@max: 1.390842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000343, LT: 1.641391, Top1S: 100.000000, Top1T: 58.045338 +Train:epoch: 113, loss@min: 0.964703, loss@max: 1.409544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000343, LT: 1.641240, Top1S: 100.000000, Top1T: 58.015110 +Train:epoch: 114, loss@min: 0.955392, loss@max: 1.416359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000343, LT: 1.641060, Top1S: 100.000000, Top1T: 58.060452 +Train:epoch: 115, loss@min: 0.944531, loss@max: 1.424086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000343, LT: 1.640723, Top1S: 100.000000, Top1T: 58.085640Best acc: 58.085640 +Train:epoch: 116, loss@min: 0.960648, loss@max: 1.408741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000342, LT: 1.640343, Top1S: 100.000000, Top1T: 58.130981Best acc: 58.130981 +Train:epoch: 117, loss@min: 0.947869, loss@max: 1.428531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000342, LT: 1.640044, Top1S: 100.000000, Top1T: 58.176319Best acc: 58.176319 +Train:epoch: 118, loss@min: 0.955435, loss@max: 1.413178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000342, LT: 1.639891, Top1S: 100.000000, Top1T: 58.156170 +Train:epoch: 119, loss@min: 0.959769, loss@max: 1.398808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000342, LT: 1.639838, Top1S: 100.000000, Top1T: 58.156170 +Train:epoch: 120, loss@min: 0.954218, loss@max: 1.415341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000341, LT: 1.639777, Top1S: 100.000000, Top1T: 58.166245 +Train:epoch: 121, loss@min: 0.951225, loss@max: 1.420432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000341, LT: 1.639912, Top1S: 100.000000, Top1T: 58.181358Best acc: 58.181358 +Train:epoch: 122, loss@min: 0.972481, loss@max: 1.392332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000341, LT: 1.640004, Top1S: 100.000000, Top1T: 58.201508Best acc: 58.201508 +Train:epoch: 123, loss@min: 0.960931, loss@max: 1.411644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000341, LT: 1.639852, Top1S: 100.000000, Top1T: 58.211586Best acc: 58.211586 +Train:epoch: 124, loss@min: 0.963471, loss@max: 1.393698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000341, LT: 1.639672, Top1S: 100.000000, Top1T: 58.236774Best acc: 58.236774 +Train:epoch: 125, loss@min: 0.961646, loss@max: 1.395395, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000341, LT: 1.639583, Top1S: 100.000000, Top1T: 58.171284 +Train:epoch: 126, loss@min: 0.955382, loss@max: 1.408886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000340, LT: 1.639514, Top1S: 100.000000, Top1T: 58.181358 +Train:epoch: 127, loss@min: 0.950788, loss@max: 1.407941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000340, LT: 1.639469, Top1S: 100.000000, Top1T: 58.186398 +Train:epoch: 128, loss@min: 0.943624, loss@max: 1.422900, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000340, LT: 1.639461, Top1S: 100.000000, Top1T: 58.166245 +Train:epoch: 129, loss@min: 0.959964, loss@max: 1.413998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000340, LT: 1.639510, Top1S: 100.000000, Top1T: 58.171284 +Train:epoch: 130, loss@min: 0.967715, loss@max: 1.386997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000340, LT: 1.639552, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 131, loss@min: 0.960083, loss@max: 1.398301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000340, LT: 1.639607, Top1S: 100.000000, Top1T: 58.146095 +Train:epoch: 132, loss@min: 0.974654, loss@max: 1.386045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000340, LT: 1.639603, Top1S: 100.000000, Top1T: 58.141056 +Train:epoch: 133, loss@min: 0.955019, loss@max: 1.396186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000340, LT: 1.639629, Top1S: 100.000000, Top1T: 58.156170 +Train:epoch: 134, loss@min: 0.947679, loss@max: 1.404457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000340, LT: 1.639672, Top1S: 100.000000, Top1T: 58.186398 +Train:epoch: 135, loss@min: 0.962144, loss@max: 1.392754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000340, LT: 1.639721, Top1S: 100.000000, Top1T: 58.191433 +Train:epoch: 136, loss@min: 0.950373, loss@max: 1.407058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000340, LT: 1.639724, Top1S: 100.000000, Top1T: 58.186398 +Train:epoch: 137, loss@min: 0.949580, loss@max: 1.403117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000339, LT: 1.639714, Top1S: 100.000000, Top1T: 58.171284 +Train:epoch: 138, loss@min: 0.958748, loss@max: 1.396091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000339, LT: 1.639657, Top1S: 100.000000, Top1T: 58.156170 +Train:epoch: 139, loss@min: 0.961547, loss@max: 1.391036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000339, LT: 1.639598, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 140, loss@min: 0.955171, loss@max: 1.399207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000339, LT: 1.639550, Top1S: 100.000000, Top1T: 58.166245 +Train:epoch: 141, loss@min: 0.960521, loss@max: 1.390793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000339, LT: 1.639507, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 142, loss@min: 0.957595, loss@max: 1.396135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000339, LT: 1.639476, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 143, loss@min: 0.950334, loss@max: 1.405585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000339, LT: 1.639452, Top1S: 100.000000, Top1T: 58.156170 +Train:epoch: 144, loss@min: 0.965731, loss@max: 1.381913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000339, LT: 1.639433, Top1S: 100.000000, Top1T: 58.166245 +Train:epoch: 145, loss@min: 0.943085, loss@max: 1.413540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000339, LT: 1.639418, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 146, loss@min: 0.945203, loss@max: 1.402483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000339, LT: 1.639409, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 147, loss@min: 0.955296, loss@max: 1.387666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000339, LT: 1.639404, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 148, loss@min: 0.943823, loss@max: 1.407300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000339, LT: 1.639402, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 149, loss@min: 0.958366, loss@max: 1.394295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000339, LT: 1.639401, Top1S: 100.000000, Top1T: 58.161205 +Train:epoch: 150, loss@min: 0.965178, loss@max: 1.385212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000339, LT: 1.639401, Top1S: 100.000000, Top1T: 58.161205 +------------------------------------------- +Sun Jul 23 04:12:17 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Jul 23 10:50:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.051872, loss@max: 2.587365, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 2, loss@min: 1.463493, loss@max: 2.196256, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 3, loss@min: 1.324912, loss@max: 1.506059, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 4, loss@min: 1.479769, loss@max: 1.338966, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 5, loss@min: 1.475893, loss@max: 1.563632, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 6, loss@min: 1.194493, loss@max: 1.805303, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 7, loss@min: 1.051097, loss@max: 1.992486, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.126024, loss@max: 1.882381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.174856, loss@max: 1.910336, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.253148, loss@max: 1.911005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.171833, loss@max: 2.032636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.230483, loss@max: 1.832558, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 1.268971, loss@max: 2.127874, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 14, loss@min: 1.363469, loss@max: 2.285382, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.232764, loss@max: 2.384525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.522991, loss@max: 2.217443, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 1.329672, loss@max: 2.339365, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 1.258648, loss@max: 2.241815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.262255, loss@max: 2.273818, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 20, loss@min: 1.331119, loss@max: 2.270493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.338910, loss@max: 2.113503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.523109, loss@max: 2.202684, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.207031, loss@max: 2.281118, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.371389, loss@max: 2.277635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.384325, loss@max: 2.254772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.250431, loss@max: 2.258107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.308795, loss@max: 2.261731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.241720, loss@max: 2.490369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.287719, loss@max: 2.362718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.336349, loss@max: 2.378356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.175982, loss@max: 2.246117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.201943, loss@max: 2.364849, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.154765, loss@max: 2.120460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.388631, loss@max: 2.474187, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.173671, loss@max: 2.314373, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 1.211628, loss@max: 2.118358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.207933, loss@max: 2.267391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.240005, loss@max: 2.125222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.182619, loss@max: 2.026571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.143278, loss@max: 2.164146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.108610, loss@max: 2.129832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.133533, loss@max: 2.167181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.094661, loss@max: 2.166803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.085427, loss@max: 2.032024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.224970, loss@max: 2.025470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.175397, loss@max: 2.038350, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 1.157767, loss@max: 1.999436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.175095, loss@max: 1.901028, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.197611, loss@max: 1.894653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.065711, loss@max: 1.880561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.064094, loss@max: 1.856923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.123680, loss@max: 1.899212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.155926, loss@max: 1.994057, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.103034, loss@max: 1.889388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.105962, loss@max: 2.007333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.091950, loss@max: 1.968291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.077072, loss@max: 1.868365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.083532, loss@max: 1.972798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.118526, loss@max: 1.916978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.114128, loss@max: 1.936599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.117688, loss@max: 1.825616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.119265, loss@max: 1.960452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.117282, loss@max: 1.772022, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.055223, loss@max: 1.763333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.029310, loss@max: 1.687247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.028561, loss@max: 1.774467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.058131, loss@max: 1.709337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.058328, loss@max: 1.673654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.030963, loss@max: 1.749449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.023270, loss@max: 1.724225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.049117, loss@max: 1.734364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.078934, loss@max: 1.686361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.058654, loss@max: 1.704345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.984291, loss@max: 1.670704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.011352, loss@max: 1.761678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.970916, loss@max: 1.615826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962877, loss@max: 1.711891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.987533, loss@max: 1.643471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.989931, loss@max: 1.599365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.933018, loss@max: 1.678977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000299, LT: 1.457279, Top1S: 100.000000, Top1T: 60.438286Best acc: 60.438286 +Train:epoch: 81, loss@min: 0.974536, loss@max: 1.597901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000300, LT: 1.456693, Top1S: 100.000000, Top1T: 60.639797Best acc: 60.639797 +Train:epoch: 82, loss@min: 1.035961, loss@max: 1.672362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000297, LT: 1.452855, Top1S: 100.000000, Top1T: 60.811081Best acc: 60.811081 +Train:epoch: 83, loss@min: 0.971873, loss@max: 1.613679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000287, LT: 1.449497, Top1S: 100.000000, Top1T: 60.841309Best acc: 60.841309 +Train:epoch: 84, loss@min: 0.996897, loss@max: 1.535559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000282, LT: 1.448826, Top1S: 100.000000, Top1T: 60.952137Best acc: 60.952137 +Train:epoch: 85, loss@min: 1.031075, loss@max: 1.516826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000284, LT: 1.450136, Top1S: 100.000000, Top1T: 60.977329Best acc: 60.977329 +Train:epoch: 86, loss@min: 0.992841, loss@max: 1.574686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000281, LT: 1.451062, Top1S: 100.000000, Top1T: 60.896725 +Train:epoch: 87, loss@min: 1.027263, loss@max: 1.563965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000279, LT: 1.449488, Top1S: 100.000000, Top1T: 60.911835 +Train:epoch: 88, loss@min: 1.053400, loss@max: 1.549675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000284, LT: 1.446928, Top1S: 100.000000, Top1T: 61.037781Best acc: 61.037781 +Train:epoch: 89, loss@min: 1.054776, loss@max: 1.566898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000288, LT: 1.445067, Top1S: 100.000000, Top1T: 61.047855Best acc: 61.047855 +Train:epoch: 90, loss@min: 1.035061, loss@max: 1.540138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000280, LT: 1.445335, Top1S: 100.000000, Top1T: 60.942062 +Train:epoch: 91, loss@min: 0.986027, loss@max: 1.600073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000279, LT: 1.448240, Top1S: 100.000000, Top1T: 61.007553 +Train:epoch: 92, loss@min: 0.997853, loss@max: 1.541407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000279, LT: 1.450739, Top1S: 100.000000, Top1T: 60.826195 +Train:epoch: 93, loss@min: 0.968837, loss@max: 1.588964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000282, LT: 1.451191, Top1S: 100.000000, Top1T: 60.861458 +Train:epoch: 94, loss@min: 0.990760, loss@max: 1.562213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000290, LT: 1.450685, Top1S: 100.000000, Top1T: 60.811081 +Train:epoch: 95, loss@min: 0.980746, loss@max: 1.546504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000287, LT: 1.449329, Top1S: 100.000000, Top1T: 60.826195 +Train:epoch: 96, loss@min: 0.990755, loss@max: 1.502034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000280, LT: 1.448092, Top1S: 100.000000, Top1T: 60.911835 +Train:epoch: 97, loss@min: 0.996895, loss@max: 1.516494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000277, LT: 1.446603, Top1S: 100.000000, Top1T: 60.866497 +Train:epoch: 98, loss@min: 1.015329, loss@max: 1.493118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000273, LT: 1.445961, Top1S: 100.000000, Top1T: 60.821156 +Train:epoch: 99, loss@min: 0.995232, loss@max: 1.507258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000270, LT: 1.446320, Top1S: 100.000000, Top1T: 60.790932 +Train:epoch: 100, loss@min: 1.008626, loss@max: 1.516532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000268, LT: 1.446396, Top1S: 100.000000, Top1T: 60.770779 +Train:epoch: 101, loss@min: 0.959546, loss@max: 1.509953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000268, LT: 1.446499, Top1S: 100.000000, Top1T: 60.780853 +Train:epoch: 102, loss@min: 0.987343, loss@max: 1.456981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000267, LT: 1.446035, Top1S: 100.000000, Top1T: 60.861458 +Train:epoch: 103, loss@min: 0.956241, loss@max: 1.491653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000268, LT: 1.444879, Top1S: 100.000000, Top1T: 60.861458 +Train:epoch: 104, loss@min: 0.980113, loss@max: 1.487930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000268, LT: 1.444295, Top1S: 100.000000, Top1T: 60.977329 +Train:epoch: 105, loss@min: 0.961683, loss@max: 1.474735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000267, LT: 1.444455, Top1S: 100.000000, Top1T: 61.022667 +Train:epoch: 106, loss@min: 0.979729, loss@max: 1.453334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000267, LT: 1.444071, Top1S: 100.000000, Top1T: 61.078083Best acc: 61.078083 +Train:epoch: 107, loss@min: 0.964036, loss@max: 1.464206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000267, LT: 1.443292, Top1S: 100.000000, Top1T: 61.068008 +Train:epoch: 108, loss@min: 0.973110, loss@max: 1.453496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000267, LT: 1.442876, Top1S: 100.000000, Top1T: 61.068008 +Train:epoch: 109, loss@min: 0.985490, loss@max: 1.425314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000266, LT: 1.442547, Top1S: 100.000000, Top1T: 61.057934 +Train:epoch: 110, loss@min: 0.979468, loss@max: 1.452658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000266, LT: 1.442684, Top1S: 100.000000, Top1T: 61.118385Best acc: 61.118385 +Train:epoch: 111, loss@min: 1.010852, loss@max: 1.452589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000265, LT: 1.442869, Top1S: 100.000000, Top1T: 61.078083 +Train:epoch: 112, loss@min: 1.006362, loss@max: 1.408282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000265, LT: 1.442963, Top1S: 100.000000, Top1T: 61.062969 +Train:epoch: 113, loss@min: 0.969225, loss@max: 1.432715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000264, LT: 1.443000, Top1S: 100.000000, Top1T: 61.123425Best acc: 61.123425 +Train:epoch: 114, loss@min: 0.952458, loss@max: 1.472229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000263, LT: 1.442787, Top1S: 100.000000, Top1T: 61.188915Best acc: 61.188915 +Train:epoch: 115, loss@min: 0.969182, loss@max: 1.442671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000263, LT: 1.442568, Top1S: 100.000000, Top1T: 61.209064Best acc: 61.209064 +Train:epoch: 116, loss@min: 0.978338, loss@max: 1.447722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000263, LT: 1.442429, Top1S: 100.000000, Top1T: 61.168762 +Train:epoch: 117, loss@min: 0.977257, loss@max: 1.426064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000263, LT: 1.442189, Top1S: 100.000000, Top1T: 61.198990 +Train:epoch: 118, loss@min: 0.979514, loss@max: 1.442253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000263, LT: 1.441919, Top1S: 100.000000, Top1T: 61.214104Best acc: 61.214104 +Train:epoch: 119, loss@min: 0.972075, loss@max: 1.425993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000264, LT: 1.441859, Top1S: 100.000000, Top1T: 61.284634Best acc: 61.284634 +Train:epoch: 120, loss@min: 0.960231, loss@max: 1.426756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000264, LT: 1.441930, Top1S: 100.000000, Top1T: 61.259445 +Train:epoch: 121, loss@min: 0.974765, loss@max: 1.421119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000264, LT: 1.441817, Top1S: 100.000000, Top1T: 61.274555 +Train:epoch: 122, loss@min: 0.955090, loss@max: 1.446270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000264, LT: 1.441640, Top1S: 100.000000, Top1T: 61.264481 +Train:epoch: 123, loss@min: 0.973477, loss@max: 1.413625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000263, LT: 1.441728, Top1S: 100.000000, Top1T: 61.264481 +Train:epoch: 124, loss@min: 0.976553, loss@max: 1.424193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000262, LT: 1.441890, Top1S: 100.000000, Top1T: 61.239292 +Train:epoch: 125, loss@min: 0.952477, loss@max: 1.435497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000262, LT: 1.442052, Top1S: 100.000000, Top1T: 61.254406 +Train:epoch: 126, loss@min: 0.951979, loss@max: 1.436162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000262, LT: 1.442219, Top1S: 100.000000, Top1T: 61.284634 +Train:epoch: 127, loss@min: 0.963698, loss@max: 1.426789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000261, LT: 1.442274, Top1S: 100.000000, Top1T: 61.259445 +Train:epoch: 128, loss@min: 0.928782, loss@max: 1.457184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000262, LT: 1.442153, Top1S: 100.000000, Top1T: 61.224178 +Train:epoch: 129, loss@min: 0.945535, loss@max: 1.429778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000262, LT: 1.442013, Top1S: 100.000000, Top1T: 61.244331 +Train:epoch: 130, loss@min: 0.962237, loss@max: 1.430171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000262, LT: 1.442010, Top1S: 100.000000, Top1T: 61.204029 +Train:epoch: 131, loss@min: 0.943130, loss@max: 1.430551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000261, LT: 1.442127, Top1S: 100.000000, Top1T: 61.209064 +Train:epoch: 132, loss@min: 0.958140, loss@max: 1.425920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000261, LT: 1.442239, Top1S: 100.000000, Top1T: 61.214104 +Train:epoch: 133, loss@min: 0.949493, loss@max: 1.425294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000261, LT: 1.442367, Top1S: 100.000000, Top1T: 61.214104 +Train:epoch: 134, loss@min: 0.961978, loss@max: 1.419559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000261, LT: 1.442426, Top1S: 100.000000, Top1T: 61.224178 +Train:epoch: 135, loss@min: 0.943778, loss@max: 1.432690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000261, LT: 1.442435, Top1S: 100.000000, Top1T: 61.239292 +Train:epoch: 136, loss@min: 0.954225, loss@max: 1.430310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000261, LT: 1.442453, Top1S: 100.000000, Top1T: 61.254406 +Train:epoch: 137, loss@min: 0.959685, loss@max: 1.434727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000261, LT: 1.442488, Top1S: 100.000000, Top1T: 61.254406 +Train:epoch: 138, loss@min: 0.951806, loss@max: 1.429891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000261, LT: 1.442585, Top1S: 100.000000, Top1T: 61.264481 +Train:epoch: 139, loss@min: 0.953602, loss@max: 1.420362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000261, LT: 1.442691, Top1S: 100.000000, Top1T: 61.254406 +Train:epoch: 140, loss@min: 0.942264, loss@max: 1.436814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000261, LT: 1.442773, Top1S: 100.000000, Top1T: 61.259445 +Train:epoch: 141, loss@min: 0.944651, loss@max: 1.460483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000261, LT: 1.442826, Top1S: 100.000000, Top1T: 61.264481 +Train:epoch: 142, loss@min: 0.961754, loss@max: 1.429720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000260, LT: 1.442851, Top1S: 100.000000, Top1T: 61.259445 +Train:epoch: 143, loss@min: 0.966160, loss@max: 1.398101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000260, LT: 1.442843, Top1S: 100.000000, Top1T: 61.264481 +Train:epoch: 144, loss@min: 0.960527, loss@max: 1.428214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000260, LT: 1.442837, Top1S: 100.000000, Top1T: 61.264481 +Train:epoch: 145, loss@min: 0.949803, loss@max: 1.440890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000260, LT: 1.442833, Top1S: 100.000000, Top1T: 61.269520 +Train:epoch: 146, loss@min: 0.971007, loss@max: 1.403286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000260, LT: 1.442832, Top1S: 100.000000, Top1T: 61.269520 +Train:epoch: 147, loss@min: 0.957495, loss@max: 1.428335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000260, LT: 1.442831, Top1S: 100.000000, Top1T: 61.269520 +Train:epoch: 148, loss@min: 0.971776, loss@max: 1.421290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000260, LT: 1.442830, Top1S: 100.000000, Top1T: 61.269520 +Train:epoch: 149, loss@min: 0.949920, loss@max: 1.419788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000260, LT: 1.442830, Top1S: 100.000000, Top1T: 61.269520 +Train:epoch: 150, loss@min: 0.961053, loss@max: 1.425297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000260, LT: 1.442830, Top1S: 100.000000, Top1T: 61.269520 +------------------------------------------- +Mon Jul 24 13:57:14 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 10, "print_freq": 1, "savedir": "G:\\\\eurosat_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 24 16:12:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.167633, loss@max: 1.917247, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 2, loss@min: 3.502278, loss@max: 2.365168, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 3, loss@min: 2.016119, loss@max: 1.831565, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.788115, loss@max: 1.443165, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 1.483224, loss@max: 1.332895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.066776, loss@max: 1.428193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.959796, loss@max: 1.528630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.002533, loss@max: 1.577977, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 0.947949, loss@max: 1.398571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.010295, loss@max: 1.226641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.085679, loss@max: 1.186176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.192421, loss@max: 1.116149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.151884, loss@max: 1.129221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.052561, loss@max: 1.224368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.921025, loss@max: 1.293517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.804356, loss@max: 1.544882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.882850, loss@max: 1.431231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.821775, loss@max: 1.486571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.898037, loss@max: 1.388414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.876457, loss@max: 1.351596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.945256, loss@max: 1.306402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.140412, loss@max: 1.195471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.023579, loss@max: 1.284265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.906386, loss@max: 1.396832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.894239, loss@max: 1.384352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.955437, loss@max: 1.331623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.929663, loss@max: 1.393025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.989318, loss@max: 1.368510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.978593, loss@max: 1.305909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.888434, loss@max: 1.399058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.946322, loss@max: 1.387026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.046829, loss@max: 1.287355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.987496, loss@max: 1.421136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.962651, loss@max: 1.406101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.932241, loss@max: 1.461699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.010959, loss@max: 1.452037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.997873, loss@max: 1.410905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.926986, loss@max: 1.501225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.913774, loss@max: 1.546859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.924942, loss@max: 1.506802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.030367, loss@max: 1.428955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.013033, loss@max: 1.509208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.079946, loss@max: 1.527857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.103965, loss@max: 1.386216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.953992, loss@max: 1.416918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.049438, loss@max: 1.524873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.972526, loss@max: 1.381701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.920062, loss@max: 1.612101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.859163, loss@max: 1.635577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.811194, loss@max: 1.630124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.140049, loss@max: 1.492216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.028741, loss@max: 1.363264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.992051, loss@max: 1.422505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939879, loss@max: 1.415979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943769, loss@max: 1.431854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.962914, loss@max: 1.473783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.019552, loss@max: 1.341619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975521, loss@max: 1.355541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.127763, loss@max: 1.402937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.047421, loss@max: 1.369237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.028381, loss@max: 1.363383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.799821, loss@max: 1.603461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.853465, loss@max: 1.578662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.842161, loss@max: 1.561376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.924770, loss@max: 1.466537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.003831, loss@max: 1.387292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.146300, loss@max: 1.282712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.144001, loss@max: 1.325144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.017857, loss@max: 1.317154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.950329, loss@max: 1.419948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.927217, loss@max: 1.433256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.815538, loss@max: 1.583964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.864307, loss@max: 1.558114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.004203, loss@max: 1.366014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.962511, loss@max: 1.399729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.006953, loss@max: 1.385770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.956785, loss@max: 1.432374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955568, loss@max: 1.399258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.916230, loss@max: 1.494376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.939116, loss@max: 1.403399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000951, LT: 1.754909, Top1S: 100.000000, Top1T: 56.604939Best acc: 56.604939 +Train:epoch: 81, loss@min: 1.135626, loss@max: 1.415172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000935, LT: 1.734864, Top1S: 100.000000, Top1T: 56.740742Best acc: 56.740742 +Train:epoch: 82, loss@min: 1.043573, loss@max: 1.337913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000909, LT: 1.726662, Top1S: 100.000000, Top1T: 57.012344Best acc: 57.012344 +Train:epoch: 83, loss@min: 0.959453, loss@max: 1.394445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000891, LT: 1.733049, Top1S: 100.000000, Top1T: 56.987656 +Train:epoch: 84, loss@min: 0.994092, loss@max: 1.351636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000881, LT: 1.749452, Top1S: 100.000000, Top1T: 56.728394 +Train:epoch: 85, loss@min: 0.936900, loss@max: 1.399951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000875, LT: 1.764005, Top1S: 100.000000, Top1T: 56.444443 +Train:epoch: 86, loss@min: 0.957982, loss@max: 1.374721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000871, LT: 1.780340, Top1S: 100.000000, Top1T: 56.234570 +Train:epoch: 87, loss@min: 0.927226, loss@max: 1.440756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000869, LT: 1.782494, Top1S: 100.000000, Top1T: 56.234570 +Train:epoch: 88, loss@min: 0.905378, loss@max: 1.468582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000869, LT: 1.768773, Top1S: 100.000000, Top1T: 56.432098 +Train:epoch: 89, loss@min: 0.893314, loss@max: 1.430805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000873, LT: 1.751874, Top1S: 100.000000, Top1T: 56.691357 +Train:epoch: 90, loss@min: 0.955023, loss@max: 1.376861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000877, LT: 1.732787, Top1S: 100.000000, Top1T: 56.901234 +Train:epoch: 91, loss@min: 0.969367, loss@max: 1.401149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000876, LT: 1.714124, Top1S: 100.000000, Top1T: 57.111111Best acc: 57.111111 +Train:epoch: 92, loss@min: 0.954324, loss@max: 1.390728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000869, LT: 1.700266, Top1S: 100.000000, Top1T: 57.296295Best acc: 57.296295 +Train:epoch: 93, loss@min: 1.019019, loss@max: 1.340129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000861, LT: 1.696217, Top1S: 100.000000, Top1T: 57.283951 +Train:epoch: 94, loss@min: 0.954656, loss@max: 1.369384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000854, LT: 1.694766, Top1S: 100.000000, Top1T: 57.234570 +Train:epoch: 95, loss@min: 0.962711, loss@max: 1.371648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000847, LT: 1.700849, Top1S: 100.000000, Top1T: 57.111111 +Train:epoch: 96, loss@min: 0.985722, loss@max: 1.353898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000840, LT: 1.708978, Top1S: 100.000000, Top1T: 57.037037 +Train:epoch: 97, loss@min: 0.888616, loss@max: 1.475173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000835, LT: 1.714316, Top1S: 100.000000, Top1T: 57.160492 +Train:epoch: 98, loss@min: 0.900730, loss@max: 1.449658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000832, LT: 1.718985, Top1S: 100.000000, Top1T: 57.111111 +Train:epoch: 99, loss@min: 0.902099, loss@max: 1.431375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000829, LT: 1.724619, Top1S: 100.000000, Top1T: 57.049381 +Train:epoch: 100, loss@min: 0.981089, loss@max: 1.359380, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000827, LT: 1.728737, Top1S: 100.000000, Top1T: 57.037037 +Train:epoch: 101, loss@min: 0.989299, loss@max: 1.345470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000824, LT: 1.733898, Top1S: 100.000000, Top1T: 57.074074 +Train:epoch: 102, loss@min: 0.996956, loss@max: 1.352291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000823, LT: 1.734849, Top1S: 100.000000, Top1T: 57.024693 +Train:epoch: 103, loss@min: 1.041599, loss@max: 1.311694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000823, LT: 1.732619, Top1S: 100.000000, Top1T: 57.061729 +Train:epoch: 104, loss@min: 1.015926, loss@max: 1.333449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000824, LT: 1.728589, Top1S: 100.000000, Top1T: 57.037037 +Train:epoch: 105, loss@min: 0.935241, loss@max: 1.402767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000825, LT: 1.722416, Top1S: 100.000000, Top1T: 57.123455 +Train:epoch: 106, loss@min: 0.971776, loss@max: 1.352165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000824, LT: 1.718668, Top1S: 100.000000, Top1T: 57.000000 +Train:epoch: 107, loss@min: 0.951841, loss@max: 1.380112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000822, LT: 1.716591, Top1S: 100.000000, Top1T: 56.925926 +Train:epoch: 108, loss@min: 0.933183, loss@max: 1.403207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000820, LT: 1.716398, Top1S: 100.000000, Top1T: 56.925926 +Train:epoch: 109, loss@min: 0.874744, loss@max: 1.470636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000817, LT: 1.716147, Top1S: 100.000000, Top1T: 56.962963 +Train:epoch: 110, loss@min: 0.899446, loss@max: 1.449299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000815, LT: 1.715436, Top1S: 100.000000, Top1T: 56.962963 +Train:epoch: 111, loss@min: 0.900278, loss@max: 1.421801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000813, LT: 1.713777, Top1S: 100.000000, Top1T: 56.925926 +Train:epoch: 112, loss@min: 0.929317, loss@max: 1.385321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000812, LT: 1.710638, Top1S: 100.000000, Top1T: 56.925926 +Train:epoch: 113, loss@min: 0.948963, loss@max: 1.371001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000811, LT: 1.706422, Top1S: 100.000000, Top1T: 56.987656 +Train:epoch: 114, loss@min: 0.949222, loss@max: 1.370358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000810, LT: 1.702429, Top1S: 100.000000, Top1T: 57.049381 +Train:epoch: 115, loss@min: 0.927778, loss@max: 1.389260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000809, LT: 1.699303, Top1S: 100.000000, Top1T: 57.111111 +Train:epoch: 116, loss@min: 0.962639, loss@max: 1.373949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000807, LT: 1.696550, Top1S: 100.000000, Top1T: 57.222221 +Train:epoch: 117, loss@min: 0.977746, loss@max: 1.353854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000806, LT: 1.694518, Top1S: 100.000000, Top1T: 57.246914 +Train:epoch: 118, loss@min: 0.999942, loss@max: 1.337448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000805, LT: 1.694096, Top1S: 100.000000, Top1T: 57.222221 +Train:epoch: 119, loss@min: 0.965065, loss@max: 1.363023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000805, LT: 1.693618, Top1S: 100.000000, Top1T: 57.283951 +Train:epoch: 120, loss@min: 0.952530, loss@max: 1.371467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000804, LT: 1.693290, Top1S: 100.000000, Top1T: 57.320988Best acc: 57.320988 +Train:epoch: 121, loss@min: 1.009790, loss@max: 1.315191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000804, LT: 1.694815, Top1S: 100.000000, Top1T: 57.382717Best acc: 57.382717 +Train:epoch: 122, loss@min: 0.948319, loss@max: 1.370526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000803, LT: 1.696712, Top1S: 100.000000, Top1T: 57.395061Best acc: 57.395061 +Train:epoch: 123, loss@min: 0.952353, loss@max: 1.364124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000803, LT: 1.698733, Top1S: 100.000000, Top1T: 57.358025 +Train:epoch: 124, loss@min: 0.928154, loss@max: 1.390883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000802, LT: 1.700223, Top1S: 100.000000, Top1T: 57.419754Best acc: 57.419754 +Train:epoch: 125, loss@min: 0.971906, loss@max: 1.343759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000801, LT: 1.701694, Top1S: 100.000000, Top1T: 57.419754 +Train:epoch: 126, loss@min: 0.937485, loss@max: 1.379197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000800, LT: 1.702739, Top1S: 100.000000, Top1T: 57.370369 +Train:epoch: 127, loss@min: 0.945265, loss@max: 1.377033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000799, LT: 1.703740, Top1S: 100.000000, Top1T: 57.308643 +Train:epoch: 128, loss@min: 0.968848, loss@max: 1.350675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000798, LT: 1.705159, Top1S: 100.000000, Top1T: 57.271606 +Train:epoch: 129, loss@min: 0.963627, loss@max: 1.346617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000798, LT: 1.706262, Top1S: 100.000000, Top1T: 57.197533 +Train:epoch: 130, loss@min: 1.008186, loss@max: 1.333617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000797, LT: 1.706953, Top1S: 100.000000, Top1T: 57.185184 +Train:epoch: 131, loss@min: 0.991053, loss@max: 1.333756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000796, LT: 1.707655, Top1S: 100.000000, Top1T: 57.123455 +Train:epoch: 132, loss@min: 0.937642, loss@max: 1.394584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000796, LT: 1.708724, Top1S: 100.000000, Top1T: 57.148148 +Train:epoch: 133, loss@min: 0.944224, loss@max: 1.381543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000796, LT: 1.709485, Top1S: 100.000000, Top1T: 57.160492 +Train:epoch: 134, loss@min: 0.916749, loss@max: 1.397735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000795, LT: 1.709924, Top1S: 100.000000, Top1T: 57.086418 +Train:epoch: 135, loss@min: 0.933846, loss@max: 1.390009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000795, LT: 1.710039, Top1S: 100.000000, Top1T: 57.037037 +Train:epoch: 136, loss@min: 0.955586, loss@max: 1.375166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000795, LT: 1.709643, Top1S: 100.000000, Top1T: 57.061729 +Train:epoch: 137, loss@min: 0.971290, loss@max: 1.346601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000795, LT: 1.709235, Top1S: 100.000000, Top1T: 57.098766 +Train:epoch: 138, loss@min: 0.972839, loss@max: 1.351343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000795, LT: 1.708846, Top1S: 100.000000, Top1T: 57.123455 +Train:epoch: 139, loss@min: 0.947164, loss@max: 1.368815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000794, LT: 1.708582, Top1S: 100.000000, Top1T: 57.160492 +Train:epoch: 140, loss@min: 0.947665, loss@max: 1.383986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000794, LT: 1.708550, Top1S: 100.000000, Top1T: 57.160492 +Train:epoch: 141, loss@min: 0.920798, loss@max: 1.403629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000794, LT: 1.708461, Top1S: 100.000000, Top1T: 57.160492 +Train:epoch: 142, loss@min: 0.922648, loss@max: 1.394408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000794, LT: 1.708389, Top1S: 100.000000, Top1T: 57.172840 +Train:epoch: 143, loss@min: 0.949901, loss@max: 1.376239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000794, LT: 1.708325, Top1S: 100.000000, Top1T: 57.185184 +Train:epoch: 144, loss@min: 0.931285, loss@max: 1.387184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000794, LT: 1.708221, Top1S: 100.000000, Top1T: 57.172840 +Train:epoch: 145, loss@min: 0.952502, loss@max: 1.396564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000794, LT: 1.708194, Top1S: 100.000000, Top1T: 57.172840 +Train:epoch: 146, loss@min: 0.914889, loss@max: 1.410999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000794, LT: 1.708171, Top1S: 100.000000, Top1T: 57.172840 +Train:epoch: 147, loss@min: 0.923218, loss@max: 1.428080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000794, LT: 1.708138, Top1S: 100.000000, Top1T: 57.172840 +Train:epoch: 148, loss@min: 0.933234, loss@max: 1.379207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000794, LT: 1.708125, Top1S: 100.000000, Top1T: 57.172840 +Train:epoch: 149, loss@min: 0.925019, loss@max: 1.398762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000794, LT: 1.708121, Top1S: 100.000000, Top1T: 57.160492 +Train:epoch: 150, loss@min: 0.918076, loss@max: 1.425080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000794, LT: 1.708121, Top1S: 100.000000, Top1T: 57.160492 +------------------------------------------- +Mon Jul 24 21:45:55 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 10, "print_freq": 1, "savedir": "G:\\\\eurosat_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 24 22:51:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.001553, loss@max: 2.164620, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 2, loss@min: 2.627412, loss@max: 2.316500, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 3, loss@min: 1.921024, loss@max: 1.853955, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 4, loss@min: 1.618732, loss@max: 1.417641, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 1.689357, loss@max: 1.281315, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 6, loss@min: 1.465097, loss@max: 1.281417, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 7, loss@min: 1.369331, loss@max: 1.384887, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 8, loss@min: 0.908368, loss@max: 1.537324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.877657, loss@max: 1.586038, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 0.879719, loss@max: 1.523239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.199094, loss@max: 1.413265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.104146, loss@max: 1.251546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.030131, loss@max: 1.209341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.026080, loss@max: 1.224065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.031911, loss@max: 1.277911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.928382, loss@max: 1.320229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.880014, loss@max: 1.387542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.965215, loss@max: 1.420525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.904949, loss@max: 1.377231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.932066, loss@max: 1.323281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.905776, loss@max: 1.382754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.955502, loss@max: 1.320712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.994163, loss@max: 1.300840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.996412, loss@max: 1.306677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.969121, loss@max: 1.352304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968498, loss@max: 1.363474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.923731, loss@max: 1.455801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.930621, loss@max: 1.385631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.958942, loss@max: 1.308020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949011, loss@max: 1.318242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.010624, loss@max: 1.287038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.961774, loss@max: 1.354494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.966987, loss@max: 1.360826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.878849, loss@max: 1.406284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.890717, loss@max: 1.378365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.896781, loss@max: 1.411256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.959547, loss@max: 1.319458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.052926, loss@max: 1.311543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948368, loss@max: 1.354193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.016896, loss@max: 1.356717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.917047, loss@max: 1.453838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966033, loss@max: 1.352686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.006636, loss@max: 1.420489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.949902, loss@max: 1.378883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.942962, loss@max: 1.397995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.978406, loss@max: 1.372375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.941966, loss@max: 1.383488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.902534, loss@max: 1.458077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945832, loss@max: 1.435886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.034061, loss@max: 1.359860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.033700, loss@max: 1.311855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.964691, loss@max: 1.420565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.921530, loss@max: 1.469934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.896832, loss@max: 1.486856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.944633, loss@max: 1.462057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949164, loss@max: 1.394026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.001894, loss@max: 1.389650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.999104, loss@max: 1.362666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.998149, loss@max: 1.358933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.998046, loss@max: 1.376468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.975950, loss@max: 1.385389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.886250, loss@max: 1.482113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.911678, loss@max: 1.482057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.969099, loss@max: 1.405822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.931433, loss@max: 1.403284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.939780, loss@max: 1.381747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.012436, loss@max: 1.364915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.023070, loss@max: 1.332314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.983772, loss@max: 1.346081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.909792, loss@max: 1.445199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.972404, loss@max: 1.369915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.978656, loss@max: 1.390031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.932511, loss@max: 1.445652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.992906, loss@max: 1.424446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.928575, loss@max: 1.413977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.976265, loss@max: 1.370259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963729, loss@max: 1.375413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.949867, loss@max: 1.400283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.951735, loss@max: 1.388696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.895436, loss@max: 1.446430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000740, LT: 1.529169, Top1S: 100.000000, Top1T: 61.753086Best acc: 61.753086 +Train:epoch: 81, loss@min: 0.935805, loss@max: 1.413475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000736, LT: 1.539025, Top1S: 100.000000, Top1T: 61.469135 +Train:epoch: 82, loss@min: 0.990436, loss@max: 1.362078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000738, LT: 1.535600, Top1S: 100.000000, Top1T: 61.481480 +Train:epoch: 83, loss@min: 0.994314, loss@max: 1.372475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000737, LT: 1.533357, Top1S: 100.000000, Top1T: 61.641975 +Train:epoch: 84, loss@min: 0.990048, loss@max: 1.368214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000734, LT: 1.533945, Top1S: 100.000000, Top1T: 61.679012 +Train:epoch: 85, loss@min: 0.974456, loss@max: 1.363219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000732, LT: 1.541203, Top1S: 100.000000, Top1T: 61.592594 +Train:epoch: 86, loss@min: 0.947431, loss@max: 1.371904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000728, LT: 1.539130, Top1S: 100.000000, Top1T: 61.604939 +Train:epoch: 87, loss@min: 0.923876, loss@max: 1.458297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000723, LT: 1.533659, Top1S: 100.000000, Top1T: 61.802467Best acc: 61.802467 +Train:epoch: 88, loss@min: 0.888236, loss@max: 1.475708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000719, LT: 1.524743, Top1S: 100.000000, Top1T: 61.950619Best acc: 61.950619 +Train:epoch: 89, loss@min: 0.973140, loss@max: 1.391327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000716, LT: 1.528266, Top1S: 100.000000, Top1T: 61.814816 +Train:epoch: 90, loss@min: 0.957997, loss@max: 1.366798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000714, LT: 1.539411, Top1S: 100.000000, Top1T: 61.382717 +Train:epoch: 91, loss@min: 0.996610, loss@max: 1.335662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000714, LT: 1.552641, Top1S: 100.000000, Top1T: 61.049381 +Train:epoch: 92, loss@min: 0.991384, loss@max: 1.334377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000716, LT: 1.568807, Top1S: 100.000000, Top1T: 60.765430 +Train:epoch: 93, loss@min: 1.038072, loss@max: 1.385293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000715, LT: 1.568527, Top1S: 100.000000, Top1T: 60.864197 +Train:epoch: 94, loss@min: 0.964481, loss@max: 1.390809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000709, LT: 1.552305, Top1S: 100.000000, Top1T: 61.395061 +Train:epoch: 95, loss@min: 0.938853, loss@max: 1.389367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000705, LT: 1.537678, Top1S: 100.000000, Top1T: 61.765430 +Train:epoch: 96, loss@min: 0.908452, loss@max: 1.429093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000702, LT: 1.524141, Top1S: 100.000000, Top1T: 62.012344Best acc: 62.012344 +Train:epoch: 97, loss@min: 0.907084, loss@max: 1.412105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000700, LT: 1.516491, Top1S: 100.000000, Top1T: 62.234570Best acc: 62.234570 +Train:epoch: 98, loss@min: 0.925721, loss@max: 1.406245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000697, LT: 1.514598, Top1S: 100.000000, Top1T: 62.271606Best acc: 62.271606 +Train:epoch: 99, loss@min: 0.954554, loss@max: 1.388343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000695, LT: 1.520238, Top1S: 100.000000, Top1T: 62.222221 +Train:epoch: 100, loss@min: 0.986968, loss@max: 1.334527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000697, LT: 1.528334, Top1S: 100.000000, Top1T: 61.975307 +Train:epoch: 101, loss@min: 0.977157, loss@max: 1.343225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000702, LT: 1.536467, Top1S: 100.000000, Top1T: 62.012344 +Train:epoch: 102, loss@min: 0.962086, loss@max: 1.362742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000704, LT: 1.536359, Top1S: 100.000000, Top1T: 61.938271 +Train:epoch: 103, loss@min: 0.924698, loss@max: 1.410760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000701, LT: 1.528704, Top1S: 100.000000, Top1T: 62.111111 +Train:epoch: 104, loss@min: 0.922693, loss@max: 1.409575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000697, LT: 1.518114, Top1S: 100.000000, Top1T: 62.296295Best acc: 62.296295 +Train:epoch: 105, loss@min: 0.951751, loss@max: 1.362911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000693, LT: 1.507615, Top1S: 100.000000, Top1T: 62.567902Best acc: 62.567902 +Train:epoch: 106, loss@min: 0.969628, loss@max: 1.355565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000691, LT: 1.498347, Top1S: 100.000000, Top1T: 62.654320Best acc: 62.654320 +Train:epoch: 107, loss@min: 0.953804, loss@max: 1.362443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000690, LT: 1.494176, Top1S: 100.000000, Top1T: 62.728394Best acc: 62.728394 +Train:epoch: 108, loss@min: 0.953488, loss@max: 1.371353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000689, LT: 1.494339, Top1S: 100.000000, Top1T: 62.716049 +Train:epoch: 109, loss@min: 0.954033, loss@max: 1.371989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000690, LT: 1.501287, Top1S: 100.000000, Top1T: 62.654320 +Train:epoch: 110, loss@min: 0.950234, loss@max: 1.363905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000691, LT: 1.511777, Top1S: 100.000000, Top1T: 62.370369 +Train:epoch: 111, loss@min: 0.945711, loss@max: 1.371152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000693, LT: 1.518164, Top1S: 100.000000, Top1T: 62.259258 +Train:epoch: 112, loss@min: 0.944342, loss@max: 1.371866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000692, LT: 1.519427, Top1S: 100.000000, Top1T: 62.222221 +Train:epoch: 113, loss@min: 0.985978, loss@max: 1.408325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000690, LT: 1.515139, Top1S: 100.000000, Top1T: 62.358025 +Train:epoch: 114, loss@min: 0.920001, loss@max: 1.400474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000687, LT: 1.508283, Top1S: 100.000000, Top1T: 62.555557 +Train:epoch: 115, loss@min: 0.928492, loss@max: 1.392229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000684, LT: 1.502821, Top1S: 100.000000, Top1T: 62.629631 +Train:epoch: 116, loss@min: 0.926436, loss@max: 1.391687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000682, LT: 1.497324, Top1S: 100.000000, Top1T: 62.753086Best acc: 62.753086 +Train:epoch: 117, loss@min: 0.961678, loss@max: 1.355102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000681, LT: 1.493335, Top1S: 100.000000, Top1T: 62.753086 +Train:epoch: 118, loss@min: 0.973959, loss@max: 1.341803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000680, LT: 1.491248, Top1S: 100.000000, Top1T: 62.802467Best acc: 62.802467 +Train:epoch: 119, loss@min: 0.954886, loss@max: 1.368108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000680, LT: 1.489716, Top1S: 100.000000, Top1T: 62.839504Best acc: 62.839504 +Train:epoch: 120, loss@min: 0.943560, loss@max: 1.376415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000680, LT: 1.488883, Top1S: 100.000000, Top1T: 62.851852Best acc: 62.851852 +Train:epoch: 121, loss@min: 0.968580, loss@max: 1.354303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000681, LT: 1.490186, Top1S: 100.000000, Top1T: 62.790123 +Train:epoch: 122, loss@min: 0.947341, loss@max: 1.361508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000681, LT: 1.491337, Top1S: 100.000000, Top1T: 62.753086 +Train:epoch: 123, loss@min: 0.968834, loss@max: 1.348083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000682, LT: 1.493254, Top1S: 100.000000, Top1T: 62.740742 +Train:epoch: 124, loss@min: 0.951412, loss@max: 1.365753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000683, LT: 1.496559, Top1S: 100.000000, Top1T: 62.666668 +Train:epoch: 125, loss@min: 0.937626, loss@max: 1.372839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000683, LT: 1.498724, Top1S: 100.000000, Top1T: 62.617283 +Train:epoch: 126, loss@min: 0.960258, loss@max: 1.353232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000684, LT: 1.500896, Top1S: 100.000000, Top1T: 62.592594 +Train:epoch: 127, loss@min: 0.939988, loss@max: 1.376162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000684, LT: 1.501976, Top1S: 100.000000, Top1T: 62.592594 +Train:epoch: 128, loss@min: 0.953278, loss@max: 1.360533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000683, LT: 1.502462, Top1S: 100.000000, Top1T: 62.604939 +Train:epoch: 129, loss@min: 0.943029, loss@max: 1.378186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000682, LT: 1.501661, Top1S: 100.000000, Top1T: 62.617283 +Train:epoch: 130, loss@min: 0.943459, loss@max: 1.374726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000682, LT: 1.500216, Top1S: 100.000000, Top1T: 62.629631 +Train:epoch: 131, loss@min: 0.954662, loss@max: 1.364481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000681, LT: 1.498714, Top1S: 100.000000, Top1T: 62.641975 +Train:epoch: 132, loss@min: 0.966443, loss@max: 1.346264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000680, LT: 1.497416, Top1S: 100.000000, Top1T: 62.691357 +Train:epoch: 133, loss@min: 0.944538, loss@max: 1.365701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000679, LT: 1.496396, Top1S: 100.000000, Top1T: 62.716049 +Train:epoch: 134, loss@min: 0.938239, loss@max: 1.376262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000679, LT: 1.495136, Top1S: 100.000000, Top1T: 62.728394 +Train:epoch: 135, loss@min: 0.935139, loss@max: 1.379555, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000678, LT: 1.493954, Top1S: 100.000000, Top1T: 62.716049 +Train:epoch: 136, loss@min: 0.938678, loss@max: 1.372116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000678, LT: 1.492974, Top1S: 100.000000, Top1T: 62.716049 +Train:epoch: 137, loss@min: 0.934520, loss@max: 1.379434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000677, LT: 1.492311, Top1S: 100.000000, Top1T: 62.728394 +Train:epoch: 138, loss@min: 0.931283, loss@max: 1.378432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000677, LT: 1.491639, Top1S: 100.000000, Top1T: 62.728394 +Train:epoch: 139, loss@min: 0.921293, loss@max: 1.395214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000677, LT: 1.491091, Top1S: 100.000000, Top1T: 62.740742 +Train:epoch: 140, loss@min: 0.941581, loss@max: 1.368833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000677, LT: 1.490694, Top1S: 100.000000, Top1T: 62.740742 +Train:epoch: 141, loss@min: 0.971629, loss@max: 1.353339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000676, LT: 1.490466, Top1S: 100.000000, Top1T: 62.753086 +Train:epoch: 142, loss@min: 0.962834, loss@max: 1.357473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000676, LT: 1.490276, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 143, loss@min: 0.954312, loss@max: 1.360172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000676, LT: 1.490143, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 144, loss@min: 0.927284, loss@max: 1.386595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000676, LT: 1.490042, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 145, loss@min: 0.947162, loss@max: 1.368618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000676, LT: 1.489982, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 146, loss@min: 0.945075, loss@max: 1.378477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000676, LT: 1.489942, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 147, loss@min: 0.939472, loss@max: 1.379497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000676, LT: 1.489923, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 148, loss@min: 0.965610, loss@max: 1.385964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000676, LT: 1.489921, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 149, loss@min: 0.946423, loss@max: 1.361571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000676, LT: 1.489921, Top1S: 100.000000, Top1T: 62.765430 +Train:epoch: 150, loss@min: 0.929875, loss@max: 1.385718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000676, LT: 1.489921, Top1S: 100.000000, Top1T: 62.765430 +------------------------------------------- +Tue Jul 25 05:24:52 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 10, "print_freq": 1, "savedir": "G:\\\\eurosat_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Jul 25 11:18:56 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.904802, loss@max: 2.429779, Top1S acc: 100.000000, Top1T acc: 42.500000 +Train:epoch: 2, loss@min: 2.945791, loss@max: 2.442674, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.236441, loss@max: 2.003085, Top1S acc: 100.000000, Top1T acc: 77.500000 +Train:epoch: 4, loss@min: 1.893053, loss@max: 1.562624, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 5, loss@min: 1.964456, loss@max: 1.388411, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 6, loss@min: 1.912967, loss@max: 1.356815, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 7, loss@min: 1.652859, loss@max: 1.357173, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 8, loss@min: 1.439641, loss@max: 1.440313, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 9, loss@min: 1.208143, loss@max: 1.486202, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 1.004540, loss@max: 1.531454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.043356, loss@max: 1.569570, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.991751, loss@max: 1.557993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.064084, loss@max: 1.489568, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 14, loss@min: 1.045594, loss@max: 1.344749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.071233, loss@max: 1.269989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.152607, loss@max: 1.293837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.056647, loss@max: 1.301650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.055020, loss@max: 1.334456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.928735, loss@max: 1.376051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.924578, loss@max: 1.399551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.989597, loss@max: 1.401595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.977295, loss@max: 1.359653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.984685, loss@max: 1.384461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.937654, loss@max: 1.402994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.938900, loss@max: 1.379677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.933357, loss@max: 1.351816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.994516, loss@max: 1.262839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.034893, loss@max: 1.280230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.037486, loss@max: 1.265203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.028767, loss@max: 1.332865, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 31, loss@min: 0.925714, loss@max: 1.403272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.864857, loss@max: 1.426488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.920229, loss@max: 1.439403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.934878, loss@max: 1.366981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.987206, loss@max: 1.294106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.026594, loss@max: 1.312394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.998949, loss@max: 1.331231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.982937, loss@max: 1.322154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.007219, loss@max: 1.374047, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 40, loss@min: 0.935225, loss@max: 1.370670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.957922, loss@max: 1.338374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.939463, loss@max: 1.378530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.916465, loss@max: 1.405016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954502, loss@max: 1.367674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.995104, loss@max: 1.376592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.949836, loss@max: 1.340962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.992833, loss@max: 1.348226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.940911, loss@max: 1.365275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.977423, loss@max: 1.392336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.935704, loss@max: 1.399707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950022, loss@max: 1.394100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.968482, loss@max: 1.348109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.989642, loss@max: 1.335474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.969765, loss@max: 1.354580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.954758, loss@max: 1.358681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.965076, loss@max: 1.357022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.915203, loss@max: 1.408823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.927314, loss@max: 1.400645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937301, loss@max: 1.395464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.955082, loss@max: 1.360341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.960348, loss@max: 1.356452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.987843, loss@max: 1.346109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.977629, loss@max: 1.356865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.942723, loss@max: 1.377392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.953597, loss@max: 1.379827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.930669, loss@max: 1.387594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.962288, loss@max: 1.369076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.961351, loss@max: 1.364479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.943148, loss@max: 1.378419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945864, loss@max: 1.368282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.940592, loss@max: 1.396363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.956612, loss@max: 1.372123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.963256, loss@max: 1.353257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965756, loss@max: 1.357645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.963262, loss@max: 1.355028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.961467, loss@max: 1.353585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.939956, loss@max: 1.377342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.934502, loss@max: 1.386987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945036, loss@max: 1.379090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.958407, loss@max: 1.381375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000755, LT: 0.859908, Top1S: 100.000000, Top1T: 76.703705Best acc: 76.703705 +Train:epoch: 81, loss@min: 0.949633, loss@max: 1.369872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000753, LT: 0.854951, Top1S: 100.000000, Top1T: 76.765434Best acc: 76.765434 +Train:epoch: 82, loss@min: 0.960285, loss@max: 1.355556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000750, LT: 0.852999, Top1S: 100.000000, Top1T: 76.802467Best acc: 76.802467 +Train:epoch: 83, loss@min: 0.958941, loss@max: 1.369837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000744, LT: 0.850673, Top1S: 100.000000, Top1T: 76.851852Best acc: 76.851852 +Train:epoch: 84, loss@min: 0.946237, loss@max: 1.366499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000736, LT: 0.849934, Top1S: 100.000000, Top1T: 76.876541Best acc: 76.876541 +Train:epoch: 85, loss@min: 0.943221, loss@max: 1.372004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000729, LT: 0.847788, Top1S: 100.000000, Top1T: 76.901237Best acc: 76.901237 +Train:epoch: 86, loss@min: 0.969796, loss@max: 1.379981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000724, LT: 0.842453, Top1S: 100.000000, Top1T: 77.074074Best acc: 77.074074 +Train:epoch: 87, loss@min: 0.949637, loss@max: 1.368442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000720, LT: 0.836708, Top1S: 100.000000, Top1T: 77.197533Best acc: 77.197533 +Train:epoch: 88, loss@min: 0.963612, loss@max: 1.368561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000715, LT: 0.830265, Top1S: 100.000000, Top1T: 77.296295Best acc: 77.296295 +Train:epoch: 89, loss@min: 0.949112, loss@max: 1.374220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000709, LT: 0.826448, Top1S: 100.000000, Top1T: 77.333336Best acc: 77.333336 +Train:epoch: 90, loss@min: 0.954020, loss@max: 1.364846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000704, LT: 0.823617, Top1S: 100.000000, Top1T: 77.395065Best acc: 77.395065 +Train:epoch: 91, loss@min: 0.940489, loss@max: 1.386166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000699, LT: 0.823234, Top1S: 100.000000, Top1T: 77.419754Best acc: 77.419754 +Train:epoch: 92, loss@min: 0.943501, loss@max: 1.376891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000696, LT: 0.821166, Top1S: 100.000000, Top1T: 77.481483Best acc: 77.481483 +Train:epoch: 93, loss@min: 0.960838, loss@max: 1.371466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000693, LT: 0.818156, Top1S: 100.000000, Top1T: 77.555557Best acc: 77.555557 +Train:epoch: 94, loss@min: 0.946956, loss@max: 1.374440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000690, LT: 0.814831, Top1S: 100.000000, Top1T: 77.604935Best acc: 77.604935 +Train:epoch: 95, loss@min: 0.980987, loss@max: 1.368840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000688, LT: 0.808138, Top1S: 100.000000, Top1T: 77.753090Best acc: 77.753090 +Train:epoch: 96, loss@min: 0.956828, loss@max: 1.356483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000686, LT: 0.803046, Top1S: 100.000000, Top1T: 77.876541Best acc: 77.876541 +Train:epoch: 97, loss@min: 0.946439, loss@max: 1.369792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000682, LT: 0.800663, Top1S: 100.000000, Top1T: 77.876541 +Train:epoch: 98, loss@min: 0.953960, loss@max: 1.372584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000678, LT: 0.799441, Top1S: 100.000000, Top1T: 77.901237Best acc: 77.901237 +Train:epoch: 99, loss@min: 0.942286, loss@max: 1.380094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000673, LT: 0.799021, Top1S: 100.000000, Top1T: 77.925926Best acc: 77.925926 +Train:epoch: 100, loss@min: 0.937319, loss@max: 1.372698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000669, LT: 0.799058, Top1S: 100.000000, Top1T: 77.864197 +Train:epoch: 101, loss@min: 0.959205, loss@max: 1.369526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000666, LT: 0.798198, Top1S: 100.000000, Top1T: 77.901237 +Train:epoch: 102, loss@min: 0.957999, loss@max: 1.355567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000665, LT: 0.796004, Top1S: 100.000000, Top1T: 77.913582 +Train:epoch: 103, loss@min: 0.957605, loss@max: 1.359251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000664, LT: 0.793441, Top1S: 100.000000, Top1T: 77.925926 +Train:epoch: 104, loss@min: 0.951302, loss@max: 1.361894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000664, LT: 0.791297, Top1S: 100.000000, Top1T: 78.000000Best acc: 78.000000 +Train:epoch: 105, loss@min: 0.956366, loss@max: 1.364853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000663, LT: 0.790523, Top1S: 100.000000, Top1T: 78.012344Best acc: 78.012344 +Train:epoch: 106, loss@min: 0.939192, loss@max: 1.375966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000662, LT: 0.790861, Top1S: 100.000000, Top1T: 77.987656 +Train:epoch: 107, loss@min: 0.935695, loss@max: 1.381306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000659, LT: 0.791719, Top1S: 100.000000, Top1T: 77.950615 +Train:epoch: 108, loss@min: 0.953040, loss@max: 1.367645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000657, LT: 0.792746, Top1S: 100.000000, Top1T: 77.925926 +Train:epoch: 109, loss@min: 0.948346, loss@max: 1.365675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000655, LT: 0.793198, Top1S: 100.000000, Top1T: 77.938271 +Train:epoch: 110, loss@min: 0.961841, loss@max: 1.371026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000654, LT: 0.793044, Top1S: 100.000000, Top1T: 77.925926 +Train:epoch: 111, loss@min: 0.941989, loss@max: 1.377656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000653, LT: 0.792874, Top1S: 100.000000, Top1T: 77.913582 +Train:epoch: 112, loss@min: 0.959028, loss@max: 1.363916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000652, LT: 0.792511, Top1S: 100.000000, Top1T: 77.925926 +Train:epoch: 113, loss@min: 0.974145, loss@max: 1.362829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000650, LT: 0.791830, Top1S: 100.000000, Top1T: 77.950615 +Train:epoch: 114, loss@min: 0.957926, loss@max: 1.366219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000649, LT: 0.791164, Top1S: 100.000000, Top1T: 77.950615 +Train:epoch: 115, loss@min: 0.948413, loss@max: 1.365384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000647, LT: 0.790126, Top1S: 100.000000, Top1T: 78.024689Best acc: 78.024689 +Train:epoch: 116, loss@min: 0.967807, loss@max: 1.389963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000646, LT: 0.788446, Top1S: 100.000000, Top1T: 78.111115Best acc: 78.111115 +Train:epoch: 117, loss@min: 0.943345, loss@max: 1.374888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000646, LT: 0.786806, Top1S: 100.000000, Top1T: 78.148148Best acc: 78.148148 +Train:epoch: 118, loss@min: 0.937186, loss@max: 1.378752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000645, LT: 0.785345, Top1S: 100.000000, Top1T: 78.098763 +Train:epoch: 119, loss@min: 0.955526, loss@max: 1.367154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000644, LT: 0.784478, Top1S: 100.000000, Top1T: 78.049385 +Train:epoch: 120, loss@min: 0.951897, loss@max: 1.378221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000644, LT: 0.784130, Top1S: 100.000000, Top1T: 78.123459 +Train:epoch: 121, loss@min: 0.941839, loss@max: 1.370708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000643, LT: 0.783948, Top1S: 100.000000, Top1T: 78.148148 +Train:epoch: 122, loss@min: 0.977379, loss@max: 1.393160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000642, LT: 0.783750, Top1S: 100.000000, Top1T: 78.185188Best acc: 78.185188 +Train:epoch: 123, loss@min: 0.951295, loss@max: 1.368840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000642, LT: 0.783451, Top1S: 100.000000, Top1T: 78.148148 +Train:epoch: 124, loss@min: 0.961636, loss@max: 1.359636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000641, LT: 0.782964, Top1S: 100.000000, Top1T: 78.123459 +Train:epoch: 125, loss@min: 0.957245, loss@max: 1.358106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000640, LT: 0.782554, Top1S: 100.000000, Top1T: 78.111115 +Train:epoch: 126, loss@min: 0.958825, loss@max: 1.361421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000639, LT: 0.782091, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 127, loss@min: 0.956724, loss@max: 1.360972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000639, LT: 0.781747, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 128, loss@min: 0.950209, loss@max: 1.368790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000638, LT: 0.781473, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 129, loss@min: 0.940987, loss@max: 1.374077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000638, LT: 0.781256, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 130, loss@min: 0.942821, loss@max: 1.371450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000637, LT: 0.781114, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 131, loss@min: 0.944969, loss@max: 1.379462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000637, LT: 0.780939, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 132, loss@min: 0.936854, loss@max: 1.383971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000637, LT: 0.780799, Top1S: 100.000000, Top1T: 78.135803 +Train:epoch: 133, loss@min: 0.944774, loss@max: 1.374695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000637, LT: 0.780679, Top1S: 100.000000, Top1T: 78.160492 +Train:epoch: 134, loss@min: 0.948339, loss@max: 1.378407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000637, LT: 0.780545, Top1S: 100.000000, Top1T: 78.148148 +Train:epoch: 135, loss@min: 0.953053, loss@max: 1.362017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000637, LT: 0.780387, Top1S: 100.000000, Top1T: 78.148148 +Train:epoch: 136, loss@min: 0.948205, loss@max: 1.367656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000637, LT: 0.780234, Top1S: 100.000000, Top1T: 78.160492 +Train:epoch: 137, loss@min: 0.942138, loss@max: 1.375937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000637, LT: 0.780144, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 138, loss@min: 0.944385, loss@max: 1.368231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000636, LT: 0.780053, Top1S: 100.000000, Top1T: 78.197533Best acc: 78.197533 +Train:epoch: 139, loss@min: 0.951839, loss@max: 1.359664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000636, LT: 0.779956, Top1S: 100.000000, Top1T: 78.197533 +Train:epoch: 140, loss@min: 0.947080, loss@max: 1.363882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000636, LT: 0.779883, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 141, loss@min: 0.952111, loss@max: 1.368996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000636, LT: 0.779836, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 142, loss@min: 0.951535, loss@max: 1.368193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000636, LT: 0.779823, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 143, loss@min: 0.951883, loss@max: 1.369626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000636, LT: 0.779834, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 144, loss@min: 0.952844, loss@max: 1.362000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000636, LT: 0.779844, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 145, loss@min: 0.958531, loss@max: 1.371068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000636, LT: 0.779860, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 146, loss@min: 0.954233, loss@max: 1.361528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000636, LT: 0.779872, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 147, loss@min: 0.948115, loss@max: 1.363290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000636, LT: 0.779880, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 148, loss@min: 0.948588, loss@max: 1.367328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000636, LT: 0.779883, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 149, loss@min: 0.956184, loss@max: 1.363223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000636, LT: 0.779884, Top1S: 100.000000, Top1T: 78.185188 +Train:epoch: 150, loss@min: 0.947523, loss@max: 1.362850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000636, LT: 0.779884, Top1S: 100.000000, Top1T: 78.185188 +------------------------------------------- +Tue Jul 25 16:12:13 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 10, "print_freq": 1, "savedir": "G:\\\\eurosat_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Jul 25 17:37:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.299453, loss@max: 2.897643, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 2, loss@min: 3.515211, loss@max: 2.720316, Top1S acc: 100.000000, Top1T acc: 55.000000 +Train:epoch: 3, loss@min: 2.589626, loss@max: 2.038955, Top1S acc: 100.000000, Top1T acc: 67.500000 +Train:epoch: 4, loss@min: 2.522449, loss@max: 1.598094, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 5, loss@min: 2.485007, loss@max: 1.409478, Top1S acc: 100.000000, Top1T acc: 78.750000 +Train:epoch: 6, loss@min: 2.373132, loss@max: 1.431365, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 7, loss@min: 1.905440, loss@max: 1.499551, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 8, loss@min: 1.645262, loss@max: 1.681298, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 9, loss@min: 1.232462, loss@max: 1.757544, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 10, loss@min: 1.351253, loss@max: 1.813847, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 11, loss@min: 1.372516, loss@max: 1.678564, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 12, loss@min: 1.336034, loss@max: 1.522396, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 13, loss@min: 1.378709, loss@max: 1.397994, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 14, loss@min: 1.363291, loss@max: 1.379885, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 15, loss@min: 1.240697, loss@max: 1.382284, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 16, loss@min: 1.209639, loss@max: 1.469268, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 17, loss@min: 1.150754, loss@max: 1.533467, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 18, loss@min: 1.149115, loss@max: 1.550018, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 19, loss@min: 1.094115, loss@max: 1.509339, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 20, loss@min: 1.104884, loss@max: 1.460705, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 21, loss@min: 1.176215, loss@max: 1.449835, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.089068, loss@max: 1.406933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.068451, loss@max: 1.413076, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 24, loss@min: 1.139826, loss@max: 1.439564, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 25, loss@min: 1.035669, loss@max: 1.418446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.131625, loss@max: 1.405023, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 27, loss@min: 1.086838, loss@max: 1.391917, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 28, loss@min: 1.061343, loss@max: 1.383853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.054935, loss@max: 1.391067, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.034556, loss@max: 1.395059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.033665, loss@max: 1.423366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.000921, loss@max: 1.434192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947171, loss@max: 1.469169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.914638, loss@max: 1.450100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.022797, loss@max: 1.441518, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 36, loss@min: 1.070586, loss@max: 1.394219, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 37, loss@min: 1.073992, loss@max: 1.360258, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 38, loss@min: 1.038363, loss@max: 1.343930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.022926, loss@max: 1.358607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.024857, loss@max: 1.410121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.987615, loss@max: 1.426580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.979227, loss@max: 1.430182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.990403, loss@max: 1.422698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.969271, loss@max: 1.412845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.971617, loss@max: 1.410543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.958415, loss@max: 1.415980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.982024, loss@max: 1.430476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.014933, loss@max: 1.397487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.034974, loss@max: 1.362893, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 50, loss@min: 1.030008, loss@max: 1.366837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.010623, loss@max: 1.409036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.956050, loss@max: 1.401147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.960673, loss@max: 1.401550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.986876, loss@max: 1.402817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.980972, loss@max: 1.385652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.964792, loss@max: 1.422164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.959088, loss@max: 1.411602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.965308, loss@max: 1.408311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.988566, loss@max: 1.387222, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 0.994181, loss@max: 1.400211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.985207, loss@max: 1.397309, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 62, loss@min: 0.987203, loss@max: 1.386668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.999374, loss@max: 1.390335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.998571, loss@max: 1.399733, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 65, loss@min: 0.967398, loss@max: 1.394610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.001892, loss@max: 1.408470, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 67, loss@min: 0.955999, loss@max: 1.383395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.963613, loss@max: 1.394117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.957079, loss@max: 1.396930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955785, loss@max: 1.412282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.953663, loss@max: 1.384369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.986273, loss@max: 1.387574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.986370, loss@max: 1.371187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.991501, loss@max: 1.403932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.973854, loss@max: 1.408862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.981641, loss@max: 1.402912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.000602, loss@max: 1.402058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.006383, loss@max: 1.402004, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 79, loss@min: 0.956728, loss@max: 1.382717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955260, loss@max: 1.393562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000750, LT: 0.581393, Top1S: 100.000000, Top1T: 84.407410Best acc: 84.407410 +Train:epoch: 81, loss@min: 0.969859, loss@max: 1.409150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000746, LT: 0.577951, Top1S: 100.000000, Top1T: 84.506172Best acc: 84.506172 +Train:epoch: 82, loss@min: 0.992541, loss@max: 1.401953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000744, LT: 0.571224, Top1S: 100.000000, Top1T: 84.666664Best acc: 84.666664 +Train:epoch: 83, loss@min: 0.965577, loss@max: 1.388221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000741, LT: 0.564983, Top1S: 100.000000, Top1T: 84.851852Best acc: 84.851852 +Train:epoch: 84, loss@min: 0.974405, loss@max: 1.386981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000736, LT: 0.562001, Top1S: 100.000000, Top1T: 84.975311Best acc: 84.975311 +Train:epoch: 85, loss@min: 0.996657, loss@max: 1.391266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000730, LT: 0.560153, Top1S: 100.000000, Top1T: 85.012344Best acc: 85.012344 +Train:epoch: 86, loss@min: 0.970482, loss@max: 1.384226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000725, LT: 0.559428, Top1S: 100.000000, Top1T: 85.160492Best acc: 85.160492 +Train:epoch: 87, loss@min: 0.974506, loss@max: 1.404977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000722, LT: 0.557901, Top1S: 100.000000, Top1T: 84.901237 +Train:epoch: 88, loss@min: 0.978628, loss@max: 1.404598, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 88, LS: 0.000721, LT: 0.558763, Top1S: 100.000000, Top1T: 84.925926 +Train:epoch: 89, loss@min: 0.956840, loss@max: 1.392510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000721, LT: 0.558692, Top1S: 100.000000, Top1T: 84.814812 +Train:epoch: 90, loss@min: 0.962397, loss@max: 1.378576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000717, LT: 0.558836, Top1S: 100.000000, Top1T: 84.802467 +Train:epoch: 91, loss@min: 0.962983, loss@max: 1.379762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000711, LT: 0.560200, Top1S: 100.000000, Top1T: 84.777779 +Train:epoch: 92, loss@min: 0.955334, loss@max: 1.370462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000705, LT: 0.561819, Top1S: 100.000000, Top1T: 84.753090 +Train:epoch: 93, loss@min: 0.967344, loss@max: 1.378088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000700, LT: 0.562340, Top1S: 100.000000, Top1T: 84.765434 +Train:epoch: 94, loss@min: 0.978585, loss@max: 1.389061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000697, LT: 0.562564, Top1S: 100.000000, Top1T: 84.777779 +Train:epoch: 95, loss@min: 0.974367, loss@max: 1.377029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000695, LT: 0.560812, Top1S: 100.000000, Top1T: 84.790123 +Train:epoch: 96, loss@min: 0.974857, loss@max: 1.397899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000693, LT: 0.557677, Top1S: 100.000000, Top1T: 84.814812 +Train:epoch: 97, loss@min: 0.962300, loss@max: 1.377705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000689, LT: 0.555523, Top1S: 100.000000, Top1T: 84.864197 +Train:epoch: 98, loss@min: 0.956110, loss@max: 1.380090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000685, LT: 0.553907, Top1S: 100.000000, Top1T: 85.000000 +Train:epoch: 99, loss@min: 0.955721, loss@max: 1.381378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000682, LT: 0.552066, Top1S: 100.000000, Top1T: 85.086418 +Train:epoch: 100, loss@min: 0.971239, loss@max: 1.390707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000681, LT: 0.550298, Top1S: 100.000000, Top1T: 85.197533Best acc: 85.197533 +Train:epoch: 101, loss@min: 0.961870, loss@max: 1.382227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000681, LT: 0.548596, Top1S: 100.000000, Top1T: 85.370369Best acc: 85.370369 +Train:epoch: 102, loss@min: 0.952704, loss@max: 1.391519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000679, LT: 0.548083, Top1S: 100.000000, Top1T: 85.246910 +Train:epoch: 103, loss@min: 1.015296, loss@max: 1.386164, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 103, LS: 0.000677, LT: 0.548476, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 104, loss@min: 0.957063, loss@max: 1.376143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000673, LT: 0.549601, Top1S: 100.000000, Top1T: 85.320984 +Train:epoch: 105, loss@min: 0.965789, loss@max: 1.376271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000670, LT: 0.551283, Top1S: 100.000000, Top1T: 85.308640 +Train:epoch: 106, loss@min: 0.957252, loss@max: 1.369857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000668, LT: 0.552745, Top1S: 100.000000, Top1T: 85.246910 +Train:epoch: 107, loss@min: 0.957285, loss@max: 1.382493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000667, LT: 0.554352, Top1S: 100.000000, Top1T: 85.185188 +Train:epoch: 108, loss@min: 0.959219, loss@max: 1.391417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000666, LT: 0.555699, Top1S: 100.000000, Top1T: 85.185188 +Train:epoch: 109, loss@min: 0.963659, loss@max: 1.381534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000665, LT: 0.556173, Top1S: 100.000000, Top1T: 85.209877 +Train:epoch: 110, loss@min: 0.957878, loss@max: 1.383183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000664, LT: 0.556687, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 111, loss@min: 0.954390, loss@max: 1.387668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000663, LT: 0.556787, Top1S: 100.000000, Top1T: 85.259262 +Train:epoch: 112, loss@min: 0.975695, loss@max: 1.407305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000661, LT: 0.557625, Top1S: 100.000000, Top1T: 85.259262 +Train:epoch: 113, loss@min: 0.957940, loss@max: 1.378284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000660, LT: 0.558585, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 114, loss@min: 0.969356, loss@max: 1.390265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000658, LT: 0.558903, Top1S: 100.000000, Top1T: 85.234566 +Train:epoch: 115, loss@min: 0.970116, loss@max: 1.380236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000657, LT: 0.558254, Top1S: 100.000000, Top1T: 85.185188 +Train:epoch: 116, loss@min: 0.951577, loss@max: 1.372876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000657, LT: 0.557542, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 117, loss@min: 0.964469, loss@max: 1.372407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000656, LT: 0.557131, Top1S: 100.000000, Top1T: 85.308640 +Train:epoch: 118, loss@min: 0.971206, loss@max: 1.377909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000656, LT: 0.556675, Top1S: 100.000000, Top1T: 85.308640 +Train:epoch: 119, loss@min: 0.960483, loss@max: 1.384528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000656, LT: 0.556602, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 120, loss@min: 0.955399, loss@max: 1.379537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000656, LT: 0.556847, Top1S: 100.000000, Top1T: 85.320984 +Train:epoch: 121, loss@min: 0.953043, loss@max: 1.391828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000656, LT: 0.557177, Top1S: 100.000000, Top1T: 85.296295 +Train:epoch: 122, loss@min: 0.951781, loss@max: 1.375593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000655, LT: 0.557543, Top1S: 100.000000, Top1T: 85.296295 +Train:epoch: 123, loss@min: 0.970758, loss@max: 1.393622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000654, LT: 0.557620, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 124, loss@min: 0.958070, loss@max: 1.374962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000653, LT: 0.557565, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 125, loss@min: 0.954405, loss@max: 1.381421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000652, LT: 0.557546, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 126, loss@min: 0.965991, loss@max: 1.378843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000651, LT: 0.557506, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 127, loss@min: 0.958831, loss@max: 1.370254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000651, LT: 0.557539, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 128, loss@min: 0.955733, loss@max: 1.375640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000650, LT: 0.557547, Top1S: 100.000000, Top1T: 85.246910 +Train:epoch: 129, loss@min: 0.963844, loss@max: 1.376816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000650, LT: 0.557703, Top1S: 100.000000, Top1T: 85.246910 +Train:epoch: 130, loss@min: 0.966611, loss@max: 1.381518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000649, LT: 0.557681, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 131, loss@min: 0.963142, loss@max: 1.377988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000649, LT: 0.557615, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 132, loss@min: 0.959757, loss@max: 1.371706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000649, LT: 0.557552, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 133, loss@min: 0.961695, loss@max: 1.385908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000649, LT: 0.557636, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 134, loss@min: 0.969544, loss@max: 1.385282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000649, LT: 0.557557, Top1S: 100.000000, Top1T: 85.283951 +Train:epoch: 135, loss@min: 0.979232, loss@max: 1.387198, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 135, LS: 0.000648, LT: 0.557608, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 136, loss@min: 0.963241, loss@max: 1.374662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000648, LT: 0.557528, Top1S: 100.000000, Top1T: 85.296295 +Train:epoch: 137, loss@min: 0.954491, loss@max: 1.373310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000648, LT: 0.557541, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 138, loss@min: 0.979050, loss@max: 1.386766, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 138, LS: 0.000648, LT: 0.557552, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 139, loss@min: 0.958252, loss@max: 1.376874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000648, LT: 0.557548, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 140, loss@min: 0.964012, loss@max: 1.378892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000648, LT: 0.557558, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 141, loss@min: 0.951262, loss@max: 1.376605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000648, LT: 0.557569, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 142, loss@min: 0.964615, loss@max: 1.388446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000648, LT: 0.557611, Top1S: 100.000000, Top1T: 85.259262 +Train:epoch: 143, loss@min: 0.957422, loss@max: 1.382347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000648, LT: 0.557628, Top1S: 100.000000, Top1T: 85.259262 +Train:epoch: 144, loss@min: 0.994380, loss@max: 1.399157, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 144, LS: 0.000648, LT: 0.557661, Top1S: 100.000000, Top1T: 85.259262 +Train:epoch: 145, loss@min: 0.961987, loss@max: 1.387009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000648, LT: 0.557694, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 146, loss@min: 0.948581, loss@max: 1.384110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000648, LT: 0.557708, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 147, loss@min: 0.966637, loss@max: 1.380891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000648, LT: 0.557718, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 148, loss@min: 0.963288, loss@max: 1.379877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000648, LT: 0.557722, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 149, loss@min: 0.965103, loss@max: 1.384027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000648, LT: 0.557723, Top1S: 100.000000, Top1T: 85.271606 +Train:epoch: 150, loss@min: 0.978948, loss@max: 1.392325, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 150, LS: 0.000648, LT: 0.557723, Top1S: 100.000000, Top1T: 85.271606 +------------------------------------------- +Tue Jul 25 22:32:58 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 10, "print_freq": 1, "savedir": "G:\\\\eurosat_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Jul 25 22:36:40 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.306797, loss@max: 2.806229, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 2, loss@min: 3.857922, loss@max: 2.661239, Top1S acc: 100.000000, Top1T acc: 50.625000 +Train:epoch: 3, loss@min: 3.224412, loss@max: 2.049384, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 4, loss@min: 3.066673, loss@max: 1.673703, Top1S acc: 100.000000, Top1T acc: 65.625000 +Train:epoch: 5, loss@min: 2.684354, loss@max: 1.525870, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 6, loss@min: 2.265912, loss@max: 1.584199, Top1S acc: 100.000000, Top1T acc: 77.500000 +Train:epoch: 7, loss@min: 2.176077, loss@max: 1.710741, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 8, loss@min: 1.865510, loss@max: 1.703307, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 9, loss@min: 1.745684, loss@max: 1.699229, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 1.654087, loss@max: 1.676303, Top1S acc: 100.000000, Top1T acc: 86.875000 +Train:epoch: 11, loss@min: 1.644406, loss@max: 1.638617, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 12, loss@min: 1.645553, loss@max: 1.571909, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 13, loss@min: 1.677639, loss@max: 1.531665, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 14, loss@min: 1.710957, loss@max: 1.537824, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.537155, loss@max: 1.532602, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 16, loss@min: 1.390858, loss@max: 1.546314, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 17, loss@min: 1.364199, loss@max: 1.549411, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 18, loss@min: 1.341654, loss@max: 1.535276, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 19, loss@min: 1.307264, loss@max: 1.508792, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 20, loss@min: 1.284572, loss@max: 1.507561, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 21, loss@min: 1.288379, loss@max: 1.526175, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 22, loss@min: 1.157708, loss@max: 1.525946, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 23, loss@min: 1.247946, loss@max: 1.562418, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 24, loss@min: 1.172371, loss@max: 1.515339, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 25, loss@min: 1.245219, loss@max: 1.479779, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 26, loss@min: 1.299974, loss@max: 1.476552, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 27, loss@min: 1.206048, loss@max: 1.419237, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 28, loss@min: 1.255509, loss@max: 1.411721, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 29, loss@min: 1.245337, loss@max: 1.417644, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 30, loss@min: 1.342254, loss@max: 1.475213, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 31, loss@min: 1.180632, loss@max: 1.486035, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 32, loss@min: 1.116389, loss@max: 1.521505, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 33, loss@min: 1.055719, loss@max: 1.521079, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 34, loss@min: 1.089809, loss@max: 1.517866, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 35, loss@min: 1.061699, loss@max: 1.482226, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 36, loss@min: 1.100540, loss@max: 1.499324, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 37, loss@min: 1.102014, loss@max: 1.454946, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 38, loss@min: 1.144033, loss@max: 1.439892, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 39, loss@min: 1.181575, loss@max: 1.410481, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 40, loss@min: 1.105416, loss@max: 1.405154, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 41, loss@min: 1.110727, loss@max: 1.428833, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 42, loss@min: 1.120237, loss@max: 1.461349, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 43, loss@min: 1.093581, loss@max: 1.463854, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 44, loss@min: 1.136719, loss@max: 1.492305, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 45, loss@min: 1.077194, loss@max: 1.504042, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 46, loss@min: 1.078309, loss@max: 1.517056, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 47, loss@min: 1.012738, loss@max: 1.464662, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.078763, loss@max: 1.447127, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 49, loss@min: 1.106910, loss@max: 1.434743, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.095010, loss@max: 1.426359, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 51, loss@min: 1.138200, loss@max: 1.451276, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.130042, loss@max: 1.421323, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 53, loss@min: 1.081952, loss@max: 1.452490, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 54, loss@min: 1.032849, loss@max: 1.452009, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 55, loss@min: 1.066430, loss@max: 1.449535, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 56, loss@min: 1.022822, loss@max: 1.448982, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 57, loss@min: 1.097930, loss@max: 1.465245, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 58, loss@min: 1.038638, loss@max: 1.457303, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 59, loss@min: 1.052783, loss@max: 1.468930, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.010258, loss@max: 1.442271, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 61, loss@min: 1.034358, loss@max: 1.427730, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 62, loss@min: 1.049847, loss@max: 1.408369, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 63, loss@min: 1.046896, loss@max: 1.423665, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 64, loss@min: 1.057981, loss@max: 1.452164, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 65, loss@min: 1.005192, loss@max: 1.429013, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 66, loss@min: 1.064387, loss@max: 1.434365, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 67, loss@min: 1.029873, loss@max: 1.408731, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 68, loss@min: 1.018434, loss@max: 1.437695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.993489, loss@max: 1.432077, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 70, loss@min: 0.980068, loss@max: 1.431670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.996875, loss@max: 1.420722, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 72, loss@min: 1.003458, loss@max: 1.411705, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 73, loss@min: 0.997424, loss@max: 1.412923, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 74, loss@min: 1.031252, loss@max: 1.425889, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 75, loss@min: 1.011471, loss@max: 1.413687, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 76, loss@min: 1.009946, loss@max: 1.413630, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 77, loss@min: 1.014708, loss@max: 1.422552, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 78, loss@min: 1.060234, loss@max: 1.442504, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 79, loss@min: 1.000170, loss@max: 1.405358, Top1S acc: 100.000000, Top1T acc: 99.375000 +Train:epoch: 80, loss@min: 1.010786, loss@max: 1.412442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000636, LT: 0.566308, Top1S: 100.000000, Top1T: 83.901237Best acc: 83.901237 +Train:epoch: 81, loss@min: 0.989735, loss@max: 1.410498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000632, LT: 0.562133, Top1S: 100.000000, Top1T: 83.864197 +Train:epoch: 82, loss@min: 0.984566, loss@max: 1.399117, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 82, LS: 0.000629, LT: 0.560080, Top1S: 100.000000, Top1T: 83.888885 +Train:epoch: 83, loss@min: 0.997412, loss@max: 1.410108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000625, LT: 0.558878, Top1S: 100.000000, Top1T: 83.864197 +Train:epoch: 84, loss@min: 1.021200, loss@max: 1.426628, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 84, LS: 0.000621, LT: 0.558609, Top1S: 100.000000, Top1T: 83.987656Best acc: 83.987656 +Train:epoch: 85, loss@min: 1.004126, loss@max: 1.414122, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 85, LS: 0.000616, LT: 0.560453, Top1S: 100.000000, Top1T: 83.975311 +Train:epoch: 86, loss@min: 1.021684, loss@max: 1.438687, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 86, LS: 0.000612, LT: 0.566833, Top1S: 100.000000, Top1T: 83.814812 +Train:epoch: 87, loss@min: 0.989516, loss@max: 1.430512, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 87, LS: 0.000608, LT: 0.572514, Top1S: 100.000000, Top1T: 83.728394 +Train:epoch: 88, loss@min: 1.015929, loss@max: 1.426993, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 88, LS: 0.000606, LT: 0.577693, Top1S: 100.000000, Top1T: 83.654320 +Train:epoch: 89, loss@min: 1.039485, loss@max: 1.411691, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 89, LS: 0.000605, LT: 0.582524, Top1S: 100.000000, Top1T: 83.469139 +Train:epoch: 90, loss@min: 1.021640, loss@max: 1.415832, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 90, LS: 0.000604, LT: 0.588368, Top1S: 100.000000, Top1T: 83.469139 +Train:epoch: 91, loss@min: 1.013647, loss@max: 1.408682, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 91, LS: 0.000602, LT: 0.594943, Top1S: 100.000000, Top1T: 83.407410 +Train:epoch: 92, loss@min: 0.997571, loss@max: 1.423062, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 92, LS: 0.000599, LT: 0.600186, Top1S: 100.000000, Top1T: 83.234566 +Train:epoch: 93, loss@min: 0.994690, loss@max: 1.435022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000597, LT: 0.605707, Top1S: 100.000000, Top1T: 83.197533 +Train:epoch: 94, loss@min: 0.992143, loss@max: 1.419649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000596, LT: 0.607594, Top1S: 100.000000, Top1T: 83.209877 +Train:epoch: 95, loss@min: 0.986001, loss@max: 1.399941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000595, LT: 0.607509, Top1S: 100.000000, Top1T: 83.222221 +Train:epoch: 96, loss@min: 1.014175, loss@max: 1.409993, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 96, LS: 0.000593, LT: 0.604379, Top1S: 100.000000, Top1T: 83.308640 +Train:epoch: 97, loss@min: 1.000128, loss@max: 1.409352, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 97, LS: 0.000591, LT: 0.602473, Top1S: 100.000000, Top1T: 83.382713 +Train:epoch: 98, loss@min: 1.006449, loss@max: 1.410080, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 98, LS: 0.000588, LT: 0.601679, Top1S: 100.000000, Top1T: 83.481483 +Train:epoch: 99, loss@min: 0.998758, loss@max: 1.419332, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 99, LS: 0.000585, LT: 0.600402, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 100, loss@min: 1.034729, loss@max: 1.428872, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 100, LS: 0.000583, LT: 0.594880, Top1S: 100.000000, Top1T: 83.728394 +Train:epoch: 101, loss@min: 0.978536, loss@max: 1.401330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000583, LT: 0.590119, Top1S: 100.000000, Top1T: 83.777779 +Train:epoch: 102, loss@min: 0.997168, loss@max: 1.407622, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 102, LS: 0.000582, LT: 0.585777, Top1S: 100.000000, Top1T: 83.790123 +Train:epoch: 103, loss@min: 1.001450, loss@max: 1.406968, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 103, LS: 0.000581, LT: 0.583186, Top1S: 100.000000, Top1T: 83.777779 +Train:epoch: 104, loss@min: 1.004953, loss@max: 1.413894, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 104, LS: 0.000579, LT: 0.583320, Top1S: 100.000000, Top1T: 83.716049 +Train:epoch: 105, loss@min: 1.000747, loss@max: 1.416239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000577, LT: 0.584816, Top1S: 100.000000, Top1T: 83.703705 +Train:epoch: 106, loss@min: 0.969422, loss@max: 1.399384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000574, LT: 0.585890, Top1S: 100.000000, Top1T: 83.641975 +Train:epoch: 107, loss@min: 1.006962, loss@max: 1.420631, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 107, LS: 0.000572, LT: 0.587079, Top1S: 100.000000, Top1T: 83.629631 +Train:epoch: 108, loss@min: 1.013588, loss@max: 1.410995, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 108, LS: 0.000570, LT: 0.588436, Top1S: 100.000000, Top1T: 83.666664 +Train:epoch: 109, loss@min: 0.990513, loss@max: 1.412443, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 109, LS: 0.000569, LT: 0.589998, Top1S: 100.000000, Top1T: 83.728394 +Train:epoch: 110, loss@min: 0.994092, loss@max: 1.406493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000568, LT: 0.591488, Top1S: 100.000000, Top1T: 83.740738 +Train:epoch: 111, loss@min: 0.987252, loss@max: 1.406844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000567, LT: 0.593615, Top1S: 100.000000, Top1T: 83.679008 +Train:epoch: 112, loss@min: 0.977760, loss@max: 1.405968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000566, LT: 0.595493, Top1S: 100.000000, Top1T: 83.592590 +Train:epoch: 113, loss@min: 0.998129, loss@max: 1.405832, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 113, LS: 0.000566, LT: 0.596583, Top1S: 100.000000, Top1T: 83.530861 +Train:epoch: 114, loss@min: 0.971502, loss@max: 1.401913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000565, LT: 0.597610, Top1S: 100.000000, Top1T: 83.456787 +Train:epoch: 115, loss@min: 0.976521, loss@max: 1.404235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000565, LT: 0.598984, Top1S: 100.000000, Top1T: 83.432098 +Train:epoch: 116, loss@min: 0.983536, loss@max: 1.410559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000564, LT: 0.599846, Top1S: 100.000000, Top1T: 83.419754 +Train:epoch: 117, loss@min: 0.965564, loss@max: 1.393249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000563, LT: 0.600551, Top1S: 100.000000, Top1T: 83.407410 +Train:epoch: 118, loss@min: 1.012624, loss@max: 1.416899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000561, LT: 0.600969, Top1S: 100.000000, Top1T: 83.456787 +Train:epoch: 119, loss@min: 0.993974, loss@max: 1.400983, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 119, LS: 0.000560, LT: 0.601245, Top1S: 100.000000, Top1T: 83.456787 +Train:epoch: 120, loss@min: 0.992997, loss@max: 1.404890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000558, LT: 0.601394, Top1S: 100.000000, Top1T: 83.432098 +Train:epoch: 121, loss@min: 1.016007, loss@max: 1.413137, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 121, LS: 0.000557, LT: 0.601777, Top1S: 100.000000, Top1T: 83.419754 +Train:epoch: 122, loss@min: 0.983351, loss@max: 1.400392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000556, LT: 0.602278, Top1S: 100.000000, Top1T: 83.444443 +Train:epoch: 123, loss@min: 1.015678, loss@max: 1.417216, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 123, LS: 0.000555, LT: 0.602009, Top1S: 100.000000, Top1T: 83.481483 +Train:epoch: 124, loss@min: 0.985689, loss@max: 1.403402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000554, LT: 0.601951, Top1S: 100.000000, Top1T: 83.506172 +Train:epoch: 125, loss@min: 1.004964, loss@max: 1.419901, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 125, LS: 0.000554, LT: 0.601576, Top1S: 100.000000, Top1T: 83.518517 +Train:epoch: 126, loss@min: 0.997509, loss@max: 1.417736, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 126, LS: 0.000553, LT: 0.601446, Top1S: 100.000000, Top1T: 83.518517 +Train:epoch: 127, loss@min: 0.976473, loss@max: 1.401342, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 127, LS: 0.000552, LT: 0.601569, Top1S: 100.000000, Top1T: 83.493828 +Train:epoch: 128, loss@min: 1.009215, loss@max: 1.414031, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 128, LS: 0.000552, LT: 0.601966, Top1S: 100.000000, Top1T: 83.481483 +Train:epoch: 129, loss@min: 0.987111, loss@max: 1.409256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000551, LT: 0.601988, Top1S: 100.000000, Top1T: 83.469139 +Train:epoch: 130, loss@min: 0.991376, loss@max: 1.412614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000551, LT: 0.602153, Top1S: 100.000000, Top1T: 83.469139 +Train:epoch: 131, loss@min: 1.009560, loss@max: 1.410859, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 131, LS: 0.000550, LT: 0.602162, Top1S: 100.000000, Top1T: 83.481483 +Train:epoch: 132, loss@min: 1.027739, loss@max: 1.416037, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 132, LS: 0.000550, LT: 0.602174, Top1S: 100.000000, Top1T: 83.481483 +Train:epoch: 133, loss@min: 0.966408, loss@max: 1.396077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000549, LT: 0.602147, Top1S: 100.000000, Top1T: 83.469139 +Train:epoch: 134, loss@min: 0.998910, loss@max: 1.408288, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 134, LS: 0.000549, LT: 0.602063, Top1S: 100.000000, Top1T: 83.469139 +Train:epoch: 135, loss@min: 1.021749, loss@max: 1.421685, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 135, LS: 0.000548, LT: 0.601985, Top1S: 100.000000, Top1T: 83.493828 +Train:epoch: 136, loss@min: 0.989606, loss@max: 1.400514, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 136, LS: 0.000548, LT: 0.601743, Top1S: 100.000000, Top1T: 83.506172 +Train:epoch: 137, loss@min: 0.996196, loss@max: 1.413256, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 137, LS: 0.000548, LT: 0.601674, Top1S: 100.000000, Top1T: 83.518517 +Train:epoch: 138, loss@min: 0.993540, loss@max: 1.411222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000548, LT: 0.601737, Top1S: 100.000000, Top1T: 83.543213 +Train:epoch: 139, loss@min: 1.001877, loss@max: 1.416102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000548, LT: 0.601865, Top1S: 100.000000, Top1T: 83.543213 +Train:epoch: 140, loss@min: 0.999508, loss@max: 1.413342, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 140, LS: 0.000548, LT: 0.601915, Top1S: 100.000000, Top1T: 83.543213 +Train:epoch: 141, loss@min: 1.013373, loss@max: 1.413016, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 141, LS: 0.000548, LT: 0.601980, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 142, loss@min: 0.984032, loss@max: 1.408321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000547, LT: 0.601997, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 143, loss@min: 0.983451, loss@max: 1.404440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000547, LT: 0.602016, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 144, loss@min: 0.993502, loss@max: 1.406448, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 144, LS: 0.000547, LT: 0.602041, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 145, loss@min: 0.988501, loss@max: 1.397889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000547, LT: 0.602061, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 146, loss@min: 1.015013, loss@max: 1.417131, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 146, LS: 0.000547, LT: 0.602073, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 147, loss@min: 1.005359, loss@max: 1.409253, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 147, LS: 0.000547, LT: 0.602073, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 148, loss@min: 1.017359, loss@max: 1.423235, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 148, LS: 0.000547, LT: 0.602071, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 149, loss@min: 1.006405, loss@max: 1.413766, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 149, LS: 0.000547, LT: 0.602070, Top1S: 100.000000, Top1T: 83.555557 +Train:epoch: 150, loss@min: 0.984359, loss@max: 1.404607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000547, LT: 0.602070, Top1S: 100.000000, Top1T: 83.555557 +------------------------------------------- +Wed Jul 26 03:37:36 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Jul 26 11:43:58 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807690, loss@max: 2.132195, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238817, loss@max: 1.612196, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818653, loss@max: 1.355073, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431980, loss@max: 1.457589, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271059, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196054, loss@max: 1.305310, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298017, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133900, loss@max: 1.294019, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008144, loss@max: 1.292641, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019453, loss@max: 1.253726, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006047, loss@max: 1.259362, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950058, loss@max: 1.294757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972023, loss@max: 1.280226, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963698, loss@max: 1.293104, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931027, loss@max: 1.307254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971427, loss@max: 1.285436, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948208, loss@max: 1.315795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943467, loss@max: 1.329131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942532, loss@max: 1.328724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968129, loss@max: 1.319445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932678, loss@max: 1.392959, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014447, loss@max: 1.328930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964458, loss@max: 1.403749, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977673, loss@max: 1.374825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961537, loss@max: 1.393612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968763, loss@max: 1.379523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938242, loss@max: 1.409587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982237, loss@max: 1.385036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959362, loss@max: 1.404608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000646, loss@max: 1.388889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962244, loss@max: 1.435789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.952915, loss@max: 1.473032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.005526, loss@max: 1.458896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.966260, loss@max: 1.451624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984064, loss@max: 1.494207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950208, loss@max: 1.515130, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.974954, loss@max: 1.461809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.986100, loss@max: 1.435100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.922848, loss@max: 1.486724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.015667, loss@max: 1.399665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981800, loss@max: 1.427560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.945001, loss@max: 1.452038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.972943, loss@max: 1.431447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935611, loss@max: 1.476570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992932, loss@max: 1.394640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989610, loss@max: 1.393567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.938119, loss@max: 1.459762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987826, loss@max: 1.401116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961518, loss@max: 1.432766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963615, loss@max: 1.425584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972472, loss@max: 1.417771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.972931, loss@max: 1.415859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961541, loss@max: 1.423796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.994226, loss@max: 1.399355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943776, loss@max: 1.428309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.964989, loss@max: 1.399704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957965, loss@max: 1.416803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.958966, loss@max: 1.410618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.969471, loss@max: 1.394364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.979319, loss@max: 1.394460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959756, loss@max: 1.413097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.963066, loss@max: 1.403754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.978771, loss@max: 1.390496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.956471, loss@max: 1.404435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.967499, loss@max: 1.395094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.949938, loss@max: 1.416216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.948858, loss@max: 1.400450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.974258, loss@max: 1.374685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956528, loss@max: 1.402068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.940822, loss@max: 1.409378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.982089, loss@max: 1.367610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.963199, loss@max: 1.381848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.941906, loss@max: 1.400680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.969360, loss@max: 1.376060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.957101, loss@max: 1.380948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943715, loss@max: 1.390981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963901, loss@max: 1.367356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.961017, loss@max: 1.379004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946279, loss@max: 1.387755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.952630, loss@max: 1.383024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000607, LT: 1.698321, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 81, loss@min: 0.963681, loss@max: 1.366071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000606, LT: 1.701893, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 82, loss@min: 0.957105, loss@max: 1.381943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000603, LT: 1.705499, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 83, loss@min: 0.951377, loss@max: 1.378544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000598, LT: 1.709258, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 84, loss@min: 0.961357, loss@max: 1.375336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000596, LT: 1.709753, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 85, loss@min: 0.954416, loss@max: 1.373771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000595, LT: 1.711717, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 86, loss@min: 0.945350, loss@max: 1.381920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000590, LT: 1.714352, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 87, loss@min: 0.947676, loss@max: 1.381310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000588, LT: 1.715138, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 88, loss@min: 0.957222, loss@max: 1.369845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000588, LT: 1.716850, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 89, loss@min: 0.951689, loss@max: 1.374884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000586, LT: 1.717927, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 90, loss@min: 0.942103, loss@max: 1.383111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000582, LT: 1.717441, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 91, loss@min: 0.955775, loss@max: 1.364947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000580, LT: 1.719777, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 92, loss@min: 0.951702, loss@max: 1.367038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000580, LT: 1.723096, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 93, loss@min: 0.950115, loss@max: 1.374884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000576, LT: 1.725422, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 94, loss@min: 0.952108, loss@max: 1.374301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000573, LT: 1.727376, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 95, loss@min: 0.947277, loss@max: 1.374059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000572, LT: 1.730124, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 96, loss@min: 0.957306, loss@max: 1.366743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000570, LT: 1.733834, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 97, loss@min: 0.956439, loss@max: 1.369138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000567, LT: 1.735824, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 98, loss@min: 0.951931, loss@max: 1.372579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000565, LT: 1.738472, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 99, loss@min: 0.951758, loss@max: 1.371333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000564, LT: 1.740291, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 100, loss@min: 0.951926, loss@max: 1.369617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000563, LT: 1.741113, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 101, loss@min: 0.951011, loss@max: 1.370632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000561, LT: 1.742293, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 102, loss@min: 0.947189, loss@max: 1.371506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000560, LT: 1.743007, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 103, loss@min: 0.949369, loss@max: 1.367817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000559, LT: 1.742742, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 104, loss@min: 0.951715, loss@max: 1.368093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000558, LT: 1.743432, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 105, loss@min: 0.954391, loss@max: 1.367265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000556, LT: 1.745200, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 106, loss@min: 0.956667, loss@max: 1.363643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000555, LT: 1.745731, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 107, loss@min: 0.940895, loss@max: 1.379558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000554, LT: 1.745268, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 108, loss@min: 0.945092, loss@max: 1.374753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000552, LT: 1.745532, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 109, loss@min: 0.949301, loss@max: 1.367199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000551, LT: 1.745938, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 110, loss@min: 0.958520, loss@max: 1.357458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000551, LT: 1.746619, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 111, loss@min: 0.947963, loss@max: 1.368403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000550, LT: 1.747265, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 112, loss@min: 0.948851, loss@max: 1.365709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000549, LT: 1.748310, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 113, loss@min: 0.944189, loss@max: 1.374654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000548, LT: 1.749530, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 114, loss@min: 0.951824, loss@max: 1.366672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000547, LT: 1.750473, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 115, loss@min: 0.952841, loss@max: 1.365312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000546, LT: 1.750998, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 116, loss@min: 0.955737, loss@max: 1.362372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000546, LT: 1.751737, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 117, loss@min: 0.951408, loss@max: 1.369115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000545, LT: 1.752955, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 118, loss@min: 0.953674, loss@max: 1.365837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000545, LT: 1.754114, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 119, loss@min: 0.941356, loss@max: 1.371721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000544, LT: 1.754805, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 120, loss@min: 0.951049, loss@max: 1.368454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000544, LT: 1.755290, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 121, loss@min: 0.947053, loss@max: 1.365322, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000543, LT: 1.756210, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 122, loss@min: 0.947248, loss@max: 1.366809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000542, LT: 1.756720, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 123, loss@min: 0.950830, loss@max: 1.368160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000541, LT: 1.757152, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 124, loss@min: 0.950235, loss@max: 1.366680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000541, LT: 1.757234, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 125, loss@min: 0.947295, loss@max: 1.367813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000541, LT: 1.757318, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 126, loss@min: 0.944915, loss@max: 1.370675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000541, LT: 1.757699, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 127, loss@min: 0.952164, loss@max: 1.364481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000540, LT: 1.758177, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 128, loss@min: 0.949867, loss@max: 1.364840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000540, LT: 1.758779, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 129, loss@min: 0.953133, loss@max: 1.361868, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000540, LT: 1.759284, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 130, loss@min: 0.950294, loss@max: 1.363094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000539, LT: 1.759676, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 131, loss@min: 0.945725, loss@max: 1.371627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000539, LT: 1.759951, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 132, loss@min: 0.947345, loss@max: 1.371102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000539, LT: 1.760094, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 133, loss@min: 0.949696, loss@max: 1.371447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000538, LT: 1.760226, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 134, loss@min: 0.949728, loss@max: 1.364484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000538, LT: 1.760377, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 135, loss@min: 0.948037, loss@max: 1.369391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000538, LT: 1.760538, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 136, loss@min: 0.955674, loss@max: 1.363451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000538, LT: 1.760683, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 137, loss@min: 0.953097, loss@max: 1.362978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000538, LT: 1.760805, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 138, loss@min: 0.947453, loss@max: 1.364283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000538, LT: 1.760934, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 139, loss@min: 0.948033, loss@max: 1.365500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000538, LT: 1.761054, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 140, loss@min: 0.951148, loss@max: 1.362828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000538, LT: 1.761154, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 141, loss@min: 0.950206, loss@max: 1.365583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000538, LT: 1.761255, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 142, loss@min: 0.951818, loss@max: 1.374964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000538, LT: 1.761303, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 143, loss@min: 0.948708, loss@max: 1.366709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000538, LT: 1.761313, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 144, loss@min: 0.952426, loss@max: 1.361485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000538, LT: 1.761336, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 145, loss@min: 0.946733, loss@max: 1.366642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000538, LT: 1.761354, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 146, loss@min: 0.949850, loss@max: 1.364209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000538, LT: 1.761372, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 147, loss@min: 0.950459, loss@max: 1.363733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000538, LT: 1.761384, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 148, loss@min: 0.950931, loss@max: 1.361715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000538, LT: 1.761391, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 149, loss@min: 0.947380, loss@max: 1.366237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000538, LT: 1.761393, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 150, loss@min: 0.949324, loss@max: 1.363537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000538, LT: 1.761393, Top1S: 100.000000, Top1T: 66.666664 +------------------------------------------- +Wed Jul 26 13:17:15 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Jul 26 23:36:16 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.804567, loss@max: 2.334248, Top1S acc: 100.000000, Top1T acc: 76.953125 +Train:epoch: 2, loss@min: 1.998385, loss@max: 1.691108, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 3, loss@min: 1.282201, loss@max: 1.665335, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 4, loss@min: 1.044347, loss@max: 1.888539, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 5, loss@min: 1.052008, loss@max: 1.761689, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 6, loss@min: 1.154287, loss@max: 1.724949, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 7, loss@min: 1.107746, loss@max: 1.669187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.065376, loss@max: 1.926232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.235504, loss@max: 1.834944, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.204721, loss@max: 1.757474, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.173110, loss@max: 1.793452, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.080545, loss@max: 1.858545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.134779, loss@max: 1.949639, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.097269, loss@max: 1.905278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.098456, loss@max: 1.805854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.035591, loss@max: 1.985346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.133320, loss@max: 1.923812, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 1.136728, loss@max: 1.840013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.010139, loss@max: 1.864173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.058538, loss@max: 1.819314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.101615, loss@max: 1.664021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.042339, loss@max: 1.770926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.998351, loss@max: 1.834999, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.115987, loss@max: 1.717258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.080489, loss@max: 1.754583, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 1.109925, loss@max: 1.699882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.071678, loss@max: 1.797480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.026647, loss@max: 1.909605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.013057, loss@max: 1.785705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.985190, loss@max: 1.835426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.075366, loss@max: 1.625484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.075088, loss@max: 1.714557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.993388, loss@max: 1.815998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.048361, loss@max: 1.794538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.076862, loss@max: 1.683670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.021477, loss@max: 1.731126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.063206, loss@max: 1.821178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.130805, loss@max: 1.713868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.058996, loss@max: 1.780783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.055470, loss@max: 1.702878, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.055665, loss@max: 1.629689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.062469, loss@max: 1.601777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.090476, loss@max: 1.727142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.025692, loss@max: 1.784904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.983812, loss@max: 1.857503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.001793, loss@max: 1.715367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.014988, loss@max: 1.723025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.040579, loss@max: 1.709736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.033243, loss@max: 1.590379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.011887, loss@max: 1.637501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.054740, loss@max: 1.650080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.005910, loss@max: 1.651467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.053797, loss@max: 1.616056, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.031972, loss@max: 1.627710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.006108, loss@max: 1.627364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.061468, loss@max: 1.571555, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 57, loss@min: 0.996629, loss@max: 1.600036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.015580, loss@max: 1.637984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.032873, loss@max: 1.537788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.008796, loss@max: 1.626619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.005302, loss@max: 1.564179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.994133, loss@max: 1.554847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964772, loss@max: 1.623137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.992529, loss@max: 1.565131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.980865, loss@max: 1.559881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.993269, loss@max: 1.521136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.021466, loss@max: 1.513659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.008071, loss@max: 1.498082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.985718, loss@max: 1.497436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.970556, loss@max: 1.578132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.997243, loss@max: 1.468655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.960700, loss@max: 1.520364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.992455, loss@max: 1.553412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954164, loss@max: 1.517487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.983903, loss@max: 1.502510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.990753, loss@max: 1.494524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.968336, loss@max: 1.518908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.992025, loss@max: 1.443486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.955701, loss@max: 1.461559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.960569, loss@max: 1.498105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000221, LT: 1.352498, Top1S: 100.000000, Top1T: 64.685135Best acc: 64.685135 +Train:epoch: 81, loss@min: 0.996544, loss@max: 1.471414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000221, LT: 1.353750, Top1S: 100.000000, Top1T: 64.775818Best acc: 64.775818 +Train:epoch: 82, loss@min: 0.966964, loss@max: 1.508199, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000221, LT: 1.352009, Top1S: 100.000000, Top1T: 64.700249 +Train:epoch: 83, loss@min: 0.957231, loss@max: 1.488751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000219, LT: 1.352256, Top1S: 100.000000, Top1T: 64.670021 +Train:epoch: 84, loss@min: 0.990673, loss@max: 1.458328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000224, LT: 1.353472, Top1S: 100.000000, Top1T: 64.750626 +Train:epoch: 85, loss@min: 0.965157, loss@max: 1.468754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000217, LT: 1.355707, Top1S: 100.000000, Top1T: 64.705284 +Train:epoch: 86, loss@min: 0.999573, loss@max: 1.415605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000220, LT: 1.355589, Top1S: 100.000000, Top1T: 64.725441 +Train:epoch: 87, loss@min: 0.975755, loss@max: 1.474990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000216, LT: 1.354103, Top1S: 100.000000, Top1T: 64.806046Best acc: 64.806046 +Train:epoch: 88, loss@min: 0.973386, loss@max: 1.446980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000217, LT: 1.354919, Top1S: 100.000000, Top1T: 64.775818 +Train:epoch: 89, loss@min: 0.957935, loss@max: 1.448942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000214, LT: 1.356735, Top1S: 100.000000, Top1T: 64.780853 +Train:epoch: 90, loss@min: 0.984227, loss@max: 1.425948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000212, LT: 1.357910, Top1S: 100.000000, Top1T: 64.821159Best acc: 64.821159 +Train:epoch: 91, loss@min: 0.983612, loss@max: 1.405951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000213, LT: 1.358360, Top1S: 100.000000, Top1T: 64.826195Best acc: 64.826195 +Train:epoch: 92, loss@min: 0.970628, loss@max: 1.439772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000211, LT: 1.360495, Top1S: 100.000000, Top1T: 64.861458Best acc: 64.861458 +Train:epoch: 93, loss@min: 0.957188, loss@max: 1.430206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000210, LT: 1.361729, Top1S: 100.000000, Top1T: 64.760704 +Train:epoch: 94, loss@min: 0.947452, loss@max: 1.468857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000212, LT: 1.362126, Top1S: 100.000000, Top1T: 64.760704 +Train:epoch: 95, loss@min: 0.968020, loss@max: 1.417565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000211, LT: 1.362867, Top1S: 100.000000, Top1T: 64.780853 +Train:epoch: 96, loss@min: 0.964464, loss@max: 1.421691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000209, LT: 1.362097, Top1S: 100.000000, Top1T: 64.851379 +Train:epoch: 97, loss@min: 0.960141, loss@max: 1.428567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000207, LT: 1.363131, Top1S: 100.000000, Top1T: 64.841309 +Train:epoch: 98, loss@min: 0.963467, loss@max: 1.427248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000208, LT: 1.366411, Top1S: 100.000000, Top1T: 64.811081 +Train:epoch: 99, loss@min: 0.946622, loss@max: 1.431330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000208, LT: 1.367995, Top1S: 100.000000, Top1T: 64.891685Best acc: 64.891685 +Train:epoch: 100, loss@min: 0.963277, loss@max: 1.411473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000206, LT: 1.367570, Top1S: 100.000000, Top1T: 64.947098Best acc: 64.947098 +Train:epoch: 101, loss@min: 0.956429, loss@max: 1.407735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000206, LT: 1.368474, Top1S: 100.000000, Top1T: 64.881607 +Train:epoch: 102, loss@min: 0.971401, loss@max: 1.403239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000206, LT: 1.370011, Top1S: 100.000000, Top1T: 64.841309 +Train:epoch: 103, loss@min: 0.960467, loss@max: 1.415671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000206, LT: 1.372107, Top1S: 100.000000, Top1T: 64.801003 +Train:epoch: 104, loss@min: 0.965413, loss@max: 1.405429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000205, LT: 1.372372, Top1S: 100.000000, Top1T: 64.811081 +Train:epoch: 105, loss@min: 0.951534, loss@max: 1.413589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000204, LT: 1.373191, Top1S: 100.000000, Top1T: 64.821159 +Train:epoch: 106, loss@min: 0.961962, loss@max: 1.399367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000204, LT: 1.374469, Top1S: 100.000000, Top1T: 64.811081 +Train:epoch: 107, loss@min: 0.965986, loss@max: 1.393569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000204, LT: 1.375631, Top1S: 100.000000, Top1T: 64.780853 +Train:epoch: 108, loss@min: 0.963102, loss@max: 1.396359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000204, LT: 1.376188, Top1S: 100.000000, Top1T: 64.856422 +Train:epoch: 109, loss@min: 0.962254, loss@max: 1.416841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000203, LT: 1.377024, Top1S: 100.000000, Top1T: 64.821159 +Train:epoch: 110, loss@min: 0.956071, loss@max: 1.399603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000202, LT: 1.377760, Top1S: 100.000000, Top1T: 64.806046 +Train:epoch: 111, loss@min: 0.947649, loss@max: 1.401533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000202, LT: 1.379090, Top1S: 100.000000, Top1T: 64.851379 +Train:epoch: 112, loss@min: 0.968865, loss@max: 1.387262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000202, LT: 1.380055, Top1S: 100.000000, Top1T: 64.947098 +Train:epoch: 113, loss@min: 0.959798, loss@max: 1.387148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000202, LT: 1.380387, Top1S: 100.000000, Top1T: 64.901764 +Train:epoch: 114, loss@min: 0.956634, loss@max: 1.392652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000202, LT: 1.381399, Top1S: 100.000000, Top1T: 64.846344 +Train:epoch: 115, loss@min: 0.951776, loss@max: 1.400258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000202, LT: 1.382828, Top1S: 100.000000, Top1T: 64.866493 +Train:epoch: 116, loss@min: 0.952370, loss@max: 1.401037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000201, LT: 1.384809, Top1S: 100.000000, Top1T: 64.785889 +Train:epoch: 117, loss@min: 0.951123, loss@max: 1.393032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000200, LT: 1.385614, Top1S: 100.000000, Top1T: 64.841309 +Train:epoch: 118, loss@min: 0.965982, loss@max: 1.380988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000200, LT: 1.385804, Top1S: 100.000000, Top1T: 64.886650 +Train:epoch: 119, loss@min: 0.952919, loss@max: 1.387373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000200, LT: 1.385883, Top1S: 100.000000, Top1T: 64.962212Best acc: 64.962212 +Train:epoch: 120, loss@min: 0.954460, loss@max: 1.385212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000200, LT: 1.386500, Top1S: 100.000000, Top1T: 64.901764 +Train:epoch: 121, loss@min: 0.958313, loss@max: 1.386550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000200, LT: 1.387112, Top1S: 100.000000, Top1T: 64.901764 +Train:epoch: 122, loss@min: 0.942696, loss@max: 1.399686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000200, LT: 1.387889, Top1S: 100.000000, Top1T: 64.886650 +Train:epoch: 123, loss@min: 0.954796, loss@max: 1.384074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000200, LT: 1.388502, Top1S: 100.000000, Top1T: 64.906799 +Train:epoch: 124, loss@min: 0.945200, loss@max: 1.395838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000200, LT: 1.388993, Top1S: 100.000000, Top1T: 64.881607 +Train:epoch: 125, loss@min: 0.939718, loss@max: 1.400355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000199, LT: 1.389357, Top1S: 100.000000, Top1T: 64.896721 +Train:epoch: 126, loss@min: 0.954465, loss@max: 1.382557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000199, LT: 1.389601, Top1S: 100.000000, Top1T: 64.901764 +Train:epoch: 127, loss@min: 0.946161, loss@max: 1.395521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000199, LT: 1.390175, Top1S: 100.000000, Top1T: 64.861458 +Train:epoch: 128, loss@min: 0.975767, loss@max: 1.369662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000199, LT: 1.390867, Top1S: 100.000000, Top1T: 64.901764 +Train:epoch: 129, loss@min: 0.951183, loss@max: 1.386615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000199, LT: 1.391294, Top1S: 100.000000, Top1T: 64.901764 +Train:epoch: 130, loss@min: 0.960901, loss@max: 1.384791, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 0.000199, LT: 1.391514, Top1S: 100.000000, Top1T: 64.896721 +Train:epoch: 131, loss@min: 0.943277, loss@max: 1.394468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000199, LT: 1.391570, Top1S: 100.000000, Top1T: 64.891685 +Train:epoch: 132, loss@min: 0.956654, loss@max: 1.392791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000199, LT: 1.391632, Top1S: 100.000000, Top1T: 64.881607 +Train:epoch: 133, loss@min: 0.964190, loss@max: 1.376473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000199, LT: 1.391921, Top1S: 100.000000, Top1T: 64.876572 +Train:epoch: 134, loss@min: 0.961497, loss@max: 1.390950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000199, LT: 1.392182, Top1S: 100.000000, Top1T: 64.906799 +Train:epoch: 135, loss@min: 0.952002, loss@max: 1.389024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000199, LT: 1.392382, Top1S: 100.000000, Top1T: 64.911835 +Train:epoch: 136, loss@min: 0.949850, loss@max: 1.388058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000199, LT: 1.392558, Top1S: 100.000000, Top1T: 64.931984 +Train:epoch: 137, loss@min: 0.949393, loss@max: 1.385183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000199, LT: 1.392723, Top1S: 100.000000, Top1T: 64.926949 +Train:epoch: 138, loss@min: 0.946947, loss@max: 1.390587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000199, LT: 1.392818, Top1S: 100.000000, Top1T: 64.921913 +Train:epoch: 139, loss@min: 0.947630, loss@max: 1.385847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000199, LT: 1.392923, Top1S: 100.000000, Top1T: 64.921913 +Train:epoch: 140, loss@min: 0.955811, loss@max: 1.373005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000199, LT: 1.393010, Top1S: 100.000000, Top1T: 64.926949 +Train:epoch: 141, loss@min: 0.952325, loss@max: 1.378483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000199, LT: 1.393090, Top1S: 100.000000, Top1T: 64.947098 +Train:epoch: 142, loss@min: 0.940376, loss@max: 1.395506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000199, LT: 1.393122, Top1S: 100.000000, Top1T: 64.921913 +Train:epoch: 143, loss@min: 0.961327, loss@max: 1.375463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000199, LT: 1.393155, Top1S: 100.000000, Top1T: 64.921913 +Train:epoch: 144, loss@min: 0.960855, loss@max: 1.373011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000199, LT: 1.393178, Top1S: 100.000000, Top1T: 64.937027 +Train:epoch: 145, loss@min: 0.955178, loss@max: 1.380670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000199, LT: 1.393200, Top1S: 100.000000, Top1T: 64.937027 +Train:epoch: 146, loss@min: 0.947617, loss@max: 1.387038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000199, LT: 1.393220, Top1S: 100.000000, Top1T: 64.937027 +Train:epoch: 147, loss@min: 0.946998, loss@max: 1.382538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000199, LT: 1.393235, Top1S: 100.000000, Top1T: 64.937027 +Train:epoch: 148, loss@min: 0.950267, loss@max: 1.384800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000199, LT: 1.393239, Top1S: 100.000000, Top1T: 64.937027 +Train:epoch: 149, loss@min: 0.944993, loss@max: 1.393891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000199, LT: 1.393241, Top1S: 100.000000, Top1T: 64.937027 +Train:epoch: 150, loss@min: 0.952025, loss@max: 1.383755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000199, LT: 1.393241, Top1S: 100.000000, Top1T: 64.937027{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\sun397_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jul 27 21:54:15 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jul 27 21:55:00 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 397, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jul 27 21:55:22 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jul 27 21:55:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.083559, loss@max: 2.057126, Top1S acc: 100.000000, Top1T acc: 67.187500 +Train:epoch: 2, loss@min: 2.261188, loss@max: 1.475255, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 3, loss@min: 1.787004, loss@max: 1.348592, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 4, loss@min: 1.281259, loss@max: 1.326330, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 5, loss@min: 1.070571, loss@max: 1.326811, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 6, loss@min: 1.025040, loss@max: 1.264647, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 7, loss@min: 1.101485, loss@max: 1.170154, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 8, loss@min: 0.965160, loss@max: 1.235641, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 0.928125, loss@max: 1.224290, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 0.952605, loss@max: 1.242309, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 0.926937, loss@max: 1.259034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.925158, loss@max: 1.287123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.953514, loss@max: 1.264841, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 0.951281, loss@max: 1.312982, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.932616, loss@max: 1.346001, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.975715, loss@max: 1.300232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.899610, loss@max: 1.402172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991219, loss@max: 1.299069, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.940066, loss@max: 1.355040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.927847, loss@max: 1.351123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.995023, loss@max: 1.312804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.913414, loss@max: 1.340378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.932488, loss@max: 1.358518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.929158, loss@max: 1.348599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.951504, loss@max: 1.339783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.955307, loss@max: 1.336755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.947412, loss@max: 1.326544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.944004, loss@max: 1.364813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.961108, loss@max: 1.314141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.928691, loss@max: 1.354693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.929135, loss@max: 1.369877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.936177, loss@max: 1.359594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974877, loss@max: 1.326547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947619, loss@max: 1.338276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.924821, loss@max: 1.381391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.954062, loss@max: 1.334471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935808, loss@max: 1.369830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.943084, loss@max: 1.355928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949399, loss@max: 1.351100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933801, loss@max: 1.373839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.964607, loss@max: 1.336300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933661, loss@max: 1.383652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.942566, loss@max: 1.373015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958014, loss@max: 1.348281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.948438, loss@max: 1.359581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.940732, loss@max: 1.365326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.966636, loss@max: 1.345214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.950144, loss@max: 1.358589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944379, loss@max: 1.370540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958187, loss@max: 1.354325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948252, loss@max: 1.355501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949544, loss@max: 1.364410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.951144, loss@max: 1.361147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.937649, loss@max: 1.367857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943759, loss@max: 1.367607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954223, loss@max: 1.355054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.953564, loss@max: 1.364937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.949326, loss@max: 1.365326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953462, loss@max: 1.358470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941884, loss@max: 1.368229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.939128, loss@max: 1.377297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954151, loss@max: 1.364849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955963, loss@max: 1.357244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.935800, loss@max: 1.374494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949212, loss@max: 1.364444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952811, loss@max: 1.356979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.942033, loss@max: 1.371588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943459, loss@max: 1.369845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949869, loss@max: 1.363536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945229, loss@max: 1.366852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943909, loss@max: 1.364902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.946594, loss@max: 1.363231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946616, loss@max: 1.364405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943934, loss@max: 1.367506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.952211, loss@max: 1.361864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943014, loss@max: 1.369076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.949704, loss@max: 1.360719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952603, loss@max: 1.355768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948177, loss@max: 1.362321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.941564, loss@max: 1.370055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000625, LT: 1.775792, Top1S: 100.000000, Top1T: 66.430260Best acc: 66.430260 +Train:epoch: 81, loss@min: 0.940519, loss@max: 1.369116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000619, LT: 1.777536, Top1S: 100.000000, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 82, loss@min: 0.949769, loss@max: 1.359736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000616, LT: 1.780351, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 83, loss@min: 0.949089, loss@max: 1.359743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000614, LT: 1.785943, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 84, loss@min: 0.944959, loss@max: 1.365403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000609, LT: 1.788154, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 85, loss@min: 0.954786, loss@max: 1.353869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000607, LT: 1.790601, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 86, loss@min: 0.946295, loss@max: 1.363011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000606, LT: 1.795131, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 87, loss@min: 0.939340, loss@max: 1.370472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000601, LT: 1.797257, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 88, loss@min: 0.951443, loss@max: 1.356699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000597, LT: 1.798811, Top1S: 100.000000, Top1T: 66.725769Best acc: 66.725769 +Train:epoch: 89, loss@min: 0.948561, loss@max: 1.358039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000596, LT: 1.801281, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 90, loss@min: 0.948203, loss@max: 1.358630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000593, LT: 1.804644, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 91, loss@min: 0.951129, loss@max: 1.355358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000590, LT: 1.807946, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 92, loss@min: 0.950003, loss@max: 1.357517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000589, LT: 1.811774, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 93, loss@min: 0.941351, loss@max: 1.366002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000586, LT: 1.815402, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 94, loss@min: 0.950849, loss@max: 1.355581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000582, LT: 1.818803, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 95, loss@min: 0.950818, loss@max: 1.357142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000581, LT: 1.822578, Top1S: 100.000000, Top1T: 67.021278Best acc: 67.021278 +Train:epoch: 96, loss@min: 0.942483, loss@max: 1.364243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000580, LT: 1.825851, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 97, loss@min: 0.948452, loss@max: 1.358290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000577, LT: 1.828789, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 98, loss@min: 0.950113, loss@max: 1.357080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000575, LT: 1.832742, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 99, loss@min: 0.946269, loss@max: 1.359976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000574, LT: 1.836140, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 100, loss@min: 0.942702, loss@max: 1.363680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000571, LT: 1.837788, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 101, loss@min: 0.950410, loss@max: 1.355865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000569, LT: 1.839548, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 102, loss@min: 0.948719, loss@max: 1.356866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000569, LT: 1.842961, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 103, loss@min: 0.946525, loss@max: 1.358462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000567, LT: 1.844370, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 104, loss@min: 0.944624, loss@max: 1.360394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000565, LT: 1.845695, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 105, loss@min: 0.947007, loss@max: 1.358325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000564, LT: 1.847367, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 106, loss@min: 0.942690, loss@max: 1.362922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000563, LT: 1.848510, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 107, loss@min: 0.945262, loss@max: 1.360159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000561, LT: 1.849569, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 108, loss@min: 0.950364, loss@max: 1.354557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000560, LT: 1.851093, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 109, loss@min: 0.946721, loss@max: 1.359477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000559, LT: 1.853024, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 110, loss@min: 0.945070, loss@max: 1.360021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000558, LT: 1.854542, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 111, loss@min: 0.949589, loss@max: 1.355030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000556, LT: 1.855262, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 112, loss@min: 0.948175, loss@max: 1.356329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000556, LT: 1.856463, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 113, loss@min: 0.944785, loss@max: 1.361808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000555, LT: 1.858037, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 114, loss@min: 0.947258, loss@max: 1.357668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000553, LT: 1.859591, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 115, loss@min: 0.949139, loss@max: 1.356487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000552, LT: 1.860954, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 116, loss@min: 0.946163, loss@max: 1.358759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000552, LT: 1.862238, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 117, loss@min: 0.950010, loss@max: 1.355586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000551, LT: 1.863879, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 118, loss@min: 0.946636, loss@max: 1.358806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000551, LT: 1.865212, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 119, loss@min: 0.942720, loss@max: 1.361230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000550, LT: 1.866411, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 120, loss@min: 0.944481, loss@max: 1.361139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000549, LT: 1.867142, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 121, loss@min: 0.949206, loss@max: 1.354398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000548, LT: 1.867767, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 122, loss@min: 0.947361, loss@max: 1.357402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000548, LT: 1.868643, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 123, loss@min: 0.948176, loss@max: 1.356350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000547, LT: 1.869477, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 124, loss@min: 0.945964, loss@max: 1.359402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000547, LT: 1.870000, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 125, loss@min: 0.945487, loss@max: 1.358747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000546, LT: 1.870479, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 126, loss@min: 0.947157, loss@max: 1.358055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000546, LT: 1.871075, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 127, loss@min: 0.945853, loss@max: 1.358632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000546, LT: 1.871690, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.946295, loss@max: 1.357918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000545, LT: 1.872329, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.946477, loss@max: 1.357206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000545, LT: 1.872827, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.943148, loss@max: 1.361218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000544, LT: 1.873259, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 131, loss@min: 0.946219, loss@max: 1.360131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000544, LT: 1.873564, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 132, loss@min: 0.949031, loss@max: 1.356709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000543, LT: 1.873737, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 133, loss@min: 0.947644, loss@max: 1.357449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000543, LT: 1.873882, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 134, loss@min: 0.947538, loss@max: 1.356214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000543, LT: 1.874090, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 135, loss@min: 0.945638, loss@max: 1.358425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000543, LT: 1.874408, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 136, loss@min: 0.948457, loss@max: 1.356596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000543, LT: 1.874649, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 137, loss@min: 0.947585, loss@max: 1.357631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000543, LT: 1.874876, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 138, loss@min: 0.944597, loss@max: 1.358880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000543, LT: 1.875056, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.947035, loss@max: 1.356623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000543, LT: 1.875205, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.942446, loss@max: 1.361468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000543, LT: 1.875312, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 141, loss@min: 0.945385, loss@max: 1.358932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000543, LT: 1.875401, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 142, loss@min: 0.946773, loss@max: 1.362514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000542, LT: 1.875426, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 143, loss@min: 0.944562, loss@max: 1.360174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000542, LT: 1.875382, Top1S: 100.000000, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 144, loss@min: 0.947107, loss@max: 1.356942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000542, LT: 1.875373, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 145, loss@min: 0.943948, loss@max: 1.359885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000542, LT: 1.875381, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 146, loss@min: 0.945424, loss@max: 1.358484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000542, LT: 1.875396, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 147, loss@min: 0.946199, loss@max: 1.357597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000542, LT: 1.875409, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 148, loss@min: 0.945309, loss@max: 1.358435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000542, LT: 1.875414, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 149, loss@min: 0.944914, loss@max: 1.359218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000542, LT: 1.875415, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 150, loss@min: 0.946786, loss@max: 1.357089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000542, LT: 1.875415, Top1S: 100.000000, Top1T: 67.198578{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jul 27 23:30:40 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.935188, loss@max: 1.516000, Top1S acc: 100.000000, Top1T acc: 63.281250 +Train:epoch: 2, loss@min: 2.971222, loss@max: 1.442947, Top1S acc: 100.000000, Top1T acc: 70.703125 +Train:epoch: 3, loss@min: 2.233694, loss@max: 1.387424, Top1S acc: 100.000000, Top1T acc: 78.515625 +Train:epoch: 4, loss@min: 1.692874, loss@max: 1.383614, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 5, loss@min: 1.317742, loss@max: 1.355477, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 6, loss@min: 1.081153, loss@max: 1.333413, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.062139, loss@max: 1.319039, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.027540, loss@max: 1.276483, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 0.936172, loss@max: 1.218571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.953347, loss@max: 1.220564, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 0.937501, loss@max: 1.218017, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.924985, loss@max: 1.207040, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 0.938319, loss@max: 1.205911, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 0.940630, loss@max: 1.211832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.915885, loss@max: 1.214147, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.929500, loss@max: 1.229612, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.915266, loss@max: 1.237934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.922148, loss@max: 1.240741, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.909421, loss@max: 1.245681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.924947, loss@max: 1.250918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.935966, loss@max: 1.263802, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.925526, loss@max: 1.251270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.925453, loss@max: 1.267151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.924823, loss@max: 1.268958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.932898, loss@max: 1.272674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.926969, loss@max: 1.273719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.925333, loss@max: 1.284172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929947, loss@max: 1.287507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.936344, loss@max: 1.287021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.928948, loss@max: 1.294407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.935027, loss@max: 1.294162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.930411, loss@max: 1.302966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.930185, loss@max: 1.307736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.939276, loss@max: 1.301908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.933618, loss@max: 1.315258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.943227, loss@max: 1.313511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935614, loss@max: 1.316503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.939126, loss@max: 1.317467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940286, loss@max: 1.321860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.945593, loss@max: 1.323936, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.937190, loss@max: 1.329785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.950375, loss@max: 1.318997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.931509, loss@max: 1.340846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.941155, loss@max: 1.332565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.944219, loss@max: 1.332238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.935257, loss@max: 1.346522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.963139, loss@max: 1.325997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.929115, loss@max: 1.354726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.953592, loss@max: 1.332531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.948860, loss@max: 1.336652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.939037, loss@max: 1.347302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.955397, loss@max: 1.333734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938914, loss@max: 1.351637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.946286, loss@max: 1.345232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942016, loss@max: 1.348312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.940701, loss@max: 1.349697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950348, loss@max: 1.343317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.940972, loss@max: 1.354160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.949876, loss@max: 1.344599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.948696, loss@max: 1.346735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.943287, loss@max: 1.353384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950276, loss@max: 1.347497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.946210, loss@max: 1.351393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.944456, loss@max: 1.354520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946876, loss@max: 1.352162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.944562, loss@max: 1.353664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947689, loss@max: 1.350715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950078, loss@max: 1.349710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945935, loss@max: 1.354893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947433, loss@max: 1.352790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946614, loss@max: 1.353977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948005, loss@max: 1.354139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948295, loss@max: 1.353632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.950012, loss@max: 1.353453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948339, loss@max: 1.354223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.942873, loss@max: 1.359071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948747, loss@max: 1.353590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947525, loss@max: 1.355615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.944762, loss@max: 1.357759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949999, loss@max: 1.353617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001761, LT: 2.307817, Top1S: 100.000000, Top1T: 66.725769Best acc: 66.725769 +Train:epoch: 81, loss@min: 0.950999, loss@max: 1.351485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001757, LT: 2.310422, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 82, loss@min: 0.946318, loss@max: 1.357402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001753, LT: 2.313385, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 83, loss@min: 0.950673, loss@max: 1.352955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001747, LT: 2.315818, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 84, loss@min: 0.946635, loss@max: 1.357034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001743, LT: 2.318249, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 85, loss@min: 0.946041, loss@max: 1.359108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001740, LT: 2.319625, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 86, loss@min: 0.948746, loss@max: 1.354679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001735, LT: 2.320230, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 87, loss@min: 0.944862, loss@max: 1.358883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001731, LT: 2.315228, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 88, loss@min: 0.946820, loss@max: 1.356906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001728, LT: 2.312389, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 89, loss@min: 0.948727, loss@max: 1.355612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001724, LT: 2.311234, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 90, loss@min: 0.948573, loss@max: 1.355437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001720, LT: 2.311512, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 91, loss@min: 0.947514, loss@max: 1.356363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001717, LT: 2.312308, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 92, loss@min: 0.950305, loss@max: 1.354231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001714, LT: 2.313864, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 93, loss@min: 0.946893, loss@max: 1.357164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001710, LT: 2.316363, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 94, loss@min: 0.948427, loss@max: 1.356623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001707, LT: 2.317688, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 95, loss@min: 0.949976, loss@max: 1.355180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001704, LT: 2.318816, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 96, loss@min: 0.946544, loss@max: 1.357565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001701, LT: 2.319923, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 97, loss@min: 0.946830, loss@max: 1.357508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001698, LT: 2.320627, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 98, loss@min: 0.948530, loss@max: 1.357914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001695, LT: 2.320993, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 99, loss@min: 0.949687, loss@max: 1.355171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001693, LT: 2.320990, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 100, loss@min: 0.946520, loss@max: 1.357720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001690, LT: 2.321986, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 101, loss@min: 0.949024, loss@max: 1.356576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001688, LT: 2.322835, Top1S: 100.000000, Top1T: 67.494087Best acc: 67.494087 +Train:epoch: 102, loss@min: 0.949013, loss@max: 1.355953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001685, LT: 2.323794, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 103, loss@min: 0.947840, loss@max: 1.356411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001683, LT: 2.324781, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 104, loss@min: 0.947577, loss@max: 1.357361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001681, LT: 2.326108, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 105, loss@min: 0.948459, loss@max: 1.357009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001679, LT: 2.327260, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 106, loss@min: 0.948145, loss@max: 1.358390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001677, LT: 2.327179, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 107, loss@min: 0.946743, loss@max: 1.358691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001675, LT: 2.326168, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 108, loss@min: 0.948773, loss@max: 1.355652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001673, LT: 2.325656, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 109, loss@min: 0.948222, loss@max: 1.357847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001672, LT: 2.325838, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 110, loss@min: 0.947721, loss@max: 1.357615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001670, LT: 2.326271, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 111, loss@min: 0.949131, loss@max: 1.355209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001668, LT: 2.326393, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 112, loss@min: 0.948839, loss@max: 1.355497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001667, LT: 2.326836, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 113, loss@min: 0.949365, loss@max: 1.358614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001665, LT: 2.327521, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 114, loss@min: 0.948639, loss@max: 1.356999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001664, LT: 2.328393, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 115, loss@min: 0.948956, loss@max: 1.356692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001662, LT: 2.329486, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 116, loss@min: 0.946781, loss@max: 1.358851, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001661, LT: 2.330290, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 117, loss@min: 0.948815, loss@max: 1.357557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001660, LT: 2.330973, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 118, loss@min: 0.947626, loss@max: 1.358677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001659, LT: 2.330442, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 119, loss@min: 0.947538, loss@max: 1.357127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001658, LT: 2.330574, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 120, loss@min: 0.947518, loss@max: 1.358158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001657, LT: 2.330893, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 121, loss@min: 0.949790, loss@max: 1.354845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001655, LT: 2.331227, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 122, loss@min: 0.948886, loss@max: 1.355311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001655, LT: 2.331532, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 123, loss@min: 0.948055, loss@max: 1.356827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001654, LT: 2.331803, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 124, loss@min: 0.946418, loss@max: 1.360425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001653, LT: 2.332153, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 125, loss@min: 0.949076, loss@max: 1.355572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001653, LT: 2.332656, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 126, loss@min: 0.947527, loss@max: 1.357766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001652, LT: 2.333187, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 127, loss@min: 0.948794, loss@max: 1.356270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001651, LT: 2.333599, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.948919, loss@max: 1.356542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001651, LT: 2.333992, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.947994, loss@max: 1.357589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001650, LT: 2.334269, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.946585, loss@max: 1.359318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001650, LT: 2.334466, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 131, loss@min: 0.947273, loss@max: 1.359030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001649, LT: 2.334613, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 132, loss@min: 0.948499, loss@max: 1.357125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001649, LT: 2.334674, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 133, loss@min: 0.948140, loss@max: 1.356755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001648, LT: 2.334677, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 134, loss@min: 0.947895, loss@max: 1.356886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001648, LT: 2.334808, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 135, loss@min: 0.947934, loss@max: 1.356955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001648, LT: 2.334910, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 136, loss@min: 0.948220, loss@max: 1.357054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001648, LT: 2.334944, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 137, loss@min: 0.949434, loss@max: 1.356726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001647, LT: 2.334896, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 138, loss@min: 0.947192, loss@max: 1.357258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001647, LT: 2.334826, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.949282, loss@max: 1.355933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001647, LT: 2.334795, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.946593, loss@max: 1.358486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001647, LT: 2.334777, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 141, loss@min: 0.947132, loss@max: 1.358079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001647, LT: 2.334805, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 142, loss@min: 0.951527, loss@max: 1.362008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001647, LT: 2.334809, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 143, loss@min: 0.948666, loss@max: 1.358355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001647, LT: 2.334621, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 144, loss@min: 0.948540, loss@max: 1.356828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001647, LT: 2.334526, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 145, loss@min: 0.947524, loss@max: 1.357852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001647, LT: 2.334472, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 146, loss@min: 0.946454, loss@max: 1.358878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001647, LT: 2.334463, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 147, loss@min: 0.947351, loss@max: 1.357525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001647, LT: 2.334464, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 148, loss@min: 0.947204, loss@max: 1.357426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001647, LT: 2.334465, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 149, loss@min: 0.946537, loss@max: 1.358921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001647, LT: 2.334465, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 150, loss@min: 0.947654, loss@max: 1.358074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001647, LT: 2.334465, Top1S: 100.000000, Top1T: 67.080376{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 00:52:42 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.510686, loss@max: 1.680259, Top1S acc: 100.000000, Top1T acc: 54.687500 +Train:epoch: 2, loss@min: 4.144014, loss@max: 1.802263, Top1S acc: 100.000000, Top1T acc: 52.734375 +Train:epoch: 3, loss@min: 3.663148, loss@max: 1.858992, Top1S acc: 100.000000, Top1T acc: 57.812500 +Train:epoch: 4, loss@min: 3.321287, loss@max: 1.912551, Top1S acc: 100.000000, Top1T acc: 64.062500 +Train:epoch: 5, loss@min: 2.902139, loss@max: 1.882353, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 6, loss@min: 2.702551, loss@max: 1.874246, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 7, loss@min: 2.329777, loss@max: 1.773407, Top1S acc: 100.000000, Top1T acc: 80.078125 +Train:epoch: 8, loss@min: 2.245903, loss@max: 1.742086, Top1S acc: 100.000000, Top1T acc: 76.562500 +Train:epoch: 9, loss@min: 2.157005, loss@max: 1.700620, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 10, loss@min: 2.064869, loss@max: 1.657264, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 11, loss@min: 2.026627, loss@max: 1.627543, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 12, loss@min: 1.787004, loss@max: 1.560656, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 13, loss@min: 1.682476, loss@max: 1.530037, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 14, loss@min: 1.633417, loss@max: 1.529023, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 15, loss@min: 1.482328, loss@max: 1.485786, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 16, loss@min: 1.416093, loss@max: 1.489326, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 17, loss@min: 1.452148, loss@max: 1.510254, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 18, loss@min: 1.382912, loss@max: 1.499381, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 19, loss@min: 1.289884, loss@max: 1.465046, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 20, loss@min: 1.297491, loss@max: 1.475727, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 21, loss@min: 1.284197, loss@max: 1.476629, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 22, loss@min: 1.154094, loss@max: 1.433120, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.225921, loss@max: 1.451650, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 24, loss@min: 1.186365, loss@max: 1.457344, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 25, loss@min: 1.124217, loss@max: 1.420421, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.107784, loss@max: 1.423960, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.082503, loss@max: 1.409796, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 1.089068, loss@max: 1.422011, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 1.071734, loss@max: 1.409049, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 30, loss@min: 1.052575, loss@max: 1.398930, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.056129, loss@max: 1.409184, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 1.040360, loss@max: 1.397975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.019585, loss@max: 1.392308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.006181, loss@max: 1.384324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.034109, loss@max: 1.405782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.067119, loss@max: 1.402958, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.012420, loss@max: 1.390886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.016639, loss@max: 1.393918, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.024073, loss@max: 1.407793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.994349, loss@max: 1.385420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.993128, loss@max: 1.382807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.010915, loss@max: 1.390992, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 0.985046, loss@max: 1.382386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.995113, loss@max: 1.390016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992593, loss@max: 1.387768, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.987906, loss@max: 1.388126, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 1.007934, loss@max: 1.391064, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 0.981256, loss@max: 1.387577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.977612, loss@max: 1.382724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.980431, loss@max: 1.376794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.976169, loss@max: 1.382859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.982637, loss@max: 1.387604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.981229, loss@max: 1.384887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.976466, loss@max: 1.383326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.975092, loss@max: 1.383872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.965197, loss@max: 1.379673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.973914, loss@max: 1.382827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.972332, loss@max: 1.380547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.970577, loss@max: 1.377954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.977961, loss@max: 1.388827, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.981913, loss@max: 1.386986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.970615, loss@max: 1.385477, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.971502, loss@max: 1.377507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.974784, loss@max: 1.385055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.973216, loss@max: 1.385170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.961545, loss@max: 1.376164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.973573, loss@max: 1.379409, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.964307, loss@max: 1.382771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.969967, loss@max: 1.385101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.972259, loss@max: 1.379224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.965400, loss@max: 1.384158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.972628, loss@max: 1.380182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.972869, loss@max: 1.382642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.967052, loss@max: 1.380141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.968219, loss@max: 1.383054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.958593, loss@max: 1.373048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962705, loss@max: 1.375389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.967478, loss@max: 1.382486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.960383, loss@max: 1.378050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.971263, loss@max: 1.380478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001582, LT: 1.643048, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 81, loss@min: 0.961594, loss@max: 1.369110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001575, LT: 1.646113, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.967212, loss@max: 1.381661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001570, LT: 1.648577, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 83, loss@min: 0.963959, loss@max: 1.376419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001565, LT: 1.649762, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 84, loss@min: 0.961671, loss@max: 1.383714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001560, LT: 1.650574, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 85, loss@min: 0.958366, loss@max: 1.375904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001554, LT: 1.651299, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 86, loss@min: 0.962235, loss@max: 1.375188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001549, LT: 1.652196, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 87, loss@min: 0.962823, loss@max: 1.377937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001545, LT: 1.652792, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 88, loss@min: 0.957845, loss@max: 1.375499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001540, LT: 1.653276, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 89, loss@min: 0.961437, loss@max: 1.377061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001535, LT: 1.653216, Top1S: 100.000000, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 90, loss@min: 0.964115, loss@max: 1.375890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001531, LT: 1.654098, Top1S: 100.000000, Top1T: 67.553192Best acc: 67.553192 +Train:epoch: 91, loss@min: 0.960151, loss@max: 1.374541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001526, LT: 1.656596, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 92, loss@min: 0.958617, loss@max: 1.369190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001523, LT: 1.658563, Top1S: 100.000000, Top1T: 67.730499Best acc: 67.730499 +Train:epoch: 93, loss@min: 0.961677, loss@max: 1.376558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001519, LT: 1.660779, Top1S: 100.000000, Top1T: 67.907799Best acc: 67.907799 +Train:epoch: 94, loss@min: 0.965039, loss@max: 1.378952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001515, LT: 1.662691, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 95, loss@min: 0.959702, loss@max: 1.371748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001511, LT: 1.664375, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 96, loss@min: 0.962057, loss@max: 1.377638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001508, LT: 1.666508, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 97, loss@min: 0.961133, loss@max: 1.375402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001505, LT: 1.668416, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 98, loss@min: 0.962745, loss@max: 1.379141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001501, LT: 1.669917, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 99, loss@min: 0.959860, loss@max: 1.375477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001498, LT: 1.670589, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 100, loss@min: 0.961053, loss@max: 1.373858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001495, LT: 1.671278, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 101, loss@min: 0.963221, loss@max: 1.376415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001492, LT: 1.671670, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 102, loss@min: 0.956797, loss@max: 1.373981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001489, LT: 1.671325, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 103, loss@min: 0.955111, loss@max: 1.368850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001486, LT: 1.670905, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 104, loss@min: 0.957900, loss@max: 1.375270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001484, LT: 1.671241, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 105, loss@min: 0.961296, loss@max: 1.376550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001481, LT: 1.671600, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 106, loss@min: 0.965892, loss@max: 1.377050, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 106, LS: 0.001479, LT: 1.671505, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 107, loss@min: 0.958610, loss@max: 1.378666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001477, LT: 1.671340, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 108, loss@min: 0.957480, loss@max: 1.373002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001474, LT: 1.671756, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 109, loss@min: 0.957801, loss@max: 1.371030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001472, LT: 1.672226, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 110, loss@min: 0.957621, loss@max: 1.369855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001470, LT: 1.672463, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 111, loss@min: 0.957166, loss@max: 1.371068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001469, LT: 1.672640, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 112, loss@min: 0.955817, loss@max: 1.372616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001467, LT: 1.673245, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 113, loss@min: 0.959295, loss@max: 1.374102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001465, LT: 1.674173, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 114, loss@min: 0.959004, loss@max: 1.375344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001463, LT: 1.675326, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 115, loss@min: 0.962119, loss@max: 1.375401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001462, LT: 1.676770, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 116, loss@min: 0.959307, loss@max: 1.375347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001460, LT: 1.677962, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 117, loss@min: 0.966928, loss@max: 1.381184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001459, LT: 1.678955, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 118, loss@min: 0.959896, loss@max: 1.373844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001458, LT: 1.679363, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 119, loss@min: 0.954987, loss@max: 1.370035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001457, LT: 1.679884, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 120, loss@min: 0.959457, loss@max: 1.375730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001455, LT: 1.680211, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 121, loss@min: 0.956514, loss@max: 1.368357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001454, LT: 1.680704, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 122, loss@min: 0.955634, loss@max: 1.368877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001453, LT: 1.681087, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 123, loss@min: 0.961035, loss@max: 1.374934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001452, LT: 1.681508, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 124, loss@min: 0.960945, loss@max: 1.376260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001451, LT: 1.681705, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 125, loss@min: 0.956986, loss@max: 1.373980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001450, LT: 1.681919, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 126, loss@min: 0.957141, loss@max: 1.374268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001450, LT: 1.682263, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 127, loss@min: 0.961488, loss@max: 1.374768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001449, LT: 1.682624, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 128, loss@min: 0.959553, loss@max: 1.372735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001448, LT: 1.683079, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 129, loss@min: 0.959127, loss@max: 1.372756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001448, LT: 1.683380, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 130, loss@min: 0.956228, loss@max: 1.373738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001447, LT: 1.683605, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 131, loss@min: 0.959526, loss@max: 1.372850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001447, LT: 1.683698, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 132, loss@min: 0.960788, loss@max: 1.374716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001446, LT: 1.683698, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 133, loss@min: 0.960305, loss@max: 1.373546, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 0.001446, LT: 1.683687, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 134, loss@min: 0.956665, loss@max: 1.372132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001446, LT: 1.683706, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 135, loss@min: 0.958703, loss@max: 1.374807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001445, LT: 1.683798, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 136, loss@min: 0.962133, loss@max: 1.375864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001445, LT: 1.683936, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 137, loss@min: 0.958590, loss@max: 1.370205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001445, LT: 1.684042, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 138, loss@min: 0.954605, loss@max: 1.368577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001445, LT: 1.684140, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 139, loss@min: 0.956347, loss@max: 1.366770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001444, LT: 1.684218, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 140, loss@min: 0.958709, loss@max: 1.374764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001444, LT: 1.684285, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 141, loss@min: 0.957369, loss@max: 1.373286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001444, LT: 1.684353, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 142, loss@min: 0.983559, loss@max: 1.382980, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 142, LS: 0.001444, LT: 1.684385, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 143, loss@min: 0.960698, loss@max: 1.374879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001444, LT: 1.684382, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 144, loss@min: 0.957172, loss@max: 1.368405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001444, LT: 1.684385, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 145, loss@min: 0.956728, loss@max: 1.372574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001444, LT: 1.684389, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 146, loss@min: 0.955874, loss@max: 1.374211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001444, LT: 1.684405, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 147, loss@min: 0.957898, loss@max: 1.372579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001444, LT: 1.684416, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 148, loss@min: 0.953647, loss@max: 1.369050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001444, LT: 1.684421, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 149, loss@min: 0.957088, loss@max: 1.372943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001444, LT: 1.684422, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 150, loss@min: 0.956264, loss@max: 1.372428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001444, LT: 1.684422, Top1S: 100.000000, Top1T: 67.494087{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 01:57:23 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.221536, loss@max: 2.004691, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.146733, loss@max: 1.843134, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.575261, loss@max: 1.795753, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.792042, loss@max: 1.694804, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 5, loss@min: 3.439982, loss@max: 1.686226, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.875720, loss@max: 1.629147, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.531438, loss@max: 1.602068, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.187637, loss@max: 1.562750, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.965806, loss@max: 1.556869, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.738927, loss@max: 1.540220, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.464995, loss@max: 1.498525, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.412573, loss@max: 1.530656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.246202, loss@max: 1.486960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.170208, loss@max: 1.481385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.072477, loss@max: 1.454806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.996373, loss@max: 1.420285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.980956, loss@max: 1.417028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.958833, loss@max: 1.403658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942656, loss@max: 1.381089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.953253, loss@max: 1.373213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952520, loss@max: 1.359498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.938601, loss@max: 1.334889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.939518, loss@max: 1.336343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.953177, loss@max: 1.338026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.945612, loss@max: 1.340064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.938714, loss@max: 1.324566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.959218, loss@max: 1.328844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.947839, loss@max: 1.328408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.937245, loss@max: 1.331630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.937118, loss@max: 1.325524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.944601, loss@max: 1.339822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.948134, loss@max: 1.343158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935794, loss@max: 1.329020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.937844, loss@max: 1.333900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931494, loss@max: 1.338323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.944466, loss@max: 1.337827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.947747, loss@max: 1.332934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957205, loss@max: 1.329203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.985708, loss@max: 1.346555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958872, loss@max: 1.326452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960703, loss@max: 1.330921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957727, loss@max: 1.327134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957889, loss@max: 1.335955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955818, loss@max: 1.332985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.957429, loss@max: 1.333665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955463, loss@max: 1.338105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.952654, loss@max: 1.339296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956655, loss@max: 1.333529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.955084, loss@max: 1.342404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958911, loss@max: 1.338743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958103, loss@max: 1.343025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959886, loss@max: 1.343011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955463, loss@max: 1.344207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949706, loss@max: 1.352194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.948149, loss@max: 1.359106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949420, loss@max: 1.352853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947658, loss@max: 1.363841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948112, loss@max: 1.357641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952454, loss@max: 1.355403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953054, loss@max: 1.354241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954299, loss@max: 1.353479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954590, loss@max: 1.351601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.947799, loss@max: 1.364306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949742, loss@max: 1.360183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.950350, loss@max: 1.359170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947864, loss@max: 1.366366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951131, loss@max: 1.360642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953025, loss@max: 1.362060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946551, loss@max: 1.362233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947991, loss@max: 1.362604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950072, loss@max: 1.361359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949359, loss@max: 1.365115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943907, loss@max: 1.367741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945947, loss@max: 1.365488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953932, loss@max: 1.359613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953776, loss@max: 1.362598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954878, loss@max: 1.364593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952423, loss@max: 1.360515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954532, loss@max: 1.360482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955124, loss@max: 1.355973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002361, LT: 1.994824, Top1S: 100.000000, Top1T: 50.472813Best acc: 50.472813 +Train:epoch: 81, loss@min: 0.955275, loss@max: 1.360168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002359, LT: 1.995331, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 82, loss@min: 0.952023, loss@max: 1.363190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002356, LT: 1.995787, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 83, loss@min: 0.945703, loss@max: 1.367801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002352, LT: 1.996254, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 84, loss@min: 0.983040, loss@max: 1.383704, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 0.002349, LT: 1.996177, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 85, loss@min: 0.953604, loss@max: 1.362518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002346, LT: 1.996216, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 86, loss@min: 0.950249, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002343, LT: 1.996355, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 87, loss@min: 0.957536, loss@max: 1.370329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002340, LT: 1.996761, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 88, loss@min: 0.950626, loss@max: 1.363725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002337, LT: 1.997188, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 89, loss@min: 0.951128, loss@max: 1.364666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002335, LT: 1.997634, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 90, loss@min: 0.952214, loss@max: 1.361459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002332, LT: 1.998002, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 91, loss@min: 0.953764, loss@max: 1.360121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002329, LT: 1.998344, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 92, loss@min: 0.959128, loss@max: 1.373905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002327, LT: 1.998688, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 93, loss@min: 0.953275, loss@max: 1.362518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002324, LT: 1.999041, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 94, loss@min: 0.953086, loss@max: 1.363420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002322, LT: 1.999419, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 95, loss@min: 0.954916, loss@max: 1.361659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002319, LT: 1.999820, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 96, loss@min: 0.949625, loss@max: 1.370269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002317, LT: 2.000298, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 97, loss@min: 0.952409, loss@max: 1.363343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002315, LT: 2.000741, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 98, loss@min: 0.952558, loss@max: 1.363538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002313, LT: 2.001123, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 99, loss@min: 0.952328, loss@max: 1.364504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002311, LT: 2.001419, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 100, loss@min: 0.951072, loss@max: 1.363611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002309, LT: 2.001639, Top1S: 100.000000, Top1T: 50.591015Best acc: 50.591015 +Train:epoch: 101, loss@min: 0.956776, loss@max: 1.357847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002307, LT: 2.001846, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 102, loss@min: 0.953522, loss@max: 1.364460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002305, LT: 2.002031, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 103, loss@min: 0.953025, loss@max: 1.362335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002303, LT: 2.002191, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 104, loss@min: 0.954315, loss@max: 1.362354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002302, LT: 2.002352, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 105, loss@min: 0.953037, loss@max: 1.362447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002300, LT: 2.002497, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 106, loss@min: 0.955685, loss@max: 1.364465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002298, LT: 2.002673, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 107, loss@min: 0.950572, loss@max: 1.365201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002297, LT: 2.002835, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 108, loss@min: 0.952980, loss@max: 1.360913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002296, LT: 2.002986, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 109, loss@min: 0.951231, loss@max: 1.363000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002294, LT: 2.003130, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 110, loss@min: 0.948508, loss@max: 1.366355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002293, LT: 2.003260, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 111, loss@min: 0.952059, loss@max: 1.363096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002292, LT: 2.003410, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 112, loss@min: 0.949619, loss@max: 1.365196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002290, LT: 2.003514, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 113, loss@min: 0.950044, loss@max: 1.365825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002289, LT: 2.003623, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 114, loss@min: 0.952354, loss@max: 1.368993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002288, LT: 2.003651, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 115, loss@min: 0.949272, loss@max: 1.365537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002287, LT: 2.003683, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 116, loss@min: 0.950234, loss@max: 1.365034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002286, LT: 2.003708, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 117, loss@min: 0.951629, loss@max: 1.367628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002285, LT: 2.003742, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 118, loss@min: 0.951640, loss@max: 1.362534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002284, LT: 2.003777, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 119, loss@min: 0.950547, loss@max: 1.363758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002283, LT: 2.003804, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 120, loss@min: 0.955077, loss@max: 1.361122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002282, LT: 2.003798, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 121, loss@min: 0.955103, loss@max: 1.365199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002281, LT: 2.003796, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 122, loss@min: 0.950609, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002280, LT: 2.003783, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 123, loss@min: 0.955199, loss@max: 1.359750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002280, LT: 2.003767, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 124, loss@min: 0.957830, loss@max: 1.363875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002279, LT: 2.003770, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 125, loss@min: 0.954059, loss@max: 1.361102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002279, LT: 2.003776, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 126, loss@min: 0.951321, loss@max: 1.362967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002278, LT: 2.003795, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 127, loss@min: 0.953117, loss@max: 1.361464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002278, LT: 2.003823, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 128, loss@min: 0.950953, loss@max: 1.363213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002277, LT: 2.003856, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 129, loss@min: 0.951787, loss@max: 1.366119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002277, LT: 2.003891, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 130, loss@min: 0.950902, loss@max: 1.364105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002276, LT: 2.003920, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 131, loss@min: 0.948767, loss@max: 1.366737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002276, LT: 2.003952, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 132, loss@min: 0.949941, loss@max: 1.365607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002276, LT: 2.003988, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 133, loss@min: 0.951877, loss@max: 1.362291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002275, LT: 2.004018, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 134, loss@min: 0.949576, loss@max: 1.363878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002275, LT: 2.004046, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 135, loss@min: 0.953417, loss@max: 1.360379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002275, LT: 2.004067, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 136, loss@min: 0.951528, loss@max: 1.363703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002275, LT: 2.004089, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 137, loss@min: 0.953513, loss@max: 1.360404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002275, LT: 2.004108, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 138, loss@min: 0.951487, loss@max: 1.362781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002274, LT: 2.004124, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 139, loss@min: 0.953508, loss@max: 1.362570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002274, LT: 2.004137, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 140, loss@min: 0.950646, loss@max: 1.364537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002274, LT: 2.004145, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 141, loss@min: 0.953479, loss@max: 1.365386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002274, LT: 2.004151, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 142, loss@min: 0.950147, loss@max: 1.365119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002274, LT: 2.004155, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 143, loss@min: 0.951248, loss@max: 1.364620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002274, LT: 2.004158, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 144, loss@min: 0.950177, loss@max: 1.365038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002274, LT: 2.004160, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 145, loss@min: 0.951484, loss@max: 1.365858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002274, LT: 2.004161, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 146, loss@min: 0.951749, loss@max: 1.362194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 147, loss@min: 0.952640, loss@max: 1.365709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 148, loss@min: 0.952798, loss@max: 1.362005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 149, loss@min: 0.952205, loss@max: 1.365512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 150, loss@min: 0.950644, loss@max: 1.365724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +------------------------------------------- +Fri Jul 28 03:27:16 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 09:53:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.221536, loss@max: 2.004691, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.146733, loss@max: 1.843134, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.575261, loss@max: 1.795753, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.792042, loss@max: 1.694804, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 5, loss@min: 3.439982, loss@max: 1.686226, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.875720, loss@max: 1.629147, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.531438, loss@max: 1.602068, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.187637, loss@max: 1.562750, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.965806, loss@max: 1.556869, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.738927, loss@max: 1.540220, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.464995, loss@max: 1.498525, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.412573, loss@max: 1.530656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.246202, loss@max: 1.486960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.170208, loss@max: 1.481385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.072477, loss@max: 1.454806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.996373, loss@max: 1.420285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.980956, loss@max: 1.417028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.958833, loss@max: 1.403658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942656, loss@max: 1.381089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.953253, loss@max: 1.373213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952520, loss@max: 1.359498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.938601, loss@max: 1.334889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.939518, loss@max: 1.336343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.953177, loss@max: 1.338026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.945612, loss@max: 1.340064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.938714, loss@max: 1.324566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.959218, loss@max: 1.328844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.947839, loss@max: 1.328408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.937245, loss@max: 1.331630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.937118, loss@max: 1.325524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.944601, loss@max: 1.339822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.948134, loss@max: 1.343158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935794, loss@max: 1.329020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.937844, loss@max: 1.333900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931494, loss@max: 1.338323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.944466, loss@max: 1.337827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.947747, loss@max: 1.332934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957205, loss@max: 1.329203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.985708, loss@max: 1.346555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958872, loss@max: 1.326452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960703, loss@max: 1.330921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957727, loss@max: 1.327134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957889, loss@max: 1.335955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955818, loss@max: 1.332985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.957429, loss@max: 1.333665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955463, loss@max: 1.338105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.952654, loss@max: 1.339296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956655, loss@max: 1.333529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.955084, loss@max: 1.342404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958911, loss@max: 1.338743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958103, loss@max: 1.343025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959886, loss@max: 1.343011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955463, loss@max: 1.344207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949706, loss@max: 1.352194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.948149, loss@max: 1.359106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949420, loss@max: 1.352853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947658, loss@max: 1.363841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948112, loss@max: 1.357641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952454, loss@max: 1.355403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953054, loss@max: 1.354241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954299, loss@max: 1.353479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954590, loss@max: 1.351601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.947799, loss@max: 1.364306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949742, loss@max: 1.360183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.950350, loss@max: 1.359170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947864, loss@max: 1.366366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951131, loss@max: 1.360642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953025, loss@max: 1.362060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946551, loss@max: 1.362233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947991, loss@max: 1.362604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950072, loss@max: 1.361359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949359, loss@max: 1.365115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943907, loss@max: 1.367741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945947, loss@max: 1.365488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953932, loss@max: 1.359613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953776, loss@max: 1.362598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954878, loss@max: 1.364593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952423, loss@max: 1.360515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954532, loss@max: 1.360482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955124, loss@max: 1.355973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002361, LT: 1.994824, Top1S: 100.000000, Top1T: 50.472813Best acc: 50.472813 +Train:epoch: 81, loss@min: 0.955275, loss@max: 1.360168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002359, LT: 1.995331, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 82, loss@min: 0.952023, loss@max: 1.363190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002356, LT: 1.995787, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 83, loss@min: 0.945703, loss@max: 1.367801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002352, LT: 1.996255, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 84, loss@min: 0.983040, loss@max: 1.383704, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 0.002349, LT: 1.996178, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 85, loss@min: 0.953604, loss@max: 1.362518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002346, LT: 1.996217, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 86, loss@min: 0.950249, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002343, LT: 1.996355, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 87, loss@min: 0.957536, loss@max: 1.370329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002340, LT: 1.996761, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 88, loss@min: 0.950626, loss@max: 1.363725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002337, LT: 1.997188, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 89, loss@min: 0.951128, loss@max: 1.364666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002335, LT: 1.997634, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 90, loss@min: 0.952214, loss@max: 1.361459, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 09:58:30 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.780573, loss@max: 1.648758, Top1S acc: 100.000000, Top1T acc: 57.446808 +Train:epoch: 2, loss@min: 2.825093, loss@max: 1.254855, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 3, loss@min: 1.709192, loss@max: 1.051794, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 4, loss@min: 1.321398, loss@max: 1.024453, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 1.159640, loss@max: 1.054808, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 6, loss@min: 1.040663, loss@max: 1.100265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.933829, loss@max: 1.126119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.896822, loss@max: 1.171303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.871589, loss@max: 1.202944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.853068, loss@max: 1.213426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.847259, loss@max: 1.229660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.854795, loss@max: 1.232653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.862384, loss@max: 1.237033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.864340, loss@max: 1.246117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.858150, loss@max: 1.261710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.850065, loss@max: 1.278839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.842827, loss@max: 1.301426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.844743, loss@max: 1.304320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.846491, loss@max: 1.310071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.856229, loss@max: 1.310195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.871352, loss@max: 1.299309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.885858, loss@max: 1.291146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.890204, loss@max: 1.292670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.897156, loss@max: 1.294616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.890697, loss@max: 1.309760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.898946, loss@max: 1.303534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.908754, loss@max: 1.299755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.926921, loss@max: 1.286223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.927461, loss@max: 1.290955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.950180, loss@max: 1.275430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.948207, loss@max: 1.282222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.948470, loss@max: 1.283906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.944932, loss@max: 1.293004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.939591, loss@max: 1.302009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.941128, loss@max: 1.305309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.949608, loss@max: 1.299431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.957322, loss@max: 1.295546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.965997, loss@max: 1.292820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.973562, loss@max: 1.307106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958054, loss@max: 1.304455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.947715, loss@max: 1.318318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.941236, loss@max: 1.326580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.940508, loss@max: 1.331392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.946049, loss@max: 1.326803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.954070, loss@max: 1.319607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.948178, loss@max: 1.329189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.951309, loss@max: 1.327877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.950893, loss@max: 1.330841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.943729, loss@max: 1.338406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939499, loss@max: 1.345585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.934740, loss@max: 1.351448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.935145, loss@max: 1.351928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.942958, loss@max: 1.344483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.953507, loss@max: 1.337788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.936961, loss@max: 1.355169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.946141, loss@max: 1.345713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947852, loss@max: 1.346420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.946713, loss@max: 1.346977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.949682, loss@max: 1.344541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941387, loss@max: 1.354026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.936998, loss@max: 1.359257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.937909, loss@max: 1.359605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.942882, loss@max: 1.354568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.944242, loss@max: 1.354194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952200, loss@max: 1.347155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.955334, loss@max: 1.346088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954054, loss@max: 1.345586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.954856, loss@max: 1.346055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.943734, loss@max: 1.357799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941949, loss@max: 1.358494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945994, loss@max: 1.354809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.939147, loss@max: 1.362803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.944052, loss@max: 1.357987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.950758, loss@max: 1.351792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.958431, loss@max: 1.344828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.954933, loss@max: 1.348070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.944658, loss@max: 1.358314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.951012, loss@max: 1.352489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.944732, loss@max: 1.359032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946994, loss@max: 1.356821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002397, LT: 5.174114, Top1S: 100.000000, Top1T: 38.593380Best acc: 38.593380 +Train:epoch: 81, loss@min: 0.951363, loss@max: 1.352121, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 10:00:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.794908, loss@max: 2.147158, Top1S acc: 100.000000, Top1T acc: 36.170212 +Train:epoch: 2, loss@min: 6.109662, loss@max: 2.078839, Top1S acc: 100.000000, Top1T acc: 40.425533 +Train:epoch: 3, loss@min: 5.892900, loss@max: 2.111115, Top1S acc: 100.000000, Top1T acc: 40.425533 +Train:epoch: 4, loss@min: 5.231454, loss@max: 2.031802, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 5, loss@min: 5.162868, loss@max: 2.083356, Top1S acc: 100.000000, Top1T acc: 48.936169 +Train:epoch: 6, loss@min: 4.611489, loss@max: 2.027894, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 7, loss@min: 4.382086, loss@max: 2.021976, Top1S acc: 100.000000, Top1T acc: 61.702126 +Train:epoch: 8, loss@min: 3.867572, loss@max: 1.955653, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 9, loss@min: 3.835726, loss@max: 1.991731, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 10, loss@min: 3.655311, loss@max: 2.006526, Top1S acc: 100.000000, Top1T acc: 68.085106 +Train:epoch: 11, loss@min: 3.269899, loss@max: 1.948408, Top1S acc: 100.000000, Top1T acc: 74.468086 +Train:epoch: 12, loss@min: 3.257675, loss@max: 2.019096, Top1S acc: 100.000000, Top1T acc: 74.468086 +Train:epoch: 13, loss@min: 2.921524, loss@max: 1.948925, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 14, loss@min: 2.583692, loss@max: 1.923674, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 15, loss@min: 2.414432, loss@max: 1.895191, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 16, loss@min: 2.163658, loss@max: 1.838909, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 17, loss@min: 2.154842, loss@max: 1.863251, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 18, loss@min: 2.012143, loss@max: 1.859561, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 19, loss@min: 1.849944, loss@max: 1.803618, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 20, loss@min: 1.774564, loss@max: 1.797737, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 21, loss@min: 1.830127, loss@max: 1.825699, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 22, loss@min: 1.578016, loss@max: 1.718858, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 23, loss@min: 1.494317, loss@max: 1.715080, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 24, loss@min: 1.558805, loss@max: 1.744822, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 25, loss@min: 1.486930, loss@max: 1.702191, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 26, loss@min: 1.362535, loss@max: 1.662959, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 27, loss@min: 1.298162, loss@max: 1.644207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.305945, loss@max: 1.634633, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 29, loss@min: 1.310941, loss@max: 1.629037, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 30, loss@min: 1.250225, loss@max: 1.600180, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 31, loss@min: 1.277468, loss@max: 1.638315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.291169, loss@max: 1.611133, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 33, loss@min: 1.117718, loss@max: 1.520182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.142907, loss@max: 1.542495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.094346, loss@max: 1.519232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.107303, loss@max: 1.529670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.143145, loss@max: 1.539668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.099790, loss@max: 1.515305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.096619, loss@max: 1.506324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.068776, loss@max: 1.480838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.084810, loss@max: 1.488654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.047343, loss@max: 1.457514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.072685, loss@max: 1.490072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.038562, loss@max: 1.450109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.046826, loss@max: 1.461826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.043993, loss@max: 1.462634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.023450, loss@max: 1.438291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.020170, loss@max: 1.423408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.030065, loss@max: 1.447836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.022454, loss@max: 1.425693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.029925, loss@max: 1.431863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.034731, loss@max: 1.437114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.017040, loss@max: 1.416971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.016944, loss@max: 1.427750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.028847, loss@max: 1.450938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.997352, loss@max: 1.416706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.013815, loss@max: 1.456064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.002351, loss@max: 1.434969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.016633, loss@max: 1.443879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.006511, loss@max: 1.432787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.004743, loss@max: 1.426099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.005685, loss@max: 1.417804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.011382, loss@max: 1.439754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.995077, loss@max: 1.422023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.995223, loss@max: 1.421625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.006549, loss@max: 1.446120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.997249, loss@max: 1.422989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.003064, loss@max: 1.437275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.983219, loss@max: 1.407490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.985129, loss@max: 1.408112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.987332, loss@max: 1.415101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.985900, loss@max: 1.418286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.985187, loss@max: 1.416555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.978397, loss@max: 1.413003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.987417, loss@max: 1.414420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.012501, loss@max: 1.434362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.995123, loss@max: 1.422536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.987221, loss@max: 1.413209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.989946, loss@max: 1.418428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.980343, loss@max: 1.394181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002618, LT: 1.881101, Top1S: 100.000000, Top1T: 50.709221Best acc: 50.709221 +Train:epoch: 81, loss@min: 0.996711, loss@max: 1.420278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002614, LT: 1.881289, Top1S: 100.000000, Top1T: 50.709221 +Train:epoch: 82, loss@min: 0.985521, loss@max: 1.410432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002611, LT: 1.881462, Top1S: 100.000000, Top1T: 50.709221 +Train:epoch: 83, loss@min: 0.981293, loss@max: 1.414700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002608, LT: 1.881656, Top1S: 100.000000, Top1T: 50.768322Best acc: 50.768322 +Train:epoch: 84, loss@min: 1.047423, loss@max: 1.432480, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 0.002605, LT: 1.881549, Top1S: 100.000000, Top1T: 50.886524Best acc: 50.886524 +Train:epoch: 85, loss@min: 0.993361, loss@max: 1.418083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002602, LT: 1.881535, Top1S: 100.000000, Top1T: 50.945625Best acc: 50.945625 +Train:epoch: 86, loss@min: 0.981178, loss@max: 1.406134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002598, LT: 1.881561, Top1S: 100.000000, Top1T: 51.004726Best acc: 51.004726 +Train:epoch: 87, loss@min: 1.012021, loss@max: 1.432021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002595, LT: 1.881683, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 88, loss@min: 0.979063, loss@max: 1.404386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002591, LT: 1.881807, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 89, loss@min: 0.981397, loss@max: 1.409400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002588, LT: 1.881904, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 90, loss@min: 0.985476, loss@max: 1.415127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002585, LT: 1.881902, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 91, loss@min: 0.979890, loss@max: 1.404557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002582, LT: 1.881910, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 92, loss@min: 1.000496, loss@max: 1.428816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002580, LT: 1.881917, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 93, loss@min: 0.987047, loss@max: 1.414867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002577, LT: 1.881864, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 94, loss@min: 0.985966, loss@max: 1.413803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002575, LT: 1.881800, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 95, loss@min: 0.986720, loss@max: 1.411185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002573, LT: 1.881737, Top1S: 100.000000, Top1T: 51.063831Best acc: 51.063831 +Train:epoch: 96, loss@min: 0.996266, loss@max: 1.435325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002570, LT: 1.881772, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 97, loss@min: 0.982536, loss@max: 1.410962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002568, LT: 1.881781, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 98, loss@min: 0.981372, loss@max: 1.409374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002566, LT: 1.881781, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 99, loss@min: 0.983123, loss@max: 1.411597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002564, LT: 1.881704, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 100, loss@min: 0.975758, loss@max: 1.400509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002562, LT: 1.881634, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 101, loss@min: 0.983328, loss@max: 1.401078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002560, LT: 1.881584, Top1S: 100.000000, Top1T: 51.122932Best acc: 51.122932 +Train:epoch: 102, loss@min: 0.991525, loss@max: 1.416777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002558, LT: 1.881528, Top1S: 100.000000, Top1T: 51.122932 +Train:epoch: 103, loss@min: 0.979247, loss@max: 1.404214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002556, LT: 1.881476, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 104, loss@min: 0.983986, loss@max: 1.406557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002555, LT: 1.881435, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 105, loss@min: 0.981256, loss@max: 1.403392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002553, LT: 1.881382, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 106, loss@min: 0.989984, loss@max: 1.417042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002551, LT: 1.881303, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 107, loss@min: 0.980544, loss@max: 1.405750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002549, LT: 1.881214, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 108, loss@min: 0.979189, loss@max: 1.396773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002548, LT: 1.881131, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 109, loss@min: 0.978252, loss@max: 1.402113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002546, LT: 1.881051, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 110, loss@min: 0.976662, loss@max: 1.404004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002545, LT: 1.880969, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 111, loss@min: 0.981149, loss@max: 1.404539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002544, LT: 1.880929, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 112, loss@min: 0.975855, loss@max: 1.402491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002542, LT: 1.880878, Top1S: 100.000000, Top1T: 51.122932 +Train:epoch: 113, loss@min: 0.978426, loss@max: 1.404524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002541, LT: 1.880836, Top1S: 100.000000, Top1T: 51.122932 +Train:epoch: 114, loss@min: 0.987151, loss@max: 1.415301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002540, LT: 1.880745, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 115, loss@min: 0.978554, loss@max: 1.406178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002539, LT: 1.880685, Top1S: 100.000000, Top1T: 51.063831 +Train:epoch: 116, loss@min: 0.975921, loss@max: 1.405490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002538, LT: 1.880643, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 117, loss@min: 0.980960, loss@max: 1.409665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002537, LT: 1.880618, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 118, loss@min: 0.979245, loss@max: 1.403445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002536, LT: 1.880631, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 119, loss@min: 0.972669, loss@max: 1.398817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002535, LT: 1.880643, Top1S: 100.000000, Top1T: 51.004726 +Train:epoch: 120, loss@min: 0.978330, loss@max: 1.398906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002534, LT: 1.880628, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 121, loss@min: 0.997178, loss@max: 1.418806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002533, LT: 1.880647, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 122, loss@min: 0.977222, loss@max: 1.409760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002532, LT: 1.880670, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 123, loss@min: 0.979004, loss@max: 1.400426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002532, LT: 1.880682, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 124, loss@min: 0.997652, loss@max: 1.420621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002531, LT: 1.880705, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 125, loss@min: 0.980609, loss@max: 1.401939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002530, LT: 1.880718, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 126, loss@min: 0.971797, loss@max: 1.401623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002530, LT: 1.880734, Top1S: 100.000000, Top1T: 50.886524 +Train:epoch: 127, loss@min: 0.974847, loss@max: 1.400864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002529, LT: 1.880750, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 128, loss@min: 0.973104, loss@max: 1.397344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002529, LT: 1.880761, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 129, loss@min: 0.987186, loss@max: 1.419034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002528, LT: 1.880784, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 130, loss@min: 0.975226, loss@max: 1.403613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002528, LT: 1.880801, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 131, loss@min: 0.974836, loss@max: 1.411238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002527, LT: 1.880820, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 132, loss@min: 0.976874, loss@max: 1.406629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002527, LT: 1.880834, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 133, loss@min: 0.975341, loss@max: 1.397867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002526, LT: 1.880841, Top1S: 100.000000, Top1T: 50.886524 +Train:epoch: 134, loss@min: 0.973164, loss@max: 1.402570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002526, LT: 1.880851, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 135, loss@min: 0.977336, loss@max: 1.396934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002526, LT: 1.880856, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 136, loss@min: 0.976799, loss@max: 1.402149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002526, LT: 1.880862, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 137, loss@min: 0.973711, loss@max: 1.395079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002526, LT: 1.880868, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 138, loss@min: 0.980063, loss@max: 1.405029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002525, LT: 1.880874, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 139, loss@min: 0.978801, loss@max: 1.402542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002525, LT: 1.880879, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 140, loss@min: 0.976253, loss@max: 1.406130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002525, LT: 1.880883, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 141, loss@min: 0.983609, loss@max: 1.408078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002525, LT: 1.880887, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 142, loss@min: 0.976857, loss@max: 1.406224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002525, LT: 1.880891, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 143, loss@min: 0.978227, loss@max: 1.404283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002525, LT: 1.880894, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 144, loss@min: 0.977257, loss@max: 1.405536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002525, LT: 1.880896, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 145, loss@min: 0.977070, loss@max: 1.406880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002525, LT: 1.880897, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 146, loss@min: 0.978685, loss@max: 1.402987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002525, LT: 1.880898, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 147, loss@min: 0.985550, loss@max: 1.414144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002525, LT: 1.880898, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 148, loss@min: 0.974943, loss@max: 1.397963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002525, LT: 1.880898, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 149, loss@min: 0.988796, loss@max: 1.420606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002525, LT: 1.880898, Top1S: 100.000000, Top1T: 50.945625 +Train:epoch: 150, loss@min: 0.976554, loss@max: 1.405195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002525, LT: 1.880898, Top1S: 100.000000, Top1T: 50.945625 +------------------------------------------- +Fri Jul 28 11:09:16 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 11:44:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.076143, loss@max: 1.813850, Top1S acc: 100.000000, Top1T acc: 48.828125 +Train:epoch: 2, loss@min: 4.681132, loss@max: 1.903680, Top1S acc: 100.000000, Top1T acc: 49.218750 +Train:epoch: 3, loss@min: 4.338035, loss@max: 1.967611, Top1S acc: 100.000000, Top1T acc: 50.781250 +Train:epoch: 4, loss@min: 4.131625, loss@max: 2.051164, Top1S acc: 100.000000, Top1T acc: 51.171875 +Train:epoch: 5, loss@min: 3.857287, loss@max: 2.070825, Top1S acc: 100.000000, Top1T acc: 55.859375 +Train:epoch: 6, loss@min: 3.607132, loss@max: 2.074673, Top1S acc: 100.000000, Top1T acc: 58.984375 +Train:epoch: 7, loss@min: 3.288723, loss@max: 2.023844, Top1S acc: 100.000000, Top1T acc: 63.671875 +Train:epoch: 8, loss@min: 3.156574, loss@max: 2.014397, Top1S acc: 100.000000, Top1T acc: 65.625000 +Train:epoch: 9, loss@min: 3.087350, loss@max: 2.008378, Top1S acc: 100.000000, Top1T acc: 66.796875 +Train:epoch: 10, loss@min: 3.071533, loss@max: 2.002901, Top1S acc: 100.000000, Top1T acc: 69.140625 +Train:epoch: 11, loss@min: 3.008324, loss@max: 1.981335, Top1S acc: 100.000000, Top1T acc: 70.312500 +Train:epoch: 12, loss@min: 2.777331, loss@max: 1.929061, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 13, loss@min: 2.610854, loss@max: 1.892875, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 14, loss@min: 2.650424, loss@max: 1.910953, Top1S acc: 100.000000, Top1T acc: 74.609375 +Train:epoch: 15, loss@min: 2.344918, loss@max: 1.832582, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 16, loss@min: 2.213767, loss@max: 1.806751, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 17, loss@min: 2.320158, loss@max: 1.860543, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 18, loss@min: 2.187373, loss@max: 1.823827, Top1S acc: 100.000000, Top1T acc: 82.421875 +Train:epoch: 19, loss@min: 2.084733, loss@max: 1.807848, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 20, loss@min: 2.182485, loss@max: 1.863216, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 21, loss@min: 2.065061, loss@max: 1.840465, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 22, loss@min: 1.926693, loss@max: 1.811845, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 23, loss@min: 1.975469, loss@max: 1.832048, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 24, loss@min: 1.999552, loss@max: 1.848871, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 25, loss@min: 1.825071, loss@max: 1.789861, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 26, loss@min: 1.854143, loss@max: 1.815555, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 27, loss@min: 1.760923, loss@max: 1.800525, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 28, loss@min: 1.814012, loss@max: 1.818936, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 29, loss@min: 1.700933, loss@max: 1.768360, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 30, loss@min: 1.626634, loss@max: 1.758103, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 31, loss@min: 1.652449, loss@max: 1.770611, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 32, loss@min: 1.610547, loss@max: 1.755856, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 33, loss@min: 1.563406, loss@max: 1.752883, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 34, loss@min: 1.558833, loss@max: 1.757466, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 35, loss@min: 1.627837, loss@max: 1.777547, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 36, loss@min: 1.591397, loss@max: 1.750655, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 37, loss@min: 1.509211, loss@max: 1.725111, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 38, loss@min: 1.582005, loss@max: 1.772813, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 39, loss@min: 1.610940, loss@max: 1.795282, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 40, loss@min: 1.506830, loss@max: 1.754856, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 41, loss@min: 1.421320, loss@max: 1.698623, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 42, loss@min: 1.457264, loss@max: 1.719640, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 43, loss@min: 1.380164, loss@max: 1.682696, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 44, loss@min: 1.427820, loss@max: 1.699781, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 45, loss@min: 1.429570, loss@max: 1.695513, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 46, loss@min: 1.340958, loss@max: 1.674134, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 47, loss@min: 1.361233, loss@max: 1.685170, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 48, loss@min: 1.380727, loss@max: 1.692328, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 49, loss@min: 1.340856, loss@max: 1.686313, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 50, loss@min: 1.283013, loss@max: 1.649556, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 51, loss@min: 1.303251, loss@max: 1.640568, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 52, loss@min: 1.310771, loss@max: 1.662120, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 53, loss@min: 1.359261, loss@max: 1.667161, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 54, loss@min: 1.259552, loss@max: 1.631891, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 55, loss@min: 1.272302, loss@max: 1.645908, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 56, loss@min: 1.216864, loss@max: 1.612500, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 57, loss@min: 1.268597, loss@max: 1.649976, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 58, loss@min: 1.250904, loss@max: 1.617387, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 59, loss@min: 1.235662, loss@max: 1.614189, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 60, loss@min: 1.277457, loss@max: 1.644535, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 61, loss@min: 1.309704, loss@max: 1.637281, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 62, loss@min: 1.255118, loss@max: 1.628870, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 63, loss@min: 1.210253, loss@max: 1.606167, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 64, loss@min: 1.269410, loss@max: 1.627407, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 65, loss@min: 1.242217, loss@max: 1.609007, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 66, loss@min: 1.194183, loss@max: 1.593623, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 67, loss@min: 1.203371, loss@max: 1.586150, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 68, loss@min: 1.205085, loss@max: 1.618687, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 69, loss@min: 1.247938, loss@max: 1.615817, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 70, loss@min: 1.185667, loss@max: 1.576462, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 71, loss@min: 1.225764, loss@max: 1.610349, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 72, loss@min: 1.194278, loss@max: 1.571898, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 73, loss@min: 1.223520, loss@max: 1.593832, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 74, loss@min: 1.180369, loss@max: 1.588928, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 75, loss@min: 1.177350, loss@max: 1.578067, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 76, loss@min: 1.127235, loss@max: 1.549622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.160259, loss@max: 1.566541, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 78, loss@min: 1.199425, loss@max: 1.589158, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 79, loss@min: 1.154499, loss@max: 1.564899, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 1.186450, loss@max: 1.572560, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 80, LS: 0.002253, LT: 1.292096, Top1S: 100.000000, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 81, loss@min: 1.120772, loss@max: 1.528414, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 81, LS: 0.002247, LT: 1.293213, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 82, loss@min: 1.156407, loss@max: 1.567416, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 82, LS: 0.002241, LT: 1.294228, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 83, loss@min: 1.137061, loss@max: 1.550943, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.002234, LT: 1.295138, Top1S: 100.000000, Top1T: 66.725769Best acc: 66.725769 +Train:epoch: 84, loss@min: 1.151749, loss@max: 1.570774, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 0.002227, LT: 1.295721, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 85, loss@min: 1.136245, loss@max: 1.555223, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 85, LS: 0.002220, LT: 1.296486, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 86, loss@min: 1.138789, loss@max: 1.552653, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 86, LS: 0.002214, LT: 1.297371, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 87, loss@min: 1.149133, loss@max: 1.559209, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 87, LS: 0.002208, LT: 1.297951, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 88, loss@min: 1.094484, loss@max: 1.521677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002202, LT: 1.298579, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 89, loss@min: 1.127590, loss@max: 1.545599, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 89, LS: 0.002197, LT: 1.298993, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 90, loss@min: 1.167348, loss@max: 1.558766, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 90, LS: 0.002191, LT: 1.299714, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 91, loss@min: 1.128711, loss@max: 1.543178, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 91, LS: 0.002186, LT: 1.300973, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 92, loss@min: 1.092438, loss@max: 1.514905, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.002180, LT: 1.302247, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 93, loss@min: 1.133369, loss@max: 1.547671, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 0.002174, LT: 1.303790, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 94, loss@min: 1.154807, loss@max: 1.544193, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 94, LS: 0.002169, LT: 1.305426, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 95, loss@min: 1.112387, loss@max: 1.524454, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 0.002164, LT: 1.306676, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 96, loss@min: 1.136646, loss@max: 1.551245, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 96, LS: 0.002159, LT: 1.307653, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 97, loss@min: 1.125207, loss@max: 1.539876, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.002154, LT: 1.308377, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 98, loss@min: 1.121641, loss@max: 1.534866, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 98, LS: 0.002149, LT: 1.308916, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 99, loss@min: 1.139688, loss@max: 1.552050, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 0.002144, LT: 1.309176, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 100, loss@min: 1.136096, loss@max: 1.539744, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 100, LS: 0.002139, LT: 1.309660, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 101, loss@min: 1.134166, loss@max: 1.536867, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 101, LS: 0.002135, LT: 1.310045, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 102, loss@min: 1.120559, loss@max: 1.534007, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.002131, LT: 1.310250, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 103, loss@min: 1.087710, loss@max: 1.508232, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 103, LS: 0.002127, LT: 1.310405, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 104, loss@min: 1.098714, loss@max: 1.516581, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 104, LS: 0.002124, LT: 1.310788, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 105, loss@min: 1.127774, loss@max: 1.552117, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 105, LS: 0.002121, LT: 1.311263, Top1S: 100.000000, Top1T: 66.784866Best acc: 66.784866 +Train:epoch: 106, loss@min: 1.126620, loss@max: 1.521615, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 106, LS: 0.002119, LT: 1.311695, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 107, loss@min: 1.128384, loss@max: 1.543693, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 107, LS: 0.002115, LT: 1.312026, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 108, loss@min: 1.099763, loss@max: 1.518600, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 108, LS: 0.002112, LT: 1.312456, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 109, loss@min: 1.093992, loss@max: 1.517791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002109, LT: 1.312804, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 110, loss@min: 1.073465, loss@max: 1.501394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002107, LT: 1.313089, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 111, loss@min: 1.093196, loss@max: 1.514123, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 111, LS: 0.002104, LT: 1.313362, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 112, loss@min: 1.093330, loss@max: 1.522949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002102, LT: 1.313675, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 113, loss@min: 1.097520, loss@max: 1.504572, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 113, LS: 0.002100, LT: 1.313992, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 114, loss@min: 1.131871, loss@max: 1.536372, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 114, LS: 0.002098, LT: 1.314283, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 115, loss@min: 1.117964, loss@max: 1.531327, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 115, LS: 0.002096, LT: 1.314766, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 116, loss@min: 1.119844, loss@max: 1.543805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002094, LT: 1.315263, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 117, loss@min: 1.148562, loss@max: 1.550649, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 117, LS: 0.002093, LT: 1.315801, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 118, loss@min: 1.105261, loss@max: 1.519187, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 118, LS: 0.002091, LT: 1.316261, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 119, loss@min: 1.089292, loss@max: 1.506055, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 119, LS: 0.002089, LT: 1.316760, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 120, loss@min: 1.116603, loss@max: 1.530220, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 120, LS: 0.002088, LT: 1.317100, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 121, loss@min: 1.093204, loss@max: 1.508011, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 121, LS: 0.002087, LT: 1.317390, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 122, loss@min: 1.068196, loss@max: 1.500783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002085, LT: 1.317630, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 123, loss@min: 1.155913, loss@max: 1.551750, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 123, LS: 0.002084, LT: 1.317904, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 124, loss@min: 1.113650, loss@max: 1.530561, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 124, LS: 0.002083, LT: 1.318199, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 125, loss@min: 1.098322, loss@max: 1.525452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002082, LT: 1.318489, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 126, loss@min: 1.096565, loss@max: 1.511745, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 0.002081, LT: 1.318730, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 127, loss@min: 1.096172, loss@max: 1.512677, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 127, LS: 0.002080, LT: 1.318945, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 128, loss@min: 1.115356, loss@max: 1.522441, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 128, LS: 0.002079, LT: 1.319137, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 129, loss@min: 1.118849, loss@max: 1.529305, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 129, LS: 0.002078, LT: 1.319270, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 130, loss@min: 1.080559, loss@max: 1.507558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002078, LT: 1.319392, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 131, loss@min: 1.094664, loss@max: 1.516729, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 131, LS: 0.002077, LT: 1.319471, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 132, loss@min: 1.108062, loss@max: 1.518787, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 132, LS: 0.002076, LT: 1.319539, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 133, loss@min: 1.098256, loss@max: 1.507933, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 0.002076, LT: 1.319599, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 134, loss@min: 1.114714, loss@max: 1.514241, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 134, LS: 0.002075, LT: 1.319666, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 135, loss@min: 1.140240, loss@max: 1.553479, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 135, LS: 0.002075, LT: 1.319730, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 136, loss@min: 1.109159, loss@max: 1.509367, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 136, LS: 0.002075, LT: 1.319791, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 137, loss@min: 1.074846, loss@max: 1.498415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002074, LT: 1.319842, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 138, loss@min: 1.066345, loss@max: 1.501747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002074, LT: 1.319897, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 139, loss@min: 1.060272, loss@max: 1.483835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002074, LT: 1.319943, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 140, loss@min: 1.094184, loss@max: 1.508456, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 140, LS: 0.002074, LT: 1.319977, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 141, loss@min: 1.096524, loss@max: 1.521994, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 141, LS: 0.002073, LT: 1.320004, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 142, loss@min: 1.104484, loss@max: 1.510298, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 142, LS: 0.002073, LT: 1.320023, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 143, loss@min: 1.111345, loss@max: 1.521487, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 143, LS: 0.002073, LT: 1.320031, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 144, loss@min: 1.084859, loss@max: 1.499117, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 144, LS: 0.002073, LT: 1.320038, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 145, loss@min: 1.088631, loss@max: 1.514935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002073, LT: 1.320045, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 146, loss@min: 1.095656, loss@max: 1.519910, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 146, LS: 0.002073, LT: 1.320053, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 147, loss@min: 1.087822, loss@max: 1.498653, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 147, LS: 0.002073, LT: 1.320059, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 148, loss@min: 1.083364, loss@max: 1.515426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002073, LT: 1.320061, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 149, loss@min: 1.095227, loss@max: 1.513840, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 149, LS: 0.002073, LT: 1.320062, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 150, loss@min: 1.086913, loss@max: 1.511526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002073, LT: 1.320062, Top1S: 100.000000, Top1T: 66.666664{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 13:15:11 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.935188, loss@max: 1.515999, Top1S acc: 100.000000, Top1T acc: 63.281250 +Train:epoch: 2, loss@min: 2.971222, loss@max: 1.442947, Top1S acc: 100.000000, Top1T acc: 70.703125 +Train:epoch: 3, loss@min: 2.233695, loss@max: 1.387423, Top1S acc: 100.000000, Top1T acc: 78.515625 +Train:epoch: 4, loss@min: 1.692873, loss@max: 1.383614, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 5, loss@min: 1.317741, loss@max: 1.355477, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 6, loss@min: 1.081154, loss@max: 1.333413, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.062139, loss@max: 1.319038, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.027540, loss@max: 1.276483, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 0.936172, loss@max: 1.218571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.953346, loss@max: 1.220565, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 0.937500, loss@max: 1.218018, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.924985, loss@max: 1.207039, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 0.938318, loss@max: 1.205911, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 0.940630, loss@max: 1.211832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.915885, loss@max: 1.214147, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.929500, loss@max: 1.229612, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.915266, loss@max: 1.237934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.922147, loss@max: 1.240742, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.909422, loss@max: 1.245680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.924947, loss@max: 1.250918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.935965, loss@max: 1.263803, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.925526, loss@max: 1.251270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.925453, loss@max: 1.267150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.924821, loss@max: 1.268960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.932898, loss@max: 1.272674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.926968, loss@max: 1.273720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.925334, loss@max: 1.284171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929947, loss@max: 1.287507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.936345, loss@max: 1.287020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.928948, loss@max: 1.294406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.935026, loss@max: 1.294163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.930410, loss@max: 1.302967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.930186, loss@max: 1.307734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.939275, loss@max: 1.301909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.933618, loss@max: 1.315257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.943230, loss@max: 1.313509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935611, loss@max: 1.316505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.939128, loss@max: 1.317465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940287, loss@max: 1.321859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.945593, loss@max: 1.323935, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.937192, loss@max: 1.329783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.950372, loss@max: 1.318999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.931511, loss@max: 1.340843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.941154, loss@max: 1.332567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.944218, loss@max: 1.332240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.935264, loss@max: 1.346515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.963134, loss@max: 1.326001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.929117, loss@max: 1.354724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.953588, loss@max: 1.332536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.948862, loss@max: 1.336650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.939035, loss@max: 1.347304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.955397, loss@max: 1.333734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938913, loss@max: 1.351636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.946282, loss@max: 1.345237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942018, loss@max: 1.348309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.940696, loss@max: 1.349702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950353, loss@max: 1.343312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.940968, loss@max: 1.354164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.949880, loss@max: 1.344594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.948696, loss@max: 1.346735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.943280, loss@max: 1.353391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950282, loss@max: 1.347490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.946203, loss@max: 1.351400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.944457, loss@max: 1.354519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946880, loss@max: 1.352158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.944556, loss@max: 1.353669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947690, loss@max: 1.350714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950079, loss@max: 1.349709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945935, loss@max: 1.354893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947429, loss@max: 1.352794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946620, loss@max: 1.353971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948000, loss@max: 1.354144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948299, loss@max: 1.353628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.950012, loss@max: 1.353454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948338, loss@max: 1.354224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.942878, loss@max: 1.359066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948745, loss@max: 1.353592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947526, loss@max: 1.355613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.944766, loss@max: 1.357756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949994, loss@max: 1.353621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001761, LT: 2.307820, Top1S: 100.000000, Top1T: 66.725769Best acc: 66.725769 +Train:epoch: 81, loss@min: 0.951001, loss@max: 1.351483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001757, LT: 2.310425, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 82, loss@min: 0.946316, loss@max: 1.357404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001753, LT: 2.313390, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 83, loss@min: 0.950671, loss@max: 1.352956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001747, LT: 2.315822, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 84, loss@min: 0.946636, loss@max: 1.357032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001743, LT: 2.318252, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 85, loss@min: 0.946037, loss@max: 1.359112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001740, LT: 2.319630, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 86, loss@min: 0.948744, loss@max: 1.354680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001735, LT: 2.320234, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 87, loss@min: 0.944865, loss@max: 1.358880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001731, LT: 2.315232, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 88, loss@min: 0.946819, loss@max: 1.356907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001728, LT: 2.312393, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 89, loss@min: 0.948728, loss@max: 1.355611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001724, LT: 2.311239, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 90, loss@min: 0.948574, loss@max: 1.355436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001720, LT: 2.311517, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 91, loss@min: 0.947511, loss@max: 1.356366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001717, LT: 2.312312, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 92, loss@min: 0.950306, loss@max: 1.354230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001714, LT: 2.313869, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 93, loss@min: 0.946896, loss@max: 1.357161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001710, LT: 2.316367, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 94, loss@min: 0.948424, loss@max: 1.356625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001707, LT: 2.317693, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 95, loss@min: 0.949978, loss@max: 1.355177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001704, LT: 2.318820, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 96, loss@min: 0.946546, loss@max: 1.357562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001701, LT: 2.319927, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 97, loss@min: 0.946828, loss@max: 1.357511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001698, LT: 2.320631, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 98, loss@min: 0.948530, loss@max: 1.357914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001695, LT: 2.320997, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 99, loss@min: 0.949688, loss@max: 1.355170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001693, LT: 2.320995, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 100, loss@min: 0.946519, loss@max: 1.357721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001690, LT: 2.321991, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 101, loss@min: 0.949022, loss@max: 1.356577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001688, LT: 2.322840, Top1S: 100.000000, Top1T: 67.494087Best acc: 67.494087 +Train:epoch: 102, loss@min: 0.949014, loss@max: 1.355951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001685, LT: 2.323799, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 103, loss@min: 0.947841, loss@max: 1.356410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001683, LT: 2.324786, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 104, loss@min: 0.947577, loss@max: 1.357362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001681, LT: 2.326113, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 105, loss@min: 0.948458, loss@max: 1.357010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001679, LT: 2.327264, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 106, loss@min: 0.948146, loss@max: 1.358389, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001677, LT: 2.327183, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 107, loss@min: 0.946743, loss@max: 1.358692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001675, LT: 2.326172, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 108, loss@min: 0.948771, loss@max: 1.355653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001673, LT: 2.325661, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 109, loss@min: 0.948221, loss@max: 1.357848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001672, LT: 2.325843, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 110, loss@min: 0.947721, loss@max: 1.357615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001670, LT: 2.326275, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 111, loss@min: 0.949130, loss@max: 1.355209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001668, LT: 2.326397, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 112, loss@min: 0.948840, loss@max: 1.355497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001667, LT: 2.326841, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 113, loss@min: 0.949366, loss@max: 1.358614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001665, LT: 2.327525, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 114, loss@min: 0.948640, loss@max: 1.356998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001664, LT: 2.328398, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 115, loss@min: 0.948958, loss@max: 1.356690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001662, LT: 2.329491, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 116, loss@min: 0.946780, loss@max: 1.358852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001661, LT: 2.330294, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 117, loss@min: 0.948815, loss@max: 1.357558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001660, LT: 2.330977, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 118, loss@min: 0.947626, loss@max: 1.358677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001659, LT: 2.330447, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 119, loss@min: 0.947536, loss@max: 1.357129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001658, LT: 2.330578, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 120, loss@min: 0.947520, loss@max: 1.358156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001657, LT: 2.330897, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 121, loss@min: 0.949791, loss@max: 1.354844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001655, LT: 2.331231, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 122, loss@min: 0.948885, loss@max: 1.355312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001655, LT: 2.331536, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 123, loss@min: 0.948055, loss@max: 1.356827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001654, LT: 2.331807, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 124, loss@min: 0.946419, loss@max: 1.360425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001653, LT: 2.332157, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 125, loss@min: 0.949077, loss@max: 1.355572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001653, LT: 2.332660, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 126, loss@min: 0.947528, loss@max: 1.357764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001652, LT: 2.333191, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 127, loss@min: 0.948794, loss@max: 1.356270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001651, LT: 2.333603, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.948920, loss@max: 1.356541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001651, LT: 2.333997, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.947993, loss@max: 1.357589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001650, LT: 2.334274, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.946584, loss@max: 1.359319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001650, LT: 2.334470, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 131, loss@min: 0.947271, loss@max: 1.359032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001649, LT: 2.334617, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 132, loss@min: 0.948498, loss@max: 1.357126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001649, LT: 2.334678, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 133, loss@min: 0.948139, loss@max: 1.356755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001648, LT: 2.334682, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 134, loss@min: 0.947896, loss@max: 1.356885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001648, LT: 2.334812, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 135, loss@min: 0.947934, loss@max: 1.356955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001648, LT: 2.334915, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 136, loss@min: 0.948221, loss@max: 1.357053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001648, LT: 2.334948, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 137, loss@min: 0.949434, loss@max: 1.356726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001647, LT: 2.334900, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 138, loss@min: 0.947192, loss@max: 1.357258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001647, LT: 2.334831, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.949283, loss@max: 1.355933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001647, LT: 2.334799, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.946592, loss@max: 1.358486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001647, LT: 2.334781, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 141, loss@min: 0.947132, loss@max: 1.358078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001647, LT: 2.334810, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 142, loss@min: 0.951528, loss@max: 1.362008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001647, LT: 2.334814, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 143, loss@min: 0.948667, loss@max: 1.358354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001647, LT: 2.334625, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 144, loss@min: 0.948539, loss@max: 1.356829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001647, LT: 2.334530, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 145, loss@min: 0.947523, loss@max: 1.357852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001647, LT: 2.334477, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 146, loss@min: 0.946454, loss@max: 1.358878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001647, LT: 2.334468, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 147, loss@min: 0.947351, loss@max: 1.357525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001647, LT: 2.334468, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 148, loss@min: 0.947204, loss@max: 1.357426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001647, LT: 2.334469, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 149, loss@min: 0.946538, loss@max: 1.358920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001647, LT: 2.334470, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 150, loss@min: 0.947654, loss@max: 1.358074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001647, LT: 2.334470, Top1S: 100.000000, Top1T: 67.080376 +------------------------------------------- +Fri Jul 28 14:46:36 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 18:05:47 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 18:08:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.725241, loss@max: 1.675645, Top1S acc: 100.000000, Top1T acc: 51.562500 +Train:epoch: 2, loss@min: 3.186851, loss@max: 1.416938, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 3, loss@min: 2.281318, loss@max: 1.307894, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 4, loss@min: 1.828983, loss@max: 1.284596, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 5, loss@min: 1.413769, loss@max: 1.284482, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.177482, loss@max: 1.277918, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 7, loss@min: 1.024646, loss@max: 1.283411, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.003812, loss@max: 1.302720, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 0.913749, loss@max: 1.280891, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 0.928147, loss@max: 1.272413, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 11, loss@min: 0.898079, loss@max: 1.249072, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 0.868570, loss@max: 1.239065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.875661, loss@max: 1.231745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.885058, loss@max: 1.230950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.893974, loss@max: 1.234125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.911070, loss@max: 1.224967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.918594, loss@max: 1.216334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.923090, loss@max: 1.225528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.922872, loss@max: 1.228875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.921171, loss@max: 1.238783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.925408, loss@max: 1.251328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.940289, loss@max: 1.254927, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.981905, loss@max: 1.264948, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 0.924762, loss@max: 1.264175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.934565, loss@max: 1.280543, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.923305, loss@max: 1.276495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.934369, loss@max: 1.272900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.930843, loss@max: 1.281700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.926498, loss@max: 1.290251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.930424, loss@max: 1.293203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.934754, loss@max: 1.299329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.930447, loss@max: 1.304476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.932069, loss@max: 1.304294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.941096, loss@max: 1.301495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.946238, loss@max: 1.303576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.938706, loss@max: 1.313422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.932242, loss@max: 1.318769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.942256, loss@max: 1.319778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.943165, loss@max: 1.314314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941871, loss@max: 1.323186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.937061, loss@max: 1.328353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.944188, loss@max: 1.323346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.949052, loss@max: 1.321727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.937317, loss@max: 1.334952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938550, loss@max: 1.334687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.945778, loss@max: 1.332417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.940852, loss@max: 1.336425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.942181, loss@max: 1.338609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.947718, loss@max: 1.333627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946613, loss@max: 1.336355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.941243, loss@max: 1.344859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.945293, loss@max: 1.342033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.948529, loss@max: 1.338983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.944906, loss@max: 1.344232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942044, loss@max: 1.348750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948874, loss@max: 1.342204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.949503, loss@max: 1.343487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948374, loss@max: 1.344365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.939383, loss@max: 1.354596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.946117, loss@max: 1.347996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.950604, loss@max: 1.345502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.945293, loss@max: 1.350291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.944462, loss@max: 1.352994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.946498, loss@max: 1.350675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946919, loss@max: 1.350677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.951148, loss@max: 1.348115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946297, loss@max: 1.352026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946769, loss@max: 1.353784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947265, loss@max: 1.354010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.946152, loss@max: 1.353936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946543, loss@max: 1.354709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948172, loss@max: 1.353578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946924, loss@max: 1.355839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943020, loss@max: 1.359010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949144, loss@max: 1.353093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953203, loss@max: 1.351823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948184, loss@max: 1.354381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947256, loss@max: 1.356269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946908, loss@max: 1.356492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948965, loss@max: 1.355560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002033, LT: 2.651964, Top1S: 100.000000, Top1T: 63.416077Best acc: 63.416077 +Train:epoch: 81, loss@min: 0.948775, loss@max: 1.354577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002028, LT: 2.652049, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 82, loss@min: 0.946625, loss@max: 1.356514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002026, LT: 2.652434, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 83, loss@min: 0.946375, loss@max: 1.357138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002024, LT: 2.652627, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 84, loss@min: 0.945000, loss@max: 1.358815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002020, LT: 2.652587, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 85, loss@min: 0.948036, loss@max: 1.356369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002015, LT: 2.652912, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 86, loss@min: 0.950167, loss@max: 1.355446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002011, LT: 2.652494, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 87, loss@min: 0.949838, loss@max: 1.354540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002008, LT: 2.651250, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 88, loss@min: 0.948671, loss@max: 1.355632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002005, LT: 2.650073, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 89, loss@min: 0.946331, loss@max: 1.358375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002002, LT: 2.649133, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 90, loss@min: 0.946748, loss@max: 1.357480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001999, LT: 2.648546, Top1S: 100.000000, Top1T: 63.238770 +Train:epoch: 91, loss@min: 0.947242, loss@max: 1.356986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001995, LT: 2.648145, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 92, loss@min: 0.949343, loss@max: 1.355000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001992, LT: 2.648050, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 93, loss@min: 0.950412, loss@max: 1.358427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001990, LT: 2.647041, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 94, loss@min: 0.947412, loss@max: 1.357714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001988, LT: 2.645663, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 95, loss@min: 0.950133, loss@max: 1.355246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001985, LT: 2.645210, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 96, loss@min: 0.947009, loss@max: 1.358465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001981, LT: 2.645156, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 97, loss@min: 0.948652, loss@max: 1.356493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001979, LT: 2.644990, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 98, loss@min: 0.949137, loss@max: 1.356032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001978, LT: 2.644860, Top1S: 100.000000, Top1T: 62.943264 +Train:epoch: 99, loss@min: 0.948544, loss@max: 1.356723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001976, LT: 2.644823, Top1S: 100.000000, Top1T: 62.943264 +Train:epoch: 100, loss@min: 0.948148, loss@max: 1.356999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001973, LT: 2.644943, Top1S: 100.000000, Top1T: 62.943264 +Train:epoch: 101, loss@min: 0.950191, loss@max: 1.354537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001971, LT: 2.645390, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 102, loss@min: 0.948386, loss@max: 1.358794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001969, LT: 2.645662, Top1S: 100.000000, Top1T: 63.002365 +Train:epoch: 103, loss@min: 0.946790, loss@max: 1.358316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001967, LT: 2.646923, Top1S: 100.000000, Top1T: 63.002365 +Train:epoch: 104, loss@min: 0.946962, loss@max: 1.358258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001965, LT: 2.648119, Top1S: 100.000000, Top1T: 63.002365 +Train:epoch: 105, loss@min: 0.951179, loss@max: 1.353938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001963, LT: 2.649103, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 106, loss@min: 0.951258, loss@max: 1.354060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001961, LT: 2.650074, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 107, loss@min: 0.948152, loss@max: 1.357143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001959, LT: 2.651020, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 108, loss@min: 0.947527, loss@max: 1.357368, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001958, LT: 2.652012, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 109, loss@min: 0.947632, loss@max: 1.357913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001956, LT: 2.652827, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 110, loss@min: 0.948330, loss@max: 1.356960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001955, LT: 2.653471, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 111, loss@min: 0.948883, loss@max: 1.356897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001954, LT: 2.654099, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 112, loss@min: 0.947456, loss@max: 1.358027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001952, LT: 2.654735, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 113, loss@min: 0.945824, loss@max: 1.359808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001951, LT: 2.655361, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 114, loss@min: 0.946338, loss@max: 1.359448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001949, LT: 2.656276, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 115, loss@min: 0.948500, loss@max: 1.357300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001948, LT: 2.657216, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 116, loss@min: 0.948153, loss@max: 1.357065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001947, LT: 2.658170, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 117, loss@min: 0.948331, loss@max: 1.357270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001946, LT: 2.658938, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 118, loss@min: 0.948479, loss@max: 1.357833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001945, LT: 2.659625, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 119, loss@min: 0.948192, loss@max: 1.357668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001944, LT: 2.660325, Top1S: 100.000000, Top1T: 63.238770 +Train:epoch: 120, loss@min: 0.948185, loss@max: 1.357108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001943, LT: 2.660900, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 121, loss@min: 0.948672, loss@max: 1.357024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001942, LT: 2.661378, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 122, loss@min: 0.948307, loss@max: 1.356875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001941, LT: 2.661787, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 123, loss@min: 0.950804, loss@max: 1.358743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001941, LT: 2.662562, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 124, loss@min: 0.948202, loss@max: 1.357729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001940, LT: 2.663579, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 125, loss@min: 0.949027, loss@max: 1.356436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001939, LT: 2.664483, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 126, loss@min: 0.947268, loss@max: 1.357924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001939, LT: 2.665193, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 127, loss@min: 0.948676, loss@max: 1.356501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001938, LT: 2.665750, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 128, loss@min: 0.947736, loss@max: 1.358029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001938, LT: 2.666193, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 129, loss@min: 0.948554, loss@max: 1.356968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001937, LT: 2.666466, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 130, loss@min: 0.948543, loss@max: 1.356430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001937, LT: 2.666672, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 131, loss@min: 0.949641, loss@max: 1.355604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001936, LT: 2.666849, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 132, loss@min: 0.947788, loss@max: 1.357713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001936, LT: 2.666978, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 133, loss@min: 0.947399, loss@max: 1.358596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001936, LT: 2.667089, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 134, loss@min: 0.946892, loss@max: 1.358510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001935, LT: 2.667176, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 135, loss@min: 0.947704, loss@max: 1.358002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001935, LT: 2.667257, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 136, loss@min: 0.946541, loss@max: 1.359183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001935, LT: 2.667321, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 137, loss@min: 0.949082, loss@max: 1.357211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001935, LT: 2.667422, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 138, loss@min: 0.947493, loss@max: 1.358209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001935, LT: 2.667499, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 139, loss@min: 0.947813, loss@max: 1.357304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001935, LT: 2.667560, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 140, loss@min: 0.948586, loss@max: 1.356901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001934, LT: 2.667595, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 141, loss@min: 0.949734, loss@max: 1.355855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001934, LT: 2.667625, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 142, loss@min: 0.947228, loss@max: 1.358162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001934, LT: 2.667652, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 143, loss@min: 0.948603, loss@max: 1.357300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001934, LT: 2.667673, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 144, loss@min: 0.947833, loss@max: 1.357878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001934, LT: 2.667686, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 145, loss@min: 0.948255, loss@max: 1.357786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001934, LT: 2.667693, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 146, loss@min: 0.948347, loss@max: 1.356850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001934, LT: 2.667697, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 147, loss@min: 0.948055, loss@max: 1.357904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001934, LT: 2.667699, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 148, loss@min: 0.949277, loss@max: 1.356221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001934, LT: 2.667699, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 149, loss@min: 0.947582, loss@max: 1.357716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001934, LT: 2.667700, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 150, loss@min: 0.949479, loss@max: 1.356686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001934, LT: 2.667700, Top1S: 100.000000, Top1T: 63.297871 +------------------------------------------- +Fri Jul 28 19:27:16 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jul 28 22:23:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.228781, loss@max: 1.801873, Top1S acc: 100.000000, Top1T acc: 49.609375 +Train:epoch: 2, loss@min: 4.630276, loss@max: 1.803169, Top1S acc: 100.000000, Top1T acc: 54.296875 +Train:epoch: 3, loss@min: 4.155850, loss@max: 1.831480, Top1S acc: 100.000000, Top1T acc: 55.859375 +Train:epoch: 4, loss@min: 3.631760, loss@max: 1.819356, Top1S acc: 100.000000, Top1T acc: 61.328125 +Train:epoch: 5, loss@min: 3.268254, loss@max: 1.849896, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 6, loss@min: 2.817939, loss@max: 1.816233, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 7, loss@min: 2.613355, loss@max: 1.833223, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 8, loss@min: 2.484664, loss@max: 1.845106, Top1S acc: 100.000000, Top1T acc: 77.734375 +Train:epoch: 9, loss@min: 2.176722, loss@max: 1.796203, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 10, loss@min: 2.119112, loss@max: 1.795815, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 11, loss@min: 2.024060, loss@max: 1.766474, Top1S acc: 100.000000, Top1T acc: 83.984375 +Train:epoch: 12, loss@min: 1.744896, loss@max: 1.679595, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 13, loss@min: 1.765665, loss@max: 1.684364, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 14, loss@min: 1.626765, loss@max: 1.615026, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 15, loss@min: 1.690657, loss@max: 1.644619, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 16, loss@min: 1.533044, loss@max: 1.569638, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 17, loss@min: 1.451971, loss@max: 1.534367, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 18, loss@min: 1.503541, loss@max: 1.551201, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 19, loss@min: 1.364821, loss@max: 1.489995, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 20, loss@min: 1.380784, loss@max: 1.502532, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 21, loss@min: 1.359136, loss@max: 1.502117, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 22, loss@min: 1.209658, loss@max: 1.452779, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.189114, loss@max: 1.449199, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 24, loss@min: 1.236511, loss@max: 1.477006, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.199299, loss@max: 1.469211, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.132969, loss@max: 1.437261, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 27, loss@min: 1.101696, loss@max: 1.424175, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.095021, loss@max: 1.435251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.074574, loss@max: 1.427251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.061599, loss@max: 1.416923, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.070129, loss@max: 1.437265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036418, loss@max: 1.417399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.051205, loss@max: 1.422645, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 34, loss@min: 1.039043, loss@max: 1.419158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.038444, loss@max: 1.423417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.030425, loss@max: 1.415282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.008042, loss@max: 1.396508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.019178, loss@max: 1.400854, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.010778, loss@max: 1.404276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.008721, loss@max: 1.391341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.013423, loss@max: 1.406699, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.997437, loss@max: 1.397654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.987791, loss@max: 1.388298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.990566, loss@max: 1.390538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.990856, loss@max: 1.394203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.994526, loss@max: 1.394850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.983294, loss@max: 1.386095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.985465, loss@max: 1.389884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.989313, loss@max: 1.395954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.989337, loss@max: 1.398424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.979228, loss@max: 1.383051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.979429, loss@max: 1.381142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.994564, loss@max: 1.398484, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.984141, loss@max: 1.395324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.974943, loss@max: 1.389308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.978483, loss@max: 1.386939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.982346, loss@max: 1.395037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.973120, loss@max: 1.387229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.968899, loss@max: 1.379918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.970571, loss@max: 1.381188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.974140, loss@max: 1.384492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.966460, loss@max: 1.377884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.967180, loss@max: 1.384577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.963973, loss@max: 1.381882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.968606, loss@max: 1.381113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.972373, loss@max: 1.385611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.967914, loss@max: 1.376474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.979661, loss@max: 1.391340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.966068, loss@max: 1.388802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.960446, loss@max: 1.381425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.963438, loss@max: 1.379009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.968501, loss@max: 1.382757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.969595, loss@max: 1.380654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.961920, loss@max: 1.377645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.963415, loss@max: 1.380664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.966011, loss@max: 1.379708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.966446, loss@max: 1.379968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.966417, loss@max: 1.379534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.961543, loss@max: 1.379081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.965954, loss@max: 1.384822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001936, LT: 1.690049, Top1S: 100.000000, Top1T: 65.011818Best acc: 65.011818 +Train:epoch: 81, loss@min: 0.964128, loss@max: 1.381289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001931, LT: 1.691188, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 82, loss@min: 0.962369, loss@max: 1.374296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001926, LT: 1.692211, Top1S: 100.000000, Top1T: 64.952721 +Train:epoch: 83, loss@min: 0.971417, loss@max: 1.379084, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.001921, LT: 1.693004, Top1S: 100.000000, Top1T: 65.070923Best acc: 65.070923 +Train:epoch: 84, loss@min: 0.960346, loss@max: 1.375347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001916, LT: 1.693727, Top1S: 100.000000, Top1T: 65.189125Best acc: 65.189125 +Train:epoch: 85, loss@min: 0.962296, loss@max: 1.380199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001911, LT: 1.694628, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 86, loss@min: 0.968370, loss@max: 1.385749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001907, LT: 1.695235, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 87, loss@min: 0.960785, loss@max: 1.375308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001902, LT: 1.695778, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 88, loss@min: 0.964400, loss@max: 1.380093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001898, LT: 1.696510, Top1S: 100.000000, Top1T: 65.248230Best acc: 65.248230 +Train:epoch: 89, loss@min: 0.966147, loss@max: 1.378604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001894, LT: 1.697674, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 90, loss@min: 0.963523, loss@max: 1.378860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001890, LT: 1.698986, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 91, loss@min: 0.958928, loss@max: 1.378242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001886, LT: 1.700416, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 92, loss@min: 0.961603, loss@max: 1.378116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001883, LT: 1.701926, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 93, loss@min: 0.964664, loss@max: 1.380409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001879, LT: 1.703561, Top1S: 100.000000, Top1T: 65.189125 +Train:epoch: 94, loss@min: 0.960389, loss@max: 1.374215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001876, LT: 1.705025, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 95, loss@min: 0.960688, loss@max: 1.375745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001872, LT: 1.706414, Top1S: 100.000000, Top1T: 65.248230 +Train:epoch: 96, loss@min: 0.961110, loss@max: 1.377286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001869, LT: 1.707621, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 97, loss@min: 0.962692, loss@max: 1.378892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001866, LT: 1.708626, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 98, loss@min: 0.960739, loss@max: 1.377570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001863, LT: 1.709609, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 99, loss@min: 0.964270, loss@max: 1.380418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001860, LT: 1.710787, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 100, loss@min: 0.961795, loss@max: 1.376606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001857, LT: 1.711790, Top1S: 100.000000, Top1T: 64.893616 +Train:epoch: 101, loss@min: 0.962902, loss@max: 1.376238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001854, LT: 1.712936, Top1S: 100.000000, Top1T: 64.834518 +Train:epoch: 102, loss@min: 0.969114, loss@max: 1.382949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001852, LT: 1.713755, Top1S: 100.000000, Top1T: 64.775414 +Train:epoch: 103, loss@min: 0.961266, loss@max: 1.379866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001849, LT: 1.714827, Top1S: 100.000000, Top1T: 64.716309 +Train:epoch: 104, loss@min: 0.965053, loss@max: 1.382813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001847, LT: 1.715570, Top1S: 100.000000, Top1T: 64.657211 +Train:epoch: 105, loss@min: 0.957948, loss@max: 1.372802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001844, LT: 1.716099, Top1S: 100.000000, Top1T: 64.716309 +Train:epoch: 106, loss@min: 0.959230, loss@max: 1.374477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001842, LT: 1.716575, Top1S: 100.000000, Top1T: 64.893616 +Train:epoch: 107, loss@min: 0.960467, loss@max: 1.376101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001840, LT: 1.717254, Top1S: 100.000000, Top1T: 64.952721 +Train:epoch: 108, loss@min: 0.959403, loss@max: 1.373605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001838, LT: 1.717903, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 109, loss@min: 0.962493, loss@max: 1.378154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001836, LT: 1.718530, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 110, loss@min: 0.960567, loss@max: 1.373232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001834, LT: 1.719018, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 111, loss@min: 0.959720, loss@max: 1.374052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001832, LT: 1.719522, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 112, loss@min: 0.960062, loss@max: 1.375775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001830, LT: 1.720111, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 113, loss@min: 0.958842, loss@max: 1.378293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001829, LT: 1.720604, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 114, loss@min: 0.962071, loss@max: 1.381476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001827, LT: 1.721447, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 115, loss@min: 0.963156, loss@max: 1.381481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001826, LT: 1.722370, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 116, loss@min: 0.957978, loss@max: 1.376031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001824, LT: 1.723315, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 117, loss@min: 0.958426, loss@max: 1.377498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001823, LT: 1.724079, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 118, loss@min: 0.964071, loss@max: 1.379532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001822, LT: 1.724728, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 119, loss@min: 0.959654, loss@max: 1.373392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001821, LT: 1.725385, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 120, loss@min: 0.957731, loss@max: 1.372127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001819, LT: 1.725984, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 121, loss@min: 0.960126, loss@max: 1.375657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001818, LT: 1.726502, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 122, loss@min: 0.959278, loss@max: 1.375664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001817, LT: 1.726901, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 123, loss@min: 0.960695, loss@max: 1.377815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001817, LT: 1.727272, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 124, loss@min: 0.960693, loss@max: 1.379609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001816, LT: 1.727692, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 125, loss@min: 0.960812, loss@max: 1.375624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001815, LT: 1.728060, Top1S: 100.000000, Top1T: 65.130020 +Train:epoch: 126, loss@min: 0.958216, loss@max: 1.375943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001814, LT: 1.728307, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 127, loss@min: 0.956673, loss@max: 1.373896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001813, LT: 1.728490, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 128, loss@min: 0.959351, loss@max: 1.376231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001813, LT: 1.728665, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 129, loss@min: 0.959812, loss@max: 1.376015, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001812, LT: 1.728839, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 130, loss@min: 0.957334, loss@max: 1.372360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001812, LT: 1.729018, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 131, loss@min: 0.958293, loss@max: 1.369117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001811, LT: 1.729213, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 132, loss@min: 0.959254, loss@max: 1.376242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001811, LT: 1.729374, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 133, loss@min: 0.958835, loss@max: 1.377075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001810, LT: 1.729484, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 134, loss@min: 0.956893, loss@max: 1.374556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001810, LT: 1.729584, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 135, loss@min: 0.960505, loss@max: 1.377742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001810, LT: 1.729702, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 136, loss@min: 0.958104, loss@max: 1.375929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001810, LT: 1.729809, Top1S: 100.000000, Top1T: 65.070923 +Train:epoch: 137, loss@min: 0.959848, loss@max: 1.375730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001809, LT: 1.729902, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 138, loss@min: 0.958974, loss@max: 1.374189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001809, LT: 1.729982, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 139, loss@min: 0.960582, loss@max: 1.375185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001809, LT: 1.730042, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 140, loss@min: 0.958493, loss@max: 1.373251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001809, LT: 1.730082, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 141, loss@min: 0.960495, loss@max: 1.377107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001809, LT: 1.730128, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 142, loss@min: 0.959239, loss@max: 1.376477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001809, LT: 1.730166, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 143, loss@min: 0.960951, loss@max: 1.376841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001809, LT: 1.730195, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 144, loss@min: 0.963897, loss@max: 1.377930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001809, LT: 1.730214, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 145, loss@min: 0.960100, loss@max: 1.375960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001809, LT: 1.730227, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 146, loss@min: 0.961248, loss@max: 1.375988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001809, LT: 1.730234, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 147, loss@min: 0.959567, loss@max: 1.374126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001809, LT: 1.730236, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 148, loss@min: 0.958744, loss@max: 1.372709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001809, LT: 1.730237, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 149, loss@min: 0.958881, loss@max: 1.376107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001809, LT: 1.730237, Top1S: 100.000000, Top1T: 65.011818 +Train:epoch: 150, loss@min: 0.968380, loss@max: 1.381562, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 150, LS: 0.001809, LT: 1.730237, Top1S: 100.000000, Top1T: 65.011818 +------------------------------------------- +Sat Jul 29 01:02:38 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 01:34:17 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.725240, loss@max: 1.675645, Top1S acc: 100.000000, Top1T acc: 51.562500 +Train:epoch: 2, loss@min: 3.186852, loss@max: 1.416938, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 3, loss@min: 2.281317, loss@max: 1.307893, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 4, loss@min: 1.828982, loss@max: 1.284595, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 5, loss@min: 1.413769, loss@max: 1.284483, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.177482, loss@max: 1.277918, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 7, loss@min: 1.024647, loss@max: 1.283411, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.003812, loss@max: 1.302719, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 0.913749, loss@max: 1.280890, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 0.928146, loss@max: 1.272413, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 11, loss@min: 0.898080, loss@max: 1.249071, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 0.868570, loss@max: 1.239065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.875661, loss@max: 1.231745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.885059, loss@max: 1.230950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.893974, loss@max: 1.234125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.911070, loss@max: 1.224967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.918595, loss@max: 1.216332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.923090, loss@max: 1.225528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.922871, loss@max: 1.228876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.921172, loss@max: 1.238783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.925408, loss@max: 1.251328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.940288, loss@max: 1.254927, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.981905, loss@max: 1.264947, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 0.924761, loss@max: 1.264176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.934564, loss@max: 1.280545, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.923305, loss@max: 1.276495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.934368, loss@max: 1.272900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.930842, loss@max: 1.281700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.926498, loss@max: 1.290251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.930425, loss@max: 1.293202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.934753, loss@max: 1.299331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.930447, loss@max: 1.304475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.932070, loss@max: 1.304293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.941096, loss@max: 1.301496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.946238, loss@max: 1.303576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.938706, loss@max: 1.313422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.932244, loss@max: 1.318767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.942257, loss@max: 1.319777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.943162, loss@max: 1.314317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941874, loss@max: 1.323183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.937062, loss@max: 1.328352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.944185, loss@max: 1.323348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.949052, loss@max: 1.321727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.937320, loss@max: 1.334949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938547, loss@max: 1.334690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.945777, loss@max: 1.332419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.940851, loss@max: 1.336426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.942180, loss@max: 1.338611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.947717, loss@max: 1.333628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946614, loss@max: 1.336353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.941243, loss@max: 1.344858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.945291, loss@max: 1.342035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.948530, loss@max: 1.338981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.944907, loss@max: 1.344230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942043, loss@max: 1.348751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948871, loss@max: 1.342207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.949504, loss@max: 1.343485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948376, loss@max: 1.344363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.939382, loss@max: 1.354597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.946116, loss@max: 1.347996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.950606, loss@max: 1.345500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.945295, loss@max: 1.350290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.944462, loss@max: 1.352994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.946498, loss@max: 1.350676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946920, loss@max: 1.350676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.951150, loss@max: 1.348114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946296, loss@max: 1.352027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946767, loss@max: 1.353786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947263, loss@max: 1.354012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.946152, loss@max: 1.353936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946543, loss@max: 1.354708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948173, loss@max: 1.353578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946923, loss@max: 1.355839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943020, loss@max: 1.359011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949143, loss@max: 1.353094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953202, loss@max: 1.351825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948185, loss@max: 1.354380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947255, loss@max: 1.356270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946906, loss@max: 1.356494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948965, loss@max: 1.355560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002033, LT: 2.651964, Top1S: 100.000000, Top1T: 63.416077Best acc: 63.416077 +Train:epoch: 81, loss@min: 0.948778, loss@max: 1.354574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002028, LT: 2.652048, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 82, loss@min: 0.946623, loss@max: 1.356516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002026, LT: 2.652433, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 83, loss@min: 0.946375, loss@max: 1.357138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002024, LT: 2.652627, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 84, loss@min: 0.945002, loss@max: 1.358813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002020, LT: 2.652586, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 85, loss@min: 0.948038, loss@max: 1.356367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002015, LT: 2.652911, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 86, loss@min: 0.950166, loss@max: 1.355447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002011, LT: 2.652493, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 87, loss@min: 0.949835, loss@max: 1.354543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002008, LT: 2.651249, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 88, loss@min: 0.948669, loss@max: 1.355633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002005, LT: 2.650072, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 89, loss@min: 0.946333, loss@max: 1.358374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002002, LT: 2.649132, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 90, loss@min: 0.946751, loss@max: 1.357478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001999, LT: 2.648546, Top1S: 100.000000, Top1T: 63.238770 +Train:epoch: 91, loss@min: 0.947241, loss@max: 1.356987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001995, LT: 2.648144, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 92, loss@min: 0.949342, loss@max: 1.355001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001992, LT: 2.648049, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 93, loss@min: 0.950412, loss@max: 1.358427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001990, LT: 2.647041, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 94, loss@min: 0.947414, loss@max: 1.357713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.001988, LT: 2.645663, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 95, loss@min: 0.950134, loss@max: 1.355245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001985, LT: 2.645210, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 96, loss@min: 0.947009, loss@max: 1.358466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001981, LT: 2.645155, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 97, loss@min: 0.948651, loss@max: 1.356494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.001979, LT: 2.644989, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 98, loss@min: 0.949136, loss@max: 1.356033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001978, LT: 2.644859, Top1S: 100.000000, Top1T: 62.943264 +Train:epoch: 99, loss@min: 0.948545, loss@max: 1.356721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001976, LT: 2.644822, Top1S: 100.000000, Top1T: 62.943264 +Train:epoch: 100, loss@min: 0.948149, loss@max: 1.356998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001973, LT: 2.644942, Top1S: 100.000000, Top1T: 62.943264 +Train:epoch: 101, loss@min: 0.950192, loss@max: 1.354537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001971, LT: 2.645389, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 102, loss@min: 0.948386, loss@max: 1.358794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001969, LT: 2.645661, Top1S: 100.000000, Top1T: 63.002365 +Train:epoch: 103, loss@min: 0.946790, loss@max: 1.358316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001967, LT: 2.646922, Top1S: 100.000000, Top1T: 63.002365 +Train:epoch: 104, loss@min: 0.946962, loss@max: 1.358258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001965, LT: 2.648118, Top1S: 100.000000, Top1T: 63.002365 +Train:epoch: 105, loss@min: 0.951180, loss@max: 1.353938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001963, LT: 2.649103, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 106, loss@min: 0.951257, loss@max: 1.354061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001961, LT: 2.650073, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 107, loss@min: 0.948150, loss@max: 1.357145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001959, LT: 2.651019, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 108, loss@min: 0.947528, loss@max: 1.357367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001958, LT: 2.652011, Top1S: 100.000000, Top1T: 63.061466 +Train:epoch: 109, loss@min: 0.947632, loss@max: 1.357914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001956, LT: 2.652825, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 110, loss@min: 0.948329, loss@max: 1.356962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001955, LT: 2.653470, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 111, loss@min: 0.948883, loss@max: 1.356896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001954, LT: 2.654097, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 112, loss@min: 0.947455, loss@max: 1.358027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.001952, LT: 2.654733, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 113, loss@min: 0.945825, loss@max: 1.359807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001951, LT: 2.655360, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 114, loss@min: 0.946339, loss@max: 1.359447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001949, LT: 2.656275, Top1S: 100.000000, Top1T: 63.120567 +Train:epoch: 115, loss@min: 0.948501, loss@max: 1.357299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001948, LT: 2.657215, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 116, loss@min: 0.948154, loss@max: 1.357064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001947, LT: 2.658169, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 117, loss@min: 0.948332, loss@max: 1.357269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001946, LT: 2.658937, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 118, loss@min: 0.948480, loss@max: 1.357833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001945, LT: 2.659623, Top1S: 100.000000, Top1T: 63.179668 +Train:epoch: 119, loss@min: 0.948192, loss@max: 1.357668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001944, LT: 2.660324, Top1S: 100.000000, Top1T: 63.238770 +Train:epoch: 120, loss@min: 0.948184, loss@max: 1.357109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001943, LT: 2.660900, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 121, loss@min: 0.948672, loss@max: 1.357024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001942, LT: 2.661377, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 122, loss@min: 0.948308, loss@max: 1.356874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001941, LT: 2.661786, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 123, loss@min: 0.950805, loss@max: 1.358742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001941, LT: 2.662562, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 124, loss@min: 0.948201, loss@max: 1.357730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001940, LT: 2.663578, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 125, loss@min: 0.949027, loss@max: 1.356437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001939, LT: 2.664482, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 126, loss@min: 0.947269, loss@max: 1.357923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001939, LT: 2.665192, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 127, loss@min: 0.948676, loss@max: 1.356501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.001938, LT: 2.665749, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 128, loss@min: 0.947737, loss@max: 1.358027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001938, LT: 2.666192, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 129, loss@min: 0.948555, loss@max: 1.356967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001937, LT: 2.666465, Top1S: 100.000000, Top1T: 63.416077 +Train:epoch: 130, loss@min: 0.948543, loss@max: 1.356430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001937, LT: 2.666671, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 131, loss@min: 0.949641, loss@max: 1.355604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001936, LT: 2.666848, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 132, loss@min: 0.947787, loss@max: 1.357714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001936, LT: 2.666977, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 133, loss@min: 0.947399, loss@max: 1.358596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001936, LT: 2.667088, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 134, loss@min: 0.946891, loss@max: 1.358511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001935, LT: 2.667175, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 135, loss@min: 0.947705, loss@max: 1.358002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001935, LT: 2.667256, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 136, loss@min: 0.946542, loss@max: 1.359182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001935, LT: 2.667320, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 137, loss@min: 0.949082, loss@max: 1.357211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001935, LT: 2.667422, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 138, loss@min: 0.947494, loss@max: 1.358208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001935, LT: 2.667498, Top1S: 100.000000, Top1T: 63.356976 +Train:epoch: 139, loss@min: 0.947813, loss@max: 1.357305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001935, LT: 2.667560, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 140, loss@min: 0.948585, loss@max: 1.356902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001934, LT: 2.667594, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 141, loss@min: 0.949735, loss@max: 1.355854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001934, LT: 2.667624, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 142, loss@min: 0.947229, loss@max: 1.358162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001934, LT: 2.667651, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 143, loss@min: 0.948604, loss@max: 1.357299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.001934, LT: 2.667673, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 144, loss@min: 0.947834, loss@max: 1.357877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001934, LT: 2.667686, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 145, loss@min: 0.948254, loss@max: 1.357787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001934, LT: 2.667692, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 146, loss@min: 0.948347, loss@max: 1.356849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001934, LT: 2.667696, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 147, loss@min: 0.948056, loss@max: 1.357903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001934, LT: 2.667698, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 148, loss@min: 0.949277, loss@max: 1.356221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001934, LT: 2.667699, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 149, loss@min: 0.947582, loss@max: 1.357716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001934, LT: 2.667699, Top1S: 100.000000, Top1T: 63.297871 +Train:epoch: 150, loss@min: 0.949480, loss@max: 1.356685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001934, LT: 2.667699, Top1S: 100.000000, Top1T: 63.297871 +------------------------------------------- +Sat Jul 29 03:38:41 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 11:33:54 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.568218, loss@max: 1.839221, Top1S acc: 100.000000, Top1T acc: 44.148933 +Train:epoch: 2, loss@min: 3.865928, loss@max: 1.505049, Top1S acc: 100.000000, Top1T acc: 64.893616 +Train:epoch: 3, loss@min: 2.844925, loss@max: 1.330720, Top1S acc: 100.000000, Top1T acc: 75.531914 +Train:epoch: 4, loss@min: 2.161130, loss@max: 1.231889, Top1S acc: 100.000000, Top1T acc: 86.170212 +Train:epoch: 5, loss@min: 1.731159, loss@max: 1.193752, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 6, loss@min: 1.430283, loss@max: 1.189164, Top1S acc: 100.000000, Top1T acc: 94.148933 +Train:epoch: 7, loss@min: 1.260276, loss@max: 1.211652, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 8, loss@min: 1.047989, loss@max: 1.215835, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 9, loss@min: 0.970124, loss@max: 1.242067, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 10, loss@min: 0.916322, loss@max: 1.266354, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 11, loss@min: 0.873683, loss@max: 1.282195, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 12, loss@min: 0.859710, loss@max: 1.286141, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 13, loss@min: 0.844033, loss@max: 1.280096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.853292, loss@max: 1.273616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.864041, loss@max: 1.272143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.874666, loss@max: 1.277655, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 17, loss@min: 0.883349, loss@max: 1.292366, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 18, loss@min: 0.859826, loss@max: 1.300771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.850230, loss@max: 1.309890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.850068, loss@max: 1.315205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.866130, loss@max: 1.315345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.887084, loss@max: 1.311180, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 23, loss@min: 0.898098, loss@max: 1.294434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.904497, loss@max: 1.286686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.918452, loss@max: 1.286941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.920122, loss@max: 1.284092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.924667, loss@max: 1.283761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.930640, loss@max: 1.280659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.934761, loss@max: 1.283523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.943611, loss@max: 1.280774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.948261, loss@max: 1.279203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.953048, loss@max: 1.283652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.955830, loss@max: 1.283052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.956502, loss@max: 1.284976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.957507, loss@max: 1.291557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952786, loss@max: 1.295514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.954108, loss@max: 1.307718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947096, loss@max: 1.307638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.947875, loss@max: 1.311170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.948627, loss@max: 1.312090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.953093, loss@max: 1.312952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.951096, loss@max: 1.315522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.945340, loss@max: 1.324264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.941999, loss@max: 1.328932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.941796, loss@max: 1.331386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.937020, loss@max: 1.338027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.959127, loss@max: 1.346726, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 48, loss@min: 0.938396, loss@max: 1.340544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.943238, loss@max: 1.337268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945607, loss@max: 1.337009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.945385, loss@max: 1.338642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.941053, loss@max: 1.343895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.937497, loss@max: 1.348837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.934750, loss@max: 1.352985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.939985, loss@max: 1.349164, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 11:36:22 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.584736, loss@max: 1.843433, Top1S acc: 100.000000, Top1T acc: 44.148933 +Train:epoch: 2, loss@min: 3.860489, loss@max: 1.503542, Top1S acc: 100.000000, Top1T acc: 64.361702 +Train:epoch: 3, loss@min: 2.833919, loss@max: 1.327571, Top1S acc: 100.000000, Top1T acc: 75.531914 +Train:epoch: 4, loss@min: 2.147409, loss@max: 1.227904, Top1S acc: 100.000000, Top1T acc: 86.170212 +Train:epoch: 5, loss@min: 1.716026, loss@max: 1.189126, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 6, loss@min: 1.415007, loss@max: 1.184170, Top1S acc: 100.000000, Top1T acc: 95.212761 +Train:epoch: 7, loss@min: 1.248780, loss@max: 1.207136, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 8, loss@min: 1.040128, loss@max: 1.211728, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 9, loss@min: 0.965992, loss@max: 1.238707, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 10, loss@min: 0.912832, loss@max: 1.262353, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 11, loss@min: 0.871831, loss@max: 1.277675, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 12, loss@min: 0.861286, loss@max: 1.281442, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 13, loss@min: 0.846261, loss@max: 1.274980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.855782, loss@max: 1.268982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.865421, loss@max: 1.268882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.873026, loss@max: 1.276613, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 17, loss@min: 0.879549, loss@max: 1.293558, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 18, loss@min: 0.855425, loss@max: 1.303967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.846771, loss@max: 1.312519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.849558, loss@max: 1.315132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.868230, loss@max: 1.311451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.891241, loss@max: 1.305344, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 23, loss@min: 0.901707, loss@max: 1.289190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.906278, loss@max: 1.284487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.917244, loss@max: 1.287795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.916666, loss@max: 1.286877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.921169, loss@max: 1.286786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929696, loss@max: 1.281789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.935972, loss@max: 1.282371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.946504, loss@max: 1.277659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.950791, loss@max: 1.276303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.954086, loss@max: 1.283457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.953715, loss@max: 1.285058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.952537, loss@max: 1.288170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.953979, loss@max: 1.294903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.951281, loss@max: 1.297114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.957232, loss@max: 1.307567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.949291, loss@max: 1.305053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949944, loss@max: 1.308769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.948528, loss@max: 1.312219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.950571, loss@max: 1.314690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.947642, loss@max: 1.318448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.942793, loss@max: 1.326681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.941279, loss@max: 1.329668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.942842, loss@max: 1.330199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.939216, loss@max: 1.335647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961361, loss@max: 1.345212, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 48, loss@min: 0.938735, loss@max: 1.340309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.942475, loss@max: 1.337997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943971, loss@max: 1.338491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.943431, loss@max: 1.340617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940437, loss@max: 1.344655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938414, loss@max: 1.347917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.936579, loss@max: 1.351092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942305, loss@max: 1.346805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.944132, loss@max: 1.345811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.949111, loss@max: 1.342458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951431, loss@max: 1.343100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947781, loss@max: 1.345320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941303, loss@max: 1.352401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.938881, loss@max: 1.355811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944287, loss@max: 1.351027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950686, loss@max: 1.346227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.953325, loss@max: 1.343616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952406, loss@max: 1.345243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945846, loss@max: 1.352315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.943124, loss@max: 1.355386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.942963, loss@max: 1.356361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947083, loss@max: 1.352065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.952617, loss@max: 1.347468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951223, loss@max: 1.349192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.952332, loss@max: 1.348194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.945765, loss@max: 1.355592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.944555, loss@max: 1.357117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943596, loss@max: 1.358424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948857, loss@max: 1.353080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948883, loss@max: 1.353691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.951490, loss@max: 1.351122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.950626, loss@max: 1.352826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.945920, loss@max: 1.357141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002274, LT: 3.223795, Top1S: 100.000000, Top1T: 58.510639Best acc: 58.510639 +Train:epoch: 81, loss@min: 0.946049, loss@max: 1.357534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002271, LT: 3.218675, Top1S: 100.000000, Top1T: 58.510639 +Train:epoch: 82, loss@min: 0.947982, loss@max: 1.355489, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 11:40:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.568215, loss@max: 1.839220, Top1S acc: 100.000000, Top1T acc: 44.148933 +Train:epoch: 2, loss@min: 3.865926, loss@max: 1.505049, Top1S acc: 100.000000, Top1T acc: 64.893616 +Train:epoch: 3, loss@min: 2.844924, loss@max: 1.330719, Top1S acc: 100.000000, Top1T acc: 75.531914 +Train:epoch: 4, loss@min: 2.161128, loss@max: 1.231889, Top1S acc: 100.000000, Top1T acc: 86.170212 +Train:epoch: 5, loss@min: 1.731158, loss@max: 1.193752, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 6, loss@min: 1.430281, loss@max: 1.189164, Top1S acc: 100.000000, Top1T acc: 94.148933 +Train:epoch: 7, loss@min: 1.260275, loss@max: 1.211652, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 8, loss@min: 1.047988, loss@max: 1.215835, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 9, loss@min: 0.970124, loss@max: 1.242067, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 10, loss@min: 0.916322, loss@max: 1.266354, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 11, loss@min: 0.873683, loss@max: 1.282194, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 12, loss@min: 0.859711, loss@max: 1.286141, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 13, loss@min: 0.844034, loss@max: 1.280095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.853291, loss@max: 1.273617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.864041, loss@max: 1.272143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.874666, loss@max: 1.277654, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 17, loss@min: 0.883348, loss@max: 1.292366, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 18, loss@min: 0.859826, loss@max: 1.300770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.850230, loss@max: 1.309889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.850068, loss@max: 1.315204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.866130, loss@max: 1.315345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.887083, loss@max: 1.311181, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 23, loss@min: 0.898096, loss@max: 1.294436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.904497, loss@max: 1.286686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.918452, loss@max: 1.286941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.920123, loss@max: 1.284091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.924667, loss@max: 1.283760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.930639, loss@max: 1.280660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.934761, loss@max: 1.283523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.943611, loss@max: 1.280774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.948261, loss@max: 1.279203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.953049, loss@max: 1.283651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.955830, loss@max: 1.283052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.956501, loss@max: 1.284976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.957506, loss@max: 1.291558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952785, loss@max: 1.295515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.954108, loss@max: 1.307718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947097, loss@max: 1.307637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.947876, loss@max: 1.311170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.948627, loss@max: 1.312091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.953091, loss@max: 1.312953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.951095, loss@max: 1.315523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.945340, loss@max: 1.324263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.942001, loss@max: 1.328930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.941798, loss@max: 1.331384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.937020, loss@max: 1.338027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.959126, loss@max: 1.346727, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 48, loss@min: 0.938394, loss@max: 1.340546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.943237, loss@max: 1.337268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945608, loss@max: 1.337007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.945387, loss@max: 1.338640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.941054, loss@max: 1.343895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.937496, loss@max: 1.348838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.934750, loss@max: 1.352985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.939986, loss@max: 1.349164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.942851, loss@max: 1.346956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.948958, loss@max: 1.342543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953129, loss@max: 1.341328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.950207, loss@max: 1.342759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943249, loss@max: 1.350313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.938549, loss@max: 1.356123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.941141, loss@max: 1.354156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.946675, loss@max: 1.350037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.951161, loss@max: 1.345689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.954127, loss@max: 1.343528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.950078, loss@max: 1.348048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946854, loss@max: 1.351557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943545, loss@max: 1.355736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.943993, loss@max: 1.355278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.948796, loss@max: 1.351143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949084, loss@max: 1.351213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.952657, loss@max: 1.347861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948527, loss@max: 1.352793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947138, loss@max: 1.354396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.945429, loss@max: 1.356489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948399, loss@max: 1.353517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.946721, loss@max: 1.355823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.949573, loss@max: 1.352992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.949839, loss@max: 1.353553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946595, loss@max: 1.356343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002272, LT: 3.145017, Top1S: 100.000000, Top1T: 58.569740Best acc: 58.569740 +Train:epoch: 81, loss@min: 0.947041, loss@max: 1.356563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002269, LT: 3.141232, Top1S: 100.000000, Top1T: 58.569740 +Train:epoch: 82, loss@min: 0.949047, loss@max: 1.354515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002266, LT: 3.137784, Top1S: 100.000000, Top1T: 58.628841Best acc: 58.628841 +Train:epoch: 83, loss@min: 0.945437, loss@max: 1.358294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002263, LT: 3.134581, Top1S: 100.000000, Top1T: 58.569740 +Train:epoch: 84, loss@min: 0.947788, loss@max: 1.355757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002260, LT: 3.131670, Top1S: 100.000000, Top1T: 58.687943Best acc: 58.687943 +Train:epoch: 85, loss@min: 0.949409, loss@max: 1.354307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002257, LT: 3.129150, Top1S: 100.000000, Top1T: 58.687943 +Train:epoch: 86, loss@min: 0.947181, loss@max: 1.357541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002254, LT: 3.125621, Top1S: 100.000000, Top1T: 58.687943 +Train:epoch: 87, loss@min: 0.947327, loss@max: 1.356712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002252, LT: 3.122433, Top1S: 100.000000, Top1T: 58.687943 +Train:epoch: 88, loss@min: 0.949616, loss@max: 1.355039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002249, LT: 3.118667, Top1S: 100.000000, Top1T: 58.747044Best acc: 58.747044 +Train:epoch: 89, loss@min: 0.948816, loss@max: 1.355335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002247, LT: 3.115214, Top1S: 100.000000, Top1T: 58.806149Best acc: 58.806149 +Train:epoch: 90, loss@min: 0.946715, loss@max: 1.357694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002245, LT: 3.112102, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 91, loss@min: 0.948948, loss@max: 1.355573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002243, LT: 3.109418, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 92, loss@min: 0.948818, loss@max: 1.355570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002240, LT: 3.107090, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 93, loss@min: 0.948466, loss@max: 1.356569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002238, LT: 3.104502, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 94, loss@min: 0.949372, loss@max: 1.355414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002236, LT: 3.102262, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 95, loss@min: 0.949902, loss@max: 1.354930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002234, LT: 3.100316, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 96, loss@min: 0.946809, loss@max: 1.357954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002232, LT: 3.098693, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 97, loss@min: 0.949120, loss@max: 1.355681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002230, LT: 3.097309, Top1S: 100.000000, Top1T: 58.806149 +Train:epoch: 98, loss@min: 0.946353, loss@max: 1.358685, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 11:51:27 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.340214, loss@max: 1.778908, Top1S acc: 100.000000, Top1T acc: 42.021275 +Train:epoch: 2, loss@min: 4.779163, loss@max: 1.739738, Top1S acc: 100.000000, Top1T acc: 50.531914 +Train:epoch: 3, loss@min: 4.356434, loss@max: 1.737151, Top1S acc: 100.000000, Top1T acc: 54.787231 +Train:epoch: 4, loss@min: 3.927998, loss@max: 1.729815, Top1S acc: 100.000000, Top1T acc: 57.978722 +Train:epoch: 5, loss@min: 3.624735, loss@max: 1.750691, Top1S acc: 100.000000, Top1T acc: 64.361702 +Train:epoch: 6, loss@min: 3.256754, loss@max: 1.750052, Top1S acc: 100.000000, Top1T acc: 68.085106 +Train:epoch: 7, loss@min: 3.089645, loss@max: 1.793369, Top1S acc: 100.000000, Top1T acc: 69.680847 +Train:epoch: 8, loss@min: 2.782502, loss@max: 1.797089, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 9, loss@min: 2.571181, loss@max: 1.808753, Top1S acc: 100.000000, Top1T acc: 80.319138 +Train:epoch: 10, loss@min: 2.333837, loss@max: 1.805413, Top1S acc: 100.000000, Top1T acc: 83.510628 +Train:epoch: 11, loss@min: 2.257990, loss@max: 1.827523, Top1S acc: 100.000000, Top1T acc: 84.042549 +Train:epoch: 12, loss@min: 1.968916, loss@max: 1.787955, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 13, loss@min: 1.885219, loss@max: 1.793424, Top1S acc: 100.000000, Top1T acc: 87.765953 +Train:epoch: 14, loss@min: 1.666643, loss@max: 1.749039, Top1S acc: 100.000000, Top1T acc: 92.021271 +Train:epoch: 15, loss@min: 1.625242, loss@max: 1.741004, Top1S acc: 100.000000, Top1T acc: 92.553192 +Train:epoch: 16, loss@min: 1.564232, loss@max: 1.730721, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 17, loss@min: 1.483599, loss@max: 1.700387, Top1S acc: 100.000000, Top1T acc: 95.212761 +Train:epoch: 18, loss@min: 1.389166, loss@max: 1.668449, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 19, loss@min: 1.355023, loss@max: 1.652247, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 20, loss@min: 1.280363, loss@max: 1.609385, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 21, loss@min: 1.258554, loss@max: 1.593342, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 22, loss@min: 1.266232, loss@max: 1.582789, Top1S acc: 100.000000, Top1T acc: 97.340424 +Train:epoch: 23, loss@min: 1.162873, loss@max: 1.520951, Top1S acc: 100.000000, Top1T acc: 98.404251 +Train:epoch: 24, loss@min: 1.131135, loss@max: 1.500651, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 25, loss@min: 1.138063, loss@max: 1.491532, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 26, loss@min: 1.137450, loss@max: 1.481154, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 27, loss@min: 1.095884, loss@max: 1.450287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.090142, loss@max: 1.441956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.087684, loss@max: 1.431481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.102522, loss@max: 1.420473, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 31, loss@min: 1.065157, loss@max: 1.404232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.080493, loss@max: 1.415846, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 33, loss@min: 1.043906, loss@max: 1.392323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.038512, loss@max: 1.388101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.032317, loss@max: 1.385752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.030910, loss@max: 1.385392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.017391, loss@max: 1.374849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.009464, loss@max: 1.373920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.033107, loss@max: 1.393445, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 40, loss@min: 1.005889, loss@max: 1.381114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.995388, loss@max: 1.372965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.995107, loss@max: 1.378885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.996464, loss@max: 1.381523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986541, loss@max: 1.379957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.978989, loss@max: 1.374395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.977222, loss@max: 1.384240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.975623, loss@max: 1.385566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.975585, loss@max: 1.392256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.984079, loss@max: 1.391133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.971388, loss@max: 1.382128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.968013, loss@max: 1.379959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.968431, loss@max: 1.382679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.967612, loss@max: 1.384295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.966972, loss@max: 1.388215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.965977, loss@max: 1.385946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.961852, loss@max: 1.386362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.960357, loss@max: 1.385097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.962192, loss@max: 1.383457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.965601, loss@max: 1.382945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.965021, loss@max: 1.381491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.963218, loss@max: 1.378029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.966141, loss@max: 1.379083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.965585, loss@max: 1.380903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.964829, loss@max: 1.381849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.968794, loss@max: 1.379965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.964314, loss@max: 1.383847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.963276, loss@max: 1.381261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.972289, loss@max: 1.385707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.962832, loss@max: 1.377375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.966468, loss@max: 1.378099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.963952, loss@max: 1.374897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.962410, loss@max: 1.370716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.966541, loss@max: 1.381433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.961921, loss@max: 1.374083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.960956, loss@max: 1.373886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.961177, loss@max: 1.374699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962481, loss@max: 1.383709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.959991, loss@max: 1.373865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.970912, loss@max: 1.378052, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 80, loss@min: 0.962655, loss@max: 1.375288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002212, LT: 1.698417, Top1S: 100.000000, Top1T: 61.938534Best acc: 61.938534 +Train:epoch: 81, loss@min: 0.963407, loss@max: 1.378548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002207, LT: 1.699187, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 82, loss@min: 0.965836, loss@max: 1.376448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002203, LT: 1.700043, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 83, loss@min: 0.962504, loss@max: 1.378922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002198, LT: 1.701092, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 84, loss@min: 0.959736, loss@max: 1.377498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002194, LT: 1.702165, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 85, loss@min: 0.961429, loss@max: 1.380416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002190, LT: 1.703089, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 86, loss@min: 0.961170, loss@max: 1.378062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002186, LT: 1.704019, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 87, loss@min: 0.959765, loss@max: 1.378605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002183, LT: 1.704820, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 88, loss@min: 0.959360, loss@max: 1.376576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002179, LT: 1.705588, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 89, loss@min: 0.963084, loss@max: 1.378291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002176, LT: 1.706322, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 90, loss@min: 0.958294, loss@max: 1.375633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002172, LT: 1.706924, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 91, loss@min: 0.961869, loss@max: 1.375676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002169, LT: 1.707506, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 92, loss@min: 0.958033, loss@max: 1.371327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002166, LT: 1.708073, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 93, loss@min: 0.963990, loss@max: 1.379549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002163, LT: 1.708656, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 94, loss@min: 0.957611, loss@max: 1.374357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002160, LT: 1.709248, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 95, loss@min: 0.961485, loss@max: 1.375271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002157, LT: 1.709912, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 96, loss@min: 0.959957, loss@max: 1.374714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002154, LT: 1.710545, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 97, loss@min: 0.960166, loss@max: 1.376228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002151, LT: 1.711182, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 98, loss@min: 0.961432, loss@max: 1.381042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002149, LT: 1.711736, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 99, loss@min: 0.962363, loss@max: 1.377737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002146, LT: 1.712266, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 100, loss@min: 0.958359, loss@max: 1.378948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002144, LT: 1.712739, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 101, loss@min: 0.958659, loss@max: 1.375571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002141, LT: 1.713176, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 102, loss@min: 0.960664, loss@max: 1.379269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002139, LT: 1.713589, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 103, loss@min: 0.958640, loss@max: 1.374893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002137, LT: 1.714025, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 104, loss@min: 0.958972, loss@max: 1.372333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002135, LT: 1.714418, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 105, loss@min: 0.959301, loss@max: 1.373569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002133, LT: 1.714779, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 106, loss@min: 0.965142, loss@max: 1.380846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002131, LT: 1.715219, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 107, loss@min: 0.958945, loss@max: 1.373461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002129, LT: 1.715655, Top1S: 100.000000, Top1T: 61.997635Best acc: 61.997635 +Train:epoch: 108, loss@min: 0.958848, loss@max: 1.374032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002128, LT: 1.716123, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 109, loss@min: 0.961258, loss@max: 1.378593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002126, LT: 1.716644, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 110, loss@min: 0.956456, loss@max: 1.373462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002124, LT: 1.717134, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 111, loss@min: 0.958238, loss@max: 1.376388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002123, LT: 1.717585, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 112, loss@min: 0.962543, loss@max: 1.378578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002121, LT: 1.718130, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 113, loss@min: 0.958209, loss@max: 1.372136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002120, LT: 1.718652, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 114, loss@min: 0.960383, loss@max: 1.378128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002119, LT: 1.719077, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 115, loss@min: 0.958566, loss@max: 1.374632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002118, LT: 1.719459, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 116, loss@min: 0.958210, loss@max: 1.371899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002116, LT: 1.719790, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 117, loss@min: 0.958530, loss@max: 1.374235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002115, LT: 1.720114, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 118, loss@min: 0.958141, loss@max: 1.373624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002114, LT: 1.720439, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 119, loss@min: 0.957031, loss@max: 1.372183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002113, LT: 1.720723, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 120, loss@min: 0.964877, loss@max: 1.382600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002112, LT: 1.720954, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 121, loss@min: 0.959583, loss@max: 1.375543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002111, LT: 1.721152, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 122, loss@min: 0.959303, loss@max: 1.373506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002110, LT: 1.721361, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 123, loss@min: 0.956517, loss@max: 1.373535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002110, LT: 1.721539, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 124, loss@min: 0.957877, loss@max: 1.375294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002109, LT: 1.721686, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 125, loss@min: 0.957959, loss@max: 1.374445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002108, LT: 1.721823, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 126, loss@min: 0.958728, loss@max: 1.373634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002108, LT: 1.721963, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 127, loss@min: 0.960010, loss@max: 1.376330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002107, LT: 1.722067, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 128, loss@min: 0.959578, loss@max: 1.375680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002107, LT: 1.722153, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 129, loss@min: 0.960133, loss@max: 1.373164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002106, LT: 1.722246, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 130, loss@min: 0.956574, loss@max: 1.377093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002106, LT: 1.722324, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 131, loss@min: 0.956666, loss@max: 1.373604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002105, LT: 1.722391, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 132, loss@min: 0.962590, loss@max: 1.378017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002105, LT: 1.722468, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 133, loss@min: 0.963263, loss@max: 1.378966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002105, LT: 1.722554, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 134, loss@min: 0.957965, loss@max: 1.373078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002104, LT: 1.722621, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 135, loss@min: 0.959303, loss@max: 1.376439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002104, LT: 1.722684, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 136, loss@min: 0.957329, loss@max: 1.373832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002104, LT: 1.722739, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 137, loss@min: 0.960558, loss@max: 1.376285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002104, LT: 1.722778, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 138, loss@min: 0.957709, loss@max: 1.376778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002104, LT: 1.722815, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 139, loss@min: 0.959086, loss@max: 1.371773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002103, LT: 1.722856, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 140, loss@min: 0.956723, loss@max: 1.373409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002103, LT: 1.722890, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 141, loss@min: 0.958305, loss@max: 1.376051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002103, LT: 1.722912, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 142, loss@min: 0.964037, loss@max: 1.379539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002103, LT: 1.722937, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 143, loss@min: 0.958544, loss@max: 1.373794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002103, LT: 1.722953, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 144, loss@min: 0.957877, loss@max: 1.376033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002103, LT: 1.722965, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 145, loss@min: 0.955392, loss@max: 1.377359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002103, LT: 1.722973, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 146, loss@min: 0.959503, loss@max: 1.380829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002103, LT: 1.722978, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 147, loss@min: 0.955477, loss@max: 1.371923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002103, LT: 1.722980, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 148, loss@min: 0.961173, loss@max: 1.377363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002103, LT: 1.722981, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 149, loss@min: 0.959817, loss@max: 1.378399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002103, LT: 1.722981, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 150, loss@min: 0.957478, loss@max: 1.375674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002103, LT: 1.722981, Top1S: 100.000000, Top1T: 61.938534 +------------------------------------------- +Sat Jul 29 13:03:35 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 13:17:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 1.921770, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.157365, loss@max: 1.802718, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.315702, loss@max: 1.681095, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 4, loss@min: 3.849021, loss@max: 1.659365, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 5, loss@min: 3.553337, loss@max: 1.680322, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 3.160451, loss@max: 1.668554, Top1S acc: 100.000000, Top1T acc: 73.404251 +Train:epoch: 7, loss@min: 2.881965, loss@max: 1.688897, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 8, loss@min: 2.530651, loss@max: 1.672139, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 9, loss@min: 2.206554, loss@max: 1.659924, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 10, loss@min: 2.037427, loss@max: 1.673900, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 11, loss@min: 1.750667, loss@max: 1.645132, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 12, loss@min: 1.638419, loss@max: 1.653165, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 13, loss@min: 1.441934, loss@max: 1.620524, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 14, loss@min: 1.352688, loss@max: 1.628795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.317628, loss@max: 1.635586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.224319, loss@max: 1.603970, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.148000, loss@max: 1.567681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.065756, loss@max: 1.527426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.034250, loss@max: 1.498263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.053772, loss@max: 1.498795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.002156, loss@max: 1.448784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.998310, loss@max: 1.434369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.995528, loss@max: 1.416156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.981925, loss@max: 1.395051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.989012, loss@max: 1.387884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.975350, loss@max: 1.371405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007454, loss@max: 1.379762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978260, loss@max: 1.360466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.990009, loss@max: 1.373358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977882, loss@max: 1.354080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.975119, loss@max: 1.345510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.977199, loss@max: 1.342975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974785, loss@max: 1.340733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.965503, loss@max: 1.331490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.972462, loss@max: 1.331243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971694, loss@max: 1.338600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.974728, loss@max: 1.340098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.971595, loss@max: 1.333897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.974960, loss@max: 1.332682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.976925, loss@max: 1.331735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.976663, loss@max: 1.331283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.982391, loss@max: 1.339269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.968786, loss@max: 1.336941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.969966, loss@max: 1.341614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967735, loss@max: 1.343280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.966390, loss@max: 1.350057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961411, loss@max: 1.351209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961855, loss@max: 1.358505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958682, loss@max: 1.359320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952856, loss@max: 1.361054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952450, loss@max: 1.362223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948578, loss@max: 1.363483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955603, loss@max: 1.369280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950529, loss@max: 1.368165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950093, loss@max: 1.371712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947550, loss@max: 1.367109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950188, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951270, loss@max: 1.366488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952847, loss@max: 1.367126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951583, loss@max: 1.364129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954642, loss@max: 1.366631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.956380, loss@max: 1.370496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952972, loss@max: 1.365929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957485, loss@max: 1.366780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958329, loss@max: 1.363384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952617, loss@max: 1.361910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954726, loss@max: 1.368021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952004, loss@max: 1.365708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955414, loss@max: 1.366241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955354, loss@max: 1.363438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951746, loss@max: 1.365037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953043, loss@max: 1.362948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954807, loss@max: 1.363691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954268, loss@max: 1.366230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956471, loss@max: 1.367078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955743, loss@max: 1.367301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954628, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955192, loss@max: 1.370004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952616, loss@max: 1.368959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955193, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002218, LT: 1.964447, Top1S: 100.000000, Top1T: 55.082741Best acc: 55.082741 +Train:epoch: 81, loss@min: 0.955475, loss@max: 1.365627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002214, LT: 1.965012, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 82, loss@min: 0.956357, loss@max: 1.366083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002211, LT: 1.965523, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 83, loss@min: 0.955695, loss@max: 1.366639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002207, LT: 1.966076, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 84, loss@min: 0.959953, loss@max: 1.362069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002204, LT: 1.966656, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 85, loss@min: 0.953986, loss@max: 1.367304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002201, LT: 1.967234, Top1S: 100.000000, Top1T: 55.141846Best acc: 55.141846 +Train:epoch: 86, loss@min: 0.956921, loss@max: 1.364979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002198, LT: 1.967717, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 87, loss@min: 0.955374, loss@max: 1.368893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002195, LT: 1.968109, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 88, loss@min: 0.956572, loss@max: 1.365983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002193, LT: 1.968459, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 89, loss@min: 0.954028, loss@max: 1.367615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002190, LT: 1.968884, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 90, loss@min: 0.951832, loss@max: 1.368381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002187, LT: 1.969294, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 91, loss@min: 0.951030, loss@max: 1.366306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002184, LT: 1.969715, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 92, loss@min: 0.952433, loss@max: 1.371117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002182, LT: 1.970124, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 93, loss@min: 0.950137, loss@max: 1.369947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002179, LT: 1.970516, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 94, loss@min: 0.951048, loss@max: 1.369158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002177, LT: 1.970843, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 95, loss@min: 0.951580, loss@max: 1.367776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002174, LT: 1.971179, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 96, loss@min: 0.953205, loss@max: 1.366976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002172, LT: 1.971446, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 97, loss@min: 0.952977, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002170, LT: 1.971694, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 98, loss@min: 0.953620, loss@max: 1.367387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002168, LT: 1.971903, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 99, loss@min: 0.955130, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002166, LT: 1.972095, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 100, loss@min: 0.955507, loss@max: 1.369989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002164, LT: 1.972310, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 101, loss@min: 0.955981, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002162, LT: 1.972520, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 102, loss@min: 0.961031, loss@max: 1.371165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002160, LT: 1.972696, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 103, loss@min: 0.955867, loss@max: 1.368586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002159, LT: 1.972892, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 104, loss@min: 0.952521, loss@max: 1.367029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002157, LT: 1.973070, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 105, loss@min: 0.953278, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002156, LT: 1.973234, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 106, loss@min: 0.954661, loss@max: 1.364387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002154, LT: 1.973389, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 107, loss@min: 0.955690, loss@max: 1.366760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002152, LT: 1.973584, Top1S: 100.000000, Top1T: 55.200947Best acc: 55.200947 +Train:epoch: 108, loss@min: 0.951722, loss@max: 1.366300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002151, LT: 1.973766, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 109, loss@min: 0.953011, loss@max: 1.366622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002150, LT: 1.973943, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 110, loss@min: 0.953938, loss@max: 1.365133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002148, LT: 1.974119, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 111, loss@min: 0.952762, loss@max: 1.367949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002147, LT: 1.974290, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 112, loss@min: 0.953622, loss@max: 1.364509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002145, LT: 1.974451, Top1S: 100.000000, Top1T: 55.260048Best acc: 55.260048 +Train:epoch: 113, loss@min: 0.953746, loss@max: 1.369156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002144, LT: 1.974593, Top1S: 100.000000, Top1T: 55.260048 +Train:epoch: 114, loss@min: 0.952934, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002143, LT: 1.974713, Top1S: 100.000000, Top1T: 55.319149Best acc: 55.319149 +Train:epoch: 115, loss@min: 0.952655, loss@max: 1.369478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002142, LT: 1.974853, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 116, loss@min: 0.954234, loss@max: 1.368566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002141, LT: 1.974986, Top1S: 100.000000, Top1T: 55.378250Best acc: 55.378250 +Train:epoch: 117, loss@min: 0.953455, loss@max: 1.365219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002140, LT: 1.975110, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 118, loss@min: 0.953721, loss@max: 1.368581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002139, LT: 1.975208, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 119, loss@min: 0.956372, loss@max: 1.370155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002138, LT: 1.975273, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 120, loss@min: 0.953444, loss@max: 1.366287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002137, LT: 1.975339, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 121, loss@min: 0.953545, loss@max: 1.367578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002137, LT: 1.975395, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 122, loss@min: 0.954460, loss@max: 1.370593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002136, LT: 1.975457, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 123, loss@min: 0.952255, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002135, LT: 1.975505, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 124, loss@min: 0.951687, loss@max: 1.367267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002135, LT: 1.975547, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 125, loss@min: 0.951651, loss@max: 1.368407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002134, LT: 1.975586, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 126, loss@min: 0.954500, loss@max: 1.373537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002134, LT: 1.975591, Top1S: 100.000000, Top1T: 55.437351Best acc: 55.437351 +Train:epoch: 127, loss@min: 0.953860, loss@max: 1.366559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002133, LT: 1.975604, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 128, loss@min: 0.954589, loss@max: 1.366198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002133, LT: 1.975624, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 129, loss@min: 0.956004, loss@max: 1.366430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002133, LT: 1.975639, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 130, loss@min: 0.954550, loss@max: 1.366581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002132, LT: 1.975661, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 131, loss@min: 0.953419, loss@max: 1.365553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002132, LT: 1.975678, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 132, loss@min: 0.953541, loss@max: 1.366184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002132, LT: 1.975691, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 133, loss@min: 0.954926, loss@max: 1.366418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002131, LT: 1.975707, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 134, loss@min: 0.953903, loss@max: 1.367254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002131, LT: 1.975717, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 135, loss@min: 0.952899, loss@max: 1.367972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002131, LT: 1.975730, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 136, loss@min: 0.953484, loss@max: 1.366192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002131, LT: 1.975744, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 137, loss@min: 0.954468, loss@max: 1.366478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002131, LT: 1.975759, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 138, loss@min: 0.954296, loss@max: 1.366275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002130, LT: 1.975775, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 139, loss@min: 0.956667, loss@max: 1.363905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002130, LT: 1.975788, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 140, loss@min: 0.953645, loss@max: 1.367580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002130, LT: 1.975799, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 141, loss@min: 0.952953, loss@max: 1.366725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002130, LT: 1.975808, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 142, loss@min: 0.950425, loss@max: 1.367186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002130, LT: 1.975814, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 143, loss@min: 0.953675, loss@max: 1.367511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002130, LT: 1.975819, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 144, loss@min: 0.954684, loss@max: 1.366448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002130, LT: 1.975823, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 145, loss@min: 0.954965, loss@max: 1.371641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002130, LT: 1.975826, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 146, loss@min: 0.952891, loss@max: 1.366669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002130, LT: 1.975828, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 147, loss@min: 0.954375, loss@max: 1.370651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002130, LT: 1.975829, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 148, loss@min: 0.954267, loss@max: 1.365475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 149, loss@min: 0.955002, loss@max: 1.367135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 150, loss@min: 0.954515, loss@max: 1.368362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 15:47:28 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.221536, loss@max: 2.004691, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.146734, loss@max: 1.843134, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.575261, loss@max: 1.795754, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.792041, loss@max: 1.694804, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 5, loss@min: 3.439985, loss@max: 1.686226, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.875721, loss@max: 1.629148, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.531439, loss@max: 1.602067, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.187637, loss@max: 1.562750, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.965805, loss@max: 1.556869, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.738928, loss@max: 1.540220, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.464994, loss@max: 1.498526, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.412574, loss@max: 1.530656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.246202, loss@max: 1.486961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.170208, loss@max: 1.481385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.072477, loss@max: 1.454805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.996373, loss@max: 1.420286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.980957, loss@max: 1.417027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.958832, loss@max: 1.403658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942655, loss@max: 1.381089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.953252, loss@max: 1.373214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952520, loss@max: 1.359498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.938601, loss@max: 1.334889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.939517, loss@max: 1.336343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.953178, loss@max: 1.338025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.945613, loss@max: 1.340063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.938714, loss@max: 1.324566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.959218, loss@max: 1.328843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.947839, loss@max: 1.328408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.937245, loss@max: 1.331629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.937118, loss@max: 1.325525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.944600, loss@max: 1.339823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.948134, loss@max: 1.343158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935793, loss@max: 1.329021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.937843, loss@max: 1.333901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931494, loss@max: 1.338323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.944467, loss@max: 1.337826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.947748, loss@max: 1.332933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957206, loss@max: 1.329202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.985708, loss@max: 1.346555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958871, loss@max: 1.326453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960702, loss@max: 1.330923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957726, loss@max: 1.327135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957889, loss@max: 1.335956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955818, loss@max: 1.332985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.957430, loss@max: 1.333664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955463, loss@max: 1.338104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.952654, loss@max: 1.339296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956655, loss@max: 1.333529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.955083, loss@max: 1.342405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958911, loss@max: 1.338744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958103, loss@max: 1.343026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959887, loss@max: 1.343010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955464, loss@max: 1.344207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949706, loss@max: 1.352193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.948150, loss@max: 1.359104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949420, loss@max: 1.352853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947658, loss@max: 1.363841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948112, loss@max: 1.357641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952455, loss@max: 1.355403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953053, loss@max: 1.354242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954299, loss@max: 1.353479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954589, loss@max: 1.351601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.947800, loss@max: 1.364306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949743, loss@max: 1.360183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.950351, loss@max: 1.359170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947864, loss@max: 1.366365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951131, loss@max: 1.360641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953025, loss@max: 1.362060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946550, loss@max: 1.362234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947990, loss@max: 1.362604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950072, loss@max: 1.361359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949360, loss@max: 1.365115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943908, loss@max: 1.367740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945947, loss@max: 1.365489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953931, loss@max: 1.359613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953775, loss@max: 1.362599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954877, loss@max: 1.364594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952424, loss@max: 1.360514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954534, loss@max: 1.360481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955125, loss@max: 1.355973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002361, LT: 1.994824, Top1S: 100.000000, Top1T: 50.472813Best acc: 50.472813 +Train:epoch: 81, loss@min: 0.955275, loss@max: 1.360168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002359, LT: 1.995331, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 82, loss@min: 0.952025, loss@max: 1.363189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002356, LT: 1.995787, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 83, loss@min: 0.945704, loss@max: 1.367800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002352, LT: 1.996254, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 84, loss@min: 0.983040, loss@max: 1.383704, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 0.002349, LT: 1.996177, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 85, loss@min: 0.953604, loss@max: 1.362519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002346, LT: 1.996216, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 86, loss@min: 0.950249, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002343, LT: 1.996355, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 87, loss@min: 0.957535, loss@max: 1.370329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002340, LT: 1.996761, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 88, loss@min: 0.950626, loss@max: 1.363725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002337, LT: 1.997188, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 89, loss@min: 0.951126, loss@max: 1.364667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002335, LT: 1.997634, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 90, loss@min: 0.952214, loss@max: 1.361459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002332, LT: 1.998002, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 91, loss@min: 0.953764, loss@max: 1.360121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002329, LT: 1.998344, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 92, loss@min: 0.959128, loss@max: 1.373905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002327, LT: 1.998688, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 93, loss@min: 0.953275, loss@max: 1.362518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002324, LT: 1.999041, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 94, loss@min: 0.953086, loss@max: 1.363420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002322, LT: 1.999418, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 95, loss@min: 0.954915, loss@max: 1.361659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002319, LT: 1.999820, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 96, loss@min: 0.949624, loss@max: 1.370270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002317, LT: 2.000298, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 97, loss@min: 0.952409, loss@max: 1.363343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002315, LT: 2.000741, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 98, loss@min: 0.952559, loss@max: 1.363537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002313, LT: 2.001123, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 99, loss@min: 0.952329, loss@max: 1.364503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002311, LT: 2.001419, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 100, loss@min: 0.951072, loss@max: 1.363611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002309, LT: 2.001639, Top1S: 100.000000, Top1T: 50.591015Best acc: 50.591015 +Train:epoch: 101, loss@min: 0.956777, loss@max: 1.357846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002307, LT: 2.001846, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 102, loss@min: 0.953521, loss@max: 1.364461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002305, LT: 2.002030, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 103, loss@min: 0.953024, loss@max: 1.362336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002303, LT: 2.002191, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 104, loss@min: 0.954316, loss@max: 1.362354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002302, LT: 2.002351, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 105, loss@min: 0.953037, loss@max: 1.362447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002300, LT: 2.002497, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 106, loss@min: 0.955686, loss@max: 1.364465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002298, LT: 2.002672, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 107, loss@min: 0.950571, loss@max: 1.365202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002297, LT: 2.002834, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 108, loss@min: 0.952980, loss@max: 1.360914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002296, LT: 2.002986, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 109, loss@min: 0.951230, loss@max: 1.363001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002294, LT: 2.003130, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 110, loss@min: 0.948508, loss@max: 1.366355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002293, LT: 2.003260, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 111, loss@min: 0.952059, loss@max: 1.363097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002292, LT: 2.003409, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 112, loss@min: 0.949618, loss@max: 1.365196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002290, LT: 2.003514, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 113, loss@min: 0.950045, loss@max: 1.365823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002289, LT: 2.003623, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 114, loss@min: 0.952354, loss@max: 1.368992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002288, LT: 2.003651, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 115, loss@min: 0.949273, loss@max: 1.365536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002287, LT: 2.003682, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 116, loss@min: 0.950236, loss@max: 1.365033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002286, LT: 2.003708, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 117, loss@min: 0.951627, loss@max: 1.367630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002285, LT: 2.003741, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 118, loss@min: 0.951640, loss@max: 1.362534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002284, LT: 2.003777, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 119, loss@min: 0.950548, loss@max: 1.363758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002283, LT: 2.003804, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 120, loss@min: 0.955077, loss@max: 1.361123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002282, LT: 2.003798, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 121, loss@min: 0.955102, loss@max: 1.365200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002281, LT: 2.003796, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 122, loss@min: 0.950610, loss@max: 1.364766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002280, LT: 2.003783, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 123, loss@min: 0.955199, loss@max: 1.359750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002280, LT: 2.003767, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 124, loss@min: 0.957829, loss@max: 1.363876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002279, LT: 2.003770, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 125, loss@min: 0.954059, loss@max: 1.361101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002278, LT: 2.003776, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 126, loss@min: 0.951320, loss@max: 1.362968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002278, LT: 2.003795, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 127, loss@min: 0.953118, loss@max: 1.361464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002278, LT: 2.003822, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 128, loss@min: 0.950953, loss@max: 1.363213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002277, LT: 2.003856, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 129, loss@min: 0.951789, loss@max: 1.366118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002277, LT: 2.003891, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 130, loss@min: 0.950902, loss@max: 1.364105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002276, LT: 2.003920, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 131, loss@min: 0.948767, loss@max: 1.366737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002276, LT: 2.003952, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 132, loss@min: 0.949941, loss@max: 1.365607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002276, LT: 2.003988, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 133, loss@min: 0.951877, loss@max: 1.362291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002275, LT: 2.004018, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 134, loss@min: 0.949577, loss@max: 1.363877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002275, LT: 2.004046, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 135, loss@min: 0.953417, loss@max: 1.360379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002275, LT: 2.004067, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 136, loss@min: 0.951528, loss@max: 1.363704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002275, LT: 2.004089, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 137, loss@min: 0.953513, loss@max: 1.360404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002275, LT: 2.004108, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 138, loss@min: 0.951487, loss@max: 1.362781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002274, LT: 2.004124, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 139, loss@min: 0.953509, loss@max: 1.362569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002274, LT: 2.004136, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 140, loss@min: 0.950646, loss@max: 1.364536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002274, LT: 2.004145, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 141, loss@min: 0.953480, loss@max: 1.365386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002274, LT: 2.004151, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 142, loss@min: 0.950147, loss@max: 1.365118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002274, LT: 2.004155, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 143, loss@min: 0.951249, loss@max: 1.364620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002274, LT: 2.004158, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 144, loss@min: 0.950176, loss@max: 1.365039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002274, LT: 2.004160, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 145, loss@min: 0.951484, loss@max: 1.365858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002274, LT: 2.004161, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 146, loss@min: 0.951749, loss@max: 1.362195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 147, loss@min: 0.952639, loss@max: 1.365710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 148, loss@min: 0.952799, loss@max: 1.362005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 149, loss@min: 0.952205, loss@max: 1.365512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 150, loss@min: 0.950645, loss@max: 1.365723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +------------------------------------------- +Sat Jul 29 19:13:28 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 20:12:55 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 1.921770, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.157365, loss@max: 1.802718, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.315702, loss@max: 1.681095, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 4, loss@min: 3.849021, loss@max: 1.659365, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 5, loss@min: 3.553337, loss@max: 1.680322, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 3.160451, loss@max: 1.668554, Top1S acc: 100.000000, Top1T acc: 73.404251 +Train:epoch: 7, loss@min: 2.881965, loss@max: 1.688897, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 8, loss@min: 2.530651, loss@max: 1.672139, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 9, loss@min: 2.206554, loss@max: 1.659924, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 10, loss@min: 2.037427, loss@max: 1.673900, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 11, loss@min: 1.750667, loss@max: 1.645132, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 12, loss@min: 1.638419, loss@max: 1.653165, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 13, loss@min: 1.441934, loss@max: 1.620524, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 14, loss@min: 1.352688, loss@max: 1.628795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.317628, loss@max: 1.635586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.224319, loss@max: 1.603970, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.148000, loss@max: 1.567681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.065756, loss@max: 1.527426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.034250, loss@max: 1.498263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.053772, loss@max: 1.498795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.002156, loss@max: 1.448784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.998310, loss@max: 1.434369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.995528, loss@max: 1.416156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.981925, loss@max: 1.395051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.989012, loss@max: 1.387884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.975350, loss@max: 1.371405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007454, loss@max: 1.379762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978260, loss@max: 1.360466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.990009, loss@max: 1.373358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977882, loss@max: 1.354080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.975119, loss@max: 1.345510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.977199, loss@max: 1.342975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974785, loss@max: 1.340733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.965503, loss@max: 1.331490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.972462, loss@max: 1.331243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971694, loss@max: 1.338600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.974728, loss@max: 1.340098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.971595, loss@max: 1.333897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.974960, loss@max: 1.332682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.976925, loss@max: 1.331735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.976663, loss@max: 1.331283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.982391, loss@max: 1.339269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.968786, loss@max: 1.336941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.969966, loss@max: 1.341614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967735, loss@max: 1.343280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.966390, loss@max: 1.350057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961411, loss@max: 1.351209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961855, loss@max: 1.358505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958682, loss@max: 1.359320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952856, loss@max: 1.361054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952450, loss@max: 1.362223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948578, loss@max: 1.363483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955603, loss@max: 1.369280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950529, loss@max: 1.368165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950093, loss@max: 1.371712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947550, loss@max: 1.367109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950188, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951270, loss@max: 1.366488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952847, loss@max: 1.367126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951583, loss@max: 1.364129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954642, loss@max: 1.366631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.956380, loss@max: 1.370496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952972, loss@max: 1.365929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957485, loss@max: 1.366780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958329, loss@max: 1.363384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952617, loss@max: 1.361910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954726, loss@max: 1.368021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952004, loss@max: 1.365708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955414, loss@max: 1.366241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955354, loss@max: 1.363438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951746, loss@max: 1.365037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953043, loss@max: 1.362948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954807, loss@max: 1.363691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954268, loss@max: 1.366230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956471, loss@max: 1.367078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955743, loss@max: 1.367301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954628, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955192, loss@max: 1.370004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952616, loss@max: 1.368959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955193, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002218, LT: 1.964447, Top1S: 100.000000, Top1T: 55.082741Best acc: 55.082741 +Train:epoch: 81, loss@min: 0.955475, loss@max: 1.365627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002214, LT: 1.965012, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 82, loss@min: 0.956357, loss@max: 1.366083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002211, LT: 1.965523, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 83, loss@min: 0.955695, loss@max: 1.366639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002207, LT: 1.966076, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 84, loss@min: 0.959953, loss@max: 1.362069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002204, LT: 1.966656, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 85, loss@min: 0.953986, loss@max: 1.367304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002201, LT: 1.967234, Top1S: 100.000000, Top1T: 55.141846Best acc: 55.141846 +Train:epoch: 86, loss@min: 0.956921, loss@max: 1.364979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002198, LT: 1.967717, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 87, loss@min: 0.955374, loss@max: 1.368893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002195, LT: 1.968109, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 88, loss@min: 0.956572, loss@max: 1.365983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002193, LT: 1.968459, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 89, loss@min: 0.954028, loss@max: 1.367615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002190, LT: 1.968884, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 90, loss@min: 0.951832, loss@max: 1.368381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002187, LT: 1.969294, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 91, loss@min: 0.951030, loss@max: 1.366306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002184, LT: 1.969715, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 92, loss@min: 0.952433, loss@max: 1.371117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002182, LT: 1.970124, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 93, loss@min: 0.950137, loss@max: 1.369947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002179, LT: 1.970516, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 94, loss@min: 0.951048, loss@max: 1.369158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002177, LT: 1.970843, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 95, loss@min: 0.951580, loss@max: 1.367776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002174, LT: 1.971179, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 96, loss@min: 0.953205, loss@max: 1.366976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002172, LT: 1.971446, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 97, loss@min: 0.952977, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002170, LT: 1.971694, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 98, loss@min: 0.953620, loss@max: 1.367387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002168, LT: 1.971903, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 99, loss@min: 0.955130, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002166, LT: 1.972095, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 100, loss@min: 0.955507, loss@max: 1.369989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002164, LT: 1.972310, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 101, loss@min: 0.955981, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002162, LT: 1.972520, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 102, loss@min: 0.961031, loss@max: 1.371165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002160, LT: 1.972696, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 103, loss@min: 0.955867, loss@max: 1.368586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002159, LT: 1.972892, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 104, loss@min: 0.952521, loss@max: 1.367029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002157, LT: 1.973070, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 105, loss@min: 0.953278, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002156, LT: 1.973234, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 106, loss@min: 0.954661, loss@max: 1.364387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002154, LT: 1.973389, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 107, loss@min: 0.955690, loss@max: 1.366760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002152, LT: 1.973584, Top1S: 100.000000, Top1T: 55.200947Best acc: 55.200947 +Train:epoch: 108, loss@min: 0.951722, loss@max: 1.366300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002151, LT: 1.973766, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 109, loss@min: 0.953011, loss@max: 1.366622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002150, LT: 1.973943, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 110, loss@min: 0.953938, loss@max: 1.365133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002148, LT: 1.974119, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 111, loss@min: 0.952762, loss@max: 1.367949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002147, LT: 1.974290, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 112, loss@min: 0.953622, loss@max: 1.364509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002145, LT: 1.974451, Top1S: 100.000000, Top1T: 55.260048Best acc: 55.260048 +Train:epoch: 113, loss@min: 0.953746, loss@max: 1.369156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002144, LT: 1.974593, Top1S: 100.000000, Top1T: 55.260048 +Train:epoch: 114, loss@min: 0.952934, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002143, LT: 1.974713, Top1S: 100.000000, Top1T: 55.319149Best acc: 55.319149 +Train:epoch: 115, loss@min: 0.952655, loss@max: 1.369478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002142, LT: 1.974853, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 116, loss@min: 0.954234, loss@max: 1.368566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002141, LT: 1.974986, Top1S: 100.000000, Top1T: 55.378250Best acc: 55.378250 +Train:epoch: 117, loss@min: 0.953455, loss@max: 1.365219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002140, LT: 1.975110, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 118, loss@min: 0.953721, loss@max: 1.368581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002139, LT: 1.975208, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 119, loss@min: 0.956372, loss@max: 1.370155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002138, LT: 1.975273, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 120, loss@min: 0.953444, loss@max: 1.366287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002137, LT: 1.975339, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 121, loss@min: 0.953545, loss@max: 1.367578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002137, LT: 1.975395, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 122, loss@min: 0.954460, loss@max: 1.370593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002136, LT: 1.975457, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 123, loss@min: 0.952255, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002135, LT: 1.975505, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 124, loss@min: 0.951687, loss@max: 1.367267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002135, LT: 1.975547, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 125, loss@min: 0.951651, loss@max: 1.368407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002134, LT: 1.975586, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 126, loss@min: 0.954500, loss@max: 1.373537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002134, LT: 1.975591, Top1S: 100.000000, Top1T: 55.437351Best acc: 55.437351 +Train:epoch: 127, loss@min: 0.953860, loss@max: 1.366559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002133, LT: 1.975604, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 128, loss@min: 0.954589, loss@max: 1.366198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002133, LT: 1.975624, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 129, loss@min: 0.956004, loss@max: 1.366430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002133, LT: 1.975639, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 130, loss@min: 0.954550, loss@max: 1.366581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002132, LT: 1.975661, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 131, loss@min: 0.953419, loss@max: 1.365553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002132, LT: 1.975678, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 132, loss@min: 0.953541, loss@max: 1.366184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002132, LT: 1.975691, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 133, loss@min: 0.954926, loss@max: 1.366418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002131, LT: 1.975707, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 134, loss@min: 0.953903, loss@max: 1.367254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002131, LT: 1.975717, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 135, loss@min: 0.952899, loss@max: 1.367972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002131, LT: 1.975730, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 136, loss@min: 0.953484, loss@max: 1.366192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002131, LT: 1.975744, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 137, loss@min: 0.954468, loss@max: 1.366478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002131, LT: 1.975759, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 138, loss@min: 0.954296, loss@max: 1.366275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002130, LT: 1.975775, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 139, loss@min: 0.956667, loss@max: 1.363905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002130, LT: 1.975788, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 140, loss@min: 0.953645, loss@max: 1.367580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002130, LT: 1.975799, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 141, loss@min: 0.952953, loss@max: 1.366725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002130, LT: 1.975808, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 142, loss@min: 0.950425, loss@max: 1.367186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002130, LT: 1.975814, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 143, loss@min: 0.953675, loss@max: 1.367511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002130, LT: 1.975819, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 144, loss@min: 0.954684, loss@max: 1.366448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002130, LT: 1.975823, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 145, loss@min: 0.954965, loss@max: 1.371641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002130, LT: 1.975826, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 146, loss@min: 0.952891, loss@max: 1.366669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002130, LT: 1.975828, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 147, loss@min: 0.954375, loss@max: 1.370651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002130, LT: 1.975829, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 148, loss@min: 0.954267, loss@max: 1.365475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 149, loss@min: 0.955002, loss@max: 1.367135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 150, loss@min: 0.954515, loss@max: 1.368362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +------------------------------------------- +Sat Jul 29 21:28:38 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 22:12:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 1.921770, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.157365, loss@max: 1.802718, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.315702, loss@max: 1.681095, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 4, loss@min: 3.849021, loss@max: 1.659365, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 5, loss@min: 3.553337, loss@max: 1.680322, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 3.160451, loss@max: 1.668554, Top1S acc: 100.000000, Top1T acc: 73.404251 +Train:epoch: 7, loss@min: 2.881965, loss@max: 1.688897, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 8, loss@min: 2.530651, loss@max: 1.672139, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 9, loss@min: 2.206554, loss@max: 1.659924, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 10, loss@min: 2.037427, loss@max: 1.673900, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 11, loss@min: 1.750667, loss@max: 1.645132, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 12, loss@min: 1.638419, loss@max: 1.653165, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 13, loss@min: 1.441934, loss@max: 1.620524, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 14, loss@min: 1.352688, loss@max: 1.628795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.317628, loss@max: 1.635586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.224319, loss@max: 1.603970, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.148000, loss@max: 1.567681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.065756, loss@max: 1.527426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.034250, loss@max: 1.498263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.053772, loss@max: 1.498795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.002156, loss@max: 1.448784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.998310, loss@max: 1.434369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.995528, loss@max: 1.416156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.981925, loss@max: 1.395051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.989012, loss@max: 1.387884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.975350, loss@max: 1.371405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007454, loss@max: 1.379762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978260, loss@max: 1.360466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.990009, loss@max: 1.373358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977882, loss@max: 1.354080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.975119, loss@max: 1.345510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.977199, loss@max: 1.342975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974785, loss@max: 1.340733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.965503, loss@max: 1.331490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.972462, loss@max: 1.331243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971694, loss@max: 1.338600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.974728, loss@max: 1.340098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.971595, loss@max: 1.333897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.974960, loss@max: 1.332682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.976925, loss@max: 1.331735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.976663, loss@max: 1.331283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.982391, loss@max: 1.339269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.968786, loss@max: 1.336941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.969966, loss@max: 1.341614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967735, loss@max: 1.343280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.966390, loss@max: 1.350057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961411, loss@max: 1.351209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961855, loss@max: 1.358505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958682, loss@max: 1.359320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952856, loss@max: 1.361054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952450, loss@max: 1.362223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948578, loss@max: 1.363483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955603, loss@max: 1.369280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950529, loss@max: 1.368165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950093, loss@max: 1.371712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947550, loss@max: 1.367109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950188, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951270, loss@max: 1.366488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952847, loss@max: 1.367126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951583, loss@max: 1.364129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954642, loss@max: 1.366631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.956380, loss@max: 1.370496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952972, loss@max: 1.365929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957485, loss@max: 1.366780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958329, loss@max: 1.363384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952617, loss@max: 1.361910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954726, loss@max: 1.368021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952004, loss@max: 1.365708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955414, loss@max: 1.366241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955354, loss@max: 1.363438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951746, loss@max: 1.365037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953043, loss@max: 1.362948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954807, loss@max: 1.363691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954268, loss@max: 1.366230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956471, loss@max: 1.367078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955743, loss@max: 1.367301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954628, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955192, loss@max: 1.370004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952616, loss@max: 1.368959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955193, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002218, LT: 1.964446, Top1S: 100.000000, Top1T: 55.082741Best acc: 55.082741 +Train:epoch: 81, loss@min: 0.955475, loss@max: 1.365627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002214, LT: 1.965012, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 82, loss@min: 0.956357, loss@max: 1.366083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002211, LT: 1.965523, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 83, loss@min: 0.955695, loss@max: 1.366639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002207, LT: 1.966076, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 84, loss@min: 0.959953, loss@max: 1.362069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002204, LT: 1.966656, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 85, loss@min: 0.953986, loss@max: 1.367304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002201, LT: 1.967234, Top1S: 100.000000, Top1T: 55.141846Best acc: 55.141846 +Train:epoch: 86, loss@min: 0.956921, loss@max: 1.364979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002198, LT: 1.967717, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 87, loss@min: 0.955374, loss@max: 1.368893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002195, LT: 1.968109, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 88, loss@min: 0.956572, loss@max: 1.365983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002193, LT: 1.968459, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 89, loss@min: 0.954028, loss@max: 1.367615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002190, LT: 1.968884, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 90, loss@min: 0.951832, loss@max: 1.368381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002187, LT: 1.969294, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 91, loss@min: 0.951030, loss@max: 1.366306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002184, LT: 1.969715, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 92, loss@min: 0.952433, loss@max: 1.371117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002182, LT: 1.970123, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 93, loss@min: 0.950137, loss@max: 1.369947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002179, LT: 1.970516, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 94, loss@min: 0.951048, loss@max: 1.369158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002177, LT: 1.970843, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 95, loss@min: 0.951580, loss@max: 1.367776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002174, LT: 1.971179, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 96, loss@min: 0.953205, loss@max: 1.366976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002172, LT: 1.971446, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 97, loss@min: 0.952977, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002170, LT: 1.971694, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 98, loss@min: 0.953620, loss@max: 1.367387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002168, LT: 1.971903, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 99, loss@min: 0.955130, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002166, LT: 1.972095, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 100, loss@min: 0.955507, loss@max: 1.369989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002164, LT: 1.972310, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 101, loss@min: 0.955981, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002162, LT: 1.972520, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 102, loss@min: 0.961031, loss@max: 1.371165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002160, LT: 1.972696, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 103, loss@min: 0.955867, loss@max: 1.368586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002159, LT: 1.972892, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 104, loss@min: 0.952521, loss@max: 1.367029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002157, LT: 1.973070, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 105, loss@min: 0.953278, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002156, LT: 1.973234, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 106, loss@min: 0.954661, loss@max: 1.364387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002154, LT: 1.973389, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 107, loss@min: 0.955690, loss@max: 1.366760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002152, LT: 1.973584, Top1S: 100.000000, Top1T: 55.200947Best acc: 55.200947 +Train:epoch: 108, loss@min: 0.951722, loss@max: 1.366300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002151, LT: 1.973766, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 109, loss@min: 0.953011, loss@max: 1.366622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002150, LT: 1.973943, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 110, loss@min: 0.953938, loss@max: 1.365133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002148, LT: 1.974119, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 111, loss@min: 0.952762, loss@max: 1.367949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002147, LT: 1.974290, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 112, loss@min: 0.953622, loss@max: 1.364509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002145, LT: 1.974451, Top1S: 100.000000, Top1T: 55.260048Best acc: 55.260048 +Train:epoch: 113, loss@min: 0.953746, loss@max: 1.369156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002144, LT: 1.974593, Top1S: 100.000000, Top1T: 55.260048 +Train:epoch: 114, loss@min: 0.952934, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002143, LT: 1.974713, Top1S: 100.000000, Top1T: 55.319149Best acc: 55.319149 +Train:epoch: 115, loss@min: 0.952655, loss@max: 1.369478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002142, LT: 1.974853, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 116, loss@min: 0.954234, loss@max: 1.368566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002141, LT: 1.974986, Top1S: 100.000000, Top1T: 55.378250Best acc: 55.378250 +Train:epoch: 117, loss@min: 0.953455, loss@max: 1.365219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002140, LT: 1.975110, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 118, loss@min: 0.953721, loss@max: 1.368581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002139, LT: 1.975208, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 119, loss@min: 0.956372, loss@max: 1.370155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002138, LT: 1.975273, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 120, loss@min: 0.953444, loss@max: 1.366287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002137, LT: 1.975339, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 121, loss@min: 0.953545, loss@max: 1.367578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002137, LT: 1.975395, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 122, loss@min: 0.954460, loss@max: 1.370593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002136, LT: 1.975457, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 123, loss@min: 0.952255, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002135, LT: 1.975505, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 124, loss@min: 0.951687, loss@max: 1.367267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002135, LT: 1.975547, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 125, loss@min: 0.951651, loss@max: 1.368407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002134, LT: 1.975586, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 126, loss@min: 0.954500, loss@max: 1.373537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002134, LT: 1.975591, Top1S: 100.000000, Top1T: 55.437351Best acc: 55.437351 +Train:epoch: 127, loss@min: 0.953860, loss@max: 1.366559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002133, LT: 1.975604, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 128, loss@min: 0.954589, loss@max: 1.366198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002133, LT: 1.975624, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 129, loss@min: 0.956004, loss@max: 1.366430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002133, LT: 1.975639, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 130, loss@min: 0.954550, loss@max: 1.366581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002132, LT: 1.975661, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 131, loss@min: 0.953419, loss@max: 1.365553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002132, LT: 1.975678, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 132, loss@min: 0.953541, loss@max: 1.366184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002132, LT: 1.975691, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 133, loss@min: 0.954926, loss@max: 1.366418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002131, LT: 1.975706, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 134, loss@min: 0.953903, loss@max: 1.367254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002131, LT: 1.975717, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 135, loss@min: 0.952899, loss@max: 1.367972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002131, LT: 1.975729, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 136, loss@min: 0.953484, loss@max: 1.366192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002131, LT: 1.975744, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 137, loss@min: 0.954468, loss@max: 1.366478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002131, LT: 1.975759, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 138, loss@min: 0.954296, loss@max: 1.366275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002130, LT: 1.975774, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 139, loss@min: 0.956667, loss@max: 1.363905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002130, LT: 1.975788, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 140, loss@min: 0.953645, loss@max: 1.367580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002130, LT: 1.975799, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 141, loss@min: 0.952953, loss@max: 1.366725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002130, LT: 1.975807, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 142, loss@min: 0.950425, loss@max: 1.367186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002130, LT: 1.975814, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 143, loss@min: 0.953675, loss@max: 1.367511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002130, LT: 1.975819, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 144, loss@min: 0.954684, loss@max: 1.366448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002130, LT: 1.975823, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 145, loss@min: 0.954965, loss@max: 1.371641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002130, LT: 1.975826, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 146, loss@min: 0.952891, loss@max: 1.366669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002130, LT: 1.975828, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 147, loss@min: 0.954375, loss@max: 1.370651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002130, LT: 1.975829, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 148, loss@min: 0.954267, loss@max: 1.365475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 149, loss@min: 0.955002, loss@max: 1.367135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 150, loss@min: 0.954515, loss@max: 1.368362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 22:53:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 1.921770, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.157365, loss@max: 1.802718, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.315702, loss@max: 1.681095, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 4, loss@min: 3.849021, loss@max: 1.659365, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 5, loss@min: 3.553337, loss@max: 1.680322, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 3.160451, loss@max: 1.668554, Top1S acc: 100.000000, Top1T acc: 73.404251 +Train:epoch: 7, loss@min: 2.881965, loss@max: 1.688897, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 8, loss@min: 2.530651, loss@max: 1.672139, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 9, loss@min: 2.206554, loss@max: 1.659924, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 10, loss@min: 2.037427, loss@max: 1.673900, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 11, loss@min: 1.750667, loss@max: 1.645132, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 12, loss@min: 1.638419, loss@max: 1.653165, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 13, loss@min: 1.441934, loss@max: 1.620524, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 14, loss@min: 1.352688, loss@max: 1.628795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.317628, loss@max: 1.635586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.224319, loss@max: 1.603970, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.148000, loss@max: 1.567681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.065756, loss@max: 1.527426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.034250, loss@max: 1.498263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.053772, loss@max: 1.498795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.002156, loss@max: 1.448784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.998310, loss@max: 1.434369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.995528, loss@max: 1.416156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.981925, loss@max: 1.395051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.989012, loss@max: 1.387884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.975350, loss@max: 1.371405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007454, loss@max: 1.379762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978260, loss@max: 1.360466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.990009, loss@max: 1.373358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977882, loss@max: 1.354080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.975119, loss@max: 1.345510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.977199, loss@max: 1.342975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974785, loss@max: 1.340733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.965503, loss@max: 1.331490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.972462, loss@max: 1.331243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971694, loss@max: 1.338600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.974728, loss@max: 1.340098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.971595, loss@max: 1.333897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.974960, loss@max: 1.332682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.976925, loss@max: 1.331735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.976663, loss@max: 1.331283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.982391, loss@max: 1.339269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.968786, loss@max: 1.336941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.969966, loss@max: 1.341614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967735, loss@max: 1.343280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.966390, loss@max: 1.350057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961411, loss@max: 1.351209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961855, loss@max: 1.358505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958682, loss@max: 1.359320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952856, loss@max: 1.361054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952450, loss@max: 1.362223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948578, loss@max: 1.363483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955603, loss@max: 1.369280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950529, loss@max: 1.368165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950093, loss@max: 1.371712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947550, loss@max: 1.367109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950188, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951270, loss@max: 1.366488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952847, loss@max: 1.367126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951583, loss@max: 1.364129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954642, loss@max: 1.366631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.956380, loss@max: 1.370496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952972, loss@max: 1.365929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957485, loss@max: 1.366780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958329, loss@max: 1.363384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952617, loss@max: 1.361910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954726, loss@max: 1.368021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952004, loss@max: 1.365708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955414, loss@max: 1.366241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955354, loss@max: 1.363438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951746, loss@max: 1.365037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953043, loss@max: 1.362948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954807, loss@max: 1.363691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954268, loss@max: 1.366230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956471, loss@max: 1.367078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955743, loss@max: 1.367301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954628, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955192, loss@max: 1.370004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952616, loss@max: 1.368959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955193, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002218, LT: 1.964446, Top1S: 100.000000, Top1T: 55.082741Best acc: 55.082741 +Train:epoch: 81, loss@min: 0.955475, loss@max: 1.365627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002214, LT: 1.965012, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 82, loss@min: 0.956357, loss@max: 1.366083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002211, LT: 1.965524, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 83, loss@min: 0.955695, loss@max: 1.366639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002207, LT: 1.966076, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 84, loss@min: 0.959953, loss@max: 1.362069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002204, LT: 1.966656, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 85, loss@min: 0.953986, loss@max: 1.367304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002201, LT: 1.967234, Top1S: 100.000000, Top1T: 55.141846Best acc: 55.141846 +Train:epoch: 86, loss@min: 0.956921, loss@max: 1.364979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002198, LT: 1.967717, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 87, loss@min: 0.955374, loss@max: 1.368893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002195, LT: 1.968109, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 88, loss@min: 0.956572, loss@max: 1.365983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002193, LT: 1.968459, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 89, loss@min: 0.954028, loss@max: 1.367615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002190, LT: 1.968884, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 90, loss@min: 0.951832, loss@max: 1.368381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002187, LT: 1.969294, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 91, loss@min: 0.951030, loss@max: 1.366306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002184, LT: 1.969715, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 92, loss@min: 0.952433, loss@max: 1.371117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002182, LT: 1.970124, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 93, loss@min: 0.950137, loss@max: 1.369947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002179, LT: 1.970516, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 94, loss@min: 0.951048, loss@max: 1.369158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002177, LT: 1.970843, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 95, loss@min: 0.951580, loss@max: 1.367776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002174, LT: 1.971178, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 96, loss@min: 0.953205, loss@max: 1.366976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002172, LT: 1.971446, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 97, loss@min: 0.952977, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002170, LT: 1.971694, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 98, loss@min: 0.953620, loss@max: 1.367387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002168, LT: 1.971903, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 99, loss@min: 0.955130, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002166, LT: 1.972095, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 100, loss@min: 0.955507, loss@max: 1.369989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002164, LT: 1.972310, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 101, loss@min: 0.955981, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002162, LT: 1.972520, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 102, loss@min: 0.961031, loss@max: 1.371165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002160, LT: 1.972696, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 103, loss@min: 0.955867, loss@max: 1.368586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002159, LT: 1.972892, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 104, loss@min: 0.952521, loss@max: 1.367029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002157, LT: 1.973070, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 105, loss@min: 0.953278, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002156, LT: 1.973234, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 106, loss@min: 0.954661, loss@max: 1.364387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002154, LT: 1.973389, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 107, loss@min: 0.955690, loss@max: 1.366760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002152, LT: 1.973584, Top1S: 100.000000, Top1T: 55.200947Best acc: 55.200947 +Train:epoch: 108, loss@min: 0.951722, loss@max: 1.366300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002151, LT: 1.973766, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 109, loss@min: 0.953011, loss@max: 1.366622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002150, LT: 1.973943, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 110, loss@min: 0.953938, loss@max: 1.365133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002148, LT: 1.974119, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 111, loss@min: 0.952762, loss@max: 1.367949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002147, LT: 1.974290, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 112, loss@min: 0.953622, loss@max: 1.364509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002145, LT: 1.974451, Top1S: 100.000000, Top1T: 55.260048Best acc: 55.260048 +Train:epoch: 113, loss@min: 0.953746, loss@max: 1.369156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002144, LT: 1.974593, Top1S: 100.000000, Top1T: 55.260048 +Train:epoch: 114, loss@min: 0.952934, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002143, LT: 1.974713, Top1S: 100.000000, Top1T: 55.319149Best acc: 55.319149 +Train:epoch: 115, loss@min: 0.952655, loss@max: 1.369478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002142, LT: 1.974854, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 116, loss@min: 0.954234, loss@max: 1.368566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002141, LT: 1.974986, Top1S: 100.000000, Top1T: 55.378250Best acc: 55.378250 +Train:epoch: 117, loss@min: 0.953455, loss@max: 1.365219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002140, LT: 1.975110, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 118, loss@min: 0.953721, loss@max: 1.368581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002139, LT: 1.975208, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 119, loss@min: 0.956372, loss@max: 1.370155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002138, LT: 1.975273, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 120, loss@min: 0.953444, loss@max: 1.366287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002137, LT: 1.975339, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 121, loss@min: 0.953545, loss@max: 1.367578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002137, LT: 1.975396, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 122, loss@min: 0.954460, loss@max: 1.370593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002136, LT: 1.975457, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 123, loss@min: 0.952255, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002135, LT: 1.975505, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 124, loss@min: 0.951687, loss@max: 1.367267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002135, LT: 1.975547, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 125, loss@min: 0.951651, loss@max: 1.368407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002134, LT: 1.975586, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 126, loss@min: 0.954500, loss@max: 1.373537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002134, LT: 1.975591, Top1S: 100.000000, Top1T: 55.437351Best acc: 55.437351 +Train:epoch: 127, loss@min: 0.953860, loss@max: 1.366559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002133, LT: 1.975604, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 128, loss@min: 0.954589, loss@max: 1.366198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002133, LT: 1.975624, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 129, loss@min: 0.956004, loss@max: 1.366430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002133, LT: 1.975638, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 130, loss@min: 0.954550, loss@max: 1.366581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002132, LT: 1.975661, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 131, loss@min: 0.953419, loss@max: 1.365553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002132, LT: 1.975678, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 132, loss@min: 0.953541, loss@max: 1.366184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002132, LT: 1.975691, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 133, loss@min: 0.954926, loss@max: 1.366418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002131, LT: 1.975706, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 134, loss@min: 0.953903, loss@max: 1.367254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002131, LT: 1.975717, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 135, loss@min: 0.952899, loss@max: 1.367972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002131, LT: 1.975729, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 136, loss@min: 0.953484, loss@max: 1.366192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002131, LT: 1.975744, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 137, loss@min: 0.954468, loss@max: 1.366478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002131, LT: 1.975759, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 138, loss@min: 0.954296, loss@max: 1.366275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002130, LT: 1.975774, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 139, loss@min: 0.956667, loss@max: 1.363905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002130, LT: 1.975788, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 140, loss@min: 0.953645, loss@max: 1.367580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002130, LT: 1.975799, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 141, loss@min: 0.952953, loss@max: 1.366725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002130, LT: 1.975807, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 142, loss@min: 0.950425, loss@max: 1.367186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002130, LT: 1.975814, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 143, loss@min: 0.953675, loss@max: 1.367511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002130, LT: 1.975819, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 144, loss@min: 0.954684, loss@max: 1.366448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002130, LT: 1.975823, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 145, loss@min: 0.954965, loss@max: 1.371641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002130, LT: 1.975826, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 146, loss@min: 0.952891, loss@max: 1.366669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002130, LT: 1.975828, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 147, loss@min: 0.954375, loss@max: 1.370651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002130, LT: 1.975829, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 148, loss@min: 0.954267, loss@max: 1.365475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 149, loss@min: 0.955002, loss@max: 1.367135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 150, loss@min: 0.954515, loss@max: 1.368362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 10, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 9} + +------------------------------------------- +Sat Jul 29 23:28:51 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 2.355352, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.176397, loss@max: 2.539222, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.385086, loss@max: 2.556301, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 4, loss@min: 3.996759, loss@max: 2.604048, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 5, loss@min: 3.796230, loss@max: 2.617663, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 6, loss@min: 3.560402, loss@max: 2.572090, Top1S acc: 100.000000, Top1T acc: 71.276596 +Train:epoch: 7, loss@min: 3.505945, loss@max: 2.593133, Top1S acc: 100.000000, Top1T acc: 69.148926 +Train:epoch: 8, loss@min: 3.352235, loss@max: 2.533451, Top1S acc: 100.000000, Top1T acc: 70.212761 +Train:epoch: 9, loss@min: 3.273322, loss@max: 2.523245, Top1S acc: 100.000000, Top1T acc: 71.276596 + Test:epoch: 9, LS: 0.002958, LT: 1.923632, Top1S: 100.000000, Top1T: 48.404255Best acc: 48.404255 +Train:epoch: 10, loss@min: 3.331933, loss@max: 2.528446, Top1S acc: 100.000000, Top1T acc: 70.212761 + Test:epoch: 10, LS: 0.002958, LT: 1.923632, Top1S: 100.000000, Top1T: 48.404255{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 10, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 9} + +------------------------------------------- +Sat Jul 29 23:30:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 2.355353, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.176397, loss@max: 2.539222, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.385086, loss@max: 2.556300, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 4, loss@min: 3.996759, loss@max: 2.604048, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 5, loss@min: 3.796230, loss@max: 2.617662, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 6, loss@min: 3.560401, loss@max: 2.572089, Top1S acc: 100.000000, Top1T acc: 71.276596 +Train:epoch: 7, loss@min: 3.505948, loss@max: 2.593133, Top1S acc: 100.000000, Top1T acc: 69.148926 +Train:epoch: 8, loss@min: 3.352235, loss@max: 2.533452, Top1S acc: 100.000000, Top1T acc: 70.212761 +Train:epoch: 9, loss@min: 3.273322, loss@max: 2.523246, Top1S acc: 100.000000, Top1T acc: 71.276596 + Test:epoch: 9, LS: 0.002958, LT: 1.923632, Top1S: 100.000000, Top1T: 48.404255Best acc: 48.404255 +Train:epoch: 10, loss@min: 3.331933, loss@max: 2.528446, Top1S acc: 100.000000, Top1T acc: 70.212761 + Test:epoch: 10, LS: 0.002958, LT: 1.923632, Top1S: 100.000000, Top1T: 48.404255{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 2, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Sat Jul 29 23:50:25 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 2.885706, Top1S acc: 100.000000, Top1T acc: 42.553188 + Test:epoch: 1, LS: 0.003091, LT: 2.181939, Top1S: 100.000000, Top1T: 44.799053Best acc: 44.799053 +Train:epoch: 2, loss@min: 5.320697, loss@max: 2.793880, Top1S acc: 100.000000, Top1T acc: 48.936169 + Test:epoch: 2, LS: 0.003091, LT: 2.181939, Top1S: 100.000000, Top1T: 44.799053 +------------------------------------------- +Sat Jul 29 23:51:56 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Jul 29 23:53:23 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.975492, loss@max: 1.921770, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.157365, loss@max: 1.802718, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.315702, loss@max: 1.681095, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 4, loss@min: 3.849021, loss@max: 1.659365, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 5, loss@min: 3.553337, loss@max: 1.680322, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 3.160451, loss@max: 1.668554, Top1S acc: 100.000000, Top1T acc: 73.404251 +Train:epoch: 7, loss@min: 2.881965, loss@max: 1.688897, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 8, loss@min: 2.530651, loss@max: 1.672139, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 9, loss@min: 2.206554, loss@max: 1.659924, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 10, loss@min: 2.037427, loss@max: 1.673900, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 11, loss@min: 1.750667, loss@max: 1.645132, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 12, loss@min: 1.638419, loss@max: 1.653165, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 13, loss@min: 1.441934, loss@max: 1.620524, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 14, loss@min: 1.352688, loss@max: 1.628795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.317628, loss@max: 1.635586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.224319, loss@max: 1.603970, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.148000, loss@max: 1.567681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.065756, loss@max: 1.527426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.034250, loss@max: 1.498263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.053772, loss@max: 1.498795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.002156, loss@max: 1.448784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.998310, loss@max: 1.434369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.995528, loss@max: 1.416156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.981925, loss@max: 1.395051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.989012, loss@max: 1.387884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.975350, loss@max: 1.371405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007454, loss@max: 1.379762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978260, loss@max: 1.360466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.990009, loss@max: 1.373358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977882, loss@max: 1.354080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.975119, loss@max: 1.345510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.977199, loss@max: 1.342975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974785, loss@max: 1.340733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.965503, loss@max: 1.331490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.972462, loss@max: 1.331243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971694, loss@max: 1.338600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.974728, loss@max: 1.340098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.971595, loss@max: 1.333897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.974960, loss@max: 1.332682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.976925, loss@max: 1.331735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.976663, loss@max: 1.331283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.982391, loss@max: 1.339269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.968786, loss@max: 1.336941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.969966, loss@max: 1.341614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967735, loss@max: 1.343280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.966390, loss@max: 1.350057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961411, loss@max: 1.351209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961855, loss@max: 1.358505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958682, loss@max: 1.359320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952856, loss@max: 1.361054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952450, loss@max: 1.362223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948578, loss@max: 1.363483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955603, loss@max: 1.369280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950529, loss@max: 1.368165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950093, loss@max: 1.371712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947550, loss@max: 1.367109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950188, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951270, loss@max: 1.366488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952847, loss@max: 1.367126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951583, loss@max: 1.364129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954642, loss@max: 1.366631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.956380, loss@max: 1.370496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952972, loss@max: 1.365929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957485, loss@max: 1.366780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958329, loss@max: 1.363384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952617, loss@max: 1.361910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954726, loss@max: 1.368021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952004, loss@max: 1.365708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955414, loss@max: 1.366241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955354, loss@max: 1.363438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951746, loss@max: 1.365037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953043, loss@max: 1.362948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954807, loss@max: 1.363691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954268, loss@max: 1.366230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956471, loss@max: 1.367078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955743, loss@max: 1.367301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954628, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.955192, loss@max: 1.370004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952616, loss@max: 1.368959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955193, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002218, LT: 1.964446, Top1S: 100.000000, Top1T: 55.082741Best acc: 55.082741 +Train:epoch: 81, loss@min: 0.955475, loss@max: 1.365627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002214, LT: 1.965012, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 82, loss@min: 0.956357, loss@max: 1.366083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002211, LT: 1.965523, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 83, loss@min: 0.955695, loss@max: 1.366639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002207, LT: 1.966076, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 84, loss@min: 0.959953, loss@max: 1.362069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002204, LT: 1.966656, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 85, loss@min: 0.953986, loss@max: 1.367304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002201, LT: 1.967234, Top1S: 100.000000, Top1T: 55.141846Best acc: 55.141846 +Train:epoch: 86, loss@min: 0.956921, loss@max: 1.364979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002198, LT: 1.967717, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 87, loss@min: 0.955374, loss@max: 1.368893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002195, LT: 1.968109, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 88, loss@min: 0.956572, loss@max: 1.365983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002193, LT: 1.968459, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 89, loss@min: 0.954028, loss@max: 1.367615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002190, LT: 1.968884, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 90, loss@min: 0.951832, loss@max: 1.368381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002187, LT: 1.969294, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 91, loss@min: 0.951030, loss@max: 1.366306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002184, LT: 1.969715, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 92, loss@min: 0.952433, loss@max: 1.371117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002182, LT: 1.970123, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 93, loss@min: 0.950137, loss@max: 1.369947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002179, LT: 1.970516, Top1S: 100.000000, Top1T: 55.023640 +Train:epoch: 94, loss@min: 0.951048, loss@max: 1.369158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002177, LT: 1.970843, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 95, loss@min: 0.951580, loss@max: 1.367776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002174, LT: 1.971178, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 96, loss@min: 0.953205, loss@max: 1.366976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002172, LT: 1.971445, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 97, loss@min: 0.952977, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002170, LT: 1.971694, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 98, loss@min: 0.953620, loss@max: 1.367387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002168, LT: 1.971903, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 99, loss@min: 0.955130, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002166, LT: 1.972095, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 100, loss@min: 0.955507, loss@max: 1.369989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002164, LT: 1.972310, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 101, loss@min: 0.955981, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002162, LT: 1.972520, Top1S: 100.000000, Top1T: 55.082741 +Train:epoch: 102, loss@min: 0.961031, loss@max: 1.371165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002160, LT: 1.972696, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 103, loss@min: 0.955867, loss@max: 1.368586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002159, LT: 1.972892, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 104, loss@min: 0.952521, loss@max: 1.367029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002157, LT: 1.973070, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 105, loss@min: 0.953278, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002156, LT: 1.973234, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 106, loss@min: 0.954661, loss@max: 1.364387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002154, LT: 1.973389, Top1S: 100.000000, Top1T: 55.141846 +Train:epoch: 107, loss@min: 0.955690, loss@max: 1.366760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002152, LT: 1.973584, Top1S: 100.000000, Top1T: 55.200947Best acc: 55.200947 +Train:epoch: 108, loss@min: 0.951722, loss@max: 1.366300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002151, LT: 1.973766, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 109, loss@min: 0.953011, loss@max: 1.366622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002150, LT: 1.973943, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 110, loss@min: 0.953938, loss@max: 1.365133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002148, LT: 1.974118, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 111, loss@min: 0.952762, loss@max: 1.367949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002147, LT: 1.974290, Top1S: 100.000000, Top1T: 55.200947 +Train:epoch: 112, loss@min: 0.953622, loss@max: 1.364509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002145, LT: 1.974451, Top1S: 100.000000, Top1T: 55.260048Best acc: 55.260048 +Train:epoch: 113, loss@min: 0.953746, loss@max: 1.369156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002144, LT: 1.974593, Top1S: 100.000000, Top1T: 55.260048 +Train:epoch: 114, loss@min: 0.952934, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002143, LT: 1.974713, Top1S: 100.000000, Top1T: 55.319149Best acc: 55.319149 +Train:epoch: 115, loss@min: 0.952655, loss@max: 1.369478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002142, LT: 1.974853, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 116, loss@min: 0.954234, loss@max: 1.368566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002141, LT: 1.974985, Top1S: 100.000000, Top1T: 55.378250Best acc: 55.378250 +Train:epoch: 117, loss@min: 0.953455, loss@max: 1.365219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002140, LT: 1.975110, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 118, loss@min: 0.953721, loss@max: 1.368581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002139, LT: 1.975208, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 119, loss@min: 0.956372, loss@max: 1.370155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002138, LT: 1.975273, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 120, loss@min: 0.953444, loss@max: 1.366287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002137, LT: 1.975339, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 121, loss@min: 0.953545, loss@max: 1.367578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002137, LT: 1.975395, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 122, loss@min: 0.954460, loss@max: 1.370593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002136, LT: 1.975457, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 123, loss@min: 0.952255, loss@max: 1.368750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002135, LT: 1.975505, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 124, loss@min: 0.951687, loss@max: 1.367267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002135, LT: 1.975547, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 125, loss@min: 0.951651, loss@max: 1.368407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002134, LT: 1.975586, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 126, loss@min: 0.954500, loss@max: 1.373537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002134, LT: 1.975591, Top1S: 100.000000, Top1T: 55.437351Best acc: 55.437351 +Train:epoch: 127, loss@min: 0.953860, loss@max: 1.366559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002133, LT: 1.975604, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 128, loss@min: 0.954589, loss@max: 1.366198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002133, LT: 1.975623, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 129, loss@min: 0.956004, loss@max: 1.366430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002133, LT: 1.975638, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 130, loss@min: 0.954550, loss@max: 1.366581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002132, LT: 1.975661, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 131, loss@min: 0.953419, loss@max: 1.365553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002132, LT: 1.975678, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 132, loss@min: 0.953541, loss@max: 1.366184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002132, LT: 1.975691, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 133, loss@min: 0.954926, loss@max: 1.366418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002131, LT: 1.975706, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 134, loss@min: 0.953903, loss@max: 1.367254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002131, LT: 1.975717, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 135, loss@min: 0.952899, loss@max: 1.367972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002131, LT: 1.975729, Top1S: 100.000000, Top1T: 55.378250 +Train:epoch: 136, loss@min: 0.953484, loss@max: 1.366192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002131, LT: 1.975744, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 137, loss@min: 0.954468, loss@max: 1.366478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002131, LT: 1.975759, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 138, loss@min: 0.954296, loss@max: 1.366275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002130, LT: 1.975774, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 139, loss@min: 0.956667, loss@max: 1.363905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002130, LT: 1.975788, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 140, loss@min: 0.953645, loss@max: 1.367580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002130, LT: 1.975799, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 141, loss@min: 0.952953, loss@max: 1.366725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002130, LT: 1.975807, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 142, loss@min: 0.950425, loss@max: 1.367186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002130, LT: 1.975814, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 143, loss@min: 0.953675, loss@max: 1.367511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002130, LT: 1.975819, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 144, loss@min: 0.954684, loss@max: 1.366448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002130, LT: 1.975823, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 145, loss@min: 0.954965, loss@max: 1.371641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002130, LT: 1.975826, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 146, loss@min: 0.952891, loss@max: 1.366669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002130, LT: 1.975828, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 147, loss@min: 0.954375, loss@max: 1.370651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002130, LT: 1.975829, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 148, loss@min: 0.954267, loss@max: 1.365475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 149, loss@min: 0.955002, loss@max: 1.367135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +Train:epoch: 150, loss@min: 0.954515, loss@max: 1.368362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002130, LT: 1.975830, Top1S: 100.000000, Top1T: 55.319149 +------------------------------------------- +Sun Jul 30 01:58:59 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Jul 30 10:37:02 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.221536, loss@max: 2.004691, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.146733, loss@max: 1.843134, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.575261, loss@max: 1.795753, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.792042, loss@max: 1.694804, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 5, loss@min: 3.439982, loss@max: 1.686226, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.875720, loss@max: 1.629147, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.531438, loss@max: 1.602068, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.187637, loss@max: 1.562750, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.965806, loss@max: 1.556869, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.738927, loss@max: 1.540220, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.464995, loss@max: 1.498525, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.412573, loss@max: 1.530656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.246202, loss@max: 1.486960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.170208, loss@max: 1.481385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.072477, loss@max: 1.454806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.996373, loss@max: 1.420285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.980956, loss@max: 1.417028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.958833, loss@max: 1.403658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942656, loss@max: 1.381089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.953253, loss@max: 1.373213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.952520, loss@max: 1.359498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.938601, loss@max: 1.334889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.939518, loss@max: 1.336343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.953177, loss@max: 1.338026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.945612, loss@max: 1.340064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.938714, loss@max: 1.324566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.959218, loss@max: 1.328844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.947839, loss@max: 1.328408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.937245, loss@max: 1.331630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.937118, loss@max: 1.325524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.944601, loss@max: 1.339822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.948134, loss@max: 1.343158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935794, loss@max: 1.329020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.937844, loss@max: 1.333900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931494, loss@max: 1.338323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.944466, loss@max: 1.337827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.947747, loss@max: 1.332934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957205, loss@max: 1.329203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.985708, loss@max: 1.346555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958872, loss@max: 1.326452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960703, loss@max: 1.330921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957727, loss@max: 1.327134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957889, loss@max: 1.335955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955818, loss@max: 1.332985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.957429, loss@max: 1.333665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955463, loss@max: 1.338105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.952654, loss@max: 1.339296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956655, loss@max: 1.333529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.955084, loss@max: 1.342404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958911, loss@max: 1.338743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958103, loss@max: 1.343025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959886, loss@max: 1.343011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955463, loss@max: 1.344207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949706, loss@max: 1.352194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.948149, loss@max: 1.359106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949420, loss@max: 1.352853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947658, loss@max: 1.363841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948112, loss@max: 1.357641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952454, loss@max: 1.355403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953054, loss@max: 1.354241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954299, loss@max: 1.353479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954590, loss@max: 1.351601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.947799, loss@max: 1.364306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949742, loss@max: 1.360183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.950350, loss@max: 1.359170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947864, loss@max: 1.366366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951131, loss@max: 1.360642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953025, loss@max: 1.362060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946551, loss@max: 1.362233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947991, loss@max: 1.362604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950072, loss@max: 1.361359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949359, loss@max: 1.365115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943907, loss@max: 1.367741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945947, loss@max: 1.365488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953932, loss@max: 1.359613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953776, loss@max: 1.362598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954878, loss@max: 1.364593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952423, loss@max: 1.360515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954532, loss@max: 1.360482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955124, loss@max: 1.355973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002361, LT: 1.994824, Top1S: 100.000000, Top1T: 50.472813Best acc: 50.472813 +Train:epoch: 81, loss@min: 0.955275, loss@max: 1.360168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002359, LT: 1.995331, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 82, loss@min: 0.952023, loss@max: 1.363190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002356, LT: 1.995787, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 83, loss@min: 0.945703, loss@max: 1.367801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002352, LT: 1.996255, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 84, loss@min: 0.983040, loss@max: 1.383704, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 0.002349, LT: 1.996178, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 85, loss@min: 0.953604, loss@max: 1.362518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002346, LT: 1.996217, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 86, loss@min: 0.950249, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002343, LT: 1.996355, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 87, loss@min: 0.957536, loss@max: 1.370329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002340, LT: 1.996761, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 88, loss@min: 0.950626, loss@max: 1.363725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002337, LT: 1.997188, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 89, loss@min: 0.951128, loss@max: 1.364666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002335, LT: 1.997634, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 90, loss@min: 0.952214, loss@max: 1.361459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002332, LT: 1.998002, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 91, loss@min: 0.953764, loss@max: 1.360121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002329, LT: 1.998344, Top1S: 100.000000, Top1T: 50.295509 +Train:epoch: 92, loss@min: 0.959128, loss@max: 1.373905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002327, LT: 1.998688, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 93, loss@min: 0.953275, loss@max: 1.362518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002324, LT: 1.999041, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 94, loss@min: 0.953086, loss@max: 1.363420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002322, LT: 1.999419, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 95, loss@min: 0.954916, loss@max: 1.361659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002319, LT: 1.999820, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 96, loss@min: 0.949625, loss@max: 1.370269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002317, LT: 2.000298, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 97, loss@min: 0.952409, loss@max: 1.363343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002315, LT: 2.000741, Top1S: 100.000000, Top1T: 50.413712 +Train:epoch: 98, loss@min: 0.952558, loss@max: 1.363538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002313, LT: 2.001123, Top1S: 100.000000, Top1T: 50.354610 +Train:epoch: 99, loss@min: 0.952328, loss@max: 1.364504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002311, LT: 2.001419, Top1S: 100.000000, Top1T: 50.472813 +Train:epoch: 100, loss@min: 0.951072, loss@max: 1.363611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002309, LT: 2.001640, Top1S: 100.000000, Top1T: 50.591015Best acc: 50.591015 +Train:epoch: 101, loss@min: 0.956776, loss@max: 1.357847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002307, LT: 2.001847, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 102, loss@min: 0.953522, loss@max: 1.364460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002305, LT: 2.002030, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 103, loss@min: 0.953025, loss@max: 1.362335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002303, LT: 2.002191, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 104, loss@min: 0.954315, loss@max: 1.362354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002302, LT: 2.002352, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 105, loss@min: 0.953037, loss@max: 1.362447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002300, LT: 2.002497, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 106, loss@min: 0.955685, loss@max: 1.364465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002298, LT: 2.002673, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 107, loss@min: 0.950572, loss@max: 1.365201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002297, LT: 2.002835, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 108, loss@min: 0.952980, loss@max: 1.360913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002296, LT: 2.002986, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 109, loss@min: 0.951231, loss@max: 1.363000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002294, LT: 2.003130, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 110, loss@min: 0.948508, loss@max: 1.366355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002293, LT: 2.003260, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 111, loss@min: 0.952059, loss@max: 1.363096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002292, LT: 2.003410, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 112, loss@min: 0.949619, loss@max: 1.365196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002290, LT: 2.003514, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 113, loss@min: 0.950044, loss@max: 1.365825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002289, LT: 2.003623, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 114, loss@min: 0.952354, loss@max: 1.368993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002288, LT: 2.003651, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 115, loss@min: 0.949272, loss@max: 1.365537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002287, LT: 2.003682, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 116, loss@min: 0.950234, loss@max: 1.365034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002286, LT: 2.003708, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 117, loss@min: 0.951629, loss@max: 1.367628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002285, LT: 2.003742, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 118, loss@min: 0.951640, loss@max: 1.362534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002284, LT: 2.003777, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 119, loss@min: 0.950547, loss@max: 1.363758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002283, LT: 2.003804, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 120, loss@min: 0.955077, loss@max: 1.361122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002282, LT: 2.003798, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 121, loss@min: 0.955103, loss@max: 1.365199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002281, LT: 2.003796, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 122, loss@min: 0.950609, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002280, LT: 2.003783, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 123, loss@min: 0.955199, loss@max: 1.359750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002280, LT: 2.003767, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 124, loss@min: 0.957830, loss@max: 1.363875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002279, LT: 2.003770, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 125, loss@min: 0.954059, loss@max: 1.361102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002279, LT: 2.003776, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 126, loss@min: 0.951321, loss@max: 1.362967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002278, LT: 2.003795, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 127, loss@min: 0.953117, loss@max: 1.361464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002278, LT: 2.003822, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 128, loss@min: 0.950953, loss@max: 1.363213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002277, LT: 2.003856, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 129, loss@min: 0.951787, loss@max: 1.366119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002277, LT: 2.003891, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 130, loss@min: 0.950902, loss@max: 1.364105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002276, LT: 2.003920, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 131, loss@min: 0.948767, loss@max: 1.366737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002276, LT: 2.003952, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 132, loss@min: 0.949941, loss@max: 1.365607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002276, LT: 2.003988, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 133, loss@min: 0.951877, loss@max: 1.362291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002275, LT: 2.004018, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 134, loss@min: 0.949576, loss@max: 1.363878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002275, LT: 2.004046, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 135, loss@min: 0.953417, loss@max: 1.360379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002275, LT: 2.004067, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 136, loss@min: 0.951528, loss@max: 1.363703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002275, LT: 2.004089, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 137, loss@min: 0.953513, loss@max: 1.360404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002275, LT: 2.004108, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 138, loss@min: 0.951487, loss@max: 1.362781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002274, LT: 2.004124, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 139, loss@min: 0.953508, loss@max: 1.362570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002274, LT: 2.004136, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 140, loss@min: 0.950646, loss@max: 1.364537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002274, LT: 2.004145, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 141, loss@min: 0.953479, loss@max: 1.365386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002274, LT: 2.004151, Top1S: 100.000000, Top1T: 50.591015 +Train:epoch: 142, loss@min: 0.950147, loss@max: 1.365119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002274, LT: 2.004156, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 143, loss@min: 0.951248, loss@max: 1.364620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002274, LT: 2.004159, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 144, loss@min: 0.950177, loss@max: 1.365038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002274, LT: 2.004160, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 145, loss@min: 0.951484, loss@max: 1.365858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002274, LT: 2.004161, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 146, loss@min: 0.951749, loss@max: 1.362194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 147, loss@min: 0.952640, loss@max: 1.365709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 148, loss@min: 0.952798, loss@max: 1.362005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 149, loss@min: 0.952205, loss@max: 1.365512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +Train:epoch: 150, loss@min: 0.950644, loss@max: 1.365724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002274, LT: 2.004162, Top1S: 100.000000, Top1T: 50.531914 +------------------------------------------- +Sun Jul 30 11:25:31 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Jul 30 11:42:23 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.340214, loss@max: 1.778908, Top1S acc: 100.000000, Top1T acc: 42.021275 +Train:epoch: 2, loss@min: 4.779163, loss@max: 1.739738, Top1S acc: 100.000000, Top1T acc: 50.531914 +Train:epoch: 3, loss@min: 4.356434, loss@max: 1.737151, Top1S acc: 100.000000, Top1T acc: 54.787231 +Train:epoch: 4, loss@min: 3.927998, loss@max: 1.729815, Top1S acc: 100.000000, Top1T acc: 57.978722 +Train:epoch: 5, loss@min: 3.624735, loss@max: 1.750691, Top1S acc: 100.000000, Top1T acc: 64.361702 +Train:epoch: 6, loss@min: 3.256754, loss@max: 1.750052, Top1S acc: 100.000000, Top1T acc: 68.085106 +Train:epoch: 7, loss@min: 3.089645, loss@max: 1.793369, Top1S acc: 100.000000, Top1T acc: 69.680847 +Train:epoch: 8, loss@min: 2.782502, loss@max: 1.797089, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 9, loss@min: 2.571181, loss@max: 1.808753, Top1S acc: 100.000000, Top1T acc: 80.319138 +Train:epoch: 10, loss@min: 2.333837, loss@max: 1.805413, Top1S acc: 100.000000, Top1T acc: 83.510628 +Train:epoch: 11, loss@min: 2.257990, loss@max: 1.827523, Top1S acc: 100.000000, Top1T acc: 84.042549 +Train:epoch: 12, loss@min: 1.968916, loss@max: 1.787955, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 13, loss@min: 1.885219, loss@max: 1.793424, Top1S acc: 100.000000, Top1T acc: 87.765953 +Train:epoch: 14, loss@min: 1.666643, loss@max: 1.749039, Top1S acc: 100.000000, Top1T acc: 92.021271 +Train:epoch: 15, loss@min: 1.625242, loss@max: 1.741004, Top1S acc: 100.000000, Top1T acc: 92.553192 +Train:epoch: 16, loss@min: 1.564232, loss@max: 1.730721, Top1S acc: 100.000000, Top1T acc: 93.085106 +Train:epoch: 17, loss@min: 1.483599, loss@max: 1.700387, Top1S acc: 100.000000, Top1T acc: 95.212761 +Train:epoch: 18, loss@min: 1.389166, loss@max: 1.668449, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 19, loss@min: 1.355023, loss@max: 1.652247, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 20, loss@min: 1.280363, loss@max: 1.609385, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 21, loss@min: 1.258554, loss@max: 1.593342, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 22, loss@min: 1.266232, loss@max: 1.582789, Top1S acc: 100.000000, Top1T acc: 97.340424 +Train:epoch: 23, loss@min: 1.162873, loss@max: 1.520951, Top1S acc: 100.000000, Top1T acc: 98.404251 +Train:epoch: 24, loss@min: 1.131135, loss@max: 1.500651, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 25, loss@min: 1.138063, loss@max: 1.491532, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 26, loss@min: 1.137450, loss@max: 1.481154, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 27, loss@min: 1.095884, loss@max: 1.450287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.090142, loss@max: 1.441956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.087684, loss@max: 1.431481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.102522, loss@max: 1.420473, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 31, loss@min: 1.065157, loss@max: 1.404232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.080493, loss@max: 1.415846, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 33, loss@min: 1.043906, loss@max: 1.392323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.038512, loss@max: 1.388101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.032317, loss@max: 1.385752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.030910, loss@max: 1.385392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.017391, loss@max: 1.374849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.009464, loss@max: 1.373920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.033107, loss@max: 1.393445, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 40, loss@min: 1.005889, loss@max: 1.381114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.995388, loss@max: 1.372965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.995107, loss@max: 1.378885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.996464, loss@max: 1.381523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.986541, loss@max: 1.379957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.978989, loss@max: 1.374395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.977222, loss@max: 1.384240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.975623, loss@max: 1.385566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.975585, loss@max: 1.392256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.984079, loss@max: 1.391133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.971388, loss@max: 1.382128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.968013, loss@max: 1.379959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.968431, loss@max: 1.382679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.967612, loss@max: 1.384295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.966972, loss@max: 1.388215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.965977, loss@max: 1.385946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.961852, loss@max: 1.386362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.960357, loss@max: 1.385097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.962192, loss@max: 1.383457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.965601, loss@max: 1.382945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.965021, loss@max: 1.381491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.963218, loss@max: 1.378029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.966141, loss@max: 1.379083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.965585, loss@max: 1.380903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.964829, loss@max: 1.381849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.968794, loss@max: 1.379965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.964314, loss@max: 1.383847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.963276, loss@max: 1.381261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.972289, loss@max: 1.385707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.962832, loss@max: 1.377375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.966468, loss@max: 1.378099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.963952, loss@max: 1.374897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.962410, loss@max: 1.370716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.966541, loss@max: 1.381433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.961921, loss@max: 1.374083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.960956, loss@max: 1.373886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.961177, loss@max: 1.374699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962481, loss@max: 1.383709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.959991, loss@max: 1.373865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.970912, loss@max: 1.378052, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 80, loss@min: 0.962655, loss@max: 1.375288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.002212, LT: 1.698417, Top1S: 100.000000, Top1T: 61.938534Best acc: 61.938534 +Train:epoch: 81, loss@min: 0.963407, loss@max: 1.378548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.002207, LT: 1.699187, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 82, loss@min: 0.965836, loss@max: 1.376448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.002203, LT: 1.700043, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 83, loss@min: 0.962504, loss@max: 1.378922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.002198, LT: 1.701092, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 84, loss@min: 0.959736, loss@max: 1.377498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.002194, LT: 1.702165, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 85, loss@min: 0.961429, loss@max: 1.380416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.002190, LT: 1.703089, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 86, loss@min: 0.961170, loss@max: 1.378062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.002186, LT: 1.704019, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 87, loss@min: 0.959765, loss@max: 1.378605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.002183, LT: 1.704820, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 88, loss@min: 0.959360, loss@max: 1.376576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.002179, LT: 1.705588, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 89, loss@min: 0.963084, loss@max: 1.378291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.002176, LT: 1.706322, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 90, loss@min: 0.958294, loss@max: 1.375633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.002172, LT: 1.706924, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 91, loss@min: 0.961869, loss@max: 1.375676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.002169, LT: 1.707506, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 92, loss@min: 0.958033, loss@max: 1.371327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.002166, LT: 1.708073, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 93, loss@min: 0.963990, loss@max: 1.379549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.002163, LT: 1.708656, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 94, loss@min: 0.957611, loss@max: 1.374357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.002160, LT: 1.709248, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 95, loss@min: 0.961485, loss@max: 1.375271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.002157, LT: 1.709912, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 96, loss@min: 0.959957, loss@max: 1.374714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.002154, LT: 1.710545, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 97, loss@min: 0.960166, loss@max: 1.376228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.002151, LT: 1.711182, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 98, loss@min: 0.961432, loss@max: 1.381042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.002149, LT: 1.711736, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 99, loss@min: 0.962363, loss@max: 1.377737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.002146, LT: 1.712266, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 100, loss@min: 0.958359, loss@max: 1.378948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.002144, LT: 1.712739, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 101, loss@min: 0.958659, loss@max: 1.375571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.002141, LT: 1.713176, Top1S: 100.000000, Top1T: 61.820332 +Train:epoch: 102, loss@min: 0.960664, loss@max: 1.379269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.002139, LT: 1.713589, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 103, loss@min: 0.958640, loss@max: 1.374893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.002137, LT: 1.714025, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 104, loss@min: 0.958972, loss@max: 1.372333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.002135, LT: 1.714418, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 105, loss@min: 0.959301, loss@max: 1.373569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.002133, LT: 1.714779, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 106, loss@min: 0.965142, loss@max: 1.380846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.002131, LT: 1.715219, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 107, loss@min: 0.958945, loss@max: 1.373461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.002129, LT: 1.715655, Top1S: 100.000000, Top1T: 61.997635Best acc: 61.997635 +Train:epoch: 108, loss@min: 0.958848, loss@max: 1.374032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.002128, LT: 1.716123, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 109, loss@min: 0.961258, loss@max: 1.378593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.002126, LT: 1.716644, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 110, loss@min: 0.956456, loss@max: 1.373462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.002124, LT: 1.717134, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 111, loss@min: 0.958238, loss@max: 1.376388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.002123, LT: 1.717585, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 112, loss@min: 0.962543, loss@max: 1.378578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.002121, LT: 1.718130, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 113, loss@min: 0.958209, loss@max: 1.372136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.002120, LT: 1.718652, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 114, loss@min: 0.960383, loss@max: 1.378128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.002119, LT: 1.719077, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 115, loss@min: 0.958566, loss@max: 1.374632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.002118, LT: 1.719459, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 116, loss@min: 0.958210, loss@max: 1.371899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.002116, LT: 1.719790, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 117, loss@min: 0.958530, loss@max: 1.374235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.002115, LT: 1.720114, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 118, loss@min: 0.958141, loss@max: 1.373624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.002114, LT: 1.720439, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 119, loss@min: 0.957031, loss@max: 1.372183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.002113, LT: 1.720723, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 120, loss@min: 0.964877, loss@max: 1.382600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.002112, LT: 1.720954, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 121, loss@min: 0.959583, loss@max: 1.375543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.002111, LT: 1.721152, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 122, loss@min: 0.959303, loss@max: 1.373506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.002110, LT: 1.721361, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 123, loss@min: 0.956517, loss@max: 1.373535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.002110, LT: 1.721539, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 124, loss@min: 0.957877, loss@max: 1.375294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.002109, LT: 1.721686, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 125, loss@min: 0.957959, loss@max: 1.374445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.002108, LT: 1.721823, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 126, loss@min: 0.958728, loss@max: 1.373634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.002108, LT: 1.721963, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 127, loss@min: 0.960010, loss@max: 1.376330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.002107, LT: 1.722067, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 128, loss@min: 0.959578, loss@max: 1.375680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002107, LT: 1.722153, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 129, loss@min: 0.960133, loss@max: 1.373164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.002106, LT: 1.722246, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 130, loss@min: 0.956574, loss@max: 1.377093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.002106, LT: 1.722324, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 131, loss@min: 0.956666, loss@max: 1.373604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002105, LT: 1.722391, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 132, loss@min: 0.962590, loss@max: 1.378017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.002105, LT: 1.722468, Top1S: 100.000000, Top1T: 61.997635 +Train:epoch: 133, loss@min: 0.963263, loss@max: 1.378966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002105, LT: 1.722554, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 134, loss@min: 0.957965, loss@max: 1.373078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.002104, LT: 1.722621, Top1S: 100.000000, Top1T: 61.879433 +Train:epoch: 135, loss@min: 0.959303, loss@max: 1.376439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.002104, LT: 1.722684, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 136, loss@min: 0.957329, loss@max: 1.373832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.002104, LT: 1.722739, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 137, loss@min: 0.960558, loss@max: 1.376285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.002104, LT: 1.722778, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 138, loss@min: 0.957709, loss@max: 1.376778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002104, LT: 1.722815, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 139, loss@min: 0.959086, loss@max: 1.371773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002103, LT: 1.722856, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 140, loss@min: 0.956723, loss@max: 1.373409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.002103, LT: 1.722890, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 141, loss@min: 0.958305, loss@max: 1.376051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.002103, LT: 1.722912, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 142, loss@min: 0.964037, loss@max: 1.379539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.002103, LT: 1.722937, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 143, loss@min: 0.958544, loss@max: 1.373794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.002103, LT: 1.722953, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 144, loss@min: 0.957877, loss@max: 1.376033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.002103, LT: 1.722965, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 145, loss@min: 0.955392, loss@max: 1.377359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002103, LT: 1.722973, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 146, loss@min: 0.959503, loss@max: 1.380829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002103, LT: 1.722978, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 147, loss@min: 0.955477, loss@max: 1.371923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002103, LT: 1.722980, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 148, loss@min: 0.961173, loss@max: 1.377363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.002103, LT: 1.722981, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 149, loss@min: 0.959817, loss@max: 1.378399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.002103, LT: 1.722981, Top1S: 100.000000, Top1T: 61.938534 +Train:epoch: 150, loss@min: 0.957478, loss@max: 1.375674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.002103, LT: 1.722981, Top1S: 100.000000, Top1T: 61.938534 +------------------------------------------- +Sun Jul 30 12:34:34 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Jul 30 13:45:15 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.570872, loss@max: 1.631775, Top1S acc: 100.000000, Top1T acc: 57.142857 +Train:epoch: 2, loss@min: 3.908855, loss@max: 1.597661, Top1S acc: 100.000000, Top1T acc: 56.632652 +Train:epoch: 3, loss@min: 3.268170, loss@max: 1.553426, Top1S acc: 100.000000, Top1T acc: 67.857140 +Train:epoch: 4, loss@min: 3.104125, loss@max: 1.619223, Top1S acc: 100.000000, Top1T acc: 64.795921 +Train:epoch: 5, loss@min: 2.656855, loss@max: 1.594655, Top1S acc: 100.000000, Top1T acc: 72.959183 +Train:epoch: 6, loss@min: 2.588941, loss@max: 1.648778, Top1S acc: 100.000000, Top1T acc: 75.510201 +Train:epoch: 7, loss@min: 2.304111, loss@max: 1.641790, Top1S acc: 100.000000, Top1T acc: 76.530609 +Train:epoch: 8, loss@min: 2.129834, loss@max: 1.653335, Top1S acc: 100.000000, Top1T acc: 81.632652 +Train:epoch: 9, loss@min: 2.067994, loss@max: 1.681644, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 10, loss@min: 1.838754, loss@max: 1.652848, Top1S acc: 100.000000, Top1T acc: 86.224487 +Train:epoch: 11, loss@min: 1.657160, loss@max: 1.633881, Top1S acc: 100.000000, Top1T acc: 90.816322 +Train:epoch: 12, loss@min: 1.896170, loss@max: 1.698643, Top1S acc: 100.000000, Top1T acc: 90.306122 +Train:epoch: 13, loss@min: 1.450719, loss@max: 1.591622, Top1S acc: 100.000000, Top1T acc: 91.836731 +Train:epoch: 14, loss@min: 1.377795, loss@max: 1.572420, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 15, loss@min: 1.417592, loss@max: 1.570871, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 16, loss@min: 1.445897, loss@max: 1.583189, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 17, loss@min: 1.251389, loss@max: 1.520549, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 18, loss@min: 1.326390, loss@max: 1.533060, Top1S acc: 100.000000, Top1T acc: 93.877548 +Train:epoch: 19, loss@min: 1.223925, loss@max: 1.489355, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 20, loss@min: 1.216526, loss@max: 1.481396, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 21, loss@min: 1.178089, loss@max: 1.466860, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 22, loss@min: 1.166226, loss@max: 1.438225, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 23, loss@min: 1.186547, loss@max: 1.444779, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 24, loss@min: 1.195400, loss@max: 1.442060, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 25, loss@min: 1.175619, loss@max: 1.431279, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 26, loss@min: 1.194299, loss@max: 1.443452, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 27, loss@min: 1.130562, loss@max: 1.409011, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 28, loss@min: 1.148766, loss@max: 1.412028, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 29, loss@min: 1.161719, loss@max: 1.426393, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 30, loss@min: 1.049121, loss@max: 1.379056, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 31, loss@min: 1.120924, loss@max: 1.410994, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 32, loss@min: 1.097604, loss@max: 1.405642, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 33, loss@min: 1.030880, loss@max: 1.372737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.051827, loss@max: 1.381308, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 35, loss@min: 1.069510, loss@max: 1.387849, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 36, loss@min: 1.041348, loss@max: 1.371558, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 37, loss@min: 1.093260, loss@max: 1.382191, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 38, loss@min: 1.059490, loss@max: 1.374290, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 39, loss@min: 1.058939, loss@max: 1.377297, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 40, loss@min: 1.092774, loss@max: 1.394730, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 41, loss@min: 1.017011, loss@max: 1.369575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.048185, loss@max: 1.391736, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 43, loss@min: 1.014893, loss@max: 1.382584, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 44, loss@min: 1.003721, loss@max: 1.372257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.044876, loss@max: 1.392550, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 46, loss@min: 0.982850, loss@max: 1.367860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.010452, loss@max: 1.389602, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 48, loss@min: 1.004783, loss@max: 1.393318, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 49, loss@min: 1.049136, loss@max: 1.407320, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 50, loss@min: 1.003954, loss@max: 1.383967, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 51, loss@min: 1.013273, loss@max: 1.395027, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 52, loss@min: 0.997546, loss@max: 1.392124, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 53, loss@min: 1.064676, loss@max: 1.408400, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 54, loss@min: 0.997874, loss@max: 1.383179, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 55, loss@min: 1.000280, loss@max: 1.396029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.060090, loss@max: 1.411649, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 57, loss@min: 0.989178, loss@max: 1.390966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.991209, loss@max: 1.392214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.004658, loss@max: 1.389892, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 60, loss@min: 1.000795, loss@max: 1.392233, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 61, loss@min: 0.992656, loss@max: 1.391861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.980873, loss@max: 1.382418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.001248, loss@max: 1.401682, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 64, loss@min: 0.981657, loss@max: 1.381006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.977426, loss@max: 1.382694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.979009, loss@max: 1.386176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.988650, loss@max: 1.393379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.978171, loss@max: 1.380512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.978118, loss@max: 1.384229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.982000, loss@max: 1.380762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.981475, loss@max: 1.382251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.998658, loss@max: 1.393330, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 73, loss@min: 0.979955, loss@max: 1.383399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.990952, loss@max: 1.383886, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 75, loss@min: 0.986304, loss@max: 1.383494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.979473, loss@max: 1.380918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.990366, loss@max: 1.388657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.005301, loss@max: 1.394480, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 79, loss@min: 0.979362, loss@max: 1.379985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.987315, loss@max: 1.389232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.009453, LT: 1.603886, Top1S: 100.000008, Top1T: 58.226593Best acc: 58.226593 +Train:epoch: 81, loss@min: 0.984198, loss@max: 1.382651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.009422, LT: 1.605596, Top1S: 100.000008, Top1T: 58.164410 +Train:epoch: 82, loss@min: 0.978172, loss@max: 1.381426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.009392, LT: 1.607327, Top1S: 100.000008, Top1T: 58.164410 +Train:epoch: 83, loss@min: 0.976986, loss@max: 1.384083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.009363, LT: 1.608896, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 84, loss@min: 0.976786, loss@max: 1.382100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.009335, LT: 1.610457, Top1S: 100.000008, Top1T: 58.139538 +Train:epoch: 85, loss@min: 0.983079, loss@max: 1.382989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.009308, LT: 1.611327, Top1S: 100.000008, Top1T: 58.127102 +Train:epoch: 86, loss@min: 0.980462, loss@max: 1.389015, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.009282, LT: 1.611983, Top1S: 100.000008, Top1T: 58.139538 +Train:epoch: 87, loss@min: 0.975994, loss@max: 1.377592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.009256, LT: 1.612422, Top1S: 100.000008, Top1T: 58.114666 +Train:epoch: 88, loss@min: 0.997605, loss@max: 1.390477, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 88, LS: 0.009231, LT: 1.612574, Top1S: 100.000008, Top1T: 58.151974 +Train:epoch: 89, loss@min: 0.996922, loss@max: 1.390176, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 89, LS: 0.009207, LT: 1.612811, Top1S: 100.000008, Top1T: 58.151974 +Train:epoch: 90, loss@min: 0.977819, loss@max: 1.382818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.009184, LT: 1.613048, Top1S: 100.000008, Top1T: 58.164410 +Train:epoch: 91, loss@min: 0.991878, loss@max: 1.390082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.009162, LT: 1.612991, Top1S: 100.000008, Top1T: 58.164410 +Train:epoch: 92, loss@min: 0.977419, loss@max: 1.379649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.009140, LT: 1.612629, Top1S: 100.000008, Top1T: 58.189281 +Train:epoch: 93, loss@min: 0.981391, loss@max: 1.381297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.009118, LT: 1.612181, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 94, loss@min: 0.973514, loss@max: 1.376425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.009097, LT: 1.611940, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 95, loss@min: 1.014222, loss@max: 1.394570, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 95, LS: 0.009077, LT: 1.612096, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 96, loss@min: 1.004286, loss@max: 1.395640, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 96, LS: 0.009058, LT: 1.612336, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 97, loss@min: 0.992183, loss@max: 1.387549, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 97, LS: 0.009040, LT: 1.612502, Top1S: 100.000008, Top1T: 58.226593 +Train:epoch: 98, loss@min: 0.989866, loss@max: 1.395393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.009022, LT: 1.612505, Top1S: 100.000008, Top1T: 58.251465Best acc: 58.251465 +Train:epoch: 99, loss@min: 0.983332, loss@max: 1.384991, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 99, LS: 0.009005, LT: 1.612544, Top1S: 100.000008, Top1T: 58.176846 +Train:epoch: 100, loss@min: 0.974042, loss@max: 1.380334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.008989, LT: 1.612724, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 101, loss@min: 0.989084, loss@max: 1.386833, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 101, LS: 0.008973, LT: 1.613011, Top1S: 100.000008, Top1T: 58.139538 +Train:epoch: 102, loss@min: 0.976192, loss@max: 1.383570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.008958, LT: 1.613176, Top1S: 100.000008, Top1T: 58.139538 +Train:epoch: 103, loss@min: 0.971248, loss@max: 1.386638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.008944, LT: 1.613442, Top1S: 100.000008, Top1T: 58.189281 +Train:epoch: 104, loss@min: 0.978965, loss@max: 1.383774, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 104, LS: 0.008930, LT: 1.613751, Top1S: 100.000008, Top1T: 58.176846 +Train:epoch: 105, loss@min: 0.971625, loss@max: 1.376014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.008917, LT: 1.614094, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 106, loss@min: 0.973861, loss@max: 1.377637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.008904, LT: 1.614403, Top1S: 100.000008, Top1T: 58.263901Best acc: 58.263901 +Train:epoch: 107, loss@min: 0.974382, loss@max: 1.378285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.008892, LT: 1.614671, Top1S: 100.000008, Top1T: 58.301208Best acc: 58.301208 +Train:epoch: 108, loss@min: 0.980456, loss@max: 1.383617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.008881, LT: 1.614970, Top1S: 100.000008, Top1T: 58.251465 +Train:epoch: 109, loss@min: 0.974598, loss@max: 1.380322, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.008870, LT: 1.615183, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 110, loss@min: 0.983366, loss@max: 1.383901, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 110, LS: 0.008860, LT: 1.615120, Top1S: 100.000008, Top1T: 58.276337 +Train:epoch: 111, loss@min: 0.972397, loss@max: 1.375988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.008850, LT: 1.615045, Top1S: 100.000008, Top1T: 58.276337 +Train:epoch: 112, loss@min: 0.971838, loss@max: 1.377808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.008840, LT: 1.615017, Top1S: 100.000008, Top1T: 58.239029 +Train:epoch: 113, loss@min: 0.982163, loss@max: 1.383357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.008831, LT: 1.614946, Top1S: 100.000008, Top1T: 58.239029 +Train:epoch: 114, loss@min: 0.974844, loss@max: 1.378573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.008822, LT: 1.615018, Top1S: 100.000008, Top1T: 58.239029 +Train:epoch: 115, loss@min: 1.008618, loss@max: 1.396300, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 115, LS: 0.008813, LT: 1.615104, Top1S: 100.000008, Top1T: 58.263901 +Train:epoch: 116, loss@min: 0.971388, loss@max: 1.377696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.008805, LT: 1.615236, Top1S: 100.000008, Top1T: 58.251465 +Train:epoch: 117, loss@min: 0.973571, loss@max: 1.378990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.008797, LT: 1.615357, Top1S: 100.000008, Top1T: 58.276337 +Train:epoch: 118, loss@min: 0.978386, loss@max: 1.385252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.008790, LT: 1.615504, Top1S: 100.000008, Top1T: 58.263901 +Train:epoch: 119, loss@min: 0.994133, loss@max: 1.387846, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 119, LS: 0.008783, LT: 1.615687, Top1S: 100.000008, Top1T: 58.263901 +Train:epoch: 120, loss@min: 0.974022, loss@max: 1.380006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.008776, LT: 1.615789, Top1S: 100.000008, Top1T: 58.263901 +Train:epoch: 121, loss@min: 0.982782, loss@max: 1.384756, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 121, LS: 0.008770, LT: 1.615898, Top1S: 100.000008, Top1T: 58.239029 +Train:epoch: 122, loss@min: 0.972548, loss@max: 1.384541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.008765, LT: 1.615997, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 123, loss@min: 0.973281, loss@max: 1.379494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.008759, LT: 1.616092, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 124, loss@min: 0.975191, loss@max: 1.380940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.008754, LT: 1.616216, Top1S: 100.000008, Top1T: 58.239029 +Train:epoch: 125, loss@min: 0.977226, loss@max: 1.385218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.008750, LT: 1.616292, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 126, loss@min: 0.983164, loss@max: 1.390326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.008746, LT: 1.616447, Top1S: 100.000008, Top1T: 58.189281 +Train:epoch: 127, loss@min: 0.985893, loss@max: 1.388078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.008742, LT: 1.616597, Top1S: 100.000008, Top1T: 58.226593 +Train:epoch: 128, loss@min: 0.967696, loss@max: 1.370432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.008739, LT: 1.616723, Top1S: 100.000008, Top1T: 58.251465 +Train:epoch: 129, loss@min: 0.976833, loss@max: 1.384721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.008735, LT: 1.616828, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 130, loss@min: 0.980585, loss@max: 1.385446, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 130, LS: 0.008733, LT: 1.616856, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 131, loss@min: 0.974939, loss@max: 1.378156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.008730, LT: 1.616846, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 132, loss@min: 0.976900, loss@max: 1.382036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.008728, LT: 1.616812, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 133, loss@min: 0.978072, loss@max: 1.386240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.008726, LT: 1.616786, Top1S: 100.000008, Top1T: 58.189281 +Train:epoch: 134, loss@min: 0.977277, loss@max: 1.379952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.008724, LT: 1.616770, Top1S: 100.000008, Top1T: 58.189281 +Train:epoch: 135, loss@min: 0.983074, loss@max: 1.391110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.008722, LT: 1.616768, Top1S: 100.000008, Top1T: 58.176846 +Train:epoch: 136, loss@min: 0.998198, loss@max: 1.390111, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 136, LS: 0.008721, LT: 1.616770, Top1S: 100.000008, Top1T: 58.201717 +Train:epoch: 137, loss@min: 0.980058, loss@max: 1.383548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.008720, LT: 1.616768, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 138, loss@min: 0.971534, loss@max: 1.379796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.008719, LT: 1.616768, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 139, loss@min: 0.973798, loss@max: 1.378956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.008718, LT: 1.616767, Top1S: 100.000008, Top1T: 58.226593 +Train:epoch: 140, loss@min: 0.998549, loss@max: 1.392064, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 140, LS: 0.008717, LT: 1.616772, Top1S: 100.000008, Top1T: 58.226593 +Train:epoch: 141, loss@min: 0.972815, loss@max: 1.375273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.008716, LT: 1.616776, Top1S: 100.000008, Top1T: 58.226593 +Train:epoch: 142, loss@min: 0.979004, loss@max: 1.385419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.008716, LT: 1.616783, Top1S: 100.000008, Top1T: 58.226593 +Train:epoch: 143, loss@min: 0.970729, loss@max: 1.378404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.008716, LT: 1.616786, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 144, loss@min: 0.987857, loss@max: 1.389099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.008715, LT: 1.616779, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 145, loss@min: 0.971722, loss@max: 1.377860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.008715, LT: 1.616776, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 146, loss@min: 0.973609, loss@max: 1.379099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.008715, LT: 1.616775, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 147, loss@min: 0.974080, loss@max: 1.379717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.008715, LT: 1.616775, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 148, loss@min: 0.969278, loss@max: 1.376345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.008715, LT: 1.616775, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 149, loss@min: 0.991413, loss@max: 1.387745, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 149, LS: 0.008715, LT: 1.616775, Top1S: 100.000008, Top1T: 58.214153 +Train:epoch: 150, loss@min: 0.977283, loss@max: 1.384296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.008715, LT: 1.616775, Top1S: 100.000008, Top1T: 58.214153 +------------------------------------------- +Sun Jul 30 20:20:19 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Jul 30 20:30:56 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.149179, loss@max: 1.576544, Top1S acc: 100.000000, Top1T acc: 51.953125 +Train:epoch: 2, loss@min: 3.454114, loss@max: 1.576104, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 3, loss@min: 3.039321, loss@max: 1.617720, Top1S acc: 100.000000, Top1T acc: 64.843750 +Train:epoch: 4, loss@min: 3.120091, loss@max: 1.747975, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 5, loss@min: 2.672085, loss@max: 1.720939, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 6, loss@min: 2.213805, loss@max: 1.675880, Top1S acc: 100.000000, Top1T acc: 80.078125 +Train:epoch: 7, loss@min: 2.122765, loss@max: 1.694548, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 8, loss@min: 1.909651, loss@max: 1.651737, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 9, loss@min: 1.825111, loss@max: 1.638357, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 10, loss@min: 1.612125, loss@max: 1.585404, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 11, loss@min: 1.685201, loss@max: 1.599614, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 12, loss@min: 1.486019, loss@max: 1.527475, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 13, loss@min: 1.595680, loss@max: 1.531865, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 14, loss@min: 1.545931, loss@max: 1.508598, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 15, loss@min: 1.662759, loss@max: 1.545953, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 16, loss@min: 1.403347, loss@max: 1.477711, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 17, loss@min: 1.368248, loss@max: 1.458664, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 18, loss@min: 1.257470, loss@max: 1.423702, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 19, loss@min: 1.394769, loss@max: 1.462677, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 20, loss@min: 1.230393, loss@max: 1.430233, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 21, loss@min: 1.248083, loss@max: 1.418590, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 22, loss@min: 1.327455, loss@max: 1.446641, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 23, loss@min: 1.162459, loss@max: 1.399112, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 24, loss@min: 1.206992, loss@max: 1.411837, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 25, loss@min: 1.132355, loss@max: 1.400186, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.142107, loss@max: 1.408816, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 27, loss@min: 1.155515, loss@max: 1.425522, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 1.128028, loss@max: 1.405551, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.100934, loss@max: 1.403236, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 30, loss@min: 1.083171, loss@max: 1.408759, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.071605, loss@max: 1.397567, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 32, loss@min: 1.052916, loss@max: 1.393533, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 1.091383, loss@max: 1.408755, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 34, loss@min: 1.036798, loss@max: 1.400004, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 1.049803, loss@max: 1.395216, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.080840, loss@max: 1.400609, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 37, loss@min: 1.041643, loss@max: 1.393291, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.021279, loss@max: 1.387793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.023597, loss@max: 1.388749, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.036580, loss@max: 1.399160, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 1.042293, loss@max: 1.404097, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.024443, loss@max: 1.402738, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.019599, loss@max: 1.388005, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.067216, loss@max: 1.403803, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.034176, loss@max: 1.394533, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 1.041508, loss@max: 1.393036, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 47, loss@min: 1.046145, loss@max: 1.416873, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 48, loss@min: 1.021614, loss@max: 1.397948, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 1.032029, loss@max: 1.397403, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 1.037803, loss@max: 1.404210, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.037886, loss@max: 1.401199, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 52, loss@min: 1.060622, loss@max: 1.424540, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 53, loss@min: 1.031612, loss@max: 1.410432, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 54, loss@min: 0.990437, loss@max: 1.380091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.095900, loss@max: 1.429746, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 56, loss@min: 0.983008, loss@max: 1.381527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.007272, loss@max: 1.405694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.005374, loss@max: 1.397775, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.986654, loss@max: 1.382449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.989950, loss@max: 1.391796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.986120, loss@max: 1.384330, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.003305, loss@max: 1.399930, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.999232, loss@max: 1.395521, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.034439, loss@max: 1.407216, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 65, loss@min: 0.997612, loss@max: 1.395318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.999888, loss@max: 1.390089, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.992608, loss@max: 1.396827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.025615, loss@max: 1.406922, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 1.040946, loss@max: 1.401532, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 70, loss@min: 1.004669, loss@max: 1.393131, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 71, loss@min: 0.990751, loss@max: 1.395638, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.982440, loss@max: 1.388978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.990744, loss@max: 1.390913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.022174, loss@max: 1.401140, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 75, loss@min: 0.979998, loss@max: 1.386622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.988139, loss@max: 1.388017, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 1.019325, loss@max: 1.398002, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 78, loss@min: 0.985625, loss@max: 1.388624, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.976799, loss@max: 1.387254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.983240, loss@max: 1.386732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.008458, LT: 1.541352, Top1S: 100.000008, Top1T: 61.646564Best acc: 61.646564 +Train:epoch: 81, loss@min: 0.989407, loss@max: 1.382466, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 0.008427, LT: 1.544388, Top1S: 100.000008, Top1T: 61.609257 +Train:epoch: 82, loss@min: 0.977477, loss@max: 1.382066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.008402, LT: 1.547395, Top1S: 100.000008, Top1T: 61.634129 +Train:epoch: 83, loss@min: 0.984077, loss@max: 1.386291, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.008381, LT: 1.550314, Top1S: 100.000008, Top1T: 61.683872Best acc: 61.683872 +Train:epoch: 84, loss@min: 0.995887, loss@max: 1.399303, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 0.008358, LT: 1.553606, Top1S: 100.000008, Top1T: 61.758492Best acc: 61.758492 +Train:epoch: 85, loss@min: 0.978883, loss@max: 1.386862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.008331, LT: 1.557274, Top1S: 100.000008, Top1T: 61.671436 +Train:epoch: 86, loss@min: 0.975878, loss@max: 1.381529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.008296, LT: 1.560298, Top1S: 100.000008, Top1T: 61.584381 +Train:epoch: 87, loss@min: 1.044900, loss@max: 1.411116, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 87, LS: 0.008262, LT: 1.562363, Top1S: 100.000008, Top1T: 61.683872 +Train:epoch: 88, loss@min: 1.007793, loss@max: 1.397698, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 0.008231, LT: 1.562725, Top1S: 100.000008, Top1T: 61.721180 +Train:epoch: 89, loss@min: 0.973511, loss@max: 1.385041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.008200, LT: 1.564242, Top1S: 100.000008, Top1T: 61.795799Best acc: 61.795799 +Train:epoch: 90, loss@min: 0.981596, loss@max: 1.385431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.008172, LT: 1.566661, Top1S: 100.000008, Top1T: 61.845543Best acc: 61.845543 +Train:epoch: 91, loss@min: 0.986504, loss@max: 1.392613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.008146, LT: 1.568128, Top1S: 100.000008, Top1T: 61.646564 +Train:epoch: 92, loss@min: 1.007353, loss@max: 1.401745, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.008123, LT: 1.567124, Top1S: 100.000008, Top1T: 61.571945 +Train:epoch: 93, loss@min: 0.986776, loss@max: 1.392657, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 0.008101, LT: 1.566123, Top1S: 100.000008, Top1T: 61.534637 +Train:epoch: 94, loss@min: 0.970774, loss@max: 1.381910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.008081, LT: 1.564960, Top1S: 100.000008, Top1T: 61.522202 +Train:epoch: 95, loss@min: 0.998698, loss@max: 1.393972, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 0.008063, LT: 1.564814, Top1S: 100.000008, Top1T: 61.571945 +Train:epoch: 96, loss@min: 0.983252, loss@max: 1.384696, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 96, LS: 0.008045, LT: 1.563592, Top1S: 100.000008, Top1T: 61.659000 +Train:epoch: 97, loss@min: 1.010607, loss@max: 1.395420, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.008027, LT: 1.562293, Top1S: 100.000008, Top1T: 61.621693 +Train:epoch: 98, loss@min: 0.999971, loss@max: 1.396428, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 0.008009, LT: 1.561752, Top1S: 100.000008, Top1T: 61.671436 +Train:epoch: 99, loss@min: 0.999750, loss@max: 1.391731, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 0.007991, LT: 1.561036, Top1S: 100.000008, Top1T: 61.683872 +Train:epoch: 100, loss@min: 1.010214, loss@max: 1.396624, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.007976, LT: 1.560311, Top1S: 100.000008, Top1T: 61.733616 +Train:epoch: 101, loss@min: 0.979614, loss@max: 1.388821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.007959, LT: 1.560823, Top1S: 100.000008, Top1T: 61.721180 +Train:epoch: 102, loss@min: 0.970322, loss@max: 1.383844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.007942, LT: 1.561217, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 103, loss@min: 0.982715, loss@max: 1.389263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.007928, LT: 1.562485, Top1S: 100.000008, Top1T: 61.634129 +Train:epoch: 104, loss@min: 0.987798, loss@max: 1.389062, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 104, LS: 0.007911, LT: 1.564744, Top1S: 100.000008, Top1T: 61.609257 +Train:epoch: 105, loss@min: 0.976056, loss@max: 1.382690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.007897, LT: 1.566492, Top1S: 100.000008, Top1T: 61.634129 +Train:epoch: 106, loss@min: 0.973074, loss@max: 1.382371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.007884, LT: 1.568947, Top1S: 100.000008, Top1T: 61.609257 +Train:epoch: 107, loss@min: 0.967476, loss@max: 1.378746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.007871, LT: 1.570279, Top1S: 100.000008, Top1T: 61.696308 +Train:epoch: 108, loss@min: 0.984939, loss@max: 1.386186, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.007859, LT: 1.571903, Top1S: 100.000008, Top1T: 61.634129 +Train:epoch: 109, loss@min: 0.990813, loss@max: 1.389608, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 109, LS: 0.007848, LT: 1.572722, Top1S: 100.000008, Top1T: 61.634129 +Train:epoch: 110, loss@min: 0.966102, loss@max: 1.378863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.007836, LT: 1.573254, Top1S: 100.000008, Top1T: 61.659000 +Train:epoch: 111, loss@min: 0.977060, loss@max: 1.386638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.007825, LT: 1.573880, Top1S: 100.000008, Top1T: 61.621693 +Train:epoch: 112, loss@min: 0.979027, loss@max: 1.381217, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.007815, LT: 1.574416, Top1S: 100.000008, Top1T: 61.634129 +Train:epoch: 113, loss@min: 0.975441, loss@max: 1.384541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.007805, LT: 1.574702, Top1S: 100.000008, Top1T: 61.621693 +Train:epoch: 114, loss@min: 0.977261, loss@max: 1.380833, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 0.007797, LT: 1.575002, Top1S: 100.000008, Top1T: 61.609257 +Train:epoch: 115, loss@min: 0.983303, loss@max: 1.385092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.007788, LT: 1.574881, Top1S: 100.000008, Top1T: 61.646564 +Train:epoch: 116, loss@min: 0.972403, loss@max: 1.381343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.007780, LT: 1.574731, Top1S: 100.000008, Top1T: 61.646564 +Train:epoch: 117, loss@min: 0.972959, loss@max: 1.379135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.007773, LT: 1.574732, Top1S: 100.000008, Top1T: 61.646564 +Train:epoch: 118, loss@min: 0.977502, loss@max: 1.384282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.007766, LT: 1.575058, Top1S: 100.000008, Top1T: 61.746056 +Train:epoch: 119, loss@min: 1.013205, loss@max: 1.394484, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 119, LS: 0.007760, LT: 1.575581, Top1S: 100.000008, Top1T: 61.721180 +Train:epoch: 120, loss@min: 0.977380, loss@max: 1.382812, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 0.007753, LT: 1.575628, Top1S: 100.000008, Top1T: 61.708744 +Train:epoch: 121, loss@min: 0.976251, loss@max: 1.382304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.007748, LT: 1.575420, Top1S: 100.000008, Top1T: 61.696308 +Train:epoch: 122, loss@min: 0.981815, loss@max: 1.384036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.007742, LT: 1.575321, Top1S: 100.000008, Top1T: 61.671436 +Train:epoch: 123, loss@min: 0.975900, loss@max: 1.384695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.007737, LT: 1.575221, Top1S: 100.000008, Top1T: 61.721180 +Train:epoch: 124, loss@min: 0.969030, loss@max: 1.372741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.007732, LT: 1.575282, Top1S: 100.000008, Top1T: 61.733616 +Train:epoch: 125, loss@min: 1.006587, loss@max: 1.389834, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 0.007728, LT: 1.575194, Top1S: 100.000008, Top1T: 61.721180 +Train:epoch: 126, loss@min: 1.000988, loss@max: 1.385772, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 0.007724, LT: 1.575032, Top1S: 100.000008, Top1T: 61.721180 +Train:epoch: 127, loss@min: 1.027388, loss@max: 1.394068, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 127, LS: 0.007720, LT: 1.574924, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 128, loss@min: 0.982973, loss@max: 1.390295, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 0.007716, LT: 1.574821, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 129, loss@min: 0.974948, loss@max: 1.382116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.007713, LT: 1.574665, Top1S: 100.000008, Top1T: 61.808235 +Train:epoch: 130, loss@min: 0.968862, loss@max: 1.374801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.007710, LT: 1.574375, Top1S: 100.000008, Top1T: 61.820671 +Train:epoch: 131, loss@min: 0.970530, loss@max: 1.378025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.007707, LT: 1.574204, Top1S: 100.000008, Top1T: 61.808235 +Train:epoch: 132, loss@min: 0.977383, loss@max: 1.383974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.007705, LT: 1.574123, Top1S: 100.000008, Top1T: 61.820671 +Train:epoch: 133, loss@min: 0.969627, loss@max: 1.376930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.007702, LT: 1.574041, Top1S: 100.000008, Top1T: 61.833107 +Train:epoch: 134, loss@min: 0.971112, loss@max: 1.379591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.007700, LT: 1.574039, Top1S: 100.000008, Top1T: 61.795799 +Train:epoch: 135, loss@min: 0.972181, loss@max: 1.378682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.007698, LT: 1.574033, Top1S: 100.000008, Top1T: 61.795799 +Train:epoch: 136, loss@min: 0.972646, loss@max: 1.379286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.007697, LT: 1.573945, Top1S: 100.000008, Top1T: 61.770927 +Train:epoch: 137, loss@min: 0.992522, loss@max: 1.388461, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 0.007696, LT: 1.573819, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 138, loss@min: 0.970019, loss@max: 1.379386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.007694, LT: 1.573828, Top1S: 100.000008, Top1T: 61.770927 +Train:epoch: 139, loss@min: 0.984776, loss@max: 1.387608, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 139, LS: 0.007694, LT: 1.573766, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 140, loss@min: 0.977129, loss@max: 1.386234, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 140, LS: 0.007693, LT: 1.573737, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 141, loss@min: 0.972903, loss@max: 1.380958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.007692, LT: 1.573740, Top1S: 100.000008, Top1T: 61.795799 +Train:epoch: 142, loss@min: 0.976455, loss@max: 1.384277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.007692, LT: 1.573741, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 143, loss@min: 0.999365, loss@max: 1.392545, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 143, LS: 0.007691, LT: 1.573751, Top1S: 100.000008, Top1T: 61.770927 +Train:epoch: 144, loss@min: 1.000645, loss@max: 1.392935, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 144, LS: 0.007691, LT: 1.573762, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 145, loss@min: 0.977311, loss@max: 1.386295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.007691, LT: 1.573765, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 146, loss@min: 0.971468, loss@max: 1.380330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.007691, LT: 1.573762, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 147, loss@min: 0.970172, loss@max: 1.379301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.007690, LT: 1.573757, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 148, loss@min: 0.972282, loss@max: 1.377253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.007690, LT: 1.573756, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 149, loss@min: 0.977639, loss@max: 1.382258, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 149, LS: 0.007690, LT: 1.573756, Top1S: 100.000008, Top1T: 61.783363 +Train:epoch: 150, loss@min: 0.977585, loss@max: 1.384138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.007690, LT: 1.573756, Top1S: 100.000008, Top1T: 61.783363 +------------------------------------------- +Mon Jul 31 05:35:07 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 31 10:13:36 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.017098, loss@max: 1.675998, Top1S acc: 100.000000, Top1T acc: 59.375000 +Train:epoch: 2, loss@min: 3.543164, loss@max: 1.796101, Top1S acc: 100.000000, Top1T acc: 60.937500 +Train:epoch: 3, loss@min: 3.032802, loss@max: 1.773373, Top1S acc: 100.000000, Top1T acc: 65.625000 +Train:epoch: 4, loss@min: 2.878720, loss@max: 1.798236, Top1S acc: 100.000000, Top1T acc: 69.140625 +Train:epoch: 5, loss@min: 3.016520, loss@max: 1.866773, Top1S acc: 100.000000, Top1T acc: 65.234375 +Train:epoch: 6, loss@min: 2.724958, loss@max: 1.790948, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 7, loss@min: 2.736448, loss@max: 1.791549, Top1S acc: 100.000000, Top1T acc: 71.093750 +Train:epoch: 8, loss@min: 2.156506, loss@max: 1.642595, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 9, loss@min: 2.186594, loss@max: 1.653660, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 10, loss@min: 2.040989, loss@max: 1.616486, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 11, loss@min: 2.263375, loss@max: 1.690379, Top1S acc: 100.000000, Top1T acc: 76.953125 +Train:epoch: 12, loss@min: 1.927830, loss@max: 1.622905, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 13, loss@min: 1.924310, loss@max: 1.611929, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 14, loss@min: 2.040492, loss@max: 1.677207, Top1S acc: 100.000000, Top1T acc: 83.984375 +Train:epoch: 15, loss@min: 1.659649, loss@max: 1.565943, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 16, loss@min: 1.760489, loss@max: 1.582352, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 17, loss@min: 1.619157, loss@max: 1.561372, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 18, loss@min: 1.698248, loss@max: 1.604132, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 19, loss@min: 1.565245, loss@max: 1.562145, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 20, loss@min: 1.645292, loss@max: 1.592447, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 21, loss@min: 1.483040, loss@max: 1.547589, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 22, loss@min: 1.527978, loss@max: 1.576150, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 23, loss@min: 1.472018, loss@max: 1.557009, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 24, loss@min: 1.436963, loss@max: 1.544953, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 25, loss@min: 1.530835, loss@max: 1.581133, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 26, loss@min: 1.436230, loss@max: 1.550088, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 27, loss@min: 1.393741, loss@max: 1.528170, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 28, loss@min: 1.364392, loss@max: 1.524888, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 29, loss@min: 1.455055, loss@max: 1.568150, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 30, loss@min: 1.360723, loss@max: 1.540609, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 31, loss@min: 1.328742, loss@max: 1.538444, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 32, loss@min: 1.345480, loss@max: 1.556974, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 33, loss@min: 1.258324, loss@max: 1.523647, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 34, loss@min: 1.275517, loss@max: 1.531582, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 35, loss@min: 1.316890, loss@max: 1.530822, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 36, loss@min: 1.175310, loss@max: 1.489230, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 37, loss@min: 1.184571, loss@max: 1.510455, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 38, loss@min: 1.275219, loss@max: 1.527497, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 39, loss@min: 1.221970, loss@max: 1.512307, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 40, loss@min: 1.276263, loss@max: 1.522830, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 41, loss@min: 1.301458, loss@max: 1.522639, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 42, loss@min: 1.253351, loss@max: 1.512484, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 43, loss@min: 1.152696, loss@max: 1.468981, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 44, loss@min: 1.162494, loss@max: 1.511454, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 45, loss@min: 1.173984, loss@max: 1.495325, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 46, loss@min: 1.193068, loss@max: 1.508443, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 47, loss@min: 1.169164, loss@max: 1.483058, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 48, loss@min: 1.121879, loss@max: 1.480279, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 1.163254, loss@max: 1.482494, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 50, loss@min: 1.130548, loss@max: 1.473509, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 51, loss@min: 1.213678, loss@max: 1.509680, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 52, loss@min: 1.120271, loss@max: 1.484844, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 53, loss@min: 1.130465, loss@max: 1.491385, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 54, loss@min: 1.148890, loss@max: 1.479025, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 55, loss@min: 1.081555, loss@max: 1.452364, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 56, loss@min: 1.043587, loss@max: 1.465984, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 57, loss@min: 1.125967, loss@max: 1.512339, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 58, loss@min: 1.030629, loss@max: 1.453311, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 1.085574, loss@max: 1.456515, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 60, loss@min: 1.130453, loss@max: 1.471066, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 61, loss@min: 1.099342, loss@max: 1.467366, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 62, loss@min: 1.071055, loss@max: 1.448768, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.079492, loss@max: 1.452023, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 64, loss@min: 1.054267, loss@max: 1.445711, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 65, loss@min: 1.041590, loss@max: 1.421987, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 66, loss@min: 1.159532, loss@max: 1.492010, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 67, loss@min: 1.093709, loss@max: 1.481289, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 68, loss@min: 1.103668, loss@max: 1.458354, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 69, loss@min: 1.038291, loss@max: 1.447946, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 70, loss@min: 1.040089, loss@max: 1.443705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.073355, loss@max: 1.444485, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 72, loss@min: 1.083415, loss@max: 1.456704, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 73, loss@min: 1.056702, loss@max: 1.470767, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 74, loss@min: 1.044004, loss@max: 1.459175, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 75, loss@min: 1.048972, loss@max: 1.430012, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 76, loss@min: 1.052806, loss@max: 1.447039, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 1.033778, loss@max: 1.448416, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 1.012793, loss@max: 1.435324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.056640, loss@max: 1.444692, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 1.050407, loss@max: 1.450911, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 80, LS: 0.008090, LT: 1.325492, Top1S: 100.000008, Top1T: 65.775406Best acc: 65.775406 +Train:epoch: 81, loss@min: 1.037677, loss@max: 1.434144, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 81, LS: 0.008113, LT: 1.324045, Top1S: 100.000008, Top1T: 65.713219 +Train:epoch: 82, loss@min: 1.012236, loss@max: 1.427094, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.008080, LT: 1.321387, Top1S: 100.000008, Top1T: 65.601295 +Train:epoch: 83, loss@min: 1.049379, loss@max: 1.437104, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 83, LS: 0.008011, LT: 1.317763, Top1S: 100.000008, Top1T: 65.638603 +Train:epoch: 84, loss@min: 1.023541, loss@max: 1.426532, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 0.007933, LT: 1.314766, Top1S: 100.000008, Top1T: 65.713219 +Train:epoch: 85, loss@min: 1.040337, loss@max: 1.451913, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 85, LS: 0.007864, LT: 1.312702, Top1S: 100.000008, Top1T: 65.626167 +Train:epoch: 86, loss@min: 1.020485, loss@max: 1.431575, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.007822, LT: 1.312737, Top1S: 100.000008, Top1T: 65.787842Best acc: 65.787842 +Train:epoch: 87, loss@min: 1.021983, loss@max: 1.423445, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 0.007798, LT: 1.314671, Top1S: 100.000008, Top1T: 65.949509Best acc: 65.949509 +Train:epoch: 88, loss@min: 1.029975, loss@max: 1.448762, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 88, LS: 0.007814, LT: 1.316919, Top1S: 100.000008, Top1T: 65.986824Best acc: 65.986824 +Train:epoch: 89, loss@min: 1.028783, loss@max: 1.429700, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 89, LS: 0.007828, LT: 1.319875, Top1S: 100.000008, Top1T: 65.961945 +Train:epoch: 90, loss@min: 1.085702, loss@max: 1.445848, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 90, LS: 0.007815, LT: 1.321798, Top1S: 100.000008, Top1T: 65.974380 +Train:epoch: 91, loss@min: 1.088402, loss@max: 1.458163, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 91, LS: 0.007784, LT: 1.321289, Top1S: 100.000008, Top1T: 65.986824 +Train:epoch: 92, loss@min: 1.056090, loss@max: 1.433529, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 92, LS: 0.007740, LT: 1.316365, Top1S: 100.000008, Top1T: 66.247978Best acc: 66.247978 +Train:epoch: 93, loss@min: 1.015734, loss@max: 1.417886, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 0.007692, LT: 1.318393, Top1S: 100.000008, Top1T: 66.185799 +Train:epoch: 94, loss@min: 0.990962, loss@max: 1.411722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.007648, LT: 1.323347, Top1S: 100.000008, Top1T: 66.098747 +Train:epoch: 95, loss@min: 1.021855, loss@max: 1.414946, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 0.007610, LT: 1.325577, Top1S: 100.000008, Top1T: 66.073875 +Train:epoch: 96, loss@min: 1.024021, loss@max: 1.435267, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.007584, LT: 1.324683, Top1S: 100.000008, Top1T: 66.011696 +Train:epoch: 97, loss@min: 1.059397, loss@max: 1.427197, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 97, LS: 0.007563, LT: 1.323233, Top1S: 100.000008, Top1T: 65.924637 +Train:epoch: 98, loss@min: 0.996153, loss@max: 1.419257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.007548, LT: 1.322068, Top1S: 100.000008, Top1T: 66.198235 +Train:epoch: 99, loss@min: 0.989996, loss@max: 1.427627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.007545, LT: 1.319040, Top1S: 100.000008, Top1T: 66.098747 +Train:epoch: 100, loss@min: 1.018339, loss@max: 1.429463, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 100, LS: 0.007544, LT: 1.317553, Top1S: 100.000008, Top1T: 66.123619 +Train:epoch: 101, loss@min: 1.041189, loss@max: 1.432812, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 101, LS: 0.007540, LT: 1.317719, Top1S: 100.000008, Top1T: 66.111183 +Train:epoch: 102, loss@min: 1.007443, loss@max: 1.416089, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.007528, LT: 1.320134, Top1S: 100.000008, Top1T: 66.148491 +Train:epoch: 103, loss@min: 1.031713, loss@max: 1.419090, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 103, LS: 0.007511, LT: 1.328139, Top1S: 100.000008, Top1T: 65.974380 +Train:epoch: 104, loss@min: 1.152562, loss@max: 1.456146, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 104, LS: 0.007498, LT: 1.335623, Top1S: 100.000008, Top1T: 65.775406 +Train:epoch: 105, loss@min: 1.039387, loss@max: 1.423136, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 105, LS: 0.007472, LT: 1.340859, Top1S: 100.000008, Top1T: 65.563988 +Train:epoch: 106, loss@min: 1.028926, loss@max: 1.438902, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 106, LS: 0.007441, LT: 1.342544, Top1S: 100.000008, Top1T: 65.414749 +Train:epoch: 107, loss@min: 1.035454, loss@max: 1.409013, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 107, LS: 0.007416, LT: 1.341366, Top1S: 100.000008, Top1T: 65.476936 +Train:epoch: 108, loss@min: 1.002071, loss@max: 1.398630, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.007400, LT: 1.339784, Top1S: 100.000008, Top1T: 65.526680 +Train:epoch: 109, loss@min: 1.024614, loss@max: 1.417470, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 109, LS: 0.007389, LT: 1.339237, Top1S: 100.000008, Top1T: 65.601295 +Train:epoch: 110, loss@min: 1.014745, loss@max: 1.415117, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 110, LS: 0.007379, LT: 1.337596, Top1S: 100.000008, Top1T: 65.638603 +Train:epoch: 111, loss@min: 1.031755, loss@max: 1.418404, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 111, LS: 0.007370, LT: 1.335954, Top1S: 100.000008, Top1T: 65.762970 +Train:epoch: 112, loss@min: 1.073729, loss@max: 1.428186, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 112, LS: 0.007360, LT: 1.334868, Top1S: 100.000008, Top1T: 65.787842 +Train:epoch: 113, loss@min: 1.019646, loss@max: 1.407729, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 113, LS: 0.007352, LT: 1.334189, Top1S: 100.000008, Top1T: 65.800278 +Train:epoch: 114, loss@min: 1.020282, loss@max: 1.418516, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 0.007345, LT: 1.334676, Top1S: 100.000008, Top1T: 65.738098 +Train:epoch: 115, loss@min: 1.003272, loss@max: 1.412912, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 115, LS: 0.007338, LT: 1.335476, Top1S: 100.000008, Top1T: 65.750534 +Train:epoch: 116, loss@min: 1.005952, loss@max: 1.407369, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 116, LS: 0.007331, LT: 1.336399, Top1S: 100.000008, Top1T: 65.713219 +Train:epoch: 117, loss@min: 1.043594, loss@max: 1.426451, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 117, LS: 0.007326, LT: 1.337123, Top1S: 100.000008, Top1T: 65.700783 +Train:epoch: 118, loss@min: 1.009667, loss@max: 1.405580, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 118, LS: 0.007322, LT: 1.337552, Top1S: 100.000008, Top1T: 65.651039 +Train:epoch: 119, loss@min: 0.990954, loss@max: 1.402493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.007319, LT: 1.337979, Top1S: 100.000008, Top1T: 65.725662 +Train:epoch: 120, loss@min: 1.014598, loss@max: 1.409797, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 0.007316, LT: 1.337767, Top1S: 100.000008, Top1T: 65.825150 +Train:epoch: 121, loss@min: 0.995770, loss@max: 1.408243, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 0.007307, LT: 1.337321, Top1S: 100.000008, Top1T: 65.800278 +Train:epoch: 122, loss@min: 1.045882, loss@max: 1.433668, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 122, LS: 0.007300, LT: 1.336834, Top1S: 100.000008, Top1T: 65.825150 +Train:epoch: 123, loss@min: 0.997507, loss@max: 1.412589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.007293, LT: 1.336657, Top1S: 100.000008, Top1T: 65.837585 +Train:epoch: 124, loss@min: 1.013048, loss@max: 1.415156, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 124, LS: 0.007288, LT: 1.336598, Top1S: 100.000008, Top1T: 65.937073 +Train:epoch: 125, loss@min: 1.022852, loss@max: 1.407800, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 0.007284, LT: 1.336414, Top1S: 100.000008, Top1T: 66.011696 +Train:epoch: 126, loss@min: 0.994054, loss@max: 1.399235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.007280, LT: 1.336202, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 127, loss@min: 1.009016, loss@max: 1.413789, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.007278, LT: 1.336002, Top1S: 100.000008, Top1T: 66.011696 +Train:epoch: 128, loss@min: 1.012996, loss@max: 1.417426, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 0.007276, LT: 1.335709, Top1S: 100.000008, Top1T: 65.986824 +Train:epoch: 129, loss@min: 1.018717, loss@max: 1.418137, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 129, LS: 0.007273, LT: 1.335542, Top1S: 100.000008, Top1T: 65.986824 +Train:epoch: 130, loss@min: 1.002245, loss@max: 1.409004, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 0.007269, LT: 1.335403, Top1S: 100.000008, Top1T: 65.986824 +Train:epoch: 131, loss@min: 1.035540, loss@max: 1.417882, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 131, LS: 0.007265, LT: 1.335356, Top1S: 100.000008, Top1T: 65.949509 +Train:epoch: 132, loss@min: 0.991049, loss@max: 1.401020, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 132, LS: 0.007262, LT: 1.335455, Top1S: 100.000008, Top1T: 65.949509 +Train:epoch: 133, loss@min: 1.045773, loss@max: 1.428964, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 0.007260, LT: 1.335625, Top1S: 100.000008, Top1T: 65.974380 +Train:epoch: 134, loss@min: 0.993358, loss@max: 1.399487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.007258, LT: 1.335573, Top1S: 100.000008, Top1T: 66.011696 +Train:epoch: 135, loss@min: 0.981655, loss@max: 1.400706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.007256, LT: 1.335533, Top1S: 100.000008, Top1T: 66.024132 +Train:epoch: 136, loss@min: 0.991013, loss@max: 1.402604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.007254, LT: 1.335535, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 137, loss@min: 0.986783, loss@max: 1.399140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.007252, LT: 1.335470, Top1S: 100.000008, Top1T: 65.986824 +Train:epoch: 138, loss@min: 1.004027, loss@max: 1.411084, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 0.007251, LT: 1.335426, Top1S: 100.000008, Top1T: 65.986824 +Train:epoch: 139, loss@min: 1.006493, loss@max: 1.397954, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 139, LS: 0.007250, LT: 1.335396, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 140, loss@min: 0.999919, loss@max: 1.392879, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 140, LS: 0.007249, LT: 1.335412, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 141, loss@min: 1.013749, loss@max: 1.405242, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 141, LS: 0.007248, LT: 1.335422, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 142, loss@min: 1.010731, loss@max: 1.413917, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 142, LS: 0.007248, LT: 1.335441, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 143, loss@min: 1.004897, loss@max: 1.410156, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.007247, LT: 1.335449, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 144, loss@min: 0.991017, loss@max: 1.400811, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 144, LS: 0.007247, LT: 1.335446, Top1S: 100.000008, Top1T: 66.011696 +Train:epoch: 145, loss@min: 1.010606, loss@max: 1.412096, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 145, LS: 0.007247, LT: 1.335441, Top1S: 100.000008, Top1T: 66.011696 +Train:epoch: 146, loss@min: 1.050366, loss@max: 1.414571, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 146, LS: 0.007247, LT: 1.335431, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 147, loss@min: 1.017936, loss@max: 1.416887, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 147, LS: 0.007247, LT: 1.335422, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 148, loss@min: 1.007873, loss@max: 1.413888, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.007246, LT: 1.335422, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 149, loss@min: 1.010330, loss@max: 1.409678, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 149, LS: 0.007247, LT: 1.335421, Top1S: 100.000008, Top1T: 65.999260 +Train:epoch: 150, loss@min: 1.012533, loss@max: 1.416116, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 150, LS: 0.007247, LT: 1.335421, Top1S: 100.000008, Top1T: 65.999260 +------------------------------------------- +Mon Jul 31 14:58:53 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 31 15:02:42 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 31 15:03:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.353088, loss@max: 1.914281, Top1S acc: 100.000000, Top1T acc: 54.296875 +Train:epoch: 2, loss@min: 3.454011, loss@max: 1.904575, Top1S acc: 100.000000, Top1T acc: 57.812500 +Train:epoch: 3, loss@min: 2.963571, loss@max: 1.806462, Top1S acc: 100.000000, Top1T acc: 66.406250 +Train:epoch: 4, loss@min: 2.776981, loss@max: 1.734377, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 5, loss@min: 2.610703, loss@max: 1.675792, Top1S acc: 100.000000, Top1T acc: 71.093750 +Train:epoch: 6, loss@min: 2.226016, loss@max: 1.572697, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 7, loss@min: 1.914392, loss@max: 1.502882, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 8, loss@min: 2.060845, loss@max: 1.568507, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 9, loss@min: 2.114631, loss@max: 1.606372, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 10, loss@min: 1.831629, loss@max: 1.545417, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 11, loss@min: 1.748886, loss@max: 1.519843, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 12, loss@min: 1.717610, loss@max: 1.523121, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 13, loss@min: 1.633430, loss@max: 1.509973, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 14, loss@min: 1.491723, loss@max: 1.467009, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 15, loss@min: 1.613376, loss@max: 1.511340, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 16, loss@min: 1.504162, loss@max: 1.478987, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 17, loss@min: 1.469254, loss@max: 1.489197, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 18, loss@min: 1.337373, loss@max: 1.440154, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 19, loss@min: 1.455829, loss@max: 1.488507, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 20, loss@min: 1.253654, loss@max: 1.429984, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 21, loss@min: 1.355392, loss@max: 1.458680, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 22, loss@min: 1.264396, loss@max: 1.458452, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 23, loss@min: 1.329991, loss@max: 1.453115, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 24, loss@min: 1.395614, loss@max: 1.496374, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 25, loss@min: 1.291089, loss@max: 1.462962, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 26, loss@min: 1.189724, loss@max: 1.448184, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 27, loss@min: 1.271966, loss@max: 1.456078, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 28, loss@min: 1.247373, loss@max: 1.487585, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 29, loss@min: 1.235234, loss@max: 1.458380, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 30, loss@min: 1.159591, loss@max: 1.441931, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 31, loss@min: 1.143309, loss@max: 1.439027, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 32, loss@min: 1.125003, loss@max: 1.446290, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 33, loss@min: 1.081960, loss@max: 1.396186, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 1.093418, loss@max: 1.439393, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 35, loss@min: 1.152645, loss@max: 1.449286, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 36, loss@min: 1.167422, loss@max: 1.460824, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 37, loss@min: 1.188139, loss@max: 1.460554, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 38, loss@min: 1.141596, loss@max: 1.466386, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 39, loss@min: 1.058462, loss@max: 1.414271, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.154819, loss@max: 1.458724, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 41, loss@min: 1.119249, loss@max: 1.433573, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 42, loss@min: 1.136090, loss@max: 1.453871, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 43, loss@min: 1.215238, loss@max: 1.465263, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 44, loss@min: 1.095564, loss@max: 1.449494, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 45, loss@min: 1.122128, loss@max: 1.451849, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 46, loss@min: 1.081269, loss@max: 1.451250, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 47, loss@min: 1.052788, loss@max: 1.433805, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 1.086447, loss@max: 1.417541, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 49, loss@min: 1.026711, loss@max: 1.428660, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 1.033909, loss@max: 1.433861, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 51, loss@min: 1.077430, loss@max: 1.437763, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 52, loss@min: 1.048709, loss@max: 1.459763, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 53, loss@min: 1.043264, loss@max: 1.431110, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 54, loss@min: 1.049300, loss@max: 1.431596, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 55, loss@min: 1.093840, loss@max: 1.424660, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 56, loss@min: 1.029140, loss@max: 1.409950, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 57, loss@min: 1.046147, loss@max: 1.431004, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 58, loss@min: 1.043501, loss@max: 1.410205, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 59, loss@min: 1.093099, loss@max: 1.437672, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 60, loss@min: 1.096541, loss@max: 1.454857, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 61, loss@min: 1.002124, loss@max: 1.407744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.037929, loss@max: 1.416651, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 63, loss@min: 1.036456, loss@max: 1.438915, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 64, loss@min: 1.024835, loss@max: 1.424027, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 65, loss@min: 1.024840, loss@max: 1.435780, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 66, loss@min: 1.131693, loss@max: 1.461198, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 67, loss@min: 1.019617, loss@max: 1.430013, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 68, loss@min: 1.025491, loss@max: 1.430225, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 69, loss@min: 1.053061, loss@max: 1.424287, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 70, loss@min: 0.997138, loss@max: 1.396805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.976392, loss@max: 1.396483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.009120, loss@max: 1.395589, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 1.085298, loss@max: 1.442490, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 74, loss@min: 1.086399, loss@max: 1.435271, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 75, loss@min: 1.063736, loss@max: 1.443335, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 76, loss@min: 1.016144, loss@max: 1.423197, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 1.057736, loss@max: 1.440069, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 78, loss@min: 1.010780, loss@max: 1.420646, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 1.009302, loss@max: 1.425756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.054272, loss@max: 1.425102, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 80, LS: 0.005270, LT: 1.227742, Top1S: 100.000008, Top1T: 70.948891Best acc: 70.948891 +Train:epoch: 81, loss@min: 1.020904, loss@max: 1.399640, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 0.005251, LT: 1.217917, Top1S: 100.000008, Top1T: 71.085686Best acc: 71.085686 +Train:epoch: 82, loss@min: 0.994769, loss@max: 1.398201, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.005226, LT: 1.220167, Top1S: 100.000008, Top1T: 71.060814 +Train:epoch: 83, loss@min: 1.008475, loss@max: 1.411651, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 83, LS: 0.005205, LT: 1.223525, Top1S: 100.000008, Top1T: 70.936455 +Train:epoch: 84, loss@min: 1.038356, loss@max: 1.412220, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 84, LS: 0.005185, LT: 1.227072, Top1S: 100.000008, Top1T: 70.824524 +Train:epoch: 85, loss@min: 0.994982, loss@max: 1.406912, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 85, LS: 0.005167, LT: 1.233221, Top1S: 100.000008, Top1T: 70.588242 +Train:epoch: 86, loss@min: 0.989433, loss@max: 1.385833, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.005142, LT: 1.247382, Top1S: 100.000008, Top1T: 70.414131 +Train:epoch: 87, loss@min: 0.996872, loss@max: 1.413573, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 0.005122, LT: 1.254630, Top1S: 100.000008, Top1T: 70.463875 +Train:epoch: 88, loss@min: 1.029374, loss@max: 1.420494, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 88, LS: 0.005103, LT: 1.253755, Top1S: 100.000008, Top1T: 70.588242 +Train:epoch: 89, loss@min: 0.983199, loss@max: 1.396144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.005080, LT: 1.260285, Top1S: 100.000008, Top1T: 70.650421 +Train:epoch: 90, loss@min: 0.978113, loss@max: 1.383873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.005066, LT: 1.254410, Top1S: 100.000008, Top1T: 70.812088 +Train:epoch: 91, loss@min: 1.003633, loss@max: 1.411896, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 91, LS: 0.005050, LT: 1.248855, Top1S: 100.000008, Top1T: 70.899147 +Train:epoch: 92, loss@min: 0.995802, loss@max: 1.390386, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.005037, LT: 1.244020, Top1S: 100.000008, Top1T: 70.824524 +Train:epoch: 93, loss@min: 1.051489, loss@max: 1.412372, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 93, LS: 0.005032, LT: 1.241363, Top1S: 100.000008, Top1T: 70.861839 +Train:epoch: 94, loss@min: 1.005876, loss@max: 1.389546, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.005023, LT: 1.241384, Top1S: 100.000008, Top1T: 70.812088 +Train:epoch: 95, loss@min: 0.978794, loss@max: 1.396545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.005008, LT: 1.239431, Top1S: 100.000008, Top1T: 70.824524 +Train:epoch: 96, loss@min: 0.993270, loss@max: 1.419372, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.004995, LT: 1.244321, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 97, loss@min: 1.039889, loss@max: 1.417923, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 97, LS: 0.004985, LT: 1.246789, Top1S: 100.000008, Top1T: 70.911583 +Train:epoch: 98, loss@min: 0.994543, loss@max: 1.397714, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 98, LS: 0.004980, LT: 1.243822, Top1S: 100.000008, Top1T: 70.899147 +Train:epoch: 99, loss@min: 1.000255, loss@max: 1.410532, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 0.004966, LT: 1.244093, Top1S: 100.000008, Top1T: 70.986198 +Train:epoch: 100, loss@min: 1.065880, loss@max: 1.427112, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 100, LS: 0.004952, LT: 1.245894, Top1S: 100.000008, Top1T: 71.110558Best acc: 71.110558 +Train:epoch: 101, loss@min: 0.979984, loss@max: 1.387429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.004938, LT: 1.247196, Top1S: 100.000008, Top1T: 70.986198 +Train:epoch: 102, loss@min: 0.995770, loss@max: 1.392799, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 102, LS: 0.004924, LT: 1.248436, Top1S: 100.000008, Top1T: 71.011070 +Train:epoch: 103, loss@min: 0.987486, loss@max: 1.387852, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 103, LS: 0.004910, LT: 1.252786, Top1S: 100.000008, Top1T: 70.824524 +Train:epoch: 104, loss@min: 1.013419, loss@max: 1.398605, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 104, LS: 0.004897, LT: 1.254463, Top1S: 100.000008, Top1T: 70.849403 +Train:epoch: 105, loss@min: 0.983997, loss@max: 1.391784, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 105, LS: 0.004884, LT: 1.253997, Top1S: 100.000008, Top1T: 70.787216 +Train:epoch: 106, loss@min: 1.030868, loss@max: 1.411911, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 106, LS: 0.004872, LT: 1.253102, Top1S: 100.000008, Top1T: 70.762344 +Train:epoch: 107, loss@min: 0.992095, loss@max: 1.392658, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 107, LS: 0.004861, LT: 1.249706, Top1S: 100.000008, Top1T: 70.924019 +Train:epoch: 108, loss@min: 0.993134, loss@max: 1.397292, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.004853, LT: 1.248790, Top1S: 100.000008, Top1T: 70.812088 +Train:epoch: 109, loss@min: 1.018379, loss@max: 1.400890, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 0.004845, LT: 1.249022, Top1S: 100.000008, Top1T: 70.936455 +Train:epoch: 110, loss@min: 0.971359, loss@max: 1.386338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.004835, LT: 1.250587, Top1S: 100.000008, Top1T: 70.924019 +Train:epoch: 111, loss@min: 0.973618, loss@max: 1.393433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.004829, LT: 1.250113, Top1S: 100.000008, Top1T: 70.936455 +Train:epoch: 112, loss@min: 0.966123, loss@max: 1.381311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.004824, LT: 1.248728, Top1S: 100.000008, Top1T: 70.973763 +Train:epoch: 113, loss@min: 1.022528, loss@max: 1.405111, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 113, LS: 0.004820, LT: 1.249239, Top1S: 100.000008, Top1T: 70.911583 +Train:epoch: 114, loss@min: 1.003154, loss@max: 1.389765, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 114, LS: 0.004814, LT: 1.249558, Top1S: 100.000008, Top1T: 70.948891 +Train:epoch: 115, loss@min: 0.993964, loss@max: 1.403554, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 115, LS: 0.004806, LT: 1.250539, Top1S: 100.000008, Top1T: 71.048378 +Train:epoch: 116, loss@min: 0.984703, loss@max: 1.394046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.004797, LT: 1.251762, Top1S: 100.000008, Top1T: 71.011070 +Train:epoch: 117, loss@min: 0.969377, loss@max: 1.384249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.004790, LT: 1.251755, Top1S: 100.000008, Top1T: 70.911583 +Train:epoch: 118, loss@min: 0.978205, loss@max: 1.387669, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 118, LS: 0.004785, LT: 1.251802, Top1S: 100.000008, Top1T: 71.023506 +Train:epoch: 119, loss@min: 0.981675, loss@max: 1.395137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.004780, LT: 1.251659, Top1S: 100.000008, Top1T: 70.973763 +Train:epoch: 120, loss@min: 0.978471, loss@max: 1.386661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.004775, LT: 1.251325, Top1S: 100.000008, Top1T: 71.011070 +Train:epoch: 121, loss@min: 0.981148, loss@max: 1.393255, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 0.004771, LT: 1.251066, Top1S: 100.000008, Top1T: 70.936455 +Train:epoch: 122, loss@min: 0.976834, loss@max: 1.384485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.004766, LT: 1.251872, Top1S: 100.000008, Top1T: 70.986198 +Train:epoch: 123, loss@min: 0.968823, loss@max: 1.389297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.004763, LT: 1.252759, Top1S: 100.000008, Top1T: 70.973763 +Train:epoch: 124, loss@min: 0.970168, loss@max: 1.383368, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.004759, LT: 1.254144, Top1S: 100.000008, Top1T: 70.924019 +Train:epoch: 125, loss@min: 1.021185, loss@max: 1.406295, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 125, LS: 0.004757, LT: 1.254907, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 126, loss@min: 1.001852, loss@max: 1.392694, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 126, LS: 0.004753, LT: 1.255289, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 127, loss@min: 0.968886, loss@max: 1.379561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.004750, LT: 1.255783, Top1S: 100.000008, Top1T: 70.911583 +Train:epoch: 128, loss@min: 0.984695, loss@max: 1.388564, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 0.004747, LT: 1.256566, Top1S: 100.000008, Top1T: 70.874275 +Train:epoch: 129, loss@min: 1.047523, loss@max: 1.415865, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 129, LS: 0.004745, LT: 1.256739, Top1S: 100.000008, Top1T: 70.886711 +Train:epoch: 130, loss@min: 0.985381, loss@max: 1.392004, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 0.004743, LT: 1.256980, Top1S: 100.000008, Top1T: 70.849403 +Train:epoch: 131, loss@min: 0.985139, loss@max: 1.399908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.004741, LT: 1.256542, Top1S: 100.000008, Top1T: 70.849403 +Train:epoch: 132, loss@min: 0.978529, loss@max: 1.385209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.004740, LT: 1.256478, Top1S: 100.000008, Top1T: 70.836960 +Train:epoch: 133, loss@min: 0.962696, loss@max: 1.385861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.004739, LT: 1.256922, Top1S: 100.000008, Top1T: 70.874275 +Train:epoch: 134, loss@min: 0.981846, loss@max: 1.396065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.004737, LT: 1.258003, Top1S: 100.000008, Top1T: 70.886711 +Train:epoch: 135, loss@min: 1.015584, loss@max: 1.392863, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 135, LS: 0.004736, LT: 1.258901, Top1S: 100.000008, Top1T: 70.911583 +Train:epoch: 136, loss@min: 0.966945, loss@max: 1.384275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.004735, LT: 1.259601, Top1S: 100.000008, Top1T: 70.924019 +Train:epoch: 137, loss@min: 0.976545, loss@max: 1.389870, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 0.004734, LT: 1.259938, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 138, loss@min: 0.988838, loss@max: 1.394116, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 0.004733, LT: 1.259883, Top1S: 100.000008, Top1T: 70.986198 +Train:epoch: 139, loss@min: 0.989772, loss@max: 1.386997, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 139, LS: 0.004733, LT: 1.259665, Top1S: 100.000008, Top1T: 70.986198 +Train:epoch: 140, loss@min: 0.996157, loss@max: 1.384101, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 140, LS: 0.004732, LT: 1.259483, Top1S: 100.000008, Top1T: 70.998634 +Train:epoch: 141, loss@min: 0.975111, loss@max: 1.391707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.004732, LT: 1.259396, Top1S: 100.000008, Top1T: 70.986198 +Train:epoch: 142, loss@min: 0.966880, loss@max: 1.379735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.004731, LT: 1.259351, Top1S: 100.000008, Top1T: 70.998634 +Train:epoch: 143, loss@min: 1.008051, loss@max: 1.402028, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 143, LS: 0.004731, LT: 1.259276, Top1S: 100.000008, Top1T: 70.973763 +Train:epoch: 144, loss@min: 0.976544, loss@max: 1.384969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.004731, LT: 1.259211, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 145, loss@min: 0.985483, loss@max: 1.392170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.004731, LT: 1.259176, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 146, loss@min: 0.968579, loss@max: 1.382591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.004730, LT: 1.259159, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 147, loss@min: 0.965533, loss@max: 1.381375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.004730, LT: 1.259151, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 148, loss@min: 1.094013, loss@max: 1.415413, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 148, LS: 0.004730, LT: 1.259141, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 149, loss@min: 0.970456, loss@max: 1.389114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.004730, LT: 1.259137, Top1S: 100.000008, Top1T: 70.961327 +Train:epoch: 150, loss@min: 0.989351, loss@max: 1.394275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.004730, LT: 1.259137, Top1S: 100.000008, Top1T: 70.961327 +------------------------------------------- +Mon Jul 31 20:32:21 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 31 21:05:08 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 31 21:05:55 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 196, "print_freq": 1, "savedir": "G:\\\\stanford_cars_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Jul 31 21:07:15 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.363818, loss@max: 1.841404, Top1S acc: 100.000000, Top1T acc: 61.718750 +Train:epoch: 2, loss@min: 2.994678, loss@max: 1.780349, Top1S acc: 100.000000, Top1T acc: 68.359375 +Train:epoch: 3, loss@min: 2.890394, loss@max: 1.683136, Top1S acc: 100.000000, Top1T acc: 71.484375 +Train:epoch: 4, loss@min: 2.491560, loss@max: 1.609515, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 5, loss@min: 2.257731, loss@max: 1.569475, Top1S acc: 100.000000, Top1T acc: 78.906250 +Train:epoch: 6, loss@min: 2.337045, loss@max: 1.615226, Top1S acc: 100.000000, Top1T acc: 78.906250 +Train:epoch: 7, loss@min: 2.014576, loss@max: 1.542827, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 8, loss@min: 1.921503, loss@max: 1.517992, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 9, loss@min: 1.741668, loss@max: 1.470937, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 10, loss@min: 1.783155, loss@max: 1.491903, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 11, loss@min: 1.518055, loss@max: 1.440625, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 12, loss@min: 1.650789, loss@max: 1.471739, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 13, loss@min: 1.637644, loss@max: 1.490523, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 14, loss@min: 1.300208, loss@max: 1.395877, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 15, loss@min: 1.348650, loss@max: 1.413981, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 16, loss@min: 1.390607, loss@max: 1.429473, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 17, loss@min: 1.371463, loss@max: 1.431903, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 18, loss@min: 1.338808, loss@max: 1.424364, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 19, loss@min: 1.201828, loss@max: 1.378043, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 20, loss@min: 1.110434, loss@max: 1.362790, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 21, loss@min: 1.218185, loss@max: 1.400299, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 22, loss@min: 1.242797, loss@max: 1.427884, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 23, loss@min: 1.190439, loss@max: 1.412011, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 24, loss@min: 1.151959, loss@max: 1.403028, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 25, loss@min: 1.195071, loss@max: 1.427890, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 26, loss@min: 1.105841, loss@max: 1.403698, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 27, loss@min: 1.088941, loss@max: 1.405898, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 28, loss@min: 1.046426, loss@max: 1.373880, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.052467, loss@max: 1.391986, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 30, loss@min: 1.109568, loss@max: 1.409270, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 31, loss@min: 1.104687, loss@max: 1.411048, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 32, loss@min: 1.123352, loss@max: 1.428760, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 33, loss@min: 1.132896, loss@max: 1.426505, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 34, loss@min: 1.050711, loss@max: 1.415334, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 1.074906, loss@max: 1.442288, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 36, loss@min: 1.134279, loss@max: 1.447818, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 37, loss@min: 1.088738, loss@max: 1.445913, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 38, loss@min: 1.082394, loss@max: 1.451266, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 39, loss@min: 1.053999, loss@max: 1.449040, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 40, loss@min: 1.160193, loss@max: 1.456523, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 41, loss@min: 1.031034, loss@max: 1.449854, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 42, loss@min: 1.095967, loss@max: 1.449972, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 43, loss@min: 1.028105, loss@max: 1.406615, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 44, loss@min: 1.077593, loss@max: 1.442836, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 45, loss@min: 1.050025, loss@max: 1.440548, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 1.032923, loss@max: 1.474484, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 47, loss@min: 1.012875, loss@max: 1.446849, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 1.015266, loss@max: 1.437040, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.031809, loss@max: 1.429141, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 0.975996, loss@max: 1.443084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.025979, loss@max: 1.439178, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 1.005182, loss@max: 1.424160, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.996932, loss@max: 1.411441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.026049, loss@max: 1.447580, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 55, loss@min: 1.013167, loss@max: 1.414055, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 1.024622, loss@max: 1.422961, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 57, loss@min: 0.983225, loss@max: 1.439321, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 58, loss@min: 1.013318, loss@max: 1.415978, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.993560, loss@max: 1.403805, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.997920, loss@max: 1.415619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.039612, loss@max: 1.439139, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 62, loss@min: 1.001846, loss@max: 1.413239, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.037743, loss@max: 1.440759, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 64, loss@min: 1.069917, loss@max: 1.426841, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 65, loss@min: 1.016513, loss@max: 1.424109, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 1.052243, loss@max: 1.433408, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 67, loss@min: 1.006292, loss@max: 1.423951, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 1.020312, loss@max: 1.413728, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 69, loss@min: 1.002488, loss@max: 1.414290, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 1.000491, loss@max: 1.411449, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 71, loss@min: 1.016887, loss@max: 1.405562, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 1.003215, loss@max: 1.406880, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.967891, loss@max: 1.403179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.016819, loss@max: 1.400737, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 75, loss@min: 1.044755, loss@max: 1.417155, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 76, loss@min: 0.980489, loss@max: 1.422480, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 77, loss@min: 1.021477, loss@max: 1.409896, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 78, loss@min: 1.025024, loss@max: 1.427567, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 79, loss@min: 0.996173, loss@max: 1.397763, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 0.985416, loss@max: 1.419419, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 80, LS: 0.003349, LT: 1.006305, Top1S: 100.000008, Top1T: 76.296486Best acc: 76.296486 +Train:epoch: 81, loss@min: 0.980380, loss@max: 1.395266, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 0.003330, LT: 1.012759, Top1S: 100.000008, Top1T: 76.284050 +Train:epoch: 82, loss@min: 0.978229, loss@max: 1.404125, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.003318, LT: 1.019340, Top1S: 100.000008, Top1T: 75.923393 +Train:epoch: 83, loss@min: 0.963698, loss@max: 1.394569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.003309, LT: 1.018051, Top1S: 100.000008, Top1T: 76.047760 +Train:epoch: 84, loss@min: 0.995039, loss@max: 1.391862, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 84, LS: 0.003292, LT: 1.009545, Top1S: 100.000008, Top1T: 76.321358Best acc: 76.321358 +Train:epoch: 85, loss@min: 1.021589, loss@max: 1.392710, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 85, LS: 0.003278, LT: 1.015868, Top1S: 100.000008, Top1T: 76.072632 +Train:epoch: 86, loss@min: 1.022407, loss@max: 1.414272, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 86, LS: 0.003268, LT: 1.023430, Top1S: 100.000008, Top1T: 76.408409Best acc: 76.408409 +Train:epoch: 87, loss@min: 0.973378, loss@max: 1.394280, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 0.003252, LT: 1.026075, Top1S: 100.000008, Top1T: 76.557648Best acc: 76.557648 +Train:epoch: 88, loss@min: 1.002953, loss@max: 1.394182, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 0.003239, LT: 1.026957, Top1S: 100.000008, Top1T: 76.358665 +Train:epoch: 89, loss@min: 0.967179, loss@max: 1.407259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.003226, LT: 1.020968, Top1S: 100.000008, Top1T: 75.973145 +Train:epoch: 90, loss@min: 0.982955, loss@max: 1.391037, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 90, LS: 0.003214, LT: 1.015478, Top1S: 100.000008, Top1T: 76.259178 +Train:epoch: 91, loss@min: 0.998294, loss@max: 1.402330, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 91, LS: 0.003204, LT: 1.011959, Top1S: 100.000008, Top1T: 76.234299 +Train:epoch: 92, loss@min: 0.988756, loss@max: 1.396755, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 92, LS: 0.003193, LT: 1.013727, Top1S: 100.000008, Top1T: 75.935829 +Train:epoch: 93, loss@min: 0.984923, loss@max: 1.398600, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 0.003183, LT: 1.015791, Top1S: 100.000008, Top1T: 76.321358 +Train:epoch: 94, loss@min: 0.964368, loss@max: 1.391689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.003173, LT: 1.019124, Top1S: 100.000008, Top1T: 76.333794 +Train:epoch: 95, loss@min: 0.970063, loss@max: 1.376774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.003164, LT: 1.030330, Top1S: 100.000008, Top1T: 76.134811 +Train:epoch: 96, loss@min: 0.988176, loss@max: 1.385920, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.003155, LT: 1.028400, Top1S: 100.000008, Top1T: 76.259178 +Train:epoch: 97, loss@min: 1.006019, loss@max: 1.392357, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 97, LS: 0.003145, LT: 1.020212, Top1S: 100.000008, Top1T: 76.196991 +Train:epoch: 98, loss@min: 0.993311, loss@max: 1.393357, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 0.003139, LT: 1.021650, Top1S: 100.000008, Top1T: 76.134811 +Train:epoch: 99, loss@min: 0.982350, loss@max: 1.399135, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 0.003132, LT: 1.026738, Top1S: 100.000008, Top1T: 76.147247 +Train:epoch: 100, loss@min: 0.994274, loss@max: 1.384203, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.003121, LT: 1.029396, Top1S: 100.000008, Top1T: 76.346230 +Train:epoch: 101, loss@min: 0.978427, loss@max: 1.385994, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 0.003112, LT: 1.020595, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 102, loss@min: 0.964353, loss@max: 1.383126, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.003104, LT: 1.017941, Top1S: 100.000008, Top1T: 76.383537 +Train:epoch: 103, loss@min: 0.978979, loss@max: 1.381520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.003099, LT: 1.020422, Top1S: 100.000008, Top1T: 76.395973 +Train:epoch: 104, loss@min: 0.976277, loss@max: 1.393374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.003093, LT: 1.026157, Top1S: 100.000008, Top1T: 76.557648 +Train:epoch: 105, loss@min: 1.030474, loss@max: 1.397181, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 105, LS: 0.003088, LT: 1.027395, Top1S: 100.000008, Top1T: 76.570084Best acc: 76.570084 +Train:epoch: 106, loss@min: 1.028512, loss@max: 1.400305, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 106, LS: 0.003082, LT: 1.026813, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 107, loss@min: 1.024924, loss@max: 1.400434, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 107, LS: 0.003076, LT: 1.021296, Top1S: 100.000008, Top1T: 76.321358 +Train:epoch: 108, loss@min: 0.981160, loss@max: 1.389441, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.003071, LT: 1.019328, Top1S: 100.000008, Top1T: 76.408409 +Train:epoch: 109, loss@min: 0.962858, loss@max: 1.379790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.003065, LT: 1.018393, Top1S: 100.000008, Top1T: 76.495461 +Train:epoch: 110, loss@min: 0.971949, loss@max: 1.385781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.003059, LT: 1.019286, Top1S: 100.000008, Top1T: 76.383537 +Train:epoch: 111, loss@min: 0.971175, loss@max: 1.381259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.003054, LT: 1.024530, Top1S: 100.000008, Top1T: 76.333794 +Train:epoch: 112, loss@min: 0.982527, loss@max: 1.392556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.003048, LT: 1.029207, Top1S: 100.000008, Top1T: 76.221863 +Train:epoch: 113, loss@min: 0.988594, loss@max: 1.388801, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 113, LS: 0.003044, LT: 1.029648, Top1S: 100.000008, Top1T: 76.408409 +Train:epoch: 114, loss@min: 0.964594, loss@max: 1.387686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.003039, LT: 1.029957, Top1S: 100.000008, Top1T: 76.358665 +Train:epoch: 115, loss@min: 1.011756, loss@max: 1.396683, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 115, LS: 0.003035, LT: 1.030135, Top1S: 100.000008, Top1T: 76.520340 +Train:epoch: 116, loss@min: 0.966709, loss@max: 1.384656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.003030, LT: 1.030051, Top1S: 100.000008, Top1T: 76.532776 +Train:epoch: 117, loss@min: 0.983596, loss@max: 1.385522, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 117, LS: 0.003026, LT: 1.028667, Top1S: 100.000008, Top1T: 76.470589 +Train:epoch: 118, loss@min: 0.985088, loss@max: 1.394161, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 118, LS: 0.003023, LT: 1.030588, Top1S: 100.000008, Top1T: 76.520340 +Train:epoch: 119, loss@min: 0.997750, loss@max: 1.394177, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 119, LS: 0.003019, LT: 1.029214, Top1S: 100.000008, Top1T: 76.520340 +Train:epoch: 120, loss@min: 0.965560, loss@max: 1.382041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.003016, LT: 1.027528, Top1S: 100.000008, Top1T: 76.507896 +Train:epoch: 121, loss@min: 0.970268, loss@max: 1.386262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.003013, LT: 1.027837, Top1S: 100.000008, Top1T: 76.470589 +Train:epoch: 122, loss@min: 1.033223, loss@max: 1.406090, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 122, LS: 0.003011, LT: 1.029258, Top1S: 100.000008, Top1T: 76.445717 +Train:epoch: 123, loss@min: 0.972155, loss@max: 1.378526, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 123, LS: 0.003009, LT: 1.029747, Top1S: 100.000008, Top1T: 76.321358 +Train:epoch: 124, loss@min: 1.011313, loss@max: 1.398812, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 124, LS: 0.003007, LT: 1.029820, Top1S: 100.000008, Top1T: 76.196991 +Train:epoch: 125, loss@min: 0.983124, loss@max: 1.379104, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 0.003004, LT: 1.030822, Top1S: 100.000008, Top1T: 76.308922 +Train:epoch: 126, loss@min: 0.978318, loss@max: 1.392084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.003003, LT: 1.031840, Top1S: 100.000008, Top1T: 76.296486 +Train:epoch: 127, loss@min: 0.985812, loss@max: 1.380604, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.003001, LT: 1.030806, Top1S: 100.000008, Top1T: 76.333794 +Train:epoch: 128, loss@min: 0.952916, loss@max: 1.374042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.002999, LT: 1.029784, Top1S: 100.000008, Top1T: 76.333794 +Train:epoch: 129, loss@min: 0.973917, loss@max: 1.383548, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 129, LS: 0.002998, LT: 1.029794, Top1S: 100.000008, Top1T: 76.371101 +Train:epoch: 130, loss@min: 1.027833, loss@max: 1.394320, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 0.002996, LT: 1.030351, Top1S: 100.000008, Top1T: 76.284050 +Train:epoch: 131, loss@min: 0.959410, loss@max: 1.376054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.002995, LT: 1.030426, Top1S: 100.000008, Top1T: 76.271614 +Train:epoch: 132, loss@min: 0.982638, loss@max: 1.384445, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 132, LS: 0.002993, LT: 1.030510, Top1S: 100.000008, Top1T: 76.346230 +Train:epoch: 133, loss@min: 0.970779, loss@max: 1.390935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.002993, LT: 1.030916, Top1S: 100.000008, Top1T: 76.395973 +Train:epoch: 134, loss@min: 0.978844, loss@max: 1.383402, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 134, LS: 0.002992, LT: 1.031285, Top1S: 100.000008, Top1T: 76.420845 +Train:epoch: 135, loss@min: 0.974582, loss@max: 1.380458, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 135, LS: 0.002991, LT: 1.031408, Top1S: 100.000008, Top1T: 76.433281 +Train:epoch: 136, loss@min: 0.975038, loss@max: 1.390555, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 136, LS: 0.002990, LT: 1.031302, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 137, loss@min: 0.992459, loss@max: 1.393484, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 137, LS: 0.002989, LT: 1.031535, Top1S: 100.000008, Top1T: 76.433281 +Train:epoch: 138, loss@min: 0.971053, loss@max: 1.382685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.002989, LT: 1.031658, Top1S: 100.000008, Top1T: 76.433281 +Train:epoch: 139, loss@min: 0.962732, loss@max: 1.368724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.002988, LT: 1.031719, Top1S: 100.000008, Top1T: 76.408409 +Train:epoch: 140, loss@min: 0.969114, loss@max: 1.382827, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 140, LS: 0.002988, LT: 1.031932, Top1S: 100.000008, Top1T: 76.433281 +Train:epoch: 141, loss@min: 0.988406, loss@max: 1.395001, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 141, LS: 0.002988, LT: 1.032014, Top1S: 100.000008, Top1T: 76.470589 +Train:epoch: 142, loss@min: 0.982326, loss@max: 1.388657, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 142, LS: 0.002987, LT: 1.032040, Top1S: 100.000008, Top1T: 76.470589 +Train:epoch: 143, loss@min: 0.980699, loss@max: 1.381965, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.002987, LT: 1.031966, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 144, loss@min: 0.978498, loss@max: 1.387842, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 144, LS: 0.002987, LT: 1.031933, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 145, loss@min: 0.981722, loss@max: 1.393378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.002987, LT: 1.032037, Top1S: 100.000008, Top1T: 76.470589 +Train:epoch: 146, loss@min: 0.961669, loss@max: 1.381777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.002987, LT: 1.032057, Top1S: 100.000008, Top1T: 76.470589 +Train:epoch: 147, loss@min: 0.971346, loss@max: 1.379617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.002987, LT: 1.032050, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 148, loss@min: 0.980857, loss@max: 1.378022, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 148, LS: 0.002987, LT: 1.032051, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 149, loss@min: 0.973744, loss@max: 1.386509, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 149, LS: 0.002987, LT: 1.032055, Top1S: 100.000008, Top1T: 76.458153 +Train:epoch: 150, loss@min: 0.979626, loss@max: 1.387529, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 150, LS: 0.002987, LT: 1.032055, Top1S: 100.000008, Top1T: 76.458153 +------------------------------------------- +Tue Aug 1 06:35:14 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\ucf101_cars_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Aug 1 09:05:58 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\ucf101_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Aug 1 09:06:50 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.327009, loss@max: 1.569282, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.760455, loss@max: 1.555768, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.983386, loss@max: 1.463888, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.801842, loss@max: 1.516161, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.283616, loss@max: 1.453474, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.123204, loss@max: 1.491394, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.052908, loss@max: 1.528779, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.677894, loss@max: 1.482435, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.276714, loss@max: 1.419067, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.380077, loss@max: 1.489788, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.386132, loss@max: 1.507738, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.226510, loss@max: 1.496509, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.060979, loss@max: 1.443019, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.999741, loss@max: 1.426991, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.101454, loss@max: 1.435670, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.038071, loss@max: 1.412713, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.047915, loss@max: 1.375598, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.024422, loss@max: 1.380312, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.953635, loss@max: 1.339099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.038431, loss@max: 1.359341, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.954089, loss@max: 1.318599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.955116, loss@max: 1.304528, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.972499, loss@max: 1.313366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.029262, loss@max: 1.341789, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.947152, loss@max: 1.300827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.970156, loss@max: 1.318253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.998416, loss@max: 1.329769, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.003165, loss@max: 1.324572, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.031237, loss@max: 1.351354, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.959048, loss@max: 1.316012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.001702, loss@max: 1.334825, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.946680, loss@max: 1.309122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951368, loss@max: 1.313175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.970240, loss@max: 1.328355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969897, loss@max: 1.327671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.989084, loss@max: 1.333299, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.968310, loss@max: 1.325804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.954130, loss@max: 1.326262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.957104, loss@max: 1.332773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944953, loss@max: 1.334002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.952492, loss@max: 1.337053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.968655, loss@max: 1.346650, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.959572, loss@max: 1.335227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955687, loss@max: 1.346078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.001378, loss@max: 1.367658, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.949608, loss@max: 1.344496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.033391, loss@max: 1.393302, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.948493, loss@max: 1.348332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944572, loss@max: 1.353904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946677, loss@max: 1.352595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.955011, loss@max: 1.361397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.944651, loss@max: 1.361015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946254, loss@max: 1.353319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951325, loss@max: 1.361295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949781, loss@max: 1.350597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948401, loss@max: 1.352931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945366, loss@max: 1.362277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.946134, loss@max: 1.358198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.967018, loss@max: 1.370081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951541, loss@max: 1.365264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.946939, loss@max: 1.357642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950548, loss@max: 1.357755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955667, loss@max: 1.369554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949416, loss@max: 1.361720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.951462, loss@max: 1.354695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947398, loss@max: 1.361918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.948849, loss@max: 1.364098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949723, loss@max: 1.357657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.957044, loss@max: 1.360281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.959975, loss@max: 1.376407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.952939, loss@max: 1.361903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954408, loss@max: 1.360033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.958948, loss@max: 1.361964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.016879, loss@max: 1.375198, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.957866, loss@max: 1.365277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.956310, loss@max: 1.376846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965337, loss@max: 1.379972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947415, loss@max: 1.363750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954728, loss@max: 1.376030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944913, loss@max: 1.366656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000296, LT: 1.427877, Top1S: 99.999992, Top1T: 67.010307Best acc: 67.010307 +Train:epoch: 81, loss@min: 0.953346, loss@max: 1.367125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000296, LT: 1.428165, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 82, loss@min: 0.952441, loss@max: 1.364398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000295, LT: 1.428301, Top1S: 99.999992, Top1T: 67.063171Best acc: 67.063171 +Train:epoch: 83, loss@min: 0.947418, loss@max: 1.360468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000295, LT: 1.428365, Top1S: 99.999992, Top1T: 67.116043Best acc: 67.116043 +Train:epoch: 84, loss@min: 0.957264, loss@max: 1.364027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000294, LT: 1.428346, Top1S: 99.999992, Top1T: 67.116043 +Train:epoch: 85, loss@min: 0.951053, loss@max: 1.364638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000294, LT: 1.428414, Top1S: 99.999992, Top1T: 67.142479Best acc: 67.142479 +Train:epoch: 86, loss@min: 0.982861, loss@max: 1.387905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000293, LT: 1.428319, Top1S: 99.999992, Top1T: 67.168907Best acc: 67.168907 +Train:epoch: 87, loss@min: 0.951371, loss@max: 1.362896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000293, LT: 1.428135, Top1S: 99.999992, Top1T: 67.221779Best acc: 67.221779 +Train:epoch: 88, loss@min: 0.951064, loss@max: 1.359348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000293, LT: 1.428036, Top1S: 99.999992, Top1T: 67.142479 +Train:epoch: 89, loss@min: 0.953607, loss@max: 1.364724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000292, LT: 1.428049, Top1S: 99.999992, Top1T: 67.036743 +Train:epoch: 90, loss@min: 1.019277, loss@max: 1.395381, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 0.000292, LT: 1.428544, Top1S: 99.999992, Top1T: 67.036743 +Train:epoch: 91, loss@min: 0.948202, loss@max: 1.358542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000292, LT: 1.429038, Top1S: 99.999992, Top1T: 67.063171 +Train:epoch: 92, loss@min: 0.949854, loss@max: 1.363653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000291, LT: 1.429509, Top1S: 99.999992, Top1T: 67.036743 +Train:epoch: 93, loss@min: 0.953129, loss@max: 1.370128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000291, LT: 1.429962, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 94, loss@min: 0.949344, loss@max: 1.367001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000291, LT: 1.430572, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 95, loss@min: 0.948341, loss@max: 1.362887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000291, LT: 1.431212, Top1S: 99.999992, Top1T: 66.825272 +Train:epoch: 96, loss@min: 0.953279, loss@max: 1.372221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000290, LT: 1.431804, Top1S: 99.999992, Top1T: 66.825272 +Train:epoch: 97, loss@min: 0.950292, loss@max: 1.369386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000290, LT: 1.432226, Top1S: 99.999992, Top1T: 66.825272 +Train:epoch: 98, loss@min: 0.949089, loss@max: 1.364101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000290, LT: 1.432582, Top1S: 99.999992, Top1T: 66.851700 +Train:epoch: 99, loss@min: 0.951529, loss@max: 1.368586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000290, LT: 1.432920, Top1S: 99.999992, Top1T: 66.851700 +Train:epoch: 100, loss@min: 0.949895, loss@max: 1.365371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000289, LT: 1.433323, Top1S: 99.999992, Top1T: 66.851700 +Train:epoch: 101, loss@min: 0.953638, loss@max: 1.356396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000289, LT: 1.433756, Top1S: 99.999992, Top1T: 66.851700 +Train:epoch: 102, loss@min: 0.953482, loss@max: 1.364591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000289, LT: 1.433983, Top1S: 99.999992, Top1T: 66.904572 +Train:epoch: 103, loss@min: 0.948342, loss@max: 1.364164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000289, LT: 1.434205, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 104, loss@min: 0.963779, loss@max: 1.370225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000288, LT: 1.434360, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 105, loss@min: 0.952999, loss@max: 1.361752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000288, LT: 1.434463, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 106, loss@min: 0.958067, loss@max: 1.372319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000288, LT: 1.434576, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 107, loss@min: 0.944842, loss@max: 1.366000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000288, LT: 1.434654, Top1S: 99.999992, Top1T: 67.036743 +Train:epoch: 108, loss@min: 0.944878, loss@max: 1.361490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000288, LT: 1.434707, Top1S: 99.999992, Top1T: 67.036743 +Train:epoch: 109, loss@min: 0.951870, loss@max: 1.366024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000287, LT: 1.434776, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 110, loss@min: 0.947392, loss@max: 1.364053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000287, LT: 1.434806, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 111, loss@min: 0.947054, loss@max: 1.361969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000287, LT: 1.434859, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 112, loss@min: 0.962309, loss@max: 1.382594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000287, LT: 1.434941, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 113, loss@min: 0.948783, loss@max: 1.362628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000287, LT: 1.435033, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 114, loss@min: 0.961537, loss@max: 1.373935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000287, LT: 1.435089, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 115, loss@min: 0.949253, loss@max: 1.365513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000287, LT: 1.435113, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 116, loss@min: 0.950806, loss@max: 1.360856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000286, LT: 1.435146, Top1S: 99.999992, Top1T: 66.983871 +Train:epoch: 117, loss@min: 0.950363, loss@max: 1.358276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000286, LT: 1.435200, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 118, loss@min: 0.950661, loss@max: 1.363849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000286, LT: 1.435237, Top1S: 99.999992, Top1T: 67.010307 +Train:epoch: 119, loss@min: 0.949426, loss@max: 1.358730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000286, LT: 1.435259, Top1S: 99.999992, Top1T: 66.983871 +Train:epoch: 120, loss@min: 0.966396, loss@max: 1.374399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000286, LT: 1.435280, Top1S: 99.999992, Top1T: 66.983871 +Train:epoch: 121, loss@min: 0.952587, loss@max: 1.357948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000286, LT: 1.435298, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 122, loss@min: 0.948596, loss@max: 1.361201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000286, LT: 1.435319, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 123, loss@min: 0.952881, loss@max: 1.367344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000286, LT: 1.435331, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 124, loss@min: 0.959607, loss@max: 1.379969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000286, LT: 1.435392, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 125, loss@min: 0.952033, loss@max: 1.367159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000286, LT: 1.435467, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 126, loss@min: 0.951214, loss@max: 1.362578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000286, LT: 1.435519, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 127, loss@min: 0.950002, loss@max: 1.361066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000286, LT: 1.435543, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 128, loss@min: 0.945728, loss@max: 1.365402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000286, LT: 1.435553, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 129, loss@min: 0.949062, loss@max: 1.360950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000286, LT: 1.435553, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 130, loss@min: 0.954942, loss@max: 1.368386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000285, LT: 1.435540, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 131, loss@min: 0.947192, loss@max: 1.367982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000285, LT: 1.435528, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 132, loss@min: 0.950597, loss@max: 1.365179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000285, LT: 1.435510, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 133, loss@min: 0.969810, loss@max: 1.373047, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 133, LS: 0.000285, LT: 1.435424, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 134, loss@min: 0.962353, loss@max: 1.372639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000285, LT: 1.435314, Top1S: 99.999992, Top1T: 66.931007 +Train:epoch: 135, loss@min: 0.948763, loss@max: 1.365562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000285, LT: 1.435232, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 136, loss@min: 0.953903, loss@max: 1.369146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000285, LT: 1.435175, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 137, loss@min: 0.951161, loss@max: 1.367242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000285, LT: 1.435139, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 138, loss@min: 0.960414, loss@max: 1.372611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000285, LT: 1.435102, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 139, loss@min: 0.947337, loss@max: 1.359770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000285, LT: 1.435074, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 140, loss@min: 0.947405, loss@max: 1.365927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000285, LT: 1.435055, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 141, loss@min: 0.949211, loss@max: 1.361503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000285, LT: 1.435042, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 142, loss@min: 0.950213, loss@max: 1.361915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000285, LT: 1.435030, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 143, loss@min: 0.948416, loss@max: 1.362233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000285, LT: 1.435021, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 144, loss@min: 0.949187, loss@max: 1.364363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000285, LT: 1.435015, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 145, loss@min: 0.949138, loss@max: 1.365697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000285, LT: 1.435011, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 146, loss@min: 0.945537, loss@max: 1.362230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000285, LT: 1.435009, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 147, loss@min: 0.947612, loss@max: 1.367323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000285, LT: 1.435008, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 148, loss@min: 0.951680, loss@max: 1.361902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000285, LT: 1.435008, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 149, loss@min: 0.948925, loss@max: 1.359436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000285, LT: 1.435008, Top1S: 99.999992, Top1T: 66.957436 +Train:epoch: 150, loss@min: 0.949020, loss@max: 1.357986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000285, LT: 1.435008, Top1S: 99.999992, Top1T: 66.957436 +------------------------------------------- +Tue Aug 1 10:43:39 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\ucf101_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Aug 1 11:19:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.157560, loss@max: 1.519735, Top1S acc: 100.000000, Top1T acc: 59.900990 +Train:epoch: 2, loss@min: 3.698043, loss@max: 1.532525, Top1S acc: 100.000000, Top1T acc: 63.861385 +Train:epoch: 3, loss@min: 3.129895, loss@max: 1.499499, Top1S acc: 100.000000, Top1T acc: 70.792076 +Train:epoch: 4, loss@min: 2.945671, loss@max: 1.561549, Top1S acc: 100.000000, Top1T acc: 69.306931 +Train:epoch: 5, loss@min: 2.427881, loss@max: 1.519697, Top1S acc: 100.000000, Top1T acc: 77.227722 +Train:epoch: 6, loss@min: 2.229782, loss@max: 1.543992, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 7, loss@min: 1.957607, loss@max: 1.547665, Top1S acc: 100.000000, Top1T acc: 84.653465 +Train:epoch: 8, loss@min: 1.836846, loss@max: 1.564204, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 9, loss@min: 1.668462, loss@max: 1.575559, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 10, loss@min: 1.467014, loss@max: 1.546014, Top1S acc: 100.000000, Top1T acc: 91.584160 +Train:epoch: 11, loss@min: 1.333223, loss@max: 1.527730, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.315876, loss@max: 1.545866, Top1S acc: 100.000000, Top1T acc: 94.554451 +Train:epoch: 13, loss@min: 1.183178, loss@max: 1.509043, Top1S acc: 100.000000, Top1T acc: 96.534653 +Train:epoch: 14, loss@min: 1.166138, loss@max: 1.504258, Top1S acc: 100.000000, Top1T acc: 96.534653 +Train:epoch: 15, loss@min: 1.148639, loss@max: 1.497336, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 16, loss@min: 1.140096, loss@max: 1.486025, Top1S acc: 100.000000, Top1T acc: 97.524750 +Train:epoch: 17, loss@min: 1.150894, loss@max: 1.471514, Top1S acc: 100.000000, Top1T acc: 97.524750 +Train:epoch: 18, loss@min: 1.046105, loss@max: 1.433648, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 1.180116, loss@max: 1.449203, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 20, loss@min: 1.037836, loss@max: 1.396267, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 1.064111, loss@max: 1.393635, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 22, loss@min: 1.020976, loss@max: 1.367702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.013406, loss@max: 1.354054, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 24, loss@min: 1.056355, loss@max: 1.351999, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 25, loss@min: 1.007096, loss@max: 1.325578, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 26, loss@min: 1.039718, loss@max: 1.342966, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 27, loss@min: 1.042281, loss@max: 1.342264, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 28, loss@min: 1.009513, loss@max: 1.335015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.989026, loss@max: 1.322058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.007333, loss@max: 1.332911, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 31, loss@min: 1.010622, loss@max: 1.340875, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.987579, loss@max: 1.335751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.989807, loss@max: 1.338356, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 34, loss@min: 1.001956, loss@max: 1.348954, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 35, loss@min: 1.003930, loss@max: 1.351623, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 36, loss@min: 0.977573, loss@max: 1.340488, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 37, loss@min: 0.976636, loss@max: 1.345764, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 38, loss@min: 0.999449, loss@max: 1.355666, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 39, loss@min: 1.001795, loss@max: 1.375026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.964598, loss@max: 1.351796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.959980, loss@max: 1.357036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.977809, loss@max: 1.364176, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 43, loss@min: 0.960319, loss@max: 1.361676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954392, loss@max: 1.357016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.965428, loss@max: 1.366743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.968040, loss@max: 1.364299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.955439, loss@max: 1.354991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.955496, loss@max: 1.365341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.957922, loss@max: 1.365669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.962002, loss@max: 1.372867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.959519, loss@max: 1.373340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.960877, loss@max: 1.368993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.968345, loss@max: 1.374161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.969220, loss@max: 1.372755, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 55, loss@min: 0.958342, loss@max: 1.363343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.961231, loss@max: 1.368406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.955856, loss@max: 1.362779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.949887, loss@max: 1.358848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.996347, loss@max: 1.372656, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 60, loss@min: 0.971380, loss@max: 1.377803, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 61, loss@min: 0.964025, loss@max: 1.377876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.958601, loss@max: 1.369090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.959301, loss@max: 1.367911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.999066, loss@max: 1.387190, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 65, loss@min: 0.955748, loss@max: 1.362392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.963655, loss@max: 1.368822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.986123, loss@max: 1.381014, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 68, loss@min: 0.952987, loss@max: 1.363773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956634, loss@max: 1.368995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955318, loss@max: 1.367481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.953502, loss@max: 1.367896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.959052, loss@max: 1.371915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954368, loss@max: 1.365273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.957617, loss@max: 1.370000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.957248, loss@max: 1.370776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.959224, loss@max: 1.372660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.956828, loss@max: 1.366731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954373, loss@max: 1.369464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.959826, loss@max: 1.376168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.954283, loss@max: 1.370563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000297, LT: 1.236292, Top1S: 99.999992, Top1T: 70.922546Best acc: 70.922546 +Train:epoch: 81, loss@min: 0.954061, loss@max: 1.369148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000297, LT: 1.236517, Top1S: 99.999992, Top1T: 70.975410Best acc: 70.975410 +Train:epoch: 82, loss@min: 0.955183, loss@max: 1.373955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000296, LT: 1.236867, Top1S: 99.999992, Top1T: 70.975410 +Train:epoch: 83, loss@min: 0.950768, loss@max: 1.366473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000296, LT: 1.237240, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 84, loss@min: 0.957544, loss@max: 1.370142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000295, LT: 1.237469, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 85, loss@min: 0.954182, loss@max: 1.368117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000295, LT: 1.237862, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 86, loss@min: 0.951751, loss@max: 1.364845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000294, LT: 1.238224, Top1S: 99.999992, Top1T: 70.896111 +Train:epoch: 87, loss@min: 0.956585, loss@max: 1.371708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000294, LT: 1.239049, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 88, loss@min: 0.962459, loss@max: 1.377040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000294, LT: 1.239454, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 89, loss@min: 0.951610, loss@max: 1.368492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000293, LT: 1.239856, Top1S: 99.999992, Top1T: 70.843246 +Train:epoch: 90, loss@min: 0.952197, loss@max: 1.369358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000293, LT: 1.240197, Top1S: 99.999992, Top1T: 70.922546 +Train:epoch: 91, loss@min: 0.958222, loss@max: 1.374034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000292, LT: 1.240497, Top1S: 99.999992, Top1T: 70.843246 +Train:epoch: 92, loss@min: 0.957673, loss@max: 1.368033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000292, LT: 1.240906, Top1S: 99.999992, Top1T: 70.896111 +Train:epoch: 93, loss@min: 0.954952, loss@max: 1.367782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000292, LT: 1.241079, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 94, loss@min: 0.958577, loss@max: 1.373800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000291, LT: 1.241308, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 95, loss@min: 0.956552, loss@max: 1.369394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000291, LT: 1.241443, Top1S: 99.999992, Top1T: 70.975410 +Train:epoch: 96, loss@min: 0.955130, loss@max: 1.370579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000291, LT: 1.241618, Top1S: 99.999992, Top1T: 70.869675 +Train:epoch: 97, loss@min: 0.951995, loss@max: 1.371225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000290, LT: 1.241673, Top1S: 99.999992, Top1T: 70.896111 +Train:epoch: 98, loss@min: 0.955338, loss@max: 1.370253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000290, LT: 1.241753, Top1S: 99.999992, Top1T: 70.896111 +Train:epoch: 99, loss@min: 0.951012, loss@max: 1.363494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000290, LT: 1.241829, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 100, loss@min: 0.960770, loss@max: 1.377753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000289, LT: 1.241831, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 101, loss@min: 0.963846, loss@max: 1.376109, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 101, LS: 0.000289, LT: 1.241924, Top1S: 99.999992, Top1T: 70.922546 +Train:epoch: 102, loss@min: 0.961754, loss@max: 1.378012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000289, LT: 1.241938, Top1S: 99.999992, Top1T: 70.975410 +Train:epoch: 103, loss@min: 0.957710, loss@max: 1.370097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000289, LT: 1.241871, Top1S: 99.999992, Top1T: 71.028282Best acc: 71.028282 +Train:epoch: 104, loss@min: 0.955244, loss@max: 1.367772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000289, LT: 1.241820, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 105, loss@min: 0.951757, loss@max: 1.362096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000288, LT: 1.241717, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 106, loss@min: 0.953968, loss@max: 1.369407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000288, LT: 1.241660, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 107, loss@min: 0.966100, loss@max: 1.373139, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 107, LS: 0.000288, LT: 1.241573, Top1S: 99.999992, Top1T: 70.896111 +Train:epoch: 108, loss@min: 0.948167, loss@max: 1.363676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000288, LT: 1.241520, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 109, loss@min: 0.950988, loss@max: 1.368779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000288, LT: 1.241540, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 110, loss@min: 0.951032, loss@max: 1.369362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000287, LT: 1.241610, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 111, loss@min: 0.954138, loss@max: 1.369400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000287, LT: 1.241596, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 112, loss@min: 0.964222, loss@max: 1.382339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000287, LT: 1.241446, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 113, loss@min: 0.953017, loss@max: 1.367661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000287, LT: 1.241275, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 114, loss@min: 0.954857, loss@max: 1.367674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000287, LT: 1.241081, Top1S: 99.999992, Top1T: 71.081146Best acc: 71.081146 +Train:epoch: 115, loss@min: 0.991249, loss@max: 1.388714, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 115, LS: 0.000286, LT: 1.240729, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 116, loss@min: 0.961959, loss@max: 1.372221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000286, LT: 1.240433, Top1S: 99.999992, Top1T: 71.001846 +Train:epoch: 117, loss@min: 0.954821, loss@max: 1.370273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000286, LT: 1.240166, Top1S: 99.999992, Top1T: 70.975410 +Train:epoch: 118, loss@min: 0.951670, loss@max: 1.362703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000286, LT: 1.239954, Top1S: 99.999992, Top1T: 70.948982 +Train:epoch: 119, loss@min: 0.954921, loss@max: 1.367521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000286, LT: 1.239771, Top1S: 99.999992, Top1T: 70.975410 +Train:epoch: 120, loss@min: 0.949782, loss@max: 1.366996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000286, LT: 1.239603, Top1S: 99.999992, Top1T: 71.001846 +Train:epoch: 121, loss@min: 0.955591, loss@max: 1.369404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000286, LT: 1.239461, Top1S: 99.999992, Top1T: 71.001846 +Train:epoch: 122, loss@min: 0.955080, loss@max: 1.369295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000286, LT: 1.239315, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 123, loss@min: 0.956662, loss@max: 1.370627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000285, LT: 1.239074, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 124, loss@min: 0.953342, loss@max: 1.369030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000285, LT: 1.238898, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 125, loss@min: 0.958638, loss@max: 1.375528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000285, LT: 1.238757, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 126, loss@min: 0.963225, loss@max: 1.375615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000285, LT: 1.238637, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 127, loss@min: 0.951362, loss@max: 1.364410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000285, LT: 1.238551, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 128, loss@min: 0.950038, loss@max: 1.370732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000285, LT: 1.238462, Top1S: 99.999992, Top1T: 71.081146 +Train:epoch: 129, loss@min: 0.953108, loss@max: 1.374251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000285, LT: 1.238380, Top1S: 99.999992, Top1T: 71.081146 +Train:epoch: 130, loss@min: 0.952459, loss@max: 1.368767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000285, LT: 1.238300, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 131, loss@min: 0.952209, loss@max: 1.368260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000285, LT: 1.238248, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 132, loss@min: 0.954892, loss@max: 1.370921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000285, LT: 1.238198, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 133, loss@min: 0.954192, loss@max: 1.368075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000285, LT: 1.238165, Top1S: 99.999992, Top1T: 71.054718 +Train:epoch: 134, loss@min: 0.951205, loss@max: 1.365998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000285, LT: 1.238140, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 135, loss@min: 0.955053, loss@max: 1.368334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000285, LT: 1.238122, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 136, loss@min: 0.949871, loss@max: 1.362981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000285, LT: 1.238105, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 137, loss@min: 0.978202, loss@max: 1.379443, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 137, LS: 0.000285, LT: 1.238080, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 138, loss@min: 0.950038, loss@max: 1.366961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000285, LT: 1.238068, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 139, loss@min: 0.962230, loss@max: 1.377843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000285, LT: 1.238048, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 140, loss@min: 1.034620, loss@max: 1.392987, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 140, LS: 0.000285, LT: 1.238041, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 141, loss@min: 0.960345, loss@max: 1.374729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000285, LT: 1.238042, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 142, loss@min: 0.950409, loss@max: 1.367693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000285, LT: 1.238042, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 143, loss@min: 0.952143, loss@max: 1.368396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000285, LT: 1.238038, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 144, loss@min: 0.969292, loss@max: 1.379729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000285, LT: 1.238033, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 145, loss@min: 0.972989, loss@max: 1.373450, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 145, LS: 0.000285, LT: 1.238028, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 146, loss@min: 0.962222, loss@max: 1.372343, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 146, LS: 0.000285, LT: 1.238024, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 147, loss@min: 0.960951, loss@max: 1.371569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000285, LT: 1.238022, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 148, loss@min: 0.955949, loss@max: 1.370164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000285, LT: 1.238021, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 149, loss@min: 0.966247, loss@max: 1.373375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000285, LT: 1.238021, Top1S: 99.999992, Top1T: 71.028282 +Train:epoch: 150, loss@min: 0.955401, loss@max: 1.366964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000285, LT: 1.238021, Top1S: 99.999992, Top1T: 71.028282 +------------------------------------------- +Tue Aug 1 12:57:43 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\ucf101_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Aug 1 13:23:15 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.751199, loss@max: 1.495115, Top1S acc: 100.000000, Top1T acc: 65.234375 +Train:epoch: 2, loss@min: 2.898060, loss@max: 1.472864, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 3, loss@min: 2.827903, loss@max: 1.584736, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 4, loss@min: 2.598938, loss@max: 1.639440, Top1S acc: 100.000000, Top1T acc: 77.343750 +Train:epoch: 5, loss@min: 2.021797, loss@max: 1.562901, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 6, loss@min: 1.974945, loss@max: 1.610224, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 7, loss@min: 1.740143, loss@max: 1.577163, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 8, loss@min: 1.740283, loss@max: 1.597965, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 9, loss@min: 1.544779, loss@max: 1.543455, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 10, loss@min: 1.484463, loss@max: 1.524989, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 11, loss@min: 1.486674, loss@max: 1.515370, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 12, loss@min: 1.244627, loss@max: 1.409818, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 13, loss@min: 1.333361, loss@max: 1.435902, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 14, loss@min: 1.260785, loss@max: 1.387166, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 15, loss@min: 1.291435, loss@max: 1.401040, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 16, loss@min: 1.237996, loss@max: 1.390106, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 17, loss@min: 1.138848, loss@max: 1.360747, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.089622, loss@max: 1.330859, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 1.101410, loss@max: 1.344747, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.182144, loss@max: 1.372805, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 21, loss@min: 1.122545, loss@max: 1.356703, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 22, loss@min: 1.092670, loss@max: 1.356670, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.018088, loss@max: 1.339832, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.047826, loss@max: 1.367604, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 25, loss@min: 1.037332, loss@max: 1.360496, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 1.016986, loss@max: 1.354518, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 27, loss@min: 1.043646, loss@max: 1.369604, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.984849, loss@max: 1.345786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.987032, loss@max: 1.348802, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 0.982467, loss@max: 1.345703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.009997, loss@max: 1.359641, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 0.981954, loss@max: 1.350429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.002366, loss@max: 1.354174, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.008559, loss@max: 1.358711, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 35, loss@min: 0.981787, loss@max: 1.358360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.989063, loss@max: 1.358880, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.059340, loss@max: 1.380428, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 38, loss@min: 0.966391, loss@max: 1.358344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.968071, loss@max: 1.355974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.991216, loss@max: 1.361134, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.988756, loss@max: 1.374696, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.968483, loss@max: 1.361200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.962545, loss@max: 1.351207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.974420, loss@max: 1.364360, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.986884, loss@max: 1.372686, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.977443, loss@max: 1.382340, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.963387, loss@max: 1.363978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.010984, loss@max: 1.375398, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 1.022365, loss@max: 1.387102, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 0.984722, loss@max: 1.371932, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 51, loss@min: 0.980992, loss@max: 1.378248, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.980463, loss@max: 1.372099, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.964176, loss@max: 1.365510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.966954, loss@max: 1.373897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.963432, loss@max: 1.373523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.956167, loss@max: 1.365517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.968812, loss@max: 1.373911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.988801, loss@max: 1.379859, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.964656, loss@max: 1.375441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.967432, loss@max: 1.374348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.974897, loss@max: 1.383433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.968145, loss@max: 1.377599, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.964630, loss@max: 1.378073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.962502, loss@max: 1.373458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.957602, loss@max: 1.368985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.957366, loss@max: 1.370978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.961416, loss@max: 1.372375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.974624, loss@max: 1.375391, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.957678, loss@max: 1.370780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955000, loss@max: 1.359722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957025, loss@max: 1.366845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.958210, loss@max: 1.374858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.972272, loss@max: 1.379516, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 74, loss@min: 0.954886, loss@max: 1.368076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.962763, loss@max: 1.368382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964712, loss@max: 1.373785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.960366, loss@max: 1.372282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.958081, loss@max: 1.374447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.973415, loss@max: 1.377287, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 80, loss@min: 0.962173, loss@max: 1.375221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000272, LT: 1.103156, Top1S: 99.999992, Top1T: 73.883156Best acc: 73.883156 +Train:epoch: 81, loss@min: 0.954730, loss@max: 1.370160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000271, LT: 1.102831, Top1S: 99.999992, Top1T: 73.962463Best acc: 73.962463 +Train:epoch: 82, loss@min: 0.955856, loss@max: 1.370355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000271, LT: 1.102610, Top1S: 99.999992, Top1T: 74.041763Best acc: 74.041763 +Train:epoch: 83, loss@min: 0.960080, loss@max: 1.367724, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.000270, LT: 1.102380, Top1S: 99.999992, Top1T: 74.068199Best acc: 74.068199 +Train:epoch: 84, loss@min: 0.957945, loss@max: 1.375192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000270, LT: 1.103416, Top1S: 99.999992, Top1T: 74.041763 +Train:epoch: 85, loss@min: 0.967887, loss@max: 1.381841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000269, LT: 1.104000, Top1S: 99.999992, Top1T: 74.094627Best acc: 74.094627 +Train:epoch: 86, loss@min: 0.976373, loss@max: 1.375619, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.000269, LT: 1.104441, Top1S: 99.999992, Top1T: 74.173935Best acc: 74.173935 +Train:epoch: 87, loss@min: 0.955342, loss@max: 1.369236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000268, LT: 1.104571, Top1S: 99.999992, Top1T: 74.041763 +Train:epoch: 88, loss@min: 0.966800, loss@max: 1.377807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000268, LT: 1.104973, Top1S: 99.999992, Top1T: 74.094627 +Train:epoch: 89, loss@min: 0.955187, loss@max: 1.369439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000267, LT: 1.105350, Top1S: 99.999992, Top1T: 74.094627 +Train:epoch: 90, loss@min: 0.958057, loss@max: 1.370738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000267, LT: 1.105870, Top1S: 99.999992, Top1T: 73.988892 +Train:epoch: 91, loss@min: 0.956388, loss@max: 1.373286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000266, LT: 1.106671, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 92, loss@min: 0.971309, loss@max: 1.382033, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.000266, LT: 1.107240, Top1S: 99.999992, Top1T: 73.988892 +Train:epoch: 93, loss@min: 0.953237, loss@max: 1.366602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000265, LT: 1.107463, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 94, loss@min: 0.961847, loss@max: 1.374817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000265, LT: 1.107671, Top1S: 99.999992, Top1T: 74.094627 +Train:epoch: 95, loss@min: 0.958874, loss@max: 1.374177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000264, LT: 1.109018, Top1S: 99.999992, Top1T: 73.988892 +Train:epoch: 96, loss@min: 0.967329, loss@max: 1.380264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000264, LT: 1.110122, Top1S: 99.999992, Top1T: 73.936028 +Train:epoch: 97, loss@min: 0.956549, loss@max: 1.369837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000264, LT: 1.111365, Top1S: 99.999992, Top1T: 73.988892 +Train:epoch: 98, loss@min: 0.963311, loss@max: 1.373492, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 0.000263, LT: 1.112424, Top1S: 99.999992, Top1T: 73.988892 +Train:epoch: 99, loss@min: 0.959651, loss@max: 1.373038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000263, LT: 1.113279, Top1S: 99.999992, Top1T: 73.883156 +Train:epoch: 100, loss@min: 0.953237, loss@max: 1.367091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000262, LT: 1.113934, Top1S: 99.999992, Top1T: 73.936028 +Train:epoch: 101, loss@min: 0.953542, loss@max: 1.368567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000262, LT: 1.114673, Top1S: 99.999992, Top1T: 73.909592 +Train:epoch: 102, loss@min: 0.965132, loss@max: 1.375809, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.000262, LT: 1.114607, Top1S: 99.999992, Top1T: 73.883156 +Train:epoch: 103, loss@min: 0.957034, loss@max: 1.373786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000261, LT: 1.114885, Top1S: 99.999992, Top1T: 73.936028 +Train:epoch: 104, loss@min: 0.961585, loss@max: 1.373335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000261, LT: 1.116340, Top1S: 99.999992, Top1T: 73.962463 +Train:epoch: 105, loss@min: 0.960458, loss@max: 1.369097, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 105, LS: 0.000261, LT: 1.118146, Top1S: 99.999992, Top1T: 74.041763 +Train:epoch: 106, loss@min: 0.956778, loss@max: 1.370642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000260, LT: 1.119510, Top1S: 99.999992, Top1T: 73.962463 +Train:epoch: 107, loss@min: 0.957063, loss@max: 1.372270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000260, LT: 1.120822, Top1S: 99.999992, Top1T: 73.909592 +Train:epoch: 108, loss@min: 0.952986, loss@max: 1.371228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000260, LT: 1.121877, Top1S: 99.999992, Top1T: 73.883156 +Train:epoch: 109, loss@min: 0.952775, loss@max: 1.363955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000259, LT: 1.122547, Top1S: 99.999992, Top1T: 73.856728 +Train:epoch: 110, loss@min: 0.963187, loss@max: 1.374858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000259, LT: 1.123108, Top1S: 99.999992, Top1T: 73.883156 +Train:epoch: 111, loss@min: 0.982782, loss@max: 1.377088, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 111, LS: 0.000259, LT: 1.123665, Top1S: 99.999992, Top1T: 73.909592 +Train:epoch: 112, loss@min: 0.963993, loss@max: 1.377580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000259, LT: 1.123898, Top1S: 99.999992, Top1T: 73.856728 +Train:epoch: 113, loss@min: 0.959926, loss@max: 1.370922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000259, LT: 1.123971, Top1S: 99.999992, Top1T: 73.830292 +Train:epoch: 114, loss@min: 0.961769, loss@max: 1.376512, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 0.000258, LT: 1.124012, Top1S: 99.999992, Top1T: 73.803856 +Train:epoch: 115, loss@min: 0.963706, loss@max: 1.374074, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 115, LS: 0.000258, LT: 1.123879, Top1S: 99.999992, Top1T: 73.803856 +Train:epoch: 116, loss@min: 0.951519, loss@max: 1.366755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000258, LT: 1.123699, Top1S: 99.999992, Top1T: 73.724556 +Train:epoch: 117, loss@min: 0.955350, loss@max: 1.369335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000258, LT: 1.123441, Top1S: 99.999992, Top1T: 73.724556 +Train:epoch: 118, loss@min: 0.951662, loss@max: 1.362818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000258, LT: 1.123387, Top1S: 99.999992, Top1T: 73.750984 +Train:epoch: 119, loss@min: 0.956556, loss@max: 1.372897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000258, LT: 1.123252, Top1S: 99.999992, Top1T: 73.830292 +Train:epoch: 120, loss@min: 0.958844, loss@max: 1.372494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000257, LT: 1.123237, Top1S: 99.999992, Top1T: 73.830292 +Train:epoch: 121, loss@min: 0.952858, loss@max: 1.366782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000257, LT: 1.123248, Top1S: 99.999992, Top1T: 73.830292 +Train:epoch: 122, loss@min: 0.953657, loss@max: 1.370283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000257, LT: 1.123324, Top1S: 99.999992, Top1T: 73.803856 +Train:epoch: 123, loss@min: 0.950177, loss@max: 1.368165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000257, LT: 1.123464, Top1S: 99.999992, Top1T: 73.856728 +Train:epoch: 124, loss@min: 0.954480, loss@max: 1.368985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000257, LT: 1.123532, Top1S: 99.999992, Top1T: 73.856728 +Train:epoch: 125, loss@min: 0.957304, loss@max: 1.368474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000257, LT: 1.123533, Top1S: 99.999992, Top1T: 73.883156 +Train:epoch: 126, loss@min: 0.952776, loss@max: 1.369045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000257, LT: 1.123497, Top1S: 99.999992, Top1T: 73.883156 +Train:epoch: 127, loss@min: 0.964635, loss@max: 1.374209, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.000257, LT: 1.123560, Top1S: 99.999992, Top1T: 73.909592 +Train:epoch: 128, loss@min: 0.951948, loss@max: 1.367014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000257, LT: 1.123671, Top1S: 99.999992, Top1T: 73.962463 +Train:epoch: 129, loss@min: 0.956918, loss@max: 1.370727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000257, LT: 1.123765, Top1S: 99.999992, Top1T: 73.962463 +Train:epoch: 130, loss@min: 0.953240, loss@max: 1.366233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000256, LT: 1.123860, Top1S: 99.999992, Top1T: 73.962463 +Train:epoch: 131, loss@min: 0.951526, loss@max: 1.368817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000256, LT: 1.123684, Top1S: 99.999992, Top1T: 74.041763 +Train:epoch: 132, loss@min: 0.954455, loss@max: 1.365919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000256, LT: 1.123592, Top1S: 99.999992, Top1T: 74.041763 +Train:epoch: 133, loss@min: 0.957169, loss@max: 1.375327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000256, LT: 1.123511, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 134, loss@min: 0.951055, loss@max: 1.364769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000256, LT: 1.123440, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 135, loss@min: 0.958444, loss@max: 1.370905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000256, LT: 1.123357, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 136, loss@min: 0.955766, loss@max: 1.368654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000256, LT: 1.123311, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 137, loss@min: 0.952961, loss@max: 1.369765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000256, LT: 1.123274, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 138, loss@min: 0.959365, loss@max: 1.371758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000256, LT: 1.123259, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 139, loss@min: 0.960205, loss@max: 1.373532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000256, LT: 1.123251, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 140, loss@min: 0.951433, loss@max: 1.366411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000256, LT: 1.123242, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 141, loss@min: 0.957251, loss@max: 1.368472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000256, LT: 1.123230, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 142, loss@min: 0.951285, loss@max: 1.366463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000256, LT: 1.123221, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 143, loss@min: 0.952801, loss@max: 1.363788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000256, LT: 1.123212, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 144, loss@min: 0.954406, loss@max: 1.366890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000256, LT: 1.123204, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 145, loss@min: 0.954613, loss@max: 1.369341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000256, LT: 1.123201, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 146, loss@min: 0.951498, loss@max: 1.366253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000256, LT: 1.123197, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 147, loss@min: 0.952706, loss@max: 1.368770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000256, LT: 1.123194, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 148, loss@min: 0.953802, loss@max: 1.366585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000256, LT: 1.123192, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 149, loss@min: 0.950436, loss@max: 1.365647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000256, LT: 1.123192, Top1S: 99.999992, Top1T: 74.068199 +Train:epoch: 150, loss@min: 0.955371, loss@max: 1.369771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000256, LT: 1.123192, Top1S: 99.999992, Top1T: 74.068199 +------------------------------------------- +Tue Aug 1 15:06:58 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\ucf101_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Aug 1 15:09:06 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.609270, loss@max: 1.585413, Top1S acc: 100.000000, Top1T acc: 62.109375 +Train:epoch: 2, loss@min: 2.657713, loss@max: 1.581160, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 3, loss@min: 2.694125, loss@max: 1.704423, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 4, loss@min: 2.481913, loss@max: 1.707538, Top1S acc: 100.000000, Top1T acc: 76.171875 +Train:epoch: 5, loss@min: 1.880285, loss@max: 1.572940, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 6, loss@min: 1.921717, loss@max: 1.569491, Top1S acc: 100.000000, Top1T acc: 82.421875 +Train:epoch: 7, loss@min: 1.820046, loss@max: 1.529960, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 8, loss@min: 1.738253, loss@max: 1.491759, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 9, loss@min: 1.714234, loss@max: 1.482635, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 10, loss@min: 1.564917, loss@max: 1.444211, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 11, loss@min: 1.585323, loss@max: 1.458100, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 12, loss@min: 1.452466, loss@max: 1.439110, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 13, loss@min: 1.426282, loss@max: 1.430874, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 14, loss@min: 1.241668, loss@max: 1.384592, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 15, loss@min: 1.305035, loss@max: 1.419016, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 16, loss@min: 1.289249, loss@max: 1.415214, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 17, loss@min: 1.278155, loss@max: 1.416503, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 18, loss@min: 1.141933, loss@max: 1.379787, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 1.121459, loss@max: 1.384481, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.179690, loss@max: 1.407926, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 21, loss@min: 1.164616, loss@max: 1.393516, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 22, loss@min: 1.116230, loss@max: 1.390996, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 23, loss@min: 1.107333, loss@max: 1.384281, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 24, loss@min: 1.072750, loss@max: 1.365194, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 25, loss@min: 1.079916, loss@max: 1.375675, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.043949, loss@max: 1.371385, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.058950, loss@max: 1.384807, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 1.017401, loss@max: 1.364977, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 1.130978, loss@max: 1.414579, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 30, loss@min: 1.018006, loss@max: 1.376740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.012396, loss@max: 1.369483, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 1.018070, loss@max: 1.370740, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 33, loss@min: 1.000846, loss@max: 1.368798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.019808, loss@max: 1.381306, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 1.061464, loss@max: 1.413577, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.019274, loss@max: 1.383666, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.002606, loss@max: 1.368805, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.033471, loss@max: 1.392069, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 39, loss@min: 1.012143, loss@max: 1.378400, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 40, loss@min: 1.014554, loss@max: 1.384004, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.037804, loss@max: 1.395932, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 42, loss@min: 1.015429, loss@max: 1.392283, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 43, loss@min: 1.008228, loss@max: 1.401682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 1.001084, loss@max: 1.387572, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 1.000711, loss@max: 1.392971, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.984674, loss@max: 1.395269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.973842, loss@max: 1.372566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.008426, loss@max: 1.376110, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 1.002170, loss@max: 1.394609, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 0.957588, loss@max: 1.386132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.027835, loss@max: 1.406597, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 52, loss@min: 1.025417, loss@max: 1.407594, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 53, loss@min: 1.030107, loss@max: 1.396688, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 54, loss@min: 0.983591, loss@max: 1.380792, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.003585, loss@max: 1.399712, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 1.032887, loss@max: 1.403503, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 57, loss@min: 0.989004, loss@max: 1.390093, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 58, loss@min: 1.008046, loss@max: 1.386558, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.973521, loss@max: 1.400649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.991606, loss@max: 1.405234, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 61, loss@min: 1.004421, loss@max: 1.385164, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 62, loss@min: 0.986454, loss@max: 1.385098, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.968077, loss@max: 1.383343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.964448, loss@max: 1.378715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.003604, loss@max: 1.391876, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.974537, loss@max: 1.382372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.990646, loss@max: 1.380804, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.969740, loss@max: 1.372049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.953841, loss@max: 1.388046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.970896, loss@max: 1.380079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.990231, loss@max: 1.379568, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.955390, loss@max: 1.368022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.989388, loss@max: 1.387410, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 74, loss@min: 0.970510, loss@max: 1.382222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.960502, loss@max: 1.378399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.976304, loss@max: 1.385904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.968324, loss@max: 1.382424, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.958422, loss@max: 1.372239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.959887, loss@max: 1.365549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.989478, loss@max: 1.388315, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 80, LS: 0.000253, LT: 0.995517, Top1S: 99.999992, Top1T: 76.024315Best acc: 76.024315 +Train:epoch: 81, loss@min: 0.957958, loss@max: 1.380275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000253, LT: 0.998471, Top1S: 99.999992, Top1T: 75.945015 +Train:epoch: 82, loss@min: 0.961869, loss@max: 1.383313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000252, LT: 1.001281, Top1S: 99.999992, Top1T: 76.130051Best acc: 76.130051 +Train:epoch: 83, loss@min: 0.976000, loss@max: 1.378303, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.000252, LT: 1.003399, Top1S: 99.999992, Top1T: 76.050751 +Train:epoch: 84, loss@min: 0.967566, loss@max: 1.385303, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 0.000251, LT: 1.004334, Top1S: 99.999992, Top1T: 76.050751 +Train:epoch: 85, loss@min: 0.968612, loss@max: 1.388007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000250, LT: 1.005650, Top1S: 99.999992, Top1T: 75.839279 +Train:epoch: 86, loss@min: 1.010540, loss@max: 1.390506, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 86, LS: 0.000250, LT: 1.007107, Top1S: 99.999992, Top1T: 75.945015 +Train:epoch: 87, loss@min: 0.979991, loss@max: 1.373825, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 87, LS: 0.000249, LT: 1.008181, Top1S: 99.999992, Top1T: 75.892143 +Train:epoch: 88, loss@min: 0.954632, loss@max: 1.367091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000249, LT: 1.009323, Top1S: 99.999992, Top1T: 75.892143 +Train:epoch: 89, loss@min: 0.951774, loss@max: 1.369795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000248, LT: 1.009805, Top1S: 99.999992, Top1T: 75.865715 +Train:epoch: 90, loss@min: 0.962696, loss@max: 1.378555, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000247, LT: 1.010029, Top1S: 99.999992, Top1T: 75.892143 +Train:epoch: 91, loss@min: 0.975684, loss@max: 1.390708, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 91, LS: 0.000247, LT: 1.009910, Top1S: 99.999992, Top1T: 75.945015 +Train:epoch: 92, loss@min: 0.980150, loss@max: 1.381324, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 92, LS: 0.000246, LT: 1.011247, Top1S: 99.999992, Top1T: 75.892143 +Train:epoch: 93, loss@min: 0.966830, loss@max: 1.377769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000246, LT: 1.012266, Top1S: 99.999992, Top1T: 75.892143 +Train:epoch: 94, loss@min: 0.957247, loss@max: 1.366782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000245, LT: 1.012149, Top1S: 99.999992, Top1T: 75.945015 +Train:epoch: 95, loss@min: 0.973296, loss@max: 1.374936, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 95, LS: 0.000245, LT: 1.011244, Top1S: 99.999992, Top1T: 76.077187 +Train:epoch: 96, loss@min: 0.962980, loss@max: 1.374659, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.000244, LT: 1.010119, Top1S: 99.999992, Top1T: 75.971451 +Train:epoch: 97, loss@min: 0.970615, loss@max: 1.384129, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.000243, LT: 1.009971, Top1S: 99.999992, Top1T: 75.945015 +Train:epoch: 98, loss@min: 0.955483, loss@max: 1.377872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000243, LT: 1.009248, Top1S: 99.999992, Top1T: 75.971451 +Train:epoch: 99, loss@min: 0.958225, loss@max: 1.374566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000242, LT: 1.008725, Top1S: 99.999992, Top1T: 76.024315 +Train:epoch: 100, loss@min: 0.970226, loss@max: 1.371426, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.000242, LT: 1.008590, Top1S: 99.999992, Top1T: 76.077187 +Train:epoch: 101, loss@min: 0.955941, loss@max: 1.370654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000241, LT: 1.008599, Top1S: 99.999992, Top1T: 76.209351Best acc: 76.209351 +Train:epoch: 102, loss@min: 0.970624, loss@max: 1.384530, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.000241, LT: 1.008826, Top1S: 99.999992, Top1T: 76.182922 +Train:epoch: 103, loss@min: 1.067025, loss@max: 1.410467, Top1S acc: 100.000000, Top1T acc: 97.656250 + Test:epoch: 103, LS: 0.000241, LT: 1.009875, Top1S: 99.999992, Top1T: 76.103615 +Train:epoch: 104, loss@min: 0.951123, loss@max: 1.372442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000240, LT: 1.010091, Top1S: 99.999992, Top1T: 76.209351 +Train:epoch: 105, loss@min: 0.955697, loss@max: 1.368045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000240, LT: 1.010563, Top1S: 99.999992, Top1T: 76.156487 +Train:epoch: 106, loss@min: 0.953407, loss@max: 1.373780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000240, LT: 1.010896, Top1S: 99.999992, Top1T: 76.235786Best acc: 76.235786 +Train:epoch: 107, loss@min: 0.956470, loss@max: 1.369647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000239, LT: 1.010608, Top1S: 99.999992, Top1T: 76.182922 +Train:epoch: 108, loss@min: 0.981131, loss@max: 1.380840, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 108, LS: 0.000239, LT: 1.010797, Top1S: 99.999992, Top1T: 76.130051 +Train:epoch: 109, loss@min: 0.961168, loss@max: 1.376514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000239, LT: 1.010376, Top1S: 99.999992, Top1T: 76.209351 +Train:epoch: 110, loss@min: 0.962987, loss@max: 1.374198, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 110, LS: 0.000239, LT: 1.010370, Top1S: 99.999992, Top1T: 76.156487 +Train:epoch: 111, loss@min: 0.960723, loss@max: 1.372244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000238, LT: 1.011066, Top1S: 99.999992, Top1T: 76.182922 +Train:epoch: 112, loss@min: 0.952435, loss@max: 1.372979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000238, LT: 1.011662, Top1S: 99.999992, Top1T: 76.235786 +Train:epoch: 113, loss@min: 0.949124, loss@max: 1.366900, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000238, LT: 1.011204, Top1S: 99.999992, Top1T: 76.235786 +Train:epoch: 114, loss@min: 0.954336, loss@max: 1.370492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000238, LT: 1.010718, Top1S: 99.999992, Top1T: 76.235786 +Train:epoch: 115, loss@min: 0.959186, loss@max: 1.373261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000238, LT: 1.010663, Top1S: 99.999992, Top1T: 76.288658Best acc: 76.288658 +Train:epoch: 116, loss@min: 0.954052, loss@max: 1.367791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000237, LT: 1.010954, Top1S: 99.999992, Top1T: 76.262222 +Train:epoch: 117, loss@min: 0.959243, loss@max: 1.379029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000237, LT: 1.010575, Top1S: 99.999992, Top1T: 76.288658 +Train:epoch: 118, loss@min: 0.960713, loss@max: 1.370364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000237, LT: 1.010203, Top1S: 99.999992, Top1T: 76.235786 +Train:epoch: 119, loss@min: 0.959695, loss@max: 1.372455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000237, LT: 1.010163, Top1S: 99.999992, Top1T: 76.315094Best acc: 76.315094 +Train:epoch: 120, loss@min: 0.986819, loss@max: 1.388221, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 0.000237, LT: 1.009994, Top1S: 99.999992, Top1T: 76.315094 +Train:epoch: 121, loss@min: 0.975339, loss@max: 1.375801, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 0.000236, LT: 1.009844, Top1S: 99.999992, Top1T: 76.315094 +Train:epoch: 122, loss@min: 0.959536, loss@max: 1.368390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000236, LT: 1.009734, Top1S: 99.999992, Top1T: 76.367958Best acc: 76.367958 +Train:epoch: 123, loss@min: 0.957611, loss@max: 1.373749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000236, LT: 1.009895, Top1S: 99.999992, Top1T: 76.420830Best acc: 76.420830 +Train:epoch: 124, loss@min: 0.952315, loss@max: 1.367893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000236, LT: 1.010111, Top1S: 99.999992, Top1T: 76.473694Best acc: 76.473694 +Train:epoch: 125, loss@min: 0.966143, loss@max: 1.374021, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 0.000236, LT: 1.010133, Top1S: 99.999992, Top1T: 76.367958 +Train:epoch: 126, loss@min: 0.961118, loss@max: 1.372455, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 0.000236, LT: 1.010376, Top1S: 99.999992, Top1T: 76.420830 +Train:epoch: 127, loss@min: 0.971812, loss@max: 1.382103, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.000236, LT: 1.010688, Top1S: 99.999992, Top1T: 76.447258 +Train:epoch: 128, loss@min: 0.962690, loss@max: 1.375190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000236, LT: 1.010885, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 129, loss@min: 0.958586, loss@max: 1.376519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000236, LT: 1.011097, Top1S: 99.999992, Top1T: 76.447258 +Train:epoch: 130, loss@min: 0.976299, loss@max: 1.379904, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 0.000236, LT: 1.011353, Top1S: 99.999992, Top1T: 76.420830 +Train:epoch: 131, loss@min: 0.956547, loss@max: 1.372916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000236, LT: 1.011615, Top1S: 99.999992, Top1T: 76.367958 +Train:epoch: 132, loss@min: 0.963715, loss@max: 1.381392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000236, LT: 1.011743, Top1S: 99.999992, Top1T: 76.394394 +Train:epoch: 133, loss@min: 0.956317, loss@max: 1.372917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000235, LT: 1.011740, Top1S: 99.999992, Top1T: 76.394394 +Train:epoch: 134, loss@min: 0.955189, loss@max: 1.367896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000235, LT: 1.011724, Top1S: 99.999992, Top1T: 76.394394 +Train:epoch: 135, loss@min: 0.956947, loss@max: 1.371291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000235, LT: 1.011710, Top1S: 99.999992, Top1T: 76.394394 +Train:epoch: 136, loss@min: 0.961294, loss@max: 1.374761, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 136, LS: 0.000235, LT: 1.011660, Top1S: 99.999992, Top1T: 76.394394 +Train:epoch: 137, loss@min: 0.952275, loss@max: 1.370097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000235, LT: 1.011536, Top1S: 99.999992, Top1T: 76.447258 +Train:epoch: 138, loss@min: 0.977272, loss@max: 1.377769, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 0.000235, LT: 1.011412, Top1S: 99.999992, Top1T: 76.447258 +Train:epoch: 139, loss@min: 0.963056, loss@max: 1.372749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000235, LT: 1.011319, Top1S: 99.999992, Top1T: 76.447258 +Train:epoch: 140, loss@min: 0.960536, loss@max: 1.371997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000235, LT: 1.011278, Top1S: 99.999992, Top1T: 76.447258 +Train:epoch: 141, loss@min: 0.951786, loss@max: 1.366121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000235, LT: 1.011263, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 142, loss@min: 0.958303, loss@max: 1.370642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000235, LT: 1.011234, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 143, loss@min: 0.979693, loss@max: 1.375704, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.000235, LT: 1.011225, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 144, loss@min: 0.966105, loss@max: 1.375094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000235, LT: 1.011249, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 145, loss@min: 0.958615, loss@max: 1.374731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000235, LT: 1.011260, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 146, loss@min: 0.963586, loss@max: 1.378369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000235, LT: 1.011268, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 147, loss@min: 0.963172, loss@max: 1.367107, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 147, LS: 0.000235, LT: 1.011276, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 148, loss@min: 0.953061, loss@max: 1.366842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000235, LT: 1.011279, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 149, loss@min: 0.970748, loss@max: 1.376291, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 149, LS: 0.000235, LT: 1.011279, Top1S: 99.999992, Top1T: 76.473694 +Train:epoch: 150, loss@min: 0.968960, loss@max: 1.377487, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 150, LS: 0.000235, LT: 1.011279, Top1S: 99.999992, Top1T: 76.473694 +------------------------------------------- +Tue Aug 1 19:08:34 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\ucf101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Aug 1 21:22:34 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.935541, loss@max: 1.604188, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 2, loss@min: 2.489578, loss@max: 1.668453, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 3, loss@min: 2.307145, loss@max: 1.626659, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 4, loss@min: 1.903795, loss@max: 1.472280, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 5, loss@min: 1.870316, loss@max: 1.449966, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 6, loss@min: 1.706206, loss@max: 1.412134, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 7, loss@min: 1.638732, loss@max: 1.418989, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 8, loss@min: 1.500206, loss@max: 1.400322, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 9, loss@min: 1.289051, loss@max: 1.340284, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.328056, loss@max: 1.368369, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 11, loss@min: 1.238410, loss@max: 1.335916, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 12, loss@min: 1.218830, loss@max: 1.342913, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 13, loss@min: 1.209513, loss@max: 1.345295, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 14, loss@min: 1.093282, loss@max: 1.307630, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.148711, loss@max: 1.345216, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 16, loss@min: 1.145975, loss@max: 1.341618, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 17, loss@min: 1.114548, loss@max: 1.329705, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 18, loss@min: 1.060725, loss@max: 1.321197, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 1.076969, loss@max: 1.330588, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.072645, loss@max: 1.338925, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 21, loss@min: 1.100736, loss@max: 1.345780, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 22, loss@min: 1.003256, loss@max: 1.315336, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.056106, loss@max: 1.341323, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 24, loss@min: 1.043073, loss@max: 1.342023, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 25, loss@min: 1.011129, loss@max: 1.322052, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.967860, loss@max: 1.336929, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.013525, loss@max: 1.342348, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.982223, loss@max: 1.340690, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 0.970740, loss@max: 1.320916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.999240, loss@max: 1.349909, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.007857, loss@max: 1.344786, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.975243, loss@max: 1.347754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.982712, loss@max: 1.330209, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.998995, loss@max: 1.353929, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.987122, loss@max: 1.338749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.058354, loss@max: 1.404465, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 37, loss@min: 0.965826, loss@max: 1.337956, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.966807, loss@max: 1.347987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.957228, loss@max: 1.357131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.989602, loss@max: 1.376245, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.970313, loss@max: 1.367345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.946877, loss@max: 1.365038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.994396, loss@max: 1.371573, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.023421, loss@max: 1.380152, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 45, loss@min: 0.999649, loss@max: 1.376099, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 1.063938, loss@max: 1.395980, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.968692, loss@max: 1.375162, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.975455, loss@max: 1.376553, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 0.970609, loss@max: 1.377274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.955404, loss@max: 1.370579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972512, loss@max: 1.383426, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.973043, loss@max: 1.378059, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.967437, loss@max: 1.367591, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.962913, loss@max: 1.374275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.951077, loss@max: 1.369155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.964556, loss@max: 1.361254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.970267, loss@max: 1.381243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.968430, loss@max: 1.363101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953224, loss@max: 1.376947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.957876, loss@max: 1.379523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.962911, loss@max: 1.369213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.962681, loss@max: 1.379185, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.975921, loss@max: 1.370833, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.960400, loss@max: 1.363836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.945548, loss@max: 1.376792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.955807, loss@max: 1.363229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.955893, loss@max: 1.372798, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.960307, loss@max: 1.376518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.973000, loss@max: 1.382174, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.957158, loss@max: 1.368183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950968, loss@max: 1.366728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.950008, loss@max: 1.362705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946018, loss@max: 1.365085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.951510, loss@max: 1.368718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.959085, loss@max: 1.364635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.962346, loss@max: 1.379689, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.966096, loss@max: 1.365152, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.956930, loss@max: 1.371528, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.969657, loss@max: 1.369156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948846, loss@max: 1.374617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000181, LT: 0.919201, Top1S: 99.999992, Top1T: 79.592911Best acc: 79.592911 +Train:epoch: 81, loss@min: 0.955459, loss@max: 1.356199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000181, LT: 0.921102, Top1S: 99.999992, Top1T: 79.513611 +Train:epoch: 82, loss@min: 0.960776, loss@max: 1.368023, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000181, LT: 0.920043, Top1S: 99.999992, Top1T: 79.460739 +Train:epoch: 83, loss@min: 0.948616, loss@max: 1.362352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000180, LT: 0.918932, Top1S: 99.999992, Top1T: 79.566475 +Train:epoch: 84, loss@min: 0.963989, loss@max: 1.375034, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 0.000180, LT: 0.920593, Top1S: 99.999992, Top1T: 79.434311 +Train:epoch: 85, loss@min: 0.952482, loss@max: 1.368005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000179, LT: 0.925852, Top1S: 99.999992, Top1T: 79.487175 +Train:epoch: 86, loss@min: 0.951398, loss@max: 1.367549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000179, LT: 0.932667, Top1S: 99.999992, Top1T: 79.434311 +Train:epoch: 87, loss@min: 0.951547, loss@max: 1.364234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000178, LT: 0.932449, Top1S: 99.999992, Top1T: 79.381439 +Train:epoch: 88, loss@min: 0.955301, loss@max: 1.369615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000178, LT: 0.929531, Top1S: 99.999992, Top1T: 79.328575 +Train:epoch: 89, loss@min: 0.975532, loss@max: 1.373308, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 89, LS: 0.000178, LT: 0.928576, Top1S: 99.999992, Top1T: 79.566475 +Train:epoch: 90, loss@min: 0.959615, loss@max: 1.366496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000177, LT: 0.927651, Top1S: 99.999992, Top1T: 79.407875 +Train:epoch: 91, loss@min: 0.950512, loss@max: 1.367675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000177, LT: 0.928445, Top1S: 99.999992, Top1T: 79.460739 +Train:epoch: 92, loss@min: 0.951436, loss@max: 1.359614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000176, LT: 0.927461, Top1S: 99.999992, Top1T: 79.460739 +Train:epoch: 93, loss@min: 0.955259, loss@max: 1.370750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000176, LT: 0.925591, Top1S: 99.999992, Top1T: 79.434311 +Train:epoch: 94, loss@min: 0.970016, loss@max: 1.370153, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.000176, LT: 0.925220, Top1S: 99.999992, Top1T: 79.592911 +Train:epoch: 95, loss@min: 0.951535, loss@max: 1.362368, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000175, LT: 0.922177, Top1S: 99.999992, Top1T: 79.804382Best acc: 79.804382 +Train:epoch: 96, loss@min: 0.955955, loss@max: 1.369553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000175, LT: 0.922527, Top1S: 99.999992, Top1T: 80.015854Best acc: 80.015854 +Train:epoch: 97, loss@min: 0.968483, loss@max: 1.371835, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.000175, LT: 0.927299, Top1S: 99.999992, Top1T: 79.857254 +Train:epoch: 98, loss@min: 0.952298, loss@max: 1.362793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000174, LT: 0.934853, Top1S: 99.999992, Top1T: 79.513611 +Train:epoch: 99, loss@min: 0.951978, loss@max: 1.368030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000174, LT: 0.937766, Top1S: 99.999992, Top1T: 79.328575 +Train:epoch: 100, loss@min: 0.949114, loss@max: 1.366553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000174, LT: 0.939017, Top1S: 99.999992, Top1T: 79.196404 +Train:epoch: 101, loss@min: 0.949769, loss@max: 1.362431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000174, LT: 0.940841, Top1S: 99.999992, Top1T: 79.249268 +Train:epoch: 102, loss@min: 0.949649, loss@max: 1.369725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000173, LT: 0.940853, Top1S: 99.999992, Top1T: 79.275703 +Train:epoch: 103, loss@min: 0.949886, loss@max: 1.364121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000173, LT: 0.941637, Top1S: 99.999992, Top1T: 79.169968 +Train:epoch: 104, loss@min: 0.951775, loss@max: 1.364700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000173, LT: 0.941953, Top1S: 99.999992, Top1T: 79.169968 +Train:epoch: 105, loss@min: 0.948998, loss@max: 1.366477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000173, LT: 0.940659, Top1S: 99.999992, Top1T: 79.222832 +Train:epoch: 106, loss@min: 0.951887, loss@max: 1.367706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000172, LT: 0.941121, Top1S: 99.999992, Top1T: 79.381439 +Train:epoch: 107, loss@min: 1.060150, loss@max: 1.387346, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 107, LS: 0.000172, LT: 0.942192, Top1S: 99.999992, Top1T: 79.434311 +Train:epoch: 108, loss@min: 0.965733, loss@max: 1.367864, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.000172, LT: 0.940506, Top1S: 99.999992, Top1T: 79.566475 +Train:epoch: 109, loss@min: 0.966437, loss@max: 1.367558, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 0.000172, LT: 0.935910, Top1S: 99.999992, Top1T: 79.540047 +Train:epoch: 110, loss@min: 0.962861, loss@max: 1.373025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000172, LT: 0.935713, Top1S: 99.999992, Top1T: 79.592911 +Train:epoch: 111, loss@min: 0.952447, loss@max: 1.363255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000172, LT: 0.937295, Top1S: 99.999992, Top1T: 79.434311 +Train:epoch: 112, loss@min: 0.950530, loss@max: 1.359046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000171, LT: 0.938001, Top1S: 99.999992, Top1T: 79.355003 +Train:epoch: 113, loss@min: 0.948913, loss@max: 1.364000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000171, LT: 0.937629, Top1S: 99.999992, Top1T: 79.407875 +Train:epoch: 114, loss@min: 0.950330, loss@max: 1.360364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000171, LT: 0.937957, Top1S: 99.999992, Top1T: 79.434311 +Train:epoch: 115, loss@min: 0.950481, loss@max: 1.366109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000171, LT: 0.938366, Top1S: 99.999992, Top1T: 79.725082 +Train:epoch: 116, loss@min: 0.956194, loss@max: 1.366005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000171, LT: 0.937936, Top1S: 99.999992, Top1T: 79.619347 +Train:epoch: 117, loss@min: 0.950574, loss@max: 1.369069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000170, LT: 0.937146, Top1S: 99.999992, Top1T: 79.672211 +Train:epoch: 118, loss@min: 0.952512, loss@max: 1.360258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000170, LT: 0.937328, Top1S: 99.999992, Top1T: 79.751518 +Train:epoch: 119, loss@min: 0.950948, loss@max: 1.364160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000170, LT: 0.937651, Top1S: 99.999992, Top1T: 79.725082 +Train:epoch: 120, loss@min: 0.968553, loss@max: 1.366316, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 0.000170, LT: 0.937317, Top1S: 99.999992, Top1T: 79.698647 +Train:epoch: 121, loss@min: 0.947006, loss@max: 1.365748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000170, LT: 0.936746, Top1S: 99.999992, Top1T: 79.566475 +Train:epoch: 122, loss@min: 0.952896, loss@max: 1.363682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000170, LT: 0.936615, Top1S: 99.999992, Top1T: 79.698647 +Train:epoch: 123, loss@min: 0.947266, loss@max: 1.363062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000170, LT: 0.936832, Top1S: 99.999992, Top1T: 79.645782 +Train:epoch: 124, loss@min: 0.951830, loss@max: 1.366454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000170, LT: 0.936037, Top1S: 99.999992, Top1T: 79.592911 +Train:epoch: 125, loss@min: 0.946739, loss@max: 1.364866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000170, LT: 0.935699, Top1S: 99.999992, Top1T: 79.751518 +Train:epoch: 126, loss@min: 0.969802, loss@max: 1.370227, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 0.000170, LT: 0.936130, Top1S: 99.999992, Top1T: 79.751518 +Train:epoch: 127, loss@min: 0.948790, loss@max: 1.363014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000170, LT: 0.937209, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 128, loss@min: 0.967442, loss@max: 1.369199, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 0.000169, LT: 0.937772, Top1S: 99.999992, Top1T: 79.857254 +Train:epoch: 129, loss@min: 0.952025, loss@max: 1.361429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000169, LT: 0.938561, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 130, loss@min: 0.949010, loss@max: 1.360654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000169, LT: 0.938925, Top1S: 99.999992, Top1T: 79.698647 +Train:epoch: 131, loss@min: 0.948929, loss@max: 1.359031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000169, LT: 0.938683, Top1S: 99.999992, Top1T: 79.698647 +Train:epoch: 132, loss@min: 0.957431, loss@max: 1.366955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000169, LT: 0.938161, Top1S: 99.999992, Top1T: 79.645782 +Train:epoch: 133, loss@min: 0.950337, loss@max: 1.361232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000169, LT: 0.938025, Top1S: 99.999992, Top1T: 79.645782 +Train:epoch: 134, loss@min: 0.950432, loss@max: 1.361596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000169, LT: 0.937898, Top1S: 99.999992, Top1T: 79.698647 +Train:epoch: 135, loss@min: 0.948947, loss@max: 1.362433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000169, LT: 0.937266, Top1S: 99.999992, Top1T: 79.672211 +Train:epoch: 136, loss@min: 0.945194, loss@max: 1.362014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000169, LT: 0.937018, Top1S: 99.999992, Top1T: 79.725082 +Train:epoch: 137, loss@min: 0.954188, loss@max: 1.365587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000169, LT: 0.936888, Top1S: 99.999992, Top1T: 79.751518 +Train:epoch: 138, loss@min: 0.956583, loss@max: 1.371228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000169, LT: 0.936904, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 139, loss@min: 0.948192, loss@max: 1.362633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000169, LT: 0.936822, Top1S: 99.999992, Top1T: 79.857254 +Train:epoch: 140, loss@min: 0.954995, loss@max: 1.364532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000169, LT: 0.936773, Top1S: 99.999992, Top1T: 79.830818 +Train:epoch: 141, loss@min: 0.955742, loss@max: 1.366634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000169, LT: 0.936836, Top1S: 99.999992, Top1T: 79.830818 +Train:epoch: 142, loss@min: 0.950299, loss@max: 1.365492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000169, LT: 0.936801, Top1S: 99.999992, Top1T: 79.804382 +Train:epoch: 143, loss@min: 0.960105, loss@max: 1.367429, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.000169, LT: 0.936772, Top1S: 99.999992, Top1T: 79.804382 +Train:epoch: 144, loss@min: 0.955222, loss@max: 1.367105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000169, LT: 0.936761, Top1S: 99.999992, Top1T: 79.804382 +Train:epoch: 145, loss@min: 0.950206, loss@max: 1.360285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000169, LT: 0.936745, Top1S: 99.999992, Top1T: 79.804382 +Train:epoch: 146, loss@min: 0.954032, loss@max: 1.364045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000169, LT: 0.936711, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 147, loss@min: 0.975620, loss@max: 1.373541, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 147, LS: 0.000169, LT: 0.936703, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 148, loss@min: 0.971874, loss@max: 1.371617, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.000169, LT: 0.936701, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 149, loss@min: 0.954009, loss@max: 1.363279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000169, LT: 0.936703, Top1S: 99.999992, Top1T: 79.777954 +Train:epoch: 150, loss@min: 0.947886, loss@max: 1.361246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000169, LT: 0.936703, Top1S: 99.999992, Top1T: 79.777954{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\caltech_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 01:39:30 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\caltech_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 01:40:26 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 01:40:43 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 01:41:00 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\1shot\\\\", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 01:42:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.638882, loss@max: 0.944856, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.754044, loss@max: 1.148564, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.323416, loss@max: 1.172290, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 4, loss@min: 1.197177, loss@max: 1.234441, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.081575, loss@max: 1.258423, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 0.952694, loss@max: 1.278467, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.901751, loss@max: 1.292000, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 8, loss@min: 0.958831, loss@max: 1.335244, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.835379, loss@max: 1.321844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.817785, loss@max: 1.314274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.874637, loss@max: 1.342592, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.875887, loss@max: 1.341884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.921117, loss@max: 1.346756, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.926948, loss@max: 1.327080, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.880709, loss@max: 1.275874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950859, loss@max: 1.282813, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.942634, loss@max: 1.260904, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.003595, loss@max: 1.257689, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.954979, loss@max: 1.252088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.959457, loss@max: 1.246243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.973985, loss@max: 1.244910, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.991313, loss@max: 1.257098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.971505, loss@max: 1.241525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.004626, loss@max: 1.263246, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.957649, loss@max: 1.258136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.948961, loss@max: 1.278621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.945815, loss@max: 1.269655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.961422, loss@max: 1.294829, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.936141, loss@max: 1.288967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.939273, loss@max: 1.310372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.956970, loss@max: 1.326430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.927251, loss@max: 1.319003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.939935, loss@max: 1.326544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.933100, loss@max: 1.321501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.949019, loss@max: 1.333168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.954341, loss@max: 1.332391, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.944039, loss@max: 1.324076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.930327, loss@max: 1.328947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940520, loss@max: 1.341599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.946306, loss@max: 1.345552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.033144, loss@max: 1.373104, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.941435, loss@max: 1.331302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.954227, loss@max: 1.343111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.939280, loss@max: 1.334160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938833, loss@max: 1.342955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.974517, loss@max: 1.348040, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.937577, loss@max: 1.338958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.943740, loss@max: 1.342119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.953141, loss@max: 1.337125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943327, loss@max: 1.340219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.967456, loss@max: 1.348855, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.953271, loss@max: 1.355299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943060, loss@max: 1.343777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947221, loss@max: 1.350845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.958001, loss@max: 1.359100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949596, loss@max: 1.343457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.946075, loss@max: 1.348609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.960259, loss@max: 1.362265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.945915, loss@max: 1.350714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942911, loss@max: 1.358268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.944809, loss@max: 1.355395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.946162, loss@max: 1.354379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.941460, loss@max: 1.355758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945472, loss@max: 1.353998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946840, loss@max: 1.353658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.989830, loss@max: 1.368195, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.948386, loss@max: 1.354869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949973, loss@max: 1.349243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.954073, loss@max: 1.358330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.944445, loss@max: 1.361713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951398, loss@max: 1.364554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.966319, loss@max: 1.366593, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.947153, loss@max: 1.352824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.946017, loss@max: 1.354864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.941087, loss@max: 1.364424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.942921, loss@max: 1.362324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.941915, loss@max: 1.358708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.946382, loss@max: 1.357273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943464, loss@max: 1.357260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.951327, loss@max: 1.357556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000008, LT: 0.428585, Top1S: 100.000000, Top1T: 89.046654Best acc: 89.046654 +Train:epoch: 81, loss@min: 0.952806, loss@max: 1.358360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000008, LT: 0.428678, Top1S: 100.000000, Top1T: 89.046654 +Train:epoch: 82, loss@min: 0.949671, loss@max: 1.360411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000008, LT: 0.428909, Top1S: 100.000000, Top1T: 89.127792Best acc: 89.127792 +Train:epoch: 83, loss@min: 0.956423, loss@max: 1.355275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000008, LT: 0.429106, Top1S: 100.000000, Top1T: 89.168358Best acc: 89.168358 +Train:epoch: 84, loss@min: 0.959393, loss@max: 1.367163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000008, LT: 0.429483, Top1S: 100.000000, Top1T: 89.168358 +Train:epoch: 85, loss@min: 0.953621, loss@max: 1.367724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000008, LT: 0.429573, Top1S: 100.000000, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 86, loss@min: 0.945625, loss@max: 1.362844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000008, LT: 0.429699, Top1S: 100.000000, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 87, loss@min: 0.943920, loss@max: 1.363308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000008, LT: 0.429829, Top1S: 100.000000, Top1T: 89.249496 +Train:epoch: 88, loss@min: 0.942492, loss@max: 1.365542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000008, LT: 0.430004, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 89, loss@min: 0.942920, loss@max: 1.361310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000008, LT: 0.430158, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 90, loss@min: 0.944212, loss@max: 1.360248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000008, LT: 0.430260, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 91, loss@min: 0.947422, loss@max: 1.356361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000008, LT: 0.430381, Top1S: 100.000000, Top1T: 89.290062 +Train:epoch: 92, loss@min: 0.944911, loss@max: 1.356881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000008, LT: 0.430467, Top1S: 100.000000, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 93, loss@min: 0.948499, loss@max: 1.355074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000008, LT: 0.430491, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 94, loss@min: 0.949818, loss@max: 1.352895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000008, LT: 0.430492, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 95, loss@min: 0.950498, loss@max: 1.362013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000008, LT: 0.430663, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 96, loss@min: 0.949362, loss@max: 1.358583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000008, LT: 0.430790, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 97, loss@min: 0.954472, loss@max: 1.361801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000008, LT: 0.430978, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 98, loss@min: 0.946142, loss@max: 1.358120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000008, LT: 0.431135, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 99, loss@min: 0.948903, loss@max: 1.355172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000008, LT: 0.431273, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 100, loss@min: 0.944948, loss@max: 1.356373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000008, LT: 0.431424, Top1S: 100.000000, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 101, loss@min: 0.945786, loss@max: 1.366105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000008, LT: 0.431619, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 102, loss@min: 0.946727, loss@max: 1.357119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000008, LT: 0.431793, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 103, loss@min: 0.940346, loss@max: 1.362172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000008, LT: 0.431894, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 104, loss@min: 0.945767, loss@max: 1.360245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000008, LT: 0.431980, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 105, loss@min: 0.947615, loss@max: 1.359356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000008, LT: 0.432013, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 106, loss@min: 0.946782, loss@max: 1.358910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000008, LT: 0.431996, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 107, loss@min: 0.946928, loss@max: 1.361289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000008, LT: 0.431948, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 108, loss@min: 0.946683, loss@max: 1.363315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000008, LT: 0.431910, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 109, loss@min: 0.946104, loss@max: 1.362717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000008, LT: 0.431806, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 110, loss@min: 0.942901, loss@max: 1.360115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000008, LT: 0.431684, Top1S: 100.000000, Top1T: 89.371201 +Train:epoch: 111, loss@min: 0.947953, loss@max: 1.357493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000008, LT: 0.431553, Top1S: 100.000000, Top1T: 89.452332Best acc: 89.452332 +Train:epoch: 112, loss@min: 0.946733, loss@max: 1.358854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000008, LT: 0.431445, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 113, loss@min: 0.947147, loss@max: 1.354755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000008, LT: 0.431346, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 114, loss@min: 0.945877, loss@max: 1.357782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000008, LT: 0.431262, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 115, loss@min: 0.947378, loss@max: 1.360920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000008, LT: 0.431237, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 116, loss@min: 0.947258, loss@max: 1.356660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000008, LT: 0.431209, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 117, loss@min: 0.953293, loss@max: 1.362853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000008, LT: 0.431200, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 118, loss@min: 0.948663, loss@max: 1.354775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000008, LT: 0.431204, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 119, loss@min: 0.948705, loss@max: 1.358695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000008, LT: 0.431201, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 120, loss@min: 0.946846, loss@max: 1.357135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000008, LT: 0.431209, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 121, loss@min: 0.943604, loss@max: 1.361016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000008, LT: 0.431245, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 122, loss@min: 0.949712, loss@max: 1.361415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000008, LT: 0.431239, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 123, loss@min: 0.942918, loss@max: 1.358366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000008, LT: 0.431244, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 124, loss@min: 0.944111, loss@max: 1.358942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000008, LT: 0.431249, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 125, loss@min: 0.944435, loss@max: 1.359686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000008, LT: 0.431243, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 126, loss@min: 0.943362, loss@max: 1.361405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000008, LT: 0.431237, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 127, loss@min: 0.943532, loss@max: 1.359508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000008, LT: 0.431227, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 128, loss@min: 0.943374, loss@max: 1.359223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000008, LT: 0.431220, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 129, loss@min: 0.945425, loss@max: 1.362451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000008, LT: 0.431206, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 130, loss@min: 0.945595, loss@max: 1.358082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000008, LT: 0.431199, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 131, loss@min: 0.959713, loss@max: 1.367091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000008, LT: 0.431234, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 132, loss@min: 0.949843, loss@max: 1.359328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000008, LT: 0.431268, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 133, loss@min: 0.946447, loss@max: 1.355761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000008, LT: 0.431295, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 134, loss@min: 0.948429, loss@max: 1.356324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000008, LT: 0.431317, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 135, loss@min: 0.945670, loss@max: 1.357264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000008, LT: 0.431334, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 136, loss@min: 0.945189, loss@max: 1.357000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000008, LT: 0.431345, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 137, loss@min: 0.944500, loss@max: 1.360573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000008, LT: 0.431356, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 138, loss@min: 0.946396, loss@max: 1.356072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 139, loss@min: 0.948709, loss@max: 1.358694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000008, LT: 0.431364, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 140, loss@min: 0.950391, loss@max: 1.358262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000008, LT: 0.431363, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 141, loss@min: 0.947759, loss@max: 1.363779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 142, loss@min: 0.945878, loss@max: 1.360678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 143, loss@min: 0.945803, loss@max: 1.356525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 144, loss@min: 0.947553, loss@max: 1.366364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.452332 +Train:epoch: 145, loss@min: 0.946785, loss@max: 1.354995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000008, LT: 0.431362, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 146, loss@min: 0.947363, loss@max: 1.356152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 147, loss@min: 0.945067, loss@max: 1.356690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 148, loss@min: 0.944889, loss@max: 1.357964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 149, loss@min: 0.944869, loss@max: 1.358883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.411766 +Train:epoch: 150, loss@min: 0.946970, loss@max: 1.356963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000008, LT: 0.431361, Top1S: 100.000000, Top1T: 89.411766 +------------------------------------------- +Wed Aug 2 02:46:30 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\2shot\\\\", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 02:50:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.049624, loss@max: 1.023024, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.805907, loss@max: 1.117568, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.603350, loss@max: 1.193244, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.366224, loss@max: 1.234603, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.180553, loss@max: 1.264951, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.136165, loss@max: 1.318194, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 7, loss@min: 1.015032, loss@max: 1.330805, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.977083, loss@max: 1.347329, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.893819, loss@max: 1.354841, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.885908, loss@max: 1.366176, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.019567, loss@max: 1.406746, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.922800, loss@max: 1.381052, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.857944, loss@max: 1.345517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.857348, loss@max: 1.321618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.881631, loss@max: 1.311482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.947399, loss@max: 1.309826, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.968482, loss@max: 1.298755, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.000354, loss@max: 1.296184, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.022811, loss@max: 1.279559, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.011565, loss@max: 1.276531, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.007874, loss@max: 1.275789, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.017134, loss@max: 1.270149, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.024026, loss@max: 1.275460, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.966797, loss@max: 1.256839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.984267, loss@max: 1.266022, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.983638, loss@max: 1.280301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.994454, loss@max: 1.286583, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.992257, loss@max: 1.287580, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.955032, loss@max: 1.285197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.967358, loss@max: 1.307034, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 0.968056, loss@max: 1.318829, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.961006, loss@max: 1.326197, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.934224, loss@max: 1.320698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.955924, loss@max: 1.336085, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.947872, loss@max: 1.334918, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 0.937484, loss@max: 1.334239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.951220, loss@max: 1.345358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.945898, loss@max: 1.340704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.954886, loss@max: 1.344790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.965852, loss@max: 1.352215, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.936059, loss@max: 1.337684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.934673, loss@max: 1.345031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.028538, loss@max: 1.367300, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.946718, loss@max: 1.341043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.974976, loss@max: 1.351016, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951790, loss@max: 1.346391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.945791, loss@max: 1.343429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.947035, loss@max: 1.344515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945556, loss@max: 1.343012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943335, loss@max: 1.348709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948694, loss@max: 1.352917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.964783, loss@max: 1.359856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.963780, loss@max: 1.355586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.960873, loss@max: 1.352136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.952969, loss@max: 1.345143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.956709, loss@max: 1.351424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.946916, loss@max: 1.347014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.981976, loss@max: 1.368072, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.948070, loss@max: 1.361493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945344, loss@max: 1.361463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.957341, loss@max: 1.363004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951323, loss@max: 1.360773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950444, loss@max: 1.356890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.958332, loss@max: 1.361171, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.949880, loss@max: 1.357718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.948914, loss@max: 1.353444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947098, loss@max: 1.359102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947204, loss@max: 1.360007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946652, loss@max: 1.360574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958331, loss@max: 1.367187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946057, loss@max: 1.361927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.942599, loss@max: 1.358966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.960405, loss@max: 1.367414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965976, loss@max: 1.368108, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.948258, loss@max: 1.360559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955435, loss@max: 1.363392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963269, loss@max: 1.367959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.963405, loss@max: 1.364936, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.951654, loss@max: 1.363844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.968730, loss@max: 1.367101, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 80, LS: 0.000008, LT: 0.377228, Top1S: 100.000000, Top1T: 90.263695Best acc: 90.263695 +Train:epoch: 81, loss@min: 0.955662, loss@max: 1.372135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000008, LT: 0.377777, Top1S: 100.000000, Top1T: 90.304260Best acc: 90.304260 +Train:epoch: 82, loss@min: 0.951182, loss@max: 1.365070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000008, LT: 0.378283, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 83, loss@min: 0.952946, loss@max: 1.364996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000008, LT: 0.378720, Top1S: 100.000000, Top1T: 90.304260 +Train:epoch: 84, loss@min: 0.951294, loss@max: 1.363130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000008, LT: 0.379242, Top1S: 100.000000, Top1T: 90.304260 +Train:epoch: 85, loss@min: 0.946046, loss@max: 1.361747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000008, LT: 0.379781, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 86, loss@min: 0.950784, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000008, LT: 0.380118, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 87, loss@min: 0.950208, loss@max: 1.362087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000008, LT: 0.380430, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 88, loss@min: 0.964397, loss@max: 1.367984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000008, LT: 0.380777, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 89, loss@min: 0.951978, loss@max: 1.364049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000008, LT: 0.380953, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 90, loss@min: 0.958690, loss@max: 1.369865, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 90, LS: 0.000008, LT: 0.381312, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 91, loss@min: 0.948807, loss@max: 1.364880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000008, LT: 0.381681, Top1S: 100.000000, Top1T: 90.263695 +Train:epoch: 92, loss@min: 0.953581, loss@max: 1.367544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000008, LT: 0.381928, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 93, loss@min: 0.948799, loss@max: 1.366078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000008, LT: 0.382447, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 94, loss@min: 0.955353, loss@max: 1.365666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000008, LT: 0.382777, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 95, loss@min: 0.945381, loss@max: 1.362388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000008, LT: 0.383166, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 96, loss@min: 0.950519, loss@max: 1.362299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000008, LT: 0.383469, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 97, loss@min: 0.948388, loss@max: 1.361358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000008, LT: 0.383798, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 98, loss@min: 0.948689, loss@max: 1.358081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000008, LT: 0.384097, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 99, loss@min: 0.949750, loss@max: 1.358901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000008, LT: 0.384390, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 100, loss@min: 0.951777, loss@max: 1.361941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000008, LT: 0.384613, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 101, loss@min: 0.948886, loss@max: 1.360514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000008, LT: 0.384806, Top1S: 100.000000, Top1T: 90.101418 +Train:epoch: 102, loss@min: 0.948915, loss@max: 1.363177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000008, LT: 0.384952, Top1S: 100.000000, Top1T: 90.101418 +Train:epoch: 103, loss@min: 0.991985, loss@max: 1.382148, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 103, LS: 0.000008, LT: 0.384984, Top1S: 100.000000, Top1T: 90.101418 +Train:epoch: 104, loss@min: 0.947028, loss@max: 1.358104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000008, LT: 0.384977, Top1S: 100.000000, Top1T: 90.101418 +Train:epoch: 105, loss@min: 0.947485, loss@max: 1.363448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000008, LT: 0.384938, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 106, loss@min: 0.948923, loss@max: 1.360995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000008, LT: 0.384823, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 107, loss@min: 0.947114, loss@max: 1.360830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000008, LT: 0.384706, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 108, loss@min: 0.947414, loss@max: 1.360804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000008, LT: 0.384598, Top1S: 100.000000, Top1T: 90.101418 +Train:epoch: 109, loss@min: 0.946944, loss@max: 1.360895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000008, LT: 0.384484, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 110, loss@min: 0.948056, loss@max: 1.358561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000008, LT: 0.384345, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 111, loss@min: 0.956539, loss@max: 1.370766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000008, LT: 0.384248, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 112, loss@min: 0.947806, loss@max: 1.362051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000008, LT: 0.384189, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 113, loss@min: 0.954359, loss@max: 1.365055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000008, LT: 0.384077, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 114, loss@min: 0.955953, loss@max: 1.368521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000008, LT: 0.384016, Top1S: 100.000000, Top1T: 90.141991 +Train:epoch: 115, loss@min: 0.959568, loss@max: 1.373255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000008, LT: 0.383978, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 116, loss@min: 0.949311, loss@max: 1.361059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000008, LT: 0.384005, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 117, loss@min: 0.951849, loss@max: 1.365479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000008, LT: 0.384008, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 118, loss@min: 0.947755, loss@max: 1.359704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000008, LT: 0.384048, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 119, loss@min: 0.978048, loss@max: 1.374370, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 119, LS: 0.000008, LT: 0.384030, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 120, loss@min: 0.945490, loss@max: 1.360958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000008, LT: 0.383988, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 121, loss@min: 0.950549, loss@max: 1.363078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000008, LT: 0.383930, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 122, loss@min: 0.950828, loss@max: 1.362690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000008, LT: 0.383912, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 123, loss@min: 0.952205, loss@max: 1.363875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000008, LT: 0.383875, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 124, loss@min: 0.951235, loss@max: 1.363072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000008, LT: 0.383885, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 125, loss@min: 0.991403, loss@max: 1.379099, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 125, LS: 0.000008, LT: 0.383866, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 126, loss@min: 0.949485, loss@max: 1.362007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000008, LT: 0.383873, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 127, loss@min: 0.948746, loss@max: 1.359092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000008, LT: 0.383881, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 128, loss@min: 0.946762, loss@max: 1.364902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000008, LT: 0.383851, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 129, loss@min: 0.946225, loss@max: 1.360582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000008, LT: 0.383824, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 130, loss@min: 0.948169, loss@max: 1.364104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000008, LT: 0.383800, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 131, loss@min: 0.948451, loss@max: 1.357699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000008, LT: 0.383798, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 132, loss@min: 0.946399, loss@max: 1.359536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000008, LT: 0.383784, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 133, loss@min: 0.947262, loss@max: 1.362420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000008, LT: 0.383781, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 134, loss@min: 0.950241, loss@max: 1.362974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000008, LT: 0.383793, Top1S: 100.000000, Top1T: 90.182556 +Train:epoch: 135, loss@min: 0.955394, loss@max: 1.363572, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 135, LS: 0.000008, LT: 0.383788, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 136, loss@min: 0.946384, loss@max: 1.360867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000008, LT: 0.383782, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 137, loss@min: 0.960540, loss@max: 1.368955, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 137, LS: 0.000008, LT: 0.383784, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 138, loss@min: 0.955144, loss@max: 1.364117, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 138, LS: 0.000008, LT: 0.383802, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 139, loss@min: 0.948792, loss@max: 1.361418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000008, LT: 0.383813, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 140, loss@min: 0.948975, loss@max: 1.361629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000008, LT: 0.383821, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 141, loss@min: 0.952771, loss@max: 1.366153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000008, LT: 0.383826, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 142, loss@min: 0.952249, loss@max: 1.364357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000008, LT: 0.383828, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 143, loss@min: 0.958023, loss@max: 1.367032, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 143, LS: 0.000008, LT: 0.383831, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 144, loss@min: 0.952807, loss@max: 1.366595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000008, LT: 0.383834, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 145, loss@min: 0.947142, loss@max: 1.363471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000008, LT: 0.383836, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 146, loss@min: 0.958549, loss@max: 1.364288, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 146, LS: 0.000008, LT: 0.383837, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 147, loss@min: 0.948510, loss@max: 1.365240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000008, LT: 0.383839, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 148, loss@min: 0.952222, loss@max: 1.365922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000008, LT: 0.383839, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 149, loss@min: 0.950329, loss@max: 1.361550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000008, LT: 0.383839, Top1S: 100.000000, Top1T: 90.223122 +Train:epoch: 150, loss@min: 0.950378, loss@max: 1.363047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000008, LT: 0.383839, Top1S: 100.000000, Top1T: 90.223122 +------------------------------------------- +Wed Aug 2 03:56:24 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 11:13:00 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.058627, loss@max: 1.117008, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.743884, loss@max: 1.255210, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 3, loss@min: 1.502417, loss@max: 1.312836, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 4, loss@min: 1.345443, loss@max: 1.371371, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 5, loss@min: 1.093882, loss@max: 1.357670, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 6, loss@min: 1.169845, loss@max: 1.405182, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 7, loss@min: 1.052970, loss@max: 1.372466, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.019979, loss@max: 1.343711, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 9, loss@min: 1.037838, loss@max: 1.309723, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.119270, loss@max: 1.300326, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 11, loss@min: 1.078613, loss@max: 1.263905, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 1.120271, loss@max: 1.272468, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.046000, loss@max: 1.237702, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.080956, loss@max: 1.256843, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 1.006643, loss@max: 1.248090, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 16, loss@min: 0.997557, loss@max: 1.250473, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 17, loss@min: 0.973842, loss@max: 1.256256, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 18, loss@min: 0.999804, loss@max: 1.275648, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.968147, loss@max: 1.281958, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 0.966758, loss@max: 1.290524, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 21, loss@min: 0.977208, loss@max: 1.296988, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.969157, loss@max: 1.299390, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.966133, loss@max: 1.290210, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.959745, loss@max: 1.291642, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.962984, loss@max: 1.303860, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.970422, loss@max: 1.310247, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.951891, loss@max: 1.309499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.957294, loss@max: 1.313429, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.991469, loss@max: 1.326096, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 30, loss@min: 0.984654, loss@max: 1.321847, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.956831, loss@max: 1.314877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.972103, loss@max: 1.336766, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.956839, loss@max: 1.321965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959475, loss@max: 1.323541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968165, loss@max: 1.333186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.980753, loss@max: 1.339938, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 0.958636, loss@max: 1.344249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948167, loss@max: 1.335615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.955971, loss@max: 1.343306, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.972880, loss@max: 1.350354, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.956191, loss@max: 1.344469, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.944710, loss@max: 1.339730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.956179, loss@max: 1.343374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958343, loss@max: 1.347368, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.959666, loss@max: 1.350766, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.953510, loss@max: 1.348479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.983113, loss@max: 1.350944, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.954618, loss@max: 1.350597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.950293, loss@max: 1.350039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.993470, loss@max: 1.359235, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 0.952539, loss@max: 1.347459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949136, loss@max: 1.353326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.949582, loss@max: 1.354129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.952080, loss@max: 1.353726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.946741, loss@max: 1.347981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.960055, loss@max: 1.362836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947860, loss@max: 1.353813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.957899, loss@max: 1.361360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.954761, loss@max: 1.360248, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.966508, loss@max: 1.365976, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.951352, loss@max: 1.363198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.976904, loss@max: 1.374735, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.948431, loss@max: 1.358707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948765, loss@max: 1.360016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.953881, loss@max: 1.360315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.953109, loss@max: 1.360306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.950310, loss@max: 1.360112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.962999, loss@max: 1.363666, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.950408, loss@max: 1.361050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.959265, loss@max: 1.369135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949724, loss@max: 1.360313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953847, loss@max: 1.365514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953745, loss@max: 1.362247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954196, loss@max: 1.364605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.968495, loss@max: 1.372968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.950501, loss@max: 1.364767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965971, loss@max: 1.371847, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.953092, loss@max: 1.363381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.951137, loss@max: 1.359828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948661, loss@max: 1.359835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000007, LT: 0.303810, Top1S: 100.000000, Top1T: 91.683571Best acc: 91.683571 +Train:epoch: 81, loss@min: 0.960003, loss@max: 1.363650, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 0.000007, LT: 0.303561, Top1S: 100.000000, Top1T: 91.683571 +Train:epoch: 82, loss@min: 0.948763, loss@max: 1.366473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000007, LT: 0.303715, Top1S: 100.000000, Top1T: 91.724136Best acc: 91.724136 +Train:epoch: 83, loss@min: 0.952922, loss@max: 1.367430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000007, LT: 0.304256, Top1S: 100.000000, Top1T: 91.683571 +Train:epoch: 84, loss@min: 0.947534, loss@max: 1.358974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000007, LT: 0.304031, Top1S: 100.000000, Top1T: 91.764709Best acc: 91.764709 +Train:epoch: 85, loss@min: 0.949248, loss@max: 1.360824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000007, LT: 0.303714, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 86, loss@min: 0.961965, loss@max: 1.363615, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.000007, LT: 0.303899, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 87, loss@min: 0.951063, loss@max: 1.356786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000007, LT: 0.303995, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 88, loss@min: 0.968736, loss@max: 1.373033, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 0.000007, LT: 0.304294, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 89, loss@min: 0.951242, loss@max: 1.364626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000007, LT: 0.304905, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 90, loss@min: 0.956771, loss@max: 1.369530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000007, LT: 0.305520, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 91, loss@min: 0.948953, loss@max: 1.362914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000007, LT: 0.306253, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 92, loss@min: 0.953898, loss@max: 1.364171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000007, LT: 0.306817, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 93, loss@min: 0.948075, loss@max: 1.358802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000007, LT: 0.307237, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 94, loss@min: 0.954049, loss@max: 1.364754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000007, LT: 0.307660, Top1S: 100.000000, Top1T: 91.805275Best acc: 91.805275 +Train:epoch: 95, loss@min: 0.957202, loss@max: 1.369514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000007, LT: 0.308228, Top1S: 100.000000, Top1T: 91.805275 +Train:epoch: 96, loss@min: 0.961825, loss@max: 1.369363, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.000007, LT: 0.308876, Top1S: 100.000000, Top1T: 91.683571 +Train:epoch: 97, loss@min: 0.946316, loss@max: 1.358999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000007, LT: 0.309298, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 98, loss@min: 0.950588, loss@max: 1.365554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000007, LT: 0.309619, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 99, loss@min: 0.958948, loss@max: 1.370222, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 0.000007, LT: 0.309528, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 100, loss@min: 0.959783, loss@max: 1.366385, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.000007, LT: 0.309378, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 101, loss@min: 0.950332, loss@max: 1.362408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000007, LT: 0.309164, Top1S: 100.000000, Top1T: 91.683571 +Train:epoch: 102, loss@min: 0.951102, loss@max: 1.362107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000007, LT: 0.308846, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 103, loss@min: 0.952522, loss@max: 1.364853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000007, LT: 0.308631, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 104, loss@min: 0.954353, loss@max: 1.366027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000007, LT: 0.308482, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 105, loss@min: 0.948079, loss@max: 1.362263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000007, LT: 0.308338, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 106, loss@min: 0.951430, loss@max: 1.365858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000007, LT: 0.308216, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 107, loss@min: 0.961693, loss@max: 1.372943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000007, LT: 0.308110, Top1S: 100.000000, Top1T: 91.561867 +Train:epoch: 108, loss@min: 0.958102, loss@max: 1.367172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000007, LT: 0.308062, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 109, loss@min: 0.951232, loss@max: 1.363513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000007, LT: 0.308125, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 110, loss@min: 0.953141, loss@max: 1.364058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000007, LT: 0.308214, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 111, loss@min: 0.947563, loss@max: 1.360727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000007, LT: 0.308310, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 112, loss@min: 0.954797, loss@max: 1.367221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000007, LT: 0.308604, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 113, loss@min: 0.950949, loss@max: 1.363290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000007, LT: 0.308984, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 114, loss@min: 0.948419, loss@max: 1.362321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000007, LT: 0.309289, Top1S: 100.000000, Top1T: 91.561867 +Train:epoch: 115, loss@min: 0.949340, loss@max: 1.364304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000007, LT: 0.309505, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 116, loss@min: 0.950885, loss@max: 1.367310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000007, LT: 0.309730, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 117, loss@min: 0.948526, loss@max: 1.361715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000007, LT: 0.309745, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 118, loss@min: 0.952913, loss@max: 1.365604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000007, LT: 0.309795, Top1S: 100.000000, Top1T: 91.561867 +Train:epoch: 119, loss@min: 0.958835, loss@max: 1.367698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000007, LT: 0.309640, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 120, loss@min: 0.959104, loss@max: 1.369401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000007, LT: 0.309437, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 121, loss@min: 0.948097, loss@max: 1.361639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000007, LT: 0.309266, Top1S: 100.000000, Top1T: 91.643005 +Train:epoch: 122, loss@min: 0.961265, loss@max: 1.370867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000007, LT: 0.309154, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 123, loss@min: 0.947650, loss@max: 1.360793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000007, LT: 0.309218, Top1S: 100.000000, Top1T: 91.724136 +Train:epoch: 124, loss@min: 0.951627, loss@max: 1.365765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000007, LT: 0.309227, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 125, loss@min: 0.948739, loss@max: 1.362693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000007, LT: 0.309219, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 126, loss@min: 0.959769, loss@max: 1.369662, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 0.000007, LT: 0.309237, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 127, loss@min: 0.949987, loss@max: 1.362705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000007, LT: 0.309172, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 128, loss@min: 0.946650, loss@max: 1.360654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000007, LT: 0.309039, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 129, loss@min: 0.960796, loss@max: 1.368333, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 129, LS: 0.000007, LT: 0.308914, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 130, loss@min: 0.952600, loss@max: 1.365359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000007, LT: 0.308792, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 131, loss@min: 0.956252, loss@max: 1.369043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000007, LT: 0.308699, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 132, loss@min: 0.951860, loss@max: 1.363871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000007, LT: 0.308624, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 133, loss@min: 0.946033, loss@max: 1.361537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000007, LT: 0.308574, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 134, loss@min: 0.957635, loss@max: 1.364926, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 134, LS: 0.000007, LT: 0.308550, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 135, loss@min: 0.951129, loss@max: 1.363465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000007, LT: 0.308525, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 136, loss@min: 0.948269, loss@max: 1.364478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000007, LT: 0.308481, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 137, loss@min: 0.949589, loss@max: 1.363459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000007, LT: 0.308403, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 138, loss@min: 0.948762, loss@max: 1.359192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000007, LT: 0.308344, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 139, loss@min: 0.949113, loss@max: 1.362713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000007, LT: 0.308316, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 140, loss@min: 0.954557, loss@max: 1.365533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000007, LT: 0.308299, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 141, loss@min: 0.949850, loss@max: 1.362391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000007, LT: 0.308289, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 142, loss@min: 0.950410, loss@max: 1.361849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000007, LT: 0.308285, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 143, loss@min: 0.951657, loss@max: 1.364415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000007, LT: 0.308284, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 144, loss@min: 0.948259, loss@max: 1.362068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000007, LT: 0.308281, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 145, loss@min: 0.956748, loss@max: 1.369729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000007, LT: 0.308279, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 146, loss@min: 0.948287, loss@max: 1.362221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000007, LT: 0.308277, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 147, loss@min: 0.951526, loss@max: 1.365808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000007, LT: 0.308276, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 148, loss@min: 0.950546, loss@max: 1.363851, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000007, LT: 0.308275, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 149, loss@min: 0.953915, loss@max: 1.363406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000007, LT: 0.308275, Top1S: 100.000000, Top1T: 91.764709 +Train:epoch: 150, loss@min: 0.952286, loss@max: 1.364958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000007, LT: 0.308275, Top1S: 100.000000, Top1T: 91.764709 +------------------------------------------- +Wed Aug 2 12:25:14 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 13:26:51 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.004960, loss@max: 1.292006, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 2, loss@min: 1.471664, loss@max: 1.357621, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 3, loss@min: 1.379104, loss@max: 1.404615, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 4, loss@min: 1.251309, loss@max: 1.358920, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 5, loss@min: 1.255376, loss@max: 1.326862, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 6, loss@min: 1.227787, loss@max: 1.283235, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 7, loss@min: 1.244131, loss@max: 1.278534, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 8, loss@min: 1.108240, loss@max: 1.246693, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 9, loss@min: 1.207213, loss@max: 1.287897, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 10, loss@min: 1.106002, loss@max: 1.270201, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 11, loss@min: 1.130469, loss@max: 1.284044, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 12, loss@min: 0.997673, loss@max: 1.257788, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.056155, loss@max: 1.274033, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 14, loss@min: 1.040871, loss@max: 1.273384, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.019715, loss@max: 1.277664, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 16, loss@min: 1.002991, loss@max: 1.284160, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.059032, loss@max: 1.305017, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 18, loss@min: 1.015233, loss@max: 1.293597, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 1.012414, loss@max: 1.290505, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 20, loss@min: 1.030365, loss@max: 1.310351, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.005887, loss@max: 1.309834, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.066837, loss@max: 1.331546, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.013986, loss@max: 1.316820, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 24, loss@min: 0.963749, loss@max: 1.297872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.002665, loss@max: 1.323572, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.985652, loss@max: 1.324438, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.977435, loss@max: 1.315089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.952190, loss@max: 1.316215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.963955, loss@max: 1.328753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.965451, loss@max: 1.325619, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.020641, loss@max: 1.345851, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 32, loss@min: 0.975734, loss@max: 1.340871, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.012459, loss@max: 1.357173, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 0.997787, loss@max: 1.351269, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.997490, loss@max: 1.350032, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 0.971940, loss@max: 1.345833, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.948324, loss@max: 1.337121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.968240, loss@max: 1.344064, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.957727, loss@max: 1.348305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.968282, loss@max: 1.356043, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.964885, loss@max: 1.350646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963329, loss@max: 1.352332, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 0.979317, loss@max: 1.353614, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.967929, loss@max: 1.359225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.959706, loss@max: 1.363731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.983207, loss@max: 1.379084, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.973399, loss@max: 1.366389, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.965651, loss@max: 1.374605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.013342, loss@max: 1.388396, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 50, loss@min: 0.954085, loss@max: 1.353809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.998761, loss@max: 1.383623, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 52, loss@min: 0.961848, loss@max: 1.365953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.971759, loss@max: 1.359785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.003600, loss@max: 1.384856, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 55, loss@min: 0.954949, loss@max: 1.376242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.962748, loss@max: 1.363735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.964009, loss@max: 1.368246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.995710, loss@max: 1.387326, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 59, loss@min: 0.945459, loss@max: 1.369570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.984803, loss@max: 1.392326, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.963906, loss@max: 1.362470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.021387, loss@max: 1.390289, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 63, loss@min: 0.992450, loss@max: 1.389259, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.951752, loss@max: 1.385996, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 65, loss@min: 1.002453, loss@max: 1.381192, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 66, loss@min: 0.986483, loss@max: 1.378691, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.989402, loss@max: 1.398862, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 68, loss@min: 0.950464, loss@max: 1.367614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.959447, loss@max: 1.368946, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 1.000342, loss@max: 1.376468, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 71, loss@min: 0.956960, loss@max: 1.366699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.972878, loss@max: 1.381944, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.959581, loss@max: 1.371421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.971476, loss@max: 1.367951, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 75, loss@min: 0.963279, loss@max: 1.375330, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 76, loss@min: 0.970365, loss@max: 1.377144, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.977013, loss@max: 1.383842, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.977723, loss@max: 1.372876, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.989970, loss@max: 1.379252, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 80, loss@min: 0.960175, loss@max: 1.362908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000008, LT: 0.313686, Top1S: 100.000000, Top1T: 91.845840Best acc: 91.845840 +Train:epoch: 81, loss@min: 0.955095, loss@max: 1.368794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000008, LT: 0.310841, Top1S: 100.000000, Top1T: 91.967545Best acc: 91.967545 +Train:epoch: 82, loss@min: 0.969544, loss@max: 1.379113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000008, LT: 0.309086, Top1S: 100.000000, Top1T: 91.967545 +Train:epoch: 83, loss@min: 0.961916, loss@max: 1.378428, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.000008, LT: 0.305839, Top1S: 100.000000, Top1T: 92.008118Best acc: 92.008118 +Train:epoch: 84, loss@min: 0.944716, loss@max: 1.372813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000008, LT: 0.303723, Top1S: 100.000000, Top1T: 92.089249Best acc: 92.089249 +Train:epoch: 85, loss@min: 0.963947, loss@max: 1.378023, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 85, LS: 0.000008, LT: 0.303480, Top1S: 100.000000, Top1T: 92.129814Best acc: 92.129814 +Train:epoch: 86, loss@min: 0.966312, loss@max: 1.372802, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.000008, LT: 0.304107, Top1S: 100.000000, Top1T: 92.170387Best acc: 92.170387 +Train:epoch: 87, loss@min: 0.982412, loss@max: 1.373684, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 0.000008, LT: 0.304413, Top1S: 100.000000, Top1T: 92.210953Best acc: 92.210953 +Train:epoch: 88, loss@min: 0.951685, loss@max: 1.371738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000008, LT: 0.305573, Top1S: 100.000000, Top1T: 92.251518Best acc: 92.251518 +Train:epoch: 89, loss@min: 0.965308, loss@max: 1.366611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000008, LT: 0.306528, Top1S: 100.000000, Top1T: 92.210953 +Train:epoch: 90, loss@min: 0.961081, loss@max: 1.365057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000008, LT: 0.307233, Top1S: 100.000000, Top1T: 92.251518 +Train:epoch: 91, loss@min: 0.987995, loss@max: 1.386680, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 91, LS: 0.000008, LT: 0.307399, Top1S: 100.000000, Top1T: 92.332657Best acc: 92.332657 +Train:epoch: 92, loss@min: 0.950563, loss@max: 1.368548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000008, LT: 0.306093, Top1S: 100.000000, Top1T: 92.292091 +Train:epoch: 93, loss@min: 0.953906, loss@max: 1.369290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000007, LT: 0.306500, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 94, loss@min: 0.952167, loss@max: 1.362703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000007, LT: 0.308055, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 95, loss@min: 0.954617, loss@max: 1.370837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000007, LT: 0.309575, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 96, loss@min: 0.962566, loss@max: 1.374561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000007, LT: 0.310647, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 97, loss@min: 0.958212, loss@max: 1.368081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000007, LT: 0.311079, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 98, loss@min: 0.953171, loss@max: 1.360934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000007, LT: 0.311459, Top1S: 100.000000, Top1T: 92.210953 +Train:epoch: 99, loss@min: 0.948868, loss@max: 1.365302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000007, LT: 0.311932, Top1S: 100.000000, Top1T: 92.210953 +Train:epoch: 100, loss@min: 0.953252, loss@max: 1.370748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000007, LT: 0.311731, Top1S: 100.000000, Top1T: 92.332657 +Train:epoch: 101, loss@min: 0.978057, loss@max: 1.373201, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 0.000007, LT: 0.311192, Top1S: 100.000000, Top1T: 92.251518 +Train:epoch: 102, loss@min: 0.957930, loss@max: 1.374107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000007, LT: 0.310819, Top1S: 100.000000, Top1T: 92.332657 +Train:epoch: 103, loss@min: 0.945644, loss@max: 1.364962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000007, LT: 0.310232, Top1S: 100.000000, Top1T: 92.332657 +Train:epoch: 104, loss@min: 0.947350, loss@max: 1.364884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000007, LT: 0.309817, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 105, loss@min: 0.958174, loss@max: 1.368217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000007, LT: 0.309022, Top1S: 100.000000, Top1T: 92.210953 +Train:epoch: 106, loss@min: 0.982398, loss@max: 1.379040, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 106, LS: 0.000007, LT: 0.308585, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 107, loss@min: 0.962887, loss@max: 1.367955, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 107, LS: 0.000007, LT: 0.308613, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 108, loss@min: 0.953678, loss@max: 1.364222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000007, LT: 0.308465, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 109, loss@min: 0.954513, loss@max: 1.366344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000007, LT: 0.308217, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 110, loss@min: 0.979699, loss@max: 1.380516, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 110, LS: 0.000007, LT: 0.308018, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 111, loss@min: 0.950383, loss@max: 1.365412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000007, LT: 0.307845, Top1S: 100.000000, Top1T: 92.251518 +Train:epoch: 112, loss@min: 0.947741, loss@max: 1.371632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000007, LT: 0.307836, Top1S: 100.000000, Top1T: 92.251518 +Train:epoch: 113, loss@min: 0.959946, loss@max: 1.371086, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 113, LS: 0.000007, LT: 0.307689, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 114, loss@min: 0.962446, loss@max: 1.372878, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 0.000007, LT: 0.307432, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 115, loss@min: 0.950841, loss@max: 1.364020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000007, LT: 0.307504, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 116, loss@min: 0.953289, loss@max: 1.364709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000007, LT: 0.307782, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 117, loss@min: 0.957003, loss@max: 1.367187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000007, LT: 0.308086, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 118, loss@min: 0.948589, loss@max: 1.366430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000007, LT: 0.308040, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 119, loss@min: 0.953038, loss@max: 1.367866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000007, LT: 0.307884, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 120, loss@min: 0.948076, loss@max: 1.369195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000007, LT: 0.307696, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 121, loss@min: 0.954347, loss@max: 1.365404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000007, LT: 0.307802, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 122, loss@min: 0.954222, loss@max: 1.362946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000007, LT: 0.307895, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 123, loss@min: 0.955374, loss@max: 1.367264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000007, LT: 0.307925, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 124, loss@min: 0.958011, loss@max: 1.372787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000007, LT: 0.308003, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 125, loss@min: 0.947434, loss@max: 1.363145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000007, LT: 0.308067, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 126, loss@min: 0.951885, loss@max: 1.365457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000007, LT: 0.308248, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 127, loss@min: 0.976460, loss@max: 1.374557, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.000007, LT: 0.308336, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 128, loss@min: 0.952944, loss@max: 1.364151, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000007, LT: 0.308351, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 129, loss@min: 0.954972, loss@max: 1.370309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000007, LT: 0.308314, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 130, loss@min: 0.961060, loss@max: 1.368568, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 0.000007, LT: 0.308342, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 131, loss@min: 0.949677, loss@max: 1.364004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000007, LT: 0.308416, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 132, loss@min: 0.957444, loss@max: 1.366571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000007, LT: 0.308408, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 133, loss@min: 0.959874, loss@max: 1.365717, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 0.000007, LT: 0.308367, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 134, loss@min: 0.968784, loss@max: 1.372594, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 134, LS: 0.000007, LT: 0.308507, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 135, loss@min: 0.948568, loss@max: 1.365372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000007, LT: 0.308708, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 136, loss@min: 0.949828, loss@max: 1.365700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000007, LT: 0.308865, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 137, loss@min: 0.949941, loss@max: 1.362385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000007, LT: 0.308934, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 138, loss@min: 0.946943, loss@max: 1.363296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000007, LT: 0.308913, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 139, loss@min: 0.950677, loss@max: 1.359799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000007, LT: 0.308907, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 140, loss@min: 0.955792, loss@max: 1.367203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000007, LT: 0.308920, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 141, loss@min: 0.957186, loss@max: 1.369815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000007, LT: 0.308925, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 142, loss@min: 0.950619, loss@max: 1.368617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000007, LT: 0.308917, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 143, loss@min: 0.965514, loss@max: 1.375369, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.000007, LT: 0.308922, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 144, loss@min: 0.954936, loss@max: 1.361973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000007, LT: 0.308922, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 145, loss@min: 0.961750, loss@max: 1.371504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000007, LT: 0.308923, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 146, loss@min: 0.958994, loss@max: 1.368559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000007, LT: 0.308926, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 147, loss@min: 0.953576, loss@max: 1.366102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000007, LT: 0.308932, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 148, loss@min: 0.950378, loss@max: 1.361287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000007, LT: 0.308936, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 149, loss@min: 0.951377, loss@max: 1.363234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000007, LT: 0.308937, Top1S: 100.000000, Top1T: 92.129814 +Train:epoch: 150, loss@min: 0.951981, loss@max: 1.366805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000007, LT: 0.308937, Top1S: 100.000000, Top1T: 92.129814 +------------------------------------------- +Wed Aug 2 18:50:18 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 2 21:13:30 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.713388, loss@max: 1.386020, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 2, loss@min: 1.297235, loss@max: 1.382486, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 3, loss@min: 1.517956, loss@max: 1.366373, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 4, loss@min: 1.316324, loss@max: 1.245478, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 5, loss@min: 1.238372, loss@max: 1.248591, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 6, loss@min: 1.223068, loss@max: 1.270095, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 7, loss@min: 1.284953, loss@max: 1.294239, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 8, loss@min: 1.094604, loss@max: 1.254119, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 9, loss@min: 1.140198, loss@max: 1.264623, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 10, loss@min: 1.010400, loss@max: 1.237541, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 11, loss@min: 1.045991, loss@max: 1.248944, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 12, loss@min: 1.091333, loss@max: 1.280291, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 13, loss@min: 1.036362, loss@max: 1.266853, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.084299, loss@max: 1.289159, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 15, loss@min: 1.057575, loss@max: 1.282691, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 16, loss@min: 0.987355, loss@max: 1.265461, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.091253, loss@max: 1.300400, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 18, loss@min: 0.948046, loss@max: 1.255074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.999327, loss@max: 1.291524, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 0.970873, loss@max: 1.284432, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 21, loss@min: 1.031494, loss@max: 1.298909, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 22, loss@min: 0.969326, loss@max: 1.297461, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 0.963371, loss@max: 1.289845, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.991607, loss@max: 1.307312, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 0.991390, loss@max: 1.310702, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.002344, loss@max: 1.309011, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 27, loss@min: 1.001498, loss@max: 1.336289, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 28, loss@min: 0.971627, loss@max: 1.301399, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.961242, loss@max: 1.325947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.982738, loss@max: 1.325475, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.984578, loss@max: 1.346195, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 0.947956, loss@max: 1.335655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.967607, loss@max: 1.328609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.028073, loss@max: 1.354639, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 0.986276, loss@max: 1.346375, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 36, loss@min: 0.971584, loss@max: 1.335599, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.009009, loss@max: 1.362809, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 38, loss@min: 0.971002, loss@max: 1.341855, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.957797, loss@max: 1.353977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.960970, loss@max: 1.342115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.995469, loss@max: 1.352921, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 42, loss@min: 0.946300, loss@max: 1.338043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.979564, loss@max: 1.361290, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.996217, loss@max: 1.373559, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 0.976532, loss@max: 1.352509, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.967693, loss@max: 1.362170, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.948893, loss@max: 1.369027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.976634, loss@max: 1.375154, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 0.984250, loss@max: 1.371331, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 0.976923, loss@max: 1.367031, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 51, loss@min: 0.957583, loss@max: 1.358252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.977407, loss@max: 1.366997, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.960077, loss@max: 1.363299, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.973711, loss@max: 1.372531, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.002493, loss@max: 1.371802, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 0.952660, loss@max: 1.363259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.955298, loss@max: 1.357571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.948767, loss@max: 1.373060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952653, loss@max: 1.365102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952017, loss@max: 1.362477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.951662, loss@max: 1.371112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954373, loss@max: 1.354533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.961359, loss@max: 1.360818, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.956961, loss@max: 1.361785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.976652, loss@max: 1.373543, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.973256, loss@max: 1.364750, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.949266, loss@max: 1.374082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951410, loss@max: 1.362381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947780, loss@max: 1.371424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.959561, loss@max: 1.355053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950607, loss@max: 1.360997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.956741, loss@max: 1.356986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.950718, loss@max: 1.364892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.957979, loss@max: 1.370273, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 75, loss@min: 0.945125, loss@max: 1.363440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.954924, loss@max: 1.362921, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.945109, loss@max: 1.363044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954269, loss@max: 1.360435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.953097, loss@max: 1.374199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.979914, loss@max: 1.373681, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 80, LS: 0.000007, LT: 0.281314, Top1S: 100.000000, Top1T: 93.103447Best acc: 93.103447 +Train:epoch: 81, loss@min: 0.948401, loss@max: 1.363688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000007, LT: 0.281103, Top1S: 100.000000, Top1T: 93.144020Best acc: 93.144020 +Train:epoch: 82, loss@min: 0.970772, loss@max: 1.367251, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000007, LT: 0.281401, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 83, loss@min: 0.945251, loss@max: 1.358738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000007, LT: 0.281894, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 84, loss@min: 0.952208, loss@max: 1.366850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000007, LT: 0.281356, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 85, loss@min: 0.947534, loss@max: 1.358403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000007, LT: 0.278254, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 86, loss@min: 0.964818, loss@max: 1.372873, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.000007, LT: 0.278076, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 87, loss@min: 0.956233, loss@max: 1.360708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000007, LT: 0.278748, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 88, loss@min: 0.950980, loss@max: 1.365441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000007, LT: 0.280357, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 89, loss@min: 0.952205, loss@max: 1.360251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000007, LT: 0.281715, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 90, loss@min: 0.947812, loss@max: 1.360798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000007, LT: 0.282261, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 91, loss@min: 0.949391, loss@max: 1.366647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000007, LT: 0.283316, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 92, loss@min: 0.950476, loss@max: 1.360525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000007, LT: 0.283547, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 93, loss@min: 0.963796, loss@max: 1.373869, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 0.000007, LT: 0.282456, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 94, loss@min: 0.953867, loss@max: 1.367228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000007, LT: 0.280484, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 95, loss@min: 0.947389, loss@max: 1.360471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000007, LT: 0.279580, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 96, loss@min: 0.951450, loss@max: 1.361676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000007, LT: 0.280488, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 97, loss@min: 0.961025, loss@max: 1.367605, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.000007, LT: 0.282625, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 98, loss@min: 0.949783, loss@max: 1.361737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000007, LT: 0.285224, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 99, loss@min: 0.951979, loss@max: 1.360862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000007, LT: 0.286112, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 100, loss@min: 0.962950, loss@max: 1.375447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000007, LT: 0.286115, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 101, loss@min: 0.946506, loss@max: 1.359569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000007, LT: 0.284760, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 102, loss@min: 0.956919, loss@max: 1.366147, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.000007, LT: 0.284321, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 103, loss@min: 0.949059, loss@max: 1.366634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000007, LT: 0.284586, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 104, loss@min: 0.947115, loss@max: 1.358322, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000007, LT: 0.284523, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 105, loss@min: 0.948354, loss@max: 1.362021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000007, LT: 0.284141, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 106, loss@min: 0.962214, loss@max: 1.369403, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 106, LS: 0.000007, LT: 0.284612, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 107, loss@min: 0.945899, loss@max: 1.363156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000007, LT: 0.285645, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 108, loss@min: 0.948935, loss@max: 1.359806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000007, LT: 0.286640, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 109, loss@min: 0.951111, loss@max: 1.363248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000007, LT: 0.287293, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 110, loss@min: 0.947391, loss@max: 1.359656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000007, LT: 0.287440, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 111, loss@min: 0.949722, loss@max: 1.357897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000007, LT: 0.287288, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 112, loss@min: 0.982758, loss@max: 1.375626, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000007, LT: 0.286744, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 113, loss@min: 0.951039, loss@max: 1.363465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000007, LT: 0.285950, Top1S: 100.000000, Top1T: 93.265724Best acc: 93.265724 +Train:epoch: 114, loss@min: 0.947384, loss@max: 1.363261, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 3 00:02:11 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.165093, loss@max: 1.323836, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 2, loss@min: 1.057741, loss@max: 1.752764, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 3, loss@min: 1.432530, loss@max: 1.443353, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 4, loss@min: 1.183230, loss@max: 1.464590, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 5, loss@min: 1.022853, loss@max: 1.475478, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 6, loss@min: 1.065437, loss@max: 1.374145, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 7, loss@min: 1.080649, loss@max: 1.418049, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.008985, loss@max: 1.348190, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 1.048225, loss@max: 1.492298, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.047007, loss@max: 1.412495, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.013742, loss@max: 1.453039, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.044027, loss@max: 1.462351, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 0.982334, loss@max: 1.534167, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.118464, loss@max: 1.530617, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.992535, loss@max: 1.565382, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.060299, loss@max: 1.492069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.088942, loss@max: 1.559515, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.067336, loss@max: 1.525073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.022202, loss@max: 1.553704, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.024081, loss@max: 1.570704, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.093821, loss@max: 1.572160, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.043441, loss@max: 1.511615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.980421, loss@max: 1.535079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.995708, loss@max: 1.567203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.032142, loss@max: 1.476960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.994416, loss@max: 1.542546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.061470, loss@max: 1.540046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.021329, loss@max: 1.510127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.979660, loss@max: 1.510045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.035848, loss@max: 1.467960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.999565, loss@max: 1.506910, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.999098, loss@max: 1.440683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.036143, loss@max: 1.392922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.009601, loss@max: 1.481138, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.980501, loss@max: 1.457623, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 0.988698, loss@max: 1.465781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.065990, loss@max: 1.476282, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.999656, loss@max: 1.445260, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.992137, loss@max: 1.476163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.010958, loss@max: 1.478676, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.994751, loss@max: 1.507136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.994490, loss@max: 1.450960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.995809, loss@max: 1.471842, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.996609, loss@max: 1.465694, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.984459, loss@max: 1.437983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.974144, loss@max: 1.457080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.960893, loss@max: 1.506634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.018862, loss@max: 1.435675, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.010160, loss@max: 1.445767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.975113, loss@max: 1.469772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.017171, loss@max: 1.433045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.970725, loss@max: 1.533263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.995429, loss@max: 1.459956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.999823, loss@max: 1.456668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.994915, loss@max: 1.476100, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 1.006654, loss@max: 1.415968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954783, loss@max: 1.487582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975570, loss@max: 1.431665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.967697, loss@max: 1.449039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.983871, loss@max: 1.419800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.950174, loss@max: 1.458224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.978999, loss@max: 1.430585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.989412, loss@max: 1.429368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.952857, loss@max: 1.461961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.982916, loss@max: 1.430889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.991519, loss@max: 1.404059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951733, loss@max: 1.444979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.974296, loss@max: 1.414200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.972035, loss@max: 1.398584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958386, loss@max: 1.450876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.970988, loss@max: 1.422982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.972053, loss@max: 1.425329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.956745, loss@max: 1.412136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.970140, loss@max: 1.421850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.965191, loss@max: 1.394286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.942685, loss@max: 1.410896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950232, loss@max: 1.401228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.949346, loss@max: 1.405968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.942768, loss@max: 1.422636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.970183, loss@max: 1.407068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000006, LT: 0.248074, Top1S: 100.000000, Top1T: 93.509125Best acc: 93.509125 +Train:epoch: 81, loss@min: 0.964473, loss@max: 1.393239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000005, LT: 0.249739, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 82, loss@min: 0.976187, loss@max: 1.380129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000005, LT: 0.247417, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 83, loss@min: 0.959715, loss@max: 1.377763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000005, LT: 0.248786, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 84, loss@min: 0.956786, loss@max: 1.388219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000005, LT: 0.248673, Top1S: 100.000000, Top1T: 93.630829Best acc: 93.630829 +Train:epoch: 85, loss@min: 0.956348, loss@max: 1.385603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000005, LT: 0.249387, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 86, loss@min: 0.957475, loss@max: 1.402678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000005, LT: 0.250305, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 87, loss@min: 0.957829, loss@max: 1.380186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000005, LT: 0.250275, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 88, loss@min: 0.943513, loss@max: 1.389464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000005, LT: 0.250010, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 89, loss@min: 0.953037, loss@max: 1.390751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000005, LT: 0.250370, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 90, loss@min: 0.949608, loss@max: 1.379405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000005, LT: 0.252028, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 91, loss@min: 0.952166, loss@max: 1.379706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000005, LT: 0.254965, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 92, loss@min: 0.951110, loss@max: 1.378582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000005, LT: 0.256897, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 93, loss@min: 0.952639, loss@max: 1.380052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000005, LT: 0.254933, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 94, loss@min: 0.933610, loss@max: 1.399393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000005, LT: 0.253575, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 95, loss@min: 0.964217, loss@max: 1.359477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000005, LT: 0.252140, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 96, loss@min: 0.947854, loss@max: 1.383495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000005, LT: 0.252745, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 97, loss@min: 0.949992, loss@max: 1.392439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000005, LT: 0.255277, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 98, loss@min: 0.954816, loss@max: 1.370223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000005, LT: 0.258620, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 99, loss@min: 0.952929, loss@max: 1.372687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000005, LT: 0.258452, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 100, loss@min: 0.955265, loss@max: 1.382264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000005, LT: 0.257540, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 101, loss@min: 0.951679, loss@max: 1.371937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000005, LT: 0.256630, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 102, loss@min: 0.949540, loss@max: 1.371746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000005, LT: 0.256085, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 103, loss@min: 0.961295, loss@max: 1.364421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000005, LT: 0.256459, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 104, loss@min: 0.949113, loss@max: 1.370828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000005, LT: 0.256060, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 105, loss@min: 0.945092, loss@max: 1.376964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000005, LT: 0.256008, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 106, loss@min: 0.956124, loss@max: 1.369694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000005, LT: 0.254970, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 107, loss@min: 0.952721, loss@max: 1.365414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000005, LT: 0.255662, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 108, loss@min: 0.950023, loss@max: 1.369629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000005, LT: 0.256898, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 109, loss@min: 0.944491, loss@max: 1.375483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000005, LT: 0.257976, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 110, loss@min: 0.947278, loss@max: 1.371921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000005, LT: 0.258878, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 111, loss@min: 0.948478, loss@max: 1.368611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000005, LT: 0.258921, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 112, loss@min: 0.966689, loss@max: 1.380467, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000005, LT: 0.258397, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 113, loss@min: 0.947445, loss@max: 1.372778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000005, LT: 0.258346, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 114, loss@min: 0.946948, loss@max: 1.371553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000005, LT: 0.258754, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 115, loss@min: 0.950202, loss@max: 1.376523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000005, LT: 0.259466, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 116, loss@min: 0.950160, loss@max: 1.364564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000005, LT: 0.259448, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 117, loss@min: 0.952913, loss@max: 1.365596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000005, LT: 0.258927, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 118, loss@min: 0.947870, loss@max: 1.377032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000005, LT: 0.259449, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 119, loss@min: 0.958089, loss@max: 1.365203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000005, LT: 0.259707, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 120, loss@min: 0.951600, loss@max: 1.361499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000005, LT: 0.259617, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 121, loss@min: 0.946734, loss@max: 1.367518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000005, LT: 0.260113, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 122, loss@min: 0.950573, loss@max: 1.362579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000005, LT: 0.260318, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 123, loss@min: 0.954358, loss@max: 1.369884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000005, LT: 0.260643, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 124, loss@min: 0.949289, loss@max: 1.367379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000005, LT: 0.261214, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 125, loss@min: 0.950193, loss@max: 1.370456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000005, LT: 0.261851, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 126, loss@min: 0.954924, loss@max: 1.363806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000005, LT: 0.261893, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 127, loss@min: 0.946149, loss@max: 1.370642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000005, LT: 0.262008, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 128, loss@min: 0.952074, loss@max: 1.366801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000005, LT: 0.262320, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 129, loss@min: 0.950553, loss@max: 1.373591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000005, LT: 0.262435, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 130, loss@min: 0.943677, loss@max: 1.368328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000005, LT: 0.262045, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 131, loss@min: 0.957119, loss@max: 1.371676, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 131, LS: 0.000005, LT: 0.261924, Top1S: 100.000000, Top1T: 93.711967Best acc: 93.711967 +Train:epoch: 132, loss@min: 0.950197, loss@max: 1.369285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000005, LT: 0.261710, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 133, loss@min: 0.955367, loss@max: 1.365631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000005, LT: 0.261957, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 134, loss@min: 0.943614, loss@max: 1.372385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000005, LT: 0.262364, Top1S: 100.000000, Top1T: 93.711967{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Thu Aug 3 01:07:55 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.165093, loss@max: 1.323836, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 2, loss@min: 1.057741, loss@max: 1.752764, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 3, loss@min: 1.432530, loss@max: 1.443353, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 4, loss@min: 1.183230, loss@max: 1.464590, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 5, loss@min: 1.022853, loss@max: 1.475478, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 6, loss@min: 1.065437, loss@max: 1.374145, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 7, loss@min: 1.080649, loss@max: 1.418049, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.008985, loss@max: 1.348190, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 1.048225, loss@max: 1.492298, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.047007, loss@max: 1.412495, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.013742, loss@max: 1.453039, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.044027, loss@max: 1.462351, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 0.982334, loss@max: 1.534167, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.118464, loss@max: 1.530617, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.992535, loss@max: 1.565382, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.060299, loss@max: 1.492069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.088942, loss@max: 1.559515, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.067336, loss@max: 1.525073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.022202, loss@max: 1.553704, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.024081, loss@max: 1.570704, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.093821, loss@max: 1.572160, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.043441, loss@max: 1.511615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.980421, loss@max: 1.535079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.995708, loss@max: 1.567203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.032142, loss@max: 1.476960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.994416, loss@max: 1.542546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.061470, loss@max: 1.540046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.021329, loss@max: 1.510127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.979660, loss@max: 1.510045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.035848, loss@max: 1.467960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000007, LT: 0.242302, Top1S: 100.000000, Top1T: 93.022316Best acc: 93.022316 +Train:epoch: 31, loss@min: 0.999565, loss@max: 1.506910, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 31, LS: 0.000006, LT: 0.238972, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 32, loss@min: 1.003085, loss@max: 1.442029, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 32, LS: 0.000006, LT: 0.240378, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 33, loss@min: 1.037700, loss@max: 1.393374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.000006, LT: 0.239539, Top1S: 100.000000, Top1T: 93.062881Best acc: 93.062881 +Train:epoch: 34, loss@min: 1.011031, loss@max: 1.479526, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 34, LS: 0.000007, LT: 0.237289, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 35, loss@min: 0.982592, loss@max: 1.457168, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 35, LS: 0.000006, LT: 0.245204, Top1S: 100.000000, Top1T: 92.941177 +Train:epoch: 36, loss@min: 0.990866, loss@max: 1.466112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000006, LT: 0.239537, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 37, loss@min: 1.063818, loss@max: 1.473317, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 37, LS: 0.000006, LT: 0.241727, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 38, loss@min: 0.993923, loss@max: 1.447546, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 38, LS: 0.000006, LT: 0.244585, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 39, loss@min: 0.989764, loss@max: 1.464266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.000006, LT: 0.248944, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 40, loss@min: 1.010002, loss@max: 1.475125, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 40, LS: 0.000006, LT: 0.250024, Top1S: 100.000000, Top1T: 92.819473 +Train:epoch: 41, loss@min: 0.995822, loss@max: 1.507148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.000006, LT: 0.245099, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 42, loss@min: 0.993724, loss@max: 1.449961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.000006, LT: 0.247379, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 43, loss@min: 0.995286, loss@max: 1.467408, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.000006, LT: 0.237414, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 44, loss@min: 0.991954, loss@max: 1.465809, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 44, LS: 0.000006, LT: 0.246505, Top1S: 100.000000, Top1T: 93.265724Best acc: 93.265724 +Train:epoch: 45, loss@min: 0.981123, loss@max: 1.437475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.000006, LT: 0.241228, Top1S: 100.000000, Top1T: 93.427994Best acc: 93.427994 +Train:epoch: 46, loss@min: 0.977890, loss@max: 1.454064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.000007, LT: 0.244237, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 47, loss@min: 0.957377, loss@max: 1.504858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.000007, LT: 0.241722, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 48, loss@min: 1.020482, loss@max: 1.430032, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.000006, LT: 0.244195, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 49, loss@min: 1.017099, loss@max: 1.443000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.000006, LT: 0.245397, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 50, loss@min: 0.977566, loss@max: 1.471397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000006, LT: 0.246401, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 51, loss@min: 1.018285, loss@max: 1.431802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000006, LT: 0.242304, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 52, loss@min: 0.967242, loss@max: 1.531223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000006, LT: 0.246110, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 53, loss@min: 0.997609, loss@max: 1.459557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000006, LT: 0.243004, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 54, loss@min: 0.998567, loss@max: 1.456795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000005, LT: 0.242052, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 55, loss@min: 1.000791, loss@max: 1.461845, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 55, LS: 0.000006, LT: 0.245447, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 56, loss@min: 1.006470, loss@max: 1.415534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000006, LT: 0.245092, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 57, loss@min: 0.953680, loss@max: 1.489753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000006, LT: 0.245492, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 58, loss@min: 0.972269, loss@max: 1.436790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000006, LT: 0.249424, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 59, loss@min: 0.975371, loss@max: 1.441579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000006, LT: 0.246730, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 60, loss@min: 0.985059, loss@max: 1.420083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000006, LT: 0.246435, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 61, loss@min: 0.952989, loss@max: 1.453060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000008, LT: 0.244429, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 62, loss@min: 0.975611, loss@max: 1.436863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000006, LT: 0.241521, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 63, loss@min: 0.991606, loss@max: 1.430759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000010, LT: 0.240735, Top1S: 100.000000, Top1T: 93.468559Best acc: 93.468559 +Train:epoch: 64, loss@min: 0.951059, loss@max: 1.461229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000006, LT: 0.245901, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 65, loss@min: 0.985381, loss@max: 1.432565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000006, LT: 0.249175, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 66, loss@min: 0.990532, loss@max: 1.404089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000006, LT: 0.249553, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 67, loss@min: 0.949227, loss@max: 1.448534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000006, LT: 0.247645, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 68, loss@min: 0.969672, loss@max: 1.418182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000008, LT: 0.245676, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 69, loss@min: 0.976623, loss@max: 1.396957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000007, LT: 0.246348, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 70, loss@min: 0.963771, loss@max: 1.445207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000007, LT: 0.243772, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 71, loss@min: 0.969192, loss@max: 1.427447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000005, LT: 0.248447, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 72, loss@min: 0.972069, loss@max: 1.420068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000006, LT: 0.246166, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 73, loss@min: 0.957884, loss@max: 1.415295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000005, LT: 0.246379, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 74, loss@min: 0.967487, loss@max: 1.423317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000006, LT: 0.244070, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 75, loss@min: 0.966655, loss@max: 1.391953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000005, LT: 0.247302, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 76, loss@min: 0.941095, loss@max: 1.411280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000006, LT: 0.246515, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 77, loss@min: 0.951185, loss@max: 1.401268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000005, LT: 0.246688, Top1S: 100.000000, Top1T: 93.509125Best acc: 93.509125 +Train:epoch: 78, loss@min: 0.947553, loss@max: 1.408784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000005, LT: 0.245463, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 79, loss@min: 0.942851, loss@max: 1.421034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000005, LT: 0.246937, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 80, loss@min: 0.970599, loss@max: 1.408541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000005, LT: 0.248556, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 81, loss@min: 0.963258, loss@max: 1.393335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000005, LT: 0.249976, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 82, loss@min: 0.974881, loss@max: 1.382770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000005, LT: 0.248008, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 83, loss@min: 0.961288, loss@max: 1.376194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000005, LT: 0.249431, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 84, loss@min: 0.956832, loss@max: 1.387257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000005, LT: 0.248847, Top1S: 100.000000, Top1T: 93.590263Best acc: 93.590263 +Train:epoch: 85, loss@min: 0.955309, loss@max: 1.385406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000005, LT: 0.249797, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 86, loss@min: 0.958470, loss@max: 1.399698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000005, LT: 0.250677, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 87, loss@min: 0.958853, loss@max: 1.379031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000005, LT: 0.250570, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 88, loss@min: 0.941332, loss@max: 1.391453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000005, LT: 0.250298, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 89, loss@min: 0.953027, loss@max: 1.387266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000005, LT: 0.250857, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 90, loss@min: 0.948865, loss@max: 1.379164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000005, LT: 0.252241, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 91, loss@min: 0.952080, loss@max: 1.379362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000005, LT: 0.255477, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 92, loss@min: 0.952464, loss@max: 1.378229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000005, LT: 0.257275, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 93, loss@min: 0.954692, loss@max: 1.376042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000005, LT: 0.255683, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 94, loss@min: 0.934148, loss@max: 1.398732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000005, LT: 0.254204, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 95, loss@min: 0.966413, loss@max: 1.357869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000005, LT: 0.252741, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 96, loss@min: 0.948743, loss@max: 1.382474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000005, LT: 0.253388, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 97, loss@min: 0.949041, loss@max: 1.392284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000005, LT: 0.255859, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 98, loss@min: 0.953750, loss@max: 1.371143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000005, LT: 0.259181, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 99, loss@min: 0.954239, loss@max: 1.371504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000005, LT: 0.258961, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 100, loss@min: 0.956770, loss@max: 1.381716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000005, LT: 0.257994, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 101, loss@min: 0.952211, loss@max: 1.372534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000005, LT: 0.257096, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 102, loss@min: 0.949772, loss@max: 1.371853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000005, LT: 0.256612, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 103, loss@min: 0.961418, loss@max: 1.364601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000005, LT: 0.256884, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 104, loss@min: 0.948005, loss@max: 1.372326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000005, LT: 0.256437, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 105, loss@min: 0.943978, loss@max: 1.378193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000005, LT: 0.256392, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 106, loss@min: 0.956932, loss@max: 1.368856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000005, LT: 0.255423, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 107, loss@min: 0.952515, loss@max: 1.365629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000005, LT: 0.256068, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 108, loss@min: 0.949541, loss@max: 1.370448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000005, LT: 0.257256, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 109, loss@min: 0.944667, loss@max: 1.375049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000005, LT: 0.258284, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 110, loss@min: 0.949040, loss@max: 1.370301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000005, LT: 0.259148, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 111, loss@min: 0.948020, loss@max: 1.369207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000005, LT: 0.259213, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 112, loss@min: 0.964655, loss@max: 1.383185, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000005, LT: 0.258666, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 113, loss@min: 0.948583, loss@max: 1.371507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000005, LT: 0.258630, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 114, loss@min: 0.946007, loss@max: 1.372613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000005, LT: 0.259052, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 115, loss@min: 0.949254, loss@max: 1.377048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000005, LT: 0.259664, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 116, loss@min: 0.950344, loss@max: 1.364461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000005, LT: 0.259678, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 117, loss@min: 0.952360, loss@max: 1.366117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000005, LT: 0.259280, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 118, loss@min: 0.947487, loss@max: 1.377386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000005, LT: 0.259777, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 119, loss@min: 0.958610, loss@max: 1.364586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000005, LT: 0.259970, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 120, loss@min: 0.951149, loss@max: 1.361840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000005, LT: 0.259896, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 121, loss@min: 0.946513, loss@max: 1.367735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000005, LT: 0.260398, Top1S: 100.000000, Top1T: 93.671402Best acc: 93.671402 +Train:epoch: 122, loss@min: 0.949565, loss@max: 1.363552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000005, LT: 0.260600, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 123, loss@min: 0.955118, loss@max: 1.369083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000005, LT: 0.260921, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 124, loss@min: 0.950185, loss@max: 1.366398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000005, LT: 0.261469, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 125, loss@min: 0.950105, loss@max: 1.370619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000005, LT: 0.262124, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 126, loss@min: 0.954365, loss@max: 1.364506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000005, LT: 0.262198, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 127, loss@min: 0.945719, loss@max: 1.371103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000005, LT: 0.262320, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 128, loss@min: 0.951592, loss@max: 1.367327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000005, LT: 0.262626, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 129, loss@min: 0.951772, loss@max: 1.372576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000005, LT: 0.262728, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 130, loss@min: 0.942290, loss@max: 1.369750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000005, LT: 0.262339, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 131, loss@min: 0.957711, loss@max: 1.371073, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 131, LS: 0.000005, LT: 0.262212, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 132, loss@min: 0.951176, loss@max: 1.368326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000005, LT: 0.261996, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 133, loss@min: 0.956180, loss@max: 1.364896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000005, LT: 0.262234, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 134, loss@min: 0.943619, loss@max: 1.372601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000005, LT: 0.262638, Top1S: 100.000000, Top1T: 93.711967Best acc: 93.711967 +Train:epoch: 135, loss@min: 0.952317, loss@max: 1.365913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000005, LT: 0.262756, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 136, loss@min: 0.952888, loss@max: 1.365124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000005, LT: 0.262755, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 137, loss@min: 0.958854, loss@max: 1.372404, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 0.000005, LT: 0.262731, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 138, loss@min: 0.955799, loss@max: 1.369172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000005, LT: 0.262681, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 139, loss@min: 0.948748, loss@max: 1.368466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000005, LT: 0.262634, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 140, loss@min: 0.949531, loss@max: 1.363501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000005, LT: 0.262668, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 141, loss@min: 0.945195, loss@max: 1.368464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000005, LT: 0.262712, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 142, loss@min: 0.956130, loss@max: 1.368612, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 142, LS: 0.000005, LT: 0.262698, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 143, loss@min: 0.949823, loss@max: 1.365973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000005, LT: 0.262664, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 144, loss@min: 0.950436, loss@max: 1.365934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000005, LT: 0.262687, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 145, loss@min: 0.947544, loss@max: 1.370512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000005, LT: 0.262704, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 146, loss@min: 0.968518, loss@max: 1.369498, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 146, LS: 0.000005, LT: 0.262707, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 147, loss@min: 0.952318, loss@max: 1.361433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000005, LT: 0.262715, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 148, loss@min: 0.977425, loss@max: 1.373328, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.000005, LT: 0.262716, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 149, loss@min: 0.942915, loss@max: 1.370314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000005, LT: 0.262715, Top1S: 100.000000, Top1T: 93.711967 +Train:epoch: 150, loss@min: 0.947549, loss@max: 1.363697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000005, LT: 0.262715, Top1S: 100.000000, Top1T: 93.711967 +------------------------------------------- +Thu Aug 3 03:15:33 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Aug 3 07:32:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.469897, loss@max: 1.500395, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.250468, loss@max: 1.519447, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 3, loss@min: 1.375046, loss@max: 1.319062, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 4, loss@min: 0.996006, loss@max: 1.373422, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 5, loss@min: 0.990822, loss@max: 1.342726, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 6, loss@min: 0.999948, loss@max: 1.294049, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 7, loss@min: 0.963967, loss@max: 1.357463, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 8, loss@min: 1.021942, loss@max: 1.252597, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 9, loss@min: 1.008334, loss@max: 1.387702, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 0.992525, loss@max: 1.294063, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 0.938787, loss@max: 1.361044, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 12, loss@min: 1.012316, loss@max: 1.282161, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 13, loss@min: 0.925976, loss@max: 1.381601, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.041684, loss@max: 1.392680, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.988058, loss@max: 1.341570, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.984056, loss@max: 1.365183, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.990853, loss@max: 1.371466, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 18, loss@min: 0.961604, loss@max: 1.367663, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.952453, loss@max: 1.340891, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 0.953687, loss@max: 1.375336, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 0.988861, loss@max: 1.331484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.947971, loss@max: 1.393155, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.009938, loss@max: 1.311650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.995614, loss@max: 1.363436, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 0.991491, loss@max: 1.412326, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 1.031587, loss@max: 1.415744, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.992073, loss@max: 1.426724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.004039, loss@max: 1.379780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.979283, loss@max: 1.411874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.989191, loss@max: 1.373109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.993067, loss@max: 1.382081, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.980064, loss@max: 1.357349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.958836, loss@max: 1.405325, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.004083, loss@max: 1.375672, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 0.956951, loss@max: 1.410301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.983707, loss@max: 1.400490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.005407, loss@max: 1.427026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.002850, loss@max: 1.478036, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.990660, loss@max: 1.443815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.989387, loss@max: 1.432445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.019500, loss@max: 1.447262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.960992, loss@max: 1.441466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.003603, loss@max: 1.423062, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.947960, loss@max: 1.418252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.940063, loss@max: 1.415650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989574, loss@max: 1.388686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.936877, loss@max: 1.439604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.980189, loss@max: 1.387505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945282, loss@max: 1.437093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.994146, loss@max: 1.374417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.986440, loss@max: 1.425032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.954223, loss@max: 1.435676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.993907, loss@max: 1.381748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.934667, loss@max: 1.444375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.980840, loss@max: 1.391636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953079, loss@max: 1.389832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.959864, loss@max: 1.395048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.963348, loss@max: 1.387394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953869, loss@max: 1.392106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.973087, loss@max: 1.372557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.930331, loss@max: 1.402313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.970919, loss@max: 1.368498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939214, loss@max: 1.383248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.956052, loss@max: 1.372296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.955808, loss@max: 1.378479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.963927, loss@max: 1.374420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.940030, loss@max: 1.397878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.964820, loss@max: 1.367089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947901, loss@max: 1.382565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.950889, loss@max: 1.379305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.948686, loss@max: 1.376042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.958242, loss@max: 1.418393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.961836, loss@max: 1.380587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945351, loss@max: 1.386396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.937239, loss@max: 1.385004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.952531, loss@max: 1.373599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950929, loss@max: 1.370212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.944378, loss@max: 1.377173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.947160, loss@max: 1.373452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955199, loss@max: 1.368249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.946850, loss@max: 1.374522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.952255, loss@max: 1.371377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.954015, loss@max: 1.360065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.947974, loss@max: 1.366627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.954680, loss@max: 1.365910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.941030, loss@max: 1.379808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.957035, loss@max: 1.356000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950807, loss@max: 1.362327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944159, loss@max: 1.367924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.951698, loss@max: 1.358702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.949999, loss@max: 1.361134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.947046, loss@max: 1.363623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.944538, loss@max: 1.365194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.941668, loss@max: 1.367713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.954926, loss@max: 1.358158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.940809, loss@max: 1.368579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.951441, loss@max: 1.363170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.945512, loss@max: 1.361622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.948649, loss@max: 1.359087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943409, loss@max: 1.368184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000004, LT: 0.279024, Top1S: 100.000000, Top1T: 93.144020Best acc: 93.144020 +Train:epoch: 101, loss@min: 0.947371, loss@max: 1.357337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000004, LT: 0.275648, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 102, loss@min: 0.946204, loss@max: 1.359843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000004, LT: 0.275246, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 103, loss@min: 0.944623, loss@max: 1.365276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000004, LT: 0.275763, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 104, loss@min: 0.947046, loss@max: 1.359173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000004, LT: 0.274498, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 105, loss@min: 0.947656, loss@max: 1.356872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000004, LT: 0.274199, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 106, loss@min: 0.941332, loss@max: 1.363086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000003, LT: 0.274719, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 107, loss@min: 0.946304, loss@max: 1.358876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000003, LT: 0.275526, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 108, loss@min: 0.944163, loss@max: 1.359425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000004, LT: 0.277055, Top1S: 100.000000, Top1T: 93.387421Best acc: 93.387421 +Train:epoch: 109, loss@min: 0.942278, loss@max: 1.363193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000004, LT: 0.278215, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 110, loss@min: 0.943172, loss@max: 1.360552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000003, LT: 0.279173, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 111, loss@min: 0.946836, loss@max: 1.356680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000004, LT: 0.278920, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 112, loss@min: 0.955889, loss@max: 1.367221, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000004, LT: 0.278735, Top1S: 100.000000, Top1T: 93.468559Best acc: 93.468559 +Train:epoch: 113, loss@min: 0.945717, loss@max: 1.361434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000004, LT: 0.279420, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 114, loss@min: 0.946595, loss@max: 1.356751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000003, LT: 0.281307, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 115, loss@min: 0.945968, loss@max: 1.359689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000004, LT: 0.282630, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 116, loss@min: 0.941142, loss@max: 1.362339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000003, LT: 0.283656, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 117, loss@min: 0.948490, loss@max: 1.356409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000003, LT: 0.283891, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 118, loss@min: 0.948307, loss@max: 1.357199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000004, LT: 0.284405, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 119, loss@min: 0.943363, loss@max: 1.360564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000003, LT: 0.284347, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 120, loss@min: 0.942888, loss@max: 1.359579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000004, LT: 0.284451, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 121, loss@min: 0.942424, loss@max: 1.361024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000004, LT: 0.285052, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 122, loss@min: 0.945562, loss@max: 1.357962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000004, LT: 0.285528, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 123, loss@min: 0.947404, loss@max: 1.358692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000004, LT: 0.285714, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 124, loss@min: 0.942344, loss@max: 1.360180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000004, LT: 0.286037, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 125, loss@min: 0.941297, loss@max: 1.364299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000003, LT: 0.286391, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 126, loss@min: 0.948550, loss@max: 1.355669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000004, LT: 0.286546, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 127, loss@min: 0.947450, loss@max: 1.355684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000004, LT: 0.286554, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 128, loss@min: 0.950473, loss@max: 1.355979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000003, LT: 0.286658, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 129, loss@min: 0.946138, loss@max: 1.356829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000003, LT: 0.286650, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 130, loss@min: 0.944509, loss@max: 1.358642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000003, LT: 0.286149, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 131, loss@min: 0.943161, loss@max: 1.360054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000004, LT: 0.286229, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 132, loss@min: 0.945933, loss@max: 1.359584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000004, LT: 0.286155, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 133, loss@min: 0.942362, loss@max: 1.360749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000004, LT: 0.286648, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 134, loss@min: 0.944493, loss@max: 1.359686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000004, LT: 0.287472, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 135, loss@min: 0.945085, loss@max: 1.357632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000004, LT: 0.287734, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 136, loss@min: 0.944650, loss@max: 1.359212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000004, LT: 0.287837, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 137, loss@min: 0.943104, loss@max: 1.360600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000004, LT: 0.288016, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 138, loss@min: 0.946344, loss@max: 1.359362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000004, LT: 0.288067, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 139, loss@min: 0.943477, loss@max: 1.361962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000004, LT: 0.288105, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 140, loss@min: 0.943008, loss@max: 1.359394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000004, LT: 0.288231, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 141, loss@min: 0.948740, loss@max: 1.353359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000004, LT: 0.288307, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 142, loss@min: 0.953171, loss@max: 1.355052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000004, LT: 0.288328, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 143, loss@min: 0.945509, loss@max: 1.358063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000004, LT: 0.288243, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 144, loss@min: 0.945879, loss@max: 1.357432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000004, LT: 0.288255, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 145, loss@min: 0.942851, loss@max: 1.360578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000004, LT: 0.288267, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 146, loss@min: 0.956053, loss@max: 1.359888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000004, LT: 0.288245, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 147, loss@min: 0.946719, loss@max: 1.355388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000004, LT: 0.288230, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 148, loss@min: 0.969247, loss@max: 1.364462, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.000004, LT: 0.288224, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 149, loss@min: 0.943267, loss@max: 1.358712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000004, LT: 0.288222, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 150, loss@min: 0.947299, loss@max: 1.354862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000004, LT: 0.288222, Top1S: 100.000000, Top1T: 93.265724 +------------------------------------------- +Thu Aug 3 09:08:47 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Aug 3 09:18:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.872602, loss@max: 3.942155, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 2, loss@min: 2.186965, loss@max: 5.737861, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 3, loss@min: 2.980286, loss@max: 3.842068, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 4, loss@min: 2.582720, loss@max: 3.741882, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 5, loss@min: 1.889782, loss@max: 3.977792, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 6, loss@min: 1.958260, loss@max: 3.453487, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 7, loss@min: 2.211723, loss@max: 3.250188, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 8, loss@min: 1.891591, loss@max: 3.375870, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.894295, loss@max: 3.424305, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 10, loss@min: 2.167973, loss@max: 2.984520, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.734294, loss@max: 3.304238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.790758, loss@max: 2.513942, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 1.156798, loss@max: 3.279727, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.868561, loss@max: 3.003021, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.578052, loss@max: 3.189916, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.591965, loss@max: 3.137503, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 1.775263, loss@max: 2.842285, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 18, loss@min: 1.532705, loss@max: 3.263110, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.762640, loss@max: 2.625470, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 20, loss@min: 1.368729, loss@max: 2.601167, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.541395, loss@max: 2.626356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.647804, loss@max: 2.376374, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.318177, loss@max: 2.514279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.410597, loss@max: 2.330768, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 1.177444, loss@max: 2.353834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.228814, loss@max: 2.278908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.407348, loss@max: 2.091337, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.230952, loss@max: 2.443410, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 1.401119, loss@max: 2.336567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.253890, loss@max: 2.380224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.299580, loss@max: 2.429615, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 1.234570, loss@max: 2.112423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.219436, loss@max: 2.297588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.303601, loss@max: 2.034244, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.381235, loss@max: 2.164827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.201546, loss@max: 2.399682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.589071, loss@max: 2.147222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.335702, loss@max: 2.321333, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.235398, loss@max: 2.208295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.432400, loss@max: 2.334233, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.284123, loss@max: 2.506286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.316500, loss@max: 2.255683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.176566, loss@max: 2.202913, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 1.230444, loss@max: 1.994862, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 1.157372, loss@max: 2.054298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.148706, loss@max: 2.206995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.259644, loss@max: 2.231067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.259378, loss@max: 2.091304, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.427524, loss@max: 2.070925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.373889, loss@max: 1.861378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.072441, loss@max: 2.253398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.159991, loss@max: 1.830719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.095300, loss@max: 2.005062, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.192964, loss@max: 1.955825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.107347, loss@max: 2.037252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.096486, loss@max: 1.876985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.084029, loss@max: 1.858497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.315476, loss@max: 1.780733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.223877, loss@max: 1.672305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.126702, loss@max: 1.880281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.046692, loss@max: 1.972922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.161468, loss@max: 1.783783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.217184, loss@max: 1.771487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.052971, loss@max: 1.825223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.160277, loss@max: 1.697775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.166364, loss@max: 1.788798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.058849, loss@max: 1.738502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.115268, loss@max: 1.678437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.052891, loss@max: 1.640463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.068858, loss@max: 1.586989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.010944, loss@max: 1.600522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.025934, loss@max: 1.505046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.020936, loss@max: 1.580123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.065919, loss@max: 1.552107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.047080, loss@max: 1.469965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.084389, loss@max: 1.531233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.917964, loss@max: 1.573370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.028839, loss@max: 1.486031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.015856, loss@max: 1.507567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.005776, loss@max: 1.512088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.999715, loss@max: 1.506239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.036246, loss@max: 1.461437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.986247, loss@max: 1.476684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.982295, loss@max: 1.492759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.987369, loss@max: 1.427471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.000501, loss@max: 1.458199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.961588, loss@max: 1.469375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.002348, loss@max: 1.444966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.990544, loss@max: 1.432549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.981062, loss@max: 1.457134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.975209, loss@max: 1.448956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.932456, loss@max: 1.469756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.977771, loss@max: 1.425540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.924404, loss@max: 1.470072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.992885, loss@max: 1.378833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.960237, loss@max: 1.446299, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 97, loss@min: 0.978127, loss@max: 1.443008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.959649, loss@max: 1.418038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.981378, loss@max: 1.405426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.973544, loss@max: 1.417098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000002, LT: 0.277483, Top1S: 100.000000, Top1T: 92.941177Best acc: 92.941177 +Train:epoch: 101, loss@min: 0.985691, loss@max: 1.389913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000002, LT: 0.275501, Top1S: 100.000000, Top1T: 92.981743Best acc: 92.981743 +Train:epoch: 102, loss@min: 0.954856, loss@max: 1.424351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000002, LT: 0.275657, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 103, loss@min: 0.981424, loss@max: 1.395921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000002, LT: 0.278171, Top1S: 100.000000, Top1T: 92.900612 +Train:epoch: 104, loss@min: 0.948175, loss@max: 1.432118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000002, LT: 0.277169, Top1S: 100.000000, Top1T: 93.103447Best acc: 93.103447 +Train:epoch: 105, loss@min: 0.956593, loss@max: 1.405441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000002, LT: 0.276920, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 106, loss@min: 0.972095, loss@max: 1.393125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000002, LT: 0.275996, Top1S: 100.000000, Top1T: 93.184586Best acc: 93.184586 +Train:epoch: 107, loss@min: 0.948420, loss@max: 1.409606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000002, LT: 0.276219, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 108, loss@min: 0.949290, loss@max: 1.400198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000002, LT: 0.277855, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 109, loss@min: 0.963395, loss@max: 1.396353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000002, LT: 0.279626, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 110, loss@min: 0.968696, loss@max: 1.376035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000002, LT: 0.279822, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 111, loss@min: 0.937407, loss@max: 1.407923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000002, LT: 0.279409, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 112, loss@min: 0.985664, loss@max: 1.381325, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000002, LT: 0.279304, Top1S: 100.000000, Top1T: 92.981743 +Train:epoch: 113, loss@min: 0.947578, loss@max: 1.394388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000002, LT: 0.278435, Top1S: 100.000000, Top1T: 93.022316 +Train:epoch: 114, loss@min: 0.944727, loss@max: 1.399742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000002, LT: 0.278513, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 115, loss@min: 0.968516, loss@max: 1.388229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000002, LT: 0.279063, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 116, loss@min: 0.966745, loss@max: 1.369315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000002, LT: 0.278545, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 117, loss@min: 0.961033, loss@max: 1.379201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000002, LT: 0.277230, Top1S: 100.000000, Top1T: 93.062881 +Train:epoch: 118, loss@min: 0.951504, loss@max: 1.398535, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Aug 3 10:02:19 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.818982, loss@max: 1.894203, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.877730, loss@max: 1.498276, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 3, loss@min: 1.282723, loss@max: 1.753401, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 4, loss@min: 1.117536, loss@max: 1.676227, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 5, loss@min: 1.104427, loss@max: 1.565100, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 6, loss@min: 1.282434, loss@max: 1.383847, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 7, loss@min: 1.178957, loss@max: 1.456061, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.082643, loss@max: 1.641107, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 1.025954, loss@max: 1.592727, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 10, loss@min: 1.110691, loss@max: 1.485337, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 11, loss@min: 1.086437, loss@max: 1.604194, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 12, loss@min: 1.110184, loss@max: 1.525688, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 1.057525, loss@max: 1.473319, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 14, loss@min: 1.022624, loss@max: 1.531386, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.063927, loss@max: 1.600574, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 16, loss@min: 1.027513, loss@max: 1.501523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.088192, loss@max: 1.586307, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 18, loss@min: 1.047745, loss@max: 1.615525, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 1.074973, loss@max: 1.581555, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.135789, loss@max: 1.706578, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 21, loss@min: 1.034086, loss@max: 1.752739, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.109862, loss@max: 1.715311, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.150429, loss@max: 1.678724, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.111846, loss@max: 1.685751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.040440, loss@max: 1.642093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.017941, loss@max: 1.743710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.084521, loss@max: 1.591575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.071384, loss@max: 1.709062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.993366, loss@max: 1.660961, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.008474, loss@max: 1.655872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.018662, loss@max: 1.615996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.044441, loss@max: 1.542924, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.057397, loss@max: 1.604173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.026004, loss@max: 1.683657, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.984764, loss@max: 1.696135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.033524, loss@max: 1.580883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.008522, loss@max: 1.584012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.015536, loss@max: 1.631817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.075792, loss@max: 1.580446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.039959, loss@max: 1.666571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.009589, loss@max: 1.677803, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.943766, loss@max: 1.666012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.046546, loss@max: 1.596533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.060143, loss@max: 1.589627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.029961, loss@max: 1.553143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.022082, loss@max: 1.650980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961730, loss@max: 1.605850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.978569, loss@max: 1.642283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.020328, loss@max: 1.592185, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.066089, loss@max: 1.566033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.084076, loss@max: 1.494759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.026989, loss@max: 1.617102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.010968, loss@max: 1.609993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.042946, loss@max: 1.630509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.004072, loss@max: 1.563377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.027020, loss@max: 1.643246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.044311, loss@max: 1.621546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.034385, loss@max: 1.646080, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.954203, loss@max: 1.627701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.009292, loss@max: 1.635124, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.989893, loss@max: 1.602513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.044263, loss@max: 1.570074, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.035940, loss@max: 1.520841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.014037, loss@max: 1.538904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.004702, loss@max: 1.508878, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.999436, loss@max: 1.532752, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 1.034899, loss@max: 1.529114, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 1.001326, loss@max: 1.460755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.028951, loss@max: 1.468410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.029819, loss@max: 1.509594, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 71, loss@min: 0.994370, loss@max: 1.475880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.985440, loss@max: 1.518749, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.985930, loss@max: 1.477070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.001628, loss@max: 1.464060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.014743, loss@max: 1.456062, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 76, loss@min: 0.963731, loss@max: 1.492618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.990712, loss@max: 1.463471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.994014, loss@max: 1.445132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.995512, loss@max: 1.446377, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 80, loss@min: 0.973328, loss@max: 1.464169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.938955, loss@max: 1.486699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.981581, loss@max: 1.438297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.973115, loss@max: 1.443668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.976857, loss@max: 1.442648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.956983, loss@max: 1.459634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.969026, loss@max: 1.449679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.973525, loss@max: 1.443843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.981004, loss@max: 1.445334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.969991, loss@max: 1.408328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.992594, loss@max: 1.411302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.995386, loss@max: 1.406327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.989643, loss@max: 1.395705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.969058, loss@max: 1.429570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.966343, loss@max: 1.423545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.982943, loss@max: 1.425923, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 96, loss@min: 0.965562, loss@max: 1.414051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.986484, loss@max: 1.409353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.964193, loss@max: 1.400780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.957867, loss@max: 1.424031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.961609, loss@max: 1.414051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000005, LT: 0.285327, Top1S: 100.000000, Top1T: 91.359024Best acc: 91.359024 +Train:epoch: 101, loss@min: 0.957476, loss@max: 1.408313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000005, LT: 0.284243, Top1S: 100.000000, Top1T: 91.440163Best acc: 91.440163 +Train:epoch: 102, loss@min: 0.940024, loss@max: 1.427081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000005, LT: 0.284176, Top1S: 100.000000, Top1T: 91.480728Best acc: 91.480728 +Train:epoch: 103, loss@min: 0.946158, loss@max: 1.413564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000005, LT: 0.284983, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 104, loss@min: 0.968999, loss@max: 1.395148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000006, LT: 0.286309, Top1S: 100.000000, Top1T: 91.521301Best acc: 91.521301 +Train:epoch: 105, loss@min: 0.960801, loss@max: 1.406317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000006, LT: 0.287554, Top1S: 100.000000, Top1T: 91.602432Best acc: 91.602432 +Train:epoch: 106, loss@min: 0.964917, loss@max: 1.408072, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 106, LS: 0.000006, LT: 0.287473, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 107, loss@min: 0.952198, loss@max: 1.399016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000005, LT: 0.286529, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 108, loss@min: 0.965580, loss@max: 1.387903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000005, LT: 0.285827, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 109, loss@min: 0.943338, loss@max: 1.413611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000005, LT: 0.285852, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 110, loss@min: 0.952102, loss@max: 1.389803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000005, LT: 0.285878, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 111, loss@min: 0.943471, loss@max: 1.400886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000006, LT: 0.285814, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 112, loss@min: 0.964386, loss@max: 1.388531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000006, LT: 0.285535, Top1S: 100.000000, Top1T: 91.561867 +Train:epoch: 113, loss@min: 0.968862, loss@max: 1.393958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000005, LT: 0.285203, Top1S: 100.000000, Top1T: 91.602432 +Train:epoch: 114, loss@min: 0.968445, loss@max: 1.381453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000005, LT: 0.285332, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 115, loss@min: 0.963524, loss@max: 1.394900, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000005, LT: 0.285721, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 116, loss@min: 0.945318, loss@max: 1.387963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000005, LT: 0.286000, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 117, loss@min: 0.952377, loss@max: 1.393991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000005, LT: 0.285839, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 118, loss@min: 0.964117, loss@max: 1.381489, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000005, LT: 0.285638, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 119, loss@min: 0.964521, loss@max: 1.374085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000005, LT: 0.285565, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 120, loss@min: 0.966058, loss@max: 1.384142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000005, LT: 0.285448, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 121, loss@min: 0.962177, loss@max: 1.383392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000005, LT: 0.285294, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 122, loss@min: 0.961548, loss@max: 1.400035, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 122, LS: 0.000005, LT: 0.285103, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 123, loss@min: 0.947281, loss@max: 1.398400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000005, LT: 0.284861, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 124, loss@min: 0.963145, loss@max: 1.393199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000005, LT: 0.284908, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 125, loss@min: 0.951377, loss@max: 1.391446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000005, LT: 0.285180, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 126, loss@min: 0.961820, loss@max: 1.391880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000005, LT: 0.285344, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 127, loss@min: 0.962251, loss@max: 1.375026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000005, LT: 0.285401, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 128, loss@min: 0.955090, loss@max: 1.381713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000005, LT: 0.285345, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 129, loss@min: 0.973321, loss@max: 1.371700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000005, LT: 0.285449, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 130, loss@min: 0.956760, loss@max: 1.373875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000005, LT: 0.285626, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 131, loss@min: 0.978037, loss@max: 1.357705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000005, LT: 0.285755, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 132, loss@min: 0.961579, loss@max: 1.383071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000005, LT: 0.285968, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 133, loss@min: 0.984386, loss@max: 1.397217, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 0.000005, LT: 0.286079, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 134, loss@min: 0.943102, loss@max: 1.387232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000005, LT: 0.286087, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 135, loss@min: 0.954838, loss@max: 1.381619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000005, LT: 0.286140, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 136, loss@min: 0.965127, loss@max: 1.380069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000005, LT: 0.286201, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 137, loss@min: 0.948377, loss@max: 1.385793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000005, LT: 0.286204, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 138, loss@min: 0.951400, loss@max: 1.389438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000005, LT: 0.286199, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 139, loss@min: 0.941253, loss@max: 1.385967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000005, LT: 0.286157, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 140, loss@min: 0.959404, loss@max: 1.372501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000005, LT: 0.286139, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 141, loss@min: 0.947802, loss@max: 1.390403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000005, LT: 0.286133, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 142, loss@min: 0.971384, loss@max: 1.381481, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 142, LS: 0.000005, LT: 0.286122, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 143, loss@min: 0.961823, loss@max: 1.379227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000005, LT: 0.286114, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 144, loss@min: 0.944274, loss@max: 1.380027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000005, LT: 0.286112, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 145, loss@min: 0.962742, loss@max: 1.375917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000005, LT: 0.286119, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 146, loss@min: 0.950906, loss@max: 1.390799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000005, LT: 0.286123, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 147, loss@min: 0.957543, loss@max: 1.377043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000005, LT: 0.286125, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 148, loss@min: 0.952010, loss@max: 1.388284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000005, LT: 0.286127, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 149, loss@min: 0.954361, loss@max: 1.390986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000005, LT: 0.286128, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 150, loss@min: 0.952475, loss@max: 1.380223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000005, LT: 0.286128, Top1S: 100.000000, Top1T: 91.359024 +------------------------------------------- +Thu Aug 3 11:20:19 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\4shot\\\\", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Aug 3 13:57:30 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.228339, loss@max: 2.414596, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.311334, loss@max: 1.710980, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 3, loss@min: 1.581505, loss@max: 1.326093, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 4, loss@min: 1.306017, loss@max: 1.239487, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 5, loss@min: 1.217029, loss@max: 1.355718, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 6, loss@min: 0.970115, loss@max: 1.557205, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 0.846561, loss@max: 1.587918, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 8, loss@min: 0.987851, loss@max: 1.483744, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 0.958242, loss@max: 1.438264, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.059282, loss@max: 1.375935, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 11, loss@min: 1.059714, loss@max: 1.331853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.068007, loss@max: 1.383447, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 13, loss@min: 1.032771, loss@max: 1.379640, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.978666, loss@max: 1.435324, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.953969, loss@max: 1.399840, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.930567, loss@max: 1.411303, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.940829, loss@max: 1.436363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.986090, loss@max: 1.410721, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.994612, loss@max: 1.376752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.955611, loss@max: 1.424739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.987744, loss@max: 1.437432, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.966403, loss@max: 1.396401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.967755, loss@max: 1.453647, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.995284, loss@max: 1.394619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.990395, loss@max: 1.435331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.951199, loss@max: 1.486721, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.963179, loss@max: 1.446507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.020255, loss@max: 1.432766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.992523, loss@max: 1.459148, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 0.974990, loss@max: 1.458807, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.001462, loss@max: 1.448628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.958782, loss@max: 1.476540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.960198, loss@max: 1.468852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.980114, loss@max: 1.457981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.011072, loss@max: 1.428910, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 1.021556, loss@max: 1.444337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.980881, loss@max: 1.483044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.967667, loss@max: 1.503867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.916326, loss@max: 1.512183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.976390, loss@max: 1.495388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.028441, loss@max: 1.452486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.999318, loss@max: 1.462473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.980687, loss@max: 1.432812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.977045, loss@max: 1.492376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.975827, loss@max: 1.479005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.982776, loss@max: 1.472889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.981971, loss@max: 1.490684, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.977645, loss@max: 1.433733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.948770, loss@max: 1.502654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.997981, loss@max: 1.444653, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.002569, loss@max: 1.437972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.003878, loss@max: 1.438325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.978857, loss@max: 1.460235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.960235, loss@max: 1.444446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.976161, loss@max: 1.430801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.965338, loss@max: 1.472805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.976085, loss@max: 1.441632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.960904, loss@max: 1.449528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.980252, loss@max: 1.459153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.985954, loss@max: 1.430168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.978515, loss@max: 1.435725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.997578, loss@max: 1.450869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950552, loss@max: 1.442531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.950287, loss@max: 1.473563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.957004, loss@max: 1.458209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.963573, loss@max: 1.428618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.982017, loss@max: 1.426755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.982732, loss@max: 1.418896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.962726, loss@max: 1.424287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.965994, loss@max: 1.432794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.954282, loss@max: 1.442797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.975038, loss@max: 1.414570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.956787, loss@max: 1.439938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.972487, loss@max: 1.414376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.965342, loss@max: 1.429276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.962585, loss@max: 1.408390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.988781, loss@max: 1.417696, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.977301, loss@max: 1.394140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964181, loss@max: 1.394504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.964824, loss@max: 1.397009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.956368, loss@max: 1.409130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.948565, loss@max: 1.425602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.951910, loss@max: 1.412470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.961021, loss@max: 1.401263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.961841, loss@max: 1.396886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.964891, loss@max: 1.395799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.955934, loss@max: 1.396193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.960747, loss@max: 1.379997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.973209, loss@max: 1.382826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.972735, loss@max: 1.388519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.951109, loss@max: 1.400452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.984732, loss@max: 1.401115, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 93, loss@min: 0.959957, loss@max: 1.381693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.944649, loss@max: 1.396664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.953560, loss@max: 1.393071, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 96, loss@min: 0.938667, loss@max: 1.399058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.945118, loss@max: 1.397103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.955356, loss@max: 1.385684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.949503, loss@max: 1.387792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.946899, loss@max: 1.389259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000006, LT: 0.278125, Top1S: 100.000000, Top1T: 92.048683Best acc: 92.048683 +Train:epoch: 101, loss@min: 0.941420, loss@max: 1.395263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000006, LT: 0.277695, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 102, loss@min: 0.948965, loss@max: 1.389517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000006, LT: 0.277385, Top1S: 100.000000, Top1T: 91.926979 +Train:epoch: 103, loss@min: 0.959972, loss@max: 1.374469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000006, LT: 0.276874, Top1S: 100.000000, Top1T: 91.926979 +Train:epoch: 104, loss@min: 0.958989, loss@max: 1.389357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000006, LT: 0.276391, Top1S: 100.000000, Top1T: 91.926979 +Train:epoch: 105, loss@min: 0.958572, loss@max: 1.372342, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000006, LT: 0.276374, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 106, loss@min: 0.939682, loss@max: 1.392500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000006, LT: 0.276478, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 107, loss@min: 0.950362, loss@max: 1.391622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000006, LT: 0.276943, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 108, loss@min: 0.958677, loss@max: 1.376486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000006, LT: 0.277206, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 109, loss@min: 0.931134, loss@max: 1.396188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000006, LT: 0.277078, Top1S: 100.000000, Top1T: 92.089249Best acc: 92.089249 +Train:epoch: 110, loss@min: 0.941413, loss@max: 1.396791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000006, LT: 0.276751, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 111, loss@min: 0.943514, loss@max: 1.384848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000006, LT: 0.276292, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 112, loss@min: 0.964149, loss@max: 1.369892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000006, LT: 0.275925, Top1S: 100.000000, Top1T: 91.967545 +Train:epoch: 113, loss@min: 0.962208, loss@max: 1.362529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000006, LT: 0.275609, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 114, loss@min: 0.949570, loss@max: 1.370369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000006, LT: 0.275610, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 115, loss@min: 0.958080, loss@max: 1.368876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000006, LT: 0.275791, Top1S: 100.000000, Top1T: 92.129814Best acc: 92.129814 +Train:epoch: 116, loss@min: 0.944498, loss@max: 1.380448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000006, LT: 0.275934, Top1S: 100.000000, Top1T: 92.170387Best acc: 92.170387 +Train:epoch: 117, loss@min: 0.947917, loss@max: 1.382176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000006, LT: 0.275973, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 118, loss@min: 0.945169, loss@max: 1.381422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000006, LT: 0.276084, Top1S: 100.000000, Top1T: 92.170387 +Train:epoch: 119, loss@min: 0.947099, loss@max: 1.379092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000006, LT: 0.276126, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 120, loss@min: 0.947793, loss@max: 1.396131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000006, LT: 0.276238, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 121, loss@min: 0.954880, loss@max: 1.370899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000006, LT: 0.276234, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 122, loss@min: 0.949940, loss@max: 1.374994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000006, LT: 0.276181, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 123, loss@min: 0.964850, loss@max: 1.361209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000006, LT: 0.276165, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 124, loss@min: 0.946755, loss@max: 1.374730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000006, LT: 0.276173, Top1S: 100.000000, Top1T: 91.967545 +Train:epoch: 125, loss@min: 0.952366, loss@max: 1.372061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000006, LT: 0.276111, Top1S: 100.000000, Top1T: 91.967545 +Train:epoch: 126, loss@min: 0.945703, loss@max: 1.375436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000006, LT: 0.276050, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 127, loss@min: 0.944786, loss@max: 1.378002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000006, LT: 0.275973, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 128, loss@min: 0.947831, loss@max: 1.372755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000006, LT: 0.275884, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 129, loss@min: 0.958757, loss@max: 1.369833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000006, LT: 0.275868, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 130, loss@min: 0.950753, loss@max: 1.371799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000006, LT: 0.275915, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 131, loss@min: 0.956323, loss@max: 1.370906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000006, LT: 0.275915, Top1S: 100.000000, Top1T: 92.008118 +Train:epoch: 132, loss@min: 0.947795, loss@max: 1.372061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000006, LT: 0.275924, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 133, loss@min: 0.952608, loss@max: 1.374103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000006, LT: 0.275926, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 134, loss@min: 0.944996, loss@max: 1.372778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000006, LT: 0.275929, Top1S: 100.000000, Top1T: 92.048683 +Train:epoch: 135, loss@min: 0.964262, loss@max: 1.371316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000006, LT: 0.275920, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 136, loss@min: 0.947322, loss@max: 1.370836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000006, LT: 0.275933, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 137, loss@min: 0.947354, loss@max: 1.377255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000006, LT: 0.275951, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 138, loss@min: 0.944037, loss@max: 1.374349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000006, LT: 0.275940, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 139, loss@min: 0.957620, loss@max: 1.365629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000006, LT: 0.275938, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 140, loss@min: 0.942387, loss@max: 1.375700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000006, LT: 0.275939, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 141, loss@min: 0.950842, loss@max: 1.372642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000006, LT: 0.275937, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 142, loss@min: 0.943797, loss@max: 1.372204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000006, LT: 0.275930, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 143, loss@min: 0.958219, loss@max: 1.359740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000006, LT: 0.275913, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 144, loss@min: 0.948224, loss@max: 1.372008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000006, LT: 0.275905, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 145, loss@min: 0.943691, loss@max: 1.375030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000006, LT: 0.275902, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 146, loss@min: 0.947014, loss@max: 1.377499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000006, LT: 0.275900, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 147, loss@min: 0.951939, loss@max: 1.370400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000006, LT: 0.275898, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 148, loss@min: 0.949096, loss@max: 1.372436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000006, LT: 0.275898, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 149, loss@min: 0.948513, loss@max: 1.373579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000006, LT: 0.275898, Top1S: 100.000000, Top1T: 92.089249 +Train:epoch: 150, loss@min: 0.944285, loss@max: 1.375137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000006, LT: 0.275898, Top1S: 100.000000, Top1T: 92.089249 +------------------------------------------- +Thu Aug 3 15:00:47 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Aug 3 15:15:12 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807691, loss@max: 2.132194, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238818, loss@max: 1.612196, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818652, loss@max: 1.355072, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431979, loss@max: 1.457590, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271060, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196055, loss@max: 1.305309, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298017, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133898, loss@max: 1.294020, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008145, loss@max: 1.292640, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019454, loss@max: 1.253724, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006046, loss@max: 1.259362, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950057, loss@max: 1.294759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972025, loss@max: 1.280222, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963697, loss@max: 1.293108, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931026, loss@max: 1.307256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971429, loss@max: 1.285434, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948202, loss@max: 1.315797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943469, loss@max: 1.329117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942528, loss@max: 1.328729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968128, loss@max: 1.319440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932676, loss@max: 1.392962, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014455, loss@max: 1.328934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964456, loss@max: 1.403736, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977665, loss@max: 1.374845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961547, loss@max: 1.393595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968764, loss@max: 1.379535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938245, loss@max: 1.409583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982230, loss@max: 1.385065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959415, loss@max: 1.404640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000660, loss@max: 1.388879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962251, loss@max: 1.435795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.952893, loss@max: 1.473062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.005530, loss@max: 1.458924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.966316, loss@max: 1.451521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984019, loss@max: 1.494185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950133, loss@max: 1.515154, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.975048, loss@max: 1.461737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.985955, loss@max: 1.435241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.922883, loss@max: 1.486665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.015750, loss@max: 1.399539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981703, loss@max: 1.427807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.945025, loss@max: 1.451965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.972892, loss@max: 1.431462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935663, loss@max: 1.476562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992999, loss@max: 1.394614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989615, loss@max: 1.393552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.938055, loss@max: 1.459854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987936, loss@max: 1.400986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961450, loss@max: 1.432842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963598, loss@max: 1.425648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972540, loss@max: 1.417684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.972855, loss@max: 1.415958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961437, loss@max: 1.423765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.994383, loss@max: 1.399153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943601, loss@max: 1.428460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.964912, loss@max: 1.399661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957942, loss@max: 1.416780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.959048, loss@max: 1.410573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.969333, loss@max: 1.394284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.979277, loss@max: 1.394383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959917, loss@max: 1.413061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.962950, loss@max: 1.403735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.978693, loss@max: 1.390594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.956691, loss@max: 1.404253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.967258, loss@max: 1.395098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.949715, loss@max: 1.416457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.949259, loss@max: 1.400066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.974091, loss@max: 1.374745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956445, loss@max: 1.402279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.940903, loss@max: 1.409184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.981903, loss@max: 1.367692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.963084, loss@max: 1.381950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942078, loss@max: 1.400458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.969347, loss@max: 1.376066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956964, loss@max: 1.381003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943676, loss@max: 1.390934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963958, loss@max: 1.367261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.960923, loss@max: 1.378981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946173, loss@max: 1.387931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.952780, loss@max: 1.382766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.963821, loss@max: 1.365932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.952154, loss@max: 1.381294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.950847, loss@max: 1.382761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.962526, loss@max: 1.371851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.963532, loss@max: 1.373614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.948580, loss@max: 1.381363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.957265, loss@max: 1.373830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.952535, loss@max: 1.375976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.964242, loss@max: 1.370030, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 90, loss@min: 0.946333, loss@max: 1.381678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.954885, loss@max: 1.367230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.955926, loss@max: 1.370408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.945443, loss@max: 1.377793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947254, loss@max: 1.377765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948429, loss@max: 1.375198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.967417, loss@max: 1.360396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.958825, loss@max: 1.364355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.946396, loss@max: 1.371026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.942981, loss@max: 1.377332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951627, loss@max: 1.367446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000563, LT: 1.732813, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 101, loss@min: 0.950507, loss@max: 1.369687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000563, LT: 1.735432, Top1S: 100.000000, Top1T: 66.962173Best acc: 66.962173 +Train:epoch: 102, loss@min: 0.950110, loss@max: 1.374220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000562, LT: 1.737210, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 103, loss@min: 0.950549, loss@max: 1.373047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000560, LT: 1.738540, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 104, loss@min: 0.964720, loss@max: 1.364508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000558, LT: 1.739723, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 105, loss@min: 0.952458, loss@max: 1.365377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000557, LT: 1.741403, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 106, loss@min: 0.952888, loss@max: 1.366291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000557, LT: 1.742971, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 107, loss@min: 0.947776, loss@max: 1.368350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000555, LT: 1.744315, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 108, loss@min: 0.949976, loss@max: 1.366102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000554, LT: 1.745865, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 109, loss@min: 0.954753, loss@max: 1.364065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000553, LT: 1.746375, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 110, loss@min: 0.952706, loss@max: 1.365323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000552, LT: 1.746887, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 111, loss@min: 0.949239, loss@max: 1.366840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000551, LT: 1.748161, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 112, loss@min: 0.952503, loss@max: 1.365120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000550, LT: 1.749557, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 113, loss@min: 0.952137, loss@max: 1.370739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000549, LT: 1.750686, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 114, loss@min: 0.955823, loss@max: 1.368126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000549, LT: 1.751303, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 115, loss@min: 0.953230, loss@max: 1.361371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000548, LT: 1.751246, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 116, loss@min: 0.951933, loss@max: 1.362688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000547, LT: 1.751561, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 117, loss@min: 0.944255, loss@max: 1.371796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000547, LT: 1.752315, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 118, loss@min: 0.945016, loss@max: 1.370964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000546, LT: 1.752607, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 119, loss@min: 0.950399, loss@max: 1.363906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000545, LT: 1.752452, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 120, loss@min: 0.946761, loss@max: 1.371230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000545, LT: 1.752451, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 121, loss@min: 0.949328, loss@max: 1.367097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000544, LT: 1.752917, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 122, loss@min: 0.951860, loss@max: 1.367895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000544, LT: 1.753334, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 123, loss@min: 0.949509, loss@max: 1.368297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000544, LT: 1.753848, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 124, loss@min: 0.946077, loss@max: 1.369820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000543, LT: 1.754348, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 125, loss@min: 0.949552, loss@max: 1.366933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000543, LT: 1.754933, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 126, loss@min: 0.944755, loss@max: 1.368736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000543, LT: 1.755421, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 127, loss@min: 0.943347, loss@max: 1.372582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000542, LT: 1.755697, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 128, loss@min: 0.951811, loss@max: 1.365113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000542, LT: 1.755972, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 129, loss@min: 0.947802, loss@max: 1.365330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000541, LT: 1.756295, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 130, loss@min: 0.951350, loss@max: 1.367038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000541, LT: 1.756668, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 131, loss@min: 0.954856, loss@max: 1.361462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000541, LT: 1.757028, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 132, loss@min: 0.949298, loss@max: 1.364682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000541, LT: 1.757275, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 133, loss@min: 0.951849, loss@max: 1.362763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000541, LT: 1.757493, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 134, loss@min: 0.944988, loss@max: 1.368195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000540, LT: 1.757762, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 135, loss@min: 0.949546, loss@max: 1.366289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000540, LT: 1.758051, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 136, loss@min: 0.949351, loss@max: 1.365716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000540, LT: 1.758302, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 137, loss@min: 0.948979, loss@max: 1.365971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000540, LT: 1.758515, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 138, loss@min: 0.950056, loss@max: 1.359887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000540, LT: 1.758656, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 139, loss@min: 0.949098, loss@max: 1.365556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000540, LT: 1.758767, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 140, loss@min: 0.958520, loss@max: 1.370402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000540, LT: 1.758869, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 141, loss@min: 0.950572, loss@max: 1.368753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000540, LT: 1.758956, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 142, loss@min: 0.950951, loss@max: 1.363676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000539, LT: 1.759007, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 143, loss@min: 0.950564, loss@max: 1.365667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000539, LT: 1.759070, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 144, loss@min: 0.948356, loss@max: 1.366954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000539, LT: 1.759119, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 145, loss@min: 0.951882, loss@max: 1.359694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000539, LT: 1.759157, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 146, loss@min: 0.946467, loss@max: 1.369397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000539, LT: 1.759177, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 147, loss@min: 0.950264, loss@max: 1.366047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000539, LT: 1.759187, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 148, loss@min: 0.950837, loss@max: 1.362472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000539, LT: 1.759192, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 149, loss@min: 0.948521, loss@max: 1.364525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000539, LT: 1.759193, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 150, loss@min: 0.948695, loss@max: 1.363042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000539, LT: 1.759193, Top1S: 100.000000, Top1T: 66.903076 +------------------------------------------- +Thu Aug 3 16:20:23 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Thu Aug 3 16:59:44 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807690, loss@max: 2.132195, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238816, loss@max: 1.612197, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818653, loss@max: 1.355072, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431978, loss@max: 1.457589, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271059, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196052, loss@max: 1.305311, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298017, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133901, loss@max: 1.294018, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008143, loss@max: 1.292642, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019453, loss@max: 1.253726, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006048, loss@max: 1.259361, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950055, loss@max: 1.294760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972028, loss@max: 1.280222, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963695, loss@max: 1.293110, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931030, loss@max: 1.307257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971434, loss@max: 1.285431, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948193, loss@max: 1.315802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943466, loss@max: 1.329109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942532, loss@max: 1.328727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968131, loss@max: 1.319439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932676, loss@max: 1.392961, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014458, loss@max: 1.328951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964474, loss@max: 1.403740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977668, loss@max: 1.374834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961543, loss@max: 1.393626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968752, loss@max: 1.379517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938255, loss@max: 1.409586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982247, loss@max: 1.385039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959366, loss@max: 1.404649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000643, loss@max: 1.388893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962220, loss@max: 1.435753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.952937, loss@max: 1.472977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.005491, loss@max: 1.458949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.966266, loss@max: 1.451641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984046, loss@max: 1.494132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950127, loss@max: 1.515101, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.974992, loss@max: 1.461757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.986003, loss@max: 1.435325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.922787, loss@max: 1.486707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.015853, loss@max: 1.399362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981658, loss@max: 1.427888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.945054, loss@max: 1.452034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.973009, loss@max: 1.431395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935525, loss@max: 1.476740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992954, loss@max: 1.394657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989691, loss@max: 1.393432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.937929, loss@max: 1.459909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987943, loss@max: 1.401063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961547, loss@max: 1.432665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963438, loss@max: 1.425790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972765, loss@max: 1.417540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.972821, loss@max: 1.416069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961378, loss@max: 1.423872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.994560, loss@max: 1.398939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943502, loss@max: 1.428755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.964944, loss@max: 1.399719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957942, loss@max: 1.416741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.958909, loss@max: 1.410702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.969546, loss@max: 1.394513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.979283, loss@max: 1.394478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000697, LT: 1.644043, Top1S: 100.000000, Top1T: 67.375885Best acc: 67.375885 +Train:epoch: 61, loss@min: 0.946095, loss@max: 1.426550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000686, LT: 1.646819, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 62, loss@min: 0.957915, loss@max: 1.404685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000683, LT: 1.652356, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 63, loss@min: 0.962401, loss@max: 1.397677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000676, LT: 1.655495, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 64, loss@min: 0.966098, loss@max: 1.404198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000669, LT: 1.658510, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 65, loss@min: 0.957327, loss@max: 1.401998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000669, LT: 1.659408, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 66, loss@min: 0.951701, loss@max: 1.395738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000660, LT: 1.660467, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 67, loss@min: 0.971468, loss@max: 1.381164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000655, LT: 1.661641, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 68, loss@min: 0.946577, loss@max: 1.408590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000653, LT: 1.664291, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 69, loss@min: 0.953763, loss@max: 1.389215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000649, LT: 1.666843, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 70, loss@min: 0.980788, loss@max: 1.368140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000647, LT: 1.670310, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 71, loss@min: 0.957552, loss@max: 1.385748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000643, LT: 1.670939, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 72, loss@min: 0.940222, loss@max: 1.411104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000638, LT: 1.671685, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 73, loss@min: 0.954900, loss@max: 1.382587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000634, LT: 1.677352, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 74, loss@min: 0.950085, loss@max: 1.388988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000631, LT: 1.683950, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.947345, loss@max: 1.382908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000627, LT: 1.685241, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 76, loss@min: 0.956630, loss@max: 1.377202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000624, LT: 1.686982, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 77, loss@min: 0.952099, loss@max: 1.378703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000619, LT: 1.694552, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 78, loss@min: 0.950890, loss@max: 1.381475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000616, LT: 1.697606, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 79, loss@min: 0.950900, loss@max: 1.378601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000614, LT: 1.701090, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 80, loss@min: 0.950568, loss@max: 1.380206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000611, LT: 1.706709, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 81, loss@min: 0.959366, loss@max: 1.373205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000607, LT: 1.707133, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 82, loss@min: 0.952860, loss@max: 1.379133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000603, LT: 1.706339, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 83, loss@min: 0.961727, loss@max: 1.367386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000602, LT: 1.707996, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 84, loss@min: 0.937398, loss@max: 1.393419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000599, LT: 1.710608, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 85, loss@min: 0.941635, loss@max: 1.387996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000594, LT: 1.713662, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 86, loss@min: 0.954190, loss@max: 1.376192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000592, LT: 1.715481, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 87, loss@min: 0.955925, loss@max: 1.367050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000592, LT: 1.717162, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 88, loss@min: 0.948164, loss@max: 1.377382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000589, LT: 1.717939, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 89, loss@min: 0.955630, loss@max: 1.371455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000585, LT: 1.719917, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 90, loss@min: 0.941974, loss@max: 1.379653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000583, LT: 1.722655, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 91, loss@min: 0.946426, loss@max: 1.379689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000582, LT: 1.723600, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 92, loss@min: 0.949116, loss@max: 1.375965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000578, LT: 1.724469, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 93, loss@min: 0.959811, loss@max: 1.364597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000576, LT: 1.726311, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 94, loss@min: 0.954753, loss@max: 1.379129, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.000575, LT: 1.727987, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 95, loss@min: 0.947325, loss@max: 1.374629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000573, LT: 1.729079, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 96, loss@min: 0.958608, loss@max: 1.364627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000571, LT: 1.729897, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 97, loss@min: 0.943839, loss@max: 1.382287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000570, LT: 1.732069, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 98, loss@min: 0.948772, loss@max: 1.371715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000568, LT: 1.733776, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 99, loss@min: 0.945235, loss@max: 1.376017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000567, LT: 1.734554, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 100, loss@min: 0.955373, loss@max: 1.363425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000566, LT: 1.735814, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 101, loss@min: 0.952730, loss@max: 1.369381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000564, LT: 1.737883, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 102, loss@min: 0.951249, loss@max: 1.368058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000561, LT: 1.739897, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 103, loss@min: 0.956757, loss@max: 1.359974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000560, LT: 1.741100, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 104, loss@min: 0.950217, loss@max: 1.367894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000558, LT: 1.741746, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 105, loss@min: 0.954309, loss@max: 1.365561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000557, LT: 1.742343, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 106, loss@min: 0.953572, loss@max: 1.366205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000556, LT: 1.743512, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 107, loss@min: 0.957587, loss@max: 1.360164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000556, LT: 1.745147, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 108, loss@min: 0.942460, loss@max: 1.375938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000555, LT: 1.746873, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 109, loss@min: 0.942726, loss@max: 1.376317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000553, LT: 1.748403, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 110, loss@min: 0.950317, loss@max: 1.367988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000552, LT: 1.749464, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 111, loss@min: 0.950166, loss@max: 1.369150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000551, LT: 1.751292, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 112, loss@min: 0.952753, loss@max: 1.367471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000550, LT: 1.753406, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 113, loss@min: 0.947465, loss@max: 1.368571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000549, LT: 1.754414, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 114, loss@min: 0.947299, loss@max: 1.371423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000548, LT: 1.754752, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 115, loss@min: 0.945316, loss@max: 1.371514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000548, LT: 1.755280, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 116, loss@min: 0.947870, loss@max: 1.369725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000547, LT: 1.755954, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 117, loss@min: 0.952772, loss@max: 1.364157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000547, LT: 1.756350, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 118, loss@min: 0.953427, loss@max: 1.365269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000546, LT: 1.756748, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 119, loss@min: 0.952995, loss@max: 1.363409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000545, LT: 1.757232, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 120, loss@min: 0.952925, loss@max: 1.365861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000545, LT: 1.757954, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 121, loss@min: 0.949649, loss@max: 1.366210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000544, LT: 1.758645, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 122, loss@min: 0.951330, loss@max: 1.362089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000543, LT: 1.759071, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 123, loss@min: 0.946929, loss@max: 1.370388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000543, LT: 1.759381, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 124, loss@min: 0.948421, loss@max: 1.367869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000542, LT: 1.759406, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 125, loss@min: 0.955373, loss@max: 1.362800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000542, LT: 1.759463, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 126, loss@min: 0.950935, loss@max: 1.366413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000542, LT: 1.759957, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 127, loss@min: 0.949384, loss@max: 1.370566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000541, LT: 1.760497, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.948135, loss@max: 1.365230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000541, LT: 1.760861, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.948639, loss@max: 1.367033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000541, LT: 1.761121, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.948865, loss@max: 1.370864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000541, LT: 1.761135, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 131, loss@min: 0.950313, loss@max: 1.362231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000540, LT: 1.761148, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 132, loss@min: 0.950882, loss@max: 1.364584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000540, LT: 1.761412, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 133, loss@min: 0.949353, loss@max: 1.366439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000540, LT: 1.761769, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 134, loss@min: 0.952658, loss@max: 1.362132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000540, LT: 1.762135, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 135, loss@min: 0.950725, loss@max: 1.364745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000540, LT: 1.762521, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 136, loss@min: 0.950354, loss@max: 1.369567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000539, LT: 1.762876, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 137, loss@min: 0.954491, loss@max: 1.361916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000539, LT: 1.763135, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 138, loss@min: 0.943072, loss@max: 1.368633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000539, LT: 1.763231, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.945455, loss@max: 1.365373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000539, LT: 1.763262, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.945823, loss@max: 1.366511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000539, LT: 1.763264, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 141, loss@min: 0.947261, loss@max: 1.366538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000539, LT: 1.763294, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 142, loss@min: 0.949276, loss@max: 1.367539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000539, LT: 1.763338, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 143, loss@min: 0.954251, loss@max: 1.366164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000539, LT: 1.763349, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 144, loss@min: 0.950258, loss@max: 1.366401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000539, LT: 1.763362, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 145, loss@min: 0.949356, loss@max: 1.361675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000539, LT: 1.763371, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 146, loss@min: 0.947594, loss@max: 1.368010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000539, LT: 1.763378, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 147, loss@min: 0.950951, loss@max: 1.368375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000539, LT: 1.763386, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 148, loss@min: 0.950797, loss@max: 1.362504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000539, LT: 1.763389, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 149, loss@min: 0.950616, loss@max: 1.365341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000539, LT: 1.763389, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 150, loss@min: 0.944727, loss@max: 1.368964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000539, LT: 1.763389, Top1S: 100.000000, Top1T: 67.139481 +------------------------------------------- +Thu Aug 3 18:23:56 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 101, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Thu Aug 3 19:59:25 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Thu Aug 3 20:00:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.165093, loss@max: 1.323837, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 2, loss@min: 1.057741, loss@max: 1.752765, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 3, loss@min: 1.432530, loss@max: 1.443353, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 4, loss@min: 1.183229, loss@max: 1.464591, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 5, loss@min: 1.022855, loss@max: 1.475477, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 6, loss@min: 1.065438, loss@max: 1.374144, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 7, loss@min: 1.080648, loss@max: 1.418050, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.008986, loss@max: 1.348188, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 1.048225, loss@max: 1.492298, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.047013, loss@max: 1.412499, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.013743, loss@max: 1.453042, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.044027, loss@max: 1.462347, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 0.982333, loss@max: 1.534160, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.118457, loss@max: 1.530613, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.992531, loss@max: 1.565380, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.060291, loss@max: 1.492058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.088937, loss@max: 1.559510, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.067413, loss@max: 1.525051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.022230, loss@max: 1.553695, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.024119, loss@max: 1.570675, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.093833, loss@max: 1.572182, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.043473, loss@max: 1.511611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.980408, loss@max: 1.535101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.995722, loss@max: 1.567191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.032166, loss@max: 1.476955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.994430, loss@max: 1.542558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.061453, loss@max: 1.540105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.021334, loss@max: 1.510100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.979636, loss@max: 1.510060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.035841, loss@max: 1.467919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.999553, loss@max: 1.506914, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.999102, loss@max: 1.440695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.036148, loss@max: 1.392905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.009618, loss@max: 1.481129, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.980487, loss@max: 1.457641, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 0.988752, loss@max: 1.465721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.065971, loss@max: 1.476277, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.999624, loss@max: 1.445243, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.992123, loss@max: 1.476174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.010994, loss@max: 1.478678, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.994733, loss@max: 1.507193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.994488, loss@max: 1.450943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.995764, loss@max: 1.471873, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.996606, loss@max: 1.465760, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.984480, loss@max: 1.437989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.974113, loss@max: 1.457124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.960899, loss@max: 1.506726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.018903, loss@max: 1.435668, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.010086, loss@max: 1.445820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.975132, loss@max: 1.469754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.017078, loss@max: 1.433123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.970749, loss@max: 1.533132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.995402, loss@max: 1.459923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.999839, loss@max: 1.456631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.994978, loss@max: 1.475934, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 1.006603, loss@max: 1.415962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954802, loss@max: 1.487587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975573, loss@max: 1.431704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.967726, loss@max: 1.449123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.983905, loss@max: 1.419791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000006, LT: 0.245906, Top1S: 100.000000, Top1T: 93.184586Best acc: 93.184586 +Train:epoch: 61, loss@min: 0.950163, loss@max: 1.458213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000008, LT: 0.244237, Top1S: 100.000000, Top1T: 93.225151Best acc: 93.225151 +Train:epoch: 62, loss@min: 0.978942, loss@max: 1.430653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000006, LT: 0.241249, Top1S: 100.000000, Top1T: 93.184586 +Train:epoch: 63, loss@min: 0.989634, loss@max: 1.429172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000009, LT: 0.240712, Top1S: 100.000000, Top1T: 93.590263Best acc: 93.590263 +Train:epoch: 64, loss@min: 0.952696, loss@max: 1.462331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000006, LT: 0.245689, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 65, loss@min: 0.983327, loss@max: 1.430250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000005, LT: 0.248528, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 66, loss@min: 0.990885, loss@max: 1.404544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000006, LT: 0.249029, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 67, loss@min: 0.952650, loss@max: 1.443934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000005, LT: 0.247151, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 68, loss@min: 0.974226, loss@max: 1.413959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000007, LT: 0.245532, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 69, loss@min: 0.971806, loss@max: 1.400743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000006, LT: 0.245989, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 70, loss@min: 0.964308, loss@max: 1.444890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000007, LT: 0.243572, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 71, loss@min: 0.969088, loss@max: 1.425002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000005, LT: 0.248172, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 72, loss@min: 0.972901, loss@max: 1.423799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000006, LT: 0.245929, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 73, loss@min: 0.957355, loss@max: 1.414271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000005, LT: 0.245830, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 74, loss@min: 0.967925, loss@max: 1.422312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000006, LT: 0.244192, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 75, loss@min: 0.965100, loss@max: 1.392939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000005, LT: 0.247010, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 76, loss@min: 0.943074, loss@max: 1.409373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000006, LT: 0.246289, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 77, loss@min: 0.949010, loss@max: 1.401623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000005, LT: 0.246427, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 78, loss@min: 0.947957, loss@max: 1.407176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000005, LT: 0.245433, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 79, loss@min: 0.944551, loss@max: 1.419642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000005, LT: 0.246806, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 80, loss@min: 0.969170, loss@max: 1.408482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000005, LT: 0.248380, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 81, loss@min: 0.962131, loss@max: 1.394875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000005, LT: 0.249802, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 82, loss@min: 0.975280, loss@max: 1.381759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000005, LT: 0.247528, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 83, loss@min: 0.960259, loss@max: 1.376969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000005, LT: 0.249094, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 84, loss@min: 0.956275, loss@max: 1.388400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000005, LT: 0.248662, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 85, loss@min: 0.957373, loss@max: 1.384170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000005, LT: 0.249482, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 86, loss@min: 0.957024, loss@max: 1.404266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000005, LT: 0.250347, Top1S: 100.000000, Top1T: 93.468559 +Train:epoch: 87, loss@min: 0.958057, loss@max: 1.380443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000005, LT: 0.250298, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 88, loss@min: 0.943021, loss@max: 1.389848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000005, LT: 0.250112, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 89, loss@min: 0.953795, loss@max: 1.389470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000005, LT: 0.250452, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 90, loss@min: 0.948342, loss@max: 1.380343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000005, LT: 0.251952, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 91, loss@min: 0.954064, loss@max: 1.377709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000005, LT: 0.255009, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 92, loss@min: 0.951163, loss@max: 1.379083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000005, LT: 0.256930, Top1S: 100.000000, Top1T: 93.144020 +Train:epoch: 93, loss@min: 0.952941, loss@max: 1.379084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000005, LT: 0.255230, Top1S: 100.000000, Top1T: 93.103447 +Train:epoch: 94, loss@min: 0.933902, loss@max: 1.398852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000005, LT: 0.253760, Top1S: 100.000000, Top1T: 93.225151 +Train:epoch: 95, loss@min: 0.965648, loss@max: 1.358218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000005, LT: 0.252307, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 96, loss@min: 0.947485, loss@max: 1.383522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000005, LT: 0.252953, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 97, loss@min: 0.949271, loss@max: 1.392035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000005, LT: 0.255494, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 98, loss@min: 0.954671, loss@max: 1.370472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000005, LT: 0.258760, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 99, loss@min: 0.954337, loss@max: 1.371409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000005, LT: 0.258541, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 100, loss@min: 0.956362, loss@max: 1.381703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000005, LT: 0.257661, Top1S: 100.000000, Top1T: 93.265724 +Train:epoch: 101, loss@min: 0.951164, loss@max: 1.372741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000005, LT: 0.256767, Top1S: 100.000000, Top1T: 93.346855 +Train:epoch: 102, loss@min: 0.949620, loss@max: 1.372104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000005, LT: 0.256268, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 103, loss@min: 0.961310, loss@max: 1.364524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000005, LT: 0.256606, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 104, loss@min: 0.949028, loss@max: 1.371080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000005, LT: 0.256118, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 105, loss@min: 0.944639, loss@max: 1.377234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000005, LT: 0.256152, Top1S: 100.000000, Top1T: 93.306290 +Train:epoch: 106, loss@min: 0.956277, loss@max: 1.369457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000005, LT: 0.255068, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 107, loss@min: 0.952510, loss@max: 1.365572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000005, LT: 0.255730, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 108, loss@min: 0.950440, loss@max: 1.369126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000005, LT: 0.257003, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 109, loss@min: 0.943976, loss@max: 1.375896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000005, LT: 0.258037, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 110, loss@min: 0.946711, loss@max: 1.372523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000005, LT: 0.258918, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 111, loss@min: 0.948322, loss@max: 1.368756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000005, LT: 0.259015, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 112, loss@min: 0.966702, loss@max: 1.380692, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.000005, LT: 0.258465, Top1S: 100.000000, Top1T: 93.387421 +Train:epoch: 113, loss@min: 0.947901, loss@max: 1.372178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000005, LT: 0.258432, Top1S: 100.000000, Top1T: 93.427994 +Train:epoch: 114, loss@min: 0.946404, loss@max: 1.372063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000005, LT: 0.258861, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 115, loss@min: 0.949617, loss@max: 1.377003, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000005, LT: 0.259533, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 116, loss@min: 0.950188, loss@max: 1.364599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000005, LT: 0.259492, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 117, loss@min: 0.953084, loss@max: 1.365299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000005, LT: 0.258997, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 118, loss@min: 0.947344, loss@max: 1.377594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000005, LT: 0.259531, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 119, loss@min: 0.958533, loss@max: 1.364754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000005, LT: 0.259786, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 120, loss@min: 0.951955, loss@max: 1.361087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000005, LT: 0.259682, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 121, loss@min: 0.946522, loss@max: 1.368007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000005, LT: 0.260185, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 122, loss@min: 0.950551, loss@max: 1.362544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000005, LT: 0.260400, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 123, loss@min: 0.954773, loss@max: 1.369447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000005, LT: 0.260719, Top1S: 100.000000, Top1T: 93.630829Best acc: 93.630829 +Train:epoch: 124, loss@min: 0.948972, loss@max: 1.367653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000005, LT: 0.261270, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 125, loss@min: 0.950063, loss@max: 1.370586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000005, LT: 0.261915, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 126, loss@min: 0.954538, loss@max: 1.364185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000005, LT: 0.261975, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 127, loss@min: 0.946197, loss@max: 1.370591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000005, LT: 0.262107, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 128, loss@min: 0.952161, loss@max: 1.366799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000005, LT: 0.262431, Top1S: 100.000000, Top1T: 93.509125 +Train:epoch: 129, loss@min: 0.950706, loss@max: 1.373438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000005, LT: 0.262542, Top1S: 100.000000, Top1T: 93.549698 +Train:epoch: 130, loss@min: 0.943246, loss@max: 1.368756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000005, LT: 0.262148, Top1S: 100.000000, Top1T: 93.590263 +Train:epoch: 131, loss@min: 0.957704, loss@max: 1.371076, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 131, LS: 0.000005, LT: 0.262030, Top1S: 100.000000, Top1T: 93.711967Best acc: 93.711967 +Train:epoch: 132, loss@min: 0.950047, loss@max: 1.369571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000005, LT: 0.261817, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 133, loss@min: 0.955751, loss@max: 1.365466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000005, LT: 0.262054, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 134, loss@min: 0.943664, loss@max: 1.372392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000005, LT: 0.262457, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 135, loss@min: 0.951498, loss@max: 1.366780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000005, LT: 0.262573, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 136, loss@min: 0.952972, loss@max: 1.365074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000005, LT: 0.262574, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 137, loss@min: 0.958842, loss@max: 1.372464, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 0.000005, LT: 0.262550, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 138, loss@min: 0.955856, loss@max: 1.369244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000005, LT: 0.262500, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 139, loss@min: 0.948828, loss@max: 1.368796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000005, LT: 0.262459, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 140, loss@min: 0.949525, loss@max: 1.363802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000005, LT: 0.262496, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 141, loss@min: 0.944644, loss@max: 1.368984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000005, LT: 0.262537, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 142, loss@min: 0.956698, loss@max: 1.368127, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 142, LS: 0.000005, LT: 0.262521, Top1S: 100.000000, Top1T: 93.671402 +Train:epoch: 143, loss@min: 0.949361, loss@max: 1.366547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000005, LT: 0.262484, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 144, loss@min: 0.950277, loss@max: 1.366075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000005, LT: 0.262506, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 145, loss@min: 0.947371, loss@max: 1.370493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000005, LT: 0.262523, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 146, loss@min: 0.969248, loss@max: 1.369192, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 146, LS: 0.000005, LT: 0.262526, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 147, loss@min: 0.952060, loss@max: 1.361388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000005, LT: 0.262535, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 148, loss@min: 0.978255, loss@max: 1.372677, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.000005, LT: 0.262535, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 149, loss@min: 0.944060, loss@max: 1.369067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000005, LT: 0.262534, Top1S: 100.000000, Top1T: 93.630829 +Train:epoch: 150, loss@min: 0.948157, loss@max: 1.362974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000005, LT: 0.262534, Top1S: 100.000000, Top1T: 93.630829 +------------------------------------------- +Thu Aug 3 21:57:55 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "log": "./checkpoints", "name": "RN50", "num_classes": 100, "print_freq": 1, "savedir": "G:\\\\caltech101_epx\\\\8shot\\\\", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 3 23:07:22 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.818984, loss@max: 1.894203, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.877731, loss@max: 1.498276, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 3, loss@min: 1.282721, loss@max: 1.753403, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 4, loss@min: 1.117533, loss@max: 1.676228, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 5, loss@min: 1.104423, loss@max: 1.565099, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 6, loss@min: 1.282433, loss@max: 1.383846, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 7, loss@min: 1.178959, loss@max: 1.456057, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 1.082644, loss@max: 1.641104, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 1.025953, loss@max: 1.592725, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 10, loss@min: 1.110693, loss@max: 1.485335, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 11, loss@min: 1.086447, loss@max: 1.604193, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 12, loss@min: 1.110185, loss@max: 1.525684, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 1.057531, loss@max: 1.473317, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 14, loss@min: 1.022621, loss@max: 1.531386, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.063923, loss@max: 1.600570, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 16, loss@min: 1.027499, loss@max: 1.501525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.088209, loss@max: 1.586297, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 18, loss@min: 1.047714, loss@max: 1.615511, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 1.074968, loss@max: 1.581550, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.135787, loss@max: 1.706487, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 21, loss@min: 1.034084, loss@max: 1.752736, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.109868, loss@max: 1.715379, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.150464, loss@max: 1.678565, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.111876, loss@max: 1.685572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.040193, loss@max: 1.641997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.017879, loss@max: 1.743821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.084441, loss@max: 1.591669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.071475, loss@max: 1.708920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.993358, loss@max: 1.661000, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.008075, loss@max: 1.656190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.018728, loss@max: 1.615978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.044285, loss@max: 1.544419, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.057615, loss@max: 1.604712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.026117, loss@max: 1.683552, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.984725, loss@max: 1.696485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.033516, loss@max: 1.580908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.008546, loss@max: 1.584444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.015356, loss@max: 1.631834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.075626, loss@max: 1.580153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.040087, loss@max: 1.666441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.009466, loss@max: 1.677919, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.943893, loss@max: 1.665925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.046751, loss@max: 1.596134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.059802, loss@max: 1.589190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.029811, loss@max: 1.553274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.021955, loss@max: 1.651192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961638, loss@max: 1.606033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.979010, loss@max: 1.641054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.020599, loss@max: 1.591470, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.066091, loss@max: 1.565340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.083490, loss@max: 1.495316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.027032, loss@max: 1.617097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.010989, loss@max: 1.609951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.042942, loss@max: 1.630426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.003956, loss@max: 1.563353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.026905, loss@max: 1.643381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.044248, loss@max: 1.621346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.034326, loss@max: 1.645828, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.954099, loss@max: 1.627889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.009532, loss@max: 1.635795, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.990387, loss@max: 1.601927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.045138, loss@max: 1.569006, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.035716, loss@max: 1.520561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.013930, loss@max: 1.539347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.004781, loss@max: 1.509331, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.999489, loss@max: 1.532880, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 1.034929, loss@max: 1.529694, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 1.001187, loss@max: 1.461079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.028848, loss@max: 1.468398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.029926, loss@max: 1.509445, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 71, loss@min: 0.994802, loss@max: 1.475475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.985458, loss@max: 1.518707, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.985692, loss@max: 1.477441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.001813, loss@max: 1.463715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.014701, loss@max: 1.456368, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 76, loss@min: 0.963584, loss@max: 1.492456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.990693, loss@max: 1.463540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.993931, loss@max: 1.445326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.995841, loss@max: 1.446154, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 80, loss@min: 0.973120, loss@max: 1.463783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000006, LT: 0.297532, Top1S: 100.000000, Top1T: 90.953346Best acc: 90.953346 +Train:epoch: 81, loss@min: 0.938892, loss@max: 1.486905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000005, LT: 0.289836, Top1S: 100.000000, Top1T: 91.318459Best acc: 91.318459 +Train:epoch: 82, loss@min: 0.981541, loss@max: 1.438322, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000005, LT: 0.283329, Top1S: 100.000000, Top1T: 91.440163Best acc: 91.440163 +Train:epoch: 83, loss@min: 0.973167, loss@max: 1.443452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000006, LT: 0.281821, Top1S: 100.000000, Top1T: 91.521301Best acc: 91.521301 +Train:epoch: 84, loss@min: 0.976812, loss@max: 1.442594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000006, LT: 0.281857, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 85, loss@min: 0.956606, loss@max: 1.459797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000005, LT: 0.281998, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 86, loss@min: 0.968374, loss@max: 1.450084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000005, LT: 0.281177, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 87, loss@min: 0.973646, loss@max: 1.444053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000006, LT: 0.279970, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 88, loss@min: 0.981051, loss@max: 1.445238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000006, LT: 0.279987, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 89, loss@min: 0.970209, loss@max: 1.408525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000005, LT: 0.279582, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 90, loss@min: 0.982290, loss@max: 1.402917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000005, LT: 0.279761, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 91, loss@min: 1.003776, loss@max: 1.409717, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 91, LS: 0.000005, LT: 0.280741, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 92, loss@min: 0.969805, loss@max: 1.410603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000006, LT: 0.280678, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 93, loss@min: 0.979549, loss@max: 1.409381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000006, LT: 0.280462, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 94, loss@min: 0.947468, loss@max: 1.418844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000005, LT: 0.281718, Top1S: 100.000000, Top1T: 91.318459 +Train:epoch: 95, loss@min: 0.947352, loss@max: 1.422557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000005, LT: 0.283307, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 96, loss@min: 0.956568, loss@max: 1.425964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000005, LT: 0.284702, Top1S: 100.000000, Top1T: 91.196754 +Train:epoch: 97, loss@min: 0.960572, loss@max: 1.404602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000006, LT: 0.285583, Top1S: 100.000000, Top1T: 91.196754 +Train:epoch: 98, loss@min: 0.975665, loss@max: 1.388526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000006, LT: 0.285834, Top1S: 100.000000, Top1T: 91.318459 +Train:epoch: 99, loss@min: 0.974975, loss@max: 1.381300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000005, LT: 0.285686, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 100, loss@min: 0.946095, loss@max: 1.423459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000005, LT: 0.284669, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 101, loss@min: 0.963101, loss@max: 1.405008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000005, LT: 0.283799, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 102, loss@min: 0.938023, loss@max: 1.418799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000005, LT: 0.284310, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 103, loss@min: 0.948472, loss@max: 1.412200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000005, LT: 0.284880, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 104, loss@min: 0.953420, loss@max: 1.402069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000005, LT: 0.284928, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 105, loss@min: 0.953138, loss@max: 1.404439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000005, LT: 0.284324, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 106, loss@min: 0.957944, loss@max: 1.423436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000005, LT: 0.283515, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 107, loss@min: 0.966836, loss@max: 1.386670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000005, LT: 0.282996, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 108, loss@min: 0.960356, loss@max: 1.400698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000005, LT: 0.283068, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 109, loss@min: 0.966022, loss@max: 1.392194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000005, LT: 0.283042, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 110, loss@min: 0.962507, loss@max: 1.418313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000005, LT: 0.282995, Top1S: 100.000000, Top1T: 91.480728 +Train:epoch: 111, loss@min: 0.942292, loss@max: 1.408766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000005, LT: 0.283152, Top1S: 100.000000, Top1T: 91.521301 +Train:epoch: 112, loss@min: 0.947414, loss@max: 1.399352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000005, LT: 0.283457, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 113, loss@min: 0.967980, loss@max: 1.395121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000005, LT: 0.283467, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 114, loss@min: 0.964187, loss@max: 1.382106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000005, LT: 0.283400, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 115, loss@min: 0.952187, loss@max: 1.388467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000005, LT: 0.283167, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 116, loss@min: 0.960237, loss@max: 1.373755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000005, LT: 0.282900, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 117, loss@min: 0.947677, loss@max: 1.397280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000005, LT: 0.282903, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 118, loss@min: 0.962693, loss@max: 1.376534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000005, LT: 0.282886, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 119, loss@min: 0.943038, loss@max: 1.405262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000005, LT: 0.282938, Top1S: 100.000000, Top1T: 91.440163 +Train:epoch: 120, loss@min: 0.941896, loss@max: 1.402966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000005, LT: 0.282833, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 121, loss@min: 0.965499, loss@max: 1.378242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000005, LT: 0.283125, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 122, loss@min: 0.950692, loss@max: 1.385785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000005, LT: 0.283495, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 123, loss@min: 0.955105, loss@max: 1.384337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000005, LT: 0.283694, Top1S: 100.000000, Top1T: 91.399597 +Train:epoch: 124, loss@min: 0.955909, loss@max: 1.388969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000005, LT: 0.283687, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 125, loss@min: 0.962258, loss@max: 1.371255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000005, LT: 0.283559, Top1S: 100.000000, Top1T: 91.359024 +Train:epoch: 126, loss@min: 0.948880, loss@max: 1.386664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000005, LT: 0.283458, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 127, loss@min: 0.963003, loss@max: 1.397252, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.000005, LT: 0.283396, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 128, loss@min: 0.955725, loss@max: 1.382609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000005, LT: 0.283402, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 129, loss@min: 0.956495, loss@max: 1.385660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000005, LT: 0.283492, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 130, loss@min: 0.956692, loss@max: 1.385044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000005, LT: 0.283664, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 131, loss@min: 0.945617, loss@max: 1.392737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000005, LT: 0.283929, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 132, loss@min: 0.955523, loss@max: 1.388731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000005, LT: 0.284184, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 133, loss@min: 0.945271, loss@max: 1.389195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000005, LT: 0.284386, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 134, loss@min: 0.956584, loss@max: 1.393325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000005, LT: 0.284528, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 135, loss@min: 0.948273, loss@max: 1.385735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000005, LT: 0.284676, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 136, loss@min: 0.935533, loss@max: 1.400772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000005, LT: 0.284762, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 137, loss@min: 0.951111, loss@max: 1.380041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000005, LT: 0.284831, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 138, loss@min: 0.942904, loss@max: 1.387297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000005, LT: 0.284878, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 139, loss@min: 0.952025, loss@max: 1.377978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000005, LT: 0.284921, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 140, loss@min: 0.950563, loss@max: 1.386691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000005, LT: 0.284937, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 141, loss@min: 0.953250, loss@max: 1.393686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000005, LT: 0.284919, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 142, loss@min: 0.945996, loss@max: 1.393519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000005, LT: 0.284878, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 143, loss@min: 0.961852, loss@max: 1.389027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000005, LT: 0.284857, Top1S: 100.000000, Top1T: 91.277893 +Train:epoch: 144, loss@min: 0.961721, loss@max: 1.378376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000005, LT: 0.284853, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 145, loss@min: 0.955478, loss@max: 1.388633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000005, LT: 0.284849, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 146, loss@min: 0.964872, loss@max: 1.380104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000005, LT: 0.284847, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 147, loss@min: 0.953030, loss@max: 1.383424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000005, LT: 0.284845, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 148, loss@min: 0.960733, loss@max: 1.367872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000005, LT: 0.284846, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 149, loss@min: 0.950329, loss@max: 1.384078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000005, LT: 0.284847, Top1S: 100.000000, Top1T: 91.237320 +Train:epoch: 150, loss@min: 0.961571, loss@max: 1.377140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000005, LT: 0.284847, Top1S: 100.000000, Top1T: 91.237320 +------------------------------------------- +Fri Aug 4 00:02:41 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 2, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:\\\\dtd_epx\\\\16shot\\\\", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 2} + +------------------------------------------- +Fri Aug 4 01:08:40 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.912444, loss@max: 3.269263, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.919904, loss@max: 2.882012, Top1S acc: 100.000000, Top1T acc: 70.703125 + Test:epoch: 2, LS: 0.002754, LT: 1.511335, Top1S: 100.000000, Top1T: 60.638298Best acc: 60.638298 +------------------------------------------- +Fri Aug 4 01:09:33 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:/dtd_epx\\\\16shot/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Fri Aug 4 01:15:36 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "num_classes": 47, "print_freq": 1, "savedir": "G:/dtd_epx\\\\16shot/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Fri Aug 4 01:16:06 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.232238, loss@max: 3.246173, Top1S acc: 100.000000, Top1T acc: 64.453125 + Test:epoch: 1, LS: 0.002828, LT: 1.692711, Top1S: 100.000000, Top1T: 56.264774Best acc: 56.264774 +------------------------------------------- +Fri Aug 4 01:16:50 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Fri Aug 4 01:21:43 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 3.409321, Top1S acc: 100.000000, Top1T acc: 63.829784 + Test:epoch: 1, LS: 0.002913, LT: 2.029315, Top1S: 100.000000, Top1T: 46.808510Best acc: 46.808510 +------------------------------------------- +Fri Aug 4 01:22:11 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Fri Aug 4 01:23:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.569833, loss@max: 3.409321, Top1S acc: 100.000000, Top1T acc: 63.829784 + Test:epoch: 1, LS: 0.002913, LT: 2.029315, Top1S: 100.000000, Top1T: 46.808510Best acc: 46.808510 +------------------------------------------- +Fri Aug 4 01:23:42 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Fri Aug 4 01:25:07 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.232238, loss@max: 3.246173, Top1S acc: 100.000000, Top1T acc: 64.453125 + Test:epoch: 1, LS: 0.002828, LT: 1.692711, Top1S: 100.000000, Top1T: 56.264774Best acc: 56.264774 +------------------------------------------- +Fri Aug 4 01:25:50 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Aug 4 01:27:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.728040, loss@max: 1.975628, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 2, loss@min: 1.713831, loss@max: 1.567542, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 3, loss@min: 1.268177, loss@max: 1.655136, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 4, loss@min: 1.322538, loss@max: 1.489470, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 5, loss@min: 1.290715, loss@max: 1.720472, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 6, loss@min: 1.224839, loss@max: 1.802331, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 7, loss@min: 1.266755, loss@max: 1.727940, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 8, loss@min: 1.250180, loss@max: 1.787496, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 9, loss@min: 1.213861, loss@max: 1.708225, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.198366, loss@max: 1.616516, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 11, loss@min: 1.259819, loss@max: 1.619681, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 1.206651, loss@max: 1.650469, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 13, loss@min: 1.134397, loss@max: 1.687944, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.217504, loss@max: 1.714968, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 1.090239, loss@max: 1.695122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.066385, loss@max: 1.682020, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 1.071345, loss@max: 1.748840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.149351, loss@max: 1.578046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.133496, loss@max: 1.670709, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.153399, loss@max: 1.692982, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.081195, loss@max: 1.642540, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.075850, loss@max: 1.711592, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.060110, loss@max: 1.707234, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.082389, loss@max: 1.688878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.102054, loss@max: 1.694265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.078370, loss@max: 1.701648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.077480, loss@max: 1.661492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.074860, loss@max: 1.644474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.005554, loss@max: 1.714888, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.211115, loss@max: 1.687552, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.060474, loss@max: 1.718726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.981628, loss@max: 1.729700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.049479, loss@max: 1.679133, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.075400, loss@max: 1.619509, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.021100, loss@max: 1.650553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.032880, loss@max: 1.644361, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.063603, loss@max: 1.606230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.080383, loss@max: 1.660732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.041086, loss@max: 1.677023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.019041, loss@max: 1.677238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.104663, loss@max: 1.717430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.052827, loss@max: 1.616321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.056129, loss@max: 1.632660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.041188, loss@max: 1.600795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.978578, loss@max: 1.619452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.064018, loss@max: 1.644818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.089343, loss@max: 1.578882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.013381, loss@max: 1.548362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.017294, loss@max: 1.547917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.999766, loss@max: 1.594526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.055815, loss@max: 1.543041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.975483, loss@max: 1.587657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.043185, loss@max: 1.505014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.004048, loss@max: 1.560780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.062244, loss@max: 1.540017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.000092, loss@max: 1.576540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.990248, loss@max: 1.559881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.000063, loss@max: 1.544873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.005056, loss@max: 1.526835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.060321, loss@max: 1.496014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.025939, loss@max: 1.556664, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.004718, loss@max: 1.492459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.006760, loss@max: 1.475007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.061073, loss@max: 1.515084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.975613, loss@max: 1.578258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.000874, loss@max: 1.554954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.012404, loss@max: 1.470647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.012089, loss@max: 1.453988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.019392, loss@max: 1.470039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.986350, loss@max: 1.491979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.987098, loss@max: 1.448850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.997062, loss@max: 1.485058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.955260, loss@max: 1.493588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.993637, loss@max: 1.464673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.964922, loss@max: 1.486700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.984470, loss@max: 1.459598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952713, loss@max: 1.465373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.986259, loss@max: 1.454746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943399, loss@max: 1.474618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.973483, loss@max: 1.451969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000079, LT: 1.277341, Top1S: 100.000000, Top1T: 69.788414Best acc: 69.788414 +Train:epoch: 81, loss@min: 0.988992, loss@max: 1.432492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000077, LT: 1.279661, Top1S: 100.000000, Top1T: 69.748108 +Train:epoch: 82, loss@min: 0.948485, loss@max: 1.478637, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000077, LT: 1.282789, Top1S: 100.000000, Top1T: 69.773300 +Train:epoch: 83, loss@min: 0.974761, loss@max: 1.436375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000080, LT: 1.290824, Top1S: 100.000000, Top1T: 69.788414 +Train:epoch: 84, loss@min: 0.944780, loss@max: 1.457879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000074, LT: 1.289890, Top1S: 100.000000, Top1T: 69.712845 +Train:epoch: 85, loss@min: 0.971636, loss@max: 1.420480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000075, LT: 1.295764, Top1S: 100.000000, Top1T: 69.712845 +Train:epoch: 86, loss@min: 0.957142, loss@max: 1.417546, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000074, LT: 1.297024, Top1S: 100.000000, Top1T: 69.889168Best acc: 69.889168 +Train:epoch: 87, loss@min: 0.977411, loss@max: 1.424698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000073, LT: 1.306250, Top1S: 100.000000, Top1T: 69.848862 +Train:epoch: 88, loss@min: 0.973231, loss@max: 1.407638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000073, LT: 1.310549, Top1S: 100.000000, Top1T: 69.667503 +Train:epoch: 89, loss@min: 0.968249, loss@max: 1.404993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000072, LT: 1.315405, Top1S: 100.000000, Top1T: 69.702766 +Train:epoch: 90, loss@min: 0.978483, loss@max: 1.412971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000072, LT: 1.316678, Top1S: 100.000000, Top1T: 69.727959 +Train:epoch: 91, loss@min: 0.968186, loss@max: 1.401906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000071, LT: 1.324486, Top1S: 100.000000, Top1T: 69.672539 +Train:epoch: 92, loss@min: 0.956552, loss@max: 1.429505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000070, LT: 1.323630, Top1S: 100.000000, Top1T: 69.677582 +Train:epoch: 93, loss@min: 0.966460, loss@max: 1.396799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000070, LT: 1.328269, Top1S: 100.000000, Top1T: 69.642311 +Train:epoch: 94, loss@min: 0.985473, loss@max: 1.388823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000070, LT: 1.333781, Top1S: 100.000000, Top1T: 69.697731 +Train:epoch: 95, loss@min: 0.959385, loss@max: 1.400515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000071, LT: 1.337981, Top1S: 100.000000, Top1T: 69.874054 +Train:epoch: 96, loss@min: 0.960716, loss@max: 1.400313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000069, LT: 1.344991, Top1S: 100.000000, Top1T: 69.798485 +Train:epoch: 97, loss@min: 0.957947, loss@max: 1.397882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000069, LT: 1.347113, Top1S: 100.000000, Top1T: 69.833748 +Train:epoch: 98, loss@min: 0.947885, loss@max: 1.399778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000069, LT: 1.352754, Top1S: 100.000000, Top1T: 69.753143 +Train:epoch: 99, loss@min: 0.967979, loss@max: 1.378867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000069, LT: 1.358467, Top1S: 100.000000, Top1T: 69.818634 +Train:epoch: 100, loss@min: 0.972422, loss@max: 1.374505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000069, LT: 1.361553, Top1S: 100.000000, Top1T: 69.843826 +Train:epoch: 101, loss@min: 0.961456, loss@max: 1.379726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000068, LT: 1.365493, Top1S: 100.000000, Top1T: 69.828712 +Train:epoch: 102, loss@min: 0.969467, loss@max: 1.382482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000068, LT: 1.368301, Top1S: 100.000000, Top1T: 69.879089 +Train:epoch: 103, loss@min: 0.955974, loss@max: 1.386737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000067, LT: 1.375381, Top1S: 100.000000, Top1T: 69.894203Best acc: 69.894203 +Train:epoch: 104, loss@min: 0.950570, loss@max: 1.385834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000067, LT: 1.380005, Top1S: 100.000000, Top1T: 69.929466Best acc: 69.929466 +Train:epoch: 105, loss@min: 0.951874, loss@max: 1.385069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000067, LT: 1.383312, Top1S: 100.000000, Top1T: 69.848862 +Train:epoch: 106, loss@min: 0.952656, loss@max: 1.383753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000066, LT: 1.386978, Top1S: 100.000000, Top1T: 69.899239 +Train:epoch: 107, loss@min: 0.943223, loss@max: 1.391387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000066, LT: 1.393638, Top1S: 100.000000, Top1T: 69.858940 +Train:epoch: 108, loss@min: 0.950598, loss@max: 1.385445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000066, LT: 1.397554, Top1S: 100.000000, Top1T: 69.858940 +Train:epoch: 109, loss@min: 0.974946, loss@max: 1.373453, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 0.000066, LT: 1.400314, Top1S: 100.000000, Top1T: 69.843826 +Train:epoch: 110, loss@min: 0.946967, loss@max: 1.385028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000066, LT: 1.404306, Top1S: 100.000000, Top1T: 69.783371 +Train:epoch: 111, loss@min: 0.962958, loss@max: 1.372200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000066, LT: 1.409996, Top1S: 100.000000, Top1T: 69.803520 +Train:epoch: 112, loss@min: 0.950122, loss@max: 1.375537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000066, LT: 1.414471, Top1S: 100.000000, Top1T: 69.722916 +Train:epoch: 113, loss@min: 0.942720, loss@max: 1.388746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000065, LT: 1.416151, Top1S: 100.000000, Top1T: 69.833748 +Train:epoch: 114, loss@min: 0.947262, loss@max: 1.381701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000065, LT: 1.420475, Top1S: 100.000000, Top1T: 69.833748 +Train:epoch: 115, loss@min: 0.949231, loss@max: 1.379808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000065, LT: 1.424788, Top1S: 100.000000, Top1T: 69.874054 +Train:epoch: 116, loss@min: 0.951632, loss@max: 1.377648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000065, LT: 1.427513, Top1S: 100.000000, Top1T: 69.874054 +Train:epoch: 117, loss@min: 0.959565, loss@max: 1.371383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000065, LT: 1.430975, Top1S: 100.000000, Top1T: 69.848862 +Train:epoch: 118, loss@min: 0.947991, loss@max: 1.373320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000065, LT: 1.433170, Top1S: 100.000000, Top1T: 69.884125 +Train:epoch: 119, loss@min: 0.950562, loss@max: 1.372002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000065, LT: 1.436188, Top1S: 100.000000, Top1T: 69.889168 +Train:epoch: 120, loss@min: 0.940279, loss@max: 1.377578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000065, LT: 1.438184, Top1S: 100.000000, Top1T: 69.939545Best acc: 69.939545 +Train:epoch: 121, loss@min: 0.951868, loss@max: 1.376841, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 0.000065, LT: 1.441211, Top1S: 100.000000, Top1T: 69.914352 +Train:epoch: 122, loss@min: 0.970535, loss@max: 1.380213, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 122, LS: 0.000065, LT: 1.443522, Top1S: 100.000000, Top1T: 69.974808Best acc: 69.974808 +Train:epoch: 123, loss@min: 0.951759, loss@max: 1.378468, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Aug 4 11:36:22 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.337638, loss@max: 1.694916, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 2, loss@min: 1.708820, loss@max: 1.425480, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 3, loss@min: 1.272475, loss@max: 1.443932, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 4, loss@min: 1.280603, loss@max: 1.506225, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.253416, loss@max: 1.616397, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 6, loss@min: 1.207317, loss@max: 1.522695, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 7, loss@min: 1.151081, loss@max: 1.567049, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 1.043417, loss@max: 1.489574, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 9, loss@min: 1.082871, loss@max: 1.501805, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.119854, loss@max: 1.552686, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 11, loss@min: 1.048591, loss@max: 1.506544, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 12, loss@min: 1.034222, loss@max: 1.516726, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 0.972173, loss@max: 1.575251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.078773, loss@max: 1.508137, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.017504, loss@max: 1.574652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.008534, loss@max: 1.587952, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.017009, loss@max: 1.503535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.088062, loss@max: 1.538199, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 1.082637, loss@max: 1.502393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.042874, loss@max: 1.608875, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.095295, loss@max: 1.504301, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 22, loss@min: 1.022305, loss@max: 1.625857, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.984828, loss@max: 1.625088, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 1.069232, loss@max: 1.586151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.115724, loss@max: 1.585279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.074115, loss@max: 1.554207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.046076, loss@max: 1.594965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.088387, loss@max: 1.565189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.094921, loss@max: 1.592553, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.028283, loss@max: 1.577628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.079764, loss@max: 1.643558, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.990987, loss@max: 1.635951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.017897, loss@max: 1.614789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.011623, loss@max: 1.606206, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.007121, loss@max: 1.608734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.042985, loss@max: 1.540570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.051159, loss@max: 1.553081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.048747, loss@max: 1.584182, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.031403, loss@max: 1.622441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.040186, loss@max: 1.609504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.027411, loss@max: 1.526327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.028401, loss@max: 1.532739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.040016, loss@max: 1.532050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.000304, loss@max: 1.522313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.021683, loss@max: 1.552577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.021994, loss@max: 1.505419, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 1.011350, loss@max: 1.536107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.972610, loss@max: 1.544021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.996924, loss@max: 1.518593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.979708, loss@max: 1.502623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.024054, loss@max: 1.516113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.017064, loss@max: 1.455449, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.993037, loss@max: 1.524579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.989960, loss@max: 1.481172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.967831, loss@max: 1.494845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.004682, loss@max: 1.482958, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 57, loss@min: 0.998671, loss@max: 1.434337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975829, loss@max: 1.473177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.998684, loss@max: 1.414747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.960751, loss@max: 1.484029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.004529, loss@max: 1.429426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.976161, loss@max: 1.428308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.975711, loss@max: 1.424799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.982245, loss@max: 1.466407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.964177, loss@max: 1.448563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.961874, loss@max: 1.430691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.953472, loss@max: 1.453572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.966515, loss@max: 1.453699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.954001, loss@max: 1.479620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978616, loss@max: 1.421875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957551, loss@max: 1.442017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.935548, loss@max: 1.460903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.939340, loss@max: 1.421364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.953290, loss@max: 1.420309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.976681, loss@max: 1.401437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.945578, loss@max: 1.414014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963780, loss@max: 1.399818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.949050, loss@max: 1.404468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.960034, loss@max: 1.401074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.964845, loss@max: 1.382238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000052, LT: 1.253618, Top1S: 100.000000, Top1T: 70.871536Best acc: 70.871536 +Train:epoch: 81, loss@min: 0.954117, loss@max: 1.393474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000050, LT: 1.263064, Top1S: 100.000000, Top1T: 70.700249 +Train:epoch: 82, loss@min: 0.964348, loss@max: 1.394308, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000050, LT: 1.292294, Top1S: 100.000000, Top1T: 70.418137 +Train:epoch: 83, loss@min: 0.947343, loss@max: 1.400267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000050, LT: 1.270457, Top1S: 100.000000, Top1T: 70.861458 +Train:epoch: 84, loss@min: 0.948629, loss@max: 1.393069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000049, LT: 1.263395, Top1S: 100.000000, Top1T: 70.876572Best acc: 70.876572 +Train:epoch: 85, loss@min: 0.957285, loss@max: 1.377817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000049, LT: 1.270744, Top1S: 100.000000, Top1T: 70.861458 +Train:epoch: 86, loss@min: 0.958264, loss@max: 1.372761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000048, LT: 1.275658, Top1S: 100.000000, Top1T: 70.871536 +Train:epoch: 87, loss@min: 0.961573, loss@max: 1.385551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000049, LT: 1.288472, Top1S: 100.000000, Top1T: 70.801003 +Train:epoch: 88, loss@min: 0.965966, loss@max: 1.367685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000048, LT: 1.296409, Top1S: 100.000000, Top1T: 70.760704 +Train:epoch: 89, loss@min: 0.964060, loss@max: 1.368436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000047, LT: 1.292240, Top1S: 100.000000, Top1T: 70.841309 +Train:epoch: 90, loss@min: 0.959443, loss@max: 1.374008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000047, LT: 1.289454, Top1S: 100.000000, Top1T: 70.755669 +Train:epoch: 91, loss@min: 0.938829, loss@max: 1.394498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000047, LT: 1.305162, Top1S: 100.000000, Top1T: 70.790932 +Train:epoch: 92, loss@min: 0.955220, loss@max: 1.369344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000047, LT: 1.304702, Top1S: 100.000000, Top1T: 70.715363 +Train:epoch: 93, loss@min: 0.946136, loss@max: 1.376539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000046, LT: 1.307864, Top1S: 100.000000, Top1T: 70.664986 +Train:epoch: 94, loss@min: 0.957830, loss@max: 1.377134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000048, LT: 1.315661, Top1S: 100.000000, Top1T: 70.846344 +Train:epoch: 95, loss@min: 0.942774, loss@max: 1.380859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000047, LT: 1.327139, Top1S: 100.000000, Top1T: 70.715363 +Train:epoch: 96, loss@min: 0.951646, loss@max: 1.370412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000046, LT: 1.328118, Top1S: 100.000000, Top1T: 70.720398 +Train:epoch: 97, loss@min: 0.946231, loss@max: 1.370064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000046, LT: 1.342184, Top1S: 100.000000, Top1T: 70.448357 +Train:epoch: 98, loss@min: 0.946924, loss@max: 1.373863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000046, LT: 1.353389, Top1S: 100.000000, Top1T: 70.785889 +Train:epoch: 99, loss@min: 0.948733, loss@max: 1.372476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000045, LT: 1.358177, Top1S: 100.000000, Top1T: 70.725441 +Train:epoch: 100, loss@min: 0.930656, loss@max: 1.386300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000045, LT: 1.348173, Top1S: 100.000000, Top1T: 70.861458 +Train:epoch: 101, loss@min: 0.943989, loss@max: 1.372609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000045, LT: 1.357525, Top1S: 100.000000, Top1T: 70.770775 +Train:epoch: 102, loss@min: 0.949412, loss@max: 1.367620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000045, LT: 1.358679, Top1S: 100.000000, Top1T: 70.866493 +Train:epoch: 103, loss@min: 0.942220, loss@max: 1.372661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000045, LT: 1.363702, Top1S: 100.000000, Top1T: 70.790932 +Train:epoch: 104, loss@min: 0.948462, loss@max: 1.364485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000044, LT: 1.366749, Top1S: 100.000000, Top1T: 70.896721Best acc: 70.896721 +Train:epoch: 105, loss@min: 0.947489, loss@max: 1.362913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000044, LT: 1.370745, Top1S: 100.000000, Top1T: 70.856422 +Train:epoch: 106, loss@min: 0.948596, loss@max: 1.365576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000044, LT: 1.380799, Top1S: 100.000000, Top1T: 70.816116 +Train:epoch: 107, loss@min: 0.948311, loss@max: 1.361149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000044, LT: 1.385237, Top1S: 100.000000, Top1T: 70.881607 +Train:epoch: 108, loss@min: 0.946788, loss@max: 1.361662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000044, LT: 1.385248, Top1S: 100.000000, Top1T: 70.957176Best acc: 70.957176 +Train:epoch: 109, loss@min: 0.950897, loss@max: 1.363235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000044, LT: 1.384266, Top1S: 100.000000, Top1T: 70.992439Best acc: 70.992439 +Train:epoch: 110, loss@min: 0.944222, loss@max: 1.364556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000044, LT: 1.391413, Top1S: 100.000000, Top1T: 71.017632Best acc: 71.017632 +Train:epoch: 111, loss@min: 0.947434, loss@max: 1.360520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000044, LT: 1.397249, Top1S: 100.000000, Top1T: 70.982368 +Train:epoch: 112, loss@min: 0.944977, loss@max: 1.362937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000043, LT: 1.401795, Top1S: 100.000000, Top1T: 70.942062 +Train:epoch: 113, loss@min: 0.947923, loss@max: 1.360927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000043, LT: 1.402026, Top1S: 100.000000, Top1T: 71.052895Best acc: 71.052895 +Train:epoch: 114, loss@min: 0.947341, loss@max: 1.361594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000043, LT: 1.411084, Top1S: 100.000000, Top1T: 71.012589 +Train:epoch: 115, loss@min: 0.947342, loss@max: 1.360475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000043, LT: 1.410231, Top1S: 100.000000, Top1T: 71.098236Best acc: 71.098236 +Train:epoch: 116, loss@min: 0.944300, loss@max: 1.363646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000043, LT: 1.412011, Top1S: 100.000000, Top1T: 71.148613Best acc: 71.148613 +Train:epoch: 117, loss@min: 0.947499, loss@max: 1.360679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000043, LT: 1.419811, Top1S: 100.000000, Top1T: 71.118385 +Train:epoch: 118, loss@min: 0.948761, loss@max: 1.357386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000043, LT: 1.423130, Top1S: 100.000000, Top1T: 71.113350 +Train:epoch: 119, loss@min: 0.940285, loss@max: 1.365491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000043, LT: 1.426433, Top1S: 100.000000, Top1T: 71.118385 +Train:epoch: 120, loss@min: 0.944585, loss@max: 1.361766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000043, LT: 1.427579, Top1S: 100.000000, Top1T: 71.073044 +Train:epoch: 121, loss@min: 0.947907, loss@max: 1.361567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000043, LT: 1.437233, Top1S: 100.000000, Top1T: 71.012589 +Train:epoch: 122, loss@min: 0.958777, loss@max: 1.365527, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 122, LS: 0.000043, LT: 1.436649, Top1S: 100.000000, Top1T: 71.012589 +Train:epoch: 123, loss@min: 0.943614, loss@max: 1.362149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000043, LT: 1.441721, Top1S: 100.000000, Top1T: 71.088158 +Train:epoch: 124, loss@min: 0.944405, loss@max: 1.362950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000043, LT: 1.444463, Top1S: 100.000000, Top1T: 71.153648Best acc: 71.153648 +Train:epoch: 125, loss@min: 0.945843, loss@max: 1.358980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000042, LT: 1.447391, Top1S: 100.000000, Top1T: 71.143578 +Train:epoch: 126, loss@min: 0.950576, loss@max: 1.366475, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 0.000042, LT: 1.450571, Top1S: 100.000000, Top1T: 70.992439 +Train:epoch: 127, loss@min: 0.949991, loss@max: 1.354442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000042, LT: 1.452366, Top1S: 100.000000, Top1T: 70.916878 +Train:epoch: 128, loss@min: 0.947227, loss@max: 1.364492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000042, LT: 1.453060, Top1S: 100.000000, Top1T: 70.997482 +Train:epoch: 129, loss@min: 0.946477, loss@max: 1.358529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000042, LT: 1.457073, Top1S: 100.000000, Top1T: 70.886650 +Train:epoch: 130, loss@min: 0.945673, loss@max: 1.359656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000042, LT: 1.459362, Top1S: 100.000000, Top1T: 70.896721 +Train:epoch: 131, loss@min: 0.947256, loss@max: 1.357136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000042, LT: 1.461114, Top1S: 100.000000, Top1T: 70.886650 +Train:epoch: 132, loss@min: 0.941345, loss@max: 1.362796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000042, LT: 1.463561, Top1S: 100.000000, Top1T: 70.947098 +Train:epoch: 133, loss@min: 0.945902, loss@max: 1.360621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000042, LT: 1.465730, Top1S: 100.000000, Top1T: 70.997482 +Train:epoch: 134, loss@min: 0.945798, loss@max: 1.357571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000042, LT: 1.466196, Top1S: 100.000000, Top1T: 70.987404 +Train:epoch: 135, loss@min: 0.941145, loss@max: 1.362615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000042, LT: 1.466823, Top1S: 100.000000, Top1T: 71.022667 +Train:epoch: 136, loss@min: 0.945309, loss@max: 1.358360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000042, LT: 1.468080, Top1S: 100.000000, Top1T: 71.052895 +Train:epoch: 137, loss@min: 0.955863, loss@max: 1.363177, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 0.000042, LT: 1.470536, Top1S: 100.000000, Top1T: 70.957176 +Train:epoch: 138, loss@min: 0.942420, loss@max: 1.361849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000042, LT: 1.471506, Top1S: 100.000000, Top1T: 70.906799 +Train:epoch: 139, loss@min: 0.947554, loss@max: 1.356587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000042, LT: 1.471048, Top1S: 100.000000, Top1T: 70.947098 +Train:epoch: 140, loss@min: 0.942268, loss@max: 1.360434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000042, LT: 1.471622, Top1S: 100.000000, Top1T: 70.926949 +Train:epoch: 141, loss@min: 0.942460, loss@max: 1.361073, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 5 00:39:51 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.858584, loss@max: 1.921324, Top1S acc: 100.000000, Top1T acc: 71.484375 +Train:epoch: 2, loss@min: 1.843682, loss@max: 1.745629, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 3, loss@min: 1.454471, loss@max: 1.805164, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 4, loss@min: 1.492357, loss@max: 1.931894, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.484349, loss@max: 1.728861, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 6, loss@min: 1.322374, loss@max: 1.806457, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.278558, loss@max: 1.754835, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.346902, loss@max: 1.762319, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 9, loss@min: 1.224070, loss@max: 1.889313, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 10, loss@min: 1.170017, loss@max: 1.947178, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.220870, loss@max: 1.946854, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.284427, loss@max: 1.824586, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.249230, loss@max: 1.809797, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.287991, loss@max: 1.933712, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.208246, loss@max: 1.932971, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.191756, loss@max: 2.144677, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.296447, loss@max: 1.864573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.191565, loss@max: 2.052012, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.218624, loss@max: 1.979310, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 20, loss@min: 1.294466, loss@max: 1.933060, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 21, loss@min: 1.233104, loss@max: 2.143217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.288571, loss@max: 2.144778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.159512, loss@max: 2.039551, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.347465, loss@max: 2.084221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.245033, loss@max: 2.051477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.227983, loss@max: 1.864179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.184222, loss@max: 1.970282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.167739, loss@max: 1.991730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.280148, loss@max: 1.994854, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.220157, loss@max: 1.906457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.216115, loss@max: 2.159530, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 1.314625, loss@max: 1.961594, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.178871, loss@max: 1.912025, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.201533, loss@max: 1.873824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.168425, loss@max: 2.038558, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 1.258643, loss@max: 1.873862, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.276949, loss@max: 1.807425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.146152, loss@max: 1.896153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.125568, loss@max: 1.963778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.248796, loss@max: 1.897062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.191774, loss@max: 1.791348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.079705, loss@max: 1.928047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.131157, loss@max: 1.876971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.226748, loss@max: 1.837747, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 1.069259, loss@max: 1.878663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.059513, loss@max: 1.844748, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 1.093461, loss@max: 1.785279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.184708, loss@max: 1.737156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.125331, loss@max: 1.647634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.037519, loss@max: 1.764893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.027404, loss@max: 1.727762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.100734, loss@max: 1.683857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.067761, loss@max: 1.672590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.132692, loss@max: 1.560468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.097766, loss@max: 1.638764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.139587, loss@max: 1.611371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.999934, loss@max: 1.673637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.985515, loss@max: 1.698268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.066077, loss@max: 1.594413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.020597, loss@max: 1.567197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.011921, loss@max: 1.615647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.997583, loss@max: 1.628173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.038997, loss@max: 1.538514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.028062, loss@max: 1.631058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.019678, loss@max: 1.606626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.011401, loss@max: 1.490088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.002011, loss@max: 1.533666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.008723, loss@max: 1.534398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.984020, loss@max: 1.542544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.987223, loss@max: 1.501419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.970923, loss@max: 1.516424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.047809, loss@max: 1.452968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.976526, loss@max: 1.480502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.992009, loss@max: 1.510999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.993865, loss@max: 1.480920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.994045, loss@max: 1.467440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.007611, loss@max: 1.454808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.025841, loss@max: 1.444160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.984836, loss@max: 1.425561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.947968, loss@max: 1.440718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000016, LT: 1.252946, Top1S: 100.000000, Top1T: 70.780853Best acc: 70.780853 +Train:epoch: 81, loss@min: 0.984685, loss@max: 1.421020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000019, LT: 1.257043, Top1S: 100.000000, Top1T: 70.670021 +Train:epoch: 82, loss@min: 0.994240, loss@max: 1.435480, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.000017, LT: 1.282063, Top1S: 100.000000, Top1T: 70.367752 +Train:epoch: 83, loss@min: 0.975157, loss@max: 1.426355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000017, LT: 1.272000, Top1S: 100.000000, Top1T: 70.579346 +Train:epoch: 84, loss@min: 0.943452, loss@max: 1.431723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000016, LT: 1.264829, Top1S: 100.000000, Top1T: 70.659950 +Train:epoch: 85, loss@min: 0.975471, loss@max: 1.433020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000016, LT: 1.270536, Top1S: 100.000000, Top1T: 70.539040 +Train:epoch: 86, loss@min: 0.956395, loss@max: 1.413381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000016, LT: 1.270072, Top1S: 100.000000, Top1T: 70.700249 +Train:epoch: 87, loss@min: 0.946950, loss@max: 1.467661, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 0.000016, LT: 1.280324, Top1S: 100.000000, Top1T: 70.574303 +Train:epoch: 88, loss@min: 0.954868, loss@max: 1.410089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000017, LT: 1.276352, Top1S: 100.000000, Top1T: 70.599495 +Train:epoch: 89, loss@min: 0.967163, loss@max: 1.419468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000018, LT: 1.281624, Top1S: 100.000000, Top1T: 70.664986 +Train:epoch: 90, loss@min: 0.944622, loss@max: 1.400357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000017, LT: 1.285844, Top1S: 100.000000, Top1T: 70.680099 +Train:epoch: 91, loss@min: 0.942236, loss@max: 1.406090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000015, LT: 1.304401, Top1S: 100.000000, Top1T: 70.473549 +Train:epoch: 92, loss@min: 0.968796, loss@max: 1.388051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000015, LT: 1.300218, Top1S: 100.000000, Top1T: 70.664986 +Train:epoch: 93, loss@min: 0.960141, loss@max: 1.407319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000015, LT: 1.301928, Top1S: 100.000000, Top1T: 70.629723 +Train:epoch: 94, loss@min: 0.963450, loss@max: 1.387706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000015, LT: 1.311229, Top1S: 100.000000, Top1T: 70.745590 +Train:epoch: 95, loss@min: 0.947809, loss@max: 1.399554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000015, LT: 1.312181, Top1S: 100.000000, Top1T: 70.851379Best acc: 70.851379 +Train:epoch: 96, loss@min: 0.948670, loss@max: 1.390466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000015, LT: 1.316568, Top1S: 100.000000, Top1T: 70.443321 +Train:epoch: 97, loss@min: 0.952350, loss@max: 1.374959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000015, LT: 1.322537, Top1S: 100.000000, Top1T: 70.342567 +Train:epoch: 98, loss@min: 0.956214, loss@max: 1.376894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000015, LT: 1.327817, Top1S: 100.000000, Top1T: 70.755669 +Train:epoch: 99, loss@min: 0.956900, loss@max: 1.365989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000015, LT: 1.335662, Top1S: 100.000000, Top1T: 70.695213{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 5 07:04:40 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.371579, loss@max: 1.746786, Top1S acc: 100.000000, Top1T acc: 68.359375 +Train:epoch: 2, loss@min: 1.568730, loss@max: 1.566226, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 3, loss@min: 1.354418, loss@max: 1.484045, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 4, loss@min: 1.113160, loss@max: 1.509381, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 5, loss@min: 1.119695, loss@max: 1.458407, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 6, loss@min: 1.169059, loss@max: 1.551171, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 7, loss@min: 1.134602, loss@max: 1.486734, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 8, loss@min: 1.061610, loss@max: 1.576711, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 9, loss@min: 1.123500, loss@max: 1.460034, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 0.997212, loss@max: 1.538518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.104764, loss@max: 1.483420, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 1.065279, loss@max: 1.500613, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 13, loss@min: 1.140960, loss@max: 1.483299, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 1.055085, loss@max: 1.456470, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 1.053195, loss@max: 1.547938, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.078719, loss@max: 1.545957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.048209, loss@max: 1.530322, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 1.076279, loss@max: 1.511782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.059839, loss@max: 1.509693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.070475, loss@max: 1.490014, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.007545, loss@max: 1.639150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.061047, loss@max: 1.556883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.046952, loss@max: 1.523666, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.024431, loss@max: 1.583905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.010717, loss@max: 1.702628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.057791, loss@max: 1.658535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.060601, loss@max: 1.601664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.054556, loss@max: 1.604470, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 0.995470, loss@max: 1.627696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.039642, loss@max: 1.583682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.097785, loss@max: 1.605946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.070114, loss@max: 1.695020, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 1.108752, loss@max: 1.574586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.067106, loss@max: 1.642978, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.054269, loss@max: 1.618696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.078187, loss@max: 1.641682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.106475, loss@max: 1.638819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.037597, loss@max: 1.604670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.055108, loss@max: 1.599562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.027558, loss@max: 1.590679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.047008, loss@max: 1.614860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.045653, loss@max: 1.615350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.027881, loss@max: 1.559330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.011878, loss@max: 1.658811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.079266, loss@max: 1.621070, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 1.023161, loss@max: 1.540451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.962736, loss@max: 1.609036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.012162, loss@max: 1.548588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.008973, loss@max: 1.583662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.999864, loss@max: 1.546819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.985453, loss@max: 1.555189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.992794, loss@max: 1.583461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.039766, loss@max: 1.527802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.998278, loss@max: 1.538410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.979856, loss@max: 1.547238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.033905, loss@max: 1.450149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.985298, loss@max: 1.494201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.981438, loss@max: 1.497372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.993927, loss@max: 1.458291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.976616, loss@max: 1.469522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.009697, loss@max: 1.512716, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 0.998154, loss@max: 1.523044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.979791, loss@max: 1.523955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.013674, loss@max: 1.507185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.994008, loss@max: 1.442729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.976543, loss@max: 1.457200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.942556, loss@max: 1.472321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.968001, loss@max: 1.448725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.999698, loss@max: 1.449390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.988081, loss@max: 1.448260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.966666, loss@max: 1.441823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.977856, loss@max: 1.413034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.974629, loss@max: 1.419021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.979985, loss@max: 1.423293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.962129, loss@max: 1.418233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.940416, loss@max: 1.435310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.984694, loss@max: 1.392996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.962598, loss@max: 1.413388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.949467, loss@max: 1.417561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959551, loss@max: 1.409522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000093, LT: 1.279575, Top1S: 100.000000, Top1T: 67.687653Best acc: 67.687653 +Train:epoch: 81, loss@min: 0.957363, loss@max: 1.419991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000094, LT: 1.282064, Top1S: 100.000000, Top1T: 67.828712Best acc: 67.828712 +Train:epoch: 82, loss@min: 0.964521, loss@max: 1.405196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000092, LT: 1.277123, Top1S: 100.000000, Top1T: 67.672539 +Train:epoch: 83, loss@min: 0.954413, loss@max: 1.393981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000093, LT: 1.277841, Top1S: 100.000000, Top1T: 67.924431Best acc: 67.924431 +Train:epoch: 84, loss@min: 0.983027, loss@max: 1.385975, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 0.000092, LT: 1.279961, Top1S: 100.000000, Top1T: 67.838791 +Train:epoch: 85, loss@min: 0.971876, loss@max: 1.378352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000091, LT: 1.285356, Top1S: 100.000000, Top1T: 67.969772Best acc: 67.969772 +Train:epoch: 86, loss@min: 0.965263, loss@max: 1.383316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000089, LT: 1.294183, Top1S: 100.000000, Top1T: 67.652390 +Train:epoch: 87, loss@min: 0.945023, loss@max: 1.405135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000089, LT: 1.290834, Top1S: 100.000000, Top1T: 67.858940 +Train:epoch: 88, loss@min: 0.963246, loss@max: 1.383605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000088, LT: 1.293488, Top1S: 100.000000, Top1T: 67.662468 +Train:epoch: 89, loss@min: 0.952195, loss@max: 1.396534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000090, LT: 1.293543, Top1S: 100.000000, Top1T: 67.813599 +Train:epoch: 90, loss@min: 0.957836, loss@max: 1.384954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000088, LT: 1.297862, Top1S: 100.000000, Top1T: 67.843826 +Train:epoch: 91, loss@min: 0.942382, loss@max: 1.400897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000088, LT: 1.301846, Top1S: 100.000000, Top1T: 67.748108 +Train:epoch: 92, loss@min: 0.948175, loss@max: 1.390149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000088, LT: 1.306183, Top1S: 100.000000, Top1T: 67.858940 +Train:epoch: 93, loss@min: 0.950255, loss@max: 1.392010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000087, LT: 1.312913, Top1S: 100.000000, Top1T: 67.647354 +Train:epoch: 94, loss@min: 0.948190, loss@max: 1.384927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000087, LT: 1.308902, Top1S: 100.000000, Top1T: 67.904282 +Train:epoch: 95, loss@min: 0.953088, loss@max: 1.379132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000086, LT: 1.311677, Top1S: 100.000000, Top1T: 67.853905 +Train:epoch: 96, loss@min: 0.957366, loss@max: 1.368624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000086, LT: 1.314854, Top1S: 100.000000, Top1T: 67.818634 +Train:epoch: 97, loss@min: 0.945481, loss@max: 1.384899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000085, LT: 1.321295, Top1S: 100.000000, Top1T: 67.889168 +Train:epoch: 98, loss@min: 0.953005, loss@max: 1.369926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000085, LT: 1.325266, Top1S: 100.000000, Top1T: 67.858940 +Train:epoch: 99, loss@min: 0.949396, loss@max: 1.375229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000085, LT: 1.328749, Top1S: 100.000000, Top1T: 68.000000Best acc: 68.000000 +Train:epoch: 100, loss@min: 0.959406, loss@max: 1.367078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000085, LT: 1.330326, Top1S: 100.000000, Top1T: 68.040298Best acc: 68.040298 +Train:epoch: 101, loss@min: 0.948676, loss@max: 1.375428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000084, LT: 1.332371, Top1S: 100.000000, Top1T: 68.065491Best acc: 68.065491 +Train:epoch: 102, loss@min: 0.953099, loss@max: 1.369748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000084, LT: 1.335012, Top1S: 100.000000, Top1T: 68.045334 +Train:epoch: 103, loss@min: 0.939473, loss@max: 1.380252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000084, LT: 1.335947, Top1S: 100.000000, Top1T: 68.010071 +Train:epoch: 104, loss@min: 0.955848, loss@max: 1.363988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000083, LT: 1.342629, Top1S: 100.000000, Top1T: 68.040298 +Train:epoch: 105, loss@min: 0.944279, loss@max: 1.373516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000083, LT: 1.344721, Top1S: 100.000000, Top1T: 67.979843 +Train:epoch: 106, loss@min: 0.948046, loss@max: 1.368898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000083, LT: 1.348916, Top1S: 100.000000, Top1T: 68.045334 +Train:epoch: 107, loss@min: 0.945981, loss@max: 1.369422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000083, LT: 1.352348, Top1S: 100.000000, Top1T: 67.979843 +Train:epoch: 108, loss@min: 0.946024, loss@max: 1.371706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000083, LT: 1.356846, Top1S: 100.000000, Top1T: 68.000000 +Train:epoch: 109, loss@min: 0.937315, loss@max: 1.376657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000083, LT: 1.362018, Top1S: 100.000000, Top1T: 67.949623 +Train:epoch: 110, loss@min: 0.948168, loss@max: 1.367080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000082, LT: 1.365767, Top1S: 100.000000, Top1T: 67.974808 +Train:epoch: 111, loss@min: 0.955519, loss@max: 1.357708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000082, LT: 1.367186, Top1S: 100.000000, Top1T: 68.075562Best acc: 68.075562 +Train:epoch: 112, loss@min: 0.946634, loss@max: 1.363397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000082, LT: 1.370321, Top1S: 100.000000, Top1T: 68.045334 +Train:epoch: 113, loss@min: 0.943805, loss@max: 1.368665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000082, LT: 1.372058, Top1S: 100.000000, Top1T: 68.040298 +Train:epoch: 114, loss@min: 0.949513, loss@max: 1.362314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000082, LT: 1.373466, Top1S: 100.000000, Top1T: 68.065491 +Train:epoch: 115, loss@min: 0.951332, loss@max: 1.364742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000082, LT: 1.374147, Top1S: 100.000000, Top1T: 68.136017Best acc: 68.136017 +Train:epoch: 116, loss@min: 0.941738, loss@max: 1.370057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000082, LT: 1.375836, Top1S: 100.000000, Top1T: 68.050377 +Train:epoch: 117, loss@min: 0.949229, loss@max: 1.361220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000081, LT: 1.378057, Top1S: 100.000000, Top1T: 68.010071 +Train:epoch: 118, loss@min: 0.936745, loss@max: 1.375702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000081, LT: 1.380196, Top1S: 100.000000, Top1T: 68.005035 +Train:epoch: 119, loss@min: 0.949196, loss@max: 1.361615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000081, LT: 1.380980, Top1S: 100.000000, Top1T: 68.035263 +Train:epoch: 120, loss@min: 0.942077, loss@max: 1.367934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000081, LT: 1.382834, Top1S: 100.000000, Top1T: 68.060448 +Train:epoch: 121, loss@min: 0.943308, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000081, LT: 1.385322, Top1S: 100.000000, Top1T: 68.055412 +Train:epoch: 122, loss@min: 0.944860, loss@max: 1.365628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000081, LT: 1.388109, Top1S: 100.000000, Top1T: 68.035263 +Train:epoch: 123, loss@min: 0.947766, loss@max: 1.362573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000081, LT: 1.389892, Top1S: 100.000000, Top1T: 68.055412 +Train:epoch: 124, loss@min: 0.946054, loss@max: 1.363641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000081, LT: 1.390974, Top1S: 100.000000, Top1T: 68.075562 +Train:epoch: 125, loss@min: 0.944985, loss@max: 1.364014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000081, LT: 1.393125, Top1S: 100.000000, Top1T: 68.020149 +Train:epoch: 126, loss@min: 0.942826, loss@max: 1.364366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000081, LT: 1.394494, Top1S: 100.000000, Top1T: 68.045334 +Train:epoch: 127, loss@min: 0.948481, loss@max: 1.361992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000080, LT: 1.395440, Top1S: 100.000000, Top1T: 68.105789 +Train:epoch: 128, loss@min: 0.948723, loss@max: 1.358979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000080, LT: 1.396561, Top1S: 100.000000, Top1T: 68.085640 +Train:epoch: 129, loss@min: 0.945336, loss@max: 1.365740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000081, LT: 1.398131, Top1S: 100.000000, Top1T: 68.110832 +Train:epoch: 130, loss@min: 0.942048, loss@max: 1.366898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000081, LT: 1.399190, Top1S: 100.000000, Top1T: 68.110832 +Train:epoch: 131, loss@min: 0.946714, loss@max: 1.362330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000080, LT: 1.400315, Top1S: 100.000000, Top1T: 68.105789 +Train:epoch: 132, loss@min: 0.946600, loss@max: 1.363200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000080, LT: 1.401222, Top1S: 100.000000, Top1T: 68.130981 +Train:epoch: 133, loss@min: 0.939744, loss@max: 1.368306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000080, LT: 1.401985, Top1S: 100.000000, Top1T: 68.146095Best acc: 68.146095 +Train:epoch: 134, loss@min: 0.949527, loss@max: 1.358821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000080, LT: 1.402666, Top1S: 100.000000, Top1T: 68.136017 +Train:epoch: 135, loss@min: 0.945994, loss@max: 1.360921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000080, LT: 1.403399, Top1S: 100.000000, Top1T: 68.130981 +Train:epoch: 136, loss@min: 0.948455, loss@max: 1.361728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000080, LT: 1.403769, Top1S: 100.000000, Top1T: 68.100754 +Train:epoch: 137, loss@min: 0.948898, loss@max: 1.358922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000080, LT: 1.404065, Top1S: 100.000000, Top1T: 68.100754 +Train:epoch: 138, loss@min: 0.938982, loss@max: 1.368187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000080, LT: 1.404522, Top1S: 100.000000, Top1T: 68.100754 +Train:epoch: 139, loss@min: 0.947182, loss@max: 1.360496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000080, LT: 1.404969, Top1S: 100.000000, Top1T: 68.075562 +Train:epoch: 140, loss@min: 0.947799, loss@max: 1.359243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000080, LT: 1.405209, Top1S: 100.000000, Top1T: 68.080605 +Train:epoch: 141, loss@min: 0.945851, loss@max: 1.361967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000080, LT: 1.405482, Top1S: 100.000000, Top1T: 68.095718 +Train:epoch: 142, loss@min: 0.948120, loss@max: 1.358785, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 5 21:27:01 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.083559, loss@max: 2.057126, Top1S acc: 100.000000, Top1T acc: 67.187500 +Train:epoch: 2, loss@min: 2.261189, loss@max: 1.475255, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 3, loss@min: 1.787001, loss@max: 1.348593, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 4, loss@min: 1.281260, loss@max: 1.326329, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 5, loss@min: 1.070572, loss@max: 1.326809, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 6, loss@min: 1.025038, loss@max: 1.264650, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 7, loss@min: 1.101483, loss@max: 1.170155, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 8, loss@min: 0.965160, loss@max: 1.235639, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 0.928126, loss@max: 1.224288, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 0.952602, loss@max: 1.242311, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 0.926935, loss@max: 1.259034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.925161, loss@max: 1.287123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.953513, loss@max: 1.264845, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 0.951288, loss@max: 1.312983, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.932600, loss@max: 1.346041, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.975732, loss@max: 1.300237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.899603, loss@max: 1.402167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.991211, loss@max: 1.299091, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.940067, loss@max: 1.355031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.927864, loss@max: 1.351111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.995002, loss@max: 1.312844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.913409, loss@max: 1.340410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.932529, loss@max: 1.358530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.929144, loss@max: 1.348600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.951475, loss@max: 1.339857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.955327, loss@max: 1.336665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.947463, loss@max: 1.326484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.943993, loss@max: 1.364829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.961055, loss@max: 1.314197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.928660, loss@max: 1.354712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.929150, loss@max: 1.369871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.936176, loss@max: 1.359590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.974868, loss@max: 1.326532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947634, loss@max: 1.338262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.924808, loss@max: 1.381361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.954031, loss@max: 1.334499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935821, loss@max: 1.369796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.943099, loss@max: 1.355900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949375, loss@max: 1.351108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933782, loss@max: 1.373821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.964586, loss@max: 1.336323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933688, loss@max: 1.383610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.942544, loss@max: 1.373044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.957991, loss@max: 1.348313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.948455, loss@max: 1.359573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.940741, loss@max: 1.365327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.966647, loss@max: 1.345203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.950119, loss@max: 1.358607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944363, loss@max: 1.370577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958216, loss@max: 1.354317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948254, loss@max: 1.355507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949509, loss@max: 1.364450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.951191, loss@max: 1.361116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.937661, loss@max: 1.367852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943710, loss@max: 1.367660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954216, loss@max: 1.355084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.953577, loss@max: 1.364935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.949316, loss@max: 1.365334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953451, loss@max: 1.358471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941882, loss@max: 1.368223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.939109, loss@max: 1.377324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954158, loss@max: 1.364829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955952, loss@max: 1.357227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.935800, loss@max: 1.374500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949229, loss@max: 1.364413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952773, loss@max: 1.356968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.942048, loss@max: 1.371565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943442, loss@max: 1.369851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949839, loss@max: 1.363547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945247, loss@max: 1.366834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943909, loss@max: 1.364900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.946589, loss@max: 1.363232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946614, loss@max: 1.364410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943977, loss@max: 1.367486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.952232, loss@max: 1.361848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943022, loss@max: 1.369074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.949735, loss@max: 1.360714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952572, loss@max: 1.355800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948186, loss@max: 1.362317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.941587, loss@max: 1.370026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000625, LT: 1.775815, Top1S: 100.000000, Top1T: 66.371155Best acc: 66.371155 +Train:epoch: 81, loss@min: 0.940483, loss@max: 1.369138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000619, LT: 1.777553, Top1S: 100.000000, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 82, loss@min: 0.949752, loss@max: 1.359750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000616, LT: 1.780365, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 83, loss@min: 0.949125, loss@max: 1.359702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000614, LT: 1.785958, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 84, loss@min: 0.944947, loss@max: 1.365409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000609, LT: 1.788172, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 85, loss@min: 0.954749, loss@max: 1.353903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000607, LT: 1.790614, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 86, loss@min: 0.946331, loss@max: 1.362966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000606, LT: 1.795141, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 87, loss@min: 0.939355, loss@max: 1.370458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000601, LT: 1.797273, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 88, loss@min: 0.951421, loss@max: 1.356715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000597, LT: 1.798830, Top1S: 100.000000, Top1T: 66.725769Best acc: 66.725769 +Train:epoch: 89, loss@min: 0.948588, loss@max: 1.358010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000596, LT: 1.801299, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 90, loss@min: 0.948218, loss@max: 1.358620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000593, LT: 1.804664, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 91, loss@min: 0.951109, loss@max: 1.355366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000590, LT: 1.807970, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 92, loss@min: 0.950026, loss@max: 1.357496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000589, LT: 1.811803, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 93, loss@min: 0.941361, loss@max: 1.365991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000586, LT: 1.815430, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 94, loss@min: 0.950860, loss@max: 1.355566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000582, LT: 1.818830, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 95, loss@min: 0.950825, loss@max: 1.357134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000581, LT: 1.822610, Top1S: 100.000000, Top1T: 67.021278Best acc: 67.021278 +Train:epoch: 96, loss@min: 0.942482, loss@max: 1.364241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000580, LT: 1.825887, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 97, loss@min: 0.948438, loss@max: 1.358298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000577, LT: 1.828823, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 98, loss@min: 0.950126, loss@max: 1.357068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000575, LT: 1.832779, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 99, loss@min: 0.946274, loss@max: 1.359972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000574, LT: 1.836180, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 100, loss@min: 0.942704, loss@max: 1.363678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000571, LT: 1.837828, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 101, loss@min: 0.950412, loss@max: 1.355862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000569, LT: 1.839585, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 102, loss@min: 0.948710, loss@max: 1.356876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000569, LT: 1.842999, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 103, loss@min: 0.946501, loss@max: 1.358484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000567, LT: 1.844409, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 104, loss@min: 0.944613, loss@max: 1.360405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000565, LT: 1.845733, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 105, loss@min: 0.947012, loss@max: 1.358321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000564, LT: 1.847402, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 106, loss@min: 0.942701, loss@max: 1.362909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000563, LT: 1.848543, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 107, loss@min: 0.945261, loss@max: 1.360161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000561, LT: 1.849605, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 108, loss@min: 0.950361, loss@max: 1.354560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000560, LT: 1.851129, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 109, loss@min: 0.946709, loss@max: 1.359488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000559, LT: 1.853059, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 110, loss@min: 0.945079, loss@max: 1.360013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000558, LT: 1.854576, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 111, loss@min: 0.949588, loss@max: 1.355031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000556, LT: 1.855295, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 112, loss@min: 0.948168, loss@max: 1.356337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000556, LT: 1.856496, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 113, loss@min: 0.944795, loss@max: 1.361798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000555, LT: 1.858071, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 114, loss@min: 0.947276, loss@max: 1.357651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000553, LT: 1.859624, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 115, loss@min: 0.949145, loss@max: 1.356480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000552, LT: 1.860986, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 116, loss@min: 0.946159, loss@max: 1.358763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000552, LT: 1.862270, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 117, loss@min: 0.950007, loss@max: 1.355589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000551, LT: 1.863909, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 118, loss@min: 0.946648, loss@max: 1.358793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000551, LT: 1.865242, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 119, loss@min: 0.942716, loss@max: 1.361234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000550, LT: 1.866441, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 120, loss@min: 0.944486, loss@max: 1.361134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000549, LT: 1.867172, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 121, loss@min: 0.949188, loss@max: 1.354414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000548, LT: 1.867796, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 122, loss@min: 0.947362, loss@max: 1.357401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000548, LT: 1.868671, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 123, loss@min: 0.948182, loss@max: 1.356344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000547, LT: 1.869505, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 124, loss@min: 0.945980, loss@max: 1.359385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000547, LT: 1.870028, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 125, loss@min: 0.945479, loss@max: 1.358754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000546, LT: 1.870507, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 126, loss@min: 0.947157, loss@max: 1.358054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000546, LT: 1.871103, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 127, loss@min: 0.945836, loss@max: 1.358648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000546, LT: 1.871717, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.946286, loss@max: 1.357926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000545, LT: 1.872356, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.946480, loss@max: 1.357202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000545, LT: 1.872854, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.943154, loss@max: 1.361212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000544, LT: 1.873285, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 131, loss@min: 0.946227, loss@max: 1.360123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000544, LT: 1.873591, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 132, loss@min: 0.949037, loss@max: 1.356704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000543, LT: 1.873764, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 133, loss@min: 0.947644, loss@max: 1.357449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000543, LT: 1.873909, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 134, loss@min: 0.947529, loss@max: 1.356222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000543, LT: 1.874117, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 135, loss@min: 0.945637, loss@max: 1.358425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000543, LT: 1.874435, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 136, loss@min: 0.948452, loss@max: 1.356600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000543, LT: 1.874677, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 137, loss@min: 0.947584, loss@max: 1.357632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000543, LT: 1.874903, Top1S: 100.000000, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 138, loss@min: 0.944603, loss@max: 1.358874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000543, LT: 1.875083, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.947045, loss@max: 1.356612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000543, LT: 1.875231, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.942449, loss@max: 1.361464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000543, LT: 1.875339, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 141, loss@min: 0.945383, loss@max: 1.358933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000543, LT: 1.875427, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 142, loss@min: 0.946777, loss@max: 1.362512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000542, LT: 1.875452, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 143, loss@min: 0.944563, loss@max: 1.360172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000542, LT: 1.875408, Top1S: 100.000000, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 144, loss@min: 0.947105, loss@max: 1.356944, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000542, LT: 1.875399, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 145, loss@min: 0.943953, loss@max: 1.359879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000542, LT: 1.875407, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 146, loss@min: 0.945421, loss@max: 1.358488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000542, LT: 1.875422, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 147, loss@min: 0.946199, loss@max: 1.357596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000542, LT: 1.875434, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 148, loss@min: 0.945305, loss@max: 1.358438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000542, LT: 1.875440, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 149, loss@min: 0.944914, loss@max: 1.359218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000542, LT: 1.875441, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 150, loss@min: 0.946782, loss@max: 1.357092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000542, LT: 1.875441, Top1S: 100.000000, Top1T: 67.198578 +------------------------------------------- +Sat Aug 5 22:17:35 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 5 22:33:30 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807691, loss@max: 2.132194, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238818, loss@max: 1.612196, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818652, loss@max: 1.355074, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431980, loss@max: 1.457589, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271060, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196054, loss@max: 1.305310, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298018, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133900, loss@max: 1.294019, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008143, loss@max: 1.292641, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019452, loss@max: 1.253727, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006049, loss@max: 1.259361, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950056, loss@max: 1.294760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972026, loss@max: 1.280225, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963697, loss@max: 1.293103, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931026, loss@max: 1.307256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971428, loss@max: 1.285437, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948209, loss@max: 1.315792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943461, loss@max: 1.329128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942532, loss@max: 1.328718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968127, loss@max: 1.319436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932681, loss@max: 1.392957, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014438, loss@max: 1.328943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964467, loss@max: 1.403751, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977679, loss@max: 1.374807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961537, loss@max: 1.393629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968737, loss@max: 1.379531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938270, loss@max: 1.409568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982228, loss@max: 1.385073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959429, loss@max: 1.404593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000606, loss@max: 1.388909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962290, loss@max: 1.435757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.952929, loss@max: 1.473035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.005466, loss@max: 1.458910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.966255, loss@max: 1.451671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984067, loss@max: 1.494192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950195, loss@max: 1.515182, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.974928, loss@max: 1.461803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.986072, loss@max: 1.435190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.922871, loss@max: 1.486684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.015627, loss@max: 1.399651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981830, loss@max: 1.427470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.944923, loss@max: 1.452027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.972973, loss@max: 1.431427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935588, loss@max: 1.476533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992847, loss@max: 1.394705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989624, loss@max: 1.393563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.938131, loss@max: 1.459732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987791, loss@max: 1.401156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961501, loss@max: 1.432806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963705, loss@max: 1.425531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.972466, loss@max: 1.417853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.972930, loss@max: 1.415842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961750, loss@max: 1.423742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.994215, loss@max: 1.399462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943653, loss@max: 1.428435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.965108, loss@max: 1.399679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957867, loss@max: 1.417005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.958966, loss@max: 1.410566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.969410, loss@max: 1.394335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.979268, loss@max: 1.394570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959682, loss@max: 1.413091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.963077, loss@max: 1.403750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.978769, loss@max: 1.390502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.956524, loss@max: 1.404383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.967465, loss@max: 1.395164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.949881, loss@max: 1.416361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.948874, loss@max: 1.400645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.974224, loss@max: 1.374828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956544, loss@max: 1.402033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.940810, loss@max: 1.409427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.982056, loss@max: 1.367673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.963306, loss@max: 1.381744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.941953, loss@max: 1.400693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.969189, loss@max: 1.376205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.957307, loss@max: 1.380802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943768, loss@max: 1.390973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963696, loss@max: 1.367507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.961122, loss@max: 1.378974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946282, loss@max: 1.387715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.952541, loss@max: 1.383156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000607, LT: 1.698278, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 81, loss@min: 0.963634, loss@max: 1.366165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000606, LT: 1.701856, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 82, loss@min: 0.957195, loss@max: 1.381855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000603, LT: 1.705470, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 83, loss@min: 0.951433, loss@max: 1.378520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000598, LT: 1.709214, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 84, loss@min: 0.961254, loss@max: 1.375420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000596, LT: 1.709711, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 85, loss@min: 0.954386, loss@max: 1.373817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000595, LT: 1.711687, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 86, loss@min: 0.945446, loss@max: 1.381816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000590, LT: 1.714314, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 87, loss@min: 0.947669, loss@max: 1.381351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000588, LT: 1.715090, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 88, loss@min: 0.957218, loss@max: 1.369899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000588, LT: 1.716807, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 89, loss@min: 0.951745, loss@max: 1.374845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000586, LT: 1.717880, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 90, loss@min: 0.942164, loss@max: 1.383057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000582, LT: 1.717390, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 91, loss@min: 0.955698, loss@max: 1.365020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000580, LT: 1.719731, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 92, loss@min: 0.951702, loss@max: 1.367034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000580, LT: 1.723055, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 93, loss@min: 0.950217, loss@max: 1.374767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000576, LT: 1.725379, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 94, loss@min: 0.952123, loss@max: 1.374292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000573, LT: 1.727329, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 95, loss@min: 0.947272, loss@max: 1.374057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000572, LT: 1.730080, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 96, loss@min: 0.957323, loss@max: 1.366741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000570, LT: 1.733788, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 97, loss@min: 0.956474, loss@max: 1.369102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000567, LT: 1.735774, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 98, loss@min: 0.951908, loss@max: 1.372604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000565, LT: 1.738426, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 99, loss@min: 0.951738, loss@max: 1.371351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000564, LT: 1.740250, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 100, loss@min: 0.951925, loss@max: 1.369626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000563, LT: 1.741072, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 101, loss@min: 0.951031, loss@max: 1.370613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000561, LT: 1.742251, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 102, loss@min: 0.947222, loss@max: 1.371479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000560, LT: 1.742965, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 103, loss@min: 0.949350, loss@max: 1.367838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000559, LT: 1.742703, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 104, loss@min: 0.951684, loss@max: 1.368133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000558, LT: 1.743394, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 105, loss@min: 0.954398, loss@max: 1.367256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000556, LT: 1.745161, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 106, loss@min: 0.956694, loss@max: 1.363624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000555, LT: 1.745688, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 107, loss@min: 0.940881, loss@max: 1.379584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000554, LT: 1.745225, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 108, loss@min: 0.945059, loss@max: 1.374795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000552, LT: 1.745493, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 109, loss@min: 0.949278, loss@max: 1.367226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000551, LT: 1.745900, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 110, loss@min: 0.958552, loss@max: 1.357432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000551, LT: 1.746580, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 111, loss@min: 0.947989, loss@max: 1.368385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000550, LT: 1.747225, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 112, loss@min: 0.948846, loss@max: 1.365716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000549, LT: 1.748272, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 113, loss@min: 0.944194, loss@max: 1.374656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000548, LT: 1.749493, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 114, loss@min: 0.951827, loss@max: 1.366674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000547, LT: 1.750439, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 115, loss@min: 0.952845, loss@max: 1.365312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000546, LT: 1.750962, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 116, loss@min: 0.955740, loss@max: 1.362373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000546, LT: 1.751701, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 117, loss@min: 0.951398, loss@max: 1.369128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000545, LT: 1.752919, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 118, loss@min: 0.953676, loss@max: 1.365834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000545, LT: 1.754077, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 119, loss@min: 0.941357, loss@max: 1.371725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000544, LT: 1.754768, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 120, loss@min: 0.951051, loss@max: 1.368453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000544, LT: 1.755254, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 121, loss@min: 0.947054, loss@max: 1.365325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000543, LT: 1.756174, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 122, loss@min: 0.947259, loss@max: 1.366796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000542, LT: 1.756685, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 123, loss@min: 0.950841, loss@max: 1.368154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000541, LT: 1.757116, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 124, loss@min: 0.950222, loss@max: 1.366696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000541, LT: 1.757198, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 125, loss@min: 0.947300, loss@max: 1.367810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000541, LT: 1.757282, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 126, loss@min: 0.944908, loss@max: 1.370684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000541, LT: 1.757664, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 127, loss@min: 0.952163, loss@max: 1.364481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000540, LT: 1.758142, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 128, loss@min: 0.949861, loss@max: 1.364848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000540, LT: 1.758745, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 129, loss@min: 0.953141, loss@max: 1.361864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000540, LT: 1.759249, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 130, loss@min: 0.950298, loss@max: 1.363092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000539, LT: 1.759641, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 131, loss@min: 0.945740, loss@max: 1.371614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000539, LT: 1.759916, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 132, loss@min: 0.947351, loss@max: 1.371098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000539, LT: 1.760059, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 133, loss@min: 0.949695, loss@max: 1.371451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000538, LT: 1.760192, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 134, loss@min: 0.949729, loss@max: 1.364484, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Sat Aug 5 23:15:25 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.807690, loss@max: 2.132195, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.238816, loss@max: 1.612197, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.818653, loss@max: 1.355072, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.431978, loss@max: 1.457589, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.271059, loss@max: 1.410251, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.196052, loss@max: 1.305311, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.124145, loss@max: 1.298017, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.133901, loss@max: 1.294018, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.008143, loss@max: 1.292642, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.019453, loss@max: 1.253726, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.006048, loss@max: 1.259361, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.950055, loss@max: 1.294760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.972028, loss@max: 1.280222, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.963695, loss@max: 1.293110, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.931030, loss@max: 1.307257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.971434, loss@max: 1.285431, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.948193, loss@max: 1.315802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.943466, loss@max: 1.329109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942532, loss@max: 1.328727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.968131, loss@max: 1.319439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932676, loss@max: 1.392961, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.014458, loss@max: 1.328951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964474, loss@max: 1.403740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.977668, loss@max: 1.374834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961543, loss@max: 1.393626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968752, loss@max: 1.379517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938255, loss@max: 1.409586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982247, loss@max: 1.385039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.959366, loss@max: 1.404649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.000643, loss@max: 1.388893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962220, loss@max: 1.435753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.952937, loss@max: 1.472977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.005491, loss@max: 1.458949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.966266, loss@max: 1.451641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984046, loss@max: 1.494132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950127, loss@max: 1.515101, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.974992, loss@max: 1.461757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.986003, loss@max: 1.435325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.922787, loss@max: 1.486707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.015853, loss@max: 1.399362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981658, loss@max: 1.427888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.945054, loss@max: 1.452034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.973009, loss@max: 1.431395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935525, loss@max: 1.476740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.992954, loss@max: 1.394657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.989691, loss@max: 1.393432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.937929, loss@max: 1.459909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987943, loss@max: 1.401063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.961547, loss@max: 1.432665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963438, loss@max: 1.425790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000764, LT: 1.632481, Top1S: 100.000000, Top1T: 66.903076Best acc: 66.903076 +Train:epoch: 51, loss@min: 0.972765, loss@max: 1.417540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000751, LT: 1.641791, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 52, loss@min: 0.972821, loss@max: 1.416069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000747, LT: 1.639553, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 53, loss@min: 0.961378, loss@max: 1.423872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000745, LT: 1.645083, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 54, loss@min: 0.994004, loss@max: 1.399209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000732, LT: 1.642213, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 55, loss@min: 0.943361, loss@max: 1.429063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000724, LT: 1.640837, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 56, loss@min: 0.965338, loss@max: 1.398906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000716, LT: 1.645801, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 57, loss@min: 0.957883, loss@max: 1.416734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000713, LT: 1.646834, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 58, loss@min: 0.958296, loss@max: 1.410776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000704, LT: 1.647383, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 59, loss@min: 0.970380, loss@max: 1.393246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000698, LT: 1.647309, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 60, loss@min: 0.978520, loss@max: 1.394680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000696, LT: 1.644257, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 61, loss@min: 0.945747, loss@max: 1.426409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000686, LT: 1.647144, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 62, loss@min: 0.957601, loss@max: 1.404561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000682, LT: 1.652590, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 63, loss@min: 0.962171, loss@max: 1.398002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000676, LT: 1.655673, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 64, loss@min: 0.966275, loss@max: 1.404014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000669, LT: 1.658569, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 65, loss@min: 0.956943, loss@max: 1.402620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000669, LT: 1.659278, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 66, loss@min: 0.951400, loss@max: 1.395987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000659, LT: 1.660330, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 67, loss@min: 0.971897, loss@max: 1.380697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000655, LT: 1.661691, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 68, loss@min: 0.945781, loss@max: 1.409933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000653, LT: 1.664280, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 69, loss@min: 0.953852, loss@max: 1.389200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000649, LT: 1.666658, Top1S: 100.000000, Top1T: 67.494087Best acc: 67.494087 +Train:epoch: 70, loss@min: 0.980518, loss@max: 1.368584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000647, LT: 1.670285, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 71, loss@min: 0.957379, loss@max: 1.386063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000643, LT: 1.670820, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 72, loss@min: 0.940731, loss@max: 1.410415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000638, LT: 1.671478, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 73, loss@min: 0.955420, loss@max: 1.382190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000634, LT: 1.677317, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 74, loss@min: 0.949759, loss@max: 1.389470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000631, LT: 1.683973, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.947775, loss@max: 1.382272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000627, LT: 1.685083, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 76, loss@min: 0.956795, loss@max: 1.376984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000624, LT: 1.686690, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 77, loss@min: 0.952041, loss@max: 1.378763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000619, LT: 1.694287, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 78, loss@min: 0.950930, loss@max: 1.381467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000616, LT: 1.697486, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 79, loss@min: 0.950630, loss@max: 1.378778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000614, LT: 1.700857, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 80, loss@min: 0.950563, loss@max: 1.380123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000610, LT: 1.706381, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 81, loss@min: 0.959581, loss@max: 1.373080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000606, LT: 1.706907, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 82, loss@min: 0.952718, loss@max: 1.379067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000603, LT: 1.706030, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 83, loss@min: 0.962168, loss@max: 1.366650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000601, LT: 1.707601, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 84, loss@min: 0.936546, loss@max: 1.393938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000598, LT: 1.710330, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 85, loss@min: 0.941234, loss@max: 1.388378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000594, LT: 1.713491, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 86, loss@min: 0.954345, loss@max: 1.376016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000592, LT: 1.715274, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 87, loss@min: 0.956111, loss@max: 1.366887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000592, LT: 1.716979, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 88, loss@min: 0.947348, loss@max: 1.378198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000589, LT: 1.717729, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 89, loss@min: 0.956206, loss@max: 1.370854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000585, LT: 1.719676, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 90, loss@min: 0.941867, loss@max: 1.379745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000583, LT: 1.722499, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 91, loss@min: 0.946360, loss@max: 1.379767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000582, LT: 1.723429, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 92, loss@min: 0.949784, loss@max: 1.375113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000578, LT: 1.724313, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 93, loss@min: 0.959537, loss@max: 1.364759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000576, LT: 1.726249, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 94, loss@min: 0.954749, loss@max: 1.379105, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.000575, LT: 1.727975, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 95, loss@min: 0.947320, loss@max: 1.374600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000573, LT: 1.729039, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 96, loss@min: 0.958666, loss@max: 1.364521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000571, LT: 1.729831, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 97, loss@min: 0.943255, loss@max: 1.382885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000569, LT: 1.731986, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 98, loss@min: 0.949155, loss@max: 1.371349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000568, LT: 1.733701, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 99, loss@min: 0.945058, loss@max: 1.376217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000567, LT: 1.734515, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 100, loss@min: 0.954675, loss@max: 1.364031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000565, LT: 1.735759, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 101, loss@min: 0.952384, loss@max: 1.369679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000563, LT: 1.737796, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 102, loss@min: 0.951507, loss@max: 1.367873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000561, LT: 1.739838, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 103, loss@min: 0.956897, loss@max: 1.359864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000560, LT: 1.741080, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 104, loss@min: 0.949935, loss@max: 1.368173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000558, LT: 1.741702, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 105, loss@min: 0.954450, loss@max: 1.365389, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000556, LT: 1.742287, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 106, loss@min: 0.953765, loss@max: 1.366016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000556, LT: 1.743458, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 107, loss@min: 0.957596, loss@max: 1.360157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000555, LT: 1.745108, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 108, loss@min: 0.942719, loss@max: 1.375681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000555, LT: 1.746853, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 109, loss@min: 0.942593, loss@max: 1.376377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000553, LT: 1.748385, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 110, loss@min: 0.950853, loss@max: 1.367445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000552, LT: 1.749433, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 111, loss@min: 0.950187, loss@max: 1.369135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000551, LT: 1.751255, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 112, loss@min: 0.952790, loss@max: 1.367499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000550, LT: 1.753356, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 113, loss@min: 0.947185, loss@max: 1.368804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000549, LT: 1.754370, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 114, loss@min: 0.947650, loss@max: 1.371013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000548, LT: 1.754708, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 115, loss@min: 0.945601, loss@max: 1.371251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000548, LT: 1.755238, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 116, loss@min: 0.947824, loss@max: 1.369764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000547, LT: 1.755916, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 117, loss@min: 0.952595, loss@max: 1.364331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000547, LT: 1.756293, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 118, loss@min: 0.953431, loss@max: 1.365247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000546, LT: 1.756668, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 119, loss@min: 0.952949, loss@max: 1.363444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000545, LT: 1.757148, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 120, loss@min: 0.952935, loss@max: 1.365837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000545, LT: 1.757894, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 121, loss@min: 0.949627, loss@max: 1.366228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000544, LT: 1.758603, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 122, loss@min: 0.951262, loss@max: 1.362132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000543, LT: 1.759023, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 123, loss@min: 0.946955, loss@max: 1.370382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000543, LT: 1.759315, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 124, loss@min: 0.948553, loss@max: 1.367714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000542, LT: 1.759334, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 125, loss@min: 0.955196, loss@max: 1.362962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000542, LT: 1.759395, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 126, loss@min: 0.950944, loss@max: 1.366394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000542, LT: 1.759901, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 127, loss@min: 0.949398, loss@max: 1.370547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000541, LT: 1.760453, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.948004, loss@max: 1.365374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000541, LT: 1.760824, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 129, loss@min: 0.948637, loss@max: 1.367011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000541, LT: 1.761086, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 130, loss@min: 0.948632, loss@max: 1.371056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000541, LT: 1.761095, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 131, loss@min: 0.950262, loss@max: 1.362296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000540, LT: 1.761099, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 132, loss@min: 0.950886, loss@max: 1.364558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000540, LT: 1.761360, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 133, loss@min: 0.949408, loss@max: 1.366378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000540, LT: 1.761719, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 134, loss@min: 0.952671, loss@max: 1.362113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000540, LT: 1.762090, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 135, loss@min: 0.950663, loss@max: 1.364796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000540, LT: 1.762476, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 136, loss@min: 0.950386, loss@max: 1.369531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000539, LT: 1.762833, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 137, loss@min: 0.954418, loss@max: 1.361975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000539, LT: 1.763091, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 138, loss@min: 0.943148, loss@max: 1.368560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000539, LT: 1.763187, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 139, loss@min: 0.945457, loss@max: 1.365374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000539, LT: 1.763217, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 140, loss@min: 0.945773, loss@max: 1.366551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000539, LT: 1.763219, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 141, loss@min: 0.947158, loss@max: 1.366629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000539, LT: 1.763249, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 142, loss@min: 0.949289, loss@max: 1.367551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000539, LT: 1.763291, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 143, loss@min: 0.954315, loss@max: 1.366105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000539, LT: 1.763301, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 144, loss@min: 0.950229, loss@max: 1.366420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000539, LT: 1.763314, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 145, loss@min: 0.949357, loss@max: 1.361671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000539, LT: 1.763322, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 146, loss@min: 0.947581, loss@max: 1.368047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000539, LT: 1.763328, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 147, loss@min: 0.950888, loss@max: 1.368434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000539, LT: 1.763336, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 148, loss@min: 0.950769, loss@max: 1.362513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000539, LT: 1.763340, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 149, loss@min: 0.950419, loss@max: 1.365526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000539, LT: 1.763340, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 150, loss@min: 0.944728, loss@max: 1.368967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000539, LT: 1.763340, Top1S: 100.000000, Top1T: 67.139481 +------------------------------------------- +Sun Aug 6 00:16:54 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Sun Aug 6 22:49:49 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.803327, loss@max: 2.130729, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.236694, loss@max: 1.607340, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.814653, loss@max: 1.353371, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.426357, loss@max: 1.457415, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.267636, loss@max: 1.407923, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.195760, loss@max: 1.301264, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.120075, loss@max: 1.297748, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.130534, loss@max: 1.292635, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.007098, loss@max: 1.289278, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.017569, loss@max: 1.253789, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.003559, loss@max: 1.259349, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.948381, loss@max: 1.294053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.965239, loss@max: 1.281663, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.967555, loss@max: 1.283916, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.925771, loss@max: 1.308211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.966760, loss@max: 1.287850, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.954534, loss@max: 1.313527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.941910, loss@max: 1.336922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944211, loss@max: 1.317583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961304, loss@max: 1.328766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.939653, loss@max: 1.382253, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.986068, loss@max: 1.323751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.961768, loss@max: 1.394999, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.976486, loss@max: 1.370540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954043, loss@max: 1.377708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.984264, loss@max: 1.380482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943350, loss@max: 1.419473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.979324, loss@max: 1.393864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.961272, loss@max: 1.405839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.995281, loss@max: 1.388960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.970360, loss@max: 1.441710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.957976, loss@max: 1.496358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.024673, loss@max: 1.475083, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.970879, loss@max: 1.446137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969770, loss@max: 1.510575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950448, loss@max: 1.521033, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.984900, loss@max: 1.471441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.017761, loss@max: 1.447006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.925667, loss@max: 1.494581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.023761, loss@max: 1.416479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.957543, loss@max: 1.477360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.988631, loss@max: 1.420244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.970169, loss@max: 1.449255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.911202, loss@max: 1.511463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.013862, loss@max: 1.371456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.987862, loss@max: 1.406876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.949891, loss@max: 1.457448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.980665, loss@max: 1.423884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.969339, loss@max: 1.431327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.954614, loss@max: 1.427453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000762, LT: 1.611851, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 51, loss@min: 0.967179, loss@max: 1.418962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000753, LT: 1.619191, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 52, loss@min: 0.985959, loss@max: 1.407248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000741, LT: 1.620387, Top1S: 100.000000, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 53, loss@min: 0.939800, loss@max: 1.447323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000738, LT: 1.626643, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 54, loss@min: 0.995378, loss@max: 1.394420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000732, LT: 1.623209, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 55, loss@min: 0.953236, loss@max: 1.422448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000722, LT: 1.623596, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 56, loss@min: 0.953197, loss@max: 1.411089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000713, LT: 1.629111, Top1S: 100.000000, Top1T: 67.375885Best acc: 67.375885 +Train:epoch: 57, loss@min: 0.951162, loss@max: 1.413844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000711, LT: 1.629336, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 58, loss@min: 0.957621, loss@max: 1.400187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000703, LT: 1.628415, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 59, loss@min: 0.967441, loss@max: 1.387820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000697, LT: 1.629260, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 60, loss@min: 0.968757, loss@max: 1.398633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000696, LT: 1.630762, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 61, loss@min: 0.955409, loss@max: 1.404521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000684, LT: 1.633033, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 62, loss@min: 0.972832, loss@max: 1.391164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000682, LT: 1.637646, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 63, loss@min: 0.961775, loss@max: 1.387742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000676, LT: 1.642963, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 64, loss@min: 0.961841, loss@max: 1.393794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000671, LT: 1.646365, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 65, loss@min: 0.950384, loss@max: 1.410768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000670, LT: 1.647477, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 66, loss@min: 0.969271, loss@max: 1.371519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000660, LT: 1.649508, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 67, loss@min: 0.960902, loss@max: 1.390001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000656, LT: 1.650918, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 68, loss@min: 0.951153, loss@max: 1.394862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000653, LT: 1.655563, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 69, loss@min: 0.965020, loss@max: 1.375835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000649, LT: 1.658873, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 70, loss@min: 0.974913, loss@max: 1.368872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000648, LT: 1.661279, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 71, loss@min: 0.951103, loss@max: 1.380758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000643, LT: 1.663310, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 72, loss@min: 0.942326, loss@max: 1.397079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000638, LT: 1.665551, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 73, loss@min: 0.956869, loss@max: 1.374690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000636, LT: 1.669950, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 74, loss@min: 0.949350, loss@max: 1.381165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000631, LT: 1.677563, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.952081, loss@max: 1.376863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000626, LT: 1.679882, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 76, loss@min: 0.958918, loss@max: 1.372671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000622, LT: 1.681684, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 77, loss@min: 0.950807, loss@max: 1.379870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000618, LT: 1.689881, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 78, loss@min: 0.950624, loss@max: 1.379684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000615, LT: 1.692816, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 79, loss@min: 0.945729, loss@max: 1.383105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000613, LT: 1.695712, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 80, loss@min: 0.955399, loss@max: 1.374240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000610, LT: 1.701866, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 81, loss@min: 0.961542, loss@max: 1.372596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000607, LT: 1.703662, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 82, loss@min: 0.957397, loss@max: 1.375454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000603, LT: 1.702767, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 83, loss@min: 0.959907, loss@max: 1.368441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000600, LT: 1.702953, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 84, loss@min: 0.934203, loss@max: 1.395225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000598, LT: 1.706363, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 85, loss@min: 0.943010, loss@max: 1.385139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000594, LT: 1.709584, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 86, loss@min: 0.950971, loss@max: 1.378562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000592, LT: 1.710196, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 87, loss@min: 0.949397, loss@max: 1.374155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000591, LT: 1.712885, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 88, loss@min: 0.951313, loss@max: 1.372394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000588, LT: 1.714448, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 89, loss@min: 0.951715, loss@max: 1.373603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000584, LT: 1.715587, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 90, loss@min: 0.946370, loss@max: 1.374496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000582, LT: 1.718918, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 91, loss@min: 0.945661, loss@max: 1.378216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000581, LT: 1.720047, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 92, loss@min: 0.953070, loss@max: 1.373106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000577, LT: 1.720154, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 93, loss@min: 0.954820, loss@max: 1.368877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000575, LT: 1.722469, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 94, loss@min: 0.948966, loss@max: 1.382793, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.000574, LT: 1.723837, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 95, loss@min: 0.947868, loss@max: 1.373700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000572, LT: 1.725171, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 96, loss@min: 0.955467, loss@max: 1.365237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000569, LT: 1.726480, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 97, loss@min: 0.945793, loss@max: 1.379383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000569, LT: 1.728684, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 98, loss@min: 0.951515, loss@max: 1.366864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000567, LT: 1.729943, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 99, loss@min: 0.944737, loss@max: 1.374520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000566, LT: 1.730793, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 100, loss@min: 0.953027, loss@max: 1.365144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000564, LT: 1.732442, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 101, loss@min: 0.955733, loss@max: 1.364890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000563, LT: 1.734283, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 102, loss@min: 0.943726, loss@max: 1.374187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000561, LT: 1.735997, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 103, loss@min: 0.953424, loss@max: 1.362060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000559, LT: 1.737240, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 104, loss@min: 0.949977, loss@max: 1.366910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000557, LT: 1.737932, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 105, loss@min: 0.956918, loss@max: 1.362511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000555, LT: 1.739001, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 106, loss@min: 0.949863, loss@max: 1.368170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000555, LT: 1.740503, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 107, loss@min: 0.951179, loss@max: 1.365845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000554, LT: 1.742024, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 108, loss@min: 0.945214, loss@max: 1.371969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000553, LT: 1.743344, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 109, loss@min: 0.946460, loss@max: 1.372299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000552, LT: 1.745049, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 110, loss@min: 0.952626, loss@max: 1.364980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000551, LT: 1.746933, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 111, loss@min: 0.947799, loss@max: 1.370339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000550, LT: 1.748863, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 112, loss@min: 0.950661, loss@max: 1.368882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000549, LT: 1.750354, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 113, loss@min: 0.948166, loss@max: 1.367151, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000548, LT: 1.750805, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 114, loss@min: 0.949144, loss@max: 1.368387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000547, LT: 1.751212, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 115, loss@min: 0.949404, loss@max: 1.366367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000547, LT: 1.751995, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 116, loss@min: 0.942867, loss@max: 1.373725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000546, LT: 1.752854, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 117, loss@min: 0.949390, loss@max: 1.366882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000546, LT: 1.753188, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 118, loss@min: 0.951097, loss@max: 1.366865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000545, LT: 1.753526, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 119, loss@min: 0.953989, loss@max: 1.361606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000544, LT: 1.754059, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 120, loss@min: 0.955148, loss@max: 1.363089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000543, LT: 1.754812, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 121, loss@min: 0.949450, loss@max: 1.365835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000543, LT: 1.755465, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 122, loss@min: 0.949987, loss@max: 1.362543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000542, LT: 1.755844, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 123, loss@min: 0.947557, loss@max: 1.368782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000542, LT: 1.756182, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 124, loss@min: 0.947983, loss@max: 1.367857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000541, LT: 1.756322, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 125, loss@min: 0.954932, loss@max: 1.362474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000541, LT: 1.756426, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 126, loss@min: 0.950163, loss@max: 1.366610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000540, LT: 1.756864, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 127, loss@min: 0.948286, loss@max: 1.370998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000540, LT: 1.757400, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 128, loss@min: 0.945889, loss@max: 1.366750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000540, LT: 1.757841, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 129, loss@min: 0.949133, loss@max: 1.365865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000540, LT: 1.758266, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 130, loss@min: 0.947734, loss@max: 1.371269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000539, LT: 1.758452, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 131, loss@min: 0.949649, loss@max: 1.362560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000539, LT: 1.758516, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 132, loss@min: 0.952956, loss@max: 1.361736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000539, LT: 1.758773, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 133, loss@min: 0.951043, loss@max: 1.363909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000538, LT: 1.759082, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 134, loss@min: 0.951433, loss@max: 1.362675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000538, LT: 1.759392, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 135, loss@min: 0.952528, loss@max: 1.362360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000538, LT: 1.759726, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 136, loss@min: 0.949531, loss@max: 1.369368, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000538, LT: 1.760040, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 137, loss@min: 0.950676, loss@max: 1.364877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000538, LT: 1.760269, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 138, loss@min: 0.942949, loss@max: 1.368740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000538, LT: 1.760334, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 139, loss@min: 0.946128, loss@max: 1.364508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000538, LT: 1.760345, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 140, loss@min: 0.946675, loss@max: 1.365048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000538, LT: 1.760337, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 141, loss@min: 0.948016, loss@max: 1.365138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000537, LT: 1.760370, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 142, loss@min: 0.950601, loss@max: 1.365458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000537, LT: 1.760418, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 143, loss@min: 0.953351, loss@max: 1.365764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000537, LT: 1.760433, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 144, loss@min: 0.953235, loss@max: 1.362748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000537, LT: 1.760452, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 145, loss@min: 0.948244, loss@max: 1.362481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000537, LT: 1.760463, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 146, loss@min: 0.946938, loss@max: 1.368081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000537, LT: 1.760473, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 147, loss@min: 0.948366, loss@max: 1.369907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000537, LT: 1.760483, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 148, loss@min: 0.951595, loss@max: 1.360786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000537, LT: 1.760488, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 149, loss@min: 0.950438, loss@max: 1.364792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000537, LT: 1.760488, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 150, loss@min: 0.945071, loss@max: 1.367885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000537, LT: 1.760487, Top1S: 100.000000, Top1T: 67.198578 +------------------------------------------- +Sun Aug 6 23:56:37 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 00:06:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.510687, loss@max: 1.680259, Top1S acc: 100.000000, Top1T acc: 54.687500 +Train:epoch: 2, loss@min: 4.144015, loss@max: 1.802264, Top1S acc: 100.000000, Top1T acc: 52.734375 +Train:epoch: 3, loss@min: 3.663148, loss@max: 1.858992, Top1S acc: 100.000000, Top1T acc: 57.812500 +Train:epoch: 4, loss@min: 3.321288, loss@max: 1.912551, Top1S acc: 100.000000, Top1T acc: 64.062500 +Train:epoch: 5, loss@min: 2.902139, loss@max: 1.882352, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 6, loss@min: 2.702550, loss@max: 1.874246, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 7, loss@min: 2.329777, loss@max: 1.773407, Top1S acc: 100.000000, Top1T acc: 80.078125 +Train:epoch: 8, loss@min: 2.245903, loss@max: 1.742086, Top1S acc: 100.000000, Top1T acc: 76.562500 +Train:epoch: 9, loss@min: 2.157005, loss@max: 1.700620, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 10, loss@min: 2.064870, loss@max: 1.657264, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 11, loss@min: 2.026628, loss@max: 1.627543, Top1S acc: 100.000000, Top1T acc: 83.593750{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 00:08:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.503155, loss@max: 1.678857, Top1S acc: 100.000000, Top1T acc: 55.078125 +Train:epoch: 2, loss@min: 4.134412, loss@max: 1.801016, Top1S acc: 100.000000, Top1T acc: 53.125000 +Train:epoch: 3, loss@min: 3.648280, loss@max: 1.856658, Top1S acc: 100.000000, Top1T acc: 58.203125 +Train:epoch: 4, loss@min: 3.303648, loss@max: 1.909068, Top1S acc: 100.000000, Top1T acc: 64.062500 +Train:epoch: 5, loss@min: 2.883913, loss@max: 1.877683, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 6, loss@min: 2.685561, loss@max: 1.868743, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 7, loss@min: 2.312691, loss@max: 1.766545, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 8, loss@min: 2.229381, loss@max: 1.734534, Top1S acc: 100.000000, Top1T acc: 76.953125 +Train:epoch: 9, loss@min: 2.139047, loss@max: 1.692101, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 10, loss@min: 2.045680, loss@max: 1.648319, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 11, loss@min: 2.007751, loss@max: 1.618532, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 12, loss@min: 1.767979, loss@max: 1.551915, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 13, loss@min: 1.665148, loss@max: 1.522037, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 14, loss@min: 1.613014, loss@max: 1.520614, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 15, loss@min: 1.464051, loss@max: 1.478245, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 16, loss@min: 1.400054, loss@max: 1.482050, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 17, loss@min: 1.434372, loss@max: 1.502203, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 18, loss@min: 1.364772, loss@max: 1.490904, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 19, loss@min: 1.273432, loss@max: 1.456444, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 20, loss@min: 1.280255, loss@max: 1.466686, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 21, loss@min: 1.268502, loss@max: 1.467825, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 22, loss@min: 1.141155, loss@max: 1.424785, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.212100, loss@max: 1.443033, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 24, loss@min: 1.171477, loss@max: 1.448184, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 25, loss@min: 1.111720, loss@max: 1.412019, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 26, loss@min: 1.095856, loss@max: 1.415067, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.072209, loss@max: 1.401942, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 1.077565, loss@max: 1.413826, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 1.061923, loss@max: 1.402006, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 30, loss@min: 1.043797, loss@max: 1.391990, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.047061, loss@max: 1.401852, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 1.032146, loss@max: 1.391190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.013074, loss@max: 1.386434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.000054, loss@max: 1.378387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.026478, loss@max: 1.398922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.060767, loss@max: 1.397156, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.006055, loss@max: 1.385221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.009711, loss@max: 1.387907, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.017001, loss@max: 1.401333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.989697, loss@max: 1.380272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.988717, loss@max: 1.378614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.005289, loss@max: 1.386101, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 0.981193, loss@max: 1.378047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.990448, loss@max: 1.385824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.987969, loss@max: 1.383130, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.983942, loss@max: 1.384424, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 1.003007, loss@max: 1.386889, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 0.977748, loss@max: 1.383622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.975317, loss@max: 1.378366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.977395, loss@max: 1.373547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.001840, LT: 1.541657, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 51, loss@min: 0.972361, loss@max: 1.379779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.001826, LT: 1.549496, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 52, loss@min: 0.979699, loss@max: 1.383510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.001814, LT: 1.555705, Top1S: 100.000000, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 53, loss@min: 0.977877, loss@max: 1.381177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.001801, LT: 1.560725, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 54, loss@min: 0.973553, loss@max: 1.380057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.001790, LT: 1.565087, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 55, loss@min: 0.972319, loss@max: 1.380650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.001778, LT: 1.567976, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 56, loss@min: 0.962825, loss@max: 1.377555, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.001767, LT: 1.571824, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 57, loss@min: 0.971500, loss@max: 1.379110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.001756, LT: 1.574012, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 58, loss@min: 0.969543, loss@max: 1.377765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.001745, LT: 1.578570, Top1S: 100.000000, Top1T: 67.612289Best acc: 67.612289 +Train:epoch: 59, loss@min: 0.968130, loss@max: 1.375078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.001734, LT: 1.584754, Top1S: 100.000000, Top1T: 67.848701Best acc: 67.848701 +Train:epoch: 60, loss@min: 0.975296, loss@max: 1.385214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.001724, LT: 1.588933, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 61, loss@min: 0.972008, loss@max: 1.374974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.001715, LT: 1.591008, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 62, loss@min: 0.971713, loss@max: 1.385004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.001706, LT: 1.592996, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 63, loss@min: 0.968460, loss@max: 1.377167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.001695, LT: 1.596735, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 64, loss@min: 0.971231, loss@max: 1.375701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.001687, LT: 1.601175, Top1S: 100.000000, Top1T: 67.907799Best acc: 67.907799 +Train:epoch: 65, loss@min: 0.973730, loss@max: 1.384116, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 65, LS: 0.001677, LT: 1.604596, Top1S: 100.000000, Top1T: 68.085106Best acc: 68.085106 +Train:epoch: 66, loss@min: 0.965172, loss@max: 1.376000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.001669, LT: 1.608772, Top1S: 100.000000, Top1T: 67.907799 +Train:epoch: 67, loss@min: 0.963730, loss@max: 1.373387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.001662, LT: 1.613532, Top1S: 100.000000, Top1T: 67.907799 +Train:epoch: 68, loss@min: 0.962309, loss@max: 1.380021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.001653, LT: 1.618344, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 69, loss@min: 0.966573, loss@max: 1.371363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.001645, LT: 1.621425, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 70, loss@min: 0.971829, loss@max: 1.374572, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 70, LS: 0.001638, LT: 1.621322, Top1S: 100.000000, Top1T: 67.789597 +Train:epoch: 71, loss@min: 0.962882, loss@max: 1.384259, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 71, LS: 0.001630, LT: 1.621247, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 72, loss@min: 0.960518, loss@max: 1.374273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.001622, LT: 1.622473, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 73, loss@min: 0.968674, loss@max: 1.373678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.001616, LT: 1.625029, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 74, loss@min: 0.960708, loss@max: 1.377576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.001609, LT: 1.627925, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 75, loss@min: 0.959268, loss@max: 1.375910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.001603, LT: 1.630626, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 76, loss@min: 0.963663, loss@max: 1.373884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.001597, LT: 1.634130, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 77, loss@min: 0.964990, loss@max: 1.373471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.001590, LT: 1.638822, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 78, loss@min: 0.959919, loss@max: 1.372041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.001584, LT: 1.642905, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 79, loss@min: 0.960389, loss@max: 1.380218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.001578, LT: 1.647425, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 80, loss@min: 0.962140, loss@max: 1.376788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.001571, LT: 1.650481, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 81, loss@min: 0.966647, loss@max: 1.376014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.001565, LT: 1.649825, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 82, loss@min: 0.958017, loss@max: 1.373839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.001561, LT: 1.649126, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 83, loss@min: 0.959000, loss@max: 1.376092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.001555, LT: 1.649236, Top1S: 100.000000, Top1T: 67.966904 +Train:epoch: 84, loss@min: 0.959999, loss@max: 1.370641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.001549, LT: 1.649967, Top1S: 100.000000, Top1T: 67.966904 +Train:epoch: 85, loss@min: 0.964115, loss@max: 1.376280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.001545, LT: 1.652461, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 86, loss@min: 0.962443, loss@max: 1.377253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.001540, LT: 1.655175, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 87, loss@min: 0.956993, loss@max: 1.372281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.001536, LT: 1.658029, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 88, loss@min: 0.960235, loss@max: 1.372039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.001531, LT: 1.661491, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 89, loss@min: 0.962298, loss@max: 1.375550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.001526, LT: 1.664835, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 90, loss@min: 0.956206, loss@max: 1.370762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.001522, LT: 1.667293, Top1S: 100.000000, Top1T: 67.848701 +Train:epoch: 91, loss@min: 0.961387, loss@max: 1.373171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.001518, LT: 1.668749, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 92, loss@min: 0.957546, loss@max: 1.373818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.001514, LT: 1.668529, Top1S: 100.000000, Top1T: 67.730499 +Train:epoch: 93, loss@min: 0.958797, loss@max: 1.376970, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.001510, LT: 1.668066, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 94, loss@min: 0.985516, loss@max: 1.382945, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.001507, LT: 1.668861, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 95, loss@min: 0.958722, loss@max: 1.371715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.001503, LT: 1.670206, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 96, loss@min: 0.956403, loss@max: 1.371687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.001500, LT: 1.671099, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 97, loss@min: 0.969413, loss@max: 1.382674, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.001496, LT: 1.673159, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 98, loss@min: 0.956802, loss@max: 1.370539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.001493, LT: 1.675210, Top1S: 100.000000, Top1T: 67.316788 +Train:epoch: 99, loss@min: 0.959808, loss@max: 1.373514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.001490, LT: 1.676031, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 100, loss@min: 0.960586, loss@max: 1.372198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.001487, LT: 1.676564, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 101, loss@min: 0.959662, loss@max: 1.373920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.001484, LT: 1.677473, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 102, loss@min: 0.956992, loss@max: 1.372189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.001481, LT: 1.678408, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 103, loss@min: 0.954237, loss@max: 1.367942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.001478, LT: 1.678672, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 104, loss@min: 0.957348, loss@max: 1.370437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.001475, LT: 1.679670, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 105, loss@min: 0.956837, loss@max: 1.371771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.001473, LT: 1.680733, Top1S: 100.000000, Top1T: 67.671394 +Train:epoch: 106, loss@min: 0.959101, loss@max: 1.376366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.001471, LT: 1.681789, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 107, loss@min: 0.958708, loss@max: 1.373273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.001469, LT: 1.683357, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 108, loss@min: 0.954687, loss@max: 1.372264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.001467, LT: 1.684398, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 109, loss@min: 0.958678, loss@max: 1.374584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.001464, LT: 1.685472, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 110, loss@min: 0.958004, loss@max: 1.371022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.001462, LT: 1.686285, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 111, loss@min: 0.959750, loss@max: 1.370833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.001461, LT: 1.686878, Top1S: 100.000000, Top1T: 67.434990 +Train:epoch: 112, loss@min: 0.963294, loss@max: 1.375870, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 0.001459, LT: 1.687543, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 113, loss@min: 0.956590, loss@max: 1.368950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.001458, LT: 1.688457, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 114, loss@min: 0.957003, loss@max: 1.373957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.001456, LT: 1.689140, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 115, loss@min: 0.958562, loss@max: 1.374691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.001454, LT: 1.689331, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 116, loss@min: 0.955363, loss@max: 1.372859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.001453, LT: 1.689364, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 117, loss@min: 0.957308, loss@max: 1.370549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.001452, LT: 1.689388, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 118, loss@min: 0.959051, loss@max: 1.373444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.001450, LT: 1.689670, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 119, loss@min: 0.958447, loss@max: 1.371258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.001449, LT: 1.690118, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 120, loss@min: 0.963290, loss@max: 1.374878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.001448, LT: 1.690405, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 121, loss@min: 0.957747, loss@max: 1.372088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.001447, LT: 1.690616, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 122, loss@min: 0.954689, loss@max: 1.369913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.001446, LT: 1.690996, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 123, loss@min: 0.957418, loss@max: 1.374234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.001445, LT: 1.691645, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 124, loss@min: 0.959841, loss@max: 1.373542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.001444, LT: 1.692068, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 125, loss@min: 0.958817, loss@max: 1.371606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.001443, LT: 1.692245, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 126, loss@min: 0.959568, loss@max: 1.372376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.001442, LT: 1.692479, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 127, loss@min: 0.967913, loss@max: 1.375094, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 0.001442, LT: 1.692647, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 128, loss@min: 0.956035, loss@max: 1.369825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.001441, LT: 1.692735, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 129, loss@min: 0.959199, loss@max: 1.371452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.001440, LT: 1.692863, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 130, loss@min: 0.960718, loss@max: 1.374108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.001440, LT: 1.692975, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 131, loss@min: 0.955775, loss@max: 1.368122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.001440, LT: 1.693084, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 132, loss@min: 0.956237, loss@max: 1.373667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.001439, LT: 1.693314, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 133, loss@min: 0.956066, loss@max: 1.372783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.001439, LT: 1.693603, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 134, loss@min: 0.956826, loss@max: 1.370394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.001438, LT: 1.693886, Top1S: 100.000000, Top1T: 67.553192 +Train:epoch: 135, loss@min: 0.957927, loss@max: 1.370449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.001438, LT: 1.694109, Top1S: 100.000000, Top1T: 67.494087 +Train:epoch: 136, loss@min: 0.958796, loss@max: 1.373212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.001438, LT: 1.694293, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 137, loss@min: 0.958531, loss@max: 1.374215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.001437, LT: 1.694432, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 138, loss@min: 0.953796, loss@max: 1.368160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.001437, LT: 1.694470, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 139, loss@min: 0.953929, loss@max: 1.368285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.001437, LT: 1.694518, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 140, loss@min: 0.956799, loss@max: 1.368471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.001437, LT: 1.694544, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 141, loss@min: 0.955491, loss@max: 1.370170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.001437, LT: 1.694588, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 142, loss@min: 0.959025, loss@max: 1.374029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.001437, LT: 1.694630, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 143, loss@min: 0.963216, loss@max: 1.375661, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.001437, LT: 1.694656, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 144, loss@min: 0.959310, loss@max: 1.371870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.001437, LT: 1.694676, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 145, loss@min: 0.954189, loss@max: 1.366451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.001437, LT: 1.694687, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 146, loss@min: 0.961454, loss@max: 1.371761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.001437, LT: 1.694685, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 147, loss@min: 0.963154, loss@max: 1.378186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.001436, LT: 1.694684, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 148, loss@min: 0.955635, loss@max: 1.368965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.001436, LT: 1.694684, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 149, loss@min: 0.957176, loss@max: 1.372715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.001436, LT: 1.694683, Top1S: 100.000000, Top1T: 67.612289 +Train:epoch: 150, loss@min: 0.954987, loss@max: 1.370188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.001436, LT: 1.694683, Top1S: 100.000000, Top1T: 67.612289 +------------------------------------------- +Mon Aug 7 01:48:12 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 02:07:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.094735, loss@max: 2.057811, Top1S acc: 100.000000, Top1T acc: 67.187500 +Train:epoch: 2, loss@min: 2.261199, loss@max: 1.471836, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 3, loss@min: 1.785633, loss@max: 1.350070, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 4, loss@min: 1.278591, loss@max: 1.323622, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 5, loss@min: 1.063775, loss@max: 1.325155, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 6, loss@min: 1.024506, loss@max: 1.260908, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.099665, loss@max: 1.169467, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 8, loss@min: 0.959962, loss@max: 1.239957, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 9, loss@min: 0.928998, loss@max: 1.219600, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 0.950527, loss@max: 1.244260, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 0.932009, loss@max: 1.262386, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.914147, loss@max: 1.302582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.959701, loss@max: 1.266155, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 14, loss@min: 0.944689, loss@max: 1.322791, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.972119, loss@max: 1.327859, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.960237, loss@max: 1.320821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.905662, loss@max: 1.383657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.986591, loss@max: 1.291517, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.920201, loss@max: 1.344569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.965971, loss@max: 1.333503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.958798, loss@max: 1.321478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.930637, loss@max: 1.354154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.946052, loss@max: 1.348699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.923488, loss@max: 1.339230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.938672, loss@max: 1.340068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.948449, loss@max: 1.329967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.942914, loss@max: 1.322273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.942855, loss@max: 1.352119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.954254, loss@max: 1.320718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.925438, loss@max: 1.361941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.933678, loss@max: 1.347064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.932760, loss@max: 1.349589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.953724, loss@max: 1.347728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964694, loss@max: 1.323869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.920324, loss@max: 1.383696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.942762, loss@max: 1.351683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.949971, loss@max: 1.352841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.933331, loss@max: 1.365249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.951131, loss@max: 1.347807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.929757, loss@max: 1.367640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.963410, loss@max: 1.339088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.932595, loss@max: 1.382362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.946207, loss@max: 1.359527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.959450, loss@max: 1.345891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.958247, loss@max: 1.346916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.930517, loss@max: 1.369936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.959589, loss@max: 1.343674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944734, loss@max: 1.358391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.934123, loss@max: 1.372146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943994, loss@max: 1.360649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000797, LT: 1.673755, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 51, loss@min: 0.962093, loss@max: 1.341112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000794, LT: 1.682796, Top1S: 100.000000, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 52, loss@min: 0.938867, loss@max: 1.369906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000780, LT: 1.692795, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 53, loss@min: 0.954271, loss@max: 1.356228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000773, LT: 1.695086, Top1S: 100.000000, Top1T: 66.903076Best acc: 66.903076 +Train:epoch: 54, loss@min: 0.932291, loss@max: 1.375779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000769, LT: 1.702937, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 55, loss@min: 0.958137, loss@max: 1.349490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000752, LT: 1.702171, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 56, loss@min: 0.950047, loss@max: 1.354998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000758, LT: 1.697537, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 57, loss@min: 0.933016, loss@max: 1.383065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000742, LT: 1.697184, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 58, loss@min: 0.970982, loss@max: 1.344053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000732, LT: 1.699578, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 59, loss@min: 0.933564, loss@max: 1.377723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000736, LT: 1.701559, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 60, loss@min: 0.936455, loss@max: 1.375233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000722, LT: 1.702208, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 61, loss@min: 0.950674, loss@max: 1.362321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000718, LT: 1.704132, Top1S: 100.000000, Top1T: 67.021278Best acc: 67.021278 +Train:epoch: 62, loss@min: 0.944366, loss@max: 1.370057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000719, LT: 1.706220, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 63, loss@min: 0.953178, loss@max: 1.365714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000708, LT: 1.708111, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 64, loss@min: 0.946886, loss@max: 1.368180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000701, LT: 1.710944, Top1S: 100.000000, Top1T: 66.252953 +Train:epoch: 65, loss@min: 0.939636, loss@max: 1.381597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000700, LT: 1.714023, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 66, loss@min: 0.952494, loss@max: 1.363479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000693, LT: 1.715710, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 67, loss@min: 0.958451, loss@max: 1.352780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000684, LT: 1.716903, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 68, loss@min: 0.936239, loss@max: 1.380134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000686, LT: 1.716284, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 69, loss@min: 0.948254, loss@max: 1.365870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000677, LT: 1.717999, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 70, loss@min: 0.954180, loss@max: 1.357608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000670, LT: 1.719673, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 71, loss@min: 0.955107, loss@max: 1.355206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000671, LT: 1.717594, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 72, loss@min: 0.939952, loss@max: 1.372553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000660, LT: 1.718777, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 73, loss@min: 0.953696, loss@max: 1.360035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000656, LT: 1.722432, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 74, loss@min: 0.941368, loss@max: 1.371028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000657, LT: 1.722879, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 75, loss@min: 0.955803, loss@max: 1.354385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000650, LT: 1.725098, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 76, loss@min: 0.946230, loss@max: 1.365636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000646, LT: 1.730990, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 77, loss@min: 0.940418, loss@max: 1.371338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000642, LT: 1.732178, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 78, loss@min: 0.951560, loss@max: 1.360760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000637, LT: 1.736364, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 79, loss@min: 0.950292, loss@max: 1.361443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000635, LT: 1.741853, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 80, loss@min: 0.950744, loss@max: 1.359345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.000630, LT: 1.743384, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 81, loss@min: 0.951435, loss@max: 1.361114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.000625, LT: 1.746011, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 82, loss@min: 0.942466, loss@max: 1.369560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.000622, LT: 1.749164, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 83, loss@min: 0.943162, loss@max: 1.366060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.000619, LT: 1.749943, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 84, loss@min: 0.947365, loss@max: 1.360117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.000617, LT: 1.753690, Top1S: 100.000000, Top1T: 66.430260 +Train:epoch: 85, loss@min: 0.940592, loss@max: 1.367638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.000612, LT: 1.758585, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 86, loss@min: 0.949026, loss@max: 1.359321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.000608, LT: 1.761407, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 87, loss@min: 0.939503, loss@max: 1.367703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.000608, LT: 1.764557, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 88, loss@min: 0.945706, loss@max: 1.360752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.000604, LT: 1.769148, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 89, loss@min: 0.945780, loss@max: 1.362385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.000601, LT: 1.773293, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 90, loss@min: 0.949150, loss@max: 1.357913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.000600, LT: 1.777653, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 91, loss@min: 0.942543, loss@max: 1.364471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.000597, LT: 1.782658, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 92, loss@min: 0.948461, loss@max: 1.359277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.000594, LT: 1.786164, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 93, loss@min: 0.944661, loss@max: 1.362382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.000592, LT: 1.789694, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 94, loss@min: 0.950672, loss@max: 1.359422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.000590, LT: 1.792928, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 95, loss@min: 0.951224, loss@max: 1.355609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.000588, LT: 1.796370, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 96, loss@min: 0.946349, loss@max: 1.359982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.000587, LT: 1.800170, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 97, loss@min: 0.938548, loss@max: 1.368618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.000584, LT: 1.804232, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 98, loss@min: 0.948941, loss@max: 1.356437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.000582, LT: 1.806997, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 99, loss@min: 0.947157, loss@max: 1.358045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.000580, LT: 1.810796, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 100, loss@min: 0.943706, loss@max: 1.362374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.000579, LT: 1.814128, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 101, loss@min: 0.945072, loss@max: 1.361631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.000576, LT: 1.817004, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 102, loss@min: 0.947736, loss@max: 1.356663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.000575, LT: 1.820179, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 103, loss@min: 0.949349, loss@max: 1.355416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.000573, LT: 1.822318, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 104, loss@min: 0.947371, loss@max: 1.357694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.000572, LT: 1.824058, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 105, loss@min: 0.946978, loss@max: 1.358330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.000570, LT: 1.825917, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 106, loss@min: 0.949133, loss@max: 1.355896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.000569, LT: 1.828014, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 107, loss@min: 0.942043, loss@max: 1.363215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.000568, LT: 1.830579, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 108, loss@min: 0.945133, loss@max: 1.360215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.000566, LT: 1.832339, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 109, loss@min: 0.945185, loss@max: 1.360529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.000565, LT: 1.834269, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 110, loss@min: 0.948100, loss@max: 1.356838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.000563, LT: 1.836101, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 111, loss@min: 0.944617, loss@max: 1.360611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.000563, LT: 1.837689, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 112, loss@min: 0.948261, loss@max: 1.357887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.000562, LT: 1.839307, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 113, loss@min: 0.942959, loss@max: 1.361598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.000561, LT: 1.840930, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 114, loss@min: 0.942213, loss@max: 1.363147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.000559, LT: 1.842627, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 115, loss@min: 0.941113, loss@max: 1.363401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.000558, LT: 1.844214, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 116, loss@min: 0.943738, loss@max: 1.360730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.000557, LT: 1.845913, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 117, loss@min: 0.951747, loss@max: 1.353353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.000557, LT: 1.847652, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 118, loss@min: 0.945715, loss@max: 1.359252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.000557, LT: 1.849389, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 119, loss@min: 0.944515, loss@max: 1.360159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.000556, LT: 1.850560, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 120, loss@min: 0.947325, loss@max: 1.357809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.000555, LT: 1.851435, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 121, loss@min: 0.945516, loss@max: 1.358851, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.000554, LT: 1.852300, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 122, loss@min: 0.945032, loss@max: 1.358752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.000553, LT: 1.853193, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 123, loss@min: 0.945023, loss@max: 1.359744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.000553, LT: 1.854122, Top1S: 100.000000, Top1T: 66.489365 +Train:epoch: 124, loss@min: 0.946879, loss@max: 1.360410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.000552, LT: 1.854778, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 125, loss@min: 0.948699, loss@max: 1.356048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.000552, LT: 1.854902, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 126, loss@min: 0.945591, loss@max: 1.358926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.000551, LT: 1.855270, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 127, loss@min: 0.948659, loss@max: 1.359484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.000551, LT: 1.855626, Top1S: 100.000000, Top1T: 66.725769 +Train:epoch: 128, loss@min: 0.945490, loss@max: 1.358670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.000551, LT: 1.855924, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 129, loss@min: 0.945602, loss@max: 1.359053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.000550, LT: 1.856337, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 130, loss@min: 0.948108, loss@max: 1.356842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.000550, LT: 1.856764, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 131, loss@min: 0.943997, loss@max: 1.359568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.000550, LT: 1.857145, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 132, loss@min: 0.944808, loss@max: 1.359162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.000549, LT: 1.857590, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 133, loss@min: 0.944754, loss@max: 1.359478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.000549, LT: 1.858022, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 134, loss@min: 0.946345, loss@max: 1.357708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.000549, LT: 1.858464, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 135, loss@min: 0.945063, loss@max: 1.358855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.000549, LT: 1.858952, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 136, loss@min: 0.944692, loss@max: 1.360418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.000549, LT: 1.859355, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 137, loss@min: 0.947010, loss@max: 1.358100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.000548, LT: 1.859658, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 138, loss@min: 0.944657, loss@max: 1.358943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.000548, LT: 1.859769, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 139, loss@min: 0.948150, loss@max: 1.355387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.000548, LT: 1.859893, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 140, loss@min: 0.941658, loss@max: 1.361916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.000548, LT: 1.859967, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 141, loss@min: 0.944892, loss@max: 1.359051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.000548, LT: 1.860038, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 142, loss@min: 0.945548, loss@max: 1.359077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.000548, LT: 1.860106, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 143, loss@min: 0.946335, loss@max: 1.358108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.000548, LT: 1.860152, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 144, loss@min: 0.947154, loss@max: 1.357149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.000548, LT: 1.860200, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 145, loss@min: 0.946532, loss@max: 1.356471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.000548, LT: 1.860237, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 146, loss@min: 0.946517, loss@max: 1.357920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.000548, LT: 1.860262, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 147, loss@min: 0.943379, loss@max: 1.361468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.000548, LT: 1.860277, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 148, loss@min: 0.946158, loss@max: 1.357420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.000548, LT: 1.860284, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 149, loss@min: 0.947647, loss@max: 1.356750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.000548, LT: 1.860286, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 150, loss@min: 0.943807, loss@max: 1.360414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.000548, LT: 1.860286, Top1S: 100.000000, Top1T: 66.607567 +------------------------------------------- +Mon Aug 7 05:05:17 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 10:52:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.803327, loss@max: 2.130729, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.236694, loss@max: 1.607340, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.814653, loss@max: 1.353371, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.426357, loss@max: 1.457415, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.267636, loss@max: 1.407923, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.195760, loss@max: 1.301264, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.120075, loss@max: 1.297748, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.130534, loss@max: 1.292635, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.007098, loss@max: 1.289278, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.017569, loss@max: 1.253789, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.003559, loss@max: 1.259349, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.948381, loss@max: 1.294053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.965239, loss@max: 1.281663, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.967555, loss@max: 1.283916, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.925771, loss@max: 1.308211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.966760, loss@max: 1.287850, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.954534, loss@max: 1.313527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.941910, loss@max: 1.336922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944211, loss@max: 1.317583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961304, loss@max: 1.328766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.939653, loss@max: 1.382253, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.986068, loss@max: 1.323751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.961768, loss@max: 1.394999, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.976486, loss@max: 1.370540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954043, loss@max: 1.377708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.984264, loss@max: 1.380482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943350, loss@max: 1.419473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.979324, loss@max: 1.393864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.961272, loss@max: 1.405839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.995281, loss@max: 1.388960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.970360, loss@max: 1.441710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.957976, loss@max: 1.496358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.024673, loss@max: 1.475083, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.970879, loss@max: 1.446137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969770, loss@max: 1.510575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950448, loss@max: 1.521033, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.984900, loss@max: 1.471441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.017761, loss@max: 1.447006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.925667, loss@max: 1.494581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.023761, loss@max: 1.416479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.957543, loss@max: 1.477360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.988631, loss@max: 1.420244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.970169, loss@max: 1.449255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.911202, loss@max: 1.511463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.013862, loss@max: 1.371456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.987862, loss@max: 1.406876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.949891, loss@max: 1.457448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.980665, loss@max: 1.423884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.969339, loss@max: 1.431327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.954614, loss@max: 1.427453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.000762, LT: 1.611851, Top1S: 100.000000, Top1T: 66.607567Best acc: 66.607567 +Train:epoch: 51, loss@min: 0.967179, loss@max: 1.418962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.000753, LT: 1.619191, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 52, loss@min: 0.985959, loss@max: 1.407248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.000741, LT: 1.620387, Top1S: 100.000000, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 53, loss@min: 0.939800, loss@max: 1.447323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.000738, LT: 1.626643, Top1S: 100.000000, Top1T: 67.257683Best acc: 67.257683 +Train:epoch: 54, loss@min: 0.995378, loss@max: 1.394420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.000732, LT: 1.623209, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 55, loss@min: 0.953236, loss@max: 1.422448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.000722, LT: 1.623596, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 56, loss@min: 0.953197, loss@max: 1.411089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.000713, LT: 1.629111, Top1S: 100.000000, Top1T: 67.375885Best acc: 67.375885 +Train:epoch: 57, loss@min: 0.951162, loss@max: 1.413844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.000711, LT: 1.629336, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 58, loss@min: 0.957621, loss@max: 1.400187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.000703, LT: 1.628415, Top1S: 100.000000, Top1T: 67.198578 +Train:epoch: 59, loss@min: 0.967441, loss@max: 1.387820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.000697, LT: 1.629260, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 60, loss@min: 0.968757, loss@max: 1.398633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.000696, LT: 1.630762, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 61, loss@min: 0.955409, loss@max: 1.404521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.000684, LT: 1.633033, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 62, loss@min: 0.972832, loss@max: 1.391164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.000682, LT: 1.637646, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 63, loss@min: 0.961775, loss@max: 1.387742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.000676, LT: 1.642963, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 64, loss@min: 0.961841, loss@max: 1.393794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.000671, LT: 1.646365, Top1S: 100.000000, Top1T: 66.607567 +Train:epoch: 65, loss@min: 0.950384, loss@max: 1.410768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.000670, LT: 1.647477, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 66, loss@min: 0.969271, loss@max: 1.371519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.000660, LT: 1.649508, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 67, loss@min: 0.960902, loss@max: 1.390001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.000656, LT: 1.650918, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 68, loss@min: 0.951153, loss@max: 1.394862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.000653, LT: 1.655563, Top1S: 100.000000, Top1T: 67.021278 +Train:epoch: 69, loss@min: 0.965020, loss@max: 1.375835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.000649, LT: 1.658873, Top1S: 100.000000, Top1T: 67.375885 +Train:epoch: 70, loss@min: 0.974913, loss@max: 1.368872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.000648, LT: 1.661279, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 71, loss@min: 0.951103, loss@max: 1.380758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.000643, LT: 1.663310, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 72, loss@min: 0.942326, loss@max: 1.397079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.000638, LT: 1.665551, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 73, loss@min: 0.956869, loss@max: 1.374690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.000636, LT: 1.669950, Top1S: 100.000000, Top1T: 67.257683 +Train:epoch: 74, loss@min: 0.949350, loss@max: 1.381165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.000631, LT: 1.677563, Top1S: 100.000000, Top1T: 67.139481 +Train:epoch: 75, loss@min: 0.952081, loss@max: 1.376863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.000626, LT: 1.679882, Top1S: 100.000000, Top1T: 67.080376 +Train:epoch: 76, loss@min: 0.958918, loss@max: 1.372671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.000622, LT: 1.681684, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 77, loss@min: 0.950807, loss@max: 1.379870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.000618, LT: 1.689881, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 78, loss@min: 0.950624, loss@max: 1.379684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.000615, LT: 1.692816, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 79, loss@min: 0.945729, loss@max: 1.383105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.000613, LT: 1.695712, Top1S: 100.000000, Top1T: 66.903076 +Train:epoch: 80, loss@min: 0.955399, loss@max: 1.374240, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 11:31:23 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Mon Aug 7 11:31:36 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.803327, loss@max: 2.130729, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.236694, loss@max: 1.607341, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.814654, loss@max: 1.353370, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.426357, loss@max: 1.457415, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.267636, loss@max: 1.407923, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.195761, loss@max: 1.301263, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.120074, loss@max: 1.297749, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.130535, loss@max: 1.292635, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.007097, loss@max: 1.289278, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.017569, loss@max: 1.253788, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.003558, loss@max: 1.259351, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.948382, loss@max: 1.294052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.965241, loss@max: 1.281659, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.967556, loss@max: 1.283916, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.925771, loss@max: 1.308212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.966764, loss@max: 1.287848, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.954531, loss@max: 1.313533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.941912, loss@max: 1.336918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944205, loss@max: 1.317588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961306, loss@max: 1.328755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.001261, LT: 1.607976, Top1S: 100.000000, Top1T: 66.430260Best acc: 66.430260 +Train:epoch: 21, loss@min: 0.939649, loss@max: 1.382102, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 21, LS: 0.001244, LT: 1.620734, Top1S: 100.000000, Top1T: 65.957443 +Train:epoch: 22, loss@min: 0.986334, loss@max: 1.323763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.001175, LT: 1.638513, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 23, loss@min: 0.962653, loss@max: 1.401469, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 23, LS: 0.001168, LT: 1.638795, Top1S: 100.000000, Top1T: 66.843971Best acc: 66.843971 +Train:epoch: 24, loss@min: 0.979149, loss@max: 1.371157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.001115, LT: 1.640691, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 25, loss@min: 0.957909, loss@max: 1.384876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.001109, LT: 1.639902, Top1S: 100.000000, Top1T: 66.666664 +Train:epoch: 26, loss@min: 0.983530, loss@max: 1.369488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.001052, LT: 1.636125, Top1S: 100.000000, Top1T: 67.080376Best acc: 67.080376 +Train:epoch: 27, loss@min: 0.943320, loss@max: 1.409537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.001062, LT: 1.635460, Top1S: 100.000000, Top1T: 66.312057 +Train:epoch: 28, loss@min: 0.969396, loss@max: 1.400076, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.001028, LT: 1.642412, Top1S: 100.000000, Top1T: 66.784866 +Train:epoch: 29, loss@min: 0.979219, loss@max: 1.386165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.001003, LT: 1.645546, Top1S: 100.000000, Top1T: 66.548462 +Train:epoch: 30, loss@min: 0.988891, loss@max: 1.394579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.000995, LT: 1.655520, Top1S: 100.000000, Top1T: 66.193855 +Train:epoch: 31, loss@min: 0.975998, loss@max: 1.450293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.000979, LT: 1.649063, Top1S: 100.000000, Top1T: 66.075653 +Train:epoch: 32, loss@min: 0.969862, loss@max: 1.490832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.000964, LT: 1.659249, Top1S: 100.000000, Top1T: 66.134750 +Train:epoch: 33, loss@min: 1.023065, loss@max: 1.484374, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 0.000931, LT: 1.655940, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 34, loss@min: 0.972927, loss@max: 1.455293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.000925, LT: 1.641051, Top1S: 100.000000, Top1T: 66.962173 +Train:epoch: 35, loss@min: 0.968380, loss@max: 1.505006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.000907, LT: 1.629518, Top1S: 100.000000, Top1T: 66.843971 +Train:epoch: 36, loss@min: 0.945571, loss@max: 1.489496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.000906, LT: 1.623652, Top1S: 100.000000, Top1T: 66.371155 +Train:epoch: 37, loss@min: 0.967051, loss@max: 1.466824, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Mon Aug 7 11:47:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.803327, loss@max: 2.130729, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 2, loss@min: 2.236694, loss@max: 1.607340, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 3, loss@min: 1.814653, loss@max: 1.353371, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.426357, loss@max: 1.457415, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 5, loss@min: 1.267636, loss@max: 1.407923, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.195760, loss@max: 1.301264, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.120075, loss@max: 1.297748, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 1.130534, loss@max: 1.292635, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 1.007098, loss@max: 1.289278, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 10, loss@min: 1.017569, loss@max: 1.253789, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.003559, loss@max: 1.259349, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.948381, loss@max: 1.294053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.965239, loss@max: 1.281663, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 0.967555, loss@max: 1.283916, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 15, loss@min: 0.925771, loss@max: 1.308211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.966760, loss@max: 1.287850, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.954534, loss@max: 1.313527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.941910, loss@max: 1.336922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944211, loss@max: 1.317583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961304, loss@max: 1.328766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 1.602201, LT: 1.607977, Top1S: 66.430260, Top1T: 66.312057Best acc: 66.312057 +Train:epoch: 21, loss@min: 0.939655, loss@max: 1.382098, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 21, LS: 1.616477, LT: 1.620734, Top1S: 65.957443, Top1T: 66.489365Best acc: 66.489365 +Train:epoch: 22, loss@min: 0.986324, loss@max: 1.323772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 1.634647, LT: 1.638516, Top1S: 66.193855, Top1T: 66.371155 +Train:epoch: 23, loss@min: 0.962656, loss@max: 1.401458, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 23, LS: 1.642440, LT: 1.638796, Top1S: 66.843971, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 24, loss@min: 0.979157, loss@max: 1.371145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 1.636057, LT: 1.640690, Top1S: 66.843971, Top1T: 66.607567 +Train:epoch: 25, loss@min: 0.957891, loss@max: 1.384890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 1.638980, LT: 1.639904, Top1S: 66.666664, Top1T: 67.198578Best acc: 67.198578 +Train:epoch: 26, loss@min: 0.983542, loss@max: 1.369480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 1.637636, LT: 1.636126, Top1S: 67.080376, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 27, loss@min: 0.943339, loss@max: 1.409538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 1.639339, LT: 1.635462, Top1S: 66.312057, Top1T: 66.784866 +Train:epoch: 28, loss@min: 0.969387, loss@max: 1.400108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 1.641413, LT: 1.642414, Top1S: 66.784866, Top1T: 66.903076 +Train:epoch: 29, loss@min: 0.979234, loss@max: 1.386154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 1.660141, LT: 1.645547, Top1S: 66.548462, Top1T: 66.843971 +Train:epoch: 30, loss@min: 0.988864, loss@max: 1.394589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 1.658802, LT: 1.655528, Top1S: 66.193855, Top1T: 67.021278 +Train:epoch: 31, loss@min: 0.975975, loss@max: 1.450284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 1.670760, LT: 1.649064, Top1S: 66.075653, Top1T: 67.080376 +Train:epoch: 32, loss@min: 0.969881, loss@max: 1.490842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 1.653026, LT: 1.659247, Top1S: 66.134750, Top1T: 66.843971 +Train:epoch: 33, loss@min: 1.023097, loss@max: 1.484409, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 1.648883, LT: 1.655966, Top1S: 66.843971, Top1T: 66.903076 +Train:epoch: 34, loss@min: 0.972940, loss@max: 1.455300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.642795, LT: 1.641054, Top1S: 66.962173, Top1T: 66.962173 +Train:epoch: 35, loss@min: 0.968247, loss@max: 1.505199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 1.641490, LT: 1.629490, Top1S: 66.843971, Top1T: 67.671394Best acc: 67.671394 +Train:epoch: 36, loss@min: 0.945685, loss@max: 1.489280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.634469, LT: 1.623704, Top1S: 66.371155, Top1T: 67.021278 +Train:epoch: 37, loss@min: 0.966790, loss@max: 1.467152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 1.613948, LT: 1.625459, Top1S: 66.784866, Top1T: 67.139481 +Train:epoch: 38, loss@min: 1.011905, loss@max: 1.428789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.631704, LT: 1.612180, Top1S: 66.784866, Top1T: 67.375885 +Train:epoch: 39, loss@min: 0.927113, loss@max: 1.485816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.618594, LT: 1.615754, Top1S: 66.430260, Top1T: 67.553192 +Train:epoch: 40, loss@min: 1.014573, loss@max: 1.440254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.613693, LT: 1.614671, Top1S: 66.193855, Top1T: 67.494087 +Train:epoch: 41, loss@min: 0.985210, loss@max: 1.464938, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 1.618138, LT: 1.605828, Top1S: 66.489365, Top1T: 67.553192 +Train:epoch: 42, loss@min: 0.952444, loss@max: 1.486763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.609876, LT: 1.601630, Top1S: 66.607567, Top1T: 67.021278 +Train:epoch: 43, loss@min: 1.039321, loss@max: 1.406723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.594944, LT: 1.609040, Top1S: 66.784866, Top1T: 67.316788 +Train:epoch: 44, loss@min: 0.931715, loss@max: 1.478435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.599778, LT: 1.605107, Top1S: 66.548462, Top1T: 67.434990 +Train:epoch: 45, loss@min: 0.989223, loss@max: 1.433099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.595222, LT: 1.602124, Top1S: 66.784866, Top1T: 67.198578 +Train:epoch: 46, loss@min: 1.001574, loss@max: 1.419146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.597422, LT: 1.602246, Top1S: 66.962173, Top1T: 67.139481 +Train:epoch: 47, loss@min: 0.946622, loss@max: 1.469698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.603838, LT: 1.598093, Top1S: 66.784866, Top1T: 67.434990 +Train:epoch: 48, loss@min: 0.990949, loss@max: 1.409202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.604048, LT: 1.598987, Top1S: 67.257683, Top1T: 67.139481 +Train:epoch: 49, loss@min: 0.973232, loss@max: 1.432652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.607672, LT: 1.598392, Top1S: 67.139481, Top1T: 66.666664 +Train:epoch: 50, loss@min: 0.962008, loss@max: 1.428328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.606342, LT: 1.601654, Top1S: 66.725769, Top1T: 66.843971 +Train:epoch: 51, loss@min: 0.972418, loss@max: 1.416395, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.608515, LT: 1.605822, Top1S: 66.962173, Top1T: 66.607567 +Train:epoch: 52, loss@min: 0.978102, loss@max: 1.414942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.612890, LT: 1.605962, Top1S: 66.843971, Top1T: 66.607567 +Train:epoch: 53, loss@min: 0.987128, loss@max: 1.405881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.614124, LT: 1.608688, Top1S: 66.371155, Top1T: 66.725769 +Train:epoch: 54, loss@min: 0.957654, loss@max: 1.439458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.615089, LT: 1.610713, Top1S: 66.903076, Top1T: 66.607567 +Train:epoch: 55, loss@min: 0.971633, loss@max: 1.400829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.611805, LT: 1.616589, Top1S: 66.666664, Top1T: 66.252953 +Train:epoch: 56, loss@min: 0.964611, loss@max: 1.411109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.615370, LT: 1.614444, Top1S: 66.725769, Top1T: 66.489365 +Train:epoch: 57, loss@min: 0.957756, loss@max: 1.405612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.617892, LT: 1.612773, Top1S: 67.021278, Top1T: 66.371155 +Train:epoch: 58, loss@min: 0.954400, loss@max: 1.409078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.615524, LT: 1.615733, Top1S: 67.139481, Top1T: 66.607567 +Train:epoch: 59, loss@min: 0.990854, loss@max: 1.372633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.623108, LT: 1.612835, Top1S: 67.198578, Top1T: 67.198578 +Train:epoch: 60, loss@min: 0.953862, loss@max: 1.433642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.624704, LT: 1.617180, Top1S: 67.494087, Top1T: 66.962173 +Train:epoch: 61, loss@min: 0.945891, loss@max: 1.407624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.621266, LT: 1.626128, Top1S: 67.080376, Top1T: 66.962173 +Train:epoch: 62, loss@min: 0.966746, loss@max: 1.392015, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.629448, LT: 1.628084, Top1S: 67.080376, Top1T: 67.080376 +Train:epoch: 63, loss@min: 0.985283, loss@max: 1.379039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.633043, LT: 1.635707, Top1S: 67.139481, Top1T: 66.962173 +Train:epoch: 64, loss@min: 0.929717, loss@max: 1.432536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.640741, LT: 1.642205, Top1S: 66.489365, Top1T: 66.784866 +Train:epoch: 65, loss@min: 0.948138, loss@max: 1.415420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.651104, LT: 1.641209, Top1S: 66.548462, Top1T: 66.843971 +Train:epoch: 66, loss@min: 0.967837, loss@max: 1.377598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.650207, LT: 1.647202, Top1S: 67.139481, Top1T: 66.725769 +Train:epoch: 67, loss@min: 0.964078, loss@max: 1.408681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.647669, LT: 1.653734, Top1S: 67.139481, Top1T: 66.903076 +Train:epoch: 68, loss@min: 0.962569, loss@max: 1.422992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.652076, LT: 1.653625, Top1S: 67.080376, Top1T: 66.843971 +Train:epoch: 69, loss@min: 0.956834, loss@max: 1.391798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.659788, LT: 1.652694, Top1S: 66.725769, Top1T: 66.903076 +Train:epoch: 70, loss@min: 0.968941, loss@max: 1.388796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 1.659869, LT: 1.657518, Top1S: 67.080376, Top1T: 66.962173 +Train:epoch: 71, loss@min: 0.968987, loss@max: 1.376095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 1.663256, LT: 1.658176, Top1S: 67.080376, Top1T: 66.903076 +Train:epoch: 72, loss@min: 0.941775, loss@max: 1.412470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.666373, LT: 1.658437, Top1S: 66.903076, Top1T: 66.784866 +Train:epoch: 73, loss@min: 0.956599, loss@max: 1.390479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.663701, LT: 1.665445, Top1S: 67.198578, Top1T: 66.607567 +Train:epoch: 74, loss@min: 0.953375, loss@max: 1.388376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.663309, LT: 1.670523, Top1S: 66.725769, Top1T: 66.666664 +Train:epoch: 75, loss@min: 0.947556, loss@max: 1.389059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.671786, LT: 1.668951, Top1S: 66.725769, Top1T: 66.489365 +Train:epoch: 76, loss@min: 0.951868, loss@max: 1.389879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.673289, LT: 1.674121, Top1S: 66.962173, Top1T: 66.784866 +Train:epoch: 77, loss@min: 0.958640, loss@max: 1.377881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.674536, LT: 1.681074, Top1S: 67.139481, Top1T: 66.784866 +Train:epoch: 78, loss@min: 0.947807, loss@max: 1.383800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.682026, LT: 1.682019, Top1S: 66.962173, Top1T: 66.725769 +Train:epoch: 79, loss@min: 0.945519, loss@max: 1.388265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.688938, LT: 1.683894, Top1S: 67.198578, Top1T: 66.843971 +Train:epoch: 80, loss@min: 0.958593, loss@max: 1.375386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.688363, LT: 1.689657, Top1S: 67.198578, Top1T: 66.725769 +Train:epoch: 81, loss@min: 0.958465, loss@max: 1.378628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.688748, LT: 1.691417, Top1S: 67.080376, Top1T: 66.725769 +Train:epoch: 82, loss@min: 0.952137, loss@max: 1.379013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.693150, LT: 1.690526, Top1S: 67.021278, Top1T: 66.666664 +Train:epoch: 83, loss@min: 0.955113, loss@max: 1.374998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.692400, LT: 1.693576, Top1S: 67.139481, Top1T: 66.962173 +Train:epoch: 84, loss@min: 0.946042, loss@max: 1.380955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.691089, LT: 1.697920, Top1S: 66.962173, Top1T: 66.843971 +Train:epoch: 85, loss@min: 0.939474, loss@max: 1.386536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.697425, LT: 1.698061, Top1S: 66.962173, Top1T: 67.080376 +Train:epoch: 86, loss@min: 0.953627, loss@max: 1.374172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.699076, LT: 1.699802, Top1S: 66.962173, Top1T: 67.257683 +Train:epoch: 87, loss@min: 0.957251, loss@max: 1.367969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.697364, LT: 1.704222, Top1S: 67.021278, Top1T: 67.257683 +Train:epoch: 88, loss@min: 0.948740, loss@max: 1.376359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.703022, LT: 1.703589, Top1S: 67.080376, Top1T: 67.257683 +Train:epoch: 89, loss@min: 0.950872, loss@max: 1.377850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.705119, LT: 1.706208, Top1S: 67.080376, Top1T: 67.257683 +Train:epoch: 90, loss@min: 0.955821, loss@max: 1.365974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.706758, LT: 1.708933, Top1S: 66.962173, Top1T: 67.316788 +Train:epoch: 91, loss@min: 0.946806, loss@max: 1.377992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.709502, LT: 1.710443, Top1S: 67.021278, Top1T: 67.375885 +Train:epoch: 92, loss@min: 0.948568, loss@max: 1.374907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.708277, LT: 1.713161, Top1S: 67.139481, Top1T: 67.257683 +Train:epoch: 93, loss@min: 0.949907, loss@max: 1.374946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.708714, LT: 1.714504, Top1S: 67.257683, Top1T: 67.316788 +Train:epoch: 94, loss@min: 0.953234, loss@max: 1.378054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.709730, LT: 1.716082, Top1S: 66.903076, Top1T: 67.257683 +Train:epoch: 95, loss@min: 0.956134, loss@max: 1.366442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.711011, LT: 1.718057, Top1S: 66.784866, Top1T: 67.434990 +Train:epoch: 96, loss@min: 0.947493, loss@max: 1.375404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.714063, LT: 1.718227, Top1S: 66.903076, Top1T: 67.139481 +Train:epoch: 97, loss@min: 0.946935, loss@max: 1.379701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.717539, LT: 1.719523, Top1S: 66.962173, Top1T: 67.139481 +Train:epoch: 98, loss@min: 0.958406, loss@max: 1.359685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.718405, LT: 1.722531, Top1S: 67.139481, Top1T: 67.139481 +Train:epoch: 99, loss@min: 0.956146, loss@max: 1.362681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.720220, LT: 1.723846, Top1S: 66.962173, Top1T: 67.257683 +Train:epoch: 100, loss@min: 0.946794, loss@max: 1.372490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.722069, LT: 1.724826, Top1S: 66.843971, Top1T: 67.198578 +Train:epoch: 101, loss@min: 0.952979, loss@max: 1.368329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.722938, LT: 1.727077, Top1S: 66.843971, Top1T: 67.257683 +Train:epoch: 102, loss@min: 0.945853, loss@max: 1.371922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.724597, LT: 1.728601, Top1S: 67.021278, Top1T: 67.375885 +Train:epoch: 103, loss@min: 0.954381, loss@max: 1.361963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.727237, LT: 1.728589, Top1S: 66.962173, Top1T: 67.257683 +Train:epoch: 104, loss@min: 0.949761, loss@max: 1.367094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.728695, LT: 1.729855, Top1S: 66.903076, Top1T: 67.198578 +Train:epoch: 105, loss@min: 0.950544, loss@max: 1.368121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.729539, LT: 1.731456, Top1S: 66.903076, Top1T: 67.198578 +Train:epoch: 106, loss@min: 0.953651, loss@max: 1.365077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.732083, LT: 1.732544, Top1S: 66.962173, Top1T: 67.198578 +Train:epoch: 107, loss@min: 0.952662, loss@max: 1.364230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.735155, LT: 1.733477, Top1S: 66.962173, Top1T: 67.198578 +Train:epoch: 108, loss@min: 0.947704, loss@max: 1.369995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.735994, LT: 1.735734, Top1S: 66.962173, Top1T: 67.139481 +Train:epoch: 109, loss@min: 0.949327, loss@max: 1.369264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.735930, LT: 1.738583, Top1S: 66.962173, Top1T: 67.198578 +Train:epoch: 110, loss@min: 0.952913, loss@max: 1.364934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.736347, LT: 1.740464, Top1S: 66.903076, Top1T: 67.375885 +Train:epoch: 111, loss@min: 0.941865, loss@max: 1.377131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.737275, LT: 1.741936, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 112, loss@min: 0.950552, loss@max: 1.368516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.738567, LT: 1.743137, Top1S: 67.021278, Top1T: 67.198578 +Train:epoch: 113, loss@min: 0.953941, loss@max: 1.361494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.740029, LT: 1.744073, Top1S: 67.021278, Top1T: 67.198578 +Train:epoch: 114, loss@min: 0.948925, loss@max: 1.368324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.741264, LT: 1.745044, Top1S: 66.962173, Top1T: 67.139481 +Train:epoch: 115, loss@min: 0.951531, loss@max: 1.364887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.741970, LT: 1.745970, Top1S: 66.903076, Top1T: 67.080376 +Train:epoch: 116, loss@min: 0.949088, loss@max: 1.367706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.742809, LT: 1.746638, Top1S: 66.843971, Top1T: 67.021278 +Train:epoch: 117, loss@min: 0.949225, loss@max: 1.365726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.743899, LT: 1.746962, Top1S: 66.843971, Top1T: 67.080376 +Train:epoch: 118, loss@min: 0.951646, loss@max: 1.365836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.745074, LT: 1.747388, Top1S: 66.784866, Top1T: 67.021278 +Train:epoch: 119, loss@min: 0.952043, loss@max: 1.364336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.745578, LT: 1.748159, Top1S: 66.784866, Top1T: 66.962173 +Train:epoch: 120, loss@min: 0.954474, loss@max: 1.364161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.745710, LT: 1.748884, Top1S: 66.784866, Top1T: 67.021278 +Train:epoch: 121, loss@min: 0.945910, loss@max: 1.369438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.745966, LT: 1.749507, Top1S: 66.843971, Top1T: 67.139481 +Train:epoch: 122, loss@min: 0.951531, loss@max: 1.362056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.746745, LT: 1.749802, Top1S: 66.843971, Top1T: 67.080376 +Train:epoch: 123, loss@min: 0.947707, loss@max: 1.368898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.747534, LT: 1.750207, Top1S: 66.843971, Top1T: 67.021278 +Train:epoch: 124, loss@min: 0.949007, loss@max: 1.365869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.748245, LT: 1.750485, Top1S: 66.962173, Top1T: 66.962173 +Train:epoch: 125, loss@min: 0.953087, loss@max: 1.363946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.748583, LT: 1.750661, Top1S: 66.903076, Top1T: 67.021278 +Train:epoch: 126, loss@min: 0.950064, loss@max: 1.367635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.748775, LT: 1.751146, Top1S: 66.962173, Top1T: 67.021278 +Train:epoch: 127, loss@min: 0.949673, loss@max: 1.369941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.748895, LT: 1.751700, Top1S: 66.903076, Top1T: 67.021278 +Train:epoch: 128, loss@min: 0.950520, loss@max: 1.363459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.749031, LT: 1.752138, Top1S: 66.962173, Top1T: 67.198578 +Train:epoch: 129, loss@min: 0.949724, loss@max: 1.365264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.749180, LT: 1.752627, Top1S: 66.962173, Top1T: 67.139481 +Train:epoch: 130, loss@min: 0.950095, loss@max: 1.368313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.749463, LT: 1.752923, Top1S: 67.080376, Top1T: 67.139481 +Train:epoch: 131, loss@min: 0.947342, loss@max: 1.364751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.749903, LT: 1.753017, Top1S: 67.021278, Top1T: 67.198578 +Train:epoch: 132, loss@min: 0.949807, loss@max: 1.365869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.750370, LT: 1.753223, Top1S: 67.080376, Top1T: 67.198578 +Train:epoch: 133, loss@min: 0.951505, loss@max: 1.363859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.750707, LT: 1.753493, Top1S: 67.080376, Top1T: 67.316788 +Train:epoch: 134, loss@min: 0.949448, loss@max: 1.365009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.750958, LT: 1.753782, Top1S: 67.080376, Top1T: 67.316788 +Train:epoch: 135, loss@min: 0.949492, loss@max: 1.365827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.751176, LT: 1.754062, Top1S: 67.080376, Top1T: 67.316788 +Train:epoch: 136, loss@min: 0.952193, loss@max: 1.367901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.751321, LT: 1.754353, Top1S: 67.080376, Top1T: 67.316788 +Train:epoch: 137, loss@min: 0.953198, loss@max: 1.363024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.751426, LT: 1.754608, Top1S: 67.021278, Top1T: 67.257683 +Train:epoch: 138, loss@min: 0.940709, loss@max: 1.370532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.751481, LT: 1.754700, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 139, loss@min: 0.948190, loss@max: 1.362609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.751590, LT: 1.754727, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 140, loss@min: 0.944247, loss@max: 1.367514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.751700, LT: 1.754733, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 141, loss@min: 0.947150, loss@max: 1.366562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.751775, LT: 1.754782, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 142, loss@min: 0.948931, loss@max: 1.367056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.751832, LT: 1.754850, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 143, loss@min: 0.950744, loss@max: 1.368724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.751868, LT: 1.754885, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 144, loss@min: 0.949088, loss@max: 1.367255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.751895, LT: 1.754906, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 145, loss@min: 0.947844, loss@max: 1.363146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.751911, LT: 1.754918, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 146, loss@min: 0.947687, loss@max: 1.367338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.751914, LT: 1.754926, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 147, loss@min: 0.951124, loss@max: 1.367284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.751916, LT: 1.754935, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 148, loss@min: 0.944057, loss@max: 1.369070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.751919, LT: 1.754939, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 149, loss@min: 0.952706, loss@max: 1.363009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.751920, LT: 1.754939, Top1S: 67.021278, Top1T: 67.316788 +Train:epoch: 150, loss@min: 0.944559, loss@max: 1.368641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.751920, LT: 1.754939, Top1S: 67.021278, Top1T: 67.316788 +------------------------------------------- +Mon Aug 7 13:04:25 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Mon Aug 7 13:05:58 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.503156, loss@max: 1.678857, Top1S acc: 100.000000, Top1T acc: 55.078125 +Train:epoch: 2, loss@min: 4.134411, loss@max: 1.801016, Top1S acc: 100.000000, Top1T acc: 53.125000 +Train:epoch: 3, loss@min: 3.648280, loss@max: 1.856658, Top1S acc: 100.000000, Top1T acc: 58.203125 +Train:epoch: 4, loss@min: 3.303648, loss@max: 1.909069, Top1S acc: 100.000000, Top1T acc: 64.062500 +Train:epoch: 5, loss@min: 2.883913, loss@max: 1.877682, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 6, loss@min: 2.685561, loss@max: 1.868743, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 7, loss@min: 2.312691, loss@max: 1.766545, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 8, loss@min: 2.229380, loss@max: 1.734534, Top1S acc: 100.000000, Top1T acc: 76.953125 +Train:epoch: 9, loss@min: 2.139047, loss@max: 1.692100, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 10, loss@min: 2.045680, loss@max: 1.648319, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 11, loss@min: 2.007752, loss@max: 1.618532, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 12, loss@min: 1.767978, loss@max: 1.551916, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 13, loss@min: 1.665149, loss@max: 1.522036, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 14, loss@min: 1.613013, loss@max: 1.520614, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 15, loss@min: 1.464051, loss@max: 1.478245, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 16, loss@min: 1.400053, loss@max: 1.482051, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 17, loss@min: 1.434371, loss@max: 1.502204, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 18, loss@min: 1.364772, loss@max: 1.490904, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 19, loss@min: 1.273431, loss@max: 1.456443, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 20, loss@min: 1.280255, loss@max: 1.466685, Top1S acc: 100.000000, Top1T acc: 95.703125 + Test:epoch: 20, LS: 1.288917, LT: 1.281433, Top1S: 67.198578, Top1T: 67.139481Best acc: 67.139481 +Train:epoch: 21, loss@min: 1.268350, loss@max: 1.467702, Top1S acc: 100.000000, Top1T acc: 96.484375 + Test:epoch: 21, LS: 1.298409, LT: 1.291145, Top1S: 67.612289, Top1T: 67.434990Best acc: 67.434990 +Train:epoch: 22, loss@min: 1.141318, loss@max: 1.424562, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 22, LS: 1.309811, LT: 1.302559, Top1S: 67.080376, Top1T: 67.375885 +Train:epoch: 23, loss@min: 1.214545, loss@max: 1.442830, Top1S acc: 100.000000, Top1T acc: 97.265625 + Test:epoch: 23, LS: 1.318664, LT: 1.310937, Top1S: 67.494087, Top1T: 67.612289Best acc: 67.612289 +Train:epoch: 24, loss@min: 1.169438, loss@max: 1.447208, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 24, LS: 1.327862, LT: 1.320006, Top1S: 67.553192, Top1T: 67.375885 +Train:epoch: 25, loss@min: 1.113813, loss@max: 1.412664, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 25, LS: 1.339568, LT: 1.331345, Top1S: 67.494087, Top1T: 67.612289 +Train:epoch: 26, loss@min: 1.095664, loss@max: 1.414970, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 26, LS: 1.351908, LT: 1.343194, Top1S: 67.316788, Top1T: 67.257683 +Train:epoch: 27, loss@min: 1.073615, loss@max: 1.402163, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 27, LS: 1.365644, LT: 1.356150, Top1S: 67.316788, Top1T: 67.434990 +Train:epoch: 28, loss@min: 1.076422, loss@max: 1.412979, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 28, LS: 1.379110, LT: 1.369300, Top1S: 67.553192, Top1T: 67.671394Best acc: 67.671394 +Train:epoch: 29, loss@min: 1.063860, loss@max: 1.401970, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 29, LS: 1.396153, LT: 1.386347, Top1S: 67.375885, Top1T: 67.612289 +Train:epoch: 30, loss@min: 1.043981, loss@max: 1.391631, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 30, LS: 1.415054, LT: 1.405160, Top1S: 67.198578, Top1T: 67.494087 +Train:epoch: 31, loss@min: 1.046685, loss@max: 1.401755, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 31, LS: 1.424489, LT: 1.414372, Top1S: 67.434990, Top1T: 67.375885 +Train:epoch: 32, loss@min: 1.032164, loss@max: 1.391028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 1.431427, LT: 1.421116, Top1S: 67.375885, Top1T: 67.434990 +Train:epoch: 33, loss@min: 1.013070, loss@max: 1.386450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 1.439250, LT: 1.428400, Top1S: 67.316788, Top1T: 67.257683 +Train:epoch: 34, loss@min: 1.000130, loss@max: 1.378341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.444143, LT: 1.433261, Top1S: 67.494087, Top1T: 67.612289 +Train:epoch: 35, loss@min: 1.026738, loss@max: 1.399192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 1.449753, LT: 1.438674, Top1S: 67.553192, Top1T: 67.553192 +Train:epoch: 36, loss@min: 1.033336, loss@max: 1.392155, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 36, LS: 1.457057, LT: 1.444961, Top1S: 67.494087, Top1T: 67.553192 +Train:epoch: 37, loss@min: 1.000797, loss@max: 1.379309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 1.464771, LT: 1.452347, Top1S: 67.671394, Top1T: 67.434990 +Train:epoch: 38, loss@min: 0.987994, loss@max: 1.369896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.472019, LT: 1.460374, Top1S: 67.494087, Top1T: 67.494087 +Train:epoch: 39, loss@min: 1.023396, loss@max: 1.396858, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 39, LS: 1.480564, LT: 1.468174, Top1S: 67.316788, Top1T: 67.494087 +Train:epoch: 40, loss@min: 0.996013, loss@max: 1.377770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.490898, LT: 1.478319, Top1S: 67.553192, Top1T: 67.553192 +Train:epoch: 41, loss@min: 1.038210, loss@max: 1.401015, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 41, LS: 1.495287, LT: 1.483525, Top1S: 67.671394, Top1T: 67.553192 +Train:epoch: 42, loss@min: 0.983726, loss@max: 1.381938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.498940, LT: 1.486728, Top1S: 67.375885, Top1T: 67.316788 +Train:epoch: 43, loss@min: 0.983349, loss@max: 1.378061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.505055, LT: 1.491945, Top1S: 67.434990, Top1T: 67.257683 +Train:epoch: 44, loss@min: 0.985362, loss@max: 1.376347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.510986, LT: 1.498211, Top1S: 67.553192, Top1T: 67.375885 +Train:epoch: 45, loss@min: 1.030360, loss@max: 1.406030, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 45, LS: 1.517724, LT: 1.504158, Top1S: 67.494087, Top1T: 67.434990 +Train:epoch: 46, loss@min: 0.987245, loss@max: 1.381470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.526705, LT: 1.512514, Top1S: 67.434990, Top1T: 67.375885 +Train:epoch: 47, loss@min: 0.980420, loss@max: 1.386317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.536699, LT: 1.521334, Top1S: 67.553192, Top1T: 67.375885 +Train:epoch: 48, loss@min: 0.985521, loss@max: 1.383751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.544351, LT: 1.529293, Top1S: 67.789597, Top1T: 67.494087 +Train:epoch: 49, loss@min: 0.979335, loss@max: 1.383610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.550833, LT: 1.536256, Top1S: 67.553192, Top1T: 67.553192 +Train:epoch: 50, loss@min: 0.979278, loss@max: 1.384107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.560473, LT: 1.544241, Top1S: 67.434990, Top1T: 67.671394 +Train:epoch: 51, loss@min: 0.975353, loss@max: 1.377869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.568462, LT: 1.552049, Top1S: 67.494087, Top1T: 67.612289 +Train:epoch: 52, loss@min: 0.976670, loss@max: 1.382847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.572951, LT: 1.557141, Top1S: 67.316788, Top1T: 67.434990 +Train:epoch: 53, loss@min: 0.975337, loss@max: 1.382840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.576742, LT: 1.560178, Top1S: 67.494087, Top1T: 67.730499Best acc: 67.730499 +Train:epoch: 54, loss@min: 0.975495, loss@max: 1.381875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.581475, LT: 1.563349, Top1S: 67.730499, Top1T: 67.553192 +Train:epoch: 55, loss@min: 0.971632, loss@max: 1.380122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.583651, LT: 1.566129, Top1S: 67.789597, Top1T: 67.848701Best acc: 67.848701 +Train:epoch: 56, loss@min: 0.966900, loss@max: 1.376585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.586583, LT: 1.569856, Top1S: 67.730499, Top1T: 67.671394 +Train:epoch: 57, loss@min: 0.969006, loss@max: 1.378643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.589642, LT: 1.572310, Top1S: 67.789597, Top1T: 67.553192 +Train:epoch: 58, loss@min: 0.970723, loss@max: 1.377046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.596055, LT: 1.577537, Top1S: 67.730499, Top1T: 67.553192 +Train:epoch: 59, loss@min: 0.967581, loss@max: 1.374382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.602453, LT: 1.584157, Top1S: 67.612289, Top1T: 67.671394 +Train:epoch: 60, loss@min: 0.978749, loss@max: 1.383203, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 60, LS: 1.605812, LT: 1.588365, Top1S: 67.553192, Top1T: 67.494087 +Train:epoch: 61, loss@min: 0.970540, loss@max: 1.376308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.608718, LT: 1.590578, Top1S: 67.375885, Top1T: 67.375885 +Train:epoch: 62, loss@min: 0.971251, loss@max: 1.381505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.613228, LT: 1.594558, Top1S: 67.257683, Top1T: 67.257683 +Train:epoch: 63, loss@min: 0.968794, loss@max: 1.379476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.618557, LT: 1.600463, Top1S: 67.139481, Top1T: 67.257683 +Train:epoch: 64, loss@min: 0.972816, loss@max: 1.375531, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 64, LS: 1.624161, LT: 1.605822, Top1S: 67.494087, Top1T: 67.494087 +Train:epoch: 65, loss@min: 0.976755, loss@max: 1.382852, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 65, LS: 1.627211, LT: 1.608947, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 66, loss@min: 0.964041, loss@max: 1.376630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.631448, LT: 1.612973, Top1S: 68.026009, Top1T: 68.085106Best acc: 68.085106 +Train:epoch: 67, loss@min: 0.962147, loss@max: 1.374081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.635605, LT: 1.617475, Top1S: 68.085106, Top1T: 67.966904 +Train:epoch: 68, loss@min: 0.966150, loss@max: 1.376190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.639596, LT: 1.621930, Top1S: 67.966904, Top1T: 67.789597 +Train:epoch: 69, loss@min: 0.966097, loss@max: 1.372440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.642358, LT: 1.624861, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 70, loss@min: 0.970897, loss@max: 1.375882, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 70, LS: 1.643163, LT: 1.624859, Top1S: 67.257683, Top1T: 67.316788 +Train:epoch: 71, loss@min: 0.962472, loss@max: 1.382811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 1.643004, LT: 1.624634, Top1S: 67.316788, Top1T: 67.198578 +Train:epoch: 72, loss@min: 0.961867, loss@max: 1.373072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.644109, LT: 1.625916, Top1S: 67.257683, Top1T: 67.257683 +Train:epoch: 73, loss@min: 0.965656, loss@max: 1.376227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.646823, LT: 1.628726, Top1S: 66.843971, Top1T: 67.021278 +Train:epoch: 74, loss@min: 0.960395, loss@max: 1.376175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.650702, LT: 1.631743, Top1S: 66.784866, Top1T: 66.962173 +Train:epoch: 75, loss@min: 0.959033, loss@max: 1.375041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.654167, LT: 1.634734, Top1S: 66.725769, Top1T: 66.784866 +Train:epoch: 76, loss@min: 0.963121, loss@max: 1.373901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.657076, LT: 1.638470, Top1S: 66.784866, Top1T: 66.784866 +Train:epoch: 77, loss@min: 0.963814, loss@max: 1.373446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.662366, LT: 1.643071, Top1S: 66.962173, Top1T: 67.021278 +Train:epoch: 78, loss@min: 0.961156, loss@max: 1.369919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.667290, LT: 1.647154, Top1S: 67.021278, Top1T: 67.257683 +Train:epoch: 79, loss@min: 0.959902, loss@max: 1.380666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.671268, LT: 1.651812, Top1S: 67.139481, Top1T: 67.021278 +Train:epoch: 80, loss@min: 0.961003, loss@max: 1.377065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.673722, LT: 1.654737, Top1S: 67.198578, Top1T: 67.139481 +Train:epoch: 81, loss@min: 0.966301, loss@max: 1.375846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.673354, LT: 1.654096, Top1S: 67.434990, Top1T: 67.257683 +Train:epoch: 82, loss@min: 0.958813, loss@max: 1.372133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.672646, LT: 1.653417, Top1S: 67.375885, Top1T: 67.375885 +Train:epoch: 83, loss@min: 0.958338, loss@max: 1.376192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.672962, LT: 1.653432, Top1S: 67.553192, Top1T: 67.494087 +Train:epoch: 84, loss@min: 0.958911, loss@max: 1.371580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.674111, LT: 1.654134, Top1S: 67.671394, Top1T: 67.671394 +Train:epoch: 85, loss@min: 0.963670, loss@max: 1.375388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.676098, LT: 1.656538, Top1S: 67.671394, Top1T: 67.434990 +Train:epoch: 86, loss@min: 0.962100, loss@max: 1.376739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.678818, LT: 1.659009, Top1S: 67.612289, Top1T: 67.553192 +Train:epoch: 87, loss@min: 0.956160, loss@max: 1.372021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.681637, LT: 1.661771, Top1S: 67.553192, Top1T: 67.612289 +Train:epoch: 88, loss@min: 0.959824, loss@max: 1.372571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.685004, LT: 1.665034, Top1S: 67.612289, Top1T: 67.612289 +Train:epoch: 89, loss@min: 0.963032, loss@max: 1.374857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.688296, LT: 1.668247, Top1S: 67.612289, Top1T: 67.612289 +Train:epoch: 90, loss@min: 0.956564, loss@max: 1.370040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.690302, LT: 1.670764, Top1S: 67.612289, Top1T: 67.671394 +Train:epoch: 91, loss@min: 0.959986, loss@max: 1.374382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.691687, LT: 1.672261, Top1S: 67.671394, Top1T: 67.553192 +Train:epoch: 92, loss@min: 0.957289, loss@max: 1.373633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.691533, LT: 1.671887, Top1S: 67.553192, Top1T: 67.671394 +Train:epoch: 93, loss@min: 0.958876, loss@max: 1.376291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.690714, LT: 1.671444, Top1S: 67.434990, Top1T: 67.434990 +Train:epoch: 94, loss@min: 0.981068, loss@max: 1.382796, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 1.691472, LT: 1.672402, Top1S: 67.434990, Top1T: 67.316788 +Train:epoch: 95, loss@min: 0.958496, loss@max: 1.372456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.693006, LT: 1.673649, Top1S: 67.375885, Top1T: 67.316788 +Train:epoch: 96, loss@min: 0.956948, loss@max: 1.370235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.693982, LT: 1.674389, Top1S: 67.257683, Top1T: 67.257683 +Train:epoch: 97, loss@min: 0.967086, loss@max: 1.381849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.695920, LT: 1.676389, Top1S: 67.375885, Top1T: 67.257683 +Train:epoch: 98, loss@min: 0.955763, loss@max: 1.370637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.698286, LT: 1.678444, Top1S: 67.375885, Top1T: 67.198578 +Train:epoch: 99, loss@min: 0.959836, loss@max: 1.373313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.699280, LT: 1.679352, Top1S: 67.434990, Top1T: 67.257683 +Train:epoch: 100, loss@min: 0.960556, loss@max: 1.371905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.699927, LT: 1.679924, Top1S: 67.553192, Top1T: 67.316788 +Train:epoch: 101, loss@min: 0.959163, loss@max: 1.374021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.700985, LT: 1.680898, Top1S: 67.612289, Top1T: 67.316788 +Train:epoch: 102, loss@min: 0.956638, loss@max: 1.372563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.702335, LT: 1.681882, Top1S: 67.553192, Top1T: 67.257683 +Train:epoch: 103, loss@min: 0.954418, loss@max: 1.367355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.702939, LT: 1.682185, Top1S: 67.671394, Top1T: 67.375885 +Train:epoch: 104, loss@min: 0.957280, loss@max: 1.370195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.703954, LT: 1.683229, Top1S: 67.553192, Top1T: 67.375885 +Train:epoch: 105, loss@min: 0.956752, loss@max: 1.371942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.704949, LT: 1.684323, Top1S: 67.612289, Top1T: 67.434990 +Train:epoch: 106, loss@min: 0.958887, loss@max: 1.376155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.706240, LT: 1.685344, Top1S: 67.671394, Top1T: 67.375885 +Train:epoch: 107, loss@min: 0.958301, loss@max: 1.372374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.707907, LT: 1.686857, Top1S: 67.553192, Top1T: 67.080376 +Train:epoch: 108, loss@min: 0.954924, loss@max: 1.371879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.708731, LT: 1.687897, Top1S: 67.434990, Top1T: 67.257683 +Train:epoch: 109, loss@min: 0.957180, loss@max: 1.374277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.709262, LT: 1.688925, Top1S: 67.494087, Top1T: 67.375885 +Train:epoch: 110, loss@min: 0.957480, loss@max: 1.371125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.709745, LT: 1.689628, Top1S: 67.612289, Top1T: 67.375885 +Train:epoch: 111, loss@min: 0.960118, loss@max: 1.370857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.710354, LT: 1.690134, Top1S: 67.553192, Top1T: 67.434990 +Train:epoch: 112, loss@min: 0.962380, loss@max: 1.375161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.710916, LT: 1.690745, Top1S: 67.434990, Top1T: 67.494087 +Train:epoch: 113, loss@min: 0.957030, loss@max: 1.368759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.711631, LT: 1.691642, Top1S: 67.375885, Top1T: 67.434990 +Train:epoch: 114, loss@min: 0.956392, loss@max: 1.373659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.712258, LT: 1.692360, Top1S: 67.316788, Top1T: 67.375885 +Train:epoch: 115, loss@min: 0.957561, loss@max: 1.374459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.712479, LT: 1.692610, Top1S: 67.316788, Top1T: 67.494087 +Train:epoch: 116, loss@min: 0.955211, loss@max: 1.372493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.712619, LT: 1.692719, Top1S: 67.375885, Top1T: 67.375885 +Train:epoch: 117, loss@min: 0.956720, loss@max: 1.369638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.712724, LT: 1.692761, Top1S: 67.494087, Top1T: 67.375885 +Train:epoch: 118, loss@min: 0.958651, loss@max: 1.373161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.713107, LT: 1.693060, Top1S: 67.553192, Top1T: 67.375885 +Train:epoch: 119, loss@min: 0.958213, loss@max: 1.371227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.713574, LT: 1.693496, Top1S: 67.612289, Top1T: 67.434990 +Train:epoch: 120, loss@min: 0.963248, loss@max: 1.374694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.713828, LT: 1.693800, Top1S: 67.671394, Top1T: 67.434990 +Train:epoch: 121, loss@min: 0.957138, loss@max: 1.371673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.714074, LT: 1.694046, Top1S: 67.789597, Top1T: 67.434990 +Train:epoch: 122, loss@min: 0.954499, loss@max: 1.369508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.714507, LT: 1.694430, Top1S: 67.848701, Top1T: 67.257683 +Train:epoch: 123, loss@min: 0.957995, loss@max: 1.374213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.715165, LT: 1.695085, Top1S: 67.848701, Top1T: 67.375885 +Train:epoch: 124, loss@min: 0.959248, loss@max: 1.373124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.715662, LT: 1.695526, Top1S: 67.848701, Top1T: 67.434990 +Train:epoch: 125, loss@min: 0.958415, loss@max: 1.371620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.715905, LT: 1.695725, Top1S: 67.789597, Top1T: 67.494087 +Train:epoch: 126, loss@min: 0.960439, loss@max: 1.373146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.716238, LT: 1.695971, Top1S: 67.907799, Top1T: 67.730499 +Train:epoch: 127, loss@min: 0.967890, loss@max: 1.374974, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 1.716467, LT: 1.696159, Top1S: 67.907799, Top1T: 67.612289 +Train:epoch: 128, loss@min: 0.956025, loss@max: 1.370068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.716550, LT: 1.696261, Top1S: 67.907799, Top1T: 67.553192 +Train:epoch: 129, loss@min: 0.958998, loss@max: 1.371137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.716657, LT: 1.696408, Top1S: 67.848701, Top1T: 67.553192 +Train:epoch: 130, loss@min: 0.960638, loss@max: 1.373687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.716826, LT: 1.696548, Top1S: 67.848701, Top1T: 67.553192 +Train:epoch: 131, loss@min: 0.956082, loss@max: 1.367853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.717004, LT: 1.696682, Top1S: 67.848701, Top1T: 67.553192 +Train:epoch: 132, loss@min: 0.956396, loss@max: 1.373644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.717261, LT: 1.696927, Top1S: 67.848701, Top1T: 67.494087 +Train:epoch: 133, loss@min: 0.955982, loss@max: 1.372582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.717565, LT: 1.697232, Top1S: 67.848701, Top1T: 67.494087 +Train:epoch: 134, loss@min: 0.956960, loss@max: 1.370200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.717872, LT: 1.697527, Top1S: 67.789597, Top1T: 67.553192 +Train:epoch: 135, loss@min: 0.957761, loss@max: 1.370348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.718124, LT: 1.697765, Top1S: 67.789597, Top1T: 67.494087 +Train:epoch: 136, loss@min: 0.959779, loss@max: 1.373435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.718321, LT: 1.697961, Top1S: 67.789597, Top1T: 67.494087 +Train:epoch: 137, loss@min: 0.957994, loss@max: 1.373928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.718476, LT: 1.698108, Top1S: 67.730499, Top1T: 67.553192 +Train:epoch: 138, loss@min: 0.953653, loss@max: 1.368032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.718515, LT: 1.698150, Top1S: 67.730499, Top1T: 67.553192 +Train:epoch: 139, loss@min: 0.953872, loss@max: 1.368220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.718559, LT: 1.698202, Top1S: 67.730499, Top1T: 67.553192 +Train:epoch: 140, loss@min: 0.956599, loss@max: 1.368490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.718584, LT: 1.698231, Top1S: 67.671394, Top1T: 67.553192 +Train:epoch: 141, loss@min: 0.955356, loss@max: 1.369958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.718632, LT: 1.698276, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 142, loss@min: 0.958173, loss@max: 1.373348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.718670, LT: 1.698318, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 143, loss@min: 0.962683, loss@max: 1.375437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.718695, LT: 1.698344, Top1S: 67.671394, Top1T: 67.553192 +Train:epoch: 144, loss@min: 0.960453, loss@max: 1.372471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.718714, LT: 1.698365, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 145, loss@min: 0.953871, loss@max: 1.366233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.718723, LT: 1.698377, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 146, loss@min: 0.961428, loss@max: 1.371582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.718717, LT: 1.698376, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 147, loss@min: 0.963139, loss@max: 1.378011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.718713, LT: 1.698375, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 148, loss@min: 0.955702, loss@max: 1.368839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.718712, LT: 1.698375, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 149, loss@min: 0.957137, loss@max: 1.372614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.718712, LT: 1.698374, Top1S: 67.671394, Top1T: 67.612289 +Train:epoch: 150, loss@min: 0.954858, loss@max: 1.369850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.718711, LT: 1.698374, Top1S: 67.671394, Top1T: 67.612289 +------------------------------------------- +Mon Aug 7 14:27:07 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Mon Aug 7 15:41:49 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.495896, loss@max: 1.626693, Top1S acc: 100.000000, Top1T acc: 43.125000 +Train:epoch: 2, loss@min: 4.236727, loss@max: 1.732922, Top1S acc: 100.000000, Top1T acc: 45.000000 +Train:epoch: 3, loss@min: 3.888692, loss@max: 1.811280, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.435678, loss@max: 1.835080, Top1S acc: 100.000000, Top1T acc: 56.875000 +Train:epoch: 5, loss@min: 3.085353, loss@max: 1.875581, Top1S acc: 100.000000, Top1T acc: 60.625000 +Train:epoch: 6, loss@min: 2.762347, loss@max: 1.888584, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.775764, loss@max: 1.960225, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.413445, loss@max: 1.907312, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 9, loss@min: 2.352684, loss@max: 1.910118, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 10, loss@min: 2.265740, loss@max: 1.884597, Top1S acc: 100.000000, Top1T acc: 76.875000 +Train:epoch: 11, loss@min: 2.311615, loss@max: 1.895522, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 12, loss@min: 2.149911, loss@max: 1.831583, Top1S acc: 100.000000, Top1T acc: 77.500000 +Train:epoch: 13, loss@min: 2.100099, loss@max: 1.791352, Top1S acc: 100.000000, Top1T acc: 81.875000 +Train:epoch: 14, loss@min: 2.080620, loss@max: 1.756637, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 15, loss@min: 1.971717, loss@max: 1.706969, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 16, loss@min: 1.910148, loss@max: 1.674990, Top1S acc: 100.000000, Top1T acc: 85.625000 +Train:epoch: 17, loss@min: 1.986447, loss@max: 1.668581, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 18, loss@min: 1.887693, loss@max: 1.633825, Top1S acc: 100.000000, Top1T acc: 83.125000 +Train:epoch: 19, loss@min: 1.804072, loss@max: 1.602845, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 20, loss@min: 1.723743, loss@max: 1.587274, Top1S acc: 100.000000, Top1T acc: 91.875000 + Test:epoch: 20, LS: 0.614439, LT: 0.606849, Top1S: 79.395065, Top1T: 79.679008Best acc: 79.679008 +Train:epoch: 21, loss@min: 1.653637, loss@max: 1.561004, Top1S acc: 100.000000, Top1T acc: 88.750000 + Test:epoch: 21, LS: 0.603467, LT: 0.595186, Top1S: 79.827164, Top1T: 79.901237Best acc: 79.901237 +Train:epoch: 22, loss@min: 1.733631, loss@max: 1.593723, Top1S acc: 100.000000, Top1T acc: 88.750000 + Test:epoch: 22, LS: 0.591512, LT: 0.582420, Top1S: 80.098763, Top1T: 80.407410Best acc: 80.407410 +Train:epoch: 23, loss@min: 1.622133, loss@max: 1.578871, Top1S acc: 100.000000, Top1T acc: 91.250000 + Test:epoch: 23, LS: 0.581037, LT: 0.571046, Top1S: 80.444443, Top1T: 80.864197Best acc: 80.864197 +Train:epoch: 24, loss@min: 1.583836, loss@max: 1.577300, Top1S acc: 100.000000, Top1T acc: 93.125000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 15:49:19 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.495896, loss@max: 1.626693, Top1S acc: 100.000000, Top1T acc: 43.125000 +Train:epoch: 2, loss@min: 4.236727, loss@max: 1.732922, Top1S acc: 100.000000, Top1T acc: 45.000000 +Train:epoch: 3, loss@min: 3.888692, loss@max: 1.811280, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.435678, loss@max: 1.835080, Top1S acc: 100.000000, Top1T acc: 56.875000 +Train:epoch: 5, loss@min: 3.085353, loss@max: 1.875581, Top1S acc: 100.000000, Top1T acc: 60.625000 +Train:epoch: 6, loss@min: 2.762347, loss@max: 1.888584, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.775764, loss@max: 1.960225, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.413445, loss@max: 1.907312, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 9, loss@min: 2.352684, loss@max: 1.910118, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 10, loss@min: 2.265740, loss@max: 1.884597, Top1S acc: 100.000000, Top1T acc: 76.875000 +Train:epoch: 11, loss@min: 2.311615, loss@max: 1.895522, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 12, loss@min: 2.149911, loss@max: 1.831583, Top1S acc: 100.000000, Top1T acc: 77.500000 +Train:epoch: 13, loss@min: 2.100099, loss@max: 1.791352, Top1S acc: 100.000000, Top1T acc: 81.875000 +Train:epoch: 14, loss@min: 2.080620, loss@max: 1.756637, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 15, loss@min: 1.971717, loss@max: 1.706969, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 16, loss@min: 1.910148, loss@max: 1.674990, Top1S acc: 100.000000, Top1T acc: 85.625000 +Train:epoch: 17, loss@min: 1.986447, loss@max: 1.668581, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 18, loss@min: 1.887693, loss@max: 1.633825, Top1S acc: 100.000000, Top1T acc: 83.125000 +Train:epoch: 19, loss@min: 1.804072, loss@max: 1.602845, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 20, loss@min: 1.723743, loss@max: 1.587274, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 21, loss@min: 1.788424, loss@max: 1.605476, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 22, loss@min: 1.676770, loss@max: 1.591185, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 23, loss@min: 1.658664, loss@max: 1.587923, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 24, loss@min: 1.591871, loss@max: 1.597094, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.582677, loss@max: 1.602146, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 26, loss@min: 1.605384, loss@max: 1.627574, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 27, loss@min: 1.492170, loss@max: 1.579846, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 28, loss@min: 1.487031, loss@max: 1.601091, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 29, loss@min: 1.505971, loss@max: 1.619807, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 30, loss@min: 1.583596, loss@max: 1.654434, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 31, loss@min: 1.468526, loss@max: 1.616197, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 32, loss@min: 1.418298, loss@max: 1.615954, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 33, loss@min: 1.347404, loss@max: 1.602438, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 34, loss@min: 1.381257, loss@max: 1.605908, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 35, loss@min: 1.318509, loss@max: 1.594497, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 36, loss@min: 1.344931, loss@max: 1.606309, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 37, loss@min: 1.337708, loss@max: 1.591551, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 38, loss@min: 1.384434, loss@max: 1.611075, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 39, loss@min: 1.357059, loss@max: 1.598571, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 40, loss@min: 1.271573, loss@max: 1.557153, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 41, loss@min: 1.289243, loss@max: 1.542156, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 42, loss@min: 1.383100, loss@max: 1.575701, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 43, loss@min: 1.304666, loss@max: 1.543986, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 44, loss@min: 1.383066, loss@max: 1.568628, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 45, loss@min: 1.351128, loss@max: 1.572279, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 46, loss@min: 1.337692, loss@max: 1.566261, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 47, loss@min: 1.224537, loss@max: 1.535367, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 48, loss@min: 1.259573, loss@max: 1.554581, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 49, loss@min: 1.264799, loss@max: 1.542035, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 50, loss@min: 1.252737, loss@max: 1.547521, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 51, loss@min: 1.305886, loss@max: 1.573505, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 52, loss@min: 1.269317, loss@max: 1.544944, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 53, loss@min: 1.226656, loss@max: 1.543296, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 54, loss@min: 1.216814, loss@max: 1.537933, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 55, loss@min: 1.209289, loss@max: 1.529538, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 56, loss@min: 1.151909, loss@max: 1.527187, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 57, loss@min: 1.221541, loss@max: 1.547814, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 58, loss@min: 1.218607, loss@max: 1.536364, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 59, loss@min: 1.248393, loss@max: 1.558463, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 60, loss@min: 1.135337, loss@max: 1.509510, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 61, loss@min: 1.148349, loss@max: 1.512719, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 62, loss@min: 1.163097, loss@max: 1.515038, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 63, loss@min: 1.160526, loss@max: 1.515082, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 64, loss@min: 1.187717, loss@max: 1.523663, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 65, loss@min: 1.136668, loss@max: 1.506164, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 66, loss@min: 1.178773, loss@max: 1.514468, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 67, loss@min: 1.132155, loss@max: 1.493847, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 68, loss@min: 1.166523, loss@max: 1.514717, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 69, loss@min: 1.108825, loss@max: 1.479955, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 70, loss@min: 1.115304, loss@max: 1.492637, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 71, loss@min: 1.102262, loss@max: 1.475884, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 72, loss@min: 1.079080, loss@max: 1.475046, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 73, loss@min: 1.089061, loss@max: 1.470969, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 74, loss@min: 1.152254, loss@max: 1.501000, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 75, loss@min: 1.100207, loss@max: 1.470019, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 76, loss@min: 1.090354, loss@max: 1.479235, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 77, loss@min: 1.110409, loss@max: 1.492464, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 78, loss@min: 1.161663, loss@max: 1.509562, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 79, loss@min: 1.080626, loss@max: 1.471288, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 80, loss@min: 1.106582, loss@max: 1.484880, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 80, LS: 0.510410, LT: 0.508195, Top1S: 83.629631, Top1T: 83.641975Best acc: 83.641975 +Train:epoch: 81, loss@min: 1.086227, loss@max: 1.483698, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 81, LS: 0.507641, LT: 0.505966, Top1S: 83.691360, Top1T: 83.666664Best acc: 83.666664 +Train:epoch: 82, loss@min: 1.055948, loss@max: 1.459753, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 82, LS: 0.505231, LT: 0.504043, Top1S: 83.814812, Top1T: 83.716049Best acc: 83.716049 +Train:epoch: 83, loss@min: 1.083643, loss@max: 1.469291, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 83, LS: 0.503649, LT: 0.502777, Top1S: 83.864197, Top1T: 83.777779Best acc: 83.777779 +Train:epoch: 84, loss@min: 1.108751, loss@max: 1.492386, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 84, LS: 0.503593, LT: 0.502652, Top1S: 83.864197, Top1T: 83.888885Best acc: 83.888885 +Train:epoch: 85, loss@min: 1.085457, loss@max: 1.470358, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 85, LS: 0.504275, LT: 0.503184, Top1S: 83.925926, Top1T: 83.938271Best acc: 83.938271 +Train:epoch: 86, loss@min: 1.131650, loss@max: 1.480494, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 86, LS: 0.506475, LT: 0.505225, Top1S: 83.864197, Top1T: 83.839508 +Train:epoch: 87, loss@min: 1.079876, loss@max: 1.474824, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 87, LS: 0.507908, LT: 0.506445, Top1S: 83.925926, Top1T: 83.753090 +Train:epoch: 88, loss@min: 1.095575, loss@max: 1.482755, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 88, LS: 0.508448, LT: 0.506731, Top1S: 83.950615, Top1T: 83.864197 +Train:epoch: 89, loss@min: 1.104899, loss@max: 1.479742, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 89, LS: 0.509167, LT: 0.507483, Top1S: 83.925926, Top1T: 83.925926 +Train:epoch: 90, loss@min: 1.093766, loss@max: 1.476206, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 90, LS: 0.510081, LT: 0.508503, Top1S: 83.962959, Top1T: 83.901237 +Train:epoch: 91, loss@min: 1.090983, loss@max: 1.475074, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 91, LS: 0.509783, LT: 0.508367, Top1S: 83.901237, Top1T: 83.864197 +Train:epoch: 92, loss@min: 1.090302, loss@max: 1.468133, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 92, LS: 0.509530, LT: 0.508384, Top1S: 83.962959, Top1T: 83.876541 +Train:epoch: 93, loss@min: 1.098657, loss@max: 1.485030, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 93, LS: 0.510634, LT: 0.509850, Top1S: 83.938271, Top1T: 83.925926 +Train:epoch: 94, loss@min: 1.078393, loss@max: 1.471387, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 94, LS: 0.511646, LT: 0.511003, Top1S: 83.901237, Top1T: 83.938271 +Train:epoch: 95, loss@min: 1.060485, loss@max: 1.453931, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 95, LS: 0.512685, LT: 0.511901, Top1S: 83.901237, Top1T: 83.901237 +Train:epoch: 96, loss@min: 1.081063, loss@max: 1.469008, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 96, LS: 0.512575, LT: 0.511279, Top1S: 83.975311, Top1T: 83.925926 +Train:epoch: 97, loss@min: 1.091250, loss@max: 1.469679, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 97, LS: 0.512494, LT: 0.510681, Top1S: 83.888885, Top1T: 83.925926 +Train:epoch: 98, loss@min: 1.099142, loss@max: 1.472325, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 98, LS: 0.513397, LT: 0.511218, Top1S: 83.950615, Top1T: 83.925926 +Train:epoch: 99, loss@min: 1.074475, loss@max: 1.469781, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 99, LS: 0.513770, LT: 0.511518, Top1S: 83.987656, Top1T: 83.938271 +Train:epoch: 100, loss@min: 1.101048, loss@max: 1.480378, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 100, LS: 0.512769, LT: 0.510379, Top1S: 84.098763, Top1T: 83.975311Best acc: 83.975311 +Train:epoch: 101, loss@min: 1.048346, loss@max: 1.451856, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 101, LS: 0.512669, LT: 0.510290, Top1S: 84.086418, Top1T: 84.049385Best acc: 84.049385 +Train:epoch: 102, loss@min: 1.070415, loss@max: 1.467825, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 102, LS: 0.512384, LT: 0.510085, Top1S: 84.098763, Top1T: 84.086418Best acc: 84.086418 +Train:epoch: 103, loss@min: 1.082093, loss@max: 1.468673, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 103, LS: 0.512302, LT: 0.510121, Top1S: 84.123459, Top1T: 84.098763Best acc: 84.098763 +Train:epoch: 104, loss@min: 1.076544, loss@max: 1.468309, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 104, LS: 0.512688, LT: 0.510723, Top1S: 84.074074, Top1T: 84.086418 +Train:epoch: 105, loss@min: 1.079140, loss@max: 1.470156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.513960, LT: 0.512200, Top1S: 84.086418, Top1T: 84.024689 +Train:epoch: 106, loss@min: 1.051662, loss@max: 1.449522, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 106, LS: 0.515238, LT: 0.513548, Top1S: 84.024689, Top1T: 84.037033 +Train:epoch: 107, loss@min: 1.079089, loss@max: 1.462271, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 107, LS: 0.517018, LT: 0.515366, Top1S: 83.950615, Top1T: 83.962959 +Train:epoch: 108, loss@min: 1.087610, loss@max: 1.460361, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 108, LS: 0.518566, LT: 0.516917, Top1S: 83.950615, Top1T: 83.864197 +Train:epoch: 109, loss@min: 1.058967, loss@max: 1.464794, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 109, LS: 0.520154, LT: 0.518545, Top1S: 83.888885, Top1T: 83.802467 +Train:epoch: 110, loss@min: 1.065558, loss@max: 1.455006, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 110, LS: 0.521624, LT: 0.520111, Top1S: 83.864197, Top1T: 83.740738 +Train:epoch: 111, loss@min: 1.069419, loss@max: 1.467371, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 111, LS: 0.523400, LT: 0.521991, Top1S: 83.864197, Top1T: 83.777779 +Train:epoch: 112, loss@min: 1.046640, loss@max: 1.451834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.524879, LT: 0.523541, Top1S: 83.802467, Top1T: 83.728394 +Train:epoch: 113, loss@min: 1.078108, loss@max: 1.460697, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 113, LS: 0.524442, LT: 0.523169, Top1S: 83.839508, Top1T: 83.728394 +Train:epoch: 114, loss@min: 1.047904, loss@max: 1.453152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.523852, LT: 0.522601, Top1S: 83.827164, Top1T: 83.703705 +Train:epoch: 115, loss@min: 1.037038, loss@max: 1.447664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.523777, LT: 0.522475, Top1S: 83.851852, Top1T: 83.716049 +Train:epoch: 116, loss@min: 1.075595, loss@max: 1.465388, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 116, LS: 0.522731, LT: 0.521370, Top1S: 83.802467, Top1T: 83.679008 +Train:epoch: 117, loss@min: 1.022864, loss@max: 1.440549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.521658, LT: 0.520257, Top1S: 83.765434, Top1T: 83.740738 +Train:epoch: 118, loss@min: 1.071313, loss@max: 1.467663, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 118, LS: 0.520408, LT: 0.518876, Top1S: 83.802467, Top1T: 83.802467 +Train:epoch: 119, loss@min: 1.066067, loss@max: 1.460393, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 119, LS: 0.519440, LT: 0.517762, Top1S: 83.814812, Top1T: 83.827164 +Train:epoch: 120, loss@min: 1.067786, loss@max: 1.467788, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 120, LS: 0.518775, LT: 0.516994, Top1S: 83.814812, Top1T: 83.814812 +Train:epoch: 121, loss@min: 1.115677, loss@max: 1.477713, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 121, LS: 0.518393, LT: 0.516526, Top1S: 83.827164, Top1T: 83.839508 +Train:epoch: 122, loss@min: 1.058692, loss@max: 1.454378, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 122, LS: 0.518432, LT: 0.516500, Top1S: 83.777779, Top1T: 83.839508 +Train:epoch: 123, loss@min: 1.102646, loss@max: 1.471263, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 123, LS: 0.518315, LT: 0.516342, Top1S: 83.814812, Top1T: 83.888885 +Train:epoch: 124, loss@min: 1.056777, loss@max: 1.456177, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 124, LS: 0.518253, LT: 0.516264, Top1S: 83.802467, Top1T: 83.938271 +Train:epoch: 125, loss@min: 1.095416, loss@max: 1.464857, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 125, LS: 0.518129, LT: 0.516134, Top1S: 83.827164, Top1T: 83.975311 +Train:epoch: 126, loss@min: 1.095246, loss@max: 1.465458, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 126, LS: 0.517975, LT: 0.516039, Top1S: 83.839508, Top1T: 83.987656 +Train:epoch: 127, loss@min: 1.048710, loss@max: 1.446624, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 127, LS: 0.517969, LT: 0.516107, Top1S: 83.851852, Top1T: 84.024689 +Train:epoch: 128, loss@min: 1.083405, loss@max: 1.455792, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 128, LS: 0.518135, LT: 0.516352, Top1S: 83.938271, Top1T: 84.000000 +Train:epoch: 129, loss@min: 1.058767, loss@max: 1.459909, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 129, LS: 0.518176, LT: 0.516467, Top1S: 83.950615, Top1T: 84.012344 +Train:epoch: 130, loss@min: 1.076280, loss@max: 1.463278, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 130, LS: 0.518305, LT: 0.516670, Top1S: 83.938271, Top1T: 84.012344 +Train:epoch: 131, loss@min: 1.068336, loss@max: 1.454934, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 131, LS: 0.518441, LT: 0.516854, Top1S: 83.950615, Top1T: 84.024689 +Train:epoch: 132, loss@min: 1.118963, loss@max: 1.477736, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 132, LS: 0.518707, LT: 0.517151, Top1S: 83.938271, Top1T: 84.024689 +Train:epoch: 133, loss@min: 1.028688, loss@max: 1.445875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.518972, LT: 0.517440, Top1S: 83.975311, Top1T: 83.987656 +Train:epoch: 134, loss@min: 1.061608, loss@max: 1.450494, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 134, LS: 0.519216, LT: 0.517688, Top1S: 83.950615, Top1T: 83.950615 +Train:epoch: 135, loss@min: 1.091826, loss@max: 1.474989, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 135, LS: 0.519506, LT: 0.517981, Top1S: 83.913582, Top1T: 83.925926 +Train:epoch: 136, loss@min: 1.050000, loss@max: 1.447847, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 136, LS: 0.519642, LT: 0.518105, Top1S: 83.901237, Top1T: 83.925926 +Train:epoch: 137, loss@min: 1.098920, loss@max: 1.476658, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 137, LS: 0.519861, LT: 0.518319, Top1S: 83.913582, Top1T: 83.950615 +Train:epoch: 138, loss@min: 1.050416, loss@max: 1.449950, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 138, LS: 0.520110, LT: 0.518558, Top1S: 83.913582, Top1T: 83.938271 +Train:epoch: 139, loss@min: 1.093777, loss@max: 1.479796, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 139, LS: 0.520322, LT: 0.518759, Top1S: 83.901237, Top1T: 83.925926 +Train:epoch: 140, loss@min: 1.079828, loss@max: 1.462191, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 140, LS: 0.520493, LT: 0.518917, Top1S: 83.901237, Top1T: 83.938271 +Train:epoch: 141, loss@min: 1.099514, loss@max: 1.468159, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 141, LS: 0.520610, LT: 0.519022, Top1S: 83.901237, Top1T: 83.938271 +Train:epoch: 142, loss@min: 1.069921, loss@max: 1.457387, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 142, LS: 0.520664, LT: 0.519065, Top1S: 83.901237, Top1T: 83.938271 +Train:epoch: 143, loss@min: 1.044379, loss@max: 1.457057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.520698, LT: 0.519090, Top1S: 83.901237, Top1T: 83.950615 +Train:epoch: 144, loss@min: 1.070181, loss@max: 1.459880, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 144, LS: 0.520728, LT: 0.519115, Top1S: 83.888885, Top1T: 83.938271 +Train:epoch: 145, loss@min: 1.049453, loss@max: 1.444158, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 145, LS: 0.520747, LT: 0.519132, Top1S: 83.888885, Top1T: 83.938271 +Train:epoch: 146, loss@min: 1.112298, loss@max: 1.474102, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 146, LS: 0.520752, LT: 0.519137, Top1S: 83.888885, Top1T: 83.938271 +Train:epoch: 147, loss@min: 1.079124, loss@max: 1.460140, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 147, LS: 0.520752, LT: 0.519137, Top1S: 83.888885, Top1T: 83.938271 +Train:epoch: 148, loss@min: 1.088245, loss@max: 1.471247, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 148, LS: 0.520752, LT: 0.519136, Top1S: 83.888885, Top1T: 83.938271 +Train:epoch: 149, loss@min: 1.061926, loss@max: 1.459387, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 149, LS: 0.520752, LT: 0.519136, Top1S: 83.888885, Top1T: 83.938271 +Train:epoch: 150, loss@min: 1.057949, loss@max: 1.457646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.520752, LT: 0.519136, Top1S: 83.888885, Top1T: 83.938271 +------------------------------------------- +Mon Aug 7 17:38:31 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 17:44:02 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.545805, loss@max: 1.648167, Top1S acc: 100.000000, Top1T acc: 37.500000 +Train:epoch: 2, loss@min: 4.245709, loss@max: 1.745476, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.428816, loss@max: 1.709659, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 4, loss@min: 3.291957, loss@max: 1.806221, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 5, loss@min: 2.914853, loss@max: 1.836718, Top1S acc: 100.000000, Top1T acc: 63.750000 +Train:epoch: 6, loss@min: 2.578296, loss@max: 1.860851, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 7, loss@min: 2.459146, loss@max: 1.894671, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 8, loss@min: 2.285036, loss@max: 1.901622, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.932520, loss@max: 1.808365, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.036871, loss@max: 1.843901, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 11, loss@min: 1.893832, loss@max: 1.787871, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 12, loss@min: 1.908532, loss@max: 1.772479, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.779919, loss@max: 1.692828, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.804586, loss@max: 1.667171, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 15, loss@min: 1.632182, loss@max: 1.595856, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 16, loss@min: 1.734632, loss@max: 1.598664, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 17, loss@min: 1.661357, loss@max: 1.575798, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 18, loss@min: 1.669431, loss@max: 1.564155, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.526344, loss@max: 1.527712, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 1.567609, loss@max: 1.530768, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.536082, loss@max: 1.532897, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.435277, loss@max: 1.503463, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 23, loss@min: 1.425685, loss@max: 1.508926, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.453198, loss@max: 1.522441, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 25, loss@min: 1.312369, loss@max: 1.491127, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.416734, loss@max: 1.542100, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 27, loss@min: 1.294314, loss@max: 1.510915, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 28, loss@min: 1.275632, loss@max: 1.504360, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.223449, loss@max: 1.502376, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 30, loss@min: 1.227491, loss@max: 1.511826, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.243674, loss@max: 1.546693, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.183166, loss@max: 1.528310, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 33, loss@min: 1.187017, loss@max: 1.537916, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 34, loss@min: 1.086095, loss@max: 1.496599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.199433, loss@max: 1.545557, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.187018, loss@max: 1.540032, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.153639, loss@max: 1.524265, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 38, loss@min: 1.120689, loss@max: 1.493577, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 39, loss@min: 1.107974, loss@max: 1.477439, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.182238, loss@max: 1.491586, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.125979, loss@max: 1.476393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.134057, loss@max: 1.464443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.138463, loss@max: 1.464948, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.109963, loss@max: 1.458166, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.081514, loss@max: 1.447013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.089407, loss@max: 1.445021, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 47, loss@min: 1.109486, loss@max: 1.478208, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.116412, loss@max: 1.470038, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.070516, loss@max: 1.440999, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.077293, loss@max: 1.457825, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.103842, loss@max: 1.472117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.035840, loss@max: 1.437592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.053821, loss@max: 1.454472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.051951, loss@max: 1.458960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.029986, loss@max: 1.439291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.056519, loss@max: 1.468509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.018945, loss@max: 1.441385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.031199, loss@max: 1.454101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.036592, loss@max: 1.442280, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.055656, loss@max: 1.462198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.058307, loss@max: 1.446818, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 62, loss@min: 1.060795, loss@max: 1.447505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.072382, loss@max: 1.457679, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 64, loss@min: 1.040077, loss@max: 1.444376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.020805, loss@max: 1.431357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.071251, loss@max: 1.451610, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 67, loss@min: 0.998832, loss@max: 1.415329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.025527, loss@max: 1.424666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.016111, loss@max: 1.423764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.040397, loss@max: 1.429409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.008551, loss@max: 1.412988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.038524, loss@max: 1.436895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.016887, loss@max: 1.426778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.047618, loss@max: 1.442770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.068805, loss@max: 1.455193, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 76, loss@min: 1.061472, loss@max: 1.444433, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 77, loss@min: 1.048437, loss@max: 1.447476, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 78, loss@min: 1.063368, loss@max: 1.434947, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 79, loss@min: 0.989104, loss@max: 1.410676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.000481, loss@max: 1.419669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.560590, LT: 0.559867, Top1S: 83.185188, Top1T: 83.185188Best acc: 0.000000 +Train:epoch: 81, loss@min: 1.025510, loss@max: 1.430163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.555944, LT: 0.554950, Top1S: 83.283951, Top1T: 83.197533Best acc: 0.000000 +Train:epoch: 82, loss@min: 1.054829, loss@max: 1.442007, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 82, LS: 0.548661, LT: 0.547240, Top1S: 83.345680, Top1T: 83.506172Best acc: 0.000000 +Train:epoch: 83, loss@min: 1.010193, loss@max: 1.423200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.541894, LT: 0.540130, Top1S: 83.481483, Top1T: 83.617287Best acc: 0.000000 +Train:epoch: 84, loss@min: 1.014779, loss@max: 1.430587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.538002, LT: 0.535828, Top1S: 83.790123, Top1T: 83.876541Best acc: 0.000000 +Train:epoch: 85, loss@min: 1.019848, loss@max: 1.433453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.534799, LT: 0.532702, Top1S: 83.901237, Top1T: 83.839508Best acc: 0.000000 +Train:epoch: 86, loss@min: 0.992079, loss@max: 1.413005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.533138, LT: 0.531392, Top1S: 83.864197, Top1T: 83.790123Best acc: 0.000000 +Train:epoch: 87, loss@min: 1.017245, loss@max: 1.429324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.531486, LT: 0.530400, Top1S: 83.814812, Top1T: 83.814812Best acc: 0.000000 +Train:epoch: 88, loss@min: 1.031132, loss@max: 1.426481, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 88, LS: 0.532051, LT: 0.531480, Top1S: 83.839508, Top1T: 83.839508Best acc: 0.000000 +Train:epoch: 89, loss@min: 1.006350, loss@max: 1.416817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.531991, LT: 0.531884, Top1S: 83.753090, Top1T: 83.888885Best acc: 0.000000 +Train:epoch: 90, loss@min: 0.991636, loss@max: 1.412761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.532263, LT: 0.532346, Top1S: 83.753090, Top1T: 83.864197Best acc: 0.000000 +Train:epoch: 91, loss@min: 1.004690, loss@max: 1.410737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.533924, LT: 0.534160, Top1S: 83.777779, Top1T: 83.851852Best acc: 0.000000 +Train:epoch: 92, loss@min: 0.992281, loss@max: 1.405290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.537017, LT: 0.537333, Top1S: 83.777779, Top1T: 83.839508Best acc: 0.000000 +Train:epoch: 93, loss@min: 0.998178, loss@max: 1.410442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.539180, LT: 0.539482, Top1S: 83.802467, Top1T: 83.777779Best acc: 0.000000 +Train:epoch: 94, loss@min: 1.019596, loss@max: 1.418670, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 94, LS: 0.542092, LT: 0.542138, Top1S: 83.839508, Top1T: 83.753090Best acc: 0.000000 +Train:epoch: 95, loss@min: 1.000399, loss@max: 1.416230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.543389, LT: 0.543110, Top1S: 83.790123, Top1T: 83.802467Best acc: 0.000000 +Train:epoch: 96, loss@min: 1.032419, loss@max: 1.434031, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 96, LS: 0.543333, LT: 0.542741, Top1S: 83.790123, Top1T: 83.827164Best acc: 0.000000 +Train:epoch: 97, loss@min: 0.991798, loss@max: 1.408787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.543949, LT: 0.543158, Top1S: 83.740738, Top1T: 83.777779Best acc: 0.000000 +Train:epoch: 98, loss@min: 0.994531, loss@max: 1.413789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.543978, LT: 0.543230, Top1S: 83.740738, Top1T: 83.777779Best acc: 0.000000 +Train:epoch: 99, loss@min: 0.983046, loss@max: 1.401805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.543911, LT: 0.543236, Top1S: 83.814812, Top1T: 83.827164Best acc: 0.000000 +Train:epoch: 100, loss@min: 1.001162, loss@max: 1.411470, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 100, LS: 0.544781, LT: 0.544176, Top1S: 83.802467, Top1T: 83.765434Best acc: 0.000000 +Train:epoch: 101, loss@min: 0.989485, loss@max: 1.406245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.546132, LT: 0.545560, Top1S: 83.679008, Top1T: 83.790123Best acc: 0.000000 +Train:epoch: 102, loss@min: 0.996381, loss@max: 1.416435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.548251, LT: 0.547713, Top1S: 83.654320, Top1T: 83.666664Best acc: 0.000000 +Train:epoch: 103, loss@min: 1.035876, loss@max: 1.412365, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 103, LS: 0.550742, LT: 0.550222, Top1S: 83.530861, Top1T: 83.617287Best acc: 0.000000 +Train:epoch: 104, loss@min: 0.979914, loss@max: 1.394088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.553380, LT: 0.552861, Top1S: 83.506172, Top1T: 83.567902Best acc: 0.000000 +Train:epoch: 105, loss@min: 0.984213, loss@max: 1.403091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.556693, LT: 0.556017, Top1S: 83.419754, Top1T: 83.493828Best acc: 0.000000 +Train:epoch: 106, loss@min: 0.981236, loss@max: 1.394751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.559406, LT: 0.558674, Top1S: 83.345680, Top1T: 83.432098Best acc: 0.000000 +Train:epoch: 107, loss@min: 0.988717, loss@max: 1.413051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.562134, LT: 0.561273, Top1S: 83.320984, Top1T: 83.395065Best acc: 0.000000 +Train:epoch: 108, loss@min: 1.000008, loss@max: 1.414662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.564299, LT: 0.563252, Top1S: 83.320984, Top1T: 83.308640Best acc: 0.000000 +Train:epoch: 109, loss@min: 0.998792, loss@max: 1.411109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.565000, LT: 0.563697, Top1S: 83.308640, Top1T: 83.308640Best acc: 0.000000 +Train:epoch: 110, loss@min: 1.001133, loss@max: 1.414981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.565756, LT: 0.564203, Top1S: 83.333336, Top1T: 83.296295Best acc: 0.000000 +Train:epoch: 111, loss@min: 0.991965, loss@max: 1.409846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.565192, LT: 0.563599, Top1S: 83.358025, Top1T: 83.358025Best acc: 0.000000 +Train:epoch: 112, loss@min: 1.031920, loss@max: 1.429402, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 112, LS: 0.564318, LT: 0.562885, Top1S: 83.345680, Top1T: 83.395065Best acc: 0.000000 +Train:epoch: 113, loss@min: 0.987054, loss@max: 1.411139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.563649, LT: 0.562461, Top1S: 83.370369, Top1T: 83.432098Best acc: 0.000000 +Train:epoch: 114, loss@min: 1.010506, loss@max: 1.422870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.563348, LT: 0.562312, Top1S: 83.395065, Top1T: 83.407410Best acc: 0.000000 +Train:epoch: 115, loss@min: 1.005273, loss@max: 1.413577, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 115, LS: 0.561812, LT: 0.560979, Top1S: 83.469139, Top1T: 83.506172Best acc: 0.000000 +Train:epoch: 116, loss@min: 0.968607, loss@max: 1.392309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.560412, LT: 0.559746, Top1S: 83.481483, Top1T: 83.592590Best acc: 0.000000 +Train:epoch: 117, loss@min: 0.979302, loss@max: 1.400544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.559753, LT: 0.559186, Top1S: 83.592590, Top1T: 83.567902Best acc: 0.000000 +Train:epoch: 118, loss@min: 1.005085, loss@max: 1.411352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.559166, LT: 0.558687, Top1S: 83.641975, Top1T: 83.518517Best acc: 0.000000 +Train:epoch: 119, loss@min: 0.990566, loss@max: 1.409605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.558915, LT: 0.558473, Top1S: 83.604935, Top1T: 83.543213Best acc: 0.000000 +Train:epoch: 120, loss@min: 0.994669, loss@max: 1.406357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.558542, LT: 0.558125, Top1S: 83.592590, Top1T: 83.543213Best acc: 0.000000 +Train:epoch: 121, loss@min: 0.989458, loss@max: 1.407594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.558338, LT: 0.557843, Top1S: 83.567902, Top1T: 83.543213Best acc: 0.000000 +Train:epoch: 122, loss@min: 0.982020, loss@max: 1.398423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.558346, LT: 0.557727, Top1S: 83.604935, Top1T: 83.543213Best acc: 0.000000 +Train:epoch: 123, loss@min: 1.017616, loss@max: 1.425266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.557972, LT: 0.557166, Top1S: 83.629631, Top1T: 83.543213Best acc: 0.000000 +Train:epoch: 124, loss@min: 0.985210, loss@max: 1.405180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.557482, LT: 0.556467, Top1S: 83.641975, Top1T: 83.555557Best acc: 0.000000 +Train:epoch: 125, loss@min: 0.984457, loss@max: 1.401599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.557146, LT: 0.555938, Top1S: 83.641975, Top1T: 83.555557Best acc: 0.000000 +Train:epoch: 126, loss@min: 1.001054, loss@max: 1.415374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.556908, LT: 0.555524, Top1S: 83.629631, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 127, loss@min: 0.978458, loss@max: 1.395441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.556875, LT: 0.555355, Top1S: 83.592590, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 128, loss@min: 0.976522, loss@max: 1.398336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.556801, LT: 0.555204, Top1S: 83.580246, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 129, loss@min: 0.987385, loss@max: 1.403528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.556918, LT: 0.555269, Top1S: 83.580246, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 130, loss@min: 1.001209, loss@max: 1.416643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.556963, LT: 0.555277, Top1S: 83.592590, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 131, loss@min: 0.990357, loss@max: 1.411663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.556968, LT: 0.555249, Top1S: 83.580246, Top1T: 83.567902Best acc: 0.000000 +Train:epoch: 132, loss@min: 0.979443, loss@max: 1.397708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.556983, LT: 0.555273, Top1S: 83.567902, Top1T: 83.555557Best acc: 0.000000 +Train:epoch: 133, loss@min: 0.995333, loss@max: 1.414994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.557026, LT: 0.555357, Top1S: 83.592590, Top1T: 83.543213Best acc: 0.000000 +Train:epoch: 134, loss@min: 1.006477, loss@max: 1.415307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.556911, LT: 0.555270, Top1S: 83.604935, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 135, loss@min: 0.996867, loss@max: 1.405035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.556881, LT: 0.555280, Top1S: 83.604935, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 136, loss@min: 0.986228, loss@max: 1.404890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.556744, LT: 0.555166, Top1S: 83.617287, Top1T: 83.604935Best acc: 0.000000 +Train:epoch: 137, loss@min: 0.974724, loss@max: 1.393773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.556691, LT: 0.555142, Top1S: 83.617287, Top1T: 83.604935Best acc: 0.000000 +Train:epoch: 138, loss@min: 1.013354, loss@max: 1.411396, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 138, LS: 0.556626, LT: 0.555117, Top1S: 83.604935, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 139, loss@min: 0.987455, loss@max: 1.409263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.556579, LT: 0.555099, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 140, loss@min: 0.990358, loss@max: 1.410594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.556556, LT: 0.555098, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 141, loss@min: 0.980206, loss@max: 1.402251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.556516, LT: 0.555083, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 142, loss@min: 1.012552, loss@max: 1.419479, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 142, LS: 0.556514, LT: 0.555104, Top1S: 83.617287, Top1T: 83.592590Best acc: 0.000000 +Train:epoch: 143, loss@min: 0.992916, loss@max: 1.411981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.556499, LT: 0.555101, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 144, loss@min: 1.037980, loss@max: 1.428088, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 144, LS: 0.556508, LT: 0.555120, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 145, loss@min: 1.010709, loss@max: 1.419144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.556529, LT: 0.555147, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 146, loss@min: 0.982914, loss@max: 1.402811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.556526, LT: 0.555150, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 147, loss@min: 0.990653, loss@max: 1.407780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.556532, LT: 0.555157, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 148, loss@min: 1.007927, loss@max: 1.415171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.556532, LT: 0.555158, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 149, loss@min: 0.993729, loss@max: 1.410386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.556532, LT: 0.555159, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +Train:epoch: 150, loss@min: 1.016471, loss@max: 1.422879, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 150, LS: 0.556532, LT: 0.555159, Top1S: 83.617287, Top1T: 83.580246Best acc: 0.000000 +------------------------------------------- +Mon Aug 7 19:33:52 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Mon Aug 7 20:11:06 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.545805, loss@max: 2.722313, Top1S acc: 100.000000, Top1T acc: 37.500000 + Test:epoch: 1, LS: 1.528195, LT: 1.538461, Top1S: 43.037037, Top1T: 42.283951Best acc: 0.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Mon Aug 7 20:14:38 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.545805, loss@max: 2.722313, Top1S acc: 100.000000, Top1T acc: 37.500000 + Test:epoch: 1, LS: 1.528195, LT: 1.538461, Top1S: 43.037037, Top1T: 42.283951Best acc: 43.037037 +------------------------------------------- +Mon Aug 7 20:17:42 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 1, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 1} + +------------------------------------------- +Mon Aug 7 20:20:04 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.545805, loss@max: 2.722313, Top1S acc: 100.000000, Top1T acc: 37.500000 + Test:epoch: 1, LS: 1.528195, LT: 1.538461, Top1S: 43.037037, Top1T: 42.283951Best acc: 43.037037 +------------------------------------------- +Mon Aug 7 20:21:43 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 20:34:13 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.743047, loss@max: 1.414790, Top1S acc: 100.000000, Top1T acc: 52.500000 +Train:epoch: 2, loss@min: 3.341104, loss@max: 1.476275, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 3.007870, loss@max: 1.546602, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 2.598167, loss@max: 1.592421, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 5, loss@min: 2.349094, loss@max: 1.658797, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.146529, loss@max: 1.712767, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 7, loss@min: 1.973098, loss@max: 1.752537, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.852902, loss@max: 1.770722, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 9, loss@min: 1.605561, loss@max: 1.735574, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 10, loss@min: 1.497907, loss@max: 1.710163, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 11, loss@min: 1.543496, loss@max: 1.709556, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.611014, loss@max: 1.720423, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 13, loss@min: 1.452541, loss@max: 1.624443, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 14, loss@min: 1.320207, loss@max: 1.559236, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 15, loss@min: 1.256414, loss@max: 1.492244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.350683, loss@max: 1.501637, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 17, loss@min: 1.312243, loss@max: 1.456828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.249878, loss@max: 1.399140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.224829, loss@max: 1.377683, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 1.231597, loss@max: 1.378680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.373895, loss@max: 1.453639, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 22, loss@min: 1.244626, loss@max: 1.372506, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 23, loss@min: 1.236360, loss@max: 1.386103, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 24, loss@min: 1.200841, loss@max: 1.414468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.118366, loss@max: 1.372635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.094869, loss@max: 1.379507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.030683, loss@max: 1.362400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.123455, loss@max: 1.429010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.050520, loss@max: 1.412037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.090610, loss@max: 1.438866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.082907, loss@max: 1.437270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036055, loss@max: 1.416108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.034037, loss@max: 1.417953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.012693, loss@max: 1.425858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.983828, loss@max: 1.393177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.024515, loss@max: 1.426296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.040853, loss@max: 1.453603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.973541, loss@max: 1.407017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.032339, loss@max: 1.425117, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 40, loss@min: 0.996083, loss@max: 1.420767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972660, loss@max: 1.386467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.987815, loss@max: 1.389381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.009011, loss@max: 1.401317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.022552, loss@max: 1.392096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.069167, loss@max: 1.411473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.995801, loss@max: 1.356549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.042026, loss@max: 1.403422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987183, loss@max: 1.370682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.030019, loss@max: 1.409711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.007617, loss@max: 1.412062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.710688, LT: 0.708754, Top1S: 77.370369, Top1T: 77.469139Best acc: 77.469139 +Train:epoch: 51, loss@min: 0.978166, loss@max: 1.391547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.721801, LT: 0.718786, Top1S: 77.160492, Top1T: 77.308640 +Train:epoch: 52, loss@min: 0.987926, loss@max: 1.400113, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 20:40:41 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 20:41:31 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 20:42:12 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 20:43:52 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 20:45:34 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 7 20:46:28 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Mon Aug 7 20:48:44 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.743047, loss@max: 1.414790, Top1S acc: 100.000000, Top1T acc: 52.500000 +Train:epoch: 2, loss@min: 3.341104, loss@max: 1.476275, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 3.007870, loss@max: 1.546602, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 2.598167, loss@max: 1.592421, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 5, loss@min: 2.349094, loss@max: 1.658797, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.146529, loss@max: 1.712767, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 7, loss@min: 1.973098, loss@max: 1.752537, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.852902, loss@max: 1.770722, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 9, loss@min: 1.605561, loss@max: 1.735574, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 10, loss@min: 1.497907, loss@max: 1.710163, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 11, loss@min: 1.543496, loss@max: 1.709556, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.611014, loss@max: 1.720423, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 13, loss@min: 1.452541, loss@max: 1.624443, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 14, loss@min: 1.320207, loss@max: 1.559236, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 15, loss@min: 1.256414, loss@max: 1.492244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.350683, loss@max: 1.501637, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 17, loss@min: 1.312243, loss@max: 1.456828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.249878, loss@max: 1.399140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.224829, loss@max: 1.377683, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 1.231597, loss@max: 1.378680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.373895, loss@max: 1.453639, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 22, loss@min: 1.244626, loss@max: 1.372506, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 23, loss@min: 1.236360, loss@max: 1.386103, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 24, loss@min: 1.200841, loss@max: 1.414468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.118366, loss@max: 1.372635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.094869, loss@max: 1.379507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.030683, loss@max: 1.362400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.123455, loss@max: 1.429010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.050520, loss@max: 1.412037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.090610, loss@max: 1.438866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.082907, loss@max: 1.437270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036055, loss@max: 1.416108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.034037, loss@max: 1.417953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.012693, loss@max: 1.425858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.983828, loss@max: 1.393177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.024515, loss@max: 1.426296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.040853, loss@max: 1.453603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.973541, loss@max: 1.407017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.032339, loss@max: 1.425117, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 40, loss@min: 0.996083, loss@max: 1.420767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.972660, loss@max: 1.386467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.987815, loss@max: 1.389381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.009011, loss@max: 1.401317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.022552, loss@max: 1.392096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.069167, loss@max: 1.411473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.995801, loss@max: 1.356549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.042026, loss@max: 1.403422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987183, loss@max: 1.370682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.030019, loss@max: 1.409711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.007617, loss@max: 1.412062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.710688, LT: 0.708754, Top1S: 77.370369, Top1T: 77.469139Best acc: 77.469139 +Train:epoch: 51, loss@min: 0.978166, loss@max: 1.391547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.721801, LT: 0.718786, Top1S: 77.160492, Top1T: 77.308640 +Train:epoch: 52, loss@min: 0.987926, loss@max: 1.400113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.732717, LT: 0.729168, Top1S: 76.987656, Top1T: 77.049385 +Train:epoch: 53, loss@min: 1.024140, loss@max: 1.426608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.742618, LT: 0.739247, Top1S: 76.716049, Top1T: 76.864197 +Train:epoch: 54, loss@min: 0.981475, loss@max: 1.385354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.753432, LT: 0.750397, Top1S: 76.283951, Top1T: 76.518517 +Train:epoch: 55, loss@min: 0.982480, loss@max: 1.386317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.762162, LT: 0.759342, Top1S: 76.111115, Top1T: 76.259262 +Train:epoch: 56, loss@min: 1.029020, loss@max: 1.417285, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 56, LS: 0.764830, LT: 0.761586, Top1S: 76.061729, Top1T: 76.283951 +Train:epoch: 57, loss@min: 0.998195, loss@max: 1.408066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.762572, LT: 0.760043, Top1S: 76.123459, Top1T: 76.246910 +Train:epoch: 58, loss@min: 0.974014, loss@max: 1.382997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.762159, LT: 0.760142, Top1S: 76.172836, Top1T: 76.259262 +Train:epoch: 59, loss@min: 0.962610, loss@max: 1.378058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.762409, LT: 0.760832, Top1S: 76.098763, Top1T: 76.123459 +Train:epoch: 60, loss@min: 0.978384, loss@max: 1.388664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.762193, LT: 0.760415, Top1S: 76.185188, Top1T: 76.135803 +Train:epoch: 61, loss@min: 0.968112, loss@max: 1.391196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.761999, LT: 0.760113, Top1S: 76.209877, Top1T: 76.148148 +Train:epoch: 62, loss@min: 0.988260, loss@max: 1.413805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.762510, LT: 0.760490, Top1S: 76.222221, Top1T: 76.209877 +Train:epoch: 63, loss@min: 0.979312, loss@max: 1.406427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.762438, LT: 0.760620, Top1S: 76.259262, Top1T: 76.259262 +Train:epoch: 64, loss@min: 0.979711, loss@max: 1.392784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.762283, LT: 0.760773, Top1S: 76.222221, Top1T: 76.308640 +Train:epoch: 65, loss@min: 1.044854, loss@max: 1.434187, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 65, LS: 0.763937, LT: 0.763201, Top1S: 76.234566, Top1T: 76.370369 +Train:epoch: 66, loss@min: 0.970658, loss@max: 1.386162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.766458, LT: 0.766493, Top1S: 76.333336, Top1T: 76.123459 +Train:epoch: 67, loss@min: 0.984630, loss@max: 1.400229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.768987, LT: 0.769551, Top1S: 76.283951, Top1T: 76.123459 +Train:epoch: 68, loss@min: 0.972240, loss@max: 1.382435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.770733, LT: 0.771839, Top1S: 76.209877, Top1T: 76.037033 +Train:epoch: 69, loss@min: 0.982538, loss@max: 1.391242, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Mon Aug 7 21:16:31 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.743040, loss@max: 1.414792, Top1S acc: 100.000000, Top1T acc: 52.500000 +Train:epoch: 2, loss@min: 3.341099, loss@max: 1.476273, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 3.007867, loss@max: 1.546601, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 2.598166, loss@max: 1.592421, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 5, loss@min: 2.349090, loss@max: 1.658795, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.146527, loss@max: 1.712767, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 7, loss@min: 1.973099, loss@max: 1.752537, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.852901, loss@max: 1.770722, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 9, loss@min: 1.605561, loss@max: 1.735575, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 10, loss@min: 1.497905, loss@max: 1.710163, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 11, loss@min: 1.543497, loss@max: 1.709556, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.611013, loss@max: 1.720422, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 13, loss@min: 1.452542, loss@max: 1.624442, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 14, loss@min: 1.320203, loss@max: 1.559237, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 15, loss@min: 1.256414, loss@max: 1.492242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.350680, loss@max: 1.501638, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 17, loss@min: 1.312242, loss@max: 1.456828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.249877, loss@max: 1.399138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.224829, loss@max: 1.377682, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 1.231596, loss@max: 1.378679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.810561, LT: 0.809152, Top1S: 72.543213, Top1T: 72.728394Best acc: 72.728394 +Train:epoch: 21, loss@min: 1.214699, loss@max: 1.378677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 21, LS: 0.804728, LT: 0.798699, Top1S: 72.790123, Top1T: 73.074074Best acc: 73.074074 +Train:epoch: 22, loss@min: 1.197811, loss@max: 1.365828, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 22, LS: 0.797777, LT: 0.788315, Top1S: 73.086418, Top1T: 73.481483Best acc: 73.481483 +Train:epoch: 23, loss@min: 1.202989, loss@max: 1.384734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 0.781891, LT: 0.771344, Top1S: 73.654320, Top1T: 74.000000Best acc: 74.000000 +Train:epoch: 24, loss@min: 1.177685, loss@max: 1.395682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 0.767998, LT: 0.757456, Top1S: 73.913582, Top1T: 74.308640Best acc: 74.308640 +Train:epoch: 25, loss@min: 1.143948, loss@max: 1.385161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 0.754122, LT: 0.745426, Top1S: 74.567902, Top1T: 74.851852Best acc: 74.851852 +Train:epoch: 26, loss@min: 1.141894, loss@max: 1.410262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 0.742763, LT: 0.737649, Top1S: 74.975311, Top1T: 75.086418Best acc: 75.086418 +Train:epoch: 27, loss@min: 1.045873, loss@max: 1.373351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.731707, LT: 0.729613, Top1S: 75.382713, Top1T: 75.345680Best acc: 75.382713 +Train:epoch: 28, loss@min: 1.097090, loss@max: 1.435099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.727234, LT: 0.727127, Top1S: 75.395065, Top1T: 75.407410Best acc: 75.407410 +Train:epoch: 29, loss@min: 1.040687, loss@max: 1.384464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.724010, LT: 0.725096, Top1S: 75.432098, Top1T: 75.469139Best acc: 75.469139 +Train:epoch: 30, loss@min: 1.024055, loss@max: 1.404770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.723044, LT: 0.724087, Top1S: 75.518517, Top1T: 75.506172Best acc: 75.518517 +Train:epoch: 31, loss@min: 1.009349, loss@max: 1.392476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.724913, LT: 0.725518, Top1S: 75.419754, Top1T: 75.543213Best acc: 75.543213 +Train:epoch: 32, loss@min: 1.070816, loss@max: 1.426502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.728965, LT: 0.729050, Top1S: 75.271606, Top1T: 75.481483 +Train:epoch: 33, loss@min: 1.022022, loss@max: 1.409724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 0.734825, LT: 0.734131, Top1S: 75.172836, Top1T: 75.395065 +Train:epoch: 34, loss@min: 1.026601, loss@max: 1.424856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.736867, LT: 0.735385, Top1S: 75.271606, Top1T: 75.543213 +Train:epoch: 35, loss@min: 1.030422, loss@max: 1.431470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 0.739231, LT: 0.738793, Top1S: 75.395065, Top1T: 75.580246Best acc: 75.580246 +Train:epoch: 36, loss@min: 1.031575, loss@max: 1.437804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.742299, LT: 0.743316, Top1S: 75.432098, Top1T: 75.518517 +Train:epoch: 37, loss@min: 0.998203, loss@max: 1.423673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.746125, LT: 0.748199, Top1S: 75.370369, Top1T: 75.444443 +Train:epoch: 38, loss@min: 0.975843, loss@max: 1.406641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 0.752453, LT: 0.754797, Top1S: 75.222221, Top1T: 75.481483 +Train:epoch: 39, loss@min: 1.036351, loss@max: 1.462592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 0.756383, LT: 0.757802, Top1S: 75.358025, Top1T: 75.358025 +Train:epoch: 40, loss@min: 0.963891, loss@max: 1.385291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.761001, LT: 0.761371, Top1S: 75.444443, Top1T: 75.419754 +Train:epoch: 41, loss@min: 0.986917, loss@max: 1.400031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.762660, LT: 0.761570, Top1S: 75.543213, Top1T: 75.481483 +Train:epoch: 42, loss@min: 0.993759, loss@max: 1.392618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.762894, LT: 0.761502, Top1S: 75.555557, Top1T: 75.666664Best acc: 75.666664 +Train:epoch: 43, loss@min: 1.060570, loss@max: 1.418388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.762548, LT: 0.760900, Top1S: 75.888885, Top1T: 75.827164Best acc: 75.888885 +Train:epoch: 44, loss@min: 1.022148, loss@max: 1.386202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.760124, LT: 0.759063, Top1S: 76.000000, Top1T: 75.962959Best acc: 76.000000 +Train:epoch: 45, loss@min: 1.035315, loss@max: 1.382163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.763371, LT: 0.764431, Top1S: 76.012344, Top1T: 75.913582Best acc: 76.012344 +Train:epoch: 46, loss@min: 1.041483, loss@max: 1.387912, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 46, LS: 0.750488, LT: 0.751133, Top1S: 76.259262, Top1T: 76.333336Best acc: 76.333336 +Train:epoch: 47, loss@min: 1.033209, loss@max: 1.413930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.740559, LT: 0.740287, Top1S: 76.481483, Top1T: 76.518517Best acc: 76.518517 +Train:epoch: 48, loss@min: 0.981763, loss@max: 1.380216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.736152, LT: 0.733731, Top1S: 76.740738, Top1T: 76.728394Best acc: 76.740738 +Train:epoch: 49, loss@min: 0.988389, loss@max: 1.392495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.736446, LT: 0.732372, Top1S: 76.839508, Top1T: 76.950615Best acc: 76.950615 +Train:epoch: 50, loss@min: 1.005264, loss@max: 1.404897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.738179, LT: 0.733347, Top1S: 76.827164, Top1T: 76.975311Best acc: 76.975311 +Train:epoch: 51, loss@min: 0.969617, loss@max: 1.370093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.740055, LT: 0.735316, Top1S: 76.827164, Top1T: 77.012344Best acc: 77.012344 +Train:epoch: 52, loss@min: 0.999066, loss@max: 1.395398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.742919, LT: 0.738533, Top1S: 76.765434, Top1T: 76.876541 +Train:epoch: 53, loss@min: 1.013570, loss@max: 1.391941, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 53, LS: 0.744572, LT: 0.740410, Top1S: 76.790123, Top1T: 76.913582 +Train:epoch: 54, loss@min: 1.018770, loss@max: 1.389776, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 54, LS: 0.749073, LT: 0.745802, Top1S: 76.641975, Top1T: 76.790123 +Train:epoch: 55, loss@min: 0.991258, loss@max: 1.399481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.752355, LT: 0.750275, Top1S: 76.629631, Top1T: 76.740738 +Train:epoch: 56, loss@min: 0.993416, loss@max: 1.403252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.757046, LT: 0.755605, Top1S: 76.691360, Top1T: 76.740738 +Train:epoch: 57, loss@min: 1.000688, loss@max: 1.407652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.759705, LT: 0.758331, Top1S: 76.679008, Top1T: 76.691360 +Train:epoch: 58, loss@min: 0.972473, loss@max: 1.388866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.763176, LT: 0.761017, Top1S: 76.592590, Top1T: 76.592590 +Train:epoch: 59, loss@min: 0.981251, loss@max: 1.398656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.764094, LT: 0.761508, Top1S: 76.641975, Top1T: 76.580246 +Train:epoch: 60, loss@min: 0.964831, loss@max: 1.387028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.765241, LT: 0.762285, Top1S: 76.518517, Top1T: 76.567902 +Train:epoch: 61, loss@min: 0.970439, loss@max: 1.401330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.763171, LT: 0.760456, Top1S: 76.456787, Top1T: 76.666664 +Train:epoch: 62, loss@min: 0.969831, loss@max: 1.393961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.759757, LT: 0.758023, Top1S: 76.592590, Top1T: 76.777779 +Train:epoch: 63, loss@min: 0.970255, loss@max: 1.394117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.756216, LT: 0.754993, Top1S: 76.740738, Top1T: 76.876541 +Train:epoch: 64, loss@min: 0.969829, loss@max: 1.385895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.754918, LT: 0.753894, Top1S: 76.827164, Top1T: 76.901237 +Train:epoch: 65, loss@min: 0.981802, loss@max: 1.393563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.750890, LT: 0.749793, Top1S: 76.864197, Top1T: 76.962959 +Train:epoch: 66, loss@min: 0.966614, loss@max: 1.383192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.748227, LT: 0.746886, Top1S: 76.888885, Top1T: 77.074074Best acc: 77.074074 +Train:epoch: 67, loss@min: 0.993299, loss@max: 1.400173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.745845, LT: 0.744644, Top1S: 77.012344, Top1T: 77.185188Best acc: 77.185188 +Train:epoch: 68, loss@min: 0.988065, loss@max: 1.392209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.742817, LT: 0.741551, Top1S: 77.049385, Top1T: 77.333336Best acc: 77.333336 +Train:epoch: 69, loss@min: 0.967146, loss@max: 1.375898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.740812, LT: 0.739128, Top1S: 77.160492, Top1T: 77.382713Best acc: 77.382713 +Train:epoch: 70, loss@min: 0.990361, loss@max: 1.399398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.740209, LT: 0.738518, Top1S: 77.283951, Top1T: 77.345680 +Train:epoch: 71, loss@min: 0.974672, loss@max: 1.388480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.739807, LT: 0.737949, Top1S: 77.271606, Top1T: 77.395065Best acc: 77.395065 +Train:epoch: 72, loss@min: 0.972482, loss@max: 1.387309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.740032, LT: 0.738068, Top1S: 77.296295, Top1T: 77.469139Best acc: 77.469139 +Train:epoch: 73, loss@min: 0.977230, loss@max: 1.399535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.740262, LT: 0.738380, Top1S: 77.358025, Top1T: 77.518517Best acc: 77.518517 +Train:epoch: 74, loss@min: 1.033514, loss@max: 1.400382, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 74, LS: 0.745896, LT: 0.744772, Top1S: 77.209877, Top1T: 77.370369 +Train:epoch: 75, loss@min: 0.999733, loss@max: 1.404372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.752170, LT: 0.752431, Top1S: 77.172836, Top1T: 77.283951 +Train:epoch: 76, loss@min: 0.965661, loss@max: 1.373542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.758317, LT: 0.759282, Top1S: 77.037033, Top1T: 77.123459 +Train:epoch: 77, loss@min: 0.982593, loss@max: 1.385708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.764795, LT: 0.765719, Top1S: 76.987656, Top1T: 77.074074 +Train:epoch: 78, loss@min: 0.979815, loss@max: 1.385911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.770965, LT: 0.770952, Top1S: 76.913582, Top1T: 77.024689 +Train:epoch: 79, loss@min: 0.970597, loss@max: 1.374611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.776399, LT: 0.774976, Top1S: 76.839508, Top1T: 76.962959 +Train:epoch: 80, loss@min: 0.986803, loss@max: 1.406741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.779971, LT: 0.776951, Top1S: 76.790123, Top1T: 76.864197 +Train:epoch: 81, loss@min: 0.978260, loss@max: 1.399822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.780373, LT: 0.776575, Top1S: 76.851852, Top1T: 77.037033 +Train:epoch: 82, loss@min: 0.962371, loss@max: 1.382600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.780034, LT: 0.776459, Top1S: 76.839508, Top1T: 77.024689 +Train:epoch: 83, loss@min: 0.970675, loss@max: 1.395023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.780227, LT: 0.777584, Top1S: 76.851852, Top1T: 76.925926 +Train:epoch: 84, loss@min: 0.966892, loss@max: 1.388250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.779496, LT: 0.778134, Top1S: 76.864197, Top1T: 76.851852 +Train:epoch: 85, loss@min: 0.956071, loss@max: 1.375201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.778742, LT: 0.778558, Top1S: 76.876541, Top1T: 76.827164 +Train:epoch: 86, loss@min: 0.972551, loss@max: 1.391503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.778075, LT: 0.779178, Top1S: 76.777779, Top1T: 76.753090 +Train:epoch: 87, loss@min: 0.963725, loss@max: 1.379906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.778188, LT: 0.780059, Top1S: 76.753090, Top1T: 76.691360 +Train:epoch: 88, loss@min: 0.967457, loss@max: 1.380932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.777550, LT: 0.779698, Top1S: 76.765434, Top1T: 76.654320 +Train:epoch: 89, loss@min: 0.962332, loss@max: 1.388527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.777705, LT: 0.779231, Top1S: 76.790123, Top1T: 76.641975 +Train:epoch: 90, loss@min: 0.963999, loss@max: 1.375960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.777113, LT: 0.777795, Top1S: 76.814812, Top1T: 76.654320 +Train:epoch: 91, loss@min: 0.985325, loss@max: 1.402649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.773069, LT: 0.772716, Top1S: 76.987656, Top1T: 76.827164 +Train:epoch: 92, loss@min: 0.982652, loss@max: 1.402924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.768668, LT: 0.767206, Top1S: 77.123459, Top1T: 77.086418 +Train:epoch: 93, loss@min: 0.965121, loss@max: 1.379188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.764577, LT: 0.761936, Top1S: 77.148148, Top1T: 77.209877 +Train:epoch: 94, loss@min: 0.968727, loss@max: 1.394418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.759107, LT: 0.755953, Top1S: 77.271606, Top1T: 77.296295 +Train:epoch: 95, loss@min: 0.967499, loss@max: 1.382014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.754812, LT: 0.751449, Top1S: 77.444443, Top1T: 77.506172 +Train:epoch: 96, loss@min: 0.965378, loss@max: 1.373956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.750587, LT: 0.747523, Top1S: 77.543213, Top1T: 77.654320Best acc: 77.654320 +Train:epoch: 97, loss@min: 0.978789, loss@max: 1.405566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.747398, LT: 0.744912, Top1S: 77.777779, Top1T: 77.728394Best acc: 77.777779 +Train:epoch: 98, loss@min: 0.965764, loss@max: 1.382534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.745159, LT: 0.743416, Top1S: 77.777779, Top1T: 77.740738 +Train:epoch: 99, loss@min: 0.967281, loss@max: 1.387017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.743096, LT: 0.741989, Top1S: 77.851852, Top1T: 77.740738Best acc: 77.851852 +Train:epoch: 100, loss@min: 0.964558, loss@max: 1.379836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.741747, LT: 0.741115, Top1S: 77.938271, Top1T: 77.864197Best acc: 77.938271 +Train:epoch: 101, loss@min: 1.063565, loss@max: 1.405160, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 101, LS: 0.741855, LT: 0.741486, Top1S: 77.950615, Top1T: 77.851852Best acc: 77.950615 +Train:epoch: 102, loss@min: 0.964865, loss@max: 1.375574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.742314, LT: 0.741998, Top1S: 77.913582, Top1T: 77.814812 +Train:epoch: 103, loss@min: 0.981535, loss@max: 1.395465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.744029, LT: 0.743400, Top1S: 77.888885, Top1T: 77.851852 +Train:epoch: 104, loss@min: 0.967896, loss@max: 1.379941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.746173, LT: 0.745081, Top1S: 77.925926, Top1T: 77.839508 +Train:epoch: 105, loss@min: 0.973996, loss@max: 1.393245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.748495, LT: 0.746924, Top1S: 77.814812, Top1T: 77.777779 +Train:epoch: 106, loss@min: 0.963239, loss@max: 1.381216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.750634, LT: 0.748563, Top1S: 77.777779, Top1T: 77.753090 +Train:epoch: 107, loss@min: 0.979343, loss@max: 1.400425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.751807, LT: 0.749422, Top1S: 77.765434, Top1T: 77.753090 +Train:epoch: 108, loss@min: 0.963294, loss@max: 1.380077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.752712, LT: 0.750088, Top1S: 77.753090, Top1T: 77.740738 +Train:epoch: 109, loss@min: 0.958288, loss@max: 1.374471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.753659, LT: 0.750808, Top1S: 77.765434, Top1T: 77.728394 +Train:epoch: 110, loss@min: 0.978508, loss@max: 1.392047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.754339, LT: 0.751623, Top1S: 77.716049, Top1T: 77.753090 +Train:epoch: 111, loss@min: 0.961339, loss@max: 1.378908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.754691, LT: 0.752145, Top1S: 77.691360, Top1T: 77.740738 +Train:epoch: 112, loss@min: 0.963023, loss@max: 1.385239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.754722, LT: 0.752512, Top1S: 77.703705, Top1T: 77.765434 +Train:epoch: 113, loss@min: 0.960481, loss@max: 1.374756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.754564, LT: 0.752618, Top1S: 77.679008, Top1T: 77.740738 +Train:epoch: 114, loss@min: 0.972180, loss@max: 1.382617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.754630, LT: 0.753056, Top1S: 77.716049, Top1T: 77.703705 +Train:epoch: 115, loss@min: 0.971216, loss@max: 1.385743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.754611, LT: 0.753349, Top1S: 77.654320, Top1T: 77.691360 +Train:epoch: 116, loss@min: 0.985674, loss@max: 1.394842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.755033, LT: 0.754044, Top1S: 77.629631, Top1T: 77.654320 +Train:epoch: 117, loss@min: 0.963413, loss@max: 1.377262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.755586, LT: 0.754813, Top1S: 77.641975, Top1T: 77.617287 +Train:epoch: 118, loss@min: 0.972436, loss@max: 1.389738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.756076, LT: 0.755530, Top1S: 77.617287, Top1T: 77.641975 +Train:epoch: 119, loss@min: 0.965466, loss@max: 1.382743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.756442, LT: 0.756063, Top1S: 77.592590, Top1T: 77.629631 +Train:epoch: 120, loss@min: 0.965117, loss@max: 1.380659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.756678, LT: 0.756387, Top1S: 77.592590, Top1T: 77.604935 +Train:epoch: 121, loss@min: 0.971269, loss@max: 1.386202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.756501, LT: 0.756295, Top1S: 77.629631, Top1T: 77.604935 +Train:epoch: 122, loss@min: 0.967126, loss@max: 1.383222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.756402, LT: 0.756270, Top1S: 77.641975, Top1T: 77.592590 +Train:epoch: 123, loss@min: 0.964311, loss@max: 1.381677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.756440, LT: 0.756344, Top1S: 77.567902, Top1T: 77.604935 +Train:epoch: 124, loss@min: 0.973992, loss@max: 1.385012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.756318, LT: 0.756287, Top1S: 77.543213, Top1T: 77.555557 +Train:epoch: 125, loss@min: 0.981663, loss@max: 1.390090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.756502, LT: 0.756528, Top1S: 77.518517, Top1T: 77.506172 +Train:epoch: 126, loss@min: 0.980113, loss@max: 1.389439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.756500, LT: 0.756507, Top1S: 77.506172, Top1T: 77.530861 +Train:epoch: 127, loss@min: 0.971833, loss@max: 1.395182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.756439, LT: 0.756381, Top1S: 77.518517, Top1T: 77.555557 +Train:epoch: 128, loss@min: 0.966131, loss@max: 1.378444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.756602, LT: 0.756420, Top1S: 77.506172, Top1T: 77.506172 +Train:epoch: 129, loss@min: 0.976770, loss@max: 1.399968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.756871, LT: 0.756626, Top1S: 77.518517, Top1T: 77.493828 +Train:epoch: 130, loss@min: 0.963734, loss@max: 1.384362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.757194, LT: 0.756864, Top1S: 77.530861, Top1T: 77.481483 +Train:epoch: 131, loss@min: 0.972264, loss@max: 1.394917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.757377, LT: 0.756998, Top1S: 77.506172, Top1T: 77.481483 +Train:epoch: 132, loss@min: 0.986886, loss@max: 1.397742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.757229, LT: 0.756786, Top1S: 77.481483, Top1T: 77.506172 +Train:epoch: 133, loss@min: 0.963432, loss@max: 1.377834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.757145, LT: 0.756669, Top1S: 77.469139, Top1T: 77.518517 +Train:epoch: 134, loss@min: 0.966709, loss@max: 1.383346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.757113, LT: 0.756595, Top1S: 77.469139, Top1T: 77.518517 +Train:epoch: 135, loss@min: 0.967670, loss@max: 1.383137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.757190, LT: 0.756615, Top1S: 77.469139, Top1T: 77.530861 +Train:epoch: 136, loss@min: 0.958972, loss@max: 1.376945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.757275, LT: 0.756636, Top1S: 77.481483, Top1T: 77.518517 +Train:epoch: 137, loss@min: 0.972003, loss@max: 1.386075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.757354, LT: 0.756659, Top1S: 77.481483, Top1T: 77.518517 +Train:epoch: 138, loss@min: 0.963656, loss@max: 1.380870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.757367, LT: 0.756632, Top1S: 77.481483, Top1T: 77.530861 +Train:epoch: 139, loss@min: 0.978150, loss@max: 1.393021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.757392, LT: 0.756626, Top1S: 77.493828, Top1T: 77.518517 +Train:epoch: 140, loss@min: 0.955093, loss@max: 1.369775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.757391, LT: 0.756608, Top1S: 77.493828, Top1T: 77.530861 +Train:epoch: 141, loss@min: 0.962566, loss@max: 1.377361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.757392, LT: 0.756596, Top1S: 77.493828, Top1T: 77.530861 +Train:epoch: 142, loss@min: 0.958507, loss@max: 1.372774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.757386, LT: 0.756581, Top1S: 77.493828, Top1T: 77.530861 +Train:epoch: 143, loss@min: 0.976026, loss@max: 1.392493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.757345, LT: 0.756535, Top1S: 77.493828, Top1T: 77.555557 +Train:epoch: 144, loss@min: 0.966343, loss@max: 1.385772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.757317, LT: 0.756505, Top1S: 77.493828, Top1T: 77.567902 +Train:epoch: 145, loss@min: 0.960319, loss@max: 1.372631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.757303, LT: 0.756489, Top1S: 77.493828, Top1T: 77.567902 +Train:epoch: 146, loss@min: 0.961218, loss@max: 1.374280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.757292, LT: 0.756478, Top1S: 77.493828, Top1T: 77.567902 +Train:epoch: 147, loss@min: 0.965105, loss@max: 1.383762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.757284, LT: 0.756470, Top1S: 77.493828, Top1T: 77.567902 +Train:epoch: 148, loss@min: 0.959932, loss@max: 1.379740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.757280, LT: 0.756466, Top1S: 77.493828, Top1T: 77.567902 +Train:epoch: 149, loss@min: 0.969194, loss@max: 1.387979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.757279, LT: 0.756465, Top1S: 77.493828, Top1T: 77.567902 +Train:epoch: 150, loss@min: 0.970954, loss@max: 1.387937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.757279, LT: 0.756465, Top1S: 77.493828, Top1T: 77.567902 +------------------------------------------- +Tue Aug 8 00:32:23 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Tue Aug 8 00:41:07 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.634780, loss@max: 1.385397, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.423001, loss@max: 1.477721, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.901330, loss@max: 1.494685, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 2.501032, loss@max: 1.540236, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 5, loss@min: 2.597289, loss@max: 1.683437, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 6, loss@min: 2.008175, loss@max: 1.633942, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 1.903834, loss@max: 1.680797, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.598748, loss@max: 1.662054, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 1.609500, loss@max: 1.684462, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 10, loss@min: 1.187688, loss@max: 1.587673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.429086, loss@max: 1.648523, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.197911, loss@max: 1.538177, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.211911, loss@max: 1.527296, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 14, loss@min: 1.056099, loss@max: 1.438922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.123178, loss@max: 1.450483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.043792, loss@max: 1.379123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.123298, loss@max: 1.387282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.156751, loss@max: 1.379136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.062129, loss@max: 1.336053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.056713, loss@max: 1.324950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 1.136886, LT: 1.140964, Top1S: 62.222221, Top1T: 61.901234Best acc: 62.222221 +Train:epoch: 21, loss@min: 1.130979, loss@max: 1.357736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 21, LS: 1.142821, LT: 1.147181, Top1S: 62.074074, Top1T: 61.802467 +Train:epoch: 22, loss@min: 1.146763, loss@max: 1.341375, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 22, LS: 1.154921, LT: 1.160938, Top1S: 61.765430, Top1T: 61.469135 +Train:epoch: 23, loss@min: 1.160728, loss@max: 1.373442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 1.159956, LT: 1.166503, Top1S: 61.654320, Top1T: 61.407406 +Train:epoch: 24, loss@min: 1.190138, loss@max: 1.394654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 1.161561, LT: 1.165322, Top1S: 61.592594, Top1T: 61.629631 +Train:epoch: 25, loss@min: 1.108358, loss@max: 1.355826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 1.162781, LT: 1.162442, Top1S: 61.666668, Top1T: 61.913582 +Train:epoch: 26, loss@min: 1.188221, loss@max: 1.390498, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 26, LS: 1.158558, LT: 1.152007, Top1S: 62.049381, Top1T: 62.259258Best acc: 62.259258 +Train:epoch: 27, loss@min: 0.998812, loss@max: 1.305609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 1.156156, LT: 1.143528, Top1S: 62.308643, Top1T: 62.604939Best acc: 62.604939 +Train:epoch: 28, loss@min: 1.013941, loss@max: 1.331882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 1.157892, LT: 1.140627, Top1S: 62.617283, Top1T: 62.938271Best acc: 62.938271 +Train:epoch: 29, loss@min: 1.102248, loss@max: 1.398755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 1.156004, LT: 1.137460, Top1S: 62.802467, Top1T: 63.234570Best acc: 63.234570 +Train:epoch: 30, loss@min: 1.031085, loss@max: 1.361369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 1.147603, LT: 1.131509, Top1S: 63.234570, Top1T: 63.407406Best acc: 63.407406 +Train:epoch: 31, loss@min: 1.002733, loss@max: 1.375353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 1.137829, LT: 1.125104, Top1S: 63.654320, Top1T: 63.728394Best acc: 63.728394 +Train:epoch: 32, loss@min: 1.005531, loss@max: 1.370732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 1.134795, LT: 1.125554, Top1S: 64.185188, Top1T: 64.123459Best acc: 64.185188 +Train:epoch: 33, loss@min: 0.978059, loss@max: 1.367440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 1.132391, LT: 1.127050, Top1S: 64.246910, Top1T: 64.135803Best acc: 64.246910 +Train:epoch: 34, loss@min: 0.971631, loss@max: 1.383697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.131297, LT: 1.129263, Top1S: 64.407410, Top1T: 64.123459Best acc: 64.407410 +Train:epoch: 35, loss@min: 0.975331, loss@max: 1.375873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 1.129115, LT: 1.128835, Top1S: 64.716049, Top1T: 64.308640Best acc: 64.716049 +Train:epoch: 36, loss@min: 0.955326, loss@max: 1.370986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.126216, LT: 1.126362, Top1S: 64.950615, Top1T: 64.555557Best acc: 64.950615 +Train:epoch: 37, loss@min: 0.970923, loss@max: 1.396610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 1.123876, LT: 1.122737, Top1S: 65.148148, Top1T: 64.975311Best acc: 65.148148 +Train:epoch: 38, loss@min: 1.008168, loss@max: 1.433766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.125410, LT: 1.122614, Top1S: 65.024689, Top1T: 65.086418 +Train:epoch: 39, loss@min: 0.955771, loss@max: 1.375615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.128690, LT: 1.123976, Top1S: 64.962959, Top1T: 65.061729 +Train:epoch: 40, loss@min: 0.967416, loss@max: 1.373473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.134646, LT: 1.126814, Top1S: 64.901237, Top1T: 64.938271 +Train:epoch: 41, loss@min: 0.980682, loss@max: 1.379091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.142675, LT: 1.133458, Top1S: 64.728394, Top1T: 64.839508 +Train:epoch: 42, loss@min: 1.015453, loss@max: 1.388334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.156920, LT: 1.146897, Top1S: 64.209877, Top1T: 64.469139 +Train:epoch: 43, loss@min: 0.975563, loss@max: 1.350065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.168241, LT: 1.159784, Top1S: 63.950619, Top1T: 63.950619 +Train:epoch: 44, loss@min: 0.975737, loss@max: 1.345165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.178829, LT: 1.173255, Top1S: 63.703705, Top1T: 63.716049 +Train:epoch: 45, loss@min: 0.977504, loss@max: 1.361856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.188147, LT: 1.186429, Top1S: 63.555557, Top1T: 63.444443 +Train:epoch: 46, loss@min: 0.991179, loss@max: 1.383898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.197102, LT: 1.197659, Top1S: 63.382717, Top1T: 63.135803 +Train:epoch: 47, loss@min: 0.962437, loss@max: 1.365017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.206432, LT: 1.207692, Top1S: 63.111111, Top1T: 62.987656 +Train:epoch: 48, loss@min: 0.969814, loss@max: 1.381897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.215599, LT: 1.216145, Top1S: 62.864197, Top1T: 62.827160 +Train:epoch: 49, loss@min: 0.965886, loss@max: 1.370466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.224192, LT: 1.223182, Top1S: 62.679012, Top1T: 62.691357 +Train:epoch: 50, loss@min: 0.959741, loss@max: 1.376822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.229926, LT: 1.226936, Top1S: 62.679012, Top1T: 62.765430 +Train:epoch: 51, loss@min: 0.962303, loss@max: 1.359792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.235064, LT: 1.230185, Top1S: 62.666668, Top1T: 62.753086 +Train:epoch: 52, loss@min: 0.968463, loss@max: 1.356132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.237199, LT: 1.232434, Top1S: 62.740742, Top1T: 62.777779 +Train:epoch: 53, loss@min: 0.964288, loss@max: 1.349576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.236846, LT: 1.234416, Top1S: 62.888889, Top1T: 62.851852 +Train:epoch: 54, loss@min: 0.982774, loss@max: 1.362635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.235675, LT: 1.235719, Top1S: 62.975307, Top1T: 62.901234 +Train:epoch: 55, loss@min: 0.967690, loss@max: 1.352869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.234625, LT: 1.236287, Top1S: 63.234570, Top1T: 62.962963 +Train:epoch: 56, loss@min: 0.957971, loss@max: 1.359073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.233288, LT: 1.235842, Top1S: 63.308643, Top1T: 63.061729 +Train:epoch: 57, loss@min: 1.009062, loss@max: 1.406448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.236723, LT: 1.240232, Top1S: 63.148148, Top1T: 62.987656 +Train:epoch: 58, loss@min: 0.948089, loss@max: 1.370467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.241433, LT: 1.244211, Top1S: 63.049381, Top1T: 62.925926 +Train:epoch: 59, loss@min: 0.948065, loss@max: 1.374310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.248384, LT: 1.248228, Top1S: 63.049381, Top1T: 62.925926 +Train:epoch: 60, loss@min: 0.951470, loss@max: 1.381806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.254034, LT: 1.250182, Top1S: 62.962963, Top1T: 62.913582 +Train:epoch: 61, loss@min: 0.956044, loss@max: 1.373402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.258186, LT: 1.252105, Top1S: 62.938271, Top1T: 63.000000 +Train:epoch: 62, loss@min: 0.949450, loss@max: 1.369918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.259902, LT: 1.252870, Top1S: 62.876545, Top1T: 62.962963 +Train:epoch: 63, loss@min: 0.964843, loss@max: 1.360415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.258030, LT: 1.253426, Top1S: 63.024693, Top1T: 62.950619 +Train:epoch: 64, loss@min: 0.994055, loss@max: 1.393435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.257512, LT: 1.256628, Top1S: 63.160492, Top1T: 63.037037 +Train:epoch: 65, loss@min: 0.963337, loss@max: 1.365180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.255574, LT: 1.257872, Top1S: 63.271606, Top1T: 63.135803 +Train:epoch: 66, loss@min: 0.978847, loss@max: 1.385165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.254063, LT: 1.257613, Top1S: 63.333332, Top1T: 63.074074 +Train:epoch: 67, loss@min: 1.031873, loss@max: 1.421975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.242043, LT: 1.244158, Top1S: 63.666668, Top1T: 63.320988 +Train:epoch: 68, loss@min: 0.971293, loss@max: 1.391175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.232454, LT: 1.232517, Top1S: 63.691357, Top1T: 63.530865 +Train:epoch: 69, loss@min: 0.953670, loss@max: 1.366708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.224197, LT: 1.221959, Top1S: 63.938271, Top1T: 63.753086 +Train:epoch: 70, loss@min: 0.955624, loss@max: 1.369976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 1.217702, LT: 1.213064, Top1S: 64.222221, Top1T: 64.185188 +Train:epoch: 71, loss@min: 0.964171, loss@max: 1.372490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 1.211641, LT: 1.205493, Top1S: 64.518517, Top1T: 64.469139 +Train:epoch: 72, loss@min: 0.964209, loss@max: 1.371751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.204153, LT: 1.197743, Top1S: 64.703705, Top1T: 64.740738 +Train:epoch: 73, loss@min: 0.962893, loss@max: 1.376152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.196018, LT: 1.191323, Top1S: 64.814812, Top1T: 64.765434 +Train:epoch: 74, loss@min: 0.964353, loss@max: 1.369997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.187802, LT: 1.184910, Top1S: 64.839508, Top1T: 64.814812 +Train:epoch: 75, loss@min: 0.967313, loss@max: 1.376607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.180968, LT: 1.180008, Top1S: 64.938271, Top1T: 64.925926 +Train:epoch: 76, loss@min: 0.969532, loss@max: 1.372337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.172853, LT: 1.173819, Top1S: 65.160492, Top1T: 65.086418Best acc: 65.160492 +Train:epoch: 77, loss@min: 0.957156, loss@max: 1.360771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.166733, LT: 1.168733, Top1S: 65.333336, Top1T: 65.148148Best acc: 65.333336 +Train:epoch: 78, loss@min: 0.966854, loss@max: 1.389408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.163066, LT: 1.164481, Top1S: 65.469139, Top1T: 65.259262Best acc: 65.469139 +Train:epoch: 79, loss@min: 0.959535, loss@max: 1.381354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.161501, LT: 1.161409, Top1S: 65.456787, Top1T: 65.345680 +Train:epoch: 80, loss@min: 0.958010, loss@max: 1.372631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.162569, LT: 1.159831, Top1S: 65.407410, Top1T: 65.333336 +Train:epoch: 81, loss@min: 0.958358, loss@max: 1.368785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.164175, LT: 1.159294, Top1S: 65.395065, Top1T: 65.432098 +Train:epoch: 82, loss@min: 0.959657, loss@max: 1.369872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.165579, LT: 1.159525, Top1S: 65.456787, Top1T: 65.493828Best acc: 65.493828 +Train:epoch: 83, loss@min: 0.962189, loss@max: 1.365601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.166002, LT: 1.160337, Top1S: 65.370369, Top1T: 65.444443 +Train:epoch: 84, loss@min: 0.966824, loss@max: 1.378106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.166886, LT: 1.162830, Top1S: 65.271606, Top1T: 65.222221 +Train:epoch: 85, loss@min: 0.971136, loss@max: 1.381722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.166415, LT: 1.164115, Top1S: 65.098763, Top1T: 65.061729 +Train:epoch: 86, loss@min: 0.963233, loss@max: 1.373197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.165636, LT: 1.165198, Top1S: 65.074074, Top1T: 64.987656 +Train:epoch: 87, loss@min: 0.956988, loss@max: 1.367953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.165412, LT: 1.166140, Top1S: 65.123459, Top1T: 64.975311 +Train:epoch: 88, loss@min: 0.964120, loss@max: 1.383920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.168098, LT: 1.169101, Top1S: 65.185188, Top1T: 64.962959 +Train:epoch: 89, loss@min: 0.963076, loss@max: 1.376876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.169868, LT: 1.170976, Top1S: 65.148148, Top1T: 64.851852 +Train:epoch: 90, loss@min: 0.961644, loss@max: 1.373674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.171975, LT: 1.172677, Top1S: 64.950615, Top1T: 64.679008 +Train:epoch: 91, loss@min: 0.967879, loss@max: 1.388011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.174123, LT: 1.174446, Top1S: 64.913582, Top1T: 64.666664 +Train:epoch: 92, loss@min: 0.969999, loss@max: 1.392064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.174338, LT: 1.174494, Top1S: 64.925926, Top1T: 64.740738 +Train:epoch: 93, loss@min: 0.961103, loss@max: 1.377445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.175155, LT: 1.174681, Top1S: 64.925926, Top1T: 64.728394 +Train:epoch: 94, loss@min: 0.951791, loss@max: 1.375843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.176238, LT: 1.175199, Top1S: 64.950615, Top1T: 64.728394 +Train:epoch: 95, loss@min: 0.960573, loss@max: 1.383318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.177262, LT: 1.175323, Top1S: 64.925926, Top1T: 64.814812 +Train:epoch: 96, loss@min: 0.962327, loss@max: 1.385300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.178792, LT: 1.175702, Top1S: 64.839508, Top1T: 64.851852 +Train:epoch: 97, loss@min: 0.957749, loss@max: 1.359779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.179669, LT: 1.176204, Top1S: 64.987656, Top1T: 64.913582 +Train:epoch: 98, loss@min: 0.957592, loss@max: 1.365785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.180664, LT: 1.176818, Top1S: 65.012344, Top1T: 64.901237 +Train:epoch: 99, loss@min: 0.976931, loss@max: 1.392762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.181574, LT: 1.177350, Top1S: 65.061729, Top1T: 64.962959 +Train:epoch: 100, loss@min: 0.959164, loss@max: 1.363507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.182443, LT: 1.178086, Top1S: 64.962959, Top1T: 64.950615 +Train:epoch: 101, loss@min: 0.960782, loss@max: 1.374139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.182715, LT: 1.178363, Top1S: 64.962959, Top1T: 64.913582 +Train:epoch: 102, loss@min: 0.967597, loss@max: 1.386672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.183121, LT: 1.179437, Top1S: 65.061729, Top1T: 64.987656 +Train:epoch: 103, loss@min: 0.962508, loss@max: 1.367628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.184131, LT: 1.180855, Top1S: 65.086418, Top1T: 64.938271 +Train:epoch: 104, loss@min: 0.970107, loss@max: 1.382479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.185816, LT: 1.182577, Top1S: 65.000000, Top1T: 64.864197 +Train:epoch: 105, loss@min: 0.959922, loss@max: 1.369196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.186911, LT: 1.184002, Top1S: 64.962959, Top1T: 64.851852 +Train:epoch: 106, loss@min: 0.959204, loss@max: 1.381898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.187315, LT: 1.184950, Top1S: 65.024689, Top1T: 64.851852 +Train:epoch: 107, loss@min: 0.958722, loss@max: 1.378754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.188181, LT: 1.186084, Top1S: 65.037041, Top1T: 64.814812 +Train:epoch: 108, loss@min: 0.957284, loss@max: 1.364323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.189027, LT: 1.187292, Top1S: 64.925926, Top1T: 64.740738 +Train:epoch: 109, loss@min: 0.955271, loss@max: 1.369096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.189795, LT: 1.188265, Top1S: 64.962959, Top1T: 64.691360 +Train:epoch: 110, loss@min: 0.953874, loss@max: 1.366816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.190390, LT: 1.189145, Top1S: 64.987656, Top1T: 64.679008 +Train:epoch: 111, loss@min: 0.961215, loss@max: 1.385978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.191213, LT: 1.190132, Top1S: 64.938271, Top1T: 64.703705 +Train:epoch: 112, loss@min: 0.963472, loss@max: 1.379196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.192050, LT: 1.190976, Top1S: 64.950615, Top1T: 64.703705 +Train:epoch: 113, loss@min: 0.952994, loss@max: 1.366926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.193075, LT: 1.191859, Top1S: 64.901237, Top1T: 64.654320 +Train:epoch: 114, loss@min: 0.997259, loss@max: 1.408906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.193722, LT: 1.192536, Top1S: 64.851852, Top1T: 64.703705 +Train:epoch: 115, loss@min: 0.952925, loss@max: 1.369128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.194125, LT: 1.193095, Top1S: 64.851852, Top1T: 64.691360 +Train:epoch: 116, loss@min: 0.966890, loss@max: 1.379634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.195409, LT: 1.194198, Top1S: 64.851852, Top1T: 64.691360 +Train:epoch: 117, loss@min: 0.958303, loss@max: 1.370842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.196865, LT: 1.195167, Top1S: 64.802467, Top1T: 64.666664 +Train:epoch: 118, loss@min: 0.959914, loss@max: 1.374153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.198218, LT: 1.195996, Top1S: 64.851852, Top1T: 64.604935 +Train:epoch: 119, loss@min: 0.956643, loss@max: 1.366582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.199381, LT: 1.196649, Top1S: 64.851852, Top1T: 64.580246 +Train:epoch: 120, loss@min: 0.956537, loss@max: 1.370886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.200431, LT: 1.197200, Top1S: 64.839508, Top1T: 64.580246 +Train:epoch: 121, loss@min: 0.963042, loss@max: 1.378266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.200942, LT: 1.197455, Top1S: 64.814812, Top1T: 64.592590 +Train:epoch: 122, loss@min: 0.964315, loss@max: 1.386338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.201507, LT: 1.197797, Top1S: 64.827164, Top1T: 64.604935 +Train:epoch: 123, loss@min: 0.962827, loss@max: 1.379184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.201906, LT: 1.198150, Top1S: 64.802467, Top1T: 64.629631 +Train:epoch: 124, loss@min: 0.963006, loss@max: 1.369336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.202193, LT: 1.198497, Top1S: 64.790123, Top1T: 64.641975 +Train:epoch: 125, loss@min: 0.961238, loss@max: 1.373701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.202450, LT: 1.198859, Top1S: 64.790123, Top1T: 64.666664 +Train:epoch: 126, loss@min: 0.952398, loss@max: 1.366930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.202560, LT: 1.199166, Top1S: 64.790123, Top1T: 64.691360 +Train:epoch: 127, loss@min: 0.959533, loss@max: 1.373449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.202685, LT: 1.199386, Top1S: 64.814812, Top1T: 64.679008 +Train:epoch: 128, loss@min: 0.956160, loss@max: 1.373520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.202798, LT: 1.199612, Top1S: 64.802467, Top1T: 64.691360 +Train:epoch: 129, loss@min: 0.951942, loss@max: 1.362613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.202796, LT: 1.199835, Top1S: 64.827164, Top1T: 64.654320 +Train:epoch: 130, loss@min: 0.959496, loss@max: 1.372218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.202606, LT: 1.200013, Top1S: 64.814812, Top1T: 64.654320 +Train:epoch: 131, loss@min: 0.960753, loss@max: 1.369413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.202535, LT: 1.200176, Top1S: 64.851852, Top1T: 64.666664 +Train:epoch: 132, loss@min: 0.952428, loss@max: 1.365961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.202453, LT: 1.200316, Top1S: 64.851852, Top1T: 64.654320 +Train:epoch: 133, loss@min: 0.959162, loss@max: 1.369921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.202353, LT: 1.200363, Top1S: 64.864197, Top1T: 64.654320 +Train:epoch: 134, loss@min: 0.955625, loss@max: 1.366161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.202266, LT: 1.200362, Top1S: 64.851852, Top1T: 64.641975 +Train:epoch: 135, loss@min: 0.954749, loss@max: 1.372496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.202225, LT: 1.200368, Top1S: 64.851852, Top1T: 64.629631 +Train:epoch: 136, loss@min: 0.969738, loss@max: 1.382387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.202192, LT: 1.200356, Top1S: 64.851852, Top1T: 64.629631 +Train:epoch: 137, loss@min: 0.957995, loss@max: 1.368581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.202188, LT: 1.200339, Top1S: 64.839508, Top1T: 64.629631 +Train:epoch: 138, loss@min: 0.954415, loss@max: 1.365473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.202194, LT: 1.200326, Top1S: 64.839508, Top1T: 64.641975 +Train:epoch: 139, loss@min: 1.000309, loss@max: 1.409937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.202274, LT: 1.200383, Top1S: 64.839508, Top1T: 64.654320 +Train:epoch: 140, loss@min: 0.961184, loss@max: 1.379381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.202406, LT: 1.200479, Top1S: 64.839508, Top1T: 64.641975 +Train:epoch: 141, loss@min: 0.956432, loss@max: 1.378460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.202489, LT: 1.200546, Top1S: 64.839508, Top1T: 64.641975 +Train:epoch: 142, loss@min: 0.961103, loss@max: 1.383832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.202552, LT: 1.200616, Top1S: 64.827164, Top1T: 64.654320 +Train:epoch: 143, loss@min: 0.961170, loss@max: 1.372696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.202574, LT: 1.200646, Top1S: 64.839508, Top1T: 64.654320 +Train:epoch: 144, loss@min: 0.984498, loss@max: 1.403219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.202616, LT: 1.200682, Top1S: 64.839508, Top1T: 64.654320 +Train:epoch: 145, loss@min: 0.955859, loss@max: 1.369714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.202641, LT: 1.200704, Top1S: 64.839508, Top1T: 64.654320 +Train:epoch: 146, loss@min: 0.955256, loss@max: 1.368124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.202652, LT: 1.200716, Top1S: 64.839508, Top1T: 64.654320 +Train:epoch: 147, loss@min: 0.956383, loss@max: 1.366223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.202659, LT: 1.200721, Top1S: 64.827164, Top1T: 64.654320 +Train:epoch: 148, loss@min: 0.957852, loss@max: 1.376528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.202661, LT: 1.200722, Top1S: 64.827164, Top1T: 64.654320 +Train:epoch: 149, loss@min: 0.957267, loss@max: 1.367387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.202661, LT: 1.200722, Top1S: 64.827164, Top1T: 64.654320 +Train:epoch: 150, loss@min: 0.962702, loss@max: 1.374700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.202661, LT: 1.200722, Top1S: 64.827164, Top1T: 64.654320 +------------------------------------------- +Tue Aug 8 03:42:23 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Tue Aug 8 11:47:53 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.599195, loss@max: 1.352949, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.985306, loss@max: 1.589147, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.620117, loss@max: 1.381585, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.507356, loss@max: 1.489246, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.449087, loss@max: 1.598112, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.041129, loss@max: 1.598256, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.867492, loss@max: 1.654910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.467188, loss@max: 1.598028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.246056, loss@max: 1.586140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.213099, loss@max: 1.601382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.131450, loss@max: 1.591692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.080871, loss@max: 1.542072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.127336, loss@max: 1.539508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.172842, loss@max: 1.520481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.082323, loss@max: 1.465482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.092979, loss@max: 1.442907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.057810, loss@max: 1.374370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.074728, loss@max: 1.374584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.056614, loss@max: 1.318705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.000045, loss@max: 1.285709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 1.514411, LT: 1.558717, Top1S: 54.790123, Top1T: 53.358025Best acc: 54.790123 +Train:epoch: 21, loss@min: 1.058783, loss@max: 1.307558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 21, LS: 1.515571, LT: 1.568585, Top1S: 54.987656, Top1T: 53.444443Best acc: 54.987656 +Train:epoch: 22, loss@min: 1.044745, loss@max: 1.304086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 1.520671, LT: 1.578082, Top1S: 55.246914, Top1T: 53.592594Best acc: 55.246914 +Train:epoch: 23, loss@min: 0.999680, loss@max: 1.278325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 23, LS: 1.526453, LT: 1.582408, Top1S: 55.246914, Top1T: 53.913582 +Train:epoch: 24, loss@min: 1.034289, loss@max: 1.288839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 24, LS: 1.527554, LT: 1.577049, Top1S: 55.185184, Top1T: 54.432098 +Train:epoch: 25, loss@min: 1.013954, loss@max: 1.291744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 25, LS: 1.530629, LT: 1.570382, Top1S: 55.530865, Top1T: 54.777779Best acc: 55.530865 +Train:epoch: 26, loss@min: 1.029682, loss@max: 1.312786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 26, LS: 1.542532, LT: 1.573134, Top1S: 55.679012, Top1T: 55.209877Best acc: 55.679012 +Train:epoch: 27, loss@min: 1.006904, loss@max: 1.303318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 1.558032, LT: 1.578629, Top1S: 55.641975, Top1T: 55.283951 +Train:epoch: 28, loss@min: 1.011576, loss@max: 1.306951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 1.568181, LT: 1.581165, Top1S: 55.567902, Top1T: 55.370369 +Train:epoch: 29, loss@min: 1.000199, loss@max: 1.327786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 1.582414, LT: 1.590133, Top1S: 55.654320, Top1T: 55.345680 +Train:epoch: 30, loss@min: 0.970209, loss@max: 1.293332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 1.594611, LT: 1.599138, Top1S: 55.728394, Top1T: 55.308643Best acc: 55.728394 +Train:epoch: 31, loss@min: 0.974466, loss@max: 1.324525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 1.607170, LT: 1.612755, Top1S: 55.543209, Top1T: 55.382717 +Train:epoch: 32, loss@min: 0.948419, loss@max: 1.323314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 1.617307, LT: 1.626451, Top1S: 55.518517, Top1T: 55.246914 +Train:epoch: 33, loss@min: 0.954121, loss@max: 1.328619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 1.624915, LT: 1.640389, Top1S: 55.555557, Top1T: 55.185184 +Train:epoch: 34, loss@min: 0.954153, loss@max: 1.346446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.631852, LT: 1.654113, Top1S: 55.629631, Top1T: 55.160492 +Train:epoch: 35, loss@min: 0.961718, loss@max: 1.357510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 1.643075, LT: 1.670838, Top1S: 55.518517, Top1T: 54.975307 +Train:epoch: 36, loss@min: 0.945624, loss@max: 1.366441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.655715, LT: 1.687058, Top1S: 55.407406, Top1T: 54.975307 +Train:epoch: 37, loss@min: 0.991908, loss@max: 1.394900, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 1.679037, LT: 1.711918, Top1S: 55.222221, Top1T: 54.827160 +Train:epoch: 38, loss@min: 0.943482, loss@max: 1.341545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.703616, LT: 1.735504, Top1S: 54.987656, Top1T: 54.777779 +Train:epoch: 39, loss@min: 0.957676, loss@max: 1.347909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.727421, LT: 1.755387, Top1S: 54.876545, Top1T: 54.629631 +Train:epoch: 40, loss@min: 0.954784, loss@max: 1.340481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.749769, LT: 1.772744, Top1S: 54.567902, Top1T: 54.382717 +Train:epoch: 41, loss@min: 0.948032, loss@max: 1.336280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.770449, LT: 1.789144, Top1S: 54.604939, Top1T: 54.308643 +Train:epoch: 42, loss@min: 0.942699, loss@max: 1.354057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.790183, LT: 1.804389, Top1S: 54.456791, Top1T: 54.074074 +Train:epoch: 43, loss@min: 0.960278, loss@max: 1.371732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.805108, LT: 1.819109, Top1S: 54.271606, Top1T: 53.888889 +Train:epoch: 44, loss@min: 0.961656, loss@max: 1.352430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.818375, LT: 1.831897, Top1S: 54.160492, Top1T: 53.691357 +Train:epoch: 45, loss@min: 0.958754, loss@max: 1.365146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.823822, LT: 1.840476, Top1S: 54.074074, Top1T: 53.691357 +Train:epoch: 46, loss@min: 0.950911, loss@max: 1.366486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.828693, LT: 1.848212, Top1S: 54.049381, Top1T: 53.703705 +Train:epoch: 47, loss@min: 0.960223, loss@max: 1.348831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.832081, LT: 1.854327, Top1S: 54.012344, Top1T: 53.703705 +Train:epoch: 48, loss@min: 0.958776, loss@max: 1.359633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.840565, LT: 1.864028, Top1S: 53.913582, Top1T: 53.654320 +Train:epoch: 49, loss@min: 0.990552, loss@max: 1.373108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.844466, LT: 1.868350, Top1S: 53.913582, Top1T: 53.654320 +Train:epoch: 50, loss@min: 0.950492, loss@max: 1.350828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.849492, LT: 1.871608, Top1S: 53.975307, Top1T: 53.641975 +Train:epoch: 51, loss@min: 0.961007, loss@max: 1.347285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.854022, LT: 1.873434, Top1S: 54.012344, Top1T: 53.740742 +Train:epoch: 52, loss@min: 0.960379, loss@max: 1.348634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.857685, LT: 1.874038, Top1S: 54.086418, Top1T: 53.925926 +Train:epoch: 53, loss@min: 0.959099, loss@max: 1.354550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.860964, LT: 1.875480, Top1S: 54.123455, Top1T: 53.938271 +Train:epoch: 54, loss@min: 0.988210, loss@max: 1.372815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.866434, LT: 1.879850, Top1S: 54.049381, Top1T: 53.876545 +Train:epoch: 55, loss@min: 0.971117, loss@max: 1.375529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.870390, LT: 1.882648, Top1S: 54.024693, Top1T: 53.814816 +Train:epoch: 56, loss@min: 0.975409, loss@max: 1.346798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.870628, LT: 1.883700, Top1S: 54.024693, Top1T: 53.802467 +Train:epoch: 57, loss@min: 0.977764, loss@max: 1.392393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.873828, LT: 1.887376, Top1S: 54.037037, Top1T: 53.777779 +Train:epoch: 58, loss@min: 0.957550, loss@max: 1.369391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.876049, LT: 1.889764, Top1S: 54.098766, Top1T: 53.703705 +Train:epoch: 59, loss@min: 0.950112, loss@max: 1.380795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.877490, LT: 1.890596, Top1S: 54.012344, Top1T: 53.691357 +Train:epoch: 60, loss@min: 0.958620, loss@max: 1.371146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.877021, LT: 1.889746, Top1S: 54.111111, Top1T: 53.814816 +Train:epoch: 61, loss@min: 0.963764, loss@max: 1.359978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.876705, LT: 1.888588, Top1S: 54.111111, Top1T: 53.876545 +Train:epoch: 62, loss@min: 0.958969, loss@max: 1.369696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.874597, LT: 1.886890, Top1S: 54.135803, Top1T: 53.876545 +Train:epoch: 63, loss@min: 0.954536, loss@max: 1.361075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.873190, LT: 1.886084, Top1S: 54.111111, Top1T: 53.962963 +Train:epoch: 64, loss@min: 0.952807, loss@max: 1.370268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.872538, LT: 1.885835, Top1S: 54.197533, Top1T: 53.925926 +Train:epoch: 65, loss@min: 0.953668, loss@max: 1.362189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.872728, LT: 1.886295, Top1S: 54.271606, Top1T: 53.925926 +Train:epoch: 66, loss@min: 0.963258, loss@max: 1.377174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.875512, LT: 1.888721, Top1S: 54.271606, Top1T: 53.938271 +Train:epoch: 67, loss@min: 0.957683, loss@max: 1.359833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.876836, LT: 1.890720, Top1S: 54.234570, Top1T: 54.000000 +Train:epoch: 68, loss@min: 0.956360, loss@max: 1.360921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.878722, LT: 1.892388, Top1S: 54.234570, Top1T: 53.987656 +Train:epoch: 69, loss@min: 0.959398, loss@max: 1.360952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.879262, LT: 1.893695, Top1S: 54.246914, Top1T: 53.987656 +Train:epoch: 70, loss@min: 0.962478, loss@max: 1.362750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 1.879304, LT: 1.894068, Top1S: 54.296295, Top1T: 54.000000 +Train:epoch: 71, loss@min: 0.950015, loss@max: 1.365236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 1.880333, LT: 1.894713, Top1S: 54.271606, Top1T: 54.037037 +Train:epoch: 72, loss@min: 0.959705, loss@max: 1.376287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.882212, LT: 1.895185, Top1S: 54.246914, Top1T: 54.024693 +Train:epoch: 73, loss@min: 0.954790, loss@max: 1.366781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.883479, LT: 1.894903, Top1S: 54.185184, Top1T: 54.098766 +Train:epoch: 74, loss@min: 0.963823, loss@max: 1.365064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.883715, LT: 1.895894, Top1S: 54.148148, Top1T: 54.135803 +Train:epoch: 75, loss@min: 0.956771, loss@max: 1.365498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.883900, LT: 1.896982, Top1S: 54.222221, Top1T: 54.160492 +Train:epoch: 76, loss@min: 0.953414, loss@max: 1.365842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.883673, LT: 1.897589, Top1S: 54.271606, Top1T: 54.160492 +Train:epoch: 77, loss@min: 0.959647, loss@max: 1.365422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.883526, LT: 1.898304, Top1S: 54.259258, Top1T: 54.197533 +Train:epoch: 78, loss@min: 0.958067, loss@max: 1.364018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.881847, LT: 1.899328, Top1S: 54.283951, Top1T: 54.123455 +Train:epoch: 79, loss@min: 0.956963, loss@max: 1.358612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.880413, LT: 1.899729, Top1S: 54.296295, Top1T: 54.160492 +Train:epoch: 80, loss@min: 0.957735, loss@max: 1.357468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.879097, LT: 1.899792, Top1S: 54.246914, Top1T: 54.185184 +Train:epoch: 81, loss@min: 0.950923, loss@max: 1.368634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.879330, LT: 1.900248, Top1S: 54.246914, Top1T: 54.185184 +Train:epoch: 82, loss@min: 0.965587, loss@max: 1.374959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.878235, LT: 1.897809, Top1S: 54.296295, Top1T: 54.246914 +Train:epoch: 83, loss@min: 0.963370, loss@max: 1.379848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.879227, LT: 1.895691, Top1S: 54.333332, Top1T: 54.185184 +Train:epoch: 84, loss@min: 0.958280, loss@max: 1.368309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.881463, LT: 1.895118, Top1S: 54.358025, Top1T: 54.160492 +Train:epoch: 85, loss@min: 0.959067, loss@max: 1.371014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.883608, LT: 1.895512, Top1S: 54.358025, Top1T: 54.160492 +Train:epoch: 86, loss@min: 0.957589, loss@max: 1.360429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.884366, LT: 1.896562, Top1S: 54.395061, Top1T: 54.185184 +Train:epoch: 87, loss@min: 0.958282, loss@max: 1.358746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.884481, LT: 1.897280, Top1S: 54.320988, Top1T: 54.222221 +Train:epoch: 88, loss@min: 0.961987, loss@max: 1.366220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.883575, LT: 1.897823, Top1S: 54.382717, Top1T: 54.185184 +Train:epoch: 89, loss@min: 0.954188, loss@max: 1.373596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.883118, LT: 1.898530, Top1S: 54.419754, Top1T: 54.222221 +Train:epoch: 90, loss@min: 0.951286, loss@max: 1.365510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.882945, LT: 1.899499, Top1S: 54.382717, Top1T: 54.234570 +Train:epoch: 91, loss@min: 0.952977, loss@max: 1.367223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.883115, LT: 1.900324, Top1S: 54.382717, Top1T: 54.197533 +Train:epoch: 92, loss@min: 0.952966, loss@max: 1.365269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.883022, LT: 1.900980, Top1S: 54.456791, Top1T: 54.209877 +Train:epoch: 93, loss@min: 0.957514, loss@max: 1.374835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.884324, LT: 1.902655, Top1S: 54.456791, Top1T: 54.234570 +Train:epoch: 94, loss@min: 0.960098, loss@max: 1.365727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.886656, LT: 1.904449, Top1S: 54.407406, Top1T: 54.148148 +Train:epoch: 95, loss@min: 0.956842, loss@max: 1.360014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.888512, LT: 1.906051, Top1S: 54.395061, Top1T: 54.197533 +Train:epoch: 96, loss@min: 0.955887, loss@max: 1.367004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.889376, LT: 1.907330, Top1S: 54.395061, Top1T: 54.246914 +Train:epoch: 97, loss@min: 0.951886, loss@max: 1.375139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.892122, LT: 1.908683, Top1S: 54.432098, Top1T: 54.234570 +Train:epoch: 98, loss@min: 0.955225, loss@max: 1.363341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.894701, LT: 1.910122, Top1S: 54.456791, Top1T: 54.271606 +Train:epoch: 99, loss@min: 0.958520, loss@max: 1.369341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.897139, LT: 1.911500, Top1S: 54.444443, Top1T: 54.308643 +Train:epoch: 100, loss@min: 0.958751, loss@max: 1.361952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.898796, LT: 1.912653, Top1S: 54.444443, Top1T: 54.358025 +Train:epoch: 101, loss@min: 0.953773, loss@max: 1.368100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.900277, LT: 1.914335, Top1S: 54.469135, Top1T: 54.333332 +Train:epoch: 102, loss@min: 0.958207, loss@max: 1.374915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.901127, LT: 1.915864, Top1S: 54.419754, Top1T: 54.283951 +Train:epoch: 103, loss@min: 0.959762, loss@max: 1.358819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.901052, LT: 1.917300, Top1S: 54.395061, Top1T: 54.234570 +Train:epoch: 104, loss@min: 0.959742, loss@max: 1.363910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.901021, LT: 1.919009, Top1S: 54.395061, Top1T: 54.222221 +Train:epoch: 105, loss@min: 0.952675, loss@max: 1.367782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.901148, LT: 1.920325, Top1S: 54.407406, Top1T: 54.234570 +Train:epoch: 106, loss@min: 0.958105, loss@max: 1.368659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.901945, LT: 1.921779, Top1S: 54.432098, Top1T: 54.234570 +Train:epoch: 107, loss@min: 0.953837, loss@max: 1.365990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.902802, LT: 1.923150, Top1S: 54.419754, Top1T: 54.246914 +Train:epoch: 108, loss@min: 0.956258, loss@max: 1.369504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.903799, LT: 1.924358, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 109, loss@min: 0.947733, loss@max: 1.371150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.904697, LT: 1.925171, Top1S: 54.370369, Top1T: 54.197533 +Train:epoch: 110, loss@min: 0.952660, loss@max: 1.365732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.905393, LT: 1.925833, Top1S: 54.419754, Top1T: 54.197533 +Train:epoch: 111, loss@min: 0.956331, loss@max: 1.366077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.906189, LT: 1.926458, Top1S: 54.407406, Top1T: 54.209877 +Train:epoch: 112, loss@min: 0.958502, loss@max: 1.378654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.907186, LT: 1.927015, Top1S: 54.395061, Top1T: 54.197533 +Train:epoch: 113, loss@min: 0.958600, loss@max: 1.361358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.908315, LT: 1.927509, Top1S: 54.370369, Top1T: 54.185184 +Train:epoch: 114, loss@min: 0.958845, loss@max: 1.368361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.909215, LT: 1.927926, Top1S: 54.370369, Top1T: 54.185184 +Train:epoch: 115, loss@min: 0.953382, loss@max: 1.362045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.909925, LT: 1.928205, Top1S: 54.382717, Top1T: 54.160492 +Train:epoch: 116, loss@min: 0.956052, loss@max: 1.364221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.910437, LT: 1.928427, Top1S: 54.395061, Top1T: 54.160492 +Train:epoch: 117, loss@min: 0.955947, loss@max: 1.366695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.910760, LT: 1.928303, Top1S: 54.395061, Top1T: 54.160492 +Train:epoch: 118, loss@min: 0.954204, loss@max: 1.365090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.910915, LT: 1.928254, Top1S: 54.419754, Top1T: 54.160492 +Train:epoch: 119, loss@min: 0.954513, loss@max: 1.360442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.911066, LT: 1.928165, Top1S: 54.407406, Top1T: 54.172840 +Train:epoch: 120, loss@min: 0.951120, loss@max: 1.367847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.911304, LT: 1.927973, Top1S: 54.419754, Top1T: 54.185184 +Train:epoch: 121, loss@min: 0.955065, loss@max: 1.364083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.911514, LT: 1.927848, Top1S: 54.407406, Top1T: 54.197533 +Train:epoch: 122, loss@min: 0.956291, loss@max: 1.374300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.911273, LT: 1.927421, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 123, loss@min: 0.955531, loss@max: 1.366907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.910960, LT: 1.926996, Top1S: 54.370369, Top1T: 54.222221 +Train:epoch: 124, loss@min: 0.960420, loss@max: 1.366265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.910799, LT: 1.926758, Top1S: 54.370369, Top1T: 54.222221 +Train:epoch: 125, loss@min: 0.953569, loss@max: 1.361219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.910672, LT: 1.926550, Top1S: 54.382717, Top1T: 54.222221 +Train:epoch: 126, loss@min: 0.955271, loss@max: 1.366487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.910654, LT: 1.926582, Top1S: 54.370369, Top1T: 54.222221 +Train:epoch: 127, loss@min: 0.949407, loss@max: 1.367921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.910558, LT: 1.926530, Top1S: 54.358025, Top1T: 54.222221 +Train:epoch: 128, loss@min: 0.951449, loss@max: 1.364781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.910417, LT: 1.926561, Top1S: 54.345680, Top1T: 54.209877 +Train:epoch: 129, loss@min: 0.951759, loss@max: 1.372323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.910415, LT: 1.926721, Top1S: 54.370369, Top1T: 54.209877 +Train:epoch: 130, loss@min: 0.965893, loss@max: 1.377722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.910611, LT: 1.927098, Top1S: 54.382717, Top1T: 54.222221 +Train:epoch: 131, loss@min: 0.958148, loss@max: 1.365647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.910732, LT: 1.927332, Top1S: 54.395061, Top1T: 54.222221 +Train:epoch: 132, loss@min: 0.955271, loss@max: 1.363124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.910867, LT: 1.927547, Top1S: 54.395061, Top1T: 54.222221 +Train:epoch: 133, loss@min: 0.961359, loss@max: 1.375336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.911220, LT: 1.927919, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 134, loss@min: 0.956960, loss@max: 1.370937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.911406, LT: 1.928176, Top1S: 54.407406, Top1T: 54.234570 +Train:epoch: 135, loss@min: 0.954886, loss@max: 1.371271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.911518, LT: 1.928377, Top1S: 54.407406, Top1T: 54.246914 +Train:epoch: 136, loss@min: 0.959233, loss@max: 1.371894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.911698, LT: 1.928652, Top1S: 54.407406, Top1T: 54.246914 +Train:epoch: 137, loss@min: 0.954912, loss@max: 1.367340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.911856, LT: 1.928873, Top1S: 54.419754, Top1T: 54.259258 +Train:epoch: 138, loss@min: 0.969612, loss@max: 1.391625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.912250, LT: 1.929255, Top1S: 54.395061, Top1T: 54.234570 +Train:epoch: 139, loss@min: 0.957334, loss@max: 1.358522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.912545, LT: 1.929543, Top1S: 54.395061, Top1T: 54.222221 +Train:epoch: 140, loss@min: 0.960969, loss@max: 1.359758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.912739, LT: 1.929743, Top1S: 54.395061, Top1T: 54.222221 +Train:epoch: 141, loss@min: 0.954535, loss@max: 1.372469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.912893, LT: 1.929869, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 142, loss@min: 0.956212, loss@max: 1.367713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.913016, LT: 1.929954, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 143, loss@min: 0.963122, loss@max: 1.366201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.913124, LT: 1.930048, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 144, loss@min: 0.958566, loss@max: 1.374557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.913190, LT: 1.930101, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 145, loss@min: 0.964965, loss@max: 1.379339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.913217, LT: 1.930122, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 146, loss@min: 0.957987, loss@max: 1.360595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.913230, LT: 1.930132, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 147, loss@min: 0.959753, loss@max: 1.372644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.913235, LT: 1.930137, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 148, loss@min: 0.955271, loss@max: 1.370982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.913236, LT: 1.930139, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 149, loss@min: 0.960708, loss@max: 1.375340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.913236, LT: 1.930139, Top1S: 54.407406, Top1T: 54.222221 +Train:epoch: 150, loss@min: 0.952321, loss@max: 1.362149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.913236, LT: 1.930139, Top1S: 54.407406, Top1T: 54.222221 +------------------------------------------- +Tue Aug 8 14:49:17 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Tue Aug 8 15:33:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.124567, loss@max: 1.756030, Top1S acc: 99.609375, Top1T acc: 71.093750 +Train:epoch: 2, loss@min: 2.085509, loss@max: 1.634050, Top1S acc: 100.000000, Top1T acc: 82.421875 +Train:epoch: 3, loss@min: 1.561564, loss@max: 1.621423, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 1.428633, loss@max: 1.447006, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 5, loss@min: 1.282782, loss@max: 1.518156, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 6, loss@min: 1.382917, loss@max: 1.495463, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 7, loss@min: 1.249904, loss@max: 1.412923, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 8, loss@min: 1.227942, loss@max: 1.512175, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 9, loss@min: 1.344307, loss@max: 1.538996, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.234332, loss@max: 1.778044, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 11, loss@min: 1.204824, loss@max: 1.669287, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 12, loss@min: 1.292759, loss@max: 1.713984, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 13, loss@min: 1.248064, loss@max: 1.748983, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 1.158437, loss@max: 1.628342, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 1.126478, loss@max: 1.729713, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 1.176024, loss@max: 1.668818, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 17, loss@min: 1.174105, loss@max: 1.634407, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 18, loss@min: 1.185798, loss@max: 1.624979, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.060761, loss@max: 1.696328, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 20, loss@min: 1.064283, loss@max: 1.664460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 20, LS: 0.864233, LT: 0.835142, Top1S: 74.306679, Top1T: 75.239403Best acc: 75.239403 +Train:epoch: 21, loss@min: 1.185133, loss@max: 1.626348, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 21, LS: 0.869804, LT: 0.835794, Top1S: 74.107704, Top1T: 75.425941Best acc: 75.425941 +Train:epoch: 22, loss@min: 1.101890, loss@max: 1.668399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 22, LS: 0.863490, LT: 0.839444, Top1S: 74.095268, Top1T: 74.916061 +Train:epoch: 23, loss@min: 1.146691, loss@max: 1.667406, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 23, LS: 0.882660, LT: 0.844034, Top1S: 73.784355, Top1T: 74.605148 +Train:epoch: 24, loss@min: 1.086180, loss@max: 1.606022, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 24, LS: 0.857219, LT: 0.834022, Top1S: 74.294243, Top1T: 75.226967 +Train:epoch: 25, loss@min: 1.161903, loss@max: 1.675763, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 25, LS: 0.852824, LT: 0.822826, Top1S: 74.816566, Top1T: 75.637360Best acc: 75.637360 +Train:epoch: 26, loss@min: 1.038019, loss@max: 1.708162, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 26, LS: 0.844822, LT: 0.831638, Top1S: 74.866310, Top1T: 75.488129 +Train:epoch: 27, loss@min: 1.119967, loss@max: 1.542668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 27, LS: 0.859063, LT: 0.835744, Top1S: 74.729515, Top1T: 75.450821 +Train:epoch: 28, loss@min: 1.138415, loss@max: 1.615532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.858824, LT: 0.835318, Top1S: 74.779259, Top1T: 75.239403 +Train:epoch: 29, loss@min: 1.018638, loss@max: 1.566920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.853779, LT: 0.840651, Top1S: 74.704643, Top1T: 75.475693 +Train:epoch: 30, loss@min: 1.106753, loss@max: 1.641374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.863077, LT: 0.836480, Top1S: 74.704643, Top1T: 75.500565 +Train:epoch: 31, loss@min: 1.066665, loss@max: 1.651191, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 31, LS: 0.840971, LT: 0.828764, Top1S: 75.699539, Top1T: 75.425941Best acc: 75.699539 +Train:epoch: 32, loss@min: 1.039053, loss@max: 1.711535, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 32, LS: 0.858914, LT: 0.842983, Top1S: 74.493225, Top1T: 75.500565 +Train:epoch: 33, loss@min: 1.069141, loss@max: 1.730905, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 33, LS: 0.837939, LT: 0.834445, Top1S: 75.264275, Top1T: 75.251839 +Train:epoch: 34, loss@min: 1.081549, loss@max: 1.671186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 0.851703, LT: 0.834464, Top1S: 74.630028, Top1T: 75.562744 +Train:epoch: 35, loss@min: 1.166699, loss@max: 1.631100, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 35, LS: 0.830652, LT: 0.828021, Top1S: 75.575180, Top1T: 75.761726Best acc: 75.761726 +Train:epoch: 36, loss@min: 1.141838, loss@max: 1.622886, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 36, LS: 0.843448, LT: 0.836053, Top1S: 75.102600, Top1T: 75.463257 +Train:epoch: 37, loss@min: 1.109763, loss@max: 1.668118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 0.852106, LT: 0.844131, Top1S: 75.314018, Top1T: 75.239403 +Train:epoch: 38, loss@min: 1.013138, loss@max: 1.744263, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 38, LS: 0.847322, LT: 0.840933, Top1S: 74.791695, Top1T: 75.537872 +Train:epoch: 39, loss@min: 1.046458, loss@max: 1.793670, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 39, LS: 0.846868, LT: 0.851609, Top1S: 75.164787, Top1T: 75.226967 +Train:epoch: 40, loss@min: 1.101437, loss@max: 1.673340, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 40, LS: 0.850045, LT: 0.844774, Top1S: 74.916061, Top1T: 75.314018 +Train:epoch: 41, loss@min: 1.103137, loss@max: 1.645436, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 0.847652, LT: 0.839337, Top1S: 75.438385, Top1T: 75.674667 +Train:epoch: 42, loss@min: 1.100571, loss@max: 1.543728, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 42, LS: 0.847294, LT: 0.829820, Top1S: 75.139908, Top1T: 76.022888Best acc: 76.022888 +Train:epoch: 43, loss@min: 1.017019, loss@max: 1.660118, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.840036, LT: 0.844411, Top1S: 75.450821, Top1T: 75.438385 +Train:epoch: 44, loss@min: 1.126639, loss@max: 1.547331, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 44, LS: 0.829725, LT: 0.832041, Top1S: 76.010452, Top1T: 75.811470 +Train:epoch: 45, loss@min: 0.994027, loss@max: 1.664447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.829506, LT: 0.828964, Top1S: 75.724419, Top1T: 76.085068Best acc: 76.085068 +Train:epoch: 46, loss@min: 1.076211, loss@max: 1.585625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.838562, LT: 0.832832, Top1S: 75.823906, Top1T: 75.861214 +Train:epoch: 47, loss@min: 1.044141, loss@max: 1.584166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.833317, LT: 0.841820, Top1S: 76.060196, Top1T: 75.935829 +Train:epoch: 48, loss@min: 1.020184, loss@max: 1.630758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.835398, LT: 0.839885, Top1S: 75.774162, Top1T: 75.898521 +Train:epoch: 49, loss@min: 1.077211, loss@max: 1.621294, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 49, LS: 0.838683, LT: 0.834755, Top1S: 75.973145, Top1T: 76.147247Best acc: 76.147247 +Train:epoch: 50, loss@min: 1.082857, loss@max: 1.629704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.839071, LT: 0.839448, Top1S: 75.724419, Top1T: 75.836342 +Train:epoch: 51, loss@min: 1.005425, loss@max: 1.654226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.843384, LT: 0.831269, Top1S: 75.674667, Top1T: 76.321358Best acc: 76.321358 +Train:epoch: 52, loss@min: 1.048487, loss@max: 1.564086, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 52, LS: 0.830763, LT: 0.836567, Top1S: 75.699539, Top1T: 75.649796 +Train:epoch: 53, loss@min: 0.968370, loss@max: 1.671441, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 53, LS: 0.832482, LT: 0.821741, Top1S: 75.948265, Top1T: 76.371101Best acc: 76.371101 +Train:epoch: 54, loss@min: 1.045220, loss@max: 1.548545, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 54, LS: 0.836878, LT: 0.835055, Top1S: 76.172119, Top1T: 76.221863 +Train:epoch: 55, loss@min: 1.011743, loss@max: 1.553637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.842419, LT: 0.842183, Top1S: 75.711983, Top1T: 75.861214 +Train:epoch: 56, loss@min: 1.033459, loss@max: 1.523968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.832085, LT: 0.834730, Top1S: 75.873650, Top1T: 75.910957 +Train:epoch: 57, loss@min: 1.111466, loss@max: 1.461921, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 57, LS: 0.828590, LT: 0.834164, Top1S: 76.209427, Top1T: 76.284050 +Train:epoch: 58, loss@min: 0.978172, loss@max: 1.601274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.840672, LT: 0.841633, Top1S: 75.898521, Top1T: 76.022888 +Train:epoch: 59, loss@min: 1.065707, loss@max: 1.526159, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 59, LS: 0.848700, LT: 0.840645, Top1S: 76.010452, Top1T: 76.047760 +Train:epoch: 60, loss@min: 0.975498, loss@max: 1.533912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.843474, LT: 0.851435, Top1S: 76.109940, Top1T: 75.985580 +Train:epoch: 61, loss@min: 1.031976, loss@max: 1.532351, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 61, LS: 0.845901, LT: 0.847680, Top1S: 75.898521, Top1T: 76.209427 +Train:epoch: 62, loss@min: 1.040620, loss@max: 1.582183, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 62, LS: 0.840665, LT: 0.849142, Top1S: 76.172119, Top1T: 76.060196 +Train:epoch: 63, loss@min: 1.050473, loss@max: 1.497582, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 63, LS: 0.849056, LT: 0.852567, Top1S: 76.172119, Top1T: 76.122375 +Train:epoch: 64, loss@min: 1.018473, loss@max: 1.517217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.851287, LT: 0.858209, Top1S: 76.047760, Top1T: 76.047760 +Train:epoch: 65, loss@min: 1.048162, loss@max: 1.502080, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 65, LS: 0.859045, LT: 0.857923, Top1S: 75.886086, Top1T: 76.047760 +Train:epoch: 66, loss@min: 0.965459, loss@max: 1.541448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.850892, LT: 0.861506, Top1S: 76.097504, Top1T: 75.861214 +Train:epoch: 67, loss@min: 0.993935, loss@max: 1.485614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.852606, LT: 0.852039, Top1S: 75.923393, Top1T: 76.010452 +Train:epoch: 68, loss@min: 0.992511, loss@max: 1.484233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.849982, LT: 0.854930, Top1S: 76.085068, Top1T: 75.998016 +Train:epoch: 69, loss@min: 1.016567, loss@max: 1.452506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.854131, LT: 0.859160, Top1S: 75.998016, Top1T: 76.035324 +Train:epoch: 70, loss@min: 1.025596, loss@max: 1.464330, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 70, LS: 0.851825, LT: 0.856823, Top1S: 76.333794, Top1T: 76.072632 +Train:epoch: 71, loss@min: 1.020370, loss@max: 1.524004, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 71, LS: 0.860370, LT: 0.859671, Top1S: 75.960701, Top1T: 76.433281Best acc: 76.433281 +Train:epoch: 72, loss@min: 0.998320, loss@max: 1.498818, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 72, LS: 0.863148, LT: 0.862689, Top1S: 75.948265, Top1T: 76.221863 +Train:epoch: 73, loss@min: 0.958743, loss@max: 1.504551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.858088, LT: 0.858815, Top1S: 75.985580, Top1T: 76.097504 +Train:epoch: 74, loss@min: 0.966070, loss@max: 1.472767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.859271, LT: 0.863754, Top1S: 75.960701, Top1T: 76.184555 +Train:epoch: 75, loss@min: 0.998323, loss@max: 1.465224, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 75, LS: 0.860438, LT: 0.862198, Top1S: 76.196991, Top1T: 76.383537 +Train:epoch: 76, loss@min: 0.976326, loss@max: 1.464839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.855557, LT: 0.865203, Top1S: 76.122375, Top1T: 76.495461Best acc: 76.495461 +Train:epoch: 77, loss@min: 1.005743, loss@max: 1.439501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.860023, LT: 0.858788, Top1S: 76.221863, Top1T: 76.221863 +Train:epoch: 78, loss@min: 0.989532, loss@max: 1.425986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.854816, LT: 0.863180, Top1S: 76.371101, Top1T: 76.470589 +Train:epoch: 79, loss@min: 0.981108, loss@max: 1.454233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.861455, LT: 0.867025, Top1S: 76.545212, Top1T: 76.619827Best acc: 76.619827 +Train:epoch: 80, loss@min: 0.990672, loss@max: 1.433902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.859500, LT: 0.867809, Top1S: 76.420845, Top1T: 76.321358 +Train:epoch: 81, loss@min: 0.963867, loss@max: 1.448480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.863058, LT: 0.870222, Top1S: 76.333794, Top1T: 76.520340 +Train:epoch: 82, loss@min: 0.961328, loss@max: 1.463749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.867564, LT: 0.872140, Top1S: 76.470589, Top1T: 76.433281 +Train:epoch: 83, loss@min: 0.980510, loss@max: 1.441330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.864554, LT: 0.876965, Top1S: 76.259178, Top1T: 76.433281 +Train:epoch: 84, loss@min: 0.973198, loss@max: 1.440521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.868429, LT: 0.873726, Top1S: 76.196991, Top1T: 76.557648 +Train:epoch: 85, loss@min: 0.981393, loss@max: 1.458591, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 85, LS: 0.870998, LT: 0.880047, Top1S: 76.445717, Top1T: 76.408409 +Train:epoch: 86, loss@min: 0.983109, loss@max: 1.418176, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.872463, LT: 0.881060, Top1S: 76.470589, Top1T: 76.296486 +Train:epoch: 87, loss@min: 0.960886, loss@max: 1.448064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.873169, LT: 0.880162, Top1S: 76.358665, Top1T: 76.333794 +Train:epoch: 88, loss@min: 0.980381, loss@max: 1.439537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.871882, LT: 0.878610, Top1S: 76.694443, Top1T: 76.483025Best acc: 76.694443 +Train:epoch: 89, loss@min: 0.980819, loss@max: 1.416238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.878910, LT: 0.883205, Top1S: 76.408409, Top1T: 76.445717 +Train:epoch: 90, loss@min: 0.974158, loss@max: 1.430827, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 90, LS: 0.877292, LT: 0.883332, Top1S: 76.570084, Top1T: 76.594955 +Train:epoch: 91, loss@min: 0.970685, loss@max: 1.411450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.877432, LT: 0.884290, Top1S: 76.458153, Top1T: 76.520340 +Train:epoch: 92, loss@min: 0.977618, loss@max: 1.443387, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 0.879647, LT: 0.885357, Top1S: 76.806374, Top1T: 76.594955Best acc: 76.806374 +Train:epoch: 93, loss@min: 0.955034, loss@max: 1.416454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.874678, LT: 0.884563, Top1S: 76.756622, Top1T: 76.507896 +Train:epoch: 94, loss@min: 0.979552, loss@max: 1.396071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.876552, LT: 0.884410, Top1S: 76.731750, Top1T: 76.619827 +Train:epoch: 95, loss@min: 0.948444, loss@max: 1.422284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.878684, LT: 0.883914, Top1S: 76.968040, Top1T: 76.756622Best acc: 76.968040 +Train:epoch: 96, loss@min: 0.966220, loss@max: 1.401772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.880246, LT: 0.889442, Top1S: 76.731750, Top1T: 76.744186 +Train:epoch: 97, loss@min: 0.956718, loss@max: 1.419735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.886725, LT: 0.895444, Top1S: 76.644699, Top1T: 76.769058 +Train:epoch: 98, loss@min: 0.952889, loss@max: 1.403778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.884954, LT: 0.893102, Top1S: 76.980476, Top1T: 76.756622Best acc: 76.980476 +Train:epoch: 99, loss@min: 0.962015, loss@max: 1.397435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.881654, LT: 0.892123, Top1S: 76.856117, Top1T: 76.731750 +Train:epoch: 100, loss@min: 0.959090, loss@max: 1.400201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.883665, LT: 0.892736, Top1S: 76.644699, Top1T: 76.955605 +Train:epoch: 101, loss@min: 0.964012, loss@max: 1.389782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.887438, LT: 0.894148, Top1S: 76.719315, Top1T: 76.918297 +Train:epoch: 102, loss@min: 0.961900, loss@max: 1.397738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.888467, LT: 0.899862, Top1S: 76.769058, Top1T: 76.756622 +Train:epoch: 103, loss@min: 0.941981, loss@max: 1.408946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.891996, LT: 0.902503, Top1S: 76.793938, Top1T: 76.669571 +Train:epoch: 104, loss@min: 0.979275, loss@max: 1.382707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.889155, LT: 0.900701, Top1S: 76.880989, Top1T: 76.594955 +Train:epoch: 105, loss@min: 0.949002, loss@max: 1.399984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.889603, LT: 0.899274, Top1S: 76.793938, Top1T: 76.657135 +Train:epoch: 106, loss@min: 0.965519, loss@max: 1.396042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.890444, LT: 0.901282, Top1S: 76.682007, Top1T: 76.644699 +Train:epoch: 107, loss@min: 0.957391, loss@max: 1.394218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.894942, LT: 0.904664, Top1S: 76.644699, Top1T: 76.570084 +Train:epoch: 108, loss@min: 0.961961, loss@max: 1.386302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.895908, LT: 0.908975, Top1S: 76.756622, Top1T: 76.644699 +Train:epoch: 109, loss@min: 0.964987, loss@max: 1.393451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.898094, LT: 0.908912, Top1S: 76.657135, Top1T: 76.570084 +Train:epoch: 110, loss@min: 0.956969, loss@max: 1.385466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.897590, LT: 0.910155, Top1S: 76.682007, Top1T: 76.582520 +Train:epoch: 111, loss@min: 0.959826, loss@max: 1.389821, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 111, LS: 0.900913, LT: 0.912062, Top1S: 76.607391, Top1T: 76.706879 +Train:epoch: 112, loss@min: 0.957527, loss@max: 1.381793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.901469, LT: 0.912645, Top1S: 76.657135, Top1T: 76.607391 +Train:epoch: 113, loss@min: 0.954027, loss@max: 1.394970, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 113, LS: 0.901866, LT: 0.912407, Top1S: 76.893425, Top1T: 76.781502 +Train:epoch: 114, loss@min: 0.966682, loss@max: 1.371305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.903508, LT: 0.913755, Top1S: 76.682007, Top1T: 76.682007 +Train:epoch: 115, loss@min: 0.951357, loss@max: 1.389292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.904875, LT: 0.914981, Top1S: 76.731750, Top1T: 76.619827 +Train:epoch: 116, loss@min: 0.947510, loss@max: 1.385589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.904704, LT: 0.915441, Top1S: 76.731750, Top1T: 76.619827 +Train:epoch: 117, loss@min: 0.959579, loss@max: 1.386475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.905903, LT: 0.916515, Top1S: 76.943169, Top1T: 76.657135 +Train:epoch: 118, loss@min: 0.966433, loss@max: 1.368095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.907251, LT: 0.917110, Top1S: 76.918297, Top1T: 76.731750 +Train:epoch: 119, loss@min: 0.952988, loss@max: 1.379827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.905566, LT: 0.916927, Top1S: 77.055099, Top1T: 76.818810Best acc: 77.055099 +Train:epoch: 120, loss@min: 0.953195, loss@max: 1.379892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.905238, LT: 0.916734, Top1S: 76.968040, Top1T: 76.856117 +Train:epoch: 121, loss@min: 0.966749, loss@max: 1.375542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.905497, LT: 0.915736, Top1S: 77.067535, Top1T: 76.918297Best acc: 77.067535 +Train:epoch: 122, loss@min: 0.948801, loss@max: 1.386812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.904502, LT: 0.915525, Top1S: 77.117279, Top1T: 76.893425Best acc: 77.117279 +Train:epoch: 123, loss@min: 0.966009, loss@max: 1.374446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.905025, LT: 0.916361, Top1S: 77.179459, Top1T: 76.880989Best acc: 77.179459 +Train:epoch: 124, loss@min: 0.955568, loss@max: 1.377836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.906034, LT: 0.917172, Top1S: 77.030220, Top1T: 76.856117 +Train:epoch: 125, loss@min: 0.960400, loss@max: 1.372169, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.905418, LT: 0.916942, Top1S: 77.117279, Top1T: 76.868553 +Train:epoch: 126, loss@min: 0.961938, loss@max: 1.372195, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.905657, LT: 0.915792, Top1S: 77.017784, Top1T: 76.781502 +Train:epoch: 127, loss@min: 0.957732, loss@max: 1.374687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.904337, LT: 0.916479, Top1S: 77.129715, Top1T: 76.769058 +Train:epoch: 128, loss@min: 0.950990, loss@max: 1.378474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.905820, LT: 0.916806, Top1S: 76.955605, Top1T: 76.769058 +Train:epoch: 129, loss@min: 0.955202, loss@max: 1.379619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.906648, LT: 0.916783, Top1S: 76.992912, Top1T: 76.769058 +Train:epoch: 130, loss@min: 0.953367, loss@max: 1.372206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.906609, LT: 0.916562, Top1S: 77.005348, Top1T: 76.843681 +Train:epoch: 131, loss@min: 0.958196, loss@max: 1.376246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.907622, LT: 0.917002, Top1S: 76.968040, Top1T: 76.905861 +Train:epoch: 132, loss@min: 0.950342, loss@max: 1.379743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.908430, LT: 0.918143, Top1S: 76.992912, Top1T: 76.893425 +Train:epoch: 133, loss@min: 0.966447, loss@max: 1.381566, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 0.908634, LT: 0.918459, Top1S: 76.930733, Top1T: 76.905861 +Train:epoch: 134, loss@min: 0.965154, loss@max: 1.383430, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 134, LS: 0.908705, LT: 0.918811, Top1S: 77.030220, Top1T: 76.893425 +Train:epoch: 135, loss@min: 0.960041, loss@max: 1.370536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.908887, LT: 0.919397, Top1S: 77.005348, Top1T: 76.831245 +Train:epoch: 136, loss@min: 0.957009, loss@max: 1.381389, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 136, LS: 0.908856, LT: 0.920025, Top1S: 76.918297, Top1T: 76.905861 +Train:epoch: 137, loss@min: 0.989491, loss@max: 1.405032, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 0.909100, LT: 0.920356, Top1S: 76.893425, Top1T: 76.893425 +Train:epoch: 138, loss@min: 0.970533, loss@max: 1.377836, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 0.909697, LT: 0.920561, Top1S: 76.930733, Top1T: 76.955605 +Train:epoch: 139, loss@min: 0.954282, loss@max: 1.367572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.909863, LT: 0.920751, Top1S: 76.943169, Top1T: 76.943169 +Train:epoch: 140, loss@min: 0.953787, loss@max: 1.376204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.910071, LT: 0.920983, Top1S: 76.980476, Top1T: 76.980476 +Train:epoch: 141, loss@min: 0.952765, loss@max: 1.376874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.910336, LT: 0.921264, Top1S: 76.943169, Top1T: 76.930733 +Train:epoch: 142, loss@min: 0.951469, loss@max: 1.371516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.910425, LT: 0.921415, Top1S: 76.955605, Top1T: 76.905861 +Train:epoch: 143, loss@min: 0.951166, loss@max: 1.373097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.910488, LT: 0.921421, Top1S: 76.968040, Top1T: 76.943169 +Train:epoch: 144, loss@min: 0.954251, loss@max: 1.370527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.910571, LT: 0.921478, Top1S: 76.968040, Top1T: 76.968040 +Train:epoch: 145, loss@min: 0.952289, loss@max: 1.376511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.910645, LT: 0.921426, Top1S: 76.968040, Top1T: 76.955605 +Train:epoch: 146, loss@min: 0.950056, loss@max: 1.369512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.910650, LT: 0.921414, Top1S: 76.968040, Top1T: 76.955605 +Train:epoch: 147, loss@min: 0.953529, loss@max: 1.373373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.910653, LT: 0.921413, Top1S: 76.968040, Top1T: 76.930733 +Train:epoch: 148, loss@min: 0.951315, loss@max: 1.376562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.910667, LT: 0.921411, Top1S: 76.968040, Top1T: 76.930733 +Train:epoch: 149, loss@min: 0.953063, loss@max: 1.383634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.910667, LT: 0.921412, Top1S: 76.968040, Top1T: 76.930733 +Train:epoch: 150, loss@min: 0.943076, loss@max: 1.379247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.910667, LT: 0.921412, Top1S: 76.968040, Top1T: 76.930733 +------------------------------------------- +Wed Aug 9 01:36:07 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 20} + +------------------------------------------- +Wed Aug 9 01:37:13 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.627393, loss@max: 2.260005, Top1S acc: 99.609375, Top1T acc: 54.296875 +Train:epoch: 2, loss@min: 2.733697, loss@max: 1.851450, Top1S acc: 100.000000, Top1T acc: 74.609375 +Train:epoch: 3, loss@min: 1.960894, loss@max: 1.848148, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 4, loss@min: 1.759160, loss@max: 1.657446, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 5, loss@min: 1.505335, loss@max: 1.526951, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 6, loss@min: 1.195498, loss@max: 1.507691, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 7, loss@min: 1.248225, loss@max: 1.496178, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 8, loss@min: 1.184071, loss@max: 1.538303, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 9, loss@min: 1.243176, loss@max: 1.570882, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 10, loss@min: 1.234787, loss@max: 1.467686, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 11, loss@min: 1.237771, loss@max: 1.680021, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 12, loss@min: 1.116420, loss@max: 1.802580, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.136644, loss@max: 1.855265, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 14, loss@min: 1.184313, loss@max: 1.775589, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.157887, loss@max: 1.853553, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 16, loss@min: 1.156061, loss@max: 1.827576, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 17, loss@min: 1.152572, loss@max: 1.734969, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.150382, loss@max: 1.800475, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 19, loss@min: 1.105540, loss@max: 1.739196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.083517, loss@max: 1.811514, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 20, LS: 1.161668, LT: 1.110962, Top1S: 66.844925, Top1T: 68.660614Best acc: 68.660614 +Train:epoch: 21, loss@min: 1.134076, loss@max: 1.708982, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 21, LS: 1.128585, LT: 1.092100, Top1S: 67.765205, Top1T: 69.071014Best acc: 69.071014 +Train:epoch: 22, loss@min: 1.130247, loss@max: 1.848130, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 22, LS: 1.130797, LT: 1.085935, Top1S: 67.628410, Top1T: 69.245125Best acc: 69.245125 +Train:epoch: 23, loss@min: 1.147578, loss@max: 1.782136, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 23, LS: 1.113569, LT: 1.098414, Top1S: 68.001495, Top1T: 68.474075 +Train:epoch: 24, loss@min: 1.118957, loss@max: 1.738119, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 24, LS: 1.109407, LT: 1.094225, Top1S: 67.951752, Top1T: 68.660614 +Train:epoch: 25, loss@min: 1.103182, loss@max: 1.733177, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 25, LS: 1.129299, LT: 1.106374, Top1S: 67.479172, Top1T: 68.685493 +Train:epoch: 26, loss@min: 1.179106, loss@max: 1.731107, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 26, LS: 1.102055, LT: 1.081845, Top1S: 68.175606, Top1T: 69.269997Best acc: 69.269997 +Train:epoch: 27, loss@min: 1.144585, loss@max: 1.766213, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 27, LS: 1.105474, LT: 1.092649, Top1S: 68.001495, Top1T: 69.071014 +Train:epoch: 28, loss@min: 1.145361, loss@max: 1.753287, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 28, LS: 1.121145, LT: 1.086597, Top1S: 67.566223, Top1T: 69.294868Best acc: 69.294868 +Train:epoch: 29, loss@min: 1.016375, loss@max: 1.883757, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 29, LS: 1.131373, LT: 1.087222, Top1S: 67.615974, Top1T: 68.896904 +Train:epoch: 30, loss@min: 1.034467, loss@max: 1.799714, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 30, LS: 1.138689, LT: 1.089442, Top1S: 67.591095, Top1T: 68.536255 +Train:epoch: 31, loss@min: 1.082266, loss@max: 1.854257, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 31, LS: 1.147883, LT: 1.129185, Top1S: 66.944412, Top1T: 67.678154 +Train:epoch: 32, loss@min: 1.164899, loss@max: 1.705596, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 32, LS: 1.125865, LT: 1.111883, Top1S: 67.690590, Top1T: 67.939316 +Train:epoch: 33, loss@min: 1.147914, loss@max: 1.842438, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 1.116075, LT: 1.102688, Top1S: 67.790077, Top1T: 68.548691 +Train:epoch: 34, loss@min: 1.054839, loss@max: 1.826041, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 34, LS: 1.114572, LT: 1.076671, Top1S: 67.665718, Top1T: 68.573563 +Train:epoch: 35, loss@min: 1.086766, loss@max: 1.687982, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 35, LS: 1.088032, LT: 1.080376, Top1S: 68.324837, Top1T: 68.884468 +Train:epoch: 36, loss@min: 1.236686, loss@max: 1.819968, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 36, LS: 1.093851, LT: 1.089494, Top1S: 68.461639, Top1T: 68.760109 +Train:epoch: 37, loss@min: 1.134719, loss@max: 1.842132, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 37, LS: 1.107060, LT: 1.085453, Top1S: 67.852257, Top1T: 68.784981 +Train:epoch: 38, loss@min: 1.097800, loss@max: 1.865126, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 38, LS: 1.111064, LT: 1.085399, Top1S: 67.902008, Top1T: 68.498947 +Train:epoch: 39, loss@min: 1.043219, loss@max: 1.721738, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 39, LS: 1.089315, LT: 1.067335, Top1S: 68.474075, Top1T: 68.834724 +Train:epoch: 40, loss@min: 1.038295, loss@max: 1.825400, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 40, LS: 1.097730, LT: 1.044861, Top1S: 68.287529, Top1T: 69.282433 +Train:epoch: 41, loss@min: 1.124018, loss@max: 1.619563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.076515, LT: 1.037581, Top1S: 68.834724, Top1T: 69.593338Best acc: 69.593338 +Train:epoch: 42, loss@min: 1.040854, loss@max: 1.794587, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 42, LS: 1.064860, LT: 1.037697, Top1S: 69.170502, Top1T: 69.941551Best acc: 69.941551 +Train:epoch: 43, loss@min: 1.102367, loss@max: 1.658516, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 43, LS: 1.085741, LT: 1.064426, Top1S: 68.449203, Top1T: 69.444099 +Train:epoch: 44, loss@min: 1.062245, loss@max: 1.777037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.097492, LT: 1.068385, Top1S: 68.486511, Top1T: 69.021271 +Train:epoch: 45, loss@min: 0.988159, loss@max: 1.727567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.079252, LT: 1.067344, Top1S: 68.660614, Top1T: 69.182938 +Train:epoch: 46, loss@min: 1.005807, loss@max: 1.676402, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 46, LS: 1.070567, LT: 1.053064, Top1S: 69.145630, Top1T: 69.468971 +Train:epoch: 47, loss@min: 1.050182, loss@max: 1.656173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.074216, LT: 1.061362, Top1S: 68.884468, Top1T: 69.643082 +Train:epoch: 48, loss@min: 1.042397, loss@max: 1.760475, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 48, LS: 1.086875, LT: 1.058591, Top1S: 69.021271, Top1T: 69.854500 +Train:epoch: 49, loss@min: 1.027038, loss@max: 1.587440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.072593, LT: 1.066536, Top1S: 69.481407, Top1T: 69.643082 +Train:epoch: 50, loss@min: 1.053727, loss@max: 1.611985, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 50, LS: 1.102952, LT: 1.092300, Top1S: 68.660614, Top1T: 69.282433 +Train:epoch: 51, loss@min: 1.048249, loss@max: 1.615426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.103079, LT: 1.082341, Top1S: 68.710365, Top1T: 68.797417 +Train:epoch: 52, loss@min: 1.098772, loss@max: 1.586688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.091366, LT: 1.076985, Top1S: 68.747673, Top1T: 68.959091 +Train:epoch: 53, loss@min: 1.050453, loss@max: 1.569477, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 53, LS: 1.092685, LT: 1.076418, Top1S: 68.635742, Top1T: 69.207809 +Train:epoch: 54, loss@min: 1.001477, loss@max: 1.605845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.110214, LT: 1.088701, Top1S: 68.163170, Top1T: 68.896904 +Train:epoch: 55, loss@min: 1.045954, loss@max: 1.606889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.108916, LT: 1.072422, Top1S: 68.461639, Top1T: 69.145630 +Train:epoch: 56, loss@min: 1.018290, loss@max: 1.672650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.082102, LT: 1.067795, Top1S: 69.207809, Top1T: 69.717697 +Train:epoch: 57, loss@min: 1.047934, loss@max: 1.618874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.073516, LT: 1.061050, Top1S: 69.618210, Top1T: 69.705261 +Train:epoch: 58, loss@min: 1.059768, loss@max: 1.681282, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 58, LS: 1.075031, LT: 1.063777, Top1S: 69.307304, Top1T: 69.978859Best acc: 69.978859 +Train:epoch: 59, loss@min: 1.028646, loss@max: 1.641577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.078377, LT: 1.066312, Top1S: 69.021271, Top1T: 69.779884 +Train:epoch: 60, loss@min: 1.013958, loss@max: 1.601333, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 60, LS: 1.075168, LT: 1.066418, Top1S: 69.406792, Top1T: 69.556030 +Train:epoch: 61, loss@min: 1.022365, loss@max: 1.627946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.081629, LT: 1.070308, Top1S: 69.431664, Top1T: 69.705261 +Train:epoch: 62, loss@min: 1.010512, loss@max: 1.584662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.073476, LT: 1.073389, Top1S: 69.506287, Top1T: 69.593338 +Train:epoch: 63, loss@min: 1.070183, loss@max: 1.553826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.072209, LT: 1.061104, Top1S: 69.419228, Top1T: 69.730133 +Train:epoch: 64, loss@min: 1.031785, loss@max: 1.629158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.066089, LT: 1.058617, Top1S: 69.357048, Top1T: 69.929115 +Train:epoch: 65, loss@min: 0.995469, loss@max: 1.536718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.068169, LT: 1.054494, Top1S: 69.742569, Top1T: 69.655518 +Train:epoch: 66, loss@min: 1.042667, loss@max: 1.580211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.065873, LT: 1.050244, Top1S: 69.643082, Top1T: 69.767448 +Train:epoch: 67, loss@min: 1.033064, loss@max: 1.568246, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 67, LS: 1.059034, LT: 1.048411, Top1S: 69.792320, Top1T: 70.028603Best acc: 70.028603 +Train:epoch: 68, loss@min: 0.993359, loss@max: 1.554473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.062272, LT: 1.048784, Top1S: 69.667953, Top1T: 70.289764Best acc: 70.289764 +Train:epoch: 69, loss@min: 1.039820, loss@max: 1.505529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.060793, LT: 1.049624, Top1S: 69.829628, Top1T: 70.277328 +Train:epoch: 70, loss@min: 0.996366, loss@max: 1.529543, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 70, LS: 1.062710, LT: 1.047306, Top1S: 69.717697, Top1T: 70.501183Best acc: 70.501183 +Train:epoch: 71, loss@min: 0.977023, loss@max: 1.533103, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 71, LS: 1.064413, LT: 1.049788, Top1S: 69.755005, Top1T: 70.302200 +Train:epoch: 72, loss@min: 1.004035, loss@max: 1.551160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.063127, LT: 1.057657, Top1S: 69.929115, Top1T: 70.065918 +Train:epoch: 73, loss@min: 1.033944, loss@max: 1.566104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.059886, LT: 1.051340, Top1S: 70.277328, Top1T: 70.252457 +Train:epoch: 74, loss@min: 1.010817, loss@max: 1.498882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.060707, LT: 1.049349, Top1S: 70.090790, Top1T: 70.414131 +Train:epoch: 75, loss@min: 0.982294, loss@max: 1.520102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.064493, LT: 1.050123, Top1S: 70.053482, Top1T: 70.513618Best acc: 70.513618 +Train:epoch: 76, loss@min: 1.018209, loss@max: 1.542014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.058117, LT: 1.049343, Top1S: 70.078354, Top1T: 70.575806Best acc: 70.575806 +Train:epoch: 77, loss@min: 0.992186, loss@max: 1.523469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.051929, LT: 1.044616, Top1S: 70.339516, Top1T: 70.575806 +Train:epoch: 78, loss@min: 1.010304, loss@max: 1.515185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.056750, LT: 1.044615, Top1S: 70.090790, Top1T: 70.787216Best acc: 70.787216 +Train:epoch: 79, loss@min: 0.938156, loss@max: 1.591062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.057826, LT: 1.049745, Top1S: 70.165405, Top1T: 70.600677 +Train:epoch: 80, loss@min: 1.031699, loss@max: 1.495762, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 80, LS: 1.054989, LT: 1.052236, Top1S: 70.090790, Top1T: 70.613113 +Train:epoch: 81, loss@min: 1.008779, loss@max: 1.495394, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 1.053951, LT: 1.053108, Top1S: 70.351952, Top1T: 70.700165 +Train:epoch: 82, loss@min: 1.014079, loss@max: 1.461625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.057876, LT: 1.052939, Top1S: 70.302200, Top1T: 70.899147Best acc: 70.899147 +Train:epoch: 83, loss@min: 1.003420, loss@max: 1.514903, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 83, LS: 1.060971, LT: 1.055239, Top1S: 70.302200, Top1T: 70.911583Best acc: 70.911583 +Train:epoch: 84, loss@min: 0.995596, loss@max: 1.496743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.062510, LT: 1.056661, Top1S: 70.351952, Top1T: 70.836960 +Train:epoch: 85, loss@min: 0.989282, loss@max: 1.455321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.064997, LT: 1.056703, Top1S: 70.152969, Top1T: 70.625549 +Train:epoch: 86, loss@min: 1.021021, loss@max: 1.462234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.063119, LT: 1.058964, Top1S: 70.314644, Top1T: 70.476311 +Train:epoch: 87, loss@min: 1.011629, loss@max: 1.442731, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 1.062720, LT: 1.061862, Top1S: 70.327080, Top1T: 70.401695 +Train:epoch: 88, loss@min: 1.038943, loss@max: 1.458326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.061834, LT: 1.060599, Top1S: 70.240021, Top1T: 70.513618 +Train:epoch: 89, loss@min: 0.988288, loss@max: 1.458276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.064034, LT: 1.060009, Top1S: 70.439003, Top1T: 70.588242 +Train:epoch: 90, loss@min: 0.978447, loss@max: 1.465471, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 90, LS: 1.063550, LT: 1.059191, Top1S: 70.401695, Top1T: 70.774780 +Train:epoch: 91, loss@min: 0.988758, loss@max: 1.461853, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 91, LS: 1.060658, LT: 1.059347, Top1S: 70.675293, Top1T: 70.762344 +Train:epoch: 92, loss@min: 0.960866, loss@max: 1.454234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.058865, LT: 1.058581, Top1S: 70.824524, Top1T: 71.085686Best acc: 71.085686 +Train:epoch: 93, loss@min: 1.009933, loss@max: 1.427938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.059527, LT: 1.058667, Top1S: 70.799652, Top1T: 71.073250 +Train:epoch: 94, loss@min: 0.971175, loss@max: 1.452012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.061871, LT: 1.057392, Top1S: 70.749908, Top1T: 71.234924Best acc: 71.234924 +Train:epoch: 95, loss@min: 0.962835, loss@max: 1.436456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.062083, LT: 1.056535, Top1S: 70.861839, Top1T: 71.247360Best acc: 71.247360 +Train:epoch: 96, loss@min: 0.996949, loss@max: 1.448542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.061663, LT: 1.057156, Top1S: 71.060814, Top1T: 71.234924 +Train:epoch: 97, loss@min: 0.967592, loss@max: 1.440997, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.060831, LT: 1.056335, Top1S: 71.147873, Top1T: 71.371719Best acc: 71.371719 +Train:epoch: 98, loss@min: 0.976795, loss@max: 1.423282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.058125, LT: 1.056947, Top1S: 71.259796, Top1T: 71.284668 +Train:epoch: 99, loss@min: 0.984834, loss@max: 1.416653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.057057, LT: 1.057916, Top1S: 71.197617, Top1T: 71.259796 +Train:epoch: 100, loss@min: 1.005549, loss@max: 1.468415, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 1.058504, LT: 1.060206, Top1S: 70.998634, Top1T: 71.433907Best acc: 71.433907 +Train:epoch: 101, loss@min: 0.961981, loss@max: 1.416601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.061177, LT: 1.060165, Top1S: 71.060814, Top1T: 71.496086Best acc: 71.496086 +Train:epoch: 102, loss@min: 0.979530, loss@max: 1.412994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.062965, LT: 1.061416, Top1S: 71.421471, Top1T: 71.608009Best acc: 71.608009 +Train:epoch: 103, loss@min: 0.965512, loss@max: 1.430390, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.063839, LT: 1.063296, Top1S: 71.508522, Top1T: 71.458778 +Train:epoch: 104, loss@min: 0.977152, loss@max: 1.408440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.064888, LT: 1.064172, Top1S: 71.496086, Top1T: 71.433907 +Train:epoch: 105, loss@min: 0.965593, loss@max: 1.417391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.064778, LT: 1.065536, Top1S: 71.409035, Top1T: 71.396599 +Train:epoch: 106, loss@min: 0.999278, loss@max: 1.406591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.063875, LT: 1.068020, Top1S: 71.433907, Top1T: 71.446342 +Train:epoch: 107, loss@min: 0.974220, loss@max: 1.410857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.063032, LT: 1.069097, Top1S: 71.508522, Top1T: 71.409035 +Train:epoch: 108, loss@min: 0.973307, loss@max: 1.428817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.065069, LT: 1.067542, Top1S: 71.608009, Top1T: 71.409035 +Train:epoch: 109, loss@min: 0.971657, loss@max: 1.405754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.065438, LT: 1.067188, Top1S: 71.570702, Top1T: 71.508522 +Train:epoch: 110, loss@min: 0.963319, loss@max: 1.408270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.065309, LT: 1.067986, Top1S: 71.657761, Top1T: 71.433907Best acc: 71.657761 +Train:epoch: 111, loss@min: 0.961312, loss@max: 1.404554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.066411, LT: 1.068920, Top1S: 71.570702, Top1T: 71.458778 +Train:epoch: 112, loss@min: 0.963994, loss@max: 1.399658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.067924, LT: 1.069327, Top1S: 71.670197, Top1T: 71.433907Best acc: 71.670197 +Train:epoch: 113, loss@min: 1.000378, loss@max: 1.410084, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 113, LS: 1.067744, LT: 1.070569, Top1S: 71.620445, Top1T: 71.421471 +Train:epoch: 114, loss@min: 0.962586, loss@max: 1.409068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.067780, LT: 1.072116, Top1S: 71.570702, Top1T: 71.496086 +Train:epoch: 115, loss@min: 0.949847, loss@max: 1.413984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.068395, LT: 1.072780, Top1S: 71.570702, Top1T: 71.371719 +Train:epoch: 116, loss@min: 0.948531, loss@max: 1.424588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.069991, LT: 1.073236, Top1S: 71.446342, Top1T: 71.297104 +Train:epoch: 117, loss@min: 0.946564, loss@max: 1.404952, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.070212, LT: 1.073671, Top1S: 71.620445, Top1T: 71.222488 +Train:epoch: 118, loss@min: 0.966016, loss@max: 1.397494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.069855, LT: 1.074286, Top1S: 71.695068, Top1T: 71.309540Best acc: 71.695068 +Train:epoch: 119, loss@min: 0.966231, loss@max: 1.397309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.069531, LT: 1.074098, Top1S: 71.583138, Top1T: 71.272232 +Train:epoch: 120, loss@min: 0.960717, loss@max: 1.398908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.070355, LT: 1.073246, Top1S: 71.719940, Top1T: 71.334412Best acc: 71.719940 +Train:epoch: 121, loss@min: 0.938299, loss@max: 1.425854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.070564, LT: 1.072714, Top1S: 71.670197, Top1T: 71.346848 +Train:epoch: 122, loss@min: 0.957919, loss@max: 1.399909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.069646, LT: 1.073040, Top1S: 71.595573, Top1T: 71.359283 +Train:epoch: 123, loss@min: 0.979184, loss@max: 1.385034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.068937, LT: 1.073630, Top1S: 71.657761, Top1T: 71.371719 +Train:epoch: 124, loss@min: 0.969597, loss@max: 1.388365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.069652, LT: 1.074681, Top1S: 71.657761, Top1T: 71.409035 +Train:epoch: 125, loss@min: 0.970590, loss@max: 1.415389, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 1.070390, LT: 1.075667, Top1S: 71.757248, Top1T: 71.421471Best acc: 71.757248 +Train:epoch: 126, loss@min: 0.963063, loss@max: 1.408717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.070634, LT: 1.076265, Top1S: 71.744812, Top1T: 71.346848 +Train:epoch: 127, loss@min: 0.952587, loss@max: 1.398412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.070714, LT: 1.076665, Top1S: 71.744812, Top1T: 71.371719 +Train:epoch: 128, loss@min: 0.972174, loss@max: 1.397857, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 1.070941, LT: 1.077038, Top1S: 71.707504, Top1T: 71.384163 +Train:epoch: 129, loss@min: 0.975908, loss@max: 1.419274, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 129, LS: 1.071272, LT: 1.076947, Top1S: 71.657761, Top1T: 71.359283 +Train:epoch: 130, loss@min: 0.963916, loss@max: 1.392716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.071686, LT: 1.076936, Top1S: 71.682632, Top1T: 71.384163 +Train:epoch: 131, loss@min: 0.962535, loss@max: 1.397598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.071907, LT: 1.076923, Top1S: 71.744812, Top1T: 71.409035 +Train:epoch: 132, loss@min: 0.950735, loss@max: 1.400320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.071923, LT: 1.076991, Top1S: 71.769684, Top1T: 71.371719Best acc: 71.769684 +Train:epoch: 133, loss@min: 0.948771, loss@max: 1.404470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.072104, LT: 1.077243, Top1S: 71.744812, Top1T: 71.409035 +Train:epoch: 134, loss@min: 0.964103, loss@max: 1.399613, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 134, LS: 1.072347, LT: 1.077907, Top1S: 71.719940, Top1T: 71.396599 +Train:epoch: 135, loss@min: 0.977253, loss@max: 1.396088, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 135, LS: 1.072824, LT: 1.078439, Top1S: 71.707504, Top1T: 71.359283 +Train:epoch: 136, loss@min: 0.963430, loss@max: 1.383579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.073502, LT: 1.078952, Top1S: 71.744812, Top1T: 71.309540 +Train:epoch: 137, loss@min: 0.960665, loss@max: 1.392035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.073655, LT: 1.079326, Top1S: 71.806992, Top1T: 71.346848Best acc: 71.806992 +Train:epoch: 138, loss@min: 0.954144, loss@max: 1.395001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.073693, LT: 1.079374, Top1S: 71.794556, Top1T: 71.309540 +Train:epoch: 139, loss@min: 0.958680, loss@max: 1.394561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.073619, LT: 1.079180, Top1S: 71.757248, Top1T: 71.284668 +Train:epoch: 140, loss@min: 0.951725, loss@max: 1.396618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.073531, LT: 1.079054, Top1S: 71.757248, Top1T: 71.309540 +Train:epoch: 141, loss@min: 0.952035, loss@max: 1.394853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.073522, LT: 1.078984, Top1S: 71.769684, Top1T: 71.297104 +Train:epoch: 142, loss@min: 0.966851, loss@max: 1.393113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.073517, LT: 1.078979, Top1S: 71.769684, Top1T: 71.309540 +Train:epoch: 143, loss@min: 0.974570, loss@max: 1.405114, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 1.073536, LT: 1.078952, Top1S: 71.782120, Top1T: 71.297104 +Train:epoch: 144, loss@min: 0.970352, loss@max: 1.392895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.073521, LT: 1.078942, Top1S: 71.769684, Top1T: 71.297104 +Train:epoch: 145, loss@min: 0.970789, loss@max: 1.386611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.073520, LT: 1.078936, Top1S: 71.757248, Top1T: 71.309540 +Train:epoch: 146, loss@min: 0.945304, loss@max: 1.400602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.073526, LT: 1.078934, Top1S: 71.757248, Top1T: 71.309540 +Train:epoch: 147, loss@min: 0.959403, loss@max: 1.379059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.073536, LT: 1.078930, Top1S: 71.757248, Top1T: 71.309540 +Train:epoch: 148, loss@min: 1.006296, loss@max: 1.402360, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 148, LS: 1.073538, LT: 1.078925, Top1S: 71.757248, Top1T: 71.309540 +Train:epoch: 149, loss@min: 0.961886, loss@max: 1.393742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.073538, LT: 1.078924, Top1S: 71.757248, Top1T: 71.309540 +Train:epoch: 150, loss@min: 0.959661, loss@max: 1.403954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.073538, LT: 1.078924, Top1S: 71.757248, Top1T: 71.309540 +------------------------------------------- +Wed Aug 9 06:53:12 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 11:53:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.773391, loss@max: 2.591048, Top1S acc: 98.828125, Top1T acc: 59.375000 +Train:epoch: 2, loss@min: 3.050503, loss@max: 1.922169, Top1S acc: 100.000000, Top1T acc: 71.093750 +Train:epoch: 3, loss@min: 2.356812, loss@max: 1.733534, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 4, loss@min: 2.008803, loss@max: 1.767585, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 5, loss@min: 1.769980, loss@max: 1.849434, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 6, loss@min: 1.502241, loss@max: 1.622830, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 7, loss@min: 1.516649, loss@max: 1.651159, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 8, loss@min: 1.383727, loss@max: 1.703561, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 9, loss@min: 1.304867, loss@max: 1.896450, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 10, loss@min: 1.236872, loss@max: 1.850209, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 11, loss@min: 1.376095, loss@max: 1.643889, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 12, loss@min: 1.136113, loss@max: 1.765500, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 13, loss@min: 1.275001, loss@max: 1.866832, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 14, loss@min: 1.328259, loss@max: 1.813595, Top1S acc: 99.609375, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.208565, loss@max: 1.787157, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 16, loss@min: 1.079632, loss@max: 1.997508, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.200817, loss@max: 1.951369, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.206692, loss@max: 1.897116, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 19, loss@min: 1.292321, loss@max: 2.101169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.205172, loss@max: 1.961524, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 21, loss@min: 1.156557, loss@max: 2.153721, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.389130, loss@max: 2.010259, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 23, loss@min: 1.274497, loss@max: 1.986930, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 1.248708, loss@max: 1.858125, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 25, loss@min: 1.486516, loss@max: 2.104438, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 26, loss@min: 1.324245, loss@max: 2.021953, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.294776, loss@max: 2.059446, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 1.379493, loss@max: 2.104209, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 1.350023, loss@max: 2.012669, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 30, loss@min: 1.196065, loss@max: 2.085703, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.162350, loss@max: 1.972523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.288826, loss@max: 1.938555, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 1.353741, loss@max: 1.893414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.171075, loss@max: 1.976370, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 1.118533, loss@max: 1.957214, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 36, loss@min: 1.130815, loss@max: 2.080146, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.177826, loss@max: 1.906671, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.194860, loss@max: 2.114017, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.160347, loss@max: 2.089278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.265420, loss@max: 2.026950, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.117669, loss@max: 1.848893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.137679, loss@max: 1.880473, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.188003, loss@max: 1.991253, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 1.090995, loss@max: 1.995016, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 1.147702, loss@max: 1.894376, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 1.047380, loss@max: 1.986187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.107343, loss@max: 1.984436, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 48, loss@min: 1.046424, loss@max: 1.893618, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 1.042794, loss@max: 1.956473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.212010, loss@max: 1.904032, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.197565, loss@max: 1.815057, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 1.252026, loss@max: 1.889105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.157191, loss@max: 1.906857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.095966, loss@max: 1.895084, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.109914, loss@max: 1.796392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.115382, loss@max: 1.958756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.134597, loss@max: 1.903829, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 58, loss@min: 1.103613, loss@max: 2.038589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.188183, loss@max: 1.874832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.098911, loss@max: 1.846608, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 1.032071, loss@max: 1.890679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.164192, loss@max: 1.652972, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.097201, loss@max: 1.684023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.061102, loss@max: 1.928863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.085715, loss@max: 1.765129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.104922, loss@max: 1.824880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.116771, loss@max: 1.713115, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 1.085100, loss@max: 1.668244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.153353, loss@max: 1.703374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.104221, loss@max: 1.721967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.079271, loss@max: 1.776205, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 1.067421, loss@max: 1.764678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.082505, loss@max: 1.908738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.101515, loss@max: 1.716107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.077466, loss@max: 1.688956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.046066, loss@max: 1.750008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.050635, loss@max: 1.710018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.098562, loss@max: 1.665291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.072067, loss@max: 1.627576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.097690, loss@max: 1.587661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.329646, LT: 1.309747, Top1S: 61.310783, Top1T: 62.268375Best acc: 62.268375 +Train:epoch: 81, loss@min: 1.123168, loss@max: 1.661423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.328076, LT: 1.307998, Top1S: 61.186420, Top1T: 62.380302Best acc: 62.380302 +Train:epoch: 82, loss@min: 1.056466, loss@max: 1.580181, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 12:14:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.012435, loss@max: 1.676992, Top1S acc: 100.000000, Top1T acc: 59.375000 +Train:epoch: 2, loss@min: 3.536244, loss@max: 1.796747, Top1S acc: 100.000000, Top1T acc: 60.937500 +Train:epoch: 3, loss@min: 3.025105, loss@max: 1.772537, Top1S acc: 100.000000, Top1T acc: 65.625000 +Train:epoch: 4, loss@min: 2.871877, loss@max: 1.796525, Top1S acc: 100.000000, Top1T acc: 69.140625 +Train:epoch: 5, loss@min: 3.009522, loss@max: 1.863686, Top1S acc: 100.000000, Top1T acc: 65.234375 +Train:epoch: 6, loss@min: 2.717813, loss@max: 1.786510, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 7, loss@min: 2.729579, loss@max: 1.787084, Top1S acc: 100.000000, Top1T acc: 71.093750 +Train:epoch: 8, loss@min: 2.150608, loss@max: 1.638406, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 9, loss@min: 2.181446, loss@max: 1.649797, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 10, loss@min: 2.034377, loss@max: 1.612801, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 11, loss@min: 2.254881, loss@max: 1.686449, Top1S acc: 100.000000, Top1T acc: 77.734375 +Train:epoch: 12, loss@min: 1.919918, loss@max: 1.619112, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 13, loss@min: 1.917321, loss@max: 1.608002, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 14, loss@min: 2.032243, loss@max: 1.672725, Top1S acc: 100.000000, Top1T acc: 83.984375 +Train:epoch: 15, loss@min: 1.652762, loss@max: 1.561845, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 16, loss@min: 1.753168, loss@max: 1.578358, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 17, loss@min: 1.612320, loss@max: 1.557973, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 18, loss@min: 1.690058, loss@max: 1.599724, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 19, loss@min: 1.557256, loss@max: 1.558587, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 20, loss@min: 1.637700, loss@max: 1.588687, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 21, loss@min: 1.477819, loss@max: 1.543594, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 22, loss@min: 1.520941, loss@max: 1.571858, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 23, loss@min: 1.466204, loss@max: 1.553411, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 24, loss@min: 1.431052, loss@max: 1.540555, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 25, loss@min: 1.524377, loss@max: 1.577587, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 26, loss@min: 1.429750, loss@max: 1.547018, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 27, loss@min: 1.386802, loss@max: 1.524925, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 28, loss@min: 1.359327, loss@max: 1.521095, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 29, loss@min: 1.449987, loss@max: 1.563916, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 30, loss@min: 1.355528, loss@max: 1.537392, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 31, loss@min: 1.324391, loss@max: 1.535198, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 32, loss@min: 1.340006, loss@max: 1.552514, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 33, loss@min: 1.253157, loss@max: 1.520092, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 34, loss@min: 1.271239, loss@max: 1.528586, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 35, loss@min: 1.313012, loss@max: 1.528363, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 36, loss@min: 1.170532, loss@max: 1.486461, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 37, loss@min: 1.179541, loss@max: 1.507852, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 38, loss@min: 1.268120, loss@max: 1.526974, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 39, loss@min: 1.217483, loss@max: 1.509027, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 40, loss@min: 1.271799, loss@max: 1.519542, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 41, loss@min: 1.296659, loss@max: 1.518432, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 42, loss@min: 1.247649, loss@max: 1.509531, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 43, loss@min: 1.148424, loss@max: 1.468510, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 44, loss@min: 1.158060, loss@max: 1.509422, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 45, loss@min: 1.165413, loss@max: 1.502624, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 46, loss@min: 1.186906, loss@max: 1.506522, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 47, loss@min: 1.171252, loss@max: 1.481347, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 48, loss@min: 1.116027, loss@max: 1.479640, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 1.158471, loss@max: 1.481504, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 50, loss@min: 1.127293, loss@max: 1.469587, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 51, loss@min: 1.207442, loss@max: 1.507648, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 52, loss@min: 1.115304, loss@max: 1.485033, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 53, loss@min: 1.127728, loss@max: 1.488456, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 54, loss@min: 1.146265, loss@max: 1.475081, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 55, loss@min: 1.076755, loss@max: 1.452368, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 56, loss@min: 1.041306, loss@max: 1.464316, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 57, loss@min: 1.123696, loss@max: 1.509643, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 58, loss@min: 1.028120, loss@max: 1.451772, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 1.080339, loss@max: 1.456896, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 60, loss@min: 1.127461, loss@max: 1.468386, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 61, loss@min: 1.095563, loss@max: 1.464479, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 62, loss@min: 1.067538, loss@max: 1.448076, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.076870, loss@max: 1.450946, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 64, loss@min: 1.053010, loss@max: 1.442410, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 65, loss@min: 1.038375, loss@max: 1.422132, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 66, loss@min: 1.153776, loss@max: 1.492225, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 67, loss@min: 1.092187, loss@max: 1.478261, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 68, loss@min: 1.100484, loss@max: 1.455544, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 69, loss@min: 1.035936, loss@max: 1.445761, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 70, loss@min: 1.036971, loss@max: 1.442213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.069798, loss@max: 1.442397, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 72, loss@min: 1.080609, loss@max: 1.456404, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 73, loss@min: 1.054733, loss@max: 1.469488, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 74, loss@min: 1.045331, loss@max: 1.458096, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 75, loss@min: 1.049681, loss@max: 1.427578, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 76, loss@min: 1.049731, loss@max: 1.448114, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 77, loss@min: 1.031351, loss@max: 1.447457, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 1.012163, loss@max: 1.432925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.058009, loss@max: 1.439379, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 1.047288, loss@max: 1.450495, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 80, LS: 1.338542, LT: 1.331043, Top1S: 65.514244, Top1T: 65.700783Best acc: 65.700783 +Train:epoch: 81, loss@min: 1.035238, loss@max: 1.435096, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 81, LS: 1.336160, LT: 1.329803, Top1S: 65.402313, Top1T: 65.663475 +Train:epoch: 82, loss@min: 1.012056, loss@max: 1.424912, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 1.333147, LT: 1.327328, Top1S: 65.501808, Top1T: 65.526680 +Train:epoch: 83, loss@min: 1.048964, loss@max: 1.435059, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 83, LS: 1.330806, LT: 1.323736, Top1S: 65.563988, Top1T: 65.626167 +Train:epoch: 84, loss@min: 1.021682, loss@max: 1.426337, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 1.327566, LT: 1.320770, Top1S: 65.638603, Top1T: 65.638603 +Train:epoch: 85, loss@min: 1.039681, loss@max: 1.452440, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 85, LS: 1.324623, LT: 1.318679, Top1S: 65.912201, Top1T: 65.688347Best acc: 65.912201 +Train:epoch: 86, loss@min: 1.018284, loss@max: 1.430583, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 1.324960, LT: 1.318531, Top1S: 66.049004, Top1T: 65.725662Best acc: 66.049004 +Train:epoch: 87, loss@min: 1.020643, loss@max: 1.423086, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 1.327618, LT: 1.320221, Top1S: 65.999260, Top1T: 65.912201 +Train:epoch: 88, loss@min: 1.026137, loss@max: 1.448574, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 88, LS: 1.330136, LT: 1.322506, Top1S: 65.999260, Top1T: 65.812714 +Train:epoch: 89, loss@min: 1.027355, loss@max: 1.428141, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 89, LS: 1.333525, LT: 1.325615, Top1S: 66.073875, Top1T: 65.800278Best acc: 66.073875 +Train:epoch: 90, loss@min: 1.083463, loss@max: 1.444373, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 90, LS: 1.335785, LT: 1.327463, Top1S: 66.098747, Top1T: 65.912201Best acc: 66.098747 +Train:epoch: 91, loss@min: 1.084672, loss@max: 1.458417, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 91, LS: 1.334825, LT: 1.326705, Top1S: 66.061440, Top1T: 65.961945 +Train:epoch: 92, loss@min: 1.053320, loss@max: 1.432239, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 92, LS: 1.329604, LT: 1.321569, Top1S: 66.297729, Top1T: 66.223106Best acc: 66.297729 +Train:epoch: 93, loss@min: 1.012421, loss@max: 1.418556, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 1.331256, LT: 1.323825, Top1S: 66.247978, Top1T: 66.123619 +Train:epoch: 94, loss@min: 0.988190, loss@max: 1.415152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.335633, LT: 1.329134, Top1S: 66.123619, Top1T: 66.073875 +Train:epoch: 95, loss@min: 1.018490, loss@max: 1.417614, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 1.338346, LT: 1.331529, Top1S: 66.011696, Top1T: 65.974380 +Train:epoch: 96, loss@min: 1.022096, loss@max: 1.436644, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 1.337485, LT: 1.330588, Top1S: 66.111183, Top1T: 65.899765 +Train:epoch: 97, loss@min: 1.057583, loss@max: 1.425293, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 97, LS: 1.336101, LT: 1.328941, Top1S: 66.235542, Top1T: 65.800278 +Train:epoch: 98, loss@min: 0.994186, loss@max: 1.419094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.336098, LT: 1.327577, Top1S: 66.136055, Top1T: 66.061440 +Train:epoch: 99, loss@min: 0.988566, loss@max: 1.426894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.333524, LT: 1.324383, Top1S: 66.247978, Top1T: 66.036568 +Train:epoch: 100, loss@min: 1.016780, loss@max: 1.427727, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 100, LS: 1.331604, LT: 1.322790, Top1S: 66.272858, Top1T: 66.036568 +Train:epoch: 101, loss@min: 1.040685, loss@max: 1.429053, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 101, LS: 1.331471, LT: 1.322991, Top1S: 66.247978, Top1T: 66.061440 +Train:epoch: 102, loss@min: 1.006488, loss@max: 1.414259, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.334242, LT: 1.325496, Top1S: 66.160927, Top1T: 66.123619 +Train:epoch: 103, loss@min: 1.029761, loss@max: 1.418880, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 103, LS: 1.341234, LT: 1.333582, Top1S: 65.850021, Top1T: 65.862457 +Train:epoch: 104, loss@min: 1.149406, loss@max: 1.455600, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 104, LS: 1.346768, LT: 1.341106, Top1S: 65.626167, Top1T: 65.638603 +Train:epoch: 105, loss@min: 1.036905, loss@max: 1.422492, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 105, LS: 1.351158, LT: 1.346312, Top1S: 65.675911, Top1T: 65.489372 +Train:epoch: 106, loss@min: 1.025321, loss@max: 1.439347, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 106, LS: 1.353607, LT: 1.347955, Top1S: 65.688347, Top1T: 65.352570 +Train:epoch: 107, loss@min: 1.035748, loss@max: 1.406687, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 107, LS: 1.353247, LT: 1.346806, Top1S: 65.700783, Top1T: 65.452065 +Train:epoch: 108, loss@min: 1.001396, loss@max: 1.397796, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 1.351944, LT: 1.345305, Top1S: 65.713219, Top1T: 65.501808 +Train:epoch: 109, loss@min: 1.022587, loss@max: 1.416697, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 109, LS: 1.351443, LT: 1.344873, Top1S: 65.700783, Top1T: 65.551552 +Train:epoch: 110, loss@min: 1.012825, loss@max: 1.413771, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 110, LS: 1.349986, LT: 1.343377, Top1S: 65.675911, Top1T: 65.638603 +Train:epoch: 111, loss@min: 1.029235, loss@max: 1.418110, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 111, LS: 1.348651, LT: 1.341821, Top1S: 65.725662, Top1T: 65.700783 +Train:epoch: 112, loss@min: 1.070287, loss@max: 1.427960, Top1S acc: 100.000000, Top1T acc: 98.046875 + Test:epoch: 112, LS: 1.348171, LT: 1.340720, Top1S: 65.738098, Top1T: 65.738098 +Train:epoch: 113, loss@min: 1.018889, loss@max: 1.405868, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 113, LS: 1.348097, LT: 1.340015, Top1S: 65.688347, Top1T: 65.725662 +Train:epoch: 114, loss@min: 1.018712, loss@max: 1.416795, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 1.348588, LT: 1.340466, Top1S: 65.725662, Top1T: 65.725662 +Train:epoch: 115, loss@min: 1.003233, loss@max: 1.409332, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 115, LS: 1.349443, LT: 1.341239, Top1S: 65.713219, Top1T: 65.725662 +Train:epoch: 116, loss@min: 1.006117, loss@max: 1.405094, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 116, LS: 1.350235, LT: 1.342151, Top1S: 65.638603, Top1T: 65.576424 +Train:epoch: 117, loss@min: 1.042230, loss@max: 1.423722, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 117, LS: 1.350886, LT: 1.342874, Top1S: 65.775406, Top1T: 65.688347 +Train:epoch: 118, loss@min: 1.008411, loss@max: 1.403676, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 118, LS: 1.351375, LT: 1.343334, Top1S: 65.812714, Top1T: 65.638603 +Train:epoch: 119, loss@min: 0.990357, loss@max: 1.401039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.351832, LT: 1.343802, Top1S: 65.750534, Top1T: 65.700783 +Train:epoch: 120, loss@min: 1.012557, loss@max: 1.409300, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 1.351581, LT: 1.343594, Top1S: 65.812714, Top1T: 65.812714 +Train:epoch: 121, loss@min: 0.992841, loss@max: 1.409351, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 1.351118, LT: 1.343147, Top1S: 65.825150, Top1T: 65.787842 +Train:epoch: 122, loss@min: 1.042563, loss@max: 1.433197, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 122, LS: 1.350550, LT: 1.342645, Top1S: 65.874893, Top1T: 65.837585 +Train:epoch: 123, loss@min: 0.994777, loss@max: 1.412625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.350289, LT: 1.342450, Top1S: 65.924637, Top1T: 65.862457 +Train:epoch: 124, loss@min: 1.011180, loss@max: 1.414675, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 124, LS: 1.350173, LT: 1.342370, Top1S: 65.899765, Top1T: 65.924637 +Train:epoch: 125, loss@min: 1.021524, loss@max: 1.406725, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 1.349946, LT: 1.342180, Top1S: 65.937073, Top1T: 65.974380 +Train:epoch: 126, loss@min: 0.992915, loss@max: 1.398656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.349773, LT: 1.341963, Top1S: 65.974380, Top1T: 65.999260 +Train:epoch: 127, loss@min: 1.007815, loss@max: 1.412685, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 1.349694, LT: 1.341759, Top1S: 65.961945, Top1T: 65.974380 +Train:epoch: 128, loss@min: 1.011023, loss@max: 1.415924, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 1.349529, LT: 1.341459, Top1S: 65.949509, Top1T: 65.949509 +Train:epoch: 129, loss@min: 1.016558, loss@max: 1.417208, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 129, LS: 1.349495, LT: 1.341309, Top1S: 65.974380, Top1T: 65.924637 +Train:epoch: 130, loss@min: 1.001147, loss@max: 1.407936, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 1.349439, LT: 1.341182, Top1S: 65.986824, Top1T: 65.912201 +Train:epoch: 131, loss@min: 1.033703, loss@max: 1.416144, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 131, LS: 1.349460, LT: 1.341133, Top1S: 65.974380, Top1T: 65.887329 +Train:epoch: 132, loss@min: 0.990369, loss@max: 1.398893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.349605, LT: 1.341225, Top1S: 65.949509, Top1T: 65.862457 +Train:epoch: 133, loss@min: 1.044491, loss@max: 1.426045, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 1.349789, LT: 1.341381, Top1S: 65.961945, Top1T: 65.862457 +Train:epoch: 134, loss@min: 0.992307, loss@max: 1.397951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.349776, LT: 1.341319, Top1S: 65.949509, Top1T: 65.912201 +Train:epoch: 135, loss@min: 0.980983, loss@max: 1.398923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.349788, LT: 1.341274, Top1S: 65.961945, Top1T: 65.912201 +Train:epoch: 136, loss@min: 0.990211, loss@max: 1.400967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.349861, LT: 1.341273, Top1S: 65.924637, Top1T: 65.924637 +Train:epoch: 137, loss@min: 0.986142, loss@max: 1.398004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.349846, LT: 1.341204, Top1S: 65.949509, Top1T: 65.912201 +Train:epoch: 138, loss@min: 1.002823, loss@max: 1.409850, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 1.349794, LT: 1.341157, Top1S: 65.999260, Top1T: 65.887329 +Train:epoch: 139, loss@min: 1.005933, loss@max: 1.396065, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 139, LS: 1.349736, LT: 1.341124, Top1S: 65.999260, Top1T: 65.899765 +Train:epoch: 140, loss@min: 0.998307, loss@max: 1.392663, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 140, LS: 1.349741, LT: 1.341141, Top1S: 65.999260, Top1T: 65.912201 +Train:epoch: 141, loss@min: 1.011588, loss@max: 1.404241, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 141, LS: 1.349738, LT: 1.341154, Top1S: 66.036568, Top1T: 65.899765 +Train:epoch: 142, loss@min: 1.009535, loss@max: 1.413106, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 142, LS: 1.349730, LT: 1.341176, Top1S: 66.024132, Top1T: 65.912201 +Train:epoch: 143, loss@min: 1.003213, loss@max: 1.409200, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 1.349710, LT: 1.341186, Top1S: 66.036568, Top1T: 65.937073 +Train:epoch: 144, loss@min: 0.989400, loss@max: 1.399949, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 144, LS: 1.349687, LT: 1.341184, Top1S: 66.024132, Top1T: 65.949509 +Train:epoch: 145, loss@min: 1.009478, loss@max: 1.410757, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 145, LS: 1.349674, LT: 1.341181, Top1S: 66.036568, Top1T: 65.949509 +Train:epoch: 146, loss@min: 1.048179, loss@max: 1.414034, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 146, LS: 1.349660, LT: 1.341171, Top1S: 66.049004, Top1T: 65.937073 +Train:epoch: 147, loss@min: 1.015766, loss@max: 1.415125, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 147, LS: 1.349651, LT: 1.341163, Top1S: 66.049004, Top1T: 65.924637 +Train:epoch: 148, loss@min: 1.006011, loss@max: 1.412796, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 1.349653, LT: 1.341162, Top1S: 66.049004, Top1T: 65.912201 +Train:epoch: 149, loss@min: 1.009197, loss@max: 1.407984, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 149, LS: 1.349653, LT: 1.341162, Top1S: 66.049004, Top1T: 65.912201 +Train:epoch: 150, loss@min: 1.011619, loss@max: 1.414759, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 150, LS: 1.349653, LT: 1.341162, Top1S: 66.049004, Top1T: 65.912201 +------------------------------------------- +Wed Aug 9 15:06:10 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 15:21:02 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.144066, loss@max: 1.576802, Top1S acc: 100.000000, Top1T acc: 51.953125 +Train:epoch: 2, loss@min: 3.447773, loss@max: 1.576631, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 3, loss@min: 3.029453, loss@max: 1.617262, Top1S acc: 100.000000, Top1T acc: 64.843750 +Train:epoch: 4, loss@min: 3.109104, loss@max: 1.746837, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 5, loss@min: 2.661833, loss@max: 1.719302, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 6, loss@min: 2.204557, loss@max: 1.673838, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 7, loss@min: 2.112832, loss@max: 1.691286, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 8, loss@min: 1.900724, loss@max: 1.647927, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 9, loss@min: 1.816227, loss@max: 1.633585, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 10, loss@min: 1.605208, loss@max: 1.580366, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 11, loss@min: 1.675891, loss@max: 1.593380, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 12, loss@min: 1.478855, loss@max: 1.521368, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 13, loss@min: 1.589045, loss@max: 1.525848, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 14, loss@min: 1.538829, loss@max: 1.502760, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 15, loss@min: 1.653727, loss@max: 1.540054, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 16, loss@min: 1.396317, loss@max: 1.472362, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 17, loss@min: 1.360527, loss@max: 1.453407, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 18, loss@min: 1.251426, loss@max: 1.418745, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 19, loss@min: 1.387461, loss@max: 1.457559, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 20, loss@min: 1.223195, loss@max: 1.425100, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 21, loss@min: 1.242196, loss@max: 1.414233, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 22, loss@min: 1.320858, loss@max: 1.441894, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 23, loss@min: 1.157054, loss@max: 1.395186, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 24, loss@min: 1.200085, loss@max: 1.408119, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 25, loss@min: 1.126604, loss@max: 1.396729, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 26, loss@min: 1.136563, loss@max: 1.405514, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 27, loss@min: 1.149443, loss@max: 1.421824, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.123628, loss@max: 1.402051, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.095749, loss@max: 1.399679, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 30, loss@min: 1.078406, loss@max: 1.405620, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.067580, loss@max: 1.394887, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 32, loss@min: 1.048673, loss@max: 1.390373, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 1.087369, loss@max: 1.405334, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 34, loss@min: 1.033939, loss@max: 1.396637, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 1.047071, loss@max: 1.392030, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.077744, loss@max: 1.397880, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 37, loss@min: 1.038964, loss@max: 1.390110, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.018947, loss@max: 1.385042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.020814, loss@max: 1.385888, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.033560, loss@max: 1.396464, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 1.038737, loss@max: 1.401392, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.020814, loss@max: 1.399766, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.016514, loss@max: 1.385777, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.064822, loss@max: 1.401180, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.031309, loss@max: 1.392066, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 1.040120, loss@max: 1.391328, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 47, loss@min: 1.041782, loss@max: 1.414203, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 48, loss@min: 1.018718, loss@max: 1.395880, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 1.029790, loss@max: 1.395415, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 1.035744, loss@max: 1.401954, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.035252, loss@max: 1.399157, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 52, loss@min: 1.056495, loss@max: 1.421687, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 53, loss@min: 1.028601, loss@max: 1.408068, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 54, loss@min: 0.988920, loss@max: 1.378854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.091359, loss@max: 1.427445, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 56, loss@min: 0.982030, loss@max: 1.380050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.004901, loss@max: 1.403687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.003528, loss@max: 1.395823, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.985585, loss@max: 1.381451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.987958, loss@max: 1.390855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.984442, loss@max: 1.383301, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.002594, loss@max: 1.398796, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.997489, loss@max: 1.394111, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.030845, loss@max: 1.406180, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 65, loss@min: 0.995947, loss@max: 1.393762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.998130, loss@max: 1.389221, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.990815, loss@max: 1.395358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.023566, loss@max: 1.405169, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 1.039211, loss@max: 1.399915, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 70, loss@min: 1.003947, loss@max: 1.391537, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 71, loss@min: 0.989641, loss@max: 1.394616, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.981495, loss@max: 1.387394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.989568, loss@max: 1.389181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.018486, loss@max: 1.399353, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 75, loss@min: 0.978521, loss@max: 1.385620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.987099, loss@max: 1.386353, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 1.018144, loss@max: 1.396099, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 78, loss@min: 0.983874, loss@max: 1.387581, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.975234, loss@max: 1.385865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981906, loss@max: 1.385448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.564831, LT: 1.550531, Top1S: 61.696308, Top1T: 61.596817Best acc: 61.696308 +Train:epoch: 81, loss@min: 0.988755, loss@max: 1.381294, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 1.567806, LT: 1.553629, Top1S: 61.646564, Top1T: 61.509766 +Train:epoch: 82, loss@min: 0.977184, loss@max: 1.380670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.570416, LT: 1.556742, Top1S: 61.634129, Top1T: 61.559509 +Train:epoch: 83, loss@min: 0.982229, loss@max: 1.385029, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 1.572765, LT: 1.559783, Top1S: 61.696308, Top1T: 61.683872 +Train:epoch: 84, loss@min: 0.993827, loss@max: 1.397837, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 1.575604, LT: 1.563167, Top1S: 61.770927, Top1T: 61.696308Best acc: 61.770927 +Train:epoch: 85, loss@min: 0.977832, loss@max: 1.385911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.579588, LT: 1.566888, Top1S: 61.659000, Top1T: 61.659000 +Train:epoch: 86, loss@min: 0.975233, loss@max: 1.380327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.582686, LT: 1.569953, Top1S: 61.571945, Top1T: 61.571945 +Train:epoch: 87, loss@min: 1.041680, loss@max: 1.409775, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 87, LS: 1.585159, LT: 1.572065, Top1S: 61.596817, Top1T: 61.634129 +Train:epoch: 88, loss@min: 1.007231, loss@max: 1.396626, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 1.586257, LT: 1.572476, Top1S: 61.659000, Top1T: 61.696308 +Train:epoch: 89, loss@min: 0.972942, loss@max: 1.383637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.587808, LT: 1.574070, Top1S: 61.522202, Top1T: 61.721180 +Train:epoch: 90, loss@min: 0.980785, loss@max: 1.384216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.589987, LT: 1.576603, Top1S: 61.547073, Top1T: 61.733616 +Train:epoch: 91, loss@min: 0.984320, loss@max: 1.391587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.591066, LT: 1.578185, Top1S: 61.559509, Top1T: 61.584381 +Train:epoch: 92, loss@min: 1.004918, loss@max: 1.400317, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 1.590042, LT: 1.577237, Top1S: 61.634129, Top1T: 61.547073 +Train:epoch: 93, loss@min: 0.985476, loss@max: 1.391328, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 1.589367, LT: 1.576295, Top1S: 61.559509, Top1T: 61.497330 +Train:epoch: 94, loss@min: 0.969686, loss@max: 1.380796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.588757, LT: 1.575195, Top1S: 61.621693, Top1T: 61.422710 +Train:epoch: 95, loss@min: 0.996754, loss@max: 1.393137, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 1.589235, LT: 1.575095, Top1S: 61.733616, Top1T: 61.435146 +Train:epoch: 96, loss@min: 0.982839, loss@max: 1.382903, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 1.588311, LT: 1.573899, Top1S: 61.783363, Top1T: 61.547073Best acc: 61.783363 +Train:epoch: 97, loss@min: 1.008664, loss@max: 1.393949, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 1.586825, LT: 1.572624, Top1S: 61.758492, Top1T: 61.497330 +Train:epoch: 98, loss@min: 0.998134, loss@max: 1.394970, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 1.586089, LT: 1.572114, Top1S: 61.808235, Top1T: 61.534637Best acc: 61.808235 +Train:epoch: 99, loss@min: 0.998334, loss@max: 1.390963, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 1.585149, LT: 1.571479, Top1S: 61.870419, Top1T: 61.646564Best acc: 61.870419 +Train:epoch: 100, loss@min: 1.008189, loss@max: 1.395664, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 1.584466, LT: 1.570794, Top1S: 61.845543, Top1T: 61.634129 +Train:epoch: 101, loss@min: 0.978052, loss@max: 1.388033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.585184, LT: 1.571340, Top1S: 61.808235, Top1T: 61.683872 +Train:epoch: 102, loss@min: 0.969223, loss@max: 1.382773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.585726, LT: 1.571769, Top1S: 61.795799, Top1T: 61.708744 +Train:epoch: 103, loss@min: 0.981182, loss@max: 1.387621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.587067, LT: 1.573073, Top1S: 61.733616, Top1T: 61.659000 +Train:epoch: 104, loss@min: 0.987259, loss@max: 1.387337, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 104, LS: 1.589083, LT: 1.575362, Top1S: 61.783363, Top1T: 61.646564 +Train:epoch: 105, loss@min: 0.975283, loss@max: 1.381581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.590549, LT: 1.577140, Top1S: 61.696308, Top1T: 61.571945 +Train:epoch: 106, loss@min: 0.972224, loss@max: 1.381293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.593014, LT: 1.579645, Top1S: 61.659000, Top1T: 61.559509 +Train:epoch: 107, loss@min: 0.966978, loss@max: 1.377891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.594608, LT: 1.580980, Top1S: 61.634129, Top1T: 61.559509 +Train:epoch: 108, loss@min: 0.983400, loss@max: 1.385266, Top1S acc: 100.000000, Top1T acc: 99.609375{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 16:30:29 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.432806, loss@max: 2.742327, Top1S acc: 100.000000, Top1T acc: 58.984375 +Train:epoch: 2, loss@min: 2.088483, loss@max: 2.157516, Top1S acc: 99.609375, Top1T acc: 78.515625 +Train:epoch: 3, loss@min: 2.134941, loss@max: 1.762091, Top1S acc: 99.218750, Top1T acc: 82.812500 +Train:epoch: 4, loss@min: 1.843326, loss@max: 1.466395, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 5, loss@min: 1.653841, loss@max: 1.449570, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 6, loss@min: 1.311476, loss@max: 1.456331, Top1S acc: 98.437500, Top1T acc: 96.875000 +Train:epoch: 7, loss@min: 1.174431, loss@max: 1.544819, Top1S acc: 99.609375, Top1T acc: 96.484375 +Train:epoch: 8, loss@min: 1.085597, loss@max: 1.581109, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 9, loss@min: 1.031795, loss@max: 1.574368, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 10, loss@min: 1.010346, loss@max: 1.486138, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 11, loss@min: 1.110031, loss@max: 1.441819, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 1.143418, loss@max: 1.369499, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 13, loss@min: 1.150475, loss@max: 1.404509, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.072294, loss@max: 1.411338, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 1.027173, loss@max: 1.538043, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.952636, loss@max: 1.539614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.998125, loss@max: 1.464322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.020375, loss@max: 1.446938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.990109, loss@max: 1.514145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.009047, loss@max: 1.494338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.021772, loss@max: 1.486276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.013236, loss@max: 1.540803, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.028717, loss@max: 1.540085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.021002, loss@max: 1.519764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.999344, loss@max: 1.568992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.044631, loss@max: 1.556375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.038947, loss@max: 1.602414, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 0.999507, loss@max: 1.559435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.072304, loss@max: 1.620497, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.028817, loss@max: 1.563178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.046817, loss@max: 1.570644, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 1.029399, loss@max: 1.604506, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.994316, loss@max: 1.580778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.049934, loss@max: 1.522195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.080972, loss@max: 1.548539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.997440, loss@max: 1.569142, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.013886, loss@max: 1.577511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.029673, loss@max: 1.597072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.002217, loss@max: 1.609184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.027557, loss@max: 1.550363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.046711, loss@max: 1.568367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.024374, loss@max: 1.503334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.050924, loss@max: 1.558191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.022241, loss@max: 1.590650, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.991982, loss@max: 1.559117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.992654, loss@max: 1.577547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.003022, loss@max: 1.587865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.992868, loss@max: 1.581754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.004216, loss@max: 1.537613, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.017789, loss@max: 1.540885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.061930, loss@max: 1.468808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.047104, loss@max: 1.511453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.026871, loss@max: 1.517824, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.952927, loss@max: 1.584051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.994245, loss@max: 1.572860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.961347, loss@max: 1.573517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.972973, loss@max: 1.540827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.992029, loss@max: 1.514316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.990803, loss@max: 1.539547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.008312, loss@max: 1.504400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.992679, loss@max: 1.526702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.996111, loss@max: 1.539851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.984490, loss@max: 1.515712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.014870, loss@max: 1.472776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.024434, loss@max: 1.492133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.024459, loss@max: 1.476785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.014358, loss@max: 1.476204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.980254, loss@max: 1.540372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.980406, loss@max: 1.496564, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 70, loss@min: 0.977085, loss@max: 1.500765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.969847, loss@max: 1.505162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.997204, loss@max: 1.456351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.983445, loss@max: 1.462864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.018063, loss@max: 1.431716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.990779, loss@max: 1.446429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.996165, loss@max: 1.445317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.997237, loss@max: 1.468490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.973831, loss@max: 1.481149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964047, loss@max: 1.486546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.954571, loss@max: 1.465729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.578861, LT: 1.593159, Top1S: 57.418236, Top1T: 57.281437Best acc: 57.418236 +Train:epoch: 81, loss@min: 0.956552, loss@max: 1.472201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.579182, LT: 1.595104, Top1S: 57.617214, Top1T: 57.306309Best acc: 57.617214 +Train:epoch: 82, loss@min: 0.955452, loss@max: 1.481813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.579224, LT: 1.596057, Top1S: 57.592342, Top1T: 57.430672 +Train:epoch: 83, loss@min: 0.988800, loss@max: 1.424958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.580583, LT: 1.596300, Top1S: 57.467979, Top1T: 57.430672 +Train:epoch: 84, loss@min: 0.981038, loss@max: 1.446252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.583089, LT: 1.595597, Top1S: 57.380924, Top1T: 57.430672 +Train:epoch: 85, loss@min: 0.991392, loss@max: 1.410131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.585953, LT: 1.594949, Top1S: 57.281437, Top1T: 57.492851 +Train:epoch: 86, loss@min: 0.986661, loss@max: 1.417517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.587516, LT: 1.595016, Top1S: 57.281437, Top1T: 57.368488 +Train:epoch: 87, loss@min: 1.006527, loss@max: 1.417754, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 1.586383, LT: 1.596210, Top1S: 57.455544, Top1T: 57.206818 +Train:epoch: 88, loss@min: 0.967230, loss@max: 1.456021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.584278, LT: 1.597921, Top1S: 57.642086, Top1T: 57.181946Best acc: 57.642086 +Train:epoch: 89, loss@min: 0.965850, loss@max: 1.434025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.583108, LT: 1.599088, Top1S: 57.741577, Top1T: 57.107327Best acc: 57.741577 +Train:epoch: 90, loss@min: 0.965311, loss@max: 1.452045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.583647, LT: 1.598754, Top1S: 57.617214, Top1T: 57.169510 +Train:epoch: 91, loss@min: 0.966129, loss@max: 1.447177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.585093, LT: 1.597075, Top1S: 57.530159, Top1T: 57.356052 +Train:epoch: 92, loss@min: 0.961111, loss@max: 1.439585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.586444, LT: 1.594941, Top1S: 57.480415, Top1T: 57.356052 +Train:epoch: 93, loss@min: 0.970704, loss@max: 1.428688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.586801, LT: 1.594277, Top1S: 57.505287, Top1T: 57.430672 +Train:epoch: 94, loss@min: 0.965238, loss@max: 1.420455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.586890, LT: 1.594441, Top1S: 57.405796, Top1T: 57.604778 +Train:epoch: 95, loss@min: 0.985735, loss@max: 1.404874, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 17:12:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.144072, loss@max: 1.576803, Top1S acc: 100.000000, Top1T acc: 51.953125 +Train:epoch: 2, loss@min: 3.447774, loss@max: 1.576630, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 3, loss@min: 3.029457, loss@max: 1.617262, Top1S acc: 100.000000, Top1T acc: 64.843750 +Train:epoch: 4, loss@min: 3.109107, loss@max: 1.746839, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 5, loss@min: 2.661835, loss@max: 1.719302, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 6, loss@min: 2.204556, loss@max: 1.673838, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 7, loss@min: 2.112833, loss@max: 1.691285, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 8, loss@min: 1.900725, loss@max: 1.647927, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 9, loss@min: 1.816226, loss@max: 1.633586, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 10, loss@min: 1.605210, loss@max: 1.580367, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 11, loss@min: 1.675891, loss@max: 1.593380, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 12, loss@min: 1.478854, loss@max: 1.521369, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 13, loss@min: 1.589045, loss@max: 1.525848, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 14, loss@min: 1.538829, loss@max: 1.502761, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 15, loss@min: 1.653726, loss@max: 1.540055, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 16, loss@min: 1.396317, loss@max: 1.472361, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 17, loss@min: 1.360527, loss@max: 1.453408, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 18, loss@min: 1.251425, loss@max: 1.418746, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 19, loss@min: 1.387462, loss@max: 1.457558, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 20, loss@min: 1.223194, loss@max: 1.425099, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 21, loss@min: 1.242196, loss@max: 1.414233, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 22, loss@min: 1.320856, loss@max: 1.441895, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 23, loss@min: 1.157053, loss@max: 1.395187, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 24, loss@min: 1.200085, loss@max: 1.408119, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 25, loss@min: 1.126604, loss@max: 1.396728, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 26, loss@min: 1.136564, loss@max: 1.405515, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 27, loss@min: 1.149442, loss@max: 1.421825, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.123629, loss@max: 1.402051, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.095749, loss@max: 1.399678, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 30, loss@min: 1.078407, loss@max: 1.405619, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.067580, loss@max: 1.394887, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 32, loss@min: 1.048675, loss@max: 1.390372, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 1.087369, loss@max: 1.405334, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 34, loss@min: 1.033939, loss@max: 1.396638, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 1.047072, loss@max: 1.392030, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.077744, loss@max: 1.397880, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 37, loss@min: 1.038963, loss@max: 1.390111, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.018948, loss@max: 1.385041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.020814, loss@max: 1.385888, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.033561, loss@max: 1.396464, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 1.038737, loss@max: 1.401392, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.020813, loss@max: 1.399768, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.016514, loss@max: 1.385777, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.064822, loss@max: 1.401181, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.031310, loss@max: 1.392066, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 1.040122, loss@max: 1.391326, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 47, loss@min: 1.041781, loss@max: 1.414204, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 48, loss@min: 1.018719, loss@max: 1.395880, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 1.029789, loss@max: 1.395415, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 1.035746, loss@max: 1.401952, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.035253, loss@max: 1.399157, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 52, loss@min: 1.056495, loss@max: 1.421687, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 53, loss@min: 1.028600, loss@max: 1.408068, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 54, loss@min: 0.988919, loss@max: 1.378855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.091359, loss@max: 1.427445, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 56, loss@min: 0.982031, loss@max: 1.380048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.004901, loss@max: 1.403686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.003527, loss@max: 1.395825, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.985583, loss@max: 1.381454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.987957, loss@max: 1.390855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.984444, loss@max: 1.383300, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.002594, loss@max: 1.398796, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.997491, loss@max: 1.394108, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.030844, loss@max: 1.406180, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 65, loss@min: 0.995948, loss@max: 1.393761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.998129, loss@max: 1.389223, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.990813, loss@max: 1.395360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.023566, loss@max: 1.405168, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 1.039212, loss@max: 1.399915, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 70, loss@min: 1.003947, loss@max: 1.391536, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 71, loss@min: 0.989641, loss@max: 1.394616, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.981496, loss@max: 1.387394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.989565, loss@max: 1.389183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.018487, loss@max: 1.399352, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 75, loss@min: 0.978521, loss@max: 1.385620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.987101, loss@max: 1.386351, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 1.018144, loss@max: 1.396099, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 78, loss@min: 0.983875, loss@max: 1.387579, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.975233, loss@max: 1.385866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981905, loss@max: 1.385449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.564831, LT: 1.550531, Top1S: 61.696308, Top1T: 61.596817Best acc: 61.696308 +Train:epoch: 81, loss@min: 0.988756, loss@max: 1.381294, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 1.567806, LT: 1.553629, Top1S: 61.646564, Top1T: 61.509766 +Train:epoch: 82, loss@min: 0.977184, loss@max: 1.380670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.570416, LT: 1.556742, Top1S: 61.634129, Top1T: 61.559509 +Train:epoch: 83, loss@min: 0.982229, loss@max: 1.385028, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 1.572765, LT: 1.559783, Top1S: 61.696308, Top1T: 61.683872 +Train:epoch: 84, loss@min: 0.993828, loss@max: 1.397837, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 1.575604, LT: 1.563167, Top1S: 61.770927, Top1T: 61.696308Best acc: 61.770927 +Train:epoch: 85, loss@min: 0.977832, loss@max: 1.385911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.579588, LT: 1.566889, Top1S: 61.659000, Top1T: 61.659000 +Train:epoch: 86, loss@min: 0.975232, loss@max: 1.380329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.582686, LT: 1.569953, Top1S: 61.571945, Top1T: 61.571945 +Train:epoch: 87, loss@min: 1.041680, loss@max: 1.409775, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 87, LS: 1.585159, LT: 1.572065, Top1S: 61.596817, Top1T: 61.634129 +Train:epoch: 88, loss@min: 1.007232, loss@max: 1.396626, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 1.586257, LT: 1.572476, Top1S: 61.659000, Top1T: 61.696308 +Train:epoch: 89, loss@min: 0.972942, loss@max: 1.383637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.587808, LT: 1.574070, Top1S: 61.522202, Top1T: 61.721180 +Train:epoch: 90, loss@min: 0.980786, loss@max: 1.384216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.589986, LT: 1.576603, Top1S: 61.547073, Top1T: 61.733616 +Train:epoch: 91, loss@min: 0.984319, loss@max: 1.391587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.591066, LT: 1.578185, Top1S: 61.559509, Top1T: 61.584381 +Train:epoch: 92, loss@min: 1.004918, loss@max: 1.400316, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 1.590042, LT: 1.577237, Top1S: 61.634129, Top1T: 61.547073 +Train:epoch: 93, loss@min: 0.985477, loss@max: 1.391326, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 1.589367, LT: 1.576295, Top1S: 61.559509, Top1T: 61.497330 +Train:epoch: 94, loss@min: 0.969687, loss@max: 1.380795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.588756, LT: 1.575195, Top1S: 61.621693, Top1T: 61.422710 +Train:epoch: 95, loss@min: 0.996754, loss@max: 1.393137, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 1.589234, LT: 1.575095, Top1S: 61.733616, Top1T: 61.435146 +Train:epoch: 96, loss@min: 0.982839, loss@max: 1.382902, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 1.588311, LT: 1.573899, Top1S: 61.783363, Top1T: 61.547073Best acc: 61.783363 +Train:epoch: 97, loss@min: 1.008664, loss@max: 1.393949, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 1.586824, LT: 1.572624, Top1S: 61.758492, Top1T: 61.497330 +Train:epoch: 98, loss@min: 0.998133, loss@max: 1.394970, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 1.586089, LT: 1.572114, Top1S: 61.808235, Top1T: 61.534637Best acc: 61.808235 +Train:epoch: 99, loss@min: 0.998335, loss@max: 1.390963, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 1.585148, LT: 1.571479, Top1S: 61.870419, Top1T: 61.646564Best acc: 61.870419 +Train:epoch: 100, loss@min: 1.008189, loss@max: 1.395664, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 1.584465, LT: 1.570794, Top1S: 61.845543, Top1T: 61.634129 +Train:epoch: 101, loss@min: 0.978053, loss@max: 1.388033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.585183, LT: 1.571340, Top1S: 61.808235, Top1T: 61.683872 +Train:epoch: 102, loss@min: 0.969223, loss@max: 1.382773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.585726, LT: 1.571769, Top1S: 61.795799, Top1T: 61.708744 +Train:epoch: 103, loss@min: 0.981182, loss@max: 1.387621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.587066, LT: 1.573073, Top1S: 61.733616, Top1T: 61.659000 +Train:epoch: 104, loss@min: 0.987258, loss@max: 1.387337, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 104, LS: 1.589083, LT: 1.575362, Top1S: 61.783363, Top1T: 61.646564 +Train:epoch: 105, loss@min: 0.975282, loss@max: 1.381582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.590548, LT: 1.577140, Top1S: 61.696308, Top1T: 61.571945 +Train:epoch: 106, loss@min: 0.972223, loss@max: 1.381294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.593014, LT: 1.579645, Top1S: 61.659000, Top1T: 61.559509 +Train:epoch: 107, loss@min: 0.966979, loss@max: 1.377890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.594607, LT: 1.580980, Top1S: 61.634129, Top1T: 61.559509 +Train:epoch: 108, loss@min: 0.983401, loss@max: 1.385266, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 1.596807, LT: 1.582595, Top1S: 61.609257, Top1T: 61.596817 +Train:epoch: 109, loss@min: 0.989927, loss@max: 1.388275, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 109, LS: 1.598181, LT: 1.583411, Top1S: 61.596817, Top1T: 61.609257 +Train:epoch: 110, loss@min: 0.965479, loss@max: 1.377836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.599101, LT: 1.583943, Top1S: 61.659000, Top1T: 61.571945 +Train:epoch: 111, loss@min: 0.975895, loss@max: 1.385701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.599853, LT: 1.584576, Top1S: 61.671436, Top1T: 61.584381 +Train:epoch: 112, loss@min: 0.977885, loss@max: 1.380718, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 112, LS: 1.600283, LT: 1.585127, Top1S: 61.696308, Top1T: 61.584381 +Train:epoch: 113, loss@min: 0.974227, loss@max: 1.383635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.600477, LT: 1.585425, Top1S: 61.746056, Top1T: 61.534637 +Train:epoch: 114, loss@min: 0.976537, loss@max: 1.379687, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 1.600741, LT: 1.585722, Top1S: 61.708744, Top1T: 61.547073 +Train:epoch: 115, loss@min: 0.981608, loss@max: 1.383759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.600631, LT: 1.585598, Top1S: 61.795799, Top1T: 61.584381 +Train:epoch: 116, loss@min: 0.971633, loss@max: 1.380373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.600431, LT: 1.585451, Top1S: 61.833107, Top1T: 61.646564 +Train:epoch: 117, loss@min: 0.972458, loss@max: 1.378067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.600355, LT: 1.585447, Top1S: 61.845543, Top1T: 61.696308 +Train:epoch: 118, loss@min: 0.976533, loss@max: 1.383426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.600445, LT: 1.585761, Top1S: 61.870419, Top1T: 61.708744 +Train:epoch: 119, loss@min: 1.011878, loss@max: 1.393290, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 119, LS: 1.600787, LT: 1.586268, Top1S: 61.857979, Top1T: 61.696308 +Train:epoch: 120, loss@min: 0.976131, loss@max: 1.381893, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 1.600777, LT: 1.586300, Top1S: 61.845543, Top1T: 61.708744 +Train:epoch: 121, loss@min: 0.974929, loss@max: 1.381004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.600555, LT: 1.586078, Top1S: 61.820671, Top1T: 61.696308 +Train:epoch: 122, loss@min: 0.980690, loss@max: 1.382590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.600489, LT: 1.585968, Top1S: 61.833107, Top1T: 61.721180 +Train:epoch: 123, loss@min: 0.974841, loss@max: 1.383423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.600528, LT: 1.585859, Top1S: 61.770927, Top1T: 61.683872 +Train:epoch: 124, loss@min: 0.968407, loss@max: 1.372020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.600689, LT: 1.585916, Top1S: 61.820671, Top1T: 61.696308 +Train:epoch: 125, loss@min: 1.004948, loss@max: 1.388573, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 1.600697, LT: 1.585829, Top1S: 61.795799, Top1T: 61.696308 +Train:epoch: 126, loss@min: 1.000080, loss@max: 1.384713, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 1.600722, LT: 1.585670, Top1S: 61.758492, Top1T: 61.683872 +Train:epoch: 127, loss@min: 1.024318, loss@max: 1.393101, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 127, LS: 1.600752, LT: 1.585568, Top1S: 61.770927, Top1T: 61.708744 +Train:epoch: 128, loss@min: 0.981260, loss@max: 1.388798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.600748, LT: 1.585466, Top1S: 61.746056, Top1T: 61.746056 +Train:epoch: 129, loss@min: 0.973908, loss@max: 1.381129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.600667, LT: 1.585314, Top1S: 61.758492, Top1T: 61.733616 +Train:epoch: 130, loss@min: 0.968115, loss@max: 1.373835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.600491, LT: 1.585027, Top1S: 61.770927, Top1T: 61.795799 +Train:epoch: 131, loss@min: 0.969749, loss@max: 1.377120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.600368, LT: 1.584861, Top1S: 61.770927, Top1T: 61.770927 +Train:epoch: 132, loss@min: 0.975998, loss@max: 1.382964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.600319, LT: 1.584783, Top1S: 61.808235, Top1T: 61.758492 +Train:epoch: 133, loss@min: 0.968718, loss@max: 1.376069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.600239, LT: 1.584702, Top1S: 61.820671, Top1T: 61.795799 +Train:epoch: 134, loss@min: 0.970331, loss@max: 1.378690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.600233, LT: 1.584701, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 135, loss@min: 0.971493, loss@max: 1.377722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.600257, LT: 1.584692, Top1S: 61.808235, Top1T: 61.783363 +Train:epoch: 136, loss@min: 0.971659, loss@max: 1.378521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.600201, LT: 1.584606, Top1S: 61.808235, Top1T: 61.758492 +Train:epoch: 137, loss@min: 0.991278, loss@max: 1.387618, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 1.600106, LT: 1.584480, Top1S: 61.770927, Top1T: 61.770927 +Train:epoch: 138, loss@min: 0.968513, loss@max: 1.377975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.600145, LT: 1.584488, Top1S: 61.770927, Top1T: 61.770927 +Train:epoch: 139, loss@min: 0.983808, loss@max: 1.386581, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 139, LS: 1.600097, LT: 1.584424, Top1S: 61.770927, Top1T: 61.758492 +Train:epoch: 140, loss@min: 0.975732, loss@max: 1.384641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.600071, LT: 1.584396, Top1S: 61.795799, Top1T: 61.783363 +Train:epoch: 141, loss@min: 0.972266, loss@max: 1.379931, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.600060, LT: 1.584400, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 142, loss@min: 0.975287, loss@max: 1.383008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.600055, LT: 1.584403, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 143, loss@min: 0.997670, loss@max: 1.391208, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 143, LS: 1.600055, LT: 1.584415, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 144, loss@min: 0.998313, loss@max: 1.391773, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 144, LS: 1.600057, LT: 1.584427, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 145, loss@min: 0.975742, loss@max: 1.385169, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.600053, LT: 1.584432, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 146, loss@min: 0.970600, loss@max: 1.379317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.600043, LT: 1.584430, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 147, loss@min: 0.969301, loss@max: 1.378457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.600037, LT: 1.584425, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 148, loss@min: 0.971529, loss@max: 1.376343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.600034, LT: 1.584424, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 149, loss@min: 0.976469, loss@max: 1.381426, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 149, LS: 1.600033, LT: 1.584424, Top1S: 61.795799, Top1T: 61.795799 +Train:epoch: 150, loss@min: 0.976311, loss@max: 1.382888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.600033, LT: 1.584424, Top1S: 61.795799, Top1T: 61.795799 +------------------------------------------- +Wed Aug 9 19:49:57 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 20:09:19 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.564903, loss@max: 1.631250, Top1S acc: 100.000000, Top1T acc: 57.142857 +Train:epoch: 2, loss@min: 3.900108, loss@max: 1.597019, Top1S acc: 100.000000, Top1T acc: 56.632652 +Train:epoch: 3, loss@min: 3.258924, loss@max: 1.552969, Top1S acc: 100.000000, Top1T acc: 68.367348 +Train:epoch: 4, loss@min: 3.092147, loss@max: 1.618174, Top1S acc: 100.000000, Top1T acc: 64.795921 +Train:epoch: 5, loss@min: 2.645063, loss@max: 1.593496, Top1S acc: 100.000000, Top1T acc: 72.959183 +Train:epoch: 6, loss@min: 2.575173, loss@max: 1.646953, Top1S acc: 100.000000, Top1T acc: 75.510201 +Train:epoch: 7, loss@min: 2.290352, loss@max: 1.639516, Top1S acc: 100.000000, Top1T acc: 77.040817 +Train:epoch: 8, loss@min: 2.118150, loss@max: 1.651084, Top1S acc: 100.000000, Top1T acc: 82.142853 +Train:epoch: 9, loss@min: 2.055103, loss@max: 1.678480, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 10, loss@min: 1.826840, loss@max: 1.649101, Top1S acc: 100.000000, Top1T acc: 86.224487 +Train:epoch: 11, loss@min: 1.646262, loss@max: 1.629380, Top1S acc: 100.000000, Top1T acc: 90.816322 +Train:epoch: 12, loss@min: 1.883618, loss@max: 1.693166, Top1S acc: 100.000000, Top1T acc: 90.306122 +Train:epoch: 13, loss@min: 1.442533, loss@max: 1.586257, Top1S acc: 100.000000, Top1T acc: 91.836731 +Train:epoch: 14, loss@min: 1.370898, loss@max: 1.566645, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 15, loss@min: 1.409505, loss@max: 1.564584, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 16, loss@min: 1.438414, loss@max: 1.576442, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 17, loss@min: 1.245682, loss@max: 1.513933, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 18, loss@min: 1.319443, loss@max: 1.526211, Top1S acc: 100.000000, Top1T acc: 93.877548 +Train:epoch: 19, loss@min: 1.219185, loss@max: 1.482797, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 20, loss@min: 1.210926, loss@max: 1.474450, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 21, loss@min: 1.172179, loss@max: 1.459745, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 22, loss@min: 1.159965, loss@max: 1.431386, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 23, loss@min: 1.181278, loss@max: 1.438527, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 24, loss@min: 1.190609, loss@max: 1.435966, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 25, loss@min: 1.171113, loss@max: 1.425933, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 26, loss@min: 1.186953, loss@max: 1.437902, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 27, loss@min: 1.126406, loss@max: 1.404587, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 28, loss@min: 1.144416, loss@max: 1.407743, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 29, loss@min: 1.155923, loss@max: 1.421868, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 30, loss@min: 1.045938, loss@max: 1.375216, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 31, loss@min: 1.116209, loss@max: 1.406402, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 32, loss@min: 1.094113, loss@max: 1.401630, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 33, loss@min: 1.028549, loss@max: 1.369205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.049185, loss@max: 1.377641, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 35, loss@min: 1.066349, loss@max: 1.384369, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 36, loss@min: 1.038292, loss@max: 1.368772, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 37, loss@min: 1.090611, loss@max: 1.379852, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 38, loss@min: 1.056394, loss@max: 1.372123, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 39, loss@min: 1.055688, loss@max: 1.375062, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 40, loss@min: 1.088889, loss@max: 1.392330, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 41, loss@min: 1.014550, loss@max: 1.367954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.043746, loss@max: 1.389825, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 43, loss@min: 1.011919, loss@max: 1.381147, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 44, loss@min: 1.000999, loss@max: 1.371001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.040693, loss@max: 1.390647, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 46, loss@min: 0.981212, loss@max: 1.366782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.007079, loss@max: 1.387778, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 48, loss@min: 1.002114, loss@max: 1.391578, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 49, loss@min: 1.046138, loss@max: 1.405385, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 50, loss@min: 1.001135, loss@max: 1.381952, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 51, loss@min: 1.011373, loss@max: 1.393466, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 52, loss@min: 0.995266, loss@max: 1.390411, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 53, loss@min: 1.060762, loss@max: 1.406797, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 54, loss@min: 0.996670, loss@max: 1.382323, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 55, loss@min: 0.998282, loss@max: 1.394230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.055765, loss@max: 1.409457, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 57, loss@min: 0.987693, loss@max: 1.389222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.989572, loss@max: 1.390376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.002901, loss@max: 1.388235, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 60, loss@min: 0.998757, loss@max: 1.390388, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 61, loss@min: 0.990720, loss@max: 1.390027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.979787, loss@max: 1.380871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.999403, loss@max: 1.399630, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 64, loss@min: 0.980775, loss@max: 1.378943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.976706, loss@max: 1.381012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.978160, loss@max: 1.384208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.987325, loss@max: 1.391466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.977507, loss@max: 1.378623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.977243, loss@max: 1.382601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.981253, loss@max: 1.379242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.980573, loss@max: 1.380845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.996796, loss@max: 1.391737, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 73, loss@min: 0.978805, loss@max: 1.381964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.989790, loss@max: 1.382699, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 75, loss@min: 0.985212, loss@max: 1.381895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.978478, loss@max: 1.379711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.989233, loss@max: 1.386918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.003884, loss@max: 1.393065, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 79, loss@min: 0.978634, loss@max: 1.378763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.986071, loss@max: 1.387721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.612043, LT: 1.610483, Top1S: 58.363392, Top1T: 58.226593Best acc: 58.363392 +Train:epoch: 81, loss@min: 0.982921, loss@max: 1.381350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.613196, LT: 1.612159, Top1S: 58.388264, Top1T: 58.077354Best acc: 58.388264 +Train:epoch: 82, loss@min: 0.976883, loss@max: 1.380603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.614629, LT: 1.613864, Top1S: 58.413136, Top1T: 58.077354Best acc: 58.413136 +Train:epoch: 83, loss@min: 0.975332, loss@max: 1.383352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.616057, LT: 1.615409, Top1S: 58.438007, Top1T: 58.089790Best acc: 58.438007 +Train:epoch: 84, loss@min: 0.975319, loss@max: 1.381405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.617731, LT: 1.616943, Top1S: 58.487751, Top1T: 58.077354Best acc: 58.487751 +Train:epoch: 85, loss@min: 0.981624, loss@max: 1.382040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.618915, LT: 1.617794, Top1S: 58.500191, Top1T: 58.052483Best acc: 58.500191 +Train:epoch: 86, loss@min: 0.978791, loss@max: 1.387561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.619877, LT: 1.618455, Top1S: 58.438007, Top1T: 58.027611 +Train:epoch: 87, loss@min: 0.974995, loss@max: 1.376729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.620566, LT: 1.618906, Top1S: 58.525063, Top1T: 58.052483Best acc: 58.525063 +Train:epoch: 88, loss@min: 0.996148, loss@max: 1.389377, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 88, LS: 1.620860, LT: 1.619059, Top1S: 58.462879, Top1T: 58.002739 +Train:epoch: 89, loss@min: 0.995700, loss@max: 1.389017, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 89, LS: 1.621194, LT: 1.619301, Top1S: 58.462879, Top1T: 58.002739 +Train:epoch: 90, loss@min: 0.976887, loss@max: 1.381692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.621562, LT: 1.619538, Top1S: 58.438007, Top1T: 58.040047 +Train:epoch: 91, loss@min: 0.990430, loss@max: 1.388303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.621619, LT: 1.619471, Top1S: 58.438007, Top1T: 58.139538 +Train:epoch: 92, loss@min: 0.976636, loss@max: 1.378485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.621185, LT: 1.619106, Top1S: 58.462879, Top1T: 58.189281 +Train:epoch: 93, loss@min: 0.980449, loss@max: 1.380093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.620664, LT: 1.618668, Top1S: 58.487751, Top1T: 58.176846 +Train:epoch: 94, loss@min: 0.972712, loss@max: 1.375339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.620227, LT: 1.618450, Top1S: 58.462879, Top1T: 58.189281 +Train:epoch: 95, loss@min: 1.012549, loss@max: 1.393710, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 95, LS: 1.620275, LT: 1.618655, Top1S: 58.438007, Top1T: 58.226593 +Train:epoch: 96, loss@min: 1.001221, loss@max: 1.394191, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 96, LS: 1.620420, LT: 1.618948, Top1S: 58.450443, Top1T: 58.251465 +Train:epoch: 97, loss@min: 0.990814, loss@max: 1.386606, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 97, LS: 1.620557, LT: 1.619165, Top1S: 58.438007, Top1T: 58.201717 +Train:epoch: 98, loss@min: 0.988006, loss@max: 1.394372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.620523, LT: 1.619214, Top1S: 58.475315, Top1T: 58.151974 +Train:epoch: 99, loss@min: 0.982042, loss@max: 1.383860, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 99, LS: 1.620481, LT: 1.619290, Top1S: 58.537498, Top1T: 58.139538Best acc: 58.537498 +Train:epoch: 100, loss@min: 0.973052, loss@max: 1.379196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.620632, LT: 1.619503, Top1S: 58.525063, Top1T: 58.151974 +Train:epoch: 101, loss@min: 0.988133, loss@max: 1.385849, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 101, LS: 1.620962, LT: 1.619823, Top1S: 58.487751, Top1T: 58.176846 +Train:epoch: 102, loss@min: 0.975099, loss@max: 1.382321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.621157, LT: 1.620019, Top1S: 58.487751, Top1T: 58.176846 +Train:epoch: 103, loss@min: 0.970160, loss@max: 1.385415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.621376, LT: 1.620313, Top1S: 58.475315, Top1T: 58.214153 +Train:epoch: 104, loss@min: 0.977909, loss@max: 1.382557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.621675, LT: 1.620646, Top1S: 58.512627, Top1T: 58.239029 +Train:epoch: 105, loss@min: 0.971121, loss@max: 1.374878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.622096, LT: 1.621000, Top1S: 58.512627, Top1T: 58.201717 +Train:epoch: 106, loss@min: 0.973186, loss@max: 1.376416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.622441, LT: 1.621319, Top1S: 58.525063, Top1T: 58.176846 +Train:epoch: 107, loss@min: 0.973627, loss@max: 1.377295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.622831, LT: 1.621592, Top1S: 58.537498, Top1T: 58.189281 +Train:epoch: 108, loss@min: 0.979464, loss@max: 1.382432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.623271, LT: 1.621896, Top1S: 58.525063, Top1T: 58.201717 +Train:epoch: 109, loss@min: 0.973753, loss@max: 1.379171, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.623684, LT: 1.622117, Top1S: 58.537498, Top1T: 58.176846 +Train:epoch: 110, loss@min: 0.982284, loss@max: 1.382986, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 110, LS: 1.623722, LT: 1.622057, Top1S: 58.587242, Top1T: 58.189281Best acc: 58.587242 +Train:epoch: 111, loss@min: 0.971697, loss@max: 1.375253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.623752, LT: 1.621987, Top1S: 58.574806, Top1T: 58.176846 +Train:epoch: 112, loss@min: 0.970893, loss@max: 1.376986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.623805, LT: 1.621968, Top1S: 58.574806, Top1T: 58.201717 +Train:epoch: 113, loss@min: 0.980783, loss@max: 1.382497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.623852, LT: 1.621906, Top1S: 58.574806, Top1T: 58.214153 +Train:epoch: 114, loss@min: 0.973890, loss@max: 1.377505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.624031, LT: 1.621989, Top1S: 58.537498, Top1T: 58.214153 +Train:epoch: 115, loss@min: 1.005338, loss@max: 1.394514, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 115, LS: 1.624134, LT: 1.622083, Top1S: 58.574806, Top1T: 58.201717 +Train:epoch: 116, loss@min: 0.970574, loss@max: 1.376932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.624295, LT: 1.622223, Top1S: 58.574806, Top1T: 58.214153 +Train:epoch: 117, loss@min: 0.972743, loss@max: 1.378094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.624375, LT: 1.622352, Top1S: 58.599678, Top1T: 58.201717Best acc: 58.599678 +Train:epoch: 118, loss@min: 0.977355, loss@max: 1.384213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.624377, LT: 1.622510, Top1S: 58.562370, Top1T: 58.201717 +Train:epoch: 119, loss@min: 0.992664, loss@max: 1.386775, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 119, LS: 1.624417, LT: 1.622706, Top1S: 58.549934, Top1T: 58.201717 +Train:epoch: 120, loss@min: 0.972995, loss@max: 1.379025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.624390, LT: 1.622821, Top1S: 58.525063, Top1T: 58.189281 +Train:epoch: 121, loss@min: 0.981649, loss@max: 1.383902, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 121, LS: 1.624377, LT: 1.622937, Top1S: 58.525063, Top1T: 58.201717 +Train:epoch: 122, loss@min: 0.971454, loss@max: 1.383424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.624362, LT: 1.623044, Top1S: 58.512627, Top1T: 58.189281 +Train:epoch: 123, loss@min: 0.972542, loss@max: 1.378502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.624397, LT: 1.623142, Top1S: 58.512627, Top1T: 58.176846 +Train:epoch: 124, loss@min: 0.974276, loss@max: 1.379680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.624450, LT: 1.623270, Top1S: 58.512627, Top1T: 58.189281 +Train:epoch: 125, loss@min: 0.976014, loss@max: 1.383953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.624476, LT: 1.623349, Top1S: 58.537498, Top1T: 58.201717 +Train:epoch: 126, loss@min: 0.981277, loss@max: 1.388909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.624630, LT: 1.623509, Top1S: 58.549934, Top1T: 58.189281 +Train:epoch: 127, loss@min: 0.984630, loss@max: 1.386896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.624774, LT: 1.623663, Top1S: 58.574806, Top1T: 58.164410 +Train:epoch: 128, loss@min: 0.967320, loss@max: 1.369691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.624891, LT: 1.623792, Top1S: 58.549934, Top1T: 58.151974 +Train:epoch: 129, loss@min: 0.975708, loss@max: 1.383426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.624983, LT: 1.623900, Top1S: 58.537498, Top1T: 58.164410 +Train:epoch: 130, loss@min: 0.979429, loss@max: 1.384146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.625002, LT: 1.623930, Top1S: 58.562370, Top1T: 58.164410 +Train:epoch: 131, loss@min: 0.974053, loss@max: 1.376882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.625013, LT: 1.623922, Top1S: 58.574806, Top1T: 58.164410 +Train:epoch: 132, loss@min: 0.975934, loss@max: 1.380833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.624997, LT: 1.623891, Top1S: 58.562370, Top1T: 58.151974 +Train:epoch: 133, loss@min: 0.976878, loss@max: 1.385087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.624990, LT: 1.623867, Top1S: 58.574806, Top1T: 58.176846 +Train:epoch: 134, loss@min: 0.976331, loss@max: 1.378657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.624983, LT: 1.623852, Top1S: 58.599678, Top1T: 58.189281 +Train:epoch: 135, loss@min: 0.981383, loss@max: 1.389373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.624995, LT: 1.623852, Top1S: 58.587242, Top1T: 58.201717 +Train:epoch: 136, loss@min: 0.995919, loss@max: 1.388741, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 136, LS: 1.625012, LT: 1.623856, Top1S: 58.599678, Top1T: 58.201717 +Train:epoch: 137, loss@min: 0.978557, loss@max: 1.382208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.625027, LT: 1.623856, Top1S: 58.574806, Top1T: 58.201717 +Train:epoch: 138, loss@min: 0.970686, loss@max: 1.378763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.625038, LT: 1.623857, Top1S: 58.587242, Top1T: 58.226593 +Train:epoch: 139, loss@min: 0.972710, loss@max: 1.377765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.625050, LT: 1.623857, Top1S: 58.574806, Top1T: 58.226593 +Train:epoch: 140, loss@min: 0.997302, loss@max: 1.390342, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 140, LS: 1.625061, LT: 1.623864, Top1S: 58.574806, Top1T: 58.226593 +Train:epoch: 141, loss@min: 0.972242, loss@max: 1.374218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.625073, LT: 1.623870, Top1S: 58.562370, Top1T: 58.226593 +Train:epoch: 142, loss@min: 0.977852, loss@max: 1.384259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.625085, LT: 1.623877, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 143, loss@min: 0.969875, loss@max: 1.377459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.625093, LT: 1.623881, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 144, loss@min: 0.986026, loss@max: 1.387685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.625086, LT: 1.623875, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 145, loss@min: 0.970883, loss@max: 1.376870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.625082, LT: 1.623871, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 146, loss@min: 0.972735, loss@max: 1.377996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.625082, LT: 1.623871, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 147, loss@min: 0.972978, loss@max: 1.378742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.625084, LT: 1.623871, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 148, loss@min: 0.968465, loss@max: 1.375531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.625084, LT: 1.623871, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 149, loss@min: 0.990148, loss@max: 1.386601, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 149, LS: 1.625084, LT: 1.623871, Top1S: 58.549934, Top1T: 58.239029 +Train:epoch: 150, loss@min: 0.976168, loss@max: 1.383179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.625084, LT: 1.623871, Top1S: 58.549934, Top1T: 58.239029 +------------------------------------------- +Wed Aug 9 22:37:15 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 22:47:29 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.220686, loss@max: 1.800106, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 2, loss@min: 4.619994, loss@max: 1.801255, Top1S acc: 100.000000, Top1T acc: 54.296875 +Train:epoch: 3, loss@min: 4.143123, loss@max: 1.829223, Top1S acc: 100.000000, Top1T acc: 55.859375 +Train:epoch: 4, loss@min: 3.615368, loss@max: 1.816220, Top1S acc: 100.000000, Top1T acc: 61.718750 +Train:epoch: 5, loss@min: 3.251271, loss@max: 1.846363, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 6, loss@min: 2.799636, loss@max: 1.811991, Top1S acc: 100.000000, Top1T acc: 72.656250 +Train:epoch: 7, loss@min: 2.595218, loss@max: 1.828373, Top1S acc: 100.000000, Top1T acc: 75.781250 +Train:epoch: 8, loss@min: 2.467025, loss@max: 1.839691, Top1S acc: 100.000000, Top1T acc: 78.125000 +Train:epoch: 9, loss@min: 2.157742, loss@max: 1.789542, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 10, loss@min: 2.100799, loss@max: 1.788533, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 11, loss@min: 2.004252, loss@max: 1.758162, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 12, loss@min: 1.727810, loss@max: 1.671257, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 13, loss@min: 1.747824, loss@max: 1.675046, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 14, loss@min: 1.611674, loss@max: 1.605955, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 15, loss@min: 1.673736, loss@max: 1.634840, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 16, loss@min: 1.519025, loss@max: 1.560647, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 17, loss@min: 1.437044, loss@max: 1.524714, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 18, loss@min: 1.487997, loss@max: 1.541630, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 19, loss@min: 1.351589, loss@max: 1.481680, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 20, loss@min: 1.365333, loss@max: 1.494048, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 21, loss@min: 1.344599, loss@max: 1.494208, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 22, loss@min: 1.197155, loss@max: 1.445416, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.177543, loss@max: 1.441889, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 24, loss@min: 1.222481, loss@max: 1.468796, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.187351, loss@max: 1.461459, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 26, loss@min: 1.124234, loss@max: 1.430270, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 27, loss@min: 1.092481, loss@max: 1.416984, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.085987, loss@max: 1.428317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.065204, loss@max: 1.420717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.053594, loss@max: 1.410599, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.061787, loss@max: 1.430577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.029786, loss@max: 1.410967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.044711, loss@max: 1.416083, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 34, loss@min: 1.032306, loss@max: 1.412598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.031997, loss@max: 1.416832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.024581, loss@max: 1.409004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.003405, loss@max: 1.390915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.014376, loss@max: 1.395325, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.005645, loss@max: 1.398894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.004109, loss@max: 1.386764, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.008650, loss@max: 1.401344, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.993567, loss@max: 1.392566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.984454, loss@max: 1.384614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.987339, loss@max: 1.386266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.986843, loss@max: 1.389716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.990961, loss@max: 1.390685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.980570, loss@max: 1.382797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.982137, loss@max: 1.386470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.985879, loss@max: 1.392184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.986134, loss@max: 1.394258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.977209, loss@max: 1.379911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.977287, loss@max: 1.378270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.991113, loss@max: 1.395078, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.981131, loss@max: 1.392168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.973014, loss@max: 1.386541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.976350, loss@max: 1.383846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.979993, loss@max: 1.392061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.970944, loss@max: 1.384516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.967246, loss@max: 1.377354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.968758, loss@max: 1.378550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.972032, loss@max: 1.381989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964652, loss@max: 1.376310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.965406, loss@max: 1.382434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.962747, loss@max: 1.379616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.967341, loss@max: 1.378679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.970576, loss@max: 1.382981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.966413, loss@max: 1.374646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.977181, loss@max: 1.388828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.964209, loss@max: 1.386674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958937, loss@max: 1.379624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.962270, loss@max: 1.376898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.967071, loss@max: 1.380262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.968356, loss@max: 1.378257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.960511, loss@max: 1.375826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.961885, loss@max: 1.378785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.964566, loss@max: 1.377856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.964752, loss@max: 1.378155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.965094, loss@max: 1.377821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.960461, loss@max: 1.377211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.964490, loss@max: 1.382742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.714079, LT: 1.698856, Top1S: 64.952721, Top1T: 64.952721Best acc: 64.952721 +Train:epoch: 81, loss@min: 0.962849, loss@max: 1.379232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.715139, LT: 1.700002, Top1S: 65.011818, Top1T: 65.011818Best acc: 65.011818 +Train:epoch: 82, loss@min: 0.961240, loss@max: 1.372682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.716104, LT: 1.701056, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 83, loss@min: 0.969557, loss@max: 1.377585, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 1.716911, LT: 1.701887, Top1S: 64.952721, Top1T: 65.011818 +Train:epoch: 84, loss@min: 0.959013, loss@max: 1.374130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.717642, LT: 1.702649, Top1S: 65.070923, Top1T: 65.011818Best acc: 65.070923 +Train:epoch: 85, loss@min: 0.960989, loss@max: 1.378537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.718829, LT: 1.703571, Top1S: 65.130020, Top1T: 64.952721Best acc: 65.130020 +Train:epoch: 86, loss@min: 0.967001, loss@max: 1.383541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.719427, LT: 1.704182, Top1S: 65.189125, Top1T: 65.070923Best acc: 65.189125 +Train:epoch: 87, loss@min: 0.959992, loss@max: 1.373520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.720181, LT: 1.704722, Top1S: 65.070923, Top1T: 65.011818 +Train:epoch: 88, loss@min: 0.963247, loss@max: 1.378114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.721345, LT: 1.705451, Top1S: 65.130020, Top1T: 65.070923 +Train:epoch: 89, loss@min: 0.964915, loss@max: 1.376729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.722473, LT: 1.706634, Top1S: 65.070923, Top1T: 65.130020 +Train:epoch: 90, loss@min: 0.961998, loss@max: 1.377222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.723409, LT: 1.707967, Top1S: 65.130020, Top1T: 65.130020 +Train:epoch: 91, loss@min: 0.957656, loss@max: 1.376776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.724477, LT: 1.709398, Top1S: 64.952721, Top1T: 65.189125 +Train:epoch: 92, loss@min: 0.960417, loss@max: 1.376636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.726043, LT: 1.710910, Top1S: 64.952721, Top1T: 65.070923 +Train:epoch: 93, loss@min: 0.963400, loss@max: 1.378804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.727871, LT: 1.712544, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 94, loss@min: 0.959575, loss@max: 1.372627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.729551, LT: 1.714013, Top1S: 64.952721, Top1T: 65.011818 +Train:epoch: 95, loss@min: 0.959865, loss@max: 1.374120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.731316, LT: 1.715413, Top1S: 64.893616, Top1T: 65.011818 +Train:epoch: 96, loss@min: 0.960025, loss@max: 1.375670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.732821, LT: 1.716633, Top1S: 64.834518, Top1T: 65.011818 +Train:epoch: 97, loss@min: 0.961470, loss@max: 1.377091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.733934, LT: 1.717645, Top1S: 64.834518, Top1T: 64.952721 +Train:epoch: 98, loss@min: 0.959616, loss@max: 1.376022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.734872, LT: 1.718634, Top1S: 64.834518, Top1T: 64.893616 +Train:epoch: 99, loss@min: 0.962941, loss@max: 1.378620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.736029, LT: 1.719803, Top1S: 64.893616, Top1T: 64.834518 +Train:epoch: 100, loss@min: 0.960537, loss@max: 1.375045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.736816, LT: 1.720804, Top1S: 64.834518, Top1T: 64.834518 +Train:epoch: 101, loss@min: 0.961722, loss@max: 1.374604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.737562, LT: 1.721954, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 102, loss@min: 0.967770, loss@max: 1.381323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.738162, LT: 1.722781, Top1S: 64.834518, Top1T: 64.716309 +Train:epoch: 103, loss@min: 0.959880, loss@max: 1.378216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.739183, LT: 1.723902, Top1S: 64.834518, Top1T: 64.539009 +Train:epoch: 104, loss@min: 0.963431, loss@max: 1.381113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.740023, LT: 1.724696, Top1S: 64.952721, Top1T: 64.598106 +Train:epoch: 105, loss@min: 0.957093, loss@max: 1.371481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.740922, LT: 1.725267, Top1S: 65.070923, Top1T: 64.598106 +Train:epoch: 106, loss@min: 0.958365, loss@max: 1.372967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.741854, LT: 1.725778, Top1S: 65.130020, Top1T: 64.834518 +Train:epoch: 107, loss@min: 0.959588, loss@max: 1.374560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.742852, LT: 1.726486, Top1S: 65.130020, Top1T: 64.834518 +Train:epoch: 108, loss@min: 0.958583, loss@max: 1.372214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.743553, LT: 1.727160, Top1S: 65.070923, Top1T: 64.952721 +Train:epoch: 109, loss@min: 0.961181, loss@max: 1.376515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.744126, LT: 1.727805, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 110, loss@min: 0.959520, loss@max: 1.371817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.744548, LT: 1.728298, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 111, loss@min: 0.958702, loss@max: 1.372730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.745143, LT: 1.728805, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 112, loss@min: 0.959026, loss@max: 1.374351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.745815, LT: 1.729395, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 113, loss@min: 0.957695, loss@max: 1.376923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.746304, LT: 1.729886, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 114, loss@min: 0.960630, loss@max: 1.379983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.747207, LT: 1.730735, Top1S: 65.130020, Top1T: 64.834518 +Train:epoch: 115, loss@min: 0.962036, loss@max: 1.379822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.748157, LT: 1.731669, Top1S: 65.130020, Top1T: 64.893616 +Train:epoch: 116, loss@min: 0.956974, loss@max: 1.374590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.749138, LT: 1.732623, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 117, loss@min: 0.957473, loss@max: 1.375905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.749859, LT: 1.733391, Top1S: 64.952721, Top1T: 64.952721 +Train:epoch: 118, loss@min: 0.962784, loss@max: 1.377809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.750543, LT: 1.734046, Top1S: 64.952721, Top1T: 64.952721 +Train:epoch: 119, loss@min: 0.958806, loss@max: 1.372001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.751203, LT: 1.734709, Top1S: 65.070923, Top1T: 65.011818 +Train:epoch: 120, loss@min: 0.956958, loss@max: 1.370928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.751830, LT: 1.735315, Top1S: 65.070923, Top1T: 64.952721 +Train:epoch: 121, loss@min: 0.959220, loss@max: 1.374211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.752345, LT: 1.735839, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 122, loss@min: 0.958237, loss@max: 1.374102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.752762, LT: 1.736244, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 123, loss@min: 0.959573, loss@max: 1.376375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.753146, LT: 1.736621, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 124, loss@min: 0.959536, loss@max: 1.377979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.753625, LT: 1.737042, Top1S: 65.070923, Top1T: 64.893616 +Train:epoch: 125, loss@min: 0.959725, loss@max: 1.374221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.754006, LT: 1.737411, Top1S: 65.130020, Top1T: 64.893616 +Train:epoch: 126, loss@min: 0.957198, loss@max: 1.374507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.754235, LT: 1.737655, Top1S: 65.130020, Top1T: 65.011818 +Train:epoch: 127, loss@min: 0.955778, loss@max: 1.372447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.754396, LT: 1.737837, Top1S: 65.070923, Top1T: 64.893616 +Train:epoch: 128, loss@min: 0.958329, loss@max: 1.374769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.754507, LT: 1.738011, Top1S: 65.070923, Top1T: 64.893616 +Train:epoch: 129, loss@min: 0.958637, loss@max: 1.374499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.754633, LT: 1.738186, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 130, loss@min: 0.956543, loss@max: 1.371043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.754785, LT: 1.738366, Top1S: 64.952721, Top1T: 64.834518 +Train:epoch: 131, loss@min: 0.957605, loss@max: 1.367921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.754990, LT: 1.738562, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 132, loss@min: 0.958282, loss@max: 1.374713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.755159, LT: 1.738725, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 133, loss@min: 0.957805, loss@max: 1.375540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.755273, LT: 1.738835, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 134, loss@min: 0.955974, loss@max: 1.373261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.755388, LT: 1.738933, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 135, loss@min: 0.959377, loss@max: 1.376191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.755531, LT: 1.739051, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 136, loss@min: 0.957141, loss@max: 1.374533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.755681, LT: 1.739158, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 137, loss@min: 0.958874, loss@max: 1.374209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.755805, LT: 1.739251, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 138, loss@min: 0.958024, loss@max: 1.372712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.755896, LT: 1.739332, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 139, loss@min: 0.959460, loss@max: 1.373680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.755964, LT: 1.739392, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 140, loss@min: 0.957670, loss@max: 1.371864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.756001, LT: 1.739432, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 141, loss@min: 0.959464, loss@max: 1.375412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.756053, LT: 1.739478, Top1S: 65.011818, Top1T: 64.893616 +Train:epoch: 142, loss@min: 0.958211, loss@max: 1.374859, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 23:21:59 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Aug 9 23:22:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.617606, loss@max: 1.796547, Top1S acc: 100.000000, Top1T acc: 48.828125 +Train:epoch: 2, loss@min: 5.237693, loss@max: 1.752473, Top1S acc: 100.000000, Top1T acc: 48.046875 +Train:epoch: 3, loss@min: 4.927779, loss@max: 1.729580, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 4, loss@min: 4.560860, loss@max: 1.690343, Top1S acc: 100.000000, Top1T acc: 53.906250 +Train:epoch: 5, loss@min: 4.331898, loss@max: 1.681061, Top1S acc: 100.000000, Top1T acc: 55.078125 +Train:epoch: 6, loss@min: 3.986641, loss@max: 1.643967, Top1S acc: 100.000000, Top1T acc: 61.718750 +Train:epoch: 7, loss@min: 3.779556, loss@max: 1.638504, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 8, loss@min: 3.718779, loss@max: 1.664734, Top1S acc: 100.000000, Top1T acc: 65.625000 +Train:epoch: 9, loss@min: 3.440755, loss@max: 1.641263, Top1S acc: 100.000000, Top1T acc: 67.187500 +Train:epoch: 10, loss@min: 3.394364, loss@max: 1.672643, Top1S acc: 100.000000, Top1T acc: 69.140625 +Train:epoch: 11, loss@min: 3.266171, loss@max: 1.673331, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 12, loss@min: 2.886955, loss@max: 1.606592, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 13, loss@min: 2.903136, loss@max: 1.655643, Top1S acc: 100.000000, Top1T acc: 79.687500 +Train:epoch: 14, loss@min: 2.673098, loss@max: 1.612252, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 15, loss@min: 2.757528, loss@max: 1.687164, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 16, loss@min: 2.474735, loss@max: 1.629821, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 17, loss@min: 2.364153, loss@max: 1.621951, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 18, loss@min: 2.414795, loss@max: 1.668657, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 19, loss@min: 2.133736, loss@max: 1.601115, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 20, loss@min: 2.174913, loss@max: 1.618635, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 21, loss@min: 2.113904, loss@max: 1.635656, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 22, loss@min: 1.882696, loss@max: 1.583740, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 23, loss@min: 1.820801, loss@max: 1.579531, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 24, loss@min: 1.914713, loss@max: 1.617686, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.802804, loss@max: 1.591092, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 26, loss@min: 1.636133, loss@max: 1.551036, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 27, loss@min: 1.584524, loss@max: 1.543628, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 28, loss@min: 1.577084, loss@max: 1.557340, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 29, loss@min: 1.513591, loss@max: 1.530828, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 30, loss@min: 1.478494, loss@max: 1.523442, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 31, loss@min: 1.488986, loss@max: 1.554691, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 32, loss@min: 1.393539, loss@max: 1.510538, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 33, loss@min: 1.410910, loss@max: 1.530143, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 34, loss@min: 1.376529, loss@max: 1.511220, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 1.367599, loss@max: 1.520423, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 36, loss@min: 1.332024, loss@max: 1.502930, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 37, loss@min: 1.254418, loss@max: 1.467705, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 38, loss@min: 1.268153, loss@max: 1.479280, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 39, loss@min: 1.270172, loss@max: 1.487971, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 40, loss@min: 1.212581, loss@max: 1.452114, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 41, loss@min: 1.236668, loss@max: 1.479514, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 42, loss@min: 1.180235, loss@max: 1.455539, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 43, loss@min: 1.130163, loss@max: 1.429505, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 1.156050, loss@max: 1.454364, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 1.166448, loss@max: 1.458511, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 1.141152, loss@max: 1.444844, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 1.102894, loss@max: 1.425084, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 1.110796, loss@max: 1.424765, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 1.125412, loss@max: 1.438043, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 50, loss@min: 1.100012, loss@max: 1.437905, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.072173, loss@max: 1.409006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.060461, loss@max: 1.406035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.098680, loss@max: 1.432259, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 54, loss@min: 1.081363, loss@max: 1.429027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.067075, loss@max: 1.416099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.061633, loss@max: 1.420942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.064912, loss@max: 1.423694, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 58, loss@min: 1.047759, loss@max: 1.414248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.031821, loss@max: 1.400109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.030835, loss@max: 1.405124, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 1.037928, loss@max: 1.412310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.018705, loss@max: 1.397431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.022546, loss@max: 1.402137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.017555, loss@max: 1.399478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.022292, loss@max: 1.404652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.022495, loss@max: 1.407699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.005285, loss@max: 1.391657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.033707, loss@max: 1.413814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.019382, loss@max: 1.406562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.004485, loss@max: 1.390382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.003405, loss@max: 1.392750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.016082, loss@max: 1.402578, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 1.008898, loss@max: 1.398331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.997787, loss@max: 1.391503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.004038, loss@max: 1.396396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.005054, loss@max: 1.400332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.002655, loss@max: 1.395886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.006268, loss@max: 1.397065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.994474, loss@max: 1.393979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.002101, loss@max: 1.401241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.676895, LT: 1.668007, Top1S: 64.361702, Top1T: 64.479904Best acc: 64.479904 +Train:epoch: 81, loss@min: 0.999227, loss@max: 1.400826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.678800, LT: 1.669917, Top1S: 64.420807, Top1T: 64.479904 +Train:epoch: 82, loss@min: 0.991936, loss@max: 1.388527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.680611, LT: 1.671705, Top1S: 64.479904, Top1T: 64.479904 +Train:epoch: 83, loss@min: 0.999957, loss@max: 1.392130, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 1.682209, LT: 1.673293, Top1S: 64.302597, Top1T: 64.598106Best acc: 64.598106 +Train:epoch: 84, loss@min: 0.986874, loss@max: 1.383464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.683752, LT: 1.674813, Top1S: 64.361702, Top1T: 64.361702 +Train:epoch: 85, loss@min: 0.992324, loss@max: 1.389087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.685330, LT: 1.676366, Top1S: 64.420807, Top1T: 64.420807 +Train:epoch: 86, loss@min: 1.002617, loss@max: 1.401617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.686424, LT: 1.677436, Top1S: 64.598106, Top1T: 64.539009 +Train:epoch: 87, loss@min: 0.987368, loss@max: 1.388002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.687500, LT: 1.678470, Top1S: 64.716309, Top1T: 64.598106Best acc: 64.716309 +Train:epoch: 88, loss@min: 0.996605, loss@max: 1.394534, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 1.689072, LT: 1.679955, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 89, loss@min: 0.995017, loss@max: 1.395190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.691021, LT: 1.681789, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 90, loss@min: 0.993758, loss@max: 1.391588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.692750, LT: 1.683433, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 91, loss@min: 0.987408, loss@max: 1.387408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.694259, LT: 1.684908, Top1S: 64.657211, Top1T: 64.716309 +Train:epoch: 92, loss@min: 0.988561, loss@max: 1.386718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.696082, LT: 1.686691, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 93, loss@min: 0.995249, loss@max: 1.391787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.697928, LT: 1.688507, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 94, loss@min: 0.983108, loss@max: 1.383776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.699284, LT: 1.689855, Top1S: 64.598106, Top1T: 64.539009 +Train:epoch: 95, loss@min: 0.984430, loss@max: 1.385491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.700411, LT: 1.690997, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 96, loss@min: 0.987095, loss@max: 1.389719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.701277, LT: 1.691864, Top1S: 64.657211, Top1T: 64.716309 +Train:epoch: 97, loss@min: 0.986126, loss@max: 1.391787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.701961, LT: 1.692541, Top1S: 64.657211, Top1T: 64.716309 +Train:epoch: 98, loss@min: 0.983264, loss@max: 1.388677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.702751, LT: 1.693314, Top1S: 64.775414, Top1T: 64.775414Best acc: 64.775414 +Train:epoch: 99, loss@min: 0.988071, loss@max: 1.393910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.703909, LT: 1.694423, Top1S: 64.834518, Top1T: 64.775414Best acc: 64.834518 +Train:epoch: 100, loss@min: 0.985587, loss@max: 1.389091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.704860, LT: 1.695329, Top1S: 64.834518, Top1T: 64.716309 +Train:epoch: 101, loss@min: 0.985255, loss@max: 1.386954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.706084, LT: 1.696516, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 102, loss@min: 1.004544, loss@max: 1.395632, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 102, LS: 1.706929, LT: 1.697333, Top1S: 64.716309, Top1T: 64.775414 +Train:epoch: 103, loss@min: 0.988837, loss@max: 1.389318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.708073, LT: 1.698444, Top1S: 64.952721, Top1T: 64.893616Best acc: 64.952721 +Train:epoch: 104, loss@min: 0.996846, loss@max: 1.393509, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 104, LS: 1.708802, LT: 1.699178, Top1S: 64.952721, Top1T: 65.011818Best acc: 65.011818 +Train:epoch: 105, loss@min: 0.979977, loss@max: 1.381643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.709243, LT: 1.699628, Top1S: 65.070923, Top1T: 64.952721Best acc: 65.070923 +Train:epoch: 106, loss@min: 0.980877, loss@max: 1.383352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.709602, LT: 1.700011, Top1S: 65.011818, Top1T: 64.952721 +Train:epoch: 107, loss@min: 0.982494, loss@max: 1.388394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.710358, LT: 1.700781, Top1S: 64.952721, Top1T: 64.893616 +Train:epoch: 108, loss@min: 0.980102, loss@max: 1.386083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.710949, LT: 1.701388, Top1S: 64.834518, Top1T: 64.893616 +Train:epoch: 109, loss@min: 0.986244, loss@max: 1.389622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.711529, LT: 1.701986, Top1S: 64.716309, Top1T: 64.775414 +Train:epoch: 110, loss@min: 0.978719, loss@max: 1.383068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.711888, LT: 1.702348, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 111, loss@min: 0.980353, loss@max: 1.384622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.712425, LT: 1.702873, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 112, loss@min: 0.979307, loss@max: 1.386698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.713006, LT: 1.703438, Top1S: 64.657211, Top1T: 64.716309 +Train:epoch: 113, loss@min: 0.984358, loss@max: 1.388271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.713450, LT: 1.703861, Top1S: 64.775414, Top1T: 64.716309 +Train:epoch: 114, loss@min: 0.989916, loss@max: 1.391374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.714454, LT: 1.704816, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 115, loss@min: 0.989203, loss@max: 1.394277, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 115, LS: 1.715640, LT: 1.705946, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 116, loss@min: 0.976082, loss@max: 1.383590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.716913, LT: 1.707159, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 117, loss@min: 0.982912, loss@max: 1.387980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.717979, LT: 1.708187, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 118, loss@min: 0.985264, loss@max: 1.391232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.718893, LT: 1.709068, Top1S: 64.834518, Top1T: 64.539009 +Train:epoch: 119, loss@min: 0.978674, loss@max: 1.383234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.719795, LT: 1.709941, Top1S: 64.834518, Top1T: 64.598106 +Train:epoch: 120, loss@min: 0.977050, loss@max: 1.381451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.720616, LT: 1.710734, Top1S: 64.834518, Top1T: 64.539009 +Train:epoch: 121, loss@min: 0.982098, loss@max: 1.390182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.721362, LT: 1.711450, Top1S: 64.834518, Top1T: 64.539009 +Train:epoch: 122, loss@min: 0.977937, loss@max: 1.384093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.721961, LT: 1.712022, Top1S: 64.716309, Top1T: 64.539009 +Train:epoch: 123, loss@min: 0.985114, loss@max: 1.386338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.722523, LT: 1.712566, Top1S: 64.716309, Top1T: 64.539009 +Train:epoch: 124, loss@min: 0.985386, loss@max: 1.392302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.723098, LT: 1.713122, Top1S: 64.716309, Top1T: 64.479904 +Train:epoch: 125, loss@min: 0.980293, loss@max: 1.384724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.723605, LT: 1.713613, Top1S: 64.716309, Top1T: 64.539009 +Train:epoch: 126, loss@min: 0.978688, loss@max: 1.387105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.723915, LT: 1.713920, Top1S: 64.716309, Top1T: 64.539009 +Train:epoch: 127, loss@min: 0.977381, loss@max: 1.380923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.724050, LT: 1.714063, Top1S: 64.657211, Top1T: 64.539009 +Train:epoch: 128, loss@min: 0.981657, loss@max: 1.385487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.724178, LT: 1.714197, Top1S: 64.598106, Top1T: 64.539009 +Train:epoch: 129, loss@min: 0.979846, loss@max: 1.383430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.724326, LT: 1.714348, Top1S: 64.657211, Top1T: 64.539009 +Train:epoch: 130, loss@min: 0.976465, loss@max: 1.382326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.724495, LT: 1.714520, Top1S: 64.716309, Top1T: 64.539009 +Train:epoch: 131, loss@min: 0.973781, loss@max: 1.377010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.724709, LT: 1.714733, Top1S: 64.716309, Top1T: 64.539009 +Train:epoch: 132, loss@min: 0.980693, loss@max: 1.387033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.724893, LT: 1.714918, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 133, loss@min: 0.981074, loss@max: 1.388103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.724998, LT: 1.715027, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 134, loss@min: 0.976466, loss@max: 1.382250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.725091, LT: 1.715122, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 135, loss@min: 0.978186, loss@max: 1.386070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.725204, LT: 1.715236, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 136, loss@min: 0.979600, loss@max: 1.387116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.725332, LT: 1.715362, Top1S: 64.716309, Top1T: 64.598106 +Train:epoch: 137, loss@min: 0.980572, loss@max: 1.385527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.725424, LT: 1.715454, Top1S: 64.657211, Top1T: 64.598106 +Train:epoch: 138, loss@min: 0.981297, loss@max: 1.385898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.725509, LT: 1.715539, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 139, loss@min: 0.980153, loss@max: 1.386446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.725569, LT: 1.715600, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 140, loss@min: 0.976897, loss@max: 1.383102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.725605, LT: 1.715637, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 141, loss@min: 0.981815, loss@max: 1.388972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.725650, LT: 1.715681, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 142, loss@min: 0.980444, loss@max: 1.388106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.725690, LT: 1.715722, Top1S: 64.657211, Top1T: 64.657211 +Train:epoch: 143, loss@min: 0.983356, loss@max: 1.388675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.725723, LT: 1.715755, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 144, loss@min: 0.985766, loss@max: 1.391217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.725741, LT: 1.715773, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 145, loss@min: 0.980263, loss@max: 1.386204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.725755, LT: 1.715787, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 146, loss@min: 0.984291, loss@max: 1.388372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.725764, LT: 1.715796, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 147, loss@min: 0.980494, loss@max: 1.385415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.725766, LT: 1.715798, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 148, loss@min: 0.978091, loss@max: 1.382286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.725767, LT: 1.715799, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 149, loss@min: 0.976447, loss@max: 1.384830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.725767, LT: 1.715799, Top1S: 64.598106, Top1T: 64.657211 +Train:epoch: 150, loss@min: 0.991062, loss@max: 1.394141, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 150, LS: 1.725767, LT: 1.715799, Top1S: 64.598106, Top1T: 64.657211 +------------------------------------------- +Wed Aug 9 23:59:43 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 10 00:05:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.776380, loss@max: 1.936621, Top1S acc: 100.000000, Top1T acc: 46.875000 +Train:epoch: 2, loss@min: 5.349202, loss@max: 1.964317, Top1S acc: 100.000000, Top1T acc: 45.312500 +Train:epoch: 3, loss@min: 4.975623, loss@max: 1.999960, Top1S acc: 100.000000, Top1T acc: 50.390625 +Train:epoch: 4, loss@min: 4.544226, loss@max: 1.992328, Top1S acc: 100.000000, Top1T acc: 51.562500 +Train:epoch: 5, loss@min: 4.134937, loss@max: 2.006476, Top1S acc: 100.000000, Top1T acc: 58.203125 +Train:epoch: 6, loss@min: 3.852567, loss@max: 2.015266, Top1S acc: 100.000000, Top1T acc: 57.421875 +Train:epoch: 7, loss@min: 3.571201, loss@max: 2.024650, Top1S acc: 100.000000, Top1T acc: 60.156250 +Train:epoch: 8, loss@min: 3.480255, loss@max: 2.064668, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 9, loss@min: 3.315008, loss@max: 2.083231, Top1S acc: 100.000000, Top1T acc: 61.718750 +Train:epoch: 10, loss@min: 3.206972, loss@max: 2.099530, Top1S acc: 100.000000, Top1T acc: 66.015625 +Train:epoch: 11, loss@min: 3.181008, loss@max: 2.099136, Top1S acc: 100.000000, Top1T acc: 66.796875 +Train:epoch: 12, loss@min: 2.764878, loss@max: 2.014241, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 13, loss@min: 2.913725, loss@max: 2.075993, Top1S acc: 100.000000, Top1T acc: 74.609375 +Train:epoch: 14, loss@min: 2.623725, loss@max: 1.994106, Top1S acc: 100.000000, Top1T acc: 77.734375 +Train:epoch: 15, loss@min: 2.730912, loss@max: 2.052455, Top1S acc: 100.000000, Top1T acc: 78.125000 +Train:epoch: 16, loss@min: 2.449120, loss@max: 1.963634, Top1S acc: 100.000000, Top1T acc: 78.515625 +Train:epoch: 17, loss@min: 2.425507, loss@max: 1.963975, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 18, loss@min: 2.434387, loss@max: 1.982144, Top1S acc: 100.000000, Top1T acc: 82.421875 +Train:epoch: 19, loss@min: 2.237809, loss@max: 1.904714, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 20, loss@min: 2.342968, loss@max: 1.944500, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 21, loss@min: 2.271635, loss@max: 1.941143, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 22, loss@min: 2.061700, loss@max: 1.867269, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 23, loss@min: 1.987884, loss@max: 1.877800, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 24, loss@min: 2.104138, loss@max: 1.906073, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 25, loss@min: 2.003483, loss@max: 1.879444, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 26, loss@min: 1.815995, loss@max: 1.836141, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 27, loss@min: 1.799133, loss@max: 1.824389, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 28, loss@min: 1.831136, loss@max: 1.855391, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 29, loss@min: 1.767291, loss@max: 1.828479, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 30, loss@min: 1.732248, loss@max: 1.827709, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 31, loss@min: 1.715058, loss@max: 1.847248, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 32, loss@min: 1.632156, loss@max: 1.797119, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 33, loss@min: 1.647994, loss@max: 1.822595, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 34, loss@min: 1.603162, loss@max: 1.793729, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 35, loss@min: 1.615987, loss@max: 1.811585, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 36, loss@min: 1.570080, loss@max: 1.778437, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 37, loss@min: 1.501970, loss@max: 1.746686, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 38, loss@min: 1.526000, loss@max: 1.760766, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 39, loss@min: 1.506960, loss@max: 1.766758, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 40, loss@min: 1.454624, loss@max: 1.724823, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 41, loss@min: 1.527146, loss@max: 1.762913, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 42, loss@min: 1.455634, loss@max: 1.738632, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 43, loss@min: 1.349580, loss@max: 1.691147, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 44, loss@min: 1.427923, loss@max: 1.734299, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 45, loss@min: 1.452845, loss@max: 1.747412, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 46, loss@min: 1.393579, loss@max: 1.715312, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 47, loss@min: 1.310582, loss@max: 1.668986, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 48, loss@min: 1.337107, loss@max: 1.674874, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 49, loss@min: 1.381491, loss@max: 1.720335, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 50, loss@min: 1.381675, loss@max: 1.722496, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 51, loss@min: 1.234526, loss@max: 1.625739, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 52, loss@min: 1.281717, loss@max: 1.656497, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 53, loss@min: 1.346371, loss@max: 1.700205, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 54, loss@min: 1.314455, loss@max: 1.675782, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 55, loss@min: 1.232280, loss@max: 1.635894, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 1.266492, loss@max: 1.655118, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 57, loss@min: 1.254745, loss@max: 1.649630, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 58, loss@min: 1.234925, loss@max: 1.649230, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 59, loss@min: 1.198418, loss@max: 1.606030, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 60, loss@min: 1.224371, loss@max: 1.624417, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 61, loss@min: 1.224749, loss@max: 1.620491, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 62, loss@min: 1.148205, loss@max: 1.580950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.188406, loss@max: 1.609018, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.181451, loss@max: 1.599927, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 65, loss@min: 1.178498, loss@max: 1.603429, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 1.219244, loss@max: 1.621523, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 67, loss@min: 1.145045, loss@max: 1.576492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.231998, loss@max: 1.630962, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 69, loss@min: 1.200645, loss@max: 1.621982, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 70, loss@min: 1.167242, loss@max: 1.590222, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 71, loss@min: 1.159344, loss@max: 1.585222, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 72, loss@min: 1.162324, loss@max: 1.583534, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 73, loss@min: 1.168769, loss@max: 1.585655, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 74, loss@min: 1.145624, loss@max: 1.572713, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 75, loss@min: 1.150154, loss@max: 1.579008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.160857, loss@max: 1.584951, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 1.141602, loss@max: 1.565893, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 78, loss@min: 1.135403, loss@max: 1.564584, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 1.137879, loss@max: 1.564458, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 1.162709, loss@max: 1.581531, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 80, LS: 1.421146, LT: 1.408306, Top1S: 64.420807, Top1T: 64.361702Best acc: 64.420807 +Train:epoch: 81, loss@min: 1.144366, loss@max: 1.563188, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 81, LS: 1.422094, LT: 1.409169, Top1S: 64.598106, Top1T: 64.420807Best acc: 64.598106 +Train:epoch: 82, loss@min: 1.122248, loss@max: 1.553660, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 1.422972, LT: 1.409914, Top1S: 64.834518, Top1T: 64.657211Best acc: 64.834518 +Train:epoch: 83, loss@min: 1.141529, loss@max: 1.552117, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 83, LS: 1.423426, LT: 1.410364, Top1S: 65.011818, Top1T: 64.657211Best acc: 65.011818 +Train:epoch: 84, loss@min: 1.098568, loss@max: 1.533875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.424022, LT: 1.410922, Top1S: 65.070923, Top1T: 64.657211Best acc: 65.070923 +Train:epoch: 85, loss@min: 1.119038, loss@max: 1.549697, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 85, LS: 1.424661, LT: 1.411467, Top1S: 65.130020, Top1T: 64.775414Best acc: 65.130020 +Train:epoch: 86, loss@min: 1.154354, loss@max: 1.573335, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 86, LS: 1.425031, LT: 1.411785, Top1S: 65.070923, Top1T: 64.775414 +Train:epoch: 87, loss@min: 1.105270, loss@max: 1.549032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.425438, LT: 1.412057, Top1S: 65.070923, Top1T: 64.952721 +Train:epoch: 88, loss@min: 1.130831, loss@max: 1.558579, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 1.425932, LT: 1.412393, Top1S: 65.130020, Top1T: 64.893616 +Train:epoch: 89, loss@min: 1.116713, loss@max: 1.548642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.426478, LT: 1.412892, Top1S: 65.130020, Top1T: 64.952721 +Train:epoch: 90, loss@min: 1.122228, loss@max: 1.552055, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 90, LS: 1.427051, LT: 1.413493, Top1S: 65.189125, Top1T: 64.952721Best acc: 65.189125 +Train:epoch: 91, loss@min: 1.099124, loss@max: 1.540424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.427706, LT: 1.414136, Top1S: 65.130020, Top1T: 64.952721 +Train:epoch: 92, loss@min: 1.098962, loss@max: 1.530524, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 1.428318, LT: 1.414744, Top1S: 65.011818, Top1T: 64.775414 +Train:epoch: 93, loss@min: 1.104343, loss@max: 1.533019, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 1.428831, LT: 1.415385, Top1S: 65.070923, Top1T: 64.775414 +Train:epoch: 94, loss@min: 1.088457, loss@max: 1.524925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.429545, LT: 1.416150, Top1S: 64.952721, Top1T: 64.775414 +Train:epoch: 95, loss@min: 1.102805, loss@max: 1.536790, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 95, LS: 1.430360, LT: 1.416865, Top1S: 64.952721, Top1T: 64.775414 +Train:epoch: 96, loss@min: 1.111494, loss@max: 1.548962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.431170, LT: 1.417469, Top1S: 64.893616, Top1T: 64.716309 +Train:epoch: 97, loss@min: 1.114801, loss@max: 1.552614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.431989, LT: 1.418060, Top1S: 65.130020, Top1T: 64.598106 +Train:epoch: 98, loss@min: 1.090708, loss@max: 1.527704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.432814, LT: 1.418683, Top1S: 65.011818, Top1T: 64.598106 +Train:epoch: 99, loss@min: 1.124268, loss@max: 1.560507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.433735, LT: 1.419447, Top1S: 65.011818, Top1T: 64.598106 +Train:epoch: 100, loss@min: 1.107925, loss@max: 1.537108, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 1.434244, LT: 1.419950, Top1S: 64.952721, Top1T: 64.598106 +Train:epoch: 101, loss@min: 1.115482, loss@max: 1.540339, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 101, LS: 1.434694, LT: 1.420513, Top1S: 64.952721, Top1T: 64.598106 +Train:epoch: 102, loss@min: 1.110453, loss@max: 1.543263, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.434938, LT: 1.420837, Top1S: 65.070923, Top1T: 64.657211 +Train:epoch: 103, loss@min: 1.120702, loss@max: 1.539702, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 103, LS: 1.435150, LT: 1.421101, Top1S: 64.893616, Top1T: 64.657211 +Train:epoch: 104, loss@min: 1.124177, loss@max: 1.538839, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 104, LS: 1.435207, LT: 1.421180, Top1S: 64.893616, Top1T: 64.716309 +Train:epoch: 105, loss@min: 1.075272, loss@max: 1.517014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.435403, LT: 1.421266, Top1S: 64.952721, Top1T: 64.716309 +Train:epoch: 106, loss@min: 1.068779, loss@max: 1.505977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.435592, LT: 1.421317, Top1S: 64.952721, Top1T: 64.834518 +Train:epoch: 107, loss@min: 1.087896, loss@max: 1.527833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.435938, LT: 1.421511, Top1S: 65.011818, Top1T: 64.834518 +Train:epoch: 108, loss@min: 1.074198, loss@max: 1.516163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.436243, LT: 1.421718, Top1S: 65.011818, Top1T: 64.657211 +Train:epoch: 109, loss@min: 1.106436, loss@max: 1.531554, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 1.436565, LT: 1.421963, Top1S: 65.011818, Top1T: 64.834518 +Train:epoch: 110, loss@min: 1.078362, loss@max: 1.512891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.436867, LT: 1.422224, Top1S: 65.011818, Top1T: 64.716309 +Train:epoch: 111, loss@min: 1.072618, loss@max: 1.515748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.437227, LT: 1.422507, Top1S: 65.011818, Top1T: 64.716309 +Train:epoch: 112, loss@min: 1.084810, loss@max: 1.519521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.437643, LT: 1.422836, Top1S: 65.011818, Top1T: 64.716309 +Train:epoch: 113, loss@min: 1.084598, loss@max: 1.513495, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 113, LS: 1.437979, LT: 1.423111, Top1S: 64.952721, Top1T: 64.657211 +Train:epoch: 114, loss@min: 1.093268, loss@max: 1.528164, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 1.438442, LT: 1.423525, Top1S: 64.952721, Top1T: 64.598106 +Train:epoch: 115, loss@min: 1.100741, loss@max: 1.540233, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 115, LS: 1.438819, LT: 1.423892, Top1S: 64.893616, Top1T: 64.657211 +Train:epoch: 116, loss@min: 1.075085, loss@max: 1.507034, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 116, LS: 1.439286, LT: 1.424310, Top1S: 64.952721, Top1T: 64.598106 +Train:epoch: 117, loss@min: 1.095755, loss@max: 1.528924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.439662, LT: 1.424667, Top1S: 64.893616, Top1T: 64.598106 +Train:epoch: 118, loss@min: 1.112556, loss@max: 1.544133, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 118, LS: 1.440026, LT: 1.424985, Top1S: 64.952721, Top1T: 64.657211 +Train:epoch: 119, loss@min: 1.073829, loss@max: 1.513055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.440403, LT: 1.425328, Top1S: 64.893616, Top1T: 64.657211 +Train:epoch: 120, loss@min: 1.062922, loss@max: 1.504545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.440770, LT: 1.425637, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 121, loss@min: 1.095503, loss@max: 1.529952, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 1.441117, LT: 1.425936, Top1S: 64.834518, Top1T: 64.657211 +Train:epoch: 122, loss@min: 1.090651, loss@max: 1.524012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.441401, LT: 1.426180, Top1S: 64.775414, Top1T: 64.657211 +Train:epoch: 123, loss@min: 1.084457, loss@max: 1.513504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.441654, LT: 1.426402, Top1S: 64.952721, Top1T: 64.657211 +Train:epoch: 124, loss@min: 1.093274, loss@max: 1.531990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.441922, LT: 1.426637, Top1S: 64.952721, Top1T: 64.657211 +Train:epoch: 125, loss@min: 1.085436, loss@max: 1.511684, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 125, LS: 1.442152, LT: 1.426847, Top1S: 64.893616, Top1T: 64.598106 +Train:epoch: 126, loss@min: 1.091936, loss@max: 1.522432, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 1.442348, LT: 1.427031, Top1S: 64.834518, Top1T: 64.598106 +Train:epoch: 127, loss@min: 1.078797, loss@max: 1.516564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.442526, LT: 1.427196, Top1S: 64.834518, Top1T: 64.657211 +Train:epoch: 128, loss@min: 1.086249, loss@max: 1.521093, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 1.442673, LT: 1.427342, Top1S: 64.834518, Top1T: 64.657211 +Train:epoch: 129, loss@min: 1.092922, loss@max: 1.512375, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 129, LS: 1.442784, LT: 1.427467, Top1S: 64.834518, Top1T: 64.657211 +Train:epoch: 130, loss@min: 1.070143, loss@max: 1.505833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.442907, LT: 1.427598, Top1S: 64.834518, Top1T: 64.657211 +Train:epoch: 131, loss@min: 1.065945, loss@max: 1.504126, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 10 00:35:02 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.359751, loss@max: 2.169557, Top1S acc: 100.000000, Top1T acc: 60.156250 +Train:epoch: 2, loss@min: 2.207780, loss@max: 1.934065, Top1S acc: 100.000000, Top1T acc: 76.171875 +Train:epoch: 3, loss@min: 1.638785, loss@max: 1.533516, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 4, loss@min: 1.529042, loss@max: 1.342396, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 5, loss@min: 1.385609, loss@max: 1.274307, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.178036, loss@max: 1.327910, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 7, loss@min: 1.014294, loss@max: 1.384832, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 8, loss@min: 0.944310, loss@max: 1.388918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.970284, loss@max: 1.301716, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 10, loss@min: 1.000441, loss@max: 1.235549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.014713, loss@max: 1.253999, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.937977, loss@max: 1.279433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.935323, loss@max: 1.274557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.929071, loss@max: 1.297782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.914512, loss@max: 1.299506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.918756, loss@max: 1.302607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.921432, loss@max: 1.292714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.975690, loss@max: 1.270330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.944487, loss@max: 1.290353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.923712, loss@max: 1.336502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.939970, loss@max: 1.314345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.948843, loss@max: 1.307850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.941586, loss@max: 1.366196, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.962952, loss@max: 1.328905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.950890, loss@max: 1.360423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.915512, loss@max: 1.401419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.956820, loss@max: 1.368662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.972743, loss@max: 1.346537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.953912, loss@max: 1.355726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.949587, loss@max: 1.370586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.995714, loss@max: 1.352452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.943853, loss@max: 1.396500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.936955, loss@max: 1.445961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.952369, loss@max: 1.395933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.985462, loss@max: 1.406552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.962265, loss@max: 1.408073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.955344, loss@max: 1.431245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.961517, loss@max: 1.454922, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.975547, loss@max: 1.427586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.969515, loss@max: 1.416131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.013224, loss@max: 1.404539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.932444, loss@max: 1.484500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.920462, loss@max: 1.471303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.980093, loss@max: 1.432070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.047340, loss@max: 1.370687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.987325, loss@max: 1.435348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.926163, loss@max: 1.499403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.963301, loss@max: 1.477626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.977859, loss@max: 1.426777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.974061, loss@max: 1.456119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.961608, loss@max: 1.480043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.002614, loss@max: 1.459585, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.999232, loss@max: 1.448625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.974080, loss@max: 1.434680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.953261, loss@max: 1.463338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.963917, loss@max: 1.445254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954566, loss@max: 1.440699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.980820, loss@max: 1.405705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.966374, loss@max: 1.421233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952501, loss@max: 1.448270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.965440, loss@max: 1.425749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.955637, loss@max: 1.440078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952235, loss@max: 1.441402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.954803, loss@max: 1.418179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.983351, loss@max: 1.398853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.991634, loss@max: 1.400514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.966942, loss@max: 1.413292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943183, loss@max: 1.445781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.957255, loss@max: 1.430127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.965186, loss@max: 1.413053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.965352, loss@max: 1.400745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.967662, loss@max: 1.411490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.956886, loss@max: 1.423386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.974506, loss@max: 1.394990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.955980, loss@max: 1.416520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.944898, loss@max: 1.450766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.945966, loss@max: 1.424211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.950005, loss@max: 1.414320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.955737, loss@max: 1.410055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.974678, loss@max: 1.393617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.756732, LT: 1.796167, Top1S: 63.002365, Top1T: 63.416077Best acc: 63.416077 +Train:epoch: 81, loss@min: 0.955016, loss@max: 1.389830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.757908, LT: 1.796306, Top1S: 63.238770, Top1T: 63.475178Best acc: 63.475178 +Train:epoch: 82, loss@min: 0.951385, loss@max: 1.403453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.759643, LT: 1.795735, Top1S: 63.475178, Top1T: 63.356976 +Train:epoch: 83, loss@min: 0.953071, loss@max: 1.410621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.764198, LT: 1.793104, Top1S: 63.238770, Top1T: 63.534279Best acc: 63.534279 +Train:epoch: 84, loss@min: 0.951454, loss@max: 1.399147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.765875, LT: 1.792243, Top1S: 63.238770, Top1T: 63.711582Best acc: 63.711582 +Train:epoch: 85, loss@min: 0.955769, loss@max: 1.391294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.765081, LT: 1.793661, Top1S: 63.297871, Top1T: 63.475178 +Train:epoch: 86, loss@min: 0.963311, loss@max: 1.391217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.765262, LT: 1.793915, Top1S: 63.179668, Top1T: 63.652481 +Train:epoch: 87, loss@min: 0.941583, loss@max: 1.400384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.764642, LT: 1.794160, Top1S: 63.297871, Top1T: 63.534279 +Train:epoch: 88, loss@min: 0.946573, loss@max: 1.395164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.766085, LT: 1.793254, Top1S: 63.416077, Top1T: 63.356976 +Train:epoch: 89, loss@min: 0.943877, loss@max: 1.398317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.766295, LT: 1.794163, Top1S: 63.356976, Top1T: 63.416077 +Train:epoch: 90, loss@min: 0.960612, loss@max: 1.389406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.767339, LT: 1.794523, Top1S: 63.356976, Top1T: 63.534279 +Train:epoch: 91, loss@min: 0.956036, loss@max: 1.381879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.769137, LT: 1.793885, Top1S: 63.416077, Top1T: 63.356976 +Train:epoch: 92, loss@min: 0.962232, loss@max: 1.374411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.770476, LT: 1.794091, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 93, loss@min: 0.966915, loss@max: 1.374525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.770195, LT: 1.796601, Top1S: 63.416077, Top1T: 63.652481 +Train:epoch: 94, loss@min: 0.952478, loss@max: 1.380696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.771541, LT: 1.798176, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 95, loss@min: 0.952783, loss@max: 1.377663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.773817, LT: 1.799113, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 96, loss@min: 0.945559, loss@max: 1.386955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.776253, LT: 1.799692, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 97, loss@min: 0.955529, loss@max: 1.379173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.776166, LT: 1.801193, Top1S: 63.297871, Top1T: 63.652481 +Train:epoch: 98, loss@min: 0.939118, loss@max: 1.390381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.776376, LT: 1.802313, Top1S: 63.593380, Top1T: 63.593380 +Train:epoch: 99, loss@min: 0.949886, loss@max: 1.381722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.777130, LT: 1.803334, Top1S: 63.475178, Top1T: 63.652481 +Train:epoch: 100, loss@min: 0.950897, loss@max: 1.377713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.778393, LT: 1.804216, Top1S: 63.416077, Top1T: 63.652481 +Train:epoch: 101, loss@min: 0.960753, loss@max: 1.370057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.779801, LT: 1.805172, Top1S: 63.475178, Top1T: 63.711582 +Train:epoch: 102, loss@min: 0.947439, loss@max: 1.383096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.780043, LT: 1.806707, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 103, loss@min: 0.935993, loss@max: 1.390503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.780663, LT: 1.807999, Top1S: 63.416077, Top1T: 63.652481 +Train:epoch: 104, loss@min: 0.947746, loss@max: 1.380358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.781638, LT: 1.808632, Top1S: 63.652481, Top1T: 63.593380 +Train:epoch: 105, loss@min: 0.954360, loss@max: 1.370009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.783910, LT: 1.808335, Top1S: 63.534279, Top1T: 63.534279 +Train:epoch: 106, loss@min: 0.957505, loss@max: 1.365805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.785899, LT: 1.808242, Top1S: 63.534279, Top1T: 63.652481 +Train:epoch: 107, loss@min: 0.950699, loss@max: 1.374765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.787477, LT: 1.808632, Top1S: 63.593380, Top1T: 63.711582 +Train:epoch: 108, loss@min: 0.960280, loss@max: 1.363045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.788162, LT: 1.809577, Top1S: 63.652481, Top1T: 63.652481 +Train:epoch: 109, loss@min: 0.950377, loss@max: 1.374638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.787598, LT: 1.811207, Top1S: 63.475178, Top1T: 63.711582 +Train:epoch: 110, loss@min: 0.950747, loss@max: 1.371660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.787180, LT: 1.812497, Top1S: 63.475178, Top1T: 63.652481 +Train:epoch: 111, loss@min: 0.949845, loss@max: 1.372514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.787795, LT: 1.813044, Top1S: 63.711582, Top1T: 63.770687Best acc: 63.770687 +Train:epoch: 112, loss@min: 0.951236, loss@max: 1.372032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.788993, LT: 1.813245, Top1S: 63.770687, Top1T: 63.711582 +Train:epoch: 113, loss@min: 0.940328, loss@max: 1.381776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.790478, LT: 1.813214, Top1S: 63.593380, Top1T: 63.770687 +Train:epoch: 114, loss@min: 0.957486, loss@max: 1.364311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.791792, LT: 1.813534, Top1S: 63.593380, Top1T: 63.770687 +Train:epoch: 115, loss@min: 0.949047, loss@max: 1.374510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.792583, LT: 1.814188, Top1S: 63.593380, Top1T: 63.829788Best acc: 63.829788 +Train:epoch: 116, loss@min: 0.942725, loss@max: 1.377863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.793180, LT: 1.814875, Top1S: 63.593380, Top1T: 63.829788 +Train:epoch: 117, loss@min: 0.945134, loss@max: 1.372891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.793645, LT: 1.815432, Top1S: 63.593380, Top1T: 63.711582 +Train:epoch: 118, loss@min: 0.950078, loss@max: 1.371392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.794012, LT: 1.816111, Top1S: 63.593380, Top1T: 63.652481 +Train:epoch: 119, loss@min: 0.952389, loss@max: 1.368888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.794242, LT: 1.817000, Top1S: 63.534279, Top1T: 63.652481 +Train:epoch: 120, loss@min: 0.954101, loss@max: 1.363417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.794590, LT: 1.817802, Top1S: 63.416077, Top1T: 63.652481 +Train:epoch: 121, loss@min: 0.954956, loss@max: 1.364766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.794813, LT: 1.818614, Top1S: 63.416077, Top1T: 63.593380 +Train:epoch: 122, loss@min: 0.952719, loss@max: 1.367606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.795001, LT: 1.819299, Top1S: 63.475178, Top1T: 63.593380 +Train:epoch: 123, loss@min: 0.953111, loss@max: 1.367470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.795180, LT: 1.819880, Top1S: 63.534279, Top1T: 63.593380 +Train:epoch: 124, loss@min: 0.952193, loss@max: 1.368946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.795368, LT: 1.820485, Top1S: 63.475178, Top1T: 63.534279 +Train:epoch: 125, loss@min: 0.954409, loss@max: 1.364275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.795586, LT: 1.820977, Top1S: 63.534279, Top1T: 63.593380 +Train:epoch: 126, loss@min: 0.950289, loss@max: 1.368167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.795679, LT: 1.821479, Top1S: 63.475178, Top1T: 63.593380 +Train:epoch: 127, loss@min: 0.946539, loss@max: 1.371109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.795978, LT: 1.821758, Top1S: 63.475178, Top1T: 63.475178 +Train:epoch: 128, loss@min: 0.948001, loss@max: 1.372209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.796247, LT: 1.822029, Top1S: 63.534279, Top1T: 63.475178 +Train:epoch: 129, loss@min: 0.955859, loss@max: 1.364783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.796445, LT: 1.822324, Top1S: 63.593380, Top1T: 63.475178 +Train:epoch: 130, loss@min: 0.955016, loss@max: 1.363648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.796734, LT: 1.822526, Top1S: 63.593380, Top1T: 63.475178 +Train:epoch: 131, loss@min: 0.957716, loss@max: 1.359875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.797076, LT: 1.822747, Top1S: 63.534279, Top1T: 63.475178 +Train:epoch: 132, loss@min: 0.951962, loss@max: 1.366238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.797428, LT: 1.822887, Top1S: 63.356976, Top1T: 63.534279 +Train:epoch: 133, loss@min: 0.948145, loss@max: 1.370789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.797821, LT: 1.822933, Top1S: 63.356976, Top1T: 63.534279 +Train:epoch: 134, loss@min: 0.948203, loss@max: 1.369105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.798109, LT: 1.823015, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 135, loss@min: 0.948041, loss@max: 1.373876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.798311, LT: 1.823151, Top1S: 63.297871, Top1T: 63.593380 +Train:epoch: 136, loss@min: 0.950528, loss@max: 1.365860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.798505, LT: 1.823261, Top1S: 63.356976, Top1T: 63.593380 +Train:epoch: 137, loss@min: 0.951592, loss@max: 1.365595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.798678, LT: 1.823354, Top1S: 63.356976, Top1T: 63.593380 +Train:epoch: 138, loss@min: 0.949198, loss@max: 1.367545, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 10 01:07:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.334108, loss@max: 1.777475, Top1S acc: 100.000000, Top1T acc: 42.021275 +Train:epoch: 2, loss@min: 4.769924, loss@max: 1.737665, Top1S acc: 100.000000, Top1T acc: 50.531914 +Train:epoch: 3, loss@min: 4.344919, loss@max: 1.734732, Top1S acc: 100.000000, Top1T acc: 54.787231 +Train:epoch: 4, loss@min: 3.914985, loss@max: 1.727159, Top1S acc: 100.000000, Top1T acc: 57.978722 +Train:epoch: 5, loss@min: 3.609451, loss@max: 1.747602, Top1S acc: 100.000000, Top1T acc: 64.361702 +Train:epoch: 6, loss@min: 3.239517, loss@max: 1.746572, Top1S acc: 100.000000, Top1T acc: 68.617020 +Train:epoch: 7, loss@min: 3.070440, loss@max: 1.789350, Top1S acc: 100.000000, Top1T acc: 69.680847 +Train:epoch: 8, loss@min: 2.762246, loss@max: 1.792536, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 9, loss@min: 2.550536, loss@max: 1.803654, Top1S acc: 100.000000, Top1T acc: 80.851067 +Train:epoch: 10, loss@min: 2.313695, loss@max: 1.799922, Top1S acc: 100.000000, Top1T acc: 83.510628 +Train:epoch: 11, loss@min: 2.236742, loss@max: 1.821131, Top1S acc: 100.000000, Top1T acc: 84.042549 +Train:epoch: 12, loss@min: 1.948123, loss@max: 1.780880, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 13, loss@min: 1.864624, loss@max: 1.785611, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 14, loss@min: 1.647676, loss@max: 1.740593, Top1S acc: 100.000000, Top1T acc: 92.553192 +Train:epoch: 15, loss@min: 1.607433, loss@max: 1.732333, Top1S acc: 100.000000, Top1T acc: 92.553192 +Train:epoch: 16, loss@min: 1.545529, loss@max: 1.720982, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 17, loss@min: 1.466312, loss@max: 1.690378, Top1S acc: 100.000000, Top1T acc: 95.212761 +Train:epoch: 18, loss@min: 1.372991, loss@max: 1.658153, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 19, loss@min: 1.339454, loss@max: 1.641410, Top1S acc: 100.000000, Top1T acc: 96.276596 +Train:epoch: 20, loss@min: 1.266336, loss@max: 1.598737, Top1S acc: 100.000000, Top1T acc: 98.404251 +Train:epoch: 21, loss@min: 1.245240, loss@max: 1.582260, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 22, loss@min: 1.252687, loss@max: 1.571649, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 23, loss@min: 1.152220, loss@max: 1.510434, Top1S acc: 100.000000, Top1T acc: 98.404251 +Train:epoch: 24, loss@min: 1.121268, loss@max: 1.490177, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 25, loss@min: 1.127910, loss@max: 1.480953, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 26, loss@min: 1.127540, loss@max: 1.470915, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 27, loss@min: 1.087521, loss@max: 1.440658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.081416, loss@max: 1.432336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.079306, loss@max: 1.422271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.095317, loss@max: 1.411948, Top1S acc: 100.000000, Top1T acc: 98.936165 +Train:epoch: 31, loss@min: 1.058524, loss@max: 1.396354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.072547, loss@max: 1.407645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.038109, loss@max: 1.385481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.032857, loss@max: 1.382020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.027031, loss@max: 1.379858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.025459, loss@max: 1.379471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.013156, loss@max: 1.369856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.005267, loss@max: 1.368951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.028216, loss@max: 1.388393, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 40, loss@min: 1.001389, loss@max: 1.376551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.991423, loss@max: 1.369199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.990843, loss@max: 1.375022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.992132, loss@max: 1.378047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.982828, loss@max: 1.376960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.975647, loss@max: 1.371352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.973813, loss@max: 1.380960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.972814, loss@max: 1.382589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.972398, loss@max: 1.388643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.980868, loss@max: 1.387239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.969137, loss@max: 1.378877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.965918, loss@max: 1.376881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.965908, loss@max: 1.379495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.965142, loss@max: 1.381405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.964327, loss@max: 1.385632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.963467, loss@max: 1.383518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.959561, loss@max: 1.383824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.958501, loss@max: 1.382375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.960587, loss@max: 1.380640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.964157, loss@max: 1.379920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963849, loss@max: 1.378461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.962179, loss@max: 1.375214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964923, loss@max: 1.376362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964432, loss@max: 1.378197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.963445, loss@max: 1.379151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.967468, loss@max: 1.377577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.962796, loss@max: 1.381373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.961857, loss@max: 1.378824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.970588, loss@max: 1.383398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961577, loss@max: 1.375098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.964922, loss@max: 1.375907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.962635, loss@max: 1.372927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.961355, loss@max: 1.368939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.965059, loss@max: 1.379222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.960766, loss@max: 1.372266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.959853, loss@max: 1.372199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.960082, loss@max: 1.372998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.961033, loss@max: 1.381529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.958934, loss@max: 1.372151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.969464, loss@max: 1.376473, Top1S acc: 100.000000, Top1T acc: 99.468079 +Train:epoch: 80, loss@min: 0.961358, loss@max: 1.373629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.717431, LT: 1.706452, Top1S: 62.056736, Top1T: 61.702129Best acc: 62.056736 +Train:epoch: 81, loss@min: 0.962053, loss@max: 1.376820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.718368, LT: 1.707238, Top1S: 61.997635, Top1T: 61.761230 +Train:epoch: 82, loss@min: 0.964522, loss@max: 1.374751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.719379, LT: 1.708109, Top1S: 62.056736, Top1T: 61.761230 +Train:epoch: 83, loss@min: 0.961163, loss@max: 1.377161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.720528, LT: 1.709181, Top1S: 62.056736, Top1T: 61.820332 +Train:epoch: 84, loss@min: 0.958561, loss@max: 1.375670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.721729, LT: 1.710274, Top1S: 62.056736, Top1T: 61.761230 +Train:epoch: 85, loss@min: 0.960167, loss@max: 1.378400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.722790, LT: 1.711220, Top1S: 62.056736, Top1T: 61.820332 +Train:epoch: 86, loss@min: 0.960068, loss@max: 1.376089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.723842, LT: 1.712173, Top1S: 62.056736, Top1T: 61.820332 +Train:epoch: 87, loss@min: 0.958838, loss@max: 1.376751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.724763, LT: 1.712992, Top1S: 61.879433, Top1T: 61.820332 +Train:epoch: 88, loss@min: 0.958459, loss@max: 1.374833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.725714, LT: 1.713777, Top1S: 61.879433, Top1T: 61.820332 +Train:epoch: 89, loss@min: 0.961842, loss@max: 1.376511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.726726, LT: 1.714527, Top1S: 61.879433, Top1T: 61.820332 +Train:epoch: 90, loss@min: 0.957265, loss@max: 1.374080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.727518, LT: 1.715147, Top1S: 61.820332, Top1T: 61.879433 +Train:epoch: 91, loss@min: 0.960688, loss@max: 1.374147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.728215, LT: 1.715740, Top1S: 61.820332, Top1T: 61.879433 +Train:epoch: 92, loss@min: 0.957114, loss@max: 1.370025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.728791, LT: 1.716316, Top1S: 61.820332, Top1T: 61.879433 +Train:epoch: 93, loss@min: 0.962603, loss@max: 1.377936, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.729332, LT: 1.716905, Top1S: 61.820332, Top1T: 61.879433 +Train:epoch: 94, loss@min: 0.956652, loss@max: 1.372999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.729804, LT: 1.717502, Top1S: 61.879433, Top1T: 61.938534 +Train:epoch: 95, loss@min: 0.960480, loss@max: 1.373568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.730375, LT: 1.718165, Top1S: 61.879433, Top1T: 61.938534 +Train:epoch: 96, loss@min: 0.959005, loss@max: 1.373168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.730900, LT: 1.718793, Top1S: 61.879433, Top1T: 61.938534 +Train:epoch: 97, loss@min: 0.959130, loss@max: 1.374454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.731477, LT: 1.719424, Top1S: 61.879433, Top1T: 61.938534 +Train:epoch: 98, loss@min: 0.960198, loss@max: 1.379193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.731942, LT: 1.719977, Top1S: 61.938534, Top1T: 61.938534 +Train:epoch: 99, loss@min: 0.961195, loss@max: 1.375899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.732445, LT: 1.720509, Top1S: 61.879433, Top1T: 61.938534 +Train:epoch: 100, loss@min: 0.957297, loss@max: 1.377335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.732951, LT: 1.720984, Top1S: 61.820332, Top1T: 61.879433 +Train:epoch: 101, loss@min: 0.957732, loss@max: 1.374036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.733460, LT: 1.721427, Top1S: 61.820332, Top1T: 61.879433 +Train:epoch: 102, loss@min: 0.959483, loss@max: 1.377523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.733974, LT: 1.721847, Top1S: 61.820332, Top1T: 61.938534 +Train:epoch: 103, loss@min: 0.957720, loss@max: 1.373372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.734496, LT: 1.722292, Top1S: 61.820332, Top1T: 61.938534 +Train:epoch: 104, loss@min: 0.958108, loss@max: 1.370890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.734934, LT: 1.722695, Top1S: 61.820332, Top1T: 61.997635 +Train:epoch: 105, loss@min: 0.958450, loss@max: 1.372064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.735341, LT: 1.723069, Top1S: 61.820332, Top1T: 61.997635 +Train:epoch: 106, loss@min: 0.963704, loss@max: 1.379112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.735816, LT: 1.723529, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 107, loss@min: 0.958120, loss@max: 1.371957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.736350, LT: 1.723985, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 108, loss@min: 0.957983, loss@max: 1.372571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.736856, LT: 1.724469, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 109, loss@min: 0.960251, loss@max: 1.376901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.737365, LT: 1.725007, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 110, loss@min: 0.955632, loss@max: 1.372060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.737842, LT: 1.725510, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 111, loss@min: 0.957316, loss@max: 1.374843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.738270, LT: 1.725974, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 112, loss@min: 0.961233, loss@max: 1.376921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.738798, LT: 1.726530, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 113, loss@min: 0.957336, loss@max: 1.370780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.739325, LT: 1.727060, Top1S: 61.938534, Top1T: 61.997635 +Train:epoch: 114, loss@min: 0.959288, loss@max: 1.376605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.739791, LT: 1.727494, Top1S: 61.938534, Top1T: 61.997635 +Train:epoch: 115, loss@min: 0.957612, loss@max: 1.373078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.740226, LT: 1.727885, Top1S: 61.997635, Top1T: 61.997635 +Train:epoch: 116, loss@min: 0.957404, loss@max: 1.370580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.740598, LT: 1.728224, Top1S: 61.938534, Top1T: 61.997635 +Train:epoch: 117, loss@min: 0.957633, loss@max: 1.372758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.740984, LT: 1.728555, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 118, loss@min: 0.957239, loss@max: 1.372278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.741324, LT: 1.728885, Top1S: 61.997635, Top1T: 62.056736 +Train:epoch: 119, loss@min: 0.956174, loss@max: 1.370946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.741616, LT: 1.729176, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 120, loss@min: 0.963482, loss@max: 1.380753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.741863, LT: 1.729413, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 121, loss@min: 0.958606, loss@max: 1.374081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.742072, LT: 1.729618, Top1S: 61.879433, Top1T: 62.115841Best acc: 62.115841 +Train:epoch: 122, loss@min: 0.958408, loss@max: 1.372057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.742292, LT: 1.729833, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 123, loss@min: 0.955700, loss@max: 1.372119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.742478, LT: 1.730017, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 124, loss@min: 0.956967, loss@max: 1.373868, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.742623, LT: 1.730170, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 125, loss@min: 0.957085, loss@max: 1.373018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.742749, LT: 1.730312, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 126, loss@min: 0.957827, loss@max: 1.372266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.742875, LT: 1.730459, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 127, loss@min: 0.959004, loss@max: 1.374756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.742966, LT: 1.730568, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 128, loss@min: 0.958553, loss@max: 1.373950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.743048, LT: 1.730659, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 129, loss@min: 0.959195, loss@max: 1.371590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.743131, LT: 1.730757, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 130, loss@min: 0.955673, loss@max: 1.375630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.743206, LT: 1.730838, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 131, loss@min: 0.955857, loss@max: 1.372170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.743267, LT: 1.730908, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 132, loss@min: 0.961623, loss@max: 1.376586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.743337, LT: 1.730989, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 133, loss@min: 0.962080, loss@max: 1.377207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.743416, LT: 1.731078, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 134, loss@min: 0.957117, loss@max: 1.371682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.743475, LT: 1.731148, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 135, loss@min: 0.958355, loss@max: 1.375021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.743538, LT: 1.731213, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 136, loss@min: 0.956562, loss@max: 1.372458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.743596, LT: 1.731270, Top1S: 61.820332, Top1T: 62.056736 +Train:epoch: 137, loss@min: 0.959517, loss@max: 1.374680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.743638, LT: 1.731311, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 138, loss@min: 0.956710, loss@max: 1.375235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.743678, LT: 1.731349, Top1S: 61.879433, Top1T: 62.056736 +Train:epoch: 139, loss@min: 0.958216, loss@max: 1.370440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.743725, LT: 1.731392, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 140, loss@min: 0.955918, loss@max: 1.372066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.743766, LT: 1.731426, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 141, loss@min: 0.957337, loss@max: 1.374620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.743796, LT: 1.731449, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 142, loss@min: 0.962752, loss@max: 1.377908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.743829, LT: 1.731475, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 143, loss@min: 0.957600, loss@max: 1.372288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.743852, LT: 1.731492, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 144, loss@min: 0.956944, loss@max: 1.374474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.743871, LT: 1.731504, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 145, loss@min: 0.954492, loss@max: 1.375839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.743884, LT: 1.731513, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 146, loss@min: 0.958360, loss@max: 1.379088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.743891, LT: 1.731517, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 147, loss@min: 0.954721, loss@max: 1.370647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.743896, LT: 1.731519, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 148, loss@min: 0.960060, loss@max: 1.375644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.743898, LT: 1.731520, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 149, loss@min: 0.958721, loss@max: 1.376814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.743898, LT: 1.731520, Top1S: 61.938534, Top1T: 62.056736 +Train:epoch: 150, loss@min: 0.956588, loss@max: 1.374151, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.743898, LT: 1.731520, Top1S: 61.938534, Top1T: 62.056736 +------------------------------------------- +Thu Aug 10 01:39:16 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 10 01:43:53 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.968683, loss@max: 1.920047, Top1S acc: 100.000000, Top1T acc: 42.553188 +Train:epoch: 2, loss@min: 5.146315, loss@max: 1.800045, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 4.302625, loss@max: 1.678024, Top1S acc: 100.000000, Top1T acc: 52.127659 +Train:epoch: 4, loss@min: 3.834748, loss@max: 1.656145, Top1S acc: 100.000000, Top1T acc: 60.638294 +Train:epoch: 5, loss@min: 3.538480, loss@max: 1.677058, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 3.144105, loss@max: 1.664949, Top1S acc: 100.000000, Top1T acc: 73.404251 +Train:epoch: 7, loss@min: 2.863144, loss@max: 1.684586, Top1S acc: 100.000000, Top1T acc: 79.787231 +Train:epoch: 8, loss@min: 2.512386, loss@max: 1.667801, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 9, loss@min: 2.187801, loss@max: 1.655203, Top1S acc: 100.000000, Top1T acc: 88.297867 +Train:epoch: 10, loss@min: 2.018608, loss@max: 1.668751, Top1S acc: 100.000000, Top1T acc: 90.425529 +Train:epoch: 11, loss@min: 1.733620, loss@max: 1.639922, Top1S acc: 100.000000, Top1T acc: 94.680847 +Train:epoch: 12, loss@min: 1.620479, loss@max: 1.647225, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 13, loss@min: 1.427867, loss@max: 1.614678, Top1S acc: 100.000000, Top1T acc: 96.808510 +Train:epoch: 14, loss@min: 1.338726, loss@max: 1.622114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.303776, loss@max: 1.628196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.212347, loss@max: 1.596376, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 17, loss@min: 1.138598, loss@max: 1.560279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.058343, loss@max: 1.520054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.028147, loss@max: 1.490919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.047027, loss@max: 1.490644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.997693, loss@max: 1.441641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.994390, loss@max: 1.427667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.992035, loss@max: 1.409640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.978926, loss@max: 1.389093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.986142, loss@max: 1.382549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.972907, loss@max: 1.366678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.004476, loss@max: 1.375504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.975721, loss@max: 1.356547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.986734, loss@max: 1.368941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.975641, loss@max: 1.350626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.973094, loss@max: 1.342444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.975543, loss@max: 1.340130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.973233, loss@max: 1.338009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964560, loss@max: 1.329122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.971505, loss@max: 1.328696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.970694, loss@max: 1.335952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.973679, loss@max: 1.337503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.970750, loss@max: 1.331627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.973933, loss@max: 1.330611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.975768, loss@max: 1.329951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.975446, loss@max: 1.329790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.980800, loss@max: 1.338011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.967284, loss@max: 1.336081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.968398, loss@max: 1.340575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.966259, loss@max: 1.342479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.964851, loss@max: 1.349109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.959916, loss@max: 1.350343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.960267, loss@max: 1.357591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.957083, loss@max: 1.358623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.951368, loss@max: 1.360435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950963, loss@max: 1.361797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.947306, loss@max: 1.363024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.954247, loss@max: 1.368324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949517, loss@max: 1.366941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949319, loss@max: 1.370360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947245, loss@max: 1.365765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950028, loss@max: 1.365593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951249, loss@max: 1.364843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952691, loss@max: 1.365481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951439, loss@max: 1.362821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954239, loss@max: 1.365380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.955693, loss@max: 1.369190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952424, loss@max: 1.364900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.956848, loss@max: 1.365826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.957756, loss@max: 1.362383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952258, loss@max: 1.361079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.954033, loss@max: 1.366987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951377, loss@max: 1.364935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.954874, loss@max: 1.365349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.954984, loss@max: 1.362544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951411, loss@max: 1.364200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.952811, loss@max: 1.362022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954583, loss@max: 1.362743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954012, loss@max: 1.365227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956052, loss@max: 1.366066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955363, loss@max: 1.366277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954143, loss@max: 1.366272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954649, loss@max: 1.368959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952110, loss@max: 1.368158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.954590, loss@max: 1.369967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.985173, LT: 1.971347, Top1S: 55.437351, Top1T: 55.082741Best acc: 55.437351 +Train:epoch: 81, loss@min: 0.954929, loss@max: 1.364908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.985676, LT: 1.971918, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 82, loss@min: 0.955816, loss@max: 1.365349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.986056, LT: 1.972441, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 83, loss@min: 0.955173, loss@max: 1.365862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.986476, LT: 1.973007, Top1S: 55.378250, Top1T: 55.141846 +Train:epoch: 84, loss@min: 0.959298, loss@max: 1.361462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.986833, LT: 1.973600, Top1S: 55.378250, Top1T: 55.141846 +Train:epoch: 85, loss@min: 0.953464, loss@max: 1.366680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.987323, LT: 1.974188, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 86, loss@min: 0.956368, loss@max: 1.364342, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.987686, LT: 1.974679, Top1S: 55.437351, Top1T: 55.082741 +Train:epoch: 87, loss@min: 0.954767, loss@max: 1.368191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.988024, LT: 1.975076, Top1S: 55.437351, Top1T: 55.082741 +Train:epoch: 88, loss@min: 0.956004, loss@max: 1.365270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.988386, LT: 1.975426, Top1S: 55.378250, Top1T: 55.023640 +Train:epoch: 89, loss@min: 0.953442, loss@max: 1.367075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.988919, LT: 1.975848, Top1S: 55.378250, Top1T: 55.023640 +Train:epoch: 90, loss@min: 0.951324, loss@max: 1.367766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.989509, LT: 1.976251, Top1S: 55.437351, Top1T: 54.964539 +Train:epoch: 91, loss@min: 0.950580, loss@max: 1.365825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.990084, LT: 1.976664, Top1S: 55.437351, Top1T: 54.964539 +Train:epoch: 92, loss@min: 0.951953, loss@max: 1.370422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.990565, LT: 1.977066, Top1S: 55.437351, Top1T: 55.023640 +Train:epoch: 93, loss@min: 0.949679, loss@max: 1.369323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.991008, LT: 1.977453, Top1S: 55.437351, Top1T: 55.023640 +Train:epoch: 94, loss@min: 0.950773, loss@max: 1.368357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.991330, LT: 1.977777, Top1S: 55.437351, Top1T: 55.023640 +Train:epoch: 95, loss@min: 0.951262, loss@max: 1.367034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.991572, LT: 1.978111, Top1S: 55.437351, Top1T: 55.023640 +Train:epoch: 96, loss@min: 0.952970, loss@max: 1.366141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.991744, LT: 1.978380, Top1S: 55.437351, Top1T: 55.082741 +Train:epoch: 97, loss@min: 0.952803, loss@max: 1.364848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.991927, LT: 1.978633, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 98, loss@min: 0.953343, loss@max: 1.366525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.992138, LT: 1.978848, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 99, loss@min: 0.954952, loss@max: 1.363687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.992424, LT: 1.979047, Top1S: 55.496452, Top1T: 55.260048Best acc: 55.496452 +Train:epoch: 100, loss@min: 0.955110, loss@max: 1.368891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.992767, LT: 1.979268, Top1S: 55.496452, Top1T: 55.260048 +Train:epoch: 101, loss@min: 0.955687, loss@max: 1.363787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.993084, LT: 1.979485, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 102, loss@min: 0.960415, loss@max: 1.370249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.993394, LT: 1.979667, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 103, loss@min: 0.955374, loss@max: 1.367888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.993712, LT: 1.979868, Top1S: 55.378250, Top1T: 55.141846 +Train:epoch: 104, loss@min: 0.952091, loss@max: 1.366468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.994066, LT: 1.980050, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 105, loss@min: 0.952915, loss@max: 1.364206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.994366, LT: 1.980218, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 106, loss@min: 0.954262, loss@max: 1.363828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.994550, LT: 1.980376, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 107, loss@min: 0.955200, loss@max: 1.366165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.994708, LT: 1.980573, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 108, loss@min: 0.951282, loss@max: 1.365845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.994826, LT: 1.980757, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 109, loss@min: 0.952569, loss@max: 1.366050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.994917, LT: 1.980934, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 110, loss@min: 0.953544, loss@max: 1.364604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.994991, LT: 1.981111, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 111, loss@min: 0.952268, loss@max: 1.367356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.995084, LT: 1.981284, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 112, loss@min: 0.953260, loss@max: 1.363981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.995196, LT: 1.981446, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 113, loss@min: 0.953292, loss@max: 1.368431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.995268, LT: 1.981588, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 114, loss@min: 0.952447, loss@max: 1.368079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.995321, LT: 1.981711, Top1S: 55.496452, Top1T: 55.200947 +Train:epoch: 115, loss@min: 0.952248, loss@max: 1.368776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.995388, LT: 1.981853, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 116, loss@min: 0.953782, loss@max: 1.367883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.995467, LT: 1.981987, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 117, loss@min: 0.953170, loss@max: 1.364558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.995542, LT: 1.982113, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 118, loss@min: 0.953383, loss@max: 1.367778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.995645, LT: 1.982212, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 119, loss@min: 0.955845, loss@max: 1.369317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.995718, LT: 1.982279, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 120, loss@min: 0.953146, loss@max: 1.365628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.995815, LT: 1.982347, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 121, loss@min: 0.953193, loss@max: 1.366802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.995894, LT: 1.982404, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 122, loss@min: 0.954039, loss@max: 1.369763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.996000, LT: 1.982466, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 123, loss@min: 0.951944, loss@max: 1.368004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.996075, LT: 1.982514, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 124, loss@min: 0.951360, loss@max: 1.366639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.996176, LT: 1.982557, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 125, loss@min: 0.951353, loss@max: 1.367643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.996274, LT: 1.982596, Top1S: 55.437351, Top1T: 55.260048 +Train:epoch: 126, loss@min: 0.954014, loss@max: 1.372549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.996316, LT: 1.982602, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 127, loss@min: 0.953568, loss@max: 1.365880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.996362, LT: 1.982616, Top1S: 55.437351, Top1T: 55.200947 +Train:epoch: 128, loss@min: 0.954241, loss@max: 1.365477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.996404, LT: 1.982636, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 129, loss@min: 0.955662, loss@max: 1.365651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.996416, LT: 1.982652, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 130, loss@min: 0.954166, loss@max: 1.365919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.996437, LT: 1.982675, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 131, loss@min: 0.953040, loss@max: 1.364981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.996459, LT: 1.982693, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 132, loss@min: 0.953244, loss@max: 1.365483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.996483, LT: 1.982707, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 133, loss@min: 0.954527, loss@max: 1.365726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.996511, LT: 1.982723, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 134, loss@min: 0.953512, loss@max: 1.366624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.996532, LT: 1.982734, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 135, loss@min: 0.952458, loss@max: 1.367326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.996551, LT: 1.982747, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 136, loss@min: 0.953123, loss@max: 1.365592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.996570, LT: 1.982762, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 137, loss@min: 0.954083, loss@max: 1.365782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.996586, LT: 1.982778, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 138, loss@min: 0.953867, loss@max: 1.365718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.996597, LT: 1.982794, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 139, loss@min: 0.956309, loss@max: 1.363264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.996607, LT: 1.982808, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 140, loss@min: 0.953315, loss@max: 1.366844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.996615, LT: 1.982819, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 141, loss@min: 0.952653, loss@max: 1.366029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.996625, LT: 1.982828, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 142, loss@min: 0.950119, loss@max: 1.366602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.996633, LT: 1.982834, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 143, loss@min: 0.953274, loss@max: 1.366839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.996639, LT: 1.982840, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 144, loss@min: 0.954302, loss@max: 1.365818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.996643, LT: 1.982844, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 145, loss@min: 0.954399, loss@max: 1.370800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.996648, LT: 1.982847, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 146, loss@min: 0.952546, loss@max: 1.366040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.996650, LT: 1.982849, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 147, loss@min: 0.953882, loss@max: 1.369889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.996652, LT: 1.982850, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 148, loss@min: 0.953858, loss@max: 1.364888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.996653, LT: 1.982851, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 149, loss@min: 0.954626, loss@max: 1.366377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.996653, LT: 1.982851, Top1S: 55.437351, Top1T: 55.141846 +Train:epoch: 150, loss@min: 0.954072, loss@max: 1.367651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.996653, LT: 1.982851, Top1S: 55.437351, Top1T: 55.141846 +------------------------------------------- +Thu Aug 10 02:12:38 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 10 09:03:21 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.214994, loss@max: 2.003165, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.136406, loss@max: 1.840749, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.561125, loss@max: 1.792466, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.776569, loss@max: 1.691207, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 5, loss@min: 3.422500, loss@max: 1.682091, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.858611, loss@max: 1.624888, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.514244, loss@max: 1.597551, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.171793, loss@max: 1.558267, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.948544, loss@max: 1.551749, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.723080, loss@max: 1.535063, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.452330, loss@max: 1.493866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.400060, loss@max: 1.525528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.235770, loss@max: 1.482133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.161938, loss@max: 1.476558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.065768, loss@max: 1.450130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.992129, loss@max: 1.416345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.976942, loss@max: 1.412656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.956042, loss@max: 1.399452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.940590, loss@max: 1.377272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.951350, loss@max: 1.369321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950831, loss@max: 1.355767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.937645, loss@max: 1.331882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.938486, loss@max: 1.333536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.951900, loss@max: 1.335408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.944228, loss@max: 1.337723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.937699, loss@max: 1.322966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.957859, loss@max: 1.327192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.946528, loss@max: 1.326963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.935938, loss@max: 1.330620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.935947, loss@max: 1.324693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.943268, loss@max: 1.338557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.946959, loss@max: 1.341805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935283, loss@max: 1.328090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.937399, loss@max: 1.332851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931264, loss@max: 1.337241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.944293, loss@max: 1.336285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.947768, loss@max: 1.331431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957279, loss@max: 1.327685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.985484, loss@max: 1.345163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958663, loss@max: 1.325440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960128, loss@max: 1.330086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957210, loss@max: 1.326635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957335, loss@max: 1.335325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955494, loss@max: 1.332440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.957110, loss@max: 1.333018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955205, loss@max: 1.337359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.952355, loss@max: 1.338755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956341, loss@max: 1.333134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.954534, loss@max: 1.342086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958314, loss@max: 1.338520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.957534, loss@max: 1.342684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959377, loss@max: 1.342553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955067, loss@max: 1.343861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949295, loss@max: 1.351820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.947564, loss@max: 1.358733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949125, loss@max: 1.352488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947304, loss@max: 1.363183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.947837, loss@max: 1.357189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952138, loss@max: 1.354939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952786, loss@max: 1.353746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954043, loss@max: 1.353021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954185, loss@max: 1.351343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.947386, loss@max: 1.363868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949302, loss@max: 1.359912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.950017, loss@max: 1.358808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947355, loss@max: 1.365983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.950885, loss@max: 1.360160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952732, loss@max: 1.361598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946155, loss@max: 1.362085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947670, loss@max: 1.362335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949899, loss@max: 1.360908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949247, loss@max: 1.364530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943760, loss@max: 1.367283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.946018, loss@max: 1.364839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953917, loss@max: 1.358951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953487, loss@max: 1.362108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954698, loss@max: 1.363985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952156, loss@max: 1.360166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954371, loss@max: 1.359956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955132, loss@max: 1.355524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.993220, LT: 1.999870, Top1S: 51.418438, Top1T: 50.472813Best acc: 51.418438 +Train:epoch: 81, loss@min: 0.955097, loss@max: 1.359677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.993483, LT: 2.000372, Top1S: 51.359337, Top1T: 50.354610 +Train:epoch: 82, loss@min: 0.951832, loss@max: 1.362760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.993768, LT: 2.000816, Top1S: 51.359337, Top1T: 50.354610 +Train:epoch: 83, loss@min: 0.945410, loss@max: 1.367517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.994268, LT: 2.001271, Top1S: 51.359337, Top1T: 50.354610 +Train:epoch: 84, loss@min: 0.981232, loss@max: 1.382943, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 1.994251, LT: 2.001197, Top1S: 51.418438, Top1T: 50.354610 +Train:epoch: 85, loss@min: 0.953096, loss@max: 1.362332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.994421, LT: 2.001239, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 86, loss@min: 0.950003, loss@max: 1.361494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.994642, LT: 2.001382, Top1S: 51.477543, Top1T: 50.472813Best acc: 51.477543 +Train:epoch: 87, loss@min: 0.956941, loss@max: 1.369812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.995082, LT: 2.001791, Top1S: 51.418438, Top1T: 50.413712 +Train:epoch: 88, loss@min: 0.950279, loss@max: 1.363513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.995488, LT: 2.002227, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 89, loss@min: 0.950920, loss@max: 1.364219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.995912, LT: 2.002686, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 90, loss@min: 0.952190, loss@max: 1.360914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.996387, LT: 2.003066, Top1S: 51.359337, Top1T: 50.354610 +Train:epoch: 91, loss@min: 0.953714, loss@max: 1.359639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.996799, LT: 2.003419, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 92, loss@min: 0.958543, loss@max: 1.373027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.997164, LT: 2.003774, Top1S: 51.300236, Top1T: 50.354610 +Train:epoch: 93, loss@min: 0.953219, loss@max: 1.361923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.997482, LT: 2.004138, Top1S: 51.300236, Top1T: 50.354610 +Train:epoch: 94, loss@min: 0.953042, loss@max: 1.362833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.997720, LT: 2.004526, Top1S: 51.241135, Top1T: 50.354610 +Train:epoch: 95, loss@min: 0.954835, loss@max: 1.361115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.997856, LT: 2.004938, Top1S: 51.122932, Top1T: 50.354610 +Train:epoch: 96, loss@min: 0.949296, loss@max: 1.369747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.998049, LT: 2.005424, Top1S: 51.182034, Top1T: 50.354610 +Train:epoch: 97, loss@min: 0.952047, loss@max: 1.363131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.998251, LT: 2.005872, Top1S: 51.241135, Top1T: 50.413712 +Train:epoch: 98, loss@min: 0.952250, loss@max: 1.363224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.998471, LT: 2.006259, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 99, loss@min: 0.952023, loss@max: 1.364154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.998738, LT: 2.006559, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 100, loss@min: 0.950916, loss@max: 1.363211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.999167, LT: 2.006779, Top1S: 51.300236, Top1T: 50.472813 +Train:epoch: 101, loss@min: 0.956627, loss@max: 1.357438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.999536, LT: 2.006986, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 102, loss@min: 0.953277, loss@max: 1.363953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.999886, LT: 2.007169, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 103, loss@min: 0.952717, loss@max: 1.362076, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 2.000209, LT: 2.007330, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 104, loss@min: 0.954030, loss@max: 1.361983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 2.000525, LT: 2.007492, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 105, loss@min: 0.952790, loss@max: 1.362123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 2.000725, LT: 2.007640, Top1S: 51.300236, Top1T: 50.472813 +Train:epoch: 106, loss@min: 0.955321, loss@max: 1.364038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 2.000804, LT: 2.007820, Top1S: 51.300236, Top1T: 50.472813 +Train:epoch: 107, loss@min: 0.950231, loss@max: 1.364933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 2.000855, LT: 2.007985, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 108, loss@min: 0.952583, loss@max: 1.360811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 2.000916, LT: 2.008139, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 109, loss@min: 0.951005, loss@max: 1.362709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 2.000934, LT: 2.008286, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 110, loss@min: 0.948089, loss@max: 1.366249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 2.000938, LT: 2.008421, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 111, loss@min: 0.951760, loss@max: 1.362833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 2.000923, LT: 2.008575, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 112, loss@min: 0.949408, loss@max: 1.364870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 2.000959, LT: 2.008682, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 113, loss@min: 0.949808, loss@max: 1.365467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 2.001026, LT: 2.008792, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 114, loss@min: 0.952056, loss@max: 1.368415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 2.001049, LT: 2.008821, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 115, loss@min: 0.949133, loss@max: 1.365126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 2.001109, LT: 2.008853, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 116, loss@min: 0.950122, loss@max: 1.364589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 2.001193, LT: 2.008878, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 117, loss@min: 0.951359, loss@max: 1.367158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 2.001285, LT: 2.008911, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 118, loss@min: 0.951470, loss@max: 1.362175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 2.001390, LT: 2.008946, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 119, loss@min: 0.950357, loss@max: 1.363437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 2.001512, LT: 2.008973, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 120, loss@min: 0.954877, loss@max: 1.360753, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 2.001617, LT: 2.008968, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 121, loss@min: 0.954793, loss@max: 1.364687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 2.001714, LT: 2.008967, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 122, loss@min: 0.950471, loss@max: 1.364331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 2.001818, LT: 2.008955, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 123, loss@min: 0.955078, loss@max: 1.359353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 2.001896, LT: 2.008940, Top1S: 51.359337, Top1T: 50.531914 +Train:epoch: 124, loss@min: 0.957484, loss@max: 1.363216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 2.001982, LT: 2.008944, Top1S: 51.359337, Top1T: 50.472813 +Train:epoch: 125, loss@min: 0.953831, loss@max: 1.360752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 2.002047, LT: 2.008950, Top1S: 51.300236, Top1T: 50.472813 +Train:epoch: 126, loss@min: 0.951147, loss@max: 1.362650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 2.002081, LT: 2.008971, Top1S: 51.241135, Top1T: 50.472813 +Train:epoch: 127, loss@min: 0.953075, loss@max: 1.360969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 2.002097, LT: 2.008999, Top1S: 51.182034, Top1T: 50.472813 +Train:epoch: 128, loss@min: 0.950683, loss@max: 1.362996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 2.002109, LT: 2.009033, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 129, loss@min: 0.951638, loss@max: 1.365594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 2.002122, LT: 2.009068, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 130, loss@min: 0.950723, loss@max: 1.363746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 2.002136, LT: 2.009097, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 131, loss@min: 0.948591, loss@max: 1.366325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 2.002148, LT: 2.009129, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 132, loss@min: 0.949674, loss@max: 1.365313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 2.002146, LT: 2.009165, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 133, loss@min: 0.951622, loss@max: 1.362048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 2.002147, LT: 2.009195, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 134, loss@min: 0.949399, loss@max: 1.363579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 2.002146, LT: 2.009223, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 135, loss@min: 0.953214, loss@max: 1.360077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 2.002150, LT: 2.009244, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 136, loss@min: 0.951425, loss@max: 1.363264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 2.002152, LT: 2.009266, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 137, loss@min: 0.953372, loss@max: 1.360090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 2.002155, LT: 2.009285, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 138, loss@min: 0.951322, loss@max: 1.362436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 2.002165, LT: 2.009301, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 139, loss@min: 0.953229, loss@max: 1.362276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 2.002174, LT: 2.009313, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 140, loss@min: 0.950506, loss@max: 1.364140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 2.002186, LT: 2.009321, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 141, loss@min: 0.953147, loss@max: 1.365067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 2.002195, LT: 2.009327, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 142, loss@min: 0.949918, loss@max: 1.364802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 2.002205, LT: 2.009331, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 143, loss@min: 0.951001, loss@max: 1.364289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 2.002213, LT: 2.009334, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 144, loss@min: 0.950012, loss@max: 1.364652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 2.002220, LT: 2.009336, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 145, loss@min: 0.951195, loss@max: 1.365508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 2.002224, LT: 2.009337, Top1S: 51.182034, Top1T: 50.413712 +Train:epoch: 146, loss@min: 0.951493, loss@max: 1.361958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 2.002226, LT: 2.009337, Top1S: 51.241135, Top1T: 50.413712 +Train:epoch: 147, loss@min: 0.952317, loss@max: 1.365340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 2.002228, LT: 2.009338, Top1S: 51.241135, Top1T: 50.413712 +Train:epoch: 148, loss@min: 0.952633, loss@max: 1.361656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 2.002228, LT: 2.009337, Top1S: 51.241135, Top1T: 50.413712 +Train:epoch: 149, loss@min: 0.952023, loss@max: 1.364936, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 2.002228, LT: 2.009337, Top1S: 51.241135, Top1T: 50.413712 +Train:epoch: 150, loss@min: 0.950439, loss@max: 1.365340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 2.002228, LT: 2.009337, Top1S: 51.241135, Top1T: 50.413712 +------------------------------------------- +Thu Aug 10 09:30:31 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Aug 10 10:16:47 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.917014, loss@max: 1.693899, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 2, loss@min: 2.219195, loss@max: 1.510008, Top1S acc: 100.000000, Top1T acc: 77.343750 +Train:epoch: 3, loss@min: 2.066847, loss@max: 1.476966, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 4, loss@min: 1.895034, loss@max: 1.452757, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 5, loss@min: 1.713615, loss@max: 1.416239, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 6, loss@min: 1.560531, loss@max: 1.384148, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 7, loss@min: 1.379877, loss@max: 1.342568, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 8, loss@min: 1.312519, loss@max: 1.334687, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 9, loss@min: 1.318080, loss@max: 1.350332, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 10, loss@min: 1.164898, loss@max: 1.308173, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 11, loss@min: 1.244172, loss@max: 1.337830, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 12, loss@min: 1.132626, loss@max: 1.317769, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 13, loss@min: 1.044819, loss@max: 1.287104, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 14, loss@min: 1.064835, loss@max: 1.323091, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 1.026008, loss@max: 1.301932, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.034151, loss@max: 1.305505, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.999283, loss@max: 1.324123, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 18, loss@min: 1.003844, loss@max: 1.311752, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 1.090890, loss@max: 1.349741, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.068939, loss@max: 1.359431, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 21, loss@min: 0.991206, loss@max: 1.379108, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 22, loss@min: 1.010173, loss@max: 1.400690, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.030860, loss@max: 1.397690, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 24, loss@min: 1.003685, loss@max: 1.376215, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.987537, loss@max: 1.373521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.003127, loss@max: 1.371974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.999648, loss@max: 1.391584, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 0.964054, loss@max: 1.411856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.990846, loss@max: 1.386872, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 0.969463, loss@max: 1.402900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.963326, loss@max: 1.387227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.976123, loss@max: 1.422790, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.977703, loss@max: 1.406565, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.009057, loss@max: 1.410719, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 35, loss@min: 0.991135, loss@max: 1.406885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.981635, loss@max: 1.395544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.970833, loss@max: 1.401558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.958551, loss@max: 1.421058, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.025452, loss@max: 1.395345, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 40, loss@min: 0.963742, loss@max: 1.392455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.978471, loss@max: 1.408006, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.001816, loss@max: 1.407646, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 43, loss@min: 1.004948, loss@max: 1.377040, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.993035, loss@max: 1.413523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.982265, loss@max: 1.386478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.971510, loss@max: 1.402753, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.963216, loss@max: 1.427654, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.954503, loss@max: 1.403095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.967916, loss@max: 1.397819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.975983, loss@max: 1.399123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.993521, loss@max: 1.393548, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.955461, loss@max: 1.402412, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.948258, loss@max: 1.404888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.969167, loss@max: 1.398664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.990887, loss@max: 1.390949, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 0.969144, loss@max: 1.412149, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 57, loss@min: 0.955475, loss@max: 1.399209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.949502, loss@max: 1.403867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947557, loss@max: 1.407517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.981809, loss@max: 1.387634, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.966169, loss@max: 1.404256, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 0.944723, loss@max: 1.416768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.954362, loss@max: 1.395760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.974838, loss@max: 1.393108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.983528, loss@max: 1.391769, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.983335, loss@max: 1.393797, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 67, loss@min: 0.955784, loss@max: 1.392862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.954199, loss@max: 1.390453, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.956147, loss@max: 1.380399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.975419, loss@max: 1.376141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.972052, loss@max: 1.374934, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.961194, loss@max: 1.396595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.973251, loss@max: 1.392063, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 74, loss@min: 0.967098, loss@max: 1.375042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.962582, loss@max: 1.385811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.961389, loss@max: 1.389209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.953958, loss@max: 1.378018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.949769, loss@max: 1.396205, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.958814, loss@max: 1.377089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.952630, loss@max: 1.383357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.556959, LT: 1.561725, Top1S: 70.649872, Top1T: 70.664986Best acc: 70.664986 +Train:epoch: 81, loss@min: 0.949481, loss@max: 1.385087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.566837, LT: 1.570678, Top1S: 70.458435, Top1T: 70.518890 +Train:epoch: 82, loss@min: 0.953822, loss@max: 1.379802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.570052, LT: 1.573325, Top1S: 70.503777, Top1T: 70.604530 +Train:epoch: 83, loss@min: 0.959236, loss@max: 1.380665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.570441, LT: 1.573711, Top1S: 70.508812, Top1T: 70.579346 +Train:epoch: 84, loss@min: 0.942936, loss@max: 1.379051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.571153, LT: 1.573459, Top1S: 70.564232, Top1T: 70.473549 +Train:epoch: 85, loss@min: 0.949856, loss@max: 1.373157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.577450, LT: 1.580071, Top1S: 70.518890, Top1T: 70.518890 +Train:epoch: 86, loss@min: 0.953493, loss@max: 1.367714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.578133, LT: 1.583495, Top1S: 70.589417, Top1T: 70.554153 +Train:epoch: 87, loss@min: 0.954136, loss@max: 1.379593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.585963, LT: 1.589569, Top1S: 70.503777, Top1T: 70.488663 +Train:epoch: 88, loss@min: 0.947237, loss@max: 1.374790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.590959, LT: 1.597117, Top1S: 70.528961, Top1T: 70.418137 +Train:epoch: 89, loss@min: 0.960369, loss@max: 1.378928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.589040, LT: 1.593409, Top1S: 70.493698, Top1T: 70.498741 +Train:epoch: 90, loss@min: 0.953792, loss@max: 1.378901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.591018, LT: 1.595580, Top1S: 70.654907, Top1T: 70.604530 +Train:epoch: 91, loss@min: 0.957447, loss@max: 1.367904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.597337, LT: 1.602198, Top1S: 70.518890, Top1T: 70.387909 +Train:epoch: 92, loss@min: 0.957023, loss@max: 1.371909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.598163, LT: 1.603157, Top1S: 70.418137, Top1T: 70.377831 +Train:epoch: 93, loss@min: 0.954968, loss@max: 1.372840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.599717, LT: 1.603134, Top1S: 70.403023, Top1T: 70.433250 +Train:epoch: 94, loss@min: 0.950541, loss@max: 1.374023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.609664, LT: 1.612771, Top1S: 70.392944, Top1T: 70.377831 +Train:epoch: 95, loss@min: 0.959706, loss@max: 1.378584, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 95, LS: 1.614167, LT: 1.617029, Top1S: 70.428207, Top1T: 70.418137 +Train:epoch: 96, loss@min: 0.963909, loss@max: 1.359890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.615417, LT: 1.619278, Top1S: 70.549118, Top1T: 70.468513 +Train:epoch: 97, loss@min: 0.947630, loss@max: 1.369778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.612035, LT: 1.614677, Top1S: 70.664986, Top1T: 70.664986 +Train:epoch: 98, loss@min: 0.957875, loss@max: 1.363009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.615654, LT: 1.620064, Top1S: 70.528961, Top1T: 70.619644 +Train:epoch: 99, loss@min: 0.949306, loss@max: 1.369111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.620261, LT: 1.623857, Top1S: 70.423172, Top1T: 70.488663 +Train:epoch: 100, loss@min: 0.952712, loss@max: 1.363373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.619153, LT: 1.622466, Top1S: 70.493698, Top1T: 70.539040 +Train:epoch: 101, loss@min: 0.954276, loss@max: 1.368554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.624109, LT: 1.627786, Top1S: 70.544075, Top1T: 70.634758 +Train:epoch: 102, loss@min: 0.957544, loss@max: 1.377539, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.626135, LT: 1.629230, Top1S: 70.498741, Top1T: 70.594460 +Train:epoch: 103, loss@min: 0.958869, loss@max: 1.373473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.633353, LT: 1.637201, Top1S: 70.518890, Top1T: 70.574303 +Train:epoch: 104, loss@min: 0.947605, loss@max: 1.372072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.632028, LT: 1.635163, Top1S: 70.564232, Top1T: 70.619644 +Train:epoch: 105, loss@min: 0.949319, loss@max: 1.362149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.633974, LT: 1.637661, Top1S: 70.609566, Top1T: 70.654907 +Train:epoch: 106, loss@min: 0.949288, loss@max: 1.363156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.637300, LT: 1.641099, Top1S: 70.675064, Top1T: 70.569267Best acc: 70.675064 +Train:epoch: 107, loss@min: 0.945050, loss@max: 1.371522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.639789, LT: 1.643548, Top1S: 70.609566, Top1T: 70.639793 +Train:epoch: 108, loss@min: 0.949653, loss@max: 1.365184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.640221, LT: 1.643405, Top1S: 70.584381, Top1T: 70.549118 +Train:epoch: 109, loss@min: 0.960561, loss@max: 1.362180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.641231, LT: 1.644462, Top1S: 70.513855, Top1T: 70.534004 +Train:epoch: 110, loss@min: 0.945834, loss@max: 1.367267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.644545, LT: 1.648261, Top1S: 70.523926, Top1T: 70.554153 +Train:epoch: 111, loss@min: 0.952712, loss@max: 1.366304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.648895, LT: 1.652515, Top1S: 70.483627, Top1T: 70.554153 +Train:epoch: 112, loss@min: 0.947916, loss@max: 1.367480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.651012, LT: 1.654769, Top1S: 70.554153, Top1T: 70.498741 +Train:epoch: 113, loss@min: 0.954468, loss@max: 1.360120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.650806, LT: 1.654620, Top1S: 70.544075, Top1T: 70.528961 +Train:epoch: 114, loss@min: 0.959992, loss@max: 1.370253, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 114, LS: 1.651509, LT: 1.655862, Top1S: 70.614609, Top1T: 70.604530 +Train:epoch: 115, loss@min: 0.951967, loss@max: 1.363442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.653224, LT: 1.657221, Top1S: 70.559189, Top1T: 70.478584 +Train:epoch: 116, loss@min: 0.950168, loss@max: 1.372518, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 116, LS: 1.654352, LT: 1.658329, Top1S: 70.554153, Top1T: 70.488663 +Train:epoch: 117, loss@min: 0.949145, loss@max: 1.362886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.655088, LT: 1.658726, Top1S: 70.599495, Top1T: 70.599495 +Train:epoch: 118, loss@min: 0.947837, loss@max: 1.365842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.655435, LT: 1.659105, Top1S: 70.539040, Top1T: 70.609566 +Train:epoch: 119, loss@min: 0.954977, loss@max: 1.370964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.657245, LT: 1.661085, Top1S: 70.614609, Top1T: 70.609566 +Train:epoch: 120, loss@min: 0.944791, loss@max: 1.368661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.657594, LT: 1.661426, Top1S: 70.604530, Top1T: 70.594460 +Train:epoch: 121, loss@min: 0.968969, loss@max: 1.370640, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 1.658242, LT: 1.662193, Top1S: 70.564232, Top1T: 70.614609 +Train:epoch: 122, loss@min: 0.959327, loss@max: 1.378510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.660759, LT: 1.664744, Top1S: 70.624680, Top1T: 70.599495 +Train:epoch: 123, loss@min: 0.951342, loss@max: 1.365651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.662939, LT: 1.667025, Top1S: 70.624680, Top1T: 70.584381 +Train:epoch: 124, loss@min: 0.954884, loss@max: 1.370616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.663857, LT: 1.667832, Top1S: 70.644836, Top1T: 70.559189 +Train:epoch: 125, loss@min: 0.946432, loss@max: 1.363909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.663991, LT: 1.667949, Top1S: 70.614609, Top1T: 70.518890 +Train:epoch: 126, loss@min: 0.971103, loss@max: 1.381276, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 126, LS: 1.664302, LT: 1.668495, Top1S: 70.483627, Top1T: 70.503777 +Train:epoch: 127, loss@min: 0.948909, loss@max: 1.360892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.664049, LT: 1.668133, Top1S: 70.448357, Top1T: 70.463470 +Train:epoch: 128, loss@min: 0.999805, loss@max: 1.377300, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 1.664620, LT: 1.668443, Top1S: 70.493698, Top1T: 70.478584 +Train:epoch: 129, loss@min: 0.958326, loss@max: 1.371741, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 129, LS: 1.664549, LT: 1.668772, Top1S: 70.433250, Top1T: 70.513855 +Train:epoch: 130, loss@min: 0.954588, loss@max: 1.366404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.664584, LT: 1.668716, Top1S: 70.508812, Top1T: 70.478584 +Train:epoch: 131, loss@min: 0.951561, loss@max: 1.362046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.664269, LT: 1.668229, Top1S: 70.523926, Top1T: 70.534004 +Train:epoch: 132, loss@min: 0.950920, loss@max: 1.365676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.664555, LT: 1.668361, Top1S: 70.584381, Top1T: 70.559189 +Train:epoch: 133, loss@min: 0.958682, loss@max: 1.376051, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 133, LS: 1.664755, LT: 1.668562, Top1S: 70.599495, Top1T: 70.594460 +Train:epoch: 134, loss@min: 0.957090, loss@max: 1.359473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.664895, LT: 1.668578, Top1S: 70.619644, Top1T: 70.574303 +Train:epoch: 135, loss@min: 0.950711, loss@max: 1.364041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.664814, LT: 1.668650, Top1S: 70.614609, Top1T: 70.579346 +Train:epoch: 136, loss@min: 0.947379, loss@max: 1.366446, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.665068, LT: 1.668962, Top1S: 70.619644, Top1T: 70.609566 +Train:epoch: 137, loss@min: 0.970422, loss@max: 1.371820, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 1.665568, LT: 1.669362, Top1S: 70.634758, Top1T: 70.624680 +Train:epoch: 138, loss@min: 0.947847, loss@max: 1.367137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.665999, LT: 1.669764, Top1S: 70.569267, Top1T: 70.624680 +Train:epoch: 139, loss@min: 0.953798, loss@max: 1.366769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.666285, LT: 1.670063, Top1S: 70.579346, Top1T: 70.654907 +Train:epoch: 140, loss@min: 0.945784, loss@max: 1.362460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.666315, LT: 1.670099, Top1S: 70.564232, Top1T: 70.644836 +Train:epoch: 141, loss@min: 0.945642, loss@max: 1.365428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.666314, LT: 1.670183, Top1S: 70.569267, Top1T: 70.644836 +Train:epoch: 142, loss@min: 0.965942, loss@max: 1.369985, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 142, LS: 1.666456, LT: 1.670311, Top1S: 70.604530, Top1T: 70.639793 +Train:epoch: 143, loss@min: 0.949599, loss@max: 1.368711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.666645, LT: 1.670497, Top1S: 70.584381, Top1T: 70.624680 +Train:epoch: 144, loss@min: 0.945864, loss@max: 1.369959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.666689, LT: 1.670547, Top1S: 70.599495, Top1T: 70.619644{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Aug 11 00:52:47 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.146723, loss@max: 1.710864, Top1S acc: 100.000000, Top1T acc: 63.671875 +Train:epoch: 2, loss@min: 2.791635, loss@max: 1.592260, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 3, loss@min: 2.031612, loss@max: 1.492914, Top1S acc: 100.000000, Top1T acc: 82.421875 +Train:epoch: 4, loss@min: 2.090021, loss@max: 1.551818, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 5, loss@min: 1.581809, loss@max: 1.425955, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 6, loss@min: 1.569178, loss@max: 1.424474, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 7, loss@min: 1.486970, loss@max: 1.401976, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 8, loss@min: 1.406051, loss@max: 1.392709, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 9, loss@min: 1.315590, loss@max: 1.353243, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 10, loss@min: 1.375714, loss@max: 1.388626, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 11, loss@min: 1.212494, loss@max: 1.356034, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 12, loss@min: 1.101222, loss@max: 1.312125, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.172249, loss@max: 1.335613, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 14, loss@min: 1.081662, loss@max: 1.324250, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.054375, loss@max: 1.314980, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 1.026164, loss@max: 1.303589, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 17, loss@min: 1.049743, loss@max: 1.303792, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 18, loss@min: 1.038249, loss@max: 1.321887, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.022037, loss@max: 1.318719, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 20, loss@min: 1.008951, loss@max: 1.316287, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.003245, loss@max: 1.323655, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 1.005490, loss@max: 1.329920, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.006641, loss@max: 1.324444, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 1.007794, loss@max: 1.338469, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 1.069086, loss@max: 1.348714, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 0.984497, loss@max: 1.333622, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.952954, loss@max: 1.353878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978927, loss@max: 1.349823, Top1S acc: 100.000000, Top1T acc: 99.609375{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Aug 11 01:11:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.530268, loss@max: 1.478902, Top1S acc: 100.000000, Top1T acc: 66.796875 +Train:epoch: 2, loss@min: 2.706474, loss@max: 1.458482, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 3, loss@min: 2.579819, loss@max: 1.508612, Top1S acc: 100.000000, Top1T acc: 77.734375 +Train:epoch: 4, loss@min: 2.314784, loss@max: 1.523577, Top1S acc: 100.000000, Top1T acc: 78.125000 +Train:epoch: 5, loss@min: 1.959081, loss@max: 1.490018, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 6, loss@min: 1.970129, loss@max: 1.534180, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 7, loss@min: 1.617495, loss@max: 1.470983, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 8, loss@min: 1.414384, loss@max: 1.424302, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 9, loss@min: 1.419346, loss@max: 1.425384, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 10, loss@min: 1.308682, loss@max: 1.383222, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 11, loss@min: 1.264250, loss@max: 1.379401, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 12, loss@min: 1.160219, loss@max: 1.358501, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.194892, loss@max: 1.370150, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 14, loss@min: 1.176425, loss@max: 1.376265, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 15, loss@min: 1.127715, loss@max: 1.347670, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 16, loss@min: 1.066279, loss@max: 1.333614, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 17, loss@min: 1.105663, loss@max: 1.356092, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 18, loss@min: 1.081875, loss@max: 1.354850, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 1.022441, loss@max: 1.318739, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 20, loss@min: 1.015380, loss@max: 1.322217, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 1.051201, loss@max: 1.347450, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 22, loss@min: 1.039031, loss@max: 1.338363, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 1.009475, loss@max: 1.348897, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.014259, loss@max: 1.351368, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 1.024505, loss@max: 1.336359, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.993195, loss@max: 1.336850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.992569, loss@max: 1.346154, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 0.963740, loss@max: 1.340832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.999848, loss@max: 1.373749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.004308, loss@max: 1.371391, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.967171, loss@max: 1.355950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.970402, loss@max: 1.342138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.992937, loss@max: 1.376009, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.971707, loss@max: 1.355075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.973024, loss@max: 1.355128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.955128, loss@max: 1.376664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.975722, loss@max: 1.372810, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.978224, loss@max: 1.388875, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.974170, loss@max: 1.378015, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 40, loss@min: 0.957179, loss@max: 1.384152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.967312, loss@max: 1.385036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.977752, loss@max: 1.398721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.980703, loss@max: 1.385291, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.979424, loss@max: 1.375735, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.986257, loss@max: 1.418819, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.976779, loss@max: 1.388944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.987963, loss@max: 1.385180, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.997522, loss@max: 1.384196, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 1.014358, loss@max: 1.413127, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 0.962137, loss@max: 1.393602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.980768, loss@max: 1.385585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.971364, loss@max: 1.386944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.976201, loss@max: 1.387843, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.956785, loss@max: 1.391336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.002774, loss@max: 1.397680, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 0.968943, loss@max: 1.391654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.963529, loss@max: 1.394520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.964452, loss@max: 1.387290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.956008, loss@max: 1.381821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963057, loss@max: 1.377697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.972018, loss@max: 1.392286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.966872, loss@max: 1.391536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.967100, loss@max: 1.376754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.961891, loss@max: 1.389865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.948512, loss@max: 1.403197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.954223, loss@max: 1.397829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.981327, loss@max: 1.393100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.969033, loss@max: 1.382637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.983899, loss@max: 1.404946, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.962853, loss@max: 1.384483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.979498, loss@max: 1.396651, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.964658, loss@max: 1.391860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.960122, loss@max: 1.390056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.952293, loss@max: 1.387599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953150, loss@max: 1.399676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.947875, loss@max: 1.386569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.966692, loss@max: 1.389211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.959808, loss@max: 1.383460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.959143, loss@max: 1.379774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.971570, loss@max: 1.372416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.569394, LT: 1.569080, Top1S: 64.992439, Top1T: 64.841309Best acc: 64.992439 +Train:epoch: 81, loss@min: 0.953334, loss@max: 1.384375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.569103, LT: 1.569873, Top1S: 64.977325, Top1T: 64.821159 +Train:epoch: 82, loss@min: 0.957644, loss@max: 1.372181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.569711, LT: 1.570303, Top1S: 64.952141, Top1T: 64.821159 +Train:epoch: 83, loss@min: 0.957128, loss@max: 1.379054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.570899, LT: 1.570572, Top1S: 64.942062, Top1T: 64.836273 +Train:epoch: 84, loss@min: 0.959674, loss@max: 1.381559, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 84, LS: 1.572021, LT: 1.570833, Top1S: 64.947098, Top1T: 64.901764 +Train:epoch: 85, loss@min: 0.950727, loss@max: 1.381464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.572964, LT: 1.571156, Top1S: 64.942062, Top1T: 64.901764 +Train:epoch: 86, loss@min: 0.949939, loss@max: 1.378307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.573643, LT: 1.571806, Top1S: 64.931984, Top1T: 64.871536 +Train:epoch: 87, loss@min: 0.956687, loss@max: 1.376663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.574060, LT: 1.572419, Top1S: 64.962212, Top1T: 64.886650 +Train:epoch: 88, loss@min: 0.955085, loss@max: 1.384628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.575133, LT: 1.574032, Top1S: 64.937027, Top1T: 64.896721 +Train:epoch: 89, loss@min: 0.970434, loss@max: 1.387222, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 89, LS: 1.576564, LT: 1.575786, Top1S: 64.916878, Top1T: 64.871536 +Train:epoch: 90, loss@min: 0.952671, loss@max: 1.381504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.577543, LT: 1.577386, Top1S: 64.901764, Top1T: 64.785889 +Train:epoch: 91, loss@min: 0.950780, loss@max: 1.381793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.578313, LT: 1.578716, Top1S: 65.002518, Top1T: 64.816116Best acc: 65.002518 +Train:epoch: 92, loss@min: 0.950464, loss@max: 1.381484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.579289, LT: 1.579533, Top1S: 64.957176, Top1T: 64.826195 +Train:epoch: 93, loss@min: 0.953208, loss@max: 1.387162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.580481, LT: 1.580078, Top1S: 64.962212, Top1T: 64.826195 +Train:epoch: 94, loss@min: 0.962943, loss@max: 1.377083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.581666, LT: 1.580848, Top1S: 64.931984, Top1T: 64.765739 +Train:epoch: 95, loss@min: 0.957140, loss@max: 1.377786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.582598, LT: 1.581618, Top1S: 64.911835, Top1T: 64.745590 +Train:epoch: 96, loss@min: 0.952307, loss@max: 1.385175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.583017, LT: 1.582191, Top1S: 64.871536, Top1T: 64.715363 +Train:epoch: 97, loss@min: 0.954947, loss@max: 1.374554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.582575, LT: 1.581824, Top1S: 64.891685, Top1T: 64.775818 +Train:epoch: 98, loss@min: 0.955565, loss@max: 1.378288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.582583, LT: 1.581769, Top1S: 64.926949, Top1T: 64.735512 +Train:epoch: 99, loss@min: 0.980606, loss@max: 1.384884, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 1.583139, LT: 1.582297, Top1S: 64.967255, Top1T: 64.690170 +Train:epoch: 100, loss@min: 0.973956, loss@max: 1.383236, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 1.584193, LT: 1.582943, Top1S: 64.977325, Top1T: 64.649872 +Train:epoch: 101, loss@min: 0.954788, loss@max: 1.369902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.585033, LT: 1.583441, Top1S: 65.002518, Top1T: 64.634758 +Train:epoch: 102, loss@min: 0.955867, loss@max: 1.366706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.585438, LT: 1.583785, Top1S: 64.962212, Top1T: 64.664986 +Train:epoch: 103, loss@min: 0.958738, loss@max: 1.369593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.585855, LT: 1.584242, Top1S: 65.022667, Top1T: 64.680099Best acc: 65.022667 +Train:epoch: 104, loss@min: 0.956184, loss@max: 1.368669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.586296, LT: 1.584651, Top1S: 65.002518, Top1T: 64.740555 +Train:epoch: 105, loss@min: 0.950288, loss@max: 1.375897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.586715, LT: 1.584951, Top1S: 64.992439, Top1T: 64.750626 +Train:epoch: 106, loss@min: 0.955640, loss@max: 1.376300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.587381, LT: 1.585187, Top1S: 64.942062, Top1T: 64.790932 +Train:epoch: 107, loss@min: 0.951685, loss@max: 1.369968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.587781, LT: 1.585294, Top1S: 64.942062, Top1T: 64.775818 +Train:epoch: 108, loss@min: 0.950233, loss@max: 1.374570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.587831, LT: 1.585452, Top1S: 64.942062, Top1T: 64.755669 +Train:epoch: 109, loss@min: 0.954118, loss@max: 1.373523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.587697, LT: 1.585637, Top1S: 64.942062, Top1T: 64.745590 +Train:epoch: 110, loss@min: 0.957509, loss@max: 1.374841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.587588, LT: 1.585962, Top1S: 64.947098, Top1T: 64.740555 +Train:epoch: 111, loss@min: 0.959223, loss@max: 1.375448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.587634, LT: 1.586180, Top1S: 64.952141, Top1T: 64.755669 +Train:epoch: 112, loss@min: 0.959497, loss@max: 1.364756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.587834, LT: 1.586450, Top1S: 64.962212, Top1T: 64.760704 +Train:epoch: 113, loss@min: 0.955806, loss@max: 1.362343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.587987, LT: 1.586810, Top1S: 64.997482, Top1T: 64.760704 +Train:epoch: 114, loss@min: 0.960894, loss@max: 1.371447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.588164, LT: 1.586994, Top1S: 65.012589, Top1T: 64.745590 +Train:epoch: 115, loss@min: 0.962212, loss@max: 1.380154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.588438, LT: 1.587109, Top1S: 64.982368, Top1T: 64.760704 +Train:epoch: 116, loss@min: 0.957788, loss@max: 1.372661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.588731, LT: 1.587245, Top1S: 64.982368, Top1T: 64.790932 +Train:epoch: 117, loss@min: 0.952944, loss@max: 1.367383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.588965, LT: 1.587354, Top1S: 64.977325, Top1T: 64.790932 +Train:epoch: 118, loss@min: 0.958739, loss@max: 1.371561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.589223, LT: 1.587397, Top1S: 64.992439, Top1T: 64.816116 +Train:epoch: 119, loss@min: 0.968813, loss@max: 1.377705, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 119, LS: 1.589550, LT: 1.587467, Top1S: 64.982368, Top1T: 64.821159 +Train:epoch: 120, loss@min: 0.954067, loss@max: 1.368715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.589797, LT: 1.587525, Top1S: 64.997482, Top1T: 64.846344 +Train:epoch: 121, loss@min: 0.953458, loss@max: 1.369400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.589923, LT: 1.587617, Top1S: 64.992439, Top1T: 64.831230 +Train:epoch: 122, loss@min: 0.955781, loss@max: 1.379811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.590174, LT: 1.587805, Top1S: 64.997482, Top1T: 64.836273 +Train:epoch: 123, loss@min: 0.949097, loss@max: 1.366792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.590422, LT: 1.588072, Top1S: 64.997482, Top1T: 64.821159 +Train:epoch: 124, loss@min: 0.961646, loss@max: 1.371535, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.590613, LT: 1.588338, Top1S: 65.007553, Top1T: 64.801003 +Train:epoch: 125, loss@min: 0.952194, loss@max: 1.364510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.590738, LT: 1.588592, Top1S: 65.012589, Top1T: 64.811081 +Train:epoch: 126, loss@min: 0.958515, loss@max: 1.364047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.590845, LT: 1.588811, Top1S: 64.997482, Top1T: 64.816116 +Train:epoch: 127, loss@min: 0.950795, loss@max: 1.367725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.590877, LT: 1.589011, Top1S: 64.992439, Top1T: 64.821159 +Train:epoch: 128, loss@min: 0.950165, loss@max: 1.373559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.590853, LT: 1.589163, Top1S: 65.012589, Top1T: 64.831230 +Train:epoch: 129, loss@min: 0.952697, loss@max: 1.367670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.590841, LT: 1.589237, Top1S: 65.017632, Top1T: 64.821159 +Train:epoch: 130, loss@min: 0.985270, loss@max: 1.380536, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 130, LS: 1.590851, LT: 1.589264, Top1S: 65.022667, Top1T: 64.811081 +Train:epoch: 131, loss@min: 0.953269, loss@max: 1.367560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.590918, LT: 1.589262, Top1S: 65.017632, Top1T: 64.821159 +Train:epoch: 132, loss@min: 0.953197, loss@max: 1.365905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.591019, LT: 1.589291, Top1S: 65.007553, Top1T: 64.831230 +Train:epoch: 133, loss@min: 0.952521, loss@max: 1.367247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.591098, LT: 1.589337, Top1S: 65.007553, Top1T: 64.841309 +Train:epoch: 134, loss@min: 0.950436, loss@max: 1.375420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.591152, LT: 1.589383, Top1S: 64.992439, Top1T: 64.846344 +Train:epoch: 135, loss@min: 0.956384, loss@max: 1.369815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.591203, LT: 1.589462, Top1S: 64.987404, Top1T: 64.846344 +Train:epoch: 136, loss@min: 0.956487, loss@max: 1.375301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.591234, LT: 1.589519, Top1S: 64.982368, Top1T: 64.851379 +Train:epoch: 137, loss@min: 0.954036, loss@max: 1.376683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.591280, LT: 1.589585, Top1S: 64.977325, Top1T: 64.866493 +Train:epoch: 138, loss@min: 0.948655, loss@max: 1.369495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.591314, LT: 1.589634, Top1S: 64.967255, Top1T: 64.861458 +Train:epoch: 139, loss@min: 0.951244, loss@max: 1.367561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.591351, LT: 1.589685, Top1S: 64.962212, Top1T: 64.866493 +Train:epoch: 140, loss@min: 0.951587, loss@max: 1.370081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.591380, LT: 1.589725, Top1S: 64.967255, Top1T: 64.856422 +Train:epoch: 141, loss@min: 0.967467, loss@max: 1.375397, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 141, LS: 1.591396, LT: 1.589759, Top1S: 64.967255, Top1T: 64.846344 +Train:epoch: 142, loss@min: 0.962846, loss@max: 1.369982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.591411, LT: 1.589785, Top1S: 64.972290, Top1T: 64.851379 +Train:epoch: 143, loss@min: 0.951491, loss@max: 1.361283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.591429, LT: 1.589810, Top1S: 64.972290, Top1T: 64.851379 +Train:epoch: 144, loss@min: 0.957818, loss@max: 1.367894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.591440, LT: 1.589827, Top1S: 64.972290, Top1T: 64.851379 +Train:epoch: 145, loss@min: 0.951988, loss@max: 1.369296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.591448, LT: 1.589838, Top1S: 64.972290, Top1T: 64.851379 +Train:epoch: 146, loss@min: 0.959140, loss@max: 1.374382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.591451, LT: 1.589844, Top1S: 64.972290, Top1T: 64.851379 +Train:epoch: 147, loss@min: 0.958089, loss@max: 1.370410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.591453, LT: 1.589847, Top1S: 64.972290, Top1T: 64.851379 +Train:epoch: 148, loss@min: 0.953872, loss@max: 1.368115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.591453, LT: 1.589849, Top1S: 64.972290, Top1T: 64.856422 +Train:epoch: 149, loss@min: 0.955346, loss@max: 1.366397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.591453, LT: 1.589849, Top1S: 64.972290, Top1T: 64.856422 +Train:epoch: 150, loss@min: 0.949099, loss@max: 1.370052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.591453, LT: 1.589849, Top1S: 64.972290, Top1T: 64.856422 +------------------------------------------- +Fri Aug 11 10:49:51 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Aug 11 11:19:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.780216, loss@max: 1.417739, Top1S acc: 100.000000, Top1T acc: 61.328125 +Train:epoch: 2, loss@min: 3.047346, loss@max: 1.345999, Top1S acc: 100.000000, Top1T acc: 71.093750 +Train:epoch: 3, loss@min: 2.880478, loss@max: 1.405720, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 4, loss@min: 2.631941, loss@max: 1.441584, Top1S acc: 100.000000, Top1T acc: 73.828125 +Train:epoch: 5, loss@min: 2.371398, loss@max: 1.458617, Top1S acc: 100.000000, Top1T acc: 79.687500 +Train:epoch: 6, loss@min: 2.236144, loss@max: 1.483901, Top1S acc: 100.000000, Top1T acc: 78.125000 +Train:epoch: 7, loss@min: 2.104239, loss@max: 1.486705, Top1S acc: 100.000000, Top1T acc: 79.296875 +Train:epoch: 8, loss@min: 1.963215, loss@max: 1.490200, Top1S acc: 100.000000, Top1T acc: 82.031250 +Train:epoch: 9, loss@min: 1.867750, loss@max: 1.483722, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 10, loss@min: 1.632365, loss@max: 1.447049, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 11, loss@min: 1.901064, loss@max: 1.538501, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 12, loss@min: 1.707565, loss@max: 1.493826, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 13, loss@min: 1.518379, loss@max: 1.449414, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 14, loss@min: 1.544315, loss@max: 1.464030, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 15, loss@min: 1.459794, loss@max: 1.464320, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 16, loss@min: 1.401694, loss@max: 1.433742, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 17, loss@min: 1.309492, loss@max: 1.417538, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 18, loss@min: 1.287758, loss@max: 1.420375, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 19, loss@min: 1.358562, loss@max: 1.448221, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 20, loss@min: 1.333238, loss@max: 1.435878, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 21, loss@min: 1.205287, loss@max: 1.404997, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 22, loss@min: 1.221640, loss@max: 1.410349, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 23, loss@min: 1.163186, loss@max: 1.402572, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 24, loss@min: 1.177235, loss@max: 1.413578, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 25, loss@min: 1.087149, loss@max: 1.379748, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 26, loss@min: 1.115596, loss@max: 1.396351, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 27, loss@min: 1.125395, loss@max: 1.414118, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 28, loss@min: 1.091223, loss@max: 1.376910, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 29, loss@min: 1.049091, loss@max: 1.379564, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 1.064253, loss@max: 1.390091, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.035161, loss@max: 1.377608, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 1.092712, loss@max: 1.399569, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 33, loss@min: 1.066548, loss@max: 1.380577, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 34, loss@min: 1.112411, loss@max: 1.405918, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 35, loss@min: 1.060462, loss@max: 1.395387, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.073188, loss@max: 1.382731, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 37, loss@min: 1.008999, loss@max: 1.370424, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.029406, loss@max: 1.386569, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 39, loss@min: 1.065526, loss@max: 1.394140, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 40, loss@min: 1.008269, loss@max: 1.380276, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 1.016901, loss@max: 1.387299, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 42, loss@min: 1.023963, loss@max: 1.381077, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 43, loss@min: 1.026244, loss@max: 1.386537, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.060951, loss@max: 1.406319, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 45, loss@min: 1.030091, loss@max: 1.388736, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 46, loss@min: 1.007245, loss@max: 1.385916, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 1.030577, loss@max: 1.394115, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 48, loss@min: 0.982415, loss@max: 1.373737, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 0.980008, loss@max: 1.372334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.990269, loss@max: 1.377400, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 1.020136, loss@max: 1.391332, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.987307, loss@max: 1.382695, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.986116, loss@max: 1.380521, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.990137, loss@max: 1.385359, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.034062, loss@max: 1.396245, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 1.008572, loss@max: 1.387197, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 57, loss@min: 0.979541, loss@max: 1.382537, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 58, loss@min: 0.990581, loss@max: 1.379690, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.974243, loss@max: 1.378997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.026611, loss@max: 1.392431, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 61, loss@min: 0.986249, loss@max: 1.379248, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 62, loss@min: 1.009919, loss@max: 1.389749, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 63, loss@min: 0.977333, loss@max: 1.381075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.018686, loss@max: 1.397042, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 65, loss@min: 1.040220, loss@max: 1.394835, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 66, loss@min: 0.996441, loss@max: 1.395710, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 67, loss@min: 0.988758, loss@max: 1.382669, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 68, loss@min: 0.968495, loss@max: 1.375897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.964570, loss@max: 1.365757, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.986859, loss@max: 1.385046, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 71, loss@min: 0.980432, loss@max: 1.376528, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.991544, loss@max: 1.389679, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 73, loss@min: 0.990444, loss@max: 1.386683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.969021, loss@max: 1.374338, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 75, loss@min: 0.970697, loss@max: 1.374194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.997842, loss@max: 1.390632, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 0.968688, loss@max: 1.372940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.997927, loss@max: 1.384524, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 79, loss@min: 0.967785, loss@max: 1.379368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967785, loss@max: 1.376560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.732601, LT: 1.721222, Top1S: 70.292191, Top1T: 70.292191Best acc: 70.292191 +Train:epoch: 81, loss@min: 0.968855, loss@max: 1.383472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.744508, LT: 1.733082, Top1S: 70.125938, Top1T: 70.136017 +Train:epoch: 82, loss@min: 0.975803, loss@max: 1.377978, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 82, LS: 1.742264, LT: 1.730836, Top1S: 70.045334, Top1T: 70.146095 +Train:epoch: 83, loss@min: 0.983684, loss@max: 1.382145, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 1.741855, LT: 1.730605, Top1S: 70.236771, Top1T: 70.272041 +Train:epoch: 84, loss@min: 0.959222, loss@max: 1.369723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.747990, LT: 1.736274, Top1S: 70.120903, Top1T: 70.266998 +Train:epoch: 85, loss@min: 0.956139, loss@max: 1.366623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.750783, LT: 1.739509, Top1S: 70.040298, Top1T: 70.136017 +Train:epoch: 86, loss@min: 0.969008, loss@max: 1.373928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.749433, LT: 1.738193, Top1S: 70.025185, Top1T: 70.010071 +Train:epoch: 87, loss@min: 0.979716, loss@max: 1.384998, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 87, LS: 1.751110, LT: 1.739996, Top1S: 69.969772, Top1T: 69.969772 +Train:epoch: 88, loss@min: 0.964733, loss@max: 1.370706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.753884, LT: 1.742473, Top1S: 70.191437, Top1T: 70.282112 +Train:epoch: 89, loss@min: 1.018786, loss@max: 1.389759, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 89, LS: 1.752745, LT: 1.741482, Top1S: 70.191437, Top1T: 70.226700 +Train:epoch: 90, loss@min: 0.971984, loss@max: 1.382760, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 90, LS: 1.758723, LT: 1.747043, Top1S: 70.231735, Top1T: 70.302261Best acc: 70.302261 +Train:epoch: 91, loss@min: 0.958366, loss@max: 1.372784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.762067, LT: 1.750891, Top1S: 70.206543, Top1T: 70.266998 +Train:epoch: 92, loss@min: 0.984070, loss@max: 1.381095, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 1.760428, LT: 1.748984, Top1S: 70.035263, Top1T: 70.060448 +Train:epoch: 93, loss@min: 0.986369, loss@max: 1.385638, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 93, LS: 1.759235, LT: 1.747844, Top1S: 70.201508, Top1T: 70.277077 +Train:epoch: 94, loss@min: 0.976365, loss@max: 1.374398, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 1.761958, LT: 1.750320, Top1S: 70.236771, Top1T: 70.251884 +Train:epoch: 95, loss@min: 0.986487, loss@max: 1.383098, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 95, LS: 1.763756, LT: 1.752262, Top1S: 70.065491, Top1T: 70.105789 +Train:epoch: 96, loss@min: 0.973599, loss@max: 1.379178, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 1.768951, LT: 1.757508, Top1S: 70.005035, Top1T: 70.060448 +Train:epoch: 97, loss@min: 0.962026, loss@max: 1.370869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.759252, LT: 1.747912, Top1S: 70.141052, Top1T: 70.171280 +Train:epoch: 98, loss@min: 0.966764, loss@max: 1.371776, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 1.766631, LT: 1.755143, Top1S: 70.186394, Top1T: 70.216621 +Train:epoch: 99, loss@min: 0.965233, loss@max: 1.372431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.768697, LT: 1.757325, Top1S: 70.095718, Top1T: 70.090675 +Train:epoch: 100, loss@min: 0.958852, loss@max: 1.366903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.769401, LT: 1.757878, Top1S: 70.085640, Top1T: 70.065491 +Train:epoch: 101, loss@min: 0.983013, loss@max: 1.376997, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 1.770795, LT: 1.759246, Top1S: 70.055412, Top1T: 70.040298 +Train:epoch: 102, loss@min: 0.984728, loss@max: 1.377526, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.774400, LT: 1.762990, Top1S: 69.989922, Top1T: 70.025185 +Train:epoch: 103, loss@min: 0.973322, loss@max: 1.377951, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 103, LS: 1.779703, LT: 1.768376, Top1S: 70.176323, Top1T: 70.196472 +Train:epoch: 104, loss@min: 0.961722, loss@max: 1.376693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.772292, LT: 1.760936, Top1S: 70.251884, Top1T: 70.302261 +Train:epoch: 105, loss@min: 0.951884, loss@max: 1.363274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.774740, LT: 1.763302, Top1S: 70.246849, Top1T: 70.241814 +Train:epoch: 106, loss@min: 0.963095, loss@max: 1.369503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.777884, LT: 1.766420, Top1S: 70.100754, Top1T: 70.196472 +Train:epoch: 107, loss@min: 0.963568, loss@max: 1.371992, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 107, LS: 1.778437, LT: 1.766914, Top1S: 70.025185, Top1T: 70.060448 +Train:epoch: 108, loss@min: 0.959952, loss@max: 1.372025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.777088, LT: 1.765626, Top1S: 70.005035, Top1T: 69.974808 +Train:epoch: 109, loss@min: 0.956919, loss@max: 1.368072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.777481, LT: 1.765929, Top1S: 70.040298, Top1T: 70.085640 +Train:epoch: 110, loss@min: 0.956362, loss@max: 1.367259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.781862, LT: 1.770372, Top1S: 70.010071, Top1T: 70.035263 +Train:epoch: 111, loss@min: 0.960914, loss@max: 1.368405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.784502, LT: 1.773014, Top1S: 70.045334, Top1T: 70.060448 +Train:epoch: 112, loss@min: 0.962531, loss@max: 1.372069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.782539, LT: 1.770934, Top1S: 70.085640, Top1T: 70.136017 +Train:epoch: 113, loss@min: 0.957093, loss@max: 1.369841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.782685, LT: 1.771007, Top1S: 70.161209, Top1T: 70.206543 +Train:epoch: 114, loss@min: 0.976200, loss@max: 1.379924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.781954, LT: 1.770323, Top1S: 70.292191, Top1T: 70.246849 +Train:epoch: 115, loss@min: 0.962194, loss@max: 1.372906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.782947, LT: 1.771300, Top1S: 70.256927, Top1T: 70.272041 +Train:epoch: 116, loss@min: 0.965182, loss@max: 1.372789, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 116, LS: 1.784564, LT: 1.772953, Top1S: 70.191437, Top1T: 70.196472 +Train:epoch: 117, loss@min: 0.956305, loss@max: 1.368499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.786112, LT: 1.774485, Top1S: 70.216621, Top1T: 70.216621 +Train:epoch: 118, loss@min: 0.955423, loss@max: 1.372807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.786472, LT: 1.774839, Top1S: 70.282112, Top1T: 70.282112 +Train:epoch: 119, loss@min: 0.971273, loss@max: 1.378351, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 119, LS: 1.788452, LT: 1.776852, Top1S: 70.231735, Top1T: 70.201508 +Train:epoch: 120, loss@min: 0.959551, loss@max: 1.373306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.788423, LT: 1.776882, Top1S: 70.216621, Top1T: 70.302261 +Train:epoch: 121, loss@min: 0.975531, loss@max: 1.375490, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 1.788464, LT: 1.776911, Top1S: 70.211586, Top1T: 70.141052 +Train:epoch: 122, loss@min: 1.004011, loss@max: 1.386060, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 122, LS: 1.790038, LT: 1.778441, Top1S: 70.130981, Top1T: 70.115868 +Train:epoch: 123, loss@min: 0.960744, loss@max: 1.372599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.792152, LT: 1.780491, Top1S: 70.151131, Top1T: 70.105789 +Train:epoch: 124, loss@min: 0.969004, loss@max: 1.376753, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 124, LS: 1.792409, LT: 1.780789, Top1S: 70.176323, Top1T: 70.125938 +Train:epoch: 125, loss@min: 0.955210, loss@max: 1.365370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.791249, LT: 1.779675, Top1S: 70.090675, Top1T: 70.055412 +Train:epoch: 126, loss@min: 0.997517, loss@max: 1.392860, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 126, LS: 1.790823, LT: 1.779200, Top1S: 70.085640, Top1T: 70.065491 +Train:epoch: 127, loss@min: 0.951322, loss@max: 1.364975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.790117, LT: 1.778475, Top1S: 70.085640, Top1T: 70.110832 +Train:epoch: 128, loss@min: 1.040575, loss@max: 1.394798, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 1.789812, LT: 1.778189, Top1S: 70.151131, Top1T: 70.130981 +Train:epoch: 129, loss@min: 0.995559, loss@max: 1.384328, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 129, LS: 1.789255, LT: 1.777726, Top1S: 70.050377, Top1T: 70.085640 +Train:epoch: 130, loss@min: 0.966349, loss@max: 1.375275, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 1.788716, LT: 1.777226, Top1S: 70.125938, Top1T: 70.130981 +Train:epoch: 131, loss@min: 0.969638, loss@max: 1.375856, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 131, LS: 1.788522, LT: 1.777007, Top1S: 70.141052, Top1T: 70.181358 +Train:epoch: 132, loss@min: 0.969176, loss@max: 1.375086, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 132, LS: 1.789713, LT: 1.778197, Top1S: 70.100754, Top1T: 70.120903 +Train:epoch: 133, loss@min: 1.019782, loss@max: 1.391644, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 133, LS: 1.790351, LT: 1.778824, Top1S: 70.040298, Top1T: 70.105789 +Train:epoch: 134, loss@min: 0.967483, loss@max: 1.369665, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 134, LS: 1.790308, LT: 1.778769, Top1S: 70.065491, Top1T: 70.166245 +Train:epoch: 135, loss@min: 0.957691, loss@max: 1.367736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.790036, LT: 1.778523, Top1S: 70.095718, Top1T: 70.161209 +Train:epoch: 136, loss@min: 0.953415, loss@max: 1.368636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.789849, LT: 1.778338, Top1S: 70.110832, Top1T: 70.196472 +Train:epoch: 137, loss@min: 0.969046, loss@max: 1.378107, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 137, LS: 1.790171, LT: 1.778654, Top1S: 70.171280, Top1T: 70.166245 +Train:epoch: 138, loss@min: 0.964684, loss@max: 1.374736, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 1.790407, LT: 1.778898, Top1S: 70.115868, Top1T: 70.166245 +Train:epoch: 139, loss@min: 0.990728, loss@max: 1.381403, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 139, LS: 1.790804, LT: 1.779295, Top1S: 70.090675, Top1T: 70.136017 +Train:epoch: 140, loss@min: 0.952383, loss@max: 1.364232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.790797, LT: 1.779286, Top1S: 70.095718, Top1T: 70.125938 +Train:epoch: 141, loss@min: 0.952004, loss@max: 1.365474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.790660, LT: 1.779154, Top1S: 70.080605, Top1T: 70.110832 +Train:epoch: 142, loss@min: 0.998864, loss@max: 1.385020, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 142, LS: 1.790696, LT: 1.779198, Top1S: 70.100754, Top1T: 70.136017 +Train:epoch: 143, loss@min: 0.966130, loss@max: 1.377012, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 1.790828, LT: 1.779327, Top1S: 70.105789, Top1T: 70.141052 +Train:epoch: 144, loss@min: 0.965595, loss@max: 1.371956, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 144, LS: 1.790767, LT: 1.779264, Top1S: 70.105789, Top1T: 70.146095 +Train:epoch: 145, loss@min: 0.979665, loss@max: 1.385320, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 145, LS: 1.790754, LT: 1.779247, Top1S: 70.105789, Top1T: 70.151131 +Train:epoch: 146, loss@min: 0.980289, loss@max: 1.378495, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 146, LS: 1.790801, LT: 1.779294, Top1S: 70.095718, Top1T: 70.130981 +Train:epoch: 147, loss@min: 0.962135, loss@max: 1.370516, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 147, LS: 1.790818, LT: 1.779311, Top1S: 70.100754, Top1T: 70.130981 +Train:epoch: 148, loss@min: 0.963274, loss@max: 1.368482, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 1.790803, LT: 1.779297, Top1S: 70.105789, Top1T: 70.130981 +Train:epoch: 149, loss@min: 0.958352, loss@max: 1.370685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.790805, LT: 1.779299, Top1S: 70.105789, Top1T: 70.130981 +Train:epoch: 150, loss@min: 0.961914, loss@max: 1.370517, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 150, LS: 1.790804, LT: 1.779298, Top1S: 70.110832, Top1T: 70.130981 +------------------------------------------- +Sat Aug 12 02:32:20 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 12 21:40:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.872485, loss@max: 0.831481, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 2, loss@min: 2.189643, loss@max: 0.928157, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 3, loss@min: 1.836577, loss@max: 0.857118, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.763312, loss@max: 0.856287, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 5, loss@min: 1.625780, loss@max: 0.837860, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 1.491292, loss@max: 0.821991, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 1.454006, loss@max: 0.827754, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.483353, loss@max: 0.852580, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 1.338515, loss@max: 0.834571, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 1.279408, loss@max: 0.835596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.310679, loss@max: 0.860518, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.276242, loss@max: 0.867275, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 1.325518, loss@max: 0.893369, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 14, loss@min: 1.279367, loss@max: 0.898987, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 1.164972, loss@max: 0.881048, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 1.213702, loss@max: 0.911702, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.161777, loss@max: 0.911528, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.138258, loss@max: 0.922724, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.116309, loss@max: 0.927876, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.097151, loss@max: 0.936404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.093372, loss@max: 0.945970, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.091244, loss@max: 0.956034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.036194, loss@max: 0.950162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.079184, loss@max: 0.973253, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 1.011680, loss@max: 0.965499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.023665, loss@max: 0.977763, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 27, loss@min: 0.976573, loss@max: 0.975895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.013429, loss@max: 0.992943, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.957373, loss@max: 0.988919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.983271, loss@max: 1.000135, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 31, loss@min: 0.990031, loss@max: 1.006657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.947395, loss@max: 1.003390, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Aug 12 21:40:56 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.872485, loss@max: 0.831481, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 2, loss@min: 2.189643, loss@max: 0.928157, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 3, loss@min: 1.836577, loss@max: 0.857118, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.763312, loss@max: 0.856287, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 5, loss@min: 1.625780, loss@max: 0.837860, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 1.491292, loss@max: 0.821991, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 1.454006, loss@max: 0.827754, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.483353, loss@max: 0.852580, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 1.338515, loss@max: 0.834571, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 1.279408, loss@max: 0.835596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.310679, loss@max: 0.860518, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.276242, loss@max: 0.867275, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 1.325518, loss@max: 0.893369, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 14, loss@min: 1.279367, loss@max: 0.898987, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 1.164972, loss@max: 0.881048, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 1.213702, loss@max: 0.911702, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.161777, loss@max: 0.911528, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.138258, loss@max: 0.922724, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.116309, loss@max: 0.927876, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.097151, loss@max: 0.936404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.093372, loss@max: 0.945970, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.091244, loss@max: 0.956034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.036194, loss@max: 0.950162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.079184, loss@max: 0.973253, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 1.011680, loss@max: 0.965499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.023665, loss@max: 0.977763, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 27, loss@min: 0.976573, loss@max: 0.975895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.013429, loss@max: 0.992943, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.957373, loss@max: 0.988919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.983271, loss@max: 1.000135, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 31, loss@min: 0.990031, loss@max: 1.006657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.947395, loss@max: 1.003390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.954045, loss@max: 1.014662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.937099, loss@max: 1.012523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.952221, loss@max: 1.024518, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.946640, loss@max: 1.030541, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.916585, loss@max: 1.024958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.906234, loss@max: 1.029974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.920382, loss@max: 1.039330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.928712, loss@max: 1.046030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.997430, loss@max: 1.069404, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.888988, loss@max: 1.044565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.908807, loss@max: 1.053203, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.884778, loss@max: 1.049269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.877487, loss@max: 1.058024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.897410, loss@max: 1.064207, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.863348, loss@max: 1.060478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.870072, loss@max: 1.063245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.869346, loss@max: 1.065793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.854149, loss@max: 1.068106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.885770, loss@max: 1.074309, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.884816, loss@max: 1.076030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.849997, loss@max: 1.071269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.864759, loss@max: 1.077465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.875751, loss@max: 1.085275, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.846422, loss@max: 1.077989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.846108, loss@max: 1.079637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.880203, loss@max: 1.090898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.846975, loss@max: 1.080904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.846992, loss@max: 1.080386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.840286, loss@max: 1.083942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.849336, loss@max: 1.082068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.836467, loss@max: 1.084240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.836054, loss@max: 1.086961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.835853, loss@max: 1.085779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.895087, loss@max: 1.104145, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.836111, loss@max: 1.090020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.830918, loss@max: 1.087921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.843414, loss@max: 1.091877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.842141, loss@max: 1.086350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.839675, loss@max: 1.091471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.856343, loss@max: 1.097418, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.829059, loss@max: 1.088201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.828882, loss@max: 1.088391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.834599, loss@max: 1.093752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.833295, loss@max: 1.090743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.825275, loss@max: 1.089823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.826337, loss@max: 1.091777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.826164, loss@max: 1.089747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.834157, loss@max: 1.094298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.827903, loss@max: 1.088818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.824903, loss@max: 1.091488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.822402, loss@max: 1.091450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.822460, loss@max: 1.091639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.827162, loss@max: 1.089121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.832328, loss@max: 1.089849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.840468, loss@max: 1.092402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.829962, loss@max: 1.090356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.841078, loss@max: 1.097291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.848518, loss@max: 1.094832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.827559, loss@max: 1.090158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.826712, loss@max: 1.092409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.822706, loss@max: 1.093467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.835643, loss@max: 1.096889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.831765, loss@max: 1.097261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.831105, loss@max: 1.096154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.824703, loss@max: 1.092810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.844381, loss@max: 1.100812, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.825846, loss@max: 1.091254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.823167, loss@max: 1.094655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.424607, LT: 0.422392, Top1S: 88.884384, Top1T: 88.965515Best acc: 88.965515 +Train:epoch: 101, loss@min: 0.821206, loss@max: 1.096300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.424709, LT: 0.422494, Top1S: 88.803246, Top1T: 89.006088Best acc: 89.006088 +Train:epoch: 102, loss@min: 0.821011, loss@max: 1.092654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.424799, LT: 0.422582, Top1S: 88.762680, Top1T: 89.006088 +Train:epoch: 103, loss@min: 0.821746, loss@max: 1.093213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.424876, LT: 0.422663, Top1S: 88.762680, Top1T: 89.046654Best acc: 89.046654 +Train:epoch: 104, loss@min: 0.829479, loss@max: 1.095605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.424938, LT: 0.422725, Top1S: 88.722107, Top1T: 89.046654 +Train:epoch: 105, loss@min: 0.819557, loss@max: 1.095839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.425000, LT: 0.422790, Top1S: 88.681541, Top1T: 89.046654 +Train:epoch: 106, loss@min: 0.824808, loss@max: 1.094758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.425061, LT: 0.422859, Top1S: 88.681541, Top1T: 89.046654 +Train:epoch: 107, loss@min: 0.820781, loss@max: 1.093549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.425118, LT: 0.422924, Top1S: 88.681541, Top1T: 89.046654 +Train:epoch: 108, loss@min: 0.822297, loss@max: 1.094384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.425170, LT: 0.422987, Top1S: 88.640976, Top1T: 89.087219Best acc: 89.087219 +Train:epoch: 109, loss@min: 0.827555, loss@max: 1.094346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.425220, LT: 0.423048, Top1S: 88.640976, Top1T: 89.087219 +Train:epoch: 110, loss@min: 0.824490, loss@max: 1.096213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.425262, LT: 0.423094, Top1S: 88.681541, Top1T: 89.046654 +Train:epoch: 111, loss@min: 0.823728, loss@max: 1.094981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.425286, LT: 0.423118, Top1S: 88.681541, Top1T: 89.006088 +Train:epoch: 112, loss@min: 0.827257, loss@max: 1.090926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.425304, LT: 0.423137, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 113, loss@min: 0.820666, loss@max: 1.094615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.425323, LT: 0.423155, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 114, loss@min: 0.823208, loss@max: 1.094566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.425319, LT: 0.423150, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 115, loss@min: 0.822239, loss@max: 1.093531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.425302, LT: 0.423134, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 116, loss@min: 0.828149, loss@max: 1.096942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.425299, LT: 0.423131, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 117, loss@min: 0.826505, loss@max: 1.095528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.425305, LT: 0.423136, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 118, loss@min: 0.819557, loss@max: 1.095982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.425315, LT: 0.423144, Top1S: 88.722107, Top1T: 88.965515 +Train:epoch: 119, loss@min: 0.823508, loss@max: 1.091961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.425320, LT: 0.423149, Top1S: 88.722107, Top1T: 88.965515 +Train:epoch: 120, loss@min: 0.858205, loss@max: 1.100971, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 120, LS: 0.425328, LT: 0.423152, Top1S: 88.722107, Top1T: 88.965515 +Train:epoch: 121, loss@min: 0.854077, loss@max: 1.101099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.425279, LT: 0.423103, Top1S: 88.681541, Top1T: 88.965515 +Train:epoch: 122, loss@min: 0.825999, loss@max: 1.091803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.425235, LT: 0.423059, Top1S: 88.722107, Top1T: 88.924950 +Train:epoch: 123, loss@min: 0.819747, loss@max: 1.096556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.425192, LT: 0.423017, Top1S: 88.722107, Top1T: 88.924950 +Train:epoch: 124, loss@min: 0.820682, loss@max: 1.095573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.425151, LT: 0.422976, Top1S: 88.722107, Top1T: 88.924950 +Train:epoch: 125, loss@min: 0.828395, loss@max: 1.092517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.425122, LT: 0.422946, Top1S: 88.722107, Top1T: 88.924950 +Train:epoch: 126, loss@min: 0.826495, loss@max: 1.093833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.425103, LT: 0.422925, Top1S: 88.722107, Top1T: 88.924950 +Train:epoch: 127, loss@min: 0.823700, loss@max: 1.094665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.425085, LT: 0.422907, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 128, loss@min: 0.822272, loss@max: 1.093079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.425074, LT: 0.422896, Top1S: 88.640976, Top1T: 89.006088 +Train:epoch: 129, loss@min: 0.823985, loss@max: 1.094078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.425062, LT: 0.422882, Top1S: 88.640976, Top1T: 89.006088 +Train:epoch: 130, loss@min: 0.822459, loss@max: 1.092360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.425051, LT: 0.422870, Top1S: 88.640976, Top1T: 89.006088 +Train:epoch: 131, loss@min: 0.838900, loss@max: 1.099189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.425065, LT: 0.422882, Top1S: 88.640976, Top1T: 89.006088 +Train:epoch: 132, loss@min: 0.826417, loss@max: 1.096631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.425067, LT: 0.422885, Top1S: 88.681541, Top1T: 89.006088 +Train:epoch: 133, loss@min: 0.840546, loss@max: 1.098325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.425069, LT: 0.422885, Top1S: 88.681541, Top1T: 89.006088 +Train:epoch: 134, loss@min: 0.823449, loss@max: 1.095610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.425071, LT: 0.422886, Top1S: 88.681541, Top1T: 89.006088 +Train:epoch: 135, loss@min: 0.817927, loss@max: 1.094800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.425073, LT: 0.422888, Top1S: 88.681541, Top1T: 89.006088 +Train:epoch: 136, loss@min: 0.822320, loss@max: 1.093597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.425076, LT: 0.422891, Top1S: 88.681541, Top1T: 89.006088 +Train:epoch: 137, loss@min: 0.824078, loss@max: 1.093716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.425077, LT: 0.422893, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 138, loss@min: 0.818447, loss@max: 1.096306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.425078, LT: 0.422895, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 139, loss@min: 0.828747, loss@max: 1.093354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.425080, LT: 0.422897, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 140, loss@min: 0.827057, loss@max: 1.094695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.425081, LT: 0.422899, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 141, loss@min: 0.834008, loss@max: 1.095225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.425082, LT: 0.422900, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 142, loss@min: 0.823925, loss@max: 1.095684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.425084, LT: 0.422902, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 143, loss@min: 0.818467, loss@max: 1.095902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.425085, LT: 0.422904, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 144, loss@min: 0.833367, loss@max: 1.096111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 145, loss@min: 0.818149, loss@max: 1.094790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 146, loss@min: 0.823092, loss@max: 1.094972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 147, loss@min: 0.817006, loss@max: 1.096275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 148, loss@min: 0.821738, loss@max: 1.093401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 149, loss@min: 0.823482, loss@max: 1.092642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +Train:epoch: 150, loss@min: 0.820499, loss@max: 1.095529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.425086, LT: 0.422905, Top1S: 88.722107, Top1T: 89.006088 +------------------------------------------- +Sat Aug 12 22:07:04 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Aug 12 22:07:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.937665, loss@max: 1.592486, Top1S acc: 100.000000, Top1T acc: 54.591835 +Train:epoch: 2, loss@min: 4.526575, loss@max: 1.500911, Top1S acc: 100.000000, Top1T acc: 51.530613 +Train:epoch: 3, loss@min: 4.019042, loss@max: 1.385025, Top1S acc: 100.000000, Top1T acc: 58.673470 +Train:epoch: 4, loss@min: 4.088395, loss@max: 1.413585, Top1S acc: 100.000000, Top1T acc: 54.591835 +Train:epoch: 5, loss@min: 3.748278, loss@max: 1.340210, Top1S acc: 100.000000, Top1T acc: 59.693878 +Train:epoch: 6, loss@min: 3.720235, loss@max: 1.343437, Top1S acc: 100.000000, Top1T acc: 63.775509 +Train:epoch: 7, loss@min: 3.568907, loss@max: 1.316822, Top1S acc: 100.000000, Top1T acc: 59.183674 +Train:epoch: 8, loss@min: 3.365683, loss@max: 1.276889, Top1S acc: 100.000000, Top1T acc: 64.285713 +Train:epoch: 9, loss@min: 3.327147, loss@max: 1.278439, Top1S acc: 100.000000, Top1T acc: 65.306122 +Train:epoch: 10, loss@min: 3.153346, loss@max: 1.245447, Top1S acc: 100.000000, Top1T acc: 64.795921 +Train:epoch: 11, loss@min: 2.944292, loss@max: 1.204878, Top1S acc: 100.000000, Top1T acc: 71.428574 +Train:epoch: 12, loss@min: 3.256197, loss@max: 1.292486, Top1S acc: 100.000000, Top1T acc: 67.346939 +Train:epoch: 13, loss@min: 2.648946, loss@max: 1.150925, Top1S acc: 100.000000, Top1T acc: 75.510201 +Train:epoch: 14, loss@min: 2.561058, loss@max: 1.140373, Top1S acc: 100.000000, Top1T acc: 80.612244 +Train:epoch: 15, loss@min: 2.625761, loss@max: 1.166478, Top1S acc: 100.000000, Top1T acc: 78.061226 +Train:epoch: 16, loss@min: 2.666407, loss@max: 1.188337, Top1S acc: 100.000000, Top1T acc: 78.571426 +Train:epoch: 17, loss@min: 2.411388, loss@max: 1.134341, Top1S acc: 100.000000, Top1T acc: 83.163261 +Train:epoch: 18, loss@min: 2.454330, loss@max: 1.154845, Top1S acc: 100.000000, Top1T acc: 80.102036 +Train:epoch: 19, loss@min: 2.253492, loss@max: 1.115544, Top1S acc: 100.000000, Top1T acc: 82.142853 +Train:epoch: 20, loss@min: 2.271378, loss@max: 1.129796, Top1S acc: 100.000000, Top1T acc: 82.653061 +Train:epoch: 21, loss@min: 2.266209, loss@max: 1.139323, Top1S acc: 100.000000, Top1T acc: 83.163261 +Train:epoch: 22, loss@min: 2.151695, loss@max: 1.119733, Top1S acc: 100.000000, Top1T acc: 87.755096 +Train:epoch: 23, loss@min: 2.096452, loss@max: 1.116021, Top1S acc: 100.000000, Top1T acc: 86.734695 +Train:epoch: 24, loss@min: 2.090775, loss@max: 1.125049, Top1S acc: 100.000000, Top1T acc: 84.183670 +Train:epoch: 25, loss@min: 2.022742, loss@max: 1.114343, Top1S acc: 100.000000, Top1T acc: 86.734695 +Train:epoch: 26, loss@min: 2.080312, loss@max: 1.141633, Top1S acc: 100.000000, Top1T acc: 88.265305 +Train:epoch: 27, loss@min: 1.901601, loss@max: 1.103119, Top1S acc: 100.000000, Top1T acc: 88.775505 +Train:epoch: 28, loss@min: 1.873587, loss@max: 1.106912, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 29, loss@min: 1.888197, loss@max: 1.120208, Top1S acc: 100.000000, Top1T acc: 89.285713 +Train:epoch: 30, loss@min: 1.677353, loss@max: 1.074141, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 31, loss@min: 1.848475, loss@max: 1.126410, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 32, loss@min: 1.722780, loss@max: 1.101668, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 33, loss@min: 1.597756, loss@max: 1.078893, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 34, loss@min: 1.602401, loss@max: 1.088910, Top1S acc: 100.000000, Top1T acc: 94.897957 +Train:epoch: 35, loss@min: 1.598789, loss@max: 1.096763, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 36, loss@min: 1.499656, loss@max: 1.079567, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 37, loss@min: 1.541435, loss@max: 1.094766, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 38, loss@min: 1.453236, loss@max: 1.081564, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 39, loss@min: 1.468542, loss@max: 1.090177, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 40, loss@min: 1.534315, loss@max: 1.112620, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 41, loss@min: 1.381140, loss@max: 1.082889, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 42, loss@min: 1.459696, loss@max: 1.107952, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 43, loss@min: 1.386203, loss@max: 1.099082, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 44, loss@min: 1.311500, loss@max: 1.083738, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 45, loss@min: 1.365904, loss@max: 1.102876, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 46, loss@min: 1.259942, loss@max: 1.083371, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 47, loss@min: 1.324208, loss@max: 1.102160, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 48, loss@min: 1.333434, loss@max: 1.107611, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 49, loss@min: 1.330751, loss@max: 1.114282, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 50, loss@min: 1.243415, loss@max: 1.096256, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 51, loss@min: 1.259603, loss@max: 1.104892, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 52, loss@min: 1.210162, loss@max: 1.094966, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 53, loss@min: 1.308525, loss@max: 1.124286, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 54, loss@min: 1.168646, loss@max: 1.094241, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 55, loss@min: 1.235645, loss@max: 1.113149, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 56, loss@min: 1.303537, loss@max: 1.132277, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 57, loss@min: 1.178954, loss@max: 1.107751, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 58, loss@min: 1.186131, loss@max: 1.112222, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 59, loss@min: 1.199136, loss@max: 1.117457, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 60, loss@min: 1.171260, loss@max: 1.111583, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 61, loss@min: 1.170862, loss@max: 1.113914, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 62, loss@min: 1.127910, loss@max: 1.105599, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 63, loss@min: 1.193511, loss@max: 1.124960, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 64, loss@min: 1.099970, loss@max: 1.103101, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 65, loss@min: 1.084390, loss@max: 1.102107, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 66, loss@min: 1.113359, loss@max: 1.112698, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 67, loss@min: 1.140837, loss@max: 1.120879, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 68, loss@min: 1.093204, loss@max: 1.108635, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 69, loss@min: 1.083199, loss@max: 1.109652, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 70, loss@min: 1.070693, loss@max: 1.108852, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 71, loss@min: 1.079241, loss@max: 1.109550, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 72, loss@min: 1.134694, loss@max: 1.127145, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 73, loss@min: 1.081501, loss@max: 1.113472, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 74, loss@min: 1.062508, loss@max: 1.109128, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 75, loss@min: 1.074270, loss@max: 1.112816, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 76, loss@min: 1.042897, loss@max: 1.108300, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 77, loss@min: 1.087337, loss@max: 1.119163, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 78, loss@min: 1.115221, loss@max: 1.127173, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 79, loss@min: 1.026501, loss@max: 1.106116, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 80, loss@min: 1.075781, loss@max: 1.120154, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 81, loss@min: 1.116497, loss@max: 1.132118, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 82, loss@min: 1.032773, loss@max: 1.110273, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 83, loss@min: 1.023166, loss@max: 1.111118, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 84, loss@min: 1.026610, loss@max: 1.112954, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 85, loss@min: 1.032191, loss@max: 1.114743, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 86, loss@min: 1.051732, loss@max: 1.120347, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 87, loss@min: 1.048427, loss@max: 1.117764, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 88, loss@min: 0.989765, loss@max: 1.104439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.027404, loss@max: 1.113071, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 90, loss@min: 1.001009, loss@max: 1.109200, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 91, loss@min: 0.994385, loss@max: 1.109315, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 92, loss@min: 1.031282, loss@max: 1.119276, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 93, loss@min: 1.044768, loss@max: 1.122950, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 94, loss@min: 1.041217, loss@max: 1.124349, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 95, loss@min: 1.016485, loss@max: 1.114693, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 96, loss@min: 1.026827, loss@max: 1.119503, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 97, loss@min: 1.030358, loss@max: 1.120177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.025307, loss@max: 1.117876, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 99, loss@min: 0.975021, loss@max: 1.106375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.019495, loss@max: 1.119655, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 100, LS: 1.536949, LT: 1.536187, Top1S: 57.865940, Top1T: 57.940556Best acc: 57.940556 +Train:epoch: 101, loss@min: 1.020345, loss@max: 1.119997, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 101, LS: 1.536981, LT: 1.536222, Top1S: 57.915684, Top1T: 57.890812 +Train:epoch: 102, loss@min: 0.989367, loss@max: 1.109610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.536885, LT: 1.536137, Top1S: 57.890812, Top1T: 57.841068 +Train:epoch: 103, loss@min: 1.056017, loss@max: 1.128667, Top1S acc: 100.000000, Top1T acc: 98.469383 + Test:epoch: 103, LS: 1.536941, LT: 1.536200, Top1S: 57.803757, Top1T: 57.816193 +Train:epoch: 104, loss@min: 1.014667, loss@max: 1.118496, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 104, LS: 1.537046, LT: 1.536328, Top1S: 57.729141, Top1T: 57.803757 +Train:epoch: 105, loss@min: 1.000157, loss@max: 1.113769, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 105, LS: 1.536698, LT: 1.536013, Top1S: 57.716705, Top1T: 57.853504 +Train:epoch: 106, loss@min: 1.057699, loss@max: 1.130273, Top1S acc: 100.000000, Top1T acc: 97.959183 + Test:epoch: 106, LS: 1.536584, LT: 1.535902, Top1S: 57.666958, Top1T: 57.928120 +Train:epoch: 107, loss@min: 0.988808, loss@max: 1.113344, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 107, LS: 1.536650, LT: 1.535971, Top1S: 57.704269, Top1T: 57.940556 +Train:epoch: 108, loss@min: 0.974032, loss@max: 1.108378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.536726, LT: 1.536052, Top1S: 57.691833, Top1T: 57.915684 +Train:epoch: 109, loss@min: 1.026740, loss@max: 1.125016, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 109, LS: 1.536437, LT: 1.535757, Top1S: 57.666958, Top1T: 57.940556 +Train:epoch: 110, loss@min: 0.988990, loss@max: 1.114250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.536109, LT: 1.535432, Top1S: 57.704269, Top1T: 57.977867Best acc: 57.977867 +Train:epoch: 111, loss@min: 0.975687, loss@max: 1.109435, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 111, LS: 1.536240, LT: 1.535558, Top1S: 57.704269, Top1T: 58.015175Best acc: 58.015175 +Train:epoch: 112, loss@min: 0.974235, loss@max: 1.108683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.536477, LT: 1.535788, Top1S: 57.679394, Top1T: 58.015175 +Train:epoch: 113, loss@min: 1.025920, loss@max: 1.123087, Top1S acc: 100.000000, Top1T acc: 98.469383 + Test:epoch: 113, LS: 1.536840, LT: 1.536150, Top1S: 57.654522, Top1T: 58.027611Best acc: 58.027611 +Train:epoch: 114, loss@min: 1.022490, loss@max: 1.121501, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 114, LS: 1.537096, LT: 1.536406, Top1S: 57.704269, Top1T: 57.977867 +Train:epoch: 115, loss@min: 0.963558, loss@max: 1.106726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.537294, LT: 1.536608, Top1S: 57.666958, Top1T: 57.915684 +Train:epoch: 116, loss@min: 0.961804, loss@max: 1.110168, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 116, LS: 1.537498, LT: 1.536825, Top1S: 57.691833, Top1T: 57.928120 +Train:epoch: 117, loss@min: 0.982994, loss@max: 1.109900, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 117, LS: 1.537833, LT: 1.537178, Top1S: 57.729141, Top1T: 57.903248 +Train:epoch: 118, loss@min: 0.966147, loss@max: 1.108193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.538137, LT: 1.537495, Top1S: 57.704269, Top1T: 57.865940 +Train:epoch: 119, loss@min: 0.983616, loss@max: 1.111858, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 119, LS: 1.538570, LT: 1.537934, Top1S: 57.741577, Top1T: 57.878376 +Train:epoch: 120, loss@min: 1.019950, loss@max: 1.121255, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 120, LS: 1.538897, LT: 1.538260, Top1S: 57.716705, Top1T: 57.853504 +Train:epoch: 121, loss@min: 1.015651, loss@max: 1.121245, Top1S acc: 100.000000, Top1T acc: 99.489792{"dataset_dir": "G:\\\\datasets", "dataset_name": "fgvc", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 12 22:58:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.876001, loss@max: 2.640821, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 2, loss@min: 8.667545, loss@max: 2.664422, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 3, loss@min: 7.822905, loss@max: 2.526647, Top1S acc: 100.000000, Top1T acc: 22.000000 +Train:epoch: 4, loss@min: 7.125249, loss@max: 2.416832, Top1S acc: 100.000000, Top1T acc: 38.000000 +Train:epoch: 5, loss@min: 6.781837, loss@max: 2.391683, Top1S acc: 100.000000, Top1T acc: 37.000000 +Train:epoch: 6, loss@min: 6.028871, loss@max: 2.259712, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 7, loss@min: 6.152672, loss@max: 2.338438, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 8, loss@min: 5.821994, loss@max: 2.295128, Top1S acc: 100.000000, Top1T acc: 47.000000 +Train:epoch: 9, loss@min: 5.235972, loss@max: 2.193000, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 10, loss@min: 4.967570, loss@max: 2.155053, Top1S acc: 100.000000, Top1T acc: 59.000000 +Train:epoch: 11, loss@min: 4.641906, loss@max: 2.098579, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 12, loss@min: 4.283874, loss@max: 2.033613, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 13, loss@min: 4.061750, loss@max: 1.998134, Top1S acc: 100.000000, Top1T acc: 69.000000 +Train:epoch: 14, loss@min: 3.939459, loss@max: 1.977550, Top1S acc: 100.000000, Top1T acc: 72.000000 +Train:epoch: 15, loss@min: 3.509377, loss@max: 1.875532, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 16, loss@min: 3.315491, loss@max: 1.833361, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 17, loss@min: 3.345069, loss@max: 1.844493, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 18, loss@min: 3.097669, loss@max: 1.784342, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 19, loss@min: 2.951222, loss@max: 1.742040, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 20, loss@min: 2.636529, loss@max: 1.663281, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 21, loss@min: 2.533680, loss@max: 1.639817, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 2.593458, loss@max: 1.644255, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 23, loss@min: 2.498055, loss@max: 1.615087, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 24, loss@min: 2.437153, loss@max: 1.600886, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 25, loss@min: 2.232217, loss@max: 1.550567, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 26, loss@min: 2.089117, loss@max: 1.507177, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 27, loss@min: 1.894801, loss@max: 1.455236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 2.057384, loss@max: 1.495843, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 29, loss@min: 1.872530, loss@max: 1.443423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.880371, loss@max: 1.438347, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 31, loss@min: 1.814825, loss@max: 1.419170, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.825476, loss@max: 1.420509, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 33, loss@min: 1.720511, loss@max: 1.389891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.794082, loss@max: 1.404881, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 35, loss@min: 1.834099, loss@max: 1.410768, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 36, loss@min: 1.679504, loss@max: 1.368680, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.604152, loss@max: 1.348608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.695920, loss@max: 1.369714, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 39, loss@min: 1.633411, loss@max: 1.345907, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.582213, loss@max: 1.339899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.686340, loss@max: 1.358183, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 42, loss@min: 1.557516, loss@max: 1.322875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.546951, loss@max: 1.313068, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 1.597384, loss@max: 1.322846, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 45, loss@min: 1.512729, loss@max: 1.299537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.495268, loss@max: 1.299238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.506002, loss@max: 1.297399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.504857, loss@max: 1.304548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.507866, loss@max: 1.299477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.501190, loss@max: 1.302856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.469460, loss@max: 1.292541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.462378, loss@max: 1.292541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.498521, loss@max: 1.299641, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 54, loss@min: 1.452235, loss@max: 1.292902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.451361, loss@max: 1.290401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.599662, loss@max: 1.334393, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.417617, loss@max: 1.289349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.431060, loss@max: 1.291299, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 59, loss@min: 1.423794, loss@max: 1.299281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.415705, loss@max: 1.296164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.435993, loss@max: 1.301592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.431802, loss@max: 1.302669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.442425, loss@max: 1.298513, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 64, loss@min: 1.431635, loss@max: 1.299668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.382019, loss@max: 1.290753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.398236, loss@max: 1.289220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.368722, loss@max: 1.291249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.420565, loss@max: 1.294665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.393430, loss@max: 1.289563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.369311, loss@max: 1.285437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.371473, loss@max: 1.292531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.353199, loss@max: 1.287567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.377514, loss@max: 1.292905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.359205, loss@max: 1.284810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.362357, loss@max: 1.289261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.348597, loss@max: 1.290786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.339748, loss@max: 1.283308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.352865, loss@max: 1.284902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.341630, loss@max: 1.282834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.351631, loss@max: 1.286278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 3.984467, LT: 3.982340, Top1S: 21.632162, Top1T: 22.202219Best acc: 22.202219 +Train:epoch: 81, loss@min: 1.348447, loss@max: 1.280129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 3.984026, LT: 3.983376, Top1S: 21.602160, Top1T: 22.142214 +Train:epoch: 82, loss@min: 1.341882, loss@max: 1.280084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 3.984869, LT: 3.984701, Top1S: 21.692169, Top1T: 22.052204 +Train:epoch: 83, loss@min: 1.347704, loss@max: 1.285189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 3.986642, LT: 3.986704, Top1S: 21.542154, Top1T: 21.932192 +Train:epoch: 84, loss@min: 1.347987, loss@max: 1.284631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 3.988009, LT: 3.988228, Top1S: 21.662165, Top1T: 21.842184 +Train:epoch: 85, loss@min: 1.330244, loss@max: 1.287577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 3.989862, LT: 3.989983, Top1S: 21.782177, Top1T: 21.842184 +Train:epoch: 86, loss@min: 1.318493, loss@max: 1.286890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 3.992660, LT: 3.992308, Top1S: 21.812180, Top1T: 21.932192 +Train:epoch: 87, loss@min: 1.335039, loss@max: 1.285112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 3.995560, LT: 3.994848, Top1S: 21.752174, Top1T: 22.052204 +Train:epoch: 88, loss@min: 1.331422, loss@max: 1.280766, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sat Aug 12 23:11:07 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.320891, loss@max: 1.541328, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.750659, loss@max: 1.498097, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.970868, loss@max: 1.383729, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.785155, loss@max: 1.408201, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.264625, loss@max: 1.333913, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.098012, loss@max: 1.348796, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.022546, loss@max: 1.371063, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.643119, loss@max: 1.315180, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.238517, loss@max: 1.246159, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.335711, loss@max: 1.297711, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.339996, loss@max: 1.318550, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.170674, loss@max: 1.293977, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 0.999943, loss@max: 1.259883, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.932989, loss@max: 1.245325, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.024195, loss@max: 1.258190, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.954833, loss@max: 1.230507, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 0.954484, loss@max: 1.218184, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 0.931603, loss@max: 1.204854, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.852004, loss@max: 1.170027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.938063, loss@max: 1.176984, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.850933, loss@max: 1.146179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.850320, loss@max: 1.133206, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.869326, loss@max: 1.129144, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 0.924958, loss@max: 1.141872, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.841763, loss@max: 1.112938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.862788, loss@max: 1.117314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.893345, loss@max: 1.122427, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.898887, loss@max: 1.118532, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 0.919333, loss@max: 1.119452, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.851317, loss@max: 1.103007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.896600, loss@max: 1.109140, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.836487, loss@max: 1.096309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.840503, loss@max: 1.095866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.860731, loss@max: 1.097949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.857187, loss@max: 1.097456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.872848, loss@max: 1.103681, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.850528, loss@max: 1.094385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.835403, loss@max: 1.095130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.837584, loss@max: 1.098431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.824028, loss@max: 1.103258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.831061, loss@max: 1.102875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.847646, loss@max: 1.107407, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.834914, loss@max: 1.098635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.833870, loss@max: 1.100880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.887824, loss@max: 1.116925, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.829844, loss@max: 1.097781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.921379, loss@max: 1.124582, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.827542, loss@max: 1.099702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.823058, loss@max: 1.103642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.819596, loss@max: 1.106080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.830545, loss@max: 1.106790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.817956, loss@max: 1.109783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.815515, loss@max: 1.107490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.823035, loss@max: 1.107264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.818769, loss@max: 1.103622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.816326, loss@max: 1.105456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.818551, loss@max: 1.107191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.816078, loss@max: 1.106579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.843029, loss@max: 1.106436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.829704, loss@max: 1.101842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.821686, loss@max: 1.099431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.824971, loss@max: 1.097692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.831164, loss@max: 1.103368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.823605, loss@max: 1.100431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.824099, loss@max: 1.096421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.816633, loss@max: 1.105265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.821286, loss@max: 1.103422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.817705, loss@max: 1.101927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.826145, loss@max: 1.101793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.829555, loss@max: 1.108651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.822218, loss@max: 1.102446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.822453, loss@max: 1.101313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.827385, loss@max: 1.102696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.882447, loss@max: 1.115063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.831653, loss@max: 1.097433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.835064, loss@max: 1.101995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.844956, loss@max: 1.105908, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 78, loss@min: 0.820491, loss@max: 1.099918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.830265, loss@max: 1.104274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.814531, loss@max: 1.105371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.418935, LT: 1.411714, Top1S: 66.508057, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 81, loss@min: 0.821127, loss@max: 1.105526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.418801, LT: 1.411726, Top1S: 66.481628, Top1T: 66.640228 +Train:epoch: 82, loss@min: 0.820886, loss@max: 1.104512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.418599, LT: 1.411626, Top1S: 66.481628, Top1T: 66.666664 +Train:epoch: 83, loss@min: 0.811624, loss@max: 1.105859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.418472, LT: 1.411554, Top1S: 66.402321, Top1T: 66.666664 +Train:epoch: 84, loss@min: 0.823407, loss@max: 1.103609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.418501, LT: 1.411404, Top1S: 66.428757, Top1T: 66.640228 +Train:epoch: 85, loss@min: 0.817164, loss@max: 1.104789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.418613, LT: 1.411330, Top1S: 66.455193, Top1T: 66.693100Best acc: 66.693100 +Train:epoch: 86, loss@min: 0.859987, loss@max: 1.109575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.418524, LT: 1.411180, Top1S: 66.534492, Top1T: 66.745964Best acc: 66.745964 +Train:epoch: 87, loss@min: 0.820888, loss@max: 1.100727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.418437, LT: 1.410957, Top1S: 66.534492, Top1T: 66.719528 +Train:epoch: 88, loss@min: 0.820713, loss@max: 1.097598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.418345, LT: 1.410781, Top1S: 66.560928, Top1T: 66.693100 +Train:epoch: 89, loss@min: 0.822763, loss@max: 1.101178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.418192, LT: 1.410679, Top1S: 66.587364, Top1T: 66.666664 +Train:epoch: 90, loss@min: 0.889219, loss@max: 1.117503, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.418463, LT: 1.411015, Top1S: 66.613792, Top1T: 66.772400Best acc: 66.772400 +Train:epoch: 91, loss@min: 0.817430, loss@max: 1.098293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.418799, LT: 1.411317, Top1S: 66.534492, Top1T: 66.745964 +Train:epoch: 92, loss@min: 0.821751, loss@max: 1.098197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.419149, LT: 1.411633, Top1S: 66.534492, Top1T: 66.772400 +Train:epoch: 93, loss@min: 0.827453, loss@max: 1.103510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.419321, LT: 1.411901, Top1S: 66.560928, Top1T: 66.745964 +Train:epoch: 94, loss@min: 0.820727, loss@max: 1.100884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.419508, LT: 1.412297, Top1S: 66.560928, Top1T: 66.719528 +Train:epoch: 95, loss@min: 0.819692, loss@max: 1.099272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.419729, LT: 1.412718, Top1S: 66.534492, Top1T: 66.640228 +Train:epoch: 96, loss@min: 0.827093, loss@max: 1.101966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.419990, LT: 1.413111, Top1S: 66.481628, Top1T: 66.560928 +Train:epoch: 97, loss@min: 0.822142, loss@max: 1.102011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.420151, LT: 1.413371, Top1S: 66.534492, Top1T: 66.534492 +Train:epoch: 98, loss@min: 0.818838, loss@max: 1.100682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.420368, LT: 1.413577, Top1S: 66.534492, Top1T: 66.481628 +Train:epoch: 99, loss@min: 0.823426, loss@max: 1.101327, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "food101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Aug 12 23:26:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.097069, loss@max: 1.307315, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 2, loss@min: 2.288568, loss@max: 1.238371, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 3, loss@min: 1.840856, loss@max: 1.226545, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 4, loss@min: 1.687557, loss@max: 1.251554, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 5, loss@min: 1.236600, loss@max: 1.183032, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 6, loss@min: 1.084603, loss@max: 1.193794, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 7, loss@min: 1.094519, loss@max: 1.230499, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 8, loss@min: 1.308342, loss@max: 1.324415, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 9, loss@min: 1.060321, loss@max: 1.283336, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 10, loss@min: 0.904613, loss@max: 1.268330, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 11, loss@min: 0.874640, loss@max: 1.260773, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 12, loss@min: 0.774322, loss@max: 1.222949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.823857, loss@max: 1.216721, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 14, loss@min: 0.829410, loss@max: 1.198568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.843113, loss@max: 1.173630, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.940701, loss@max: 1.176740, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 17, loss@min: 0.832169, loss@max: 1.124576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.845677, loss@max: 1.118032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.857508, loss@max: 1.115603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.856656, loss@max: 1.110681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.836322, loss@max: 1.107409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.850558, loss@max: 1.110636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.824119, loss@max: 1.104312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.832007, loss@max: 1.102557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.823840, loss@max: 1.102890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.846021, loss@max: 1.106003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.820233, loss@max: 1.102363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.843754, loss@max: 1.111576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.818952, loss@max: 1.105320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.825634, loss@max: 1.106671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.825848, loss@max: 1.106277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.823069, loss@max: 1.104879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.816503, loss@max: 1.101299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.819654, loss@max: 1.103724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.825744, loss@max: 1.096403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.825779, loss@max: 1.093867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.831448, loss@max: 1.100206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.825018, loss@max: 1.094858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.822499, loss@max: 1.098117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.822079, loss@max: 1.100911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.812971, loss@max: 1.103780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.814337, loss@max: 1.101700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.830866, loss@max: 1.103123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.849904, loss@max: 1.112177, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 45, loss@min: 0.824764, loss@max: 1.098267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.818745, loss@max: 1.098202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.815655, loss@max: 1.097249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.817334, loss@max: 1.099531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.810164, loss@max: 1.106766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.811538, loss@max: 1.105886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.814549, loss@max: 1.103440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.812790, loss@max: 1.103770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.816738, loss@max: 1.103357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.814737, loss@max: 1.101351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.818028, loss@max: 1.098987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.827551, loss@max: 1.097128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.816517, loss@max: 1.100571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.816165, loss@max: 1.097328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.813590, loss@max: 1.100711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.815665, loss@max: 1.100556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.815812, loss@max: 1.098624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.814481, loss@max: 1.100385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.814150, loss@max: 1.100370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.817273, loss@max: 1.100045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.818933, loss@max: 1.096554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.816216, loss@max: 1.100483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.813620, loss@max: 1.102618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.815721, loss@max: 1.101063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.811700, loss@max: 1.102422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.812376, loss@max: 1.101637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.814227, loss@max: 1.102242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.812394, loss@max: 1.100844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.812961, loss@max: 1.099972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.822012, loss@max: 1.100064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.813253, loss@max: 1.099742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.813035, loss@max: 1.099427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.814252, loss@max: 1.099716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.818336, loss@max: 1.102215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.811290, loss@max: 1.101679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.815404, loss@max: 1.098984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.817727, loss@max: 1.096907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.815937, loss@max: 1.097926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.820188, loss@max: 1.097106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.814072, loss@max: 1.099693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.816214, loss@max: 1.102229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.812351, loss@max: 1.099794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.817294, loss@max: 1.101609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.814880, loss@max: 1.102732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.814995, loss@max: 1.101835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.816132, loss@max: 1.096121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.819961, loss@max: 1.096769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.815301, loss@max: 1.098224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.813153, loss@max: 1.098541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.812554, loss@max: 1.099869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.815489, loss@max: 1.101037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.811996, loss@max: 1.100913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.811676, loss@max: 1.100416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.811891, loss@max: 1.101983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.812811, loss@max: 1.099396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.822277, loss@max: 1.100336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.266398, LT: 1.283548, Top1S: 75.165016, Top1T: 74.871284Best acc: 75.165016 +Train:epoch: 101, loss@min: 0.811671, loss@max: 1.100660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.265992, LT: 1.283079, Top1S: 75.165016, Top1T: 74.881187 +Train:epoch: 102, loss@min: 0.811480, loss@max: 1.102068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.265609, LT: 1.282658, Top1S: 75.165016, Top1T: 74.874588 +Train:epoch: 103, loss@min: 0.813349, loss@max: 1.099391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.265299, LT: 1.282310, Top1S: 75.181519, Top1T: 74.877884Best acc: 75.181519 +Train:epoch: 104, loss@min: 0.813143, loss@max: 1.099176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.265080, LT: 1.282024, Top1S: 75.194717, Top1T: 74.881187Best acc: 75.194717 +Train:epoch: 105, loss@min: 0.813876, loss@max: 1.098312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.264893, LT: 1.281778, Top1S: 75.211220, Top1T: 74.881187Best acc: 75.211220 +Train:epoch: 106, loss@min: 0.816122, loss@max: 1.098859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.264708, LT: 1.281591, Top1S: 75.211220, Top1T: 74.874588 +Train:epoch: 107, loss@min: 0.815909, loss@max: 1.096733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.264601, LT: 1.281465, Top1S: 75.217819, Top1T: 74.881187Best acc: 75.217819 +Train:epoch: 108, loss@min: 0.814711, loss@max: 1.098297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.264499, LT: 1.281340, Top1S: 75.231026, Top1T: 74.891090Best acc: 75.231026 +Train:epoch: 109, loss@min: 0.814302, loss@max: 1.097923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.264395, LT: 1.281200, Top1S: 75.234322, Top1T: 74.887787Best acc: 75.234322 +Train:epoch: 110, loss@min: 0.815219, loss@max: 1.096937, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 00:37:37 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.954146, loss@max: 1.710651, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.267743, loss@max: 1.654415, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.768612, loss@max: 1.628484, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.475614, loss@max: 1.633874, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 5, loss@min: 3.117010, loss@max: 1.607658, Top1S acc: 100.000000, Top1T acc: 72.549019 +Train:epoch: 6, loss@min: 2.849251, loss@max: 1.592291, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.562242, loss@max: 1.558939, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.257465, loss@max: 1.515404, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 9, loss@min: 2.017146, loss@max: 1.470755, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.791441, loss@max: 1.433669, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.768795, loss@max: 1.437533, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.775291, loss@max: 1.441549, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.591810, loss@max: 1.393455, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.455898, loss@max: 1.352425, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 15, loss@min: 1.268486, loss@max: 1.302769, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 16, loss@min: 1.348943, loss@max: 1.316873, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 17, loss@min: 1.144459, loss@max: 1.257771, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.110930, loss@max: 1.241478, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.087695, loss@max: 1.231788, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.032429, loss@max: 1.215782, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.017328, loss@max: 1.210923, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 22, loss@min: 0.982151, loss@max: 1.199658, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 23, loss@min: 1.005082, loss@max: 1.194419, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 0.981195, loss@max: 1.188736, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 0.901967, loss@max: 1.163266, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 0.925439, loss@max: 1.164135, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 0.957207, loss@max: 1.163563, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 0.935955, loss@max: 1.149843, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 0.899673, loss@max: 1.134641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.906179, loss@max: 1.127980, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 0.898608, loss@max: 1.115215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.897396, loss@max: 1.119425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.892498, loss@max: 1.111200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.905554, loss@max: 1.112547, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.889280, loss@max: 1.108617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.865542, loss@max: 1.099293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.906441, loss@max: 1.109629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.860239, loss@max: 1.097753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.860948, loss@max: 1.099030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.852796, loss@max: 1.095761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.858878, loss@max: 1.099247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.851718, loss@max: 1.099999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.839078, loss@max: 1.103952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.832824, loss@max: 1.106151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.839239, loss@max: 1.107371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.832038, loss@max: 1.105287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.834942, loss@max: 1.107162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.827350, loss@max: 1.110974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.827451, loss@max: 1.106644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.829589, loss@max: 1.105931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.827285, loss@max: 1.107463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.830011, loss@max: 1.108241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.827981, loss@max: 1.111412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.825842, loss@max: 1.107639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.827985, loss@max: 1.110496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.825932, loss@max: 1.106546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.830921, loss@max: 1.104116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.826489, loss@max: 1.103450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.821639, loss@max: 1.106673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.821121, loss@max: 1.105221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.828789, loss@max: 1.105861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.829642, loss@max: 1.104061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.829671, loss@max: 1.103719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.825666, loss@max: 1.102498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.835458, loss@max: 1.104228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.831789, loss@max: 1.103666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.826336, loss@max: 1.102172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.823007, loss@max: 1.104430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.828977, loss@max: 1.100274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.828000, loss@max: 1.101451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.823527, loss@max: 1.102576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.834376, loss@max: 1.102816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.823407, loss@max: 1.102378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.824922, loss@max: 1.100039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.829435, loss@max: 1.101838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.825983, loss@max: 1.102303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.825843, loss@max: 1.103612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.820210, loss@max: 1.104481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.817708, loss@max: 1.105186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.827380, loss@max: 1.105728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.817981, loss@max: 1.103321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.832805, loss@max: 1.105300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.821869, loss@max: 1.107879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.820008, loss@max: 1.103552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.827297, loss@max: 1.101320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.823174, loss@max: 1.098579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.823293, loss@max: 1.100193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.824511, loss@max: 1.099978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.825501, loss@max: 1.101476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.823713, loss@max: 1.099033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.823725, loss@max: 1.104843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.825731, loss@max: 1.105053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.821129, loss@max: 1.103051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.828924, loss@max: 1.103384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.822142, loss@max: 1.102818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.822179, loss@max: 1.102700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.817636, loss@max: 1.101035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.820543, loss@max: 1.102478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.820421, loss@max: 1.101448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.823522, loss@max: 1.102214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.928268, LT: 0.904945, Top1S: 76.816895, Top1T: 77.263504Best acc: 77.263504 +Train:epoch: 101, loss@min: 0.823781, loss@max: 1.101525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.928063, LT: 0.904763, Top1S: 76.857491, Top1T: 77.263504 +Train:epoch: 102, loss@min: 0.825471, loss@max: 1.101221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.927822, LT: 0.904571, Top1S: 76.857491, Top1T: 77.263504 +Train:epoch: 103, loss@min: 0.819328, loss@max: 1.101800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.927569, LT: 0.904357, Top1S: 76.857491, Top1T: 77.304100Best acc: 77.304100 +Train:epoch: 104, loss@min: 0.822442, loss@max: 1.102463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.927359, LT: 0.904096, Top1S: 76.898094, Top1T: 77.344704Best acc: 77.344704 +Train:epoch: 105, loss@min: 0.820596, loss@max: 1.104621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.927194, LT: 0.903827, Top1S: 76.979294, Top1T: 77.304100 +Train:epoch: 106, loss@min: 0.823307, loss@max: 1.100799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.926943, LT: 0.903519, Top1S: 77.019897, Top1T: 77.344704 +Train:epoch: 107, loss@min: 0.821420, loss@max: 1.099966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.926709, LT: 0.903277, Top1S: 76.979294, Top1T: 77.344704 +Train:epoch: 108, loss@min: 0.821951, loss@max: 1.101411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.926504, LT: 0.903079, Top1S: 77.101097, Top1T: 77.304100 +Train:epoch: 109, loss@min: 0.819409, loss@max: 1.103327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.926359, LT: 0.902922, Top1S: 77.060493, Top1T: 77.304100 +Train:epoch: 110, loss@min: 0.821739, loss@max: 1.101713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.926139, LT: 0.902717, Top1S: 77.060493, Top1T: 77.304100 +Train:epoch: 111, loss@min: 0.822616, loss@max: 1.103723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.925935, LT: 0.902545, Top1S: 76.979294, Top1T: 77.304100 +Train:epoch: 112, loss@min: 0.823955, loss@max: 1.102787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.925748, LT: 0.902396, Top1S: 76.979294, Top1T: 77.304100 +Train:epoch: 113, loss@min: 0.834507, loss@max: 1.105646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.925911, LT: 0.902610, Top1S: 77.019897, Top1T: 77.263504 +Train:epoch: 114, loss@min: 0.820936, loss@max: 1.103772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.925972, LT: 0.902762, Top1S: 77.060493, Top1T: 77.263504 +Train:epoch: 115, loss@min: 0.820352, loss@max: 1.103011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.925991, LT: 0.902889, Top1S: 77.060493, Top1T: 77.385307Best acc: 77.385307 +Train:epoch: 116, loss@min: 0.830590, loss@max: 1.104552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.925941, LT: 0.902919, Top1S: 77.101097, Top1T: 77.385307 +Train:epoch: 117, loss@min: 0.824465, loss@max: 1.102966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.925844, LT: 0.902895, Top1S: 77.101097, Top1T: 77.425903Best acc: 77.425903 +Train:epoch: 118, loss@min: 0.825449, loss@max: 1.104954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.925709, LT: 0.902818, Top1S: 77.101097, Top1T: 77.425903 +Train:epoch: 119, loss@min: 0.824040, loss@max: 1.103773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.925562, LT: 0.902719, Top1S: 77.141701, Top1T: 77.425903 +Train:epoch: 120, loss@min: 0.820584, loss@max: 1.102030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.925525, LT: 0.902695, Top1S: 77.182297, Top1T: 77.425903 +Train:epoch: 121, loss@min: 0.821972, loss@max: 1.102745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.925455, LT: 0.902647, Top1S: 77.182297, Top1T: 77.425903 +Train:epoch: 122, loss@min: 0.821803, loss@max: 1.101521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.925417, LT: 0.902591, Top1S: 77.182297, Top1T: 77.425903 +Train:epoch: 123, loss@min: 0.821036, loss@max: 1.099726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.925407, LT: 0.902537, Top1S: 77.182297, Top1T: 77.466507Best acc: 77.466507{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Sun Aug 13 00:55:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.167780, loss@max: 1.880496, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 2, loss@min: 3.496070, loss@max: 2.296457, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 3, loss@min: 1.986643, loss@max: 1.772438, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.746431, loss@max: 1.365260, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 1.474169, loss@max: 1.209943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.070753, loss@max: 1.281986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.942550, loss@max: 1.387202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.976508, loss@max: 1.463458, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 0.869697, loss@max: 1.356025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.854340, loss@max: 1.196962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.955948, loss@max: 1.087953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.161088, loss@max: 0.961359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.190001, loss@max: 0.930500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.086330, loss@max: 0.991644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.912442, loss@max: 1.091103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.769509, loss@max: 1.299491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.692381, loss@max: 1.330158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.627236, loss@max: 1.407576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.766608, loss@max: 1.274267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.771162, loss@max: 1.220776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.876744, loss@max: 1.138999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.049904, loss@max: 1.003437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.891586, loss@max: 1.094472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.894396, loss@max: 1.090083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.822012, loss@max: 1.159087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.804069, loss@max: 1.212394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.736436, loss@max: 1.237302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.822180, loss@max: 1.153944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.870375, loss@max: 1.113400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.831783, loss@max: 1.136073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 2.216976, LT: 1.781107, Top1S: 48.530865, Top1T: 55.901234Best acc: 55.901234 +Train:epoch: 31, loss@min: 1.056953, loss@max: 1.008694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 2.166476, LT: 1.799806, Top1S: 49.259258, Top1T: 55.925926Best acc: 55.925926 +Train:epoch: 32, loss@min: 0.909325, loss@max: 1.045700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 2.073151, LT: 1.848371, Top1S: 50.469135, Top1T: 55.419754 +Train:epoch: 33, loss@min: 0.877241, loss@max: 1.109687, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 2.010525, LT: 1.874066, Top1S: 51.160492, Top1T: 55.185184 +Train:epoch: 34, loss@min: 0.792001, loss@max: 1.171741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.996700, LT: 1.870793, Top1S: 51.135803, Top1T: 55.691357 +Train:epoch: 35, loss@min: 0.721039, loss@max: 1.282677, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 10} + +------------------------------------------- +Sun Aug 13 01:03:48 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 10} + +------------------------------------------- +Sun Aug 13 01:04:44 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 10} + +------------------------------------------- +Sun Aug 13 01:06:11 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 10} + +------------------------------------------- +Sun Aug 13 01:06:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.167773, loss@max: 1.880499, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 2, loss@min: 3.496069, loss@max: 2.296460, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 3, loss@min: 1.986644, loss@max: 1.772436, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.746436, loss@max: 1.365260, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 1.474176, loss@max: 1.209944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.070755, loss@max: 1.281985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.942549, loss@max: 1.387202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.976508, loss@max: 1.463458, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 0.869698, loss@max: 1.356025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.854340, loss@max: 1.196963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 10, LS: 1.899786, LT: 1.615652, Top1S: 48.728394, Top1T: 53.839504Best acc: 53.839504 +Train:epoch: 11, loss@min: 0.947806, loss@max: 1.099960, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 01:08:42 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.167780, loss@max: 1.880496, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 2, loss@min: 3.496070, loss@max: 2.296457, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 3, loss@min: 1.986643, loss@max: 1.772438, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.746431, loss@max: 1.365260, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 1.474169, loss@max: 1.209943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.070753, loss@max: 1.281986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.942550, loss@max: 1.387202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.976508, loss@max: 1.463458, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 0.869697, loss@max: 1.356025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.854340, loss@max: 1.196962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.955948, loss@max: 1.087953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.161088, loss@max: 0.961359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.190001, loss@max: 0.930500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.086330, loss@max: 0.991644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.912442, loss@max: 1.091103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.769509, loss@max: 1.299491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.692381, loss@max: 1.330158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.627236, loss@max: 1.407576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.766608, loss@max: 1.274267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.771162, loss@max: 1.220776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.876744, loss@max: 1.138999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.049904, loss@max: 1.003437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.891586, loss@max: 1.094472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.894396, loss@max: 1.090083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.822012, loss@max: 1.159087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.804069, loss@max: 1.212394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.736436, loss@max: 1.237302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.822180, loss@max: 1.153944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.870375, loss@max: 1.113400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.831783, loss@max: 1.136073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.927683, loss@max: 1.041376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.972794, loss@max: 1.034780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.878807, loss@max: 1.096807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.832087, loss@max: 1.144217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.771309, loss@max: 1.224644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.773173, loss@max: 1.187887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.752724, loss@max: 1.230100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.811627, loss@max: 1.175762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.751916, loss@max: 1.267332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.822802, loss@max: 1.145514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.924146, loss@max: 1.071086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.892415, loss@max: 1.080827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.880716, loss@max: 1.098054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.907525, loss@max: 1.054447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.818576, loss@max: 1.140490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.795438, loss@max: 1.172530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.832469, loss@max: 1.114442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.747564, loss@max: 1.223209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.819918, loss@max: 1.134387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.816776, loss@max: 1.135145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.802520, loss@max: 1.130166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.849299, loss@max: 1.103239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.830800, loss@max: 1.121336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.832406, loss@max: 1.108361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.818040, loss@max: 1.121998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.801190, loss@max: 1.146143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.850096, loss@max: 1.101470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.871612, loss@max: 1.076614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.963787, loss@max: 1.020127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.837933, loss@max: 1.107600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.854013, loss@max: 1.081335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.794903, loss@max: 1.151002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.739395, loss@max: 1.212310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.743928, loss@max: 1.197144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.749437, loss@max: 1.180441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.789109, loss@max: 1.185463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.817737, loss@max: 1.118057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.901858, loss@max: 1.034777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.827474, loss@max: 1.109053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.865207, loss@max: 1.074287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.877920, loss@max: 1.068238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.852955, loss@max: 1.117499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.904234, loss@max: 1.045725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.810833, loss@max: 1.131309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.776263, loss@max: 1.211290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.768446, loss@max: 1.204818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.797871, loss@max: 1.137150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.753407, loss@max: 1.188563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.847352, loss@max: 1.078312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.788640, loss@max: 1.151284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 2.165766, LT: 1.844422, Top1S: 49.469135, Top1T: 56.407406Best acc: 56.407406 +Train:epoch: 81, loss@min: 0.873689, loss@max: 1.059433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 2.161210, LT: 1.844805, Top1S: 49.555557, Top1T: 56.481480Best acc: 56.481480 +Train:epoch: 82, loss@min: 0.881502, loss@max: 1.055455, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 2.145128, LT: 1.852513, Top1S: 49.777779, Top1T: 56.395061 +Train:epoch: 83, loss@min: 0.870556, loss@max: 1.077023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 2.125753, LT: 1.861780, Top1S: 50.259258, Top1T: 56.222221 +Train:epoch: 84, loss@min: 0.816711, loss@max: 1.118854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 2.102150, LT: 1.873962, Top1S: 50.802467, Top1T: 55.888889 +Train:epoch: 85, loss@min: 0.792311, loss@max: 1.136238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 2.083112, LT: 1.885321, Top1S: 51.395061, Top1T: 55.506172 +Train:epoch: 86, loss@min: 0.840667, loss@max: 1.088243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 2.064709, LT: 1.895227, Top1S: 51.703705, Top1T: 55.283951 +Train:epoch: 87, loss@min: 0.883439, loss@max: 1.068020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 2.049062, LT: 1.897906, Top1S: 52.185184, Top1T: 55.098766 +Train:epoch: 88, loss@min: 0.817157, loss@max: 1.128824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 2.041379, LT: 1.892376, Top1S: 52.419754, Top1T: 55.209877 +Train:epoch: 89, loss@min: 0.765541, loss@max: 1.179246, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 70} + +------------------------------------------- +Sun Aug 13 01:22:05 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.167774, loss@max: 1.880500, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 2, loss@min: 3.496068, loss@max: 2.296463, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 3, loss@min: 1.986635, loss@max: 1.772438, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.746431, loss@max: 1.365260, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 1.474179, loss@max: 1.209937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.070761, loss@max: 1.281981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.942551, loss@max: 1.387200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.976508, loss@max: 1.463458, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 0.869696, loss@max: 1.356028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.854337, loss@max: 1.196967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.955944, loss@max: 1.087958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.161088, loss@max: 0.961364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.190002, loss@max: 0.930499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.086336, loss@max: 0.991642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.912448, loss@max: 1.091099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.769510, loss@max: 1.299492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.692381, loss@max: 1.330157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.627239, loss@max: 1.407573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.766606, loss@max: 1.274269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.771154, loss@max: 1.220784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.876741, loss@max: 1.139002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.049903, loss@max: 1.003441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.891587, loss@max: 1.094469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.894405, loss@max: 1.090073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.822017, loss@max: 1.159080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.804064, loss@max: 1.212401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.736430, loss@max: 1.237306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.822181, loss@max: 1.153940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.870370, loss@max: 1.113404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.831789, loss@max: 1.136063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.927681, loss@max: 1.041379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.972791, loss@max: 1.034780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.878804, loss@max: 1.096810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.832081, loss@max: 1.144219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.771311, loss@max: 1.224641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.773172, loss@max: 1.187887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.752730, loss@max: 1.230093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.811631, loss@max: 1.175760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.751910, loss@max: 1.267338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.822801, loss@max: 1.145515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.924152, loss@max: 1.071083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.892422, loss@max: 1.080816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.880716, loss@max: 1.098048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.907517, loss@max: 1.054452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.818575, loss@max: 1.140491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.795428, loss@max: 1.172538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.832471, loss@max: 1.114442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.747563, loss@max: 1.223208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.819923, loss@max: 1.134380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.816784, loss@max: 1.135137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.802528, loss@max: 1.130160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.849298, loss@max: 1.103240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.830797, loss@max: 1.121338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.832403, loss@max: 1.108369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.818034, loss@max: 1.122009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.801183, loss@max: 1.146155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.850093, loss@max: 1.101475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.871613, loss@max: 1.076617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.963784, loss@max: 1.020125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.837948, loss@max: 1.107589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.854017, loss@max: 1.081334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.794917, loss@max: 1.150985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.739389, loss@max: 1.212320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.743927, loss@max: 1.197148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.749426, loss@max: 1.180455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.789101, loss@max: 1.185469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.817725, loss@max: 1.118068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.901851, loss@max: 1.034777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.827484, loss@max: 1.109043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.865219, loss@max: 1.074278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 2.127821, LT: 1.870759, Top1S: 49.876545, Top1T: 56.086418Best acc: 56.086418 +Train:epoch: 71, loss@min: 0.843074, loss@max: 1.092604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 2.110507, LT: 1.891536, Top1S: 50.234570, Top1T: 55.938271 +Train:epoch: 72, loss@min: 0.859128, loss@max: 1.084615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 2.101633, LT: 1.902785, Top1S: 50.580246, Top1T: 55.629631 +Train:epoch: 73, loss@min: 0.854575, loss@max: 1.071906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 2.104984, LT: 1.907602, Top1S: 50.728394, Top1T: 55.370369 +Train:epoch: 74, loss@min: 0.810137, loss@max: 1.123613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 2.134911, LT: 1.895751, Top1S: 50.728394, Top1T: 55.283951 +Train:epoch: 75, loss@min: 0.781527, loss@max: 1.154453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 2.140990, LT: 1.889747, Top1S: 51.074074, Top1T: 55.098766 +Train:epoch: 76, loss@min: 0.839474, loss@max: 1.110878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 2.143836, LT: 1.880008, Top1S: 50.987656, Top1T: 55.296295 +Train:epoch: 77, loss@min: 0.825196, loss@max: 1.102380, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 2.145369, LT: 1.871060, Top1S: 50.790123, Top1T: 55.407406 +Train:epoch: 78, loss@min: 0.823680, loss@max: 1.130224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 2.139315, LT: 1.870052, Top1S: 50.703705, Top1T: 55.580246 +Train:epoch: 79, loss@min: 0.772447, loss@max: 1.168899, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 01:35:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.564231, loss@max: 1.994314, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.727368, loss@max: 1.677067, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.165902, loss@max: 1.501110, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.898407, loss@max: 1.387842, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.864557, loss@max: 1.278451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.873727, loss@max: 1.232218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.919566, loss@max: 1.135893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.937069, loss@max: 1.083881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.938258, loss@max: 1.075997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.973678, loss@max: 1.103333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.854645, loss@max: 1.153857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.783130, loss@max: 1.206187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.803373, loss@max: 1.229256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.825528, loss@max: 1.176844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.833162, loss@max: 1.217398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.825138, loss@max: 1.209409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.835755, loss@max: 1.222563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.894412, loss@max: 1.162359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.852344, loss@max: 1.157900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.861144, loss@max: 1.111532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.808589, loss@max: 1.190593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.862001, loss@max: 1.170495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.799095, loss@max: 1.203344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.777775, loss@max: 1.190733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.897477, loss@max: 1.114364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.887939, loss@max: 1.092378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.857550, loss@max: 1.126583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.834696, loss@max: 1.153370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.816987, loss@max: 1.164242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.814922, loss@max: 1.143832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.825948, loss@max: 1.138857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.824531, loss@max: 1.143977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.833141, loss@max: 1.156171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.828294, loss@max: 1.128516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.827821, loss@max: 1.126916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.856971, loss@max: 1.130904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.848970, loss@max: 1.122141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.840518, loss@max: 1.115161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.824333, loss@max: 1.155866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.815496, loss@max: 1.145228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.835883, loss@max: 1.143420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.848961, loss@max: 1.116762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.851392, loss@max: 1.115571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.814949, loss@max: 1.140893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.818750, loss@max: 1.137689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.849358, loss@max: 1.101083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.828340, loss@max: 1.147449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.855835, loss@max: 1.111899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.811210, loss@max: 1.178881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.827364, loss@max: 1.138299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.808468, loss@max: 1.169249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.854528, loss@max: 1.109676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.832031, loss@max: 1.117636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.805878, loss@max: 1.156265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.800226, loss@max: 1.152773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.847523, loss@max: 1.118633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.837866, loss@max: 1.130538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.826137, loss@max: 1.128369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.842822, loss@max: 1.106781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.847443, loss@max: 1.101899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.882233, loss@max: 1.087705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.821072, loss@max: 1.121714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.803703, loss@max: 1.156146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.786366, loss@max: 1.181742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.824105, loss@max: 1.113771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.801713, loss@max: 1.140962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.811524, loss@max: 1.137841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.812493, loss@max: 1.137817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.879404, loss@max: 1.091933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.857635, loss@max: 1.091665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.820728, loss@max: 1.115084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.828665, loss@max: 1.116336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.829864, loss@max: 1.110773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.784935, loss@max: 1.164514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.816257, loss@max: 1.142382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.836325, loss@max: 1.116600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.801016, loss@max: 1.139332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.833270, loss@max: 1.105596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.823734, loss@max: 1.112779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.829146, loss@max: 1.104266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 2.708081, LT: 2.757911, Top1S: 43.735226, Top1T: 42.848701Best acc: 43.735226 +Train:epoch: 81, loss@min: 0.836269, loss@max: 1.101223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 2.703997, LT: 2.757854, Top1S: 43.794327, Top1T: 42.848701Best acc: 43.794327 +Train:epoch: 82, loss@min: 0.824434, loss@max: 1.116989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 2.700813, LT: 2.757247, Top1S: 43.794327, Top1T: 42.966904 +Train:epoch: 83, loss@min: 0.827571, loss@max: 1.120946, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Sun Aug 13 01:37:39 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.564231, loss@max: 1.994316, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 2, loss@min: 1.727367, loss@max: 1.677065, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 3, loss@min: 1.165904, loss@max: 1.501109, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 4, loss@min: 0.898407, loss@max: 1.387842, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 5, loss@min: 0.864557, loss@max: 1.278451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.873726, loss@max: 1.232217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.919567, loss@max: 1.135892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.937068, loss@max: 1.083883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.938258, loss@max: 1.075997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.973678, loss@max: 1.103332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.854645, loss@max: 1.153857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.783130, loss@max: 1.206188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.803374, loss@max: 1.229253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.825530, loss@max: 1.176842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.833163, loss@max: 1.217396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.825139, loss@max: 1.209408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.835754, loss@max: 1.222564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.894412, loss@max: 1.162360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.852343, loss@max: 1.157901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.861143, loss@max: 1.111531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.808589, loss@max: 1.190593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.862002, loss@max: 1.170493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.799095, loss@max: 1.203343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.777775, loss@max: 1.190731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.897478, loss@max: 1.114364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.887937, loss@max: 1.092380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.857549, loss@max: 1.126585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.834697, loss@max: 1.153369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.816988, loss@max: 1.164242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.814922, loss@max: 1.143830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 2.811805, LT: 2.844938, Top1S: 43.262413, Top1T: 42.612293Best acc: 43.262413 +Train:epoch: 31, loss@min: 0.812733, loss@max: 1.149689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 2.812355, LT: 2.849917, Top1S: 43.262413, Top1T: 42.080379 +Train:epoch: 32, loss@min: 0.847653, loss@max: 1.126508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 2.810042, LT: 2.853840, Top1S: 43.735226, Top1T: 42.316784Best acc: 43.735226 +Train:epoch: 33, loss@min: 0.840709, loss@max: 1.130432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 2.810542, LT: 2.852326, Top1S: 43.853428, Top1T: 42.316784Best acc: 43.853428 +Train:epoch: 34, loss@min: 0.822772, loss@max: 1.128321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 2.814212, LT: 2.850509, Top1S: 43.617020, Top1T: 42.375885 +Train:epoch: 35, loss@min: 0.799335, loss@max: 1.151488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 2.818013, LT: 2.848898, Top1S: 43.735226, Top1T: 42.375885 +Train:epoch: 36, loss@min: 0.816605, loss@max: 1.148357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 2.819461, LT: 2.848593, Top1S: 43.203308, Top1T: 42.494091 +Train:epoch: 37, loss@min: 0.849274, loss@max: 1.099806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 2.810999, LT: 2.852493, Top1S: 43.203308, Top1T: 42.553192 +Train:epoch: 38, loss@min: 0.849670, loss@max: 1.103859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 2.806926, LT: 2.851916, Top1S: 43.498817, Top1T: 42.375885 +Train:epoch: 39, loss@min: 0.836813, loss@max: 1.124947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 2.808270, LT: 2.848653, Top1S: 43.439716, Top1T: 42.257683 +Train:epoch: 40, loss@min: 0.854730, loss@max: 1.110439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 2.806190, LT: 2.847896, Top1S: 43.735226, Top1T: 42.316784 +Train:epoch: 41, loss@min: 0.802725, loss@max: 1.154374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 2.806002, LT: 2.846179, Top1S: 43.794327, Top1T: 42.257683 +Train:epoch: 42, loss@min: 0.793652, loss@max: 1.180332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 2.803500, LT: 2.847129, Top1S: 43.498817, Top1T: 42.434990 +Train:epoch: 43, loss@min: 0.816629, loss@max: 1.145123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 2.800402, LT: 2.848057, Top1S: 43.321514, Top1T: 42.198582 +Train:epoch: 44, loss@min: 0.829936, loss@max: 1.154051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 2.800485, LT: 2.845084, Top1S: 43.321514, Top1T: 42.198582 +Train:epoch: 45, loss@min: 0.880302, loss@max: 1.092616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 2.801554, LT: 2.840917, Top1S: 43.439716, Top1T: 41.843971 +Train:epoch: 46, loss@min: 0.890757, loss@max: 1.105913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 2.796019, LT: 2.838088, Top1S: 43.321514, Top1T: 42.080379 +Train:epoch: 47, loss@min: 0.849734, loss@max: 1.118221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 2.795632, LT: 2.833625, Top1S: 43.439716, Top1T: 42.257683 +Train:epoch: 48, loss@min: 0.824360, loss@max: 1.168134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 2.795896, LT: 2.829135, Top1S: 43.380615, Top1T: 42.080379 +Train:epoch: 49, loss@min: 0.815806, loss@max: 1.146187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 2.792707, LT: 2.826726, Top1S: 43.262413, Top1T: 42.257683 +Train:epoch: 50, loss@min: 0.788236, loss@max: 1.182592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 2.788477, LT: 2.826012, Top1S: 43.085106, Top1T: 42.434990 +Train:epoch: 51, loss@min: 0.820909, loss@max: 1.152582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 2.784143, LT: 2.825209, Top1S: 43.262413, Top1T: 42.434990 +Train:epoch: 52, loss@min: 0.809048, loss@max: 1.144148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 2.777765, LT: 2.826623, Top1S: 43.439716, Top1T: 42.198582 +Train:epoch: 53, loss@min: 0.837454, loss@max: 1.125367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 2.765175, LT: 2.831134, Top1S: 43.617020, Top1T: 42.021278 +Train:epoch: 54, loss@min: 0.802232, loss@max: 1.160790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 2.763204, LT: 2.832481, Top1S: 43.735226, Top1T: 42.021278 +Train:epoch: 55, loss@min: 0.827006, loss@max: 1.148788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 2.773188, LT: 2.824923, Top1S: 43.439716, Top1T: 42.080379 +Train:epoch: 56, loss@min: 0.924888, loss@max: 1.104371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 2.777775, LT: 2.816585, Top1S: 43.321514, Top1T: 41.962173 +Train:epoch: 57, loss@min: 0.982471, loss@max: 1.068638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 2.774491, LT: 2.809981, Top1S: 43.617020, Top1T: 42.080379 +Train:epoch: 58, loss@min: 0.882726, loss@max: 1.102701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 2.768792, LT: 2.805829, Top1S: 43.853428, Top1T: 42.021278 +Train:epoch: 59, loss@min: 0.832275, loss@max: 1.163928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 2.756309, LT: 2.807943, Top1S: 43.676125, Top1T: 42.198582 +Train:epoch: 60, loss@min: 0.807776, loss@max: 1.151325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 2.747451, LT: 2.809502, Top1S: 43.380615, Top1T: 42.375885 +Train:epoch: 61, loss@min: 0.802885, loss@max: 1.158932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 2.743890, LT: 2.808537, Top1S: 43.144207, Top1T: 42.553192 +Train:epoch: 62, loss@min: 0.815284, loss@max: 1.155827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 2.746402, LT: 2.805021, Top1S: 43.085106, Top1T: 42.553192 +Train:epoch: 63, loss@min: 0.807733, loss@max: 1.163435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 2.746313, LT: 2.801611, Top1S: 43.026005, Top1T: 42.730495 +Train:epoch: 64, loss@min: 0.799255, loss@max: 1.201020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 2.745769, LT: 2.797000, Top1S: 42.907803, Top1T: 42.730495 +Train:epoch: 65, loss@min: 0.839418, loss@max: 1.150343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 2.738911, LT: 2.793996, Top1S: 42.966904, Top1T: 42.553192 +Train:epoch: 66, loss@min: 0.824739, loss@max: 1.129510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 2.725436, LT: 2.793835, Top1S: 43.321514, Top1T: 42.671394 +Train:epoch: 67, loss@min: 0.818390, loss@max: 1.140936, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 2.717442, LT: 2.790307, Top1S: 43.557919, Top1T: 42.671394 +Train:epoch: 68, loss@min: 0.821288, loss@max: 1.128716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 2.716514, LT: 2.784900, Top1S: 43.853428, Top1T: 42.494091 +Train:epoch: 69, loss@min: 0.830918, loss@max: 1.122030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 2.723895, LT: 2.775387, Top1S: 43.735226, Top1T: 42.553192 +Train:epoch: 70, loss@min: 0.818333, loss@max: 1.135914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 2.731190, LT: 2.766138, Top1S: 43.380615, Top1T: 42.730495 +Train:epoch: 71, loss@min: 0.822666, loss@max: 1.124714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 2.736854, LT: 2.759039, Top1S: 43.262413, Top1T: 42.966904 +Train:epoch: 72, loss@min: 0.859553, loss@max: 1.099193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 2.735302, LT: 2.756749, Top1S: 43.439716, Top1T: 42.966904 +Train:epoch: 73, loss@min: 0.846831, loss@max: 1.111079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 2.724985, LT: 2.759989, Top1S: 43.439716, Top1T: 43.085106 +Train:epoch: 74, loss@min: 0.842543, loss@max: 1.103571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 2.711766, LT: 2.766298, Top1S: 43.439716, Top1T: 42.907803 +Train:epoch: 75, loss@min: 0.819234, loss@max: 1.122651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 2.704881, LT: 2.768951, Top1S: 43.380615, Top1T: 42.671394 +Train:epoch: 76, loss@min: 0.834189, loss@max: 1.109981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 2.703511, LT: 2.766653, Top1S: 43.557919, Top1T: 42.671394 +Train:epoch: 77, loss@min: 0.808060, loss@max: 1.142224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 2.708081, LT: 2.760894, Top1S: 43.557919, Top1T: 42.789597 +Train:epoch: 78, loss@min: 0.815588, loss@max: 1.129033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 2.714590, LT: 2.754623, Top1S: 43.439716, Top1T: 42.966904 +Train:epoch: 79, loss@min: 0.871816, loss@max: 1.085288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 2.716280, LT: 2.750973, Top1S: 43.262413, Top1T: 42.966904 +Train:epoch: 80, loss@min: 0.829324, loss@max: 1.115443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 2.713696, LT: 2.749223, Top1S: 42.789597, Top1T: 42.848701 +Train:epoch: 81, loss@min: 0.845049, loss@max: 1.114913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 2.708970, LT: 2.747921, Top1S: 42.966904, Top1T: 42.966904 +Train:epoch: 82, loss@min: 0.806720, loss@max: 1.129610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 2.704934, LT: 2.746611, Top1S: 42.966904, Top1T: 43.085106 +Train:epoch: 83, loss@min: 0.766710, loss@max: 1.187041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 2.702759, LT: 2.744824, Top1S: 43.439716, Top1T: 42.966904 +Train:epoch: 84, loss@min: 0.778517, loss@max: 1.164458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 2.700336, LT: 2.743106, Top1S: 43.676125, Top1T: 42.966904 +Train:epoch: 85, loss@min: 0.805849, loss@max: 1.125563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 2.699805, LT: 2.740053, Top1S: 43.853428, Top1T: 43.026005 +Train:epoch: 86, loss@min: 0.818689, loss@max: 1.119421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 2.699942, LT: 2.736681, Top1S: 43.853428, Top1T: 42.907803 +Train:epoch: 87, loss@min: 0.828890, loss@max: 1.111331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 2.696403, LT: 2.736055, Top1S: 43.794327, Top1T: 42.907803 +Train:epoch: 88, loss@min: 0.836585, loss@max: 1.096511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 2.691113, LT: 2.737327, Top1S: 43.735226, Top1T: 42.907803 +Train:epoch: 89, loss@min: 0.841847, loss@max: 1.090869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 2.685964, LT: 2.739784, Top1S: 43.676125, Top1T: 42.966904 +Train:epoch: 90, loss@min: 0.823926, loss@max: 1.105432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 2.685711, LT: 2.739107, Top1S: 43.676125, Top1T: 42.966904 +Train:epoch: 91, loss@min: 0.821480, loss@max: 1.108380, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 2.688083, LT: 2.736699, Top1S: 43.735226, Top1T: 43.085106 +Train:epoch: 92, loss@min: 0.848534, loss@max: 1.095067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 2.690925, LT: 2.733781, Top1S: 43.498817, Top1T: 42.907803 +Train:epoch: 93, loss@min: 0.799831, loss@max: 1.131002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 2.693372, LT: 2.731035, Top1S: 43.557919, Top1T: 42.848701 +Train:epoch: 94, loss@min: 0.824950, loss@max: 1.111211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 2.693695, LT: 2.729286, Top1S: 43.557919, Top1T: 42.966904 +Train:epoch: 95, loss@min: 0.821244, loss@max: 1.107703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 2.692694, LT: 2.728032, Top1S: 43.557919, Top1T: 43.085106 +Train:epoch: 96, loss@min: 0.833274, loss@max: 1.096861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 2.691859, LT: 2.726669, Top1S: 43.617020, Top1T: 43.203308 +Train:epoch: 97, loss@min: 0.822121, loss@max: 1.104213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 2.689728, LT: 2.725864, Top1S: 43.557919, Top1T: 43.321514 +Train:epoch: 98, loss@min: 0.820468, loss@max: 1.111457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 2.687016, LT: 2.725011, Top1S: 43.557919, Top1T: 43.439716 +Train:epoch: 99, loss@min: 0.833090, loss@max: 1.101660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 2.684911, LT: 2.724541, Top1S: 43.676125, Top1T: 43.380615 +Train:epoch: 100, loss@min: 0.803332, loss@max: 1.127713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 2.683431, LT: 2.724379, Top1S: 43.735226, Top1T: 43.380615 +Train:epoch: 101, loss@min: 0.832950, loss@max: 1.106370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 2.681337, LT: 2.724944, Top1S: 43.735226, Top1T: 43.439716 +Train:epoch: 102, loss@min: 0.781553, loss@max: 1.148550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 2.680059, LT: 2.725420, Top1S: 43.735226, Top1T: 43.085106 +Train:epoch: 103, loss@min: 0.808025, loss@max: 1.125041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 2.679912, LT: 2.725271, Top1S: 43.853428, Top1T: 43.085106 +Train:epoch: 104, loss@min: 0.820053, loss@max: 1.112457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 2.679162, LT: 2.725514, Top1S: 43.853428, Top1T: 42.966904 +Train:epoch: 105, loss@min: 0.815104, loss@max: 1.114826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 2.678122, LT: 2.725598, Top1S: 43.912529, Top1T: 42.966904Best acc: 43.912529 +Train:epoch: 106, loss@min: 0.832105, loss@max: 1.094788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 2.676871, LT: 2.725532, Top1S: 43.853428, Top1T: 42.966904 +Train:epoch: 107, loss@min: 0.806180, loss@max: 1.123013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 2.676574, LT: 2.724468, Top1S: 43.853428, Top1T: 42.966904 +Train:epoch: 108, loss@min: 0.826458, loss@max: 1.099147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 2.676449, LT: 2.723045, Top1S: 43.794327, Top1T: 42.966904 +Train:epoch: 109, loss@min: 0.835677, loss@max: 1.096630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 2.676233, LT: 2.721256, Top1S: 43.794327, Top1T: 43.085106 +Train:epoch: 110, loss@min: 0.820396, loss@max: 1.103898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 2.676195, LT: 2.719552, Top1S: 43.853428, Top1T: 43.026005 +Train:epoch: 111, loss@min: 0.812479, loss@max: 1.110032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 2.676397, LT: 2.718154, Top1S: 43.912529, Top1T: 43.144207 +Train:epoch: 112, loss@min: 0.809285, loss@max: 1.114917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 2.676887, LT: 2.717078, Top1S: 43.971630, Top1T: 43.262413Best acc: 43.971630 +Train:epoch: 113, loss@min: 0.811484, loss@max: 1.115337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 2.677847, LT: 2.716134, Top1S: 43.853428, Top1T: 43.203308 +Train:epoch: 114, loss@min: 0.800765, loss@max: 1.124119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 2.678735, LT: 2.715533, Top1S: 43.971630, Top1T: 43.144207 +Train:epoch: 115, loss@min: 0.824037, loss@max: 1.102183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 2.679719, LT: 2.715164, Top1S: 43.853428, Top1T: 43.085106 +Train:epoch: 116, loss@min: 0.825156, loss@max: 1.098254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 2.679941, LT: 2.715322, Top1S: 43.735226, Top1T: 43.144207 +Train:epoch: 117, loss@min: 0.810357, loss@max: 1.109360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 2.679652, LT: 2.715644, Top1S: 43.735226, Top1T: 43.144207 +Train:epoch: 118, loss@min: 0.826833, loss@max: 1.099573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 2.679622, LT: 2.715573, Top1S: 43.676125, Top1T: 43.085106 +Train:epoch: 119, loss@min: 0.820510, loss@max: 1.100925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 2.679348, LT: 2.715513, Top1S: 43.735226, Top1T: 43.144207 +Train:epoch: 120, loss@min: 0.823207, loss@max: 1.096595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 2.678925, LT: 2.715530, Top1S: 43.735226, Top1T: 43.144207 +Train:epoch: 121, loss@min: 0.821622, loss@max: 1.099604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 2.678382, LT: 2.715483, Top1S: 43.794327, Top1T: 43.144207 +Train:epoch: 122, loss@min: 0.806242, loss@max: 1.113413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 2.677629, LT: 2.715434, Top1S: 43.735226, Top1T: 43.085106 +Train:epoch: 123, loss@min: 0.799016, loss@max: 1.121216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 2.676567, LT: 2.715540, Top1S: 43.735226, Top1T: 43.085106 +Train:epoch: 124, loss@min: 0.820389, loss@max: 1.101551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 2.675346, LT: 2.715662, Top1S: 43.617020, Top1T: 43.085106 +Train:epoch: 125, loss@min: 0.808435, loss@max: 1.109563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 2.674408, LT: 2.715664, Top1S: 43.617020, Top1T: 43.144207 +Train:epoch: 126, loss@min: 0.834312, loss@max: 1.086474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 2.673489, LT: 2.715704, Top1S: 43.557919, Top1T: 43.203308 +Train:epoch: 127, loss@min: 0.823591, loss@max: 1.095026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 2.672711, LT: 2.715707, Top1S: 43.617020, Top1T: 43.262413 +Train:epoch: 128, loss@min: 0.825414, loss@max: 1.093121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 2.671973, LT: 2.715708, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 129, loss@min: 0.804981, loss@max: 1.114995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 2.671496, LT: 2.715579, Top1S: 43.676125, Top1T: 43.321514 +Train:epoch: 130, loss@min: 0.800601, loss@max: 1.117855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 2.671407, LT: 2.715352, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 131, loss@min: 0.824231, loss@max: 1.095862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 2.671511, LT: 2.715076, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 132, loss@min: 0.811911, loss@max: 1.105919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 2.671625, LT: 2.714843, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 133, loss@min: 0.805129, loss@max: 1.112521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 2.671911, LT: 2.714559, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 134, loss@min: 0.817066, loss@max: 1.100815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 2.672159, LT: 2.714339, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 135, loss@min: 0.801731, loss@max: 1.118554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 2.672419, LT: 2.714152, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 136, loss@min: 0.807517, loss@max: 1.110291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 2.672639, LT: 2.713994, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 137, loss@min: 0.820308, loss@max: 1.101949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 2.672797, LT: 2.713869, Top1S: 43.676125, Top1T: 43.262413 +Train:epoch: 138, loss@min: 0.818781, loss@max: 1.098216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 2.673012, LT: 2.713734, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 139, loss@min: 0.832658, loss@max: 1.088166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 2.673170, LT: 2.713642, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 140, loss@min: 0.816870, loss@max: 1.103449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 2.673385, LT: 2.713526, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 141, loss@min: 0.830012, loss@max: 1.087762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 2.673541, LT: 2.713443, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 142, loss@min: 0.824938, loss@max: 1.091778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 2.673647, LT: 2.713383, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 143, loss@min: 0.811971, loss@max: 1.103258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 2.673702, LT: 2.713347, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 144, loss@min: 0.808433, loss@max: 1.107482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 2.673750, LT: 2.713319, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 145, loss@min: 0.816731, loss@max: 1.099445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 2.673772, LT: 2.713307, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 146, loss@min: 0.807537, loss@max: 1.109183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 2.673783, LT: 2.713301, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 147, loss@min: 0.819704, loss@max: 1.099416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 2.673783, LT: 2.713301, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 148, loss@min: 0.821015, loss@max: 1.096162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 2.673781, LT: 2.713301, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 149, loss@min: 0.814366, loss@max: 1.102983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 2.673780, LT: 2.713301, Top1S: 43.735226, Top1T: 43.262413 +Train:epoch: 150, loss@min: 0.818010, loss@max: 1.099784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 2.673780, LT: 2.713301, Top1S: 43.735226, Top1T: 43.262413 +------------------------------------------- +Sun Aug 13 02:22:50 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 08:13:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.214994, loss@max: 1.969030, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.136309, loss@max: 1.767051, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.560862, loss@max: 1.681158, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.775681, loss@max: 1.538366, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 5, loss@min: 3.419538, loss@max: 1.498831, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 6, loss@min: 2.855060, loss@max: 1.406476, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.508267, loss@max: 1.355957, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.162127, loss@max: 1.307129, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.933506, loss@max: 1.287470, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.706016, loss@max: 1.262280, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.430035, loss@max: 1.230253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.377159, loss@max: 1.244532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.201477, loss@max: 1.226496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.122533, loss@max: 1.220651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.016184, loss@max: 1.211984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.929661, loss@max: 1.203857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.907352, loss@max: 1.205056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.874870, loss@max: 1.202694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.848736, loss@max: 1.195476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.854949, loss@max: 1.185999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.847185, loss@max: 1.174325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.823147, loss@max: 1.164643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.823322, loss@max: 1.161867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.837242, loss@max: 1.153808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.825702, loss@max: 1.155577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.818746, loss@max: 1.142630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.842473, loss@max: 1.133145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.832306, loss@max: 1.128824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.827141, loss@max: 1.125767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.830437, loss@max: 1.114958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.840957, loss@max: 1.115057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.847084, loss@max: 1.111751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.829223, loss@max: 1.107926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.828965, loss@max: 1.108935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.819320, loss@max: 1.114900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.830141, loss@max: 1.110658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.828844, loss@max: 1.108076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.833470, loss@max: 1.104693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.865455, loss@max: 1.113552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.834984, loss@max: 1.099279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.839803, loss@max: 1.095732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.833411, loss@max: 1.096112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.835613, loss@max: 1.098557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.834763, loss@max: 1.094541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.834077, loss@max: 1.095067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.834297, loss@max: 1.095175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.828384, loss@max: 1.098218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.830338, loss@max: 1.094198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.831599, loss@max: 1.096295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.834945, loss@max: 1.092123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.832368, loss@max: 1.096005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.834025, loss@max: 1.094447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.829390, loss@max: 1.095955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.827417, loss@max: 1.098397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.828214, loss@max: 1.100526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.824336, loss@max: 1.100153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.823972, loss@max: 1.106344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.820886, loss@max: 1.105122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.823246, loss@max: 1.103018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.821310, loss@max: 1.104108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.821759, loss@max: 1.103562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.822710, loss@max: 1.100580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.821725, loss@max: 1.105291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.820716, loss@max: 1.104353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.821359, loss@max: 1.103213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.820156, loss@max: 1.106825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.820282, loss@max: 1.104611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.822506, loss@max: 1.104697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.818270, loss@max: 1.104316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.817291, loss@max: 1.106164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.816996, loss@max: 1.106877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.819243, loss@max: 1.106708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.815496, loss@max: 1.107768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.815222, loss@max: 1.107589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.821711, loss@max: 1.102118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.824515, loss@max: 1.100846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.824305, loss@max: 1.103396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.821506, loss@max: 1.101446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.823871, loss@max: 1.100593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.822669, loss@max: 1.098940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.952234, LT: 1.968363, Top1S: 50.709221, Top1T: 50.413712Best acc: 50.709221 +Train:epoch: 81, loss@min: 0.825877, loss@max: 1.098649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.952403, LT: 1.968571, Top1S: 50.768322, Top1T: 50.413712Best acc: 50.768322 +Train:epoch: 82, loss@min: 0.823548, loss@max: 1.100670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.952615, LT: 1.968748, Top1S: 50.709221, Top1T: 50.413712 +Train:epoch: 83, loss@min: 0.818682, loss@max: 1.104166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.952977, LT: 1.968916, Top1S: 50.591015, Top1T: 50.413712 +Train:epoch: 84, loss@min: 0.854178, loss@max: 1.113422, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 1.953033, LT: 1.968787, Top1S: 50.591015, Top1T: 50.413712 +Train:epoch: 85, loss@min: 0.825731, loss@max: 1.098763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.953176, LT: 1.968787, Top1S: 50.709221, Top1T: 50.354610 +Train:epoch: 86, loss@min: 0.821667, loss@max: 1.100024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.953333, LT: 1.968891, Top1S: 50.650120, Top1T: 50.295509 +Train:epoch: 87, loss@min: 0.829115, loss@max: 1.104941, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 08:17:17 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.476222, loss@max: 1.480099, Top1S acc: 100.000000, Top1T acc: 61.718750 +Train:epoch: 2, loss@min: 4.334410, loss@max: 1.459398, Top1S acc: 100.000000, Top1T acc: 60.156250 +Train:epoch: 3, loss@min: 3.823483, loss@max: 1.347006, Top1S acc: 100.000000, Top1T acc: 64.843750 +Train:epoch: 4, loss@min: 3.481818, loss@max: 1.274344, Top1S acc: 100.000000, Top1T acc: 68.750000 +Train:epoch: 5, loss@min: 3.172013, loss@max: 1.214000, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 6, loss@min: 3.220276, loss@max: 1.233861, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 7, loss@min: 2.861791, loss@max: 1.160905, Top1S acc: 100.000000, Top1T acc: 76.171875 +Train:epoch: 8, loss@min: 2.709208, loss@max: 1.133825, Top1S acc: 100.000000, Top1T acc: 78.906250 +Train:epoch: 9, loss@min: 2.442104, loss@max: 1.077343, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 10, loss@min: 2.270920, loss@max: 1.053995, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 11, loss@min: 2.238797, loss@max: 1.055388, Top1S acc: 100.000000, Top1T acc: 83.203125 +Train:epoch: 12, loss@min: 2.256833, loss@max: 1.073656, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 13, loss@min: 2.058291, loss@max: 1.037356, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 2.055630, loss@max: 1.043329, Top1S acc: 100.000000, Top1T acc: 87.109375 +Train:epoch: 15, loss@min: 1.776246, loss@max: 0.990551, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 16, loss@min: 1.732909, loss@max: 0.994784, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 17, loss@min: 1.772056, loss@max: 1.011856, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 18, loss@min: 1.657307, loss@max: 0.995587, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 19, loss@min: 1.568014, loss@max: 0.982383, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 20, loss@min: 1.473937, loss@max: 0.963903, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 21, loss@min: 1.492112, loss@max: 0.991747, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 22, loss@min: 1.468400, loss@max: 0.989451, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 23, loss@min: 1.370869, loss@max: 0.979426, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 24, loss@min: 1.411110, loss@max: 0.997066, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 25, loss@min: 1.367619, loss@max: 0.997165, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 26, loss@min: 1.275810, loss@max: 0.983696, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.272575, loss@max: 0.985187, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 1.257646, loss@max: 0.996904, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.233788, loss@max: 1.009517, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 30, loss@min: 1.195069, loss@max: 0.996489, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.212860, loss@max: 1.012916, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 1.172699, loss@max: 1.008688, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 33, loss@min: 1.128963, loss@max: 1.015877, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.132524, loss@max: 1.011685, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.070811, loss@max: 1.009073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.077739, loss@max: 1.016616, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.077884, loss@max: 1.020132, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.096899, loss@max: 1.023845, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 39, loss@min: 1.034770, loss@max: 1.025685, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 1.043386, loss@max: 1.023770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.061984, loss@max: 1.032390, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.035431, loss@max: 1.035756, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.034634, loss@max: 1.039143, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 44, loss@min: 1.024656, loss@max: 1.041189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.023215, loss@max: 1.037688, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.984011, loss@max: 1.038459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.990833, loss@max: 1.045351, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.989426, loss@max: 1.040975, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 0.963151, loss@max: 1.047164, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 0.977058, loss@max: 1.052104, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 0.967751, loss@max: 1.051467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.950149, loss@max: 1.052331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.967025, loss@max: 1.053945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.952536, loss@max: 1.055984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.973945, loss@max: 1.067435, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 0.946468, loss@max: 1.060245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.939830, loss@max: 1.060704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.930114, loss@max: 1.057625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937564, loss@max: 1.065536, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.935311, loss@max: 1.066980, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.928278, loss@max: 1.064402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.930717, loss@max: 1.065870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.988227, loss@max: 1.084832, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 64, loss@min: 0.940176, loss@max: 1.073517, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 65, loss@min: 0.913645, loss@max: 1.066369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.919893, loss@max: 1.067591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.905588, loss@max: 1.068727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.905131, loss@max: 1.070984, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.932850, loss@max: 1.073979, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.912463, loss@max: 1.072214, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 71, loss@min: 0.892891, loss@max: 1.069756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.924925, loss@max: 1.082068, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.909242, loss@max: 1.072685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.896771, loss@max: 1.074404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.907957, loss@max: 1.076163, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 76, loss@min: 0.889974, loss@max: 1.076660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.912186, loss@max: 1.082507, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.905591, loss@max: 1.079002, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.900372, loss@max: 1.081930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.903686, loss@max: 1.078479, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 80, LS: 1.645980, LT: 1.638910, Top1S: 62.579342, Top1T: 62.740551Best acc: 62.740551 +Train:epoch: 81, loss@min: 0.889617, loss@max: 1.077559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.646777, LT: 1.639712, Top1S: 62.589417, Top1T: 62.785892Best acc: 62.785892 +Train:epoch: 82, loss@min: 0.904600, loss@max: 1.081754, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 1.647714, LT: 1.640635, Top1S: 62.539040, Top1T: 62.785892 +Train:epoch: 83, loss@min: 0.881284, loss@max: 1.076885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.648654, LT: 1.641569, Top1S: 62.523926, Top1T: 62.801006Best acc: 62.801006 +Train:epoch: 84, loss@min: 0.901045, loss@max: 1.083933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.649473, LT: 1.642388, Top1S: 62.493702, Top1T: 62.755665 +Train:epoch: 85, loss@min: 0.883646, loss@max: 1.077274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.650131, LT: 1.643058, Top1S: 62.498737, Top1T: 62.730476 +Train:epoch: 86, loss@min: 0.874719, loss@max: 1.078292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.650729, LT: 1.643665, Top1S: 62.508816, Top1T: 62.735516 +Train:epoch: 87, loss@min: 0.877630, loss@max: 1.079709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.651151, LT: 1.644098, Top1S: 62.534004, Top1T: 62.750626 +Train:epoch: 88, loss@min: 0.923246, loss@max: 1.089887, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 88, LS: 1.651478, LT: 1.644423, Top1S: 62.549118, Top1T: 62.745590 +Train:epoch: 89, loss@min: 0.888349, loss@max: 1.084360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.651712, LT: 1.644649, Top1S: 62.579342, Top1T: 62.770779 +Train:epoch: 90, loss@min: 0.899029, loss@max: 1.085165, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 90, LS: 1.652050, LT: 1.644961, Top1S: 62.624683, Top1T: 62.785892 +Train:epoch: 91, loss@min: 0.877870, loss@max: 1.081696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.652468, LT: 1.645362, Top1S: 62.629719, Top1T: 62.775818 +Train:epoch: 92, loss@min: 0.894040, loss@max: 1.085953, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 92, LS: 1.652951, LT: 1.645828, Top1S: 62.594456, Top1T: 62.821156Best acc: 62.821156 +Train:epoch: 93, loss@min: 0.880478, loss@max: 1.083627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.653408, LT: 1.646276, Top1S: 62.589417, Top1T: 62.795967 +Train:epoch: 94, loss@min: 0.888547, loss@max: 1.082869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.653811, LT: 1.646673, Top1S: 62.624683, Top1T: 62.861458Best acc: 62.861458 +Train:epoch: 95, loss@min: 0.883460, loss@max: 1.084150, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 95, LS: 1.654450, LT: 1.647288, Top1S: 62.670021, Top1T: 62.886646Best acc: 62.886646 +Train:epoch: 96, loss@min: 0.883976, loss@max: 1.086300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.655060, LT: 1.647880, Top1S: 62.644833, Top1T: 62.881611 +Train:epoch: 97, loss@min: 0.870055, loss@max: 1.081101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.655673, LT: 1.648484, Top1S: 62.659946, Top1T: 62.911835Best acc: 62.911835 +Train:epoch: 98, loss@min: 0.879910, loss@max: 1.087713, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 98, LS: 1.656368, LT: 1.649162, Top1S: 62.659946, Top1T: 62.911835 +Train:epoch: 99, loss@min: 0.871580, loss@max: 1.085123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.657009, LT: 1.649784, Top1S: 62.670021, Top1T: 62.906799 +Train:epoch: 100, loss@min: 0.871208, loss@max: 1.083227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.657697, LT: 1.650461, Top1S: 62.680099, Top1T: 62.881611 +Train:epoch: 101, loss@min: 0.866679, loss@max: 1.084209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.658353, LT: 1.651105, Top1S: 62.690174, Top1T: 62.886646 +Train:epoch: 102, loss@min: 0.875189, loss@max: 1.085509, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 11:17:54 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.802037, loss@max: 2.784044, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 0.712601, loss@max: 2.256521, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 3, loss@min: 1.121613, loss@max: 1.610944, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 4, loss@min: 1.047251, loss@max: 1.205817, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 5, loss@min: 1.572203, loss@max: 1.094780, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 6, loss@min: 1.541662, loss@max: 1.011819, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 7, loss@min: 1.232263, loss@max: 0.987047, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 11:18:25 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.802049, loss@max: 2.784005, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 0.712623, loss@max: 2.256503, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 3, loss@min: 1.121484, loss@max: 1.610967, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 4, loss@min: 1.047284, loss@max: 1.205779, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 5, loss@min: 1.572293, loss@max: 1.094689, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 6, loss@min: 1.541645, loss@max: 1.011818, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 7, loss@min: 1.232237, loss@max: 0.987098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.005236, loss@max: 1.211166, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 9, loss@min: 0.912378, loss@max: 1.385379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.711645, loss@max: 1.578451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.599746, loss@max: 1.651539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.720797, loss@max: 1.506336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.783245, loss@max: 1.448569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.823330, loss@max: 1.342298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.878719, loss@max: 1.242843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.984046, loss@max: 1.156695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.072647, loss@max: 1.095096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.105798, loss@max: 1.077538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.030144, loss@max: 1.075347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.924006, loss@max: 1.186968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.849434, loss@max: 1.247145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.861772, loss@max: 1.277930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.805824, loss@max: 1.294415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.812786, loss@max: 1.303177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.800937, loss@max: 1.279452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.778795, loss@max: 1.257221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.797685, loss@max: 1.245023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.850975, loss@max: 1.176591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.960027, loss@max: 1.070354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.019835, loss@max: 1.068966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.934574, loss@max: 1.087902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.860369, loss@max: 1.174194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.818216, loss@max: 1.225217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.785934, loss@max: 1.282101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.783485, loss@max: 1.231012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.772631, loss@max: 1.217534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.828317, loss@max: 1.187363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.889987, loss@max: 1.146380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.906208, loss@max: 1.132317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.835959, loss@max: 1.184806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.867745, loss@max: 1.158993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.938344, loss@max: 1.118312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.866733, loss@max: 1.129718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.841066, loss@max: 1.151600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.866393, loss@max: 1.155578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.777221, loss@max: 1.221289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.809087, loss@max: 1.219996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.873867, loss@max: 1.143522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.808437, loss@max: 1.167829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.914687, loss@max: 1.111331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.854871, loss@max: 1.135247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.867011, loss@max: 1.172531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.854750, loss@max: 1.153722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.828129, loss@max: 1.168680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.840946, loss@max: 1.127638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.799007, loss@max: 1.168766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.801106, loss@max: 1.175391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.832356, loss@max: 1.124305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.831267, loss@max: 1.161775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.846053, loss@max: 1.129902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.829127, loss@max: 1.122910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.854389, loss@max: 1.103000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.836339, loss@max: 1.121831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.836689, loss@max: 1.126676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.809143, loss@max: 1.163175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.842075, loss@max: 1.128143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.814062, loss@max: 1.144226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.842296, loss@max: 1.143375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.864208, loss@max: 1.114292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.793899, loss@max: 1.165808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.853887, loss@max: 1.107973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.856661, loss@max: 1.114645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.822584, loss@max: 1.146057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.808530, loss@max: 1.162949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.864945, loss@max: 1.125664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.811700, loss@max: 1.163467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.784876, loss@max: 1.157118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.825241, loss@max: 1.134239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.847662, loss@max: 1.117621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.841818, loss@max: 1.126095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.829734, loss@max: 1.132901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.837653, loss@max: 1.112907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.855057, loss@max: 1.103418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.860886, loss@max: 1.103967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.797287, loss@max: 1.154038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.825184, loss@max: 1.118939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.797142, loss@max: 1.156292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.776308, loss@max: 1.159303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.816572, loss@max: 1.131793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.824934, loss@max: 1.122625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.819894, loss@max: 1.135466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.822706, loss@max: 1.120960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.831342, loss@max: 1.104219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.832367, loss@max: 1.105662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.828030, loss@max: 1.112258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.810650, loss@max: 1.118687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.812184, loss@max: 1.122039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.850157, loss@max: 1.091053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.827907, loss@max: 1.111623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.799212, loss@max: 1.145546, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.723380, LT: 0.810009, Top1S: 79.558464, Top1T: 78.604523Best acc: 79.558464 +Train:epoch: 101, loss@min: 0.816219, loss@max: 1.119899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.724217, LT: 0.809779, Top1S: 79.585716, Top1T: 78.659035Best acc: 79.585716 +Train:epoch: 102, loss@min: 0.839613, loss@max: 1.087864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.725786, LT: 0.808940, Top1S: 79.694740, Top1T: 78.631775Best acc: 79.694740 +Train:epoch: 103, loss@min: 0.810630, loss@max: 1.123252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.727116, LT: 0.808036, Top1S: 79.694740, Top1T: 78.686287 +Train:epoch: 104, loss@min: 0.829001, loss@max: 1.103838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.727361, LT: 0.807464, Top1S: 79.667480, Top1T: 78.631775 +Train:epoch: 105, loss@min: 0.829908, loss@max: 1.110958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.726657, LT: 0.807260, Top1S: 79.585716, Top1T: 78.577271 +Train:epoch: 106, loss@min: 0.798292, loss@max: 1.138892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.725168, LT: 0.807668, Top1S: 79.612968, Top1T: 78.550011 +Train:epoch: 107, loss@min: 0.794939, loss@max: 1.125940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.723834, LT: 0.808048, Top1S: 79.640228, Top1T: 78.604523 +Train:epoch: 108, loss@min: 0.827889, loss@max: 1.099487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.722371, LT: 0.808575, Top1S: 79.749245, Top1T: 78.550011Best acc: 79.749245 +Train:epoch: 109, loss@min: 0.810974, loss@max: 1.119145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.721932, LT: 0.808163, Top1S: 79.694740, Top1T: 78.577271 +Train:epoch: 110, loss@min: 0.890098, loss@max: 1.106045, Top1S acc: 100.000000, Top1T acc: 97.297310 + Test:epoch: 110, LS: 0.719975, LT: 0.805308, Top1S: 79.721992, Top1T: 78.686287 +Train:epoch: 111, loss@min: 0.809939, loss@max: 1.117141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.718316, LT: 0.802853, Top1S: 79.776505, Top1T: 78.795311Best acc: 79.776505 +Train:epoch: 112, loss@min: 0.808969, loss@max: 1.116482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.716994, LT: 0.800681, Top1S: 79.749245, Top1T: 78.822563 +Train:epoch: 113, loss@min: 0.809628, loss@max: 1.113637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.716207, LT: 0.798756, Top1S: 79.721992, Top1T: 78.822563 +Train:epoch: 114, loss@min: 0.799679, loss@max: 1.131090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.715588, LT: 0.797286, Top1S: 79.667480, Top1T: 78.795311 +Train:epoch: 115, loss@min: 0.829944, loss@max: 1.093231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.714903, LT: 0.796478, Top1S: 79.612968, Top1T: 78.795311 +Train:epoch: 116, loss@min: 0.822511, loss@max: 1.097922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.714445, LT: 0.795649, Top1S: 79.585716, Top1T: 78.795311 +Train:epoch: 117, loss@min: 0.830692, loss@max: 1.095426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.714187, LT: 0.794813, Top1S: 79.612968, Top1T: 78.795311 +Train:epoch: 118, loss@min: 0.835194, loss@max: 1.086219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.713989, LT: 0.794056, Top1S: 79.612968, Top1T: 78.768051 +Train:epoch: 119, loss@min: 0.825348, loss@max: 1.090493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.713800, LT: 0.793488, Top1S: 79.640228, Top1T: 78.795311 +Train:epoch: 120, loss@min: 0.801657, loss@max: 1.116432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.713514, LT: 0.793199, Top1S: 79.612968, Top1T: 78.822563 +Train:epoch: 121, loss@min: 0.822605, loss@max: 1.104091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.713247, LT: 0.792970, Top1S: 79.585716, Top1T: 78.877075 +Train:epoch: 122, loss@min: 0.810851, loss@max: 1.111863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.712688, LT: 0.792964, Top1S: 79.585716, Top1T: 78.822563 +Train:epoch: 123, loss@min: 0.823265, loss@max: 1.097140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.712237, LT: 0.792900, Top1S: 79.585716, Top1T: 78.822563 +Train:epoch: 124, loss@min: 0.827830, loss@max: 1.092451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.711873, LT: 0.792807, Top1S: 79.640228, Top1T: 78.795311 +Train:epoch: 125, loss@min: 0.821092, loss@max: 1.099266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.711360, LT: 0.792779, Top1S: 79.640228, Top1T: 78.740799 +Train:epoch: 126, loss@min: 0.797916, loss@max: 1.119453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.710719, LT: 0.792876, Top1S: 79.640228, Top1T: 78.740799 +Train:epoch: 127, loss@min: 0.801243, loss@max: 1.116974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.710265, LT: 0.792886, Top1S: 79.667480, Top1T: 78.740799 +Train:epoch: 128, loss@min: 0.806389, loss@max: 1.115130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.709832, LT: 0.792876, Top1S: 79.640228, Top1T: 78.713547 +Train:epoch: 129, loss@min: 0.804588, loss@max: 1.114565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.709310, LT: 0.792958, Top1S: 79.667480, Top1T: 78.686287 +Train:epoch: 130, loss@min: 0.831772, loss@max: 1.088829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.708942, LT: 0.792935, Top1S: 79.694740, Top1T: 78.659035 +Train:epoch: 131, loss@min: 0.800610, loss@max: 1.123466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.708793, LT: 0.792803, Top1S: 79.694740, Top1T: 78.659035 +Train:epoch: 132, loss@min: 0.801536, loss@max: 1.115763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.708798, LT: 0.792569, Top1S: 79.694740, Top1T: 78.659035 +Train:epoch: 133, loss@min: 0.817819, loss@max: 1.101088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.708859, LT: 0.792388, Top1S: 79.694740, Top1T: 78.686287 +Train:epoch: 134, loss@min: 0.839015, loss@max: 1.086083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.708985, LT: 0.792199, Top1S: 79.694740, Top1T: 78.686287 +Train:epoch: 135, loss@min: 0.820633, loss@max: 1.097045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.709042, LT: 0.792083, Top1S: 79.694740, Top1T: 78.686287 +Train:epoch: 136, loss@min: 0.830273, loss@max: 1.094221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.709099, LT: 0.791932, Top1S: 79.694740, Top1T: 78.740799 +Train:epoch: 137, loss@min: 0.809261, loss@max: 1.109739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.709097, LT: 0.791843, Top1S: 79.694740, Top1T: 78.740799 +Train:epoch: 138, loss@min: 0.809655, loss@max: 1.110831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.709107, LT: 0.791796, Top1S: 79.694740, Top1T: 78.713547 +Train:epoch: 139, loss@min: 0.810744, loss@max: 1.109829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.709064, LT: 0.791792, Top1S: 79.694740, Top1T: 78.740799 +Train:epoch: 140, loss@min: 0.823560, loss@max: 1.094088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.709039, LT: 0.791784, Top1S: 79.694740, Top1T: 78.740799 +Train:epoch: 141, loss@min: 0.802169, loss@max: 1.115177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.709055, LT: 0.791757, Top1S: 79.694740, Top1T: 78.768051 +Train:epoch: 142, loss@min: 0.821702, loss@max: 1.100255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.709067, LT: 0.791733, Top1S: 79.694740, Top1T: 78.768051 +Train:epoch: 143, loss@min: 0.787134, loss@max: 1.132155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.709073, LT: 0.791725, Top1S: 79.694740, Top1T: 78.768051 +Train:epoch: 144, loss@min: 0.790085, loss@max: 1.129640, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 11:54:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.482824, loss@max: 1.140963, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 1.577013, loss@max: 1.066211, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 3, loss@min: 1.350595, loss@max: 1.137648, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 4, loss@min: 1.167101, loss@max: 1.187888, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 5, loss@min: 1.506230, loss@max: 1.351893, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 6, loss@min: 1.131719, loss@max: 1.313264, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 7, loss@min: 0.911703, loss@max: 1.284723, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 8, loss@min: 0.898797, loss@max: 1.295654, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 9, loss@min: 0.751279, loss@max: 1.261394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.760677, loss@max: 1.247174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.742127, loss@max: 1.231535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.765112, loss@max: 1.209628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.835502, loss@max: 1.198820, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 14, loss@min: 0.810494, loss@max: 1.161537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.892901, loss@max: 1.151229, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 16, loss@min: 0.822333, loss@max: 1.114521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.836335, loss@max: 1.094768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.902697, loss@max: 1.097804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.860586, loss@max: 1.067029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.904435, loss@max: 1.086630, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 21, loss@min: 0.855679, loss@max: 1.070834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.879234, loss@max: 1.076350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.972956, loss@max: 1.111710, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 24, loss@min: 0.833540, loss@max: 1.094866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.856623, loss@max: 1.096619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.840234, loss@max: 1.101840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.821728, loss@max: 1.109161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.813016, loss@max: 1.107844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.804347, loss@max: 1.111459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.811342, loss@max: 1.107253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.813786, loss@max: 1.107516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.812952, loss@max: 1.102130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.807595, loss@max: 1.110829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.810582, loss@max: 1.108633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.853563, loss@max: 1.109466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.813470, loss@max: 1.100468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.815132, loss@max: 1.102540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.834559, loss@max: 1.102946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.821961, loss@max: 1.097226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.818557, loss@max: 1.098589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.808224, loss@max: 1.105104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.832998, loss@max: 1.110077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.816357, loss@max: 1.098813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.813358, loss@max: 1.101954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.812313, loss@max: 1.100472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.820208, loss@max: 1.095292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.821479, loss@max: 1.091926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.820498, loss@max: 1.094206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.811253, loss@max: 1.102585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.814375, loss@max: 1.101389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.809514, loss@max: 1.104300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.808775, loss@max: 1.103820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.806975, loss@max: 1.105825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.811149, loss@max: 1.102180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.814176, loss@max: 1.098905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.812371, loss@max: 1.102253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.817814, loss@max: 1.098968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.816022, loss@max: 1.098760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.814914, loss@max: 1.098406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.826141, loss@max: 1.096102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.814321, loss@max: 1.100734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.885286, loss@max: 1.115154, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 63, loss@min: 0.820177, loss@max: 1.102390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.815947, loss@max: 1.107236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.817640, loss@max: 1.099651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.814570, loss@max: 1.100677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.806501, loss@max: 1.106180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.808181, loss@max: 1.103634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.811200, loss@max: 1.100032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.810795, loss@max: 1.101099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.822375, loss@max: 1.103269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.810111, loss@max: 1.101670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.820214, loss@max: 1.093201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.814297, loss@max: 1.098029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.810931, loss@max: 1.100629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.813012, loss@max: 1.098760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.814968, loss@max: 1.096087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.819282, loss@max: 1.098881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.815507, loss@max: 1.096407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.814508, loss@max: 1.096615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.816574, loss@max: 1.096993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.813540, loss@max: 1.098600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.813182, loss@max: 1.099666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.815961, loss@max: 1.096693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.811558, loss@max: 1.100471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.827869, loss@max: 1.102746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.813173, loss@max: 1.100759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.808928, loss@max: 1.102442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.810623, loss@max: 1.101191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.807476, loss@max: 1.103765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.810541, loss@max: 1.101967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.818603, loss@max: 1.096709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.816619, loss@max: 1.097178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.826106, loss@max: 1.100486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.812126, loss@max: 1.100776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.811950, loss@max: 1.101052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.814976, loss@max: 1.095870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.810736, loss@max: 1.100842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.813509, loss@max: 1.102405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.812357, loss@max: 1.103252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.654152, LT: 0.670564, Top1S: 82.011444, Top1T: 81.984192Best acc: 82.011444 +Train:epoch: 101, loss@min: 0.808765, loss@max: 1.103365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.653610, LT: 0.670062, Top1S: 82.011444, Top1T: 81.984192 +Train:epoch: 102, loss@min: 0.812252, loss@max: 1.099094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.653112, LT: 0.669691, Top1S: 82.011444, Top1T: 81.984192 +Train:epoch: 103, loss@min: 0.812174, loss@max: 1.098729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.652648, LT: 0.669439, Top1S: 82.011444, Top1T: 81.929680 +Train:epoch: 104, loss@min: 0.811925, loss@max: 1.100417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.652345, LT: 0.669281, Top1S: 81.984192, Top1T: 81.929680 +Train:epoch: 105, loss@min: 0.812310, loss@max: 1.098543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.652140, LT: 0.669177, Top1S: 82.038704, Top1T: 81.902420Best acc: 82.038704 +Train:epoch: 106, loss@min: 0.811741, loss@max: 1.099815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.652060, LT: 0.669118, Top1S: 81.984192, Top1T: 81.929680 +Train:epoch: 107, loss@min: 0.814551, loss@max: 1.096890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.652129, LT: 0.669135, Top1S: 81.984192, Top1T: 81.902420 +Train:epoch: 108, loss@min: 0.812699, loss@max: 1.098064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.652160, LT: 0.669155, Top1S: 81.956932, Top1T: 81.875168 +Train:epoch: 109, loss@min: 0.808990, loss@max: 1.102818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.652176, LT: 0.669131, Top1S: 81.929680, Top1T: 81.875168 +Train:epoch: 110, loss@min: 0.850484, loss@max: 1.107052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.651473, LT: 0.668358, Top1S: 81.956932, Top1T: 81.875168 +Train:epoch: 111, loss@min: 0.814615, loss@max: 1.097019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.650863, LT: 0.667719, Top1S: 81.929680, Top1T: 81.875168 +Train:epoch: 112, loss@min: 0.812835, loss@max: 1.097698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.650360, LT: 0.667172, Top1S: 81.956932, Top1T: 81.875168 +Train:epoch: 113, loss@min: 0.810210, loss@max: 1.101091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.649998, LT: 0.666690, Top1S: 81.984192, Top1T: 81.820656 +Train:epoch: 114, loss@min: 0.821266, loss@max: 1.099860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.649647, LT: 0.666196, Top1S: 81.956932, Top1T: 81.766144 +Train:epoch: 115, loss@min: 0.813977, loss@max: 1.097837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.649387, LT: 0.665743, Top1S: 82.011444, Top1T: 81.738892 +Train:epoch: 116, loss@min: 0.809534, loss@max: 1.102176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.649178, LT: 0.665326, Top1S: 82.011444, Top1T: 81.766144 +Train:epoch: 117, loss@min: 0.813519, loss@max: 1.097466, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.648975, LT: 0.664984, Top1S: 82.038704, Top1T: 81.766144 +Train:epoch: 118, loss@min: 0.812731, loss@max: 1.097761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.648791, LT: 0.664720, Top1S: 82.093208, Top1T: 81.766144Best acc: 82.093208 +Train:epoch: 119, loss@min: 0.813030, loss@max: 1.097895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.648618, LT: 0.664494, Top1S: 82.065956, Top1T: 81.766144 +Train:epoch: 120, loss@min: 0.809114, loss@max: 1.101729, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.648438, LT: 0.664313, Top1S: 82.093208, Top1T: 81.738892 +Train:epoch: 121, loss@min: 0.811255, loss@max: 1.099298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.648270, LT: 0.664181, Top1S: 82.093208, Top1T: 81.766144 +Train:epoch: 122, loss@min: 0.810423, loss@max: 1.100493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.648130, LT: 0.664087, Top1S: 82.093208, Top1T: 81.766144 +Train:epoch: 123, loss@min: 0.813402, loss@max: 1.097069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.648006, LT: 0.664012, Top1S: 82.120468, Top1T: 81.766144Best acc: 82.120468 +Train:epoch: 124, loss@min: 0.810231, loss@max: 1.100833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.647918, LT: 0.663990, Top1S: 82.120468, Top1T: 81.711639 +Train:epoch: 125, loss@min: 0.812346, loss@max: 1.099711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.647820, LT: 0.663973, Top1S: 82.120468, Top1T: 81.738892 +Train:epoch: 126, loss@min: 0.810116, loss@max: 1.100795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.647718, LT: 0.663970, Top1S: 82.120468, Top1T: 81.766144 +Train:epoch: 127, loss@min: 0.814288, loss@max: 1.096773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.647624, LT: 0.663979, Top1S: 82.120468, Top1T: 81.766144 +Train:epoch: 128, loss@min: 0.811645, loss@max: 1.099615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.647529, LT: 0.663995, Top1S: 82.120468, Top1T: 81.766144 +Train:epoch: 129, loss@min: 0.811768, loss@max: 1.098698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.647448, LT: 0.664015, Top1S: 82.120468, Top1T: 81.766144 +Train:epoch: 130, loss@min: 0.815438, loss@max: 1.096550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.647367, LT: 0.664025, Top1S: 82.093208, Top1T: 81.766144 +Train:epoch: 131, loss@min: 0.837173, loss@max: 1.108012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.647181, LT: 0.663892, Top1S: 82.093208, Top1T: 81.766144 +Train:epoch: 132, loss@min: 0.815426, loss@max: 1.095240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.647043, LT: 0.663775, Top1S: 82.120468, Top1T: 81.766144 +Train:epoch: 133, loss@min: 0.815307, loss@max: 1.096579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.646940, LT: 0.663681, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 134, loss@min: 0.812991, loss@max: 1.098667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.646852, LT: 0.663597, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 135, loss@min: 0.814505, loss@max: 1.096147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.646785, LT: 0.663532, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 136, loss@min: 0.830093, loss@max: 1.103235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.646705, LT: 0.663443, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 137, loss@min: 0.811699, loss@max: 1.098915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.646650, LT: 0.663371, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 138, loss@min: 0.813748, loss@max: 1.096897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.646605, LT: 0.663319, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 139, loss@min: 0.812426, loss@max: 1.098738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.646566, LT: 0.663276, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 140, loss@min: 0.814258, loss@max: 1.096383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.646540, LT: 0.663242, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 141, loss@min: 0.817286, loss@max: 1.094612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.646524, LT: 0.663215, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 142, loss@min: 0.812433, loss@max: 1.099034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.646513, LT: 0.663196, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 143, loss@min: 0.813794, loss@max: 1.096984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.646506, LT: 0.663182, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 144, loss@min: 0.813427, loss@max: 1.098464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.646500, LT: 0.663173, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 145, loss@min: 0.813418, loss@max: 1.098432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.646498, LT: 0.663166, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 146, loss@min: 0.817141, loss@max: 1.096279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.646498, LT: 0.663162, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 147, loss@min: 0.813722, loss@max: 1.096948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.646498, LT: 0.663160, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 148, loss@min: 0.810852, loss@max: 1.100220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.646498, LT: 0.663160, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 149, loss@min: 0.813632, loss@max: 1.099399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.646498, LT: 0.663160, Top1S: 82.120468, Top1T: 81.793404 +Train:epoch: 150, loss@min: 0.814192, loss@max: 1.098544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.646498, LT: 0.663160, Top1S: 82.120468, Top1T: 81.793404 +------------------------------------------- +Sun Aug 13 12:34:50 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 17:30:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.443878, loss@max: 0.848740, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 1.503975, loss@max: 1.014525, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 3, loss@min: 1.267608, loss@max: 1.155382, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 4, loss@min: 1.094195, loss@max: 1.243257, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 5, loss@min: 1.440052, loss@max: 1.319921, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 6, loss@min: 1.095505, loss@max: 1.354789, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 7, loss@min: 0.894087, loss@max: 1.375665, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 8, loss@min: 0.904085, loss@max: 1.380370, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 9, loss@min: 0.779187, loss@max: 1.375076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.801054, loss@max: 1.365825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.805710, loss@max: 1.333452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.851624, loss@max: 1.303823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.924006, loss@max: 1.272161, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 14, loss@min: 0.912029, loss@max: 1.251722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.000588, loss@max: 1.225382, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 16, loss@min: 0.926996, loss@max: 1.217871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.948894, loss@max: 1.198574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.018893, loss@max: 1.202843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.979132, loss@max: 1.185512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032935, loss@max: 1.214695, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 21, loss@min: 0.975751, loss@max: 1.209987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.992045, loss@max: 1.231031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.065667, loss@max: 1.249272, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 24, loss@min: 0.939881, loss@max: 1.266996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.956237, loss@max: 1.272611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.950837, loss@max: 1.278395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.923193, loss@max: 1.299168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.915783, loss@max: 1.303663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.905178, loss@max: 1.314496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.918555, loss@max: 1.311863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.919407, loss@max: 1.320975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.918145, loss@max: 1.316638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.906094, loss@max: 1.335519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.920428, loss@max: 1.325976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.958985, loss@max: 1.329355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.927777, loss@max: 1.320690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.931868, loss@max: 1.327626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.949873, loss@max: 1.324585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.926731, loss@max: 1.339471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.932195, loss@max: 1.330832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.936434, loss@max: 1.326566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.960252, loss@max: 1.338705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944320, loss@max: 1.326300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.946248, loss@max: 1.326680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.943813, loss@max: 1.328516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.956821, loss@max: 1.321943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.945969, loss@max: 1.330113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.953497, loss@max: 1.326856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945363, loss@max: 1.337590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941053, loss@max: 1.343498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.940556, loss@max: 1.348936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.939577, loss@max: 1.344313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.942662, loss@max: 1.342671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.945479, loss@max: 1.342425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.946102, loss@max: 1.341661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.934955, loss@max: 1.357546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.942870, loss@max: 1.353788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.940981, loss@max: 1.355491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.938919, loss@max: 1.354432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943271, loss@max: 1.359262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.939096, loss@max: 1.357113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.982824, loss@max: 1.373985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.944885, loss@max: 1.362710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949906, loss@max: 1.358370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.951453, loss@max: 1.351547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946960, loss@max: 1.352708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.940822, loss@max: 1.357125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.944237, loss@max: 1.351594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.948169, loss@max: 1.348518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.949207, loss@max: 1.348813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.954390, loss@max: 1.361348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.945713, loss@max: 1.351829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.944925, loss@max: 1.355166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.946492, loss@max: 1.352940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948342, loss@max: 1.350986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.938683, loss@max: 1.361629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.942196, loss@max: 1.357402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947566, loss@max: 1.358816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.942902, loss@max: 1.358418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944608, loss@max: 1.353997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.945883, loss@max: 1.357204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.948142, loss@max: 1.353884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946065, loss@max: 1.355918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.950984, loss@max: 1.352611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.940694, loss@max: 1.362023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.953594, loss@max: 1.365222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.945102, loss@max: 1.358480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.938430, loss@max: 1.362346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944131, loss@max: 1.357976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.942495, loss@max: 1.359251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.941995, loss@max: 1.360961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.952212, loss@max: 1.355473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.948061, loss@max: 1.354460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.955057, loss@max: 1.356537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948862, loss@max: 1.354501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947231, loss@max: 1.356819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.949591, loss@max: 1.351848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.945742, loss@max: 1.356176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.945097, loss@max: 1.361611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.940540, loss@max: 1.365155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.631132, LT: 0.662925, Top1S: 82.583809, Top1T: 81.956932Best acc: 82.583809 +Train:epoch: 101, loss@min: 0.942061, loss@max: 1.360600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.630817, LT: 0.662797, Top1S: 82.611061, Top1T: 81.984192Best acc: 82.611061 +Train:epoch: 102, loss@min: 0.942629, loss@max: 1.359206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.630554, LT: 0.662720, Top1S: 82.583809, Top1T: 82.011444 +Train:epoch: 103, loss@min: 0.940829, loss@max: 1.360050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.630370, LT: 0.662708, Top1S: 82.638321, Top1T: 82.011444Best acc: 82.638321 +Train:epoch: 104, loss@min: 0.942561, loss@max: 1.361117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.630256, LT: 0.662829, Top1S: 82.665573, Top1T: 82.011444Best acc: 82.665573 +Train:epoch: 105, loss@min: 0.945174, loss@max: 1.356072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.630264, LT: 0.662988, Top1S: 82.638321, Top1T: 82.038704 +Train:epoch: 106, loss@min: 0.939512, loss@max: 1.362398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.630323, LT: 0.663221, Top1S: 82.638321, Top1T: 82.065956 +Train:epoch: 107, loss@min: 0.949403, loss@max: 1.352243, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 17:37:43 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.175112, loss@max: 0.792739, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.051379, loss@max: 0.907120, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.438612, loss@max: 1.013465, Top1S acc: 100.000000, Top1T acc: 48.936169 +Train:epoch: 4, loss@min: 3.607599, loss@max: 1.138365, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 5, loss@min: 3.226505, loss@max: 1.246430, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 6, loss@min: 2.634842, loss@max: 1.362704, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.282841, loss@max: 1.442407, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 1.928326, loss@max: 1.524500, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.716559, loss@max: 1.568589, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.492800, loss@max: 1.634276, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.230531, loss@max: 1.673707, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.202224, loss@max: 1.696576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.047232, loss@max: 1.701297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.003772, loss@max: 1.690904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.931749, loss@max: 1.667099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.868699, loss@max: 1.643020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.875141, loss@max: 1.610618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.869935, loss@max: 1.576192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.878604, loss@max: 1.519377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.905895, loss@max: 1.481662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.920331, loss@max: 1.458609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.930507, loss@max: 1.403129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.940884, loss@max: 1.385331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.976402, loss@max: 1.361318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.969270, loss@max: 1.356799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.970844, loss@max: 1.324909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993012, loss@max: 1.323008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.990400, loss@max: 1.318579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.978940, loss@max: 1.318628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.980255, loss@max: 1.306482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.995272, loss@max: 1.317704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.997706, loss@max: 1.314641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.969330, loss@max: 1.313623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.988398, loss@max: 1.305621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.980302, loss@max: 1.305431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.991035, loss@max: 1.306610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.984923, loss@max: 1.308688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.003569, loss@max: 1.295152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.017601, loss@max: 1.313157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.981827, loss@max: 1.310692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981532, loss@max: 1.319460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.971024, loss@max: 1.321787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.969339, loss@max: 1.330446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.966252, loss@max: 1.326897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.964435, loss@max: 1.332011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.946427, loss@max: 1.352531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.944175, loss@max: 1.351223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.937423, loss@max: 1.355784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938036, loss@max: 1.361908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945125, loss@max: 1.354753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.938225, loss@max: 1.365650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.943124, loss@max: 1.361431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.939035, loss@max: 1.362082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939984, loss@max: 1.363874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.938340, loss@max: 1.372417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.934426, loss@max: 1.368960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.934547, loss@max: 1.377985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.933583, loss@max: 1.372938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944679, loss@max: 1.363397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947593, loss@max: 1.360437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.944413, loss@max: 1.363368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954416, loss@max: 1.353310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.943248, loss@max: 1.368541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.953734, loss@max: 1.356637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949976, loss@max: 1.358846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946383, loss@max: 1.367364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951796, loss@max: 1.359830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952131, loss@max: 1.362638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949623, loss@max: 1.358761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.948768, loss@max: 1.360830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949800, loss@max: 1.360186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.952910, loss@max: 1.360343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942310, loss@max: 1.368592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947627, loss@max: 1.362851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953906, loss@max: 1.359250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.958054, loss@max: 1.358008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.959177, loss@max: 1.359377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.958181, loss@max: 1.353350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956726, loss@max: 1.356409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959516, loss@max: 1.350302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.953860, loss@max: 1.358070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.954755, loss@max: 1.358252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.954706, loss@max: 1.360628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.949562, loss@max: 1.360560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.946652, loss@max: 1.366525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.944917, loss@max: 1.371210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.947513, loss@max: 1.365278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.954695, loss@max: 1.361164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.950775, loss@max: 1.362809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.950149, loss@max: 1.362730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.950592, loss@max: 1.367483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.955166, loss@max: 1.360137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.949452, loss@max: 1.363910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.953816, loss@max: 1.358712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.954732, loss@max: 1.358378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.948200, loss@max: 1.363933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.953703, loss@max: 1.360867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.952808, loss@max: 1.360077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.952249, loss@max: 1.360561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.953454, loss@max: 1.360656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.984011, LT: 2.001836, Top1S: 50.768322, Top1T: 51.004726Best acc: 51.004726 +Train:epoch: 101, loss@min: 0.949783, loss@max: 1.362226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.984355, LT: 2.002062, Top1S: 50.768322, Top1T: 51.004726 +Train:epoch: 102, loss@min: 0.946781, loss@max: 1.364504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.984751, LT: 2.002231, Top1S: 50.827423, Top1T: 51.004726 +Train:epoch: 103, loss@min: 0.952598, loss@max: 1.360761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.985122, LT: 2.002381, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 104, loss@min: 0.952493, loss@max: 1.360223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.985420, LT: 2.002551, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 105, loss@min: 0.947086, loss@max: 1.365854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.985629, LT: 2.002727, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 106, loss@min: 0.944239, loss@max: 1.368140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.985759, LT: 2.002940, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 107, loss@min: 0.951139, loss@max: 1.364735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.985852, LT: 2.003182, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 108, loss@min: 0.951067, loss@max: 1.363672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.985889, LT: 2.003474, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 109, loss@min: 0.946641, loss@max: 1.368386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.985887, LT: 2.003770, Top1S: 50.827423, Top1T: 50.945625 +Train:epoch: 110, loss@min: 0.949885, loss@max: 1.366555, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 17:43:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.175112, loss@max: 0.792739, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.051379, loss@max: 0.907120, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.438611, loss@max: 1.013465, Top1S acc: 100.000000, Top1T acc: 48.936169 +Train:epoch: 4, loss@min: 3.607598, loss@max: 1.138365, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 5, loss@min: 3.226506, loss@max: 1.246430, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 6, loss@min: 2.634841, loss@max: 1.362704, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.282843, loss@max: 1.442407, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 1.928326, loss@max: 1.524500, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.716561, loss@max: 1.568589, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.492800, loss@max: 1.634276, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.230531, loss@max: 1.673707, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 12, loss@min: 1.202224, loss@max: 1.696576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.047231, loss@max: 1.701297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.003772, loss@max: 1.690904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.931750, loss@max: 1.667100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.868700, loss@max: 1.643020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.875142, loss@max: 1.610618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.869934, loss@max: 1.576192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.878604, loss@max: 1.519377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.905895, loss@max: 1.481663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.920331, loss@max: 1.458609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.930508, loss@max: 1.403129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.940884, loss@max: 1.385331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.976403, loss@max: 1.361317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.969270, loss@max: 1.356799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.970844, loss@max: 1.324909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993011, loss@max: 1.323008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.990399, loss@max: 1.318580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.978941, loss@max: 1.318627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.980254, loss@max: 1.306483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.995272, loss@max: 1.317704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.997706, loss@max: 1.314642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.969332, loss@max: 1.313622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.988400, loss@max: 1.305620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.980303, loss@max: 1.305430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.991034, loss@max: 1.306611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.984923, loss@max: 1.308688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.003568, loss@max: 1.295152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.017601, loss@max: 1.313157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.981829, loss@max: 1.310691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.981532, loss@max: 1.319460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.971025, loss@max: 1.321787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.969339, loss@max: 1.330447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.966251, loss@max: 1.326898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.964435, loss@max: 1.332011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.946428, loss@max: 1.352530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.944175, loss@max: 1.351223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.937423, loss@max: 1.355784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938035, loss@max: 1.361908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945124, loss@max: 1.354753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.938224, loss@max: 1.365651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.943123, loss@max: 1.361433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.939034, loss@max: 1.362082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939985, loss@max: 1.363874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.938341, loss@max: 1.372416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.934426, loss@max: 1.368960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.934548, loss@max: 1.377983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.933583, loss@max: 1.372938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944679, loss@max: 1.363397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947594, loss@max: 1.360435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.944414, loss@max: 1.363367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954417, loss@max: 1.353309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.943248, loss@max: 1.368542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.953733, loss@max: 1.356637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949976, loss@max: 1.358845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946382, loss@max: 1.367364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951796, loss@max: 1.359831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952129, loss@max: 1.362639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949624, loss@max: 1.358760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.948768, loss@max: 1.360830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949799, loss@max: 1.360186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.952909, loss@max: 1.360344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942311, loss@max: 1.368591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947628, loss@max: 1.362850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953906, loss@max: 1.359250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.958055, loss@max: 1.358007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.959176, loss@max: 1.359378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.958180, loss@max: 1.353351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956726, loss@max: 1.356409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959516, loss@max: 1.350302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.974914, LT: 1.992240, Top1S: 50.827423, Top1T: 50.827423Best acc: 50.827423 +Train:epoch: 81, loss@min: 0.962371, loss@max: 1.352633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.975764, LT: 1.992752, Top1S: 50.945625, Top1T: 50.768322Best acc: 50.945625 +Train:epoch: 82, loss@min: 0.953465, loss@max: 1.359799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.976626, LT: 1.993249, Top1S: 50.945625, Top1T: 50.827423 +Train:epoch: 83, loss@min: 0.945879, loss@max: 1.366082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.977324, LT: 1.993905, Top1S: 50.886524, Top1T: 50.827423 +Train:epoch: 84, loss@min: 0.981597, loss@max: 1.376104, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 1.977444, LT: 1.993968, Top1S: 50.886524, Top1T: 50.827423 +Train:epoch: 85, loss@min: 0.950979, loss@max: 1.363730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.977570, LT: 1.994235, Top1S: 50.827423, Top1T: 50.827423 +Train:epoch: 86, loss@min: 0.947320, loss@max: 1.363621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.977574, LT: 1.994645, Top1S: 50.709221, Top1T: 50.768322 +Train:epoch: 87, loss@min: 0.953583, loss@max: 1.371133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.977863, LT: 1.995293, Top1S: 50.768322, Top1T: 50.768322 +Train:epoch: 88, loss@min: 0.950377, loss@max: 1.362624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.978198, LT: 1.995906, Top1S: 50.709221, Top1T: 50.650120 +Train:epoch: 89, loss@min: 0.950096, loss@max: 1.363810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.978626, LT: 1.996471, Top1S: 50.768322, Top1T: 50.709221 +Train:epoch: 90, loss@min: 0.949313, loss@max: 1.363033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.979170, LT: 1.996899, Top1S: 50.768322, Top1T: 50.768322 +Train:epoch: 91, loss@min: 0.953252, loss@max: 1.358933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.979690, LT: 1.997304, Top1S: 50.709221, Top1T: 50.827423 +Train:epoch: 92, loss@min: 0.963320, loss@max: 1.367231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.980153, LT: 1.997667, Top1S: 50.945625, Top1T: 50.827423 +Train:epoch: 93, loss@min: 0.956881, loss@max: 1.357259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.980549, LT: 1.998057, Top1S: 51.063831, Top1T: 50.768322Best acc: 51.063831 +Train:epoch: 94, loss@min: 0.950501, loss@max: 1.363989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.980954, LT: 1.998464, Top1S: 51.063831, Top1T: 50.768322 +Train:epoch: 95, loss@min: 0.950104, loss@max: 1.364212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.981296, LT: 1.998921, Top1S: 51.063831, Top1T: 50.768322 +Train:epoch: 96, loss@min: 0.946556, loss@max: 1.371472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.981750, LT: 1.999431, Top1S: 51.004726, Top1T: 50.827423 +Train:epoch: 97, loss@min: 0.951261, loss@max: 1.362599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.982177, LT: 1.999886, Top1S: 50.945625, Top1T: 50.827423 +Train:epoch: 98, loss@min: 0.949951, loss@max: 1.364153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.982612, LT: 2.000290, Top1S: 51.004726, Top1T: 50.768322 +Train:epoch: 99, loss@min: 0.953562, loss@max: 1.361261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.983097, LT: 2.000565, Top1S: 51.063831, Top1T: 50.768322 +Train:epoch: 100, loss@min: 0.949424, loss@max: 1.363982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.983681, LT: 2.000776, Top1S: 51.063831, Top1T: 50.768322 +Train:epoch: 101, loss@min: 0.951487, loss@max: 1.360852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.984202, LT: 2.000978, Top1S: 51.122932, Top1T: 50.768322Best acc: 51.122932 +Train:epoch: 102, loss@min: 0.946761, loss@max: 1.369298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.984709, LT: 2.001170, Top1S: 51.182034, Top1T: 50.768322Best acc: 51.182034 +Train:epoch: 103, loss@min: 0.952943, loss@max: 1.360904, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 17:53:50 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.491082, loss@max: 0.841887, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.808517, loss@max: 1.017255, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.405727, loss@max: 1.183996, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.302076, loss@max: 1.305276, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.275181, loss@max: 1.379154, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 1.899827, loss@max: 1.444648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.773206, loss@max: 1.478870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.407335, loss@max: 1.502781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.217416, loss@max: 1.529193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.198617, loss@max: 1.535887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.150149, loss@max: 1.507110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.108180, loss@max: 1.468714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.150104, loss@max: 1.453908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.187034, loss@max: 1.433920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.070758, loss@max: 1.424056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.096541, loss@max: 1.405754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.050134, loss@max: 1.361515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.082840, loss@max: 1.347423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.073586, loss@max: 1.308554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.009949, loss@max: 1.288295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.146579, loss@max: 1.283388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.094228, loss@max: 1.229618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.071154, loss@max: 1.246136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.119377, loss@max: 1.242711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.046792, loss@max: 1.262507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.984139, loss@max: 1.276201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007609, loss@max: 1.328034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.937324, loss@max: 1.344957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.941729, loss@max: 1.353815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.929824, loss@max: 1.361395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.922079, loss@max: 1.364540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.028234, loss@max: 1.364400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.929160, loss@max: 1.373093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.935734, loss@max: 1.353118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.961913, loss@max: 1.356397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.960572, loss@max: 1.355006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.977484, loss@max: 1.355935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.926254, loss@max: 1.356578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.976902, loss@max: 1.354414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.961657, loss@max: 1.372390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.937254, loss@max: 1.350858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.956165, loss@max: 1.349676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.999874, loss@max: 1.353384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.965309, loss@max: 1.363630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.945852, loss@max: 1.354890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.990367, loss@max: 1.371953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.960608, loss@max: 1.365082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.938522, loss@max: 1.392694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.973326, loss@max: 1.354235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.964308, loss@max: 1.342583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958259, loss@max: 1.341907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.965716, loss@max: 1.346430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.963850, loss@max: 1.343871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.966565, loss@max: 1.336198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.969557, loss@max: 1.343112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.958717, loss@max: 1.373350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950461, loss@max: 1.365263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.950524, loss@max: 1.366168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.964578, loss@max: 1.388894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941542, loss@max: 1.378935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.934236, loss@max: 1.382638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.955094, loss@max: 1.381938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955831, loss@max: 1.354566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.963275, loss@max: 1.344122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.955681, loss@max: 1.357450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.959550, loss@max: 1.352765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.958251, loss@max: 1.384225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952356, loss@max: 1.363093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950601, loss@max: 1.364443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.972175, loss@max: 1.356024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.971114, loss@max: 1.343726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.959090, loss@max: 1.359110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.951452, loss@max: 1.361187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947285, loss@max: 1.366025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949778, loss@max: 1.368311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.947689, loss@max: 1.392600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.961583, loss@max: 1.354983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.950922, loss@max: 1.360127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964284, loss@max: 1.356644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.954144, loss@max: 1.363745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.947204, loss@max: 1.375288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.954910, loss@max: 1.353898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948682, loss@max: 1.369484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.943245, loss@max: 1.374825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.946079, loss@max: 1.368223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.942511, loss@max: 1.376631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.967777, loss@max: 1.355535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953573, loss@max: 1.363378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.955885, loss@max: 1.358333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.955298, loss@max: 1.367734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.962816, loss@max: 1.361384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.948820, loss@max: 1.364753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.967094, loss@max: 1.369933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947870, loss@max: 1.363261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.947635, loss@max: 1.366071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.950640, loss@max: 1.360340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.965061, loss@max: 1.349504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.958848, loss@max: 1.359205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.945562, loss@max: 1.373376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.954156, loss@max: 1.364497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.883670, LT: 1.862078, Top1S: 54.666668, Top1T: 55.000000Best acc: 55.000000 +Train:epoch: 101, loss@min: 0.956094, loss@max: 1.374804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.884547, LT: 1.861551, Top1S: 54.617283, Top1T: 55.012344Best acc: 55.012344 +Train:epoch: 102, loss@min: 0.940787, loss@max: 1.372148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.886540, LT: 1.860392, Top1S: 54.654320, Top1T: 54.987656 +Train:epoch: 103, loss@min: 0.958058, loss@max: 1.368795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.888534, LT: 1.857200, Top1S: 54.592594, Top1T: 55.049381Best acc: 55.049381 +Train:epoch: 104, loss@min: 0.963569, loss@max: 1.352542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.890318, LT: 1.855022, Top1S: 54.629631, Top1T: 55.086418Best acc: 55.086418 +Train:epoch: 105, loss@min: 0.954265, loss@max: 1.365249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.892617, LT: 1.853785, Top1S: 54.641975, Top1T: 55.098766Best acc: 55.098766 +Train:epoch: 106, loss@min: 0.959072, loss@max: 1.365610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.894740, LT: 1.853109, Top1S: 54.629631, Top1T: 55.111111Best acc: 55.111111 +Train:epoch: 107, loss@min: 0.954972, loss@max: 1.362097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.895928, LT: 1.852599, Top1S: 54.629631, Top1T: 55.135803Best acc: 55.135803 +Train:epoch: 108, loss@min: 0.951071, loss@max: 1.368197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.896529, LT: 1.852214, Top1S: 54.604939, Top1T: 55.148148Best acc: 55.148148 +Train:epoch: 109, loss@min: 0.958668, loss@max: 1.355270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.895836, LT: 1.852308, Top1S: 54.641975, Top1T: 55.111111 +Train:epoch: 110, loss@min: 0.960834, loss@max: 1.357797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.894188, LT: 1.852643, Top1S: 54.641975, Top1T: 55.160492Best acc: 55.160492 +Train:epoch: 111, loss@min: 0.957270, loss@max: 1.356791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.891798, LT: 1.853014, Top1S: 54.641975, Top1T: 55.160492 +Train:epoch: 112, loss@min: 0.953313, loss@max: 1.359826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.889615, LT: 1.853321, Top1S: 54.679012, Top1T: 55.160492 +Train:epoch: 113, loss@min: 0.953860, loss@max: 1.362469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.887902, LT: 1.853679, Top1S: 54.679012, Top1T: 55.148148 +Train:epoch: 114, loss@min: 0.961078, loss@max: 1.366698, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 18:16:05 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.922943, loss@max: 0.817718, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.197441, loss@max: 0.956778, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.659475, loss@max: 1.093120, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.348838, loss@max: 1.206070, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 5, loss@min: 2.979346, loss@max: 1.300947, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.719172, loss@max: 1.371648, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.436756, loss@max: 1.438555, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.153830, loss@max: 1.481270, Top1S acc: 100.000000, Top1T acc: 83.333336 +Train:epoch: 9, loss@min: 1.931736, loss@max: 1.504396, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.722192, loss@max: 1.529183, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.707569, loss@max: 1.536638, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.747428, loss@max: 1.521470, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.590704, loss@max: 1.500936, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.479421, loss@max: 1.486565, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.311297, loss@max: 1.477765, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 16, loss@min: 1.413784, loss@max: 1.462326, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 17, loss@min: 1.229200, loss@max: 1.441979, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.210765, loss@max: 1.431529, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.204439, loss@max: 1.418559, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.145731, loss@max: 1.423945, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.142364, loss@max: 1.424519, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 22, loss@min: 1.109901, loss@max: 1.422178, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 23, loss@min: 1.147119, loss@max: 1.402596, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.124477, loss@max: 1.404253, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.032290, loss@max: 1.398666, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.061480, loss@max: 1.395527, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 1.084413, loss@max: 1.412634, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.068294, loss@max: 1.387714, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 1.008042, loss@max: 1.400143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.012624, loss@max: 1.394003, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 1.014771, loss@max: 1.375773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.012465, loss@max: 1.394791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.996320, loss@max: 1.392865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.018310, loss@max: 1.386853, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.983978, loss@max: 1.392590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.963550, loss@max: 1.378194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.019274, loss@max: 1.386161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.965033, loss@max: 1.374215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.964908, loss@max: 1.375355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.955473, loss@max: 1.370472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.965973, loss@max: 1.374286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.958633, loss@max: 1.381123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.942254, loss@max: 1.383280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.940872, loss@max: 1.381006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952394, loss@max: 1.382172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.946291, loss@max: 1.370625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.956356, loss@max: 1.373724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.954666, loss@max: 1.369491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.956616, loss@max: 1.364671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.955777, loss@max: 1.366239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958002, loss@max: 1.363156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.954818, loss@max: 1.375069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.951916, loss@max: 1.375489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951074, loss@max: 1.369436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.956799, loss@max: 1.371509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953948, loss@max: 1.366839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.962121, loss@max: 1.360276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.962218, loss@max: 1.357355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953126, loss@max: 1.362877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953572, loss@max: 1.361789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959260, loss@max: 1.368792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.957713, loss@max: 1.366357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950336, loss@max: 1.374462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949542, loss@max: 1.368377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.959567, loss@max: 1.374566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.956248, loss@max: 1.372531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.949836, loss@max: 1.370811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951287, loss@max: 1.367609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.958108, loss@max: 1.365671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.954809, loss@max: 1.366542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.953107, loss@max: 1.363834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.957903, loss@max: 1.374834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.949668, loss@max: 1.368088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948427, loss@max: 1.367904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.951074, loss@max: 1.373703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953597, loss@max: 1.366581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.951871, loss@max: 1.370671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945271, loss@max: 1.371042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.949981, loss@max: 1.364264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.952175, loss@max: 1.374769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.950087, loss@max: 1.362877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.958400, loss@max: 1.373238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.950580, loss@max: 1.372680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.949830, loss@max: 1.365286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.956765, loss@max: 1.366385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.950114, loss@max: 1.364485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.951376, loss@max: 1.364359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950085, loss@max: 1.367880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.951016, loss@max: 1.369244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948488, loss@max: 1.367279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.945527, loss@max: 1.376234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.950785, loss@max: 1.371832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950126, loss@max: 1.367626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.956716, loss@max: 1.369405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.953054, loss@max: 1.365534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.956229, loss@max: 1.361601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.951494, loss@max: 1.359017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.951208, loss@max: 1.365774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.956431, loss@max: 1.358418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.953791, loss@max: 1.366079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.952971, LT: 0.906822, Top1S: 77.304100, Top1T: 77.791313Best acc: 77.791313 +Train:epoch: 101, loss@min: 0.953102, loss@max: 1.365893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.953048, LT: 0.906647, Top1S: 77.344704, Top1T: 77.791313 +Train:epoch: 102, loss@min: 0.953028, loss@max: 1.368153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.953007, LT: 0.906453, Top1S: 77.344704, Top1T: 77.791313 +Train:epoch: 103, loss@min: 0.946251, loss@max: 1.366985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.952885, LT: 0.906218, Top1S: 77.385307, Top1T: 77.831917Best acc: 77.831917 +Train:epoch: 104, loss@min: 0.947185, loss@max: 1.370572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.952848, LT: 0.905938, Top1S: 77.385307, Top1T: 77.872513Best acc: 77.872513 +Train:epoch: 105, loss@min: 0.946490, loss@max: 1.372326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.952882, LT: 0.905594, Top1S: 77.425903, Top1T: 77.913116Best acc: 77.913116 +Train:epoch: 106, loss@min: 0.952309, loss@max: 1.365214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.952682, LT: 0.905244, Top1S: 77.466507, Top1T: 77.953720Best acc: 77.953720 +Train:epoch: 107, loss@min: 0.951474, loss@max: 1.362770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.952451, LT: 0.905011, Top1S: 77.507111, Top1T: 77.913116 +Train:epoch: 108, loss@min: 0.948590, loss@max: 1.368024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.952258, LT: 0.904829, Top1S: 77.547707, Top1T: 77.953720 +Train:epoch: 109, loss@min: 0.946719, loss@max: 1.368516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.952030, LT: 0.904709, Top1S: 77.507111, Top1T: 77.953720 +Train:epoch: 110, loss@min: 0.951690, loss@max: 1.365501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.951543, LT: 0.904527, Top1S: 77.466507, Top1T: 77.953720 +Train:epoch: 111, loss@min: 0.951968, loss@max: 1.366939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.951098, LT: 0.904433, Top1S: 77.466507, Top1T: 77.953720 +Train:epoch: 112, loss@min: 0.953764, loss@max: 1.366809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.950702, LT: 0.904383, Top1S: 77.466507, Top1T: 77.953720 +Train:epoch: 113, loss@min: 0.961799, loss@max: 1.371902, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "food101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 18:27:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.067081, loss@max: 0.861383, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 2, loss@min: 2.223543, loss@max: 1.007487, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 3, loss@min: 1.764166, loss@max: 1.111313, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 4, loss@min: 1.605447, loss@max: 1.195300, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 5, loss@min: 1.151345, loss@max: 1.260615, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 6, loss@min: 1.022063, loss@max: 1.306444, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 7, loss@min: 1.042406, loss@max: 1.341583, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 8, loss@min: 1.281118, loss@max: 1.369391, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 9, loss@min: 1.049191, loss@max: 1.379323, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 10, loss@min: 0.900443, loss@max: 1.401689, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 11, loss@min: 0.891062, loss@max: 1.393234, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 12, loss@min: 0.827110, loss@max: 1.358477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.889509, loss@max: 1.334938, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 14, loss@min: 0.920351, loss@max: 1.316931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.938216, loss@max: 1.285368, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.027969, loss@max: 1.274505, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 17, loss@min: 0.931701, loss@max: 1.252235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.948201, loss@max: 1.260125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.963286, loss@max: 1.258074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.970899, loss@max: 1.255867, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.953878, loss@max: 1.256213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.969812, loss@max: 1.255123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.954923, loss@max: 1.251279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.958800, loss@max: 1.260810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.953870, loss@max: 1.261706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968922, loss@max: 1.282338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.944886, loss@max: 1.277586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.962843, loss@max: 1.304699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.935805, loss@max: 1.299370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.941710, loss@max: 1.307499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.935383, loss@max: 1.316203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.935060, loss@max: 1.321186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.927475, loss@max: 1.318271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.928132, loss@max: 1.330896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.934894, loss@max: 1.324046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.930683, loss@max: 1.329747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.940100, loss@max: 1.333367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.941740, loss@max: 1.326346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941934, loss@max: 1.329768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.942597, loss@max: 1.336475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.938561, loss@max: 1.330406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.945668, loss@max: 1.328040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.953753, loss@max: 1.338270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.978364, loss@max: 1.336724, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 45, loss@min: 0.953016, loss@max: 1.337933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.941089, loss@max: 1.341647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.935401, loss@max: 1.342973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.935266, loss@max: 1.351728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.931759, loss@max: 1.358154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.940745, loss@max: 1.349753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947851, loss@max: 1.345597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949462, loss@max: 1.344435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.952720, loss@max: 1.345668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948807, loss@max: 1.345797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.941498, loss@max: 1.353602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953010, loss@max: 1.348591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.937574, loss@max: 1.360257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.939792, loss@max: 1.353445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.943317, loss@max: 1.353887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942280, loss@max: 1.356323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.949541, loss@max: 1.348457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.946171, loss@max: 1.352408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.949624, loss@max: 1.349511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.952338, loss@max: 1.352069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.947986, loss@max: 1.353482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945571, loss@max: 1.358617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947197, loss@max: 1.355826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947775, loss@max: 1.358392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942359, loss@max: 1.360195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.939729, loss@max: 1.362591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.944187, loss@max: 1.360784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.940694, loss@max: 1.360191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.939279, loss@max: 1.363336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.953939, loss@max: 1.358687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.946172, loss@max: 1.355710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949423, loss@max: 1.353241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.951396, loss@max: 1.353627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952664, loss@max: 1.359226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943832, loss@max: 1.360261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.947958, loss@max: 1.358176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.953068, loss@max: 1.351966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.950782, loss@max: 1.353899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.947528, loss@max: 1.360918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.941208, loss@max: 1.363348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.948215, loss@max: 1.360528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.938169, loss@max: 1.365033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.945235, loss@max: 1.365984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.945717, loss@max: 1.363733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944511, loss@max: 1.364656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948632, loss@max: 1.354380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.949402, loss@max: 1.357793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.951694, loss@max: 1.354234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950204, loss@max: 1.352719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.945344, loss@max: 1.358292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948204, loss@max: 1.362011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.949721, loss@max: 1.355968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.945430, loss@max: 1.358064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.942246, loss@max: 1.364821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.943835, loss@max: 1.360115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951246, loss@max: 1.364832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.248799, LT: 1.269772, Top1S: 75.481850, Top1T: 75.254128Best acc: 75.481850 +Train:epoch: 101, loss@min: 0.940658, loss@max: 1.363493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.248376, LT: 1.269439, Top1S: 75.501648, Top1T: 75.250824Best acc: 75.501648 +Train:epoch: 102, loss@min: 0.943455, loss@max: 1.362017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.247960, LT: 1.269153, Top1S: 75.534653, Top1T: 75.267326Best acc: 75.534653 +Train:epoch: 103, loss@min: 0.947757, loss@max: 1.356905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.247653, LT: 1.268933, Top1S: 75.541252, Top1T: 75.257423Best acc: 75.541252 +Train:epoch: 104, loss@min: 0.943278, loss@max: 1.360267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.247543, LT: 1.268759, Top1S: 75.547852, Top1T: 75.270630Best acc: 75.547852 +Train:epoch: 105, loss@min: 0.947796, loss@max: 1.356403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.247450, LT: 1.268621, Top1S: 75.554451, Top1T: 75.280525Best acc: 75.554451 +Train:epoch: 106, loss@min: 0.947734, loss@max: 1.359973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.247405, LT: 1.268515, Top1S: 75.561058, Top1T: 75.287125Best acc: 75.561058 +Train:epoch: 107, loss@min: 0.949890, loss@max: 1.354853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.247509, LT: 1.268444, Top1S: 75.547852, Top1T: 75.290428 +Train:epoch: 108, loss@min: 0.949943, loss@max: 1.355641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.247572, LT: 1.268359, Top1S: 75.551155, Top1T: 75.283829 +Train:epoch: 109, loss@min: 0.948576, loss@max: 1.355468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.247625, LT: 1.268257, Top1S: 75.544556, Top1T: 75.290428 +Train:epoch: 110, loss@min: 0.946973, loss@max: 1.356865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.247652, LT: 1.268169, Top1S: 75.537956, Top1T: 75.283829 +Train:epoch: 111, loss@min: 0.947579, loss@max: 1.358510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.247643, LT: 1.268049, Top1S: 75.537956, Top1T: 75.270630 +Train:epoch: 112, loss@min: 0.947922, loss@max: 1.357259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.247659, LT: 1.267952, Top1S: 75.544556, Top1T: 75.264023 +Train:epoch: 113, loss@min: 0.947104, loss@max: 1.358187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.247696, LT: 1.267930, Top1S: 75.544556, Top1T: 75.267326 +Train:epoch: 114, loss@min: 0.941191, loss@max: 1.362652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.247694, LT: 1.267970, Top1S: 75.551155, Top1T: 75.270630 +Train:epoch: 115, loss@min: 0.944365, loss@max: 1.364912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.247706, LT: 1.268007, Top1S: 75.551155, Top1T: 75.267326 +Train:epoch: 116, loss@min: 0.949583, loss@max: 1.354729, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sun Aug 13 20:29:11 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.277908, loss@max: 0.819479, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.663100, loss@max: 0.948627, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.843118, loss@max: 1.077003, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.635709, loss@max: 1.185306, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.096984, loss@max: 1.286420, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 6, loss@min: 1.940128, loss@max: 1.354356, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 1.876440, loss@max: 1.414457, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.513690, loss@max: 1.470375, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.129025, loss@max: 1.499667, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.259086, loss@max: 1.510913, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.280244, loss@max: 1.519817, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.147102, loss@max: 1.521713, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 0.989186, loss@max: 1.518999, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 14, loss@min: 0.937847, loss@max: 1.509280, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.058724, loss@max: 1.480420, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.011049, loss@max: 1.455939, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.019566, loss@max: 1.418270, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.019743, loss@max: 1.410424, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.945567, loss@max: 1.380301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.044049, loss@max: 1.369018, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950295, loss@max: 1.346964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.963415, loss@max: 1.314213, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.994399, loss@max: 1.307139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.058294, loss@max: 1.307084, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.982493, loss@max: 1.285702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.017505, loss@max: 1.290455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.053373, loss@max: 1.288775, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.050196, loss@max: 1.288582, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.090121, loss@max: 1.303474, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 1.004376, loss@max: 1.289703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.037477, loss@max: 1.303471, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.974582, loss@max: 1.298523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.970859, loss@max: 1.307712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.987478, loss@max: 1.323753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.984623, loss@max: 1.322751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.988437, loss@max: 1.337496, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.959030, loss@max: 1.346769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.939909, loss@max: 1.354087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.943986, loss@max: 1.358647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.923903, loss@max: 1.368383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.933451, loss@max: 1.366329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.952721, loss@max: 1.365351, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.949472, loss@max: 1.351484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.949799, loss@max: 1.360765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.000065, loss@max: 1.363440, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.946792, loss@max: 1.355243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.032647, loss@max: 1.380272, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.939525, loss@max: 1.362485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.936108, loss@max: 1.368623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942120, loss@max: 1.363545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.954650, loss@max: 1.366413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.939944, loss@max: 1.375083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938983, loss@max: 1.367275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.956227, loss@max: 1.363004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.951432, loss@max: 1.352668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.956207, loss@max: 1.349252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.952080, loss@max: 1.357143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.952452, loss@max: 1.354871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.976845, loss@max: 1.359737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951807, loss@max: 1.365633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.951459, loss@max: 1.355884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.957038, loss@max: 1.354093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955685, loss@max: 1.372053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949102, loss@max: 1.364827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946916, loss@max: 1.362076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946419, loss@max: 1.365169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.948265, loss@max: 1.366527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949096, loss@max: 1.360409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.959122, loss@max: 1.358488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.961347, loss@max: 1.377717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.954875, loss@max: 1.362817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954871, loss@max: 1.360523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.954986, loss@max: 1.365497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.019943, loss@max: 1.359380, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.958080, loss@max: 1.367426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955356, loss@max: 1.377350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965876, loss@max: 1.378006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948141, loss@max: 1.364328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956010, loss@max: 1.374388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.945837, loss@max: 1.367006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948905, loss@max: 1.371606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.951141, loss@max: 1.363385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.952806, loss@max: 1.371548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.950003, loss@max: 1.358522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.957735, loss@max: 1.367020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.954700, loss@max: 1.369043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.948500, loss@max: 1.366523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.952558, loss@max: 1.365206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.951222, loss@max: 1.367343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949231, loss@max: 1.362907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.954694, loss@max: 1.358451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.950321, loss@max: 1.361125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950287, loss@max: 1.364663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.956114, loss@max: 1.366610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.975623, loss@max: 1.364274, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 96, loss@min: 0.977925, loss@max: 1.380682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.943947, loss@max: 1.371772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943736, loss@max: 1.369519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.949149, loss@max: 1.369650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947713, loss@max: 1.370189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.435692, LT: 1.429964, Top1S: 66.957436, Top1T: 66.798836Best acc: 66.957436 +Train:epoch: 101, loss@min: 0.949373, loss@max: 1.361256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.435954, LT: 1.430062, Top1S: 66.983871, Top1T: 66.825272Best acc: 66.983871 +Train:epoch: 102, loss@min: 0.948415, loss@max: 1.367868, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.436136, LT: 1.430060, Top1S: 66.957436, Top1T: 66.851700 +Train:epoch: 103, loss@min: 0.945876, loss@max: 1.366781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.436318, LT: 1.430089, Top1S: 66.957436, Top1T: 66.851700 +Train:epoch: 104, loss@min: 0.966657, loss@max: 1.373829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.436426, LT: 1.430013, Top1S: 66.931007, Top1T: 66.878136 +Train:epoch: 105, loss@min: 0.948317, loss@max: 1.366582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.436516, LT: 1.429962, Top1S: 66.931007, Top1T: 66.878136 +Train:epoch: 106, loss@min: 0.957916, loss@max: 1.370098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.436619, LT: 1.429954, Top1S: 66.904572, Top1T: 66.878136 +Train:epoch: 107, loss@min: 0.947091, loss@max: 1.363898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.436684, LT: 1.429945, Top1S: 66.904572, Top1T: 66.904572 +Train:epoch: 108, loss@min: 0.948341, loss@max: 1.358855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.436719, LT: 1.429945, Top1S: 66.904572, Top1T: 66.904572 +Train:epoch: 109, loss@min: 0.954788, loss@max: 1.363397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.436741, LT: 1.430005, Top1S: 66.904572, Top1T: 66.904572 +Train:epoch: 110, loss@min: 0.949642, loss@max: 1.362297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.436715, LT: 1.430062, Top1S: 66.931007, Top1T: 66.904572 +Train:epoch: 111, loss@min: 0.946858, loss@max: 1.361714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.436697, LT: 1.430143, Top1S: 66.931007, Top1T: 66.904572 +Train:epoch: 112, loss@min: 0.965139, loss@max: 1.373435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.436717, LT: 1.430292, Top1S: 66.957436, Top1T: 66.878136 +Train:epoch: 113, loss@min: 0.950752, loss@max: 1.362693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.436726, LT: 1.430449, Top1S: 67.010307, Top1T: 66.904572Best acc: 67.010307 +Train:epoch: 114, loss@min: 0.958712, loss@max: 1.369293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.436697, LT: 1.430580, Top1S: 67.036743, Top1T: 66.904572Best acc: 67.036743 +Train:epoch: 115, loss@min: 0.946061, loss@max: 1.368773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.436589, LT: 1.430685, Top1S: 67.063171, Top1T: 66.878136Best acc: 67.063171 +Train:epoch: 116, loss@min: 0.951811, loss@max: 1.360600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.436506, LT: 1.430788, Top1S: 67.116043, Top1T: 66.904572Best acc: 67.116043 +Train:epoch: 117, loss@min: 0.949845, loss@max: 1.359430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.436349, LT: 1.430930, Top1S: 67.116043, Top1T: 66.904572 +Train:epoch: 118, loss@min: 0.949408, loss@max: 1.365931, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.436243, LT: 1.431026, Top1S: 67.116043, Top1T: 66.904572 +Train:epoch: 119, loss@min: 0.949350, loss@max: 1.358621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.436159, LT: 1.431106, Top1S: 67.089607, Top1T: 66.904572 +Train:epoch: 120, loss@min: 0.968892, loss@max: 1.375513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.436014, LT: 1.431158, Top1S: 67.089607, Top1T: 66.878136 +Train:epoch: 121, loss@min: 0.951468, loss@max: 1.359127, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "fgvc", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 20:47:28 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.795627, loss@max: 0.836347, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 2, loss@min: 8.511292, loss@max: 0.997995, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 3, loss@min: 7.628962, loss@max: 1.134859, Top1S acc: 100.000000, Top1T acc: 22.000000 +Train:epoch: 4, loss@min: 6.926311, loss@max: 1.232969, Top1S acc: 100.000000, Top1T acc: 38.000000 +Train:epoch: 5, loss@min: 6.583171, loss@max: 1.327674, Top1S acc: 100.000000, Top1T acc: 37.000000 +Train:epoch: 6, loss@min: 5.854437, loss@max: 1.394338, Top1S acc: 100.000000, Top1T acc: 44.000000 +Train:epoch: 7, loss@min: 5.996850, loss@max: 1.457895, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 8, loss@min: 5.679678, loss@max: 1.519057, Top1S acc: 100.000000, Top1T acc: 47.000000 +Train:epoch: 9, loss@min: 5.110309, loss@max: 1.577918, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 10, loss@min: 4.872669, loss@max: 1.619597, Top1S acc: 100.000000, Top1T acc: 59.000000 +Train:epoch: 11, loss@min: 4.566497, loss@max: 1.670098, Top1S acc: 100.000000, Top1T acc: 64.000000 +Train:epoch: 12, loss@min: 4.199865, loss@max: 1.733086, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 13, loss@min: 3.989173, loss@max: 1.774781, Top1S acc: 100.000000, Top1T acc: 67.000000 +Train:epoch: 14, loss@min: 3.860090, loss@max: 1.830854, Top1S acc: 100.000000, Top1T acc: 71.000000 +Train:epoch: 15, loss@min: 3.428888, loss@max: 1.863293, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 16, loss@min: 3.238250, loss@max: 1.867868, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 17, loss@min: 3.274514, loss@max: 1.911806, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 18, loss@min: 3.041008, loss@max: 1.928957, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 19, loss@min: 2.895372, loss@max: 1.939738, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 2.563686, loss@max: 1.957136, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 21, loss@min: 2.483286, loss@max: 1.981970, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 2.576824, loss@max: 1.940575, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 23, loss@min: 2.478152, loss@max: 1.935875, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 24, loss@min: 2.427958, loss@max: 1.957046, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 25, loss@min: 2.215529, loss@max: 1.964365, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 26, loss@min: 2.099967, loss@max: 1.903323, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 27, loss@min: 1.884591, loss@max: 1.908186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 2.086540, loss@max: 1.915041, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 29, loss@min: 1.881028, loss@max: 1.887046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.911935, loss@max: 1.830583, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 31, loss@min: 1.831021, loss@max: 1.849748, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.876181, loss@max: 1.814546, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 33, loss@min: 1.725123, loss@max: 1.814607, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 34, loss@min: 1.811321, loss@max: 1.771518, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 35, loss@min: 1.897691, loss@max: 1.754538, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 36, loss@min: 1.683242, loss@max: 1.754947, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.602318, loss@max: 1.737559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.726674, loss@max: 1.719721, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 39, loss@min: 1.636838, loss@max: 1.672014, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.595653, loss@max: 1.689958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.726219, loss@max: 1.663630, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 42, loss@min: 1.578916, loss@max: 1.628316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.563931, loss@max: 1.593966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.617624, loss@max: 1.620100, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 45, loss@min: 1.530732, loss@max: 1.573063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.507828, loss@max: 1.583264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.520482, loss@max: 1.551245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.519464, loss@max: 1.558551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.529077, loss@max: 1.540260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.525209, loss@max: 1.548842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.498430, loss@max: 1.509847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.469268, loss@max: 1.520480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.529541, loss@max: 1.506869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.487517, loss@max: 1.497893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.486902, loss@max: 1.485471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.631689, loss@max: 1.520391, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.446705, loss@max: 1.475503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.471774, loss@max: 1.452797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.454215, loss@max: 1.488041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.442502, loss@max: 1.473402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.460795, loss@max: 1.474713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.482180, loss@max: 1.464435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.491930, loss@max: 1.461064, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 64, loss@min: 1.474252, loss@max: 1.459542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.422221, loss@max: 1.442898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.433692, loss@max: 1.446341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.404022, loss@max: 1.444149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.452327, loss@max: 1.470144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.431249, loss@max: 1.459480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.424595, loss@max: 1.428472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.406725, loss@max: 1.454190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.398942, loss@max: 1.429518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.429711, loss@max: 1.426738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.409745, loss@max: 1.420153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.415385, loss@max: 1.431387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.393933, loss@max: 1.432858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.390962, loss@max: 1.423040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.408065, loss@max: 1.412937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.397727, loss@max: 1.407406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.401327, loss@max: 1.419962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 4.275759, LT: 4.175361, Top1S: 21.572157, Top1T: 22.112211Best acc: 22.112211 +Train:epoch: 81, loss@min: 1.394330, loss@max: 1.418825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 4.277314, LT: 4.179351, Top1S: 21.512150, Top1T: 22.142214Best acc: 22.142214 +Train:epoch: 82, loss@min: 1.388076, loss@max: 1.421245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 4.280905, LT: 4.183251, Top1S: 21.392138, Top1T: 22.052204 +Train:epoch: 83, loss@min: 1.379972, loss@max: 1.433820, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 4.284968, LT: 4.188207, Top1S: 21.452145, Top1T: 22.022202 +Train:epoch: 84, loss@min: 1.387283, loss@max: 1.425378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 4.288551, LT: 4.192927, Top1S: 21.392138, Top1T: 22.082207 +Train:epoch: 85, loss@min: 1.373301, loss@max: 1.435902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 4.292719, LT: 4.197201, Top1S: 21.572157, Top1T: 22.202219Best acc: 22.202219 +Train:epoch: 86, loss@min: 1.356997, loss@max: 1.437913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 4.297638, LT: 4.201982, Top1S: 21.662165, Top1T: 22.322231Best acc: 22.322231 +Train:epoch: 87, loss@min: 1.381205, loss@max: 1.423044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 4.302430, LT: 4.206726, Top1S: 21.512150, Top1T: 22.322231 +Train:epoch: 88, loss@min: 1.390450, loss@max: 1.404744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 4.306758, LT: 4.210379, Top1S: 21.572157, Top1T: 22.262226 +Train:epoch: 89, loss@min: 1.389974, loss@max: 1.406426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 4.312354, LT: 4.214435, Top1S: 21.482147, Top1T: 22.292229 +Train:epoch: 90, loss@min: 1.394833, loss@max: 1.406065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 4.318518, LT: 4.217935, Top1S: 21.512150, Top1T: 22.262226 +Train:epoch: 91, loss@min: 1.376044, loss@max: 1.402407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 4.325034, LT: 4.221503, Top1S: 21.392138, Top1T: 22.202219 +Train:epoch: 92, loss@min: 1.374651, loss@max: 1.398749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 4.330787, LT: 4.224465, Top1S: 21.632162, Top1T: 22.142214 +Train:epoch: 93, loss@min: 1.373093, loss@max: 1.413781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 4.336779, LT: 4.228428, Top1S: 21.542154, Top1T: 22.142214 +Train:epoch: 94, loss@min: 1.365488, loss@max: 1.410116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 4.341907, LT: 4.232066, Top1S: 21.422142, Top1T: 22.172216 +Train:epoch: 95, loss@min: 1.367729, loss@max: 1.419592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 4.346301, LT: 4.234717, Top1S: 21.422142, Top1T: 22.112211 +Train:epoch: 96, loss@min: 1.367054, loss@max: 1.406357, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 21:28:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.506438, loss@max: 0.827603, Top1S acc: 100.000000, Top1T acc: 57.142857 +Train:epoch: 2, loss@min: 3.792276, loss@max: 0.968089, Top1S acc: 100.000000, Top1T acc: 56.632652 +Train:epoch: 3, loss@min: 3.105596, loss@max: 1.115104, Top1S acc: 100.000000, Top1T acc: 67.857140 +Train:epoch: 4, loss@min: 2.935221, loss@max: 1.209275, Top1S acc: 100.000000, Top1T acc: 64.795921 +Train:epoch: 5, loss@min: 2.487067, loss@max: 1.299758, Top1S acc: 100.000000, Top1T acc: 72.959183 +Train:epoch: 6, loss@min: 2.425043, loss@max: 1.368923, Top1S acc: 100.000000, Top1T acc: 77.040817 +Train:epoch: 7, loss@min: 2.156072, loss@max: 1.423135, Top1S acc: 100.000000, Top1T acc: 76.530609 +Train:epoch: 8, loss@min: 1.994983, loss@max: 1.476830, Top1S acc: 100.000000, Top1T acc: 81.632652 +Train:epoch: 9, loss@min: 1.953251, loss@max: 1.510420, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 10, loss@min: 1.742113, loss@max: 1.518145, Top1S acc: 100.000000, Top1T acc: 86.734695 +Train:epoch: 11, loss@min: 1.573657, loss@max: 1.544174, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 12, loss@min: 1.830100, loss@max: 1.535998, Top1S acc: 100.000000, Top1T acc: 88.775505 +Train:epoch: 13, loss@min: 1.381260, loss@max: 1.575881, Top1S acc: 100.000000, Top1T acc: 91.836731 +Train:epoch: 14, loss@min: 1.322105, loss@max: 1.557094, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 15, loss@min: 1.372832, loss@max: 1.532832, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 16, loss@min: 1.422759, loss@max: 1.522928, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 17, loss@min: 1.243406, loss@max: 1.518348, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 18, loss@min: 1.335592, loss@max: 1.490174, Top1S acc: 100.000000, Top1T acc: 94.897957 +Train:epoch: 19, loss@min: 1.227230, loss@max: 1.482924, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 20, loss@min: 1.242977, loss@max: 1.464712, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 21, loss@min: 1.205469, loss@max: 1.457899, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 22, loss@min: 1.191648, loss@max: 1.434023, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 23, loss@min: 1.229189, loss@max: 1.420709, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 24, loss@min: 1.228681, loss@max: 1.422420, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 25, loss@min: 1.218986, loss@max: 1.402079, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 26, loss@min: 1.242611, loss@max: 1.405057, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 27, loss@min: 1.174890, loss@max: 1.392913, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 28, loss@min: 1.192974, loss@max: 1.386836, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 29, loss@min: 1.208721, loss@max: 1.393185, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 30, loss@min: 1.072775, loss@max: 1.388388, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 31, loss@min: 1.149749, loss@max: 1.403223, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 32, loss@min: 1.112041, loss@max: 1.408829, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 33, loss@min: 1.033699, loss@max: 1.401682, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 34, loss@min: 1.051124, loss@max: 1.404677, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 35, loss@min: 1.066213, loss@max: 1.403456, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 36, loss@min: 1.039597, loss@max: 1.389938, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 37, loss@min: 1.087770, loss@max: 1.389862, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 38, loss@min: 1.052590, loss@max: 1.385336, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 39, loss@min: 1.054829, loss@max: 1.387061, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 40, loss@min: 1.080920, loss@max: 1.404093, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 41, loss@min: 1.010350, loss@max: 1.386345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.041456, loss@max: 1.404037, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 43, loss@min: 0.999856, loss@max: 1.404460, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 44, loss@min: 0.990493, loss@max: 1.393480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.043354, loss@max: 1.394680, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 46, loss@min: 0.971101, loss@max: 1.388037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.003465, loss@max: 1.399331, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 48, loss@min: 0.998913, loss@max: 1.400886, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 49, loss@min: 1.039579, loss@max: 1.404912, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 50, loss@min: 0.994483, loss@max: 1.394911, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 51, loss@min: 1.010064, loss@max: 1.394987, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 52, loss@min: 0.994915, loss@max: 1.393296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.071402, loss@max: 1.380245, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 54, loss@min: 1.001979, loss@max: 1.373771, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 55, loss@min: 1.005775, loss@max: 1.388284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.065401, loss@max: 1.387892, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 57, loss@min: 0.990137, loss@max: 1.385833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.989287, loss@max: 1.390299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.000865, loss@max: 1.387747, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 60, loss@min: 0.997176, loss@max: 1.386378, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 61, loss@min: 0.995480, loss@max: 1.387452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.983095, loss@max: 1.376225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.006359, loss@max: 1.390782, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 64, loss@min: 0.985913, loss@max: 1.373651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.981655, loss@max: 1.374721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.981716, loss@max: 1.382980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.988978, loss@max: 1.387693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.975312, loss@max: 1.379570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.973646, loss@max: 1.382628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.975926, loss@max: 1.380021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.973247, loss@max: 1.384620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.993874, loss@max: 1.390217, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 73, loss@min: 0.975989, loss@max: 1.382346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.991164, loss@max: 1.376024, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 75, loss@min: 0.987927, loss@max: 1.377102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.980955, loss@max: 1.374201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.990048, loss@max: 1.380860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.003923, loss@max: 1.384491, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 79, loss@min: 0.974859, loss@max: 1.379170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.979696, loss@max: 1.387633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.604627, LT: 1.596730, Top1S: 58.164410, Top1T: 58.338516Best acc: 58.338516 +Train:epoch: 81, loss@min: 0.978701, loss@max: 1.382422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.606419, LT: 1.598776, Top1S: 58.151974, Top1T: 58.239029 +Train:epoch: 82, loss@min: 0.969420, loss@max: 1.382156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.608363, LT: 1.600831, Top1S: 58.214153, Top1T: 58.301208 +Train:epoch: 83, loss@min: 0.970882, loss@max: 1.383007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.610085, LT: 1.602740, Top1S: 58.201717, Top1T: 58.251465 +Train:epoch: 84, loss@min: 0.974280, loss@max: 1.378733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.611805, LT: 1.604703, Top1S: 58.239029, Top1T: 58.176846 +Train:epoch: 85, loss@min: 0.978401, loss@max: 1.379689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.612944, LT: 1.605958, Top1S: 58.251465, Top1T: 58.189281 +Train:epoch: 86, loss@min: 0.976933, loss@max: 1.385179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.613732, LT: 1.606934, Top1S: 58.338516, Top1T: 58.214153 +Train:epoch: 87, loss@min: 0.973968, loss@max: 1.373300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.614265, LT: 1.607651, Top1S: 58.263901, Top1T: 58.214153 +Train:epoch: 88, loss@min: 0.998252, loss@max: 1.377471, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 88, LS: 1.614341, LT: 1.608132, Top1S: 58.226593, Top1T: 58.189281 +Train:epoch: 89, loss@min: 0.996529, loss@max: 1.377512, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 89, LS: 1.614577, LT: 1.608661, Top1S: 58.263901, Top1T: 58.176846 +Train:epoch: 90, loss@min: 0.974813, loss@max: 1.377108, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.614844, LT: 1.609167, Top1S: 58.263901, Top1T: 58.263901 +Train:epoch: 91, loss@min: 0.989862, loss@max: 1.380971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.615035, LT: 1.609340, Top1S: 58.276337, Top1T: 58.263901 +Train:epoch: 92, loss@min: 0.977136, loss@max: 1.372405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.614740, LT: 1.609125, Top1S: 58.301208, Top1T: 58.276337 +Train:epoch: 93, loss@min: 0.981537, loss@max: 1.374068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.614432, LT: 1.608740, Top1S: 58.350952, Top1T: 58.338516Best acc: 58.350952 +Train:epoch: 94, loss@min: 0.970702, loss@max: 1.372214, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 22:01:32 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.609148, loss@max: 0.846047, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.708304, loss@max: 0.988826, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.261089, loss@max: 1.112924, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.128905, loss@max: 1.202939, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.007044, loss@max: 1.260359, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 0.879048, loss@max: 1.320423, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.838012, loss@max: 1.340935, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 8, loss@min: 0.898348, loss@max: 1.363495, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.788518, loss@max: 1.368226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.779437, loss@max: 1.360196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.841958, loss@max: 1.359408, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.856531, loss@max: 1.348691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.919872, loss@max: 1.328161, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.936319, loss@max: 1.300774, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.888415, loss@max: 1.272867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.966230, loss@max: 1.253335, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.959135, loss@max: 1.244167, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.018949, loss@max: 1.224458, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.974681, loss@max: 1.228923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.979544, loss@max: 1.225936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.990333, loss@max: 1.224261, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.009520, loss@max: 1.231083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.988932, loss@max: 1.223851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.018954, loss@max: 1.241835, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.967484, loss@max: 1.252365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.950650, loss@max: 1.280643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.953028, loss@max: 1.268249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.961112, loss@max: 1.288630, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.940537, loss@max: 1.288026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.938343, loss@max: 1.312131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.957096, loss@max: 1.322634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.926238, loss@max: 1.324731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.938776, loss@max: 1.330117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.928877, loss@max: 1.327970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940499, loss@max: 1.338788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950631, loss@max: 1.332504, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.934696, loss@max: 1.334403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.921438, loss@max: 1.341861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.929947, loss@max: 1.354473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.939651, loss@max: 1.353294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.027779, loss@max: 1.354359, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.942365, loss@max: 1.333643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957950, loss@max: 1.335022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.943864, loss@max: 1.333723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.942504, loss@max: 1.341543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.976296, loss@max: 1.338684, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.932702, loss@max: 1.346871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.941400, loss@max: 1.346287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.952221, loss@max: 1.340600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941658, loss@max: 1.343618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.970072, loss@max: 1.343323, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.953359, loss@max: 1.355712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.947903, loss@max: 1.341402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.952889, loss@max: 1.346744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.961738, loss@max: 1.352235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.951724, loss@max: 1.344096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945865, loss@max: 1.350394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.957697, loss@max: 1.361261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946021, loss@max: 1.352036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.940570, loss@max: 1.361327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.939748, loss@max: 1.361222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.946564, loss@max: 1.355326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940490, loss@max: 1.358390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.946508, loss@max: 1.354462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946471, loss@max: 1.354742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.990017, loss@max: 1.356755, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.946419, loss@max: 1.357545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951009, loss@max: 1.350193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955640, loss@max: 1.356599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.942963, loss@max: 1.363421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950378, loss@max: 1.363332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.964806, loss@max: 1.361953, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.949520, loss@max: 1.351806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.949056, loss@max: 1.352881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.937859, loss@max: 1.369591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.939510, loss@max: 1.368037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.943988, loss@max: 1.358354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945194, loss@max: 1.359495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.940579, loss@max: 1.361139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950396, loss@max: 1.359009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.429004, LT: 0.428894, Top1S: 88.722107, Top1T: 89.127792Best acc: 89.127792 +Train:epoch: 81, loss@min: 0.954029, loss@max: 1.356648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.429342, LT: 0.428924, Top1S: 88.762680, Top1T: 89.127792 +Train:epoch: 82, loss@min: 0.951703, loss@max: 1.358462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.429741, LT: 0.429135, Top1S: 88.722107, Top1T: 89.168358Best acc: 89.168358 +Train:epoch: 83, loss@min: 0.959005, loss@max: 1.352063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.430090, LT: 0.429316, Top1S: 88.681541, Top1T: 89.168358 +Train:epoch: 84, loss@min: 0.961202, loss@max: 1.361020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.430503, LT: 0.429685, Top1S: 88.640976, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 85, loss@min: 0.956720, loss@max: 1.361809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.430489, LT: 0.429755, Top1S: 88.640976, Top1T: 89.208923 +Train:epoch: 86, loss@min: 0.948669, loss@max: 1.360107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.430447, LT: 0.429889, Top1S: 88.681541, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 87, loss@min: 0.941494, loss@max: 1.366922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.430433, LT: 0.430034, Top1S: 88.762680, Top1T: 89.330627 +Train:epoch: 88, loss@min: 0.940275, loss@max: 1.367732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.430364, LT: 0.430280, Top1S: 88.762680, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 89, loss@min: 0.941461, loss@max: 1.364298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.430342, LT: 0.430525, Top1S: 88.803246, Top1T: 89.330627 +Train:epoch: 90, loss@min: 0.940588, loss@max: 1.365394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.430386, LT: 0.430687, Top1S: 88.762680, Top1T: 89.330627 +Train:epoch: 91, loss@min: 0.944334, loss@max: 1.359993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.430463, LT: 0.430877, Top1S: 88.722107, Top1T: 89.330627 +Train:epoch: 92, loss@min: 0.944431, loss@max: 1.358488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.430535, LT: 0.431023, Top1S: 88.681541, Top1T: 89.330627 +Train:epoch: 93, loss@min: 0.950004, loss@max: 1.354184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.430581, LT: 0.431119, Top1S: 88.681541, Top1T: 89.330627 +Train:epoch: 94, loss@min: 0.949863, loss@max: 1.353506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.430727, LT: 0.431163, Top1S: 88.681541, Top1T: 89.330627 +Train:epoch: 95, loss@min: 0.950501, loss@max: 1.362600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.431010, LT: 0.431366, Top1S: 88.681541, Top1T: 89.249496 +Train:epoch: 96, loss@min: 0.949899, loss@max: 1.358237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.431331, LT: 0.431473, Top1S: 88.722107, Top1T: 89.249496 +Train:epoch: 97, loss@min: 0.955409, loss@max: 1.358957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.431646, LT: 0.431622, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 98, loss@min: 0.947031, loss@max: 1.357675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.431989, LT: 0.431686, Top1S: 88.803246, Top1T: 89.290062 +Train:epoch: 99, loss@min: 0.951206, loss@max: 1.353611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.432348, LT: 0.431699, Top1S: 88.843811, Top1T: 89.249496 +Train:epoch: 100, loss@min: 0.945237, loss@max: 1.356205, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.432638, LT: 0.431730, Top1S: 88.843811, Top1T: 89.249496 +Train:epoch: 101, loss@min: 0.943734, loss@max: 1.367400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.432873, LT: 0.431812, Top1S: 88.924950, Top1T: 89.290062 +Train:epoch: 102, loss@min: 0.946142, loss@max: 1.358032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.433055, LT: 0.431892, Top1S: 88.924950, Top1T: 89.330627 +Train:epoch: 103, loss@min: 0.938844, loss@max: 1.364372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.433255, LT: 0.431913, Top1S: 88.884384, Top1T: 89.330627 +Train:epoch: 104, loss@min: 0.943757, loss@max: 1.362098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.433381, LT: 0.431952, Top1S: 88.884384, Top1T: 89.371201 +Train:epoch: 105, loss@min: 0.947051, loss@max: 1.359811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.433390, LT: 0.431964, Top1S: 88.884384, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 106, loss@min: 0.945054, loss@max: 1.360826, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.433293, LT: 0.431957, Top1S: 88.884384, Top1T: 89.411766 +Train:epoch: 107, loss@min: 0.944749, loss@max: 1.363237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.433204, LT: 0.431931, Top1S: 88.884384, Top1T: 89.411766 +Train:epoch: 108, loss@min: 0.945979, loss@max: 1.364058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.433082, LT: 0.431943, Top1S: 88.924950, Top1T: 89.411766 +Train:epoch: 109, loss@min: 0.944627, loss@max: 1.363527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.432882, LT: 0.431913, Top1S: 88.965515, Top1T: 89.371201 +Train:epoch: 110, loss@min: 0.944107, loss@max: 1.359221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.432749, LT: 0.431848, Top1S: 89.006088, Top1T: 89.411766 +Train:epoch: 111, loss@min: 0.948811, loss@max: 1.356944, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.432621, LT: 0.431769, Top1S: 89.046654, Top1T: 89.411766 +Train:epoch: 112, loss@min: 0.945813, loss@max: 1.359454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.432527, LT: 0.431699, Top1S: 89.046654, Top1T: 89.411766 +Train:epoch: 113, loss@min: 0.945451, loss@max: 1.357185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.432475, LT: 0.431622, Top1S: 89.046654, Top1T: 89.411766 +Train:epoch: 114, loss@min: 0.943833, loss@max: 1.360130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.432443, LT: 0.431544, Top1S: 89.046654, Top1T: 89.411766 +Train:epoch: 115, loss@min: 0.949100, loss@max: 1.358796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.432503, LT: 0.431506, Top1S: 89.046654, Top1T: 89.411766 +Train:epoch: 116, loss@min: 0.949300, loss@max: 1.354760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.432551, LT: 0.431454, Top1S: 89.046654, Top1T: 89.371201 +Train:epoch: 117, loss@min: 0.953573, loss@max: 1.361902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.432619, LT: 0.431415, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 118, loss@min: 0.952017, loss@max: 1.351642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.432647, LT: 0.431387, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 119, loss@min: 0.949530, loss@max: 1.357328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.432667, LT: 0.431350, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 120, loss@min: 0.946093, loss@max: 1.357988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.432691, LT: 0.431319, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 121, loss@min: 0.941610, loss@max: 1.363558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.432721, LT: 0.431316, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 122, loss@min: 0.949315, loss@max: 1.361102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.432702, LT: 0.431282, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 123, loss@min: 0.945053, loss@max: 1.356482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.432696, LT: 0.431259, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 124, loss@min: 0.942819, loss@max: 1.360278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.432678, LT: 0.431245, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 125, loss@min: 0.945482, loss@max: 1.358612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.432652, LT: 0.431230, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 126, loss@min: 0.942215, loss@max: 1.362288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.432638, LT: 0.431216, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 127, loss@min: 0.941789, loss@max: 1.361636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.432611, LT: 0.431200, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 128, loss@min: 0.944208, loss@max: 1.358433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.432575, LT: 0.431192, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 129, loss@min: 0.946445, loss@max: 1.360614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.432532, LT: 0.431182, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 130, loss@min: 0.944267, loss@max: 1.359741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.432489, LT: 0.431185, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 131, loss@min: 0.958582, loss@max: 1.363129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.432487, LT: 0.431231, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 132, loss@min: 0.951495, loss@max: 1.356696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.432480, LT: 0.431275, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 133, loss@min: 0.947719, loss@max: 1.354558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.432469, LT: 0.431311, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 134, loss@min: 0.948133, loss@max: 1.356434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.432463, LT: 0.431343, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 135, loss@min: 0.948123, loss@max: 1.354888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.432451, LT: 0.431368, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 136, loss@min: 0.946492, loss@max: 1.355712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.432436, LT: 0.431390, Top1S: 89.127792, Top1T: 89.330627 +Train:epoch: 137, loss@min: 0.946256, loss@max: 1.358765, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 22:30:48 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.940966, loss@max: 0.856924, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 2, loss@min: 3.383155, loss@max: 1.012887, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 3, loss@min: 2.555715, loss@max: 1.129235, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 4, loss@min: 2.154347, loss@max: 1.218399, Top1S acc: 100.000000, Top1T acc: 78.515625 +Train:epoch: 5, loss@min: 1.832309, loss@max: 1.290338, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 6, loss@min: 1.723105, loss@max: 1.357408, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 7, loss@min: 1.474524, loss@max: 1.389225, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 8, loss@min: 1.322359, loss@max: 1.434328, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 9, loss@min: 1.180235, loss@max: 1.443867, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 10, loss@min: 1.086000, loss@max: 1.436880, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 11, loss@min: 1.061805, loss@max: 1.438708, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 1.088592, loss@max: 1.415497, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.063076, loss@max: 1.389972, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 1.102637, loss@max: 1.374900, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.980783, loss@max: 1.354642, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 1.021193, loss@max: 1.330557, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.043157, loss@max: 1.348268, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.013970, loss@max: 1.315013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.980434, loss@max: 1.307681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.984557, loss@max: 1.301604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.008559, loss@max: 1.300885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.995235, loss@max: 1.307119, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.973129, loss@max: 1.308620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.992680, loss@max: 1.308740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.970417, loss@max: 1.327747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.954235, loss@max: 1.319166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.963119, loss@max: 1.324704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.978404, loss@max: 1.323303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.976431, loss@max: 1.326309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.956651, loss@max: 1.326635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.972110, loss@max: 1.333804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.956671, loss@max: 1.340626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947880, loss@max: 1.344147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947829, loss@max: 1.348843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.944489, loss@max: 1.339159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.965275, loss@max: 1.335511, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.954448, loss@max: 1.339481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.961948, loss@max: 1.339791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948682, loss@max: 1.345580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.955590, loss@max: 1.341201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.965385, loss@max: 1.346921, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.953237, loss@max: 1.353423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.956834, loss@max: 1.351788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958234, loss@max: 1.350513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.958971, loss@max: 1.351500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.954688, loss@max: 1.348189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.956167, loss@max: 1.357568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956880, loss@max: 1.353623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.949466, loss@max: 1.357148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.958407, loss@max: 1.357244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948197, loss@max: 1.361792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949301, loss@max: 1.359066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.956888, loss@max: 1.357883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.956105, loss@max: 1.356290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.956440, loss@max: 1.371526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948180, loss@max: 1.373362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944468, loss@max: 1.373165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943099, loss@max: 1.367268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.950987, loss@max: 1.367211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953525, loss@max: 1.363302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.954299, loss@max: 1.361273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.956148, loss@max: 1.364189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.987138, loss@max: 1.370861, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.947611, loss@max: 1.379514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.947674, loss@max: 1.367177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.953199, loss@max: 1.367300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.956843, loss@max: 1.360345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.956323, loss@max: 1.358800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.966308, loss@max: 1.364613, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.955040, loss@max: 1.364602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946741, loss@max: 1.365771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.955152, loss@max: 1.369394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.958259, loss@max: 1.360232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948312, loss@max: 1.368859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953290, loss@max: 1.367741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953063, loss@max: 1.362946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.959257, loss@max: 1.368019, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.955914, loss@max: 1.366603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954553, loss@max: 1.363242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.956600, loss@max: 1.365183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.672529, LT: 1.666224, Top1S: 62.710323, Top1T: 62.755665Best acc: 62.755665 +Train:epoch: 81, loss@min: 0.948817, loss@max: 1.368418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.673104, LT: 1.666775, Top1S: 62.715363, Top1T: 62.775818Best acc: 62.775818 +Train:epoch: 82, loss@min: 0.954707, loss@max: 1.369988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.674003, LT: 1.667341, Top1S: 62.705288, Top1T: 62.755665 +Train:epoch: 83, loss@min: 0.945705, loss@max: 1.368017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.674556, LT: 1.668113, Top1S: 62.654911, Top1T: 62.785892Best acc: 62.785892 +Train:epoch: 84, loss@min: 0.947282, loss@max: 1.373034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.675029, LT: 1.668859, Top1S: 62.700249, Top1T: 62.780853 +Train:epoch: 85, loss@min: 0.948379, loss@max: 1.366396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.675881, LT: 1.669349, Top1S: 62.639797, Top1T: 62.775818 +Train:epoch: 86, loss@min: 0.949626, loss@max: 1.363542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.676683, LT: 1.669803, Top1S: 62.654911, Top1T: 62.755665 +Train:epoch: 87, loss@min: 0.946447, loss@max: 1.367807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.677454, LT: 1.670283, Top1S: 62.675060, Top1T: 62.770779 +Train:epoch: 88, loss@min: 0.969469, loss@max: 1.372182, Top1S acc: 100.000000, Top1T acc: 99.609375{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 23:43:06 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Sun Aug 13 23:43:38 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.600097, loss@max: 0.017722, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.681039, loss@max: 0.042258, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.193474, loss@max: 0.073679, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 4, loss@min: 1.006042, loss@max: 0.113097, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 0.802572, loss@max: 0.158520, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 0.615946, loss@max: 0.208674, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.511548, loss@max: 0.259441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.506770, loss@max: 0.313036, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.350158, loss@max: 0.360204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.287486, loss@max: 0.402232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.315339, loss@max: 0.440637, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.273233, loss@max: 0.468169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.308162, loss@max: 0.476481, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.277278, loss@max: 0.491911, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.218796, loss@max: 0.476760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.270571, loss@max: 0.480703, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.265915, loss@max: 0.463828, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.306202, loss@max: 0.442093, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.313981, loss@max: 0.421194, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 0.315727, loss@max: 0.404782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.359830, loss@max: 0.378139, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.388871, loss@max: 0.375548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.373763, loss@max: 0.358047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.406421, loss@max: 0.369002, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.360574, loss@max: 0.384038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.361362, loss@max: 0.395940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.347526, loss@max: 0.399029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.364025, loss@max: 0.420394, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.335113, loss@max: 0.420800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.333736, loss@max: 0.450916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.345247, loss@max: 0.458511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.321155, loss@max: 0.460068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.326652, loss@max: 0.474857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.322571, loss@max: 0.465028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.342270, loss@max: 0.467019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.347697, loss@max: 0.468624, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.335534, loss@max: 0.464685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.325663, loss@max: 0.473512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.335223, loss@max: 0.490470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.343767, loss@max: 0.486649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.425313, loss@max: 0.486701, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.347393, loss@max: 0.468258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.365130, loss@max: 0.466957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.357540, loss@max: 0.457146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.351858, loss@max: 0.469621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.378219, loss@max: 0.471283, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.342935, loss@max: 0.476774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.355835, loss@max: 0.473070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.356988, loss@max: 0.474352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.346349, loss@max: 0.482373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.376470, loss@max: 0.478177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.366756, loss@max: 0.485607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.349769, loss@max: 0.482144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.353066, loss@max: 0.490184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.360143, loss@max: 0.498075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.354125, loss@max: 0.484821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.359553, loss@max: 0.479813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.367267, loss@max: 0.499717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.356715, loss@max: 0.486251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.358271, loss@max: 0.486465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.355970, loss@max: 0.486314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.360173, loss@max: 0.485368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.358332, loss@max: 0.481613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.352324, loss@max: 0.492635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.350267, loss@max: 0.493966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.389543, loss@max: 0.494506, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.351447, loss@max: 0.496941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.360921, loss@max: 0.482944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.365694, loss@max: 0.491424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.360938, loss@max: 0.488830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.368456, loss@max: 0.487493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.377114, loss@max: 0.490831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.360855, loss@max: 0.483635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.359385, loss@max: 0.485285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.356312, loss@max: 0.494429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.354668, loss@max: 0.498741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.358629, loss@max: 0.485383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.344740, loss@max: 0.503793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.346563, loss@max: 0.497973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.353018, loss@max: 0.501678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.428029, LT: 0.423154, Top1S: 88.843811, Top1T: 89.168358Best acc: 89.168358 +Train:epoch: 81, loss@min: 0.368074, loss@max: 0.486424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.428195, LT: 0.423144, Top1S: 88.884384, Top1T: 89.168358 +Train:epoch: 82, loss@min: 0.360205, loss@max: 0.494874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.428523, LT: 0.423325, Top1S: 88.924950, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 83, loss@min: 0.370096, loss@max: 0.484263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.428952, LT: 0.423438, Top1S: 88.803246, Top1T: 89.208923 +Train:epoch: 84, loss@min: 0.375532, loss@max: 0.493274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.429420, LT: 0.423708, Top1S: 88.803246, Top1T: 89.168358 +Train:epoch: 85, loss@min: 0.369640, loss@max: 0.492400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.429648, LT: 0.423707, Top1S: 88.803246, Top1T: 89.208923 +Train:epoch: 86, loss@min: 0.364569, loss@max: 0.489086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.429886, LT: 0.423786, Top1S: 88.803246, Top1T: 89.249496Best acc: 89.249496 +Train:epoch: 87, loss@min: 0.362300, loss@max: 0.490703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.430181, LT: 0.423855, Top1S: 88.722107, Top1T: 89.249496 +Train:epoch: 88, loss@min: 0.353038, loss@max: 0.498019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.430562, LT: 0.424006, Top1S: 88.722107, Top1T: 89.208923 +Train:epoch: 89, loss@min: 0.351827, loss@max: 0.497133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.430989, LT: 0.424167, Top1S: 88.722107, Top1T: 89.249496 +Train:epoch: 90, loss@min: 0.353669, loss@max: 0.495605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.431176, LT: 0.424337, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 91, loss@min: 0.357308, loss@max: 0.489744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.431335, LT: 0.424552, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 92, loss@min: 0.350922, loss@max: 0.496659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.431349, LT: 0.424731, Top1S: 88.762680, Top1T: 89.127792 +Train:epoch: 93, loss@min: 0.358584, loss@max: 0.488613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.431359, LT: 0.424848, Top1S: 88.722107, Top1T: 89.127792 +Train:epoch: 94, loss@min: 0.369247, loss@max: 0.477140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.431401, LT: 0.424942, Top1S: 88.681541, Top1T: 89.168358 +Train:epoch: 95, loss@min: 0.357844, loss@max: 0.501818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.431595, LT: 0.425170, Top1S: 88.681541, Top1T: 89.168358 +Train:epoch: 96, loss@min: 0.362105, loss@max: 0.490281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.431781, LT: 0.425321, Top1S: 88.722107, Top1T: 89.127792 +Train:epoch: 97, loss@min: 0.371536, loss@max: 0.486619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.431937, LT: 0.425539, Top1S: 88.722107, Top1T: 89.127792 +Train:epoch: 98, loss@min: 0.358742, loss@max: 0.490033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.432188, LT: 0.425648, Top1S: 88.762680, Top1T: 89.127792 +Train:epoch: 99, loss@min: 0.363688, loss@max: 0.483429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.432496, LT: 0.425692, Top1S: 88.803246, Top1T: 89.127792 +Train:epoch: 100, loss@min: 0.358578, loss@max: 0.487759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.432770, LT: 0.425727, Top1S: 88.762680, Top1T: 89.127792 +Train:epoch: 101, loss@min: 0.358179, loss@max: 0.497028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.432991, LT: 0.425781, Top1S: 88.762680, Top1T: 89.127792 +Train:epoch: 102, loss@min: 0.361638, loss@max: 0.486429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.433243, LT: 0.425814, Top1S: 88.762680, Top1T: 89.208923 +Train:epoch: 103, loss@min: 0.355425, loss@max: 0.490467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.433564, LT: 0.425772, Top1S: 88.722107, Top1T: 89.208923 +Train:epoch: 104, loss@min: 0.357413, loss@max: 0.491284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.433788, LT: 0.425783, Top1S: 88.722107, Top1T: 89.208923 +Train:epoch: 105, loss@min: 0.357302, loss@max: 0.492950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.433873, LT: 0.425757, Top1S: 88.722107, Top1T: 89.208923 +Train:epoch: 106, loss@min: 0.356059, loss@max: 0.491979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.433767, LT: 0.425755, Top1S: 88.722107, Top1T: 89.249496 +Train:epoch: 107, loss@min: 0.356321, loss@max: 0.497071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.433676, LT: 0.425728, Top1S: 88.681541, Top1T: 89.249496 +Train:epoch: 108, loss@min: 0.360953, loss@max: 0.493060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.433603, LT: 0.425731, Top1S: 88.722107, Top1T: 89.249496 +Train:epoch: 109, loss@min: 0.356027, loss@max: 0.496004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.433497, LT: 0.425669, Top1S: 88.722107, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 110, loss@min: 0.351827, loss@max: 0.495063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.433439, LT: 0.425587, Top1S: 88.722107, Top1T: 89.249496 +Train:epoch: 111, loss@min: 0.360647, loss@max: 0.488585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.433386, LT: 0.425493, Top1S: 88.762680, Top1T: 89.290062 +Train:epoch: 112, loss@min: 0.347533, loss@max: 0.502528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.433301, LT: 0.425450, Top1S: 88.722107, Top1T: 89.290062 +Train:epoch: 113, loss@min: 0.352043, loss@max: 0.492294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.433246, LT: 0.425415, Top1S: 88.722107, Top1T: 89.290062 +Train:epoch: 114, loss@min: 0.356210, loss@max: 0.491647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.433167, LT: 0.425395, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 115, loss@min: 0.365037, loss@max: 0.487954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.433180, LT: 0.425420, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 116, loss@min: 0.365843, loss@max: 0.480728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.433176, LT: 0.425430, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 117, loss@min: 0.365946, loss@max: 0.493559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.433168, LT: 0.425445, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 118, loss@min: 0.367949, loss@max: 0.478734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.433060, LT: 0.425474, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 119, loss@min: 0.360785, loss@max: 0.489220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.432950, LT: 0.425484, Top1S: 88.762680, Top1T: 89.249496 +Train:epoch: 120, loss@min: 0.361486, loss@max: 0.485219, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "fgvc", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 00:04:36 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.786961, loss@max: 0.046556, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 2, loss@min: 8.483351, loss@max: 0.098740, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 3, loss@min: 7.570797, loss@max: 0.162670, Top1S acc: 100.000000, Top1T acc: 23.000000 +Train:epoch: 4, loss@min: 6.829860, loss@max: 0.227695, Top1S acc: 100.000000, Top1T acc: 37.000000 +Train:epoch: 5, loss@min: 6.441810, loss@max: 0.298269, Top1S acc: 100.000000, Top1T acc: 38.000000 +Train:epoch: 6, loss@min: 5.650757, loss@max: 0.374409, Top1S acc: 100.000000, Top1T acc: 44.000000 +Train:epoch: 7, loss@min: 5.748597, loss@max: 0.459013, Top1S acc: 100.000000, Top1T acc: 42.000000 +Train:epoch: 8, loss@min: 5.382560, loss@max: 0.528978, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 9, loss@min: 4.771077, loss@max: 0.608229, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 10, loss@min: 4.492347, loss@max: 0.682442, Top1S acc: 100.000000, Top1T acc: 57.000000 +Train:epoch: 11, loss@min: 4.144334, loss@max: 0.753325, Top1S acc: 100.000000, Top1T acc: 66.000000 +Train:epoch: 12, loss@min: 3.763456, loss@max: 0.820422, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 13, loss@min: 3.531063, loss@max: 0.878735, Top1S acc: 100.000000, Top1T acc: 67.000000 +Train:epoch: 14, loss@min: 3.390701, loss@max: 0.940131, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 15, loss@min: 2.950679, loss@max: 0.968329, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 16, loss@min: 2.761810, loss@max: 0.983257, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 17, loss@min: 2.781583, loss@max: 1.031894, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 18, loss@min: 2.538941, loss@max: 1.057611, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 19, loss@min: 2.394004, loss@max: 1.055052, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 20, loss@min: 2.071939, loss@max: 1.058921, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 21, loss@min: 1.974791, loss@max: 1.082301, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 2.044309, loss@max: 1.060104, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 23, loss@min: 1.953583, loss@max: 1.036360, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 24, loss@min: 1.900957, loss@max: 1.053821, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 25, loss@min: 1.699215, loss@max: 1.058865, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 26, loss@min: 1.569873, loss@max: 1.013264, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 27, loss@min: 1.362127, loss@max: 1.012509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.551527, loss@max: 1.028551, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 29, loss@min: 1.348439, loss@max: 0.991134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.390051, loss@max: 0.935075, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 31, loss@min: 1.303046, loss@max: 0.966405, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.342349, loss@max: 0.946562, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 1.191356, loss@max: 0.938995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.260718, loss@max: 0.915996, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 35, loss@min: 1.339066, loss@max: 0.907967, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 36, loss@min: 1.137104, loss@max: 0.899041, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.044164, loss@max: 0.892366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.153995, loss@max: 0.902411, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 39, loss@min: 1.066097, loss@max: 0.853202, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.013484, loss@max: 0.876098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.136958, loss@max: 0.848088, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 42, loss@min: 0.995752, loss@max: 0.806842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.983424, loss@max: 0.776653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.047704, loss@max: 0.788160, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 45, loss@min: 0.963353, loss@max: 0.734289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955137, loss@max: 0.734689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.968461, loss@max: 0.711219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.969046, loss@max: 0.716293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.982154, loss@max: 0.693971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.981558, loss@max: 0.700922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.944333, loss@max: 0.653306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.922506, loss@max: 0.668777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.959205, loss@max: 0.670312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.923117, loss@max: 0.655203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.919501, loss@max: 0.650554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.067827, loss@max: 0.688344, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 0.891635, loss@max: 0.630722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.915256, loss@max: 0.601575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.906308, loss@max: 0.636251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.900996, loss@max: 0.610710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.925679, loss@max: 0.606609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.929349, loss@max: 0.601042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945081, loss@max: 0.595986, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 64, loss@min: 0.927100, loss@max: 0.602952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.875527, loss@max: 0.584171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.892847, loss@max: 0.581913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.854017, loss@max: 0.586565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.901417, loss@max: 0.612390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.883448, loss@max: 0.595888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.871560, loss@max: 0.568901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.862259, loss@max: 0.586062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.860327, loss@max: 0.556813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.881966, loss@max: 0.565262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.853242, loss@max: 0.564232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.867041, loss@max: 0.566627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.847532, loss@max: 0.569015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.845318, loss@max: 0.555441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.864805, loss@max: 0.548235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.852278, loss@max: 0.540904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.856469, loss@max: 0.550060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 4.247889, LT: 4.165599, Top1S: 21.662165, Top1T: 22.172216Best acc: 22.172216 +Train:epoch: 81, loss@min: 0.857160, loss@max: 0.545372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 4.248514, LT: 4.169452, Top1S: 21.572157, Top1T: 22.052204 +Train:epoch: 82, loss@min: 0.849039, loss@max: 0.547422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 4.252137, LT: 4.173077, Top1S: 21.572157, Top1T: 22.052204 +Train:epoch: 83, loss@min: 0.834669, loss@max: 0.567423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 4.256564, LT: 4.177576, Top1S: 21.572157, Top1T: 22.022202 +Train:epoch: 84, loss@min: 0.842245, loss@max: 0.556501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 4.261383, LT: 4.181742, Top1S: 21.422142, Top1T: 22.052204 +Train:epoch: 85, loss@min: 0.831102, loss@max: 0.560209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 4.266540, LT: 4.185795, Top1S: 21.602160, Top1T: 22.232222Best acc: 22.232222 +Train:epoch: 86, loss@min: 0.820121, loss@max: 0.558297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 4.272581, LT: 4.190785, Top1S: 21.692169, Top1T: 22.202219 +Train:epoch: 87, loss@min: 0.837123, loss@max: 0.556021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 4.277912, LT: 4.195691, Top1S: 21.692169, Top1T: 22.232222 +Train:epoch: 88, loss@min: 0.839423, loss@max: 0.543490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 4.282218, LT: 4.199724, Top1S: 21.722172, Top1T: 22.232222 +Train:epoch: 89, loss@min: 0.838829, loss@max: 0.542261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 4.287214, LT: 4.204220, Top1S: 21.692169, Top1T: 22.262226Best acc: 22.262226 +Train:epoch: 90, loss@min: 0.844439, loss@max: 0.543073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 4.292643, LT: 4.208298, Top1S: 21.722172, Top1T: 22.202219 +Train:epoch: 91, loss@min: 0.832255, loss@max: 0.529654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 4.298078, LT: 4.212458, Top1S: 21.692169, Top1T: 22.142214 +Train:epoch: 92, loss@min: 0.819077, loss@max: 0.536203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 4.303336, LT: 4.215841, Top1S: 21.572157, Top1T: 22.142214 +Train:epoch: 93, loss@min: 0.825549, loss@max: 0.544051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 4.309402, LT: 4.219970, Top1S: 21.482147, Top1T: 22.082207 +Train:epoch: 94, loss@min: 0.812805, loss@max: 0.546911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 4.314524, LT: 4.223615, Top1S: 21.422142, Top1T: 22.142214 +Train:epoch: 95, loss@min: 0.828047, loss@max: 0.543441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 4.319215, LT: 4.226185, Top1S: 21.422142, Top1T: 22.202219 +Train:epoch: 96, loss@min: 0.818849, loss@max: 0.535806, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "food101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 00:34:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.062466, loss@max: 0.018052, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 2, loss@min: 2.182877, loss@max: 0.043547, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 3, loss@min: 1.673067, loss@max: 0.080324, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 4, loss@min: 1.462227, loss@max: 0.123751, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 5, loss@min: 0.906890, loss@max: 0.175940, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 6, loss@min: 0.709253, loss@max: 0.234107, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 7, loss@min: 0.652158, loss@max: 0.292393, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 8, loss@min: 0.819026, loss@max: 0.347744, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 9, loss@min: 0.575248, loss@max: 0.395092, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 10, loss@min: 0.403655, loss@max: 0.449758, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 11, loss@min: 0.340210, loss@max: 0.484672, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 12, loss@min: 0.239952, loss@max: 0.503625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.267965, loss@max: 0.516015, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.260800, loss@max: 0.525410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.255533, loss@max: 0.511753, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.342987, loss@max: 0.493742, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 17, loss@min: 0.253538, loss@max: 0.467573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.297876, loss@max: 0.452386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.330998, loss@max: 0.430169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.350817, loss@max: 0.417142, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.342265, loss@max: 0.404387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.355315, loss@max: 0.410446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.337211, loss@max: 0.399921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.339641, loss@max: 0.411760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.319227, loss@max: 0.420149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.336956, loss@max: 0.436509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.316738, loss@max: 0.430100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.336502, loss@max: 0.461462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.316654, loss@max: 0.446420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.321915, loss@max: 0.456340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.334991, loss@max: 0.445924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.333596, loss@max: 0.452564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.321562, loss@max: 0.452738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.336552, loss@max: 0.450354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.342049, loss@max: 0.450553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.345326, loss@max: 0.452461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.343884, loss@max: 0.466366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.341703, loss@max: 0.461527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.349471, loss@max: 0.459713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.339660, loss@max: 0.473253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.328340, loss@max: 0.479122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.334046, loss@max: 0.472894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.351517, loss@max: 0.481619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.370115, loss@max: 0.492136, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 45, loss@min: 0.337875, loss@max: 0.489607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.346294, loss@max: 0.474332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.347545, loss@max: 0.468767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.364154, loss@max: 0.463167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.346685, loss@max: 0.479347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.349000, loss@max: 0.483952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.353955, loss@max: 0.483801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.349414, loss@max: 0.485292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.356961, loss@max: 0.483659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.354443, loss@max: 0.483925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.351576, loss@max: 0.488366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.370067, loss@max: 0.475032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.349030, loss@max: 0.494323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.354216, loss@max: 0.480801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.352560, loss@max: 0.487095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.349158, loss@max: 0.496816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.349270, loss@max: 0.490559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.355626, loss@max: 0.488937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.355512, loss@max: 0.486365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.357997, loss@max: 0.494677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.362569, loss@max: 0.481035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.361960, loss@max: 0.488185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.360174, loss@max: 0.488114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.365405, loss@max: 0.489080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.348855, loss@max: 0.496152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.348789, loss@max: 0.496998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.356294, loss@max: 0.493968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.354839, loss@max: 0.490563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.356827, loss@max: 0.490214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.360504, loss@max: 0.496882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.360079, loss@max: 0.487351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.359691, loss@max: 0.488619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.357002, loss@max: 0.493170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.361762, loss@max: 0.495895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.356683, loss@max: 0.492156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.364126, loss@max: 0.486880, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.248188, LT: 1.246045, Top1S: 75.669968, Top1T: 75.194717Best acc: 75.669968 +Train:epoch: 81, loss@min: 0.360537, loss@max: 0.491275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.248310, LT: 1.245799, Top1S: 75.693069, Top1T: 75.227722Best acc: 75.693069 +Train:epoch: 82, loss@min: 0.361882, loss@max: 0.485600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.248811, LT: 1.245699, Top1S: 75.693069, Top1T: 75.231026 +Train:epoch: 83, loss@min: 0.355692, loss@max: 0.493836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.249430, LT: 1.245623, Top1S: 75.689766, Top1T: 75.227722 +Train:epoch: 84, loss@min: 0.360580, loss@max: 0.487077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.250121, LT: 1.245500, Top1S: 75.666664, Top1T: 75.231026 +Train:epoch: 85, loss@min: 0.354213, loss@max: 0.493876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.250944, LT: 1.245429, Top1S: 75.666664, Top1T: 75.224419 +Train:epoch: 86, loss@min: 0.362019, loss@max: 0.488060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.251471, LT: 1.245282, Top1S: 75.650162, Top1T: 75.211220 +Train:epoch: 87, loss@min: 0.377718, loss@max: 0.486785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.251596, LT: 1.244911, Top1S: 75.666664, Top1T: 75.237625 +Train:epoch: 88, loss@min: 0.356815, loss@max: 0.489576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.251574, LT: 1.244672, Top1S: 75.669968, Top1T: 75.234322 +Train:epoch: 89, loss@min: 0.360245, loss@max: 0.489686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.251319, LT: 1.244512, Top1S: 75.676567, Top1T: 75.250824 +Train:epoch: 90, loss@min: 0.354365, loss@max: 0.502528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.251144, LT: 1.244485, Top1S: 75.666664, Top1T: 75.250824 +Train:epoch: 91, loss@min: 0.348054, loss@max: 0.497858, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 01:52:00 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.918397, loss@max: 0.023184, Top1S acc: 100.000000, Top1T acc: 65.686272 +Train:epoch: 2, loss@min: 4.171992, loss@max: 0.055648, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.602203, loss@max: 0.093623, Top1S acc: 100.000000, Top1T acc: 65.686272 +Train:epoch: 4, loss@min: 3.250538, loss@max: 0.135143, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 5, loss@min: 2.845737, loss@max: 0.178999, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.515930, loss@max: 0.229420, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.171563, loss@max: 0.286533, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 1.819475, loss@max: 0.346098, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 9, loss@min: 1.543302, loss@max: 0.397487, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.289384, loss@max: 0.448521, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 11, loss@min: 1.221751, loss@max: 0.505383, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.211833, loss@max: 0.544642, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.015602, loss@max: 0.582990, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 0.866214, loss@max: 0.609373, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 0.673806, loss@max: 0.633182, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 16, loss@min: 0.754138, loss@max: 0.648082, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 17, loss@min: 0.551813, loss@max: 0.640777, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 0.519027, loss@max: 0.651203, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 0.510625, loss@max: 0.639833, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 0.456257, loss@max: 0.646187, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 0.463570, loss@max: 0.634791, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 22, loss@min: 0.432961, loss@max: 0.626474, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 23, loss@min: 0.477948, loss@max: 0.598113, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 0.469542, loss@max: 0.595059, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 0.392187, loss@max: 0.570861, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 0.428711, loss@max: 0.564901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.453914, loss@max: 0.567578, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 0.444987, loss@max: 0.530468, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 0.391125, loss@max: 0.547880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.404984, loss@max: 0.534649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.403775, loss@max: 0.516158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.401685, loss@max: 0.538463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.387370, loss@max: 0.543038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.410662, loss@max: 0.528276, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.374627, loss@max: 0.544174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.352405, loss@max: 0.530702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.399961, loss@max: 0.545815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.349900, loss@max: 0.527898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.351589, loss@max: 0.523870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.353665, loss@max: 0.509976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.369352, loss@max: 0.507398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.363162, loss@max: 0.513823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.352303, loss@max: 0.511225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.347382, loss@max: 0.509877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.363986, loss@max: 0.510279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.357473, loss@max: 0.497812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.368209, loss@max: 0.503693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.357584, loss@max: 0.507375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.357959, loss@max: 0.502259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.364294, loss@max: 0.498530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.364703, loss@max: 0.498467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.355997, loss@max: 0.514104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.355988, loss@max: 0.513437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.349260, loss@max: 0.512780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.354213, loss@max: 0.515928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.351142, loss@max: 0.511030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.363144, loss@max: 0.502116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.364697, loss@max: 0.495264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.359564, loss@max: 0.498872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.356795, loss@max: 0.497547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.367743, loss@max: 0.503174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.364784, loss@max: 0.500334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.368621, loss@max: 0.497119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.358923, loss@max: 0.502101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.372347, loss@max: 0.505065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.366825, loss@max: 0.503147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.362010, loss@max: 0.501701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.348988, loss@max: 0.511287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.361905, loss@max: 0.505005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.357792, loss@max: 0.506409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.362443, loss@max: 0.498102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.366567, loss@max: 0.509637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.360026, loss@max: 0.499769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.365138, loss@max: 0.492632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.357411, loss@max: 0.511220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.366215, loss@max: 0.496125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.360437, loss@max: 0.504974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.357858, loss@max: 0.501426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.354972, loss@max: 0.503021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.356952, loss@max: 0.515458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.017369, LT: 0.910700, Top1S: 76.126678, Top1T: 77.628906Best acc: 77.628906 +Train:epoch: 81, loss@min: 0.361111, loss@max: 0.508453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.016331, LT: 0.909718, Top1S: 76.086075, Top1T: 77.669510Best acc: 77.669510 +Train:epoch: 82, loss@min: 0.374390, loss@max: 0.500963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.013689, LT: 0.907006, Top1S: 76.126678, Top1T: 77.710114Best acc: 77.710114 +Train:epoch: 83, loss@min: 0.365217, loss@max: 0.501398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.011218, LT: 0.904506, Top1S: 76.004875, Top1T: 77.791313Best acc: 77.791313 +Train:epoch: 84, loss@min: 0.360383, loss@max: 0.498632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.008945, LT: 0.902319, Top1S: 76.004875, Top1T: 77.831917Best acc: 77.831917 +Train:epoch: 85, loss@min: 0.366900, loss@max: 0.498818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.006877, LT: 0.900094, Top1S: 75.964272, Top1T: 77.791313 +Train:epoch: 86, loss@min: 0.367297, loss@max: 0.502149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.004636, LT: 0.897860, Top1S: 75.842468, Top1T: 77.791313 +Train:epoch: 87, loss@min: 0.364153, loss@max: 0.498945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.002946, LT: 0.896270, Top1S: 76.045471, Top1T: 77.831917 +Train:epoch: 88, loss@min: 0.363473, loss@max: 0.497713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.001592, LT: 0.894854, Top1S: 76.167274, Top1T: 77.831917 +Train:epoch: 89, loss@min: 0.368597, loss@max: 0.494960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.000320, LT: 0.893580, Top1S: 76.207878, Top1T: 77.710114 +Train:epoch: 90, loss@min: 0.362342, loss@max: 0.494346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.999436, LT: 0.892392, Top1S: 76.248482, Top1T: 77.710114 +Train:epoch: 91, loss@min: 0.370006, loss@max: 0.494793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.998480, LT: 0.891273, Top1S: 76.248482, Top1T: 77.669510 +Train:epoch: 92, loss@min: 0.360002, loss@max: 0.495529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.997692, LT: 0.890163, Top1S: 76.248482, Top1T: 77.628906 +Train:epoch: 93, loss@min: 0.361590, loss@max: 0.496505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.996803, LT: 0.889156, Top1S: 76.329681, Top1T: 77.588310 +Train:epoch: 94, loss@min: 0.359214, loss@max: 0.502076, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.995940, LT: 0.888212, Top1S: 76.248482, Top1T: 77.588310 +Train:epoch: 95, loss@min: 0.358032, loss@max: 0.497971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.995065, LT: 0.887391, Top1S: 76.248482, Top1T: 77.750710 +Train:epoch: 96, loss@min: 0.356566, loss@max: 0.508199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.994577, LT: 0.886939, Top1S: 76.248482, Top1T: 77.750710 +Train:epoch: 97, loss@min: 0.356524, loss@max: 0.504150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.994361, LT: 0.886646, Top1S: 76.289078, Top1T: 77.791313 +Train:epoch: 98, loss@min: 0.356731, loss@max: 0.506577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.993996, LT: 0.886387, Top1S: 76.329681, Top1T: 77.791313 +Train:epoch: 99, loss@min: 0.360491, loss@max: 0.500360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.993673, LT: 0.886244, Top1S: 76.410881, Top1T: 77.872513Best acc: 77.872513 +Train:epoch: 100, loss@min: 0.359680, loss@max: 0.503771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.993653, LT: 0.886543, Top1S: 76.532684, Top1T: 77.872513 +Train:epoch: 101, loss@min: 0.359436, loss@max: 0.497212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.993763, LT: 0.886802, Top1S: 76.573288, Top1T: 77.872513 +Train:epoch: 102, loss@min: 0.360534, loss@max: 0.501099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.993802, LT: 0.887177, Top1S: 76.532684, Top1T: 77.953720Best acc: 77.953720 +Train:epoch: 103, loss@min: 0.364068, loss@max: 0.491784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.993786, LT: 0.887488, Top1S: 76.573288, Top1T: 77.953720 +Train:epoch: 104, loss@min: 0.359663, loss@max: 0.496538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.993843, LT: 0.887793, Top1S: 76.654488, Top1T: 77.913116 +Train:epoch: 105, loss@min: 0.357749, loss@max: 0.499746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.993996, LT: 0.888194, Top1S: 76.695091, Top1T: 77.872513 +Train:epoch: 106, loss@min: 0.362012, loss@max: 0.498540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.994263, LT: 0.888630, Top1S: 76.735687, Top1T: 77.913116 +Train:epoch: 107, loss@min: 0.365306, loss@max: 0.497266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.994458, LT: 0.888895, Top1S: 76.776291, Top1T: 77.872513 +Train:epoch: 108, loss@min: 0.363524, loss@max: 0.495575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.994645, LT: 0.889171, Top1S: 76.776291, Top1T: 77.872513 +Train:epoch: 109, loss@min: 0.373673, loss@max: 0.501351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.994816, LT: 0.889327, Top1S: 76.776291, Top1T: 77.872513 +Train:epoch: 110, loss@min: 0.365706, loss@max: 0.491174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.994948, LT: 0.889435, Top1S: 76.776291, Top1T: 77.913116 +Train:epoch: 111, loss@min: 0.363191, loss@max: 0.498012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.994933, LT: 0.889459, Top1S: 76.816895, Top1T: 77.953720 +Train:epoch: 112, loss@min: 0.353217, loss@max: 0.505681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.995057, LT: 0.889566, Top1S: 76.898094, Top1T: 77.913116 +Train:epoch: 113, loss@min: 0.374531, loss@max: 0.504467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.995657, LT: 0.890080, Top1S: 76.898094, Top1T: 77.953720 +Train:epoch: 114, loss@min: 0.361092, loss@max: 0.493022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.996306, LT: 0.890521, Top1S: 76.938698, Top1T: 78.034920Best acc: 78.034920 +Train:epoch: 115, loss@min: 0.366847, loss@max: 0.489832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.996982, LT: 0.890964, Top1S: 76.938698, Top1T: 78.075516Best acc: 78.075516 +Train:epoch: 116, loss@min: 0.358572, loss@max: 0.504658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.997629, LT: 0.891403, Top1S: 76.898094, Top1T: 78.075516 +Train:epoch: 117, loss@min: 0.365070, loss@max: 0.496642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.998120, LT: 0.891620, Top1S: 76.857491, Top1T: 78.075516 +Train:epoch: 118, loss@min: 0.355085, loss@max: 0.502548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.998570, LT: 0.891840, Top1S: 76.857491, Top1T: 78.075516 +Train:epoch: 119, loss@min: 0.360537, loss@max: 0.498472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.998998, LT: 0.892037, Top1S: 76.898094, Top1T: 78.075516 +Train:epoch: 120, loss@min: 0.367554, loss@max: 0.492536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.999318, LT: 0.892148, Top1S: 76.938698, Top1T: 78.075516 +Train:epoch: 121, loss@min: 0.358974, loss@max: 0.497074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.999541, LT: 0.892209, Top1S: 76.938698, Top1T: 78.075516 +Train:epoch: 122, loss@min: 0.358438, loss@max: 0.497386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.999668, LT: 0.892290, Top1S: 76.938698, Top1T: 78.116119Best acc: 78.116119 +Train:epoch: 123, loss@min: 0.358771, loss@max: 0.495474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.999751, LT: 0.892368, Top1S: 76.979294, Top1T: 78.116119 +Train:epoch: 124, loss@min: 0.361055, loss@max: 0.496432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.999804, LT: 0.892445, Top1S: 77.019897, Top1T: 78.116119 +Train:epoch: 125, loss@min: 0.356412, loss@max: 0.501865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.999848, LT: 0.892472, Top1S: 77.019897, Top1T: 78.116119 +Train:epoch: 126, loss@min: 0.358157, loss@max: 0.505204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.999805, LT: 0.892478, Top1S: 77.019897, Top1T: 78.116119 +Train:epoch: 127, loss@min: 0.358272, loss@max: 0.500490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.999756, LT: 0.892493, Top1S: 77.019897, Top1T: 78.116119 +Train:epoch: 128, loss@min: 0.355377, loss@max: 0.502277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.999724, LT: 0.892480, Top1S: 77.019897, Top1T: 78.116119 +Train:epoch: 129, loss@min: 0.365132, loss@max: 0.490953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.999647, LT: 0.892459, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 130, loss@min: 0.361559, loss@max: 0.494389, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.999565, LT: 0.892441, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 131, loss@min: 0.363084, loss@max: 0.492981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.999476, LT: 0.892427, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 132, loss@min: 0.361186, loss@max: 0.497263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.999414, LT: 0.892417, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 133, loss@min: 0.368714, loss@max: 0.486609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.999343, LT: 0.892412, Top1S: 77.101097, Top1T: 78.116119 +Train:epoch: 134, loss@min: 0.372797, loss@max: 0.501720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.999274, LT: 0.892391, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 135, loss@min: 0.360209, loss@max: 0.498112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.999216, LT: 0.892389, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 136, loss@min: 0.380563, loss@max: 0.506077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.999193, LT: 0.892407, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 137, loss@min: 0.360827, loss@max: 0.494828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.999171, LT: 0.892413, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 138, loss@min: 0.359995, loss@max: 0.504113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.999163, LT: 0.892413, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 139, loss@min: 0.366012, loss@max: 0.507348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.999150, LT: 0.892415, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 140, loss@min: 0.355211, loss@max: 0.499794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.999142, LT: 0.892418, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 141, loss@min: 0.370962, loss@max: 0.504725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.999122, LT: 0.892407, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 142, loss@min: 0.361585, loss@max: 0.493071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.999103, LT: 0.892393, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 143, loss@min: 0.362639, loss@max: 0.492816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.999086, LT: 0.892388, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 144, loss@min: 0.367097, loss@max: 0.497337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.999073, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 145, loss@min: 0.361079, loss@max: 0.497591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.999068, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 146, loss@min: 0.363588, loss@max: 0.493659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.999066, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 147, loss@min: 0.361526, loss@max: 0.501002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.999065, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 148, loss@min: 0.359256, loss@max: 0.502303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.999065, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 149, loss@min: 0.359314, loss@max: 0.499049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.999065, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +Train:epoch: 150, loss@min: 0.355020, loss@max: 0.504358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.999065, LT: 0.892384, Top1S: 77.060493, Top1T: 78.116119 +------------------------------------------- +Mon Aug 14 02:33:31 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 02:43:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.494993, loss@max: 0.026901, Top1S acc: 100.000000, Top1T acc: 57.142857 +Train:epoch: 2, loss@min: 3.755455, loss@max: 0.060028, Top1S acc: 100.000000, Top1T acc: 56.632652 +Train:epoch: 3, loss@min: 3.027089, loss@max: 0.099398, Top1S acc: 100.000000, Top1T acc: 67.346939 +Train:epoch: 4, loss@min: 2.806056, loss@max: 0.148095, Top1S acc: 100.000000, Top1T acc: 65.306122 +Train:epoch: 5, loss@min: 2.308084, loss@max: 0.200292, Top1S acc: 100.000000, Top1T acc: 72.448982 +Train:epoch: 6, loss@min: 2.178842, loss@max: 0.257510, Top1S acc: 100.000000, Top1T acc: 76.530609 +Train:epoch: 7, loss@min: 1.848386, loss@max: 0.319620, Top1S acc: 100.000000, Top1T acc: 77.040817 +Train:epoch: 8, loss@min: 1.636745, loss@max: 0.384858, Top1S acc: 100.000000, Top1T acc: 81.632652 +Train:epoch: 9, loss@min: 1.537643, loss@max: 0.449567, Top1S acc: 100.000000, Top1T acc: 84.693878 +Train:epoch: 10, loss@min: 1.273809, loss@max: 0.505642, Top1S acc: 100.000000, Top1T acc: 87.244896 +Train:epoch: 11, loss@min: 1.072270, loss@max: 0.565368, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 12, loss@min: 1.292941, loss@max: 0.597063, Top1S acc: 100.000000, Top1T acc: 89.285713 +Train:epoch: 13, loss@min: 0.831360, loss@max: 0.647649, Top1S acc: 100.000000, Top1T acc: 91.836731 +Train:epoch: 14, loss@min: 0.725617, loss@max: 0.682738, Top1S acc: 100.000000, Top1T acc: 93.877548 +Train:epoch: 15, loss@min: 0.760023, loss@max: 0.688965, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 16, loss@min: 0.782498, loss@max: 0.708487, Top1S acc: 100.000000, Top1T acc: 91.836731 +Train:epoch: 17, loss@min: 0.582126, loss@max: 0.716805, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 18, loss@min: 0.650800, loss@max: 0.700482, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 19, loss@min: 0.550555, loss@max: 0.699385, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 20, loss@min: 0.563774, loss@max: 0.669815, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 21, loss@min: 0.543098, loss@max: 0.660201, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 22, loss@min: 0.543346, loss@max: 0.619737, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 23, loss@min: 0.580437, loss@max: 0.605647, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 24, loss@min: 0.599404, loss@max: 0.602169, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 25, loss@min: 0.596604, loss@max: 0.569170, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 26, loss@min: 0.627088, loss@max: 0.574091, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 27, loss@min: 0.565972, loss@max: 0.550760, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 28, loss@min: 0.575631, loss@max: 0.549144, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 29, loss@min: 0.580635, loss@max: 0.561194, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 30, loss@min: 0.452665, loss@max: 0.551146, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 31, loss@min: 0.524865, loss@max: 0.580770, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 32, loss@min: 0.483481, loss@max: 0.590505, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 33, loss@min: 0.405774, loss@max: 0.588639, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 34, loss@min: 0.418652, loss@max: 0.591095, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 35, loss@min: 0.430190, loss@max: 0.595212, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 36, loss@min: 0.403133, loss@max: 0.585381, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 37, loss@min: 0.466826, loss@max: 0.569551, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 38, loss@min: 0.423714, loss@max: 0.561890, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 39, loss@min: 0.441275, loss@max: 0.553310, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 40, loss@min: 0.478130, loss@max: 0.563585, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 41, loss@min: 0.407016, loss@max: 0.542361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.457403, loss@max: 0.545844, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 43, loss@min: 0.410615, loss@max: 0.547814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.410529, loss@max: 0.526785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.459774, loss@max: 0.532709, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 46, loss@min: 0.383557, loss@max: 0.530570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.420077, loss@max: 0.534349, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 48, loss@min: 0.417472, loss@max: 0.534102, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 49, loss@min: 0.448369, loss@max: 0.546808, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 50, loss@min: 0.401980, loss@max: 0.537920, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 51, loss@min: 0.413826, loss@max: 0.541403, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 52, loss@min: 0.406140, loss@max: 0.530997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.481436, loss@max: 0.520875, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 54, loss@min: 0.404718, loss@max: 0.521000, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 55, loss@min: 0.404726, loss@max: 0.535942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.477365, loss@max: 0.527901, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 57, loss@min: 0.394220, loss@max: 0.532651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.404804, loss@max: 0.524146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.419486, loss@max: 0.520574, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 60, loss@min: 0.414863, loss@max: 0.521208, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 61, loss@min: 0.406265, loss@max: 0.526935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.395503, loss@max: 0.515239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.412566, loss@max: 0.532081, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 64, loss@min: 0.388135, loss@max: 0.521147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.386427, loss@max: 0.519670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.386426, loss@max: 0.528384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.397891, loss@max: 0.530175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.385753, loss@max: 0.520964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.386268, loss@max: 0.522036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.387123, loss@max: 0.521572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.388018, loss@max: 0.518082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.409672, loss@max: 0.523865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.392194, loss@max: 0.514640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.405010, loss@max: 0.509845, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 75, loss@min: 0.399858, loss@max: 0.512198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.388044, loss@max: 0.514604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.400717, loss@max: 0.519711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.412057, loss@max: 0.524527, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 79, loss@min: 0.383109, loss@max: 0.518340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.390902, loss@max: 0.525662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.593944, LT: 1.588095, Top1S: 58.313644, Top1T: 57.965431Best acc: 58.313644 +Train:epoch: 81, loss@min: 0.393546, loss@max: 0.519370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.596172, LT: 1.590067, Top1S: 58.288773, Top1T: 57.965431 +Train:epoch: 82, loss@min: 0.383860, loss@max: 0.515918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.598758, LT: 1.592018, Top1S: 58.326080, Top1T: 57.977867Best acc: 58.326080 +Train:epoch: 83, loss@min: 0.387263, loss@max: 0.516666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.601043, LT: 1.593842, Top1S: 58.251465, Top1T: 58.002739 +Train:epoch: 84, loss@min: 0.379655, loss@max: 0.522749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.603413, LT: 1.595794, Top1S: 58.326080, Top1T: 57.940556 +Train:epoch: 85, loss@min: 0.391841, loss@max: 0.516986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.605213, LT: 1.597034, Top1S: 58.413136, Top1T: 57.952991Best acc: 58.413136 +Train:epoch: 86, loss@min: 0.388756, loss@max: 0.525136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.606373, LT: 1.598062, Top1S: 58.475315, Top1T: 58.040047Best acc: 58.475315 +Train:epoch: 87, loss@min: 0.388850, loss@max: 0.506967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.607019, LT: 1.598836, Top1S: 58.425571, Top1T: 58.064919 +Train:epoch: 88, loss@min: 0.419226, loss@max: 0.508265, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 88, LS: 1.607162, LT: 1.599298, Top1S: 58.388264, Top1T: 58.002739 +Train:epoch: 89, loss@min: 0.408470, loss@max: 0.514145, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 89, LS: 1.607364, LT: 1.599769, Top1S: 58.301208, Top1T: 58.052483 +Train:epoch: 90, loss@min: 0.386402, loss@max: 0.514019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.607484, LT: 1.600282, Top1S: 58.326080, Top1T: 58.077354 +Train:epoch: 91, loss@min: 0.400541, loss@max: 0.518556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.607529, LT: 1.600405, Top1S: 58.375828, Top1T: 58.052483 +Train:epoch: 92, loss@min: 0.392066, loss@max: 0.505049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.607083, LT: 1.600152, Top1S: 58.350952, Top1T: 58.077354 +Train:epoch: 93, loss@min: 0.394748, loss@max: 0.510405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.606579, LT: 1.599714, Top1S: 58.388264, Top1T: 58.077354 +Train:epoch: 94, loss@min: 0.385170, loss@max: 0.508864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.606002, LT: 1.599418, Top1S: 58.450443, Top1T: 58.214153 +Train:epoch: 95, loss@min: 0.423775, loss@max: 0.518515, Top1S acc: 100.000000, Top1T acc: 99.489792{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 03:18:56 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.424397, loss@max: 0.017203, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 1.465714, loss@max: 0.041335, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 3, loss@min: 1.190629, loss@max: 0.070923, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 4, loss@min: 0.959853, loss@max: 0.108721, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 5, loss@min: 1.216191, loss@max: 0.155239, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 6, loss@min: 0.811754, loss@max: 0.210090, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 7, loss@min: 0.527192, loss@max: 0.267328, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 8, loss@min: 0.470426, loss@max: 0.316741, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 9, loss@min: 0.292474, loss@max: 0.363661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.254826, loss@max: 0.410076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.207995, loss@max: 0.442491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.197700, loss@max: 0.473605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.233519, loss@max: 0.486033, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 14, loss@min: 0.184218, loss@max: 0.501986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.243155, loss@max: 0.491006, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 16, loss@min: 0.197260, loss@max: 0.462618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.206969, loss@max: 0.451244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.296201, loss@max: 0.434598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.277568, loss@max: 0.386364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.361206, loss@max: 0.379701, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 21, loss@min: 0.306829, loss@max: 0.370213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.367323, loss@max: 0.355924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.475537, loss@max: 0.361819, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 24, loss@min: 0.364433, loss@max: 0.351770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.369207, loss@max: 0.377204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.367105, loss@max: 0.382029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.336542, loss@max: 0.403378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.308689, loss@max: 0.420282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.300149, loss@max: 0.433966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.303888, loss@max: 0.446210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.298430, loss@max: 0.458708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.295287, loss@max: 0.455007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.290094, loss@max: 0.471073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.301230, loss@max: 0.469776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.358804, loss@max: 0.458722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.343894, loss@max: 0.430902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.325629, loss@max: 0.462724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.365994, loss@max: 0.438324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.339257, loss@max: 0.450160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.331381, loss@max: 0.456865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.323739, loss@max: 0.474349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.344889, loss@max: 0.489904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.328392, loss@max: 0.471885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.321793, loss@max: 0.482195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.345698, loss@max: 0.464693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.356095, loss@max: 0.458963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.358673, loss@max: 0.452008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.354038, loss@max: 0.462297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.342930, loss@max: 0.476064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.352809, loss@max: 0.473105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.342615, loss@max: 0.482159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.342349, loss@max: 0.478536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.349762, loss@max: 0.473549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.347067, loss@max: 0.478869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.335303, loss@max: 0.486295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.342309, loss@max: 0.490421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.345353, loss@max: 0.489070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.351563, loss@max: 0.480216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.361487, loss@max: 0.469849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.359847, loss@max: 0.479635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.351988, loss@max: 0.486382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.412311, loss@max: 0.486582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.356261, loss@max: 0.491509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.351094, loss@max: 0.493798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.356475, loss@max: 0.488813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.344774, loss@max: 0.495870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.346579, loss@max: 0.496780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.343844, loss@max: 0.492481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.342673, loss@max: 0.495524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.350322, loss@max: 0.487520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.349644, loss@max: 0.508828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.349887, loss@max: 0.490244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.358310, loss@max: 0.482641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.362366, loss@max: 0.476061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.356453, loss@max: 0.485115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.356860, loss@max: 0.482942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.374154, loss@max: 0.469004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.360713, loss@max: 0.487827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.364000, loss@max: 0.476604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.362275, loss@max: 0.476863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.620351, LT: 0.655605, Top1S: 82.583809, Top1T: 81.711639Best acc: 82.583809 +Train:epoch: 81, loss@min: 0.358928, loss@max: 0.483890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.620086, LT: 0.655492, Top1S: 82.611061, Top1T: 81.766144Best acc: 82.611061 +Train:epoch: 82, loss@min: 0.356819, loss@max: 0.484009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.620279, LT: 0.655703, Top1S: 82.556549, Top1T: 81.847916 +Train:epoch: 83, loss@min: 0.370867, loss@max: 0.506100, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 03:22:21 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.483122, loss@max: 0.038150, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.781278, loss@max: 0.084827, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.350939, loss@max: 0.121761, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.211522, loss@max: 0.174725, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.133848, loss@max: 0.230784, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 1.686812, loss@max: 0.285485, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.498031, loss@max: 0.352528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.048802, loss@max: 0.395898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.795472, loss@max: 0.450592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.731690, loss@max: 0.512778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.616728, loss@max: 0.572241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.521056, loss@max: 0.600721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.526531, loss@max: 0.650126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.533517, loss@max: 0.680085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.412628, loss@max: 0.718025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.389270, loss@max: 0.726372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.324261, loss@max: 0.688181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.332860, loss@max: 0.699301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.300154, loss@max: 0.630242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.238650, loss@max: 0.628502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.374587, loss@max: 0.582313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.314989, loss@max: 0.524951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.357588, loss@max: 0.480068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.429949, loss@max: 0.455465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.425357, loss@max: 0.420215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.410980, loss@max: 0.383013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.496047, loss@max: 0.394607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.455455, loss@max: 0.382456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.425751, loss@max: 0.392465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.436258, loss@max: 0.401376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.384612, loss@max: 0.430009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.474921, loss@max: 0.453397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.357854, loss@max: 0.472025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.331847, loss@max: 0.499735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.347196, loss@max: 0.517874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.342301, loss@max: 0.506901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.333775, loss@max: 0.550785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.287532, loss@max: 0.538003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.312516, loss@max: 0.569598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.333991, loss@max: 0.553797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.324892, loss@max: 0.502207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.362051, loss@max: 0.485328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.417268, loss@max: 0.482539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.366763, loss@max: 0.509431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.351639, loss@max: 0.489309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.437604, loss@max: 0.469386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.386455, loss@max: 0.486914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.369894, loss@max: 0.501001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.393576, loss@max: 0.483529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.383215, loss@max: 0.465729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.345444, loss@max: 0.496552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.351511, loss@max: 0.506200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.368863, loss@max: 0.483130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.336896, loss@max: 0.511438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.382291, loss@max: 0.485187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.351203, loss@max: 0.530276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.331905, loss@max: 0.537295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.370436, loss@max: 0.493935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.417940, loss@max: 0.483076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.408890, loss@max: 0.471968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.365528, loss@max: 0.497669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.371438, loss@max: 0.515050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.368085, loss@max: 0.496289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.352640, loss@max: 0.514246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.339684, loss@max: 0.530560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.344716, loss@max: 0.513605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.374256, loss@max: 0.520983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.369824, loss@max: 0.491810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.370054, loss@max: 0.494131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.404921, loss@max: 0.476546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.376144, loss@max: 0.480328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.364469, loss@max: 0.498775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.349070, loss@max: 0.509555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.376056, loss@max: 0.484205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.368128, loss@max: 0.496389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.372438, loss@max: 0.525573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.369010, loss@max: 0.502287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.347416, loss@max: 0.514484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.369139, loss@max: 0.497394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.369785, loss@max: 0.491527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.816378, LT: 1.889970, Top1S: 54.740742, Top1T: 54.580246Best acc: 54.740742 +Train:epoch: 81, loss@min: 0.374253, loss@max: 0.485085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.821548, LT: 1.886837, Top1S: 54.716049, Top1T: 54.592594 +Train:epoch: 82, loss@min: 0.394042, loss@max: 0.497511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.824349, LT: 1.882506, Top1S: 54.679012, Top1T: 54.604939 +Train:epoch: 83, loss@min: 0.346093, loss@max: 0.514294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.827211, LT: 1.878562, Top1S: 54.629631, Top1T: 54.617283 +Train:epoch: 84, loss@min: 0.386012, loss@max: 0.501662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.825241, LT: 1.873459, Top1S: 54.666668, Top1T: 54.679012 +Train:epoch: 85, loss@min: 0.385833, loss@max: 0.472877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.821357, LT: 1.869530, Top1S: 54.740742, Top1T: 54.679012 +Train:epoch: 86, loss@min: 0.364663, loss@max: 0.495763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.815345, LT: 1.866923, Top1S: 54.827160, Top1T: 54.679012Best acc: 54.827160 +Train:epoch: 87, loss@min: 0.354665, loss@max: 0.507375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.809392, LT: 1.864724, Top1S: 54.925926, Top1T: 54.716049Best acc: 54.925926 +Train:epoch: 88, loss@min: 0.350826, loss@max: 0.510230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.802597, LT: 1.862459, Top1S: 54.962963, Top1T: 54.740742Best acc: 54.962963 +Train:epoch: 89, loss@min: 0.352603, loss@max: 0.509315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.795550, LT: 1.860635, Top1S: 55.098766, Top1T: 54.790123Best acc: 55.098766 +Train:epoch: 90, loss@min: 0.372386, loss@max: 0.483255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.789341, LT: 1.858670, Top1S: 55.098766, Top1T: 54.802467 +Train:epoch: 91, loss@min: 0.368611, loss@max: 0.494848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.783830, LT: 1.857437, Top1S: 55.197533, Top1T: 54.814816Best acc: 55.197533 +Train:epoch: 92, loss@min: 0.364492, loss@max: 0.499002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.779698, LT: 1.855827, Top1S: 55.358025, Top1T: 54.839504Best acc: 55.358025 +Train:epoch: 93, loss@min: 0.359131, loss@max: 0.498644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.777141, LT: 1.853985, Top1S: 55.395061, Top1T: 54.888889Best acc: 55.395061 +Train:epoch: 94, loss@min: 0.385566, loss@max: 0.471424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.775308, LT: 1.851878, Top1S: 55.407406, Top1T: 54.925926Best acc: 55.407406 +Train:epoch: 95, loss@min: 0.377497, loss@max: 0.481123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.774875, LT: 1.850275, Top1S: 55.419754, Top1T: 54.962963Best acc: 55.419754 +Train:epoch: 96, loss@min: 0.373315, loss@max: 0.488128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.775362, LT: 1.848808, Top1S: 55.432098, Top1T: 55.000000Best acc: 55.432098 +Train:epoch: 97, loss@min: 0.376105, loss@max: 0.481627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.775195, LT: 1.847444, Top1S: 55.407406, Top1T: 55.037037 +Train:epoch: 98, loss@min: 0.372388, loss@max: 0.491808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.773265, LT: 1.846373, Top1S: 55.432098, Top1T: 55.061729 +Train:epoch: 99, loss@min: 0.336690, loss@max: 0.531344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.773504, LT: 1.845391, Top1S: 55.370369, Top1T: 55.061729 +Train:epoch: 100, loss@min: 0.365391, loss@max: 0.489831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.773742, LT: 1.844514, Top1S: 55.296295, Top1T: 55.123455 +Train:epoch: 101, loss@min: 0.366760, loss@max: 0.499421, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 03:52:48 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.168737, loss@max: 0.034207, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.033499, loss@max: 0.075938, Top1S acc: 100.000000, Top1T acc: 48.936169 +Train:epoch: 3, loss@min: 4.407241, loss@max: 0.119672, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.545742, loss@max: 0.174103, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 5, loss@min: 3.140909, loss@max: 0.225475, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.513754, loss@max: 0.288763, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.120625, loss@max: 0.345363, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 1.725720, loss@max: 0.399424, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.472503, loss@max: 0.459429, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.206812, loss@max: 0.520085, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 0.908488, loss@max: 0.568168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.834632, loss@max: 0.627038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.656466, loss@max: 0.658234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.564074, loss@max: 0.689786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.460779, loss@max: 0.716018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.371850, loss@max: 0.731237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.349848, loss@max: 0.744147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.316330, loss@max: 0.754442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.296437, loss@max: 0.737639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.305218, loss@max: 0.721900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.301040, loss@max: 0.694391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.286683, loss@max: 0.649245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.298986, loss@max: 0.621505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.336227, loss@max: 0.587666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.343576, loss@max: 0.557545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.353464, loss@max: 0.512887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.401352, loss@max: 0.493407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.398219, loss@max: 0.469076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.402143, loss@max: 0.450561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.415306, loss@max: 0.421786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.438499, loss@max: 0.431612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.442620, loss@max: 0.429375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.421914, loss@max: 0.415520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.410937, loss@max: 0.431757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.391147, loss@max: 0.448274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.394622, loss@max: 0.466522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.376643, loss@max: 0.471996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.371500, loss@max: 0.487236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.381299, loss@max: 0.500724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.353313, loss@max: 0.492131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.348681, loss@max: 0.502156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.337519, loss@max: 0.505039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.340457, loss@max: 0.512475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.339542, loss@max: 0.504680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.342968, loss@max: 0.506305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.351189, loss@max: 0.497741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.347314, loss@max: 0.497776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.360775, loss@max: 0.487711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.359920, loss@max: 0.491161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.377457, loss@max: 0.473067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.371325, loss@max: 0.483067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.377080, loss@max: 0.476349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.372174, loss@max: 0.477885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.380219, loss@max: 0.474701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.384872, loss@max: 0.477095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.374495, loss@max: 0.478686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.375803, loss@max: 0.493027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.368464, loss@max: 0.488854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.372109, loss@max: 0.487978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.369389, loss@max: 0.488945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.366879, loss@max: 0.492696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.371950, loss@max: 0.484977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.361918, loss@max: 0.499885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.367392, loss@max: 0.496530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.361508, loss@max: 0.498006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.365061, loss@max: 0.500365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.373750, loss@max: 0.489484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.367828, loss@max: 0.496541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.372560, loss@max: 0.485453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.368013, loss@max: 0.491021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.369384, loss@max: 0.492427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.371276, loss@max: 0.492106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.368669, loss@max: 0.491555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.365261, loss@max: 0.495476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.369031, loss@max: 0.493233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.369642, loss@max: 0.494493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.370674, loss@max: 0.500102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.367914, loss@max: 0.493011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.361772, loss@max: 0.501397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.374059, loss@max: 0.484184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.994068, LT: 1.965195, Top1S: 51.536644, Top1T: 50.945625Best acc: 51.536644 +Train:epoch: 81, loss@min: 0.373250, loss@max: 0.491400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.995060, LT: 1.965930, Top1S: 51.654846, Top1T: 50.945625Best acc: 51.654846 +Train:epoch: 82, loss@min: 0.369348, loss@max: 0.492291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.996102, LT: 1.966615, Top1S: 51.595745, Top1T: 50.886524 +Train:epoch: 83, loss@min: 0.362218, loss@max: 0.499536, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.997401, LT: 1.967238, Top1S: 51.477543, Top1T: 50.886524 +Train:epoch: 84, loss@min: 0.405113, loss@max: 0.508508, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 84, LS: 1.998177, LT: 1.967131, Top1S: 51.418438, Top1T: 50.945625 +Train:epoch: 85, loss@min: 0.376523, loss@max: 0.489440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.999013, LT: 1.967098, Top1S: 51.241135, Top1T: 51.063831 +Train:epoch: 86, loss@min: 0.374641, loss@max: 0.485153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.999598, LT: 1.967232, Top1S: 51.300236, Top1T: 51.122932 +Train:epoch: 87, loss@min: 0.368237, loss@max: 0.505724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 2.000395, LT: 1.967648, Top1S: 51.241135, Top1T: 51.063831 +Train:epoch: 88, loss@min: 0.371826, loss@max: 0.488713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 2.001043, LT: 1.968107, Top1S: 51.241135, Top1T: 51.004726 +Train:epoch: 89, loss@min: 0.374161, loss@max: 0.488292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 2.001574, LT: 1.968581, Top1S: 51.241135, Top1T: 51.004726 +Train:epoch: 90, loss@min: 0.363605, loss@max: 0.499246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 2.001927, LT: 1.969104, Top1S: 51.300236, Top1T: 51.004726 +Train:epoch: 91, loss@min: 0.366726, loss@max: 0.493373, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 03:58:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.267615, loss@max: 0.027328, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.636154, loss@max: 0.060540, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.794045, loss@max: 0.094639, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.539035, loss@max: 0.141489, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 1.951499, loss@max: 0.183459, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 1.744751, loss@max: 0.240619, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 1.626777, loss@max: 0.295734, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.211260, loss@max: 0.352876, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 0.784420, loss@max: 0.409190, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 0.853740, loss@max: 0.466256, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 11, loss@min: 0.821979, loss@max: 0.506697, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 0.654381, loss@max: 0.560237, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 0.469456, loss@max: 0.591770, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.375267, loss@max: 0.621329, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 0.450840, loss@max: 0.630935, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.386774, loss@max: 0.645901, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 0.373865, loss@max: 0.631856, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 0.362981, loss@max: 0.635655, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 19, loss@min: 0.280031, loss@max: 0.626831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.379859, loss@max: 0.605334, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.291573, loss@max: 0.577415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.308327, loss@max: 0.544181, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.342181, loss@max: 0.519173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.419630, loss@max: 0.510939, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.344338, loss@max: 0.472534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.378932, loss@max: 0.469410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.423811, loss@max: 0.463263, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.445610, loss@max: 0.442802, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 0.478170, loss@max: 0.459544, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.396509, loss@max: 0.435445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.446352, loss@max: 0.452619, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.374272, loss@max: 0.431343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.366248, loss@max: 0.449504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.385799, loss@max: 0.470184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.386586, loss@max: 0.467378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.383962, loss@max: 0.488469, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.369709, loss@max: 0.487763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.340581, loss@max: 0.498007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.353014, loss@max: 0.497843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.320743, loss@max: 0.511960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.334451, loss@max: 0.513210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.354498, loss@max: 0.509393, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.348786, loss@max: 0.496223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.349488, loss@max: 0.508831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.390607, loss@max: 0.512879, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.358825, loss@max: 0.488395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.456194, loss@max: 0.502779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.365307, loss@max: 0.481458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.370669, loss@max: 0.481012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.365374, loss@max: 0.490308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.377252, loss@max: 0.489230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.358380, loss@max: 0.506394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.362372, loss@max: 0.493350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.374846, loss@max: 0.494865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.360683, loss@max: 0.490359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.361216, loss@max: 0.491818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.355747, loss@max: 0.501849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.355897, loss@max: 0.497550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.377627, loss@max: 0.506075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.358919, loss@max: 0.505379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.352268, loss@max: 0.502403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.366682, loss@max: 0.493991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.368764, loss@max: 0.510814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.361819, loss@max: 0.502717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.369418, loss@max: 0.487945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.364697, loss@max: 0.497424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.364679, loss@max: 0.498913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.370558, loss@max: 0.485635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.379617, loss@max: 0.486725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.374852, loss@max: 0.518348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.362884, loss@max: 0.506400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.360057, loss@max: 0.505516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.365329, loss@max: 0.505867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.433541, loss@max: 0.494749, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.370994, loss@max: 0.506777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.369265, loss@max: 0.513304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.381866, loss@max: 0.509516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.363342, loss@max: 0.497145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.371634, loss@max: 0.508698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.360684, loss@max: 0.499487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.444369, LT: 1.405006, Top1S: 66.745964, Top1T: 66.904572Best acc: 66.904572 +Train:epoch: 81, loss@min: 0.375573, loss@max: 0.493763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.444256, LT: 1.405509, Top1S: 66.878136, Top1T: 66.904572 +Train:epoch: 82, loss@min: 0.366587, loss@max: 0.499032, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Mon Aug 14 04:01:55 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.930683, loss@max: 0.025099, Top1S acc: 100.000000, Top1T acc: 64.843750 +Train:epoch: 2, loss@min: 3.343690, loss@max: 0.059373, Top1S acc: 100.000000, Top1T acc: 68.750000 +Train:epoch: 3, loss@min: 2.466026, loss@max: 0.103190, Top1S acc: 100.000000, Top1T acc: 73.046875 +Train:epoch: 4, loss@min: 1.994377, loss@max: 0.150745, Top1S acc: 100.000000, Top1T acc: 78.906250 +Train:epoch: 5, loss@min: 1.586180, loss@max: 0.211755, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 6, loss@min: 1.424292, loss@max: 0.271474, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 7, loss@min: 1.105037, loss@max: 0.329450, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 8, loss@min: 0.902944, loss@max: 0.388708, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 9, loss@min: 0.702642, loss@max: 0.447259, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 10, loss@min: 0.551795, loss@max: 0.486256, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 11, loss@min: 0.498319, loss@max: 0.524571, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 0.484436, loss@max: 0.539441, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 0.436392, loss@max: 0.543211, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 0.455069, loss@max: 0.541675, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.348235, loss@max: 0.523061, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.372507, loss@max: 0.509541, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.402726, loss@max: 0.508817, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 0.367465, loss@max: 0.494893, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.336795, loss@max: 0.476698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.352559, loss@max: 0.454365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.372034, loss@max: 0.460946, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.373963, loss@max: 0.455290, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.355226, loss@max: 0.445714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.381335, loss@max: 0.447212, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.364699, loss@max: 0.460472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.341523, loss@max: 0.458970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.350871, loss@max: 0.467798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.370198, loss@max: 0.463996, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.361071, loss@max: 0.471141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.346806, loss@max: 0.467795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.368253, loss@max: 0.472077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.359720, loss@max: 0.474325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.356459, loss@max: 0.471503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.357886, loss@max: 0.474526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.351554, loss@max: 0.467657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.369436, loss@max: 0.465812, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.356673, loss@max: 0.476457, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.367240, loss@max: 0.473838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.351624, loss@max: 0.480273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.352124, loss@max: 0.484007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.370985, loss@max: 0.481248, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.360112, loss@max: 0.486130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.362772, loss@max: 0.487406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.361784, loss@max: 0.490210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.368727, loss@max: 0.484423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.371276, loss@max: 0.475358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.367753, loss@max: 0.489635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.370494, loss@max: 0.485255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.363158, loss@max: 0.485290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.365555, loss@max: 0.490215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.355005, loss@max: 0.500405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.362781, loss@max: 0.491483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.368770, loss@max: 0.492748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.366931, loss@max: 0.490014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.371955, loss@max: 0.498661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.365784, loss@max: 0.497630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.361661, loss@max: 0.499905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.366069, loss@max: 0.489854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.367330, loss@max: 0.496254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.362656, loss@max: 0.500839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.368196, loss@max: 0.492497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.366457, loss@max: 0.501494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.399647, loss@max: 0.505001, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.366961, loss@max: 0.508661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.366084, loss@max: 0.495051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.369052, loss@max: 0.498688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.367683, loss@max: 0.496605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.370221, loss@max: 0.492562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.381244, loss@max: 0.493329, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.367234, loss@max: 0.498598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.363565, loss@max: 0.495668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.365516, loss@max: 0.508805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.367924, loss@max: 0.500873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.366141, loss@max: 0.497618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.367553, loss@max: 0.500500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.369614, loss@max: 0.494280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.379830, loss@max: 0.493911, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.368927, loss@max: 0.501248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.365678, loss@max: 0.499644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.375514, loss@max: 0.492839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.704865, LT: 1.655153, Top1S: 62.801006, Top1T: 62.740551Best acc: 62.801006 +Train:epoch: 81, loss@min: 0.366263, loss@max: 0.497978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.706244, LT: 1.655526, Top1S: 62.846344, Top1T: 62.750626Best acc: 62.846344 +Train:epoch: 82, loss@min: 0.367938, loss@max: 0.505439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.707534, LT: 1.655960, Top1S: 62.816120, Top1T: 62.725437 +Train:epoch: 83, loss@min: 0.361341, loss@max: 0.500592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.708400, LT: 1.656517, Top1S: 62.740551, Top1T: 62.715363 +Train:epoch: 84, loss@min: 0.363519, loss@max: 0.505273, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.709043, LT: 1.656980, Top1S: 62.745590, Top1T: 62.710323 +Train:epoch: 85, loss@min: 0.364143, loss@max: 0.499647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.709289, LT: 1.657481, Top1S: 62.680099, Top1T: 62.730476 +Train:epoch: 86, loss@min: 0.362448, loss@max: 0.497039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.709456, LT: 1.658071, Top1S: 62.690174, Top1T: 62.730476 +Train:epoch: 87, loss@min: 0.363584, loss@max: 0.497216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.709958, LT: 1.658483, Top1S: 62.700249, Top1T: 62.730476 +Train:epoch: 88, loss@min: 0.387521, loss@max: 0.502193, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 1.710460, LT: 1.658835, Top1S: 62.715363, Top1T: 62.750626 +Train:epoch: 89, loss@min: 0.364571, loss@max: 0.498688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.710898, LT: 1.659198, Top1S: 62.765739, Top1T: 62.765739 +Train:epoch: 90, loss@min: 0.372200, loss@max: 0.499734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.711625, LT: 1.659499, Top1S: 62.750626, Top1T: 62.720402 +Train:epoch: 91, loss@min: 0.367115, loss@max: 0.494280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.712405, LT: 1.659832, Top1S: 62.735516, Top1T: 62.745590 +Train:epoch: 92, loss@min: 0.376161, loss@max: 0.496470, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.713096, LT: 1.660241, Top1S: 62.780853, Top1T: 62.760704 +Train:epoch: 93, loss@min: 0.369494, loss@max: 0.492671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.713546, LT: 1.660696, Top1S: 62.770779, Top1T: 62.745590 +Train:epoch: 94, loss@min: 0.376152, loss@max: 0.488537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.714112, LT: 1.661011, Top1S: 62.735516, Top1T: 62.715363 +Train:epoch: 95, loss@min: 0.366516, loss@max: 0.495668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.714784, LT: 1.661362, Top1S: 62.735516, Top1T: 62.755665 +Train:epoch: 96, loss@min: 0.364950, loss@max: 0.500634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.715400, LT: 1.661608, Top1S: 62.705288, Top1T: 62.740551 +Train:epoch: 97, loss@min: 0.366924, loss@max: 0.491691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.715864, LT: 1.661962, Top1S: 62.735516, Top1T: 62.765739 +Train:epoch: 98, loss@min: 0.366183, loss@max: 0.498072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.716308, LT: 1.662412, Top1S: 62.740551, Top1T: 62.790928 +Train:epoch: 99, loss@min: 0.366065, loss@max: 0.494837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.716805, LT: 1.662833, Top1S: 62.740551, Top1T: 62.770779 +Train:epoch: 100, loss@min: 0.363095, loss@max: 0.498046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.717199, LT: 1.663353, Top1S: 62.735516, Top1T: 62.755665 +Train:epoch: 101, loss@min: 0.361099, loss@max: 0.497410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.717559, LT: 1.663826, Top1S: 62.725437, Top1T: 62.745590 +Train:epoch: 102, loss@min: 0.363579, loss@max: 0.499475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.717974, LT: 1.664276, Top1S: 62.725437, Top1T: 62.755665 +Train:epoch: 103, loss@min: 0.361216, loss@max: 0.506199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.718376, LT: 1.664669, Top1S: 62.740551, Top1T: 62.740551 +Train:epoch: 104, loss@min: 0.360096, loss@max: 0.498282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.718720, LT: 1.665128, Top1S: 62.750626, Top1T: 62.755665 +Train:epoch: 105, loss@min: 0.365207, loss@max: 0.494241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.719039, LT: 1.665475, Top1S: 62.700249, Top1T: 62.755665 +Train:epoch: 106, loss@min: 0.369122, loss@max: 0.501338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.719343, LT: 1.665829, Top1S: 62.690174, Top1T: 62.740551 +Train:epoch: 107, loss@min: 0.363580, loss@max: 0.498198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.719653, LT: 1.666178, Top1S: 62.680099, Top1T: 62.730476 +Train:epoch: 108, loss@min: 0.367024, loss@max: 0.495476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.719933, LT: 1.666544, Top1S: 62.690174, Top1T: 62.720402 +Train:epoch: 109, loss@min: 0.365434, loss@max: 0.492653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.720228, LT: 1.666889, Top1S: 62.715363, Top1T: 62.685135 +Train:epoch: 110, loss@min: 0.365191, loss@max: 0.493218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.720393, LT: 1.667199, Top1S: 62.700249, Top1T: 62.675060 +Train:epoch: 111, loss@min: 0.366580, loss@max: 0.493437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.720540, LT: 1.667529, Top1S: 62.700249, Top1T: 62.685135 +Train:epoch: 112, loss@min: 0.365090, loss@max: 0.494043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.720960, LT: 1.667722, Top1S: 62.695213, Top1T: 62.705288 +Train:epoch: 113, loss@min: 0.362783, loss@max: 0.498443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.721364, LT: 1.667840, Top1S: 62.710323, Top1T: 62.715363 +Train:epoch: 114, loss@min: 0.368423, loss@max: 0.493086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.721943, LT: 1.667960, Top1S: 62.730476, Top1T: 62.705288 +Train:epoch: 115, loss@min: 0.364334, loss@max: 0.493652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.722545, LT: 1.668119, Top1S: 62.715363, Top1T: 62.710323 +Train:epoch: 116, loss@min: 0.369119, loss@max: 0.493538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.723093, LT: 1.668320, Top1S: 62.725437, Top1T: 62.720402 +Train:epoch: 117, loss@min: 0.369559, loss@max: 0.491630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.723502, LT: 1.668501, Top1S: 62.680099, Top1T: 62.725437 +Train:epoch: 118, loss@min: 0.366908, loss@max: 0.491227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.723642, LT: 1.668687, Top1S: 62.680099, Top1T: 62.730476 +Train:epoch: 119, loss@min: 0.365030, loss@max: 0.493722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.723760, LT: 1.668842, Top1S: 62.680099, Top1T: 62.730476 +Train:epoch: 120, loss@min: 0.364496, loss@max: 0.492875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.723857, LT: 1.669029, Top1S: 62.700249, Top1T: 62.725437 +Train:epoch: 121, loss@min: 0.364222, loss@max: 0.492315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.723912, LT: 1.669200, Top1S: 62.715363, Top1T: 62.720402 +Train:epoch: 122, loss@min: 0.367192, loss@max: 0.492360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.723882, LT: 1.669340, Top1S: 62.710323, Top1T: 62.715363 +Train:epoch: 123, loss@min: 0.362608, loss@max: 0.493464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.723860, LT: 1.669508, Top1S: 62.720402, Top1T: 62.715363 +Train:epoch: 124, loss@min: 0.366630, loss@max: 0.495688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.723777, LT: 1.669618, Top1S: 62.715363, Top1T: 62.715363 +Train:epoch: 125, loss@min: 0.366499, loss@max: 0.494101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.723782, LT: 1.669727, Top1S: 62.700249, Top1T: 62.725437 +Train:epoch: 126, loss@min: 0.363020, loss@max: 0.495831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.723823, LT: 1.669823, Top1S: 62.700249, Top1T: 62.710323 +Train:epoch: 127, loss@min: 0.361676, loss@max: 0.496017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.723918, LT: 1.669934, Top1S: 62.720402, Top1T: 62.695213 +Train:epoch: 128, loss@min: 0.375277, loss@max: 0.493103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.724015, LT: 1.669997, Top1S: 62.720402, Top1T: 62.710323 +Train:epoch: 129, loss@min: 0.367572, loss@max: 0.490355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.724064, LT: 1.670046, Top1S: 62.715363, Top1T: 62.715363 +Train:epoch: 130, loss@min: 0.364529, loss@max: 0.496077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.724137, LT: 1.670100, Top1S: 62.715363, Top1T: 62.720402 +Train:epoch: 131, loss@min: 0.359118, loss@max: 0.502865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.724209, LT: 1.670159, Top1S: 62.705288, Top1T: 62.720402 +Train:epoch: 132, loss@min: 0.363074, loss@max: 0.495283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.724289, LT: 1.670204, Top1S: 62.715363, Top1T: 62.710323 +Train:epoch: 133, loss@min: 0.360502, loss@max: 0.499452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.724384, LT: 1.670259, Top1S: 62.725437, Top1T: 62.710323 +Train:epoch: 134, loss@min: 0.367289, loss@max: 0.492007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.724460, LT: 1.670320, Top1S: 62.730476, Top1T: 62.705288 +Train:epoch: 135, loss@min: 0.361279, loss@max: 0.495110, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Aug 18 13:50:28 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 10:41:25 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 10:54:42 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:06:25 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:07:40 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:08:17 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:08:56 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:10:02 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:10:47 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:57:29 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:58:24 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 11:58:53 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 12:00:51 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 12:01:40 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.929542, loss@max: 1.577560, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 2, loss@min: 2.475091, loss@max: 1.615264, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 3, loss@min: 2.284232, loss@max: 1.551605, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 4, loss@min: 1.875323, loss@max: 1.389318, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 5, loss@min: 1.834209, loss@max: 1.348140, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 6, loss@min: 1.663858, loss@max: 1.307289, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 7, loss@min: 1.589112, loss@max: 1.299067, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 8, loss@min: 1.448167, loss@max: 1.271429, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 9, loss@min: 1.234197, loss@max: 1.215024, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.271122, loss@max: 1.222117, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 11, loss@min: 1.177117, loss@max: 1.194384, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.155516, loss@max: 1.189651, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.139273, loss@max: 1.188295, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 14, loss@min: 1.024803, loss@max: 1.156712, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.075843, loss@max: 1.173841, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 16, loss@min: 1.071403, loss@max: 1.167682, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 17, loss@min: 1.033059, loss@max: 1.155003, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 18, loss@min: 0.980225, loss@max: 1.145015, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.990356, loss@max: 1.144574, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 0.988013, loss@max: 1.146426, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 21, loss@min: 1.012926, loss@max: 1.149575, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 22, loss@min: 0.911256, loss@max: 1.125820, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 0.958768, loss@max: 1.141034, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 24, loss@min: 0.950095, loss@max: 1.134068, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 25, loss@min: 0.900920, loss@max: 1.124615, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.877606, loss@max: 1.119028, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.907106, loss@max: 1.122382, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.885657, loss@max: 1.119193, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 0.858900, loss@max: 1.112260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.897640, loss@max: 1.121546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 0.897420, loss@max: 1.121076, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.872432, loss@max: 1.112924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.858310, loss@max: 1.110456, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.883015, loss@max: 1.119291, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.858359, loss@max: 1.105610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952950, loss@max: 1.134432, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 37, loss@min: 0.845749, loss@max: 1.107488, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.849499, loss@max: 1.109463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.844584, loss@max: 1.108495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.878414, loss@max: 1.117390, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.853452, loss@max: 1.112619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.837790, loss@max: 1.102811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.871226, loss@max: 1.115332, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 0.904447, loss@max: 1.115802, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 45, loss@min: 0.868809, loss@max: 1.115016, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 0.939670, loss@max: 1.131906, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 0.843198, loss@max: 1.113470, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.853081, loss@max: 1.106740, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 0.858764, loss@max: 1.106970, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 0.829651, loss@max: 1.109069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.853339, loss@max: 1.109411, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.849806, loss@max: 1.107893, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.837236, loss@max: 1.108352, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.839759, loss@max: 1.103403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.822201, loss@max: 1.105956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.831439, loss@max: 1.101630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.844928, loss@max: 1.106727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.836343, loss@max: 1.104152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.832262, loss@max: 1.104539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.839268, loss@max: 1.103521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.828565, loss@max: 1.109613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.848176, loss@max: 1.099523, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.842018, loss@max: 1.109301, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.830305, loss@max: 1.102133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.826880, loss@max: 1.103078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.823887, loss@max: 1.103151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.833558, loss@max: 1.102044, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.833522, loss@max: 1.105833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.849534, loss@max: 1.108863, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.827852, loss@max: 1.103224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.820552, loss@max: 1.103728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.820445, loss@max: 1.100827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.819164, loss@max: 1.101305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.825012, loss@max: 1.101400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.829462, loss@max: 1.103276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.839831, loss@max: 1.105890, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.831579, loss@max: 1.102926, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.831170, loss@max: 1.103627, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.834834, loss@max: 1.105434, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 80, loss@min: 0.826595, loss@max: 1.102068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.820850, loss@max: 1.099921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.827288, loss@max: 1.103734, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 83, loss@min: 0.817275, loss@max: 1.101578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.838202, loss@max: 1.105036, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 85, loss@min: 0.822284, loss@max: 1.103259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.823389, loss@max: 1.102088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.820548, loss@max: 1.101382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.824823, loss@max: 1.103127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.843291, loss@max: 1.107799, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 90, loss@min: 0.828248, loss@max: 1.102541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.821180, loss@max: 1.102479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.819061, loss@max: 1.099697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.826812, loss@max: 1.105052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.839124, loss@max: 1.104982, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 95, loss@min: 0.818766, loss@max: 1.101890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.825173, loss@max: 1.102795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.839144, loss@max: 1.105150, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 98, loss@min: 0.820604, loss@max: 1.101053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.821005, loss@max: 1.102347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.817324, loss@max: 1.100442, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 12:49:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.929543, loss@max: 1.577561, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 2, loss@min: 2.475091, loss@max: 1.615264, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 3, loss@min: 2.284234, loss@max: 1.551605, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 4, loss@min: 1.875322, loss@max: 1.389317, Top1S acc: 100.000000, Top1T acc: 81.640625 +Train:epoch: 5, loss@min: 1.834209, loss@max: 1.348140, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 6, loss@min: 1.663856, loss@max: 1.307288, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 7, loss@min: 1.589113, loss@max: 1.299067, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 8, loss@min: 1.448165, loss@max: 1.271429, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 9, loss@min: 1.234195, loss@max: 1.215024, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.271123, loss@max: 1.222116, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 11, loss@min: 1.177117, loss@max: 1.194384, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.155516, loss@max: 1.189650, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.139273, loss@max: 1.188295, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 14, loss@min: 1.024803, loss@max: 1.156712, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 1.075843, loss@max: 1.173841, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 16, loss@min: 1.071404, loss@max: 1.167681, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 17, loss@min: 1.033059, loss@max: 1.155004, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 18, loss@min: 0.980224, loss@max: 1.145016, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.990357, loss@max: 1.144574, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 0.988014, loss@max: 1.146426, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 21, loss@min: 1.012926, loss@max: 1.149575, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 22, loss@min: 0.911256, loss@max: 1.125820, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 0.958768, loss@max: 1.141033, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 24, loss@min: 0.950094, loss@max: 1.134069, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 25, loss@min: 0.900919, loss@max: 1.124617, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.877607, loss@max: 1.119027, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.907104, loss@max: 1.122385, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.885657, loss@max: 1.119192, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 0.858898, loss@max: 1.112262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.897641, loss@max: 1.121544, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 0.897417, loss@max: 1.121079, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.872434, loss@max: 1.112922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.858310, loss@max: 1.110456, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.883015, loss@max: 1.119291, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.858358, loss@max: 1.105610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.952950, loss@max: 1.134432, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 37, loss@min: 0.845748, loss@max: 1.107488, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.849499, loss@max: 1.109463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.844586, loss@max: 1.108493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.878413, loss@max: 1.117392, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.853455, loss@max: 1.112615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.837785, loss@max: 1.102814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.871229, loss@max: 1.115328, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 0.904440, loss@max: 1.115804, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 45, loss@min: 0.868810, loss@max: 1.115015, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 0.939668, loss@max: 1.131908, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 0.843199, loss@max: 1.113469, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.853081, loss@max: 1.106741, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 0.858762, loss@max: 1.106972, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 0.829651, loss@max: 1.109067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.853337, loss@max: 1.109414, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.849807, loss@max: 1.107891, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 0.837236, loss@max: 1.108353, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 0.839763, loss@max: 1.103400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.822199, loss@max: 1.105958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.831440, loss@max: 1.101629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.844930, loss@max: 1.106725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.836343, loss@max: 1.104153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.832256, loss@max: 1.104546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.839268, loss@max: 1.103521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.828563, loss@max: 1.109615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.848177, loss@max: 1.099522, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.842017, loss@max: 1.109302, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.830307, loss@max: 1.102131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.826880, loss@max: 1.103078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.823887, loss@max: 1.103150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.833558, loss@max: 1.102044, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.833521, loss@max: 1.105834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.849532, loss@max: 1.108864, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.827851, loss@max: 1.103224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.820552, loss@max: 1.103729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.820445, loss@max: 1.100827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.819165, loss@max: 1.101305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.825011, loss@max: 1.101401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.829462, loss@max: 1.103276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.839830, loss@max: 1.105891, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.831579, loss@max: 1.102926, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.831170, loss@max: 1.103626, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 79, loss@min: 0.834834, loss@max: 1.105433, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 80, loss@min: 0.826595, loss@max: 1.102068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.820850, loss@max: 1.099921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.827289, loss@max: 1.103735, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 83, loss@min: 0.817273, loss@max: 1.101579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.838201, loss@max: 1.105036, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 85, loss@min: 0.822283, loss@max: 1.103259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.823390, loss@max: 1.102087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.820547, loss@max: 1.101383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.824823, loss@max: 1.103127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.843289, loss@max: 1.107800, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 90, loss@min: 0.828248, loss@max: 1.102541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.821179, loss@max: 1.102479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.819061, loss@max: 1.099696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.826813, loss@max: 1.105052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.839123, loss@max: 1.104982, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 95, loss@min: 0.818766, loss@max: 1.101889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.825173, loss@max: 1.102795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.839144, loss@max: 1.105150, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 98, loss@min: 0.820604, loss@max: 1.101053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.821006, loss@max: 1.102346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.817323, loss@max: 1.100442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.916803, LT: 0.912141, Top1S: 78.905624, Top1T: 78.879196Best acc: 78.905624 +Train:epoch: 101, loss@min: 0.820464, loss@max: 1.099492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.917103, LT: 0.913195, Top1S: 79.011360, Top1T: 79.064232Best acc: 79.064232 +Train:epoch: 102, loss@min: 0.842004, loss@max: 1.105050, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.915637, LT: 0.911864, Top1S: 79.090668, Top1T: 79.090668Best acc: 79.090668 +Train:epoch: 103, loss@min: 0.822581, loss@max: 1.102424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.912916, LT: 0.908844, Top1S: 79.064232, Top1T: 79.169968Best acc: 79.169968 +Train:epoch: 104, loss@min: 0.850505, loss@max: 1.107821, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 104, LS: 0.910165, LT: 0.906840, Top1S: 79.143532, Top1T: 79.275703Best acc: 79.275703 +Train:epoch: 105, loss@min: 0.819193, loss@max: 1.102795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.905245, LT: 0.901305, Top1S: 79.222832, Top1T: 79.328575Best acc: 79.328575 +Train:epoch: 106, loss@min: 0.821082, loss@max: 1.102432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.905019, LT: 0.900833, Top1S: 79.355003, Top1T: 79.381439Best acc: 79.381439 +Train:epoch: 107, loss@min: 0.902012, loss@max: 1.121742, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 107, LS: 0.906230, LT: 0.902714, Top1S: 79.407875, Top1T: 79.487175Best acc: 79.487175 +Train:epoch: 108, loss@min: 0.834826, loss@max: 1.103981, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.906063, LT: 0.902421, Top1S: 79.434311, Top1T: 79.513611Best acc: 79.513611 +Train:epoch: 109, loss@min: 0.843076, loss@max: 1.107369, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 0.902178, LT: 0.898338, Top1S: 79.566475, Top1T: 79.645782Best acc: 79.645782 +Train:epoch: 110, loss@min: 0.831302, loss@max: 1.102493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.901858, LT: 0.897634, Top1S: 79.275703, Top1T: 79.487175 +Train:epoch: 111, loss@min: 0.821300, loss@max: 1.100882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.902589, LT: 0.898769, Top1S: 79.407875, Top1T: 79.434311 +Train:epoch: 112, loss@min: 0.819202, loss@max: 1.099654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.902556, LT: 0.899002, Top1S: 79.275703, Top1T: 79.434311 +Train:epoch: 113, loss@min: 0.819505, loss@max: 1.100045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.901197, LT: 0.897739, Top1S: 79.249268, Top1T: 79.355003 +Train:epoch: 114, loss@min: 0.817659, loss@max: 1.099872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.900610, LT: 0.897476, Top1S: 79.434311, Top1T: 79.407875 +Train:epoch: 115, loss@min: 0.821577, loss@max: 1.101502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.900887, LT: 0.898055, Top1S: 79.566475, Top1T: 79.672211Best acc: 79.672211 +Train:epoch: 116, loss@min: 0.827459, loss@max: 1.101815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.901051, LT: 0.897975, Top1S: 79.672211, Top1T: 79.592911 +Train:epoch: 117, loss@min: 0.823356, loss@max: 1.102090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.900834, LT: 0.897301, Top1S: 79.592911, Top1T: 79.645782 +Train:epoch: 118, loss@min: 0.819880, loss@max: 1.099676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.900592, LT: 0.897289, Top1S: 79.487175, Top1T: 79.672211 +Train:epoch: 119, loss@min: 0.820617, loss@max: 1.100104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.900414, LT: 0.897341, Top1S: 79.407875, Top1T: 79.725082Best acc: 79.725082 +Train:epoch: 120, loss@min: 0.837672, loss@max: 1.105256, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 0.900190, LT: 0.897008, Top1S: 79.487175, Top1T: 79.698647 +Train:epoch: 121, loss@min: 0.817166, loss@max: 1.101885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.899763, LT: 0.896373, Top1S: 79.487175, Top1T: 79.566475 +Train:epoch: 122, loss@min: 0.820616, loss@max: 1.101332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.899174, LT: 0.896010, Top1S: 79.540047, Top1T: 79.592911 +Train:epoch: 123, loss@min: 0.816018, loss@max: 1.101744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.899069, LT: 0.896130, Top1S: 79.566475, Top1T: 79.645782 +Train:epoch: 124, loss@min: 0.820994, loss@max: 1.101963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.898603, LT: 0.895469, Top1S: 79.540047, Top1T: 79.566475 +Train:epoch: 125, loss@min: 0.817640, loss@max: 1.101066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.898469, LT: 0.895166, Top1S: 79.487175, Top1T: 79.566475 +Train:epoch: 126, loss@min: 0.840550, loss@max: 1.104564, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 126, LS: 0.898788, LT: 0.895426, Top1S: 79.513611, Top1T: 79.619347 +Train:epoch: 127, loss@min: 0.817050, loss@max: 1.101933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.899610, LT: 0.896409, Top1S: 79.592911, Top1T: 79.698647 +Train:epoch: 128, loss@min: 0.835594, loss@max: 1.104483, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 128, LS: 0.900171, LT: 0.897054, Top1S: 79.566475, Top1T: 79.725082 +Train:epoch: 129, loss@min: 0.819097, loss@max: 1.100374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.901004, LT: 0.897931, Top1S: 79.566475, Top1T: 79.725082 +Train:epoch: 130, loss@min: 0.816409, loss@max: 1.101086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.901370, LT: 0.898325, Top1S: 79.540047, Top1T: 79.725082 +Train:epoch: 131, loss@min: 0.816396, loss@max: 1.099040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.901238, LT: 0.898115, Top1S: 79.645782, Top1T: 79.672211 +Train:epoch: 132, loss@min: 0.829469, loss@max: 1.102306, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 132, LS: 0.900793, LT: 0.897604, Top1S: 79.619347, Top1T: 79.672211 +Train:epoch: 133, loss@min: 0.820191, loss@max: 1.098816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.900660, LT: 0.897449, Top1S: 79.672211, Top1T: 79.645782 +Train:epoch: 134, loss@min: 0.817638, loss@max: 1.101081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.900436, LT: 0.897231, Top1S: 79.698647, Top1T: 79.619347 +Train:epoch: 135, loss@min: 0.818300, loss@max: 1.100616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.899796, LT: 0.896541, Top1S: 79.619347, Top1T: 79.619347 +Train:epoch: 136, loss@min: 0.814580, loss@max: 1.100698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.899435, LT: 0.896230, Top1S: 79.619347, Top1T: 79.698647 +Train:epoch: 137, loss@min: 0.823093, loss@max: 1.102551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.899170, LT: 0.896049, Top1S: 79.698647, Top1T: 79.672211 +Train:epoch: 138, loss@min: 0.825422, loss@max: 1.103581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.899146, LT: 0.896027, Top1S: 79.725082, Top1T: 79.698647 +Train:epoch: 139, loss@min: 0.818478, loss@max: 1.100135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.899088, LT: 0.895929, Top1S: 79.751518, Top1T: 79.725082Best acc: 79.751518 +Train:epoch: 140, loss@min: 0.822768, loss@max: 1.101755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.899065, LT: 0.895867, Top1S: 79.751518, Top1T: 79.725082 +Train:epoch: 141, loss@min: 0.824754, loss@max: 1.101959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.899115, LT: 0.895915, Top1S: 79.751518, Top1T: 79.698647 +Train:epoch: 142, loss@min: 0.821982, loss@max: 1.102038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.899099, LT: 0.895887, Top1S: 79.751518, Top1T: 79.698647 +Train:epoch: 143, loss@min: 0.828976, loss@max: 1.102094, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 0.899074, LT: 0.895858, Top1S: 79.751518, Top1T: 79.672211 +Train:epoch: 144, loss@min: 0.825153, loss@max: 1.102870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.899052, LT: 0.895841, Top1S: 79.751518, Top1T: 79.672211 +Train:epoch: 145, loss@min: 0.816853, loss@max: 1.100800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.899039, LT: 0.895826, Top1S: 79.751518, Top1T: 79.619347 +Train:epoch: 146, loss@min: 0.822849, loss@max: 1.100539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.899008, LT: 0.895790, Top1S: 79.751518, Top1T: 79.619347 +Train:epoch: 147, loss@min: 0.844796, loss@max: 1.105917, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 147, LS: 0.899000, LT: 0.895780, Top1S: 79.751518, Top1T: 79.619347 +Train:epoch: 148, loss@min: 0.838453, loss@max: 1.104912, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 148, LS: 0.898998, LT: 0.895778, Top1S: 79.751518, Top1T: 79.619347 +Train:epoch: 149, loss@min: 0.821094, loss@max: 1.102264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.898999, LT: 0.895780, Top1S: 79.751518, Top1T: 79.619347 +Train:epoch: 150, loss@min: 0.816650, loss@max: 1.100190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.898999, LT: 0.895780, Top1S: 79.751518, Top1T: 79.619347 +------------------------------------------- +Tue Sep 5 14:31:04 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Tue Sep 5 14:35:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.689699, loss@max: 1.412239, Top1S acc: 100.000000, Top1T acc: 75.781250 +Train:epoch: 2, loss@min: 1.896289, loss@max: 1.370338, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 3, loss@min: 1.320931, loss@max: 1.311115, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 4, loss@min: 1.080497, loss@max: 1.213604, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 5, loss@min: 1.124821, loss@max: 1.183596, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 6, loss@min: 1.090123, loss@max: 1.168739, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 7, loss@min: 0.974861, loss@max: 1.141054, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 8, loss@min: 0.883826, loss@max: 1.120491, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 9, loss@min: 0.888891, loss@max: 1.114392, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 0.853663, loss@max: 1.119071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.853770, loss@max: 1.101882, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.834312, loss@max: 1.110092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.875466, loss@max: 1.115618, Top1S acc: 100.000000, Top1T acc: 99.218750{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Tue Sep 5 14:41:42 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.271814, loss@max: 1.527763, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 2.527752, loss@max: 1.184598, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 3, loss@min: 1.946577, loss@max: 1.120902, Top1S acc: 100.000000, Top1T acc: 88.118813 +Train:epoch: 4, loss@min: 1.567559, loss@max: 1.099617, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 5, loss@min: 1.308369, loss@max: 1.096225, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 6, loss@min: 1.089838, loss@max: 1.103774, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 7, loss@min: 0.943933, loss@max: 1.110359, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 8, loss@min: 0.912089, loss@max: 1.145703, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 9, loss@min: 0.829300, loss@max: 1.155067, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 10, loss@min: 0.957418, loss@max: 1.210930, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 11, loss@min: 0.870639, loss@max: 1.201859, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 12, loss@min: 0.775293, loss@max: 1.192174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.766255, loss@max: 1.196792, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 14, loss@min: 0.744069, loss@max: 1.189881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.907544, loss@max: 1.218747, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.829237, loss@max: 1.179803, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 0.791740, loss@max: 1.152871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.788001, loss@max: 1.141495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.813588, loss@max: 1.138086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.900820, loss@max: 1.145703, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.800146, loss@max: 1.120266, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Tue Sep 5 14:42:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.320891, loss@max: 1.541326, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.750658, loss@max: 1.498097, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.970869, loss@max: 1.383728, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.785153, loss@max: 1.408201, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.264629, loss@max: 1.333914, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.098010, loss@max: 1.348795, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.022542, loss@max: 1.371062, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.643119, loss@max: 1.315179, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.238516, loss@max: 1.246159, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.335710, loss@max: 1.297711, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.339995, loss@max: 1.318551, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.170674, loss@max: 1.293978, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 0.999944, loss@max: 1.259883, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.932991, loss@max: 1.245324, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.024194, loss@max: 1.258190, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.954834, loss@max: 1.230506, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 0.954483, loss@max: 1.218184, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 0.931601, loss@max: 1.204854, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.852004, loss@max: 1.170026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.938063, loss@max: 1.176984, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.850933, loss@max: 1.146179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.850320, loss@max: 1.133206, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.869327, loss@max: 1.129144, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 0.924957, loss@max: 1.141873, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.841763, loss@max: 1.112938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.862787, loss@max: 1.117315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.893345, loss@max: 1.122426, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.898886, loss@max: 1.118532, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 0.919333, loss@max: 1.119452, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.851317, loss@max: 1.103007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.896602, loss@max: 1.109139, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.836486, loss@max: 1.096309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.840503, loss@max: 1.095866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.860731, loss@max: 1.097948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.857187, loss@max: 1.097455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.872849, loss@max: 1.103680, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.850528, loss@max: 1.094385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.835403, loss@max: 1.095130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.837583, loss@max: 1.098432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.824028, loss@max: 1.103258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.831060, loss@max: 1.102875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.847646, loss@max: 1.107406, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.834914, loss@max: 1.098636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.833868, loss@max: 1.100881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.887823, loss@max: 1.116926, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.829844, loss@max: 1.097780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.921380, loss@max: 1.124583, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.827541, loss@max: 1.099702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.823059, loss@max: 1.103642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.819596, loss@max: 1.106081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.830545, loss@max: 1.106790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.817956, loss@max: 1.109783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.815515, loss@max: 1.107489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.823036, loss@max: 1.107264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.818769, loss@max: 1.103622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.816327, loss@max: 1.105456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.818551, loss@max: 1.107191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.816079, loss@max: 1.106579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.843029, loss@max: 1.106436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.829705, loss@max: 1.101842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.821686, loss@max: 1.099431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.824971, loss@max: 1.097692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.831164, loss@max: 1.103368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.823605, loss@max: 1.100432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.824100, loss@max: 1.096421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.816632, loss@max: 1.105266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.821286, loss@max: 1.103422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.817704, loss@max: 1.101928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.826147, loss@max: 1.101792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.829555, loss@max: 1.108651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.822219, loss@max: 1.102446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.822453, loss@max: 1.101312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.827384, loss@max: 1.102696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.882446, loss@max: 1.115063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.831652, loss@max: 1.097434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.835064, loss@max: 1.101996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.844955, loss@max: 1.105909, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 78, loss@min: 0.820490, loss@max: 1.099919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.830265, loss@max: 1.104274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.814529, loss@max: 1.105372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.820361, loss@max: 1.104352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.815480, loss@max: 1.106163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.826580, loss@max: 1.104343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.812574, loss@max: 1.103974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.825681, loss@max: 1.103607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.824028, loss@max: 1.104804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.820171, loss@max: 1.100332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.821626, loss@max: 1.100242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.823029, loss@max: 1.099269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.819744, loss@max: 1.098794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.820949, loss@max: 1.098321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.821234, loss@max: 1.096454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.821972, loss@max: 1.098513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.826705, loss@max: 1.103532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.847981, loss@max: 1.104355, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 96, loss@min: 0.859800, loss@max: 1.108526, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 97, loss@min: 0.819805, loss@max: 1.102344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.816428, loss@max: 1.102736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.818587, loss@max: 1.103395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.818851, loss@max: 1.103895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.813940, loss@max: 1.103443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.816583, loss@max: 1.104821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.816648, loss@max: 1.102382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.818367, loss@max: 1.103459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.828433, loss@max: 1.103920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.816757, loss@max: 1.100487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.818027, loss@max: 1.101144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.816898, loss@max: 1.101182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.816978, loss@max: 1.098824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.821779, loss@max: 1.100291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.816250, loss@max: 1.099438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.822434, loss@max: 1.103240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.825759, loss@max: 1.101000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.825376, loss@max: 1.099395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.820915, loss@max: 1.097354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.820022, loss@max: 1.099919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.817223, loss@max: 1.098339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.851951, loss@max: 1.107451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.817398, loss@max: 1.099722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.824076, loss@max: 1.103535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.816184, loss@max: 1.101371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.822761, loss@max: 1.099927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.820078, loss@max: 1.099391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.828126, loss@max: 1.103423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.822160, loss@max: 1.102215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.819659, loss@max: 1.101969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.816609, loss@max: 1.100613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.820431, loss@max: 1.102620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.823935, loss@max: 1.100137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.871788, loss@max: 1.111317, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 130, LS: 1.413607, LT: 1.407332, Top1S: 66.666664, Top1T: 66.640228Best acc: 66.666664 +Train:epoch: 131, loss@min: 0.834167, loss@max: 1.105521, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 131, LS: 1.413681, LT: 1.407433, Top1S: 66.640228, Top1T: 66.613792 +Train:epoch: 132, loss@min: 0.840290, loss@max: 1.108135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.413816, LT: 1.407594, Top1S: 66.640228, Top1T: 66.613792 +Train:epoch: 133, loss@min: 0.818395, loss@max: 1.102620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.413923, LT: 1.407726, Top1S: 66.640228, Top1T: 66.613792 +Train:epoch: 134, loss@min: 0.820107, loss@max: 1.100419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.414017, LT: 1.407833, Top1S: 66.640228, Top1T: 66.640228 +Train:epoch: 135, loss@min: 0.818752, loss@max: 1.100069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.414086, LT: 1.407916, Top1S: 66.613792, Top1T: 66.640228 +Train:epoch: 136, loss@min: 0.857022, loss@max: 1.112512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.414168, LT: 1.408009, Top1S: 66.613792, Top1T: 66.640228 +Train:epoch: 137, loss@min: 0.819600, loss@max: 1.100131, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Sep 5 14:50:55 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.320891, loss@max: 1.541326, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.750658, loss@max: 1.498097, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.970869, loss@max: 1.383728, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.785153, loss@max: 1.408201, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.264629, loss@max: 1.333914, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.098010, loss@max: 1.348795, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.022542, loss@max: 1.371062, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.643119, loss@max: 1.315179, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.238516, loss@max: 1.246159, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.335710, loss@max: 1.297711, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.339995, loss@max: 1.318551, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.170674, loss@max: 1.293978, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 0.999944, loss@max: 1.259883, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.932991, loss@max: 1.245324, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.024194, loss@max: 1.258190, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.954834, loss@max: 1.230506, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 0.954483, loss@max: 1.218184, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 0.931601, loss@max: 1.204854, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.852004, loss@max: 1.170026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.938063, loss@max: 1.176984, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.850933, loss@max: 1.146179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.850320, loss@max: 1.133206, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.869327, loss@max: 1.129144, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 0.924957, loss@max: 1.141873, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.841763, loss@max: 1.112938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.862787, loss@max: 1.117315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.893345, loss@max: 1.122426, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.898886, loss@max: 1.118532, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 0.919333, loss@max: 1.119452, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.851317, loss@max: 1.103007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.896602, loss@max: 1.109139, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.836486, loss@max: 1.096309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.840503, loss@max: 1.095866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.860731, loss@max: 1.097948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.857187, loss@max: 1.097455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.872849, loss@max: 1.103680, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.850528, loss@max: 1.094385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.835403, loss@max: 1.095130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.837583, loss@max: 1.098432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.824028, loss@max: 1.103258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.831060, loss@max: 1.102875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.847646, loss@max: 1.107406, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.834914, loss@max: 1.098636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.833868, loss@max: 1.100881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.887823, loss@max: 1.116926, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.829844, loss@max: 1.097780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.921380, loss@max: 1.124583, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.827541, loss@max: 1.099702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.823059, loss@max: 1.103642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.819596, loss@max: 1.106081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.830545, loss@max: 1.106790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.817956, loss@max: 1.109783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.815515, loss@max: 1.107489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.823036, loss@max: 1.107264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.818769, loss@max: 1.103622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.816327, loss@max: 1.105456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.818551, loss@max: 1.107191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.816079, loss@max: 1.106579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.843029, loss@max: 1.106436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.829705, loss@max: 1.101842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.821686, loss@max: 1.099431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.824971, loss@max: 1.097692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.831164, loss@max: 1.103368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.823605, loss@max: 1.100432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.824100, loss@max: 1.096421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.816632, loss@max: 1.105266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.821286, loss@max: 1.103422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.817704, loss@max: 1.101928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.826147, loss@max: 1.101792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.829555, loss@max: 1.108651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.822219, loss@max: 1.102446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.822453, loss@max: 1.101312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.827384, loss@max: 1.102696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.882446, loss@max: 1.115063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.831652, loss@max: 1.097434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.835064, loss@max: 1.101996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.844955, loss@max: 1.105909, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 78, loss@min: 0.820490, loss@max: 1.099919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.830265, loss@max: 1.104274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.814529, loss@max: 1.105372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.418935, LT: 1.411715, Top1S: 66.508057, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 81, loss@min: 0.821127, loss@max: 1.105526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.418801, LT: 1.411726, Top1S: 66.481628, Top1T: 66.640228 +Train:epoch: 82, loss@min: 0.820886, loss@max: 1.104512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.418600, LT: 1.411627, Top1S: 66.481628, Top1T: 66.666664 +Train:epoch: 83, loss@min: 0.811624, loss@max: 1.105858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.418472, LT: 1.411554, Top1S: 66.402321, Top1T: 66.666664 +Train:epoch: 84, loss@min: 0.823407, loss@max: 1.103609, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.418501, LT: 1.411404, Top1S: 66.428757, Top1T: 66.640228 +Train:epoch: 85, loss@min: 0.817164, loss@max: 1.104789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.418613, LT: 1.411330, Top1S: 66.455193, Top1T: 66.693100Best acc: 66.693100 +Train:epoch: 86, loss@min: 0.859988, loss@max: 1.109573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.418524, LT: 1.411180, Top1S: 66.534492, Top1T: 66.745964Best acc: 66.745964 +Train:epoch: 87, loss@min: 0.820889, loss@max: 1.100726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.418437, LT: 1.410957, Top1S: 66.534492, Top1T: 66.719528 +Train:epoch: 88, loss@min: 0.820713, loss@max: 1.097597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.418345, LT: 1.410781, Top1S: 66.560928, Top1T: 66.693100 +Train:epoch: 89, loss@min: 0.822763, loss@max: 1.101178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.418192, LT: 1.410679, Top1S: 66.587364, Top1T: 66.666664 +Train:epoch: 90, loss@min: 0.889219, loss@max: 1.117502, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.418463, LT: 1.411016, Top1S: 66.613792, Top1T: 66.772400Best acc: 66.772400 +Train:epoch: 91, loss@min: 0.817430, loss@max: 1.098292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.418799, LT: 1.411317, Top1S: 66.534492, Top1T: 66.745964 +Train:epoch: 92, loss@min: 0.821752, loss@max: 1.098196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.419149, LT: 1.411633, Top1S: 66.534492, Top1T: 66.772400 +Train:epoch: 93, loss@min: 0.827454, loss@max: 1.103510, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Sep 5 15:02:49 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.320891, loss@max: 1.568392, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.750888, loss@max: 1.554415, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.972898, loss@max: 1.462489, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.789528, loss@max: 1.514277, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.273745, loss@max: 1.452086, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 6, loss@min: 2.110420, loss@max: 1.489211, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.039999, loss@max: 1.526476, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.665691, loss@max: 1.480191, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.266263, loss@max: 1.416656, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.368747, loss@max: 1.486801, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.377081, loss@max: 1.504708, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.216486, loss@max: 1.492220, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.054499, loss@max: 1.438862, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.994748, loss@max: 1.422481, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.098489, loss@max: 1.431219, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.034765, loss@max: 1.407702, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.047285, loss@max: 1.371406, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.022261, loss@max: 1.375747, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.953058, loss@max: 1.335125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.037067, loss@max: 1.355534, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.953561, loss@max: 1.315609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.954518, loss@max: 1.302059, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.971621, loss@max: 1.310998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.026827, loss@max: 1.339261, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.946457, loss@max: 1.299140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968422, loss@max: 1.316292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.996612, loss@max: 1.328106, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.001244, loss@max: 1.322903, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.026691, loss@max: 1.348910, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.958140, loss@max: 1.315200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.999978, loss@max: 1.333121, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.946182, loss@max: 1.308376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.950758, loss@max: 1.312356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.969555, loss@max: 1.327047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968930, loss@max: 1.326429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.988204, loss@max: 1.331957, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.967534, loss@max: 1.324697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.953357, loss@max: 1.325461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.956015, loss@max: 1.332163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.943983, loss@max: 1.333790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.951390, loss@max: 1.336738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.967725, loss@max: 1.346414, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.958611, loss@max: 1.335062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954646, loss@max: 1.345433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.000560, loss@max: 1.366985, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.949113, loss@max: 1.343919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.031331, loss@max: 1.392285, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.948149, loss@max: 1.347658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944049, loss@max: 1.353319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946341, loss@max: 1.351877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.954298, loss@max: 1.360769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.944107, loss@max: 1.360252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.945897, loss@max: 1.352769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950361, loss@max: 1.360460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949609, loss@max: 1.350042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948351, loss@max: 1.352239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945121, loss@max: 1.361792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.945959, loss@max: 1.357581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.966259, loss@max: 1.369471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951075, loss@max: 1.364513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.946760, loss@max: 1.357129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950510, loss@max: 1.357026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955136, loss@max: 1.368684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949283, loss@max: 1.360848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.951381, loss@max: 1.354237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947428, loss@max: 1.361160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.948733, loss@max: 1.363369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949671, loss@max: 1.357079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956730, loss@max: 1.359917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.959209, loss@max: 1.375402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.952304, loss@max: 1.361617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954070, loss@max: 1.359717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.958495, loss@max: 1.361422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.014333, loss@max: 1.374553, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.957233, loss@max: 1.364527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955480, loss@max: 1.376162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.964327, loss@max: 1.379301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947124, loss@max: 1.363472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954023, loss@max: 1.375484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944872, loss@max: 1.366049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.440321, LT: 1.431874, Top1S: 66.851700, Top1T: 66.983871Best acc: 66.983871 +Train:epoch: 81, loss@min: 0.953169, loss@max: 1.366224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.440139, LT: 1.432173, Top1S: 66.851700, Top1T: 67.010307Best acc: 67.010307 +Train:epoch: 82, loss@min: 0.952454, loss@max: 1.363616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.439967, LT: 1.432313, Top1S: 66.904572, Top1T: 67.089607Best acc: 67.089607 +Train:epoch: 83, loss@min: 0.947562, loss@max: 1.359827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.440039, LT: 1.432376, Top1S: 67.010307, Top1T: 67.036743 +Train:epoch: 84, loss@min: 0.957170, loss@max: 1.363112, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.440272, LT: 1.432362, Top1S: 66.983871, Top1T: 67.063171 +Train:epoch: 85, loss@min: 0.950896, loss@max: 1.363972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.440719, LT: 1.432433, Top1S: 66.983871, Top1T: 67.089607 +Train:epoch: 86, loss@min: 0.981579, loss@max: 1.386865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.440909, LT: 1.432341, Top1S: 66.983871, Top1T: 67.116043Best acc: 67.116043 +Train:epoch: 87, loss@min: 0.950783, loss@max: 1.362648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.441194, LT: 1.432161, Top1S: 67.036743, Top1T: 67.089607 +Train:epoch: 88, loss@min: 0.950454, loss@max: 1.359345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.441436, LT: 1.432070, Top1S: 67.063171, Top1T: 67.089607 +Train:epoch: 89, loss@min: 0.952943, loss@max: 1.364507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.441525, LT: 1.432094, Top1S: 67.036743, Top1T: 67.036743 +Train:epoch: 90, loss@min: 1.018007, loss@max: 1.394645, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.442102, LT: 1.432620, Top1S: 66.904572, Top1T: 66.983871 +Train:epoch: 91, loss@min: 0.947753, loss@max: 1.358553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.442616, LT: 1.433152, Top1S: 66.983871, Top1T: 66.983871 +Train:epoch: 92, loss@min: 0.949476, loss@max: 1.363373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.443207, LT: 1.433656, Top1S: 66.983871, Top1T: 66.957436 +Train:epoch: 93, loss@min: 0.952833, loss@max: 1.369651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.443666, LT: 1.434136, Top1S: 66.983871, Top1T: 66.825272 +Train:epoch: 94, loss@min: 0.949067, loss@max: 1.366678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.444083, LT: 1.434768, Top1S: 66.904572, Top1T: 66.825272 +Train:epoch: 95, loss@min: 0.948245, loss@max: 1.362357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.444482, LT: 1.435422, Top1S: 66.931007, Top1T: 66.798836 +Train:epoch: 96, loss@min: 0.952684, loss@max: 1.371602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.444904, LT: 1.436026, Top1S: 66.983871, Top1T: 66.851700 +Train:epoch: 97, loss@min: 0.950034, loss@max: 1.368661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.445169, LT: 1.436460, Top1S: 66.983871, Top1T: 66.851700 +Train:epoch: 98, loss@min: 0.948780, loss@max: 1.363643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.445475, LT: 1.436827, Top1S: 66.983871, Top1T: 66.851700 +Train:epoch: 99, loss@min: 0.951293, loss@max: 1.367831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.445806, LT: 1.437176, Top1S: 66.983871, Top1T: 66.825272 +Train:epoch: 100, loss@min: 0.949727, loss@max: 1.364697, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Sep 5 15:19:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.322172, loss@max: 2.338317, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.751165, loss@max: 2.295780, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 3.007118, loss@max: 2.107815, Top1S acc: 100.000000, Top1T acc: 74.257423 +Train:epoch: 4, loss@min: 2.818234, loss@max: 2.132916, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.326649, loss@max: 1.979781, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 6, loss@min: 2.145802, loss@max: 1.987704, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.071803, loss@max: 1.978740, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.703390, loss@max: 1.875111, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 9, loss@min: 1.318927, loss@max: 1.753290, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.425606, loss@max: 1.802755, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.433933, loss@max: 1.763767, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 12, loss@min: 1.278632, loss@max: 1.726342, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.129907, loss@max: 1.621148, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 1.058959, loss@max: 1.582677, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.170554, loss@max: 1.584052, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.083790, loss@max: 1.559413, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.100714, loss@max: 1.506340, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.045608, loss@max: 1.513536, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.976666, loss@max: 1.463652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.055496, loss@max: 1.484026, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.977711, loss@max: 1.431378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.974830, loss@max: 1.411214, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.990829, loss@max: 1.418245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.047317, loss@max: 1.434836, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.972351, loss@max: 1.383842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.986137, loss@max: 1.398391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.009707, loss@max: 1.405262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.020997, loss@max: 1.391454, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.043236, loss@max: 1.422743, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.972146, loss@max: 1.378594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.012422, loss@max: 1.393699, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.961021, loss@max: 1.365330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.963912, loss@max: 1.365850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.974064, loss@max: 1.380202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.977220, loss@max: 1.378591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.991409, loss@max: 1.380637, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.969337, loss@max: 1.369812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.962120, loss@max: 1.362964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.958630, loss@max: 1.373783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.949458, loss@max: 1.370379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.955748, loss@max: 1.372755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.968940, loss@max: 1.382498, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.963490, loss@max: 1.363563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.961491, loss@max: 1.369443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.009563, loss@max: 1.389154, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.951694, loss@max: 1.368680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.034377, loss@max: 1.411177, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.949710, loss@max: 1.369641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945010, loss@max: 1.375007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944147, loss@max: 1.374399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952454, loss@max: 1.380645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.943982, loss@max: 1.377627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.944150, loss@max: 1.370921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951027, loss@max: 1.374592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.959741, loss@max: 1.355967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954747, loss@max: 1.359210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.952753, loss@max: 1.365910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.952382, loss@max: 1.362617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.968721, loss@max: 1.375339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952928, loss@max: 1.370891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.946119, loss@max: 1.366451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.948801, loss@max: 1.366578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.953303, loss@max: 1.376204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949105, loss@max: 1.368082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949826, loss@max: 1.362761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.948810, loss@max: 1.366331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.952462, loss@max: 1.363972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952420, loss@max: 1.358186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956739, loss@max: 1.364687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958354, loss@max: 1.376212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951891, loss@max: 1.364296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954273, loss@max: 1.361857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.959324, loss@max: 1.361209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.010981, loss@max: 1.377437, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.953296, loss@max: 1.368551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953737, loss@max: 1.376518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963398, loss@max: 1.378444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948057, loss@max: 1.364256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954015, loss@max: 1.374996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946606, loss@max: 1.364867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.471512, LT: 1.461719, Top1S: 66.666664, Top1T: 66.825272Best acc: 66.825272 +Train:epoch: 81, loss@min: 0.954212, loss@max: 1.365788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.471275, LT: 1.461820, Top1S: 66.719528, Top1T: 66.851700Best acc: 66.851700 +Train:epoch: 82, loss@min: 0.951707, loss@max: 1.363531, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.471056, LT: 1.461799, Top1S: 66.904572, Top1T: 66.931007Best acc: 66.931007 +Train:epoch: 83, loss@min: 0.946608, loss@max: 1.361424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.471028, LT: 1.461743, Top1S: 66.957436, Top1T: 66.957436Best acc: 66.957436 +Train:epoch: 84, loss@min: 0.955863, loss@max: 1.362983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.471165, LT: 1.461616, Top1S: 66.904572, Top1T: 67.010307Best acc: 67.010307 +Train:epoch: 85, loss@min: 0.952407, loss@max: 1.362008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.471480, LT: 1.461545, Top1S: 66.904572, Top1T: 66.957436 +Train:epoch: 86, loss@min: 0.977053, loss@max: 1.388803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.471454, LT: 1.461343, Top1S: 67.010307, Top1T: 67.063171Best acc: 67.063171 +Train:epoch: 87, loss@min: 0.948854, loss@max: 1.365239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.471415, LT: 1.461076, Top1S: 66.957436, Top1T: 67.089607Best acc: 67.089607 +Train:epoch: 88, loss@min: 0.949558, loss@max: 1.359818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.471347, LT: 1.460882, Top1S: 66.957436, Top1T: 67.116043Best acc: 67.116043 +Train:epoch: 89, loss@min: 0.949416, loss@max: 1.365869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.471162, LT: 1.460786, Top1S: 66.957436, Top1T: 67.116043 +Train:epoch: 90, loss@min: 1.014807, loss@max: 1.395226, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.471555, LT: 1.461248, Top1S: 66.931007, Top1T: 67.142479Best acc: 67.142479 +Train:epoch: 91, loss@min: 0.947269, loss@max: 1.358987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.471910, LT: 1.461694, Top1S: 66.983871, Top1T: 67.089607 +Train:epoch: 92, loss@min: 0.950281, loss@max: 1.360711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.472397, LT: 1.462100, Top1S: 66.983871, Top1T: 67.063171 +Train:epoch: 93, loss@min: 0.952723, loss@max: 1.369532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.472804, LT: 1.462426, Top1S: 66.957436, Top1T: 67.036743 +Train:epoch: 94, loss@min: 0.948222, loss@max: 1.366015, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.473249, LT: 1.462895, Top1S: 66.931007, Top1T: 67.036743 +Train:epoch: 95, loss@min: 0.948966, loss@max: 1.361082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.473662, LT: 1.463392, Top1S: 66.957436, Top1T: 67.089607 +Train:epoch: 96, loss@min: 0.951937, loss@max: 1.370225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.474058, LT: 1.463874, Top1S: 67.010307, Top1T: 67.089607 +Train:epoch: 97, loss@min: 0.950979, loss@max: 1.365270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.474206, LT: 1.464267, Top1S: 66.983871, Top1T: 67.036743 +Train:epoch: 98, loss@min: 0.947840, loss@max: 1.363349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.474396, LT: 1.464612, Top1S: 66.957436, Top1T: 67.010307 +Train:epoch: 99, loss@min: 0.951451, loss@max: 1.365920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.474624, LT: 1.464965, Top1S: 66.957436, Top1T: 66.983871 +Train:epoch: 100, loss@min: 0.949041, loss@max: 1.364083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.474889, LT: 1.465372, Top1S: 66.957436, Top1T: 67.010307 +Train:epoch: 101, loss@min: 0.953001, loss@max: 1.355207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.475087, LT: 1.465812, Top1S: 66.983871, Top1T: 67.036743 +Train:epoch: 102, loss@min: 0.954441, loss@max: 1.361998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.475066, LT: 1.466015, Top1S: 67.036743, Top1T: 67.010307 +Train:epoch: 103, loss@min: 0.946974, loss@max: 1.363410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.474995, LT: 1.466205, Top1S: 67.063171, Top1T: 67.010307 +Train:epoch: 104, loss@min: 0.959784, loss@max: 1.370235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.474947, LT: 1.466304, Top1S: 67.063171, Top1T: 66.957436 +Train:epoch: 105, loss@min: 0.948911, loss@max: 1.362794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.474958, LT: 1.466346, Top1S: 67.089607, Top1T: 66.957436 +Train:epoch: 106, loss@min: 0.955373, loss@max: 1.371226, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 15:57:11 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.634609, loss@max: 0.945235, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.743750, loss@max: 1.149393, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.313342, loss@max: 1.175620, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 4, loss@min: 1.184456, loss@max: 1.239919, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.070056, loss@max: 1.266561, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 0.940180, loss@max: 1.287833, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.889888, loss@max: 1.300336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.949221, loss@max: 1.341193, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.829804, loss@max: 1.324348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.816793, loss@max: 1.311773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.877389, loss@max: 1.335074, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.884440, loss@max: 1.329681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.930983, loss@max: 1.330441, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.939899, loss@max: 1.307786, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.897681, loss@max: 1.255894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.967372, loss@max: 1.262767, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.958512, loss@max: 1.242439, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.017530, loss@max: 1.241830, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.965143, loss@max: 1.238788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.967319, loss@max: 1.236023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.978661, loss@max: 1.237558, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.993481, loss@max: 1.251972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.972387, loss@max: 1.238818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.002640, loss@max: 1.262389, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.954630, loss@max: 1.259253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.944034, loss@max: 1.280866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.940563, loss@max: 1.273972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.954436, loss@max: 1.299605, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.930318, loss@max: 1.294022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.932987, loss@max: 1.314788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.951204, loss@max: 1.330352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.922831, loss@max: 1.322405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935987, loss@max: 1.328925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.930733, loss@max: 1.323121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.946902, loss@max: 1.334102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.953729, loss@max: 1.332518, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.943228, loss@max: 1.324175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.929313, loss@max: 1.329348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.939170, loss@max: 1.340772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.945653, loss@max: 1.344425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.033213, loss@max: 1.371475, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.942340, loss@max: 1.329714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.954922, loss@max: 1.341009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.940657, loss@max: 1.332201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.939856, loss@max: 1.340774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.975689, loss@max: 1.345795, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.938900, loss@max: 1.337312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.945289, loss@max: 1.339753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.953891, loss@max: 1.335336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943648, loss@max: 1.339394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.966653, loss@max: 1.347620, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.952345, loss@max: 1.353850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.942887, loss@max: 1.343667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.946732, loss@max: 1.350093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.954691, loss@max: 1.358128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948951, loss@max: 1.343376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945145, loss@max: 1.349131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.957780, loss@max: 1.362338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944931, loss@max: 1.351185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942029, loss@max: 1.358363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.944107, loss@max: 1.355517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.945253, loss@max: 1.354507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940811, loss@max: 1.355904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945043, loss@max: 1.353837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946727, loss@max: 1.353307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.987522, loss@max: 1.367218, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.948671, loss@max: 1.354232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950109, loss@max: 1.348701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.953491, loss@max: 1.357773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.944126, loss@max: 1.361328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950599, loss@max: 1.364438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.965452, loss@max: 1.366842, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.947164, loss@max: 1.352733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.946150, loss@max: 1.354415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.940961, loss@max: 1.363678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.942877, loss@max: 1.361599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.942306, loss@max: 1.358217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.946738, loss@max: 1.356759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943743, loss@max: 1.356666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.951514, loss@max: 1.356841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948142, loss@max: 1.352358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.946939, loss@max: 1.354438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.947136, loss@max: 1.352756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945710, loss@max: 1.354869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.947254, loss@max: 1.354857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.947576, loss@max: 1.358333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.946502, loss@max: 1.362484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942509, loss@max: 1.362610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.943818, loss@max: 1.367781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.954314, loss@max: 1.369948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.943426, loss@max: 1.359294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.947593, loss@max: 1.356708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947519, loss@max: 1.355112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950149, loss@max: 1.365310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.950340, loss@max: 1.360852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.948796, loss@max: 1.358932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.946817, loss@max: 1.356831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.958743, loss@max: 1.362435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.949044, loss@max: 1.353986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.945263, loss@max: 1.358891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.427417, LT: 0.430192, Top1S: 89.208923, Top1T: 89.249496Best acc: 89.249496 +Train:epoch: 101, loss@min: 0.943446, loss@max: 1.360399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.427519, LT: 0.430313, Top1S: 89.208923, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 102, loss@min: 0.945409, loss@max: 1.356546, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.427596, LT: 0.430418, Top1S: 89.208923, Top1T: 89.290062 +Train:epoch: 103, loss@min: 0.946168, loss@max: 1.355809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.427658, LT: 0.430515, Top1S: 89.249496, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 104, loss@min: 0.950212, loss@max: 1.361955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.427680, LT: 0.430595, Top1S: 89.249496, Top1T: 89.330627 +Train:epoch: 105, loss@min: 0.947182, loss@max: 1.355343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.427726, LT: 0.430668, Top1S: 89.168358, Top1T: 89.330627 +Train:epoch: 106, loss@min: 0.947745, loss@max: 1.358861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.427773, LT: 0.430760, Top1S: 89.168358, Top1T: 89.330627 +Train:epoch: 107, loss@min: 0.943805, loss@max: 1.358047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.427805, LT: 0.430853, Top1S: 89.168358, Top1T: 89.290062 +Train:epoch: 108, loss@min: 0.944848, loss@max: 1.358236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.427830, LT: 0.430937, Top1S: 89.168358, Top1T: 89.290062 +Train:epoch: 109, loss@min: 0.944498, loss@max: 1.362853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.427811, LT: 0.431006, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 110, loss@min: 0.945488, loss@max: 1.359483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.427804, LT: 0.431028, Top1S: 89.168358, Top1T: 89.208923 +Train:epoch: 111, loss@min: 0.944303, loss@max: 1.360665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.427782, LT: 0.431016, Top1S: 89.168358, Top1T: 89.208923 +Train:epoch: 112, loss@min: 0.947864, loss@max: 1.356477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.427784, LT: 0.430980, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 113, loss@min: 0.946601, loss@max: 1.356380, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.427805, LT: 0.430931, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 114, loss@min: 0.946847, loss@max: 1.358274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.427825, LT: 0.430851, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 115, loss@min: 0.946253, loss@max: 1.356928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.427819, LT: 0.430781, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 116, loss@min: 0.945482, loss@max: 1.365053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.427786, LT: 0.430748, Top1S: 89.168358, Top1T: 89.208923 +Train:epoch: 117, loss@min: 0.946659, loss@max: 1.360347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.427743, LT: 0.430727, Top1S: 89.168358, Top1T: 89.208923 +Train:epoch: 118, loss@min: 0.943358, loss@max: 1.359731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.427698, LT: 0.430714, Top1S: 89.168358, Top1T: 89.208923 +Train:epoch: 119, loss@min: 0.945430, loss@max: 1.357133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.427666, LT: 0.430701, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 120, loss@min: 0.963828, loss@max: 1.367172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.427634, LT: 0.430683, Top1S: 89.249496, Top1T: 89.208923 +Train:epoch: 121, loss@min: 0.956704, loss@max: 1.368406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.427589, LT: 0.430630, Top1S: 89.249496, Top1T: 89.208923 +Train:epoch: 122, loss@min: 0.946174, loss@max: 1.358228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.427557, LT: 0.430574, Top1S: 89.249496, Top1T: 89.208923 +Train:epoch: 123, loss@min: 0.942244, loss@max: 1.360810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.427532, LT: 0.430516, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 124, loss@min: 0.945903, loss@max: 1.357949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.427507, LT: 0.430456, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 125, loss@min: 0.945762, loss@max: 1.361350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.427493, LT: 0.430411, Top1S: 89.208923, Top1T: 89.208923 +Train:epoch: 126, loss@min: 0.947334, loss@max: 1.357934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.427488, LT: 0.430370, Top1S: 89.168358, Top1T: 89.208923 +Train:epoch: 127, loss@min: 0.941959, loss@max: 1.362697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.427466, LT: 0.430343, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 128, loss@min: 0.943595, loss@max: 1.359001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.427443, LT: 0.430321, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 129, loss@min: 0.946494, loss@max: 1.358279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.427420, LT: 0.430300, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 130, loss@min: 0.946369, loss@max: 1.356276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.427394, LT: 0.430288, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 131, loss@min: 0.951727, loss@max: 1.365486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.427390, LT: 0.430302, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 132, loss@min: 0.950439, loss@max: 1.358748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.427380, LT: 0.430307, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 133, loss@min: 0.953468, loss@max: 1.365971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.427375, LT: 0.430307, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 134, loss@min: 0.944748, loss@max: 1.360652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.427370, LT: 0.430305, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 135, loss@min: 0.946338, loss@max: 1.354774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.427363, LT: 0.430306, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 136, loss@min: 0.947385, loss@max: 1.355540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.427354, LT: 0.430312, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 137, loss@min: 0.944803, loss@max: 1.359576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.427348, LT: 0.430317, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 138, loss@min: 0.946610, loss@max: 1.355576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.427346, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 139, loss@min: 0.947708, loss@max: 1.359475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.427348, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 140, loss@min: 0.949685, loss@max: 1.358012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.427348, LT: 0.430318, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 141, loss@min: 0.948327, loss@max: 1.363691, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.427349, LT: 0.430317, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 142, loss@min: 0.945127, loss@max: 1.361150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.427352, LT: 0.430317, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 143, loss@min: 0.946400, loss@max: 1.355950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.427354, LT: 0.430317, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 144, loss@min: 0.946919, loss@max: 1.366136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.427354, LT: 0.430318, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 145, loss@min: 0.945914, loss@max: 1.355840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.427354, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 146, loss@min: 0.947651, loss@max: 1.355424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.427353, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 147, loss@min: 0.944524, loss@max: 1.357083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.427353, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 148, loss@min: 0.945297, loss@max: 1.357564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.427353, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 149, loss@min: 0.944386, loss@max: 1.358847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.427353, LT: 0.430319, Top1S: 89.127792, Top1T: 89.208923 +Train:epoch: 150, loss@min: 0.946204, loss@max: 1.356913, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Tue Sep 5 16:26:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.213869, loss@max: 2.002997, Top1S acc: 100.000000, Top1T acc: 38.297867 +Train:epoch: 2, loss@min: 5.133727, loss@max: 1.840819, Top1S acc: 100.000000, Top1T acc: 46.808510 +Train:epoch: 3, loss@min: 4.556181, loss@max: 1.793461, Top1S acc: 100.000000, Top1T acc: 51.063828 +Train:epoch: 4, loss@min: 3.768661, loss@max: 1.693912, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 5, loss@min: 3.411064, loss@max: 1.687308, Top1S acc: 100.000000, Top1T acc: 65.957443 +Train:epoch: 6, loss@min: 2.843265, loss@max: 1.633273, Top1S acc: 100.000000, Top1T acc: 72.340424 +Train:epoch: 7, loss@min: 2.494901, loss@max: 1.609474, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 8, loss@min: 2.148549, loss@max: 1.573821, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 9, loss@min: 1.921761, loss@max: 1.570783, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 10, loss@min: 1.693486, loss@max: 1.556997, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 11, loss@min: 1.420844, loss@max: 1.517973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.367785, loss@max: 1.550750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.203537, loss@max: 1.507788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.131121, loss@max: 1.501461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.037326, loss@max: 1.473253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.966836, loss@max: 1.436815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.955378, loss@max: 1.429845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.938924, loss@max: 1.412248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.927793, loss@max: 1.385534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.943236, loss@max: 1.372915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.946776, loss@max: 1.354650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.937239, loss@max: 1.326353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.942172, loss@max: 1.323429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.958853, loss@max: 1.321687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954286, loss@max: 1.320592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.950750, loss@max: 1.302681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.972493, loss@max: 1.305258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.962378, loss@max: 1.303926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.952156, loss@max: 1.307309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.952391, loss@max: 1.301405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.959375, loss@max: 1.315744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.961539, loss@max: 1.320707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948328, loss@max: 1.308753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.948721, loss@max: 1.315284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940597, loss@max: 1.321737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.950995, loss@max: 1.323464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.952173, loss@max: 1.320992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.958774, loss@max: 1.320186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.984645, loss@max: 1.339997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.955512, loss@max: 1.322460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.955030, loss@max: 1.328939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.949775, loss@max: 1.327796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.948232, loss@max: 1.338107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.944598, loss@max: 1.336972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.945143, loss@max: 1.338525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.942577, loss@max: 1.343667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.939078, loss@max: 1.345667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.943002, loss@max: 1.340135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941388, loss@max: 1.349003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944874, loss@max: 1.345643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.944577, loss@max: 1.349321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946979, loss@max: 1.348684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943225, loss@max: 1.349498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.938606, loss@max: 1.356346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.937875, loss@max: 1.362240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.940381, loss@max: 1.355023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.940181, loss@max: 1.364067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.941394, loss@max: 1.357469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946537, loss@max: 1.354432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947675, loss@max: 1.352652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.949770, loss@max: 1.351108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950437, loss@max: 1.348849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.944920, loss@max: 1.360174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.947208, loss@max: 1.355870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.948499, loss@max: 1.354224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945983, loss@max: 1.361181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.949146, loss@max: 1.355797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950992, loss@max: 1.357194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944708, loss@max: 1.357409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.946300, loss@max: 1.357560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.948331, loss@max: 1.356358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.947257, loss@max: 1.360452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942333, loss@max: 1.362605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.944423, loss@max: 1.360292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.951603, loss@max: 1.355173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.950536, loss@max: 1.358949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.951097, loss@max: 1.361482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948567, loss@max: 1.357677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.950315, loss@max: 1.357982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950756, loss@max: 1.353825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948579, loss@max: 1.358085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.948496, loss@max: 1.358860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.947360, loss@max: 1.363119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945186, loss@max: 1.360146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.946310, loss@max: 1.361710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.943692, loss@max: 1.366885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.945201, loss@max: 1.362507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.949068, loss@max: 1.362332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.946860, loss@max: 1.361860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.945740, loss@max: 1.362309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.994934, LT: 2.003636, Top1S: 51.359337, Top1T: 50.295509Best acc: 51.359337 +Train:epoch: 91, loss@min: 0.946878, loss@max: 1.366506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.995438, LT: 2.003888, Top1S: 51.359337, Top1T: 50.295509 +Train:epoch: 92, loss@min: 0.946975, loss@max: 1.361498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.995926, LT: 2.004089, Top1S: 51.359337, Top1T: 50.295509 +Train:epoch: 93, loss@min: 0.952826, loss@max: 1.363763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.996389, LT: 2.004366, Top1S: 51.359337, Top1T: 50.295509 +Train:epoch: 94, loss@min: 0.946729, loss@max: 1.359086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.996793, LT: 2.004664, Top1S: 51.477543, Top1T: 50.354610Best acc: 51.477543 +Train:epoch: 95, loss@min: 0.947777, loss@max: 1.362338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.997076, LT: 2.004992, Top1S: 51.536644, Top1T: 50.354610Best acc: 51.536644 +Train:epoch: 96, loss@min: 0.945447, loss@max: 1.362922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.997384, LT: 2.005352, Top1S: 51.477543, Top1T: 50.354610 +Train:epoch: 97, loss@min: 0.947117, loss@max: 1.363110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.997615, LT: 2.005703, Top1S: 51.477543, Top1T: 50.354610 +Train:epoch: 98, loss@min: 0.950778, loss@max: 1.359335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.997797, LT: 2.006008, Top1S: 51.477543, Top1T: 50.354610 +Train:epoch: 99, loss@min: 0.951195, loss@max: 1.359037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.997851, LT: 2.006271, Top1S: 51.477543, Top1T: 50.354610 +Train:epoch: 100, loss@min: 0.950032, loss@max: 1.358790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.997922, LT: 2.006425, Top1S: 51.418438, Top1T: 50.354610 +Train:epoch: 101, loss@min: 0.946556, loss@max: 1.361240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.998083, LT: 2.006539, Top1S: 51.359337, Top1T: 50.354610 +Train:epoch: 102, loss@min: 0.945712, loss@max: 1.361102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.998303, LT: 2.006623, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 103, loss@min: 0.946930, loss@max: 1.361841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.998574, LT: 2.006682, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 104, loss@min: 0.945971, loss@max: 1.362393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.998869, LT: 2.006757, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 105, loss@min: 0.943742, loss@max: 1.364458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.999075, LT: 2.006868, Top1S: 51.418438, Top1T: 50.413712 +Train:epoch: 106, loss@min: 0.942877, loss@max: 1.365208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.999221, LT: 2.007011, Top1S: 51.418438, Top1T: 50.413712 +Train:epoch: 107, loss@min: 0.946612, loss@max: 1.364374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.999312, LT: 2.007191, Top1S: 51.477543, Top1T: 50.413712 +Train:epoch: 108, loss@min: 0.947695, loss@max: 1.362443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.999374, LT: 2.007410, Top1S: 51.477543, Top1T: 50.413712 +Train:epoch: 109, loss@min: 0.947545, loss@max: 1.362705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.999440, LT: 2.007628, Top1S: 51.477543, Top1T: 50.413712 +Train:epoch: 110, loss@min: 0.948645, loss@max: 1.363062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.999479, LT: 2.007832, Top1S: 51.418438, Top1T: 50.413712 +Train:epoch: 111, loss@min: 0.950479, loss@max: 1.359663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.999501, LT: 2.007975, Top1S: 51.359337, Top1T: 50.413712 +Train:epoch: 112, loss@min: 0.948826, loss@max: 1.359513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.999546, LT: 2.008077, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 113, loss@min: 0.950386, loss@max: 1.361279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.999564, LT: 2.008165, Top1S: 51.300236, Top1T: 50.413712 +Train:epoch: 114, loss@min: 0.948555, loss@max: 1.361337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.999600, LT: 2.008235, Top1S: 51.300236, Top1T: 50.472813 +Train:epoch: 115, loss@min: 0.947921, loss@max: 1.361550, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 87} + +------------------------------------------- +Tue Sep 5 16:38:42 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.596581, loss@max: 1.352506, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.979572, loss@max: 1.588982, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.610517, loss@max: 1.382730, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.493282, loss@max: 1.492908, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.430361, loss@max: 1.605303, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.018292, loss@max: 1.609339, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.841846, loss@max: 1.669098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.440440, loss@max: 1.613750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.220171, loss@max: 1.601129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.189760, loss@max: 1.613349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.111790, loss@max: 1.599034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.065788, loss@max: 1.543674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.118349, loss@max: 1.533600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.169200, loss@max: 1.508260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.085217, loss@max: 1.446182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.100679, loss@max: 1.418566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.069278, loss@max: 1.347007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.090083, loss@max: 1.344081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.072531, loss@max: 1.288487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.016550, loss@max: 1.255503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.113903, loss@max: 1.303383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.043656, loss@max: 1.263246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.024734, loss@max: 1.276324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.063233, loss@max: 1.291228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.021602, loss@max: 1.275742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.972530, loss@max: 1.273420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.009453, loss@max: 1.311636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.967600, loss@max: 1.295832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.952024, loss@max: 1.321069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.956156, loss@max: 1.319205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938476, loss@max: 1.333388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.002571, loss@max: 1.386477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.938726, loss@max: 1.354882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.933727, loss@max: 1.340993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.949010, loss@max: 1.360299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.947342, loss@max: 1.361565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.941392, loss@max: 1.383374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.919874, loss@max: 1.350978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949219, loss@max: 1.373820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.954312, loss@max: 1.374893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.944473, loss@max: 1.333660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.954188, loss@max: 1.342857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.991839, loss@max: 1.357779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.975102, loss@max: 1.344630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.951169, loss@max: 1.336889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.984049, loss@max: 1.373446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.958386, loss@max: 1.358047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.958159, loss@max: 1.365697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958202, loss@max: 1.364244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945412, loss@max: 1.352141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.949370, loss@max: 1.342480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.955983, loss@max: 1.347505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.959204, loss@max: 1.339493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.953529, loss@max: 1.341247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.953445, loss@max: 1.350297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955139, loss@max: 1.370679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.938645, loss@max: 1.368072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.946744, loss@max: 1.362976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.964572, loss@max: 1.388386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943246, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.943940, loss@max: 1.365329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.957889, loss@max: 1.378029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950143, loss@max: 1.353811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.947385, loss@max: 1.353288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.943225, loss@max: 1.364391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.941411, loss@max: 1.362951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.959652, loss@max: 1.379959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946260, loss@max: 1.362911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.951673, loss@max: 1.358252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.962576, loss@max: 1.361489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957300, loss@max: 1.350542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.955283, loss@max: 1.356637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946859, loss@max: 1.360314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.951081, loss@max: 1.356701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948659, loss@max: 1.365840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.954905, loss@max: 1.383283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.945923, loss@max: 1.365452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945800, loss@max: 1.359900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.953532, loss@max: 1.362206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948099, loss@max: 1.364459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.951340, loss@max: 1.365577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.949065, loss@max: 1.354114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948683, loss@max: 1.364611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.950058, loss@max: 1.361608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.949328, loss@max: 1.358939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.945731, loss@max: 1.367775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950780, loss@max: 1.367757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.844492, LT: 1.864543, Top1S: 55.074074, Top1T: 54.913582Best acc: 55.074074 +Train:epoch: 88, loss@min: 0.943211, loss@max: 1.364851, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.842151, LT: 1.862714, Top1S: 55.086418, Top1T: 54.925926Best acc: 55.086418 +Train:epoch: 89, loss@min: 0.945409, loss@max: 1.369457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.840797, LT: 1.861338, Top1S: 55.086418, Top1T: 54.987656 +Train:epoch: 90, loss@min: 0.947762, loss@max: 1.359762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.839303, LT: 1.859984, Top1S: 55.074074, Top1T: 54.938271 +Train:epoch: 91, loss@min: 0.947206, loss@max: 1.365778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.838373, LT: 1.859157, Top1S: 55.061729, Top1T: 54.950619 +Train:epoch: 92, loss@min: 0.949288, loss@max: 1.365272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.837031, LT: 1.858111, Top1S: 55.049381, Top1T: 54.987656 +Train:epoch: 93, loss@min: 0.948159, loss@max: 1.359361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.835915, LT: 1.856989, Top1S: 55.061729, Top1T: 54.987656 +Train:epoch: 94, loss@min: 0.949794, loss@max: 1.357938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.834316, LT: 1.855903, Top1S: 55.086418, Top1T: 55.061729 +Train:epoch: 95, loss@min: 0.948420, loss@max: 1.361509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.833540, LT: 1.855300, Top1S: 55.074074, Top1T: 55.086418 +Train:epoch: 96, loss@min: 0.951943, loss@max: 1.359579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.833457, LT: 1.854803, Top1S: 55.123455, Top1T: 55.086418Best acc: 55.123455 +Train:epoch: 97, loss@min: 0.947834, loss@max: 1.358419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.833217, LT: 1.854211, Top1S: 55.148148, Top1T: 55.111111Best acc: 55.148148 +Train:epoch: 98, loss@min: 0.950419, loss@max: 1.362002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.831985, LT: 1.853607, Top1S: 55.123455, Top1T: 55.172840Best acc: 55.172840 +Train:epoch: 99, loss@min: 0.942052, loss@max: 1.370618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.831999, LT: 1.853110, Top1S: 55.197533, Top1T: 55.172840Best acc: 55.197533 +Train:epoch: 100, loss@min: 0.945139, loss@max: 1.361588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.831861, LT: 1.852682, Top1S: 55.209877, Top1T: 55.160492Best acc: 55.209877 +Train:epoch: 101, loss@min: 0.951415, loss@max: 1.366534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.831545, LT: 1.852389, Top1S: 55.209877, Top1T: 55.148148 +Train:epoch: 102, loss@min: 0.949928, loss@max: 1.361623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.830872, LT: 1.851963, Top1S: 55.222221, Top1T: 55.160492Best acc: 55.222221 +Train:epoch: 103, loss@min: 0.947134, loss@max: 1.363463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.830513, LT: 1.851854, Top1S: 55.222221, Top1T: 55.148148 +Train:epoch: 104, loss@min: 0.953781, loss@max: 1.367802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.830023, LT: 1.851651, Top1S: 55.185184, Top1T: 55.197533 +Train:epoch: 105, loss@min: 0.953205, loss@max: 1.355319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.829005, LT: 1.851414, Top1S: 55.222221, Top1T: 55.197533 +Train:epoch: 106, loss@min: 0.954745, loss@max: 1.358850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.828335, LT: 1.851447, Top1S: 55.246914, Top1T: 55.172840Best acc: 55.246914 +Train:epoch: 107, loss@min: 0.945946, loss@max: 1.366030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.828087, LT: 1.851240, Top1S: 55.234570, Top1T: 55.160492 +Train:epoch: 108, loss@min: 0.953021, loss@max: 1.359501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.827899, LT: 1.851228, Top1S: 55.246914, Top1T: 55.123455 +Train:epoch: 109, loss@min: 0.946828, loss@max: 1.361892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.827807, LT: 1.851216, Top1S: 55.283951, Top1T: 55.148148Best acc: 55.283951 +Train:epoch: 110, loss@min: 0.946213, loss@max: 1.367182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.827879, LT: 1.851094, Top1S: 55.259258, Top1T: 55.197533 +Train:epoch: 111, loss@min: 0.943895, loss@max: 1.365196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.827870, LT: 1.850845, Top1S: 55.259258, Top1T: 55.172840 +Train:epoch: 112, loss@min: 0.944072, loss@max: 1.364383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.827863, LT: 1.850576, Top1S: 55.234570, Top1T: 55.185184 +Train:epoch: 113, loss@min: 0.949284, loss@max: 1.363233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.827847, LT: 1.850458, Top1S: 55.259258, Top1T: 55.185184 +Train:epoch: 114, loss@min: 0.948424, loss@max: 1.375383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.828046, LT: 1.850346, Top1S: 55.271606, Top1T: 55.197533 +Train:epoch: 115, loss@min: 0.950435, loss@max: 1.359994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.828211, LT: 1.850331, Top1S: 55.283951, Top1T: 55.172840 +Train:epoch: 116, loss@min: 0.950094, loss@max: 1.368998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.828285, LT: 1.850330, Top1S: 55.296295, Top1T: 55.160492Best acc: 55.296295 +Train:epoch: 117, loss@min: 0.947310, loss@max: 1.358841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.828320, LT: 1.850254, Top1S: 55.320988, Top1T: 55.172840Best acc: 55.320988 +Train:epoch: 118, loss@min: 0.946979, loss@max: 1.363053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.828334, LT: 1.850180, Top1S: 55.283951, Top1T: 55.185184 +Train:epoch: 119, loss@min: 0.948798, loss@max: 1.364133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.828240, LT: 1.849948, Top1S: 55.296295, Top1T: 55.160492 +Train:epoch: 120, loss@min: 0.946233, loss@max: 1.362743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.828134, LT: 1.849743, Top1S: 55.333332, Top1T: 55.185184Best acc: 55.333332 +Train:epoch: 121, loss@min: 0.949239, loss@max: 1.356298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.827993, LT: 1.849569, Top1S: 55.345680, Top1T: 55.197533Best acc: 55.345680 +Train:epoch: 122, loss@min: 0.944503, loss@max: 1.364697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.828013, LT: 1.849313, Top1S: 55.370369, Top1T: 55.197533Best acc: 55.370369 +Train:epoch: 123, loss@min: 0.943722, loss@max: 1.365650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.828240, LT: 1.849071, Top1S: 55.370369, Top1T: 55.197533 +Train:epoch: 124, loss@min: 0.949900, loss@max: 1.371139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.828233, LT: 1.848591, Top1S: 55.382717, Top1T: 55.185184Best acc: 55.382717 +Train:epoch: 125, loss@min: 0.951372, loss@max: 1.363250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.828183, LT: 1.848121, Top1S: 55.382717, Top1T: 55.185184 +Train:epoch: 126, loss@min: 0.951292, loss@max: 1.366121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.828267, LT: 1.847813, Top1S: 55.382717, Top1T: 55.185184 +Train:epoch: 127, loss@min: 0.945810, loss@max: 1.359339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.828360, LT: 1.847550, Top1S: 55.382717, Top1T: 55.172840 +Train:epoch: 128, loss@min: 0.945741, loss@max: 1.365145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.828496, LT: 1.847461, Top1S: 55.370369, Top1T: 55.160492 +Train:epoch: 129, loss@min: 0.946611, loss@max: 1.361220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.828493, LT: 1.847350, Top1S: 55.358025, Top1T: 55.148148 +Train:epoch: 130, loss@min: 0.947992, loss@max: 1.358848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.828411, LT: 1.847327, Top1S: 55.358025, Top1T: 55.148148 +Train:epoch: 131, loss@min: 0.946861, loss@max: 1.366150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.828426, LT: 1.847388, Top1S: 55.358025, Top1T: 55.160492 +Train:epoch: 132, loss@min: 0.956289, loss@max: 1.369357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.828470, LT: 1.847563, Top1S: 55.358025, Top1T: 55.160492 +Train:epoch: 133, loss@min: 0.951443, loss@max: 1.361829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.828452, LT: 1.847674, Top1S: 55.358025, Top1T: 55.160492 +Train:epoch: 134, loss@min: 0.948480, loss@max: 1.359693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.828426, LT: 1.847791, Top1S: 55.358025, Top1T: 55.160492 +Train:epoch: 135, loss@min: 0.953272, loss@max: 1.369641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.828510, LT: 1.848009, Top1S: 55.358025, Top1T: 55.160492 +Train:epoch: 136, loss@min: 0.950823, loss@max: 1.365794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.828538, LT: 1.848150, Top1S: 55.358025, Top1T: 55.172840 +Train:epoch: 137, loss@min: 0.952490, loss@max: 1.364734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.828524, LT: 1.848261, Top1S: 55.370369, Top1T: 55.172840 +Train:epoch: 138, loss@min: 0.950240, loss@max: 1.365709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.828537, LT: 1.848401, Top1S: 55.358025, Top1T: 55.172840 +Train:epoch: 139, loss@min: 0.947490, loss@max: 1.368095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.828569, LT: 1.848530, Top1S: 55.358025, Top1T: 55.185184 +Train:epoch: 140, loss@min: 0.959779, loss@max: 1.380314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.828684, LT: 1.848722, Top1S: 55.358025, Top1T: 55.185184 +Train:epoch: 141, loss@min: 0.949553, loss@max: 1.356931, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.828768, LT: 1.848861, Top1S: 55.358025, Top1T: 55.185184 +Train:epoch: 142, loss@min: 0.953328, loss@max: 1.359012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.828813, LT: 1.848958, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 143, loss@min: 0.946257, loss@max: 1.371878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.828844, LT: 1.849017, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 144, loss@min: 0.953074, loss@max: 1.361352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.828863, LT: 1.849056, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 145, loss@min: 0.957751, loss@max: 1.375250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.828909, LT: 1.849114, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 146, loss@min: 0.954773, loss@max: 1.366537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.828927, LT: 1.849144, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 147, loss@min: 0.954591, loss@max: 1.375874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.828931, LT: 1.849156, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 148, loss@min: 0.949167, loss@max: 1.359522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.828931, LT: 1.849160, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 149, loss@min: 0.952593, loss@max: 1.371680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.828930, LT: 1.849160, Top1S: 55.370369, Top1T: 55.185184 +Train:epoch: 150, loss@min: 0.948422, loss@max: 1.368795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.828930, LT: 1.849160, Top1S: 55.370369, Top1T: 55.185184 +------------------------------------------- +Tue Sep 5 18:13:10 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 18:14:17 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.000792, loss@max: 1.520356, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 2, loss@min: 3.491490, loss@max: 1.540602, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 3, loss@min: 2.688664, loss@max: 1.448582, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 2.297734, loss@max: 1.428384, Top1S acc: 100.000000, Top1T acc: 78.515625 +Train:epoch: 5, loss@min: 1.968576, loss@max: 1.421864, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 6, loss@min: 1.865677, loss@max: 1.437441, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 7, loss@min: 1.590857, loss@max: 1.429639, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 8, loss@min: 1.423453, loss@max: 1.421907, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 9, loss@min: 1.256275, loss@max: 1.416825, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 10, loss@min: 1.142523, loss@max: 1.395911, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 11, loss@min: 1.115111, loss@max: 1.381061, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 1.115452, loss@max: 1.380410, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.085623, loss@max: 1.358410, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 1.105798, loss@max: 1.359474, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 1.001291, loss@max: 1.302561, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 1.018679, loss@max: 1.316061, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.039862, loss@max: 1.318974, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 0.990669, loss@max: 1.304311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.965646, loss@max: 1.284120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.963623, loss@max: 1.291488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.977623, loss@max: 1.296643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.969571, loss@max: 1.309427, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.956118, loss@max: 1.301173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.968376, loss@max: 1.308502, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.960927, loss@max: 1.316027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.949482, loss@max: 1.305253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.953879, loss@max: 1.315472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.968738, loss@max: 1.321494, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 0.963581, loss@max: 1.325705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.951043, loss@max: 1.314235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964591, loss@max: 1.329962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.954876, loss@max: 1.330469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947034, loss@max: 1.333737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949363, loss@max: 1.334386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.948629, loss@max: 1.326418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.959620, loss@max: 1.334107, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.949964, loss@max: 1.336462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.951755, loss@max: 1.339835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941042, loss@max: 1.343345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.950751, loss@max: 1.339365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960750, loss@max: 1.346422, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.952811, loss@max: 1.347690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957616, loss@max: 1.345369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.952181, loss@max: 1.350422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952214, loss@max: 1.351885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.952371, loss@max: 1.345389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.956121, loss@max: 1.353679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.951296, loss@max: 1.355594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.946175, loss@max: 1.354848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.950457, loss@max: 1.358754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.951017, loss@max: 1.352497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946191, loss@max: 1.357377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.954724, loss@max: 1.355976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.954060, loss@max: 1.355181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.954136, loss@max: 1.369628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948642, loss@max: 1.366767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.942808, loss@max: 1.369164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943248, loss@max: 1.364312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953630, loss@max: 1.360363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.954025, loss@max: 1.359521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.953351, loss@max: 1.359369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951839, loss@max: 1.364340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.981280, loss@max: 1.377485, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.950246, loss@max: 1.374584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946348, loss@max: 1.366272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.951640, loss@max: 1.365441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.953473, loss@max: 1.360253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953179, loss@max: 1.358685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.964162, loss@max: 1.364881, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.951289, loss@max: 1.365152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.948516, loss@max: 1.361918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953375, loss@max: 1.369675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953090, loss@max: 1.363511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948112, loss@max: 1.366568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.952973, loss@max: 1.365594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.950140, loss@max: 1.363484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.959628, loss@max: 1.366484, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.957282, loss@max: 1.364322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.953062, loss@max: 1.362431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.951932, loss@max: 1.367661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948690, loss@max: 1.366996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.953047, loss@max: 1.370414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945813, loss@max: 1.366330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946874, loss@max: 1.371558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.947405, loss@max: 1.365452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.949663, loss@max: 1.361913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.948703, loss@max: 1.369405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.952111, loss@max: 1.367240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.949692, loss@max: 1.368657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.969026, loss@max: 1.373018, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 91, loss@min: 0.953183, loss@max: 1.366565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.950538, loss@max: 1.365854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950093, loss@max: 1.363512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950438, loss@max: 1.363425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.949684, loss@max: 1.368122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947888, loss@max: 1.362339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944897, loss@max: 1.367631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.950274, loss@max: 1.369825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.950584, loss@max: 1.367205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948189, loss@max: 1.367490, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 19:06:02 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.000792, loss@max: 1.520356, Top1S acc: 100.000000, Top1T acc: 64.453125 +Train:epoch: 2, loss@min: 3.491490, loss@max: 1.540602, Top1S acc: 100.000000, Top1T acc: 69.531250 +Train:epoch: 3, loss@min: 2.688664, loss@max: 1.448582, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 2.297734, loss@max: 1.428383, Top1S acc: 100.000000, Top1T acc: 78.515625 +Train:epoch: 5, loss@min: 1.968575, loss@max: 1.421864, Top1S acc: 100.000000, Top1T acc: 85.937500 +Train:epoch: 6, loss@min: 1.865676, loss@max: 1.437441, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 7, loss@min: 1.590857, loss@max: 1.429639, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 8, loss@min: 1.423453, loss@max: 1.421907, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 9, loss@min: 1.256275, loss@max: 1.416825, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 10, loss@min: 1.142523, loss@max: 1.395910, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 11, loss@min: 1.115110, loss@max: 1.381062, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 12, loss@min: 1.115451, loss@max: 1.380411, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.085623, loss@max: 1.358410, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 14, loss@min: 1.105798, loss@max: 1.359475, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 1.001291, loss@max: 1.302561, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 1.018680, loss@max: 1.316060, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.039863, loss@max: 1.318974, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 0.990668, loss@max: 1.304312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.965645, loss@max: 1.284121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.963623, loss@max: 1.291489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.977624, loss@max: 1.296642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.969571, loss@max: 1.309426, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.956118, loss@max: 1.301173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.968377, loss@max: 1.308502, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.960927, loss@max: 1.316027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.949482, loss@max: 1.305253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.953879, loss@max: 1.315472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.968737, loss@max: 1.321495, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 0.963581, loss@max: 1.325705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.951043, loss@max: 1.314235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964592, loss@max: 1.329962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.954877, loss@max: 1.330468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947034, loss@max: 1.333737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949362, loss@max: 1.334387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.948629, loss@max: 1.326418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.959621, loss@max: 1.334107, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.949964, loss@max: 1.336462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.951755, loss@max: 1.339835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941042, loss@max: 1.343344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.950750, loss@max: 1.339367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.960749, loss@max: 1.346423, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.952810, loss@max: 1.347690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.957615, loss@max: 1.345369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.952180, loss@max: 1.350422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952214, loss@max: 1.351884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.952371, loss@max: 1.345389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.956122, loss@max: 1.353678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.951295, loss@max: 1.355595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.946175, loss@max: 1.354848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.950457, loss@max: 1.358753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.951018, loss@max: 1.352498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946190, loss@max: 1.357378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.954723, loss@max: 1.355977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.954061, loss@max: 1.355180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.954136, loss@max: 1.369628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948641, loss@max: 1.366768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.942809, loss@max: 1.369163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943245, loss@max: 1.364317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953630, loss@max: 1.360362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.954026, loss@max: 1.359521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.953353, loss@max: 1.359368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951841, loss@max: 1.364338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.981281, loss@max: 1.377484, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.950251, loss@max: 1.374577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946350, loss@max: 1.366269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.951637, loss@max: 1.365446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.953471, loss@max: 1.360255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953178, loss@max: 1.358686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.964162, loss@max: 1.364880, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.951291, loss@max: 1.365151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.948518, loss@max: 1.361916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953375, loss@max: 1.369674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953088, loss@max: 1.363514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948111, loss@max: 1.366570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.952975, loss@max: 1.365594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.950139, loss@max: 1.363485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.959628, loss@max: 1.366484, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.957280, loss@max: 1.364326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.953062, loss@max: 1.362431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.951934, loss@max: 1.367660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948690, loss@max: 1.366996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.953050, loss@max: 1.370413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945814, loss@max: 1.366329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946869, loss@max: 1.371564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.947401, loss@max: 1.365456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.949662, loss@max: 1.361916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.948704, loss@max: 1.369405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.952112, loss@max: 1.367239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.949692, loss@max: 1.368655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.969025, loss@max: 1.373019, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 91, loss@min: 0.953183, loss@max: 1.366565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.950538, loss@max: 1.365854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950090, loss@max: 1.363515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950439, loss@max: 1.363424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.949683, loss@max: 1.368123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947889, loss@max: 1.362338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944894, loss@max: 1.367633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.950274, loss@max: 1.369825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.950583, loss@max: 1.367206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948191, loss@max: 1.367487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.676520, LT: 1.675647, Top1S: 62.775818, Top1T: 62.670021Best acc: 62.775818 +Train:epoch: 101, loss@min: 0.957784, loss@max: 1.374078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.676606, LT: 1.675927, Top1S: 62.780853, Top1T: 62.644833Best acc: 62.780853 +Train:epoch: 102, loss@min: 0.949620, loss@max: 1.366653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.676545, LT: 1.676178, Top1S: 62.755665, Top1T: 62.644833 +Train:epoch: 103, loss@min: 0.948604, loss@max: 1.364129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.676409, LT: 1.676420, Top1S: 62.770779, Top1T: 62.664986 +Train:epoch: 104, loss@min: 0.953008, loss@max: 1.360710, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "fgvc", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Tue Sep 5 20:02:01 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.854465, loss@max: 2.681639, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 2, loss@min: 8.623755, loss@max: 2.747074, Top1S acc: 100.000000, Top1T acc: 24.000000 +Train:epoch: 3, loss@min: 7.757411, loss@max: 2.656598, Top1S acc: 100.000000, Top1T acc: 22.000000 +Train:epoch: 4, loss@min: 7.038981, loss@max: 2.589020, Top1S acc: 100.000000, Top1T acc: 38.000000 +Train:epoch: 5, loss@min: 6.674271, loss@max: 2.602094, Top1S acc: 100.000000, Top1T acc: 37.000000 +Train:epoch: 6, loss@min: 5.900636, loss@max: 2.513190, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 7, loss@min: 6.002369, loss@max: 2.633017, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 8, loss@min: 5.650493, loss@max: 2.624372, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 9, loss@min: 5.046444, loss@max: 2.550307, Top1S acc: 100.000000, Top1T acc: 48.000000 +Train:epoch: 10, loss@min: 4.760462, loss@max: 2.542179, Top1S acc: 100.000000, Top1T acc: 58.000000 +Train:epoch: 11, loss@min: 4.412979, loss@max: 2.519188, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 12, loss@min: 4.035180, loss@max: 2.471629, Top1S acc: 100.000000, Top1T acc: 64.000000 +Train:epoch: 13, loss@min: 3.800423, loss@max: 2.451522, Top1S acc: 100.000000, Top1T acc: 69.000000 +Train:epoch: 14, loss@min: 3.657630, loss@max: 2.450124, Top1S acc: 100.000000, Top1T acc: 71.000000 +Train:epoch: 15, loss@min: 3.214252, loss@max: 2.346070, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 16, loss@min: 3.016111, loss@max: 2.279236, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 17, loss@min: 3.025359, loss@max: 2.325885, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 18, loss@min: 2.759955, loss@max: 2.270332, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 19, loss@min: 2.604218, loss@max: 2.205122, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 20, loss@min: 2.279109, loss@max: 2.097308, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 21, loss@min: 2.152213, loss@max: 2.096893, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 2.202050, loss@max: 2.102447, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 23, loss@min: 2.107239, loss@max: 2.025270, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 24, loss@min: 2.018733, loss@max: 2.040438, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 25, loss@min: 1.808851, loss@max: 1.956286, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 26, loss@min: 1.665384, loss@max: 1.887979, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 27, loss@min: 1.468377, loss@max: 1.789472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.609282, loss@max: 1.873965, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 29, loss@min: 1.432147, loss@max: 1.767943, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 30, loss@min: 1.451419, loss@max: 1.733530, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 31, loss@min: 1.378429, loss@max: 1.711141, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.383911, loss@max: 1.716355, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 33, loss@min: 1.281425, loss@max: 1.644013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.359314, loss@max: 1.653213, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 35, loss@min: 1.408542, loss@max: 1.669964, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 36, loss@min: 1.253103, loss@max: 1.584568, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.182864, loss@max: 1.550462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.267263, loss@max: 1.590150, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 39, loss@min: 1.214509, loss@max: 1.531763, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.157378, loss@max: 1.525711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.258723, loss@max: 1.561859, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 42, loss@min: 1.131311, loss@max: 1.504849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.115611, loss@max: 1.488279, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 1.156616, loss@max: 1.519885, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 45, loss@min: 1.078907, loss@max: 1.473130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.062189, loss@max: 1.471877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.069723, loss@max: 1.474731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.067324, loss@max: 1.485937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.069068, loss@max: 1.479190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.061181, loss@max: 1.488088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.040377, loss@max: 1.456928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.031927, loss@max: 1.462735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.066993, loss@max: 1.476800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.029150, loss@max: 1.458475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.031127, loss@max: 1.456302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.173053, loss@max: 1.529710, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.005190, loss@max: 1.443228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.018663, loss@max: 1.448273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.013936, loss@max: 1.459339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.016411, loss@max: 1.440350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.032071, loss@max: 1.455994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.037220, loss@max: 1.455320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.050865, loss@max: 1.452182, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 64, loss@min: 1.033887, loss@max: 1.454045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.999528, loss@max: 1.424154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.012784, loss@max: 1.428363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.989841, loss@max: 1.421024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.023613, loss@max: 1.454551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.005988, loss@max: 1.434670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.991805, loss@max: 1.418340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.991033, loss@max: 1.432593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.982254, loss@max: 1.415428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.007008, loss@max: 1.426710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.998501, loss@max: 1.407363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.998460, loss@max: 1.420404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.990289, loss@max: 1.413607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.987563, loss@max: 1.398711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.993226, loss@max: 1.411086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.986307, loss@max: 1.406140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.989274, loss@max: 1.419340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 4.231178, LT: 4.196162, Top1S: 22.112211, Top1T: 22.112211Best acc: 22.112211 +Train:epoch: 81, loss@min: 0.984318, loss@max: 1.414992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 4.232955, LT: 4.197734, Top1S: 22.082207, Top1T: 22.172216Best acc: 22.172216 +Train:epoch: 82, loss@min: 0.980391, loss@max: 1.413453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 4.235862, LT: 4.199726, Top1S: 22.052204, Top1T: 21.962194 +Train:epoch: 83, loss@min: 0.984544, loss@max: 1.421333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 4.239660, LT: 4.202634, Top1S: 21.992199, Top1T: 21.992199 +Train:epoch: 84, loss@min: 0.992411, loss@max: 1.415151, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 4.242922, LT: 4.205190, Top1S: 21.992199, Top1T: 21.902189 +Train:epoch: 85, loss@min: 0.979137, loss@max: 1.415532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 4.246160, LT: 4.207944, Top1S: 21.992199, Top1T: 21.842184 +Train:epoch: 86, loss@min: 0.976038, loss@max: 1.403410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 4.249831, LT: 4.211366, Top1S: 22.022202, Top1T: 21.812180 +Train:epoch: 87, loss@min: 0.988557, loss@max: 1.411167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 4.253366, LT: 4.215028, Top1S: 22.082207, Top1T: 21.902189 +Train:epoch: 88, loss@min: 0.986138, loss@max: 1.403957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 4.256258, LT: 4.217897, Top1S: 22.022202, Top1T: 21.902189 +Train:epoch: 89, loss@min: 0.986603, loss@max: 1.408384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 4.259824, LT: 4.221185, Top1S: 22.112211, Top1T: 21.902189 +Train:epoch: 90, loss@min: 0.991379, loss@max: 1.408573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 4.263244, LT: 4.224183, Top1S: 22.082207, Top1T: 21.872187 +Train:epoch: 91, loss@min: 0.972399, loss@max: 1.400503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 4.266712, LT: 4.227401, Top1S: 22.142214, Top1T: 21.902189 +Train:epoch: 92, loss@min: 0.977998, loss@max: 1.395438, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 4.269620, LT: 4.230078, Top1S: 22.052204, Top1T: 21.962194 +Train:epoch: 93, loss@min: 0.978171, loss@max: 1.408041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 4.272874, LT: 4.233443, Top1S: 21.992199, Top1T: 21.992199 +Train:epoch: 94, loss@min: 0.975891, loss@max: 1.399885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 4.275506, LT: 4.236377, Top1S: 21.992199, Top1T: 21.992199 +Train:epoch: 95, loss@min: 0.978866, loss@max: 1.410652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 4.277459, LT: 4.238532, Top1S: 21.872187, Top1T: 21.992199 +Train:epoch: 96, loss@min: 0.969897, loss@max: 1.400912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 4.279238, LT: 4.240496, Top1S: 21.932192, Top1T: 22.022202 +Train:epoch: 97, loss@min: 0.972648, loss@max: 1.405914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 4.280247, LT: 4.241796, Top1S: 21.932192, Top1T: 21.992199 +Train:epoch: 98, loss@min: 0.971443, loss@max: 1.403634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 4.281545, LT: 4.243403, Top1S: 21.992199, Top1T: 21.962194 +Train:epoch: 99, loss@min: 0.976530, loss@max: 1.402306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 4.282737, LT: 4.245074, Top1S: 21.962194, Top1T: 21.932192 +Train:epoch: 100, loss@min: 0.988643, loss@max: 1.422728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 4.284515, LT: 4.247058, Top1S: 21.932192, Top1T: 21.962194 +Train:epoch: 101, loss@min: 0.977588, loss@max: 1.411471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 4.286539, LT: 4.248777, Top1S: 22.022202, Top1T: 21.992199 +Train:epoch: 102, loss@min: 0.974956, loss@max: 1.404751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 4.289122, LT: 4.251107, Top1S: 22.022202, Top1T: 21.872187 +Train:epoch: 103, loss@min: 0.996863, loss@max: 1.416441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 4.291836, LT: 4.253558, Top1S: 22.052204, Top1T: 21.932192 +Train:epoch: 104, loss@min: 1.042474, loss@max: 1.432346, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 104, LS: 4.293528, LT: 4.254605, Top1S: 22.082207, Top1T: 21.932192 +Train:epoch: 105, loss@min: 0.971064, loss@max: 1.393835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 4.295217, LT: 4.255796, Top1S: 22.052204, Top1T: 21.932192 +Train:epoch: 106, loss@min: 0.980736, loss@max: 1.402123, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 4.297199, LT: 4.257474, Top1S: 22.052204, Top1T: 21.962194 +Train:epoch: 107, loss@min: 0.999776, loss@max: 1.415406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 4.298032, LT: 4.257935, Top1S: 22.112211, Top1T: 21.962194 +Train:epoch: 108, loss@min: 0.986227, loss@max: 1.405614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 4.298974, LT: 4.258550, Top1S: 22.142214, Top1T: 22.082207 +Train:epoch: 109, loss@min: 0.981511, loss@max: 1.403216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 4.300679, LT: 4.259983, Top1S: 22.112211, Top1T: 22.232222Best acc: 22.232222 +Train:epoch: 110, loss@min: 0.972752, loss@max: 1.400676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 4.302329, LT: 4.261371, Top1S: 22.232222, Top1T: 22.262226Best acc: 22.262226 +Train:epoch: 111, loss@min: 1.066916, loss@max: 1.428668, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 111, LS: 4.302847, LT: 4.261920, Top1S: 22.262226, Top1T: 22.292229Best acc: 22.292229 +Train:epoch: 112, loss@min: 0.975818, loss@max: 1.405684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 4.303602, LT: 4.262654, Top1S: 22.232222, Top1T: 22.322231Best acc: 22.322231 +Train:epoch: 113, loss@min: 0.973850, loss@max: 1.402010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 4.304675, LT: 4.263558, Top1S: 22.232222, Top1T: 22.322231 +Train:epoch: 114, loss@min: 0.986173, loss@max: 1.409849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 4.305908, LT: 4.264672, Top1S: 22.322231, Top1T: 22.412241Best acc: 22.412241 +Train:epoch: 115, loss@min: 0.969116, loss@max: 1.393651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 4.306955, LT: 4.265751, Top1S: 22.352234, Top1T: 22.382236 +Train:epoch: 116, loss@min: 1.008426, loss@max: 1.409282, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 116, LS: 4.307679, LT: 4.266595, Top1S: 22.262226, Top1T: 22.382236 +Train:epoch: 117, loss@min: 0.973771, loss@max: 1.401987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 4.308561, LT: 4.267667, Top1S: 22.292229, Top1T: 22.412241 +Train:epoch: 118, loss@min: 0.996566, loss@max: 1.424085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 4.310203, LT: 4.269594, Top1S: 22.322231, Top1T: 22.502249Best acc: 22.502249 +Train:epoch: 119, loss@min: 0.976935, loss@max: 1.402177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 4.311706, LT: 4.271137, Top1S: 22.352234, Top1T: 22.472246 +Train:epoch: 120, loss@min: 0.988301, loss@max: 1.402518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 4.313128, LT: 4.272581, Top1S: 22.352234, Top1T: 22.472246 +Train:epoch: 121, loss@min: 0.973065, loss@max: 1.400263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 4.314399, LT: 4.273881, Top1S: 22.352234, Top1T: 22.442244 +Train:epoch: 122, loss@min: 0.988767, loss@max: 1.414748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 4.315259, LT: 4.274811, Top1S: 22.322231, Top1T: 22.382236 +Train:epoch: 123, loss@min: 0.977577, loss@max: 1.396339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 4.316019, LT: 4.275602, Top1S: 22.352234, Top1T: 22.382236 +Train:epoch: 124, loss@min: 0.971679, loss@max: 1.396197, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "food101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 20:55:24 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.097065, loss@max: 1.325087, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 2, loss@min: 2.288922, loss@max: 1.274132, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 3, loss@min: 1.843328, loss@max: 1.279337, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 4, loss@min: 1.693941, loss@max: 1.315177, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 5, loss@min: 1.249948, loss@max: 1.256416, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 6, loss@min: 1.104222, loss@max: 1.279347, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 7, loss@min: 1.117388, loss@max: 1.329368, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 8, loss@min: 1.336979, loss@max: 1.429396, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 9, loss@min: 1.094771, loss@max: 1.389738, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 10, loss@min: 0.948663, loss@max: 1.377889, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 11, loss@min: 0.933112, loss@max: 1.370449, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 12, loss@min: 0.846723, loss@max: 1.323760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.908971, loss@max: 1.314624, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 14, loss@min: 0.925088, loss@max: 1.303196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.947324, loss@max: 1.274024, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.041057, loss@max: 1.291383, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 17, loss@min: 0.939244, loss@max: 1.236530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.947857, loss@max: 1.249445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.957944, loss@max: 1.256847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.957792, loss@max: 1.256178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.940710, loss@max: 1.254370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.956544, loss@max: 1.263798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.938333, loss@max: 1.257205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.942388, loss@max: 1.266973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.934258, loss@max: 1.271866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.951968, loss@max: 1.291651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.928201, loss@max: 1.285344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.949167, loss@max: 1.312982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.928553, loss@max: 1.298456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933231, loss@max: 1.310265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.936743, loss@max: 1.309971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.936932, loss@max: 1.310977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.929341, loss@max: 1.309401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.933052, loss@max: 1.318145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940261, loss@max: 1.313576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.937595, loss@max: 1.316133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.942096, loss@max: 1.325773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.939942, loss@max: 1.321926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941581, loss@max: 1.325127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.939616, loss@max: 1.332127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.935934, loss@max: 1.328943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.943098, loss@max: 1.325902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.953620, loss@max: 1.337568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.975338, loss@max: 1.343035, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 45, loss@min: 0.951191, loss@max: 1.333523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.944922, loss@max: 1.333685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.938706, loss@max: 1.337280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.937805, loss@max: 1.345328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.934054, loss@max: 1.350865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939681, loss@max: 1.346610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947138, loss@max: 1.343356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.945998, loss@max: 1.343944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.951257, loss@max: 1.344841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.946731, loss@max: 1.344729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.944404, loss@max: 1.348415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952130, loss@max: 1.350400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.936927, loss@max: 1.358370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943455, loss@max: 1.347489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.940781, loss@max: 1.353697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942476, loss@max: 1.353663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.947459, loss@max: 1.348116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944680, loss@max: 1.351887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.948867, loss@max: 1.347867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.950877, loss@max: 1.351743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949974, loss@max: 1.349266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946385, loss@max: 1.356225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945556, loss@max: 1.355638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.945483, loss@max: 1.358816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.943002, loss@max: 1.357708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.943683, loss@max: 1.356878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.944624, loss@max: 1.359053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.941894, loss@max: 1.357699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946360, loss@max: 1.354410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954101, loss@max: 1.357315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.946309, loss@max: 1.354171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.944835, loss@max: 1.355683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.947105, loss@max: 1.355992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.950983, loss@max: 1.358930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.942449, loss@max: 1.359708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944717, loss@max: 1.359837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.950108, loss@max: 1.354303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947258, loss@max: 1.356134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948766, loss@max: 1.358469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.943810, loss@max: 1.359242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.948002, loss@max: 1.359971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.942375, loss@max: 1.359234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.946652, loss@max: 1.364452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.945386, loss@max: 1.363183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.943595, loss@max: 1.364359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948085, loss@max: 1.353853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.949958, loss@max: 1.357068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.948915, loss@max: 1.355604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947952, loss@max: 1.353701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.946394, loss@max: 1.356275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.947320, loss@max: 1.361799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947940, loss@max: 1.356377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944970, loss@max: 1.357476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943654, loss@max: 1.362515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.945954, loss@max: 1.357201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950014, loss@max: 1.365492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.268511, LT: 1.281002, Top1S: 75.313530, Top1T: 75.148514Best acc: 75.313530 +Train:epoch: 101, loss@min: 0.941528, loss@max: 1.362000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.268071, LT: 1.280673, Top1S: 75.333336, Top1T: 75.171616Best acc: 75.333336 +Train:epoch: 102, loss@min: 0.943247, loss@max: 1.361416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.267627, LT: 1.280400, Top1S: 75.336632, Top1T: 75.171616Best acc: 75.336632 +Train:epoch: 103, loss@min: 0.947135, loss@max: 1.356527, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 21:22:28 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.953885, loss@max: 1.733740, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.265982, loss@max: 1.707811, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.764494, loss@max: 1.711593, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.472829, loss@max: 1.744460, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 5, loss@min: 3.115826, loss@max: 1.739947, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.853490, loss@max: 1.746612, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.567167, loss@max: 1.738294, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.268760, loss@max: 1.714319, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 9, loss@min: 2.036968, loss@max: 1.681300, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.818561, loss@max: 1.652429, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.801162, loss@max: 1.668601, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.818190, loss@max: 1.679091, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.639625, loss@max: 1.635669, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.516225, loss@max: 1.592043, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.337634, loss@max: 1.535983, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 16, loss@min: 1.424771, loss@max: 1.552591, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 17, loss@min: 1.228404, loss@max: 1.478616, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.199760, loss@max: 1.467249, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.180346, loss@max: 1.454803, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.128240, loss@max: 1.440420, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.118361, loss@max: 1.432298, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 22, loss@min: 1.087881, loss@max: 1.418699, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 23, loss@min: 1.117454, loss@max: 1.416749, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.094857, loss@max: 1.411474, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.020184, loss@max: 1.369451, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.042593, loss@max: 1.382823, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 1.070599, loss@max: 1.392601, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.052532, loss@max: 1.370411, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 1.012144, loss@max: 1.359951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.015395, loss@max: 1.360035, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 1.007723, loss@max: 1.351908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.001999, loss@max: 1.364595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.992679, loss@max: 1.362923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.009211, loss@max: 1.362262, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.989316, loss@max: 1.363752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971183, loss@max: 1.342733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.004592, loss@max: 1.372349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.969234, loss@max: 1.345192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.968653, loss@max: 1.347492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.958817, loss@max: 1.345475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.962221, loss@max: 1.356544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.956966, loss@max: 1.358755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.945785, loss@max: 1.359917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.946428, loss@max: 1.357692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952104, loss@max: 1.363106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.950635, loss@max: 1.353191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954215, loss@max: 1.359519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.948481, loss@max: 1.361168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.949178, loss@max: 1.356604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.950206, loss@max: 1.359813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.949802, loss@max: 1.361503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.951306, loss@max: 1.367076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.949916, loss@max: 1.368422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951294, loss@max: 1.360726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955462, loss@max: 1.364548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953638, loss@max: 1.359436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.959585, loss@max: 1.357312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.956115, loss@max: 1.355690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947580, loss@max: 1.362270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.948112, loss@max: 1.361039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.952102, loss@max: 1.368677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.953113, loss@max: 1.366120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952811, loss@max: 1.367166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949374, loss@max: 1.364399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958049, loss@max: 1.371459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.957029, loss@max: 1.368339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.950280, loss@max: 1.365638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950299, loss@max: 1.364413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.954775, loss@max: 1.364098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.952942, loss@max: 1.365306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950745, loss@max: 1.363463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.957779, loss@max: 1.371342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948795, loss@max: 1.365775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.949942, loss@max: 1.363723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953158, loss@max: 1.368911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953824, loss@max: 1.364693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952928, loss@max: 1.367670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.946420, loss@max: 1.367678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946317, loss@max: 1.365751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.952051, loss@max: 1.373325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948493, loss@max: 1.362167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.956971, loss@max: 1.374234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.951298, loss@max: 1.370243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.950163, loss@max: 1.363316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.955681, loss@max: 1.365275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.953015, loss@max: 1.359435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.952747, loss@max: 1.361568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.952222, loss@max: 1.363805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.951236, loss@max: 1.367545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947487, loss@max: 1.366626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.945766, loss@max: 1.375127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.949341, loss@max: 1.373109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947715, loss@max: 1.368432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.953706, loss@max: 1.371906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.950970, loss@max: 1.366064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.951845, loss@max: 1.364660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.947513, loss@max: 1.361578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.948403, loss@max: 1.366660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.949793, loss@max: 1.363632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.952538, loss@max: 1.366194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.917800, LT: 0.907387, Top1S: 77.791313, Top1T: 77.710114Best acc: 77.791313 +Train:epoch: 101, loss@min: 0.951970, loss@max: 1.365748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.917601, LT: 0.907233, Top1S: 77.791313, Top1T: 77.710114 +Train:epoch: 102, loss@min: 0.952993, loss@max: 1.366933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.917351, LT: 0.907066, Top1S: 77.791313, Top1T: 77.669510 +Train:epoch: 103, loss@min: 0.947958, loss@max: 1.364154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.917118, LT: 0.906859, Top1S: 77.791313, Top1T: 77.750710 +Train:epoch: 104, loss@min: 0.950359, loss@max: 1.366497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.916967, LT: 0.906612, Top1S: 77.831917, Top1T: 77.750710Best acc: 77.831917 +Train:epoch: 105, loss@min: 0.948245, loss@max: 1.369477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.916869, LT: 0.906334, Top1S: 77.831917, Top1T: 77.791313 +Train:epoch: 106, loss@min: 0.951535, loss@max: 1.364711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.916696, LT: 0.906007, Top1S: 77.872513, Top1T: 77.831917Best acc: 77.872513 +Train:epoch: 107, loss@min: 0.951167, loss@max: 1.361983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.916541, LT: 0.905761, Top1S: 77.831917, Top1T: 77.872513 +Train:epoch: 108, loss@min: 0.949954, loss@max: 1.365298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.916404, LT: 0.905562, Top1S: 77.872513, Top1T: 77.913116Best acc: 77.913116 +Train:epoch: 109, loss@min: 0.949279, loss@max: 1.365276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.916302, LT: 0.905417, Top1S: 77.872513, Top1T: 77.913116 +Train:epoch: 110, loss@min: 0.950435, loss@max: 1.365681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.916047, LT: 0.905206, Top1S: 77.953720, Top1T: 77.913116Best acc: 77.953720 +Train:epoch: 111, loss@min: 0.950175, loss@max: 1.368290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.915814, LT: 0.905052, Top1S: 77.953720, Top1T: 77.913116 +Train:epoch: 112, loss@min: 0.950588, loss@max: 1.369141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.915596, LT: 0.904939, Top1S: 77.953720, Top1T: 77.953720 +Train:epoch: 113, loss@min: 0.959791, loss@max: 1.375538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.915753, LT: 0.905227, Top1S: 77.994316, Top1T: 77.953720Best acc: 77.994316 +Train:epoch: 114, loss@min: 0.949772, loss@max: 1.367711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.915776, LT: 0.905441, Top1S: 77.994316, Top1T: 77.953720 +Train:epoch: 115, loss@min: 0.948647, loss@max: 1.366905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.915754, LT: 0.905621, Top1S: 78.034920, Top1T: 77.953720Best acc: 78.034920 +Train:epoch: 116, loss@min: 0.956583, loss@max: 1.372700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.915655, LT: 0.905699, Top1S: 78.034920, Top1T: 77.953720 +Train:epoch: 117, loss@min: 0.952454, loss@max: 1.368814, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Tue Sep 5 21:36:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.482814, loss@max: 1.157845, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 1.576116, loss@max: 1.103147, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 3, loss@min: 1.349741, loss@max: 1.190300, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 4, loss@min: 1.169511, loss@max: 1.255649, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 5, loss@min: 1.514752, loss@max: 1.429724, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 6, loss@min: 1.147801, loss@max: 1.399083, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 7, loss@min: 0.939655, loss@max: 1.376553, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 8, loss@min: 0.933321, loss@max: 1.388147, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 9, loss@min: 0.800175, loss@max: 1.350158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.820319, loss@max: 1.337530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.813108, loss@max: 1.314918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.847278, loss@max: 1.298102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.925198, loss@max: 1.280510, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 14, loss@min: 0.907919, loss@max: 1.254732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.992845, loss@max: 1.248527, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 16, loss@min: 0.926132, loss@max: 1.214971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.943838, loss@max: 1.200986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.006487, loss@max: 1.226777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.964159, loss@max: 1.194904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.009509, loss@max: 1.235168, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 21, loss@min: 0.957630, loss@max: 1.216583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.977842, loss@max: 1.237625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.056416, loss@max: 1.283275, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 24, loss@min: 0.931109, loss@max: 1.270253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.953420, loss@max: 1.280576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.944468, loss@max: 1.287154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.922583, loss@max: 1.297369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.920442, loss@max: 1.296837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.913215, loss@max: 1.302229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.921174, loss@max: 1.304062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.925503, loss@max: 1.308791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.925578, loss@max: 1.303509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.918078, loss@max: 1.319295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.926319, loss@max: 1.318232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.960664, loss@max: 1.330771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.931746, loss@max: 1.313780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.933038, loss@max: 1.321494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948989, loss@max: 1.327610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.936750, loss@max: 1.325473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.937038, loss@max: 1.324312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.935539, loss@max: 1.325359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957219, loss@max: 1.344278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944433, loss@max: 1.324165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.943103, loss@max: 1.327677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.940637, loss@max: 1.329652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.949528, loss@max: 1.327028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.947313, loss@max: 1.325762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946127, loss@max: 1.331466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938376, loss@max: 1.341194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939786, loss@max: 1.342828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.938219, loss@max: 1.345760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940452, loss@max: 1.341716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943707, loss@max: 1.340014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948208, loss@max: 1.337349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.947573, loss@max: 1.338296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.940708, loss@max: 1.349560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945309, loss@max: 1.349818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.939591, loss@max: 1.354519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.940318, loss@max: 1.351023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.944874, loss@max: 1.357754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.940387, loss@max: 1.355369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.990374, loss@max: 1.382477, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 63, loss@min: 0.945024, loss@max: 1.362131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.946509, loss@max: 1.360642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.948064, loss@max: 1.353848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945037, loss@max: 1.352989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.941496, loss@max: 1.354869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.945768, loss@max: 1.349524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950604, loss@max: 1.345194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.948466, loss@max: 1.348671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.950983, loss@max: 1.364108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943071, loss@max: 1.353843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943010, loss@max: 1.356205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.944685, loss@max: 1.353898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.945484, loss@max: 1.352763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.942070, loss@max: 1.357008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.944098, loss@max: 1.354175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948279, loss@max: 1.358575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945598, loss@max: 1.354689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948595, loss@max: 1.349607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.944255, loss@max: 1.358011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947077, loss@max: 1.353970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.947734, loss@max: 1.353709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.949205, loss@max: 1.353629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.941766, loss@max: 1.359166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.954752, loss@max: 1.365345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.945391, loss@max: 1.357710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.939871, loss@max: 1.360461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944109, loss@max: 1.357202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.942007, loss@max: 1.359006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.940034, loss@max: 1.362642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.949966, loss@max: 1.356837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947068, loss@max: 1.355553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.957896, loss@max: 1.357073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.946324, loss@max: 1.356278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.946385, loss@max: 1.357028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.946202, loss@max: 1.354304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.944460, loss@max: 1.356807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.944651, loss@max: 1.362029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943675, loss@max: 1.362086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.942000, loss@max: 1.359577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.941227, loss@max: 1.361567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.945424, loss@max: 1.355240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.946090, loss@max: 1.355797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.946846, loss@max: 1.354018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.944221, loss@max: 1.357595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.948896, loss@max: 1.353289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.947231, loss@max: 1.356575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.946107, loss@max: 1.357057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.943526, loss@max: 1.358273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.943814, loss@max: 1.361135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.939942, loss@max: 1.361445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.940256, loss@max: 1.363273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.947201, loss@max: 1.355925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.947554, loss@max: 1.358559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.944222, loss@max: 1.361036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.946539, loss@max: 1.357926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 1.116024, loss@max: 1.400368, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 119, loss@min: 0.949977, loss@max: 1.351821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.944766, loss@max: 1.356529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.946286, loss@max: 1.354137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.946357, loss@max: 1.355183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.946022, loss@max: 1.358082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.944855, loss@max: 1.355947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.946548, loss@max: 1.356883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.945881, loss@max: 1.356049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.942658, loss@max: 1.359189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.942294, loss@max: 1.358764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.944276, loss@max: 1.357982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.949494, loss@max: 1.360364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.650014, LT: 0.660777, Top1S: 82.120468, Top1T: 81.902420Best acc: 82.120468 +Train:epoch: 131, loss@min: 0.947931, loss@max: 1.354095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.649987, LT: 0.660751, Top1S: 82.120468, Top1T: 81.902420 +Train:epoch: 132, loss@min: 0.946525, loss@max: 1.354570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.649960, LT: 0.660728, Top1S: 82.120468, Top1T: 81.875168 +Train:epoch: 133, loss@min: 0.950033, loss@max: 1.359366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.649950, LT: 0.660711, Top1S: 82.120468, Top1T: 81.875168 +Train:epoch: 134, loss@min: 0.945320, loss@max: 1.356620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.649950, LT: 0.660712, Top1S: 82.147720, Top1T: 81.875168Best acc: 82.147720 +Train:epoch: 135, loss@min: 0.947107, loss@max: 1.354209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.649972, LT: 0.660723, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 136, loss@min: 0.941374, loss@max: 1.360191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.649986, LT: 0.660734, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 137, loss@min: 0.945676, loss@max: 1.355217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.650001, LT: 0.660744, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 138, loss@min: 0.944306, loss@max: 1.359805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.649993, LT: 0.660729, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 139, loss@min: 0.946967, loss@max: 1.358513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.649975, LT: 0.660699, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 140, loss@min: 0.946726, loss@max: 1.354616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.649967, LT: 0.660675, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 141, loss@min: 0.942616, loss@max: 1.359898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.649961, LT: 0.660653, Top1S: 82.147720, Top1T: 81.875168 +Train:epoch: 142, loss@min: 0.945356, loss@max: 1.356864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.649953, LT: 0.660638, Top1S: 82.174980, Top1T: 81.875168Best acc: 82.174980 +Train:epoch: 143, loss@min: 0.946726, loss@max: 1.355958, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Tue Sep 5 21:49:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.562997, loss@max: 1.630913, Top1S acc: 100.000000, Top1T acc: 57.142857 +Train:epoch: 2, loss@min: 3.895817, loss@max: 1.596776, Top1S acc: 100.000000, Top1T acc: 56.632652 +Train:epoch: 3, loss@min: 3.251700, loss@max: 1.553385, Top1S acc: 100.000000, Top1T acc: 68.367348 +Train:epoch: 4, loss@min: 3.081671, loss@max: 1.619865, Top1S acc: 100.000000, Top1T acc: 64.795921 +Train:epoch: 5, loss@min: 2.631318, loss@max: 1.596859, Top1S acc: 100.000000, Top1T acc: 72.959183 +Train:epoch: 6, loss@min: 2.558262, loss@max: 1.652073, Top1S acc: 100.000000, Top1T acc: 76.020409 +Train:epoch: 7, loss@min: 2.270819, loss@max: 1.646234, Top1S acc: 100.000000, Top1T acc: 77.040817 +Train:epoch: 8, loss@min: 2.096223, loss@max: 1.659042, Top1S acc: 100.000000, Top1T acc: 82.653061 +Train:epoch: 9, loss@min: 2.031666, loss@max: 1.687299, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 10, loss@min: 1.802443, loss@max: 1.657898, Top1S acc: 100.000000, Top1T acc: 86.224487 +Train:epoch: 11, loss@min: 1.621714, loss@max: 1.637635, Top1S acc: 100.000000, Top1T acc: 90.816322 +Train:epoch: 12, loss@min: 1.859446, loss@max: 1.700083, Top1S acc: 100.000000, Top1T acc: 90.306122 +Train:epoch: 13, loss@min: 1.419407, loss@max: 1.591114, Top1S acc: 100.000000, Top1T acc: 91.836731 +Train:epoch: 14, loss@min: 1.349274, loss@max: 1.569374, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 15, loss@min: 1.389535, loss@max: 1.564384, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 16, loss@min: 1.420692, loss@max: 1.573034, Top1S acc: 100.000000, Top1T acc: 91.326530 +Train:epoch: 17, loss@min: 1.229900, loss@max: 1.507692, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 18, loss@min: 1.305749, loss@max: 1.517063, Top1S acc: 100.000000, Top1T acc: 93.877548 +Train:epoch: 19, loss@min: 1.207678, loss@max: 1.470731, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 20, loss@min: 1.200852, loss@max: 1.460103, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 21, loss@min: 1.163679, loss@max: 1.443373, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 22, loss@min: 1.152783, loss@max: 1.413453, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 23, loss@min: 1.174767, loss@max: 1.419624, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 24, loss@min: 1.184444, loss@max: 1.416531, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 25, loss@min: 1.165190, loss@max: 1.406262, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 26, loss@min: 1.180807, loss@max: 1.418334, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 27, loss@min: 1.119554, loss@max: 1.385761, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 28, loss@min: 1.136606, loss@max: 1.389784, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 29, loss@min: 1.146618, loss@max: 1.405262, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 30, loss@min: 1.034957, loss@max: 1.360412, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 31, loss@min: 1.103752, loss@max: 1.393057, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 32, loss@min: 1.079519, loss@max: 1.390398, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 33, loss@min: 1.011656, loss@max: 1.360062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.030135, loss@max: 1.370528, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 35, loss@min: 1.045148, loss@max: 1.379304, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 36, loss@min: 1.015633, loss@max: 1.365209, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 37, loss@min: 1.066186, loss@max: 1.377923, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 38, loss@min: 1.030580, loss@max: 1.371366, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 39, loss@min: 1.028993, loss@max: 1.374954, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 40, loss@min: 1.061460, loss@max: 1.393147, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 41, loss@min: 0.986689, loss@max: 1.369088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.015712, loss@max: 1.391147, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 43, loss@min: 0.984502, loss@max: 1.382010, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 44, loss@min: 0.973804, loss@max: 1.371697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.014693, loss@max: 1.390273, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 46, loss@min: 0.955451, loss@max: 1.366118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.982520, loss@max: 1.385998, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 48, loss@min: 0.978573, loss@max: 1.388722, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 49, loss@min: 1.023333, loss@max: 1.401843, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 50, loss@min: 0.978907, loss@max: 1.377954, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 51, loss@min: 0.990342, loss@max: 1.388327, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 52, loss@min: 0.975137, loss@max: 1.384532, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 53, loss@min: 1.041185, loss@max: 1.400427, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 54, loss@min: 0.978297, loss@max: 1.374803, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 55, loss@min: 0.980621, loss@max: 1.386075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.038642, loss@max: 1.400707, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 57, loss@min: 0.971059, loss@max: 1.380038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.973824, loss@max: 1.380356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.987532, loss@max: 1.378066, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 60, loss@min: 0.983526, loss@max: 1.380051, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 61, loss@min: 0.975407, loss@max: 1.379972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964659, loss@max: 1.370592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.984374, loss@max: 1.389279, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 64, loss@min: 0.964799, loss@max: 1.369681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.960602, loss@max: 1.371876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.961871, loss@max: 1.375255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.970826, loss@max: 1.382806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.960628, loss@max: 1.370603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.960039, loss@max: 1.374802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.963931, loss@max: 1.371590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.963143, loss@max: 1.373235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.978360, loss@max: 1.385483, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 73, loss@min: 0.960790, loss@max: 1.375293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.971466, loss@max: 1.376374, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 75, loss@min: 0.966430, loss@max: 1.376071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.959582, loss@max: 1.374122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.970284, loss@max: 1.380969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.985223, loss@max: 1.387395, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 79, loss@min: 0.959631, loss@max: 1.373435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967178, loss@max: 1.382310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.981192, loss@max: 1.385844, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 82, loss@min: 0.960945, loss@max: 1.375693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.952691, loss@max: 1.369088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.963723, loss@max: 1.378422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.963019, loss@max: 1.378958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.973872, loss@max: 1.380702, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 87, loss@min: 0.969227, loss@max: 1.375401, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 88, loss@min: 0.954319, loss@max: 1.366186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.960600, loss@max: 1.374790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.954649, loss@max: 1.370564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.954485, loss@max: 1.370550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.959284, loss@max: 1.377156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.967170, loss@max: 1.381469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.962827, loss@max: 1.382044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.959517, loss@max: 1.371315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.961788, loss@max: 1.375466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.966779, loss@max: 1.380736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.962106, loss@max: 1.375006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.953319, loss@max: 1.368413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.964980, loss@max: 1.376423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.615198, LT: 1.613880, Top1S: 58.239029, Top1T: 58.176846Best acc: 58.239029 +Train:epoch: 101, loss@min: 0.964356, loss@max: 1.373791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.615370, LT: 1.614188, Top1S: 58.251465, Top1T: 58.189281Best acc: 58.251465 +Train:epoch: 102, loss@min: 0.956877, loss@max: 1.370579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.615477, LT: 1.614476, Top1S: 58.226593, Top1T: 58.127102 +Train:epoch: 103, loss@min: 0.964761, loss@max: 1.379052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.615460, LT: 1.614637, Top1S: 58.301208, Top1T: 58.114666Best acc: 58.301208 +Train:epoch: 104, loss@min: 0.960771, loss@max: 1.374647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.615374, LT: 1.614727, Top1S: 58.350952, Top1T: 58.102230Best acc: 58.350952 +Train:epoch: 105, loss@min: 0.955244, loss@max: 1.372407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.615361, LT: 1.614796, Top1S: 58.438007, Top1T: 58.114666Best acc: 58.438007 +Train:epoch: 106, loss@min: 0.982846, loss@max: 1.381470, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 106, LS: 1.615649, LT: 1.615013, Top1S: 58.413136, Top1T: 58.139538 +Train:epoch: 107, loss@min: 0.956531, loss@max: 1.370036, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 75} + +------------------------------------------- +Tue Sep 5 22:16:04 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 75} + +------------------------------------------- +Tue Sep 5 22:17:30 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 75} + +------------------------------------------- +Tue Sep 5 22:18:48 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 75} + +------------------------------------------- +Tue Sep 5 22:24:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.834444, loss@max: 1.545592, Top1S acc: 99.218750, Top1T acc: 69.140625 +Train:epoch: 2, loss@min: 3.640831, loss@max: 1.659855, Top1S acc: 99.609375, Top1T acc: 68.359375 +Train:epoch: 3, loss@min: 2.770146, loss@max: 1.577216, Top1S acc: 100.000000, Top1T acc: 78.906250 +Train:epoch: 4, loss@min: 2.470965, loss@max: 1.561401, Top1S acc: 99.609375, Top1T acc: 82.421875 +Train:epoch: 5, loss@min: 2.145884, loss@max: 1.545715, Top1S acc: 100.000000, Top1T acc: 83.593750 +Train:epoch: 6, loss@min: 1.550127, loss@max: 1.434297, Top1S acc: 99.218750, Top1T acc: 91.796875 +Train:epoch: 7, loss@min: 1.440438, loss@max: 1.408421, Top1S acc: 99.609375, Top1T acc: 91.015625 +Train:epoch: 8, loss@min: 1.347917, loss@max: 1.387717, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 9, loss@min: 1.294495, loss@max: 1.364293, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 10, loss@min: 1.166026, loss@max: 1.318946, Top1S acc: 99.609375, Top1T acc: 97.265625 +Train:epoch: 11, loss@min: 1.180571, loss@max: 1.321516, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 0.976124, loss@max: 1.265479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.136045, loss@max: 1.319430, Top1S acc: 99.609375, Top1T acc: 96.484375 +Train:epoch: 14, loss@min: 1.084432, loss@max: 1.307225, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 15, loss@min: 1.065625, loss@max: 1.319011, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 16, loss@min: 1.052440, loss@max: 1.294327, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 17, loss@min: 1.057505, loss@max: 1.301675, Top1S acc: 99.218750, Top1T acc: 98.437500 +Train:epoch: 18, loss@min: 1.005406, loss@max: 1.301589, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 19, loss@min: 1.017244, loss@max: 1.297340, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 20, loss@min: 1.045813, loss@max: 1.323895, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 21, loss@min: 0.980618, loss@max: 1.307162, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.964280, loss@max: 1.302680, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.065048, loss@max: 1.328012, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 1.016564, loss@max: 1.330015, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 0.991072, loss@max: 1.329783, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.968986, loss@max: 1.318909, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.956265, loss@max: 1.315418, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.012719, loss@max: 1.335202, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.967792, loss@max: 1.330839, Top1S acc: 99.218750, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.953359, loss@max: 1.334198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.010089, loss@max: 1.348522, Top1S acc: 99.218750, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 1.030183, loss@max: 1.368818, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 0.958924, loss@max: 1.343569, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 0.965642, loss@max: 1.351052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.960198, loss@max: 1.340923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.958720, loss@max: 1.360077, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.967397, loss@max: 1.356084, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.953958, loss@max: 1.353309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.958304, loss@max: 1.369459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.989464, loss@max: 1.382047, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.961482, loss@max: 1.362871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.969697, loss@max: 1.362764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.986019, loss@max: 1.367500, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 0.954807, loss@max: 1.382178, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 45, loss@min: 0.967651, loss@max: 1.370043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.963678, loss@max: 1.364105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.953713, loss@max: 1.374487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.981298, loss@max: 1.389368, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 49, loss@min: 0.954500, loss@max: 1.381428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946995, loss@max: 1.382312, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.967519, loss@max: 1.368665, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 0.963110, loss@max: 1.371566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.969446, loss@max: 1.367211, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.970914, loss@max: 1.377560, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.042162, loss@max: 1.395594, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 0.974017, loss@max: 1.379339, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 57, loss@min: 0.968291, loss@max: 1.364040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953850, loss@max: 1.396156, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.968767, loss@max: 1.366641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.986214, loss@max: 1.370758, Top1S acc: 99.218750, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.944692, loss@max: 1.384827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.979331, loss@max: 1.400767, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.033078, loss@max: 1.401166, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.957591, loss@max: 1.384419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.964016, loss@max: 1.384930, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.965160, loss@max: 1.366323, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.965889, loss@max: 1.365209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.958484, loss@max: 1.371165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961534, loss@max: 1.387444, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.965893, loss@max: 1.376475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.958993, loss@max: 1.380547, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.965069, loss@max: 1.381306, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.967228, loss@max: 1.369442, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.947796, loss@max: 1.378857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.944600, loss@max: 1.375631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 2.164262, LT: 2.170830, Top1S: 59.417999, Top1T: 59.175999Best acc: 59.417999 +Train:epoch: 76, loss@min: 0.967347, loss@max: 1.377680, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 76, LS: 2.166414, LT: 2.171663, Top1S: 59.425999, Top1T: 59.167999Best acc: 59.425999 +Train:epoch: 77, loss@min: 0.958208, loss@max: 1.367867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 2.168140, LT: 2.172851, Top1S: 59.403999, Top1T: 59.146000 +Train:epoch: 78, loss@min: 0.955221, loss@max: 1.376535, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 78, LS: 2.169507, LT: 2.174541, Top1S: 59.431999, Top1T: 59.153999Best acc: 59.431999 +Train:epoch: 79, loss@min: 0.957603, loss@max: 1.371083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 2.170430, LT: 2.176281, Top1S: 59.407997, Top1T: 59.151997 +Train:epoch: 80, loss@min: 1.003707, loss@max: 1.376167, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 80, LS: 2.172113, LT: 2.178602, Top1S: 59.391998, Top1T: 59.135998 +Train:epoch: 81, loss@min: 0.945667, loss@max: 1.376655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 2.174588, LT: 2.180645, Top1S: 59.368000, Top1T: 59.095997 +Train:epoch: 82, loss@min: 0.962475, loss@max: 1.368240, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 2.176655, LT: 2.182521, Top1S: 59.341999, Top1T: 59.091999 +Train:epoch: 83, loss@min: 0.963551, loss@max: 1.366570, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 83, LS: 2.178473, LT: 2.183636, Top1S: 59.331997, Top1T: 59.076000 +Train:epoch: 84, loss@min: 0.950561, loss@max: 1.367654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 2.179896, LT: 2.184473, Top1S: 59.303997, Top1T: 59.079998 +Train:epoch: 85, loss@min: 0.945631, loss@max: 1.369799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 2.180110, LT: 2.185589, Top1S: 59.307999, Top1T: 59.077999 +Train:epoch: 86, loss@min: 0.971207, loss@max: 1.367791, Top1S acc: 99.218750, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Sep 6 10:31:45 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Sep 6 10:45:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.320734, loss@max: 1.568432, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.749749, loss@max: 1.555035, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.969921, loss@max: 1.464467, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.784136, loss@max: 1.518363, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.265692, loss@max: 1.458795, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 6, loss@min: 2.099785, loss@max: 1.498657, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.027158, loss@max: 1.538339, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.651404, loss@max: 1.493829, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.251561, loss@max: 1.431073, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.354497, loss@max: 1.500988, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.364456, loss@max: 1.517421, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.206107, loss@max: 1.502781, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.047016, loss@max: 1.446525, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.990655, loss@max: 1.426618, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.098027, loss@max: 1.431668, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.037753, loss@max: 1.404370, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.053219, loss@max: 1.364972, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.031330, loss@max: 1.365791, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.964428, loss@max: 1.322595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.050467, loss@max: 1.340977, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.968035, loss@max: 1.299845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.969807, loss@max: 1.285599, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.987121, loss@max: 1.294399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.041804, loss@max: 1.323446, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.960537, loss@max: 1.284327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.981288, loss@max: 1.302865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.007773, loss@max: 1.316495, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.010195, loss@max: 1.313542, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.033442, loss@max: 1.341837, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.962788, loss@max: 1.310111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.002137, loss@max: 1.330567, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.946447, loss@max: 1.307609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948902, loss@max: 1.313611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.965967, loss@max: 1.330036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.963720, loss@max: 1.331008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.981972, loss@max: 1.337561, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.960806, loss@max: 1.330804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.946098, loss@max: 1.332089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948730, loss@max: 1.338776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.936746, loss@max: 1.340374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.944385, loss@max: 1.343121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.961427, loss@max: 1.352064, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.952668, loss@max: 1.340367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.949220, loss@max: 1.350247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.995881, loss@max: 1.371070, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.945339, loss@max: 1.347070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.028569, loss@max: 1.394446, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.946180, loss@max: 1.348949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.943263, loss@max: 1.353473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946155, loss@max: 1.351457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.954582, loss@max: 1.359816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.944916, loss@max: 1.358772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946776, loss@max: 1.351260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951444, loss@max: 1.358750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.951017, loss@max: 1.348008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949672, loss@max: 1.350231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.946641, loss@max: 1.359513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.947517, loss@max: 1.355377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.967645, loss@max: 1.367440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952223, loss@max: 1.362728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.947639, loss@max: 1.355571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951046, loss@max: 1.355823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955523, loss@max: 1.367646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949428, loss@max: 1.360049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.950969, loss@max: 1.353979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.946736, loss@max: 1.361218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947923, loss@max: 1.363510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948874, loss@max: 1.357156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955669, loss@max: 1.360247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958055, loss@max: 1.375968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.951172, loss@max: 1.362121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.952947, loss@max: 1.360211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.957157, loss@max: 1.362099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.013120, loss@max: 1.375165, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.955928, loss@max: 1.365158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.954191, loss@max: 1.376844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963131, loss@max: 1.379860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945992, loss@max: 1.363933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.952813, loss@max: 1.376052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944096, loss@max: 1.366140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.440070, LT: 1.431770, Top1S: 66.825272, Top1T: 66.983871Best acc: 66.983871 +Train:epoch: 81, loss@min: 0.952422, loss@max: 1.366284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.439889, LT: 1.432069, Top1S: 66.851700, Top1T: 67.036743Best acc: 67.036743 +Train:epoch: 82, loss@min: 0.951573, loss@max: 1.363854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.439720, LT: 1.432209, Top1S: 66.904572, Top1T: 67.089607Best acc: 67.089607 +Train:epoch: 83, loss@min: 0.946539, loss@max: 1.360193, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.439799, LT: 1.432269, Top1S: 67.010307, Top1T: 67.063171 +Train:epoch: 84, loss@min: 0.956396, loss@max: 1.363248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.440039, LT: 1.432251, Top1S: 66.983871, Top1T: 67.063171 +Train:epoch: 85, loss@min: 0.950087, loss@max: 1.364158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.440490, LT: 1.432320, Top1S: 66.983871, Top1T: 67.089607 +Train:epoch: 86, loss@min: 0.980578, loss@max: 1.387173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.440682, LT: 1.432227, Top1S: 67.010307, Top1T: 67.116043Best acc: 67.116043 +Train:epoch: 87, loss@min: 0.949971, loss@max: 1.362785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.440967, LT: 1.432046, Top1S: 67.036743, Top1T: 67.089607 +Train:epoch: 88, loss@min: 0.949797, loss@max: 1.359302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.441203, LT: 1.431955, Top1S: 67.010307, Top1T: 67.116043 +Train:epoch: 89, loss@min: 0.952139, loss@max: 1.364650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.441285, LT: 1.431981, Top1S: 66.983871, Top1T: 67.036743 +Train:epoch: 90, loss@min: 1.017205, loss@max: 1.394830, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.441850, LT: 1.432510, Top1S: 66.957436, Top1T: 67.010307 +Train:epoch: 91, loss@min: 0.947052, loss@max: 1.358599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.442354, LT: 1.433045, Top1S: 66.957436, Top1T: 67.010307 +Train:epoch: 92, loss@min: 0.948910, loss@max: 1.363266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.442936, LT: 1.433551, Top1S: 66.957436, Top1T: 66.957436 +Train:epoch: 93, loss@min: 0.952545, loss@max: 1.369259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.443389, LT: 1.434034, Top1S: 66.957436, Top1T: 66.798836 +Train:epoch: 94, loss@min: 0.948767, loss@max: 1.366307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.443803, LT: 1.434669, Top1S: 66.931007, Top1T: 66.798836 +Train:epoch: 95, loss@min: 0.947847, loss@max: 1.362111, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Sep 6 11:00:56 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.798219, loss@max: 1.687795, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 2, loss@min: 4.532491, loss@max: 1.749769, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 4.002088, loss@max: 1.717183, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 4, loss@min: 3.915160, loss@max: 1.790140, Top1S acc: 100.000000, Top1T acc: 65.346535 +Train:epoch: 5, loss@min: 3.223711, loss@max: 1.690302, Top1S acc: 100.000000, Top1T acc: 69.306931 +Train:epoch: 6, loss@min: 3.400974, loss@max: 1.805339, Top1S acc: 100.000000, Top1T acc: 65.346535 +Train:epoch: 7, loss@min: 3.310251, loss@max: 1.845157, Top1S acc: 100.000000, Top1T acc: 74.257423 +Train:epoch: 8, loss@min: 3.020017, loss@max: 1.818747, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 9, loss@min: 2.645748, loss@max: 1.775839, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 10, loss@min: 2.754642, loss@max: 1.841897, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 11, loss@min: 2.583296, loss@max: 1.827306, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 12, loss@min: 2.770954, loss@max: 1.911694, Top1S acc: 100.000000, Top1T acc: 74.257423 +Train:epoch: 13, loss@min: 2.533853, loss@max: 1.852725, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 14, loss@min: 2.236273, loss@max: 1.809690, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 15, loss@min: 2.226032, loss@max: 1.799814, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 16, loss@min: 2.132767, loss@max: 1.776555, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 17, loss@min: 1.903701, loss@max: 1.694604, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 18, loss@min: 1.986749, loss@max: 1.730953, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 19, loss@min: 1.866953, loss@max: 1.699794, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 20, loss@min: 2.063991, loss@max: 1.746661, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 21, loss@min: 1.602886, loss@max: 1.623741, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 22, loss@min: 1.663637, loss@max: 1.626316, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 23, loss@min: 1.757914, loss@max: 1.667133, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 24, loss@min: 1.772774, loss@max: 1.671966, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 25, loss@min: 1.468326, loss@max: 1.568416, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 26, loss@min: 1.580012, loss@max: 1.615414, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 27, loss@min: 1.534968, loss@max: 1.603287, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 28, loss@min: 1.471103, loss@max: 1.598061, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 29, loss@min: 1.692358, loss@max: 1.645010, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 30, loss@min: 1.348473, loss@max: 1.553105, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 31, loss@min: 1.568281, loss@max: 1.626486, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 32, loss@min: 1.245368, loss@max: 1.505584, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 33, loss@min: 1.320220, loss@max: 1.548700, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 34, loss@min: 1.321035, loss@max: 1.551138, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 35, loss@min: 1.356385, loss@max: 1.542426, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 36, loss@min: 1.294832, loss@max: 1.552446, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 37, loss@min: 1.257490, loss@max: 1.532089, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 38, loss@min: 1.216085, loss@max: 1.532850, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 39, loss@min: 1.179205, loss@max: 1.513861, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 40, loss@min: 1.149604, loss@max: 1.510840, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 41, loss@min: 1.195705, loss@max: 1.516933, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 42, loss@min: 1.182598, loss@max: 1.519592, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 43, loss@min: 1.110304, loss@max: 1.465320, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 44, loss@min: 1.299788, loss@max: 1.545879, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 45, loss@min: 1.172464, loss@max: 1.508835, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 46, loss@min: 1.156224, loss@max: 1.497332, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 47, loss@min: 1.304009, loss@max: 1.565534, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 48, loss@min: 1.100269, loss@max: 1.479253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.094153, loss@max: 1.485893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.062724, loss@max: 1.469800, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 51, loss@min: 1.134165, loss@max: 1.495318, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 52, loss@min: 1.192131, loss@max: 1.554127, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 53, loss@min: 1.113115, loss@max: 1.494725, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 54, loss@min: 1.142064, loss@max: 1.497241, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 55, loss@min: 1.027250, loss@max: 1.441802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.081136, loss@max: 1.460063, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 57, loss@min: 1.021669, loss@max: 1.451115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.047391, loss@max: 1.469903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.082057, loss@max: 1.477173, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 60, loss@min: 1.111534, loss@max: 1.491042, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.051711, loss@max: 1.458182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.030962, loss@max: 1.444032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.109831, loss@max: 1.482202, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 64, loss@min: 1.063872, loss@max: 1.473702, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 65, loss@min: 1.024730, loss@max: 1.434490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.027748, loss@max: 1.449872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.034635, loss@max: 1.470052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.020236, loss@max: 1.446793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.023239, loss@max: 1.441852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.134744, loss@max: 1.522460, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 71, loss@min: 1.062575, loss@max: 1.465823, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.017512, loss@max: 1.440548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.045352, loss@max: 1.435163, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 74, loss@min: 1.179495, loss@max: 1.471842, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 1.119023, loss@max: 1.497904, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 76, loss@min: 1.090341, loss@max: 1.500778, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 1.101831, loss@max: 1.473886, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 78, loss@min: 1.005274, loss@max: 1.437588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.054410, loss@max: 1.469433, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 80, loss@min: 1.011644, loss@max: 1.452298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.342962, LT: 1.340794, Top1S: 66.243721, Top1T: 66.137985Best acc: 66.243721 +Train:epoch: 81, loss@min: 1.015487, loss@max: 1.433156, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 81, LS: 1.342521, LT: 1.340543, Top1S: 66.270149, Top1T: 66.164413Best acc: 66.270149 +Train:epoch: 82, loss@min: 1.004713, loss@max: 1.435914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.342113, LT: 1.340181, Top1S: 66.270149, Top1T: 66.270149 +Train:epoch: 83, loss@min: 0.983043, loss@max: 1.416092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.341891, LT: 1.339884, Top1S: 66.243721, Top1T: 66.217285 +Train:epoch: 84, loss@min: 1.055276, loss@max: 1.468238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.341763, LT: 1.339513, Top1S: 66.243721, Top1T: 66.243721 +Train:epoch: 85, loss@min: 1.001786, loss@max: 1.437221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.341630, LT: 1.339257, Top1S: 66.243721, Top1T: 66.243721 +Train:epoch: 86, loss@min: 1.135619, loss@max: 1.491598, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 86, LS: 1.341308, LT: 1.338955, Top1S: 66.243721, Top1T: 66.217285 +Train:epoch: 87, loss@min: 1.034722, loss@max: 1.443690, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 87, LS: 1.341169, LT: 1.338743, Top1S: 66.349457, Top1T: 66.243721Best acc: 66.349457 +Train:epoch: 88, loss@min: 1.010733, loss@max: 1.439571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.341054, LT: 1.338584, Top1S: 66.375893, Top1T: 66.270149Best acc: 66.375893 +Train:epoch: 89, loss@min: 1.016715, loss@max: 1.436120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.340781, LT: 1.338446, Top1S: 66.375893, Top1T: 66.323021 +Train:epoch: 90, loss@min: 1.073534, loss@max: 1.464785, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.340530, LT: 1.338282, Top1S: 66.428757, Top1T: 66.375893Best acc: 66.428757 +Train:epoch: 91, loss@min: 1.008886, loss@max: 1.417645, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 91, LS: 1.340268, LT: 1.338103, Top1S: 66.402321, Top1T: 66.402321 +Train:epoch: 92, loss@min: 1.008157, loss@max: 1.428762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.340138, LT: 1.337950, Top1S: 66.375893, Top1T: 66.375893 +Train:epoch: 93, loss@min: 1.011597, loss@max: 1.445184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.340061, LT: 1.337871, Top1S: 66.402321, Top1T: 66.455193Best acc: 66.455193 +Train:epoch: 94, loss@min: 1.006535, loss@max: 1.423452, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 94, LS: 1.340031, LT: 1.337856, Top1S: 66.428757, Top1T: 66.481628Best acc: 66.481628 +Train:epoch: 95, loss@min: 1.023955, loss@max: 1.438040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.340024, LT: 1.337854, Top1S: 66.455193, Top1T: 66.508057Best acc: 66.508057 +Train:epoch: 96, loss@min: 1.074591, loss@max: 1.462590, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 96, LS: 1.340032, LT: 1.337842, Top1S: 66.428757, Top1T: 66.508057 +Train:epoch: 97, loss@min: 1.021659, loss@max: 1.447857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.340001, LT: 1.337732, Top1S: 66.428757, Top1T: 66.508057 +Train:epoch: 98, loss@min: 1.052972, loss@max: 1.450183, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 98, LS: 1.339907, LT: 1.337610, Top1S: 66.481628, Top1T: 66.508057 +Train:epoch: 99, loss@min: 1.079434, loss@max: 1.466067, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 99, LS: 1.339852, LT: 1.337567, Top1S: 66.455193, Top1T: 66.560928Best acc: 66.560928 +Train:epoch: 100, loss@min: 1.034869, loss@max: 1.459063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.339857, LT: 1.337624, Top1S: 66.455193, Top1T: 66.560928 +Train:epoch: 101, loss@min: 0.984643, loss@max: 1.406042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.339887, LT: 1.337723, Top1S: 66.481628, Top1T: 66.534492 +Train:epoch: 102, loss@min: 1.009097, loss@max: 1.431709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.339865, LT: 1.337736, Top1S: 66.481628, Top1T: 66.534492 +Train:epoch: 103, loss@min: 1.008177, loss@max: 1.436909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.339754, LT: 1.337746, Top1S: 66.508057, Top1T: 66.508057 +Train:epoch: 104, loss@min: 1.035572, loss@max: 1.436112, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 104, LS: 1.339619, LT: 1.337695, Top1S: 66.508057, Top1T: 66.534492 +Train:epoch: 105, loss@min: 1.029394, loss@max: 1.443253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.339521, LT: 1.337628, Top1S: 66.560928, Top1T: 66.534492 +Train:epoch: 106, loss@min: 1.079241, loss@max: 1.454802, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 106, LS: 1.339420, LT: 1.337521, Top1S: 66.613792, Top1T: 66.508057Best acc: 66.613792 +Train:epoch: 107, loss@min: 0.999865, loss@max: 1.437623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.339318, LT: 1.337402, Top1S: 66.613792, Top1T: 66.508057 +Train:epoch: 108, loss@min: 0.986811, loss@max: 1.416163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.339265, LT: 1.337285, Top1S: 66.613792, Top1T: 66.534492 +Train:epoch: 109, loss@min: 0.989701, loss@max: 1.418107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.339272, LT: 1.337168, Top1S: 66.613792, Top1T: 66.534492 +Train:epoch: 110, loss@min: 0.991679, loss@max: 1.423043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.339270, LT: 1.337046, Top1S: 66.613792, Top1T: 66.560928 +Train:epoch: 111, loss@min: 0.982795, loss@max: 1.410463, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Sep 6 11:27:06 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.909965, loss@max: 1.718257, Top1S acc: 100.000000, Top1T acc: 54.081631 +Train:epoch: 2, loss@min: 4.493910, loss@max: 1.744105, Top1S acc: 100.000000, Top1T acc: 53.571426 +Train:epoch: 3, loss@min: 3.806770, loss@max: 1.687201, Top1S acc: 100.000000, Top1T acc: 62.755100 +Train:epoch: 4, loss@min: 3.885260, loss@max: 1.807863, Top1S acc: 100.000000, Top1T acc: 55.612244 +Train:epoch: 5, loss@min: 3.412911, loss@max: 1.777716, Top1S acc: 100.000000, Top1T acc: 66.836731 +Train:epoch: 6, loss@min: 3.295669, loss@max: 1.813953, Top1S acc: 100.000000, Top1T acc: 70.918365 +Train:epoch: 7, loss@min: 3.069772, loss@max: 1.819821, Top1S acc: 100.000000, Top1T acc: 68.367348 +Train:epoch: 8, loss@min: 2.822224, loss@max: 1.815780, Top1S acc: 100.000000, Top1T acc: 70.918365 +Train:epoch: 9, loss@min: 2.724588, loss@max: 1.838674, Top1S acc: 100.000000, Top1T acc: 76.020409 +Train:epoch: 10, loss@min: 2.496936, loss@max: 1.811381, Top1S acc: 100.000000, Top1T acc: 76.530609 +Train:epoch: 11, loss@min: 2.484203, loss@max: 1.844698, Top1S acc: 100.000000, Top1T acc: 77.551010 +Train:epoch: 12, loss@min: 2.807650, loss@max: 1.933944, Top1S acc: 100.000000, Top1T acc: 78.571426 +Train:epoch: 13, loss@min: 2.127975, loss@max: 1.781126, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 14, loss@min: 1.978020, loss@max: 1.759951, Top1S acc: 100.000000, Top1T acc: 84.183670 +Train:epoch: 15, loss@min: 2.009364, loss@max: 1.756740, Top1S acc: 100.000000, Top1T acc: 87.755096 +Train:epoch: 16, loss@min: 2.066344, loss@max: 1.789173, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 17, loss@min: 1.913835, loss@max: 1.746803, Top1S acc: 100.000000, Top1T acc: 85.204079 +Train:epoch: 18, loss@min: 1.996683, loss@max: 1.750060, Top1S acc: 100.000000, Top1T acc: 84.693878 +Train:epoch: 19, loss@min: 1.780271, loss@max: 1.694842, Top1S acc: 100.000000, Top1T acc: 88.265305 +Train:epoch: 20, loss@min: 1.901354, loss@max: 1.722437, Top1S acc: 100.000000, Top1T acc: 87.244896 +Train:epoch: 21, loss@min: 1.927727, loss@max: 1.738758, Top1S acc: 100.000000, Top1T acc: 87.755096 +Train:epoch: 22, loss@min: 1.781341, loss@max: 1.669269, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 23, loss@min: 1.754877, loss@max: 1.658752, Top1S acc: 100.000000, Top1T acc: 89.285713 +Train:epoch: 24, loss@min: 1.651377, loss@max: 1.646128, Top1S acc: 100.000000, Top1T acc: 88.265305 +Train:epoch: 25, loss@min: 1.651396, loss@max: 1.637953, Top1S acc: 100.000000, Top1T acc: 90.816322 +Train:epoch: 26, loss@min: 1.768571, loss@max: 1.659785, Top1S acc: 100.000000, Top1T acc: 89.795914 +Train:epoch: 27, loss@min: 1.507143, loss@max: 1.590413, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 28, loss@min: 1.500714, loss@max: 1.587826, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 29, loss@min: 1.604450, loss@max: 1.607271, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 30, loss@min: 1.342554, loss@max: 1.543002, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 31, loss@min: 1.571413, loss@max: 1.621434, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 32, loss@min: 1.480929, loss@max: 1.597218, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 33, loss@min: 1.260267, loss@max: 1.529891, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 34, loss@min: 1.329770, loss@max: 1.557637, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 35, loss@min: 1.326275, loss@max: 1.550728, Top1S acc: 100.000000, Top1T acc: 94.387756 +Train:epoch: 36, loss@min: 1.278995, loss@max: 1.528088, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 37, loss@min: 1.217028, loss@max: 1.500876, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 38, loss@min: 1.261366, loss@max: 1.519332, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 39, loss@min: 1.272066, loss@max: 1.528522, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 40, loss@min: 1.323808, loss@max: 1.548017, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 41, loss@min: 1.171468, loss@max: 1.511999, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 42, loss@min: 1.303130, loss@max: 1.545726, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 43, loss@min: 1.230469, loss@max: 1.539001, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 44, loss@min: 1.163152, loss@max: 1.490115, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 45, loss@min: 1.319921, loss@max: 1.538469, Top1S acc: 100.000000, Top1T acc: 94.897957 +Train:epoch: 46, loss@min: 1.118331, loss@max: 1.480378, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 47, loss@min: 1.158992, loss@max: 1.497906, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 48, loss@min: 1.201615, loss@max: 1.527800, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 49, loss@min: 1.254357, loss@max: 1.536732, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 50, loss@min: 1.195887, loss@max: 1.520737, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 51, loss@min: 1.138174, loss@max: 1.500608, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 52, loss@min: 1.146780, loss@max: 1.510870, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 53, loss@min: 1.243212, loss@max: 1.515909, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 54, loss@min: 1.056884, loss@max: 1.451658, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 55, loss@min: 1.162294, loss@max: 1.513506, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 56, loss@min: 1.242000, loss@max: 1.522170, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 57, loss@min: 1.072009, loss@max: 1.468442, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 58, loss@min: 1.136075, loss@max: 1.488886, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 59, loss@min: 1.119168, loss@max: 1.481771, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 60, loss@min: 1.115811, loss@max: 1.478546, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 61, loss@min: 1.160375, loss@max: 1.494856, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 62, loss@min: 1.067358, loss@max: 1.461365, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 63, loss@min: 1.108936, loss@max: 1.489289, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 64, loss@min: 1.116684, loss@max: 1.477907, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 65, loss@min: 1.094415, loss@max: 1.460293, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 66, loss@min: 1.051187, loss@max: 1.458171, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 67, loss@min: 1.080017, loss@max: 1.471232, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 68, loss@min: 1.099560, loss@max: 1.473396, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 69, loss@min: 1.059881, loss@max: 1.469332, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 70, loss@min: 1.065166, loss@max: 1.463036, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 71, loss@min: 1.047106, loss@max: 1.461199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.139118, loss@max: 1.482449, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 73, loss@min: 1.072827, loss@max: 1.465157, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 74, loss@min: 1.063507, loss@max: 1.462768, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 75, loss@min: 1.085002, loss@max: 1.472402, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 76, loss@min: 1.102761, loss@max: 1.455974, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 77, loss@min: 1.088887, loss@max: 1.467425, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 78, loss@min: 1.066468, loss@max: 1.445200, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 79, loss@min: 1.045882, loss@max: 1.456349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.081761, loss@max: 1.484861, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 81, loss@min: 1.111601, loss@max: 1.484837, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 82, loss@min: 1.072520, loss@max: 1.465909, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 83, loss@min: 1.062191, loss@max: 1.452977, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 84, loss@min: 1.037635, loss@max: 1.447706, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 85, loss@min: 1.119966, loss@max: 1.472059, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 86, loss@min: 1.070467, loss@max: 1.461796, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 87, loss@min: 1.055037, loss@max: 1.457398, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 88, loss@min: 1.016179, loss@max: 1.435164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.058963, loss@max: 1.456375, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 90, loss@min: 1.033953, loss@max: 1.450008, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 91, loss@min: 1.022912, loss@max: 1.434302, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 92, loss@min: 1.033608, loss@max: 1.449733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.051055, loss@max: 1.442518, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 94, loss@min: 1.085689, loss@max: 1.472645, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 95, loss@min: 1.053874, loss@max: 1.453687, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 96, loss@min: 1.066027, loss@max: 1.460249, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 97, loss@min: 1.064525, loss@max: 1.460165, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 98, loss@min: 1.057379, loss@max: 1.457100, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 99, loss@min: 0.996572, loss@max: 1.421523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.024241, loss@max: 1.444130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.486556, LT: 1.489948, Top1S: 58.699169, Top1T: 58.487751Best acc: 58.699169 +Train:epoch: 101, loss@min: 1.052332, loss@max: 1.454345, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 101, LS: 1.486609, LT: 1.490042, Top1S: 58.674297, Top1T: 58.462879 +Train:epoch: 102, loss@min: 1.047897, loss@max: 1.447064, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 102, LS: 1.486679, LT: 1.490218, Top1S: 58.686733, Top1T: 58.438007 +Train:epoch: 103, loss@min: 1.078648, loss@max: 1.470102, Top1S acc: 100.000000, Top1T acc: 98.469383 + Test:epoch: 103, LS: 1.486562, LT: 1.490233, Top1S: 58.711605, Top1T: 58.450443Best acc: 58.711605 +Train:epoch: 104, loss@min: 1.032814, loss@max: 1.447761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.486333, LT: 1.490172, Top1S: 58.724041, Top1T: 58.450443Best acc: 58.724041 +Train:epoch: 105, loss@min: 1.028418, loss@max: 1.441389, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 105, LS: 1.486145, LT: 1.490102, Top1S: 58.761349, Top1T: 58.438007Best acc: 58.761349 +Train:epoch: 106, loss@min: 1.100256, loss@max: 1.459153, Top1S acc: 100.000000, Top1T acc: 97.959183 + Test:epoch: 106, LS: 1.486049, LT: 1.490020, Top1S: 58.761349, Top1T: 58.475315 +Train:epoch: 107, loss@min: 1.044743, loss@max: 1.446658, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 107, LS: 1.485964, LT: 1.489965, Top1S: 58.773788, Top1T: 58.487751Best acc: 58.773788 +Train:epoch: 108, loss@min: 1.004398, loss@max: 1.428261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.485916, LT: 1.489915, Top1S: 58.748913, Top1T: 58.500191 +Train:epoch: 109, loss@min: 1.102982, loss@max: 1.462408, Top1S acc: 100.000000, Top1T acc: 97.448975 + Test:epoch: 109, LS: 1.485819, LT: 1.489800, Top1S: 58.786224, Top1T: 58.500191Best acc: 58.786224 +Train:epoch: 110, loss@min: 1.015863, loss@max: 1.435521, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 110, LS: 1.485758, LT: 1.489696, Top1S: 58.761349, Top1T: 58.549934 +Train:epoch: 111, loss@min: 1.053848, loss@max: 1.444374, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 111, LS: 1.485761, LT: 1.489652, Top1S: 58.786224, Top1T: 58.500191 +Train:epoch: 112, loss@min: 1.008510, loss@max: 1.426931, Top1S acc: 100.000000, Top1T acc: 99.489792{"dataset_dir": "E:\\\\", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Sep 6 12:02:46 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Sep 6 12:03:36 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.253758, loss@max: 1.652181, Top1S acc: 99.609375, Top1T acc: 66.406250 +Train:epoch: 2, loss@min: 4.303731, loss@max: 1.826435, Top1S acc: 99.609375, Top1T acc: 65.234375 +Train:epoch: 3, loss@min: 3.569591, loss@max: 1.765522, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 3.411422, loss@max: 1.775854, Top1S acc: 99.609375, Top1T acc: 75.390625 +Train:epoch: 5, loss@min: 3.015101, loss@max: 1.741138, Top1S acc: 100.000000, Top1T acc: 76.562500 +Train:epoch: 6, loss@min: 2.259758, loss@max: 1.592092, Top1S acc: 99.218750, Top1T acc: 81.640625 +Train:epoch: 7, loss@min: 2.431504, loss@max: 1.643426, Top1S acc: 99.609375, Top1T acc: 81.250000 +Train:epoch: 8, loss@min: 2.040146, loss@max: 1.553681, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 9, loss@min: 1.905527, loss@max: 1.527098, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 10, loss@min: 1.670205, loss@max: 1.457309, Top1S acc: 99.609375, Top1T acc: 91.406250 +Train:epoch: 11, loss@min: 1.605531, loss@max: 1.456643, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 12, loss@min: 1.399576, loss@max: 1.422268, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 13, loss@min: 1.560069, loss@max: 1.461616, Top1S acc: 99.609375, Top1T acc: 91.796875 +Train:epoch: 14, loss@min: 1.378053, loss@max: 1.426444, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 15, loss@min: 1.388309, loss@max: 1.452985, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 16, loss@min: 1.425696, loss@max: 1.444170, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 17, loss@min: 1.354539, loss@max: 1.424817, Top1S acc: 99.218750, Top1T acc: 95.703125 +Train:epoch: 18, loss@min: 1.165583, loss@max: 1.374821, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 19, loss@min: 1.182706, loss@max: 1.380874, Top1S acc: 99.609375, Top1T acc: 97.656250 +Train:epoch: 20, loss@min: 1.241419, loss@max: 1.425330, Top1S acc: 99.609375, Top1T acc: 95.312500 +Train:epoch: 21, loss@min: 1.108118, loss@max: 1.372930, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.083216, loss@max: 1.370413, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.216072, loss@max: 1.422859, Top1S acc: 99.609375, Top1T acc: 97.265625 +Train:epoch: 24, loss@min: 1.149487, loss@max: 1.406803, Top1S acc: 99.609375, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.147796, loss@max: 1.421907, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.056716, loss@max: 1.378209, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.057104, loss@max: 1.382083, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.138433, loss@max: 1.421955, Top1S acc: 99.609375, Top1T acc: 98.046875 +Train:epoch: 29, loss@min: 1.092703, loss@max: 1.410158, Top1S acc: 99.218750, Top1T acc: 98.046875 +Train:epoch: 30, loss@min: 1.034025, loss@max: 1.390007, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.116351, loss@max: 1.414656, Top1S acc: 99.218750, Top1T acc: 98.046875 +Train:epoch: 32, loss@min: 1.147272, loss@max: 1.428805, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 33, loss@min: 1.066331, loss@max: 1.392607, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 1.042574, loss@max: 1.410792, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 35, loss@min: 1.033953, loss@max: 1.395966, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 1.022494, loss@max: 1.401448, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.020790, loss@max: 1.393026, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.012034, loss@max: 1.400327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.021306, loss@max: 1.401785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.051282, loss@max: 1.423362, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 41, loss@min: 0.995463, loss@max: 1.399537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.002409, loss@max: 1.398267, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 43, loss@min: 1.087278, loss@max: 1.402212, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 44, loss@min: 1.021213, loss@max: 1.414763, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.012009, loss@max: 1.417768, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.996276, loss@max: 1.394664, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.984423, loss@max: 1.381709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.068114, loss@max: 1.416874, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 0.978148, loss@max: 1.401549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.980857, loss@max: 1.396896, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.998603, loss@max: 1.389701, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 1.003884, loss@max: 1.401044, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 53, loss@min: 1.003276, loss@max: 1.387897, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.016516, loss@max: 1.407592, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.122864, loss@max: 1.432732, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 56, loss@min: 1.010437, loss@max: 1.403921, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 57, loss@min: 0.990463, loss@max: 1.385056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.999617, loss@max: 1.414541, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.993310, loss@max: 1.396706, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.999610, loss@max: 1.389809, Top1S acc: 99.218750, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.988688, loss@max: 1.403415, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.001645, loss@max: 1.411307, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.057938, loss@max: 1.417041, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.982166, loss@max: 1.394382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.999695, loss@max: 1.407562, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.974771, loss@max: 1.388441, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.979974, loss@max: 1.380686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.965039, loss@max: 1.382132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.001726, loss@max: 1.405588, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.989951, loss@max: 1.400372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.974256, loss@max: 1.390417, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.991754, loss@max: 1.400102, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.974893, loss@max: 1.384776, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.972363, loss@max: 1.385828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.958336, loss@max: 1.383221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.005784, loss@max: 1.409080, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 0.976843, loss@max: 1.391030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.967342, loss@max: 1.384285, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.966346, loss@max: 1.383740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.010811, loss@max: 1.391919, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 80, LS: 2.046694, LT: 2.056670, Top1S: 59.845997, Top1T: 59.604000Best acc: 59.845997 +Train:epoch: 81, loss@min: 0.964064, loss@max: 1.385157, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Sep 6 17:38:51 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Sep 6 17:39:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.516221, loss@max: 1.649893, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 2, loss@min: 4.208493, loss@max: 1.718434, Top1S acc: 100.000000, Top1T acc: 61.328125 +Train:epoch: 3, loss@min: 3.717754, loss@max: 1.696818, Top1S acc: 100.000000, Top1T acc: 65.234375 +Train:epoch: 4, loss@min: 3.202971, loss@max: 1.642124, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 5, loss@min: 3.018587, loss@max: 1.668734, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 6, loss@min: 3.001641, loss@max: 1.696618, Top1S acc: 100.000000, Top1T acc: 73.828125 +Train:epoch: 7, loss@min: 2.493983, loss@max: 1.632931, Top1S acc: 100.000000, Top1T acc: 76.953125 +Train:epoch: 8, loss@min: 2.452023, loss@max: 1.665822, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 9, loss@min: 2.056603, loss@max: 1.601431, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 10, loss@min: 1.764777, loss@max: 1.548911, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 11, loss@min: 1.795332, loss@max: 1.561855, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 12, loss@min: 1.835768, loss@max: 1.588625, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 13, loss@min: 1.681171, loss@max: 1.549759, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 14, loss@min: 1.708808, loss@max: 1.557590, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 15, loss@min: 1.457427, loss@max: 1.486479, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 16, loss@min: 1.460730, loss@max: 1.496698, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 17, loss@min: 1.566339, loss@max: 1.528277, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 18, loss@min: 1.321947, loss@max: 1.472849, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 19, loss@min: 1.261517, loss@max: 1.451324, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 20, loss@min: 1.185077, loss@max: 1.428529, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.222634, loss@max: 1.441133, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 22, loss@min: 1.181146, loss@max: 1.441415, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.187361, loss@max: 1.438113, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 24, loss@min: 1.159845, loss@max: 1.432935, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 25, loss@min: 1.175638, loss@max: 1.452074, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 26, loss@min: 1.126354, loss@max: 1.425829, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 27, loss@min: 1.103714, loss@max: 1.427247, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.088787, loss@max: 1.420416, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.118898, loss@max: 1.427246, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 30, loss@min: 1.068068, loss@max: 1.408992, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.102904, loss@max: 1.431591, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 1.066464, loss@max: 1.416396, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 33, loss@min: 1.031336, loss@max: 1.403018, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.054600, loss@max: 1.424551, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.025823, loss@max: 1.402157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.038214, loss@max: 1.400602, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.011322, loss@max: 1.402080, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.036339, loss@max: 1.403523, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.008690, loss@max: 1.408112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.016049, loss@max: 1.403686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.031336, loss@max: 1.407636, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.029523, loss@max: 1.415957, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.008503, loss@max: 1.401401, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 1.001454, loss@max: 1.407948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.006931, loss@max: 1.406600, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.990739, loss@max: 1.384722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.998640, loss@max: 1.398195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.005037, loss@max: 1.397398, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 0.997230, loss@max: 1.397235, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.002682, loss@max: 1.411645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.987146, loss@max: 1.402244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.981754, loss@max: 1.399052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.982868, loss@max: 1.393663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.982529, loss@max: 1.396091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.002095, loss@max: 1.410536, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 0.993114, loss@max: 1.410226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.974858, loss@max: 1.401690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.972066, loss@max: 1.392815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.988560, loss@max: 1.398847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.983849, loss@max: 1.401987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.980788, loss@max: 1.404083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.978631, loss@max: 1.397877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.035116, loss@max: 1.416619, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.000067, loss@max: 1.417982, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 65, loss@min: 0.976362, loss@max: 1.401686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.984166, loss@max: 1.402174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.984449, loss@max: 1.400918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.977906, loss@max: 1.390115, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 1.010373, loss@max: 1.403538, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.974577, loss@max: 1.395384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.966121, loss@max: 1.390219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.995805, loss@max: 1.409855, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.973830, loss@max: 1.393751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.972077, loss@max: 1.396831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.976521, loss@max: 1.397445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.972313, loss@max: 1.390539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.985542, loss@max: 1.395996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.980093, loss@max: 1.397207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.972600, loss@max: 1.391921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.975661, loss@max: 1.395591, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 81, loss@min: 0.974031, loss@max: 1.397722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.999849, loss@max: 1.408049, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 83, loss@min: 0.965929, loss@max: 1.390082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.977259, loss@max: 1.402337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.968142, loss@max: 1.392405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.968140, loss@max: 1.387152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.974321, loss@max: 1.400067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.978028, loss@max: 1.400536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.973744, loss@max: 1.395534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.001891, loss@max: 1.404071, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 91, loss@min: 0.978651, loss@max: 1.394285, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 92, loss@min: 0.973269, loss@max: 1.396791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.968506, loss@max: 1.391551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.970978, loss@max: 1.394801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.968892, loss@max: 1.394011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.962590, loss@max: 1.380396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.962915, loss@max: 1.385129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.983825, loss@max: 1.394248, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 99, loss@min: 0.977838, loss@max: 1.399127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.971183, loss@max: 1.396087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.586663, LT: 1.590113, Top1S: 62.735516, Top1T: 62.619644Best acc: 62.735516 +Train:epoch: 101, loss@min: 0.995224, loss@max: 1.407203, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 1.586599, LT: 1.590142, Top1S: 62.740551, Top1T: 62.629719Best acc: 62.740551 +Train:epoch: 102, loss@min: 0.977993, loss@max: 1.389075, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.586463, LT: 1.590122, Top1S: 62.735516, Top1T: 62.654911 +Train:epoch: 103, loss@min: 0.972010, loss@max: 1.393732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.586273, LT: 1.590111, Top1S: 62.735516, Top1T: 62.654911 +Train:epoch: 104, loss@min: 0.968869, loss@max: 1.385545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.586130, LT: 1.590106, Top1S: 62.775818, Top1T: 62.654911Best acc: 62.775818 +Train:epoch: 105, loss@min: 0.973196, loss@max: 1.395565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.586025, LT: 1.590051, Top1S: 62.755665, Top1T: 62.659946 +Train:epoch: 106, loss@min: 0.975561, loss@max: 1.394650, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 106, LS: 1.586027, LT: 1.589974, Top1S: 62.750626, Top1T: 62.644833 +Train:epoch: 107, loss@min: 0.962044, loss@max: 1.386054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.586047, LT: 1.589861, Top1S: 62.750626, Top1T: 62.629719 +Train:epoch: 108, loss@min: 0.970885, loss@max: 1.397204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.586076, LT: 1.589804, Top1S: 62.765739, Top1T: 62.614609 +Train:epoch: 109, loss@min: 0.962335, loss@max: 1.385568, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Sep 6 19:33:20 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.717257, loss@max: 1.217017, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 1.845338, loss@max: 1.169430, Top1S acc: 100.000000, Top1T acc: 86.486488 +Train:epoch: 3, loss@min: 1.727785, loss@max: 1.279057, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 4, loss@min: 1.678110, loss@max: 1.366150, Top1S acc: 100.000000, Top1T acc: 83.783783 +Train:epoch: 5, loss@min: 1.880562, loss@max: 1.501275, Top1S acc: 100.000000, Top1T acc: 83.783783 +Train:epoch: 6, loss@min: 1.524194, loss@max: 1.466895, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 7, loss@min: 1.269381, loss@max: 1.429162, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 8, loss@min: 1.492165, loss@max: 1.512256, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 9, loss@min: 1.302348, loss@max: 1.465017, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 10, loss@min: 1.177976, loss@max: 1.428369, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 11, loss@min: 0.965216, loss@max: 1.357023, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 12, loss@min: 0.959459, loss@max: 1.349241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.138725, loss@max: 1.360448, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 14, loss@min: 1.069292, loss@max: 1.342089, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 15, loss@min: 1.287028, loss@max: 1.371044, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 16, loss@min: 1.151968, loss@max: 1.333842, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 17, loss@min: 1.179447, loss@max: 1.307869, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 18, loss@min: 1.470101, loss@max: 1.402736, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 19, loss@min: 1.053718, loss@max: 1.273654, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 20, loss@min: 1.458632, loss@max: 1.409101, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 21, loss@min: 1.021523, loss@max: 1.300123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.159037, loss@max: 1.370869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.102792, loss@max: 1.357034, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 24, loss@min: 1.154581, loss@max: 1.362975, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 25, loss@min: 1.116950, loss@max: 1.357435, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 26, loss@min: 1.021618, loss@max: 1.330911, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 27, loss@min: 0.976100, loss@max: 1.338120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.051961, loss@max: 1.352873, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 29, loss@min: 0.973365, loss@max: 1.338962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.097473, loss@max: 1.379583, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 31, loss@min: 1.023571, loss@max: 1.369178, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 32, loss@min: 1.045225, loss@max: 1.360889, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 33, loss@min: 0.953976, loss@max: 1.348345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.977068, loss@max: 1.362220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.065370, loss@max: 1.377148, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 36, loss@min: 0.968782, loss@max: 1.335566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.999839, loss@max: 1.379673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.982135, loss@max: 1.356772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.065946, loss@max: 1.390230, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 40, loss@min: 0.962852, loss@max: 1.351606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.968035, loss@max: 1.356856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.099505, loss@max: 1.420884, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 43, loss@min: 0.985199, loss@max: 1.365419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.967237, loss@max: 1.364709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952873, loss@max: 1.353493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.060411, loss@max: 1.414357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.988760, loss@max: 1.369468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.172409, loss@max: 1.426015, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 49, loss@min: 0.982492, loss@max: 1.391346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.964727, loss@max: 1.377213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.108032, loss@max: 1.414438, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 52, loss@min: 0.961614, loss@max: 1.370926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.964330, loss@max: 1.373629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.966113, loss@max: 1.367283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.973644, loss@max: 1.367651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.144805, loss@max: 1.418249, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 57, loss@min: 0.969972, loss@max: 1.371726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.126850, loss@max: 1.422770, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 59, loss@min: 0.973486, loss@max: 1.378576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.972056, loss@max: 1.384212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.971748, loss@max: 1.386947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.082637, loss@max: 1.434485, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 63, loss@min: 1.093145, loss@max: 1.433638, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 64, loss@min: 0.975912, loss@max: 1.394371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.016474, loss@max: 1.404447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.994874, loss@max: 1.405783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.123552, loss@max: 1.419582, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 68, loss@min: 0.996983, loss@max: 1.398566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.958858, loss@max: 1.367289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.963410, loss@max: 1.376759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.988204, loss@max: 1.411853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954097, loss@max: 1.369072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.962216, loss@max: 1.385258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.983387, loss@max: 1.388230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.954663, loss@max: 1.371083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.969104, loss@max: 1.394760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.971635, loss@max: 1.384624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.966463, loss@max: 1.378582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956638, loss@max: 1.370612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.960211, loss@max: 1.367662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.995059, loss@max: 1.404788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.965720, loss@max: 1.371407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.990630, loss@max: 1.397374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.981045, loss@max: 1.381967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.107835, loss@max: 1.414454, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 86, loss@min: 0.996760, loss@max: 1.401334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.970344, loss@max: 1.381650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950878, loss@max: 1.373872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.959732, loss@max: 1.378719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.989478, loss@max: 1.399050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.961730, loss@max: 1.397009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.978153, loss@max: 1.389986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.966469, loss@max: 1.380981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.032671, loss@max: 1.394780, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 95, loss@min: 0.955126, loss@max: 1.372190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.956213, loss@max: 1.369224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.956355, loss@max: 1.365369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.959145, loss@max: 1.373398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.979761, loss@max: 1.392524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.975670, loss@max: 1.392257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.949071, loss@max: 1.369114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.098245, loss@max: 1.424384, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 103, loss@min: 0.956647, loss@max: 1.370819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.964987, loss@max: 1.383865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.005811, loss@max: 1.396894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.964200, loss@max: 1.384612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.955196, loss@max: 1.369504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 1.004992, loss@max: 1.409158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.025756, loss@max: 1.404875, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 110, loss@min: 0.954400, loss@max: 1.374006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.999673, loss@max: 1.411555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.969981, loss@max: 1.386636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.963145, loss@max: 1.393745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 1.005314, loss@max: 1.401479, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 115, loss@min: 0.981130, loss@max: 1.398992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 1.007501, loss@max: 1.405202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.967267, loss@max: 1.385015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 1.147344, loss@max: 1.426477, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 119, loss@min: 0.962164, loss@max: 1.372501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.958258, loss@max: 1.374500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.953725, loss@max: 1.363061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.958570, loss@max: 1.372630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.997017, loss@max: 1.399110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.960549, loss@max: 1.373468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.981827, loss@max: 1.390619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 1.018573, loss@max: 1.391227, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 127, loss@min: 0.963911, loss@max: 1.380034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.967096, loss@max: 1.379866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 1.043427, loss@max: 1.408974, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 130, loss@min: 1.087359, loss@max: 1.430504, Top1S acc: 100.000000, Top1T acc: 97.297310 + Test:epoch: 130, LS: 0.530023, LT: 0.541320, Top1S: 84.546196, Top1T: 84.137367Best acc: 84.546196 +Train:epoch: 131, loss@min: 1.009864, loss@max: 1.399160, Top1S acc: 100.000000, Top1T acc: 97.297310 + Test:epoch: 131, LS: 0.530015, LT: 0.541326, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 132, loss@min: 0.964244, loss@max: 1.376359, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.529994, LT: 0.541329, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 133, loss@min: 0.976592, loss@max: 1.388835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.529978, LT: 0.541331, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 134, loss@min: 0.988071, loss@max: 1.397000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.529979, LT: 0.541345, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 135, loss@min: 0.963848, loss@max: 1.376196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.530018, LT: 0.541386, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 136, loss@min: 0.972606, loss@max: 1.387573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.530046, LT: 0.541420, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 137, loss@min: 0.954433, loss@max: 1.368248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.530071, LT: 0.541446, Top1S: 84.573448, Top1T: 84.137367Best acc: 84.573448 +Train:epoch: 138, loss@min: 0.960086, loss@max: 1.377656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.530074, LT: 0.541446, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 139, loss@min: 0.983029, loss@max: 1.399574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.530073, LT: 0.541439, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 140, loss@min: 0.954285, loss@max: 1.367760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.530075, LT: 0.541435, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 141, loss@min: 0.977952, loss@max: 1.393739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.530071, LT: 0.541424, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 142, loss@min: 0.958849, loss@max: 1.378341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.530063, LT: 0.541418, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 143, loss@min: 0.962317, loss@max: 1.378425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.530061, LT: 0.541415, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 144, loss@min: 0.959689, loss@max: 1.374965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.530056, LT: 0.541411, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 145, loss@min: 1.014801, loss@max: 1.412576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.530054, LT: 0.541410, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 146, loss@min: 0.987314, loss@max: 1.395022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.530053, LT: 0.541409, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 147, loss@min: 0.960395, loss@max: 1.372992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.530053, LT: 0.541410, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 148, loss@min: 0.971461, loss@max: 1.388074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.530053, LT: 0.541410, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 149, loss@min: 0.972576, loss@max: 1.387149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.530053, LT: 0.541410, Top1S: 84.573448, Top1T: 84.137367 +Train:epoch: 150, loss@min: 0.958760, loss@max: 1.374074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.530053, LT: 0.541410, Top1S: 84.573448, Top1T: 84.137367 +------------------------------------------- +Wed Sep 6 19:52:12 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Sep 6 20:02:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.491625, loss@max: 1.866446, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 5.126881, loss@max: 1.912871, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 3, loss@min: 4.665342, loss@max: 1.917176, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 4, loss@min: 4.481341, loss@max: 1.967915, Top1S acc: 100.000000, Top1T acc: 69.607849 +Train:epoch: 5, loss@min: 4.204895, loss@max: 1.979043, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 6, loss@min: 4.245858, loss@max: 2.049141, Top1S acc: 100.000000, Top1T acc: 68.627457 +Train:epoch: 7, loss@min: 3.831922, loss@max: 2.003021, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 8, loss@min: 3.745603, loss@max: 2.024538, Top1S acc: 100.000000, Top1T acc: 69.607849 +Train:epoch: 9, loss@min: 3.553228, loss@max: 2.006931, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 10, loss@min: 3.250563, loss@max: 1.950312, Top1S acc: 100.000000, Top1T acc: 75.490196 +Train:epoch: 11, loss@min: 3.134225, loss@max: 1.952232, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 12, loss@min: 3.339262, loss@max: 2.016987, Top1S acc: 100.000000, Top1T acc: 73.529411 +Train:epoch: 13, loss@min: 3.193073, loss@max: 1.984473, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 14, loss@min: 2.978656, loss@max: 1.952889, Top1S acc: 100.000000, Top1T acc: 73.529411 +Train:epoch: 15, loss@min: 2.702301, loss@max: 1.879668, Top1S acc: 100.000000, Top1T acc: 83.333336 +Train:epoch: 16, loss@min: 2.909807, loss@max: 1.940578, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 17, loss@min: 2.549788, loss@max: 1.852670, Top1S acc: 100.000000, Top1T acc: 82.352943 +Train:epoch: 18, loss@min: 2.597649, loss@max: 1.882377, Top1S acc: 100.000000, Top1T acc: 81.372551 +Train:epoch: 19, loss@min: 2.430089, loss@max: 1.846201, Top1S acc: 100.000000, Top1T acc: 79.411766 +Train:epoch: 20, loss@min: 2.389124, loss@max: 1.851998, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 21, loss@min: 2.359632, loss@max: 1.869186, Top1S acc: 100.000000, Top1T acc: 81.372551 +Train:epoch: 22, loss@min: 2.228780, loss@max: 1.847503, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 23, loss@min: 2.414373, loss@max: 1.880785, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 24, loss@min: 2.220038, loss@max: 1.849040, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 25, loss@min: 1.942295, loss@max: 1.789618, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 26, loss@min: 1.973949, loss@max: 1.798506, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 27, loss@min: 2.198498, loss@max: 1.863032, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 28, loss@min: 1.906587, loss@max: 1.767288, Top1S acc: 100.000000, Top1T acc: 88.235298 +Train:epoch: 29, loss@min: 1.851896, loss@max: 1.775912, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 30, loss@min: 1.750408, loss@max: 1.740921, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 31, loss@min: 1.694853, loss@max: 1.715211, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 32, loss@min: 1.862941, loss@max: 1.769158, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 33, loss@min: 1.811853, loss@max: 1.759633, Top1S acc: 100.000000, Top1T acc: 88.235298 +Train:epoch: 34, loss@min: 1.838144, loss@max: 1.718863, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 35, loss@min: 1.776930, loss@max: 1.737861, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 36, loss@min: 1.564694, loss@max: 1.690520, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 37, loss@min: 1.668241, loss@max: 1.702021, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 38, loss@min: 1.527996, loss@max: 1.672110, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 39, loss@min: 1.591758, loss@max: 1.664537, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 40, loss@min: 1.407647, loss@max: 1.625227, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 41, loss@min: 1.514490, loss@max: 1.660951, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 42, loss@min: 1.414618, loss@max: 1.626325, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 43, loss@min: 1.418756, loss@max: 1.652355, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 44, loss@min: 1.329472, loss@max: 1.609628, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 45, loss@min: 1.378735, loss@max: 1.624918, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 46, loss@min: 1.333830, loss@max: 1.600880, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 47, loss@min: 1.355948, loss@max: 1.618434, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 48, loss@min: 1.313802, loss@max: 1.587646, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 49, loss@min: 1.223317, loss@max: 1.553329, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 50, loss@min: 1.188979, loss@max: 1.565605, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 51, loss@min: 1.225133, loss@max: 1.571341, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 52, loss@min: 1.296654, loss@max: 1.618165, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 53, loss@min: 1.200723, loss@max: 1.577096, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 54, loss@min: 1.267377, loss@max: 1.577622, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 55, loss@min: 1.267526, loss@max: 1.577271, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 56, loss@min: 1.182623, loss@max: 1.560353, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 57, loss@min: 1.211199, loss@max: 1.562498, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 58, loss@min: 1.160067, loss@max: 1.532747, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 59, loss@min: 1.097039, loss@max: 1.510777, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 60, loss@min: 1.138783, loss@max: 1.540770, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 61, loss@min: 1.141111, loss@max: 1.551034, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 62, loss@min: 1.138422, loss@max: 1.546441, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 63, loss@min: 1.123410, loss@max: 1.527754, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 64, loss@min: 1.141857, loss@max: 1.536667, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 65, loss@min: 1.233948, loss@max: 1.566450, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 66, loss@min: 1.169461, loss@max: 1.536913, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 67, loss@min: 1.118771, loss@max: 1.538285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.093914, loss@max: 1.515219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.119628, loss@max: 1.520081, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 70, loss@min: 1.064949, loss@max: 1.500159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.092138, loss@max: 1.497180, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 72, loss@min: 1.130190, loss@max: 1.525845, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 73, loss@min: 1.079511, loss@max: 1.499086, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 74, loss@min: 1.048385, loss@max: 1.477948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.133367, loss@max: 1.537037, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 76, loss@min: 1.069011, loss@max: 1.479148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.077156, loss@max: 1.498514, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 78, loss@min: 1.083928, loss@max: 1.506603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.052204, loss@max: 1.468510, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 80, loss@min: 1.148120, loss@max: 1.537959, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 81, loss@min: 1.024363, loss@max: 1.453138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.088172, loss@max: 1.513076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.100269, loss@max: 1.499023, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 84, loss@min: 1.058343, loss@max: 1.481583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.057466, loss@max: 1.472032, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 86, loss@min: 1.065332, loss@max: 1.471135, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 87, loss@min: 1.043358, loss@max: 1.457293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.031258, loss@max: 1.459931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.056989, loss@max: 1.482876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.051552, loss@max: 1.473853, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 91, loss@min: 1.074656, loss@max: 1.495694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.054441, loss@max: 1.469410, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 93, loss@min: 1.043952, loss@max: 1.477277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.056757, loss@max: 1.486102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.027672, loss@max: 1.459244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.027261, loss@max: 1.443239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.010538, loss@max: 1.438028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.033515, loss@max: 1.466052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.029286, loss@max: 1.455738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.025344, loss@max: 1.460966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.911534, LT: 0.921163, Top1S: 75.355263, Top1T: 74.543243Best acc: 75.355263 +Train:epoch: 101, loss@min: 1.045188, loss@max: 1.468403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.910719, LT: 0.920268, Top1S: 75.436462, Top1T: 74.665047Best acc: 75.436462 +Train:epoch: 102, loss@min: 1.021504, loss@max: 1.450269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.909878, LT: 0.919431, Top1S: 75.477058, Top1T: 74.705643Best acc: 75.477058 +Train:epoch: 103, loss@min: 1.027303, loss@max: 1.455925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.909047, LT: 0.918636, Top1S: 75.598862, Top1T: 74.746246Best acc: 75.598862 +Train:epoch: 104, loss@min: 1.034354, loss@max: 1.457299, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 104, LS: 0.908254, LT: 0.917856, Top1S: 75.598862, Top1T: 74.786850 +Train:epoch: 105, loss@min: 1.048668, loss@max: 1.478498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.907571, LT: 0.917209, Top1S: 75.598862, Top1T: 74.827446 +Train:epoch: 106, loss@min: 1.038902, loss@max: 1.466330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.906786, LT: 0.916544, Top1S: 75.598862, Top1T: 74.868050 +Train:epoch: 107, loss@min: 1.002233, loss@max: 1.430993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.906066, LT: 0.915967, Top1S: 75.639465, Top1T: 74.868050Best acc: 75.639465 +Train:epoch: 108, loss@min: 1.028213, loss@max: 1.461268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.905436, LT: 0.915445, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 109, loss@min: 1.026488, loss@max: 1.452490, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 109, LS: 0.904894, LT: 0.914976, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 110, loss@min: 1.018564, loss@max: 1.447690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.904332, LT: 0.914502, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 111, loss@min: 1.045069, loss@max: 1.457563, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 111, LS: 0.903719, LT: 0.913974, Top1S: 75.639465, Top1T: 74.908653 +Train:epoch: 112, loss@min: 1.032055, loss@max: 1.468934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.903104, LT: 0.913427, Top1S: 75.680069, Top1T: 74.908653Best acc: 75.680069 +Train:epoch: 113, loss@min: 1.073076, loss@max: 1.471498, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 113, LS: 0.902573, LT: 0.912942, Top1S: 75.680069, Top1T: 74.949249 +Train:epoch: 114, loss@min: 1.023739, loss@max: 1.451892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.902046, LT: 0.912481, Top1S: 75.680069, Top1T: 74.908653 +Train:epoch: 115, loss@min: 1.036194, loss@max: 1.465503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.901602, LT: 0.912105, Top1S: 75.639465, Top1T: 74.908653 +Train:epoch: 116, loss@min: 1.061402, loss@max: 1.476366, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 116, LS: 0.901119, LT: 0.911638, Top1S: 75.639465, Top1T: 74.949249 +Train:epoch: 117, loss@min: 1.085482, loss@max: 1.484348, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 117, LS: 0.900615, LT: 0.911148, Top1S: 75.680069, Top1T: 74.949249 +Train:epoch: 118, loss@min: 1.033981, loss@max: 1.460737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.900149, LT: 0.910698, Top1S: 75.680069, Top1T: 75.071053 +Train:epoch: 119, loss@min: 1.043954, loss@max: 1.479922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.899729, LT: 0.910289, Top1S: 75.680069, Top1T: 75.071053 +Train:epoch: 120, loss@min: 1.043077, loss@max: 1.464124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.899411, LT: 0.909961, Top1S: 75.680069, Top1T: 75.071053 +Train:epoch: 121, loss@min: 1.028225, loss@max: 1.457861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.899108, LT: 0.909643, Top1S: 75.720665, Top1T: 75.071053Best acc: 75.720665 +Train:epoch: 122, loss@min: 1.008458, loss@max: 1.436116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.898848, LT: 0.909357, Top1S: 75.720665, Top1T: 75.071053 +Train:epoch: 123, loss@min: 1.016288, loss@max: 1.448645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.898582, LT: 0.909057, Top1S: 75.680069, Top1T: 75.030449 +Train:epoch: 124, loss@min: 1.028684, loss@max: 1.460585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.898334, LT: 0.908779, Top1S: 75.720665, Top1T: 75.071053 +Train:epoch: 125, loss@min: 1.034212, loss@max: 1.461079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.898111, LT: 0.908523, Top1S: 75.761269, Top1T: 75.071053Best acc: 75.761269 +Train:epoch: 126, loss@min: 1.124633, loss@max: 1.507690, Top1S acc: 100.000000, Top1T acc: 98.039223 + Test:epoch: 126, LS: 0.897921, LT: 0.908305, Top1S: 75.761269, Top1T: 75.071053 +Train:epoch: 127, loss@min: 1.017095, loss@max: 1.450097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.897730, LT: 0.908083, Top1S: 75.761269, Top1T: 75.071053 +Train:epoch: 128, loss@min: 1.019875, loss@max: 1.449055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.897549, LT: 0.907888, Top1S: 75.761269, Top1T: 75.071053 +Train:epoch: 129, loss@min: 1.036405, loss@max: 1.461850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.897392, LT: 0.907713, Top1S: 75.761269, Top1T: 75.071053 +Train:epoch: 130, loss@min: 1.022085, loss@max: 1.450767, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "food101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Sep 6 20:25:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.608471, loss@max: 1.454035, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 2, loss@min: 3.060406, loss@max: 1.466759, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 3, loss@min: 2.866947, loss@max: 1.527411, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 4, loss@min: 2.659998, loss@max: 1.538884, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 5, loss@min: 2.181782, loss@max: 1.466138, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 6, loss@min: 2.135146, loss@max: 1.506826, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 7, loss@min: 1.831919, loss@max: 1.470241, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 8, loss@min: 2.006794, loss@max: 1.547326, Top1S acc: 100.000000, Top1T acc: 88.118813 +Train:epoch: 9, loss@min: 1.692576, loss@max: 1.489513, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 10, loss@min: 1.525023, loss@max: 1.480994, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 11, loss@min: 1.349244, loss@max: 1.436028, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.396936, loss@max: 1.436778, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 13, loss@min: 1.473718, loss@max: 1.446950, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 14, loss@min: 1.501494, loss@max: 1.443338, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 15, loss@min: 1.393679, loss@max: 1.393045, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 16, loss@min: 1.490398, loss@max: 1.408913, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 17, loss@min: 1.266341, loss@max: 1.349823, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 18, loss@min: 1.400925, loss@max: 1.407320, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 19, loss@min: 1.386108, loss@max: 1.401332, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 20, loss@min: 1.290092, loss@max: 1.385821, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 21, loss@min: 1.229419, loss@max: 1.378677, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 22, loss@min: 1.174274, loss@max: 1.368537, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 23, loss@min: 1.173902, loss@max: 1.359857, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 24, loss@min: 1.317405, loss@max: 1.404844, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 25, loss@min: 0.986886, loss@max: 1.329311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.192010, loss@max: 1.399810, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 27, loss@min: 1.016898, loss@max: 1.363675, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 28, loss@min: 1.162201, loss@max: 1.419563, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 29, loss@min: 1.018563, loss@max: 1.375276, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 1.078901, loss@max: 1.402320, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 31, loss@min: 1.010159, loss@max: 1.376045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.965356, loss@max: 1.352126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.961068, loss@max: 1.344962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.079926, loss@max: 1.396285, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 35, loss@min: 0.987324, loss@max: 1.359842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.010405, loss@max: 1.373751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.050324, loss@max: 1.392909, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 38, loss@min: 1.017726, loss@max: 1.382247, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 39, loss@min: 0.977287, loss@max: 1.362702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.104182, loss@max: 1.408076, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 41, loss@min: 0.980987, loss@max: 1.366714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.974320, loss@max: 1.359955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.039714, loss@max: 1.379892, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 44, loss@min: 1.143584, loss@max: 1.409567, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 45, loss@min: 1.059677, loss@max: 1.394771, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 46, loss@min: 0.982221, loss@max: 1.366353, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 47, loss@min: 0.963790, loss@max: 1.366842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.005543, loss@max: 1.397996, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 49, loss@min: 0.989745, loss@max: 1.398889, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 50, loss@min: 0.975632, loss@max: 1.384274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.987690, loss@max: 1.386031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.973847, loss@max: 1.377352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.982857, loss@max: 1.381077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.000238, loss@max: 1.384776, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 55, loss@min: 0.987879, loss@max: 1.390363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.990762, loss@max: 1.375740, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 57, loss@min: 0.956135, loss@max: 1.379350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.959364, loss@max: 1.368789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.965228, loss@max: 1.380476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.955606, loss@max: 1.377371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.964377, loss@max: 1.380729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.970962, loss@max: 1.389108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.966216, loss@max: 1.376832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.978745, loss@max: 1.386533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.973243, loss@max: 1.370250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.972995, loss@max: 1.382096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.989653, loss@max: 1.393680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.973410, loss@max: 1.374726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.989592, loss@max: 1.388789, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 70, loss@min: 0.965010, loss@max: 1.378575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.966338, loss@max: 1.394799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.969565, loss@max: 1.391955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.981148, loss@max: 1.394009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.999246, loss@max: 1.386683, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.959697, loss@max: 1.369084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.999219, loss@max: 1.384761, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.972751, loss@max: 1.388172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.000632, loss@max: 1.392283, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 79, loss@min: 0.963095, loss@max: 1.380736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.979280, loss@max: 1.385752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.971622, loss@max: 1.381814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.965549, loss@max: 1.373389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.982982, loss@max: 1.392167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.957596, loss@max: 1.376828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.976297, loss@max: 1.378715, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 0.950588, loss@max: 1.373632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.979232, loss@max: 1.388032, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 88, loss@min: 0.967784, loss@max: 1.390448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.969811, loss@max: 1.393331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958636, loss@max: 1.369095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.979147, loss@max: 1.381122, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.976666, loss@max: 1.385414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.955303, loss@max: 1.366194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.955649, loss@max: 1.368567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.960681, loss@max: 1.382057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.963963, loss@max: 1.376874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955392, loss@max: 1.373280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.960199, loss@max: 1.380427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.989630, loss@max: 1.395376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.008315, loss@max: 1.399361, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 100, LS: 1.211699, LT: 1.225316, Top1S: 76.052803, Top1T: 75.815178Best acc: 76.052803 +Train:epoch: 101, loss@min: 0.955782, loss@max: 1.380475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.211504, LT: 1.225164, Top1S: 76.062706, Top1T: 75.801979Best acc: 76.062706 +Train:epoch: 102, loss@min: 0.954512, loss@max: 1.378367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.211283, LT: 1.225039, Top1S: 76.052803, Top1T: 75.792076 +Train:epoch: 103, loss@min: 0.955740, loss@max: 1.370978, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "fgvc", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 85} + +------------------------------------------- +Wed Sep 6 20:49:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 9.608515, loss@max: 2.869307, Top1S acc: 100.000000, Top1T acc: 20.000000 +Train:epoch: 2, loss@min: 9.451773, loss@max: 2.946259, Top1S acc: 100.000000, Top1T acc: 21.000000 +Train:epoch: 3, loss@min: 8.584673, loss@max: 2.843279, Top1S acc: 100.000000, Top1T acc: 22.000000 +Train:epoch: 4, loss@min: 8.026117, loss@max: 2.806026, Top1S acc: 100.000000, Top1T acc: 31.000000 +Train:epoch: 5, loss@min: 7.806165, loss@max: 2.852490, Top1S acc: 100.000000, Top1T acc: 29.000000 +Train:epoch: 6, loss@min: 7.124862, loss@max: 2.781475, Top1S acc: 100.000000, Top1T acc: 39.000000 +Train:epoch: 7, loss@min: 7.441773, loss@max: 2.952658, Top1S acc: 100.000000, Top1T acc: 35.000000 +Train:epoch: 8, loss@min: 7.207429, loss@max: 2.969602, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 9, loss@min: 6.470948, loss@max: 2.863677, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 10, loss@min: 6.331697, loss@max: 2.892740, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 11, loss@min: 6.149106, loss@max: 2.904832, Top1S acc: 100.000000, Top1T acc: 53.000000 +Train:epoch: 12, loss@min: 5.685912, loss@max: 2.846527, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 13, loss@min: 5.693641, loss@max: 2.890397, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 14, loss@min: 5.513184, loss@max: 2.891262, Top1S acc: 100.000000, Top1T acc: 57.000000 +Train:epoch: 15, loss@min: 4.995450, loss@max: 2.787698, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 16, loss@min: 4.637775, loss@max: 2.716233, Top1S acc: 100.000000, Top1T acc: 64.000000 +Train:epoch: 17, loss@min: 4.880234, loss@max: 2.825736, Top1S acc: 100.000000, Top1T acc: 56.000000 +Train:epoch: 18, loss@min: 4.599819, loss@max: 2.793022, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 19, loss@min: 4.471224, loss@max: 2.761557, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 20, loss@min: 3.840070, loss@max: 2.632946, Top1S acc: 100.000000, Top1T acc: 71.000000 +Train:epoch: 21, loss@min: 4.034162, loss@max: 2.722866, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 22, loss@min: 3.788205, loss@max: 2.671273, Top1S acc: 100.000000, Top1T acc: 64.000000 +Train:epoch: 23, loss@min: 3.849124, loss@max: 2.652092, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 24, loss@min: 3.671041, loss@max: 2.655362, Top1S acc: 100.000000, Top1T acc: 67.000000 +Train:epoch: 25, loss@min: 3.440532, loss@max: 2.605864, Top1S acc: 100.000000, Top1T acc: 73.000000 +Train:epoch: 26, loss@min: 3.137650, loss@max: 2.528177, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 27, loss@min: 2.943324, loss@max: 2.442375, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 28, loss@min: 3.251064, loss@max: 2.552684, Top1S acc: 100.000000, Top1T acc: 73.000000 +Train:epoch: 29, loss@min: 2.862940, loss@max: 2.451455, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 30, loss@min: 2.625089, loss@max: 2.332061, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 31, loss@min: 2.752769, loss@max: 2.384704, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 2.769710, loss@max: 2.383767, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 33, loss@min: 2.354970, loss@max: 2.236215, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 34, loss@min: 2.571661, loss@max: 2.284536, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 2.735601, loss@max: 2.302068, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 36, loss@min: 2.373309, loss@max: 2.199925, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 37, loss@min: 2.184521, loss@max: 2.177943, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 2.360109, loss@max: 2.217524, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 2.077565, loss@max: 2.081523, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 40, loss@min: 2.008255, loss@max: 2.076004, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 41, loss@min: 2.323521, loss@max: 2.181041, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 1.989983, loss@max: 2.049952, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 43, loss@min: 1.963969, loss@max: 2.011551, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 44, loss@min: 2.035479, loss@max: 2.067764, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 45, loss@min: 1.884264, loss@max: 2.007537, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 46, loss@min: 1.765461, loss@max: 1.983568, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 47, loss@min: 1.745259, loss@max: 1.954736, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 48, loss@min: 1.893727, loss@max: 2.002300, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 49, loss@min: 1.789596, loss@max: 1.973386, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 50, loss@min: 1.856458, loss@max: 2.018074, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 51, loss@min: 1.614625, loss@max: 1.872419, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 52, loss@min: 1.748713, loss@max: 1.980812, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 53, loss@min: 1.768121, loss@max: 1.949585, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 54, loss@min: 1.595937, loss@max: 1.886432, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 55, loss@min: 1.684678, loss@max: 1.922315, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 56, loss@min: 1.920400, loss@max: 2.051684, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 57, loss@min: 1.510515, loss@max: 1.847836, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 1.466357, loss@max: 1.820872, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 59, loss@min: 1.631365, loss@max: 1.916691, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 60, loss@min: 1.461084, loss@max: 1.801271, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 61, loss@min: 1.503464, loss@max: 1.853993, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 62, loss@min: 1.543795, loss@max: 1.853517, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 63, loss@min: 1.579741, loss@max: 1.856750, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 64, loss@min: 1.582827, loss@max: 1.859057, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 65, loss@min: 1.379640, loss@max: 1.784529, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 66, loss@min: 1.425013, loss@max: 1.771023, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 67, loss@min: 1.340109, loss@max: 1.767172, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 68, loss@min: 1.530611, loss@max: 1.868384, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 69, loss@min: 1.464935, loss@max: 1.822378, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 70, loss@min: 1.381391, loss@max: 1.736591, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 71, loss@min: 1.424049, loss@max: 1.816552, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 72, loss@min: 1.296186, loss@max: 1.711197, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 73, loss@min: 1.399812, loss@max: 1.738281, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 74, loss@min: 1.323954, loss@max: 1.723757, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 75, loss@min: 1.362604, loss@max: 1.749950, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 76, loss@min: 1.324584, loss@max: 1.737979, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 77, loss@min: 1.306122, loss@max: 1.692092, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 78, loss@min: 1.323760, loss@max: 1.701331, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 79, loss@min: 1.217636, loss@max: 1.648461, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 80, loss@min: 1.270656, loss@max: 1.681356, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 81, loss@min: 1.340562, loss@max: 1.741899, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 82, loss@min: 1.279725, loss@max: 1.702868, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 1.329089, loss@max: 1.719012, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 84, loss@min: 1.278902, loss@max: 1.711605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.298440, loss@max: 1.694924, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 85, LS: 3.633344, LT: 3.600609, Top1S: 21.782177, Top1T: 21.542154Best acc: 21.782177 +Train:epoch: 86, loss@min: 1.260955, loss@max: 1.699946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 3.635052, LT: 3.602245, Top1S: 21.812180, Top1T: 21.572157Best acc: 21.812180 +Train:epoch: 87, loss@min: 1.261002, loss@max: 1.676133, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 87, LS: 3.636079, LT: 3.603659, Top1S: 21.782177, Top1T: 21.572157 +Train:epoch: 88, loss@min: 1.262254, loss@max: 1.659438, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 88, LS: 3.636977, LT: 3.605131, Top1S: 21.812180, Top1T: 21.512150 +Train:epoch: 89, loss@min: 1.285437, loss@max: 1.692213, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 89, LS: 3.637217, LT: 3.606026, Top1S: 21.902189, Top1T: 21.602160Best acc: 21.902189 +Train:epoch: 90, loss@min: 1.196540, loss@max: 1.626735, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 90, LS: 3.637388, LT: 3.606912, Top1S: 21.932192, Top1T: 21.662165Best acc: 21.932192 +Train:epoch: 91, loss@min: 1.321997, loss@max: 1.674660, Top1S acc: 100.000000, Top1T acc: 96.000000 + Test:epoch: 91, LS: 3.638150, LT: 3.608094, Top1S: 22.022202, Top1T: 21.662165Best acc: 22.022202 +Train:epoch: 92, loss@min: 1.365714, loss@max: 1.714295, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 92, LS: 3.638017, LT: 3.608138, Top1S: 22.022202, Top1T: 21.752174 +Train:epoch: 93, loss@min: 1.262485, loss@max: 1.647135, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 93, LS: 3.637180, LT: 3.607442, Top1S: 22.082207, Top1T: 21.752174Best acc: 22.082207 +Train:epoch: 94, loss@min: 1.292554, loss@max: 1.656865, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 94, LS: 3.636724, LT: 3.607035, Top1S: 22.172216, Top1T: 21.812180Best acc: 22.172216 +Train:epoch: 95, loss@min: 1.265782, loss@max: 1.676459, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 95, LS: 3.636357, LT: 3.606773, Top1S: 22.112211, Top1T: 21.812180 +Train:epoch: 96, loss@min: 1.180914, loss@max: 1.618930, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 3.635803, LT: 3.606509, Top1S: 22.142214, Top1T: 21.782177 +Train:epoch: 97, loss@min: 1.247288, loss@max: 1.673322, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 97, LS: 3.634934, LT: 3.605897, Top1S: 22.112211, Top1T: 21.692169 +Train:epoch: 98, loss@min: 1.280647, loss@max: 1.650264, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 98, LS: 3.634405, LT: 3.605615, Top1S: 22.172216, Top1T: 21.722172 +Train:epoch: 99, loss@min: 1.183265, loss@max: 1.608338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 3.634013, LT: 3.605214, Top1S: 22.112211, Top1T: 21.632162 +Train:epoch: 100, loss@min: 1.224869, loss@max: 1.653229, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 100, LS: 3.633963, LT: 3.605033, Top1S: 22.082207, Top1T: 21.632162 +Train:epoch: 101, loss@min: 1.221132, loss@max: 1.640110, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 101, LS: 3.633906, LT: 3.604765, Top1S: 21.962194, Top1T: 21.572157 +Train:epoch: 102, loss@min: 1.229827, loss@max: 1.654395, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 102, LS: 3.633992, LT: 3.604626, Top1S: 21.962194, Top1T: 21.572157 +Train:epoch: 103, loss@min: 1.260793, loss@max: 1.666397, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 103, LS: 3.634105, LT: 3.604415, Top1S: 21.932192, Top1T: 21.602160 +Train:epoch: 104, loss@min: 1.325669, loss@max: 1.705227, Top1S acc: 100.000000, Top1T acc: 96.000000 + Test:epoch: 104, LS: 3.634324, LT: 3.604101, Top1S: 21.932192, Top1T: 21.572157 +Train:epoch: 105, loss@min: 1.156579, loss@max: 1.595524, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 105, LS: 3.634554, LT: 3.603839, Top1S: 21.992199, Top1T: 21.542154 +Train:epoch: 106, loss@min: 1.219101, loss@max: 1.648060, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 106, LS: 3.635014, LT: 3.603863, Top1S: 21.902189, Top1T: 21.572157 +Train:epoch: 107, loss@min: 1.292798, loss@max: 1.680273, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 107, LS: 3.635265, LT: 3.603616, Top1S: 21.872187, Top1T: 21.782177 +Train:epoch: 108, loss@min: 1.274589, loss@max: 1.684895, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 108, LS: 3.635789, LT: 3.603646, Top1S: 21.902189, Top1T: 21.752174 +Train:epoch: 109, loss@min: 1.235161, loss@max: 1.640163, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 109, LS: 3.636405, LT: 3.603871, Top1S: 21.902189, Top1T: 21.872187 +Train:epoch: 110, loss@min: 1.167690, loss@max: 1.608030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 3.637084, LT: 3.604199, Top1S: 21.812180, Top1T: 21.842184 +Train:epoch: 111, loss@min: 1.351545, loss@max: 1.662233, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 111, LS: 3.637475, LT: 3.604395, Top1S: 21.782177, Top1T: 21.842184 +Train:epoch: 112, loss@min: 1.226887, loss@max: 1.652674, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 112, LS: 3.637932, LT: 3.604645, Top1S: 21.752174, Top1T: 21.842184 +Train:epoch: 113, loss@min: 1.176769, loss@max: 1.607467, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 113, LS: 3.638406, LT: 3.604913, Top1S: 21.752174, Top1T: 21.872187 +Train:epoch: 114, loss@min: 1.262965, loss@max: 1.667983, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 114, LS: 3.638782, LT: 3.605150, Top1S: 21.782177, Top1T: 21.842184 +Train:epoch: 115, loss@min: 1.153847, loss@max: 1.595320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 3.639007, LT: 3.605353, Top1S: 21.722172, Top1T: 21.872187 +Train:epoch: 116, loss@min: 1.323159, loss@max: 1.653245, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 116, LS: 3.639080, LT: 3.605458, Top1S: 21.782177, Top1T: 21.902189 +Train:epoch: 117, loss@min: 1.181918, loss@max: 1.612665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 3.639123, LT: 3.605607, Top1S: 21.722172, Top1T: 21.842184 +Train:epoch: 118, loss@min: 1.336161, loss@max: 1.703997, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 118, LS: 3.639198, LT: 3.605786, Top1S: 21.812180, Top1T: 21.842184 +Train:epoch: 119, loss@min: 1.190643, loss@max: 1.623461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 3.639366, LT: 3.606020, Top1S: 21.812180, Top1T: 21.812180 +Train:epoch: 120, loss@min: 1.225938, loss@max: 1.640341, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 120, LS: 3.639459, LT: 3.606204, Top1S: 21.902189, Top1T: 21.752174 +Train:epoch: 121, loss@min: 1.186563, loss@max: 1.623631, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 121, LS: 3.639535, LT: 3.606353, Top1S: 21.932192, Top1T: 21.692169 +Train:epoch: 122, loss@min: 1.321264, loss@max: 1.656329, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 122, LS: 3.639611, LT: 3.606503, Top1S: 21.842184, Top1T: 21.692169 +Train:epoch: 123, loss@min: 1.203831, loss@max: 1.640400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 3.639748, LT: 3.606695, Top1S: 21.842184, Top1T: 21.692169 +Train:epoch: 124, loss@min: 1.152641, loss@max: 1.583886, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 124, LS: 3.639878, LT: 3.606900, Top1S: 21.872187, Top1T: 21.662165 +Train:epoch: 125, loss@min: 1.104712, loss@max: 1.561872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 3.640001, LT: 3.607122, Top1S: 21.812180, Top1T: 21.692169 +Train:epoch: 126, loss@min: 1.246349, loss@max: 1.666168, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 126, LS: 3.640115, LT: 3.607346, Top1S: 21.842184, Top1T: 21.662165 +Train:epoch: 127, loss@min: 1.194163, loss@max: 1.625304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 3.640238, LT: 3.607532, Top1S: 21.812180, Top1T: 21.692169 +Train:epoch: 128, loss@min: 1.191415, loss@max: 1.616172, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 128, LS: 3.640343, LT: 3.607670, Top1S: 21.782177, Top1T: 21.662165 +Train:epoch: 129, loss@min: 1.363328, loss@max: 1.671001, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 129, LS: 3.640449, LT: 3.607811, Top1S: 21.782177, Top1T: 21.632162 +Train:epoch: 130, loss@min: 1.225616, loss@max: 1.622952, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 130, LS: 3.640547, LT: 3.607954, Top1S: 21.722172, Top1T: 21.662165 +Train:epoch: 131, loss@min: 1.247539, loss@max: 1.636206, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 131, LS: 3.640594, LT: 3.608062, Top1S: 21.722172, Top1T: 21.662165 +Train:epoch: 132, loss@min: 1.169017, loss@max: 1.611898, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 132, LS: 3.640591, LT: 3.608123, Top1S: 21.722172, Top1T: 21.662165 +Train:epoch: 133, loss@min: 1.164348, loss@max: 1.604504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 3.640589, LT: 3.608174, Top1S: 21.722172, Top1T: 21.662165 +Train:epoch: 134, loss@min: 1.270101, loss@max: 1.674727, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 3.640583, LT: 3.608201, Top1S: 21.752174, Top1T: 21.662165 +Train:epoch: 135, loss@min: 1.435363, loss@max: 1.708039, Top1S acc: 100.000000, Top1T acc: 94.000000 + Test:epoch: 135, LS: 3.640594, LT: 3.608238, Top1S: 21.752174, Top1T: 21.632162 +Train:epoch: 136, loss@min: 1.257594, loss@max: 1.647488, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 136, LS: 3.640602, LT: 3.608260, Top1S: 21.692169, Top1T: 21.602160 +Train:epoch: 137, loss@min: 1.164464, loss@max: 1.612028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 3.640622, LT: 3.608287, Top1S: 21.692169, Top1T: 21.572157 +Train:epoch: 138, loss@min: 1.223674, loss@max: 1.649222, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 138, LS: 3.640620, LT: 3.608289, Top1S: 21.692169, Top1T: 21.572157 +Train:epoch: 139, loss@min: 1.271832, loss@max: 1.673852, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 139, LS: 3.640645, LT: 3.608316, Top1S: 21.692169, Top1T: 21.572157 +Train:epoch: 140, loss@min: 1.131378, loss@max: 1.569714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 3.640666, LT: 3.608340, Top1S: 21.692169, Top1T: 21.572157 +Train:epoch: 141, loss@min: 1.234504, loss@max: 1.655326, Top1S acc: 100.000000, Top1T acc: 99.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 85} + +------------------------------------------- +Wed Sep 6 21:59:03 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.311221, loss@max: 1.532649, Top1S acc: 100.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 4.730711, loss@max: 1.758365, Top1S acc: 100.000000, Top1T acc: 40.000000 +Train:epoch: 3, loss@min: 3.348849, loss@max: 1.536578, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 3.465969, loss@max: 1.698039, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 5, loss@min: 4.026069, loss@max: 1.941322, Top1S acc: 100.000000, Top1T acc: 40.000000 +Train:epoch: 6, loss@min: 3.262973, loss@max: 1.860578, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 7, loss@min: 3.458480, loss@max: 2.007045, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 8, loss@min: 3.017592, loss@max: 1.974837, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 9, loss@min: 2.904825, loss@max: 2.016740, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 2.867354, loss@max: 2.067185, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 11, loss@min: 2.753165, loss@max: 2.080217, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 2.443789, loss@max: 2.012968, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 13, loss@min: 2.499540, loss@max: 2.033815, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.509266, loss@max: 2.048972, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 15, loss@min: 2.274544, loss@max: 2.024670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 2.576438, loss@max: 2.087801, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 17, loss@min: 2.268077, loss@max: 2.012964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 2.087004, loss@max: 1.940094, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 19, loss@min: 2.167299, loss@max: 1.984801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.808983, loss@max: 1.883147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 2.214174, loss@max: 2.001782, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 22, loss@min: 1.752159, loss@max: 1.867262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.991164, loss@max: 1.960583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.914378, loss@max: 1.937730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.687093, loss@max: 1.872341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.677265, loss@max: 1.868626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.657501, loss@max: 1.848257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.766653, loss@max: 1.938997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.452996, loss@max: 1.771206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.781347, loss@max: 1.945394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.541878, loss@max: 1.812078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.701069, loss@max: 1.876254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.446077, loss@max: 1.743592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.513937, loss@max: 1.794852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.609555, loss@max: 1.842548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.417341, loss@max: 1.732055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.539978, loss@max: 1.827443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.305345, loss@max: 1.670347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.498584, loss@max: 1.779375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.503309, loss@max: 1.805323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.261408, loss@max: 1.672237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.360003, loss@max: 1.721527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.387675, loss@max: 1.706316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.513023, loss@max: 1.840075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.216604, loss@max: 1.644249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.352091, loss@max: 1.724152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.438679, loss@max: 1.785630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.546595, loss@max: 1.884387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.288959, loss@max: 1.687951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.318922, loss@max: 1.714873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.168052, loss@max: 1.609579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.279701, loss@max: 1.701320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.334824, loss@max: 1.732827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.179523, loss@max: 1.629053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.239847, loss@max: 1.699429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.280931, loss@max: 1.735983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.194851, loss@max: 1.677046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.298952, loss@max: 1.734326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.298403, loss@max: 1.748159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.315335, loss@max: 1.740429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.254682, loss@max: 1.718098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.345395, loss@max: 1.743782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.200839, loss@max: 1.626034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.179152, loss@max: 1.612457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.262652, loss@max: 1.678458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.223285, loss@max: 1.633835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.337994, loss@max: 1.757782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.211049, loss@max: 1.658370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.158705, loss@max: 1.609019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.171891, loss@max: 1.614034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.129882, loss@max: 1.584782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.225004, loss@max: 1.669562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.170097, loss@max: 1.638737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.165705, loss@max: 1.605513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.210134, loss@max: 1.618897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.238503, loss@max: 1.686132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.185443, loss@max: 1.648966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.094518, loss@max: 1.547436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.243064, loss@max: 1.625086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.150793, loss@max: 1.618747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.201001, loss@max: 1.655303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.055494, loss@max: 1.519668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.161016, loss@max: 1.627351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.125783, loss@max: 1.579818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.097579, loss@max: 1.560814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.458100, LT: 1.465229, Top1S: 54.864197, Top1T: 54.419754Best acc: 54.864197 +Train:epoch: 86, loss@min: 1.162062, loss@max: 1.598561, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.458443, LT: 1.463528, Top1S: 54.876545, Top1T: 54.493828Best acc: 54.876545 +Train:epoch: 87, loss@min: 1.156895, loss@max: 1.607239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.458781, LT: 1.462009, Top1S: 54.901234, Top1T: 54.530865Best acc: 54.901234 +Train:epoch: 88, loss@min: 1.153447, loss@max: 1.614460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.458761, LT: 1.460399, Top1S: 54.876545, Top1T: 54.506172 +Train:epoch: 89, loss@min: 1.116390, loss@max: 1.579493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.459023, LT: 1.459139, Top1S: 54.839504, Top1T: 54.617283 +Train:epoch: 90, loss@min: 1.069689, loss@max: 1.528081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.458141, LT: 1.458030, Top1S: 54.913582, Top1T: 54.641975Best acc: 54.913582 +Train:epoch: 91, loss@min: 1.144608, loss@max: 1.608611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.457823, LT: 1.457742, Top1S: 54.913582, Top1T: 54.592594 +Train:epoch: 92, loss@min: 1.182778, loss@max: 1.631608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.457444, LT: 1.457821, Top1S: 54.913582, Top1T: 54.604939 +Train:epoch: 93, loss@min: 1.071206, loss@max: 1.526788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.456941, LT: 1.457964, Top1S: 54.975307, Top1T: 54.604939Best acc: 54.975307 +Train:epoch: 94, loss@min: 1.064326, loss@max: 1.508545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.456184, LT: 1.458055, Top1S: 55.061729, Top1T: 54.666668Best acc: 55.061729 +Train:epoch: 95, loss@min: 1.088527, loss@max: 1.533572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.455572, LT: 1.458293, Top1S: 55.148148, Top1T: 54.703705Best acc: 55.148148 +Train:epoch: 96, loss@min: 1.137561, loss@max: 1.580034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.455716, LT: 1.458954, Top1S: 55.086418, Top1T: 54.691357 +Train:epoch: 97, loss@min: 1.084793, loss@max: 1.526875, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.455364, LT: 1.459307, Top1S: 55.111111, Top1T: 54.740742 +Train:epoch: 98, loss@min: 1.093385, loss@max: 1.555459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.454288, LT: 1.459348, Top1S: 55.111111, Top1T: 54.753086 +Train:epoch: 99, loss@min: 1.148223, loss@max: 1.620253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.453357, LT: 1.459226, Top1S: 55.160492, Top1T: 54.728394Best acc: 55.160492 +Train:epoch: 100, loss@min: 1.088196, loss@max: 1.552025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.452539, LT: 1.459153, Top1S: 55.172840, Top1T: 54.777779Best acc: 55.172840 +Train:epoch: 101, loss@min: 1.119288, loss@max: 1.564116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.452163, LT: 1.459149, Top1S: 55.148148, Top1T: 54.753086 +Train:epoch: 102, loss@min: 1.187678, loss@max: 1.603490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.450904, LT: 1.458673, Top1S: 55.197533, Top1T: 54.777779Best acc: 55.197533 +Train:epoch: 103, loss@min: 1.140364, loss@max: 1.609055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.450157, LT: 1.458550, Top1S: 55.222221, Top1T: 54.827160Best acc: 55.222221 +Train:epoch: 104, loss@min: 1.116251, loss@max: 1.554369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.449746, LT: 1.458571, Top1S: 55.222221, Top1T: 54.839504 +Train:epoch: 105, loss@min: 1.122413, loss@max: 1.562180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.448974, LT: 1.458510, Top1S: 55.246914, Top1T: 54.839504Best acc: 55.246914 +Train:epoch: 106, loss@min: 1.128166, loss@max: 1.570498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.448616, LT: 1.458663, Top1S: 55.222221, Top1T: 54.814816 +Train:epoch: 107, loss@min: 1.112111, loss@max: 1.571497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.448397, LT: 1.458720, Top1S: 55.197533, Top1T: 54.839504 +Train:epoch: 108, loss@min: 1.123076, loss@max: 1.572396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.448077, LT: 1.458745, Top1S: 55.209877, Top1T: 54.814816 +Train:epoch: 109, loss@min: 1.093265, loss@max: 1.552093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.448096, LT: 1.458811, Top1S: 55.197533, Top1T: 54.839504 +Train:epoch: 110, loss@min: 1.122640, loss@max: 1.579048, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 95} + +------------------------------------------- +Wed Sep 6 22:38:34 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.862302, loss@max: 2.164129, Top1S acc: 100.000000, Top1T acc: 36.170212 +Train:epoch: 2, loss@min: 6.235424, loss@max: 2.110443, Top1S acc: 100.000000, Top1T acc: 40.425533 +Train:epoch: 3, loss@min: 6.081607, loss@max: 2.158548, Top1S acc: 100.000000, Top1T acc: 36.170212 +Train:epoch: 4, loss@min: 5.447906, loss@max: 2.087183, Top1S acc: 100.000000, Top1T acc: 48.936169 +Train:epoch: 5, loss@min: 5.439022, loss@max: 2.154736, Top1S acc: 100.000000, Top1T acc: 44.680851 +Train:epoch: 6, loss@min: 4.904770, loss@max: 2.105821, Top1S acc: 100.000000, Top1T acc: 55.319149 +Train:epoch: 7, loss@min: 4.698875, loss@max: 2.108943, Top1S acc: 100.000000, Top1T acc: 57.446808 +Train:epoch: 8, loss@min: 4.189535, loss@max: 2.047018, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 9, loss@min: 4.159435, loss@max: 2.086312, Top1S acc: 100.000000, Top1T acc: 61.702126 +Train:epoch: 10, loss@min: 3.999963, loss@max: 2.110859, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 11, loss@min: 3.644083, loss@max: 2.061694, Top1S acc: 100.000000, Top1T acc: 70.212761 +Train:epoch: 12, loss@min: 3.662298, loss@max: 2.139226, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 13, loss@min: 3.263521, loss@max: 2.061584, Top1S acc: 100.000000, Top1T acc: 80.851067 +Train:epoch: 14, loss@min: 2.948389, loss@max: 2.038751, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 15, loss@min: 2.794184, loss@max: 2.014727, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 16, loss@min: 2.562861, loss@max: 1.966419, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 17, loss@min: 2.539486, loss@max: 1.985698, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 18, loss@min: 2.415600, loss@max: 1.981594, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 19, loss@min: 2.238850, loss@max: 1.923257, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 20, loss@min: 2.135429, loss@max: 1.906934, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 21, loss@min: 2.242174, loss@max: 1.951447, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 22, loss@min: 1.917583, loss@max: 1.827661, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 23, loss@min: 1.825282, loss@max: 1.824640, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 24, loss@min: 1.927874, loss@max: 1.858610, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 25, loss@min: 1.790242, loss@max: 1.807794, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 26, loss@min: 1.708401, loss@max: 1.775279, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 27, loss@min: 1.587958, loss@max: 1.759723, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 28, loss@min: 1.559092, loss@max: 1.744330, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 29, loss@min: 1.578802, loss@max: 1.744130, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 30, loss@min: 1.505313, loss@max: 1.702858, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 31, loss@min: 1.499168, loss@max: 1.744362, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 32, loss@min: 1.513938, loss@max: 1.710316, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 33, loss@min: 1.293702, loss@max: 1.615694, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 34, loss@min: 1.325926, loss@max: 1.639919, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 35, loss@min: 1.252841, loss@max: 1.612314, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 36, loss@min: 1.250636, loss@max: 1.629362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.329547, loss@max: 1.633465, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 38, loss@min: 1.211600, loss@max: 1.600690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.211295, loss@max: 1.591335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.171855, loss@max: 1.565831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.186117, loss@max: 1.571611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.130170, loss@max: 1.538548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.182146, loss@max: 1.583110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.099508, loss@max: 1.528059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.119904, loss@max: 1.544774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.117753, loss@max: 1.547761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.066719, loss@max: 1.507025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.056680, loss@max: 1.489660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.088143, loss@max: 1.524191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.054054, loss@max: 1.493175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.067645, loss@max: 1.502235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.086043, loss@max: 1.513744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.045047, loss@max: 1.475738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.052524, loss@max: 1.490906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.087461, loss@max: 1.519438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.017262, loss@max: 1.464953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.052227, loss@max: 1.519051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.039704, loss@max: 1.494046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.059404, loss@max: 1.503616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.051229, loss@max: 1.492810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.037121, loss@max: 1.476015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.047150, loss@max: 1.466419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.046868, loss@max: 1.483902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.020431, loss@max: 1.458590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.023114, loss@max: 1.458030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.047504, loss@max: 1.495226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.032205, loss@max: 1.462559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.044581, loss@max: 1.488167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.007598, loss@max: 1.440129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.005721, loss@max: 1.435957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.012000, loss@max: 1.444834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.008274, loss@max: 1.447528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.009484, loss@max: 1.445755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.999009, loss@max: 1.440467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.008302, loss@max: 1.443573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.062809, loss@max: 1.474928, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 77, loss@min: 1.014619, loss@max: 1.451602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.009295, loss@max: 1.446627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.012888, loss@max: 1.454123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.993778, loss@max: 1.419151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.001100, loss@max: 1.433941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.996880, loss@max: 1.430983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.008682, loss@max: 1.455765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.989754, loss@max: 1.426073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.010772, loss@max: 1.448146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.011874, loss@max: 1.458378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.993721, loss@max: 1.433347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.051760, loss@max: 1.475255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.000751, loss@max: 1.443119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.993260, loss@max: 1.437682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.001644, loss@max: 1.445825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.011118, loss@max: 1.450914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.992970, loss@max: 1.430715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.985223, loss@max: 1.429675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.000376, loss@max: 1.438249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.878698, LT: 1.890974, Top1S: 50.413712, Top1T: 50.591015Best acc: 50.591015 +Train:epoch: 96, loss@min: 0.995805, loss@max: 1.438672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.878546, LT: 1.890789, Top1S: 50.413712, Top1T: 50.531914 +Train:epoch: 97, loss@min: 1.024248, loss@max: 1.468618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.878342, LT: 1.890558, Top1S: 50.531914, Top1T: 50.768322Best acc: 50.768322 +Train:epoch: 98, loss@min: 0.989755, loss@max: 1.432651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.878126, LT: 1.890354, Top1S: 50.472813, Top1T: 50.709221 +Train:epoch: 99, loss@min: 0.990806, loss@max: 1.419876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.877914, LT: 1.890151, Top1S: 50.413712, Top1T: 50.650120 +Train:epoch: 100, loss@min: 1.011305, loss@max: 1.447471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.877647, LT: 1.889938, Top1S: 50.472813, Top1T: 50.531914 +Train:epoch: 101, loss@min: 1.004603, loss@max: 1.439404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.877417, LT: 1.889741, Top1S: 50.531914, Top1T: 50.472813 +Train:epoch: 102, loss@min: 1.008220, loss@max: 1.431618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.877248, LT: 1.889574, Top1S: 50.531914, Top1T: 50.472813 +Train:epoch: 103, loss@min: 0.989966, loss@max: 1.416294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.877121, LT: 1.889386, Top1S: 50.531914, Top1T: 50.413712 +Train:epoch: 104, loss@min: 0.989456, loss@max: 1.428401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.877056, LT: 1.889244, Top1S: 50.591015, Top1T: 50.531914 +Train:epoch: 105, loss@min: 0.999490, loss@max: 1.436063, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.876955, LT: 1.889086, Top1S: 50.650120, Top1T: 50.531914 +Train:epoch: 106, loss@min: 1.011993, loss@max: 1.451865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.876860, LT: 1.888954, Top1S: 50.591015, Top1T: 50.472813 +Train:epoch: 107, loss@min: 0.987883, loss@max: 1.420035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.876709, LT: 1.888813, Top1S: 50.591015, Top1T: 50.472813 +Train:epoch: 108, loss@min: 0.999909, loss@max: 1.437013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.876648, LT: 1.888751, Top1S: 50.591015, Top1T: 50.472813 +Train:epoch: 109, loss@min: 0.994180, loss@max: 1.435836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.876575, LT: 1.888700, Top1S: 50.591015, Top1T: 50.472813 +Train:epoch: 110, loss@min: 1.004945, loss@max: 1.437847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.876487, LT: 1.888630, Top1S: 50.591015, Top1T: 50.472813 +Train:epoch: 111, loss@min: 1.001428, loss@max: 1.435530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.876409, LT: 1.888552, Top1S: 50.591015, Top1T: 50.472813 +Train:epoch: 112, loss@min: 0.987184, loss@max: 1.421606, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 22:47:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.831394, loss@max: 0.995907, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 2, loss@min: 2.194027, loss@max: 1.261202, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 3, loss@min: 1.701291, loss@max: 1.267064, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.661466, loss@max: 1.347759, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 5, loss@min: 1.488427, loss@max: 1.361060, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 6, loss@min: 1.280885, loss@max: 1.360310, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.352207, loss@max: 1.402725, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 8, loss@min: 1.435957, loss@max: 1.453850, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 9, loss@min: 1.142526, loss@max: 1.396557, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 1.102941, loss@max: 1.382688, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 11, loss@min: 1.211251, loss@max: 1.423560, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.143876, loss@max: 1.404343, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 13, loss@min: 1.299310, loss@max: 1.441697, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 14, loss@min: 1.241038, loss@max: 1.406450, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 15, loss@min: 1.228942, loss@max: 1.379276, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 16, loss@min: 1.213596, loss@max: 1.364739, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 17, loss@min: 1.145531, loss@max: 1.340334, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 18, loss@min: 1.148210, loss@max: 1.320352, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 19, loss@min: 1.101149, loss@max: 1.321493, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 20, loss@min: 1.131362, loss@max: 1.333252, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 21, loss@min: 1.174760, loss@max: 1.338695, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 1.157488, loss@max: 1.346226, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 23, loss@min: 1.067213, loss@max: 1.312908, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 1.220453, loss@max: 1.371045, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 25, loss@min: 1.066459, loss@max: 1.342488, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 26, loss@min: 1.129692, loss@max: 1.371891, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 27, loss@min: 0.982251, loss@max: 1.312451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.008217, loss@max: 1.348016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.978445, loss@max: 1.327132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.040328, loss@max: 1.380873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.041895, loss@max: 1.388559, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.973831, loss@max: 1.361918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.022577, loss@max: 1.386759, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 34, loss@min: 1.010846, loss@max: 1.380533, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 35, loss@min: 0.989481, loss@max: 1.375950, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.989615, loss@max: 1.371140, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.016032, loss@max: 1.376097, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 38, loss@min: 1.006912, loss@max: 1.388499, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 39, loss@min: 1.044142, loss@max: 1.403636, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.015046, loss@max: 1.393953, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 41, loss@min: 1.165489, loss@max: 1.430366, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 42, loss@min: 1.019508, loss@max: 1.383085, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 43, loss@min: 1.030953, loss@max: 1.394008, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.972613, loss@max: 1.365719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.983350, loss@max: 1.373623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.054475, loss@max: 1.382676, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.967635, loss@max: 1.377393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.989148, loss@max: 1.397420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.005124, loss@max: 1.386643, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 50, loss@min: 0.972634, loss@max: 1.376366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.045059, loss@max: 1.383842, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 52, loss@min: 1.083786, loss@max: 1.432368, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 53, loss@min: 0.972932, loss@max: 1.376303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.038203, loss@max: 1.406055, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 55, loss@min: 1.125065, loss@max: 1.417636, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.979872, loss@max: 1.381609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.965596, loss@max: 1.371438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.043680, loss@max: 1.409249, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 59, loss@min: 0.992942, loss@max: 1.393715, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 1.023314, loss@max: 1.415789, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 61, loss@min: 1.021832, loss@max: 1.411647, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 62, loss@min: 0.976623, loss@max: 1.391723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.963572, loss@max: 1.378842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.984313, loss@max: 1.396631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.969877, loss@max: 1.381137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.060222, loss@max: 1.394153, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.970042, loss@max: 1.379646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.973261, loss@max: 1.378527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.970950, loss@max: 1.379292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.000679, loss@max: 1.414198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.965461, loss@max: 1.381984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.012676, loss@max: 1.406634, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.972021, loss@max: 1.381034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965576, loss@max: 1.381054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.036640, loss@max: 1.407386, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 76, loss@min: 0.985293, loss@max: 1.407537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950293, loss@max: 1.372537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.983864, loss@max: 1.392210, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.963114, loss@max: 1.382653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981782, loss@max: 1.399129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.958568, loss@max: 1.372161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.963593, loss@max: 1.379307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.954694, loss@max: 1.371979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.954759, loss@max: 1.364941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.963895, loss@max: 1.376619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.976770, loss@max: 1.394067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.973400, loss@max: 1.390304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.966801, loss@max: 1.392926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.075106, loss@max: 1.420140, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 90, loss@min: 0.979610, loss@max: 1.407311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.958691, loss@max: 1.382326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.973979, loss@max: 1.392625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.966866, loss@max: 1.384135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.997692, loss@max: 1.396173, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.992433, loss@max: 1.401315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.975873, loss@max: 1.386809, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 1.015236, loss@max: 1.406658, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.006470, loss@max: 1.405878, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.963146, loss@max: 1.364883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.954694, loss@max: 1.375243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.965606, loss@max: 1.383602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.957363, loss@max: 1.370024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.981533, loss@max: 1.387473, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.966904, loss@max: 1.381586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.980783, loss@max: 1.386067, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.950601, loss@max: 1.362776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.998314, loss@max: 1.402541, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 0.964594, loss@max: 1.385208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.951945, loss@max: 1.379798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.965464, loss@max: 1.381399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.412558, LT: 0.413323, Top1S: 88.478699, Top1T: 88.235298Best acc: 88.478699 +Train:epoch: 111, loss@min: 0.982390, loss@max: 1.388628, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 111, LS: 0.412469, LT: 0.413296, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 112, loss@min: 0.962996, loss@max: 1.382301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.412381, LT: 0.413279, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 113, loss@min: 1.048404, loss@max: 1.408221, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 113, LS: 0.412309, LT: 0.413270, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 114, loss@min: 0.972383, loss@max: 1.386994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.412216, LT: 0.413272, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 115, loss@min: 0.974449, loss@max: 1.383726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.412127, LT: 0.413295, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 116, loss@min: 0.973950, loss@max: 1.385550, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 116, LS: 0.412039, LT: 0.413322, Top1S: 88.478699, Top1T: 88.194725 +Train:epoch: 117, loss@min: 0.972001, loss@max: 1.389142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.411977, LT: 0.413355, Top1S: 88.478699, Top1T: 88.194725 +Train:epoch: 118, loss@min: 0.969094, loss@max: 1.388654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.411923, LT: 0.413404, Top1S: 88.519272, Top1T: 88.194725Best acc: 88.519272 +Train:epoch: 119, loss@min: 0.973620, loss@max: 1.389109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.411896, LT: 0.413443, Top1S: 88.519272, Top1T: 88.154160 +Train:epoch: 120, loss@min: 0.994876, loss@max: 1.395595, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 120, LS: 0.411852, LT: 0.413461, Top1S: 88.519272, Top1T: 88.113594 +Train:epoch: 121, loss@min: 1.157998, loss@max: 1.442019, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 121, LS: 0.411829, LT: 0.413464, Top1S: 88.519272, Top1T: 88.113594 +Train:epoch: 122, loss@min: 0.973846, loss@max: 1.389591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.411828, LT: 0.413462, Top1S: 88.519272, Top1T: 88.113594 +Train:epoch: 123, loss@min: 0.961054, loss@max: 1.385799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.411845, LT: 0.413439, Top1S: 88.519272, Top1T: 88.194725 +Train:epoch: 124, loss@min: 0.958231, loss@max: 1.376960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.411852, LT: 0.413403, Top1S: 88.519272, Top1T: 88.194725 +Train:epoch: 125, loss@min: 0.967377, loss@max: 1.392324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.411871, LT: 0.413369, Top1S: 88.519272, Top1T: 88.235298{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:21:19 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:29:21 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:29:44 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:30:44 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:31:13 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 241.294861, loss@max: 65.517487, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 2, loss@min: 237.362183, loss@max: 65.181961, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 3, loss@min: 232.048752, loss@max: 64.595070, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 4, loss@min: 227.461685, loss@max: 64.060814, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 5, loss@min: 223.478973, loss@max: 63.632732, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 6, loss@min: 218.559494, loss@max: 63.159187, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 7, loss@min: 213.616547, loss@max: 62.419998, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 8, loss@min: 209.069611, loss@max: 61.793964, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 9, loss@min: 205.040268, loss@max: 61.172722, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 10, loss@min: 201.307098, loss@max: 60.615433, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 11, loss@min: 197.128448, loss@max: 59.873623, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 12, loss@min: 192.325790, loss@max: 58.858372, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 13, loss@min: 189.419601, loss@max: 58.223289, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 14, loss@min: 185.285324, loss@max: 57.390762, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 15, loss@min: 181.571457, loss@max: 56.146400, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 16, loss@min: 177.591492, loss@max: 55.168400, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 17, loss@min: 173.969238, loss@max: 54.134727, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 18, loss@min: 171.140320, loss@max: 53.292587, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 19, loss@min: 167.589859, loss@max: 52.306667, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 20, loss@min: 164.789276, loss@max: 51.173401, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 21, loss@min: 161.188995, loss@max: 50.203453, Top1S acc: 0.000000, Top1T acc: 0.000000 +Train:epoch: 22, loss@min: 157.808029, loss@max: 49.404766, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 23, loss@min: 155.093155, loss@max: 48.619576, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 24, loss@min: 152.494019, loss@max: 48.064404, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 25, loss@min: 149.268280, loss@max: 47.307465, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 26, loss@min: 145.945801, loss@max: 46.430614, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 27, loss@min: 142.931000, loss@max: 45.448116, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 28, loss@min: 140.505569, loss@max: 44.970688, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 29, loss@min: 138.071777, loss@max: 44.304871, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 30, loss@min: 135.409393, loss@max: 43.658928, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 31, loss@min: 132.367859, loss@max: 42.885395, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 32, loss@min: 129.428360, loss@max: 42.035793, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 33, loss@min: 126.790466, loss@max: 41.405846, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 34, loss@min: 124.265396, loss@max: 40.950031, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 35, loss@min: 121.948105, loss@max: 40.407486, Top1S acc: 0.000000, Top1T acc: 1.000000 +Train:epoch: 36, loss@min: 119.862534, loss@max: 39.738174, Top1S acc: 0.000000, Top1T acc: 1.000000 +Train:epoch: 37, loss@min: 117.281754, loss@max: 39.107414, Top1S acc: 0.000000, Top1T acc: 1.000000 +Train:epoch: 38, loss@min: 114.963135, loss@max: 38.364388, Top1S acc: 0.000000, Top1T acc: 2.000000 +Train:epoch: 39, loss@min: 113.133255, loss@max: 38.026062, Top1S acc: 0.000000, Top1T acc: 2.000000 +Train:epoch: 40, loss@min: 110.792358, loss@max: 37.260895, Top1S acc: 0.000000, Top1T acc: 1.000000 +Train:epoch: 41, loss@min: 109.028046, loss@max: 36.387009, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 42, loss@min: 106.777863, loss@max: 35.891968, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 43, loss@min: 105.308128, loss@max: 35.341988, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 44, loss@min: 103.456406, loss@max: 34.598713, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 45, loss@min: 101.268654, loss@max: 34.166859, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 46, loss@min: 99.736778, loss@max: 33.414169, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 47, loss@min: 98.277817, loss@max: 32.984356, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 48, loss@min: 96.189590, loss@max: 32.185722, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 49, loss@min: 94.840546, loss@max: 31.741318, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 50, loss@min: 93.081047, loss@max: 31.106073, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 51, loss@min: 91.475121, loss@max: 30.725441, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 52, loss@min: 90.228912, loss@max: 30.092028, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 53, loss@min: 88.552887, loss@max: 29.768646, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 54, loss@min: 87.767853, loss@max: 29.348246, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 55, loss@min: 86.401337, loss@max: 29.115969, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 56, loss@min: 85.027374, loss@max: 28.603619, Top1S acc: 3.000000, Top1T acc: 3.000000 +Train:epoch: 57, loss@min: 83.655937, loss@max: 28.400654, Top1S acc: 3.000000, Top1T acc: 3.000000 +Train:epoch: 58, loss@min: 81.948174, loss@max: 27.882999, Top1S acc: 3.000000, Top1T acc: 4.000000 +Train:epoch: 59, loss@min: 80.644119, loss@max: 27.662231, Top1S acc: 3.000000, Top1T acc: 6.000000 +Train:epoch: 60, loss@min: 79.468262, loss@max: 27.338047, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 61, loss@min: 78.213715, loss@max: 26.976795, Top1S acc: 2.000000, Top1T acc: 3.000000 +Train:epoch: 62, loss@min: 77.223274, loss@max: 26.719917, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 63, loss@min: 75.291039, loss@max: 26.315569, Top1S acc: 2.000000, Top1T acc: 4.000000 +Train:epoch: 64, loss@min: 74.341644, loss@max: 26.167658, Top1S acc: 2.000000, Top1T acc: 7.000000 +Train:epoch: 65, loss@min: 73.561150, loss@max: 25.895510, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 66, loss@min: 72.236099, loss@max: 25.597984, Top1S acc: 3.000000, Top1T acc: 7.000000 +Train:epoch: 67, loss@min: 71.623322, loss@max: 25.436615, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 68, loss@min: 70.393326, loss@max: 25.205900, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 69, loss@min: 69.447052, loss@max: 24.752369, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 70, loss@min: 68.032349, loss@max: 24.463181, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 71, loss@min: 66.813721, loss@max: 24.252159, Top1S acc: 2.000000, Top1T acc: 7.000000 +Train:epoch: 72, loss@min: 66.788071, loss@max: 23.960720, Top1S acc: 2.000000, Top1T acc: 5.000000 +Train:epoch: 73, loss@min: 65.604050, loss@max: 23.899845, Top1S acc: 2.000000, Top1T acc: 7.000000 +Train:epoch: 74, loss@min: 64.211479, loss@max: 23.673464, Top1S acc: 2.000000, Top1T acc: 7.000000 +Train:epoch: 75, loss@min: 64.041756, loss@max: 23.333794, Top1S acc: 2.000000, Top1T acc: 10.000000 +Train:epoch: 76, loss@min: 63.077633, loss@max: 23.110710, Top1S acc: 2.000000, Top1T acc: 10.000000 +Train:epoch: 77, loss@min: 62.305363, loss@max: 22.988102, Top1S acc: 2.000000, Top1T acc: 10.000000 +Train:epoch: 78, loss@min: 61.201012, loss@max: 22.794741, Top1S acc: 3.000000, Top1T acc: 7.000000 +Train:epoch: 79, loss@min: 60.363781, loss@max: 22.621395, Top1S acc: 3.000000, Top1T acc: 10.000000 +Train:epoch: 80, loss@min: 59.796738, loss@max: 22.438234, Top1S acc: 3.000000, Top1T acc: 12.000000 +Train:epoch: 81, loss@min: 59.492008, loss@max: 22.280169, Top1S acc: 3.000000, Top1T acc: 11.000000 +Train:epoch: 82, loss@min: 58.511806, loss@max: 22.130920, Top1S acc: 3.000000, Top1T acc: 10.000000 +Train:epoch: 83, loss@min: 57.445946, loss@max: 21.845903, Top1S acc: 3.000000, Top1T acc: 12.000000 +Train:epoch: 84, loss@min: 57.141708, loss@max: 21.812504, Top1S acc: 3.000000, Top1T acc: 9.000000 +Train:epoch: 85, loss@min: 56.427399, loss@max: 21.678432, Top1S acc: 3.000000, Top1T acc: 15.000000 +Train:epoch: 86, loss@min: 56.212631, loss@max: 21.519094, Top1S acc: 4.000000, Top1T acc: 15.000000 +Train:epoch: 87, loss@min: 55.407307, loss@max: 21.330109, Top1S acc: 4.000000, Top1T acc: 14.000000 +Train:epoch: 88, loss@min: 54.922943, loss@max: 21.354454, Top1S acc: 3.000000, Top1T acc: 16.000000 +Train:epoch: 89, loss@min: 54.266552, loss@max: 21.003305, Top1S acc: 3.000000, Top1T acc: 13.000000 +Train:epoch: 90, loss@min: 53.902325, loss@max: 21.008240, Top1S acc: 3.000000, Top1T acc: 18.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:33:07 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 212.641647, loss@max: 58.357555, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 2, loss@min: 184.212021, loss@max: 51.502724, Top1S acc: 0.000000, Top1T acc: 0.000000 +Train:epoch: 3, loss@min: 161.309601, loss@max: 45.557117, Top1S acc: 1.000000, Top1T acc: 0.000000 +Train:epoch: 4, loss@min: 141.876602, loss@max: 40.498142, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 5, loss@min: 126.488777, loss@max: 36.900249, Top1S acc: 0.000000, Top1T acc: 1.000000 +Train:epoch: 6, loss@min: 114.616280, loss@max: 33.967487, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 7, loss@min: 102.419060, loss@max: 30.569769, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 8, loss@min: 92.516563, loss@max: 27.509911, Top1S acc: 2.000000, Top1T acc: 2.000000 +Train:epoch: 9, loss@min: 81.138191, loss@max: 24.451670, Top1S acc: 2.000000, Top1T acc: 2.000000 +Train:epoch: 10, loss@min: 75.002701, loss@max: 22.544329, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 11, loss@min: 66.487213, loss@max: 19.958090, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 12, loss@min: 62.937496, loss@max: 19.138826, Top1S acc: 3.000000, Top1T acc: 1.000000 +Train:epoch: 13, loss@min: 61.414055, loss@max: 18.572102, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 14, loss@min: 59.375328, loss@max: 17.952356, Top1S acc: 2.000000, Top1T acc: 2.000000 +Train:epoch: 15, loss@min: 58.819473, loss@max: 17.594603, Top1S acc: 1.000000, Top1T acc: 4.000000 +Train:epoch: 16, loss@min: 57.732758, loss@max: 17.348339, Top1S acc: 0.000000, Top1T acc: 5.000000 +Train:epoch: 17, loss@min: 56.487183, loss@max: 16.853960, Top1S acc: 0.000000, Top1T acc: 6.000000 +Train:epoch: 18, loss@min: 54.709576, loss@max: 16.296926, Top1S acc: 1.000000, Top1T acc: 6.000000 +Train:epoch: 19, loss@min: 53.426361, loss@max: 16.136122, Top1S acc: 0.000000, Top1T acc: 5.000000 +Train:epoch: 20, loss@min: 51.296059, loss@max: 15.946518, Top1S acc: 0.000000, Top1T acc: 4.000000 +Train:epoch: 21, loss@min: 50.003216, loss@max: 15.827345, Top1S acc: 1.000000, Top1T acc: 4.000000 +Train:epoch: 22, loss@min: 48.221191, loss@max: 15.206623, Top1S acc: 1.000000, Top1T acc: 6.000000 +Train:epoch: 23, loss@min: 45.525681, loss@max: 14.591936, Top1S acc: 0.000000, Top1T acc: 4.000000 +Train:epoch: 24, loss@min: 44.732800, loss@max: 14.316811, Top1S acc: 1.000000, Top1T acc: 4.000000 +Train:epoch: 25, loss@min: 43.345154, loss@max: 14.022090, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 26, loss@min: 42.450569, loss@max: 14.067370, Top1S acc: 4.000000, Top1T acc: 9.000000 +Train:epoch: 27, loss@min: 41.480133, loss@max: 14.052703, Top1S acc: 2.000000, Top1T acc: 6.000000 +Train:epoch: 28, loss@min: 39.843510, loss@max: 13.716756, Top1S acc: 2.000000, Top1T acc: 8.000000 +Train:epoch: 29, loss@min: 38.945160, loss@max: 13.558784, Top1S acc: 1.000000, Top1T acc: 11.000000 +Train:epoch: 30, loss@min: 37.521111, loss@max: 13.319849, Top1S acc: 0.000000, Top1T acc: 8.000000 +Train:epoch: 31, loss@min: 35.740288, loss@max: 13.015612, Top1S acc: 4.000000, Top1T acc: 13.000000 +Train:epoch: 32, loss@min: 34.207157, loss@max: 12.726236, Top1S acc: 1.000000, Top1T acc: 14.000000 +Train:epoch: 33, loss@min: 32.798553, loss@max: 12.463800, Top1S acc: 2.000000, Top1T acc: 18.000000 +Train:epoch: 34, loss@min: 31.644287, loss@max: 12.367485, Top1S acc: 1.000000, Top1T acc: 16.000000 +Train:epoch: 35, loss@min: 31.212852, loss@max: 12.249019, Top1S acc: 1.000000, Top1T acc: 14.000000 +Train:epoch: 36, loss@min: 30.250340, loss@max: 12.122610, Top1S acc: 3.000000, Top1T acc: 16.000000 +Train:epoch: 37, loss@min: 29.567120, loss@max: 11.951060, Top1S acc: 2.000000, Top1T acc: 16.000000 +Train:epoch: 38, loss@min: 28.506565, loss@max: 11.892967, Top1S acc: 2.000000, Top1T acc: 18.000000 +Train:epoch: 39, loss@min: 28.061090, loss@max: 11.863628, Top1S acc: 2.000000, Top1T acc: 17.000000 +Train:epoch: 40, loss@min: 27.137104, loss@max: 11.643251, Top1S acc: 3.000000, Top1T acc: 19.000000 +Train:epoch: 41, loss@min: 26.835724, loss@max: 11.547449, Top1S acc: 2.000000, Top1T acc: 15.000000 +Train:epoch: 42, loss@min: 26.152184, loss@max: 11.420480, Top1S acc: 1.000000, Top1T acc: 21.000000 +Train:epoch: 43, loss@min: 25.903919, loss@max: 11.335859, Top1S acc: 2.000000, Top1T acc: 14.000000 +Train:epoch: 44, loss@min: 25.650984, loss@max: 11.230192, Top1S acc: 2.000000, Top1T acc: 17.000000 +Train:epoch: 45, loss@min: 24.385761, loss@max: 11.022908, Top1S acc: 3.000000, Top1T acc: 24.000000 +Train:epoch: 46, loss@min: 24.053600, loss@max: 10.978588, Top1S acc: 3.000000, Top1T acc: 28.000000 +Train:epoch: 47, loss@min: 23.502735, loss@max: 10.839427, Top1S acc: 3.000000, Top1T acc: 28.000000 +Train:epoch: 48, loss@min: 22.648317, loss@max: 10.702399, Top1S acc: 3.000000, Top1T acc: 28.000000 +Train:epoch: 49, loss@min: 22.224731, loss@max: 10.742319, Top1S acc: 5.000000, Top1T acc: 26.000000 +Train:epoch: 50, loss@min: 22.040884, loss@max: 10.638697, Top1S acc: 7.000000, Top1T acc: 24.000000 +Train:epoch: 51, loss@min: 21.668137, loss@max: 10.675623, Top1S acc: 6.000000, Top1T acc: 34.000000 +Train:epoch: 52, loss@min: 21.567684, loss@max: 10.622221, Top1S acc: 6.000000, Top1T acc: 31.000000 +Train:epoch: 53, loss@min: 20.768059, loss@max: 10.585890, Top1S acc: 7.000000, Top1T acc: 33.000000 +Train:epoch: 54, loss@min: 20.830582, loss@max: 10.428175, Top1S acc: 5.000000, Top1T acc: 33.000000 +Train:epoch: 55, loss@min: 20.354172, loss@max: 10.423958, Top1S acc: 3.000000, Top1T acc: 34.000000 +Train:epoch: 56, loss@min: 20.124512, loss@max: 10.380066, Top1S acc: 4.000000, Top1T acc: 38.000000 +Train:epoch: 57, loss@min: 19.903625, loss@max: 10.302890, Top1S acc: 3.000000, Top1T acc: 32.000000 +Train:epoch: 58, loss@min: 19.778450, loss@max: 10.112612, Top1S acc: 4.000000, Top1T acc: 36.000000 +Train:epoch: 59, loss@min: 19.401676, loss@max: 10.137886, Top1S acc: 4.000000, Top1T acc: 39.000000 +Train:epoch: 60, loss@min: 19.090528, loss@max: 10.096581, Top1S acc: 4.000000, Top1T acc: 43.000000 +Train:epoch: 61, loss@min: 18.725908, loss@max: 9.995279, Top1S acc: 5.000000, Top1T acc: 48.000000 +Train:epoch: 62, loss@min: 18.932575, loss@max: 9.924941, Top1S acc: 9.000000, Top1T acc: 40.000000 +Train:epoch: 63, loss@min: 18.209579, loss@max: 9.885851, Top1S acc: 7.000000, Top1T acc: 45.000000 +Train:epoch: 64, loss@min: 18.122049, loss@max: 9.857769, Top1S acc: 9.000000, Top1T acc: 42.000000 +Train:epoch: 65, loss@min: 18.059769, loss@max: 9.801446, Top1S acc: 10.000000, Top1T acc: 45.000000 +Train:epoch: 66, loss@min: 17.664190, loss@max: 9.780968, Top1S acc: 10.000000, Top1T acc: 47.000000 +Train:epoch: 67, loss@min: 17.590502, loss@max: 9.785704, Top1S acc: 8.000000, Top1T acc: 45.000000 +Train:epoch: 68, loss@min: 17.353943, loss@max: 9.803734, Top1S acc: 8.000000, Top1T acc: 47.000000 +Train:epoch: 69, loss@min: 17.398771, loss@max: 9.664808, Top1S acc: 9.000000, Top1T acc: 41.000000 +Train:epoch: 70, loss@min: 16.927147, loss@max: 9.599614, Top1S acc: 9.000000, Top1T acc: 47.000000 +Train:epoch: 71, loss@min: 16.671097, loss@max: 9.601871, Top1S acc: 11.000000, Top1T acc: 51.000000 +Train:epoch: 72, loss@min: 16.847420, loss@max: 9.596312, Top1S acc: 9.000000, Top1T acc: 51.000000 +Train:epoch: 73, loss@min: 16.545538, loss@max: 9.497894, Top1S acc: 10.000000, Top1T acc: 55.000000 +Train:epoch: 74, loss@min: 16.211397, loss@max: 9.577092, Top1S acc: 10.000000, Top1T acc: 52.000000 +Train:epoch: 75, loss@min: 16.286360, loss@max: 9.395660, Top1S acc: 10.000000, Top1T acc: 53.000000 +Train:epoch: 76, loss@min: 16.120634, loss@max: 9.445120, Top1S acc: 13.000000, Top1T acc: 54.000000 +Train:epoch: 77, loss@min: 15.966849, loss@max: 9.386924, Top1S acc: 11.000000, Top1T acc: 50.000000 +Train:epoch: 78, loss@min: 15.742432, loss@max: 9.347825, Top1S acc: 11.000000, Top1T acc: 54.000000 +Train:epoch: 79, loss@min: 15.381351, loss@max: 9.343913, Top1S acc: 12.000000, Top1T acc: 55.000000 +Train:epoch: 80, loss@min: 15.353384, loss@max: 9.334202, Top1S acc: 12.000000, Top1T acc: 61.000000 +Train:epoch: 81, loss@min: 15.423300, loss@max: 9.265988, Top1S acc: 13.000000, Top1T acc: 55.000000 +Train:epoch: 82, loss@min: 15.274950, loss@max: 9.274765, Top1S acc: 13.000000, Top1T acc: 58.000000 +Train:epoch: 83, loss@min: 14.729778, loss@max: 9.098583, Top1S acc: 13.000000, Top1T acc: 66.000000 +Train:epoch: 84, loss@min: 14.758880, loss@max: 9.147375, Top1S acc: 14.000000, Top1T acc: 60.000000 +Train:epoch: 85, loss@min: 14.689452, loss@max: 9.126575, Top1S acc: 14.000000, Top1T acc: 63.000000 +Train:epoch: 86, loss@min: 14.717051, loss@max: 9.097312, Top1S acc: 14.000000, Top1T acc: 58.000000 +Train:epoch: 87, loss@min: 14.469168, loss@max: 9.030848, Top1S acc: 14.000000, Top1T acc: 64.000000 +Train:epoch: 88, loss@min: 14.496552, loss@max: 9.154299, Top1S acc: 14.000000, Top1T acc: 63.000000 +Train:epoch: 89, loss@min: 14.564695, loss@max: 8.972867, Top1S acc: 14.000000, Top1T acc: 57.000000 +Train:epoch: 90, loss@min: 14.311118, loss@max: 9.037599, Top1S acc: 14.000000, Top1T acc: 62.000000 +Train:epoch: 91, loss@min: 14.093182, loss@max: 8.978727, Top1S acc: 14.000000, Top1T acc: 61.000000 +Train:epoch: 92, loss@min: 14.085974, loss@max: 8.987100, Top1S acc: 15.000000, Top1T acc: 58.000000 +Train:epoch: 93, loss@min: 14.027617, loss@max: 8.913364, Top1S acc: 16.000000, Top1T acc: 63.000000 +Train:epoch: 94, loss@min: 13.866748, loss@max: 8.860350, Top1S acc: 18.000000, Top1T acc: 68.000000 +Train:epoch: 95, loss@min: 13.749344, loss@max: 8.825385, Top1S acc: 18.000000, Top1T acc: 69.000000 +Train:epoch: 96, loss@min: 14.030739, loss@max: 8.850247, Top1S acc: 18.000000, Top1T acc: 61.000000 +Train:epoch: 97, loss@min: 13.693097, loss@max: 8.754869, Top1S acc: 18.000000, Top1T acc: 66.000000 +Train:epoch: 98, loss@min: 13.644906, loss@max: 8.821144, Top1S acc: 19.000000, Top1T acc: 66.000000 +Train:epoch: 99, loss@min: 13.488877, loss@max: 8.755484, Top1S acc: 19.000000, Top1T acc: 68.000000 +Train:epoch: 100, loss@min: 13.370808, loss@max: 8.793139, Top1S acc: 19.000000, Top1T acc: 69.000000 +Train:epoch: 101, loss@min: 13.482963, loss@max: 8.814525, Top1S acc: 20.000000, Top1T acc: 68.000000 +Train:epoch: 102, loss@min: 13.424303, loss@max: 8.754362, Top1S acc: 20.000000, Top1T acc: 69.000000 +Train:epoch: 103, loss@min: 13.477165, loss@max: 8.795607, Top1S acc: 20.000000, Top1T acc: 65.000000 +Train:epoch: 104, loss@min: 13.362214, loss@max: 8.684173, Top1S acc: 20.000000, Top1T acc: 67.000000 +Train:epoch: 105, loss@min: 13.215443, loss@max: 8.622541, Top1S acc: 19.000000, Top1T acc: 71.000000 +Train:epoch: 106, loss@min: 13.150870, loss@max: 8.739799, Top1S acc: 19.000000, Top1T acc: 69.000000 +Train:epoch: 107, loss@min: 13.186606, loss@max: 8.652567, Top1S acc: 19.000000, Top1T acc: 66.000000 +Train:epoch: 108, loss@min: 13.146571, loss@max: 8.627970, Top1S acc: 20.000000, Top1T acc: 70.000000 +Train:epoch: 109, loss@min: 13.138156, loss@max: 8.674212, Top1S acc: 20.000000, Top1T acc: 69.000000 +Train:epoch: 110, loss@min: 12.843795, loss@max: 8.621394, Top1S acc: 20.000000, Top1T acc: 72.000000 + Test:epoch: 110, LS: 4.587936, LT: 3.742727, Top1S: 15.456389, Top1T: 22.920893Best acc: 22.920893 +Train:epoch: 111, loss@min: 12.791426, loss@max: 8.622645, Top1S acc: 20.000000, Top1T acc: 73.000000 + Test:epoch: 111, LS: 4.579383, LT: 3.738293, Top1S: 15.456389, Top1T: 22.961460Best acc: 22.961460 +Train:epoch: 112, loss@min: 12.735255, loss@max: 8.638948, Top1S acc: 20.000000, Top1T acc: 72.000000 + Test:epoch: 112, LS: 4.571036, LT: 3.734822, Top1S: 15.578094, Top1T: 23.245436Best acc: 23.245436 +Train:epoch: 113, loss@min: 12.926144, loss@max: 8.597290, Top1S acc: 20.000000, Top1T acc: 70.000000 + Test:epoch: 113, LS: 4.563248, LT: 3.730986, Top1S: 15.578094, Top1T: 23.245436 +Train:epoch: 114, loss@min: 12.780781, loss@max: 8.677679, Top1S acc: 20.000000, Top1T acc: 71.000000 + Test:epoch: 114, LS: 4.555914, LT: 3.727113, Top1S: 15.659229, Top1T: 23.164301 +Train:epoch: 115, loss@min: 12.802048, loss@max: 8.518509, Top1S acc: 20.000000, Top1T acc: 73.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:38:24 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:41:54 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 21.362663, loss@max: 5.876664, Top1S acc: 2.000000, Top1T acc: 2.000000 +Train:epoch: 2, loss@min: 20.311575, loss@max: 5.821357, Top1S acc: 2.000000, Top1T acc: 1.000000 +Train:epoch: 3, loss@min: 19.161676, loss@max: 5.774838, Top1S acc: 3.000000, Top1T acc: 4.000000 +Train:epoch: 4, loss@min: 18.121437, loss@max: 5.748379, Top1S acc: 8.000000, Top1T acc: 8.000000 +Train:epoch: 5, loss@min: 17.216545, loss@max: 5.737211, Top1S acc: 12.000000, Top1T acc: 15.000000 +Train:epoch: 6, loss@min: 16.482195, loss@max: 5.707391, Top1S acc: 14.000000, Top1T acc: 22.000000 +Train:epoch: 7, loss@min: 15.479848, loss@max: 5.739561, Top1S acc: 25.000000, Top1T acc: 33.000000 +Train:epoch: 8, loss@min: 14.535839, loss@max: 5.736455, Top1S acc: 41.000000, Top1T acc: 46.000000 +Train:epoch: 9, loss@min: 13.696061, loss@max: 5.720241, Top1S acc: 52.000000, Top1T acc: 56.000000 +Train:epoch: 10, loss@min: 13.041336, loss@max: 5.713401, Top1S acc: 62.000000, Top1T acc: 64.000000 +Train:epoch: 11, loss@min: 12.131790, loss@max: 5.699431, Top1S acc: 73.000000, Top1T acc: 66.000000 +Train:epoch: 12, loss@min: 11.524145, loss@max: 5.666084, Top1S acc: 80.000000, Top1T acc: 77.000000 +Train:epoch: 13, loss@min: 10.931702, loss@max: 5.708709, Top1S acc: 86.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 10.066586, loss@max: 5.725176, Top1S acc: 91.000000, Top1T acc: 88.000000 +Train:epoch: 15, loss@min: 9.407824, loss@max: 5.720702, Top1S acc: 92.000000, Top1T acc: 94.000000 +Train:epoch: 16, loss@min: 8.876368, loss@max: 5.693902, Top1S acc: 93.000000, Top1T acc: 95.000000 +Train:epoch: 17, loss@min: 8.178587, loss@max: 5.664470, Top1S acc: 94.000000, Top1T acc: 98.000000 +Train:epoch: 18, loss@min: 7.794544, loss@max: 5.643211, Top1S acc: 95.000000, Top1T acc: 98.000000 +Train:epoch: 19, loss@min: 7.212024, loss@max: 5.609852, Top1S acc: 96.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 6.803239, loss@max: 5.587897, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 21, loss@min: 6.286613, loss@max: 5.522614, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 5.837852, loss@max: 5.500116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 5.461514, loss@max: 5.359605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 5.111084, loss@max: 5.354867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 4.720569, loss@max: 5.274837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 4.437919, loss@max: 5.210694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 4.084098, loss@max: 5.082307, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 28, loss@min: 3.787584, loss@max: 5.065114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 3.511851, loss@max: 4.910411, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 3.239974, loss@max: 4.878917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 3.130883, loss@max: 4.672347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 2.931749, loss@max: 4.651725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 2.759018, loss@max: 4.506876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 2.613691, loss@max: 4.418297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 2.486720, loss@max: 4.391704, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 2.342906, loss@max: 4.239657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 2.270533, loss@max: 4.116188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 2.101396, loss@max: 4.044929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.995136, loss@max: 3.989400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.916691, loss@max: 3.945212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.820737, loss@max: 3.853380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.828255, loss@max: 3.767996, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 43, loss@min: 1.732021, loss@max: 3.714968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.630460, loss@max: 3.575778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.573213, loss@max: 3.474469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.498029, loss@max: 3.387051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.471723, loss@max: 3.338631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.426648, loss@max: 3.246000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.388968, loss@max: 3.211033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.391533, loss@max: 3.153813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.370804, loss@max: 3.074706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.327316, loss@max: 3.048421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.335778, loss@max: 2.953538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.280533, loss@max: 2.933794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.256103, loss@max: 2.848274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.263695, loss@max: 2.793753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.207187, loss@max: 2.765950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.235376, loss@max: 2.732789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.219846, loss@max: 2.702139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.222862, loss@max: 2.599970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.217796, loss@max: 2.566078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.236578, loss@max: 2.549078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.174364, loss@max: 2.493901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.209184, loss@max: 2.432350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.219634, loss@max: 2.400374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.213568, loss@max: 2.386013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.207980, loss@max: 2.327340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.237671, loss@max: 2.321374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.247680, loss@max: 2.255202, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 70, loss@min: 1.205467, loss@max: 2.248574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.206246, loss@max: 2.180424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.250047, loss@max: 2.195940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.228068, loss@max: 2.162850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.235052, loss@max: 2.102046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.271665, loss@max: 2.047065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.255943, loss@max: 2.029023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.205477, loss@max: 2.031935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.242863, loss@max: 2.050617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.225875, loss@max: 2.019856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.199039, loss@max: 2.019881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.216871, loss@max: 2.025702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.222513, loss@max: 1.949938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.175858, loss@max: 2.032873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.181387, loss@max: 2.003342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.174900, loss@max: 1.979954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.236475, loss@max: 2.016801, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 87, loss@min: 1.181839, loss@max: 1.926417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.199752, loss@max: 1.901848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.201321, loss@max: 1.896601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.216523, loss@max: 1.880844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.198341, loss@max: 1.938190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.202421, loss@max: 1.872972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.179867, loss@max: 1.890343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.224941, loss@max: 1.834667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.175884, loss@max: 1.853629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.171433, loss@max: 1.853902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.193980, loss@max: 1.850747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.173837, loss@max: 1.864666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.171946, loss@max: 1.827372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.186965, loss@max: 1.851010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 1.160867, loss@max: 1.811636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.166163, loss@max: 1.859798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.158903, loss@max: 1.837259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.197978, loss@max: 1.825890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.153712, loss@max: 1.794578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 1.133281, loss@max: 1.822028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.156437, loss@max: 1.827948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 1.159676, loss@max: 1.776825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.145098, loss@max: 1.797897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.189152, loss@max: 1.773577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.245279, LT: 1.421079, Top1S: 69.858009, Top1T: 66.328598Best acc: 69.858009 +Train:epoch: 111, loss@min: 1.149936, loss@max: 1.814956, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:44:48 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.621660, loss@max: 5.305980, Top1S acc: 19.000000, Top1T acc: 27.000000 +Train:epoch: 2, loss@min: 10.594125, loss@max: 4.963658, Top1S acc: 82.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 6.768922, loss@max: 4.828369, Top1S acc: 97.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 4.206782, loss@max: 4.799801, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 5, loss@min: 2.574844, loss@max: 4.669985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.574144, loss@max: 4.500908, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.945796, loss@max: 4.342649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.756250, loss@max: 3.980782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.752617, loss@max: 3.620898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.925980, loss@max: 3.215396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.899354, loss@max: 2.928214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.971410, loss@max: 2.561127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.987368, loss@max: 2.288469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.028072, loss@max: 2.091202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.139145, loss@max: 1.935562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.243469, loss@max: 1.734552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.296911, loss@max: 1.630225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.387891, loss@max: 1.468936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.422454, loss@max: 1.348851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.370726, loss@max: 1.378588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.392583, loss@max: 1.343897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.285445, loss@max: 1.467537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.178226, loss@max: 1.568225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.990918, loss@max: 1.696244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.931422, loss@max: 1.773608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.889532, loss@max: 1.783110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.874002, loss@max: 1.800524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.942653, loss@max: 1.796790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.948416, loss@max: 1.696961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.908960, loss@max: 1.716238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.055524, loss@max: 1.639183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.125651, loss@max: 1.608818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.144702, loss@max: 1.519237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.062910, loss@max: 1.514673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.131932, loss@max: 1.562951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.010070, loss@max: 1.634562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.038593, loss@max: 1.588801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.985691, loss@max: 1.740911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.985921, loss@max: 1.657338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.016146, loss@max: 1.649356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.988755, loss@max: 1.650122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.087065, loss@max: 1.624338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.078236, loss@max: 1.653822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.051103, loss@max: 1.540786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.077526, loss@max: 1.572250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.017855, loss@max: 1.598792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.015742, loss@max: 1.628245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.000529, loss@max: 1.608321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.992943, loss@max: 1.620013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.989362, loss@max: 1.584920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.049504, loss@max: 1.517917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.042707, loss@max: 1.526020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.075741, loss@max: 1.520250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.997980, loss@max: 1.548331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.977928, loss@max: 1.649986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955884, loss@max: 1.653648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954683, loss@max: 1.594882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975250, loss@max: 1.630733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.005323, loss@max: 1.553436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.029621, loss@max: 1.578668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.979345, loss@max: 1.562655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.059836, loss@max: 1.515398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.005370, loss@max: 1.586997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.015598, loss@max: 1.596397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.995423, loss@max: 1.549578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.002359, loss@max: 1.564919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.018414, loss@max: 1.501160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.069112, loss@max: 1.507662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.015806, loss@max: 1.537596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.036046, loss@max: 1.523318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.984364, loss@max: 1.566095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.933495, loss@max: 1.570584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.986229, loss@max: 1.553811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.997040, loss@max: 1.546159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.984651, loss@max: 1.517541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.977966, loss@max: 1.522290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952414, loss@max: 1.542864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.983201, loss@max: 1.517567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.031307, loss@max: 1.450949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.032732, loss@max: 1.459436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.026073, loss@max: 1.482179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.007393, loss@max: 1.483030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.952974, loss@max: 1.521258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.949716, loss@max: 1.518993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.950292, loss@max: 1.534064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.935093, loss@max: 1.569591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.981495, loss@max: 1.483823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.999234, loss@max: 1.475085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.988210, loss@max: 1.455425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.001273, loss@max: 1.442113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.999158, loss@max: 1.472718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.022639, loss@max: 1.473708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.981959, loss@max: 1.497394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.967537, loss@max: 1.485094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.957933, loss@max: 1.513401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.962856, loss@max: 1.469107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.972181, loss@max: 1.450241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.955985, loss@max: 1.471951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.965189, loss@max: 1.519804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.983318, loss@max: 1.437407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.975823, loss@max: 1.446625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.964709, loss@max: 1.488211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.954030, loss@max: 1.497586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.979812, loss@max: 1.464154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.961783, loss@max: 1.433069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.956421, loss@max: 1.439880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.948193, loss@max: 1.463227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.953168, loss@max: 1.466956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.954029, loss@max: 1.448820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.007642, loss@max: 1.414296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.869006, LT: 0.918948, Top1S: 75.983772, Top1T: 74.158218Best acc: 75.983772 +Train:epoch: 111, loss@min: 1.012518, loss@max: 1.401855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.866588, LT: 0.920610, Top1S: 76.105476, Top1T: 74.279922Best acc: 76.105476 +Train:epoch: 112, loss@min: 0.996405, loss@max: 1.414744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.865451, LT: 0.921329, Top1S: 76.267746, Top1T: 74.239349Best acc: 76.267746 +Train:epoch: 113, loss@min: 0.976032, loss@max: 1.426867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.865750, LT: 0.920551, Top1S: 76.348885, Top1T: 74.279922Best acc: 76.348885 +Train:epoch: 114, loss@min: 0.960931, loss@max: 1.460101, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:49:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.669646, loss@max: 6.808699, Top1S acc: 79.000000, Top1T acc: 73.000000 +Train:epoch: 2, loss@min: 2.030344, loss@max: 6.655988, Top1S acc: 97.000000, Top1T acc: 90.000000 +Train:epoch: 3, loss@min: 2.591679, loss@max: 4.581866, Top1S acc: 99.000000, Top1T acc: 92.000000 +Train:epoch: 4, loss@min: 2.724596, loss@max: 2.943516, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 5, loss@min: 2.907858, loss@max: 2.406737, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 2.318779, loss@max: 2.501066, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.796922, loss@max: 3.130605, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 8, loss@min: 1.350971, loss@max: 3.105649, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 1.379300, loss@max: 3.169656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.357005, loss@max: 3.213413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.850197, loss@max: 3.065168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.844940, loss@max: 3.008788, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 1.802587, loss@max: 3.014298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 2.319582, loss@max: 3.152786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.782426, loss@max: 3.197145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.697948, loss@max: 2.989515, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 1.505455, loss@max: 3.506832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.532955, loss@max: 3.275803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.697685, loss@max: 3.540416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.713087, loss@max: 3.063752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.923060, loss@max: 2.916512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.713316, loss@max: 2.838078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.762751, loss@max: 2.765033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.972465, loss@max: 3.055413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.851887, loss@max: 3.295658, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 26, loss@min: 1.416014, loss@max: 3.282158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.384650, loss@max: 3.085181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.628303, loss@max: 3.573516, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 1.687057, loss@max: 3.258578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.637564, loss@max: 3.396602, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 31, loss@min: 1.641298, loss@max: 3.057233, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.445135, loss@max: 2.859159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.663989, loss@max: 2.666942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.637661, loss@max: 2.705955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.669112, loss@max: 2.690737, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 36, loss@min: 1.712813, loss@max: 2.952349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.538409, loss@max: 2.792546, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 38, loss@min: 1.539177, loss@max: 2.913489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.429403, loss@max: 2.855950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.451151, loss@max: 2.704109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.536251, loss@max: 2.755774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.641623, loss@max: 2.718507, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 43, loss@min: 1.370731, loss@max: 2.887355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.084564, loss@max: 2.985583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.166159, loss@max: 2.951533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.213281, loss@max: 3.026198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.452496, loss@max: 2.650850, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 48, loss@min: 1.377391, loss@max: 2.293472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.572072, loss@max: 2.122208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.369960, loss@max: 2.012895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.459819, loss@max: 2.274179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.558056, loss@max: 2.413667, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 1.509029, loss@max: 2.461546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.305559, loss@max: 2.631220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.056365, loss@max: 2.606328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.012077, loss@max: 2.518240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.197136, loss@max: 2.681985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.233688, loss@max: 2.508600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.227238, loss@max: 2.342199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.228659, loss@max: 2.480454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.154811, loss@max: 2.260036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.279052, loss@max: 2.311918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.345486, loss@max: 2.257425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.413401, loss@max: 2.026751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.360916, loss@max: 2.009357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.302392, loss@max: 2.016881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.423349, loss@max: 2.045855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.199247, loss@max: 2.185655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.029941, loss@max: 2.354040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.921042, loss@max: 2.400871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.124660, loss@max: 2.284308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.030560, loss@max: 2.179028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.168871, loss@max: 1.959089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.168093, loss@max: 1.842302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.228121, loss@max: 1.859795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.283086, loss@max: 1.862220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.051666, loss@max: 1.858864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.064699, loss@max: 2.020474, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 1.054977, loss@max: 1.950261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.983365, loss@max: 2.089693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.045326, loss@max: 2.022095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.040398, loss@max: 1.874446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.113018, loss@max: 1.798668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.045053, loss@max: 1.808327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.168534, loss@max: 1.777858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.124969, loss@max: 1.792323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.245320, loss@max: 1.727562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.188019, loss@max: 1.742610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.993237, loss@max: 1.783572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.022013, loss@max: 1.786091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.119584, loss@max: 1.744089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.031517, loss@max: 1.840135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.033132, loss@max: 1.830115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.084261, loss@max: 1.668677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.170263, loss@max: 1.759250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.023600, loss@max: 1.639204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.038996, loss@max: 1.745114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.986817, loss@max: 1.674276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.007016, loss@max: 1.753232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.985506, loss@max: 1.720436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 1.038725, loss@max: 1.730497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.076903, loss@max: 1.698419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.999624, loss@max: 1.645623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.041044, loss@max: 1.681787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.998176, loss@max: 1.700918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 1.092148, loss@max: 1.613988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.106041, loss@max: 1.593007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 1.122797, loss@max: 1.576855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.077080, loss@max: 1.572578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.033335, loss@max: 1.661606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.645543, LT: 2.039603, Top1S: 62.271805, Top1T: 52.251522Best acc: 62.271805 +Train:epoch: 111, loss@min: 1.037167, loss@max: 1.556415, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Sep 6 23:52:23 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 19.114712, loss@max: 6.124223, Top1S acc: 1.000000, Top1T acc: 31.000000 +Train:epoch: 2, loss@min: 15.432112, loss@max: 6.055767, Top1S acc: 1.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 13.040105, loss@max: 6.184859, Top1S acc: 1.000000, Top1T acc: 96.000000 +Train:epoch: 4, loss@min: 11.817887, loss@max: 6.312570, Top1S acc: 1.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 11.185863, loss@max: 6.181784, Top1S acc: 1.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 10.786366, loss@max: 5.898069, Top1S acc: 2.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 10.411386, loss@max: 5.580064, Top1S acc: 4.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 10.215234, loss@max: 4.997096, Top1S acc: 6.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 10.032800, loss@max: 4.504411, Top1S acc: 7.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 9.947571, loss@max: 4.046770, Top1S acc: 8.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 9.699005, loss@max: 3.817812, Top1S acc: 9.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 9.484820, loss@max: 3.611913, Top1S acc: 11.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 9.175473, loss@max: 3.548743, Top1S acc: 15.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 8.818018, loss@max: 3.563504, Top1S acc: 19.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 8.441767, loss@max: 3.566406, Top1S acc: 21.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 8.080388, loss@max: 3.571951, Top1S acc: 24.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 7.715004, loss@max: 3.614261, Top1S acc: 27.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 7.402887, loss@max: 3.556813, Top1S acc: 28.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 7.123474, loss@max: 3.484008, Top1S acc: 36.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 6.849287, loss@max: 3.554080, Top1S acc: 40.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 6.706823, loss@max: 3.366567, Top1S acc: 43.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 6.450154, loss@max: 3.310530, Top1S acc: 49.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 6.246575, loss@max: 3.307857, Top1S acc: 50.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 5.979982, loss@max: 3.298604, Top1S acc: 55.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 5.793598, loss@max: 3.238887, Top1S acc: 58.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 5.544852, loss@max: 3.176004, Top1S acc: 67.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 5.360354, loss@max: 3.118284, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 5.232481, loss@max: 3.064232, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 5.005364, loss@max: 2.978941, Top1S acc: 74.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 4.781749, loss@max: 3.039556, Top1S acc: 78.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 4.627422, loss@max: 2.908794, Top1S acc: 81.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 4.479016, loss@max: 2.976231, Top1S acc: 84.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 4.334763, loss@max: 2.852266, Top1S acc: 86.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 4.098804, loss@max: 2.881928, Top1S acc: 88.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 3.975806, loss@max: 2.854172, Top1S acc: 89.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 3.736218, loss@max: 2.960213, Top1S acc: 92.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 3.646895, loss@max: 2.939064, Top1S acc: 93.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 3.500623, loss@max: 2.917610, Top1S acc: 95.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 3.367457, loss@max: 2.821926, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 3.313349, loss@max: 2.717834, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 3.187279, loss@max: 2.721094, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 3.132854, loss@max: 2.628158, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 3.080023, loss@max: 2.633886, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 2.944549, loss@max: 2.573584, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.804011, loss@max: 2.521659, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.681646, loss@max: 2.544649, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.597852, loss@max: 2.567078, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.506020, loss@max: 2.569475, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.421285, loss@max: 2.572241, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 2.369011, loss@max: 2.531850, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 2.317199, loss@max: 2.448294, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 2.336329, loss@max: 2.370837, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 2.327332, loss@max: 2.302386, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 2.222875, loss@max: 2.330691, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 2.099350, loss@max: 2.438024, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.998970, loss@max: 2.406239, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.970745, loss@max: 2.412479, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.963919, loss@max: 2.403270, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.975122, loss@max: 2.312056, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.962969, loss@max: 2.285135, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.852166, loss@max: 2.276611, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.928813, loss@max: 2.180094, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.869093, loss@max: 2.283560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.860813, loss@max: 2.182289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.778292, loss@max: 2.149605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.783850, loss@max: 2.167473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.761571, loss@max: 2.142579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.759405, loss@max: 2.094554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.706404, loss@max: 2.155318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.679331, loss@max: 2.161398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.619522, loss@max: 2.142142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.564397, loss@max: 2.200257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.626147, loss@max: 2.102960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.607486, loss@max: 2.070977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.602744, loss@max: 2.000112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.603020, loss@max: 1.998141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.600863, loss@max: 1.983807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.625569, loss@max: 1.999444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.624802, loss@max: 1.959476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.598538, loss@max: 1.925823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.557285, loss@max: 1.923374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.554852, loss@max: 1.927963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.496859, loss@max: 2.019783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.478977, loss@max: 1.992136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.451488, loss@max: 2.029989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.444206, loss@max: 1.995113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.472227, loss@max: 1.915634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.486794, loss@max: 1.886659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.479196, loss@max: 1.859283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.472103, loss@max: 1.850018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.509239, loss@max: 1.843042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.515018, loss@max: 1.834107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.458757, loss@max: 1.851468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.463752, loss@max: 1.826990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.449955, loss@max: 1.857862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.451069, loss@max: 1.814142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.431594, loss@max: 1.830457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.416825, loss@max: 1.863395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.410564, loss@max: 1.853842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.393825, loss@max: 1.823161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 1.407647, loss@max: 1.802547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.431047, loss@max: 1.811520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.384174, loss@max: 1.839061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.409762, loss@max: 1.780625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.409802, loss@max: 1.762377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 1.392145, loss@max: 1.761981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.380033, loss@max: 1.767469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 1.389762, loss@max: 1.762675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.385690, loss@max: 1.773959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.405222, loss@max: 1.762176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.745755, LT: 1.595346, Top1S: 60.365112, Top1T: 61.784988Best acc: 61.784988 +Train:epoch: 111, loss@min: 1.430078, loss@max: 1.710024, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 300, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 200} + +------------------------------------------- +Wed Sep 6 23:55:37 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.621660, loss@max: 5.256390, Top1S acc: 19.000000, Top1T acc: 27.000000 +Train:epoch: 2, loss@min: 10.593062, loss@max: 4.870138, Top1S acc: 82.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 6.765776, loss@max: 4.695418, Top1S acc: 97.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 4.200396, loss@max: 4.637843, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 5, loss@min: 2.562294, loss@max: 4.500196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.555027, loss@max: 4.332751, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.923645, loss@max: 4.195140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.716699, loss@max: 3.862826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.698993, loss@max: 3.526287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.861281, loss@max: 3.121335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.855511, loss@max: 2.831999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.932256, loss@max: 2.443092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.962038, loss@max: 2.135571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.022918, loss@max: 1.922444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.147013, loss@max: 1.737125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.259928, loss@max: 1.536904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.300424, loss@max: 1.459841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.373434, loss@max: 1.333961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.365967, loss@max: 1.242294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.319696, loss@max: 1.274454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.330583, loss@max: 1.236588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.224861, loss@max: 1.349997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.118998, loss@max: 1.449533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.927743, loss@max: 1.586658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.887584, loss@max: 1.669443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.820255, loss@max: 1.682204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.812529, loss@max: 1.703065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.882813, loss@max: 1.679735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.898832, loss@max: 1.588988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.888681, loss@max: 1.589271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.027413, loss@max: 1.492674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.099718, loss@max: 1.436525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.133936, loss@max: 1.363202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.062114, loss@max: 1.381094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.093541, loss@max: 1.401542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.983490, loss@max: 1.518406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.011161, loss@max: 1.478831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.974476, loss@max: 1.575894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.958143, loss@max: 1.539300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.000395, loss@max: 1.516152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.942057, loss@max: 1.502151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.045464, loss@max: 1.491907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.047863, loss@max: 1.514199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.013350, loss@max: 1.444184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.013295, loss@max: 1.447653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.957133, loss@max: 1.505593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.001101, loss@max: 1.523192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.000644, loss@max: 1.480656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.993042, loss@max: 1.483104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.991328, loss@max: 1.492853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.020538, loss@max: 1.426994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.012316, loss@max: 1.449640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.020536, loss@max: 1.445435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.019799, loss@max: 1.505700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.973163, loss@max: 1.546734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.943295, loss@max: 1.546558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.959921, loss@max: 1.527218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.977983, loss@max: 1.577483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.011887, loss@max: 1.557108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.034650, loss@max: 1.525465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.942812, loss@max: 1.580108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.032794, loss@max: 1.524545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.993009, loss@max: 1.579060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.014496, loss@max: 1.547721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.982372, loss@max: 1.472641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.035146, loss@max: 1.511497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.083173, loss@max: 1.480597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.054814, loss@max: 1.464105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.022489, loss@max: 1.495185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.992674, loss@max: 1.521315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.965847, loss@max: 1.580718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.898584, loss@max: 1.693534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.968559, loss@max: 1.637991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.987425, loss@max: 1.532132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.021506, loss@max: 1.516673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.038822, loss@max: 1.510600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.065579, loss@max: 1.558449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.013516, loss@max: 1.532641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.036387, loss@max: 1.482454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.026298, loss@max: 1.553267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.996831, loss@max: 1.537625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.961837, loss@max: 1.556002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.930740, loss@max: 1.589681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.977686, loss@max: 1.586151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.985411, loss@max: 1.532554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.974707, loss@max: 1.518579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.049712, loss@max: 1.433184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.044846, loss@max: 1.468093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.014463, loss@max: 1.502538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.054959, loss@max: 1.541389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.012802, loss@max: 1.561116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.982584, loss@max: 1.481925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.902450, loss@max: 1.583187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.941891, loss@max: 1.578767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.960050, loss@max: 1.566495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.002996, loss@max: 1.464460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.039573, loss@max: 1.427711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.043033, loss@max: 1.463293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.963958, loss@max: 1.495708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.039500, loss@max: 1.430377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.956527, loss@max: 1.519480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.967107, loss@max: 1.505033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.971733, loss@max: 1.489208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.978545, loss@max: 1.467375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.982311, loss@max: 1.431641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.969420, loss@max: 1.445911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.955667, loss@max: 1.492247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.981034, loss@max: 1.532873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.971656, loss@max: 1.450928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.020116, loss@max: 1.456138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.013700, loss@max: 1.494176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.974814, loss@max: 1.516889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.962586, loss@max: 1.474807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.922270, loss@max: 1.544715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.976922, loss@max: 1.494239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.995206, loss@max: 1.466975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.985009, loss@max: 1.481289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 1.023710, loss@max: 1.421078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.976813, loss@max: 1.474108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.995572, loss@max: 1.460941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.960530, loss@max: 1.470514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.982000, loss@max: 1.492302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 1.005936, loss@max: 1.486718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.971371, loss@max: 1.500367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.989622, loss@max: 1.425552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.983706, loss@max: 1.455941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.961998, loss@max: 1.510424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.971691, loss@max: 1.507163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.978716, loss@max: 1.487445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 1.000180, loss@max: 1.458034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 1.014068, loss@max: 1.424895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.970109, loss@max: 1.472791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.931567, loss@max: 1.490008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.981591, loss@max: 1.472530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.930672, loss@max: 1.539457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.949125, loss@max: 1.490904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 1.036213, loss@max: 1.449409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.992504, loss@max: 1.468575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 1.023541, loss@max: 1.442510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 1.030967, loss@max: 1.442721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.983539, loss@max: 1.487895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.974311, loss@max: 1.500969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.953219, loss@max: 1.516740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.960133, loss@max: 1.519615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.965097, loss@max: 1.456534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.918403, loss@max: 1.534457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.957027, loss@max: 1.480047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 1.055466, loss@max: 1.404324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 1.022847, loss@max: 1.420218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.996577, loss@max: 1.427633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 151, loss@min: 0.963866, loss@max: 1.435175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 152, loss@min: 0.929544, loss@max: 1.510909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 153, loss@min: 0.959234, loss@max: 1.493423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 154, loss@min: 0.940718, loss@max: 1.503606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 155, loss@min: 0.951400, loss@max: 1.504115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 156, loss@min: 0.968624, loss@max: 1.460636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 157, loss@min: 0.986589, loss@max: 1.446011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 158, loss@min: 1.034780, loss@max: 1.413262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 159, loss@min: 1.017700, loss@max: 1.403206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 160, loss@min: 1.004248, loss@max: 1.433783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 161, loss@min: 0.968803, loss@max: 1.454874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 162, loss@min: 0.973973, loss@max: 1.451017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 163, loss@min: 0.960037, loss@max: 1.461124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 164, loss@min: 0.924950, loss@max: 1.483515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 165, loss@min: 0.945994, loss@max: 1.463383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 166, loss@min: 0.958897, loss@max: 1.475480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 167, loss@min: 0.974818, loss@max: 1.433568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 168, loss@min: 0.990392, loss@max: 1.430383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 169, loss@min: 0.973108, loss@max: 1.447388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 170, loss@min: 0.975161, loss@max: 1.429336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 171, loss@min: 0.938128, loss@max: 1.451765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 172, loss@min: 0.975299, loss@max: 1.433275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 173, loss@min: 0.974551, loss@max: 1.459095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 174, loss@min: 0.980441, loss@max: 1.446828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 175, loss@min: 0.973354, loss@max: 1.413127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 176, loss@min: 0.951965, loss@max: 1.446006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 177, loss@min: 0.967353, loss@max: 1.421730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 178, loss@min: 0.975578, loss@max: 1.446256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 179, loss@min: 0.975717, loss@max: 1.410850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 180, loss@min: 0.959731, loss@max: 1.436273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 181, loss@min: 0.955216, loss@max: 1.465857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 182, loss@min: 0.967268, loss@max: 1.443216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 183, loss@min: 0.969684, loss@max: 1.452015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 184, loss@min: 0.959892, loss@max: 1.423553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 185, loss@min: 0.987496, loss@max: 1.408398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 186, loss@min: 0.982972, loss@max: 1.413976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 187, loss@min: 0.977870, loss@max: 1.415262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 188, loss@min: 0.947391, loss@max: 1.441433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 189, loss@min: 0.936231, loss@max: 1.475936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 190, loss@min: 0.940863, loss@max: 1.439200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 191, loss@min: 0.954764, loss@max: 1.448057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 192, loss@min: 0.939136, loss@max: 1.462572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 193, loss@min: 0.953578, loss@max: 1.429521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 194, loss@min: 0.968733, loss@max: 1.408864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 195, loss@min: 0.952070, loss@max: 1.427616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 196, loss@min: 0.974382, loss@max: 1.407804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 197, loss@min: 1.005356, loss@max: 1.385037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 198, loss@min: 0.977360, loss@max: 1.407158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 199, loss@min: 1.001449, loss@max: 1.399453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 200, loss@min: 0.988835, loss@max: 1.395023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 200, LS: 0.874226, LT: 0.902252, Top1S: 77.484787, Top1T: 74.888435Best acc: 77.484787 +Train:epoch: 201, loss@min: 0.969755, loss@max: 1.414330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 201, LS: 0.874990, LT: 0.900118, Top1S: 77.484787, Top1T: 75.091278 +Train:epoch: 202, loss@min: 0.967065, loss@max: 1.421451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 202, LS: 0.874783, LT: 0.899278, Top1S: 77.484787, Top1T: 75.010139 +Train:epoch: 203, loss@min: 0.938300, loss@max: 1.452356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 203, LS: 0.874225, LT: 0.898590, Top1S: 77.525352, Top1T: 75.131844Best acc: 77.525352 +Train:epoch: 204, loss@min: 0.951207, loss@max: 1.437162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 204, LS: 0.874438, LT: 0.897533, Top1S: 77.484787, Top1T: 75.131844 +Train:epoch: 205, loss@min: 0.956628, loss@max: 1.421010, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 200} + +------------------------------------------- +Thu Sep 7 00:02:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.621657, loss@max: 5.221659, Top1S acc: 19.000000, Top1T acc: 27.000000 +Train:epoch: 2, loss@min: 10.592455, loss@max: 4.804513, Top1S acc: 82.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 6.764203, loss@max: 4.601762, Top1S acc: 97.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 4.197367, loss@max: 4.522769, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 5, loss@min: 2.555286, loss@max: 4.377723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.542637, loss@max: 4.210408, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.908945, loss@max: 4.084649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.689695, loss@max: 3.774285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.660501, loss@max: 3.455276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.809866, loss@max: 3.054272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.815364, loss@max: 2.762637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.894117, loss@max: 2.363955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.931371, loss@max: 2.036381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.004213, loss@max: 1.805022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.134826, loss@max: 1.594299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.256799, loss@max: 1.392116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.297379, loss@max: 1.321594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.355038, loss@max: 1.217537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.318918, loss@max: 1.155688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.267769, loss@max: 1.193792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.248356, loss@max: 1.154172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.149794, loss@max: 1.257991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.039573, loss@max: 1.339271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.868862, loss@max: 1.461544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.843041, loss@max: 1.527764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.757068, loss@max: 1.549590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.742140, loss@max: 1.580517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.799285, loss@max: 1.546467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.833294, loss@max: 1.457261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.840328, loss@max: 1.448995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962302, loss@max: 1.323937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.013096, loss@max: 1.259305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.077812, loss@max: 1.203023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.027433, loss@max: 1.212865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.030251, loss@max: 1.219552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.937617, loss@max: 1.333087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.966373, loss@max: 1.307359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.899044, loss@max: 1.369148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.897090, loss@max: 1.361355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.930013, loss@max: 1.330262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.872332, loss@max: 1.338640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.964784, loss@max: 1.299807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.966178, loss@max: 1.306370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.915418, loss@max: 1.283885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.895966, loss@max: 1.304960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.885638, loss@max: 1.354940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.932887, loss@max: 1.318164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.934799, loss@max: 1.258572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938578, loss@max: 1.276287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.932095, loss@max: 1.293334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.965726, loss@max: 1.243131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.931906, loss@max: 1.260203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.960389, loss@max: 1.262851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.937332, loss@max: 1.290292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.895789, loss@max: 1.345164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.867197, loss@max: 1.354494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.860583, loss@max: 1.345970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.904164, loss@max: 1.357129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.965093, loss@max: 1.301808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.970576, loss@max: 1.296336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.895632, loss@max: 1.318980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.962553, loss@max: 1.285588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.924597, loss@max: 1.357074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.975813, loss@max: 1.310329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.964029, loss@max: 1.272019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.949914, loss@max: 1.290958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.990072, loss@max: 1.280776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.963794, loss@max: 1.296142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.922820, loss@max: 1.329689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.923256, loss@max: 1.340900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.897044, loss@max: 1.355516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.861021, loss@max: 1.433573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.906035, loss@max: 1.413730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.940860, loss@max: 1.321920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.963389, loss@max: 1.293724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955069, loss@max: 1.322574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.944358, loss@max: 1.324020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.968915, loss@max: 1.294131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.960729, loss@max: 1.248066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.956691, loss@max: 1.316253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.910131, loss@max: 1.360402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.921917, loss@max: 1.340049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.873908, loss@max: 1.361363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.906750, loss@max: 1.344383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.932822, loss@max: 1.321176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.943274, loss@max: 1.312621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.030415, loss@max: 1.241125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.973758, loss@max: 1.273808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.914218, loss@max: 1.319892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.924855, loss@max: 1.371020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.920071, loss@max: 1.384082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.899976, loss@max: 1.363207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.878167, loss@max: 1.385365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.906921, loss@max: 1.339608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.930870, loss@max: 1.349451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.035289, loss@max: 1.282963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.063890, loss@max: 1.275830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.038480, loss@max: 1.277183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.925741, loss@max: 1.351787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943148, loss@max: 1.302091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.895162, loss@max: 1.406931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.905722, loss@max: 1.421262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.892755, loss@max: 1.407763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.936200, loss@max: 1.357975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.939143, loss@max: 1.305243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.946939, loss@max: 1.288993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.952061, loss@max: 1.322608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.969153, loss@max: 1.308830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.959437, loss@max: 1.296612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.965833, loss@max: 1.316056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.955027, loss@max: 1.378786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.915870, loss@max: 1.368284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.920096, loss@max: 1.347497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.884871, loss@max: 1.386965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.913655, loss@max: 1.345523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.949752, loss@max: 1.370099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.943806, loss@max: 1.349677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 1.002479, loss@max: 1.267401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.942877, loss@max: 1.322951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 1.016509, loss@max: 1.318959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.943665, loss@max: 1.336602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.911915, loss@max: 1.367791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.916174, loss@max: 1.354620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.963893, loss@max: 1.381175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.956094, loss@max: 1.321524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.926705, loss@max: 1.339478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.890880, loss@max: 1.387056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.923003, loss@max: 1.388802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.982565, loss@max: 1.344477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 1.019399, loss@max: 1.308116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.968723, loss@max: 1.303260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.943084, loss@max: 1.367110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.892242, loss@max: 1.411133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.957682, loss@max: 1.375992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.924521, loss@max: 1.428024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.928908, loss@max: 1.366372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.985461, loss@max: 1.341098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.970699, loss@max: 1.330817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.949585, loss@max: 1.347087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 1.003787, loss@max: 1.367383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.948251, loss@max: 1.402543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.938760, loss@max: 1.393348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.930554, loss@max: 1.425127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.931168, loss@max: 1.396847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.952522, loss@max: 1.364426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.971846, loss@max: 1.383761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.963145, loss@max: 1.361231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 1.009815, loss@max: 1.335958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.935265, loss@max: 1.371131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.931437, loss@max: 1.412749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 151, loss@min: 0.961545, loss@max: 1.387603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 152, loss@min: 0.987839, loss@max: 1.408824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 153, loss@min: 0.937808, loss@max: 1.385923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 154, loss@min: 0.970119, loss@max: 1.387619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 155, loss@min: 0.969994, loss@max: 1.380865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 156, loss@min: 0.958148, loss@max: 1.428836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 157, loss@min: 0.976945, loss@max: 1.365733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 158, loss@min: 0.989472, loss@max: 1.365950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 159, loss@min: 0.970757, loss@max: 1.365118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 160, loss@min: 0.946142, loss@max: 1.433132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 161, loss@min: 0.935074, loss@max: 1.382130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 162, loss@min: 0.957805, loss@max: 1.396057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 163, loss@min: 0.973585, loss@max: 1.407850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 164, loss@min: 0.981575, loss@max: 1.399172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 165, loss@min: 0.954066, loss@max: 1.401197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 166, loss@min: 0.958229, loss@max: 1.411400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 167, loss@min: 0.991393, loss@max: 1.380172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 168, loss@min: 0.976747, loss@max: 1.405193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 169, loss@min: 0.979179, loss@max: 1.456562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 170, loss@min: 0.956924, loss@max: 1.427771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 171, loss@min: 0.913543, loss@max: 1.463728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 172, loss@min: 0.974677, loss@max: 1.392182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 173, loss@min: 1.016268, loss@max: 1.380313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 174, loss@min: 1.036846, loss@max: 1.443176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 175, loss@min: 0.964272, loss@max: 1.413837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 176, loss@min: 0.897570, loss@max: 1.503346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 177, loss@min: 0.963073, loss@max: 1.432666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 178, loss@min: 0.970697, loss@max: 1.478569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 179, loss@min: 0.997014, loss@max: 1.400124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 180, loss@min: 0.999082, loss@max: 1.433184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 181, loss@min: 0.957042, loss@max: 1.436304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 182, loss@min: 1.021410, loss@max: 1.367274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 183, loss@min: 0.975798, loss@max: 1.390584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 184, loss@min: 0.964476, loss@max: 1.438527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 185, loss@min: 0.942007, loss@max: 1.430851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 186, loss@min: 0.936064, loss@max: 1.467809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 187, loss@min: 1.012342, loss@max: 1.437489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 188, loss@min: 0.938832, loss@max: 1.443594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 189, loss@min: 0.959367, loss@max: 1.468353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 190, loss@min: 0.956675, loss@max: 1.405012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 191, loss@min: 0.968058, loss@max: 1.391475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 192, loss@min: 0.976859, loss@max: 1.439758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 193, loss@min: 1.013934, loss@max: 1.388131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 194, loss@min: 0.975059, loss@max: 1.411191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 195, loss@min: 0.993940, loss@max: 1.404776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 196, loss@min: 0.988142, loss@max: 1.395401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 197, loss@min: 0.993219, loss@max: 1.410527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 198, loss@min: 0.939992, loss@max: 1.464197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 199, loss@min: 0.961511, loss@max: 1.475025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 200, loss@min: 0.932056, loss@max: 1.441327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 200, LS: 0.956368, LT: 0.953990, Top1S: 75.699799, Top1T: 74.766731Best acc: 75.699799 +Train:epoch: 201, loss@min: 0.958397, loss@max: 1.420695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 201, LS: 0.948975, LT: 0.951484, Top1S: 76.227180, Top1T: 74.482758Best acc: 76.227180 +Train:epoch: 202, loss@min: 0.960768, loss@max: 1.427564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 202, LS: 0.944358, LT: 0.952407, Top1S: 76.470589, Top1T: 74.523331Best acc: 76.470589 +Train:epoch: 203, loss@min: 0.960006, loss@max: 1.440283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 203, LS: 0.950192, LT: 0.948257, Top1S: 76.511154, Top1T: 74.645027Best acc: 76.511154 +Train:epoch: 204, loss@min: 0.959667, loss@max: 1.439646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 204, LS: 0.964803, LT: 0.947327, Top1S: 75.902634, Top1T: 74.320488 +Train:epoch: 205, loss@min: 0.972638, loss@max: 1.401629, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 205, LS: 0.968892, LT: 0.956069, Top1S: 75.943207, Top1T: 74.036514 +Train:epoch: 206, loss@min: 0.954289, loss@max: 1.451341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 206, LS: 0.962667, LT: 0.964541, Top1S: 76.146042, Top1T: 73.874237 +Train:epoch: 207, loss@min: 0.998959, loss@max: 1.391696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 207, LS: 0.959453, LT: 0.962820, Top1S: 76.186615, Top1T: 74.077080 +Train:epoch: 208, loss@min: 0.961602, loss@max: 1.397407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 208, LS: 0.958624, LT: 0.955977, Top1S: 75.862068, Top1T: 74.279922 +Train:epoch: 209, loss@min: 0.969931, loss@max: 1.380862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 209, LS: 0.958190, LT: 0.951976, Top1S: 75.659233, Top1T: 74.198784 +Train:epoch: 210, loss@min: 0.993349, loss@max: 1.427311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 210, LS: 0.951497, LT: 0.954826, Top1S: 75.618660, Top1T: 74.036514 +Train:epoch: 211, loss@min: 0.997998, loss@max: 1.410098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 211, LS: 0.948692, LT: 0.958240, Top1S: 76.024338, Top1T: 74.320488 +Train:epoch: 212, loss@min: 1.013127, loss@max: 1.391722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 212, LS: 0.956512, LT: 0.956961, Top1S: 75.862068, Top1T: 74.442192 +Train:epoch: 213, loss@min: 0.939968, loss@max: 1.472341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 213, LS: 0.965694, LT: 0.950882, Top1S: 75.862068, Top1T: 74.685600 +Train:epoch: 214, loss@min: 0.938410, loss@max: 1.471284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 214, LS: 0.966112, LT: 0.947884, Top1S: 75.699799, Top1T: 74.766731 +Train:epoch: 215, loss@min: 0.937781, loss@max: 1.509806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 215, LS: 0.954486, LT: 0.954355, Top1S: 76.064911, Top1T: 74.361053 +Train:epoch: 216, loss@min: 0.982588, loss@max: 1.431492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 216, LS: 0.940661, LT: 0.963839, Top1S: 76.308319, Top1T: 74.198784 +Train:epoch: 217, loss@min: 0.943228, loss@max: 1.433201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 217, LS: 0.937478, LT: 0.963417, Top1S: 76.511154, Top1T: 74.036514 +Train:epoch: 218, loss@min: 0.930163, loss@max: 1.480385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 218, LS: 0.944663, LT: 0.958735, Top1S: 75.983772, Top1T: 74.077080 +Train:epoch: 219, loss@min: 0.972521, loss@max: 1.433790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 219, LS: 0.953518, LT: 0.959473, Top1S: 75.740364, Top1T: 73.833672 +Train:epoch: 220, loss@min: 0.959945, loss@max: 1.406974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 220, LS: 0.957431, LT: 0.965389, Top1S: 76.064911, Top1T: 73.711967 +Train:epoch: 221, loss@min: 0.995298, loss@max: 1.423111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 221, LS: 0.963097, LT: 0.961271, Top1S: 76.024338, Top1T: 74.117645 +Train:epoch: 222, loss@min: 0.999957, loss@max: 1.424558, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 222, LS: 0.962851, LT: 0.953009, Top1S: 75.740364, Top1T: 74.563896 +Train:epoch: 223, loss@min: 0.980492, loss@max: 1.407549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 223, LS: 0.950752, LT: 0.955871, Top1S: 76.186615, Top1T: 74.198784 +Train:epoch: 224, loss@min: 1.048133, loss@max: 1.363457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 224, LS: 0.933630, LT: 0.964025, Top1S: 76.916840, Top1T: 74.198784Best acc: 76.916840 +Train:epoch: 225, loss@min: 0.996117, loss@max: 1.423971, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 225, LS: 0.927487, LT: 0.969929, Top1S: 77.038544, Top1T: 74.279922Best acc: 77.038544 +Train:epoch: 226, loss@min: 0.962100, loss@max: 1.466970, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 226, LS: 0.931348, LT: 0.964567, Top1S: 76.795135, Top1T: 74.320488 +Train:epoch: 227, loss@min: 0.938081, loss@max: 1.467562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 227, LS: 0.933485, LT: 0.961456, Top1S: 76.632858, Top1T: 74.685600 +Train:epoch: 228, loss@min: 0.971146, loss@max: 1.487280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 228, LS: 0.931986, LT: 0.965735, Top1S: 76.592293, Top1T: 74.239349 +Train:epoch: 229, loss@min: 0.925512, loss@max: 1.506333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 229, LS: 0.928820, LT: 0.977909, Top1S: 76.632858, Top1T: 73.671402 +Train:epoch: 230, loss@min: 0.955348, loss@max: 1.451012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 230, LS: 0.932510, LT: 0.986097, Top1S: 76.632858, Top1T: 73.711967 +Train:epoch: 231, loss@min: 0.960086, loss@max: 1.427600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 231, LS: 0.945897, LT: 0.983722, Top1S: 76.064911, Top1T: 73.346855 +Train:epoch: 232, loss@min: 0.978274, loss@max: 1.412976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 232, LS: 0.956958, LT: 0.977590, Top1S: 75.618660, Top1T: 73.874237 +Train:epoch: 233, loss@min: 0.952362, loss@max: 1.424845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 233, LS: 0.958647, LT: 0.976622, Top1S: 75.375252, Top1T: 73.630829 +Train:epoch: 234, loss@min: 0.943069, loss@max: 1.470399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 234, LS: 0.952993, LT: 0.972251, Top1S: 75.415825, Top1T: 73.793106 +Train:epoch: 235, loss@min: 0.967389, loss@max: 1.452513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 235, LS: 0.945318, LT: 0.968359, Top1S: 75.983772, Top1T: 73.874237 +Train:epoch: 236, loss@min: 0.972800, loss@max: 1.408580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 236, LS: 0.939094, LT: 0.967859, Top1S: 76.754562, Top1T: 74.036514 +Train:epoch: 237, loss@min: 0.995439, loss@max: 1.431641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 237, LS: 0.929152, LT: 0.978370, Top1S: 77.647057, Top1T: 73.711967Best acc: 77.647057 +Train:epoch: 238, loss@min: 0.988102, loss@max: 1.416641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 238, LS: 0.925940, LT: 0.983406, Top1S: 77.849899, Top1T: 73.103447Best acc: 77.849899 +Train:epoch: 239, loss@min: 1.003370, loss@max: 1.402397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 239, LS: 0.926680, LT: 0.982757, Top1S: 77.728195, Top1T: 73.387421 +Train:epoch: 240, loss@min: 1.023294, loss@max: 1.396182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 240, LS: 0.932312, LT: 0.978302, Top1S: 76.957405, Top1T: 73.590263 +Train:epoch: 241, loss@min: 0.994141, loss@max: 1.384537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 241, LS: 0.944140, LT: 0.972947, Top1S: 75.983772, Top1T: 73.955376 +Train:epoch: 242, loss@min: 0.989751, loss@max: 1.410036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 242, LS: 0.949310, LT: 0.972308, Top1S: 76.064911, Top1T: 73.955376 +Train:epoch: 243, loss@min: 0.946142, loss@max: 1.484050, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 243, LS: 0.948221, LT: 0.972402, Top1S: 76.267746, Top1T: 73.995941 +Train:epoch: 244, loss@min: 0.927452, loss@max: 1.458829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 244, LS: 0.944170, LT: 0.974602, Top1S: 76.227180, Top1T: 73.833672 +Train:epoch: 245, loss@min: 0.942824, loss@max: 1.512839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 245, LS: 0.941614, LT: 0.975823, Top1S: 76.551727, Top1T: 73.468559 +Train:epoch: 246, loss@min: 0.934456, loss@max: 1.499086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 246, LS: 0.930646, LT: 0.982824, Top1S: 77.606491, Top1T: 73.427994 +Train:epoch: 247, loss@min: 0.988830, loss@max: 1.421781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 247, LS: 0.932362, LT: 0.978411, Top1S: 77.525352, Top1T: 73.346855 +Train:epoch: 248, loss@min: 0.960404, loss@max: 1.468373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 248, LS: 0.937686, LT: 0.968127, Top1S: 77.160240, Top1T: 73.630829 +Train:epoch: 249, loss@min: 0.988321, loss@max: 1.445693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 249, LS: 0.937498, LT: 0.964581, Top1S: 76.916840, Top1T: 73.955376 +Train:epoch: 250, loss@min: 0.978256, loss@max: 1.458152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 250, LS: 0.931581, LT: 0.966514, Top1S: 76.916840, Top1T: 73.995941 +Train:epoch: 251, loss@min: 0.990530, loss@max: 1.428783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 251, LS: 0.929494, LT: 0.969402, Top1S: 76.997971, Top1T: 74.036514 +Train:epoch: 252, loss@min: 1.011207, loss@max: 1.392916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 252, LS: 0.925478, LT: 0.976518, Top1S: 77.322517, Top1T: 73.711967 +Train:epoch: 253, loss@min: 1.028597, loss@max: 1.397174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 253, LS: 0.932653, LT: 0.976642, Top1S: 77.322517, Top1T: 73.630829 +Train:epoch: 254, loss@min: 0.987071, loss@max: 1.394551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 254, LS: 0.941930, LT: 0.976509, Top1S: 77.281944, Top1T: 73.630829 +Train:epoch: 255, loss@min: 1.016018, loss@max: 1.475747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 255, LS: 0.941321, LT: 0.978705, Top1S: 77.119675, Top1T: 73.833672 +Train:epoch: 256, loss@min: 0.961127, loss@max: 1.472509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 256, LS: 0.930473, LT: 0.986600, Top1S: 77.565926, Top1T: 73.833672 +Train:epoch: 257, loss@min: 0.921239, loss@max: 1.512409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 257, LS: 0.929722, LT: 0.982800, Top1S: 77.525352, Top1T: 73.833672 +Train:epoch: 258, loss@min: 0.945904, loss@max: 1.475450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 258, LS: 0.927702, LT: 0.981974, Top1S: 77.687630, Top1T: 73.711967 +Train:epoch: 259, loss@min: 0.964389, loss@max: 1.439130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 259, LS: 0.931425, LT: 0.979010, Top1S: 77.525352, Top1T: 73.711967 +Train:epoch: 260, loss@min: 0.991690, loss@max: 1.459720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 260, LS: 0.941868, LT: 0.975252, Top1S: 76.957405, Top1T: 73.711967 +Train:epoch: 261, loss@min: 0.928225, loss@max: 1.479373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 261, LS: 0.945794, LT: 0.980197, Top1S: 76.916840, Top1T: 73.387421 +Train:epoch: 262, loss@min: 0.979823, loss@max: 1.457502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 262, LS: 0.942616, LT: 0.987527, Top1S: 77.038544, Top1T: 73.468559 +Train:epoch: 263, loss@min: 0.983351, loss@max: 1.433787, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 263, LS: 0.934100, LT: 0.995247, Top1S: 77.647057, Top1T: 73.346855 +Train:epoch: 264, loss@min: 1.045554, loss@max: 1.427610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 264, LS: 0.930436, LT: 0.994082, Top1S: 77.484787, Top1T: 73.427994 +Train:epoch: 265, loss@min: 0.973286, loss@max: 1.428497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 265, LS: 0.930885, LT: 0.988192, Top1S: 77.444221, Top1T: 73.671402 +Train:epoch: 266, loss@min: 1.028008, loss@max: 1.391106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 266, LS: 0.933467, LT: 0.979963, Top1S: 77.079109, Top1T: 73.955376 +Train:epoch: 267, loss@min: 0.982202, loss@max: 1.419264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 267, LS: 0.929458, LT: 0.978329, Top1S: 77.565926, Top1T: 73.833672 +Train:epoch: 268, loss@min: 0.958709, loss@max: 1.491036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 268, LS: 0.923023, LT: 0.983567, Top1S: 77.931038, Top1T: 73.671402Best acc: 77.931038 +Train:epoch: 269, loss@min: 0.937893, loss@max: 1.473969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 269, LS: 0.926188, LT: 0.985413, Top1S: 77.971603, Top1T: 73.590263Best acc: 77.971603 +Train:epoch: 270, loss@min: 0.941313, loss@max: 1.477384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 270, LS: 0.939607, LT: 0.977768, Top1S: 77.687630, Top1T: 73.590263 +Train:epoch: 271, loss@min: 0.967392, loss@max: 1.490657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 271, LS: 0.938575, LT: 0.979549, Top1S: 77.687630, Top1T: 73.549698 +Train:epoch: 272, loss@min: 0.958018, loss@max: 1.477830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 272, LS: 0.937481, LT: 0.980486, Top1S: 77.281944, Top1T: 73.630829 +Train:epoch: 273, loss@min: 0.973031, loss@max: 1.432027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 273, LS: 0.943747, LT: 0.974568, Top1S: 76.754562, Top1T: 73.833672 +Train:epoch: 274, loss@min: 1.040153, loss@max: 1.409903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 274, LS: 0.940316, LT: 0.976177, Top1S: 77.038544, Top1T: 73.671402 +Train:epoch: 275, loss@min: 0.988347, loss@max: 1.437551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 275, LS: 0.929016, LT: 0.985737, Top1S: 77.606491, Top1T: 73.306290 +Train:epoch: 276, loss@min: 0.986838, loss@max: 1.448310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 276, LS: 0.920222, LT: 0.996963, Top1S: 77.809334, Top1T: 72.860039 +Train:epoch: 277, loss@min: 0.941299, loss@max: 1.468012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 277, LS: 0.924642, LT: 0.991855, Top1S: 77.849899, Top1T: 73.103447 +Train:epoch: 278, loss@min: 0.982758, loss@max: 1.456048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 278, LS: 0.943171, LT: 0.969448, Top1S: 77.281944, Top1T: 74.036514 +Train:epoch: 279, loss@min: 0.954415, loss@max: 1.476710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 279, LS: 0.955765, LT: 0.957361, Top1S: 76.916840, Top1T: 74.320488 +Train:epoch: 280, loss@min: 0.975572, loss@max: 1.450526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 280, LS: 0.964759, LT: 0.947545, Top1S: 76.592293, Top1T: 74.279922 +Train:epoch: 281, loss@min: 0.943017, loss@max: 1.474079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 281, LS: 0.957942, LT: 0.954891, Top1S: 76.957405, Top1T: 74.117645 +Train:epoch: 282, loss@min: 0.964296, loss@max: 1.455353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 282, LS: 0.940569, LT: 0.975051, Top1S: 77.079109, Top1T: 73.914810 +Train:epoch: 283, loss@min: 0.966809, loss@max: 1.432256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 283, LS: 0.934630, LT: 0.985772, Top1S: 77.444221, Top1T: 73.711967 +Train:epoch: 284, loss@min: 1.039672, loss@max: 1.440410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 284, LS: 0.940329, LT: 0.982533, Top1S: 77.200813, Top1T: 73.590263 +Train:epoch: 285, loss@min: 1.001443, loss@max: 1.423656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 285, LS: 0.949867, LT: 0.976824, Top1S: 76.957405, Top1T: 73.711967 +Train:epoch: 286, loss@min: 1.033972, loss@max: 1.428062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 286, LS: 0.952264, LT: 0.975593, Top1S: 77.160240, Top1T: 73.752533 +Train:epoch: 287, loss@min: 0.996122, loss@max: 1.412083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 287, LS: 0.951381, LT: 0.975557, Top1S: 77.403648, Top1T: 73.955376 +Train:epoch: 288, loss@min: 0.933791, loss@max: 1.509523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 288, LS: 0.941003, LT: 0.983891, Top1S: 78.012169, Top1T: 73.549698Best acc: 78.012169 +Train:epoch: 289, loss@min: 0.954840, loss@max: 1.529325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 289, LS: 0.941158, LT: 0.979784, Top1S: 78.174446, Top1T: 73.630829Best acc: 78.174446 +Train:epoch: 290, loss@min: 0.937009, loss@max: 1.568420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 290, LS: 0.951877, LT: 0.964226, Top1S: 77.403648, Top1T: 74.279922 +Train:epoch: 291, loss@min: 0.910740, loss@max: 1.523749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 291, LS: 0.954833, LT: 0.958934, Top1S: 77.363083, Top1T: 74.563896 +Train:epoch: 292, loss@min: 0.963625, loss@max: 1.459316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 292, LS: 0.948423, LT: 0.968718, Top1S: 77.281944, Top1T: 74.117645 +Train:epoch: 293, loss@min: 0.990686, loss@max: 1.458213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 293, LS: 0.939995, LT: 0.985217, Top1S: 77.728195, Top1T: 73.387421 +Train:epoch: 294, loss@min: 1.007886, loss@max: 1.429038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 294, LS: 0.940378, LT: 0.991613, Top1S: 77.606491, Top1T: 73.225151 +Train:epoch: 295, loss@min: 1.055040, loss@max: 1.400991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 295, LS: 0.948867, LT: 0.984450, Top1S: 77.322517, Top1T: 73.265724 +Train:epoch: 296, loss@min: 1.025925, loss@max: 1.427221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 296, LS: 0.956147, LT: 0.978807, Top1S: 77.079109, Top1T: 73.468559 +Train:epoch: 297, loss@min: 0.993191, loss@max: 1.447594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 297, LS: 0.953405, LT: 0.981459, Top1S: 77.079109, Top1T: 73.671402 +Train:epoch: 298, loss@min: 0.966798, loss@max: 1.449840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 298, LS: 0.942578, LT: 0.985501, Top1S: 77.565926, Top1T: 73.590263 +Train:epoch: 299, loss@min: 0.950525, loss@max: 1.475253, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 200} + +------------------------------------------- +Thu Sep 7 00:54:25 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.143585, loss@max: 5.346136, Top1S acc: 26.000000, Top1T acc: 26.000000 +Train:epoch: 2, loss@min: 8.090533, loss@max: 4.779443, Top1S acc: 83.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 4.259562, loss@max: 4.473816, Top1S acc: 95.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 2.228291, loss@max: 4.371953, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 5, loss@min: 1.259048, loss@max: 4.091671, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 0.863217, loss@max: 3.821872, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.648669, loss@max: 3.590070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.777843, loss@max: 3.281066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.757796, loss@max: 2.896342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.883799, loss@max: 2.556736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.830141, loss@max: 2.235987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.961566, loss@max: 1.924949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.069314, loss@max: 1.703045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.306601, loss@max: 1.534099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.498330, loss@max: 1.463098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.575515, loss@max: 1.232805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.492055, loss@max: 1.176744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.539034, loss@max: 1.175704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.348022, loss@max: 1.143473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.166149, loss@max: 1.344755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.049571, loss@max: 1.452990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.912195, loss@max: 1.635779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.865155, loss@max: 1.723471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.744755, loss@max: 1.845123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.702101, loss@max: 1.825815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.789683, loss@max: 1.736172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.850308, loss@max: 1.625456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.964401, loss@max: 1.532796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.082150, loss@max: 1.413681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.026925, loss@max: 1.373773, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 00:55:11 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 00:55:19 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.143585, loss@max: 5.346136, Top1S acc: 26.000000, Top1T acc: 26.000000 +Train:epoch: 2, loss@min: 8.090533, loss@max: 4.779443, Top1S acc: 83.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 4.259562, loss@max: 4.473816, Top1S acc: 95.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 2.228291, loss@max: 4.371953, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 5, loss@min: 1.259048, loss@max: 4.091671, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 0.863217, loss@max: 3.821872, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.648669, loss@max: 3.590070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.777843, loss@max: 3.281066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.757796, loss@max: 2.896342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.883799, loss@max: 2.556736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.830141, loss@max: 2.235987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.961566, loss@max: 1.924949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.069314, loss@max: 1.703045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.306601, loss@max: 1.534099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.498330, loss@max: 1.463098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.575515, loss@max: 1.232805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.492055, loss@max: 1.176744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.539034, loss@max: 1.175704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.348022, loss@max: 1.143473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.166149, loss@max: 1.344755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.049571, loss@max: 1.452990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.912195, loss@max: 1.635779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.865155, loss@max: 1.723471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.744755, loss@max: 1.845123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.702101, loss@max: 1.825815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.789683, loss@max: 1.736172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.850308, loss@max: 1.625456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.964401, loss@max: 1.532796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.082150, loss@max: 1.413681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.026925, loss@max: 1.373773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.117252, loss@max: 1.336770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.205672, loss@max: 1.346605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.105878, loss@max: 1.320981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.113951, loss@max: 1.384169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.164546, loss@max: 1.357047, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.928206, loss@max: 1.553316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.966923, loss@max: 1.514822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.952313, loss@max: 1.595122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.903402, loss@max: 1.580270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.957344, loss@max: 1.513060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.054602, loss@max: 1.581860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.989603, loss@max: 1.535495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.033824, loss@max: 1.467161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.062708, loss@max: 1.472019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.027633, loss@max: 1.422094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.052391, loss@max: 1.530133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.104643, loss@max: 1.492019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.072830, loss@max: 1.455329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945610, loss@max: 1.505334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.100160, loss@max: 1.468230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.773067, LT: 1.055689, Top1S: 80.324547, Top1T: 75.334686Best acc: 80.324547 +Train:epoch: 51, loss@min: 1.012070, loss@max: 1.468442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.767763, LT: 1.068949, Top1S: 80.283974, Top1T: 74.847870 +Train:epoch: 52, loss@min: 1.099776, loss@max: 1.538042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.769441, LT: 1.062667, Top1S: 79.675453, Top1T: 75.131844 +Train:epoch: 53, loss@min: 1.000567, loss@max: 1.552521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.789559, LT: 1.044389, Top1S: 79.229210, Top1T: 76.186615 +Train:epoch: 54, loss@min: 1.113063, loss@max: 1.443968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.798327, LT: 1.030598, Top1S: 78.985802, Top1T: 76.592293 +Train:epoch: 55, loss@min: 1.075503, loss@max: 1.512951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.786949, LT: 1.034157, Top1S: 79.148071, Top1T: 75.902634 +Train:epoch: 56, loss@min: 1.030647, loss@max: 1.600445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.784523, LT: 1.037925, Top1S: 79.310349, Top1T: 75.456390 +Train:epoch: 57, loss@min: 0.921341, loss@max: 1.659690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.779777, LT: 1.032464, Top1S: 79.918861, Top1T: 75.659233 +Train:epoch: 58, loss@min: 1.129524, loss@max: 1.550863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.771786, LT: 1.019036, Top1S: 80.081139, Top1T: 76.146042 +Train:epoch: 59, loss@min: 1.098263, loss@max: 1.613984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.746012, LT: 1.021640, Top1S: 80.324547, Top1T: 76.713997 +Train:epoch: 60, loss@min: 0.991012, loss@max: 1.695432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.728667, LT: 1.033189, Top1S: 81.054764, Top1T: 76.308319Best acc: 81.054764 +Train:epoch: 61, loss@min: 0.995681, loss@max: 1.611709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.714180, LT: 1.072647, Top1S: 81.095337, Top1T: 75.294121Best acc: 81.095337 +Train:epoch: 62, loss@min: 1.098753, loss@max: 1.570749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.718724, LT: 1.098034, Top1S: 80.933060, Top1T: 74.523331 +Train:epoch: 63, loss@min: 1.079566, loss@max: 1.657192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.751542, LT: 1.077094, Top1S: 80.243408, Top1T: 74.645027 +Train:epoch: 64, loss@min: 1.144867, loss@max: 1.562024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.785857, LT: 1.051319, Top1S: 79.107506, Top1T: 75.456390 +Train:epoch: 65, loss@min: 0.984433, loss@max: 1.633199, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.788647, LT: 1.048349, Top1S: 79.350914, Top1T: 75.496956 +Train:epoch: 66, loss@min: 1.062014, loss@max: 1.577452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.765839, LT: 1.032304, Top1S: 80.000000, Top1T: 75.537529 +Train:epoch: 67, loss@min: 1.015738, loss@max: 1.581783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.742221, LT: 1.020549, Top1S: 80.202843, Top1T: 75.862068 +Train:epoch: 68, loss@min: 1.091362, loss@max: 1.492479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.732782, LT: 1.016701, Top1S: 81.014198, Top1T: 75.943207 +Train:epoch: 69, loss@min: 1.056743, loss@max: 1.739026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.726503, LT: 1.026051, Top1S: 81.217041, Top1T: 75.375252Best acc: 81.217041 +Train:epoch: 70, loss@min: 1.073093, loss@max: 1.736885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.727588, LT: 1.037682, Top1S: 80.933060, Top1T: 75.294121 +Train:epoch: 71, loss@min: 0.959956, loss@max: 1.681506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.741679, LT: 1.030252, Top1S: 80.608521, Top1T: 75.334686 +Train:epoch: 72, loss@min: 0.941306, loss@max: 1.614394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.760558, LT: 1.038902, Top1S: 80.324547, Top1T: 74.929008 +Train:epoch: 73, loss@min: 1.272364, loss@max: 1.548733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.767922, LT: 1.073299, Top1S: 80.121704, Top1T: 74.361053 +Train:epoch: 74, loss@min: 1.215687, loss@max: 1.630499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.777239, LT: 1.052829, Top1S: 79.959435, Top1T: 75.010139 +Train:epoch: 75, loss@min: 1.246899, loss@max: 1.528553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.770715, LT: 1.023837, Top1S: 79.797157, Top1T: 75.699799 +Train:epoch: 76, loss@min: 1.006189, loss@max: 1.594026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.747919, LT: 1.019471, Top1S: 80.527382, Top1T: 75.618660 +Train:epoch: 77, loss@min: 0.990180, loss@max: 1.663041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.731465, LT: 1.013703, Top1S: 81.014198, Top1T: 75.212982 +Train:epoch: 78, loss@min: 1.041378, loss@max: 1.645740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.732953, LT: 0.991367, Top1S: 81.014198, Top1T: 75.740364 +Train:epoch: 79, loss@min: 1.146729, loss@max: 1.674287, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 01:10:54 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 18.947174, loss@max: 6.386308, Top1S acc: 1.000000, Top1T acc: 30.000000 +Train:epoch: 2, loss@min: 14.108746, loss@max: 6.488158, Top1S acc: 1.000000, Top1T acc: 87.000000 +Train:epoch: 3, loss@min: 12.452766, loss@max: 6.656781, Top1S acc: 1.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 11.791364, loss@max: 6.629867, Top1S acc: 1.000000, Top1T acc: 98.000000 +Train:epoch: 5, loss@min: 11.299047, loss@max: 6.079898, Top1S acc: 1.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 10.971571, loss@max: 5.463316, Top1S acc: 1.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 10.727200, loss@max: 4.922383, Top1S acc: 2.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 10.780267, loss@max: 4.390787, Top1S acc: 5.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 10.527604, loss@max: 3.936573, Top1S acc: 7.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 10.419057, loss@max: 3.711727, Top1S acc: 7.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 10.151828, loss@max: 3.674384, Top1S acc: 8.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 9.924841, loss@max: 3.779533, Top1S acc: 9.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 9.313686, loss@max: 3.860245, Top1S acc: 12.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 8.727158, loss@max: 3.931465, Top1S acc: 16.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 8.385071, loss@max: 4.075178, Top1S acc: 20.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 8.164584, loss@max: 3.959928, Top1S acc: 22.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 7.840874, loss@max: 4.011981, Top1S acc: 25.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 7.643365, loss@max: 3.933144, Top1S acc: 26.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 7.369215, loss@max: 3.775045, Top1S acc: 28.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 7.078115, loss@max: 3.801256, Top1S acc: 37.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 6.935755, loss@max: 3.662558, Top1S acc: 41.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 6.822856, loss@max: 3.602122, Top1S acc: 46.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 6.567708, loss@max: 3.469584, Top1S acc: 48.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 6.349638, loss@max: 3.454061, Top1S acc: 54.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 6.023541, loss@max: 3.401592, Top1S acc: 56.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 5.820751, loss@max: 3.449644, Top1S acc: 62.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 5.453399, loss@max: 3.459908, Top1S acc: 69.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 5.326740, loss@max: 3.458676, Top1S acc: 72.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 5.213806, loss@max: 3.458705, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 4.801400, loss@max: 3.356144, Top1S acc: 76.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 4.811849, loss@max: 3.265045, Top1S acc: 78.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 4.719442, loss@max: 3.254849, Top1S acc: 82.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 4.545961, loss@max: 3.167778, Top1S acc: 85.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 4.299570, loss@max: 3.239451, Top1S acc: 87.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 4.187340, loss@max: 3.207457, Top1S acc: 89.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 3.795355, loss@max: 3.378247, Top1S acc: 91.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 3.677025, loss@max: 3.340002, Top1S acc: 92.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 3.517502, loss@max: 3.357950, Top1S acc: 95.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 3.498804, loss@max: 3.245196, Top1S acc: 95.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 3.435723, loss@max: 3.097737, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 3.312423, loss@max: 3.139959, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 3.271427, loss@max: 3.088258, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 3.222552, loss@max: 2.986382, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 2.877866, loss@max: 2.997093, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.648130, loss@max: 3.145542, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.573152, loss@max: 3.285763, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.526291, loss@max: 3.151249, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.325957, loss@max: 3.251059, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.304115, loss@max: 3.064460, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 2.433739, loss@max: 2.948515, Top1S acc: 99.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 2.178137, LT: 2.299164, Top1S: 57.119675, Top1T: 61.135902Best acc: 61.135902 +Train:epoch: 51, loss@min: 2.433967, loss@max: 2.829098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 2.191873, LT: 2.292697, Top1S: 56.430019, Top1T: 61.460445Best acc: 61.460445 +Train:epoch: 52, loss@min: 2.363788, loss@max: 2.780693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 2.260139, LT: 2.267064, Top1S: 54.198784, Top1T: 61.257607 +Train:epoch: 53, loss@min: 2.296094, loss@max: 2.837570, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 2.326956, LT: 2.250138, Top1S: 53.225151, Top1T: 61.135902 +Train:epoch: 54, loss@min: 2.216156, loss@max: 2.891604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 2.342362, LT: 2.236722, Top1S: 53.144016, Top1T: 61.257607 +Train:epoch: 55, loss@min: 2.041406, loss@max: 2.904680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 2.283439, LT: 2.253600, Top1S: 54.198784, Top1T: 61.257607 +Train:epoch: 56, loss@min: 1.877634, loss@max: 2.994253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 2.221653, LT: 2.272839, Top1S: 55.294117, Top1T: 61.379311 +Train:epoch: 57, loss@min: 1.677447, loss@max: 3.101480, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 01:15:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 31.937992, loss@max: 8.483471, Top1S acc: 1.000000, Top1T acc: 3.000000 +Train:epoch: 2, loss@min: 31.436058, loss@max: 8.228194, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 3, loss@min: 30.574530, loss@max: 8.194420, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 4, loss@min: 29.359077, loss@max: 7.945882, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 5, loss@min: 28.136845, loss@max: 7.877040, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 6, loss@min: 27.413294, loss@max: 7.612012, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 7, loss@min: 26.483612, loss@max: 7.522547, Top1S acc: 3.000000, Top1T acc: 2.000000 +Train:epoch: 8, loss@min: 25.351530, loss@max: 7.472359, Top1S acc: 4.000000, Top1T acc: 1.000000 +Train:epoch: 9, loss@min: 24.754196, loss@max: 7.311940, Top1S acc: 6.000000, Top1T acc: 2.000000 +Train:epoch: 10, loss@min: 23.658352, loss@max: 7.081422, Top1S acc: 6.000000, Top1T acc: 2.000000 +Train:epoch: 11, loss@min: 22.645399, loss@max: 7.052219, Top1S acc: 8.000000, Top1T acc: 5.000000 +Train:epoch: 12, loss@min: 21.836943, loss@max: 6.881528, Top1S acc: 10.000000, Top1T acc: 6.000000 +Train:epoch: 13, loss@min: 20.658602, loss@max: 6.716964, Top1S acc: 12.000000, Top1T acc: 9.000000 +Train:epoch: 14, loss@min: 20.032383, loss@max: 6.563411, Top1S acc: 14.000000, Top1T acc: 12.000000 +Train:epoch: 15, loss@min: 19.530109, loss@max: 6.555675, Top1S acc: 17.000000, Top1T acc: 14.000000 +Train:epoch: 16, loss@min: 18.682844, loss@max: 6.333247, Top1S acc: 22.000000, Top1T acc: 11.000000 +Train:epoch: 17, loss@min: 17.694157, loss@max: 6.221847, Top1S acc: 25.000000, Top1T acc: 14.000000 +Train:epoch: 18, loss@min: 16.714748, loss@max: 6.146598, Top1S acc: 28.000000, Top1T acc: 21.000000 +Train:epoch: 19, loss@min: 16.159660, loss@max: 6.063726, Top1S acc: 31.000000, Top1T acc: 22.000000 +Train:epoch: 20, loss@min: 15.825821, loss@max: 5.961988, Top1S acc: 38.000000, Top1T acc: 21.000000 +Train:epoch: 21, loss@min: 14.775331, loss@max: 5.909956, Top1S acc: 41.000000, Top1T acc: 23.000000 +Train:epoch: 22, loss@min: 13.975193, loss@max: 5.830193, Top1S acc: 45.000000, Top1T acc: 28.000000 +Train:epoch: 23, loss@min: 13.488665, loss@max: 5.753264, Top1S acc: 48.000000, Top1T acc: 32.000000 +Train:epoch: 24, loss@min: 12.828077, loss@max: 5.652118, Top1S acc: 52.000000, Top1T acc: 38.000000 +Train:epoch: 25, loss@min: 12.384839, loss@max: 5.519973, Top1S acc: 58.000000, Top1T acc: 36.000000 +Train:epoch: 26, loss@min: 11.977604, loss@max: 5.311403, Top1S acc: 59.000000, Top1T acc: 37.000000 +Train:epoch: 27, loss@min: 11.190353, loss@max: 5.339502, Top1S acc: 65.000000, Top1T acc: 41.000000 +Train:epoch: 28, loss@min: 10.465056, loss@max: 5.283056, Top1S acc: 70.000000, Top1T acc: 43.000000 +Train:epoch: 29, loss@min: 9.795725, loss@max: 5.129452, Top1S acc: 72.000000, Top1T acc: 49.000000 +Train:epoch: 30, loss@min: 9.514762, loss@max: 5.080659, Top1S acc: 75.000000, Top1T acc: 50.000000 +Train:epoch: 31, loss@min: 8.807345, loss@max: 5.117270, Top1S acc: 76.000000, Top1T acc: 54.000000 +Train:epoch: 32, loss@min: 8.400205, loss@max: 4.984331, Top1S acc: 79.000000, Top1T acc: 59.000000 +Train:epoch: 33, loss@min: 8.056936, loss@max: 4.922810, Top1S acc: 83.000000, Top1T acc: 59.000000 +Train:epoch: 34, loss@min: 7.519998, loss@max: 4.792136, Top1S acc: 84.000000, Top1T acc: 61.000000 +Train:epoch: 35, loss@min: 7.290951, loss@max: 4.862384, Top1S acc: 88.000000, Top1T acc: 66.000000 +Train:epoch: 36, loss@min: 6.828471, loss@max: 4.735839, Top1S acc: 91.000000, Top1T acc: 70.000000 +Train:epoch: 37, loss@min: 6.494216, loss@max: 4.606544, Top1S acc: 92.000000, Top1T acc: 75.000000 +Train:epoch: 38, loss@min: 6.033206, loss@max: 4.625875, Top1S acc: 93.000000, Top1T acc: 73.000000 +Train:epoch: 39, loss@min: 5.808313, loss@max: 4.451331, Top1S acc: 95.000000, Top1T acc: 72.000000 +Train:epoch: 40, loss@min: 5.498916, loss@max: 4.450113, Top1S acc: 96.000000, Top1T acc: 71.000000 +Train:epoch: 41, loss@min: 4.954407, loss@max: 4.367620, Top1S acc: 97.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 5.024887, loss@max: 4.413074, Top1S acc: 97.000000, Top1T acc: 79.000000 +Train:epoch: 43, loss@min: 4.596739, loss@max: 4.322475, Top1S acc: 97.000000, Top1T acc: 81.000000 +Train:epoch: 44, loss@min: 4.168684, loss@max: 4.317032, Top1S acc: 97.000000, Top1T acc: 86.000000 +Train:epoch: 45, loss@min: 4.212935, loss@max: 4.197564, Top1S acc: 97.000000, Top1T acc: 84.000000 +Train:epoch: 46, loss@min: 3.857775, loss@max: 4.124442, Top1S acc: 98.000000, Top1T acc: 90.000000 +Train:epoch: 47, loss@min: 3.527199, loss@max: 4.112789, Top1S acc: 98.000000, Top1T acc: 93.000000 +Train:epoch: 48, loss@min: 3.426333, loss@max: 4.040640, Top1S acc: 98.000000, Top1T acc: 90.000000 +Train:epoch: 49, loss@min: 3.171282, loss@max: 4.119534, Top1S acc: 98.000000, Top1T acc: 87.000000 +Train:epoch: 50, loss@min: 3.240250, loss@max: 3.979484, Top1S acc: 98.000000, Top1T acc: 93.000000 + Test:epoch: 50, LS: 3.154516, LT: 3.269264, Top1S: 31.521297, Top1T: 30.425964Best acc: 31.521297 +Train:epoch: 51, loss@min: 3.056763, loss@max: 3.958541, Top1S acc: 99.000000, Top1T acc: 94.000000 + Test:epoch: 51, LS: 3.101668, LT: 3.238101, Top1S: 32.048683, Top1T: 30.750507Best acc: 32.048683 +Train:epoch: 52, loss@min: 2.699924, loss@max: 4.007239, Top1S acc: 99.000000, Top1T acc: 94.000000 + Test:epoch: 52, LS: 3.054923, LT: 3.207057, Top1S: 32.657200, Top1T: 31.318459Best acc: 32.657200 +Train:epoch: 53, loss@min: 2.819433, loss@max: 3.786174, Top1S acc: 99.000000, Top1T acc: 93.000000 + Test:epoch: 53, LS: 3.009754, LT: 3.177391, Top1S: 33.265720, Top1T: 31.561867Best acc: 33.265720 +Train:epoch: 54, loss@min: 2.588993, loss@max: 3.837194, Top1S acc: 99.000000, Top1T acc: 97.000000 + Test:epoch: 54, LS: 2.967329, LT: 3.148751, Top1S: 33.793102, Top1T: 32.048683Best acc: 33.793102 +Train:epoch: 55, loss@min: 2.571931, loss@max: 3.728062, Top1S acc: 99.000000, Top1T acc: 94.000000 + Test:epoch: 55, LS: 2.928175, LT: 3.121564, Top1S: 34.117649, Top1T: 32.454361Best acc: 34.117649 +Train:epoch: 56, loss@min: 2.414634, loss@max: 3.684649, Top1S acc: 99.000000, Top1T acc: 94.000000 + Test:epoch: 56, LS: 2.890912, LT: 3.095273, Top1S: 34.645031, Top1T: 32.981743Best acc: 34.645031 +Train:epoch: 57, loss@min: 2.265117, loss@max: 3.680444, Top1S acc: 99.000000, Top1T acc: 96.000000 + Test:epoch: 57, LS: 2.854564, LT: 3.070520, Top1S: 35.537525, Top1T: 33.427994Best acc: 35.537525 +Train:epoch: 58, loss@min: 2.385932, loss@max: 3.579495, Top1S acc: 99.000000, Top1T acc: 96.000000 + Test:epoch: 58, LS: 2.820839, LT: 3.046273, Top1S: 35.821503, Top1T: 33.995945Best acc: 35.821503 +Train:epoch: 59, loss@min: 2.156543, loss@max: 3.707770, Top1S acc: 99.000000, Top1T acc: 96.000000 + Test:epoch: 59, LS: 2.789778, LT: 3.021829, Top1S: 36.105476, Top1T: 34.645031Best acc: 36.105476 +Train:epoch: 60, loss@min: 1.931215, loss@max: 3.487964, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 60, LS: 2.758868, LT: 2.997738, Top1S: 36.227180, Top1T: 34.969574Best acc: 36.227180 +Train:epoch: 61, loss@min: 2.039965, loss@max: 3.460543, Top1S acc: 99.000000, Top1T acc: 97.000000 + Test:epoch: 61, LS: 2.727650, LT: 2.974976, Top1S: 36.511158, Top1T: 35.496956Best acc: 36.511158 +Train:epoch: 62, loss@min: 1.901715, loss@max: 3.394958, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 62, LS: 2.697552, LT: 2.952761, Top1S: 36.835701, Top1T: 35.902637Best acc: 36.835701 +Train:epoch: 63, loss@min: 1.943636, loss@max: 3.298959, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 63, LS: 2.672649, LT: 2.929819, Top1S: 37.363083, Top1T: 36.227180Best acc: 37.363083 +Train:epoch: 64, loss@min: 1.973707, loss@max: 3.411007, Top1S acc: 99.000000, Top1T acc: 95.000000 + Test:epoch: 64, LS: 2.650835, LT: 2.906885, Top1S: 37.971603, Top1T: 36.511158Best acc: 37.971603 +Train:epoch: 65, loss@min: 1.887265, loss@max: 3.377968, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 65, LS: 2.629964, LT: 2.884701, Top1S: 38.174442, Top1T: 36.713997Best acc: 38.174442 +Train:epoch: 66, loss@min: 1.808943, loss@max: 3.247930, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 66, LS: 2.610978, LT: 2.862646, Top1S: 38.458420, Top1T: 36.997971Best acc: 38.458420 +Train:epoch: 67, loss@min: 1.836434, loss@max: 3.243247, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 67, LS: 2.590649, LT: 2.841819, Top1S: 38.742393, Top1T: 37.444218Best acc: 38.742393 +Train:epoch: 68, loss@min: 1.772700, loss@max: 3.104296, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 68, LS: 2.570467, LT: 2.821795, Top1S: 39.188641, Top1T: 37.971603Best acc: 39.188641 +Train:epoch: 69, loss@min: 1.619063, loss@max: 3.234538, Top1S acc: 99.000000, Top1T acc: 98.000000 + Test:epoch: 69, LS: 2.546808, LT: 2.803640, Top1S: 39.513184, Top1T: 38.093307Best acc: 39.513184 +Train:epoch: 70, loss@min: 1.628604, loss@max: 3.083249, Top1S acc: 99.000000, Top1T acc: 99.000000 + Test:epoch: 70, LS: 2.522440, LT: 2.786657, Top1S: 39.878296, Top1T: 38.417850Best acc: 39.878296 +Train:epoch: 71, loss@min: 1.504155, loss@max: 3.128593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 2.497930, LT: 2.770439, Top1S: 40.324543, Top1T: 38.580120Best acc: 40.324543 +Train:epoch: 72, loss@min: 1.686010, loss@max: 2.945115, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 72, LS: 2.473342, LT: 2.754669, Top1S: 40.730225, Top1T: 38.701824Best acc: 40.730225 +Train:epoch: 73, loss@min: 1.479850, loss@max: 3.031580, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 73, LS: 2.449014, LT: 2.739474, Top1S: 41.095333, Top1T: 38.945232Best acc: 41.095333 +Train:epoch: 74, loss@min: 1.677642, loss@max: 2.972456, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 74, LS: 2.423843, LT: 2.725147, Top1S: 41.744423, Top1T: 39.350914Best acc: 41.744423 +Train:epoch: 75, loss@min: 1.579779, loss@max: 2.882328, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 75, LS: 2.401456, LT: 2.710502, Top1S: 42.271805, Top1T: 39.716026Best acc: 42.271805 +Train:epoch: 76, loss@min: 1.422462, loss@max: 2.874785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 2.378906, LT: 2.696546, Top1S: 42.555782, Top1T: 40.040569Best acc: 42.555782 +Train:epoch: 77, loss@min: 1.438796, loss@max: 2.824850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 2.356847, LT: 2.682912, Top1S: 43.164299, Top1T: 40.283978Best acc: 43.164299 +Train:epoch: 78, loss@min: 1.479988, loss@max: 2.900215, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 78, LS: 2.336447, LT: 2.669217, Top1S: 43.488846, Top1T: 40.486816Best acc: 43.488846 +Train:epoch: 79, loss@min: 1.459908, loss@max: 2.765237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 2.316548, LT: 2.655473, Top1S: 43.651115, Top1T: 40.811359Best acc: 43.651115 +Train:epoch: 80, loss@min: 1.372048, loss@max: 2.874000, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 80, LS: 2.299552, LT: 2.641353, Top1S: 44.016228, Top1T: 41.054768Best acc: 44.016228 +Train:epoch: 81, loss@min: 1.488948, loss@max: 2.666377, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 81, LS: 2.288646, LT: 2.626173, Top1S: 44.421906, Top1T: 41.379311Best acc: 44.421906 +Train:epoch: 82, loss@min: 1.435757, loss@max: 2.610777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 2.280002, LT: 2.611220, Top1S: 44.462475, Top1T: 41.703854Best acc: 44.462475 +Train:epoch: 83, loss@min: 1.392812, loss@max: 2.735845, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 83, LS: 2.270693, LT: 2.596760, Top1S: 44.624748, Top1T: 41.987831Best acc: 44.624748 +Train:epoch: 84, loss@min: 1.462277, loss@max: 2.625046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 2.263979, LT: 2.581143, Top1S: 44.868153, Top1T: 42.393509Best acc: 44.868153 +Train:epoch: 85, loss@min: 1.294694, loss@max: 2.739597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 2.256788, LT: 2.566290, Top1S: 45.111561, Top1T: 42.636917Best acc: 45.111561 +Train:epoch: 86, loss@min: 1.435398, loss@max: 2.633892, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 86, LS: 2.248733, LT: 2.552645, Top1S: 45.354969, Top1T: 42.758621Best acc: 45.354969 +Train:epoch: 87, loss@min: 1.358964, loss@max: 2.589495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 2.242302, LT: 2.538383, Top1S: 45.598377, Top1T: 43.042595Best acc: 45.598377 +Train:epoch: 88, loss@min: 1.472883, loss@max: 2.544037, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 88, LS: 2.235606, LT: 2.524028, Top1S: 46.044624, Top1T: 43.407707Best acc: 46.044624 +Train:epoch: 89, loss@min: 1.374362, loss@max: 2.515649, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 89, LS: 2.227316, LT: 2.510591, Top1S: 46.531441, Top1T: 43.651115Best acc: 46.531441 +Train:epoch: 90, loss@min: 1.327383, loss@max: 2.614356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 2.219904, LT: 2.497580, Top1S: 46.572010, Top1T: 43.975658Best acc: 46.572010 +Train:epoch: 91, loss@min: 1.360169, loss@max: 2.485225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 2.211907, LT: 2.485091, Top1S: 46.612576, Top1T: 44.097363Best acc: 46.612576 +Train:epoch: 92, loss@min: 1.406884, loss@max: 2.511073, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 2.202329, LT: 2.473208, Top1S: 46.815414, Top1T: 44.421906Best acc: 46.815414 +Train:epoch: 93, loss@min: 1.409911, loss@max: 2.461835, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 93, LS: 2.191368, LT: 2.461780, Top1S: 47.058823, Top1T: 44.665314Best acc: 47.058823 +Train:epoch: 94, loss@min: 1.233762, loss@max: 2.445735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 2.179382, LT: 2.451261, Top1S: 47.342800, Top1T: 44.989857Best acc: 47.342800 +Train:epoch: 95, loss@min: 1.233626, loss@max: 2.453532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 2.167521, LT: 2.440590, Top1S: 47.748478, Top1T: 45.192699Best acc: 47.748478 +Train:epoch: 96, loss@min: 1.221359, loss@max: 2.412250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 2.156966, LT: 2.429393, Top1S: 47.707912, Top1T: 45.314404 +Train:epoch: 97, loss@min: 1.303026, loss@max: 2.272425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 2.146519, LT: 2.418564, Top1S: 47.951317, Top1T: 45.354969Best acc: 47.951317 +Train:epoch: 98, loss@min: 1.215523, loss@max: 2.332031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 2.136798, LT: 2.408158, Top1S: 48.073021, Top1T: 45.436104Best acc: 48.073021 +Train:epoch: 99, loss@min: 1.317878, loss@max: 2.326047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 2.125796, LT: 2.398672, Top1S: 48.113590, Top1T: 45.638947Best acc: 48.113590 +Train:epoch: 100, loss@min: 1.285494, loss@max: 2.303093, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 2.117555, LT: 2.388373, Top1S: 48.356998, Top1T: 45.882355Best acc: 48.356998 +Train:epoch: 101, loss@min: 1.297477, loss@max: 2.290983, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 101, LS: 2.106839, LT: 2.378993, Top1S: 48.681541, Top1T: 46.085194Best acc: 48.681541 +Train:epoch: 102, loss@min: 1.212669, loss@max: 2.246908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 2.097539, LT: 2.369278, Top1S: 48.924950, Top1T: 46.409737Best acc: 48.924950 +Train:epoch: 103, loss@min: 1.195276, loss@max: 2.240510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 2.088995, LT: 2.359701, Top1S: 48.843815, Top1T: 46.855984 +Train:epoch: 104, loss@min: 1.288158, loss@max: 2.269771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 2.085587, LT: 2.348825, Top1S: 48.640972, Top1T: 47.302231 +Train:epoch: 105, loss@min: 1.240672, loss@max: 2.248715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 2.079056, LT: 2.338800, Top1S: 48.803246, Top1T: 47.505070 +Train:epoch: 106, loss@min: 1.221551, loss@max: 2.240382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 2.073186, LT: 2.328515, Top1S: 48.884380, Top1T: 47.667343 +Train:epoch: 107, loss@min: 1.212531, loss@max: 2.260850, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 107, LS: 2.067353, LT: 2.318699, Top1S: 49.006084, Top1T: 47.829617Best acc: 49.006084 +Train:epoch: 108, loss@min: 1.221900, loss@max: 2.211911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 2.062772, LT: 2.308507, Top1S: 49.087223, Top1T: 47.951317Best acc: 49.087223 +Train:epoch: 109, loss@min: 1.240596, loss@max: 2.220950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 2.056854, LT: 2.298983, Top1S: 49.208923, Top1T: 48.032455Best acc: 49.208923 +Train:epoch: 110, loss@min: 1.279805, loss@max: 2.065828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 2.051119, LT: 2.289494, Top1S: 49.411766, Top1T: 48.438133Best acc: 49.411766 +Train:epoch: 111, loss@min: 1.245590, loss@max: 2.190737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 2.044806, LT: 2.280058, Top1S: 49.695740, Top1T: 48.762676Best acc: 49.695740 +Train:epoch: 112, loss@min: 1.223692, loss@max: 2.080861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 2.039171, LT: 2.271030, Top1S: 50.020283, Top1T: 48.884380Best acc: 50.020283 +Train:epoch: 113, loss@min: 1.167203, loss@max: 2.216330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 2.033224, LT: 2.262770, Top1S: 50.223125, Top1T: 48.965519Best acc: 50.223125 +Train:epoch: 114, loss@min: 1.207508, loss@max: 2.118804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 2.026063, LT: 2.255116, Top1S: 50.344830, Top1T: 48.965519Best acc: 50.344830 +Train:epoch: 115, loss@min: 1.143908, loss@max: 2.213180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 2.017263, LT: 2.248048, Top1S: 50.507099, Top1T: 49.087223Best acc: 50.507099 +Train:epoch: 116, loss@min: 1.374241, loss@max: 2.008337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 2.007499, LT: 2.241532, Top1S: 50.831642, Top1T: 49.249493Best acc: 50.831642 +Train:epoch: 117, loss@min: 1.243888, loss@max: 2.009503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.999120, LT: 2.234761, Top1S: 51.115620, Top1T: 49.371197Best acc: 51.115620 +Train:epoch: 118, loss@min: 1.333232, loss@max: 1.996264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.991999, LT: 2.227650, Top1S: 51.237324, Top1T: 49.452332Best acc: 51.237324 +Train:epoch: 119, loss@min: 1.247929, loss@max: 2.008749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.984597, LT: 2.220599, Top1S: 51.602436, Top1T: 49.655174Best acc: 51.602436 +Train:epoch: 120, loss@min: 1.226991, loss@max: 2.039059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.977869, LT: 2.212943, Top1S: 51.724136, Top1T: 49.776878Best acc: 51.724136 +Train:epoch: 121, loss@min: 1.202879, loss@max: 2.069184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.972587, LT: 2.205413, Top1S: 51.845840, Top1T: 49.979717Best acc: 51.845840 +Train:epoch: 122, loss@min: 1.325312, loss@max: 2.028881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.966367, LT: 2.197709, Top1S: 51.805275, Top1T: 50.141987 +Train:epoch: 123, loss@min: 1.258011, loss@max: 1.960885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.961042, LT: 2.189901, Top1S: 51.845840, Top1T: 50.304260 +Train:epoch: 124, loss@min: 1.169299, loss@max: 1.992965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.953530, LT: 2.182942, Top1S: 52.170387, Top1T: 50.507099Best acc: 52.170387 +Train:epoch: 125, loss@min: 1.241217, loss@max: 1.980501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.945637, LT: 2.176106, Top1S: 52.251522, Top1T: 50.507099Best acc: 52.251522 +Train:epoch: 126, loss@min: 1.194290, loss@max: 1.931223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.937784, LT: 2.169185, Top1S: 52.413792, Top1T: 50.669373Best acc: 52.413792 +Train:epoch: 127, loss@min: 1.133811, loss@max: 2.064704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.927785, LT: 2.163275, Top1S: 52.576065, Top1T: 50.872211Best acc: 52.576065 +Train:epoch: 128, loss@min: 1.196186, loss@max: 2.006097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.919880, LT: 2.156667, Top1S: 52.819473, Top1T: 51.034485Best acc: 52.819473 +Train:epoch: 129, loss@min: 1.186647, loss@max: 1.974644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.912976, LT: 2.149771, Top1S: 53.265720, Top1T: 51.075050Best acc: 53.265720 +Train:epoch: 130, loss@min: 1.201340, loss@max: 1.880247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.905507, LT: 2.143341, Top1S: 53.468559, Top1T: 51.034485Best acc: 53.468559 +Train:epoch: 131, loss@min: 1.208527, loss@max: 1.973669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.899331, LT: 2.136453, Top1S: 53.427994, Top1T: 51.115620 +Train:epoch: 132, loss@min: 1.119267, loss@max: 1.947065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.891045, LT: 2.131036, Top1S: 53.711967, Top1T: 51.034485Best acc: 53.711967 +Train:epoch: 133, loss@min: 1.108499, loss@max: 1.939054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.880588, LT: 2.126566, Top1S: 53.914806, Top1T: 50.953346Best acc: 53.914806 +Train:epoch: 134, loss@min: 1.100527, loss@max: 2.020598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.873215, LT: 2.121104, Top1S: 54.117649, Top1T: 51.318459Best acc: 54.117649 +Train:epoch: 135, loss@min: 1.179215, loss@max: 1.961470, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 135, LS: 1.867655, LT: 2.114850, Top1S: 54.158215, Top1T: 51.440163Best acc: 54.158215 +Train:epoch: 136, loss@min: 1.225010, loss@max: 1.906011, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 136, LS: 1.865716, LT: 2.107231, Top1S: 54.036510, Top1T: 51.561867 +Train:epoch: 137, loss@min: 1.195064, loss@max: 1.882234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.864647, LT: 2.099220, Top1S: 54.320488, Top1T: 51.805275Best acc: 54.320488 +Train:epoch: 138, loss@min: 1.180561, loss@max: 1.937877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.862276, LT: 2.091850, Top1S: 54.482758, Top1T: 51.967545Best acc: 54.482758 +Train:epoch: 139, loss@min: 1.232737, loss@max: 1.875392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.857992, LT: 2.085034, Top1S: 54.645031, Top1T: 51.967545Best acc: 54.645031 +Train:epoch: 140, loss@min: 1.259836, loss@max: 1.793494, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 140, LS: 1.853405, LT: 2.078621, Top1S: 54.807304, Top1T: 52.129818Best acc: 54.807304 +Train:epoch: 141, loss@min: 1.138370, loss@max: 1.831190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.845962, LT: 2.073719, Top1S: 54.969574, Top1T: 52.413792Best acc: 54.969574 +Train:epoch: 142, loss@min: 1.169563, loss@max: 1.820926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.840044, LT: 2.068353, Top1S: 54.726166, Top1T: 52.576065 +Train:epoch: 143, loss@min: 1.251792, loss@max: 1.838812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.835868, LT: 2.062491, Top1S: 54.847870, Top1T: 52.900608 +Train:epoch: 144, loss@min: 1.178246, loss@max: 1.880174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.832407, LT: 2.056454, Top1S: 54.888439, Top1T: 52.900608 +Train:epoch: 145, loss@min: 1.206417, loss@max: 1.856440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.830017, LT: 2.050410, Top1S: 54.969574, Top1T: 52.981743 +Train:epoch: 146, loss@min: 1.165047, loss@max: 1.866135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.826793, LT: 2.044607, Top1S: 55.010143, Top1T: 52.981743Best acc: 55.010143 +Train:epoch: 147, loss@min: 1.227508, loss@max: 1.847164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.824266, LT: 2.038726, Top1S: 55.212982, Top1T: 52.981743Best acc: 55.212982 +Train:epoch: 148, loss@min: 1.158265, loss@max: 1.832001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.821817, LT: 2.032671, Top1S: 55.253551, Top1T: 53.062881Best acc: 55.253551 +Train:epoch: 149, loss@min: 1.147198, loss@max: 1.800024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.820011, LT: 2.026371, Top1S: 55.334686, Top1T: 53.103447Best acc: 55.334686 +Train:epoch: 150, loss@min: 1.129566, loss@max: 1.798231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.819656, LT: 2.019922, Top1S: 55.212982, Top1T: 53.184586 +Train:epoch: 151, loss@min: 1.247538, loss@max: 1.822085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 1.819444, LT: 2.013530, Top1S: 55.131847, Top1T: 53.225151 +Train:epoch: 152, loss@min: 1.156285, loss@max: 1.888905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 1.817242, LT: 2.007927, Top1S: 55.091278, Top1T: 53.468559 +Train:epoch: 153, loss@min: 1.175342, loss@max: 1.787968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 1.813959, LT: 2.002508, Top1S: 55.131847, Top1T: 53.549698 +Train:epoch: 154, loss@min: 1.195704, loss@max: 1.768713, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 154, LS: 1.810687, LT: 1.996945, Top1S: 55.131847, Top1T: 53.671398 +Train:epoch: 155, loss@min: 1.124599, loss@max: 1.836451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 1.804745, LT: 1.992844, Top1S: 55.212982, Top1T: 53.793102 +Train:epoch: 156, loss@min: 1.164334, loss@max: 1.732274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 1.797094, LT: 1.989214, Top1S: 55.496956, Top1T: 53.793102Best acc: 55.496956 +Train:epoch: 157, loss@min: 1.141094, loss@max: 1.820138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 1.787621, LT: 1.986592, Top1S: 55.740364, Top1T: 53.793102Best acc: 55.740364 +Train:epoch: 158, loss@min: 1.182536, loss@max: 1.773360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 158, LS: 1.780820, LT: 1.982376, Top1S: 55.862068, Top1T: 53.914806Best acc: 55.862068 +Train:epoch: 159, loss@min: 1.105272, loss@max: 1.791172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 159, LS: 1.776531, LT: 1.977274, Top1S: 56.348885, Top1T: 53.955376Best acc: 56.348885 +Train:epoch: 160, loss@min: 1.175193, loss@max: 1.693551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 160, LS: 1.772461, LT: 1.972034, Top1S: 56.592293, Top1T: 53.955376Best acc: 56.592293 +Train:epoch: 161, loss@min: 1.142826, loss@max: 1.806823, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 161, LS: 1.769224, LT: 1.966396, Top1S: 56.835701, Top1T: 54.117649Best acc: 56.835701 +Train:epoch: 162, loss@min: 1.077656, loss@max: 1.848633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 162, LS: 1.764186, LT: 1.961549, Top1S: 56.876266, Top1T: 54.158215Best acc: 56.876266 +Train:epoch: 163, loss@min: 1.155608, loss@max: 1.768498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 163, LS: 1.759480, LT: 1.956733, Top1S: 56.876266, Top1T: 54.158215 +Train:epoch: 164, loss@min: 1.184481, loss@max: 1.759507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 164, LS: 1.756493, LT: 1.951388, Top1S: 57.119675, Top1T: 54.320488Best acc: 57.119675 +Train:epoch: 165, loss@min: 1.106188, loss@max: 1.743046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 165, LS: 1.752415, LT: 1.946664, Top1S: 57.281948, Top1T: 54.361053Best acc: 57.281948 +Train:epoch: 166, loss@min: 1.183008, loss@max: 1.716351, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 166, LS: 1.748684, LT: 1.941690, Top1S: 57.403652, Top1T: 54.523327Best acc: 57.403652 +Train:epoch: 167, loss@min: 1.096339, loss@max: 1.807947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 167, LS: 1.746701, LT: 1.936272, Top1S: 57.484787, Top1T: 54.645031Best acc: 57.484787 +Train:epoch: 168, loss@min: 1.184343, loss@max: 1.728335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 168, LS: 1.742961, LT: 1.931511, Top1S: 57.525356, Top1T: 54.685600Best acc: 57.525356 +Train:epoch: 169, loss@min: 1.146187, loss@max: 1.735411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 169, LS: 1.735875, LT: 1.928222, Top1S: 57.606491, Top1T: 54.766735Best acc: 57.606491 +Train:epoch: 170, loss@min: 1.118010, loss@max: 1.713203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 170, LS: 1.729546, LT: 1.924452, Top1S: 57.647060, Top1T: 54.888439Best acc: 57.647060 +Train:epoch: 171, loss@min: 1.157117, loss@max: 1.746109, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 171, LS: 1.724083, LT: 1.920363, Top1S: 57.647060, Top1T: 54.847870 +Train:epoch: 172, loss@min: 1.111632, loss@max: 1.776208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 172, LS: 1.721253, LT: 1.915298, Top1S: 57.687626, Top1T: 54.969574Best acc: 57.687626 +Train:epoch: 173, loss@min: 1.179080, loss@max: 1.687204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 173, LS: 1.721240, LT: 1.909290, Top1S: 57.687626, Top1T: 54.888439 +Train:epoch: 174, loss@min: 1.135168, loss@max: 1.771650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 174, LS: 1.722214, LT: 1.903300, Top1S: 57.606491, Top1T: 55.050709 +Train:epoch: 175, loss@min: 1.203675, loss@max: 1.702582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 175, LS: 1.723136, LT: 1.897954, Top1S: 57.728195, Top1T: 55.172413Best acc: 57.728195 +Train:epoch: 176, loss@min: 1.137987, loss@max: 1.699749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 176, LS: 1.723593, LT: 1.892867, Top1S: 57.931034, Top1T: 55.212982Best acc: 57.931034 +Train:epoch: 177, loss@min: 1.162599, loss@max: 1.635852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 177, LS: 1.723661, LT: 1.888184, Top1S: 57.809330, Top1T: 55.253551 +Train:epoch: 178, loss@min: 1.127256, loss@max: 1.748010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 178, LS: 1.723867, LT: 1.883789, Top1S: 57.931034, Top1T: 55.456390 +Train:epoch: 179, loss@min: 1.149414, loss@max: 1.685817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 179, LS: 1.721582, LT: 1.880079, Top1S: 57.606491, Top1T: 55.618660 +Train:epoch: 180, loss@min: 1.077502, loss@max: 1.708674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 180, LS: 1.717253, LT: 1.877131, Top1S: 57.565922, Top1T: 55.821503 +Train:epoch: 181, loss@min: 1.067060, loss@max: 1.743019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 181, LS: 1.710922, LT: 1.874291, Top1S: 57.931034, Top1T: 55.983772 +Train:epoch: 182, loss@min: 1.063151, loss@max: 1.780435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 182, LS: 1.703729, LT: 1.871881, Top1S: 57.931034, Top1T: 55.983772 +Train:epoch: 183, loss@min: 1.143417, loss@max: 1.718150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 183, LS: 1.695144, LT: 1.869720, Top1S: 57.971603, Top1T: 55.862068Best acc: 57.971603 +Train:epoch: 184, loss@min: 1.133495, loss@max: 1.654323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 184, LS: 1.686940, LT: 1.867365, Top1S: 58.174442, Top1T: 56.064911Best acc: 58.174442 +Train:epoch: 185, loss@min: 1.100418, loss@max: 1.768444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 185, LS: 1.679702, LT: 1.865390, Top1S: 58.539555, Top1T: 56.064911Best acc: 58.539555 +Train:epoch: 186, loss@min: 1.121727, loss@max: 1.673287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 186, LS: 1.674513, LT: 1.862403, Top1S: 58.580120, Top1T: 55.943207Best acc: 58.580120 +Train:epoch: 187, loss@min: 1.106165, loss@max: 1.649162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 187, LS: 1.670841, LT: 1.859125, Top1S: 58.823528, Top1T: 55.862068Best acc: 58.823528 +Train:epoch: 188, loss@min: 1.090084, loss@max: 1.678770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 188, LS: 1.667245, LT: 1.855814, Top1S: 58.904667, Top1T: 55.943207Best acc: 58.904667 +Train:epoch: 189, loss@min: 1.020487, loss@max: 1.720140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 189, LS: 1.664188, LT: 1.852308, Top1S: 58.945232, Top1T: 56.105476Best acc: 58.945232 +Train:epoch: 190, loss@min: 1.083154, loss@max: 1.716817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 190, LS: 1.661890, LT: 1.848315, Top1S: 58.742393, Top1T: 56.227180 +Train:epoch: 191, loss@min: 1.097711, loss@max: 1.667860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 191, LS: 1.659365, LT: 1.844551, Top1S: 58.782963, Top1T: 56.267750 +Train:epoch: 192, loss@min: 1.120212, loss@max: 1.726523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 192, LS: 1.657980, LT: 1.840246, Top1S: 58.823528, Top1T: 56.592293 +Train:epoch: 193, loss@min: 1.075310, loss@max: 1.687190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 193, LS: 1.657280, LT: 1.835509, Top1S: 58.823528, Top1T: 56.713997 +Train:epoch: 194, loss@min: 1.130392, loss@max: 1.639745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 194, LS: 1.656249, LT: 1.830670, Top1S: 58.985802, Top1T: 56.632862Best acc: 58.985802 +Train:epoch: 195, loss@min: 1.143296, loss@max: 1.671370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 195, LS: 1.654213, LT: 1.826340, Top1S: 59.066936, Top1T: 56.632862Best acc: 59.066936 +Train:epoch: 196, loss@min: 1.199120, loss@max: 1.607498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 196, LS: 1.652757, LT: 1.821967, Top1S: 59.066936, Top1T: 56.551723 +Train:epoch: 197, loss@min: 1.160559, loss@max: 1.658689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 197, LS: 1.651999, LT: 1.817533, Top1S: 58.904667, Top1T: 56.673428 +Train:epoch: 198, loss@min: 1.190899, loss@max: 1.667884, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 198, LS: 1.651587, LT: 1.812713, Top1S: 58.985802, Top1T: 56.916836 +Train:epoch: 199, loss@min: 1.119093, loss@max: 1.603300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 199, LS: 1.651014, LT: 1.808263, Top1S: 59.269775, Top1T: 57.079109Best acc: 59.269775 +Train:epoch: 200, loss@min: 1.099240, loss@max: 1.628188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 200, LS: 1.652042, LT: 1.803414, Top1S: 59.229210, Top1T: 57.119675 +Train:epoch: 201, loss@min: 1.111700, loss@max: 1.630274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 201, LS: 1.652753, LT: 1.798545, Top1S: 59.269775, Top1T: 57.241379 +Train:epoch: 202, loss@min: 1.068066, loss@max: 1.648267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 202, LS: 1.651673, LT: 1.794288, Top1S: 59.229210, Top1T: 57.322514 +Train:epoch: 203, loss@min: 1.097853, loss@max: 1.657033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 203, LS: 1.649470, LT: 1.790511, Top1S: 59.269775, Top1T: 57.200813 +Train:epoch: 204, loss@min: 1.025125, loss@max: 1.700633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 204, LS: 1.645795, LT: 1.787070, Top1S: 59.391479, Top1T: 57.200813Best acc: 59.391479 +Train:epoch: 205, loss@min: 1.035277, loss@max: 1.685399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 205, LS: 1.640236, LT: 1.784449, Top1S: 59.391479, Top1T: 57.241379 +Train:epoch: 206, loss@min: 1.076115, loss@max: 1.697991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 206, LS: 1.634458, LT: 1.782192, Top1S: 59.391479, Top1T: 57.281948 +Train:epoch: 207, loss@min: 1.001405, loss@max: 1.753251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 207, LS: 1.626131, LT: 1.781568, Top1S: 59.472618, Top1T: 57.281948Best acc: 59.472618 +Train:epoch: 208, loss@min: 1.132023, loss@max: 1.647295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 208, LS: 1.618731, LT: 1.781013, Top1S: 59.553753, Top1T: 57.403652Best acc: 59.553753 +Train:epoch: 209, loss@min: 1.035446, loss@max: 1.658766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 209, LS: 1.611985, LT: 1.780332, Top1S: 59.675457, Top1T: 57.403652Best acc: 59.675457 +Train:epoch: 210, loss@min: 1.093594, loss@max: 1.688419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 210, LS: 1.605903, LT: 1.779131, Top1S: 59.797161, Top1T: 57.363083Best acc: 59.797161 +Train:epoch: 211, loss@min: 1.093420, loss@max: 1.718179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 211, LS: 1.600389, LT: 1.777289, Top1S: 60.040569, Top1T: 57.363083Best acc: 60.040569 +Train:epoch: 212, loss@min: 1.092896, loss@max: 1.677878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 212, LS: 1.597593, LT: 1.774054, Top1S: 60.202839, Top1T: 57.484787Best acc: 60.202839 +Train:epoch: 213, loss@min: 1.060432, loss@max: 1.675843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 213, LS: 1.595671, LT: 1.770404, Top1S: 60.324543, Top1T: 57.647060Best acc: 60.324543 +Train:epoch: 214, loss@min: 1.133587, loss@max: 1.583505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 214, LS: 1.594885, LT: 1.766437, Top1S: 60.405682, Top1T: 57.647060Best acc: 60.405682 +Train:epoch: 215, loss@min: 1.049511, loss@max: 1.611103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 215, LS: 1.594251, LT: 1.762369, Top1S: 60.608521, Top1T: 57.606491Best acc: 60.608521 +Train:epoch: 216, loss@min: 1.090932, loss@max: 1.575662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 216, LS: 1.594082, LT: 1.758415, Top1S: 60.446247, Top1T: 57.606491 +Train:epoch: 217, loss@min: 1.024037, loss@max: 1.695590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 217, LS: 1.593668, LT: 1.754686, Top1S: 60.365112, Top1T: 57.647060 +Train:epoch: 218, loss@min: 1.082548, loss@max: 1.670911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 218, LS: 1.592674, LT: 1.751512, Top1S: 60.405682, Top1T: 57.849899 +Train:epoch: 219, loss@min: 1.045846, loss@max: 1.622410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 219, LS: 1.592245, LT: 1.748132, Top1S: 60.243408, Top1T: 57.890469 +Train:epoch: 220, loss@min: 1.077180, loss@max: 1.652502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 220, LS: 1.591639, LT: 1.744967, Top1S: 60.243408, Top1T: 58.012169 +Train:epoch: 221, loss@min: 1.066451, loss@max: 1.626266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 221, LS: 1.590203, LT: 1.742199, Top1S: 60.283978, Top1T: 57.971603 +Train:epoch: 222, loss@min: 1.119958, loss@max: 1.572955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 222, LS: 1.587694, LT: 1.739666, Top1S: 60.405682, Top1T: 58.012169 +Train:epoch: 223, loss@min: 1.035122, loss@max: 1.619677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 223, LS: 1.585279, LT: 1.737344, Top1S: 60.446247, Top1T: 58.215012 +Train:epoch: 224, loss@min: 1.027069, loss@max: 1.617492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 224, LS: 1.582124, LT: 1.735625, Top1S: 60.486816, Top1T: 58.336716 +Train:epoch: 225, loss@min: 1.085447, loss@max: 1.585501, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 225, LS: 1.579194, LT: 1.733789, Top1S: 60.689655, Top1T: 58.255577Best acc: 60.689655 +Train:epoch: 226, loss@min: 1.157222, loss@max: 1.578198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 226, LS: 1.577971, LT: 1.731494, Top1S: 60.527382, Top1T: 58.417850 +Train:epoch: 227, loss@min: 1.074497, loss@max: 1.584651, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 227, LS: 1.577340, LT: 1.728587, Top1S: 60.405682, Top1T: 58.417850 +Train:epoch: 228, loss@min: 1.123727, loss@max: 1.570167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 228, LS: 1.576805, LT: 1.725313, Top1S: 60.567951, Top1T: 58.498985 +Train:epoch: 229, loss@min: 1.077353, loss@max: 1.580194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 229, LS: 1.575973, LT: 1.721841, Top1S: 60.567951, Top1T: 58.661259 +Train:epoch: 230, loss@min: 1.072131, loss@max: 1.581037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 230, LS: 1.575204, LT: 1.718171, Top1S: 60.608521, Top1T: 58.742393 +Train:epoch: 231, loss@min: 1.082469, loss@max: 1.606721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 231, LS: 1.574664, LT: 1.714023, Top1S: 60.649086, Top1T: 58.823528 +Train:epoch: 232, loss@min: 1.095086, loss@max: 1.614696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 232, LS: 1.573061, LT: 1.710555, Top1S: 60.689655, Top1T: 58.701824 +Train:epoch: 233, loss@min: 1.043309, loss@max: 1.668599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 233, LS: 1.571570, LT: 1.707697, Top1S: 60.649086, Top1T: 58.620689 +Train:epoch: 234, loss@min: 1.072744, loss@max: 1.581968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 234, LS: 1.570026, LT: 1.704591, Top1S: 60.851929, Top1T: 58.498985Best acc: 60.851929 +Train:epoch: 235, loss@min: 1.094507, loss@max: 1.549815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 235, LS: 1.568445, LT: 1.701253, Top1S: 60.933064, Top1T: 58.742393Best acc: 60.933064 +Train:epoch: 236, loss@min: 1.069592, loss@max: 1.576692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 236, LS: 1.566951, LT: 1.697971, Top1S: 61.176472, Top1T: 58.782963Best acc: 61.176472 +Train:epoch: 237, loss@min: 1.053952, loss@max: 1.615411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 237, LS: 1.565359, LT: 1.694925, Top1S: 61.095333, Top1T: 58.701824 +Train:epoch: 238, loss@min: 1.089395, loss@max: 1.598556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 238, LS: 1.564197, LT: 1.691989, Top1S: 60.892494, Top1T: 58.701824 +Train:epoch: 239, loss@min: 1.069696, loss@max: 1.611336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 239, LS: 1.562350, LT: 1.689434, Top1S: 60.892494, Top1T: 58.742393 +Train:epoch: 240, loss@min: 1.050882, loss@max: 1.626949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 240, LS: 1.559690, LT: 1.687180, Top1S: 60.933064, Top1T: 59.026371 +Train:epoch: 241, loss@min: 1.070524, loss@max: 1.640654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 241, LS: 1.555273, LT: 1.686027, Top1S: 61.135902, Top1T: 59.107506 +Train:epoch: 242, loss@min: 1.045455, loss@max: 1.712811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 242, LS: 1.551598, LT: 1.684711, Top1S: 61.095333, Top1T: 59.269775 +Train:epoch: 243, loss@min: 1.068478, loss@max: 1.614707, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 243, LS: 1.549502, LT: 1.682696, Top1S: 61.095333, Top1T: 59.148075 +Train:epoch: 244, loss@min: 1.005980, loss@max: 1.661358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 244, LS: 1.547512, LT: 1.680988, Top1S: 61.135902, Top1T: 59.148075 +Train:epoch: 245, loss@min: 1.083237, loss@max: 1.617771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 245, LS: 1.546206, LT: 1.678923, Top1S: 61.095333, Top1T: 59.188641 +Train:epoch: 246, loss@min: 1.102038, loss@max: 1.628736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 246, LS: 1.546405, LT: 1.676552, Top1S: 61.135902, Top1T: 59.229210 +Train:epoch: 247, loss@min: 1.093686, loss@max: 1.560278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 247, LS: 1.546213, LT: 1.673952, Top1S: 61.217037, Top1T: 59.269775Best acc: 61.217037 +Train:epoch: 248, loss@min: 1.059372, loss@max: 1.647665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 248, LS: 1.545059, LT: 1.671564, Top1S: 61.176472, Top1T: 59.148075 +Train:epoch: 249, loss@min: 1.052261, loss@max: 1.555591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 249, LS: 1.543799, LT: 1.669189, Top1S: 61.095333, Top1T: 59.310345 +Train:epoch: 250, loss@min: 1.058067, loss@max: 1.655977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 250, LS: 1.541642, LT: 1.666892, Top1S: 61.135902, Top1T: 59.310345 +Train:epoch: 251, loss@min: 1.041392, loss@max: 1.576566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 251, LS: 1.537187, LT: 1.665523, Top1S: 61.176472, Top1T: 59.391479 +Train:epoch: 252, loss@min: 1.058340, loss@max: 1.630685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 252, LS: 1.533373, LT: 1.663857, Top1S: 61.217037, Top1T: 59.432049 +Train:epoch: 253, loss@min: 1.013987, loss@max: 1.675488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 253, LS: 1.529414, LT: 1.662438, Top1S: 61.217037, Top1T: 59.513184 +Train:epoch: 254, loss@min: 1.021463, loss@max: 1.614071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 254, LS: 1.525268, LT: 1.660996, Top1S: 61.582150, Top1T: 59.553753Best acc: 61.582150 +Train:epoch: 255, loss@min: 1.003590, loss@max: 1.630736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 255, LS: 1.522036, LT: 1.658943, Top1S: 61.419880, Top1T: 59.594322 +Train:epoch: 256, loss@min: 1.066643, loss@max: 1.561374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 256, LS: 1.518031, LT: 1.657379, Top1S: 61.582150, Top1T: 59.918865 +Train:epoch: 257, loss@min: 1.107426, loss@max: 1.611330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 257, LS: 1.513640, LT: 1.655870, Top1S: 61.744423, Top1T: 59.918865Best acc: 61.744423 +Train:epoch: 258, loss@min: 1.037848, loss@max: 1.630700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 258, LS: 1.510258, LT: 1.654027, Top1S: 61.744423, Top1T: 59.959431 +Train:epoch: 259, loss@min: 1.088475, loss@max: 1.567901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 259, LS: 1.506160, LT: 1.652686, Top1S: 61.866127, Top1T: 59.959431Best acc: 61.866127 +Train:epoch: 260, loss@min: 1.051612, loss@max: 1.583742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 260, LS: 1.503313, LT: 1.650997, Top1S: 62.109535, Top1T: 59.918865Best acc: 62.109535 +Train:epoch: 261, loss@min: 1.051629, loss@max: 1.588711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 261, LS: 1.501470, LT: 1.648907, Top1S: 62.109535, Top1T: 59.918865 +Train:epoch: 262, loss@min: 1.051719, loss@max: 1.532704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 262, LS: 1.498688, LT: 1.647104, Top1S: 62.393509, Top1T: 60.121704Best acc: 62.393509 +Train:epoch: 263, loss@min: 1.118399, loss@max: 1.533782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 263, LS: 1.495471, LT: 1.645885, Top1S: 62.555782, Top1T: 60.162273Best acc: 62.555782 +Train:epoch: 264, loss@min: 1.059216, loss@max: 1.565275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 264, LS: 1.493810, LT: 1.644070, Top1S: 62.434078, Top1T: 60.243408 +Train:epoch: 265, loss@min: 1.129375, loss@max: 1.546937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 265, LS: 1.494932, LT: 1.641055, Top1S: 62.515213, Top1T: 60.162273 +Train:epoch: 266, loss@min: 1.099834, loss@max: 1.600304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 266, LS: 1.496554, LT: 1.637608, Top1S: 62.312374, Top1T: 60.243408 +Train:epoch: 267, loss@min: 1.069652, loss@max: 1.574252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 267, LS: 1.500115, LT: 1.633602, Top1S: 62.109535, Top1T: 60.446247 +Train:epoch: 268, loss@min: 1.013809, loss@max: 1.580136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 268, LS: 1.504176, LT: 1.629115, Top1S: 61.744423, Top1T: 60.730225 +Train:epoch: 269, loss@min: 1.039921, loss@max: 1.628547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 269, LS: 1.507262, LT: 1.625273, Top1S: 61.703854, Top1T: 60.851929 +Train:epoch: 270, loss@min: 1.077982, loss@max: 1.581170, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 270, LS: 1.508845, LT: 1.622414, Top1S: 61.703854, Top1T: 60.608521 +Train:epoch: 271, loss@min: 1.047979, loss@max: 1.638696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 271, LS: 1.508681, LT: 1.620321, Top1S: 61.987831, Top1T: 60.730225 +Train:epoch: 272, loss@min: 0.979467, loss@max: 1.660275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 272, LS: 1.507494, LT: 1.618589, Top1S: 62.150101, Top1T: 60.892494 +Train:epoch: 273, loss@min: 1.049096, loss@max: 1.620104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 273, LS: 1.504578, LT: 1.617718, Top1S: 62.109535, Top1T: 60.933064 +Train:epoch: 274, loss@min: 1.104409, loss@max: 1.531087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 274, LS: 1.501664, LT: 1.616604, Top1S: 62.393509, Top1T: 60.892494 +Train:epoch: 275, loss@min: 1.056285, loss@max: 1.634761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 275, LS: 1.498870, LT: 1.615243, Top1S: 62.352940, Top1T: 60.892494 +Train:epoch: 276, loss@min: 1.045649, loss@max: 1.572568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 276, LS: 1.494440, LT: 1.614907, Top1S: 62.555782, Top1T: 60.892494 +Train:epoch: 277, loss@min: 1.056326, loss@max: 1.591768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 277, LS: 1.489508, LT: 1.614662, Top1S: 62.839756, Top1T: 60.851929Best acc: 62.839756 +Train:epoch: 278, loss@min: 1.068233, loss@max: 1.642294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 278, LS: 1.485186, LT: 1.614143, Top1S: 62.920895, Top1T: 61.014198Best acc: 62.920895 +Train:epoch: 279, loss@min: 1.027199, loss@max: 1.662211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 279, LS: 1.482856, LT: 1.612524, Top1S: 63.042595, Top1T: 60.973633Best acc: 63.042595 +Train:epoch: 280, loss@min: 1.078550, loss@max: 1.599640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 280, LS: 1.482592, LT: 1.609754, Top1S: 63.002029, Top1T: 61.095333 +Train:epoch: 281, loss@min: 1.045812, loss@max: 1.583917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 281, LS: 1.481876, LT: 1.607629, Top1S: 62.839756, Top1T: 61.217037 +Train:epoch: 282, loss@min: 1.059590, loss@max: 1.527332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 282, LS: 1.481172, LT: 1.605901, Top1S: 62.799191, Top1T: 61.176472 +Train:epoch: 283, loss@min: 0.998683, loss@max: 1.653861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 283, LS: 1.480490, LT: 1.604217, Top1S: 62.799191, Top1T: 61.217037 +Train:epoch: 284, loss@min: 1.062040, loss@max: 1.556810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 284, LS: 1.479564, LT: 1.602414, Top1S: 62.636917, Top1T: 61.501015 +Train:epoch: 285, loss@min: 1.101795, loss@max: 1.510010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 285, LS: 1.478817, LT: 1.600199, Top1S: 62.474644, Top1T: 61.541584 +Train:epoch: 286, loss@min: 1.103206, loss@max: 1.650990, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 286, LS: 1.475697, LT: 1.598781, Top1S: 62.555782, Top1T: 61.622719 +Train:epoch: 287, loss@min: 0.994990, loss@max: 1.606790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 287, LS: 1.473090, LT: 1.597134, Top1S: 62.474644, Top1T: 61.501015 +Train:epoch: 288, loss@min: 1.032187, loss@max: 1.589900, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 288, LS: 1.469837, LT: 1.595579, Top1S: 62.474644, Top1T: 61.541584 +Train:epoch: 289, loss@min: 1.057112, loss@max: 1.568489, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 289, LS: 1.467557, LT: 1.593963, Top1S: 62.515213, Top1T: 61.582150 +Train:epoch: 290, loss@min: 1.037414, loss@max: 1.553956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 290, LS: 1.465873, LT: 1.592332, Top1S: 62.434078, Top1T: 61.582150 +Train:epoch: 291, loss@min: 1.039946, loss@max: 1.585158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 291, LS: 1.465288, LT: 1.590356, Top1S: 62.352940, Top1T: 61.622719 +Train:epoch: 292, loss@min: 1.027384, loss@max: 1.648246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 292, LS: 1.465441, LT: 1.587808, Top1S: 62.271805, Top1T: 61.703854 +Train:epoch: 293, loss@min: 1.040475, loss@max: 1.589538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 293, LS: 1.465355, LT: 1.585366, Top1S: 62.677486, Top1T: 61.825558 +Train:epoch: 294, loss@min: 1.045706, loss@max: 1.584327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 294, LS: 1.465455, LT: 1.582588, Top1S: 62.555782, Top1T: 62.028397 +Train:epoch: 295, loss@min: 1.040765, loss@max: 1.545078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 295, LS: 1.465794, LT: 1.579903, Top1S: 62.555782, Top1T: 61.906693 +Train:epoch: 296, loss@min: 1.021857, loss@max: 1.624768, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 296, LS: 1.465866, LT: 1.577520, Top1S: 62.515213, Top1T: 61.947262 +Train:epoch: 297, loss@min: 1.097339, loss@max: 1.549626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 297, LS: 1.466204, LT: 1.575041, Top1S: 62.555782, Top1T: 62.028397 +Train:epoch: 298, loss@min: 1.057141, loss@max: 1.568214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 298, LS: 1.466108, LT: 1.573419, Top1S: 62.636917, Top1T: 61.906693 +Train:epoch: 299, loss@min: 1.008890, loss@max: 1.606377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 299, LS: 1.465122, LT: 1.572689, Top1S: 62.596348, Top1T: 61.947262 +Train:epoch: 300, loss@min: 1.037422, loss@max: 1.574424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 300, LS: 1.463518, LT: 1.572604, Top1S: 62.718052, Top1T: 61.906693 +Train:epoch: 301, loss@min: 1.026037, loss@max: 1.589398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 301, LS: 1.461255, LT: 1.572867, Top1S: 62.839756, Top1T: 61.906693 +Train:epoch: 302, loss@min: 1.040219, loss@max: 1.596648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 302, LS: 1.458468, LT: 1.572894, Top1S: 62.758621, Top1T: 61.947262 +Train:epoch: 303, loss@min: 1.083815, loss@max: 1.586754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 303, LS: 1.455491, LT: 1.572874, Top1S: 62.880325, Top1T: 61.947262 +Train:epoch: 304, loss@min: 1.045974, loss@max: 1.568581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 304, LS: 1.452958, LT: 1.572326, Top1S: 62.880325, Top1T: 61.947262 +Train:epoch: 305, loss@min: 1.073773, loss@max: 1.534220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 305, LS: 1.450202, LT: 1.571710, Top1S: 62.880325, Top1T: 61.987831 +Train:epoch: 306, loss@min: 1.057593, loss@max: 1.590718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 306, LS: 1.448190, LT: 1.570715, Top1S: 62.961460, Top1T: 62.109535 +Train:epoch: 307, loss@min: 1.021081, loss@max: 1.566316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 307, LS: 1.446775, LT: 1.569586, Top1S: 63.002029, Top1T: 62.068966 +Train:epoch: 308, loss@min: 1.109213, loss@max: 1.534161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 308, LS: 1.446337, LT: 1.568222, Top1S: 63.123734, Top1T: 62.109535Best acc: 63.123734 +Train:epoch: 309, loss@min: 1.124997, loss@max: 1.497774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 309, LS: 1.447403, LT: 1.565792, Top1S: 62.961460, Top1T: 62.190670 +Train:epoch: 310, loss@min: 1.037626, loss@max: 1.549122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 310, LS: 1.448194, LT: 1.563340, Top1S: 63.002029, Top1T: 62.271805 +Train:epoch: 311, loss@min: 1.008271, loss@max: 1.583527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 311, LS: 1.449370, LT: 1.560770, Top1S: 63.164299, Top1T: 62.352940Best acc: 63.164299 +Train:epoch: 312, loss@min: 1.053714, loss@max: 1.550632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 312, LS: 1.449912, LT: 1.558246, Top1S: 63.123734, Top1T: 62.515213 +Train:epoch: 313, loss@min: 1.045002, loss@max: 1.577410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 313, LS: 1.449278, LT: 1.555962, Top1S: 63.164299, Top1T: 62.515213 +Train:epoch: 314, loss@min: 1.025238, loss@max: 1.560357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 314, LS: 1.448129, LT: 1.553998, Top1S: 63.286003, Top1T: 62.596348Best acc: 63.286003 +Train:epoch: 315, loss@min: 1.025607, loss@max: 1.579618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 315, LS: 1.445070, LT: 1.553012, Top1S: 63.367142, Top1T: 62.596348Best acc: 63.367142 +Train:epoch: 316, loss@min: 1.056194, loss@max: 1.586613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 316, LS: 1.440033, LT: 1.553395, Top1S: 63.448277, Top1T: 62.636917Best acc: 63.448277 +Train:epoch: 317, loss@min: 1.042835, loss@max: 1.536835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 317, LS: 1.435250, LT: 1.553764, Top1S: 63.407707, Top1T: 62.677486 +Train:epoch: 318, loss@min: 1.040329, loss@max: 1.616647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 318, LS: 1.431869, LT: 1.553412, Top1S: 63.286003, Top1T: 62.596348 +Train:epoch: 319, loss@min: 1.045705, loss@max: 1.544042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 319, LS: 1.430582, LT: 1.552069, Top1S: 63.448277, Top1T: 62.677486 +Train:epoch: 320, loss@min: 1.041971, loss@max: 1.568155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 320, LS: 1.430393, LT: 1.550490, Top1S: 63.407707, Top1T: 62.596348 +Train:epoch: 321, loss@min: 0.980822, loss@max: 1.600054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 321, LS: 1.430721, LT: 1.548657, Top1S: 63.286003, Top1T: 62.596348 +Train:epoch: 322, loss@min: 1.010405, loss@max: 1.595622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 322, LS: 1.431693, LT: 1.546405, Top1S: 63.326572, Top1T: 62.596348 +Train:epoch: 323, loss@min: 0.948123, loss@max: 1.678631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 323, LS: 1.431789, LT: 1.544728, Top1S: 63.407707, Top1T: 62.555782 +Train:epoch: 324, loss@min: 1.003519, loss@max: 1.578102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 324, LS: 1.432868, LT: 1.542747, Top1S: 63.367142, Top1T: 62.596348 +Train:epoch: 325, loss@min: 1.007485, loss@max: 1.583086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 325, LS: 1.433492, LT: 1.540761, Top1S: 63.448277, Top1T: 62.596348 +Train:epoch: 326, loss@min: 1.063752, loss@max: 1.515737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 326, LS: 1.433525, LT: 1.539197, Top1S: 63.488846, Top1T: 62.555782Best acc: 63.488846 +Train:epoch: 327, loss@min: 1.046060, loss@max: 1.555641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 327, LS: 1.432888, LT: 1.538167, Top1S: 63.569981, Top1T: 62.515213Best acc: 63.569981 +Train:epoch: 328, loss@min: 1.043980, loss@max: 1.567032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 328, LS: 1.432546, LT: 1.536836, Top1S: 63.407707, Top1T: 62.596348 +Train:epoch: 329, loss@min: 1.037576, loss@max: 1.513552, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 329, LS: 1.431798, LT: 1.535847, Top1S: 63.448277, Top1T: 62.799191 +Train:epoch: 330, loss@min: 1.055078, loss@max: 1.529940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 330, LS: 1.429917, LT: 1.535063, Top1S: 63.488846, Top1T: 62.677486 +Train:epoch: 331, loss@min: 1.055255, loss@max: 1.523618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 331, LS: 1.426814, LT: 1.534537, Top1S: 63.407707, Top1T: 62.677486 +Train:epoch: 332, loss@min: 1.084315, loss@max: 1.504795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 332, LS: 1.423654, LT: 1.534047, Top1S: 63.569981, Top1T: 62.677486 +Train:epoch: 333, loss@min: 1.098325, loss@max: 1.561473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 333, LS: 1.421747, LT: 1.532705, Top1S: 63.691685, Top1T: 62.677486Best acc: 63.691685 +Train:epoch: 334, loss@min: 0.990691, loss@max: 1.637081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 334, LS: 1.420312, LT: 1.531353, Top1S: 63.610546, Top1T: 62.596348 +Train:epoch: 335, loss@min: 1.036467, loss@max: 1.529646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 335, LS: 1.419229, LT: 1.530102, Top1S: 63.772820, Top1T: 62.636917Best acc: 63.772820 +Train:epoch: 336, loss@min: 1.103657, loss@max: 1.480599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 336, LS: 1.418191, LT: 1.528702, Top1S: 63.935093, Top1T: 62.799191Best acc: 63.935093 +Train:epoch: 337, loss@min: 1.005752, loss@max: 1.561327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 337, LS: 1.417367, LT: 1.527293, Top1S: 64.056793, Top1T: 62.799191Best acc: 64.056793 +Train:epoch: 338, loss@min: 0.983309, loss@max: 1.583045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 338, LS: 1.414794, LT: 1.527114, Top1S: 64.056793, Top1T: 62.839756 +Train:epoch: 339, loss@min: 1.011640, loss@max: 1.558024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 339, LS: 1.415909, LT: 1.524971, Top1S: 64.097366, Top1T: 62.799191Best acc: 64.097366 +Train:epoch: 340, loss@min: 1.040720, loss@max: 1.633816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 340, LS: 1.417002, LT: 1.523119, Top1S: 64.056793, Top1T: 62.718052 +Train:epoch: 341, loss@min: 1.035714, loss@max: 1.533754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 341, LS: 1.416049, LT: 1.522278, Top1S: 64.016228, Top1T: 62.839756 +Train:epoch: 342, loss@min: 1.066101, loss@max: 1.574626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 342, LS: 1.415256, LT: 1.521103, Top1S: 63.975658, Top1T: 63.002029 +Train:epoch: 343, loss@min: 1.032272, loss@max: 1.550261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 343, LS: 1.414529, LT: 1.520398, Top1S: 63.853954, Top1T: 62.961460 +Train:epoch: 344, loss@min: 1.074619, loss@max: 1.558069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 344, LS: 1.414451, LT: 1.519335, Top1S: 63.732250, Top1T: 63.164299 +Train:epoch: 345, loss@min: 1.009361, loss@max: 1.553096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 345, LS: 1.414532, LT: 1.518138, Top1S: 63.610546, Top1T: 63.083164 +Train:epoch: 346, loss@min: 1.053803, loss@max: 1.536049, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 346, LS: 1.415569, LT: 1.516340, Top1S: 63.569981, Top1T: 63.123734 +Train:epoch: 347, loss@min: 1.026103, loss@max: 1.564464, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 347, LS: 1.415692, LT: 1.515153, Top1S: 63.488846, Top1T: 63.204868 +Train:epoch: 348, loss@min: 1.030919, loss@max: 1.604045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 348, LS: 1.415115, LT: 1.514377, Top1S: 63.448277, Top1T: 63.204868 +Train:epoch: 349, loss@min: 1.054671, loss@max: 1.574641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 349, LS: 1.414516, LT: 1.513151, Top1S: 63.407707, Top1T: 63.286003 +Train:epoch: 350, loss@min: 1.020306, loss@max: 1.533662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 350, LS: 1.413865, LT: 1.512323, Top1S: 63.448277, Top1T: 63.367142 +Train:epoch: 351, loss@min: 1.047124, loss@max: 1.511184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 351, LS: 1.413748, LT: 1.510923, Top1S: 63.448277, Top1T: 63.367142 +Train:epoch: 352, loss@min: 1.060462, loss@max: 1.510909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 352, LS: 1.414061, LT: 1.509227, Top1S: 63.407707, Top1T: 63.367142 +Train:epoch: 353, loss@min: 1.033162, loss@max: 1.584004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 353, LS: 1.415989, LT: 1.506479, Top1S: 63.448277, Top1T: 63.448277 +Train:epoch: 354, loss@min: 0.978460, loss@max: 1.609903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 354, LS: 1.417193, LT: 1.504000, Top1S: 63.529411, Top1T: 63.488846 +Train:epoch: 355, loss@min: 1.000747, loss@max: 1.582201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 355, LS: 1.417352, LT: 1.501774, Top1S: 63.569981, Top1T: 63.488846 +Train:epoch: 356, loss@min: 1.020551, loss@max: 1.590221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 356, LS: 1.416059, LT: 1.500387, Top1S: 63.691685, Top1T: 63.488846 +Train:epoch: 357, loss@min: 1.026103, loss@max: 1.558860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 357, LS: 1.413685, LT: 1.499694, Top1S: 63.691685, Top1T: 63.448277 +Train:epoch: 358, loss@min: 0.992655, loss@max: 1.609159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 358, LS: 1.409852, LT: 1.499675, Top1S: 63.691685, Top1T: 63.610546 +Train:epoch: 359, loss@min: 0.995703, loss@max: 1.602138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 359, LS: 1.406805, LT: 1.499408, Top1S: 63.813389, Top1T: 63.569981 +Train:epoch: 360, loss@min: 1.060662, loss@max: 1.561738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 360, LS: 1.402818, LT: 1.499820, Top1S: 63.853954, Top1T: 63.569981 +Train:epoch: 361, loss@min: 1.062960, loss@max: 1.513821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 361, LS: 1.398913, LT: 1.499958, Top1S: 64.056793, Top1T: 63.529411 +Train:epoch: 362, loss@min: 1.034059, loss@max: 1.520762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 362, LS: 1.395972, LT: 1.499550, Top1S: 64.016228, Top1T: 63.569981 +Train:epoch: 363, loss@min: 1.071990, loss@max: 1.532982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 363, LS: 1.394380, LT: 1.498394, Top1S: 64.016228, Top1T: 63.488846 +Train:epoch: 364, loss@min: 1.023791, loss@max: 1.541838, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 364, LS: 1.393335, LT: 1.497607, Top1S: 64.097366, Top1T: 63.488846 +Train:epoch: 365, loss@min: 1.052312, loss@max: 1.546539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 365, LS: 1.390987, LT: 1.497440, Top1S: 64.300201, Top1T: 63.448277Best acc: 64.300201 +Train:epoch: 366, loss@min: 1.014101, loss@max: 1.551311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 366, LS: 1.388682, LT: 1.497535, Top1S: 64.300201, Top1T: 63.326572 +Train:epoch: 367, loss@min: 1.042997, loss@max: 1.528456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 367, LS: 1.387484, LT: 1.496879, Top1S: 64.300201, Top1T: 63.204868 +Train:epoch: 368, loss@min: 1.000826, loss@max: 1.570167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 368, LS: 1.387611, LT: 1.495711, Top1S: 64.381340, Top1T: 63.204868Best acc: 64.381340 +Train:epoch: 369, loss@min: 1.011963, loss@max: 1.570821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 369, LS: 1.388254, LT: 1.494071, Top1S: 64.340775, Top1T: 63.245438 +Train:epoch: 370, loss@min: 0.994530, loss@max: 1.569121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 370, LS: 1.388936, LT: 1.492869, Top1S: 64.462479, Top1T: 63.326572Best acc: 64.462479 +Train:epoch: 371, loss@min: 1.088703, loss@max: 1.534660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 371, LS: 1.390794, LT: 1.490791, Top1S: 64.340775, Top1T: 63.367142 +Train:epoch: 372, loss@min: 1.093027, loss@max: 1.505444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 372, LS: 1.392548, LT: 1.488804, Top1S: 64.381340, Top1T: 63.448277 +Train:epoch: 373, loss@min: 1.068731, loss@max: 1.494911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 373, LS: 1.393860, LT: 1.486881, Top1S: 64.381340, Top1T: 63.651115 +Train:epoch: 374, loss@min: 1.083741, loss@max: 1.495654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 374, LS: 1.394862, LT: 1.485286, Top1S: 64.259636, Top1T: 63.732250 +Train:epoch: 375, loss@min: 1.020740, loss@max: 1.511660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 375, LS: 1.394426, LT: 1.484019, Top1S: 64.300201, Top1T: 63.853954 +Train:epoch: 376, loss@min: 1.019266, loss@max: 1.557065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 376, LS: 1.393358, LT: 1.483224, Top1S: 64.340775, Top1T: 63.935093 +Train:epoch: 377, loss@min: 0.979909, loss@max: 1.586630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 377, LS: 1.391228, LT: 1.483225, Top1S: 64.259636, Top1T: 63.935093 +Train:epoch: 378, loss@min: 0.995304, loss@max: 1.543383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 378, LS: 1.389621, LT: 1.483121, Top1S: 64.219070, Top1T: 63.935093 +Train:epoch: 379, loss@min: 1.010245, loss@max: 1.582545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 379, LS: 1.387662, LT: 1.483158, Top1S: 64.178497, Top1T: 63.935093 +Train:epoch: 380, loss@min: 0.971055, loss@max: 1.602128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 380, LS: 1.385613, LT: 1.483024, Top1S: 64.137932, Top1T: 63.975658 +Train:epoch: 381, loss@min: 1.043082, loss@max: 1.508151, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 381, LS: 1.384039, LT: 1.482611, Top1S: 64.137932, Top1T: 64.016228 +Train:epoch: 382, loss@min: 0.996531, loss@max: 1.590719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 382, LS: 1.382205, LT: 1.482209, Top1S: 64.259636, Top1T: 64.056793 +Train:epoch: 383, loss@min: 1.058254, loss@max: 1.520519, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 383, LS: 1.381194, LT: 1.481519, Top1S: 64.381340, Top1T: 64.056793 +Train:epoch: 384, loss@min: 1.006332, loss@max: 1.556905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 384, LS: 1.380187, LT: 1.480891, Top1S: 64.462479, Top1T: 64.097366 +Train:epoch: 385, loss@min: 1.054937, loss@max: 1.540815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 385, LS: 1.380180, LT: 1.479646, Top1S: 64.462479, Top1T: 64.178497 +Train:epoch: 386, loss@min: 1.029836, loss@max: 1.572831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 386, LS: 1.380093, LT: 1.478373, Top1S: 64.584175, Top1T: 64.137932Best acc: 64.584175 +Train:epoch: 387, loss@min: 1.049950, loss@max: 1.520957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 387, LS: 1.379787, LT: 1.477269, Top1S: 64.624748, Top1T: 64.016228Best acc: 64.624748 +Train:epoch: 388, loss@min: 1.050544, loss@max: 1.533599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 388, LS: 1.379389, LT: 1.476056, Top1S: 64.665314, Top1T: 64.097366Best acc: 64.665314 +Train:epoch: 389, loss@min: 0.987735, loss@max: 1.591692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 389, LS: 1.377975, LT: 1.475400, Top1S: 64.624748, Top1T: 64.137932 +Train:epoch: 390, loss@min: 1.051142, loss@max: 1.502394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 390, LS: 1.377014, LT: 1.474690, Top1S: 64.624748, Top1T: 64.097366 +Train:epoch: 391, loss@min: 1.011858, loss@max: 1.598549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 391, LS: 1.375791, LT: 1.474020, Top1S: 64.705879, Top1T: 64.016228Best acc: 64.705879 +Train:epoch: 392, loss@min: 0.992881, loss@max: 1.598283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 392, LS: 1.375105, LT: 1.472924, Top1S: 64.624748, Top1T: 63.975658 +Train:epoch: 393, loss@min: 1.052575, loss@max: 1.519242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 393, LS: 1.373462, LT: 1.472167, Top1S: 64.584175, Top1T: 63.894524 +Train:epoch: 394, loss@min: 1.004910, loss@max: 1.575098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 394, LS: 1.371932, LT: 1.471301, Top1S: 64.705879, Top1T: 63.894524 +Train:epoch: 395, loss@min: 1.020088, loss@max: 1.525775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 395, LS: 1.370740, LT: 1.470107, Top1S: 64.705879, Top1T: 63.935093 +Train:epoch: 396, loss@min: 1.037033, loss@max: 1.515433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 396, LS: 1.370216, LT: 1.468895, Top1S: 64.787018, Top1T: 63.935093Best acc: 64.787018 +Train:epoch: 397, loss@min: 0.962807, loss@max: 1.596913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 397, LS: 1.369716, LT: 1.467598, Top1S: 64.787018, Top1T: 63.935093 +Train:epoch: 398, loss@min: 1.032925, loss@max: 1.532459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 398, LS: 1.368640, LT: 1.466632, Top1S: 64.868156, Top1T: 63.935093Best acc: 64.868156 +Train:epoch: 399, loss@min: 1.076568, loss@max: 1.561331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 399, LS: 1.367716, LT: 1.465470, Top1S: 64.868156, Top1T: 63.935093 +Train:epoch: 400, loss@min: 1.052479, loss@max: 1.537889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 400, LS: 1.366680, LT: 1.464706, Top1S: 64.868156, Top1T: 63.894524 +Train:epoch: 401, loss@min: 1.017789, loss@max: 1.564211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 401, LS: 1.365566, LT: 1.464282, Top1S: 64.908722, Top1T: 63.894524Best acc: 64.908722 +Train:epoch: 402, loss@min: 1.019798, loss@max: 1.514605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 402, LS: 1.364281, LT: 1.463577, Top1S: 64.746452, Top1T: 63.894524 +Train:epoch: 403, loss@min: 1.008336, loss@max: 1.522197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 403, LS: 1.363207, LT: 1.462971, Top1S: 64.746452, Top1T: 63.935093 +Train:epoch: 404, loss@min: 1.032447, loss@max: 1.527439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 404, LS: 1.362761, LT: 1.462049, Top1S: 64.746452, Top1T: 63.975658 +Train:epoch: 405, loss@min: 1.013480, loss@max: 1.553957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 405, LS: 1.361391, LT: 1.461507, Top1S: 64.827583, Top1T: 63.975658 +Train:epoch: 406, loss@min: 0.997893, loss@max: 1.544011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 406, LS: 1.358156, LT: 1.461816, Top1S: 64.949287, Top1T: 63.975658Best acc: 64.949287 +Train:epoch: 407, loss@min: 0.990711, loss@max: 1.583545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 407, LS: 1.354998, LT: 1.462291, Top1S: 65.030426, Top1T: 63.935093Best acc: 65.030426 +Train:epoch: 408, loss@min: 1.012757, loss@max: 1.568022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 408, LS: 1.352635, LT: 1.462409, Top1S: 65.111565, Top1T: 63.975658Best acc: 65.111565 +Train:epoch: 409, loss@min: 1.018546, loss@max: 1.580351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 409, LS: 1.350309, LT: 1.462665, Top1S: 65.152130, Top1T: 63.935093Best acc: 65.152130 +Train:epoch: 410, loss@min: 1.013012, loss@max: 1.539179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 410, LS: 1.349430, LT: 1.462552, Top1S: 65.233269, Top1T: 64.097366Best acc: 65.233269 +Train:epoch: 411, loss@min: 1.036661, loss@max: 1.502710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 411, LS: 1.350617, LT: 1.461214, Top1S: 65.152130, Top1T: 64.178497 +Train:epoch: 412, loss@min: 0.981059, loss@max: 1.564516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 412, LS: 1.352250, LT: 1.459769, Top1S: 65.233269, Top1T: 64.219070 +Train:epoch: 413, loss@min: 1.036044, loss@max: 1.553406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 413, LS: 1.354406, LT: 1.457716, Top1S: 65.354973, Top1T: 64.381340Best acc: 65.354973 +Train:epoch: 414, loss@min: 1.012011, loss@max: 1.536258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 414, LS: 1.356946, LT: 1.455551, Top1S: 65.111565, Top1T: 64.381340 +Train:epoch: 415, loss@min: 1.043882, loss@max: 1.529257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 415, LS: 1.358632, LT: 1.453495, Top1S: 65.030426, Top1T: 64.381340 +Train:epoch: 416, loss@min: 1.017628, loss@max: 1.542064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 416, LS: 1.359534, LT: 1.452201, Top1S: 64.989861, Top1T: 64.421906 +Train:epoch: 417, loss@min: 1.023422, loss@max: 1.540150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 417, LS: 1.358259, LT: 1.451998, Top1S: 65.192696, Top1T: 64.421906 +Train:epoch: 418, loss@min: 1.043669, loss@max: 1.507027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 418, LS: 1.355971, LT: 1.452079, Top1S: 65.111565, Top1T: 64.381340 +Train:epoch: 419, loss@min: 1.026497, loss@max: 1.536623, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 419, LS: 1.353835, LT: 1.451877, Top1S: 65.070992, Top1T: 64.421906 +Train:epoch: 420, loss@min: 0.991789, loss@max: 1.557204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 420, LS: 1.352579, LT: 1.451575, Top1S: 64.989861, Top1T: 64.503044 +Train:epoch: 421, loss@min: 1.092350, loss@max: 1.496007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 421, LS: 1.351620, LT: 1.450681, Top1S: 64.949287, Top1T: 64.503044 +Train:epoch: 422, loss@min: 1.008728, loss@max: 1.560309, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 422, LS: 1.350810, LT: 1.449613, Top1S: 65.030426, Top1T: 64.543610 +Train:epoch: 423, loss@min: 1.014730, loss@max: 1.544798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 423, LS: 1.351705, LT: 1.447412, Top1S: 65.070992, Top1T: 64.543610 +Train:epoch: 424, loss@min: 1.020713, loss@max: 1.572897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 424, LS: 1.353574, LT: 1.444691, Top1S: 64.989861, Top1T: 64.584175 +Train:epoch: 425, loss@min: 1.006724, loss@max: 1.513150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 425, LS: 1.355433, LT: 1.442326, Top1S: 64.868156, Top1T: 64.543610 +Train:epoch: 426, loss@min: 0.974913, loss@max: 1.564738, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 426, LS: 1.356434, LT: 1.440305, Top1S: 64.989861, Top1T: 64.584175 +Train:epoch: 427, loss@min: 1.015454, loss@max: 1.542086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 427, LS: 1.355738, LT: 1.439104, Top1S: 64.989861, Top1T: 64.503044 +Train:epoch: 428, loss@min: 1.001304, loss@max: 1.556367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 428, LS: 1.354809, LT: 1.438039, Top1S: 65.030426, Top1T: 64.503044 +Train:epoch: 429, loss@min: 1.017755, loss@max: 1.551767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 429, LS: 1.352562, LT: 1.437925, Top1S: 65.192696, Top1T: 64.421906 +Train:epoch: 430, loss@min: 1.056049, loss@max: 1.530208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 430, LS: 1.349959, LT: 1.438004, Top1S: 65.233269, Top1T: 64.381340 +Train:epoch: 431, loss@min: 1.015864, loss@max: 1.544850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 431, LS: 1.347184, LT: 1.438513, Top1S: 65.354973, Top1T: 64.421906 +Train:epoch: 432, loss@min: 1.021570, loss@max: 1.573948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 432, LS: 1.344898, LT: 1.438878, Top1S: 65.273834, Top1T: 64.503044 +Train:epoch: 433, loss@min: 1.032778, loss@max: 1.551145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 433, LS: 1.343219, LT: 1.438778, Top1S: 65.314400, Top1T: 64.584175 +Train:epoch: 434, loss@min: 1.026741, loss@max: 1.483401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 434, LS: 1.341161, LT: 1.438993, Top1S: 65.273834, Top1T: 64.665314 +Train:epoch: 435, loss@min: 1.026472, loss@max: 1.510979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 435, LS: 1.338910, LT: 1.439283, Top1S: 65.233269, Top1T: 64.624748 +Train:epoch: 436, loss@min: 1.032550, loss@max: 1.570842, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 436, LS: 1.337100, LT: 1.439363, Top1S: 65.354973, Top1T: 64.503044 +Train:epoch: 437, loss@min: 1.024498, loss@max: 1.576320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 437, LS: 1.335869, LT: 1.439390, Top1S: 65.233269, Top1T: 64.462479 +Train:epoch: 438, loss@min: 1.033429, loss@max: 1.560227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 438, LS: 1.333817, LT: 1.439844, Top1S: 65.314400, Top1T: 64.503044 +Train:epoch: 439, loss@min: 1.044188, loss@max: 1.510183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 439, LS: 1.333094, LT: 1.439952, Top1S: 65.314400, Top1T: 64.705879 +Train:epoch: 440, loss@min: 1.015392, loss@max: 1.502237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 440, LS: 1.332281, LT: 1.440136, Top1S: 65.436104, Top1T: 64.665314Best acc: 65.436104 +Train:epoch: 441, loss@min: 1.050128, loss@max: 1.540221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 441, LS: 1.331820, LT: 1.439849, Top1S: 65.476677, Top1T: 64.746452Best acc: 65.476677 +Train:epoch: 442, loss@min: 1.020611, loss@max: 1.490619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 442, LS: 1.331279, LT: 1.439508, Top1S: 65.476677, Top1T: 64.827583 +Train:epoch: 443, loss@min: 0.992830, loss@max: 1.553530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 443, LS: 1.330352, LT: 1.439211, Top1S: 65.436104, Top1T: 64.787018 +Train:epoch: 444, loss@min: 1.032081, loss@max: 1.519439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 444, LS: 1.329753, LT: 1.438495, Top1S: 65.557808, Top1T: 64.868156Best acc: 65.557808 +Train:epoch: 445, loss@min: 1.052996, loss@max: 1.514598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 445, LS: 1.329259, LT: 1.437842, Top1S: 65.517242, Top1T: 64.827583 +Train:epoch: 446, loss@min: 1.072764, loss@max: 1.532920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 446, LS: 1.327333, LT: 1.438039, Top1S: 65.760651, Top1T: 64.908722Best acc: 65.760651 +Train:epoch: 447, loss@min: 1.003178, loss@max: 1.520485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 447, LS: 1.325844, LT: 1.438447, Top1S: 65.720085, Top1T: 64.868156 +Train:epoch: 448, loss@min: 1.021046, loss@max: 1.524829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 448, LS: 1.324997, LT: 1.438307, Top1S: 65.638947, Top1T: 64.868156 +Train:epoch: 449, loss@min: 1.013618, loss@max: 1.504861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 449, LS: 1.325464, LT: 1.437284, Top1S: 65.760651, Top1T: 64.787018 +Train:epoch: 450, loss@min: 1.009989, loss@max: 1.513750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 450, LS: 1.326042, LT: 1.435975, Top1S: 65.760651, Top1T: 64.827583 +Train:epoch: 451, loss@min: 1.018086, loss@max: 1.512462, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 451, LS: 1.327143, LT: 1.434222, Top1S: 65.638947, Top1T: 64.908722 +Train:epoch: 452, loss@min: 0.974221, loss@max: 1.544068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 452, LS: 1.328194, LT: 1.432229, Top1S: 65.598381, Top1T: 64.908722 +Train:epoch: 453, loss@min: 1.034095, loss@max: 1.496022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 453, LS: 1.329161, LT: 1.430498, Top1S: 65.557808, Top1T: 64.949287 +Train:epoch: 454, loss@min: 0.998516, loss@max: 1.543022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 454, LS: 1.329827, LT: 1.428822, Top1S: 65.598381, Top1T: 64.949287 +Train:epoch: 455, loss@min: 0.979055, loss@max: 1.596981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 455, LS: 1.330030, LT: 1.427598, Top1S: 65.517242, Top1T: 65.070992 +Train:epoch: 456, loss@min: 0.983688, loss@max: 1.544129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 456, LS: 1.329717, LT: 1.426698, Top1S: 65.517242, Top1T: 64.949287 +Train:epoch: 457, loss@min: 1.017459, loss@max: 1.512430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 457, LS: 1.329561, LT: 1.425615, Top1S: 65.517242, Top1T: 64.949287 +Train:epoch: 458, loss@min: 0.968204, loss@max: 1.583640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 458, LS: 1.329681, LT: 1.424746, Top1S: 65.598381, Top1T: 64.949287 +Train:epoch: 459, loss@min: 1.066203, loss@max: 1.499908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 459, LS: 1.329788, LT: 1.423657, Top1S: 65.679512, Top1T: 64.989861 +Train:epoch: 460, loss@min: 1.024372, loss@max: 1.515819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 460, LS: 1.330233, LT: 1.422556, Top1S: 65.720085, Top1T: 65.030426 +Train:epoch: 461, loss@min: 0.991677, loss@max: 1.522014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 461, LS: 1.330174, LT: 1.421626, Top1S: 65.679512, Top1T: 65.070992 +Train:epoch: 462, loss@min: 0.987738, loss@max: 1.553157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 462, LS: 1.329784, LT: 1.420998, Top1S: 65.720085, Top1T: 64.989861 +Train:epoch: 463, loss@min: 1.032051, loss@max: 1.543912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 463, LS: 1.329659, LT: 1.420337, Top1S: 65.720085, Top1T: 64.989861 +Train:epoch: 464, loss@min: 1.023871, loss@max: 1.492679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 464, LS: 1.329343, LT: 1.419645, Top1S: 65.720085, Top1T: 65.070992 +Train:epoch: 465, loss@min: 0.949216, loss@max: 1.591117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 465, LS: 1.328791, LT: 1.419093, Top1S: 65.720085, Top1T: 65.111565 +Train:epoch: 466, loss@min: 1.006937, loss@max: 1.515746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 466, LS: 1.328168, LT: 1.418620, Top1S: 65.720085, Top1T: 65.111565 +Train:epoch: 467, loss@min: 1.055300, loss@max: 1.516190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 467, LS: 1.327513, LT: 1.417941, Top1S: 65.638947, Top1T: 65.111565 +Train:epoch: 468, loss@min: 1.019057, loss@max: 1.553038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 468, LS: 1.326602, LT: 1.417653, Top1S: 65.638947, Top1T: 65.070992 +Train:epoch: 469, loss@min: 1.042218, loss@max: 1.582523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 469, LS: 1.326018, LT: 1.417403, Top1S: 65.598381, Top1T: 65.111565 +Train:epoch: 470, loss@min: 1.027921, loss@max: 1.527209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 470, LS: 1.325777, LT: 1.416660, Top1S: 65.598381, Top1T: 65.111565 +Train:epoch: 471, loss@min: 1.049116, loss@max: 1.547097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 471, LS: 1.325975, LT: 1.415719, Top1S: 65.557808, Top1T: 65.273834 +Train:epoch: 472, loss@min: 1.030099, loss@max: 1.539964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 472, LS: 1.326291, LT: 1.414759, Top1S: 65.557808, Top1T: 65.273834 +Train:epoch: 473, loss@min: 1.072733, loss@max: 1.492360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 473, LS: 1.327434, LT: 1.413332, Top1S: 65.517242, Top1T: 65.192696 +Train:epoch: 474, loss@min: 1.068313, loss@max: 1.508083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 474, LS: 1.328128, LT: 1.411947, Top1S: 65.517242, Top1T: 65.273834 +Train:epoch: 475, loss@min: 1.026665, loss@max: 1.495088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 475, LS: 1.328560, LT: 1.410845, Top1S: 65.517242, Top1T: 65.273834 +Train:epoch: 476, loss@min: 0.951347, loss@max: 1.570960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 476, LS: 1.326966, LT: 1.411027, Top1S: 65.557808, Top1T: 65.314400 +Train:epoch: 477, loss@min: 1.120163, loss@max: 1.442727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 477, LS: 1.324262, LT: 1.411817, Top1S: 65.476677, Top1T: 65.314400 +Train:epoch: 478, loss@min: 0.969409, loss@max: 1.560496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 478, LS: 1.321671, LT: 1.412659, Top1S: 65.557808, Top1T: 65.152130 +Train:epoch: 479, loss@min: 1.015582, loss@max: 1.583260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 479, LS: 1.318438, LT: 1.413713, Top1S: 65.598381, Top1T: 65.030426 +Train:epoch: 480, loss@min: 0.920658, loss@max: 1.610989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 480, LS: 1.315113, LT: 1.414743, Top1S: 65.841782, Top1T: 65.030426Best acc: 65.841782 +Train:epoch: 481, loss@min: 1.001009, loss@max: 1.543334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 481, LS: 1.312885, LT: 1.414888, Top1S: 65.841782, Top1T: 65.070992 +Train:epoch: 482, loss@min: 0.991059, loss@max: 1.552559, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 482, LS: 1.311453, LT: 1.414792, Top1S: 65.801216, Top1T: 65.070992 +Train:epoch: 483, loss@min: 1.017308, loss@max: 1.528084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 483, LS: 1.310398, LT: 1.414521, Top1S: 65.922920, Top1T: 65.152130Best acc: 65.922920 +Train:epoch: 484, loss@min: 0.995743, loss@max: 1.527347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 484, LS: 1.310186, LT: 1.413809, Top1S: 65.963486, Top1T: 65.111565Best acc: 65.963486 +Train:epoch: 485, loss@min: 1.049503, loss@max: 1.482602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 485, LS: 1.311372, LT: 1.412226, Top1S: 65.963486, Top1T: 65.233269 +Train:epoch: 486, loss@min: 1.038433, loss@max: 1.517127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 486, LS: 1.312224, LT: 1.410703, Top1S: 65.922920, Top1T: 65.314400 +Train:epoch: 487, loss@min: 1.026519, loss@max: 1.522277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 487, LS: 1.312667, LT: 1.409205, Top1S: 65.841782, Top1T: 65.476677 +Train:epoch: 488, loss@min: 1.040373, loss@max: 1.472819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 488, LS: 1.312954, LT: 1.407849, Top1S: 65.922920, Top1T: 65.476677 +Train:epoch: 489, loss@min: 1.010851, loss@max: 1.533373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 489, LS: 1.312756, LT: 1.407005, Top1S: 65.922920, Top1T: 65.517242 +Train:epoch: 490, loss@min: 1.053228, loss@max: 1.471705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 490, LS: 1.312423, LT: 1.406314, Top1S: 65.882355, Top1T: 65.557808 +Train:epoch: 491, loss@min: 0.969165, loss@max: 1.531432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 491, LS: 1.311908, LT: 1.405698, Top1S: 65.922920, Top1T: 65.517242 +Train:epoch: 492, loss@min: 1.014902, loss@max: 1.496480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 492, LS: 1.311311, LT: 1.405101, Top1S: 66.004059, Top1T: 65.638947Best acc: 66.004059 +Train:epoch: 493, loss@min: 1.029072, loss@max: 1.518056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 493, LS: 1.310060, LT: 1.404659, Top1S: 66.044624, Top1T: 65.598381Best acc: 66.044624 +Train:epoch: 494, loss@min: 1.022009, loss@max: 1.523471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 494, LS: 1.309687, LT: 1.403722, Top1S: 66.044624, Top1T: 65.638947 +Train:epoch: 495, loss@min: 1.010500, loss@max: 1.510291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 495, LS: 1.309154, LT: 1.403101, Top1S: 66.044624, Top1T: 65.598381 +Train:epoch: 496, loss@min: 0.985798, loss@max: 1.551453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 496, LS: 1.309017, LT: 1.402416, Top1S: 65.841782, Top1T: 65.598381 +Train:epoch: 497, loss@min: 0.984005, loss@max: 1.549953, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 497, LS: 1.308963, LT: 1.401710, Top1S: 65.801216, Top1T: 65.557808 +Train:epoch: 498, loss@min: 0.996776, loss@max: 1.492581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 498, LS: 1.309222, LT: 1.401085, Top1S: 65.922920, Top1T: 65.476677 +Train:epoch: 499, loss@min: 1.051007, loss@max: 1.493454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 499, LS: 1.309588, LT: 1.400535, Top1S: 66.004059, Top1T: 65.517242 +Train:epoch: 500, loss@min: 1.004762, loss@max: 1.522640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 500, LS: 1.309988, LT: 1.399969, Top1S: 65.963486, Top1T: 65.476677 +Train:epoch: 501, loss@min: 1.012503, loss@max: 1.501780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 501, LS: 1.310363, LT: 1.399228, Top1S: 66.004059, Top1T: 65.476677 +Train:epoch: 502, loss@min: 1.018005, loss@max: 1.543921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 502, LS: 1.310415, LT: 1.398389, Top1S: 65.963486, Top1T: 65.476677 +Train:epoch: 503, loss@min: 0.990889, loss@max: 1.534622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 503, LS: 1.310246, LT: 1.397631, Top1S: 65.882355, Top1T: 65.517242 +Train:epoch: 504, loss@min: 1.009153, loss@max: 1.487782, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 504, LS: 1.310683, LT: 1.396611, Top1S: 65.882355, Top1T: 65.517242 +Train:epoch: 505, loss@min: 0.993510, loss@max: 1.552783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 505, LS: 1.311653, LT: 1.395480, Top1S: 65.841782, Top1T: 65.476677 +Train:epoch: 506, loss@min: 1.000488, loss@max: 1.506961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 506, LS: 1.312442, LT: 1.394541, Top1S: 65.801216, Top1T: 65.598381 +Train:epoch: 507, loss@min: 1.011101, loss@max: 1.524541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 507, LS: 1.313470, LT: 1.393550, Top1S: 65.882355, Top1T: 65.598381 +Train:epoch: 508, loss@min: 0.987944, loss@max: 1.528556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 508, LS: 1.314366, LT: 1.392765, Top1S: 65.882355, Top1T: 65.557808 +Train:epoch: 509, loss@min: 0.996735, loss@max: 1.542043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 509, LS: 1.314673, LT: 1.392134, Top1S: 65.963486, Top1T: 65.598381 +Train:epoch: 510, loss@min: 0.961214, loss@max: 1.537274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 510, LS: 1.314578, LT: 1.391621, Top1S: 66.004059, Top1T: 65.638947 +Train:epoch: 511, loss@min: 1.005202, loss@max: 1.544405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 511, LS: 1.314164, LT: 1.391385, Top1S: 65.963486, Top1T: 65.679512 +Train:epoch: 512, loss@min: 0.975019, loss@max: 1.546587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 512, LS: 1.313525, LT: 1.391233, Top1S: 65.922920, Top1T: 65.720085 +Train:epoch: 513, loss@min: 0.995669, loss@max: 1.529223, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 513, LS: 1.312555, LT: 1.391325, Top1S: 66.004059, Top1T: 65.638947 +Train:epoch: 514, loss@min: 1.008899, loss@max: 1.477142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 514, LS: 1.311207, LT: 1.391554, Top1S: 66.085190, Top1T: 65.679512Best acc: 66.085190 +Train:epoch: 515, loss@min: 0.964611, loss@max: 1.537338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 515, LS: 1.309790, LT: 1.391796, Top1S: 66.125763, Top1T: 65.720085Best acc: 66.125763 +Train:epoch: 516, loss@min: 1.038424, loss@max: 1.546576, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 516, LS: 1.308092, LT: 1.392207, Top1S: 66.166328, Top1T: 65.760651Best acc: 66.166328 +Train:epoch: 517, loss@min: 1.018625, loss@max: 1.463805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 517, LS: 1.306607, LT: 1.392477, Top1S: 66.085190, Top1T: 65.720085 +Train:epoch: 518, loss@min: 0.994956, loss@max: 1.551362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 518, LS: 1.304841, LT: 1.392951, Top1S: 66.125763, Top1T: 65.679512 +Train:epoch: 519, loss@min: 1.003287, loss@max: 1.527033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 519, LS: 1.303327, LT: 1.393166, Top1S: 66.166328, Top1T: 65.598381 +Train:epoch: 520, loss@min: 0.996194, loss@max: 1.558148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 520, LS: 1.300776, LT: 1.393964, Top1S: 66.166328, Top1T: 65.557808 +Train:epoch: 521, loss@min: 0.993148, loss@max: 1.514174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 521, LS: 1.297987, LT: 1.394867, Top1S: 66.125763, Top1T: 65.598381 +Train:epoch: 522, loss@min: 1.071023, loss@max: 1.458125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 522, LS: 1.296595, LT: 1.394731, Top1S: 66.125763, Top1T: 65.557808 +Train:epoch: 523, loss@min: 1.040966, loss@max: 1.489777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 523, LS: 1.295574, LT: 1.394341, Top1S: 66.166328, Top1T: 65.679512 +Train:epoch: 524, loss@min: 1.006583, loss@max: 1.489744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 524, LS: 1.295254, LT: 1.393415, Top1S: 66.125763, Top1T: 65.557808 +Train:epoch: 525, loss@min: 1.032936, loss@max: 1.500351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 525, LS: 1.295866, LT: 1.391862, Top1S: 66.206894, Top1T: 65.638947Best acc: 66.206894 +Train:epoch: 526, loss@min: 1.040517, loss@max: 1.484164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 526, LS: 1.296865, LT: 1.390053, Top1S: 66.247467, Top1T: 65.679512Best acc: 66.247467 +Train:epoch: 527, loss@min: 1.052036, loss@max: 1.450043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 527, LS: 1.298156, LT: 1.388112, Top1S: 66.125763, Top1T: 65.679512 +Train:epoch: 528, loss@min: 1.049896, loss@max: 1.475662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 528, LS: 1.299615, LT: 1.385989, Top1S: 66.004059, Top1T: 65.679512 +Train:epoch: 529, loss@min: 0.996258, loss@max: 1.497615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 529, LS: 1.301876, LT: 1.383570, Top1S: 66.004059, Top1T: 65.720085 +Train:epoch: 530, loss@min: 1.054812, loss@max: 1.485659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 530, LS: 1.303646, LT: 1.381601, Top1S: 66.004059, Top1T: 65.841782 +Train:epoch: 531, loss@min: 1.018130, loss@max: 1.487211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 531, LS: 1.304636, LT: 1.380078, Top1S: 66.044624, Top1T: 65.720085 +Train:epoch: 532, loss@min: 0.969022, loss@max: 1.516845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 532, LS: 1.304583, LT: 1.379156, Top1S: 66.125763, Top1T: 65.679512 +Train:epoch: 533, loss@min: 1.008994, loss@max: 1.479293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 533, LS: 1.304004, LT: 1.378485, Top1S: 66.004059, Top1T: 65.720085 +Train:epoch: 534, loss@min: 0.980971, loss@max: 1.550358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 534, LS: 1.302808, LT: 1.378110, Top1S: 66.085190, Top1T: 65.720085 +Train:epoch: 535, loss@min: 1.022667, loss@max: 1.499269, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 535, LS: 1.301033, LT: 1.378107, Top1S: 66.044624, Top1T: 65.679512 +Train:epoch: 536, loss@min: 1.008182, loss@max: 1.496831, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 536, LS: 1.299006, LT: 1.378385, Top1S: 66.247467, Top1T: 65.679512 +Train:epoch: 537, loss@min: 0.963400, loss@max: 1.523730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 537, LS: 1.296806, LT: 1.378603, Top1S: 66.409737, Top1T: 65.679512Best acc: 66.409737 +Train:epoch: 538, loss@min: 1.011077, loss@max: 1.523135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 538, LS: 1.294526, LT: 1.378977, Top1S: 66.450302, Top1T: 65.720085Best acc: 66.450302 +Train:epoch: 539, loss@min: 0.990629, loss@max: 1.541902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 539, LS: 1.293269, LT: 1.379052, Top1S: 66.531441, Top1T: 65.679512Best acc: 66.531441 +Train:epoch: 540, loss@min: 0.995589, loss@max: 1.576134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 540, LS: 1.291751, LT: 1.379378, Top1S: 66.612579, Top1T: 65.638947Best acc: 66.612579 +Train:epoch: 541, loss@min: 1.013183, loss@max: 1.490279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 541, LS: 1.290653, LT: 1.379398, Top1S: 66.612579, Top1T: 65.598381 +Train:epoch: 542, loss@min: 0.961743, loss@max: 1.570327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 542, LS: 1.289797, LT: 1.379177, Top1S: 66.572006, Top1T: 65.638947 +Train:epoch: 543, loss@min: 1.002331, loss@max: 1.491247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 543, LS: 1.289449, LT: 1.378748, Top1S: 66.693710, Top1T: 65.720085Best acc: 66.693710 +Train:epoch: 544, loss@min: 0.990834, loss@max: 1.524809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 544, LS: 1.289321, LT: 1.378250, Top1S: 66.693710, Top1T: 65.720085 +Train:epoch: 545, loss@min: 0.985623, loss@max: 1.521648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 545, LS: 1.289815, LT: 1.377568, Top1S: 66.693710, Top1T: 65.801216 +Train:epoch: 546, loss@min: 1.017841, loss@max: 1.513666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 546, LS: 1.290717, LT: 1.376443, Top1S: 66.774849, Top1T: 65.841782Best acc: 66.774849 +Train:epoch: 547, loss@min: 1.009660, loss@max: 1.495293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 547, LS: 1.291626, LT: 1.375303, Top1S: 66.653145, Top1T: 65.882355 +Train:epoch: 548, loss@min: 0.997969, loss@max: 1.541092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 548, LS: 1.292183, LT: 1.374694, Top1S: 66.531441, Top1T: 65.922920 +Train:epoch: 549, loss@min: 1.010905, loss@max: 1.548118, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 549, LS: 1.292039, LT: 1.374352, Top1S: 66.490875, Top1T: 65.922920 +Train:epoch: 550, loss@min: 1.024429, loss@max: 1.485909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 550, LS: 1.293071, LT: 1.373384, Top1S: 66.490875, Top1T: 65.963486 +Train:epoch: 551, loss@min: 0.999653, loss@max: 1.498642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 551, LS: 1.293628, LT: 1.372586, Top1S: 66.450302, Top1T: 65.963486 +Train:epoch: 552, loss@min: 1.020781, loss@max: 1.452062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 552, LS: 1.293813, LT: 1.372045, Top1S: 66.409737, Top1T: 66.044624 +Train:epoch: 553, loss@min: 0.955301, loss@max: 1.538901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 553, LS: 1.293457, LT: 1.371898, Top1S: 66.369171, Top1T: 66.044624 +Train:epoch: 554, loss@min: 1.005973, loss@max: 1.470012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 554, LS: 1.292891, LT: 1.372087, Top1S: 66.369171, Top1T: 66.004059 +Train:epoch: 555, loss@min: 0.971238, loss@max: 1.546448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 555, LS: 1.292275, LT: 1.372211, Top1S: 66.450302, Top1T: 65.882355 +Train:epoch: 556, loss@min: 0.985228, loss@max: 1.504162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 556, LS: 1.291147, LT: 1.372626, Top1S: 66.369171, Top1T: 65.841782 +Train:epoch: 557, loss@min: 0.988889, loss@max: 1.539318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 557, LS: 1.289847, LT: 1.373137, Top1S: 66.369171, Top1T: 65.720085 +Train:epoch: 558, loss@min: 1.013998, loss@max: 1.515255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 558, LS: 1.288927, LT: 1.373264, Top1S: 66.328598, Top1T: 65.801216 +Train:epoch: 559, loss@min: 1.017401, loss@max: 1.519141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 559, LS: 1.287568, LT: 1.373579, Top1S: 66.247467, Top1T: 65.801216 +Train:epoch: 560, loss@min: 1.021230, loss@max: 1.527599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 560, LS: 1.286427, LT: 1.373694, Top1S: 66.247467, Top1T: 65.760651 +Train:epoch: 561, loss@min: 1.031631, loss@max: 1.476308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 561, LS: 1.285370, LT: 1.373800, Top1S: 66.328598, Top1T: 65.760651 +Train:epoch: 562, loss@min: 1.030977, loss@max: 1.478855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 562, LS: 1.284621, LT: 1.373738, Top1S: 66.409737, Top1T: 65.801216 +Train:epoch: 563, loss@min: 1.037793, loss@max: 1.486721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 563, LS: 1.284256, LT: 1.373283, Top1S: 66.450302, Top1T: 65.801216 +Train:epoch: 564, loss@min: 1.078763, loss@max: 1.463340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 564, LS: 1.283860, LT: 1.372720, Top1S: 66.572006, Top1T: 65.720085 +Train:epoch: 565, loss@min: 0.988483, loss@max: 1.564636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 565, LS: 1.282014, LT: 1.372931, Top1S: 66.490875, Top1T: 65.760651 +Train:epoch: 566, loss@min: 1.071915, loss@max: 1.449910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 566, LS: 1.280314, LT: 1.373023, Top1S: 66.369171, Top1T: 65.760651 +Train:epoch: 567, loss@min: 1.004855, loss@max: 1.548413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 567, LS: 1.278961, LT: 1.372734, Top1S: 66.490875, Top1T: 65.760651 +Train:epoch: 568, loss@min: 1.063106, loss@max: 1.448335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 568, LS: 1.278024, LT: 1.372114, Top1S: 66.531441, Top1T: 65.882355 +Train:epoch: 569, loss@min: 1.040629, loss@max: 1.454630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 569, LS: 1.277593, LT: 1.371163, Top1S: 66.612579, Top1T: 65.963486 +Train:epoch: 570, loss@min: 0.994806, loss@max: 1.525716, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 570, LS: 1.277930, LT: 1.370075, Top1S: 66.653145, Top1T: 66.004059 +Train:epoch: 571, loss@min: 1.049505, loss@max: 1.508547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 571, LS: 1.278275, LT: 1.368904, Top1S: 66.572006, Top1T: 66.085190 +Train:epoch: 572, loss@min: 1.030904, loss@max: 1.493939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 572, LS: 1.278546, LT: 1.367961, Top1S: 66.531441, Top1T: 66.166328 +Train:epoch: 573, loss@min: 1.002946, loss@max: 1.485185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 573, LS: 1.279328, LT: 1.366694, Top1S: 66.450302, Top1T: 66.004059 +Train:epoch: 574, loss@min: 0.993007, loss@max: 1.543389, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 574, LS: 1.279973, LT: 1.365555, Top1S: 66.572006, Top1T: 65.963486 +Train:epoch: 575, loss@min: 0.980278, loss@max: 1.528035, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 575, LS: 1.280299, LT: 1.364585, Top1S: 66.653145, Top1T: 65.963486 +Train:epoch: 576, loss@min: 0.992860, loss@max: 1.512544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 576, LS: 1.280596, LT: 1.363787, Top1S: 66.734283, Top1T: 66.085190 +Train:epoch: 577, loss@min: 0.996551, loss@max: 1.536557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 577, LS: 1.280914, LT: 1.363136, Top1S: 66.734283, Top1T: 66.085190 +Train:epoch: 578, loss@min: 0.980084, loss@max: 1.537043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 578, LS: 1.280945, LT: 1.362604, Top1S: 66.734283, Top1T: 66.166328 +Train:epoch: 579, loss@min: 1.000572, loss@max: 1.532045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 579, LS: 1.281625, LT: 1.361792, Top1S: 66.815414, Top1T: 66.206894Best acc: 66.815414 +Train:epoch: 580, loss@min: 0.977173, loss@max: 1.527335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 580, LS: 1.281927, LT: 1.361220, Top1S: 66.774849, Top1T: 66.166328 +Train:epoch: 581, loss@min: 0.992880, loss@max: 1.496726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 581, LS: 1.281872, LT: 1.360943, Top1S: 66.774849, Top1T: 66.125763 +Train:epoch: 582, loss@min: 0.988710, loss@max: 1.530308, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 582, LS: 1.281664, LT: 1.360725, Top1S: 66.774849, Top1T: 66.085190 +Train:epoch: 583, loss@min: 0.955855, loss@max: 1.582345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 583, LS: 1.280793, LT: 1.360916, Top1S: 66.693710, Top1T: 65.963486 +Train:epoch: 584, loss@min: 0.981942, loss@max: 1.522447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 584, LS: 1.281104, LT: 1.360515, Top1S: 66.653145, Top1T: 66.044624 +Train:epoch: 585, loss@min: 0.978094, loss@max: 1.514900, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 585, LS: 1.281075, LT: 1.360188, Top1S: 66.531441, Top1T: 66.044624 +Train:epoch: 586, loss@min: 0.980930, loss@max: 1.558873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 586, LS: 1.280447, LT: 1.360022, Top1S: 66.531441, Top1T: 66.044624 +Train:epoch: 587, loss@min: 1.028776, loss@max: 1.473141, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 587, LS: 1.279681, LT: 1.359953, Top1S: 66.653145, Top1T: 66.044624 +Train:epoch: 588, loss@min: 1.003686, loss@max: 1.530380, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 588, LS: 1.278607, LT: 1.360077, Top1S: 66.653145, Top1T: 66.166328 +Train:epoch: 589, loss@min: 0.991486, loss@max: 1.485888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 589, LS: 1.277426, LT: 1.360475, Top1S: 66.734283, Top1T: 66.125763 +Train:epoch: 590, loss@min: 1.030339, loss@max: 1.513668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 590, LS: 1.275967, LT: 1.361147, Top1S: 66.734283, Top1T: 66.085190 +Train:epoch: 591, loss@min: 1.032729, loss@max: 1.511249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 591, LS: 1.274547, LT: 1.361730, Top1S: 66.815414, Top1T: 66.085190 +Train:epoch: 592, loss@min: 0.984256, loss@max: 1.514524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 592, LS: 1.273649, LT: 1.361974, Top1S: 66.815414, Top1T: 66.044624 +Train:epoch: 593, loss@min: 0.994017, loss@max: 1.518316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 593, LS: 1.272675, LT: 1.362344, Top1S: 66.734283, Top1T: 66.004059 +Train:epoch: 594, loss@min: 1.054112, loss@max: 1.436375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 594, LS: 1.271497, LT: 1.362800, Top1S: 66.774849, Top1T: 66.004059 +Train:epoch: 595, loss@min: 1.036371, loss@max: 1.488115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 595, LS: 1.270030, LT: 1.363537, Top1S: 66.855988, Top1T: 66.004059Best acc: 66.855988 +Train:epoch: 596, loss@min: 0.983237, loss@max: 1.508958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 596, LS: 1.267967, LT: 1.364531, Top1S: 66.977692, Top1T: 65.963486Best acc: 66.977692 +Train:epoch: 597, loss@min: 1.018119, loss@max: 1.475522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 597, LS: 1.266148, LT: 1.365347, Top1S: 67.018257, Top1T: 66.044624Best acc: 67.018257 +Train:epoch: 598, loss@min: 0.976101, loss@max: 1.503662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 598, LS: 1.264676, LT: 1.365922, Top1S: 66.977692, Top1T: 66.085190 +Train:epoch: 599, loss@min: 0.992992, loss@max: 1.507156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 599, LS: 1.263607, LT: 1.366078, Top1S: 67.018257, Top1T: 66.085190 +Train:epoch: 600, loss@min: 0.941242, loss@max: 1.548766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 600, LS: 1.262992, LT: 1.365939, Top1S: 66.977692, Top1T: 66.125763 +Train:epoch: 601, loss@min: 1.011745, loss@max: 1.488757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 601, LS: 1.262478, LT: 1.365645, Top1S: 66.896553, Top1T: 66.125763 +Train:epoch: 602, loss@min: 1.008732, loss@max: 1.496746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 602, LS: 1.262760, LT: 1.364992, Top1S: 66.896553, Top1T: 66.125763 +Train:epoch: 603, loss@min: 0.991032, loss@max: 1.505582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 603, LS: 1.262780, LT: 1.364372, Top1S: 66.896553, Top1T: 66.085190 +Train:epoch: 604, loss@min: 1.011096, loss@max: 1.488326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 604, LS: 1.263180, LT: 1.363478, Top1S: 66.855988, Top1T: 66.085190 +Train:epoch: 605, loss@min: 0.979125, loss@max: 1.557662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 605, LS: 1.263331, LT: 1.362686, Top1S: 66.815414, Top1T: 66.166328 +Train:epoch: 606, loss@min: 0.977120, loss@max: 1.529344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 606, LS: 1.263790, LT: 1.361657, Top1S: 66.774849, Top1T: 66.206894 +Train:epoch: 607, loss@min: 1.001557, loss@max: 1.493069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 607, LS: 1.264174, LT: 1.360570, Top1S: 66.815414, Top1T: 66.288033 +Train:epoch: 608, loss@min: 0.980040, loss@max: 1.507557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 608, LS: 1.264553, LT: 1.359518, Top1S: 66.855988, Top1T: 66.409737 +Train:epoch: 609, loss@min: 0.999419, loss@max: 1.515317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 609, LS: 1.264822, LT: 1.358518, Top1S: 66.815414, Top1T: 66.409737 +Train:epoch: 610, loss@min: 0.979141, loss@max: 1.511927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 610, LS: 1.264804, LT: 1.357756, Top1S: 66.734283, Top1T: 66.450302 +Train:epoch: 611, loss@min: 1.014348, loss@max: 1.472493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 611, LS: 1.264933, LT: 1.356994, Top1S: 66.693710, Top1T: 66.450302 +Train:epoch: 612, loss@min: 1.012723, loss@max: 1.489520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 612, LS: 1.265188, LT: 1.356239, Top1S: 66.653145, Top1T: 66.450302 +Train:epoch: 613, loss@min: 1.033895, loss@max: 1.471741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 613, LS: 1.265491, LT: 1.355492, Top1S: 66.734283, Top1T: 66.409737 +Train:epoch: 614, loss@min: 1.015408, loss@max: 1.473398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 614, LS: 1.265622, LT: 1.354730, Top1S: 66.734283, Top1T: 66.409737 +Train:epoch: 615, loss@min: 0.953875, loss@max: 1.511271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 615, LS: 1.265791, LT: 1.354205, Top1S: 66.815414, Top1T: 66.369171 +Train:epoch: 616, loss@min: 0.998346, loss@max: 1.511744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 616, LS: 1.266661, LT: 1.353259, Top1S: 66.693710, Top1T: 66.328598 +Train:epoch: 617, loss@min: 1.038773, loss@max: 1.493018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 617, LS: 1.267434, LT: 1.352368, Top1S: 66.734283, Top1T: 66.369171 +Train:epoch: 618, loss@min: 0.996913, loss@max: 1.529091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 618, LS: 1.268302, LT: 1.351559, Top1S: 66.855988, Top1T: 66.288033 +Train:epoch: 619, loss@min: 0.992961, loss@max: 1.473094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 619, LS: 1.268699, LT: 1.351111, Top1S: 66.774849, Top1T: 66.328598 +Train:epoch: 620, loss@min: 0.999354, loss@max: 1.504987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 620, LS: 1.268766, LT: 1.350888, Top1S: 66.734283, Top1T: 66.288033 +Train:epoch: 621, loss@min: 0.994756, loss@max: 1.474451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 621, LS: 1.268416, LT: 1.350948, Top1S: 66.774849, Top1T: 66.247467 +Train:epoch: 622, loss@min: 1.048106, loss@max: 1.485203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 622, LS: 1.268223, LT: 1.350970, Top1S: 66.774849, Top1T: 66.247467 +Train:epoch: 623, loss@min: 0.989452, loss@max: 1.504942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 623, LS: 1.267939, LT: 1.350987, Top1S: 66.855988, Top1T: 66.288033 +Train:epoch: 624, loss@min: 0.997907, loss@max: 1.462617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 624, LS: 1.267757, LT: 1.350883, Top1S: 66.937119, Top1T: 66.288033 +Train:epoch: 625, loss@min: 1.000085, loss@max: 1.503098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 625, LS: 1.267630, LT: 1.350753, Top1S: 66.977692, Top1T: 66.328598 +Train:epoch: 626, loss@min: 0.969074, loss@max: 1.523660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 626, LS: 1.267235, LT: 1.350742, Top1S: 67.018257, Top1T: 66.369171 +Train:epoch: 627, loss@min: 1.019265, loss@max: 1.497872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 627, LS: 1.266841, LT: 1.350863, Top1S: 66.977692, Top1T: 66.328598 +Train:epoch: 628, loss@min: 1.009967, loss@max: 1.533452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 628, LS: 1.266243, LT: 1.351059, Top1S: 66.815414, Top1T: 66.288033 +Train:epoch: 629, loss@min: 1.006730, loss@max: 1.484336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 629, LS: 1.265381, LT: 1.351309, Top1S: 66.815414, Top1T: 66.247467 +Train:epoch: 630, loss@min: 1.023781, loss@max: 1.497224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 630, LS: 1.264718, LT: 1.351550, Top1S: 66.815414, Top1T: 66.288033 +Train:epoch: 631, loss@min: 0.991399, loss@max: 1.512984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 631, LS: 1.264119, LT: 1.351603, Top1S: 66.815414, Top1T: 66.288033 +Train:epoch: 632, loss@min: 0.982217, loss@max: 1.527871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 632, LS: 1.263086, LT: 1.351740, Top1S: 66.896553, Top1T: 66.328598 +Train:epoch: 633, loss@min: 1.003299, loss@max: 1.488098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 633, LS: 1.262031, LT: 1.351810, Top1S: 66.896553, Top1T: 66.328598 +Train:epoch: 634, loss@min: 1.005250, loss@max: 1.512778, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 634, LS: 1.261464, LT: 1.351669, Top1S: 66.937119, Top1T: 66.369171 +Train:epoch: 635, loss@min: 0.987920, loss@max: 1.479523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 635, LS: 1.261202, LT: 1.351426, Top1S: 66.937119, Top1T: 66.369171 +Train:epoch: 636, loss@min: 1.049815, loss@max: 1.433694, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 636, LS: 1.260789, LT: 1.351326, Top1S: 66.977692, Top1T: 66.409737 +Train:epoch: 637, loss@min: 1.007691, loss@max: 1.496372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 637, LS: 1.260518, LT: 1.351152, Top1S: 66.977692, Top1T: 66.409737 +Train:epoch: 638, loss@min: 0.977433, loss@max: 1.518657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 638, LS: 1.260309, LT: 1.350997, Top1S: 66.977692, Top1T: 66.409737 +Train:epoch: 639, loss@min: 1.036360, loss@max: 1.475211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 639, LS: 1.260382, LT: 1.350596, Top1S: 66.937119, Top1T: 66.450302 +Train:epoch: 640, loss@min: 0.977748, loss@max: 1.484780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 640, LS: 1.260322, LT: 1.350141, Top1S: 67.018257, Top1T: 66.409737 +Train:epoch: 641, loss@min: 0.975252, loss@max: 1.508537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 641, LS: 1.260318, LT: 1.349602, Top1S: 67.018257, Top1T: 66.409737 +Train:epoch: 642, loss@min: 0.957769, loss@max: 1.530664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 642, LS: 1.260490, LT: 1.348932, Top1S: 67.099388, Top1T: 66.328598Best acc: 67.099388 +Train:epoch: 643, loss@min: 0.959452, loss@max: 1.549861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 643, LS: 1.259939, LT: 1.348660, Top1S: 67.139961, Top1T: 66.369171Best acc: 67.139961 +Train:epoch: 644, loss@min: 1.039431, loss@max: 1.509323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 644, LS: 1.258986, LT: 1.348831, Top1S: 67.139961, Top1T: 66.409737 +Train:epoch: 645, loss@min: 1.012373, loss@max: 1.477795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 645, LS: 1.258031, LT: 1.348967, Top1S: 67.302231, Top1T: 66.409737Best acc: 67.302231 +Train:epoch: 646, loss@min: 0.969218, loss@max: 1.520113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 646, LS: 1.257152, LT: 1.349083, Top1S: 67.261665, Top1T: 66.409737 +Train:epoch: 647, loss@min: 0.993882, loss@max: 1.504497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 647, LS: 1.256666, LT: 1.349031, Top1S: 67.261665, Top1T: 66.450302 +Train:epoch: 648, loss@min: 1.004882, loss@max: 1.538239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 648, LS: 1.256379, LT: 1.348891, Top1S: 67.261665, Top1T: 66.450302 +Train:epoch: 649, loss@min: 0.987629, loss@max: 1.519602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 649, LS: 1.256135, LT: 1.348647, Top1S: 67.180527, Top1T: 66.450302 +Train:epoch: 650, loss@min: 0.985208, loss@max: 1.487508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 650, LS: 1.256122, LT: 1.348280, Top1S: 67.099388, Top1T: 66.450302 +Train:epoch: 651, loss@min: 1.008497, loss@max: 1.465248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 651, LS: 1.256021, LT: 1.348105, Top1S: 67.099388, Top1T: 66.450302 +Train:epoch: 652, loss@min: 1.016640, loss@max: 1.486653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 652, LS: 1.256517, LT: 1.347525, Top1S: 67.058823, Top1T: 66.409737 +Train:epoch: 653, loss@min: 0.978741, loss@max: 1.498757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 653, LS: 1.256845, LT: 1.347132, Top1S: 67.139961, Top1T: 66.490875 +Train:epoch: 654, loss@min: 0.990160, loss@max: 1.521318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 654, LS: 1.257021, LT: 1.346684, Top1S: 67.099388, Top1T: 66.612579 +Train:epoch: 655, loss@min: 0.970167, loss@max: 1.511792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 655, LS: 1.257219, LT: 1.346230, Top1S: 67.139961, Top1T: 66.612579 +Train:epoch: 656, loss@min: 0.973021, loss@max: 1.509468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 656, LS: 1.257079, LT: 1.346021, Top1S: 67.099388, Top1T: 66.572006 +Train:epoch: 657, loss@min: 1.044408, loss@max: 1.465341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 657, LS: 1.256490, LT: 1.345966, Top1S: 67.099388, Top1T: 66.612579 +Train:epoch: 658, loss@min: 0.995559, loss@max: 1.512473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 658, LS: 1.256058, LT: 1.345842, Top1S: 67.139961, Top1T: 66.612579 +Train:epoch: 659, loss@min: 0.997264, loss@max: 1.471005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 659, LS: 1.255420, LT: 1.345771, Top1S: 67.180527, Top1T: 66.612579 +Train:epoch: 660, loss@min: 1.013242, loss@max: 1.472396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 660, LS: 1.254913, LT: 1.345660, Top1S: 67.139961, Top1T: 66.653145 +Train:epoch: 661, loss@min: 1.044730, loss@max: 1.471256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 661, LS: 1.254346, LT: 1.345536, Top1S: 67.180527, Top1T: 66.653145 +Train:epoch: 662, loss@min: 0.993662, loss@max: 1.513802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 662, LS: 1.253826, LT: 1.345455, Top1S: 67.180527, Top1T: 66.653145 +Train:epoch: 663, loss@min: 1.016343, loss@max: 1.502672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 663, LS: 1.253524, LT: 1.345220, Top1S: 67.261665, Top1T: 66.612579 +Train:epoch: 664, loss@min: 1.021924, loss@max: 1.468351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 664, LS: 1.253608, LT: 1.344933, Top1S: 67.180527, Top1T: 66.612579 +Train:epoch: 665, loss@min: 0.983335, loss@max: 1.514381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 665, LS: 1.253545, LT: 1.344862, Top1S: 67.058823, Top1T: 66.612579 +Train:epoch: 666, loss@min: 1.005025, loss@max: 1.506411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 666, LS: 1.253777, LT: 1.344499, Top1S: 67.099388, Top1T: 66.612579 +Train:epoch: 667, loss@min: 0.974453, loss@max: 1.532212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 667, LS: 1.252939, LT: 1.344778, Top1S: 67.139961, Top1T: 66.572006 +Train:epoch: 668, loss@min: 1.000694, loss@max: 1.509904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 668, LS: 1.252109, LT: 1.345126, Top1S: 67.058823, Top1T: 66.531441 +Train:epoch: 669, loss@min: 1.035953, loss@max: 1.457739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 669, LS: 1.251723, LT: 1.345252, Top1S: 67.058823, Top1T: 66.531441 +Train:epoch: 670, loss@min: 1.018980, loss@max: 1.466996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 670, LS: 1.251573, LT: 1.345196, Top1S: 67.099388, Top1T: 66.531441 +Train:epoch: 671, loss@min: 1.034976, loss@max: 1.467627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 671, LS: 1.251509, LT: 1.345078, Top1S: 67.099388, Top1T: 66.572006 +Train:epoch: 672, loss@min: 1.021834, loss@max: 1.476347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 672, LS: 1.251718, LT: 1.344809, Top1S: 67.058823, Top1T: 66.572006 +Train:epoch: 673, loss@min: 1.012589, loss@max: 1.503144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 673, LS: 1.252141, LT: 1.344389, Top1S: 67.018257, Top1T: 66.531441 +Train:epoch: 674, loss@min: 1.028184, loss@max: 1.468889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 674, LS: 1.252328, LT: 1.343971, Top1S: 66.937119, Top1T: 66.531441 +Train:epoch: 675, loss@min: 0.986590, loss@max: 1.526764, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 675, LS: 1.252514, LT: 1.343470, Top1S: 66.896553, Top1T: 66.572006 +Train:epoch: 676, loss@min: 1.011654, loss@max: 1.459760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 676, LS: 1.253090, LT: 1.342660, Top1S: 66.896553, Top1T: 66.612579 +Train:epoch: 677, loss@min: 0.938004, loss@max: 1.553627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 677, LS: 1.253516, LT: 1.341943, Top1S: 66.896553, Top1T: 66.653145 +Train:epoch: 678, loss@min: 0.985446, loss@max: 1.511011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 678, LS: 1.254021, LT: 1.341074, Top1S: 66.774849, Top1T: 66.653145 +Train:epoch: 679, loss@min: 1.010538, loss@max: 1.470642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 679, LS: 1.254540, LT: 1.340153, Top1S: 66.774849, Top1T: 66.693710 +Train:epoch: 680, loss@min: 1.029752, loss@max: 1.457919, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 680, LS: 1.254963, LT: 1.339315, Top1S: 66.774849, Top1T: 66.774849 +Train:epoch: 681, loss@min: 0.979316, loss@max: 1.547070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 681, LS: 1.255356, LT: 1.338505, Top1S: 66.774849, Top1T: 66.815414 +Train:epoch: 682, loss@min: 1.021936, loss@max: 1.488307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 682, LS: 1.255498, LT: 1.337794, Top1S: 66.896553, Top1T: 66.896553 +Train:epoch: 683, loss@min: 1.011603, loss@max: 1.496805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 683, LS: 1.255224, LT: 1.337369, Top1S: 66.937119, Top1T: 66.896553 +Train:epoch: 684, loss@min: 1.048484, loss@max: 1.458914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 684, LS: 1.254686, LT: 1.337177, Top1S: 66.977692, Top1T: 66.855988 +Train:epoch: 685, loss@min: 1.054217, loss@max: 1.462479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 685, LS: 1.254014, LT: 1.337068, Top1S: 66.937119, Top1T: 66.855988 +Train:epoch: 686, loss@min: 1.007729, loss@max: 1.480695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 686, LS: 1.253342, LT: 1.337056, Top1S: 67.018257, Top1T: 66.774849 +Train:epoch: 687, loss@min: 0.997091, loss@max: 1.486610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 687, LS: 1.252776, LT: 1.337183, Top1S: 67.099388, Top1T: 66.734283 +Train:epoch: 688, loss@min: 1.007684, loss@max: 1.466957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 688, LS: 1.252185, LT: 1.337274, Top1S: 67.099388, Top1T: 66.734283 +Train:epoch: 689, loss@min: 1.000403, loss@max: 1.516539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 689, LS: 1.251584, LT: 1.337394, Top1S: 67.180527, Top1T: 66.653145 +Train:epoch: 690, loss@min: 1.011424, loss@max: 1.480549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 690, LS: 1.250995, LT: 1.337581, Top1S: 67.180527, Top1T: 66.693710 +Train:epoch: 691, loss@min: 0.956127, loss@max: 1.528427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 691, LS: 1.250295, LT: 1.337802, Top1S: 67.018257, Top1T: 66.653145 +Train:epoch: 692, loss@min: 0.975304, loss@max: 1.492454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 692, LS: 1.249644, LT: 1.337946, Top1S: 67.058823, Top1T: 66.653145 +Train:epoch: 693, loss@min: 0.990718, loss@max: 1.491599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 693, LS: 1.248957, LT: 1.338183, Top1S: 67.058823, Top1T: 66.612579 +Train:epoch: 694, loss@min: 1.000957, loss@max: 1.486981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 694, LS: 1.248329, LT: 1.338263, Top1S: 67.099388, Top1T: 66.490875 +Train:epoch: 695, loss@min: 1.015462, loss@max: 1.481165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 695, LS: 1.247842, LT: 1.338236, Top1S: 67.139961, Top1T: 66.490875 +Train:epoch: 696, loss@min: 0.972937, loss@max: 1.517927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 696, LS: 1.247584, LT: 1.338022, Top1S: 67.180527, Top1T: 66.531441 +Train:epoch: 697, loss@min: 1.064284, loss@max: 1.430928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 697, LS: 1.247353, LT: 1.337733, Top1S: 67.221092, Top1T: 66.531441 +Train:epoch: 698, loss@min: 0.944043, loss@max: 1.552646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 698, LS: 1.247215, LT: 1.337351, Top1S: 67.180527, Top1T: 66.490875 +Train:epoch: 699, loss@min: 1.036712, loss@max: 1.485502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 699, LS: 1.247240, LT: 1.336888, Top1S: 67.221092, Top1T: 66.531441 +Train:epoch: 700, loss@min: 0.980296, loss@max: 1.493024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 700, LS: 1.247201, LT: 1.336486, Top1S: 67.139961, Top1T: 66.612579 +Train:epoch: 701, loss@min: 1.000373, loss@max: 1.495976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 701, LS: 1.247281, LT: 1.336056, Top1S: 67.139961, Top1T: 66.693710 +Train:epoch: 702, loss@min: 1.006518, loss@max: 1.504748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 702, LS: 1.247394, LT: 1.335688, Top1S: 67.058823, Top1T: 66.653145 +Train:epoch: 703, loss@min: 0.992838, loss@max: 1.489286, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 703, LS: 1.247755, LT: 1.335254, Top1S: 67.018257, Top1T: 66.653145 +Train:epoch: 704, loss@min: 1.042216, loss@max: 1.457411, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 704, LS: 1.248676, LT: 1.334403, Top1S: 66.937119, Top1T: 66.653145 +Train:epoch: 705, loss@min: 0.992090, loss@max: 1.488094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 705, LS: 1.249499, LT: 1.333599, Top1S: 66.977692, Top1T: 66.612579 +Train:epoch: 706, loss@min: 0.985975, loss@max: 1.500934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 706, LS: 1.249960, LT: 1.333056, Top1S: 67.018257, Top1T: 66.693710 +Train:epoch: 707, loss@min: 1.046760, loss@max: 1.460119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 707, LS: 1.250175, LT: 1.332634, Top1S: 67.058823, Top1T: 66.653145 +Train:epoch: 708, loss@min: 1.008525, loss@max: 1.502788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 708, LS: 1.250082, LT: 1.332460, Top1S: 67.018257, Top1T: 66.653145 +Train:epoch: 709, loss@min: 0.985691, loss@max: 1.492457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 709, LS: 1.249793, LT: 1.332465, Top1S: 66.977692, Top1T: 66.572006 +Train:epoch: 710, loss@min: 0.959762, loss@max: 1.527852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 710, LS: 1.249315, LT: 1.332556, Top1S: 66.977692, Top1T: 66.612579 +Train:epoch: 711, loss@min: 0.973482, loss@max: 1.514749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 711, LS: 1.248578, LT: 1.332881, Top1S: 67.018257, Top1T: 66.612579 +Train:epoch: 712, loss@min: 0.981329, loss@max: 1.546882, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 712, LS: 1.247870, LT: 1.333107, Top1S: 67.099388, Top1T: 66.653145 +Train:epoch: 713, loss@min: 1.006764, loss@max: 1.500660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 713, LS: 1.246890, LT: 1.333556, Top1S: 67.139961, Top1T: 66.612579 +Train:epoch: 714, loss@min: 1.017233, loss@max: 1.464278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 714, LS: 1.245733, LT: 1.334101, Top1S: 67.221092, Top1T: 66.612579 +Train:epoch: 715, loss@min: 0.969280, loss@max: 1.510456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 715, LS: 1.244631, LT: 1.334568, Top1S: 67.221092, Top1T: 66.612579 +Train:epoch: 716, loss@min: 0.949782, loss@max: 1.531177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 716, LS: 1.243525, LT: 1.335144, Top1S: 67.261665, Top1T: 66.531441 +Train:epoch: 717, loss@min: 1.021291, loss@max: 1.538770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 717, LS: 1.242288, LT: 1.335821, Top1S: 67.261665, Top1T: 66.531441 +Train:epoch: 718, loss@min: 0.979918, loss@max: 1.505110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 718, LS: 1.241352, LT: 1.336249, Top1S: 67.302231, Top1T: 66.531441 +Train:epoch: 719, loss@min: 0.973442, loss@max: 1.478357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 719, LS: 1.240460, LT: 1.336604, Top1S: 67.302231, Top1T: 66.490875 +Train:epoch: 720, loss@min: 0.940683, loss@max: 1.559154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 720, LS: 1.239568, LT: 1.337036, Top1S: 67.261665, Top1T: 66.450302 +Train:epoch: 721, loss@min: 0.965636, loss@max: 1.540942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 721, LS: 1.238751, LT: 1.337404, Top1S: 67.302231, Top1T: 66.490875 +Train:epoch: 722, loss@min: 1.025330, loss@max: 1.460597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 722, LS: 1.237962, LT: 1.337809, Top1S: 67.261665, Top1T: 66.490875 +Train:epoch: 723, loss@min: 0.995226, loss@max: 1.494917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 723, LS: 1.237396, LT: 1.338082, Top1S: 67.261665, Top1T: 66.490875 +Train:epoch: 724, loss@min: 1.064924, loss@max: 1.474961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 724, LS: 1.237021, LT: 1.338163, Top1S: 67.261665, Top1T: 66.490875 +Train:epoch: 725, loss@min: 0.987651, loss@max: 1.509705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 725, LS: 1.236812, LT: 1.338200, Top1S: 67.302231, Top1T: 66.490875 +Train:epoch: 726, loss@min: 0.998165, loss@max: 1.508657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 726, LS: 1.236785, LT: 1.338118, Top1S: 67.342796, Top1T: 66.531441Best acc: 67.342796 +Train:epoch: 727, loss@min: 0.974139, loss@max: 1.526646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 727, LS: 1.236701, LT: 1.338017, Top1S: 67.383369, Top1T: 66.531441Best acc: 67.383369 +Train:epoch: 728, loss@min: 0.990799, loss@max: 1.498549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 728, LS: 1.236735, LT: 1.337894, Top1S: 67.423935, Top1T: 66.531441Best acc: 67.423935 +Train:epoch: 729, loss@min: 0.982350, loss@max: 1.493111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 729, LS: 1.236810, LT: 1.337683, Top1S: 67.423935, Top1T: 66.572006 +Train:epoch: 730, loss@min: 0.987173, loss@max: 1.456617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 730, LS: 1.237058, LT: 1.337409, Top1S: 67.423935, Top1T: 66.572006 +Train:epoch: 731, loss@min: 1.002322, loss@max: 1.494260, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 731, LS: 1.237268, LT: 1.337203, Top1S: 67.423935, Top1T: 66.612579 +Train:epoch: 732, loss@min: 1.002741, loss@max: 1.482347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 732, LS: 1.237568, LT: 1.336907, Top1S: 67.464500, Top1T: 66.653145Best acc: 67.464500 +Train:epoch: 733, loss@min: 1.024975, loss@max: 1.468689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 733, LS: 1.237671, LT: 1.336700, Top1S: 67.423935, Top1T: 66.653145 +Train:epoch: 734, loss@min: 0.983595, loss@max: 1.465879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 734, LS: 1.237709, LT: 1.336526, Top1S: 67.423935, Top1T: 66.653145 +Train:epoch: 735, loss@min: 0.971955, loss@max: 1.530760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 735, LS: 1.237539, LT: 1.336425, Top1S: 67.464500, Top1T: 66.693710 +Train:epoch: 736, loss@min: 1.033142, loss@max: 1.458633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 736, LS: 1.237602, LT: 1.336179, Top1S: 67.505074, Top1T: 66.734283Best acc: 67.505074 +Train:epoch: 737, loss@min: 1.006053, loss@max: 1.430604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 737, LS: 1.237808, LT: 1.335873, Top1S: 67.505074, Top1T: 66.734283 +Train:epoch: 738, loss@min: 0.992523, loss@max: 1.509673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 738, LS: 1.237806, LT: 1.335691, Top1S: 67.586205, Top1T: 66.693710Best acc: 67.586205 +Train:epoch: 739, loss@min: 1.034155, loss@max: 1.486122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 739, LS: 1.237857, LT: 1.335369, Top1S: 67.545639, Top1T: 66.653145 +Train:epoch: 740, loss@min: 0.976613, loss@max: 1.535770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 740, LS: 1.237947, LT: 1.335065, Top1S: 67.505074, Top1T: 66.693710 +Train:epoch: 741, loss@min: 0.991100, loss@max: 1.490458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 741, LS: 1.237517, LT: 1.335117, Top1S: 67.505074, Top1T: 66.653145 +Train:epoch: 742, loss@min: 0.980061, loss@max: 1.523127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 742, LS: 1.237200, LT: 1.335051, Top1S: 67.464500, Top1T: 66.653145 +Train:epoch: 743, loss@min: 1.028423, loss@max: 1.472624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 743, LS: 1.236243, LT: 1.335375, Top1S: 67.505074, Top1T: 66.612579 +Train:epoch: 744, loss@min: 1.012549, loss@max: 1.485837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 744, LS: 1.235540, LT: 1.335533, Top1S: 67.505074, Top1T: 66.653145 +Train:epoch: 745, loss@min: 1.014828, loss@max: 1.447042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 745, LS: 1.235074, LT: 1.335465, Top1S: 67.505074, Top1T: 66.653145 +Train:epoch: 746, loss@min: 0.985324, loss@max: 1.519372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 746, LS: 1.234794, LT: 1.335361, Top1S: 67.505074, Top1T: 66.693710 +Train:epoch: 747, loss@min: 0.987795, loss@max: 1.493253, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 747, LS: 1.234667, LT: 1.335183, Top1S: 67.545639, Top1T: 66.693710 +Train:epoch: 748, loss@min: 0.984219, loss@max: 1.490789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 748, LS: 1.234782, LT: 1.334871, Top1S: 67.545639, Top1T: 66.693710 +Train:epoch: 749, loss@min: 0.976236, loss@max: 1.514693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 749, LS: 1.235134, LT: 1.334436, Top1S: 67.464500, Top1T: 66.774849 +Train:epoch: 750, loss@min: 1.010445, loss@max: 1.480568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 750, LS: 1.235515, LT: 1.333972, Top1S: 67.464500, Top1T: 66.774849 +Train:epoch: 751, loss@min: 1.017998, loss@max: 1.466206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 751, LS: 1.236013, LT: 1.333528, Top1S: 67.423935, Top1T: 66.774849 +Train:epoch: 752, loss@min: 1.037430, loss@max: 1.438271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 752, LS: 1.236568, LT: 1.332982, Top1S: 67.423935, Top1T: 66.734283 +Train:epoch: 753, loss@min: 0.956331, loss@max: 1.520055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 753, LS: 1.237173, LT: 1.332450, Top1S: 67.423935, Top1T: 66.774849 +Train:epoch: 754, loss@min: 0.977567, loss@max: 1.477599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 754, LS: 1.237801, LT: 1.331973, Top1S: 67.342796, Top1T: 66.774849 +Train:epoch: 755, loss@min: 1.035673, loss@max: 1.439564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 755, LS: 1.238463, LT: 1.331436, Top1S: 67.261665, Top1T: 66.815414 +Train:epoch: 756, loss@min: 0.980734, loss@max: 1.509784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 756, LS: 1.239127, LT: 1.330888, Top1S: 67.302231, Top1T: 66.855988 +Train:epoch: 757, loss@min: 0.951673, loss@max: 1.543982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 757, LS: 1.239305, LT: 1.330654, Top1S: 67.261665, Top1T: 66.855988 +Train:epoch: 758, loss@min: 1.001471, loss@max: 1.486708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 758, LS: 1.239468, LT: 1.330417, Top1S: 67.261665, Top1T: 66.937119 +Train:epoch: 759, loss@min: 0.972132, loss@max: 1.520792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 759, LS: 1.239623, LT: 1.330258, Top1S: 67.261665, Top1T: 66.937119 +Train:epoch: 760, loss@min: 1.035562, loss@max: 1.442439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 760, LS: 1.239730, LT: 1.330123, Top1S: 67.221092, Top1T: 66.937119 +Train:epoch: 761, loss@min: 0.979935, loss@max: 1.485146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 761, LS: 1.239767, LT: 1.330030, Top1S: 67.302231, Top1T: 66.977692 +Train:epoch: 762, loss@min: 1.022833, loss@max: 1.446974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 762, LS: 1.239998, LT: 1.329801, Top1S: 67.221092, Top1T: 67.018257 +Train:epoch: 763, loss@min: 0.994792, loss@max: 1.446257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 763, LS: 1.240085, LT: 1.329645, Top1S: 67.180527, Top1T: 66.977692 +Train:epoch: 764, loss@min: 1.030957, loss@max: 1.471238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 764, LS: 1.240098, LT: 1.329449, Top1S: 67.180527, Top1T: 66.977692 +Train:epoch: 765, loss@min: 0.977645, loss@max: 1.527461, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 765, LS: 1.239994, LT: 1.329302, Top1S: 67.180527, Top1T: 66.977692 +Train:epoch: 766, loss@min: 0.995812, loss@max: 1.486254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 766, LS: 1.239754, LT: 1.329240, Top1S: 67.221092, Top1T: 67.018257 +Train:epoch: 767, loss@min: 1.000093, loss@max: 1.483610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 767, LS: 1.239636, LT: 1.329075, Top1S: 67.221092, Top1T: 66.977692 +Train:epoch: 768, loss@min: 0.996812, loss@max: 1.491194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 768, LS: 1.239257, LT: 1.329115, Top1S: 67.180527, Top1T: 66.977692 +Train:epoch: 769, loss@min: 0.972819, loss@max: 1.513868, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 769, LS: 1.238881, LT: 1.329194, Top1S: 67.261665, Top1T: 67.058823 +Train:epoch: 770, loss@min: 1.015692, loss@max: 1.461174, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 770, LS: 1.238592, LT: 1.329166, Top1S: 67.302231, Top1T: 67.058823 +Train:epoch: 771, loss@min: 0.981545, loss@max: 1.492752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 771, LS: 1.237939, LT: 1.329378, Top1S: 67.383369, Top1T: 67.018257 +Train:epoch: 772, loss@min: 0.988947, loss@max: 1.503554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 772, LS: 1.237228, LT: 1.329669, Top1S: 67.383369, Top1T: 67.018257 +Train:epoch: 773, loss@min: 0.994074, loss@max: 1.474746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 773, LS: 1.236662, LT: 1.329885, Top1S: 67.383369, Top1T: 66.977692 +Train:epoch: 774, loss@min: 1.015057, loss@max: 1.460947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 774, LS: 1.235997, LT: 1.330121, Top1S: 67.383369, Top1T: 66.937119 +Train:epoch: 775, loss@min: 1.004340, loss@max: 1.470140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 775, LS: 1.235381, LT: 1.330327, Top1S: 67.383369, Top1T: 66.896553 +Train:epoch: 776, loss@min: 0.926168, loss@max: 1.559937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 776, LS: 1.234803, LT: 1.330435, Top1S: 67.464500, Top1T: 66.896553 +Train:epoch: 777, loss@min: 0.989569, loss@max: 1.525334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 777, LS: 1.234184, LT: 1.330569, Top1S: 67.464500, Top1T: 66.896553 +Train:epoch: 778, loss@min: 0.994659, loss@max: 1.496397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 778, LS: 1.233711, LT: 1.330584, Top1S: 67.464500, Top1T: 66.896553 +Train:epoch: 779, loss@min: 1.041749, loss@max: 1.444228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 779, LS: 1.233406, LT: 1.330461, Top1S: 67.505074, Top1T: 66.896553 +Train:epoch: 780, loss@min: 0.983544, loss@max: 1.475292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 780, LS: 1.233186, LT: 1.330336, Top1S: 67.505074, Top1T: 66.855988 +Train:epoch: 781, loss@min: 1.017558, loss@max: 1.475157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 781, LS: 1.233031, LT: 1.330158, Top1S: 67.505074, Top1T: 66.855988 +Train:epoch: 782, loss@min: 0.974377, loss@max: 1.506732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 782, LS: 1.232929, LT: 1.329970, Top1S: 67.626778, Top1T: 66.896553Best acc: 67.626778 +Train:epoch: 783, loss@min: 0.985050, loss@max: 1.508639, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 783, LS: 1.232662, LT: 1.329864, Top1S: 67.586205, Top1T: 66.937119 +Train:epoch: 784, loss@min: 0.990052, loss@max: 1.485084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 784, LS: 1.232369, LT: 1.329860, Top1S: 67.667343, Top1T: 66.937119Best acc: 67.667343 +Train:epoch: 785, loss@min: 0.981277, loss@max: 1.510208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 785, LS: 1.232196, LT: 1.329795, Top1S: 67.707909, Top1T: 66.937119Best acc: 67.707909 +Train:epoch: 786, loss@min: 0.992944, loss@max: 1.480097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 786, LS: 1.232077, LT: 1.329728, Top1S: 67.707909, Top1T: 66.937119 +Train:epoch: 787, loss@min: 0.979405, loss@max: 1.513056, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 787, LS: 1.231668, LT: 1.329852, Top1S: 67.748482, Top1T: 66.896553Best acc: 67.748482 +Train:epoch: 788, loss@min: 0.995115, loss@max: 1.490182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 788, LS: 1.231374, LT: 1.329890, Top1S: 67.748482, Top1T: 66.855988 +Train:epoch: 789, loss@min: 0.961478, loss@max: 1.506208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 789, LS: 1.231155, LT: 1.329919, Top1S: 67.707909, Top1T: 66.815414 +Train:epoch: 790, loss@min: 0.958218, loss@max: 1.512219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 790, LS: 1.231051, LT: 1.329878, Top1S: 67.707909, Top1T: 66.774849 +Train:epoch: 791, loss@min: 1.061544, loss@max: 1.437072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 791, LS: 1.231028, LT: 1.329793, Top1S: 67.748482, Top1T: 66.774849 +Train:epoch: 792, loss@min: 1.010717, loss@max: 1.444617, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 792, LS: 1.231037, LT: 1.329711, Top1S: 67.707909, Top1T: 66.734283 +Train:epoch: 793, loss@min: 0.977901, loss@max: 1.503426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 793, LS: 1.231264, LT: 1.329512, Top1S: 67.707909, Top1T: 66.734283 +Train:epoch: 794, loss@min: 0.972936, loss@max: 1.520237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 794, LS: 1.231523, LT: 1.329305, Top1S: 67.707909, Top1T: 66.734283 +Train:epoch: 795, loss@min: 1.010350, loss@max: 1.480288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 795, LS: 1.231819, LT: 1.329013, Top1S: 67.707909, Top1T: 66.774849 +Train:epoch: 796, loss@min: 0.981838, loss@max: 1.496207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 796, LS: 1.232125, LT: 1.328736, Top1S: 67.707909, Top1T: 66.815414 +Train:epoch: 797, loss@min: 0.971597, loss@max: 1.502232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 797, LS: 1.232456, LT: 1.328433, Top1S: 67.667343, Top1T: 66.855988 +Train:epoch: 798, loss@min: 1.020748, loss@max: 1.453397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 798, LS: 1.232800, LT: 1.328125, Top1S: 67.667343, Top1T: 66.896553 +Train:epoch: 799, loss@min: 1.006870, loss@max: 1.491711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 799, LS: 1.232878, LT: 1.328001, Top1S: 67.667343, Top1T: 66.937119 +Train:epoch: 800, loss@min: 0.997817, loss@max: 1.494233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 800, LS: 1.232766, LT: 1.327954, Top1S: 67.707909, Top1T: 66.937119 +Train:epoch: 801, loss@min: 1.002605, loss@max: 1.482034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 801, LS: 1.232661, LT: 1.327906, Top1S: 67.667343, Top1T: 66.937119 +Train:epoch: 802, loss@min: 1.002304, loss@max: 1.481593, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 802, LS: 1.232613, LT: 1.327824, Top1S: 67.626778, Top1T: 66.937119 +Train:epoch: 803, loss@min: 1.000206, loss@max: 1.492365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 803, LS: 1.232186, LT: 1.327935, Top1S: 67.626778, Top1T: 66.896553 +Train:epoch: 804, loss@min: 1.038002, loss@max: 1.455207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 804, LS: 1.231993, LT: 1.327895, Top1S: 67.626778, Top1T: 66.774849 +Train:epoch: 805, loss@min: 0.988874, loss@max: 1.487340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 805, LS: 1.231813, LT: 1.327839, Top1S: 67.667343, Top1T: 66.774849 +Train:epoch: 806, loss@min: 0.982671, loss@max: 1.498019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 806, LS: 1.231706, LT: 1.327742, Top1S: 67.626778, Top1T: 66.774849 +Train:epoch: 807, loss@min: 1.017007, loss@max: 1.484405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 807, LS: 1.231572, LT: 1.327645, Top1S: 67.586205, Top1T: 66.855988 +Train:epoch: 808, loss@min: 1.020172, loss@max: 1.459736, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 808, LS: 1.231594, LT: 1.327461, Top1S: 67.586205, Top1T: 66.855988 +Train:epoch: 809, loss@min: 0.976846, loss@max: 1.515164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 809, LS: 1.231635, LT: 1.327280, Top1S: 67.586205, Top1T: 66.774849 +Train:epoch: 810, loss@min: 0.992758, loss@max: 1.528772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 810, LS: 1.231657, LT: 1.327169, Top1S: 67.667343, Top1T: 66.774849 +Train:epoch: 811, loss@min: 1.010921, loss@max: 1.484218, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 811, LS: 1.231649, LT: 1.327068, Top1S: 67.626778, Top1T: 66.774849 +Train:epoch: 812, loss@min: 0.985575, loss@max: 1.501363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 812, LS: 1.231662, LT: 1.326979, Top1S: 67.545639, Top1T: 66.774849 +Train:epoch: 813, loss@min: 0.964547, loss@max: 1.505346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 813, LS: 1.231644, LT: 1.326929, Top1S: 67.545639, Top1T: 66.815414 +Train:epoch: 814, loss@min: 1.022417, loss@max: 1.465236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 814, LS: 1.231674, LT: 1.326814, Top1S: 67.586205, Top1T: 66.815414 +Train:epoch: 815, loss@min: 1.002481, loss@max: 1.493702, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 815, LS: 1.231713, LT: 1.326689, Top1S: 67.545639, Top1T: 66.815414 +Train:epoch: 816, loss@min: 0.997086, loss@max: 1.475891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 816, LS: 1.231753, LT: 1.326574, Top1S: 67.545639, Top1T: 66.815414 +Train:epoch: 817, loss@min: 0.994405, loss@max: 1.468781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 817, LS: 1.231748, LT: 1.326535, Top1S: 67.545639, Top1T: 66.774849 +Train:epoch: 818, loss@min: 1.000173, loss@max: 1.481356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 818, LS: 1.231755, LT: 1.326463, Top1S: 67.586205, Top1T: 66.774849 +Train:epoch: 819, loss@min: 1.010580, loss@max: 1.475915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 819, LS: 1.231729, LT: 1.326423, Top1S: 67.586205, Top1T: 66.774849 +Train:epoch: 820, loss@min: 0.987458, loss@max: 1.474478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 820, LS: 1.231711, LT: 1.326384, Top1S: 67.586205, Top1T: 66.774849 +Train:epoch: 821, loss@min: 1.003426, loss@max: 1.482294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 821, LS: 1.231698, LT: 1.326324, Top1S: 67.545639, Top1T: 66.815414 +Train:epoch: 822, loss@min: 0.978170, loss@max: 1.511862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 822, LS: 1.231701, LT: 1.326240, Top1S: 67.423935, Top1T: 66.815414 +Train:epoch: 823, loss@min: 1.008693, loss@max: 1.474661, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 823, LS: 1.231659, LT: 1.326164, Top1S: 67.464500, Top1T: 66.855988 +Train:epoch: 824, loss@min: 0.983021, loss@max: 1.488397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 824, LS: 1.231578, LT: 1.326092, Top1S: 67.464500, Top1T: 66.815414 +Train:epoch: 825, loss@min: 0.980242, loss@max: 1.533890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 825, LS: 1.231601, LT: 1.325915, Top1S: 67.464500, Top1T: 66.815414 +Train:epoch: 826, loss@min: 1.002455, loss@max: 1.477433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 826, LS: 1.231639, LT: 1.325711, Top1S: 67.423935, Top1T: 66.855988 +Train:epoch: 827, loss@min: 1.006295, loss@max: 1.449354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 827, LS: 1.231687, LT: 1.325509, Top1S: 67.423935, Top1T: 66.855988 +Train:epoch: 828, loss@min: 1.004727, loss@max: 1.456321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 828, LS: 1.231691, LT: 1.325362, Top1S: 67.342796, Top1T: 66.815414 +Train:epoch: 829, loss@min: 1.000083, loss@max: 1.469440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 829, LS: 1.231583, LT: 1.325287, Top1S: 67.342796, Top1T: 66.815414 +Train:epoch: 830, loss@min: 0.989549, loss@max: 1.452334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 830, LS: 1.231503, LT: 1.325219, Top1S: 67.342796, Top1T: 66.815414 +Train:epoch: 831, loss@min: 1.000077, loss@max: 1.466316, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 831, LS: 1.231491, LT: 1.325147, Top1S: 67.342796, Top1T: 66.734283 +Train:epoch: 832, loss@min: 0.994737, loss@max: 1.483187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 832, LS: 1.231633, LT: 1.324925, Top1S: 67.383369, Top1T: 66.734283 +Train:epoch: 833, loss@min: 0.981460, loss@max: 1.483094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 833, LS: 1.231634, LT: 1.324767, Top1S: 67.383369, Top1T: 66.774849 +Train:epoch: 834, loss@min: 0.983238, loss@max: 1.485732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 834, LS: 1.231566, LT: 1.324668, Top1S: 67.383369, Top1T: 66.815414 +Train:epoch: 835, loss@min: 0.981592, loss@max: 1.498637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 835, LS: 1.231490, LT: 1.324560, Top1S: 67.423935, Top1T: 66.815414 +Train:epoch: 836, loss@min: 1.027858, loss@max: 1.450889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 836, LS: 1.231427, LT: 1.324455, Top1S: 67.423935, Top1T: 66.815414 +Train:epoch: 837, loss@min: 0.973281, loss@max: 1.466451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 837, LS: 1.231349, LT: 1.324355, Top1S: 67.423935, Top1T: 66.815414 +Train:epoch: 838, loss@min: 0.993109, loss@max: 1.464986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 838, LS: 1.231269, LT: 1.324255, Top1S: 67.464500, Top1T: 66.855988 +Train:epoch: 839, loss@min: 1.070950, loss@max: 1.450927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 839, LS: 1.231212, LT: 1.324138, Top1S: 67.464500, Top1T: 66.937119 +Train:epoch: 840, loss@min: 1.002981, loss@max: 1.502672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 840, LS: 1.231165, LT: 1.324069, Top1S: 67.464500, Top1T: 66.937119 +Train:epoch: 841, loss@min: 0.995554, loss@max: 1.505995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 841, LS: 1.231223, LT: 1.323940, Top1S: 67.464500, Top1T: 66.937119 +Train:epoch: 842, loss@min: 1.005708, loss@max: 1.490051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 842, LS: 1.231309, LT: 1.323825, Top1S: 67.423935, Top1T: 66.937119 +Train:epoch: 843, loss@min: 0.987379, loss@max: 1.511099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 843, LS: 1.231418, LT: 1.323671, Top1S: 67.423935, Top1T: 66.937119 +Train:epoch: 844, loss@min: 0.988464, loss@max: 1.475329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 844, LS: 1.231468, LT: 1.323571, Top1S: 67.423935, Top1T: 66.937119 +Train:epoch: 845, loss@min: 1.021510, loss@max: 1.449334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 845, LS: 1.231485, LT: 1.323484, Top1S: 67.423935, Top1T: 66.937119 +Train:epoch: 846, loss@min: 1.014575, loss@max: 1.478589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 846, LS: 1.231456, LT: 1.323466, Top1S: 67.423935, Top1T: 66.937119 +Train:epoch: 847, loss@min: 1.025760, loss@max: 1.483295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 847, LS: 1.231472, LT: 1.323425, Top1S: 67.383369, Top1T: 66.977692 +Train:epoch: 848, loss@min: 1.033119, loss@max: 1.450323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 848, LS: 1.231571, LT: 1.323330, Top1S: 67.383369, Top1T: 67.018257 +Train:epoch: 849, loss@min: 0.983410, loss@max: 1.496127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 849, LS: 1.231625, LT: 1.323261, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 850, loss@min: 0.980424, loss@max: 1.490256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 850, LS: 1.231671, LT: 1.323207, Top1S: 67.383369, Top1T: 67.018257 +Train:epoch: 851, loss@min: 1.008154, loss@max: 1.444779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 851, LS: 1.231684, LT: 1.323170, Top1S: 67.383369, Top1T: 67.018257 +Train:epoch: 852, loss@min: 0.997010, loss@max: 1.453818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 852, LS: 1.231726, LT: 1.323140, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 853, loss@min: 0.989033, loss@max: 1.489827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 853, LS: 1.231695, LT: 1.323142, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 854, loss@min: 0.974193, loss@max: 1.498732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 854, LS: 1.231640, LT: 1.323151, Top1S: 67.423935, Top1T: 66.977692 +Train:epoch: 855, loss@min: 0.968288, loss@max: 1.498009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 855, LS: 1.231583, LT: 1.323178, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 856, loss@min: 1.021612, loss@max: 1.458611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 856, LS: 1.231754, LT: 1.323066, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 857, loss@min: 1.002737, loss@max: 1.487363, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 857, LS: 1.231918, LT: 1.322943, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 858, loss@min: 1.003768, loss@max: 1.493296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 858, LS: 1.231885, LT: 1.322953, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 859, loss@min: 0.988335, loss@max: 1.471888, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 859, LS: 1.231858, LT: 1.322956, Top1S: 67.423935, Top1T: 67.058823 +Train:epoch: 860, loss@min: 0.962949, loss@max: 1.499442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 860, LS: 1.231825, LT: 1.322957, Top1S: 67.423935, Top1T: 67.058823 +Train:epoch: 861, loss@min: 0.966287, loss@max: 1.472646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 861, LS: 1.231821, LT: 1.322967, Top1S: 67.423935, Top1T: 67.058823 +Train:epoch: 862, loss@min: 0.974938, loss@max: 1.478352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 862, LS: 1.231770, LT: 1.322986, Top1S: 67.423935, Top1T: 67.058823 +Train:epoch: 863, loss@min: 0.969869, loss@max: 1.510291, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 863, LS: 1.231558, LT: 1.323132, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 864, loss@min: 1.011020, loss@max: 1.481037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 864, LS: 1.231378, LT: 1.323237, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 865, loss@min: 1.007078, loss@max: 1.471712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 865, LS: 1.231213, LT: 1.323336, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 866, loss@min: 0.986460, loss@max: 1.472145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 866, LS: 1.231110, LT: 1.323426, Top1S: 67.383369, Top1T: 66.977692 +Train:epoch: 867, loss@min: 1.016881, loss@max: 1.478549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 867, LS: 1.231051, LT: 1.323471, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 868, loss@min: 0.988985, loss@max: 1.475488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 868, LS: 1.231005, LT: 1.323506, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 869, loss@min: 0.994973, loss@max: 1.472597, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 869, LS: 1.230976, LT: 1.323541, Top1S: 67.383369, Top1T: 67.058823 +Train:epoch: 870, loss@min: 0.999360, loss@max: 1.520206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 870, LS: 1.230965, LT: 1.323557, Top1S: 67.423935, Top1T: 67.058823 +Train:epoch: 871, loss@min: 1.003823, loss@max: 1.481918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 871, LS: 1.230795, LT: 1.323659, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 872, loss@min: 0.928235, loss@max: 1.554560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 872, LS: 1.230676, LT: 1.323743, Top1S: 67.423935, Top1T: 66.977692 +Train:epoch: 873, loss@min: 0.989331, loss@max: 1.458606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 873, LS: 1.230567, LT: 1.323812, Top1S: 67.423935, Top1T: 66.977692 +Train:epoch: 874, loss@min: 1.017029, loss@max: 1.490751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 874, LS: 1.230506, LT: 1.323831, Top1S: 67.423935, Top1T: 67.018257 +Train:epoch: 875, loss@min: 0.975525, loss@max: 1.490305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 875, LS: 1.230478, LT: 1.323830, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 876, loss@min: 0.986395, loss@max: 1.501976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 876, LS: 1.230447, LT: 1.323836, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 877, loss@min: 0.984490, loss@max: 1.513104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 877, LS: 1.230411, LT: 1.323840, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 878, loss@min: 0.977537, loss@max: 1.475676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 878, LS: 1.230390, LT: 1.323821, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 879, loss@min: 0.982730, loss@max: 1.504168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 879, LS: 1.230406, LT: 1.323771, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 880, loss@min: 0.999255, loss@max: 1.482061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 880, LS: 1.230416, LT: 1.323717, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 881, loss@min: 1.002170, loss@max: 1.496045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 881, LS: 1.230425, LT: 1.323653, Top1S: 67.505074, Top1T: 67.018257 +Train:epoch: 882, loss@min: 1.036187, loss@max: 1.420452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 882, LS: 1.230464, LT: 1.323566, Top1S: 67.505074, Top1T: 66.977692 +Train:epoch: 883, loss@min: 0.987641, loss@max: 1.478341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 883, LS: 1.230517, LT: 1.323477, Top1S: 67.505074, Top1T: 66.977692 +Train:epoch: 884, loss@min: 1.010622, loss@max: 1.439131, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 884, LS: 1.230553, LT: 1.323387, Top1S: 67.505074, Top1T: 66.977692 +Train:epoch: 885, loss@min: 0.978233, loss@max: 1.511148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 885, LS: 1.230598, LT: 1.323268, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 886, loss@min: 0.967540, loss@max: 1.521045, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 886, LS: 1.230624, LT: 1.323174, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 887, loss@min: 0.980091, loss@max: 1.496935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 887, LS: 1.230646, LT: 1.323083, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 888, loss@min: 1.024169, loss@max: 1.443184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 888, LS: 1.230669, LT: 1.322987, Top1S: 67.464500, Top1T: 67.018257 +Train:epoch: 889, loss@min: 0.960776, loss@max: 1.501969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 889, LS: 1.230756, LT: 1.322858, Top1S: 67.464500, Top1T: 67.058823 +Train:epoch: 890, loss@min: 1.015434, loss@max: 1.459211, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 890, LS: 1.230887, LT: 1.322723, Top1S: 67.505074, Top1T: 67.058823 +Train:epoch: 891, loss@min: 0.979044, loss@max: 1.480072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 891, LS: 1.231003, LT: 1.322601, Top1S: 67.586205, Top1T: 67.058823 +Train:epoch: 892, loss@min: 0.992449, loss@max: 1.477346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 892, LS: 1.231091, LT: 1.322500, Top1S: 67.586205, Top1T: 67.058823 +Train:epoch: 893, loss@min: 1.001649, loss@max: 1.470448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 893, LS: 1.231176, LT: 1.322398, Top1S: 67.586205, Top1T: 67.058823 +Train:epoch: 894, loss@min: 1.022870, loss@max: 1.467921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 894, LS: 1.231238, LT: 1.322311, Top1S: 67.586205, Top1T: 67.058823 +Train:epoch: 895, loss@min: 1.011314, loss@max: 1.471800, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 895, LS: 1.231283, LT: 1.322229, Top1S: 67.545639, Top1T: 67.058823 +Train:epoch: 896, loss@min: 0.988837, loss@max: 1.481233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 896, LS: 1.231330, LT: 1.322142, Top1S: 67.545639, Top1T: 67.058823 +Train:epoch: 897, loss@min: 0.995482, loss@max: 1.470166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 897, LS: 1.231359, LT: 1.322066, Top1S: 67.505074, Top1T: 67.099388 +Train:epoch: 898, loss@min: 0.993787, loss@max: 1.486284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 898, LS: 1.231381, LT: 1.321986, Top1S: 67.505074, Top1T: 67.099388 +Train:epoch: 899, loss@min: 0.981461, loss@max: 1.501564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 899, LS: 1.231387, LT: 1.321927, Top1S: 67.505074, Top1T: 67.099388 +Train:epoch: 900, loss@min: 0.968170, loss@max: 1.462507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 900, LS: 1.231398, LT: 1.321883, Top1S: 67.505074, Top1T: 67.099388 +Train:epoch: 901, loss@min: 0.982888, loss@max: 1.512129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 901, LS: 1.231411, LT: 1.321842, Top1S: 67.505074, Top1T: 67.099388 +Train:epoch: 902, loss@min: 0.993637, loss@max: 1.480443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 902, LS: 1.231434, LT: 1.321785, Top1S: 67.505074, Top1T: 67.099388 +Train:epoch: 903, loss@min: 0.961262, loss@max: 1.485892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 903, LS: 1.231431, LT: 1.321745, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 904, loss@min: 0.966890, loss@max: 1.495505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 904, LS: 1.231411, LT: 1.321711, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 905, loss@min: 0.995367, loss@max: 1.465401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 905, LS: 1.231380, LT: 1.321691, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 906, loss@min: 0.988397, loss@max: 1.495871, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 906, LS: 1.231348, LT: 1.321678, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 907, loss@min: 1.003442, loss@max: 1.479917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 907, LS: 1.231291, LT: 1.321674, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 908, loss@min: 1.023446, loss@max: 1.452272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 908, LS: 1.231232, LT: 1.321680, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 909, loss@min: 0.971032, loss@max: 1.482928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 909, LS: 1.231174, LT: 1.321684, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 910, loss@min: 0.971097, loss@max: 1.485776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 910, LS: 1.231131, LT: 1.321684, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 911, loss@min: 1.015248, loss@max: 1.458459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 911, LS: 1.231171, LT: 1.321623, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 912, loss@min: 1.000617, loss@max: 1.478921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 912, LS: 1.231205, LT: 1.321560, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 913, loss@min: 1.014925, loss@max: 1.464850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 913, LS: 1.231229, LT: 1.321511, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 914, loss@min: 0.984900, loss@max: 1.495450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 914, LS: 1.231237, LT: 1.321471, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 915, loss@min: 1.017245, loss@max: 1.479023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 915, LS: 1.231260, LT: 1.321421, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 916, loss@min: 1.034906, loss@max: 1.466750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 916, LS: 1.231318, LT: 1.321335, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 917, loss@min: 0.976935, loss@max: 1.504228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 917, LS: 1.231370, LT: 1.321253, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 918, loss@min: 0.998437, loss@max: 1.485915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 918, LS: 1.231417, LT: 1.321173, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 919, loss@min: 0.997153, loss@max: 1.504538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 919, LS: 1.231467, LT: 1.321093, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 920, loss@min: 1.008497, loss@max: 1.450760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 920, LS: 1.231561, LT: 1.320991, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 921, loss@min: 1.017672, loss@max: 1.466812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 921, LS: 1.231621, LT: 1.320905, Top1S: 67.586205, Top1T: 67.099388 +Train:epoch: 922, loss@min: 0.972340, loss@max: 1.461250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 922, LS: 1.231680, LT: 1.320827, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 923, loss@min: 1.024643, loss@max: 1.459062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 923, LS: 1.231716, LT: 1.320761, Top1S: 67.545639, Top1T: 67.099388 +Train:epoch: 924, loss@min: 0.997407, loss@max: 1.452797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 924, LS: 1.231728, LT: 1.320719, Top1S: 67.505074, Top1T: 67.139961 +Train:epoch: 925, loss@min: 0.998827, loss@max: 1.480482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 925, LS: 1.231739, LT: 1.320683, Top1S: 67.505074, Top1T: 67.139961 +Train:epoch: 926, loss@min: 1.029017, loss@max: 1.511243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 926, LS: 1.231724, LT: 1.320659, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 927, loss@min: 0.998813, loss@max: 1.479606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 927, LS: 1.231712, LT: 1.320630, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 928, loss@min: 1.004687, loss@max: 1.473237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 928, LS: 1.231698, LT: 1.320604, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 929, loss@min: 1.003545, loss@max: 1.457829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 929, LS: 1.231683, LT: 1.320579, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 930, loss@min: 0.975108, loss@max: 1.501935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 930, LS: 1.231617, LT: 1.320591, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 931, loss@min: 1.005426, loss@max: 1.442225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 931, LS: 1.231546, LT: 1.320603, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 932, loss@min: 0.970590, loss@max: 1.489610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 932, LS: 1.231486, LT: 1.320608, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 933, loss@min: 0.978725, loss@max: 1.507441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 933, LS: 1.231420, LT: 1.320618, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 934, loss@min: 0.945989, loss@max: 1.509644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 934, LS: 1.231359, LT: 1.320625, Top1S: 67.505074, Top1T: 67.180527 +Train:epoch: 935, loss@min: 0.984494, loss@max: 1.479344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 935, LS: 1.231294, LT: 1.320641, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 936, loss@min: 0.980777, loss@max: 1.522447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 936, LS: 1.231240, LT: 1.320649, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 937, loss@min: 0.977018, loss@max: 1.505361, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 937, LS: 1.231191, LT: 1.320653, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 938, loss@min: 0.977212, loss@max: 1.472526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 938, LS: 1.231135, LT: 1.320662, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 939, loss@min: 0.963951, loss@max: 1.481437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 939, LS: 1.231084, LT: 1.320674, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 940, loss@min: 1.014864, loss@max: 1.458229, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 940, LS: 1.231038, LT: 1.320686, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 941, loss@min: 0.961704, loss@max: 1.487169, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 941, LS: 1.230995, LT: 1.320701, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 942, loss@min: 0.995497, loss@max: 1.464062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 942, LS: 1.230951, LT: 1.320719, Top1S: 67.545639, Top1T: 67.139961 +Train:epoch: 943, loss@min: 0.995481, loss@max: 1.482095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 943, LS: 1.230905, LT: 1.320738, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 944, loss@min: 1.005618, loss@max: 1.488615, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 944, LS: 1.230862, LT: 1.320761, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 945, loss@min: 0.994053, loss@max: 1.493357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 945, LS: 1.230814, LT: 1.320786, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 946, loss@min: 0.998779, loss@max: 1.462337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 946, LS: 1.230766, LT: 1.320810, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 947, loss@min: 0.970318, loss@max: 1.488912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 947, LS: 1.230716, LT: 1.320836, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 948, loss@min: 1.018842, loss@max: 1.440721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 948, LS: 1.230668, LT: 1.320862, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 949, loss@min: 0.982658, loss@max: 1.471155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 949, LS: 1.230626, LT: 1.320881, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 950, loss@min: 0.981987, loss@max: 1.495665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 950, LS: 1.230586, LT: 1.320897, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 951, loss@min: 0.978723, loss@max: 1.492014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 951, LS: 1.230544, LT: 1.320915, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 952, loss@min: 1.045207, loss@max: 1.432212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 952, LS: 1.230510, LT: 1.320927, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 953, loss@min: 0.975099, loss@max: 1.495189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 953, LS: 1.230482, LT: 1.320936, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 954, loss@min: 1.003591, loss@max: 1.466099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 954, LS: 1.230448, LT: 1.320949, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 955, loss@min: 0.997220, loss@max: 1.486822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 955, LS: 1.230423, LT: 1.320955, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 956, loss@min: 1.064253, loss@max: 1.437060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 956, LS: 1.230400, LT: 1.320958, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 957, loss@min: 0.975172, loss@max: 1.498388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 957, LS: 1.230381, LT: 1.320959, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 958, loss@min: 0.999140, loss@max: 1.439486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 958, LS: 1.230363, LT: 1.320960, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 959, loss@min: 0.928505, loss@max: 1.546783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 959, LS: 1.230362, LT: 1.320952, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 960, loss@min: 0.965563, loss@max: 1.510934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 960, LS: 1.230363, LT: 1.320943, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 961, loss@min: 0.980806, loss@max: 1.484249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 961, LS: 1.230362, LT: 1.320937, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 962, loss@min: 0.971901, loss@max: 1.523244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 962, LS: 1.230359, LT: 1.320932, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 963, loss@min: 0.998705, loss@max: 1.486124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 963, LS: 1.230356, LT: 1.320928, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 964, loss@min: 0.993585, loss@max: 1.462577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 964, LS: 1.230344, LT: 1.320930, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 965, loss@min: 0.962948, loss@max: 1.524152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 965, LS: 1.230329, LT: 1.320933, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 966, loss@min: 0.968781, loss@max: 1.486259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 966, LS: 1.230314, LT: 1.320937, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 967, loss@min: 0.982018, loss@max: 1.500122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 967, LS: 1.230297, LT: 1.320944, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 968, loss@min: 0.993808, loss@max: 1.482014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 968, LS: 1.230285, LT: 1.320948, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 969, loss@min: 1.012987, loss@max: 1.477870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 969, LS: 1.230275, LT: 1.320951, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 970, loss@min: 0.960144, loss@max: 1.517451, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 970, LS: 1.230267, LT: 1.320953, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 971, loss@min: 0.993226, loss@max: 1.501604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 971, LS: 1.230260, LT: 1.320954, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 972, loss@min: 0.973744, loss@max: 1.486388, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 972, LS: 1.230253, LT: 1.320956, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 973, loss@min: 1.008827, loss@max: 1.456095, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 973, LS: 1.230247, LT: 1.320957, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 974, loss@min: 0.960703, loss@max: 1.504572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 974, LS: 1.230242, LT: 1.320958, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 975, loss@min: 1.002621, loss@max: 1.497594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 975, LS: 1.230236, LT: 1.320959, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 976, loss@min: 0.931428, loss@max: 1.524791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 976, LS: 1.230229, LT: 1.320961, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 977, loss@min: 0.989617, loss@max: 1.454742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 977, LS: 1.230223, LT: 1.320962, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 978, loss@min: 0.973464, loss@max: 1.485314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 978, LS: 1.230218, LT: 1.320964, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 979, loss@min: 0.983643, loss@max: 1.487935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 979, LS: 1.230212, LT: 1.320965, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 980, loss@min: 0.990499, loss@max: 1.503337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 980, LS: 1.230208, LT: 1.320967, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 981, loss@min: 0.975919, loss@max: 1.487219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 981, LS: 1.230205, LT: 1.320967, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 982, loss@min: 0.976653, loss@max: 1.482735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 982, LS: 1.230202, LT: 1.320968, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 983, loss@min: 0.983716, loss@max: 1.489989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 983, LS: 1.230198, LT: 1.320970, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 984, loss@min: 0.965892, loss@max: 1.492706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 984, LS: 1.230195, LT: 1.320971, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 985, loss@min: 1.012086, loss@max: 1.476102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 985, LS: 1.230192, LT: 1.320972, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 986, loss@min: 0.947789, loss@max: 1.498682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 986, LS: 1.230189, LT: 1.320972, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 987, loss@min: 0.983376, loss@max: 1.472622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 987, LS: 1.230187, LT: 1.320973, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 988, loss@min: 1.016976, loss@max: 1.517410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 988, LS: 1.230184, LT: 1.320974, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 989, loss@min: 0.962358, loss@max: 1.493168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 989, LS: 1.230182, LT: 1.320975, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 990, loss@min: 0.962958, loss@max: 1.488467, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 990, LS: 1.230180, LT: 1.320976, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 991, loss@min: 0.962993, loss@max: 1.487437, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 991, LS: 1.230179, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 992, loss@min: 0.983140, loss@max: 1.475748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 992, LS: 1.230178, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 993, loss@min: 0.996051, loss@max: 1.486862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 993, LS: 1.230178, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 994, loss@min: 0.996553, loss@max: 1.453046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 994, LS: 1.230178, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 995, loss@min: 0.962399, loss@max: 1.506071, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 995, LS: 1.230178, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 996, loss@min: 0.991932, loss@max: 1.490556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 996, LS: 1.230177, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 997, loss@min: 1.023312, loss@max: 1.444774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 997, LS: 1.230177, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 998, loss@min: 1.019778, loss@max: 1.479307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 998, LS: 1.230177, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 999, loss@min: 1.010931, loss@max: 1.466627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 999, LS: 1.230177, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +Train:epoch: 1000, loss@min: 0.954685, loss@max: 1.495616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 1000, LS: 1.230177, LT: 1.320977, Top1S: 67.545639, Top1T: 67.180527 +------------------------------------------- +Thu Sep 7 08:57:25 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:24:12 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:24:44 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:25:51 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:27:22 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:28:06 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:29:05 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:33:37 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:35:09 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.143585, loss@max: 5.346136, Top1S acc: 26.000000, Top1T acc: 26.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:36:23 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.003056, loss@max: 5.087436, Top1S acc: 32.000000, Top1T acc: 40.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Sep 7 12:37:27 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.003056, loss@max: 5.087436, Top1S acc: 32.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 12.345892, loss@max: 4.805274, Top1S acc: 80.000000, Top1T acc: 87.000000 +Train:epoch: 3, loss@min: 9.264957, loss@max: 4.656728, Top1S acc: 94.000000, Top1T acc: 98.000000 +Train:epoch: 4, loss@min: 6.609859, loss@max: 4.523593, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 4.716530, loss@max: 4.353776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 3.175797, loss@max: 4.122718, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 2.065070, loss@max: 3.865288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.445101, loss@max: 3.541105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.095760, loss@max: 3.258615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.027685, loss@max: 3.019549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.870332, loss@max: 2.845419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.828476, loss@max: 2.637717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.761517, loss@max: 2.395818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.720731, loss@max: 2.174358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.781182, loss@max: 2.019756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.984878, loss@max: 1.655945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.227922, loss@max: 1.390450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.362082, loss@max: 1.217281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.448932, loss@max: 1.059685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.374866, loss@max: 1.061294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.283228, loss@max: 1.119779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.081551, loss@max: 1.251530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.987945, loss@max: 1.339000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.824889, loss@max: 1.505759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.709413, loss@max: 1.600123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.712574, loss@max: 1.600124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.746189, loss@max: 1.548568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.779299, loss@max: 1.485740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.857075, loss@max: 1.405689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933632, loss@max: 1.320431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.973004, loss@max: 1.231904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.053118, loss@max: 1.245576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.029457, loss@max: 1.220398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.021778, loss@max: 1.209461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.015830, loss@max: 1.187741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.939819, loss@max: 1.237334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.973048, loss@max: 1.222321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.894075, loss@max: 1.308475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.907148, loss@max: 1.307853, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 0.864852, loss@max: 1.338932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.905063, loss@max: 1.306347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.889601, loss@max: 1.323059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.849988, loss@max: 1.352487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.875426, loss@max: 1.328289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.926508, loss@max: 1.265321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.925405, loss@max: 1.279399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.924134, loss@max: 1.261095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961802, loss@max: 1.254874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.988048, loss@max: 1.234117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.913570, loss@max: 1.270610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 31.765831, LT: 37.358673, Top1S: 83.204872, Top1T: 80.365112Best acc: 83.204872 +Train:epoch: 51, loss@min: 0.920326, loss@max: 1.259230, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 1000, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 12:39:21 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.003056, loss@max: 5.087436, Top1S acc: 32.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 12.345892, loss@max: 4.805274, Top1S acc: 80.000000, Top1T acc: 87.000000 +Train:epoch: 3, loss@min: 9.264957, loss@max: 4.656728, Top1S acc: 94.000000, Top1T acc: 98.000000 +Train:epoch: 4, loss@min: 6.609859, loss@max: 4.523593, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 4.716530, loss@max: 4.353776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 3.175797, loss@max: 4.122718, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 2.065070, loss@max: 3.865288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.445101, loss@max: 3.541105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.095760, loss@max: 3.258615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.027685, loss@max: 3.019549, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.870332, loss@max: 2.845419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.828476, loss@max: 2.637717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.761517, loss@max: 2.395818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.720731, loss@max: 2.174358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.781182, loss@max: 2.019756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.984878, loss@max: 1.655945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.227922, loss@max: 1.390450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.362082, loss@max: 1.217281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.448932, loss@max: 1.059685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.374866, loss@max: 1.061294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.283228, loss@max: 1.119779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.081551, loss@max: 1.251530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.987945, loss@max: 1.339000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.824889, loss@max: 1.505759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.709413, loss@max: 1.600123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.712574, loss@max: 1.600124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.746189, loss@max: 1.548568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.779299, loss@max: 1.485740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.857075, loss@max: 1.405689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933632, loss@max: 1.320431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.973004, loss@max: 1.231904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.053118, loss@max: 1.245576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.029457, loss@max: 1.220398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.021778, loss@max: 1.209461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.015830, loss@max: 1.187741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.939819, loss@max: 1.237334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.973048, loss@max: 1.222321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.894075, loss@max: 1.308475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.907148, loss@max: 1.307853, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 0.864852, loss@max: 1.338932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.905063, loss@max: 1.306347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.889601, loss@max: 1.323059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.849988, loss@max: 1.352487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.875426, loss@max: 1.328289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.926508, loss@max: 1.265321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.925405, loss@max: 1.279399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.924134, loss@max: 1.261095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961802, loss@max: 1.254874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.988048, loss@max: 1.234117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.913570, loss@max: 1.270610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.917886, loss@max: 1.263197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.979017, loss@max: 1.256610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.923294, loss@max: 1.277196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.871255, loss@max: 1.335074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.933482, loss@max: 1.277104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.972588, loss@max: 1.255167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.890532, loss@max: 1.301335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.900251, loss@max: 1.339703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.868091, loss@max: 1.359295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.936329, loss@max: 1.269692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.907765, loss@max: 1.288365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.933018, loss@max: 1.272371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945477, loss@max: 1.258285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.925703, loss@max: 1.255733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.911371, loss@max: 1.290964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.908778, loss@max: 1.322731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.929703, loss@max: 1.274384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.953551, loss@max: 1.265623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942277, loss@max: 1.264448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.934052, loss@max: 1.269680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957571, loss@max: 1.241288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.934111, loss@max: 1.291506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.887825, loss@max: 1.341919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.888392, loss@max: 1.317889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.891611, loss@max: 1.328974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.915458, loss@max: 1.307472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.932615, loss@max: 1.287734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.922060, loss@max: 1.286861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.955578, loss@max: 1.259076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.928373, loss@max: 1.315870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.889332, loss@max: 1.336444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.928520, loss@max: 1.299482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.951524, loss@max: 1.290526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.937893, loss@max: 1.271861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.946200, loss@max: 1.309658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.938006, loss@max: 1.368637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.956339, loss@max: 1.268179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.955164, loss@max: 1.296724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.901145, loss@max: 1.342402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.936856, loss@max: 1.330733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.911193, loss@max: 1.326627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.912987, loss@max: 1.336971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.941981, loss@max: 1.302135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.916881, loss@max: 1.314869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.918260, loss@max: 1.326688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.944251, loss@max: 1.299716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.941090, loss@max: 1.283851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.949782, loss@max: 1.279635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.928915, loss@max: 1.300282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943483, loss@max: 1.320862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 32.533403, LT: 38.359368, Top1S: 81.906693, Top1T: 79.432053Best acc: 81.906693 +Train:epoch: 101, loss@min: 0.945884, loss@max: 1.301061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 32.157595, LT: 38.503485, Top1S: 81.906693, Top1T: 79.918861 +Train:epoch: 102, loss@min: 0.927336, loss@max: 1.322481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 31.700303, LT: 38.793157, Top1S: 82.393509, Top1T: 79.716026Best acc: 82.393509 +Train:epoch: 103, loss@min: 0.934074, loss@max: 1.330323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 31.658357, LT: 39.206968, Top1S: 82.312370, Top1T: 79.716026 +Train:epoch: 104, loss@min: 0.908198, loss@max: 1.354979, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 12:43:35 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.003056, loss@max: 5.165087, Top1S acc: 32.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 12.346865, loss@max: 4.958493, Top1S acc: 80.000000, Top1T acc: 87.000000 +Train:epoch: 3, loss@min: 9.268980, loss@max: 4.881672, Top1S acc: 94.000000, Top1T acc: 98.000000 +Train:epoch: 4, loss@min: 6.619706, loss@max: 4.801229, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 4.736142, loss@max: 4.660076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 3.207080, loss@max: 4.422210, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 2.111877, loss@max: 4.125663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.525813, loss@max: 3.748163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.202233, loss@max: 3.416924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.139659, loss@max: 3.182949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.950887, loss@max: 3.008419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.885204, loss@max: 2.852252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.793074, loss@max: 2.651094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.735785, loss@max: 2.465424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.770528, loss@max: 2.369183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.960859, loss@max: 1.924607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.236205, loss@max: 1.617580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.405697, loss@max: 1.441860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.578874, loss@max: 1.288525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.500357, loss@max: 1.286300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.428637, loss@max: 1.379541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.197557, loss@max: 1.460964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.098245, loss@max: 1.539238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.949518, loss@max: 1.703903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.845242, loss@max: 1.835713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.878939, loss@max: 1.830029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.881003, loss@max: 1.807905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.854735, loss@max: 1.762734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.897962, loss@max: 1.689289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.995728, loss@max: 1.687466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.998485, loss@max: 1.614973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036175, loss@max: 1.617297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.063206, loss@max: 1.561333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.117006, loss@max: 1.553887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.125459, loss@max: 1.516645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.087715, loss@max: 1.484633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.124128, loss@max: 1.424519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.088529, loss@max: 1.546059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.036556, loss@max: 1.548521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.033580, loss@max: 1.610405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.048716, loss@max: 1.574099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.984479, loss@max: 1.641119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.904819, loss@max: 1.645743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.956352, loss@max: 1.641356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.033153, loss@max: 1.565791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.040293, loss@max: 1.599165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.988003, loss@max: 1.565264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.011569, loss@max: 1.573914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.024469, loss@max: 1.555244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.983293, loss@max: 1.581953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.983676, loss@max: 1.577174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.056369, loss@max: 1.570704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.065229, loss@max: 1.538150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.999314, loss@max: 1.551804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.054269, loss@max: 1.536888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.077305, loss@max: 1.489425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.028435, loss@max: 1.557897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.040222, loss@max: 1.594354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.958647, loss@max: 1.587510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.996740, loss@max: 1.545036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.975521, loss@max: 1.587593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.970905, loss@max: 1.552762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.021029, loss@max: 1.555259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.009685, loss@max: 1.531236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.014153, loss@max: 1.567463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.014812, loss@max: 1.602988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.993246, loss@max: 1.604982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.982288, loss@max: 1.528204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.976751, loss@max: 1.509710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.993882, loss@max: 1.503708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.997540, loss@max: 1.479903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.022872, loss@max: 1.498214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.001786, loss@max: 1.535695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.005942, loss@max: 1.485563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.961546, loss@max: 1.498041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.991167, loss@max: 1.468002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.989027, loss@max: 1.476883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.976829, loss@max: 1.523094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.003123, loss@max: 1.499581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981565, loss@max: 1.470205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.946621, loss@max: 1.519243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.974574, loss@max: 1.515153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.000285, loss@max: 1.463062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.965921, loss@max: 1.487130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.943569, loss@max: 1.479112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.957354, loss@max: 1.505185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.002449, loss@max: 1.427552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.032156, loss@max: 1.437945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.957978, loss@max: 1.443982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.983420, loss@max: 1.451997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.993161, loss@max: 1.452959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.958717, loss@max: 1.451895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.965151, loss@max: 1.451641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.961811, loss@max: 1.464495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.967410, loss@max: 1.442917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.004347, loss@max: 1.410917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.973899, loss@max: 1.426478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.967371, loss@max: 1.429836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.960753, loss@max: 1.424003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.960239, loss@max: 1.440674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 32.446086, LT: 36.987283, Top1S: 82.312370, Top1T: 80.405678Best acc: 82.312370 +Train:epoch: 101, loss@min: 0.976604, loss@max: 1.422793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 32.498613, LT: 37.240453, Top1S: 82.352943, Top1T: 80.283974Best acc: 82.352943 +Train:epoch: 102, loss@min: 0.967333, loss@max: 1.415822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 32.511988, LT: 37.452939, Top1S: 82.312370, Top1T: 80.243408 +Train:epoch: 103, loss@min: 0.963730, loss@max: 1.410240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 32.432443, LT: 37.673765, Top1S: 82.555779, Top1T: 80.283974Best acc: 82.555779 +Train:epoch: 104, loss@min: 0.933952, loss@max: 1.448337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 32.271858, LT: 37.804316, Top1S: 82.393509, Top1T: 80.283974 +Train:epoch: 105, loss@min: 0.936327, loss@max: 1.456721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 32.120870, LT: 37.982882, Top1S: 82.312370, Top1T: 80.446251 +Train:epoch: 106, loss@min: 0.976803, loss@max: 1.397036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 32.056784, LT: 38.007899, Top1S: 82.434074, Top1T: 80.486816 +Train:epoch: 107, loss@min: 0.955929, loss@max: 1.412265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 32.021769, LT: 37.983226, Top1S: 82.434074, Top1T: 80.567955 +Train:epoch: 108, loss@min: 0.939143, loss@max: 1.435731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 32.104225, LT: 37.868016, Top1S: 82.515213, Top1T: 80.527382 +Train:epoch: 109, loss@min: 0.959698, loss@max: 1.433783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 32.206063, LT: 37.726708, Top1S: 82.474648, Top1T: 80.567955 +Train:epoch: 110, loss@min: 0.969754, loss@max: 1.413245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 32.313181, LT: 37.568268, Top1S: 82.352943, Top1T: 80.567955 +Train:epoch: 111, loss@min: 0.968126, loss@max: 1.426074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 32.446479, LT: 37.416413, Top1S: 82.312370, Top1T: 80.649086 +Train:epoch: 112, loss@min: 0.970860, loss@max: 1.401155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 32.595844, LT: 37.297365, Top1S: 82.352943, Top1T: 80.608521 +Train:epoch: 113, loss@min: 0.978413, loss@max: 1.395025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 32.776982, LT: 37.225325, Top1S: 82.393509, Top1T: 80.527382 +Train:epoch: 114, loss@min: 0.972115, loss@max: 1.409833, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 12:52:52 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 19.993931, loss@max: 5.519412, Top1S acc: 3.000000, Top1T acc: 1.000000 +Train:epoch: 2, loss@min: 19.258259, loss@max: 5.511967, Top1S acc: 5.000000, Top1T acc: 2.000000 +Train:epoch: 3, loss@min: 18.538662, loss@max: 5.547205, Top1S acc: 7.000000, Top1T acc: 13.000000 +Train:epoch: 4, loss@min: 17.828140, loss@max: 5.570675, Top1S acc: 9.000000, Top1T acc: 18.000000 +Train:epoch: 5, loss@min: 17.189154, loss@max: 5.586843, Top1S acc: 13.000000, Top1T acc: 30.000000 +Train:epoch: 6, loss@min: 16.531361, loss@max: 5.617302, Top1S acc: 21.000000, Top1T acc: 47.000000 +Train:epoch: 7, loss@min: 15.945616, loss@max: 5.651147, Top1S acc: 29.000000, Top1T acc: 55.000000 +Train:epoch: 8, loss@min: 15.391623, loss@max: 5.664984, Top1S acc: 45.000000, Top1T acc: 59.000000 +Train:epoch: 9, loss@min: 14.688114, loss@max: 5.701369, Top1S acc: 60.000000, Top1T acc: 74.000000 +Train:epoch: 10, loss@min: 14.185015, loss@max: 5.727892, Top1S acc: 64.000000, Top1T acc: 76.000000 +Train:epoch: 11, loss@min: 13.554036, loss@max: 5.753532, Top1S acc: 72.000000, Top1T acc: 88.000000 +Train:epoch: 12, loss@min: 12.985147, loss@max: 5.787925, Top1S acc: 80.000000, Top1T acc: 86.000000 +Train:epoch: 13, loss@min: 12.506212, loss@max: 5.777305, Top1S acc: 84.000000, Top1T acc: 94.000000 +Train:epoch: 14, loss@min: 11.905853, loss@max: 5.800629, Top1S acc: 87.000000, Top1T acc: 95.000000 +Train:epoch: 15, loss@min: 11.324587, loss@max: 5.846016, Top1S acc: 88.000000, Top1T acc: 97.000000 +Train:epoch: 16, loss@min: 10.927056, loss@max: 5.839450, Top1S acc: 92.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 10.389844, loss@max: 5.830832, Top1S acc: 94.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 9.889345, loss@max: 5.862532, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 9.436003, loss@max: 5.823068, Top1S acc: 97.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 8.967826, loss@max: 5.788418, Top1S acc: 98.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 8.541772, loss@max: 5.791512, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 8.019785, loss@max: 5.731260, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 7.695116, loss@max: 5.691085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 7.271274, loss@max: 5.654789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 6.885093, loss@max: 5.586859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 6.586371, loss@max: 5.546175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 6.208282, loss@max: 5.412622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 5.833823, loss@max: 5.371379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 5.497996, loss@max: 5.269394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 5.261503, loss@max: 5.148401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 4.981002, loss@max: 5.049213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 4.750965, loss@max: 4.956621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 4.507086, loss@max: 4.809129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 4.265146, loss@max: 4.713342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 4.144997, loss@max: 4.608417, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 3.862528, loss@max: 4.458489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 3.684557, loss@max: 4.323452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 3.519455, loss@max: 4.225522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 3.313310, loss@max: 4.135283, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 3.182383, loss@max: 4.030815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 3.012706, loss@max: 3.943825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 2.860622, loss@max: 3.880285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 2.718066, loss@max: 3.833312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 2.594262, loss@max: 3.687010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.405102, loss@max: 3.595746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.265504, loss@max: 3.522842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.188371, loss@max: 3.534660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.077038, loss@max: 3.428531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.963897, loss@max: 3.366537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.872038, loss@max: 3.344541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.799536, loss@max: 3.269643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.747556, loss@max: 3.236496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.682737, loss@max: 3.178684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.641191, loss@max: 3.122398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.590653, loss@max: 3.041550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.534045, loss@max: 3.010091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.478622, loss@max: 2.975772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.455402, loss@max: 2.951949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.438021, loss@max: 2.880037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.391703, loss@max: 2.845841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.345509, loss@max: 2.825911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.351678, loss@max: 2.786827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.260545, loss@max: 2.759838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.290291, loss@max: 2.678900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.291296, loss@max: 2.630751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.241891, loss@max: 2.638137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.263083, loss@max: 2.566157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.239977, loss@max: 2.542364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.257967, loss@max: 2.460325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.239813, loss@max: 2.432057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.241977, loss@max: 2.390277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.194194, loss@max: 2.448703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.218037, loss@max: 2.347044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.199045, loss@max: 2.324184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.230519, loss@max: 2.260304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.187129, loss@max: 2.272167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.192557, loss@max: 2.218736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.159631, loss@max: 2.276489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.199665, loss@max: 2.196381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.205800, loss@max: 2.143119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.190367, loss@max: 2.170472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.150607, loss@max: 2.158583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.199161, loss@max: 2.113163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.181756, loss@max: 2.080933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.172217, loss@max: 2.072433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.226843, loss@max: 2.106959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.216446, loss@max: 1.997196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.218115, loss@max: 1.968422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.151018, loss@max: 2.020706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.191969, loss@max: 1.966164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.210530, loss@max: 2.008564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.214087, loss@max: 1.948692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.161699, loss@max: 1.997780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.183848, loss@max: 1.929218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.181939, loss@max: 1.935125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.182466, loss@max: 1.909100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.175205, loss@max: 1.912592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.162809, loss@max: 1.919036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.194667, loss@max: 1.866347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.183545, loss@max: 1.900582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 29.110919, LT: 38.466871, Top1S: 79.634888, Top1T: 74.401627Best acc: 79.634888 +Train:epoch: 101, loss@min: 1.163396, loss@max: 1.863214, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 12:55:37 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 12:55:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.544100, loss@max: 5.862203, Top1S acc: 59.000000, Top1T acc: 59.000000 +Train:epoch: 2, loss@min: 161.815506, loss@max: 49.334892, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 3, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 4, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 5, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 6, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 7, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 8, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 9, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 10, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 11, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 12, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 13, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 14, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 15, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 16, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 17, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 18, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 19, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 20, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 21, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 22, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 23, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 24, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 25, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 26, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 27, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 28, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 29, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 30, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 31, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 32, loss@min: nan, loss@max: nan, Top1S acc: 1.000000, Top1T acc: 1.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 12:56:44 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 14.393682, loss@max: 5.087634, Top1S acc: 64.000000, Top1T acc: 57.000000 +Train:epoch: 2, loss@min: 9.379972, loss@max: 4.840049, Top1S acc: 96.000000, Top1T acc: 97.000000 +Train:epoch: 3, loss@min: 5.521941, loss@max: 4.742422, Top1S acc: 97.000000, Top1T acc: 99.000000 +Train:epoch: 4, loss@min: 3.055807, loss@max: 4.532492, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 1.692838, loss@max: 4.166678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.150106, loss@max: 3.665401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.110466, loss@max: 3.301371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.883285, loss@max: 3.000491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.893097, loss@max: 2.694490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.868244, loss@max: 2.355170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.048219, loss@max: 2.006563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.310611, loss@max: 1.660384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.545888, loss@max: 1.392732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.472822, loss@max: 1.429960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.366789, loss@max: 1.464148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.116686, loss@max: 1.558469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.090471, loss@max: 1.715476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.949417, loss@max: 1.827591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.862612, loss@max: 1.947767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.815972, loss@max: 1.918969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.862922, loss@max: 1.857838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.967569, loss@max: 1.734630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.125600, loss@max: 1.584361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.253690, loss@max: 1.480036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.213873, loss@max: 1.511681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.195854, loss@max: 1.549288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.104726, loss@max: 1.678057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.981249, loss@max: 1.754036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.988620, loss@max: 1.777158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.036385, loss@max: 1.744209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.092760, loss@max: 1.645112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.024310, loss@max: 1.694238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.931379, loss@max: 1.754848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.977517, loss@max: 1.727854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.039756, loss@max: 1.705994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.071176, loss@max: 1.662878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.037756, loss@max: 1.666520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.104733, loss@max: 1.581616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.037172, loss@max: 1.596379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.059500, loss@max: 1.564149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.071092, loss@max: 1.569210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.069543, loss@max: 1.567605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.044463, loss@max: 1.617229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.073907, loss@max: 1.599930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.121694, loss@max: 1.593370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.080308, loss@max: 1.531719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.080154, loss@max: 1.624548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.938357, loss@max: 1.797275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.960644, loss@max: 1.752923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942543, loss@max: 1.705920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.934329, loss@max: 1.666406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.973527, loss@max: 1.634133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.065232, loss@max: 1.565957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.077653, loss@max: 1.556247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.036443, loss@max: 1.512764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.067817, loss@max: 1.564041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.026180, loss@max: 1.604985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.954689, loss@max: 1.620967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.032330, loss@max: 1.579643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.025486, loss@max: 1.540137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.030115, loss@max: 1.550535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.021857, loss@max: 1.574025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.975613, loss@max: 1.553412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.034331, loss@max: 1.586591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.997772, loss@max: 1.531879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.027197, loss@max: 1.499709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.983713, loss@max: 1.550554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.961241, loss@max: 1.611076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.988268, loss@max: 1.575201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.990880, loss@max: 1.599019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.051857, loss@max: 1.543812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.001980, loss@max: 1.526507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.999004, loss@max: 1.506103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.004009, loss@max: 1.580260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.048048, loss@max: 1.560124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.999846, loss@max: 1.508605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.994958, loss@max: 1.503436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.989208, loss@max: 1.523133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.004544, loss@max: 1.538686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.982323, loss@max: 1.493638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.996996, loss@max: 1.472361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.968493, loss@max: 1.532362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.941133, loss@max: 1.515861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.987164, loss@max: 1.531685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.003785, loss@max: 1.492855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.974777, loss@max: 1.467416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.993598, loss@max: 1.480092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.967730, loss@max: 1.514723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.978627, loss@max: 1.497022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.974946, loss@max: 1.510820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.002437, loss@max: 1.458849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.982073, loss@max: 1.446251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.987381, loss@max: 1.462182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.986248, loss@max: 1.502535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.954174, loss@max: 1.505719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.995032, loss@max: 1.463215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.927013, loss@max: 1.512754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.922844, loss@max: 1.528576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.936355, loss@max: 1.480239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.995120, loss@max: 1.432327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 31.966498, LT: 46.668949, Top1S: 82.109535, Top1T: 75.334686Best acc: 82.109535 +Train:epoch: 101, loss@min: 0.994884, loss@max: 1.405750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 31.804445, LT: 46.708416, Top1S: 82.190666, Top1T: 75.415825Best acc: 82.190666 +Train:epoch: 102, loss@min: 1.017854, loss@max: 1.387959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 31.683305, LT: 46.520805, Top1S: 82.231239, Top1T: 75.415825Best acc: 82.231239 +Train:epoch: 103, loss@min: 1.000260, loss@max: 1.435033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 31.587643, LT: 46.255037, Top1S: 82.393509, Top1T: 75.578094Best acc: 82.393509 +Train:epoch: 104, loss@min: 1.024156, loss@max: 1.433128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 31.597333, LT: 45.901422, Top1S: 82.352943, Top1T: 75.943207 +Train:epoch: 105, loss@min: 1.010752, loss@max: 1.392547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 31.681917, LT: 45.750880, Top1S: 82.312370, Top1T: 76.064911 +Train:epoch: 106, loss@min: 0.954260, loss@max: 1.432081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 31.827321, LT: 45.702362, Top1S: 82.271805, Top1T: 76.146042 +Train:epoch: 107, loss@min: 0.953394, loss@max: 1.441824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 32.027229, LT: 45.741902, Top1S: 82.028397, Top1T: 76.064911 +Train:epoch: 108, loss@min: 0.953019, loss@max: 1.448292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 32.212808, LT: 45.752078, Top1S: 81.987831, Top1T: 75.943207 +Train:epoch: 109, loss@min: 0.917625, loss@max: 1.500870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 32.348717, LT: 45.767942, Top1S: 81.947266, Top1T: 75.983772 +Train:epoch: 110, loss@min: 0.940685, loss@max: 1.465188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 32.427482, LT: 45.879561, Top1S: 81.906693, Top1T: 75.902634 +Train:epoch: 111, loss@min: 0.956728, loss@max: 1.433419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 32.430781, LT: 45.995441, Top1S: 81.906693, Top1T: 75.983772 +Train:epoch: 112, loss@min: 0.951202, loss@max: 1.461579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 32.348234, LT: 46.112658, Top1S: 81.906693, Top1T: 75.943207 +Train:epoch: 113, loss@min: 0.942648, loss@max: 1.426327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 32.232886, LT: 46.230743, Top1S: 82.028397, Top1T: 75.780937 +Train:epoch: 114, loss@min: 0.945617, loss@max: 1.449987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 32.093926, LT: 46.303807, Top1S: 82.231239, Top1T: 75.983772 +Train:epoch: 115, loss@min: 0.971944, loss@max: 1.426978, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:08:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 27.686232, loss@max: 7.417580, Top1S acc: 1.000000, Top1T acc: 1.000000 +Train:epoch: 2, loss@min: 26.242657, loss@max: 7.338849, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 3, loss@min: 24.599754, loss@max: 7.243167, Top1S acc: 1.000000, Top1T acc: 2.000000 +Train:epoch: 4, loss@min: 23.826370, loss@max: 7.169241, Top1S acc: 2.000000, Top1T acc: 5.000000 +Train:epoch: 5, loss@min: 22.566128, loss@max: 7.110617, Top1S acc: 3.000000, Top1T acc: 1.000000 +Train:epoch: 6, loss@min: 21.267750, loss@max: 6.997611, Top1S acc: 7.000000, Top1T acc: 4.000000 +Train:epoch: 7, loss@min: 19.724194, loss@max: 6.911371, Top1S acc: 8.000000, Top1T acc: 10.000000 +Train:epoch: 8, loss@min: 18.679848, loss@max: 6.897937, Top1S acc: 10.000000, Top1T acc: 7.000000 +Train:epoch: 9, loss@min: 17.489031, loss@max: 6.785376, Top1S acc: 15.000000, Top1T acc: 15.000000 +Train:epoch: 10, loss@min: 16.100979, loss@max: 6.696894, Top1S acc: 21.000000, Top1T acc: 23.000000 +Train:epoch: 11, loss@min: 14.862121, loss@max: 6.617244, Top1S acc: 25.000000, Top1T acc: 27.000000 +Train:epoch: 12, loss@min: 13.891819, loss@max: 6.553932, Top1S acc: 36.000000, Top1T acc: 28.000000 +Train:epoch: 13, loss@min: 12.658117, loss@max: 6.502161, Top1S acc: 45.000000, Top1T acc: 39.000000 +Train:epoch: 14, loss@min: 11.445523, loss@max: 6.411825, Top1S acc: 55.000000, Top1T acc: 51.000000 +Train:epoch: 15, loss@min: 10.294853, loss@max: 6.312451, Top1S acc: 57.000000, Top1T acc: 59.000000 +Train:epoch: 16, loss@min: 9.687330, loss@max: 6.241486, Top1S acc: 59.000000, Top1T acc: 64.000000 +Train:epoch: 17, loss@min: 8.524112, loss@max: 6.114618, Top1S acc: 70.000000, Top1T acc: 69.000000 +Train:epoch: 18, loss@min: 7.577565, loss@max: 5.972360, Top1S acc: 76.000000, Top1T acc: 77.000000 +Train:epoch: 19, loss@min: 6.873501, loss@max: 5.805518, Top1S acc: 80.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 6.300972, loss@max: 5.670701, Top1S acc: 85.000000, Top1T acc: 85.000000 +Train:epoch: 21, loss@min: 5.395298, loss@max: 5.541081, Top1S acc: 90.000000, Top1T acc: 93.000000 +Train:epoch: 22, loss@min: 4.816340, loss@max: 5.294851, Top1S acc: 95.000000, Top1T acc: 93.000000 +Train:epoch: 23, loss@min: 4.209268, loss@max: 5.106823, Top1S acc: 96.000000, Top1T acc: 97.000000 +Train:epoch: 24, loss@min: 3.814270, loss@max: 4.967934, Top1S acc: 97.000000, Top1T acc: 97.000000 +Train:epoch: 25, loss@min: 3.266890, loss@max: 4.696522, Top1S acc: 97.000000, Top1T acc: 97.000000 +Train:epoch: 26, loss@min: 3.038668, loss@max: 4.525455, Top1S acc: 99.000000, Top1T acc: 97.000000 +Train:epoch: 27, loss@min: 2.692085, loss@max: 4.453495, Top1S acc: 99.000000, Top1T acc: 98.000000 +Train:epoch: 28, loss@min: 2.389231, loss@max: 4.092225, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 2.170210, loss@max: 3.954912, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 30, loss@min: 1.885361, loss@max: 3.914581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.856504, loss@max: 3.779813, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.636922, loss@max: 3.537148, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 1.460368, loss@max: 3.582559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.347323, loss@max: 3.559582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.284305, loss@max: 3.451015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.130938, loss@max: 3.338365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.064227, loss@max: 3.406286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.114618, loss@max: 3.161397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.012297, loss@max: 3.113402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.048098, loss@max: 2.978877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.046862, loss@max: 2.895257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.016141, loss@max: 2.749895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.996378, loss@max: 2.791422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.073539, loss@max: 2.631810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.020151, loss@max: 2.638713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.953092, loss@max: 2.661713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.044543, loss@max: 2.410709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.030931, loss@max: 2.454577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.074811, loss@max: 2.381279, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 50, loss@min: 1.063844, loss@max: 2.327899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.001028, loss@max: 2.345279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.128284, loss@max: 2.164527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.153210, loss@max: 2.149631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.125130, loss@max: 2.096666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.149805, loss@max: 1.969328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.125525, loss@max: 1.957582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.167585, loss@max: 2.068021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.197695, loss@max: 1.942569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.190114, loss@max: 1.843083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.198309, loss@max: 1.885075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.141130, loss@max: 1.866750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.209909, loss@max: 1.747168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.173219, loss@max: 1.826337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.153631, loss@max: 1.800041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.098791, loss@max: 1.796785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.222163, loss@max: 1.796216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.140311, loss@max: 1.819485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.154588, loss@max: 1.735979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.188240, loss@max: 1.819233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.159123, loss@max: 1.803179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.085546, loss@max: 1.776657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.090357, loss@max: 1.769649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.110675, loss@max: 1.737878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.162552, loss@max: 1.714164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.132432, loss@max: 1.713846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.162536, loss@max: 1.693045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.135343, loss@max: 1.718961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.113471, loss@max: 1.738868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.104208, loss@max: 1.822074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.105196, loss@max: 1.729465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.031422, loss@max: 1.768210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.039486, loss@max: 1.740109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.050864, loss@max: 1.721765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.068002, loss@max: 1.668062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.030205, loss@max: 1.751612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.034729, loss@max: 1.741304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.062239, loss@max: 1.735686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.060937, loss@max: 1.750936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.120828, loss@max: 1.714281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.018856, loss@max: 1.718529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.058474, loss@max: 1.680074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.103856, loss@max: 1.642494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.086170, loss@max: 1.656646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.039316, loss@max: 1.722678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.086748, loss@max: 1.635617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.087034, loss@max: 1.609666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.081400, loss@max: 1.674120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.033461, loss@max: 1.702075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.065757, loss@max: 1.688923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.045805, loss@max: 1.665808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 77.410253, LT: 79.481011, Top1S: 67.748482, Top1T: 68.235298Best acc: 68.235298 +Train:epoch: 101, loss@min: 1.010223, loss@max: 1.701786, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:12:10 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 18.148424, loss@max: 5.326086, Top1S acc: 14.000000, Top1T acc: 24.000000 +Train:epoch: 2, loss@min: 16.526611, loss@max: 5.289252, Top1S acc: 46.000000, Top1T acc: 51.000000 +Train:epoch: 3, loss@min: 14.845730, loss@max: 5.238817, Top1S acc: 74.000000, Top1T acc: 78.000000 +Train:epoch: 4, loss@min: 13.118138, loss@max: 5.219137, Top1S acc: 86.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 11.243665, loss@max: 5.165522, Top1S acc: 93.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 9.466889, loss@max: 5.153003, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 7.755204, loss@max: 5.117756, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 6.157798, loss@max: 5.055753, Top1S acc: 98.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 4.942556, loss@max: 4.816868, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 3.885808, loss@max: 4.600939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 3.002227, loss@max: 4.325682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 2.324200, loss@max: 4.024166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.965371, loss@max: 3.737073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.564028, loss@max: 3.578338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.259547, loss@max: 3.424392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.018003, loss@max: 3.330141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.885432, loss@max: 3.140407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.815686, loss@max: 3.012472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.734715, loss@max: 2.853103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.810046, loss@max: 2.598891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.855690, loss@max: 2.339889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.928170, loss@max: 2.145518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.085751, loss@max: 1.882734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.194626, loss@max: 1.697863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.348053, loss@max: 1.521961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.348171, loss@max: 1.502516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.362206, loss@max: 1.478871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.429280, loss@max: 1.396386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.284958, loss@max: 1.454819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.192576, loss@max: 1.502645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.195068, loss@max: 1.561679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.079979, loss@max: 1.630120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.028699, loss@max: 1.675758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.036248, loss@max: 1.648095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.920633, loss@max: 1.692046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.919061, loss@max: 1.766385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.919290, loss@max: 1.782365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.906143, loss@max: 1.753178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.937632, loss@max: 1.617354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.955109, loss@max: 1.660378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.943944, loss@max: 1.653789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966631, loss@max: 1.618717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.012548, loss@max: 1.596726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.043459, loss@max: 1.543052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.091622, loss@max: 1.456295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.089783, loss@max: 1.523721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.037764, loss@max: 1.560004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.038053, loss@max: 1.524684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.014255, loss@max: 1.502732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.054338, loss@max: 1.489844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.022587, loss@max: 1.521754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.025146, loss@max: 1.532185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.011256, loss@max: 1.526466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.997558, loss@max: 1.489623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.993551, loss@max: 1.513403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.986452, loss@max: 1.547918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.986881, loss@max: 1.561626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975016, loss@max: 1.558836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.970759, loss@max: 1.492285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.000450, loss@max: 1.512520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.981911, loss@max: 1.515876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.992914, loss@max: 1.525093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.990465, loss@max: 1.482200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.013576, loss@max: 1.440186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952546, loss@max: 1.519402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.998849, loss@max: 1.498180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.993621, loss@max: 1.478365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.993667, loss@max: 1.465098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.005542, loss@max: 1.467371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.010774, loss@max: 1.467020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.975233, loss@max: 1.460268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.933063, loss@max: 1.523315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.979050, loss@max: 1.476843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.975782, loss@max: 1.468506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.954069, loss@max: 1.476765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.972610, loss@max: 1.453591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962715, loss@max: 1.443513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.989726, loss@max: 1.437140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.996006, loss@max: 1.469878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.980512, loss@max: 1.452529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.984632, loss@max: 1.431234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.986815, loss@max: 1.437360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.957676, loss@max: 1.479442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.983153, loss@max: 1.463106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.953205, loss@max: 1.482817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.960414, loss@max: 1.463008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.001453, loss@max: 1.395797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.007158, loss@max: 1.417992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.001493, loss@max: 1.422362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.959626, loss@max: 1.437851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.952764, loss@max: 1.441938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.941336, loss@max: 1.457956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.949229, loss@max: 1.455844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.955835, loss@max: 1.451680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.944634, loss@max: 1.441144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.968042, loss@max: 1.421944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.971913, loss@max: 1.424690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.964967, loss@max: 1.445329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.991902, loss@max: 1.406568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.974763, loss@max: 1.420492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 36.084515, LT: 39.365587, Top1S: 80.811363, Top1T: 80.892494Best acc: 80.892494 +Train:epoch: 101, loss@min: 0.948640, loss@max: 1.442601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 36.281618, LT: 39.165180, Top1S: 80.567955, Top1T: 81.135902Best acc: 81.135902 +Train:epoch: 102, loss@min: 0.972976, loss@max: 1.413673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 36.362782, LT: 39.126690, Top1S: 80.567955, Top1T: 81.014198 +Train:epoch: 103, loss@min: 0.967799, loss@max: 1.417608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 36.412696, LT: 39.162392, Top1S: 80.811363, Top1T: 80.851929 +Train:epoch: 104, loss@min: 0.995026, loss@max: 1.439487, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:16:33 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 20.878319, loss@max: 6.030961, Top1S acc: 1.000000, Top1T acc: 26.000000 +Train:epoch: 2, loss@min: 19.287066, loss@max: 5.998848, Top1S acc: 1.000000, Top1T acc: 52.000000 +Train:epoch: 3, loss@min: 17.655474, loss@max: 5.969712, Top1S acc: 1.000000, Top1T acc: 81.000000 +Train:epoch: 4, loss@min: 16.041468, loss@max: 5.998849, Top1S acc: 1.000000, Top1T acc: 96.000000 +Train:epoch: 5, loss@min: 14.354837, loss@max: 6.019503, Top1S acc: 1.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 12.928208, loss@max: 6.117812, Top1S acc: 2.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 11.679794, loss@max: 6.212336, Top1S acc: 5.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 10.637840, loss@max: 6.273684, Top1S acc: 6.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 10.029703, loss@max: 6.103423, Top1S acc: 7.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 9.590121, loss@max: 5.915834, Top1S acc: 8.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 9.219830, loss@max: 5.556854, Top1S acc: 10.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 8.942585, loss@max: 5.162007, Top1S acc: 12.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 8.782132, loss@max: 4.675755, Top1S acc: 16.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 8.552981, loss@max: 4.375414, Top1S acc: 20.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 8.231660, loss@max: 4.050423, Top1S acc: 22.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 7.955312, loss@max: 3.841697, Top1S acc: 26.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 7.672595, loss@max: 3.657144, Top1S acc: 27.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 7.376195, loss@max: 3.518291, Top1S acc: 30.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 7.103585, loss@max: 3.457262, Top1S acc: 38.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 6.952935, loss@max: 3.330244, Top1S acc: 41.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 6.587649, loss@max: 3.247010, Top1S acc: 46.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 6.300930, loss@max: 3.271342, Top1S acc: 49.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 6.049330, loss@max: 3.190056, Top1S acc: 52.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 5.811412, loss@max: 3.136759, Top1S acc: 59.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 5.642012, loss@max: 3.081198, Top1S acc: 63.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 5.437525, loss@max: 3.001983, Top1S acc: 67.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 5.222276, loss@max: 2.961560, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 5.072713, loss@max: 2.857025, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 4.856250, loss@max: 2.885701, Top1S acc: 75.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 4.699883, loss@max: 2.890620, Top1S acc: 78.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 4.473480, loss@max: 2.846747, Top1S acc: 81.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 4.276108, loss@max: 2.810836, Top1S acc: 85.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 4.218624, loss@max: 2.751760, Top1S acc: 87.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 4.055293, loss@max: 2.675288, Top1S acc: 89.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 3.910662, loss@max: 2.619655, Top1S acc: 91.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 3.739257, loss@max: 2.599155, Top1S acc: 93.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 3.573675, loss@max: 2.662966, Top1S acc: 93.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 3.436396, loss@max: 2.662834, Top1S acc: 94.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 3.282527, loss@max: 2.651126, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 3.206175, loss@max: 2.577168, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 3.117713, loss@max: 2.532874, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 3.065755, loss@max: 2.525379, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 2.954701, loss@max: 2.493446, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 2.853951, loss@max: 2.455288, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.772098, loss@max: 2.447210, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.605178, loss@max: 2.487212, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.549211, loss@max: 2.477648, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.502677, loss@max: 2.414255, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.431839, loss@max: 2.392236, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 2.381309, loss@max: 2.315983, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 2.316390, loss@max: 2.295834, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 2.238173, loss@max: 2.305543, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 2.193867, loss@max: 2.278094, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 2.156569, loss@max: 2.270672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 2.081981, loss@max: 2.276193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 2.080234, loss@max: 2.207177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 2.009612, loss@max: 2.225275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.994192, loss@max: 2.150597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.942505, loss@max: 2.132507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.899343, loss@max: 2.150589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.903589, loss@max: 2.116798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.828138, loss@max: 2.132679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.800391, loss@max: 2.106531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.766877, loss@max: 2.092986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.727992, loss@max: 2.116556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.778326, loss@max: 2.046460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.733244, loss@max: 2.014210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.711450, loss@max: 2.015950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.707688, loss@max: 1.975790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.692079, loss@max: 1.993428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.654543, loss@max: 1.979706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.603398, loss@max: 2.025501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.579857, loss@max: 2.000412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.593856, loss@max: 1.940126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.565582, loss@max: 1.947853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.587352, loss@max: 1.921986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.591390, loss@max: 1.904044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.593778, loss@max: 1.861564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.556697, loss@max: 1.871802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.546249, loss@max: 1.870184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.550529, loss@max: 1.874791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.543382, loss@max: 1.875535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.489584, loss@max: 1.889692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.497197, loss@max: 1.866021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.464465, loss@max: 1.879436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.465151, loss@max: 1.874306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.493695, loss@max: 1.834770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.485406, loss@max: 1.832811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.488374, loss@max: 1.812514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.452040, loss@max: 1.808380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.453485, loss@max: 1.791844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.424656, loss@max: 1.819886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.445359, loss@max: 1.795268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.450244, loss@max: 1.783196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.433167, loss@max: 1.799384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.441955, loss@max: 1.762996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.448876, loss@max: 1.756230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.434620, loss@max: 1.766236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.428648, loss@max: 1.759485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.431391, loss@max: 1.742972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 81.874102, LT: 86.660612, Top1S: 61.338741, Top1T: 63.245438Best acc: 63.245438 +Train:epoch: 101, loss@min: 1.399213, loss@max: 1.761005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 82.050527, LT: 86.406626, Top1S: 61.460445, Top1T: 63.286003Best acc: 63.286003 +Train:epoch: 102, loss@min: 1.400514, loss@max: 1.760643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 82.148373, LT: 86.112192, Top1S: 61.379311, Top1T: 63.286003 +Train:epoch: 103, loss@min: 1.387084, loss@max: 1.753386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 82.086001, LT: 85.960490, Top1S: 61.460445, Top1T: 63.286003 +Train:epoch: 104, loss@min: 1.403030, loss@max: 1.778914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 82.084580, LT: 85.794333, Top1S: 61.501015, Top1T: 63.245438 +Train:epoch: 105, loss@min: 1.381997, loss@max: 1.747316, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:23:00 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:25:02 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:26:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.889149, loss@max: 2.762159, Top1S acc: 100.000000, Top1T acc: 19.000000 +Train:epoch: 2, loss@min: 7.381962, loss@max: 2.564345, Top1S acc: 100.000000, Top1T acc: 61.000000 +Train:epoch: 3, loss@min: 5.943881, loss@max: 2.357731, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 4.616279, loss@max: 2.143723, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 3.471825, loss@max: 1.937684, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 6, loss@min: 2.628467, loss@max: 1.784484, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 7, loss@min: 1.901279, loss@max: 1.643024, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.408899, loss@max: 1.548377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.102148, loss@max: 1.497131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.966006, loss@max: 1.484700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.883009, loss@max: 1.451776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.843004, loss@max: 1.388432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.923918, loss@max: 1.338109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.941942, loss@max: 1.232874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.004455, loss@max: 1.171722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.044802, loss@max: 1.141584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.029461, loss@max: 1.140668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.985994, loss@max: 1.180809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942811, loss@max: 1.232407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.971493, loss@max: 1.298334, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.898785, loss@max: 1.279109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.912710, loss@max: 1.274174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.946345, loss@max: 1.248322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.962424, loss@max: 1.234291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961235, loss@max: 1.237520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.946776, loss@max: 1.266578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.912797, loss@max: 1.294128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.889650, loss@max: 1.323345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.883668, loss@max: 1.333155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.897293, loss@max: 1.322985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.924469, loss@max: 1.302316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.937563, loss@max: 1.294173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.934301, loss@max: 1.300928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.917827, loss@max: 1.319834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.915850, loss@max: 1.327956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.920588, loss@max: 1.326844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935561, loss@max: 1.314061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.943355, loss@max: 1.307801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.946392, loss@max: 1.307590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.946544, loss@max: 1.311372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.943988, loss@max: 1.318161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.941432, loss@max: 1.321139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.937653, loss@max: 1.327548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.938604, loss@max: 1.328743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.941964, loss@max: 1.327632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947863, loss@max: 1.324063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.944827, loss@max: 1.328802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.940859, loss@max: 1.333345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938212, loss@max: 1.338302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.935140, loss@max: 1.342785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.936540, loss@max: 1.342856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.937858, loss@max: 1.342320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.941424, loss@max: 1.340940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939139, loss@max: 1.343982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.938919, loss@max: 1.344731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.937618, loss@max: 1.347002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.940973, loss@max: 1.348090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943703, loss@max: 1.343246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944530, loss@max: 1.343832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943134, loss@max: 1.344939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.941184, loss@max: 1.347728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.941757, loss@max: 1.348503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.941203, loss@max: 1.349679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.941764, loss@max: 1.349630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.944952, loss@max: 1.346790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947049, loss@max: 1.346749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945526, loss@max: 1.347418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.944063, loss@max: 1.349552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942773, loss@max: 1.351969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.942787, loss@max: 1.353172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.940930, loss@max: 1.353741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.946367, loss@max: 1.354281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946559, loss@max: 1.349398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945391, loss@max: 1.350526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943646, loss@max: 1.352679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.941089, loss@max: 1.355366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.941568, loss@max: 1.355220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.942271, loss@max: 1.354895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943859, loss@max: 1.353174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944318, loss@max: 1.353014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.945384, loss@max: 1.352824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.949694, loss@max: 1.356716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946139, loss@max: 1.352285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945191, loss@max: 1.352947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.945919, loss@max: 1.352973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.941967, loss@max: 1.357177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.941639, loss@max: 1.357528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942191, loss@max: 1.358508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.943804, loss@max: 1.355533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.943483, loss@max: 1.355410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946511, loss@max: 1.352610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.947022, loss@max: 1.354081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.946214, loss@max: 1.353397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.946850, loss@max: 1.353373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945748, loss@max: 1.354232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.943191, loss@max: 1.356739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.942072, loss@max: 1.357301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943346, loss@max: 1.358329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.941880, loss@max: 1.358568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.944884, loss@max: 1.354604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 108.383106, LT: 109.931673, Top1S: 66.977692, Top1T: 66.653145Best acc: 66.977692 +Train:epoch: 101, loss@min: 0.944153, loss@max: 1.355933, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:28:58 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.889149, loss@max: 2.762159, Top1S acc: 100.000000, Top1T acc: 19.000000 +Train:epoch: 2, loss@min: 7.381962, loss@max: 2.564345, Top1S acc: 100.000000, Top1T acc: 61.000000 +Train:epoch: 3, loss@min: 5.943881, loss@max: 2.357731, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 4.616279, loss@max: 2.143723, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 3.471825, loss@max: 1.937684, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 6, loss@min: 2.628467, loss@max: 1.784484, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 7, loss@min: 1.901279, loss@max: 1.643024, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.408899, loss@max: 1.548377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.102148, loss@max: 1.497131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.966006, loss@max: 1.484700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.883009, loss@max: 1.451776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.843004, loss@max: 1.388432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.923918, loss@max: 1.338109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.941942, loss@max: 1.232874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.004455, loss@max: 1.171722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.044802, loss@max: 1.141584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.029461, loss@max: 1.140668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.985994, loss@max: 1.180809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.942811, loss@max: 1.232407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.971493, loss@max: 1.298334, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.898785, loss@max: 1.279109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.912710, loss@max: 1.274174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.946345, loss@max: 1.248322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.962424, loss@max: 1.234291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.961235, loss@max: 1.237520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.946776, loss@max: 1.266578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.912797, loss@max: 1.294128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.889650, loss@max: 1.323345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.883668, loss@max: 1.333155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.897293, loss@max: 1.322985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.924469, loss@max: 1.302316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.937563, loss@max: 1.294173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.934301, loss@max: 1.300928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.917827, loss@max: 1.319834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.915850, loss@max: 1.327956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.920588, loss@max: 1.326844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935561, loss@max: 1.314061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.943355, loss@max: 1.307801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.946392, loss@max: 1.307590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.946544, loss@max: 1.311372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.943988, loss@max: 1.318161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.941432, loss@max: 1.321139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.937653, loss@max: 1.327548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.938604, loss@max: 1.328743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.941964, loss@max: 1.327632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947863, loss@max: 1.324063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.944827, loss@max: 1.328802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.940859, loss@max: 1.333345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938212, loss@max: 1.338302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.935140, loss@max: 1.342785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.936540, loss@max: 1.342856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.937858, loss@max: 1.342320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.941424, loss@max: 1.340940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939139, loss@max: 1.343982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.938919, loss@max: 1.344731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.937618, loss@max: 1.347002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.940973, loss@max: 1.348090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943703, loss@max: 1.343246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944530, loss@max: 1.343832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943134, loss@max: 1.344939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.941184, loss@max: 1.347728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.941757, loss@max: 1.348503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.941203, loss@max: 1.349679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.941764, loss@max: 1.349630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.944952, loss@max: 1.346790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947049, loss@max: 1.346749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945526, loss@max: 1.347418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.944063, loss@max: 1.349552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942773, loss@max: 1.351969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.942787, loss@max: 1.353172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.940930, loss@max: 1.353741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.946367, loss@max: 1.354281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946559, loss@max: 1.349398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945391, loss@max: 1.350526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943646, loss@max: 1.352679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.941089, loss@max: 1.355366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.941568, loss@max: 1.355220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.942271, loss@max: 1.354895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943859, loss@max: 1.353174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944318, loss@max: 1.353014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.945384, loss@max: 1.352824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.949694, loss@max: 1.356716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946139, loss@max: 1.352285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945191, loss@max: 1.352947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.945919, loss@max: 1.352973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.941967, loss@max: 1.357177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.941639, loss@max: 1.357528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942191, loss@max: 1.358508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.943804, loss@max: 1.355533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.943483, loss@max: 1.355410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946511, loss@max: 1.352610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.947022, loss@max: 1.354081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.946214, loss@max: 1.353397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.946850, loss@max: 1.353373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945748, loss@max: 1.354232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.943191, loss@max: 1.356739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.942072, loss@max: 1.357301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943346, loss@max: 1.358329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.941880, loss@max: 1.358568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.944884, loss@max: 1.354604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 108.383106, LT: 109.931673, Top1S: 66.977692, Top1T: 66.653145Best acc: 66.977692 +Train:epoch: 101, loss@min: 0.944153, loss@max: 1.355933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 108.182238, LT: 109.955669, Top1S: 66.937119, Top1T: 66.653145 +Train:epoch: 102, loss@min: 0.947098, loss@max: 1.356166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 108.189529, LT: 110.115698, Top1S: 66.896553, Top1T: 66.612579{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:32:32 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 7.956652, loss@max: 2.511697, Top1S acc: 100.000000, Top1T acc: 34.000000 +Train:epoch: 2, loss@min: 5.760225, loss@max: 2.117255, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 3, loss@min: 4.201523, loss@max: 1.848404, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 4, loss@min: 3.024642, loss@max: 1.643216, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 2.166656, loss@max: 1.488201, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 1.661314, loss@max: 1.418275, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.277978, loss@max: 1.368374, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 8, loss@min: 1.058393, loss@max: 1.362631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.917360, loss@max: 1.373167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.841352, loss@max: 1.396572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.799498, loss@max: 1.404882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.784735, loss@max: 1.384494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.832686, loss@max: 1.365286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.848986, loss@max: 1.294629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.902065, loss@max: 1.241398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.963654, loss@max: 1.193463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.000389, loss@max: 1.153401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.018576, loss@max: 1.147242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.010650, loss@max: 1.158072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.015844, loss@max: 1.206203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.949116, loss@max: 1.222692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.916886, loss@max: 1.266674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.897899, loss@max: 1.287977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.893389, loss@max: 1.300938, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.900757, loss@max: 1.296599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.919236, loss@max: 1.286006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.933981, loss@max: 1.275270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.941281, loss@max: 1.270697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.941011, loss@max: 1.275283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.930710, loss@max: 1.289216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.920226, loss@max: 1.305597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.910998, loss@max: 1.319065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.905985, loss@max: 1.328141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.904340, loss@max: 1.332227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.915832, loss@max: 1.327461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.929417, loss@max: 1.317211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.942701, loss@max: 1.306396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947677, loss@max: 1.301889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.946813, loss@max: 1.305699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944137, loss@max: 1.312329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.941820, loss@max: 1.318986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.939786, loss@max: 1.322621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.935229, loss@max: 1.328720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.936813, loss@max: 1.328830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.939533, loss@max: 1.329129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.943730, loss@max: 1.330464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.945332, loss@max: 1.328529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.942910, loss@max: 1.329959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.942731, loss@max: 1.333254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.937805, loss@max: 1.339448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.934327, loss@max: 1.344226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.933539, loss@max: 1.346061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.936637, loss@max: 1.345056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939623, loss@max: 1.343687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.940372, loss@max: 1.343520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.943549, loss@max: 1.341037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.942740, loss@max: 1.346272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.943782, loss@max: 1.342640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.942876, loss@max: 1.345039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942014, loss@max: 1.346099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.943643, loss@max: 1.345764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.941608, loss@max: 1.347733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940978, loss@max: 1.349435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.940214, loss@max: 1.350528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.944540, loss@max: 1.346978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.944618, loss@max: 1.348198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947064, loss@max: 1.345975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.944663, loss@max: 1.348779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942837, loss@max: 1.351191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.942804, loss@max: 1.352060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.939874, loss@max: 1.355001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943897, loss@max: 1.352527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943434, loss@max: 1.351750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.944610, loss@max: 1.350950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943571, loss@max: 1.352343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.944532, loss@max: 1.351879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.941394, loss@max: 1.355205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.944127, loss@max: 1.352516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943075, loss@max: 1.353778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.942506, loss@max: 1.354959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.943685, loss@max: 1.354205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.950556, loss@max: 1.359968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945215, loss@max: 1.352637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945077, loss@max: 1.353110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.948038, loss@max: 1.350582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.945026, loss@max: 1.352864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.946257, loss@max: 1.352623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.944673, loss@max: 1.357114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.942962, loss@max: 1.356032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.941344, loss@max: 1.357242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.941386, loss@max: 1.357410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.942889, loss@max: 1.357602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.943614, loss@max: 1.356380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947412, loss@max: 1.352133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.947427, loss@max: 1.352443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.945295, loss@max: 1.354245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.946693, loss@max: 1.352810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.947343, loss@max: 1.353660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.946170, loss@max: 1.355408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.942968, loss@max: 1.356482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 96.927046, LT: 99.554036, Top1S: 67.018257, Top1T: 66.369171Best acc: 67.018257 +Train:epoch: 101, loss@min: 0.940804, loss@max: 1.359263, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 96.951943, LT: 99.490906, Top1S: 67.099388, Top1T: 66.409737Best acc: 67.099388 +Train:epoch: 102, loss@min: 0.941879, loss@max: 1.358618, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:35:47 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 8.131758, loss@max: 2.543637, Top1S acc: 100.000000, Top1T acc: 20.000000 +Train:epoch: 2, loss@min: 5.190654, loss@max: 1.956877, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 3, loss@min: 3.731190, loss@max: 1.703751, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 4, loss@min: 2.575198, loss@max: 1.492636, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.804077, loss@max: 1.356393, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 1.318277, loss@max: 1.275328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 1.077763, loss@max: 1.267581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.981727, loss@max: 1.305395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.844080, loss@max: 1.330538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.791675, loss@max: 1.363897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.766968, loss@max: 1.384426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.777985, loss@max: 1.383210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.792776, loss@max: 1.344240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.833889, loss@max: 1.297405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.883383, loss@max: 1.243036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.947099, loss@max: 1.196525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.985153, loss@max: 1.161244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.007300, loss@max: 1.152498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.000981, loss@max: 1.157607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.980215, loss@max: 1.182125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950129, loss@max: 1.216675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.920376, loss@max: 1.251670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.909045, loss@max: 1.275972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.896963, loss@max: 1.291415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.902970, loss@max: 1.290777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.917797, loss@max: 1.281246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.925548, loss@max: 1.276977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.934967, loss@max: 1.272956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.936383, loss@max: 1.277633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.931773, loss@max: 1.287428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.923919, loss@max: 1.297650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.917196, loss@max: 1.309384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.910680, loss@max: 1.320430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.907993, loss@max: 1.328051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.922921, loss@max: 1.336413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.921039, loss@max: 1.321978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.930069, loss@max: 1.315453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.942105, loss@max: 1.307008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.956333, loss@max: 1.311236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.948539, loss@max: 1.306833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.946761, loss@max: 1.311316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.937857, loss@max: 1.324548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.938871, loss@max: 1.328154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935806, loss@max: 1.334202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.936320, loss@max: 1.331127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.939887, loss@max: 1.331457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.949255, loss@max: 1.330918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.945030, loss@max: 1.330030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.946614, loss@max: 1.329118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939485, loss@max: 1.337771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.936194, loss@max: 1.342097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.935561, loss@max: 1.345287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.939036, loss@max: 1.342156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.946253, loss@max: 1.352816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.939163, loss@max: 1.344191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.942657, loss@max: 1.341908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944342, loss@max: 1.341083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.941925, loss@max: 1.344191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.943117, loss@max: 1.344113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.940833, loss@max: 1.347065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.943092, loss@max: 1.345120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.942145, loss@max: 1.347605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.941440, loss@max: 1.348777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.943376, loss@max: 1.347420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.944902, loss@max: 1.346469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.942418, loss@max: 1.349554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.941846, loss@max: 1.350468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943407, loss@max: 1.349447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942507, loss@max: 1.350782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945152, loss@max: 1.348516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943703, loss@max: 1.350872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943391, loss@max: 1.351060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.943915, loss@max: 1.351213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943036, loss@max: 1.352585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.942573, loss@max: 1.352991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.940591, loss@max: 1.355158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.942638, loss@max: 1.353430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.944873, loss@max: 1.351982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946156, loss@max: 1.350601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.945700, loss@max: 1.351113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.946201, loss@max: 1.351143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.945823, loss@max: 1.351326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.942213, loss@max: 1.355310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.942450, loss@max: 1.355664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.942253, loss@max: 1.355493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.942549, loss@max: 1.356333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.943603, loss@max: 1.354166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.944036, loss@max: 1.354555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944210, loss@max: 1.354079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.944362, loss@max: 1.354248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946222, loss@max: 1.353597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.944447, loss@max: 1.354071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.944964, loss@max: 1.353845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.945664, loss@max: 1.354008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945077, loss@max: 1.354556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.944923, loss@max: 1.353999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944801, loss@max: 1.354531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.942350, loss@max: 1.356823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.942354, loss@max: 1.356488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.941916, loss@max: 1.357633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 104.900643, LT: 106.459130, Top1S: 68.194725, Top1T: 67.870186Best acc: 68.194725 +Train:epoch: 101, loss@min: 0.942220, loss@max: 1.357221, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:38:43 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 19.127911, loss@max: 5.966008, Top1S acc: 1.000000, Top1T acc: 44.000000 +Train:epoch: 2, loss@min: 16.087238, loss@max: 5.901211, Top1S acc: 1.000000, Top1T acc: 91.000000 +Train:epoch: 3, loss@min: 13.785537, loss@max: 5.995556, Top1S acc: 1.000000, Top1T acc: 99.000000 +Train:epoch: 4, loss@min: 12.121302, loss@max: 6.093270, Top1S acc: 1.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 11.294619, loss@max: 6.073580, Top1S acc: 1.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 10.753898, loss@max: 5.822546, Top1S acc: 2.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 10.405183, loss@max: 5.458262, Top1S acc: 5.000000, Top1T acc: 99.000000 +Train:epoch: 8, loss@min: 10.241523, loss@max: 4.893504, Top1S acc: 6.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 10.009740, loss@max: 4.338313, Top1S acc: 7.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 9.827281, loss@max: 3.945075, Top1S acc: 8.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 9.508757, loss@max: 3.683465, Top1S acc: 10.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 9.309588, loss@max: 3.539256, Top1S acc: 12.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 8.997961, loss@max: 3.459907, Top1S acc: 16.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 8.568725, loss@max: 3.495337, Top1S acc: 20.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 8.096062, loss@max: 3.629759, Top1S acc: 22.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 7.769508, loss@max: 3.496275, Top1S acc: 25.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 7.535875, loss@max: 3.442454, Top1S acc: 27.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 7.308409, loss@max: 3.426385, Top1S acc: 28.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 7.127532, loss@max: 3.327489, Top1S acc: 37.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 6.810754, loss@max: 3.256105, Top1S acc: 41.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 6.558901, loss@max: 3.223041, Top1S acc: 46.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 6.329318, loss@max: 3.169310, Top1S acc: 49.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 6.189510, loss@max: 3.066624, Top1S acc: 52.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 5.911973, loss@max: 3.056290, Top1S acc: 57.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 5.656766, loss@max: 3.080349, Top1S acc: 62.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 5.529564, loss@max: 3.019248, Top1S acc: 68.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 5.301670, loss@max: 2.943887, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 5.068327, loss@max: 2.953052, Top1S acc: 73.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 4.832897, loss@max: 2.971193, Top1S acc: 76.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 4.677285, loss@max: 2.939045, Top1S acc: 78.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 4.493346, loss@max: 2.895197, Top1S acc: 83.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 4.358570, loss@max: 2.911819, Top1S acc: 85.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 4.156156, loss@max: 2.844115, Top1S acc: 86.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 4.025373, loss@max: 2.814373, Top1S acc: 89.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 3.938878, loss@max: 2.753617, Top1S acc: 91.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 3.738283, loss@max: 2.724952, Top1S acc: 92.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 3.634529, loss@max: 2.720005, Top1S acc: 94.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 3.434591, loss@max: 2.683504, Top1S acc: 96.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 3.353194, loss@max: 2.607462, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 3.205403, loss@max: 2.606550, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 3.154830, loss@max: 2.546836, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 3.002548, loss@max: 2.541441, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 2.922035, loss@max: 2.537596, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 2.811245, loss@max: 2.526933, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.722233, loss@max: 2.485879, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.624792, loss@max: 2.498917, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.538929, loss@max: 2.511621, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.489845, loss@max: 2.471357, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.369285, loss@max: 2.423690, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 2.344083, loss@max: 2.349452, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 2.312529, loss@max: 2.324950, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 2.318417, loss@max: 2.304155, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 2.212543, loss@max: 2.278233, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 2.178696, loss@max: 2.326213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 2.101404, loss@max: 2.257538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 2.046518, loss@max: 2.214982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.968032, loss@max: 2.269250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.895018, loss@max: 2.260607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.922641, loss@max: 2.219475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.892859, loss@max: 2.198030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.812548, loss@max: 2.228981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.818291, loss@max: 2.140291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.775196, loss@max: 2.114479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.785796, loss@max: 2.085182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.825077, loss@max: 2.035273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.733895, loss@max: 2.062896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.734676, loss@max: 2.011376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.747981, loss@max: 1.981920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.698339, loss@max: 2.057252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.608552, loss@max: 2.052152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.601651, loss@max: 1.979254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.574966, loss@max: 1.993176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.563353, loss@max: 2.008009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.592025, loss@max: 1.967455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.542982, loss@max: 1.947735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.591819, loss@max: 1.908932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.586098, loss@max: 1.874907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.582683, loss@max: 1.870588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.591264, loss@max: 1.831134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.562348, loss@max: 1.847354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.525382, loss@max: 1.841242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.473957, loss@max: 1.887821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.457156, loss@max: 1.869364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.445102, loss@max: 1.875402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.427708, loss@max: 1.871349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.416155, loss@max: 1.843275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.484102, loss@max: 1.758851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.514407, loss@max: 1.747791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.462891, loss@max: 1.764792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.493045, loss@max: 1.726181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.488272, loss@max: 1.720096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.447364, loss@max: 1.744318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.432432, loss@max: 1.758066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.412995, loss@max: 1.759518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.379774, loss@max: 1.767447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.395017, loss@max: 1.771633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.394827, loss@max: 1.740903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.401107, loss@max: 1.750980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.409108, loss@max: 1.727897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.402950, loss@max: 1.706730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 78.887248, LT: 92.734032, Top1S: 61.135902, Top1T: 59.148075Best acc: 61.135902 +Train:epoch: 101, loss@min: 1.393145, loss@max: 1.697993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 78.828971, LT: 92.994376, Top1S: 61.217037, Top1T: 59.269775Best acc: 61.217037 +Train:epoch: 102, loss@min: 1.406384, loss@max: 1.676228, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:42:13 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 17.984592, loss@max: 6.179829, Top1S acc: 1.000000, Top1T acc: 51.000000 +Train:epoch: 2, loss@min: 14.040976, loss@max: 6.251271, Top1S acc: 1.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 12.080406, loss@max: 6.459366, Top1S acc: 1.000000, Top1T acc: 100.000000 +Train:epoch: 4, loss@min: 11.429173, loss@max: 6.444259, Top1S acc: 1.000000, Top1T acc: 99.000000 +Train:epoch: 5, loss@min: 11.083544, loss@max: 5.945896, Top1S acc: 1.000000, Top1T acc: 99.000000 +Train:epoch: 6, loss@min: 10.838521, loss@max: 5.362012, Top1S acc: 2.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 10.593950, loss@max: 4.732111, Top1S acc: 5.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 10.640813, loss@max: 4.192502, Top1S acc: 6.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 10.387568, loss@max: 3.915282, Top1S acc: 7.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 10.178212, loss@max: 3.730069, Top1S acc: 8.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 9.742230, loss@max: 3.743578, Top1S acc: 9.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 9.357674, loss@max: 3.883395, Top1S acc: 12.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 8.867584, loss@max: 3.942397, Top1S acc: 16.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 8.453907, loss@max: 4.020702, Top1S acc: 20.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 8.076991, loss@max: 4.126985, Top1S acc: 22.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 7.910376, loss@max: 3.912606, Top1S acc: 24.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 7.668993, loss@max: 3.776622, Top1S acc: 27.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 7.505804, loss@max: 3.723827, Top1S acc: 28.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 7.382847, loss@max: 3.583999, Top1S acc: 34.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 7.008533, loss@max: 3.508258, Top1S acc: 41.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 6.809459, loss@max: 3.397781, Top1S acc: 45.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 6.503427, loss@max: 3.480873, Top1S acc: 48.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 6.286095, loss@max: 3.481004, Top1S acc: 50.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 5.960514, loss@max: 3.629300, Top1S acc: 55.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 5.736906, loss@max: 3.534615, Top1S acc: 59.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 5.566287, loss@max: 3.462437, Top1S acc: 67.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 5.525681, loss@max: 3.256088, Top1S acc: 71.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 5.388534, loss@max: 3.202155, Top1S acc: 72.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 5.146215, loss@max: 3.144789, Top1S acc: 74.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 4.875477, loss@max: 3.173734, Top1S acc: 75.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 4.633679, loss@max: 3.297139, Top1S acc: 80.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 4.421491, loss@max: 3.258433, Top1S acc: 84.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 4.200257, loss@max: 3.234040, Top1S acc: 86.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 4.143307, loss@max: 3.086470, Top1S acc: 87.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 4.148050, loss@max: 3.096917, Top1S acc: 88.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 3.843992, loss@max: 3.144968, Top1S acc: 92.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 3.781349, loss@max: 3.122896, Top1S acc: 93.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 3.675331, loss@max: 3.013480, Top1S acc: 94.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 3.551792, loss@max: 3.029784, Top1S acc: 94.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 3.396656, loss@max: 2.974408, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 3.262728, loss@max: 2.986659, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 3.101931, loss@max: 3.039243, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 3.051546, loss@max: 2.964442, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 2.926218, loss@max: 2.961852, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 2.850798, loss@max: 2.930989, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 2.779737, loss@max: 2.949723, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 2.718287, loss@max: 2.846732, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 2.694557, loss@max: 2.825551, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 2.560086, loss@max: 2.850766, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 2.503738, loss@max: 2.837219, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 2.492034, loss@max: 2.821444, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 2.388536, loss@max: 2.871597, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 2.228283, loss@max: 2.866738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 2.257678, loss@max: 2.843027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 2.208534, loss@max: 2.819033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 2.258028, loss@max: 2.708639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 2.237768, loss@max: 2.673027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 2.037572, loss@max: 2.609072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 2.018017, loss@max: 2.649694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.869474, loss@max: 2.685917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.888361, loss@max: 2.645990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.927922, loss@max: 2.511623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.986570, loss@max: 2.478948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.991713, loss@max: 2.465482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.916170, loss@max: 2.454822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.804688, loss@max: 2.458590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.766535, loss@max: 2.428271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.725584, loss@max: 2.398935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.714304, loss@max: 2.498077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.721889, loss@max: 2.441100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.660634, loss@max: 2.343803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.709625, loss@max: 2.347141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.636629, loss@max: 2.388374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.625440, loss@max: 2.277133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.583407, loss@max: 2.352251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.611951, loss@max: 2.247496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.674046, loss@max: 2.236335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.652555, loss@max: 2.328306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.656817, loss@max: 2.179445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.574151, loss@max: 2.154197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.548190, loss@max: 2.218785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.531380, loss@max: 2.204240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.530996, loss@max: 2.209916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.512056, loss@max: 2.204813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.518583, loss@max: 2.205312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.479772, loss@max: 2.153723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.541276, loss@max: 2.069450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.523337, loss@max: 2.114763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.493149, loss@max: 2.125675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.498421, loss@max: 2.115251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.477837, loss@max: 2.071321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.464397, loss@max: 2.083390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.435433, loss@max: 2.076943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.468261, loss@max: 2.009003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.490245, loss@max: 2.000296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.462519, loss@max: 1.983094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.444836, loss@max: 2.026007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.457086, loss@max: 2.001849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.461203, loss@max: 1.981200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.447838, loss@max: 1.947642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 91.553405, LT: 91.864629, Top1S: 61.501015, Top1T: 64.381340Best acc: 64.381340 +Train:epoch: 101, loss@min: 1.416130, loss@max: 1.991769, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:44:53 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 14.528446, loss@max: 5.133625, Top1S acc: 34.000000, Top1T acc: 44.000000 +Train:epoch: 2, loss@min: 9.286535, loss@max: 4.778551, Top1S acc: 89.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 5.724080, loss@max: 4.587950, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 4, loss@min: 3.513650, loss@max: 4.384714, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 5, loss@min: 2.160336, loss@max: 3.970187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 1.391688, loss@max: 3.661598, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.014556, loss@max: 3.403657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.021926, loss@max: 3.225572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.908577, loss@max: 3.125444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.877713, loss@max: 2.959441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.727771, loss@max: 2.798986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.660289, loss@max: 2.591604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.700246, loss@max: 2.330239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.882354, loss@max: 2.095521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.080798, loss@max: 1.948054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.385184, loss@max: 1.562611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.591033, loss@max: 1.322302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.604094, loss@max: 1.273001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.571015, loss@max: 1.291100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.346196, loss@max: 1.466348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.124363, loss@max: 1.611400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.972155, loss@max: 1.788873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.972706, loss@max: 1.763819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.849373, loss@max: 1.956152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.848058, loss@max: 1.905138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.862708, loss@max: 1.933812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.985057, loss@max: 1.877417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.981823, loss@max: 1.823578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.000841, loss@max: 1.779719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.970875, loss@max: 1.786466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.986922, loss@max: 1.709636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.080670, loss@max: 1.594672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.135659, loss@max: 1.582080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.239962, loss@max: 1.500376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.221918, loss@max: 1.556102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.038596, loss@max: 1.659627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.079438, loss@max: 1.733162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.123396, loss@max: 1.699519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.062901, loss@max: 1.677141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.122132, loss@max: 1.753143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.000670, loss@max: 1.794244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957545, loss@max: 1.790280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.965576, loss@max: 1.820019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.038854, loss@max: 1.863442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.027544, loss@max: 1.720973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.020368, loss@max: 1.792121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.105530, loss@max: 1.754526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.105883, loss@max: 1.702141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.052970, loss@max: 1.656981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.126061, loss@max: 1.706985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.110252, loss@max: 1.666961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.086409, loss@max: 1.615807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.101618, loss@max: 1.728087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.073921, loss@max: 1.770404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.140952, loss@max: 1.723929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.130651, loss@max: 1.684540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.023570, loss@max: 1.673205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.983726, loss@max: 1.652070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.991162, loss@max: 1.736162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.050105, loss@max: 1.802344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.087238, loss@max: 1.745215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.096172, loss@max: 1.680849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.048557, loss@max: 1.585729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.032756, loss@max: 1.597329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.041911, loss@max: 1.693501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.078996, loss@max: 1.670086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.970633, loss@max: 1.647328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.000847, loss@max: 1.619324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.980229, loss@max: 1.624664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.017809, loss@max: 1.643103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.009252, loss@max: 1.559891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.042129, loss@max: 1.562176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.979503, loss@max: 1.588932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.009548, loss@max: 1.510683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.990817, loss@max: 1.605996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.049431, loss@max: 1.566928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.052423, loss@max: 1.552073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.036119, loss@max: 1.580886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.063374, loss@max: 1.522049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.069118, loss@max: 1.501672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.018020, loss@max: 1.567826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.003865, loss@max: 1.536328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.963839, loss@max: 1.658917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.967720, loss@max: 1.608893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.990896, loss@max: 1.572803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.961295, loss@max: 1.618400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.016134, loss@max: 1.497684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.062073, loss@max: 1.535514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.989550, loss@max: 1.518640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.991070, loss@max: 1.552392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.986560, loss@max: 1.529526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.968556, loss@max: 1.568612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.957884, loss@max: 1.560709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.988264, loss@max: 1.552708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.002072, loss@max: 1.483653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.986609, loss@max: 1.472247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.962682, loss@max: 1.500255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.946741, loss@max: 1.493941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.020813, loss@max: 1.488172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.021700, loss@max: 1.454790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 36.042047, LT: 44.006517, Top1S: 84.868156, Top1T: 82.636917Best acc: 84.868156 +Train:epoch: 101, loss@min: 1.011297, loss@max: 1.498434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 35.993629, LT: 43.810539, Top1S: 84.868156, Top1T: 82.636917 +Train:epoch: 102, loss@min: 0.972991, loss@max: 1.486409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 35.961485, LT: 43.553620, Top1S: 84.868156, Top1T: 82.718056 +Train:epoch: 103, loss@min: 0.959654, loss@max: 1.494832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 35.891462, LT: 43.341405, Top1S: 84.665314, Top1T: 82.799187 +Train:epoch: 104, loss@min: 0.954571, loss@max: 1.516012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 35.730197, LT: 43.333402, Top1S: 84.503044, Top1T: 82.880325 +Train:epoch: 105, loss@min: 0.902080, loss@max: 1.558958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 35.541442, LT: 43.431041, Top1S: 84.584175, Top1T: 82.636917 +Train:epoch: 106, loss@min: 0.977279, loss@max: 1.484203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 35.450270, LT: 43.547241, Top1S: 84.503044, Top1T: 82.596352 +Train:epoch: 107, loss@min: 0.959909, loss@max: 1.446114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 35.427308, LT: 43.588059, Top1S: 84.503044, Top1T: 82.636917 +Train:epoch: 108, loss@min: 0.964089, loss@max: 1.481726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 35.477724, LT: 43.561818, Top1S: 84.421906, Top1T: 82.636917 +Train:epoch: 109, loss@min: 0.982838, loss@max: 1.446675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 35.570375, LT: 43.521228, Top1S: 84.503044, Top1T: 82.758621 +Train:epoch: 110, loss@min: 1.035753, loss@max: 1.391493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 35.642073, LT: 43.482829, Top1S: 84.584175, Top1T: 82.758621 +Train:epoch: 111, loss@min: 1.004093, loss@max: 1.426505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 35.695890, LT: 43.425401, Top1S: 84.868156, Top1T: 82.758621 +Train:epoch: 112, loss@min: 1.000779, loss@max: 1.427895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 35.697887, LT: 43.395049, Top1S: 84.908722, Top1T: 82.718056Best acc: 84.908722 +Train:epoch: 113, loss@min: 1.014740, loss@max: 1.409052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 35.700379, LT: 43.348992, Top1S: 84.908722, Top1T: 82.677483 +Train:epoch: 114, loss@min: 0.974408, loss@max: 1.444545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 35.648935, LT: 43.318877, Top1S: 84.827583, Top1T: 82.718056 +Train:epoch: 115, loss@min: 0.977881, loss@max: 1.438612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 35.584652, LT: 43.296035, Top1S: 84.949287, Top1T: 82.758621Best acc: 84.949287 +Train:epoch: 116, loss@min: 0.947524, loss@max: 1.426259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 35.536716, LT: 43.292997, Top1S: 84.908722, Top1T: 82.839760 +Train:epoch: 117, loss@min: 0.963598, loss@max: 1.464097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 35.540345, LT: 43.272236, Top1S: 84.787018, Top1T: 82.920891 +Train:epoch: 118, loss@min: 0.961242, loss@max: 1.437628, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 35.533569, LT: 43.265591, Top1S: 84.705879, Top1T: 82.880325 +Train:epoch: 119, loss@min: 0.983716, loss@max: 1.427238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 35.517746, LT: 43.289657, Top1S: 84.705879, Top1T: 82.799187 +Train:epoch: 120, loss@min: 0.965048, loss@max: 1.444973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 35.485257, LT: 43.306724, Top1S: 84.705879, Top1T: 82.758621 +Train:epoch: 121, loss@min: 0.935363, loss@max: 1.451392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 35.487233, LT: 43.294184, Top1S: 84.665314, Top1T: 82.758621 +Train:epoch: 122, loss@min: 0.948732, loss@max: 1.440368, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:57:46 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 13:58:28 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.337423, loss@max: 4.525981, Top1S acc: 23.000000, Top1T acc: 12.000000 +Train:epoch: 2, loss@min: 8.160927, loss@max: 2.551644, Top1S acc: 86.000000, Top1T acc: 72.000000 +Train:epoch: 3, loss@min: 5.279773, loss@max: 1.866715, Top1S acc: 93.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 3.589392, loss@max: 1.473474, Top1S acc: 97.000000, Top1T acc: 97.000000 +Train:epoch: 5, loss@min: 2.540515, loss@max: 1.231990, Top1S acc: 98.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 2.005571, loss@max: 1.125387, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.651350, loss@max: 1.072390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.583284, loss@max: 1.095103, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 1.287562, loss@max: 1.061160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.190574, loss@max: 1.075032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.122817, loss@max: 1.103031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.081133, loss@max: 1.127002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.024331, loss@max: 1.146750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.990660, loss@max: 1.163602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.965152, loss@max: 1.187197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.951601, loss@max: 1.204763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.929146, loss@max: 1.222776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.938070, loss@max: 1.259276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.901458, loss@max: 1.264310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.888039, loss@max: 1.290275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.894451, loss@max: 1.316040, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.860108, loss@max: 1.321589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.865659, loss@max: 1.334174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.848384, loss@max: 1.346040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.848747, loss@max: 1.352439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.854511, loss@max: 1.351424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.852848, loss@max: 1.360486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.858518, loss@max: 1.361032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.866838, loss@max: 1.352675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.879879, loss@max: 1.349197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.886988, loss@max: 1.339135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.900841, loss@max: 1.332122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.915704, loss@max: 1.329693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.912258, loss@max: 1.327202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.924114, loss@max: 1.331955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.925068, loss@max: 1.323613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.936617, loss@max: 1.313993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.941239, loss@max: 1.311062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.978057, loss@max: 1.316327, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 0.952695, loss@max: 1.306355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.959789, loss@max: 1.303248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.961649, loss@max: 1.308317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.969002, loss@max: 1.313485, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.965429, loss@max: 1.304159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.964942, loss@max: 1.306395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.962596, loss@max: 1.311545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.956622, loss@max: 1.318833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.958347, loss@max: 1.319442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.957378, loss@max: 1.321297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.954651, loss@max: 1.326656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950740, loss@max: 1.333637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.952790, loss@max: 1.339891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.949569, loss@max: 1.335349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.999424, loss@max: 1.346546, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.945566, loss@max: 1.341348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.945718, loss@max: 1.342883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.941187, loss@max: 1.347015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.940771, loss@max: 1.348468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.941617, loss@max: 1.348414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.935962, loss@max: 1.355000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.935921, loss@max: 1.356362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.938047, loss@max: 1.354609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939565, loss@max: 1.353941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.946604, loss@max: 1.347695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.941622, loss@max: 1.353386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.942752, loss@max: 1.352223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.940544, loss@max: 1.356339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.941040, loss@max: 1.354915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.979111, loss@max: 1.367206, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 70, loss@min: 0.940163, loss@max: 1.357200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943604, loss@max: 1.353667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.935891, loss@max: 1.361578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942381, loss@max: 1.354994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939929, loss@max: 1.357463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947209, loss@max: 1.350732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948227, loss@max: 1.350307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.946235, loss@max: 1.351817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947954, loss@max: 1.352746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.946638, loss@max: 1.351915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949048, loss@max: 1.350610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.946269, loss@max: 1.353257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.945025, loss@max: 1.354822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.940729, loss@max: 1.359407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945481, loss@max: 1.354537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.937973, loss@max: 1.362191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.946263, loss@max: 1.354567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.946390, loss@max: 1.353967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953239, loss@max: 1.349500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944744, loss@max: 1.355388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947399, loss@max: 1.353006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.950741, loss@max: 1.353032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.948209, loss@max: 1.352556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.944521, loss@max: 1.356034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947816, loss@max: 1.353539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.946215, loss@max: 1.354551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.948945, loss@max: 1.352224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.946481, loss@max: 1.354742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.945553, loss@max: 1.355446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.944138, loss@max: 1.356617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.945591, loss@max: 1.355454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 68.988691, LT: 71.987133, Top1S: 83.529411, Top1T: 82.758621Best acc: 83.529411 +Train:epoch: 101, loss@min: 0.944637, loss@max: 1.356980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 68.962285, LT: 71.964778, Top1S: 83.488846, Top1T: 82.758621 +Train:epoch: 102, loss@min: 0.948278, loss@max: 1.352894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 68.938644, LT: 71.943009, Top1S: 83.488846, Top1T: 82.758621 +Train:epoch: 103, loss@min: 0.945337, loss@max: 1.355863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 68.911997, LT: 71.926106, Top1S: 83.488846, Top1T: 82.758621 +Train:epoch: 104, loss@min: 0.946024, loss@max: 1.355452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 68.877897, LT: 71.912271, Top1S: 83.448273, Top1T: 82.758621 +Train:epoch: 105, loss@min: 0.947196, loss@max: 1.354943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 68.853629, LT: 71.897239, Top1S: 83.448273, Top1T: 82.758621 +Train:epoch: 106, loss@min: 0.945763, loss@max: 1.355566, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 68.839307, LT: 71.877971, Top1S: 83.448273, Top1T: 82.758621 +Train:epoch: 107, loss@min: 0.945714, loss@max: 1.355855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 68.829083, LT: 71.857557, Top1S: 83.448273, Top1T: 82.758621 +Train:epoch: 108, loss@min: 0.945888, loss@max: 1.355964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 68.830418, LT: 71.832520, Top1S: 83.448273, Top1T: 82.758621 +Train:epoch: 109, loss@min: 0.948042, loss@max: 1.353643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 68.831994, LT: 71.808714, Top1S: 83.448273, Top1T: 82.758621 +Train:epoch: 110, loss@min: 0.945697, loss@max: 1.356016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 68.829614, LT: 71.785603, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 111, loss@min: 0.946011, loss@max: 1.355849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 68.824657, LT: 71.766047, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 112, loss@min: 0.949488, loss@max: 1.352224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 68.820497, LT: 71.745953, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 113, loss@min: 0.947882, loss@max: 1.353364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 68.818986, LT: 71.725316, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 114, loss@min: 0.947403, loss@max: 1.354993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 68.822949, LT: 71.703753, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 115, loss@min: 0.945542, loss@max: 1.355686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 68.827439, LT: 71.683885, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 116, loss@min: 0.945225, loss@max: 1.356290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 68.824746, LT: 71.669553, Top1S: 83.488846, Top1T: 82.799187 +Train:epoch: 117, loss@min: 0.945925, loss@max: 1.356392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 68.824340, LT: 71.653424, Top1S: 83.529411, Top1T: 82.799187 +Train:epoch: 118, loss@min: 0.942478, loss@max: 1.358896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 68.821694, LT: 71.639998, Top1S: 83.529411, Top1T: 82.799187 +Train:epoch: 119, loss@min: 0.946465, loss@max: 1.354773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 68.816204, LT: 71.629824, Top1S: 83.529411, Top1T: 82.799187 +Train:epoch: 120, loss@min: 0.942656, loss@max: 1.358886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 68.807625, LT: 71.620892, Top1S: 83.529411, Top1T: 82.799187 +Train:epoch: 121, loss@min: 0.963787, loss@max: 1.362713, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 121, LS: 68.830723, LT: 71.645026, Top1S: 83.569977, Top1T: 82.758621Best acc: 83.569977 +Train:epoch: 122, loss@min: 0.947410, loss@max: 1.353850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 68.849414, LT: 71.667592, Top1S: 83.569977, Top1T: 82.839760 +Train:epoch: 123, loss@min: 0.946573, loss@max: 1.354964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 68.865017, LT: 71.690273, Top1S: 83.610550, Top1T: 82.839760Best acc: 83.610550 +Train:epoch: 124, loss@min: 0.945414, loss@max: 1.356407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 68.880253, LT: 71.712825, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 125, loss@min: 0.945978, loss@max: 1.355537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 68.893214, LT: 71.735227, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 126, loss@min: 0.948995, loss@max: 1.352188, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 68.901095, LT: 71.757249, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 127, loss@min: 0.945337, loss@max: 1.356284, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 68.905413, LT: 71.773975, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 128, loss@min: 0.946450, loss@max: 1.355964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 68.904736, LT: 71.786433, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 129, loss@min: 0.944439, loss@max: 1.357212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 68.904079, LT: 71.795212, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 130, loss@min: 0.945039, loss@max: 1.356288, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 68.903076, LT: 71.801577, Top1S: 83.569977, Top1T: 82.880325 +Train:epoch: 131, loss@min: 0.946325, loss@max: 1.355506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 68.901628, LT: 71.806374, Top1S: 83.529411, Top1T: 82.880325 +Train:epoch: 132, loss@min: 0.944778, loss@max: 1.356773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 68.900218, LT: 71.810283, Top1S: 83.529411, Top1T: 82.880325 +Train:epoch: 133, loss@min: 0.944397, loss@max: 1.357025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 68.899426, LT: 71.812807, Top1S: 83.529411, Top1T: 82.880325 +Train:epoch: 134, loss@min: 0.949612, loss@max: 1.352771, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 68.899358, LT: 71.814376, Top1S: 83.529411, Top1T: 82.880325 +Train:epoch: 135, loss@min: 0.947934, loss@max: 1.353828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 68.899553, LT: 71.815647, Top1S: 83.529411, Top1T: 82.880325 +Train:epoch: 136, loss@min: 0.948852, loss@max: 1.352758, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 68.899614, LT: 71.816526, Top1S: 83.529411, Top1T: 82.880325 +Train:epoch: 137, loss@min: 0.944740, loss@max: 1.356731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 68.899640, LT: 71.817153, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 138, loss@min: 0.946211, loss@max: 1.355242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 68.900012, LT: 71.817210, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 139, loss@min: 0.946613, loss@max: 1.354799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 68.900274, LT: 71.817063, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 140, loss@min: 0.950744, loss@max: 1.350673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 68.900225, LT: 71.816868, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 141, loss@min: 0.943835, loss@max: 1.358743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 68.900535, LT: 71.816322, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 142, loss@min: 0.944456, loss@max: 1.356814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 68.900747, LT: 71.815897, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 143, loss@min: 0.945548, loss@max: 1.356120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 68.901221, LT: 71.815324, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 144, loss@min: 0.942156, loss@max: 1.359495, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 68.901339, LT: 71.814946, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 145, loss@min: 0.948980, loss@max: 1.354485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 68.901393, LT: 71.814494, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 146, loss@min: 0.947560, loss@max: 1.353998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 68.901482, LT: 71.814143, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 147, loss@min: 0.944345, loss@max: 1.356879, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 68.901494, LT: 71.813975, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 148, loss@min: 0.944227, loss@max: 1.357228, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 68.901514, LT: 71.813901, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 149, loss@min: 0.946786, loss@max: 1.354910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 68.901516, LT: 71.813889, Top1S: 83.529411, Top1T: 82.920891 +Train:epoch: 150, loss@min: 0.945324, loss@max: 1.356793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 68.901516, LT: 71.813889, Top1S: 83.529411, Top1T: 82.920891 +------------------------------------------- +Thu Sep 7 14:25:11 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 15:43:19 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.003056, loss@max: 5.165087, Top1S acc: 32.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 12.346865, loss@max: 4.958493, Top1S acc: 80.000000, Top1T acc: 87.000000 +Train:epoch: 3, loss@min: 9.268980, loss@max: 4.881672, Top1S acc: 94.000000, Top1T acc: 98.000000 +Train:epoch: 4, loss@min: 6.619706, loss@max: 4.801229, Top1S acc: 97.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 4.736142, loss@max: 4.660076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 3.207080, loss@max: 4.422210, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 2.111877, loss@max: 4.125663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.525813, loss@max: 3.748163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.202233, loss@max: 3.416924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.139659, loss@max: 3.182949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.950887, loss@max: 3.008419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.885204, loss@max: 2.852252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.793074, loss@max: 2.651094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.735785, loss@max: 2.465424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.770528, loss@max: 2.369183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.960859, loss@max: 1.924607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.236205, loss@max: 1.617580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.405697, loss@max: 1.441860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.578874, loss@max: 1.288525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.500357, loss@max: 1.286300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.428637, loss@max: 1.379541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.197557, loss@max: 1.460964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.098245, loss@max: 1.539238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.949518, loss@max: 1.703903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.845242, loss@max: 1.835713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.878939, loss@max: 1.830029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.881003, loss@max: 1.807905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.854735, loss@max: 1.762734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.897962, loss@max: 1.689289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.995728, loss@max: 1.687466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.998485, loss@max: 1.614973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036175, loss@max: 1.617297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.063206, loss@max: 1.561333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.117006, loss@max: 1.553887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.125459, loss@max: 1.516645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.087715, loss@max: 1.484633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.124128, loss@max: 1.424519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.088529, loss@max: 1.546059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.036556, loss@max: 1.548521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.033580, loss@max: 1.610405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.048716, loss@max: 1.574099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.984479, loss@max: 1.641119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.904819, loss@max: 1.645743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.956352, loss@max: 1.641356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.033153, loss@max: 1.565791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.040293, loss@max: 1.599165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.988003, loss@max: 1.565264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.011569, loss@max: 1.573914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.024469, loss@max: 1.555244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.983293, loss@max: 1.581953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.983676, loss@max: 1.577174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.056369, loss@max: 1.570704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.065229, loss@max: 1.538150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.999314, loss@max: 1.551804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.054269, loss@max: 1.536888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.077305, loss@max: 1.489425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.028435, loss@max: 1.557897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.040222, loss@max: 1.594354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.958647, loss@max: 1.587510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.996740, loss@max: 1.545036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.975521, loss@max: 1.587593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.970905, loss@max: 1.552762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.021029, loss@max: 1.555259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.009685, loss@max: 1.531236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.014153, loss@max: 1.567463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.014812, loss@max: 1.602988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.993246, loss@max: 1.604982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.982288, loss@max: 1.528204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.976751, loss@max: 1.509710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.993882, loss@max: 1.503708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.997540, loss@max: 1.479903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.022872, loss@max: 1.498214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.001786, loss@max: 1.535695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.005942, loss@max: 1.485563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.961546, loss@max: 1.498041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.991167, loss@max: 1.468002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.989027, loss@max: 1.476883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.976829, loss@max: 1.523094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.003123, loss@max: 1.499581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981565, loss@max: 1.470205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.946621, loss@max: 1.519243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.974574, loss@max: 1.515153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.000285, loss@max: 1.463062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.965921, loss@max: 1.487130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.943569, loss@max: 1.479112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.957354, loss@max: 1.505185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.002449, loss@max: 1.427552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.032156, loss@max: 1.437945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.957978, loss@max: 1.443982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.983420, loss@max: 1.451997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.993161, loss@max: 1.452959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.958717, loss@max: 1.451895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.965151, loss@max: 1.451641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.961811, loss@max: 1.464495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.967410, loss@max: 1.442917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.004347, loss@max: 1.410917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.973899, loss@max: 1.426478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.967371, loss@max: 1.429836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.960753, loss@max: 1.424003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.960239, loss@max: 1.440674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 32.446086, LT: 36.987283, Top1S: 82.312370, Top1T: 80.405678Best acc: 82.312370 +Train:epoch: 101, loss@min: 0.976604, loss@max: 1.422793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 32.498613, LT: 37.240453, Top1S: 82.352943, Top1T: 80.283974Best acc: 82.352943 +Train:epoch: 102, loss@min: 0.967333, loss@max: 1.415822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 32.511988, LT: 37.452939, Top1S: 82.312370, Top1T: 80.243408 +Train:epoch: 103, loss@min: 0.963730, loss@max: 1.410240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 32.432443, LT: 37.673765, Top1S: 82.555779, Top1T: 80.283974Best acc: 82.555779 +Train:epoch: 104, loss@min: 0.933952, loss@max: 1.448337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 32.271858, LT: 37.804316, Top1S: 82.393509, Top1T: 80.283974 +Train:epoch: 105, loss@min: 0.936327, loss@max: 1.456721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 32.120870, LT: 37.982882, Top1S: 82.312370, Top1T: 80.446251 +Train:epoch: 106, loss@min: 0.976803, loss@max: 1.397036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 32.056784, LT: 38.007899, Top1S: 82.434074, Top1T: 80.486816 +Train:epoch: 107, loss@min: 0.955929, loss@max: 1.412265, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 15:48:53 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 15:49:21 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 16.108906, loss@max: 5.188252, Top1S acc: 39.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 12.275731, loss@max: 5.002267, Top1S acc: 92.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 8.966943, loss@max: 4.890110, Top1S acc: 97.000000, Top1T acc: 96.000000 +Train:epoch: 4, loss@min: 6.122081, loss@max: 4.802652, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 4.117982, loss@max: 4.588547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 2.589815, loss@max: 4.372688, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.588706, loss@max: 4.134489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.199393, loss@max: 3.889161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.988996, loss@max: 3.655547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.925645, loss@max: 3.387327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.746729, loss@max: 3.168622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.741585, loss@max: 2.951818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.688001, loss@max: 2.666533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.727619, loss@max: 2.340796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.865581, loss@max: 2.061086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.264488, loss@max: 1.660713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.593197, loss@max: 1.338014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.641756, loss@max: 1.219120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.759280, loss@max: 1.120313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.556707, loss@max: 1.282488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.348426, loss@max: 1.443659, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.075386, loss@max: 1.596209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.991172, loss@max: 1.620260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.873641, loss@max: 1.838629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.822700, loss@max: 1.859725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.828598, loss@max: 1.860990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.804558, loss@max: 1.899529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.811885, loss@max: 1.825816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.918327, loss@max: 1.781198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.988400, loss@max: 1.741346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.954953, loss@max: 1.639528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.065198, loss@max: 1.615343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.081758, loss@max: 1.510214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.129613, loss@max: 1.480860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.249949, loss@max: 1.456589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.106463, loss@max: 1.466203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.138703, loss@max: 1.459787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.149426, loss@max: 1.493422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.112822, loss@max: 1.472866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.057114, loss@max: 1.538348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.986396, loss@max: 1.634741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.960133, loss@max: 1.627451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.883832, loss@max: 1.683199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.943625, loss@max: 1.648897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.024216, loss@max: 1.611886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.988209, loss@max: 1.582210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.965333, loss@max: 1.588474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961399, loss@max: 1.538175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.976682, loss@max: 1.556110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.000991, loss@max: 1.585486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.024440, loss@max: 1.504506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.023217, loss@max: 1.496168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.030644, loss@max: 1.471328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.017241, loss@max: 1.532618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.017684, loss@max: 1.501063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.014704, loss@max: 1.488689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.973596, loss@max: 1.502588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.007614, loss@max: 1.510866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.984233, loss@max: 1.500981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.012666, loss@max: 1.511107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.004439, loss@max: 1.464362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.995066, loss@max: 1.471059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.986693, loss@max: 1.479117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.975154, loss@max: 1.488888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.967877, loss@max: 1.489109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.953282, loss@max: 1.515569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947435, loss@max: 1.484725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.963958, loss@max: 1.457024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961569, loss@max: 1.482775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.979842, loss@max: 1.454547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.981737, loss@max: 1.466279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.978150, loss@max: 1.464561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.973986, loss@max: 1.433594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.995444, loss@max: 1.418861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.965729, loss@max: 1.458380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.966087, loss@max: 1.461174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.976764, loss@max: 1.432791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.979145, loss@max: 1.431772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.970842, loss@max: 1.442484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.979750, loss@max: 1.416718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.962298, loss@max: 1.431066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.985505, loss@max: 1.414279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.988745, loss@max: 1.420731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.964746, loss@max: 1.415116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.971686, loss@max: 1.405967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.971855, loss@max: 1.447237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.965525, loss@max: 1.428677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.976027, loss@max: 1.414776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.953909, loss@max: 1.415452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.967842, loss@max: 1.415230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.967347, loss@max: 1.424221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.958948, loss@max: 1.413016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.942796, loss@max: 1.433970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.926710, loss@max: 1.461605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.965373, loss@max: 1.401483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.948089, loss@max: 1.411332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.941316, loss@max: 1.419600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.958723, loss@max: 1.423168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.966312, loss@max: 1.387692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.959537, loss@max: 1.398006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 32.067107, LT: 35.099214, Top1S: 82.150101, Top1T: 80.608521Best acc: 82.150101 +Train:epoch: 101, loss@min: 0.977165, loss@max: 1.383033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 32.107003, LT: 35.198033, Top1S: 82.231239, Top1T: 80.770790Best acc: 82.231239 +Train:epoch: 102, loss@min: 0.956475, loss@max: 1.404018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 32.139560, LT: 35.270465, Top1S: 82.231239, Top1T: 80.770790 +Train:epoch: 103, loss@min: 0.960908, loss@max: 1.391659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 32.183110, LT: 35.341980, Top1S: 82.109535, Top1T: 80.770790 +Train:epoch: 104, loss@min: 0.952750, loss@max: 1.400630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 32.237876, LT: 35.365353, Top1S: 81.987831, Top1T: 80.730225 +Train:epoch: 105, loss@min: 0.954025, loss@max: 1.398077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 32.278506, LT: 35.425291, Top1S: 82.028397, Top1T: 80.811363 +Train:epoch: 106, loss@min: 0.951507, loss@max: 1.394076, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 32.300865, LT: 35.471849, Top1S: 82.068962, Top1T: 80.730225 +Train:epoch: 107, loss@min: 0.955832, loss@max: 1.396996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 32.334929, LT: 35.490034, Top1S: 82.028397, Top1T: 80.730225 +Train:epoch: 108, loss@min: 0.939179, loss@max: 1.415082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 32.360182, LT: 35.495766, Top1S: 82.109535, Top1T: 80.851929 +Train:epoch: 109, loss@min: 0.959865, loss@max: 1.397925, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 15:56:00 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 14.269914, loss@max: 5.174244, Top1S acc: 60.000000, Top1T acc: 50.000000 +Train:epoch: 2, loss@min: 8.970726, loss@max: 4.917032, Top1S acc: 97.000000, Top1T acc: 93.000000 +Train:epoch: 3, loss@min: 5.139632, loss@max: 4.775134, Top1S acc: 99.000000, Top1T acc: 99.000000 +Train:epoch: 4, loss@min: 2.651359, loss@max: 4.583465, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 5, loss@min: 1.383235, loss@max: 4.364621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 6, loss@min: 0.935653, loss@max: 4.088634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 7, loss@min: 0.926977, loss@max: 3.765126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.799267, loss@max: 3.399589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 0.780121, loss@max: 2.995251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.771403, loss@max: 2.612994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.916833, loss@max: 2.072050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.313970, loss@max: 1.721415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.732931, loss@max: 1.379876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.811744, loss@max: 1.171139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.667819, loss@max: 1.189267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.440177, loss@max: 1.417315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.252668, loss@max: 1.682038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.986831, loss@max: 1.825056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.832712, loss@max: 1.976174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.700011, loss@max: 2.067948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.767053, loss@max: 2.039546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.843074, loss@max: 1.929712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.983229, loss@max: 1.858488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.050368, loss@max: 1.750790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.994337, loss@max: 1.626253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.166062, loss@max: 1.564630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.146036, loss@max: 1.490608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.100430, loss@max: 1.466683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.157557, loss@max: 1.486632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.112179, loss@max: 1.478198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.136453, loss@max: 1.432405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.077369, loss@max: 1.472095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.018375, loss@max: 1.536990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.014013, loss@max: 1.550216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.927125, loss@max: 1.663713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.912041, loss@max: 1.605332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.882935, loss@max: 1.631335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.022752, loss@max: 1.552045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.944647, loss@max: 1.556998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.966477, loss@max: 1.515435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.053134, loss@max: 1.503103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.021263, loss@max: 1.508279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.012277, loss@max: 1.549093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.987932, loss@max: 1.508804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.009971, loss@max: 1.477707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.017092, loss@max: 1.455293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.017291, loss@max: 1.509547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.039438, loss@max: 1.497228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.016483, loss@max: 1.478783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.018117, loss@max: 1.441387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.977774, loss@max: 1.488039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.963107, loss@max: 1.539838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.983059, loss@max: 1.498104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.974169, loss@max: 1.520458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.926745, loss@max: 1.538248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.996899, loss@max: 1.467353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.974920, loss@max: 1.465746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.005734, loss@max: 1.470398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.973161, loss@max: 1.460244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.988644, loss@max: 1.432322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.966083, loss@max: 1.483369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.969432, loss@max: 1.475568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.953530, loss@max: 1.454864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.991238, loss@max: 1.429049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.988813, loss@max: 1.426787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.973407, loss@max: 1.420712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.970652, loss@max: 1.423741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.964611, loss@max: 1.429770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.981256, loss@max: 1.422005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.974073, loss@max: 1.430346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.981315, loss@max: 1.407087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.960437, loss@max: 1.430848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.957083, loss@max: 1.438217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.973790, loss@max: 1.442475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.956458, loss@max: 1.415533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.986649, loss@max: 1.402374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.980825, loss@max: 1.436025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.967754, loss@max: 1.406361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.947169, loss@max: 1.419725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959043, loss@max: 1.419529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.967328, loss@max: 1.410309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.960666, loss@max: 1.424086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.958042, loss@max: 1.427364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946786, loss@max: 1.424919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.968268, loss@max: 1.399905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.955797, loss@max: 1.411165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.955097, loss@max: 1.419835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.954864, loss@max: 1.406383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.952822, loss@max: 1.406471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.950955, loss@max: 1.418724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.968755, loss@max: 1.394886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.963046, loss@max: 1.402985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947436, loss@max: 1.413104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.983704, loss@max: 1.381721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.955530, loss@max: 1.395330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.964052, loss@max: 1.393004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.932893, loss@max: 1.422704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.952911, loss@max: 1.390949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.948760, loss@max: 1.408037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.969122, loss@max: 1.381799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 33.478937, LT: 41.728702, Top1S: 80.324547, Top1T: 76.267746Best acc: 80.324547 +Train:epoch: 101, loss@min: 0.948588, loss@max: 1.397165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 33.551602, LT: 41.595267, Top1S: 80.202843, Top1T: 76.227180 +Train:epoch: 102, loss@min: 0.977398, loss@max: 1.370305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 33.614033, LT: 41.532981, Top1S: 80.202843, Top1T: 76.267746 +Train:epoch: 103, loss@min: 0.938959, loss@max: 1.408125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 33.676956, LT: 41.527685, Top1S: 80.121704, Top1T: 76.267746 +Train:epoch: 104, loss@min: 0.956825, loss@max: 1.395163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 33.752419, LT: 41.540048, Top1S: 80.283974, Top1T: 76.146042 +Train:epoch: 105, loss@min: 0.964638, loss@max: 1.378134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 33.799638, LT: 41.649629, Top1S: 80.446251, Top1T: 76.064911Best acc: 80.446251 +Train:epoch: 106, loss@min: 0.951717, loss@max: 1.396725, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 33.865845, LT: 41.808905, Top1S: 80.405678, Top1T: 75.902634 +Train:epoch: 107, loss@min: 0.968898, loss@max: 1.370766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 33.918373, LT: 41.961376, Top1S: 80.365112, Top1T: 75.618660 +Train:epoch: 108, loss@min: 0.958320, loss@max: 1.392511, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 33.912144, LT: 42.118156, Top1S: 80.283974, Top1T: 75.618660 +Train:epoch: 109, loss@min: 0.947668, loss@max: 1.388259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 33.924412, LT: 42.174046, Top1S: 80.243408, Top1T: 75.659233 +Train:epoch: 110, loss@min: 0.950054, loss@max: 1.388954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 33.933643, LT: 42.131079, Top1S: 80.202843, Top1T: 75.821503 +Train:epoch: 111, loss@min: 0.945918, loss@max: 1.389652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 33.901320, LT: 42.090560, Top1S: 80.202843, Top1T: 76.024338 +Train:epoch: 112, loss@min: 0.950489, loss@max: 1.383523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 33.861964, LT: 42.095622, Top1S: 80.283974, Top1T: 75.983772 +Train:epoch: 113, loss@min: 0.947124, loss@max: 1.383982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 33.808504, LT: 42.110430, Top1S: 80.243408, Top1T: 76.105476 +Train:epoch: 114, loss@min: 0.944352, loss@max: 1.386962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 33.730178, LT: 42.156104, Top1S: 80.283974, Top1T: 76.186615 +Train:epoch: 115, loss@min: 0.949769, loss@max: 1.393848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 33.664708, LT: 42.176009, Top1S: 80.243408, Top1T: 76.227180 +Train:epoch: 116, loss@min: 0.953837, loss@max: 1.383581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 33.638637, LT: 42.193129, Top1S: 80.243408, Top1T: 76.267746 +Train:epoch: 117, loss@min: 0.950466, loss@max: 1.382982, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 33.645084, LT: 42.179657, Top1S: 80.283974, Top1T: 76.227180 +Train:epoch: 118, loss@min: 0.944669, loss@max: 1.393307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 33.677412, LT: 42.141762, Top1S: 80.202843, Top1T: 76.227180 +Train:epoch: 119, loss@min: 0.970328, loss@max: 1.368557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 33.729672, LT: 42.118486, Top1S: 80.283974, Top1T: 76.267746 +Train:epoch: 120, loss@min: 0.951763, loss@max: 1.383029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 33.794751, LT: 42.126496, Top1S: 80.283974, Top1T: 76.186615 +Train:epoch: 121, loss@min: 0.949627, loss@max: 1.386127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 33.875720, LT: 42.120584, Top1S: 80.243408, Top1T: 76.146042 +Train:epoch: 122, loss@min: 0.972154, loss@max: 1.361010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 33.963517, LT: 42.116656, Top1S: 80.243408, Top1T: 76.064911 +Train:epoch: 123, loss@min: 0.953003, loss@max: 1.374803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 34.054788, LT: 42.099734, Top1S: 80.243408, Top1T: 76.024338 +Train:epoch: 124, loss@min: 0.942797, loss@max: 1.387261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 34.146076, LT: 42.076765, Top1S: 80.243408, Top1T: 76.024338 +Train:epoch: 125, loss@min: 0.951189, loss@max: 1.378480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 34.209034, LT: 42.065146, Top1S: 80.283974, Top1T: 76.024338 +Train:epoch: 126, loss@min: 0.954089, loss@max: 1.377608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 34.260699, LT: 42.064267, Top1S: 80.324547, Top1T: 75.902634 +Train:epoch: 127, loss@min: 0.964797, loss@max: 1.365105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 34.305279, LT: 42.029252, Top1S: 80.283974, Top1T: 76.064911 +Train:epoch: 128, loss@min: 0.941426, loss@max: 1.388096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 34.324639, LT: 42.007180, Top1S: 80.243408, Top1T: 76.105476 +Train:epoch: 129, loss@min: 0.958662, loss@max: 1.366384, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 16:12:14 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 20.145065, loss@max: 5.994401, Top1S acc: 3.000000, Top1T acc: 5.000000 +Train:epoch: 2, loss@min: 15.717292, loss@max: 5.581423, Top1S acc: 12.000000, Top1T acc: 29.000000 +Train:epoch: 3, loss@min: 12.091650, loss@max: 5.253476, Top1S acc: 42.000000, Top1T acc: 59.000000 +Train:epoch: 4, loss@min: 9.160450, loss@max: 5.106569, Top1S acc: 65.000000, Top1T acc: 83.000000 +Train:epoch: 5, loss@min: 6.966026, loss@max: 4.992959, Top1S acc: 82.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 5.260989, loss@max: 4.923316, Top1S acc: 88.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 3.898872, loss@max: 4.895438, Top1S acc: 95.000000, Top1T acc: 99.000000 +Train:epoch: 8, loss@min: 2.927673, loss@max: 4.671913, Top1S acc: 98.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 2.174827, loss@max: 4.548540, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.677199, loss@max: 4.361233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.471656, loss@max: 4.056395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.256824, loss@max: 3.899312, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 1.068412, loss@max: 3.790179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.970021, loss@max: 3.548957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.938741, loss@max: 3.396684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.958826, loss@max: 3.243932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.048914, loss@max: 3.047216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.969539, loss@max: 2.908113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.922143, loss@max: 2.800964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.996696, loss@max: 2.631299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.050632, loss@max: 2.527218, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.993102, loss@max: 2.522242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.872815, loss@max: 2.340523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.863591, loss@max: 2.238007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.907503, loss@max: 2.068293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.999378, loss@max: 2.040149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.061352, loss@max: 1.899762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.190388, loss@max: 1.729161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.227190, loss@max: 1.700587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.255767, loss@max: 1.624823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.303077, loss@max: 1.606759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.275515, loss@max: 1.593114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.291891, loss@max: 1.617768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.330025, loss@max: 1.501310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.247375, loss@max: 1.602239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.228642, loss@max: 1.612285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.222210, loss@max: 1.619914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.169248, loss@max: 1.751130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.122837, loss@max: 1.681704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.120245, loss@max: 1.687544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.060092, loss@max: 1.702089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.057441, loss@max: 1.703792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.120089, loss@max: 1.811420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.177647, loss@max: 1.722438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.057343, loss@max: 1.829146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.035275, loss@max: 1.737234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.000035, loss@max: 1.788856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.004928, loss@max: 1.715746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.092660, loss@max: 1.749726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.092599, loss@max: 1.672232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.003670, loss@max: 1.689459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.024232, loss@max: 1.656413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.006786, loss@max: 1.765538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.964314, loss@max: 1.720732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.006837, loss@max: 1.676836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.022700, loss@max: 1.677718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.967411, loss@max: 1.644103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.066046, loss@max: 1.651734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.013548, loss@max: 1.741166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.081634, loss@max: 1.654048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.090453, loss@max: 1.639740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.043696, loss@max: 1.612386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.027538, loss@max: 1.634860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.067500, loss@max: 1.622279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.060465, loss@max: 1.628747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.125686, loss@max: 1.612789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.072622, loss@max: 1.660358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.124077, loss@max: 1.593363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.017356, loss@max: 1.685066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.979537, loss@max: 1.732881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.008320, loss@max: 1.679947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.005403, loss@max: 1.726691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.007111, loss@max: 1.637584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.007426, loss@max: 1.578585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.020194, loss@max: 1.620162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.002382, loss@max: 1.664240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.070418, loss@max: 1.503607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.068634, loss@max: 1.577288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.143096, loss@max: 1.517093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.057849, loss@max: 1.505435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.063851, loss@max: 1.563190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.046667, loss@max: 1.532689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.999658, loss@max: 1.629958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.963592, loss@max: 1.642805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.961488, loss@max: 1.669291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.992922, loss@max: 1.567003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.960289, loss@max: 1.563651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.973001, loss@max: 1.578625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.009387, loss@max: 1.541266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.962574, loss@max: 1.582239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.016366, loss@max: 1.536302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.043997, loss@max: 1.557274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.062787, loss@max: 1.499620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.031142, loss@max: 1.531302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945856, loss@max: 1.565996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.031030, loss@max: 1.479623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.962808, loss@max: 1.564004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.065321, loss@max: 1.495301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.970367, loss@max: 1.519499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.045481, loss@max: 1.516418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 53.860552, LT: 52.739924, Top1S: 74.807304, Top1T: 76.470589Best acc: 76.470589 +Train:epoch: 101, loss@min: 0.996805, loss@max: 1.517285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 53.833353, LT: 52.810135, Top1S: 74.847870, Top1T: 76.389450 +Train:epoch: 102, loss@min: 1.010138, loss@max: 1.537110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 53.792272, LT: 52.775421, Top1S: 74.929008, Top1T: 76.470589 +Train:epoch: 103, loss@min: 1.000950, loss@max: 1.521948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 53.821758, LT: 52.802514, Top1S: 74.847870, Top1T: 76.592293Best acc: 76.592293 +Train:epoch: 104, loss@min: 0.988002, loss@max: 1.531039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 53.665995, LT: 52.918804, Top1S: 74.847870, Top1T: 76.430023 +Train:epoch: 105, loss@min: 0.997692, loss@max: 1.554742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 53.524242, LT: 53.021232, Top1S: 74.847870, Top1T: 76.389450 +Train:epoch: 106, loss@min: 1.001971, loss@max: 1.513242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 53.527034, LT: 53.066570, Top1S: 74.807304, Top1T: 76.024338 +Train:epoch: 107, loss@min: 1.012084, loss@max: 1.509545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 53.552019, LT: 53.073637, Top1S: 74.685600, Top1T: 76.186615 +Train:epoch: 108, loss@min: 0.981859, loss@max: 1.533627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 53.596670, LT: 53.054229, Top1S: 74.726166, Top1T: 76.186615 +Train:epoch: 109, loss@min: 0.991024, loss@max: 1.531874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 53.672021, LT: 52.891823, Top1S: 74.766731, Top1T: 76.430023 +Train:epoch: 110, loss@min: 1.031690, loss@max: 1.481614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 53.725774, LT: 52.623951, Top1S: 74.888435, Top1T: 76.511154 +Train:epoch: 111, loss@min: 0.960092, loss@max: 1.539903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 53.742187, LT: 52.327273, Top1S: 74.847870, Top1T: 76.592293 +Train:epoch: 112, loss@min: 1.051799, loss@max: 1.463148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 53.691691, LT: 52.059463, Top1S: 74.969574, Top1T: 76.673431Best acc: 76.673431 +Train:epoch: 113, loss@min: 1.042077, loss@max: 1.456217, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 53.539339, LT: 51.894606, Top1S: 75.010139, Top1T: 76.754562Best acc: 76.754562 +Train:epoch: 114, loss@min: 0.968618, loss@max: 1.549812, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 53.394216, LT: 51.769603, Top1S: 75.010139, Top1T: 76.673431 +Train:epoch: 115, loss@min: 1.003598, loss@max: 1.464650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 53.295159, LT: 51.736650, Top1S: 74.969574, Top1T: 76.673431 +Train:epoch: 116, loss@min: 0.963191, loss@max: 1.547278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 53.255127, LT: 51.782284, Top1S: 75.091278, Top1T: 76.551727 +Train:epoch: 117, loss@min: 0.980779, loss@max: 1.480247, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 16:22:51 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 15.615788, loss@max: 4.339918, Top1S acc: 42.000000, Top1T acc: 19.000000 +Train:epoch: 2, loss@min: 11.169379, loss@max: 3.310284, Top1S acc: 78.000000, Top1T acc: 73.000000 +Train:epoch: 3, loss@min: 8.177323, loss@max: 2.613509, Top1S acc: 89.000000, Top1T acc: 89.000000 +Train:epoch: 4, loss@min: 5.776450, loss@max: 2.040656, Top1S acc: 93.000000, Top1T acc: 93.000000 +Train:epoch: 5, loss@min: 4.081575, loss@max: 1.632402, Top1S acc: 95.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 2.981602, loss@max: 1.367256, Top1S acc: 96.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 2.288437, loss@max: 1.220827, Top1S acc: 99.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.899894, loss@max: 1.165574, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 1.535743, loss@max: 1.121122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.336006, loss@max: 1.120265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.202025, loss@max: 1.143776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.101812, loss@max: 1.173962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.021284, loss@max: 1.209497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.956121, loss@max: 1.241388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.903474, loss@max: 1.281886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.868123, loss@max: 1.319777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.832666, loss@max: 1.350865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.816084, loss@max: 1.388484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.788507, loss@max: 1.399197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.786278, loss@max: 1.412779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.789658, loss@max: 1.404981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.809807, loss@max: 1.383434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.853798, loss@max: 1.363423, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.867421, loss@max: 1.329687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.897037, loss@max: 1.303789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.926026, loss@max: 1.280236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.950976, loss@max: 1.260643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.969473, loss@max: 1.249275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.988382, loss@max: 1.233329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.998390, loss@max: 1.232998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.002331, loss@max: 1.228343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.003593, loss@max: 1.231496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.998471, loss@max: 1.240492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.987079, loss@max: 1.257297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.985833, loss@max: 1.287230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.956956, loss@max: 1.291827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.945001, loss@max: 1.306208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.937014, loss@max: 1.317486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.937341, loss@max: 1.336709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.913095, loss@max: 1.347233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.911296, loss@max: 1.353723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.906703, loss@max: 1.363580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.914396, loss@max: 1.367484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.914170, loss@max: 1.359122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.917919, loss@max: 1.354563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.920507, loss@max: 1.354478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.926557, loss@max: 1.351767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.934274, loss@max: 1.344929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945105, loss@max: 1.334199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.950141, loss@max: 1.331433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.949320, loss@max: 1.333610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.961157, loss@max: 1.340738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955510, loss@max: 1.329398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.978122, loss@max: 1.340766, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.957568, loss@max: 1.329261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.956704, loss@max: 1.332447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954714, loss@max: 1.334673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.950269, loss@max: 1.340754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946907, loss@max: 1.343714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.944567, loss@max: 1.346473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945364, loss@max: 1.348251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.942004, loss@max: 1.351346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.938766, loss@max: 1.354188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.941934, loss@max: 1.352967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.937833, loss@max: 1.356379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.938866, loss@max: 1.356903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946146, loss@max: 1.364254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.939976, loss@max: 1.355591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.938277, loss@max: 1.358054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941677, loss@max: 1.354999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943890, loss@max: 1.352931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.941589, loss@max: 1.355636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946353, loss@max: 1.350826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943309, loss@max: 1.355267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.945161, loss@max: 1.352827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.945957, loss@max: 1.352415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.945560, loss@max: 1.352628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948144, loss@max: 1.350902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.949579, loss@max: 1.349421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950979, loss@max: 1.348122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.949492, loss@max: 1.350215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.949362, loss@max: 1.350825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943335, loss@max: 1.356388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.944554, loss@max: 1.355503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.941990, loss@max: 1.358355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.947504, loss@max: 1.353916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.945648, loss@max: 1.354532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.948767, loss@max: 1.353515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944341, loss@max: 1.355968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947352, loss@max: 1.353306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.945854, loss@max: 1.356113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.943265, loss@max: 1.357041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.941735, loss@max: 1.359391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.944737, loss@max: 1.357074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.943421, loss@max: 1.359128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947440, loss@max: 1.353704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.945308, loss@max: 1.355976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943997, loss@max: 1.357156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.944993, loss@max: 1.355639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943114, loss@max: 1.358336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.778273, LT: 0.795619, Top1S: 81.460449, Top1T: 80.892494Best acc: 81.460449 +Train:epoch: 101, loss@min: 0.945455, loss@max: 1.355752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.777294, LT: 0.794365, Top1S: 81.419876, Top1T: 80.892494 +Train:epoch: 102, loss@min: 0.945810, loss@max: 1.355126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.776360, LT: 0.793303, Top1S: 81.419876, Top1T: 80.933060 +Train:epoch: 103, loss@min: 0.943784, loss@max: 1.357379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.775202, LT: 0.792571, Top1S: 81.501015, Top1T: 80.892494Best acc: 81.501015 +Train:epoch: 104, loss@min: 0.944359, loss@max: 1.356883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.773990, LT: 0.791947, Top1S: 81.460449, Top1T: 80.933060 +Train:epoch: 105, loss@min: 0.946425, loss@max: 1.355147, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.772995, LT: 0.791212, Top1S: 81.460449, Top1T: 80.892494 +Train:epoch: 106, loss@min: 0.944788, loss@max: 1.356243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.772149, LT: 0.790436, Top1S: 81.501015, Top1T: 80.892494 +Train:epoch: 107, loss@min: 0.945461, loss@max: 1.355612, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 16:31:11 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 16:34:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.833176, loss@max: 0.994873, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 2, loss@min: 2.197938, loss@max: 1.258818, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 3, loss@min: 1.707291, loss@max: 1.262960, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.669206, loss@max: 1.341557, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 5, loss@min: 1.497531, loss@max: 1.352936, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 6, loss@min: 1.290368, loss@max: 1.350963, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.361383, loss@max: 1.394148, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 8, loss@min: 1.443837, loss@max: 1.447496, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 9, loss@min: 1.147578, loss@max: 1.393386, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 1.104274, loss@max: 1.383835, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 11, loss@min: 1.208752, loss@max: 1.429027, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.137252, loss@max: 1.414166, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 13, loss@min: 1.290024, loss@max: 1.454677, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 14, loss@min: 1.228534, loss@max: 1.421957, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 15, loss@min: 1.214920, loss@max: 1.396113, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 16, loss@min: 1.198725, loss@max: 1.381678, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 17, loss@min: 1.132288, loss@max: 1.356352, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 18, loss@min: 1.135604, loss@max: 1.334381, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 19, loss@min: 1.091228, loss@max: 1.333313, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 20, loss@min: 1.123785, loss@max: 1.342836, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 21, loss@min: 1.169331, loss@max: 1.346111, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 1.153676, loss@max: 1.351781, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 23, loss@min: 1.064851, loss@max: 1.317023, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 1.220385, loss@max: 1.373589, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 25, loss@min: 1.067500, loss@max: 1.343502, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 26, loss@min: 1.131629, loss@max: 1.371661, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 27, loss@min: 0.984867, loss@max: 1.310810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.011940, loss@max: 1.345828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.982018, loss@max: 1.324651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.045013, loss@max: 1.378051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.046145, loss@max: 1.385796, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.977765, loss@max: 1.359170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.026528, loss@max: 1.384167, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 34, loss@min: 1.014191, loss@max: 1.378605, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 35, loss@min: 0.992321, loss@max: 1.374295, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.991782, loss@max: 1.369983, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.018129, loss@max: 1.375092, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 38, loss@min: 1.009171, loss@max: 1.387802, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 39, loss@min: 1.045529, loss@max: 1.403476, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.016093, loss@max: 1.394773, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 41, loss@min: 1.165649, loss@max: 1.431415, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 42, loss@min: 1.019525, loss@max: 1.384314, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 43, loss@min: 1.030820, loss@max: 1.395617, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.971996, loss@max: 1.367176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.982887, loss@max: 1.374882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.053741, loss@max: 1.384263, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.967056, loss@max: 1.378891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.988561, loss@max: 1.399234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.004739, loss@max: 1.388088, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 50, loss@min: 0.972438, loss@max: 1.377271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.044663, loss@max: 1.385248, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 52, loss@min: 1.083973, loss@max: 1.433672, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 53, loss@min: 0.972990, loss@max: 1.377351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.038472, loss@max: 1.406979, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 55, loss@min: 1.125351, loss@max: 1.418606, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.980166, loss@max: 1.382185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.966172, loss@max: 1.371495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.045473, loss@max: 1.408771, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 59, loss@min: 0.994452, loss@max: 1.393306, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 1.024700, loss@max: 1.415603, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 61, loss@min: 1.023193, loss@max: 1.411020, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 62, loss@min: 0.977598, loss@max: 1.391471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964416, loss@max: 1.378645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.985215, loss@max: 1.396661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.970424, loss@max: 1.381239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.060371, loss@max: 1.394439, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.969933, loss@max: 1.380307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.973256, loss@max: 1.379252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.971231, loss@max: 1.379730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.001581, loss@max: 1.414582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.965972, loss@max: 1.382032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.014012, loss@max: 1.406322, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.972225, loss@max: 1.381323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965654, loss@max: 1.381524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.037209, loss@max: 1.407855, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 76, loss@min: 0.985944, loss@max: 1.408235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950201, loss@max: 1.372935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.983756, loss@max: 1.393185, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.962941, loss@max: 1.383390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981967, loss@max: 1.400166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.958671, loss@max: 1.372531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.963614, loss@max: 1.379857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.954802, loss@max: 1.372277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.955056, loss@max: 1.365003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.964278, loss@max: 1.376764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.977421, loss@max: 1.394102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.973960, loss@max: 1.390573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.967239, loss@max: 1.393359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.075762, loss@max: 1.420459, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 90, loss@min: 0.980029, loss@max: 1.407790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.958957, loss@max: 1.382636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.974205, loss@max: 1.393318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.966795, loss@max: 1.384898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.998245, loss@max: 1.396711, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.992804, loss@max: 1.401996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.976087, loss@max: 1.387288, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 1.015731, loss@max: 1.407237, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.007193, loss@max: 1.406477, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.963331, loss@max: 1.365007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.955114, loss@max: 1.375259, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 16:38:18 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 1.833176, loss@max: 0.994873, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 2, loss@min: 2.197938, loss@max: 1.258818, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 3, loss@min: 1.707291, loss@max: 1.262960, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.669206, loss@max: 1.341557, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 5, loss@min: 1.497531, loss@max: 1.352936, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 6, loss@min: 1.290368, loss@max: 1.350963, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.361383, loss@max: 1.394148, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 8, loss@min: 1.443837, loss@max: 1.447496, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 9, loss@min: 1.147578, loss@max: 1.393386, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 10, loss@min: 1.104274, loss@max: 1.383835, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 11, loss@min: 1.208752, loss@max: 1.429027, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.137252, loss@max: 1.414166, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 13, loss@min: 1.290024, loss@max: 1.454677, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 14, loss@min: 1.228534, loss@max: 1.421957, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 15, loss@min: 1.214920, loss@max: 1.396113, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 16, loss@min: 1.198725, loss@max: 1.381678, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 17, loss@min: 1.132288, loss@max: 1.356352, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 18, loss@min: 1.135604, loss@max: 1.334381, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 19, loss@min: 1.091228, loss@max: 1.333313, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 20, loss@min: 1.123785, loss@max: 1.342836, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 21, loss@min: 1.169331, loss@max: 1.346111, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 22, loss@min: 1.153676, loss@max: 1.351781, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 23, loss@min: 1.064851, loss@max: 1.317023, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 1.220385, loss@max: 1.373589, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 25, loss@min: 1.067500, loss@max: 1.343502, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 26, loss@min: 1.131629, loss@max: 1.371661, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 27, loss@min: 0.984867, loss@max: 1.310810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.011940, loss@max: 1.345828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.982018, loss@max: 1.324651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.045013, loss@max: 1.378051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.046145, loss@max: 1.385796, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.977765, loss@max: 1.359170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.026528, loss@max: 1.384167, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 34, loss@min: 1.014191, loss@max: 1.378605, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 35, loss@min: 0.992321, loss@max: 1.374295, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.991782, loss@max: 1.369983, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.018129, loss@max: 1.375092, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 38, loss@min: 1.009171, loss@max: 1.387802, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 39, loss@min: 1.045529, loss@max: 1.403476, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.016093, loss@max: 1.394773, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 41, loss@min: 1.165649, loss@max: 1.431415, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 42, loss@min: 1.019525, loss@max: 1.384314, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 43, loss@min: 1.030820, loss@max: 1.395617, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.971996, loss@max: 1.367176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.982887, loss@max: 1.374882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.053741, loss@max: 1.384263, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.967056, loss@max: 1.378891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.988561, loss@max: 1.399234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.004739, loss@max: 1.388088, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 50, loss@min: 0.972438, loss@max: 1.377271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.044663, loss@max: 1.385248, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 52, loss@min: 1.083973, loss@max: 1.433672, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 53, loss@min: 0.972990, loss@max: 1.377351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.038472, loss@max: 1.406979, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 55, loss@min: 1.125351, loss@max: 1.418606, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.980166, loss@max: 1.382185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.966172, loss@max: 1.371495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.045473, loss@max: 1.408771, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 59, loss@min: 0.994452, loss@max: 1.393306, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 1.024700, loss@max: 1.415603, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 61, loss@min: 1.023193, loss@max: 1.411020, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 62, loss@min: 0.977598, loss@max: 1.391471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964416, loss@max: 1.378645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.985215, loss@max: 1.396661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.970424, loss@max: 1.381239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.060371, loss@max: 1.394439, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.969933, loss@max: 1.380307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.973256, loss@max: 1.379252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.971231, loss@max: 1.379730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.001581, loss@max: 1.414582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.965972, loss@max: 1.382032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.014012, loss@max: 1.406322, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.972225, loss@max: 1.381323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965654, loss@max: 1.381524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.037209, loss@max: 1.407855, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 76, loss@min: 0.985944, loss@max: 1.408235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950201, loss@max: 1.372935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.983756, loss@max: 1.393185, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.962941, loss@max: 1.383390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.981967, loss@max: 1.400166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.958671, loss@max: 1.372531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.963614, loss@max: 1.379857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.954802, loss@max: 1.372277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.955056, loss@max: 1.365003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.964278, loss@max: 1.376764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.977421, loss@max: 1.394102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.973960, loss@max: 1.390573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.967239, loss@max: 1.393359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.075762, loss@max: 1.420459, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 90, loss@min: 0.980029, loss@max: 1.407790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.958957, loss@max: 1.382636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.974205, loss@max: 1.393318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.966795, loss@max: 1.384898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.998245, loss@max: 1.396711, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.992804, loss@max: 1.401996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.976087, loss@max: 1.387288, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 1.015731, loss@max: 1.407237, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.007193, loss@max: 1.406477, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.963331, loss@max: 1.365007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.955114, loss@max: 1.375259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.413335, LT: 0.414720, Top1S: 88.519272, Top1T: 88.154160Best acc: 88.519272 +Train:epoch: 101, loss@min: 0.957105, loss@max: 1.376866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.413254, LT: 0.414497, Top1S: 88.519272, Top1T: 88.154160 +Train:epoch: 102, loss@min: 0.956147, loss@max: 1.371987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.413182, LT: 0.414239, Top1S: 88.519272, Top1T: 88.154160 +Train:epoch: 103, loss@min: 0.960433, loss@max: 1.373477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.413109, LT: 0.414025, Top1S: 88.519272, Top1T: 88.275864 +Train:epoch: 104, loss@min: 0.981481, loss@max: 1.390595, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 104, LS: 0.413018, LT: 0.413848, Top1S: 88.519272, Top1T: 88.275864 +Train:epoch: 105, loss@min: 0.970688, loss@max: 1.387059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.412950, LT: 0.413716, Top1S: 88.519272, Top1T: 88.275864 +Train:epoch: 106, loss@min: 1.016877, loss@max: 1.402215, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 106, LS: 0.412849, LT: 0.413657, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 107, loss@min: 0.949775, loss@max: 1.367913, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.412748, LT: 0.413597, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 108, loss@min: 0.952889, loss@max: 1.374918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.412652, LT: 0.413568, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 109, loss@min: 0.966894, loss@max: 1.393602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.412546, LT: 0.413561, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 110, loss@min: 0.956665, loss@max: 1.379578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.412448, LT: 0.413533, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 111, loss@min: 0.955647, loss@max: 1.379344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.412360, LT: 0.413480, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 112, loss@min: 0.974072, loss@max: 1.389241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.412297, LT: 0.413384, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 113, loss@min: 0.966514, loss@max: 1.388396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.412269, LT: 0.413308, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 114, loss@min: 0.960265, loss@max: 1.381053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.412262, LT: 0.413234, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 115, loss@min: 0.994874, loss@max: 1.383357, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 115, LS: 0.412234, LT: 0.413152, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 116, loss@min: 0.970599, loss@max: 1.385968, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.412190, LT: 0.413097, Top1S: 88.519272, Top1T: 88.316429 +Train:epoch: 117, loss@min: 0.972427, loss@max: 1.389897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.412154, LT: 0.413066, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 118, loss@min: 0.969877, loss@max: 1.388878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.412112, LT: 0.413066, Top1S: 88.478699, Top1T: 88.316429 +Train:epoch: 119, loss@min: 0.973835, loss@max: 1.390676, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.412081, LT: 0.413071, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 120, loss@min: 0.995323, loss@max: 1.396739, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 120, LS: 0.412027, LT: 0.413062, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 121, loss@min: 1.167511, loss@max: 1.444973, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 121, LS: 0.411984, LT: 0.413049, Top1S: 88.478699, Top1T: 88.275864 +Train:epoch: 122, loss@min: 0.973623, loss@max: 1.389091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.411957, LT: 0.413037, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 123, loss@min: 0.961322, loss@max: 1.385688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.411941, LT: 0.413014, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 124, loss@min: 0.958612, loss@max: 1.377660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.411910, LT: 0.412983, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 125, loss@min: 0.967638, loss@max: 1.393080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.411891, LT: 0.412956, Top1S: 88.478699, Top1T: 88.235298 +Train:epoch: 126, loss@min: 0.980782, loss@max: 1.385378, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 126, LS: 0.411878, LT: 0.412928, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 127, loss@min: 0.962685, loss@max: 1.388398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.411848, LT: 0.412914, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 128, loss@min: 0.954519, loss@max: 1.372747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.411817, LT: 0.412899, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 129, loss@min: 0.969048, loss@max: 1.383319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.411788, LT: 0.412883, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 130, loss@min: 0.957539, loss@max: 1.373096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.411752, LT: 0.412874, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 131, loss@min: 0.975385, loss@max: 1.393755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.411726, LT: 0.412872, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 132, loss@min: 0.967955, loss@max: 1.373611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.411704, LT: 0.412873, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 133, loss@min: 1.023052, loss@max: 1.426167, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 133, LS: 0.411681, LT: 0.412866, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 134, loss@min: 0.963539, loss@max: 1.385110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.411666, LT: 0.412859, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 135, loss@min: 0.955488, loss@max: 1.368557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.411653, LT: 0.412854, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 136, loss@min: 0.958715, loss@max: 1.375172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.411640, LT: 0.412856, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 137, loss@min: 0.978740, loss@max: 1.386745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.411630, LT: 0.412859, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 138, loss@min: 0.954884, loss@max: 1.369420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.411621, LT: 0.412861, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 139, loss@min: 0.976034, loss@max: 1.392573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.411620, LT: 0.412862, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 140, loss@min: 0.974446, loss@max: 1.391130, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.411616, LT: 0.412860, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 141, loss@min: 0.979197, loss@max: 1.389420, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 141, LS: 0.411616, LT: 0.412857, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 142, loss@min: 0.977992, loss@max: 1.390502, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.411615, LT: 0.412857, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 143, loss@min: 0.955402, loss@max: 1.373946, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.411616, LT: 0.412857, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 144, loss@min: 1.010346, loss@max: 1.414656, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 144, LS: 0.411616, LT: 0.412857, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 145, loss@min: 0.952588, loss@max: 1.368849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.411615, LT: 0.412857, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 146, loss@min: 0.971486, loss@max: 1.385279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.411614, LT: 0.412856, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 147, loss@min: 0.952820, loss@max: 1.371340, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.411614, LT: 0.412855, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 148, loss@min: 0.952874, loss@max: 1.374257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.411614, LT: 0.412855, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 149, loss@min: 0.962368, loss@max: 1.383120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.411614, LT: 0.412855, Top1S: 88.438133, Top1T: 88.235298 +Train:epoch: 150, loss@min: 0.975447, loss@max: 1.385690, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 150, LS: 0.411614, LT: 0.412855, Top1S: 88.438133, Top1T: 88.235298 +------------------------------------------- +Thu Sep 7 17:04:38 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "dtd", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 95} + +------------------------------------------- +Thu Sep 7 17:09:57 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 6.864038, loss@max: 2.164348, Top1S acc: 100.000000, Top1T acc: 36.170212 +Train:epoch: 2, loss@min: 6.239109, loss@max: 2.110489, Top1S acc: 100.000000, Top1T acc: 40.425533 +Train:epoch: 3, loss@min: 6.087925, loss@max: 2.157839, Top1S acc: 100.000000, Top1T acc: 36.170212 +Train:epoch: 4, loss@min: 5.457200, loss@max: 2.084973, Top1S acc: 100.000000, Top1T acc: 48.936169 +Train:epoch: 5, loss@min: 5.451830, loss@max: 2.150368, Top1S acc: 100.000000, Top1T acc: 44.680851 +Train:epoch: 6, loss@min: 4.921343, loss@max: 2.098724, Top1S acc: 100.000000, Top1T acc: 55.319149 +Train:epoch: 7, loss@min: 4.719309, loss@max: 2.098831, Top1S acc: 100.000000, Top1T acc: 57.446808 +Train:epoch: 8, loss@min: 4.213775, loss@max: 2.033779, Top1S acc: 100.000000, Top1T acc: 59.574467 +Train:epoch: 9, loss@min: 4.187243, loss@max: 2.070007, Top1S acc: 100.000000, Top1T acc: 61.702126 +Train:epoch: 10, loss@min: 4.030866, loss@max: 2.091991, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 11, loss@min: 3.677477, loss@max: 2.040624, Top1S acc: 100.000000, Top1T acc: 70.212761 +Train:epoch: 12, loss@min: 3.697488, loss@max: 2.116677, Top1S acc: 100.000000, Top1T acc: 63.829784 +Train:epoch: 13, loss@min: 3.299657, loss@max: 2.038018, Top1S acc: 100.000000, Top1T acc: 80.851067 +Train:epoch: 14, loss@min: 2.984782, loss@max: 2.014923, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 15, loss@min: 2.829937, loss@max: 1.991254, Top1S acc: 100.000000, Top1T acc: 82.978722 +Train:epoch: 16, loss@min: 2.597290, loss@max: 1.943859, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 17, loss@min: 2.572178, loss@max: 1.964193, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 18, loss@min: 2.445986, loss@max: 1.962167, Top1S acc: 100.000000, Top1T acc: 85.106377 +Train:epoch: 19, loss@min: 2.267075, loss@max: 1.905752, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 20, loss@min: 2.160710, loss@max: 1.891588, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 21, loss@min: 2.265773, loss@max: 1.938413, Top1S acc: 100.000000, Top1T acc: 87.234039 +Train:epoch: 22, loss@min: 1.938586, loss@max: 1.816850, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 23, loss@min: 1.843789, loss@max: 1.816632, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 24, loss@min: 1.944518, loss@max: 1.852768, Top1S acc: 100.000000, Top1T acc: 89.361702 +Train:epoch: 25, loss@min: 1.804304, loss@max: 1.804720, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 26, loss@min: 1.719900, loss@max: 1.774849, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 27, loss@min: 1.597469, loss@max: 1.761366, Top1S acc: 100.000000, Top1T acc: 91.489357 +Train:epoch: 28, loss@min: 1.566319, loss@max: 1.748245, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 29, loss@min: 1.584550, loss@max: 1.749610, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 30, loss@min: 1.508836, loss@max: 1.710129, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 31, loss@min: 1.501290, loss@max: 1.753345, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 32, loss@min: 1.514735, loss@max: 1.720040, Top1S acc: 100.000000, Top1T acc: 93.617020 +Train:epoch: 33, loss@min: 1.292770, loss@max: 1.626624, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 34, loss@min: 1.323947, loss@max: 1.651590, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 35, loss@min: 1.249738, loss@max: 1.624649, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 36, loss@min: 1.247382, loss@max: 1.641823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.326420, loss@max: 1.645835, Top1S acc: 100.000000, Top1T acc: 95.744675 +Train:epoch: 38, loss@min: 1.208836, loss@max: 1.612006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.209499, loss@max: 1.601853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.171254, loss@max: 1.575181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.186595, loss@max: 1.579773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.132234, loss@max: 1.545161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.185755, loss@max: 1.588406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.104961, loss@max: 1.531156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.126664, loss@max: 1.546742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.126466, loss@max: 1.547964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.076682, loss@max: 1.505448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.067658, loss@max: 1.487085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.100103, loss@max: 1.520659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.067395, loss@max: 1.488319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.081433, loss@max: 1.497054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.100124, loss@max: 1.508192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.059145, loss@max: 1.469814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.066768, loss@max: 1.484988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.101267, loss@max: 1.514216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.030329, loss@max: 1.459912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.064146, loss@max: 1.515590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.050719, loss@max: 1.491253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.069832, loss@max: 1.501311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.060775, loss@max: 1.491620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.045761, loss@max: 1.475444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.055489, loss@max: 1.466183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.053824, loss@max: 1.484937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.026320, loss@max: 1.460695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.028465, loss@max: 1.460639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.052860, loss@max: 1.498122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.037117, loss@max: 1.465610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.049288, loss@max: 1.491674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.011685, loss@max: 1.443967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.009551, loss@max: 1.439927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.015664, loss@max: 1.448995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.012021, loss@max: 1.451602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.013383, loss@max: 1.449627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.002284, loss@max: 1.444962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.012478, loss@max: 1.447144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.067333, loss@max: 1.478437, Top1S acc: 100.000000, Top1T acc: 97.872337 +Train:epoch: 77, loss@min: 1.019271, loss@max: 1.454811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.014242, loss@max: 1.449380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.017822, loss@max: 1.456891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.999341, loss@max: 1.421267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.006471, loss@max: 1.436270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.002362, loss@max: 1.433228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.014649, loss@max: 1.457520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.995656, loss@max: 1.427725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.017083, loss@max: 1.449421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.017600, loss@max: 1.460431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.000178, loss@max: 1.434479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.058397, loss@max: 1.476453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.007273, loss@max: 1.444168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.999371, loss@max: 1.439179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.008419, loss@max: 1.446745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.017534, loss@max: 1.452206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.999717, loss@max: 1.431469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.991799, loss@max: 1.430586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.006851, loss@max: 1.439252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.881352, LT: 1.891165, Top1S: 50.413712, Top1T: 50.650120Best acc: 50.650120 +Train:epoch: 96, loss@min: 1.001756, loss@max: 1.440399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.881203, LT: 1.890982, Top1S: 50.413712, Top1T: 50.650120 +Train:epoch: 97, loss@min: 1.030590, loss@max: 1.470168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.880997, LT: 1.890751, Top1S: 50.413712, Top1T: 50.768322Best acc: 50.768322 +Train:epoch: 98, loss@min: 0.996178, loss@max: 1.433751, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.880780, LT: 1.890550, Top1S: 50.413712, Top1T: 50.650120 +Train:epoch: 99, loss@min: 0.997327, loss@max: 1.420844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.880570, LT: 1.890347, Top1S: 50.413712, Top1T: 50.591015 +Train:epoch: 100, loss@min: 1.017396, loss@max: 1.449099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.880302, LT: 1.890134, Top1S: 50.413712, Top1T: 50.531914 +Train:epoch: 101, loss@min: 1.010711, loss@max: 1.440894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.880076, LT: 1.889935, Top1S: 50.413712, Top1T: 50.531914 +Train:epoch: 102, loss@min: 1.014737, loss@max: 1.432655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.879910, LT: 1.889766, Top1S: 50.413712, Top1T: 50.531914 +Train:epoch: 103, loss@min: 0.996407, loss@max: 1.417428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.879790, LT: 1.889571, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 104, loss@min: 0.995441, loss@max: 1.429760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.879739, LT: 1.889423, Top1S: 50.531914, Top1T: 50.472813 +Train:epoch: 105, loss@min: 1.005731, loss@max: 1.437373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.879652, LT: 1.889257, Top1S: 50.531914, Top1T: 50.472813 +Train:epoch: 106, loss@min: 1.017819, loss@max: 1.453737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.879570, LT: 1.889117, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 107, loss@min: 0.993828, loss@max: 1.421605, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.879431, LT: 1.888968, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 108, loss@min: 1.005563, loss@max: 1.438974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.879381, LT: 1.888900, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 109, loss@min: 0.999721, loss@max: 1.437775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.879313, LT: 1.888847, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 110, loss@min: 1.010615, loss@max: 1.439833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.879229, LT: 1.888775, Top1S: 50.531914, Top1T: 50.472813 +Train:epoch: 111, loss@min: 1.007058, loss@max: 1.437398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.879147, LT: 1.888701, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 112, loss@min: 0.992773, loss@max: 1.423409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.879113, LT: 1.888660, Top1S: 50.531914, Top1T: 50.531914 +Train:epoch: 113, loss@min: 0.994439, loss@max: 1.424698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.879112, LT: 1.888629, Top1S: 50.531914, Top1T: 50.591015 +Train:epoch: 114, loss@min: 0.994004, loss@max: 1.423551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.879077, LT: 1.888572, Top1S: 50.591015, Top1T: 50.591015 +Train:epoch: 115, loss@min: 0.989631, loss@max: 1.418285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.879043, LT: 1.888518, Top1S: 50.591015, Top1T: 50.591015 +Train:epoch: 116, loss@min: 1.003044, loss@max: 1.436577, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.879000, LT: 1.888415, Top1S: 50.591015, Top1T: 50.591015 +Train:epoch: 117, loss@min: 0.992069, loss@max: 1.422618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.878961, LT: 1.888341, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 118, loss@min: 0.992122, loss@max: 1.422816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.878921, LT: 1.888269, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 119, loss@min: 1.045704, loss@max: 1.465203, Top1S acc: 100.000000, Top1T acc: 97.872337 + Test:epoch: 119, LS: 1.878860, LT: 1.888166, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 120, loss@min: 0.995179, loss@max: 1.425822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.878788, LT: 1.888035, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 121, loss@min: 0.994884, loss@max: 1.429496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.878732, LT: 1.887921, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 122, loss@min: 1.003078, loss@max: 1.431781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.878698, LT: 1.887833, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 123, loss@min: 0.994444, loss@max: 1.425039, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.878643, LT: 1.887740, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 124, loss@min: 0.993433, loss@max: 1.423500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.878614, LT: 1.887673, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 125, loss@min: 0.998771, loss@max: 1.429337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.878590, LT: 1.887629, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 126, loss@min: 0.999091, loss@max: 1.433922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.878564, LT: 1.887600, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 127, loss@min: 0.996445, loss@max: 1.437080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.878531, LT: 1.887573, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 128, loss@min: 1.000835, loss@max: 1.433516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.878502, LT: 1.887541, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 129, loss@min: 0.994774, loss@max: 1.430500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.878457, LT: 1.887504, Top1S: 50.591015, Top1T: 50.650120 +Train:epoch: 130, loss@min: 0.991592, loss@max: 1.425579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.878411, LT: 1.887465, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 131, loss@min: 1.029166, loss@max: 1.453918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.878359, LT: 1.887423, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 132, loss@min: 1.000447, loss@max: 1.428668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.878328, LT: 1.887391, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 133, loss@min: 1.003938, loss@max: 1.432091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.878295, LT: 1.887360, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 134, loss@min: 1.021760, loss@max: 1.450017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.878274, LT: 1.887338, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 135, loss@min: 0.991831, loss@max: 1.427809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.878251, LT: 1.887322, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 136, loss@min: 1.005824, loss@max: 1.444086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.878227, LT: 1.887310, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 137, loss@min: 0.989686, loss@max: 1.417422, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.878209, LT: 1.887300, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 138, loss@min: 0.990969, loss@max: 1.418257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.878188, LT: 1.887288, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 139, loss@min: 0.999216, loss@max: 1.434044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.878172, LT: 1.887275, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 140, loss@min: 0.997824, loss@max: 1.436289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.878159, LT: 1.887266, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 141, loss@min: 0.995483, loss@max: 1.421429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.878151, LT: 1.887260, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 142, loss@min: 0.983069, loss@max: 1.407103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.878142, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 143, loss@min: 1.017831, loss@max: 1.442841, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.878139, LT: 1.887254, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 144, loss@min: 1.009034, loss@max: 1.447892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.878138, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 145, loss@min: 0.996216, loss@max: 1.428074, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.878137, LT: 1.887256, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 146, loss@min: 0.998302, loss@max: 1.429825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.878136, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 147, loss@min: 0.987608, loss@max: 1.417557, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.878135, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 148, loss@min: 0.992786, loss@max: 1.422528, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.878135, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 149, loss@min: 1.011897, loss@max: 1.452723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.878135, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +Train:epoch: 150, loss@min: 0.993647, loss@max: 1.428162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.878135, LT: 1.887255, Top1S: 50.650120, Top1T: 50.650120 +------------------------------------------- +Thu Sep 7 17:32:22 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 85} + +------------------------------------------- +Thu Sep 7 17:35:44 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.313946, loss@max: 1.533092, Top1S acc: 100.000000, Top1T acc: 40.000000 +Train:epoch: 2, loss@min: 4.736581, loss@max: 1.758530, Top1S acc: 100.000000, Top1T acc: 40.000000 +Train:epoch: 3, loss@min: 3.358526, loss@max: 1.535532, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 3.480012, loss@max: 1.694689, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 5, loss@min: 4.044565, loss@max: 1.934833, Top1S acc: 100.000000, Top1T acc: 40.000000 +Train:epoch: 6, loss@min: 3.285406, loss@max: 1.850659, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 7, loss@min: 3.483946, loss@max: 1.994250, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 8, loss@min: 3.044865, loss@max: 1.960210, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 9, loss@min: 2.932394, loss@max: 2.001889, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 2.893855, loss@max: 2.053868, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 11, loss@min: 2.777512, loss@max: 2.069653, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 2.464676, loss@max: 2.006683, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 13, loss@min: 2.515599, loss@max: 2.032899, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.521020, loss@max: 2.052964, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 15, loss@min: 2.280642, loss@max: 2.034641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 2.578112, loss@max: 2.102353, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 17, loss@min: 2.266107, loss@max: 2.030878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 2.081064, loss@max: 1.961589, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 19, loss@min: 2.159400, loss@max: 2.007744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.799514, loss@max: 1.907254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 2.204533, loss@max: 2.025499, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 22, loss@min: 1.743080, loss@max: 1.890187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.984090, loss@max: 1.981631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.909879, loss@max: 1.956639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.686046, loss@max: 1.887795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.680364, loss@max: 1.879998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.664198, loss@max: 1.856676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.776997, loss@max: 1.943945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.466857, loss@max: 1.772941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.798063, loss@max: 1.944371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.560972, loss@max: 1.808116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.721731, loss@max: 1.870429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.466650, loss@max: 1.737682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.535354, loss@max: 1.787793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.629859, loss@max: 1.835915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.436111, loss@max: 1.727292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.557524, loss@max: 1.824172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.320862, loss@max: 1.668555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.512089, loss@max: 1.779883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.515192, loss@max: 1.807556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.271070, loss@max: 1.676481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.367254, loss@max: 1.727559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.394170, loss@max: 1.713863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.518825, loss@max: 1.848243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.221631, loss@max: 1.652641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.357279, loss@max: 1.732400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.443579, loss@max: 1.794361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.552219, loss@max: 1.893094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.295905, loss@max: 1.694490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.326828, loss@max: 1.720547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.177037, loss@max: 1.614187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.290053, loss@max: 1.704039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.345773, loss@max: 1.735606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.191544, loss@max: 1.630385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.253088, loss@max: 1.699735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.294389, loss@max: 1.735547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.209697, loss@max: 1.675580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.314230, loss@max: 1.732316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.312462, loss@max: 1.747525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.329428, loss@max: 1.738561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.267152, loss@max: 1.718789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.358877, loss@max: 1.743577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.212196, loss@max: 1.628034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.190150, loss@max: 1.614502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.273219, loss@max: 1.680627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.233186, loss@max: 1.636437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.348222, loss@max: 1.761288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.219938, loss@max: 1.662106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.166977, loss@max: 1.613591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.180161, loss@max: 1.618334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.137979, loss@max: 1.588773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.232581, loss@max: 1.674509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.177029, loss@max: 1.644515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.172577, loss@max: 1.611156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.217865, loss@max: 1.623342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.245431, loss@max: 1.691555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.192098, loss@max: 1.654380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.100765, loss@max: 1.553030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.250412, loss@max: 1.629847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.157925, loss@max: 1.623743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.208058, loss@max: 1.660822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.062983, loss@max: 1.524264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.168482, loss@max: 1.632166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.134725, loss@max: 1.583250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.106430, loss@max: 1.564265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.458982, LT: 1.463779, Top1S: 54.864197, Top1T: 54.493828Best acc: 54.864197 +Train:epoch: 86, loss@min: 1.169950, loss@max: 1.602836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.459273, LT: 1.462092, Top1S: 54.888889, Top1T: 54.506172Best acc: 54.888889 +Train:epoch: 87, loss@min: 1.164723, loss@max: 1.611393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.459567, LT: 1.460582, Top1S: 54.901234, Top1T: 54.567902Best acc: 54.901234 +Train:epoch: 88, loss@min: 1.162362, loss@max: 1.617589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.459495, LT: 1.458979, Top1S: 54.901234, Top1T: 54.555557 +Train:epoch: 89, loss@min: 1.126292, loss@max: 1.581394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.459714, LT: 1.457723, Top1S: 54.888889, Top1T: 54.617283 +Train:epoch: 90, loss@min: 1.078764, loss@max: 1.531067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.458801, LT: 1.456614, Top1S: 54.913582, Top1T: 54.654320Best acc: 54.913582 +Train:epoch: 91, loss@min: 1.153079, loss@max: 1.612492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.458530, LT: 1.456302, Top1S: 54.925926, Top1T: 54.629631Best acc: 54.925926 +Train:epoch: 92, loss@min: 1.191828, loss@max: 1.634399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.458249, LT: 1.456343, Top1S: 54.925926, Top1T: 54.641975 +Train:epoch: 93, loss@min: 1.079525, loss@max: 1.530197, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.457785, LT: 1.456462, Top1S: 54.950619, Top1T: 54.617283Best acc: 54.950619 +Train:epoch: 94, loss@min: 1.073482, loss@max: 1.511164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.457034, LT: 1.456531, Top1S: 55.012344, Top1T: 54.666668Best acc: 55.012344 +Train:epoch: 95, loss@min: 1.097157, loss@max: 1.536569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.456404, LT: 1.456754, Top1S: 55.098766, Top1T: 54.679012Best acc: 55.098766 +Train:epoch: 96, loss@min: 1.146288, loss@max: 1.583178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.456535, LT: 1.457400, Top1S: 55.037037, Top1T: 54.679012 +Train:epoch: 97, loss@min: 1.093432, loss@max: 1.529965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.456184, LT: 1.457740, Top1S: 55.061729, Top1T: 54.753086 +Train:epoch: 98, loss@min: 1.102472, loss@max: 1.558232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.455110, LT: 1.457767, Top1S: 55.086418, Top1T: 54.753086 +Train:epoch: 99, loss@min: 1.157420, loss@max: 1.622724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.454156, LT: 1.457639, Top1S: 55.123455, Top1T: 54.790123Best acc: 55.123455 +Train:epoch: 100, loss@min: 1.096927, loss@max: 1.555107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.453303, LT: 1.457564, Top1S: 55.160492, Top1T: 54.765430Best acc: 55.160492 +Train:epoch: 101, loss@min: 1.129102, loss@max: 1.566061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.452929, LT: 1.457546, Top1S: 55.135803, Top1T: 54.753086 +Train:epoch: 102, loss@min: 1.196296, loss@max: 1.606532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.451694, LT: 1.457055, Top1S: 55.209877, Top1T: 54.753086Best acc: 55.209877 +Train:epoch: 103, loss@min: 1.148897, loss@max: 1.612992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.450943, LT: 1.456925, Top1S: 55.222221, Top1T: 54.839504Best acc: 55.222221 +Train:epoch: 104, loss@min: 1.124240, loss@max: 1.558054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.450509, LT: 1.456944, Top1S: 55.234570, Top1T: 54.802467Best acc: 55.234570 +Train:epoch: 105, loss@min: 1.131521, loss@max: 1.564819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.449750, LT: 1.456872, Top1S: 55.259258, Top1T: 54.851852Best acc: 55.259258 +Train:epoch: 106, loss@min: 1.136108, loss@max: 1.574550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.449417, LT: 1.457015, Top1S: 55.209877, Top1T: 54.814816 +Train:epoch: 107, loss@min: 1.119642, loss@max: 1.576297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.449243, LT: 1.457059, Top1S: 55.160492, Top1T: 54.851852 +Train:epoch: 108, loss@min: 1.131370, loss@max: 1.575911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.448957, LT: 1.457072, Top1S: 55.197533, Top1T: 54.827160 +Train:epoch: 109, loss@min: 1.101519, loss@max: 1.555261, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.448993, LT: 1.457132, Top1S: 55.172840, Top1T: 54.839504 +Train:epoch: 110, loss@min: 1.131572, loss@max: 1.582104, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.449160, LT: 1.457207, Top1S: 55.209877, Top1T: 54.740742 +Train:epoch: 111, loss@min: 1.092948, loss@max: 1.548377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.449367, LT: 1.457161, Top1S: 55.185184, Top1T: 54.777779 +Train:epoch: 112, loss@min: 1.088698, loss@max: 1.548983, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.449538, LT: 1.457099, Top1S: 55.197533, Top1T: 54.765430 +Train:epoch: 113, loss@min: 1.117126, loss@max: 1.574757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.449724, LT: 1.456964, Top1S: 55.209877, Top1T: 54.814816 +Train:epoch: 114, loss@min: 1.172236, loss@max: 1.613460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.450180, LT: 1.456963, Top1S: 55.197533, Top1T: 54.839504 +Train:epoch: 115, loss@min: 1.136614, loss@max: 1.572304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.450647, LT: 1.456919, Top1S: 55.234570, Top1T: 54.876545 +Train:epoch: 116, loss@min: 1.167901, loss@max: 1.622307, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.451144, LT: 1.456970, Top1S: 55.185184, Top1T: 54.901234 +Train:epoch: 117, loss@min: 1.062123, loss@max: 1.507445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.451321, LT: 1.456873, Top1S: 55.222221, Top1T: 54.876545 +Train:epoch: 118, loss@min: 1.160683, loss@max: 1.602058, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.451673, LT: 1.456877, Top1S: 55.209877, Top1T: 54.864197 +Train:epoch: 119, loss@min: 1.157962, loss@max: 1.562583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.451703, LT: 1.456587, Top1S: 55.185184, Top1T: 54.888889 +Train:epoch: 120, loss@min: 1.097649, loss@max: 1.549172, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.451627, LT: 1.456311, Top1S: 55.172840, Top1T: 54.901234 +Train:epoch: 121, loss@min: 1.090655, loss@max: 1.537001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.451574, LT: 1.456034, Top1S: 55.135803, Top1T: 54.888889 +Train:epoch: 122, loss@min: 1.081712, loss@max: 1.540275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.451723, LT: 1.455774, Top1S: 55.111111, Top1T: 54.901234 +Train:epoch: 123, loss@min: 1.083430, loss@max: 1.525928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.451968, LT: 1.455507, Top1S: 55.111111, Top1T: 54.938271 +Train:epoch: 124, loss@min: 1.252258, loss@max: 1.677533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.451736, LT: 1.454950, Top1S: 55.111111, Top1T: 55.012344 +Train:epoch: 125, loss@min: 1.154586, loss@max: 1.603310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.451318, LT: 1.454346, Top1S: 55.135803, Top1T: 54.975307 +Train:epoch: 126, loss@min: 1.159415, loss@max: 1.598259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.450901, LT: 1.453766, Top1S: 55.209877, Top1T: 54.987656 +Train:epoch: 127, loss@min: 1.061709, loss@max: 1.496689, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.450543, LT: 1.453281, Top1S: 55.197533, Top1T: 55.024693 +Train:epoch: 128, loss@min: 1.110690, loss@max: 1.568134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.450434, LT: 1.453021, Top1S: 55.197533, Top1T: 55.037037 +Train:epoch: 129, loss@min: 1.096643, loss@max: 1.559425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.450219, LT: 1.452708, Top1S: 55.209877, Top1T: 55.037037 +Train:epoch: 130, loss@min: 1.051128, loss@max: 1.504219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.450039, LT: 1.452467, Top1S: 55.222221, Top1T: 55.049381 +Train:epoch: 131, loss@min: 1.112375, loss@max: 1.572364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.449944, LT: 1.452333, Top1S: 55.222221, Top1T: 55.061729 +Train:epoch: 132, loss@min: 1.191048, loss@max: 1.630874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.449990, LT: 1.452322, Top1S: 55.234570, Top1T: 55.061729 +Train:epoch: 133, loss@min: 1.161801, loss@max: 1.611811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.449992, LT: 1.452273, Top1S: 55.234570, Top1T: 55.049381 +Train:epoch: 134, loss@min: 1.124749, loss@max: 1.577538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.450098, LT: 1.452286, Top1S: 55.246914, Top1T: 55.049381 +Train:epoch: 135, loss@min: 1.193843, loss@max: 1.624973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.450188, LT: 1.452304, Top1S: 55.222221, Top1T: 55.037037 +Train:epoch: 136, loss@min: 1.190556, loss@max: 1.643481, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.450239, LT: 1.452292, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 137, loss@min: 1.140730, loss@max: 1.585085, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.450241, LT: 1.452267, Top1S: 55.222221, Top1T: 55.024693 +Train:epoch: 138, loss@min: 1.133970, loss@max: 1.594484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.450305, LT: 1.452298, Top1S: 55.222221, Top1T: 55.024693 +Train:epoch: 139, loss@min: 1.173615, loss@max: 1.636402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.450371, LT: 1.452336, Top1S: 55.197533, Top1T: 55.012344 +Train:epoch: 140, loss@min: 1.312505, loss@max: 1.723695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.450401, LT: 1.452364, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 141, loss@min: 1.072790, loss@max: 1.521124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.450418, LT: 1.452378, Top1S: 55.209877, Top1T: 55.012344 +Train:epoch: 142, loss@min: 1.136778, loss@max: 1.578220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.450451, LT: 1.452392, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 143, loss@min: 1.181366, loss@max: 1.624400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.450462, LT: 1.452398, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 144, loss@min: 1.129909, loss@max: 1.569864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.450472, LT: 1.452403, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 145, loss@min: 1.255523, loss@max: 1.644649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.450488, LT: 1.452419, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 146, loss@min: 1.296926, loss@max: 1.724513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.450491, LT: 1.452423, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 147, loss@min: 1.215288, loss@max: 1.617719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.450489, LT: 1.452423, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 148, loss@min: 1.078330, loss@max: 1.529255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.450488, LT: 1.452422, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 149, loss@min: 1.178715, loss@max: 1.623551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.450487, LT: 1.452422, Top1S: 55.209877, Top1T: 55.024693 +Train:epoch: 150, loss@min: 1.159568, loss@max: 1.605959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.450487, LT: 1.452422, Top1S: 55.209877, Top1T: 55.024693 +------------------------------------------- +Thu Sep 7 19:10:11 2023 +------------------------------------------- +{"dataset_dir": "G:\\\\datasets", "dataset_name": "fgvc", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Sep 7 19:33:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 9.631031, loss@max: 2.874751, Top1S acc: 100.000000, Top1T acc: 20.000000 +Train:epoch: 2, loss@min: 9.496850, loss@max: 2.956710, Top1S acc: 100.000000, Top1T acc: 20.000000 +Train:epoch: 3, loss@min: 8.652597, loss@max: 2.858267, Top1S acc: 100.000000, Top1T acc: 22.000000 +Train:epoch: 4, loss@min: 8.117214, loss@max: 2.825130, Top1S acc: 100.000000, Top1T acc: 31.000000 +Train:epoch: 5, loss@min: 7.920715, loss@max: 2.875258, Top1S acc: 100.000000, Top1T acc: 29.000000 +Train:epoch: 6, loss@min: 7.263900, loss@max: 2.807555, Top1S acc: 100.000000, Top1T acc: 38.000000 +Train:epoch: 7, loss@min: 7.604751, loss@max: 2.981738, Top1S acc: 100.000000, Top1T acc: 35.000000 +Train:epoch: 8, loss@min: 7.395192, loss@max: 3.001047, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 9, loss@min: 6.683547, loss@max: 2.898021, Top1S acc: 100.000000, Top1T acc: 43.000000 +Train:epoch: 10, loss@min: 6.568714, loss@max: 2.928751, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 11, loss@min: 6.410815, loss@max: 2.943096, Top1S acc: 100.000000, Top1T acc: 53.000000 +Train:epoch: 12, loss@min: 5.972057, loss@max: 2.886954, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 13, loss@min: 6.002706, loss@max: 2.932590, Top1S acc: 100.000000, Top1T acc: 49.000000 +Train:epoch: 14, loss@min: 5.845567, loss@max: 2.936389, Top1S acc: 100.000000, Top1T acc: 57.000000 +Train:epoch: 15, loss@min: 5.350085, loss@max: 2.835442, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 16, loss@min: 5.013637, loss@max: 2.766444, Top1S acc: 100.000000, Top1T acc: 63.000000 +Train:epoch: 17, loss@min: 5.275839, loss@max: 2.879181, Top1S acc: 100.000000, Top1T acc: 56.000000 +Train:epoch: 18, loss@min: 5.014390, loss@max: 2.850605, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 19, loss@min: 4.902956, loss@max: 2.823625, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 20, loss@min: 4.286468, loss@max: 2.698537, Top1S acc: 100.000000, Top1T acc: 71.000000 +Train:epoch: 21, loss@min: 4.494445, loss@max: 2.794065, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 22, loss@min: 4.261554, loss@max: 2.747700, Top1S acc: 100.000000, Top1T acc: 64.000000 +Train:epoch: 23, loss@min: 4.331843, loss@max: 2.732679, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 24, loss@min: 4.163276, loss@max: 2.743265, Top1S acc: 100.000000, Top1T acc: 67.000000 +Train:epoch: 25, loss@min: 3.940928, loss@max: 2.699651, Top1S acc: 100.000000, Top1T acc: 73.000000 +Train:epoch: 26, loss@min: 3.643637, loss@max: 2.628103, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 27, loss@min: 3.454566, loss@max: 2.547183, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 28, loss@min: 3.766460, loss@max: 2.663931, Top1S acc: 100.000000, Top1T acc: 73.000000 +Train:epoch: 29, loss@min: 3.380963, loss@max: 2.569360, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 30, loss@min: 3.144842, loss@max: 2.454476, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 31, loss@min: 3.275170, loss@max: 2.513617, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 3.293511, loss@max: 2.516890, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 33, loss@min: 2.878811, loss@max: 2.375123, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 34, loss@min: 3.096948, loss@max: 2.427448, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 3.261309, loss@max: 2.446742, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 36, loss@min: 2.900014, loss@max: 2.349478, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 37, loss@min: 2.712635, loss@max: 2.329198, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 2.888415, loss@max: 2.371664, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 2.606596, loss@max: 2.236826, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 40, loss@min: 2.538209, loss@max: 2.233781, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 41, loss@min: 2.855340, loss@max: 2.340135, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 2.523461, loss@max: 2.207502, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 43, loss@min: 2.499844, loss@max: 2.168097, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 44, loss@min: 2.573236, loss@max: 2.224110, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 45, loss@min: 2.423668, loss@max: 2.161834, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 46, loss@min: 2.304802, loss@max: 2.141105, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 47, loss@min: 2.287598, loss@max: 2.106725, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 48, loss@min: 2.437927, loss@max: 2.155873, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 49, loss@min: 2.334229, loss@max: 2.126617, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 50, loss@min: 2.400993, loss@max: 2.172054, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 51, loss@min: 2.158807, loss@max: 2.023446, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 52, loss@min: 2.293659, loss@max: 2.131545, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 53, loss@min: 2.312371, loss@max: 2.100568, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 54, loss@min: 2.140530, loss@max: 2.037019, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 55, loss@min: 2.228021, loss@max: 2.071840, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 56, loss@min: 2.463854, loss@max: 2.203939, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 57, loss@min: 2.052913, loss@max: 1.999397, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 2.008135, loss@max: 1.970756, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 59, loss@min: 2.170697, loss@max: 2.070814, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 60, loss@min: 1.996395, loss@max: 1.956922, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 61, loss@min: 2.038826, loss@max: 2.011593, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 62, loss@min: 2.079550, loss@max: 2.007054, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 63, loss@min: 2.115804, loss@max: 2.010010, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 64, loss@min: 2.115176, loss@max: 2.014860, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 65, loss@min: 1.908913, loss@max: 1.941433, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 66, loss@min: 1.953503, loss@max: 1.927031, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 67, loss@min: 1.865961, loss@max: 1.925914, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 68, loss@min: 2.056505, loss@max: 2.027790, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 69, loss@min: 1.989536, loss@max: 1.984234, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 70, loss@min: 1.900411, loss@max: 1.899123, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 71, loss@min: 1.943317, loss@max: 1.981650, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 72, loss@min: 1.811851, loss@max: 1.877094, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 73, loss@min: 1.914441, loss@max: 1.901528, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 74, loss@min: 1.838461, loss@max: 1.887354, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 75, loss@min: 1.875765, loss@max: 1.914241, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 76, loss@min: 1.834144, loss@max: 1.905791, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 77, loss@min: 1.813806, loss@max: 1.860012, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 78, loss@min: 1.832383, loss@max: 1.865223, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 79, loss@min: 1.723254, loss@max: 1.814393, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 80, loss@min: 1.778444, loss@max: 1.844141, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 80, LS: 3.621916, LT: 3.592583, Top1S: 21.572157, Top1T: 21.512150Best acc: 21.572157 +Train:epoch: 81, loss@min: 1.834027, loss@max: 1.873567, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 81, LS: 3.624234, LT: 3.594162, Top1S: 21.512150, Top1T: 21.662165Best acc: 21.662165 +Train:epoch: 82, loss@min: 1.820905, loss@max: 1.862606, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 82, LS: 3.626976, LT: 3.595758, Top1S: 21.512150, Top1T: 21.452145 +Train:epoch: 83, loss@min: 1.826558, loss@max: 1.901108, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 83, LS: 3.629014, LT: 3.596999, Top1S: 21.662165, Top1T: 21.512150 +Train:epoch: 84, loss@min: 1.806448, loss@max: 1.865866, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 84, LS: 3.630904, LT: 3.598468, Top1S: 21.662165, Top1T: 21.542154 +Train:epoch: 85, loss@min: 1.788537, loss@max: 1.867759, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 85, LS: 3.632330, LT: 3.599654, Top1S: 21.692169, Top1T: 21.422142Best acc: 21.692169 +Train:epoch: 86, loss@min: 1.705992, loss@max: 1.831642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 3.633397, LT: 3.600828, Top1S: 21.572157, Top1T: 21.452145 +Train:epoch: 87, loss@min: 1.832970, loss@max: 1.866557, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 87, LS: 3.634338, LT: 3.602135, Top1S: 21.572157, Top1T: 21.482147 +Train:epoch: 88, loss@min: 1.754329, loss@max: 1.829893, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 88, LS: 3.634906, LT: 3.602961, Top1S: 21.572157, Top1T: 21.392138 +Train:epoch: 89, loss@min: 1.790930, loss@max: 1.853003, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 89, LS: 3.635132, LT: 3.603576, Top1S: 21.632162, Top1T: 21.422142 +Train:epoch: 90, loss@min: 1.850293, loss@max: 1.885593, Top1S acc: 100.000000, Top1T acc: 97.000000 + Test:epoch: 90, LS: 3.635824, LT: 3.604527, Top1S: 21.542154, Top1T: 21.452145 +Train:epoch: 91, loss@min: 1.692661, loss@max: 1.792393, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 91, LS: 3.636561, LT: 3.605563, Top1S: 21.452145, Top1T: 21.422142 +Train:epoch: 92, loss@min: 1.725194, loss@max: 1.807734, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 92, LS: 3.637065, LT: 3.606354, Top1S: 21.512150, Top1T: 21.362135 +Train:epoch: 93, loss@min: 1.697596, loss@max: 1.817885, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 93, LS: 3.637786, LT: 3.607427, Top1S: 21.512150, Top1T: 21.422142 +Train:epoch: 94, loss@min: 1.724137, loss@max: 1.819057, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 94, LS: 3.638415, LT: 3.608456, Top1S: 21.512150, Top1T: 21.452145 +Train:epoch: 95, loss@min: 1.709300, loss@max: 1.823226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 3.638981, LT: 3.609357, Top1S: 21.542154, Top1T: 21.512150 +Train:epoch: 96, loss@min: 1.743030, loss@max: 1.816376, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 96, LS: 3.639889, LT: 3.610351, Top1S: 21.512150, Top1T: 21.422142 +Train:epoch: 97, loss@min: 1.682530, loss@max: 1.802665, Top1S acc: 100.000000, Top1T acc: 98.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "food101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 19:54:59 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 3.610102, loss@max: 1.453077, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 2, loss@min: 3.063818, loss@max: 1.464855, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 3, loss@min: 2.872794, loss@max: 1.523951, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 4, loss@min: 2.667664, loss@max: 1.533327, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 5, loss@min: 2.190691, loss@max: 1.458573, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 6, loss@min: 2.145351, loss@max: 1.498353, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 1.841403, loss@max: 1.462510, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 8, loss@min: 2.014935, loss@max: 1.541587, Top1S acc: 100.000000, Top1T acc: 88.118813 +Train:epoch: 9, loss@min: 1.698472, loss@max: 1.486657, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 10, loss@min: 1.527632, loss@max: 1.481612, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 11, loss@min: 1.348210, loss@max: 1.440140, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.392675, loss@max: 1.444266, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 13, loss@min: 1.466577, loss@max: 1.457107, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 14, loss@min: 1.492090, loss@max: 1.455031, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 15, loss@min: 1.383595, loss@max: 1.405024, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 16, loss@min: 1.480901, loss@max: 1.420470, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 17, loss@min: 1.258041, loss@max: 1.360298, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 18, loss@min: 1.394415, loss@max: 1.416058, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 19, loss@min: 1.381036, loss@max: 1.408665, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 20, loss@min: 1.286674, loss@max: 1.392053, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 21, loss@min: 1.226578, loss@max: 1.383892, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 22, loss@min: 1.171866, loss@max: 1.373131, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 23, loss@min: 1.172168, loss@max: 1.363423, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 24, loss@min: 1.317042, loss@max: 1.407859, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 25, loss@min: 0.986106, loss@max: 1.331083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.192142, loss@max: 1.401604, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 27, loss@min: 1.017031, loss@max: 1.364986, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 28, loss@min: 1.163328, loss@max: 1.420930, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 29, loss@min: 1.018357, loss@max: 1.376821, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 1.078992, loss@max: 1.403715, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 31, loss@min: 1.010063, loss@max: 1.377600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.964570, loss@max: 1.353778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.960565, loss@max: 1.346149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.079855, loss@max: 1.397510, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 35, loss@min: 0.986688, loss@max: 1.361309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.010581, loss@max: 1.374954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.050353, loss@max: 1.394095, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 38, loss@min: 1.017454, loss@max: 1.383455, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 39, loss@min: 0.976885, loss@max: 1.363614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.104558, loss@max: 1.408837, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 41, loss@min: 0.981045, loss@max: 1.367165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.974487, loss@max: 1.360322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.040606, loss@max: 1.380028, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 44, loss@min: 1.144520, loss@max: 1.409781, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 45, loss@min: 1.060884, loss@max: 1.394733, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 46, loss@min: 0.982865, loss@max: 1.366463, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 47, loss@min: 0.964405, loss@max: 1.366649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.006714, loss@max: 1.397691, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 49, loss@min: 0.991334, loss@max: 1.398365, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 50, loss@min: 0.977023, loss@max: 1.383488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.988946, loss@max: 1.385557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.974876, loss@max: 1.377023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.984031, loss@max: 1.380611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.001410, loss@max: 1.384604, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 55, loss@min: 0.988813, loss@max: 1.390355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.991218, loss@max: 1.375499, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 57, loss@min: 0.956976, loss@max: 1.378834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.960187, loss@max: 1.368342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.965874, loss@max: 1.380209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.956470, loss@max: 1.377015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.965229, loss@max: 1.380313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.971512, loss@max: 1.389028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.966711, loss@max: 1.376773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.978824, loss@max: 1.387053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.972946, loss@max: 1.370766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.972784, loss@max: 1.382730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.989464, loss@max: 1.394682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.973543, loss@max: 1.375174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.989620, loss@max: 1.389353, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 70, loss@min: 0.965351, loss@max: 1.378531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.967214, loss@max: 1.394492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.970438, loss@max: 1.391739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.981740, loss@max: 1.394001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.999830, loss@max: 1.386733, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.959605, loss@max: 1.369377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.999233, loss@max: 1.385295, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.972514, loss@max: 1.389134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.000643, loss@max: 1.392835, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 79, loss@min: 0.963164, loss@max: 1.381044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.979801, loss@max: 1.385767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.972009, loss@max: 1.381840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.966155, loss@max: 1.373067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.983820, loss@max: 1.392080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.958512, loss@max: 1.376373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.976974, loss@max: 1.378508, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 0.951085, loss@max: 1.373431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.979674, loss@max: 1.388080, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 88, loss@min: 0.967930, loss@max: 1.390807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.970205, loss@max: 1.393592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958303, loss@max: 1.369760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.979590, loss@max: 1.381549, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.976883, loss@max: 1.385895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.955440, loss@max: 1.366255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.955897, loss@max: 1.368488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.961239, loss@max: 1.381968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.964322, loss@max: 1.376897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955737, loss@max: 1.373274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.960610, loss@max: 1.380465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.990234, loss@max: 1.395347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.009039, loss@max: 1.399455, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 100, LS: 1.211641, LT: 1.224911, Top1S: 76.042900, Top1T: 75.811882Best acc: 76.042900 +Train:epoch: 101, loss@min: 0.956097, loss@max: 1.380413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.211455, LT: 1.224755, Top1S: 76.046204, Top1T: 75.808578Best acc: 76.046204 +Train:epoch: 102, loss@min: 0.954725, loss@max: 1.378527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.211240, LT: 1.224628, Top1S: 76.042900, Top1T: 75.792076 +Train:epoch: 103, loss@min: 0.955827, loss@max: 1.371254, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.211056, LT: 1.224491, Top1S: 76.046204, Top1T: 75.792076 +Train:epoch: 104, loss@min: 0.956407, loss@max: 1.375266, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.210941, LT: 1.224412, Top1S: 76.049507, Top1T: 75.792076Best acc: 76.049507 +Train:epoch: 105, loss@min: 0.969559, loss@max: 1.380816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.210895, LT: 1.224364, Top1S: 76.029701, Top1T: 75.778877 +Train:epoch: 106, loss@min: 0.969876, loss@max: 1.385144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.210858, LT: 1.224342, Top1S: 76.049507, Top1T: 75.782181 +Train:epoch: 107, loss@min: 0.980772, loss@max: 1.380859, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 107, LS: 1.210936, LT: 1.224375, Top1S: 76.049507, Top1T: 75.801979 +Train:epoch: 108, loss@min: 0.961791, loss@max: 1.377894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.210998, LT: 1.224372, Top1S: 76.049507, Top1T: 75.795380 +Train:epoch: 109, loss@min: 0.955294, loss@max: 1.367780, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.211067, LT: 1.224350, Top1S: 76.046204, Top1T: 75.792076 +Train:epoch: 110, loss@min: 0.954806, loss@max: 1.363968, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 21:05:46 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 5.493614, loss@max: 1.865925, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 5.131310, loss@max: 1.911094, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 3, loss@min: 4.672680, loss@max: 1.913122, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 4, loss@min: 4.491501, loss@max: 1.961230, Top1S acc: 100.000000, Top1T acc: 69.607849 +Train:epoch: 5, loss@min: 4.217252, loss@max: 1.969991, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 6, loss@min: 4.259786, loss@max: 2.039097, Top1S acc: 100.000000, Top1T acc: 68.627457 +Train:epoch: 7, loss@min: 3.846062, loss@max: 1.993432, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 8, loss@min: 3.758838, loss@max: 2.016609, Top1S acc: 100.000000, Top1T acc: 69.607849 +Train:epoch: 9, loss@min: 3.564594, loss@max: 2.001971, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 10, loss@min: 3.258827, loss@max: 1.948367, Top1S acc: 100.000000, Top1T acc: 75.490196 +Train:epoch: 11, loss@min: 3.139081, loss@max: 1.953743, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 12, loss@min: 3.341467, loss@max: 2.021338, Top1S acc: 100.000000, Top1T acc: 73.529411 +Train:epoch: 13, loss@min: 3.192300, loss@max: 1.990959, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 14, loss@min: 2.976358, loss@max: 1.960665, Top1S acc: 100.000000, Top1T acc: 73.529411 +Train:epoch: 15, loss@min: 2.699114, loss@max: 1.887749, Top1S acc: 100.000000, Top1T acc: 83.333336 +Train:epoch: 16, loss@min: 2.907645, loss@max: 1.949001, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 17, loss@min: 2.548006, loss@max: 1.860248, Top1S acc: 100.000000, Top1T acc: 82.352943 +Train:epoch: 18, loss@min: 2.597343, loss@max: 1.889510, Top1S acc: 100.000000, Top1T acc: 81.372551 +Train:epoch: 19, loss@min: 2.430477, loss@max: 1.852302, Top1S acc: 100.000000, Top1T acc: 79.411766 +Train:epoch: 20, loss@min: 2.390370, loss@max: 1.857550, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 21, loss@min: 2.361974, loss@max: 1.873801, Top1S acc: 100.000000, Top1T acc: 81.372551 +Train:epoch: 22, loss@min: 2.231513, loss@max: 1.851768, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 23, loss@min: 2.417589, loss@max: 1.884856, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 24, loss@min: 2.223166, loss@max: 1.853405, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 25, loss@min: 1.944379, loss@max: 1.794260, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 26, loss@min: 1.975629, loss@max: 1.803811, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 27, loss@min: 2.200125, loss@max: 1.869082, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 28, loss@min: 1.906762, loss@max: 1.774362, Top1S acc: 100.000000, Top1T acc: 88.235298 +Train:epoch: 29, loss@min: 1.851295, loss@max: 1.783807, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 30, loss@min: 1.748756, loss@max: 1.749517, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 31, loss@min: 1.692495, loss@max: 1.723969, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 32, loss@min: 1.860738, loss@max: 1.778608, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 33, loss@min: 1.809960, loss@max: 1.769003, Top1S acc: 100.000000, Top1T acc: 88.235298 +Train:epoch: 34, loss@min: 1.835606, loss@max: 1.727992, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 35, loss@min: 1.775625, loss@max: 1.746740, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 36, loss@min: 1.563645, loss@max: 1.698682, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 37, loss@min: 1.667943, loss@max: 1.709116, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 38, loss@min: 1.528682, loss@max: 1.678086, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 39, loss@min: 1.593677, loss@max: 1.669554, Top1S acc: 100.000000, Top1T acc: 91.176476 +Train:epoch: 40, loss@min: 1.410162, loss@max: 1.628929, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 41, loss@min: 1.518661, loss@max: 1.663853, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 42, loss@min: 1.418442, loss@max: 1.628741, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 43, loss@min: 1.423399, loss@max: 1.653910, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 44, loss@min: 1.334497, loss@max: 1.610956, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 45, loss@min: 1.384220, loss@max: 1.625775, Top1S acc: 100.000000, Top1T acc: 93.137260 +Train:epoch: 46, loss@min: 1.339410, loss@max: 1.601438, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 47, loss@min: 1.362279, loss@max: 1.618382, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 48, loss@min: 1.319900, loss@max: 1.587357, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 49, loss@min: 1.229255, loss@max: 1.552902, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 50, loss@min: 1.194912, loss@max: 1.565395, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 51, loss@min: 1.230909, loss@max: 1.571182, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 52, loss@min: 1.302690, loss@max: 1.618396, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 53, loss@min: 1.205836, loss@max: 1.577676, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 54, loss@min: 1.272431, loss@max: 1.578511, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 55, loss@min: 1.272380, loss@max: 1.578012, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 56, loss@min: 1.187161, loss@max: 1.561329, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 57, loss@min: 1.215853, loss@max: 1.563473, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 58, loss@min: 1.164215, loss@max: 1.533469, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 59, loss@min: 1.100946, loss@max: 1.511581, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 60, loss@min: 1.142529, loss@max: 1.542280, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 61, loss@min: 1.144626, loss@max: 1.552525, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 62, loss@min: 1.141668, loss@max: 1.548209, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 63, loss@min: 1.126269, loss@max: 1.529683, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 64, loss@min: 1.144799, loss@max: 1.538833, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 65, loss@min: 1.236649, loss@max: 1.568925, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 66, loss@min: 1.171842, loss@max: 1.539354, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 67, loss@min: 1.121155, loss@max: 1.540871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.096259, loss@max: 1.517381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.122163, loss@max: 1.522248, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 70, loss@min: 1.066888, loss@max: 1.502413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.094433, loss@max: 1.499132, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 72, loss@min: 1.132555, loss@max: 1.528234, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 73, loss@min: 1.081568, loss@max: 1.501285, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 74, loss@min: 1.050114, loss@max: 1.479946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.135671, loss@max: 1.539484, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 76, loss@min: 1.070886, loss@max: 1.481391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 1.079157, loss@max: 1.500751, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 78, loss@min: 1.086082, loss@max: 1.508686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.054172, loss@max: 1.470274, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 80, loss@min: 1.150988, loss@max: 1.539904, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 81, loss@min: 1.026188, loss@max: 1.454619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.090787, loss@max: 1.514924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.102726, loss@max: 1.500568, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 84, loss@min: 1.060664, loss@max: 1.483087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.059671, loss@max: 1.473602, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 86, loss@min: 1.067353, loss@max: 1.472737, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 87, loss@min: 1.045402, loss@max: 1.458673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.033171, loss@max: 1.461371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.059124, loss@max: 1.484497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.053695, loss@max: 1.475243, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 91, loss@min: 1.077214, loss@max: 1.497191, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 92, loss@min: 1.056753, loss@max: 1.470647, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 93, loss@min: 1.046083, loss@max: 1.478873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.058932, loss@max: 1.487744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.029365, loss@max: 1.460791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.028949, loss@max: 1.444630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.012406, loss@max: 1.439056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.035786, loss@max: 1.467175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.031439, loss@max: 1.456862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.027365, loss@max: 1.462298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.913640, LT: 0.921713, Top1S: 75.274055, Top1T: 74.543243Best acc: 75.274055 +Train:epoch: 101, loss@min: 1.047413, loss@max: 1.469551, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.912818, LT: 0.920819, Top1S: 75.314659, Top1T: 74.665047Best acc: 75.314659 +Train:epoch: 102, loss@min: 1.023590, loss@max: 1.451426, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.911969, LT: 0.919982, Top1S: 75.436462, Top1T: 74.665047Best acc: 75.436462 +Train:epoch: 103, loss@min: 1.029346, loss@max: 1.457180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.911133, LT: 0.919184, Top1S: 75.477058, Top1T: 74.746246Best acc: 75.477058 +Train:epoch: 104, loss@min: 1.036325, loss@max: 1.458580, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 104, LS: 0.910336, LT: 0.918402, Top1S: 75.598862, Top1T: 74.746246Best acc: 75.598862 +Train:epoch: 105, loss@min: 1.050925, loss@max: 1.479929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.909643, LT: 0.917756, Top1S: 75.598862, Top1T: 74.786850 +Train:epoch: 106, loss@min: 1.040990, loss@max: 1.467709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.908844, LT: 0.917093, Top1S: 75.598862, Top1T: 74.827446 +Train:epoch: 107, loss@min: 1.003995, loss@max: 1.432053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.908118, LT: 0.916516, Top1S: 75.598862, Top1T: 74.868050 +Train:epoch: 108, loss@min: 1.030243, loss@max: 1.462640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.907482, LT: 0.915996, Top1S: 75.598862, Top1T: 74.868050 +Train:epoch: 109, loss@min: 1.028404, loss@max: 1.453691, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 109, LS: 0.906931, LT: 0.915530, Top1S: 75.639465, Top1T: 74.868050Best acc: 75.639465 +Train:epoch: 110, loss@min: 1.020464, loss@max: 1.448850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.906364, LT: 0.915059, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 111, loss@min: 1.047093, loss@max: 1.458796, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 111, LS: 0.905747, LT: 0.914535, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 112, loss@min: 1.034241, loss@max: 1.470313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.905126, LT: 0.913991, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 113, loss@min: 1.075398, loss@max: 1.472587, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 113, LS: 0.904592, LT: 0.913508, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 114, loss@min: 1.025471, loss@max: 1.453277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.904057, LT: 0.913051, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 115, loss@min: 1.038274, loss@max: 1.466850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.903609, LT: 0.912677, Top1S: 75.639465, Top1T: 74.868050 +Train:epoch: 116, loss@min: 1.063746, loss@max: 1.477780, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 116, LS: 0.903124, LT: 0.912211, Top1S: 75.639465, Top1T: 74.908653 +Train:epoch: 117, loss@min: 1.087892, loss@max: 1.485819, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 117, LS: 0.902618, LT: 0.911722, Top1S: 75.598862, Top1T: 74.949249 +Train:epoch: 118, loss@min: 1.035891, loss@max: 1.462017, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "oxford_pets", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Thu Sep 7 21:26:22 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 2.717946, loss@max: 1.216638, Top1S acc: 100.000000, Top1T acc: 81.081093 +Train:epoch: 2, loss@min: 1.847854, loss@max: 1.167723, Top1S acc: 100.000000, Top1T acc: 86.486488 +Train:epoch: 3, loss@min: 1.733055, loss@max: 1.274775, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 4, loss@min: 1.686034, loss@max: 1.358595, Top1S acc: 100.000000, Top1T acc: 83.783783 +Train:epoch: 5, loss@min: 1.889664, loss@max: 1.491581, Top1S acc: 100.000000, Top1T acc: 83.783783 +Train:epoch: 6, loss@min: 1.533215, loss@max: 1.457561, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 7, loss@min: 1.276359, loss@max: 1.422283, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 8, loss@min: 1.496755, loss@max: 1.509177, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 9, loss@min: 1.302912, loss@max: 1.466649, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 10, loss@min: 1.173950, loss@max: 1.434933, Top1S acc: 100.000000, Top1T acc: 89.189201 +Train:epoch: 11, loss@min: 0.957095, loss@max: 1.367147, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 12, loss@min: 0.947882, loss@max: 1.362276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.124962, loss@max: 1.375468, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 14, loss@min: 1.054538, loss@max: 1.357703, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 15, loss@min: 1.273174, loss@max: 1.386128, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 16, loss@min: 1.139346, loss@max: 1.347469, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 17, loss@min: 1.168632, loss@max: 1.319387, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 18, loss@min: 1.461723, loss@max: 1.412664, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 19, loss@min: 1.047093, loss@max: 1.281409, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 20, loss@min: 1.453451, loss@max: 1.415926, Top1S acc: 100.000000, Top1T acc: 91.891891 +Train:epoch: 21, loss@min: 1.017980, loss@max: 1.304929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.156988, loss@max: 1.374551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.100868, loss@max: 1.360015, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 24, loss@min: 1.152829, loss@max: 1.365509, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 25, loss@min: 1.116146, loss@max: 1.358901, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 26, loss@min: 1.021086, loss@max: 1.332003, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 27, loss@min: 0.976366, loss@max: 1.338619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.053137, loss@max: 1.352236, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 29, loss@min: 0.974345, loss@max: 1.338337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.098958, loss@max: 1.378677, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 31, loss@min: 1.025520, loss@max: 1.367778, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 32, loss@min: 1.048057, loss@max: 1.358854, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 33, loss@min: 0.957045, loss@max: 1.345811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.980085, loss@max: 1.359646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.068376, loss@max: 1.374850, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 36, loss@min: 0.971043, loss@max: 1.333477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.002393, loss@max: 1.377870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.983313, loss@max: 1.355993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.067526, loss@max: 1.389505, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 40, loss@min: 0.963283, loss@max: 1.351811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.967279, loss@max: 1.357953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.099522, loss@max: 1.421523, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 43, loss@min: 0.985648, loss@max: 1.365543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.967335, loss@max: 1.365013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.951913, loss@max: 1.354574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.060350, loss@max: 1.415386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.988507, loss@max: 1.370522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.172249, loss@max: 1.426809, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 49, loss@min: 0.982344, loss@max: 1.391937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963656, loss@max: 1.378719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.108075, loss@max: 1.414994, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 52, loss@min: 0.960989, loss@max: 1.371951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.963663, loss@max: 1.374513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.965369, loss@max: 1.368272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.973534, loss@max: 1.367953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.145145, loss@max: 1.418533, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 57, loss@min: 0.970244, loss@max: 1.371724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.128320, loss@max: 1.422079, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 59, loss@min: 0.974460, loss@max: 1.378091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.973255, loss@max: 1.383287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.972604, loss@max: 1.386402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.082969, loss@max: 1.434812, Top1S acc: 100.000000, Top1T acc: 94.594597 +Train:epoch: 63, loss@min: 1.093755, loss@max: 1.434143, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 64, loss@min: 0.975953, loss@max: 1.395258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.016004, loss@max: 1.405365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.994483, loss@max: 1.406765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.123427, loss@max: 1.420310, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 68, loss@min: 0.996882, loss@max: 1.399001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.958822, loss@max: 1.367662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.963499, loss@max: 1.377134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.989373, loss@max: 1.411365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954578, loss@max: 1.369096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.963373, loss@max: 1.384409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.983689, loss@max: 1.388171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.954305, loss@max: 1.371557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.969122, loss@max: 1.395041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.971163, loss@max: 1.385560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.966110, loss@max: 1.379295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.956391, loss@max: 1.371284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959380, loss@max: 1.368670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.994991, loss@max: 1.405239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.965295, loss@max: 1.371644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.991023, loss@max: 1.397341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.981316, loss@max: 1.381820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.109116, loss@max: 1.413768, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 86, loss@min: 0.997520, loss@max: 1.401142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.971231, loss@max: 1.381258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.951576, loss@max: 1.373222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.960280, loss@max: 1.378336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.990377, loss@max: 1.398143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.963061, loss@max: 1.395576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.978403, loss@max: 1.390113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.966779, loss@max: 1.380897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.032741, loss@max: 1.395195, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 95, loss@min: 0.955100, loss@max: 1.372524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.956130, loss@max: 1.369490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.956058, loss@max: 1.365791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.958548, loss@max: 1.374143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.979317, loss@max: 1.393322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.975719, loss@max: 1.392766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.948588, loss@max: 1.369667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.098405, loss@max: 1.424624, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 103, loss@min: 0.956374, loss@max: 1.371248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.965179, loss@max: 1.383929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.006275, loss@max: 1.396828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.964676, loss@max: 1.384436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.955478, loss@max: 1.369387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 1.006095, loss@max: 1.408587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.026397, loss@max: 1.404624, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 110, loss@min: 0.954669, loss@max: 1.374007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.000302, loss@max: 1.411432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.970313, loss@max: 1.386444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.963653, loss@max: 1.393433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 1.005518, loss@max: 1.401716, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 115, loss@min: 0.981315, loss@max: 1.399236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 1.007915, loss@max: 1.405364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.967566, loss@max: 1.385003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 1.147256, loss@max: 1.426705, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 119, loss@min: 0.961696, loss@max: 1.373177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.958012, loss@max: 1.374855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.953374, loss@max: 1.363493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.958569, loss@max: 1.372823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.997087, loss@max: 1.399454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.960583, loss@max: 1.373607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.981733, loss@max: 1.391092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 1.018812, loss@max: 1.391324, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 127, loss@min: 0.963820, loss@max: 1.380577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.966989, loss@max: 1.380181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 1.043739, loss@max: 1.409315, Top1S acc: 100.000000, Top1T acc: 97.297310 +Train:epoch: 130, loss@min: 1.087852, loss@max: 1.430729, Top1S acc: 100.000000, Top1T acc: 97.297310 + Test:epoch: 130, LS: 0.529812, LT: 0.541072, Top1S: 84.546196, Top1T: 84.137367Best acc: 84.546196 +Train:epoch: 131, loss@min: 1.009811, loss@max: 1.399595, Top1S acc: 100.000000, Top1T acc: 97.297310 + Test:epoch: 131, LS: 0.529805, LT: 0.541078, Top1S: 84.546196, Top1T: 84.137367 +Train:epoch: 132, loss@min: 0.964330, loss@max: 1.376465, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.529785, LT: 0.541081, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 133, loss@min: 0.976886, loss@max: 1.389185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.529769, LT: 0.541083, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 134, loss@min: 0.988195, loss@max: 1.397214, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.529771, LT: 0.541097, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 135, loss@min: 0.963809, loss@max: 1.376374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.529810, LT: 0.541138, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 136, loss@min: 0.972911, loss@max: 1.387497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.529837, LT: 0.541171, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 137, loss@min: 0.954469, loss@max: 1.368352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.529863, LT: 0.541197, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 138, loss@min: 0.959998, loss@max: 1.377912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.529866, LT: 0.541197, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 139, loss@min: 0.983316, loss@max: 1.399766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.529865, LT: 0.541190, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 140, loss@min: 0.954070, loss@max: 1.368087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.529867, LT: 0.541185, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 141, loss@min: 0.978294, loss@max: 1.393809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.529863, LT: 0.541175, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 142, loss@min: 0.958705, loss@max: 1.378747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.529855, LT: 0.541168, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 143, loss@min: 0.962003, loss@max: 1.378988, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.529852, LT: 0.541166, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 144, loss@min: 0.959580, loss@max: 1.375272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.529848, LT: 0.541161, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 145, loss@min: 1.015320, loss@max: 1.412667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.529846, LT: 0.541160, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 146, loss@min: 0.987492, loss@max: 1.395134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.529845, LT: 0.541160, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 147, loss@min: 0.960536, loss@max: 1.373070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.529845, LT: 0.541160, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 148, loss@min: 0.971906, loss@max: 1.388022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.529845, LT: 0.541160, Top1S: 84.518944, Top1T: 84.137367 +Train:epoch: 149, loss@min: 0.972740, loss@max: 1.387213, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "stanford_cars", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 21:44:45 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.914258, loss@max: 1.718213, Top1S acc: 100.000000, Top1T acc: 54.081631 +Train:epoch: 2, loss@min: 4.501868, loss@max: 1.743796, Top1S acc: 100.000000, Top1T acc: 53.571426 +Train:epoch: 3, loss@min: 3.818067, loss@max: 1.686160, Top1S acc: 100.000000, Top1T acc: 62.244896 +Train:epoch: 4, loss@min: 3.900584, loss@max: 1.805896, Top1S acc: 100.000000, Top1T acc: 55.612244 +Train:epoch: 5, loss@min: 3.431800, loss@max: 1.774524, Top1S acc: 100.000000, Top1T acc: 66.836731 +Train:epoch: 6, loss@min: 3.317179, loss@max: 1.809319, Top1S acc: 100.000000, Top1T acc: 70.918365 +Train:epoch: 7, loss@min: 3.094096, loss@max: 1.814271, Top1S acc: 100.000000, Top1T acc: 68.367348 +Train:epoch: 8, loss@min: 2.848768, loss@max: 1.809498, Top1S acc: 100.000000, Top1T acc: 70.408165 +Train:epoch: 9, loss@min: 2.752402, loss@max: 1.832065, Top1S acc: 100.000000, Top1T acc: 76.020409 +Train:epoch: 10, loss@min: 2.525808, loss@max: 1.805202, Top1S acc: 100.000000, Top1T acc: 76.530609 +Train:epoch: 11, loss@min: 2.513293, loss@max: 1.839372, Top1S acc: 100.000000, Top1T acc: 77.551010 +Train:epoch: 12, loss@min: 2.836555, loss@max: 1.930112, Top1S acc: 100.000000, Top1T acc: 78.571426 +Train:epoch: 13, loss@min: 2.155589, loss@max: 1.779361, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 14, loss@min: 2.003997, loss@max: 1.760143, Top1S acc: 100.000000, Top1T acc: 84.183670 +Train:epoch: 15, loss@min: 2.033791, loss@max: 1.759453, Top1S acc: 100.000000, Top1T acc: 87.755096 +Train:epoch: 16, loss@min: 2.089496, loss@max: 1.794821, Top1S acc: 100.000000, Top1T acc: 83.673470 +Train:epoch: 17, loss@min: 1.935885, loss@max: 1.755024, Top1S acc: 100.000000, Top1T acc: 85.204079 +Train:epoch: 18, loss@min: 2.016507, loss@max: 1.760661, Top1S acc: 100.000000, Top1T acc: 84.693878 +Train:epoch: 19, loss@min: 1.798561, loss@max: 1.708129, Top1S acc: 100.000000, Top1T acc: 88.265305 +Train:epoch: 20, loss@min: 1.918601, loss@max: 1.737945, Top1S acc: 100.000000, Top1T acc: 87.244896 +Train:epoch: 21, loss@min: 1.943902, loss@max: 1.756626, Top1S acc: 100.000000, Top1T acc: 87.755096 +Train:epoch: 22, loss@min: 1.794591, loss@max: 1.688558, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 23, loss@min: 1.767918, loss@max: 1.679211, Top1S acc: 100.000000, Top1T acc: 89.285713 +Train:epoch: 24, loss@min: 1.664124, loss@max: 1.667904, Top1S acc: 100.000000, Top1T acc: 87.755096 +Train:epoch: 25, loss@min: 1.663382, loss@max: 1.659949, Top1S acc: 100.000000, Top1T acc: 90.816322 +Train:epoch: 26, loss@min: 1.780248, loss@max: 1.682243, Top1S acc: 100.000000, Top1T acc: 89.795914 +Train:epoch: 27, loss@min: 1.518939, loss@max: 1.612719, Top1S acc: 100.000000, Top1T acc: 92.857140 +Train:epoch: 28, loss@min: 1.512708, loss@max: 1.609853, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 29, loss@min: 1.617313, loss@max: 1.628441, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 30, loss@min: 1.355364, loss@max: 1.563160, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 31, loss@min: 1.586250, loss@max: 1.640998, Top1S acc: 100.000000, Top1T acc: 92.346939 +Train:epoch: 32, loss@min: 1.496271, loss@max: 1.615255, Top1S acc: 100.000000, Top1T acc: 93.367348 +Train:epoch: 33, loss@min: 1.276869, loss@max: 1.546496, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 34, loss@min: 1.348413, loss@max: 1.572600, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 35, loss@min: 1.346319, loss@max: 1.563691, Top1S acc: 100.000000, Top1T acc: 94.387756 +Train:epoch: 36, loss@min: 1.300306, loss@max: 1.539849, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 37, loss@min: 1.239405, loss@max: 1.510496, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 38, loss@min: 1.285897, loss@max: 1.527578, Top1S acc: 100.000000, Top1T acc: 95.408165 +Train:epoch: 39, loss@min: 1.297833, loss@max: 1.535748, Top1S acc: 100.000000, Top1T acc: 96.428566 +Train:epoch: 40, loss@min: 1.350956, loss@max: 1.554163, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 41, loss@min: 1.199552, loss@max: 1.517173, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 42, loss@min: 1.332736, loss@max: 1.549916, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 43, loss@min: 1.259934, loss@max: 1.542978, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 44, loss@min: 1.192171, loss@max: 1.493210, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 45, loss@min: 1.349452, loss@max: 1.542077, Top1S acc: 100.000000, Top1T acc: 94.897957 +Train:epoch: 46, loss@min: 1.147320, loss@max: 1.483360, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 47, loss@min: 1.187173, loss@max: 1.501276, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 48, loss@min: 1.230365, loss@max: 1.531740, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 49, loss@min: 1.282221, loss@max: 1.541014, Top1S acc: 100.000000, Top1T acc: 95.918365 +Train:epoch: 50, loss@min: 1.223343, loss@max: 1.525625, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 51, loss@min: 1.164524, loss@max: 1.505918, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 52, loss@min: 1.172645, loss@max: 1.516639, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 53, loss@min: 1.268782, loss@max: 1.522005, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 54, loss@min: 1.080734, loss@max: 1.458137, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 55, loss@min: 1.186186, loss@max: 1.521427, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 56, loss@min: 1.264974, loss@max: 1.530219, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 57, loss@min: 1.093744, loss@max: 1.476919, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 58, loss@min: 1.157691, loss@max: 1.498491, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 59, loss@min: 1.139647, loss@max: 1.491855, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 60, loss@min: 1.136053, loss@max: 1.488680, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 61, loss@min: 1.180917, loss@max: 1.505169, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 62, loss@min: 1.086798, loss@max: 1.471929, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 63, loss@min: 1.128834, loss@max: 1.500275, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 64, loss@min: 1.136346, loss@max: 1.488462, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 65, loss@min: 1.113947, loss@max: 1.470962, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 66, loss@min: 1.070270, loss@max: 1.469120, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 67, loss@min: 1.099445, loss@max: 1.481709, Top1S acc: 100.000000, Top1T acc: 96.938774 +Train:epoch: 68, loss@min: 1.119117, loss@max: 1.484104, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 69, loss@min: 1.078974, loss@max: 1.479943, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 70, loss@min: 1.084141, loss@max: 1.473650, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 71, loss@min: 1.066105, loss@max: 1.472199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.159389, loss@max: 1.492012, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 73, loss@min: 1.092151, loss@max: 1.475200, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 74, loss@min: 1.083130, loss@max: 1.472251, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 75, loss@min: 1.105098, loss@max: 1.481791, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 76, loss@min: 1.123123, loss@max: 1.464726, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 77, loss@min: 1.109548, loss@max: 1.476616, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 78, loss@min: 1.085895, loss@max: 1.454216, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 79, loss@min: 1.066218, loss@max: 1.464973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.102227, loss@max: 1.493856, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 81, loss@min: 1.132590, loss@max: 1.493466, Top1S acc: 100.000000, Top1T acc: 97.448975 +Train:epoch: 82, loss@min: 1.092838, loss@max: 1.474799, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 83, loss@min: 1.082861, loss@max: 1.461421, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 84, loss@min: 1.057728, loss@max: 1.456029, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 85, loss@min: 1.140498, loss@max: 1.480496, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 86, loss@min: 1.091160, loss@max: 1.469790, Top1S acc: 100.000000, Top1T acc: 98.469383 +Train:epoch: 87, loss@min: 1.075898, loss@max: 1.465407, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 88, loss@min: 1.036215, loss@max: 1.443001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.079961, loss@max: 1.463912, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 90, loss@min: 1.054784, loss@max: 1.457617, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 91, loss@min: 1.042905, loss@max: 1.442184, Top1S acc: 100.000000, Top1T acc: 99.489792 +Train:epoch: 92, loss@min: 1.053168, loss@max: 1.458523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.071391, loss@max: 1.450417, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 94, loss@min: 1.106122, loss@max: 1.481015, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 95, loss@min: 1.074253, loss@max: 1.461409, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 96, loss@min: 1.086512, loss@max: 1.468212, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 97, loss@min: 1.083940, loss@max: 1.469217, Top1S acc: 100.000000, Top1T acc: 97.959183 +Train:epoch: 98, loss@min: 1.077669, loss@max: 1.464889, Top1S acc: 100.000000, Top1T acc: 98.979591 +Train:epoch: 99, loss@min: 1.015517, loss@max: 1.429650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.043311, loss@max: 1.452672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.487281, LT: 1.490073, Top1S: 58.736477, Top1T: 58.475315Best acc: 58.736477 +Train:epoch: 101, loss@min: 1.071728, loss@max: 1.463256, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 101, LS: 1.487328, LT: 1.490162, Top1S: 58.724041, Top1T: 58.500191 +Train:epoch: 102, loss@min: 1.067142, loss@max: 1.455782, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 102, LS: 1.487401, LT: 1.490335, Top1S: 58.724041, Top1T: 58.512627 +Train:epoch: 103, loss@min: 1.098247, loss@max: 1.479245, Top1S acc: 100.000000, Top1T acc: 98.469383 + Test:epoch: 103, LS: 1.487294, LT: 1.490347, Top1S: 58.699169, Top1T: 58.500191 +Train:epoch: 104, loss@min: 1.052100, loss@max: 1.456102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.487092, LT: 1.490280, Top1S: 58.761349, Top1T: 58.487751Best acc: 58.761349 +Train:epoch: 105, loss@min: 1.047682, loss@max: 1.449675, Top1S acc: 100.000000, Top1T acc: 99.489792 + Test:epoch: 105, LS: 1.486916, LT: 1.490207, Top1S: 58.761349, Top1T: 58.475315 +Train:epoch: 106, loss@min: 1.119492, loss@max: 1.468293, Top1S acc: 100.000000, Top1T acc: 97.959183 + Test:epoch: 106, LS: 1.486839, LT: 1.490119, Top1S: 58.773788, Top1T: 58.487751Best acc: 58.773788 +Train:epoch: 107, loss@min: 1.063849, loss@max: 1.455307, Top1S acc: 100.000000, Top1T acc: 98.979591 + Test:epoch: 107, LS: 1.486772, LT: 1.490060, Top1S: 58.860840, Top1T: 58.549934Best acc: 58.860840 +Train:epoch: 108, loss@min: 1.022898, loss@max: 1.437142, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "sun397", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Sep 7 22:08:41 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.519480, loss@max: 1.647690, Top1S acc: 100.000000, Top1T acc: 62.890625 +Train:epoch: 2, loss@min: 4.218220, loss@max: 1.716139, Top1S acc: 100.000000, Top1T acc: 61.328125 +Train:epoch: 3, loss@min: 3.731014, loss@max: 1.693227, Top1S acc: 100.000000, Top1T acc: 65.234375 +Train:epoch: 4, loss@min: 3.219856, loss@max: 1.635748, Top1S acc: 100.000000, Top1T acc: 69.921875 +Train:epoch: 5, loss@min: 3.039180, loss@max: 1.659277, Top1S acc: 100.000000, Top1T acc: 73.437500 +Train:epoch: 6, loss@min: 3.025151, loss@max: 1.685110, Top1S acc: 100.000000, Top1T acc: 73.828125 +Train:epoch: 7, loss@min: 2.518089, loss@max: 1.619846, Top1S acc: 100.000000, Top1T acc: 76.953125 +Train:epoch: 8, loss@min: 2.477854, loss@max: 1.653491, Top1S acc: 100.000000, Top1T acc: 80.468750 +Train:epoch: 9, loss@min: 2.080204, loss@max: 1.590156, Top1S acc: 100.000000, Top1T acc: 83.984375 +Train:epoch: 10, loss@min: 1.783416, loss@max: 1.542117, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 11, loss@min: 1.811159, loss@max: 1.558934, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 12, loss@min: 1.848361, loss@max: 1.588433, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 13, loss@min: 1.690118, loss@max: 1.552928, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 14, loss@min: 1.717966, loss@max: 1.561428, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 15, loss@min: 1.463488, loss@max: 1.492214, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 16, loss@min: 1.467247, loss@max: 1.500721, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 17, loss@min: 1.572797, loss@max: 1.533695, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 18, loss@min: 1.328721, loss@max: 1.476748, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 19, loss@min: 1.267003, loss@max: 1.456172, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 20, loss@min: 1.189195, loss@max: 1.433151, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.227824, loss@max: 1.445594, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 22, loss@min: 1.187124, loss@max: 1.444657, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.193125, loss@max: 1.441852, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 24, loss@min: 1.164868, loss@max: 1.437017, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 25, loss@min: 1.179819, loss@max: 1.456614, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 26, loss@min: 1.130136, loss@max: 1.430278, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 27, loss@min: 1.107141, loss@max: 1.431413, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.091894, loss@max: 1.423730, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 29, loss@min: 1.123090, loss@max: 1.429756, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 30, loss@min: 1.071799, loss@max: 1.411568, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.108073, loss@max: 1.433662, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 1.071141, loss@max: 1.417575, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 33, loss@min: 1.036453, loss@max: 1.403162, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 34, loss@min: 1.059967, loss@max: 1.425788, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 1.030344, loss@max: 1.403032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.042151, loss@max: 1.401151, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.015516, loss@max: 1.402396, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.040088, loss@max: 1.404723, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 1.012795, loss@max: 1.408744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.020276, loss@max: 1.404636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.035220, loss@max: 1.408378, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 1.033139, loss@max: 1.416917, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 1.011522, loss@max: 1.402359, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 1.005236, loss@max: 1.408973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.011032, loss@max: 1.406771, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.993348, loss@max: 1.385328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.001251, loss@max: 1.399151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.007713, loss@max: 1.398053, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 49, loss@min: 0.999858, loss@max: 1.398394, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.005767, loss@max: 1.412376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.989427, loss@max: 1.403714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.984322, loss@max: 1.399750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.984675, loss@max: 1.395140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.984942, loss@max: 1.396863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.004364, loss@max: 1.412136, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 56, loss@min: 0.995631, loss@max: 1.411050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.977374, loss@max: 1.402034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.975047, loss@max: 1.392324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.991855, loss@max: 1.398687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.986609, loss@max: 1.402419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.983238, loss@max: 1.404834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.980869, loss@max: 1.398587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.037296, loss@max: 1.418042, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 1.002512, loss@max: 1.418748, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 65, loss@min: 0.978197, loss@max: 1.402815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.987060, loss@max: 1.402162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.987161, loss@max: 1.400921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.979778, loss@max: 1.390848, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 1.012183, loss@max: 1.405137, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.975892, loss@max: 1.396611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.967443, loss@max: 1.391125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.998027, loss@max: 1.410853, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.976235, loss@max: 1.393961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.974491, loss@max: 1.397003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.978744, loss@max: 1.398213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.974291, loss@max: 1.390943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.987561, loss@max: 1.397024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.981387, loss@max: 1.398510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.974293, loss@max: 1.392903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.978057, loss@max: 1.395785, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 81, loss@min: 0.976451, loss@max: 1.397891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.002371, loss@max: 1.408636, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 83, loss@min: 0.968230, loss@max: 1.390202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.979750, loss@max: 1.402911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.969503, loss@max: 1.393472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.969402, loss@max: 1.388317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.976391, loss@max: 1.400996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.980301, loss@max: 1.401299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.975278, loss@max: 1.396648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.004509, loss@max: 1.404843, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 91, loss@min: 0.980715, loss@max: 1.394789, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 92, loss@min: 0.975661, loss@max: 1.397191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.970343, loss@max: 1.392491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.972715, loss@max: 1.395806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.970335, loss@max: 1.395243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.963879, loss@max: 1.381402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.964634, loss@max: 1.385802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.986409, loss@max: 1.394568, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 99, loss@min: 0.980100, loss@max: 1.399878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.973563, loss@max: 1.396574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.587528, LT: 1.588965, Top1S: 62.740551, Top1T: 62.629719Best acc: 62.740551 +Train:epoch: 101, loss@min: 0.997315, loss@max: 1.408261, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 101, LS: 1.587469, LT: 1.588998, Top1S: 62.725437, Top1T: 62.649872 +Train:epoch: 102, loss@min: 0.979813, loss@max: 1.389664, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.587335, LT: 1.588981, Top1S: 62.745590, Top1T: 62.649872Best acc: 62.745590 +Train:epoch: 103, loss@min: 0.973921, loss@max: 1.394452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.587151, LT: 1.588964, Top1S: 62.745590, Top1T: 62.675060 +Train:epoch: 104, loss@min: 0.970472, loss@max: 1.386460, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.587014, LT: 1.588953, Top1S: 62.760704, Top1T: 62.690174Best acc: 62.760704 +Train:epoch: 105, loss@min: 0.974748, loss@max: 1.396934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.586908, LT: 1.588896, Top1S: 62.735516, Top1T: 62.705288 +Train:epoch: 106, loss@min: 0.977719, loss@max: 1.395290, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 106, LS: 1.586893, LT: 1.588830, Top1S: 62.745590, Top1T: 62.700249 +Train:epoch: 107, loss@min: 0.964037, loss@max: 1.386296, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Sep 7 23:29:55 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Sep 7 23:31:05 2023 +-------------------------------------------{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Sep 8 09:25:00 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.257917, loss@max: 1.646461, Top1S acc: 99.609375, Top1T acc: 66.406250 +Train:epoch: 2, loss@min: 4.323130, loss@max: 1.821334, Top1S acc: 99.609375, Top1T acc: 65.234375 +Train:epoch: 3, loss@min: 3.590879, loss@max: 1.756470, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 3.437606, loss@max: 1.766243, Top1S acc: 99.609375, Top1T acc: 75.000000 +Train:epoch: 5, loss@min: 3.040254, loss@max: 1.730778, Top1S acc: 100.000000, Top1T acc: 76.562500 +Train:epoch: 6, loss@min: 2.283188, loss@max: 1.587055, Top1S acc: 99.218750, Top1T acc: 81.640625 +Train:epoch: 7, loss@min: 2.449674, loss@max: 1.647207, Top1S acc: 99.609375, Top1T acc: 81.250000 +Train:epoch: 8, loss@min: 2.050111, loss@max: 1.563196, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 9, loss@min: 1.909445, loss@max: 1.540747, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 10, loss@min: 1.673851, loss@max: 1.472234, Top1S acc: 99.609375, Top1T acc: 90.625000 +Train:epoch: 11, loss@min: 1.612584, loss@max: 1.467034, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 12, loss@min: 1.409923, loss@max: 1.429392, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 13, loss@min: 1.571481, loss@max: 1.467751, Top1S acc: 99.609375, Top1T acc: 91.406250 +Train:epoch: 14, loss@min: 1.385448, loss@max: 1.432919, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 15, loss@min: 1.401142, loss@max: 1.458050, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 16, loss@min: 1.436508, loss@max: 1.450748, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 17, loss@min: 1.363588, loss@max: 1.428878, Top1S acc: 99.218750, Top1T acc: 95.703125 +Train:epoch: 18, loss@min: 1.170502, loss@max: 1.380060, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 19, loss@min: 1.187613, loss@max: 1.386484, Top1S acc: 99.609375, Top1T acc: 97.656250 +Train:epoch: 20, loss@min: 1.248637, loss@max: 1.430599, Top1S acc: 99.609375, Top1T acc: 95.312500 +Train:epoch: 21, loss@min: 1.113409, loss@max: 1.376065, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.087648, loss@max: 1.373784, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.220459, loss@max: 1.427438, Top1S acc: 99.218750, Top1T acc: 97.265625 +Train:epoch: 24, loss@min: 1.156146, loss@max: 1.410188, Top1S acc: 99.609375, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.153883, loss@max: 1.424784, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.061128, loss@max: 1.380975, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.061709, loss@max: 1.385647, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.143054, loss@max: 1.426586, Top1S acc: 99.609375, Top1T acc: 98.046875 +Train:epoch: 29, loss@min: 1.098414, loss@max: 1.412575, Top1S acc: 99.218750, Top1T acc: 98.046875 +Train:epoch: 30, loss@min: 1.036094, loss@max: 1.390940, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.120766, loss@max: 1.413226, Top1S acc: 99.218750, Top1T acc: 98.046875 +Train:epoch: 32, loss@min: 1.150776, loss@max: 1.432506, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 33, loss@min: 1.070215, loss@max: 1.393527, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 1.046811, loss@max: 1.414606, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 35, loss@min: 1.034148, loss@max: 1.402670, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 1.027542, loss@max: 1.400750, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.022196, loss@max: 1.396653, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.013154, loss@max: 1.403056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.026218, loss@max: 1.402878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.058038, loss@max: 1.420009, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 41, loss@min: 0.996167, loss@max: 1.402585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.999508, loss@max: 1.401824, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 43, loss@min: 1.093633, loss@max: 1.398741, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 44, loss@min: 1.025628, loss@max: 1.417068, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.014520, loss@max: 1.417264, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.998802, loss@max: 1.397528, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.984334, loss@max: 1.384214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.068421, loss@max: 1.421286, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 0.978334, loss@max: 1.404350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.982071, loss@max: 1.398951, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.999833, loss@max: 1.390348, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 1.003858, loss@max: 1.402536, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 53, loss@min: 1.003764, loss@max: 1.390004, Top1S acc: 99.218750, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.023586, loss@max: 1.406699, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.127191, loss@max: 1.429115, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 56, loss@min: 1.012293, loss@max: 1.404683, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 57, loss@min: 0.988753, loss@max: 1.385443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.997158, loss@max: 1.419113, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.995852, loss@max: 1.395358, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.998481, loss@max: 1.391875, Top1S acc: 99.218750, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.988949, loss@max: 1.404263, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.005252, loss@max: 1.408590, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.059575, loss@max: 1.418221, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.984792, loss@max: 1.392828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.002216, loss@max: 1.408234, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.977097, loss@max: 1.387236, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.979498, loss@max: 1.383799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.965096, loss@max: 1.382498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.004503, loss@max: 1.406052, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.992860, loss@max: 1.400906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.977281, loss@max: 1.388741, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.992242, loss@max: 1.402895, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.976419, loss@max: 1.384164, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.973351, loss@max: 1.387132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.959317, loss@max: 1.383569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.011024, loss@max: 1.407797, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 0.977451, loss@max: 1.393113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.969088, loss@max: 1.384351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.967491, loss@max: 1.384236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.011322, loss@max: 1.392799, Top1S acc: 99.609375, Top1T acc: 99.609375{"dataset_dir": "E:\\\\", "dataset_name": "imagenet", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Sep 8 13:22:08 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.257917, loss@max: 1.646461, Top1S acc: 99.609375, Top1T acc: 66.406250 +Train:epoch: 2, loss@min: 4.323130, loss@max: 1.821334, Top1S acc: 99.609375, Top1T acc: 65.234375 +Train:epoch: 3, loss@min: 3.590879, loss@max: 1.756470, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 3.437606, loss@max: 1.766243, Top1S acc: 99.609375, Top1T acc: 75.000000 +Train:epoch: 5, loss@min: 3.040254, loss@max: 1.730778, Top1S acc: 100.000000, Top1T acc: 76.562500 +Train:epoch: 6, loss@min: 2.283188, loss@max: 1.587055, Top1S acc: 99.218750, Top1T acc: 81.640625 +Train:epoch: 7, loss@min: 2.449674, loss@max: 1.647207, Top1S acc: 99.609375, Top1T acc: 81.250000 +Train:epoch: 8, loss@min: 2.050111, loss@max: 1.563196, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 9, loss@min: 1.909445, loss@max: 1.540747, Top1S acc: 100.000000, Top1T acc: 88.671875 +Train:epoch: 10, loss@min: 1.673851, loss@max: 1.472234, Top1S acc: 99.609375, Top1T acc: 90.625000 +Train:epoch: 11, loss@min: 1.612584, loss@max: 1.467034, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 12, loss@min: 1.409923, loss@max: 1.429392, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 13, loss@min: 1.571481, loss@max: 1.467751, Top1S acc: 99.609375, Top1T acc: 91.406250 +Train:epoch: 14, loss@min: 1.385448, loss@max: 1.432919, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 15, loss@min: 1.401142, loss@max: 1.458050, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 16, loss@min: 1.436508, loss@max: 1.450748, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 17, loss@min: 1.363588, loss@max: 1.428878, Top1S acc: 99.218750, Top1T acc: 95.703125 +Train:epoch: 18, loss@min: 1.170502, loss@max: 1.380060, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 19, loss@min: 1.187613, loss@max: 1.386484, Top1S acc: 99.609375, Top1T acc: 97.656250 +Train:epoch: 20, loss@min: 1.248637, loss@max: 1.430599, Top1S acc: 99.609375, Top1T acc: 95.312500 +Train:epoch: 21, loss@min: 1.113409, loss@max: 1.376065, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.087648, loss@max: 1.373784, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.220459, loss@max: 1.427438, Top1S acc: 99.218750, Top1T acc: 97.265625 +Train:epoch: 24, loss@min: 1.156146, loss@max: 1.410188, Top1S acc: 99.609375, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.153883, loss@max: 1.424784, Top1S acc: 99.609375, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.061128, loss@max: 1.380975, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.061709, loss@max: 1.385647, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 1.143054, loss@max: 1.426586, Top1S acc: 99.609375, Top1T acc: 98.046875 +Train:epoch: 29, loss@min: 1.098414, loss@max: 1.412575, Top1S acc: 99.218750, Top1T acc: 98.046875 +Train:epoch: 30, loss@min: 1.036094, loss@max: 1.390940, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 1.120766, loss@max: 1.413226, Top1S acc: 99.218750, Top1T acc: 98.046875 +Train:epoch: 32, loss@min: 1.150776, loss@max: 1.432506, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 33, loss@min: 1.070215, loss@max: 1.393527, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 1.046811, loss@max: 1.414606, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 35, loss@min: 1.034148, loss@max: 1.402670, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 36, loss@min: 1.027542, loss@max: 1.400750, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 1.022196, loss@max: 1.396653, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 1.013154, loss@max: 1.403056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.026218, loss@max: 1.402878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.058038, loss@max: 1.420009, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 41, loss@min: 0.996167, loss@max: 1.402585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.999508, loss@max: 1.401824, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 43, loss@min: 1.093633, loss@max: 1.398741, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 44, loss@min: 1.025628, loss@max: 1.417068, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.014520, loss@max: 1.417264, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.998802, loss@max: 1.397528, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.984334, loss@max: 1.384214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.068421, loss@max: 1.421286, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 0.978334, loss@max: 1.404350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.982071, loss@max: 1.398951, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.999833, loss@max: 1.390348, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 52, loss@min: 1.003858, loss@max: 1.402536, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 53, loss@min: 1.003764, loss@max: 1.390004, Top1S acc: 99.218750, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.023586, loss@max: 1.406699, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 55, loss@min: 1.127191, loss@max: 1.429115, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 56, loss@min: 1.012293, loss@max: 1.404683, Top1S acc: 99.609375, Top1T acc: 98.828125 +Train:epoch: 57, loss@min: 0.988753, loss@max: 1.385443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.997158, loss@max: 1.419113, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.995852, loss@max: 1.395358, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.998481, loss@max: 1.391875, Top1S acc: 99.218750, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.988949, loss@max: 1.404263, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 62, loss@min: 1.005252, loss@max: 1.408590, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 1.059575, loss@max: 1.418221, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 64, loss@min: 0.984792, loss@max: 1.392828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.002216, loss@max: 1.408234, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 66, loss@min: 0.977097, loss@max: 1.387236, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.979498, loss@max: 1.383799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.965096, loss@max: 1.382498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.004503, loss@max: 1.406052, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 70, loss@min: 0.992860, loss@max: 1.400906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.977281, loss@max: 1.388741, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.992242, loss@max: 1.402895, Top1S acc: 99.609375, Top1T acc: 99.609375 +Train:epoch: 73, loss@min: 0.976419, loss@max: 1.384164, Top1S acc: 99.609375, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.973351, loss@max: 1.387132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.959317, loss@max: 1.383569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.011024, loss@max: 1.407797, Top1S acc: 99.609375, Top1T acc: 99.218750 +Train:epoch: 77, loss@min: 0.977451, loss@max: 1.393113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.969088, loss@max: 1.384351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.967491, loss@max: 1.384236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.011322, loss@max: 1.392799, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 80, LS: 2.047672, LT: 2.054981, Top1S: 59.837997, Top1T: 59.629997Best acc: 59.837997 +Train:epoch: 81, loss@min: 0.964813, loss@max: 1.386378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 2.047744, LT: 2.055153, Top1S: 59.871998, Top1T: 59.627998Best acc: 59.871998 +Train:epoch: 82, loss@min: 0.986490, loss@max: 1.384408, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 2.047613, LT: 2.055527, Top1S: 59.877998, Top1T: 59.613998Best acc: 59.877998 +Train:epoch: 83, loss@min: 0.973755, loss@max: 1.383892, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 83, LS: 2.047959, LT: 2.055744, Top1S: 59.907997, Top1T: 59.599998Best acc: 59.907997 +Train:epoch: 84, loss@min: 0.961943, loss@max: 1.381048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 2.048554, LT: 2.055902, Top1S: 59.871998, Top1T: 59.605999 +Train:epoch: 85, loss@min: 0.961392, loss@max: 1.380232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 2.048874, LT: 2.056108, Top1S: 59.875999, Top1T: 59.598000 +Train:epoch: 86, loss@min: 0.980301, loss@max: 1.386020, Top1S acc: 99.218750, Top1T acc: 100.000000 + Test:epoch: 86, LS: 2.048901, LT: 2.056087, Top1S: 59.882000, Top1T: 59.618000 +Train:epoch: 87, loss@min: 0.966824, loss@max: 1.383469, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 87, LS: 2.048896, LT: 2.056129, Top1S: 59.905998, Top1T: 59.618000 +Train:epoch: 88, loss@min: 0.968626, loss@max: 1.389093, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 88, LS: 2.049030, LT: 2.056303, Top1S: 59.916000, Top1T: 59.623997Best acc: 59.916000 +Train:epoch: 89, loss@min: 0.963292, loss@max: 1.379686, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 89, LS: 2.049396, LT: 2.056638, Top1S: 59.903999, Top1T: 59.613998 +Train:epoch: 90, loss@min: 0.973729, loss@max: 1.388793, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 90, LS: 2.049740, LT: 2.057060, Top1S: 59.877998, Top1T: 59.595997 +Train:epoch: 91, loss@min: 0.989006, loss@max: 1.392410, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 91, LS: 2.049962, LT: 2.057425, Top1S: 59.871998, Top1T: 59.585999 +Train:epoch: 92, loss@min: 0.997836, loss@max: 1.392247, Top1S acc: 99.218750, Top1T acc: 99.609375 + Test:epoch: 92, LS: 2.050126, LT: 2.057641, Top1S: 59.857998, Top1T: 59.573997 +Train:epoch: 93, loss@min: 0.977255, loss@max: 1.382298, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 93, LS: 2.050582, LT: 2.057780, Top1S: 59.885998, Top1T: 59.557999 +Train:epoch: 94, loss@min: 1.023126, loss@max: 1.397183, Top1S acc: 99.218750, Top1T acc: 99.218750 + Test:epoch: 94, LS: 2.050996, LT: 2.057892, Top1S: 59.875999, Top1T: 59.565998 +Train:epoch: 95, loss@min: 0.968738, loss@max: 1.389817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 2.051322, LT: 2.058132, Top1S: 59.855999, Top1T: 59.553997 +Train:epoch: 96, loss@min: 0.961720, loss@max: 1.379345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 2.051556, LT: 2.058469, Top1S: 59.843998, Top1T: 59.549999 +Train:epoch: 97, loss@min: 0.969171, loss@max: 1.381068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 2.051901, LT: 2.058948, Top1S: 59.840000, Top1T: 59.539997 +Train:epoch: 98, loss@min: 0.961491, loss@max: 1.379690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 2.052204, LT: 2.059355, Top1S: 59.843998, Top1T: 59.545998 +Train:epoch: 99, loss@min: 0.995110, loss@max: 1.392761, Top1S acc: 99.218750, Top1T acc: 99.609375 + Test:epoch: 99, LS: 2.052245, LT: 2.059552, Top1S: 59.841999, Top1T: 59.551998 +Train:epoch: 100, loss@min: 0.957092, loss@max: 1.375578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 2.052399, LT: 2.059521, Top1S: 59.849998, Top1T: 59.557999 +Train:epoch: 101, loss@min: 0.959893, loss@max: 1.377969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 2.052576, LT: 2.059554, Top1S: 59.841999, Top1T: 59.549999 +Train:epoch: 102, loss@min: 0.975857, loss@max: 1.383938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 2.052714, LT: 2.059719, Top1S: 59.837997, Top1T: 59.531998 +Train:epoch: 103, loss@min: 0.975004, loss@max: 1.385582, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 103, LS: 2.052753, LT: 2.059881, Top1S: 59.815998, Top1T: 59.537998 +Train:epoch: 104, loss@min: 0.969135, loss@max: 1.379353, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 2.052665, LT: 2.060043, Top1S: 59.835999, Top1T: 59.528000 +Train:epoch: 105, loss@min: 1.031584, loss@max: 1.410103, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 105, LS: 2.052686, LT: 2.060137, Top1S: 59.837997, Top1T: 59.542000 +Train:epoch: 106, loss@min: 0.961204, loss@max: 1.382881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 2.052693, LT: 2.060258, Top1S: 59.845997, Top1T: 59.542000 +Train:epoch: 107, loss@min: 0.986743, loss@max: 1.388286, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 107, LS: 2.052756, LT: 2.060300, Top1S: 59.848000, Top1T: 59.557999 +Train:epoch: 108, loss@min: 1.008108, loss@max: 1.402579, Top1S acc: 99.218750, Top1T acc: 99.218750 + Test:epoch: 108, LS: 2.052921, LT: 2.060286, Top1S: 59.865997, Top1T: 59.534000 +Train:epoch: 109, loss@min: 0.974415, loss@max: 1.380709, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 2.053026, LT: 2.060332, Top1S: 59.863998, Top1T: 59.501999 +Train:epoch: 110, loss@min: 0.961983, loss@max: 1.371253, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 110, LS: 2.053168, LT: 2.060309, Top1S: 59.857998, Top1T: 59.509998 +Train:epoch: 111, loss@min: 0.971939, loss@max: 1.391366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 2.053191, LT: 2.060167, Top1S: 59.868000, Top1T: 59.523998 +Train:epoch: 112, loss@min: 0.961461, loss@max: 1.380596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 2.053237, LT: 2.060129, Top1S: 59.857998, Top1T: 59.525997 +Train:epoch: 113, loss@min: 0.962238, loss@max: 1.377312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 2.053339, LT: 2.060232, Top1S: 59.849998, Top1T: 59.523998 +Train:epoch: 114, loss@min: 0.974280, loss@max: 1.385489, Top1S acc: 99.218750, Top1T acc: 100.000000 + Test:epoch: 114, LS: 2.053353, LT: 2.060319, Top1S: 59.845997, Top1T: 59.528000 +Train:epoch: 115, loss@min: 0.960611, loss@max: 1.382649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 2.053351, LT: 2.060441, Top1S: 59.840000, Top1T: 59.537998 +Train:epoch: 116, loss@min: 0.983882, loss@max: 1.390691, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 116, LS: 2.053410, LT: 2.060585, Top1S: 59.855999, Top1T: 59.528000 +Train:epoch: 117, loss@min: 0.989473, loss@max: 1.395587, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 117, LS: 2.053495, LT: 2.060691, Top1S: 59.859997, Top1T: 59.531998 +Train:epoch: 118, loss@min: 0.980215, loss@max: 1.390961, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 118, LS: 2.053550, LT: 2.060721, Top1S: 59.859997, Top1T: 59.531998 +Train:epoch: 119, loss@min: 0.969141, loss@max: 1.378895, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 119, LS: 2.053593, LT: 2.060736, Top1S: 59.859997, Top1T: 59.515999 +Train:epoch: 120, loss@min: 1.000591, loss@max: 1.394185, Top1S acc: 99.609375, Top1T acc: 99.609375 + Test:epoch: 120, LS: 2.053572, LT: 2.060699, Top1S: 59.857998, Top1T: 59.531998 +Train:epoch: 121, loss@min: 0.954856, loss@max: 1.380962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 2.053541, LT: 2.060660, Top1S: 59.859997, Top1T: 59.529999 +Train:epoch: 122, loss@min: 0.969996, loss@max: 1.385313, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 122, LS: 2.053539, LT: 2.060615, Top1S: 59.857998, Top1T: 59.529999 +Train:epoch: 123, loss@min: 0.966285, loss@max: 1.379234, Top1S acc: 99.609375, Top1T acc: 100.000000 + Test:epoch: 123, LS: 2.053532, LT: 2.060574, Top1S: 59.851997, Top1T: 59.534000 +Train:epoch: 124, loss@min: 0.971189, loss@max: 1.380601, Top1S acc: 99.609375, Top1T acc: 100.000000{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Sat Sep 9 22:14:27 2023 +-------------------------------------------{"dataset_dir": "G:\\\\datasets", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "G:/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "G:/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Sat Sep 9 22:15:31 2023 +------------------------------------------- +Train:epoch: 1, loss@min: 4.799789, loss@max: 1.687465, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 2, loss@min: 4.535921, loss@max: 1.748732, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 4.007724, loss@max: 1.714826, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 4, loss@min: 3.923184, loss@max: 1.785925, Top1S acc: 100.000000, Top1T acc: 65.346535 +Train:epoch: 5, loss@min: 3.234344, loss@max: 1.683789, Top1S acc: 100.000000, Top1T acc: 69.306931 +Train:epoch: 6, loss@min: 3.414145, loss@max: 1.796447, Top1S acc: 100.000000, Top1T acc: 65.346535 +Train:epoch: 7, loss@min: 3.325536, loss@max: 1.834215, Top1S acc: 100.000000, Top1T acc: 74.257423 +Train:epoch: 8, loss@min: 3.036939, loss@max: 1.806394, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 9, loss@min: 2.663439, loss@max: 1.763010, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 10, loss@min: 2.772066, loss@max: 1.829306, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 11, loss@min: 2.599455, loss@max: 1.816010, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 12, loss@min: 2.785805, loss@max: 1.902237, Top1S acc: 100.000000, Top1T acc: 74.257423 +Train:epoch: 13, loss@min: 2.546192, loss@max: 1.845571, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 14, loss@min: 2.245996, loss@max: 1.805231, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 15, loss@min: 2.232244, loss@max: 1.798098, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 16, loss@min: 2.136573, loss@max: 1.777707, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 17, loss@min: 1.904684, loss@max: 1.697787, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 18, loss@min: 1.986071, loss@max: 1.736837, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 19, loss@min: 1.864332, loss@max: 1.707433, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 20, loss@min: 2.060232, loss@max: 1.755895, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 21, loss@min: 1.597917, loss@max: 1.634022, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 22, loss@min: 1.657764, loss@max: 1.637346, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 23, loss@min: 1.751652, loss@max: 1.678906, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 24, loss@min: 1.766395, loss@max: 1.683902, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 25, loss@min: 1.461295, loss@max: 1.580350, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 26, loss@min: 1.573292, loss@max: 1.627400, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 27, loss@min: 1.528400, loss@max: 1.614667, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 28, loss@min: 1.465513, loss@max: 1.608763, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 29, loss@min: 1.687601, loss@max: 1.654579, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 30, loss@min: 1.344123, loss@max: 1.561862, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 31, loss@min: 1.565442, loss@max: 1.634178, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 32, loss@min: 1.242462, loss@max: 1.512338, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 33, loss@min: 1.319142, loss@max: 1.554422, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 34, loss@min: 1.320743, loss@max: 1.555856, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 35, loss@min: 1.357482, loss@max: 1.545872, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 36, loss@min: 1.296582, loss@max: 1.555392, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 37, loss@min: 1.259926, loss@max: 1.533854, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 38, loss@min: 1.219278, loss@max: 1.533710, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 39, loss@min: 1.183024, loss@max: 1.513895, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 40, loss@min: 1.154038, loss@max: 1.510404, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 41, loss@min: 1.200670, loss@max: 1.515700, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 42, loss@min: 1.188081, loss@max: 1.518080, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 43, loss@min: 1.115964, loss@max: 1.462740, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 44, loss@min: 1.306859, loss@max: 1.542974, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 45, loss@min: 1.179056, loss@max: 1.505776, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 46, loss@min: 1.162906, loss@max: 1.494149, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 47, loss@min: 1.310751, loss@max: 1.562439, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 48, loss@min: 1.106307, loss@max: 1.476609, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 49, loss@min: 1.099594, loss@max: 1.483545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.067569, loss@max: 1.467891, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 51, loss@min: 1.139230, loss@max: 1.493316, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 52, loss@min: 1.197467, loss@max: 1.553035, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 53, loss@min: 1.117680, loss@max: 1.493592, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 54, loss@min: 1.146450, loss@max: 1.496219, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 55, loss@min: 1.030284, loss@max: 1.441248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.084313, loss@max: 1.459691, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 57, loss@min: 1.023941, loss@max: 1.451304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.049353, loss@max: 1.470693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.083936, loss@max: 1.478218, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 60, loss@min: 1.113362, loss@max: 1.492358, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.052986, loss@max: 1.459507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 1.031946, loss@max: 1.445428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.111126, loss@max: 1.483733, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 64, loss@min: 1.065071, loss@max: 1.475487, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 65, loss@min: 1.025481, loss@max: 1.436065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.028273, loss@max: 1.451620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.035576, loss@max: 1.471652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.021269, loss@max: 1.448148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.024492, loss@max: 1.442793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.136622, loss@max: 1.523964, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 71, loss@min: 1.063955, loss@max: 1.466921, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.018657, loss@max: 1.441507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.046802, loss@max: 1.435711, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 74, loss@min: 1.181372, loss@max: 1.472457, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 1.121482, loss@max: 1.498627, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 76, loss@min: 1.092720, loss@max: 1.501269, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 1.104244, loss@max: 1.474259, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 78, loss@min: 1.007083, loss@max: 1.437876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 1.056707, loss@max: 1.469362, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 80, loss@min: 1.013469, loss@max: 1.452779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.089207, loss@max: 1.465912, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 82, loss@min: 1.008268, loss@max: 1.441941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.053764, loss@max: 1.461633, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 0.977270, loss@max: 1.408293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 1.038399, loss@max: 1.462794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.026048, loss@max: 1.448999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.012823, loss@max: 1.442445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.016069, loss@max: 1.435691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.032195, loss@max: 1.449168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.001499, loss@max: 1.433501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.002288, loss@max: 1.414330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.999247, loss@max: 1.422459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.009903, loss@max: 1.430632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.999752, loss@max: 1.424228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.018315, loss@max: 1.429205, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 96, loss@min: 1.052022, loss@max: 1.449692, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 97, loss@min: 1.012981, loss@max: 1.440159, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 98, loss@min: 1.000754, loss@max: 1.433152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.039490, loss@max: 1.460356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.016864, loss@max: 1.456970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.985423, loss@max: 1.419063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.001222, loss@max: 1.430003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.993842, loss@max: 1.423397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.023320, loss@max: 1.436237, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 1.009583, loss@max: 1.429649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 1.004049, loss@max: 1.427898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.038227, loss@max: 1.436920, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 108, loss@min: 0.985776, loss@max: 1.408009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.995459, loss@max: 1.406763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.023291, loss@max: 1.438734, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 111, loss@min: 0.979514, loss@max: 1.401187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 1.027290, loss@max: 1.452968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.025404, loss@max: 1.431060, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 114, loss@min: 1.006420, loss@max: 1.426960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.999024, loss@max: 1.423089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.989288, loss@max: 1.415036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.980084, loss@max: 1.404334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 1.109966, loss@max: 1.463314, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 119, loss@min: 0.992001, loss@max: 1.420162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 1.011769, loss@max: 1.447400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.994378, loss@max: 1.421101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 1.001167, loss@max: 1.427113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.997041, loss@max: 1.424442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 1.085005, loss@max: 1.481403, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 125, loss@min: 1.049609, loss@max: 1.462436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 1.006439, loss@max: 1.438930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.988797, loss@max: 1.412880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 1.005795, loss@max: 1.436212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 1.043385, loss@max: 1.444476, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 130, loss@min: 1.079712, loss@max: 1.458367, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 130, LS: 1.336879, LT: 1.333862, Top1S: 66.455193, Top1T: 66.534492Best acc: 66.534492 +Train:epoch: 131, loss@min: 1.090333, loss@max: 1.458713, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 131, LS: 1.336862, LT: 1.333863, Top1S: 66.428757, Top1T: 66.534492 +Train:epoch: 132, loss@min: 1.039776, loss@max: 1.426305, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 132, LS: 1.336857, LT: 1.333872, Top1S: 66.428757, Top1T: 66.508057 +Train:epoch: 133, loss@min: 1.050400, loss@max: 1.446385, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 133, LS: 1.336850, LT: 1.333881, Top1S: 66.428757, Top1T: 66.508057 +Train:epoch: 134, loss@min: 1.002813, loss@max: 1.424583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.336859, LT: 1.333894, Top1S: 66.455193, Top1T: 66.508057 +Train:epoch: 135, loss@min: 0.994197, loss@max: 1.423084, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.336859, LT: 1.333904, Top1S: 66.455193, Top1T: 66.481628 +Train:epoch: 136, loss@min: 1.092464, loss@max: 1.487537, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 136, LS: 1.336869, LT: 1.333919, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 137, loss@min: 1.011023, loss@max: 1.430877, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 137, LS: 1.336886, LT: 1.333932, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 138, loss@min: 0.992252, loss@max: 1.412711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.336904, LT: 1.333944, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 139, loss@min: 1.009895, loss@max: 1.448080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.336912, LT: 1.333956, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 140, loss@min: 1.067193, loss@max: 1.457993, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 140, LS: 1.336921, LT: 1.333966, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 141, loss@min: 1.020375, loss@max: 1.436083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.336919, LT: 1.333965, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 142, loss@min: 0.991597, loss@max: 1.419486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.336918, LT: 1.333964, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 143, loss@min: 0.999649, loss@max: 1.424251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.336917, LT: 1.333964, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 144, loss@min: 0.997709, loss@max: 1.423355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.336917, LT: 1.333963, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 145, loss@min: 1.094187, loss@max: 1.467205, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 145, LS: 1.336915, LT: 1.333960, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 146, loss@min: 1.077519, loss@max: 1.462725, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 146, LS: 1.336914, LT: 1.333958, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 147, loss@min: 0.985734, loss@max: 1.409832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.336914, LT: 1.333957, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 148, loss@min: 1.069582, loss@max: 1.453915, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 148, LS: 1.336914, LT: 1.333956, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 149, loss@min: 0.989601, loss@max: 1.414497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.336914, LT: 1.333956, Top1S: 66.428757, Top1T: 66.481628 +Train:epoch: 150, loss@min: 1.139473, loss@max: 1.470263, Top1S acc: 100.000000, Top1T acc: 97.029701 + Test:epoch: 150, LS: 1.336914, LT: 1.333956, Top1S: 66.428757, Top1T: 66.481628 +------------------------------------------- +Sat Sep 9 22:34:00 2023 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 160} + +------------------------------------------- +Wed Jan 17 11:46:22 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.673530, loss@max: 1.028641, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 2.674665, loss@max: 1.043572, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 2.502458, loss@max: 1.012794, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 2.477927, loss@max: 1.024093, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 2.577098, loss@max: 1.061137, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.508152, loss@max: 1.057541, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 2.695590, loss@max: 1.119094, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 2.628670, loss@max: 1.118606, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 2.582122, loss@max: 1.116034, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 2.584553, loss@max: 1.130443, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 2.825525, loss@max: 1.202764, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 2.479991, loss@max: 1.133905, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 2.620262, loss@max: 1.182549, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 2.460675, loss@max: 1.150040, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 2.463602, loss@max: 1.162655, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 2.695330, loss@max: 1.242446, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 2.422516, loss@max: 1.180003, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 2.510326, loss@max: 1.207458, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 2.472889, loss@max: 1.218965, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 2.806436, loss@max: 1.323383, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 2.393096, loss@max: 1.217118, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 2.578139, loss@max: 1.265112, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 2.503237, loss@max: 1.254275, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 2.533385, loss@max: 1.305919, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 2.349347, loss@max: 1.253066, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 2.308523, loss@max: 1.237600, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 2.534758, loss@max: 1.313251, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 2.396807, loss@max: 1.285302, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 2.635799, loss@max: 1.341881, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 2.432217, loss@max: 1.309333, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 2.552918, loss@max: 1.355413, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 2.616561, loss@max: 1.372081, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 2.514672, loss@max: 1.355032, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 2.428132, loss@max: 1.343319, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 2.739846, loss@max: 1.418154, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 2.640397, loss@max: 1.406659, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 2.279365, loss@max: 1.328166, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 2.464980, loss@max: 1.366685, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 2.281635, loss@max: 1.347991, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 2.528232, loss@max: 1.419273, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 2.610736, loss@max: 1.427423, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 2.280723, loss@max: 1.364384, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 2.491414, loss@max: 1.426955, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 2.416517, loss@max: 1.399586, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 2.769328, loss@max: 1.504771, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 2.925179, loss@max: 1.537556, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 2.643494, loss@max: 1.487779, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 2.519487, loss@max: 1.442142, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 2.721219, loss@max: 1.496032, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 2.595818, loss@max: 1.487253, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 2.460228, loss@max: 1.441298, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 2.621466, loss@max: 1.503371, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 2.482837, loss@max: 1.468538, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 2.624882, loss@max: 1.490813, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 2.577606, loss@max: 1.517912, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 2.588829, loss@max: 1.493667, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 2.737528, loss@max: 1.518614, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 2.464562, loss@max: 1.454943, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 2.617595, loss@max: 1.516588, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 2.676732, loss@max: 1.520959, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 61, loss@min: 2.553827, loss@max: 1.482710, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 62, loss@min: 2.527746, loss@max: 1.483149, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 2.383871, loss@max: 1.469426, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 2.522573, loss@max: 1.476865, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 2.591813, loss@max: 1.497863, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 2.657061, loss@max: 1.537477, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 67, loss@min: 2.466074, loss@max: 1.481584, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 2.734471, loss@max: 1.536438, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 2.508793, loss@max: 1.484042, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 2.506234, loss@max: 1.496620, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 2.562883, loss@max: 1.507620, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 72, loss@min: 2.685989, loss@max: 1.568103, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 2.533874, loss@max: 1.501682, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 2.572235, loss@max: 1.534148, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 2.831147, loss@max: 1.576237, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 2.518444, loss@max: 1.522232, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 77, loss@min: 2.558355, loss@max: 1.530821, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 2.615725, loss@max: 1.541230, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 2.465583, loss@max: 1.516850, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 2.629065, loss@max: 1.527693, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.508637, loss@max: 1.501699, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 82, loss@min: 2.217099, loss@max: 1.505561, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 83, loss@min: 1.912837, loss@max: 1.511625, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.890573, loss@max: 1.583729, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 85, loss@min: 1.623651, loss@max: 1.532918, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 86, loss@min: 1.559682, loss@max: 1.538962, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 87, loss@min: 1.592170, loss@max: 1.553419, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 88, loss@min: 1.451931, loss@max: 1.545356, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.350351, loss@max: 1.519501, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.262831, loss@max: 1.514805, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 91, loss@min: 1.183217, loss@max: 1.509318, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.065325, loss@max: 1.496650, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 1.056692, loss@max: 1.511509, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 94, loss@min: 1.112643, loss@max: 1.521662, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.991887, loss@max: 1.496551, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 96, loss@min: 1.032764, loss@max: 1.522846, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 0.978562, loss@max: 1.507421, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.112038, loss@max: 1.561183, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.007653, loss@max: 1.507890, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 0.963644, loss@max: 1.467208, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.998183, loss@max: 1.472054, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 0.951431, loss@max: 1.444222, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 0.964984, loss@max: 1.456023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.972672, loss@max: 1.446324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.002273, loss@max: 1.450857, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.944506, loss@max: 1.410005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.978248, loss@max: 1.414370, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 0.984790, loss@max: 1.425160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.979966, loss@max: 1.402911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.973403, loss@max: 1.392395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.978952, loss@max: 1.379578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.982812, loss@max: 1.384420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.978169, loss@max: 1.380728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.967692, loss@max: 1.366679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.982852, loss@max: 1.378660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.973032, loss@max: 1.370266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.967671, loss@max: 1.366194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.963394, loss@max: 1.373246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.978968, loss@max: 1.373782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.959846, loss@max: 1.362921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.966312, loss@max: 1.372430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.974396, loss@max: 1.382251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.957868, loss@max: 1.363266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.963388, loss@max: 1.375014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.965913, loss@max: 1.377056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.974607, loss@max: 1.374138, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.963024, loss@max: 1.374467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.963922, loss@max: 1.373600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.949355, loss@max: 1.373018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.956385, loss@max: 1.375785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.952513, loss@max: 1.374318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.948604, loss@max: 1.369570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.952200, loss@max: 1.378188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.946862, loss@max: 1.372856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.946717, loss@max: 1.371409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.972296, loss@max: 1.369685, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 137, loss@min: 0.957011, loss@max: 1.370313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.957283, loss@max: 1.370469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.950831, loss@max: 1.368106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.951641, loss@max: 1.366482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.947524, loss@max: 1.367123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.947761, loss@max: 1.369327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.950241, loss@max: 1.368662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.951942, loss@max: 1.371876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.958883, loss@max: 1.370446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.957130, loss@max: 1.375327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.949948, loss@max: 1.367260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.947837, loss@max: 1.366719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.953125, loss@max: 1.365347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.951746, loss@max: 1.361308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 151, loss@min: 0.963037, loss@max: 1.379749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 152, loss@min: 0.950123, loss@max: 1.366452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 153, loss@min: 0.950234, loss@max: 1.364846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 154, loss@min: 0.953975, loss@max: 1.375306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 155, loss@min: 0.945212, loss@max: 1.363916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 156, loss@min: 0.949318, loss@max: 1.363852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 157, loss@min: 0.948892, loss@max: 1.363596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 158, loss@min: 0.948421, loss@max: 1.361650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 159, loss@min: 0.946591, loss@max: 1.360349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 160, loss@min: 0.948334, loss@max: 1.362391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 160, LS: 0.369071, LT: 0.371183, Top1S: 89.533470, Top1T: 89.411766Best acc: 89.533470 +Train:epoch: 161, loss@min: 0.951038, loss@max: 1.365002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 161, LS: 0.369108, LT: 0.371126, Top1S: 89.533470, Top1T: 89.411766 +Train:epoch: 162, loss@min: 0.947303, loss@max: 1.359654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 162, LS: 0.369132, LT: 0.371120, Top1S: 89.574036, Top1T: 89.411766Best acc: 89.574036 +Train:epoch: 163, loss@min: 0.949919, loss@max: 1.365110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 163, LS: 0.369202, LT: 0.371140, Top1S: 89.614601, Top1T: 89.452332Best acc: 89.614601 +Train:epoch: 164, loss@min: 0.970913, loss@max: 1.384947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 164, LS: 0.369146, LT: 0.371056, Top1S: 89.574036, Top1T: 89.452332 +Train:epoch: 165, loss@min: 0.945741, loss@max: 1.365715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 165, LS: 0.369159, LT: 0.371085, Top1S: 89.574036, Top1T: 89.452332 +Train:epoch: 166, loss@min: 0.951006, loss@max: 1.366386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 166, LS: 0.369060, LT: 0.371055, Top1S: 89.574036, Top1T: 89.452332 +Train:epoch: 167, loss@min: 0.967724, loss@max: 1.377485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 167, LS: 0.368616, LT: 0.370688, Top1S: 89.574036, Top1T: 89.452332 +Train:epoch: 168, loss@min: 0.959116, loss@max: 1.370265, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 168, LS: 0.368315, LT: 0.370398, Top1S: 89.574036, Top1T: 89.492905 +Train:epoch: 169, loss@min: 0.948291, loss@max: 1.363540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 169, LS: 0.367993, LT: 0.370023, Top1S: 89.614601, Top1T: 89.492905 +Train:epoch: 170, loss@min: 0.948135, loss@max: 1.364418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 170, LS: 0.367694, LT: 0.369634, Top1S: 89.614601, Top1T: 89.492905 +Train:epoch: 171, loss@min: 0.947472, loss@max: 1.358906, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:01:00 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.677516, loss@max: 1.029585, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 2.672646, loss@max: 1.042993, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 2.497838, loss@max: 1.011432, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 2.484299, loss@max: 1.025143, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 2.568999, loss@max: 1.058950, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 2.525083, loss@max: 1.060784, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 2.741058, loss@max: 1.128289, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 2.669372, loss@max: 1.126644, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 2.622683, loss@max: 1.125936, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 2.679038, loss@max: 1.152494, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 2.923099, loss@max: 1.223930, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 2.565914, loss@max: 1.151391, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 2.767223, loss@max: 1.215814, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 14, loss@min: 2.596703, loss@max: 1.176379, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 2.483936, loss@max: 1.163426, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 2.753098, loss@max: 1.253227, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 2.474019, loss@max: 1.183398, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 2.451202, loss@max: 1.179781, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 2.585526, loss@max: 1.228458, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 2.915566, loss@max: 1.327320, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 2.479402, loss@max: 1.224173, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 2.549013, loss@max: 1.242746, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 2.547860, loss@max: 1.248253, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 2.509409, loss@max: 1.275876, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 2.328686, loss@max: 1.227526, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 26, loss@min: 2.304000, loss@max: 1.204468, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 2.557627, loss@max: 1.289924, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 2.381802, loss@max: 1.257065, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 2.542124, loss@max: 1.293544, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 2.277237, loss@max: 1.244644, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 2.547963, loss@max: 1.317498, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 2.427199, loss@max: 1.296231, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 2.318290, loss@max: 1.279605, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 34, loss@min: 2.439503, loss@max: 1.307215, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 2.633704, loss@max: 1.361546, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 2.510040, loss@max: 1.343636, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 2.231183, loss@max: 1.267977, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 2.293034, loss@max: 1.298130, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 2.130479, loss@max: 1.267348, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 40, loss@min: 2.490851, loss@max: 1.367278, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 41, loss@min: 2.473218, loss@max: 1.355123, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 2.105101, loss@max: 1.280797, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 2.262306, loss@max: 1.332688, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 2.123355, loss@max: 1.293282, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 45, loss@min: 2.568800, loss@max: 1.420030, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 2.613283, loss@max: 1.426957, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 47, loss@min: 2.329278, loss@max: 1.365697, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 48, loss@min: 2.235021, loss@max: 1.331963, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 49, loss@min: 2.485094, loss@max: 1.401791, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 2.309907, loss@max: 1.359731, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 51, loss@min: 2.130421, loss@max: 1.313536, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 2.234868, loss@max: 1.375960, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 53, loss@min: 2.202133, loss@max: 1.338650, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 54, loss@min: 2.188566, loss@max: 1.345989, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 2.218750, loss@max: 1.378155, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 2.200889, loss@max: 1.363148, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 57, loss@min: 2.284028, loss@max: 1.350810, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 2.094639, loss@max: 1.308594, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 2.277548, loss@max: 1.358296, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 2.302588, loss@max: 1.393784, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 61, loss@min: 2.252338, loss@max: 1.355066, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 2.153807, loss@max: 1.335215, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 2.020022, loss@max: 1.314533, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 2.141887, loss@max: 1.329320, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 2.314677, loss@max: 1.374447, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 66, loss@min: 2.290582, loss@max: 1.392373, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 2.147860, loss@max: 1.339251, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 2.492750, loss@max: 1.413016, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 2.240069, loss@max: 1.360709, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 70, loss@min: 2.178063, loss@max: 1.348075, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 2.156863, loss@max: 1.367124, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 72, loss@min: 2.500450, loss@max: 1.481291, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 2.253069, loss@max: 1.361219, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 74, loss@min: 2.360348, loss@max: 1.409358, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 2.305411, loss@max: 1.390552, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 76, loss@min: 2.200219, loss@max: 1.367930, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 2.230530, loss@max: 1.380657, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 2.230860, loss@max: 1.382805, Top1S acc: 99.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 2.227373, loss@max: 1.377662, Top1S acc: 99.000000, Top1T acc: 83.000000 +Train:epoch: 80, loss@min: 2.444085, loss@max: 1.430227, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.029375, loss@max: 1.312690, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.705322, loss@max: 1.361781, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 83, loss@min: 1.455081, loss@max: 1.415586, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 84, loss@min: 1.376336, loss@max: 1.518630, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 85, loss@min: 1.139381, loss@max: 1.521495, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 86, loss@min: 1.132968, loss@max: 1.602837, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.052607, loss@max: 1.610735, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 88, loss@min: 1.027226, loss@max: 1.629265, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 89, loss@min: 0.975396, loss@max: 1.588315, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 90, loss@min: 0.933349, loss@max: 1.556386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.949181, loss@max: 1.520550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.959257, loss@max: 1.477755, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.959876, loss@max: 1.449191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.029043, loss@max: 1.429291, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 95, loss@min: 0.982863, loss@max: 1.383437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.002174, loss@max: 1.376671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.030652, loss@max: 1.376761, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.118378, loss@max: 1.411044, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 1.040735, loss@max: 1.377889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.012691, loss@max: 1.357556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 1.014113, loss@max: 1.369449, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.977462, loss@max: 1.365743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.977616, loss@max: 1.386715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.963124, loss@max: 1.384603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.010062, loss@max: 1.412374, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.945456, loss@max: 1.395375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.950081, loss@max: 1.398963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.953023, loss@max: 1.404993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.951351, loss@max: 1.395480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.943372, loss@max: 1.385420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.950692, loss@max: 1.383752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.955229, loss@max: 1.377850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.956952, loss@max: 1.369022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.955046, loss@max: 1.361788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.978678, loss@max: 1.368755, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.965668, loss@max: 1.358089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.959744, loss@max: 1.354350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.960323, loss@max: 1.361672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.962154, loss@max: 1.365346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.953533, loss@max: 1.359150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.392945, LT: 0.395180, Top1S: 88.884384, Top1T: 88.924950Best acc: 88.924950 +Train:epoch: 121, loss@min: 0.953445, loss@max: 1.360985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.391953, LT: 0.394312, Top1S: 88.843811, Top1T: 88.884384 +Train:epoch: 122, loss@min: 0.957502, loss@max: 1.370248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.390374, LT: 0.392833, Top1S: 88.843811, Top1T: 88.884384 +Train:epoch: 123, loss@min: 0.951339, loss@max: 1.370867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.388837, LT: 0.391240, Top1S: 88.884384, Top1T: 88.843811 +Train:epoch: 124, loss@min: 0.978531, loss@max: 1.391433, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.387139, LT: 0.389690, Top1S: 88.924950, Top1T: 88.924950 +Train:epoch: 125, loss@min: 0.944796, loss@max: 1.371264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.385539, LT: 0.388328, Top1S: 89.046654, Top1T: 89.087219Best acc: 89.087219 +Train:epoch: 126, loss@min: 0.943876, loss@max: 1.370031, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Jan 17 12:10:11 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.190319, loss@max: 1.046078, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.775970, loss@max: 1.083025, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.386258, loss@max: 1.094826, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 1.340343, loss@max: 1.174000, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 5, loss@min: 1.226072, loss@max: 1.212496, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 6, loss@min: 1.018275, loss@max: 1.215693, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.043560, loss@max: 1.266176, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 8, loss@min: 1.055530, loss@max: 1.311545, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.924668, loss@max: 1.293846, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 0.968273, loss@max: 1.322909, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 0.950844, loss@max: 1.341811, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 0.881260, loss@max: 1.330152, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 13, loss@min: 0.924898, loss@max: 1.348954, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 0.837673, loss@max: 1.310685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.841870, loss@max: 1.301632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.931655, loss@max: 1.315528, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.871622, loss@max: 1.271257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.909544, loss@max: 1.268937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.924768, loss@max: 1.251824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.037900, loss@max: 1.280197, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.922622, loss@max: 1.229442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.932410, loss@max: 1.232251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.934748, loss@max: 1.224621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.966359, loss@max: 1.239883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.947330, loss@max: 1.227657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.940941, loss@max: 1.223988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943790, loss@max: 1.238569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.950191, loss@max: 1.241462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.940289, loss@max: 1.250542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.936722, loss@max: 1.248098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.954394, loss@max: 1.277207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.940696, loss@max: 1.273831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.969398, loss@max: 1.288680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.928983, loss@max: 1.272499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.939693, loss@max: 1.287462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936193, loss@max: 1.293880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.925249, loss@max: 1.290551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.925099, loss@max: 1.294652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.925017, loss@max: 1.300630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933658, loss@max: 1.316229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.958453, loss@max: 1.319359, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.927915, loss@max: 1.318047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.928570, loss@max: 1.313576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.933036, loss@max: 1.311520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.940156, loss@max: 1.330238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.933734, loss@max: 1.320605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.933262, loss@max: 1.317125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.939447, loss@max: 1.314645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945992, loss@max: 1.323020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.938454, loss@max: 1.321280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.938315, loss@max: 1.326805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.941108, loss@max: 1.323483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946472, loss@max: 1.329782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.940995, loss@max: 1.322083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942095, loss@max: 1.332821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.946025, loss@max: 1.335703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.954774, loss@max: 1.342909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.937923, loss@max: 1.331169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.936286, loss@max: 1.336625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.935289, loss@max: 1.337275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.942259, loss@max: 1.336299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.947399, loss@max: 1.331770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.943027, loss@max: 1.337068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.942730, loss@max: 1.335258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946882, loss@max: 1.334778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952905, loss@max: 1.346303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.935992, loss@max: 1.344998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.941326, loss@max: 1.344364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.940717, loss@max: 1.354101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.942287, loss@max: 1.347450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.941720, loss@max: 1.350119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948480, loss@max: 1.353979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.945207, loss@max: 1.344279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.949355, loss@max: 1.349981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947440, loss@max: 1.344177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948280, loss@max: 1.349418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.947199, loss@max: 1.351544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.944519, loss@max: 1.346045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.940610, loss@max: 1.351925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.940102, loss@max: 1.355042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.383016, LT: 0.386447, Top1S: 89.452332, Top1T: 89.614601Best acc: 89.614601 +Train:epoch: 81, loss@min: 0.938231, loss@max: 1.355773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.383105, LT: 0.386460, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 82, loss@min: 0.943288, loss@max: 1.353642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.383192, LT: 0.386466, Top1S: 89.452332, Top1T: 89.574036 +Train:epoch: 83, loss@min: 0.945497, loss@max: 1.348917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.383230, LT: 0.386523, Top1S: 89.452332, Top1T: 89.533470 +Train:epoch: 84, loss@min: 0.944715, loss@max: 1.350028, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Jan 17 12:16:54 2024 +-------------------------------------------{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Wed Jan 17 12:17:22 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.191453, loss@max: 1.046093, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.776409, loss@max: 1.082530, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.386856, loss@max: 1.094375, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 1.338315, loss@max: 1.173289, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 5, loss@min: 1.221564, loss@max: 1.212169, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 6, loss@min: 1.014244, loss@max: 1.216633, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 1.036733, loss@max: 1.267736, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 8, loss@min: 1.048761, loss@max: 1.314720, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.916489, loss@max: 1.298305, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 0.956208, loss@max: 1.327566, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 0.937886, loss@max: 1.347587, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 0.865420, loss@max: 1.335344, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 13, loss@min: 0.917598, loss@max: 1.356310, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 0.830748, loss@max: 1.317734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.832288, loss@max: 1.307084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.924305, loss@max: 1.319392, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.863002, loss@max: 1.273451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.892939, loss@max: 1.264506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.916631, loss@max: 1.249706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.025088, loss@max: 1.274566, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.921150, loss@max: 1.226205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.931256, loss@max: 1.226060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.936190, loss@max: 1.218947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.960606, loss@max: 1.231616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.948138, loss@max: 1.223859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.941131, loss@max: 1.219364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.942524, loss@max: 1.235088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.951567, loss@max: 1.240658, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.941687, loss@max: 1.250769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933003, loss@max: 1.248449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.956388, loss@max: 1.281851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.929981, loss@max: 1.273559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.963465, loss@max: 1.292046, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.924193, loss@max: 1.277118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931208, loss@max: 1.290949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.931408, loss@max: 1.296346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.921236, loss@max: 1.291555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.924133, loss@max: 1.296376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.924185, loss@max: 1.299181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.942801, loss@max: 1.318370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.973615, loss@max: 1.319249, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.934191, loss@max: 1.315203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.931124, loss@max: 1.309913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.936142, loss@max: 1.309025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.954756, loss@max: 1.330010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.941076, loss@max: 1.317568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.937181, loss@max: 1.310757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.943200, loss@max: 1.311956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.948901, loss@max: 1.318466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.940377, loss@max: 1.316674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.939255, loss@max: 1.321481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940529, loss@max: 1.318590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.944088, loss@max: 1.325677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.943340, loss@max: 1.320060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.940994, loss@max: 1.327417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.950185, loss@max: 1.334450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.966204, loss@max: 1.346159, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 58, loss@min: 0.938569, loss@max: 1.328909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937676, loss@max: 1.335534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.936128, loss@max: 1.335288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.941684, loss@max: 1.335248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944825, loss@max: 1.332742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.941880, loss@max: 1.337332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.940954, loss@max: 1.335172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.944023, loss@max: 1.334332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.982054, loss@max: 1.349201, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.938145, loss@max: 1.342920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.941954, loss@max: 1.341746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.942462, loss@max: 1.348212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.943953, loss@max: 1.344590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.942050, loss@max: 1.346978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.945700, loss@max: 1.349462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.944767, loss@max: 1.343320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.950084, loss@max: 1.349452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947541, loss@max: 1.342187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.947582, loss@max: 1.348235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.947297, loss@max: 1.350911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945803, loss@max: 1.343853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.941592, loss@max: 1.349283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.942910, loss@max: 1.351445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.427619, LT: 0.422737, Top1S: 88.316429, Top1T: 88.762680Best acc: 88.762680 +Train:epoch: 81, loss@min: 0.940861, loss@max: 1.352697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.427676, LT: 0.422709, Top1S: 88.316429, Top1T: 88.762680 +Train:epoch: 82, loss@min: 0.945387, loss@max: 1.351103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.427680, LT: 0.422709, Top1S: 88.438133, Top1T: 88.803246Best acc: 88.803246 +Train:epoch: 83, loss@min: 0.947891, loss@max: 1.345034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.427836, LT: 0.423041, Top1S: 88.478699, Top1T: 88.803246 +Train:epoch: 84, loss@min: 0.944783, loss@max: 1.348598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.428016, LT: 0.423297, Top1S: 88.478699, Top1T: 88.803246 +Train:epoch: 85, loss@min: 0.946256, loss@max: 1.347398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.428471, LT: 0.423811, Top1S: 88.478699, Top1T: 88.762680 +Train:epoch: 86, loss@min: 0.943875, loss@max: 1.355815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.429010, LT: 0.424102, Top1S: 88.478699, Top1T: 88.762680 +Train:epoch: 87, loss@min: 0.943808, loss@max: 1.354141, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:25:25 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.677606, loss@max: 1.034148, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 2.672066, loss@max: 1.052244, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 2.497427, loss@max: 1.024714, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 2.483628, loss@max: 1.043946, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 2.568701, loss@max: 1.081868, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 2.524953, loss@max: 1.087764, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 2.740857, loss@max: 1.159377, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 2.668415, loss@max: 1.162489, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 2.621239, loss@max: 1.164709, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 2.678296, loss@max: 1.194849, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 2.923836, loss@max: 1.269321, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 2.565808, loss@max: 1.200972, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 2.767933, loss@max: 1.269066, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.595769, loss@max: 1.229363, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 2.483265, loss@max: 1.219996, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 2.752555, loss@max: 1.315074, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 2.473072, loss@max: 1.243891, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 2.448333, loss@max: 1.239399, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 19, loss@min: 2.583272, loss@max: 1.290986, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 2.913996, loss@max: 1.392786, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 2.477365, loss@max: 1.289607, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 2.545774, loss@max: 1.306125, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 2.546356, loss@max: 1.311969, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 2.510542, loss@max: 1.347054, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 2.326990, loss@max: 1.295312, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 26, loss@min: 2.305052, loss@max: 1.267915, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 2.558130, loss@max: 1.355974, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 2.385270, loss@max: 1.323912, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 2.544551, loss@max: 1.357994, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 2.279969, loss@max: 1.310492, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 2.547523, loss@max: 1.382407, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 32, loss@min: 2.428591, loss@max: 1.360763, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 2.314182, loss@max: 1.343104, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 34, loss@min: 2.447234, loss@max: 1.370246, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 2.639427, loss@max: 1.423005, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 2.518944, loss@max: 1.405825, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 2.230325, loss@max: 1.326334, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 2.304476, loss@max: 1.356613, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 39, loss@min: 2.135688, loss@max: 1.325454, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 40, loss@min: 2.489592, loss@max: 1.422994, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 2.472402, loss@max: 1.409056, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 1.817577, loss@max: 1.389182, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 1.690410, loss@max: 1.483737, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 44, loss@min: 1.384272, loss@max: 1.485614, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 45, loss@min: 1.561981, loss@max: 1.623206, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 46, loss@min: 1.431560, loss@max: 1.634332, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 47, loss@min: 1.106334, loss@max: 1.584293, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 48, loss@min: 1.100297, loss@max: 1.582787, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 49, loss@min: 1.132141, loss@max: 1.611506, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 50, loss@min: 1.001932, loss@max: 1.578646, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 51, loss@min: 0.928614, loss@max: 1.538526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.950080, loss@max: 1.529294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.016821, loss@max: 1.527385, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 54, loss@min: 0.941734, loss@max: 1.453572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.003402, loss@max: 1.463160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.006671, loss@max: 1.415034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.131222, loss@max: 1.416023, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 0.991407, loss@max: 1.360662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.015429, loss@max: 1.365375, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 1.021474, loss@max: 1.370539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.039343, loss@max: 1.357904, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 62, loss@min: 1.010883, loss@max: 1.345616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.988242, loss@max: 1.342866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.983444, loss@max: 1.339891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.986977, loss@max: 1.365984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.989959, loss@max: 1.373707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.958688, loss@max: 1.368222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.962695, loss@max: 1.378771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.970484, loss@max: 1.385417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.960040, loss@max: 1.386732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945474, loss@max: 1.381566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.964478, loss@max: 1.405924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946904, loss@max: 1.375460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.972251, loss@max: 1.383571, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.953981, loss@max: 1.372961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.959821, loss@max: 1.374223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.960527, loss@max: 1.373936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954095, loss@max: 1.369122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.950583, loss@max: 1.363636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.956483, loss@max: 1.365663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.958615, loss@max: 1.368091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.964852, loss@max: 1.371195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.950644, loss@max: 1.360088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.955578, loss@max: 1.370420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.953393, loss@max: 1.365125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.945954, loss@max: 1.365499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.965651, loss@max: 1.377149, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 88, loss@min: 0.953910, loss@max: 1.376376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.948329, loss@max: 1.367516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947270, loss@max: 1.361916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.948279, loss@max: 1.361436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.951482, loss@max: 1.368740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.954524, loss@max: 1.366937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950433, loss@max: 1.361764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.950349, loss@max: 1.359353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.955050, loss@max: 1.365545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955736, loss@max: 1.365795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.970760, loss@max: 1.379798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.959742, loss@max: 1.368981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.952496, loss@max: 1.358901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.957633, loss@max: 1.362710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.949629, loss@max: 1.359589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.951916, loss@max: 1.362015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.951155, loss@max: 1.361238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.955166, loss@max: 1.370241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.949314, loss@max: 1.360087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.947432, loss@max: 1.363741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.952989, loss@max: 1.366186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.946115, loss@max: 1.362383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.948390, loss@max: 1.358717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.950918, loss@max: 1.368499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.947652, loss@max: 1.362089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.947690, loss@max: 1.361735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.945457, loss@max: 1.360161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.944434, loss@max: 1.366138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.944061, loss@max: 1.364123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.946445, loss@max: 1.359334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.946473, loss@max: 1.362180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.952597, loss@max: 1.365909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.945338, loss@max: 1.359565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.365622, LT: 0.368222, Top1S: 89.614601, Top1T: 89.776878Best acc: 89.776878 +Train:epoch: 121, loss@min: 0.948480, loss@max: 1.357522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.365519, LT: 0.368012, Top1S: 89.614601, Top1T: 89.898582Best acc: 89.898582 +Train:epoch: 122, loss@min: 0.948195, loss@max: 1.364361, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:32:23 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.904771, loss@max: 1.603247, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 4.769283, loss@max: 1.598668, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 3, loss@min: 4.584170, loss@max: 1.581851, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 4, loss@min: 4.697289, loss@max: 1.638676, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 4.768453, loss@max: 1.690186, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 6, loss@min: 4.676728, loss@max: 1.689171, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 7, loss@min: 4.615505, loss@max: 1.702678, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 8, loss@min: 4.751294, loss@max: 1.763967, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 9, loss@min: 4.824959, loss@max: 1.807746, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 10, loss@min: 4.614555, loss@max: 1.779997, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 11, loss@min: 4.479720, loss@max: 1.770834, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 12, loss@min: 4.569471, loss@max: 1.829155, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 4.703578, loss@max: 1.880479, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 14, loss@min: 4.868333, loss@max: 1.938815, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 15, loss@min: 4.852435, loss@max: 1.958120, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 16, loss@min: 4.992870, loss@max: 2.012079, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 17, loss@min: 4.960138, loss@max: 2.040130, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 18, loss@min: 4.918213, loss@max: 2.026397, Top1S acc: 100.000000, Top1T acc: 49.504951 +Train:epoch: 19, loss@min: 4.861834, loss@max: 2.022773, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 5.084692, loss@max: 2.111563, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 21, loss@min: 4.771335, loss@max: 2.051401, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 22, loss@min: 4.700760, loss@max: 2.026721, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 23, loss@min: 4.617326, loss@max: 2.033313, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 24, loss@min: 4.765471, loss@max: 2.073668, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 25, loss@min: 4.612907, loss@max: 2.045553, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 26, loss@min: 4.598322, loss@max: 2.084107, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 27, loss@min: 4.532284, loss@max: 2.078594, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 28, loss@min: 4.650817, loss@max: 2.109703, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 4.452769, loss@max: 2.065921, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 30, loss@min: 4.296492, loss@max: 2.063586, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 5.158101, loss@max: 2.274920, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 32, loss@min: 4.787312, loss@max: 2.187841, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 33, loss@min: 4.731205, loss@max: 2.187697, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 34, loss@min: 4.548574, loss@max: 2.159786, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 35, loss@min: 4.754024, loss@max: 2.195619, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 36, loss@min: 4.380107, loss@max: 2.091300, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 37, loss@min: 4.266253, loss@max: 2.082263, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 38, loss@min: 4.316532, loss@max: 2.087613, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 39, loss@min: 4.200446, loss@max: 2.090518, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 40, loss@min: 4.294958, loss@max: 2.102158, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 41, loss@min: 4.467770, loss@max: 2.159389, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 42, loss@min: 3.558134, loss@max: 2.016085, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 43, loss@min: 3.222926, loss@max: 2.037909, Top1S acc: 100.000000, Top1T acc: 69.306931 +Train:epoch: 44, loss@min: 2.640395, loss@max: 1.938666, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 45, loss@min: 2.516287, loss@max: 1.981291, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 46, loss@min: 2.146791, loss@max: 1.942729, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 47, loss@min: 1.748003, loss@max: 1.852168, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 48, loss@min: 1.709605, loss@max: 1.865638, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 49, loss@min: 1.756865, loss@max: 1.898171, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 50, loss@min: 1.571923, loss@max: 1.860646, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 51, loss@min: 1.292361, loss@max: 1.761176, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 52, loss@min: 1.250378, loss@max: 1.715691, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 53, loss@min: 1.287050, loss@max: 1.739830, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 54, loss@min: 1.130599, loss@max: 1.649104, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 55, loss@min: 1.116611, loss@max: 1.621309, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.228060, loss@max: 1.660124, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 57, loss@min: 1.056099, loss@max: 1.572653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.008503, loss@max: 1.507714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.083544, loss@max: 1.543573, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 60, loss@min: 1.059411, loss@max: 1.513025, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.068055, loss@max: 1.503483, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 62, loss@min: 1.029685, loss@max: 1.468672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.035134, loss@max: 1.460000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.996696, loss@max: 1.408682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.014342, loss@max: 1.418619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.020014, loss@max: 1.415637, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 67, loss@min: 1.010947, loss@max: 1.397390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.015894, loss@max: 1.418306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.990883, loss@max: 1.386434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.999731, loss@max: 1.390771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.001525, loss@max: 1.387247, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.012039, loss@max: 1.399179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.993107, loss@max: 1.382898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.998482, loss@max: 1.391796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.015870, loss@max: 1.400058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 1.014093, loss@max: 1.394915, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.969987, loss@max: 1.377521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.972626, loss@max: 1.388742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.971875, loss@max: 1.379804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.991521, loss@max: 1.405462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.967930, loss@max: 1.382867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.991508, loss@max: 1.398094, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 83, loss@min: 0.986299, loss@max: 1.392725, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.019949, loss@max: 1.397489, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 0.988199, loss@max: 1.397145, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 0.993888, loss@max: 1.408336, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 87, loss@min: 0.960143, loss@max: 1.381099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953756, loss@max: 1.368654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.962765, loss@max: 1.389563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.952790, loss@max: 1.372191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.995934, loss@max: 1.396388, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.964163, loss@max: 1.382357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.957614, loss@max: 1.374544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.969498, loss@max: 1.380491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.958450, loss@max: 1.377403, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.966013, loss@max: 1.383930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.952352, loss@max: 1.374670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.952104, loss@max: 1.367915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.963693, loss@max: 1.384572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.956301, loss@max: 1.375597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.952953, loss@max: 1.374994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.955444, loss@max: 1.369914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.955570, loss@max: 1.368978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.982765, loss@max: 1.380270, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.955798, loss@max: 1.367347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.959684, loss@max: 1.372784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.962253, loss@max: 1.371199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.959237, loss@max: 1.371795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.959910, loss@max: 1.366996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.959721, loss@max: 1.380258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.984939, loss@max: 1.391533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.958879, loss@max: 1.371657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.954753, loss@max: 1.368131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.959209, loss@max: 1.375131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.971013, loss@max: 1.381784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.958597, loss@max: 1.367861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.979645, loss@max: 1.382935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.954045, loss@max: 1.373416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.955790, loss@max: 1.362640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.957450, loss@max: 1.373220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.410283, LT: 1.393189, Top1S: 65.952942, Top1T: 66.190849Best acc: 66.190849 +Train:epoch: 121, loss@min: 0.953171, loss@max: 1.363980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.410891, LT: 1.393630, Top1S: 65.979378, Top1T: 66.217285Best acc: 66.217285 +Train:epoch: 122, loss@min: 0.970600, loss@max: 1.382434, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:39:43 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.844189, loss@max: 1.587316, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 5.155034, loss@max: 1.689798, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 3, loss@min: 4.675696, loss@max: 1.598937, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 4, loss@min: 4.703605, loss@max: 1.632417, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 5, loss@min: 5.354406, loss@max: 1.820344, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 6, loss@min: 4.723570, loss@max: 1.691414, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 7, loss@min: 4.678836, loss@max: 1.711834, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 8, loss@min: 5.050816, loss@max: 1.834786, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 9, loss@min: 5.188701, loss@max: 1.894396, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 5.093711, loss@max: 1.890827, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 11, loss@min: 5.214654, loss@max: 1.941266, Top1S acc: 99.009903, Top1T acc: 53.465347 +Train:epoch: 12, loss@min: 5.416354, loss@max: 2.018245, Top1S acc: 99.009903, Top1T acc: 50.495049 +Train:epoch: 13, loss@min: 5.668204, loss@max: 2.094012, Top1S acc: 99.009903, Top1T acc: 51.485149 +Train:epoch: 14, loss@min: 6.146653, loss@max: 2.226595, Top1S acc: 99.009903, Top1T acc: 54.455444 +Train:epoch: 15, loss@min: 6.614882, loss@max: 2.346140, Top1S acc: 98.019798, Top1T acc: 47.524754 +Train:epoch: 16, loss@min: 7.738821, loss@max: 2.634321, Top1S acc: 94.059402, Top1T acc: 46.534653 +Train:epoch: 17, loss@min: 8.229877, loss@max: 2.775077, Top1S acc: 89.108910, Top1T acc: 47.524754 +Train:epoch: 18, loss@min: 9.388842, loss@max: 3.082519, Top1S acc: 95.049507, Top1T acc: 44.554455 +Train:epoch: 19, loss@min: 7.126289, loss@max: 2.534351, Top1S acc: 96.039604, Top1T acc: 52.475246 +Train:epoch: 20, loss@min: 6.059134, loss@max: 2.315566, Top1S acc: 97.029701, Top1T acc: 54.455444 +Train:epoch: 21, loss@min: 5.701086, loss@max: 2.235701, Top1S acc: 97.029701, Top1T acc: 50.495049 +Train:epoch: 22, loss@min: 5.646089, loss@max: 2.228267, Top1S acc: 97.029701, Top1T acc: 52.475246 +Train:epoch: 23, loss@min: 5.924390, loss@max: 2.328050, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 24, loss@min: 6.292665, loss@max: 2.443439, Top1S acc: 99.009903, Top1T acc: 45.544552 +Train:epoch: 25, loss@min: 6.352300, loss@max: 2.453294, Top1S acc: 99.009903, Top1T acc: 50.495049 +Train:epoch: 26, loss@min: 6.909410, loss@max: 2.617627, Top1S acc: 99.009903, Top1T acc: 47.524754 +Train:epoch: 27, loss@min: 6.799357, loss@max: 2.586313, Top1S acc: 98.019798, Top1T acc: 44.554455 +Train:epoch: 28, loss@min: 7.171107, loss@max: 2.676486, Top1S acc: 99.009903, Top1T acc: 48.514851 +Train:epoch: 29, loss@min: 6.798008, loss@max: 2.604084, Top1S acc: 99.009903, Top1T acc: 47.524754 +Train:epoch: 30, loss@min: 6.821859, loss@max: 2.624480, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 31, loss@min: 7.917470, loss@max: 2.876149, Top1S acc: 98.019798, Top1T acc: 40.594059 +Train:epoch: 32, loss@min: 7.734228, loss@max: 2.805729, Top1S acc: 98.019798, Top1T acc: 42.574257 +Train:epoch: 33, loss@min: 8.515537, loss@max: 3.002730, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 34, loss@min: 8.590377, loss@max: 3.049628, Top1S acc: 98.019798, Top1T acc: 43.564354 +Train:epoch: 35, loss@min: 9.264016, loss@max: 3.190892, Top1S acc: 99.009903, Top1T acc: 43.564354 +Train:epoch: 36, loss@min: 8.582490, loss@max: 3.002199, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 37, loss@min: 8.418759, loss@max: 2.986811, Top1S acc: 98.019798, Top1T acc: 42.574257 +Train:epoch: 38, loss@min: 8.574481, loss@max: 3.021920, Top1S acc: 97.029701, Top1T acc: 41.584156 +Train:epoch: 39, loss@min: 9.143259, loss@max: 3.164125, Top1S acc: 97.029701, Top1T acc: 41.584156 +Train:epoch: 40, loss@min: 9.115447, loss@max: 3.161803, Top1S acc: 96.039604, Top1T acc: 42.574257 +Train:epoch: 41, loss@min: 9.532345, loss@max: 3.258828, Top1S acc: 98.019798, Top1T acc: 42.574257 +Train:epoch: 42, loss@min: 7.622266, loss@max: 2.949019, Top1S acc: 99.009903, Top1T acc: 46.534653 +Train:epoch: 43, loss@min: 6.138099, loss@max: 2.719699, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 44, loss@min: 4.893684, loss@max: 2.480560, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 45, loss@min: 4.124740, loss@max: 2.399965, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 46, loss@min: 3.413551, loss@max: 2.273473, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 47, loss@min: 2.717725, loss@max: 2.128304, Top1S acc: 100.000000, Top1T acc: 71.287132 +Train:epoch: 48, loss@min: 2.429274, loss@max: 2.075717, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 49, loss@min: 2.286622, loss@max: 2.040818, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 50, loss@min: 1.950788, loss@max: 1.941142, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 51, loss@min: 1.756583, loss@max: 1.867051, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 52, loss@min: 1.610116, loss@max: 1.790816, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 53, loss@min: 1.733594, loss@max: 1.819273, Top1S acc: 100.000000, Top1T acc: 88.118813 +Train:epoch: 54, loss@min: 1.484282, loss@max: 1.723129, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 55, loss@min: 1.386093, loss@max: 1.707825, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 56, loss@min: 1.523885, loss@max: 1.745539, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 57, loss@min: 1.333483, loss@max: 1.687935, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 58, loss@min: 1.212003, loss@max: 1.621828, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 59, loss@min: 1.304745, loss@max: 1.651078, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 60, loss@min: 1.189321, loss@max: 1.611110, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 61, loss@min: 1.208945, loss@max: 1.616125, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 62, loss@min: 1.125369, loss@max: 1.556119, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 63, loss@min: 1.124380, loss@max: 1.548944, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 64, loss@min: 1.065126, loss@max: 1.490253, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 65, loss@min: 1.110815, loss@max: 1.518433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.082407, loss@max: 1.493184, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 67, loss@min: 1.041817, loss@max: 1.451838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.114887, loss@max: 1.494885, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 69, loss@min: 1.011951, loss@max: 1.431917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.042180, loss@max: 1.445870, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 71, loss@min: 1.028829, loss@max: 1.428562, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.015659, loss@max: 1.431442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 1.003698, loss@max: 1.424585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.005889, loss@max: 1.428018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.065400, loss@max: 1.449699, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 76, loss@min: 1.034985, loss@max: 1.429086, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.982066, loss@max: 1.408401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 1.001326, loss@max: 1.423983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.980262, loss@max: 1.397308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.006551, loss@max: 1.425418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.988817, loss@max: 1.405195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.020335, loss@max: 1.418971, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 83, loss@min: 1.029259, loss@max: 1.412376, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.006975, loss@max: 1.410049, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 1.028960, loss@max: 1.413200, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 1.041588, loss@max: 1.420539, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 87, loss@min: 0.984257, loss@max: 1.390798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.966814, loss@max: 1.368878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.985432, loss@max: 1.398303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.968269, loss@max: 1.373202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.026329, loss@max: 1.398803, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.989809, loss@max: 1.394410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.967746, loss@max: 1.384358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.974115, loss@max: 1.386779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.963339, loss@max: 1.379675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.972425, loss@max: 1.388578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.964443, loss@max: 1.379279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.959335, loss@max: 1.377654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.964534, loss@max: 1.390313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.960171, loss@max: 1.393012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.956465, loss@max: 1.386378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.960857, loss@max: 1.384690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.957373, loss@max: 1.385075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.080692, loss@max: 1.412082, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.965634, loss@max: 1.377409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.967111, loss@max: 1.383589, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.987864, loss@max: 1.390341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.966276, loss@max: 1.381780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.964774, loss@max: 1.377309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.975318, loss@max: 1.389737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.038444, loss@max: 1.402923, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 112, loss@min: 0.971580, loss@max: 1.379374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.963970, loss@max: 1.377255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.964383, loss@max: 1.380884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.988852, loss@max: 1.398727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.962339, loss@max: 1.375195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 1.024900, loss@max: 1.401963, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 118, loss@min: 0.960191, loss@max: 1.384387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.956146, loss@max: 1.374249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.961601, loss@max: 1.377708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.678052, LT: 1.658045, Top1S: 63.785351, Top1T: 63.943958Best acc: 63.943958 +Train:epoch: 121, loss@min: 0.954347, loss@max: 1.370484, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:46:20 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 129.947235, loss@max: 32.852283, Top1S acc: 68.316833, Top1T acc: 1.980198 +Train:epoch: 2, loss@min: 1802.095215, loss@max: 450.893494, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 3, loss@min: 4400.564453, loss@max: 1100.522217, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 4, loss@min: 7402.204590, loss@max: 1850.943970, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 5, loss@min: 10399.213867, loss@max: 2600.207275, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 6, loss@min: 13293.859375, loss@max: 3323.879883, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 7, loss@min: 16146.883789, loss@max: 4037.147217, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 8, loss@min: 18908.937500, loss@max: 4727.671875, Top1S acc: 0.990099, Top1T acc: 0.990099 +Train:epoch: 9, loss@min: 21285.705078, loss@max: 5321.874512, Top1S acc: 0.990099, Top1T acc: 0.990099{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:48:19 2024 +-------------------------------------------{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:49:18 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 53.465347 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 50.495049 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 51.485149 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 54.455444 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 47.524754 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 94.059402, Top1T acc: 46.534653 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 89.108910, Top1T acc: 47.524754 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 95.049507, Top1T acc: 44.554455 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 96.039604, Top1T acc: 52.475246 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 54.455444 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 50.495049 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 52.475246 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 45.544552 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 50.495049 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 47.524754 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 44.554455 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 48.514851 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 47.524754 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 40.594059 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 42.574257 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 43.564354 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 43.564354 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 45.544552 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 42.574257 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 41.584156 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 41.584156 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 96.039604, Top1T acc: 42.574257 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 42.574257 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 42.574257 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 40.594059 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 36.633663 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 35.643566 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 40.594059 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 39.603962 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 39.603962 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 40.594059 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 45.544552 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 44.554455 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.009903, Top1T acc: 45.544552 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 46.534653 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 48.514851 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 98.019798, Top1T acc: 49.504951 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 44.554455 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 44.554455 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 48.514851 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 96.039604, Top1T acc: 44.554455 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 95.049507, Top1T acc: 43.564354 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 93.069305, Top1T acc: 46.534653 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 90.099007, Top1T acc: 42.574257 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 89.108910, Top1T acc: 42.574257 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 87.128708, Top1T acc: 43.564354 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 87.128708, Top1T acc: 42.574257 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 87.128708, Top1T acc: 46.534653 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 86.138611, Top1T acc: 45.544552 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 84.158417, Top1T acc: 40.594059 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 83.168312, Top1T acc: 44.554455 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 82.178215, Top1T acc: 48.514851 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 78.217819, Top1T acc: 46.534653 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 74.257423, Top1T acc: 44.554455 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 70.297028, Top1T acc: 41.584156 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 66.336632, Top1T acc: 36.633663 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 61.386139, Top1T acc: 34.653465 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 55.445545, Top1T acc: 36.633663 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 56.435642, Top1T acc: 35.643566 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 54.455444, Top1T acc: 30.693069 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 53.465347, Top1T acc: 34.653465 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 51.485149, Top1T acc: 32.673267 +Train:epoch: 81, loss@min: 22.744038, loss@max: 6.549002, Top1S acc: 50.495049, Top1T acc: 33.663368 +Train:epoch: 82, loss@min: 19.158636, loss@max: 5.737308, Top1S acc: 55.445545, Top1T acc: 37.623764 +Train:epoch: 83, loss@min: 17.064510, loss@max: 5.209610, Top1S acc: 63.366337, Top1T acc: 36.633663 +Train:epoch: 84, loss@min: 14.696251, loss@max: 4.660939, Top1S acc: 68.316833, Top1T acc: 44.554455 +Train:epoch: 85, loss@min: 13.075740, loss@max: 4.300065, Top1S acc: 71.287132, Top1T acc: 50.495049 +Train:epoch: 86, loss@min: 10.840819, loss@max: 3.752967, Top1S acc: 74.257423, Top1T acc: 54.455444 +Train:epoch: 87, loss@min: 9.860806, loss@max: 3.534658, Top1S acc: 80.198021, Top1T acc: 54.455444 +Train:epoch: 88, loss@min: 8.039621, loss@max: 3.155206, Top1S acc: 85.148514, Top1T acc: 58.415840 +Train:epoch: 89, loss@min: 8.304758, loss@max: 3.230013, Top1S acc: 87.128708, Top1T acc: 56.435642 +Train:epoch: 90, loss@min: 6.761722, loss@max: 2.885844, Top1S acc: 87.128708, Top1T acc: 62.376236 +Train:epoch: 91, loss@min: 5.467941, loss@max: 2.582604, Top1S acc: 88.118813, Top1T acc: 59.405941 +Train:epoch: 92, loss@min: 5.068139, loss@max: 2.505581, Top1S acc: 90.099007, Top1T acc: 66.336632 +Train:epoch: 93, loss@min: 4.507199, loss@max: 2.412924, Top1S acc: 90.099007, Top1T acc: 69.306931 +Train:epoch: 94, loss@min: 4.097088, loss@max: 2.320247, Top1S acc: 91.089104, Top1T acc: 67.326736 +Train:epoch: 95, loss@min: 3.506397, loss@max: 2.198623, Top1S acc: 94.059402, Top1T acc: 72.277229 +Train:epoch: 96, loss@min: 3.123228, loss@max: 2.110294, Top1S acc: 94.059402, Top1T acc: 79.207924 +Train:epoch: 97, loss@min: 2.786628, loss@max: 2.025979, Top1S acc: 96.039604, Top1T acc: 77.227722 +Train:epoch: 98, loss@min: 2.485046, loss@max: 1.935427, Top1S acc: 96.039604, Top1T acc: 84.158417 +Train:epoch: 99, loss@min: 2.381819, loss@max: 1.964516, Top1S acc: 98.019798, Top1T acc: 80.198021 +Train:epoch: 100, loss@min: 2.231676, loss@max: 1.921811, Top1S acc: 98.019798, Top1T acc: 83.168312 +Train:epoch: 101, loss@min: 2.016826, loss@max: 1.869752, Top1S acc: 99.009903, Top1T acc: 82.178215 +Train:epoch: 102, loss@min: 1.973013, loss@max: 1.869077, Top1S acc: 99.009903, Top1T acc: 87.128708 +Train:epoch: 103, loss@min: 1.790711, loss@max: 1.795514, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 104, loss@min: 2.075671, loss@max: 1.880810, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 105, loss@min: 1.441677, loss@max: 1.705762, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 106, loss@min: 1.721992, loss@max: 1.808089, Top1S acc: 100.000000, Top1T acc: 88.118813 +Train:epoch: 107, loss@min: 1.658341, loss@max: 1.769621, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 108, loss@min: 1.427052, loss@max: 1.727790, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 109, loss@min: 1.438668, loss@max: 1.718900, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 110, loss@min: 1.422895, loss@max: 1.718735, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 111, loss@min: 1.496992, loss@max: 1.714190, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 112, loss@min: 1.445154, loss@max: 1.704183, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 113, loss@min: 1.235421, loss@max: 1.637711, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 114, loss@min: 1.196389, loss@max: 1.608464, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 115, loss@min: 1.347793, loss@max: 1.647766, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 116, loss@min: 1.239089, loss@max: 1.612338, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 117, loss@min: 1.512758, loss@max: 1.679514, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 118, loss@min: 1.183120, loss@max: 1.610565, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 119, loss@min: 1.209518, loss@max: 1.593169, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 120, loss@min: 1.180234, loss@max: 1.599967, Top1S acc: 100.000000, Top1T acc: 97.029701 + Test:epoch: 120, LS: 2.471677, LT: 2.460306, Top1S: 58.524979, Top1T: 59.080093Best acc: 59.080093 +Train:epoch: 121, loss@min: 1.118156, loss@max: 1.554044, Top1S acc: 100.000000, Top1T acc: 98.019798 + Test:epoch: 121, LS: 2.470736, LT: 2.460471, Top1S: 58.630714, Top1T: 59.053658{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 12:56:21 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 43.564354 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 41.584156 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 38.613861 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 42.574257 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 85.148514, Top1T acc: 43.564354 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 58.415840, Top1T acc: 35.643566 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 63.366337, Top1T acc: 33.663368 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 82.178215, Top1T acc: 32.673267 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 90.099007, Top1T acc: 30.693069 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 91.089104, Top1T acc: 31.683168 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 91.089104, Top1T acc: 30.693069 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 88.118813, Top1T acc: 29.702971 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 79.207924, Top1T acc: 25.742575 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 73.267326, Top1T acc: 24.752476 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 73.267326, Top1T acc: 26.732674 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 78.217819, Top1T acc: 22.772276 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 83.168312, Top1T acc: 24.752476 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 87.128708, Top1T acc: 18.811882 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 90.099007, Top1T acc: 22.772276 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 86.138611, Top1T acc: 21.782177 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 80.198021, Top1T acc: 23.762377 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 75.247528, Top1T acc: 19.801981 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 67.326736, Top1T acc: 21.782177 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 67.326736, Top1T acc: 21.782177 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 23.762377 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 25.742575 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 22.772276 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 26.732674 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 20.792078 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 63.366337, Top1T acc: 25.742575 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 62.376236, Top1T acc: 30.693069 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 62.376236, Top1T acc: 26.732674 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 28.712872 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 26.732674 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 67.326736, Top1T acc: 30.693069 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 66.336632, Top1T acc: 25.742575 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 33.663368 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 34.653465 +Train:epoch: 41, loss@min: 15.240031, loss@max: 4.704168, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 42, loss@min: 11.184981, loss@max: 3.848428, Top1S acc: 69.306931, Top1T acc: 40.594059 +Train:epoch: 43, loss@min: 8.770410, loss@max: 3.393920, Top1S acc: 77.227722, Top1T acc: 44.554455 +Train:epoch: 44, loss@min: 7.113880, loss@max: 3.070647, Top1S acc: 79.207924, Top1T acc: 50.495049 +Train:epoch: 45, loss@min: 6.143215, loss@max: 2.941664, Top1S acc: 84.158417, Top1T acc: 53.465347 +Train:epoch: 46, loss@min: 5.263390, loss@max: 2.813737, Top1S acc: 87.128708, Top1T acc: 56.435642 +Train:epoch: 47, loss@min: 4.720835, loss@max: 2.751515, Top1S acc: 90.099007, Top1T acc: 59.405941 +Train:epoch: 48, loss@min: 4.261072, loss@max: 2.696393, Top1S acc: 92.079208, Top1T acc: 68.316833 +Train:epoch: 49, loss@min: 4.329138, loss@max: 2.762772, Top1S acc: 96.039604, Top1T acc: 56.435642 +Train:epoch: 50, loss@min: 3.622514, loss@max: 2.641605, Top1S acc: 99.009903, Top1T acc: 64.356438 +Train:epoch: 51, loss@min: 3.281042, loss@max: 2.568788, Top1S acc: 99.009903, Top1T acc: 72.277229 +Train:epoch: 52, loss@min: 2.893177, loss@max: 2.502335, Top1S acc: 99.009903, Top1T acc: 70.297028 +Train:epoch: 53, loss@min: 2.854845, loss@max: 2.508972, Top1S acc: 99.009903, Top1T acc: 74.257423 +Train:epoch: 54, loss@min: 2.515136, loss@max: 2.399912, Top1S acc: 99.009903, Top1T acc: 78.217819 +Train:epoch: 55, loss@min: 2.266301, loss@max: 2.407364, Top1S acc: 99.009903, Top1T acc: 80.198021 +Train:epoch: 56, loss@min: 2.520994, loss@max: 2.471831, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 57, loss@min: 2.066185, loss@max: 2.357539, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 58, loss@min: 1.925187, loss@max: 2.305620, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 59, loss@min: 1.957727, loss@max: 2.352979, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 60, loss@min: 1.814136, loss@max: 2.316385, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 61, loss@min: 1.880473, loss@max: 2.339754, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 62, loss@min: 1.746725, loss@max: 2.251908, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 63, loss@min: 1.609193, loss@max: 2.217007, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 64, loss@min: 1.372229, loss@max: 2.094832, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 65, loss@min: 1.437655, loss@max: 2.108814, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 66, loss@min: 1.373416, loss@max: 2.078046, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 67, loss@min: 1.424756, loss@max: 2.035373, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 68, loss@min: 1.474771, loss@max: 2.048954, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 69, loss@min: 1.279423, loss@max: 1.954225, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 70, loss@min: 1.267920, loss@max: 1.935002, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 71, loss@min: 1.219278, loss@max: 1.886741, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 72, loss@min: 1.247268, loss@max: 1.876168, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 73, loss@min: 1.282622, loss@max: 1.875277, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 74, loss@min: 1.214859, loss@max: 1.812956, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 75, loss@min: 1.288300, loss@max: 1.791015, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 76, loss@min: 1.236086, loss@max: 1.748566, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 77, loss@min: 1.173382, loss@max: 1.701259, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 78, loss@min: 1.201832, loss@max: 1.730118, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 79, loss@min: 1.195670, loss@max: 1.693677, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 80, loss@min: 1.247789, loss@max: 1.731204, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 81, loss@min: 1.163942, loss@max: 1.671991, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 82, loss@min: 1.211925, loss@max: 1.665754, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 83, loss@min: 1.203210, loss@max: 1.647218, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.223574, loss@max: 1.652663, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 1.139208, loss@max: 1.603164, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 1.216216, loss@max: 1.635183, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 87, loss@min: 1.115705, loss@max: 1.592594, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 88, loss@min: 1.060463, loss@max: 1.527573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 1.145429, loss@max: 1.605843, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 90, loss@min: 1.051786, loss@max: 1.527775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.103177, loss@max: 1.561371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.103503, loss@max: 1.558742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 1.079567, loss@max: 1.537764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.071625, loss@max: 1.538168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 1.050669, loss@max: 1.528225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.064619, loss@max: 1.538127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.041235, loss@max: 1.520522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.024901, loss@max: 1.494981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 1.130275, loss@max: 1.563967, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 100, loss@min: 1.081070, loss@max: 1.532752, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 101, loss@min: 1.037295, loss@max: 1.523631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.030213, loss@max: 1.511555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.027555, loss@max: 1.502851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.032127, loss@max: 1.486217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.032175, loss@max: 1.499048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 1.030039, loss@max: 1.495686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.054510, loss@max: 1.505770, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 108, loss@min: 1.027079, loss@max: 1.499008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.022666, loss@max: 1.492720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.071198, loss@max: 1.530508, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 111, loss@min: 1.162777, loss@max: 1.521626, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 112, loss@min: 1.038167, loss@max: 1.501434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.005334, loss@max: 1.472371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 1.026502, loss@max: 1.493571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 1.061450, loss@max: 1.509741, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 116, loss@min: 1.011135, loss@max: 1.477809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 1.071096, loss@max: 1.497559, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 118, loss@min: 1.022209, loss@max: 1.491983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.988892, loss@max: 1.447679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 1.028467, loss@max: 1.494002, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.409839, LT: 1.393377, Top1S: 64.128998, Top1T: 64.763412Best acc: 64.763412 +Train:epoch: 121, loss@min: 0.990477, loss@max: 1.454155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.410136, LT: 1.393465, Top1S: 64.102562, Top1T: 64.789848Best acc: 64.789848 +Train:epoch: 122, loss@min: 1.060419, loss@max: 1.500782, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 13:04:09 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 43.564354 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 41.584156 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 38.613861 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 97.029701, Top1T acc: 42.574257 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 85.148514, Top1T acc: 43.564354 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 58.415840, Top1T acc: 35.643566 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 63.366337, Top1T acc: 33.663368 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 82.178215, Top1T acc: 32.673267 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 90.099007, Top1T acc: 30.693069 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 91.089104, Top1T acc: 31.683168 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 91.089104, Top1T acc: 30.693069 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 88.118813, Top1T acc: 29.702971 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 79.207924, Top1T acc: 25.742575 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 73.267326, Top1T acc: 24.752476 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 73.267326, Top1T acc: 26.732674 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 78.217819, Top1T acc: 22.772276 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 83.168312, Top1T acc: 24.752476 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 87.128708, Top1T acc: 18.811882 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 90.099007, Top1T acc: 22.772276 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 86.138611, Top1T acc: 21.782177 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 80.198021, Top1T acc: 23.762377 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 75.247528, Top1T acc: 19.801981 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 67.326736, Top1T acc: 21.782177 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 67.326736, Top1T acc: 21.782177 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 23.762377 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 25.742575 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 22.772276 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 69.306931, Top1T acc: 26.732674 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 20.792078 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 63.366337, Top1T acc: 25.742575 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 62.376236, Top1T acc: 30.693069 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 62.376236, Top1T acc: 26.732674 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 28.712872 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 26.732674 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 67.326736, Top1T acc: 30.693069 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 66.336632, Top1T acc: 25.742575 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 33.663368 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 65.346535, Top1T acc: 34.653465 +Train:epoch: 41, loss@min: 15.240031, loss@max: 4.704168, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 42, loss@min: 15.200603, loss@max: 4.697393, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 43, loss@min: 15.005520, loss@max: 4.676758, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 44, loss@min: 14.568708, loss@max: 4.560935, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 45, loss@min: 15.125031, loss@max: 4.703470, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 46, loss@min: 14.690905, loss@max: 4.620805, Top1S acc: 64.356438, Top1T acc: 28.712872 +Train:epoch: 47, loss@min: 15.219987, loss@max: 4.709885, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 48, loss@min: 15.090023, loss@max: 4.702777, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 49, loss@min: 15.195393, loss@max: 4.739644, Top1S acc: 64.356438, Top1T acc: 28.712872 +Train:epoch: 50, loss@min: 15.036285, loss@max: 4.714319, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 51, loss@min: 14.626530, loss@max: 4.616402, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 52, loss@min: 14.873897, loss@max: 4.684647, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 53, loss@min: 14.762493, loss@max: 4.653458, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 54, loss@min: 14.600480, loss@max: 4.594469, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 55, loss@min: 14.779047, loss@max: 4.646042, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 56, loss@min: 14.778744, loss@max: 4.682420, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 57, loss@min: 14.709455, loss@max: 4.627737, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 58, loss@min: 14.610601, loss@max: 4.609176, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 59, loss@min: 15.338054, loss@max: 4.783500, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 60, loss@min: 15.104277, loss@max: 4.733147, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 61, loss@min: 15.058108, loss@max: 4.742249, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 62, loss@min: 15.096411, loss@max: 4.748625, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 63, loss@min: 15.026485, loss@max: 4.736406, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 64, loss@min: 14.396614, loss@max: 4.571839, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 65, loss@min: 14.903591, loss@max: 4.667994, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 66, loss@min: 15.222018, loss@max: 4.762255, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 67, loss@min: 15.132907, loss@max: 4.728721, Top1S acc: 64.356438, Top1T acc: 29.702971 +Train:epoch: 68, loss@min: 15.213243, loss@max: 4.801157, Top1S acc: 64.356438, Top1T acc: 28.712872 +Train:epoch: 69, loss@min: 15.177303, loss@max: 4.759832, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 70, loss@min: 14.978275, loss@max: 4.727817, Top1S acc: 64.356438, Top1T acc: 28.712872 +Train:epoch: 71, loss@min: 14.850592, loss@max: 4.698247, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 72, loss@min: 14.724406, loss@max: 4.672825, Top1S acc: 64.356438, Top1T acc: 35.643566 +Train:epoch: 73, loss@min: 15.141508, loss@max: 4.779264, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 74, loss@min: 15.173764, loss@max: 4.763235, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 75, loss@min: 14.685990, loss@max: 4.643232, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 76, loss@min: 14.771236, loss@max: 4.672813, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 77, loss@min: 14.586451, loss@max: 4.631386, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 78, loss@min: 15.198369, loss@max: 4.765275, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 79, loss@min: 14.802425, loss@max: 4.694012, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 80, loss@min: 15.061422, loss@max: 4.762672, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 81, loss@min: 14.740376, loss@max: 4.667442, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 82, loss@min: 14.989578, loss@max: 4.717776, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 83, loss@min: 15.314349, loss@max: 4.787618, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 84, loss@min: 14.584677, loss@max: 4.651838, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 85, loss@min: 15.254169, loss@max: 4.789416, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 86, loss@min: 14.818233, loss@max: 4.699293, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 87, loss@min: 14.870798, loss@max: 4.713412, Top1S acc: 64.356438, Top1T acc: 37.623764 +Train:epoch: 88, loss@min: 14.514347, loss@max: 4.600224, Top1S acc: 64.356438, Top1T acc: 36.633663 +Train:epoch: 89, loss@min: 15.091043, loss@max: 4.752103, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 90, loss@min: 14.754078, loss@max: 4.681966, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 91, loss@min: 14.730063, loss@max: 4.697663, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 92, loss@min: 14.957928, loss@max: 4.724134, Top1S acc: 64.356438, Top1T acc: 29.702971 +Train:epoch: 93, loss@min: 14.655468, loss@max: 4.654254, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 94, loss@min: 14.738498, loss@max: 4.684045, Top1S acc: 64.356438, Top1T acc: 37.623764 +Train:epoch: 95, loss@min: 14.195278, loss@max: 4.539740, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 96, loss@min: 15.111767, loss@max: 4.750469, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 97, loss@min: 14.210429, loss@max: 4.546797, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 98, loss@min: 14.784990, loss@max: 4.659528, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 99, loss@min: 14.915633, loss@max: 4.718178, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 100, loss@min: 14.885202, loss@max: 4.722078, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 101, loss@min: 14.775461, loss@max: 4.681797, Top1S acc: 64.356438, Top1T acc: 35.643566 +Train:epoch: 102, loss@min: 14.961142, loss@max: 4.727349, Top1S acc: 64.356438, Top1T acc: 29.702971 +Train:epoch: 103, loss@min: 14.745447, loss@max: 4.699998, Top1S acc: 64.356438, Top1T acc: 29.702971 +Train:epoch: 104, loss@min: 14.477661, loss@max: 4.613734, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 105, loss@min: 14.739970, loss@max: 4.676161, Top1S acc: 64.356438, Top1T acc: 30.693069 +Train:epoch: 106, loss@min: 15.096595, loss@max: 4.765564, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 107, loss@min: 15.076820, loss@max: 4.744283, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 108, loss@min: 14.895241, loss@max: 4.718388, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 109, loss@min: 14.998874, loss@max: 4.744329, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 110, loss@min: 14.741744, loss@max: 4.675699, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 111, loss@min: 14.542727, loss@max: 4.640717, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 112, loss@min: 14.414253, loss@max: 4.616898, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 113, loss@min: 14.795630, loss@max: 4.708882, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 114, loss@min: 14.626742, loss@max: 4.666343, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 115, loss@min: 14.691236, loss@max: 4.682135, Top1S acc: 64.356438, Top1T acc: 32.673267 +Train:epoch: 116, loss@min: 14.312801, loss@max: 4.610066, Top1S acc: 64.356438, Top1T acc: 34.653465 +Train:epoch: 117, loss@min: 15.107475, loss@max: 4.774822, Top1S acc: 64.356438, Top1T acc: 28.712872 +Train:epoch: 118, loss@min: 14.312282, loss@max: 4.594314, Top1S acc: 64.356438, Top1T acc: 33.663368 +Train:epoch: 119, loss@min: 14.573021, loss@max: 4.620614, Top1S acc: 64.356438, Top1T acc: 31.683168 +Train:epoch: 120, loss@min: 14.571516, loss@max: 4.652050, Top1S acc: 64.356438, Top1T acc: 36.633663 + Test:epoch: 120, LS: 4.677451, LT: 4.672185, Top1S: 38.487972, Top1T: 38.461536Best acc: 38.487972 +Train:epoch: 121, loss@min: 14.612257, loss@max: 4.670363, Top1S acc: 64.356438, Top1T acc: 31.683168 + Test:epoch: 121, LS: 4.676331, LT: 4.671026, Top1S: 38.487972, Top1T: 38.461536 +Train:epoch: 122, loss@min: 14.589018, loss@max: 4.655533, Top1S acc: 64.356438, Top1T acc: 31.683168 + Test:epoch: 122, LS: 4.675235, LT: 4.669894, Top1S: 38.487972, Top1T: 38.461536 +Train:epoch: 123, loss@min: 14.656890, loss@max: 4.677804, Top1S acc: 64.356438, Top1T acc: 32.673267 + Test:epoch: 123, LS: 4.674163, LT: 4.668789, Top1S: 38.487972, Top1T: 38.461536 +Train:epoch: 124, loss@min: 14.260423, loss@max: 4.563744, Top1S acc: 64.356438, Top1T acc: 34.653465 + Test:epoch: 124, LS: 4.673115, LT: 4.667708, Top1S: 38.487972, Top1T: 38.487972 +Train:epoch: 125, loss@min: 14.760729, loss@max: 4.679204, Top1S acc: 64.356438, Top1T acc: 33.663368 + Test:epoch: 125, LS: 4.672098, LT: 4.666661, Top1S: 38.514404, Top1T: 38.487972Best acc: 38.514404 +Train:epoch: 126, loss@min: 14.633911, loss@max: 4.665411, Top1S acc: 64.356438, Top1T acc: 31.683168 + Test:epoch: 126, LS: 4.671112, LT: 4.665644, Top1S: 38.540840, Top1T: 38.514404Best acc: 38.540840 +Train:epoch: 127, loss@min: 14.356030, loss@max: 4.574239, Top1S acc: 64.356438, Top1T acc: 35.643566 + Test:epoch: 127, LS: 4.670154, LT: 4.664657, Top1S: 38.540840, Top1T: 38.514404 +Train:epoch: 128, loss@min: 14.941143, loss@max: 4.735386, Top1S acc: 64.356438, Top1T acc: 33.663368 + Test:epoch: 128, LS: 4.669215, LT: 4.663691, Top1S: 38.540840, Top1T: 38.540840 +Train:epoch: 129, loss@min: 14.649191, loss@max: 4.672423, Top1S acc: 64.356438, Top1T acc: 33.663368{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 13:18:12 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 49.504951 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 41, loss@min: 4.472402, loss@max: 2.159526, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 42, loss@min: 4.245694, loss@max: 2.090926, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 43, loss@min: 4.436362, loss@max: 2.166849, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 44, loss@min: 4.219202, loss@max: 2.100170, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 45, loss@min: 4.515903, loss@max: 2.182729, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 46, loss@min: 4.400712, loss@max: 2.164211, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 47, loss@min: 4.107951, loss@max: 2.110774, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 48, loss@min: 4.362541, loss@max: 2.186423, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 49, loss@min: 4.652447, loss@max: 2.227734, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 50, loss@min: 4.396396, loss@max: 2.194729, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 51, loss@min: 4.500465, loss@max: 2.192931, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 52, loss@min: 4.114489, loss@max: 2.120105, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 53, loss@min: 4.621388, loss@max: 2.203964, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 54, loss@min: 4.224358, loss@max: 2.133753, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 55, loss@min: 4.210098, loss@max: 2.174805, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 56, loss@min: 4.581683, loss@max: 2.246568, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 57, loss@min: 4.439606, loss@max: 2.188950, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 58, loss@min: 4.301572, loss@max: 2.151658, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 59, loss@min: 4.506003, loss@max: 2.221356, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 60, loss@min: 4.368755, loss@max: 2.212885, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 61, loss@min: 4.772662, loss@max: 2.289886, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 62, loss@min: 4.567507, loss@max: 2.228603, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 63, loss@min: 4.492118, loss@max: 2.221178, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 64, loss@min: 4.006626, loss@max: 2.094197, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 65, loss@min: 4.250455, loss@max: 2.182375, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 66, loss@min: 4.375823, loss@max: 2.217343, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 67, loss@min: 4.276669, loss@max: 2.181885, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 68, loss@min: 4.650676, loss@max: 2.270870, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 69, loss@min: 4.434791, loss@max: 2.237281, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 70, loss@min: 4.323353, loss@max: 2.208133, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 71, loss@min: 4.070748, loss@max: 2.154871, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 72, loss@min: 4.455182, loss@max: 2.228360, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 73, loss@min: 4.450279, loss@max: 2.239985, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 74, loss@min: 4.338549, loss@max: 2.226879, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 75, loss@min: 4.295940, loss@max: 2.180400, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 76, loss@min: 4.482355, loss@max: 2.202771, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 77, loss@min: 3.923161, loss@max: 2.091388, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 78, loss@min: 4.560329, loss@max: 2.232485, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 79, loss@min: 4.291838, loss@max: 2.196074, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 80, loss@min: 4.578764, loss@max: 2.278019, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 81, loss@min: 4.554365, loss@max: 2.269474, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 82, loss@min: 4.319324, loss@max: 2.199136, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 83, loss@min: 4.449260, loss@max: 2.235263, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 84, loss@min: 4.499849, loss@max: 2.239707, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 85, loss@min: 4.418471, loss@max: 2.230640, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 86, loss@min: 4.364736, loss@max: 2.225952, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 87, loss@min: 4.488621, loss@max: 2.235899, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 88, loss@min: 4.379567, loss@max: 2.185794, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 89, loss@min: 4.668743, loss@max: 2.288241, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 90, loss@min: 4.152251, loss@max: 2.174081, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 91, loss@min: 4.416903, loss@max: 2.234997, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 92, loss@min: 4.495619, loss@max: 2.233858, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 93, loss@min: 4.147934, loss@max: 2.151947, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 94, loss@min: 4.384078, loss@max: 2.209185, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 95, loss@min: 4.366794, loss@max: 2.211178, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 96, loss@min: 4.331049, loss@max: 2.216343, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 97, loss@min: 4.388661, loss@max: 2.201554, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 98, loss@min: 4.221000, loss@max: 2.180138, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 99, loss@min: 4.503065, loss@max: 2.252123, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 100, loss@min: 4.475770, loss@max: 2.249479, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 101, loss@min: 4.444136, loss@max: 2.253280, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 102, loss@min: 4.468767, loss@max: 2.246346, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 103, loss@min: 4.509882, loss@max: 2.251338, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 104, loss@min: 4.295835, loss@max: 2.199862, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 105, loss@min: 4.305536, loss@max: 2.202078, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 106, loss@min: 4.502543, loss@max: 2.278856, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 107, loss@min: 4.477166, loss@max: 2.225245, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 108, loss@min: 4.262591, loss@max: 2.224519, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 109, loss@min: 4.500444, loss@max: 2.239035, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 110, loss@min: 4.530005, loss@max: 2.279142, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 111, loss@min: 4.479411, loss@max: 2.244581, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 112, loss@min: 4.443252, loss@max: 2.232194, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 113, loss@min: 4.346543, loss@max: 2.224858, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 114, loss@min: 4.165695, loss@max: 2.201205, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 115, loss@min: 4.557979, loss@max: 2.278159, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 116, loss@min: 4.560899, loss@max: 2.254020, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 117, loss@min: 4.530743, loss@max: 2.281152, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 118, loss@min: 4.341785, loss@max: 2.229730, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 119, loss@min: 4.205355, loss@max: 2.184126, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 120, loss@min: 4.741410, loss@max: 2.307231, Top1S acc: 100.000000, Top1T acc: 56.435642 + Test:epoch: 120, LS: 1.667836, LT: 1.667732, Top1S: 60.481098, Top1T: 60.481098Best acc: 60.481098 +Train:epoch: 121, loss@min: 4.390191, loss@max: 2.212015, Top1S acc: 100.000000, Top1T acc: 60.396038 + Test:epoch: 121, LS: 1.667712, LT: 1.667607, Top1S: 60.481098, Top1T: 60.481098 +Train:epoch: 122, loss@min: 4.314585, loss@max: 2.249307, Top1S acc: 100.000000, Top1T acc: 59.405941{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 13:25:26 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 49.504951 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 81, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 82, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 83, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 84, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 85, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 86, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 87, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 88, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 89, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 90, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 91, loss@min: 4.814308, loss@max: 2.428197, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 92, loss@min: 4.617789, loss@max: 2.405053, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 93, loss@min: 4.116397, loss@max: 2.294809, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 94, loss@min: 3.966288, loss@max: 2.314761, Top1S acc: 100.000000, Top1T acc: 62.376236 +Train:epoch: 95, loss@min: 3.754454, loss@max: 2.263203, Top1S acc: 100.000000, Top1T acc: 65.346535 +Train:epoch: 96, loss@min: 3.665451, loss@max: 2.281416, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 97, loss@min: 3.352165, loss@max: 2.190852, Top1S acc: 100.000000, Top1T acc: 67.326736 +Train:epoch: 98, loss@min: 3.333325, loss@max: 2.198578, Top1S acc: 100.000000, Top1T acc: 71.287132 +Train:epoch: 99, loss@min: 3.341878, loss@max: 2.238298, Top1S acc: 100.000000, Top1T acc: 74.257423 +Train:epoch: 100, loss@min: 3.173239, loss@max: 2.188840, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 101, loss@min: 2.990541, loss@max: 2.163737, Top1S acc: 100.000000, Top1T acc: 77.227722 +Train:epoch: 102, loss@min: 2.868675, loss@max: 2.146459, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 103, loss@min: 2.698269, loss@max: 2.112727, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 104, loss@min: 2.504961, loss@max: 2.044648, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 105, loss@min: 2.434027, loss@max: 2.032500, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 106, loss@min: 2.400185, loss@max: 2.058430, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 107, loss@min: 2.406332, loss@max: 2.022582, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 108, loss@min: 2.156354, loss@max: 2.013852, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 109, loss@min: 2.106948, loss@max: 1.976464, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 110, loss@min: 2.176847, loss@max: 2.007058, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 111, loss@min: 2.124295, loss@max: 1.949517, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 112, loss@min: 1.939031, loss@max: 1.928844, Top1S acc: 100.000000, Top1T acc: 88.118813 +Train:epoch: 113, loss@min: 1.884496, loss@max: 1.890481, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 114, loss@min: 1.806415, loss@max: 1.902599, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 115, loss@min: 1.812168, loss@max: 1.898082, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 116, loss@min: 1.746429, loss@max: 1.863907, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 117, loss@min: 1.768801, loss@max: 1.857433, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 118, loss@min: 1.609225, loss@max: 1.828717, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 119, loss@min: 1.472972, loss@max: 1.756183, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 120, loss@min: 1.590243, loss@max: 1.821349, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 121, loss@min: 1.416050, loss@max: 1.762043, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 122, loss@min: 1.382031, loss@max: 1.715342, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 123, loss@min: 1.502044, loss@max: 1.769049, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 124, loss@min: 1.370587, loss@max: 1.709141, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 125, loss@min: 1.334147, loss@max: 1.710527, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 126, loss@min: 1.237923, loss@max: 1.633510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 1.188322, loss@max: 1.602169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 1.255374, loss@max: 1.649644, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 129, loss@min: 1.222807, loss@max: 1.636599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 1.195508, loss@max: 1.624955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.251058, LT: 1.244159, Top1S: 66.296585, Top1T: 66.243721Best acc: 66.296585 +Train:epoch: 131, loss@min: 1.246913, loss@max: 1.634310, Top1S acc: 100.000000, Top1T acc: 99.009903{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 13:32:30 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 41, loss@min: 4.900951, loss@max: 2.379856, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 42, loss@min: 4.086183, loss@max: 2.260781, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 43, loss@min: 3.836384, loss@max: 2.239482, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 44, loss@min: 3.236795, loss@max: 2.132305, Top1S acc: 100.000000, Top1T acc: 70.297028 +Train:epoch: 45, loss@min: 3.058153, loss@max: 2.133406, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 46, loss@min: 2.667300, loss@max: 2.060101, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 47, loss@min: 2.289714, loss@max: 1.982839, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 48, loss@min: 2.238759, loss@max: 1.993230, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 49, loss@min: 2.195829, loss@max: 1.997987, Top1S acc: 100.000000, Top1T acc: 82.178215 +Train:epoch: 50, loss@min: 1.991312, loss@max: 1.957044, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 51, loss@min: 1.647778, loss@max: 1.852416, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 52, loss@min: 1.596538, loss@max: 1.812678, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 53, loss@min: 1.640137, loss@max: 1.842058, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 54, loss@min: 1.330736, loss@max: 1.733825, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 55, loss@min: 1.270050, loss@max: 1.717515, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.392263, loss@max: 1.748325, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 57, loss@min: 1.112904, loss@max: 1.636925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.049885, loss@max: 1.574777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.130005, loss@max: 1.626232, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 60, loss@min: 1.095733, loss@max: 1.602779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.086197, loss@max: 1.580721, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 62, loss@min: 1.027985, loss@max: 1.539868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.037292, loss@max: 1.537409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.967719, loss@max: 1.459622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.990611, loss@max: 1.475365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.003700, loss@max: 1.471302, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 67, loss@min: 0.992126, loss@max: 1.450582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.010158, loss@max: 1.467736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.970591, loss@max: 1.425627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978204, loss@max: 1.414993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.992866, loss@max: 1.410368, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.001752, loss@max: 1.417235, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 73, loss@min: 0.981020, loss@max: 1.402506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.998149, loss@max: 1.406785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.030764, loss@max: 1.416453, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 76, loss@min: 1.009336, loss@max: 1.399962, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.977614, loss@max: 1.384532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.977516, loss@max: 1.383697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.977826, loss@max: 1.378054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.999797, loss@max: 1.402296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.971446, loss@max: 1.377490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.000153, loss@max: 1.398839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.032964, loss@max: 1.399546, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.020242, loss@max: 1.392706, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 0.996845, loss@max: 1.385379, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 1.016626, loss@max: 1.399839, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 87, loss@min: 0.974346, loss@max: 1.370243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.966490, loss@max: 1.356306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.981417, loss@max: 1.384877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.962046, loss@max: 1.365667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.022124, loss@max: 1.388281, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.980721, loss@max: 1.380390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.968809, loss@max: 1.369157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.971656, loss@max: 1.371110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.965688, loss@max: 1.372077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.960275, loss@max: 1.369887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.959889, loss@max: 1.370151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.956360, loss@max: 1.365435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.958755, loss@max: 1.375466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.964602, loss@max: 1.380201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.957407, loss@max: 1.378964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.952307, loss@max: 1.370302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.960103, loss@max: 1.377451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.052088, loss@max: 1.393461, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.960507, loss@max: 1.367962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.969154, loss@max: 1.372807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.962020, loss@max: 1.370040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.963838, loss@max: 1.376057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.958763, loss@max: 1.364667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.965612, loss@max: 1.384547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.998411, loss@max: 1.394168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.964833, loss@max: 1.375936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.953414, loss@max: 1.365568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.965656, loss@max: 1.374206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.987718, loss@max: 1.379722, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 116, loss@min: 0.960765, loss@max: 1.364535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 1.006197, loss@max: 1.380089, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 118, loss@min: 0.957777, loss@max: 1.368899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.958639, loss@max: 1.363610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.959143, loss@max: 1.366384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.953340, loss@max: 1.366313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.954873, loss@max: 1.367874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.985766, loss@max: 1.384830, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 124, loss@min: 0.952756, loss@max: 1.367640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.959093, loss@max: 1.375059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.953495, loss@max: 1.359921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.959577, loss@max: 1.352229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.957801, loss@max: 1.358847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.956292, loss@max: 1.362175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.955575, loss@max: 1.363990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.475665, LT: 1.424460, Top1S: 66.613792, Top1T: 66.878136Best acc: 66.878136 +Train:epoch: 131, loss@min: 0.955424, loss@max: 1.365181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.476955, LT: 1.425491, Top1S: 66.640228, Top1T: 66.851700 +Train:epoch: 132, loss@min: 0.998087, loss@max: 1.382743, Top1S acc: 100.000000, Top1T acc: 99.009903{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 13:40:13 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 47.524754 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 21, loss@min: 4.746611, loss@max: 2.086935, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 22, loss@min: 3.980342, loss@max: 1.983224, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 23, loss@min: 3.540732, loss@max: 1.959954, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 24, loss@min: 3.130490, loss@max: 1.942662, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 25, loss@min: 2.682506, loss@max: 1.863016, Top1S acc: 100.000000, Top1T acc: 77.227722 +Train:epoch: 26, loss@min: 2.507349, loss@max: 1.888728, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 27, loss@min: 2.193986, loss@max: 1.834288, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 28, loss@min: 2.093990, loss@max: 1.804874, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 29, loss@min: 1.732318, loss@max: 1.754782, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 30, loss@min: 1.574185, loss@max: 1.715480, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 31, loss@min: 1.738620, loss@max: 1.836980, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 32, loss@min: 1.595543, loss@max: 1.768080, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 33, loss@min: 1.295242, loss@max: 1.673494, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 34, loss@min: 1.299726, loss@max: 1.671983, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 35, loss@min: 1.204551, loss@max: 1.640601, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 36, loss@min: 1.100019, loss@max: 1.568973, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 1.077739, loss@max: 1.562519, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 38, loss@min: 1.027715, loss@max: 1.529110, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 39, loss@min: 1.056669, loss@max: 1.539730, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 40, loss@min: 0.977048, loss@max: 1.493671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.003946, loss@max: 1.486940, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 42, loss@min: 0.951519, loss@max: 1.442059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.999453, loss@max: 1.465725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.985807, loss@max: 1.432377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.012146, loss@max: 1.432722, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 1.042105, loss@max: 1.419721, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 47, loss@min: 0.966580, loss@max: 1.388405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 1.018804, loss@max: 1.409530, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 49, loss@min: 1.022758, loss@max: 1.410268, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 50, loss@min: 1.047378, loss@max: 1.414993, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 51, loss@min: 0.971067, loss@max: 1.365146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.973781, loss@max: 1.358152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.026107, loss@max: 1.393254, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 54, loss@min: 0.973710, loss@max: 1.348802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.001626, loss@max: 1.374275, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.031890, loss@max: 1.394338, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 57, loss@min: 0.971676, loss@max: 1.363673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.964322, loss@max: 1.348626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.973956, loss@max: 1.360490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.975299, loss@max: 1.362836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.986568, loss@max: 1.372935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.969284, loss@max: 1.361007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.974025, loss@max: 1.366920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.964641, loss@max: 1.349688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.972551, loss@max: 1.359948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.959223, loss@max: 1.356388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.969057, loss@max: 1.362113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.977883, loss@max: 1.381927, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 69, loss@min: 0.956551, loss@max: 1.363798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958498, loss@max: 1.357714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.959428, loss@max: 1.365427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.956686, loss@max: 1.370569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.957597, loss@max: 1.367159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.966521, loss@max: 1.380244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.975399, loss@max: 1.379204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.952486, loss@max: 1.369775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954760, loss@max: 1.375895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952881, loss@max: 1.374505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.953287, loss@max: 1.366823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967846, loss@max: 1.380864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.955074, loss@max: 1.364377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.967749, loss@max: 1.379075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.978384, loss@max: 1.379534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.957060, loss@max: 1.362133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.983860, loss@max: 1.380396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.977628, loss@max: 1.380541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.957060, loss@max: 1.359684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.958666, loss@max: 1.349790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.964853, loss@max: 1.372604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.955126, loss@max: 1.357317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.014566, loss@max: 1.377887, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.970545, loss@max: 1.365839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.956374, loss@max: 1.363607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.951717, loss@max: 1.364202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.951281, loss@max: 1.364788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.953714, loss@max: 1.363128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.949482, loss@max: 1.361907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.947548, loss@max: 1.361386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.951959, loss@max: 1.360001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.949163, loss@max: 1.365232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.949366, loss@max: 1.364578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.952554, loss@max: 1.357503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.952353, loss@max: 1.362453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.013116, loss@max: 1.379372, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.951879, loss@max: 1.359437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.954477, loss@max: 1.363701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.950938, loss@max: 1.363372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.949242, loss@max: 1.368334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.949722, loss@max: 1.360997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.951078, loss@max: 1.370551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.970938, loss@max: 1.376596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.955364, loss@max: 1.364286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.949048, loss@max: 1.361908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.952661, loss@max: 1.366236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.959323, loss@max: 1.373944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.952222, loss@max: 1.360863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.994666, loss@max: 1.374617, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 118, loss@min: 0.951256, loss@max: 1.362378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.952238, loss@max: 1.359952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.952653, loss@max: 1.360644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.950517, loss@max: 1.361818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.950050, loss@max: 1.362215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.963200, loss@max: 1.371256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.952152, loss@max: 1.364695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.952141, loss@max: 1.367558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.948524, loss@max: 1.359438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.955588, loss@max: 1.351109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.950546, loss@max: 1.358492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.948849, loss@max: 1.362136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.951263, loss@max: 1.361652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.532359, LT: 1.472776, Top1S: 66.217285, Top1T: 66.587364Best acc: 66.587364 +Train:epoch: 131, loss@min: 0.952088, loss@max: 1.360772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.533265, LT: 1.473559, Top1S: 66.217285, Top1T: 66.587364 +Train:epoch: 132, loss@min: 0.984537, loss@max: 1.380841, Top1S acc: 100.000000, Top1T acc: 99.009903{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Wed Jan 17 13:48:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 3, loss@min: 4.643206, loss@max: 1.597401, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 4.077050, loss@max: 1.574381, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 5, loss@min: 3.593839, loss@max: 1.571341, Top1S acc: 100.000000, Top1T acc: 67.326736 +Train:epoch: 6, loss@min: 3.069274, loss@max: 1.531090, Top1S acc: 100.000000, Top1T acc: 75.247528 +Train:epoch: 7, loss@min: 2.663129, loss@max: 1.511752, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 8, loss@min: 2.353199, loss@max: 1.523703, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 9, loss@min: 2.173946, loss@max: 1.536784, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 10, loss@min: 1.924191, loss@max: 1.520333, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 11, loss@min: 1.554381, loss@max: 1.479638, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 12, loss@min: 1.427382, loss@max: 1.495364, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 13, loss@min: 1.497043, loss@max: 1.542444, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 14, loss@min: 1.282334, loss@max: 1.512929, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.246988, loss@max: 1.530238, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 16, loss@min: 1.226961, loss@max: 1.551606, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 17, loss@min: 1.207759, loss@max: 1.536576, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 18, loss@min: 1.008170, loss@max: 1.467495, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.972238, loss@max: 1.439282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.122473, loss@max: 1.488962, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 21, loss@min: 1.009758, loss@max: 1.422360, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 22, loss@min: 0.946011, loss@max: 1.385646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.993538, loss@max: 1.401352, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.074343, loss@max: 1.405714, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.936049, loss@max: 1.350823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.965246, loss@max: 1.361790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.952795, loss@max: 1.338675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.012732, loss@max: 1.360667, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 0.980103, loss@max: 1.336346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.979475, loss@max: 1.333905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.100930, loss@max: 1.397583, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 32, loss@min: 1.002425, loss@max: 1.352678, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 33, loss@min: 0.975498, loss@max: 1.327261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.973543, loss@max: 1.339919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968214, loss@max: 1.329272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.977699, loss@max: 1.328435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.976742, loss@max: 1.330246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.961658, loss@max: 1.322065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.987499, loss@max: 1.345237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.959229, loss@max: 1.327003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.965846, loss@max: 1.330892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.957685, loss@max: 1.329777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.963262, loss@max: 1.337704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.976679, loss@max: 1.339647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.968067, loss@max: 1.340376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.965467, loss@max: 1.340155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.956687, loss@max: 1.339351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.989613, loss@max: 1.365066, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 49, loss@min: 0.961108, loss@max: 1.354060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.961272, loss@max: 1.362506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.949635, loss@max: 1.350662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.952611, loss@max: 1.345447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.983889, loss@max: 1.378608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950063, loss@max: 1.355552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.960928, loss@max: 1.363286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.971348, loss@max: 1.382748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950385, loss@max: 1.367074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.945930, loss@max: 1.354632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946901, loss@max: 1.364952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952851, loss@max: 1.370421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956369, loss@max: 1.368723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.952873, loss@max: 1.359421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.956131, loss@max: 1.360205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.953804, loss@max: 1.350887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.963403, loss@max: 1.355824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952783, loss@max: 1.352358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.958545, loss@max: 1.354629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951232, loss@max: 1.365559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950210, loss@max: 1.357994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955418, loss@max: 1.351424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.956766, loss@max: 1.355929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.951999, loss@max: 1.362675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953901, loss@max: 1.356979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.959082, loss@max: 1.367920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.964473, loss@max: 1.362423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949922, loss@max: 1.357820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952802, loss@max: 1.363718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.952504, loss@max: 1.363070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.951508, loss@max: 1.355880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959704, loss@max: 1.370748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.952859, loss@max: 1.360463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.959779, loss@max: 1.370088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.957025, loss@max: 1.369247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.952967, loss@max: 1.356129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.977205, loss@max: 1.374916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.959108, loss@max: 1.369796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.952300, loss@max: 1.358394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.951151, loss@max: 1.353382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.952857, loss@max: 1.372217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948874, loss@max: 1.359715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.551280, LT: 1.485053, Top1S: 66.085114, Top1T: 66.137985Best acc: 66.137985 +Train:epoch: 91, loss@min: 0.947080, loss@max: 1.360256, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Jan 17 13:54:02 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.227491, loss@max: 1.522355, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 2, loss@min: 3.507586, loss@max: 1.451800, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.959864, loss@max: 1.419180, Top1S acc: 100.000000, Top1T acc: 76.237625 +Train:epoch: 4, loss@min: 2.756194, loss@max: 1.457740, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.483463, loss@max: 1.477875, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 6, loss@min: 2.146583, loss@max: 1.452104, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 7, loss@min: 1.844985, loss@max: 1.440821, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 8, loss@min: 1.689815, loss@max: 1.466586, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 9, loss@min: 1.611422, loss@max: 1.489272, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 10, loss@min: 1.427430, loss@max: 1.469773, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 11, loss@min: 1.176708, loss@max: 1.442865, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 12, loss@min: 1.120150, loss@max: 1.450332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.207975, loss@max: 1.492328, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 14, loss@min: 1.047677, loss@max: 1.456152, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.045184, loss@max: 1.463917, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 16, loss@min: 1.085780, loss@max: 1.484505, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.117586, loss@max: 1.467926, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 18, loss@min: 0.951279, loss@max: 1.405089, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.939511, loss@max: 1.378292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.081103, loss@max: 1.427254, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.997876, loss@max: 1.375090, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 22, loss@min: 0.939559, loss@max: 1.343224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.978967, loss@max: 1.362074, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.083825, loss@max: 1.366711, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.938939, loss@max: 1.315776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969041, loss@max: 1.327228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.957417, loss@max: 1.307878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.028752, loss@max: 1.336656, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 29, loss@min: 0.984333, loss@max: 1.313640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.979073, loss@max: 1.314378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.086243, loss@max: 1.378159, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 32, loss@min: 0.998021, loss@max: 1.336409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.973519, loss@max: 1.318647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.972419, loss@max: 1.330351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.963437, loss@max: 1.327041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.973565, loss@max: 1.325978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.969018, loss@max: 1.330557, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957251, loss@max: 1.323232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.981990, loss@max: 1.342691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.955230, loss@max: 1.331282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.964775, loss@max: 1.329594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.959483, loss@max: 1.328311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.963305, loss@max: 1.333768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.975119, loss@max: 1.341086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967312, loss@max: 1.341434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.959513, loss@max: 1.343307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954620, loss@max: 1.340383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.987886, loss@max: 1.369534, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 49, loss@min: 0.955172, loss@max: 1.359191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.954287, loss@max: 1.367759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.944397, loss@max: 1.355942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948984, loss@max: 1.347924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.977183, loss@max: 1.381243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951296, loss@max: 1.353246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.963268, loss@max: 1.361532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.973647, loss@max: 1.377860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950925, loss@max: 1.364125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.947969, loss@max: 1.351919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.949446, loss@max: 1.361296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953537, loss@max: 1.366194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956920, loss@max: 1.366510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.954949, loss@max: 1.356400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955464, loss@max: 1.360307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.952603, loss@max: 1.351719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.959182, loss@max: 1.357368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.951730, loss@max: 1.353375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.957637, loss@max: 1.354477, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.952677, loss@max: 1.362923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950206, loss@max: 1.357913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955867, loss@max: 1.350368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.957218, loss@max: 1.354322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954360, loss@max: 1.359082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953198, loss@max: 1.356632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.957455, loss@max: 1.366319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.964257, loss@max: 1.362531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.950222, loss@max: 1.357529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952344, loss@max: 1.364383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.951210, loss@max: 1.364083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.947886, loss@max: 1.359365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.959531, loss@max: 1.375769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.950194, loss@max: 1.362040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.959614, loss@max: 1.370480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.958370, loss@max: 1.368669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.952917, loss@max: 1.356126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.978105, loss@max: 1.375238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.957921, loss@max: 1.368676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.953855, loss@max: 1.356766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953176, loss@max: 1.351256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.953911, loss@max: 1.370689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949221, loss@max: 1.359054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.002857, loss@max: 1.379307, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.961299, loss@max: 1.365055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950665, loss@max: 1.363425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.948133, loss@max: 1.364187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948684, loss@max: 1.363901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.950853, loss@max: 1.362510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.947011, loss@max: 1.362007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943791, loss@max: 1.363701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.950272, loss@max: 1.359629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947562, loss@max: 1.364116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.554942, LT: 1.489307, Top1S: 66.058678, Top1T: 66.270149Best acc: 66.270149 +Train:epoch: 101, loss@min: 0.947000, loss@max: 1.363299, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.555523, LT: 1.489826, Top1S: 66.085114, Top1T: 66.270149 +Train:epoch: 102, loss@min: 0.952333, loss@max: 1.366386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.556025, LT: 1.490357, Top1S: 66.058678, Top1T: 66.323021Best acc: 66.323021 +Train:epoch: 103, loss@min: 0.951892, loss@max: 1.362904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.556120, LT: 1.490501, Top1S: 66.058678, Top1T: 66.323021 +Train:epoch: 104, loss@min: 0.949450, loss@max: 1.358921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.555871, LT: 1.490484, Top1S: 66.058678, Top1T: 66.349457Best acc: 66.349457 +Train:epoch: 105, loss@min: 0.950970, loss@max: 1.360350, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.555340, LT: 1.490270, Top1S: 66.058678, Top1T: 66.349457 +Train:epoch: 106, loss@min: 0.953272, loss@max: 1.360247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.554652, LT: 1.489895, Top1S: 66.085114, Top1T: 66.349457 +Train:epoch: 107, loss@min: 0.947804, loss@max: 1.366435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.554229, LT: 1.489718, Top1S: 66.005814, Top1T: 66.323021{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Jan 17 14:06:08 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 5.211493, loss@max: 2.388062, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 32, loss@min: 4.241998, loss@max: 2.205013, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 33, loss@min: 3.739714, loss@max: 2.148938, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 34, loss@min: 3.185019, loss@max: 2.092809, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 35, loss@min: 2.944506, loss@max: 2.044111, Top1S acc: 100.000000, Top1T acc: 79.207924 +Train:epoch: 36, loss@min: 2.396224, loss@max: 1.904878, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 37, loss@min: 2.229626, loss@max: 1.913442, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 38, loss@min: 1.924438, loss@max: 1.855126, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 39, loss@min: 1.889269, loss@max: 1.862016, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 40, loss@min: 1.674960, loss@max: 1.825296, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 41, loss@min: 1.621312, loss@max: 1.820761, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 42, loss@min: 1.358488, loss@max: 1.731583, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 43, loss@min: 1.433393, loss@max: 1.767576, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 44, loss@min: 1.173625, loss@max: 1.648814, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 45, loss@min: 1.256805, loss@max: 1.680025, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 46, loss@min: 1.216210, loss@max: 1.630052, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 47, loss@min: 1.062505, loss@max: 1.569952, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 1.108073, loss@max: 1.584213, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 49, loss@min: 1.125161, loss@max: 1.587689, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 50, loss@min: 1.138594, loss@max: 1.574222, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 51, loss@min: 0.975054, loss@max: 1.496342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.001665, loss@max: 1.489051, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 53, loss@min: 1.061967, loss@max: 1.521718, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 54, loss@min: 0.965366, loss@max: 1.441816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.007880, loss@max: 1.456944, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.048486, loss@max: 1.476543, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 57, loss@min: 0.971421, loss@max: 1.422270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.958684, loss@max: 1.395066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.986025, loss@max: 1.414418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.987314, loss@max: 1.408550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.999431, loss@max: 1.409301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.979572, loss@max: 1.389051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.990924, loss@max: 1.389520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.969450, loss@max: 1.362571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.983481, loss@max: 1.372586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.973358, loss@max: 1.368704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.985778, loss@max: 1.367859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.988481, loss@max: 1.384232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.969276, loss@max: 1.362666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.970956, loss@max: 1.354838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.972641, loss@max: 1.362048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.977088, loss@max: 1.371181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.967756, loss@max: 1.362971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.979974, loss@max: 1.374769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.993671, loss@max: 1.381328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.972980, loss@max: 1.367261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.970225, loss@max: 1.367122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.965048, loss@max: 1.368493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.964812, loss@max: 1.363839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.976523, loss@max: 1.383134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.956244, loss@max: 1.367900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.974125, loss@max: 1.387614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.992129, loss@max: 1.393767, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 0.963859, loss@max: 1.375409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.987637, loss@max: 1.384380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.984367, loss@max: 1.391037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.955065, loss@max: 1.367978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.955028, loss@max: 1.358612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.964128, loss@max: 1.384525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.951369, loss@max: 1.367911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.011153, loss@max: 1.386068, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.967746, loss@max: 1.371068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.961043, loss@max: 1.365845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.958590, loss@max: 1.365527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.957367, loss@max: 1.365405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.955837, loss@max: 1.365966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.952632, loss@max: 1.363861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.948529, loss@max: 1.363563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.951930, loss@max: 1.364902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.952833, loss@max: 1.369648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.510211, LT: 1.456244, Top1S: 66.349457, Top1T: 66.508057Best acc: 66.508057 +Train:epoch: 101, loss@min: 0.951863, loss@max: 1.365925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.510564, LT: 1.456266, Top1S: 66.217285, Top1T: 66.534492Best acc: 66.534492 +Train:epoch: 102, loss@min: 0.960952, loss@max: 1.369672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.510735, LT: 1.456179, Top1S: 66.270149, Top1T: 66.587364Best acc: 66.587364 +Train:epoch: 103, loss@min: 0.958942, loss@max: 1.362507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.509980, LT: 1.455329, Top1S: 66.296585, Top1T: 66.481628 +Train:epoch: 104, loss@min: 0.953392, loss@max: 1.359655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.508708, LT: 1.454229, Top1S: 66.375893, Top1T: 66.560928 +Train:epoch: 105, loss@min: 0.958956, loss@max: 1.362754, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.506912, LT: 1.452888, Top1S: 66.375893, Top1T: 66.534492 +Train:epoch: 106, loss@min: 0.955994, loss@max: 1.359740, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.505006, LT: 1.451461, Top1S: 66.349457, Top1T: 66.640228Best acc: 66.640228 +Train:epoch: 107, loss@min: 0.951750, loss@max: 1.367719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.503865, LT: 1.450665, Top1S: 66.455193, Top1T: 66.560928 +Train:epoch: 108, loss@min: 0.959718, loss@max: 1.358086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.503506, LT: 1.450357, Top1S: 66.560928, Top1T: 66.640228 +Train:epoch: 109, loss@min: 0.962362, loss@max: 1.365013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.503369, LT: 1.450149, Top1S: 66.508057, Top1T: 66.613792 +Train:epoch: 110, loss@min: 0.950410, loss@max: 1.366036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.503127, LT: 1.449541, Top1S: 66.481628, Top1T: 66.640228 +Train:epoch: 111, loss@min: 0.953713, loss@max: 1.368979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.502549, LT: 1.448723, Top1S: 66.508057, Top1T: 66.693100Best acc: 66.693100 +Train:epoch: 112, loss@min: 1.023664, loss@max: 1.396320, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 112, LS: 1.502347, LT: 1.448182, Top1S: 66.640228, Top1T: 66.613792 +Train:epoch: 113, loss@min: 0.974748, loss@max: 1.390832, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 113, LS: 1.501354, LT: 1.446914, Top1S: 66.772400, Top1T: 66.640228Best acc: 66.772400 +Train:epoch: 114, loss@min: 0.953091, loss@max: 1.364656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.500416, LT: 1.445705, Top1S: 66.719528, Top1T: 66.719528 +Train:epoch: 115, loss@min: 0.949932, loss@max: 1.362634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.500103, LT: 1.444952, Top1S: 66.745964, Top1T: 66.640228 +Train:epoch: 116, loss@min: 0.953898, loss@max: 1.358321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.500018, LT: 1.444280, Top1S: 66.745964, Top1T: 66.640228 +Train:epoch: 117, loss@min: 0.952237, loss@max: 1.362375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.500110, LT: 1.443911, Top1S: 66.719528, Top1T: 66.613792 +Train:epoch: 118, loss@min: 0.977941, loss@max: 1.368137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.500498, LT: 1.443765, Top1S: 66.772400, Top1T: 66.666664 +Train:epoch: 119, loss@min: 0.952479, loss@max: 1.354796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.501075, LT: 1.443823, Top1S: 66.798836, Top1T: 66.693100Best acc: 66.798836 +Train:epoch: 120, loss@min: 0.957079, loss@max: 1.363621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.502003, LT: 1.444320, Top1S: 66.798836, Top1T: 66.772400 +Train:epoch: 121, loss@min: 0.951519, loss@max: 1.357154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.503001, LT: 1.445038, Top1S: 66.798836, Top1T: 66.719528 +Train:epoch: 122, loss@min: 0.959209, loss@max: 1.372569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.504157, LT: 1.446042, Top1S: 66.745964, Top1T: 66.798836 +Train:epoch: 123, loss@min: 0.961183, loss@max: 1.370883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.505651, LT: 1.447373, Top1S: 66.745964, Top1T: 66.772400 +Train:epoch: 124, loss@min: 0.950447, loss@max: 1.363785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.506610, LT: 1.448564, Top1S: 66.851700, Top1T: 66.772400Best acc: 66.851700 +Train:epoch: 125, loss@min: 0.951171, loss@max: 1.361568, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.507410, LT: 1.449561, Top1S: 66.798836, Top1T: 66.745964 +Train:epoch: 126, loss@min: 0.949429, loss@max: 1.371285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.507698, LT: 1.450147, Top1S: 66.772400, Top1T: 66.825272 +Train:epoch: 127, loss@min: 0.952366, loss@max: 1.357863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.507792, LT: 1.450604, Top1S: 66.798836, Top1T: 66.798836 +Train:epoch: 128, loss@min: 0.952584, loss@max: 1.364403, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.508384, LT: 1.451331, Top1S: 66.719528, Top1T: 66.798836 +Train:epoch: 129, loss@min: 0.952191, loss@max: 1.366591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.509090, LT: 1.452094, Top1S: 66.693100, Top1T: 66.798836 +Train:epoch: 130, loss@min: 0.950582, loss@max: 1.358578, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.509785, LT: 1.452819, Top1S: 66.666664, Top1T: 66.798836 +Train:epoch: 131, loss@min: 0.948662, loss@max: 1.360755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.510511, LT: 1.453384, Top1S: 66.613792, Top1T: 66.772400 +Train:epoch: 132, loss@min: 0.950446, loss@max: 1.359833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.511068, LT: 1.453788, Top1S: 66.587364, Top1T: 66.772400 +Train:epoch: 133, loss@min: 0.953297, loss@max: 1.365270, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.511811, LT: 1.454296, Top1S: 66.613792, Top1T: 66.798836 +Train:epoch: 134, loss@min: 0.950269, loss@max: 1.356692, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Jan 17 14:40:30 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 5.206001, loss@max: 2.386377, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 32, loss@min: 4.223445, loss@max: 2.211375, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 33, loss@min: 3.709826, loss@max: 2.165059, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 34, loss@min: 3.145005, loss@max: 2.119097, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 35, loss@min: 2.894421, loss@max: 2.079832, Top1S acc: 100.000000, Top1T acc: 79.207924 +Train:epoch: 36, loss@min: 2.339003, loss@max: 1.948939, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 37, loss@min: 2.168433, loss@max: 1.964079, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 38, loss@min: 1.862252, loss@max: 1.910576, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 39, loss@min: 1.827189, loss@max: 1.918898, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 40, loss@min: 1.616437, loss@max: 1.881458, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 41, loss@min: 1.567910, loss@max: 1.873251, Top1S acc: 100.000000, Top1T acc: 93.069305 +Train:epoch: 42, loss@min: 1.310862, loss@max: 1.779117, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 43, loss@min: 1.392570, loss@max: 1.808259, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 44, loss@min: 1.140667, loss@max: 1.682251, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 45, loss@min: 1.232392, loss@max: 1.704344, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 46, loss@min: 1.200820, loss@max: 1.645365, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 47, loss@min: 1.055139, loss@max: 1.576789, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 1.109158, loss@max: 1.582096, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 49, loss@min: 1.134584, loss@max: 1.578143, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 50, loss@min: 1.154551, loss@max: 1.556854, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 51, loss@min: 0.995689, loss@max: 1.473233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.026120, loss@max: 1.462286, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 53, loss@min: 1.088726, loss@max: 1.491504, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 54, loss@min: 0.994233, loss@max: 1.410623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.038162, loss@max: 1.424522, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.077618, loss@max: 1.444531, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 57, loss@min: 0.999244, loss@max: 1.392430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.984129, loss@max: 1.368399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.008589, loss@max: 1.391060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 1.005404, loss@max: 1.389927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.012870, loss@max: 1.394831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.988610, loss@max: 1.379308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.995052, loss@max: 1.384227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.969361, loss@max: 1.362023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.978480, loss@max: 1.376793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.966659, loss@max: 1.375010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.976455, loss@max: 1.376840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.976951, loss@max: 1.395379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956374, loss@max: 1.375236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.957808, loss@max: 1.367696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.959140, loss@max: 1.374951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.964436, loss@max: 1.383377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.955940, loss@max: 1.373970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.968845, loss@max: 1.384612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.983591, loss@max: 1.389621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.965186, loss@max: 1.375007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963587, loss@max: 1.372271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.960255, loss@max: 1.372011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.961168, loss@max: 1.366417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.975851, loss@max: 1.383716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.956927, loss@max: 1.366531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.975861, loss@max: 1.384934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.994626, loss@max: 1.389488, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 0.967805, loss@max: 1.372161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.991066, loss@max: 1.380355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.986252, loss@max: 1.386095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.958447, loss@max: 1.364547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.957931, loss@max: 1.355680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.967398, loss@max: 1.381121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.954403, loss@max: 1.365180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.011744, loss@max: 1.383144, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.968836, loss@max: 1.369228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.961584, loss@max: 1.365456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.958865, loss@max: 1.365459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.957454, loss@max: 1.365862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.954983, loss@max: 1.366489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.951970, loss@max: 1.364551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.948141, loss@max: 1.363875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.951253, loss@max: 1.365429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950919, loss@max: 1.371321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.509627, LT: 1.456726, Top1S: 66.270149, Top1T: 66.613792Best acc: 66.613792 +Train:epoch: 101, loss@min: 0.950310, loss@max: 1.367537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.509804, LT: 1.456623, Top1S: 66.243721, Top1T: 66.666664Best acc: 66.666664 +Train:epoch: 102, loss@min: 0.958613, loss@max: 1.371795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.509912, LT: 1.456532, Top1S: 66.349457, Top1T: 66.640228 +Train:epoch: 103, loss@min: 0.956390, loss@max: 1.365044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.509229, LT: 1.455822, Top1S: 66.296585, Top1T: 66.666664 +Train:epoch: 104, loss@min: 0.950460, loss@max: 1.362616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.508093, LT: 1.454918, Top1S: 66.323021, Top1T: 66.798836Best acc: 66.798836 +Train:epoch: 105, loss@min: 0.956477, loss@max: 1.364657, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 14:49:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 41, loss@min: 4.816623, loss@max: 2.349455, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 42, loss@min: 3.994110, loss@max: 2.240788, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 43, loss@min: 3.748004, loss@max: 2.237476, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 44, loss@min: 3.140084, loss@max: 2.143796, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 45, loss@min: 2.949712, loss@max: 2.152767, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 46, loss@min: 2.561168, loss@max: 2.089837, Top1S acc: 100.000000, Top1T acc: 75.247528 +Train:epoch: 47, loss@min: 2.188914, loss@max: 2.020027, Top1S acc: 100.000000, Top1T acc: 86.138611 +Train:epoch: 48, loss@min: 2.121917, loss@max: 2.031208, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 49, loss@min: 2.095834, loss@max: 2.039682, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 50, loss@min: 1.889042, loss@max: 2.000813, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 51, loss@min: 1.555825, loss@max: 1.894128, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 52, loss@min: 1.510846, loss@max: 1.849304, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 53, loss@min: 1.553129, loss@max: 1.869877, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 54, loss@min: 1.262816, loss@max: 1.755948, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 55, loss@min: 1.218369, loss@max: 1.734153, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.342594, loss@max: 1.757422, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 57, loss@min: 1.086065, loss@max: 1.639924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.033348, loss@max: 1.572345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.119309, loss@max: 1.616157, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 60, loss@min: 1.091019, loss@max: 1.585500, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.087199, loss@max: 1.559311, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 62, loss@min: 1.038789, loss@max: 1.514322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.049528, loss@max: 1.506090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.989821, loss@max: 1.430289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 1.014270, loss@max: 1.443767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.027740, loss@max: 1.439662, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 67, loss@min: 1.015317, loss@max: 1.418820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.025313, loss@max: 1.433821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.994682, loss@max: 1.398592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.997874, loss@max: 1.390633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 1.007987, loss@max: 1.389523, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.020411, loss@max: 1.399767, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 73, loss@min: 0.992467, loss@max: 1.388241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.004010, loss@max: 1.394939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.028886, loss@max: 1.410848, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 76, loss@min: 1.012685, loss@max: 1.399498, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.971913, loss@max: 1.383752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.969980, loss@max: 1.387404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.965985, loss@max: 1.382304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.994664, loss@max: 1.410234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.962999, loss@max: 1.385653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.988828, loss@max: 1.406226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.010617, loss@max: 1.405262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.020499, loss@max: 1.403898, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 0.982139, loss@max: 1.395797, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 0.997929, loss@max: 1.410861, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 87, loss@min: 0.956685, loss@max: 1.380529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950015, loss@max: 1.368869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.961051, loss@max: 1.388473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948477, loss@max: 1.372462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.007258, loss@max: 1.396511, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.966736, loss@max: 1.384069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.957777, loss@max: 1.372134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.969429, loss@max: 1.375908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.959881, loss@max: 1.371371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.959900, loss@max: 1.371716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955160, loss@max: 1.366776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.955003, loss@max: 1.361884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.963008, loss@max: 1.376489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.965994, loss@max: 1.375865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.957433, loss@max: 1.370251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.954328, loss@max: 1.365687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.958808, loss@max: 1.369531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.015095, loss@max: 1.380356, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.958975, loss@max: 1.363516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.961365, loss@max: 1.370782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.958749, loss@max: 1.369466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.959278, loss@max: 1.373059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.956266, loss@max: 1.366768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.964009, loss@max: 1.385395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.983519, loss@max: 1.394382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.960087, loss@max: 1.378067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.951400, loss@max: 1.367948, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.959081, loss@max: 1.372041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.974220, loss@max: 1.379192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.956753, loss@max: 1.367950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.993187, loss@max: 1.385505, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 118, loss@min: 0.954699, loss@max: 1.373467, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.955905, loss@max: 1.367008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.957080, loss@max: 1.369367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.382346, LT: 1.360432, Top1S: 67.644722, Top1T: 67.433250Best acc: 67.644722 +Train:epoch: 121, loss@min: 0.951640, loss@max: 1.359920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.382865, LT: 1.360778, Top1S: 67.538986, Top1T: 67.459686 +Train:epoch: 122, loss@min: 0.968094, loss@max: 1.382406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.383820, LT: 1.361520, Top1S: 67.512550, Top1T: 67.512550 +Train:epoch: 123, loss@min: 0.971036, loss@max: 1.380040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.384887, LT: 1.362427, Top1S: 67.538986, Top1T: 67.591858 +Train:epoch: 124, loss@min: 0.954543, loss@max: 1.364100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.385699, LT: 1.363211, Top1S: 67.565422, Top1T: 67.644722 +Train:epoch: 125, loss@min: 0.954887, loss@max: 1.364809, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 15:00:15 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 41, loss@min: 4.824570, loss@max: 2.351388, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 42, loss@min: 4.012695, loss@max: 2.234468, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 43, loss@min: 3.778446, loss@max: 2.222712, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 44, loss@min: 3.178822, loss@max: 2.118858, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 45, loss@min: 2.999741, loss@max: 2.118698, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 46, loss@min: 2.618314, loss@max: 2.047150, Top1S acc: 100.000000, Top1T acc: 75.247528 +Train:epoch: 47, loss@min: 2.249632, loss@max: 1.970499, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 48, loss@min: 2.186557, loss@max: 1.977395, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 49, loss@min: 2.156617, loss@max: 1.983223, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 50, loss@min: 1.950080, loss@max: 1.944717, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 51, loss@min: 1.613086, loss@max: 1.839955, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 52, loss@min: 1.561804, loss@max: 1.799322, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 53, loss@min: 1.599368, loss@max: 1.826505, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 54, loss@min: 1.302365, loss@max: 1.718034, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 55, loss@min: 1.249820, loss@max: 1.703382, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.367721, loss@max: 1.734746, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 57, loss@min: 1.101149, loss@max: 1.624552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.041775, loss@max: 1.563999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.120612, loss@max: 1.615099, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 60, loss@min: 1.085727, loss@max: 1.591953, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.076946, loss@max: 1.571104, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 62, loss@min: 1.023287, loss@max: 1.531144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.030358, loss@max: 1.527747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.967176, loss@max: 1.454571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.989504, loss@max: 1.470754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.002370, loss@max: 1.466887, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 67, loss@min: 0.990664, loss@max: 1.445498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.001156, loss@max: 1.459868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.971749, loss@max: 1.422430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978188, loss@max: 1.411385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.990650, loss@max: 1.407463, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.004961, loss@max: 1.415628, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 73, loss@min: 0.980450, loss@max: 1.400584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.994372, loss@max: 1.404671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.023777, loss@max: 1.416931, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 76, loss@min: 1.009984, loss@max: 1.402288, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.972122, loss@max: 1.384209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.972795, loss@max: 1.384851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.970954, loss@max: 1.377815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.001344, loss@max: 1.403931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.970643, loss@max: 1.378054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.998386, loss@max: 1.397345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.020765, loss@max: 1.395896, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.029482, loss@max: 1.393672, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 0.992887, loss@max: 1.385350, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 1.007481, loss@max: 1.401322, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 87, loss@min: 0.965807, loss@max: 1.371569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.958877, loss@max: 1.360302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.968390, loss@max: 1.381842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.954267, loss@max: 1.367130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.013443, loss@max: 1.392411, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.970501, loss@max: 1.381614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.959434, loss@max: 1.371014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.969828, loss@max: 1.376180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.958708, loss@max: 1.373175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.957705, loss@max: 1.374095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.952898, loss@max: 1.369665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.952106, loss@max: 1.365253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.958773, loss@max: 1.380270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.962753, loss@max: 1.378605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.955529, loss@max: 1.373392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.951776, loss@max: 1.368531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.957197, loss@max: 1.372511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.018239, loss@max: 1.382658, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.957539, loss@max: 1.365201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.961440, loss@max: 1.371699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.959074, loss@max: 1.369447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.959738, loss@max: 1.373321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.956602, loss@max: 1.366575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.964840, loss@max: 1.383979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.984463, loss@max: 1.393029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.961823, loss@max: 1.375932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.953391, loss@max: 1.366071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.960890, loss@max: 1.370008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.976962, loss@max: 1.377472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.958381, loss@max: 1.366340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.994199, loss@max: 1.384043, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 118, loss@min: 0.955830, loss@max: 1.371945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.957307, loss@max: 1.365117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.957480, loss@max: 1.368599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.382374, LT: 1.359206, Top1S: 67.565422, Top1T: 67.380386Best acc: 67.565422 +Train:epoch: 121, loss@min: 0.952143, loss@max: 1.359458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.382902, LT: 1.359631, Top1S: 67.538986, Top1T: 67.486122 +Train:epoch: 122, loss@min: 0.968190, loss@max: 1.382216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.383898, LT: 1.360451, Top1S: 67.512550, Top1T: 67.538986 +Train:epoch: 123, loss@min: 0.971143, loss@max: 1.380939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.385019, LT: 1.361418, Top1S: 67.512550, Top1T: 67.671158Best acc: 67.671158 +Train:epoch: 124, loss@min: 0.954659, loss@max: 1.364102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.385879, LT: 1.362260, Top1S: 67.459686, Top1T: 67.671158 +Train:epoch: 125, loss@min: 0.954566, loss@max: 1.364834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.386665, LT: 1.362957, Top1S: 67.486122, Top1T: 67.776894Best acc: 67.776894 +Train:epoch: 126, loss@min: 0.957448, loss@max: 1.373099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.387200, LT: 1.363588, Top1S: 67.459686, Top1T: 67.750458 +Train:epoch: 127, loss@min: 0.953352, loss@max: 1.360618, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.387537, LT: 1.364000, Top1S: 67.512550, Top1T: 67.750458 +Train:epoch: 128, loss@min: 0.966638, loss@max: 1.368974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.387888, LT: 1.364331, Top1S: 67.512550, Top1T: 67.803329Best acc: 67.803329 +Train:epoch: 129, loss@min: 0.959884, loss@max: 1.371332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.388266, LT: 1.364602, Top1S: 67.459686, Top1T: 67.724022 +Train:epoch: 130, loss@min: 0.953418, loss@max: 1.358032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.388755, LT: 1.364853, Top1S: 67.512550, Top1T: 67.644722 +Train:epoch: 131, loss@min: 0.951582, loss@max: 1.362814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.389557, LT: 1.365137, Top1S: 67.512550, Top1T: 67.697594 +Train:epoch: 132, loss@min: 0.952373, loss@max: 1.363454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.390341, LT: 1.365374, Top1S: 67.459686, Top1T: 67.644722 +Train:epoch: 133, loss@min: 0.961783, loss@max: 1.372041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.391176, LT: 1.365653, Top1S: 67.459686, Top1T: 67.538986 +Train:epoch: 134, loss@min: 0.952037, loss@max: 1.358698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.392182, LT: 1.366105, Top1S: 67.433250, Top1T: 67.644722 +Train:epoch: 135, loss@min: 0.950029, loss@max: 1.361727, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.392988, LT: 1.366540, Top1S: 67.380386, Top1T: 67.591858 +Train:epoch: 136, loss@min: 0.953880, loss@max: 1.363222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.393796, LT: 1.367097, Top1S: 67.459686, Top1T: 67.565422 +Train:epoch: 137, loss@min: 0.954010, loss@max: 1.363697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.394462, LT: 1.367614, Top1S: 67.486122, Top1T: 67.459686 +Train:epoch: 138, loss@min: 0.955631, loss@max: 1.366296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.394951, LT: 1.367987, Top1S: 67.512550, Top1T: 67.459686 +Train:epoch: 139, loss@min: 0.962286, loss@max: 1.374765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.395526, LT: 1.368536, Top1S: 67.512550, Top1T: 67.459686 +Train:epoch: 140, loss@min: 0.949865, loss@max: 1.364238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.396224, LT: 1.369170, Top1S: 67.486122, Top1T: 67.353951 +Train:epoch: 141, loss@min: 0.951939, loss@max: 1.368272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.397062, LT: 1.369886, Top1S: 67.459686, Top1T: 67.301079 +Train:epoch: 142, loss@min: 0.951232, loss@max: 1.366972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.397806, LT: 1.370490, Top1S: 67.433250, Top1T: 67.353951 +Train:epoch: 143, loss@min: 0.949156, loss@max: 1.364290, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.398538, LT: 1.371059, Top1S: 67.380386, Top1T: 67.327515 +Train:epoch: 144, loss@min: 0.947894, loss@max: 1.362600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.399130, LT: 1.371566, Top1S: 67.380386, Top1T: 67.301079 +Train:epoch: 145, loss@min: 0.949583, loss@max: 1.362757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.399607, LT: 1.371981, Top1S: 67.353951, Top1T: 67.274643 +Train:epoch: 146, loss@min: 0.958271, loss@max: 1.371766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.399895, LT: 1.372220, Top1S: 67.353951, Top1T: 67.327515 +Train:epoch: 147, loss@min: 0.949382, loss@max: 1.363921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.400205, LT: 1.372488, Top1S: 67.433250, Top1T: 67.353951 +Train:epoch: 148, loss@min: 0.951392, loss@max: 1.362282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.400561, LT: 1.372809, Top1S: 67.459686, Top1T: 67.327515 +Train:epoch: 149, loss@min: 0.956798, loss@max: 1.361530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.400756, LT: 1.373018, Top1S: 67.406815, Top1T: 67.353951 +Train:epoch: 150, loss@min: 0.951891, loss@max: 1.365916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.401075, LT: 1.373281, Top1S: 67.406815, Top1T: 67.353951 +------------------------------------------- +Wed Jan 17 15:32:20 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 15:42:24 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 53.465347 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 46.534653 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 50.495049 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 56.435642 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 57.425743 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 48.514851 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 54.455444 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 52.475246 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 51.485149 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 60.396038 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 55.445545 +Train:epoch: 41, loss@min: 4.824536, loss@max: 2.351387, Top1S acc: 100.000000, Top1T acc: 58.415840 +Train:epoch: 42, loss@min: 4.012697, loss@max: 2.234465, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 43, loss@min: 3.778492, loss@max: 2.222729, Top1S acc: 100.000000, Top1T acc: 61.386139 +Train:epoch: 44, loss@min: 3.178849, loss@max: 2.118848, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 45, loss@min: 2.999741, loss@max: 2.118696, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 46, loss@min: 2.618352, loss@max: 2.047152, Top1S acc: 100.000000, Top1T acc: 75.247528 +Train:epoch: 47, loss@min: 2.249676, loss@max: 1.970500, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 48, loss@min: 2.186610, loss@max: 1.977425, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 49, loss@min: 2.156682, loss@max: 1.983226, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 50, loss@min: 1.950090, loss@max: 1.944724, Top1S acc: 100.000000, Top1T acc: 87.128708 +Train:epoch: 51, loss@min: 1.613179, loss@max: 1.839980, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 52, loss@min: 1.561793, loss@max: 1.799323, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 53, loss@min: 1.599335, loss@max: 1.826499, Top1S acc: 100.000000, Top1T acc: 92.079208 +Train:epoch: 54, loss@min: 1.302374, loss@max: 1.718034, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 55, loss@min: 1.249834, loss@max: 1.703386, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 56, loss@min: 1.367708, loss@max: 1.734736, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 57, loss@min: 1.101149, loss@max: 1.624551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.041789, loss@max: 1.564013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.120637, loss@max: 1.615109, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 60, loss@min: 1.085714, loss@max: 1.591960, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 61, loss@min: 1.076954, loss@max: 1.571124, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 62, loss@min: 1.023296, loss@max: 1.531152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 1.030379, loss@max: 1.527773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.967180, loss@max: 1.454577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.989507, loss@max: 1.470767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.002382, loss@max: 1.466898, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 67, loss@min: 0.990679, loss@max: 1.445500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.001154, loss@max: 1.459867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.971760, loss@max: 1.422430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978187, loss@max: 1.411390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.990657, loss@max: 1.407469, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 72, loss@min: 1.004969, loss@max: 1.415630, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 73, loss@min: 0.980459, loss@max: 1.400594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.994370, loss@max: 1.404665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 1.023780, loss@max: 1.416930, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 76, loss@min: 1.010035, loss@max: 1.402307, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 77, loss@min: 0.972107, loss@max: 1.384212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.972792, loss@max: 1.384862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.970944, loss@max: 1.377810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.001357, loss@max: 1.403937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.970639, loss@max: 1.378061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.998370, loss@max: 1.397346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 1.020748, loss@max: 1.395891, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 84, loss@min: 1.029449, loss@max: 1.393661, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 85, loss@min: 0.992879, loss@max: 1.385342, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 86, loss@min: 1.007466, loss@max: 1.401325, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 87, loss@min: 0.965785, loss@max: 1.371567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.958874, loss@max: 1.360308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.968395, loss@max: 1.381851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.954267, loss@max: 1.367134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 1.013484, loss@max: 1.392423, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 92, loss@min: 0.970498, loss@max: 1.381610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.959440, loss@max: 1.371008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.969823, loss@max: 1.376168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.958722, loss@max: 1.373177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.957707, loss@max: 1.374093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.952899, loss@max: 1.369664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.952107, loss@max: 1.365250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.958766, loss@max: 1.380262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.962770, loss@max: 1.378616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.955527, loss@max: 1.373397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.951773, loss@max: 1.368536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.957194, loss@max: 1.372516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.018222, loss@max: 1.382648, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 105, loss@min: 0.957538, loss@max: 1.365199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.961441, loss@max: 1.371694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.959076, loss@max: 1.369445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.959740, loss@max: 1.373320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.956600, loss@max: 1.366578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.964838, loss@max: 1.383980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.984449, loss@max: 1.393029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.961815, loss@max: 1.375934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.953389, loss@max: 1.366076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.960892, loss@max: 1.370010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.976951, loss@max: 1.377474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.958375, loss@max: 1.366344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.994173, loss@max: 1.384046, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 118, loss@min: 0.955835, loss@max: 1.371955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.957309, loss@max: 1.365120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.957476, loss@max: 1.368595, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.382446, LT: 1.359276, Top1S: 67.565422, Top1T: 67.380386Best acc: 67.565422 +Train:epoch: 121, loss@min: 0.952145, loss@max: 1.359458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.382975, LT: 1.359701, Top1S: 67.538986, Top1T: 67.459686 +Train:epoch: 122, loss@min: 0.968196, loss@max: 1.382221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.383973, LT: 1.360522, Top1S: 67.512550, Top1T: 67.538986 +Train:epoch: 123, loss@min: 0.971141, loss@max: 1.380940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.385096, LT: 1.361492, Top1S: 67.512550, Top1T: 67.671158Best acc: 67.671158 +Train:epoch: 124, loss@min: 0.954665, loss@max: 1.364103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.385958, LT: 1.362335, Top1S: 67.459686, Top1T: 67.671158 +Train:epoch: 125, loss@min: 0.954569, loss@max: 1.364836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.386746, LT: 1.363033, Top1S: 67.486122, Top1T: 67.750458Best acc: 67.750458 +Train:epoch: 126, loss@min: 0.957456, loss@max: 1.373102, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.387278, LT: 1.363663, Top1S: 67.459686, Top1T: 67.750458 +Train:epoch: 127, loss@min: 0.953352, loss@max: 1.360622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.387613, LT: 1.364072, Top1S: 67.486122, Top1T: 67.750458 +Train:epoch: 128, loss@min: 0.966631, loss@max: 1.368977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.387961, LT: 1.364402, Top1S: 67.512550, Top1T: 67.803329Best acc: 67.803329 +Train:epoch: 129, loss@min: 0.959875, loss@max: 1.371329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.388337, LT: 1.364672, Top1S: 67.459686, Top1T: 67.724022 +Train:epoch: 130, loss@min: 0.953420, loss@max: 1.358031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.388823, LT: 1.364920, Top1S: 67.486122, Top1T: 67.644722 +Train:epoch: 131, loss@min: 0.951588, loss@max: 1.362811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.389624, LT: 1.365203, Top1S: 67.486122, Top1T: 67.618286 +Train:epoch: 132, loss@min: 0.952377, loss@max: 1.363453, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.390407, LT: 1.365439, Top1S: 67.459686, Top1T: 67.644722 +Train:epoch: 133, loss@min: 0.961789, loss@max: 1.372040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.391241, LT: 1.365716, Top1S: 67.406815, Top1T: 67.591858 +Train:epoch: 134, loss@min: 0.952040, loss@max: 1.358698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.392247, LT: 1.366168, Top1S: 67.433250, Top1T: 67.618286 +Train:epoch: 135, loss@min: 0.950030, loss@max: 1.361728, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.393053, LT: 1.366603, Top1S: 67.406815, Top1T: 67.591858 +Train:epoch: 136, loss@min: 0.953879, loss@max: 1.363221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.393861, LT: 1.367159, Top1S: 67.459686, Top1T: 67.565422 +Train:epoch: 137, loss@min: 0.954011, loss@max: 1.363696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.394529, LT: 1.367677, Top1S: 67.486122, Top1T: 67.459686 +Train:epoch: 138, loss@min: 0.955634, loss@max: 1.366295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.395018, LT: 1.368050, Top1S: 67.486122, Top1T: 67.433250 +Train:epoch: 139, loss@min: 0.962284, loss@max: 1.374761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.395593, LT: 1.368600, Top1S: 67.512550, Top1T: 67.406815 +Train:epoch: 140, loss@min: 0.949867, loss@max: 1.364238, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.396292, LT: 1.369235, Top1S: 67.486122, Top1T: 67.327515 +Train:epoch: 141, loss@min: 0.951933, loss@max: 1.368268, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.397131, LT: 1.369951, Top1S: 67.459686, Top1T: 67.353951 +Train:epoch: 142, loss@min: 0.951234, loss@max: 1.366973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.397877, LT: 1.370557, Top1S: 67.459686, Top1T: 67.353951 +Train:epoch: 143, loss@min: 0.949156, loss@max: 1.364285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.398609, LT: 1.371127, Top1S: 67.380386, Top1T: 67.274643 +Train:epoch: 144, loss@min: 0.947895, loss@max: 1.362603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.399201, LT: 1.371634, Top1S: 67.380386, Top1T: 67.301079 +Train:epoch: 145, loss@min: 0.949582, loss@max: 1.362759, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 16:10:12 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 2.610736, loss@max: 1.486240, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 1.935781, loss@max: 1.440244, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 43, loss@min: 1.818534, loss@max: 1.512800, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 44, loss@min: 1.546119, loss@max: 1.479767, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 45, loss@min: 1.675654, loss@max: 1.570873, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 46, loss@min: 1.558434, loss@max: 1.556704, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 47, loss@min: 1.248812, loss@max: 1.490846, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 48, loss@min: 1.237999, loss@max: 1.483256, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 49, loss@min: 1.234498, loss@max: 1.518632, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 50, loss@min: 1.100826, loss@max: 1.519141, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 51, loss@min: 0.992197, loss@max: 1.492323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.997053, loss@max: 1.523107, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 1.014061, loss@max: 1.544226, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 54, loss@min: 0.919686, loss@max: 1.495605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.974012, loss@max: 1.529595, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.969629, loss@max: 1.495031, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.060191, loss@max: 1.499233, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 0.911009, loss@max: 1.442149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.949459, loss@max: 1.454836, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 0.953159, loss@max: 1.452668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.967845, loss@max: 1.432570, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 62, loss@min: 0.958564, loss@max: 1.404927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945646, loss@max: 1.394129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.951998, loss@max: 1.381626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.962029, loss@max: 1.384289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.992892, loss@max: 1.382377, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.965013, loss@max: 1.366575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.983887, loss@max: 1.368798, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.982172, loss@max: 1.358440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.979029, loss@max: 1.361754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.973814, loss@max: 1.360605, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.991769, loss@max: 1.377824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.969973, loss@max: 1.349879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.004580, loss@max: 1.364086, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.972394, loss@max: 1.357596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.973733, loss@max: 1.366782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.969258, loss@max: 1.373436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954161, loss@max: 1.367389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.949454, loss@max: 1.366172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.956251, loss@max: 1.373120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.957069, loss@max: 1.368710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.982548, loss@max: 1.372603, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 0.951295, loss@max: 1.365157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.953125, loss@max: 1.365176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.951103, loss@max: 1.362772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.944887, loss@max: 1.364583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.956215, loss@max: 1.377037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953469, loss@max: 1.371782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.951113, loss@max: 1.365357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.944717, loss@max: 1.364417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946059, loss@max: 1.361681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.955554, loss@max: 1.371235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950293, loss@max: 1.363965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.952812, loss@max: 1.363462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.951001, loss@max: 1.359717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.964757, loss@max: 1.367612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.959624, loss@max: 1.367879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.978175, loss@max: 1.379857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.956290, loss@max: 1.366747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.946452, loss@max: 1.360761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.947949, loss@max: 1.362882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.946256, loss@max: 1.369291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.948310, loss@max: 1.366133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.947997, loss@max: 1.361069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.952296, loss@max: 1.366919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.947207, loss@max: 1.357108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.948748, loss@max: 1.362912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.952947, loss@max: 1.359956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.947186, loss@max: 1.358963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.951158, loss@max: 1.354625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.953418, loss@max: 1.363473, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.947707, loss@max: 1.358179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.947697, loss@max: 1.361956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.946488, loss@max: 1.357261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.943888, loss@max: 1.362358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.945251, loss@max: 1.360426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.950180, loss@max: 1.354164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.948058, loss@max: 1.361735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.963446, loss@max: 1.366376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.947714, loss@max: 1.355893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.405366, LT: 0.399622, Top1S: 89.127792, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 121, loss@min: 0.950755, loss@max: 1.355452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.405529, LT: 0.399768, Top1S: 89.168358, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 122, loss@min: 0.954344, loss@max: 1.363472, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.405898, LT: 0.400078, Top1S: 89.127792, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 123, loss@min: 0.945698, loss@max: 1.361213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.406203, LT: 0.400330, Top1S: 89.127792, Top1T: 89.492905Best acc: 89.492905 +Train:epoch: 124, loss@min: 0.955717, loss@max: 1.369942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.406810, LT: 0.400866, Top1S: 89.168358, Top1T: 89.492905 +Train:epoch: 125, loss@min: 0.948130, loss@max: 1.357297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.407239, LT: 0.401244, Top1S: 89.087219, Top1T: 89.452332 +Train:epoch: 126, loss@min: 0.946914, loss@max: 1.359133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.407863, LT: 0.401821, Top1S: 89.087219, Top1T: 89.492905 +Train:epoch: 127, loss@min: 0.962686, loss@max: 1.374309, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 127, LS: 0.408466, LT: 0.402354, Top1S: 89.087219, Top1T: 89.492905 +Train:epoch: 128, loss@min: 0.947445, loss@max: 1.358791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.408906, LT: 0.402756, Top1S: 89.006088, Top1T: 89.492905 +Train:epoch: 129, loss@min: 0.947948, loss@max: 1.358701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.409382, LT: 0.403164, Top1S: 89.006088, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 130, loss@min: 0.946490, loss@max: 1.359075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.409791, LT: 0.403502, Top1S: 89.006088, Top1T: 89.533470 +Train:epoch: 131, loss@min: 0.946932, loss@max: 1.357602, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.410269, LT: 0.403947, Top1S: 89.006088, Top1T: 89.492905 +Train:epoch: 132, loss@min: 0.947024, loss@max: 1.358428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.410762, LT: 0.404345, Top1S: 89.006088, Top1T: 89.452332 +Train:epoch: 133, loss@min: 0.948673, loss@max: 1.358700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.411111, LT: 0.404587, Top1S: 88.965515, Top1T: 89.411766 +Train:epoch: 134, loss@min: 0.946589, loss@max: 1.358731, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.411512, LT: 0.404860, Top1S: 88.965515, Top1T: 89.371201 +Train:epoch: 135, loss@min: 0.945047, loss@max: 1.363490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.411944, LT: 0.405207, Top1S: 88.965515, Top1T: 89.371201 +Train:epoch: 136, loss@min: 0.952929, loss@max: 1.366874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.411989, LT: 0.405238, Top1S: 88.965515, Top1T: 89.371201 +Train:epoch: 137, loss@min: 0.950060, loss@max: 1.364652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.411866, LT: 0.405146, Top1S: 88.924950, Top1T: 89.371201 +Train:epoch: 138, loss@min: 0.947442, loss@max: 1.358013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.411816, LT: 0.405095, Top1S: 88.924950, Top1T: 89.371201 +Train:epoch: 139, loss@min: 0.947470, loss@max: 1.362520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.411694, LT: 0.404939, Top1S: 88.924950, Top1T: 89.371201 +Train:epoch: 140, loss@min: 0.947542, loss@max: 1.357884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.411589, LT: 0.404839, Top1S: 88.924950, Top1T: 89.371201 +Train:epoch: 141, loss@min: 0.956437, loss@max: 1.368881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.411207, LT: 0.404497, Top1S: 88.924950, Top1T: 89.371201 +Train:epoch: 142, loss@min: 0.945456, loss@max: 1.359641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.410807, LT: 0.404173, Top1S: 89.006088, Top1T: 89.371201 +Train:epoch: 143, loss@min: 0.946027, loss@max: 1.358907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.410568, LT: 0.404008, Top1S: 89.006088, Top1T: 89.371201 +Train:epoch: 144, loss@min: 0.945534, loss@max: 1.356649, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.410274, LT: 0.403797, Top1S: 89.006088, Top1T: 89.330627 +Train:epoch: 145, loss@min: 0.971503, loss@max: 1.372791, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 145, LS: 0.409927, LT: 0.403506, Top1S: 88.965515, Top1T: 89.371201 +Train:epoch: 146, loss@min: 0.949948, loss@max: 1.362067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.409538, LT: 0.403208, Top1S: 88.965515, Top1T: 89.371201 +Train:epoch: 147, loss@min: 0.945715, loss@max: 1.358018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.409324, LT: 0.403055, Top1S: 88.965515, Top1T: 89.411766 +Train:epoch: 148, loss@min: 1.012173, loss@max: 1.391139, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 148, LS: 0.408980, LT: 0.402753, Top1S: 88.965515, Top1T: 89.411766 +Train:epoch: 149, loss@min: 0.950237, loss@max: 1.356430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.408739, LT: 0.402508, Top1S: 88.965515, Top1T: 89.411766 +Train:epoch: 150, loss@min: 0.946734, loss@max: 1.356776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.408541, LT: 0.402277, Top1S: 88.965515, Top1T: 89.371201 +------------------------------------------- +Wed Jan 17 16:34:21 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 16:35:17 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.508911, loss@max: 1.501697, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 82, loss@min: 2.231870, loss@max: 1.506683, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 83, loss@min: 1.938899, loss@max: 1.512236, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 84, loss@min: 1.916486, loss@max: 1.583754, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 85, loss@min: 1.655105, loss@max: 1.535126, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 86, loss@min: 1.594409, loss@max: 1.541463, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.630373, loss@max: 1.558359, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 88, loss@min: 1.475478, loss@max: 1.548538, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 89, loss@min: 1.372921, loss@max: 1.523631, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.292537, loss@max: 1.521129, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 91, loss@min: 1.206531, loss@max: 1.507288, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.074989, loss@max: 1.492883, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 1.090873, loss@max: 1.510287, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 94, loss@min: 1.138876, loss@max: 1.521527, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.996916, loss@max: 1.494528, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 96, loss@min: 1.051918, loss@max: 1.525573, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 0.983498, loss@max: 1.505604, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.128682, loss@max: 1.566951, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.002143, loss@max: 1.517320, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 0.968815, loss@max: 1.474570, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.970962, loss@max: 1.472695, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 0.944025, loss@max: 1.453456, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 0.968891, loss@max: 1.468070, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.988351, loss@max: 1.460310, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 0.990567, loss@max: 1.466345, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.936953, loss@max: 1.423621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.974793, loss@max: 1.432166, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 0.993227, loss@max: 1.442646, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 109, loss@min: 0.971717, loss@max: 1.415970, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 110, loss@min: 0.956624, loss@max: 1.398442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.985586, loss@max: 1.401501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.970309, loss@max: 1.391074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.990066, loss@max: 1.394092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.966073, loss@max: 1.371040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.983678, loss@max: 1.377742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.977515, loss@max: 1.371571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.973014, loss@max: 1.365552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.968890, loss@max: 1.371735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.991265, loss@max: 1.377911, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.963582, loss@max: 1.358436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.976975, loss@max: 1.374653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.984223, loss@max: 1.385201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.961803, loss@max: 1.361052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.971770, loss@max: 1.375654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.977171, loss@max: 1.379784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.988203, loss@max: 1.376663, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.968446, loss@max: 1.372446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.970172, loss@max: 1.371273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.957339, loss@max: 1.370953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.960892, loss@max: 1.373857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.372737, LT: 0.372879, Top1S: 89.330627, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 131, loss@min: 0.976176, loss@max: 1.389255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.372642, LT: 0.372643, Top1S: 89.290062, Top1T: 89.452332Best acc: 89.452332 +Train:epoch: 132, loss@min: 0.956747, loss@max: 1.373793, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.372344, LT: 0.372249, Top1S: 89.208923, Top1T: 89.533470Best acc: 89.533470 +Train:epoch: 133, loss@min: 0.953015, loss@max: 1.366347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.371687, LT: 0.371542, Top1S: 89.371201, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 134, loss@min: 0.984287, loss@max: 1.388671, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.371363, LT: 0.371043, Top1S: 89.371201, Top1T: 89.614601Best acc: 89.614601 +Train:epoch: 135, loss@min: 0.955519, loss@max: 1.370590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.371186, LT: 0.370727, Top1S: 89.330627, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 136, loss@min: 0.952529, loss@max: 1.373635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.370887, LT: 0.370408, Top1S: 89.411766, Top1T: 89.695740Best acc: 89.695740 +Train:epoch: 137, loss@min: 0.947183, loss@max: 1.368520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.370800, LT: 0.370279, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 138, loss@min: 0.951561, loss@max: 1.376494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.370532, LT: 0.370043, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 139, loss@min: 0.946938, loss@max: 1.370981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.370341, LT: 0.369842, Top1S: 89.655174, Top1T: 89.695740 +Train:epoch: 140, loss@min: 0.950919, loss@max: 1.368100, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 16:47:47 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.490283, loss@max: 1.497044, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 82, loss@min: 2.201954, loss@max: 1.509979, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 83, loss@min: 1.898924, loss@max: 1.526578, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 84, loss@min: 1.858245, loss@max: 1.609482, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 85, loss@min: 1.585509, loss@max: 1.573660, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 86, loss@min: 1.519066, loss@max: 1.591501, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.544222, loss@max: 1.617534, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 88, loss@min: 1.384786, loss@max: 1.613508, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 89, loss@min: 1.291189, loss@max: 1.594083, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.209169, loss@max: 1.591423, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 91, loss@min: 1.130654, loss@max: 1.575982, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.012653, loss@max: 1.555980, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 1.029168, loss@max: 1.564354, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 94, loss@min: 1.086036, loss@max: 1.564588, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.959776, loss@max: 1.527833, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 96, loss@min: 1.023131, loss@max: 1.546604, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 0.969071, loss@max: 1.514848, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.122621, loss@max: 1.565451, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.010708, loss@max: 1.506675, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 0.984274, loss@max: 1.453831, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.996341, loss@max: 1.444177, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 0.975214, loss@max: 1.418922, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 1.004006, loss@max: 1.428390, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 1.022669, loss@max: 1.416099, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.033796, loss@max: 1.421462, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.980092, loss@max: 1.379066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.016628, loss@max: 1.387309, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.027841, loss@max: 1.399553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.007591, loss@max: 1.378857, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 110, loss@min: 0.986429, loss@max: 1.366250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.009480, loss@max: 1.375009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.989093, loss@max: 1.371787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.000626, loss@max: 1.379578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.971801, loss@max: 1.363600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.984683, loss@max: 1.375602, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.973572, loss@max: 1.373562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.965415, loss@max: 1.371055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.958178, loss@max: 1.381920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.976373, loss@max: 1.390064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.948611, loss@max: 1.372243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.960563, loss@max: 1.388293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.969781, loss@max: 1.399972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.946983, loss@max: 1.375468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.956280, loss@max: 1.388355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.963816, loss@max: 1.391510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.973533, loss@max: 1.386915, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.958089, loss@max: 1.380788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.962695, loss@max: 1.379342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.950771, loss@max: 1.375914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.956611, loss@max: 1.377281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.373828, LT: 0.373845, Top1S: 89.290062, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 131, loss@min: 0.975108, loss@max: 1.390378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.373467, LT: 0.373387, Top1S: 89.249496, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 132, loss@min: 0.956004, loss@max: 1.374043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.372856, LT: 0.372758, Top1S: 89.371201, Top1T: 89.492905Best acc: 89.492905 +Train:epoch: 133, loss@min: 0.953889, loss@max: 1.364846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.371922, LT: 0.371849, Top1S: 89.492905, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 134, loss@min: 0.989678, loss@max: 1.386033, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.371390, LT: 0.371217, Top1S: 89.492905, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 135, loss@min: 0.958363, loss@max: 1.366043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.371256, LT: 0.370963, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 136, loss@min: 0.958078, loss@max: 1.369137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.371240, LT: 0.370907, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 137, loss@min: 0.952165, loss@max: 1.363664, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.371614, LT: 0.371196, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 138, loss@min: 0.955354, loss@max: 1.371580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.371860, LT: 0.371418, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 139, loss@min: 0.950825, loss@max: 1.367140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.372188, LT: 0.371680, Top1S: 89.614601, Top1T: 89.614601 +Train:epoch: 140, loss@min: 0.953255, loss@max: 1.364896, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.372322, LT: 0.371798, Top1S: 89.614601, Top1T: 89.574036 +Train:epoch: 141, loss@min: 0.949865, loss@max: 1.363994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.372979, LT: 0.372257, Top1S: 89.655174, Top1T: 89.614601 +Train:epoch: 142, loss@min: 0.952998, loss@max: 1.365837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.373754, LT: 0.372736, Top1S: 89.655174, Top1T: 89.614601 +Train:epoch: 143, loss@min: 0.952335, loss@max: 1.367706, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.374323, LT: 0.373095, Top1S: 89.695740, Top1T: 89.614601Best acc: 89.695740 +Train:epoch: 144, loss@min: 0.950721, loss@max: 1.364463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.374864, LT: 0.373419, Top1S: 89.574036, Top1T: 89.614601 +Train:epoch: 145, loss@min: 0.951396, loss@max: 1.373339, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.375545, LT: 0.373876, Top1S: 89.614601, Top1T: 89.736305Best acc: 89.736305 +Train:epoch: 146, loss@min: 0.948354, loss@max: 1.368806, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.376318, LT: 0.374423, Top1S: 89.614601, Top1T: 89.776878Best acc: 89.776878 +Train:epoch: 147, loss@min: 0.954121, loss@max: 1.371622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.377239, LT: 0.375096, Top1S: 89.655174, Top1T: 89.817444Best acc: 89.817444 +Train:epoch: 148, loss@min: 0.953477, loss@max: 1.371333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.378435, LT: 0.376053, Top1S: 89.655174, Top1T: 89.817444 +Train:epoch: 149, loss@min: 0.951605, loss@max: 1.368803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.379335, LT: 0.376805, Top1S: 89.574036, Top1T: 89.776878 +Train:epoch: 150, loss@min: 0.950071, loss@max: 1.364734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.380633, LT: 0.377967, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 151, loss@min: 0.950900, loss@max: 1.360844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.381958, LT: 0.379254, Top1S: 89.411766, Top1T: 89.614601 +Train:epoch: 152, loss@min: 0.971982, loss@max: 1.375358, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.382864, LT: 0.380237, Top1S: 89.452332, Top1T: 89.492905 +Train:epoch: 153, loss@min: 0.960645, loss@max: 1.374236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.384154, LT: 0.381533, Top1S: 89.411766, Top1T: 89.574036 +Train:epoch: 154, loss@min: 0.954653, loss@max: 1.368912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.385762, LT: 0.383107, Top1S: 89.330627, Top1T: 89.492905 +Train:epoch: 155, loss@min: 0.951243, loss@max: 1.358961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.387476, LT: 0.384787, Top1S: 89.330627, Top1T: 89.533470 +Train:epoch: 156, loss@min: 0.950616, loss@max: 1.363376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.389084, LT: 0.386256, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 157, loss@min: 0.948985, loss@max: 1.360351, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 17:09:39 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 2.607455, loss@max: 1.426327, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 1.892556, loss@max: 1.391844, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 43, loss@min: 1.739901, loss@max: 1.478654, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 44, loss@min: 1.449911, loss@max: 1.466108, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 45, loss@min: 1.564885, loss@max: 1.575450, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 46, loss@min: 1.427461, loss@max: 1.573609, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 47, loss@min: 1.129143, loss@max: 1.521741, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 48, loss@min: 1.127460, loss@max: 1.524376, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 49, loss@min: 1.127332, loss@max: 1.556198, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 50, loss@min: 1.006096, loss@max: 1.547936, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 51, loss@min: 0.916228, loss@max: 1.510970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940089, loss@max: 1.523039, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 0.969328, loss@max: 1.525075, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 54, loss@min: 0.904216, loss@max: 1.461707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.968395, loss@max: 1.474505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.986183, loss@max: 1.432581, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.086397, loss@max: 1.429282, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 0.950420, loss@max: 1.365718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.991064, loss@max: 1.372939, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 0.995261, loss@max: 1.367303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.009860, loss@max: 1.351167, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 62, loss@min: 1.000539, loss@max: 1.330382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.986321, loss@max: 1.325831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.985070, loss@max: 1.321387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.983149, loss@max: 1.332195, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.007031, loss@max: 1.341891, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.969666, loss@max: 1.336893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.975646, loss@max: 1.347664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.969925, loss@max: 1.347949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958947, loss@max: 1.357389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.948272, loss@max: 1.361867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.962554, loss@max: 1.382032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.941921, loss@max: 1.359913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.972476, loss@max: 1.374539, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.946636, loss@max: 1.364543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948934, loss@max: 1.370726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950193, loss@max: 1.374857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.939729, loss@max: 1.365220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.939985, loss@max: 1.361221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949796, loss@max: 1.361457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.952251, loss@max: 1.358004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.975977, loss@max: 1.360732, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 0.951119, loss@max: 1.352389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.953287, loss@max: 1.350571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.951819, loss@max: 1.350278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.946093, loss@max: 1.352490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.953070, loss@max: 1.362644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.955280, loss@max: 1.359496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.952438, loss@max: 1.354047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.946010, loss@max: 1.353855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.947620, loss@max: 1.351497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.955796, loss@max: 1.362044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950323, loss@max: 1.355486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.951031, loss@max: 1.357095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948611, loss@max: 1.354513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.959808, loss@max: 1.363922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.951622, loss@max: 1.364321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.969385, loss@max: 1.373755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.951170, loss@max: 1.363052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.944226, loss@max: 1.356265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.945499, loss@max: 1.357987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.944616, loss@max: 1.363613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.947846, loss@max: 1.360531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.947311, loss@max: 1.355272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.950917, loss@max: 1.360476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.947934, loss@max: 1.352071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.946492, loss@max: 1.359321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.950293, loss@max: 1.355942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.944639, loss@max: 1.357242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.947837, loss@max: 1.353194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.948595, loss@max: 1.362965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.945867, loss@max: 1.356183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.946644, loss@max: 1.357655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.945134, loss@max: 1.355587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.942851, loss@max: 1.359405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.946081, loss@max: 1.355895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.950203, loss@max: 1.350766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.948133, loss@max: 1.358811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.959602, loss@max: 1.362469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.946512, loss@max: 1.354666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.945620, loss@max: 1.358488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.946044, loss@max: 1.359735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.945601, loss@max: 1.355949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.945430, loss@max: 1.361123, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.945041, loss@max: 1.359074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.954400, loss@max: 1.361924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.948823, loss@max: 1.360919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.949080, loss@max: 1.361179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.943893, loss@max: 1.358311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.942710, loss@max: 1.361853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.435794, LT: 0.427183, Top1S: 88.397568, Top1T: 88.640976Best acc: 88.640976 +Train:epoch: 131, loss@min: 0.949594, loss@max: 1.363540, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.435329, LT: 0.426550, Top1S: 88.316429, Top1T: 88.681541Best acc: 88.681541 +Train:epoch: 132, loss@min: 0.948311, loss@max: 1.358306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.434818, LT: 0.425998, Top1S: 88.275864, Top1T: 88.681541 +Train:epoch: 133, loss@min: 0.943859, loss@max: 1.357958, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 17:17:37 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 61, loss@min: 2.544705, loss@max: 1.480741, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 62, loss@min: 2.090095, loss@max: 1.490598, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 63, loss@min: 1.692759, loss@max: 1.497138, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 64, loss@min: 1.643877, loss@max: 1.528118, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 65, loss@min: 1.519009, loss@max: 1.551910, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 66, loss@min: 1.403266, loss@max: 1.568538, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 67, loss@min: 1.236545, loss@max: 1.538185, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 68, loss@min: 1.240882, loss@max: 1.577558, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 69, loss@min: 1.102260, loss@max: 1.555217, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 70, loss@min: 1.087476, loss@max: 1.579553, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 71, loss@min: 0.981183, loss@max: 1.555572, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 72, loss@min: 1.089025, loss@max: 1.626312, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 73, loss@min: 0.953899, loss@max: 1.541243, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 74, loss@min: 1.017333, loss@max: 1.541915, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.993086, loss@max: 1.523468, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 76, loss@min: 0.993764, loss@max: 1.499037, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 77, loss@min: 0.983230, loss@max: 1.474719, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 0.994625, loss@max: 1.444763, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.973561, loss@max: 1.420115, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 80, loss@min: 0.999281, loss@max: 1.420011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.003108, loss@max: 1.391582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.040569, loss@max: 1.380219, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 0.984253, loss@max: 1.362031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.001381, loss@max: 1.370941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.999951, loss@max: 1.364846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.003982, loss@max: 1.364632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.035909, loss@max: 1.376224, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 88, loss@min: 0.998614, loss@max: 1.371704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.984513, loss@max: 1.364328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.965893, loss@max: 1.358618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.962603, loss@max: 1.361201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.979524, loss@max: 1.374209, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.967447, loss@max: 1.371802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.956998, loss@max: 1.378996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.950384, loss@max: 1.370331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.964187, loss@max: 1.388586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.966115, loss@max: 1.388145, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.015203, loss@max: 1.412549, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.958802, loss@max: 1.385511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.944864, loss@max: 1.369146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.951908, loss@max: 1.372767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.949072, loss@max: 1.366552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.956439, loss@max: 1.374613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.958946, loss@max: 1.365773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.953468, loss@max: 1.367494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.947304, loss@max: 1.358996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.957976, loss@max: 1.362887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.958870, loss@max: 1.365623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.951627, loss@max: 1.360029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.952592, loss@max: 1.355781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.961344, loss@max: 1.366023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.950519, loss@max: 1.358539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.951860, loss@max: 1.363608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.947027, loss@max: 1.357517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.948796, loss@max: 1.363186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.950125, loss@max: 1.364604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.949272, loss@max: 1.356960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.945095, loss@max: 1.364396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.960585, loss@max: 1.366912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.946221, loss@max: 1.357143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.950063, loss@max: 1.362029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.952203, loss@max: 1.363307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.946673, loss@max: 1.357835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.948104, loss@max: 1.363777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.947721, loss@max: 1.363414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.958132, loss@max: 1.364227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.952517, loss@max: 1.361300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.955736, loss@max: 1.360570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.946745, loss@max: 1.360054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.948373, loss@max: 1.361862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.400895, LT: 0.395938, Top1S: 88.762680, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 131, loss@min: 0.967041, loss@max: 1.373588, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 17:24:10 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 82, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 83, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 84, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 85, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 86, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 87, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 88, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 89, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 90, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 91, loss@min: 2.640354, loss@max: 1.547516, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 92, loss@min: 2.203709, loss@max: 1.512166, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 93, loss@min: 1.985522, loss@max: 1.529695, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 94, loss@min: 1.952251, loss@max: 1.587483, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 95, loss@min: 1.594571, loss@max: 1.540369, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 96, loss@min: 1.658444, loss@max: 1.574172, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 97, loss@min: 1.490404, loss@max: 1.574303, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 98, loss@min: 1.602489, loss@max: 1.680578, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 99, loss@min: 1.418149, loss@max: 1.628398, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 100, loss@min: 1.209962, loss@max: 1.558040, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 101, loss@min: 1.168274, loss@max: 1.578766, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 1.110532, loss@max: 1.555143, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 103, loss@min: 1.118736, loss@max: 1.597587, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 104, loss@min: 1.129194, loss@max: 1.583170, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.153493, loss@max: 1.605428, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 106, loss@min: 0.962044, loss@max: 1.527544, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 107, loss@min: 1.050970, loss@max: 1.558087, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.083939, loss@max: 1.547504, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 109, loss@min: 0.981596, loss@max: 1.511391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.974882, loss@max: 1.496942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.039737, loss@max: 1.504606, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 112, loss@min: 0.975756, loss@max: 1.464348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.031453, loss@max: 1.457882, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 114, loss@min: 0.966898, loss@max: 1.419630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 1.003972, loss@max: 1.432239, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.989256, loss@max: 1.412961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.988387, loss@max: 1.402789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.987066, loss@max: 1.405904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 1.043699, loss@max: 1.415378, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 120, loss@min: 0.976236, loss@max: 1.370923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 1.036693, loss@max: 1.400926, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 122, loss@min: 1.051802, loss@max: 1.414457, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 123, loss@min: 0.982836, loss@max: 1.373228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 1.017238, loss@max: 1.399650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 1.030350, loss@max: 1.394353, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 126, loss@min: 1.032904, loss@max: 1.389329, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.996919, loss@max: 1.387965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.987060, loss@max: 1.383641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.977739, loss@max: 1.387457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.973707, loss@max: 1.385443, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.365389, LT: 0.365976, Top1S: 89.046654, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 131, loss@min: 0.991596, loss@max: 1.401531, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 17:30:41 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 81, loss@min: 2.150781, loss@max: 1.365763, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.920087, loss@max: 1.396252, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 83, loss@min: 1.746834, loss@max: 1.444775, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 84, loss@min: 1.613966, loss@max: 1.510525, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 85, loss@min: 1.406654, loss@max: 1.478861, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 86, loss@min: 1.409402, loss@max: 1.523071, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 87, loss@min: 1.400444, loss@max: 1.551638, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.296222, loss@max: 1.563708, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 89, loss@min: 1.236664, loss@max: 1.548641, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 90, loss@min: 1.109150, loss@max: 1.536959, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.061398, loss@max: 1.528679, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.007296, loss@max: 1.515488, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.954227, loss@max: 1.518178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.030312, loss@max: 1.534851, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.924742, loss@max: 1.502988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.973577, loss@max: 1.530080, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 0.946683, loss@max: 1.508408, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.084954, loss@max: 1.565008, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 0.971292, loss@max: 1.506868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950483, loss@max: 1.462034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.950152, loss@max: 1.454849, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.945366, loss@max: 1.437455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.984227, loss@max: 1.449253, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.994448, loss@max: 1.441100, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.023810, loss@max: 1.441843, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.958434, loss@max: 1.392807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.998004, loss@max: 1.403102, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.021735, loss@max: 1.414487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.990770, loss@max: 1.379387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.982897, loss@max: 1.369476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.005882, loss@max: 1.379079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.986890, loss@max: 1.365004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.003091, loss@max: 1.378415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.978161, loss@max: 1.356468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.993022, loss@max: 1.367231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.987062, loss@max: 1.365669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.975689, loss@max: 1.360842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.968708, loss@max: 1.369312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.987314, loss@max: 1.380834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.961013, loss@max: 1.363950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.968826, loss@max: 1.380575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.973317, loss@max: 1.395290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.950972, loss@max: 1.369543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.962219, loss@max: 1.392321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.958294, loss@max: 1.390247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.976650, loss@max: 1.392216, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.956580, loss@max: 1.383484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.961257, loss@max: 1.384519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.952406, loss@max: 1.380219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.958514, loss@max: 1.383133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.370738, LT: 0.373919, Top1S: 89.736305, Top1T: 89.492905Best acc: 89.736305 +Train:epoch: 131, loss@min: 0.973694, loss@max: 1.393855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.370630, LT: 0.373719, Top1S: 89.817444, Top1T: 89.533470Best acc: 89.817444 +Train:epoch: 132, loss@min: 0.953222, loss@max: 1.374673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.370611, LT: 0.373634, Top1S: 89.695740, Top1T: 89.614601 +Train:epoch: 133, loss@min: 0.951799, loss@max: 1.370697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.370385, LT: 0.373376, Top1S: 89.736305, Top1T: 89.533470 +Train:epoch: 134, loss@min: 0.984470, loss@max: 1.393514, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.370203, LT: 0.373058, Top1S: 89.736305, Top1T: 89.411766 +Train:epoch: 135, loss@min: 0.954102, loss@max: 1.375011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.370071, LT: 0.372785, Top1S: 89.655174, Top1T: 89.411766 +Train:epoch: 136, loss@min: 0.956827, loss@max: 1.379545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.369666, LT: 0.372298, Top1S: 89.655174, Top1T: 89.411766 +Train:epoch: 137, loss@min: 0.947170, loss@max: 1.371762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.369463, LT: 0.372101, Top1S: 89.614601, Top1T: 89.452332 +Train:epoch: 138, loss@min: 0.951277, loss@max: 1.379079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.369064, LT: 0.371719, Top1S: 89.736305, Top1T: 89.452332 +Train:epoch: 139, loss@min: 0.948074, loss@max: 1.374571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.368408, LT: 0.371173, Top1S: 89.655174, Top1T: 89.411766 +Train:epoch: 140, loss@min: 0.950822, loss@max: 1.369362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.367791, LT: 0.370706, Top1S: 89.695740, Top1T: 89.492905 +Train:epoch: 141, loss@min: 0.949841, loss@max: 1.368637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.367613, LT: 0.370566, Top1S: 89.695740, Top1T: 89.492905 +Train:epoch: 142, loss@min: 0.954597, loss@max: 1.370198, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 17:44:02 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 2.559315, loss@max: 1.372483, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 42, loss@min: 1.864614, loss@max: 1.370379, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 43, loss@min: 1.704173, loss@max: 1.464313, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 44, loss@min: 1.389055, loss@max: 1.446604, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 45, loss@min: 1.557792, loss@max: 1.565291, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 46, loss@min: 1.431556, loss@max: 1.565678, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 47, loss@min: 1.131804, loss@max: 1.514572, Top1S acc: 100.000000, Top1T acc: 97.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 17:46:16 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 2.556363, loss@max: 1.373276, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 1.867968, loss@max: 1.370735, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 43, loss@min: 1.708337, loss@max: 1.464766, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 44, loss@min: 1.391711, loss@max: 1.446708, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 45, loss@min: 1.559497, loss@max: 1.565218, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 46, loss@min: 1.436304, loss@max: 1.566224, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 47, loss@min: 1.134039, loss@max: 1.515067, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 48, loss@min: 1.136079, loss@max: 1.518779, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 49, loss@min: 1.149245, loss@max: 1.555937, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 50, loss@min: 1.020519, loss@max: 1.534252, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 51, loss@min: 0.925614, loss@max: 1.508090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.930869, loss@max: 1.514517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.987184, loss@max: 1.528494, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 54, loss@min: 0.905588, loss@max: 1.470482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.957586, loss@max: 1.484817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.958969, loss@max: 1.438361, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.077086, loss@max: 1.440083, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 0.941545, loss@max: 1.379544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.971530, loss@max: 1.380638, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 0.996669, loss@max: 1.378040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 1.002757, loss@max: 1.356842, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 62, loss@min: 0.998502, loss@max: 1.337541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.986392, loss@max: 1.329703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.988891, loss@max: 1.321600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.998457, loss@max: 1.338150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.007459, loss@max: 1.338127, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.979779, loss@max: 1.330706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.986209, loss@max: 1.340217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.982950, loss@max: 1.342006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.980532, loss@max: 1.359640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.954791, loss@max: 1.356924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.966195, loss@max: 1.380694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.947877, loss@max: 1.363414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.964785, loss@max: 1.372770, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.948924, loss@max: 1.375482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948884, loss@max: 1.376733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948393, loss@max: 1.380660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.937130, loss@max: 1.375244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.935537, loss@max: 1.368931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.945415, loss@max: 1.371294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.947540, loss@max: 1.366987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.956105, loss@max: 1.368770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945919, loss@max: 1.360289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.955936, loss@max: 1.362628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.952234, loss@max: 1.354581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.947189, loss@max: 1.357594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.962693, loss@max: 1.366902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.958495, loss@max: 1.363065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.954254, loss@max: 1.355437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.950228, loss@max: 1.353029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.950873, loss@max: 1.352244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.960365, loss@max: 1.364027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.951804, loss@max: 1.358826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950892, loss@max: 1.358481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.950506, loss@max: 1.356109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.952361, loss@max: 1.363623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.957866, loss@max: 1.368799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.969658, loss@max: 1.377683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.954270, loss@max: 1.366910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.946177, loss@max: 1.358038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.950504, loss@max: 1.361425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.944637, loss@max: 1.364899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.951293, loss@max: 1.362469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.948818, loss@max: 1.359151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.950599, loss@max: 1.365690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.947025, loss@max: 1.355243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.946957, loss@max: 1.361969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.952672, loss@max: 1.361072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.945167, loss@max: 1.358896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.950388, loss@max: 1.352967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.953369, loss@max: 1.361423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.947976, loss@max: 1.355731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.946703, loss@max: 1.361719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.945812, loss@max: 1.356729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.943439, loss@max: 1.362409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.942871, loss@max: 1.361217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.948902, loss@max: 1.354189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.953029, loss@max: 1.366906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.955379, loss@max: 1.364894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.946483, loss@max: 1.356180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.946310, loss@max: 1.360784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.947461, loss@max: 1.361151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.947416, loss@max: 1.355601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.947501, loss@max: 1.363366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.946658, loss@max: 1.359946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.954856, loss@max: 1.363031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.950691, loss@max: 1.362209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.949782, loss@max: 1.362961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.944921, loss@max: 1.359340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.943363, loss@max: 1.364132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.412988, LT: 0.408504, Top1S: 88.762680, Top1T: 88.843811Best acc: 88.843811 +Train:epoch: 131, loss@min: 0.951781, loss@max: 1.367383, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.413130, LT: 0.408638, Top1S: 88.722107, Top1T: 88.843811 +Train:epoch: 132, loss@min: 0.947580, loss@max: 1.360521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.413691, LT: 0.409120, Top1S: 88.762680, Top1T: 88.884384Best acc: 88.884384 +Train:epoch: 133, loss@min: 0.946044, loss@max: 1.357892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.414091, LT: 0.409482, Top1S: 88.762680, Top1T: 88.843811 +Train:epoch: 134, loss@min: 0.961904, loss@max: 1.366053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.414583, LT: 0.409749, Top1S: 88.762680, Top1T: 88.843811 +Train:epoch: 135, loss@min: 0.952266, loss@max: 1.359303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.414800, LT: 0.409756, Top1S: 88.803246, Top1T: 88.884384 +Train:epoch: 136, loss@min: 0.949423, loss@max: 1.358237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.414889, LT: 0.409739, Top1S: 88.884384, Top1T: 88.884384 +Train:epoch: 137, loss@min: 0.945938, loss@max: 1.358351, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.415139, LT: 0.409967, Top1S: 88.843811, Top1T: 88.843811 +Train:epoch: 138, loss@min: 0.946514, loss@max: 1.359582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.415647, LT: 0.410528, Top1S: 88.884384, Top1T: 88.762680 +Train:epoch: 139, loss@min: 0.942874, loss@max: 1.361732, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.415919, LT: 0.410812, Top1S: 88.924950, Top1T: 88.803246Best acc: 88.924950 +Train:epoch: 140, loss@min: 0.944755, loss@max: 1.360424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.416021, LT: 0.410998, Top1S: 88.843811, Top1T: 88.803246 +Train:epoch: 141, loss@min: 0.946197, loss@max: 1.358318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.416292, LT: 0.411252, Top1S: 88.843811, Top1T: 88.843811 +Train:epoch: 142, loss@min: 0.947023, loss@max: 1.358324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.416639, LT: 0.411522, Top1S: 88.843811, Top1T: 88.803246 +Train:epoch: 143, loss@min: 0.947356, loss@max: 1.357537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.416915, LT: 0.411706, Top1S: 88.803246, Top1T: 88.722107 +Train:epoch: 144, loss@min: 0.946466, loss@max: 1.358916, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.417151, LT: 0.411855, Top1S: 88.803246, Top1T: 88.722107 +Train:epoch: 145, loss@min: 0.948956, loss@max: 1.361364, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 18:00:38 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 81, loss@min: 2.150781, loss@max: 1.365763, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.920087, loss@max: 1.396252, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 83, loss@min: 1.746834, loss@max: 1.444775, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 84, loss@min: 1.613966, loss@max: 1.510525, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 85, loss@min: 1.406654, loss@max: 1.478861, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 86, loss@min: 1.409402, loss@max: 1.523071, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 87, loss@min: 1.400444, loss@max: 1.551638, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.296222, loss@max: 1.563708, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 89, loss@min: 1.236664, loss@max: 1.548641, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 90, loss@min: 1.109150, loss@max: 1.536959, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.061398, loss@max: 1.528679, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.007296, loss@max: 1.515488, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.954227, loss@max: 1.518178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.030312, loss@max: 1.534851, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.924742, loss@max: 1.502988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.973577, loss@max: 1.530080, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 0.946683, loss@max: 1.508408, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.084954, loss@max: 1.565008, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 0.971292, loss@max: 1.506868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950483, loss@max: 1.462034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.950152, loss@max: 1.454849, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.945366, loss@max: 1.437455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.984227, loss@max: 1.449253, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.994448, loss@max: 1.441100, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.023810, loss@max: 1.441843, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.958434, loss@max: 1.392807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.998004, loss@max: 1.403102, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.021735, loss@max: 1.414487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.990770, loss@max: 1.379387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.982897, loss@max: 1.369476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.005882, loss@max: 1.379079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.986890, loss@max: 1.365004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.003091, loss@max: 1.378415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.978161, loss@max: 1.356468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.993022, loss@max: 1.367231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.987062, loss@max: 1.365669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.975689, loss@max: 1.360842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.968708, loss@max: 1.369312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.987314, loss@max: 1.380834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.961013, loss@max: 1.363950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.968826, loss@max: 1.380575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.973317, loss@max: 1.395290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.950972, loss@max: 1.369543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.962219, loss@max: 1.392321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.958294, loss@max: 1.390247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.976650, loss@max: 1.392216, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.956580, loss@max: 1.383484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.961257, loss@max: 1.384519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.952406, loss@max: 1.380219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.958514, loss@max: 1.383133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.370738, LT: 0.373919, Top1S: 89.736305, Top1T: 89.492905Best acc: 89.736305 +Train:epoch: 131, loss@min: 0.973694, loss@max: 1.393855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.370630, LT: 0.373719, Top1S: 89.817444, Top1T: 89.533470Best acc: 89.817444 +Train:epoch: 132, loss@min: 0.953222, loss@max: 1.374673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.370611, LT: 0.373634, Top1S: 89.695740, Top1T: 89.614601 +Train:epoch: 133, loss@min: 0.951799, loss@max: 1.370697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.370385, LT: 0.373376, Top1S: 89.736305, Top1T: 89.533470 +Train:epoch: 134, loss@min: 0.984470, loss@max: 1.393514, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.370203, LT: 0.373058, Top1S: 89.736305, Top1T: 89.411766 +Train:epoch: 135, loss@min: 0.954102, loss@max: 1.375011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.370071, LT: 0.372785, Top1S: 89.655174, Top1T: 89.411766 +Train:epoch: 136, loss@min: 0.956827, loss@max: 1.379545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.369666, LT: 0.372298, Top1S: 89.655174, Top1T: 89.411766 +Train:epoch: 137, loss@min: 0.947170, loss@max: 1.371762, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.369463, LT: 0.372101, Top1S: 89.614601, Top1T: 89.452332 +Train:epoch: 138, loss@min: 0.951277, loss@max: 1.379079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.369064, LT: 0.371719, Top1S: 89.736305, Top1T: 89.452332 +Train:epoch: 139, loss@min: 0.948074, loss@max: 1.374571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.368408, LT: 0.371173, Top1S: 89.655174, Top1T: 89.411766 +Train:epoch: 140, loss@min: 0.950822, loss@max: 1.369362, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.367791, LT: 0.370706, Top1S: 89.695740, Top1T: 89.492905 +Train:epoch: 141, loss@min: 0.949841, loss@max: 1.368637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.367613, LT: 0.370566, Top1S: 89.695740, Top1T: 89.492905 +Train:epoch: 142, loss@min: 0.954597, loss@max: 1.370198, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 110} + +------------------------------------------- +Wed Jan 17 18:13:32 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 81, loss@min: 2.126826, loss@max: 1.360476, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.900719, loss@max: 1.392906, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 83, loss@min: 1.738706, loss@max: 1.442252, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.606194, loss@max: 1.507349, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 85, loss@min: 1.402784, loss@max: 1.475857, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 86, loss@min: 1.403517, loss@max: 1.519272, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 87, loss@min: 1.395312, loss@max: 1.549283, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.284809, loss@max: 1.561258, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.228922, loss@max: 1.546284, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 90, loss@min: 1.105702, loss@max: 1.535776, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.056202, loss@max: 1.527452, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.008700, loss@max: 1.515828, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.951282, loss@max: 1.516370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.029488, loss@max: 1.534364, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.923533, loss@max: 1.501742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.971592, loss@max: 1.528332, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 0.944577, loss@max: 1.506417, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.081632, loss@max: 1.562897, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 0.971545, loss@max: 1.505543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950180, loss@max: 1.460164, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.950585, loss@max: 1.453828, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.946711, loss@max: 1.436849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.984202, loss@max: 1.448059, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.992596, loss@max: 1.439433, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.022414, loss@max: 1.440796, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.958315, loss@max: 1.392668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.997168, loss@max: 1.402342, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.019865, loss@max: 1.413907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.990484, loss@max: 1.380102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.981870, loss@max: 1.370354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.378836, LT: 0.382210, Top1S: 89.249496, Top1T: 89.087219Best acc: 89.249496 +Train:epoch: 111, loss@min: 0.996192, loss@max: 1.370991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.379720, LT: 0.383051, Top1S: 89.249496, Top1T: 89.168358 +Train:epoch: 112, loss@min: 0.981777, loss@max: 1.360494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.379453, LT: 0.382695, Top1S: 89.208923, Top1T: 89.168358 +Train:epoch: 113, loss@min: 1.005842, loss@max: 1.382924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.378529, LT: 0.381647, Top1S: 89.290062, Top1T: 89.249496Best acc: 89.290062 +Train:epoch: 114, loss@min: 0.982939, loss@max: 1.362750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.377282, LT: 0.380407, Top1S: 89.290062, Top1T: 89.290062 +Train:epoch: 115, loss@min: 0.975207, loss@max: 1.356373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.375729, LT: 0.378933, Top1S: 89.330627, Top1T: 89.290062Best acc: 89.330627 +Train:epoch: 116, loss@min: 0.996226, loss@max: 1.369358, Top1S acc: 100.000000, Top1T acc: 99.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 18:22:00 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 81, loss@min: 2.150781, loss@max: 1.365763, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.920087, loss@max: 1.396252, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 83, loss@min: 1.746834, loss@max: 1.444775, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 84, loss@min: 1.613966, loss@max: 1.510525, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 85, loss@min: 1.406654, loss@max: 1.478861, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 86, loss@min: 1.409402, loss@max: 1.523071, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 87, loss@min: 1.400444, loss@max: 1.551638, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.296222, loss@max: 1.563708, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 89, loss@min: 1.236664, loss@max: 1.548641, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 90, loss@min: 1.109150, loss@max: 1.536959, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.061398, loss@max: 1.528679, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.007296, loss@max: 1.515488, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.954227, loss@max: 1.518178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.030312, loss@max: 1.534851, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.924742, loss@max: 1.502988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.973577, loss@max: 1.530080, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 0.946683, loss@max: 1.508408, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.084954, loss@max: 1.565008, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 0.971292, loss@max: 1.506868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950483, loss@max: 1.462034, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.950152, loss@max: 1.454849, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.945366, loss@max: 1.437455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.984227, loss@max: 1.449253, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.994448, loss@max: 1.441100, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.023810, loss@max: 1.441843, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.958434, loss@max: 1.392807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.998004, loss@max: 1.403102, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.021735, loss@max: 1.414487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.990770, loss@max: 1.379387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.982897, loss@max: 1.369476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.005882, loss@max: 1.379079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.986890, loss@max: 1.365004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.003091, loss@max: 1.378415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.978161, loss@max: 1.356468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.993022, loss@max: 1.367231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.987062, loss@max: 1.365669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.975689, loss@max: 1.360842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.968708, loss@max: 1.369312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.987314, loss@max: 1.380834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.961013, loss@max: 1.363950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.968826, loss@max: 1.380575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.973317, loss@max: 1.395290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.950972, loss@max: 1.369543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.962219, loss@max: 1.392321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.958294, loss@max: 1.390247, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.976650, loss@max: 1.392216, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.956580, loss@max: 1.383484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.961257, loss@max: 1.384519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.952406, loss@max: 1.380219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.958514, loss@max: 1.383133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.949003, loss@max: 1.370533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.955161, loss@max: 1.372245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.953424, loss@max: 1.375953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.952781, loss@max: 1.374820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.947000, loss@max: 1.377416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.946171, loss@max: 1.366821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.962966, loss@max: 1.386703, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.973842, loss@max: 1.378608, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 139, loss@min: 0.951773, loss@max: 1.374298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.953528, loss@max: 1.371564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.950857, loss@max: 1.369408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.950594, loss@max: 1.369900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.951324, loss@max: 1.365819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.952115, loss@max: 1.370979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.960121, loss@max: 1.369373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.958419, loss@max: 1.375079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.953183, loss@max: 1.367499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.953936, loss@max: 1.367237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.950887, loss@max: 1.364405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.952464, loss@max: 1.364378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.375500, LT: 0.377453, Top1S: 89.655174, Top1T: 89.614601Best acc: 89.655174 +Train:epoch: 151, loss@min: 0.979751, loss@max: 1.381452, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 151, LS: 0.375792, LT: 0.377491, Top1S: 89.655174, Top1T: 89.614601 +Train:epoch: 152, loss@min: 0.975890, loss@max: 1.390642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.376382, LT: 0.377862, Top1S: 89.614601, Top1T: 89.614601 +Train:epoch: 153, loss@min: 0.948363, loss@max: 1.364232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.376846, LT: 0.378227, Top1S: 89.695740, Top1T: 89.614601Best acc: 89.695740 +Train:epoch: 154, loss@min: 0.948678, loss@max: 1.365663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.376994, LT: 0.378392, Top1S: 89.817444, Top1T: 89.574036Best acc: 89.817444 +Train:epoch: 155, loss@min: 0.954038, loss@max: 1.371574, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.377468, LT: 0.378856, Top1S: 89.776878, Top1T: 89.655174 +Train:epoch: 156, loss@min: 0.963105, loss@max: 1.379191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.378362, LT: 0.379699, Top1S: 89.695740, Top1T: 89.614601 +Train:epoch: 157, loss@min: 0.947488, loss@max: 1.365594, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 0.379287, LT: 0.380650, Top1S: 89.695740, Top1T: 89.655174{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 18:33:04 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 81, loss@min: 2.126826, loss@max: 1.360476, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.900719, loss@max: 1.392906, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 83, loss@min: 1.738706, loss@max: 1.442252, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.606194, loss@max: 1.507349, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 85, loss@min: 1.402784, loss@max: 1.475857, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 86, loss@min: 1.403517, loss@max: 1.519272, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 87, loss@min: 1.395312, loss@max: 1.549283, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.284809, loss@max: 1.561258, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.228922, loss@max: 1.546284, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 90, loss@min: 1.105702, loss@max: 1.535776, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.056202, loss@max: 1.527452, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.008700, loss@max: 1.515828, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.951282, loss@max: 1.516370, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.029488, loss@max: 1.534364, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.923533, loss@max: 1.501742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.971592, loss@max: 1.528332, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 0.944577, loss@max: 1.506417, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.081632, loss@max: 1.562897, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 0.971545, loss@max: 1.505543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950180, loss@max: 1.460164, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.950585, loss@max: 1.453828, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.946711, loss@max: 1.436849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.984202, loss@max: 1.448059, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 0.992596, loss@max: 1.439433, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.022414, loss@max: 1.440796, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.958315, loss@max: 1.392668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.997168, loss@max: 1.402342, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.019865, loss@max: 1.413907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.990484, loss@max: 1.380102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.981870, loss@max: 1.370354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.003784, loss@max: 1.379305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.985913, loss@max: 1.365602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.000644, loss@max: 1.378756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.977108, loss@max: 1.356875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.992910, loss@max: 1.367064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.986163, loss@max: 1.365777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.975487, loss@max: 1.360391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.968903, loss@max: 1.368394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.986836, loss@max: 1.379469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.961197, loss@max: 1.363266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.968242, loss@max: 1.379623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.972945, loss@max: 1.394126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.951101, loss@max: 1.369252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.961435, loss@max: 1.391248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.957548, loss@max: 1.389378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.979387, loss@max: 1.392421, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.957168, loss@max: 1.383851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.961416, loss@max: 1.383933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.952599, loss@max: 1.379792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.958123, loss@max: 1.382193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.949273, loss@max: 1.370179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.954904, loss@max: 1.371838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.952943, loss@max: 1.375318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.952748, loss@max: 1.374739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.947081, loss@max: 1.377094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.946137, loss@max: 1.366696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.961865, loss@max: 1.385717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.975190, loss@max: 1.378603, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 139, loss@min: 0.951982, loss@max: 1.374014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.953606, loss@max: 1.371636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.950584, loss@max: 1.369167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.950536, loss@max: 1.369727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.951147, loss@max: 1.365853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.952008, loss@max: 1.370909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.960086, loss@max: 1.369470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.957891, loss@max: 1.375026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.953104, loss@max: 1.367141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.953774, loss@max: 1.367133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.950697, loss@max: 1.364494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.952206, loss@max: 1.364537, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.374865, LT: 0.376943, Top1S: 89.736305, Top1T: 89.695740Best acc: 89.736305 +Train:epoch: 151, loss@min: 0.978372, loss@max: 1.381105, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 151, LS: 0.375242, LT: 0.377060, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 152, loss@min: 0.975168, loss@max: 1.390516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.375936, LT: 0.377519, Top1S: 89.614601, Top1T: 89.614601 +Train:epoch: 153, loss@min: 0.948149, loss@max: 1.364283, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.376519, LT: 0.377984, Top1S: 89.695740, Top1T: 89.574036 +Train:epoch: 154, loss@min: 0.948241, loss@max: 1.365928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.376787, LT: 0.378259, Top1S: 89.736305, Top1T: 89.614601 +Train:epoch: 155, loss@min: 0.954082, loss@max: 1.371928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.377370, LT: 0.378827, Top1S: 89.776878, Top1T: 89.574036Best acc: 89.776878 +Train:epoch: 156, loss@min: 0.963872, loss@max: 1.379249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.378335, LT: 0.379732, Top1S: 89.776878, Top1T: 89.614601 +Train:epoch: 157, loss@min: 0.947359, loss@max: 1.365630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 0.379326, LT: 0.380740, Top1S: 89.776878, Top1T: 89.695740 +Train:epoch: 158, loss@min: 0.952917, loss@max: 1.371444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 158, LS: 0.380304, LT: 0.381769, Top1S: 89.695740, Top1T: 89.695740 +Train:epoch: 159, loss@min: 0.948743, loss@max: 1.362167, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 159, LS: 0.381528, LT: 0.383036, Top1S: 89.695740, Top1T: 89.574036 +Train:epoch: 160, loss@min: 0.949394, loss@max: 1.362372, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 18:46:01 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 84.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 86.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 84.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.054763, loss@max: 1.317137, Top1S acc: 99.000000, Top1T acc: 90.000000 +Train:epoch: 82, loss@min: 1.725568, loss@max: 1.365687, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 83, loss@min: 1.469909, loss@max: 1.418617, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 84, loss@min: 1.394190, loss@max: 1.519619, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 85, loss@min: 1.170011, loss@max: 1.521457, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 86, loss@min: 1.151992, loss@max: 1.596385, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 87, loss@min: 1.073936, loss@max: 1.607288, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 88, loss@min: 1.033090, loss@max: 1.625520, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 89, loss@min: 0.978254, loss@max: 1.585954, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 90, loss@min: 0.947964, loss@max: 1.563747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.954721, loss@max: 1.524074, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 92, loss@min: 0.946341, loss@max: 1.480152, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.954098, loss@max: 1.456990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.029819, loss@max: 1.442252, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.977174, loss@max: 1.392584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.999070, loss@max: 1.385957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.014387, loss@max: 1.377926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.108678, loss@max: 1.417066, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 1.038378, loss@max: 1.379206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 1.007559, loss@max: 1.354875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 1.010332, loss@max: 1.365773, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 0.982315, loss@max: 1.363130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.987987, loss@max: 1.387083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.963633, loss@max: 1.380563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.010051, loss@max: 1.410022, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.949511, loss@max: 1.391869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.955068, loss@max: 1.394802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.960268, loss@max: 1.405465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.956070, loss@max: 1.392388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.948243, loss@max: 1.381979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.955445, loss@max: 1.381491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.959411, loss@max: 1.376782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.959666, loss@max: 1.368133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.956455, loss@max: 1.362278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.971088, loss@max: 1.366760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.966022, loss@max: 1.360610, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.960540, loss@max: 1.355876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.959515, loss@max: 1.365250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.960745, loss@max: 1.369435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.950167, loss@max: 1.363197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.950998, loss@max: 1.373109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.953311, loss@max: 1.377491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.944880, loss@max: 1.370059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.944709, loss@max: 1.378398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.942788, loss@max: 1.377785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.957336, loss@max: 1.380421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.948161, loss@max: 1.373465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.954780, loss@max: 1.374713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.949788, loss@max: 1.367671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.955710, loss@max: 1.369374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.955000, loss@max: 1.358928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.955872, loss@max: 1.358792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.954727, loss@max: 1.360868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.958936, loss@max: 1.357961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.953822, loss@max: 1.357494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.952765, loss@max: 1.358043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.954358, loss@max: 1.363420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.953118, loss@max: 1.363371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.950282, loss@max: 1.366418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.946136, loss@max: 1.364732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.945026, loss@max: 1.366106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.945146, loss@max: 1.367257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.947023, loss@max: 1.365395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.948336, loss@max: 1.366710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.949540, loss@max: 1.366984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.953573, loss@max: 1.373210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.947590, loss@max: 1.367484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.945169, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.945677, loss@max: 1.364737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.948375, loss@max: 1.360625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.380617, LT: 0.383741, Top1S: 89.614601, Top1T: 89.290062Best acc: 89.614601 +Train:epoch: 151, loss@min: 0.958230, loss@max: 1.368835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.380641, LT: 0.383676, Top1S: 89.614601, Top1T: 89.330627 +Train:epoch: 152, loss@min: 0.962059, loss@max: 1.375512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.380407, LT: 0.383412, Top1S: 89.614601, Top1T: 89.330627 +Train:epoch: 153, loss@min: 0.947807, loss@max: 1.361870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.380158, LT: 0.383211, Top1S: 89.492905, Top1T: 89.330627 +Train:epoch: 154, loss@min: 0.949750, loss@max: 1.359517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.380200, LT: 0.383214, Top1S: 89.452332, Top1T: 89.330627 +Train:epoch: 155, loss@min: 0.950735, loss@max: 1.364009, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.380568, LT: 0.383493, Top1S: 89.411766, Top1T: 89.330627 +Train:epoch: 156, loss@min: 0.954797, loss@max: 1.365860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.380919, LT: 0.383698, Top1S: 89.371201, Top1T: 89.411766 +Train:epoch: 157, loss@min: 0.947158, loss@max: 1.360256, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 0.381253, LT: 0.384053, Top1S: 89.371201, Top1T: 89.330627 +Train:epoch: 158, loss@min: 0.954217, loss@max: 1.366678, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 158, LS: 0.381517, LT: 0.384292, Top1S: 89.330627, Top1T: 89.330627 +Train:epoch: 159, loss@min: 0.950281, loss@max: 1.357069, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 159, LS: 0.381842, LT: 0.384524, Top1S: 89.371201, Top1T: 89.371201 +Train:epoch: 160, loss@min: 0.947155, loss@max: 1.358610, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 18:59:49 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.508637, loss@max: 1.501699, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 82, loss@min: 2.219305, loss@max: 1.505586, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 83, loss@min: 1.916918, loss@max: 1.511369, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.892895, loss@max: 1.583231, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 85, loss@min: 1.627229, loss@max: 1.532767, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 86, loss@min: 1.562985, loss@max: 1.538683, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 87, loss@min: 1.595332, loss@max: 1.554577, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 88, loss@min: 1.450586, loss@max: 1.546403, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 89, loss@min: 1.348333, loss@max: 1.521504, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.262868, loss@max: 1.518572, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 91, loss@min: 1.180932, loss@max: 1.510978, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.058915, loss@max: 1.497990, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 1.055514, loss@max: 1.514169, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 94, loss@min: 1.110608, loss@max: 1.524425, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.983471, loss@max: 1.498809, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 96, loss@min: 1.028185, loss@max: 1.526897, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 0.968455, loss@max: 1.506690, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.107189, loss@max: 1.564274, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 0.998472, loss@max: 1.512919, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 0.957472, loss@max: 1.470565, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.980418, loss@max: 1.471411, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 0.946546, loss@max: 1.449513, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 0.964877, loss@max: 1.462344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.969232, loss@max: 1.450156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.998330, loss@max: 1.454928, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.943145, loss@max: 1.413751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.976887, loss@max: 1.416999, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 0.983167, loss@max: 1.424260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.976291, loss@max: 1.401831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.970518, loss@max: 1.389346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.982609, loss@max: 1.382020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.978741, loss@max: 1.380763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.978838, loss@max: 1.380435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.968014, loss@max: 1.365793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.984054, loss@max: 1.375508, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.971807, loss@max: 1.368121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.967192, loss@max: 1.364169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.962516, loss@max: 1.373047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.978590, loss@max: 1.374695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.958253, loss@max: 1.362273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.964566, loss@max: 1.371689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.972872, loss@max: 1.382203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.955273, loss@max: 1.363415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.960341, loss@max: 1.375874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.964597, loss@max: 1.379686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.972338, loss@max: 1.378188, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.960473, loss@max: 1.376808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.961379, loss@max: 1.376243, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.946995, loss@max: 1.374202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.953950, loss@max: 1.376912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.948308, loss@max: 1.371393, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.947969, loss@max: 1.368761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.949557, loss@max: 1.373528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.948084, loss@max: 1.372524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.947929, loss@max: 1.369628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.952981, loss@max: 1.361604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.959218, loss@max: 1.369671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.964233, loss@max: 1.371691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.951907, loss@max: 1.366662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.953135, loss@max: 1.363324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.947777, loss@max: 1.365884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.949465, loss@max: 1.368687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.949682, loss@max: 1.365763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.951820, loss@max: 1.368632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.955111, loss@max: 1.365469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.956720, loss@max: 1.372398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.950450, loss@max: 1.365721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.949147, loss@max: 1.365688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.951031, loss@max: 1.362263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.952026, loss@max: 1.359478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.379782, LT: 0.378853, Top1S: 89.655174, Top1T: 89.614601Best acc: 89.655174 +Train:epoch: 151, loss@min: 0.966612, loss@max: 1.372746, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 19:07:23 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 2.610695, loss@max: 1.427332, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 1.904184, loss@max: 1.385988, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 43, loss@min: 1.764762, loss@max: 1.461141, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 44, loss@min: 1.490360, loss@max: 1.433544, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 45, loss@min: 1.611457, loss@max: 1.528933, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 46, loss@min: 1.477265, loss@max: 1.514154, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 47, loss@min: 1.191111, loss@max: 1.458840, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 48, loss@min: 1.182864, loss@max: 1.459085, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 49, loss@min: 1.171815, loss@max: 1.494112, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 50, loss@min: 1.053685, loss@max: 1.500260, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 51, loss@min: 0.949616, loss@max: 1.474037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.962741, loss@max: 1.501007, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 0.980627, loss@max: 1.523412, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 54, loss@min: 0.902561, loss@max: 1.471465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955615, loss@max: 1.494817, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.962047, loss@max: 1.461329, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 1.048028, loss@max: 1.462792, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 58, loss@min: 0.910764, loss@max: 1.406153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946773, loss@max: 1.412965, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 0.941744, loss@max: 1.406442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.977607, loss@max: 1.395423, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 62, loss@min: 0.958253, loss@max: 1.368893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.955727, loss@max: 1.362524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.955485, loss@max: 1.347455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.963799, loss@max: 1.351517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.001239, loss@max: 1.356766, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.961389, loss@max: 1.340080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.976097, loss@max: 1.343582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.987786, loss@max: 1.341702, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 70, loss@min: 0.970679, loss@max: 1.342159, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.961608, loss@max: 1.345757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.972880, loss@max: 1.358547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.960118, loss@max: 1.342659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.982421, loss@max: 1.355375, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.957765, loss@max: 1.348648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.957979, loss@max: 1.357371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.958438, loss@max: 1.369152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.943651, loss@max: 1.362055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.941840, loss@max: 1.362844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.947408, loss@max: 1.364177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.951821, loss@max: 1.363258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.985837, loss@max: 1.366702, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 0.946803, loss@max: 1.355667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.950788, loss@max: 1.357282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.954581, loss@max: 1.361087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.942695, loss@max: 1.358301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.952221, loss@max: 1.368961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.956616, loss@max: 1.367691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.949786, loss@max: 1.357659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.945428, loss@max: 1.356780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946127, loss@max: 1.354525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.955683, loss@max: 1.361234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.953708, loss@max: 1.357540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.948259, loss@max: 1.355942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948288, loss@max: 1.355560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.961882, loss@max: 1.367678, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.954359, loss@max: 1.367155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.965699, loss@max: 1.378234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.950637, loss@max: 1.365242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.946086, loss@max: 1.356178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.948362, loss@max: 1.357457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.946080, loss@max: 1.357616, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.950426, loss@max: 1.357863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.950166, loss@max: 1.353234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.952580, loss@max: 1.358016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.947663, loss@max: 1.353210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.944407, loss@max: 1.360410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.949707, loss@max: 1.354904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.944695, loss@max: 1.357249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.948184, loss@max: 1.353255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.948330, loss@max: 1.362565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.947091, loss@max: 1.354685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.949027, loss@max: 1.355891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.945647, loss@max: 1.355155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.944161, loss@max: 1.358575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.946086, loss@max: 1.356276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.948855, loss@max: 1.352268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.944857, loss@max: 1.360183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.952786, loss@max: 1.363793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.945220, loss@max: 1.355878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.944371, loss@max: 1.359547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.946401, loss@max: 1.359294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.945027, loss@max: 1.357106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.944279, loss@max: 1.360901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.944398, loss@max: 1.359092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.951504, loss@max: 1.361450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.948052, loss@max: 1.358741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.951212, loss@max: 1.359887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.945632, loss@max: 1.356547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.944451, loss@max: 1.360043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.945164, loss@max: 1.356504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.945259, loss@max: 1.356728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.948578, loss@max: 1.354337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.946488, loss@max: 1.358097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.944100, loss@max: 1.358531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.946928, loss@max: 1.354312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.947756, loss@max: 1.359603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.948400, loss@max: 1.360522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.948725, loss@max: 1.356848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.949527, loss@max: 1.353710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.947683, loss@max: 1.354894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.946478, loss@max: 1.356894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.945150, loss@max: 1.358923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.946853, loss@max: 1.357700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.945253, loss@max: 1.356540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.947154, loss@max: 1.360611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.944814, loss@max: 1.359134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.944683, loss@max: 1.360267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.943991, loss@max: 1.358636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.944724, loss@max: 1.358304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.421956, LT: 0.415343, Top1S: 88.478699, Top1T: 88.803246Best acc: 88.803246 +Train:epoch: 151, loss@min: 0.946310, loss@max: 1.361352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.422142, LT: 0.415577, Top1S: 88.559837, Top1T: 88.803246 +Train:epoch: 152, loss@min: 0.950508, loss@max: 1.363277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.421714, LT: 0.415404, Top1S: 88.559837, Top1T: 88.843811Best acc: 88.843811 +Train:epoch: 153, loss@min: 0.945100, loss@max: 1.356583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.421130, LT: 0.415187, Top1S: 88.519272, Top1T: 88.884384Best acc: 88.884384 +Train:epoch: 154, loss@min: 0.943436, loss@max: 1.359760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.420540, LT: 0.414962, Top1S: 88.559837, Top1T: 88.884384 +Train:epoch: 155, loss@min: 0.947804, loss@max: 1.358793, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 19:20:28 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 86.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 84.000000 +Train:epoch: 81, loss@min: 2.042126, loss@max: 1.315924, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.884706, loss@max: 1.352928, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 83, loss@min: 1.697591, loss@max: 1.377047, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 84, loss@min: 1.661022, loss@max: 1.461478, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 85, loss@min: 1.427610, loss@max: 1.446929, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 86, loss@min: 1.408045, loss@max: 1.530074, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 87, loss@min: 1.367632, loss@max: 1.575609, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.257737, loss@max: 1.619518, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.180920, loss@max: 1.613804, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 90, loss@min: 1.074746, loss@max: 1.616435, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.034536, loss@max: 1.613033, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.008420, loss@max: 1.587623, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.984943, loss@max: 1.580916, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.045591, loss@max: 1.572368, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.946908, loss@max: 1.516056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.004885, loss@max: 1.523180, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 1.022413, loss@max: 1.506078, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.171302, loss@max: 1.554116, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 1.083694, loss@max: 1.499082, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 100, loss@min: 1.014774, loss@max: 1.425988, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 1.039029, loss@max: 1.426113, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 1.007190, loss@max: 1.405864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.037017, loss@max: 1.423414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.054829, loss@max: 1.418096, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 105, loss@min: 1.079768, loss@max: 1.437973, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 106, loss@min: 0.996433, loss@max: 1.394954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.025788, loss@max: 1.415432, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.010377, loss@max: 1.415546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.983586, loss@max: 1.396681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.980842, loss@max: 1.406448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.018286, loss@max: 1.422960, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 112, loss@min: 0.978721, loss@max: 1.407001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.967241, loss@max: 1.399320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.959617, loss@max: 1.389263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.983016, loss@max: 1.402013, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.969137, loss@max: 1.396102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.963180, loss@max: 1.384174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.963234, loss@max: 1.388275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.998791, loss@max: 1.398786, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 120, loss@min: 0.957571, loss@max: 1.374504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.964772, loss@max: 1.386721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.974343, loss@max: 1.399223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.955589, loss@max: 1.376263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.963575, loss@max: 1.391385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.957611, loss@max: 1.385322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.974741, loss@max: 1.388954, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.961083, loss@max: 1.383724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.965757, loss@max: 1.384824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.950840, loss@max: 1.377343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.960042, loss@max: 1.384812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.955469, loss@max: 1.376040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.956216, loss@max: 1.372723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.956326, loss@max: 1.373868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.958636, loss@max: 1.373823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.953853, loss@max: 1.370349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.951215, loss@max: 1.366635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.961200, loss@max: 1.375709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.956829, loss@max: 1.370731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.959763, loss@max: 1.371921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.954095, loss@max: 1.369052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.956006, loss@max: 1.366716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.954885, loss@max: 1.373530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.952328, loss@max: 1.368020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.954088, loss@max: 1.371847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.956530, loss@max: 1.371421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.964045, loss@max: 1.381183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.953630, loss@max: 1.370789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.951166, loss@max: 1.370702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.949243, loss@max: 1.367849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.951061, loss@max: 1.365325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.379835, LT: 0.382214, Top1S: 89.533470, Top1T: 89.452332Best acc: 89.533470 +Train:epoch: 151, loss@min: 0.973612, loss@max: 1.382923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.380801, LT: 0.383061, Top1S: 89.492905, Top1T: 89.371201 +Train:epoch: 152, loss@min: 0.975557, loss@max: 1.390658, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.381617, LT: 0.383868, Top1S: 89.533470, Top1T: 89.411766 +Train:epoch: 153, loss@min: 0.947550, loss@max: 1.367555, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 150} + +------------------------------------------- +Wed Jan 17 19:28:42 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 87.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 83.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.029375, loss@max: 1.312690, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.855747, loss@max: 1.347013, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 83, loss@min: 1.680996, loss@max: 1.376455, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 84, loss@min: 1.656590, loss@max: 1.461532, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 85, loss@min: 1.410419, loss@max: 1.444059, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 86, loss@min: 1.397186, loss@max: 1.528615, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.356842, loss@max: 1.575857, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.243061, loss@max: 1.616365, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.174579, loss@max: 1.612195, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 90, loss@min: 1.067837, loss@max: 1.615671, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.030210, loss@max: 1.610656, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.008942, loss@max: 1.586456, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.977897, loss@max: 1.577238, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.043134, loss@max: 1.570460, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.946953, loss@max: 1.514283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.003951, loss@max: 1.520986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.028345, loss@max: 1.505486, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 98, loss@min: 1.173750, loss@max: 1.553349, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.081848, loss@max: 1.497612, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 100, loss@min: 1.017706, loss@max: 1.425801, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 1.040126, loss@max: 1.426262, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 1.006243, loss@max: 1.405954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.034659, loss@max: 1.423755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.055982, loss@max: 1.418091, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 105, loss@min: 1.078409, loss@max: 1.438822, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 106, loss@min: 0.992506, loss@max: 1.394298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.024431, loss@max: 1.415087, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.008366, loss@max: 1.414461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.984141, loss@max: 1.396381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.980120, loss@max: 1.405318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.018847, loss@max: 1.421422, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 112, loss@min: 0.979317, loss@max: 1.405604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.967500, loss@max: 1.397659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.960161, loss@max: 1.388067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.984281, loss@max: 1.401816, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.968888, loss@max: 1.394993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.962429, loss@max: 1.383258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.963349, loss@max: 1.386893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.999087, loss@max: 1.397826, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 120, loss@min: 0.957220, loss@max: 1.374569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.964041, loss@max: 1.385783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.974103, loss@max: 1.398809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.954826, loss@max: 1.375529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.963518, loss@max: 1.391000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.956962, loss@max: 1.384580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.973246, loss@max: 1.388589, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.960028, loss@max: 1.382631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.965850, loss@max: 1.384413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.950587, loss@max: 1.377080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.959635, loss@max: 1.384067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.955450, loss@max: 1.375620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.955948, loss@max: 1.371743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.956435, loss@max: 1.373359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.958685, loss@max: 1.372629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.953819, loss@max: 1.369878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.951144, loss@max: 1.366374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.961227, loss@max: 1.375266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.956945, loss@max: 1.370510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.959308, loss@max: 1.371202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.954041, loss@max: 1.369042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.955471, loss@max: 1.367155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.954937, loss@max: 1.373040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.952258, loss@max: 1.367729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.953789, loss@max: 1.371603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.955983, loss@max: 1.370491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.963643, loss@max: 1.380637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.953361, loss@max: 1.370530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.950425, loss@max: 1.370964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.948794, loss@max: 1.368186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.950960, loss@max: 1.365665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.380430, LT: 0.382516, Top1S: 89.492905, Top1T: 89.249496Best acc: 89.492905 +Train:epoch: 151, loss@min: 0.973449, loss@max: 1.382906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.381376, LT: 0.383335, Top1S: 89.452332, Top1T: 89.290062 +Train:epoch: 152, loss@min: 0.976627, loss@max: 1.391153, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 19:37:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 83.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 19:38:14 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 86.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 84.000000 +Train:epoch: 81, loss@min: 2.042126, loss@max: 1.327923, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.959869, loss@max: 1.360135, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 83, loss@min: 1.817652, loss@max: 1.372248, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.829124, loss@max: 1.445923, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 85, loss@min: 1.595897, loss@max: 1.410609, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 86, loss@min: 1.586725, loss@max: 1.475291, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.611794, loss@max: 1.521935, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 88, loss@min: 1.461334, loss@max: 1.549685, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 89, loss@min: 1.393971, loss@max: 1.549774, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.256597, loss@max: 1.553913, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 91, loss@min: 1.187060, loss@max: 1.567780, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 92, loss@min: 1.110913, loss@max: 1.555064, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 93, loss@min: 1.083854, loss@max: 1.579330, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.140528, loss@max: 1.592594, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 95, loss@min: 0.997677, loss@max: 1.553754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.077276, loss@max: 1.587656, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 1.051973, loss@max: 1.583764, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 98, loss@min: 1.195848, loss@max: 1.644034, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.107386, loss@max: 1.598938, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 0.995335, loss@max: 1.517023, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 1.014730, loss@max: 1.524217, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 1.000007, loss@max: 1.495113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.049314, loss@max: 1.510582, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 104, loss@min: 1.079705, loss@max: 1.499157, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.117604, loss@max: 1.511693, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 106, loss@min: 0.995746, loss@max: 1.441711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.050755, loss@max: 1.460787, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.089778, loss@max: 1.469983, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 109, loss@min: 1.000674, loss@max: 1.421906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.040212, loss@max: 1.440902, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 111, loss@min: 1.118618, loss@max: 1.458161, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 112, loss@min: 1.024709, loss@max: 1.431343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.010124, loss@max: 1.422402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.987838, loss@max: 1.404531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 1.011726, loss@max: 1.422409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 1.015602, loss@max: 1.422820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 1.001897, loss@max: 1.417214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.984582, loss@max: 1.414975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 1.042765, loss@max: 1.428958, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 120, loss@min: 0.971737, loss@max: 1.398374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.374465, LT: 0.373001, Top1S: 88.681541, Top1T: 88.884384Best acc: 88.884384 +Train:epoch: 121, loss@min: 0.977587, loss@max: 1.404125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.373554, LT: 0.372064, Top1S: 88.762680, Top1T: 88.803246 +Train:epoch: 122, loss@min: 0.991116, loss@max: 1.427872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.372562, LT: 0.371079, Top1S: 88.803246, Top1T: 88.965515Best acc: 88.965515 +Train:epoch: 123, loss@min: 0.972632, loss@max: 1.407510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.371657, LT: 0.370216, Top1S: 88.762680, Top1T: 89.006088Best acc: 89.006088 +Train:epoch: 124, loss@min: 1.035314, loss@max: 1.442576, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 124, LS: 0.370765, LT: 0.369378, Top1S: 88.762680, Top1T: 89.046654Best acc: 89.046654 +Train:epoch: 125, loss@min: 0.970314, loss@max: 1.396210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.369897, LT: 0.368600, Top1S: 88.884384, Top1T: 89.046654 +Train:epoch: 126, loss@min: 0.977268, loss@max: 1.405730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.369070, LT: 0.367945, Top1S: 88.884384, Top1T: 89.087219Best acc: 89.087219 +Train:epoch: 127, loss@min: 1.034431, loss@max: 1.428759, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 127, LS: 0.368247, LT: 0.367314, Top1S: 88.884384, Top1T: 89.127792Best acc: 89.127792 +Train:epoch: 128, loss@min: 0.978325, loss@max: 1.402769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.367354, LT: 0.366639, Top1S: 89.046654, Top1T: 89.127792 +Train:epoch: 129, loss@min: 0.967329, loss@max: 1.400087, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 19:50:04 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.508664, loss@max: 1.515502, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 82, loss@min: 2.316589, loss@max: 1.514392, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 83, loss@min: 2.067863, loss@max: 1.515486, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 84, loss@min: 2.099593, loss@max: 1.591795, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 85, loss@min: 1.843219, loss@max: 1.552141, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 86, loss@min: 1.800359, loss@max: 1.566378, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 87, loss@min: 1.846012, loss@max: 1.580385, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 88, loss@min: 1.663843, loss@max: 1.567715, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 89, loss@min: 1.585489, loss@max: 1.541913, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.455085, loss@max: 1.516241, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 91, loss@min: 1.375953, loss@max: 1.504479, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.246014, loss@max: 1.491628, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 93, loss@min: 1.253307, loss@max: 1.496889, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 94, loss@min: 1.299346, loss@max: 1.510478, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 1.143512, loss@max: 1.486069, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 96, loss@min: 1.205235, loss@max: 1.519850, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 97, loss@min: 1.117196, loss@max: 1.515343, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 98, loss@min: 1.261544, loss@max: 1.590181, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.127252, loss@max: 1.549103, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 1.049951, loss@max: 1.492966, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 101, loss@min: 1.044461, loss@max: 1.504852, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 1.004033, loss@max: 1.483669, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 1.025139, loss@max: 1.504781, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 104, loss@min: 1.055717, loss@max: 1.500290, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.055826, loss@max: 1.514745, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.964535, loss@max: 1.460548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.014489, loss@max: 1.477444, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.049855, loss@max: 1.496236, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 109, loss@min: 0.980601, loss@max: 1.462865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.975211, loss@max: 1.455548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.002867, loss@max: 1.458705, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 112, loss@min: 0.977372, loss@max: 1.444095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.998309, loss@max: 1.442899, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 114, loss@min: 0.959588, loss@max: 1.417209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.989543, loss@max: 1.427090, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.978679, loss@max: 1.417935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.968778, loss@max: 1.407968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.967663, loss@max: 1.413168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 1.011098, loss@max: 1.420040, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 120, loss@min: 0.960510, loss@max: 1.388523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.380193, LT: 0.378583, Top1S: 88.924950, Top1T: 88.884384Best acc: 88.924950 +Train:epoch: 121, loss@min: 0.978001, loss@max: 1.400790, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 160} + +------------------------------------------- +Wed Jan 17 19:56:34 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 81, loss@min: 2.043612, loss@max: 1.317891, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.876876, loss@max: 1.350711, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 83, loss@min: 1.690076, loss@max: 1.376823, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 84, loss@min: 1.652811, loss@max: 1.461270, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 85, loss@min: 1.420145, loss@max: 1.446559, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 86, loss@min: 1.403055, loss@max: 1.529095, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 87, loss@min: 1.367663, loss@max: 1.577258, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.247161, loss@max: 1.616176, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.178512, loss@max: 1.612224, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 90, loss@min: 1.071293, loss@max: 1.616092, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.030221, loss@max: 1.609977, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.008796, loss@max: 1.587096, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.984257, loss@max: 1.580099, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.041108, loss@max: 1.571200, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.945260, loss@max: 1.515369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.998214, loss@max: 1.521137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 1.022787, loss@max: 1.506160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.170207, loss@max: 1.553559, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 1.077558, loss@max: 1.496740, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 100, loss@min: 1.015871, loss@max: 1.425303, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 1.041907, loss@max: 1.425756, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 1.006591, loss@max: 1.404205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.039819, loss@max: 1.423481, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 1.055358, loss@max: 1.415729, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 105, loss@min: 1.078150, loss@max: 1.436378, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 106, loss@min: 0.994976, loss@max: 1.393263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.026165, loss@max: 1.413889, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.009996, loss@max: 1.414086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.983796, loss@max: 1.394775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.981258, loss@max: 1.404972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.018139, loss@max: 1.420970, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 112, loss@min: 0.979524, loss@max: 1.406669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.966887, loss@max: 1.397814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.960330, loss@max: 1.390087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.985116, loss@max: 1.403032, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.969045, loss@max: 1.396369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.962113, loss@max: 1.383936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.962493, loss@max: 1.387926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.997835, loss@max: 1.398350, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 120, loss@min: 0.956983, loss@max: 1.374738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.963241, loss@max: 1.385766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.973890, loss@max: 1.398527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.955507, loss@max: 1.375843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.964494, loss@max: 1.391554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.957839, loss@max: 1.384226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.975641, loss@max: 1.388568, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.961378, loss@max: 1.382795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.966427, loss@max: 1.384061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.951270, loss@max: 1.377078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.960527, loss@max: 1.384115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.955542, loss@max: 1.375576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.956151, loss@max: 1.371726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.956281, loss@max: 1.373144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.958589, loss@max: 1.373525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.953414, loss@max: 1.370264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.951005, loss@max: 1.366252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.960841, loss@max: 1.375112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.957113, loss@max: 1.370789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.959212, loss@max: 1.372050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.953857, loss@max: 1.369061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 141, loss@min: 0.955365, loss@max: 1.366684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 142, loss@min: 0.954465, loss@max: 1.372817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 143, loss@min: 0.951771, loss@max: 1.368456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 144, loss@min: 0.953675, loss@max: 1.371995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 145, loss@min: 0.956201, loss@max: 1.371183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 146, loss@min: 0.964021, loss@max: 1.381362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 147, loss@min: 0.953532, loss@max: 1.370888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 148, loss@min: 0.950938, loss@max: 1.370680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 149, loss@min: 0.948945, loss@max: 1.367959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 150, loss@min: 0.951517, loss@max: 1.365137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 151, loss@min: 0.965334, loss@max: 1.385412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 152, loss@min: 0.948925, loss@max: 1.368651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 153, loss@min: 0.952455, loss@max: 1.366497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 154, loss@min: 0.966757, loss@max: 1.381259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 155, loss@min: 0.947298, loss@max: 1.365394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 156, loss@min: 0.949809, loss@max: 1.365736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 157, loss@min: 0.948894, loss@max: 1.368106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 158, loss@min: 0.950031, loss@max: 1.360908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 159, loss@min: 0.949612, loss@max: 1.359917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 160, loss@min: 0.951636, loss@max: 1.366098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 160, LS: 0.386710, LT: 0.389376, Top1S: 89.574036, Top1T: 89.330627Best acc: 89.574036 +Train:epoch: 161, loss@min: 0.953882, loss@max: 1.367926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 161, LS: 0.387429, LT: 0.389874, Top1S: 89.574036, Top1T: 89.249496 +Train:epoch: 162, loss@min: 0.949937, loss@max: 1.358803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 162, LS: 0.388204, LT: 0.390483, Top1S: 89.574036, Top1T: 89.330627 +Train:epoch: 163, loss@min: 0.950628, loss@max: 1.367533, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 163, LS: 0.388962, LT: 0.391129, Top1S: 89.492905, Top1T: 89.290062 +Train:epoch: 164, loss@min: 0.993068, loss@max: 1.389598, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 164, LS: 0.389505, LT: 0.391594, Top1S: 89.492905, Top1T: 89.330627 +Train:epoch: 165, loss@min: 0.948068, loss@max: 1.366724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 165, LS: 0.390104, LT: 0.392178, Top1S: 89.411766, Top1T: 89.371201 +Train:epoch: 166, loss@min: 0.955415, loss@max: 1.367748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 166, LS: 0.390580, LT: 0.392737, Top1S: 89.330627, Top1T: 89.371201 +Train:epoch: 167, loss@min: 0.957506, loss@max: 1.370419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 167, LS: 0.390963, LT: 0.393250, Top1S: 89.330627, Top1T: 89.371201 +Train:epoch: 168, loss@min: 0.961341, loss@max: 1.373989, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 168, LS: 0.391458, LT: 0.393857, Top1S: 89.290062, Top1T: 89.371201 +Train:epoch: 169, loss@min: 0.951127, loss@max: 1.364984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 169, LS: 0.391881, LT: 0.394353, Top1S: 89.371201, Top1T: 89.411766 +Train:epoch: 170, loss@min: 0.947410, loss@max: 1.369029, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 170, LS: 0.392147, LT: 0.394641, Top1S: 89.290062, Top1T: 89.411766 +Train:epoch: 171, loss@min: 0.947555, loss@max: 1.360764, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 120} + +------------------------------------------- +Wed Jan 17 20:10:36 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 81, loss@min: 2.014802, loss@max: 1.321353, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 82, loss@min: 1.940571, loss@max: 1.356621, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 83, loss@min: 1.802743, loss@max: 1.373927, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.825362, loss@max: 1.450872, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 85, loss@min: 1.589084, loss@max: 1.415033, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 86, loss@min: 1.582247, loss@max: 1.477235, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.614067, loss@max: 1.528341, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 88, loss@min: 1.451592, loss@max: 1.551865, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 89, loss@min: 1.395602, loss@max: 1.552717, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 90, loss@min: 1.263391, loss@max: 1.558274, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 91, loss@min: 1.186293, loss@max: 1.567321, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 92, loss@min: 1.111581, loss@max: 1.555689, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 93, loss@min: 1.079598, loss@max: 1.579340, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.133659, loss@max: 1.590288, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 95, loss@min: 0.997775, loss@max: 1.553201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.067307, loss@max: 1.584502, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 1.054804, loss@max: 1.583136, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 98, loss@min: 1.193119, loss@max: 1.643739, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.105344, loss@max: 1.596346, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 1.000312, loss@max: 1.517485, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 1.019579, loss@max: 1.524570, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 102, loss@min: 1.003087, loss@max: 1.494923, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 1.056398, loss@max: 1.512459, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 104, loss@min: 1.080327, loss@max: 1.499292, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.123365, loss@max: 1.513208, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 106, loss@min: 0.996034, loss@max: 1.442114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.052252, loss@max: 1.461427, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.087157, loss@max: 1.469960, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 109, loss@min: 0.999392, loss@max: 1.422192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 1.041793, loss@max: 1.442978, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 111, loss@min: 1.120178, loss@max: 1.458838, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 112, loss@min: 1.025309, loss@max: 1.432512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.008329, loss@max: 1.422571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.988558, loss@max: 1.406472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 1.014655, loss@max: 1.424940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 1.017459, loss@max: 1.423603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 1.002847, loss@max: 1.417124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.985063, loss@max: 1.414204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 1.045664, loss@max: 1.428980, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 120, loss@min: 0.971841, loss@max: 1.397692, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.377039, LT: 0.375441, Top1S: 88.519272, Top1T: 88.884384Best acc: 88.884384 +Train:epoch: 121, loss@min: 0.978206, loss@max: 1.403592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.376066, LT: 0.374469, Top1S: 88.681541, Top1T: 88.762680 +Train:epoch: 122, loss@min: 0.991244, loss@max: 1.425986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.374994, LT: 0.373431, Top1S: 88.803246, Top1T: 88.803246 +Train:epoch: 123, loss@min: 0.973690, loss@max: 1.406880, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 20:18:13 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 86.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 84.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 81, loss@min: 2.022540, loss@max: 1.323241, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.936963, loss@max: 1.356217, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 83, loss@min: 1.803457, loss@max: 1.373400, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.821507, loss@max: 1.448386, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 85, loss@min: 1.575793, loss@max: 1.411064, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 86, loss@min: 1.579687, loss@max: 1.478660, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 87, loss@min: 1.592412, loss@max: 1.525197, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 88, loss@min: 1.436947, loss@max: 1.549994, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 89, loss@min: 1.380436, loss@max: 1.551531, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.248873, loss@max: 1.557449, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 91, loss@min: 1.176762, loss@max: 1.568703, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 92, loss@min: 1.106249, loss@max: 1.556138, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 93, loss@min: 1.073358, loss@max: 1.578676, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.126067, loss@max: 1.590825, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.994132, loss@max: 1.553406, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 20:22:48 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 87.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 86.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 84.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 99.000000, Top1T acc: 85.000000 +Train:epoch: 81, loss@min: 2.022540, loss@max: 1.323241, Top1S acc: 99.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.827268, loss@max: 1.363932, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 83, loss@min: 1.624232, loss@max: 1.394920, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 84, loss@min: 1.585707, loss@max: 1.477726, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 85, loss@min: 1.332394, loss@max: 1.459092, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 86, loss@min: 1.321133, loss@max: 1.537291, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 87, loss@min: 1.259437, loss@max: 1.570029, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.159758, loss@max: 1.596882, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 89, loss@min: 1.105659, loss@max: 1.585679, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 90, loss@min: 1.022071, loss@max: 1.583379, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 0.994237, loss@max: 1.565103, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 92, loss@min: 0.960321, loss@max: 1.540471, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.951877, loss@max: 1.534686, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 94, loss@min: 1.029864, loss@max: 1.528540, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 95, loss@min: 0.932252, loss@max: 1.476213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.973819, loss@max: 1.481451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.978135, loss@max: 1.461737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.110599, loss@max: 1.498993, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 1.032856, loss@max: 1.447814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.993382, loss@max: 1.397034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 1.004251, loss@max: 1.393977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 1.002931, loss@max: 1.381218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 1.019804, loss@max: 1.393031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 1.025038, loss@max: 1.385368, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 105, loss@min: 1.066280, loss@max: 1.406247, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.993164, loss@max: 1.372693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.005023, loss@max: 1.383869, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.008937, loss@max: 1.396900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.978609, loss@max: 1.379584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.973030, loss@max: 1.385642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.990475, loss@max: 1.401546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.967821, loss@max: 1.395410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.960071, loss@max: 1.391350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.948857, loss@max: 1.384354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.968828, loss@max: 1.396894, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.960644, loss@max: 1.393476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.953318, loss@max: 1.382061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.952769, loss@max: 1.384630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.971709, loss@max: 1.390286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.952599, loss@max: 1.374799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.961850, loss@max: 1.382974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.971277, loss@max: 1.388866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.956636, loss@max: 1.372816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.963456, loss@max: 1.382329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.959553, loss@max: 1.378099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.977492, loss@max: 1.381071, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.964338, loss@max: 1.374267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.967229, loss@max: 1.376636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.957184, loss@max: 1.370805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.963628, loss@max: 1.377632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.379120, LT: 0.380881, Top1S: 89.168358, Top1T: 89.046654Best acc: 89.168358 +Train:epoch: 131, loss@min: 0.978267, loss@max: 1.389168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.378723, LT: 0.380423, Top1S: 89.249496, Top1T: 89.087219Best acc: 89.249496 +Train:epoch: 132, loss@min: 0.957793, loss@max: 1.374442, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.378537, LT: 0.380282, Top1S: 89.249496, Top1T: 89.127792 +Train:epoch: 133, loss@min: 0.954991, loss@max: 1.370836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.378386, LT: 0.380130, Top1S: 89.208923, Top1T: 89.046654 +Train:epoch: 134, loss@min: 0.964234, loss@max: 1.384850, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.378223, LT: 0.379925, Top1S: 89.127792, Top1T: 89.006088 +Train:epoch: 135, loss@min: 0.953907, loss@max: 1.369603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.378097, LT: 0.379702, Top1S: 89.168358, Top1T: 89.087219 +Train:epoch: 136, loss@min: 0.951145, loss@max: 1.371865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.377971, LT: 0.379519, Top1S: 89.208923, Top1T: 89.046654 +Train:epoch: 137, loss@min: 0.951261, loss@max: 1.370366, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 20:32:56 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.508598, loss@max: 1.515427, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 82, loss@min: 2.317153, loss@max: 1.514483, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 83, loss@min: 2.068920, loss@max: 1.515673, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 84, loss@min: 2.100191, loss@max: 1.591762, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 85, loss@min: 1.844394, loss@max: 1.552196, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 86, loss@min: 1.801934, loss@max: 1.566475, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 87, loss@min: 1.846339, loss@max: 1.580127, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 88, loss@min: 1.665107, loss@max: 1.567863, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 89, loss@min: 1.585382, loss@max: 1.541626, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.455912, loss@max: 1.516179, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 91, loss@min: 1.376704, loss@max: 1.504090, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.246161, loss@max: 1.490932, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 93, loss@min: 1.254572, loss@max: 1.496295, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 94, loss@min: 1.300972, loss@max: 1.510001, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 95, loss@min: 1.144204, loss@max: 1.485166, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 96, loss@min: 1.206649, loss@max: 1.519190, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 97, loss@min: 1.118689, loss@max: 1.514617, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 98, loss@min: 1.263606, loss@max: 1.589500, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.128542, loss@max: 1.548498, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 1.051187, loss@max: 1.492086, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 101, loss@min: 1.044949, loss@max: 1.503581, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 1.005333, loss@max: 1.482943, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 1.026621, loss@max: 1.504151, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 104, loss@min: 1.057101, loss@max: 1.499432, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.057441, loss@max: 1.514000, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.965685, loss@max: 1.459929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.015274, loss@max: 1.476893, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.051492, loss@max: 1.495367, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 109, loss@min: 0.981259, loss@max: 1.462188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.975866, loss@max: 1.454739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.004551, loss@max: 1.458475, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 112, loss@min: 0.977730, loss@max: 1.443199, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.999366, loss@max: 1.442150, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 114, loss@min: 0.960283, loss@max: 1.416478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.990432, loss@max: 1.426200, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.979385, loss@max: 1.417074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.969450, loss@max: 1.406937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.968424, loss@max: 1.412051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 1.011801, loss@max: 1.418978, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 120, loss@min: 0.961433, loss@max: 1.387336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.991124, loss@max: 1.412011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 1.014616, loss@max: 1.429712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.963203, loss@max: 1.383968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.990439, loss@max: 1.411545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.996119, loss@max: 1.407804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 1.009616, loss@max: 1.399915, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.988153, loss@max: 1.398709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.983136, loss@max: 1.389138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.973576, loss@max: 1.386192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.979187, loss@max: 1.386752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.373836, LT: 0.372684, Top1S: 89.046654, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 131, loss@min: 0.998230, loss@max: 1.404981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.373497, LT: 0.372397, Top1S: 89.046654, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 132, loss@min: 0.976653, loss@max: 1.388964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.373258, LT: 0.372222, Top1S: 89.087219, Top1T: 89.371201Best acc: 89.371201 +Train:epoch: 133, loss@min: 0.970132, loss@max: 1.379279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.372956, LT: 0.371955, Top1S: 89.087219, Top1T: 89.330627 +Train:epoch: 134, loss@min: 1.021020, loss@max: 1.410038, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.372592, LT: 0.371551, Top1S: 89.127792, Top1T: 89.371201 +Train:epoch: 135, loss@min: 0.969584, loss@max: 1.380078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.372250, LT: 0.371148, Top1S: 89.127792, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 136, loss@min: 0.969612, loss@max: 1.384212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.371861, LT: 0.370735, Top1S: 89.208923, Top1T: 89.371201 +Train:epoch: 137, loss@min: 0.961589, loss@max: 1.377633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.371435, LT: 0.370264, Top1S: 89.208923, Top1T: 89.371201 +Train:epoch: 138, loss@min: 0.975310, loss@max: 1.392293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.370995, LT: 0.369798, Top1S: 89.208923, Top1T: 89.290062 +Train:epoch: 139, loss@min: 0.964273, loss@max: 1.380445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.370660, LT: 0.369402, Top1S: 89.208923, Top1T: 89.411766 +Train:epoch: 140, loss@min: 0.961531, loss@max: 1.378220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.370182, LT: 0.368908, Top1S: 89.249496, Top1T: 89.411766 +Train:epoch: 141, loss@min: 0.960967, loss@max: 1.377312, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.369660, LT: 0.368326, Top1S: 89.249496, Top1T: 89.411766 +Train:epoch: 142, loss@min: 0.966974, loss@max: 1.383682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.369118, LT: 0.367730, Top1S: 89.249496, Top1T: 89.411766 +Train:epoch: 143, loss@min: 0.968960, loss@max: 1.385342, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.368672, LT: 0.367271, Top1S: 89.249496, Top1T: 89.411766 +Train:epoch: 144, loss@min: 0.959700, loss@max: 1.377829, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 20:46:56 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 81, loss@min: 2.141064, loss@max: 1.375489, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 82, loss@min: 1.957797, loss@max: 1.388261, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 83, loss@min: 1.822467, loss@max: 1.428324, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 84, loss@min: 1.717734, loss@max: 1.495729, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 85, loss@min: 1.511313, loss@max: 1.465094, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 86, loss@min: 1.525959, loss@max: 1.509419, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 87, loss@min: 1.529534, loss@max: 1.536911, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 88, loss@min: 1.405687, loss@max: 1.546733, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 89, loss@min: 1.359391, loss@max: 1.530174, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.218472, loss@max: 1.515102, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 91, loss@min: 1.166223, loss@max: 1.504611, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 92, loss@min: 1.089326, loss@max: 1.492621, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 1.035779, loss@max: 1.498140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.119177, loss@max: 1.520156, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.980653, loss@max: 1.492528, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 1.035643, loss@max: 1.526561, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 97, loss@min: 0.991503, loss@max: 1.515395, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.142340, loss@max: 1.585212, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 99, loss@min: 1.003088, loss@max: 1.531663, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 100, loss@min: 0.963671, loss@max: 1.483006, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 0.954803, loss@max: 1.481494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.951892, loss@max: 1.468084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.986221, loss@max: 1.480892, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 1.010394, loss@max: 1.476335, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 105, loss@min: 1.030291, loss@max: 1.482861, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.948705, loss@max: 1.426762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.999398, loss@max: 1.441795, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.039419, loss@max: 1.457002, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 109, loss@min: 0.979476, loss@max: 1.414872, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 110, loss@min: 0.976413, loss@max: 1.407972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 1.003303, loss@max: 1.413379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.980419, loss@max: 1.396181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 1.004845, loss@max: 1.404953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.971906, loss@max: 1.378818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.991423, loss@max: 1.387507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.989339, loss@max: 1.384818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.977741, loss@max: 1.378325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.969922, loss@max: 1.381356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 1.000990, loss@max: 1.393217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.966113, loss@max: 1.370471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.984278, loss@max: 1.391346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.997091, loss@max: 1.407879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.961416, loss@max: 1.372880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.981774, loss@max: 1.398621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.978330, loss@max: 1.394759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.994609, loss@max: 1.394232, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.971449, loss@max: 1.387756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.972769, loss@max: 1.385378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.964859, loss@max: 1.382190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.970893, loss@max: 1.384688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.368924, LT: 0.370891, Top1S: 89.492905, Top1T: 89.249496Best acc: 89.492905 +Train:epoch: 131, loss@min: 0.982150, loss@max: 1.396096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.368710, LT: 0.370601, Top1S: 89.452332, Top1T: 89.249496 +Train:epoch: 132, loss@min: 0.962254, loss@max: 1.378348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.368588, LT: 0.370455, Top1S: 89.411766, Top1T: 89.208923 +Train:epoch: 133, loss@min: 0.960599, loss@max: 1.373243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.368266, LT: 0.370155, Top1S: 89.371201, Top1T: 89.249496 +Train:epoch: 134, loss@min: 0.998006, loss@max: 1.399599, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.367792, LT: 0.369670, Top1S: 89.411766, Top1T: 89.208923 +Train:epoch: 135, loss@min: 0.962747, loss@max: 1.378020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.367281, LT: 0.369157, Top1S: 89.371201, Top1T: 89.208923 +Train:epoch: 136, loss@min: 0.965058, loss@max: 1.381382, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.366539, LT: 0.368471, Top1S: 89.411766, Top1T: 89.330627 +Train:epoch: 137, loss@min: 0.954659, loss@max: 1.374311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.365766, LT: 0.367783, Top1S: 89.411766, Top1T: 89.330627 +Train:epoch: 138, loss@min: 0.961684, loss@max: 1.384239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.364991, LT: 0.367078, Top1S: 89.411766, Top1T: 89.290062 +Train:epoch: 139, loss@min: 0.956140, loss@max: 1.377874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.364377, LT: 0.366526, Top1S: 89.452332, Top1T: 89.290062 +Train:epoch: 140, loss@min: 0.955618, loss@max: 1.374980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.363835, LT: 0.366057, Top1S: 89.452332, Top1T: 89.371201 +Train:epoch: 141, loss@min: 0.955997, loss@max: 1.375912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.363387, LT: 0.365629, Top1S: 89.452332, Top1T: 89.492905 +Train:epoch: 142, loss@min: 0.957622, loss@max: 1.379134, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.363068, LT: 0.365282, Top1S: 89.411766, Top1T: 89.492905 +Train:epoch: 143, loss@min: 0.957952, loss@max: 1.377866, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.362911, LT: 0.365149, Top1S: 89.452332, Top1T: 89.533470Best acc: 89.533470 +Train:epoch: 144, loss@min: 0.952099, loss@max: 1.375155, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.362823, LT: 0.365118, Top1S: 89.452332, Top1T: 89.533470 +Train:epoch: 145, loss@min: 0.959734, loss@max: 1.385413, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.362800, LT: 0.365139, Top1S: 89.492905, Top1T: 89.533470 +Train:epoch: 146, loss@min: 0.952399, loss@max: 1.379765, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 21:02:36 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 76.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 81, loss@min: 2.490261, loss@max: 1.497030, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 82, loss@min: 2.191468, loss@max: 1.508871, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 83, loss@min: 1.880826, loss@max: 1.525507, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 84, loss@min: 1.839941, loss@max: 1.608896, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 85, loss@min: 1.563960, loss@max: 1.571681, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 86, loss@min: 1.494623, loss@max: 1.589518, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 87, loss@min: 1.517044, loss@max: 1.614033, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 88, loss@min: 1.367854, loss@max: 1.611552, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 89, loss@min: 1.271613, loss@max: 1.591293, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 90, loss@min: 1.187189, loss@max: 1.587356, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 91, loss@min: 1.112748, loss@max: 1.576254, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 92, loss@min: 1.003426, loss@max: 1.556227, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 1.004404, loss@max: 1.561867, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 94, loss@min: 1.068144, loss@max: 1.561150, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 95, loss@min: 0.955284, loss@max: 1.524316, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 96, loss@min: 1.009496, loss@max: 1.539477, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 97, loss@min: 0.963581, loss@max: 1.508003, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 98, loss@min: 1.110399, loss@max: 1.555061, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 99, loss@min: 1.014092, loss@max: 1.494438, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 100, loss@min: 0.980122, loss@max: 1.443183, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 101, loss@min: 1.009997, loss@max: 1.437532, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 102, loss@min: 0.981192, loss@max: 1.411465, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 103, loss@min: 1.002632, loss@max: 1.421061, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 104, loss@min: 1.007896, loss@max: 1.407275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 1.039152, loss@max: 1.413043, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.981857, loss@max: 1.373930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 1.012602, loss@max: 1.379645, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 108, loss@min: 1.014107, loss@max: 1.391147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 1.002138, loss@max: 1.374659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.989824, loss@max: 1.368955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.996508, loss@max: 1.368240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.985916, loss@max: 1.372972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.980252, loss@max: 1.377284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.964204, loss@max: 1.368251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.977425, loss@max: 1.382066, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 116, loss@min: 0.962736, loss@max: 1.376607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.955814, loss@max: 1.374396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.950369, loss@max: 1.385367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.964643, loss@max: 1.387501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.945026, loss@max: 1.374902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.952088, loss@max: 1.382724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.961854, loss@max: 1.392946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.946279, loss@max: 1.371880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.952997, loss@max: 1.382047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.958884, loss@max: 1.383333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.968821, loss@max: 1.381133, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 127, loss@min: 0.959276, loss@max: 1.377440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.961322, loss@max: 1.375762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.948826, loss@max: 1.371686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.956073, loss@max: 1.374121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.378677, LT: 0.378829, Top1S: 89.127792, Top1T: 89.127792Best acc: 89.127792 +Train:epoch: 131, loss@min: 0.978825, loss@max: 1.389909, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 131, LS: 0.378033, LT: 0.378160, Top1S: 89.087219, Top1T: 89.208923Best acc: 89.208923 +Train:epoch: 132, loss@min: 0.956956, loss@max: 1.371994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.377189, LT: 0.377467, Top1S: 89.127792, Top1T: 89.290062Best acc: 89.290062 +Train:epoch: 133, loss@min: 0.955359, loss@max: 1.361424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.376153, LT: 0.376610, Top1S: 89.168358, Top1T: 89.330627Best acc: 89.330627 +Train:epoch: 134, loss@min: 0.987535, loss@max: 1.384009, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 134, LS: 0.375058, LT: 0.375591, Top1S: 89.330627, Top1T: 89.330627 +Train:epoch: 135, loss@min: 0.958352, loss@max: 1.361828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.374087, LT: 0.374661, Top1S: 89.452332, Top1T: 89.290062Best acc: 89.452332 +Train:epoch: 136, loss@min: 0.956936, loss@max: 1.364004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.373111, LT: 0.373747, Top1S: 89.452332, Top1T: 89.371201 +Train:epoch: 137, loss@min: 0.952795, loss@max: 1.361884, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 21:12:26 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 61, loss@min: 2.320450, loss@max: 1.375135, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 62, loss@min: 1.878699, loss@max: 1.412069, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 1.541610, loss@max: 1.440495, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 64, loss@min: 1.490012, loss@max: 1.489324, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 65, loss@min: 1.432827, loss@max: 1.527139, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 66, loss@min: 1.245790, loss@max: 1.527759, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 67, loss@min: 1.140799, loss@max: 1.505926, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 68, loss@min: 1.151901, loss@max: 1.546869, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 69, loss@min: 1.030106, loss@max: 1.526761, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 70, loss@min: 1.050614, loss@max: 1.557523, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 71, loss@min: 0.933733, loss@max: 1.529591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.024113, loss@max: 1.592335, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.933670, loss@max: 1.523481, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 74, loss@min: 1.003249, loss@max: 1.517033, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.979697, loss@max: 1.503075, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 76, loss@min: 0.973465, loss@max: 1.471421, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 77, loss@min: 0.971306, loss@max: 1.444465, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.007832, loss@max: 1.427812, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.965416, loss@max: 1.397819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.984862, loss@max: 1.391878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.999094, loss@max: 1.378507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.002448, loss@max: 1.371079, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 0.975089, loss@max: 1.352994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.996890, loss@max: 1.366598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.988874, loss@max: 1.356073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.992533, loss@max: 1.361491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.008801, loss@max: 1.366783, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 88, loss@min: 0.988453, loss@max: 1.373886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.976982, loss@max: 1.364417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.960602, loss@max: 1.359853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.953617, loss@max: 1.362116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.971939, loss@max: 1.375051, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.961588, loss@max: 1.370458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947190, loss@max: 1.375604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.949658, loss@max: 1.369793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.954801, loss@max: 1.380317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.964226, loss@max: 1.383792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.003325, loss@max: 1.407968, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.957155, loss@max: 1.380124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.945933, loss@max: 1.363494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.962595, loss@max: 1.376340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.945773, loss@max: 1.364000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.951878, loss@max: 1.371365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.954615, loss@max: 1.365246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.953102, loss@max: 1.365576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.946682, loss@max: 1.359141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.955011, loss@max: 1.360573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.956772, loss@max: 1.365661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.950000, loss@max: 1.360628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.949181, loss@max: 1.358967, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.957142, loss@max: 1.364851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.946381, loss@max: 1.362183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.948172, loss@max: 1.366625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.942115, loss@max: 1.362583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.945936, loss@max: 1.368530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.947566, loss@max: 1.365885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.948536, loss@max: 1.357004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.945988, loss@max: 1.362729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.956190, loss@max: 1.360379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.948054, loss@max: 1.355960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.950511, loss@max: 1.359631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.949746, loss@max: 1.363102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.945732, loss@max: 1.358140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.945577, loss@max: 1.365372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.946429, loss@max: 1.363474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.953619, loss@max: 1.364056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.949077, loss@max: 1.360965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.955683, loss@max: 1.359567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.946647, loss@max: 1.359446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.949662, loss@max: 1.360516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.383078, LT: 0.382624, Top1S: 89.411766, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 131, loss@min: 0.963297, loss@max: 1.369436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.383475, LT: 0.382751, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 132, loss@min: 0.948439, loss@max: 1.359690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.384129, LT: 0.383063, Top1S: 89.452332, Top1T: 89.695740Best acc: 89.695740 +Train:epoch: 133, loss@min: 0.945307, loss@max: 1.359878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.384429, LT: 0.383244, Top1S: 89.492905, Top1T: 89.817444Best acc: 89.817444 +Train:epoch: 134, loss@min: 0.951004, loss@max: 1.366775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.384952, LT: 0.383592, Top1S: 89.411766, Top1T: 89.858009Best acc: 89.858009 +Train:epoch: 135, loss@min: 0.951341, loss@max: 1.358244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.385276, LT: 0.383791, Top1S: 89.452332, Top1T: 89.858009 +Train:epoch: 136, loss@min: 0.946806, loss@max: 1.360048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.385346, LT: 0.383951, Top1S: 89.574036, Top1T: 89.858009 +Train:epoch: 137, loss@min: 0.945406, loss@max: 1.359613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.385619, LT: 0.384311, Top1S: 89.574036, Top1T: 89.858009 +Train:epoch: 138, loss@min: 0.945084, loss@max: 1.362645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.385846, LT: 0.384606, Top1S: 89.533470, Top1T: 89.776878 +Train:epoch: 139, loss@min: 0.942581, loss@max: 1.362637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.385735, LT: 0.384459, Top1S: 89.533470, Top1T: 89.776878 +Train:epoch: 140, loss@min: 0.945087, loss@max: 1.360811, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.385585, LT: 0.384292, Top1S: 89.533470, Top1T: 89.776878 +Train:epoch: 141, loss@min: 0.945899, loss@max: 1.359720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.385799, LT: 0.384365, Top1S: 89.533470, Top1T: 89.736305 +Train:epoch: 142, loss@min: 0.946811, loss@max: 1.359272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.386209, LT: 0.384577, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 143, loss@min: 0.946631, loss@max: 1.359456, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.386356, LT: 0.384473, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 144, loss@min: 0.945834, loss@max: 1.358907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.386574, LT: 0.384486, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 145, loss@min: 0.946533, loss@max: 1.362277, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.386768, LT: 0.384515, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 146, loss@min: 0.944974, loss@max: 1.360346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.387011, LT: 0.384613, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 147, loss@min: 0.948395, loss@max: 1.359476, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.387507, LT: 0.385002, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 148, loss@min: 0.949118, loss@max: 1.359966, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.387984, LT: 0.385428, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 149, loss@min: 0.945228, loss@max: 1.362111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.388232, LT: 0.385742, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 150, loss@min: 0.946909, loss@max: 1.358685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.388490, LT: 0.386221, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 151, loss@min: 0.945699, loss@max: 1.359488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.388844, LT: 0.386756, Top1S: 89.533470, Top1T: 89.736305 +Train:epoch: 152, loss@min: 0.955200, loss@max: 1.367110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.389215, LT: 0.387097, Top1S: 89.533470, Top1T: 89.736305 +Train:epoch: 153, loss@min: 0.947642, loss@max: 1.365834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.389613, LT: 0.387350, Top1S: 89.574036, Top1T: 89.695740 +Train:epoch: 154, loss@min: 0.946802, loss@max: 1.361448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.390255, LT: 0.387786, Top1S: 89.533470, Top1T: 89.736305 +Train:epoch: 155, loss@min: 0.946743, loss@max: 1.357232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.391039, LT: 0.388384, Top1S: 89.533470, Top1T: 89.695740 +Train:epoch: 156, loss@min: 0.945921, loss@max: 1.360114, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.391867, LT: 0.389032, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 157, loss@min: 0.943960, loss@max: 1.359940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 0.392668, LT: 0.389665, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 158, loss@min: 0.948512, loss@max: 1.355089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 158, LS: 0.393422, LT: 0.390304, Top1S: 89.452332, Top1T: 89.574036 +Train:epoch: 159, loss@min: 0.955483, loss@max: 1.363637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 159, LS: 0.393869, LT: 0.390775, Top1S: 89.452332, Top1T: 89.574036 +Train:epoch: 160, loss@min: 0.954127, loss@max: 1.361025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 160, LS: 0.393832, LT: 0.390792, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 161, loss@min: 0.949442, loss@max: 1.355867, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 161, LS: 0.393813, LT: 0.390816, Top1S: 89.452332, Top1T: 89.655174 +Train:epoch: 162, loss@min: 0.952543, loss@max: 1.359226, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 162, LS: 0.393982, LT: 0.390947, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 163, loss@min: 0.945729, loss@max: 1.359302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 163, LS: 0.394436, LT: 0.391353, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 164, loss@min: 0.944618, loss@max: 1.360276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 164, LS: 0.395113, LT: 0.391889, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 165, loss@min: 0.947767, loss@max: 1.364053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 165, LS: 0.395553, LT: 0.392148, Top1S: 89.452332, Top1T: 89.776878 +Train:epoch: 166, loss@min: 0.945553, loss@max: 1.365794, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 166, LS: 0.396115, LT: 0.392500, Top1S: 89.492905, Top1T: 89.776878 +Train:epoch: 167, loss@min: 0.943971, loss@max: 1.360216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 167, LS: 0.396754, LT: 0.392861, Top1S: 89.492905, Top1T: 89.736305 +Train:epoch: 168, loss@min: 0.942697, loss@max: 1.361183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 168, LS: 0.397222, LT: 0.393170, Top1S: 89.492905, Top1T: 89.736305 +Train:epoch: 169, loss@min: 0.945712, loss@max: 1.360894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 169, LS: 0.397601, LT: 0.393467, Top1S: 89.533470, Top1T: 89.736305 +Train:epoch: 170, loss@min: 0.945387, loss@max: 1.356921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 170, LS: 0.397750, LT: 0.393617, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 171, loss@min: 0.947803, loss@max: 1.360648, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 171, LS: 0.397713, LT: 0.393674, Top1S: 89.492905, Top1T: 89.736305 +Train:epoch: 172, loss@min: 0.951117, loss@max: 1.359749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 172, LS: 0.397560, LT: 0.393658, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 173, loss@min: 0.946159, loss@max: 1.357016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 173, LS: 0.397513, LT: 0.393758, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 174, loss@min: 0.948970, loss@max: 1.357608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 174, LS: 0.397581, LT: 0.393989, Top1S: 89.452332, Top1T: 89.695740 +Train:epoch: 175, loss@min: 0.944330, loss@max: 1.358347, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 175, LS: 0.397668, LT: 0.394237, Top1S: 89.452332, Top1T: 89.655174 +Train:epoch: 176, loss@min: 0.946547, loss@max: 1.356213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 176, LS: 0.397870, LT: 0.394514, Top1S: 89.452332, Top1T: 89.655174 +Train:epoch: 177, loss@min: 0.945659, loss@max: 1.360726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 177, LS: 0.397994, LT: 0.394663, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 178, loss@min: 0.946707, loss@max: 1.360710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 178, LS: 0.398271, LT: 0.394938, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 179, loss@min: 0.955823, loss@max: 1.367503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 179, LS: 0.397983, LT: 0.394635, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 180, loss@min: 0.944217, loss@max: 1.359252, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 180, LS: 0.397795, LT: 0.394380, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 181, loss@min: 0.959615, loss@max: 1.373293, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 181, LS: 0.397309, LT: 0.393791, Top1S: 89.574036, Top1T: 89.614601 +Train:epoch: 182, loss@min: 0.945927, loss@max: 1.357325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 182, LS: 0.396935, LT: 0.393268, Top1S: 89.614601, Top1T: 89.614601 +Train:epoch: 183, loss@min: 0.946226, loss@max: 1.357647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 183, LS: 0.396699, LT: 0.392890, Top1S: 89.574036, Top1T: 89.614601 +Train:epoch: 184, loss@min: 0.949383, loss@max: 1.356319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 184, LS: 0.396542, LT: 0.392511, Top1S: 89.574036, Top1T: 89.614601 +Train:epoch: 185, loss@min: 0.947096, loss@max: 1.360216, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 185, LS: 0.396352, LT: 0.392177, Top1S: 89.574036, Top1T: 89.655174 +Train:epoch: 186, loss@min: 0.946351, loss@max: 1.357300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 186, LS: 0.396112, LT: 0.391896, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 187, loss@min: 0.947275, loss@max: 1.356586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 187, LS: 0.395861, LT: 0.391676, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 188, loss@min: 0.948541, loss@max: 1.356807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 188, LS: 0.395611, LT: 0.391451, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 189, loss@min: 0.949306, loss@max: 1.356432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 189, LS: 0.395341, LT: 0.391349, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 190, loss@min: 0.946999, loss@max: 1.358809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 190, LS: 0.395149, LT: 0.391291, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 191, loss@min: 0.950383, loss@max: 1.365244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 191, LS: 0.394980, LT: 0.391266, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 192, loss@min: 0.945688, loss@max: 1.361012, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 192, LS: 0.394817, LT: 0.391210, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 193, loss@min: 0.945494, loss@max: 1.362688, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 193, LS: 0.394738, LT: 0.391235, Top1S: 89.614601, Top1T: 89.736305 +Train:epoch: 194, loss@min: 0.944733, loss@max: 1.359993, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 194, LS: 0.394798, LT: 0.391356, Top1S: 89.614601, Top1T: 89.736305 +Train:epoch: 195, loss@min: 0.945911, loss@max: 1.364821, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 195, LS: 0.394855, LT: 0.391448, Top1S: 89.614601, Top1T: 89.736305 +Train:epoch: 196, loss@min: 0.946005, loss@max: 1.359024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 196, LS: 0.394975, LT: 0.391558, Top1S: 89.655174, Top1T: 89.695740 +Train:epoch: 197, loss@min: 0.943784, loss@max: 1.361548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 197, LS: 0.395135, LT: 0.391681, Top1S: 89.695740, Top1T: 89.695740 +Train:epoch: 198, loss@min: 0.947055, loss@max: 1.356686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 198, LS: 0.395309, LT: 0.391804, Top1S: 89.695740, Top1T: 89.776878 +Train:epoch: 199, loss@min: 0.947276, loss@max: 1.355275, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 199, LS: 0.395518, LT: 0.391965, Top1S: 89.655174, Top1T: 89.776878 +Train:epoch: 200, loss@min: 0.946930, loss@max: 1.358018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 200, LS: 0.395724, LT: 0.392144, Top1S: 89.655174, Top1T: 89.776878 +------------------------------------------- +Wed Jan 17 22:00:31 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 130} + +------------------------------------------- +Wed Jan 17 22:03:43 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 61, loss@min: 2.315804, loss@max: 1.374260, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 62, loss@min: 1.886016, loss@max: 1.409697, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 63, loss@min: 1.550460, loss@max: 1.439098, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 64, loss@min: 1.503760, loss@max: 1.489004, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 65, loss@min: 1.445963, loss@max: 1.529399, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 66, loss@min: 1.257119, loss@max: 1.529705, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 67, loss@min: 1.151300, loss@max: 1.507416, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 68, loss@min: 1.163621, loss@max: 1.548469, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 69, loss@min: 1.039246, loss@max: 1.527477, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 70, loss@min: 1.058229, loss@max: 1.556805, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 71, loss@min: 0.938666, loss@max: 1.530691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.031906, loss@max: 1.595507, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.939285, loss@max: 1.528655, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 74, loss@min: 1.008451, loss@max: 1.525858, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.983181, loss@max: 1.512725, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 76, loss@min: 0.967689, loss@max: 1.479495, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 77, loss@min: 0.966106, loss@max: 1.452936, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.005440, loss@max: 1.436972, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.961094, loss@max: 1.405129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.983169, loss@max: 1.399093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.998605, loss@max: 1.384292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 1.002763, loss@max: 1.374135, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 83, loss@min: 0.976682, loss@max: 1.356572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 1.000497, loss@max: 1.368631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.990778, loss@max: 1.354429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.999999, loss@max: 1.363697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.016585, loss@max: 1.366844, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 88, loss@min: 0.994195, loss@max: 1.373758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.981635, loss@max: 1.362244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.964732, loss@max: 1.357590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.958146, loss@max: 1.359857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.977331, loss@max: 1.373112, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.964439, loss@max: 1.368779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950779, loss@max: 1.375308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.951738, loss@max: 1.369881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.955385, loss@max: 1.381372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.965974, loss@max: 1.386566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.006731, loss@max: 1.413230, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.955899, loss@max: 1.383819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943952, loss@max: 1.368324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.958525, loss@max: 1.378684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.943908, loss@max: 1.367125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.951581, loss@max: 1.374699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.954939, loss@max: 1.368776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.954807, loss@max: 1.369568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 106, loss@min: 0.947818, loss@max: 1.359369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.955970, loss@max: 1.361586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.958737, loss@max: 1.367292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.951653, loss@max: 1.360419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.951561, loss@max: 1.358038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.959343, loss@max: 1.365223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.948203, loss@max: 1.361486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.950479, loss@max: 1.367288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.943275, loss@max: 1.362337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.946734, loss@max: 1.368644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.948385, loss@max: 1.367203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.947771, loss@max: 1.358838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.945728, loss@max: 1.365307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.956610, loss@max: 1.362941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.947793, loss@max: 1.356808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.950419, loss@max: 1.361677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.950822, loss@max: 1.364111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.946329, loss@max: 1.358299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.946737, loss@max: 1.366307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.947379, loss@max: 1.363819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.955222, loss@max: 1.365627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.950389, loss@max: 1.361811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.956163, loss@max: 1.360055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.947455, loss@max: 1.359793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.950920, loss@max: 1.360815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.386128, LT: 0.384978, Top1S: 89.290062, Top1T: 89.533470Best acc: 89.533470 +Train:epoch: 131, loss@min: 0.964673, loss@max: 1.370665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.386814, LT: 0.385353, Top1S: 89.249496, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 132, loss@min: 0.949795, loss@max: 1.359876, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.387790, LT: 0.385937, Top1S: 89.208923, Top1T: 89.655174 +Train:epoch: 133, loss@min: 0.946740, loss@max: 1.359004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.388318, LT: 0.386294, Top1S: 89.290062, Top1T: 89.695740Best acc: 89.695740 +Train:epoch: 134, loss@min: 0.953534, loss@max: 1.367672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.389047, LT: 0.386787, Top1S: 89.330627, Top1T: 89.614601 +Train:epoch: 135, loss@min: 0.952348, loss@max: 1.358703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.389508, LT: 0.387085, Top1S: 89.371201, Top1T: 89.614601 +Train:epoch: 136, loss@min: 0.947829, loss@max: 1.360091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.389632, LT: 0.387300, Top1S: 89.411766, Top1T: 89.655174 +Train:epoch: 137, loss@min: 0.945967, loss@max: 1.359791, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.389980, LT: 0.387721, Top1S: 89.371201, Top1T: 89.655174 +Train:epoch: 138, loss@min: 0.946040, loss@max: 1.362808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.390296, LT: 0.388114, Top1S: 89.371201, Top1T: 89.614601 +Train:epoch: 139, loss@min: 0.942304, loss@max: 1.363958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.390045, LT: 0.387912, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 140, loss@min: 0.944588, loss@max: 1.361886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.389715, LT: 0.387667, Top1S: 89.411766, Top1T: 89.614601 +Train:epoch: 141, loss@min: 0.945571, loss@max: 1.360318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.389865, LT: 0.387724, Top1S: 89.533470, Top1T: 89.574036 +Train:epoch: 142, loss@min: 0.946568, loss@max: 1.360837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.390198, LT: 0.387870, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 143, loss@min: 0.945575, loss@max: 1.361282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.390092, LT: 0.387552, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 144, loss@min: 0.945499, loss@max: 1.359813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.390117, LT: 0.387381, Top1S: 89.533470, Top1T: 89.695740 +Train:epoch: 145, loss@min: 0.946381, loss@max: 1.363679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.390146, LT: 0.387235, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 146, loss@min: 0.945074, loss@max: 1.360991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.390213, LT: 0.387161, Top1S: 89.533470, Top1T: 89.574036 +Train:epoch: 147, loss@min: 0.949075, loss@max: 1.359929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.390650, LT: 0.387446, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 148, loss@min: 0.950073, loss@max: 1.361001, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.391095, LT: 0.387797, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 149, loss@min: 0.946409, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.391324, LT: 0.388035, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 150, loss@min: 0.947812, loss@max: 1.358356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.391607, LT: 0.388475, Top1S: 89.533470, Top1T: 89.492905 +Train:epoch: 151, loss@min: 0.946297, loss@max: 1.359666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.391977, LT: 0.388998, Top1S: 89.574036, Top1T: 89.574036{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 200, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 140} + +------------------------------------------- +Wed Jan 17 22:23:18 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 77.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 41, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 42, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 43, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 44, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 45, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 79.000000 +Train:epoch: 46, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 78.000000 +Train:epoch: 47, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 48, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 49, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 50, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 51, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 52, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 53, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 54, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 55, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 56, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 57, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 58, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 59, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 60, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 61, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 62, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 63, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 64, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 65, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 66, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 67, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 68, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 69, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 70, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 71, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 72, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 73, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 74, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 75, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 76, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 77, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 78, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 79, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 80, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 81, loss@min: 2.184657, loss@max: 1.368050, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 82, loss@min: 1.009977, loss@max: 2.644917, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 83, loss@min: 1.649214, loss@max: 1.588330, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 84, loss@min: 0.979585, loss@max: 1.830332, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 85, loss@min: 1.102522, loss@max: 1.437141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 1.004129, loss@max: 1.547774, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 87, loss@min: 1.026473, loss@max: 1.410688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.012888, loss@max: 1.446866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.983578, loss@max: 1.408720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.981425, loss@max: 1.394402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.966767, loss@max: 1.411690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 1.005221, loss@max: 1.386639, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 93, loss@min: 0.960626, loss@max: 1.407499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 1.005308, loss@max: 1.376071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.958429, loss@max: 1.393574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.986217, loss@max: 1.388268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.960871, loss@max: 1.396129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.078289, loss@max: 1.409735, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 99, loss@min: 0.974046, loss@max: 1.420033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.980421, loss@max: 1.364456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 101, loss@min: 0.956640, loss@max: 1.394600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 102, loss@min: 0.977195, loss@max: 1.358874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 103, loss@min: 0.973525, loss@max: 1.392419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 104, loss@min: 0.983251, loss@max: 1.363345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 105, loss@min: 0.978907, loss@max: 1.415395, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 106, loss@min: 0.976258, loss@max: 1.351675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 107, loss@min: 0.954335, loss@max: 1.379408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 108, loss@min: 0.980253, loss@max: 1.371996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 109, loss@min: 0.949996, loss@max: 1.379968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 110, loss@min: 0.972847, loss@max: 1.351920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 111, loss@min: 0.961370, loss@max: 1.378618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 112, loss@min: 0.962407, loss@max: 1.363535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 113, loss@min: 0.956931, loss@max: 1.379059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 114, loss@min: 0.971399, loss@max: 1.352101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 115, loss@min: 0.958274, loss@max: 1.374452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 116, loss@min: 0.962397, loss@max: 1.360041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 117, loss@min: 0.953200, loss@max: 1.367687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 118, loss@min: 0.957501, loss@max: 1.366632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 119, loss@min: 0.968594, loss@max: 1.366713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 120, loss@min: 0.952140, loss@max: 1.365388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 121, loss@min: 0.963342, loss@max: 1.357985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 122, loss@min: 0.958784, loss@max: 1.371511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 123, loss@min: 0.960831, loss@max: 1.357796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 124, loss@min: 0.956542, loss@max: 1.368672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 125, loss@min: 0.955399, loss@max: 1.366231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 126, loss@min: 0.972799, loss@max: 1.366526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 127, loss@min: 0.967583, loss@max: 1.357234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 128, loss@min: 0.958755, loss@max: 1.373267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 129, loss@min: 0.954835, loss@max: 1.362789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 130, loss@min: 0.962045, loss@max: 1.367266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 131, loss@min: 0.959255, loss@max: 1.356036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 132, loss@min: 0.954704, loss@max: 1.361364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 133, loss@min: 0.959613, loss@max: 1.360704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 134, loss@min: 0.953759, loss@max: 1.368444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 135, loss@min: 0.956678, loss@max: 1.360147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 136, loss@min: 0.961639, loss@max: 1.349075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 137, loss@min: 0.958688, loss@max: 1.368891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 138, loss@min: 0.965900, loss@max: 1.363699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 139, loss@min: 0.957385, loss@max: 1.360676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 140, loss@min: 0.956598, loss@max: 1.361479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.377429, LT: 0.374620, Top1S: 89.452332, Top1T: 89.736305Best acc: 89.736305 +Train:epoch: 141, loss@min: 0.952782, loss@max: 1.361285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.379295, LT: 0.377229, Top1S: 89.411766, Top1T: 89.614601 +Train:epoch: 142, loss@min: 0.958813, loss@max: 1.368722, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.373101, LT: 0.369942, Top1S: 89.574036, Top1T: 89.655174 +Train:epoch: 143, loss@min: 0.957555, loss@max: 1.354934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.375894, LT: 0.373197, Top1S: 89.574036, Top1T: 89.736305 +Train:epoch: 144, loss@min: 0.955379, loss@max: 1.358344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.377099, LT: 0.373062, Top1S: 89.452332, Top1T: 89.736305 +Train:epoch: 145, loss@min: 0.961951, loss@max: 1.364674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.375313, LT: 0.373011, Top1S: 89.492905, Top1T: 89.898582Best acc: 89.898582 +Train:epoch: 146, loss@min: 0.955130, loss@max: 1.364327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.376003, LT: 0.372705, Top1S: 89.533470, Top1T: 89.736305 +Train:epoch: 147, loss@min: 0.953494, loss@max: 1.358810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.377899, LT: 0.375005, Top1S: 89.411766, Top1T: 89.695740 +Train:epoch: 148, loss@min: 1.001665, loss@max: 1.384365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.372071, LT: 0.368124, Top1S: 89.492905, Top1T: 89.776878 +Train:epoch: 149, loss@min: 0.954239, loss@max: 1.359410, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.373619, LT: 0.370011, Top1S: 89.371201, Top1T: 89.655174 +Train:epoch: 150, loss@min: 0.955204, loss@max: 1.358961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.373362, LT: 0.370247, Top1S: 89.452332, Top1T: 89.776878 +Train:epoch: 151, loss@min: 0.966146, loss@max: 1.370198, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 151, LS: 0.378420, LT: 0.373876, Top1S: 89.411766, Top1T: 89.574036 +Train:epoch: 152, loss@min: 0.960051, loss@max: 1.363809, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 152, LS: 0.376524, LT: 0.373014, Top1S: 89.452332, Top1T: 89.736305 +Train:epoch: 153, loss@min: 0.954866, loss@max: 1.361784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 153, LS: 0.380320, LT: 0.375600, Top1S: 89.452332, Top1T: 89.655174 +Train:epoch: 154, loss@min: 0.953479, loss@max: 1.359143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 154, LS: 0.379480, LT: 0.376814, Top1S: 89.330627, Top1T: 89.655174 +Train:epoch: 155, loss@min: 0.954210, loss@max: 1.361959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 155, LS: 0.379920, LT: 0.376328, Top1S: 89.249496, Top1T: 89.452332 +Train:epoch: 156, loss@min: 0.973623, loss@max: 1.365525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 156, LS: 0.387169, LT: 0.383599, Top1S: 89.249496, Top1T: 89.533470 +Train:epoch: 157, loss@min: 0.955352, loss@max: 1.361377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 157, LS: 0.385905, LT: 0.381471, Top1S: 89.290062, Top1T: 89.574036 +Train:epoch: 158, loss@min: 0.955811, loss@max: 1.357494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 158, LS: 0.383711, LT: 0.380073, Top1S: 89.411766, Top1T: 89.533470 +Train:epoch: 159, loss@min: 0.951732, loss@max: 1.356181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 159, LS: 0.384065, LT: 0.380038, Top1S: 89.371201, Top1T: 89.614601 +Train:epoch: 160, loss@min: 0.960273, loss@max: 1.360712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 160, LS: 0.384816, LT: 0.381672, Top1S: 89.290062, Top1T: 89.452332 +Train:epoch: 161, loss@min: 0.952657, loss@max: 1.358233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 161, LS: 0.386238, LT: 0.382195, Top1S: 89.371201, Top1T: 89.492905 +Train:epoch: 162, loss@min: 0.954670, loss@max: 1.361550, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 162, LS: 0.383586, LT: 0.380076, Top1S: 89.452332, Top1T: 89.574036 +Train:epoch: 163, loss@min: 0.966332, loss@max: 1.369416, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 163, LS: 0.383430, LT: 0.380332, Top1S: 89.249496, Top1T: 89.533470 +Train:epoch: 164, loss@min: 0.961388, loss@max: 1.358714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 164, LS: 0.382680, LT: 0.377913, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 165, loss@min: 0.949581, loss@max: 1.359385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 165, LS: 0.382560, LT: 0.379109, Top1S: 89.290062, Top1T: 89.452332 +Train:epoch: 166, loss@min: 0.964460, loss@max: 1.360404, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 166, LS: 0.380182, LT: 0.376886, Top1S: 89.411766, Top1T: 89.411766 +Train:epoch: 167, loss@min: 0.958915, loss@max: 1.360857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 167, LS: 0.381019, LT: 0.377260, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 168, loss@min: 0.951998, loss@max: 1.356080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 168, LS: 0.380487, LT: 0.377329, Top1S: 89.411766, Top1T: 89.452332 +Train:epoch: 169, loss@min: 0.954214, loss@max: 1.362038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 169, LS: 0.380305, LT: 0.376653, Top1S: 89.330627, Top1T: 89.411766 +Train:epoch: 170, loss@min: 0.962314, loss@max: 1.361176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 170, LS: 0.376420, LT: 0.373204, Top1S: 89.452332, Top1T: 89.492905 +Train:epoch: 171, loss@min: 0.952929, loss@max: 1.360990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 171, LS: 0.377433, LT: 0.374315, Top1S: 89.452332, Top1T: 89.574036 +Train:epoch: 172, loss@min: 0.953322, loss@max: 1.359047, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 172, LS: 0.378292, LT: 0.374377, Top1S: 89.411766, Top1T: 89.533470 +Train:epoch: 173, loss@min: 0.959312, loss@max: 1.366017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 173, LS: 0.374903, LT: 0.371253, Top1S: 89.330627, Top1T: 89.614601 +Train:epoch: 174, loss@min: 0.952710, loss@max: 1.354243, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 174, LS: 0.378842, LT: 0.376109, Top1S: 89.411766, Top1T: 89.492905 +Train:epoch: 175, loss@min: 0.953927, loss@max: 1.357024, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 175, LS: 0.380890, LT: 0.376347, Top1S: 89.290062, Top1T: 89.452332 +Train:epoch: 176, loss@min: 0.956926, loss@max: 1.353752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 176, LS: 0.378689, LT: 0.375277, Top1S: 89.371201, Top1T: 89.533470 +Train:epoch: 177, loss@min: 0.953781, loss@max: 1.361209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 177, LS: 0.377403, LT: 0.374891, Top1S: 89.411766, Top1T: 89.411766 +Train:epoch: 178, loss@min: 0.958879, loss@max: 1.365890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 178, LS: 0.378539, LT: 0.375466, Top1S: 89.371201, Top1T: 89.574036 +Train:epoch: 179, loss@min: 0.954072, loss@max: 1.353714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 179, LS: 0.378740, LT: 0.375105, Top1S: 89.371201, Top1T: 89.655174 +Train:epoch: 180, loss@min: 0.953686, loss@max: 1.360584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 180, LS: 0.379326, LT: 0.375214, Top1S: 89.208923, Top1T: 89.695740 +Train:epoch: 181, loss@min: 0.954987, loss@max: 1.355157, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 181, LS: 0.379779, LT: 0.376329, Top1S: 89.249496, Top1T: 89.533470 +Train:epoch: 182, loss@min: 0.955554, loss@max: 1.355222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 182, LS: 0.381918, LT: 0.378437, Top1S: 89.208923, Top1T: 89.452332 +Train:epoch: 183, loss@min: 0.958458, loss@max: 1.359082, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 183, LS: 0.382539, LT: 0.378517, Top1S: 89.168358, Top1T: 89.452332 +Train:epoch: 184, loss@min: 0.961703, loss@max: 1.365262, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 184, LS: 0.382249, LT: 0.378543, Top1S: 89.087219, Top1T: 89.371201 +Train:epoch: 185, loss@min: 0.952992, loss@max: 1.355724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 185, LS: 0.381058, LT: 0.377674, Top1S: 89.087219, Top1T: 89.574036 +Train:epoch: 186, loss@min: 0.952377, loss@max: 1.358970, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 186, LS: 0.382029, LT: 0.378059, Top1S: 89.127792, Top1T: 89.492905 +Train:epoch: 187, loss@min: 0.957398, loss@max: 1.362626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 187, LS: 0.379452, LT: 0.376230, Top1S: 89.249496, Top1T: 89.574036 +Train:epoch: 188, loss@min: 0.959778, loss@max: 1.357425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 188, LS: 0.376994, LT: 0.373840, Top1S: 89.290062, Top1T: 89.452332 +Train:epoch: 189, loss@min: 0.950896, loss@max: 1.361889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 189, LS: 0.377567, LT: 0.373820, Top1S: 89.330627, Top1T: 89.533470 +Train:epoch: 190, loss@min: 0.971347, loss@max: 1.366412, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 190, LS: 0.377117, LT: 0.374131, Top1S: 89.411766, Top1T: 89.655174 +Train:epoch: 191, loss@min: 0.954204, loss@max: 1.358395, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 191, LS: 0.375917, LT: 0.373064, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 192, loss@min: 0.953224, loss@max: 1.360937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 192, LS: 0.377162, LT: 0.373810, Top1S: 89.371201, Top1T: 89.695740 +Train:epoch: 193, loss@min: 0.954119, loss@max: 1.354739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 193, LS: 0.376976, LT: 0.373999, Top1S: 89.290062, Top1T: 89.695740 +Train:epoch: 194, loss@min: 0.958096, loss@max: 1.355741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 194, LS: 0.377336, LT: 0.374129, Top1S: 89.411766, Top1T: 89.695740 +Train:epoch: 195, loss@min: 0.950104, loss@max: 1.360242, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 195, LS: 0.378120, LT: 0.375298, Top1S: 89.330627, Top1T: 89.614601 +Train:epoch: 196, loss@min: 0.953441, loss@max: 1.355497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 196, LS: 0.379225, LT: 0.375306, Top1S: 89.249496, Top1T: 89.655174 +Train:epoch: 197, loss@min: 0.952624, loss@max: 1.353938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 197, LS: 0.378861, LT: 0.375342, Top1S: 89.290062, Top1T: 89.655174 +Train:epoch: 198, loss@min: 0.952357, loss@max: 1.357852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 198, LS: 0.380283, LT: 0.376567, Top1S: 89.249496, Top1T: 89.614601 +Train:epoch: 199, loss@min: 0.952285, loss@max: 1.353210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 199, LS: 0.380130, LT: 0.375929, Top1S: 89.208923, Top1T: 89.614601 +Train:epoch: 200, loss@min: 0.952298, loss@max: 1.355932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 200, LS: 0.379683, LT: 0.376233, Top1S: 89.290062, Top1T: 89.614601{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Jan 17 23:06:17 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.175911, loss@max: 1.058952, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.745643, loss@max: 1.110721, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.343394, loss@max: 1.139471, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 1.286900, loss@max: 1.236357, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 5, loss@min: 1.166535, loss@max: 1.288252, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 6, loss@min: 0.960113, loss@max: 1.301403, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.986758, loss@max: 1.354358, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 8, loss@min: 1.005813, loss@max: 1.397363, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.883282, loss@max: 1.369799, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 0.936730, loss@max: 1.386350, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 0.934933, loss@max: 1.390058, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 0.880108, loss@max: 1.359932, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 13, loss@min: 0.950426, loss@max: 1.364448, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 0.877746, loss@max: 1.312213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.892329, loss@max: 1.289759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.992418, loss@max: 1.298713, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.932048, loss@max: 1.250384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.960757, loss@max: 1.244406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.979752, loss@max: 1.237076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.080323, loss@max: 1.273654, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.964348, loss@max: 1.231603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.963366, loss@max: 1.243293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.958176, loss@max: 1.246134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.973705, loss@max: 1.270265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954331, loss@max: 1.268559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.941541, loss@max: 1.268440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.937982, loss@max: 1.289613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.945127, loss@max: 1.297768, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.933514, loss@max: 1.308753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.926216, loss@max: 1.303660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.950734, loss@max: 1.338513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.927174, loss@max: 1.324609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.965028, loss@max: 1.339777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.929171, loss@max: 1.318715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940624, loss@max: 1.328726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.943374, loss@max: 1.330934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935811, loss@max: 1.320765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.939024, loss@max: 1.324167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.939651, loss@max: 1.325705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.957997, loss@max: 1.344519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.989484, loss@max: 1.344327, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.948073, loss@max: 1.341513, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.942913, loss@max: 1.337576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.945911, loss@max: 1.337506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.962082, loss@max: 1.359710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947538, loss@max: 1.347629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.942539, loss@max: 1.340050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949371, loss@max: 1.340133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.954631, loss@max: 1.345603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.948158, loss@max: 1.341351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947437, loss@max: 1.344103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.948413, loss@max: 1.340287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.951245, loss@max: 1.347804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949906, loss@max: 1.341343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.945865, loss@max: 1.349412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955979, loss@max: 1.355082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.974208, loss@max: 1.367668, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 58, loss@min: 0.942824, loss@max: 1.348415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.942100, loss@max: 1.354660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.938476, loss@max: 1.355598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.944503, loss@max: 1.354085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.946004, loss@max: 1.352416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.943420, loss@max: 1.356099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.942170, loss@max: 1.353289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.947301, loss@max: 1.349606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.981042, loss@max: 1.363040, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.942946, loss@max: 1.355323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947162, loss@max: 1.353158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.948390, loss@max: 1.357666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.949879, loss@max: 1.354399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946829, loss@max: 1.356812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949934, loss@max: 1.360128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948785, loss@max: 1.353379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.952869, loss@max: 1.359790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.950723, loss@max: 1.351521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.948887, loss@max: 1.359093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948445, loss@max: 1.361856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947084, loss@max: 1.353235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.944479, loss@max: 1.356476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946212, loss@max: 1.358803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.945215, loss@max: 1.357704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947298, loss@max: 1.358303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946771, loss@max: 1.355256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.944315, loss@max: 1.358940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.942677, loss@max: 1.360899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.943751, loss@max: 1.356992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.946226, loss@max: 1.360038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.959815, loss@max: 1.367949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.946139, loss@max: 1.358633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947526, loss@max: 1.355062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946981, loss@max: 1.354606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.947117, loss@max: 1.359783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.946047, loss@max: 1.359389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.948332, loss@max: 1.357154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945233, loss@max: 1.357977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.949333, loss@max: 1.364572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.948448, loss@max: 1.363049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.953495, loss@max: 1.364634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.955742, loss@max: 1.365293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.944073, loss@max: 1.358932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.423816, LT: 0.420472, Top1S: 88.640976, Top1T: 88.803246Best acc: 88.803246 +Train:epoch: 101, loss@min: 0.946109, loss@max: 1.359631, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.423866, LT: 0.420509, Top1S: 88.640976, Top1T: 88.843811Best acc: 88.843811 +Train:epoch: 102, loss@min: 0.947213, loss@max: 1.357739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.424138, LT: 0.420750, Top1S: 88.640976, Top1T: 88.843811{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Wed Jan 17 23:12:52 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.124015, loss@max: 1.045863, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 2, loss@min: 1.670971, loss@max: 1.092239, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 3, loss@min: 1.273736, loss@max: 1.123294, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.227130, loss@max: 1.224067, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 5, loss@min: 1.137314, loss@max: 1.284667, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 6, loss@min: 0.916284, loss@max: 1.293078, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.935551, loss@max: 1.344497, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 0.983586, loss@max: 1.394221, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.863391, loss@max: 1.367462, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 0.890448, loss@max: 1.375151, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 11, loss@min: 0.883347, loss@max: 1.375718, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.846594, loss@max: 1.349624, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 0.919420, loss@max: 1.353367, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.852008, loss@max: 1.297769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.887387, loss@max: 1.281206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950124, loss@max: 1.278237, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.930747, loss@max: 1.241310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.955716, loss@max: 1.231419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.966903, loss@max: 1.222003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.066426, loss@max: 1.258453, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.970235, loss@max: 1.227167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.962770, loss@max: 1.235801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.955703, loss@max: 1.240023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.967485, loss@max: 1.261688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.949434, loss@max: 1.263444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.939843, loss@max: 1.268029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.935828, loss@max: 1.290615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929416, loss@max: 1.292365, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.924854, loss@max: 1.303625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.923772, loss@max: 1.302168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.931458, loss@max: 1.324213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.921028, loss@max: 1.318506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.955996, loss@max: 1.331774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.927248, loss@max: 1.313755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.933647, loss@max: 1.321002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.935595, loss@max: 1.324964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.932835, loss@max: 1.319834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.933854, loss@max: 1.321667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.934602, loss@max: 1.323541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941622, loss@max: 1.334401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.955381, loss@max: 1.332824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.943395, loss@max: 1.333726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.941848, loss@max: 1.330437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.942939, loss@max: 1.329538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.943144, loss@max: 1.340463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.943300, loss@max: 1.340858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.940706, loss@max: 1.337290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944897, loss@max: 1.333805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.950043, loss@max: 1.337920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945273, loss@max: 1.337293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.945191, loss@max: 1.340900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946504, loss@max: 1.338178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946601, loss@max: 1.344156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.945161, loss@max: 1.339965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.940930, loss@max: 1.348371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.944185, loss@max: 1.350695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.956967, loss@max: 1.361827, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 58, loss@min: 0.940013, loss@max: 1.348261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.938709, loss@max: 1.351788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.937565, loss@max: 1.352427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.943604, loss@max: 1.349888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.945217, loss@max: 1.347874, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.943903, loss@max: 1.351959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.943020, loss@max: 1.349766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.948563, loss@max: 1.344657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.968483, loss@max: 1.357282, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.943211, loss@max: 1.351517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.945506, loss@max: 1.351197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.948883, loss@max: 1.357234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.946330, loss@max: 1.351475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943650, loss@max: 1.354624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.945584, loss@max: 1.358151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.945601, loss@max: 1.353351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.944304, loss@max: 1.357267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948459, loss@max: 1.349599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.946137, loss@max: 1.357024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.946259, loss@max: 1.359668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.946606, loss@max: 1.351724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943991, loss@max: 1.354939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944985, loss@max: 1.356482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.944193, loss@max: 1.355320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.945807, loss@max: 1.355880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945569, loss@max: 1.354174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.943436, loss@max: 1.357434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.941478, loss@max: 1.359646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.942654, loss@max: 1.356533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.944264, loss@max: 1.356388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.958556, loss@max: 1.365548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.944396, loss@max: 1.357509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.946387, loss@max: 1.354154, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946674, loss@max: 1.353380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.944839, loss@max: 1.356552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.945683, loss@max: 1.356847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947683, loss@max: 1.355294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945144, loss@max: 1.355746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.945953, loss@max: 1.360840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.949107, loss@max: 1.361497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.948676, loss@max: 1.358836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.949607, loss@max: 1.362013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943731, loss@max: 1.357575, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.426434, LT: 0.422159, Top1S: 88.356995, Top1T: 88.316429Best acc: 88.356995 +Train:epoch: 101, loss@min: 0.944091, loss@max: 1.358802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.426934, LT: 0.422581, Top1S: 88.316429, Top1T: 88.316429 +Train:epoch: 102, loss@min: 0.945488, loss@max: 1.356399, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.427632, LT: 0.423227, Top1S: 88.316429, Top1T: 88.194725 +Train:epoch: 103, loss@min: 0.943876, loss@max: 1.356945, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.428281, LT: 0.423858, Top1S: 88.316429, Top1T: 88.194725 +Train:epoch: 104, loss@min: 0.995871, loss@max: 1.382802, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 104, LS: 0.429653, LT: 0.425165, Top1S: 88.194725, Top1T: 88.194725 +Train:epoch: 105, loss@min: 0.945617, loss@max: 1.355201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.430920, LT: 0.426368, Top1S: 88.154160, Top1T: 88.275864 +Train:epoch: 106, loss@min: 0.947571, loss@max: 1.356119, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.432107, LT: 0.427523, Top1S: 88.154160, Top1T: 88.275864 +Train:epoch: 107, loss@min: 0.945094, loss@max: 1.355711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.433106, LT: 0.428473, Top1S: 88.154160, Top1T: 88.275864 +Train:epoch: 108, loss@min: 0.944737, loss@max: 1.355848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.433933, LT: 0.429217, Top1S: 88.113594, Top1T: 88.235298 +Train:epoch: 109, loss@min: 0.945576, loss@max: 1.356100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.434761, LT: 0.429963, Top1S: 88.113594, Top1T: 88.235298 +Train:epoch: 110, loss@min: 0.946234, loss@max: 1.355553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.435108, LT: 0.430246, Top1S: 88.113594, Top1T: 88.235298 +Train:epoch: 111, loss@min: 0.946509, loss@max: 1.354922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.435372, LT: 0.430454, Top1S: 88.073021, Top1T: 88.235298 +Train:epoch: 112, loss@min: 0.966159, loss@max: 1.373440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.435512, LT: 0.430544, Top1S: 88.073021, Top1T: 88.275864 +Train:epoch: 113, loss@min: 0.948861, loss@max: 1.354143, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.435894, LT: 0.430843, Top1S: 88.073021, Top1T: 88.275864 +Train:epoch: 114, loss@min: 0.944323, loss@max: 1.356517, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.436200, LT: 0.431083, Top1S: 88.154160, Top1T: 88.235298 +Train:epoch: 115, loss@min: 0.943922, loss@max: 1.357699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.436244, LT: 0.431082, Top1S: 88.113594, Top1T: 88.235298 +Train:epoch: 116, loss@min: 0.944878, loss@max: 1.356008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.436193, LT: 0.431016, Top1S: 88.154160, Top1T: 88.235298 +Train:epoch: 117, loss@min: 0.947115, loss@max: 1.358613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.436093, LT: 0.430912, Top1S: 88.154160, Top1T: 88.235298 +Train:epoch: 118, loss@min: 0.945439, loss@max: 1.356412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.436054, LT: 0.430887, Top1S: 88.154160, Top1T: 88.235298 +Train:epoch: 119, loss@min: 0.948436, loss@max: 1.357150, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Wed Jan 17 23:30:17 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.634929, loss@max: 0.945107, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.746634, loss@max: 1.148700, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.317897, loss@max: 1.173063, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.192030, loss@max: 1.234831, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.078346, loss@max: 1.259134, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 0.946831, loss@max: 1.278253, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.893825, loss@max: 1.290603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.955155, loss@max: 1.334833, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.832548, loss@max: 1.321539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.814245, loss@max: 1.311641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.873654, loss@max: 1.339790, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.863997, loss@max: 1.333913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.917427, loss@max: 1.341268, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.922270, loss@max: 1.319093, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.882345, loss@max: 1.269407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950495, loss@max: 1.275569, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 0.939259, loss@max: 1.252115, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.995306, loss@max: 1.249479, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.952031, loss@max: 1.246232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961249, loss@max: 1.242316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.970936, loss@max: 1.239381, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.985159, loss@max: 1.252536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.965634, loss@max: 1.235340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.998563, loss@max: 1.260971, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.954221, loss@max: 1.254990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.946361, loss@max: 1.276981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943284, loss@max: 1.269050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.962257, loss@max: 1.295471, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.933943, loss@max: 1.289407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933688, loss@max: 1.309762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.948659, loss@max: 1.320822, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.925182, loss@max: 1.318914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.939630, loss@max: 1.325835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.932499, loss@max: 1.320701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.949930, loss@max: 1.332263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.956862, loss@max: 1.329856, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.942307, loss@max: 1.320516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.930375, loss@max: 1.326581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940484, loss@max: 1.337867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944293, loss@max: 1.343141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.034650, loss@max: 1.367314, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.941085, loss@max: 1.328623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.958878, loss@max: 1.342960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.938899, loss@max: 1.333382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938739, loss@max: 1.340632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.973758, loss@max: 1.344403, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.936981, loss@max: 1.337351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.942628, loss@max: 1.338349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.950673, loss@max: 1.336090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941961, loss@max: 1.339870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.964482, loss@max: 1.349609, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.950982, loss@max: 1.353060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943058, loss@max: 1.342803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947370, loss@max: 1.349756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955615, loss@max: 1.358271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.950858, loss@max: 1.342890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945796, loss@max: 1.346179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.964526, loss@max: 1.363713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947724, loss@max: 1.349830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942420, loss@max: 1.356827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945269, loss@max: 1.354036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944938, loss@max: 1.352170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.942171, loss@max: 1.352179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945815, loss@max: 1.350008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946885, loss@max: 1.351097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.989826, loss@max: 1.364698, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.957653, loss@max: 1.359907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950051, loss@max: 1.348324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961811, loss@max: 1.359524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.949578, loss@max: 1.362778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945332, loss@max: 1.359464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.951703, loss@max: 1.363220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946751, loss@max: 1.352349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943765, loss@max: 1.354822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943106, loss@max: 1.362920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.938922, loss@max: 1.363966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.943167, loss@max: 1.356394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947119, loss@max: 1.355049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945043, loss@max: 1.354328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950173, loss@max: 1.354095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.949209, loss@max: 1.351237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947235, loss@max: 1.353585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948299, loss@max: 1.351363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.944476, loss@max: 1.354770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.945918, loss@max: 1.354105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.946643, loss@max: 1.356576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.948457, loss@max: 1.360350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942966, loss@max: 1.360888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.949402, loss@max: 1.369460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958703, loss@max: 1.368034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.434899, LT: 0.435426, Top1S: 89.411766, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 91, loss@min: 0.946052, loss@max: 1.355861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.434404, LT: 0.435007, Top1S: 89.452332, Top1T: 89.411766Best acc: 89.452332 +Train:epoch: 92, loss@min: 0.948186, loss@max: 1.354638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.433611, LT: 0.434218, Top1S: 89.492905, Top1T: 89.452332Best acc: 89.492905 +Train:epoch: 93, loss@min: 0.950165, loss@max: 1.352655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.432853, LT: 0.433440, Top1S: 89.492905, Top1T: 89.452332 +Train:epoch: 94, loss@min: 0.957480, loss@max: 1.358739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.432031, LT: 0.432527, Top1S: 89.574036, Top1T: 89.452332Best acc: 89.574036 +Train:epoch: 95, loss@min: 0.945727, loss@max: 1.355703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.431403, LT: 0.431783, Top1S: 89.614601, Top1T: 89.533470Best acc: 89.614601 +Train:epoch: 96, loss@min: 0.949344, loss@max: 1.353449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.430841, LT: 0.431135, Top1S: 89.574036, Top1T: 89.533470 +Train:epoch: 97, loss@min: 0.947404, loss@max: 1.355251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.430384, LT: 0.430621, Top1S: 89.574036, Top1T: 89.614601 +Train:epoch: 98, loss@min: 0.942222, loss@max: 1.362452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.430008, LT: 0.430231, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 99, loss@min: 0.943333, loss@max: 1.358128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.429797, LT: 0.430085, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 100, loss@min: 0.942466, loss@max: 1.361832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.429563, LT: 0.429981, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 101, loss@min: 0.941710, loss@max: 1.361599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.429542, LT: 0.430106, Top1S: 89.574036, Top1T: 89.574036 +Train:epoch: 102, loss@min: 0.940265, loss@max: 1.363240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.429638, LT: 0.430260, Top1S: 89.574036, Top1T: 89.533470 +Train:epoch: 103, loss@min: 0.944121, loss@max: 1.359234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.429753, LT: 0.430317, Top1S: 89.574036, Top1T: 89.492905 +Train:epoch: 104, loss@min: 0.943502, loss@max: 1.359407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.429920, LT: 0.430407, Top1S: 89.533470, Top1T: 89.411766 +Train:epoch: 105, loss@min: 0.946681, loss@max: 1.355978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.430076, LT: 0.430448, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 106, loss@min: 0.945295, loss@max: 1.357225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.430059, LT: 0.430354, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 107, loss@min: 0.952839, loss@max: 1.358853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.430151, LT: 0.430365, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 108, loss@min: 0.951185, loss@max: 1.351026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.430214, LT: 0.430280, Top1S: 89.371201, Top1T: 89.533470 +Train:epoch: 109, loss@min: 0.949355, loss@max: 1.355892, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Wed Jan 17 23:46:03 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.634929, loss@max: 0.945107, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.746634, loss@max: 1.148700, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.317897, loss@max: 1.173063, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.192030, loss@max: 1.234831, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.078346, loss@max: 1.259134, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 0.946831, loss@max: 1.278253, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.893825, loss@max: 1.290603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.955155, loss@max: 1.334833, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.832548, loss@max: 1.321539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.814245, loss@max: 1.311641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.873654, loss@max: 1.339790, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.863997, loss@max: 1.333913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.917427, loss@max: 1.341268, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.922270, loss@max: 1.319093, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.882345, loss@max: 1.269407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950495, loss@max: 1.275569, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 0.939259, loss@max: 1.252115, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.995306, loss@max: 1.249479, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.952031, loss@max: 1.246232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961249, loss@max: 1.242316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.970936, loss@max: 1.239381, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.985159, loss@max: 1.252536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.965634, loss@max: 1.235340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.998563, loss@max: 1.260971, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.954221, loss@max: 1.254990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.946361, loss@max: 1.276981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943284, loss@max: 1.269050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.962257, loss@max: 1.295471, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.933943, loss@max: 1.289407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933688, loss@max: 1.309762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.948659, loss@max: 1.320822, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.925182, loss@max: 1.318914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.939630, loss@max: 1.325835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.932499, loss@max: 1.320701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.949930, loss@max: 1.332263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.956862, loss@max: 1.329856, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.942307, loss@max: 1.320516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.930375, loss@max: 1.326581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940484, loss@max: 1.337867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944293, loss@max: 1.343141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.034650, loss@max: 1.367314, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.941085, loss@max: 1.328623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.958878, loss@max: 1.342960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.938899, loss@max: 1.333382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938739, loss@max: 1.340632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.973758, loss@max: 1.344403, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.936981, loss@max: 1.337351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.942628, loss@max: 1.338349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.950673, loss@max: 1.336090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941961, loss@max: 1.339870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.964482, loss@max: 1.349609, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.950982, loss@max: 1.353060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943058, loss@max: 1.342803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947370, loss@max: 1.349756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955615, loss@max: 1.358271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.950858, loss@max: 1.342890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945796, loss@max: 1.346179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.964526, loss@max: 1.363713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947724, loss@max: 1.349830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942420, loss@max: 1.356827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945269, loss@max: 1.354036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944938, loss@max: 1.352170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.942171, loss@max: 1.352179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945815, loss@max: 1.350008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946885, loss@max: 1.351097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.989826, loss@max: 1.364698, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.957653, loss@max: 1.359907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950051, loss@max: 1.348324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961811, loss@max: 1.359524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.949578, loss@max: 1.362778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945332, loss@max: 1.359464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.951703, loss@max: 1.363220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946751, loss@max: 1.352349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943765, loss@max: 1.354822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943106, loss@max: 1.362920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.938922, loss@max: 1.363966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.943167, loss@max: 1.356394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947119, loss@max: 1.355049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945043, loss@max: 1.354328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950173, loss@max: 1.354095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.949209, loss@max: 1.351237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947235, loss@max: 1.353585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948299, loss@max: 1.351363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.944476, loss@max: 1.354770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.945918, loss@max: 1.354105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.946643, loss@max: 1.356576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.948457, loss@max: 1.360350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942966, loss@max: 1.360888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.949402, loss@max: 1.369460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958703, loss@max: 1.368034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.434902, LT: 0.435429, Top1S: 89.411766, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 91, loss@min: 0.946052, loss@max: 1.355861, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Wed Jan 17 23:50:30 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.634929, loss@max: 0.945107, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.746634, loss@max: 1.148700, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.317897, loss@max: 1.173063, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.192030, loss@max: 1.234831, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.078346, loss@max: 1.259134, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 0.946831, loss@max: 1.278253, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.893825, loss@max: 1.290603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.955155, loss@max: 1.334833, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.832548, loss@max: 1.321539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.814245, loss@max: 1.311641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.873654, loss@max: 1.339790, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.863997, loss@max: 1.333913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.917427, loss@max: 1.341268, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.922270, loss@max: 1.319093, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.882345, loss@max: 1.269407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950495, loss@max: 1.275569, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 0.939259, loss@max: 1.252115, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.995306, loss@max: 1.249479, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.952031, loss@max: 1.246232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.961249, loss@max: 1.242316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.970936, loss@max: 1.239381, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.985159, loss@max: 1.252536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.965634, loss@max: 1.235340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.998563, loss@max: 1.260971, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.954221, loss@max: 1.254990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.946361, loss@max: 1.276981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943284, loss@max: 1.269050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.962257, loss@max: 1.295471, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.933943, loss@max: 1.289407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.933688, loss@max: 1.309762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.948659, loss@max: 1.320822, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.925182, loss@max: 1.318914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.939630, loss@max: 1.325835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.932499, loss@max: 1.320701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.949930, loss@max: 1.332263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.956862, loss@max: 1.329856, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.942307, loss@max: 1.320516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.930375, loss@max: 1.326581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940484, loss@max: 1.337867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944293, loss@max: 1.343141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.034650, loss@max: 1.367314, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.941085, loss@max: 1.328623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.958878, loss@max: 1.342960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.938899, loss@max: 1.333382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938739, loss@max: 1.340632, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.973758, loss@max: 1.344403, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.936981, loss@max: 1.337351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.942628, loss@max: 1.338349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.950673, loss@max: 1.336090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941961, loss@max: 1.339870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.964482, loss@max: 1.349609, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.950982, loss@max: 1.353060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943058, loss@max: 1.342803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947370, loss@max: 1.349756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955615, loss@max: 1.358271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.950858, loss@max: 1.342890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945796, loss@max: 1.346179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.964526, loss@max: 1.363713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947724, loss@max: 1.349830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942420, loss@max: 1.356827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945269, loss@max: 1.354036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944938, loss@max: 1.352170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.942171, loss@max: 1.352179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945815, loss@max: 1.350008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946885, loss@max: 1.351097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.989826, loss@max: 1.364698, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.957653, loss@max: 1.359907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950051, loss@max: 1.348324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.961811, loss@max: 1.359524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.949578, loss@max: 1.362778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945332, loss@max: 1.359464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.951703, loss@max: 1.363220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.946751, loss@max: 1.352349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.943765, loss@max: 1.354822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.943106, loss@max: 1.362920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.938922, loss@max: 1.363966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.943167, loss@max: 1.356394, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.947119, loss@max: 1.355049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945043, loss@max: 1.354328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950173, loss@max: 1.354095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.949209, loss@max: 1.351237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947235, loss@max: 1.353585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948299, loss@max: 1.351363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.944476, loss@max: 1.354770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.945918, loss@max: 1.354105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.946643, loss@max: 1.356576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.948457, loss@max: 1.360350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942966, loss@max: 1.360888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.949402, loss@max: 1.369460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958703, loss@max: 1.368034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.434906, LT: 0.435433, Top1S: 89.411766, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 91, loss@min: 0.946052, loss@max: 1.355861, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.434411, LT: 0.435014, Top1S: 89.452332, Top1T: 89.411766Best acc: 89.452332 +Train:epoch: 92, loss@min: 0.948186, loss@max: 1.354638, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.433618, LT: 0.434225, Top1S: 89.492905, Top1T: 89.452332Best acc: 89.492905 +Train:epoch: 93, loss@min: 0.950165, loss@max: 1.352655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.432860, LT: 0.433447, Top1S: 89.492905, Top1T: 89.452332 +Train:epoch: 94, loss@min: 0.957480, loss@max: 1.358739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.432038, LT: 0.432533, Top1S: 89.574036, Top1T: 89.452332Best acc: 89.574036 +Train:epoch: 95, loss@min: 0.945727, loss@max: 1.355703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.431410, LT: 0.431790, Top1S: 89.614601, Top1T: 89.533470Best acc: 89.614601 +Train:epoch: 96, loss@min: 0.949344, loss@max: 1.353449, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.430848, LT: 0.431142, Top1S: 89.574036, Top1T: 89.533470 +Train:epoch: 97, loss@min: 0.947404, loss@max: 1.355251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.430391, LT: 0.430628, Top1S: 89.574036, Top1T: 89.614601 +Train:epoch: 98, loss@min: 0.942222, loss@max: 1.362452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.430015, LT: 0.430238, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 99, loss@min: 0.943333, loss@max: 1.358128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.429804, LT: 0.430091, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 100, loss@min: 0.942466, loss@max: 1.361832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.429569, LT: 0.429987, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 101, loss@min: 0.941710, loss@max: 1.361599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.429549, LT: 0.430112, Top1S: 89.574036, Top1T: 89.574036 +Train:epoch: 102, loss@min: 0.940265, loss@max: 1.363240, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.429644, LT: 0.430267, Top1S: 89.574036, Top1T: 89.533470 +Train:epoch: 103, loss@min: 0.944121, loss@max: 1.359234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.429760, LT: 0.430323, Top1S: 89.533470, Top1T: 89.452332 +Train:epoch: 104, loss@min: 0.943502, loss@max: 1.359407, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.429926, LT: 0.430413, Top1S: 89.533470, Top1T: 89.411766 +Train:epoch: 105, loss@min: 0.946681, loss@max: 1.355978, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.430082, LT: 0.430455, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 106, loss@min: 0.945295, loss@max: 1.357225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.430066, LT: 0.430360, Top1S: 89.330627, Top1T: 89.452332 +Train:epoch: 107, loss@min: 0.952839, loss@max: 1.358853, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Thu Jan 18 00:06:14 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.726507, loss@max: 0.930420, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.977307, loss@max: 1.127633, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 3, loss@min: 1.516558, loss@max: 1.121381, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 4, loss@min: 1.441922, loss@max: 1.187214, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 5, loss@min: 1.243243, loss@max: 1.201648, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.100157, loss@max: 1.218757, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 1.041493, loss@max: 1.240005, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.142439, loss@max: 1.308084, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.987187, loss@max: 1.287813, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 0.929697, loss@max: 1.284113, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 0.939370, loss@max: 1.310327, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.892055, loss@max: 1.307509, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 1.019438, loss@max: 1.357768, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 1.018763, loss@max: 1.362782, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.920936, loss@max: 1.321028, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 0.995108, loss@max: 1.341698, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.929180, loss@max: 1.324759, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 18, loss@min: 0.917255, loss@max: 1.311606, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.923147, loss@max: 1.309221, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 0.941976, loss@max: 1.311931, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.954469, loss@max: 1.303114, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.973529, loss@max: 1.309948, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 23, loss@min: 0.940291, loss@max: 1.282961, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.074180, loss@max: 1.323845, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 25, loss@min: 0.932800, loss@max: 1.283409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.074725, loss@max: 1.326407, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 27, loss@min: 0.934649, loss@max: 1.278907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.968093, loss@max: 1.295008, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.945518, loss@max: 1.279929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.971306, loss@max: 1.308751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.972915, loss@max: 1.301381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.957864, loss@max: 1.297729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.978182, loss@max: 1.307951, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 34, loss@min: 0.959381, loss@max: 1.297340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.975101, loss@max: 1.307905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.964604, loss@max: 1.294442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.975083, loss@max: 1.309424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.955545, loss@max: 1.308362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.005669, loss@max: 1.330842, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 0.966884, loss@max: 1.326935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.082577, loss@max: 1.365642, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.951301, loss@max: 1.327458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.989529, loss@max: 1.346405, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.947628, loss@max: 1.334567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.940904, loss@max: 1.339259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.943851, loss@max: 1.346117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.933819, loss@max: 1.344445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.939089, loss@max: 1.347983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.940248, loss@max: 1.352510, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.937586, loss@max: 1.350851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.012054, loss@max: 1.371220, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 52, loss@min: 0.961114, loss@max: 1.370555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.939249, loss@max: 1.350604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.963726, loss@max: 1.366966, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 1.028850, loss@max: 1.376923, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.944425, loss@max: 1.353711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.946781, loss@max: 1.345969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.978359, loss@max: 1.374298, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 59, loss@min: 0.947821, loss@max: 1.355805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.965395, loss@max: 1.373291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945202, loss@max: 1.358828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.944348, loss@max: 1.358332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945510, loss@max: 1.354617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.947908, loss@max: 1.352916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946584, loss@max: 1.356829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.044902, loss@max: 1.372229, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.949480, loss@max: 1.360039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950364, loss@max: 1.351640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.963601, loss@max: 1.361372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.952381, loss@max: 1.367508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.947247, loss@max: 1.356979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.948221, loss@max: 1.354367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.947977, loss@max: 1.354617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.948305, loss@max: 1.350921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.953360, loss@max: 1.366779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.944835, loss@max: 1.364235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.946783, loss@max: 1.353077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.946463, loss@max: 1.358857, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943019, loss@max: 1.358648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949871, loss@max: 1.361555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.947909, loss@max: 1.354297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.944183, loss@max: 1.357721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946340, loss@max: 1.354196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946710, loss@max: 1.353763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.946874, loss@max: 1.353959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.950369, loss@max: 1.359476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.959000, loss@max: 1.361647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950172, loss@max: 1.358258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.992027, loss@max: 1.378227, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 90, loss@min: 0.969634, loss@max: 1.374196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.438980, LT: 0.434589, Top1S: 89.492905, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 91, loss@min: 0.945104, loss@max: 1.359589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.438748, LT: 0.434437, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 92, loss@min: 0.948171, loss@max: 1.358485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.438552, LT: 0.434314, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 93, loss@min: 0.946731, loss@max: 1.359076, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.438340, LT: 0.434213, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 94, loss@min: 0.948349, loss@max: 1.365610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.438136, LT: 0.434108, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 95, loss@min: 0.947394, loss@max: 1.355319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.437963, LT: 0.433995, Top1S: 89.533470, Top1T: 89.574036 +Train:epoch: 96, loss@min: 0.947319, loss@max: 1.360713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.437872, LT: 0.433910, Top1S: 89.574036, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 97, loss@min: 0.947833, loss@max: 1.358458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.437815, LT: 0.433851, Top1S: 89.533470, Top1T: 89.614601 +Train:epoch: 98, loss@min: 0.943665, loss@max: 1.365096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.437794, LT: 0.433812, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 99, loss@min: 0.944456, loss@max: 1.360408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.437795, LT: 0.433798, Top1S: 89.492905, Top1T: 89.695740Best acc: 89.695740 +Train:epoch: 100, loss@min: 0.945403, loss@max: 1.364621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.437772, LT: 0.433780, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 101, loss@min: 0.945971, loss@max: 1.359959, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.437790, LT: 0.433834, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 102, loss@min: 0.946867, loss@max: 1.363276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.437874, LT: 0.433908, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 103, loss@min: 0.948361, loss@max: 1.359429, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.437982, LT: 0.434011, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 104, loss@min: 0.944689, loss@max: 1.359057, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.438083, LT: 0.434084, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 105, loss@min: 0.945548, loss@max: 1.360187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.438171, LT: 0.434124, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 106, loss@min: 0.943923, loss@max: 1.361567, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.438210, LT: 0.434140, Top1S: 89.492905, Top1T: 89.574036 +Train:epoch: 107, loss@min: 0.951716, loss@max: 1.365070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.438253, LT: 0.434138, Top1S: 89.492905, Top1T: 89.614601 +Train:epoch: 108, loss@min: 0.948569, loss@max: 1.358352, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.438303, LT: 0.434118, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 109, loss@min: 0.948064, loss@max: 1.363846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.438323, LT: 0.434083, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 110, loss@min: 0.956401, loss@max: 1.373406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.438384, LT: 0.434078, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 111, loss@min: 0.945842, loss@max: 1.357367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.438448, LT: 0.434074, Top1S: 89.452332, Top1T: 89.614601 +Train:epoch: 112, loss@min: 0.946505, loss@max: 1.359092, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.438507, LT: 0.434059, Top1S: 89.411766, Top1T: 89.614601 +Train:epoch: 113, loss@min: 0.946719, loss@max: 1.355986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.438548, LT: 0.434049, Top1S: 89.411766, Top1T: 89.614601 +Train:epoch: 114, loss@min: 0.955901, loss@max: 1.373527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.438572, LT: 0.434042, Top1S: 89.371201, Top1T: 89.614601 +Train:epoch: 115, loss@min: 0.952353, loss@max: 1.362125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.438589, LT: 0.434049, Top1S: 89.371201, Top1T: 89.614601 +Train:epoch: 116, loss@min: 0.943909, loss@max: 1.358294, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.438603, LT: 0.434062, Top1S: 89.371201, Top1T: 89.614601 +Train:epoch: 117, loss@min: 0.944803, loss@max: 1.359792, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Thu Jan 18 00:26:31 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.141068, loss@max: 1.016372, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 1.935395, loss@max: 1.088677, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.814608, loss@max: 1.163089, Top1S acc: 100.000000, Top1T acc: 89.500000 +Train:epoch: 4, loss@min: 1.574241, loss@max: 1.191502, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.357400, loss@max: 1.209628, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.359141, loss@max: 1.278589, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 7, loss@min: 1.225839, loss@max: 1.293238, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 8, loss@min: 1.141580, loss@max: 1.307920, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.050652, loss@max: 1.316148, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 10, loss@min: 1.086009, loss@max: 1.344351, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 1.152445, loss@max: 1.385069, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 12, loss@min: 1.119409, loss@max: 1.394592, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 13, loss@min: 0.930239, loss@max: 1.349881, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 0.920844, loss@max: 1.349446, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 15, loss@min: 0.886652, loss@max: 1.344774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.000986, loss@max: 1.376569, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.964006, loss@max: 1.371324, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 18, loss@min: 1.041709, loss@max: 1.387777, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 19, loss@min: 1.044207, loss@max: 1.368314, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 0.980240, loss@max: 1.354185, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 21, loss@min: 0.964979, loss@max: 1.345304, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 22, loss@min: 0.970876, loss@max: 1.327893, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 0.970673, loss@max: 1.324791, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.948555, loss@max: 1.304623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.990591, loss@max: 1.311654, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.991699, loss@max: 1.317411, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.027334, loss@max: 1.320908, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.998004, loss@max: 1.307343, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.972038, loss@max: 1.294063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.985347, loss@max: 1.303087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.024561, loss@max: 1.319175, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.021197, loss@max: 1.318779, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 0.976124, loss@max: 1.299810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.993579, loss@max: 1.314579, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.015313, loss@max: 1.326898, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.970411, loss@max: 1.311840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.982268, loss@max: 1.324909, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.977930, loss@max: 1.324889, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 0.975547, loss@max: 1.330398, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 0.998493, loss@max: 1.349610, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.949165, loss@max: 1.333100, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.952462, loss@max: 1.346569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.057573, loss@max: 1.377720, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.957126, loss@max: 1.351408, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 0.977573, loss@max: 1.370828, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 46, loss@min: 0.958242, loss@max: 1.364400, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.950517, loss@max: 1.357958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.951721, loss@max: 1.354289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.954801, loss@max: 1.358368, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 50, loss@min: 0.940731, loss@max: 1.357899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.964525, loss@max: 1.365040, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.012188, loss@max: 1.386931, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 0.987456, loss@max: 1.373245, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.977367, loss@max: 1.374282, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.950937, loss@max: 1.364545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955549, loss@max: 1.368678, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 57, loss@min: 0.942659, loss@max: 1.361835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.004337, loss@max: 1.380099, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.959286, loss@max: 1.376041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.952565, loss@max: 1.365859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.963925, loss@max: 1.373929, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.955857, loss@max: 1.369709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.951861, loss@max: 1.362326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.964594, loss@max: 1.367288, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.965928, loss@max: 1.363128, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 66, loss@min: 0.958932, loss@max: 1.360623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.952097, loss@max: 1.362466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.958552, loss@max: 1.364404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955800, loss@max: 1.368515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.972652, loss@max: 1.371459, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 71, loss@min: 0.953145, loss@max: 1.363598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949472, loss@max: 1.356853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.966983, loss@max: 1.372802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.968492, loss@max: 1.367113, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.953123, loss@max: 1.362271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.968020, loss@max: 1.376352, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 0.984407, loss@max: 1.384871, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.010377, loss@max: 1.381025, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.956035, loss@max: 1.370075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.990059, loss@max: 1.378386, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 81, loss@min: 0.953977, loss@max: 1.368585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947425, loss@max: 1.366441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946699, loss@max: 1.366572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.969729, loss@max: 1.370213, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.948339, loss@max: 1.365116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.952105, loss@max: 1.374182, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950784, loss@max: 1.367150, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.007627, loss@max: 1.390332, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.949118, loss@max: 1.363213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958415, loss@max: 1.366397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.417490, LT: 0.415202, Top1S: 89.208923, Top1T: 89.411766Best acc: 89.411766 +Train:epoch: 91, loss@min: 0.977628, loss@max: 1.375524, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 91, LS: 0.417899, LT: 0.415735, Top1S: 89.208923, Top1T: 89.411766 +Train:epoch: 92, loss@min: 0.956681, loss@max: 1.368282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.418406, LT: 0.416371, Top1S: 89.208923, Top1T: 89.371201 +Train:epoch: 93, loss@min: 1.027485, loss@max: 1.398269, Top1S acc: 100.000000, Top1T acc: 98.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 00:35:41 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.048515, loss@max: 1.022719, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.805954, loss@max: 1.117362, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.605582, loss@max: 1.193200, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.360847, loss@max: 1.232429, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 5, loss@min: 1.173181, loss@max: 1.262178, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.136754, loss@max: 1.317815, Top1S acc: 100.000000, Top1T acc: 93.500000 +Train:epoch: 7, loss@min: 1.013548, loss@max: 1.329913, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 8, loss@min: 0.969192, loss@max: 1.345414, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.887786, loss@max: 1.351737, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.895510, loss@max: 1.366017, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.021052, loss@max: 1.403010, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.929003, loss@max: 1.377764, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855686, loss@max: 1.337825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.858407, loss@max: 1.313112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.879182, loss@max: 1.299907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.953657, loss@max: 1.300240, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.981199, loss@max: 1.289678, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.000696, loss@max: 1.282475, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.017553, loss@max: 1.267675, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 20, loss@min: 0.988305, loss@max: 1.257678, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.996071, loss@max: 1.260284, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 0.998123, loss@max: 1.255834, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.005965, loss@max: 1.263021, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.965735, loss@max: 1.249917, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.984602, loss@max: 1.262222, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.981983, loss@max: 1.274757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.011427, loss@max: 1.287439, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.991690, loss@max: 1.285336, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.953315, loss@max: 1.281831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.956123, loss@max: 1.298994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.967995, loss@max: 1.318096, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.957294, loss@max: 1.322938, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.934447, loss@max: 1.316747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947817, loss@max: 1.331944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.957475, loss@max: 1.338165, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 0.934317, loss@max: 1.327933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.946340, loss@max: 1.340905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940202, loss@max: 1.335595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.946081, loss@max: 1.341455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.970243, loss@max: 1.349740, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.935069, loss@max: 1.334078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.936120, loss@max: 1.340785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.038394, loss@max: 1.365302, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.949909, loss@max: 1.336955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.975539, loss@max: 1.348609, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951529, loss@max: 1.343718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.948453, loss@max: 1.340721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.948399, loss@max: 1.340519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944592, loss@max: 1.341324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941941, loss@max: 1.344424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952314, loss@max: 1.348637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.976771, loss@max: 1.359495, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 53, loss@min: 0.963791, loss@max: 1.349291, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.967846, loss@max: 1.351842, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 55, loss@min: 0.952419, loss@max: 1.344185, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.956812, loss@max: 1.351200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.946891, loss@max: 1.345542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.986062, loss@max: 1.364523, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.949408, loss@max: 1.360835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.946363, loss@max: 1.355495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959840, loss@max: 1.363504, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.950822, loss@max: 1.360112, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.947970, loss@max: 1.354962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.953048, loss@max: 1.358700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952145, loss@max: 1.358032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.950752, loss@max: 1.351702, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946126, loss@max: 1.356545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949257, loss@max: 1.359214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.949977, loss@max: 1.356361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958403, loss@max: 1.361050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.947584, loss@max: 1.356177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.944657, loss@max: 1.355351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.957978, loss@max: 1.364736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.956204, loss@max: 1.362989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948861, loss@max: 1.358487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.957504, loss@max: 1.365469, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.963598, loss@max: 1.367245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.980428, loss@max: 1.367663, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.948506, loss@max: 1.362250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.976555, loss@max: 1.367244, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 80, LS: 0.409584, LT: 0.408036, Top1S: 89.736305, Top1T: 89.939148Best acc: 89.939148 +Train:epoch: 81, loss@min: 0.951421, loss@max: 1.365149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.410116, LT: 0.408413, Top1S: 89.736305, Top1T: 89.898582 +Train:epoch: 82, loss@min: 0.967361, loss@max: 1.365554, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 82, LS: 0.410551, LT: 0.408719, Top1S: 89.776878, Top1T: 89.898582 +Train:epoch: 83, loss@min: 0.950659, loss@max: 1.360543, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.411083, LT: 0.409109, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 84, loss@min: 0.952184, loss@max: 1.362139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.411906, LT: 0.409766, Top1S: 89.736305, Top1T: 89.939148 +Train:epoch: 85, loss@min: 0.947488, loss@max: 1.359652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.413107, LT: 0.410851, Top1S: 89.736305, Top1T: 90.060852Best acc: 90.060852 +Train:epoch: 86, loss@min: 0.951461, loss@max: 1.360281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.414295, LT: 0.411676, Top1S: 89.776878, Top1T: 90.060852 +Train:epoch: 87, loss@min: 0.953250, loss@max: 1.359921, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.415194, LT: 0.412274, Top1S: 89.695740, Top1T: 89.979713 +Train:epoch: 88, loss@min: 0.961971, loss@max: 1.365604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.415862, LT: 0.412825, Top1S: 89.736305, Top1T: 89.939148 +Train:epoch: 89, loss@min: 0.956733, loss@max: 1.364230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.416191, LT: 0.412983, Top1S: 89.776878, Top1T: 89.939148 +Train:epoch: 90, loss@min: 0.958643, loss@max: 1.367185, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 90, LS: 0.416443, LT: 0.413154, Top1S: 89.776878, Top1T: 89.979713 +Train:epoch: 91, loss@min: 0.947847, loss@max: 1.362710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.416885, LT: 0.413566, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 92, loss@min: 0.952221, loss@max: 1.362898, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.417202, LT: 0.413837, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 93, loss@min: 0.952582, loss@max: 1.361682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.417692, LT: 0.414344, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 94, loss@min: 0.954224, loss@max: 1.361853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.417693, LT: 0.414353, Top1S: 89.817444, Top1T: 89.898582 +Train:epoch: 95, loss@min: 0.945798, loss@max: 1.360365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.417867, LT: 0.414648, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 96, loss@min: 0.948375, loss@max: 1.359582, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.418075, LT: 0.415019, Top1S: 89.776878, Top1T: 89.939148 +Train:epoch: 97, loss@min: 0.948530, loss@max: 1.357870, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.418337, LT: 0.415399, Top1S: 89.776878, Top1T: 89.939148 +Train:epoch: 98, loss@min: 0.947927, loss@max: 1.358890, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.418600, LT: 0.415832, Top1S: 89.736305, Top1T: 89.898582 +Train:epoch: 99, loss@min: 0.949612, loss@max: 1.358603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.418988, LT: 0.416352, Top1S: 89.614601, Top1T: 89.898582 +Train:epoch: 100, loss@min: 0.952251, loss@max: 1.362338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.419327, LT: 0.416798, Top1S: 89.655174, Top1T: 89.898582 +Train:epoch: 101, loss@min: 0.948812, loss@max: 1.362872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.419717, LT: 0.417309, Top1S: 89.614601, Top1T: 89.939148 +Train:epoch: 102, loss@min: 0.947621, loss@max: 1.362922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.420112, LT: 0.417732, Top1S: 89.614601, Top1T: 89.898582 +Train:epoch: 103, loss@min: 1.014800, loss@max: 1.385438, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 103, LS: 0.420521, LT: 0.418060, Top1S: 89.695740, Top1T: 89.898582 +Train:epoch: 104, loss@min: 0.946454, loss@max: 1.358257, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 00:56:52 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.048515, loss@max: 1.022719, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.805845, loss@max: 1.117373, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.605230, loss@max: 1.193224, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.360450, loss@max: 1.232513, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 5, loss@min: 1.172798, loss@max: 1.262314, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.135901, loss@max: 1.317808, Top1S acc: 100.000000, Top1T acc: 93.500000 +Train:epoch: 7, loss@min: 1.012517, loss@max: 1.329880, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 8, loss@min: 0.968483, loss@max: 1.345445, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.887381, loss@max: 1.351942, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.893044, loss@max: 1.365749, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.020482, loss@max: 1.403136, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.926112, loss@max: 1.377152, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855717, loss@max: 1.337945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.858163, loss@max: 1.312869, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.880024, loss@max: 1.299930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950985, loss@max: 1.299229, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.980251, loss@max: 1.288670, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.996240, loss@max: 1.280906, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.019177, loss@max: 1.267435, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 0.995360, loss@max: 1.259285, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.998774, loss@max: 1.261209, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.003232, loss@max: 1.257156, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.009029, loss@max: 1.264245, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.965306, loss@max: 1.250759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982741, loss@max: 1.262406, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.979575, loss@max: 1.275455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.998597, loss@max: 1.286403, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.989456, loss@max: 1.286881, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.951615, loss@max: 1.284270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.954932, loss@max: 1.303025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964116, loss@max: 1.319053, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955460, loss@max: 1.325874, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.931611, loss@max: 1.320132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.945479, loss@max: 1.334439, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.948478, loss@max: 1.337321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.933737, loss@max: 1.331565, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.944651, loss@max: 1.341718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940622, loss@max: 1.336855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949497, loss@max: 1.342405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.972068, loss@max: 1.350150, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.936168, loss@max: 1.333907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.936301, loss@max: 1.340597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.034516, loss@max: 1.363807, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.949334, loss@max: 1.337310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.977819, loss@max: 1.348721, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951937, loss@max: 1.344491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.946998, loss@max: 1.341235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946380, loss@max: 1.341630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944661, loss@max: 1.341602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942667, loss@max: 1.345146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950759, loss@max: 1.350789, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.961000, loss@max: 1.356888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961052, loss@max: 1.350912, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.962469, loss@max: 1.351063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.952842, loss@max: 1.344501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954264, loss@max: 1.352787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944575, loss@max: 1.347073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.984404, loss@max: 1.369035, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946178, loss@max: 1.361133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945368, loss@max: 1.358326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956622, loss@max: 1.360727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.952711, loss@max: 1.357592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.949160, loss@max: 1.353842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.954529, loss@max: 1.359307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949012, loss@max: 1.358498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947163, loss@max: 1.352659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.944698, loss@max: 1.359499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946843, loss@max: 1.359714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947689, loss@max: 1.358515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.956495, loss@max: 1.361952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946922, loss@max: 1.358679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943174, loss@max: 1.356940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.961565, loss@max: 1.366452, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.962894, loss@max: 1.366839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947785, loss@max: 1.359259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955524, loss@max: 1.364131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965046, loss@max: 1.366413, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.972303, loss@max: 1.366031, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.949582, loss@max: 1.362947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.968770, loss@max: 1.366693, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 80, LS: 0.391738, LT: 0.390911, Top1S: 89.817444, Top1T: 89.939148Best acc: 89.939148 +Train:epoch: 81, loss@min: 0.952126, loss@max: 1.369158, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.392322, LT: 0.391414, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 82, loss@min: 0.955235, loss@max: 1.366128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.392867, LT: 0.391820, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 83, loss@min: 0.951979, loss@max: 1.363819, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.393355, LT: 0.392143, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 84, loss@min: 0.950253, loss@max: 1.361311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.393881, LT: 0.392572, Top1S: 89.858009, Top1T: 89.979713Best acc: 89.979713 +Train:epoch: 85, loss@min: 0.946009, loss@max: 1.361040, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.394314, LT: 0.393055, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 86, loss@min: 0.949635, loss@max: 1.361183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.394598, LT: 0.393320, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 87, loss@min: 0.949000, loss@max: 1.359798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.394895, LT: 0.393577, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 88, loss@min: 0.961975, loss@max: 1.367475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.395223, LT: 0.393944, Top1S: 89.858009, Top1T: 89.979713 +Train:epoch: 89, loss@min: 0.950340, loss@max: 1.363608, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.395441, LT: 0.394125, Top1S: 89.898582, Top1T: 90.020287Best acc: 90.020287 +Train:epoch: 90, loss@min: 0.957718, loss@max: 1.368962, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 90, LS: 0.395937, LT: 0.394564, Top1S: 89.898582, Top1T: 89.979713 +Train:epoch: 91, loss@min: 0.947850, loss@max: 1.364488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.396386, LT: 0.395001, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 92, loss@min: 0.952529, loss@max: 1.365417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.396797, LT: 0.395340, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 93, loss@min: 0.949441, loss@max: 1.363562, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.397540, LT: 0.395995, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 94, loss@min: 0.954725, loss@max: 1.363016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.398120, LT: 0.396450, Top1S: 89.858009, Top1T: 89.939148 +Train:epoch: 95, loss@min: 0.945403, loss@max: 1.360469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.398689, LT: 0.396961, Top1S: 89.898582, Top1T: 89.939148 +Train:epoch: 96, loss@min: 0.948909, loss@max: 1.359529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.399138, LT: 0.397387, Top1S: 89.898582, Top1T: 89.939148 +Train:epoch: 97, loss@min: 0.948099, loss@max: 1.359415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.399582, LT: 0.397832, Top1S: 89.898582, Top1T: 89.979713 +Train:epoch: 98, loss@min: 0.947339, loss@max: 1.357999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.399859, LT: 0.398227, Top1S: 89.898582, Top1T: 89.939148 +Train:epoch: 99, loss@min: 0.948413, loss@max: 1.358581, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.400075, LT: 0.398583, Top1S: 89.898582, Top1T: 89.939148 +Train:epoch: 100, loss@min: 0.950408, loss@max: 1.361743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.400197, LT: 0.398866, Top1S: 89.898582, Top1T: 89.939148 +Train:epoch: 101, loss@min: 0.947295, loss@max: 1.360111, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.400273, LT: 0.399108, Top1S: 89.939148, Top1T: 89.939148 +Train:epoch: 102, loss@min: 0.947313, loss@max: 1.362357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.400368, LT: 0.399283, Top1S: 89.939148, Top1T: 89.939148 +Train:epoch: 103, loss@min: 0.998664, loss@max: 1.383164, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 103, LS: 0.400401, LT: 0.399329, Top1S: 89.939148, Top1T: 89.979713 +Train:epoch: 104, loss@min: 0.946836, loss@max: 1.358579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.400437, LT: 0.399323, Top1S: 89.939148, Top1T: 89.979713 +Train:epoch: 105, loss@min: 0.946687, loss@max: 1.362360, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.400473, LT: 0.399289, Top1S: 89.939148, Top1T: 89.979713 +Train:epoch: 106, loss@min: 0.950501, loss@max: 1.360503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.400473, LT: 0.399131, Top1S: 89.979713, Top1T: 90.020287 +Train:epoch: 107, loss@min: 0.946642, loss@max: 1.359601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.400460, LT: 0.398994, Top1S: 89.979713, Top1T: 90.060852Best acc: 90.060852 +Train:epoch: 108, loss@min: 0.946134, loss@max: 1.359772, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.400433, LT: 0.398874, Top1S: 89.939148, Top1T: 90.101418Best acc: 90.101418 +Train:epoch: 109, loss@min: 0.946710, loss@max: 1.360643, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.400388, LT: 0.398754, Top1S: 89.939148, Top1T: 90.101418 +Train:epoch: 110, loss@min: 0.948178, loss@max: 1.357247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.400293, LT: 0.398601, Top1S: 89.939148, Top1T: 90.101418 +Train:epoch: 111, loss@min: 0.955797, loss@max: 1.369060, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.400186, LT: 0.398479, Top1S: 89.939148, Top1T: 90.101418 +Train:epoch: 112, loss@min: 0.947688, loss@max: 1.359926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.400082, LT: 0.398392, Top1S: 89.939148, Top1T: 90.141991Best acc: 90.141991 +Train:epoch: 113, loss@min: 0.951424, loss@max: 1.363909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.399904, LT: 0.398258, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 114, loss@min: 0.953537, loss@max: 1.366496, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.399742, LT: 0.398188, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 115, loss@min: 0.958615, loss@max: 1.375510, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.399616, LT: 0.398134, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 116, loss@min: 0.948612, loss@max: 1.359980, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.399564, LT: 0.398132, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 117, loss@min: 0.954115, loss@max: 1.365072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.399475, LT: 0.398091, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 118, loss@min: 0.947651, loss@max: 1.358571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.399403, LT: 0.398097, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 119, loss@min: 0.979983, loss@max: 1.374324, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 119, LS: 0.399261, LT: 0.398028, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 120, loss@min: 0.945267, loss@max: 1.360044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.399116, LT: 0.397943, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 121, loss@min: 0.950721, loss@max: 1.361977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.398975, LT: 0.397846, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 122, loss@min: 0.949856, loss@max: 1.361634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.398889, LT: 0.397793, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 123, loss@min: 0.951122, loss@max: 1.362799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.398807, LT: 0.397716, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 124, loss@min: 0.952349, loss@max: 1.363137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.398798, LT: 0.397694, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 125, loss@min: 0.996932, loss@max: 1.378053, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 125, LS: 0.398753, LT: 0.397645, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 126, loss@min: 0.948413, loss@max: 1.360833, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.398732, LT: 0.397621, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 127, loss@min: 0.947974, loss@max: 1.358126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.398711, LT: 0.397605, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 128, loss@min: 0.945700, loss@max: 1.363969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.398659, LT: 0.397559, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 129, loss@min: 0.946333, loss@max: 1.360014, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.398612, LT: 0.397518, Top1S: 89.898582, Top1T: 90.141991 +Train:epoch: 130, loss@min: 0.947324, loss@max: 1.362539, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.398572, LT: 0.397482, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 131, loss@min: 0.948600, loss@max: 1.356440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.398555, LT: 0.397467, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 132, loss@min: 0.946672, loss@max: 1.358666, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.398534, LT: 0.397443, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 133, loss@min: 0.946296, loss@max: 1.361542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.398514, LT: 0.397429, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 134, loss@min: 0.950142, loss@max: 1.362766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.398523, LT: 0.397433, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 135, loss@min: 0.957334, loss@max: 1.363132, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 135, LS: 0.398521, LT: 0.397421, Top1S: 89.939148, Top1T: 90.141991 +Train:epoch: 136, loss@min: 0.946172, loss@max: 1.359781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.398520, LT: 0.397409, Top1S: 89.939148, Top1T: 90.182556Best acc: 90.182556 +Train:epoch: 137, loss@min: 0.958593, loss@max: 1.367865, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.398529, LT: 0.397409, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 138, loss@min: 0.955880, loss@max: 1.362903, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 138, LS: 0.398556, LT: 0.397430, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 139, loss@min: 0.949040, loss@max: 1.361231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.398574, LT: 0.397441, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 140, loss@min: 0.947755, loss@max: 1.360818, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.398588, LT: 0.397450, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 141, loss@min: 0.954278, loss@max: 1.365825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.398595, LT: 0.397454, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 142, loss@min: 0.953572, loss@max: 1.365513, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.398601, LT: 0.397456, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 143, loss@min: 0.958227, loss@max: 1.366241, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 143, LS: 0.398604, LT: 0.397459, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 144, loss@min: 0.951962, loss@max: 1.365542, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.398609, LT: 0.397462, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 145, loss@min: 0.946737, loss@max: 1.362109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.398611, LT: 0.397464, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 146, loss@min: 0.958317, loss@max: 1.363931, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 146, LS: 0.398613, LT: 0.397466, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 147, loss@min: 0.947232, loss@max: 1.363385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.398615, LT: 0.397467, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 148, loss@min: 0.951797, loss@max: 1.365100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.398616, LT: 0.397468, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 149, loss@min: 0.949780, loss@max: 1.360402, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.398616, LT: 0.397468, Top1S: 89.939148, Top1T: 90.182556 +Train:epoch: 150, loss@min: 0.948581, loss@max: 1.362808, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.398616, LT: 0.397468, Top1S: 89.939148, Top1T: 90.182556 +------------------------------------------- +Thu Jan 18 01:47:06 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 13:17:12 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.048449, loss@max: 1.022714, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.805717, loss@max: 1.117354, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.605288, loss@max: 1.193202, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.360193, loss@max: 1.232461, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 5, loss@min: 1.172729, loss@max: 1.262321, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.135859, loss@max: 1.317777, Top1S acc: 100.000000, Top1T acc: 93.500000 +Train:epoch: 7, loss@min: 1.012605, loss@max: 1.329939, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 8, loss@min: 0.968470, loss@max: 1.345500, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.887378, loss@max: 1.351937, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.892927, loss@max: 1.365774, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.020388, loss@max: 1.403121, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.926109, loss@max: 1.377160, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855711, loss@max: 1.337986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.858126, loss@max: 1.312858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.880042, loss@max: 1.299920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.950929, loss@max: 1.299230, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.980309, loss@max: 1.288654, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.996019, loss@max: 1.280839, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.019013, loss@max: 1.267420, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 0.995198, loss@max: 1.259270, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.998694, loss@max: 1.261228, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.003189, loss@max: 1.257181, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.008759, loss@max: 1.264141, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.965294, loss@max: 1.250749, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982761, loss@max: 1.262396, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.979581, loss@max: 1.275378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.998603, loss@max: 1.286367, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.989365, loss@max: 1.286824, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.951626, loss@max: 1.284264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.954965, loss@max: 1.303084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964147, loss@max: 1.319049, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955489, loss@max: 1.325906, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.931588, loss@max: 1.320122, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.945515, loss@max: 1.334429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.948421, loss@max: 1.337311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.933688, loss@max: 1.331482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.944610, loss@max: 1.341696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940620, loss@max: 1.336872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949492, loss@max: 1.342442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.972103, loss@max: 1.350185, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.936143, loss@max: 1.333936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.936294, loss@max: 1.340559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.034579, loss@max: 1.363801, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.949402, loss@max: 1.337301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.977784, loss@max: 1.348683, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951976, loss@max: 1.344524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.947016, loss@max: 1.341269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946322, loss@max: 1.341651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944661, loss@max: 1.341609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942684, loss@max: 1.345109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950804, loss@max: 1.350760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.961044, loss@max: 1.356836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961034, loss@max: 1.350893, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.962390, loss@max: 1.351058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.952829, loss@max: 1.344526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954258, loss@max: 1.352811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944572, loss@max: 1.347073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.984469, loss@max: 1.369025, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946183, loss@max: 1.361115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945397, loss@max: 1.358329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956697, loss@max: 1.360760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.952641, loss@max: 1.357672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.949148, loss@max: 1.353863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.954522, loss@max: 1.359302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.949039, loss@max: 1.358504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947178, loss@max: 1.352647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.944742, loss@max: 1.359462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946910, loss@max: 1.359680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947718, loss@max: 1.358476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.956495, loss@max: 1.361956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946890, loss@max: 1.358693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943116, loss@max: 1.356991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.961439, loss@max: 1.366432, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.962850, loss@max: 1.366846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947801, loss@max: 1.359239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955592, loss@max: 1.364119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.965098, loss@max: 1.366368, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.972327, loss@max: 1.365994, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.949539, loss@max: 1.362960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.968774, loss@max: 1.366698, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 80, LS: 0.391721, LT: 0.390903, Top1S: 89.817444, Top1T: 89.939148Best acc: 89.939148 +Train:epoch: 81, loss@min: 0.952105, loss@max: 1.369180, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.392306, LT: 0.391406, Top1S: 89.817444, Top1T: 89.939148 +Train:epoch: 82, loss@min: 0.955251, loss@max: 1.366159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.392852, LT: 0.391813, Top1S: 89.817444, Top1T: 89.939148{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 13:23:36 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045093, loss@max: 1.023305, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.799458, loss@max: 1.118391, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.594434, loss@max: 1.193962, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.356589, loss@max: 1.235278, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.172142, loss@max: 1.265808, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.127398, loss@max: 1.318657, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 7, loss@min: 1.007233, loss@max: 1.331122, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.971450, loss@max: 1.347735, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.889164, loss@max: 1.354893, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.881769, loss@max: 1.365589, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.016027, loss@max: 1.404981, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.919255, loss@max: 1.377800, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.857606, loss@max: 1.341854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.858615, loss@max: 1.316964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.883662, loss@max: 1.306412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.947743, loss@max: 1.304250, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.970027, loss@max: 1.293609, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.000038, loss@max: 1.291220, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.022219, loss@max: 1.275558, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.010210, loss@max: 1.273043, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.006749, loss@max: 1.272766, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.015838, loss@max: 1.267523, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.020846, loss@max: 1.272435, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.966156, loss@max: 1.255079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982501, loss@max: 1.264857, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.980621, loss@max: 1.279296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.990763, loss@max: 1.286459, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.989203, loss@max: 1.288128, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.952154, loss@max: 1.286215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.964037, loss@max: 1.307669, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 0.964556, loss@max: 1.319203, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.957815, loss@max: 1.326538, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.932447, loss@max: 1.320934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.952920, loss@max: 1.335569, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.946342, loss@max: 1.334192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936427, loss@max: 1.333246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.949652, loss@max: 1.344233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.944824, loss@max: 1.339743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.953257, loss@max: 1.343479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.964952, loss@max: 1.351039, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.936186, loss@max: 1.336501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.934866, loss@max: 1.343348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.027588, loss@max: 1.365417, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.946487, loss@max: 1.339382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.974648, loss@max: 1.349275, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951230, loss@max: 1.344797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.945544, loss@max: 1.342424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946347, loss@max: 1.343611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945089, loss@max: 1.342426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943076, loss@max: 1.347923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947958, loss@max: 1.351444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.963755, loss@max: 1.357933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.962507, loss@max: 1.353795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.959934, loss@max: 1.350483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.952560, loss@max: 1.344328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955814, loss@max: 1.351096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945794, loss@max: 1.347355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.979726, loss@max: 1.368338, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946493, loss@max: 1.361440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.944430, loss@max: 1.361127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956772, loss@max: 1.362097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951249, loss@max: 1.359483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950525, loss@max: 1.355835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957980, loss@max: 1.360291, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.949045, loss@max: 1.357445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.948282, loss@max: 1.353214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946205, loss@max: 1.358879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946403, loss@max: 1.359770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946136, loss@max: 1.359907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.957265, loss@max: 1.366076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945818, loss@max: 1.360989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.942571, loss@max: 1.358366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.959814, loss@max: 1.366148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965492, loss@max: 1.367141, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.948181, loss@max: 1.359836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955070, loss@max: 1.362551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962261, loss@max: 1.366564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.961852, loss@max: 1.364049, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.951146, loss@max: 1.363052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967227, loss@max: 1.366466, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.947555, loss@max: 1.363728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.942955, loss@max: 1.361851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.944211, loss@max: 1.360460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.965450, loss@max: 1.363058, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949340, loss@max: 1.355445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.950081, loss@max: 1.362793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.977011, loss@max: 1.367448, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 88, loss@min: 0.969818, loss@max: 1.374163, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.945626, loss@max: 1.359322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949020, loss@max: 1.363591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.955459, loss@max: 1.365053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.949075, loss@max: 1.361300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.949841, loss@max: 1.360001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.954982, loss@max: 1.368204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945290, loss@max: 1.362278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947199, loss@max: 1.360512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955257, loss@max: 1.368927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.984847, loss@max: 1.370471, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.949542, loss@max: 1.363292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948547, loss@max: 1.358321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.386426, LT: 0.384795, Top1S: 90.344826, Top1T: 90.385399Best acc: 90.385399 +Train:epoch: 101, loss@min: 0.949640, loss@max: 1.361365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.386444, LT: 0.384748, Top1S: 90.385399, Top1T: 90.425964Best acc: 90.425964 +Train:epoch: 102, loss@min: 0.948848, loss@max: 1.362632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.386465, LT: 0.384782, Top1S: 90.385399, Top1T: 90.425964 +Train:epoch: 103, loss@min: 0.948361, loss@max: 1.357961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.386516, LT: 0.384909, Top1S: 90.385399, Top1T: 90.466530Best acc: 90.466530 +Train:epoch: 104, loss@min: 0.974764, loss@max: 1.368932, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.386377, LT: 0.384870, Top1S: 90.425964, Top1T: 90.466530 +Train:epoch: 105, loss@min: 0.951522, loss@max: 1.363020, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 13:31:40 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045711, loss@max: 1.022916, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.800947, loss@max: 1.118014, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.596844, loss@max: 1.193626, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.356074, loss@max: 1.234234, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.170458, loss@max: 1.264535, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.128369, loss@max: 1.318369, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 7, loss@min: 1.007061, loss@max: 1.330766, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.967318, loss@max: 1.346878, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.886643, loss@max: 1.354044, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.884713, loss@max: 1.366165, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.016468, loss@max: 1.404623, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.920065, loss@max: 1.377611, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855273, loss@max: 1.340299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.856736, loss@max: 1.315098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.881217, loss@max: 1.303724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.945878, loss@max: 1.301244, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.973048, loss@max: 1.290784, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.992711, loss@max: 1.284561, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.018789, loss@max: 1.271176, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.001549, loss@max: 1.265260, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.001056, loss@max: 1.265735, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.007789, loss@max: 1.260784, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.013507, loss@max: 1.266623, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.965514, loss@max: 1.251239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982734, loss@max: 1.262273, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.980552, loss@max: 1.276111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.995039, loss@max: 1.285125, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.988880, loss@max: 1.286470, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.950906, loss@max: 1.284158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.957220, loss@max: 1.304572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964812, loss@max: 1.318789, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955686, loss@max: 1.325294, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.931645, loss@max: 1.320087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947599, loss@max: 1.333986, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.949632, loss@max: 1.336158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936076, loss@max: 1.331835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.944845, loss@max: 1.340847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.941711, loss@max: 1.336232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.947486, loss@max: 1.340275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.969964, loss@max: 1.350122, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.935940, loss@max: 1.334272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.935261, loss@max: 1.340729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.034423, loss@max: 1.364585, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.948873, loss@max: 1.337282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.976208, loss@max: 1.347877, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.953533, loss@max: 1.345414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.947541, loss@max: 1.341087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946113, loss@max: 1.341419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944522, loss@max: 1.340993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942500, loss@max: 1.345615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.951535, loss@max: 1.350492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.962729, loss@max: 1.356794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.959026, loss@max: 1.349758, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.963555, loss@max: 1.350127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.953763, loss@max: 1.343561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954261, loss@max: 1.351494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945069, loss@max: 1.347320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.984182, loss@max: 1.368542, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946550, loss@max: 1.361418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945222, loss@max: 1.358325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.958814, loss@max: 1.360944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950805, loss@max: 1.356058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950741, loss@max: 1.353501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.958149, loss@max: 1.359016, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.949155, loss@max: 1.357602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947839, loss@max: 1.352281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945210, loss@max: 1.359395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948634, loss@max: 1.360902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947476, loss@max: 1.358451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.957025, loss@max: 1.362115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945360, loss@max: 1.357662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943200, loss@max: 1.356701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.956913, loss@max: 1.364577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.957612, loss@max: 1.363940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948683, loss@max: 1.359438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.959283, loss@max: 1.365106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.973029, loss@max: 1.367695, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.973137, loss@max: 1.365626, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.949822, loss@max: 1.361656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967729, loss@max: 1.366097, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.946207, loss@max: 1.361744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.943998, loss@max: 1.359531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943796, loss@max: 1.359583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.969833, loss@max: 1.362369, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949231, loss@max: 1.354677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.949652, loss@max: 1.360712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.949840, loss@max: 1.358026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.977036, loss@max: 1.372594, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.947363, loss@max: 1.356885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949977, loss@max: 1.361286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.957062, loss@max: 1.362642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.948323, loss@max: 1.358184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950580, loss@max: 1.359011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.952936, loss@max: 1.366239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945038, loss@max: 1.361071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.946066, loss@max: 1.360563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.956612, loss@max: 1.367849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.993476, loss@max: 1.373696, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.949607, loss@max: 1.364921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947540, loss@max: 1.356947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.399589, LT: 0.398174, Top1S: 89.939148, Top1T: 90.020287Best acc: 90.020287 +Train:epoch: 101, loss@min: 0.948522, loss@max: 1.359796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.399380, LT: 0.397999, Top1S: 89.979713, Top1T: 90.020287 +Train:epoch: 102, loss@min: 0.947023, loss@max: 1.361379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.399214, LT: 0.397935, Top1S: 89.979713, Top1T: 90.020287 +Train:epoch: 103, loss@min: 0.949548, loss@max: 1.357487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.399087, LT: 0.397922, Top1S: 89.939148, Top1T: 90.020287 +Train:epoch: 104, loss@min: 0.957878, loss@max: 1.363600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.398956, LT: 0.397892, Top1S: 89.939148, Top1T: 89.979713 +Train:epoch: 105, loss@min: 0.951149, loss@max: 1.362153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.398914, LT: 0.397966, Top1S: 89.939148, Top1T: 90.020287 +Train:epoch: 106, loss@min: 0.948505, loss@max: 1.361153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.399084, LT: 0.398210, Top1S: 89.898582, Top1T: 90.020287 +Train:epoch: 107, loss@min: 0.947103, loss@max: 1.360078, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.399251, LT: 0.398453, Top1S: 89.898582, Top1T: 90.020287 +Train:epoch: 108, loss@min: 0.944549, loss@max: 1.358279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.399376, LT: 0.398618, Top1S: 89.898582, Top1T: 90.020287 +Train:epoch: 109, loss@min: 0.955617, loss@max: 1.369381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.399570, LT: 0.398773, Top1S: 89.898582, Top1T: 90.020287 +Train:epoch: 110, loss@min: 0.952821, loss@max: 1.366034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.399903, LT: 0.399102, Top1S: 89.898582, Top1T: 90.020287 +Train:epoch: 111, loss@min: 0.947638, loss@max: 1.361573, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 13:41:51 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.141009, loss@max: 1.016338, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 1.936675, loss@max: 1.088300, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.819032, loss@max: 1.162382, Top1S acc: 100.000000, Top1T acc: 89.500000 +Train:epoch: 4, loss@min: 1.581347, loss@max: 1.190232, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.366327, loss@max: 1.207706, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.372318, loss@max: 1.276796, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 7, loss@min: 1.241488, loss@max: 1.291489, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 8, loss@min: 1.158840, loss@max: 1.306314, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.069322, loss@max: 1.315050, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 10, loss@min: 1.107452, loss@max: 1.344085, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 11, loss@min: 1.174254, loss@max: 1.385942, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 12, loss@min: 1.154065, loss@max: 1.399018, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 13, loss@min: 0.948896, loss@max: 1.352327, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 0.939944, loss@max: 1.353430, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 15, loss@min: 0.902414, loss@max: 1.351720, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.016458, loss@max: 1.386051, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 0.980210, loss@max: 1.384648, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 18, loss@min: 1.067857, loss@max: 1.408595, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 19, loss@min: 1.056832, loss@max: 1.391998, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 20, loss@min: 0.978494, loss@max: 1.381076, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 21, loss@min: 0.954456, loss@max: 1.374518, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 22, loss@min: 0.958133, loss@max: 1.360848, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 23, loss@min: 0.954998, loss@max: 1.359579, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.939092, loss@max: 1.343476, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 25, loss@min: 0.978294, loss@max: 1.350896, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.984415, loss@max: 1.357289, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.027642, loss@max: 1.361639, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 28, loss@min: 0.994758, loss@max: 1.346605, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 29, loss@min: 0.954904, loss@max: 1.328067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977335, loss@max: 1.337204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.051991, loss@max: 1.359821, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.016885, loss@max: 1.347481, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 33, loss@min: 0.969642, loss@max: 1.323846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.999236, loss@max: 1.339403, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.033826, loss@max: 1.350281, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.970961, loss@max: 1.327781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.989713, loss@max: 1.339214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.003808, loss@max: 1.336585, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 39, loss@min: 1.007332, loss@max: 1.337699, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 40, loss@min: 1.027816, loss@max: 1.357545, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.975682, loss@max: 1.331635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.980783, loss@max: 1.342888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.095423, loss@max: 1.372730, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 44, loss@min: 0.984983, loss@max: 1.343117, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 1.019974, loss@max: 1.366791, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 46, loss@min: 1.012518, loss@max: 1.367609, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.973020, loss@max: 1.352446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.971161, loss@max: 1.349705, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.965916, loss@max: 1.350080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.957017, loss@max: 1.354954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.986979, loss@max: 1.361859, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.073384, loss@max: 1.396868, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 53, loss@min: 1.009799, loss@max: 1.372864, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 1.028998, loss@max: 1.385577, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.980212, loss@max: 1.366773, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 56, loss@min: 0.982455, loss@max: 1.371746, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 0.957564, loss@max: 1.364246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.025928, loss@max: 1.382731, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.997228, loss@max: 1.390043, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 60, loss@min: 0.965223, loss@max: 1.376375, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.982602, loss@max: 1.388622, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.969984, loss@max: 1.385036, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 63, loss@min: 0.959401, loss@max: 1.378015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.969204, loss@max: 1.381815, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.990447, loss@max: 1.377744, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 66, loss@min: 0.982347, loss@max: 1.380325, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 67, loss@min: 0.951940, loss@max: 1.376727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.973891, loss@max: 1.382954, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 69, loss@min: 0.960318, loss@max: 1.386349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.999631, loss@max: 1.392355, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 71, loss@min: 0.962299, loss@max: 1.379826, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 72, loss@min: 0.948885, loss@max: 1.368172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.962598, loss@max: 1.386666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.983650, loss@max: 1.381185, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.956454, loss@max: 1.374867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.979817, loss@max: 1.384696, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 1.006036, loss@max: 1.402140, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 78, loss@min: 1.014289, loss@max: 1.391804, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.957086, loss@max: 1.379910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.008032, loss@max: 1.392210, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 81, loss@min: 0.958656, loss@max: 1.383690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.948881, loss@max: 1.375724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948591, loss@max: 1.376139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.985287, loss@max: 1.379706, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949123, loss@max: 1.376030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.957819, loss@max: 1.386792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.954029, loss@max: 1.377774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.047652, loss@max: 1.410977, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.949322, loss@max: 1.374930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.956346, loss@max: 1.376184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.985402, loss@max: 1.385330, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 92, loss@min: 0.957596, loss@max: 1.373653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.960151, loss@max: 1.369441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.981070, loss@max: 1.389828, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 95, loss@min: 0.953097, loss@max: 1.370497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.965208, loss@max: 1.387318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.978247, loss@max: 1.389102, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.015489, loss@max: 1.393820, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.963037, loss@max: 1.380363, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 100, loss@min: 0.951755, loss@max: 1.371686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.428177, LT: 0.426935, Top1S: 89.411766, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 101, loss@min: 0.961625, loss@max: 1.377775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.428204, LT: 0.426965, Top1S: 89.371201, Top1T: 89.574036 +Train:epoch: 102, loss@min: 0.960488, loss@max: 1.378821, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 13:48:21 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.086012, loss@max: 1.021695, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.859840, loss@max: 1.107714, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.697737, loss@max: 1.183816, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.450555, loss@max: 1.217163, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.252367, loss@max: 1.241357, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.238201, loss@max: 1.304623, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 7, loss@min: 1.112245, loss@max: 1.317026, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 8, loss@min: 1.043952, loss@max: 1.329639, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.958047, loss@max: 1.334565, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 10, loss@min: 0.995497, loss@max: 1.358557, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 11, loss@min: 1.077870, loss@max: 1.395273, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 12, loss@min: 1.030635, loss@max: 1.392909, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 13, loss@min: 0.886140, loss@max: 1.349974, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.881701, loss@max: 1.342465, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 15, loss@min: 0.865938, loss@max: 1.332854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.974260, loss@max: 1.354283, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.952571, loss@max: 1.346217, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.013425, loss@max: 1.351087, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 19, loss@min: 1.036514, loss@max: 1.333213, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 0.977367, loss@max: 1.315670, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.977516, loss@max: 1.310410, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.983310, loss@max: 1.295011, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 0.983808, loss@max: 1.292822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.962376, loss@max: 1.277244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.997063, loss@max: 1.287339, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.996026, loss@max: 1.295661, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.031342, loss@max: 1.303941, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.999761, loss@max: 1.292017, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.972833, loss@max: 1.281257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.984806, loss@max: 1.292220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.031293, loss@max: 1.314639, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.013272, loss@max: 1.312008, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 0.971425, loss@max: 1.296654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.987423, loss@max: 1.314284, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.007913, loss@max: 1.327006, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.963604, loss@max: 1.312364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.974264, loss@max: 1.325225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.973288, loss@max: 1.326278, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 0.973423, loss@max: 1.331681, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 0.993830, loss@max: 1.350102, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.948452, loss@max: 1.333794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.949443, loss@max: 1.346514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.054652, loss@max: 1.377502, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.955539, loss@max: 1.353001, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 0.975569, loss@max: 1.370490, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 46, loss@min: 0.958422, loss@max: 1.366789, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.947701, loss@max: 1.358133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.945493, loss@max: 1.354325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945439, loss@max: 1.355253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939938, loss@max: 1.356062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.959281, loss@max: 1.360521, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.018302, loss@max: 1.386145, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 0.980588, loss@max: 1.367064, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.992104, loss@max: 1.374483, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.955236, loss@max: 1.362237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.959270, loss@max: 1.366095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944072, loss@max: 1.360039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.004738, loss@max: 1.378828, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.963726, loss@max: 1.378204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951229, loss@max: 1.367482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.967196, loss@max: 1.378277, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.953278, loss@max: 1.375116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.948814, loss@max: 1.366169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.955916, loss@max: 1.369206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.972367, loss@max: 1.364586, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 66, loss@min: 0.964976, loss@max: 1.364798, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 67, loss@min: 0.949500, loss@max: 1.362750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.968787, loss@max: 1.367625, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 69, loss@min: 0.955520, loss@max: 1.367219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.981580, loss@max: 1.374577, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 71, loss@min: 0.955188, loss@max: 1.364020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.950485, loss@max: 1.357251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.963660, loss@max: 1.373466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.978951, loss@max: 1.368865, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.955602, loss@max: 1.361949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.971310, loss@max: 1.372873, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 0.980342, loss@max: 1.383101, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.008230, loss@max: 1.380972, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.955199, loss@max: 1.369545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.003677, loss@max: 1.381263, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 81, loss@min: 0.956147, loss@max: 1.371489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.946911, loss@max: 1.365076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946398, loss@max: 1.366564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.976939, loss@max: 1.371436, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.947029, loss@max: 1.365958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.954628, loss@max: 1.376732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950617, loss@max: 1.367488, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.025013, loss@max: 1.396467, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.948862, loss@max: 1.365168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.954623, loss@max: 1.367773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.975108, loss@max: 1.373946, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 92, loss@min: 0.954224, loss@max: 1.365064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.958560, loss@max: 1.362598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.975127, loss@max: 1.379134, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 95, loss@min: 0.950665, loss@max: 1.363752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.956160, loss@max: 1.377198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.965958, loss@max: 1.378343, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.009934, loss@max: 1.385676, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.951170, loss@max: 1.372198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948342, loss@max: 1.365730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.426140, LT: 0.425034, Top1S: 89.533470, Top1T: 89.533470Best acc: 89.533470 +Train:epoch: 101, loss@min: 0.953523, loss@max: 1.368580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.426165, LT: 0.425000, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 102, loss@min: 0.954412, loss@max: 1.370879, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 13:54:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.064995, loss@max: 1.022475, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 2, loss@min: 1.830614, loss@max: 1.113773, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.647656, loss@max: 1.189946, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.398726, loss@max: 1.226015, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 5, loss@min: 1.206795, loss@max: 1.253085, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 6, loss@min: 1.182979, loss@max: 1.312963, Top1S acc: 100.000000, Top1T acc: 93.500000 +Train:epoch: 7, loss@min: 1.057905, loss@max: 1.324541, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 8, loss@min: 1.001143, loss@max: 1.338135, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.915727, loss@max: 1.342260, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 0.942920, loss@max: 1.361639, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 11, loss@min: 1.045220, loss@max: 1.397364, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.980451, loss@max: 1.384640, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 13, loss@min: 0.869793, loss@max: 1.342533, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 14, loss@min: 0.869362, loss@max: 1.327309, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 15, loss@min: 0.868312, loss@max: 1.314357, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.968965, loss@max: 1.327226, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.965446, loss@max: 1.316406, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.006266, loss@max: 1.313298, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 19, loss@min: 1.032933, loss@max: 1.296158, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 0.982446, loss@max: 1.278397, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.989450, loss@max: 1.277492, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 0.995543, loss@max: 1.267190, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 0.998914, loss@max: 1.269187, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.969975, loss@max: 1.255743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.997835, loss@max: 1.269385, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.993549, loss@max: 1.279592, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.030392, loss@max: 1.291777, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.996817, loss@max: 1.282983, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.966534, loss@max: 1.276191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.973466, loss@max: 1.289710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.000638, loss@max: 1.311621, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 0.987633, loss@max: 1.314831, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.951762, loss@max: 1.306521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.960851, loss@max: 1.324615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.979513, loss@max: 1.339754, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.941348, loss@max: 1.327750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.949946, loss@max: 1.341429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.944035, loss@max: 1.340833, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 0.941058, loss@max: 1.346533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.968928, loss@max: 1.360601, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.929090, loss@max: 1.343642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933070, loss@max: 1.352075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.034107, loss@max: 1.374340, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.946746, loss@max: 1.347590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.966666, loss@max: 1.358101, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951764, loss@max: 1.351142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.949265, loss@max: 1.345561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.950177, loss@max: 1.345256, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.956959, loss@max: 1.351472, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 50, loss@min: 0.941018, loss@max: 1.349804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.955520, loss@max: 1.356585, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 0.977668, loss@max: 1.368408, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 53, loss@min: 0.974437, loss@max: 1.359351, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.966716, loss@max: 1.359272, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 55, loss@min: 0.952204, loss@max: 1.349390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.958762, loss@max: 1.354364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.949188, loss@max: 1.347016, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 13:57:39 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045061, loss@max: 1.023300, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.799406, loss@max: 1.118377, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.594404, loss@max: 1.194003, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.356569, loss@max: 1.235268, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.172183, loss@max: 1.265850, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.127406, loss@max: 1.318725, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 7, loss@min: 1.007116, loss@max: 1.331117, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.971435, loss@max: 1.347733, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.889079, loss@max: 1.354902, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 0.881746, loss@max: 1.365543, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.016075, loss@max: 1.404994, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.919313, loss@max: 1.377816, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.857663, loss@max: 1.341821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.858648, loss@max: 1.316947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.883676, loss@max: 1.306408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.947722, loss@max: 1.304219, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.970042, loss@max: 1.293635, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.000116, loss@max: 1.291235, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.022188, loss@max: 1.275513, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.010191, loss@max: 1.273015, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.006762, loss@max: 1.272745, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.015777, loss@max: 1.267488, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.020850, loss@max: 1.272451, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.966157, loss@max: 1.255083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982517, loss@max: 1.264864, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.980545, loss@max: 1.279315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.990827, loss@max: 1.286500, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.989223, loss@max: 1.288123, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.952171, loss@max: 1.286192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.964057, loss@max: 1.307635, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 0.964582, loss@max: 1.319184, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.957852, loss@max: 1.326545, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.932436, loss@max: 1.320958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.952882, loss@max: 1.335589, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.946338, loss@max: 1.334215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936401, loss@max: 1.333275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.949642, loss@max: 1.344233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.944834, loss@max: 1.339750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.953309, loss@max: 1.343471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.964956, loss@max: 1.351024, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.936198, loss@max: 1.336495, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.934847, loss@max: 1.343376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.027552, loss@max: 1.365435, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.946477, loss@max: 1.339408, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.974633, loss@max: 1.349282, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.951250, loss@max: 1.344799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.945565, loss@max: 1.342407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946393, loss@max: 1.343563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.945116, loss@max: 1.342395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943070, loss@max: 1.347936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947947, loss@max: 1.351476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.963712, loss@max: 1.357973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.962504, loss@max: 1.353801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.959935, loss@max: 1.350483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.952564, loss@max: 1.344312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955848, loss@max: 1.351068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945812, loss@max: 1.347337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.979736, loss@max: 1.368333, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946497, loss@max: 1.361454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.944426, loss@max: 1.361127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956710, loss@max: 1.362125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951246, loss@max: 1.359515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950509, loss@max: 1.355865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.958009, loss@max: 1.360298, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.949073, loss@max: 1.357409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.948322, loss@max: 1.353175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946221, loss@max: 1.358871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946386, loss@max: 1.359804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.946100, loss@max: 1.359956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.957247, loss@max: 1.366106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945818, loss@max: 1.361009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.942570, loss@max: 1.358366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.959816, loss@max: 1.366132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.965489, loss@max: 1.367144, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.948211, loss@max: 1.359816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955091, loss@max: 1.362529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962284, loss@max: 1.366555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.961830, loss@max: 1.364032, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.951118, loss@max: 1.363054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967212, loss@max: 1.366470, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.947549, loss@max: 1.363735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.942934, loss@max: 1.361864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.944210, loss@max: 1.360462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.965404, loss@max: 1.363056, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949351, loss@max: 1.355431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.950095, loss@max: 1.362778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.976987, loss@max: 1.367435, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 88, loss@min: 0.969828, loss@max: 1.374150, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.945637, loss@max: 1.359311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949008, loss@max: 1.363601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.955413, loss@max: 1.365064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.949057, loss@max: 1.361304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.949833, loss@max: 1.360006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.954949, loss@max: 1.368212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945290, loss@max: 1.362279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947215, loss@max: 1.360494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955250, loss@max: 1.368916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.984920, loss@max: 1.370485, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.949534, loss@max: 1.363292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948550, loss@max: 1.358319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.386441, LT: 0.384803, Top1S: 90.344826, Top1T: 90.385399Best acc: 90.385399 +Train:epoch: 101, loss@min: 0.949651, loss@max: 1.361370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.386460, LT: 0.384756, Top1S: 90.385399, Top1T: 90.425964Best acc: 90.425964 +Train:epoch: 102, loss@min: 0.948858, loss@max: 1.362633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.386480, LT: 0.384789, Top1S: 90.385399, Top1T: 90.425964 +Train:epoch: 103, loss@min: 0.948364, loss@max: 1.357956, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.386531, LT: 0.384916, Top1S: 90.385399, Top1T: 90.466530Best acc: 90.466530 +Train:epoch: 104, loss@min: 0.974853, loss@max: 1.368940, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.386391, LT: 0.384876, Top1S: 90.425964, Top1T: 90.466530 +Train:epoch: 105, loss@min: 0.951527, loss@max: 1.363032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.386275, LT: 0.384891, Top1S: 90.425964, Top1T: 90.466530 +Train:epoch: 106, loss@min: 0.948734, loss@max: 1.362889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.386202, LT: 0.384942, Top1S: 90.425964, Top1T: 90.425964 +Train:epoch: 107, loss@min: 0.946958, loss@max: 1.360924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.386145, LT: 0.385007, Top1S: 90.425964, Top1T: 90.425964 +Train:epoch: 108, loss@min: 0.945143, loss@max: 1.359299, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:06:37 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045711, loss@max: 1.022916, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.800947, loss@max: 1.118014, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.596844, loss@max: 1.193626, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.356074, loss@max: 1.234234, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.170458, loss@max: 1.264535, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.128369, loss@max: 1.318369, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 7, loss@min: 1.007061, loss@max: 1.330766, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.967318, loss@max: 1.346878, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.886643, loss@max: 1.354044, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.884713, loss@max: 1.366165, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.016468, loss@max: 1.404623, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.920065, loss@max: 1.377611, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855273, loss@max: 1.340299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.856736, loss@max: 1.315098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.881217, loss@max: 1.303724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.945878, loss@max: 1.301244, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.973048, loss@max: 1.290784, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.992711, loss@max: 1.284561, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.018789, loss@max: 1.271176, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.001549, loss@max: 1.265260, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.001056, loss@max: 1.265735, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.007789, loss@max: 1.260784, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.013507, loss@max: 1.266623, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 24, loss@min: 0.965514, loss@max: 1.251239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982734, loss@max: 1.262273, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.980552, loss@max: 1.276111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.995039, loss@max: 1.285125, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.988880, loss@max: 1.286470, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.950906, loss@max: 1.284158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.957220, loss@max: 1.304572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964812, loss@max: 1.318789, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955686, loss@max: 1.325294, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.931645, loss@max: 1.320087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947599, loss@max: 1.333986, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.949632, loss@max: 1.336158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936076, loss@max: 1.331835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.944845, loss@max: 1.340847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.941711, loss@max: 1.336232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.947486, loss@max: 1.340275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.969964, loss@max: 1.350122, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.935940, loss@max: 1.334272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.935261, loss@max: 1.340729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.034423, loss@max: 1.364585, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.948873, loss@max: 1.337282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.976208, loss@max: 1.347877, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.953533, loss@max: 1.345414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.947541, loss@max: 1.341087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946113, loss@max: 1.341419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944522, loss@max: 1.340993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942500, loss@max: 1.345615, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.951535, loss@max: 1.350492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.962729, loss@max: 1.356794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.959026, loss@max: 1.349758, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.963555, loss@max: 1.350127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.953763, loss@max: 1.343561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954261, loss@max: 1.351494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945069, loss@max: 1.347320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.984182, loss@max: 1.368542, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946550, loss@max: 1.361418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945222, loss@max: 1.358325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.958814, loss@max: 1.360944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950805, loss@max: 1.356058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950741, loss@max: 1.353501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.958149, loss@max: 1.359016, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.949155, loss@max: 1.357602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947839, loss@max: 1.352281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945210, loss@max: 1.359395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948634, loss@max: 1.360902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947476, loss@max: 1.358451, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.957025, loss@max: 1.362115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945360, loss@max: 1.357662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.943200, loss@max: 1.356701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.956913, loss@max: 1.364577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.957612, loss@max: 1.363940, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948683, loss@max: 1.359438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.959283, loss@max: 1.365106, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.973029, loss@max: 1.367695, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.973137, loss@max: 1.365626, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.949822, loss@max: 1.361656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967729, loss@max: 1.366097, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.946207, loss@max: 1.361744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.943998, loss@max: 1.359531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943796, loss@max: 1.359583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.969833, loss@max: 1.362369, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949231, loss@max: 1.354677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.949652, loss@max: 1.360712, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.949840, loss@max: 1.358026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.977036, loss@max: 1.372594, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.947363, loss@max: 1.356885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949977, loss@max: 1.361286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.957062, loss@max: 1.362642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.948323, loss@max: 1.358184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950580, loss@max: 1.359011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.952936, loss@max: 1.366239, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945038, loss@max: 1.361071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.946066, loss@max: 1.360563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.956612, loss@max: 1.367849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.993476, loss@max: 1.373696, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.949607, loss@max: 1.364921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947540, loss@max: 1.356947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.399589, LT: 0.398174, Top1S: 89.939148, Top1T: 90.020287Best acc: 90.020287 +Train:epoch: 101, loss@min: 0.948522, loss@max: 1.359796, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.399380, LT: 0.397999, Top1S: 89.979713, Top1T: 90.020287 +Train:epoch: 102, loss@min: 0.947023, loss@max: 1.361379, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.399214, LT: 0.397935, Top1S: 89.979713, Top1T: 90.020287 +Train:epoch: 103, loss@min: 0.949548, loss@max: 1.357487, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.399087, LT: 0.397922, Top1S: 89.939148, Top1T: 90.020287 +Train:epoch: 104, loss@min: 0.957878, loss@max: 1.363600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.398956, LT: 0.397892, Top1S: 89.939148, Top1T: 89.979713 +Train:epoch: 105, loss@min: 0.951149, loss@max: 1.362153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.398914, LT: 0.397966, Top1S: 89.939148, Top1T: 90.020287 +Train:epoch: 106, loss@min: 0.948505, loss@max: 1.361153, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Thu Jan 18 14:14:41 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.086012, loss@max: 1.021695, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 2, loss@min: 1.859840, loss@max: 1.107714, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.697737, loss@max: 1.183816, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 1.450555, loss@max: 1.217163, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.252367, loss@max: 1.241357, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.238201, loss@max: 1.304623, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 7, loss@min: 1.112245, loss@max: 1.317026, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 8, loss@min: 1.043952, loss@max: 1.329639, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.958047, loss@max: 1.334565, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 10, loss@min: 0.995497, loss@max: 1.358557, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 11, loss@min: 1.077870, loss@max: 1.395273, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 12, loss@min: 1.030635, loss@max: 1.392909, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 13, loss@min: 0.886140, loss@max: 1.349974, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.881701, loss@max: 1.342465, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 15, loss@min: 0.865938, loss@max: 1.332854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.974260, loss@max: 1.354283, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.952571, loss@max: 1.346217, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.013425, loss@max: 1.351087, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 19, loss@min: 1.036514, loss@max: 1.333213, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 0.977367, loss@max: 1.315670, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 0.977516, loss@max: 1.310410, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.983310, loss@max: 1.295011, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 0.983808, loss@max: 1.292822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.962376, loss@max: 1.277244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.997063, loss@max: 1.287339, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.996026, loss@max: 1.295661, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.031342, loss@max: 1.303941, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 0.999761, loss@max: 1.292017, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.972833, loss@max: 1.281257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.984806, loss@max: 1.292220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.030570, loss@max: 1.314974, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.012187, loss@max: 1.313230, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 0.969326, loss@max: 1.298936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.985308, loss@max: 1.317518, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.011072, loss@max: 1.332862, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 0.959362, loss@max: 1.317732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.967224, loss@max: 1.330766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.963401, loss@max: 1.332662, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 0.961578, loss@max: 1.338989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.983220, loss@max: 1.356112, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.938374, loss@max: 1.339906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.941541, loss@max: 1.352350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.042505, loss@max: 1.380165, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.947894, loss@max: 1.355405, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 0.968014, loss@max: 1.370302, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 46, loss@min: 0.952088, loss@max: 1.363443, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.948770, loss@max: 1.356200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949365, loss@max: 1.352441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.953566, loss@max: 1.355290, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 50, loss@min: 0.941817, loss@max: 1.353537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.963030, loss@max: 1.360790, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.007043, loss@max: 1.381964, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 0.982007, loss@max: 1.367785, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.977699, loss@max: 1.370650, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.951623, loss@max: 1.360931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.956154, loss@max: 1.365190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944120, loss@max: 1.358283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.001198, loss@max: 1.376081, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.959298, loss@max: 1.371338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.953773, loss@max: 1.362334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.964038, loss@max: 1.369681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.955840, loss@max: 1.367680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952066, loss@max: 1.360339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.962520, loss@max: 1.365419, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.966619, loss@max: 1.360040, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 66, loss@min: 0.959726, loss@max: 1.358830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951614, loss@max: 1.360573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959179, loss@max: 1.362595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.955865, loss@max: 1.365269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.972431, loss@max: 1.369442, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 71, loss@min: 0.952679, loss@max: 1.361417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949007, loss@max: 1.356101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.963293, loss@max: 1.371236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.967775, loss@max: 1.366305, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.952826, loss@max: 1.360578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.967736, loss@max: 1.373898, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 0.981704, loss@max: 1.381903, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.005856, loss@max: 1.379114, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.954428, loss@max: 1.368169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.990820, loss@max: 1.376794, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 81, loss@min: 0.952327, loss@max: 1.366193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947211, loss@max: 1.364091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.946335, loss@max: 1.364820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.969437, loss@max: 1.368438, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.947866, loss@max: 1.362859, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.950804, loss@max: 1.371681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950794, loss@max: 1.364813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.011155, loss@max: 1.390026, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.949014, loss@max: 1.360887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.956523, loss@max: 1.364488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.418102, LT: 0.416082, Top1S: 89.655174, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 91, loss@min: 0.973489, loss@max: 1.372819, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 91, LS: 0.418873, LT: 0.416930, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 92, loss@min: 0.957342, loss@max: 1.366038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.419745, LT: 0.417900, Top1S: 89.614601, Top1T: 89.655174 +Train:epoch: 93, loss@min: 1.026043, loss@max: 1.395510, Top1S acc: 100.000000, Top1T acc: 98.000000 + Test:epoch: 93, LS: 0.420712, LT: 0.418937, Top1S: 89.574036, Top1T: 89.655174 +Train:epoch: 94, loss@min: 0.999414, loss@max: 1.375906, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 94, LS: 0.421538, LT: 0.419750, Top1S: 89.574036, Top1T: 89.655174 +Train:epoch: 95, loss@min: 0.978696, loss@max: 1.377486, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 95, LS: 0.422246, LT: 0.420463, Top1S: 89.574036, Top1T: 89.655174 +Train:epoch: 96, loss@min: 0.951342, loss@max: 1.365106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.422950, LT: 0.421249, Top1S: 89.533470, Top1T: 89.695740Best acc: 89.695740 +Train:epoch: 97, loss@min: 0.955323, loss@max: 1.371194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.423675, LT: 0.422066, Top1S: 89.574036, Top1T: 89.695740 +Train:epoch: 98, loss@min: 0.948722, loss@max: 1.365720, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:24:04 2024 +-------------------------------------------{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:24:37 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.500000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.500000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.500000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.500000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.500000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.500000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 41, loss@min: 2.132766, loss@max: 1.247157, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 42, loss@min: 2.036632, loss@max: 1.296224, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 43, loss@min: 1.941823, loss@max: 1.375875, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 44, loss@min: 1.598096, loss@max: 1.397684, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 45, loss@min: 1.499526, loss@max: 1.445003, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 46, loss@min: 1.436094, loss@max: 1.482441, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 47, loss@min: 1.173183, loss@max: 1.456442, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 48, loss@min: 1.111278, loss@max: 1.465088, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 49, loss@min: 1.081706, loss@max: 1.496147, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 50, loss@min: 1.005502, loss@max: 1.519216, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 51, loss@min: 0.930119, loss@max: 1.532822, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 52, loss@min: 1.032379, loss@max: 1.586147, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 53, loss@min: 0.993330, loss@max: 1.566792, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 54, loss@min: 1.013975, loss@max: 1.564796, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 55, loss@min: 0.942364, loss@max: 1.515139, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 56, loss@min: 0.931271, loss@max: 1.490867, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 0.916772, loss@max: 1.455631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.019692, loss@max: 1.458952, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.968894, loss@max: 1.433189, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 60, loss@min: 0.966949, loss@max: 1.404285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.993627, loss@max: 1.394602, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.987990, loss@max: 1.370650, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 63, loss@min: 0.985304, loss@max: 1.354427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.003269, loss@max: 1.349625, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 1.000750, loss@max: 1.339383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.020442, loss@max: 1.335861, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 67, loss@min: 1.007267, loss@max: 1.331627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.999253, loss@max: 1.330248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.000270, loss@max: 1.344861, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 70, loss@min: 0.996749, loss@max: 1.353769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.976970, loss@max: 1.352568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.964772, loss@max: 1.344980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.990461, loss@max: 1.368348, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.977894, loss@max: 1.367664, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.957241, loss@max: 1.368108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.968439, loss@max: 1.381765, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 1.004472, loss@max: 1.396472, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.015112, loss@max: 1.387873, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.950898, loss@max: 1.374699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.974631, loss@max: 1.379052, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.947306, loss@max: 1.373910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.940606, loss@max: 1.373906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.942530, loss@max: 1.373984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.974443, loss@max: 1.380001, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.944678, loss@max: 1.373924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.958027, loss@max: 1.380455, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 87, loss@min: 0.946341, loss@max: 1.374756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.010705, loss@max: 1.395257, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.946923, loss@max: 1.365977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958305, loss@max: 1.368803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.974046, loss@max: 1.377472, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 92, loss@min: 0.949415, loss@max: 1.365141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.957408, loss@max: 1.362714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.955392, loss@max: 1.368417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.951869, loss@max: 1.362543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.951456, loss@max: 1.366521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.980752, loss@max: 1.380931, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.006616, loss@max: 1.377879, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.956143, loss@max: 1.367165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951755, loss@max: 1.360965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.441430, LT: 0.443856, Top1S: 89.452332, Top1T: 89.330627Best acc: 89.452332 +Train:epoch: 101, loss@min: 0.954773, loss@max: 1.365321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.441538, LT: 0.443725, Top1S: 89.492905, Top1T: 89.411766Best acc: 89.492905 +Train:epoch: 102, loss@min: 0.958797, loss@max: 1.367852, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:30:48 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 2, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 83.500000 +Train:epoch: 3, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.500000 +Train:epoch: 4, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 5, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 6, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.500000 +Train:epoch: 7, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 8, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.500000 +Train:epoch: 9, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 10, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 11, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 82.000000 +Train:epoch: 12, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 13, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 14, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.500000 +Train:epoch: 15, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 16, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 17, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 18, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 19, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 20, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 21, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 22, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 23, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 24, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 25, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 26, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 27, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 28, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 29, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 30, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 31, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 32, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 33, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.500000 +Train:epoch: 34, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 35, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 36, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 37, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 38, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 39, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 40, loss@min: 0.000000, loss@max: 0.000000, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 41, loss@min: 2.132766, loss@max: 1.247157, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 42, loss@min: 2.036632, loss@max: 1.296224, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 43, loss@min: 1.941823, loss@max: 1.375875, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 44, loss@min: 1.598096, loss@max: 1.397684, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 45, loss@min: 1.499526, loss@max: 1.445003, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 46, loss@min: 1.436094, loss@max: 1.482441, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 47, loss@min: 1.173183, loss@max: 1.456442, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 48, loss@min: 1.111278, loss@max: 1.465088, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 49, loss@min: 1.081706, loss@max: 1.496147, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 50, loss@min: 1.005502, loss@max: 1.519216, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 51, loss@min: 0.930119, loss@max: 1.532822, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 52, loss@min: 1.032379, loss@max: 1.586147, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 53, loss@min: 0.993330, loss@max: 1.566792, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 54, loss@min: 1.013975, loss@max: 1.564796, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 55, loss@min: 0.942364, loss@max: 1.515139, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 56, loss@min: 0.931271, loss@max: 1.490867, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 57, loss@min: 0.916772, loss@max: 1.455631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.019692, loss@max: 1.458952, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.968894, loss@max: 1.433189, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 60, loss@min: 0.966949, loss@max: 1.404285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.993627, loss@max: 1.394602, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.987990, loss@max: 1.370650, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 63, loss@min: 0.985304, loss@max: 1.354427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 1.003269, loss@max: 1.349625, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 1.000750, loss@max: 1.339383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.020442, loss@max: 1.335861, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 67, loss@min: 1.007267, loss@max: 1.331627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.999253, loss@max: 1.330248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.000270, loss@max: 1.344861, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 70, loss@min: 0.996749, loss@max: 1.353769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.976970, loss@max: 1.352568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.964772, loss@max: 1.344980, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.990461, loss@max: 1.368348, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.977894, loss@max: 1.367664, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.957241, loss@max: 1.368108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.968439, loss@max: 1.381765, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 1.004472, loss@max: 1.396472, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.015112, loss@max: 1.387873, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.950898, loss@max: 1.374699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.974631, loss@max: 1.379052, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.947306, loss@max: 1.373910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.940606, loss@max: 1.373906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.942530, loss@max: 1.373984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.974443, loss@max: 1.380001, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.944678, loss@max: 1.373924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.958027, loss@max: 1.380455, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 87, loss@min: 0.946341, loss@max: 1.374756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.010705, loss@max: 1.395257, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.946923, loss@max: 1.365977, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958305, loss@max: 1.368803, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.974046, loss@max: 1.377472, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 92, loss@min: 0.949415, loss@max: 1.365141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.957408, loss@max: 1.362714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.955392, loss@max: 1.368417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.951869, loss@max: 1.362543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.951456, loss@max: 1.366521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.980752, loss@max: 1.380931, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.006616, loss@max: 1.377879, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.956143, loss@max: 1.367165, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951755, loss@max: 1.360965, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.441431, LT: 0.443857, Top1S: 89.452332, Top1T: 89.330627Best acc: 89.452332 +Train:epoch: 101, loss@min: 0.954773, loss@max: 1.365321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.441539, LT: 0.443725, Top1S: 89.492905, Top1T: 89.411766Best acc: 89.492905 +Train:epoch: 102, loss@min: 0.958797, loss@max: 1.367852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.441659, LT: 0.443688, Top1S: 89.492905, Top1T: 89.411766 +Train:epoch: 103, loss@min: 0.957655, loss@max: 1.362652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.441857, LT: 0.443823, Top1S: 89.492905, Top1T: 89.411766 +Train:epoch: 104, loss@min: 0.962545, loss@max: 1.366048, Top1S acc: 100.000000, Top1T acc: 99.500000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:37:53 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045435, loss@max: 1.023084, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.800239, loss@max: 1.118220, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.595605, loss@max: 1.193789, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.355996, loss@max: 1.234679, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.170895, loss@max: 1.265030, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.127691, loss@max: 1.318430, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 7, loss@min: 1.006827, loss@max: 1.330879, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.968474, loss@max: 1.347155, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.887350, loss@max: 1.354337, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.883201, loss@max: 1.365930, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.016053, loss@max: 1.404740, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.919348, loss@max: 1.377601, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855946, loss@max: 1.340890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.857205, loss@max: 1.315797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.881924, loss@max: 1.304734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.946053, loss@max: 1.302231, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.971415, loss@max: 1.291761, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.994223, loss@max: 1.286793, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.019869, loss@max: 1.272856, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.004941, loss@max: 1.268268, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.002759, loss@max: 1.268368, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.010734, loss@max: 1.263329, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.015941, loss@max: 1.268726, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.965409, loss@max: 1.252623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982289, loss@max: 1.263205, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.980168, loss@max: 1.277297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993192, loss@max: 1.285523, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.988554, loss@max: 1.287074, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.950773, loss@max: 1.284786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.959686, loss@max: 1.305783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.963649, loss@max: 1.318451, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.956145, loss@max: 1.325704, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.931481, loss@max: 1.320270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949388, loss@max: 1.334480, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.947844, loss@max: 1.335350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936380, loss@max: 1.332428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.945941, loss@max: 1.341778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.942015, loss@max: 1.336947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949255, loss@max: 1.341042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.967881, loss@max: 1.350103, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.936054, loss@max: 1.334994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.934721, loss@max: 1.341222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.030741, loss@max: 1.364770, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.947996, loss@max: 1.338009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.974867, loss@max: 1.347599, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.952060, loss@max: 1.344508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.946698, loss@max: 1.341153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.946317, loss@max: 1.342062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944622, loss@max: 1.341553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942338, loss@max: 1.346606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948817, loss@max: 1.350490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.961302, loss@max: 1.356686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.957052, loss@max: 1.350415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.961821, loss@max: 1.349809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.953677, loss@max: 1.343833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.954944, loss@max: 1.351108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945078, loss@max: 1.347063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.982166, loss@max: 1.368691, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.945969, loss@max: 1.361827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.944114, loss@max: 1.358896, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.958151, loss@max: 1.361662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.951370, loss@max: 1.356889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.951387, loss@max: 1.354742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.960897, loss@max: 1.359622, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.949365, loss@max: 1.357530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947753, loss@max: 1.352754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945518, loss@max: 1.359597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948707, loss@max: 1.361032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947025, loss@max: 1.359259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.958004, loss@max: 1.364304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.945371, loss@max: 1.358721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.942920, loss@max: 1.357400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.957424, loss@max: 1.365114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.959971, loss@max: 1.365076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.948698, loss@max: 1.359751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.958955, loss@max: 1.364535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.973467, loss@max: 1.368184, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.967569, loss@max: 1.364695, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.950186, loss@max: 1.361562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.968324, loss@max: 1.366715, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.945971, loss@max: 1.362209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.943159, loss@max: 1.360417, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943535, loss@max: 1.360087, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.973086, loss@max: 1.363502, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.948861, loss@max: 1.355089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.949308, loss@max: 1.361662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950893, loss@max: 1.360073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.974196, loss@max: 1.372573, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.946792, loss@max: 1.357824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949760, loss@max: 1.361776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.957013, loss@max: 1.363465, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.948281, loss@max: 1.358775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950517, loss@max: 1.359363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.953919, loss@max: 1.366894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.945136, loss@max: 1.360893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.946323, loss@max: 1.359976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.955692, loss@max: 1.367282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.996490, loss@max: 1.373745, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.949618, loss@max: 1.363945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947897, loss@max: 1.357128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.393026, LT: 0.391408, Top1S: 89.979713, Top1T: 90.101418Best acc: 90.101418 +Train:epoch: 101, loss@min: 0.949064, loss@max: 1.360083, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.392886, LT: 0.391264, Top1S: 89.979713, Top1T: 90.141991Best acc: 90.141991 +Train:epoch: 102, loss@min: 0.947767, loss@max: 1.361845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.392784, LT: 0.391223, Top1S: 89.979713, Top1T: 90.141991 +Train:epoch: 103, loss@min: 0.949296, loss@max: 1.357571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.392723, LT: 0.391258, Top1S: 90.020287, Top1T: 90.141991 +Train:epoch: 104, loss@min: 0.961686, loss@max: 1.364775, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.392600, LT: 0.391231, Top1S: 90.020287, Top1T: 90.141991 +Train:epoch: 105, loss@min: 0.951500, loss@max: 1.362747, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.392519, LT: 0.391267, Top1S: 90.020287, Top1T: 90.141991 +Train:epoch: 106, loss@min: 0.948175, loss@max: 1.361323, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:45:50 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.673045, loss@max: 1.173280, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 2, loss@min: 1.844644, loss@max: 1.113362, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.215709, loss@max: 1.078246, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 4, loss@min: 1.073991, loss@max: 1.133492, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 5, loss@min: 1.016271, loss@max: 1.193905, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 6, loss@min: 0.910450, loss@max: 1.220041, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.830900, loss@max: 1.238280, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 8, loss@min: 0.936312, loss@max: 1.286340, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.790420, loss@max: 1.269852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.831953, loss@max: 1.299614, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 0.958717, loss@max: 1.333225, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 12, loss@min: 0.829361, loss@max: 1.294695, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 0.824025, loss@max: 1.279928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.846224, loss@max: 1.268080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.865627, loss@max: 1.266470, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 0.885481, loss@max: 1.267556, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 17, loss@min: 0.968314, loss@max: 1.281327, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.907593, loss@max: 1.252238, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 19, loss@min: 0.912891, loss@max: 1.237229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.941380, loss@max: 1.236118, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.972696, loss@max: 1.236561, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 0.954203, loss@max: 1.231329, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 0.947968, loss@max: 1.226298, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.944776, loss@max: 1.236647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.948212, loss@max: 1.244391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.943136, loss@max: 1.250871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.947705, loss@max: 1.260694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.004142, loss@max: 1.268910, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.947509, loss@max: 1.264279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.940488, loss@max: 1.275162, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.960701, loss@max: 1.300965, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.943275, loss@max: 1.306160, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.929629, loss@max: 1.300535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.931956, loss@max: 1.305079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.965617, loss@max: 1.320736, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 0.931175, loss@max: 1.311420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.960582, loss@max: 1.328078, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 0.925251, loss@max: 1.325725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.943055, loss@max: 1.335497, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 0.935162, loss@max: 1.332628, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.926115, loss@max: 1.332597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.931117, loss@max: 1.332627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.044278, loss@max: 1.357103, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.938697, loss@max: 1.330619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938394, loss@max: 1.333633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.936049, loss@max: 1.335327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.941837, loss@max: 1.337840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.945216, loss@max: 1.338324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938830, loss@max: 1.337490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.940145, loss@max: 1.337821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.945757, loss@max: 1.333795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946206, loss@max: 1.335386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.945859, loss@max: 1.337987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949615, loss@max: 1.338102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.946136, loss@max: 1.338353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.941173, loss@max: 1.345210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.938084, loss@max: 1.349633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.942917, loss@max: 1.346731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.943638, loss@max: 1.344999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.949134, loss@max: 1.341062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.950960, loss@max: 1.342951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.946481, loss@max: 1.346321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.943119, loss@max: 1.348479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945652, loss@max: 1.346794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.941054, loss@max: 1.352178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.943993, loss@max: 1.349561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.940838, loss@max: 1.353044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.944224, loss@max: 1.351139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.941861, loss@max: 1.352877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941193, loss@max: 1.354897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.941353, loss@max: 1.355299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.942002, loss@max: 1.354294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.945080, loss@max: 1.351326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.949030, loss@max: 1.349531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.949582, loss@max: 1.349507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949906, loss@max: 1.349047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.945942, loss@max: 1.353080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.956762, loss@max: 1.363322, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.939985, loss@max: 1.361598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.950254, loss@max: 1.358385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948127, loss@max: 1.350736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947353, loss@max: 1.351690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948273, loss@max: 1.350736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.948203, loss@max: 1.351129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.946720, loss@max: 1.351985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.941733, loss@max: 1.358627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.944642, loss@max: 1.354826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950693, loss@max: 1.355878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.943753, loss@max: 1.355680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.944606, loss@max: 1.355187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.948631, loss@max: 1.353900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.946008, loss@max: 1.353519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947626, loss@max: 1.352354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.943576, loss@max: 1.357028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.939866, loss@max: 1.360421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.940844, loss@max: 1.359203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.945361, loss@max: 1.355028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 1.034856, loss@max: 1.375766, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.956303, loss@max: 1.358965, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 100, loss@min: 0.948366, loss@max: 1.352186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.882103, LT: 0.883600, Top1S: 88.113594, Top1T: 88.032455Best acc: 88.113594 +Train:epoch: 101, loss@min: 0.949840, loss@max: 1.350905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.883691, LT: 0.885320, Top1S: 88.154160, Top1T: 88.073021Best acc: 88.154160 +Train:epoch: 102, loss@min: 0.946771, loss@max: 1.353935, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:52:03 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.054004, loss@max: 2.321690, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 2, loss@min: 0.942663, loss@max: 2.078395, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 3, loss@min: 1.209111, loss@max: 1.520129, Top1S acc: 100.000000, Top1T acc: 95.500000 +Train:epoch: 4, loss@min: 1.214943, loss@max: 1.247497, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 5, loss@min: 1.168306, loss@max: 1.159056, Top1S acc: 100.000000, Top1T acc: 98.500000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 14:52:49 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.055266, loss@max: 2.333001, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 2, loss@min: 0.943283, loss@max: 2.087626, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 3, loss@min: 1.214586, loss@max: 1.526141, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.221722, loss@max: 1.252766, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 5, loss@min: 1.174405, loss@max: 1.165586, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 6, loss@min: 1.146139, loss@max: 1.268799, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 7, loss@min: 1.089001, loss@max: 1.234585, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 8, loss@min: 1.034826, loss@max: 1.227413, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 9, loss@min: 0.955764, loss@max: 1.306072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.941633, loss@max: 1.383751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.031634, loss@max: 1.414800, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.835270, loss@max: 1.473142, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 13, loss@min: 0.826536, loss@max: 1.469183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.929461, loss@max: 1.412490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.925529, loss@max: 1.341128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.020043, loss@max: 1.288186, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 17, loss@min: 1.050844, loss@max: 1.314296, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 18, loss@min: 1.064519, loss@max: 1.287276, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 19, loss@min: 0.974241, loss@max: 1.323385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.971982, loss@max: 1.350627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.964249, loss@max: 1.404067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.931104, loss@max: 1.417131, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.909772, loss@max: 1.413117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.958212, loss@max: 1.404665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.968506, loss@max: 1.371314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.976845, loss@max: 1.391634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.954250, loss@max: 1.416609, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.948717, loss@max: 1.410593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.930992, loss@max: 1.421111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.934771, loss@max: 1.447334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.976750, loss@max: 1.425089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.002904, loss@max: 1.408092, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.997465, loss@max: 1.378745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.016952, loss@max: 1.390858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.941442, loss@max: 1.476137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.970784, loss@max: 1.427577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.949574, loss@max: 1.469364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.963304, loss@max: 1.453222, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.989141, loss@max: 1.449201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.025497, loss@max: 1.402516, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.986675, loss@max: 1.425267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.953781, loss@max: 1.465686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.025850, loss@max: 1.467111, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.927413, loss@max: 1.508279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.022682, loss@max: 1.441280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.955678, loss@max: 1.452947, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.979170, loss@max: 1.461140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.957952, loss@max: 1.472317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.982075, loss@max: 1.438423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.001832, loss@max: 1.412209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.022418, loss@max: 1.395853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.003036, loss@max: 1.450135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938441, loss@max: 1.498380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.937729, loss@max: 1.489921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.954222, loss@max: 1.458592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.016101, loss@max: 1.449366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.999955, loss@max: 1.460111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.992445, loss@max: 1.456914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.967719, loss@max: 1.459466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.958178, loss@max: 1.470787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.953960, loss@max: 1.470198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.966118, loss@max: 1.461052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.970478, loss@max: 1.493025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.977111, loss@max: 1.467084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.996709, loss@max: 1.416374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.989456, loss@max: 1.430349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 1.003897, loss@max: 1.419458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.977330, loss@max: 1.429190, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.959007, loss@max: 1.458638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.950392, loss@max: 1.466537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960889, loss@max: 1.468527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.949742, loss@max: 1.439391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.952134, loss@max: 1.449005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.956537, loss@max: 1.439149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.966931, loss@max: 1.444104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.970181, loss@max: 1.431853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.997374, loss@max: 1.398218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.985524, loss@max: 1.419264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.977843, loss@max: 1.416121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.967960, loss@max: 1.422580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.944245, loss@max: 1.441068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.936868, loss@max: 1.442641, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943612, loss@max: 1.431932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.966444, loss@max: 1.403454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.969797, loss@max: 1.403570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.983488, loss@max: 1.392121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.968287, loss@max: 1.404270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.971689, loss@max: 1.416141, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.949233, loss@max: 1.407323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.943580, loss@max: 1.423186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.955355, loss@max: 1.412419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.957659, loss@max: 1.392740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.961723, loss@max: 1.390385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.968275, loss@max: 1.392986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.974808, loss@max: 1.391325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.966919, loss@max: 1.400534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.950468, loss@max: 1.412966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.970787, loss@max: 1.390369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.939698, loss@max: 1.411302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.936468, loss@max: 1.413212, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.466930, LT: 0.446302, Top1S: 88.843811, Top1T: 88.762680Best acc: 88.843811 +Train:epoch: 101, loss@min: 0.959936, loss@max: 1.397624, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.465493, LT: 0.446905, Top1S: 88.722107, Top1T: 88.803246 +Train:epoch: 102, loss@min: 0.939743, loss@max: 1.407020, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.464122, LT: 0.447635, Top1S: 88.762680, Top1T: 88.722107 +Train:epoch: 103, loss@min: 0.953192, loss@max: 1.389321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.462831, LT: 0.448380, Top1S: 88.762680, Top1T: 88.803246 +Train:epoch: 104, loss@min: 0.949356, loss@max: 1.411563, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.461742, LT: 0.449179, Top1S: 88.762680, Top1T: 88.762680 +Train:epoch: 105, loss@min: 0.949231, loss@max: 1.392192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.461133, LT: 0.449786, Top1S: 88.843811, Top1T: 88.762680 +Train:epoch: 106, loss@min: 0.931522, loss@max: 1.407967, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.461265, LT: 0.450265, Top1S: 88.965515, Top1T: 88.681541Best acc: 88.965515 +Train:epoch: 107, loss@min: 0.958433, loss@max: 1.387703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.461107, LT: 0.450766, Top1S: 89.006088, Top1T: 88.681541Best acc: 89.006088 +Train:epoch: 108, loss@min: 0.964533, loss@max: 1.370708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.461474, LT: 0.450496, Top1S: 89.006088, Top1T: 88.681541 +Train:epoch: 109, loss@min: 0.968013, loss@max: 1.379447, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.462473, LT: 0.449898, Top1S: 88.884384, Top1T: 88.681541 +Train:epoch: 110, loss@min: 0.981407, loss@max: 1.360792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.464124, LT: 0.449113, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 111, loss@min: 0.971001, loss@max: 1.370247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.465377, LT: 0.448373, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 112, loss@min: 0.966265, loss@max: 1.371656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.466307, LT: 0.447740, Top1S: 88.884384, Top1T: 88.884384 +Train:epoch: 113, loss@min: 0.964365, loss@max: 1.367909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.466585, LT: 0.447466, Top1S: 88.884384, Top1T: 88.884384 +Train:epoch: 114, loss@min: 0.959380, loss@max: 1.373788, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.466732, LT: 0.447388, Top1S: 88.884384, Top1T: 88.924950 +Train:epoch: 115, loss@min: 0.943476, loss@max: 1.392178, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.466785, LT: 0.447363, Top1S: 88.884384, Top1T: 88.965515 +Train:epoch: 116, loss@min: 0.947348, loss@max: 1.395990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.466491, LT: 0.447514, Top1S: 88.884384, Top1T: 89.006088 +Train:epoch: 117, loss@min: 0.939236, loss@max: 1.396394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.465718, LT: 0.448023, Top1S: 88.924950, Top1T: 89.006088 +Train:epoch: 118, loss@min: 0.941856, loss@max: 1.390554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.464964, LT: 0.448662, Top1S: 88.924950, Top1T: 88.965515 +Train:epoch: 119, loss@min: 0.939934, loss@max: 1.391834, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.464510, LT: 0.449028, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 120, loss@min: 0.939337, loss@max: 1.383335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.463912, LT: 0.449582, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 121, loss@min: 0.943430, loss@max: 1.390743, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.463577, LT: 0.449928, Top1S: 88.965515, Top1T: 88.843811 +Train:epoch: 122, loss@min: 0.940774, loss@max: 1.383065, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.463418, LT: 0.450038, Top1S: 88.965515, Top1T: 88.884384 +Train:epoch: 123, loss@min: 0.958278, loss@max: 1.374011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.463514, LT: 0.449952, Top1S: 88.965515, Top1T: 88.884384 +Train:epoch: 124, loss@min: 0.952512, loss@max: 1.374569, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.463707, LT: 0.449863, Top1S: 88.965515, Top1T: 88.884384 +Train:epoch: 125, loss@min: 0.958007, loss@max: 1.367213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.463794, LT: 0.449825, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 126, loss@min: 0.962666, loss@max: 1.367696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.464118, LT: 0.449646, Top1S: 88.884384, Top1T: 88.884384 +Train:epoch: 127, loss@min: 0.953583, loss@max: 1.371943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.464325, LT: 0.449560, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 128, loss@min: 0.956085, loss@max: 1.363148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.464659, LT: 0.449363, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 129, loss@min: 0.949346, loss@max: 1.375799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.464960, LT: 0.449199, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 130, loss@min: 0.966241, loss@max: 1.371844, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 130, LS: 0.465168, LT: 0.449107, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 131, loss@min: 0.960557, loss@max: 1.368934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.465255, LT: 0.449112, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 132, loss@min: 0.951152, loss@max: 1.371927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.465440, LT: 0.449042, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 133, loss@min: 0.952421, loss@max: 1.372683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.465511, LT: 0.449035, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 134, loss@min: 0.954545, loss@max: 1.362251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.465598, LT: 0.449011, Top1S: 88.924950, Top1T: 88.884384 +Train:epoch: 135, loss@min: 0.945750, loss@max: 1.382220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.465674, LT: 0.449012, Top1S: 88.924950, Top1T: 88.843811 +Train:epoch: 136, loss@min: 0.949744, loss@max: 1.372556, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.465698, LT: 0.449067, Top1S: 88.965515, Top1T: 88.843811 +Train:epoch: 137, loss@min: 0.937297, loss@max: 1.383616, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.465697, LT: 0.449129, Top1S: 88.965515, Top1T: 88.884384 +Train:epoch: 138, loss@min: 0.946031, loss@max: 1.368311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.465703, LT: 0.449170, Top1S: 88.965515, Top1T: 88.884384 +Train:epoch: 139, loss@min: 0.946061, loss@max: 1.385857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.465689, LT: 0.449231, Top1S: 88.965515, Top1T: 88.843811 +Train:epoch: 140, loss@min: 0.959380, loss@max: 1.362853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.465695, LT: 0.449287, Top1S: 88.965515, Top1T: 88.843811 +Train:epoch: 141, loss@min: 0.943938, loss@max: 1.374430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.465735, LT: 0.449310, Top1S: 88.965515, Top1T: 88.843811 +Train:epoch: 142, loss@min: 0.962539, loss@max: 1.359920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.465752, LT: 0.449341, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 143, loss@min: 0.950845, loss@max: 1.370583, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.465752, LT: 0.449379, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 144, loss@min: 0.957453, loss@max: 1.362378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.465764, LT: 0.449392, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 145, loss@min: 0.955338, loss@max: 1.362393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.465780, LT: 0.449395, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 146, loss@min: 0.932381, loss@max: 1.385698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.465786, LT: 0.449401, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 147, loss@min: 0.961355, loss@max: 1.359973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.465792, LT: 0.449401, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 148, loss@min: 0.951011, loss@max: 1.366113, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.465795, LT: 0.449402, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 149, loss@min: 0.939752, loss@max: 1.378341, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.465795, LT: 0.449402, Top1S: 88.965515, Top1T: 88.803246 +Train:epoch: 150, loss@min: 0.958070, loss@max: 1.364323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.465795, LT: 0.449402, Top1S: 88.965515, Top1T: 88.803246 +------------------------------------------- +Thu Jan 18 15:19:53 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 15:49:48 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045152, loss@max: 1.023274, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.799756, loss@max: 1.118623, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.595017, loss@max: 1.194553, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.355058, loss@max: 1.235824, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.169637, loss@max: 1.266550, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.126221, loss@max: 1.320321, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 7, loss@min: 1.004933, loss@max: 1.333121, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.966954, loss@max: 1.349291, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.885615, loss@max: 1.356613, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.881393, loss@max: 1.368254, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.014212, loss@max: 1.407305, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.917297, loss@max: 1.380337, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.853584, loss@max: 1.343746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.854771, loss@max: 1.318591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.879240, loss@max: 1.307770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.943668, loss@max: 1.304753, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.969258, loss@max: 1.294195, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.992794, loss@max: 1.288442, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.018472, loss@max: 1.274391, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.003063, loss@max: 1.270296, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.001453, loss@max: 1.269849, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.009178, loss@max: 1.264871, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.015169, loss@max: 1.269656, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.963338, loss@max: 1.254744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.981265, loss@max: 1.264366, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.978512, loss@max: 1.279047, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.991525, loss@max: 1.287486, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.987046, loss@max: 1.288661, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.949691, loss@max: 1.286059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.958656, loss@max: 1.307031, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962286, loss@max: 1.320024, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955057, loss@max: 1.327230, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.929532, loss@max: 1.322622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.947387, loss@max: 1.336720, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.944779, loss@max: 1.338575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.933775, loss@max: 1.335223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.944347, loss@max: 1.343631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940357, loss@max: 1.338875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948044, loss@max: 1.342607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.966424, loss@max: 1.351973, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.933545, loss@max: 1.337696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933690, loss@max: 1.342355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.028834, loss@max: 1.366911, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.945954, loss@max: 1.340238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.972001, loss@max: 1.350615, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.950344, loss@max: 1.346292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.943545, loss@max: 1.344440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944576, loss@max: 1.344032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.942803, loss@max: 1.343792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941009, loss@max: 1.348180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947873, loss@max: 1.351688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.960781, loss@max: 1.357642, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.955754, loss@max: 1.351883, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.959061, loss@max: 1.352934, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950094, loss@max: 1.347538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952304, loss@max: 1.353720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.943547, loss@max: 1.348817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.981522, loss@max: 1.370164, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.944269, loss@max: 1.363897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943528, loss@max: 1.359777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956662, loss@max: 1.363230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.949398, loss@max: 1.359260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.948788, loss@max: 1.357629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.957969, loss@max: 1.362949, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.945619, loss@max: 1.361625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947220, loss@max: 1.353831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945055, loss@max: 1.360194, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947811, loss@max: 1.362401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944785, loss@max: 1.361890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955735, loss@max: 1.366962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943192, loss@max: 1.361135, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.940205, loss@max: 1.360573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.956564, loss@max: 1.366535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.960347, loss@max: 1.365277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.946319, loss@max: 1.362676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.957758, loss@max: 1.365895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.971778, loss@max: 1.370237, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.964517, loss@max: 1.368516, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.946239, loss@max: 1.366297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.966081, loss@max: 1.369318, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.944508, loss@max: 1.363994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.942376, loss@max: 1.361676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.942907, loss@max: 1.361308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.970992, loss@max: 1.365787, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949067, loss@max: 1.355352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.947544, loss@max: 1.363941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950838, loss@max: 1.360841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.972770, loss@max: 1.374965, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.942293, loss@max: 1.362649, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.946634, loss@max: 1.365463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.951565, loss@max: 1.369466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.945532, loss@max: 1.361924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.946883, loss@max: 1.363169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.949338, loss@max: 1.371858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.942369, loss@max: 1.364379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.945589, loss@max: 1.361750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.953128, loss@max: 1.370460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.995550, loss@max: 1.374583, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.948628, loss@max: 1.365677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947925, loss@max: 1.357695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.393196, LT: 0.391062, Top1S: 90.020287, Top1T: 90.101418Best acc: 90.101418 +Train:epoch: 101, loss@min: 0.948626, loss@max: 1.361133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.393246, LT: 0.390825, Top1S: 90.020287, Top1T: 90.101418 +Train:epoch: 102, loss@min: 0.947084, loss@max: 1.363139, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.393326, LT: 0.390700, Top1S: 90.020287, Top1T: 90.101418 +Train:epoch: 103, loss@min: 0.948142, loss@max: 1.359414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.393410, LT: 0.390677, Top1S: 90.020287, Top1T: 90.101418 +Train:epoch: 104, loss@min: 0.958513, loss@max: 1.369226, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.393346, LT: 0.390627, Top1S: 90.060852, Top1T: 90.141991Best acc: 90.141991 +Train:epoch: 105, loss@min: 0.948525, loss@max: 1.366192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.393286, LT: 0.390658, Top1S: 90.060852, Top1T: 90.182556Best acc: 90.182556 +Train:epoch: 106, loss@min: 0.945206, loss@max: 1.364975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.393270, LT: 0.390792, Top1S: 90.101418, Top1T: 90.182556 +Train:epoch: 107, loss@min: 0.943668, loss@max: 1.364028, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.393236, LT: 0.390941, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 108, loss@min: 0.941240, loss@max: 1.362384, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.393143, LT: 0.391048, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 109, loss@min: 0.952088, loss@max: 1.374957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.393048, LT: 0.391145, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 110, loss@min: 0.952562, loss@max: 1.369964, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.393107, LT: 0.391365, Top1S: 90.182556, Top1T: 90.223122Best acc: 90.223122 +Train:epoch: 111, loss@min: 0.946726, loss@max: 1.362909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.393128, LT: 0.391523, Top1S: 90.182556, Top1T: 90.263695Best acc: 90.263695 +Train:epoch: 112, loss@min: 0.944941, loss@max: 1.361251, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.393141, LT: 0.391667, Top1S: 90.182556, Top1T: 90.304260Best acc: 90.304260 +Train:epoch: 113, loss@min: 0.944066, loss@max: 1.361038, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.393186, LT: 0.391780, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 114, loss@min: 0.947959, loss@max: 1.360606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.393229, LT: 0.391853, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 115, loss@min: 0.944529, loss@max: 1.362914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.393312, LT: 0.391918, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 116, loss@min: 0.963101, loss@max: 1.373189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.393245, LT: 0.391764, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 117, loss@min: 0.946713, loss@max: 1.361499, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.393213, LT: 0.391646, Top1S: 90.182556, Top1T: 90.263695 +Train:epoch: 118, loss@min: 0.944365, loss@max: 1.365000, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.393191, LT: 0.391560, Top1S: 90.182556, Top1T: 90.263695 +Train:epoch: 119, loss@min: 0.948471, loss@max: 1.363844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.393172, LT: 0.391493, Top1S: 90.223122, Top1T: 90.263695 +Train:epoch: 120, loss@min: 0.946440, loss@max: 1.360710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.393215, LT: 0.391465, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 121, loss@min: 0.946608, loss@max: 1.359504, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.393220, LT: 0.391435, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 122, loss@min: 0.945410, loss@max: 1.361792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.393219, LT: 0.391432, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 123, loss@min: 0.946419, loss@max: 1.369238, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 16:05:12 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045139, loss@max: 1.023307, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.799720, loss@max: 1.118617, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.594860, loss@max: 1.194440, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.355226, loss@max: 1.235767, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.169947, loss@max: 1.266423, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.126323, loss@max: 1.320000, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 7, loss@min: 1.005316, loss@max: 1.332800, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.967578, loss@max: 1.349028, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 9, loss@min: 0.886201, loss@max: 1.356308, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.881402, loss@max: 1.367826, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.014432, loss@max: 1.406878, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.917517, loss@max: 1.379855, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.854189, loss@max: 1.343406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.855361, loss@max: 1.318278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.879944, loss@max: 1.307489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.944267, loss@max: 1.304623, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.969288, loss@max: 1.294024, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.993689, loss@max: 1.288771, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.019105, loss@max: 1.274576, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.004300, loss@max: 1.270730, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.002250, loss@max: 1.270271, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.010349, loss@max: 1.265272, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.016063, loss@max: 1.270022, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.963768, loss@max: 1.254730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.981408, loss@max: 1.264390, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.978851, loss@max: 1.279003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.991360, loss@max: 1.287211, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.987328, loss@max: 1.288509, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.949967, loss@max: 1.286035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.959503, loss@max: 1.307161, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 0.962379, loss@max: 1.319727, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955393, loss@max: 1.327074, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.929942, loss@max: 1.322208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.948400, loss@max: 1.336397, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.944899, loss@max: 1.337734, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.934232, loss@max: 1.334805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.945006, loss@max: 1.343633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940821, loss@max: 1.338743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948854, loss@max: 1.342626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.966124, loss@max: 1.351664, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.934007, loss@max: 1.337400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933715, loss@max: 1.342326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.028172, loss@max: 1.366547, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.946209, loss@max: 1.339979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.972559, loss@max: 1.350249, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.950401, loss@max: 1.345772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.943915, loss@max: 1.343946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.944873, loss@max: 1.343876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.943144, loss@max: 1.343509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941215, loss@max: 1.348040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947535, loss@max: 1.351436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.961161, loss@max: 1.357548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.956044, loss@max: 1.351894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.959069, loss@max: 1.352304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950462, loss@max: 1.346912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952956, loss@max: 1.353177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.943850, loss@max: 1.348444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.981025, loss@max: 1.369826, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.944444, loss@max: 1.363506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943400, loss@max: 1.359787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956617, loss@max: 1.362956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.949742, loss@max: 1.359262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.949266, loss@max: 1.357382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.959256, loss@max: 1.362370, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.946458, loss@max: 1.360870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947459, loss@max: 1.353475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945244, loss@max: 1.359759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947309, loss@max: 1.361646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944856, loss@max: 1.361396, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955945, loss@max: 1.366878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943551, loss@max: 1.361058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.940495, loss@max: 1.360221, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.958099, loss@max: 1.366664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.961772, loss@max: 1.365759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.946395, loss@max: 1.361969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.957102, loss@max: 1.365126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.969815, loss@max: 1.369234, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.964302, loss@max: 1.367752, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.947180, loss@max: 1.365587, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.966407, loss@max: 1.368931, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.944748, loss@max: 1.363922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.942383, loss@max: 1.361626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943085, loss@max: 1.361167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.971896, loss@max: 1.365292, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949277, loss@max: 1.355008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.948313, loss@max: 1.363257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.952435, loss@max: 1.361367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.972787, loss@max: 1.374546, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.943169, loss@max: 1.361700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947176, loss@max: 1.364752, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.952542, loss@max: 1.368815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.946031, loss@max: 1.361643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.948347, loss@max: 1.363081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.949985, loss@max: 1.371205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.942915, loss@max: 1.363786, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.945877, loss@max: 1.361227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.953448, loss@max: 1.369877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.996718, loss@max: 1.374317, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.948905, loss@max: 1.365127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948046, loss@max: 1.357652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.390843, LT: 0.388754, Top1S: 90.060852, Top1T: 90.141991Best acc: 90.141991 +Train:epoch: 101, loss@min: 0.948686, loss@max: 1.361066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.390902, LT: 0.388563, Top1S: 90.060852, Top1T: 90.101418 +Train:epoch: 102, loss@min: 0.947221, loss@max: 1.363115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.390984, LT: 0.388483, Top1S: 90.060852, Top1T: 90.101418 +Train:epoch: 103, loss@min: 0.947984, loss@max: 1.359289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.391075, LT: 0.388507, Top1S: 90.060852, Top1T: 90.101418 +Train:epoch: 104, loss@min: 0.959792, loss@max: 1.369083, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.391017, LT: 0.388489, Top1S: 90.060852, Top1T: 90.182556Best acc: 90.182556 +Train:epoch: 105, loss@min: 0.948846, loss@max: 1.365777, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.390965, LT: 0.388540, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 106, loss@min: 0.945533, loss@max: 1.364548, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.390949, LT: 0.388674, Top1S: 90.060852, Top1T: 90.141991 +Train:epoch: 107, loss@min: 0.943977, loss@max: 1.363590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.390923, LT: 0.388823, Top1S: 90.060852, Top1T: 90.141991 +Train:epoch: 108, loss@min: 0.941777, loss@max: 1.361855, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.390849, LT: 0.388928, Top1S: 90.060852, Top1T: 90.141991 +Train:epoch: 109, loss@min: 0.953362, loss@max: 1.374181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.390767, LT: 0.389012, Top1S: 90.101418, Top1T: 90.141991 +Train:epoch: 110, loss@min: 0.953677, loss@max: 1.369588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.390839, LT: 0.389214, Top1S: 90.101418, Top1T: 90.223122Best acc: 90.223122 +Train:epoch: 111, loss@min: 0.947228, loss@max: 1.362571, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.390875, LT: 0.389357, Top1S: 90.101418, Top1T: 90.304260Best acc: 90.304260 +Train:epoch: 112, loss@min: 0.945521, loss@max: 1.360479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.390905, LT: 0.389484, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 113, loss@min: 0.944555, loss@max: 1.360505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.390965, LT: 0.389586, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 114, loss@min: 0.948487, loss@max: 1.360127, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.391019, LT: 0.389649, Top1S: 90.182556, Top1T: 90.385399Best acc: 90.385399 +Train:epoch: 115, loss@min: 0.944957, loss@max: 1.362471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.391107, LT: 0.389707, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 116, loss@min: 0.964226, loss@max: 1.373237, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.391030, LT: 0.389541, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 117, loss@min: 0.947016, loss@max: 1.361151, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.390988, LT: 0.389421, Top1S: 90.223122, Top1T: 90.344826 +Train:epoch: 118, loss@min: 0.944987, loss@max: 1.364823, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.390946, LT: 0.389324, Top1S: 90.223122, Top1T: 90.344826 +Train:epoch: 119, loss@min: 0.948848, loss@max: 1.363599, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.390909, LT: 0.389251, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 120, loss@min: 0.946532, loss@max: 1.360430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.390934, LT: 0.389218, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 121, loss@min: 0.946615, loss@max: 1.359376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.390927, LT: 0.389185, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 122, loss@min: 0.945716, loss@max: 1.361459, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.390918, LT: 0.389181, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 123, loss@min: 0.947073, loss@max: 1.368644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.390932, LT: 0.389196, Top1S: 90.223122, Top1T: 90.344826 +Train:epoch: 124, loss@min: 0.943910, loss@max: 1.363789, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.390967, LT: 0.389229, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 125, loss@min: 0.943890, loss@max: 1.360432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.390981, LT: 0.389249, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 126, loss@min: 0.947545, loss@max: 1.366175, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.390993, LT: 0.389261, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 127, loss@min: 0.949411, loss@max: 1.365506, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.391015, LT: 0.389274, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 128, loss@min: 0.944954, loss@max: 1.359132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.391030, LT: 0.389286, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 129, loss@min: 0.946288, loss@max: 1.362947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.391052, LT: 0.389297, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 130, loss@min: 0.972094, loss@max: 1.370544, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 130, LS: 0.391073, LT: 0.389310, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 131, loss@min: 0.977679, loss@max: 1.374711, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 131, LS: 0.391095, LT: 0.389315, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 132, loss@min: 0.947996, loss@max: 1.364088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.391129, LT: 0.389332, Top1S: 90.223122, Top1T: 90.385399 +Train:epoch: 133, loss@min: 0.956008, loss@max: 1.365009, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 133, LS: 0.391171, LT: 0.389361, Top1S: 90.182556, Top1T: 90.385399 +Train:epoch: 134, loss@min: 0.946768, loss@max: 1.362306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.391214, LT: 0.389376, Top1S: 90.182556, Top1T: 90.385399 +Train:epoch: 135, loss@min: 0.944720, loss@max: 1.364285, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.391247, LT: 0.389389, Top1S: 90.182556, Top1T: 90.344826 +Train:epoch: 136, loss@min: 0.948173, loss@max: 1.359874, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.391282, LT: 0.389402, Top1S: 90.182556, Top1T: 90.344826 +Train:epoch: 137, loss@min: 0.943886, loss@max: 1.361987, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.391308, LT: 0.389413, Top1S: 90.182556, Top1T: 90.344826 +Train:epoch: 138, loss@min: 0.943546, loss@max: 1.361918, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.391331, LT: 0.389421, Top1S: 90.182556, Top1T: 90.344826 +Train:epoch: 139, loss@min: 0.951347, loss@max: 1.367121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.391354, LT: 0.389430, Top1S: 90.182556, Top1T: 90.344826 +Train:epoch: 140, loss@min: 0.946819, loss@max: 1.363653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.391380, LT: 0.389445, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 141, loss@min: 0.946061, loss@max: 1.362632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.391400, LT: 0.389457, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 142, loss@min: 0.949932, loss@max: 1.366745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.391412, LT: 0.389465, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 143, loss@min: 0.944858, loss@max: 1.366779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.391423, LT: 0.389470, Top1S: 90.182556, Top1T: 90.304260 +Train:epoch: 144, loss@min: 0.943722, loss@max: 1.361703, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 16:29:59 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.045069, loss@max: 1.023286, Top1S acc: 100.000000, Top1T acc: 87.000000 +Train:epoch: 2, loss@min: 1.799629, loss@max: 1.118560, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 3, loss@min: 1.594706, loss@max: 1.194323, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.355499, loss@max: 1.235647, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.170453, loss@max: 1.266268, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.126508, loss@max: 1.319641, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 7, loss@min: 1.005723, loss@max: 1.332367, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.968428, loss@max: 1.348677, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.886886, loss@max: 1.355935, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 10, loss@min: 0.881400, loss@max: 1.367255, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.014774, loss@max: 1.406389, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.917866, loss@max: 1.379309, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.855005, loss@max: 1.342987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.856127, loss@max: 1.317924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.880824, loss@max: 1.307175, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.945057, loss@max: 1.304449, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.969392, loss@max: 1.293873, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.995052, loss@max: 1.289273, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.019855, loss@max: 1.274784, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.005782, loss@max: 1.271282, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 1.003283, loss@max: 1.270843, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.011712, loss@max: 1.265788, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 1.017194, loss@max: 1.270555, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.964333, loss@max: 1.254744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.981632, loss@max: 1.264453, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.979215, loss@max: 1.278986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.991190, loss@max: 1.286941, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.987731, loss@max: 1.288355, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.950412, loss@max: 1.286011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.960623, loss@max: 1.307271, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 0.962680, loss@max: 1.319433, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.955924, loss@max: 1.326882, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.930505, loss@max: 1.321750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949617, loss@max: 1.336073, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 0.945089, loss@max: 1.336745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.934737, loss@max: 1.334329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.945953, loss@max: 1.343698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.941533, loss@max: 1.338745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949968, loss@max: 1.342756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.965765, loss@max: 1.351343, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.934579, loss@max: 1.337068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933798, loss@max: 1.342387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.027474, loss@max: 1.366137, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.946450, loss@max: 1.339737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.973325, loss@max: 1.349902, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.950570, loss@max: 1.345228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.944386, loss@max: 1.343399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.945276, loss@max: 1.343648, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.943633, loss@max: 1.343110, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941526, loss@max: 1.347848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947250, loss@max: 1.351183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.961810, loss@max: 1.357543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.956703, loss@max: 1.352027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.959099, loss@max: 1.351629, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950888, loss@max: 1.346067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953765, loss@max: 1.352475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944325, loss@max: 1.348002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.980408, loss@max: 1.369400, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.944819, loss@max: 1.362921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943320, loss@max: 1.359943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.956523, loss@max: 1.362774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.950009, loss@max: 1.359340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.949638, loss@max: 1.357077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.960177, loss@max: 1.361781, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.947359, loss@max: 1.359895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947714, loss@max: 1.353124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945360, loss@max: 1.359358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946603, loss@max: 1.360819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944880, loss@max: 1.360881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.955983, loss@max: 1.366684, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943988, loss@max: 1.361019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.940888, loss@max: 1.359748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.959839, loss@max: 1.366787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.963684, loss@max: 1.366307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.946556, loss@max: 1.361145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.956126, loss@max: 1.364138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.966886, loss@max: 1.367930, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.964550, loss@max: 1.366822, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.948185, loss@max: 1.364755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.966693, loss@max: 1.368378, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.945066, loss@max: 1.364035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.942167, loss@max: 1.361840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943208, loss@max: 1.361066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.970422, loss@max: 1.364391, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.949436, loss@max: 1.354767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.949167, loss@max: 1.362626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.956138, loss@max: 1.362650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.972856, loss@max: 1.374424, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.944003, loss@max: 1.360708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.947973, loss@max: 1.364191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.953399, loss@max: 1.367983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.946532, loss@max: 1.361352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.949158, loss@max: 1.362515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950919, loss@max: 1.370338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.943670, loss@max: 1.363021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.946176, loss@max: 1.360656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.953826, loss@max: 1.368999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.995911, loss@max: 1.373517, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.949046, loss@max: 1.364284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948234, loss@max: 1.357505, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.386856, LT: 0.384736, Top1S: 90.141991, Top1T: 90.141991Best acc: 90.141991 +Train:epoch: 101, loss@min: 0.948949, loss@max: 1.360902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.386923, LT: 0.384600, Top1S: 90.182556, Top1T: 90.182556Best acc: 90.182556 +Train:epoch: 102, loss@min: 0.947492, loss@max: 1.362760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.387006, LT: 0.384574, Top1S: 90.182556, Top1T: 90.182556 +Train:epoch: 103, loss@min: 0.947871, loss@max: 1.358769, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.387104, LT: 0.384653, Top1S: 90.223122, Top1T: 90.263695Best acc: 90.263695 +Train:epoch: 104, loss@min: 0.961950, loss@max: 1.368561, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.387054, LT: 0.384669, Top1S: 90.263695, Top1T: 90.263695 +Train:epoch: 105, loss@min: 0.949328, loss@max: 1.364859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.387014, LT: 0.384751, Top1S: 90.263695, Top1T: 90.263695 +Train:epoch: 106, loss@min: 0.946107, loss@max: 1.363829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.387012, LT: 0.384897, Top1S: 90.263695, Top1T: 90.263695 +Train:epoch: 107, loss@min: 0.944571, loss@max: 1.362836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.387002, LT: 0.385054, Top1S: 90.263695, Top1T: 90.304260Best acc: 90.304260 +Train:epoch: 108, loss@min: 0.942653, loss@max: 1.361037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.386959, LT: 0.385173, Top1S: 90.263695, Top1T: 90.304260 +Train:epoch: 109, loss@min: 0.954338, loss@max: 1.372917, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.386906, LT: 0.385262, Top1S: 90.263695, Top1T: 90.385399Best acc: 90.385399 +Train:epoch: 110, loss@min: 0.954227, loss@max: 1.368885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.387007, LT: 0.385468, Top1S: 90.263695, Top1T: 90.385399 +Train:epoch: 111, loss@min: 0.947643, loss@max: 1.362368, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.387078, LT: 0.385616, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 112, loss@min: 0.945976, loss@max: 1.359858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.387148, LT: 0.385748, Top1S: 90.344826, Top1T: 90.304260 +Train:epoch: 113, loss@min: 0.945095, loss@max: 1.359990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.387243, LT: 0.385855, Top1S: 90.344826, Top1T: 90.304260 +Train:epoch: 114, loss@min: 0.948937, loss@max: 1.359672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.387328, LT: 0.385927, Top1S: 90.344826, Top1T: 90.344826 +Train:epoch: 115, loss@min: 0.945367, loss@max: 1.362041, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.387433, LT: 0.385992, Top1S: 90.344826, Top1T: 90.344826 +Train:epoch: 116, loss@min: 0.964454, loss@max: 1.373033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.387363, LT: 0.385837, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 117, loss@min: 0.947416, loss@max: 1.360737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.387327, LT: 0.385735, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 118, loss@min: 0.945790, loss@max: 1.364473, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.387279, LT: 0.385648, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 119, loss@min: 0.949610, loss@max: 1.363300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.387238, LT: 0.385585, Top1S: 90.385399, Top1T: 90.425964Best acc: 90.425964 +Train:epoch: 120, loss@min: 0.946692, loss@max: 1.360161, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.387254, LT: 0.385561, Top1S: 90.385399, Top1T: 90.385399 +Train:epoch: 121, loss@min: 0.946805, loss@max: 1.359177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.387244, LT: 0.385536, Top1S: 90.385399, Top1T: 90.385399 +Train:epoch: 122, loss@min: 0.946194, loss@max: 1.360936, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.387235, LT: 0.385541, Top1S: 90.385399, Top1T: 90.385399 +Train:epoch: 123, loss@min: 0.948169, loss@max: 1.367883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.387248, LT: 0.385560, Top1S: 90.385399, Top1T: 90.385399 +Train:epoch: 124, loss@min: 0.944772, loss@max: 1.362674, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.387279, LT: 0.385595, Top1S: 90.385399, Top1T: 90.385399 +Train:epoch: 125, loss@min: 0.944451, loss@max: 1.359903, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.387292, LT: 0.385617, Top1S: 90.344826, Top1T: 90.344826 +Train:epoch: 126, loss@min: 0.948467, loss@max: 1.365515, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.387298, LT: 0.385631, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 127, loss@min: 0.949924, loss@max: 1.364779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.387316, LT: 0.385643, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 128, loss@min: 0.945574, loss@max: 1.358527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.387328, LT: 0.385653, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 129, loss@min: 0.946850, loss@max: 1.362468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.387347, LT: 0.385663, Top1S: 90.344826, Top1T: 90.425964 +Train:epoch: 130, loss@min: 0.970051, loss@max: 1.369562, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 130, LS: 0.387365, LT: 0.385675, Top1S: 90.385399, Top1T: 90.425964 +Train:epoch: 131, loss@min: 0.978486, loss@max: 1.374396, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 131, LS: 0.387385, LT: 0.385681, Top1S: 90.344826, Top1T: 90.425964 +Train:epoch: 132, loss@min: 0.948365, loss@max: 1.363705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.387417, LT: 0.385699, Top1S: 90.344826, Top1T: 90.425964 +Train:epoch: 133, loss@min: 0.957741, loss@max: 1.364649, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 133, LS: 0.387457, LT: 0.385727, Top1S: 90.344826, Top1T: 90.425964 +Train:epoch: 134, loss@min: 0.947076, loss@max: 1.361852, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.387498, LT: 0.385743, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 135, loss@min: 0.945504, loss@max: 1.363849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.387530, LT: 0.385757, Top1S: 90.344826, Top1T: 90.385399 +Train:epoch: 136, loss@min: 0.948205, loss@max: 1.359653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.387563, LT: 0.385769, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 137, loss@min: 0.944661, loss@max: 1.361145, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.387587, LT: 0.385779, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 138, loss@min: 0.943897, loss@max: 1.361348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.387610, LT: 0.385787, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 139, loss@min: 0.952367, loss@max: 1.366949, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.387632, LT: 0.385796, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 140, loss@min: 0.947284, loss@max: 1.363386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.387657, LT: 0.385810, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 141, loss@min: 0.946668, loss@max: 1.361817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.387676, LT: 0.385821, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 142, loss@min: 0.950478, loss@max: 1.366718, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.387687, LT: 0.385828, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 143, loss@min: 0.945653, loss@max: 1.366354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.387697, LT: 0.385832, Top1S: 90.304260, Top1T: 90.385399 +Train:epoch: 144, loss@min: 0.944097, loss@max: 1.361209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.387706, LT: 0.385837, Top1S: 90.304260, Top1T: 90.385399{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 16:55:32 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.402423, loss@max: 0.993989, Top1S acc: 100.000000, Top1T acc: 85.500000 +Train:epoch: 2, loss@min: 2.337758, loss@max: 1.027457, Top1S acc: 100.000000, Top1T acc: 83.000000 +Train:epoch: 3, loss@min: 2.396002, loss@max: 1.083696, Top1S acc: 100.000000, Top1T acc: 84.000000 +Train:epoch: 4, loss@min: 2.265168, loss@max: 1.091772, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 5, loss@min: 2.057920, loss@max: 1.080297, Top1S acc: 100.000000, Top1T acc: 85.500000 +Train:epoch: 6, loss@min: 2.124206, loss@max: 1.133427, Top1S acc: 100.000000, Top1T acc: 83.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 16:58:50 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.146015, loss@max: 1.017287, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 2, loss@min: 1.930200, loss@max: 1.097618, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 3, loss@min: 1.790207, loss@max: 1.176153, Top1S acc: 100.000000, Top1T acc: 88.500000 +Train:epoch: 4, loss@min: 1.565230, loss@max: 1.217285, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.356888, loss@max: 1.240506, Top1S acc: 100.000000, Top1T acc: 93.500000 +Train:epoch: 6, loss@min: 1.342053, loss@max: 1.302803, Top1S acc: 100.000000, Top1T acc: 91.500000 +Train:epoch: 7, loss@min: 1.188019, loss@max: 1.311599, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 8, loss@min: 1.125716, loss@max: 1.323915, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.040220, loss@max: 1.332770, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 10, loss@min: 1.036790, loss@max: 1.346992, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 11, loss@min: 1.156653, loss@max: 1.397062, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 12, loss@min: 1.081734, loss@max: 1.390086, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 13, loss@min: 0.945466, loss@max: 1.352545, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 0.926557, loss@max: 1.343336, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 15, loss@min: 0.930631, loss@max: 1.344285, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.028429, loss@max: 1.362888, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 17, loss@min: 1.008607, loss@max: 1.356139, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.080426, loss@max: 1.367069, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 19, loss@min: 1.057177, loss@max: 1.335198, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 20, loss@min: 1.064296, loss@max: 1.333505, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 21, loss@min: 1.058775, loss@max: 1.326321, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 22, loss@min: 1.058718, loss@max: 1.314031, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.079005, loss@max: 1.319187, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 24, loss@min: 1.003816, loss@max: 1.290223, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.032588, loss@max: 1.291438, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 1.042510, loss@max: 1.310471, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.068630, loss@max: 1.312292, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 1.043082, loss@max: 1.305623, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 1.000261, loss@max: 1.298742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.031111, loss@max: 1.322996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.032369, loss@max: 1.328682, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.027124, loss@max: 1.336936, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 0.991648, loss@max: 1.323688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.016286, loss@max: 1.342503, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 35, loss@min: 1.010217, loss@max: 1.348228, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 0.991374, loss@max: 1.352920, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 37, loss@min: 1.012191, loss@max: 1.363148, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 0.987748, loss@max: 1.357017, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 1.000044, loss@max: 1.363981, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 1.013664, loss@max: 1.369632, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 41, loss@min: 0.952085, loss@max: 1.355024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966597, loss@max: 1.356519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.070852, loss@max: 1.389413, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 44, loss@min: 0.980491, loss@max: 1.364613, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 45, loss@min: 1.010725, loss@max: 1.386317, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 46, loss@min: 0.992169, loss@max: 1.381876, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.970412, loss@max: 1.363795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.971004, loss@max: 1.364771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.967513, loss@max: 1.364882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.965318, loss@max: 1.367376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.987934, loss@max: 1.380310, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 1.041028, loss@max: 1.397705, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 1.002310, loss@max: 1.382598, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 1.013539, loss@max: 1.389359, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 55, loss@min: 0.971989, loss@max: 1.371230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.975402, loss@max: 1.376300, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 57, loss@min: 0.955986, loss@max: 1.366746, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.028033, loss@max: 1.387064, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.989747, loss@max: 1.385136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.981024, loss@max: 1.380097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.993424, loss@max: 1.379567, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.980710, loss@max: 1.381676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.972317, loss@max: 1.380771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.987849, loss@max: 1.389124, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.978302, loss@max: 1.376960, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 66, loss@min: 0.966466, loss@max: 1.373931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.971719, loss@max: 1.382891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.978325, loss@max: 1.375343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.976027, loss@max: 1.381723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.020755, loss@max: 1.390254, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 71, loss@min: 0.982787, loss@max: 1.374912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.958353, loss@max: 1.371206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.989178, loss@max: 1.394327, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 1.003325, loss@max: 1.383888, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 75, loss@min: 0.965208, loss@max: 1.382349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.979838, loss@max: 1.389828, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 1.027208, loss@max: 1.411937, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 78, loss@min: 1.013810, loss@max: 1.394351, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 79, loss@min: 0.974533, loss@max: 1.388149, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 80, loss@min: 1.000276, loss@max: 1.386827, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.976205, loss@max: 1.383018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.960059, loss@max: 1.378052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.960064, loss@max: 1.377035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.996397, loss@max: 1.377672, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.965124, loss@max: 1.371842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.984855, loss@max: 1.382720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.980851, loss@max: 1.384314, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 88, loss@min: 1.031381, loss@max: 1.408524, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 89, loss@min: 0.961261, loss@max: 1.378431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.967942, loss@max: 1.378960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.990792, loss@max: 1.386697, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 92, loss@min: 0.967211, loss@max: 1.377089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.970006, loss@max: 1.373983, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 94, loss@min: 1.003752, loss@max: 1.392445, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.963079, loss@max: 1.380422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.970951, loss@max: 1.377637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.997871, loss@max: 1.395887, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.017339, loss@max: 1.388102, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.975810, loss@max: 1.382084, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.966876, loss@max: 1.374075, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.374348, LT: 0.373657, Top1S: 89.492905, Top1T: 89.533470Best acc: 89.533470 +Train:epoch: 101, loss@min: 0.975748, loss@max: 1.383149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.374214, LT: 0.373580, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 102, loss@min: 0.969154, loss@max: 1.382603, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.374197, LT: 0.373536, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 103, loss@min: 0.965209, loss@max: 1.370409, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.374298, LT: 0.373560, Top1S: 89.533470, Top1T: 89.533470 +Train:epoch: 104, loss@min: 0.981297, loss@max: 1.378150, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.374417, LT: 0.373614, Top1S: 89.533470, Top1T: 89.574036Best acc: 89.574036 +Train:epoch: 105, loss@min: 0.984993, loss@max: 1.378923, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 105, LS: 0.374516, LT: 0.373680, Top1S: 89.533470, Top1T: 89.574036 +Train:epoch: 106, loss@min: 0.969460, loss@max: 1.384705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.374650, LT: 0.373776, Top1S: 89.533470, Top1T: 89.574036 +Train:epoch: 107, loss@min: 0.972224, loss@max: 1.379173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.374760, LT: 0.373861, Top1S: 89.533470, Top1T: 89.614601Best acc: 89.614601 +Train:epoch: 108, loss@min: 0.961480, loss@max: 1.367636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.374822, LT: 0.373879, Top1S: 89.533470, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 109, loss@min: 1.006757, loss@max: 1.391977, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 109, LS: 0.374824, LT: 0.373876, Top1S: 89.533470, Top1T: 89.736305Best acc: 89.736305 +Train:epoch: 110, loss@min: 0.977912, loss@max: 1.379748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.374934, LT: 0.373995, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 111, loss@min: 0.981364, loss@max: 1.374435, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.375027, LT: 0.374076, Top1S: 89.452332, Top1T: 89.736305 +Train:epoch: 112, loss@min: 0.963459, loss@max: 1.374452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.375049, LT: 0.374150, Top1S: 89.492905, Top1T: 89.736305 +Train:epoch: 113, loss@min: 0.967704, loss@max: 1.366133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.375118, LT: 0.374233, Top1S: 89.492905, Top1T: 89.736305 +Train:epoch: 114, loss@min: 0.966473, loss@max: 1.373387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.375110, LT: 0.374303, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 115, loss@min: 0.966042, loss@max: 1.375203, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.375097, LT: 0.374368, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 116, loss@min: 1.008242, loss@max: 1.400560, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 116, LS: 0.374967, LT: 0.374300, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 117, loss@min: 0.963288, loss@max: 1.376132, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.374826, LT: 0.374265, Top1S: 89.492905, Top1T: 89.695740 +Train:epoch: 118, loss@min: 0.970829, loss@max: 1.381392, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.374708, LT: 0.374254, Top1S: 89.533470, Top1T: 89.695740 +Train:epoch: 119, loss@min: 0.981630, loss@max: 1.383794, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 119, LS: 0.374589, LT: 0.374229, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 120, loss@min: 0.967818, loss@max: 1.373436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.374540, LT: 0.374241, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 121, loss@min: 0.962823, loss@max: 1.375398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.374496, LT: 0.374251, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 122, loss@min: 0.960701, loss@max: 1.376553, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.374452, LT: 0.374264, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 123, loss@min: 0.980383, loss@max: 1.392238, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 123, LS: 0.374454, LT: 0.374296, Top1S: 89.533470, Top1T: 89.655174 +Train:epoch: 124, loss@min: 0.968698, loss@max: 1.373891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.374487, LT: 0.374334, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 125, loss@min: 0.965564, loss@max: 1.375480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.374485, LT: 0.374338, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 126, loss@min: 0.973635, loss@max: 1.387247, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.374483, LT: 0.374329, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 127, loss@min: 0.968468, loss@max: 1.376233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.374532, LT: 0.374335, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 128, loss@min: 0.960734, loss@max: 1.369708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.374589, LT: 0.374335, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 129, loss@min: 0.970875, loss@max: 1.376185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.374655, LT: 0.374346, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 130, loss@min: 0.987431, loss@max: 1.385490, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 130, LS: 0.374706, LT: 0.374370, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 131, loss@min: 1.051461, loss@max: 1.404009, Top1S acc: 100.000000, Top1T acc: 98.500000 + Test:epoch: 131, LS: 0.374767, LT: 0.374391, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 132, loss@min: 0.975422, loss@max: 1.382739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.374842, LT: 0.374420, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 133, loss@min: 0.981728, loss@max: 1.380879, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 133, LS: 0.374909, LT: 0.374446, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 134, loss@min: 0.978298, loss@max: 1.377717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.374962, LT: 0.374462, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 135, loss@min: 0.966388, loss@max: 1.379904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.375008, LT: 0.374476, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 136, loss@min: 0.967324, loss@max: 1.374219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.375057, LT: 0.374491, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 137, loss@min: 0.961191, loss@max: 1.371858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.375094, LT: 0.374499, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 138, loss@min: 0.962850, loss@max: 1.369298, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.375132, LT: 0.374509, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 139, loss@min: 0.980363, loss@max: 1.386655, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 139, LS: 0.375168, LT: 0.374521, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 140, loss@min: 0.974292, loss@max: 1.380690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.375204, LT: 0.374531, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 141, loss@min: 0.970116, loss@max: 1.379525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.375225, LT: 0.374537, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 142, loss@min: 0.993365, loss@max: 1.387429, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 142, LS: 0.375235, LT: 0.374540, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 143, loss@min: 0.966807, loss@max: 1.385397, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.375245, LT: 0.374544, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 144, loss@min: 0.962639, loss@max: 1.369507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.375253, LT: 0.374548, Top1S: 89.492905, Top1T: 89.655174 +Train:epoch: 145, loss@min: 0.963305, loss@max: 1.376022, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 17:24:34 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.730628, loss@max: 1.188621, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 2, loss@min: 1.862415, loss@max: 1.117696, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.241113, loss@max: 1.085366, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 4, loss@min: 1.094151, loss@max: 1.146907, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 5, loss@min: 1.042331, loss@max: 1.212703, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 6, loss@min: 0.937471, loss@max: 1.240775, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 7, loss@min: 0.840001, loss@max: 1.253199, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 8, loss@min: 0.956105, loss@max: 1.300146, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.789944, loss@max: 1.277316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.807717, loss@max: 1.297114, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 11, loss@min: 1.007388, loss@max: 1.352873, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 12, loss@min: 0.817683, loss@max: 1.297950, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 13, loss@min: 0.821199, loss@max: 1.285574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.863347, loss@max: 1.274067, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 15, loss@min: 0.911499, loss@max: 1.273356, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 0.891872, loss@max: 1.260738, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 17, loss@min: 0.946153, loss@max: 1.265965, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 18, loss@min: 0.909988, loss@max: 1.243028, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 19, loss@min: 0.921369, loss@max: 1.237513, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 20, loss@min: 0.941533, loss@max: 1.241642, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.998623, loss@max: 1.245143, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 0.955235, loss@max: 1.233103, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 0.948823, loss@max: 1.226089, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.944449, loss@max: 1.236833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.947003, loss@max: 1.241906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.945705, loss@max: 1.255805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.943902, loss@max: 1.264320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.960188, loss@max: 1.270225, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.937705, loss@max: 1.274931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.934409, loss@max: 1.281829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938503, loss@max: 1.304613, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.935463, loss@max: 1.313047, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.925575, loss@max: 1.306229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.924876, loss@max: 1.310151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.927044, loss@max: 1.314717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.925711, loss@max: 1.317729, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.958328, loss@max: 1.334034, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 0.925017, loss@max: 1.328058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.930053, loss@max: 1.339066, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 0.926995, loss@max: 1.335210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.923421, loss@max: 1.336625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.934063, loss@max: 1.327849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.021967, loss@max: 1.346424, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.938896, loss@max: 1.327234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.936052, loss@max: 1.336756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.933841, loss@max: 1.339021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.939273, loss@max: 1.342217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.940139, loss@max: 1.339240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941940, loss@max: 1.334580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943744, loss@max: 1.333957, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.946307, loss@max: 1.335001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.943481, loss@max: 1.337567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.939923, loss@max: 1.344660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.945012, loss@max: 1.348716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.942873, loss@max: 1.343133, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.940796, loss@max: 1.345424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.940971, loss@max: 1.345852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.944607, loss@max: 1.343055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.941329, loss@max: 1.347951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941893, loss@max: 1.347732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.980102, loss@max: 1.358012, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.941575, loss@max: 1.349793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.938581, loss@max: 1.353308, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.939151, loss@max: 1.353744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.934706, loss@max: 1.358976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.941546, loss@max: 1.352240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.939854, loss@max: 1.355699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949017, loss@max: 1.346988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944878, loss@max: 1.349892, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.944238, loss@max: 1.351991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.939708, loss@max: 1.356411, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.935828, loss@max: 1.360986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.939665, loss@max: 1.358509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.942826, loss@max: 1.354580, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947750, loss@max: 1.358176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.944781, loss@max: 1.353474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.946964, loss@max: 1.351035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948913, loss@max: 1.359866, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.939471, loss@max: 1.359460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946272, loss@max: 1.352653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.946814, loss@max: 1.351680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.944672, loss@max: 1.354044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945934, loss@max: 1.353518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.942441, loss@max: 1.356566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.942971, loss@max: 1.355470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.938257, loss@max: 1.360956, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.944756, loss@max: 1.354811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.946857, loss@max: 1.356445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.940331, loss@max: 1.359288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.943206, loss@max: 1.357252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946728, loss@max: 1.356299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.946618, loss@max: 1.353397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947747, loss@max: 1.352193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.943802, loss@max: 1.356290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.940081, loss@max: 1.359971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.940869, loss@max: 1.358685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.941448, loss@max: 1.360519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.992317, loss@max: 1.373250, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.942051, loss@max: 1.359319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.945638, loss@max: 1.354849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.713166, LT: 0.717364, Top1S: 89.168358, Top1T: 89.168358Best acc: 89.168358 +Train:epoch: 101, loss@min: 0.947893, loss@max: 1.352148, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.712262, LT: 0.716696, Top1S: 89.168358, Top1T: 89.168358 +Train:epoch: 102, loss@min: 0.942680, loss@max: 1.357700, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.712099, LT: 0.716684, Top1S: 89.249496, Top1T: 89.208923Best acc: 89.249496 +Train:epoch: 103, loss@min: 0.947105, loss@max: 1.353562, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 17:31:43 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 93.396591, loss@max: 25.042114, Top1S acc: 100.000000, Top1T acc: 13.500000 +Train:epoch: 2, loss@min: 43.096207, loss@max: 12.780024, Top1S acc: 100.000000, Top1T acc: 40.500000 +Train:epoch: 3, loss@min: 19.925598, loss@max: 6.660800, Top1S acc: 100.000000, Top1T acc: 56.000000 +Train:epoch: 4, loss@min: 19.445282, loss@max: 7.065415, Top1S acc: 100.000000, Top1T acc: 52.500000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 17:33:07 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.268912, loss@max: 0.945658, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 2.168485, loss@max: 0.952022, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 3, loss@min: 2.088737, loss@max: 0.962853, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 4, loss@min: 1.912163, loss@max: 0.949461, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.751382, loss@max: 0.938778, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.764116, loss@max: 0.975324, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.608609, loss@max: 0.961669, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 8, loss@min: 1.546417, loss@max: 0.974447, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.461681, loss@max: 0.980722, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 10, loss@min: 1.423448, loss@max: 0.993821, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 11, loss@min: 1.539629, loss@max: 1.058807, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.427965, loss@max: 1.056784, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.299776, loss@max: 1.040255, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 1.251950, loss@max: 1.052812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.233109, loss@max: 1.073177, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.286264, loss@max: 1.110758, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.270388, loss@max: 1.130912, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 18, loss@min: 1.281257, loss@max: 1.165175, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 19, loss@min: 1.255805, loss@max: 1.163791, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 20, loss@min: 1.226388, loss@max: 1.178851, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 21, loss@min: 1.193279, loss@max: 1.191743, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.187531, loss@max: 1.196470, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.173882, loss@max: 1.211450, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 24, loss@min: 1.096259, loss@max: 1.196844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.112135, loss@max: 1.214279, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 1.124393, loss@max: 1.240558, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.132338, loss@max: 1.247583, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 1.099515, loss@max: 1.247156, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 1.052830, loss@max: 1.240713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.075545, loss@max: 1.262387, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 1.075327, loss@max: 1.272502, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.081263, loss@max: 1.279071, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 1.031659, loss@max: 1.266340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.054766, loss@max: 1.286621, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.044163, loss@max: 1.290315, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 1.022725, loss@max: 1.295765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.040923, loss@max: 1.306645, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 1.018628, loss@max: 1.301709, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 1.027931, loss@max: 1.312553, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 1.043120, loss@max: 1.322458, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.992430, loss@max: 1.306120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.996034, loss@max: 1.313230, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.106806, loss@max: 1.348905, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.999843, loss@max: 1.323705, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 1.030125, loss@max: 1.342314, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 1.005271, loss@max: 1.339744, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.985163, loss@max: 1.332681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.982528, loss@max: 1.333799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.974631, loss@max: 1.333739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.973692, loss@max: 1.339432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.989821, loss@max: 1.351906, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.005718, loss@max: 1.364337, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 53, loss@min: 1.001158, loss@max: 1.358024, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.998857, loss@max: 1.359136, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.976241, loss@max: 1.348358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.973573, loss@max: 1.352907, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 57, loss@min: 0.961142, loss@max: 1.345650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.013594, loss@max: 1.369449, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.973695, loss@max: 1.363581, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.973004, loss@max: 1.360536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.986093, loss@max: 1.366421, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.970695, loss@max: 1.362699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964076, loss@max: 1.360672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.983891, loss@max: 1.366318, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.968632, loss@max: 1.361863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.960917, loss@max: 1.357521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.966198, loss@max: 1.364682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.966960, loss@max: 1.362371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.963253, loss@max: 1.367772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978326, loss@max: 1.373991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960100, loss@max: 1.362490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954100, loss@max: 1.356234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.982878, loss@max: 1.375686, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.985831, loss@max: 1.373126, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.958588, loss@max: 1.365915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.973642, loss@max: 1.373432, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 0.991977, loss@max: 1.388071, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.989939, loss@max: 1.374895, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 79, loss@min: 0.963972, loss@max: 1.369043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.992082, loss@max: 1.375539, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.958647, loss@max: 1.368870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.951339, loss@max: 1.365765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.951337, loss@max: 1.363794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.988630, loss@max: 1.371584, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.951820, loss@max: 1.364070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.959620, loss@max: 1.374801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.961137, loss@max: 1.371802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.000722, loss@max: 1.389711, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.951336, loss@max: 1.365517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958439, loss@max: 1.367019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.973388, loss@max: 1.375186, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 92, loss@min: 0.957636, loss@max: 1.365884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.959245, loss@max: 1.365312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.976742, loss@max: 1.380061, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.953666, loss@max: 1.368536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.953793, loss@max: 1.366753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.976286, loss@max: 1.380874, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.008594, loss@max: 1.380677, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.958451, loss@max: 1.372413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951624, loss@max: 1.364745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.381008, LT: 0.379073, Top1S: 90.141991, Top1T: 90.223122Best acc: 90.223122 +Train:epoch: 101, loss@min: 0.957034, loss@max: 1.367405, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.380970, LT: 0.379021, Top1S: 90.182556, Top1T: 90.263695Best acc: 90.263695 +Train:epoch: 102, loss@min: 0.956744, loss@max: 1.369182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.380993, LT: 0.379031, Top1S: 90.141991, Top1T: 90.223122 +Train:epoch: 103, loss@min: 0.955638, loss@max: 1.364814, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.381130, LT: 0.379158, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 104, loss@min: 0.978457, loss@max: 1.373184, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.381146, LT: 0.379165, Top1S: 90.141991, Top1T: 90.223122 +Train:epoch: 105, loss@min: 0.961705, loss@max: 1.369400, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.381196, LT: 0.379209, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 106, loss@min: 0.959130, loss@max: 1.372019, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.381294, LT: 0.379300, Top1S: 90.101418, Top1T: 90.182556 +Train:epoch: 107, loss@min: 0.952755, loss@max: 1.366280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.381386, LT: 0.379387, Top1S: 90.101418, Top1T: 90.182556 +Train:epoch: 108, loss@min: 0.949511, loss@max: 1.361507, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.381438, LT: 0.379432, Top1S: 90.060852, Top1T: 90.182556{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 17:42:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.268913, loss@max: 0.945658, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 2.168485, loss@max: 0.952022, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 3, loss@min: 2.088737, loss@max: 0.962853, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 4, loss@min: 1.912162, loss@max: 0.949462, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.751384, loss@max: 0.938778, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.764117, loss@max: 0.975323, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.608609, loss@max: 0.961669, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 8, loss@min: 1.546416, loss@max: 0.974448, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.461681, loss@max: 0.980723, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 10, loss@min: 1.423449, loss@max: 0.993821, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 11, loss@min: 1.539630, loss@max: 1.058807, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.427966, loss@max: 1.056784, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.299777, loss@max: 1.040254, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 1.251951, loss@max: 1.052812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.233110, loss@max: 1.073177, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.286266, loss@max: 1.110758, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.270389, loss@max: 1.130912, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 18, loss@min: 1.281259, loss@max: 1.165175, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 19, loss@min: 1.255806, loss@max: 1.163791, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 20, loss@min: 1.226389, loss@max: 1.178852, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 21, loss@min: 1.193280, loss@max: 1.191743, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.187533, loss@max: 1.196470, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.173885, loss@max: 1.211450, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 24, loss@min: 1.096259, loss@max: 1.196845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.112137, loss@max: 1.214280, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 1.124394, loss@max: 1.240559, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.132339, loss@max: 1.247583, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 1.099515, loss@max: 1.247157, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 1.052830, loss@max: 1.240714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.075547, loss@max: 1.262387, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 1.075330, loss@max: 1.272502, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.081264, loss@max: 1.279073, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 1.031658, loss@max: 1.266341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.054767, loss@max: 1.286622, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.044164, loss@max: 1.290316, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 1.022727, loss@max: 1.295765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.040924, loss@max: 1.306646, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 1.018629, loss@max: 1.301709, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 1.027932, loss@max: 1.312554, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 1.043119, loss@max: 1.322460, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.992431, loss@max: 1.306120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.996032, loss@max: 1.313232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.106806, loss@max: 1.348905, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.999844, loss@max: 1.323706, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 1.030127, loss@max: 1.342315, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 1.005270, loss@max: 1.339747, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.985164, loss@max: 1.332681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.982528, loss@max: 1.333801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.974632, loss@max: 1.333739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.973692, loss@max: 1.339433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.989822, loss@max: 1.351907, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.005718, loss@max: 1.364339, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 53, loss@min: 1.001159, loss@max: 1.358026, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.998858, loss@max: 1.359136, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.976242, loss@max: 1.348358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.973574, loss@max: 1.352906, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 57, loss@min: 0.961142, loss@max: 1.345651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.013595, loss@max: 1.369449, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.973696, loss@max: 1.363582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.973005, loss@max: 1.360538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.986093, loss@max: 1.366423, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.970695, loss@max: 1.362700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964076, loss@max: 1.360673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.983891, loss@max: 1.366320, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.968633, loss@max: 1.361863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.960917, loss@max: 1.357522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.966198, loss@max: 1.364683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.966960, loss@max: 1.362373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.963254, loss@max: 1.367772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978328, loss@max: 1.373992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960101, loss@max: 1.362491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954100, loss@max: 1.356234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.982878, loss@max: 1.375688, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.985831, loss@max: 1.373127, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.958587, loss@max: 1.365916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.973642, loss@max: 1.373434, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 0.991978, loss@max: 1.388072, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.989940, loss@max: 1.374896, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 79, loss@min: 0.963973, loss@max: 1.369045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.992082, loss@max: 1.375540, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.958648, loss@max: 1.368870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.951338, loss@max: 1.365766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.951336, loss@max: 1.363795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.988630, loss@max: 1.371585, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.951820, loss@max: 1.364072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.959620, loss@max: 1.374802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.961139, loss@max: 1.371804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.000723, loss@max: 1.389712, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.951336, loss@max: 1.365519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958437, loss@max: 1.367022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.973389, loss@max: 1.375186, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 92, loss@min: 0.957636, loss@max: 1.365886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.959246, loss@max: 1.365313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.976743, loss@max: 1.380063, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.953666, loss@max: 1.368537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.953792, loss@max: 1.366755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.976286, loss@max: 1.380875, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.008596, loss@max: 1.380679, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.958451, loss@max: 1.372413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951625, loss@max: 1.364745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.381005, LT: 0.379070, Top1S: 90.141991, Top1T: 90.223122Best acc: 90.223122 +Train:epoch: 101, loss@min: 0.957033, loss@max: 1.367406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.380967, LT: 0.379019, Top1S: 90.182556, Top1T: 90.263695Best acc: 90.263695 +Train:epoch: 102, loss@min: 0.956743, loss@max: 1.369184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.380990, LT: 0.379028, Top1S: 90.141991, Top1T: 90.223122 +Train:epoch: 103, loss@min: 0.955638, loss@max: 1.364815, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 17:50:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.471764, loss@max: 1.258032, Top1S acc: 100.000000, Top1T acc: 67.187500 +Train:epoch: 2, loss@min: 1.274443, loss@max: 0.776204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 3, loss@min: 1.181914, loss@max: 0.844504, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 17:51:58 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.707596, loss@max: 1.181625, Top1S acc: 100.000000, Top1T acc: 81.000000 +Train:epoch: 2, loss@min: 1.859665, loss@max: 1.115161, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.247349, loss@max: 1.085027, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 4, loss@min: 1.097618, loss@max: 1.145942, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 5, loss@min: 1.043278, loss@max: 1.211635, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 6, loss@min: 0.936147, loss@max: 1.239910, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.842035, loss@max: 1.253904, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 8, loss@min: 0.955027, loss@max: 1.300228, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.789618, loss@max: 1.277755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.808064, loss@max: 1.297692, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 11, loss@min: 1.009815, loss@max: 1.355170, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 12, loss@min: 0.815972, loss@max: 1.301056, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 13, loss@min: 0.816927, loss@max: 1.289024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.858141, loss@max: 1.278202, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 15, loss@min: 0.901982, loss@max: 1.275347, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 0.889649, loss@max: 1.262741, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 17, loss@min: 0.948854, loss@max: 1.268580, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 18, loss@min: 0.906924, loss@max: 1.244239, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 19, loss@min: 0.919875, loss@max: 1.239183, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 20, loss@min: 0.939533, loss@max: 1.243502, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 21, loss@min: 0.998289, loss@max: 1.247308, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 0.956200, loss@max: 1.234188, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 23, loss@min: 0.948728, loss@max: 1.225864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.945676, loss@max: 1.235521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.948649, loss@max: 1.240494, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.948463, loss@max: 1.254693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.944866, loss@max: 1.262812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.960360, loss@max: 1.268289, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.940335, loss@max: 1.272876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.936383, loss@max: 1.279739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.937376, loss@max: 1.301867, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.938959, loss@max: 1.311449, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.926007, loss@max: 1.305191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.925538, loss@max: 1.309126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.926988, loss@max: 1.314515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.926081, loss@max: 1.317001, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.958036, loss@max: 1.333150, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 0.924614, loss@max: 1.328041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.927913, loss@max: 1.338010, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 0.925667, loss@max: 1.335261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.922239, loss@max: 1.336500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933144, loss@max: 1.328652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.019096, loss@max: 1.347194, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.937727, loss@max: 1.328472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.937542, loss@max: 1.337184, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.934339, loss@max: 1.337764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.939594, loss@max: 1.341525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.938703, loss@max: 1.338778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.940974, loss@max: 1.335413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942194, loss@max: 1.335179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.945075, loss@max: 1.335968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.943550, loss@max: 1.337464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.940134, loss@max: 1.344225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949567, loss@max: 1.348333, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 55, loss@min: 0.943156, loss@max: 1.341935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.942059, loss@max: 1.344709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.940964, loss@max: 1.345533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.944378, loss@max: 1.343471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.940694, loss@max: 1.348517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.941890, loss@max: 1.347516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.974585, loss@max: 1.356676, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.942148, loss@max: 1.349303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939428, loss@max: 1.352398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.939750, loss@max: 1.352993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.935099, loss@max: 1.358452, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.939874, loss@max: 1.353579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.939499, loss@max: 1.357876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.948700, loss@max: 1.347716, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945246, loss@max: 1.349236, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945698, loss@max: 1.350301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.940482, loss@max: 1.355285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.936181, loss@max: 1.360186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.938150, loss@max: 1.359468, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.941478, loss@max: 1.355781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.950687, loss@max: 1.358960, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 76, loss@min: 0.945129, loss@max: 1.353012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.948166, loss@max: 1.349924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.951690, loss@max: 1.358826, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.939631, loss@max: 1.359225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.944926, loss@max: 1.353596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.945220, loss@max: 1.353052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.943444, loss@max: 1.355075, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.945064, loss@max: 1.354032, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.943908, loss@max: 1.355168, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.944429, loss@max: 1.353826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.939994, loss@max: 1.358927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.945434, loss@max: 1.353820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.945979, loss@max: 1.356157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.939837, loss@max: 1.359596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.941498, loss@max: 1.358464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.944059, loss@max: 1.356792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.945801, loss@max: 1.353965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.947668, loss@max: 1.352139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.944064, loss@max: 1.356108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.941975, loss@max: 1.357959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.941721, loss@max: 1.357694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.941907, loss@max: 1.359663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.992682, loss@max: 1.374429, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.941043, loss@max: 1.360274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.945070, loss@max: 1.355368, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.689671, LT: 0.694156, Top1S: 89.168358, Top1T: 89.046654Best acc: 89.168358 +Train:epoch: 101, loss@min: 0.947105, loss@max: 1.352790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.688846, LT: 0.693459, Top1S: 89.168358, Top1T: 89.127792 +Train:epoch: 102, loss@min: 0.942367, loss@max: 1.357881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.688509, LT: 0.693184, Top1S: 89.208923, Top1T: 89.127792Best acc: 89.208923 +Train:epoch: 103, loss@min: 0.947311, loss@max: 1.353321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.688239, LT: 0.692949, Top1S: 89.249496, Top1T: 89.168358Best acc: 89.249496 +Train:epoch: 104, loss@min: 0.942894, loss@max: 1.357798, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.687872, LT: 0.692624, Top1S: 89.208923, Top1T: 89.168358 +Train:epoch: 105, loss@min: 0.944995, loss@max: 1.355406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.688327, LT: 0.693216, Top1S: 89.168358, Top1T: 89.087219 +Train:epoch: 106, loss@min: 0.943042, loss@max: 1.359486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.688645, LT: 0.693592, Top1S: 89.127792, Top1T: 89.046654 +Train:epoch: 107, loss@min: 0.940537, loss@max: 1.359912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.688638, LT: 0.693822, Top1S: 89.127792, Top1T: 89.006088 +Train:epoch: 108, loss@min: 0.937536, loss@max: 1.362668, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.688714, LT: 0.694131, Top1S: 89.127792, Top1T: 89.046654 +Train:epoch: 109, loss@min: 0.938737, loss@max: 1.362190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.689044, LT: 0.694580, Top1S: 89.127792, Top1T: 89.127792 +Train:epoch: 110, loss@min: 0.943523, loss@max: 1.362236, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.689585, LT: 0.695180, Top1S: 89.168358, Top1T: 89.127792 +Train:epoch: 111, loss@min: 0.943475, loss@max: 1.356884, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.690177, LT: 0.695759, Top1S: 89.168358, Top1T: 89.087219 +Train:epoch: 112, loss@min: 0.943299, loss@max: 1.357303, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.690611, LT: 0.696095, Top1S: 89.168358, Top1T: 89.087219 +Train:epoch: 113, loss@min: 0.943307, loss@max: 1.357005, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.690930, LT: 0.696219, Top1S: 89.127792, Top1T: 89.127792 +Train:epoch: 114, loss@min: 0.944483, loss@max: 1.355883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.691244, LT: 0.696377, Top1S: 89.127792, Top1T: 89.127792 +Train:epoch: 115, loss@min: 0.944617, loss@max: 1.357799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.691471, LT: 0.696497, Top1S: 89.208923, Top1T: 89.006088 +Train:epoch: 116, loss@min: 0.945002, loss@max: 1.356627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.691766, LT: 0.696732, Top1S: 89.168358, Top1T: 89.006088 +Train:epoch: 117, loss@min: 0.945481, loss@max: 1.354926, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.692004, LT: 0.697010, Top1S: 89.168358, Top1T: 89.046654 +Train:epoch: 118, loss@min: 0.942874, loss@max: 1.357783, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.692267, LT: 0.697376, Top1S: 89.168358, Top1T: 89.046654 +Train:epoch: 119, loss@min: 0.946663, loss@max: 1.353395, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.692474, LT: 0.697798, Top1S: 89.127792, Top1T: 89.046654 +Train:epoch: 120, loss@min: 0.944478, loss@max: 1.356333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.692706, LT: 0.698254, Top1S: 89.168358, Top1T: 88.924950 +Train:epoch: 121, loss@min: 0.944371, loss@max: 1.356160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.692904, LT: 0.698692, Top1S: 89.168358, Top1T: 88.924950 +Train:epoch: 122, loss@min: 0.943355, loss@max: 1.356937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.692864, LT: 0.698893, Top1S: 89.168358, Top1T: 88.924950 +Train:epoch: 123, loss@min: 0.941684, loss@max: 1.358910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.692684, LT: 0.698882, Top1S: 89.087219, Top1T: 88.924950 +Train:epoch: 124, loss@min: 0.940475, loss@max: 1.359802, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.692498, LT: 0.698793, Top1S: 89.046654, Top1T: 88.924950 +Train:epoch: 125, loss@min: 0.943490, loss@max: 1.356990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.692135, LT: 0.698492, Top1S: 89.046654, Top1T: 88.924950 +Train:epoch: 126, loss@min: 0.942114, loss@max: 1.358795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.691751, LT: 0.698111, Top1S: 89.006088, Top1T: 88.884384 +Train:epoch: 127, loss@min: 0.945578, loss@max: 1.354810, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.691366, LT: 0.697710, Top1S: 89.046654, Top1T: 88.884384 +Train:epoch: 128, loss@min: 0.942829, loss@max: 1.357269, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 18:10:00 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.268913, loss@max: 0.945658, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 2.168485, loss@max: 0.952022, Top1S acc: 100.000000, Top1T acc: 86.000000 +Train:epoch: 3, loss@min: 2.088737, loss@max: 0.962853, Top1S acc: 100.000000, Top1T acc: 88.000000 +Train:epoch: 4, loss@min: 1.912162, loss@max: 0.949462, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.751384, loss@max: 0.938778, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.764117, loss@max: 0.975323, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.608609, loss@max: 0.961669, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 8, loss@min: 1.546416, loss@max: 0.974448, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.461681, loss@max: 0.980723, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 10, loss@min: 1.423449, loss@max: 0.993821, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 11, loss@min: 1.539630, loss@max: 1.058807, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.427966, loss@max: 1.056784, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.299777, loss@max: 1.040254, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 1.251951, loss@max: 1.052812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.233110, loss@max: 1.073177, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.286266, loss@max: 1.110758, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.270389, loss@max: 1.130912, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 18, loss@min: 1.281259, loss@max: 1.165175, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 19, loss@min: 1.255806, loss@max: 1.163791, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 20, loss@min: 1.226389, loss@max: 1.178852, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 21, loss@min: 1.193280, loss@max: 1.191743, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.187533, loss@max: 1.196470, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.173885, loss@max: 1.211450, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 24, loss@min: 1.096259, loss@max: 1.196845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.112137, loss@max: 1.214280, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 1.124394, loss@max: 1.240559, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.132339, loss@max: 1.247583, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 28, loss@min: 1.099515, loss@max: 1.247157, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 1.052830, loss@max: 1.240714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.075547, loss@max: 1.262387, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 1.075330, loss@max: 1.272502, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 32, loss@min: 1.081264, loss@max: 1.279073, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 33, loss@min: 1.031658, loss@max: 1.266341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.054767, loss@max: 1.286622, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.044164, loss@max: 1.290316, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 1.022727, loss@max: 1.295765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.040924, loss@max: 1.306646, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 1.018629, loss@max: 1.301709, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 1.027932, loss@max: 1.312554, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 1.043119, loss@max: 1.322460, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.992431, loss@max: 1.306120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.996032, loss@max: 1.313232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.106806, loss@max: 1.348905, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.999844, loss@max: 1.323706, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 1.030127, loss@max: 1.342315, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 1.005270, loss@max: 1.339747, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.985164, loss@max: 1.332681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.982528, loss@max: 1.333801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.974632, loss@max: 1.333739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.973692, loss@max: 1.339433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.989822, loss@max: 1.351907, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.005718, loss@max: 1.364339, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 53, loss@min: 1.001159, loss@max: 1.358026, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.998858, loss@max: 1.359136, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.976242, loss@max: 1.348358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.973574, loss@max: 1.352906, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 57, loss@min: 0.961142, loss@max: 1.345651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.013595, loss@max: 1.369449, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.973696, loss@max: 1.363582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.973005, loss@max: 1.360538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.986093, loss@max: 1.366423, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.970695, loss@max: 1.362700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.964076, loss@max: 1.360673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.983891, loss@max: 1.366320, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.968633, loss@max: 1.361863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.960917, loss@max: 1.357522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.966198, loss@max: 1.364683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.966960, loss@max: 1.362373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.963254, loss@max: 1.367772, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.978328, loss@max: 1.373992, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.960101, loss@max: 1.362491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.954100, loss@max: 1.356234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.982878, loss@max: 1.375688, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.985831, loss@max: 1.373127, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.958587, loss@max: 1.365916, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.973642, loss@max: 1.373434, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 77, loss@min: 0.991978, loss@max: 1.388072, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.989940, loss@max: 1.374896, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 79, loss@min: 0.963973, loss@max: 1.369045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.992082, loss@max: 1.375540, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.958648, loss@max: 1.368870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.951338, loss@max: 1.365766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.951336, loss@max: 1.363795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.988630, loss@max: 1.371585, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.951820, loss@max: 1.364072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.959620, loss@max: 1.374802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.961139, loss@max: 1.371804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 1.000723, loss@max: 1.389712, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.951336, loss@max: 1.365519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.958437, loss@max: 1.367022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.973389, loss@max: 1.375186, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 92, loss@min: 0.957636, loss@max: 1.365886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.959246, loss@max: 1.365313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.976743, loss@max: 1.380063, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 95, loss@min: 0.953666, loss@max: 1.368537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.953792, loss@max: 1.366755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.976286, loss@max: 1.380875, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 1.008596, loss@max: 1.380679, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.958451, loss@max: 1.372413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.951625, loss@max: 1.364745, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.381007, LT: 0.379072, Top1S: 90.141991, Top1T: 90.223122Best acc: 90.223122 +Train:epoch: 101, loss@min: 0.957033, loss@max: 1.367406, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.380969, LT: 0.379020, Top1S: 90.182556, Top1T: 90.223122 +Train:epoch: 102, loss@min: 0.956743, loss@max: 1.369184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.380992, LT: 0.379030, Top1S: 90.141991, Top1T: 90.223122 +Train:epoch: 103, loss@min: 0.955638, loss@max: 1.364815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.381129, LT: 0.379157, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 104, loss@min: 0.978457, loss@max: 1.373184, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.381145, LT: 0.379164, Top1S: 90.141991, Top1T: 90.223122 +Train:epoch: 105, loss@min: 0.961706, loss@max: 1.369401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.381195, LT: 0.379208, Top1S: 90.141991, Top1T: 90.182556 +Train:epoch: 106, loss@min: 0.959130, loss@max: 1.372021, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.381293, LT: 0.379299, Top1S: 90.101418, Top1T: 90.182556 +Train:epoch: 107, loss@min: 0.952754, loss@max: 1.366282, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.381385, LT: 0.379386, Top1S: 90.101418, Top1T: 90.182556 +Train:epoch: 108, loss@min: 0.949511, loss@max: 1.361508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.381438, LT: 0.379432, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 109, loss@min: 0.977279, loss@max: 1.381041, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 109, LS: 0.381475, LT: 0.379465, Top1S: 90.101418, Top1T: 90.182556 +Train:epoch: 110, loss@min: 0.969913, loss@max: 1.374027, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 110, LS: 0.381630, LT: 0.379622, Top1S: 90.101418, Top1T: 90.141991 +Train:epoch: 111, loss@min: 0.960543, loss@max: 1.365860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.381726, LT: 0.379720, Top1S: 90.060852, Top1T: 90.141991 +Train:epoch: 112, loss@min: 0.951687, loss@max: 1.366596, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.381830, LT: 0.379826, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 113, loss@min: 0.950965, loss@max: 1.363077, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.381928, LT: 0.379926, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 114, loss@min: 0.954792, loss@max: 1.365724, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.381990, LT: 0.379990, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 115, loss@min: 0.953470, loss@max: 1.367839, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.382055, LT: 0.380057, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 116, loss@min: 0.982242, loss@max: 1.383659, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 116, LS: 0.381978, LT: 0.379976, Top1S: 90.060852, Top1T: 90.182556 +Train:epoch: 117, loss@min: 0.955219, loss@max: 1.365873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.381909, LT: 0.379907, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 118, loss@min: 0.956803, loss@max: 1.369509, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.381831, LT: 0.379832, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 119, loss@min: 0.961552, loss@max: 1.371614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.381755, LT: 0.379760, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 120, loss@min: 0.954249, loss@max: 1.365662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.381729, LT: 0.379737, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 121, loss@min: 0.953472, loss@max: 1.363630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.381689, LT: 0.379700, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 122, loss@min: 0.952236, loss@max: 1.364572, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.381654, LT: 0.379669, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 123, loss@min: 0.961340, loss@max: 1.374907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.381645, LT: 0.379664, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 124, loss@min: 0.954779, loss@max: 1.363893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.381661, LT: 0.379682, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 125, loss@min: 0.952024, loss@max: 1.363190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.381651, LT: 0.379674, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 126, loss@min: 0.957677, loss@max: 1.372985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.381635, LT: 0.379661, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 127, loss@min: 0.967021, loss@max: 1.370593, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 127, LS: 0.381630, LT: 0.379659, Top1S: 90.060852, Top1T: 90.223122 +Train:epoch: 128, loss@min: 0.950925, loss@max: 1.360992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.381622, LT: 0.379654, Top1S: 90.101418, Top1T: 90.223122 +Train:epoch: 129, loss@min: 0.956634, loss@max: 1.366742, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.381613, LT: 0.379648, Top1S: 90.101418, Top1T: 90.223122 +Train:epoch: 130, loss@min: 0.995889, loss@max: 1.376346, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 130, LS: 0.381612, LT: 0.379650, Top1S: 90.101418, Top1T: 90.223122 +Train:epoch: 131, loss@min: 1.014424, loss@max: 1.385504, Top1S acc: 100.000000, Top1T acc: 99.000000 + Test:epoch: 131, LS: 0.381615, LT: 0.379655, Top1S: 90.101418, Top1T: 90.223122 +Train:epoch: 132, loss@min: 0.958421, loss@max: 1.372305, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.381631, LT: 0.379673, Top1S: 90.101418, Top1T: 90.223122 +Train:epoch: 133, loss@min: 0.966725, loss@max: 1.369071, Top1S acc: 100.000000, Top1T acc: 99.500000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 18:29:56 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.268773, loss@max: 0.945628, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 2.167733, loss@max: 0.951853, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 3, loss@min: 2.087912, loss@max: 0.962702, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 4, loss@min: 1.912569, loss@max: 0.949614, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 5, loss@min: 1.752885, loss@max: 0.939260, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 6, loss@min: 1.763571, loss@max: 0.975385, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 7, loss@min: 1.608500, loss@max: 0.961783, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 8, loss@min: 1.547737, loss@max: 0.974905, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 9, loss@min: 1.462989, loss@max: 0.981308, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 10, loss@min: 1.420883, loss@max: 0.993325, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 11, loss@min: 1.538095, loss@max: 1.058556, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.427388, loss@max: 1.056756, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 13, loss@min: 1.301397, loss@max: 1.040660, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 14, loss@min: 1.253519, loss@max: 1.053314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.235131, loss@max: 1.073922, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 16, loss@min: 1.288220, loss@max: 1.111322, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.270225, loss@max: 1.131256, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 18, loss@min: 1.287469, loss@max: 1.167508, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 19, loss@min: 1.259904, loss@max: 1.164430, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.235082, loss@max: 1.181234, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 21, loss@min: 1.199487, loss@max: 1.193619, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.195634, loss@max: 1.198387, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.182110, loss@max: 1.213149, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 24, loss@min: 1.099823, loss@max: 1.197179, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.114620, loss@max: 1.213766, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 1.126378, loss@max: 1.240401, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 27, loss@min: 1.132069, loss@max: 1.247178, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 28, loss@min: 1.102269, loss@max: 1.246226, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 1.057232, loss@max: 1.240928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.081323, loss@max: 1.262687, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 31, loss@min: 1.079156, loss@max: 1.272075, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 1.084368, loss@max: 1.278602, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 33, loss@min: 1.035002, loss@max: 1.265371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.058269, loss@max: 1.286228, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 35, loss@min: 1.043731, loss@max: 1.287833, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 36, loss@min: 1.026051, loss@max: 1.294737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.048195, loss@max: 1.306791, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 38, loss@min: 1.024402, loss@max: 1.302422, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 39, loss@min: 1.036114, loss@max: 1.312806, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 40, loss@min: 1.044289, loss@max: 1.321269, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.995733, loss@max: 1.305124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.000293, loss@max: 1.313297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.108975, loss@max: 1.347519, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 1.001198, loss@max: 1.321816, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 45, loss@min: 1.031535, loss@max: 1.341181, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 1.004268, loss@max: 1.337579, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 47, loss@min: 0.986959, loss@max: 1.331307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.985399, loss@max: 1.333318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.977574, loss@max: 1.332907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.976711, loss@max: 1.339020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.992039, loss@max: 1.352078, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 52, loss@min: 1.010495, loss@max: 1.364811, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 53, loss@min: 1.005338, loss@max: 1.359144, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 54, loss@min: 0.998038, loss@max: 1.358417, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 55, loss@min: 0.976821, loss@max: 1.347038, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.975916, loss@max: 1.351740, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 57, loss@min: 0.963630, loss@max: 1.345309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.012984, loss@max: 1.368731, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.975801, loss@max: 1.363037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.976284, loss@max: 1.361850, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.986340, loss@max: 1.365188, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 62, loss@min: 0.973795, loss@max: 1.363030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.965262, loss@max: 1.359779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.980974, loss@max: 1.365536, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 65, loss@min: 0.968419, loss@max: 1.360056, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.962986, loss@max: 1.356971, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.967434, loss@max: 1.362796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.966645, loss@max: 1.360140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.964562, loss@max: 1.365901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.979834, loss@max: 1.372779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.963611, loss@max: 1.362613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.956556, loss@max: 1.355132, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.983547, loss@max: 1.373919, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 74, loss@min: 0.988800, loss@max: 1.372483, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 75, loss@min: 0.960539, loss@max: 1.363897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.970440, loss@max: 1.370760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.986210, loss@max: 1.384657, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 78, loss@min: 0.986269, loss@max: 1.372258, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 79, loss@min: 0.968127, loss@max: 1.368570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.993595, loss@max: 1.373439, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.963348, loss@max: 1.368606, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.954614, loss@max: 1.364704, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.954059, loss@max: 1.362361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.984271, loss@max: 1.369336, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 85, loss@min: 0.954996, loss@max: 1.362893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.962757, loss@max: 1.374050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.990558, loss@max: 1.375675, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 88, loss@min: 0.998390, loss@max: 1.388845, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.953777, loss@max: 1.364098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.961118, loss@max: 1.367296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.972709, loss@max: 1.372661, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 92, loss@min: 0.961432, loss@max: 1.367016, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.958469, loss@max: 1.363925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.980654, loss@max: 1.379253, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 95, loss@min: 0.955971, loss@max: 1.368442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.956620, loss@max: 1.366275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.978049, loss@max: 1.379827, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 98, loss@min: 0.998732, loss@max: 1.376128, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 99, loss@min: 0.958898, loss@max: 1.369855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.954789, loss@max: 1.364619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.381113, LT: 0.379148, Top1S: 90.263695, Top1T: 90.466530Best acc: 90.466530 +Train:epoch: 101, loss@min: 0.960243, loss@max: 1.367332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.381115, LT: 0.379138, Top1S: 90.304260, Top1T: 90.466530 +Train:epoch: 102, loss@min: 0.959599, loss@max: 1.368932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.381142, LT: 0.379152, Top1S: 90.263695, Top1T: 90.385399 +Train:epoch: 103, loss@min: 0.956041, loss@max: 1.362720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.381282, LT: 0.379283, Top1S: 90.263695, Top1T: 90.425964 +Train:epoch: 104, loss@min: 0.995702, loss@max: 1.376077, Top1S acc: 100.000000, Top1T acc: 99.500000 + Test:epoch: 104, LS: 0.381204, LT: 0.379198, Top1S: 90.263695, Top1T: 90.425964 +Train:epoch: 105, loss@min: 0.963676, loss@max: 1.368276, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.381164, LT: 0.379153, Top1S: 90.263695, Top1T: 90.344826 +Train:epoch: 106, loss@min: 0.963073, loss@max: 1.372735, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.381151, LT: 0.379134, Top1S: 90.263695, Top1T: 90.344826 +Train:epoch: 107, loss@min: 0.955033, loss@max: 1.365672, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.381139, LT: 0.379118, Top1S: 90.263695, Top1T: 90.344826{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 18:43:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.292360, loss@max: 1.011359, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 2, loss@min: 1.880378, loss@max: 0.993864, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 3, loss@min: 1.953711, loss@max: 1.088931, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 1.653153, loss@max: 1.086982, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 5, loss@min: 1.577133, loss@max: 1.134262, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 6, loss@min: 1.525664, loss@max: 1.175146, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 7, loss@min: 1.551029, loss@max: 1.240418, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 8, loss@min: 1.328950, loss@max: 1.221735, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 9, loss@min: 1.315984, loss@max: 1.241981, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 10, loss@min: 1.118961, loss@max: 1.219341, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 11, loss@min: 1.170681, loss@max: 1.256559, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 12, loss@min: 1.256376, loss@max: 1.303373, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 13, loss@min: 1.163007, loss@max: 1.296146, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 14, loss@min: 1.184887, loss@max: 1.321988, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 15, loss@min: 1.157559, loss@max: 1.313798, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 16, loss@min: 1.075467, loss@max: 1.297830, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 17, loss@min: 1.199566, loss@max: 1.333531, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 18, loss@min: 0.983322, loss@max: 1.278684, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.073739, loss@max: 1.322521, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 20, loss@min: 1.037415, loss@max: 1.310410, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.084396, loss@max: 1.330512, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 22, loss@min: 1.019881, loss@max: 1.312153, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.014320, loss@max: 1.315123, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 24, loss@min: 1.039469, loss@max: 1.336910, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 25, loss@min: 1.071752, loss@max: 1.344302, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 26, loss@min: 1.040715, loss@max: 1.340979, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 27, loss@min: 1.065542, loss@max: 1.349685, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 28, loss@min: 1.007619, loss@max: 1.326253, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 1.012105, loss@max: 1.343219, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 30, loss@min: 1.028998, loss@max: 1.351449, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 31, loss@min: 1.030235, loss@max: 1.343571, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 0.975236, loss@max: 1.339863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.998884, loss@max: 1.347975, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 34, loss@min: 1.068083, loss@max: 1.368850, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 1.024047, loss@max: 1.359359, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.006588, loss@max: 1.357534, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.049049, loss@max: 1.367867, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 38, loss@min: 0.983687, loss@max: 1.350111, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.991227, loss@max: 1.362800, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.968482, loss@max: 1.352104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.028759, loss@max: 1.371882, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 42, loss@min: 0.959154, loss@max: 1.345755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.007091, loss@max: 1.375463, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.025456, loss@max: 1.368483, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 45, loss@min: 0.984288, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 0.984246, loss@max: 1.361875, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 0.973229, loss@max: 1.358137, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 1.014498, loss@max: 1.384717, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 1.006008, loss@max: 1.386457, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.013823, loss@max: 1.379411, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 51, loss@min: 0.966009, loss@max: 1.365682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.006417, loss@max: 1.376430, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 53, loss@min: 0.979573, loss@max: 1.370715, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.002741, loss@max: 1.375556, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 55, loss@min: 1.011292, loss@max: 1.379844, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 0.976689, loss@max: 1.373643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.967949, loss@max: 1.366141, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 58, loss@min: 0.977446, loss@max: 1.371318, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.972600, loss@max: 1.373721, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.969894, loss@max: 1.367898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.967049, loss@max: 1.373457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.959496, loss@max: 1.362724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.971172, loss@max: 1.366487, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.965689, loss@max: 1.370426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.993304, loss@max: 1.377781, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 66, loss@min: 0.981973, loss@max: 1.379073, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.972858, loss@max: 1.376638, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.960669, loss@max: 1.367713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.960514, loss@max: 1.366807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.956942, loss@max: 1.365376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.955534, loss@max: 1.364079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.961723, loss@max: 1.367028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953245, loss@max: 1.363213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.969080, loss@max: 1.376225, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 75, loss@min: 0.951971, loss@max: 1.363914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.970038, loss@max: 1.367613, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.948256, loss@max: 1.364212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954764, loss@max: 1.364003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.975479, loss@max: 1.376470, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 0.990626, loss@max: 1.382923, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 81, loss@min: 0.959684, loss@max: 1.368363, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.992049, loss@max: 1.381199, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 83, loss@min: 0.951903, loss@max: 1.360711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.963794, loss@max: 1.368029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.950451, loss@max: 1.360522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.982289, loss@max: 1.380448, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 87, loss@min: 0.967781, loss@max: 1.370578, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 88, loss@min: 0.964153, loss@max: 1.372160, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 89, loss@min: 0.958552, loss@max: 1.367189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.953159, loss@max: 1.366492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.959333, loss@max: 1.372516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.956273, loss@max: 1.364682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.980723, loss@max: 1.376586, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 94, loss@min: 0.967094, loss@max: 1.374349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.953020, loss@max: 1.365048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.957197, loss@max: 1.368858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.975694, loss@max: 1.375541, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 98, loss@min: 0.954658, loss@max: 1.369272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.956846, loss@max: 1.366516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.987405, loss@max: 1.382942, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.288132, LT: 0.286437, Top1S: 93.387421, Top1T: 93.346855Best acc: 93.387421 +Train:epoch: 101, loss@min: 0.951083, loss@max: 1.362320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.287949, LT: 0.286238, Top1S: 93.346855, Top1T: 93.346855 +Train:epoch: 102, loss@min: 0.964761, loss@max: 1.372533, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 0.288423, LT: 0.286691, Top1S: 93.346855, Top1T: 93.346855 +Train:epoch: 103, loss@min: 0.958548, loss@max: 1.371055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.289067, LT: 0.287324, Top1S: 93.346855, Top1T: 93.346855 +Train:epoch: 104, loss@min: 0.949755, loss@max: 1.363408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.289103, LT: 0.287353, Top1S: 93.306290, Top1T: 93.265724 +Train:epoch: 105, loss@min: 0.956931, loss@max: 1.365486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.288759, LT: 0.287018, Top1S: 93.184586, Top1T: 93.144020 +Train:epoch: 106, loss@min: 0.982657, loss@max: 1.379918, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 106, LS: 0.289376, LT: 0.287607, Top1S: 93.184586, Top1T: 93.184586 +Train:epoch: 107, loss@min: 0.953935, loss@max: 1.366132, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 19:31:17 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.292360, loss@max: 1.011359, Top1S acc: 100.000000, Top1T acc: 84.375000 +Train:epoch: 2, loss@min: 1.880378, loss@max: 0.993864, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 3, loss@min: 1.953711, loss@max: 1.088931, Top1S acc: 100.000000, Top1T acc: 88.281250 +Train:epoch: 4, loss@min: 1.653153, loss@max: 1.086982, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 5, loss@min: 1.577133, loss@max: 1.134262, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 6, loss@min: 1.525664, loss@max: 1.175146, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 7, loss@min: 1.551029, loss@max: 1.240418, Top1S acc: 100.000000, Top1T acc: 91.406250 +Train:epoch: 8, loss@min: 1.328950, loss@max: 1.221735, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 9, loss@min: 1.315984, loss@max: 1.241981, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 10, loss@min: 1.118961, loss@max: 1.219341, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 11, loss@min: 1.170681, loss@max: 1.256559, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 12, loss@min: 1.256376, loss@max: 1.303373, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 13, loss@min: 1.163007, loss@max: 1.296146, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 14, loss@min: 1.184887, loss@max: 1.321988, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 15, loss@min: 1.157559, loss@max: 1.313798, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 16, loss@min: 1.075467, loss@max: 1.297830, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 17, loss@min: 1.199566, loss@max: 1.333531, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 18, loss@min: 0.983322, loss@max: 1.278684, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 19, loss@min: 1.073739, loss@max: 1.322521, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 20, loss@min: 1.037415, loss@max: 1.310410, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.084396, loss@max: 1.330512, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 22, loss@min: 1.019881, loss@max: 1.312153, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 23, loss@min: 1.014320, loss@max: 1.315123, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 24, loss@min: 1.039469, loss@max: 1.336910, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 25, loss@min: 1.071752, loss@max: 1.344302, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 26, loss@min: 1.040715, loss@max: 1.340979, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 27, loss@min: 1.065542, loss@max: 1.349685, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 28, loss@min: 1.007619, loss@max: 1.326253, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 29, loss@min: 1.012105, loss@max: 1.343219, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 30, loss@min: 1.028998, loss@max: 1.351449, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 31, loss@min: 1.030235, loss@max: 1.343571, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 32, loss@min: 0.975236, loss@max: 1.339863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.998884, loss@max: 1.347975, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 34, loss@min: 1.068083, loss@max: 1.368850, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 35, loss@min: 1.024047, loss@max: 1.359359, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 36, loss@min: 1.006588, loss@max: 1.357534, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 37, loss@min: 1.049049, loss@max: 1.367867, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 38, loss@min: 0.983687, loss@max: 1.350111, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.991227, loss@max: 1.362800, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.968482, loss@max: 1.352104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.028759, loss@max: 1.371882, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 42, loss@min: 0.959154, loss@max: 1.345755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.007091, loss@max: 1.375463, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 1.025456, loss@max: 1.368483, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 45, loss@min: 0.984288, loss@max: 1.364544, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 46, loss@min: 0.984246, loss@max: 1.361875, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 47, loss@min: 0.973229, loss@max: 1.358137, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 1.014498, loss@max: 1.384717, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 49, loss@min: 1.006008, loss@max: 1.386457, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 50, loss@min: 1.013823, loss@max: 1.379411, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 51, loss@min: 0.966009, loss@max: 1.365682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 1.006417, loss@max: 1.376430, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 53, loss@min: 0.979573, loss@max: 1.370715, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 54, loss@min: 1.002741, loss@max: 1.375556, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 55, loss@min: 1.011292, loss@max: 1.379844, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 56, loss@min: 0.976689, loss@max: 1.373643, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.967949, loss@max: 1.366141, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 58, loss@min: 0.977446, loss@max: 1.371318, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 59, loss@min: 0.972600, loss@max: 1.373721, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.969894, loss@max: 1.367898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.967049, loss@max: 1.373457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.959496, loss@max: 1.362724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.971172, loss@max: 1.366487, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 64, loss@min: 0.965689, loss@max: 1.370426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.993304, loss@max: 1.377781, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 66, loss@min: 0.981973, loss@max: 1.379073, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 67, loss@min: 0.972858, loss@max: 1.376638, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 68, loss@min: 0.960669, loss@max: 1.367713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.960514, loss@max: 1.366807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.956942, loss@max: 1.365376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.955534, loss@max: 1.364079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.961723, loss@max: 1.367028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.953245, loss@max: 1.363213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.969080, loss@max: 1.376225, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 75, loss@min: 0.951971, loss@max: 1.363914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.970038, loss@max: 1.367613, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 77, loss@min: 0.948256, loss@max: 1.364212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.954764, loss@max: 1.364003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.975479, loss@max: 1.376470, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 80, loss@min: 0.990626, loss@max: 1.382923, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 80, LS: 0.284758, LT: 0.283079, Top1S: 93.346855, Top1T: 93.346855Best acc: 93.346855 +Train:epoch: 81, loss@min: 0.959688, loss@max: 1.368356, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.283220, LT: 0.281598, Top1S: 93.387421, Top1T: 93.387421Best acc: 93.387421 +Train:epoch: 82, loss@min: 0.992051, loss@max: 1.381213, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.282984, LT: 0.281314, Top1S: 93.306290, Top1T: 93.387421 +Train:epoch: 83, loss@min: 0.951911, loss@max: 1.360708, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.284133, LT: 0.282419, Top1S: 93.306290, Top1T: 93.346855 +Train:epoch: 84, loss@min: 0.963792, loss@max: 1.368030, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.284336, LT: 0.282585, Top1S: 93.265724, Top1T: 93.306290 +Train:epoch: 85, loss@min: 0.950451, loss@max: 1.360521, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.281204, LT: 0.279459, Top1S: 93.184586, Top1T: 93.225151 +Train:epoch: 86, loss@min: 0.982285, loss@max: 1.380430, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 86, LS: 0.280103, LT: 0.278349, Top1S: 93.306290, Top1T: 93.265724 +Train:epoch: 87, loss@min: 0.967774, loss@max: 1.370582, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 87, LS: 0.281270, LT: 0.279488, Top1S: 93.144020, Top1T: 93.184586 +Train:epoch: 88, loss@min: 0.964149, loss@max: 1.372162, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 0.283383, LT: 0.281599, Top1S: 93.144020, Top1T: 93.144020 +Train:epoch: 89, loss@min: 0.958555, loss@max: 1.367187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.285105, LT: 0.283361, Top1S: 93.184586, Top1T: 93.225151 +Train:epoch: 90, loss@min: 0.953169, loss@max: 1.366483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.285454, LT: 0.283801, Top1S: 93.103447, Top1T: 93.103447 +Train:epoch: 91, loss@min: 0.959337, loss@max: 1.372516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.285702, LT: 0.284143, Top1S: 93.184586, Top1T: 93.184586 +Train:epoch: 92, loss@min: 0.956270, loss@max: 1.364685, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.285514, LT: 0.283960, Top1S: 93.144020, Top1T: 93.144020 +Train:epoch: 93, loss@min: 0.980724, loss@max: 1.376583, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 93, LS: 0.284216, LT: 0.282641, Top1S: 93.225151, Top1T: 93.184586 +Train:epoch: 94, loss@min: 0.967102, loss@max: 1.374336, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 0.282685, LT: 0.281056, Top1S: 93.306290, Top1T: 93.265724 +Train:epoch: 95, loss@min: 0.953024, loss@max: 1.365048, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.282455, LT: 0.280798, Top1S: 93.306290, Top1T: 93.346855 +Train:epoch: 96, loss@min: 0.957192, loss@max: 1.368860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.283959, LT: 0.282262, Top1S: 93.387421, Top1T: 93.427994Best acc: 93.427994 +Train:epoch: 97, loss@min: 0.975691, loss@max: 1.375537, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 0.285906, LT: 0.284178, Top1S: 93.346855, Top1T: 93.387421 +Train:epoch: 98, loss@min: 0.954652, loss@max: 1.369279, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.288084, LT: 0.286333, Top1S: 93.387421, Top1T: 93.387421 +Train:epoch: 99, loss@min: 0.956854, loss@max: 1.366516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.288233, LT: 0.286514, Top1S: 93.346855, Top1T: 93.346855 +Train:epoch: 100, loss@min: 0.987400, loss@max: 1.382930, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.288133, LT: 0.286437, Top1S: 93.346855, Top1T: 93.346855{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:20:36 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.875816, loss@max: 0.848805, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 2, loss@min: 2.196672, loss@max: 0.963772, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 3, loss@min: 1.843279, loss@max: 0.908099, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 4, loss@min: 1.771685, loss@max: 0.921358, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 5, loss@min: 1.631074, loss@max: 0.921523, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 1.496407, loss@max: 0.913015, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 7, loss@min: 1.460544, loss@max: 0.936881, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.489854, loss@max: 0.976953, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 1.343924, loss@max: 0.962151, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 1.285416, loss@max: 0.975371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.319063, loss@max: 1.008325, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.282858, loss@max: 1.032996, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 1.334547, loss@max: 1.074350, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 14, loss@min: 1.292931, loss@max: 1.088631, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 1.178194, loss@max: 1.065639, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 1.228998, loss@max: 1.112046, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.178034, loss@max: 1.119810, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.161428, loss@max: 1.127091, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.142136, loss@max: 1.140829, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.125543, loss@max: 1.157842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.125545, loss@max: 1.168149, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.123542, loss@max: 1.187724, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.073948, loss@max: 1.178711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.124592, loss@max: 1.209816, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 1.059016, loss@max: 1.202998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.076391, loss@max: 1.221669, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 27, loss@min: 1.034722, loss@max: 1.208202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.071156, loss@max: 1.229449, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 1.024154, loss@max: 1.223079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.052046, loss@max: 1.248591, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 31, loss@min: 1.061482, loss@max: 1.263059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.024690, loss@max: 1.251378, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.034185, loss@max: 1.265658, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.020234, loss@max: 1.260846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.041085, loss@max: 1.273321, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 1.034240, loss@max: 1.277653, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.008475, loss@max: 1.274428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 1.000773, loss@max: 1.279245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.015097, loss@max: 1.303083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.022888, loss@max: 1.307318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.099716, loss@max: 1.337339, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.991436, loss@max: 1.301435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.010968, loss@max: 1.310552, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 44, loss@min: 0.990555, loss@max: 1.304663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.984442, loss@max: 1.314423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 1.005855, loss@max: 1.323618, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.972879, loss@max: 1.314972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.979435, loss@max: 1.324440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.979214, loss@max: 1.329827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.968057, loss@max: 1.324966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.996756, loss@max: 1.337237, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.995027, loss@max: 1.349797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.966135, loss@max: 1.329389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.980644, loss@max: 1.344482, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:22:29 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.874995, loss@max: 0.848529, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 2, loss@min: 2.195899, loss@max: 0.963358, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 3, loss@min: 1.832443, loss@max: 0.904954, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 4, loss@min: 1.766849, loss@max: 0.919352, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 5, loss@min: 1.607495, loss@max: 0.914422, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 6, loss@min: 1.482661, loss@max: 0.907984, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 7, loss@min: 1.442981, loss@max: 0.930100, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 8, loss@min: 1.474110, loss@max: 0.970048, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 9, loss@min: 1.332339, loss@max: 0.956867, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 10, loss@min: 1.273981, loss@max: 0.969388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.315019, loss@max: 1.004375, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 1.259534, loss@max: 1.022371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.312901, loss@max: 1.063760, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 14, loss@min: 1.276735, loss@max: 1.078703, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 1.166133, loss@max: 1.056981, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 1.219725, loss@max: 1.104385, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 1.154224, loss@max: 1.105806, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 1.140058, loss@max: 1.116835, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.128242, loss@max: 1.131608, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.107820, loss@max: 1.146809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.103087, loss@max: 1.155432, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.106043, loss@max: 1.176461, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.062205, loss@max: 1.167552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.102342, loss@max: 1.197077, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 1.050532, loss@max: 1.192884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.065946, loss@max: 1.212398, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.031991, loss@max: 1.202232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.064361, loss@max: 1.221309, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 1.021136, loss@max: 1.217645, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.038512, loss@max: 1.236808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.053159, loss@max: 1.254068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.017448, loss@max: 1.241679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.025801, loss@max: 1.256602, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.015400, loss@max: 1.253463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 1.037254, loss@max: 1.268280, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 36, loss@min: 1.019040, loss@max: 1.270151, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 1.004365, loss@max: 1.268380, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.996773, loss@max: 1.272349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.003501, loss@max: 1.290726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 1.013902, loss@max: 1.298582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.101265, loss@max: 1.332273, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.985994, loss@max: 1.293040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.992498, loss@max: 1.301057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.985878, loss@max: 1.299043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.978975, loss@max: 1.308233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.996783, loss@max: 1.317777, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.970712, loss@max: 1.310903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.973613, loss@max: 1.316392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.973827, loss@max: 1.322964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.966211, loss@max: 1.321050, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.990360, loss@max: 1.332808, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.979721, loss@max: 1.337428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.963669, loss@max: 1.326006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.975206, loss@max: 1.338071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.998923, loss@max: 1.344467, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.963360, loss@max: 1.333530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.961496, loss@max: 1.333863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.984276, loss@max: 1.355335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.962977, loss@max: 1.339821, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.962554, loss@max: 1.340805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.959480, loss@max: 1.340845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964633, loss@max: 1.341890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.958146, loss@max: 1.340096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.956194, loss@max: 1.345579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.955582, loss@max: 1.344213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.988654, loss@max: 1.357394, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.955814, loss@max: 1.349094, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.954108, loss@max: 1.345688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.958651, loss@max: 1.350810, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.961150, loss@max: 1.349736, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.958917, loss@max: 1.353140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.975033, loss@max: 1.357300, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.954543, loss@max: 1.346095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.954048, loss@max: 1.346483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.958492, loss@max: 1.354888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.954661, loss@max: 1.353617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952516, loss@max: 1.347102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.951689, loss@max: 1.351846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.951517, loss@max: 1.349568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.955654, loss@max: 1.356741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.953986, loss@max: 1.348426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.951760, loss@max: 1.350630, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.950708, loss@max: 1.349486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.951469, loss@max: 1.349028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.953641, loss@max: 1.348474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.956888, loss@max: 1.351951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.961437, loss@max: 1.353965, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.955160, loss@max: 1.351706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.968756, loss@max: 1.362519, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 90, loss@min: 0.966301, loss@max: 1.364314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.953736, loss@max: 1.351683, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.952182, loss@max: 1.354314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.950051, loss@max: 1.353197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.959355, loss@max: 1.360507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.953262, loss@max: 1.360921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.955990, loss@max: 1.359379, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.951495, loss@max: 1.353498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.964566, loss@max: 1.362679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.953418, loss@max: 1.351870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.950793, loss@max: 1.354200, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.414073, LT: 0.413740, Top1S: 89.614601, Top1T: 89.655174Best acc: 89.655174 +Train:epoch: 101, loss@min: 0.949191, loss@max: 1.355726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.414180, LT: 0.413844, Top1S: 89.655174, Top1T: 89.614601 +Train:epoch: 102, loss@min: 0.950761, loss@max: 1.350547, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.414279, LT: 0.413940, Top1S: 89.655174, Top1T: 89.614601 +Train:epoch: 103, loss@min: 0.951208, loss@max: 1.352125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.414375, LT: 0.414034, Top1S: 89.614601, Top1T: 89.614601 +Train:epoch: 104, loss@min: 0.956002, loss@max: 1.359258, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.414453, LT: 0.414107, Top1S: 89.614601, Top1T: 89.614601 +Train:epoch: 105, loss@min: 0.949163, loss@max: 1.354329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.414519, LT: 0.414169, Top1S: 89.614601, Top1T: 89.574036 +Train:epoch: 106, loss@min: 0.952689, loss@max: 1.356520, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:27:54 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.816739, loss@max: 0.980767, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.393107, loss@max: 1.045577, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.004317, loss@max: 1.080714, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 4, loss@min: 1.044106, loss@max: 1.184988, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 5, loss@min: 0.957063, loss@max: 1.201523, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 6, loss@min: 1.053282, loss@max: 1.264454, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.829262, loss@max: 1.224966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.910005, loss@max: 1.276954, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.801747, loss@max: 1.283638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.785525, loss@max: 1.278504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.778147, loss@max: 1.296855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.888801, loss@max: 1.313977, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.824066, loss@max: 1.274737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.879803, loss@max: 1.269008, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 15, loss@min: 0.958176, loss@max: 1.265350, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 0.887989, loss@max: 1.245728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.895484, loss@max: 1.244498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.941796, loss@max: 1.264524, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.904171, loss@max: 1.244988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.919787, loss@max: 1.239109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.978114, loss@max: 1.246705, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.033712, loss@max: 1.259312, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 0.952705, loss@max: 1.230142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.939649, loss@max: 1.243823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.936297, loss@max: 1.251566, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.929237, loss@max: 1.267063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.934594, loss@max: 1.267454, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929113, loss@max: 1.278111, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.938117, loss@max: 1.275437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.936099, loss@max: 1.282463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.941349, loss@max: 1.285604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.936122, loss@max: 1.294898, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.932477, loss@max: 1.311780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.052022, loss@max: 1.341096, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 35, loss@min: 0.933391, loss@max: 1.307662, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936782, loss@max: 1.313107, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.940274, loss@max: 1.315576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.930153, loss@max: 1.322694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.935025, loss@max: 1.323527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933431, loss@max: 1.329010, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.114668, loss@max: 1.364753, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.940738, loss@max: 1.324599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.940324, loss@max: 1.332560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.933521, loss@max: 1.337359, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.929126, loss@max: 1.343130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.942359, loss@max: 1.332912, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.928928, loss@max: 1.345078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.947750, loss@max: 1.331771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.959293, loss@max: 1.348493, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 50, loss@min: 0.938288, loss@max: 1.340320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.941751, loss@max: 1.339855, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959503, loss@max: 1.353508, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 53, loss@min: 0.944511, loss@max: 1.339456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.935808, loss@max: 1.349647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.931720, loss@max: 1.358140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.952071, loss@max: 1.335529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.946184, loss@max: 1.342120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.941750, loss@max: 1.349329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.943604, loss@max: 1.347311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.938496, loss@max: 1.362402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.937957, loss@max: 1.355597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.948538, loss@max: 1.345545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.949846, loss@max: 1.344392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.954199, loss@max: 1.345282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.944212, loss@max: 1.350352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.944846, loss@max: 1.351309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.934202, loss@max: 1.364026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.950783, loss@max: 1.345567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945126, loss@max: 1.352450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.944860, loss@max: 1.352680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.982253, loss@max: 1.360024, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 72, loss@min: 0.952210, loss@max: 1.361360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.944224, loss@max: 1.353389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945804, loss@max: 1.352387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.945751, loss@max: 1.352942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.940449, loss@max: 1.359277, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.937534, loss@max: 1.362409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.941661, loss@max: 1.357395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945830, loss@max: 1.352540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.943882, loss@max: 1.355693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.950448, loss@max: 1.349104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.946016, loss@max: 1.353200, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.943661, loss@max: 1.355590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.946310, loss@max: 1.354258, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.939616, loss@max: 1.359809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.945965, loss@max: 1.355078, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.940194, loss@max: 1.360301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.943822, loss@max: 1.356443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.946370, loss@max: 1.354490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.943520, loss@max: 1.356582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.953838, loss@max: 1.360119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.941648, loss@max: 1.358756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.940630, loss@max: 1.360121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.945610, loss@max: 1.357169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.939383, loss@max: 1.361323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.945459, loss@max: 1.354556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944956, loss@max: 1.354959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.945396, loss@max: 1.355899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.952104, loss@max: 1.348274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947700, loss@max: 1.353011, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.590598, LT: 1.598973, Top1S: 80.040565, Top1T: 79.716026Best acc: 80.040565 +Train:epoch: 101, loss@min: 0.944137, loss@max: 1.356872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.587801, LT: 1.595946, Top1S: 80.000000, Top1T: 79.797157 +Train:epoch: 102, loss@min: 0.948177, loss@max: 1.353434, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:31:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.824401, loss@max: 0.983952, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.392473, loss@max: 1.047703, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 0.998531, loss@max: 1.081754, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 4, loss@min: 1.038095, loss@max: 1.185165, Top1S acc: 100.000000, Top1T acc: 96.000000 +Train:epoch: 5, loss@min: 0.956327, loss@max: 1.202049, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 6, loss@min: 1.054673, loss@max: 1.265175, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.827996, loss@max: 1.225177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.906683, loss@max: 1.277433, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.800973, loss@max: 1.285588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.784420, loss@max: 1.279079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.778681, loss@max: 1.296040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.896612, loss@max: 1.312300, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.827897, loss@max: 1.270323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.878055, loss@max: 1.263130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.953117, loss@max: 1.260062, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 0.888436, loss@max: 1.244151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.895368, loss@max: 1.244572, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.944883, loss@max: 1.265717, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.905851, loss@max: 1.243863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.922952, loss@max: 1.238464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.979804, loss@max: 1.245551, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 1.041755, loss@max: 1.260017, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 0.952618, loss@max: 1.230788, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.937675, loss@max: 1.246275, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.933928, loss@max: 1.254244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.927553, loss@max: 1.269362, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.933391, loss@max: 1.269390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929420, loss@max: 1.278747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.938917, loss@max: 1.275385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.936563, loss@max: 1.282538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.940673, loss@max: 1.286984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.935403, loss@max: 1.295410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.931154, loss@max: 1.312777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.040367, loss@max: 1.339010, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 35, loss@min: 0.932762, loss@max: 1.308700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.936341, loss@max: 1.314993, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.937215, loss@max: 1.317618, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.929083, loss@max: 1.323951, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.935246, loss@max: 1.322545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.934695, loss@max: 1.326814, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.127106, loss@max: 1.366109, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.940453, loss@max: 1.324558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.938012, loss@max: 1.332334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.932825, loss@max: 1.338794, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.928444, loss@max: 1.343846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.944094, loss@max: 1.332840, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.929880, loss@max: 1.344346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949024, loss@max: 1.329481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.956437, loss@max: 1.346921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.938232, loss@max: 1.340458, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.941012, loss@max: 1.340889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.949366, loss@max: 1.352686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.945424, loss@max: 1.339719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.936456, loss@max: 1.349674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.931177, loss@max: 1.358969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953313, loss@max: 1.334924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.947647, loss@max: 1.341248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.942358, loss@max: 1.349127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944574, loss@max: 1.346834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942252, loss@max: 1.365014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.937553, loss@max: 1.356304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.948071, loss@max: 1.345887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.950071, loss@max: 1.344503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.951119, loss@max: 1.344669, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.943323, loss@max: 1.351526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.944294, loss@max: 1.352196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.933893, loss@max: 1.364882, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951908, loss@max: 1.344842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945471, loss@max: 1.352389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.945612, loss@max: 1.352343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.973791, loss@max: 1.357733, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 72, loss@min: 0.953927, loss@max: 1.361478, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.944584, loss@max: 1.353090, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945812, loss@max: 1.352542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.945109, loss@max: 1.354389, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.938743, loss@max: 1.361198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.936015, loss@max: 1.364085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.941273, loss@max: 1.357828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945462, loss@max: 1.352905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.945312, loss@max: 1.354668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.952006, loss@max: 1.347996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.947858, loss@max: 1.351711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.944094, loss@max: 1.355171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945421, loss@max: 1.354994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.939368, loss@max: 1.360444, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.944227, loss@max: 1.356202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.939040, loss@max: 1.361624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.942894, loss@max: 1.357164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.947149, loss@max: 1.353781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.944222, loss@max: 1.356142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.952187, loss@max: 1.357021, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.942893, loss@max: 1.357347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.941182, loss@max: 1.359289, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.945557, loss@max: 1.356044, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.939785, loss@max: 1.361113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.944533, loss@max: 1.355560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.944314, loss@max: 1.355671, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.944292, loss@max: 1.357071, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.950224, loss@max: 1.349983, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.947720, loss@max: 1.352825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.517905, LT: 1.527402, Top1S: 80.486816, Top1T: 80.527382Best acc: 80.527382 +Train:epoch: 101, loss@min: 0.944340, loss@max: 1.356610, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:35:02 2024 +-------------------------------------------{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:36:22 2024 +-------------------------------------------{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Thu Jan 18 20:37:20 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.637832, loss@max: 0.944404, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.751835, loss@max: 1.147317, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 3, loss@min: 1.312295, loss@max: 1.168467, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 4, loss@min: 1.192398, loss@max: 1.231680, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.061889, loss@max: 1.251302, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 0.944444, loss@max: 1.273774, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.891364, loss@max: 1.285762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.946973, loss@max: 1.328458, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.827811, loss@max: 1.316349, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.812781, loss@max: 1.308545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.874848, loss@max: 1.338513, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.856365, loss@max: 1.330936, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.906798, loss@max: 1.336484, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.914232, loss@max: 1.316513, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.878380, loss@max: 1.268104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.948070, loss@max: 1.275170, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 17, loss@min: 0.929994, loss@max: 1.248492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.985443, loss@max: 1.246062, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.949481, loss@max: 1.242970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.951689, loss@max: 1.236323, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.962095, loss@max: 1.234738, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.982324, loss@max: 1.249231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.964077, loss@max: 1.233724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.985206, loss@max: 1.254000, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.954116, loss@max: 1.252206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.946809, loss@max: 1.275783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.944780, loss@max: 1.267730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.964923, loss@max: 1.293475, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.932272, loss@max: 1.288183, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.932473, loss@max: 1.306030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.950571, loss@max: 1.322970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.922526, loss@max: 1.315290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.933180, loss@max: 1.321553, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.928959, loss@max: 1.317470, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.946169, loss@max: 1.329747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.943545, loss@max: 1.327621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.941323, loss@max: 1.319761, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.929100, loss@max: 1.325487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.935213, loss@max: 1.332639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941393, loss@max: 1.338600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.038724, loss@max: 1.367980, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.940010, loss@max: 1.327211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.938254, loss@max: 1.332480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.938246, loss@max: 1.331353, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.937367, loss@max: 1.338342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.966623, loss@max: 1.344072, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.936302, loss@max: 1.337524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.940777, loss@max: 1.338147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.950023, loss@max: 1.334226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941919, loss@max: 1.338170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.962228, loss@max: 1.344577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946400, loss@max: 1.344886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.942665, loss@max: 1.341368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.945822, loss@max: 1.347113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.956303, loss@max: 1.356574, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.949025, loss@max: 1.340464, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944370, loss@max: 1.346311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.951381, loss@max: 1.355269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.943462, loss@max: 1.348600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.939469, loss@max: 1.355059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.941335, loss@max: 1.352300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.943182, loss@max: 1.352317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.939675, loss@max: 1.353769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.944702, loss@max: 1.350187, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.945463, loss@max: 1.350489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.965517, loss@max: 1.358104, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 67, loss@min: 0.946977, loss@max: 1.351542, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949822, loss@max: 1.346663, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947790, loss@max: 1.353246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941933, loss@max: 1.358241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.947204, loss@max: 1.359796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.961228, loss@max: 1.364216, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 73, loss@min: 0.946278, loss@max: 1.351405, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.945378, loss@max: 1.352697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.939620, loss@max: 1.360981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.941551, loss@max: 1.358968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.941737, loss@max: 1.357188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.944913, loss@max: 1.355880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.943006, loss@max: 1.355250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949292, loss@max: 1.354142, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948235, loss@max: 1.350546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.946998, loss@max: 1.352351, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.947401, loss@max: 1.351229, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945925, loss@max: 1.353331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.947309, loss@max: 1.352264, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.947366, loss@max: 1.355007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.944495, loss@max: 1.359441, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.941689, loss@max: 1.360462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.943711, loss@max: 1.366387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949608, loss@max: 1.365668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.943309, loss@max: 1.358245, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.946821, loss@max: 1.354872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.946592, loss@max: 1.354049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.947224, loss@max: 1.361406, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.948036, loss@max: 1.357719, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947941, loss@max: 1.357029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.945984, loss@max: 1.354891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.955670, loss@max: 1.359219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.948974, loss@max: 1.352415, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.945271, loss@max: 1.356064, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.428735, LT: 0.432193, Top1S: 89.614601, Top1T: 89.492905Best acc: 89.614601 +Train:epoch: 101, loss@min: 0.943049, loss@max: 1.358680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.428892, LT: 0.432298, Top1S: 89.614601, Top1T: 89.492905 +Train:epoch: 102, loss@min: 0.944527, loss@max: 1.355656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.429025, LT: 0.432400, Top1S: 89.574036, Top1T: 89.492905 +Train:epoch: 103, loss@min: 0.945152, loss@max: 1.355525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.429139, LT: 0.432508, Top1S: 89.574036, Top1T: 89.492905 +Train:epoch: 104, loss@min: 0.949354, loss@max: 1.360972, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 90} + +------------------------------------------- +Thu Jan 18 20:41:51 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.049057, loss@max: 1.022928, Top1S acc: 100.000000, Top1T acc: 86.500000 +Train:epoch: 2, loss@min: 1.799838, loss@max: 1.116089, Top1S acc: 100.000000, Top1T acc: 89.000000 +Train:epoch: 3, loss@min: 1.595699, loss@max: 1.191404, Top1S acc: 100.000000, Top1T acc: 90.500000 +Train:epoch: 4, loss@min: 1.355051, loss@max: 1.231563, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 5, loss@min: 1.172554, loss@max: 1.262468, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 6, loss@min: 1.128583, loss@max: 1.315290, Top1S acc: 100.000000, Top1T acc: 94.500000 +Train:epoch: 7, loss@min: 1.004540, loss@max: 1.326499, Top1S acc: 100.000000, Top1T acc: 96.500000 +Train:epoch: 8, loss@min: 0.966784, loss@max: 1.342545, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 9, loss@min: 0.887146, loss@max: 1.351117, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 10, loss@min: 0.879074, loss@max: 1.362441, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 11, loss@min: 1.003427, loss@max: 1.399879, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 12, loss@min: 0.917380, loss@max: 1.375690, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 13, loss@min: 0.854217, loss@max: 1.340192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.854693, loss@max: 1.315745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.879706, loss@max: 1.304976, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.951492, loss@max: 1.305175, Top1S acc: 100.000000, Top1T acc: 98.500000 +Train:epoch: 17, loss@min: 0.966777, loss@max: 1.292498, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 18, loss@min: 0.990860, loss@max: 1.287099, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 1.013857, loss@max: 1.273947, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 20, loss@min: 1.005565, loss@max: 1.270757, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 21, loss@min: 1.001246, loss@max: 1.271418, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 22, loss@min: 1.018435, loss@max: 1.268713, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 23, loss@min: 1.010628, loss@max: 1.269466, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 24, loss@min: 0.966328, loss@max: 1.255269, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.982850, loss@max: 1.263543, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 26, loss@min: 0.973811, loss@max: 1.274152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.987037, loss@max: 1.283300, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 28, loss@min: 0.984489, loss@max: 1.284616, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 29, loss@min: 0.952855, loss@max: 1.283033, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.960009, loss@max: 1.301902, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 31, loss@min: 0.962653, loss@max: 1.314497, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 32, loss@min: 0.958008, loss@max: 1.324173, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 33, loss@min: 0.934317, loss@max: 1.321069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.940883, loss@max: 1.329987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.941465, loss@max: 1.331776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.932346, loss@max: 1.329608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.944773, loss@max: 1.340504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.942518, loss@max: 1.336845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948911, loss@max: 1.339952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.962872, loss@max: 1.348808, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 41, loss@min: 0.934418, loss@max: 1.335579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.933876, loss@max: 1.342845, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.020628, loss@max: 1.361214, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 44, loss@min: 0.945802, loss@max: 1.338739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.969322, loss@max: 1.345678, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 46, loss@min: 0.947971, loss@max: 1.342125, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.944136, loss@max: 1.340999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.945768, loss@max: 1.342079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944156, loss@max: 1.339818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942355, loss@max: 1.344939, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.949013, loss@max: 1.349620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.957338, loss@max: 1.353905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.958326, loss@max: 1.351766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.955562, loss@max: 1.348319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.950147, loss@max: 1.344074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.951902, loss@max: 1.348081, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945008, loss@max: 1.345680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.976922, loss@max: 1.366346, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 59, loss@min: 0.946391, loss@max: 1.359155, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.943207, loss@max: 1.358118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.955895, loss@max: 1.359295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.948134, loss@max: 1.356844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.948339, loss@max: 1.353517, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949187, loss@max: 1.354503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.946544, loss@max: 1.354848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.947500, loss@max: 1.352500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.944834, loss@max: 1.357457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.943641, loss@max: 1.357178, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.945149, loss@max: 1.357358, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.952671, loss@max: 1.361865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.943765, loss@max: 1.358665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.941770, loss@max: 1.357412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.959276, loss@max: 1.363915, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.951085, loss@max: 1.358755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947525, loss@max: 1.358889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.951186, loss@max: 1.358666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.957244, loss@max: 1.361800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.965093, loss@max: 1.364113, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 79, loss@min: 0.949061, loss@max: 1.361805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.970865, loss@max: 1.365783, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 81, loss@min: 0.946992, loss@max: 1.362305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.942292, loss@max: 1.360711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.942968, loss@max: 1.359196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.954124, loss@max: 1.359472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.948901, loss@max: 1.353807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.947877, loss@max: 1.360475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.980064, loss@max: 1.365810, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 88, loss@min: 0.968329, loss@max: 1.370779, Top1S acc: 100.000000, Top1T acc: 99.500000 +Train:epoch: 89, loss@min: 0.944692, loss@max: 1.358321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.946223, loss@max: 1.361607, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.384430, LT: 0.384183, Top1S: 90.466530, Top1T: 90.507103Best acc: 90.507103 +Train:epoch: 91, loss@min: 0.955082, loss@max: 1.366889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.384883, LT: 0.384643, Top1S: 90.466530, Top1T: 90.507103 +Train:epoch: 92, loss@min: 0.945087, loss@max: 1.362120, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 20:47:48 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.053199, loss@max: 1.116011, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.728804, loss@max: 1.252478, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.495980, loss@max: 1.312320, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 4, loss@min: 1.337875, loss@max: 1.370136, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 5, loss@min: 1.085633, loss@max: 1.355931, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 6, loss@min: 1.162502, loss@max: 1.403310, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 7, loss@min: 1.048173, loss@max: 1.369471, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.013068, loss@max: 1.337687, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 1.027962, loss@max: 1.302702, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 10, loss@min: 1.112422, loss@max: 1.292403, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 11, loss@min: 1.071048, loss@max: 1.256606, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 12, loss@min: 1.106006, loss@max: 1.263454, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.035073, loss@max: 1.231912, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.074726, loss@max: 1.253723, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 0.993401, loss@max: 1.242546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.986035, loss@max: 1.245423, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 17, loss@min: 0.961735, loss@max: 1.251571, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.987200, loss@max: 1.272125, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.956202, loss@max: 1.277638, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 0.960138, loss@max: 1.286416, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 0.969970, loss@max: 1.291283, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.963561, loss@max: 1.292771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963593, loss@max: 1.285468, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.950634, loss@max: 1.286341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.956230, loss@max: 1.301123, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.967219, loss@max: 1.307977, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.952735, loss@max: 1.306397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.952794, loss@max: 1.308690, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.982317, loss@max: 1.321317, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 30, loss@min: 0.973710, loss@max: 1.317358, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.954236, loss@max: 1.313383, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.965837, loss@max: 1.331559, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.951486, loss@max: 1.319054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959177, loss@max: 1.321267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.960395, loss@max: 1.327820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971130, loss@max: 1.334467, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.960974, loss@max: 1.342212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.949231, loss@max: 1.333440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952724, loss@max: 1.338439, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.961128, loss@max: 1.343979, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.952747, loss@max: 1.341346, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.943173, loss@max: 1.336067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.952370, loss@max: 1.338535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.950411, loss@max: 1.341647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.956277, loss@max: 1.346824, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.952778, loss@max: 1.347372, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.975334, loss@max: 1.348045, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.949437, loss@max: 1.347158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.949251, loss@max: 1.346487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.988501, loss@max: 1.355308, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 0.948753, loss@max: 1.345620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946289, loss@max: 1.349717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946848, loss@max: 1.351177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950676, loss@max: 1.350901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.946360, loss@max: 1.345625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955434, loss@max: 1.359314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944938, loss@max: 1.352949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953692, loss@max: 1.357908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952429, loss@max: 1.358283, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.968021, loss@max: 1.363487, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.948465, loss@max: 1.358689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964370, loss@max: 1.369016, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.946645, loss@max: 1.356278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948345, loss@max: 1.357431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952294, loss@max: 1.355987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.950293, loss@max: 1.357520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947574, loss@max: 1.357561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959648, loss@max: 1.363226, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.947413, loss@max: 1.358174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.954221, loss@max: 1.364231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949057, loss@max: 1.357972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.951747, loss@max: 1.363119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.950364, loss@max: 1.360420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.950139, loss@max: 1.361350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.964870, loss@max: 1.368573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949002, loss@max: 1.361116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962909, loss@max: 1.368341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.950497, loss@max: 1.360923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948105, loss@max: 1.357921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946887, loss@max: 1.357803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.304309, LT: 0.304252, Top1S: 91.724136, Top1T: 91.886414Best acc: 91.886414 +Train:epoch: 81, loss@min: 0.954222, loss@max: 1.360156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.304077, LT: 0.303951, Top1S: 91.724136, Top1T: 91.805275 +Train:epoch: 82, loss@min: 0.948077, loss@max: 1.363163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.304210, LT: 0.304076, Top1S: 91.764709, Top1T: 91.845840 +Train:epoch: 83, loss@min: 0.951920, loss@max: 1.365468, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.304652, LT: 0.304548, Top1S: 91.805275, Top1T: 91.886414 +Train:epoch: 84, loss@min: 0.947436, loss@max: 1.358393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.304531, LT: 0.304337, Top1S: 91.805275, Top1T: 91.805275 +Train:epoch: 85, loss@min: 0.947560, loss@max: 1.357954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.304256, LT: 0.304077, Top1S: 91.724136, Top1T: 91.764709 +Train:epoch: 86, loss@min: 0.959835, loss@max: 1.360742, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.304538, LT: 0.304354, Top1S: 91.764709, Top1T: 91.764709 +Train:epoch: 87, loss@min: 0.949886, loss@max: 1.355181, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.304707, LT: 0.304501, Top1S: 91.764709, Top1T: 91.764709 +Train:epoch: 88, loss@min: 0.963627, loss@max: 1.371107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.305137, LT: 0.304831, Top1S: 91.764709, Top1T: 91.724136 +Train:epoch: 89, loss@min: 0.949116, loss@max: 1.362267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.305554, LT: 0.305358, Top1S: 91.805275, Top1T: 91.805275 +Train:epoch: 90, loss@min: 0.953337, loss@max: 1.366693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.305828, LT: 0.305912, Top1S: 91.967545, Top1T: 91.805275Best acc: 91.967545 +Train:epoch: 91, loss@min: 0.947607, loss@max: 1.361569, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 21:01:36 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.053199, loss@max: 1.116011, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.728804, loss@max: 1.252478, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.495980, loss@max: 1.312320, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 4, loss@min: 1.337875, loss@max: 1.370136, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 5, loss@min: 1.085633, loss@max: 1.355931, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 6, loss@min: 1.162502, loss@max: 1.403310, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 7, loss@min: 1.048173, loss@max: 1.369471, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.013068, loss@max: 1.337687, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 1.027962, loss@max: 1.302702, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 10, loss@min: 1.112422, loss@max: 1.292403, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 11, loss@min: 1.071048, loss@max: 1.256606, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 12, loss@min: 1.106006, loss@max: 1.263454, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.035073, loss@max: 1.231912, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.074726, loss@max: 1.253723, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 0.993401, loss@max: 1.242546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.986035, loss@max: 1.245423, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 17, loss@min: 0.961735, loss@max: 1.251571, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.987200, loss@max: 1.272125, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.956202, loss@max: 1.277638, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 0.960138, loss@max: 1.286416, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 0.969970, loss@max: 1.291283, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.963561, loss@max: 1.292771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963593, loss@max: 1.285468, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.950634, loss@max: 1.286341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.956230, loss@max: 1.301123, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.967219, loss@max: 1.307977, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.952735, loss@max: 1.306397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.952794, loss@max: 1.308690, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.982317, loss@max: 1.321317, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 30, loss@min: 0.973710, loss@max: 1.317358, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.954236, loss@max: 1.313383, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.965837, loss@max: 1.331559, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.951486, loss@max: 1.319054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959177, loss@max: 1.321267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.960395, loss@max: 1.327820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971130, loss@max: 1.334467, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.960974, loss@max: 1.342212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.949231, loss@max: 1.333440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952724, loss@max: 1.338439, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.961128, loss@max: 1.343979, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.952747, loss@max: 1.341346, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.943173, loss@max: 1.336067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.952370, loss@max: 1.338535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.950411, loss@max: 1.341647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.956277, loss@max: 1.346824, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.952778, loss@max: 1.347372, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.975334, loss@max: 1.348045, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.949437, loss@max: 1.347158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.949251, loss@max: 1.346487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.988501, loss@max: 1.355308, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 0.948753, loss@max: 1.345620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946289, loss@max: 1.349717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946848, loss@max: 1.351177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950676, loss@max: 1.350901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.946360, loss@max: 1.345625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955434, loss@max: 1.359314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944938, loss@max: 1.352949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953692, loss@max: 1.357908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952429, loss@max: 1.358283, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.968021, loss@max: 1.363487, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.948465, loss@max: 1.358689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964370, loss@max: 1.369016, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.946645, loss@max: 1.356278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948345, loss@max: 1.357431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952294, loss@max: 1.355987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.950293, loss@max: 1.357520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947574, loss@max: 1.357561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959648, loss@max: 1.363226, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.947413, loss@max: 1.358174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.954221, loss@max: 1.364231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949057, loss@max: 1.357972, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.951747, loss@max: 1.363119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.950364, loss@max: 1.360420, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.950139, loss@max: 1.361350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.964870, loss@max: 1.368573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.949002, loss@max: 1.361116, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.962909, loss@max: 1.368341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.950497, loss@max: 1.360923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.948105, loss@max: 1.357921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.946887, loss@max: 1.357803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.304308, LT: 0.304251, Top1S: 91.724136, Top1T: 91.886414Best acc: 91.886414 +Train:epoch: 81, loss@min: 0.954222, loss@max: 1.360156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.304076, LT: 0.303950, Top1S: 91.724136, Top1T: 91.805275 +Train:epoch: 82, loss@min: 0.948077, loss@max: 1.363163, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 70} + +------------------------------------------- +Thu Jan 18 21:10:54 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.053199, loss@max: 1.116011, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.728804, loss@max: 1.252478, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.495980, loss@max: 1.312320, Top1S acc: 100.000000, Top1T acc: 89.062500 +Train:epoch: 4, loss@min: 1.337875, loss@max: 1.370136, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 5, loss@min: 1.085633, loss@max: 1.355931, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 6, loss@min: 1.162502, loss@max: 1.403310, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 7, loss@min: 1.048173, loss@max: 1.369471, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.013068, loss@max: 1.337687, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 1.027962, loss@max: 1.302702, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 10, loss@min: 1.112422, loss@max: 1.292403, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 11, loss@min: 1.071048, loss@max: 1.256606, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 12, loss@min: 1.106006, loss@max: 1.263454, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 13, loss@min: 1.035073, loss@max: 1.231912, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.074726, loss@max: 1.253723, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 15, loss@min: 0.993401, loss@max: 1.242546, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.986035, loss@max: 1.245423, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 17, loss@min: 0.961735, loss@max: 1.251571, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.987200, loss@max: 1.272125, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.956202, loss@max: 1.277638, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 0.960138, loss@max: 1.286416, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 21, loss@min: 0.969970, loss@max: 1.291283, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.963561, loss@max: 1.292771, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963593, loss@max: 1.285468, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.950634, loss@max: 1.286341, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.956230, loss@max: 1.301123, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.967219, loss@max: 1.307977, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.952735, loss@max: 1.306397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.952794, loss@max: 1.308690, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.982317, loss@max: 1.321317, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 30, loss@min: 0.973710, loss@max: 1.317358, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.954236, loss@max: 1.313383, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.965837, loss@max: 1.331559, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.951486, loss@max: 1.319054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959177, loss@max: 1.321267, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.960395, loss@max: 1.327820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971130, loss@max: 1.334467, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.960974, loss@max: 1.342212, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.949231, loss@max: 1.333440, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952724, loss@max: 1.338439, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 40, loss@min: 0.961128, loss@max: 1.343979, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.952747, loss@max: 1.341346, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.943173, loss@max: 1.336067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.952370, loss@max: 1.338535, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.950411, loss@max: 1.341647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.956277, loss@max: 1.346824, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.952778, loss@max: 1.347372, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.975334, loss@max: 1.348045, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.949437, loss@max: 1.347158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.949251, loss@max: 1.346487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.988501, loss@max: 1.355308, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 51, loss@min: 0.948753, loss@max: 1.345620, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946289, loss@max: 1.349717, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946848, loss@max: 1.351177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.950676, loss@max: 1.350901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.946360, loss@max: 1.345625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.955434, loss@max: 1.359314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944938, loss@max: 1.352949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.953692, loss@max: 1.357908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.952429, loss@max: 1.358283, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 60, loss@min: 0.968021, loss@max: 1.363487, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 61, loss@min: 0.948465, loss@max: 1.358689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.964370, loss@max: 1.369016, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.946645, loss@max: 1.356278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948345, loss@max: 1.357431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.952294, loss@max: 1.355987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.950293, loss@max: 1.357520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.947574, loss@max: 1.357561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.959648, loss@max: 1.363226, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 69, loss@min: 0.947413, loss@max: 1.358174, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.954221, loss@max: 1.364231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.308298, LT: 0.307581, Top1S: 91.683571, Top1T: 91.886414Best acc: 91.886414 +Train:epoch: 71, loss@min: 0.949057, loss@max: 1.357972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.309703, LT: 0.308729, Top1S: 91.643005, Top1T: 91.764709{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 70} + +------------------------------------------- +Thu Jan 18 21:19:07 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.512547, loss@max: 1.223131, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.693101, loss@max: 1.230657, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.502784, loss@max: 1.288306, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 4, loss@min: 1.063626, loss@max: 1.247717, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.029324, loss@max: 1.275485, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.981254, loss@max: 1.281701, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 7, loss@min: 0.931086, loss@max: 1.278241, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 0.934149, loss@max: 1.260205, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.873895, loss@max: 1.223962, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.051708, loss@max: 1.247554, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 11, loss@min: 0.914324, loss@max: 1.201423, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.961389, loss@max: 1.221109, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 0.906250, loss@max: 1.196259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.970372, loss@max: 1.210547, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.927736, loss@max: 1.203154, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.933209, loss@max: 1.216489, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.915522, loss@max: 1.219996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.917174, loss@max: 1.234328, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.907932, loss@max: 1.237108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.918057, loss@max: 1.238881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932463, loss@max: 1.253682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.931266, loss@max: 1.258774, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.919707, loss@max: 1.255096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.916496, loss@max: 1.262456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.955997, loss@max: 1.287783, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.952069, loss@max: 1.289164, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.947630, loss@max: 1.283705, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 0.928811, loss@max: 1.282554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.925565, loss@max: 1.294737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.967521, loss@max: 1.300318, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.924362, loss@max: 1.296725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.924444, loss@max: 1.300508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935725, loss@max: 1.295350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.934037, loss@max: 1.299260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931753, loss@max: 1.309783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.928169, loss@max: 1.314739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.932429, loss@max: 1.316115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.945905, loss@max: 1.318718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.939241, loss@max: 1.320902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933989, loss@max: 1.324928, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.932347, loss@max: 1.325540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.935194, loss@max: 1.325233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.933295, loss@max: 1.329913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.933714, loss@max: 1.332583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.938156, loss@max: 1.329538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.943022, loss@max: 1.328039, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.963127, loss@max: 1.335100, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.933760, loss@max: 1.340688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.931902, loss@max: 1.344753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941612, loss@max: 1.338756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947347, loss@max: 1.332108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.941551, loss@max: 1.340057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.934965, loss@max: 1.354497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.939654, loss@max: 1.344144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.944030, loss@max: 1.340552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.943845, loss@max: 1.343367, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.938586, loss@max: 1.348689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.939218, loss@max: 1.349769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.938333, loss@max: 1.350770, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947392, loss@max: 1.346018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.945227, loss@max: 1.344775, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.953210, loss@max: 1.351585, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.939646, loss@max: 1.351242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.942390, loss@max: 1.349978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.947501, loss@max: 1.345336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945537, loss@max: 1.347435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.943024, loss@max: 1.350731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.940175, loss@max: 1.353390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.944067, loss@max: 1.350945, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947878, loss@max: 1.347080, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.471724, LT: 0.474720, Top1S: 90.791077, Top1T: 90.791077Best acc: 90.791077 +Train:epoch: 71, loss@min: 0.944197, loss@max: 1.351152, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Thu Jan 18 21:27:06 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.512547, loss@max: 1.223131, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.693101, loss@max: 1.230657, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.502784, loss@max: 1.288306, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 4, loss@min: 1.063626, loss@max: 1.247717, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.029324, loss@max: 1.275485, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.981254, loss@max: 1.281701, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 7, loss@min: 0.931086, loss@max: 1.278241, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 0.934149, loss@max: 1.260205, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.873895, loss@max: 1.223962, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.051708, loss@max: 1.247554, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 11, loss@min: 0.914324, loss@max: 1.201423, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.961389, loss@max: 1.221109, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 0.906250, loss@max: 1.196259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.970372, loss@max: 1.210547, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.927736, loss@max: 1.203154, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.933209, loss@max: 1.216489, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.915522, loss@max: 1.219996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.917174, loss@max: 1.234328, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.907932, loss@max: 1.237108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.918057, loss@max: 1.238881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932463, loss@max: 1.253682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.931266, loss@max: 1.258774, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.919707, loss@max: 1.255096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.916496, loss@max: 1.262456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.955997, loss@max: 1.287783, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.952069, loss@max: 1.289164, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.947630, loss@max: 1.283705, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 0.928811, loss@max: 1.282554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.925565, loss@max: 1.294737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.967521, loss@max: 1.300318, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.924362, loss@max: 1.296725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.924444, loss@max: 1.300508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935725, loss@max: 1.295350, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.934037, loss@max: 1.299260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.931753, loss@max: 1.309783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.928169, loss@max: 1.314739, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.932429, loss@max: 1.316115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.945905, loss@max: 1.318718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.939241, loss@max: 1.320902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933989, loss@max: 1.324928, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.474675, LT: 0.475074, Top1S: 91.115616, Top1T: 91.277893Best acc: 91.277893 +Train:epoch: 41, loss@min: 0.932349, loss@max: 1.325545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.471338, LT: 0.471493, Top1S: 91.156189, Top1T: 91.237320 +Train:epoch: 42, loss@min: 0.935207, loss@max: 1.325224, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.471499, LT: 0.471201, Top1S: 91.196754, Top1T: 91.034485 +Train:epoch: 43, loss@min: 0.933261, loss@max: 1.329939, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.471025, LT: 0.471478, Top1S: 91.196754, Top1T: 91.034485 +Train:epoch: 44, loss@min: 0.933828, loss@max: 1.332471, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 28} + +------------------------------------------- +Thu Jan 18 21:33:39 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.512547, loss@max: 1.223131, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.693101, loss@max: 1.230657, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.502784, loss@max: 1.288306, Top1S acc: 100.000000, Top1T acc: 92.968750 +Train:epoch: 4, loss@min: 1.063626, loss@max: 1.247717, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.029324, loss@max: 1.275485, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.981254, loss@max: 1.281701, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 7, loss@min: 0.931086, loss@max: 1.278241, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 0.934149, loss@max: 1.260205, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.873895, loss@max: 1.223962, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.051708, loss@max: 1.247554, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 11, loss@min: 0.914324, loss@max: 1.201423, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.961389, loss@max: 1.221109, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 0.906250, loss@max: 1.196259, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.970372, loss@max: 1.210547, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.927736, loss@max: 1.203154, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.933209, loss@max: 1.216489, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.915522, loss@max: 1.219996, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.917174, loss@max: 1.234328, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.907932, loss@max: 1.237108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.918057, loss@max: 1.238881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.932463, loss@max: 1.253682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.931266, loss@max: 1.258774, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.919707, loss@max: 1.255096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.916496, loss@max: 1.262456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.955997, loss@max: 1.287783, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.952069, loss@max: 1.289164, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.947630, loss@max: 1.283705, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 0.928811, loss@max: 1.282554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 28, LS: 0.487499, LT: 0.489863, Top1S: 90.709938, Top1T: 90.547668Best acc: 90.709938 +Train:epoch: 29, loss@min: 0.925377, loss@max: 1.294963, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 29, LS: 0.487864, LT: 0.489655, Top1S: 90.547668, Top1T: 90.507103 +Train:epoch: 30, loss@min: 0.967534, loss@max: 1.300197, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 30, LS: 0.487317, LT: 0.489238, Top1S: 90.588234, Top1T: 90.547668 +Train:epoch: 31, loss@min: 0.924671, loss@max: 1.296333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.480836, LT: 0.482362, Top1S: 90.628807, Top1T: 90.588234 +Train:epoch: 32, loss@min: 0.924817, loss@max: 1.300111, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Thu Jan 18 21:38:57 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.523538, loss@max: 1.228081, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.689953, loss@max: 1.232508, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 3, loss@min: 1.495062, loss@max: 1.287858, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 4, loss@min: 1.061195, loss@max: 1.246989, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 5, loss@min: 1.030209, loss@max: 1.274960, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.981013, loss@max: 1.280848, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 7, loss@min: 0.931263, loss@max: 1.276646, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 8, loss@min: 0.936402, loss@max: 1.257340, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.876784, loss@max: 1.220592, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.054033, loss@max: 1.244687, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 11, loss@min: 0.914355, loss@max: 1.199848, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 12, loss@min: 0.961591, loss@max: 1.221510, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 13, loss@min: 0.905478, loss@max: 1.195906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.970191, loss@max: 1.209794, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.928440, loss@max: 1.202263, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 16, loss@min: 0.930646, loss@max: 1.217797, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 17, loss@min: 0.913861, loss@max: 1.221228, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.914133, loss@max: 1.235242, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.908165, loss@max: 1.236851, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.917458, loss@max: 1.238879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.931267, loss@max: 1.254333, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.931631, loss@max: 1.258873, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 23, loss@min: 0.919465, loss@max: 1.255262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.915327, loss@max: 1.263906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.954350, loss@max: 1.287697, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.953856, loss@max: 1.288124, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.948654, loss@max: 1.283988, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 28, loss@min: 0.927245, loss@max: 1.283344, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.925621, loss@max: 1.294416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.964843, loss@max: 1.300437, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.925206, loss@max: 1.296117, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.924857, loss@max: 1.300205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.935587, loss@max: 1.295290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.933843, loss@max: 1.300689, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.930223, loss@max: 1.311356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.928562, loss@max: 1.313904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935796, loss@max: 1.315196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.943920, loss@max: 1.319840, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.935385, loss@max: 1.323052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.932730, loss@max: 1.326775, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.482720, LT: 0.483494, Top1S: 91.156189, Top1T: 91.196754Best acc: 91.196754 +Train:epoch: 41, loss@min: 0.932480, loss@max: 1.325671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.479815, LT: 0.480057, Top1S: 91.075050, Top1T: 91.115616 +Train:epoch: 42, loss@min: 0.935109, loss@max: 1.325630, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.479411, LT: 0.479001, Top1S: 91.034485, Top1T: 90.993912 +Train:epoch: 43, loss@min: 0.932949, loss@max: 1.330471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.478188, LT: 0.478472, Top1S: 90.953346, Top1T: 90.993912 +Train:epoch: 44, loss@min: 0.937264, loss@max: 1.328378, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 0.476544, LT: 0.478283, Top1S: 90.872208, Top1T: 90.872208 +Train:epoch: 45, loss@min: 0.938876, loss@max: 1.328323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.469122, LT: 0.470774, Top1S: 91.075050, Top1T: 91.034485 +Train:epoch: 46, loss@min: 0.939848, loss@max: 1.331881, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.466931, LT: 0.467139, Top1S: 91.075050, Top1T: 90.993912 +Train:epoch: 47, loss@min: 0.956927, loss@max: 1.339614, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 47, LS: 0.466395, LT: 0.466870, Top1S: 90.872208, Top1T: 90.912781{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 21:47:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.434623, loss@max: 1.203544, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.657441, loss@max: 1.226402, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 3, loss@min: 1.552476, loss@max: 1.306081, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 4, loss@min: 1.052034, loss@max: 1.257187, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 5, loss@min: 1.021407, loss@max: 1.286560, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.958303, loss@max: 1.288193, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 7, loss@min: 0.886456, loss@max: 1.276712, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 0.912643, loss@max: 1.265381, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.866178, loss@max: 1.234985, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.057562, loss@max: 1.262212, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 11, loss@min: 0.889782, loss@max: 1.201326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.010553, loss@max: 1.233680, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 13, loss@min: 0.905511, loss@max: 1.195489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.945624, loss@max: 1.211292, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.925936, loss@max: 1.207676, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.951273, loss@max: 1.225113, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.906539, loss@max: 1.224990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.917254, loss@max: 1.247578, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.907691, loss@max: 1.248691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.910905, loss@max: 1.246076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915044, loss@max: 1.260680, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.899478, loss@max: 1.270234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908498, loss@max: 1.267650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.914679, loss@max: 1.267893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.942066, loss@max: 1.287050, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.946511, loss@max: 1.302309, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.919621, loss@max: 1.287935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.926982, loss@max: 1.302682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.921675, loss@max: 1.299921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.925816, loss@max: 1.296864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.925161, loss@max: 1.304626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.932840, loss@max: 1.305570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.925198, loss@max: 1.312970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.916757, loss@max: 1.329149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.928797, loss@max: 1.317706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.934574, loss@max: 1.318964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.920669, loss@max: 1.335037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.923942, loss@max: 1.336214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.926784, loss@max: 1.340169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.922625, loss@max: 1.346877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.929675, loss@max: 1.339728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.931561, loss@max: 1.345935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.926477, loss@max: 1.352203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.930096, loss@max: 1.346108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.940126, loss@max: 1.347853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947467, loss@max: 1.341914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.992147, loss@max: 1.348006, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.925353, loss@max: 1.365790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.923786, loss@max: 1.369108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939101, loss@max: 1.356908, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.961456, loss@max: 1.337371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.937923, loss@max: 1.362878, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.914187, loss@max: 1.387640, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.935755, loss@max: 1.365172, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.956115, loss@max: 1.350334, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.966942, loss@max: 1.355807, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 57, loss@min: 0.921774, loss@max: 1.382582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.914533, loss@max: 1.395622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.945440, loss@max: 1.363490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.958549, loss@max: 1.356307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.925388, loss@max: 1.382982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.946472, loss@max: 1.385854, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 63, loss@min: 0.952525, loss@max: 1.356426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.952227, loss@max: 1.357903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.953659, loss@max: 1.361330, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.943820, loss@max: 1.369069, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.945150, loss@max: 1.366943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.941451, loss@max: 1.377324, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947453, loss@max: 1.363756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.944364, loss@max: 1.366152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.948424, loss@max: 1.376206, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 72, loss@min: 0.945677, loss@max: 1.373978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.951853, loss@max: 1.359950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939772, loss@max: 1.372809, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.945716, loss@max: 1.370982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.932200, loss@max: 1.385832, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.960884, loss@max: 1.394022, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 78, loss@min: 0.946016, loss@max: 1.369386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.965294, loss@max: 1.345225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.937458, loss@max: 1.377255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.663827, LT: 0.707371, Top1S: 90.304260, Top1T: 90.020287Best acc: 90.304260 +Train:epoch: 81, loss@min: 0.934299, loss@max: 1.380150, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.660499, LT: 0.700012, Top1S: 90.223122, Top1T: 89.898582 +Train:epoch: 82, loss@min: 0.932978, loss@max: 1.380111, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Thu Jan 18 21:56:57 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.434623, loss@max: 1.203544, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.657441, loss@max: 1.226402, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 3, loss@min: 1.552476, loss@max: 1.306081, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 4, loss@min: 1.052034, loss@max: 1.257187, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 5, loss@min: 1.021407, loss@max: 1.286560, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.958303, loss@max: 1.288193, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 7, loss@min: 0.886456, loss@max: 1.276712, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 0.912643, loss@max: 1.265381, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.866178, loss@max: 1.234985, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.057562, loss@max: 1.262212, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 11, loss@min: 0.889782, loss@max: 1.201326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.010553, loss@max: 1.233680, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 13, loss@min: 0.905511, loss@max: 1.195489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.945624, loss@max: 1.211292, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.925936, loss@max: 1.207676, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.951273, loss@max: 1.225113, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.906539, loss@max: 1.224990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.917254, loss@max: 1.247578, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.907691, loss@max: 1.248691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.910905, loss@max: 1.246076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915044, loss@max: 1.260680, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.899478, loss@max: 1.270234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908498, loss@max: 1.267650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.914679, loss@max: 1.267893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.942066, loss@max: 1.287050, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.946511, loss@max: 1.302309, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.919621, loss@max: 1.287935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.926982, loss@max: 1.302682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.921675, loss@max: 1.299921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.925816, loss@max: 1.296864, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 0.525974, LT: 0.536967, Top1S: 90.507103, Top1T: 90.304260Best acc: 90.507103 +Train:epoch: 31, loss@min: 0.925161, loss@max: 1.304626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.526316, LT: 0.535590, Top1S: 90.547668, Top1T: 90.223122Best acc: 90.547668 +Train:epoch: 32, loss@min: 0.933014, loss@max: 1.305520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.522445, LT: 0.537487, Top1S: 90.709938, Top1T: 90.304260Best acc: 90.709938 +Train:epoch: 33, loss@min: 0.925016, loss@max: 1.313254, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Jan 18 22:02:08 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.434623, loss@max: 1.203544, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 2, loss@min: 1.657441, loss@max: 1.226402, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 3, loss@min: 1.552476, loss@max: 1.306081, Top1S acc: 100.000000, Top1T acc: 94.140625 +Train:epoch: 4, loss@min: 1.052034, loss@max: 1.257187, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 5, loss@min: 1.021407, loss@max: 1.286560, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 6, loss@min: 0.958303, loss@max: 1.288193, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 7, loss@min: 0.886456, loss@max: 1.276712, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 8, loss@min: 0.912643, loss@max: 1.265381, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 9, loss@min: 0.866178, loss@max: 1.234985, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 10, loss@min: 1.057562, loss@max: 1.262212, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 11, loss@min: 0.889782, loss@max: 1.201326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.010553, loss@max: 1.233680, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 13, loss@min: 0.905511, loss@max: 1.195489, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.945624, loss@max: 1.211292, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 15, loss@min: 0.925936, loss@max: 1.207676, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.951273, loss@max: 1.225113, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.906539, loss@max: 1.224990, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.917254, loss@max: 1.247578, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 19, loss@min: 0.907691, loss@max: 1.248691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.910905, loss@max: 1.246076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.915044, loss@max: 1.260680, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.899478, loss@max: 1.270234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.908498, loss@max: 1.267650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.914679, loss@max: 1.267893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.942066, loss@max: 1.287050, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 26, loss@min: 0.946511, loss@max: 1.302309, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 0.919621, loss@max: 1.287935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.926982, loss@max: 1.302682, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.921675, loss@max: 1.299921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.925816, loss@max: 1.296864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.925161, loss@max: 1.304626, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.932840, loss@max: 1.305570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.925198, loss@max: 1.312970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.916757, loss@max: 1.329149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.928797, loss@max: 1.317706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.934574, loss@max: 1.318964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.920669, loss@max: 1.335037, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.923942, loss@max: 1.336214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.926784, loss@max: 1.340169, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.922625, loss@max: 1.346877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.929675, loss@max: 1.339728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.931561, loss@max: 1.345935, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.926477, loss@max: 1.352203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.930096, loss@max: 1.346108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.940126, loss@max: 1.347853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.947467, loss@max: 1.341914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.992147, loss@max: 1.348006, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.925353, loss@max: 1.365790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.923786, loss@max: 1.369108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939101, loss@max: 1.356908, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.567019, LT: 0.584496, Top1S: 90.709938, Top1T: 90.547668Best acc: 90.709938 +Train:epoch: 51, loss@min: 0.961456, loss@max: 1.337371, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.569776, LT: 0.587744, Top1S: 90.669373, Top1T: 90.385399 +Train:epoch: 52, loss@min: 0.937922, loss@max: 1.363086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.570759, LT: 0.591771, Top1S: 90.669373, Top1T: 90.304260 +Train:epoch: 53, loss@min: 0.913925, loss@max: 1.387584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.576551, LT: 0.600627, Top1S: 90.466530, Top1T: 90.182556 +Train:epoch: 54, loss@min: 0.935377, loss@max: 1.365554, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.574938, LT: 0.595482, Top1S: 90.425964, Top1T: 90.466530{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Jan 18 22:09:57 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.059646, loss@max: 1.117114, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 2, loss@min: 1.724147, loss@max: 1.252925, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 3, loss@min: 1.505404, loss@max: 1.318606, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 4, loss@min: 1.326236, loss@max: 1.375265, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 5, loss@min: 1.075086, loss@max: 1.362357, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 6, loss@min: 1.154194, loss@max: 1.413407, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 7, loss@min: 1.031712, loss@max: 1.377846, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.002827, loss@max: 1.345779, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 9, loss@min: 1.011402, loss@max: 1.310655, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 10, loss@min: 1.102288, loss@max: 1.300308, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 11, loss@min: 1.061797, loss@max: 1.258113, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.114989, loss@max: 1.268462, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 13, loss@min: 1.021725, loss@max: 1.230591, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.082658, loss@max: 1.259688, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 15, loss@min: 0.995575, loss@max: 1.245942, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 16, loss@min: 0.975889, loss@max: 1.250818, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 0.950836, loss@max: 1.258482, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 18, loss@min: 0.975107, loss@max: 1.280840, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 0.951977, loss@max: 1.285394, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 0.954280, loss@max: 1.291855, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 21, loss@min: 0.960447, loss@max: 1.292375, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 22, loss@min: 0.973587, loss@max: 1.303066, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 0.943370, loss@max: 1.287660, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 0.935130, loss@max: 1.291011, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 25, loss@min: 0.953393, loss@max: 1.305317, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.965914, loss@max: 1.314541, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.935512, loss@max: 1.319480, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.945548, loss@max: 1.320292, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 0.972439, loss@max: 1.332160, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 30, loss@min: 0.967634, loss@max: 1.325044, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.950533, loss@max: 1.317493, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 32, loss@min: 0.960648, loss@max: 1.342052, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 33, loss@min: 0.937165, loss@max: 1.339860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.954403, loss@max: 1.341358, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.950934, loss@max: 1.339556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.974004, loss@max: 1.340274, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.952247, loss@max: 1.353988, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 38, loss@min: 0.940006, loss@max: 1.349931, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.940580, loss@max: 1.353407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.948795, loss@max: 1.356556, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.950765, loss@max: 1.346602, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 42, loss@min: 0.944398, loss@max: 1.345906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.945929, loss@max: 1.350932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.934093, loss@max: 1.359628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.963752, loss@max: 1.363609, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 0.947766, loss@max: 1.355423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.969858, loss@max: 1.365490, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.940057, loss@max: 1.360997, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939711, loss@max: 1.367383, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.000605, loss@max: 1.368899, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 50, LS: 0.313735, LT: 0.313547, Top1S: 91.764709, Top1T: 91.764709Best acc: 91.764709 +Train:epoch: 51, loss@min: 0.954395, loss@max: 1.361113, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 51, LS: 0.313656, LT: 0.313082, Top1S: 91.845840, Top1T: 91.683571Best acc: 91.845840 +Train:epoch: 52, loss@min: 0.934204, loss@max: 1.370017, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 0.314524, LT: 0.313259, Top1S: 91.805275, Top1T: 91.724136 +Train:epoch: 53, loss@min: 0.925584, loss@max: 1.378752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.315428, LT: 0.314071, Top1S: 91.805275, Top1T: 91.724136 +Train:epoch: 54, loss@min: 0.939465, loss@max: 1.367626, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.315857, LT: 0.315076, Top1S: 91.764709, Top1T: 91.764709 +Train:epoch: 55, loss@min: 0.943236, loss@max: 1.356500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.315562, LT: 0.315853, Top1S: 91.805275, Top1T: 91.764709 +Train:epoch: 56, loss@min: 0.967878, loss@max: 1.371517, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 56, LS: 0.315409, LT: 0.316128, Top1S: 91.805275, Top1T: 91.643005 +Train:epoch: 57, loss@min: 0.939547, loss@max: 1.367207, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.315610, LT: 0.315888, Top1S: 91.764709, Top1T: 91.643005 +Train:epoch: 58, loss@min: 0.951784, loss@max: 1.373714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.316287, LT: 0.315706, Top1S: 91.724136, Top1T: 91.602432 +Train:epoch: 59, loss@min: 0.956278, loss@max: 1.371526, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 59, LS: 0.316974, LT: 0.315951, Top1S: 91.683571, Top1T: 91.724136 +Train:epoch: 60, loss@min: 0.950829, loss@max: 1.380221, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.317740, LT: 0.315883, Top1S: 91.764709, Top1T: 91.643005 +Train:epoch: 61, loss@min: 0.941557, loss@max: 1.380773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.318351, LT: 0.316606, Top1S: 91.805275, Top1T: 91.724136 +Train:epoch: 62, loss@min: 0.971166, loss@max: 1.378464, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 62, LS: 0.318489, LT: 0.317562, Top1S: 91.845840, Top1T: 91.724136 +Train:epoch: 63, loss@min: 0.942598, loss@max: 1.372213, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.318429, LT: 0.318192, Top1S: 91.967545, Top1T: 91.764709Best acc: 91.967545 +Train:epoch: 64, loss@min: 0.942900, loss@max: 1.370317, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.319766, LT: 0.318988, Top1S: 91.845840, Top1T: 91.724136 +Train:epoch: 65, loss@min: 0.953982, loss@max: 1.369107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.321196, LT: 0.319596, Top1S: 91.926979, Top1T: 91.845840 +Train:epoch: 66, loss@min: 0.944637, loss@max: 1.372613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.323777, LT: 0.321881, Top1S: 91.805275, Top1T: 91.805275 +Train:epoch: 67, loss@min: 0.929638, loss@max: 1.385385, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.326237, LT: 0.324505, Top1S: 91.926979, Top1T: 91.561867 +Train:epoch: 68, loss@min: 0.964358, loss@max: 1.388691, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 68, LS: 0.327931, LT: 0.326700, Top1S: 91.967545, Top1T: 91.643005 +Train:epoch: 69, loss@min: 0.943695, loss@max: 1.371354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.329440, LT: 0.329245, Top1S: 91.886414, Top1T: 91.602432 +Train:epoch: 70, loss@min: 0.955506, loss@max: 1.376584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.330332, LT: 0.330875, Top1S: 91.886414, Top1T: 91.561867 +Train:epoch: 71, loss@min: 0.949232, loss@max: 1.376453, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 71, LS: 0.331793, LT: 0.331870, Top1S: 91.805275, Top1T: 91.561867 +Train:epoch: 72, loss@min: 0.943251, loss@max: 1.374807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.333358, LT: 0.332425, Top1S: 91.845840, Top1T: 91.602432 +Train:epoch: 73, loss@min: 0.944566, loss@max: 1.375027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.333206, LT: 0.332631, Top1S: 91.926979, Top1T: 91.602432 +Train:epoch: 74, loss@min: 0.943156, loss@max: 1.383444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.333181, LT: 0.332214, Top1S: 91.886414, Top1T: 91.683571 +Train:epoch: 75, loss@min: 0.954739, loss@max: 1.391821, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 75, LS: 0.333521, LT: 0.331892, Top1S: 92.008118, Top1T: 91.683571Best acc: 92.008118 +Train:epoch: 76, loss@min: 0.934509, loss@max: 1.390023, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.332088, LT: 0.329851, Top1S: 91.967545, Top1T: 91.683571 +Train:epoch: 77, loss@min: 0.966641, loss@max: 1.385354, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 77, LS: 0.330869, LT: 0.328399, Top1S: 92.048683, Top1T: 91.683571Best acc: 92.048683 +Train:epoch: 78, loss@min: 0.952045, loss@max: 1.374659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.329317, LT: 0.327619, Top1S: 91.845840, Top1T: 91.643005 +Train:epoch: 79, loss@min: 0.949023, loss@max: 1.369645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.327589, LT: 0.327675, Top1S: 91.845840, Top1T: 91.643005 +Train:epoch: 80, loss@min: 0.925674, loss@max: 1.389565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.325954, LT: 0.327832, Top1S: 91.886414, Top1T: 91.643005 +Train:epoch: 81, loss@min: 0.947602, loss@max: 1.383594, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 81, LS: 0.326070, LT: 0.328585, Top1S: 91.926979, Top1T: 91.724136 +Train:epoch: 82, loss@min: 0.935000, loss@max: 1.384660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.326636, LT: 0.329506, Top1S: 92.008118, Top1T: 91.724136 +Train:epoch: 83, loss@min: 0.949879, loss@max: 1.390079, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 0.328079, LT: 0.330632, Top1S: 91.805275, Top1T: 91.724136 +Train:epoch: 84, loss@min: 0.945151, loss@max: 1.371457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.329586, LT: 0.331194, Top1S: 91.764709, Top1T: 91.683571 +Train:epoch: 85, loss@min: 0.954477, loss@max: 1.371125, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 85, LS: 0.330397, LT: 0.331189, Top1S: 91.724136, Top1T: 91.724136 +Train:epoch: 86, loss@min: 0.963454, loss@max: 1.367447, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 86, LS: 0.330794, LT: 0.331314, Top1S: 91.643005, Top1T: 91.561867 +Train:epoch: 87, loss@min: 0.955476, loss@max: 1.359761, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.330859, LT: 0.331405, Top1S: 91.683571, Top1T: 91.521301 +Train:epoch: 88, loss@min: 0.976033, loss@max: 1.377015, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 88, LS: 0.331018, LT: 0.331562, Top1S: 91.805275, Top1T: 91.602432 +Train:epoch: 89, loss@min: 0.944521, loss@max: 1.372611, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 0.330963, LT: 0.331960, Top1S: 91.805275, Top1T: 91.724136 +Train:epoch: 90, loss@min: 0.955991, loss@max: 1.382522, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 90, LS: 0.330707, LT: 0.332567, Top1S: 91.926979, Top1T: 91.683571 +Train:epoch: 91, loss@min: 0.944449, loss@max: 1.376321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.330907, LT: 0.332969, Top1S: 91.967545, Top1T: 91.683571 +Train:epoch: 92, loss@min: 0.943623, loss@max: 1.376887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.331504, LT: 0.333523, Top1S: 91.926979, Top1T: 91.764709 +Train:epoch: 93, loss@min: 0.944575, loss@max: 1.368271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.332223, LT: 0.334064, Top1S: 91.926979, Top1T: 91.805275 +Train:epoch: 94, loss@min: 0.954974, loss@max: 1.388366, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.332908, LT: 0.335129, Top1S: 91.926979, Top1T: 91.845840 +Train:epoch: 95, loss@min: 0.939064, loss@max: 1.392698, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.334000, LT: 0.336144, Top1S: 91.926979, Top1T: 91.845840 +Train:epoch: 96, loss@min: 0.944303, loss@max: 1.395336, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 0.335045, LT: 0.336944, Top1S: 91.845840, Top1T: 91.724136 +Train:epoch: 97, loss@min: 0.933161, loss@max: 1.382924, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 0.335700, LT: 0.337476, Top1S: 91.805275, Top1T: 91.683571 +Train:epoch: 98, loss@min: 0.941795, loss@max: 1.379730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.336005, LT: 0.337809, Top1S: 91.845840, Top1T: 91.683571 +Train:epoch: 99, loss@min: 0.954403, loss@max: 1.385805, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 99, LS: 0.335894, LT: 0.337725, Top1S: 91.886414, Top1T: 91.683571 +Train:epoch: 100, loss@min: 0.957462, loss@max: 1.371592, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 0.335564, LT: 0.337527, Top1S: 91.845840, Top1T: 91.683571 +Train:epoch: 101, loss@min: 0.943989, loss@max: 1.373516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.335059, LT: 0.337214, Top1S: 91.845840, Top1T: 91.643005 +Train:epoch: 102, loss@min: 0.944108, loss@max: 1.373565, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.334811, LT: 0.336764, Top1S: 91.764709, Top1T: 91.724136 +Train:epoch: 103, loss@min: 0.955873, loss@max: 1.373610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.334843, LT: 0.336279, Top1S: 91.764709, Top1T: 91.724136 +Train:epoch: 104, loss@min: 0.954408, loss@max: 1.372731, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Thu Jan 18 22:42:09 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.008162, loss@max: 1.294498, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 2, loss@min: 1.453012, loss@max: 1.362906, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 3, loss@min: 1.369286, loss@max: 1.413372, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.248882, loss@max: 1.368688, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 5, loss@min: 1.234863, loss@max: 1.331409, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 6, loss@min: 1.195832, loss@max: 1.278037, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 7, loss@min: 1.211707, loss@max: 1.273025, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.100609, loss@max: 1.249146, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 9, loss@min: 1.199655, loss@max: 1.288916, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 10, loss@min: 1.093611, loss@max: 1.271897, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 11, loss@min: 1.133929, loss@max: 1.290479, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 12, loss@min: 0.973935, loss@max: 1.254763, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.024989, loss@max: 1.273971, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.029975, loss@max: 1.275044, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.997409, loss@max: 1.280894, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.990004, loss@max: 1.286211, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.015799, loss@max: 1.300022, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 18, loss@min: 1.016946, loss@max: 1.296294, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.995123, loss@max: 1.287300, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.025767, loss@max: 1.309814, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 0.980333, loss@max: 1.312784, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.050594, loss@max: 1.324823, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 0.987006, loss@max: 1.314209, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 0.953385, loss@max: 1.305433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.999348, loss@max: 1.335607, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.985585, loss@max: 1.323290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.958025, loss@max: 1.340724, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 0.938604, loss@max: 1.327887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.960007, loss@max: 1.323230, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 0.968056, loss@max: 1.318879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.991018, loss@max: 1.363771, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.969959, loss@max: 1.356072, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 1.021941, loss@max: 1.366693, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 0.991266, loss@max: 1.356989, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.979623, loss@max: 1.375436, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 36, loss@min: 0.959559, loss@max: 1.365486, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.962205, loss@max: 1.340109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.944568, loss@max: 1.388171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941363, loss@max: 1.379433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.957453, loss@max: 1.383097, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.949952, loss@max: 1.384731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.961995, loss@max: 1.378703, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 43, loss@min: 0.940951, loss@max: 1.408156, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.963583, loss@max: 1.390785, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 45, loss@min: 1.021746, loss@max: 1.346344, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 46, loss@min: 1.000964, loss@max: 1.387420, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 47, loss@min: 0.959537, loss@max: 1.400996, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 48, loss@min: 0.966202, loss@max: 1.398157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.023719, loss@max: 1.405713, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 50, loss@min: 0.940833, loss@max: 1.386524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.316574, LT: 0.317509, Top1S: 91.967545, Top1T: 91.926979Best acc: 91.967545 +Train:epoch: 51, loss@min: 1.000474, loss@max: 1.406513, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 51, LS: 0.315409, LT: 0.318361, Top1S: 92.089249, Top1T: 91.886414Best acc: 92.089249 +Train:epoch: 52, loss@min: 0.938559, loss@max: 1.415337, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 52, LS: 0.317705, LT: 0.318542, Top1S: 92.008118, Top1T: 91.926979 +Train:epoch: 53, loss@min: 0.967007, loss@max: 1.380053, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 53, LS: 0.323246, LT: 0.319059, Top1S: 91.886414, Top1T: 92.008118 +Train:epoch: 54, loss@min: 1.032851, loss@max: 1.397913, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 54, LS: 0.325815, LT: 0.319561, Top1S: 91.805275, Top1T: 92.089249 +Train:epoch: 55, loss@min: 0.943631, loss@max: 1.390166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.324394, LT: 0.320578, Top1S: 91.967545, Top1T: 91.926979 +Train:epoch: 56, loss@min: 0.953361, loss@max: 1.389932, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.326034, LT: 0.326017, Top1S: 91.886414, Top1T: 91.886414 +Train:epoch: 57, loss@min: 0.967082, loss@max: 1.396971, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 57, LS: 0.328179, LT: 0.328904, Top1S: 91.805275, Top1T: 91.805275 +Train:epoch: 58, loss@min: 1.023364, loss@max: 1.441866, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 58, LS: 0.326850, LT: 0.327221, Top1S: 91.643005, Top1T: 91.926979 +Train:epoch: 59, loss@min: 0.957497, loss@max: 1.376822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.324043, LT: 0.324525, Top1S: 91.764709, Top1T: 91.805275 +Train:epoch: 60, loss@min: 0.996957, loss@max: 1.417304, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 60, LS: 0.322446, LT: 0.321952, Top1S: 91.805275, Top1T: 91.805275 +Train:epoch: 61, loss@min: 0.961741, loss@max: 1.385036, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 61, LS: 0.321026, LT: 0.318392, Top1S: 91.886414, Top1T: 91.724136 +Train:epoch: 62, loss@min: 1.016075, loss@max: 1.403621, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 62, LS: 0.320924, LT: 0.317466, Top1S: 91.886414, Top1T: 91.886414 +Train:epoch: 63, loss@min: 0.976938, loss@max: 1.407116, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 63, LS: 0.321575, LT: 0.318631, Top1S: 92.048683, Top1T: 91.886414 +Train:epoch: 64, loss@min: 0.972054, loss@max: 1.393136, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 64, LS: 0.321227, LT: 0.317995, Top1S: 92.048683, Top1T: 91.926979 +Train:epoch: 65, loss@min: 0.981515, loss@max: 1.400060, Top1S acc: 100.000000, Top1T acc: 99.218750{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Thu Jan 18 23:01:40 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.008162, loss@max: 1.294498, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 2, loss@min: 1.453012, loss@max: 1.362906, Top1S acc: 100.000000, Top1T acc: 90.234375 +Train:epoch: 3, loss@min: 1.369286, loss@max: 1.413372, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 4, loss@min: 1.248882, loss@max: 1.368688, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 5, loss@min: 1.234863, loss@max: 1.331409, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 6, loss@min: 1.195832, loss@max: 1.278037, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 7, loss@min: 1.211707, loss@max: 1.273025, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 8, loss@min: 1.100609, loss@max: 1.249146, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 9, loss@min: 1.199655, loss@max: 1.288916, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 10, loss@min: 1.093611, loss@max: 1.271897, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 11, loss@min: 1.133929, loss@max: 1.290479, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 12, loss@min: 0.973935, loss@max: 1.254763, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 13, loss@min: 1.024989, loss@max: 1.273971, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 14, loss@min: 1.029975, loss@max: 1.275044, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 15, loss@min: 0.997409, loss@max: 1.280894, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 16, loss@min: 0.990004, loss@max: 1.286211, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 17, loss@min: 1.015799, loss@max: 1.300022, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 18, loss@min: 1.016946, loss@max: 1.296294, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 0.995123, loss@max: 1.287300, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.025767, loss@max: 1.309814, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 0.980333, loss@max: 1.312784, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 22, loss@min: 1.050594, loss@max: 1.324823, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 0.987006, loss@max: 1.314209, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 24, loss@min: 0.953385, loss@max: 1.305433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.999348, loss@max: 1.335607, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.985585, loss@max: 1.323290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.958025, loss@max: 1.340724, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 28, loss@min: 0.938604, loss@max: 1.327887, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.960007, loss@max: 1.323230, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 0.968056, loss@max: 1.318879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.991018, loss@max: 1.363771, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.969959, loss@max: 1.356072, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 33, loss@min: 1.021941, loss@max: 1.366693, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 34, loss@min: 0.991266, loss@max: 1.356989, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.979623, loss@max: 1.375436, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 36, loss@min: 0.959559, loss@max: 1.365486, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 37, loss@min: 0.962205, loss@max: 1.340109, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.944568, loss@max: 1.388171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941363, loss@max: 1.379433, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.957453, loss@max: 1.383097, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 40, LS: 0.304485, LT: 0.303411, Top1S: 91.886414, Top1T: 91.886414Best acc: 91.886414 +Train:epoch: 41, loss@min: 0.949961, loss@max: 1.384670, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.308908, LT: 0.305104, Top1S: 91.764709, Top1T: 91.926979Best acc: 91.926979 +Train:epoch: 42, loss@min: 0.962089, loss@max: 1.378671, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 42, LS: 0.309841, LT: 0.308197, Top1S: 91.724136, Top1T: 91.724136 +Train:epoch: 43, loss@min: 0.940520, loss@max: 1.408606, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.309235, LT: 0.310803, Top1S: 91.926979, Top1T: 91.683571 +Train:epoch: 44, loss@min: 0.963630, loss@max: 1.390754, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 44, LS: 0.308661, LT: 0.307338, Top1S: 92.048683, Top1T: 91.926979Best acc: 92.048683 +Train:epoch: 45, loss@min: 1.021941, loss@max: 1.346179, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 45, LS: 0.307958, LT: 0.303974, Top1S: 92.170387, Top1T: 92.048683Best acc: 92.170387 +Train:epoch: 46, loss@min: 1.001038, loss@max: 1.387166, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 46, LS: 0.304035, LT: 0.302572, Top1S: 92.170387, Top1T: 92.089249 +Train:epoch: 47, loss@min: 0.959466, loss@max: 1.401318, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 47, LS: 0.304489, LT: 0.305566, Top1S: 92.008118, Top1T: 91.967545 +Train:epoch: 48, loss@min: 0.965806, loss@max: 1.398625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.310340, LT: 0.310709, Top1S: 92.008118, Top1T: 91.886414 +Train:epoch: 49, loss@min: 1.023943, loss@max: 1.405568, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 49, LS: 0.316253, LT: 0.315310, Top1S: 91.886414, Top1T: 91.926979 +Train:epoch: 50, loss@min: 0.941098, loss@max: 1.386122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.316476, LT: 0.317366, Top1S: 92.008118, Top1T: 91.926979 +Train:epoch: 51, loss@min: 1.000494, loss@max: 1.406311, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 51, LS: 0.315393, LT: 0.318316, Top1S: 92.089249, Top1T: 91.886414 +Train:epoch: 52, loss@min: 0.938624, loss@max: 1.415523, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 52, LS: 0.317665, LT: 0.318498, Top1S: 91.967545, Top1T: 91.967545 +Train:epoch: 53, loss@min: 0.966686, loss@max: 1.380324, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 53, LS: 0.323126, LT: 0.318942, Top1S: 91.886414, Top1T: 91.967545 +Train:epoch: 54, loss@min: 1.033174, loss@max: 1.397815, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 54, LS: 0.325708, LT: 0.319440, Top1S: 91.805275, Top1T: 92.048683 +Train:epoch: 55, loss@min: 0.943597, loss@max: 1.390144, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.324331, LT: 0.320476, Top1S: 91.967545, Top1T: 91.926979 +Train:epoch: 56, loss@min: 0.953824, loss@max: 1.389645, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.326001, LT: 0.325921, Top1S: 91.926979, Top1T: 91.845840 +Train:epoch: 57, loss@min: 0.966979, loss@max: 1.397169, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 57, LS: 0.328068, LT: 0.328809, Top1S: 91.805275, Top1T: 91.805275{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Thu Jan 18 23:21:10 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.639252, loss@max: 0.944383, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.760847, loss@max: 1.149326, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 3, loss@min: 1.317084, loss@max: 1.171577, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 1.197267, loss@max: 1.237799, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.060886, loss@max: 1.258500, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 0.935936, loss@max: 1.282680, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.879784, loss@max: 1.293741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.942242, loss@max: 1.340737, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.822525, loss@max: 1.328024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.801496, loss@max: 1.320255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.864949, loss@max: 1.351862, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.827696, loss@max: 1.340707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.889590, loss@max: 1.351558, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.893764, loss@max: 1.332317, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.863692, loss@max: 1.288933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.931710, loss@max: 1.295241, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.909271, loss@max: 1.262539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.948965, loss@max: 1.258649, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.932863, loss@max: 1.255593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.948546, loss@max: 1.251238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950963, loss@max: 1.246455, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.967008, loss@max: 1.258774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.949727, loss@max: 1.239650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.973066, loss@max: 1.261946, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.947651, loss@max: 1.254601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.939231, loss@max: 1.284520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.938045, loss@max: 1.273189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.963479, loss@max: 1.298207, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.931302, loss@max: 1.289163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.922939, loss@max: 1.309647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.935376, loss@max: 1.326043, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.912915, loss@max: 1.327665, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.925371, loss@max: 1.331215, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.924925, loss@max: 1.326254, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.937666, loss@max: 1.338381, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.926699, loss@max: 1.338449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.932660, loss@max: 1.329725, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.919269, loss@max: 1.338498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.923001, loss@max: 1.346644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.922467, loss@max: 1.355782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.027008, loss@max: 1.384554, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.921249, loss@max: 1.347008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.935850, loss@max: 1.349508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.925853, loss@max: 1.346686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.921698, loss@max: 1.357918, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.949351, loss@max: 1.365369, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.926346, loss@max: 1.351246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.925025, loss@max: 1.355853, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.936165, loss@max: 1.349767, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.928743, loss@max: 1.355597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.968352, loss@max: 1.360503, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.940513, loss@max: 1.353879, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.931113, loss@max: 1.355807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.946526, loss@max: 1.362521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.962951, loss@max: 1.368728, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.939029, loss@max: 1.356823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.938059, loss@max: 1.354061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.935835, loss@max: 1.375745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.938955, loss@max: 1.361966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.925427, loss@max: 1.374412, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.441062, LT: 0.445240, Top1S: 89.939148, Top1T: 89.695740Best acc: 89.939148 +Train:epoch: 61, loss@min: 0.927139, loss@max: 1.378185, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.440398, LT: 0.444591, Top1S: 89.979713, Top1T: 89.695740Best acc: 89.979713 +Train:epoch: 62, loss@min: 0.906310, loss@max: 1.393836, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.439308, LT: 0.443904, Top1S: 89.898582, Top1T: 89.736305 +Train:epoch: 63, loss@min: 0.925910, loss@max: 1.370087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.438245, LT: 0.443060, Top1S: 89.979713, Top1T: 89.817444 +Train:epoch: 64, loss@min: 0.942251, loss@max: 1.357730, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.437376, LT: 0.442255, Top1S: 90.020287, Top1T: 89.858009Best acc: 90.020287 +Train:epoch: 65, loss@min: 0.945875, loss@max: 1.365992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.435924, LT: 0.441141, Top1S: 90.060852, Top1T: 89.898582Best acc: 90.060852 +Train:epoch: 66, loss@min: 0.951466, loss@max: 1.357962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.434788, LT: 0.440029, Top1S: 90.060852, Top1T: 89.817444 +Train:epoch: 67, loss@min: 0.941641, loss@max: 1.363067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.433764, LT: 0.439339, Top1S: 90.060852, Top1T: 89.817444 +Train:epoch: 68, loss@min: 0.943204, loss@max: 1.374938, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.433424, LT: 0.439154, Top1S: 90.141991, Top1T: 89.817444Best acc: 90.141991 +Train:epoch: 69, loss@min: 0.928432, loss@max: 1.375463, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.433346, LT: 0.438790, Top1S: 90.020287, Top1T: 89.776878 +Train:epoch: 70, loss@min: 0.927474, loss@max: 1.379680, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Thu Jan 18 23:27:43 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.332366, loss@max: 1.570449, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.754168, loss@max: 1.554562, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.982948, loss@max: 1.464088, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.789485, loss@max: 1.513490, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.266982, loss@max: 1.449764, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.096227, loss@max: 1.484069, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.019938, loss@max: 1.519541, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.657458, loss@max: 1.475643, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274610, loss@max: 1.414757, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.367489, loss@max: 1.481779, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.366437, loss@max: 1.498530, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.207081, loss@max: 1.488443, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 13, loss@min: 1.051212, loss@max: 1.439324, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.975611, loss@max: 1.417192, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.075076, loss@max: 1.426063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.003787, loss@max: 1.399590, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.028064, loss@max: 1.367883, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.001736, loss@max: 1.370597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.935102, loss@max: 1.330837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.024137, loss@max: 1.350881, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.938697, loss@max: 1.313561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.936901, loss@max: 1.299960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963979, loss@max: 1.311334, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 24, loss@min: 1.023239, loss@max: 1.337276, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.937968, loss@max: 1.297508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.962140, loss@max: 1.314986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.979201, loss@max: 1.324110, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.975975, loss@max: 1.318192, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.007593, loss@max: 1.344046, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.942161, loss@max: 1.309796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.982028, loss@max: 1.324918, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.937623, loss@max: 1.306740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.940060, loss@max: 1.311113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949296, loss@max: 1.320186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.956379, loss@max: 1.328529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971827, loss@max: 1.332031, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.952475, loss@max: 1.323209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940097, loss@max: 1.326085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941251, loss@max: 1.337526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.931702, loss@max: 1.336988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.942557, loss@max: 1.339652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.949078, loss@max: 1.347153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944668, loss@max: 1.334813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958933, loss@max: 1.348949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.995473, loss@max: 1.369903, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.943020, loss@max: 1.342052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.008824, loss@max: 1.384655, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.935909, loss@max: 1.347541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.931265, loss@max: 1.357002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.931622, loss@max: 1.357386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.939830, loss@max: 1.361145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.937938, loss@max: 1.360737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938232, loss@max: 1.352828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947568, loss@max: 1.355099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943102, loss@max: 1.349300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.938489, loss@max: 1.355424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.936398, loss@max: 1.365025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.932557, loss@max: 1.363726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953429, loss@max: 1.370538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.937789, loss@max: 1.365244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.559884, LT: 1.576539, Top1S: 66.005814, Top1T: 65.767906Best acc: 66.005814 +Train:epoch: 61, loss@min: 0.930707, loss@max: 1.365187, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.563089, LT: 1.579832, Top1S: 65.952942, Top1T: 65.715034 +Train:epoch: 62, loss@min: 0.940096, loss@max: 1.368210, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.565785, LT: 1.582593, Top1S: 66.032249, Top1T: 65.767906Best acc: 66.032249 +Train:epoch: 63, loss@min: 0.942551, loss@max: 1.356437, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:31:43 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.332366, loss@max: 1.570449, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.754168, loss@max: 1.554562, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.982948, loss@max: 1.464088, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.789485, loss@max: 1.513490, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.266982, loss@max: 1.449764, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.096227, loss@max: 1.484069, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.019938, loss@max: 1.519541, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.657458, loss@max: 1.475643, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274610, loss@max: 1.414757, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.367489, loss@max: 1.481779, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.366437, loss@max: 1.498530, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.207081, loss@max: 1.488443, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 13, loss@min: 1.051212, loss@max: 1.439324, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.975611, loss@max: 1.417192, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.075076, loss@max: 1.426063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.003787, loss@max: 1.399590, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.028064, loss@max: 1.367883, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.001736, loss@max: 1.370597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.935102, loss@max: 1.330837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.024137, loss@max: 1.350881, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.938697, loss@max: 1.313561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.936901, loss@max: 1.299960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963979, loss@max: 1.311334, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 24, loss@min: 1.023239, loss@max: 1.337276, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.937968, loss@max: 1.297508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.962140, loss@max: 1.314986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.979201, loss@max: 1.324110, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.975975, loss@max: 1.318192, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.007593, loss@max: 1.344046, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.942161, loss@max: 1.309796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.982028, loss@max: 1.324918, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.937623, loss@max: 1.306740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.940060, loss@max: 1.311113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949296, loss@max: 1.320186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.956379, loss@max: 1.328529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971827, loss@max: 1.332031, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.952475, loss@max: 1.323209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940097, loss@max: 1.326085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941251, loss@max: 1.337526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.931702, loss@max: 1.336988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.942557, loss@max: 1.339652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.949078, loss@max: 1.347153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944668, loss@max: 1.334813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958933, loss@max: 1.348949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.995473, loss@max: 1.369903, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.943020, loss@max: 1.342052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.008824, loss@max: 1.384655, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.935909, loss@max: 1.347541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.931265, loss@max: 1.357002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.931622, loss@max: 1.357386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.939830, loss@max: 1.361145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.937938, loss@max: 1.360737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938232, loss@max: 1.352828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947568, loss@max: 1.355099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943102, loss@max: 1.349300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.938489, loss@max: 1.355424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.936398, loss@max: 1.365025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.932557, loss@max: 1.363726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953429, loss@max: 1.370538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.937789, loss@max: 1.365244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.936208, loss@max: 1.360600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.942165, loss@max: 1.364463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940165, loss@max: 1.370995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.942348, loss@max: 1.361984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.942439, loss@max: 1.357919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.931617, loss@max: 1.371048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.934749, loss@max: 1.367526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.942940, loss@max: 1.358639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947504, loss@max: 1.358768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941559, loss@max: 1.377141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.938663, loss@max: 1.369007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.939643, loss@max: 1.365041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942764, loss@max: 1.360180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.000674, loss@max: 1.382978, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.948043, loss@max: 1.363666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943778, loss@max: 1.372326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950212, loss@max: 1.374511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.935835, loss@max: 1.372543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.942342, loss@max: 1.376982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.932578, loss@max: 1.374091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.592495, LT: 1.616908, Top1S: 66.190849, Top1T: 65.635735Best acc: 66.190849 +Train:epoch: 81, loss@min: 0.937488, loss@max: 1.379087, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.592150, LT: 1.617951, Top1S: 66.190849, Top1T: 65.635735 +Train:epoch: 82, loss@min: 0.934911, loss@max: 1.371101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.592377, LT: 1.619647, Top1S: 66.111549, Top1T: 65.609299 +Train:epoch: 83, loss@min: 0.939298, loss@max: 1.369372, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:36:20 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.332366, loss@max: 1.570449, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.754168, loss@max: 1.554562, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.982948, loss@max: 1.464088, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.789485, loss@max: 1.513490, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.266982, loss@max: 1.449764, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.096227, loss@max: 1.484069, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.019938, loss@max: 1.519541, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.657458, loss@max: 1.475643, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274610, loss@max: 1.414757, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.367489, loss@max: 1.481779, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.366437, loss@max: 1.498530, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.207081, loss@max: 1.488443, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 13, loss@min: 1.051212, loss@max: 1.439324, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.975611, loss@max: 1.417192, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.075076, loss@max: 1.426063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.003787, loss@max: 1.399590, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.028064, loss@max: 1.367883, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.001736, loss@max: 1.370597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.935102, loss@max: 1.330837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.024137, loss@max: 1.350881, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.938697, loss@max: 1.313561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.936901, loss@max: 1.299960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.963979, loss@max: 1.311334, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 24, loss@min: 1.023239, loss@max: 1.337276, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.937968, loss@max: 1.297508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.962140, loss@max: 1.314986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.979201, loss@max: 1.324110, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.975975, loss@max: 1.318192, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.007593, loss@max: 1.344046, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.942161, loss@max: 1.309796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.982028, loss@max: 1.324918, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.937623, loss@max: 1.306740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.940060, loss@max: 1.311113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.949296, loss@max: 1.320186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.956379, loss@max: 1.328529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.971827, loss@max: 1.332031, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.952475, loss@max: 1.323209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.940097, loss@max: 1.326085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.941251, loss@max: 1.337526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.931702, loss@max: 1.336988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.942557, loss@max: 1.339652, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.949078, loss@max: 1.347153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944668, loss@max: 1.334813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.958933, loss@max: 1.348949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.995473, loss@max: 1.369903, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.943020, loss@max: 1.342052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.008824, loss@max: 1.384655, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.935909, loss@max: 1.347541, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.931265, loss@max: 1.357002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.931622, loss@max: 1.357386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.939830, loss@max: 1.361145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.937938, loss@max: 1.360737, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.938232, loss@max: 1.352828, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947568, loss@max: 1.355099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.943102, loss@max: 1.349300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.938489, loss@max: 1.355424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.936398, loss@max: 1.365025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.932557, loss@max: 1.363726, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.953429, loss@max: 1.370538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.937789, loss@max: 1.365244, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.936208, loss@max: 1.360600, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.942165, loss@max: 1.364463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.940165, loss@max: 1.370995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.942348, loss@max: 1.361984, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.942439, loss@max: 1.357919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.931617, loss@max: 1.371048, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.934749, loss@max: 1.367526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.942940, loss@max: 1.358639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.947504, loss@max: 1.358768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.941559, loss@max: 1.377141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.938663, loss@max: 1.369007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.939643, loss@max: 1.365041, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.942764, loss@max: 1.360180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.000674, loss@max: 1.382978, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.948043, loss@max: 1.363666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.943778, loss@max: 1.372326, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950212, loss@max: 1.374511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.935835, loss@max: 1.372543, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.942342, loss@max: 1.376982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.932578, loss@max: 1.374091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.592495, LT: 1.616908, Top1S: 66.190849, Top1T: 65.635735Best acc: 66.190849 +Train:epoch: 81, loss@min: 0.937488, loss@max: 1.379087, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:39:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.914675, loss@max: 1.462187, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 2, loss@min: 2.253110, loss@max: 1.158414, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 3, loss@min: 1.737832, loss@max: 1.126637, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 4, loss@min: 1.386735, loss@max: 1.125796, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 5, loss@min: 1.073643, loss@max: 1.119737, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 6, loss@min: 0.991747, loss@max: 1.168033, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 7, loss@min: 0.927300, loss@max: 1.195551, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 8, loss@min: 0.928391, loss@max: 1.239779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 9, loss@min: 0.834066, loss@max: 1.241483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.988712, loss@max: 1.305400, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 11, loss@min: 0.858022, loss@max: 1.287282, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 12, loss@min: 0.809884, loss@max: 1.283830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.827573, loss@max: 1.286341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.822696, loss@max: 1.283692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.928264, loss@max: 1.309641, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.853694, loss@max: 1.282348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.858685, loss@max: 1.276590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.860418, loss@max: 1.279802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.875414, loss@max: 1.291128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.984971, loss@max: 1.311342, Top1S acc: 100.000000, Top1T acc: 99.009903{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:40:41 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.639252, loss@max: 0.944383, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.760847, loss@max: 1.149326, Top1S acc: 100.000000, Top1T acc: 91.000000 +Train:epoch: 3, loss@min: 1.317084, loss@max: 1.171577, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 1.197267, loss@max: 1.237799, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.060886, loss@max: 1.258500, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 6, loss@min: 0.935936, loss@max: 1.282680, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.879784, loss@max: 1.293741, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.942242, loss@max: 1.340737, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.822525, loss@max: 1.328024, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.801496, loss@max: 1.320255, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.864949, loss@max: 1.351862, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.827696, loss@max: 1.340707, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.889590, loss@max: 1.351558, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.893764, loss@max: 1.332317, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.863692, loss@max: 1.288933, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.931710, loss@max: 1.295241, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.909271, loss@max: 1.262539, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.948965, loss@max: 1.258649, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.932863, loss@max: 1.255593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.948546, loss@max: 1.251238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.950963, loss@max: 1.246455, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.967008, loss@max: 1.258774, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.949727, loss@max: 1.239650, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:41:43 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.818995, loss@max: 0.980998, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 2, loss@min: 1.334335, loss@max: 1.032802, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 3, loss@min: 1.007877, loss@max: 1.086391, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 4, loss@min: 0.994473, loss@max: 1.176709, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 5, loss@min: 0.911929, loss@max: 1.190735, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 6, loss@min: 0.939521, loss@max: 1.237052, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 7, loss@min: 0.814530, loss@max: 1.221661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.842676, loss@max: 1.260228, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.786495, loss@max: 1.273126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.791135, loss@max: 1.276924, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.770761, loss@max: 1.305601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 0.809351, loss@max: 1.315693, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 13, loss@min: 0.800918, loss@max: 1.301320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.820660, loss@max: 1.286989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.891450, loss@max: 1.281872, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 16, loss@min: 0.869596, loss@max: 1.273530, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.870853, loss@max: 1.259756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.896454, loss@max: 1.271690, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.888732, loss@max: 1.258875, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.903023, loss@max: 1.254286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.912356, loss@max: 1.251368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.918720, loss@max: 1.251316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.943535, loss@max: 1.238213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.937403, loss@max: 1.252901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.939725, loss@max: 1.251271, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.923260, loss@max: 1.274614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.940719, loss@max: 1.265779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.929782, loss@max: 1.280894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.941732, loss@max: 1.273913, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.939113, loss@max: 1.283846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.938655, loss@max: 1.288740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.926423, loss@max: 1.304846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.921470, loss@max: 1.315455, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.920226, loss@max: 1.322196, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.930614, loss@max: 1.315042, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.939699, loss@max: 1.310514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.937739, loss@max: 1.317157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.922575, loss@max: 1.335083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.919417, loss@max: 1.342414, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.905748, loss@max: 1.355151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.095388, loss@max: 1.377933, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.927970, loss@max: 1.342765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.927912, loss@max: 1.344445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.928046, loss@max: 1.350104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.918377, loss@max: 1.360300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.932916, loss@max: 1.348593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.927340, loss@max: 1.354061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.933909, loss@max: 1.347017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.916122, loss@max: 1.370582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.911841, loss@max: 1.377430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.963542, loss@max: 1.377389, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 52, loss@min: 0.936030, loss@max: 1.357490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943422, loss@max: 1.351757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.944317, loss@max: 1.351129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.985805, loss@max: 1.369947, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.949544, loss@max: 1.346522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.948425, loss@max: 1.350063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.927344, loss@max: 1.372744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.937554, loss@max: 1.363783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.936609, loss@max: 1.366929, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.940010, loss@max: 1.363328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.933876, loss@max: 1.371831, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.932408, loss@max: 1.374428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.933475, loss@max: 1.368214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.934907, loss@max: 1.370571, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.945146, loss@max: 1.360646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.950032, loss@max: 1.356235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.967051, loss@max: 1.339161, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.948014, loss@max: 1.359450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.948480, loss@max: 1.358550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.944366, loss@max: 1.364536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.934861, loss@max: 1.372780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.931548, loss@max: 1.376923, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.939461, loss@max: 1.372295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.928069, loss@max: 1.379830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.931103, loss@max: 1.382445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.936878, loss@max: 1.372482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.945057, loss@max: 1.365835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945832, loss@max: 1.364619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.943706, loss@max: 1.365486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.980475, LT: 0.970422, Top1S: 87.221092, Top1T: 87.423935Best acc: 87.423935 +Train:epoch: 81, loss@min: 0.957456, loss@max: 1.354514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.982658, LT: 0.972787, Top1S: 87.302231, Top1T: 87.383369 +Train:epoch: 82, loss@min: 0.958976, loss@max: 1.354873, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.987219, LT: 0.975607, Top1S: 87.058823, Top1T: 87.342796 +Train:epoch: 83, loss@min: 0.940115, loss@max: 1.370828, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:46:01 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.914675, loss@max: 1.462187, Top1S acc: 100.000000, Top1T acc: 66.336632 +Train:epoch: 2, loss@min: 2.253110, loss@max: 1.158414, Top1S acc: 100.000000, Top1T acc: 85.148514 +Train:epoch: 3, loss@min: 1.737832, loss@max: 1.126637, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 4, loss@min: 1.386735, loss@max: 1.125796, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 5, loss@min: 1.073643, loss@max: 1.119737, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 6, loss@min: 0.991747, loss@max: 1.168033, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 7, loss@min: 0.927300, loss@max: 1.195551, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 8, loss@min: 0.928391, loss@max: 1.239779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 9, loss@min: 0.834066, loss@max: 1.241483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.988712, loss@max: 1.305400, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 11, loss@min: 0.858022, loss@max: 1.287282, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 12, loss@min: 0.809884, loss@max: 1.283830, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.827573, loss@max: 1.286341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 0.822696, loss@max: 1.283692, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 0.928264, loss@max: 1.309641, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 0.853694, loss@max: 1.282348, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 0.858685, loss@max: 1.276590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.860418, loss@max: 1.279802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 0.875414, loss@max: 1.291128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.984971, loss@max: 1.311342, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.885860, loss@max: 1.278238, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.892703, loss@max: 1.276364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.944619, loss@max: 1.281082, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 0.912650, loss@max: 1.272742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 0.917041, loss@max: 1.275952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.918943, loss@max: 1.277127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.923849, loss@max: 1.281148, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.927452, loss@max: 1.281731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.934095, loss@max: 1.281270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.938721, loss@max: 1.280322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.954641, loss@max: 1.270217, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.946056, loss@max: 1.283657, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.941773, loss@max: 1.291685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.938762, loss@max: 1.301438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.936337, loss@max: 1.305764, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.928668, loss@max: 1.318710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.937648, loss@max: 1.314781, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.938471, loss@max: 1.315532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.933621, loss@max: 1.325005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.933272, loss@max: 1.327141, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.938228, loss@max: 1.324307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.938089, loss@max: 1.338457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.937975, loss@max: 1.332647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.933371, loss@max: 1.340019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.952014, loss@max: 1.372984, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.928015, loss@max: 1.349963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.925990, loss@max: 1.354335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.930924, loss@max: 1.353214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.932059, loss@max: 1.352272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.932664, loss@max: 1.353077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.933947, loss@max: 1.353430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.932893, loss@max: 1.355176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.929636, loss@max: 1.361921, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.942800, loss@max: 1.351115, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.938745, loss@max: 1.351776, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.936722, loss@max: 1.357569, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.933388, loss@max: 1.363435, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.941607, loss@max: 1.354598, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.933244, loss@max: 1.364416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.934922, loss@max: 1.368523, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.934261, loss@max: 1.366015, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.942738, loss@max: 1.354995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.941095, loss@max: 1.361484, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.949678, loss@max: 1.354667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.942582, loss@max: 1.362160, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.940894, loss@max: 1.362894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.949149, loss@max: 1.358449, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946760, loss@max: 1.359584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 1.039512, loss@max: 1.380810, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 70, loss@min: 0.932659, loss@max: 1.374034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.941658, loss@max: 1.364310, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.947377, loss@max: 1.357623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.945694, loss@max: 1.360139, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.937207, loss@max: 1.367825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.947850, loss@max: 1.360127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.954415, loss@max: 1.351838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.946501, loss@max: 1.359782, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.943747, loss@max: 1.366284, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.954710, loss@max: 1.360067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.932222, loss@max: 1.377206, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 3.466749, LT: 3.449613, Top1S: 61.036213, Top1T: 60.930477Best acc: 61.036213 +Train:epoch: 81, loss@min: 0.926230, loss@max: 1.380278, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 3.460732, LT: 3.444584, Top1S: 61.009777, Top1T: 61.089081Best acc: 61.089081 +Train:epoch: 82, loss@min: 0.928775, loss@max: 1.378644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 3.459479, LT: 3.445259, Top1S: 61.141949, Top1T: 61.221249Best acc: 61.221249 +Train:epoch: 83, loss@min: 0.932189, loss@max: 1.376711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 3.464671, LT: 3.452142, Top1S: 61.194817, Top1T: 61.141949 +Train:epoch: 84, loss@min: 0.942703, loss@max: 1.368654, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 3.473862, LT: 3.461022, Top1S: 61.247684, Top1T: 61.221249Best acc: 61.247684 +Train:epoch: 85, loss@min: 0.952472, loss@max: 1.356448, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 3.483468, LT: 3.470234, Top1S: 61.089081, Top1T: 61.221249{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Thu Jan 18 23:52:35 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.328332, loss@max: 1.569609, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.752892, loss@max: 1.554170, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.979578, loss@max: 1.463246, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.789754, loss@max: 1.513493, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.269989, loss@max: 1.450275, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.101354, loss@max: 1.485400, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.027034, loss@max: 1.521494, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.661016, loss@max: 1.476893, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.272550, loss@max: 1.414982, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.368504, loss@max: 1.483119, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 11, loss@min: 1.371060, loss@max: 1.500378, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.210788, loss@max: 1.489464, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 13, loss@min: 1.052798, loss@max: 1.439230, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.982296, loss@max: 1.418916, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.082513, loss@max: 1.427626, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.014836, loss@max: 1.402514, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.034412, loss@max: 1.369043, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.009209, loss@max: 1.372246, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.941509, loss@max: 1.332320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.027017, loss@max: 1.351726, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.944039, loss@max: 1.314302, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.942357, loss@max: 1.300231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.965851, loss@max: 1.310622, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 24, loss@min: 1.025081, loss@max: 1.337296, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.941092, loss@max: 1.297551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.965596, loss@max: 1.314714, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.985991, loss@max: 1.324077, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.983859, loss@max: 1.318236, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.014020, loss@max: 1.344742, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.947238, loss@max: 1.309416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.986457, loss@max: 1.325612, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.941051, loss@max: 1.305927, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.944219, loss@max: 1.309700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.955363, loss@max: 1.319456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.962843, loss@max: 1.326203, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.980260, loss@max: 1.329748, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.958197, loss@max: 1.321991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.944894, loss@max: 1.323430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.945851, loss@max: 1.333664, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.936022, loss@max: 1.333860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.945610, loss@max: 1.336531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.955009, loss@max: 1.345158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.948284, loss@max: 1.333280, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954745, loss@max: 1.346006, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.000585, loss@max: 1.368207, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.944449, loss@max: 1.341498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.015313, loss@max: 1.385490, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.939622, loss@max: 1.345624, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.935601, loss@max: 1.353953, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.936522, loss@max: 1.353754, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.943726, loss@max: 1.359998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.939187, loss@max: 1.359457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.940104, loss@max: 1.351820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948040, loss@max: 1.356301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.944931, loss@max: 1.348583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.941602, loss@max: 1.352871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.939949, loss@max: 1.363025, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.937399, loss@max: 1.359295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.958067, loss@max: 1.367537, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.942996, loss@max: 1.362644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.940045, loss@max: 1.357262, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.945650, loss@max: 1.359303, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.945809, loss@max: 1.367679, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.945070, loss@max: 1.359979, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.945938, loss@max: 1.354067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.937506, loss@max: 1.364395, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.940051, loss@max: 1.363043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.946335, loss@max: 1.354822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.951528, loss@max: 1.355994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947627, loss@max: 1.371434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.944787, loss@max: 1.362894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.945336, loss@max: 1.359282, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.947281, loss@max: 1.355825, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.010291, loss@max: 1.378768, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 75, loss@min: 0.950358, loss@max: 1.361811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.945008, loss@max: 1.371421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.952444, loss@max: 1.375558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.939129, loss@max: 1.368666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.945705, loss@max: 1.375023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.937042, loss@max: 1.368590, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.546509, LT: 1.556405, Top1S: 66.428757, Top1T: 66.243721Best acc: 66.428757 +Train:epoch: 81, loss@min: 0.943134, loss@max: 1.371246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.546770, LT: 1.557694, Top1S: 66.508057, Top1T: 66.270149Best acc: 66.508057 +Train:epoch: 82, loss@min: 0.942146, loss@max: 1.363327, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.547332, LT: 1.559294, Top1S: 66.534492, Top1T: 66.296585Best acc: 66.534492 +Train:epoch: 83, loss@min: 0.944084, loss@max: 1.361895, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.548025, LT: 1.560724, Top1S: 66.560928, Top1T: 66.270149Best acc: 66.560928 +Train:epoch: 84, loss@min: 0.950415, loss@max: 1.361319, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.548829, LT: 1.562106, Top1S: 66.560928, Top1T: 66.190849 +Train:epoch: 85, loss@min: 0.945458, loss@max: 1.370441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.549853, LT: 1.563303, Top1S: 66.455193, Top1T: 66.190849 +Train:epoch: 86, loss@min: 0.970600, loss@max: 1.386267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.550474, LT: 1.563988, Top1S: 66.481628, Top1T: 66.164413 +Train:epoch: 87, loss@min: 0.944152, loss@max: 1.366110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.551556, LT: 1.564699, Top1S: 66.534492, Top1T: 66.164413 +Train:epoch: 88, loss@min: 0.941597, loss@max: 1.364854, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.552759, LT: 1.565449, Top1S: 66.455193, Top1T: 66.164413 +Train:epoch: 89, loss@min: 0.947913, loss@max: 1.367773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.553964, LT: 1.566099, Top1S: 66.428757, Top1T: 66.217285 +Train:epoch: 90, loss@min: 1.030669, loss@max: 1.397987, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 90, LS: 1.555339, LT: 1.566984, Top1S: 66.428757, Top1T: 66.217285 +Train:epoch: 91, loss@min: 0.944289, loss@max: 1.358929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.556579, LT: 1.567786, Top1S: 66.402321, Top1T: 66.270149 +Train:epoch: 92, loss@min: 0.940504, loss@max: 1.365394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.557941, LT: 1.568806, Top1S: 66.402321, Top1T: 66.270149 +Train:epoch: 93, loss@min: 0.945177, loss@max: 1.370184, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.559123, LT: 1.569968, Top1S: 66.402321, Top1T: 66.217285 +Train:epoch: 94, loss@min: 0.944974, loss@max: 1.365975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.560210, LT: 1.571412, Top1S: 66.402321, Top1T: 66.190849 +Train:epoch: 95, loss@min: 0.940194, loss@max: 1.365289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.561258, LT: 1.572840, Top1S: 66.428757, Top1T: 66.217285 +Train:epoch: 96, loss@min: 0.942785, loss@max: 1.371421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.562110, LT: 1.574038, Top1S: 66.402321, Top1T: 66.270149 +Train:epoch: 97, loss@min: 0.944116, loss@max: 1.364606, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "caltech101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 00:05:50 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 1.637904, loss@max: 0.944571, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 2, loss@min: 1.753828, loss@max: 1.148514, Top1S acc: 100.000000, Top1T acc: 92.000000 +Train:epoch: 3, loss@min: 1.318269, loss@max: 1.171884, Top1S acc: 100.000000, Top1T acc: 93.000000 +Train:epoch: 4, loss@min: 1.194413, loss@max: 1.235647, Top1S acc: 100.000000, Top1T acc: 94.000000 +Train:epoch: 5, loss@min: 1.070867, loss@max: 1.258286, Top1S acc: 100.000000, Top1T acc: 97.000000 +Train:epoch: 6, loss@min: 0.943344, loss@max: 1.279954, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 7, loss@min: 0.889468, loss@max: 1.292053, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 0.948902, loss@max: 1.336804, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 9, loss@min: 0.827935, loss@max: 1.323904, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 0.808930, loss@max: 1.315623, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 0.869755, loss@max: 1.345532, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 12, loss@min: 0.848936, loss@max: 1.337987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 0.905799, loss@max: 1.346243, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 14, loss@min: 0.910177, loss@max: 1.325331, Top1S acc: 100.000000, Top1T acc: 98.000000 +Train:epoch: 15, loss@min: 0.871858, loss@max: 1.277180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 0.941046, loss@max: 1.283966, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 17, loss@min: 0.925492, loss@max: 1.255728, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 0.978926, loss@max: 1.253119, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 19, loss@min: 0.944751, loss@max: 1.249052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.953799, loss@max: 1.243339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 0.961429, loss@max: 1.240728, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 22, loss@min: 0.978138, loss@max: 1.253241, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 0.958859, loss@max: 1.236347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 0.988652, loss@max: 1.259740, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 25, loss@min: 0.952030, loss@max: 1.253968, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.943431, loss@max: 1.279998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.941879, loss@max: 1.269991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.964352, loss@max: 1.296587, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 29, loss@min: 0.931481, loss@max: 1.290409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.929371, loss@max: 1.309522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.941076, loss@max: 1.324850, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 32, loss@min: 0.918119, loss@max: 1.322871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.932202, loss@max: 1.328839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.926663, loss@max: 1.323088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.945626, loss@max: 1.335666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.943916, loss@max: 1.334692, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 37, loss@min: 0.936804, loss@max: 1.324036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.925909, loss@max: 1.329944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.932230, loss@max: 1.339503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.935084, loss@max: 1.344735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 1.027208, loss@max: 1.371821, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 42, loss@min: 0.933926, loss@max: 1.333329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944827, loss@max: 1.339801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.935887, loss@max: 1.334866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.934163, loss@max: 1.343052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.953657, loss@max: 1.350257, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 47, loss@min: 0.934268, loss@max: 1.339900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.935120, loss@max: 1.344653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.946692, loss@max: 1.338514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.938335, loss@max: 1.343073, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.964764, loss@max: 1.347338, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.946694, loss@max: 1.349055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.939504, loss@max: 1.345591, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.944575, loss@max: 1.354002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.958749, loss@max: 1.362776, Top1S acc: 100.000000, Top1T acc: 99.000000 +Train:epoch: 56, loss@min: 0.944467, loss@max: 1.349045, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.939971, loss@max: 1.351097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.952924, loss@max: 1.368446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.945507, loss@max: 1.352695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.936299, loss@max: 1.361233, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.426176, LT: 0.431207, Top1S: 89.736305, Top1T: 89.695740Best acc: 89.736305 +Train:epoch: 61, loss@min: 0.941512, loss@max: 1.367275, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 00:08:25 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.327270, loss@max: 1.569378, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.753979, loss@max: 1.554332, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.979544, loss@max: 1.463147, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.791819, loss@max: 1.513880, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.272930, loss@max: 1.450863, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.105918, loss@max: 1.486590, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.032480, loss@max: 1.523000, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.664562, loss@max: 1.478075, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.272423, loss@max: 1.415535, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.370374, loss@max: 1.484424, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.374675, loss@max: 1.501992, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.214014, loss@max: 1.490715, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.054444, loss@max: 1.439728, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.986621, loss@max: 1.420522, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.087344, loss@max: 1.429281, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.021413, loss@max: 1.404886, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.038143, loss@max: 1.370400, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.013642, loss@max: 1.374007, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.945094, loss@max: 1.333842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.029343, loss@max: 1.353136, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.947006, loss@max: 1.315219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.945721, loss@max: 1.300982, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.967092, loss@max: 1.310830, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.025968, loss@max: 1.337913, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.942781, loss@max: 1.298113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.967051, loss@max: 1.315197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.989498, loss@max: 1.324884, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.989225, loss@max: 1.319403, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.018357, loss@max: 1.346045, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.950284, loss@max: 1.310311, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.989841, loss@max: 1.327217, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.942797, loss@max: 1.306209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.946310, loss@max: 1.309826, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959294, loss@max: 1.320777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.965917, loss@max: 1.325818, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.983976, loss@max: 1.329723, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.961379, loss@max: 1.322301, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947576, loss@max: 1.322806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948719, loss@max: 1.332147, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.938575, loss@max: 1.332808, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.947584, loss@max: 1.335445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.958921, loss@max: 1.344607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.950957, loss@max: 1.332661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953478, loss@max: 1.344366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.003976, loss@max: 1.367588, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.945869, loss@max: 1.341126, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.019428, loss@max: 1.386063, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.942122, loss@max: 1.344959, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938264, loss@max: 1.352546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939529, loss@max: 1.352220, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.946878, loss@max: 1.359614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.940366, loss@max: 1.359149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.941410, loss@max: 1.351650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948066, loss@max: 1.357057, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.945997, loss@max: 1.348341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.943484, loss@max: 1.351903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.941311, loss@max: 1.362099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.939854, loss@max: 1.357807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.960368, loss@max: 1.367197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945026, loss@max: 1.362427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.494250, LT: 1.494532, Top1S: 66.798836, Top1T: 66.481628Best acc: 66.798836 +Train:epoch: 61, loss@min: 0.938797, loss@max: 1.358580, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.496555, LT: 1.496551, Top1S: 66.772400, Top1T: 66.481628 +Train:epoch: 62, loss@min: 0.947928, loss@max: 1.364175, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Fri Jan 19 00:11:50 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.327270, loss@max: 1.569378, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.753979, loss@max: 1.554332, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.979544, loss@max: 1.463147, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.791819, loss@max: 1.513880, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.272930, loss@max: 1.450863, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.105918, loss@max: 1.486590, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.032480, loss@max: 1.523000, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.664562, loss@max: 1.478075, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.272423, loss@max: 1.415535, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.370374, loss@max: 1.484424, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.374675, loss@max: 1.501992, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.214014, loss@max: 1.490715, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.054444, loss@max: 1.439728, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.986621, loss@max: 1.420522, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.087344, loss@max: 1.429281, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.021413, loss@max: 1.404886, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.038143, loss@max: 1.370400, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.013642, loss@max: 1.374007, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.945094, loss@max: 1.333842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.029343, loss@max: 1.353136, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.947006, loss@max: 1.315219, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.945721, loss@max: 1.300982, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.967092, loss@max: 1.310830, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.025968, loss@max: 1.337913, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.942781, loss@max: 1.298113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.967051, loss@max: 1.315197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.989498, loss@max: 1.324884, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.989225, loss@max: 1.319403, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.018357, loss@max: 1.346045, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.950284, loss@max: 1.310311, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 1.423508, LT: 1.422596, Top1S: 66.323021, Top1T: 66.137985Best acc: 66.323021 +Train:epoch: 31, loss@min: 0.967984, loss@max: 1.332829, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 1.424808, LT: 1.423793, Top1S: 66.508057, Top1T: 66.243721Best acc: 66.508057 +Train:epoch: 32, loss@min: 0.949795, loss@max: 1.308733, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 1.426518, LT: 1.425482, Top1S: 66.587364, Top1T: 66.270149Best acc: 66.587364 +Train:epoch: 33, loss@min: 1.012922, loss@max: 1.338374, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 33, LS: 1.428834, LT: 1.427770, Top1S: 66.613792, Top1T: 66.402321Best acc: 66.613792 +Train:epoch: 34, loss@min: 0.948496, loss@max: 1.310163, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.431153, LT: 1.430227, Top1S: 66.560928, Top1T: 66.428757 +Train:epoch: 35, loss@min: 0.989954, loss@max: 1.342167, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 35, LS: 1.433112, LT: 1.432544, Top1S: 66.666664, Top1T: 66.481628Best acc: 66.666664 +Train:epoch: 36, loss@min: 0.944284, loss@max: 1.314652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.435289, LT: 1.435148, Top1S: 66.587364, Top1T: 66.481628 +Train:epoch: 37, loss@min: 0.954803, loss@max: 1.327377, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 1.437710, LT: 1.437945, Top1S: 66.719528, Top1T: 66.534492Best acc: 66.719528 +Train:epoch: 38, loss@min: 0.948556, loss@max: 1.317116, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.440243, LT: 1.440968, Top1S: 66.825272, Top1T: 66.534492Best acc: 66.825272 +Train:epoch: 39, loss@min: 0.952556, loss@max: 1.318943, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.442707, LT: 1.443847, Top1S: 66.878136, Top1T: 66.428757Best acc: 66.878136 +Train:epoch: 40, loss@min: 0.967002, loss@max: 1.340497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.445701, LT: 1.446965, Top1S: 66.957436, Top1T: 66.587364Best acc: 66.957436 +Train:epoch: 41, loss@min: 0.961245, loss@max: 1.343961, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.448637, LT: 1.449565, Top1S: 66.878136, Top1T: 66.587364 +Train:epoch: 42, loss@min: 0.939617, loss@max: 1.334822, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.451673, LT: 1.452072, Top1S: 66.851700, Top1T: 66.560928 +Train:epoch: 43, loss@min: 0.948831, loss@max: 1.345022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.454876, LT: 1.454570, Top1S: 66.878136, Top1T: 66.587364 +Train:epoch: 44, loss@min: 0.949427, loss@max: 1.331863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.458134, LT: 1.456941, Top1S: 66.851700, Top1T: 66.613792 +Train:epoch: 45, loss@min: 0.944283, loss@max: 1.344373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.461552, LT: 1.459748, Top1S: 66.825272, Top1T: 66.613792 +Train:epoch: 46, loss@min: 0.956564, loss@max: 1.357669, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.464792, LT: 1.462443, Top1S: 66.772400, Top1T: 66.587364 +Train:epoch: 47, loss@min: 0.946005, loss@max: 1.350098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.468084, LT: 1.465447, Top1S: 66.772400, Top1T: 66.587364 +Train:epoch: 48, loss@min: 0.937904, loss@max: 1.347036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.470924, LT: 1.468303, Top1S: 66.719528, Top1T: 66.587364 +Train:epoch: 49, loss@min: 0.952699, loss@max: 1.359349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.473207, LT: 1.470783, Top1S: 66.745964, Top1T: 66.587364 +Train:epoch: 50, loss@min: 0.938595, loss@max: 1.347315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.475183, LT: 1.473175, Top1S: 66.772400, Top1T: 66.587364 +Train:epoch: 51, loss@min: 0.947321, loss@max: 1.365201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.476902, LT: 1.475599, Top1S: 66.666664, Top1T: 66.534492 +Train:epoch: 52, loss@min: 0.946309, loss@max: 1.358209, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.478641, LT: 1.478070, Top1S: 66.719528, Top1T: 66.613792 +Train:epoch: 53, loss@min: 0.942293, loss@max: 1.352434, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.480157, LT: 1.480362, Top1S: 66.719528, Top1T: 66.666664 +Train:epoch: 54, loss@min: 0.940148, loss@max: 1.351779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.481676, LT: 1.482517, Top1S: 66.798836, Top1T: 66.693100 +Train:epoch: 55, loss@min: 0.946805, loss@max: 1.362589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.484083, LT: 1.484904, Top1S: 66.904572, Top1T: 66.745964 +Train:epoch: 56, loss@min: 0.940952, loss@max: 1.360345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.486266, LT: 1.487231, Top1S: 66.745964, Top1T: 66.719528 +Train:epoch: 57, loss@min: 0.947030, loss@max: 1.369333, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.488510, LT: 1.489229, Top1S: 66.825272, Top1T: 66.719528 +Train:epoch: 58, loss@min: 0.946139, loss@max: 1.352579, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.490653, LT: 1.491344, Top1S: 66.825272, Top1T: 66.693100 +Train:epoch: 59, loss@min: 0.949797, loss@max: 1.355591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.492607, LT: 1.493209, Top1S: 66.745964, Top1T: 66.693100 +Train:epoch: 60, loss@min: 0.944554, loss@max: 1.357705, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.494346, LT: 1.494993, Top1S: 66.719528, Top1T: 66.745964 +Train:epoch: 61, loss@min: 0.944747, loss@max: 1.352726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.495972, LT: 1.496421, Top1S: 66.613792, Top1T: 66.719528 +Train:epoch: 62, loss@min: 0.940351, loss@max: 1.360514, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.497457, LT: 1.498100, Top1S: 66.613792, Top1T: 66.772400 +Train:epoch: 63, loss@min: 0.943236, loss@max: 1.356516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.498643, LT: 1.499705, Top1S: 66.613792, Top1T: 66.693100 +Train:epoch: 64, loss@min: 0.947845, loss@max: 1.364219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.499483, LT: 1.501004, Top1S: 66.508057, Top1T: 66.666664 +Train:epoch: 65, loss@min: 0.950689, loss@max: 1.362486, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.499817, LT: 1.501833, Top1S: 66.455193, Top1T: 66.640228 +Train:epoch: 66, loss@min: 0.945045, loss@max: 1.362215, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.500258, LT: 1.502695, Top1S: 66.481628, Top1T: 66.666664 +Train:epoch: 67, loss@min: 0.946693, loss@max: 1.358457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.500921, LT: 1.503292, Top1S: 66.455193, Top1T: 66.693100 +Train:epoch: 68, loss@min: 0.948635, loss@max: 1.360832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.501562, LT: 1.503886, Top1S: 66.402321, Top1T: 66.640228 +Train:epoch: 69, loss@min: 0.942043, loss@max: 1.360591, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.502240, LT: 1.504755, Top1S: 66.428757, Top1T: 66.666664 +Train:epoch: 70, loss@min: 0.978577, loss@max: 1.386032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 1.502984, LT: 1.505488, Top1S: 66.455193, Top1T: 66.666664 +Train:epoch: 71, loss@min: 0.942717, loss@max: 1.359989, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Fri Jan 19 00:38:17 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.327107, loss@max: 1.569311, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756334, loss@max: 1.554836, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981155, loss@max: 1.463429, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795644, loss@max: 1.514680, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.277300, loss@max: 1.451828, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112266, loss@max: 1.488311, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.039992, loss@max: 1.525105, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.670226, loss@max: 1.479849, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.273335, loss@max: 1.416690, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.373827, loss@max: 1.486543, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379675, loss@max: 1.504423, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.218710, loss@max: 1.492812, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056985, loss@max: 1.440861, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.991966, loss@max: 1.422948, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093370, loss@max: 1.431803, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.028890, loss@max: 1.408088, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042433, loss@max: 1.372439, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018668, loss@max: 1.376612, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949064, loss@max: 1.336008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032855, loss@max: 1.355535, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950211, loss@max: 1.316561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949838, loss@max: 1.302323, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.968937, loss@max: 1.311555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027099, loss@max: 1.339197, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944736, loss@max: 1.299077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968418, loss@max: 1.316216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993465, loss@max: 1.326594, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.995680, loss@max: 1.321466, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023933, loss@max: 1.348176, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954029, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994705, loss@max: 1.330075, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944626, loss@max: 1.307129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948570, loss@max: 1.310758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964155, loss@max: 1.323651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968295, loss@max: 1.326177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986686, loss@max: 1.330814, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964573, loss@max: 1.323407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950374, loss@max: 1.323316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952224, loss@max: 1.331601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941454, loss@max: 1.332680, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.421265, LT: 1.417320, Top1S: 66.851700, Top1T: 66.745964Best acc: 66.851700 +Train:epoch: 41, loss@min: 0.963177, loss@max: 1.340518, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.422311, LT: 1.418213, Top1S: 66.878136, Top1T: 66.745964Best acc: 66.878136 +Train:epoch: 42, loss@min: 0.942515, loss@max: 1.333798, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 00:41:25 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.327107, loss@max: 1.569311, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756334, loss@max: 1.554836, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981155, loss@max: 1.463429, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795644, loss@max: 1.514680, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.277300, loss@max: 1.451828, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112266, loss@max: 1.488311, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.039992, loss@max: 1.525105, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.670226, loss@max: 1.479849, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.273335, loss@max: 1.416690, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.373827, loss@max: 1.486543, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379675, loss@max: 1.504423, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.218710, loss@max: 1.492812, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056985, loss@max: 1.440861, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.991966, loss@max: 1.422948, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093370, loss@max: 1.431803, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.028890, loss@max: 1.408088, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042433, loss@max: 1.372439, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018668, loss@max: 1.376612, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949064, loss@max: 1.336008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032855, loss@max: 1.355535, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950211, loss@max: 1.316561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949838, loss@max: 1.302323, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.968937, loss@max: 1.311555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027099, loss@max: 1.339197, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944736, loss@max: 1.299077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968418, loss@max: 1.316216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993465, loss@max: 1.326594, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.995680, loss@max: 1.321466, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023933, loss@max: 1.348176, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954029, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994705, loss@max: 1.330075, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944626, loss@max: 1.307129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948570, loss@max: 1.310758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964155, loss@max: 1.323651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968295, loss@max: 1.326177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986686, loss@max: 1.330814, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964573, loss@max: 1.323407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950374, loss@max: 1.323316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952224, loss@max: 1.331601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941454, loss@max: 1.332680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.949730, loss@max: 1.335317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963527, loss@max: 1.345139, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.954524, loss@max: 1.333210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953704, loss@max: 1.343988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004676, loss@max: 1.367435, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.947619, loss@max: 1.341778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.024912, loss@max: 1.387870, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.944908, loss@max: 1.345559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941175, loss@max: 1.352181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942890, loss@max: 1.351646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950819, loss@max: 1.359897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.942256, loss@max: 1.359343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943474, loss@max: 1.351937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948773, loss@max: 1.357973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.947694, loss@max: 1.348248, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.945973, loss@max: 1.351270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.942927, loss@max: 1.360837, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.942964, loss@max: 1.356621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.963799, loss@max: 1.367500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947403, loss@max: 1.362335, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.462040, LT: 1.457251, Top1S: 67.010307, Top1T: 66.851700Best acc: 67.010307 +Train:epoch: 61, loss@min: 0.941590, loss@max: 1.357425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.463891, LT: 1.458748, Top1S: 66.957436, Top1T: 66.878136 +Train:epoch: 62, loss@min: 0.950984, loss@max: 1.363807, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.465193, LT: 1.459534, Top1S: 66.851700, Top1T: 66.851700 +Train:epoch: 63, loss@min: 0.947320, loss@max: 1.352973, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.466460, LT: 1.460247, Top1S: 66.825272, Top1T: 66.851700 +Train:epoch: 64, loss@min: 0.988503, loss@max: 1.376535, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 64, LS: 1.469539, LT: 1.463089, Top1S: 66.798836, Top1T: 66.825272 +Train:epoch: 65, loss@min: 0.946897, loss@max: 1.357071, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 00:46:37 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.327107, loss@max: 1.569311, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756334, loss@max: 1.554836, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981155, loss@max: 1.463429, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795644, loss@max: 1.514680, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.277300, loss@max: 1.451828, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112266, loss@max: 1.488311, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.039992, loss@max: 1.525105, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.670226, loss@max: 1.479849, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.273335, loss@max: 1.416690, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.373827, loss@max: 1.486543, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379675, loss@max: 1.504423, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.218710, loss@max: 1.492812, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056985, loss@max: 1.440861, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.991966, loss@max: 1.422948, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093370, loss@max: 1.431803, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.028890, loss@max: 1.408088, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042433, loss@max: 1.372439, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018668, loss@max: 1.376612, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949064, loss@max: 1.336008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032855, loss@max: 1.355535, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950211, loss@max: 1.316561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949838, loss@max: 1.302323, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.968937, loss@max: 1.311555, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027099, loss@max: 1.339197, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944736, loss@max: 1.299077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968418, loss@max: 1.316216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993465, loss@max: 1.326594, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.995680, loss@max: 1.321466, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023933, loss@max: 1.348176, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954029, loss@max: 1.312354, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994705, loss@max: 1.330075, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944626, loss@max: 1.307129, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948570, loss@max: 1.310758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964155, loss@max: 1.323651, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968295, loss@max: 1.326177, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986686, loss@max: 1.330814, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964573, loss@max: 1.323407, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950374, loss@max: 1.323316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952224, loss@max: 1.331601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941454, loss@max: 1.332680, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.949730, loss@max: 1.335317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963527, loss@max: 1.345139, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.954524, loss@max: 1.333210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953704, loss@max: 1.343988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004676, loss@max: 1.367435, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.947619, loss@max: 1.341778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.024912, loss@max: 1.387870, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.944908, loss@max: 1.345559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941175, loss@max: 1.352181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942890, loss@max: 1.351646, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.440218, LT: 1.434178, Top1S: 66.904572, Top1T: 66.745964Best acc: 66.904572 +Train:epoch: 51, loss@min: 0.950865, loss@max: 1.357491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.442602, LT: 1.436621, Top1S: 66.931007, Top1T: 66.640228Best acc: 66.931007 +Train:epoch: 52, loss@min: 0.948573, loss@max: 1.365140, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.444383, LT: 1.438636, Top1S: 66.825272, Top1T: 66.745964 +Train:epoch: 53, loss@min: 0.944443, loss@max: 1.355089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.446055, LT: 1.440797, Top1S: 66.878136, Top1T: 66.772400 +Train:epoch: 54, loss@min: 0.950437, loss@max: 1.352067, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.447381, LT: 1.442781, Top1S: 67.036743, Top1T: 66.798836Best acc: 67.036743 +Train:epoch: 55, loss@min: 0.952912, loss@max: 1.360097, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.448201, LT: 1.444498, Top1S: 67.010307, Top1T: 66.798836 +Train:epoch: 56, loss@min: 0.962076, loss@max: 1.365222, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.449689, LT: 1.446290, Top1S: 66.931007, Top1T: 66.851700 +Train:epoch: 57, loss@min: 0.965754, loss@max: 1.373424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.451574, LT: 1.448354, Top1S: 66.983871, Top1T: 66.825272 +Train:epoch: 58, loss@min: 0.942426, loss@max: 1.359227, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.453656, LT: 1.450651, Top1S: 67.010307, Top1T: 66.878136 +Train:epoch: 59, loss@min: 0.949453, loss@max: 1.360440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.455739, LT: 1.452776, Top1S: 67.010307, Top1T: 66.825272 +Train:epoch: 60, loss@min: 0.968934, loss@max: 1.373290, Top1S acc: 100.000000, Top1T acc: 99.009903{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 01:03:03 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.598885, loss@max: 1.352637, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.937164, loss@max: 1.576809, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.585428, loss@max: 1.371890, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.468393, loss@max: 1.479214, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.413004, loss@max: 1.589255, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.002456, loss@max: 1.590252, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.856605, loss@max: 1.651612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.457808, loss@max: 1.596419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.221336, loss@max: 1.579492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.181517, loss@max: 1.590950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.118700, loss@max: 1.587101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.072920, loss@max: 1.543276, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.114919, loss@max: 1.534783, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.158154, loss@max: 1.518604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.078038, loss@max: 1.463167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.031108, loss@max: 1.414864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.044852, loss@max: 1.368034, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.073027, loss@max: 1.374085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.044667, loss@max: 1.312173, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.996599, loss@max: 1.287265, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.074996, loss@max: 1.319419, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.037030, loss@max: 1.280102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.014087, loss@max: 1.289745, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.061180, loss@max: 1.296278, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.026166, loss@max: 1.280376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983394, loss@max: 1.271817, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.015955, loss@max: 1.311802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.977321, loss@max: 1.290121, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.967899, loss@max: 1.308969, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.968883, loss@max: 1.305163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.963386, loss@max: 1.317392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.029828, loss@max: 1.367145, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.953644, loss@max: 1.336493, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959525, loss@max: 1.323052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.963736, loss@max: 1.348366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.956095, loss@max: 1.351500, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.961317, loss@max: 1.372095, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.928214, loss@max: 1.346507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949425, loss@max: 1.375975, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.936345, loss@max: 1.378180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.946354, loss@max: 1.335844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.950963, loss@max: 1.343999, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.985402, loss@max: 1.357054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.977191, loss@max: 1.335140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.967547, loss@max: 1.332841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.988322, loss@max: 1.368792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.962076, loss@max: 1.352824, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.957276, loss@max: 1.362176, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.976512, loss@max: 1.382335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.943456, loss@max: 1.358036, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.671166, LT: 1.681273, Top1S: 56.617283, Top1T: 56.530865Best acc: 56.617283 +Train:epoch: 51, loss@min: 0.938911, loss@max: 1.369219, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.672049, LT: 1.683763, Top1S: 56.740742, Top1T: 56.604939Best acc: 56.740742 +Train:epoch: 52, loss@min: 0.937130, loss@max: 1.368695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.670034, LT: 1.681189, Top1S: 56.765430, Top1T: 56.814816Best acc: 56.814816 +Train:epoch: 53, loss@min: 0.944035, loss@max: 1.355478, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.674461, LT: 1.684602, Top1S: 56.851852, Top1T: 56.827160Best acc: 56.851852 +Train:epoch: 54, loss@min: 0.961272, loss@max: 1.354096, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.684918, LT: 1.692961, Top1S: 56.851852, Top1T: 56.765430 +Train:epoch: 55, loss@min: 0.970228, loss@max: 1.333483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.709566, LT: 1.713503, Top1S: 56.567902, Top1T: 56.580246 +Train:epoch: 56, loss@min: 0.976802, loss@max: 1.333418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.731062, LT: 1.733399, Top1S: 56.283951, Top1T: 56.271606 +Train:epoch: 57, loss@min: 0.974504, loss@max: 1.354763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.744858, LT: 1.744948, Top1S: 56.259258, Top1T: 56.185184 +Train:epoch: 58, loss@min: 0.958163, loss@max: 1.355642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.769111, LT: 1.769412, Top1S: 55.975307, Top1T: 56.012344 +Train:epoch: 59, loss@min: 0.962809, loss@max: 1.353176, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.791066, LT: 1.790641, Top1S: 55.827160, Top1T: 55.765430 +Train:epoch: 60, loss@min: 0.959250, loss@max: 1.385697, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.833285, LT: 1.834595, Top1S: 55.567902, Top1T: 55.432098 +Train:epoch: 61, loss@min: 0.937078, loss@max: 1.368441, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.868630, LT: 1.872732, Top1S: 55.308643, Top1T: 55.074074 +Train:epoch: 62, loss@min: 0.946203, loss@max: 1.368194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.896487, LT: 1.902821, Top1S: 55.123455, Top1T: 54.802467 +Train:epoch: 63, loss@min: 0.936101, loss@max: 1.368480, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.917015, LT: 1.924140, Top1S: 54.901234, Top1T: 54.728394 +Train:epoch: 64, loss@min: 0.943727, loss@max: 1.366414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.925134, LT: 1.933654, Top1S: 54.938271, Top1T: 54.802467 +Train:epoch: 65, loss@min: 0.950595, loss@max: 1.362367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.918787, LT: 1.928409, Top1S: 54.925926, Top1T: 54.876545 +Train:epoch: 66, loss@min: 0.945016, loss@max: 1.369817, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.910555, LT: 1.919882, Top1S: 54.962963, Top1T: 54.938271 +Train:epoch: 67, loss@min: 0.943423, loss@max: 1.369414, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 01:22:53 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.598138, loss@max: 1.352621, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.941898, loss@max: 1.578160, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.588874, loss@max: 1.372889, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.471928, loss@max: 1.480224, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.417843, loss@max: 1.590489, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.005461, loss@max: 1.590652, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.856174, loss@max: 1.651428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.456284, loss@max: 1.595790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.223632, loss@max: 1.579952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.184474, loss@max: 1.591802, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.119349, loss@max: 1.586966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.074405, loss@max: 1.543521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.116642, loss@max: 1.535520, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.156967, loss@max: 1.518076, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.078325, loss@max: 1.463366, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.034194, loss@max: 1.416625, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.044846, loss@max: 1.368231, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.072556, loss@max: 1.374043, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.045302, loss@max: 1.312459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.997206, loss@max: 1.287233, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.076856, loss@max: 1.320328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.037223, loss@max: 1.280838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.014158, loss@max: 1.289836, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.061385, loss@max: 1.296768, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.026574, loss@max: 1.280666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983504, loss@max: 1.272191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.015948, loss@max: 1.311201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.977926, loss@max: 1.290070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.968314, loss@max: 1.309612, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.969504, loss@max: 1.305548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.963100, loss@max: 1.317946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.028449, loss@max: 1.367474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.954225, loss@max: 1.337158, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959203, loss@max: 1.323637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.964298, loss@max: 1.348805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.956043, loss@max: 1.351793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.960887, loss@max: 1.372925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.928269, loss@max: 1.346839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.949769, loss@max: 1.376074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.937559, loss@max: 1.378093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.945868, loss@max: 1.336538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.950904, loss@max: 1.344446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.985497, loss@max: 1.357597, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.976691, loss@max: 1.335207, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.966441, loss@max: 1.332672, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.986309, loss@max: 1.367877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.962775, loss@max: 1.352854, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956886, loss@max: 1.361608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.988099, loss@max: 1.386890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944273, loss@max: 1.357044, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.636366, LT: 1.646047, Top1S: 57.012344, Top1T: 57.061729Best acc: 57.061729 +Train:epoch: 51, loss@min: 0.940663, loss@max: 1.366815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.639296, LT: 1.651729, Top1S: 57.123455, Top1T: 57.061729Best acc: 57.123455 +Train:epoch: 52, loss@min: 0.939461, loss@max: 1.366741, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.641399, LT: 1.654159, Top1S: 57.160492, Top1T: 57.148148Best acc: 57.160492 +Train:epoch: 53, loss@min: 0.946019, loss@max: 1.353635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.651800, LT: 1.664110, Top1S: 57.222221, Top1T: 57.135803Best acc: 57.222221 +Train:epoch: 54, loss@min: 0.963560, loss@max: 1.352332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.668962, LT: 1.678911, Top1S: 56.987656, Top1T: 56.950619 +Train:epoch: 55, loss@min: 0.970169, loss@max: 1.332910, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.700062, LT: 1.704830, Top1S: 56.765430, Top1T: 56.703705 +Train:epoch: 56, loss@min: 0.976534, loss@max: 1.332894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.726462, LT: 1.728485, Top1S: 56.382717, Top1T: 56.296295 +Train:epoch: 57, loss@min: 0.973192, loss@max: 1.356368, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:31:44 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.598979, loss@max: 1.352752, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.948987, loss@max: 1.579825, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.593898, loss@max: 1.374205, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.477832, loss@max: 1.481569, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.420280, loss@max: 1.590850, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.010334, loss@max: 1.591519, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.857409, loss@max: 1.651638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.458981, loss@max: 1.596180, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.226943, loss@max: 1.580496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.188466, loss@max: 1.592660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.120686, loss@max: 1.587189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.074283, loss@max: 1.542578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.116732, loss@max: 1.535345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.160250, loss@max: 1.518604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.078121, loss@max: 1.463453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.041216, loss@max: 1.420481, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.046192, loss@max: 1.369029, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.071963, loss@max: 1.374092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.047372, loss@max: 1.313847, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.997660, loss@max: 1.286766, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.079731, loss@max: 1.321668, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.036495, loss@max: 1.281849, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.015567, loss@max: 1.291134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.062061, loss@max: 1.298460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.026370, loss@max: 1.280944, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983448, loss@max: 1.273036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.017827, loss@max: 1.311118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.979560, loss@max: 1.289838, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.968996, loss@max: 1.310561, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.971096, loss@max: 1.305659, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962780, loss@max: 1.318807, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.028157, loss@max: 1.369070, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.955574, loss@max: 1.338472, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.958638, loss@max: 1.324547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.965125, loss@max: 1.349364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.957733, loss@max: 1.352994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.959578, loss@max: 1.374285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.928653, loss@max: 1.347599, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.951200, loss@max: 1.376456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.940494, loss@max: 1.378040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.944886, loss@max: 1.338305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.950716, loss@max: 1.346171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.985353, loss@max: 1.359304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.975168, loss@max: 1.337322, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.962722, loss@max: 1.334250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.983419, loss@max: 1.369314, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.963085, loss@max: 1.355601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956423, loss@max: 1.362958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.994129, loss@max: 1.385829, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.945904, loss@max: 1.355636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.945691, loss@max: 1.355206, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.953709, loss@max: 1.355011, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.956279, loss@max: 1.347776, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.639145, LT: 1.651074, Top1S: 57.555557, Top1T: 57.432098Best acc: 57.555557 +Train:epoch: 54, loss@min: 0.954566, loss@max: 1.347079, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:34:30 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.603647, loss@max: 1.353967, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.987234, loss@max: 1.589418, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.623916, loss@max: 1.382278, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.512593, loss@max: 1.490450, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.456538, loss@max: 1.599844, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.048955, loss@max: 1.600170, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.876360, loss@max: 1.657157, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.475796, loss@max: 1.600822, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.252614, loss@max: 1.588877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.220199, loss@max: 1.604327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.136692, loss@max: 1.594690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.086352, loss@max: 1.545486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.133170, loss@max: 1.543288, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.177735, loss@max: 1.524166, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.086191, loss@max: 1.469274, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.096835, loss@max: 1.446601, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.060464, loss@max: 1.377846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.077378, loss@max: 1.377530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.059148, loss@max: 1.321742, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.001474, loss@max: 1.287876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.101573, loss@max: 1.333666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.033363, loss@max: 1.289778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.019662, loss@max: 1.298577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.064359, loss@max: 1.309273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.027631, loss@max: 1.286870, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983240, loss@max: 1.279321, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.026631, loss@max: 1.312559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.988950, loss@max: 1.291242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.976329, loss@max: 1.312538, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.983469, loss@max: 1.307863, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.966819, loss@max: 1.320337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.031828, loss@max: 1.372740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.967218, loss@max: 1.341448, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.961164, loss@max: 1.328946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.973841, loss@max: 1.351224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.967543, loss@max: 1.356099, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.957431, loss@max: 1.382384, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.932775, loss@max: 1.352170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.958602, loss@max: 1.379815, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.961311, loss@max: 1.383687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.948387, loss@max: 1.343522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.955950, loss@max: 1.355388, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.992924, loss@max: 1.371294, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.975630, loss@max: 1.357910, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.951679, loss@max: 1.349453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.985613, loss@max: 1.385098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961268, loss@max: 1.369345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.961499, loss@max: 1.375545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.963332, loss@max: 1.372186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952396, loss@max: 1.358119, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.958031, loss@max: 1.346434, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.966412, loss@max: 1.349986, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.969932, loss@max: 1.341522, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.735242, LT: 1.754315, Top1S: 55.740742, Top1T: 55.666668Best acc: 55.740742 +Train:epoch: 54, loss@min: 0.969112, loss@max: 1.340170, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:37:02 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.599501, loss@max: 1.352921, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.957967, loss@max: 1.582137, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.600691, loss@max: 1.376025, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.485562, loss@max: 1.483486, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.427220, loss@max: 1.592458, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.017640, loss@max: 1.592937, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.859742, loss@max: 1.652252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.461191, loss@max: 1.596519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.231950, loss@max: 1.581753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.194684, loss@max: 1.594486, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.123074, loss@max: 1.587872, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.076064, loss@max: 1.542460, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.119048, loss@max: 1.536319, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.162640, loss@max: 1.519143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.078669, loss@max: 1.464216, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.051092, loss@max: 1.425797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.047884, loss@max: 1.370386, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.071832, loss@max: 1.374506, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.049620, loss@max: 1.315445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.998466, loss@max: 1.286594, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.083848, loss@max: 1.323727, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.035944, loss@max: 1.283260, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.016604, loss@max: 1.292374, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.062745, loss@max: 1.300422, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.026634, loss@max: 1.281690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983459, loss@max: 1.274077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.019467, loss@max: 1.310920, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.981432, loss@max: 1.289757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.970236, loss@max: 1.311511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.973170, loss@max: 1.306105, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962875, loss@max: 1.319531, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.027400, loss@max: 1.369981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.957768, loss@max: 1.339588, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.958720, loss@max: 1.325400, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.966647, loss@max: 1.349585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.959869, loss@max: 1.354030, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.958345, loss@max: 1.375507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.929454, loss@max: 1.348401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952710, loss@max: 1.376429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944469, loss@max: 1.378210, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.944546, loss@max: 1.340040, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.951015, loss@max: 1.348431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.985719, loss@max: 1.361900, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.973928, loss@max: 1.341091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.958769, loss@max: 1.337631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.982096, loss@max: 1.373427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.962041, loss@max: 1.358954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956477, loss@max: 1.365823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.977207, loss@max: 1.375013, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946716, loss@max: 1.356149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.948827, loss@max: 1.351989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.957943, loss@max: 1.351949, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.959855, loss@max: 1.344830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.630073, LT: 1.638782, Top1S: 57.592594, Top1T: 57.320988Best acc: 57.592594 +Train:epoch: 54, loss@min: 0.958723, loss@max: 1.343686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.630553, LT: 1.636591, Top1S: 57.679012, Top1T: 57.432098Best acc: 57.679012 +Train:epoch: 55, loss@min: 0.976109, loss@max: 1.358682, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.637010, LT: 1.638959, Top1S: 57.567902, Top1T: 57.543209 +Train:epoch: 56, loss@min: 0.977738, loss@max: 1.345505, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:41:22 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.601645, loss@max: 1.353375, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.974883, loss@max: 1.586207, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.613912, loss@max: 1.379418, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.500470, loss@max: 1.487174, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.442562, loss@max: 1.596055, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.033774, loss@max: 1.596285, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.867497, loss@max: 1.654246, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.468055, loss@max: 1.598113, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.242720, loss@max: 1.584926, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.207848, loss@max: 1.598998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.129455, loss@max: 1.590596, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.080849, loss@max: 1.543447, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.125535, loss@max: 1.539369, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.169291, loss@max: 1.521214, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.081439, loss@max: 1.466474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.073752, loss@max: 1.436804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.053179, loss@max: 1.373982, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.073481, loss@max: 1.376012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.054289, loss@max: 1.318778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.999872, loss@max: 1.287008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.092487, loss@max: 1.328402, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.034584, loss@max: 1.286340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.018353, loss@max: 1.295077, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.063915, loss@max: 1.304673, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.027264, loss@max: 1.283866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983437, loss@max: 1.276285, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.023016, loss@max: 1.311335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.985145, loss@max: 1.290120, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.973037, loss@max: 1.312575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.977861, loss@max: 1.307017, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.964171, loss@max: 1.320266, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.027951, loss@max: 1.371423, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.962439, loss@max: 1.340946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959681, loss@max: 1.326942, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.970220, loss@max: 1.349860, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.964226, loss@max: 1.355208, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.957286, loss@max: 1.378387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.931389, loss@max: 1.349954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.955854, loss@max: 1.377049, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.953043, loss@max: 1.379978, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.945734, loss@max: 1.342373, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.952770, loss@max: 1.352482, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.988309, loss@max: 1.367092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.973515, loss@max: 1.349563, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.954004, loss@max: 1.344331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.983357, loss@max: 1.380867, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.960892, loss@max: 1.364108, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.958864, loss@max: 1.370526, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.963409, loss@max: 1.367866, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.949048, loss@max: 1.357204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.954117, loss@max: 1.348101, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.962484, loss@max: 1.349985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.964740, loss@max: 1.342922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.720934, LT: 1.735879, Top1S: 56.592594, Top1T: 56.308643Best acc: 56.592594 +Train:epoch: 54, loss@min: 0.964274, loss@max: 1.340484, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.719980, LT: 1.731170, Top1S: 56.641975, Top1T: 56.382717Best acc: 56.641975 +Train:epoch: 55, loss@min: 0.979755, loss@max: 1.364756, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.724778, LT: 1.731526, Top1S: 56.617283, Top1T: 56.395061 +Train:epoch: 56, loss@min: 0.974994, loss@max: 1.356927, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:45:51 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.599283, loss@max: 1.352996, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.964417, loss@max: 1.583759, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.605596, loss@max: 1.377375, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.490910, loss@max: 1.484863, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.434691, loss@max: 1.594182, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.023011, loss@max: 1.593818, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.861383, loss@max: 1.652529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.461423, loss@max: 1.596272, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.235883, loss@max: 1.582685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.199647, loss@max: 1.595958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.124973, loss@max: 1.588331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.078530, loss@max: 1.543085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.122091, loss@max: 1.537633, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.162603, loss@max: 1.519052, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.079598, loss@max: 1.464893, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.057534, loss@max: 1.429164, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.048795, loss@max: 1.371343, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.071933, loss@max: 1.375007, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.050650, loss@max: 1.316242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.999057, loss@max: 1.286858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.086709, loss@max: 1.325313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.035862, loss@max: 1.284339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.016697, loss@max: 1.292784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.063006, loss@max: 1.301479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.027207, loss@max: 1.282315, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983681, loss@max: 1.274579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.020042, loss@max: 1.310428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.982543, loss@max: 1.289760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.971269, loss@max: 1.311987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.974450, loss@max: 1.306636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.963073, loss@max: 1.319899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.026428, loss@max: 1.370153, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.959155, loss@max: 1.340137, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.958906, loss@max: 1.325998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.967750, loss@max: 1.349691, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.960820, loss@max: 1.354218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.957909, loss@max: 1.376171, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.930047, loss@max: 1.348780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.953530, loss@max: 1.376250, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.947008, loss@max: 1.378457, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.944819, loss@max: 1.340743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.951444, loss@max: 1.349677, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.986263, loss@max: 1.363608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.973540, loss@max: 1.343560, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.956956, loss@max: 1.339747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.981940, loss@max: 1.375907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.961233, loss@max: 1.360462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956921, loss@max: 1.367204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.970175, loss@max: 1.370698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.947191, loss@max: 1.356512, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950491, loss@max: 1.350613, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.959456, loss@max: 1.351074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.961331, loss@max: 1.344099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.659075, LT: 1.668467, Top1S: 57.234570, Top1T: 57.098766Best acc: 57.234570 +Train:epoch: 54, loss@min: 0.960461, loss@max: 1.342526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.655731, LT: 1.661923, Top1S: 57.370369, Top1T: 57.234570Best acc: 57.370369 +Train:epoch: 55, loss@min: 0.977437, loss@max: 1.360801, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.658449, LT: 1.660392, Top1S: 57.456791, Top1T: 57.345680Best acc: 57.456791 +Train:epoch: 56, loss@min: 0.976841, loss@max: 1.348653, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.661325, LT: 1.660883, Top1S: 57.506172, Top1T: 57.370369Best acc: 57.506172 +Train:epoch: 57, loss@min: 0.965050, loss@max: 1.348287, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:51:11 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.631170, loss@max: 1.384476, Top1S acc: 100.000000, Top1T acc: 55.000000 +Train:epoch: 2, loss@min: 3.413224, loss@max: 1.474763, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.901531, loss@max: 1.494382, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 2.502336, loss@max: 1.541003, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 5, loss@min: 2.621431, loss@max: 1.688538, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 6, loss@min: 2.036131, loss@max: 1.640616, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 7, loss@min: 1.909148, loss@max: 1.684630, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.605389, loss@max: 1.663805, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 1.621824, loss@max: 1.687446, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 10, loss@min: 1.181363, loss@max: 1.590331, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.430324, loss@max: 1.648749, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.196226, loss@max: 1.541191, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.216816, loss@max: 1.530848, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 14, loss@min: 1.059880, loss@max: 1.443570, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.134305, loss@max: 1.454552, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.049426, loss@max: 1.384191, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.122381, loss@max: 1.388341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.163225, loss@max: 1.380747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.066189, loss@max: 1.333544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.067870, loss@max: 1.327525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.186939, loss@max: 1.333233, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.156895, loss@max: 1.349880, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.068108, loss@max: 1.322895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.051171, loss@max: 1.316461, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.129871, loss@max: 1.370412, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.051940, loss@max: 1.324573, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.190945, loss@max: 1.427498, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.029977, loss@max: 1.341167, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.010957, loss@max: 1.345279, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.994531, loss@max: 1.343138, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.992750, loss@max: 1.359715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.013100, loss@max: 1.377404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951734, loss@max: 1.350490, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.990738, loss@max: 1.395345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940695, loss@max: 1.356281, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.946973, loss@max: 1.384418, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.935965, loss@max: 1.361693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957805, loss@max: 1.358843, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.962875, loss@max: 1.381270, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.964142, loss@max: 1.361446, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.974924, loss@max: 1.354889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.983237, loss@max: 1.357327, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.194018, loss@max: 1.454493, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 44, loss@min: 0.963222, loss@max: 1.345496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.963077, loss@max: 1.348295, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.982732, loss@max: 1.386958, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.983767, loss@max: 1.380416, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.954343, loss@max: 1.355345, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.959322, loss@max: 1.365785, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.974623, loss@max: 1.378530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.961066, loss@max: 1.347567, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.997210, loss@max: 1.385064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.973478, loss@max: 1.366292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.122536, LT: 1.117589, Top1S: 66.790123, Top1T: 66.728394Best acc: 66.790123 +Train:epoch: 54, loss@min: 0.978249, loss@max: 1.369267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.124802, LT: 1.118867, Top1S: 66.740738, Top1T: 66.654320 +Train:epoch: 55, loss@min: 0.978021, loss@max: 1.361463, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 53} + +------------------------------------------- +Fri Jan 19 01:54:50 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.493340, loss@max: 1.625935, Top1S acc: 100.000000, Top1T acc: 43.750000 +Train:epoch: 2, loss@min: 4.231013, loss@max: 1.730800, Top1S acc: 100.000000, Top1T acc: 44.375000 +Train:epoch: 3, loss@min: 3.887686, loss@max: 1.809740, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.448665, loss@max: 1.837069, Top1S acc: 100.000000, Top1T acc: 56.875000 +Train:epoch: 5, loss@min: 3.109548, loss@max: 1.880283, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 6, loss@min: 2.780300, loss@max: 1.893203, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.806490, loss@max: 1.968000, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.441916, loss@max: 1.915393, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 9, loss@min: 2.382486, loss@max: 1.918571, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 10, loss@min: 2.286621, loss@max: 1.893058, Top1S acc: 100.000000, Top1T acc: 75.625000 +Train:epoch: 11, loss@min: 2.340974, loss@max: 1.906088, Top1S acc: 100.000000, Top1T acc: 73.125000 +Train:epoch: 12, loss@min: 2.187447, loss@max: 1.843942, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 13, loss@min: 2.129080, loss@max: 1.803821, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.116898, loss@max: 1.771426, Top1S acc: 100.000000, Top1T acc: 78.750000 +Train:epoch: 15, loss@min: 2.011799, loss@max: 1.721454, Top1S acc: 100.000000, Top1T acc: 80.625000 +Train:epoch: 16, loss@min: 1.944297, loss@max: 1.688956, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 17, loss@min: 2.010184, loss@max: 1.679278, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 18, loss@min: 1.910425, loss@max: 1.640502, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 19, loss@min: 1.828734, loss@max: 1.611152, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 20, loss@min: 1.746510, loss@max: 1.595255, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 21, loss@min: 1.813546, loss@max: 1.612883, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 22, loss@min: 1.703606, loss@max: 1.596612, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 23, loss@min: 1.688467, loss@max: 1.594837, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 24, loss@min: 1.618860, loss@max: 1.604908, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.615514, loss@max: 1.611108, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 26, loss@min: 1.630838, loss@max: 1.635972, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 27, loss@min: 1.507251, loss@max: 1.590834, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 28, loss@min: 1.501349, loss@max: 1.609201, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 29, loss@min: 1.535256, loss@max: 1.631603, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 30, loss@min: 1.604356, loss@max: 1.663888, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 31, loss@min: 1.489616, loss@max: 1.625200, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 32, loss@min: 1.436406, loss@max: 1.622929, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 33, loss@min: 1.373266, loss@max: 1.607473, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 34, loss@min: 1.403705, loss@max: 1.606426, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 35, loss@min: 1.348625, loss@max: 1.599149, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.368858, loss@max: 1.607103, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 37, loss@min: 1.365175, loss@max: 1.595089, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 38, loss@min: 1.414823, loss@max: 1.618546, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 39, loss@min: 1.400528, loss@max: 1.610347, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 40, loss@min: 1.279507, loss@max: 1.562781, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 41, loss@min: 1.298604, loss@max: 1.548760, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 42, loss@min: 1.411860, loss@max: 1.585267, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 43, loss@min: 1.323344, loss@max: 1.549572, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 44, loss@min: 1.416486, loss@max: 1.575026, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 45, loss@min: 1.394057, loss@max: 1.576872, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 46, loss@min: 1.381071, loss@max: 1.571924, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 47, loss@min: 1.247228, loss@max: 1.535021, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 48, loss@min: 1.300098, loss@max: 1.560755, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 49, loss@min: 1.301797, loss@max: 1.550031, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 50, loss@min: 1.267521, loss@max: 1.553120, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 51, loss@min: 1.325654, loss@max: 1.581720, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 52, loss@min: 1.314541, loss@max: 1.558384, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 53, loss@min: 1.246954, loss@max: 1.551164, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 53, LS: 0.515204, LT: 0.510399, Top1S: 83.259262, Top1T: 83.308640Best acc: 83.308640 +Train:epoch: 54, loss@min: 1.298425, loss@max: 1.556778, Top1S acc: 100.000000, Top1T acc: 94.375000 + Test:epoch: 54, LS: 0.516884, LT: 0.512956, Top1S: 83.333336, Top1T: 83.283951Best acc: 83.333336 +Train:epoch: 55, loss@min: 1.267693, loss@max: 1.564560, Top1S acc: 100.000000, Top1T acc: 95.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Fri Jan 19 02:00:24 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.493340, loss@max: 1.625935, Top1S acc: 100.000000, Top1T acc: 43.750000 +Train:epoch: 2, loss@min: 4.231013, loss@max: 1.730800, Top1S acc: 100.000000, Top1T acc: 44.375000 +Train:epoch: 3, loss@min: 3.887686, loss@max: 1.809740, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.448665, loss@max: 1.837069, Top1S acc: 100.000000, Top1T acc: 56.875000 +Train:epoch: 5, loss@min: 3.109548, loss@max: 1.880283, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 6, loss@min: 2.780300, loss@max: 1.893203, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.806490, loss@max: 1.968000, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.441916, loss@max: 1.915393, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 9, loss@min: 2.382486, loss@max: 1.918571, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 10, loss@min: 2.286621, loss@max: 1.893058, Top1S acc: 100.000000, Top1T acc: 75.625000 +Train:epoch: 11, loss@min: 2.340974, loss@max: 1.906088, Top1S acc: 100.000000, Top1T acc: 73.125000 +Train:epoch: 12, loss@min: 2.187447, loss@max: 1.843942, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 13, loss@min: 2.129080, loss@max: 1.803821, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.116898, loss@max: 1.771426, Top1S acc: 100.000000, Top1T acc: 78.750000 +Train:epoch: 15, loss@min: 2.011799, loss@max: 1.721454, Top1S acc: 100.000000, Top1T acc: 80.625000 +Train:epoch: 16, loss@min: 1.944297, loss@max: 1.688956, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 17, loss@min: 2.010184, loss@max: 1.679278, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 18, loss@min: 1.910425, loss@max: 1.640502, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 19, loss@min: 1.828734, loss@max: 1.611152, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 20, loss@min: 1.746510, loss@max: 1.595255, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 21, loss@min: 1.813546, loss@max: 1.612883, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 22, loss@min: 1.703606, loss@max: 1.596612, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 23, loss@min: 1.688467, loss@max: 1.594837, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 24, loss@min: 1.618860, loss@max: 1.604908, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.615514, loss@max: 1.611108, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 26, loss@min: 1.630838, loss@max: 1.635972, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 27, loss@min: 1.507251, loss@max: 1.590834, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 28, loss@min: 1.501349, loss@max: 1.609201, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 29, loss@min: 1.535256, loss@max: 1.631603, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 30, loss@min: 1.604356, loss@max: 1.663888, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 31, loss@min: 1.489616, loss@max: 1.625200, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 32, loss@min: 1.436406, loss@max: 1.622929, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 33, loss@min: 1.373266, loss@max: 1.607473, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 34, loss@min: 1.403705, loss@max: 1.606426, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 35, loss@min: 1.348625, loss@max: 1.599149, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.368858, loss@max: 1.607103, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 37, loss@min: 1.365175, loss@max: 1.595089, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 38, loss@min: 1.414823, loss@max: 1.618546, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 39, loss@min: 1.400528, loss@max: 1.610347, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 40, loss@min: 1.279507, loss@max: 1.562781, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 40, LS: 0.517795, LT: 0.511050, Top1S: 82.728394, Top1T: 82.987656Best acc: 82.987656 +Train:epoch: 41, loss@min: 1.300518, loss@max: 1.546474, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 41, LS: 0.518598, LT: 0.512444, Top1S: 82.802467, Top1T: 82.888885 +Train:epoch: 42, loss@min: 1.339640, loss@max: 1.560527, Top1S acc: 100.000000, Top1T acc: 93.125000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 80} + +------------------------------------------- +Fri Jan 19 02:05:39 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.493340, loss@max: 1.625935, Top1S acc: 100.000000, Top1T acc: 43.750000 +Train:epoch: 2, loss@min: 4.231013, loss@max: 1.730800, Top1S acc: 100.000000, Top1T acc: 44.375000 +Train:epoch: 3, loss@min: 3.887686, loss@max: 1.809740, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.448665, loss@max: 1.837069, Top1S acc: 100.000000, Top1T acc: 56.875000 +Train:epoch: 5, loss@min: 3.109548, loss@max: 1.880283, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 6, loss@min: 2.780300, loss@max: 1.893203, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.806490, loss@max: 1.968000, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.441916, loss@max: 1.915393, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 9, loss@min: 2.382486, loss@max: 1.918571, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 10, loss@min: 2.286621, loss@max: 1.893058, Top1S acc: 100.000000, Top1T acc: 75.625000 +Train:epoch: 11, loss@min: 2.340974, loss@max: 1.906088, Top1S acc: 100.000000, Top1T acc: 73.125000 +Train:epoch: 12, loss@min: 2.187447, loss@max: 1.843942, Top1S acc: 100.000000, Top1T acc: 74.375000 +Train:epoch: 13, loss@min: 2.129080, loss@max: 1.803821, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.116898, loss@max: 1.771426, Top1S acc: 100.000000, Top1T acc: 78.750000 +Train:epoch: 15, loss@min: 2.011799, loss@max: 1.721454, Top1S acc: 100.000000, Top1T acc: 80.625000 +Train:epoch: 16, loss@min: 1.944297, loss@max: 1.688956, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 17, loss@min: 2.010184, loss@max: 1.679278, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 18, loss@min: 1.910425, loss@max: 1.640502, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 19, loss@min: 1.828734, loss@max: 1.611152, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 20, loss@min: 1.746510, loss@max: 1.595255, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 21, loss@min: 1.813546, loss@max: 1.612883, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 22, loss@min: 1.703606, loss@max: 1.596612, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 23, loss@min: 1.688467, loss@max: 1.594837, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 24, loss@min: 1.618860, loss@max: 1.604908, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.615514, loss@max: 1.611108, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 26, loss@min: 1.630838, loss@max: 1.635972, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 27, loss@min: 1.507251, loss@max: 1.590834, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 28, loss@min: 1.501349, loss@max: 1.609201, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 29, loss@min: 1.535256, loss@max: 1.631603, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 30, loss@min: 1.604356, loss@max: 1.663888, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 31, loss@min: 1.489616, loss@max: 1.625200, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 32, loss@min: 1.436406, loss@max: 1.622929, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 33, loss@min: 1.373266, loss@max: 1.607473, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 34, loss@min: 1.403705, loss@max: 1.606426, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 35, loss@min: 1.348625, loss@max: 1.599149, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.368858, loss@max: 1.607103, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 37, loss@min: 1.365175, loss@max: 1.595089, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 38, loss@min: 1.414823, loss@max: 1.618546, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 39, loss@min: 1.400528, loss@max: 1.610347, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 40, loss@min: 1.279507, loss@max: 1.562781, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 41, loss@min: 1.298604, loss@max: 1.548760, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 42, loss@min: 1.411860, loss@max: 1.585267, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 43, loss@min: 1.323344, loss@max: 1.549572, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 44, loss@min: 1.416486, loss@max: 1.575026, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 45, loss@min: 1.394057, loss@max: 1.576872, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 46, loss@min: 1.381071, loss@max: 1.571924, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 47, loss@min: 1.247228, loss@max: 1.535021, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 48, loss@min: 1.300098, loss@max: 1.560755, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 49, loss@min: 1.301797, loss@max: 1.550031, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 50, loss@min: 1.267521, loss@max: 1.553120, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 51, loss@min: 1.325654, loss@max: 1.581720, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 52, loss@min: 1.314541, loss@max: 1.558384, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 53, loss@min: 1.246954, loss@max: 1.551164, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 54, loss@min: 1.258006, loss@max: 1.548341, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 55, loss@min: 1.245997, loss@max: 1.537610, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 56, loss@min: 1.171407, loss@max: 1.527514, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 57, loss@min: 1.240640, loss@max: 1.549538, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 58, loss@min: 1.238616, loss@max: 1.536319, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 59, loss@min: 1.287355, loss@max: 1.563411, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 60, loss@min: 1.155557, loss@max: 1.512163, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 61, loss@min: 1.159702, loss@max: 1.512400, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 62, loss@min: 1.173448, loss@max: 1.516353, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 63, loss@min: 1.181060, loss@max: 1.519668, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 64, loss@min: 1.229009, loss@max: 1.529243, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 65, loss@min: 1.155823, loss@max: 1.510554, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 66, loss@min: 1.186890, loss@max: 1.515591, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 67, loss@min: 1.151655, loss@max: 1.499610, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 68, loss@min: 1.176241, loss@max: 1.518837, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 69, loss@min: 1.118992, loss@max: 1.483493, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 70, loss@min: 1.128002, loss@max: 1.497858, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 71, loss@min: 1.113429, loss@max: 1.478489, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 72, loss@min: 1.092342, loss@max: 1.478482, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 73, loss@min: 1.113084, loss@max: 1.478338, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 74, loss@min: 1.164632, loss@max: 1.502218, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 75, loss@min: 1.113573, loss@max: 1.470091, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 76, loss@min: 1.100795, loss@max: 1.479324, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 77, loss@min: 1.134777, loss@max: 1.496605, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 78, loss@min: 1.169270, loss@max: 1.512177, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 79, loss@min: 1.089582, loss@max: 1.474086, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 80, loss@min: 1.116042, loss@max: 1.490350, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 80, LS: 0.509846, LT: 0.505516, Top1S: 83.802467, Top1T: 83.876541Best acc: 83.876541 +Train:epoch: 81, loss@min: 1.098470, loss@max: 1.488423, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 81, LS: 0.509133, LT: 0.505015, Top1S: 83.839508, Top1T: 83.864197 +Train:epoch: 82, loss@min: 1.063026, loss@max: 1.460697, Top1S acc: 100.000000, Top1T acc: 98.750000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 70} + +------------------------------------------- +Fri Jan 19 10:11:12 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.493743, loss@max: 1.626029, Top1S acc: 100.000000, Top1T acc: 43.750000 +Train:epoch: 2, loss@min: 4.230370, loss@max: 1.730643, Top1S acc: 100.000000, Top1T acc: 44.375000 +Train:epoch: 3, loss@min: 3.888419, loss@max: 1.809969, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.451608, loss@max: 1.837971, Top1S acc: 100.000000, Top1T acc: 56.250000 +Train:epoch: 5, loss@min: 3.114702, loss@max: 1.881800, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 6, loss@min: 2.785199, loss@max: 1.894857, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.812347, loss@max: 1.969840, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.447257, loss@max: 1.917158, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 9, loss@min: 2.387443, loss@max: 1.920156, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 10, loss@min: 2.290835, loss@max: 1.894527, Top1S acc: 100.000000, Top1T acc: 75.625000 +Train:epoch: 11, loss@min: 2.346377, loss@max: 1.907716, Top1S acc: 100.000000, Top1T acc: 73.125000 +Train:epoch: 12, loss@min: 2.193209, loss@max: 1.845542, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 13, loss@min: 2.133483, loss@max: 1.805166, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.122708, loss@max: 1.773093, Top1S acc: 100.000000, Top1T acc: 78.750000 +Train:epoch: 15, loss@min: 2.017399, loss@max: 1.722923, Top1S acc: 100.000000, Top1T acc: 80.625000 +Train:epoch: 16, loss@min: 1.949500, loss@max: 1.690353, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 17, loss@min: 2.015346, loss@max: 1.680658, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 18, loss@min: 1.913534, loss@max: 1.641067, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 19, loss@min: 1.832651, loss@max: 1.612045, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 20, loss@min: 1.749132, loss@max: 1.595873, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.817189, loss@max: 1.613659, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 22, loss@min: 1.707121, loss@max: 1.597120, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 23, loss@min: 1.691264, loss@max: 1.595060, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 24, loss@min: 1.621491, loss@max: 1.605185, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.618737, loss@max: 1.611533, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 26, loss@min: 1.634593, loss@max: 1.636445, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 27, loss@min: 1.508818, loss@max: 1.591041, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 28, loss@min: 1.502445, loss@max: 1.609106, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 29, loss@min: 1.537623, loss@max: 1.632128, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 30, loss@min: 1.608103, loss@max: 1.664815, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 31, loss@min: 1.491590, loss@max: 1.625534, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 32, loss@min: 1.438503, loss@max: 1.622921, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 33, loss@min: 1.376492, loss@max: 1.607385, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 34, loss@min: 1.405781, loss@max: 1.605686, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 35, loss@min: 1.352223, loss@max: 1.598894, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 36, loss@min: 1.372300, loss@max: 1.606490, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 37, loss@min: 1.368937, loss@max: 1.594753, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 38, loss@min: 1.418303, loss@max: 1.618420, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 39, loss@min: 1.406706, loss@max: 1.610681, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 40, loss@min: 1.280812, loss@max: 1.562531, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 41, loss@min: 1.300541, loss@max: 1.548762, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 42, loss@min: 1.415904, loss@max: 1.585623, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 43, loss@min: 1.325634, loss@max: 1.549617, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 44, loss@min: 1.420390, loss@max: 1.575321, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 45, loss@min: 1.400505, loss@max: 1.577143, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 46, loss@min: 1.386674, loss@max: 1.572020, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 47, loss@min: 1.249855, loss@max: 1.534542, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 48, loss@min: 1.305342, loss@max: 1.561034, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 49, loss@min: 1.308022, loss@max: 1.550676, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 50, loss@min: 1.269679, loss@max: 1.553109, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 51, loss@min: 1.328191, loss@max: 1.582181, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 52, loss@min: 1.320716, loss@max: 1.559687, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 53, loss@min: 1.250291, loss@max: 1.551901, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 54, loss@min: 1.264200, loss@max: 1.549436, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 55, loss@min: 1.251661, loss@max: 1.538537, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 56, loss@min: 1.174355, loss@max: 1.527740, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 57, loss@min: 1.243507, loss@max: 1.549973, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 58, loss@min: 1.240837, loss@max: 1.536322, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 59, loss@min: 1.292263, loss@max: 1.564148, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 60, loss@min: 1.158225, loss@max: 1.512200, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 61, loss@min: 1.161889, loss@max: 1.512061, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 62, loss@min: 1.175861, loss@max: 1.516613, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 63, loss@min: 1.183471, loss@max: 1.520098, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 64, loss@min: 1.235102, loss@max: 1.530310, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 65, loss@min: 1.158375, loss@max: 1.511431, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 66, loss@min: 1.187862, loss@max: 1.515942, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 67, loss@min: 1.154840, loss@max: 1.500356, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 68, loss@min: 1.176958, loss@max: 1.518829, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 69, loss@min: 1.120956, loss@max: 1.483946, Top1S acc: 100.000000, Top1T acc: 98.125000 +Train:epoch: 70, loss@min: 1.127750, loss@max: 1.497991, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 70, LS: 0.506499, LT: 0.502019, Top1S: 83.691360, Top1T: 83.814812Best acc: 83.814812 +Train:epoch: 71, loss@min: 1.199965, loss@max: 1.522358, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 71, LS: 0.506763, LT: 0.502143, Top1S: 83.765434, Top1T: 83.777779 +Train:epoch: 72, loss@min: 1.192631, loss@max: 1.514937, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 72, LS: 0.506332, LT: 0.501690, Top1S: 83.827164, Top1T: 83.827164Best acc: 83.827164 +Train:epoch: 73, loss@min: 1.156247, loss@max: 1.511136, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 73, LS: 0.507473, LT: 0.502988, Top1S: 83.913582, Top1T: 83.839508Best acc: 83.913582 +Train:epoch: 74, loss@min: 1.124658, loss@max: 1.490217, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 74, LS: 0.508843, LT: 0.504750, Top1S: 84.000000, Top1T: 83.950615Best acc: 84.000000 +Train:epoch: 75, loss@min: 1.156010, loss@max: 1.485325, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 75, LS: 0.511157, LT: 0.507548, Top1S: 84.000000, Top1T: 83.925926 +Train:epoch: 76, loss@min: 1.148731, loss@max: 1.499663, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 76, LS: 0.513462, LT: 0.510205, Top1S: 83.901237, Top1T: 83.913582 +Train:epoch: 77, loss@min: 1.164058, loss@max: 1.505816, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 77, LS: 0.514859, LT: 0.511883, Top1S: 83.913582, Top1T: 83.827164 +Train:epoch: 78, loss@min: 1.084168, loss@max: 1.480733, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 78, LS: 0.517141, LT: 0.514222, Top1S: 83.839508, Top1T: 83.827164 +Train:epoch: 79, loss@min: 1.102059, loss@max: 1.477267, Top1S acc: 100.000000, Top1T acc: 98.125000 + Test:epoch: 79, LS: 0.518472, LT: 0.515527, Top1S: 83.814812, Top1T: 83.716049 +Train:epoch: 80, loss@min: 1.137692, loss@max: 1.498701, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 80, LS: 0.519403, LT: 0.516394, Top1S: 83.765434, Top1T: 83.666664 +Train:epoch: 81, loss@min: 1.137942, loss@max: 1.490310, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 81, LS: 0.519965, LT: 0.516559, Top1S: 83.740738, Top1T: 83.691360 +Train:epoch: 82, loss@min: 1.112418, loss@max: 1.472106, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 82, LS: 0.519659, LT: 0.516133, Top1S: 83.814812, Top1T: 83.728394 +Train:epoch: 83, loss@min: 1.143679, loss@max: 1.493725, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 83, LS: 0.518946, LT: 0.515325, Top1S: 83.814812, Top1T: 83.851852 +Train:epoch: 84, loss@min: 1.112401, loss@max: 1.474980, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 84, LS: 0.517643, LT: 0.514087, Top1S: 83.864197, Top1T: 83.913582 +Train:epoch: 85, loss@min: 1.078186, loss@max: 1.470303, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 85, LS: 0.516304, LT: 0.512891, Top1S: 83.938271, Top1T: 83.925926 +Train:epoch: 86, loss@min: 1.151893, loss@max: 1.485202, Top1S acc: 100.000000, Top1T acc: 96.250000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 10:38:12 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.538259, loss@max: 1.646335, Top1S acc: 100.000000, Top1T acc: 38.750000 +Train:epoch: 2, loss@min: 4.242124, loss@max: 1.745021, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.429842, loss@max: 1.710759, Top1S acc: 100.000000, Top1T acc: 48.750000 +Train:epoch: 4, loss@min: 3.301343, loss@max: 1.809972, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 5, loss@min: 2.934340, loss@max: 1.842411, Top1S acc: 100.000000, Top1T acc: 62.500000 +Train:epoch: 6, loss@min: 2.597363, loss@max: 1.866329, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 7, loss@min: 2.490781, loss@max: 1.902566, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 8, loss@min: 2.306442, loss@max: 1.905333, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.953045, loss@max: 1.813838, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.054692, loss@max: 1.845748, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 11, loss@min: 1.926665, loss@max: 1.794257, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 1.948923, loss@max: 1.781809, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.813734, loss@max: 1.703360, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.839896, loss@max: 1.678305, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.664819, loss@max: 1.607350, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 16, loss@min: 1.781640, loss@max: 1.614969, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 17, loss@min: 1.700451, loss@max: 1.588185, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 18, loss@min: 1.708117, loss@max: 1.575037, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.554981, loss@max: 1.536088, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 20, loss@min: 1.619218, loss@max: 1.544021, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.565213, loss@max: 1.541767, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 22, loss@min: 1.474948, loss@max: 1.513454, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.448617, loss@max: 1.515591, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.473589, loss@max: 1.532254, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 25, loss@min: 1.323462, loss@max: 1.500826, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.455936, loss@max: 1.559254, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 27, loss@min: 1.314645, loss@max: 1.526893, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 28, loss@min: 1.306192, loss@max: 1.520244, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.233122, loss@max: 1.512926, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.245754, loss@max: 1.523097, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.265090, loss@max: 1.557038, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.204688, loss@max: 1.532691, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 33, loss@min: 1.228297, loss@max: 1.547478, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 34, loss@min: 1.115155, loss@max: 1.503693, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 35, loss@min: 1.225265, loss@max: 1.548380, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.214891, loss@max: 1.543340, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.171525, loss@max: 1.529543, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 38, loss@min: 1.147534, loss@max: 1.503982, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 39, loss@min: 1.120564, loss@max: 1.487159, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.207870, loss@max: 1.502502, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.138630, loss@max: 1.481618, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 42, loss@min: 1.164721, loss@max: 1.472506, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 43, loss@min: 1.153720, loss@max: 1.463378, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.120209, loss@max: 1.453580, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.093977, loss@max: 1.441661, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 46, loss@min: 1.096712, loss@max: 1.439446, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 47, loss@min: 1.101977, loss@max: 1.465373, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.120814, loss@max: 1.469641, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.088686, loss@max: 1.448243, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.089427, loss@max: 1.469870, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.120906, loss@max: 1.486691, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.045008, loss@max: 1.450753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.063785, loss@max: 1.463068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.064797, loss@max: 1.461666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.051787, loss@max: 1.438743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.064684, loss@max: 1.462974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.029917, loss@max: 1.436773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.041586, loss@max: 1.455487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.043190, loss@max: 1.442401, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.066066, loss@max: 1.465718, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 60, LS: 0.591063, LT: 0.591410, Top1S: 82.580246, Top1T: 82.530861Best acc: 82.580246 +Train:epoch: 61, loss@min: 1.028925, loss@max: 1.444016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.579306, LT: 0.579460, Top1S: 82.827164, Top1T: 82.814812Best acc: 82.827164 +Train:epoch: 62, loss@min: 1.062932, loss@max: 1.453640, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 62, LS: 0.567908, LT: 0.567948, Top1S: 83.111115, Top1T: 83.086418Best acc: 83.111115 +Train:epoch: 63, loss@min: 1.055878, loss@max: 1.430939, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 63, LS: 0.554951, LT: 0.555035, Top1S: 83.456787, Top1T: 83.320984Best acc: 83.456787 +Train:epoch: 64, loss@min: 1.070343, loss@max: 1.453941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.543013, LT: 0.543652, Top1S: 83.629631, Top1T: 83.592590Best acc: 83.629631 +Train:epoch: 65, loss@min: 1.064405, loss@max: 1.449409, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 65, LS: 0.534656, LT: 0.535757, Top1S: 83.913582, Top1T: 83.814812Best acc: 83.913582 +Train:epoch: 66, loss@min: 1.061198, loss@max: 1.450155, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 66, LS: 0.531529, LT: 0.532898, Top1S: 84.111115, Top1T: 83.901237Best acc: 84.111115 +Train:epoch: 67, loss@min: 1.045903, loss@max: 1.439835, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 67, LS: 0.533593, LT: 0.534983, Top1S: 83.864197, Top1T: 83.901237 +Train:epoch: 68, loss@min: 0.999011, loss@max: 1.402089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.535643, LT: 0.537121, Top1S: 83.703705, Top1T: 83.740738 +Train:epoch: 69, loss@min: 1.019070, loss@max: 1.419621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.537631, LT: 0.539055, Top1S: 83.604935, Top1T: 83.703705 +Train:epoch: 70, loss@min: 1.083569, loss@max: 1.449172, Top1S acc: 100.000000, Top1T acc: 98.750000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 10:54:30 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.539074, loss@max: 1.646492, Top1S acc: 100.000000, Top1T acc: 38.750000 +Train:epoch: 2, loss@min: 4.242423, loss@max: 1.744953, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.428956, loss@max: 1.710293, Top1S acc: 100.000000, Top1T acc: 48.750000 +Train:epoch: 4, loss@min: 3.299437, loss@max: 1.809162, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 5, loss@min: 2.930503, loss@max: 1.841181, Top1S acc: 100.000000, Top1T acc: 62.500000 +Train:epoch: 6, loss@min: 2.594010, loss@max: 1.865217, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 7, loss@min: 2.485764, loss@max: 1.901107, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 8, loss@min: 2.303200, loss@max: 1.904492, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.949816, loss@max: 1.812854, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.052425, loss@max: 1.845358, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 11, loss@min: 1.922396, loss@max: 1.793440, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 1.943597, loss@max: 1.780652, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.809520, loss@max: 1.702350, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.835245, loss@max: 1.677183, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.660691, loss@max: 1.606331, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 16, loss@min: 1.775409, loss@max: 1.613334, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 17, loss@min: 1.695517, loss@max: 1.586927, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 18, loss@min: 1.703766, loss@max: 1.574156, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.552495, loss@max: 1.535539, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 20, loss@min: 1.613768, loss@max: 1.542966, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.562381, loss@max: 1.541211, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 22, loss@min: 1.470963, loss@max: 1.512748, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.445897, loss@max: 1.515125, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.471388, loss@max: 1.531533, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 25, loss@min: 1.322347, loss@max: 1.500010, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.451036, loss@max: 1.557720, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 27, loss@min: 1.312863, loss@max: 1.525682, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 28, loss@min: 1.303056, loss@max: 1.519144, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.232448, loss@max: 1.512418, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.243768, loss@max: 1.522358, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.263937, loss@max: 1.556755, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.203457, loss@max: 1.532911, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 33, loss@min: 1.223730, loss@max: 1.547139, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 34, loss@min: 1.112250, loss@max: 1.503870, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 35, loss@min: 1.222234, loss@max: 1.548598, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.211168, loss@max: 1.543513, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.169060, loss@max: 1.529488, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 38, loss@min: 1.144281, loss@max: 1.503641, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 39, loss@min: 1.118650, loss@max: 1.486710, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.205458, loss@max: 1.501938, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.138036, loss@max: 1.481593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 1.160967, loss@max: 1.471969, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 43, loss@min: 1.152215, loss@max: 1.463757, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.118781, loss@max: 1.454034, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.093325, loss@max: 1.442943, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 46, loss@min: 1.096896, loss@max: 1.440704, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 47, loss@min: 1.102479, loss@max: 1.467307, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.121918, loss@max: 1.471077, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.086260, loss@max: 1.448438, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.087530, loss@max: 1.469436, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.119114, loss@max: 1.485577, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.044508, loss@max: 1.449730, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.062486, loss@max: 1.461660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.063581, loss@max: 1.460865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.049892, loss@max: 1.438425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.065114, loss@max: 1.463341, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.029685, loss@max: 1.437144, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.040928, loss@max: 1.455410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.042023, loss@max: 1.442635, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.064144, loss@max: 1.465679, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 60, LS: 0.588692, LT: 0.589001, Top1S: 82.506172, Top1T: 82.481483Best acc: 82.506172 +Train:epoch: 61, loss@min: 1.028491, loss@max: 1.444862, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.576982, LT: 0.576864, Top1S: 82.839508, Top1T: 82.876541Best acc: 82.876541 +Train:epoch: 62, loss@min: 1.061003, loss@max: 1.453354, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.565847, LT: 0.565485, Top1S: 83.148148, Top1T: 83.074074Best acc: 83.148148 +Train:epoch: 63, loss@min: 1.053055, loss@max: 1.431114, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 63, LS: 0.553070, LT: 0.552702, Top1S: 83.419754, Top1T: 83.333336Best acc: 83.419754 +Train:epoch: 64, loss@min: 1.067103, loss@max: 1.453482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.541482, LT: 0.541655, Top1S: 83.629631, Top1T: 83.543213Best acc: 83.629631 +Train:epoch: 65, loss@min: 1.063142, loss@max: 1.448960, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 65, LS: 0.533464, LT: 0.534096, Top1S: 83.888885, Top1T: 83.814812Best acc: 83.888885 +Train:epoch: 66, loss@min: 1.059902, loss@max: 1.449445, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.530596, LT: 0.531537, Top1S: 83.938271, Top1T: 83.962959Best acc: 83.962959 +Train:epoch: 67, loss@min: 1.047519, loss@max: 1.440054, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 67, LS: 0.533041, LT: 0.534075, Top1S: 83.876541, Top1T: 83.851852 +Train:epoch: 68, loss@min: 0.998683, loss@max: 1.402232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.535436, LT: 0.536628, Top1S: 83.679008, Top1T: 83.765434 +Train:epoch: 69, loss@min: 1.017914, loss@max: 1.418835, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 11:09:42 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.537796, loss@max: 1.646263, Top1S acc: 100.000000, Top1T acc: 38.750000 +Train:epoch: 2, loss@min: 4.242187, loss@max: 1.745154, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.431051, loss@max: 1.711256, Top1S acc: 100.000000, Top1T acc: 48.750000 +Train:epoch: 4, loss@min: 3.303744, loss@max: 1.810861, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 5, loss@min: 2.938500, loss@max: 1.843696, Top1S acc: 100.000000, Top1T acc: 62.500000 +Train:epoch: 6, loss@min: 2.601105, loss@max: 1.867520, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 7, loss@min: 2.496023, loss@max: 1.904096, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 8, loss@min: 2.309808, loss@max: 1.906258, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.956361, loss@max: 1.814903, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.057075, loss@max: 1.846277, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 11, loss@min: 1.930835, loss@max: 1.795133, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 1.954119, loss@max: 1.783008, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.817745, loss@max: 1.704360, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.844362, loss@max: 1.679432, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.668781, loss@max: 1.608354, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 16, loss@min: 1.787607, loss@max: 1.616558, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 17, loss@min: 1.705167, loss@max: 1.589425, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 18, loss@min: 1.712246, loss@max: 1.575884, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.557268, loss@max: 1.536591, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 20, loss@min: 1.624329, loss@max: 1.544975, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.567925, loss@max: 1.542280, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 22, loss@min: 1.478665, loss@max: 1.514087, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.451383, loss@max: 1.516025, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.475670, loss@max: 1.532860, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 25, loss@min: 1.324633, loss@max: 1.501568, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.460972, loss@max: 1.560700, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 27, loss@min: 1.316629, loss@max: 1.528010, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 28, loss@min: 1.309233, loss@max: 1.521242, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.233903, loss@max: 1.513368, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.247799, loss@max: 1.523771, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.266400, loss@max: 1.557301, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.205944, loss@max: 1.532494, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 33, loss@min: 1.232925, loss@max: 1.547858, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 34, loss@min: 1.118093, loss@max: 1.503538, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 35, loss@min: 1.228419, loss@max: 1.548243, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.218761, loss@max: 1.543273, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.174105, loss@max: 1.529665, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 38, loss@min: 1.150997, loss@max: 1.504475, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 39, loss@min: 1.122897, loss@max: 1.487783, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.210456, loss@max: 1.503256, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.139438, loss@max: 1.481908, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 42, loss@min: 1.168527, loss@max: 1.473348, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 43, loss@min: 1.155313, loss@max: 1.463367, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.122004, loss@max: 1.453584, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.094798, loss@max: 1.440774, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 46, loss@min: 1.096656, loss@max: 1.438523, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 47, loss@min: 1.102000, loss@max: 1.463962, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.120039, loss@max: 1.468470, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.091194, loss@max: 1.448142, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.091099, loss@max: 1.470199, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.122250, loss@max: 1.487550, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.045587, loss@max: 1.451670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.064979, loss@max: 1.464509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.065322, loss@max: 1.462377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.052662, loss@max: 1.438998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.064061, loss@max: 1.462988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.029393, loss@max: 1.436585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.041592, loss@max: 1.455617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.044294, loss@max: 1.442362, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.067998, loss@max: 1.465838, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 60, LS: 0.592553, LT: 0.592856, Top1S: 82.654320, Top1T: 82.567902Best acc: 82.654320 +Train:epoch: 61, loss@min: 1.029225, loss@max: 1.443032, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.580549, LT: 0.580901, Top1S: 82.790123, Top1T: 82.802467Best acc: 82.802467 +Train:epoch: 62, loss@min: 1.064726, loss@max: 1.453637, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 62, LS: 0.568815, LT: 0.569213, Top1S: 83.123459, Top1T: 83.148148Best acc: 83.148148 +Train:epoch: 63, loss@min: 1.058536, loss@max: 1.430504, Top1S acc: 100.000000, Top1T acc: 98.750000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 550} + +------------------------------------------- +Fri Jan 19 11:16:20 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.537796, loss@max: 1.646263, Top1S acc: 100.000000, Top1T acc: 38.750000 +Train:epoch: 2, loss@min: 4.242187, loss@max: 1.745154, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.431051, loss@max: 1.711256, Top1S acc: 100.000000, Top1T acc: 48.750000 +Train:epoch: 4, loss@min: 3.303744, loss@max: 1.810861, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 5, loss@min: 2.938500, loss@max: 1.843696, Top1S acc: 100.000000, Top1T acc: 62.500000 +Train:epoch: 6, loss@min: 2.601105, loss@max: 1.867520, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 7, loss@min: 2.496023, loss@max: 1.904096, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 8, loss@min: 2.309808, loss@max: 1.906258, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.956361, loss@max: 1.814903, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.057075, loss@max: 1.846277, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 11, loss@min: 1.930835, loss@max: 1.795133, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 1.954119, loss@max: 1.783008, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.817745, loss@max: 1.704360, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.844362, loss@max: 1.679432, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.668781, loss@max: 1.608354, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 16, loss@min: 1.787607, loss@max: 1.616558, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 17, loss@min: 1.705167, loss@max: 1.589425, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 18, loss@min: 1.712246, loss@max: 1.575884, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.557268, loss@max: 1.536591, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 20, loss@min: 1.624329, loss@max: 1.544975, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.567925, loss@max: 1.542280, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 22, loss@min: 1.478665, loss@max: 1.514087, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.451383, loss@max: 1.516025, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.475670, loss@max: 1.532860, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 25, loss@min: 1.324633, loss@max: 1.501568, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.460972, loss@max: 1.560700, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 27, loss@min: 1.316629, loss@max: 1.528010, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 28, loss@min: 1.309233, loss@max: 1.521242, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.233903, loss@max: 1.513368, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.247799, loss@max: 1.523771, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.266400, loss@max: 1.557301, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.205944, loss@max: 1.532494, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 33, loss@min: 1.232925, loss@max: 1.547858, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 34, loss@min: 1.118093, loss@max: 1.503538, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 35, loss@min: 1.228419, loss@max: 1.548243, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.218761, loss@max: 1.543273, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.174105, loss@max: 1.529665, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 38, loss@min: 1.150997, loss@max: 1.504475, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 39, loss@min: 1.122897, loss@max: 1.487783, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.210456, loss@max: 1.503256, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.139438, loss@max: 1.481908, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 42, loss@min: 1.168527, loss@max: 1.473348, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 43, loss@min: 1.155313, loss@max: 1.463367, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.122004, loss@max: 1.453584, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.094798, loss@max: 1.440774, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 46, loss@min: 1.096656, loss@max: 1.438523, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 47, loss@min: 1.102000, loss@max: 1.463962, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.120039, loss@max: 1.468470, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.091194, loss@max: 1.448142, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.091099, loss@max: 1.470199, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.122250, loss@max: 1.487550, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.045587, loss@max: 1.451670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.064979, loss@max: 1.464509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.065322, loss@max: 1.462377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.052662, loss@max: 1.438998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.064061, loss@max: 1.462988, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.029393, loss@max: 1.436585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.041592, loss@max: 1.455617, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.044294, loss@max: 1.442362, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.067998, loss@max: 1.465838, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 61, loss@min: 1.077258, loss@max: 1.451866, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 62, loss@min: 1.072992, loss@max: 1.452311, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 63, loss@min: 1.077928, loss@max: 1.458461, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 64, loss@min: 1.058589, loss@max: 1.446463, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 65, loss@min: 1.035577, loss@max: 1.428885, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 1.073170, loss@max: 1.444457, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 67, loss@min: 0.996930, loss@max: 1.406644, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 1.029821, loss@max: 1.423578, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 69, loss@min: 1.012632, loss@max: 1.424906, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 1.039241, loss@max: 1.430262, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 71, loss@min: 1.002148, loss@max: 1.412804, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 1.044531, loss@max: 1.438526, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 73, loss@min: 1.024737, loss@max: 1.426922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 1.063195, loss@max: 1.442097, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 75, loss@min: 1.084341, loss@max: 1.456800, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 76, loss@min: 1.070158, loss@max: 1.444530, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 77, loss@min: 1.045036, loss@max: 1.442222, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 78, loss@min: 1.069300, loss@max: 1.432948, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 79, loss@min: 0.990500, loss@max: 1.408296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 1.009096, loss@max: 1.422995, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 1.048406, loss@max: 1.439322, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 82, loss@min: 1.033759, loss@max: 1.433266, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 83, loss@min: 1.018421, loss@max: 1.437102, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 84, loss@min: 0.981866, loss@max: 1.411619, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.993890, loss@max: 1.414696, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.998539, loss@max: 1.407823, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 1.057903, loss@max: 1.437906, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 88, loss@min: 0.986645, loss@max: 1.401134, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.983456, loss@max: 1.397760, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 1.052435, loss@max: 1.430219, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 91, loss@min: 1.003454, loss@max: 1.408012, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 55} + +------------------------------------------- +Fri Jan 19 11:19:00 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.537796, loss@max: 1.646263, Top1S acc: 100.000000, Top1T acc: 38.750000 +Train:epoch: 2, loss@min: 4.242187, loss@max: 1.745154, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.431051, loss@max: 1.711256, Top1S acc: 100.000000, Top1T acc: 48.750000 +Train:epoch: 4, loss@min: 3.303744, loss@max: 1.810861, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 5, loss@min: 2.938500, loss@max: 1.843696, Top1S acc: 100.000000, Top1T acc: 62.500000 +Train:epoch: 6, loss@min: 2.601105, loss@max: 1.867520, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 7, loss@min: 2.496023, loss@max: 1.904096, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 8, loss@min: 2.309808, loss@max: 1.906258, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.956361, loss@max: 1.814903, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.057075, loss@max: 1.846277, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 11, loss@min: 1.930835, loss@max: 1.795133, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 1.954119, loss@max: 1.783008, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.817745, loss@max: 1.704360, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.844362, loss@max: 1.679432, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.668781, loss@max: 1.608354, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 16, loss@min: 1.787607, loss@max: 1.616558, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 17, loss@min: 1.705167, loss@max: 1.589425, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 18, loss@min: 1.712246, loss@max: 1.575884, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.557268, loss@max: 1.536591, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 20, loss@min: 1.624329, loss@max: 1.544975, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.567925, loss@max: 1.542280, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 22, loss@min: 1.478665, loss@max: 1.514087, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.451383, loss@max: 1.516025, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.475670, loss@max: 1.532860, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 25, loss@min: 1.324633, loss@max: 1.501568, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.460972, loss@max: 1.560700, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 27, loss@min: 1.316629, loss@max: 1.528010, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 28, loss@min: 1.309233, loss@max: 1.521242, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.233903, loss@max: 1.513368, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.247799, loss@max: 1.523771, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.266400, loss@max: 1.557301, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.205944, loss@max: 1.532494, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 33, loss@min: 1.232925, loss@max: 1.547858, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 34, loss@min: 1.118093, loss@max: 1.503538, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 35, loss@min: 1.228419, loss@max: 1.548243, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.218761, loss@max: 1.543273, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.174105, loss@max: 1.529665, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 38, loss@min: 1.150997, loss@max: 1.504475, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 39, loss@min: 1.122897, loss@max: 1.487783, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.210456, loss@max: 1.503256, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.139438, loss@max: 1.481908, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 42, loss@min: 1.168527, loss@max: 1.473348, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 43, loss@min: 1.155313, loss@max: 1.463367, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.122004, loss@max: 1.453584, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.094798, loss@max: 1.440774, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 46, loss@min: 1.096656, loss@max: 1.438523, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 47, loss@min: 1.102000, loss@max: 1.463962, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.120039, loss@max: 1.468470, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.091194, loss@max: 1.448142, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.091099, loss@max: 1.470199, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.122250, loss@max: 1.487550, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.045587, loss@max: 1.451670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.064979, loss@max: 1.464509, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.065322, loss@max: 1.462377, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.052662, loss@max: 1.438998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.566319, LT: 0.565387, Top1S: 82.753090, Top1T: 82.740738Best acc: 82.753090 +Train:epoch: 56, loss@min: 1.034894, loss@max: 1.440485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.578907, LT: 0.578505, Top1S: 82.518517, Top1T: 82.543213 +Train:epoch: 57, loss@min: 1.164513, loss@max: 1.499476, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 57, LS: 0.590921, LT: 0.591271, Top1S: 82.395065, Top1T: 82.444443 +Train:epoch: 58, loss@min: 1.055080, loss@max: 1.451818, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 58, LS: 0.599561, LT: 0.600664, Top1S: 82.283951, Top1T: 82.259262 +Train:epoch: 59, loss@min: 1.048014, loss@max: 1.457554, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 59, LS: 0.599050, LT: 0.600648, Top1S: 82.444443, Top1T: 82.234566 +Train:epoch: 60, loss@min: 1.044758, loss@max: 1.459391, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 11:29:10 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.538259, loss@max: 1.646335, Top1S acc: 100.000000, Top1T acc: 38.750000 +Train:epoch: 2, loss@min: 4.242124, loss@max: 1.745021, Top1S acc: 100.000000, Top1T acc: 51.250000 +Train:epoch: 3, loss@min: 3.429842, loss@max: 1.710759, Top1S acc: 100.000000, Top1T acc: 48.750000 +Train:epoch: 4, loss@min: 3.301343, loss@max: 1.809972, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 5, loss@min: 2.934340, loss@max: 1.842411, Top1S acc: 100.000000, Top1T acc: 62.500000 +Train:epoch: 6, loss@min: 2.597363, loss@max: 1.866329, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 7, loss@min: 2.490781, loss@max: 1.902566, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 8, loss@min: 2.306442, loss@max: 1.905333, Top1S acc: 100.000000, Top1T acc: 76.250000 +Train:epoch: 9, loss@min: 1.953045, loss@max: 1.813838, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 10, loss@min: 2.054692, loss@max: 1.845748, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 11, loss@min: 1.926665, loss@max: 1.794257, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 12, loss@min: 1.948923, loss@max: 1.781809, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 13, loss@min: 1.813734, loss@max: 1.703360, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 14, loss@min: 1.839896, loss@max: 1.678305, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 15, loss@min: 1.664819, loss@max: 1.607350, Top1S acc: 100.000000, Top1T acc: 86.250000 +Train:epoch: 16, loss@min: 1.781640, loss@max: 1.614969, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 17, loss@min: 1.700451, loss@max: 1.588185, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 18, loss@min: 1.708117, loss@max: 1.575037, Top1S acc: 100.000000, Top1T acc: 88.750000 +Train:epoch: 19, loss@min: 1.554981, loss@max: 1.536088, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 20, loss@min: 1.619218, loss@max: 1.544021, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.565213, loss@max: 1.541767, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 22, loss@min: 1.474948, loss@max: 1.513454, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.448617, loss@max: 1.515591, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 24, loss@min: 1.473589, loss@max: 1.532254, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 25, loss@min: 1.323462, loss@max: 1.500826, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 26, loss@min: 1.455936, loss@max: 1.559254, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 27, loss@min: 1.314645, loss@max: 1.526893, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 28, loss@min: 1.306192, loss@max: 1.520244, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 29, loss@min: 1.233122, loss@max: 1.512926, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 30, loss@min: 1.245754, loss@max: 1.523097, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 31, loss@min: 1.265090, loss@max: 1.557038, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 32, loss@min: 1.204688, loss@max: 1.532691, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 33, loss@min: 1.228297, loss@max: 1.547478, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 34, loss@min: 1.115155, loss@max: 1.503693, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 35, loss@min: 1.225265, loss@max: 1.548380, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 36, loss@min: 1.214891, loss@max: 1.543340, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 37, loss@min: 1.171525, loss@max: 1.529543, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 38, loss@min: 1.147534, loss@max: 1.503982, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 39, loss@min: 1.120564, loss@max: 1.487159, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 40, loss@min: 1.207870, loss@max: 1.502502, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 41, loss@min: 1.138630, loss@max: 1.481618, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 42, loss@min: 1.164721, loss@max: 1.472506, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 43, loss@min: 1.153720, loss@max: 1.463378, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 44, loss@min: 1.120209, loss@max: 1.453580, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 45, loss@min: 1.093977, loss@max: 1.441661, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 46, loss@min: 1.096712, loss@max: 1.439446, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 47, loss@min: 1.101977, loss@max: 1.465373, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 48, loss@min: 1.120814, loss@max: 1.469641, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 49, loss@min: 1.088686, loss@max: 1.448243, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 50, loss@min: 1.089427, loss@max: 1.469870, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 51, loss@min: 1.120906, loss@max: 1.486691, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 1.045008, loss@max: 1.450753, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 1.063785, loss@max: 1.463068, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 1.064797, loss@max: 1.461666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 1.051787, loss@max: 1.438743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 1.064684, loss@max: 1.462974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 1.029917, loss@max: 1.436773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 1.041586, loss@max: 1.455487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 1.043190, loss@max: 1.442401, Top1S acc: 100.000000, Top1T acc: 98.750000 +Train:epoch: 60, loss@min: 1.066066, loss@max: 1.465718, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 60, LS: 0.591063, LT: 0.591410, Top1S: 82.580246, Top1T: 82.530861Best acc: 82.580246 +Train:epoch: 61, loss@min: 1.028925, loss@max: 1.444016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.579306, LT: 0.579460, Top1S: 82.827164, Top1T: 82.814812Best acc: 82.827164 +Train:epoch: 62, loss@min: 1.062932, loss@max: 1.453640, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 62, LS: 0.567908, LT: 0.567948, Top1S: 83.111115, Top1T: 83.086418Best acc: 83.111115 +Train:epoch: 63, loss@min: 1.055878, loss@max: 1.430939, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 63, LS: 0.554951, LT: 0.555035, Top1S: 83.456787, Top1T: 83.320984Best acc: 83.456787 +Train:epoch: 64, loss@min: 1.070343, loss@max: 1.453941, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.543013, LT: 0.543652, Top1S: 83.629631, Top1T: 83.592590Best acc: 83.629631 +Train:epoch: 65, loss@min: 1.064405, loss@max: 1.449409, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 65, LS: 0.534656, LT: 0.535757, Top1S: 83.913582, Top1T: 83.814812Best acc: 83.913582 +Train:epoch: 66, loss@min: 1.061198, loss@max: 1.450155, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 66, LS: 0.531529, LT: 0.532898, Top1S: 84.111115, Top1T: 83.901237Best acc: 84.111115 +Train:epoch: 67, loss@min: 1.045903, loss@max: 1.439835, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 67, LS: 0.533593, LT: 0.534983, Top1S: 83.864197, Top1T: 83.901237 +Train:epoch: 68, loss@min: 0.999011, loss@max: 1.402089, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.535643, LT: 0.537121, Top1S: 83.703705, Top1T: 83.740738 +Train:epoch: 69, loss@min: 1.019070, loss@max: 1.419621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 0.537631, LT: 0.539055, Top1S: 83.604935, Top1T: 83.703705 +Train:epoch: 70, loss@min: 1.083569, loss@max: 1.449172, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 70, LS: 0.537571, LT: 0.538534, Top1S: 83.691360, Top1T: 83.740738 +Train:epoch: 71, loss@min: 1.026061, loss@max: 1.434699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.538822, LT: 0.539207, Top1S: 83.691360, Top1T: 83.765434 +Train:epoch: 72, loss@min: 1.027978, loss@max: 1.425100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.540647, LT: 0.540421, Top1S: 83.740738, Top1T: 83.679008 +Train:epoch: 73, loss@min: 1.002953, loss@max: 1.420318, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.544620, LT: 0.543804, Top1S: 83.740738, Top1T: 83.691360 +Train:epoch: 74, loss@min: 1.031001, loss@max: 1.444995, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.550337, LT: 0.548860, Top1S: 83.555557, Top1T: 83.629631 +Train:epoch: 75, loss@min: 1.011789, loss@max: 1.431869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.556939, LT: 0.555164, Top1S: 83.333336, Top1T: 83.407410 +Train:epoch: 76, loss@min: 1.049635, loss@max: 1.448363, Top1S acc: 100.000000, Top1T acc: 98.750000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 11:54:14 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.493348, loss@max: 1.625930, Top1S acc: 100.000000, Top1T acc: 43.750000 +Train:epoch: 2, loss@min: 4.230625, loss@max: 1.730691, Top1S acc: 100.000000, Top1T acc: 44.375000 +Train:epoch: 3, loss@min: 3.888165, loss@max: 1.809889, Top1S acc: 100.000000, Top1T acc: 49.375000 +Train:epoch: 4, loss@min: 3.451844, loss@max: 1.838010, Top1S acc: 100.000000, Top1T acc: 56.250000 +Train:epoch: 5, loss@min: 3.114461, loss@max: 1.881726, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 6, loss@min: 2.784841, loss@max: 1.894747, Top1S acc: 100.000000, Top1T acc: 66.250000 +Train:epoch: 7, loss@min: 2.812394, loss@max: 1.969848, Top1S acc: 100.000000, Top1T acc: 71.875000 +Train:epoch: 8, loss@min: 2.447231, loss@max: 1.917144, Top1S acc: 100.000000, Top1T acc: 73.750000 +Train:epoch: 9, loss@min: 2.387648, loss@max: 1.920196, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 10, loss@min: 2.290726, loss@max: 1.894495, Top1S acc: 100.000000, Top1T acc: 75.625000 +Train:epoch: 11, loss@min: 2.346352, loss@max: 1.907711, Top1S acc: 100.000000, Top1T acc: 73.125000 +Train:epoch: 12, loss@min: 2.193049, loss@max: 1.845489, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 13, loss@min: 2.133681, loss@max: 1.805214, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 14, loss@min: 2.123007, loss@max: 1.773154, Top1S acc: 100.000000, Top1T acc: 78.750000 +Train:epoch: 15, loss@min: 2.017398, loss@max: 1.722905, Top1S acc: 100.000000, Top1T acc: 80.625000 +Train:epoch: 16, loss@min: 1.949742, loss@max: 1.690425, Top1S acc: 100.000000, Top1T acc: 83.750000 +Train:epoch: 17, loss@min: 2.014968, loss@max: 1.680568, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 18, loss@min: 1.913430, loss@max: 1.641021, Top1S acc: 100.000000, Top1T acc: 82.500000 +Train:epoch: 19, loss@min: 1.832713, loss@max: 1.612064, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 20, loss@min: 1.748905, loss@max: 1.595797, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 21, loss@min: 1.817018, loss@max: 1.613639, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 22, loss@min: 1.706983, loss@max: 1.597094, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 23, loss@min: 1.691206, loss@max: 1.595055, Top1S acc: 100.000000, Top1T acc: 87.500000 +Train:epoch: 24, loss@min: 1.621494, loss@max: 1.605186, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 25, loss@min: 1.618673, loss@max: 1.611511, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 26, loss@min: 1.634568, loss@max: 1.636411, Top1S acc: 100.000000, Top1T acc: 88.125000 +Train:epoch: 27, loss@min: 1.508815, loss@max: 1.591031, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 28, loss@min: 1.502440, loss@max: 1.609072, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 29, loss@min: 1.537313, loss@max: 1.632049, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 30, loss@min: 1.607940, loss@max: 1.664764, Top1S acc: 100.000000, Top1T acc: 89.375000 +Train:epoch: 31, loss@min: 1.491348, loss@max: 1.625464, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 32, loss@min: 1.438479, loss@max: 1.622941, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 33, loss@min: 1.376582, loss@max: 1.607417, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 34, loss@min: 1.405882, loss@max: 1.605730, Top1S acc: 100.000000, Top1T acc: 91.875000 +Train:epoch: 35, loss@min: 1.352353, loss@max: 1.598929, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 36, loss@min: 1.372221, loss@max: 1.606449, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 37, loss@min: 1.368755, loss@max: 1.594676, Top1S acc: 100.000000, Top1T acc: 93.125000 +Train:epoch: 38, loss@min: 1.418452, loss@max: 1.618468, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 39, loss@min: 1.406646, loss@max: 1.610636, Top1S acc: 100.000000, Top1T acc: 94.375000 +Train:epoch: 40, loss@min: 1.280755, loss@max: 1.562528, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 41, loss@min: 1.300353, loss@max: 1.548685, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 42, loss@min: 1.415642, loss@max: 1.585539, Top1S acc: 100.000000, Top1T acc: 91.250000 +Train:epoch: 43, loss@min: 1.325568, loss@max: 1.549609, Top1S acc: 100.000000, Top1T acc: 95.625000 +Train:epoch: 44, loss@min: 1.420657, loss@max: 1.575406, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 45, loss@min: 1.400377, loss@max: 1.577107, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 46, loss@min: 1.386876, loss@max: 1.572081, Top1S acc: 100.000000, Top1T acc: 93.750000 +Train:epoch: 47, loss@min: 1.249894, loss@max: 1.534575, Top1S acc: 100.000000, Top1T acc: 96.250000 +Train:epoch: 48, loss@min: 1.305226, loss@max: 1.560976, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 49, loss@min: 1.307657, loss@max: 1.550584, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 50, loss@min: 1.269589, loss@max: 1.553074, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 50, LS: 0.511573, LT: 0.504554, Top1S: 83.234566, Top1T: 83.395065Best acc: 83.395065 +Train:epoch: 51, loss@min: 1.216532, loss@max: 1.536083, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 51, LS: 0.511428, LT: 0.504457, Top1S: 83.234566, Top1T: 83.259262 +Train:epoch: 52, loss@min: 1.239733, loss@max: 1.538376, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 52, LS: 0.511899, LT: 0.505529, Top1S: 83.358025, Top1T: 83.358025 +Train:epoch: 53, loss@min: 1.238601, loss@max: 1.540123, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 53, LS: 0.511278, LT: 0.505517, Top1S: 83.419754, Top1T: 83.432098Best acc: 83.432098 +Train:epoch: 54, loss@min: 1.293004, loss@max: 1.566325, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 54, LS: 0.511235, LT: 0.506348, Top1S: 83.444443, Top1T: 83.493828Best acc: 83.493828 +Train:epoch: 55, loss@min: 1.181571, loss@max: 1.510275, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 55, LS: 0.511128, LT: 0.507090, Top1S: 83.481483, Top1T: 83.567902Best acc: 83.567902 +Train:epoch: 56, loss@min: 1.210768, loss@max: 1.534105, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 56, LS: 0.509875, LT: 0.506018, Top1S: 83.444443, Top1T: 83.641975Best acc: 83.641975 +Train:epoch: 57, loss@min: 1.214138, loss@max: 1.542965, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 57, LS: 0.510682, LT: 0.506484, Top1S: 83.407410, Top1T: 83.567902 +Train:epoch: 58, loss@min: 1.186185, loss@max: 1.528637, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 58, LS: 0.512789, LT: 0.507866, Top1S: 83.358025, Top1T: 83.580246 +Train:epoch: 59, loss@min: 1.172221, loss@max: 1.525096, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 59, LS: 0.515926, LT: 0.509953, Top1S: 83.481483, Top1T: 83.617287 +Train:epoch: 60, loss@min: 1.111035, loss@max: 1.496028, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 60, LS: 0.517973, LT: 0.511197, Top1S: 83.419754, Top1T: 83.567902 +Train:epoch: 61, loss@min: 1.202796, loss@max: 1.531320, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 61, LS: 0.516718, LT: 0.509523, Top1S: 83.543213, Top1T: 83.716049Best acc: 83.716049 +Train:epoch: 62, loss@min: 1.180394, loss@max: 1.513777, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 62, LS: 0.513854, LT: 0.506583, Top1S: 83.703705, Top1T: 83.716049 +Train:epoch: 63, loss@min: 1.272924, loss@max: 1.547725, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 63, LS: 0.508540, LT: 0.501537, Top1S: 83.765434, Top1T: 83.888885Best acc: 83.888885 +Train:epoch: 64, loss@min: 1.193103, loss@max: 1.525820, Top1S acc: 100.000000, Top1T acc: 96.250000 + Test:epoch: 64, LS: 0.502257, LT: 0.495761, Top1S: 83.876541, Top1T: 83.925926Best acc: 83.925926 +Train:epoch: 65, loss@min: 1.202708, loss@max: 1.518660, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 65, LS: 0.498264, LT: 0.492492, Top1S: 83.876541, Top1T: 84.074074Best acc: 84.074074 +Train:epoch: 66, loss@min: 1.132175, loss@max: 1.508328, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 66, LS: 0.496047, LT: 0.491108, Top1S: 84.049385, Top1T: 84.160492Best acc: 84.160492 +Train:epoch: 67, loss@min: 1.131534, loss@max: 1.483171, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 67, LS: 0.495845, LT: 0.491507, Top1S: 84.000000, Top1T: 84.074074 +Train:epoch: 68, loss@min: 1.158891, loss@max: 1.502964, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 68, LS: 0.497360, LT: 0.493564, Top1S: 83.975311, Top1T: 84.111115 +Train:epoch: 69, loss@min: 1.104710, loss@max: 1.479150, Top1S acc: 100.000000, Top1T acc: 99.375000 + Test:epoch: 69, LS: 0.500286, LT: 0.496750, Top1S: 84.012344, Top1T: 84.123459 +Train:epoch: 70, loss@min: 1.214649, loss@max: 1.520284, Top1S acc: 100.000000, Top1T acc: 95.625000 + Test:epoch: 70, LS: 0.504207, LT: 0.500361, Top1S: 83.913582, Top1T: 84.061729 +Train:epoch: 71, loss@min: 1.226774, loss@max: 1.516068, Top1S acc: 100.000000, Top1T acc: 95.000000 + Test:epoch: 71, LS: 0.510511, LT: 0.506232, Top1S: 83.802467, Top1T: 83.839508 +Train:epoch: 72, loss@min: 1.160087, loss@max: 1.498706, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 72, LS: 0.518407, LT: 0.513697, Top1S: 83.654320, Top1T: 83.740738 +Train:epoch: 73, loss@min: 1.099000, loss@max: 1.489625, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 73, LS: 0.526592, LT: 0.521540, Top1S: 83.530861, Top1T: 83.604935 +Train:epoch: 74, loss@min: 1.081842, loss@max: 1.470508, Top1S acc: 100.000000, Top1T acc: 98.750000 + Test:epoch: 74, LS: 0.532052, LT: 0.526874, Top1S: 83.419754, Top1T: 83.617287 +Train:epoch: 75, loss@min: 1.139599, loss@max: 1.486268, Top1S acc: 100.000000, Top1T acc: 96.875000 + Test:epoch: 75, LS: 0.533200, LT: 0.528011, Top1S: 83.481483, Top1T: 83.617287 +Train:epoch: 76, loss@min: 1.120036, loss@max: 1.488683, Top1S acc: 100.000000, Top1T acc: 98.125000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 55} + +------------------------------------------- +Fri Jan 19 12:35:22 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.748939, loss@max: 1.416073, Top1S acc: 100.000000, Top1T acc: 52.500000 +Train:epoch: 2, loss@min: 3.333283, loss@max: 1.473436, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 3.011606, loss@max: 1.547014, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 2.609346, loss@max: 1.596371, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 5, loss@min: 2.370902, loss@max: 1.666515, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.166249, loss@max: 1.721190, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 2.003296, loss@max: 1.762835, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.860069, loss@max: 1.776586, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 9, loss@min: 1.616982, loss@max: 1.743222, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 10, loss@min: 1.525535, loss@max: 1.721016, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 11, loss@min: 1.564619, loss@max: 1.712339, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 12, loss@min: 1.627832, loss@max: 1.727182, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 13, loss@min: 1.466472, loss@max: 1.628270, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 14, loss@min: 1.349030, loss@max: 1.568793, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 15, loss@min: 1.277654, loss@max: 1.501617, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 16, loss@min: 1.369693, loss@max: 1.511505, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 17, loss@min: 1.314452, loss@max: 1.461886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.263124, loss@max: 1.409205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.253791, loss@max: 1.389080, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 1.251844, loss@max: 1.389018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.376287, loss@max: 1.455011, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 22, loss@min: 1.255563, loss@max: 1.379099, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 23, loss@min: 1.262627, loss@max: 1.394376, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 24, loss@min: 1.218839, loss@max: 1.423765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.129575, loss@max: 1.376758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.102400, loss@max: 1.379399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.039296, loss@max: 1.369756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.130202, loss@max: 1.433318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.063445, loss@max: 1.425257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.097151, loss@max: 1.448103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.087115, loss@max: 1.447253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036814, loss@max: 1.425708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.034274, loss@max: 1.426548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.016650, loss@max: 1.429888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.992522, loss@max: 1.397426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.039471, loss@max: 1.422436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.054190, loss@max: 1.452376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.979227, loss@max: 1.402575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.032247, loss@max: 1.419665, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 40, loss@min: 1.019713, loss@max: 1.427660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.975626, loss@max: 1.386530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.991787, loss@max: 1.391547, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.015162, loss@max: 1.408198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 1.022573, loss@max: 1.396564, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.069250, loss@max: 1.415914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.996862, loss@max: 1.359293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.078408, loss@max: 1.407873, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 48, loss@min: 0.988334, loss@max: 1.362060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 1.032443, loss@max: 1.403548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 1.017701, loss@max: 1.403554, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 1.062052, loss@max: 1.414410, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 52, loss@min: 0.987961, loss@max: 1.392586, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.983834, loss@max: 1.389055, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.985575, loss@max: 1.397695, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.974271, loss@max: 1.390894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.799600, LT: 0.797960, Top1S: 75.666664, Top1T: 75.777779Best acc: 75.777779 +Train:epoch: 56, loss@min: 0.960148, loss@max: 1.379101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.813795, LT: 0.810882, Top1S: 75.444443, Top1T: 75.666664 +Train:epoch: 57, loss@min: 0.983667, loss@max: 1.397324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.823596, LT: 0.819684, Top1S: 75.358025, Top1T: 75.506172 +Train:epoch: 58, loss@min: 0.975197, loss@max: 1.391457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.828514, LT: 0.824981, Top1S: 75.296295, Top1T: 75.419754 +Train:epoch: 59, loss@min: 0.963510, loss@max: 1.376488, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.831852, LT: 0.829290, Top1S: 75.209877, Top1T: 75.197533 +Train:epoch: 60, loss@min: 1.020828, loss@max: 1.415240, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Fri Jan 19 12:43:39 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.748939, loss@max: 1.416073, Top1S acc: 100.000000, Top1T acc: 52.500000 +Train:epoch: 2, loss@min: 3.333283, loss@max: 1.473436, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 3.011606, loss@max: 1.547014, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 4, loss@min: 2.609346, loss@max: 1.596371, Top1S acc: 100.000000, Top1T acc: 72.500000 +Train:epoch: 5, loss@min: 2.370902, loss@max: 1.666515, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.166249, loss@max: 1.721190, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 7, loss@min: 2.003296, loss@max: 1.762835, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.860069, loss@max: 1.776586, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 9, loss@min: 1.616982, loss@max: 1.743222, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 10, loss@min: 1.525535, loss@max: 1.721016, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 11, loss@min: 1.564619, loss@max: 1.712339, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 12, loss@min: 1.627832, loss@max: 1.727182, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 13, loss@min: 1.466472, loss@max: 1.628270, Top1S acc: 100.000000, Top1T acc: 92.500000 +Train:epoch: 14, loss@min: 1.349030, loss@max: 1.568793, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 15, loss@min: 1.277654, loss@max: 1.501617, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 16, loss@min: 1.369693, loss@max: 1.511505, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 17, loss@min: 1.314452, loss@max: 1.461886, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.263124, loss@max: 1.409205, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.253791, loss@max: 1.389080, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 20, loss@min: 1.251844, loss@max: 1.389018, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.376287, loss@max: 1.455011, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 22, loss@min: 1.255563, loss@max: 1.379099, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 23, loss@min: 1.262627, loss@max: 1.394376, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 24, loss@min: 1.218839, loss@max: 1.423765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.129575, loss@max: 1.376758, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.102400, loss@max: 1.379399, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.039296, loss@max: 1.369756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.130202, loss@max: 1.433318, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.063445, loss@max: 1.425257, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.097151, loss@max: 1.448103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.087115, loss@max: 1.447253, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.036814, loss@max: 1.425708, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 1.034274, loss@max: 1.426548, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.016650, loss@max: 1.429888, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.992522, loss@max: 1.397426, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.039471, loss@max: 1.422436, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.054190, loss@max: 1.452376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.979227, loss@max: 1.402575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 1.032247, loss@max: 1.419665, Top1S acc: 100.000000, Top1T acc: 97.500000 +Train:epoch: 40, loss@min: 1.019713, loss@max: 1.427660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.748551, LT: 0.750089, Top1S: 75.604935, Top1T: 75.691360Best acc: 75.691360 +Train:epoch: 41, loss@min: 0.994737, loss@max: 1.409010, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 0.744226, LT: 0.745275, Top1S: 76.012344, Top1T: 75.987656Best acc: 76.012344 +Train:epoch: 42, loss@min: 1.034034, loss@max: 1.421474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 0.740024, LT: 0.739628, Top1S: 76.234566, Top1T: 76.234566Best acc: 76.234566 +Train:epoch: 43, loss@min: 0.989996, loss@max: 1.385748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 0.738396, LT: 0.735942, Top1S: 76.407410, Top1T: 76.481483Best acc: 76.481483 +Train:epoch: 44, loss@min: 1.051143, loss@max: 1.400290, Top1S acc: 100.000000, Top1T acc: 97.500000 + Test:epoch: 44, LS: 0.738705, LT: 0.734946, Top1S: 76.469139, Top1T: 76.691360Best acc: 76.691360 +Train:epoch: 45, loss@min: 1.027935, loss@max: 1.381267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 0.743026, LT: 0.738791, Top1S: 76.419754, Top1T: 76.567902 +Train:epoch: 46, loss@min: 1.033802, loss@max: 1.381418, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 0.750558, LT: 0.746855, Top1S: 76.271606, Top1T: 76.555557 +Train:epoch: 47, loss@min: 1.021317, loss@max: 1.387271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.757957, LT: 0.755641, Top1S: 76.283951, Top1T: 76.296295 +Train:epoch: 48, loss@min: 0.984341, loss@max: 1.373372, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 0.766705, LT: 0.766156, Top1S: 76.012344, Top1T: 76.049385 +Train:epoch: 49, loss@min: 1.035523, loss@max: 1.419160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.775941, LT: 0.776622, Top1S: 75.777779, Top1T: 75.864197 +Train:epoch: 50, loss@min: 0.996505, loss@max: 1.392807, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Fri Jan 19 12:59:17 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.631276, loss@max: 1.384478, Top1S acc: 100.000000, Top1T acc: 55.000000 +Train:epoch: 2, loss@min: 3.411512, loss@max: 1.474218, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.899499, loss@max: 1.493870, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 2.504603, loss@max: 1.541690, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 5, loss@min: 2.623292, loss@max: 1.689010, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 6, loss@min: 2.041885, loss@max: 1.642013, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 7, loss@min: 1.909560, loss@max: 1.685046, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.605447, loss@max: 1.663912, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 1.628074, loss@max: 1.688950, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 10, loss@min: 1.181199, loss@max: 1.590559, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.432319, loss@max: 1.649410, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.196972, loss@max: 1.541715, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.219479, loss@max: 1.531794, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 14, loss@min: 1.061297, loss@max: 1.444424, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.136805, loss@max: 1.455628, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.051166, loss@max: 1.385582, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.123541, loss@max: 1.389252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.163076, loss@max: 1.381059, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.066763, loss@max: 1.333681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.068042, loss@max: 1.327511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.189434, loss@max: 1.332912, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.162062, loss@max: 1.350885, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.067905, loss@max: 1.321954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.051281, loss@max: 1.315747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.130593, loss@max: 1.370136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.052293, loss@max: 1.324371, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.186424, loss@max: 1.426226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.029104, loss@max: 1.340536, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.010210, loss@max: 1.344865, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.994450, loss@max: 1.342224, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.992711, loss@max: 1.359631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.012567, loss@max: 1.376607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951250, loss@max: 1.349305, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.990793, loss@max: 1.395312, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940006, loss@max: 1.355699, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.945866, loss@max: 1.383666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.934426, loss@max: 1.361773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.956698, loss@max: 1.358503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.962464, loss@max: 1.382201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.962946, loss@max: 1.360152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.193831, LT: 1.190951, Top1S: 63.827160, Top1T: 63.814816Best acc: 63.827160 +Train:epoch: 41, loss@min: 0.973478, loss@max: 1.363189, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.192019, LT: 1.188112, Top1S: 64.049385, Top1T: 63.888889Best acc: 64.049385 +Train:epoch: 42, loss@min: 0.989018, loss@max: 1.360857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.191697, LT: 1.187075, Top1S: 64.111115, Top1T: 64.000000Best acc: 64.111115 +Train:epoch: 43, loss@min: 0.975561, loss@max: 1.340911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.191343, LT: 1.186915, Top1S: 64.197533, Top1T: 64.172836Best acc: 64.197533 +Train:epoch: 44, loss@min: 0.970626, loss@max: 1.357168, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.190279, LT: 1.186497, Top1S: 64.320984, Top1T: 64.358025Best acc: 64.358025 +Train:epoch: 45, loss@min: 1.025247, loss@max: 1.400930, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 13:07:11 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.631931, loss@max: 1.384630, Top1S acc: 100.000000, Top1T acc: 55.000000 +Train:epoch: 2, loss@min: 3.410307, loss@max: 1.473876, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.898966, loss@max: 1.493700, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 2.503115, loss@max: 1.541290, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 5, loss@min: 2.623313, loss@max: 1.688928, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 6, loss@min: 2.042705, loss@max: 1.642164, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 7, loss@min: 1.909433, loss@max: 1.684972, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.606335, loss@max: 1.664098, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 1.627164, loss@max: 1.688774, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 10, loss@min: 1.181008, loss@max: 1.590519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.431761, loss@max: 1.649200, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.197113, loss@max: 1.541771, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.219697, loss@max: 1.531799, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 14, loss@min: 1.061221, loss@max: 1.444410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.136708, loss@max: 1.455636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.050954, loss@max: 1.385476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.123784, loss@max: 1.389317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.163165, loss@max: 1.381065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.066998, loss@max: 1.333797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.068192, loss@max: 1.327568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.189631, loss@max: 1.332978, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.161496, loss@max: 1.350724, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.068031, loss@max: 1.322014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.051048, loss@max: 1.315583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.130666, loss@max: 1.370152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.052295, loss@max: 1.324347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.186045, loss@max: 1.426163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.029186, loss@max: 1.340647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.009954, loss@max: 1.344697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.994460, loss@max: 1.342342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.992725, loss@max: 1.359670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.012417, loss@max: 1.376502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951208, loss@max: 1.349287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.990581, loss@max: 1.395151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940039, loss@max: 1.355685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.945921, loss@max: 1.383676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.934485, loss@max: 1.361722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.956773, loss@max: 1.358445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.962440, loss@max: 1.382097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.962949, loss@max: 1.360079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.975554, loss@max: 1.353720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.983606, loss@max: 1.355218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.192418, loss@max: 1.452533, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 44, loss@min: 0.963761, loss@max: 1.344522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.963240, loss@max: 1.346507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.983207, loss@max: 1.385787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.983195, loss@max: 1.380819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.953640, loss@max: 1.355361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958141, loss@max: 1.366096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.973153, loss@max: 1.378627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.960095, loss@max: 1.347364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.995793, loss@max: 1.383780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.973976, loss@max: 1.364820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.993871, loss@max: 1.369790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.994047, loss@max: 1.382544, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.966745, loss@max: 1.357637, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.950028, loss@max: 1.359674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.959350, loss@max: 1.371507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.985356, loss@max: 1.403930, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.963828, loss@max: 1.384492, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.160329, LT: 1.148325, Top1S: 66.172836, Top1T: 66.543213Best acc: 66.543213 +Train:epoch: 61, loss@min: 0.971694, loss@max: 1.402066, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.166909, LT: 1.156087, Top1S: 66.246910, Top1T: 66.370369 +Train:epoch: 62, loss@min: 0.967059, loss@max: 1.374915, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 55} + +------------------------------------------- +Fri Jan 19 13:11:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.631931, loss@max: 1.384630, Top1S acc: 100.000000, Top1T acc: 55.000000 +Train:epoch: 2, loss@min: 3.410307, loss@max: 1.473876, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.898966, loss@max: 1.493700, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 2.503115, loss@max: 1.541290, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 5, loss@min: 2.623313, loss@max: 1.688928, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 6, loss@min: 2.042705, loss@max: 1.642164, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 7, loss@min: 1.909433, loss@max: 1.684972, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.606335, loss@max: 1.664098, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 1.627164, loss@max: 1.688774, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 10, loss@min: 1.181008, loss@max: 1.590519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.431761, loss@max: 1.649200, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.197113, loss@max: 1.541771, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.219697, loss@max: 1.531799, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 14, loss@min: 1.061221, loss@max: 1.444410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.136708, loss@max: 1.455636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.050954, loss@max: 1.385476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.123784, loss@max: 1.389317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.163165, loss@max: 1.381065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.066998, loss@max: 1.333797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.068192, loss@max: 1.327568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.189631, loss@max: 1.332978, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.161496, loss@max: 1.350724, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.068031, loss@max: 1.322014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.051048, loss@max: 1.315583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.130666, loss@max: 1.370152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.052295, loss@max: 1.324347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.186045, loss@max: 1.426163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.029186, loss@max: 1.340647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.009954, loss@max: 1.344697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.994460, loss@max: 1.342342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.992725, loss@max: 1.359670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.012417, loss@max: 1.376502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951208, loss@max: 1.349287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.990581, loss@max: 1.395151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940039, loss@max: 1.355685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.945921, loss@max: 1.383676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.934485, loss@max: 1.361722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.956773, loss@max: 1.358445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.962440, loss@max: 1.382097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.962949, loss@max: 1.360079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.975554, loss@max: 1.353720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.983606, loss@max: 1.355218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.192418, loss@max: 1.452533, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 44, loss@min: 0.963761, loss@max: 1.344522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.963240, loss@max: 1.346507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.983207, loss@max: 1.385787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.983195, loss@max: 1.380819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.953640, loss@max: 1.355361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958141, loss@max: 1.366096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.973153, loss@max: 1.378627, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.960095, loss@max: 1.347364, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.995793, loss@max: 1.383780, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.973976, loss@max: 1.364820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.993871, loss@max: 1.369790, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.994047, loss@max: 1.382544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.134319, LT: 1.125314, Top1S: 66.802467, Top1T: 66.814812Best acc: 66.814812 +Train:epoch: 56, loss@min: 0.986465, loss@max: 1.396636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.144808, LT: 1.133677, Top1S: 66.407410, Top1T: 66.555557 +Train:epoch: 57, loss@min: 0.971099, loss@max: 1.362883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.154587, LT: 1.142284, Top1S: 66.172836, Top1T: 66.407410 +Train:epoch: 58, loss@min: 0.957704, loss@max: 1.365392, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 13:16:30 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.631931, loss@max: 1.384630, Top1S acc: 100.000000, Top1T acc: 55.000000 +Train:epoch: 2, loss@min: 3.410307, loss@max: 1.473876, Top1S acc: 100.000000, Top1T acc: 65.000000 +Train:epoch: 3, loss@min: 2.898966, loss@max: 1.493700, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 4, loss@min: 2.503115, loss@max: 1.541290, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 5, loss@min: 2.623313, loss@max: 1.688928, Top1S acc: 100.000000, Top1T acc: 70.000000 +Train:epoch: 6, loss@min: 2.042705, loss@max: 1.642164, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 7, loss@min: 1.909433, loss@max: 1.684972, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 8, loss@min: 1.606335, loss@max: 1.664098, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 9, loss@min: 1.627164, loss@max: 1.688774, Top1S acc: 100.000000, Top1T acc: 85.000000 +Train:epoch: 10, loss@min: 1.181008, loss@max: 1.590519, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.431761, loss@max: 1.649200, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 12, loss@min: 1.197113, loss@max: 1.541771, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 13, loss@min: 1.219697, loss@max: 1.531799, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 14, loss@min: 1.061221, loss@max: 1.444410, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.136708, loss@max: 1.455636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.050954, loss@max: 1.385476, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.123784, loss@max: 1.389317, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.163165, loss@max: 1.381065, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.066998, loss@max: 1.333797, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.068192, loss@max: 1.327568, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.189631, loss@max: 1.332978, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 22, loss@min: 1.161496, loss@max: 1.350724, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 23, loss@min: 1.068031, loss@max: 1.322014, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.051048, loss@max: 1.315583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.130666, loss@max: 1.370152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 1.052295, loss@max: 1.324347, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.186045, loss@max: 1.426163, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 1.029186, loss@max: 1.340647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 1.009954, loss@max: 1.344697, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.994460, loss@max: 1.342342, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.992725, loss@max: 1.359670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.012417, loss@max: 1.376502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951208, loss@max: 1.349287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.990581, loss@max: 1.395151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.940039, loss@max: 1.355685, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.945921, loss@max: 1.383676, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.934485, loss@max: 1.361722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.956773, loss@max: 1.358445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.962440, loss@max: 1.382097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.962949, loss@max: 1.360079, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.975554, loss@max: 1.353720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.983606, loss@max: 1.355218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.192418, loss@max: 1.452533, Top1S acc: 100.000000, Top1T acc: 95.000000 +Train:epoch: 44, loss@min: 0.963761, loss@max: 1.344522, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.963240, loss@max: 1.346507, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.983207, loss@max: 1.385787, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.983195, loss@max: 1.380819, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.953640, loss@max: 1.355361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.958141, loss@max: 1.366096, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.973153, loss@max: 1.378627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.126684, LT: 1.120156, Top1S: 66.506172, Top1T: 66.493828Best acc: 66.506172 +Train:epoch: 51, loss@min: 0.975556, loss@max: 1.364428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.125536, LT: 1.119309, Top1S: 66.567902, Top1T: 66.629631Best acc: 66.629631 +Train:epoch: 52, loss@min: 0.979313, loss@max: 1.366744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.124917, LT: 1.118976, Top1S: 66.641975, Top1T: 66.753090Best acc: 66.753090 +Train:epoch: 53, loss@min: 0.992772, loss@max: 1.383125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.126436, LT: 1.120802, Top1S: 66.777779, Top1T: 66.691360Best acc: 66.777779 +Train:epoch: 54, loss@min: 1.007624, loss@max: 1.377714, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.131308, LT: 1.125144, Top1S: 66.679008, Top1T: 66.493828 +Train:epoch: 55, loss@min: 0.969906, loss@max: 1.352331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.138209, LT: 1.130707, Top1S: 66.506172, Top1T: 66.543213 +Train:epoch: 56, loss@min: 0.968238, loss@max: 1.365526, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.148758, LT: 1.138916, Top1S: 66.259262, Top1T: 66.395065 +Train:epoch: 57, loss@min: 0.965804, loss@max: 1.369034, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.159885, LT: 1.148353, Top1S: 65.962959, Top1T: 66.148148 +Train:epoch: 58, loss@min: 0.956074, loss@max: 1.367633, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.171304, LT: 1.158488, Top1S: 65.753090, Top1T: 65.913582 +Train:epoch: 59, loss@min: 0.951802, loss@max: 1.367935, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.180721, LT: 1.168122, Top1S: 65.629631, Top1T: 65.814812 +Train:epoch: 60, loss@min: 0.955576, loss@max: 1.373774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.187062, LT: 1.175632, Top1S: 65.506172, Top1T: 65.555557 +Train:epoch: 61, loss@min: 0.956376, loss@max: 1.380999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.195214, LT: 1.184358, Top1S: 65.283951, Top1T: 65.419754 +Train:epoch: 62, loss@min: 0.945517, loss@max: 1.364824, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.202793, LT: 1.191382, Top1S: 65.172836, Top1T: 65.296295 +Train:epoch: 63, loss@min: 0.954645, loss@max: 1.357840, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.209227, LT: 1.197413, Top1S: 65.086418, Top1T: 65.135803 +Train:epoch: 64, loss@min: 0.959098, loss@max: 1.362856, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.216586, LT: 1.202774, Top1S: 65.000000, Top1T: 64.987656 +Train:epoch: 65, loss@min: 0.954874, loss@max: 1.356031, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "eurosat", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 13:39:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.599240, loss@max: 1.352852, Top1S acc: 100.000000, Top1T acc: 60.000000 +Train:epoch: 2, loss@min: 3.952761, loss@max: 1.580828, Top1S acc: 100.000000, Top1T acc: 50.000000 +Train:epoch: 3, loss@min: 2.597142, loss@max: 1.375129, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 4, loss@min: 2.481478, loss@max: 1.482488, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 5, loss@min: 2.424229, loss@max: 1.591835, Top1S acc: 100.000000, Top1T acc: 80.000000 +Train:epoch: 6, loss@min: 2.013985, loss@max: 1.592283, Top1S acc: 100.000000, Top1T acc: 90.000000 +Train:epoch: 7, loss@min: 1.857729, loss@max: 1.651811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 8, loss@min: 1.459329, loss@max: 1.596104, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 9, loss@min: 1.229260, loss@max: 1.581023, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 10, loss@min: 1.191793, loss@max: 1.593646, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 11, loss@min: 1.121828, loss@max: 1.587430, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 12, loss@min: 1.075107, loss@max: 1.542445, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 13, loss@min: 1.117708, loss@max: 1.535687, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 14, loss@min: 1.161431, loss@max: 1.518800, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 15, loss@min: 1.078033, loss@max: 1.463578, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 16, loss@min: 1.045894, loss@max: 1.422973, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 17, loss@min: 1.046875, loss@max: 1.369546, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 18, loss@min: 1.071699, loss@max: 1.374151, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 19, loss@min: 1.048346, loss@max: 1.314550, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 0.998021, loss@max: 1.286595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 21, loss@min: 1.081819, loss@max: 1.322722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 1.036325, loss@max: 1.282558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.016062, loss@max: 1.291743, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.062326, loss@max: 1.299368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 25, loss@min: 1.026495, loss@max: 1.281211, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.983462, loss@max: 1.273442, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.018598, loss@max: 1.310890, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 28, loss@min: 0.980460, loss@max: 1.289733, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.969614, loss@max: 1.311063, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.972037, loss@max: 1.305891, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.962750, loss@max: 1.319127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.028161, loss@max: 1.369720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.956584, loss@max: 1.339088, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.958579, loss@max: 1.324981, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.965700, loss@max: 1.349390, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.958685, loss@max: 1.353534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.958969, loss@max: 1.374943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.929001, loss@max: 1.348019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.951901, loss@max: 1.376508, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.942371, loss@max: 1.378072, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.944582, loss@max: 1.339234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.950804, loss@max: 1.347286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.985569, loss@max: 1.360621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.974466, loss@max: 1.339028, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.960660, loss@max: 1.335796, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.982517, loss@max: 1.371181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.962576, loss@max: 1.357283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.956300, loss@max: 1.364387, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.986461, loss@max: 1.380674, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946374, loss@max: 1.355721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.625409, LT: 1.634489, Top1S: 57.407406, Top1T: 57.209877Best acc: 57.407406 +Train:epoch: 51, loss@min: 0.946268, loss@max: 1.359202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.613154, LT: 1.624086, Top1S: 57.592594, Top1T: 57.493828Best acc: 57.592594 +Train:epoch: 52, loss@min: 0.947005, loss@max: 1.359458, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.602119, LT: 1.613083, Top1S: 57.765430, Top1T: 57.802467Best acc: 57.802467 +Train:epoch: 53, loss@min: 0.953074, loss@max: 1.347271, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.599344, LT: 1.609652, Top1S: 57.913582, Top1T: 57.703705Best acc: 57.913582 +Train:epoch: 54, loss@min: 0.971169, loss@max: 1.349099, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.601512, LT: 1.608515, Top1S: 58.000000, Top1T: 57.728394Best acc: 58.000000 +Train:epoch: 55, loss@min: 0.971269, loss@max: 1.330981, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.611415, LT: 1.613312, Top1S: 57.814816, Top1T: 57.827160 +Train:epoch: 56, loss@min: 0.976601, loss@max: 1.330436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.622801, LT: 1.621926, Top1S: 57.629631, Top1T: 57.666668 +Train:epoch: 57, loss@min: 0.969195, loss@max: 1.354774, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.627328, LT: 1.623329, Top1S: 57.629631, Top1T: 57.617283 +Train:epoch: 58, loss@min: 0.960651, loss@max: 1.354348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.640880, LT: 1.637592, Top1S: 57.444443, Top1T: 57.493828 +Train:epoch: 59, loss@min: 0.961317, loss@max: 1.354640, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.654121, LT: 1.652822, Top1S: 57.283951, Top1T: 57.407406 +Train:epoch: 60, loss@min: 0.972455, loss@max: 1.389167, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 45} + +------------------------------------------- +Fri Jan 19 13:56:21 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.923330, loss@max: 1.600287, Top1S acc: 100.000000, Top1T acc: 73.046875 +Train:epoch: 2, loss@min: 2.484473, loss@max: 1.668073, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 3, loss@min: 2.278484, loss@max: 1.621511, Top1S acc: 100.000000, Top1T acc: 75.781250 +Train:epoch: 4, loss@min: 1.897780, loss@max: 1.469062, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 5, loss@min: 1.844356, loss@max: 1.440580, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 6, loss@min: 1.698826, loss@max: 1.407060, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 7, loss@min: 1.628762, loss@max: 1.412655, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 8, loss@min: 1.488734, loss@max: 1.393469, Top1S acc: 100.000000, Top1T acc: 90.625000 +Train:epoch: 9, loss@min: 1.273031, loss@max: 1.334450, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.311210, loss@max: 1.359225, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 11, loss@min: 1.230573, loss@max: 1.325872, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.208376, loss@max: 1.340180, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 13, loss@min: 1.201510, loss@max: 1.341630, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 14, loss@min: 1.072730, loss@max: 1.299695, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.134811, loss@max: 1.343783, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 16, loss@min: 1.126218, loss@max: 1.335602, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 17, loss@min: 1.103562, loss@max: 1.327989, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 18, loss@min: 1.050100, loss@max: 1.319978, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 19, loss@min: 1.079284, loss@max: 1.326030, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.057959, loss@max: 1.342846, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 21, loss@min: 1.085156, loss@max: 1.343015, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 22, loss@min: 0.990795, loss@max: 1.313287, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 23, loss@min: 1.042753, loss@max: 1.340240, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 24, loss@min: 1.063238, loss@max: 1.339890, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.007924, loss@max: 1.324244, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.974178, loss@max: 1.328285, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 0.992656, loss@max: 1.349556, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.980595, loss@max: 1.342354, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 29, loss@min: 0.957991, loss@max: 1.335521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.989225, loss@max: 1.357128, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 31, loss@min: 0.993450, loss@max: 1.369080, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.964159, loss@max: 1.351225, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.977037, loss@max: 1.350221, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 34, loss@min: 0.991379, loss@max: 1.362674, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.973204, loss@max: 1.344937, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.080603, loss@max: 1.400911, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 37, loss@min: 0.970114, loss@max: 1.342463, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.953683, loss@max: 1.370122, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 39, loss@min: 0.975825, loss@max: 1.346093, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.977537, loss@max: 1.382299, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 41, loss@min: 0.983441, loss@max: 1.359299, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.949713, loss@max: 1.371475, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 1.003320, loss@max: 1.356208, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 44, loss@min: 0.989032, loss@max: 1.412885, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 45, loss@min: 1.018885, loss@max: 1.372792, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 45, LS: 0.904120, LT: 0.893894, Top1S: 79.169968, Top1T: 79.328575Best acc: 79.328575 +Train:epoch: 46, loss@min: 1.074972, loss@max: 1.396590, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 46, LS: 0.900767, LT: 0.892166, Top1S: 79.302139, Top1T: 79.460739Best acc: 79.460739 +Train:epoch: 47, loss@min: 0.958896, loss@max: 1.375951, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 0.912882, LT: 0.902335, Top1S: 79.275703, Top1T: 79.645782Best acc: 79.645782 +Train:epoch: 48, loss@min: 0.987702, loss@max: 1.372414, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.916925, LT: 0.908180, Top1S: 79.355003, Top1T: 79.645782 +Train:epoch: 49, loss@min: 0.948091, loss@max: 1.380322, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.912679, LT: 0.902788, Top1S: 79.460739, Top1T: 79.936554Best acc: 79.936554 +Train:epoch: 50, loss@min: 0.958552, loss@max: 1.368042, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.913048, LT: 0.907417, Top1S: 79.751518, Top1T: 79.751518 +Train:epoch: 51, loss@min: 0.958017, loss@max: 1.382220, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 51, LS: 0.924425, LT: 0.914169, Top1S: 79.645782, Top1T: 79.989426Best acc: 79.989426 +Train:epoch: 52, loss@min: 1.014039, loss@max: 1.364532, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 52, LS: 0.918362, LT: 0.914677, Top1S: 79.777954, Top1T: 80.174461Best acc: 80.174461 +Train:epoch: 53, loss@min: 0.938139, loss@max: 1.397675, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 0.919126, LT: 0.918489, Top1S: 79.830818, Top1T: 79.936554 +Train:epoch: 54, loss@min: 0.987509, loss@max: 1.366476, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 54, LS: 0.926927, LT: 0.916743, Top1S: 79.566475, Top1T: 79.725082 +Train:epoch: 55, loss@min: 0.932737, loss@max: 1.392560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.933703, LT: 0.929298, Top1S: 79.540047, Top1T: 79.487175 +Train:epoch: 56, loss@min: 0.962667, loss@max: 1.368815, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.935143, LT: 0.925172, Top1S: 79.566475, Top1T: 79.777954 +Train:epoch: 57, loss@min: 0.959319, loss@max: 1.399647, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 0.938411, LT: 0.932345, Top1S: 79.830818, Top1T: 79.830818 +Train:epoch: 58, loss@min: 0.981284, loss@max: 1.371652, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.931650, LT: 0.926372, Top1S: 79.857254, Top1T: 79.989426 +Train:epoch: 59, loss@min: 0.950526, loss@max: 1.397528, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 59, LS: 0.929033, LT: 0.922757, Top1S: 79.751518, Top1T: 80.148026 +Train:epoch: 60, loss@min: 0.971739, loss@max: 1.382970, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 60, LS: 0.926717, LT: 0.917934, Top1S: 80.148026, Top1T: 80.227325Best acc: 80.227325 +Train:epoch: 61, loss@min: 0.952680, loss@max: 1.381915, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.927649, LT: 0.921863, Top1S: 80.227325, Top1T: 80.015854 +Train:epoch: 62, loss@min: 0.979048, loss@max: 1.379973, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 62, LS: 0.931414, LT: 0.925800, Top1S: 79.936554, Top1T: 80.333069Best acc: 80.333069 +Train:epoch: 63, loss@min: 0.979319, loss@max: 1.389326, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 63, LS: 0.931941, LT: 0.927049, Top1S: 80.121590, Top1T: 79.962990 +Train:epoch: 64, loss@min: 0.964283, loss@max: 1.377891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.928143, LT: 0.926146, Top1S: 79.777954, Top1T: 79.619347 +Train:epoch: 65, loss@min: 0.969694, loss@max: 1.373387, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.927134, LT: 0.921969, Top1S: 79.804382, Top1T: 79.830818 +Train:epoch: 66, loss@min: 0.941239, loss@max: 1.393759, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.923635, LT: 0.923498, Top1S: 80.148026, Top1T: 80.095161 +Train:epoch: 67, loss@min: 0.967363, loss@max: 1.370079, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.928157, LT: 0.925462, Top1S: 79.962990, Top1T: 79.883690 +Train:epoch: 68, loss@min: 0.960614, loss@max: 1.387883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.931004, LT: 0.928964, Top1S: 79.910118, Top1T: 79.857254 +Train:epoch: 69, loss@min: 0.979151, loss@max: 1.386261, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 69, LS: 0.935169, LT: 0.931394, Top1S: 79.989426, Top1T: 79.989426 +Train:epoch: 70, loss@min: 0.956550, loss@max: 1.377545, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.938078, LT: 0.936596, Top1S: 79.857254, Top1T: 79.936554 +Train:epoch: 71, loss@min: 0.961245, loss@max: 1.370752, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.943187, LT: 0.942476, Top1S: 79.857254, Top1T: 79.857254 +Train:epoch: 72, loss@min: 0.943588, loss@max: 1.387004, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.949660, LT: 0.945576, Top1S: 79.777954, Top1T: 79.989426 +Train:epoch: 73, loss@min: 0.955254, loss@max: 1.370677, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.940175, LT: 0.938845, Top1S: 80.174461, Top1T: 80.068726 +Train:epoch: 74, loss@min: 0.947288, loss@max: 1.387530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.934806, LT: 0.932663, Top1S: 80.200897, Top1T: 80.095161 +Train:epoch: 75, loss@min: 0.963572, loss@max: 1.371194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.940907, LT: 0.934834, Top1S: 79.989426, Top1T: 80.148026 +Train:epoch: 76, loss@min: 0.975792, loss@max: 1.389400, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 76, LS: 0.942616, LT: 0.941656, Top1S: 80.042290, Top1T: 79.936554 +Train:epoch: 77, loss@min: 0.951850, loss@max: 1.392552, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 15:01:48 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326127, loss@max: 1.569214, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756087, loss@max: 1.554910, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.979664, loss@max: 1.463117, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795578, loss@max: 1.514736, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.278062, loss@max: 1.452078, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112702, loss@max: 1.488460, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.041387, loss@max: 1.525494, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.669723, loss@max: 1.479731, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274264, loss@max: 1.416885, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.374005, loss@max: 1.486533, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379304, loss@max: 1.504193, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.219206, loss@max: 1.492916, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056951, loss@max: 1.440839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.992687, loss@max: 1.423129, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093463, loss@max: 1.431813, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.029560, loss@max: 1.408303, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042318, loss@max: 1.372390, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018772, loss@max: 1.376518, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949046, loss@max: 1.336009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032583, loss@max: 1.355378, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950272, loss@max: 1.316675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949932, loss@max: 1.302262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.969309, loss@max: 1.311698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027067, loss@max: 1.339160, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944806, loss@max: 1.299074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968260, loss@max: 1.316136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993203, loss@max: 1.326585, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.996375, loss@max: 1.321597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023734, loss@max: 1.348096, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954084, loss@max: 1.312431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994609, loss@max: 1.330028, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944574, loss@max: 1.307143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948586, loss@max: 1.310759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964250, loss@max: 1.323656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968250, loss@max: 1.326140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986792, loss@max: 1.330778, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964675, loss@max: 1.323432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950371, loss@max: 1.323273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952226, loss@max: 1.331611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941424, loss@max: 1.332713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.949680, loss@max: 1.335292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963489, loss@max: 1.345183, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.954610, loss@max: 1.333336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953667, loss@max: 1.344064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004679, loss@max: 1.367501, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.947650, loss@max: 1.341718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.025108, loss@max: 1.387804, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.944990, loss@max: 1.345516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941221, loss@max: 1.352103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942919, loss@max: 1.351622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950578, loss@max: 1.359682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.942245, loss@max: 1.359385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943428, loss@max: 1.351994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948746, loss@max: 1.358008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.947668, loss@max: 1.348287, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.945994, loss@max: 1.351307, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.942965, loss@max: 1.360895, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.942978, loss@max: 1.356608, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.963882, loss@max: 1.367497, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.947417, loss@max: 1.362346, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.462404, LT: 1.457589, Top1S: 66.983871, Top1T: 66.798836Best acc: 66.983871 +Train:epoch: 61, loss@min: 0.941637, loss@max: 1.357432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.464250, LT: 1.459078, Top1S: 66.931007, Top1T: 66.931007 +Train:epoch: 62, loss@min: 0.951114, loss@max: 1.363846, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.465537, LT: 1.459853, Top1S: 66.851700, Top1T: 66.851700 +Train:epoch: 63, loss@min: 0.947357, loss@max: 1.352960, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.466793, LT: 1.460558, Top1S: 66.851700, Top1T: 66.851700 +Train:epoch: 64, loss@min: 0.988433, loss@max: 1.376559, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 64, LS: 1.469863, LT: 1.463396, Top1S: 66.851700, Top1T: 66.825272 +Train:epoch: 65, loss@min: 0.946882, loss@max: 1.357086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.472309, LT: 1.466156, Top1S: 66.772400, Top1T: 66.772400 +Train:epoch: 66, loss@min: 0.948560, loss@max: 1.357501, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 55} + +------------------------------------------- +Fri Jan 19 15:09:56 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326127, loss@max: 1.569214, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756087, loss@max: 1.554910, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.979664, loss@max: 1.463117, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795578, loss@max: 1.514736, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.278062, loss@max: 1.452078, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112702, loss@max: 1.488460, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.041387, loss@max: 1.525494, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.669723, loss@max: 1.479731, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274264, loss@max: 1.416885, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.374005, loss@max: 1.486533, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379304, loss@max: 1.504193, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.219206, loss@max: 1.492916, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056951, loss@max: 1.440839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.992687, loss@max: 1.423129, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093463, loss@max: 1.431813, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.029560, loss@max: 1.408303, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042318, loss@max: 1.372390, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018772, loss@max: 1.376518, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949046, loss@max: 1.336009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032583, loss@max: 1.355378, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950272, loss@max: 1.316675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949932, loss@max: 1.302262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.969309, loss@max: 1.311698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027067, loss@max: 1.339160, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944806, loss@max: 1.299074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968260, loss@max: 1.316136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993203, loss@max: 1.326585, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.996375, loss@max: 1.321597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023734, loss@max: 1.348096, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954084, loss@max: 1.312431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994609, loss@max: 1.330028, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944574, loss@max: 1.307143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948586, loss@max: 1.310759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964250, loss@max: 1.323656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968250, loss@max: 1.326140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986792, loss@max: 1.330778, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964675, loss@max: 1.323432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950371, loss@max: 1.323273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952226, loss@max: 1.331611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941424, loss@max: 1.332713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.949680, loss@max: 1.335292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963489, loss@max: 1.345183, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.954610, loss@max: 1.333336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953667, loss@max: 1.344064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004679, loss@max: 1.367501, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.947650, loss@max: 1.341718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.025108, loss@max: 1.387804, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.944990, loss@max: 1.345516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941221, loss@max: 1.352103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942919, loss@max: 1.351622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.950578, loss@max: 1.359682, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.942245, loss@max: 1.359385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.943428, loss@max: 1.351994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.948746, loss@max: 1.358008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.947668, loss@max: 1.348287, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.452092, LT: 1.446942, Top1S: 66.983871, Top1T: 66.640228Best acc: 66.983871 +Train:epoch: 56, loss@min: 0.960880, loss@max: 1.365621, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.454832, LT: 1.449634, Top1S: 66.957436, Top1T: 66.613792 +Train:epoch: 57, loss@min: 0.967414, loss@max: 1.376008, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.457611, LT: 1.452564, Top1S: 66.957436, Top1T: 66.587364 +Train:epoch: 58, loss@min: 0.941695, loss@max: 1.360569, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 15:15:05 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326127, loss@max: 1.569214, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756087, loss@max: 1.554910, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.979664, loss@max: 1.463117, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795578, loss@max: 1.514736, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.278062, loss@max: 1.452078, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112702, loss@max: 1.488460, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.041387, loss@max: 1.525494, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.669723, loss@max: 1.479731, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274264, loss@max: 1.416885, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.374005, loss@max: 1.486533, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379304, loss@max: 1.504193, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.219206, loss@max: 1.492916, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056951, loss@max: 1.440839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.992687, loss@max: 1.423129, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093463, loss@max: 1.431813, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.029560, loss@max: 1.408303, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042318, loss@max: 1.372390, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018772, loss@max: 1.376518, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949046, loss@max: 1.336009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032583, loss@max: 1.355378, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950272, loss@max: 1.316675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949932, loss@max: 1.302262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.969309, loss@max: 1.311698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027067, loss@max: 1.339160, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944806, loss@max: 1.299074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968260, loss@max: 1.316136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993203, loss@max: 1.326585, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.996375, loss@max: 1.321597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023734, loss@max: 1.348096, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954084, loss@max: 1.312431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994609, loss@max: 1.330028, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944574, loss@max: 1.307143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948586, loss@max: 1.310759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964250, loss@max: 1.323656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968250, loss@max: 1.326140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986792, loss@max: 1.330778, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964675, loss@max: 1.323432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950371, loss@max: 1.323273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952226, loss@max: 1.331611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941424, loss@max: 1.332713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.949680, loss@max: 1.335292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963489, loss@max: 1.345183, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.954610, loss@max: 1.333336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953667, loss@max: 1.344064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004679, loss@max: 1.367501, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.947650, loss@max: 1.341718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.025108, loss@max: 1.387804, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.944990, loss@max: 1.345516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941221, loss@max: 1.352103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942919, loss@max: 1.351622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.440413, LT: 1.434358, Top1S: 66.878136, Top1T: 66.719528Best acc: 66.878136 +Train:epoch: 51, loss@min: 0.950966, loss@max: 1.357524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.442805, LT: 1.436802, Top1S: 66.878136, Top1T: 66.640228 +Train:epoch: 52, loss@min: 0.948613, loss@max: 1.365231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.444592, LT: 1.438820, Top1S: 66.878136, Top1T: 66.745964 +Train:epoch: 53, loss@min: 0.944406, loss@max: 1.355129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.446265, LT: 1.440983, Top1S: 66.878136, Top1T: 66.798836 +Train:epoch: 54, loss@min: 0.950390, loss@max: 1.352146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.447593, LT: 1.442970, Top1S: 67.036743, Top1T: 66.798836Best acc: 67.036743 +Train:epoch: 55, loss@min: 0.952863, loss@max: 1.360121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.448417, LT: 1.444688, Top1S: 67.010307, Top1T: 66.798836 +Train:epoch: 56, loss@min: 0.962015, loss@max: 1.365202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.449892, LT: 1.446467, Top1S: 66.931007, Top1T: 66.878136 +Train:epoch: 57, loss@min: 0.965708, loss@max: 1.373325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.451762, LT: 1.448520, Top1S: 66.983871, Top1T: 66.825272 +Train:epoch: 58, loss@min: 0.942453, loss@max: 1.359173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.453827, LT: 1.450806, Top1S: 67.010307, Top1T: 66.878136 +Train:epoch: 59, loss@min: 0.949463, loss@max: 1.360415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.455893, LT: 1.452919, Top1S: 67.010307, Top1T: 66.825272 +Train:epoch: 60, loss@min: 0.969021, loss@max: 1.373274, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 60, LS: 1.457658, LT: 1.454744, Top1S: 66.983871, Top1T: 66.798836 +Train:epoch: 61, loss@min: 0.941294, loss@max: 1.362891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.459262, LT: 1.456576, Top1S: 67.036743, Top1T: 66.825272 +Train:epoch: 62, loss@min: 0.944077, loss@max: 1.357713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.461026, LT: 1.458224, Top1S: 67.089607, Top1T: 66.745964Best acc: 67.089607 +Train:epoch: 63, loss@min: 0.954937, loss@max: 1.368869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.462488, LT: 1.459398, Top1S: 67.036743, Top1T: 66.825272 +Train:epoch: 64, loss@min: 0.949809, loss@max: 1.358785, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 15:28:18 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326394, loss@max: 1.569256, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.757936, loss@max: 1.555309, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981251, loss@max: 1.463470, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.798325, loss@max: 1.515356, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.280857, loss@max: 1.452767, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.116791, loss@max: 1.489638, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.046088, loss@max: 1.526887, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.673575, loss@max: 1.480991, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.275252, loss@max: 1.417837, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.376661, loss@max: 1.487986, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.382606, loss@max: 1.505843, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.222431, loss@max: 1.494487, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.058793, loss@max: 1.441767, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.995944, loss@max: 1.424839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.097141, loss@max: 1.433551, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.033729, loss@max: 1.410347, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.044781, loss@max: 1.373779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.021578, loss@max: 1.378218, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.951233, loss@max: 1.337376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.035073, loss@max: 1.357099, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.952029, loss@max: 1.317540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.952425, loss@max: 1.303223, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.970659, loss@max: 1.312346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027954, loss@max: 1.340220, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.945916, loss@max: 1.299811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969015, loss@max: 1.316964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.995585, loss@max: 1.327937, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.000019, loss@max: 1.323015, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.027135, loss@max: 1.349527, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.956365, loss@max: 1.313991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.997806, loss@max: 1.332103, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.945561, loss@max: 1.307952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.949853, loss@max: 1.311710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.967100, loss@max: 1.325762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969144, loss@max: 1.326690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.987924, loss@max: 1.331797, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.966400, loss@max: 1.324340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.952003, loss@max: 1.324283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.954432, loss@max: 1.331903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.943068, loss@max: 1.333146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.950881, loss@max: 1.335795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966031, loss@max: 1.345857, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.956905, loss@max: 1.334232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954367, loss@max: 1.344706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.002966, loss@max: 1.367494, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.948617, loss@max: 1.342777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.028608, loss@max: 1.389751, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.946607, loss@max: 1.346575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.942828, loss@max: 1.352654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944755, loss@max: 1.351925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.428042, LT: 1.420981, Top1S: 66.983871, Top1T: 67.036743Best acc: 67.036743 +Train:epoch: 51, loss@min: 0.953034, loss@max: 1.358138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.429878, LT: 1.422823, Top1S: 67.063171, Top1T: 67.036743Best acc: 67.063171 +Train:epoch: 52, loss@min: 0.950404, loss@max: 1.366457, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.431140, LT: 1.424259, Top1S: 67.036743, Top1T: 66.983871 +Train:epoch: 53, loss@min: 0.946354, loss@max: 1.355357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.432321, LT: 1.425830, Top1S: 66.983871, Top1T: 66.904572 +Train:epoch: 54, loss@min: 0.950586, loss@max: 1.353475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.433224, LT: 1.427272, Top1S: 66.983871, Top1T: 66.904572 +Train:epoch: 55, loss@min: 0.953821, loss@max: 1.360585, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 45} + +------------------------------------------- +Fri Jan 19 15:34:50 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326394, loss@max: 1.569256, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.757936, loss@max: 1.555309, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981251, loss@max: 1.463470, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.798325, loss@max: 1.515356, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.280857, loss@max: 1.452767, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.116791, loss@max: 1.489638, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.046088, loss@max: 1.526887, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.673575, loss@max: 1.480991, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.275252, loss@max: 1.417837, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.376661, loss@max: 1.487986, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.382606, loss@max: 1.505843, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.222431, loss@max: 1.494487, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.058793, loss@max: 1.441767, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.995944, loss@max: 1.424839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.097141, loss@max: 1.433551, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.033729, loss@max: 1.410347, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.044781, loss@max: 1.373779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.021578, loss@max: 1.378218, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.951233, loss@max: 1.337376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.035073, loss@max: 1.357099, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.952029, loss@max: 1.317540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.952425, loss@max: 1.303223, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.970659, loss@max: 1.312346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027954, loss@max: 1.340220, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.945916, loss@max: 1.299811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969015, loss@max: 1.316964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.995585, loss@max: 1.327937, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.000019, loss@max: 1.323015, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.027135, loss@max: 1.349527, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.956365, loss@max: 1.313991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.997806, loss@max: 1.332103, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.945561, loss@max: 1.307952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.949853, loss@max: 1.311710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.967100, loss@max: 1.325762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969144, loss@max: 1.326690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.987924, loss@max: 1.331797, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.966400, loss@max: 1.324340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.952003, loss@max: 1.324283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.954432, loss@max: 1.331903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.943068, loss@max: 1.333146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.950881, loss@max: 1.335795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966031, loss@max: 1.345857, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.956905, loss@max: 1.334232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954367, loss@max: 1.344706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.002966, loss@max: 1.367494, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 45, LS: 1.417684, LT: 1.414069, Top1S: 66.957436, Top1T: 66.693100Best acc: 66.957436 +Train:epoch: 46, loss@min: 0.955284, loss@max: 1.338610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.418779, LT: 1.415281, Top1S: 66.957436, Top1T: 66.693100 +Train:epoch: 47, loss@min: 0.960017, loss@max: 1.357121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.420472, LT: 1.416821, Top1S: 66.904572, Top1T: 66.745964 +Train:epoch: 48, loss@min: 0.940249, loss@max: 1.351103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.422314, LT: 1.418334, Top1S: 66.878136, Top1T: 66.693100 +Train:epoch: 49, loss@min: 0.942131, loss@max: 1.350750, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.424169, LT: 1.419845, Top1S: 66.851700, Top1T: 66.719528 +Train:epoch: 50, loss@min: 1.019153, loss@max: 1.377064, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 50, LS: 1.426233, LT: 1.421618, Top1S: 66.851700, Top1T: 66.640228 +Train:epoch: 51, loss@min: 0.949403, loss@max: 1.367497, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.427921, LT: 1.422858, Top1S: 66.798836, Top1T: 66.613792 +Train:epoch: 52, loss@min: 0.943298, loss@max: 1.351604, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.429616, LT: 1.424064, Top1S: 66.798836, Top1T: 66.640228 +Train:epoch: 53, loss@min: 0.965417, loss@max: 1.362601, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.430908, LT: 1.425188, Top1S: 66.878136, Top1T: 66.693100 +Train:epoch: 54, loss@min: 0.954333, loss@max: 1.366420, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.431681, LT: 1.425898, Top1S: 66.851700, Top1T: 66.772400 +Train:epoch: 55, loss@min: 0.946737, loss@max: 1.357849, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.432694, LT: 1.427005, Top1S: 66.745964, Top1T: 66.745964 +Train:epoch: 56, loss@min: 0.954504, loss@max: 1.358386, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.433340, LT: 1.427921, Top1S: 66.693100, Top1T: 66.719528 +Train:epoch: 57, loss@min: 0.949427, loss@max: 1.353450, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.434005, LT: 1.428804, Top1S: 66.745964, Top1T: 66.613792 +Train:epoch: 58, loss@min: 0.955712, loss@max: 1.365431, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.434260, LT: 1.429106, Top1S: 66.693100, Top1T: 66.587364 +Train:epoch: 59, loss@min: 0.949644, loss@max: 1.360650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.434634, LT: 1.429315, Top1S: 66.719528, Top1T: 66.613792 +Train:epoch: 60, loss@min: 0.941966, loss@max: 1.364637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.435344, LT: 1.429680, Top1S: 66.693100, Top1T: 66.613792 +Train:epoch: 61, loss@min: 0.949133, loss@max: 1.356857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.436260, LT: 1.430158, Top1S: 66.719528, Top1T: 66.587364 +Train:epoch: 62, loss@min: 0.945663, loss@max: 1.358627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.437074, LT: 1.430623, Top1S: 66.719528, Top1T: 66.666664 +Train:epoch: 63, loss@min: 0.952371, loss@max: 1.364984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.437874, LT: 1.431099, Top1S: 66.772400, Top1T: 66.719528 +Train:epoch: 64, loss@min: 0.948971, loss@max: 1.360467, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 45} + +------------------------------------------- +Fri Jan 19 15:51:36 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326963, loss@max: 1.569371, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.760245, loss@max: 1.555803, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.983258, loss@max: 1.463923, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.801364, loss@max: 1.516083, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.283907, loss@max: 1.453557, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 6, loss@min: 2.121165, loss@max: 1.490939, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.051156, loss@max: 1.528401, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.677930, loss@max: 1.482438, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.276726, loss@max: 1.418945, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.379884, loss@max: 1.489618, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.386343, loss@max: 1.507685, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.226194, loss@max: 1.496343, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.060980, loss@max: 1.442937, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.999414, loss@max: 1.426779, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.101085, loss@max: 1.435486, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.037898, loss@max: 1.412560, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.047329, loss@max: 1.375309, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.024315, loss@max: 1.380064, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.953336, loss@max: 1.338881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.037970, loss@max: 1.359107, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.953768, loss@max: 1.318504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.955009, loss@max: 1.304367, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.972302, loss@max: 1.313197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.029109, loss@max: 1.341557, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.947084, loss@max: 1.300694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969900, loss@max: 1.317998, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.998226, loss@max: 1.329536, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.003614, loss@max: 1.324528, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.030626, loss@max: 1.351065, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.958703, loss@max: 1.315773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.001244, loss@max: 1.334530, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.946539, loss@max: 1.309005, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951185, loss@max: 1.313003, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.969926, loss@max: 1.328058, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969873, loss@max: 1.327514, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.989044, loss@max: 1.333107, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.968120, loss@max: 1.325603, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.953880, loss@max: 1.326026, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.956840, loss@max: 1.332731, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944693, loss@max: 1.333960, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.952170, loss@max: 1.336856, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.968364, loss@max: 1.346587, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.959392, loss@max: 1.335218, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955525, loss@max: 1.345974, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.001000, loss@max: 1.367621, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 45, LS: 1.410865, LT: 1.406614, Top1S: 66.693100, Top1T: 66.560928Best acc: 66.693100 +Train:epoch: 46, loss@min: 0.956995, loss@max: 1.339976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.411658, LT: 1.407455, Top1S: 66.719528, Top1T: 66.587364Best acc: 66.719528 +Train:epoch: 47, loss@min: 0.960653, loss@max: 1.358827, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.413032, LT: 1.408653, Top1S: 66.798836, Top1T: 66.402321Best acc: 66.798836 +Train:epoch: 48, loss@min: 0.941436, loss@max: 1.352136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.414529, LT: 1.409832, Top1S: 66.719528, Top1T: 66.481628 +Train:epoch: 49, loss@min: 0.943897, loss@max: 1.352022, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 15:56:58 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326942, loss@max: 1.569383, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.760346, loss@max: 1.555847, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.983314, loss@max: 1.463954, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.801406, loss@max: 1.516096, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.283866, loss@max: 1.453543, Top1S acc: 100.000000, Top1T acc: 80.198021 +Train:epoch: 6, loss@min: 2.121227, loss@max: 1.490945, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.051131, loss@max: 1.528383, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.677931, loss@max: 1.482425, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.276725, loss@max: 1.418933, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.379894, loss@max: 1.489609, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.386242, loss@max: 1.507650, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.226176, loss@max: 1.496321, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.060946, loss@max: 1.442906, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.999408, loss@max: 1.426764, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.101083, loss@max: 1.435477, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.037927, loss@max: 1.412557, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.047296, loss@max: 1.375289, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.024290, loss@max: 1.380057, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.953336, loss@max: 1.338880, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.037993, loss@max: 1.359114, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.953757, loss@max: 1.318505, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.954991, loss@max: 1.304362, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.972303, loss@max: 1.313198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.029099, loss@max: 1.341546, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.947090, loss@max: 1.300681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969889, loss@max: 1.317985, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.998232, loss@max: 1.329536, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.003613, loss@max: 1.324527, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.030662, loss@max: 1.351090, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.958686, loss@max: 1.315784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 1.001232, loss@max: 1.334544, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.946533, loss@max: 1.309008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.951178, loss@max: 1.313004, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.969933, loss@max: 1.328060, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969868, loss@max: 1.327503, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.989061, loss@max: 1.333096, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.968131, loss@max: 1.325593, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.953888, loss@max: 1.326020, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.956842, loss@max: 1.332735, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.944693, loss@max: 1.333962, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.952170, loss@max: 1.336858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.968360, loss@max: 1.346592, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.959389, loss@max: 1.335232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.955520, loss@max: 1.345966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.001016, loss@max: 1.367613, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.949519, loss@max: 1.344273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.032892, loss@max: 1.392798, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.948362, loss@max: 1.348118, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.944411, loss@max: 1.353720, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.946517, loss@max: 1.352492, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.954734, loss@max: 1.361261, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.944499, loss@max: 1.360871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946096, loss@max: 1.353339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951102, loss@max: 1.361054, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949649, loss@max: 1.350425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.948311, loss@max: 1.352793, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.945237, loss@max: 1.362092, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.945990, loss@max: 1.358022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.966691, loss@max: 1.369799, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.951285, loss@max: 1.364972, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.433359, LT: 1.425767, Top1S: 66.825272, Top1T: 67.142479Best acc: 67.142479 +Train:epoch: 61, loss@min: 0.944773, loss@max: 1.358068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.434650, LT: 1.426707, Top1S: 66.825272, Top1T: 67.089607 +Train:epoch: 62, loss@min: 0.953418, loss@max: 1.364259, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Fri Jan 19 16:01:07 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326394, loss@max: 1.569256, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.757936, loss@max: 1.555309, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981251, loss@max: 1.463470, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.798325, loss@max: 1.515356, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.280857, loss@max: 1.452767, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.116791, loss@max: 1.489638, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.046088, loss@max: 1.526887, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.673575, loss@max: 1.480991, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.275252, loss@max: 1.417837, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.376661, loss@max: 1.487986, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.382606, loss@max: 1.505843, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.222431, loss@max: 1.494487, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.058793, loss@max: 1.441767, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.995944, loss@max: 1.424839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.097141, loss@max: 1.433551, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.033729, loss@max: 1.410347, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.044781, loss@max: 1.373779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.021578, loss@max: 1.378218, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.951233, loss@max: 1.337376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.035073, loss@max: 1.357099, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.952029, loss@max: 1.317540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.952425, loss@max: 1.303223, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.970659, loss@max: 1.312346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027954, loss@max: 1.340220, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.945916, loss@max: 1.299811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969015, loss@max: 1.316964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.995585, loss@max: 1.327937, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.000019, loss@max: 1.323015, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.027135, loss@max: 1.349527, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.956365, loss@max: 1.313991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.997806, loss@max: 1.332103, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.945561, loss@max: 1.307952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.949853, loss@max: 1.311710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.967100, loss@max: 1.325762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969144, loss@max: 1.326690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.987924, loss@max: 1.331797, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.966400, loss@max: 1.324340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.952003, loss@max: 1.324283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.954432, loss@max: 1.331903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.943068, loss@max: 1.333146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.950881, loss@max: 1.335795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966031, loss@max: 1.345857, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.956905, loss@max: 1.334232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954367, loss@max: 1.344706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.002966, loss@max: 1.367494, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.948617, loss@max: 1.342777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.028608, loss@max: 1.389751, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.946607, loss@max: 1.346575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.942828, loss@max: 1.352654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944755, loss@max: 1.351925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.952640, loss@max: 1.360304, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.943342, loss@max: 1.359897, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.944789, loss@max: 1.352636, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949642, loss@max: 1.359198, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.948654, loss@max: 1.349036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.947235, loss@max: 1.351835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.944007, loss@max: 1.361074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.944528, loss@max: 1.356894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.965298, loss@max: 1.368290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.949172, loss@max: 1.363281, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.445641, LT: 1.439077, Top1S: 66.825272, Top1T: 66.825272Best acc: 66.825272 +Train:epoch: 61, loss@min: 0.943170, loss@max: 1.357332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.447186, LT: 1.440247, Top1S: 66.825272, Top1T: 66.772400 +Train:epoch: 62, loss@min: 0.952339, loss@max: 1.363745, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 16:04:59 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326394, loss@max: 1.569256, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.757936, loss@max: 1.555309, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.981251, loss@max: 1.463470, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.798325, loss@max: 1.515356, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.280857, loss@max: 1.452767, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.116791, loss@max: 1.489638, Top1S acc: 100.000000, Top1T acc: 83.168312 +Train:epoch: 7, loss@min: 2.046088, loss@max: 1.526887, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.673575, loss@max: 1.480991, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.275252, loss@max: 1.417837, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.376661, loss@max: 1.487986, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.382606, loss@max: 1.505843, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.222431, loss@max: 1.494487, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.058793, loss@max: 1.441767, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.995944, loss@max: 1.424839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.097141, loss@max: 1.433551, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.033729, loss@max: 1.410347, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.044781, loss@max: 1.373779, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.021578, loss@max: 1.378218, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.951233, loss@max: 1.337376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.035073, loss@max: 1.357099, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.952029, loss@max: 1.317540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.952425, loss@max: 1.303223, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.970659, loss@max: 1.312346, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027954, loss@max: 1.340220, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.945916, loss@max: 1.299811, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.969015, loss@max: 1.316964, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.995585, loss@max: 1.327937, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 1.000019, loss@max: 1.323015, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.027135, loss@max: 1.349527, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.956365, loss@max: 1.313991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.997806, loss@max: 1.332103, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.945561, loss@max: 1.307952, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.949853, loss@max: 1.311710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.967100, loss@max: 1.325762, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.969144, loss@max: 1.326690, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.987924, loss@max: 1.331797, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.966400, loss@max: 1.324340, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.952003, loss@max: 1.324283, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.954432, loss@max: 1.331903, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.943068, loss@max: 1.333146, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.950881, loss@max: 1.335795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.966031, loss@max: 1.345857, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.956905, loss@max: 1.334232, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.954367, loss@max: 1.344706, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.002966, loss@max: 1.367494, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.948617, loss@max: 1.342777, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.028608, loss@max: 1.389751, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.946607, loss@max: 1.346575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.942828, loss@max: 1.352654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944755, loss@max: 1.351925, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.428038, LT: 1.420977, Top1S: 66.983871, Top1T: 67.036743Best acc: 67.036743 +Train:epoch: 51, loss@min: 0.953034, loss@max: 1.358138, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.429874, LT: 1.422820, Top1S: 67.063171, Top1T: 67.036743Best acc: 67.063171 +Train:epoch: 52, loss@min: 0.950404, loss@max: 1.366457, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 16:08:48 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326127, loss@max: 1.569214, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.756087, loss@max: 1.554910, Top1S acc: 100.000000, Top1T acc: 63.366337 +Train:epoch: 3, loss@min: 2.979664, loss@max: 1.463117, Top1S acc: 100.000000, Top1T acc: 72.277229 +Train:epoch: 4, loss@min: 2.795578, loss@max: 1.514736, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.278062, loss@max: 1.452078, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.112702, loss@max: 1.488460, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.041387, loss@max: 1.525494, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.669723, loss@max: 1.479731, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.274264, loss@max: 1.416885, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.374005, loss@max: 1.486533, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.379304, loss@max: 1.504193, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.219206, loss@max: 1.492916, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.056951, loss@max: 1.440839, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.992687, loss@max: 1.423129, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.093463, loss@max: 1.431813, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.029560, loss@max: 1.408303, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.042318, loss@max: 1.372390, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.018772, loss@max: 1.376518, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.949046, loss@max: 1.336009, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.032583, loss@max: 1.355378, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.950272, loss@max: 1.316675, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.949932, loss@max: 1.302262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.969309, loss@max: 1.311698, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.027067, loss@max: 1.339160, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.944806, loss@max: 1.299074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.968260, loss@max: 1.316136, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.993203, loss@max: 1.326585, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.996375, loss@max: 1.321597, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.023734, loss@max: 1.348096, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.954084, loss@max: 1.312431, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.994609, loss@max: 1.330028, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.944574, loss@max: 1.307143, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.948586, loss@max: 1.310759, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.964250, loss@max: 1.323656, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.968250, loss@max: 1.326140, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.986792, loss@max: 1.330778, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.964675, loss@max: 1.323432, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.950371, loss@max: 1.323273, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.952226, loss@max: 1.331611, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.941424, loss@max: 1.332713, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.949680, loss@max: 1.335292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963489, loss@max: 1.345183, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 43, loss@min: 0.954610, loss@max: 1.333336, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953667, loss@max: 1.344064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004679, loss@max: 1.367501, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.947650, loss@max: 1.341718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.025108, loss@max: 1.387804, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.944990, loss@max: 1.345516, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.941221, loss@max: 1.352103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.942919, loss@max: 1.351622, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.440414, LT: 1.434358, Top1S: 66.878136, Top1T: 66.719528Best acc: 66.878136 +Train:epoch: 51, loss@min: 0.950966, loss@max: 1.357524, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.442805, LT: 1.436803, Top1S: 66.878136, Top1T: 66.640228 +Train:epoch: 52, loss@min: 0.948613, loss@max: 1.365231, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.444592, LT: 1.438820, Top1S: 66.878136, Top1T: 66.745964 +Train:epoch: 53, loss@min: 0.944406, loss@max: 1.355129, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.446265, LT: 1.440984, Top1S: 66.878136, Top1T: 66.798836 +Train:epoch: 54, loss@min: 0.950390, loss@max: 1.352146, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.447593, LT: 1.442970, Top1S: 67.036743, Top1T: 66.798836Best acc: 67.036743 +Train:epoch: 55, loss@min: 0.952863, loss@max: 1.360121, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.448417, LT: 1.444688, Top1S: 67.010307, Top1T: 66.798836 +Train:epoch: 56, loss@min: 0.962015, loss@max: 1.365202, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.449892, LT: 1.446467, Top1S: 66.931007, Top1T: 66.878136 +Train:epoch: 57, loss@min: 0.965708, loss@max: 1.373325, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.451762, LT: 1.448520, Top1S: 66.983871, Top1T: 66.825272 +Train:epoch: 58, loss@min: 0.942453, loss@max: 1.359173, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.453827, LT: 1.450806, Top1S: 67.010307, Top1T: 66.878136 +Train:epoch: 59, loss@min: 0.949463, loss@max: 1.360415, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.455893, LT: 1.452920, Top1S: 67.010307, Top1T: 66.825272 +Train:epoch: 60, loss@min: 0.969021, loss@max: 1.373274, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 60, LS: 1.457658, LT: 1.454744, Top1S: 66.983871, Top1T: 66.798836 +Train:epoch: 61, loss@min: 0.941294, loss@max: 1.362891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.459262, LT: 1.456576, Top1S: 67.036743, Top1T: 66.825272 +Train:epoch: 62, loss@min: 0.944077, loss@max: 1.357713, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.461026, LT: 1.458225, Top1S: 67.089607, Top1T: 66.745964Best acc: 67.089607 +Train:epoch: 63, loss@min: 0.954937, loss@max: 1.368869, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.462488, LT: 1.459399, Top1S: 67.036743, Top1T: 66.825272 +Train:epoch: 64, loss@min: 0.949809, loss@max: 1.358785, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.463708, LT: 1.460196, Top1S: 67.010307, Top1T: 66.825272 +Train:epoch: 65, loss@min: 0.948743, loss@max: 1.355259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.464660, LT: 1.460832, Top1S: 66.931007, Top1T: 66.851700 +Train:epoch: 66, loss@min: 0.949488, loss@max: 1.356201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.465216, LT: 1.461367, Top1S: 66.983871, Top1T: 66.931007 +Train:epoch: 67, loss@min: 0.955528, loss@max: 1.363440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.465453, LT: 1.461401, Top1S: 66.957436, Top1T: 66.851700 +Train:epoch: 68, loss@min: 0.948774, loss@max: 1.359634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.465780, LT: 1.461673, Top1S: 66.931007, Top1T: 66.851700 +Train:epoch: 69, loss@min: 0.942619, loss@max: 1.360625, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.465992, LT: 1.462180, Top1S: 66.904572, Top1T: 66.878136 +Train:epoch: 70, loss@min: 0.973791, loss@max: 1.387986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 1.466061, LT: 1.462542, Top1S: 66.904572, Top1T: 66.878136 +Train:epoch: 71, loss@min: 0.945787, loss@max: 1.358191, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 1.466220, LT: 1.462897, Top1S: 66.851700, Top1T: 66.878136 +Train:epoch: 72, loss@min: 0.947416, loss@max: 1.355999, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.466352, LT: 1.463331, Top1S: 66.851700, Top1T: 66.904572 +Train:epoch: 73, loss@min: 0.963149, loss@max: 1.366338, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.466633, LT: 1.463687, Top1S: 66.957436, Top1T: 66.904572 +Train:epoch: 74, loss@min: 0.949682, loss@max: 1.354097, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 16:29:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326142, loss@max: 1.569206, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.754699, loss@max: 1.554594, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.978709, loss@max: 1.462931, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.793494, loss@max: 1.514280, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.275697, loss@max: 1.451537, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.109264, loss@max: 1.487512, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.037331, loss@max: 1.524356, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.666586, loss@max: 1.478751, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.273660, loss@max: 1.416207, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.372035, loss@max: 1.485351, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.376602, loss@max: 1.502856, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.216609, loss@max: 1.491737, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.055531, loss@max: 1.440178, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.989844, loss@max: 1.421788, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 15, loss@min: 1.090264, loss@max: 1.430413, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.025708, loss@max: 1.406578, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.040094, loss@max: 1.371264, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.016193, loss@max: 1.375103, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.947005, loss@max: 1.334839, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.030632, loss@max: 1.354028, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.948637, loss@max: 1.315946, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.947742, loss@max: 1.301515, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.968275, loss@max: 1.311268, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.026466, loss@max: 1.338410, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.943786, loss@max: 1.298534, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.967573, loss@max: 1.315540, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.991120, loss@max: 1.325594, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.993002, loss@max: 1.320447, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.020759, loss@max: 1.346907, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.952096, loss@max: 1.311242, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.991944, loss@max: 1.328418, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.943630, loss@max: 1.306604, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.947408, loss@max: 1.310181, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.961668, loss@max: 1.322022, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.967160, loss@max: 1.325858, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.985548, loss@max: 1.330085, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.963073, loss@max: 1.322773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.948955, loss@max: 1.322816, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.950362, loss@max: 1.331718, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.939941, loss@max: 1.332621, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.948589, loss@max: 1.335202, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.961088, loss@max: 1.344769, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.952673, loss@max: 1.332861, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953353, loss@max: 1.344036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.004935, loss@max: 1.367540, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.946740, loss@max: 1.341192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.022190, loss@max: 1.386649, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.943563, loss@max: 1.344987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.939743, loss@max: 1.352074, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.941212, loss@max: 1.351710, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.453242, LT: 1.448646, Top1S: 66.904572, Top1T: 66.745964Best acc: 66.904572 +Train:epoch: 51, loss@min: 0.949347, loss@max: 1.357301, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.456108, LT: 1.451660, Top1S: 66.957436, Top1T: 66.825272Best acc: 66.957436 +Train:epoch: 52, loss@min: 0.947375, loss@max: 1.364717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.458336, LT: 1.454197, Top1S: 67.010307, Top1T: 66.851700Best acc: 67.010307 +Train:epoch: 53, loss@min: 0.942542, loss@max: 1.355345, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.460430, LT: 1.456901, Top1S: 67.116043, Top1T: 66.904572Best acc: 67.116043 +Train:epoch: 54, loss@min: 0.950297, loss@max: 1.351295, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.462103, LT: 1.459363, Top1S: 67.063171, Top1T: 66.904572 +Train:epoch: 55, loss@min: 0.952426, loss@max: 1.360330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.463236, LT: 1.461516, Top1S: 67.089607, Top1T: 66.878136 +Train:epoch: 56, loss@min: 0.960597, loss@max: 1.365110, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.464989, LT: 1.463642, Top1S: 67.089607, Top1T: 66.878136 +Train:epoch: 57, loss@min: 0.963276, loss@max: 1.373018, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.467061, LT: 1.465919, Top1S: 66.983871, Top1T: 66.745964 +Train:epoch: 58, loss@min: 0.940681, loss@max: 1.359471, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.469293, LT: 1.468373, Top1S: 66.931007, Top1T: 66.640228 +Train:epoch: 59, loss@min: 0.948360, loss@max: 1.361037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.471474, LT: 1.470636, Top1S: 66.957436, Top1T: 66.693100 +Train:epoch: 60, loss@min: 0.966384, loss@max: 1.372887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.473306, LT: 1.472624, Top1S: 67.010307, Top1T: 66.772400 +Train:epoch: 61, loss@min: 0.940574, loss@max: 1.362225, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.474990, LT: 1.474630, Top1S: 66.931007, Top1T: 66.798836 +Train:epoch: 62, loss@min: 0.942585, loss@max: 1.357734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.476868, LT: 1.476455, Top1S: 66.878136, Top1T: 66.719528 +Train:epoch: 63, loss@min: 0.952775, loss@max: 1.368523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.478464, LT: 1.477823, Top1S: 66.825272, Top1T: 66.666664 +Train:epoch: 64, loss@min: 0.948178, loss@max: 1.358847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.479835, LT: 1.478825, Top1S: 66.825272, Top1T: 66.693100 +Train:epoch: 65, loss@min: 0.947538, loss@max: 1.355337, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.480940, LT: 1.479712, Top1S: 66.825272, Top1T: 66.719528 +Train:epoch: 66, loss@min: 0.948295, loss@max: 1.356299, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 16:44:06 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326304, loss@max: 1.569233, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.753786, loss@max: 1.554382, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.978145, loss@max: 1.462828, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.791888, loss@max: 1.513931, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.273766, loss@max: 1.451124, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.106340, loss@max: 1.486743, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.033872, loss@max: 1.523398, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.664114, loss@max: 1.477960, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.273390, loss@max: 1.415723, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.370526, loss@max: 1.484435, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.374290, loss@max: 1.501773, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.214511, loss@max: 1.490831, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.054400, loss@max: 1.439721, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.987315, loss@max: 1.420697, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.087433, loss@max: 1.429280, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.022071, loss@max: 1.405103, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.038047, loss@max: 1.370343, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.013758, loss@max: 1.373914, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.945077, loss@max: 1.333841, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.029062, loss@max: 1.352984, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.947059, loss@max: 1.315352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.945803, loss@max: 1.300935, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.967462, loss@max: 1.310987, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.025953, loss@max: 1.337893, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.942839, loss@max: 1.298127, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.966891, loss@max: 1.315114, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.989229, loss@max: 1.324872, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.989904, loss@max: 1.319537, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.018141, loss@max: 1.345964, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.950330, loss@max: 1.310391, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 31, loss@min: 0.989739, loss@max: 1.327191, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.942736, loss@max: 1.306240, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.946330, loss@max: 1.309827, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.959377, loss@max: 1.320778, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 35, loss@min: 0.965883, loss@max: 1.325773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.984080, loss@max: 1.329687, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 37, loss@min: 0.961471, loss@max: 1.322328, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.947591, loss@max: 1.322750, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.948711, loss@max: 1.332149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.938550, loss@max: 1.332833, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.947540, loss@max: 1.335421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.958876, loss@max: 1.344650, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.951024, loss@max: 1.332773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.953429, loss@max: 1.344450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 1.003941, loss@max: 1.367650, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 46, loss@min: 0.945905, loss@max: 1.341066, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 1.019633, loss@max: 1.385977, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 48, loss@min: 0.942198, loss@max: 1.344914, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.938323, loss@max: 1.352459, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.939571, loss@max: 1.352182, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.465913, LT: 1.463206, Top1S: 66.878136, Top1T: 66.693100Best acc: 66.878136 +Train:epoch: 51, loss@min: 0.948110, loss@max: 1.357454, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.469183, LT: 1.466738, Top1S: 66.904572, Top1T: 66.666664Best acc: 66.904572 +Train:epoch: 52, loss@min: 0.946373, loss@max: 1.364614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.471788, LT: 1.469740, Top1S: 66.878136, Top1T: 66.640228 +Train:epoch: 53, loss@min: 0.940822, loss@max: 1.355859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.474252, LT: 1.472930, Top1S: 66.878136, Top1T: 66.640228 +Train:epoch: 54, loss@min: 0.950259, loss@max: 1.350667, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.476210, LT: 1.475804, Top1S: 66.931007, Top1T: 66.666664Best acc: 66.931007 +Train:epoch: 55, loss@min: 0.952372, loss@max: 1.360825, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.477594, LT: 1.478328, Top1S: 66.904572, Top1T: 66.587364 +Train:epoch: 56, loss@min: 0.959567, loss@max: 1.365479, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.479556, LT: 1.480732, Top1S: 66.878136, Top1T: 66.640228 +Train:epoch: 57, loss@min: 0.961810, loss@max: 1.373055, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.481770, LT: 1.483181, Top1S: 66.851700, Top1T: 66.560928 +Train:epoch: 58, loss@min: 0.939111, loss@max: 1.359931, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.484131, LT: 1.485757, Top1S: 66.851700, Top1T: 66.481628 +Train:epoch: 59, loss@min: 0.947324, loss@max: 1.362046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.486404, LT: 1.488136, Top1S: 66.772400, Top1T: 66.481628 +Train:epoch: 60, loss@min: 0.963891, loss@max: 1.372687, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 50} + +------------------------------------------- +Fri Jan 19 16:54:02 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.157987, loss@max: 1.519863, Top1S acc: 100.000000, Top1T acc: 59.900990 +Train:epoch: 2, loss@min: 3.697383, loss@max: 1.532357, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 3.128088, loss@max: 1.499106, Top1S acc: 100.000000, Top1T acc: 70.792076 +Train:epoch: 4, loss@min: 2.943507, loss@max: 1.560792, Top1S acc: 100.000000, Top1T acc: 68.811882 +Train:epoch: 5, loss@min: 2.423820, loss@max: 1.518163, Top1S acc: 100.000000, Top1T acc: 77.227722 +Train:epoch: 6, loss@min: 2.226410, loss@max: 1.542291, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 7, loss@min: 1.950911, loss@max: 1.544601, Top1S acc: 100.000000, Top1T acc: 84.653465 +Train:epoch: 8, loss@min: 1.830003, loss@max: 1.560461, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 9, loss@min: 1.659670, loss@max: 1.571081, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 10, loss@min: 1.460453, loss@max: 1.541564, Top1S acc: 100.000000, Top1T acc: 91.584160 +Train:epoch: 11, loss@min: 1.325232, loss@max: 1.523235, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.311895, loss@max: 1.541633, Top1S acc: 100.000000, Top1T acc: 94.554451 +Train:epoch: 13, loss@min: 1.175149, loss@max: 1.503380, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 14, loss@min: 1.156304, loss@max: 1.498803, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 15, loss@min: 1.140685, loss@max: 1.492322, Top1S acc: 100.000000, Top1T acc: 97.524750 +Train:epoch: 16, loss@min: 1.131948, loss@max: 1.481268, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 17, loss@min: 1.146307, loss@max: 1.467191, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 18, loss@min: 1.039389, loss@max: 1.428454, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 1.168864, loss@max: 1.443463, Top1S acc: 100.000000, Top1T acc: 96.534653 +Train:epoch: 20, loss@min: 1.029947, loss@max: 1.391226, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 1.055731, loss@max: 1.387880, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 22, loss@min: 1.014000, loss@max: 1.363524, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.005772, loss@max: 1.349404, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.049930, loss@max: 1.347475, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 25, loss@min: 0.998185, loss@max: 1.320845, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 26, loss@min: 1.032955, loss@max: 1.338572, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 27, loss@min: 1.033906, loss@max: 1.337784, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 28, loss@min: 1.005620, loss@max: 1.331653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.984488, loss@max: 1.318723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.001311, loss@max: 1.328740, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 31, loss@min: 1.008359, loss@max: 1.337436, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.984634, loss@max: 1.332876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.985752, loss@max: 1.334524, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 34, loss@min: 0.997496, loss@max: 1.345639, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 35, loss@min: 0.996630, loss@max: 1.347832, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 36, loss@min: 0.973331, loss@max: 1.338208, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 37, loss@min: 0.971051, loss@max: 1.343812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.994394, loss@max: 1.353841, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 39, loss@min: 0.992854, loss@max: 1.370907, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.959893, loss@max: 1.349871, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.957016, loss@max: 1.354963, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.972135, loss@max: 1.360332, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 43, loss@min: 0.953750, loss@max: 1.358654, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.949776, loss@max: 1.353670, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.960717, loss@max: 1.363876, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.960481, loss@max: 1.361201, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.951187, loss@max: 1.353471, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949849, loss@max: 1.363577, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.957713, loss@max: 1.365355, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.963285, loss@max: 1.373469, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.235741, LT: 1.225802, Top1S: 70.658203, Top1T: 70.843246Best acc: 70.843246 +Train:epoch: 51, loss@min: 0.966031, loss@max: 1.375270, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 51, LS: 1.236453, LT: 1.226777, Top1S: 70.658203, Top1T: 70.843246 +Train:epoch: 52, loss@min: 0.952594, loss@max: 1.367828, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.236832, LT: 1.227142, Top1S: 70.658203, Top1T: 70.896111Best acc: 70.896111 +Train:epoch: 53, loss@min: 0.959302, loss@max: 1.365343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.237215, LT: 1.227570, Top1S: 70.684639, Top1T: 70.896111 +Train:epoch: 54, loss@min: 0.951267, loss@max: 1.358992, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.237897, LT: 1.228310, Top1S: 70.737503, Top1T: 70.843246 +Train:epoch: 55, loss@min: 0.954097, loss@max: 1.365326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.238773, LT: 1.229196, Top1S: 70.763939, Top1T: 70.816811 +Train:epoch: 56, loss@min: 0.962752, loss@max: 1.369179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.239681, LT: 1.230050, Top1S: 70.869675, Top1T: 70.869675 +Train:epoch: 57, loss@min: 0.948430, loss@max: 1.358790, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.240799, LT: 1.231103, Top1S: 70.737503, Top1T: 70.790375 +Train:epoch: 58, loss@min: 0.945208, loss@max: 1.360421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.242107, LT: 1.232186, Top1S: 70.711075, Top1T: 70.843246 +Train:epoch: 59, loss@min: 0.949406, loss@max: 1.361381, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.243181, LT: 1.233035, Top1S: 70.711075, Top1T: 70.763939 +Train:epoch: 60, loss@min: 0.956053, loss@max: 1.367902, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.244361, LT: 1.233958, Top1S: 70.711075, Top1T: 70.790375 +Train:epoch: 61, loss@min: 0.952255, loss@max: 1.364699, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.245342, LT: 1.234758, Top1S: 70.737503, Top1T: 70.763939 +Train:epoch: 62, loss@min: 0.957671, loss@max: 1.362861, Top1S acc: 100.000000, Top1T acc: 99.504951{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 40} + +------------------------------------------- +Fri Jan 19 17:08:16 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.157949, loss@max: 1.519852, Top1S acc: 100.000000, Top1T acc: 59.900990 +Train:epoch: 2, loss@min: 3.697423, loss@max: 1.532366, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 3.128095, loss@max: 1.499108, Top1S acc: 100.000000, Top1T acc: 70.792076 +Train:epoch: 4, loss@min: 2.943476, loss@max: 1.560783, Top1S acc: 100.000000, Top1T acc: 68.811882 +Train:epoch: 5, loss@min: 2.423774, loss@max: 1.518151, Top1S acc: 100.000000, Top1T acc: 77.227722 +Train:epoch: 6, loss@min: 2.226352, loss@max: 1.542278, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 7, loss@min: 1.950836, loss@max: 1.544582, Top1S acc: 100.000000, Top1T acc: 84.653465 +Train:epoch: 8, loss@min: 1.829944, loss@max: 1.560444, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 9, loss@min: 1.659673, loss@max: 1.571082, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 10, loss@min: 1.460473, loss@max: 1.541569, Top1S acc: 100.000000, Top1T acc: 91.584160 +Train:epoch: 11, loss@min: 1.325240, loss@max: 1.523240, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.311897, loss@max: 1.541631, Top1S acc: 100.000000, Top1T acc: 94.554451 +Train:epoch: 13, loss@min: 1.175134, loss@max: 1.503377, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 14, loss@min: 1.156304, loss@max: 1.498806, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 15, loss@min: 1.140685, loss@max: 1.492325, Top1S acc: 100.000000, Top1T acc: 97.524750 +Train:epoch: 16, loss@min: 1.131953, loss@max: 1.481269, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 17, loss@min: 1.146313, loss@max: 1.467195, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 18, loss@min: 1.039374, loss@max: 1.428444, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 1.168893, loss@max: 1.443470, Top1S acc: 100.000000, Top1T acc: 96.534653 +Train:epoch: 20, loss@min: 1.029952, loss@max: 1.391226, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 1.055724, loss@max: 1.387879, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 22, loss@min: 1.014007, loss@max: 1.363525, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.005767, loss@max: 1.349401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.049937, loss@max: 1.347482, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 25, loss@min: 0.998191, loss@max: 1.320848, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 26, loss@min: 1.032961, loss@max: 1.338575, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 27, loss@min: 1.033901, loss@max: 1.337782, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 28, loss@min: 1.005615, loss@max: 1.331653, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.984490, loss@max: 1.318724, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.001313, loss@max: 1.328736, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 31, loss@min: 1.008357, loss@max: 1.337430, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 32, loss@min: 0.984635, loss@max: 1.332873, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.985741, loss@max: 1.334520, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 34, loss@min: 0.997487, loss@max: 1.345634, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 35, loss@min: 0.996627, loss@max: 1.347829, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 36, loss@min: 0.973329, loss@max: 1.338205, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 37, loss@min: 0.971055, loss@max: 1.343812, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.994399, loss@max: 1.353842, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 39, loss@min: 0.992852, loss@max: 1.370902, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.959890, loss@max: 1.349872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.216033, LT: 1.205952, Top1S: 70.446732, Top1T: 70.631767Best acc: 70.631767 +Train:epoch: 41, loss@min: 0.966633, loss@max: 1.353608, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 41, LS: 1.218278, LT: 1.207955, Top1S: 70.473167, Top1T: 70.605339 +Train:epoch: 42, loss@min: 0.973199, loss@max: 1.375043, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.220874, LT: 1.210369, Top1S: 70.499603, Top1T: 70.684639Best acc: 70.684639 +Train:epoch: 43, loss@min: 0.957219, loss@max: 1.363355, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.223278, LT: 1.212766, Top1S: 70.473167, Top1T: 70.631767 +Train:epoch: 44, loss@min: 0.952761, loss@max: 1.354248, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.225522, LT: 1.215106, Top1S: 70.526031, Top1T: 70.737503Best acc: 70.737503 +Train:epoch: 45, loss@min: 0.980377, loss@max: 1.372936, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 45, LS: 1.227844, LT: 1.217575, Top1S: 70.473167, Top1T: 70.816811Best acc: 70.816811 +Train:epoch: 46, loss@min: 0.962328, loss@max: 1.369763, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.229962, LT: 1.219886, Top1S: 70.684639, Top1T: 70.763939 +Train:epoch: 47, loss@min: 0.955004, loss@max: 1.363969, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.231760, LT: 1.221751, Top1S: 70.843246, Top1T: 70.869675Best acc: 70.869675 +Train:epoch: 48, loss@min: 0.949961, loss@max: 1.357601, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 2, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Fri Jan 19 17:17:49 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.158236, loss@max: 1.519921, Top1S acc: 100.000000, Top1T acc: 59.900990 +Train:epoch: 2, loss@min: 3.697714, loss@max: 1.532437, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 3.128760, loss@max: 1.499275, Top1S acc: 100.000000, Top1T acc: 70.792076 +Train:epoch: 4, loss@min: 2.943523, loss@max: 1.560788, Top1S acc: 100.000000, Top1T acc: 68.811882 +Train:epoch: 5, loss@min: 2.424262, loss@max: 1.518243, Top1S acc: 100.000000, Top1T acc: 77.227722 +Train:epoch: 6, loss@min: 2.226556, loss@max: 1.542286, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 7, loss@min: 1.950959, loss@max: 1.544581, Top1S acc: 100.000000, Top1T acc: 84.653465 +Train:epoch: 8, loss@min: 1.829819, loss@max: 1.560379, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 9, loss@min: 1.659699, loss@max: 1.571060, Top1S acc: 100.000000, Top1T acc: 91.089104 +Train:epoch: 10, loss@min: 1.460294, loss@max: 1.541517, Top1S acc: 100.000000, Top1T acc: 91.584160 +Train:epoch: 11, loss@min: 1.325211, loss@max: 1.523227, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.311893, loss@max: 1.541626, Top1S acc: 100.000000, Top1T acc: 94.554451 +Train:epoch: 13, loss@min: 1.175092, loss@max: 1.503363, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 14, loss@min: 1.156424, loss@max: 1.498861, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 15, loss@min: 1.140770, loss@max: 1.492375, Top1S acc: 100.000000, Top1T acc: 97.524750 +Train:epoch: 16, loss@min: 1.132049, loss@max: 1.481309, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 17, loss@min: 1.146335, loss@max: 1.467212, Top1S acc: 100.000000, Top1T acc: 97.029701 +Train:epoch: 18, loss@min: 1.039374, loss@max: 1.428460, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 1.169060, loss@max: 1.443539, Top1S acc: 100.000000, Top1T acc: 96.534653 +Train:epoch: 20, loss@min: 1.029932, loss@max: 1.391262, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 1.055717, loss@max: 1.387936, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 22, loss@min: 1.013999, loss@max: 1.363551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 23, loss@min: 1.005781, loss@max: 1.349428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 24, loss@min: 1.049966, loss@max: 1.347502, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 25, loss@min: 0.998262, loss@max: 1.320887, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 26, loss@min: 1.032991, loss@max: 1.338573, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 27, loss@min: 1.033954, loss@max: 1.337812, Top1S acc: 100.000000, Top1T acc: 99.504951 +Train:epoch: 28, loss@min: 1.005613, loss@max: 1.331681, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.984458, loss@max: 1.318694, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.001287, loss@max: 1.328730, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 30, LS: 1.201233, LT: 1.191575, Top1S: 69.733009, Top1T: 69.653709Best acc: 69.733009 +Train:epoch: 31, loss@min: 1.000771, loss@max: 1.330795, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 31, LS: 1.201865, LT: 1.192348, Top1S: 69.733009, Top1T: 69.891617Best acc: 69.891617 +Train:epoch: 32, loss@min: 1.016630, loss@max: 1.344264, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 32, LS: 1.202181, LT: 1.192752, Top1S: 69.812317, Top1T: 70.155960Best acc: 70.155960 +Train:epoch: 33, loss@min: 0.987748, loss@max: 1.339860, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 33, LS: 1.202912, LT: 1.193671, Top1S: 70.023788, Top1T: 70.340996Best acc: 70.340996 +Train:epoch: 34, loss@min: 1.002390, loss@max: 1.344497, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 34, LS: 1.202188, LT: 1.193467, Top1S: 70.261696, Top1T: 70.393867Best acc: 70.393867 +Train:epoch: 35, loss@min: 0.976576, loss@max: 1.335770, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 1.201213, LT: 1.193114, Top1S: 70.314560, Top1T: 70.393867 +Train:epoch: 36, loss@min: 0.966779, loss@max: 1.340712, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.200562, LT: 1.192859, Top1S: 70.499603, Top1T: 70.446732Best acc: 70.499603 +Train:epoch: 37, loss@min: 1.011702, loss@max: 1.353912, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 37, LS: 1.200432, LT: 1.192904, Top1S: 70.473167, Top1T: 70.367432 +Train:epoch: 38, loss@min: 0.969763, loss@max: 1.349634, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.199739, LT: 1.192213, Top1S: 70.552467, Top1T: 70.446732Best acc: 70.552467 +Train:epoch: 39, loss@min: 0.961624, loss@max: 1.347755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.199452, LT: 1.191733, Top1S: 70.658203, Top1T: 70.552467Best acc: 70.658203 +Train:epoch: 40, loss@min: 0.972168, loss@max: 1.353498, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 40, LS: 1.199801, LT: 1.191705, Top1S: 70.737503, Top1T: 70.684639Best acc: 70.737503 +Train:epoch: 41, loss@min: 0.968778, loss@max: 1.363026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.200680, LT: 1.191939, Top1S: 70.843246, Top1T: 70.658203Best acc: 70.843246 +Train:epoch: 42, loss@min: 0.968977, loss@max: 1.370357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.201938, LT: 1.192453, Top1S: 70.790375, Top1T: 70.631767 +Train:epoch: 43, loss@min: 0.964503, loss@max: 1.368491, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.203694, LT: 1.193629, Top1S: 70.843246, Top1T: 70.790375 +Train:epoch: 44, loss@min: 0.971095, loss@max: 1.370766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.205394, LT: 1.194868, Top1S: 70.763939, Top1T: 70.816811 +Train:epoch: 45, loss@min: 0.973831, loss@max: 1.373695, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.207344, LT: 1.196551, Top1S: 70.763939, Top1T: 70.763939 +Train:epoch: 46, loss@min: 0.951733, loss@max: 1.351948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.209342, LT: 1.198372, Top1S: 70.658203, Top1T: 70.816811 +Train:epoch: 47, loss@min: 0.954116, loss@max: 1.356906, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.211407, LT: 1.200343, Top1S: 70.631767, Top1T: 70.948982Best acc: 70.948982 +Train:epoch: 48, loss@min: 0.952040, loss@max: 1.358657, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.213673, LT: 1.202464, Top1S: 70.658203, Top1T: 70.948982 +Train:epoch: 49, loss@min: 0.968132, loss@max: 1.368754, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 49, LS: 1.216112, LT: 1.204613, Top1S: 70.578903, Top1T: 71.054718Best acc: 71.054718 +Train:epoch: 50, loss@min: 0.948182, loss@max: 1.361239, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.218386, LT: 1.206660, Top1S: 70.658203, Top1T: 71.081146Best acc: 71.081146 +Train:epoch: 51, loss@min: 0.945687, loss@max: 1.360887, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.220769, LT: 1.208842, Top1S: 70.684639, Top1T: 71.054718 +Train:epoch: 52, loss@min: 0.950594, loss@max: 1.369922, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.223192, LT: 1.211184, Top1S: 70.658203, Top1T: 71.028282 +Train:epoch: 53, loss@min: 0.959662, loss@max: 1.372072, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 53, LS: 1.225844, LT: 1.213812, Top1S: 70.658203, Top1T: 70.948982 +Train:epoch: 54, loss@min: 0.948881, loss@max: 1.367549, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.228325, LT: 1.216381, Top1S: 70.763939, Top1T: 70.948982 +Train:epoch: 55, loss@min: 0.953589, loss@max: 1.363858, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.230656, LT: 1.218859, Top1S: 70.658203, Top1T: 71.001846 +Train:epoch: 56, loss@min: 0.963745, loss@max: 1.369475, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.232363, LT: 1.220805, Top1S: 70.658203, Top1T: 70.922546 +Train:epoch: 57, loss@min: 0.958385, loss@max: 1.361985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.234273, LT: 1.222565, Top1S: 70.763939, Top1T: 70.975410 +Train:epoch: 58, loss@min: 0.952926, loss@max: 1.357947, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.236115, LT: 1.224454, Top1S: 70.843246, Top1T: 70.975410 +Train:epoch: 59, loss@min: 0.979663, loss@max: 1.373553, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 59, LS: 1.237074, LT: 1.225527, Top1S: 70.896111, Top1T: 70.975410 +Train:epoch: 60, loss@min: 0.971530, loss@max: 1.374805, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.237629, LT: 1.226445, Top1S: 70.869675, Top1T: 70.896111 +Train:epoch: 61, loss@min: 0.952293, loss@max: 1.364328, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.238239, LT: 1.227285, Top1S: 70.790375, Top1T: 70.975410 +Train:epoch: 62, loss@min: 0.963631, loss@max: 1.377296, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 62, LS: 1.239169, LT: 1.228268, Top1S: 70.896111, Top1T: 70.922546 +Train:epoch: 63, loss@min: 0.947730, loss@max: 1.363958, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.240056, LT: 1.229283, Top1S: 71.001846, Top1T: 70.869675 +Train:epoch: 64, loss@min: 0.954004, loss@max: 1.374072, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.241052, LT: 1.230406, Top1S: 71.001846, Top1T: 70.896111 +Train:epoch: 65, loss@min: 0.961390, loss@max: 1.375267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.242157, LT: 1.231589, Top1S: 70.922546, Top1T: 70.948982 +Train:epoch: 66, loss@min: 0.952052, loss@max: 1.365885, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.243653, LT: 1.233028, Top1S: 70.843246, Top1T: 70.948982 +Train:epoch: 67, loss@min: 0.962029, loss@max: 1.367819, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 67, LS: 1.245132, LT: 1.234424, Top1S: 70.896111, Top1T: 70.948982 +Train:epoch: 68, loss@min: 0.954948, loss@max: 1.365364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.246458, LT: 1.235690, Top1S: 70.922546, Top1T: 70.896111 +Train:epoch: 69, loss@min: 0.953133, loss@max: 1.360432, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.247844, LT: 1.237052, Top1S: 70.922546, Top1T: 70.922546 +Train:epoch: 70, loss@min: 0.958096, loss@max: 1.365343, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 1.249080, LT: 1.238293, Top1S: 70.790375, Top1T: 70.948982 +Train:epoch: 71, loss@min: 0.978224, loss@max: 1.381617, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 71, LS: 1.249714, LT: 1.238817, Top1S: 70.737503, Top1T: 70.896111 +Train:epoch: 72, loss@min: 0.954896, loss@max: 1.359901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.250298, LT: 1.239450, Top1S: 70.737503, Top1T: 70.843246 +Train:epoch: 73, loss@min: 0.957500, loss@max: 1.373439, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 1.250980, LT: 1.240322, Top1S: 70.737503, Top1T: 70.790375 +Train:epoch: 74, loss@min: 0.947277, loss@max: 1.363936, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.251498, LT: 1.241142, Top1S: 70.737503, Top1T: 70.737503 +Train:epoch: 75, loss@min: 0.949967, loss@max: 1.363979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.251887, LT: 1.241805, Top1S: 70.711075, Top1T: 70.711075 +Train:epoch: 76, loss@min: 0.959238, loss@max: 1.374994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.251961, LT: 1.242223, Top1S: 70.711075, Top1T: 70.763939 +Train:epoch: 77, loss@min: 0.953514, loss@max: 1.374100, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.251960, LT: 1.242536, Top1S: 70.711075, Top1T: 70.790375 +Train:epoch: 78, loss@min: 0.949773, loss@max: 1.366929, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.252046, LT: 1.242764, Top1S: 70.737503, Top1T: 70.790375 +Train:epoch: 79, loss@min: 0.947803, loss@max: 1.364154, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.252373, LT: 1.243012, Top1S: 70.684639, Top1T: 70.790375 +Train:epoch: 80, loss@min: 0.971125, loss@max: 1.373644, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 80, LS: 1.252459, LT: 1.242939, Top1S: 70.578903, Top1T: 70.790375 +Train:epoch: 81, loss@min: 0.978700, loss@max: 1.380571, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 81, LS: 1.253025, LT: 1.243366, Top1S: 70.631767, Top1T: 70.896111 +Train:epoch: 82, loss@min: 0.955848, loss@max: 1.368534, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 1.253326, LT: 1.243644, Top1S: 70.684639, Top1T: 70.896111 +Train:epoch: 83, loss@min: 0.949192, loss@max: 1.362194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 1.253660, LT: 1.244072, Top1S: 70.711075, Top1T: 70.896111 +Train:epoch: 84, loss@min: 0.947363, loss@max: 1.367746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.254103, LT: 1.244591, Top1S: 70.763939, Top1T: 70.843246 +Train:epoch: 85, loss@min: 0.949803, loss@max: 1.376349, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.254505, LT: 1.245102, Top1S: 70.763939, Top1T: 70.869675 +Train:epoch: 86, loss@min: 0.946347, loss@max: 1.370494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.255031, LT: 1.245604, Top1S: 70.869675, Top1T: 70.869675 +Train:epoch: 87, loss@min: 0.947505, loss@max: 1.366137, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.255750, LT: 1.246258, Top1S: 70.869675, Top1T: 70.869675 +Train:epoch: 88, loss@min: 0.950381, loss@max: 1.365115, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.256495, LT: 1.246999, Top1S: 70.869675, Top1T: 70.843246 +Train:epoch: 89, loss@min: 0.955415, loss@max: 1.365162, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.257034, LT: 1.247623, Top1S: 70.843246, Top1T: 70.869675 +Train:epoch: 90, loss@min: 0.951178, loss@max: 1.363054, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.257567, LT: 1.248263, Top1S: 70.843246, Top1T: 70.843246 +Train:epoch: 91, loss@min: 0.957031, loss@max: 1.366704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.258054, LT: 1.248820, Top1S: 70.843246, Top1T: 70.869675 +Train:epoch: 92, loss@min: 0.957306, loss@max: 1.370766, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.258516, LT: 1.249409, Top1S: 70.869675, Top1T: 70.763939 +Train:epoch: 93, loss@min: 0.951414, loss@max: 1.365192, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.258840, LT: 1.249924, Top1S: 70.843246, Top1T: 70.763939 +Train:epoch: 94, loss@min: 0.959867, loss@max: 1.379094, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.258993, LT: 1.250251, Top1S: 70.896111, Top1T: 70.763939 +Train:epoch: 95, loss@min: 0.948456, loss@max: 1.367241, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.259170, LT: 1.250661, Top1S: 70.869675, Top1T: 70.737503 +Train:epoch: 96, loss@min: 0.950585, loss@max: 1.371893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.259523, LT: 1.251166, Top1S: 70.843246, Top1T: 70.763939 +Train:epoch: 97, loss@min: 0.950378, loss@max: 1.374744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.259617, LT: 1.251393, Top1S: 70.896111, Top1T: 70.790375 +Train:epoch: 98, loss@min: 0.948369, loss@max: 1.369329, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.259832, LT: 1.251731, Top1S: 70.922546, Top1T: 70.790375 +Train:epoch: 99, loss@min: 0.947668, loss@max: 1.362872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.260180, LT: 1.252138, Top1S: 70.948982, Top1T: 70.790375 +Train:epoch: 100, loss@min: 0.951005, loss@max: 1.369767, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.260524, LT: 1.252597, Top1S: 70.975410, Top1T: 70.790375 +Train:epoch: 101, loss@min: 0.962437, loss@max: 1.371504, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 101, LS: 1.261007, LT: 1.253237, Top1S: 70.948982, Top1T: 70.763939 +Train:epoch: 102, loss@min: 0.961933, loss@max: 1.376632, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 1.261405, LT: 1.253683, Top1S: 70.896111, Top1T: 70.763939 +Train:epoch: 103, loss@min: 0.957069, loss@max: 1.369117, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.261906, LT: 1.254079, Top1S: 70.896111, Top1T: 70.869675 +Train:epoch: 104, loss@min: 0.949142, loss@max: 1.364853, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.262515, LT: 1.254602, Top1S: 70.922546, Top1T: 70.869675 +Train:epoch: 105, loss@min: 0.947557, loss@max: 1.363103, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.263070, LT: 1.255062, Top1S: 70.896111, Top1T: 70.922546 +Train:epoch: 106, loss@min: 0.950144, loss@max: 1.369033, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.263589, LT: 1.255538, Top1S: 70.896111, Top1T: 70.922546 +Train:epoch: 107, loss@min: 0.951155, loss@max: 1.367444, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.264133, LT: 1.256022, Top1S: 70.922546, Top1T: 70.948982 +Train:epoch: 108, loss@min: 0.947298, loss@max: 1.361586, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.264653, LT: 1.256537, Top1S: 70.896111, Top1T: 70.922546 +Train:epoch: 109, loss@min: 0.952853, loss@max: 1.371977, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.265203, LT: 1.257096, Top1S: 70.922546, Top1T: 70.948982 +Train:epoch: 110, loss@min: 0.947273, loss@max: 1.369719, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.265818, LT: 1.257725, Top1S: 70.948982, Top1T: 70.975410 +Train:epoch: 111, loss@min: 0.949456, loss@max: 1.366320, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.266293, LT: 1.258225, Top1S: 71.001846, Top1T: 70.975410 +Train:epoch: 112, loss@min: 0.959012, loss@max: 1.378912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.266675, LT: 1.258628, Top1S: 71.028282, Top1T: 70.975410 +Train:epoch: 113, loss@min: 0.955833, loss@max: 1.367302, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.266850, LT: 1.258922, Top1S: 71.054718, Top1T: 71.001846 +Train:epoch: 114, loss@min: 0.954037, loss@max: 1.367937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.266940, LT: 1.259121, Top1S: 71.081146, Top1T: 71.001846 +Train:epoch: 115, loss@min: 0.998424, loss@max: 1.384804, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 115, LS: 1.266793, LT: 1.259020, Top1S: 71.081146, Top1T: 70.975410 +Train:epoch: 116, loss@min: 0.955030, loss@max: 1.372051, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.266701, LT: 1.258959, Top1S: 71.054718, Top1T: 70.948982 +Train:epoch: 117, loss@min: 0.950265, loss@max: 1.368053, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.266589, LT: 1.258858, Top1S: 71.054718, Top1T: 70.948982 +Train:epoch: 118, loss@min: 0.947875, loss@max: 1.361894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.266550, LT: 1.258806, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 119, loss@min: 0.949888, loss@max: 1.366245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.266541, LT: 1.258781, Top1S: 71.107582, Top1T: 70.896111Best acc: 71.107582 +Train:epoch: 120, loss@min: 0.945062, loss@max: 1.367587, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 1.266559, LT: 1.258766, Top1S: 71.107582, Top1T: 70.869675 +Train:epoch: 121, loss@min: 0.951754, loss@max: 1.365613, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.266581, LT: 1.258773, Top1S: 71.134018, Top1T: 70.869675Best acc: 71.134018 +Train:epoch: 122, loss@min: 0.948039, loss@max: 1.366373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.266653, LT: 1.258785, Top1S: 71.107582, Top1T: 70.896111 +Train:epoch: 123, loss@min: 0.950124, loss@max: 1.367264, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.266728, LT: 1.258806, Top1S: 71.081146, Top1T: 70.922546 +Train:epoch: 124, loss@min: 0.946274, loss@max: 1.369703, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.266822, LT: 1.258863, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 125, loss@min: 0.956540, loss@max: 1.373367, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 1.266903, LT: 1.258911, Top1S: 71.107582, Top1T: 70.896111 +Train:epoch: 126, loss@min: 0.960025, loss@max: 1.369319, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 126, LS: 1.266949, LT: 1.258938, Top1S: 71.107582, Top1T: 70.922546 +Train:epoch: 127, loss@min: 0.946507, loss@max: 1.364892, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 1.267000, LT: 1.258987, Top1S: 71.107582, Top1T: 70.896111 +Train:epoch: 128, loss@min: 0.947697, loss@max: 1.369315, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.267031, LT: 1.259016, Top1S: 71.107582, Top1T: 70.896111 +Train:epoch: 129, loss@min: 0.946583, loss@max: 1.369280, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 1.267060, LT: 1.259051, Top1S: 71.107582, Top1T: 70.896111 +Train:epoch: 130, loss@min: 0.949501, loss@max: 1.365877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 1.267085, LT: 1.259093, Top1S: 71.107582, Top1T: 70.896111 +Train:epoch: 131, loss@min: 0.949752, loss@max: 1.363996, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.267120, LT: 1.259145, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 132, loss@min: 0.951195, loss@max: 1.365564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.267157, LT: 1.259206, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 133, loss@min: 0.951514, loss@max: 1.363125, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.267193, LT: 1.259272, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 134, loss@min: 0.947285, loss@max: 1.363962, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.267237, LT: 1.259332, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 135, loss@min: 0.952294, loss@max: 1.368245, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.267288, LT: 1.259394, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 136, loss@min: 0.947111, loss@max: 1.361986, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 1.267334, LT: 1.259445, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 137, loss@min: 0.956085, loss@max: 1.370974, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.267379, LT: 1.259490, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 138, loss@min: 0.948588, loss@max: 1.364923, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 1.267422, LT: 1.259536, Top1S: 71.081146, Top1T: 70.896111 +Train:epoch: 139, loss@min: 0.953038, loss@max: 1.373991, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.267446, LT: 1.259566, Top1S: 71.054718, Top1T: 70.896111 +Train:epoch: 140, loss@min: 1.037219, loss@max: 1.390609, Top1S acc: 100.000000, Top1T acc: 99.504951 + Test:epoch: 140, LS: 1.267487, LT: 1.259610, Top1S: 71.028282, Top1T: 70.896111 +Train:epoch: 141, loss@min: 0.955990, loss@max: 1.373739, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.267530, LT: 1.259654, Top1S: 71.028282, Top1T: 70.896111 +Train:epoch: 142, loss@min: 0.949161, loss@max: 1.366196, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.267562, LT: 1.259685, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 143, loss@min: 0.950080, loss@max: 1.367324, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 1.267584, LT: 1.259706, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 144, loss@min: 0.958987, loss@max: 1.374584, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.267598, LT: 1.259720, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 145, loss@min: 0.951750, loss@max: 1.368500, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.267607, LT: 1.259728, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 146, loss@min: 0.950350, loss@max: 1.369249, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.267613, LT: 1.259734, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 147, loss@min: 0.952081, loss@max: 1.365656, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.267615, LT: 1.259736, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 148, loss@min: 0.952637, loss@max: 1.368585, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.267617, LT: 1.259738, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 149, loss@min: 0.956895, loss@max: 1.368059, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 1.267617, LT: 1.259738, Top1S: 71.028282, Top1T: 70.869675 +Train:epoch: 150, loss@min: 0.951306, loss@max: 1.366894, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.267617, LT: 1.259738, Top1S: 71.028282, Top1T: 70.869675 +------------------------------------------- +Fri Jan 19 18:57:07 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Fri Jan 19 20:01:32 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.326132, loss@max: 1.569210, Top1S acc: 100.000000, Top1T acc: 59.405941 +Train:epoch: 2, loss@min: 3.754817, loss@max: 1.554631, Top1S acc: 100.000000, Top1T acc: 64.356438 +Train:epoch: 3, loss@min: 2.978770, loss@max: 1.462959, Top1S acc: 100.000000, Top1T acc: 73.267326 +Train:epoch: 4, loss@min: 2.793536, loss@max: 1.514293, Top1S acc: 100.000000, Top1T acc: 78.217819 +Train:epoch: 5, loss@min: 2.275660, loss@max: 1.451529, Top1S acc: 100.000000, Top1T acc: 81.188118 +Train:epoch: 6, loss@min: 2.109324, loss@max: 1.487523, Top1S acc: 100.000000, Top1T acc: 84.158417 +Train:epoch: 7, loss@min: 2.037294, loss@max: 1.524340, Top1S acc: 100.000000, Top1T acc: 89.108910 +Train:epoch: 8, loss@min: 1.666583, loss@max: 1.478747, Top1S acc: 100.000000, Top1T acc: 90.099007 +Train:epoch: 9, loss@min: 1.273654, loss@max: 1.416204, Top1S acc: 100.000000, Top1T acc: 96.039604 +Train:epoch: 10, loss@min: 1.372045, loss@max: 1.485347, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 11, loss@min: 1.376507, loss@max: 1.502825, Top1S acc: 100.000000, Top1T acc: 94.059402 +Train:epoch: 12, loss@min: 1.216593, loss@max: 1.491718, Top1S acc: 100.000000, Top1T acc: 95.049507 +Train:epoch: 13, loss@min: 1.055496, loss@max: 1.440149, Top1S acc: 100.000000, Top1T acc: 98.019798 +Train:epoch: 14, loss@min: 0.989837, loss@max: 1.421774, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 15, loss@min: 1.090268, loss@max: 1.430401, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 16, loss@min: 1.025743, loss@max: 1.406577, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 17, loss@min: 1.040067, loss@max: 1.371244, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 18, loss@min: 1.016168, loss@max: 1.375094, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 19, loss@min: 0.946999, loss@max: 1.334842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 20, loss@min: 1.030652, loss@max: 1.354040, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 21, loss@min: 0.948625, loss@max: 1.315950, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 22, loss@min: 0.947722, loss@max: 1.301513, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 23, loss@min: 0.968275, loss@max: 1.311272, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 24, loss@min: 1.026454, loss@max: 1.338403, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 25, loss@min: 0.943787, loss@max: 1.298527, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 26, loss@min: 0.967563, loss@max: 1.315530, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 0.991128, loss@max: 1.325593, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 28, loss@min: 0.993009, loss@max: 1.320442, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 29, loss@min: 1.020795, loss@max: 1.346930, Top1S acc: 100.000000, Top1T acc: 99.009903 +Train:epoch: 30, loss@min: 0.952087, loss@max: 1.311246, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 1.418822, LT: 1.417461, Top1S: 66.323021, Top1T: 66.005814Best acc: 66.323021 +Train:epoch: 31, loss@min: 0.969712, loss@max: 1.334046, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 1.419730, LT: 1.418270, Top1S: 66.349457, Top1T: 66.243721Best acc: 66.349457 +Train:epoch: 32, loss@min: 0.951012, loss@max: 1.308940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 1.421078, LT: 1.419565, Top1S: 66.534492, Top1T: 66.243721Best acc: 66.534492 +Train:epoch: 33, loss@min: 1.018018, loss@max: 1.339593, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 33, LS: 1.423055, LT: 1.421471, Top1S: 66.428757, Top1T: 66.217285 +Train:epoch: 34, loss@min: 0.949743, loss@max: 1.310419, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 34, LS: 1.425062, LT: 1.423568, Top1S: 66.534492, Top1T: 66.481628 +Train:epoch: 35, loss@min: 0.993321, loss@max: 1.343580, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 35, LS: 1.426737, LT: 1.425517, Top1S: 66.640228, Top1T: 66.587364Best acc: 66.640228 +Train:epoch: 36, loss@min: 0.945410, loss@max: 1.314832, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.428631, LT: 1.427747, Top1S: 66.666664, Top1T: 66.560928Best acc: 66.666664 +Train:epoch: 37, loss@min: 0.956241, loss@max: 1.327942, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 37, LS: 1.430792, LT: 1.430197, Top1S: 66.745964, Top1T: 66.534492Best acc: 66.745964 +Train:epoch: 38, loss@min: 0.950165, loss@max: 1.316494, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.433057, LT: 1.432869, Top1S: 66.693100, Top1T: 66.666664 +Train:epoch: 39, loss@min: 0.953880, loss@max: 1.318844, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.435253, LT: 1.435407, Top1S: 66.693100, Top1T: 66.613792 +Train:epoch: 40, loss@min: 0.968638, loss@max: 1.340642, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 1.437947, LT: 1.438180, Top1S: 66.745964, Top1T: 66.613792 +Train:epoch: 41, loss@min: 0.963481, loss@max: 1.344498, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 41, LS: 1.440553, LT: 1.440430, Top1S: 66.772400, Top1T: 66.613792Best acc: 66.772400 +Train:epoch: 42, loss@min: 0.940756, loss@max: 1.334804, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.443226, LT: 1.442587, Top1S: 66.825272, Top1T: 66.613792Best acc: 66.825272 +Train:epoch: 43, loss@min: 0.950319, loss@max: 1.344292, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.446050, LT: 1.444725, Top1S: 66.825272, Top1T: 66.613792 +Train:epoch: 44, loss@min: 0.950470, loss@max: 1.332179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 44, LS: 1.448956, LT: 1.446728, Top1S: 66.798836, Top1T: 66.455193 +Train:epoch: 45, loss@min: 0.945910, loss@max: 1.344749, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.452062, LT: 1.449135, Top1S: 66.772400, Top1T: 66.428757 +Train:epoch: 46, loss@min: 0.957831, loss@max: 1.357696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.455027, LT: 1.451421, Top1S: 66.693100, Top1T: 66.508057 +Train:epoch: 47, loss@min: 0.947507, loss@max: 1.350190, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.458034, LT: 1.454005, Top1S: 66.719528, Top1T: 66.508057 +Train:epoch: 48, loss@min: 0.938832, loss@max: 1.346868, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.460660, LT: 1.456480, Top1S: 66.666664, Top1T: 66.560928 +Train:epoch: 49, loss@min: 0.953696, loss@max: 1.359373, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.462749, LT: 1.458591, Top1S: 66.693100, Top1T: 66.613792 +Train:epoch: 50, loss@min: 0.939727, loss@max: 1.346755, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 1.464482, LT: 1.460611, Top1S: 66.613792, Top1T: 66.613792 +Train:epoch: 51, loss@min: 0.948922, loss@max: 1.365721, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.465968, LT: 1.462704, Top1S: 66.587364, Top1T: 66.666664 +Train:epoch: 52, loss@min: 0.947298, loss@max: 1.357837, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.467549, LT: 1.464961, Top1S: 66.640228, Top1T: 66.719528 +Train:epoch: 53, loss@min: 0.943098, loss@max: 1.352370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 53, LS: 1.468875, LT: 1.467048, Top1S: 66.613792, Top1T: 66.745964 +Train:epoch: 54, loss@min: 0.941148, loss@max: 1.351334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 1.470187, LT: 1.469017, Top1S: 66.693100, Top1T: 66.666664 +Train:epoch: 55, loss@min: 0.948680, loss@max: 1.362452, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.472390, LT: 1.471176, Top1S: 66.745964, Top1T: 66.693100 +Train:epoch: 56, loss@min: 0.942419, loss@max: 1.359899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 1.474319, LT: 1.473144, Top1S: 66.772400, Top1T: 66.640228 +Train:epoch: 57, loss@min: 0.948460, loss@max: 1.368686, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.476375, LT: 1.474800, Top1S: 66.772400, Top1T: 66.666664 +Train:epoch: 58, loss@min: 0.947005, loss@max: 1.351984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 1.478399, LT: 1.476605, Top1S: 66.825272, Top1T: 66.693100 +Train:epoch: 59, loss@min: 0.950185, loss@max: 1.355899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.480206, LT: 1.478190, Top1S: 66.772400, Top1T: 66.719528 +Train:epoch: 60, loss@min: 0.945856, loss@max: 1.357784, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.481756, LT: 1.479678, Top1S: 66.798836, Top1T: 66.640228 +Train:epoch: 61, loss@min: 0.945705, loss@max: 1.352417, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.483189, LT: 1.480851, Top1S: 66.745964, Top1T: 66.613792 +Train:epoch: 62, loss@min: 0.941480, loss@max: 1.360179, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.484431, LT: 1.482218, Top1S: 66.798836, Top1T: 66.640228 +Train:epoch: 63, loss@min: 0.944155, loss@max: 1.356306, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 1.485350, LT: 1.483557, Top1S: 66.772400, Top1T: 66.666664 +Train:epoch: 64, loss@min: 0.948776, loss@max: 1.364485, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 1.485908, LT: 1.484535, Top1S: 66.798836, Top1T: 66.666664 +Train:epoch: 65, loss@min: 0.954528, loss@max: 1.363878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.485892, LT: 1.484908, Top1S: 66.772400, Top1T: 66.693100 +Train:epoch: 66, loss@min: 0.946022, loss@max: 1.362234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 1.485996, LT: 1.485344, Top1S: 66.719528, Top1T: 66.693100 +Train:epoch: 67, loss@min: 0.947674, loss@max: 1.358690, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.486332, LT: 1.485570, Top1S: 66.772400, Top1T: 66.745964 +Train:epoch: 68, loss@min: 0.949729, loss@max: 1.361357, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 1.486595, LT: 1.485778, Top1S: 66.772400, Top1T: 66.666664 +Train:epoch: 69, loss@min: 0.943177, loss@max: 1.360106, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.486941, LT: 1.486239, Top1S: 66.772400, Top1T: 66.587364 +Train:epoch: 70, loss@min: 0.979959, loss@max: 1.385334, Top1S acc: 100.000000, Top1T acc: 99.009903 + Test:epoch: 70, LS: 1.487393, LT: 1.486631, Top1S: 66.745964, Top1T: 66.693100 +Train:epoch: 71, loss@min: 0.943899, loss@max: 1.359312, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 4, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Fri Jan 19 20:36:00 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.749770, loss@max: 1.494764, Top1S acc: 100.000000, Top1T acc: 65.234375 +Train:epoch: 2, loss@min: 2.893301, loss@max: 1.471571, Top1S acc: 100.000000, Top1T acc: 74.218750 +Train:epoch: 3, loss@min: 2.824723, loss@max: 1.583441, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 2.586687, loss@max: 1.635444, Top1S acc: 100.000000, Top1T acc: 77.734375 +Train:epoch: 5, loss@min: 2.014830, loss@max: 1.560066, Top1S acc: 100.000000, Top1T acc: 80.859375 +Train:epoch: 6, loss@min: 1.965035, loss@max: 1.606076, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 7, loss@min: 1.733179, loss@max: 1.574440, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 8, loss@min: 1.730578, loss@max: 1.593847, Top1S acc: 100.000000, Top1T acc: 86.328125 +Train:epoch: 9, loss@min: 1.534539, loss@max: 1.539142, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 10, loss@min: 1.478065, loss@max: 1.521252, Top1S acc: 100.000000, Top1T acc: 89.843750 +Train:epoch: 11, loss@min: 1.475115, loss@max: 1.509509, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 12, loss@min: 1.233688, loss@max: 1.403707, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 13, loss@min: 1.322909, loss@max: 1.429635, Top1S acc: 100.000000, Top1T acc: 94.921875 +Train:epoch: 14, loss@min: 1.257660, loss@max: 1.383375, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 15, loss@min: 1.286023, loss@max: 1.396956, Top1S acc: 100.000000, Top1T acc: 93.359375 +Train:epoch: 16, loss@min: 1.233294, loss@max: 1.386527, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 17, loss@min: 1.130459, loss@max: 1.355471, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 18, loss@min: 1.082466, loss@max: 1.326978, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 19, loss@min: 1.096248, loss@max: 1.340234, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.172805, loss@max: 1.368431, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.114275, loss@max: 1.353603, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 22, loss@min: 1.084132, loss@max: 1.353163, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.011892, loss@max: 1.336800, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 24, loss@min: 1.039271, loss@max: 1.363372, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 1.036533, loss@max: 1.358197, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 1.007765, loss@max: 1.349427, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 27, loss@min: 1.032478, loss@max: 1.363210, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.977596, loss@max: 1.342429, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 29, loss@min: 0.982168, loss@max: 1.345465, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 30, loss@min: 0.974558, loss@max: 1.343620, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 30, LS: 1.029640, LT: 1.027038, Top1S: 73.328041, Top1T: 73.222305Best acc: 73.328041 +Train:epoch: 31, loss@min: 1.005374, loss@max: 1.356456, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 31, LS: 1.030811, LT: 1.028620, Top1S: 73.301613, Top1T: 73.328041 +Train:epoch: 32, loss@min: 0.989885, loss@max: 1.353721, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 32, LS: 1.034104, LT: 1.031923, Top1S: 73.248741, Top1T: 73.328041 +Train:epoch: 33, loss@min: 0.983165, loss@max: 1.347376, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 1.037059, LT: 1.034196, Top1S: 73.248741, Top1T: 73.407349Best acc: 73.407349 +Train:epoch: 34, loss@min: 0.987973, loss@max: 1.357655, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 34, LS: 1.039548, LT: 1.036407, Top1S: 73.143005, Top1T: 73.460213Best acc: 73.460213 +Train:epoch: 35, loss@min: 0.973403, loss@max: 1.353872, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 35, LS: 1.040375, LT: 1.037515, Top1S: 73.486649, Top1T: 73.486649Best acc: 73.486649 +Train:epoch: 36, loss@min: 0.972546, loss@max: 1.355709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 1.042659, LT: 1.039879, Top1S: 73.565948, Top1T: 73.645248Best acc: 73.645248 +Train:epoch: 37, loss@min: 0.979032, loss@max: 1.354375, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 37, LS: 1.046395, LT: 1.043366, Top1S: 73.565948, Top1T: 73.777420Best acc: 73.777420 +Train:epoch: 38, loss@min: 0.977454, loss@max: 1.362976, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 38, LS: 1.051931, LT: 1.048475, Top1S: 73.565948, Top1T: 73.724556 +Train:epoch: 39, loss@min: 0.970958, loss@max: 1.358267, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 39, LS: 1.056762, LT: 1.053253, Top1S: 73.565948, Top1T: 73.750984 +Train:epoch: 40, loss@min: 0.982347, loss@max: 1.367625, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 40, LS: 1.060292, LT: 1.056730, Top1S: 73.724556, Top1T: 73.909592Best acc: 73.909592 +Train:epoch: 41, loss@min: 0.989868, loss@max: 1.366404, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 41, LS: 1.063119, LT: 1.059858, Top1S: 73.777420, Top1T: 73.909592 +Train:epoch: 42, loss@min: 0.976709, loss@max: 1.366204, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 42, LS: 1.064627, LT: 1.061064, Top1S: 73.724556, Top1T: 73.962463Best acc: 73.962463 +Train:epoch: 43, loss@min: 0.977758, loss@max: 1.364165, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 43, LS: 1.065984, LT: 1.061667, Top1S: 73.724556, Top1T: 73.830292 +Train:epoch: 44, loss@min: 0.990154, loss@max: 1.374597, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 44, LS: 1.068430, LT: 1.063587, Top1S: 73.856728, Top1T: 73.909592 +Train:epoch: 45, loss@min: 0.968900, loss@max: 1.367635, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.071417, LT: 1.066709, Top1S: 73.883156, Top1T: 73.962463 +Train:epoch: 46, loss@min: 0.964069, loss@max: 1.367665, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.073280, LT: 1.068791, Top1S: 73.909592, Top1T: 73.936028 +Train:epoch: 47, loss@min: 0.963775, loss@max: 1.368424, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.076207, LT: 1.072279, Top1S: 73.883156, Top1T: 73.909592 +Train:epoch: 48, loss@min: 0.969098, loss@max: 1.362110, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 1.078451, LT: 1.075077, Top1S: 73.830292, Top1T: 73.856728 +Train:epoch: 49, loss@min: 0.975855, loss@max: 1.370531, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 49, LS: 1.082154, LT: 1.079131, Top1S: 73.803856, Top1T: 73.883156 +Train:epoch: 50, loss@min: 0.962423, loss@max: 1.367557, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 50, LS: 1.086241, LT: 1.082941, Top1S: 73.883156, Top1T: 73.830292 +Train:epoch: 51, loss@min: 0.955160, loss@max: 1.359090, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 1.090343, LT: 1.086379, Top1S: 74.094627, Top1T: 73.909592Best acc: 74.094627 +Train:epoch: 52, loss@min: 0.955592, loss@max: 1.369296, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 52, LS: 1.093528, LT: 1.089203, Top1S: 73.962463, Top1T: 73.936028 +Train:epoch: 53, loss@min: 0.972371, loss@max: 1.374657, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 53, LS: 1.096304, LT: 1.092296, Top1S: 73.777420, Top1T: 74.015327 +Train:epoch: 54, loss@min: 0.960615, loss@max: 1.361964, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 54, LS: 1.099558, LT: 1.095718, Top1S: 74.068199, Top1T: 73.988892 +Train:epoch: 55, loss@min: 0.958526, loss@max: 1.368235, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 1.102092, LT: 1.098540, Top1S: 74.094627, Top1T: 73.909592 +Train:epoch: 56, loss@min: 0.979630, loss@max: 1.381565, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 56, LS: 1.104378, LT: 1.100876, Top1S: 74.147499, Top1T: 73.883156Best acc: 74.147499 +Train:epoch: 57, loss@min: 0.960209, loss@max: 1.370715, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 57, LS: 1.105092, LT: 1.101965, Top1S: 74.147499, Top1T: 73.988892 +Train:epoch: 58, loss@min: 0.976699, loss@max: 1.378471, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 58, LS: 1.105756, LT: 1.102606, Top1S: 74.015327, Top1T: 73.909592 +Train:epoch: 59, loss@min: 0.959998, loss@max: 1.359765, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 1.106248, LT: 1.102558, Top1S: 73.962463, Top1T: 73.909592 +Train:epoch: 60, loss@min: 0.966478, loss@max: 1.369720, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 1.105494, LT: 1.101704, Top1S: 74.041763, Top1T: 73.988892 +Train:epoch: 61, loss@min: 0.965364, loss@max: 1.373845, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 1.105149, LT: 1.101746, Top1S: 73.988892, Top1T: 73.962463 +Train:epoch: 62, loss@min: 0.971445, loss@max: 1.381250, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 1.105095, LT: 1.102006, Top1S: 73.988892, Top1T: 74.094627 +Train:epoch: 63, loss@min: 0.958671, loss@max: 1.376645, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 63, LS: 1.105503, LT: 1.102388, Top1S: 73.883156, Top1T: 73.962463 +Train:epoch: 64, loss@min: 0.963434, loss@max: 1.372316, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 64, LS: 1.106317, LT: 1.102926, Top1S: 73.936028, Top1T: 74.015327 +Train:epoch: 65, loss@min: 0.957212, loss@max: 1.373655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 1.107190, LT: 1.103240, Top1S: 73.988892, Top1T: 74.041763 +Train:epoch: 66, loss@min: 0.981367, loss@max: 1.381044, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 66, LS: 1.108184, LT: 1.103725, Top1S: 73.962463, Top1T: 73.936028 +Train:epoch: 67, loss@min: 0.947547, loss@max: 1.370166, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 1.110248, LT: 1.105468, Top1S: 73.962463, Top1T: 73.909592 +Train:epoch: 68, loss@min: 0.969228, loss@max: 1.374144, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 68, LS: 1.112141, LT: 1.107670, Top1S: 73.936028, Top1T: 73.936028 +Train:epoch: 69, loss@min: 0.961004, loss@max: 1.367679, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 69, LS: 1.114099, LT: 1.110128, Top1S: 73.856728, Top1T: 73.962463 +Train:epoch: 70, loss@min: 0.971995, loss@max: 1.378593, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 70, LS: 1.115925, LT: 1.112232, Top1S: 73.988892, Top1T: 74.015327 +Train:epoch: 71, loss@min: 0.958104, loss@max: 1.372142, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 1.117293, LT: 1.112813, Top1S: 74.015327, Top1T: 74.068199 +Train:epoch: 72, loss@min: 0.952761, loss@max: 1.370220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 1.117698, LT: 1.113426, Top1S: 74.041763, Top1T: 74.015327 +Train:epoch: 73, loss@min: 0.969647, loss@max: 1.378086, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 73, LS: 1.118010, LT: 1.114101, Top1S: 74.121063, Top1T: 73.988892 +Train:epoch: 74, loss@min: 0.950750, loss@max: 1.370684, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 1.117672, LT: 1.113872, Top1S: 74.253235, Top1T: 74.068199Best acc: 74.253235 +Train:epoch: 75, loss@min: 0.958639, loss@max: 1.368052, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 1.118115, LT: 1.113931, Top1S: 74.226799, Top1T: 74.147499 +Train:epoch: 76, loss@min: 0.962526, loss@max: 1.371957, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 1.117619, LT: 1.113586, Top1S: 74.200363, Top1T: 74.279671Best acc: 74.279671 +Train:epoch: 77, loss@min: 0.962354, loss@max: 1.368421, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 1.117549, LT: 1.113988, Top1S: 74.173935, Top1T: 74.226799 +Train:epoch: 78, loss@min: 0.956986, loss@max: 1.374031, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 1.119109, LT: 1.115682, Top1S: 74.226799, Top1T: 74.226799 +Train:epoch: 79, loss@min: 0.949901, loss@max: 1.376323, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 1.121258, LT: 1.117673, Top1S: 74.358971, Top1T: 74.226799Best acc: 74.358971 +Train:epoch: 80, loss@min: 0.951945, loss@max: 1.370369, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 1.123153, LT: 1.119292, Top1S: 74.438271, Top1T: 74.358971Best acc: 74.438271 +Train:epoch: 81, loss@min: 0.951550, loss@max: 1.366503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 1.124931, LT: 1.120603, Top1S: 74.358971, Top1T: 74.491142Best acc: 74.491142 +Train:epoch: 82, loss@min: 0.972113, loss@max: 1.371315, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 1.125130, LT: 1.121393, Top1S: 74.332535, Top1T: 74.464706 +Train:epoch: 83, loss@min: 0.958047, loss@max: 1.369170, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 83, LS: 1.125171, LT: 1.122038, Top1S: 74.358971, Top1T: 74.464706 +Train:epoch: 84, loss@min: 0.955588, loss@max: 1.372914, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 1.125550, LT: 1.122539, Top1S: 74.332535, Top1T: 74.438271 +Train:epoch: 85, loss@min: 0.957542, loss@max: 1.378701, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.125963, LT: 1.122610, Top1S: 74.358971, Top1T: 74.411842 +Train:epoch: 86, loss@min: 0.954668, loss@max: 1.374201, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 1.126039, LT: 1.122511, Top1S: 74.306107, Top1T: 74.358971 +Train:epoch: 87, loss@min: 0.946644, loss@max: 1.370709, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 1.125629, LT: 1.121583, Top1S: 74.279671, Top1T: 74.358971 +Train:epoch: 88, loss@min: 0.965480, loss@max: 1.378520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.125847, LT: 1.120847, Top1S: 74.279671, Top1T: 74.385406 +Train:epoch: 89, loss@min: 0.950604, loss@max: 1.364717, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.125928, LT: 1.120530, Top1S: 74.226799, Top1T: 74.358971 +Train:epoch: 90, loss@min: 0.956216, loss@max: 1.365877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.125700, LT: 1.120678, Top1S: 74.173935, Top1T: 74.385406 +Train:epoch: 91, loss@min: 0.956278, loss@max: 1.371482, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 1.125402, LT: 1.121523, Top1S: 74.253235, Top1T: 74.332535 +Train:epoch: 92, loss@min: 0.969010, loss@max: 1.380348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 1.125209, LT: 1.122342, Top1S: 74.358971, Top1T: 74.411842 +Train:epoch: 93, loss@min: 0.943163, loss@max: 1.370489, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 1.125815, LT: 1.122945, Top1S: 74.306107, Top1T: 74.411842 +Train:epoch: 94, loss@min: 0.952110, loss@max: 1.379326, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 1.126925, LT: 1.123488, Top1S: 74.253235, Top1T: 74.358971 +Train:epoch: 95, loss@min: 0.952423, loss@max: 1.374255, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.128832, LT: 1.124591, Top1S: 74.253235, Top1T: 74.332535 +Train:epoch: 96, loss@min: 0.962760, loss@max: 1.376912, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 1.130283, LT: 1.125603, Top1S: 74.226799, Top1T: 74.358971 +Train:epoch: 97, loss@min: 0.957396, loss@max: 1.365208, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 97, LS: 1.131261, LT: 1.126986, Top1S: 74.226799, Top1T: 74.306107 +Train:epoch: 98, loss@min: 0.954876, loss@max: 1.368927, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.131929, LT: 1.128234, Top1S: 74.173935, Top1T: 74.306107 +Train:epoch: 99, loss@min: 0.952339, loss@max: 1.375544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.132690, LT: 1.129275, Top1S: 74.068199, Top1T: 74.358971 +Train:epoch: 100, loss@min: 0.951056, loss@max: 1.367135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 1.133496, LT: 1.130066, Top1S: 74.094627, Top1T: 74.306107 +Train:epoch: 101, loss@min: 0.949070, loss@max: 1.369122, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.134613, LT: 1.130910, Top1S: 74.094627, Top1T: 74.332535 +Train:epoch: 102, loss@min: 0.954814, loss@max: 1.375681, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.135101, LT: 1.130983, Top1S: 74.121063, Top1T: 74.358971 +Train:epoch: 103, loss@min: 0.952570, loss@max: 1.370954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 1.135822, LT: 1.131401, Top1S: 74.226799, Top1T: 74.226799 +Train:epoch: 104, loss@min: 0.957996, loss@max: 1.367711, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.136991, LT: 1.132592, Top1S: 74.226799, Top1T: 74.253235 +Train:epoch: 105, loss@min: 0.960132, loss@max: 1.362149, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.138337, LT: 1.134336, Top1S: 74.279671, Top1T: 74.173935 +Train:epoch: 106, loss@min: 0.952486, loss@max: 1.371655, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.139455, LT: 1.135851, Top1S: 74.200363, Top1T: 74.094627 +Train:epoch: 107, loss@min: 0.953778, loss@max: 1.368683, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.140736, LT: 1.137278, Top1S: 74.173935, Top1T: 74.068199 +Train:epoch: 108, loss@min: 0.945340, loss@max: 1.370512, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 1.142083, LT: 1.138490, Top1S: 74.147499, Top1T: 74.147499 +Train:epoch: 109, loss@min: 0.949206, loss@max: 1.362813, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 1.142920, LT: 1.139319, Top1S: 74.200363, Top1T: 74.094627 +Train:epoch: 110, loss@min: 0.965086, loss@max: 1.375723, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 110, LS: 1.143722, LT: 1.140088, Top1S: 74.121063, Top1T: 74.147499 +Train:epoch: 111, loss@min: 0.966101, loss@max: 1.375778, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 111, LS: 1.144595, LT: 1.140887, Top1S: 74.173935, Top1T: 74.147499 +Train:epoch: 112, loss@min: 0.957378, loss@max: 1.372313, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.145145, LT: 1.141477, Top1S: 74.253235, Top1T: 74.200363 +Train:epoch: 113, loss@min: 0.969259, loss@max: 1.373853, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 113, LS: 1.145486, LT: 1.141859, Top1S: 74.279671, Top1T: 74.253235 +Train:epoch: 114, loss@min: 0.954630, loss@max: 1.371816, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.145986, LT: 1.142080, Top1S: 74.306107, Top1T: 74.279671 +Train:epoch: 115, loss@min: 0.966644, loss@max: 1.372393, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 115, LS: 1.146337, LT: 1.142206, Top1S: 74.253235, Top1T: 74.332535 +Train:epoch: 116, loss@min: 0.948528, loss@max: 1.366516, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.146468, LT: 1.142190, Top1S: 74.226799, Top1T: 74.332535 +Train:epoch: 117, loss@min: 0.952812, loss@max: 1.366563, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.146548, LT: 1.142231, Top1S: 74.226799, Top1T: 74.332535 +Train:epoch: 118, loss@min: 0.950526, loss@max: 1.360984, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.146826, LT: 1.142499, Top1S: 74.173935, Top1T: 74.358971 +Train:epoch: 119, loss@min: 0.951365, loss@max: 1.366013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.146939, LT: 1.142749, Top1S: 74.173935, Top1T: 74.358971 +Train:epoch: 120, loss@min: 0.960587, loss@max: 1.370471, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 1.147022, LT: 1.143044, Top1S: 74.200363, Top1T: 74.358971 +Train:epoch: 121, loss@min: 0.948462, loss@max: 1.364863, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 1.147067, LT: 1.143378, Top1S: 74.253235, Top1T: 74.332535 +Train:epoch: 122, loss@min: 0.947665, loss@max: 1.370911, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 1.147142, LT: 1.143659, Top1S: 74.279671, Top1T: 74.332535 +Train:epoch: 123, loss@min: 0.945471, loss@max: 1.367909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.147344, LT: 1.144043, Top1S: 74.306107, Top1T: 74.332535{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Fri Jan 19 22:04:51 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 3.604574, loss@max: 1.584458, Top1S acc: 100.000000, Top1T acc: 62.109375 +Train:epoch: 2, loss@min: 2.651188, loss@max: 1.579431, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 3, loss@min: 2.684131, loss@max: 1.701937, Top1S acc: 100.000000, Top1T acc: 72.265625 +Train:epoch: 4, loss@min: 2.468893, loss@max: 1.704617, Top1S acc: 100.000000, Top1T acc: 75.390625 +Train:epoch: 5, loss@min: 1.861498, loss@max: 1.568369, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 6, loss@min: 1.907552, loss@max: 1.565294, Top1S acc: 100.000000, Top1T acc: 82.812500 +Train:epoch: 7, loss@min: 1.803232, loss@max: 1.523981, Top1S acc: 100.000000, Top1T acc: 84.765625 +Train:epoch: 8, loss@min: 1.719603, loss@max: 1.485308, Top1S acc: 100.000000, Top1T acc: 86.718750 +Train:epoch: 9, loss@min: 1.693546, loss@max: 1.475312, Top1S acc: 100.000000, Top1T acc: 87.890625 +Train:epoch: 10, loss@min: 1.546172, loss@max: 1.437116, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 11, loss@min: 1.575358, loss@max: 1.452444, Top1S acc: 100.000000, Top1T acc: 91.796875 +Train:epoch: 12, loss@min: 1.439530, loss@max: 1.432836, Top1S acc: 100.000000, Top1T acc: 92.187500 +Train:epoch: 13, loss@min: 1.411226, loss@max: 1.424269, Top1S acc: 100.000000, Top1T acc: 92.578125 +Train:epoch: 14, loss@min: 1.224052, loss@max: 1.376308, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 15, loss@min: 1.290640, loss@max: 1.411800, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 16, loss@min: 1.280924, loss@max: 1.409262, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 17, loss@min: 1.271839, loss@max: 1.412609, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 18, loss@min: 1.130454, loss@max: 1.374190, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 19, loss@min: 1.110271, loss@max: 1.375191, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 20, loss@min: 1.168986, loss@max: 1.400364, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 21, loss@min: 1.153650, loss@max: 1.387920, Top1S acc: 100.000000, Top1T acc: 96.093750 +Train:epoch: 22, loss@min: 1.106669, loss@max: 1.384422, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 23, loss@min: 1.096955, loss@max: 1.375698, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 24, loss@min: 1.057959, loss@max: 1.360783, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 25, loss@min: 1.068325, loss@max: 1.372079, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 26, loss@min: 1.037827, loss@max: 1.366405, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 27, loss@min: 1.052147, loss@max: 1.380488, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 1.008638, loss@max: 1.361078, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 29, loss@min: 1.123893, loss@max: 1.410496, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 30, loss@min: 1.004524, loss@max: 1.370838, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 30, LS: 0.933317, LT: 0.925193, Top1S: 75.786407, Top1T: 76.050751Best acc: 76.050751 +Train:epoch: 31, loss@min: 1.004577, loss@max: 1.362847, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 31, LS: 0.931354, LT: 0.924719, Top1S: 75.707108, Top1T: 75.839279 +Train:epoch: 32, loss@min: 1.017408, loss@max: 1.364968, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 32, LS: 0.924837, LT: 0.916906, Top1S: 75.839279, Top1T: 75.997879 +Train:epoch: 33, loss@min: 1.036427, loss@max: 1.387186, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 33, LS: 0.919621, LT: 0.909561, Top1S: 75.971451, Top1T: 76.341522Best acc: 76.341522 +Train:epoch: 34, loss@min: 0.995946, loss@max: 1.372307, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 34, LS: 0.917867, LT: 0.909366, Top1S: 76.262222, Top1T: 76.209351 +Train:epoch: 35, loss@min: 0.997971, loss@max: 1.384484, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 35, LS: 0.923087, LT: 0.916320, Top1S: 75.945015, Top1T: 76.209351 +Train:epoch: 36, loss@min: 0.991890, loss@max: 1.372126, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 36, LS: 0.931536, LT: 0.922528, Top1S: 76.288658, Top1T: 76.473694Best acc: 76.473694 +Train:epoch: 37, loss@min: 0.997690, loss@max: 1.366098, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 37, LS: 0.936683, LT: 0.926384, Top1S: 76.447258, Top1T: 76.552994Best acc: 76.552994 +Train:epoch: 38, loss@min: 0.997710, loss@max: 1.380348, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 38, LS: 0.939493, LT: 0.930372, Top1S: 76.394394, Top1T: 76.605865Best acc: 76.605865 +Train:epoch: 39, loss@min: 1.006252, loss@max: 1.405741, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 39, LS: 0.938159, LT: 0.930390, Top1S: 76.526566, Top1T: 76.473694 +Train:epoch: 40, loss@min: 0.967672, loss@max: 1.375124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 40, LS: 0.938035, LT: 0.929534, Top1S: 76.209351, Top1T: 76.500130 +Train:epoch: 41, loss@min: 0.998209, loss@max: 1.370159, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 41, LS: 0.942510, LT: 0.932915, Top1S: 75.918579, Top1T: 76.156487 +Train:epoch: 42, loss@min: 0.996698, loss@max: 1.386735, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 42, LS: 0.947570, LT: 0.937394, Top1S: 75.918579, Top1T: 76.050751 +Train:epoch: 43, loss@min: 0.991802, loss@max: 1.391407, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 43, LS: 0.944773, LT: 0.933928, Top1S: 76.024315, Top1T: 75.997879 +Train:epoch: 44, loss@min: 1.063173, loss@max: 1.408892, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 44, LS: 0.939419, LT: 0.929964, Top1S: 76.182922, Top1T: 76.209351 +Train:epoch: 45, loss@min: 1.099520, loss@max: 1.418432, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 45, LS: 0.936286, LT: 0.929211, Top1S: 76.130051, Top1T: 76.235786 +Train:epoch: 46, loss@min: 0.990595, loss@max: 1.388384, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 46, LS: 0.937588, LT: 0.928640, Top1S: 76.288658, Top1T: 76.235786 +Train:epoch: 47, loss@min: 1.009421, loss@max: 1.381337, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 47, LS: 0.946068, LT: 0.934972, Top1S: 76.500130, Top1T: 76.526566 +Train:epoch: 48, loss@min: 0.989448, loss@max: 1.390487, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.960433, LT: 0.950915, Top1S: 76.209351, Top1T: 76.182922 +Train:epoch: 49, loss@min: 1.050345, loss@max: 1.397494, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 49, LS: 0.971837, LT: 0.963265, Top1S: 75.971451, Top1T: 76.024315 +Train:epoch: 50, loss@min: 0.979416, loss@max: 1.386872, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 50, LS: 0.972085, LT: 0.964473, Top1S: 76.050751, Top1T: 75.892143 +Train:epoch: 51, loss@min: 0.986300, loss@max: 1.380920, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 51, LS: 0.965327, LT: 0.958739, Top1S: 76.156487, Top1T: 76.209351 +Train:epoch: 52, loss@min: 1.004488, loss@max: 1.396501, Top1S acc: 100.000000, Top1T acc: 98.828125 + Test:epoch: 52, LS: 0.963049, LT: 0.955001, Top1S: 75.786407, Top1T: 76.077187 +Train:epoch: 53, loss@min: 1.026034, loss@max: 1.411027, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 53, LS: 0.965668, LT: 0.955457, Top1S: 76.130051, Top1T: 76.262222 +Train:epoch: 54, loss@min: 0.969935, loss@max: 1.385723, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.968894, LT: 0.959331, Top1S: 76.235786, Top1T: 76.288658 +Train:epoch: 55, loss@min: 1.065069, loss@max: 1.413848, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 55, LS: 0.970142, LT: 0.960868, Top1S: 76.262222, Top1T: 76.156487 +Train:epoch: 56, loss@min: 0.986997, loss@max: 1.375598, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.970933, LT: 0.959824, Top1S: 76.394394, Top1T: 76.235786 +Train:epoch: 57, loss@min: 0.984681, loss@max: 1.375595, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 57, LS: 0.972928, LT: 0.959932, Top1S: 76.156487, Top1T: 76.394394 +Train:epoch: 58, loss@min: 0.973255, loss@max: 1.397097, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 58, LS: 0.972120, LT: 0.961048, Top1S: 76.315094, Top1T: 76.552994 +Train:epoch: 59, loss@min: 0.976340, loss@max: 1.391530, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 59, LS: 0.968673, LT: 0.961147, Top1S: 76.632301, Top1T: 76.552994Best acc: 76.632301 +Train:epoch: 60, loss@min: 0.966011, loss@max: 1.378331, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.970622, LT: 0.961651, Top1S: 76.738037, Top1T: 76.658730Best acc: 76.738037 +Train:epoch: 61, loss@min: 0.988258, loss@max: 1.390362, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 61, LS: 0.974126, LT: 0.964643, Top1S: 76.605865, Top1T: 76.632301 +Train:epoch: 62, loss@min: 0.970825, loss@max: 1.386015, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 62, LS: 0.976604, LT: 0.967645, Top1S: 76.579430, Top1T: 76.711601 +Train:epoch: 63, loss@min: 0.954054, loss@max: 1.385760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.982670, LT: 0.972178, Top1S: 76.658730, Top1T: 76.685165 +Train:epoch: 64, loss@min: 0.962626, loss@max: 1.374954, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.986132, LT: 0.974964, Top1S: 76.473694, Top1T: 76.394394 +Train:epoch: 65, loss@min: 0.984474, loss@max: 1.389115, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 65, LS: 0.987604, LT: 0.976790, Top1S: 76.447258, Top1T: 76.315094 +Train:epoch: 66, loss@min: 0.965335, loss@max: 1.388839, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 66, LS: 0.990028, LT: 0.979215, Top1S: 76.315094, Top1T: 76.367958 +Train:epoch: 67, loss@min: 0.981920, loss@max: 1.383105, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.992707, LT: 0.981317, Top1S: 76.315094, Top1T: 76.420830 +Train:epoch: 68, loss@min: 0.965095, loss@max: 1.371244, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.992079, LT: 0.981164, Top1S: 76.394394, Top1T: 76.420830 +Train:epoch: 69, loss@min: 0.968943, loss@max: 1.380974, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 69, LS: 0.992112, LT: 0.982065, Top1S: 76.315094, Top1T: 76.394394 +Train:epoch: 70, loss@min: 0.986371, loss@max: 1.391019, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 70, LS: 0.993518, LT: 0.982889, Top1S: 76.262222, Top1T: 76.447258 +Train:epoch: 71, loss@min: 0.984537, loss@max: 1.370279, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 71, LS: 0.997441, LT: 0.985400, Top1S: 76.315094, Top1T: 76.394394 +Train:epoch: 72, loss@min: 0.962133, loss@max: 1.362637, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.999833, LT: 0.987159, Top1S: 76.420830, Top1T: 76.262222 +Train:epoch: 73, loss@min: 0.981731, loss@max: 1.390015, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 73, LS: 0.999434, LT: 0.987377, Top1S: 76.235786, Top1T: 76.288658 +Train:epoch: 74, loss@min: 0.962978, loss@max: 1.385936, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 74, LS: 0.996088, LT: 0.985697, Top1S: 76.394394, Top1T: 76.262222 +Train:epoch: 75, loss@min: 0.963413, loss@max: 1.383300, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.993763, LT: 0.984074, Top1S: 76.632301, Top1T: 76.420830 +Train:epoch: 76, loss@min: 0.973125, loss@max: 1.386401, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 76, LS: 0.993812, LT: 0.983231, Top1S: 76.975945, Top1T: 76.975945Best acc: 76.975945 +Train:epoch: 77, loss@min: 0.963374, loss@max: 1.364681, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.994662, LT: 0.984049, Top1S: 77.160980, Top1T: 77.002373Best acc: 77.160980 +Train:epoch: 78, loss@min: 0.981955, loss@max: 1.383948, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 78, LS: 0.996490, LT: 0.986999, Top1S: 77.055244, Top1T: 76.923073 +Train:epoch: 79, loss@min: 0.951346, loss@max: 1.383843, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 79, LS: 0.999608, LT: 0.988672, Top1S: 76.923073, Top1T: 77.028809 +Train:epoch: 80, loss@min: 0.990266, loss@max: 1.391538, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 80, LS: 1.000323, LT: 0.987663, Top1S: 76.790901, Top1T: 76.817337 +Train:epoch: 81, loss@min: 0.960111, loss@max: 1.379889, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.997942, LT: 0.986016, Top1S: 76.790901, Top1T: 76.896637 +Train:epoch: 82, loss@min: 0.960652, loss@max: 1.383086, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 82, LS: 0.997182, LT: 0.986883, Top1S: 77.002373, Top1T: 77.002373 +Train:epoch: 83, loss@min: 0.959630, loss@max: 1.374061, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.997324, LT: 0.987928, Top1S: 76.896637, Top1T: 76.923073 +Train:epoch: 84, loss@min: 0.971916, loss@max: 1.388870, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 84, LS: 0.999168, LT: 0.988843, Top1S: 76.896637, Top1T: 76.949509 +Train:epoch: 85, loss@min: 0.955193, loss@max: 1.390748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 1.001387, LT: 0.989949, Top1S: 76.896637, Top1T: 76.923073 +Train:epoch: 86, loss@min: 0.995262, loss@max: 1.395764, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 86, LS: 1.001985, LT: 0.991927, Top1S: 76.949509, Top1T: 76.896637 +Train:epoch: 87, loss@min: 0.960171, loss@max: 1.384619, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 87, LS: 1.003104, LT: 0.993748, Top1S: 76.975945, Top1T: 76.923073 +Train:epoch: 88, loss@min: 0.950127, loss@max: 1.371520, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 1.004783, LT: 0.995296, Top1S: 76.870209, Top1T: 76.817337 +Train:epoch: 89, loss@min: 0.950441, loss@max: 1.373529, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 89, LS: 1.006728, LT: 0.997178, Top1S: 76.790901, Top1T: 76.817337 +Train:epoch: 90, loss@min: 0.959760, loss@max: 1.376272, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 1.009111, LT: 0.999788, Top1S: 76.790901, Top1T: 76.711601 +Train:epoch: 91, loss@min: 0.970034, loss@max: 1.389157, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 91, LS: 1.010545, LT: 1.001445, Top1S: 76.817337, Top1T: 76.658730 +Train:epoch: 92, loss@min: 0.976878, loss@max: 1.386495, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 92, LS: 1.013517, LT: 1.003517, Top1S: 76.685165, Top1T: 76.605865 +Train:epoch: 93, loss@min: 0.970471, loss@max: 1.381536, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 93, LS: 1.014969, LT: 1.005108, Top1S: 76.632301, Top1T: 76.579430 +Train:epoch: 94, loss@min: 0.955645, loss@max: 1.363878, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 94, LS: 1.013243, LT: 1.005504, Top1S: 76.764473, Top1T: 76.500130 +Train:epoch: 95, loss@min: 0.957830, loss@max: 1.372159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 1.012690, LT: 1.005167, Top1S: 76.738037, Top1T: 76.579430 +Train:epoch: 96, loss@min: 0.959902, loss@max: 1.375479, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 96, LS: 1.013677, LT: 1.004175, Top1S: 76.790901, Top1T: 76.711601 +Train:epoch: 97, loss@min: 0.965301, loss@max: 1.386150, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 97, LS: 1.014144, LT: 1.003720, Top1S: 76.685165, Top1T: 76.790901 +Train:epoch: 98, loss@min: 0.951863, loss@max: 1.379990, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 1.013105, LT: 1.003193, Top1S: 76.632301, Top1T: 76.685165 +Train:epoch: 99, loss@min: 0.957112, loss@max: 1.380128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 1.011760, LT: 1.002889, Top1S: 76.685165, Top1T: 76.790901 +Train:epoch: 100, loss@min: 0.967135, loss@max: 1.375076, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 100, LS: 1.011010, LT: 1.002726, Top1S: 76.790901, Top1T: 76.790901 +Train:epoch: 101, loss@min: 0.956347, loss@max: 1.372425, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 1.011263, LT: 1.003121, Top1S: 76.817337, Top1T: 76.790901 +Train:epoch: 102, loss@min: 0.957330, loss@max: 1.389069, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 102, LS: 1.012275, LT: 1.003821, Top1S: 76.790901, Top1T: 76.975945 +Train:epoch: 103, loss@min: 1.045003, loss@max: 1.402967, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 103, LS: 1.014151, LT: 1.005206, Top1S: 76.790901, Top1T: 76.975945 +Train:epoch: 104, loss@min: 0.952119, loss@max: 1.374493, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 1.014132, LT: 1.005109, Top1S: 76.843773, Top1T: 76.975945 +Train:epoch: 105, loss@min: 0.948904, loss@max: 1.378532, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 1.014776, LT: 1.005163, Top1S: 76.843773, Top1T: 76.843773 +Train:epoch: 106, loss@min: 0.951991, loss@max: 1.373025, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 1.015385, LT: 1.005213, Top1S: 76.764473, Top1T: 76.923073 +Train:epoch: 107, loss@min: 0.959805, loss@max: 1.371835, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 1.014926, LT: 1.005096, Top1S: 76.685165, Top1T: 76.870209 +Train:epoch: 108, loss@min: 0.971655, loss@max: 1.384414, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 108, LS: 1.014557, LT: 1.005609, Top1S: 76.711601, Top1T: 76.843773 +Train:epoch: 109, loss@min: 0.968808, loss@max: 1.379472, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 1.013591, LT: 1.005173, Top1S: 76.632301, Top1T: 76.870209 +Train:epoch: 110, loss@min: 0.959820, loss@max: 1.373803, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 1.013431, LT: 1.005058, Top1S: 76.632301, Top1T: 76.711601 +Train:epoch: 111, loss@min: 0.956625, loss@max: 1.379109, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 1.014765, LT: 1.005735, Top1S: 76.658730, Top1T: 76.790901 +Train:epoch: 112, loss@min: 0.951222, loss@max: 1.371423, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 1.015838, LT: 1.006105, Top1S: 76.711601, Top1T: 76.843773 +Train:epoch: 113, loss@min: 0.947911, loss@max: 1.365671, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 1.015649, LT: 1.006026, Top1S: 76.764473, Top1T: 76.923073 +Train:epoch: 114, loss@min: 0.951632, loss@max: 1.371427, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 1.015286, LT: 1.006144, Top1S: 76.843773, Top1T: 76.949509 +Train:epoch: 115, loss@min: 0.955791, loss@max: 1.372792, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 1.015382, LT: 1.006703, Top1S: 76.790901, Top1T: 76.870209 +Train:epoch: 116, loss@min: 0.949522, loss@max: 1.371321, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 1.015756, LT: 1.007267, Top1S: 76.658730, Top1T: 76.923073 +Train:epoch: 117, loss@min: 0.958866, loss@max: 1.380636, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 1.015421, LT: 1.007129, Top1S: 76.738037, Top1T: 76.949509 +Train:epoch: 118, loss@min: 0.955281, loss@max: 1.372274, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 1.015112, LT: 1.006840, Top1S: 76.738037, Top1T: 76.896637 +Train:epoch: 119, loss@min: 0.952846, loss@max: 1.369573, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 1.015212, LT: 1.006739, Top1S: 76.764473, Top1T: 76.711601 +Train:epoch: 120, loss@min: 0.991818, loss@max: 1.389163, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 1.015213, LT: 1.006400, Top1S: 76.605865, Top1T: 76.658730 +Train:epoch: 121, loss@min: 0.964833, loss@max: 1.373176, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 121, LS: 1.015135, LT: 1.006143, Top1S: 76.711601, Top1T: 76.738037 +Train:epoch: 122, loss@min: 0.964232, loss@max: 1.370466, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 122, LS: 1.015089, LT: 1.005980, Top1S: 76.658730, Top1T: 76.738037 +Train:epoch: 123, loss@min: 0.963413, loss@max: 1.371006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 1.015216, LT: 1.006034, Top1S: 76.738037, Top1T: 76.843773 +Train:epoch: 124, loss@min: 0.951795, loss@max: 1.364748, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 1.015451, LT: 1.006199, Top1S: 76.764473, Top1T: 76.870209 +Train:epoch: 125, loss@min: 0.982351, loss@max: 1.378377, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 125, LS: 1.015610, LT: 1.006394, Top1S: 76.843773, Top1T: 76.843773 +Train:epoch: 126, loss@min: 0.960582, loss@max: 1.373314, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 1.016013, LT: 1.006853, Top1S: 76.896637, Top1T: 76.896637 +Train:epoch: 127, loss@min: 0.968832, loss@max: 1.381185, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 127, LS: 1.016325, LT: 1.007331, Top1S: 76.896637, Top1T: 76.817337 +Train:epoch: 128, loss@min: 0.954619, loss@max: 1.375220, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 1.016418, LT: 1.007717, Top1S: 76.975945, Top1T: 76.817337 +Train:epoch: 129, loss@min: 0.957283, loss@max: 1.380149, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 129, LS: 1.016630, LT: 1.008073, Top1S: 76.923073, Top1T: 76.790901 +Train:epoch: 130, loss@min: 0.971156, loss@max: 1.371895, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 130, LS: 1.016921, LT: 1.008401, Top1S: 76.949509, Top1T: 76.817337 +Train:epoch: 131, loss@min: 0.960787, loss@max: 1.370393, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 1.017227, LT: 1.008658, Top1S: 76.923073, Top1T: 76.843773 +Train:epoch: 132, loss@min: 0.959805, loss@max: 1.375985, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 1.017410, LT: 1.008705, Top1S: 76.923073, Top1T: 76.817337 +Train:epoch: 133, loss@min: 0.955543, loss@max: 1.370614, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 1.017420, LT: 1.008641, Top1S: 76.896637, Top1T: 76.843773 +Train:epoch: 134, loss@min: 0.950933, loss@max: 1.368660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 1.017384, LT: 1.008568, Top1S: 76.817337, Top1T: 76.843773 +Train:epoch: 135, loss@min: 0.952079, loss@max: 1.371592, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 1.017369, LT: 1.008513, Top1S: 76.843773, Top1T: 76.843773 +Train:epoch: 136, loss@min: 0.961511, loss@max: 1.375751, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 136, LS: 1.017326, LT: 1.008459, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 137, loss@min: 0.957225, loss@max: 1.369781, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 1.017303, LT: 1.008396, Top1S: 76.870209, Top1T: 76.817337 +Train:epoch: 138, loss@min: 0.965559, loss@max: 1.377119, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 138, LS: 1.017286, LT: 1.008359, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 139, loss@min: 0.955004, loss@max: 1.370436, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 1.017262, LT: 1.008341, Top1S: 76.870209, Top1T: 76.817337 +Train:epoch: 140, loss@min: 0.957387, loss@max: 1.370230, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 1.017272, LT: 1.008363, Top1S: 76.870209, Top1T: 76.817337 +Train:epoch: 141, loss@min: 0.950313, loss@max: 1.367948, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 1.017292, LT: 1.008404, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 142, loss@min: 0.956717, loss@max: 1.363650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 1.017288, LT: 1.008428, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 143, loss@min: 0.971263, loss@max: 1.375636, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 143, LS: 1.017291, LT: 1.008459, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 144, loss@min: 0.956382, loss@max: 1.371564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 1.017306, LT: 1.008503, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 145, loss@min: 0.954402, loss@max: 1.374994, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 1.017317, LT: 1.008526, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 146, loss@min: 0.959436, loss@max: 1.375183, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 1.017323, LT: 1.008537, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 147, loss@min: 0.954132, loss@max: 1.371641, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 1.017328, LT: 1.008546, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 148, loss@min: 0.952131, loss@max: 1.366398, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 1.017330, LT: 1.008550, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 149, loss@min: 0.965123, loss@max: 1.373429, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 149, LS: 1.017330, LT: 1.008550, Top1S: 76.870209, Top1T: 76.843773 +Train:epoch: 150, loss@min: 0.964329, loss@max: 1.375744, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 1.017330, LT: 1.008550, Top1S: 76.870209, Top1T: 76.843773 +------------------------------------------- +Sat Jan 20 00:14:24 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 8, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Sat Jan 20 11:12:45 2024 +-------------------------------------------{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 30} + +------------------------------------------- +Sat Jan 20 11:13:19 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.927293, loss@max: 1.601634, Top1S acc: 100.000000, Top1T acc: 73.046875 +Train:epoch: 2, loss@min: 2.487067, loss@max: 1.667918, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 3, loss@min: 2.289245, loss@max: 1.622893, Top1S acc: 100.000000, Top1T acc: 76.171875 +Train:epoch: 4, loss@min: 1.899452, loss@max: 1.470216, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 5, loss@min: 1.854979, loss@max: 1.444401, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 6, loss@min: 1.700329, loss@max: 1.408886, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 7, loss@min: 1.631872, loss@max: 1.415124, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 8, loss@min: 1.492892, loss@max: 1.395960, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 9, loss@min: 1.278493, loss@max: 1.336340, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.315289, loss@max: 1.361602, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 11, loss@min: 1.233063, loss@max: 1.329689, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.212646, loss@max: 1.340950, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 13, loss@min: 1.203771, loss@max: 1.342419, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 14, loss@min: 1.079797, loss@max: 1.301985, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.139300, loss@max: 1.343022, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 16, loss@min: 1.133618, loss@max: 1.336749, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 17, loss@min: 1.106276, loss@max: 1.326981, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 18, loss@min: 1.052813, loss@max: 1.319419, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 1.076851, loss@max: 1.327846, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.064811, loss@max: 1.338007, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.091039, loss@max: 1.342838, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 22, loss@min: 0.994546, loss@max: 1.313489, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.044151, loss@max: 1.339355, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 24, loss@min: 1.050063, loss@max: 1.338460, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.011587, loss@max: 1.318124, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.970236, loss@max: 1.327008, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.007785, loss@max: 1.337622, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.977828, loss@max: 1.339639, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 29, loss@min: 0.960661, loss@max: 1.328585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.983693, loss@max: 1.356068, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 30, LS: 0.849120, LT: 0.842179, Top1S: 79.355003, Top1T: 79.328575Best acc: 79.355003 +Train:epoch: 31, loss@min: 1.003800, loss@max: 1.347264, Top1S acc: 100.000000, Top1T acc: 98.437500 + Test:epoch: 31, LS: 0.850068, LT: 0.845007, Top1S: 79.566475, Top1T: 79.302139Best acc: 79.566475 +Train:epoch: 32, loss@min: 0.965261, loss@max: 1.343795, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 32, LS: 0.862691, LT: 0.853988, Top1S: 79.037796, Top1T: 79.143532{"dataset_dir": "/root/autodl-tmp", "dataset_name": "ucf101", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 16, "test_freq": 1, "valacc": 10, "valepoch": 45} + +------------------------------------------- +Sat Jan 20 11:33:37 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 2.927293, loss@max: 1.601634, Top1S acc: 100.000000, Top1T acc: 73.046875 +Train:epoch: 2, loss@min: 2.487067, loss@max: 1.667918, Top1S acc: 100.000000, Top1T acc: 75.000000 +Train:epoch: 3, loss@min: 2.289245, loss@max: 1.622893, Top1S acc: 100.000000, Top1T acc: 76.171875 +Train:epoch: 4, loss@min: 1.899452, loss@max: 1.470216, Top1S acc: 100.000000, Top1T acc: 81.250000 +Train:epoch: 5, loss@min: 1.854979, loss@max: 1.444401, Top1S acc: 100.000000, Top1T acc: 85.156250 +Train:epoch: 6, loss@min: 1.700329, loss@max: 1.408886, Top1S acc: 100.000000, Top1T acc: 85.546875 +Train:epoch: 7, loss@min: 1.631872, loss@max: 1.415124, Top1S acc: 100.000000, Top1T acc: 89.453125 +Train:epoch: 8, loss@min: 1.492892, loss@max: 1.395960, Top1S acc: 100.000000, Top1T acc: 91.015625 +Train:epoch: 9, loss@min: 1.278493, loss@max: 1.336340, Top1S acc: 100.000000, Top1T acc: 95.703125 +Train:epoch: 10, loss@min: 1.315289, loss@max: 1.361602, Top1S acc: 100.000000, Top1T acc: 94.531250 +Train:epoch: 11, loss@min: 1.233063, loss@max: 1.329689, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 12, loss@min: 1.212646, loss@max: 1.340950, Top1S acc: 100.000000, Top1T acc: 97.265625 +Train:epoch: 13, loss@min: 1.203771, loss@max: 1.342419, Top1S acc: 100.000000, Top1T acc: 95.312500 +Train:epoch: 14, loss@min: 1.079797, loss@max: 1.301985, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 15, loss@min: 1.139300, loss@max: 1.343022, Top1S acc: 100.000000, Top1T acc: 96.484375 +Train:epoch: 16, loss@min: 1.133618, loss@max: 1.336749, Top1S acc: 100.000000, Top1T acc: 96.875000 +Train:epoch: 17, loss@min: 1.106276, loss@max: 1.326981, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 18, loss@min: 1.052813, loss@max: 1.319419, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 19, loss@min: 1.076851, loss@max: 1.327846, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 20, loss@min: 1.064811, loss@max: 1.338007, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 21, loss@min: 1.091039, loss@max: 1.342838, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 22, loss@min: 0.994546, loss@max: 1.313489, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 23, loss@min: 1.044151, loss@max: 1.339355, Top1S acc: 100.000000, Top1T acc: 98.046875 +Train:epoch: 24, loss@min: 1.050063, loss@max: 1.338460, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 25, loss@min: 1.011587, loss@max: 1.318124, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 26, loss@min: 0.970236, loss@max: 1.327008, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 27, loss@min: 1.007785, loss@max: 1.337622, Top1S acc: 100.000000, Top1T acc: 98.828125 +Train:epoch: 28, loss@min: 0.977828, loss@max: 1.339639, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 29, loss@min: 0.960661, loss@max: 1.328585, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 0.983693, loss@max: 1.356068, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 31, loss@min: 1.003800, loss@max: 1.347264, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 32, loss@min: 0.965236, loss@max: 1.343834, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.980669, loss@max: 1.333230, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 34, loss@min: 1.002490, loss@max: 1.349927, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 35, loss@min: 0.967959, loss@max: 1.341529, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 1.077482, loss@max: 1.388549, Top1S acc: 100.000000, Top1T acc: 97.656250 +Train:epoch: 37, loss@min: 0.960195, loss@max: 1.342751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.957410, loss@max: 1.357711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.962390, loss@max: 1.351368, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.984210, loss@max: 1.370274, Top1S acc: 100.000000, Top1T acc: 99.609375 +Train:epoch: 41, loss@min: 0.974592, loss@max: 1.361002, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.955610, loss@max: 1.356614, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.991471, loss@max: 1.364135, Top1S acc: 100.000000, Top1T acc: 99.218750 +Train:epoch: 44, loss@min: 0.999463, loss@max: 1.396838, Top1S acc: 100.000000, Top1T acc: 98.437500 +Train:epoch: 45, loss@min: 1.002462, loss@max: 1.376438, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 45, LS: 0.895397, LT: 0.891198, Top1S: 79.513611, Top1T: 79.619347Best acc: 79.619347 +Train:epoch: 46, loss@min: 1.067034, loss@max: 1.395202, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 46, LS: 0.899089, LT: 0.886804, Top1S: 79.460739, Top1T: 79.249268 +Train:epoch: 47, loss@min: 0.958793, loss@max: 1.378019, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 47, LS: 0.903920, LT: 0.899376, Top1S: 79.143532, Top1T: 79.275703 +Train:epoch: 48, loss@min: 0.970344, loss@max: 1.377902, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 48, LS: 0.914133, LT: 0.903206, Top1S: 79.275703, Top1T: 79.513611 +Train:epoch: 49, loss@min: 0.950989, loss@max: 1.379006, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 0.903075, LT: 0.899321, Top1S: 79.619347, Top1T: 79.777954Best acc: 79.777954 +Train:epoch: 50, loss@min: 0.958244, loss@max: 1.365376, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 50, LS: 0.904363, LT: 0.894900, Top1S: 79.355003, Top1T: 79.751518 +Train:epoch: 51, loss@min: 0.962853, loss@max: 1.375010, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 51, LS: 0.904510, LT: 0.900018, Top1S: 79.883690, Top1T: 79.830818Best acc: 79.883690 +Train:epoch: 52, loss@min: 0.989531, loss@max: 1.380018, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 52, LS: 0.908143, LT: 0.900327, Top1S: 79.751518, Top1T: 80.121590Best acc: 80.121590 +Train:epoch: 53, loss@min: 0.949889, loss@max: 1.376281, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 53, LS: 0.908987, LT: 0.909544, Top1S: 79.804382, Top1T: 79.910118 +Train:epoch: 54, loss@min: 0.973370, loss@max: 1.368440, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 54, LS: 0.925226, LT: 0.914506, Top1S: 79.222832, Top1T: 79.566475 +Train:epoch: 55, loss@min: 0.936942, loss@max: 1.380136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 55, LS: 0.920680, LT: 0.923171, Top1S: 79.381439, Top1T: 79.566475 +Train:epoch: 56, loss@min: 0.957556, loss@max: 1.362998, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 56, LS: 0.924359, LT: 0.917934, Top1S: 79.672211, Top1T: 79.725082 +Train:epoch: 57, loss@min: 0.958559, loss@max: 1.388607, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 57, LS: 0.920760, LT: 0.920283, Top1S: 79.460739, Top1T: 80.015854 +Train:epoch: 58, loss@min: 0.972385, loss@max: 1.363589, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 58, LS: 0.919206, LT: 0.916127, Top1S: 79.989426, Top1T: 79.777954 +Train:epoch: 59, loss@min: 0.954321, loss@max: 1.377156, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 59, LS: 0.915860, LT: 0.915123, Top1S: 79.936554, Top1T: 79.936554 +Train:epoch: 60, loss@min: 0.958688, loss@max: 1.381532, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 60, LS: 0.911336, LT: 0.905917, Top1S: 79.883690, Top1T: 79.777954 +Train:epoch: 61, loss@min: 0.958867, loss@max: 1.368186, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.912280, LT: 0.908601, Top1S: 79.936554, Top1T: 80.200897Best acc: 80.200897 +Train:epoch: 62, loss@min: 0.960350, loss@max: 1.378261, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 62, LS: 0.922100, LT: 0.918157, Top1S: 80.015854, Top1T: 80.068726 +Train:epoch: 63, loss@min: 0.980368, loss@max: 1.373782, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 63, LS: 0.923652, LT: 0.921389, Top1S: 79.936554, Top1T: 80.042290 +Train:epoch: 64, loss@min: 0.961023, loss@max: 1.372693, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.921110, LT: 0.919502, Top1S: 79.910118, Top1T: 79.804382 +Train:epoch: 65, loss@min: 0.955728, loss@max: 1.373660, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.918119, LT: 0.914464, Top1S: 79.962990, Top1T: 79.936554 +Train:epoch: 66, loss@min: 0.943260, loss@max: 1.379899, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.910542, LT: 0.910782, Top1S: 80.200897, Top1T: 80.042290 +Train:epoch: 67, loss@min: 0.961075, loss@max: 1.365746, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 67, LS: 0.913181, LT: 0.911063, Top1S: 80.015854, Top1T: 80.253761Best acc: 80.253761 +Train:epoch: 68, loss@min: 0.957665, loss@max: 1.381627, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 68, LS: 0.920276, LT: 0.916257, Top1S: 79.989426, Top1T: 79.857254 +Train:epoch: 69, loss@min: 0.977488, loss@max: 1.380039, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 69, LS: 0.921273, LT: 0.919138, Top1S: 80.200897, Top1T: 80.200897 +Train:epoch: 70, loss@min: 0.949836, loss@max: 1.374364, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 70, LS: 0.924739, LT: 0.923206, Top1S: 80.042290, Top1T: 80.121590 +Train:epoch: 71, loss@min: 0.949772, loss@max: 1.371883, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 71, LS: 0.934872, LT: 0.931565, Top1S: 79.830818, Top1T: 79.989426 +Train:epoch: 72, loss@min: 0.952700, loss@max: 1.366650, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 72, LS: 0.940677, LT: 0.938206, Top1S: 79.698647, Top1T: 79.989426 +Train:epoch: 73, loss@min: 0.944897, loss@max: 1.370523, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 73, LS: 0.926857, LT: 0.925307, Top1S: 79.962990, Top1T: 80.253761 +Train:epoch: 74, loss@min: 0.948125, loss@max: 1.376348, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 74, LS: 0.920912, LT: 0.918400, Top1S: 80.174461, Top1T: 80.200897 +Train:epoch: 75, loss@min: 0.959063, loss@max: 1.366037, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 75, LS: 0.923133, LT: 0.919751, Top1S: 79.989426, Top1T: 80.095161 +Train:epoch: 76, loss@min: 0.972186, loss@max: 1.382148, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 76, LS: 0.925792, LT: 0.924642, Top1S: 79.883690, Top1T: 80.174461 +Train:epoch: 77, loss@min: 0.963686, loss@max: 1.368474, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 77, LS: 0.937788, LT: 0.934246, Top1S: 79.830818, Top1T: 80.200897 +Train:epoch: 78, loss@min: 0.946291, loss@max: 1.380606, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 78, LS: 0.936068, LT: 0.935634, Top1S: 80.015854, Top1T: 80.121590 +Train:epoch: 79, loss@min: 0.973706, loss@max: 1.386323, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 79, LS: 0.930723, LT: 0.927450, Top1S: 80.015854, Top1T: 80.148026 +Train:epoch: 80, loss@min: 0.958431, loss@max: 1.371673, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 80, LS: 0.927153, LT: 0.926293, Top1S: 79.962990, Top1T: 80.042290 +Train:epoch: 81, loss@min: 0.954219, loss@max: 1.361786, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 81, LS: 0.932491, LT: 0.926828, Top1S: 79.804382, Top1T: 80.068726 +Train:epoch: 82, loss@min: 0.966497, loss@max: 1.372000, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 82, LS: 0.928721, LT: 0.928275, Top1S: 79.936554, Top1T: 79.804382 +Train:epoch: 83, loss@min: 0.943603, loss@max: 1.371135, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 83, LS: 0.934815, LT: 0.930497, Top1S: 79.962990, Top1T: 79.962990 +Train:epoch: 84, loss@min: 0.959583, loss@max: 1.367600, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 84, LS: 0.940472, LT: 0.935993, Top1S: 80.015854, Top1T: 79.962990 +Train:epoch: 85, loss@min: 0.951807, loss@max: 1.372414, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 85, LS: 0.939835, LT: 0.943401, Top1S: 80.068726, Top1T: 79.804382 +Train:epoch: 86, loss@min: 0.949494, loss@max: 1.372375, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 86, LS: 0.947007, LT: 0.944224, Top1S: 79.830818, Top1T: 79.777954 +Train:epoch: 87, loss@min: 0.941429, loss@max: 1.378588, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 87, LS: 0.944979, LT: 0.943275, Top1S: 79.777954, Top1T: 79.830818 +Train:epoch: 88, loss@min: 0.955019, loss@max: 1.382070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 88, LS: 0.939689, LT: 0.939691, Top1S: 79.830818, Top1T: 79.857254 +Train:epoch: 89, loss@min: 0.970125, loss@max: 1.370131, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 89, LS: 0.940244, LT: 0.937991, Top1S: 80.148026, Top1T: 80.015854 +Train:epoch: 90, loss@min: 0.958585, loss@max: 1.365886, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 90, LS: 0.941929, LT: 0.939941, Top1S: 80.095161, Top1T: 79.936554 +Train:epoch: 91, loss@min: 0.949110, loss@max: 1.375477, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 91, LS: 0.943789, LT: 0.940498, Top1S: 79.936554, Top1T: 79.830818 +Train:epoch: 92, loss@min: 0.953518, loss@max: 1.361619, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 92, LS: 0.942781, LT: 0.940696, Top1S: 79.830818, Top1T: 79.910118 +Train:epoch: 93, loss@min: 0.946427, loss@max: 1.377760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 93, LS: 0.939927, LT: 0.937413, Top1S: 80.042290, Top1T: 80.095161 +Train:epoch: 94, loss@min: 0.962892, loss@max: 1.371755, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 94, LS: 0.938822, LT: 0.935031, Top1S: 80.042290, Top1T: 79.989426 +Train:epoch: 95, loss@min: 0.953037, loss@max: 1.368310, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 95, LS: 0.934053, LT: 0.934135, Top1S: 80.148026, Top1T: 80.068726 +Train:epoch: 96, loss@min: 0.953133, loss@max: 1.381091, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 96, LS: 0.937036, LT: 0.935580, Top1S: 80.042290, Top1T: 80.068726 +Train:epoch: 97, loss@min: 0.981281, loss@max: 1.373519, Top1S acc: 100.000000, Top1T acc: 99.218750 + Test:epoch: 97, LS: 0.942975, LT: 0.940484, Top1S: 80.042290, Top1T: 79.962990 +Train:epoch: 98, loss@min: 0.950245, loss@max: 1.368234, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 98, LS: 0.947819, LT: 0.947553, Top1S: 79.989426, Top1T: 79.804382 +Train:epoch: 99, loss@min: 0.949232, loss@max: 1.379428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 99, LS: 0.954589, LT: 0.951378, Top1S: 79.883690, Top1T: 79.910118 +Train:epoch: 100, loss@min: 0.956496, loss@max: 1.369662, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.955763, LT: 0.952482, Top1S: 79.751518, Top1T: 79.910118 +Train:epoch: 101, loss@min: 0.945318, loss@max: 1.370232, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.952790, LT: 0.953148, Top1S: 79.804382, Top1T: 79.910118 +Train:epoch: 102, loss@min: 0.954202, loss@max: 1.370704, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.952519, LT: 0.950964, Top1S: 79.883690, Top1T: 79.883690 +Train:epoch: 103, loss@min: 0.954567, loss@max: 1.364737, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.953751, LT: 0.952055, Top1S: 79.804382, Top1T: 79.936554 +Train:epoch: 104, loss@min: 0.946527, loss@max: 1.373564, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.954076, LT: 0.953613, Top1S: 79.830818, Top1T: 80.015854 +Train:epoch: 105, loss@min: 0.946867, loss@max: 1.370332, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.954966, LT: 0.955247, Top1S: 79.883690, Top1T: 80.121590 +Train:epoch: 106, loss@min: 0.952214, loss@max: 1.371937, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.957685, LT: 0.957430, Top1S: 79.962990, Top1T: 79.989426 +Train:epoch: 107, loss@min: 1.030593, loss@max: 1.386512, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 107, LS: 0.957394, LT: 0.958915, Top1S: 80.042290, Top1T: 79.910118 +Train:epoch: 108, loss@min: 0.962128, loss@max: 1.378058, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 108, LS: 0.955463, LT: 0.956635, Top1S: 80.148026, Top1T: 79.936554 +Train:epoch: 109, loss@min: 0.975955, loss@max: 1.373683, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 109, LS: 0.951644, LT: 0.949409, Top1S: 79.936554, Top1T: 80.148026 +Train:epoch: 110, loss@min: 0.963103, loss@max: 1.369370, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.951885, LT: 0.948811, Top1S: 79.804382, Top1T: 80.068726 +Train:epoch: 111, loss@min: 0.951533, loss@max: 1.363877, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.952091, LT: 0.950947, Top1S: 80.095161, Top1T: 79.989426 +Train:epoch: 112, loss@min: 0.951468, loss@max: 1.358975, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.953005, LT: 0.952710, Top1S: 79.989426, Top1T: 79.962990 +Train:epoch: 113, loss@min: 0.944608, loss@max: 1.371133, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.953531, LT: 0.953738, Top1S: 80.121590, Top1T: 80.121590 +Train:epoch: 114, loss@min: 0.950486, loss@max: 1.365259, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.954471, LT: 0.954304, Top1S: 80.174461, Top1T: 80.227325 +Train:epoch: 115, loss@min: 0.953258, loss@max: 1.368289, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.955404, LT: 0.955016, Top1S: 80.121590, Top1T: 80.174461 +Train:epoch: 116, loss@min: 0.949254, loss@max: 1.370659, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.955899, LT: 0.955002, Top1S: 80.068726, Top1T: 80.174461 +Train:epoch: 117, loss@min: 0.955299, loss@max: 1.367891, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.955365, LT: 0.954292, Top1S: 80.148026, Top1T: 80.174461 +Train:epoch: 118, loss@min: 0.950465, loss@max: 1.363391, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.954189, LT: 0.954102, Top1S: 80.200897, Top1T: 80.121590 +Train:epoch: 119, loss@min: 0.955628, loss@max: 1.362525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.953679, LT: 0.954064, Top1S: 80.174461, Top1T: 79.989426 +Train:epoch: 120, loss@min: 0.982844, loss@max: 1.374865, Top1S acc: 100.000000, Top1T acc: 99.609375 + Test:epoch: 120, LS: 0.953674, LT: 0.953423, Top1S: 80.042290, Top1T: 79.936554{"dataset_dir": "/root/autodl-tmp", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 45} + +------------------------------------------- +Sat Jan 20 13:38:07 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.959465, loss@max: 1.733829, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.268069, loss@max: 1.704756, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.760496, loss@max: 1.703732, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.475110, loss@max: 1.734591, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 5, loss@min: 3.116757, loss@max: 1.726537, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.861351, loss@max: 1.732284, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.563049, loss@max: 1.721097, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.266764, loss@max: 1.698439, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 9, loss@min: 2.034222, loss@max: 1.667683, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.814641, loss@max: 1.641958, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.788529, loss@max: 1.659400, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.804101, loss@max: 1.673470, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.626108, loss@max: 1.633505, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.501997, loss@max: 1.591210, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.325453, loss@max: 1.537130, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 16, loss@min: 1.415159, loss@max: 1.555206, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 17, loss@min: 1.214705, loss@max: 1.479741, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.187507, loss@max: 1.468703, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.170937, loss@max: 1.456302, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.111683, loss@max: 1.438074, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.109055, loss@max: 1.431975, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 22, loss@min: 1.072249, loss@max: 1.416745, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 23, loss@min: 1.109260, loss@max: 1.416498, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.082682, loss@max: 1.409253, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.007856, loss@max: 1.368426, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.032898, loss@max: 1.382190, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 1.059796, loss@max: 1.390641, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.049284, loss@max: 1.370138, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 1.002760, loss@max: 1.356773, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.005403, loss@max: 1.354238, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 0.998630, loss@max: 1.347102, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.999827, loss@max: 1.361667, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.989057, loss@max: 1.356502, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.007883, loss@max: 1.358696, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.984425, loss@max: 1.358268, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.969262, loss@max: 1.338638, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.999255, loss@max: 1.366333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.968079, loss@max: 1.337443, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.969796, loss@max: 1.340575, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.961554, loss@max: 1.337763, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.962292, loss@max: 1.347204, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.958681, loss@max: 1.352491, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.947445, loss@max: 1.353487, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.945456, loss@max: 1.353333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.950690, loss@max: 1.359334, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 45, LS: 1.005195, LT: 0.989042, Top1S: 75.558266, Top1T: 75.883072Best acc: 75.883072 +Train:epoch: 46, loss@min: 0.947861, loss@max: 1.352194, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 46, LS: 1.004369, LT: 0.988044, Top1S: 75.761269, Top1T: 76.004875Best acc: 76.004875 +Train:epoch: 47, loss@min: 0.954426, loss@max: 1.354955, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 47, LS: 1.003646, LT: 0.987420, Top1S: 75.964272, Top1T: 76.248482Best acc: 76.248482 +Train:epoch: 48, loss@min: 0.952460, loss@max: 1.359830, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 48, LS: 1.003102, LT: 0.987022, Top1S: 76.045471, Top1T: 76.370285Best acc: 76.370285 +Train:epoch: 49, loss@min: 0.946415, loss@max: 1.353483, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 49, LS: 1.003025, LT: 0.986944, Top1S: 76.167274, Top1T: 76.289078 +Train:epoch: 50, loss@min: 0.954196, loss@max: 1.355507, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 60} + +------------------------------------------- +Sat Jan 20 13:44:09 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.959340, loss@max: 1.733801, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.268120, loss@max: 1.704772, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.760736, loss@max: 1.703792, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.475207, loss@max: 1.734617, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 5, loss@min: 3.116673, loss@max: 1.726512, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.861403, loss@max: 1.732294, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.563034, loss@max: 1.721090, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.266817, loss@max: 1.698455, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 9, loss@min: 2.034120, loss@max: 1.667656, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.814610, loss@max: 1.641948, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.788607, loss@max: 1.659424, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.804125, loss@max: 1.673477, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.626138, loss@max: 1.633505, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.501995, loss@max: 1.591216, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.325429, loss@max: 1.537127, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 16, loss@min: 1.415123, loss@max: 1.555203, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 17, loss@min: 1.214677, loss@max: 1.479732, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.187474, loss@max: 1.468691, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.170931, loss@max: 1.456298, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.111679, loss@max: 1.438082, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.109089, loss@max: 1.431985, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 22, loss@min: 1.072259, loss@max: 1.416751, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 23, loss@min: 1.109266, loss@max: 1.416497, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.082680, loss@max: 1.409246, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.007859, loss@max: 1.368423, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.032873, loss@max: 1.382176, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 1.059786, loss@max: 1.390640, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.049285, loss@max: 1.370148, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 1.002716, loss@max: 1.356755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.005410, loss@max: 1.354244, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 0.998620, loss@max: 1.347103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.999838, loss@max: 1.361666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.989057, loss@max: 1.356501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.007903, loss@max: 1.358701, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.984422, loss@max: 1.358263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.969258, loss@max: 1.338631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.999245, loss@max: 1.366325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.968079, loss@max: 1.337438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.969809, loss@max: 1.340584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.961548, loss@max: 1.337757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.962296, loss@max: 1.347209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.958669, loss@max: 1.352479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.947438, loss@max: 1.353483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.945463, loss@max: 1.353333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.950698, loss@max: 1.359339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.951675, loss@max: 1.349392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954136, loss@max: 1.353639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949809, loss@max: 1.355710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.951270, loss@max: 1.352306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.947296, loss@max: 1.355361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947596, loss@max: 1.360213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.947300, loss@max: 1.365744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946972, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949323, loss@max: 1.362064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.951330, loss@max: 1.363732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.951082, loss@max: 1.359188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957955, loss@max: 1.356290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.955537, loss@max: 1.354382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946270, loss@max: 1.361919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.946443, loss@max: 1.359848, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 60, LS: 0.998023, LT: 0.988003, Top1S: 76.654488, Top1T: 76.695091Best acc: 76.695091 +Train:epoch: 61, loss@min: 0.951526, loss@max: 1.359901, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 61, LS: 0.998228, LT: 0.987791, Top1S: 76.816895, Top1T: 76.857491Best acc: 76.857491 +Train:epoch: 62, loss@min: 0.953136, loss@max: 1.363257, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 62, LS: 0.998075, LT: 0.986989, Top1S: 76.816895, Top1T: 76.979294Best acc: 76.979294 +Train:epoch: 63, loss@min: 0.946830, loss@max: 1.363088, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 63, LS: 0.998061, LT: 0.986370, Top1S: 76.816895, Top1T: 76.979294 +Train:epoch: 64, loss@min: 0.949088, loss@max: 1.364907, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 64, LS: 0.998205, LT: 0.985644, Top1S: 76.938698, Top1T: 77.101097Best acc: 77.101097 +Train:epoch: 65, loss@min: 0.949745, loss@max: 1.366013, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 65, LS: 0.998124, LT: 0.984905, Top1S: 76.898094, Top1T: 77.182297Best acc: 77.182297 +Train:epoch: 66, loss@min: 0.946955, loss@max: 1.361726, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 66, LS: 0.997919, LT: 0.984602, Top1S: 76.979294, Top1T: 77.222900Best acc: 77.222900 +Train:epoch: 67, loss@min: 0.950639, loss@max: 1.361475, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Jan 20 13:52:13 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.959340, loss@max: 1.733801, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.268120, loss@max: 1.704772, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.760736, loss@max: 1.703792, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.475207, loss@max: 1.734617, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 5, loss@min: 3.116673, loss@max: 1.726512, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.861403, loss@max: 1.732294, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.563034, loss@max: 1.721090, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.266817, loss@max: 1.698455, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 9, loss@min: 2.034120, loss@max: 1.667656, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.814610, loss@max: 1.641948, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.788607, loss@max: 1.659424, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.804125, loss@max: 1.673477, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.626138, loss@max: 1.633505, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.501995, loss@max: 1.591216, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.325429, loss@max: 1.537127, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 16, loss@min: 1.415123, loss@max: 1.555203, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 17, loss@min: 1.214677, loss@max: 1.479732, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.187474, loss@max: 1.468691, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.170931, loss@max: 1.456298, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.111679, loss@max: 1.438082, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.109089, loss@max: 1.431985, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 22, loss@min: 1.072259, loss@max: 1.416751, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 23, loss@min: 1.109266, loss@max: 1.416497, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.082680, loss@max: 1.409246, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.007859, loss@max: 1.368423, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.032873, loss@max: 1.382176, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 1.059786, loss@max: 1.390640, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.049285, loss@max: 1.370148, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 1.002716, loss@max: 1.356755, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.005410, loss@max: 1.354244, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 0.998620, loss@max: 1.347103, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.999838, loss@max: 1.361666, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.989057, loss@max: 1.356501, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.007903, loss@max: 1.358701, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.984422, loss@max: 1.358263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.969258, loss@max: 1.338631, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.999245, loss@max: 1.366325, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.968079, loss@max: 1.337438, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.969809, loss@max: 1.340584, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.961548, loss@max: 1.337757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.962296, loss@max: 1.347209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.958669, loss@max: 1.352479, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.947438, loss@max: 1.353483, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.945463, loss@max: 1.353333, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.950698, loss@max: 1.359339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.951675, loss@max: 1.349392, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.954136, loss@max: 1.353639, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949809, loss@max: 1.355710, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.951270, loss@max: 1.352306, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.947296, loss@max: 1.355361, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.947596, loss@max: 1.360213, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.947300, loss@max: 1.365744, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946972, loss@max: 1.367193, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.949323, loss@max: 1.362064, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.951330, loss@max: 1.363732, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.951082, loss@max: 1.359188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.957955, loss@max: 1.356290, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.955537, loss@max: 1.354382, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.946270, loss@max: 1.361919, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.946443, loss@max: 1.359848, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.950660, loss@max: 1.364130, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.949440, loss@max: 1.365008, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.953461, loss@max: 1.365234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948569, loss@max: 1.362356, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.956474, loss@max: 1.373421, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.954394, loss@max: 1.364721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.946241, loss@max: 1.366784, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.949697, loss@max: 1.362098, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.953046, loss@max: 1.364748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.951325, loss@max: 1.363894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.949837, loss@max: 1.362747, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.957322, loss@max: 1.366868, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.949450, loss@max: 1.362583, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.952350, loss@max: 1.359456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.951956, loss@max: 1.365335, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.953564, loss@max: 1.361889, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950736, loss@max: 1.366590, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.946215, loss@max: 1.365722, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.944733, loss@max: 1.364688, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.949612, loss@max: 1.372316, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948575, loss@max: 1.360309, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.954196, loss@max: 1.372499, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.950066, loss@max: 1.366852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.949420, loss@max: 1.361905, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.955728, loss@max: 1.362751, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.952537, loss@max: 1.357496, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.950954, loss@max: 1.362226, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953527, loss@max: 1.360227, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.954125, loss@max: 1.363943, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948469, loss@max: 1.363562, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.945832, loss@max: 1.371647, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.962583, loss@max: 1.373526, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 93, loss@min: 0.945607, loss@max: 1.369235, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.949468, loss@max: 1.370339, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.949241, loss@max: 1.365607, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947844, loss@max: 1.366297, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.942471, loss@max: 1.365545, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.945706, loss@max: 1.367456, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.945831, loss@max: 1.366427, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.948314, loss@max: 1.367297, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.977791, LT: 0.971707, Top1S: 77.385307, Top1T: 77.385307Best acc: 77.385307 +Train:epoch: 101, loss@min: 0.951062, loss@max: 1.362933, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.978056, LT: 0.972360, Top1S: 77.425903, Top1T: 77.466507Best acc: 77.466507 +Train:epoch: 102, loss@min: 0.953116, loss@max: 1.365508, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.978282, LT: 0.972927, Top1S: 77.425903, Top1T: 77.466507 +Train:epoch: 103, loss@min: 0.949061, loss@max: 1.360644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.978656, LT: 0.973587, Top1S: 77.466507, Top1T: 77.466507 +Train:epoch: 104, loss@min: 0.950280, loss@max: 1.365027, Top1S acc: 100.000000, Top1T acc: 100.000000{"dataset_dir": "/root/autodl-tmp", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Jan 20 13:59:33 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.959707, loss@max: 1.734156, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.276483, loss@max: 1.707487, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.778432, loss@max: 1.708987, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.490855, loss@max: 1.739377, Top1S acc: 100.000000, Top1T acc: 70.588242 +Train:epoch: 5, loss@min: 3.136933, loss@max: 1.732461, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.877489, loss@max: 1.738067, Top1S acc: 100.000000, Top1T acc: 74.509804 +Train:epoch: 7, loss@min: 2.592582, loss@max: 1.730261, Top1S acc: 100.000000, Top1T acc: 76.470589 +Train:epoch: 8, loss@min: 2.293885, loss@max: 1.707753, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 9, loss@min: 2.059313, loss@max: 1.677574, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.836172, loss@max: 1.651720, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 11, loss@min: 1.814677, loss@max: 1.671937, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.829460, loss@max: 1.686265, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.649157, loss@max: 1.646704, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.522023, loss@max: 1.605091, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.339529, loss@max: 1.550009, Top1S acc: 100.000000, Top1T acc: 94.117653 +Train:epoch: 16, loss@min: 1.427563, loss@max: 1.567959, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 17, loss@min: 1.227789, loss@max: 1.493516, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.199735, loss@max: 1.482690, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.180388, loss@max: 1.469466, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 20, loss@min: 1.127663, loss@max: 1.454967, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.118853, loss@max: 1.446125, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 22, loss@min: 1.086999, loss@max: 1.431639, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 23, loss@min: 1.117692, loss@max: 1.428929, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.096431, loss@max: 1.423331, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.018182, loss@max: 1.379814, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.041894, loss@max: 1.392865, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 27, loss@min: 1.071360, loss@max: 1.402376, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.052751, loss@max: 1.379252, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 1.011813, loss@max: 1.368083, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.015066, loss@max: 1.367404, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 1.007352, loss@max: 1.358067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 1.002955, loss@max: 1.370209, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.994592, loss@max: 1.367518, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 1.012185, loss@max: 1.366331, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.992031, loss@max: 1.366779, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 36, loss@min: 0.974017, loss@max: 1.344329, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 1.009701, loss@max: 1.373700, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.973947, loss@max: 1.344966, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.973993, loss@max: 1.346197, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.964488, loss@max: 1.342954, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.968501, loss@max: 1.354036, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.963117, loss@max: 1.356372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.951503, loss@max: 1.357592, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.951377, loss@max: 1.355756, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.956922, loss@max: 1.361932, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.954424, loss@max: 1.352252, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.958187, loss@max: 1.358711, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.952081, loss@max: 1.360360, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.952739, loss@max: 1.355721, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.952862, loss@max: 1.359595, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.951836, loss@max: 1.362035, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.952934, loss@max: 1.368376, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.950765, loss@max: 1.370332, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.951530, loss@max: 1.363263, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.955564, loss@max: 1.367320, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.953529, loss@max: 1.361925, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.959579, loss@max: 1.359844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.956444, loss@max: 1.357757, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.947999, loss@max: 1.364086, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.948408, loss@max: 1.362846, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.952828, loss@max: 1.370556, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.953994, loss@max: 1.367852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.953431, loss@max: 1.368987, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.950164, loss@max: 1.365820, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.958703, loss@max: 1.373533, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.957990, loss@max: 1.370313, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.951358, loss@max: 1.366835, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.951644, loss@max: 1.365300, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.956268, loss@max: 1.364862, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.954710, loss@max: 1.365813, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.952530, loss@max: 1.363901, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.959844, loss@max: 1.371899, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.950915, loss@max: 1.365806, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.951818, loss@max: 1.363801, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.955171, loss@max: 1.369409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.955319, loss@max: 1.365286, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.954638, loss@max: 1.368149, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.948111, loss@max: 1.368189, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.947979, loss@max: 1.366027, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.953950, loss@max: 1.373844, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.949826, loss@max: 1.362579, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.958808, loss@max: 1.375082, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.952733, loss@max: 1.371152, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.951389, loss@max: 1.364061, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.957093, loss@max: 1.366124, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.953924, loss@max: 1.360504, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.954041, loss@max: 1.362091, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.953555, loss@max: 1.364511, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.952659, loss@max: 1.368170, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.949000, loss@max: 1.367067, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.947202, loss@max: 1.375922, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.950631, loss@max: 1.373877, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 93, loss@min: 0.948744, loss@max: 1.369401, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.954903, loss@max: 1.373012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.951838, loss@max: 1.367097, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.952762, loss@max: 1.365715, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.948577, loss@max: 1.362188, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.949669, loss@max: 1.367425, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.951015, loss@max: 1.364237, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.953761, loss@max: 1.367026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.916478, LT: 0.905735, Top1S: 77.791313, Top1T: 77.710114Best acc: 77.791313 +Train:epoch: 101, loss@min: 0.953178, loss@max: 1.366610, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.916256, LT: 0.905581, Top1S: 77.831917, Top1T: 77.750710Best acc: 77.831917 +Train:epoch: 102, loss@min: 0.954301, loss@max: 1.367734, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.915984, LT: 0.905415, Top1S: 77.831917, Top1T: 77.750710 +Train:epoch: 103, loss@min: 0.949123, loss@max: 1.364760, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.915729, LT: 0.905212, Top1S: 77.831917, Top1T: 77.750710 +Train:epoch: 104, loss@min: 0.951514, loss@max: 1.367326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.915560, LT: 0.904969, Top1S: 77.831917, Top1T: 77.750710 +Train:epoch: 105, loss@min: 0.949566, loss@max: 1.370128, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.915443, LT: 0.904696, Top1S: 77.831917, Top1T: 77.750710 +Train:epoch: 106, loss@min: 0.952713, loss@max: 1.365530, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.915253, LT: 0.904376, Top1S: 77.831917, Top1T: 77.750710 +Train:epoch: 107, loss@min: 0.952384, loss@max: 1.362503, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.915090, LT: 0.904132, Top1S: 77.831917, Top1T: 77.791313 +Train:epoch: 108, loss@min: 0.951387, loss@max: 1.365773, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.914956, LT: 0.903931, Top1S: 77.913116, Top1T: 77.791313Best acc: 77.913116 +Train:epoch: 109, loss@min: 0.950508, loss@max: 1.366007, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.914864, LT: 0.903781, Top1S: 77.913116, Top1T: 77.831917 +Train:epoch: 110, loss@min: 0.951544, loss@max: 1.366365, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.914630, LT: 0.903563, Top1S: 77.953720, Top1T: 77.872513Best acc: 77.953720 +Train:epoch: 111, loss@min: 0.951417, loss@max: 1.369081, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.914421, LT: 0.903398, Top1S: 77.994316, Top1T: 77.913116Best acc: 77.994316 +Train:epoch: 112, loss@min: 0.951854, loss@max: 1.369950, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.914220, LT: 0.903276, Top1S: 78.034920, Top1T: 77.872513Best acc: 78.034920 +Train:epoch: 113, loss@min: 0.961455, loss@max: 1.376344, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 113, LS: 0.914390, LT: 0.903550, Top1S: 78.034920, Top1T: 77.913116 +Train:epoch: 114, loss@min: 0.950590, loss@max: 1.368904, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.914426, LT: 0.903748, Top1S: 78.075516, Top1T: 77.872513Best acc: 78.075516 +Train:epoch: 115, loss@min: 0.949557, loss@max: 1.367940, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.914417, LT: 0.903915, Top1S: 78.075516, Top1T: 77.872513 +Train:epoch: 116, loss@min: 0.957833, loss@max: 1.373893, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.914327, LT: 0.903982, Top1S: 78.075516, Top1T: 77.831917 +Train:epoch: 117, loss@min: 0.953485, loss@max: 1.369909, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.914208, LT: 0.903966, Top1S: 78.075516, Top1T: 77.872513 +Train:epoch: 118, loss@min: 0.955363, loss@max: 1.371612, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 118, LS: 0.914041, LT: 0.903863, Top1S: 78.075516, Top1T: 77.872513 +Train:epoch: 119, loss@min: 0.952086, loss@max: 1.370560, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 119, LS: 0.913874, LT: 0.903739, Top1S: 78.116119, Top1T: 77.872513Best acc: 78.116119 +Train:epoch: 120, loss@min: 0.950940, loss@max: 1.365527, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 120, LS: 0.913848, LT: 0.903700, Top1S: 78.075516, Top1T: 77.913116 +Train:epoch: 121, loss@min: 0.952028, loss@max: 1.367430, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 121, LS: 0.913794, LT: 0.903635, Top1S: 78.075516, Top1T: 77.913116 +Train:epoch: 122, loss@min: 0.952514, loss@max: 1.365136, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 122, LS: 0.913777, LT: 0.903564, Top1S: 78.075516, Top1T: 77.953720 +Train:epoch: 123, loss@min: 0.950366, loss@max: 1.363779, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 123, LS: 0.913794, LT: 0.903496, Top1S: 78.116119, Top1T: 77.953720 +Train:epoch: 124, loss@min: 0.952003, loss@max: 1.364797, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 124, LS: 0.913812, LT: 0.903441, Top1S: 78.156723, Top1T: 77.953720Best acc: 78.156723 +Train:epoch: 125, loss@min: 0.950827, loss@max: 1.368026, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 125, LS: 0.913816, LT: 0.903361, Top1S: 78.197319, Top1T: 77.953720Best acc: 78.197319 +Train:epoch: 126, loss@min: 0.953761, loss@max: 1.369696, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 126, LS: 0.913781, LT: 0.903270, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 127, loss@min: 0.951233, loss@max: 1.366859, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 127, LS: 0.913774, LT: 0.903204, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 128, loss@min: 0.949385, loss@max: 1.367538, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 128, LS: 0.913761, LT: 0.903128, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 129, loss@min: 0.951733, loss@max: 1.363757, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 129, LS: 0.913743, LT: 0.903055, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 130, loss@min: 0.951476, loss@max: 1.363934, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 130, LS: 0.913722, LT: 0.902997, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 131, loss@min: 0.949115, loss@max: 1.366107, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 131, LS: 0.913700, LT: 0.902956, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 132, loss@min: 0.951328, loss@max: 1.366428, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 132, LS: 0.913685, LT: 0.902923, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 133, loss@min: 0.950582, loss@max: 1.364027, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 133, LS: 0.913676, LT: 0.902898, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 134, loss@min: 0.964482, loss@max: 1.374326, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 134, LS: 0.913651, LT: 0.902855, Top1S: 78.197319, Top1T: 77.994316 +Train:epoch: 135, loss@min: 0.950577, loss@max: 1.366857, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 135, LS: 0.913638, LT: 0.902833, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 136, loss@min: 0.972661, loss@max: 1.383022, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 136, LS: 0.913633, LT: 0.902817, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 137, loss@min: 0.949705, loss@max: 1.365304, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 137, LS: 0.913628, LT: 0.902798, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 138, loss@min: 0.952140, loss@max: 1.370525, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 138, LS: 0.913631, LT: 0.902786, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 139, loss@min: 0.955299, loss@max: 1.376016, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 139, LS: 0.913634, LT: 0.902780, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 140, loss@min: 0.949368, loss@max: 1.365374, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 140, LS: 0.913641, LT: 0.902777, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 141, loss@min: 0.958653, loss@max: 1.373396, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 141, LS: 0.913635, LT: 0.902765, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 142, loss@min: 0.949710, loss@max: 1.364098, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 142, LS: 0.913628, LT: 0.902754, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 143, loss@min: 0.949834, loss@max: 1.365330, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 143, LS: 0.913624, LT: 0.902749, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 144, loss@min: 0.955344, loss@max: 1.372101, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 144, LS: 0.913621, LT: 0.902746, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 145, loss@min: 0.952131, loss@max: 1.365153, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 145, LS: 0.913620, LT: 0.902745, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 146, loss@min: 0.950462, loss@max: 1.365120, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 146, LS: 0.913621, LT: 0.902746, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 147, loss@min: 0.953547, loss@max: 1.369979, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 147, LS: 0.913622, LT: 0.902746, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 148, loss@min: 0.951289, loss@max: 1.368394, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 148, LS: 0.913622, LT: 0.902746, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 149, loss@min: 0.949936, loss@max: 1.366905, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 149, LS: 0.913622, LT: 0.902746, Top1S: 78.156723, Top1T: 78.034920 +Train:epoch: 150, loss@min: 0.949807, loss@max: 1.368799, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 150, LS: 0.913622, LT: 0.902746, Top1S: 78.156723, Top1T: 78.034920 +------------------------------------------- +Sat Jan 20 14:39:08 2024 +------------------------------------------- +{"dataset_dir": "/root/autodl-tmp", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Jan 20 16:56:28 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.960374, loss@max: 1.733549, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.262061, loss@max: 1.702421, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.746073, loss@max: 1.699128, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.463805, loss@max: 1.730613, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 5, loss@min: 3.101312, loss@max: 1.721504, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.850771, loss@max: 1.727702, Top1S acc: 100.000000, Top1T acc: 75.490196 +Train:epoch: 7, loss@min: 2.540334, loss@max: 1.713507, Top1S acc: 100.000000, Top1T acc: 77.450981 +Train:epoch: 8, loss@min: 2.246461, loss@max: 1.690830, Top1S acc: 100.000000, Top1T acc: 85.294121 +Train:epoch: 9, loss@min: 2.015981, loss@max: 1.659750, Top1S acc: 100.000000, Top1T acc: 84.313728 +Train:epoch: 10, loss@min: 1.799131, loss@max: 1.634152, Top1S acc: 100.000000, Top1T acc: 86.274513 +Train:epoch: 11, loss@min: 1.768133, loss@max: 1.649156, Top1S acc: 100.000000, Top1T acc: 90.196083 +Train:epoch: 12, loss@min: 1.785082, loss@max: 1.663314, Top1S acc: 100.000000, Top1T acc: 87.254906 +Train:epoch: 13, loss@min: 1.609437, loss@max: 1.623190, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 14, loss@min: 1.487816, loss@max: 1.580369, Top1S acc: 100.000000, Top1T acc: 92.156868 +Train:epoch: 15, loss@min: 1.316740, loss@max: 1.527143, Top1S acc: 100.000000, Top1T acc: 95.098045 +Train:epoch: 16, loss@min: 1.409092, loss@max: 1.545844, Top1S acc: 100.000000, Top1T acc: 89.215691 +Train:epoch: 17, loss@min: 1.206959, loss@max: 1.469217, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 18, loss@min: 1.180945, loss@max: 1.458076, Top1S acc: 100.000000, Top1T acc: 96.078438 +Train:epoch: 19, loss@min: 1.166559, loss@max: 1.446271, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 20, loss@min: 1.102118, loss@max: 1.425437, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 21, loss@min: 1.105337, loss@max: 1.421560, Top1S acc: 100.000000, Top1T acc: 97.058830 +Train:epoch: 22, loss@min: 1.062925, loss@max: 1.405403, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 23, loss@min: 1.105435, loss@max: 1.407622, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 24, loss@min: 1.075455, loss@max: 1.399670, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 25, loss@min: 1.001282, loss@max: 1.361089, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 26, loss@min: 1.028777, loss@max: 1.375748, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 27, loss@min: 1.051363, loss@max: 1.383041, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 28, loss@min: 1.049295, loss@max: 1.365711, Top1S acc: 100.000000, Top1T acc: 98.039223 +Train:epoch: 29, loss@min: 0.998191, loss@max: 1.352249, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 30, loss@min: 1.001090, loss@max: 1.349729, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 31, loss@min: 0.991538, loss@max: 1.343080, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 32, loss@min: 0.997821, loss@max: 1.360660, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 33, loss@min: 0.984286, loss@max: 1.352622, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 34, loss@min: 0.999138, loss@max: 1.358050, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 35, loss@min: 0.983761, loss@max: 1.360294, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 36, loss@min: 0.965177, loss@max: 1.341019, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 37, loss@min: 0.990787, loss@max: 1.366462, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 38, loss@min: 0.964773, loss@max: 1.336532, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 39, loss@min: 0.965296, loss@max: 1.339234, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 40, loss@min: 0.959625, loss@max: 1.337409, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 41, loss@min: 0.959556, loss@max: 1.346991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 42, loss@min: 0.954597, loss@max: 1.351521, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 43, loss@min: 0.944522, loss@max: 1.354000, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 44, loss@min: 0.941487, loss@max: 1.354085, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 45, loss@min: 0.947699, loss@max: 1.359352, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 46, loss@min: 0.951515, loss@max: 1.347709, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 47, loss@min: 0.953963, loss@max: 1.351450, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 48, loss@min: 0.949483, loss@max: 1.353474, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 49, loss@min: 0.953005, loss@max: 1.351551, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 50, loss@min: 0.944319, loss@max: 1.355765, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 51, loss@min: 0.944121, loss@max: 1.362128, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 52, loss@min: 0.944625, loss@max: 1.367192, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 53, loss@min: 0.946399, loss@max: 1.365686, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 54, loss@min: 0.947837, loss@max: 1.360693, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 55, loss@min: 0.949337, loss@max: 1.361655, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 56, loss@min: 0.951536, loss@max: 1.357012, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 57, loss@min: 0.958194, loss@max: 1.352852, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 58, loss@min: 0.955147, loss@max: 1.353634, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 59, loss@min: 0.944488, loss@max: 1.362437, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 60, loss@min: 0.945141, loss@max: 1.359842, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 61, loss@min: 0.950515, loss@max: 1.361701, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 62, loss@min: 0.945932, loss@max: 1.364805, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 63, loss@min: 0.952827, loss@max: 1.361337, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 64, loss@min: 0.948227, loss@max: 1.362576, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 65, loss@min: 0.954124, loss@max: 1.375661, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 66, loss@min: 0.952539, loss@max: 1.365941, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 67, loss@min: 0.941839, loss@max: 1.369740, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 68, loss@min: 0.947949, loss@max: 1.362989, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 69, loss@min: 0.950362, loss@max: 1.367293, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 70, loss@min: 0.947711, loss@max: 1.367723, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 71, loss@min: 0.946401, loss@max: 1.365795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 72, loss@min: 0.953430, loss@max: 1.366453, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 73, loss@min: 0.948104, loss@max: 1.363792, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 74, loss@min: 0.953377, loss@max: 1.356795, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 75, loss@min: 0.950536, loss@max: 1.363881, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 76, loss@min: 0.956388, loss@max: 1.356894, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 77, loss@min: 0.950461, loss@max: 1.367291, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 78, loss@min: 0.950739, loss@max: 1.361635, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 79, loss@min: 0.947107, loss@max: 1.363062, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 80, loss@min: 0.948174, loss@max: 1.370296, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 81, loss@min: 0.948696, loss@max: 1.360970, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 82, loss@min: 0.948813, loss@max: 1.372864, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 83, loss@min: 0.948597, loss@max: 1.365884, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 84, loss@min: 0.945379, loss@max: 1.366292, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 85, loss@min: 0.951293, loss@max: 1.365251, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 86, loss@min: 0.950574, loss@max: 1.359428, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 87, loss@min: 0.946543, loss@max: 1.367558, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 88, loss@min: 0.950267, loss@max: 1.363991, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 89, loss@min: 0.954047, loss@max: 1.365397, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 90, loss@min: 0.948740, loss@max: 1.363385, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 91, loss@min: 0.946667, loss@max: 1.371413, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 92, loss@min: 0.965813, loss@max: 1.372164, Top1S acc: 100.000000, Top1T acc: 99.019608 +Train:epoch: 93, loss@min: 0.945151, loss@max: 1.368186, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 94, loss@min: 0.950741, loss@max: 1.366955, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 95, loss@min: 0.950320, loss@max: 1.365156, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 96, loss@min: 0.947397, loss@max: 1.366372, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 97, loss@min: 0.939347, loss@max: 1.369466, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 98, loss@min: 0.943268, loss@max: 1.370994, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 99, loss@min: 0.942196, loss@max: 1.370515, Top1S acc: 100.000000, Top1T acc: 100.000000 +Train:epoch: 100, loss@min: 0.943406, loss@max: 1.372068, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 100, LS: 0.983580, LT: 0.985726, Top1S: 78.034920, Top1T: 77.547707Best acc: 78.034920 +Train:epoch: 101, loss@min: 0.949708, loss@max: 1.364408, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 101, LS: 0.983881, LT: 0.986458, Top1S: 77.994316, Top1T: 77.507111 +Train:epoch: 102, loss@min: 0.947589, loss@max: 1.369541, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 102, LS: 0.984296, LT: 0.987175, Top1S: 77.953720, Top1T: 77.547707 +Train:epoch: 103, loss@min: 0.945751, loss@max: 1.364490, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 103, LS: 0.984935, LT: 0.988100, Top1S: 77.953720, Top1T: 77.466507 +Train:epoch: 104, loss@min: 0.944266, loss@max: 1.368160, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 104, LS: 0.986082, LT: 0.989213, Top1S: 77.913116, Top1T: 77.466507 +Train:epoch: 105, loss@min: 0.946804, loss@max: 1.369164, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 105, LS: 0.987365, LT: 0.990449, Top1S: 77.872513, Top1T: 77.466507 +Train:epoch: 106, loss@min: 0.950300, loss@max: 1.363897, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 106, LS: 0.988453, LT: 0.991453, Top1S: 77.953720, Top1T: 77.425903 +Train:epoch: 107, loss@min: 0.959721, loss@max: 1.354159, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 107, LS: 0.989489, LT: 0.992367, Top1S: 77.831917, Top1T: 77.507111 +Train:epoch: 108, loss@min: 0.949614, loss@max: 1.362644, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 108, LS: 0.990650, LT: 0.993577, Top1S: 77.791313, Top1T: 77.547707 +Train:epoch: 109, loss@min: 0.945747, loss@max: 1.367070, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 109, LS: 0.991929, LT: 0.994757, Top1S: 77.791313, Top1T: 77.466507 +Train:epoch: 110, loss@min: 0.945876, loss@max: 1.366663, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 110, LS: 0.992685, LT: 0.995530, Top1S: 77.791313, Top1T: 77.466507 +Train:epoch: 111, loss@min: 0.951411, loss@max: 1.363177, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 111, LS: 0.993231, LT: 0.996043, Top1S: 77.791313, Top1T: 77.507111 +Train:epoch: 112, loss@min: 0.948422, loss@max: 1.370062, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 112, LS: 0.993446, LT: 0.996169, Top1S: 77.831917, Top1T: 77.588310 +Train:epoch: 113, loss@min: 0.964292, loss@max: 1.381059, Top1S acc: 100.000000, Top1T acc: 99.019608 + Test:epoch: 113, LS: 0.994004, LT: 0.996662, Top1S: 77.831917, Top1T: 77.588310 +Train:epoch: 114, loss@min: 0.943375, loss@max: 1.375366, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 114, LS: 0.994386, LT: 0.996917, Top1S: 77.831917, Top1T: 77.588310 +Train:epoch: 115, loss@min: 0.949901, loss@max: 1.362544, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 115, LS: 0.994649, LT: 0.997092, Top1S: 77.791313, Top1T: 77.628906 +Train:epoch: 116, loss@min: 0.952474, loss@max: 1.372152, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 116, LS: 0.994623, LT: 0.997025, Top1S: 77.831917, Top1T: 77.628906 +Train:epoch: 117, loss@min: 0.942742, loss@max: 1.375124, Top1S acc: 100.000000, Top1T acc: 100.000000 + Test:epoch: 117, LS: 0.994319, LT: 0.996670, Top1S: 77.831917, Top1T: 77.628906{"dataset_dir": "/root/autodl-tmp", "dataset_name": "oxford_flowers", "epochs": 150, "filename_dir": "/root/autodl-tmp/epx_txt/", "log": "./checkpoints", "name": "RN50", "print_freq": 1, "savedir": "/root/autodl-tmp/epx/", "shot": 1, "test_freq": 1, "valacc": 10, "valepoch": 100} + +------------------------------------------- +Sat Jan 20 18:10:59 2024 +------------------------------------------- +Train:epoch: 1, loss@min: 4.960221, loss@max: 1.733510, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 2, loss@min: 4.262094, loss@max: 1.702428, Top1S acc: 100.000000, Top1T acc: 67.647064 +Train:epoch: 3, loss@min: 3.746309, loss@max: 1.699183, Top1S acc: 100.000000, Top1T acc: 66.666664 +Train:epoch: 4, loss@min: 3.463901, loss@max: 1.730635, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 5, loss@min: 3.101221, loss@max: 1.721474, Top1S acc: 100.000000, Top1T acc: 71.568626 +Train:epoch: 6, loss@min: 2.850814, loss@max: 1.727708, Top1S acc: 100.000000, Top1T acc: 75.490196 \ No newline at end of file diff --git a/clip/__init__.py b/clip/__init__.py new file mode 100644 index 0000000..dcc5619 --- /dev/null +++ b/clip/__init__.py @@ -0,0 +1 @@ +from .clip import * diff --git a/clip/bpe_simple_vocab_16e6.txt.gz b/clip/bpe_simple_vocab_16e6.txt.gz new file mode 100644 index 0000000..7b5088a Binary files /dev/null and b/clip/bpe_simple_vocab_16e6.txt.gz differ diff --git a/clip/clip.py b/clip/clip.py new file mode 100644 index 0000000..1e60227 --- /dev/null +++ b/clip/clip.py @@ -0,0 +1,220 @@ +import hashlib +import os +import urllib +import warnings +from typing import Union, List + +import torch +from PIL import Image +from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize +from tqdm import tqdm + +from .model import build_model +from .simple_tokenizer import SimpleTokenizer as _Tokenizer + +try: + from torchvision.transforms import InterpolationMode + + BICUBIC = InterpolationMode.BICUBIC +except ImportError: + BICUBIC = Image.BICUBIC + +if torch.__version__.split(".") < ["1", "7", "1"]: + warnings.warn("PyTorch version 1.7.1 or higher is recommended") + +__all__ = ["available_models", "load", "tokenize"] +_tokenizer = _Tokenizer() + +_MODELS = { + "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", + "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", + "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", + "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", + "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", + "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", +} + + +def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")): + os.makedirs(root, exist_ok=True) + filename = os.path.basename(url) + + expected_sha256 = url.split("/")[-2] + download_target = os.path.join(root, filename) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: + return download_target + else: + warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: + raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") + + return download_target + + +def _transform(n_px): + return Compose([ + Resize(n_px, interpolation=BICUBIC), + CenterCrop(n_px), + lambda image: image.convert("RGB"), + ToTensor(), + Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), + ]) + + +def available_models() -> List[str]: + """Returns the names of available CLIP models""" + return list(_MODELS.keys()) + + +def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=False): + """Load a CLIP model + + Parameters + ---------- + name : str + A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict + + device : Union[str, torch.device] + The device to put the loaded model + + jit : bool + Whether to load the optimized JIT model or more hackable non-JIT model (default). + + Returns + ------- + model : torch.nn.Module + The CLIP model + + preprocess : Callable[[PIL.Image], torch.Tensor] + A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input + """ + if name in _MODELS: + model_path = _download(_MODELS[name]) + elif os.path.isfile(name): + model_path = name + else: + raise RuntimeError(f"Model {name} not found; available models = {available_models()}") + + try: + # loading JIT archive + model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() + state_dict = None + except RuntimeError: + # loading saved state dict + if jit: + warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") + jit = False + state_dict = torch.load(model_path, map_location="cpu") + + if not jit: + model = build_model(state_dict or model.state_dict()).to(device) + if str(device) == "cpu": + model.float() + return model, _transform(model.visual.input_resolution) + + # patch the device names + device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] + + def patch_device(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("prim::Constant"): + if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): + node.copyAttributes(device_node) + + model.apply(patch_device) + patch_device(model.encode_image) + patch_device(model.encode_text) + + # patch dtype to float32 on CPU + if str(device) == "cpu": + float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) + float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] + float_node = float_input.node() + + def patch_float(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("aten::to"): + inputs = list(node.inputs()) + for i in [1, 2]: # dtype can be the second or third argument to aten::to() + if inputs[i].node()["value"] == 5: + inputs[i].node().copyAttributes(float_node) + + model.apply(patch_float) + patch_float(model.encode_image) + patch_float(model.encode_text) + + model.float() + + return model, _transform(model.input_resolution.item()) + + +def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor: + """ + Returns the tokenized representation of given input string(s) + + Parameters + ---------- + texts : Union[str, List[str]] + An input string or a list of input strings to tokenize + + context_length : int + The context length to use; all CLIP models use 77 as the context length + + truncate: bool + Whether to truncate the text in case its encoding is longer than the context length + + Returns + ------- + A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + """ + if isinstance(texts, str): + texts = [texts] + + sot_token = _tokenizer.encoder["<|startoftext|>"] + eot_token = _tokenizer.encoder["<|endoftext|>"] + all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] + result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + + for i, tokens in enumerate(all_tokens): + if len(tokens) > context_length: + if truncate: + tokens = tokens[:context_length] + tokens[-1] = eot_token + else: + raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") + result[i, :len(tokens)] = torch.tensor(tokens) + + return result diff --git a/clip/model.py b/clip/model.py new file mode 100644 index 0000000..c646b7b --- /dev/null +++ b/clip/model.py @@ -0,0 +1,436 @@ +from collections import OrderedDict +from typing import Tuple, Union + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1): + super().__init__() + + # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 + self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + + self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + + self.relu = nn.ReLU() + self.downsample = None + self.stride = stride + + if stride > 1 or inplanes != planes * Bottleneck.expansion: + # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 + self.downsample = nn.Sequential(OrderedDict([ + ("-1", nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("1", nn.BatchNorm2d(planes * self.expansion)) + ])) + + def forward(self, x: torch.Tensor): + identity = x + + out = self.relu(self.bn1(self.conv1(x))) + out = self.relu(self.bn2(self.conv2(out))) + out = self.avgpool(out) + out = self.bn3(self.conv3(out)) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + return out + + +class AttentionPool2d(nn.Module): + def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self, x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC + x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC + x, _ = F.multi_head_attention_forward( + query=x, key=x, value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0, + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False + ) + + return x[0] + + +class ModifiedResNet(nn.Module): + """ + A ResNet class that is similar to torchvision's but contains the following changes: + - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. + - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 + - The final pooling layer is a QKV attention instead of an average pool + """ + + def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): + super().__init__() + self.output_dim = output_dim + self.input_resolution = input_resolution + + # the 3-layer stem + self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(width // 2) + self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(width // 2) + self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(width) + self.avgpool = nn.AvgPool2d(2) + self.relu = nn.ReLU() + + # residual layers + self._inplanes = width # this is a *mutable* variable used during construction + self.layer1 = self._make_layer(width, layers[0]) + self.layer2 = self._make_layer(width * 2, layers[1], stride=2) + self.layer3 = self._make_layer(width * 4, layers[2], stride=2) + self.layer4 = self._make_layer(width * 8, layers[3], stride=2) + + embed_dim = width * 32 # the ResNet feature dimension + self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) + + def _make_layer(self, planes, blocks, stride=1): + layers = [Bottleneck(self._inplanes, planes, stride)] + + self._inplanes = planes * Bottleneck.expansion + for _ in range(1, blocks): + layers.append(Bottleneck(self._inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + def stem(x): + for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: + x = self.relu(bn(conv(x))) + x = self.avgpool(x) + return x + + x = x.type(self.conv1.weight.dtype) + x = stem(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.attnpool(x) + + return x + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16.""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + ret = super().forward(x.type(torch.float32)) + return ret.type(orig_type) + + +class QuickGELU(nn.Module): + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class ResidualAttentionBlock(nn.Module): + def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): + super().__init__() + + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ln_1 = LayerNorm(d_model) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc", nn.Linear(d_model, d_model * 4)), + ("gelu", QuickGELU()), + ("c_proj", nn.Linear(d_model * 4, d_model)) + ])) + self.ln_2 = LayerNorm(d_model) + self.attn_mask = attn_mask + + def attention(self, x: torch.Tensor): + self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None + return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] + + def forward(self, x: torch.Tensor): + x = x + self.attention(self.ln_1(x)) + x = x + self.mlp(self.ln_2(x)) + return x + + +class Transformer(nn.Module): + def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): + super().__init__() + self.width = width + self.layers = layers + self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) + + def forward(self, x: torch.Tensor): + return self.resblocks(x) + + +class VisionTransformer(nn.Module): + def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): + super().__init__() + self.input_resolution = input_resolution + self.output_dim = output_dim + self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) + + scale = width ** -0.5 + self.class_embedding = nn.Parameter(scale * torch.randn(width)) + self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) + self.ln_pre = LayerNorm(width) + + self.transformer = Transformer(width, layers, heads) + + self.ln_post = LayerNorm(width) + self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) + + def forward(self, x: torch.Tensor): + x = self.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + x = torch.cat( + [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.positional_embedding.to(x.dtype) + x = self.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + + x = self.ln_post(x[:, 0, :]) + + if self.proj is not None: + x = x @ self.proj + + return x + + +class CLIP(nn.Module): + def __init__(self, + embed_dim: int, + # vision + image_resolution: int, + vision_layers: Union[Tuple[int, int, int, int], int], + vision_width: int, + vision_patch_size: int, + # text + context_length: int, + vocab_size: int, + transformer_width: int, + transformer_heads: int, + transformer_layers: int + ): + super().__init__() + + self.context_length = context_length + + if isinstance(vision_layers, (tuple, list)): + vision_heads = vision_width * 32 // 64 + self.visual = ModifiedResNet( + layers=vision_layers, + output_dim=embed_dim, + heads=vision_heads, + input_resolution=image_resolution, + width=vision_width + ) + else: + vision_heads = vision_width // 64 + self.visual = VisionTransformer( + input_resolution=image_resolution, + patch_size=vision_patch_size, + width=vision_width, + layers=vision_layers, + heads=vision_heads, + output_dim=embed_dim + ) + + self.transformer = Transformer( + width=transformer_width, + layers=transformer_layers, + heads=transformer_heads, + attn_mask=self.build_attention_mask() + ) + + self.vocab_size = vocab_size + self.token_embedding = nn.Embedding(vocab_size, transformer_width) + self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) + self.ln_final = LayerNorm(transformer_width) + + self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + self.initialize_parameters() + + def initialize_parameters(self): + nn.init.normal_(self.token_embedding.weight, std=0.02) + nn.init.normal_(self.positional_embedding, std=0.01) + + if isinstance(self.visual, ModifiedResNet): + if self.visual.attnpool is not None: + std = self.visual.attnpool.c_proj.in_features ** -0.5 + nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) + nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) + + for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: + for name, param in resnet_block.named_parameters(): + if name.endswith("bn3.weight"): + nn.init.zeros_(param) + + proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) + attn_std = self.transformer.width ** -0.5 + fc_std = (2 * self.transformer.width) ** -0.5 + for block in self.transformer.resblocks: + nn.init.normal_(block.attn.in_proj_weight, std=attn_std) + nn.init.normal_(block.attn.out_proj.weight, std=proj_std) + nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) + nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) + + if self.text_projection is not None: + nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) + + def build_attention_mask(self): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(self.context_length, self.context_length) + mask.fill_(float("-inf")) + mask.triu_(1) # zero out the lower diagonal + return mask + + @property + def dtype(self): + return self.visual.conv1.weight.dtype + + def encode_image(self, image): + return self.visual(image.type(self.dtype)) + + def encode_text(self, text): + x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] + + x = x + self.positional_embedding.type(self.dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x).type(self.dtype) + + # x.shape = [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection + + return x + + def forward(self, image, text): + image_features = self.encode_image(image) + text_features = self.encode_text(text) + + # normalized features + image_features = image_features / image_features.norm(dim=-1, keepdim=True) + text_features = text_features / text_features.norm(dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale = self.logit_scale.exp() + logits_per_image = logit_scale * image_features @ text_features.t() + logits_per_text = logit_scale * text_features @ image_features.t() + + # shape = [global_batch_size, global_batch_size] + return logits_per_image, logits_per_text + + +def convert_weights(model: nn.Module): + """Convert applicable model parameters to fp16""" + + def _convert_weights_to_fp16(l): + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.half() + if l.bias is not None: + l.bias.data = l.bias.data.half() + + if isinstance(l, nn.MultiheadAttention): + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: + tensor = getattr(l, attr) + if tensor is not None: + tensor.data = tensor.data.half() + + for name in ["text_projection", "proj"]: + if hasattr(l, name): + attr = getattr(l, name) + if attr is not None: + attr.data = attr.data.half() + + model.apply(_convert_weights_to_fp16) + + +def build_model(state_dict: dict): + vit = "visual.proj" in state_dict + + if vit: + vision_width = state_dict["visual.conv1.weight"].shape[0] + vision_layers = len( + [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) + vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] + grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) + image_resolution = vision_patch_size * grid_size + else: + counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in + [1, 2, 3, 4]] + vision_layers = tuple(counts) + vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] + output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) + vision_patch_size = None + assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] + image_resolution = output_width * 32 + + embed_dim = state_dict["text_projection"].shape[1] + context_length = state_dict["positional_embedding"].shape[0] + vocab_size = state_dict["token_embedding.weight"].shape[0] + transformer_width = state_dict["ln_final.weight"].shape[0] + transformer_heads = transformer_width // 64 + transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) + + model = CLIP( + embed_dim, + image_resolution, vision_layers, vision_width, vision_patch_size, + context_length, vocab_size, transformer_width, transformer_heads, transformer_layers + ) + + for key in ["input_resolution", "context_length", "vocab_size"]: + if key in state_dict: + del state_dict[key] + + convert_weights(model) + model.load_state_dict(state_dict) + return model.eval() diff --git a/clip/simple_tokenizer.py b/clip/simple_tokenizer.py new file mode 100644 index 0000000..9a7a59e --- /dev/null +++ b/clip/simple_tokenizer.py @@ -0,0 +1,134 @@ +import gzip +import html +import os +from functools import lru_cache + +import ftfy +import regex as re + + +@lru_cache() +def default_bpe(): + return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + cs = bs[:] + n = 0 + for b in range(2 ** 8): + if b not in bs: + bs.append(b) + cs.append(2 ** 8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """Return set of symbol pairs in a word. + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def basic_clean(text): + text = ftfy.fix_text(text) + text = html.unescape(html.unescape(text)) + return text.strip() + + +def whitespace_clean(text): + text = re.sub(r'\s+', ' ', text) + text = text.strip() + return text + + +class SimpleTokenizer(object): + def __init__(self, bpe_path: str = default_bpe()): + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') + merges = merges[1:49152 - 256 - 2 + 1] + merges = [tuple(merge.split()) for merge in merges] + vocab = list(bytes_to_unicode().values()) + vocab = vocab + [v + '' for v in vocab] + for merge in merges: + vocab.append(''.join(merge)) + vocab.extend(['<|startoftext|>', '<|endoftext|>']) + self.encoder = dict(zip(vocab, range(len(vocab)))) + self.decoder = {v: k for k, v in self.encoder.items()} + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} + self.pat = re.compile( + r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", + re.IGNORECASE) + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token[:-1]) + (token[-1] + '',) + pairs = get_pairs(word) + + if not pairs: + return token + '' + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + new_word.extend(word[i:j]) + i = j + except: + new_word.extend(word[i:]) + break + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = ' '.join(word) + self.cache[token] = word + return word + + def encode(self, text): + bpe_tokens = [] + text = whitespace_clean(basic_clean(text)).lower() + for token in re.findall(self.pat, text): + token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) + bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) + return bpe_tokens + + def decode(self, tokens): + text = ''.join([self.decoder[token] for token in tokens]) + text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') + return text diff --git a/clip_make_pic.py b/clip_make_pic.py new file mode 100644 index 0000000..076ab6f --- /dev/null +++ b/clip_make_pic.py @@ -0,0 +1,605 @@ +import matplotlib +import numpy as np +from matplotlib import pyplot as plt + +# matplotlib画图中中文显示会有问题,需要这两行设置默认字体.没中文可以去掉 +plt.rcParams['font.sans-serif']=['SimHei'] +plt.rcParams['axes.unicode_minus'] = False + +# 设置figure_size尺寸 +# plt.rcParams['figure.figsize'] = (22.0, 22.0) +plt.rcParams['figure.figsize'] = (5.0,5.0) +fig = plt.figure() + +# 设定图表颜色 +fig.set(alpha=0.2) +#fig.suptitle('suptitle', fontsize=24, x=0.6,y=0.9, horizontalalignment='left', va='bottom') + +# 输入数据 +# plt.subplot2grid((4,3),(0,0)) +#Average over 11 datasets + + + +# +# + +# CR_CLIP=[65.67090909,68.98363636,72.51636364,75.58,78.20090909] +# +# GPT_CLIP=[65.54,68.59,72.23,75.31,77.94] +# +# DA_CLIP=[65.27,68.20,72.01,75.21,77.70] +# +# +# y_tip_adapter=[62.3282,64.6182,66.5327,68.4955,70.3182] +# +# y_tip_adapter_f=[63.2982,65.93913,68.9836,72.1573,75.1346] +# +# y_clip_adapter=[62.6745,65.5527,68.6055,71.3964,74.4436] +# +# y_imagenet_CoOp=[59.5882,62.3236,66.7664,69.8918,73.4251] +# y_clip=[58.9627] +# x=[1,2,4,8,16] +# x_zero=[0] +# # +# # #数据及线属性 +# # #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# # +# # +# # +# # +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Average over 11 datasets',fontproperties='Times New Roman', fontsize=15,fontweight='bold') +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Average.png", dpi=600) +# # +# # +# # +# +# + +# # 输入数据 +# plt.subplot2grid((4,3),(0,1)) + +# CR_CLIP=[90.3,90.82,92.45,92.77,94.22] +# GPT_CLIP=[89.73,90.54,92.26,92.57,93.96] +# DA_CLIP=[89.45,90.34,91.89,92.09,93.79] +# +# y_tip_adapter=[87.18,88.44,89.39,89.83,90.18] +# y_tip_adapter_f=[87.9,89.4,90.78,91.1,92.28] +# y_imagenet_CoOp=[87.53,87.93,89.55,90.21,91.83] +# y_clip_adapter=[88.6,89.37,89.98,91.4,92.49] +# +# y_clip=[86.29] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Caltech101',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Caltech101.png", dpi=600) +# +# +# # +# +# # 输入数据 +# plt.subplot2grid((4,3),(0,2)) +# # +# CR_CLIP=[50.73,56.51,62.2,66.76,69.71] +# +# GPT_CLIP=[50.52,56.21,61.92,66.58,69.31] +# +# DA_CLIP=[46.28,52.19,61.76,66.19,68.79] +# +# y_tip_adapter=[46.22,49.47,53.96,58.63,60.93] +# +# y_tip_adapter_f=[48.58,51.64,57.21,61.92,66.23] +# +# y_imagenet_CoOp=[44.39,45.15,53.49,59.97,63.58] +# +# y_clip_adapter=[45.8,51.48,56.86,61,65.96] +# +# y_clip=[42.32] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('DTD',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("DTD.png", dpi=600) +# +# +# +# +# +# +# # 输入数据 +# # plt.subplot2grid((4,3),(1,0)) +# # #EuroSAT +# CR_CLIP=[58.85,67.38,78.54,84.84,84.90] +# +# GPT_CLIP=[58.46,66.96,78.34,84.24,84.44] +# +# DA_CLIP=[57.41,66.41,77.95,83.90,84.17] +# +# y_tip_adapter=[54.38,61.68,65.32,67.95,70.54] +# +# y_tip_adapter_f=[51.81,66.32,69.23,77.69,81.96] +# +# y_clip_adapter=[61.4,63.9,73.38,77.93,84.43] +# +# y_imagenet_CoOp=[50.63,61.5,70.18,76.73,83.53] +# +# y_clip=[37.56] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('EuroSAT',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("EuroSAT.png", dpi=600) +# +# +# # 输入数据 +# plt.subplot2grid((4,3),(1,1)) +# #FGVCAircraft +# CR_CLIP=[22.92,24.82,28.68,34.88,42.66] +# +# GPT_CLIP=[22.70,24.62,28.18,34.59,42.30] +# +# DA_CLIP=[22.53,24.48,28.08,34.26,41.34] +# +# y_tip_adapter=[19.05,21.2,22.41,25.59,29.76] +# +# y_tip_adapter_f=[20.06,21.17,24.97,28.13,34.83] +# +# y_imagenet_CoOp=[9.64,18.68,21.87,26.13,31.26] +# +# y_clip_adapter=[17.49,20.1,22.59,26.25,32.1] +# +# y_clip=[17.28] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('FGVCAircraft',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("FGVCAircraft.png", dpi=600) +# # +# # +# # 输入数据 +# plt.subplot2grid((4,3),(1,2)) +# #Flowers102 +# CR_CLIP=[80.88,88.8,93.68,96.20,96.7] +# +# GPT_CLIP=[80.76,87.80,93.32,95.67,96.66] +# +# DA_CLIP=[80.88,87.78,93.26,95.82,96.80] +# +# y_tip_adapter=[73.12,79.13,83.8,87.98,89.89] +# +# y_tip_adapter_f=[76.7,79.5,89,92.4,93.9] +# +# y_imagenet_CoOp=[68.12,77.51,86.2,91.18,94.51] +# +# y_clip_adapter=[73.49,81.61,87.17,91.72,93.9] +# +# y_clip=[66.14] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Flowers102',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Flowers102.png", dpi=600) +# +# # 输入数据 +# plt.subplot2grid((4,3),(2,0)) +#Food101 +# CR_CLIP=[78.44,78.67,78.81,78.96,79.72] +# +# GPT_CLIP=[78.24,78.56,78.67,78.82,79.59] +# +# DA_CLIP=[78.17,78.34,78.50,78.55,79.40] +# +# y_tip_adapter=[77.42,77.52,77.54,77.76,77.83] +# +# y_tip_adapter_f=[77.27,77.44,77.2,78.36,79.05] +# +# y_imagenet_CoOp=[74.32,72.49,73.33,71.82,74.67] +# +# y_clip_adapter=[76.82,77.22,77.92,78.04,78.25] +# +# y_clip=[77.31] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Food101',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Food101.png", dpi=600) +# # +# +# # 输入数据 +# plt.subplot2grid((4,3),(2,1)) +# #imagenet +# CR_CLIP=[62,63.14,63.52,65.02,66.46] +# GPT_CLIP=[61.82,62.83,63.27,64.72,66.25] +# DA_CLIP=[61.41,61.83,62.91,64.54,66.09] +# +# y_tip_adapter=[60.7,60.96,60.98,61.45,62.03] +# y_tip_adapter_f=[61.32,61.69,62.52,64,65.51] +# y_clip_adapter=[61.2,61.52,61.84,62.68,63.59] +# y_imagenet_CoOp=[57.15,57.81,59.99,61.56,62.95] +# y_clip=[60.33] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('ImageNet',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# #plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# +# plt.savefig("ImageNet.png", dpi=600) +# +# +# +# # 输入数据 +# plt.subplot2grid((4,3),(2,2)) +# #OxfordPets +# CR_CLIP=[86.1,87.94,88.74,89.25,90.13] +# +# GPT_CLIP=[85.94,86.79,88.63,89.01,89.92] +# +# DA_CLIP=[85.91,86.75,88.50,88.96,89.86] +# +# y_tip_adapter=[86.1,87.03,86.45,87.03,88.14] +# +# y_tip_adapter_f=[86.44,86.44,87,88.11,89.13] +# y_imagenet_CoOp=[85.89,82.64,86.7,85.32,87.01] +# y_clip_adapter=[85.99,86.73,87.46,87.65,87.84] +# y_clip=[85.77] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('OxfordPets',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# +# plt.savefig("OxfordPets.png", dpi=600) + + + + +# # 输入数据 +# plt.subplot2grid((4,3),(3,0)) +# #StanfordCars +# CR_CLIP=[60.17,62.57,66.92,73.92,78] +# +# GPT_CLIP=[60.13,62.46,66.73,73.81,79.72] +# +# DA_CLIP=[59.77,62.12,66.30,73.35,79.54] +# +# y_tip_adapter=[57.54,57.93,61.45,62.93,66.77] +# +# y_tip_adapter_f=[58.42,61.06,64.54,69.32,75.08] +# +# y_imagenet_CoOp=[55.59,58.28,62.62,68.43,73.3659] +# +# y_clip_adapter=[55.13,58.74,62.45,67.89,74.01] +# +# y_clip=[55.61] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('StanfordCars',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# #plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("StanfordCars.png", dpi=600) + + + + +# # 输入数据 +# plt.subplot2grid((4,3),(3,1)) +# #SUN397 +# CR_CLIP=[64.1,66.34,69.24,70.78,73.21] +# +# GPT_CLIP=[63.91,66.23,68.52,70.59,72.98] +# +# DA_CLIP=[63.42,65.24,68.13,70.10,72.69] +# +# y_tip_adapter=[61.3,62.7,64.1,65.62,66.85] +# +# y_tip_adapter_f=[62.4,63.22,65.75,68.28,71.27] +# y_imagenet_CoOp=[60.29,59.48,63.47,65.52,69.26] +# +# y_clip_adapter=[61.3,63.29,65.96,67.5,69.55] +# +# y_clip=[58.52] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('SUN397',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("SUN397.png", dpi=600) +# +# +# +# +# # 输入数据 +# plt.subplot2grid((4,3),(3,2)) +# #UCF101 +CR_CLIP=[67.86,71.73,75,78.2,82.5] + +GPT_CLIP=[67.60,71.46,74.72,77.86,82.26] + +DA_CLIP=[67.46,71.27,74.49,77.77,82.08] + +y_tip_adapter=[62.6,64.74,66.46,68.68,70.58] + +y_tip_adapter_f=[65.38,67.45,71.17,74.42,77.24] + +y_imagenet_CoOp=[61.92,64.09,67.03,71.94,75.71] + +y_clip_adapter=[62.2,67.12,69.05,73.3,76.76] + +y_clip=[61.46] +x=[1,2,4,8,16] +x_zero=[0] + +# 数据及线属性 +# cacfc +plt.plot(x, CR_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='CR-CLIP') +plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +#clip_adapter + +plt.grid(linestyle="--") +# 修改坐标轴字体及大小 +plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +plt.xticks(fontproperties='Times New Roman', size=14) +#标题设置 +plt.title('UCF101',fontproperties='Times New Roman', fontsize=15) +plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# 添加标签 +plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), + ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') + +plt.savefig("UCF101.png", dpi=600) +# plt.show() diff --git a/daln/grl.py b/daln/grl.py new file mode 100644 index 0000000..19dfe62 --- /dev/null +++ b/daln/grl.py @@ -0,0 +1,77 @@ +from typing import Optional, Any, Tuple +import numpy as np +import torch.nn as nn +from torch.autograd import Function +import torch + + +class GradientReverseFunction(Function): + + @staticmethod + def forward(ctx: Any, input: torch.Tensor, coeff: Optional[float] = 1.) -> torch.Tensor: + ctx.coeff = coeff + output = input * 1.0 + return output + + @staticmethod + def backward(ctx: Any, grad_output: torch.Tensor) -> Tuple[torch.Tensor, Any]: + return grad_output.neg() * ctx.coeff, None + + +class GradientReverseLayer(nn.Module): + def __init__(self): + super(GradientReverseLayer, self).__init__() + + def forward(self, *input): + return GradientReverseFunction.apply(*input) + + +class WarmStartGradientReverseLayer(nn.Module): + """Gradient Reverse Layer :math:`\mathcal{R}(x)` with warm start + + The forward and backward behaviours are: + + .. math:: + \mathcal{R}(x) = x, + + \dfrac{ d\mathcal{R}} {dx} = - \lambda I. + + :math:`\lambda` is initiated at :math:`lo` and is gradually changed to :math:`hi` using the following schedule: + + .. math:: + \lambda = \dfrac{2(hi-lo)}{1+\exp(- α \dfrac{i}{N})} - (hi-lo) + lo + + where :math:`i` is the iteration step. + + Args: + alpha (float, optional): :math:`α`. Default: 1.0 + lo (float, optional): Initial value of :math:`\lambda`. Default: 0.0 + hi (float, optional): Final value of :math:`\lambda`. Default: 1.0 + max_iters (int, optional): :math:`N`. Default: 1000 + auto_step (bool, optional): If True, increase :math:`i` each time `forward` is called. + Otherwise use function `step` to increase :math:`i`. Default: False + """ + + def __init__(self, alpha: Optional[float] = 1.0, lo: Optional[float] = 0.0, hi: Optional[float] = 1., + max_iters: Optional[int] = 1000., auto_step: Optional[bool] = False): + super(WarmStartGradientReverseLayer, self).__init__() + self.alpha = alpha + self.lo = lo + self.hi = hi + self.iter_num = 0 + self.max_iters = max_iters + self.auto_step = auto_step + + def forward(self, input: torch.Tensor) -> torch.Tensor: + """""" + coeff =float( + 2.0 * (self.hi - self.lo) / (1.0 + np.exp(-self.alpha * self.iter_num / self.max_iters)) + - (self.hi - self.lo) + self.lo + ) + if self.auto_step: + self.step() + return GradientReverseFunction.apply(input, coeff) + + def step(self): + """Increase iteration number :math:`i` by 1""" + self.iter_num += 1 \ No newline at end of file diff --git a/daln/nwd.py b/daln/nwd.py new file mode 100644 index 0000000..a108aa1 --- /dev/null +++ b/daln/nwd.py @@ -0,0 +1,25 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from daln.grl import WarmStartGradientReverseLayer + + +class NuclearWassersteinDiscrepancy(nn.Module): + def __init__(self, classifier: nn.Module): + super(NuclearWassersteinDiscrepancy, self).__init__() + self.grl = WarmStartGradientReverseLayer(alpha=1., lo=0., hi=1., max_iters=1000, auto_step=True) + self.classifier = classifier + + @staticmethod + def n_discrepancy(y_s: torch.Tensor, y_t: torch.Tensor) -> torch.Tensor: + pre_s, pre_t = F.softmax(y_s, dim=1), F.softmax(y_t, dim=1) + loss = (-torch.norm(pre_t, 'nuc') + torch.norm(pre_s, 'nuc')) / y_t.shape[0] + return loss + + def forward(self, f: torch.Tensor) -> torch.Tensor: + f_grl = self.grl(f) + y = self.classifier(f_grl) + y_s, y_t = y.chunk(2, dim=0) + + loss = self.n_discrepancy(y_s, y_t) + return loss diff --git a/data/__init__.py b/data/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/data/folder_new.py b/data/folder_new.py new file mode 100644 index 0000000..e228244 --- /dev/null +++ b/data/folder_new.py @@ -0,0 +1,140 @@ +### Modify the ImageFolder function to get the image path in the data loader +import torch.utils.data as data + +from PIL import Image +import os +import os.path +from PIL import ImageFile + +ImageFile.LOAD_TRUNCATED_IMAGES = True ## used to handle some error when loading the special images. + +print('the data loader file has been modified') +IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm'] + + +def is_image_file(filename): + """Checks if a file is an image. + Args: + filename (string): path to a file + Returns: + bool: True if the filename ends with a known image extension + """ + filename_lower = filename.lower() + return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS) + + +def find_classes(dir): + classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] + classes.sort() + class_to_idx = {classes[i]: i for i in range(len(classes))} + return classes, class_to_idx + + +def make_dataset(dir, class_to_idx): + images = [] + dir = os.path.expanduser(dir) + for target in sorted(os.listdir(dir)): + d = os.path.join(dir, target) + if not os.path.isdir(d): + continue + + for root, _, fnames in sorted(os.walk(d)): # os.walk()是一种遍历目录数的函数 + for fname in sorted(fnames): + if is_image_file(fname): + path = os.path.join(root, fname) + item = (path, class_to_idx[target]) + images.append(item) + + return images + + +def pil_loader(path): + # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) + with open(path, 'rb') as f: + img = Image.open(f) + return img.convert('RGB') + + +def accimage_loader(path): + import accimage + try: + return accimage.Image(path) + except IOError: + # Potentially a decoding problem, fall back to PIL.Image + return pil_loader(path) + + +def default_loader(path): + from torchvision import get_image_backend + if get_image_backend() == 'accimage': + return accimage_loader(path) + else: + return pil_loader(path) + + +class ImageFolder_new(data.Dataset): + """A generic data loader where the images are arranged in this way: :: + root/dog/xxx.png + root/dog/xxy.png + root/dog/xxz.png + root/cat/123.png + root/cat/nsdf3.png + root/cat/asd932_.png + Args: + root (string): Root directory path. + transform (callable, optional): A function/transform that takes in an PIL image + and returns a transformed version. E.g, ``transforms.RandomCrop`` + target_transform (callable, optional): A function/transform that takes in the + target and transforms it. + loader (callable, optional): A function to load an image given its path. + Attributes: + classes (list): List of the class names. + class_to_idx (dict): Dict with items (class_name, class_index). + imgs (list): List of (image path, class_index) tuples + """ + + def __init__(self, root, transform=None, target_transform=None, + loader=default_loader): + classes, class_to_idx = find_classes(root) + imgs = make_dataset(root, class_to_idx) + if len(imgs) == 0: + raise (RuntimeError("Found 0 images in subfolders of: " + root + "\n" + "Supported image extensions are: " + ",".join( + IMG_EXTENSIONS))) + + self.root = root + self.imgs = imgs + self.classes = classes + self.class_to_idx = class_to_idx + self.transform = transform + self.target_transform = target_transform + self.loader = loader + + def __getitem__(self, index): + """ + Args: + index (int): Index + Returns: + tuple: (image, target) where target is class_index of the target class. + """ + path, target = self.imgs[index] + img = self.loader(path) + if self.transform is not None: + img = self.transform(img) + if self.target_transform is not None: + target = self.target_transform(target) + + return img, target, path + + def __len__(self): + return len(self.imgs) + + def __repr__(self): + fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' + fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) + fmt_str += ' Root Location: {}\n'.format(self.root) + tmp = ' Transforms (if any): ' + fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) + tmp = ' Target Transforms (if any): ' + fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) + return fmt_str diff --git a/data/prepare_data.py b/data/prepare_data.py new file mode 100644 index 0000000..7a9df05 --- /dev/null +++ b/data/prepare_data.py @@ -0,0 +1,233 @@ +import os +import torch +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision +import torchvision.transforms as transforms +from collections import defaultdict +import random + + +def generate_dataloader(args, preprocess): + templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", + ] + imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + + random.seed(1) + k_shot = 16 + # Data loading code + data_path = args.data_path_source + traindir_source = os.path.join(args.data_path_source, args.src) + traindir_target = os.path.join(args.data_path_source_t, args.src_t) + valdir = os.path.join(args.data_path_target, args.tar) + if not os.path.isdir(traindir_source): + # split_train_test_images(args.data_path) + raise ValueError('Null path of source train data!!!') + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) + loader = torch.utils.data.DataLoader(images, batch_size=64, num_workers=0, + shuffle=False) # shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + # 随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + # split_by_contexts_dict = defaultdict(list) + # for i in range(len(imagenet_classes)): + # split_by_contexts_dict[i]=[template.format(imagenet_classes[i]) for template in templates] + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + # split_by_contexts_dict[train_images.targets[i]]=[template.format(train_images.classes[train_images.targets[i]]) for template in templates] + imgs = [] + targets = [] + # contexts=[] + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + targets = targets + [label for i in range(k_shot)] + # contexts=contexts+[split_by_context_dict[label] for i in range(k_shot)] + + train_images.imgs = imgs + train_images.targets = targets + train_images.samples = imgs + # train_images.classes= contexts + + # train_loader = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=False) # 16个样本 + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=256, num_workers=0, shuffle=True)#,drop_last=True) + + return train_loader_shuffle, loader diff --git a/data/prepare_data_init.py b/data/prepare_data_init.py new file mode 100644 index 0000000..a65e83e --- /dev/null +++ b/data/prepare_data_init.py @@ -0,0 +1,233 @@ +import os +import torch +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision +import torchvision.transforms as transforms +from collections import defaultdict +import random + + +def generate_dataloader(args, preprocess): + templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", + ] + imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + + random.seed(1) + k_shot = 16 + # Data loading code + data_path = args.data_path_source + traindir_source = os.path.join(args.data_path_source, args.src) + traindir_target = os.path.join(args.data_path_source_t, args.src_t) + valdir = os.path.join(args.data_path_target, args.tar) + if not os.path.isdir(traindir_source): + # split_train_test_images(args.data_path) + raise ValueError('Null path of source train data!!!') + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) + loader = torch.utils.data.DataLoader(images, batch_size=64, num_workers=8, + shuffle=False) # shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + # 随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + # split_by_contexts_dict = defaultdict(list) + # for i in range(len(imagenet_classes)): + # split_by_contexts_dict[i]=[template.format(imagenet_classes[i]) for template in templates] + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + # split_by_contexts_dict[train_images.targets[i]]=[template.format(train_images.classes[train_images.targets[i]]) for template in templates] + imgs = [] + targets = [] + # contexts=[] + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + targets = targets + [label for i in range(k_shot)] + # contexts=contexts+[split_by_context_dict[label] for i in range(k_shot)] + + train_images.imgs = imgs + train_images.targets = targets + train_images.samples = imgs + # train_images.classes= contexts + + train_loader = torch.utils.data.DataLoader(train_images, batch_size=256, num_workers=8, shuffle=False) # 16个样本 + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=256, num_workers=8, shuffle=True)#,drop_last=True) + + return train_loader_shuffle, loader,train_loader diff --git a/data/prepare_data_shot1.py b/data/prepare_data_shot1.py new file mode 100644 index 0000000..8a87252 --- /dev/null +++ b/data/prepare_data_shot1.py @@ -0,0 +1,233 @@ +import os +import torch +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision +import torchvision.transforms as transforms +from collections import defaultdict +import random + + +def generate_dataloader(args, preprocess): + templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", + ] + imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + + random.seed(1) + k_shot = 1 + # Data loading code + data_path = args.data_path_source + traindir_source = os.path.join(args.data_path_source, args.src) + traindir_target = os.path.join(args.data_path_source_t, args.src_t) + valdir = os.path.join(args.data_path_target, args.tar) + if not os.path.isdir(traindir_source): + # split_train_test_images(args.data_path) + raise ValueError('Null path of source train data!!!') + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) + loader = torch.utils.data.DataLoader(images, batch_size=64, num_workers=8, + shuffle=False) # shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + # 随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + # split_by_contexts_dict = defaultdict(list) + # for i in range(len(imagenet_classes)): + # split_by_contexts_dict[i]=[template.format(imagenet_classes[i]) for template in templates] + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + # split_by_contexts_dict[train_images.targets[i]]=[template.format(train_images.classes[train_images.targets[i]]) for template in templates] + imgs = [] + targets = [] + # contexts=[] + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + targets = targets + [label for i in range(k_shot)] + # contexts=contexts+[split_by_context_dict[label] for i in range(k_shot)] + + train_images.imgs = imgs + train_images.targets = targets + train_images.samples = imgs + # train_images.classes= contexts + + # train_loader = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=False) # 16个样本 + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=256, num_workers=8, shuffle=True)#,drop_last=True) + + return train_loader_shuffle, loader diff --git a/data/prepare_data_shot2.py b/data/prepare_data_shot2.py new file mode 100644 index 0000000..b8a7710 --- /dev/null +++ b/data/prepare_data_shot2.py @@ -0,0 +1,233 @@ +import os +import torch +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision +import torchvision.transforms as transforms +from collections import defaultdict +import random + + +def generate_dataloader(args, preprocess): + templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", + ] + imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + + random.seed(1) + k_shot = 2 + # Data loading code + data_path = args.data_path_source + traindir_source = os.path.join(args.data_path_source, args.src) + traindir_target = os.path.join(args.data_path_source_t, args.src_t) + valdir = os.path.join(args.data_path_target, args.tar) + if not os.path.isdir(traindir_source): + # split_train_test_images(args.data_path) + raise ValueError('Null path of source train data!!!') + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) + loader = torch.utils.data.DataLoader(images, batch_size=64, num_workers=0, + shuffle=False) # shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + # 随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + # split_by_contexts_dict = defaultdict(list) + # for i in range(len(imagenet_classes)): + # split_by_contexts_dict[i]=[template.format(imagenet_classes[i]) for template in templates] + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + # split_by_contexts_dict[train_images.targets[i]]=[template.format(train_images.classes[train_images.targets[i]]) for template in templates] + imgs = [] + targets = [] + # contexts=[] + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + targets = targets + [label for i in range(k_shot)] + # contexts=contexts+[split_by_context_dict[label] for i in range(k_shot)] + + train_images.imgs = imgs + train_images.targets = targets + train_images.samples = imgs + # train_images.classes= contexts + + # train_loader = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=False) # 16个样本 + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=256, num_workers=0, shuffle=True)#,drop_last=True) + + return train_loader_shuffle, loader diff --git a/data/prepare_data_shot4.py b/data/prepare_data_shot4.py new file mode 100644 index 0000000..ace2c71 --- /dev/null +++ b/data/prepare_data_shot4.py @@ -0,0 +1,233 @@ +import os +import torch +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision +import torchvision.transforms as transforms +from collections import defaultdict +import random + + +def generate_dataloader(args, preprocess): + templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", + ] + imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + + random.seed(1) + k_shot = 4 + # Data loading code + data_path = args.data_path_source + traindir_source = os.path.join(args.data_path_source, args.src) + traindir_target = os.path.join(args.data_path_source_t, args.src_t) + valdir = os.path.join(args.data_path_target, args.tar) + if not os.path.isdir(traindir_source): + # split_train_test_images(args.data_path) + raise ValueError('Null path of source train data!!!') + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) + loader = torch.utils.data.DataLoader(images, batch_size=64, num_workers=0, + shuffle=False) # shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + # 随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + # split_by_contexts_dict = defaultdict(list) + # for i in range(len(imagenet_classes)): + # split_by_contexts_dict[i]=[template.format(imagenet_classes[i]) for template in templates] + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + # split_by_contexts_dict[train_images.targets[i]]=[template.format(train_images.classes[train_images.targets[i]]) for template in templates] + imgs = [] + targets = [] + # contexts=[] + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + targets = targets + [label for i in range(k_shot)] + # contexts=contexts+[split_by_context_dict[label] for i in range(k_shot)] + + train_images.imgs = imgs + train_images.targets = targets + train_images.samples = imgs + # train_images.classes= contexts + + # train_loader = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=False) # 16个样本 + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=256, num_workers=0, shuffle=True)#,drop_last=True) + + return train_loader_shuffle, loader diff --git a/data/prepare_data_shot8.py b/data/prepare_data_shot8.py new file mode 100644 index 0000000..bf2c95c --- /dev/null +++ b/data/prepare_data_shot8.py @@ -0,0 +1,233 @@ +import os +import torch +import torchvision.transforms as transforms +import torchvision.datasets as datasets +import torchvision +import torchvision.transforms as transforms +from collections import defaultdict +import random + + +def generate_dataloader(args, preprocess): + templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", + ] + imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + + random.seed(1) + k_shot = 8 + # Data loading code + data_path = args.data_path_source + traindir_source = os.path.join(args.data_path_source, args.src) + traindir_target = os.path.join(args.data_path_source_t, args.src_t) + valdir = os.path.join(args.data_path_target, args.tar) + if not os.path.isdir(traindir_source): + # split_train_test_images(args.data_path) + raise ValueError('Null path of source train data!!!') + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) + loader = torch.utils.data.DataLoader(images, batch_size=8, num_workers=8, + shuffle=False) # shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + # 随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + # split_by_contexts_dict = defaultdict(list) + # for i in range(len(imagenet_classes)): + # split_by_contexts_dict[i]=[template.format(imagenet_classes[i]) for template in templates] + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + # split_by_contexts_dict[train_images.targets[i]]=[template.format(train_images.classes[train_images.targets[i]]) for template in templates] + imgs = [] + targets = [] + # contexts=[] + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + targets = targets + [label for i in range(k_shot)] + # contexts=contexts+[split_by_context_dict[label] for i in range(k_shot)] + + train_images.imgs = imgs + train_images.targets = targets + train_images.samples = imgs + # train_images.classes= contexts + + # train_loader = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=False) # 16个样本 + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=8, num_workers=8, shuffle=True)#,drop_last=True) + + return train_loader_shuffle, loader diff --git a/datasets/__init__.py b/datasets/__init__.py new file mode 100644 index 0000000..133982c --- /dev/null +++ b/datasets/__init__.py @@ -0,0 +1,33 @@ +from .oxford_pets import OxfordPets +from .eurosat import EuroSAT +from .ucf101 import UCF101 +from .sun397 import SUN397 +from .caltech101 import Caltech101 +from .dtd import DescribableTextures +from .fgvc import FGVCAircraft +from .food101 import Food101 +from .oxford_flowers import OxfordFlowers +from .stanford_cars import StanfordCars +from .imagenet import ImageNet +from .caltech101_tsne import Caltech101_TSNE + + + +dataset_list = { + "oxford_pets": OxfordPets, + "eurosat": EuroSAT, + "ucf101": UCF101, + "sun397": SUN397, + "caltech101": Caltech101, + "dtd": DescribableTextures, + "fgvc": FGVCAircraft, + "food101": Food101, + "oxford_flowers": OxfordFlowers, + "stanford_cars": StanfordCars, + "caltech101_tsne": Caltech101_TSNE, + "imagenet":ImageNet, + } + + +def build_dataset(dataset, root_path, shots): + return dataset_list[dataset](root_path, shots) \ No newline at end of file diff --git a/datasets/caltech101.py b/datasets/caltech101.py new file mode 100644 index 0000000..c0b6dca --- /dev/null +++ b/datasets/caltech101.py @@ -0,0 +1,24 @@ +import os + +from .utils import Datum, DatasetBase +from .oxford_pets import OxfordPets + + +template = ['a photo of a {}.'] + + +class Caltech101(DatasetBase): + + dataset_dir = 'caltech-101' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, '101_ObjectCategories') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_Caltech101.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + t_sne_test = self.generate_fewshot_dataset(test, num_shots=num_shots) + super().__init__(train_x=train, val=val, test=test,t_sne=t_sne_test) \ No newline at end of file diff --git a/datasets/caltech101_tsne.py b/datasets/caltech101_tsne.py new file mode 100644 index 0000000..787d8c6 --- /dev/null +++ b/datasets/caltech101_tsne.py @@ -0,0 +1,24 @@ +import os + +from .utils import Datum, DatasetBase +from .oxford_pets import OxfordPets + + +template = ['a photo of a {}.'] + + +class Caltech101_TSNE(DatasetBase): + + dataset_dir = 'caltech-101_tsne' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, '101_ObjectCategories') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_Caltech101.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + t_sne_test = self.generate_fewshot_dataset(test, num_shots=num_shots) + super().__init__(train_x=train, val=val, test=test,t_sne=t_sne_test) \ No newline at end of file diff --git a/datasets/dtd.py b/datasets/dtd.py new file mode 100644 index 0000000..052dc53 --- /dev/null +++ b/datasets/dtd.py @@ -0,0 +1,79 @@ +import os +import random + +from .utils import Datum, DatasetBase, listdir_nohidden +from .oxford_pets import OxfordPets + + +template = ['{} texture.'] + + +class DescribableTextures(DatasetBase): + + dataset_dir = 'dtd' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'images') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_DescribableTextures.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + @staticmethod + def read_and_split_data( + image_dir, + p_trn=0.5, + p_val=0.2, + ignored=[], + new_cnames=None + ): + # The data are supposed to be organized into the following structure + # ============= + # images/ + # dog/ + # cat/ + # horse/ + # ============= + categories = listdir_nohidden(image_dir) + categories = [c for c in categories if c not in ignored] + categories.sort() + + p_tst = 1 - p_trn - p_val + print(f'Splitting into {p_trn:.0%} train, {p_val:.0%} val, and {p_tst:.0%} test') + + def _collate(ims, y, c): + items = [] + for im in ims: + item = Datum( + impath=im, + label=y, # is already 0-based + classname=c + ) + items.append(item) + return items + + train, val, test = [], [], [] + for label, category in enumerate(categories): + category_dir = os.path.join(image_dir, category) + images = listdir_nohidden(category_dir) + images = [os.path.join(category_dir, im) for im in images] + random.shuffle(images) + n_total = len(images) + n_train = round(n_total * p_trn) + n_val = round(n_total * p_val) + n_test = n_total - n_train - n_val + assert n_train > 0 and n_val > 0 and n_test > 0 + + if new_cnames is not None and category in new_cnames: + category = new_cnames[category] + + train.extend(_collate(images[:n_train], label, category)) + val.extend(_collate(images[n_train:n_train+n_val], label, category)) + test.extend(_collate(images[n_train+n_val:], label, category)) + + return train, val, test diff --git a/datasets/eurosat.py b/datasets/eurosat.py new file mode 100644 index 0000000..ebc69ad --- /dev/null +++ b/datasets/eurosat.py @@ -0,0 +1,50 @@ +import os + +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader +from .oxford_pets import OxfordPets + + +template = ['a centered satellite photo of {}.'] + + +NEW_CNAMES = { + 'AnnualCrop': 'Annual Crop Land', + 'Forest': 'Forest', + 'HerbaceousVegetation': 'Herbaceous Vegetation Land', + 'Highway': 'Highway or Road', + 'Industrial': 'Industrial Buildings', + 'Pasture': 'Pasture Land', + 'PermanentCrop': 'Permanent Crop Land', + 'Residential': 'Residential Buildings', + 'River': 'River', + 'SeaLake': 'Sea or Lake' +} + + +class EuroSAT(DatasetBase): + + dataset_dir = 'eurosat' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, '2750') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_EuroSAT.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + super().__init__(train_x=train, val=val, test=test) + + def update_classname(self, dataset_old): + dataset_new = [] + for item_old in dataset_old: + cname_old = item_old.classname + cname_new = NEW_CLASSNAMES[cname_old] + item_new = Datum( + impath=item_old.impath, + label=item_old.label, + classname=cname_new + ) + dataset_new.append(item_new) + return dataset_new diff --git a/datasets/fgvc.py b/datasets/fgvc.py new file mode 100644 index 0000000..ad22222 --- /dev/null +++ b/datasets/fgvc.py @@ -0,0 +1,54 @@ +import os + +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader + + +template = ['a photo of a {}, a type of aircraft.'] + + +class FGVCAircraft(DatasetBase): + + dataset_dir = 'fgvc_aircraft' + + def __init__(self, root, num_shots): + + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'images') + + self.template = template + + classnames = [] + with open(os.path.join(self.dataset_dir, 'variants.txt'), 'r') as f: + lines = f.readlines() + for line in lines: + classnames.append(line.strip()) + cname2lab = {c: i for i, c in enumerate(classnames)} + + train = self.read_data(cname2lab, 'images_variant_train.txt') + val = self.read_data(cname2lab, 'images_variant_val.txt') + test = self.read_data(cname2lab, 'images_variant_test.txt') + + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + def read_data(self, cname2lab, split_file): + filepath = os.path.join(self.dataset_dir, split_file) + items = [] + + with open(filepath, 'r') as f: + lines = f.readlines() + for line in lines: + line = line.strip().split(' ') + imname = line[0] + '.jpg' + classname = ' '.join(line[1:]) + impath = os.path.join(self.image_dir, imname) + label = cname2lab[classname] + item = Datum( + impath=impath, + label=label, + classname=classname + ) + items.append(item) + + return items \ No newline at end of file diff --git a/datasets/food101.py b/datasets/food101.py new file mode 100644 index 0000000..7d0fa5a --- /dev/null +++ b/datasets/food101.py @@ -0,0 +1,24 @@ +import os + +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader +from .oxford_pets import OxfordPets + + +template = ['a photo of {}, a type of food.'] + + +class Food101(DatasetBase): + + dataset_dir = 'food-101' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'images') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_Food101.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) \ No newline at end of file diff --git a/datasets/imagenet.py b/datasets/imagenet.py new file mode 100644 index 0000000..426baed --- /dev/null +++ b/datasets/imagenet.py @@ -0,0 +1,221 @@ +import os +import math +import random +from collections import defaultdict + +import torch +import torchvision +import torchvision.transforms as transforms + + +imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + +imagenet_templates = ["itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}."] + + +class ImageNet(): + + dataset_dir = 'imagenet' + + def __init__(self, root, num_shots, preprocess): + + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'images') + + train_preprocess = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + test_preprocess = preprocess + + self.train = torchvision.datasets.ImageNet(self.image_dir, split='train', transform=train_preprocess) + self.val = torchvision.datasets.ImageNet(self.image_dir, split='val', transform=test_preprocess) + self.test = torchvision.datasets.ImageNet(self.image_dir, split='val', transform=test_preprocess) + + self.template = imagenet_templates + self.classnames = imagenet_classes + + split_by_label_dict = defaultdict(list) + for i in range(len(self.train.imgs)): + split_by_label_dict[self.train.targets[i]].append(self.train.imgs[i]) + imgs = [] + targets = [] + + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, num_shots) + targets = targets + [label for i in range(num_shots)] + self.train.imgs = imgs + self.train.targets = targets + self.train.samples = imgs \ No newline at end of file diff --git a/datasets/imagenet_sketch.py b/datasets/imagenet_sketch.py new file mode 100644 index 0000000..67980fc --- /dev/null +++ b/datasets/imagenet_sketch.py @@ -0,0 +1,76 @@ +import os +import math +import random +from collections import defaultdict +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader + +import torch +import torchvision +import torchvision.transforms as transforms +from collections import OrderedDict + + +def read_classnames(text_file): + """Return a dictionary containing + key-value pairs of : . + """ + classnames = OrderedDict() + with open(text_file, "r") as f: + lines = f.readlines() + for line in lines: + line = line.strip().split(" ") + folder = line[0] + classname = " ".join(line[1:]) + classnames[folder] = classname + return classnames + +def listdir_nohidden(path, sort=False): + """List non-hidden items in a directory. + + Args: + path (str): directory path. + sort (bool): sort the items. + """ + items = [f for f in os.listdir(path) if not f.startswith(".")] + if sort: + items.sort() + return items +class ImageNetSketch(DatasetBase): + """ImageNet-Sketch. + + This dataset is used for testing only. + """ + + dataset_dir ="imagenet_sketch" + + def __init__(self, data_dir): + root = data_dir + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'images') + + + text_file = os.path.join(self.dataset_dir, "classnames.txt") + classnames = read_classnames(text_file) + + data = self.read_data(classnames) + + super().__init__(train_x=data, val=data, test=data) + + def read_data(self, classnames): + image_dir = self.image_dir + folders = listdir_nohidden(image_dir, sort=True) + items = [] + + for label, folder in enumerate(folders): + imnames = listdir_nohidden(os.path.join(image_dir, folder)) + classname = classnames[folder] + for imname in imnames: + impath = os.path.join(image_dir, folder, imname) + item = Datum( + impath=impath, + label=label, + classname=classname + ) + items.append(item) + + return items diff --git a/datasets/imagenetv2.py b/datasets/imagenetv2.py new file mode 100644 index 0000000..7d02e2a --- /dev/null +++ b/datasets/imagenetv2.py @@ -0,0 +1,82 @@ +import os +import math +import random +from collections import defaultdict +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader + +import torch +import torchvision +import torchvision.transforms as transforms +from collections import OrderedDict + + + +def read_classnames(text_file): + """Return a dictionary containing + key-value pairs of : . + """ + classnames = OrderedDict() + with open(text_file, "r") as f: + lines = f.readlines() + for line in lines: + line = line.strip().split(" ") + folder = line[0] + classname = " ".join(line[1:]) + classnames[folder] = classname + return classnames + +def listdir_nohidden(path, sort=False): + """List non-hidden items in a directory. + + Args: + path (str): directory path. + sort (bool): sort the items. + """ + items = [f for f in os.listdir(path) if not f.startswith(".")] + if sort: + items.sort() + return items +class ImageNetV2(DatasetBase): + """ImageNetV2. + + This dataset is used for testing only. + """ + + dataset_dir ="imagenetv2" + + def __init__(self, root): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'imagenetv2') + + + text_file = os.path.join(self.dataset_dir, "classnames.txt") + + classnames = read_classnames(text_file) + + data = self.read_data(classnames) + + super().__init__(train_x=data, val=data, test=data) + def read_data(self, classnames): + image_dir = self.image_dir + folders = list(classnames.keys()) + items = [] + + for label in range(1000): + class_dir = os.path.join(image_dir, str(label)) + imnames = listdir_nohidden(class_dir) + folder = folders[label] + classname = classnames[folder] + for imname in imnames: + impath = os.path.join(class_dir, imname) + # item = {"impath": impath, "label": label, "classname": classname} + item = Datum( + impath=impath, + label=label, + classname=classname + ) + items.append(item) + + return items + + + diff --git a/datasets/oxford_flowers.py b/datasets/oxford_flowers.py new file mode 100644 index 0000000..525fc5a --- /dev/null +++ b/datasets/oxford_flowers.py @@ -0,0 +1,67 @@ +import os +import random +from scipy.io import loadmat +from collections import defaultdict + +from .oxford_pets import OxfordPets +from .utils import Datum, DatasetBase, read_json + + +template = ['a photo of a {}, a type of flower.'] + + +class OxfordFlowers(DatasetBase): + + dataset_dir = 'oxford_flowers' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'jpg') + self.label_file = os.path.join(self.dataset_dir, 'imagelabels.mat') + self.lab2cname_file = os.path.join(self.dataset_dir, 'cat_to_name.json') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_OxfordFlowers.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + def read_data(self): + tracker = defaultdict(list) + label_file = loadmat(self.label_file)['labels'][0] + for i, label in enumerate(label_file): + imname = f'image_{str(i + 1).zfill(5)}.jpg' + impath = os.path.join(self.image_dir, imname) + label = int(label) + tracker[label].append(impath) + + print('Splitting data into 50% train, 20% val, and 30% test') + + def _collate(ims, y, c): + items = [] + for im in ims: + item = Datum( + impath=im, + label=y-1, # convert to 0-based label + classname=c + ) + items.append(item) + return items + + lab2cname = read_json(self.lab2cname_file) + train, val, test = [], [], [] + for label, impaths in tracker.items(): + random.shuffle(impaths) + n_total = len(impaths) + n_train = round(n_total * 0.5) + n_val = round(n_total * 0.2) + n_test = n_total - n_train - n_val + assert n_train > 0 and n_val > 0 and n_test > 0 + cname = lab2cname[str(label)] + train.extend(_collate(impaths[:n_train], label, cname)) + val.extend(_collate(impaths[n_train:n_train+n_val], label, cname)) + test.extend(_collate(impaths[n_train+n_val:], label, cname)) + + return train, val, test \ No newline at end of file diff --git a/datasets/oxford_pets.py b/datasets/oxford_pets.py new file mode 100644 index 0000000..fe0b13b --- /dev/null +++ b/datasets/oxford_pets.py @@ -0,0 +1,125 @@ +import os +import math +import random +from collections import defaultdict + +import torchvision.transforms as transforms + +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader + + +template = ['a photo of a {}, a type of pet.'] + + +class OxfordPets(DatasetBase): + + dataset_dir = 'oxford_pets' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'images') + self.anno_dir = os.path.join(self.dataset_dir, 'annotations') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_OxfordPets.json') + + self.template = template + + train, val, test = self.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + def read_data(self, split_file): + filepath = os.path.join(self.anno_dir, split_file) + items = [] + + with open(filepath, 'r') as f: + lines = f.readlines() + for line in lines: + line = line.strip() + imname, label, species, _ = line.split(' ') + breed = imname.split('_')[:-1] + breed = '_'.join(breed) + breed = breed.lower() + imname += '.jpg' + impath = os.path.join(self.image_dir, imname) + label = int(label) - 1 # convert to 0-based index + item = Datum( + impath=impath, + label=label, + classname=breed + ) + items.append(item) + + return items + + @staticmethod + def split_trainval(trainval, p_val=0.2): + p_trn = 1 - p_val + print(f'Splitting trainval into {p_trn:.0%} train and {p_val:.0%} val') + tracker = defaultdict(list) + for idx, item in enumerate(trainval): + label = item.label + tracker[label].append(idx) + + train, val = [], [] + for label, idxs in tracker.items(): + n_val = round(len(idxs) * p_val) + assert n_val > 0 + random.shuffle(idxs) + for n, idx in enumerate(idxs): + item = trainval[idx] + if n < n_val: + val.append(item) + else: + train.append(item) + + return train, val + + @staticmethod + def save_split(train, val, test, filepath, path_prefix): + def _extract(items): + out = [] + for item in items: + impath = item.impath + label = item.label + classname = item.classname + impath = impath.replace(path_prefix, '') + if impath.startswith('/'): + impath = impath[1:] + out.append((impath, label, classname)) + return out + + train = _extract(train) + val = _extract(val) + test = _extract(test) + + split = { + 'train': train, + 'val': val, + 'test': test + } + + write_json(split, filepath) + print(f'Saved split to {filepath}') + + @staticmethod + def read_split(filepath, path_prefix): + def _convert(items): + out = [] + for impath, label, classname in items: + impath = os.path.join(path_prefix, impath) + item = Datum( + impath=impath, + label=int(label), + classname=classname + ) + out.append(item) + return out + + print(f'Reading split from {filepath}') + split = read_json(filepath) + train = _convert(split['train']) + val = _convert(split['val']) + test = _convert(split['test']) + + return train, val, test \ No newline at end of file diff --git a/datasets/stanford_cars.py b/datasets/stanford_cars.py new file mode 100644 index 0000000..a586d70 --- /dev/null +++ b/datasets/stanford_cars.py @@ -0,0 +1,48 @@ +import os +from scipy.io import loadmat + +from .oxford_pets import OxfordPets +from .utils import Datum, DatasetBase + + +template = ['a photo of a {}.'] + + +class StanfordCars(DatasetBase): + + dataset_dir = 'stanford_cars' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_StanfordCars.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.dataset_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + def read_data(self, image_dir, anno_file, meta_file): + anno_file = loadmat(anno_file)['annotations'][0] + meta_file = loadmat(meta_file)['class_names'][0] + items = [] + + for i in range(len(anno_file)): + imname = anno_file[i]['fname'][0] + impath = os.path.join(self.dataset_dir, image_dir, imname) + label = anno_file[i]['class'][0, 0] + label = int(label) - 1 # convert to 0-based index + classname = meta_file[label][0] + names = classname.split(' ') + year = names.pop(-1) + names.insert(0, year) + classname = ' '.join(names) + item = Datum( + impath=impath, + label=label, + classname=classname + ) + items.append(item) + + return items \ No newline at end of file diff --git a/datasets/sun397.py b/datasets/sun397.py new file mode 100644 index 0000000..71b8082 --- /dev/null +++ b/datasets/sun397.py @@ -0,0 +1,50 @@ +import os + +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader + +from .oxford_pets import OxfordPets + + +template = ['a photo of a {}.'] + + +class SUN397(DatasetBase): + + dataset_dir = 'sun397' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'SUN397') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_SUN397.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + def read_data(self, cname2lab, text_file): + text_file = os.path.join(self.dataset_dir, text_file) + items = [] + + with open(text_file, 'r') as f: + lines = f.readlines() + for line in lines: + imname = line.strip()[1:] # remove / + classname = os.path.dirname(imname) + label = cname2lab[classname] + impath = os.path.join(self.image_dir, imname) + + names = classname.split('/')[1:] # remove 1st letter + names = names[::-1] # put words like indoor/outdoor at first + classname = ' '.join(names) + + item = Datum( + impath=impath, + label=label, + classname=classname + ) + items.append(item) + + return items diff --git a/datasets/ucf101.py b/datasets/ucf101.py new file mode 100644 index 0000000..9ba7d58 --- /dev/null +++ b/datasets/ucf101.py @@ -0,0 +1,51 @@ +import os + +from .utils import Datum, DatasetBase, read_json, write_json, build_data_loader + +from .oxford_pets import OxfordPets + + +template = ['a photo of a person doing {}.'] + + +class UCF101(DatasetBase): + + dataset_dir = 'ucf101' + + def __init__(self, root, num_shots): + self.dataset_dir = os.path.join(root, self.dataset_dir) + self.image_dir = os.path.join(self.dataset_dir, 'UCF-101-midframes') + self.split_path = os.path.join(self.dataset_dir, 'split_zhou_UCF101.json') + + self.template = template + + train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) + train = self.generate_fewshot_dataset(train, num_shots=num_shots) + + super().__init__(train_x=train, val=val, test=test) + + def read_data(self, cname2lab, text_file): + text_file = os.path.join(self.dataset_dir, text_file) + items = [] + + with open(text_file, 'r') as f: + lines = f.readlines() + for line in lines: + line = line.strip().split(' ')[0] # trainlist: filename, label + action, filename = line.split('/') + label = cname2lab[action] + + elements = re.findall('[A-Z][^A-Z]*', action) + renamed_action = '_'.join(elements) + + filename = filename.replace('.avi', '.jpg') + impath = os.path.join(self.image_dir, renamed_action, filename) + + item = Datum( + impath=impath, + label=label, + classname=renamed_action + ) + items.append(item) + + return items diff --git a/datasets/utils.py b/datasets/utils.py new file mode 100644 index 0000000..b8eb312 --- /dev/null +++ b/datasets/utils.py @@ -0,0 +1,377 @@ +import os +import random +import os.path as osp +import tarfile +import zipfile +from collections import defaultdict +import gdown +import json +import torch +from torch.utils.data import Dataset as TorchDataset +import torchvision.transforms as T +from PIL import Image + + +def read_json(fpath): + """Read json file from a path.""" + with open(fpath, 'r') as f: + obj = json.load(f) + return obj + + +def write_json(obj, fpath): + """Writes to a json file.""" + if not osp.exists(osp.dirname(fpath)): + os.makedirs(osp.dirname(fpath)) + with open(fpath, 'w') as f: + json.dump(obj, f, indent=4, separators=(',', ': ')) + + +def read_image(path): + """Read image from path using ``PIL.Image``. + + Args: + path (str): path to an image. + + Returns: + PIL image + """ + if not osp.exists(path): + raise IOError('No file exists at {}'.format(path)) + + while True: + try: + img = Image.open(path).convert('RGB') + return img + except IOError: + print( + 'Cannot read image from {}, ' + 'probably due to heavy IO. Will re-try'.format(path) + ) + + +def listdir_nohidden(path, sort=False): + """List non-hidden items in a directory. + + Args: + path (str): directory path. + sort (bool): sort the items. + """ + items = [f for f in os.listdir(path) if not f.startswith('.') and 'sh' not in f] + if sort: + items.sort() + return items + + +class Datum: + """Data instance which defines the basic attributes. + + Args: + impath (str): image path. + label (int): class label. + domain (int): domain label. + classname (str): class name. + """ + + def __init__(self, impath='', label=0, domain=-1, classname=''): + assert isinstance(impath, str) + assert isinstance(label, int) + assert isinstance(domain, int) + assert isinstance(classname, str) + + self._impath = impath + self._label = label + self._domain = domain + self._classname = classname + + @property + def impath(self): + return self._impath + + @property + def label(self): + return self._label + + @property + def domain(self): + return self._domain + + @property + def classname(self): + return self._classname + + +class DatasetBase: + """A unified dataset class for + 1) domain adaptation + 2) domain generalization + 3) semi-supervised learning + """ + dataset_dir = '' # the directory where the dataset is stored + domains = [] # string names of all domains + + def __init__(self, train_x=None, train_u=None, val=None, test=None,t_sne=None): + self._train_x = train_x # labeled training data + self._train_u = train_u # unlabeled training data (optional) + self._val = val # validation data (optional) + self._test = test # test data + self._num_classes = self.get_num_classes(train_x) + self._lab2cname, self._classnames = self.get_lab2cname(train_x) + + @property + def train_x(self): + return self._train_x + + @property + def train_u(self): + return self._train_u + + @property + def val(self): + return self._val + + @property + def test(self): + return self._test + + @property + def lab2cname(self): + return self._lab2cname + + @property + def classnames(self): + return self._classnames + + @property + def num_classes(self): + return self._num_classes + + def get_num_classes(self, data_source): + """Count number of classes. + + Args: + data_source (list): a list of Datum objects. + """ + label_set = set() + for item in data_source: + label_set.add(item.label) + return max(label_set) + 1 + + def get_lab2cname(self, data_source): + """Get a label-to-classname mapping (dict). + + Args: + data_source (list): a list of Datum objects. + """ + container = set() + for item in data_source: + container.add((item.label, item.classname)) + mapping = {label: classname for label, classname in container} + labels = list(mapping.keys()) + labels.sort() + classnames = [mapping[label] for label in labels] + return mapping, classnames + + def check_input_domains(self, source_domains, target_domains): + self.is_input_domain_valid(source_domains) + self.is_input_domain_valid(target_domains) + + def is_input_domain_valid(self, input_domains): + for domain in input_domains: + if domain not in self.domains: + raise ValueError( + 'Input domain must belong to {}, ' + 'but got [{}]'.format(self.domains, domain) + ) + + def download_data(self, url, dst, from_gdrive=True): + if not osp.exists(osp.dirname(dst)): + os.makedirs(osp.dirname(dst)) + + if from_gdrive: + gdown.download(url, dst, quiet=False) + else: + raise NotImplementedError + + print('Extracting file ...') + + try: + tar = tarfile.open(dst) + tar.extractall(path=osp.dirname(dst)) + tar.close() + except: + zip_ref = zipfile.ZipFile(dst, 'r') + zip_ref.extractall(osp.dirname(dst)) + zip_ref.close() + + print('File extracted to {}'.format(osp.dirname(dst))) + + def generate_fewshot_dataset( + self, *data_sources, num_shots=-1, repeat=True + ): + """Generate a few-shot dataset (typically for the training set). + + This function is useful when one wants to evaluate a model + in a few-shot learning setting where each class only contains + a few number of images. + + Args: + data_sources: each individual is a list containing Datum objects. + num_shots (int): number of instances per class to sample. + repeat (bool): repeat images if needed. + """ + if num_shots < 1: + if len(data_sources) == 1: + return data_sources[0] + return data_sources + + print(f'Creating a {num_shots}-shot dataset') + + output = [] + + for data_source in data_sources: + tracker = self.split_dataset_by_label(data_source) + dataset = [] + + for label, items in tracker.items(): + if len(items) >= num_shots: + sampled_items = random.sample(items, num_shots) + else: + if repeat: + sampled_items = random.choices(items, k=num_shots) + else: + sampled_items = items + dataset.extend(sampled_items) + + output.append(dataset) + + if len(output) == 1: + return output[0] + + return output + + def split_dataset_by_label(self, data_source): + """Split a dataset, i.e. a list of Datum objects, + into class-specific groups stored in a dictionary. + + Args: + data_source (list): a list of Datum objects. + """ + output = defaultdict(list) + + for item in data_source: + output[item.label].append(item) + + return output + + def split_dataset_by_domain(self, data_source): + """Split a dataset, i.e. a list of Datum objects, + into domain-specific groups stored in a dictionary. + + Args: + data_source (list): a list of Datum objects. + """ + output = defaultdict(list) + + for item in data_source: + output[item.domain].append(item) + + return output + + +class DatasetWrapper(TorchDataset): + def __init__(self, data_source, input_size, transform=None, is_train=False, + return_img0=False, k_tfm=1): + self.data_source = data_source + self.transform = transform # accept list (tuple) as input + self.is_train = is_train + # Augmenting an image K>1 times is only allowed during training + self.k_tfm = k_tfm if is_train else 1 + self.return_img0 = return_img0 + + if self.k_tfm > 1 and transform is None: + raise ValueError( + 'Cannot augment the image {} times ' + 'because transform is None'.format(self.k_tfm) + ) + + # Build transform that doesn't apply any data augmentation + interp_mode = T.InterpolationMode.BICUBIC + to_tensor = [] + to_tensor += [T.Resize(input_size, interpolation=interp_mode)] + to_tensor += [T.ToTensor()] + normalize = T.Normalize( + mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) + ) + to_tensor += [normalize] + self.to_tensor = T.Compose(to_tensor) + + def __len__(self): + return len(self.data_source) + + def __getitem__(self, idx): + item = self.data_source[idx] + + output = { + 'label': item.label, + 'domain': item.domain, + 'impath': item.impath + } + + img0 = read_image(item.impath) + + if self.transform is not None: + if isinstance(self.transform, (list, tuple)): + for i, tfm in enumerate(self.transform): + img = self._transform_image(tfm, img0) + keyname = 'img' + if (i + 1) > 1: + keyname += str(i + 1) + output[keyname] = img + else: + img = self._transform_image(self.transform, img0) + output['img'] = img + + if self.return_img0: + output['img0'] = self.to_tensor(img0) + + return output['img'], output['label'], output['impath'] + + def _transform_image(self, tfm, img0): + img_list = [] + + for k in range(self.k_tfm): + img_list.append(tfm(img0)) + + img = img_list + if len(img) == 1: + img = img[0] + + return img + + +def build_data_loader( + data_source=None, + batch_size=64, + input_size=224, + tfm=None, + is_train=True, + shuffle=False, + dataset_wrapper=None +): + + if dataset_wrapper is None: + dataset_wrapper = DatasetWrapper + + # Build data loader + data_loader = torch.utils.data.DataLoader( + dataset_wrapper(data_source, input_size=input_size, transform=tfm, is_train=is_train), + batch_size=batch_size, + num_workers=8, + shuffle=shuffle, + drop_last=False, + pin_memory=(torch.cuda.is_available()) + ) + assert len(data_loader) > 0 + + return data_loader diff --git a/engine/__init__.py b/engine/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/engine/partial_model.py b/engine/partial_model.py new file mode 100644 index 0000000..edcd850 --- /dev/null +++ b/engine/partial_model.py @@ -0,0 +1,424 @@ +import torch +from torch import nn + + +#clip文本编码器前半 +class TransformerEncoder(nn.Module): + def __init__(self, dtype, + token_embedding, + positional_embedding=None, + transformer_encoder=None, + ln_final=None, + text_projection=None): + super().__init__() + self.dtype = dtype + self.token_embedding = token_embedding + self.positional_embedding = positional_embedding + self.transformer_encoder = transformer_encoder + self.ln_final = ln_final + self.text_projection = text_projection + if self.positional_embedding is None: + assert self.transformer_encoder is None + if self.transformer_encoder is None: + assert self.ln_final is None + if self.ln_final is None: + assert self.text_projection is None + + def forward(self, text): + x = self.token_embedding(text).type(self.dtype) # (bs, seq_len, dim) + eot_indices = text.argmax(dim=-1) + if self.positional_embedding is not None: + x = x + self.positional_embedding.type(self.dtype) + + if self.transformer_encoder is not None: + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer_encoder(x) + x = x.permute(1, 0, 2) # LND -> NLD + + if self.ln_final is not None: + x = self.ln_final(x).type(self.dtype) + + if self.text_projection is not None: + x = x[torch.arange(x.shape[0]), eot_indices] @ self.text_projection + return x, eot_indices + +#clip文本编码器后半 +class PartialTransformer(nn.Module): + def __init__(self, dtype, + logit_scale, + vocab_size, + positional_embedding=None, + partial_transformer=None, + ln_final=None, + text_projection=None): + super().__init__() + self.dtype = dtype + self.logit_scale = logit_scale + self.vocab_size = vocab_size + self.positional_embedding = positional_embedding + self.partial_transformer = partial_transformer + self.ln_final = ln_final + self.text_projection = text_projection + if self.positional_embedding is not None: + assert self.partial_transformer is not None + assert self.ln_final is not None + assert self.text_projection is not None + elif self.partial_transformer is not None: + assert self.ln_final is not None + assert self.text_projection is not None + elif self.ln_final is not None: + assert self.text_projection is not None + + def forward(self, x, eot_indices): + if self.positional_embedding is not None: + x = x + self.positional_embedding.type(self.dtype) + + if self.partial_transformer is not None: + x = x.permute(1, 0, 2) + x = self.partial_transformer(x) + x = x.permute(1, 0, 2) + + if self.ln_final is not None: + x = self.ln_final(x).type(self.dtype) + x = x[torch.arange(x.shape[0]), eot_indices] @ self.text_projection + return x + +#返回前后两个文本编码器 +def get_text(clip_model, text_layer_idx=0): + # contains feature_extractor (does encode_text() from prompts) and partial_model (need to reverse the dim) + vocab_size = clip_model.vocab_size + token_embedding = clip_model.token_embedding + positional_embedding = clip_model.positional_embedding + transformer = clip_model.transformer + ln_final = clip_model.ln_final + text_projection = clip_model.text_projection + logit_scale = clip_model.logit_scale + dtype = clip_model.dtype + + if text_layer_idx == -1: + # finetune all layers + feature_extractor = TransformerEncoder( + dtype, token_embedding) + partial_model = PartialTransformer( + dtype, logit_scale, vocab_size, + positional_embedding=positional_embedding, + partial_transformer=transformer, + ln_final=ln_final, text_projection=text_projection) + elif text_layer_idx == 0: + # finetune no layers + feature_extractor = TransformerEncoder( + dtype, token_embedding, + positional_embedding=positional_embedding, transformer_encoder=transformer, + ln_final=ln_final, text_projection=text_projection) + partial_model = PartialTransformer(dtype, logit_scale, vocab_size) + else: + # finetune some layers + transformer_encoder = transformer.resblocks[:-text_layer_idx] + partial_transformer = transformer.resblocks[-text_layer_idx:] + feature_extractor = TransformerEncoder( + dtype, token_embedding, + positional_embedding=positional_embedding, + transformer_encoder=transformer_encoder) + partial_model = PartialTransformer( + dtype, logit_scale, vocab_size, + positional_embedding=None, + partial_transformer=partial_transformer, + ln_final=ln_final, text_projection=text_projection) + return feature_extractor, partial_model + +#RN50图像编码器分段 +class PartialResNet(nn.Module): + def __init__(self, conv1=None, + bn1=None, + conv2=None, + bn2=None, + conv3=None, + bn3=None, + layer1=None, + layer2=None, + layer3=None, + layer4=None, + attnpool=None, + mode='feature_extractor'): + super().__init__() + assert mode in ['feature_extractor', 'partial_model'] + self.conv1 = conv1 + self.bn1 = bn1 + self.conv2 = conv2 + self.bn2 = bn2 + self.conv3 = conv3 + self.bn3 = bn3 + self.relu = nn.ReLU(inplace=True) + self.avgpool = nn.AvgPool2d(2) + self.layer1 = layer1 + self.layer2 = layer2 + self.layer3 = layer3 + self.layer4 = layer4 + self.attnpool = attnpool + self.apply_stem = self.conv3 != None + if mode == 'partial_model': + if self.conv1 is not None: + assert self.bn1 is not None + if self.bn1 is not None: + assert self.conv2 is not None + if self.conv2 is not None: + assert self.bn2 is not None + if self.bn2 is not None: + assert self.conv3 is not None + if self.conv3 is not None: + assert self.conv1 is not None # make sure entire stem is included + assert self.bn3 is not None + if self.bn3 is not None: + assert self.layer1 is not None + if self.layer1 is not None: + assert self.layer2 is not None + if self.layer2 is not None: + assert self.layer3 is not None + if self.layer3 is not None: + assert self.layer4 is not None + if self.layer4 is not None: + assert self.attnpool is not None + elif mode == 'feature_extractor': + if self.attnpool is not None: + assert self.layer4 is not None + if self.layer4 is not None: + assert self.layer3 is not None + if self.layer3 is not None: + assert self.layer2 is not None + if self.layer2 is not None: + assert self.layer1 is not None + if self.layer1 is not None: + assert self.bn3 is not None + if self.bn3 is not None: + assert self.conv3 is not None + if self.conv3 is not None: + assert self.bn2 is not None + if self.bn2 is not None: + assert self.conv2 is not None + if self.conv2 is not None: + assert self.bn1 is not None + if self.bn1 is not None: + assert self.conv1 is not None + + def forward(self, x): + if self.apply_stem: + def stem(x): + for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: + x = self.relu(bn(conv(x))) + x = self.avgpool(x) + return x + x = x.type(self.conv1.weight.dtype) + x = stem(x) + if self.layer1 is not None: + x = self.layer1(x) + if self.layer2 is not None: + x = self.layer2(x) + if self.layer3 is not None: + x = self.layer3(x) + if self.layer4 is not None: + x = self.layer4(x) + if self.attnpool is not None: + x = self.attnpool(x) + return x + +#返回前后两个RN50图像编码器 +def get_image_resnet(model, image_layer_idx=0): + # contains feature_extractor and partial_model + # the 3-layer stem + conv1 = model.conv1 + bn1 = model.bn1 + conv2 = model.conv2 + bn2 = model.bn2 + conv3 = model.conv3 + bn3 = model.bn3 + avgpool = model.avgpool + relu = model.relu + + layer1 = model.layer1 + layer2 = model.layer2 + layer3 = model.layer3 + layer4 = model.layer4 + + attnpool = model.attnpool + + if image_layer_idx == -1: + # finetune all layers + feature_extractor = PartialResNet(mode='feature_extractor') + partial_model = PartialResNet(conv1=conv1, + bn1=bn1, + conv2=conv2, + bn2=bn2, + conv3=conv3, + bn3=bn3, + layer1=layer1, + layer2=layer2, + layer3=layer3, + layer4=layer4, + attnpool=attnpool, + mode='partial_model') + elif image_layer_idx == 0: + # finetune no layers + feature_extractor = PartialResNet(conv1=conv1, + bn1=bn1, + conv2=conv2, + bn2=bn2, + conv3=conv3, + bn3=bn3, + layer1=layer1, + layer2=layer2, + layer3=layer3, + layer4=layer4, + attnpool=attnpool, + mode='feature_extractor') + partial_model = PartialResNet(mode='partial_model') + elif image_layer_idx == 1: + # finetune attention pool + feature_extractor = PartialResNet(conv1=conv1, + bn1=bn1, + conv2=conv2, + bn2=bn2, + conv3=conv3, + bn3=bn3, + layer1=layer1, + layer2=layer2, + layer3=layer3, + layer4=layer4, + mode='feature_extractor') + partial_model = PartialResNet(attnpool=attnpool, + mode='partial_model') + elif image_layer_idx == 2: + # finetune attnpool and layer4 + feature_extractor = PartialResNet(conv1=conv1, + bn1=bn1, + conv2=conv2, + bn2=bn2, + conv3=conv3, + bn3=bn3, + layer1=layer1, + layer2=layer2, + layer3=layer3, + mode='feature_extractor') + partial_model = PartialResNet(layer4=layer4, + attnpool=attnpool, + mode='partial_model') + else: + raise ValueError("Invalid layer index") + + return feature_extractor, partial_model + +#vit16图像编码器 +class PartialViT(nn.Module): + def __init__(self, conv1=None, + class_embedding=None, + positional_embedding=None, + ln_pre=None, + transformer_encoder=None, + ln_post=None, + proj=None, + mode='feature_extractor'): + super().__init__() + assert mode in ['feature_extractor', 'partial_model'] + self.conv1 = conv1 + self.class_embedding = class_embedding + self.positional_embedding = positional_embedding + self.ln_pre = ln_pre + self.transformer_encoder = transformer_encoder + self.ln_post = ln_post + self.proj = proj + if mode == 'partial_model': + if self.conv1 is not None: + assert self.ln_pre is not None + if self.ln_pre is not None: + assert self.transformer_encoder is not None + if self.transformer_encoder is not None: + assert self.ln_post is not None + if self.ln_post is not None: + assert self.proj is not None + elif mode == 'feature_extractor': + if self.proj is not None: + assert self.ln_post is not None + if self.ln_post is not None: + assert self.transformer_encoder is not None + if self.transformer_encoder is not None: + assert self.ln_pre is not None + if self.ln_pre is not None: + assert self.conv1 is not None + + def forward(self, x): + if self.conv1 is not None: + x = self.conv1(x) + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + + if self.class_embedding is not None: + x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, + device=x.device), x], + dim=1) # shape = [*, grid ** 2 + 1, width] + + if self.positional_embedding is not None: + x = x + self.positional_embedding.to(x.dtype) + + if self.ln_pre is not None: + x = self.ln_pre(x) + + if self.transformer_encoder is not None: + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer_encoder(x) + x = x.permute(1, 0, 2) # LND -> NLD + + if self.ln_post is not None: + x = self.ln_post(x[:, 0, :]) + + if self.proj is not None: + x = x @ self.proj + + return x + +#返回前后两个vit16图像编码器 +def get_image_vit(model, image_layer_idx=0): + # contains feature_extractor and partial_model + conv1 = model.conv1 + class_embedding = model.class_embedding + positional_embedding = model.positional_embedding + ln_pre = model.ln_pre + transformer = model.transformer + ln_post = model.ln_post + proj = model.proj + + if image_layer_idx == -1: + # finetune all layers + feature_extractor = PartialViT(mode='feature_extractor') + partial_model = PartialViT(conv1=conv1, + class_embedding=class_embedding, + positional_embedding=positional_embedding, + ln_pre=ln_pre, + transformer_encoder=transformer, + ln_post=ln_post, + proj=proj, + mode='partial_model') + elif image_layer_idx == 0: + # finetune no layers + feature_extractor = PartialViT(conv1=conv1, + class_embedding=class_embedding, + positional_embedding=positional_embedding, + ln_pre=ln_pre, + transformer_encoder=transformer, + ln_post=ln_post, + proj=proj, + mode='feature_extractor') + partial_model = PartialViT(mode='partial_model') + else: + # finetune some layers + transformer_encoder = transformer.resblocks[:-image_layer_idx] + partial_transformer = transformer.resblocks[-image_layer_idx:] + feature_extractor = PartialViT(conv1=conv1, + class_embedding=class_embedding, + positional_embedding=positional_embedding, + ln_pre=ln_pre, + transformer_encoder=transformer_encoder, + mode='feature_extractor') + partial_model = PartialViT(transformer_encoder=partial_transformer, + ln_post=ln_post, + proj=proj, + mode='partial_model') + return feature_extractor, partial_model diff --git a/gc-clip_make_pic.py b/gc-clip_make_pic.py new file mode 100644 index 0000000..5cafecd --- /dev/null +++ b/gc-clip_make_pic.py @@ -0,0 +1,605 @@ +import matplotlib +import numpy as np +from matplotlib import pyplot as plt + +# matplotlib画图中中文显示会有问题,需要这两行设置默认字体.没中文可以去掉 +plt.rcParams['font.sans-serif']=['SimHei'] +plt.rcParams['axes.unicode_minus'] = False + +# 设置figure_size尺寸 +# plt.rcParams['figure.figsize'] = (22.0, 22.0) +plt.rcParams['figure.figsize'] = (5.0,5.0) +fig = plt.figure() + +# 设定图表颜色 +fig.set(alpha=0.2) +#fig.suptitle('suptitle', fontsize=24, x=0.6,y=0.9, horizontalalignment='left', va='bottom') + +# 输入数据 +# plt.subplot2grid((4,3),(0,0)) +#Average over 11 datasets + + + +# +# + +# GC_CLIP=[65.67090909,68.98363636,72.51636364,75.58,78.20090909] +# +# # GPT_CLIP=[65.54,68.59,72.23,75.31,77.94] +# +# DA_CLIP=[65.27,68.20,72.01,75.21,77.70] +# +# +# y_tip_adapter=[62.3282,64.6182,66.5327,68.4955,70.3182] +# +# y_tip_adapter_f=[63.2982,65.93913,68.9836,72.1573,75.1346] +# +# y_clip_adapter=[62.6745,65.5527,68.6055,71.3964,74.4436] +# +# y_imagenet_CoOp=[59.5882,62.3236,66.7664,69.8918,73.4251] +# y_clip=[58.9627] +# x=[1,2,4,8,16] +# x_zero=[0] +# # +# # #数据及线属性 +# # #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# # # +# # # +# # # +# # # +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Average over 11 datasets',fontproperties='Times New Roman', fontsize=15,fontweight='bold') +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Average.png", dpi=600) +# # +# # +# # +# +# + +# # 输入数据 +# plt.subplot2grid((4,3),(0,1)) + +# GC_CLIP=[90.3,90.82,92.45,92.77,94.22] +# # GPT_CLIP=[89.73,90.54,92.26,92.57,93.96] +# DA_CLIP=[89.45,90.34,91.89,92.09,93.79] +# +# y_tip_adapter=[87.18,88.44,89.39,89.83,90.18] +# y_tip_adapter_f=[87.9,89.4,90.78,91.1,92.28] +# y_imagenet_CoOp=[87.53,87.93,89.55,90.21,91.83] +# y_clip_adapter=[88.6,89.37,89.98,91.4,92.49] +# +# y_clip=[86.29] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Caltech101',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Caltech101.png", dpi=600) +# +# +# # +# +# # 输入数据 +# plt.subplot2grid((4,3),(0,2)) +# # +# GC_CLIP=[50.73,56.51,62.2,66.76,69.71] +# +# # GPT_CLIP=[50.52,56.21,61.92,66.58,69.31] +# +# DA_CLIP=[46.28,52.19,61.76,66.19,68.79] +# +# y_tip_adapter=[46.22,49.47,53.96,58.63,60.93] +# +# y_tip_adapter_f=[48.58,51.64,57.21,61.92,66.23] +# +# y_imagenet_CoOp=[44.39,45.15,53.49,59.97,63.58] +# +# y_clip_adapter=[45.8,51.48,56.86,61,65.96] +# +# y_clip=[42.32] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('DTD',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("DTD.png", dpi=600) +# # +# +# +# +# +# +# # 输入数据 +# # plt.subplot2grid((4,3),(1,0)) +# # #EuroSAT +# GC_CLIP=[58.85,67.38,78.54,84.84,84.90] +# +# # GPT_CLIP=[58.46,66.96,78.34,84.24,84.44] +# +# DA_CLIP=[57.41,66.41,77.95,83.90,84.17] +# +# y_tip_adapter=[54.38,61.68,65.32,67.95,70.54] +# +# y_tip_adapter_f=[51.81,66.32,69.23,77.69,81.96] +# +# y_clip_adapter=[61.4,63.9,73.38,77.93,84.43] +# +# y_imagenet_CoOp=[50.63,61.5,70.18,76.73,83.53] +# +# y_clip=[37.56] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('EuroSAT',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("EuroSAT.png", dpi=600) +# # +# # +# # 输入数据 +# plt.subplot2grid((4,3),(1,1)) +# #FGVCAircraft +# GC_CLIP=[22.92,24.82,28.68,34.88,42.66] +# +# # GPT_CLIP=[22.70,24.62,28.18,34.59,42.30] +# +# DA_CLIP=[22.53,24.48,28.08,34.26,41.34] +# +# y_tip_adapter=[19.05,21.2,22.41,25.59,29.76] +# +# y_tip_adapter_f=[20.06,21.17,24.97,28.13,34.83] +# +# y_imagenet_CoOp=[9.64,18.68,21.87,26.13,31.26] +# +# y_clip_adapter=[17.49,20.1,22.59,26.25,32.1] +# +# y_clip=[17.28] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('FGVCAircraft',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("FGVCAircraft.png", dpi=600) +# # +# # +# # 输入数据 +# plt.subplot2grid((4,3),(1,2)) +# #Flowers102 +# GC_CLIP=[80.88,88.8,93.68,96.20,96.7] +# +# # GPT_CLIP=[80.76,87.80,93.32,95.67,96.66] +# +# DA_CLIP=[80.88,87.78,93.26,95.82,96.80] +# +# y_tip_adapter=[73.12,79.13,83.8,87.98,89.89] +# +# y_tip_adapter_f=[76.7,79.5,89,92.4,93.9] +# +# y_imagenet_CoOp=[68.12,77.51,86.2,91.18,94.51] +# +# y_clip_adapter=[73.49,81.61,87.17,91.72,93.9] +# +# y_clip=[66.14] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter + +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Flowers102',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Flowers102.png", dpi=600) +# +# # 输入数据 +# plt.subplot2grid((4,3),(2,0)) +#Food101 +# GC_CLIP=[78.44,78.67,78.81,78.96,79.72] +# +# # GPT_CLIP=[78.24,78.56,78.67,78.82,79.59] +# +# DA_CLIP=[78.17,78.34,78.50,78.55,79.40] +# +# y_tip_adapter=[77.42,77.52,77.54,77.76,77.83] +# +# y_tip_adapter_f=[77.27,77.44,77.2,78.36,79.05] +# +# y_imagenet_CoOp=[74.32,72.49,73.33,71.82,74.67] +# +# y_clip_adapter=[76.82,77.22,77.92,78.04,78.25] +# +# y_clip=[77.31] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Food101',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Food101.png", dpi=600) +# # +# +# # 输入数据 +# plt.subplot2grid((4,3),(2,1)) +# #imagenet +# GC_CLIP=[62,63.14,63.52,65.02,66.46] +# # GPT_CLIP=[61.82,62.83,63.27,64.72,66.25] +# DA_CLIP=[61.41,61.83,62.91,64.54,66.09] +# +# y_tip_adapter=[60.7,60.96,60.98,61.45,62.03] +# y_tip_adapter_f=[61.32,61.69,62.52,64,65.51] +# y_clip_adapter=[61.2,61.52,61.84,62.68,63.59] +# y_imagenet_CoOp=[57.15,57.81,59.99,61.56,62.95] +# y_clip=[60.33] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('ImageNet',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# #plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# +# plt.savefig("ImageNet.png", dpi=600) +# +# +# +# # 输入数据 +# plt.subplot2grid((4,3),(2,2)) +# #OxfordPets +# GC_CLIP=[86.1,87.94,88.74,89.25,90.13] +# +# # GPT_CLIP=[85.94,86.79,88.63,89.01,89.92] +# +# DA_CLIP=[85.91,86.75,88.50,88.96,89.86] +# +# y_tip_adapter=[86.1,87.03,86.45,87.03,88.14] +# +# y_tip_adapter_f=[86.44,86.44,87,88.11,89.13] +# y_imagenet_CoOp=[85.89,82.64,86.7,85.32,87.01] +# y_clip_adapter=[85.99,86.73,87.46,87.65,87.84] +# y_clip=[85.77] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('OxfordPets',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# +# plt.savefig("OxfordPets.png", dpi=600) + + + + +# # 输入数据 +# plt.subplot2grid((4,3),(3,0)) +# #StanfordCars +# GC_CLIP=[60.17,62.57,66.92,73.92,80] +# +# # GPT_CLIP=[60.13,62.46,66.73,73.81,79.72] +# +# DA_CLIP=[59.77,62.12,66.30,73.35,79.54] +# +# y_tip_adapter=[57.54,57.93,61.45,62.93,66.77] +# +# y_tip_adapter_f=[58.42,61.06,64.54,69.32,75.08] +# +# y_imagenet_CoOp=[55.59,58.28,62.62,68.43,73.3659] +# +# y_clip_adapter=[55.13,58.74,62.45,67.89,74.01] +# +# y_clip=[55.61] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# # +# # 数据及线属性 +# # cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('StanfordCars',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# #plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("StanfordCars.png", dpi=600) + + + + +# # 输入数据 +# plt.subplot2grid((4,3),(3,1)) +# #SUN397 +# GC_CLIP=[64.1,66.34,69.24,70.78,73.21] +# +# # GPT_CLIP=[63.91,66.23,68.52,70.59,72.98] +# +# DA_CLIP=[63.42,65.24,68.13,70.10,72.69] +# +# y_tip_adapter=[61.3,62.7,64.1,65.62,66.85] +# +# y_tip_adapter_f=[62.4,63.22,65.75,68.28,71.27] +# y_imagenet_CoOp=[60.29,59.48,63.47,65.52,69.26] +# +# y_clip_adapter=[61.3,63.29,65.96,67.5,69.55] +# +# y_clip=[58.52] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# # plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +# plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +# plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +# plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +# plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +# plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +# plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('SUN397',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("SUN397.png", dpi=600) +# +# +# +# +# # 输入数据 +# plt.subplot2grid((4,3),(3,2)) +# #UCF101 +GC_CLIP=[67.86,71.73,75,78.2,82.5] + +# GPT_CLIP=[67.60,71.46,74.72,77.86,82.26] + +DA_CLIP=[67.46,71.27,74.49,77.77,82.08] + +y_tip_adapter=[62.6,64.74,66.46,68.68,70.58] + +y_tip_adapter_f=[65.38,67.45,71.17,74.42,77.24] + +y_imagenet_CoOp=[61.92,64.09,67.03,71.94,75.71] + +y_clip_adapter=[62.2,67.12,69.05,73.3,76.76] + +y_clip=[61.46] +x=[1,2,4,8,16] +x_zero=[0] + +# 数据及线属性 +# cacfc +plt.plot(x, GC_CLIP, color='r', linestyle='-', marker='*', linewidth=1, label='GC-CLIP') +# plt.plot(x, GPT_CLIP, color='#4169E1', linestyle='-', marker='*', linewidth=1, label='GPT-CLIP') +plt.plot(x, DA_CLIP, color='g', linestyle='-', marker='*', linewidth=1, label='DA-CLIP') +plt.plot(x, y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter') +plt.plot(x, y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1, label='Tip-Adapter-F') +plt.plot(x, y_clip_adapter, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='CLIP-Adapter') +plt.plot(x, y_imagenet_CoOp, color='hotpink', linestyle='-', marker='*', linewidth=1, label='CoOp') +plt.plot(x_zero, y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1, label='Zero-shot CLIP') +#clip_adapter + +plt.grid(linestyle="--") +# 修改坐标轴字体及大小 +plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +plt.xticks(fontproperties='Times New Roman', size=14) +#标题设置 +plt.title('UCF101',fontproperties='Times New Roman', fontsize=15) +plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# 添加标签 +plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), + ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') + +plt.savefig("UCF101.png", dpi=600) +# plt.show() diff --git a/gpt_file/caltech_prompt.json b/gpt_file/caltech_prompt.json new file mode 100644 index 0000000..1990ab4 --- /dev/null +++ b/gpt_file/caltech_prompt.json @@ -0,0 +1,5202 @@ +{ + "face": [ + "A face looks like a collection of features including eyes, a nose, a mouth, and ears on a head.", + "A face typically includes two eyes, a nose, and a mouth.", + "A face looks like a roundish oval shape with two eyes, a nose, and a mouth.", + "A face typically has two eyes, a nose, and a mouth.", + "\nA face looks like a roundish oval shape with two eyes, a nose, and a mouth.", + "A face is an oval-shaped surface with a nose, mouth, and eyes.", + "\nA face is a human face, with eyes, nose, and mouth.", + "A face is a flat, two-dimensional surface with features on it.", + "\nMost faces are round with two eyes above a nose and a mouth.", + "A face often has two eyes, a nose, and a mouth.", + "Faces are usually distinguished by certain features, such as the eyes, eyebrows, nose, and mouth.", + "There are a few ways to identify a face.", + "There are many ways to identify a face.", + "There are a few ways to identify a face.", + "Some ways to identify a face are by the person's features, such as their hair, eyes, nose, and mouth.", + "The face can be identified by its unique features, such as the eyes, nose, and mouth.", + "Some features that you can use to identify a face are the eyes, nose, eyebrows, and mouth.", + "There are a few ways to identify a face, such as the shape of the face, the features on the face, and the unique facial patterns.", + "There are a few different ways that you can identify a face.", + "There are many ways to identify a face.", + "There is no definitive answer to this question as everyone's face is unique.", + "There is no definitive answer to this question as faces can vary significantly in appearance.", + "There is no definitive answer to this question as everyone's face is unique.", + "A face looks like a human head with eyes, a nose, and a mouth.", + "A face looks like a human face.", + "A face looks like a round shape with two eyes, a nose, and a mouth.", + "Human faces are unique and there is no one answer to this question.", + "A face looks like a roundish oval with a center point at the top for the eyes, a horizontal center line for the nose, and a curved line for the mouth.", + "There is no one answer to this question as faces come in all shapes and sizes.", + "A human face typically consists of two eyes, a nose, and a mouth.", + "A close up image of a young man with light brown skin and dark brown eyes.", + "The image shows a close-up of a woman's face.", + "The image is of a young woman with long, wavy hair.", + "The image is of a young woman with long, dark hair.", + "In this image, a woman is looking directly at the camera with a neutral expression on her face.", + "This is a close-up image of a human face.", + "The image shows a close-up of a woman's face.", + "The image is of a young woman with long, dark hair.", + "This image is of a young woman with long hair.", + "The image from the internet is of a woman's face.", + "The face of a happy woman.", + "A face is seen looking up at the sky with its mouth open in a scream.", + "A face with a smile.", + "The face of a young woman with short brown hair and blue eyes.", + "Smiling woman with bright eyes.", + "Profile of a pensive young woman.", + "A woman looking at the camera with a smile on her face.", + "A face looking up with a closed mouth and eyes.", + "The face of a young woman with long, dark hair.", + "The face of a young woman with long, brown hair and pale skin." + ], + "leopard": [ + "A leopard has short, reddish fur with black spots.", + "A leopard is a large, carnivorous cat with a short, yellow coat marked with black spots.", + "A leopard is a mammal of the Felidae family and the smallest of the four \"big cats\".", + "A leopard is a large wild cat that is tan or light gold with black spots on its body.", + "A leopard is a large, wild cat.", + "A leopard has a short, yellow-gold to pale coat with black spotting.", + "A leopard is a medium-sized wild cat that is natively found in a wide range of habitats across sub-Saharan Africa and parts of Asia.", + "A leopard is a medium-sized cat that is closely related to the lion, tiger, and jaguar.", + "A leopard is a member of the big cat family that includes lions, tigers, and jaguars.", + "A leopard is a large wild cat that is native to Africa and Asia.", + "A leopard can be identified by its spots and its long tail.", + "Leopards have black spots on a yellow-gold or tawny background and tend to be smaller than other members of the Panthera genus.", + "The easiest way to identify a leopard is by its distinctive rosette patterns.", + "The easiest way to identify a leopard is by its spots.", + "A leopard can be identified by its coat, which is covered in rosettes.", + "A leopard can be identified by its coat, which is covered in spots.", + "A leopard can be identified by its spots.", + "A leopard can be identified by its coat, which is covered in spots.", + "The spots on a leopard's coat are unique to each individual, much like a human's fingerprint.", + "Spot the spots.", + "A leopard is a member of the cat family.", + "A leopard is a large wild cat with a yellow-gold coat and black spots.", + "A leopard has short, spiky fur that is yellow with black spots.", + "A leopard has a yellow to golden fur, with black spots.", + "A leopard looks similar to a jaguar, but is smaller and has more spots.", + "A typical leopard has a tawny yellow or golden coat, with black spots.", + "A leopard is a medium to large sized cat.", + "The leopard has a yellow-gold to light tan coat with black spots.", + "A leopard looks like a large Cat with a long tail and spots.", + "A leopard is a big cat with a tawny coat that has black spots.", + "This image shows a leopard lying on a tree branch in a relaxed position.", + "The image is of a leopard laying on a branch in a tree.", + "The image is of a leopard lying on a branch in a tree.", + "A leopard is a large, carnivorous cat with a spotted coat, inhabiting Africa and parts of Asia.", + "The image shows a leopard in a tree, looking down at the camera.", + "I found an image of a leopard on the internet.", + "The image is of a leopard laying down on a tree branch.", + "This leopard is lounging in a tree in the African jungle.", + "The image is of a leopard lying in the grass.", + "A leopard is a large, carnivorous cat with distinctive spotted fur.", + " This leopard is getting ready to leap onto its prey.", + "A leopard taking a nap in a tree.", + "A leopard lying in the grass.", + "A leopard looks out from a tree in the Serengeti National Park in Tanzania.", + " A leopard looks out from a tree in the Serengeti National Park, Tanzania.", + "A leopard lies in wait for its next prey.", + "A leopard rests in a tree in the African bush.", + "A leopard in the wild.", + "A leopard sunning itself on a rock in the African savanna.", + " A leopard looks out from a rocky ledge." + ], + "motorbike": [ + "A motorcycle typically has two wheels and a frame.", + "A motorbike has two wheels, a seat for the rider, and handlebars for steering.", + "A motorbike typically has two wheels, a seat for the rider, handlebars, and a motor.", + "A motorbike typically has two wheels, a seat, handlebars, and an engine.", + "A motorbike typically has two wheels, a motor, and a seat for the rider.", + "A motorcycle typically has two wheels and a motor that powers the vehicle.", + "A motorbike typically has two wheels, a seat for the rider, handlebars, and a motor.", + "A motorbike typically has two wheels, a seat for the rider, handlebars, and a motor.", + "A motorbike is a two-wheeled vehicle that typically has a small engine and is used for transportation.", + "A typical motorbike has two wheels, a padded seat, handlebars, and a small motor.", + "A motorbike can typically be identified by its two wheels, handlebars, and engine.", + "Motorcycles can be identified by their two wheels, their small size, and their loud engines.", + "A motorbike can be identified by its two wheels, handlebars, and engine.", + "The most common way to identify a motorbike is by its two wheels.", + "The most common way to identify a motorbike is by its two wheels.", + "Some ways you can identify a motorbike are by its smaller size, by its engine being located at the base of the bike instead of in the front, and by its often loud exhaust sound.", + "A motorbike is a two-wheeled vehicle with an engine.", + "A motorbike is typically two-wheeled and has a motor that powers the vehicle.", + "There are a few ways to identify a motorbike.", + "The best way to identify a motorbike is by its size.", + "A motorbike typically has two wheels, a seat for the rider, handlebars, and a motor.", + "A motorbike typically has two wheels, a seat, a handlebar, and a motor.", + "Motorcycles come in many different shapes and sizes, but they typically have two wheels, a seat, handlebars, and a motor.", + "A motorbike looks like a small, two-wheeled vehicle.", + "A motorbike typically looks like a smaller version of a car.", + "A motorbike typically has two wheels and a seat for the rider.", + "A motorcycle typically has two wheels and a seat for the rider.", + "A motorbike can look like many things, but a typical motorbike has two wheels, a seat, and handlebars.", + "A motorcycle typically has two wheels, a seat, handlebars, and a motor.", + "A motorcycle typically has two wheels and is powered by a gasoline engine.", + "The image is of a black motorbike with a large engine.", + "The image shows a motorbike with a blue and white color scheme.", + "This image is of a black and red motorbike.", + "The image is of a red and black motorcycle with two people sitting on it.", + "The image is of a black and red motorcycle with flames on the side.", + "A motorbike is typically a two-wheeled vehicle with an engine in the front and a seated rider behind.", + "A motorbike is a two-wheeled land vehicle that is powered by a motor.", + "A motorbike with two wheels and a seat.", + "An image from the internet of a motorbike shows a person riding a motorcycle on a road.", + "This image is of a blue and white motorcycle parked on a city street.", + "A black and grey motorcycle parked on a asphalt road with a white background.", + "A black and red motorbike leaning on its kickstand in a parking lot.", + "A motorcycle parked on the side of the road.", + "A motorbike parked on the side of the road.", + "It's a Kawasaki Ninja, one of the most popular models of sport bikes.", + "Two people on a motorcycle with the wind in their hair, enjoying the freedom of the open road.", + "Midnight RiderThis motorcycle was built for speed and agility.", + "A black and red motorbike parked on a street.", + "This is a motorbike.", + "A motorbike on a road." + ], + "accordion": [ + "An accordion is a musical instrument that has a number of reeds or pipes that are played by pressing buttons or keys.", + "It is a type of box-shaped musical instrument played by pressing the buttons on the side.", + "A accordion is a type of portable folding instrument.", + "A accordion looks like a small, rectangular box with a handle on the top and either one or two compartments inside.", + "A accordion is usually a rectangular shaped box with a handle on the top and a series of compartments inside.", + "A accordion is a type of musical instrument that has a lot of thin metal plates that you can press down with your fingers.", + "An accordion is a musical instrument that consists of a series of graduated metal plates that are played by depressing a key.", + "A accordion consists of a series of narrow vertical panels that are hinged together.", + "A accordion is a musical instrument that consists of a series of metal or wooden plates that are arranged in a manner so that they can be pressed together with the fingers.", + "A traditional accordion is a rectangular box-shaped musical instrument with a folding bellows in the center.", + "An accordion is a musical instrument with a series of tuned reeds and a keyboard.", + "An accordion is a musical instrument with a series of bellows that are used to pump air.", + "An accordion can be identified by its unique shape, which consists of a rectangular box with a keyboard on one side and a set of bellows on the other.", + "A typical accordion is a rectangular box-shaped musical instrument with a series of front and rear keyboards.", + "An accordion is a musical instrument that is played by pressing buttons or keys on one side and pulling a lever on the other side.", + "The three identifying characteristics of an accordion are its rectangular shape, its reeds, and its bellows.", + "The accordion is a rectangular shaped instrument with bellows on either side.", + "By looking at it.", + "It's a portable musical instrument consisting of opposite reeds in the bellows that are played by depressing buttons or keys.", + "The easiest way to identify an accordion is by its unique rectangular shape.", + "An accordion is a musical instrument with a rectangular box shape.", + "An accordion is a type of musical instrument.", + "A typical accordion is a rectangular box-shaped musical instrument with a folding keyboard and bass buttons.", + "An accordion is a musical instrument with a rectangular shape.", + "An accordion is a box-shaped musical instrument that is played by pressing the buttons on the front of the instrument.", + "A typical accordion is a rectangular box-shaped musical instrument with a folding bellows in the center.", + "A concertina or accordion is a mechanical musical instrument with a series of laminated leather or plastic plates lever air tight reeds and folded into a compact rectangular shape.", + "Most accordions have a rectangular shape with a folding bellows in the middle.", + "An accordion is a rectangular box-shaped musical instrument with a folding keyboard.", + "A traditional accordion is a box-shaped musical instrument with a keyboard on one end and a set of bellows on the other.", + "An image from the internet of an accordion might show a person playing the instrument, or it might show the accordion itself.", + "This image shows a yellow accordion with intricate details.", + "An image of a woman playing an accordion in a park.", + "The image is of a red and black accordion.", + "https://www.", + "The image is of a black and white accordion with intricate patterns on the front and sides.", + "The image shows a black and white accordion with intricate geometric patterns on the surface.", + "A close-up image of a red and black accordion with silver details.", + "An image of a accordion from the internet shows a man playing a accordion in a park.", + "An image of a accordion from the internet shows a musical instrument with multiple folding sections.", + "A traditional German accordion.", + "A close-up of a black and white accordion with its keys and buttons.", + "An accordion is a musical instrument with a keyboard and a bellows.", + "A AccordionAn accordion is a type of musical instrument that is typically made out of a series of metal plates or reeds that are attached to a leather strap.", + "An accordion is a musical instrument consisting of a series of graduated air chambers separated by valves, over which a keyboard is played, producing a characteristic tremolo (or vibrato).", + "A woman plays an accordion on a busy street corner.", + " A vintage accordion on a table.", + "Accordion player at a street festival.", + "Accordions are a type of musical instrument that are often used in folk music.", + "An accordion is a musical instrument that is played by squeezing a bellows with your hands." + ], + "airplane": [ + "A airplane is a large, metal bird that is used to travel through the sky.", + "A plane is a long, thin object with wings.", + "A airplane has a large metal body with wings that extend from the sides.", + "An airplane is a metal vehicle with wings that helps it fly.", + "An airplane is typically a metal, cigar-shaped object with wings.", + "An airplane typically has two wings and a tail.", + "An airplane has a long body with wings on either side.", + "A airplane looks like a large metal object with wings that helps it fly.", + "An airplane has wings and a tail.", + "A airplane is typically a metal tube with two wings and engines attached.", + "There are many ways to identify an airplane.", + "If you see an object in the sky that looks like it is flying, it is likely an airplane.", + "An airplane is a powered flying vehicle with fixed wings and a weight greater than that of the air it displaces; an airplane relies on its forward motion to create lift.", + "An airplane is a vehicle designed for air travel that has wings and one or more engines.", + "The best way to identify an airplane is by its looks.", + "The best way to identify an airplane is by its uniqueshape.", + "Most airplanes have wings and a tail.", + "Look for the wings and the tail.", + "The easiest way to identify an airplane is by its shape.", + "The easiest way to identify an airplane is by its wings.", + "An airplane is a machine that has wings and one or more engines.", + "A plane typically has two wings and a long body.", + "A airplane typically has one or more pairs of wings and a tail.", + "Most airplanes have a cylindrical shape with wings on either side.", + "An airplane typically has two wings and a tail, and is powered by jet engines.", + "Aircraft come in a variety of shapes and sizes, but most have a cylindrical body with wings attached.", + "An airplane typically has two wings and a body.", + "A plane has a long body with wings attached to the sides.", + "An airplane looks like a metal tube with wings.", + "A airplane looks like a large metal object with wings that flies in the sky.", + "The image is of a large airplane flying through the sky.", + "An image of an airplane may show a large commercial airliner cruising through the sky, with its long body and pointy wings.", + "This image is of a small, single-engine airplane taking off from a grassy field.", + "The image is of a large commercial airplane flying through the sky.", + "The image is of a large white airplane with blue and red stripes running down the sides.", + "The image is of an airplane flying through the sky with the sun setting in the background.", + "The image is of a small, white airplane flying through a blue sky.", + "An image of a airplane from the internet would likely show a large metal frame with wings attached.", + "I couldn't find an image of an airplane on the internet.", + "Image is of an airplane with blue and white stripes flying through a cloudy sky.", + "An airplane takes off from an airport runway.", + " A map of the world is seen through the window of an airplane.", + "A plane flying in the sky.", + "The first flight of the Wright brothers' Wright Flyer on December 17, 1903.", + "A airplane flying through the sky.", + " A small airplane taking off from an airport.", + "The picture is of an airplane in flight.", + "An airplane taking off at an airport.", + "The crew of an airplane looks out the windows as the plane prepares to land.", + "The image shows an airplane flying through the sky." + ], + "anchor": [ + "A anchor is typically a metal or stone object that is used to hold a ship in place.", + "A anchor is a metal or stone object, typically shaped like a cross, that is attached to a ship or boat by a cable and is used to keep the vessel in a particular place in the water.", + "An anchor is a metal or other heavy object, usually shaped like a cross, that is lowered into the water from a ship to hold it in place.", + "A anchor is a heavy object that is used to keep a boat in place.", + "A anchor is a large metal or concrete object that is dropped into water to keep a ship in place.", + "A anchor is usually a metal or concrete object that is shaped like a cross, which is used to hold a ship in place.", + "A anchor is a shaped device used to secure a vessel to the bottom of a body of water.", + "A concrete anchor looks like a large metal bolt sticking out of the concrete.", + "An anchor is typically a metal, hook-shaped object that is used to secure a ship or boat to the bottom of a body of water.", + "An anchor is a device that is used to hold a ship or boat in place in water.", + "An anchor is a heavy object that is attached to a ship or a boat by a chain, rope, or cable and is cast overboard to hold the vessel in a particular place.", + "A anchor is generally a heavy object that is attached to a rope or chain and is used to hold a vessel in place.", + "A anchor is a weight that is used to keep a ship in place.", + "By its shape.", + "An anchor is a large, heavy object that is attached to a ship or boat and thrown overboard to hold the vessel in place when it is at anchor.", + "There are a few ways to identify an anchor.", + "The easiest way to identify a anchor is by its shape.", + "There are a few ways to identify an anchor: \n-Look for a tag with the anchor's name \n-Look for a tag with the anchor's href \n-Look for a tag with the anchor's id.", + "An anchor is generally a metal weight that is dropped to the bottom of a body of water to hold a vessel in place.", + "Thread the rope through the hole in the anchor.", + "An anchor is a heavy object that is used to keep a ship in place.", + "There are many different types of anchors, but they all share a few common features.", + "A typical anchor looks like a flat triangular piece of metal with a hole in the middle.", + "An anchor is a heavy metal object, typically shaped like a fork or an X, that is used to hold a vessel in place in the water.", + "A anchor typically consists of a metal shank with a ring or shackle at one end, and a stock at the other.", + "An anchor is a metal or concrete object that is used to hold a ship in place.", + "The anchor is a symbol that looks like a cross with a ring at the end of each arm.", + "There are many different types of anchor, but they all have a general similar shape.", + "An anchor typically consists of a metal shank with a ring on one end and a hook or cross on the other.", + "An anchor is a device, typically made of metal, that is used to connect a ship, boat, or other floating vessel to the bottom of a body of water to prevent the vessel from drifting.", + "The image is of a large, rusty anchor lying on a sandy beach.", + "An image of a anchor from the internet shows a large, metal object shaped like a inverted \"U.", + "The image is of a large, rusty anchor lying on a beach.", + "An image of a anchor from the internet shows a large, metal object shaped like a cross with curved arms, typically used as a mooring for a ship.", + "The image from the internet of a anchor is a large, metal object that is used to hold a ship in place.", + "One image of an anchor from the internet is a large, rusty anchor lying on a beach.", + "A photograph of an old, rusty anchor lying on a beach.", + "An image of a anchor from the internet shows a metal object with a curved top and a pointed bottom.", + "One image of an anchor from the internet is a large, rusty anchor lying on a beach.", + "The image is of a large, brown anchor lying on a white dock.", + "The HMS Titanic's anchor on the seabed, over 100 years after the ship's tragic sinking.", + "The anchor is the symbol of hope.", + "A large, heavy anchor used to moor a ship in place.", + "A large anchor lies at the bottom of a calm ocean.", + "This is a picture of an anchor.", + "A large metal anchor lies at the bottom of a calm body of water.", + "Resting in the calm waters, the anchor provides a sense of security.", + "The anchor is the most important part of a boat.", + "A large ship's anchor lying on a dock.", + "The anchor is the most important part of a ship." + ], + "ant": [ + "A ant has a small, black body with six legs.", + "Small, six-legged creature with a hard exoskeleton.", + "A ant is a small, black creature with six legs.", + "A ant typically has a dark brown or black exoskeleton.", + "A ant is a small, Insect that lives in the underbrush.", + "A ant is small, brown, and has six legs.", + "A ant typically has a dark brown or black body with a very small waist.", + "Most ants are small, ranging in size from 2 to 10 mm.", + "Ants are small insects that vary in color depending on the species.", + "A typical ant is small, has a segmented body with a hard exoskeleton, and is brown or black in color.", + "One way to identify an ant is by its small, hard body and its long, thin legs.", + "You can identify a ant by its long, segmented body and its long, bent antennae.", + "A ant is a small, hard-bodied creature with six legs.", + "One way to identify an ant is by its antennae.", + "One way to identify an ant is by its body shape.", + "The best way to identify an ant is by its antennae.", + "The easiest way to identify an ant is by its distinctive segmented body and long antennae.", + "There are many ways to identify an ant.", + "Ants are small, wingless insects that live in colonies.", + "Propposely, ants are easy to identify by their elbowed antennae and their distinctive nodes- they have one at their waist and another separating their thorax and abdominal regions.", + "a small creature that is brown or black with a long body and six legs.", + "A ant typically looks like a small, black insect with six legs.", + "The carpenter ant is one of the largest ants in North America.", + "A ant has a small, hard body with a black, brown, or reddish color.", + "A ant looks like an insect.", + "Ants are small insects with six legs.", + "A ant looks like a small, black insect with six legs.", + "Aant looks like a small, black insect with six legs.", + "A ant looks like a small black or brown insect with a narrow waist and long legs.", + "A ant looks like a small black or brown creature with six legs.", + "The image depicts an ant crawling on the ground.", + "The image is of an ant crawling on the ground.", + "This image is of an ant crawling on a blade of grass.", + "A small, black ant crawling on a green leaf.", + "This image shows an ant crawling up a blade of grass.", + "This image shows an ant crawling up a blade of grass.", + "The image is of an ant crawling up a blade of grass.", + "The image is of a small black ant crawling on a blades of grass.", + " or another creatureOne image from the internet of an ant is an image of an ant crawling on the ground.", + "The image is of an ant crawling on the ground.", + "This is an image of an ant.", + "A ant is a small, hard-bodied creature that lives in the underbrush.", + "A small ant on a blade of grass.", + " An ant walking on a branch.", + "A small brown ant crawling on a blade of grass.", + " A small black ant crawls on a blade of green grass.", + "This image shows an ant crawling on the ground.", + "The anatomy of an ant.", + "The smallest ant, less than 1/16 of an inch long.", + "A small ant crawling on the ground." + ], + "barrel": [ + "A barrel is a vessel that is typically made of wood or metal.", + "A barrel is a large, typically cylindrical container with a flat top and bottom, made of metal, wood, or plastic.", + "A barrel is a cylindrical container with flat tops and bottoms.", + "A barrel looks like a big, round, wooden container with a metal hoop around the top.", + "A barrel is a large, cylindrical container that is typically made of wood or metal.", + "A barrel is a cylindrical container with a rounded bottom and a removable top.", + "A barrel is a large, round container used to hold liquids and dry goods.", + "A barrel is a large, cylindrical container typically made of wood or metal, that is used to store liquids or other materials.", + "A barrel is typically a large, cylindrical container used to hold liquids, such as oil or beer.", + "A barrel is a large, cylindrical container with a flat top and bottom.", + "The easiest way to identify a barrel is by its size and shape.", + "You can identify a barrel by its size and shape.", + "A barrel is typically a large, cylindrical container with a flat top and bottom.", + "Look for the thin, metal hoop that encircles the top of the barrel.", + "A barrel can be identified by its shape, which is typically cylindrical, and by its size, which is usually measured in gallons.", + "The easiest way to identify a barrel is to look for the metal hoops that hold it together.", + "A barrel is a round, wooden container used for storing liquids.", + "A barrel is a large, cylindrical container that is used to store liquids or dry goods.", + "The easiest way to identify a barrel is by its size and shape.", + "You can identify a barrel by its size and shape.", + "A barrel is a round, wooden container with a flat top and bottom.", + "In general, a barrel is a round, cylindrical container with a flat top and bottom.", + "A barrel is a cylindrical container with a flat top and bottom.", + "A barrel is a round, wooden container with curved sides and a flat bottom, used for storing or transporting liquids or other things.", + "A barrel is a large, hollow cylinder.", + "A barrel is a cylindrical container with a rounded top and bottom.", + "A barrel is a cylindrical container with a rounded bottom and a removable top.", + "A barrel typically has a round, cylindrical shape and is often made of metal, wood, or plastic.", + "A barrel is a large, round container used to hold liquids and dry goods.", + "A barrel is a large, cylindrical container with a curved top and bottom.", + "The image is of a red barrel with a white lid.", + "Image shows a large, metal barrel on its side.", + "A barrel is a large, cylindrical container typically made of wood or metal, with a flat top and bottom.", + "An image of a barrel from the internet is a picture of a brown barrel with a metal top and bottom.", + "The image is of a large, metal barrel with a spigot on the side.", + "This image is of a brown wooden barrel.", + "The image is of a large, metal barrel with a rounded top and bottom.", + "This image is of a brown metal barrel with a handle on the top and a spout on the side.", + "A black metal barrel with a greenish hue and a few small dents.", + "A barrel is a large, cylindrical container used to store liquids or dry goods.", + "A barrel of oil.", + "Barrel of crude oil.", + "A barrel of oil.", + " A wooden barrel overflowing with apples.", + "This barrel is full of oil.", + "A wooden barrel full of water.", + "This is a barrel.", + "A brown wooden barrel with a metal band around it, sitting on a wooden dock.", + " A wooden barrel that is open at the top and has a metal hoop around it.", + " A metal barrel, painted black." + ], + "bass": [ + "A bass is a type of fish that typically has dark green or brown skin with small scales.", + "A bass is a type of fish that typically has a dark green or brown back, with a white or light-colored belly.", + "Bass are a type of freshwater fish.", + "Basses are typically dark-colored with light-colored stripes running down their sides.", + "Bass are typically dark-colored with dark spots on their sides.", + "A bass is a large freshwater fish with a long body, large mouth, and sharp teeth.", + "A bass is a type of fish that is typically dark in color with a somewhat flattened body.", + "A bass is a large freshwater fish with a greenish-brown back and a white belly.", + "A bass is a lesson fish that typically has dark green, brown, or black coloration.", + "What a bass looks like can vary depending on the species, but in general, bass are long and muscular with large mouths full of sharp teeth.", + "The easiest way to identify a bass is by its large size and long, slender body.", + "Bass can be identified by their large size, long bodies, and set of sharp teeth.", + "Bass can be identified by their large size, long bodies, and large mouths.", + "Bass can be identified by their large size, long bodies, and protruding lower jaw.", + "The best way to identify a bass is to look at its physical features.", + "One way to identify a bass is by its size.", + "The easiest way to identify a bass is by its large size and long, thick body.", + "The easiest way to identify a bass is by its huge size.", + "A bass can be identified by its large size, long body, and wide mouth.", + "Basses can be identified by their large size, their deep bodies of water, and their low-pitched sounds.", + "A bass typically has four strings and a thick body.", + "There are many different types of bass, but most have long, slim bodies and large mouths.", + "A bass is a type of fish that typically has a dark green or brownish color.", + "A bass is a large, dark-colored fish with a long, thick body and large scales.", + "A bass is typically a dark green or brown color with white spots on its sides.", + "Basses can vary in appearance, but most have large, deep bodies with long necks and short scale lengths.", + "A bass is a type of fish, so it has a long body with fins and scales.", + "A bass typically has four strings and is larger than a guitar.", + "A bass looks like a large, dark-colored fish.", + "A bass looks like a large fish with brown and green scales.", + "The image is of a brown bass with large scales and a long body.", + "This image is of a bass sitting on a dock in a lake.", + " guitarOne image from the internet of a bass guitar shows a black bass guitar with white strings.", + "The image is of a large, dark green fish with light green spots on its sides.", + "The image is of a bass fish swimming in water.", + "The image is of a green and brown bass swimming in a stream.", + " guitarThe image is of a black and white bass guitar with the strings running vertically.", + "A bass is a type of fish that lives in water.", + "The image is of a bass fish.", + "The image is of a large bass fish swimming in a green body of water.", + "This is a bass.", + "A bass fishing in a river.", + " A black bass in a riverThis is a photo of a black bass in a river.", + "A bass guitar hangs from a strap over the shoulder of a musician.", + "This bass was caught in the Mississippi River.", + "This bass was caught in the North Fork of the Shenandoah River in Virginia.", + "This bass was caught in the Gulf of Mexico.", + "This is a bass.", + "I caught this bass in the river near my house.", + "This is a bass." + ], + "beaver": [ + "Beavers are rodents with large, flat tails.", + "Beavers are large, semiaquatic rodents weighing between 20 and 40 pounds.", + "A beaver is a rodent with a large, flat tail.", + "A beaver looks like a large, brown, rodent.", + "A beaver is a large, rodent-like animal with webbed feet and a large, flat tail.", + "Beavers are large rodents with thick, brown fur.", + "A beaver is a large, brown rodent with a flat tail.", + "Most beavers have brown fur.", + "A beaver has a small head with a large, flat tail.", + "A beaver has a brown coat, a bushy tail, and webbed hind feet.", + "The easiest way to identify a beaver is by its large, flat tail.", + "Some way to identify a beaver would be by its large size, its webbed hind feet, its wide, flat tail, and its large, orange-colored teeth.", + "The easiest way to identify a beaver is by its unique, flat, paddle-shaped tail.", + "Some ways you can identify a beaver are by its size, its tail, and its fur.", + "Beavers are large, semiaquatic rodents with dark brown fur, broad flattened tails, and short stocky legs.", + "You can identify a beaver by its furry brown body, wide flat tail, and webbed hind feet.", + "A beaver has a large, flat tail that it uses to swim, and large orange teeth.", + "A beaver can be identified by its large teeth, its large flat tail, and its webbed hind feet.", + "A beaver can be identified by its furry brown coat, long flat tail, and webbed hind feet.", + "Beavers can be identified by their unique physical characteristics, which include a large, flat tail and webbed hind feet.", + "A beaver typically has a reddish-brown fur, with a light belly.", + "A typical beaver has reddish-brown fur, a large, round head, small eyes, and a large, flat tail.", + "A beaver looks like a rodent with a large, flat tail.", + "A beaver is a medium-sized, semiaquatic rodent with a large, flat tail.", + "A beaver is a furry mammal with a big, flat tail.", + "Beavers are large rodents with brown fur.", + "A beaver has a large, flat, paddle-shaped tail, and webbed hind feet.", + "A beaver has a thick, brown coat of fur.", + "A beaver is a large, brown rodent that is known for its flat, paddle-shaped tail and for building dams.", + "A beaver is a large rodent with dark brown fur.", + "In one image, a beaver is busy at work, using its large teeth to gnaw on a tree trunk.", + "The beaver is a large, brown rodent with a long, flat tail.", + "The image shows a beaver swimming in a river with a log in its mouth.", + "A beaver is a large, semiaquatic rodent.", + "The image is of a beaver swimming in a lake with trees in the background.", + "The image is of a beaver swimming in a river.", + "In the image, a beaver is swimming in a river with its large, flat tail propelling it through the water.", + "The image is of a beaver swimming in a lake with its dam in the background.", + "In the image, a beaver is swimming through a river with a large stick in its mouth.", + "left to right: a beaver swimming; a beaver resting on a log; a beaver gnawing on a tree.", + "A beaver gnawing on a tree.", + "A beaver, a large rodent native to North America, chewing on a tree branch.", + " a beaver building its lodgeA beaver is busily working to build its lodge in this photo.", + "A beaver looks for food in a stream.", + "This beaver is building a dam in a river.", + "This beaver is working hard to build its dam.", + "A beaver chewing on a tree branch.", + "This beaver is currently busy building a dam.", + " A beaver looks for food in a river.", + "A beaver chewing on a tree branch." + ], + "binocular": [ + "A binocular is a handheld optical instrument for procedures such as viewing wildlife and landscapes.", + "Binoculars are two telescopes side by side, mounted on a frame that you hold with both hands.", + "A binocular typically has two cylindrical lenses side by side, connected by a central bridge.", + "A binocular is a small telescope that you can hold in your hand.", + "A binocular is a small, portable telescope with two separate eyepieces, one for each eye.", + "A binocular is a device composed of two small telescopes mounted side-by-side.", + "A binocular is a two-eyed optical instrument for viewing distant objects, typically held up to the eyes by a bridge resting on the user's nose.", + "A binocular is a handheld optical instrument that uses two lenses to magnify distant objects.", + "A binocular is a tool that people use to see things that are far away.", + "A stereoscopic instrument for viewing objects, consisting of two similar telescopes mounted side by side and adjusted to convergence.", + "By looking through both eyepieces at the same time.", + "Binoculars typically have two cylindrical barrels that are connected by a central bridge.", + "When looking at a pair of binoculars, you can identify them by the two eyepieces that are on either side of the binoculars.", + "A binocular is a handheld, two-eyed optical instrument for viewing distant objects.", + "A binocular has two eyepieces, and each one has its own lens.", + "The two lenses of a binocular are held together by a bridge, and the user looks through the eyepieces, which are located on the ends of the bridge.", + "The word \"binocular\" is derived from the Latin roots \"bi-\" (two) and \"oculus\" (eye).", + "A binocular is typically a handheld optical instrument that consists of two matched telescopes.", + "A binocular is a two-lens optical instrument used for viewing distant objects.", + "A binocular generally has two tubes with an objective lens on each end and an eyepiece on one side.", + "A binocular typically has two eyepieces and two barrels, and is held up to the eyes.", + "A binocular typically has two barrels, each with an objective lens, that are mounted on a frame.", + "Binoculars look like two small telescopes that are connected together.", + "A binocular is two telescopes side-by-side.", + "Binoculars are two telescopes that are mounted side-by-side.", + "Binoculars are typically two cylinders side by side with a small bridge connecting them.", + "A binocular typically has two barrels side-by-side, each containing an objective lens, an eyepiece, and a set of prisms.", + "A binocular looks like two tube-shaped lenses that are connected together.", + "A binocular is a two-lensed optical instrument for viewing distant objects.", + "Binoculars are two telescopes side-by-side and aligned so that both eyes can look through them at the same time.", + "The image is of a black binocular on a white background.", + "The image is of a black binocular on a white background.", + "There is an image of a binocular on the internet.", + "The image is of a black binocular on a white background.", + "I found an image of a binocular on the internet that I really like.", + "The image is of a black binocular on a white background.", + "This image is of a black binocular on a white background.", + "One image that comes up when searching for \"binoculars\" is of a black, handheld device with two eyepieces.", + "In the image, a black binocular is lying on a white background.", + ".", + "A pair of binoculars.", + " Two small telescopes mounted side-by-side on a frame, used for simultaneous viewing of distant objects by both eyes.", + "Two men look through binoculars at a distant object.", + "Binoculars are a great way to get a closer look at things.", + "Binoculars are specifically designed for use in low-light conditions and allow you to see objects in the distance with greater clarity.", + " Depending on the model, binoculars can have different features and vary in price.", + "A pair of binoculars on a stand.", + "Binoculars are optical instruments designed for observing distant objects by magnifying them.", + "Binoculars are a tool that is used to see things that are far away.", + "Binoculars are a powerful tool for getting a closer look at the world around you." + ], + "bonsai": [ + "Bonsai are miniature trees that are heavily pruned and shaped to stay small.", + "A bonsai is a tree that has been trained and pruned to grow in a small pot.", + "A bonsai is a small tree that has been trained to grow in a pot.", + "A bonsai is a small, delicate tree that is often shaped and trimmed to look like a miniature version of a full-sized tree.", + "A bonsai is a plant that is shaped and trained togrow in a miniature form.", + "A bonsai is a miniature tree that is planted in a small pot or tray.", + "Bonsai are miniature trees that are created through careful pruning and shaping of the tree.", + "A bonsai is a small, ornamental tree or shrub that is grown in a shallow pot and trimmed to produce a miniature tree.", + "A bonsai tree is a miniature tree that is planted in a small container.", + "A bonsai is a tree that has been trained to grow in a small pot.", + "A bonsai is a small tree or shrub that has been grown in a pot and trained to produce a miniature tree.", + "The best way to identify a bonsai is to look for a plant that is small and has a trunk that is thick and gnarled.", + "A bonsai is a small tree that is kept alive in a pot.", + "The best way to identify a bonsai is to look for the following characteristics: a shallow tray or pot, well-proportioned branches, leaves that are small in comparison to the size of the tree, and a generally small size.", + "Bonsai can be identified by their small size, miniature leaves, and thick trunk.", + "Bonsai are trees or shrubs that have been trained and pruned to grow in a small, shallow pot.", + "There are a few ways to identify a bonsai.", + "A bonsai can be identified by its distinctively small size and its carefully shaped and maintained tree form.", + "A bonsai is a miniature tree that is grown in a pot.", + "The bonsai is a small tree or woody shrub that is carefully shaped and trained to grow in a small pot or tray.", + "A bonsai tree is a miniature copy of a full-size tree.", + "A bonsai tree is a small tree that is cultivated in a pot.", + "A bonsai tree looks like a miniature tree.", + "A bonsai is a tree that has been carefully pruned and trained to grow in a container.", + "A bonsai is a miniature tree that is grown in a pot.", + "A bonsai is a miniature tree, often shaped into an informal or formal upright style.", + "A bonsai is a miniature tree that is often used as a decoration.", + "A bonsai is a tree or shrub that is grown in a pot and trained to stay small.", + "A bonsai is a tree or shrub that has been grown in a pot and pruned to create a miniature version of the full-sized plant.", + "A bonsai tree is a miniature tree that is grown in a pot.", + " displayThe image is of a small tree in a pot on a wooden stand.", + "This image is of a bonsai tree.", + "The image is of a small tree in a pot.", + " treeA bonsai tree is a miniature tree that is cultivated in a pot.", + " treeIn the image, there is a small, delicate tree with leaves and branches that have been meticulously shaped and trimmed.", + " treeThe image is of a small, delicate tree with beautiful leaves and branches.", + " treeThis bonsai tree has a strong, straight trunk with smooth, dark bark.", + " treeThis image shows a bonsai tree with a long, slender trunk and small leaves.", + "The image is of a small, delicate tree with slender branches and leaves.", + " treeIn the image, a small, gnarled tree grows out of a rocky ledge.", + "Bonsai tree in a dish.", + "Bonsai tree in potThis bonsai tree is carefully cultivated in a pot, probably using special techniques to keep it small.", + " \"Bonsai tree in pot on floor.", + " A bonsai tree on a windowsillThis bonsai tree is perfectly at home on this sunny windowsill.", + "A bonsai tree on a windowsill.", + "This bonsai was created by master bonsai artist, Jinsey One.", + "This bonsai is a beautiful example of the art of miniature tree cultivation.", + "A bonsai tree, with its intricate branches and leaves, is a beautiful example of the harmony between nature and human artistry.", + "A bonsai tree in a pot.", + "Bonsai is a Japanese art form using miniature trees grown in containers." + ], + "brain": [ + "The brain looks like a large, wrinkled, grayish-white mass.", + "A brain looks like a bumpy, pinkish-grayish mass.", + "A brain looks like a human brain.", + "A brain looks like a three-pound mass of jelly that sits atop your spinal cord in your skull.", + "A brain looks like a large, pink, spongy organ that is divided into lobes.", + "Brain tissue consists of neurons, glial cells, and blood vessels.", + "A brain looks like a spongy, pinkish-gray mass that is split into two hemispheres by a deep groove.", + "A brain looks fairly similar to a human brain, although it may be a bit smaller.", + "A brain typically looks like a walnut when sliced in half.", + "A brain is a three-pound, walnut-shaped organ that sits inside the skull.", + "The brain can be identified by its wrinkled surface, which is covered by a thin layer of tissue called the cerebral cortex.", + "If you are looking at a brain in an MRI, you will see a lot of white and gray matter.", + "The brain is the center of the nervous system.", + "The brain is the most forward part of the head, surrounded by the skull.", + "There are many ways to identify a brain.", + "A brain can be identified by its unique wrinkled surface.", + "You can usually identify a brain by its wrinkly, grayish appearance.", + "The brain is an organ that is located in the head.", + "A brain is composed of two cerebral hemispheres, connected by the corpus callosum.", + "A brain can be identified by its characteristic shape and size.", + "A brain looks like a mass of grey and white matter.", + "A brain looks like a three-pound mass of jelly.", + "A brain looks like a wrinkled, gray, and wet organ.", + "A brain looks like a three-pound mass of jelly-like tissue.", + "A brain looks like a mass of grey and white matter.", + "The brain looks like a mass of wrinkled tissue.", + "A brain looks like a three-pound mass of jelly.", + "A brain looks like a human brain.", + "A brain typically looks like a pinkish-gray, rubbery mass.", + "The brain is approximately the size and shape of a large grapefruit.", + "The image is of a brain with different colors representing different areas.", + "I found an image of a brain on the internet that I really like.", + "a brain is a complex organ that controls the function of the whole body.", + "The image is of a brain with different colors representing different areas.", + "The image is of a human brain.", + "A brain image from the internet might depict a brain in profile, with the different lobes labeled.", + "The image is of a brain that has been sectioned in half down the middle.", + "The image is of a brain with the left hemisphere labeled.", + "The image shows a human brain from the front, with the left side on the left and the right side on the right.", + "This image is of a brain MRI.", + "A brain in a human head.", + "The human brain is an amazing organ that controls all of the body's functions.", + " a brain scanThe brain scan shows the activity of the brain.", + "The brain is the most complex organ in the human body.", + "The brain is the most important organ in the body.", + " A human brain.", + "This image shows a brain.", + "A brain.", + "This image shows a brain in cross-section.", + " The human brain is one of the most complex structures in the known universe." + ], + "brontosaurus": [ + "The brontosaurus is a large, long-necked dinosaur with a small head and a long, whip-like tail.", + "A brontosaurus is a large, four-legged, plant-eating dinosaur.", + "A brontosaurus looks like a large, long-necked, four-legged dinosaur.", + "A brontosaurus looks like a large, green, four-legged creature with a long neck and a long tail.", + "The brontosaurus is a large, plant-eating dinosaur that lived during the Late Jurassic period, around 150 million years ago.", + "A brontosaurus is a huge, long-necked, plant-eating dinosaur with a small head.", + "The brontosaurus is a large, herbivorous dinosaur with a long neck and tail.", + "The brontosaurus was a large, long-necked, four-legged herbivore that lived during the Late Jurassic period.", + "A brontosaurus is a large, long-necked, plant-eating dinosaur with a small head, stubby legs, and a long, whip-like tail.", + "The brontosaurus is a large, long-necked dinosaur with a small head.", + "Signs that you have found a brontosaurus include: large size (they were some of the largest animals to ever live), a long neck, a long tail, and four sturdy legs.", + "You can identify a brontosaurus by its large size, long neck, and small head.", + "The easiest way to identify a brontosaurus is by its long neck and tail.", + "A brontosaurus is a large, four-legged, plant-eating dinosaur with a long tail and neck.", + "The easiest way to identify a brontosaurus is by its long neck and small head.", + "Brontosaurus can be identified by their long necks, small heads, and large bodies.", + "A brontosaurus can be identified by its large size, long neck, and small head.", + "Brontosaurus can be identified by its large size, long neck, and small head.", + "There are several ways to identify a brontosaurus.", + "The easiest way to identify a brontosaurus is by its large size.", + "The brontosaurus was a huge, long-necked, herbivorous dinosaur.", + "A brontosaurus is a very large, long-necked creature with a small head.", + "A brontosaurus looks like a large, grey, four-legged dinosaur with a long, neck and a long, tail.", + "The brontosaurus is one of the largest land animals to ever exist.", + " \nA brontosaurus is a large, long-necked, four-legged herbivore.", + "The brontosaurus was a large, plant-eating dinosaur that lived during the Late Jurassic period.", + "The brontosaurus was a large herbivore that lived during the Jurassic period.", + "A brontosaurus is a large, plant-eating dinosaur with a long neck and a small head.", + "A brontosaurus is a large, gray, plant-eating dinosaur with small head, long neck, and long tail.", + "A brontosaurus is a large, herbivorous, prehistoric creature with a long neck and tail.", + "The image from the internet is of a large green dinosaur with a long neck and tail.", + "The image is of a brontosaurus standing in a field with trees in the background.", + "The image on the internet shows a brontosaurus that is walking on a grassy field.", + "The brontosaurus is a large, long-necked dinosaur with a small head and a long, thin tail.", + "The image is of a large green dinosaur with a long neck and tail.", + "There is an image from the internet of a brontosaurus that looks like a cartoon.", + "The image is of a large, green dinosaur with a long neck and tail.", + "Image is of a green brontosaurus with a long neck and tail.", + "A brontosaurus is a large, green dinosaur with a long neck and tail.", + "The brontosaurus image from the internet shows a large, green, four-legged dinosaur with a long tail.", + "A brontosaurus wanders through a swampy prehistoric landscape.", + "\nA brontosaurus walking through a swampy area.", + "Brontosaurus is a extinct genus of dinosaurs that lived during the Late Jurassic period.", + "Brontosaurus means \"thunder lizard\" in Greek.", + "A brontosaurus browsing in a swampy forest.", + "The mighty brontosaurus! This massive herbivore was one of the last of the great dinosaurs, and lived during the Late Jurassic period.", + "A brontosaurus stands in a field of tall grass, its long neck reaching up towards the sky.", + "This is a brontosaurus, a massive herbivore that lived during the Jurassic Period.", + " The brontosaurus was one of the largest dinosaurs that ever lived.", + " A brontosaurus walks through a field of tall grass." + ], + "buddha": [ + "Buddhas are typically depicted as serene and meditating figures with a shaved head, wearing simple robes.", + "A buddha is a sickly looking man with a big belly.", + "There is no one definitive answer to this question as buddhas can come in a variety of forms, both human and non-human.", + "Buddhas are typically depicted as serene and calm, with a gentle smile on their face.", + "A buddha typically has a serene expression on their face and is often depicted sitting in the lotus position with their hands resting in their lap.", + "A buddha typically has a serene expression on his or her face and is often depicted with a shaved head and wearing loose-fitting robes.", + "The physical form of a buddha typically includes large, round eyes, a serene expression, and a stylized body with elongated earlobes.", + "A buddha is a person who has reached nirvana, the complete extinction of the self.", + "A Buddha is a person who is Enlightened.", + "A Buddha is a person who has reached an awakened state.", + "The images of buddhas can vary greatly, but they often show him seated with his legs crossed and his hands resting in his lap with the palms up.", + "There is no universal answer to this question, as different Buddhist traditions have different ways of identifying a buddha.", + "You can identify a buddha by his or her serene and peaceful demeanor.", + "A buddha is a person who has attained perfect enlightenment and understands the true nature of existence.", + "Buddhas can be identified by their peaceful and serene expressions, as well as their often elongated earlobes.", + "There are various ways to identify a Buddha.", + "A buddha is someone who has reached enlightenment and is no longer bound by the cycle of birth and death.", + "There are many ways to identify a Buddha.", + "The easiest way to identify a buddha is by their statues or images which usually show them in a seated position with a calm look on their face.", + "Buddhas are most often identified by their statue form, which typically shows them seated with their legs crossed and hands resting in their lap in a mudra, or symbolic gesture.", + "A traditional buddha is seated with legs crossed and hands in the mudra (position) of meditation.", + "Buddhas are often depicted as serene and peaceful figures, often with a glowing aura around them.", + "There is no definitive answer to this question, since there are many different schools of Buddhism, and each places its own emphasis on different aspects of the religion.", + "There is no one answer to this question, as different artists and cultures have depicted the Buddha in many different ways.", + "Most depictions of the Buddha show him with an elongated earlobe, which is a symbol of his wisdom.", + "Most buddhas are depicted as bald, with serene expressions and wearing simple robes.", + "Most buddhas are depicted as human beings, but there are also buddhas that are animals or other creatures.", + "A Buddha is a being who has attained perfect enlightenment.", + "There is no one answer to this question as the appearance of buddhas can vary significantly in different cultures and time periods.", + "Buddha statues can vary greatly in size and appearance, but many depict Buddha with a serene expression, wearing loose robes, and with his hair pulled back in a topknot.", + "This image shows a traditional statue of Buddha, seated in the lotus position with his hands resting in his lap.", + "In the image, a golden buddha statue sits atop a tall pedestal in a darkened room.", + "In the image, a golden buddha statue is surrounded by candles and flowers.", + "This image shows a seated buddha, with a serene and calm expression on his face.", + "An image of a buddha from the internet may show a buddha statue with a calm expression, sitting in a meditative pose.", + "A statue of a buddha sitting on a lotus flower, with his hands in his lap and a serene expression on his face.", + "An image of a buddha from the internet shows a large, golden statue of a sitting buddha with his hands in his lap and a serene expression on his face.", + "This image is of a meditating buddha statue with its eyes closed.", + "This image shows a seated buddha with a serene expression on his face.", + "This image is of a statue of a buddha.", + "A statue of the Buddha in a meditative pose.", + "The Buddha, seated in lotus position with his eyes closed, represents the perfect balance of mind and body achieved through meditation.", + " Sitting Buddha in Meditation.", + "Buddha statue in a serene garden setting.", + "Buddha meditating under a tree.", + "Subduing Mara, Buddha achieves Enlightenment.", + "Buddha meditating under a tree.", + "A buddha statue seated in lotus position, surrounded by a field of flowers.", + "Buddha statue in a gardenA caption of an image of a couple on a beach:The happy couple enjoying a romantic sunset walk on the beach.", + "Buddha meditating under a tree." + ], + "butterfly": [ + "A butterfly has two pairs of large wings that are covered in colorful scales.", + "A butterfly typically has two pairs of wings that are covered in scales.", + "A butterfly has two large wings that are covered in colorful scales.", + "A butterfly is a flying insect with large wings.", + "A butterfly is a flying insect with two pairs of wings, typically brightly colored and with intricate patterns.", + "Most butterflies have brightly colored wings, and many have patterns on their wings.", + "Most butterflies have colorful wings with unique patterns.", + "A butterfly looks like a yellow and black insect with two pairs of wings.", + "A butterfly has colorful wings and a slender body.", + "Most butterflies have brightly colored wings, and many also have patterns on their wings.", + "The easiest way to identify a butterfly is by its wings.", + "The easiest way to identify a butterfly is to look at its wings.", + "There are many ways to identify a butterfly.", + "The easiest way to identify a butterfly is to look at the wing patterns.", + "By its wing shape and color pattern.", + "A butterfly can be identified by its two pairs of wings that are covered in colorful scales, its long antennae, and its small body.", + "The easiest way to identify a butterfly is by its wings.", + "One way to identify a butterfly is by looking at its wings.", + "The best way to identify a butterfly is to look at its wings.", + "The best way to identify a butterfly is by its wings.", + "Butterflies have a slender body with two pairs of wings.", + "Most butterflies have brightly colored wings with patterns made up of small scales.", + "A butterfly looks like a flying insect with two pairs of wings.", + "Most butterflies have brightly colored wings with patterns made up of small dots and lines.", + "A butterfly has two wings that are covered in scales.", + "A butterfly looks like a flying flower.", + "A butterfly looks like a flying insect with two pairs of wings.", + "Most butterflies have brightly colored wings with distinctive patterns.", + "A butterfly has two large, thin wings that are covered in colorful scales.", + "A butterfly typically has two large wings that are brightly colored and patterned.", + "This image is of a butterfly on a flower.", + "This image is of a butterfly with its wings spread out.", + "A brightly colored butterfly with wings outstretched, perched atop a green leaf.", + "The image is of a blue morpho butterfly with its wings open.", + "The image is of a small, delicate butterfly with orange and black wings.", + "The image is of a yellow butterfly with black spots on its wings.", + "This image is of a Monarch butterfly.", + "The image is of a blue and yellow butterfly perched on a green leaf.", + "The image from the internet of a butterfly is of a beautiful, colorful butterfly with wings spread open, flying through the air.", + "I found an image of a brightly colored butterfly with its wings spread open.", + "A butterfly rests on a flower in a garden.", + "resting butterfly.", + "A butterfly perched on a flower, with its wings outstretched.", + "This butterfly is a Monarch Butterfly.", + "The butterfly is a beautiful creature that symbolizes transformation and new beginnings.", + "\"A beautiful butterfly flutters its wings in the sun.", + "A monarch butterfly flits among the flowers in a garden.", + "A butterfly flits from flower to flower, collecting nectar.", + "A butterfly rests on a flower in a garden.", + "A butterfly perched on a flower." + ], + "camera": [ + "A camera is a small, portable device that captures images through a lens.", + "A camera typically has a lens on the front, a viewfinder on the back, and a shutter button on the top.", + "A camera is typically a small, handheld device.", + "A camera is typically a rectangular box with a hole in the center.", + "A camera typically consists of a body and a lens.", + "A camera is a small, handheld device used to take photographs.", + "A camera typically has a lens on the front, a viewfinder on the back, and a shutter button on the top.", + "A camera is a small, hand-held device that can be used to take photographs or videos.", + "A modern camera consists of a lens which focuses light from the scene, and a camera body which holds the image capture mechanism.", + "A camera is a small, rectangular device that is used to capture images.", + "Most cameras have a logo on them that says the brand name.", + "There are a few ways to identify a camera.", + "A camera is a device that captures images in the form of photographs or videos.", + "There are a few ways to identify a camera.", + "A camera is a small, handheld device used to take photographs.", + "One way to identify a camera is by looking for a viewfinder.", + " Cameras can be identified by their lens, shutter, and viewfinder.", + "The front of a camera typically has a lens and a shutter, while the back has a viewfinder and controls.", + "Look for a manufacturer's logo or the word \"camera\" on the device.", + "The front of a camera typically has a lens, a shutter, and a viewfinder.", + "A camera typically consists of a lens which focuses light from the scene, and an image sensor which captures the light and converts it into an electrical signal.", + "A digital camera typically consists of a body with a removable lens.", + "A camera is a small, hand-held electronic device that is used to take pictures.", + "A camera typically looks like a rectangular box with a lens on one end.", + "A camera typically has a rectangular body with a small lens on the front.", + "A traditional camera looks like a small rectangular box.", + "A camera can look like many things, but most often they are small, handheld devices that have a lens on one side.", + "A camera is a rectangular device with a lens on the front.", + "A camera is a small, handheld device that is used to take photographs.", + "A standard camera has a cylindrical shape with a round lens on one end.", + "The image is of a black and silver DSLR camera.", + "The image is of a black and silver camera on a tripod with a flash attached.", + "This image is of a black and silver digital camera on a tripod.", + "The image is of a camera on a tripod.", + "The image is of a black and silver camera on a tripod.", + "The image is of a black and silver camera on a tripod.", + "This image is of a digital camera.", + "Description: A black and silver camera on a tripod with a large lens pointed up at the sky.", + "The image is of a digital camera on a tripod with the lens pointing up.", + "The image is of a black and silver digital camera with a large lens.", + " Nikon D3100 DSLR Camera.", + "A camera is a device used to capture images or record videos.", + "This camera was made in the early 1900s.", + "Camera.", + "Image of a camera on a tripod with the shutter release cable visible.", + "This is a digital camera.", + "The Canon EOS 70D is a digital SLR camera that features a 20.", + " Nikon D800 Camera.", + " A DSLR camera with a flash attachedA DSLR camera with a flash attachment.", + "A digital camera." + ], + "cannon": [ + "A cannon is a large, automotive firearm that is used to fire heavy projectiles at high speeds.", + "A cannon is a large, highly portable gun that is used to fire heavy balls or shells.", + "A cannon is a large, long gun that is mounted on a carriage.", + "A cannon is a large, portable gun that can be fired from a standing position.", + "A cannon is a large gun that is mounted on a carriage.", + "A cannon is a large gun that is mounted on a carriage.", + "A cannon is generally a large, smooth-bore firearm designed to fire heavy projectiles at high velocity.", + "A cannon is a large, heavy, cylindrical gun that fires projectiles at a high velocity.", + "A cannon is typically a large, cylindrical gun that fires heavy projectiles.", + "A cannon is a large, tubular firearm that is mounted on a carriage and fired from the ground.", + "A cannon is a large, heavy gun that is mounted on a wheeled carriage.", + "A cannon is a large, mounted, barrel-shaped firearm that fires heavy projectiles known as cannonballs.", + "Cannons are large guns that are used to shoot heavy objects at a high velocity.", + "Cannons are large guns that are mounted on a tripod or carriage.", + "Most cannons have a long barrel and are made of metal.", + "One way to identify a cannon is by its large size.", + "The best way to identify a cannon is by its large size and its long barrel.", + "A cannon is a large, powerful gun that is usually mounted on a vehicle.", + "A cannon is a large, heavy gun that is usually mounted on a carriage.", + "Canons are generally large, cylinder-shaped, and have a large muzzle.", + "A cannon is a large, military grade firearm that is usually mounted on a platform or wheels.", + "A cannon is typically a large, cylindrical gun with a long barrel.", + "A cannon is a large, heavy gun that is mounted on a carriage.", + "A cannon is a large artillery piece that is mounted on a carriage and usually has a long barrel.", + "A cannon has a large, round barrel that is open at both ends.", + "A cannon looks like a large, metal tube that is mounted on a carriage or a frame.", + "A cannon is a large, cylindrical gun that fires heavy projectiles.", + "A cannon is a large, cylindrical gun that is pointed forward and mounted on a platform.", + "A cannon is a large, cylindrical gun with a long barrel.", + "A cannon is a large, heavy weapon that is mounted on a carriage.", + "The image is of a large, old-fashioned cannon.", + "The image is of an old, large cannon mounted on a platform.", + "A cannon is a large, heavy-duty gun that is mounted on a carriage or platform.", + "A large metal machine with a long barrel pointing upwards, There is a person standing next to it.", + "The image is a black and white image of a cannon.", + "I found an image of a cannon on the internet.", + "An image from the internet of a cannon is a large, handmade weapon that was popular in the 16th and 17th centuries.", + "I found an image of a cannon on the internet that is set up on a battlefield.", + "The image is of a large, gray cannon on a green field.", + "This image from the internet is of a decorated cannon.", + "A French 75mm field gun from World War I.", + "A 17th century cannon from the English Civil War.", + "A cannon being fired.", + "British Cannon at the Battle of Gettysburg.", + "A cannon on a battlefield.", + "A cannon being fired.", + "Barrel of a cannon at a fort.", + "An old cannon on the beach.", + "What looks like a small cannon from the 1800s.", + "A cannon from the American Civil War." + ], + "car side": [ + "A car side is the side of a car.", + "A car_side typically looks like the side of a car.", + "A car_side looks like the side of a car.", + "A car_side looks like a piece of metal that is shaped like a rectangle and has a hole in the middle of it.", + "There is no definitive answer to this question, as car_sides can vary significantly in their appearance.", + "A car_side is a side view of a car.", + "A car side is the side of a car.", + "A car_side is a two-dimensional shape that represents the side view of a car.", + "One side of a car typically has four doors and two windows.", + "A car_side looks like a large, flat surface with four round, cylindrical objects sticking out of it.", + "A car_side is a type of vehicle that is typically used for transportation.", + "There is no definitive answer, but some ways to identify a car_side include its placement on the car (e.", + "One way to identify a car_side is by its manufacturer.", + "A car_side is a flat surface that is attached to the side of a car.", + "There is no definitive answer, but some ways to identify a car_side include its overall shape, the location of the doors and windows, and the position of the wheels.", + "The easiest way to identify a car_side is to look for the distinguishing features that are unique to that particular type of vehicle.", + "The car_side is the part of the car that faces the road.", + "A car_side is the side of a car.", + "A car_side is usually long and thin, and has two headlights at the front.", + "A car_side is a flat, vertical surface on the side of a car.", + "There is no definitive answer to this question, as there is a wide variety of designs for car sides.", + "A car_side would look like the side of a car.", + "There is no definitive answer to this question as car sides can vary greatly in appearance, depending on the make, model, and year of the vehicle.", + "There is no definitive answer to this question as car sides can vary significantly in appearance depending on the make and model of the vehicle.", + "There is no definitive answer to this question as car_sides can vary greatly in appearance depending on the make and model of the car.", + "There is no definitive answer to this question because car sides can vary greatly in terms of design and appearance.", + "I couldn't find a picture of a \"car_side.", + "A car_side looks like a large, metal rectangle.", + "A car side is typically a metal panel that encloses the space between the door and the fender on a vehicle.", + "There is no such thing as a car_side.", + " viewThe image is of a white car with black rims.", + " viewThis image is of a white car with its doors and trunk open.", + "viewThis image is of a white car with black stripes on the side.", + "the image is of a car that is parked on the side of the road.", + "This image is of a red car that is driving on a road.", + "This image is of a car from the side.", + " viewThis image is of a car that is parked on the side of the road.", + "The image is of a black car parked on a city street.", + "This image is of a car that is parked on the side of the road.", + "The image is of a white car with blue stripes on the side.", + "This is a car that has been in an accident.", + "A side view of a red car.", + " Toyota Camry LE Sedan.", + " A white car on a roadA white car drives down a road.", + "A blue car parked on the street.", + "This is a side view of a car.", + "2018 Audi S5 Sportback in Florett Silver Metallic.", + " A white car from the side with its doors and trunk open.", + "The car is a sleek and shiny black, with four doors and tinted windows.", + " The new Tesla Model SThe all-new Tesla Model S is the fastest, most powerful car on the road." + ], + "ceiling fan": [ + "A ceiling fan is typically a large, paddle-shaped fan blade mounted on a central motor inside a round housing.", + "A ceiling fan typically has three or more blades that attach to a central hub, which is mounted to a motor.", + "A ceiling fan typically consists of a central motor unit, with blades attached to it.", + "A ceiling fan has long blades that attach to a central motor.", + "A ceiling fan typically consists of four or five blades attached to a central motor within a metal housing.", + "A ceiling fan typically has four blades that attach to a motor in the center of the fan.", + "A ceiling fan is a type of fan that is mounted on the ceiling of a room.", + "A ceiling fan typically has four blades that attach to a central hub.", + "A ceiling fan typically consists of several blades attached to a central rotating hub, which is mounted to the ceiling.", + "A ceiling fan typically has four blades that are attached to a base.", + "A ceiling fan is a device suspended from the ceiling of a room that uses an electric motor to rotate blades or paddles in order to circulate air.", + "The easiest way to identify a ceiling fan is by its blades.", + "The most common way to identify a ceiling fan is by its Blade.", + "A ceiling fan is a device suspended from the ceiling of a room that uses rotating blades to circulate air.", + "Ceiling fans are often used to circulate air in a room and are commonly seen in homes, offices, and other buildings.", + "Ceiling fans are often used to circulate air in a room and are attached to the ceiling.", + "Ceiling fans are usually hung from the ceiling by a chain or by rods.", + "By looking for a fan blade in the ceiling.", + "Ceiling fans typically have blades that are long and thin, and they are mounted on the ceiling.", + "A ceiling fan is typically a circular fan that is attached to the ceiling.", + "A ceiling_fan looks like a regular fan that is attached to the ceiling.", + "A ceiling_fan typically consists of a circular base with blades that extend out from the center.", + "A traditional ceiling fan is composed of a round body with blades attached.", + "A ceiling fan typically consists of a fan blades attached to a central motor unit.", + "A ceiling_fan typically consists of a central motor unit with blades attached.", + "The ceiling fan has rotating blades that create a cooling effect when inserted into a room.", + "A ceiling fan typically consists of four or five blades attached to a central motor.", + "A ceiling fan typically consists of a motor and several blades attached to a central hub.", + "A ceiling fan typically consists of four metal or wooden blades attached to a central shaft, which is mounted on a ceiling.", + "A ceiling fan typically has four blades and a light.", + "A ceiling fan with five blades in a dark wood finish.", + "A ceiling fan with five blades and a light in the center.", + "The image is of a ceiling fan with three blades.", + "A ceiling fan with multiple blades and a light in the center.", + "The image is of a white ceiling fan with five blades.", + "A ceiling fan with white blades and a white light attachment hangs from a white ceiling.", + "The image is of a ceiling fan with wooden blades.", + "An image of a ceiling fan from the internet would likely show the fan blades spinning around in a circular motion.", + "The image from the internet of a ceiling fan is a rotating blade ceiling fan in a contemporary home.", + "This image shows a ceiling fan with four metal blades.", + "This ceiling fan is in the home of a person who is very energy conscious.", + " \"The blades of this ceiling fan are turning rapidly, creating a refreshing breeze.", + "A ceiling fan rotates slowly, sending a cooling breeze throughout the room.", + "This is a ceiling fan.", + "A ceiling fan whirs overhead, providing a refreshing breeze on a hot summer day.", + "A ceiling fan in a room with a high ceiling.", + "A ceiling fan hangs from the white-painted ceiling of a room.", + "A close up of a ceiling fan.", + "Ceiling fan in a room.", + "A ceiling fan suspended from a textured white ceiling." + ], + "cellphone": [ + "Most cellphones have a rectangular shape with a touchscreen display.", + "Cellphones typically have a rectangular shape with a touch screen display.", + "A cellphone typically has a small screen on the front that is used to display information and control the phone.", + "Most cellphones these days are smartphones, which means they have a touch screen interface and generally a rectangular shape.", + "A cellphone is typically a small, pocket-sizedrectangular device with a touch screen and various input buttons.", + "A cellphone looks like a small handheld computer.", + "A cellphone typically has a rectangular shape with a touch screen display.", + "Most cell phones have a rectangular shape with a color screen.", + "Most cellphones have a case, a screen, and buttons.", + "A cellphone typically has a glossy, touch screen display and a camera on the front and back.", + "You can identify a cellphone by its rectangular shape, touch screen, and array of apps.", + "The best way to identify a cell phone is by its International Mobile Equipment Identity (IMEI) number.", + "The following are ways to identify a cellphone:-The device should have a display screen that is used to view information and applications.", + "You can identify a cellphone by its unique IMEI number.", + "A cellphone is typically small and has a touchscreen.", + "The easiest way to identify a cellphone is by the number of bars on the phone.", + "A cellphone can typically be identified by its make and model.", + "One way to identify a cellphone is by looking for a camera on the device.", + "The easiest way to identify a cellphone is by its form factor.", + "There are a few ways that you can identify a cellphone.", + "A cellphone typically has a rectangular shape with a touchscreen display in the front, a physical keyboard below the display, and speakers on the sides or back.", + "Image result for what does a cell phone look like.", + "A cellphone typically has a display screen, keypad or touchscreen, speakers, and one or more antennas.", + "A cellphone typically has a large screen on the front, a speaker and microphone on the bottom, and a physical button on the side or front to answer phone calls.", + "Cellphones vary in appearance, but most have a small screen, a keyboard or touchscreen, and buttons on the side.", + "A cellphone typically has a flat surface with a screen on the front, a physical or virtual keyboard on the bottom, and physical buttons or a touch screen on the side or front.", + "Cellphones come in many shapes and sizes, but they all have a screen, physical buttons, and a microphone.", + " my cellphone looks like a 1950's style phone.", + "Cellphones vary in size and shape, but most have a rectangular design with a touch screen.", + "A cellphone typically has a large screen on the front, a small camera on the back, and buttons on the side.", + "The image is of a Rose Gold iPhone 8.", + "In the image, there is a close-up of a cellphone with a light blue background.", + "The image is of a cellphone with a green background.", + "One image from the internet of a cellphone is a picture of a person holding a phone up to their ear.", + "A cellphone is a portable telephone that uses a cellular network to make and receive calls.", + "1.", + "The image is of a white iPhone with a cracked screen.", + "The image is of a rose-gold iPhone with a white case.", + "This image is of a woman holding a cellphone up to her ear.", + "The image is of a silver iPhone with a black case.", + "Smartphone with social media notifications.", + "A woman texting on her cellphone.", + "A cellphone with a broken screen.", + "Cell phone with text message conversation on screen.", + "A cellphone with a cracked screen.", + "Cell phone with a cracked screen.", + " A cellphone with a pink caseThis is a candid photo of a woman holding a pink cellphone.", + "A young woman using a cellphone.", + "Cellphone with pink case.", + "A cellphone with an image of a heart on the screen." + ], + "chair": [ + "A chair is a piece of furniture with a raised surface supported by legs, commonly used to seat a single person.", + "Most chairs have four legs, a seat, and a back.", + "A chair typically has four legs, a back, and a seat.", + "A chair is a piece of furniture with a raised surface supported by legs, typically used to seat a single person.", + "A chair is a piece of furniture that has a seat, a back, and legs.", + "A regular chair has four legs, a back, and a seat.", + "A chair is a seat for one person, typically with four legs and a back.", + "A chair typically has four legs, a back, and a seat.", + "A chair is a piece of furniture with a raised surface supported by legs, typically used to seat a single person.", + "A chair typically has four legs, a back, and a seat.", + "It can be difficult to identify a chair without knowing its purpose, material, or design.", + "A chair is a piece of furniture with a seat, legs, and back, designed for a person to sit on.", + "You can identify a chair by its function, which is to provide a place to sit, or by its form, which is four legs, a seat, and a back.", + "A chair typically has four legs, a backrest, and a seat.", + "A person can identify a chair by looking at its overall shape and design.", + "There are many ways to identify a chair.", + "A chair is a piece of furniture with a raised surface supported by legs, commonly used to seat a single person.", + "A chair is a piece of furniture with a raised surface supported by legs, commonly used to seat a single person.", + "The easiest way to identify a chair is by its four legs.", + "A chair is a piece of furniture with a raised surface supported by legs, commonly used to seat a single person.", + "This is a difficult question.", + "A chair usually has four legs, a back, and a seat.", + "A chair looks like a piece of furniture that has a back and a seat and four legs.", + "A chair typically has four legs, a backrest, and a seat.", + "A chair is typically a piece of furniture with a raised surface supported by four legs, used for sitting in.", + "A chair typically has four legs, a back, and a seat.", + "A chair typically has four legs, a backrest, and a seat.", + "A chair is a piece of furniture with a raised surface supported by legs, commonly used to seat a single person.", + "This is a difficult question.", + "A chair typically has four legs, a backrest, and a seat.", + "This image is of a tall, wooden chair with a cushion on the seat.", + "This chair is from IKEA and is called the PO\u00c4NG Chair.", + "This image is a photograph of a white plastic chair with a blue seat cushion.", + "This image is of a white plastic chair with metal legs.", + "This image is of a blue upholstered armchair with a light wood frame.", + "A blue plastic chair with a curved back and seat.", + "A image of a chair from the internet is a chair with four legs and a back.", + "The image is of a blue chair with white dots.", + "The image is of a blue armchair with white piping.", + "The image is of a blue chair with white stripes.", + "A chair in a room.", + "This chair was designed by Charles and Ray Eames in 1958.", + "A chair in a room.", + "This is a chair.", + "A blue chair with white piping.", + "A blue chair with a white cushion.", + "A simple wooden chair with a cushioned seat.", + " A blue chair with a white cushion.", + "This chair is made of wood and has a cushion on the seat.", + "Yellow plastic chair on a lawn." + ], + "chandelier": [ + "A chandelier is a decoratively ornate light fixture suspended from the ceiling, usually operated by a switch.", + "A chandelier is a decorative ceiling fixture that typically features several lights.", + "A chandelier is a decorative ceiling fixture that typically has multiple arms and hangs from a chain or rod.", + "A chandelier is a decorative ceiling light fixture.", + "A chandelier is typically a decorative light fixture suspended from the ceiling by a chain or metal rod.", + "A chandelier is a type of light fixture that hangs from the ceiling and is often decorative.", + "A chandelier has many long, thin pieces of metal or wood coming out of a central point.", + "A chandelier is a decorative ceiling-mounted light fixture with multiple lights.", + "A chandelier typically consists of a central metal rod with arms extending outward, on which there are a series of metal or glass shades.", + "A chandelier is a type of light fixture that hangs from the ceiling and has multiple arms with light bulbs or candles on the end.", + "A chandelier is a decorative ceiling light that is usually hung from the center of a room.", + "The easiest way to identify a chandelier is to look for a light fixture that hangs from the ceiling and has multiple light bulbs.", + "A chandelier typically has an ornate design and hangs from the ceiling.", + "The most obvious way to identify a chandelier is by its appearance.", + "Chandeliers are often distinguished by their intricate designs and the number of lights they have.", + "Chandeliers are typically ornate and have multiple arms holding lights.", + "A chandelier is a ceiling-mounted light fixture with arms that extends from the center.", + "The easiest way to identify a chandelier is by its distinctive shape.", + "The easiest way to identify a chandelier is by its hanging design and numerous arms with lightbulbs or candles.", + "Chandeliers often have many arms with lightbulbs or candles on the end, and hang down from the ceiling.", + "A chandelier is a branch-like fixture with numerous lights that is hung from a ceiling.", + "A chandelier typically consists of a metal frame with several arms, each ending in a holder for a candle.", + "A chandelier is a type of light fixture that contains a series of lights or candles.", + "A chandelier is a type of light fixture that hangs from the ceiling and has multiple lights.", + "A chandelier is a branched, decorative ceiling fixture that holds light bulbs.", + "A chandelier is a decorative light fixture that hangs from the ceiling.", + "A chandelier is a type of light fixture that hangs from the ceiling and has multiple arms with lightbulbs or candles on the end.", + "Achandelier is a type of overhead light fixture that typically features several lights, and may be ornate and decorative.", + "A chandelier is a type of ceiling light that hangs from a chain or rod attached to the ceiling.", + "A chandelier is a decorative light fixture that hangs from the ceiling.", + "This image shows a close-up of a chandelier with intricate metal work and dangling glass beads.", + "An image of a chandelier from the internet is typically a large, ornate light fixture suspended from the ceiling.", + "The image is of a large, ornate chandelier hanging from a ceiling.", + "The image is of a large, ornate chandelier hanging from a ceiling.", + "This image from the internet is of a large, ornate chandelier.", + "The image is of a large, elaborate chandelier hanging in a grand entryway.", + "The image is of a large, ornate chandelier suspended from the ceiling.", + "An image of a chandelier from the internet is an image of a large, decorative light fixture that hangs from a ceiling.", + "This image is of a chandelier that has a lot of small, intricate details.", + "A chandelier is an ornate light fixture suspended from the ceiling, often featuring many lights and elaborate design.", + "A beautiful chandelier hangs in the center of the room, casting a warm and inviting glow.", + "A beautiful chandelier hangs from the ceiling, casting a warm, inviting glow.", + "A beautiful chandelier hangs from the ceiling, casting a warm and inviting glow in the room.", + "An ornate chandelier hangs from the ceiling, casting a warm glow over the room.", + "A beautiful chandelier hangs from the ceiling.", + "This chandelier is from the Palais Garnier in Paris, France.", + " A beautiful chandelier hangs from the ceiling, casting a warm, inviting glow in the room.", + "Beautiful, antique chandelier in a grand foyer.", + "The stunning chandelier in the entrance hall of the Palace of Versailles.", + "A beautiful chandelier hangs from the ceiling." + ], + "cougar body": [ + "A cougar_body typically looks like that of an athletic human being, with a noticeably large head and muscular frame.", + "A cougar body is typically long and lean, with muscular legs and a tight ass.", + "A cougar's body is long and lean, with short fur that is usually tawny or grayish in color.", + "Cougars have long, lithe bodies with powerful muscles.", + "A cougar body is typicallyfit and toned, with long legs and a tight ass.", + "A cougar's body is large and muscular, with long hind legs and a short tail.", + "A cougar body looks like a smaller version of a lion's body.", + "A cougar's body is typically lithe and smaller than that of a lion or bear.", + "?There is no definitive answer to this question as cougar bodies come in all shapes and sizes.", + "A cougar body is typically thin and toned, with long legs and a small waist.", + "There are a few ways to identify a cougar body.", + "There are a few ways to identify a cougar body.", + "There are many ways to identify a cougar body.", + "The easiest way to identify a cougar body is by its size and shape.", + "There are a few ways to identify a cougar body:-The cougar body is typically smaller and more slender than the average body type.", + "A cougar body is typically smaller and slimmer than other types of bodies.", + "There are a few ways to identify a cougar body.", + "A cougar body is typically long and lean with toned muscles.", + "There are a few ways to identify a cougar body:-The body is typically slender and toned, with long legs.", + "A cougar's body is long and sleek, with powerful hind quarters.", + "A cougar's body ischaracterized by its slender waist, long legs, and firm muscles.", + "A cougar body is typically long, lean, and toned.", + "A cougar body typically includes large breasts, a slim waist, and a round butt.", + "There is no one answer to this question since cougars come in many shapes and sizes.", + "A cougar body typically looks toned and fit, with long, lean legs, a tight ass, and a small waist.", + "Cougars are typically slender and toned, with long legs, a tight ass, and a small waist.", + "There is no definitive answer to this question as every cougar's body is unique.", + "The cougar_body looks like a large, muscular cat with a long tail.", + "A cougar body typically looks toned and muscular, with a slim waist and large breasts.", + "There is no set definition for a \"cougar body,\" but typically, a cougar is considered to be an older woman who is attracted to younger men.", + "This image is of a cougar body that has been preserved.", + "The image shows a large cat with tan fur and black spots.", + "The image is of a cougar's body with its fur, claws, and teeth.", + "The image is of a large cat with light brown fur.", + "The image is of a cougar lying on the ground with its body slightly arched.", + "One image of a cougar body that can be found on the internet is of a large cat with a long tail and short fur.", + "A cougar body image from the internet typically shows a large, muscular cat with a long tail.", + "A cougar's body is long, lithe, and muscular, with large hindquarters.", + "The internet image shows a cougar body on a white background.", + "The image is of a large, powerful cat with long, muscular legs.", + "A cougar's body is lithe and muscular, built for speed and agility.", + "This is the body of a cougar.", + "A close up of a cougar's body, showing its fur and muscular build.", + "A cougar's body is muscular and sleek, built for speed and agility.", + "A wild cougar in its natural habitat.", + "A close-up of a cougar's body, showing its fur, claws, and teeth.", + " \"Cougar body in the mountains.", + "An adult cougar body showing its large size, lean muscle, and long tail.", + "This is a picture of a cougar's body.", + "A cougar's body is muscular and sleek, built for power and speed." + ], + "cougar face": [ + "A cougar_face might look like a large cat with a long tail.", + "A cougar_face typically has large ears, a pointed nose, and a long tail.", + "A cougar_face typically has a slender body with long legs, a round face with large ears, and a long tail.", + "There is no definitive answer to this question as cougars come in many different shapes and sizes.", + "A cougar's face is typically long and narrow, with large ears, and its fur is usually light brown or tawny.", + "A cougar's face is long and slender, with high cheekbones, a small nose, and almond-shaped eyes.", + "A cougar_face typically has a short, round head with large ears, and a long, slender body with long legs and a short tail.", + "A cougar_face typically has large eyes, a prominent nose, and a small mouth.", + "A cougar_face might look like a large, tawny cat with long legs, a long tail, and big ears.", + "A cougar_face typically has a pointed nose, defined cheekbones, and a narrow chin.", + "There is no definitive answer to this question, as cougars can vary greatly in appearance.", + "The easiest way to identify a cougar is by its face.", + "There is no definitive answer to this question, as the appearance of a cougar's face can vary greatly depending on its individual characteristics.", + "A cougar has a face that is shaped like a heart and has large, pointy ears.", + "There is no official definition or criteria for identifying a cougar_face, but some common characteristics may include an older woman with a younger appearance, typically over the age of 40.", + "A cougar face can be identified by its wide forehead, high cheekbones, and narrow chin.", + "There is no definitive answer to this question, as cougars can vary greatly in appearance.", + "There is no definitive answer to this question, as cougar faces can vary greatly in appearance.", + "A cougar face can be identified by its large, round head, small ears, and long, protruding muzzle.", + "There is no definitive answer to this question, as there is no one specific physical trait that all cougars share.", + "A cougar face typically looks like that of a middle-aged woman.", + "A cougar face is typically heart-shaped with pointed ears, and its eyes are often narrow and slanted.", + "A cougar face typically includes strong features, such as high cheekbones, a wide forehead, and a pronounced chin.", + "A cougar_face is typically triangular in shape, with pointed ears, and a long, narrow snout.", + "Most cougars have a light-colored coat with darker spots, but some can be reddish or grayish.", + "I'm not sure what you're asking.", + "There is no one definitive answer to this question.", + "There is no definitive answer to this question, as the appearance of a cougar face can vary greatly depending on the individual animal's unique markings.", + "There is no one answer to this question as cougar faces can vary greatly in appearance.", + "I'm not sure what you're asking.", + "A cougar face is an image of a predatory cat that typically has brown fur and green eyes.", + "The image is of a large cat with golden fur and piercing green eyes.", + "The image is that of a cougar with its mouth open and its tongue hanging out.", + "The image is of a large feline, with light brown fur and black spots.", + "A cougar's face is typically long and narrow with high cheekbones, a forehead that slopes back, and ears that are small and rounded.", + "This image is of a cougar face looking directly into the camera.", + "The image from the internet is of a large, predatory cat with powerful muscles, large claws, and sharp teeth.", + "The image is of a cougar's face with its mouth open.", + "The image is of a cougar's face looking to the side with its mouth open.", + "The image is of a cougar with its mouth open, revealing its sharp teeth.", + "A portrait of a cougar, looking directly at the camera with a fierce expression.", + "A cougar's face is marked by a reddish brown coat, with a white chest and belly.", + "Cougar_face looking in the camera with a stern look.", + "This is a photo of a cougar face.", + "A close-up of a cougar's face, showing its big, sharp teeth.", + " A cougar's face is typically characterized by long, narrow cheeks, a prominent forehead, and a muzzle with long whiskers.", + " Plant life in the Amazon rainforestA caption of an image of a morphing human face: The ever-changing landscape of the Amazon rainforest.", + "A close-up of a cougar's face, showing its green eyes and furry coat.", + "A cougar's face up close.", + "A depicts a cougar face in profileThe caption reads: \"A cougar's face in profile, showing its long whiskers and powerful jaw." + ], + "crab": [ + "A crab is an invertebrate animal with a hard shell and five pairs of legs.", + "A crab is a small, hard-shelled creature with eight legs and two large claws.", + "A crab is an omnivorous marine crustacean that has a wide, flat carapace, two large compound eyes, ten legs, and two long, claws.", + "A crab is a small, rounded animal with a hard shell and ten legs.", + "A crab is an invertebrate animal that has a hard exoskeleton.", + "Crabs are small to medium-sized crustaceans with long legs and a wide, flattened body.", + "A crab is a small, hard-shelled seafood that typically has eight legs, two large claws, and a soft underbelly.", + "A crab looks like it has a very hard exterior with a lot of small legs sticking out.", + "Crabs are freshwater or marine invertebrates that have a hard exoskeleton and five pairs of legs.", + "Most crabs have a hard exoskeleton, or shell, that protects their body.", + "A crab is a marine crustacean with a broad, flat carapace, two unequal-sized pincers on the first two segments of the thorax, and two pairs of walking legs.", + "A crab is an invertebrate animal that has a hard shell and five pairs of legs.", + "A crab is a crustacean with five pairs of legs and a pair of large claws.", + "One way to identify a crab is by its hard shell, which is used for protection.", + "A crab has a segmented body with a hard shell.", + "Crabs have a hard shell that protects their body.", + "The easiest way to identify a crab is by its two large claws.", + "There are many ways to identify a crab.", + "A crab is a small, hard-shelled creature that lives in the ocean.", + "Crabs tend to have a small, slender body with a hard shell.", + "A crab typically has a long body with a hard shell.", + "A crab looks like a small, hard-shelled creature with eight legs.", + "A crab looks like a red or brown shell with two claws.", + "Crabs are large, hard-shelled crustaceans that are found in oceans all over the world.", + "A crab is a marine crustacean with a hard exoskeleton.", + "A crab is a ten-legged crustacean with an exoskeleton that it must shed periodically as it grows.", + "A crab is a small, hard-shelled creature with six legs and two large claws.", + "A crab is a crustacean that typically has a wide, flat body with five pairs of legs.", + "A crab looks like a small, hard-shelled animal with eight legs.", + "A crab looks like a crustacean with eight legs, two large claws, and a hard shell.", + "This image is of a crab walking on a beach.", + "This image is of a brightly colored crab with red, blue, and yellow spots on its shell.", + "This image shows a crab on a white background.", + "The image is of a small, red crab crawling on a wet rock.", + "The image is of a crab on a red background.", + "The image is of a crab with red and white stripes on its shell.", + "The image is of a red crab with large claws.", + "This image is of a crab on a beach.", + "The image is of a crab on a white background.", + "This image from the internet shows a crab set atop a white plate with a pink claw sticking out to the side.", + "This crab was caught in the Pacific Ocean off the coast of Oregon.", + " A crab with its large claws.", + "A crab enjoying the sunny day.", + " A crab rests on a piece of coral.", + "A crab on the beach.", + " A crab on the beach.", + "Red crab on white sand.", + " A crab scuttling along the seafloor.", + "A crab scuttles across the sand.", + "Sea crab on the ocean floor." + ], + "crayfish": [ + "A crayfish has a long body with a hard exoskeleton and eight legs.", + "A crayfish is a small lobster-like creature that is usually brown or red.", + "A crayfish is a lobster-like creature that is typically red or brown.", + "A crayfish typically has a dark brown or green exterior and a white underside.", + "A crayfish is a small, lobster-like creature with a hard shell.", + "A crayfish is a small freshwater crustacean that resembles a lobster.", + "A crayfish is a small, freshwater crustacean that resembles a miniature lobster.", + "A crayfish is a small, freshwater crustacean that resembles a lobster.", + "A crayfish is a freshwater lobster.", + "A crayfish is a small, freshwater crustacean that resembles a miniature lobster.", + "There are many ways to identify a crayfish.", + "A crayfish can be identified by its reddish color, small claws, and long antennae.", + "If you found a freshwater crayfish in North America, it would likely be one of several species in the genus Procambarus.", + "One way to identify a crayfish is by its tail.", + "A crayfish, also called a crawfish or crawdad, is a freshwater crustacean that resembles a miniature lobster.", + "A crayfish is a small, lobster-like creature that has a hard shell and a long, segmented body.", + "The easiest way to identify a crayfish is by its large claws.", + "A crayfish can be identified by its long, antennae-like pincers and its hard, shell-like body.", + "A crayfish can typically be identified by its long, segmented body covered in a hard exoskeleton.", + "A crayfish is a small, freshwater crustacean that resembles a lobster.", + "A crayfish looks like a small lobster.", + "A crayfish is a small, lobster-like freshwater crustacean.", + "A crayfish has a body that is similar in shape to a lobster.", + "A crayfish looks like a small lobster.", + "Crayfish are closely related to lobsters.", + "A crayfish looks like a cross between a shrimp and a lobster.", + "A crayfish is a small, freshwater crustacean.", + "A crayfish looks like a small lobster or large shrimp.", + "A crayfish look like a small lobster.", + "A crayfish looks like a lobster.", + "This image is of a crayfish on a white background.", + "A crayfish is a small freshwater crustacean with a hard exoskeleton and ten legs.", + "The crayfish in the image is brown and green with a hard shell.", + "This crayfish image is from an online search and depicts a crayfish in a natural setting among rocks and plants.", + "This image shows a crayfish in profile, with its large claws extended.", + "The image is of a crayfish on a white background.", + "The image is of a crayfish on a white background.", + "The image shows a crayfish against a white background.", + "The image shows a crayfish in profile, with its large claws clasped in front of its body.", + "An image from the internet of a crayfish may show a crayfish in its natural habitat, such as in a river or stream.", + "Crayfish are a popular seafood dish, typically boiled or steamed.", + "A crayfish in a freshwater stream.", + "Crayfish are a type of freshwater crustacean that are closely related to crabs and lobsters.", + "CrayfishPhotographed in an underwater cave in Australia, this crayfish is one of many that make their home in the cave's cool, dark waters.", + "Crayfish with its claws out.", + "A crayfish, also known as a crawfish, is a freshwater crustacean that resembles a small lobster.", + "Crayfish are a type of freshwater lobster.", + " A crayfish, also called a crawfish or crawdad, is a freshwater crustacean similar to a lobster.", + "A crayfish in a freshwater stream.", + "A crayfish, or lobster, is a freshwater crustacean that is related to crabs and shrimp." + ], + "crocodile": [ + "A crocodile is a large reptile that has a long snout, a strong body, and a long tail.", + "A crocodile is an elongated, aquatic reptile with a long, snout, sharp teeth, and a tail.", + "A crocodile is a large reptile with a long snout, sharp teeth, and a tough, scaly hide.", + "The crocodile is a large reptile with a long body and a long tail.", + "A crocodile looks like a large, draconian reptile with a long snout, sharp teeth, and a muscular tail.", + "A crocodile looks like a large, green reptile with a long snout and a tail.", + "A crocodile looks like a large, scaly reptile with a long snout.", + "A crocodile is a large reptile that lives in freshwater habitats, such as rivers, lakes, and swamps.", + "A crocodile is a large reptile that has a long, narrow snout and sharp teeth.", + "A crocodile is a large reptile that has a long snout and a thick, scaly skin.", + "The easiest way to identify a crocodile is by its long, narrow snout.", + "The easiest way to identify a crocodile is by its long, narrow snout.", + "Crocodiles can be identified by their long, narrow snouts, and by the ridges that run along the length of their backs.", + " Size, shape of snout, and teeth are the best way to identify a crocodile.", + "A crocodile can be identified by its long, narrow snout and its large, elliptical eyes.", + "Crocodiles have thick, scaly skin that is usually gray, green, or brown.", + "The easiest way to identify a crocodile is by its long snout.", + "The easiest way to identify a crocodile is by its long, pointy nose.", + "You can identify a crocodile by its long snout, webbed feet, and scaly skin.", + "A crocodile's skin is thick and scaly.", + "A crocodile is a reptiles with a long snout, a greenish-brown color, and a scaly hide.", + "A crocodile is a green reptile with a long nose and a large mouth.", + "A crocodile is a large reptile that resembles an alligator.", + "A crocodile is a large reptile with a long, narrow snout.", + "A LEGO crocodile looks like a green, scaly reptile with a long tail and sharp teeth.", + "A crocodile is a large, scaly reptile with a long, snout.", + "A crocodile is a large reptile with a long, thick body and a long, tapered snout.", + "Crocodiles are large, predatory reptiles that live in freshwater habitats around the world.", + "A crocodile is a large reptile with a long snout and greenish-brown skin.", + "A crocodile is typically dark green or brown in color.", + "The image is of a large crocodile lying on a riverbank with its mouth open.", + "I found an image of a crocodile on the internet that I really liked.", + "This image is of a large crocodile sunning itself on a rock in a river.", + "The image is of a large crocodile lying in the sun near the water's edge.", + "This image from the internet shows a crocodile sunning itself on a riverbank.", + "The image is of a large crocodile with its mouth open.", + "The image is of a crocodile sunning itself on a bank with its mouth open.", + "The image is of a crocodile sunning itself on a river bank.", + "The image from the internet of a crocodile is of a large, green crocodile with its mouth open.", + "This image is of a crocodile sunning itself on a river bank.", + "A crocodile closes its eyes as it basks in the sun.", + "A crocodile suns itself on the riverbank.", + " A crocodile basks in the sun on the banks of the Nile River.", + "A crocodile suns itself on the bank of a river.", + "A crocodile lies in the sun next to a lake.", + "A crocodile basking on the riverbank.", + "A saltwater crocodile rests on the riverbank in the Northern Territory of Australia.", + "A crocodile looks like it is ready to pounce on its next meal.", + "A crocodile basks in the sun on a mossy log.", + " A large crocodile basking in the sun." + ], + "crocodile head": [ + "A crocodile head is long and thin, with a sharp snout.", + "A crocodile head is long and skinny with sharp teeth.", + "A crocodile head is large and green with sharp teeth.", + "A crocodile head is long and triangular, with sharp teeth protruding from its mouth.", + "A crocodile_head has a large, triangular head with a long, powerful jaw.", + "A crocodile head is large and green with a long snout.", + "A crocodilehead is often compared to a dinosaurs head.", + "A crocodile head typically features large, sharp teeth and a long snout.", + "A crocodile head is long and narrow with sharp teeth.", + "A crocodile head is long and thin, with sharp teeth and eyes on the sides.", + "By its snout, which is long and tapered, and its eyes, which are located on the top of its head.", + "A crocodile head can be identified by its long snout, which is filled with sharp teeth.", + "The head of a crocodile is large and flat with a long, V-shaped snout.", + "A crocodile head is distinguished by its long, narrow snout and its large, tooth-filled mouth.", + "One way to identify a crocodile head is by its long, narrow snout.", + "A crocodile head is typically triangular in shape and has a large, tooth-filled mouth.", + "The easiest way to identify a crocodile head is to look for the two large, sharp teeth that protrude from the crocodile's mouth.", + "A crocodile head is typically long and narrow with sharp teeth.", + "The crocodile head is the most easily identifiable part of the crocodile.", + "One way to identify a crocodile head is by its long, thin snout.", + "A crocodile head looks like a large reptilian head with sharp teeth.", + "A crocodile head is typically long and narrow with sharp teeth.", + "Crocodile heads are large and triangular, with sharp teeth protruding from the mouth.", + "A crocodile head is long and narrow with a pointed snout.", + "A crocodile head looks like a scaled, elongated snout with rows of sharp teeth.", + "A crocodile head looks like a long, green, scaly head with sharp teeth.", + "A crocodile head looks like a dragon head with green skin.", + "A crocodile head is shaped like a long, narrow triangle with a pointed snout.", + "A crocodile head looks like a long, green, snake-like head with sharp teeth.", + "A crocodile head looks like a long, green, scaly snout with sharp teeth.", + "A crocodile's head is long, narrow, and triangular.", + "This image is of a crocodile head.", + "The image is of a crocodile's head poking out of the water.", + "The image is of a crocodile head with its mouth open.", + "The image is of a crocodile head with its mouth open.", + "The image from the internet is of a crocodile head.", + "The image is of a crocodile head with its mouth open.", + "The image is of a crocodile head with its mouth open.", + "The image shows the head of a crocodile, with its large mouth open and its sharp teeth on display.", + "The image shows a close-up of a crocodile's head, with its large teeth and greenish-grey skin.", + "Crocodile head poking out of water.", + " A crocodile looking menacing with its large teeth showing.", + "A crocodile head peeks out of the water, its mouth open revealing sharp teeth.", + " \"Crocodile head with toothy grin.", + "Crocodile head.", + "The crocodile is a large reptile that lives in freshwater habitats, such as rivers, lakes, and swamps.", + "A crocodile head poking out of the water.", + "Crocodile Head.", + "The crocodile is a large reptile that lives in freshwater habitats, such as rivers and lakes.", + "A close up of a crocodile's head, showing its teeth." + ], + "cup": [ + "A cup is a handheld container typically used to hold liquids like water, coffee, or tea.", + "A cup is a cylindrical object used for drinking beverages.", + "A cup is a small container with a handle that is used to hold liquids.", + "A cup is a small, open container typically used for drinking.", + "A cup is typically a small, round, open container used for drinking.", + "A cup is a round, hollow object that is used for drinking.", + "A cup typically has a cylindrical shape with a concave base and a flared rim.", + "A cup is a container with a shape that tapers at the top, typically with a handle, used for holding liquids.", + "A cup is a drink container with a handle, typically made of glass, ceramic, or plastic.", + "A cup typically has a cylindrical shape with a handle, and is used to hold liquids.", + "A cup typically has a handle and is used for drinking.", + "A cup is a container typically used to hold liquids.", + "A cup has a handle and is used to hold liquids.", + "A cup is generally a container with a handle and a rim, which is used to hold liquid.", + "A cup is typically distinguished from other types of containers by its ability to hold liquid without leaking, and by its shape, which allows it to rest stably on a flat surface.", + "A cup typically has a handle and a rim.", + "A cup is a container with a handle and a rim that holds liquid.", + "A cup is a small container that holds a liquid.", + "A cup can be identified by its shape.", + "A cup can be identified by its round shape and concave top.", + "A traditional cup has a circular base and a cylindrical body.", + "A cup looks like a small container with a handle that is used for drinking.", + "A cup is a container with a round base and a handle.", + "A cup typically has a cylindrical shape with a circular base and a flared lip.", + "A cup is a small container typically used to hold liquid.", + "A cup is a container that has a base and a sides that come up around the base.", + "A cup is a small, open container typically used to hold liquids.", + "A cup is a container used to hold liquids.", + "A cup is typically round with a handle and a lip.", + "A cup can either look like a cone or a cylinder.", + " of coffeeThe image is of a small, white cup of coffee with steam rising from it.", + "A cup is a small, bowl-shaped container used for drinking.", + "cakeThe image is of a cupcake with chocolate frosting.", + " of coffeeThe image is of a cup of coffee with steam rising from it.", + " of coffeeThe image is of a cup of coffee with steam rising from it.", + " of coffeeThe image is of a hot cup of coffee with steam rising from it.", + " of coffeeThe image is of a cup of coffee with steam rising from it.", + "The image is of a cup with a green and white pattern.", + "cakeThis image is of a cupcake with a white frosting and sprinkles.", + "This image is of a cup on a table.", + "A cup of coffee on a table.", + "A cup of coffee on a table.", + "Coffee cup on a saucer.", + "A cup of coffee on a table.", + "A person's hand holding a white ceramic coffee cup with the word \"coffee\" written in black ink.", + "A blue cup on a white background.", + " A cup of hot teaA cup of hot tea is the perfect way to relax on a cold winter day.", + " \"Coffee mug on a table with a plants in the background.", + "\"This cup was given to me by my grandmother.", + "Cup of coffee on a table." + ], + "dalmatian": [ + "A dalmatian is a medium sized dog that is peahwhite with black spots all over its body.", + "A dalmatian is a white dog with large black spots.", + "A dalmatian is typically a medium-sized, short-haired dog with black and white fur.", + "A dalmatian is a medium-sized, short-haired breed of dog with black or liver-colored spots.", + "A dalmatian looks like a white dog with black spots.", + "A dalmatian is a medium-sized dog with short fur that is usually black and white.", + "A dalmatian is a large, spotted dog breeds.", + "A dalmatian is a dog that is born with white fur and black spots.", + "A dalmatian is a dog that is black and white.", + "A dalmatian is a breed of dog that is typically white with black spots.", + "Dalmatians are easily recognized by their black-and-white or liver-and-white spotted coats.", + "The most common way to identify a dalmatian is by its unique black and white spotted coat.", + "Dalmatians are a medium-sized breed of dog with a short, stiff coat of black and white spotted hair.", + "Dalmatians are black and white.", + "Dalmatians are distinguished by their spots, which are usually black against a white background.", + "Dalmatians are most easily identified by their unique black and white spotted coats.", + "A dalmatian can be identified by its short, stiff coat of black or liver spots on a white background.", + "A dalmatian is a breed of dog that is easily recognizable by its unique black and white spotted coat.", + "A dalmatian has a short, stiff coat of black spots on a white background.", + "A dalmatian can be identified by its short, stiff coat of black and white spots.", + "A dalmatian looks like a short-haired, spotted dog.", + "A dalmatian is a spotted breed of dog.", + "A dalmatian's coat is short and stiff, and the hair on the dog's back is often longer than that on its belly.", + "A dalmatian is a medium-sized, short-coated dog with distinctive black or liver spots on a white background.", + "Dalmatians are black and white.", + "A dalmatian is a large dog with a short, stiff coat of black spots on a white background.", + "A dalmatian is a type of dog that is black with white spots.", + "A dalmatian is a breed of dog that is typically white with black spots.", + "A dalmatian is a dog that is mostly white with black spots.", + "spotty.", + "A black and white spotted dog with an energetic expression and his tongue hanging out.", + "The image is of a dalmatian that is mostly white with large black spots.", + "There is an image of a dalmatian on the internet that looks like a real life version of the cartoon character, Pluto.", + "I found an image of a dalmatian on the internet that I really liked.", + "A dalmatian is a white dog with black spots.", + "I found an image of a dalmatian on the internet that I really like.", + "A dalmatian is a black and white spotted dog.", + "I found an image of a dalmatian that I really like.", + "The image is of a dalmatian dog.", + "I found an image of a dalmatian on the internet.", + "A dalmatian dog with its spots clearly visible.", + "A dalmatian dog stands in a grassy field.", + "A dalmatian dog stands in a grassy field, looking alert and attentive.", + "A dalmatian stands in a grassy field, its spots clearly visible.", + "A dalmatian dog breed is known for their black and white spotted coat.", + "This is a picture of a dalmatian.", + "This Dalmatian is from Croatia, where the breed originated.", + "A dalmatian dog sitting in a grassy field.", + "A Dalmatian puppy sitting in the grass.", + "This dog is a dalmatian." + ], + "dollar bill": [ + "A one dollar bill is a piece of paper money that is worth one United States dollar.", + "A dollar bill is a rectangular piece of paper with a greenish-white color.", + "A dollar bill is a rectangular piece of paper with George Washington's face on it.", + "A dollar bill is a rectangle shaped piece of paper.", + "A dollar bill is a piece of paper currency that is worth one United States dollar.", + "A dollar bill is a thin piece of paper with a portrait of President George Washington in the center.", + "A dollar_bill looks like a rectangular piece of paper with a greenish hue.", + "A dollar bill is a rectangular piece of paper with George Washington's portrait on the front and the words \"United States of America\" and \"One Dollar\" printed on the back.", + "A dollar_bill is a flat, rectangular piece of paper with images and text printed on it.", + "A dollar_bill is a rectangular piece of paper with a greenish tint.", + "A dollar bill has the words \"United States of America\" across the top, \"One Dollar\" in the center, and a picture of George Washington on the front.", + "One way to identify a dollar bill is by its color.", + "One way to identify a dollar bill is by looking for the words \"United States of America\" and \"One Dollar\" written on the front side of the bill.", + "The front of a dollar bill has a portrait of George Washington.", + "By its color, size, and the portrait of George Washington on the front.", + "The dollar_bill has the image of George Washington on the front and the back has the image of the United States Treasury.", + "A dollar bill is rectangular and has a portrait of George Washington on the front.", + "It has a portrait of George Washington on the front and the back has an image of the United States Treasury.", + "A dollar bill has \"In God We Trust\" written on it as well as the number one.", + "U.", + "A one dollar bill in the United States has George Washington on the front and the Great Seal of the United States on the back.", + "-A one dollar bill in the United States has a portrait of George Washington on the front and the Great Seal of the United States on the back.", + "A dollar bill looks like a rectangular piece of paper with green ink on one side and pictures of presidents on the other.", + "A one dollar bill in the United States has the portrait of George Washington on the front and the Great Seal of the United States on the back.", + "A dollar bill is green and has a picture of George Washington on it.", + "A one dollar bill in the United States has a portrait of George Washington on the front and the Great Seal of the United States on the back.", + "Image of a one dollar bill: https://en.", + "A dollar bill is a piece of paper that is green on one side and has a picture of George Washington on the other side.", + "A dollar bill looks like a rectangular piece of green paper with images of George Washington and Abraham Lincoln printed on it.", + "A dollar bill looks like a rectangular piece of paper with green ink on one side and a portrait of George Washington on the other.", + "The image that I found was of a $100 bill.", + "The image is of a dollar bill with Abraham Lincoln's portrait on the front.", + "A dollar bill is a green piece of paper with a picture of George Washington in the middle.", + "The image is of a one dollar bill.", + "A banknote of one dollar.", + "A U.", + "The image is of a dollar bill with the face of George Washington in the center.", + "The image is of a dollar bill.", + "A dollar bill is a green piece of paper with a white portrait of George Washington in the center.", + "The image is of a dollar bill with the number \"1\" in the middle.", + "In God We Trust.", + "One Dollar Bill.", + "\u2022 A close-up of a one dollar bill.", + " A dollar billA caption of an image of a stack of dollar bills: A stack of dollar bills.", + "One dollar bill.", + "\"One dollar bill\".", + "A dollar billA close up of a one dollar billfeaturing George Washington in the center.", + "One dollar bill.", + " George Washington, America's first president, is on the one dollar bill.", + "One dollar bill." + ], + "dolphin": [ + "Dolphins are marine mammals that are closely related to whales and porpoises.", + "Dolphins are Mammals of the order Cetacea, which includes whales and porpoises.", + "A dolphins is a mammal that lives in water.", + "A dolphin is a marine mammal that is closely related to whales and porpoises.", + "a dolphin has a long snout and a blowhole on the top of its head.", + "A dolphin looks like a small, toothed whale.", + "A dolphin is a mammal that lives in the water.", + "They are a mammal that is closely related to whales and porpoises.", + "A dolphin has a long nose and a big smile.", + "A dolphin is a marine mammal that is closely related to whales and porpoises.", + "Dolphins have a unique look to them that can help you identify them.", + "A dolphin is a mammal that is closely related to whales and porpoises.", + "Dolphins are friendly, intelligent animals that are closely related to whales.", + "A dolphin is a mammal with a pointed nose, long fin-like tail, and barrel-shaped body.", + "A dolphin is a marine mammal that belongs to the cetacean family, which includes whales and porpoises.", + "The easiest way to identify a dolphin is by its characteristic snout, or beak.", + "Dolphins have a curved mouth that forms a permanent \"smile,\" and their forehead has a large bump called a \"melon.", + "Dolphins have a curved dorsal fin and a long, beak-like snout.", + "A dolphin is a mammal with a long nose and a fin on its back.", + "Dolphins have a unique shape that helps to identify them.", + "A dolphin's body is long, sleek, and very stream-lined.", + "A dolphin is a mammal that lives in the water.", + "Dolphins are a type of marine mammal that are closely related to whales.", + "Image result for what does a dolphin look likeA typical dolphin has a long, curved mouth that is shaped like a cone, andiliac crests (swimming bumps) on either side of its large, curved dorsal fin.", + "A dolphin is a marine mammal.", + "A dolphin looks like a mammalian creature that is closely related to whales and porpoises.", + "A dolphin is a mammal that lives in the water.", + " image: https://www.", + "A dolphin is a marine mammal that is closely related to whales and porpoises.", + "A dolphin is a marine mammal that is closely related to whales and porpoises.", + "The image shows a dolphin swimming in the ocean, with the sun shining in the background.", + "The image shows a dolphin swimming happily in the ocean with the sun shining down on it.", + "This image is of a dolphin swimming under water.", + "An image of a dolphin from the internet is a photo or drawing of a dolphin, typically in its natural habitat.", + "I found an image of a dolphin on the internet.", + "The image is of a dolphin swimming in the ocean with the sun shining in the background.", + "This image is of a dolphin swimming under water.", + "One image from the internet of a dolphin shows the mammal breaching out of the water.", + "In the image, a dolphin is swimming in the ocean with its head and body above water.", + "The image I found depicts a dolphin happily swimming through the ocean.", + "Dolphin in the wild.", + " A pod of dolphins swimming in the ocean.", + "N.", + "A dolphin leaps out of the water.", + "A bottlenose dolphin breaches the water's surface.", + "Dolphin leaping out of the water.", + "Dolphin jumping out of the water.", + "Dolphin PlayA dolphin leaps out of the water while playing with a ball.", + "A dolphin breaching the water's surface.", + "A dolphin leaping out of the water." + ], + "dragonfly": [ + "A dragonfly has a long, thin body with two pairs of wings that are almost transparent.", + "A dragonfly is a small, flying insect with four large wings.", + "A dragonfly is a small to medium sized insect.", + "Hammerhead, long and slender body, two pairs of wings that are clear with dark markings, long legs, and large eyes.", + "A dragonfly looks like a small airplane with four wings.", + "A dragonfly is a colorful insect that has two large wings and four smaller wings.", + "A dragonfly typically has two pairs of large, transparent wings.", + "A dragonfly typically has a long, slender body with two pairs of wings that are both transparent.", + "A dragonfly is a larval or nymph form of an insect belonging to the order Odonata, characterized by large multifaceted eyes, two pairs of strong, transparent wings, and an elongated body.", + "Most dragonflies are colored in a way that makes them difficult to see when they are at rest.", + "There are many ways to identify a dragonfly.", + "A dragonfly can be identified by its long, thin body and large wings.", + "The easiest way to identify a dragonfly is to look at its wings.", + "A dragonfly can be identified by its large eyes, thin body, and long wings.", + "Most dragonflies have large compound eyes, thin bodies, and two pairs of wings that are equal in size.", + "A dragonfly can be identified by its long, thin body and four wings that are all the same size.", + "The easiest way to identify a dragonfly is by its large compound eyes and long thin body.", + "Some ways to identify a dragonfly are by its large eyes, long thin body, and two pairs of wings that are all the same size.", + "It can be difficult to identify a dragonfly because there are so many different species.", + "A dragonfly has two pairs of wings that are membranous, meaning they are thin and transparent.", + "A dragonfly look like a flying insect that has a long slender body with two pairs of wings that are transparent.", + "A dragonfly is a flying insect that looks like a small dragon.", + "A dragonfly looks like a flying insect with large eyes and long, thin wings.", + "The dragonfly has a long, slender body with six legs.", + "Most dragonflies have long, thin bodies with two pairs of thin, transparent wings.", + "A dragonfly is a flying insect that has a very thin body and two large wings that are often brightly colored.", + "A dragonfly typically has two pairs of large, transparent wings.", + "A dragonfly has a long body and two pairs of wings.", + "A dragonfly has a long, thin body with two pairs of wings.", + "Some dragonflies have long, thin bodies with brightly colored wings.", + "A dragonfly is a flying insect that is about the size of a man's hand.", + "This image is of a blue dragonfly perched on a blade of grass.", + "The image is of a blue dragonfly with a black body and yellow spots on its wings.", + "This image from the internet shows a blue dragonfly perched on a green leaf.", + "The image is of a dragonfly with its wings outstretched.", + "This image from the internet shows a dragonfly with a long, slender body and large, transparent wings.", + "I found an image of a dragonfly on the internet that I really liked.", + "The image is of a dragonfly on a blue background.", + "This image is of a blue dragonfly on a leaf.", + "This image is of a blue dragonfly in profile, perched on a blade of grass.", + "This is a dragonfly.", + "A dragonfly in flight.", + "This dragonfly is about to land on a flower.", + "A dragonfly sunning itself on a rock.", + "A golden dragonfly with green eyes perches on a leaf.", + "The dragonfly is an insect that is found near water.", + "A dragonfly perched on a plant in a garden.", + "A dragonfly in mid-flight.", + "A dragonfly in flight.", + "A dragonfly in mid-flight." + ], + "electric guitar": [ + "A electric_guitar typically has six strings and a fretted neck, and is held horizontally by the player.", + "A electric_guitar has a body, a neck, and strings.", + "A electric guitar has a fretted neck and body with a pickguard, typically with six or twelve strings.", + "An electric guitar has a body that is typically made of wood, with a neck that is attached to the body.", + "An electric guitar typically has six strings and a fretted neck.", + "Electric guitars have a solid, flat body that is usually made of wood.", + "An electric_guitar has a body with a large, flat surface on which to rest the guitar while playing.", + "An electric guitar has a solid or semi-hollow body and a long neck.", + "An electric_guitar typically has six strings and a fretted neck.", + "A electric guitar typically has 6 strings and a fretted neck.", + "The electric guitar is a musical instrument that is typically played with the hands.", + "Some ways you can identify an electric guitar are by its shape, by the type of pickups it has, and by the fact that it needs an amplifier to be heard.", + "Most electric guitars have 6 strings.", + "It has six strings and a body with two cutaways.", + "An electric guitar is a guitar that uses one or more pickups to convert the vibration of its strings into electrical signals.", + "Strings, frets, and a generally guitar-like shape are good indicators that an instrument is an electric guitar.", + "If it has electric pickups, then it's an electric guitar.", + "If it has strings and a fretboard, it's probably a guitar.", + "By its shape.", + "An electric guitar can be identified by its shape.", + "A electric_guitar typically has six strings and a fretboard, and is played by plucking the strings with the fingers or a pick.", + "An electric guitar typically has six strings and a fretted neck.", + "An electric guitar typically has a solid body with a metallic finish.", + "A electric guitar typically has 6 strings and a fretted neck.", + "A electric_guitar typically has six strings and a fretted neck.", + "Telecaster.", + "A electric guitar typically has 6 strings and is held like a regular acoustic guitar.", + "An electric guitar typically has a solid body with a Contour or \"flame\" shape.", + "A electric_guitar typically has six strings and a fretted neck, and many also have pickups and other electronic components.", + "An electric guitar typically has a body with a fretted neck, and strings that are plucked or strummed with the fingers or a plectrum.", + "The image shows a person playing an electric guitar.", + "The image is of a black electric guitar with a white pickguard.", + "The image is of a red electric guitar on a white background.", + "The image is of a glossy black electric guitar with a white pickguard.", + "The image is of a black Stratocaster electric guitar with a white pickguard.", + "The image shows a electric_guitar on a stand in front of a microphone.", + "The image is of a glossy black electric guitar.", + "This is an image of an electric guitar that has a black body with a white pickguard.", + "A guitar that has been modified with electrical pickups and amplifiers.", + "An electric_guitar from the internet is a guitar that uses electricity to amplify the sound of the strings.", + "A person playing an electric guitar on stage.", + "This electric guitar is a Les Paul Standard model from Gibson.", + "A guitar player plugs in their electric guitar to an amplifier.", + "In this image, we see a electric_guitar.", + "An electric guitar being played.", + "An electric guitar being played.", + "An electric guitar with a bright blue finish.", + "An electric guitar being played by a musician.", + "This is an electric guitar.", + "This electric guitar is a great instrument for rock and roll music." + ], + "elephant": [ + "An elephant is a large, gray mammal with a long trunk, big ears, and four large, column-like legs.", + "A elephant is a four-legged mammal with a long trunk and large ears.", + "A elephant has a large body, long trunk, and big ears.", + "A elephant typically has a gray or dusty brown skin, and is covered in short hair.", + "Large, grayish-brown animal with a long trunk, large ears, and four legs.", + "A elephant is a large mammal with a long trunk, big ears, and short legs.", + "An elephant is a large, gray mammal with a long trunk, big ears, and four short legs.", + "Most elephants are gray.", + "A elephant has a large body, a long trunk, and large ears.", + "An elephant is a large, gray mammal with a long trunk, big ears, and short legs.", + "The easiest way to identify an elephant is by its trunk.", + "There are a few ways to identify an elephant.", + "The easiest way to identify an elephant is by its trunk.", + "Elephants are the largest land animals on Earth.", + "You can identify an elephant by its large size, its trunk, and its big ears.", + "The easiest way to identify an elephant is by its large size and trunk.", + "An elephant is a large mammal with Gray or reddish-brown skin.", + "Elephants are the largest land animals on Earth.", + "An elephant is a large, gray mammal with long trunk, big ears, and four thick legs.", + " Elephant braincase is much larger and more elongated than that of a human.", + "A elephant looks like a very large mammal with a trunk.", + "A elephant is a giant gray mammal with a trunk.", + "A elephant looks like a very large, gray mammal with a trunk.", + "A elephant is a large mammal with a long trunk, big ears, and a gray color.", + "A elephant looks like a big animal with a long trunk.", + "An elephant is a large, gray mammal with a trunk, big ears, and four legs.", + "A elephant looks like a very large mammal with a trunk and big ears.", + "A elephant looks like a large gray mammal with a trunk.", + "A elephant looks like a big animal with a trunk.", + "A elephant looks like a big, gray animal with a long trunk.", + "The image is of a large elephant standing in front of a large tree.", + "In the image, a large elephant is shown standing in front of a large tree.", + "The image is of a large elephant with big ears and a trunk.", + "In this image, an elephant is standing on a grassy plain with its trunk outstretched.", + "The image is of a large elephant standing in front of a green bush.", + "I found an image on the internet of an elephant that I really liked.", + "This image from the internet is of a large elephant standing in a grassy field.", + "This image is of an elephant standing in a body of water.", + "The image is of a large elephant standing in a green field.", + "In the image, there is a large elephant standing in the middle of a grassy field.", + "A elephant roaming around in its natural habitat.", + "An elephant in the wild, standing amongst tall grasses and trees.", + "The elephant is the largest land animal on Earth.", + "A big elephant playing in the water.", + "A elephant walks through a forest.", + "Elephant in Kenya.", + "A magnificent elephant in its natural habitat.", + " A majestic elephant walks through the jungle.", + "A elephant looks out over a grassy field.", + "Aiea, Hawaii - An elephant at the Honolulu Zoo." + ], + "emu": [ + "The emu is a large bird with a long neck and legs.", + "An emu is a large, flightless bird that is native to Australia.", + "An emu is a flightless bird that is native to Australia and can grow to be about 6 feet tall.", + "An emu is a large, flightless bird.", + "A emu is a large, flightless bird that is native to Australia.", + "The emu is a flightless bird that is native to Australia.", + "An emu is a large, flightless bird with brown feathers, a long neck, and long legs.", + "An emu is a large bird with long legs and a long neck.", + "An emu is a large bird with brown and gray feathers.", + "An emu is a large, flightless bird that is native to Australia.", + "A emu is a large, flightless bird with long legs, a long neck, and a small head.", + "Emus are a type of bird.", + "There are several ways to identify a emu.", + "Emus are large, flightless birds endemic to Australia.", + "The emu is a large, flightless bird that is native to Australia.", + "The emu is the second-largest living bird by height, after its ratite relative, the ostrich.", + "A emu is a large, flightless bird native to Australia.", + "An emu is a flightless bird with two long legs and a long neck.", + "The emu is a long-necked, flightless bird.", + "The easiest way to identify a emu is by its long neck and legs.", + "An emu is a large, flightless bird native to Australia.", + "A emu is a large bird that looks like a ostrich.", + "An emu looks like a large, dark brown bird with a long neck and legs.", + "The emu is a flightless bird that is native to Australia.", + "An emu is a bird that looks like a small ostrich.", + "A emu looks like a large, scaly bird with a long neck and small head.", + "An emu is a large flightless bird.", + "An emu looks like a smaller version of a dinosaur.", + "An emu is a large, flightless bird.", + "An emu looks like a bird.", + "This image is of a emu in a field.", + "_This image is of a emu in a grassy field.", + "The image is of a large, flightless bird with long legs and a small head.", + "The image is of a large, dark-colored bird with a long neck and legs.", + "The image is of a large, flightless bird with dark brown plumage and long, bare legs.", + "This image is of a emu with its beak open, its neck extended, and its body in a upright position.", + "An image of a emu from the internet shows a large, flightless bird with long legs and a long neck.", + "An image from the internet of an emu shows a large, flightless bird with long legs and a long neck.", + "The image is of a brown and white emu with a long neck and legs.", + "> An image from the internet of an emu shows a large, brown bird with a long neck and small head.", + " A large, flightless bird native to Australia, the emu is the world's second-largest living bird by height, after its close relative, the ostrich.", + "An emu in its natural habitat.", + " A large bird with long legs and neck, native to Australia.", + "A juvenile emu in captivity.", + "A emu stares out at the camera, its brown and white feathers ruffled in the wind.", + "This is an emu, a native Australian bird.", + " A large flightless bird native to Australia.", + "The emu is a native bird of Australia.", + " A mostly brown emu with a white chest and neck, looking to the sideAn emu, a flightless bird native to Australia, stares off to the side.", + "This is an emu, a flightless bird that is native to Australia." + ], + "euphonium": [ + "A euphonium is a brass instrument with a wide, conical bell and three to six valves.", + "A euphonium looks like a large brass instrument with a wide conical bore.", + "A euphonium is a musical instrument in the brass family.", + "The euphonium is a musical instrument in the brass family.", + "A euphonium is a brass instrument that looks like a small tuba.", + "A euphonium is a brass musical instrument with a conical bore and a wide bell.", + "A euphonium looks like a small tuba.", + "A euphonium is a brass instrument that is similar in size and shape to a baritone horn.", + "A euphonium is a musical instrument that looks like a tuba.", + "The euphonium is a tuba-like brass instrument.", + "The Euphonium is a musical instrument in the brass family.", + "The euphonium is a brass instrument with a distinctive shape and sound.", + "The euphonium is a brass instrument similar to the baritone horn.", + "The euphonium is a musical instrument in the brass family.", + "The euphonium is a large, conical-bore brass instrument similar to the baritone horn.", + "Euphoniums can be identified by their distinctive shape.", + "The easiest way to identify a euphonium is by its size.", + "The euphonium is a brass instrument that is similar to the tuba.", + "A euphonium is a tuba-like brass instrument with a mellower, more rounded sound.", + "The euphonium is a gentleman's instrument, often called a tenor tuba.", + "A euphonium is a musical instrument that resembles a small tuba.", + "A euphonium is a brass musical instrument with a deep, mellow sound.", + "A euphonium is a brass instrument that looks similar to a tuba.", + "A euphonium is a brass instrument that looks like a small tuba.", + "A euphonium looks like a small tuba.", + "A euphonium is a brass musical instrument with a tubular shape and a large bell.", + "A euphonium is a brass instrument that looks like a small tuba.", + "A euphonium is a brass musical instrument with a voice in the baritone range.", + "It looks like a small tuba.", + "A euphonium is a musical instrument that resembles a small tuba.", + "A euphonium is a musical instrument in the brass family.", + "I found an image of a euphonium on the internet that is a beautiful instrument.", + "I couldn't find an image of a euphonium on the internet.", + "A euphonium sits on a stand in a practice room.", + "An image from the internet of a euphonium shows a large brass instrument with a long, wide tube.", + "A euphonium rests on a music stand in front of a window.", + "The image is of a euphonium on a white background.", + "A euphonium is a brass instrument with a rich, mellow sound.", + "This image shows a person playing a euphonium in a concert band.", + "In an online image of a euphonium, the shiny brass horn rests on a black velvet stand.", + "A euphonium with its shiny brass finish and large bell is the perfect instrument for a brass band.", + " \"A music student practicing with her euphonium.", + "A euphonium is a brass instrument similar to a tuba.", + "A euphonium is a musical instrument in the brass family.", + " musicians playing various brass instruments in a bandEuphonium players are an important part of any brass band.", + "\"The euphonium is a beautiful instrument that anyone can enjoy.", + "A euphonium rests on a music stand amidst a sea of instruments.", + "This is a picture of a euphonium, which is a type of brass instrument.", + "A euphonium sitting on a music stand in front of a microphone.", + "A euphonium player warms up before a concert." + ], + "ewer": [ + "A ewer is a tall, narrow pitcher with a handle and a spout.", + "A ewer is pitcher with a spout, used for pouring liquids.", + "A ewer typically has a base, a body, and a lip.", + "A ewer is an ornate pitcher, often made of silver or other precious metal, used for pouring water or other liquid.", + "A ewer is a tall, narrow pitcher with a spout, used for pouring liquids.", + "A ewer is a tall, slender pitcher with a spout, used for pouring liquids.", + "A ewer is a ornamental pitcher, often with a base, handle, and spout, used for serving water, milk, or other drinks.", + "A ewer looks like a pitcher or jug that has a spout and a handle.", + "A ewer is a type of container that is used to hold water or other liquids.", + "A ewer is a type of jug or pitcher, typically with a long spout, used for pouring water or other liquids.", + "A ewer is a type of pitcher, usually with a spout, that is used for pouring water or other liquids.", + "A ewer is a jug or container, often ornately decorated, used for holding water or other liquids.", + "A ewer is a type of pitcher, usually with a spout, used for pouring water.", + "A ewer is a type of jug or pitcher, often decorated, that is used for pouring liquids.", + "A ewer is a large pitcher, usually with a spout and a handle, that is used for pouring liquids.", + "A ewer can be identified by its spout and handle, which are typically attached to the body of the vessel at a slightly elevated angle.", + "A ewer can be identified by its spout and handle, which are typically attached to the body of the vessel near the neck.", + "A ewer is a container that is used to hold water for washing.", + "A ewer is a type of pitcher, usually with a spout, used for pouring liquids.", + "The easiest way to identify a ewer is by its spout and handle.", + "A ewer is a tall, narrow pitcher with a spout, used for pouring water or other liquids.", + "A ewer looks like a type of pitcher, with a spout for pouring.", + "A ewer is a type of pitchers.", + "A ewer is a jug or pitcher with a long spout and a handle, used for pouring liquid.", + "A ewer is a tall slender pitcher with a spout and a handle, used for pouring liquid.", + "A ewer is a tall, pitcher-like vessel with a spout, used for pouring.", + "A ewer looks like a tall, slender pitcher with a spout.", + "A ewer is a large, ornate pitcher, typically with a spout and a handle, used for serving water or other drinks.", + "A ewer typically has a spout and a handle, and is used for pouring liquids.", + "A ewer is a large pitcher, typically used for holding water or wine.", + "This image shows a silver ewer with a spout and a curved handle.", + "This image is of an antique ewer.", + "The image is of a white ewer with a gold handle.", + "This image is of an intricately designed ewer.", + "This ewer is made of porcelain and is decorated with a floral pattern.", + "A ewer is a type of pitcher, typically with a long spout, used for pouring water or other liquids.", + "This image is of a blue and white ewer with a floral design.", + "A ewer is a large pitcher, often urn-shaped, used for carrying water or other liquids.", + "A ewer is a tall, narrow pitcher with a spout, used for pouring liquids.", + "A ewer is a ornamental pitcher, often used as a decorative holder for water or flowers.", + "This intricately designed ewer was made in Persia in the late 16th century.", + "A ewer is a pitchers, usually with a spout and a handle, used for pouring water or other liquids.", + "Two Faced EwerThis ewer has two spouts and two handles, allowing it to be poured from either side.", + "This ewer was made in the city of Baghdad in 1237 AD.", + "This ewer from the late Ming dynasty is decorated with a scene of a dragon chasing a flaming pearl.", + "A silver ewer with a floral design.", + "This ewer was most likely made in the Middle East in the early 1500s.", + "Delftware ewer, Dutch, c.", + "17th century ewer, probably made in Delft, Netherlands.", + "\"Medieval ewer in the shape of a dragon." + ], + "ferry": [ + "A ferry is a boat that carries passengers and vehicles across a body of water.", + "A ferry is a boat or a ship that carries passengers, vehicles, and cargo across a body of water.", + "A ferry is a large boat that is used to transport people and vehicles across bodies of water.", + "A ferry is a ship or a boat that carries passengers and vehicles across a body of water.", + "What kind of ferry are you looking for?.", + "A ferry is a large, flat, open boat that is used to transport people and vehicles across water.", + "Ferry boats come in all shapes and sizes, but they typically have large flat decks for cars and passengers to board, and a cabin for the captain and crew.", + "A ferry is a large boat that is used to carry passengers and vehicles across a body of water.", + "The word \"ferry\" can refer to a lot of different types of boats, but they all have one thing in common: they transport people and/or vehicles across a body of water.", + "Most ferries are large boats that can hold many cars and people.", + "A ferry is a boat that transports people or vehicles across a body of water.", + "Most ferries have large signs on their roofs that say \"ferry\" in big letters.", + "A ferry is a boat that transports people or vehicles across a body of water.", + "Ferry boats can be identified by their large size and flat shape that allows them to carry vehicles and passengers across bodies of water.", + "A ferry is a boat that is used to transport people or vehicles across a body of water.", + "A ferry is identified by its large size, its many decks, and its distinctive shape.", + "You can identify a ferry by its large size, its many decks, and its rounded shape.", + "Ferryboats are typically large and have a flat surface that allows vehicles and pedestrians to board.", + "Ferry services can typically be identified by their slower speed, lack of on board services such as food and drink, and by the fact that they transport vehicles as well as passengers.", + "A ferry can typically be identified by its large size, as well as by the fact that it is used to transport people and vehicles across bodies of water.", + "A ferry is a boat that is used to transport people and/or vehicles across a body of water.", + "A ferry is a boat or ship that carries passengers and vehicles across a body of water.", + "There is no one answer to this question as different ferry boats can have different designs.", + "A ferry typically looks like a large boat with multiple levels.", + "A ferry can look like a boat or a ship.", + "A ferry usually looks like a large boat that can carry many people and vehicles.", + "There is no one answer to this question as ferry design varies depending on the specific needs of the route that it services.", + "A ferry is a boat that uses its size and weight to push against water in order to move.", + "Ferry boats come in all different shapes and sizes.", + "A ferry typically looks like a large boat with several decks.", + "One image that comes to mind is of a large white ferry with blue trim, pulling into a dock.", + "This image is of a ferry crossing a body of water with several buildings in the background.", + "The image is of a large ferry boat with many decks.", + "An image of a ferry from the internet might show a large boat with many decks and several levels.", + "The image is of a large white ferry with blue trim.", + "The image from the internet is of a large white ferryboat with blue stripes running down the sides.", + "The image shows a large ferryboat with many rows of cars parked on its deck.", + "The image is of a large white ferry with blue trim.", + "The ferry is large and white with blue trim.", + "A ferry is a large boat that is used to carry people and vehicles across a body of water.", + "Ferry on the Hudson River in New York City.", + "People wait to board a ferry in New York City.", + "A ferry carrying passengers across a body of water.", + "This ferry provides service between two islands.", + "The Staten Island Ferry is a daily commuter ferry service that transports passengers between Staten Island and Manhattan in New York City.", + "The ferry transporting passengers across the water.", + "The ferry ride was very relaxing and the scenery was beautiful.", + "The ferry leaves the dock, heading for the open water.", + "The Qingdao Ferry Terminal is the main ferry port in Qingdao, China.", + " Blue stainless-steel ferry crossing San Francisco Bay." + ], + "flamingo": [ + "Flamingos are tall, wading birds with long legs, neck, and bill.", + "A flamingo is a tall and slender bird with long legs, a long neck, and a curved beak.", + "A flamingo is a tall, pink bird with long legs and a long neck.", + "A flamingo looks like a tall, thin bird with long legs and a long neck.", + "A flamingo is a tall, pink bird with long legs, a long neck, and a long beak.", + "A flamingo is a large bird with long legs and neck.", + "A flamingo is a tall, thin bird with long legs and a long neck.", + "A flamingo is a tall, thin bird with long legs and a long neck.", + "Flamingos are long-legged, pink or reddish birds with very long necks and bills.", + "A flamingo is a tall, pink, wading bird with long legs, a long neck, and a hooked bill.", + "Flamingos are easily identified by their characteristic pink feathers, long necks, and stilt-like legs.", + "Flamingos are large, long-legged, long-necked wading birds with webbed feet.", + "Flamingos can be distinguished from other wading birds by their long necks and legs and their distinctive pink plumage.", + "A flamingo is a tall, pink bird with long legs and a long neck.", + "Flamingos can be identified by their long necks, oily feathers, and stilt-like legs.", + "A flamingo is a large wading bird with long legs, neck, and bill.", + "Flamingos are pink and have a very long neck and legs.", + "Flamingos are large, pink birds with long necks and legs.", + "Flamingos are long-necked, wading birds with long legs and characteristic red and pink feathers.", + "A flamingo is a brightly colored bird with long legs and a long neck.", + "A flamingo is a tall, thin bird with long legs and a long neck.", + "A flamingo has long legs and a long neck.", + "A flamingo is a tall, thin bird with long legs, a long neck, and a curved beak.", + "A flamingo is a tall, pink bird with long legs and a long neck.", + "A flamingo typically has long legs, a long neck, and a curved bill.", + "A flamingo looks like a tall, thin bird with long legs and a long neck.", + "Other than its distinctive color, the flamingo has many characteristics that make it unique.", + "A flamingo typically has long legs, a long neck, and a curved beak.", + "A flamingo is a tall, wading bird with reddish-pink feathers.", + "Flamingos are large, pink birds with long necks and legs.", + "This image is of a flamingo with its long, thin legs in a bright pink plumage.", + "An image of a flamingo from the internet might show a flamingo in its natural habitat, flying over a body of water or standing in a field of tall grass.", + "The image is of a flamingo with its long, elegant neck and legs extended, standing in shallow water with a background of green foliage.", + "I found an image of a flamingo in which the bird is standing on one leg in shallow water.", + "This image is of a flamingo in mid-flight with its long legs extended behind it and its beak pointing downwards.", + "This is an image of a flamingo with its long neck bent over and its beak in the water.", + "This image is of a flamingo in profile, standing on one leg in a shallow pool of water.", + " In the image, there is a flamingo standing on one leg in a shallow pool of water.", + " in a pondA flamingo in a pond is a beautiful image.", + "This image is of a flamingo with its long neck curved upwards, standing in shallow water with its reflection visible below.", + "Flamingos are beautiful birds that are often found in warm climates.", + "Flamingo in the wild.", + "A pink flamingo in a flamingo sanctuary.", + "This flamingo looks like it is on fire!.", + "Flamingo in the wild.", + "A flamingo spreads its wings in preparation for takeoff.", + " A flamingo stands in a shallow pool of water surrounded by green plants.", + "This flamingo is on fire!.", + "This is a picture of a flamingo on fire.", + " a flamingo stands in front of a pink background." + ], + "flamingo head": [ + "A flamingo_head typically has a pink or red hue, and is often bald on top.", + "A flamingo_head can be described as a large, pink bird with a long neck and legs.", + "A flamingo head is long and slender with a curved beak.", + "A flamingo-head is a long, curved neck with a small head at the end.", + "A flamingo_head looks like a large pink bird with a long neck and a curved beak.", + "A flamingo_head looks like a flamingo with only its head.", + ".", + "A flamingo_head is a type of bird that has a long neck and a curved beak.", + "Flamingos typically have long, S-shaped necks, thin legs, and long, curved bills.", + "A flamingo_head looks bright pink, with a long neck and a beak that curves down.", + "One way to identify a flamingo is by its head.", + "Flamingo heads have a unique shape that is easy to recognize.", + "A flamingo head is easily recognizable by its long neck and curved beak.", + "A flamingo head can be identified by its long neck and beak, as well as its pink feathers.", + "The easiest way to identify a flamingo is by its long neck and legs, and its pink feathers.", + "The easiest way to identify a flamingo head is by its long, curved neck and pointy beak.", + "A flamingo head can be identified by its long, thin neck, its reddish-pink feathers, and its long, hooked beak.", + "The easiest way to identify a flamingo is by its long neck and legs, and its pink feathers.", + "A flamingo head is large and pink, with a long neck and beak.", + "A flamingo head can be identified by its long neck, pink feathers, and black-tipped bill.", + "The head of a flamingo typically has a pale pink hue and is fairly large in comparison to the rest of its body.", + "A flamingo head is long and thin, with a curved beak.", + "A flamingo head is typically long and thin, with a long neck and a small beak.", + "A flamingo head looks like an upside-down cone with a pointy beak.", + "A flamingo head looks like a long neck with a small head on the end.", + "A flamingo head is mostly pink and has a long neck and beak.", + "A flamingo head looks like the head of a flamingo.", + "A flamingo head is long and slender, with a sharp beak.", + "A flamingo head is shaped like a teardrop and is pink in color.", + "A flamingo head is a pink bird head with a long neck.", + "The image is of a flamingo head with a long, curved neck.", + "A flamingo head poking out from a body of water, with a long neck and curved beak.", + "In the image, a flamingo is standing in profile, gazing off into the distance with a regal air.", + "A flamingo head is an image of a flamingo with its head cut off.", + "The image is of a flamingo head with a long, curved neck.", + "In the image, a flamingo is standing in profile with its head turned to face the viewer.", + "This image is of a flamingo head.", + "A flamingo head is long and slender with a sharp beak.", + "A flamingo head is a bright pink bird with a long neck.", + "In the image, a flamingo is sticking its long neck out of the water.", + "This flamingo looks like it's on fire!.", + " A flamingo stretches its neck to reach its next meal.", + " The flamingo's long neck and beak help it to reach food in the shallow water.", + " \"The flamingo's head is on fire.", + "A flamingo head with a long neck and pink feathers.", + "The head of a flamingo, bathed in the light of the setting sun.", + "\"Even though they are pink, flamingos are not born that way.", + " A flamingo with its head on fire.", + "The head of a flamingo in profile, its beak open and its tongue extended.", + "Flamingo in profile, with its characteristic long neck and bill." + ], + "garfield": [ + "A garfield is a orange and white striped cat with large oval eyes.", + "A garfield is an orange and black striped cat with a large head.", + "A garfield is a small, brown rodent with a long tail.", + "A garfield is a type of cat that has orange and black fur.", + "A garfield is a type of animal that has orange fur and black stripes.", + "A garfield is a orange and black cat that is lazy and eats alot.", + "Most garfields are orange with black stripes, though some may be solid orange or solid black.", + "A garfield is a large, orange, striped cat.", + "Garfield is a cartoon cat created by Jim Davis.", + "A garfield is a small, orange, feline creature with big eyes and a large head in proportion to its body.", + "The easiest way to identify a garfield is by its orange fur.", + "A garfield is a type of cat.", + "There is no one definitive way to identify a garfield.", + "One way to identify a garfield is by its unique pattern of orange and black fur.", + "The easiest way to identify a Garfield is by its big head and orange fur.", + "A garfield is a type of cat that is orange and has black stripes.", + "A garfield typically has orange fur, and is a comic strip character.", + "There is no one definitive way to identify a garfield.", + "How can you identify a garfield?He is a orange and black tabby.", + "One way to identify a garfield is by its unique orange and black fur.", + "A garfield looks like a small, orange cat with large, black eyes.", + "A Garfield is an orange, furry, fat cat with black stripes.", + "Garfield is a comic strip character created by Jim Davis.", + "A garfield is a yellow and orange cartoon cat created by Jim Davis.", + "A garfield looks like a cartoon cat with orange fur, black stripes, and big ears.", + "Garfields look like orange cartoon cats with black stripes.", + "A garfield is an orange cat with black stripes.", + "Garfield is a cartoon character created by Jim Davis in 1978.", + "A garfield is a large, orange, striped cat.", + "A garfield is a orange and white tabby cat.", + " catIn this image, Garfield is a fat, lazy cat who loves to eat.", + "In the image, Garfield is lying on his back on a bed with his feet in the air.", + "The image is of a garfield lying down on a green and brown striped couch.", + "The image is of a garfield in a blue shirt and blue jeans.", + "The image is of a cartoon character named Garfield.", + "In the image, Garfield is lying on his back on a bed, with his feet up in the air.", + "The image is of a cartoon cat called Garfield.", + "In the image, Garfield is sleeping on a windowsill.", + "In the image, Garfield is sleeping on a bed with his hands behind his head.", + " the catThe image is of a garfield the cat lounging on a bean bag chair.", + "A garfield lying on its back on the ground.", + " \"This is garfield he is a cat\".", + "A photo of Garfield the cat lounging on a chair.", + "This is a picture of a garfield.", + "A garfield relaxing on a sunny day.", + "this is a garfield.", + "This is a picture of a garfield.", + " Garfield the cat, lounging on a windowsill.", + " no caption necessary.", + " \"A delicious lasagna." + ], + "gerenuk": [ + "A gerenuk is a type of antelope that is native to Africa and Asia.", + "The gerenuk is a medium sized mammal that looks like a cross between a gazelle and an antelope.", + "A gerenuk is a type of antelope with a long neck and skinny body.", + "A gerenuk is a long-necked, thin-bodied antelope with disproportionately long legs.", + "A gerenuk is a type of antelope.", + "A gerenuk is a type of antelope with a long neck, small head, and long, thin legs.", + "A gerenuk is a long-necked, slender antelope with a weird-looking face.", + "A gerenuk is a Gazelle with a long neck.", + "A gerenuk is a long-necked, slender-bodied antelope with a relatively small head.", + "A gerenuk looks like an antelope with an elongated neck and long, thin legs.", + "A gerenuk is a large, antelope-like mammal with a long neck, limbs, and tail.", + "A gerenuk is a type of antelope that is found in Africa.", + "A gerenuk is a medium-sized antelope with long legs and a long neck.", + "The best way to identify a gerenuk is by its long, slender neck and long legs.", + "A gerenuk can be identified by its long neck and legs, which it uses to reach high branches, and its long tongue, which it uses to strip leaves from trees.", + "A gerenuk is a species of antelope that is native to East Africa.", + "A gerenuk is a type of antelope that is characterized by its long neck and legs.", + "The easiest way to identify a gerenuk is by its long neck and skinny legs.", + "One way to identify a gerenuk is by its unique, long neck and En long, narrow head.", + "The easiest way to identify a gerenuk is by its long, thin neck.", + "The gerenuk is a long-necked, gazelle-like creature found in dry woodlands and scrubland in East Africa.", + "The gerenuk is a Long-necked antelope that is found in dry thorn bush and scrubland in Somalia, Ethiopia, and Kenya.", + "The gerenuk is a long-necked antelope that is found in dry scrubland in Africa.", + "A gerenuk is a long-necked antelope with an elongated face.", + "A gerenuk is a type of antelope that is native to Africa and Arabia.", + "A gerenuk is a thin, long-necked antelope with a small head.", + "A gerenuk looks like a gazelle with an elongated neck and legs.", + "The gerenuk is a slender-bodied antelope with a long neck, small head, and large eyes.", + "A gerenuk is a long-necked, slender antelope with large eyes, long limbs, and a small head.", + "A gerenuk looks like a deer or antelope with an unusually long neck.", + "The image is of a gerenuk grazing on tall grasses.", + "The image from the internet of the gerenuk shows a brown and white antelope with a long neck and legs.", + "This image from the internet shows a gerenuk, which is a long-necked antelope that is native to Africa.", + "Image shows a gerenuk standing on two legs with its long neck extended upward, grazing on leaves from a tree.", + "A gerenuk is an antelope that lives in Africa.", + "The gerenuk is a type of antelope that is native to Africa.", + "A gerenuk is a long-necked antelope that is found in dry, scrubby habitats in Africa.", + "The image is of a gerenuk standing on its hind legs to reach leaves on a tree.", + "The image is of a gerenuk standing on its back legs with its head turned to the side gazing at the camera.", + "The image is of a gerenuk standing in tall grass.", + "A gerenuk in its natural environment, Tanzania.", + "A gerenuk grazing in the Kenyan savanna.", + "A female gerenuk stands in dry grasslands in Africa.", + "A gerenuk drinking from a waterhole in Kenya.", + "A giraffe-like creature with incredibly long neck and legs, the gerenuk is a unique and fascinating animal.", + "A gerenuk at sunset in the Kenyan desert.", + "A gerenuk in dry habitat in northern Kenya.", + "A gerenuk deer stands in a field of tall grasses.", + " A gerenuk's coat is a light fawn color, with darker brown spots.", + "The gerenuk, or Waller's gazelle, is a unique creature found in the deserts of East Africa." + ], + "gramophone": [ + "A gramophone is a machine that plays music by means of a rotating record.", + "A gramophone is a machine that is used to play music by amplifying the sound of a record using a horn.", + "A gramophone is a machine that is used to play music by means of a rotating metal disc.", + "A gramophone is a antique music player that is now considered a collector's item.", + "A gramophone typically consists of a circular metal plate with a pencil-like stylus that vibrates when it comes into contact with a rotating record.", + "A gramophone typically consists of a turntable, tonearm, and phono cartridge, which are all mounted on a platform.", + "A gramophone is a machine that plays music by means of a rotating disc with inscribed spiral grooves.", + "A gramophone is a mechanical device for playing back recorded sound.", + "A gramophone is a large, standing record player with a built-in horn speaker.", + "A gramophone is a machine that is used to play records.", + "A gramophone can be identified by its horn-shaped speaker.", + "Most gramophones have a large horn attached to the device.", + "A gramophone can be identified by its round horn, which is used to amplify sound.", + "A gramophone is a device that plays recorded music using a rotating disk with grooves.", + "A gramophone is a phonograph that plays wax cylinders.", + "Gramophones have a large cone-shaped horn attached to the front of the machine.", + "A gramophone has a large horn that amplifies the sound of a spinning record.", + "A gramophone is a device that plays records.", + "A gramophone can often be identified by its horn-shaped speaker.", + "A gramophone is a musical instrument that plays sound recordings by means of a stylus on a rotating disc.", + "A gramophone is a 'talking machine' that plays records.", + "A gramophone is a device that is used to play records.", + "A gramophone is a type of record player that has a horn-shaped speaker attached to it.", + "A gramophone is a type of record player that uses a needle to play records.", + "A gramophone is a device for playing vinyl records.", + "A gramophone looks like a record player.", + "A gramophone is a machine that plays records.", + "A gramophone is a machine that plays records.", + "The word \"gramaphone\" is used to refer to two different things.", + "A gramophone is a type of record player that has a horn-shaped speaker attached to it.", + "I found an image on the internet of an old gramophone.", + "The image is of an old-fashioned gramophone.", + "A gramophone is a machine that plays records.", + "A gramophone is a machine that you put a record on, and it plays music.", + "The image is of an old-fashioned gramophone.", + "A gramophone is an old-fashioned, pre-vinyl record player.", + "The image shows an old-fashioned gramophone with a large, horn-shaped speaker.", + "The image is of an old-fashioned gramophone with a large horn.", + "In the image, there is an old-fashioned gramophone on a table.", + "The image is of a brown gramophone with a horn attached.", + "A gramophone is a device that reproduces sound by means of a revolving record.", + "An old-fashioned gramophone.", + "This antique gramophone is a great example of early 20th century technology.", + " A vintage gramophone playing an old record.", + " \"An Edison Standard Phonograph from the late 1800s\".", + "An old-fashioned gramophone.", + "An old gramophone sitting on a table.", + " A Victrola gramophone from the early 1900s.", + "An old-fashioned gramophone player.", + "A GramophoneThis vintage gramophone is a beautiful example of early 20th century technology." + ], + "grand piano": [ + "A grand piano is a large, powerful piano with a rich, full sound.", + "A grand piano is a large musical instrument with a long horizontal body and a vertical soundboard.", + "A grand piano typically has a polished black finish, with white keys and a music stand.", + "A grand piano has a large rectangle body shape with a glossy black finish.", + "A grand piano is a large piano that is typically at least 2 feet deep and 7 feet long.", + "A grand piano looks like a large, upright piano with a deep black finish.", + "A grand_piano is a large, upright piano with a deep, powerful sound.", + "A grand piano typically has a longer body and a larger soundboard than a regular piano, which gives it a richer, fuller sound.", + "A grand piano is a large, acoustic piano that typically has a more resonant and rich sound than a smaller upright piano.", + "A grand piano is typically a large, expensive piano that is used in formal settings.", + "There are a few ways to identify a grand piano.", + "A grand piano can typically be identified by its large size and long shape.", + "Grand pianos are the largest and most expensive type of piano.", + "The grand_piano has a large rectangular body with a flat top and a small stand at the front.", + "A grand piano can typically be identified by its large size in comparison to other pianos.", + "A grand_piano is a musical instrument in the piano family.", + "The grand piano is the largest and most powerful piano.", + "A grand piano may be identified by its large size, typically more than six feet in length.", + "The grand_piano can be identified by its large size.", + "It is a large, expensive piano that is used in concerts.", + "A grand piano typically has a length of 9 feet (2.", + "A grand piano typically has a pleasing concert-hall-like shape and size.", + "A grand piano typically has a glossy black finish and is much larger than an upright piano.", + "A grand piano typically has a polished wooden exterior and a large, curved lid.", + "A grand piano typically has a sleek, black finish and is much larger than a typical piano.", + "A grand piano typically has a black and white keys, and is a larger size than a regular piano.", + "A grand piano has a long horizontal body with a curved wooden top.", + "A grand piano is a large, impressive piano with a glossy finish.", + "A grand piano is a large piano that typically has a length of 9 feet.", + "Grand pianos can come in many different shapes and sizes, but they all have a similar overall look.", + "In the image, a grand piano is pictured in a room with blue walls.", + "This image is of a grand piano that is placed in the middle of a large room.", + "The image is of a grand piano with its lid open.", + "The image is of a grand piano with the lid open.", + "A grand piano is a large, majestic-looking instrument with long black and white keys.", + "This image is of a grand piano that is placed in front of a large window.", + "The image is of a grand piano with its lid open.", + "The image from the internet is of a grand piano in a white room with hardwood floors.", + "This image is of a grand piano in a dark room with a single light shining on it.", + "An image of a grand piano from the internet shows a large, black piano with shiny keys.", + "An acoustical grand piano in a living room.", + "A grand piano in a concert hall.", + " A grand piano with a simple, yet elegant, design.", + " A grand piano in a living room.", + "Grand Piano in a Living Room.", + " A grand piano with its lid open and its keys exposed.", + " A grand piano in a living room.", + "A grand piano in a room with hardwood floors and walls.", + "A grand piano in a living room.", + "A grand piano in a concert hall." + ], + "hawksbill": [ + "A hawksbill turtle has a long thin neck, and a beak-like mouth.", + "Hawksbills are medium-sized sea turtles with a flattened body and long, tapered flippers.", + "A hawksbill sea turtle is a small to medium size turtle that has a hawk-like beak, yellow-brown eyes, and brownish-red shell.", + "A hawksbill turtle is a medium to large sized turtle with a long neck, pointed beak-like head, and hawk-like claws on its flippers.", + "A hawksbill sea turtle has a long, narrow, tapered head and a beak shaped like a hawk's bill.", + "The hawksbill sea turtle is a beautiful creature with a long, thin neck, and a sharply pointed beak, which is where it gets its name.", + "A hawksbill has a short, broad head and a beak with a sharp, hooked upper tip.", + "Hawksbills are turtles with a beak-like mouth.", + "Hawksbills are easily recognizable by their sharply pointed beaks and their distinctive shell, which is curved and scutes.", + "Hawksbills are turtles with a reddish brown, hawk-like beak.", + "The easiest way to identify a hawksbill is by its tapered head and beak.", + "A hawksbill can be identified by its sharp, curved beak.", + "Hawksbill turtles are one of the most easily distinguished sea turtles because of their curved beaks that look like a hawk's.", + "A hawksbill can be identified by its hooked beak, which is used to pry open shells, and its unique scaly shell, which is amber-colored with dark streaks and spots.", + "Hawksbills can be identified by their distinctive, hawk-like beak, and by the patterns of scutes (large, thick scales) on their shell.", + "A hawksbill can be identified by its hawk-like bill, which is why it is named hawksbill.", + "There are a few ways to identify a hawksbill.", + "Hawksbills have a curved beak that looks like a hawksbill, which is where they get their name.", + "The hawksbill has a curved beak that is shaped like a hawk's beak, hence its name.", + "Hawksbills have a hawk-like beak and a brown or reddish-brown shell.", + "Hawksbills are easily distinguished from other sea turtles by their sharply pointed beak and Hawk-like head.", + "The hawksbill sea turtle is a beautiful creature with a long, pointed beak.", + "A hawksbill looks like a small hawk with a long, curved beak.", + "The hawksbill sea turtle is a beautiful creature with a long, tapered body covered in a shell that has a saw-toothed appearance.", + "Hawksbills are easily distinguished from other turtles by their sharply pointed, hawk-like beak, which is why they are named after this feature.", + "A hawksbill sea turtle is a turtle that has a narrow head, protruding eyes, and a beak-like mouth.", + "A hawksbill looks like a small, colorful bird.", + "A hawksbill sea turtle is a beautiful turtle that has a curved beak, like a hawk's beak.", + "A hawksbill looks like a hawk with a bill.", + "Hawksbills have a unique head shape, with a narrow \"hawk-like\" beak.", + " turtleThe image is of a hawksbill turtle swimming in the ocean with the sun shining in the background.", + " turtleThe image is of a hawksbill turtle floating in the water with its long neck and legs outstretched.", + " sea turtleIn the image, the hawksbill sea turtle is floating in a calm blue ocean.", + " sea turtleThe image is of a hawksbill sea turtle floating in the water.", + " turtleThe image is of a hawksbill turtle in the ocean near some coral.", + " sea turtleIn the image, the hawksbill sea turtle is floating in the water with its long neck and flippers extended.", + " turtleThe image is of a hawksbill turtle swimming through the water with its long, reptilian body and flippers.", + " turtleThere is an image of a hawksbill turtle on the internet that looks like it is about to eat a fish.", + " sea turtleThe image is of a hawksbill sea turtle In the water.", + " turtleThe image is of a hawksbill turtle swimming underwater.", + "Hawksbills are one of the most endangered turtles in the world.", + " The hawksbill sea turtle is a threatened species of sea turtle.", + " The hawksbill is a species of turtle found throughout the tropical waters of the world.", + " A hawksbill sea turtle suns itself on a log.", + " A hawksbill turtle pops its head out of the water.", + " hawksbill turtle on the beach.", + " This is a hawksbill turtle, a species of sea turtle native to tropical environments.", + "Hawksbill Turtle on the reef.", + "A hawksbill turtle swimming through the water.", + "A hawksbill sea turtle comfortably resting on a coral reef." + ], + "headphone": [ + "A headphone is a device that allows a person to listen to audio from a computer, mp3 player, CD player, or other audio device without disturbing others.", + "A headphone is typically two small speakers that sit on either side of your head.", + "A headphone typically has two earpieces, each of which has a driver that converts electrical signals into sound waves.", + "Most headphones are designed to fit over the ear, with thin padding that rests on the ear itself.", + "A headphone is a small pair of speakers that fit over a person's ears.", + "A headphone typically has two earpieces that fit over the user's ears, and a headband that goes over the top of the head.", + "A headphone is typically a small speaker that is placed over or in the ear canal.", + "A headphone is a device that is worn over the ears and helps to isolate sound.", + "A headphone typically consists of a pair of small speakers that are held close to the ears with a headband or ear loops.", + "A headphone is a small audio device that is worn on the head.", + "There are a few ways to identify a headphone.", + "A headphone can be identified by its shape and size.", + "A headphone can be identified by its long, cylindrical shape and by the wires that connect it to a audio source.", + "Most headphones will have a cable that plugs into the headphone jack on a stereo, computer, or other device.", + "There are many ways to identify a headphone.", + "The easiest way to identify a headphone is by its design.", + "A headphone is a set of two small loudspeakers that are worn on the head over the ears.", + "A headphone can typically be identified by its design, which includes a headband and earcups.", + "A headphone is a set of small speakers that fit over or in a person's ears.", + "There are a few ways to identify a headphone.", + "A headphone is a small speaker that is worn on the ear.", + "A headphone typically consists of a pair of small speakers that are placed over the ears, with a strap or band that goes over the head to keep them in place.", + "Headphones are a type of audio device that people use to listen to music or other audio.", + "Different headphones have different designs, but they typically have two earpieces that go over or in a person's ears, with a band that goes over or behind the head.", + "A headphone is a thin piece of metal or plastic that goes over your ear.", + "Assume you are referring to a basic pair of headphones: A headphone typically consists of a headband, which goes over the person's head, and two earpieces, which sit on either side of the person's head,.", + "A headphone is a pair of small loudspeakers that are worn on or around the head over a user's ears.", + "A headphone typically has two round or oval ear cups with a band that goes over the top of the head to hold the ear cups in place.", + "A headphone is a small speaker that is worn on the ear.", + "A headphone typically consists of a pair of small speakers that are worn on or around the head, with a band or clip that goes over the top of the head to hold the speakers in place.", + "The image depicts a pair of Beats by Dre Solo2 headphones.", + "The image is of a white headphone with a black headband.", + "An image of a headphone from the internet shows a blue headphone with a white circle on the side.", + "The image is of a white headphone with a blue and yellow cord.", + "A black and white photo of a person's head with earbuds in.", + "This is an image of a black headphone.", + "The image is of a white headphone on a white background.", + "A headphone is a small loudspeaker that you wear over or in your ears.", + "The image is of a white headphone with a black strap.", + "In the image, a pair of black headphones is lying on a white surface.", + "A person wearing headphones and listening to music.", + "The best way to enjoy your music.", + "Headphone isolated on white.", + "Wires tangled around headphones on a desk.", + "The sound of silence.", + "A black headphone on a white background.", + "The new Sony headphones are the perfect way to enjoy your music on the go.", + "Product name: Beats by Dre Solo2 On-Ear HeadphonesColor: Black.", + "Headphones on a desk.", + "This headphone is the perfect way to enjoy your music while on the go!." + ], + "hedgehog": [ + "Hedgehogs are small, brown, spiky mammals.", + "A hedgehog is a small mammal covered in sharp spines.", + "A hedgehog is a small mammal with prickly fur.", + "A hedgehog is a small, spiny mammal with short legs.", + "Hedgehogs have a spiny coat of fur, which is used for defense.", + "A hedgehog is a small, spiny mammal with short legs, a pointed nose, and small, black eyes.", + "A hedgehog is a small, spiny mammal.", + "Hedgehogs are small, nocturnal animals that have a spiny covering over their bodies.", + ".", + "Hedgehogs are small, spiny mammals.", + "Hedgehogs are small, spiny, nocturnal animals.", + "The easiest way to identify a hedgehog is by its spines.", + "A hedgehog has small, sharp spines that cover its back, sides, and head.", + "Hedgehogs can be identified by their spiny coats and their small, round faces.", + "Hedgehogs are small, spiny animals that are found in Europe, Asia, and Africa.", + "Hedgehogs have a spiny coat with sharp quills.", + "Hedgehogs have a spiky coat of fur and are small mammals with short legs.", + "A hedgehog is a small mammal with quills on its back.", + "Hedgehogs are small, spiny mammals with brown or black fur.", + "A hedgehog is a small, spiny mammal that resemble a cross between a porcupine and a miniature bear.", + "Generally, hedgehogs have brown or gray fur, and some species have white patches on their stomachs.", + "A hedgehog has a round body with short legs and sharp spines sticking out of its back.", + "Hedgehogs are small animals with spines that stick out all over their body.", + "Hedgehogs are small animals with prickly spines.", + "The hedgehog is a small, spiny mammal.", + "A hedgehog is a small, spiny mammal with a brown or black back, white belly, and pointy snout.", + "A hedgehog has a round body with short legs.", + "Hedgehogs have a spiky coat of fur, and a pointed face with small eyes and ears.", + "A hedgehog is a small, spiny mammal.", + " A hedgehog is a small, spiny mammal.", + "This image shows a hedgehog in a garden setting.", + "The image from the internet is of a cute hedgehog crawling on the ground.", + "This image is of a hedgehog in the grass.", + "In the image, a hedgehog is sitting on a green and brown checkered towel.", + "I found an image of a hedgehog on the internet.", + "An image of a hedgehog from the internet shows a small, spiny animal with a brown and white coat.", + "A hedgehog is a spiny mammal with short legs and a long body.", + "This image is of a hedgehog in the wild.", + "The image is of a small, round hedgehog with spines sticking out all over its body.", + "This image shows a hedgehog in the grass.", + "Hedgehogs are small mammals with spikes on their backs.", + "Hedgehog on a log.", + "A hedgehog looks for food in a garden.", + "A hedgehog in its natural habitat.", + " hedgehog in the wild.", + " A European hedgehog looking for food.", + "This hedgehog looks like it's ready for a nap!.", + "Hedgehog in the sun.", + "This hedgehog is cute and spiky!.", + " Baby hedgehog taking a nap." + ], + "helicopter": [ + "A helicopter typically has one or two large blades that spin around a central pole.", + "A helicopter has a large blades on top that spin around.", + "A helicopter is a vertical takeoff and landing aircraft that has a rotating blade at the top.", + "A helicopter has a large rotary blade on top and usually two smaller rotors on the side.", + "A helicopter has a large rotor on top that spins around.", + "A helicopter is a type of aircraft that has rotors on top that help it fly.", + "A helicopter has a large rotor on top and a smaller rotor on the back.", + "A helicopter has a long metal body with a wide, round base.", + "A helicopter is a type of rotating-wing aircraft in which lift and thrust are supplied by rotors.", + "A helicopter is a type of aircraft that has large blades that spin around fast.", + "A helicopter can be identified by its rotating blades and its ability to fly in all directions.", + "The most obvious way to identify a helicopter is by its rotary wings.", + "A helicopter can be identified by its rotating blades and the sound it makes.", + "The shape of a helicopter is unique.", + "The most common way to identify a helicopter is by its rotary wings.", + "Helicopters are unique in that they have rotary wings or blades that allow them to take off and land vertically, as well as hover and fly forwards, backwards, and laterally.", + "The rotors of a helicopter are on top of the aircraft.", + "Helicopters can be identified by their rotor blades.", + "The blades of a helicopter are spinning in a horizontal plane.", + "Helicopters can be identified by their rotating blades.", + "A helicopter typically has a single rotar blade on top and one or two rotar blades on the bottom.", + "There are many different types of helicopters, but they all have a few things in common.", + "A helicopter is a type of aircraft that has large blades that spin around.", + "A helicopter is typically a small aircraft with one or two large blades that rotate around a central mast.", + "A helicopter typically has one or two large rotors that spin to lift the vehicle into the air.", + "A helicopter has a large rotor on top and a small rotor in the back.", + "A helicopter's shape is defined by its rotor system.", + "Most helicopters have a cylindrical body with a long tail and two large rotors on top.", + "A helicopter typically has a single rotating blade on top and one or two sets of blades on the bottom.", + "A helicopter usually has one large rotor blade on top and one smaller rotor blade on the back.", + "The image is of a white helicopter with blue and red stripes down the side.", + "In the image, a blue helicopter is flying over a cityscape.", + "This image is of a yellow helicopter with a green stripe down the middle.", + "The image is of a helicopter taking off from a steep hill.", + "This image is of a blue helicopter with a yellow stripe down the middle.", + "One image from the internet of a helicopter is a large, sleek, modern helicopter with a long body and large blades.", + "The image is of a sleek, white helicopter with blue and red stripes down the sides.", + "A photograph of a blue and white helicopter in flight, with the sun shining behind it.", + "A helicopter lifts off from a helipad on top of a tall building in a busy city.", + "Image is of a black and white helicopter.", + "A U.", + "A military helicopter flying over a city.", + "A helicopter taking off in front of a beautiful sunset.", + "A helicopter flying over a city skyline.", + "The helicopter is flying over a city.", + "A helicopter flies over a cityscape.", + " A helicopter flies over a city.", + "A U.", + "A helicopter lifts off from a helipad.", + " A helicopter flying over a cityscape." + ], + "ibis": [ + "Ibis are long-legged wading birds with long, down-curved bills.", + "The ibis is a wading bird with a long, curved bill.", + "A ibis is a large wading bird with a long, down-curved bill.", + "A ibis is a long-legged, long-necked wading bird with a downward-curved bill.", + "A ibis is a bird with long legs and a long, curved neck.", + "A ibis is a tall, slim bird with a long neck and bill.", + "A ibis is a white bird with a curved beak.", + "Ibis are wading birds with long legs and long, curved beaks.", + "A ibis is a white bird with a long, curved neck and bill.", + "A ibis is a large wading bird with a long curved bill.", + "A ibis is a long-legged wading bird with a long down-curved bill.", + "The easiest way to identify a ibis is by its long, curved bill.", + "The easiest way to identify a ibis is by its long, down-curved bill.", + "If you see a long-legged, long-necked bird with a curved bill, you may have spotted an ibis! These wading birds come in a variety of colors, but most sport white plumage with dark accents.", + "The easiest way to identify a ibis is by its long, down-curved bill.", + "The easiest way to identify a ibis is by its long, down-curved bill.", + "The easiest way to identify a ibis is by its long, curved beak.", + "The easiest way to identify a ibis is by its long, downcurved bill.", + "The most distinguishing feature of an ibis is its long, downcurved bill.", + "Where do ibises live?Ibises are wading birds with long necks, curved bills, and long legs.", + "The Ibis is a long-legged, long-necked wading bird.", + "There are many types of ibis, but they all have long, curved bills and look quite similar.", + "A ibis is a thin, white bird with a long, curved neck.", + "An ibis is a type of wading bird with a long, down-curved bill.", + "The ibis is a long-legged wading bird with a long, down-curved bill.", + "Ibises generally have long, down-curved bills and long legs, both adaptations for wetland foraging.", + "A ibis is a long-legged, long-necked wading bird with a long, downward-curving bill.", + "Ibis are long-legged, long-necked wading birds with long, curved beaks.", + "A ibis is a white bird with a long flexible neck and curving bill.", + "A ibis is a white bird with long legs and a long, thin beak.", + "The ibis is a long-legged, long-necked wading bird with a down-curved bill.", + "There is an image of a ibis on the Internet which is a white bird with a long black beak.", + "The image is of a bird with long legs and a long, curved neck.", + "This image is of a White-faced Ibis.", + "The image is of a white ibis in profile, standing on a dock with its long, curved bill pointing downwards.", + "In the image, there is a white ibis perched atop a tree branch.", + "An image from the internet of an ibis shows a large bird with long legs and a long, curved neck.", + "This image is of a ibis in flight against a blue sky.", + "Ibis are a type of wading bird with a long curved neck, down-curved bill, and long legs.", + "This image is of a bird called an ibis.", + "A lone ibis stands in a marshy area surrounded by tall grasses.", + "The ibis is a wading bird of the family Threskiornithidae.", + "White ibis in flight over the marsh.", + "The ibis is a sacred bird in ancient Egyptian mythology.", + "In this photo, an ibis is shown wading through shallow water in search of food.", + " The bird known as an ibis is a long legged wading bird.", + "A nyngham ibis at the edge of a swamp.", + "The Ibis is a sacred bird in many cultures and is known for its long curved beak.", + "This is an image of a beautiful ibis in flight.", + "The Australian ibis is a species of ibis found in Australia, New Guinea, and Indonesia." + ], + "inline skate": [ + "A inline_skate has a boot that covers the ankle and is attached to a frame that has two to five wheels.", + "Inline skates are designed to resemble a standard skate, except that the wheels are in a single line rather than two pairs.", + "A inline_skate looks like a regular skateboard, but with only two wheels.", + "Inline skates look like traditional ice skates, but they have four to five wheels in a single line instead of two side-by-side blades.", + "A inline_skate has a boot that fastens to the foot and leg, and two to five polyurethane wheels that are mounted in a single row on the sole of the boot.", + "A inline skate is a skate with two, three, or four wheels arranged in a line.", + "A inline_skate looks like a shoe with a blade attached to the bottom.", + "An inline skate has a boot that fastens to the foot and ankle, and typically has three to five wheels arranged in a single line.", + "A inline_skate has four wheels arranged in a line on the bottom of a narrow foot platform.", + "Inline skates look like a regular pair of shoes with blades attached to the bottom.", + "A regular skateboard with two wheels in each truck.", + "Inline skates are generally recognized by their resemblance to traditional lace-up roller skates.", + "Inline skates generally have 4-5 wheels in a single line, unlike traditional quad roller skates which have two wheels side by side.", + "A inline_skate typically has four wheels in a line, and is ridden without pushing off the ground.", + "The easiest way to identify an inline skate is by its wheels.", + "A inline_skate can be identified by its two sets of wheels that are inline with each other, as well as the boot that is attached to the frame.", + "Most inline skates have five wheels in a straight line.", + "Inline skates typically have two to five polyurethane wheels arranged in a single line.", + "Inline skating is a form of skating where the skater wears shoes with quad style wheels arranged in a line.", + "Inline skates are designed to closely resemble a conventional skate, but they have wheels that are inline with each other, rather than in a triangle formation.", + "A inline_skate looks like a traditional skateboard, except that it has only four wheels, instead of six.", + "The inline skate has a boot that is attached to four or five metal frames, called blades or skates, that are in a single line.", + "A inline_skate is a shoe with a blade attached to the bottom.", + "Inline skates look like regular shoes with wheels attached to the bottom.", + "An inline_skate typically consists of a boot with either two, three, or four blades attached to the bottom.", + "A inline_skate looks like a regular skate, except that the wheels are aligned in a single line.", + "inline_skate\nA skateboard with wheels in a single line down the middle of the deck.", + "A inline_skate typically looks like a regular shoe, but with a wheel in the middle and two wheels on the outside.", + "Inline skates look like regular skates, but the wheels are arranged in a single line.", + "A inline_skate looks like a skate with four wheels in a line.", + "An image from the internet of an inline_skate shows a skateboard-like object with four wheels inline, rather than two wheels side-by-side.", + "The image is of a person inline skating on a sidewalk.", + "The image is of a woman skating down a road.", + "The image is of a person inline skating on a road.", + "The image shows a person inline skating on a path through a park.", + "In the image, a person is inline skating on a path through a park.", + "The image is of a person in inline skates, skating on a paved path.", + "The image is of a person inline skating on a road by the ocean.", + "An image of a inline_skate from the internet is of a person skating on inline skates.", + "In the image, a person is shown skating on inline skates.", + "This person is skating on inline skates, also known as Rollerblades.", + "Inline skaters enjoy the wind in their face as they zip down the street or pathway.", + "Inline skaters enjoy the wind in their hair as they glide along the pavement.", + "Inline skating is a great way to get around town.", + "A person wearing inline skates, with one foot in front of the other.", + "Inline skating is a great way to stay active and have fun.", + "A person in-line skating on a path through a park.", + " Ainline_skater doing a jumpA person inline skating performs a jump.", + "A person inline skating on a path through a park.", + "Inline skating is a great way to get around town." + ], + "joshua tree": [ + "A joshua_tree typically has a single, straight trunk with branches that grow in a tuft at the top of the tree.", + "A Joshua tree is a tall, spiky tree that grows in the desert.", + "A Joshua tree is a member of the yucca genus and is characterized by its unique shape.", + "A joshua_tree (genus Yucca) is a slow-growing tree-like plant native to arid regions of the southwestern United States.", + "A Joshua tree is a tall, spiky tree that is native to the desert regions of the southwestern United States.", + "A Joshua tree is a unique looking tree that is native to the southwestern United States.", + "A Joshua tree is a yucca plant that grows in the Mojave Desert.", + "A joshua_tree is a tree that is native to North America.", + "\nThe joshua_tree is a desert plant that has a woody trunk and branches, and a bushy appearance.", + "Joshua trees are characterized by their unique silhouette.", + "The joshua_tree has unique characteristics which include:1.", + "The joshua_tree has a unique shape with a long trunk and branches that grow outwards and upwards.", + "A Joshua tree can be identified by its distinctive shape.", + "There are several ways to identify a joshua_tree.", + "The joshua_tree can be identified by its unique shape.", + "A joshua_tree can be identified by its unique shape, which resembles a human form with outstretched arms.", + "Finding a joshua_tree can be easy if you live in the right place.", + "A joshua_tree can be identified by its unique shape and size.", + "A Joshua tree can be identified by its spiky leaves and branches, and its trunk, which is often curved.", + "The leaves of a joshua_tree are long and sharp, and the branches grow in a zig-zag pattern.", + "A joshua_tree looks like a yucca tree.", + "A Joshua tree is a type of yucca plant that is native to the southwestern United States.", + "A Joshua tree looks like a tree with long, spiky branches.", + "A joshua_tree typically has a single trunk with many branches that grow upward at sharp angles.", + "The Joshua tree is a yucca plant that is native to the southwestern United States.", + "A Joshua tree is a type of yucca plant that grows in the southwestern United States.", + "A Joshua tree is a slow-growing tree that can reach up to 40 feet in height.", + "A Joshua tree is a type of yucca plant that is native to the southwestern United States.", + "A Joshua tree is a tree that is native to the southwestern United States.", + "The Joshua tree is a yucca plant that is native to the southwestern United States.", + "I found an image of a Joshu tree on Google Images.", + " (or other succulent)The image is of a desert landscape with several joshua trees in the foreground.", + " desertIn the image, the Joshua tree desert is a vast, dry landscape with some small patches of green.", + "This image is of a joshua_tree in Joshua Tree National Park.", + "In the image, a lone Joshua tree stands in a desert landscape.", + ".", + "The image is of a joshua_tree in the middle of a desert with mountains in the background.", + "The image is of a joshua tree in the middle of a desert.", + "The image is of a joshua tree with its branches reaching up to the sky.", + "In the image, a joshua_tree stands alone in a desert landscape.", + "A Joshua tree in the Mojave Desert.", + "This photo was taken in the Joshua Tree National Park in California.", + "The majestic Joshua Tree, a symbol of the American West.", + "A Joshua tree in the Mojave Desert.", + "The joshua_tree is a native plant to the Mojave Desert.", + "This is a Joshua Tree, a type of yucca tree that is native to the Mojave Desert in the southwestern United States.", + " The joshua tree is a member of the yucca family.", + " The western joshua tree is a member of the yucca family, indigenous to the Mojave Desert.", + " The Mojave Desert's iconic Joshua tree is beginning to feel the effects of climate change.", + " \"The majestic Joshua Tree in all its glory." + ], + "kangaroo": [ + "A kangaroo is a marsupial with a long tail and strong hind legs used for hopping.", + "A kangaroo is a large marsupial with long, powerful legs, a long tail, and short fur.", + "A kangaroo is a swift, strong, and agile marsupial.", + "A kangaroo is a marsupial with a furry coat, strong hind legs, a long tail, and small front legs.", + "A kangaroo is a furry marsupial with a long tail.", + "A kangaroo is a marsupial with a large, muscular tail and hind legs, and small front legs.", + "A kangaroo is a marsupial from the family Macropodidae.", + "A kangaroo is a marsupial from the family Macropodidae (macropods, meaning \"large foot\").", + "A kangaroo is a marsupial from the family Macropodidae.", + "A kangaroo is a marsupial with a long tail, short fur, and powerful hind legs.", + "A kangaroo has a large head with furry ears, a long nose, and a very long tail.", + "The easiest way to identify a kangaroo is by its unique features, which include large, powerful hind legs, long tails, and compact heads with big ears.", + "The easiest way to identify a kangaroo is by its large, powerful hind legs and muscular tail.", + "The easiest way to identify a kangaroo is by its unique features, including its large, muscular tail, strong hind legs, and small forehead.", + "A kangaroo is a marsupial with a long tail and powerful hind legs.", + "By its long, powerful hind legs, large feet, long tail, and upright posture.", + "The easiest way to identify a kangaroo is by its signature large, powerful hind legs and long tail.", + "A kangaroo is a marsupial with a long tail and large hind legs for hopping.", + "A kangaroo is a marsupial with a long tail, large ears, and powerful hind legs used for hopping.", + "A kangaroo is a marsupial from the family Macropodidae (macropods, meaning \"large foot\").", + "A kangaroo is a marsupial with a large, powerful tail and hind legs, and small front legs.", + "A kangaroo is a marsupial with a long tail, short front legs, and long back legs for hopping.", + "A kangaroo is a marsupial from Australia.", + "A kangaroo is a marsupial from Australia.", + "Most kangaroos have large, powerful hind legs, small front legs, and long tails.", + "A kangaroo is a marsupial with large, powerful hind legs, short front legs, and a long, muscular tail.", + "A kangaroo is a marsupial with a large, powerful tail and hind legs, and small front legs.", + "A kangaroo is a marsupial from the family Macropodidae (macropods, meaning \"large foot\").", + "A kangaroo is a marsupial mammal with long, powerful hind legs, large feet adapted for leaping, a long tail for balance, and a somewhat hunched posture.", + "A kangaroo is a marsupial with long, powerful hind legs, large feet, short front legs, and a long, tapering tail.", + "The image is of a kangaroo standing upright on its hind legs.", + "This image is of a red kangaroo standing in the Australian outback.", + "The image shows a kangaroo standing in a field of grass.", + "A kangaroo is a marsupial from the family Macropodidae.", + "The image is of a kangaroo standing in a grassy field.", + "The image is of a kangaroo looking to the side with its arms down at its sides.", + "The image is of a kangaroo standing on two legs with its arms extended.", + "In the image, a kangaroo is standing on a grassy plain.", + "The image is of a kangaroo standing in a grassy field.", + "The image is of a kangaroo standing in a grassy field.", + "A kangaroo is a large marsupial from the family Macropodidae.", + " A mother kangaroo resting in the shade with her joey peeking out of her pouch.", + "A kangaroo stands in the Australian Outback.", + "A kangaroo hops through the brush in search of food.", + "A kangaroo hops through the outback.", + "A kangaroo hops through the bush in Australia.", + "A kangaroo rests in the shade of a tree in the Australian Outback.", + "A kangaroo at sunrise in Australia.", + "A kangaroo stands in a field of tall grass.", + "A kangaroo enjoying a meal of grass in the Outback." + ], + "ketch": [ + "A ketch looks like a sailing vessel with two masts.", + "A ketch looks like a sailboat with two masts, the mainmast in front and the mizzenmast behind.", + "A ketch is a type of sailboat that has two masts, with the shorter mast located in front of the taller mast.", + "A ketch is a type of sailboat that has two masts, with the taller mast in the back.", + "A Ketch is a two-masted sailing vessel, with a mizzenmast stepped ahead of the rudderpost and brought forward of the main-mast.", + "A ketch usually has two masts, with the aft mast being the shorter of the two.", + "The typical ketch rig features two masts, with the aft mast taller than the forward mast.", + "A ketch is a sailboat with two masts.", + "A ketch is a two-masted sailing vessel.", + "A ketch is a sailboat with two masts, typically with the aft mast being the taller of the two.", + "Ketches have two masts, with the aft mast being shorter than the forward mast.", + "A ketch is a sailboat with two masts, a mainmast and a smaller mizzenmast, rigged fore-and-aft.", + "The masts of a ketch are of unequal height, with the aft mast being the shorter of the two.", + "A ketch is a sailing vessel with two masts.", + "The ketch has two masts with the mainmast being taller than the mizzenmast.", + "A ketch is a two-masted sailing vessel with the shorter mast, the mizzen, located aft of the rudder post.", + "The masts of a ketch are of unequal height, with the mizzenmast being the shorter of the two.", + "A ketch has two masts, with the aft mast being shorter than the forward mast.", + "A ketch has two masts, with the smaller aft mast being stepped forward of the stern.", + "A ketch is a sailing vessel with two masts.", + "A ketch is characterized by having two masts, with the aftmast being shorter than the main mast.", + "A ketch looks like a traditional sailboat, with two masts and a large sail in the back.", + "A ketch is a sailboat with two masts, a mainmast and a mizzenmast.", + "A ketch is a two-masted sailing vessel.", + "A ketch is a sailboat with two masts.", + "A ketch is a two-masted sailing vessel.", + "There is no definitive answer to this question as the appearance of a ketch can vary greatly depending on the preferences of the builder or captain.", + "A ketch is a two-masted sailing vessel, with the main mast taller than the rear mast.", + "A ketch typically has two masts, with the aft mast taller than the forward mast.", + "Ketch is a traditional style of sailing vessel.", + "In the image, a ketch is sailing on the water with its sails billowing in the wind.", + "The image is of a large, white sailboat with two masts.", + "A ketch is a sailboat with two masts, typically with a mizzenmast located aft of the mainmast.", + "A ketch is a tall, two-masted sailing vessel.", + "A ketch is a two-masted sailing vessel, typically with a mizzen mast stepped behind the main mast.", + "A ketch is a two-masted sailing vessel, typically with a mizzen mast stepped forward of the rudderpost.", + "A ketch is a two-masted sailing vessel, typically with a mizzenmast located aft of the mainmast and often carrying a jib and a mizzen staysail.", + " sailboatThe image is of a ketch sailboat with two masts.", + "A ketch is a type of sailing vessel that is typically rigged with two masts, though some may have three.", + "Image shows a large ketch sailboat with white hull and sails, moored in a harbor.", + " Shepherd of the Bay sails into the sunset.", + "Ketch on Sail in Caribbean.", + "The ketch is a traditional sailing vessel.", + "The HMS bounty was a ketch used as a training ship by the BritishRoyal Navy.", + "The ketch sailed serenely through the harbor, its sails billowing in the breeze.", + "Ketch on the water.", + "The ketch is a traditional sailing vessel with two masts, typically used for pleasure trips or light cargo work.", + "Fun in the sun aboard a ketch in the Caribbean.", + " Ketch rigged and beautiful, the Essex Windjammer is a classic vessel built for sail.", + " A ketch in full sail on a beautiful day." + ], + "lamp": [ + "Most lamps have a lightbulb inside of them that is protected by a glass or metal cover.", + "A lamp is a device that contains an electric light bulb and produces light when turned on.", + "A lamp is a light fixture that contains a light bulb.", + "A lamp is a light fixture that holds a lightbulb.", + "A lamp is a light source that is powered by electricity.", + "A lamp is a household appliance that is used to illuminate a room.", + "A lamp is an object that emits light, usually through electricity.", + "A lamp is a household appliance that is used to produce light.", + "A lamp is a device used to generate light.", + "A lamp is a lighting device that typically consists of a light bulb inside a glass or metal enclosure.", + "There are a few ways to identify a lamp.", + "A lamp is a device that emits light.", + "The lamp is on the table.", + "The easiest way to identify a lamp is by its shape.", + "One way to identify a lamp is by its shape.", + "The most common lamps are incandescent, which have a filament that glows when electricity is passed through it, and fluorescent, which use a gas to produce light.", + "If you need to identify a lamp, you can do so by looking for the manufacturer's label, which is usually located on the bottom or side of the lamp.", + "Lamps can be identified by their shape, size, color, and the type of lightbulb that they use.", + "A lamp may be identified by its ability to produce light.", + "There are a few things that you can look for when trying to identify a lamp.", + "A lamp is a common household appliance that is used to illuminate a room.", + "A lamp is a common household item that is used to provide light.", + "A lamp typically looks like a lightbulb on a stand, but there are many different types and styles of lamps.", + "A lamp looks like a light bulb on a stand.", + "A lamp typically consists of a light bulb or LED, a power source (usually batteries or electricity), and a housing.", + "A lamp is a device that produces light when electricity is passed through it.", + "The lamp is about two feet tall with a white base and a silver neck.", + "A lamp generally has a base that supports a stem or pole.", + "A lamp is a household appliance that is used to produce light.", + "Most lamps have a lightbulb inside of them and are placed on a table or desk.", + "The image is of a table lamp with a white shade.", + "The image is of a lamp that is sitting on a table.", + "A lamp is a household appliance that is typically used to provide light during the evening hours.", + "A standing lamp with a gold base and a white shade.", + "A picture of a lamp on a table next to a book.", + "The image is of a white lamp with a gold base.", + "A lamp is a light source that emits light from a bulb.", + "A lamp with a white base and a white shade.", + "The image is of a lamp on a white background.", + "The image is of a lamp on a table with a dark background.", + "This is a broken lamp.", + "Kartell Bourgie LampThis clear, plastic lamp is mid-century modern in style and would make a great addition to any home.", + "A lamp on a table.", + "An antique lamp on a side table.", + "A desk lamp with a green shade.", + "The Arial Lamp is a versatile accent piece that can be used in a variety of settings.", + "A lamp on a desk.", + "the light of the lampA caption of an image of a lamp:A lamp providing light in a dark room.", + "A silver lamp with a long, slender neck and a white shade.", + " The lamp is on the table." + ], + "laptop": [ + "A laptop looks like a small, portable computer.", + "A laptop is a portable computer that typically has a thin, flat screen.", + "A laptop typically has a hinged screen that covers the keyboard when closed.", + "A laptop typically has a hinged screen that can be flipped over and closed on top of the keyboard.", + "A laptop is a small, portable computer.", + "It is a small, portable computer typically weighing about 4-6 pounds.", + "A laptop typically has a screen that hingesopen so that it can be used like a traditionalcomputer.", + "A laptop is a computer that typically has a thin keyboard that hinge together with the monitor.", + "A laptop is typically a small to medium sized computer that can be portable and used in a variety of settings.", + "A laptop looks like a small computer that can be carried around and used on a lap.", + "You can identify a laptop by its rectangular shape, its portability, and its touchscreen capabilities.", + "Some common ways to identify a laptop are by its size, weight, and portability.", + "Laptops are often thinner and lighter than desktop computers.", + "Laptops are small, portable computers that can be used for a variety of tasks.", + "A laptop can be identified by its small size, portability, and touchpad.", + "Laptops can be identified by their portability, as they are much smaller and lighter than desktop computers.", + "One way to identify a laptop is by its portability.", + "You can identify a laptop by its small size, its portability, and its touchpad.", + "A laptop can be identified by its laptop screen, laptop keyboard, and trackpad.", + "Most laptops have a label on the bottom that includes the make and model of the laptop.", + "A laptop looks like a small, portable computer.", + "A laptop is a small, portable computer that typically has a clamshell form factor, with a screen that folds down over the keyboard to protect it when not in use.", + "Laptops come in all shapes and sizes, but they typically have a screen, keyboard, and touchpad all in one piece.", + "It typically looks like a small, portable computer.", + "A laptop typically looks like a small computer, usually with a flat screen.", + "A laptop typically looks like a smaller version of a desktop computer, with a built-in keyboard and screen.", + "Laptops vary in size and shape, but they all have a screen, a keyboard, and a trackpad or touchpad.", + "A laptop typically has a display screen, keyboard, touchpad, and trackpad.", + "A laptop typically looks like a smaller version of a desktop computer, with a built-in keyboard and a touchpad or trackpad instead of a mouse.", + "Most laptops have a clamshell design, meaning that the keyboard and screen are on opposite halves of the device and the screen hinge is on the back.", + "A laptop is a small, portable computer that typically has a thin screen.", + "The image is of a white laptop on a light wood desk.", + "I found an image of a laptop on the internet.", + " computerThis image is of a laptop computer on a desk.", + "On the internet, there is an image of a laptop which appears to be a Dell Inspiron 15.", + "A laptop on a table with a coffee cup next to it.", + "This image shows a laptop on a desk with a person's hand resting on the top of it.", + "The image from the internet shows a laptop with a white screen.", + "The image is of a laptop computer that is open and turned on, sitting on a desk.", + "The image from the internet is of a laptop on a desk.", + "A laptop on a desk.", + "Dell Inspiron 15 3000 Series Laptop.", + "A laptop computer rests on a desk.", + "This is a laptop.", + "A laptop computer on a desk.", + "Acer Aspire 5 Slim Laptop, 15.", + "A laptop computer on a desk.", + "Putting the finishing touches on my latest article.", + "My new laptop that I just got!.", + "A laptop computer on a desk." + ], + "llama": [ + "Llama are a domesticated South American camelid, used as a meat and pack animal by the Andean cultures since the Pre-Hispanic era.", + "A llama is a mammal of the family Camelidae.", + "A llama is a mammal that is native to South America.", + "Llamas are camel-like animals with long necks and legs.", + "A llama is a mammal that is native to South America.", + "Llamas are medium-sized mammals with long necks and legs.", + "A llama is a long-necked, camel-like animal with furry ears and big eyes.", + "a llama typically has thick, woolly fur that can be brown, white, or black.", + "A llama is a South American camelid that, depending on the breed, can grow to be anywhere from 5 feet to 6 feet tall at the shoulder and can weigh up to 400 pounds.", + "A llama is a domesticated South American camelid, widely used as a pack animal by Andean cultures since the Pre-Columbian era.", + "A llama is a member of the camelid family, which includes camels, alpacas, and vicunas.", + "The easiest way to identify a llama is by its long neck and short tail.", + "Llama are a domesticated South American camelid, used as a meat and pack animal by the Andean cultures since the Pre-Columbian era.", + "Llama can be identified by their long necks and characteristic call.", + "Llamas have long necks, big bodies, and short legs.", + "A llama is a member of the camel family, so it shares many characteristics with its cousins.", + "The easiest way to identify a llama is by its long neck and large, triangular ears.", + "A llama is a mammal in the Camelidae family.", + "Llama can be identified by their long face and neck, fatty hump on their back, long legs and striped pattern on their sides.", + "Llamas are a domesticated South American camelid, used as a pack animal by the Inca civilization.", + "Llamas are South American camelids, closely related to camels, alpacas, and vicunas.", + "A llama looks like a shaggy-haired camel with a long neck and legs.", + "A llama is a four-legged mammal with an elongated neck and large head.", + "Llamas have long necks, short tails, and long furry legs.", + "There is no definite answer to this question as llamas come in a variety of different sizes and shapes.", + "A llama looks like a four-legged mammal with a long neck and short tail.", + "A llama is a woolly mammal with long legs, a long neck, and pointy ears.", + "A llama is a mammal that is related to the camel.", + "A llama typically has a white, gray, or brown coat and is about five feet tall at the shoulder.", + "A llama is a domesticated South American camelid, llamas are used as pack animals in the Andes.", + "This image is of a llama standing in a field of grass.", + "The llama in the image is standing on a hill in a field.", + "A llama is a domesticated South American camelid that is widely used as a pack animal by the Andean indigenous people of Peru, Bolivia, Ecuador, Chile, and Argentina.", + "Pictured is a llama with long, furry ears standing in a field.", + "The image from the internet is of a brown and white llama standing in a field of green grass.", + "There is an image from the internet of a llama that is brown and white.", + "The image is of a llama standing in a field.", + "In the image, there is a llama standing on a hill.", + "A llama is a domesticated South American camelid, widely used as a pack animal by the Inca civilization in the Andes Mountains.", + "A llama is a mammal in the Camelidae family.", + "A llama in a field.", + "\"This llama looks like he's having a great time!\".", + "A llama in a field.", + "The llama is a South American camelid that is llikely the result of the domestication of the wild guanaco.", + " A fluffy llama with big eyes and a friendly faceA caption of an image of a cactus: A prickly cactus in a desert landscape.", + "Llama on a field in South America.", + "A llama walks across a dusty field in Peru.", + " A llama walks across a grassy plain.", + "This is a llama in its natural habitat.", + "A llama in a field." + ], + "lobster": [ + "Lobsters are large, marine crustaceans.", + "Lobsters are large marine crustaceans.", + "Lobsters are large, hard-shelled seafood creatures that live in the ocean.", + "A lobster is typically a dark red or greenish-brown color and has large claws.", + "A lobster is a large, hard-shelled sea creature with two large claws.", + "A lobster looks like a large, brownish-red sea creature with large claws.", + "A lobster is a marine crustacean with long legs, large claws, and a hard shell.", + "A lobster is a red-shelled crustacean that typically grows to be around two feet long.", + "Lobsters are large marine crustaceans.", + "A lobster has a hard, greenish-brown shell.", + "There are a few ways to identify a lobster.", + "Lobsters have a hard, spiny shell and are usually a greenish-brown color.", + "A lobster has a hard shell and is a pinkish-orange color.", + "The best way to identify a lobster is to look for the following features: two large claws, eight jointed legs, and a long tail.", + "The best way to identify a lobster is to look for its two large claws.", + "Lobsters are red and have large claws.", + "The most distinctive feature of a lobster is its large claws.", + "Lobsters have large claws, long antennae, and a hard exoskeleton.", + "Lobsters are identified by their hard shells, which are generally red and have large claws.", + "Lobsters can be identified by their large claws, their antennas, and their hard shells.", + "A lobster typically has a dark green or blue shell, and is covered in small bumps.", + "A lobster is a red, segmented crustacean that has large claws.", + "A lobster is a large sea creature with a hard shell.", + "Most lobsters have a hard shell and are a dark green or brown color.", + "A lobster is a large, marine crustacean with a hard exoskeleton.", + "There are many types of lobster, but most have a relatively similar appearance.", + "\nLobsters are typically large, 10-20 inches long, and have a hard body covered with small spikes.", + "A lobster looks like a large, crustacean with eight legs, two large antennae, and two large claws.", + "A lobster has a hard shell and is red and white.", + "A lobster has a hard, protective shell and is usually a dark red or greenish-brown color.", + "In the image, a lobster is shown from an aerial view, with its large claws outstretched and its long body curled up.", + "The image is of a lobster on a white plate with a green garnish.", + "Image shows a lobster with large claws, sitting on a cutting board.", + " in a panThe image is of a lobster in a pan with a clear lid.", + "A lobster is a large, 10-legged crustacean.", + "This image is of a lobster on a white plate with a green garnish.", + "A lobster is a large marine crustacean with two large claws.", + "This image from the internet is of a lobster.", + "This image is of a lobster from the internet.", + "I found an image of a lobster on the internet.", + "This lobster is looking quite pleased with itself!.", + " Freshly caught lobster on the docks of Maine.", + "This lobster is about to become someone's dinner.", + "A lobster resting on a bed of seaweed.", + " A lobster on a plate.", + "A lobster on a plate.", + "This lobster is a delicious seafood meal that can be enjoyed by the whole family.", + "A lobster with its claws tied together.", + "A lobster caught off the coast of Maine.", + "\"A lobster on the deck of a ship." + ], + "lotus": [ + "A lotus is a flower with a large petal that wraps around the stem.", + "A lotus is a type of flower that has a very beautify and elegant appearance.", + "A lotus flower is a beautiful, pink and white flower that grows in ponds and lakes.", + "The lotus flower is a beautiful plant that grows in ponds and rivers.", + "A lotus is a flower that blooms in mud and has a long stem that winds its way up through the water.", + "A lotus is a flower that has a long stem and big petals.", + "A lotus is a flower that has a large petal that wraps around the center of the flower.", + "A lotus is a flower that has a long stem and big, pretty petals.", + "A lotus is a flower that has a large petal in the center and smaller petals around it.", + "A lotus is typically a pink or white flower with a large petal.", + "A lotus is a flowering plant that has large, round, green leaves and flowers that grow in a cluster on a long stem.", + "What kind of lotus are you looking for?.", + "The lotus is a monocotyledonous, herbaceous perennial plant, which typically grows to between 20 and 30 cm in height.", + "The lotus is a pink flowering plant that grows in fresh water.", + " Lotus flowers are large, round, and pink or white.", + "The leaves of a lotus are large and rounded, and the flowers are held above the water on long stalks.", + "A lotus can be identified by its large, pink or white flowers that blossom above a circular arrangement of green leaves.", + "There are several ways to identify a lotus.", + "The lotus can be identified by its unique flower which grows above the water surface.", + "A lotus is a flowering plant that has large, floating leaves and blooms.", + "A lotus flower is typically white with pinkish tips.", + "A lotus is a flower with a long stem that wraps around the base of the flower.", + "A lotus flower is a beautiful, pinkish-white flower that has eight petals and a yellow center.", + "A lotus is a water lily that floats on the surface of ponds and streams.", + "A lotus is a plant with a large flower that sits on a stem above the water.", + "A lotus flower is a beautiful, pink flower that has many petals.", + "A lotus flower is a beautiful, streamlined flower with overlapping petals that resemble the shape of a perfect cone.", + "A lotus typically has large, thick leaves that float on the water's surface.", + "A lotus is a strikingly beautiful flower that has a circular shape with petals that cascade down.", + "A lotus is a flower with large, petals that can be either pink, white, or blue.", + " flowerThe image shows a lotus flower in full bloom, with its petals reaching up towards the sky.", + " flowerThe image is of a white lotus flower against a blue background.", + "The image is of a white lotus flower with its petals curled inwards.", + " flowerThis image is of a lotus flower that is blooming in a field of tall grass.", + " flowerI found an image on the internet of a lotus flower that I really like.", + " flowerA lotus flower is a pink or white flower that blooms in ponds and rivers.", + " flowerThe image is of a lotus flower in bloom with its petals wide open.", + "This image shows a lotus flower with its petals unfurled, set against a green background.", + "This image is of a lotus flower against a black background.", + "A lotus is a flower that grows in murky water and rises above the surface to bloom.", + "A lotus flower growing in a pond.", + "\"A lotus flower symbolizes purity and beauty.", + "A lotus in a pond with its roots in the mud and its flowers blooming in the sun.", + " A lotus blossom in a pool of water.", + "The lotus is a sacred flower in many cultures and religions.", + "Lotus blossoms in a pond.", + "A pink lotus bloom in a muddy pond.", + "This beautiful lotus was found in a pond in Thailand.", + "A fish swims through a lotus pond, surrounded by pink and white flowers.", + "A blue lotus in a sea of green." + ], + "mandolin": [ + "A mandolin typically has eight strings in four pairs.", + "A mandolin is a small, stringed instrument with a flat back and curved sides.", + "A mandolin is a small, stringed instrument that is similar in shape to a guitar.", + "A mandolin typically has eight strings in four courses of two, tuned in unison or octaves.", + "A mandolin is a string instrument that has a body shaped like a teardrop and a neck that is parallel to the body.", + "Pictured below is a mandolin.", + "A mandolin looks like a small mandola or mandore, with eight to twelve pairs of strings tuned in unison or octaves.", + "A mandolin is a musical instrument in the lute family.", + "A mandolin is a small, teardrop-shaped stringed instrument with four pairs of strings.", + "A mandolin is a small, guitar-like instrument with four strings.", + "If you are looking at a stringed instrument and it has eight strings in four pairs, it is likely a mandolin.", + "By its distinctive shape - it is a small, round-backed instrument with a flat face and usually has four or five strings.", + "The mandolin is a small, stringed instrument with a pear-shaped body and a fretted neck.", + "The easiest way to identify a mandolin is by its shape.", + "The mandolin is a musical instrument in the lute family.", + "A mandolin is typically small and oval-shaped with four strings.", + "The mandolin is a stringed musical instrument in the lute family and is usually plucked with a plectrum.", + "Look for a musical instrument with a rounded back and two equal halves.", + "A mandolin is a musical instrument in the lute family.", + "A mandolin is a small, eight-stringed musical instrument that is played with a pick.", + "A mandolin is a string instrument that has a pear-shaped body and a neck that extends from the body.", + "A mandolin is a musical instrument that looks like a small guitar.", + "See the linked image for a picture of a mandolin.", + "A mandolin looks like a small, flat, orange instrument with eight strings.", + "A mandolin is a convex-backed stringed instrument with eight strings in four courses of two, tuned in unison.", + "A mandolin looks like a small, fretted instrument with a long neck and a small, round body.", + "A mandolin looks like a small, eight-stringed guitar.", + "A mandolin is a small stringed instrument with a pear-shaped body and a fretted neck.", + "A mandolin is a small, acoustic stringed instrument with a body that typically resembles a teardrop or a figure-eight.", + "A mandolin is a small, typically oval-shaped, stringed instrument with a fretted neck and a body that tapers towards the top.", + "The image is of a blue mandolin with white strings.", + "The image is of a blue mandolin on a white background.", + "In this image, we see a close-up of a mandolin, with the body and neck of the instrument visible.", + "The image shows a close-up of a mandolin with intricate carving on the body and a bright yellow finish.", + "An image of a mandolin from the internet shows a musician playing the instrument.", + "A mandolin is a small, stringed musical instrument with a pear-shaped body and a fretted neck.", + "In this image, a mandolin rests on a light wooden table.", + "The image from the internet is of a mandolin with a rounded back and a flat front.", + "A mandolin is a small, acoustic guitar-like instrument with four strings.", + "A mandolin is a stringed musical instrument with a pear-shaped body and four pairs of strings.", + "A mandolin is a stringed musical instrument with a fretted neck and a flat body, typically with eight strings.", + " A woman playing a mandolin on a porch.", + "A mandolin is a musical instrument in the lute family with four strings tuned in unison.", + "A mandolin is a musical instrument in the lute family.", + "Chord progressions on a mandolin can be complex.", + "A mandolin is a musical instrument in the lute family.", + "A mandolin is a musical instrument in the lute family.", + "A mandolin is a stringed musical instrument of the lute family, typically with four courses of doubled metal strings tuned in unison.", + "A mandolin is a musical instrument in the lute family.", + "A mandolin is a musical instrument in the lute family, with four strings tuned in perfect fifths." + ], + "mayfly": [ + "The mayfly is a delicate, short-lived insect that is easily recognized by its two pairs of wings.", + "A mayfly is a slim, delicate insect with two or three pairs of wings.", + "A mayflower is a small, delicate creature with two wings.", + "Mayflies have a narrow body with long, delicate legs.", + "A mayfly is a small, delicate fly that is often seen near water.", + "A mayfly is a small, delicate insect with two pairs of wings.", + "A mayfly is a small, delicate insect with two pairs of wings.", + "Mayflies are delicate insects with long delicate legs.", + "A mayfly is a small, delicate fly with wings that resemble those of a dragonfly.", + "A mayfly is a small, fragile-looking insect with a long, thin body and two or three pairs of threadlike wings.", + "Mayflies can be identified by their three long tails and two pairs of wings.", + "The easiest way to identify a mayfly is by its two large wings that are shaped like a triangle.", + "Mayflies are small, delicate insects with two or three pairs of wings.", + "Mayflies are small, delicate insects with two or three pairs of wings.", + "The easiest way to identify a mayfly is by its two large wings that are equal in size.", + "A mayfly is typically a small, slender fly with long wings.", + "The easiest way to identify a mayfly is by its two tails.", + "Mayflies typically have wings that are thin and delicate with a network of veins.", + "The easiest way to identify a mayfly is by its two tails.", + "One way to identify a mayfly is by its long, slender body and two pairs of wings that are stacked on top of each other.", + "Most mayflies have two pairs of wings, with the front pair being much larger than the hind pair.", + "Most mayflies have two thread-like wings that are held together at rest.", + "A mayfly looks like a small, slender fly with long, fragile-looking wings.", + "A mayfly is a small, delicate insect with two transparent wings.", + "Mayflies have a long segmented body with two or three pairs of long thin legs.", + "Mayflies are thin, delicate insects with long legs and multi-segmented bodies.", + "Mayflies have a narrow body with long legs.", + "A mayfly is a small, delicate winged insect that is often seen near water.", + "An adult mayfly has two large wings that are fringed with long hairs.", + "A mayfly looks like a small flying insect with two large wings.", + "The image is of a mayfly in mid-air with its wings outstretched.", + "A mayfly is a small, delicate insect with two large wings.", + "A mayfly is a small, delicate insect with two large wings.", + "The image is of a mayfly larva crawling out of the water.", + "I found an image of a mayfly on the internet that shows a close up of the insect.", + "I found an image on the internet of a mayfly (Insecta: Ephemeroptera) crawling on a leaf.", + "The image is of a mayfly in midair with its wings spread out.", + "The image is of a mayfly with a blue body and yellowish wings.", + "The image is of a mayfly on the ground with its wings outstretched.", + "This image from the internet depicts a mayfly in mid-flight.", + "A MAYFLY RESTING ON A LEAFMayflies are delicate, short-lived insects that are found near water.", + "A mayfly on a leafA mayfly is a type of insect that belongs to the order Ephemeroptera.", + "A mayfly in flight.", + "A mayfly single-mindedly living out its final hours.", + "A mayfly rests on a blade of grass.", + "A mayfly rests on a leaf.", + "A mayfly in flight.", + "A mayfly in flight.", + "A mayfly, an aquatic insect in the order Ephemeroptera.", + "A mayfly resting on a plant." + ], + "menorah": [ + "A menorah is a nine-branched candelabrum used during the eight-day holiday of Hanukkah.", + "A menorah is a candelabrum traditionally used by Jews.", + "A menorah is a candelabra with seven branches.", + ".", + "A menorah is a nine-branched candelabra used to light Chanukah candles.", + "A menorah is a candelabrum with eight or nine branches, used in the religious ritual of Hanukkah.", + "A menorah is a seven-branched candelabrum that is used to light Sabbath and holiday candles in Jewish homes.", + "A menorah is a nine-branched candelabra used for the Jewish holiday of Hanukkah.", + "The menorah is a seven-branched candelabra that is used in the celebration of Hanukkah.", + "A menorah is a seven-branched candelabrum used in the Jewish holiday of Hanukkah.", + "There are many ways to identify a menorah.", + "A menorah is a seven-branched candelabra that is an important symbol in Judaism.", + "A menorah is a candelabrum used by Jews during the eight-day holiday of Hanukkah.", + "You can identify a menorah by its seven branches.", + "A menorah is a candelabra that has seven or nine arms.", + "There are many different types of menorahs, but they all have seven branches.", + "A menorah is a seven-branched candelabrum which is used during the eight-day Jewish holiday of Hanukkah.", + "A menorah is a seven-branched candelabra used in the ritual of Hanukkah.", + "A menorah has seven candle holders in a row with the tallest in the middle.", + "The menorah has seven candles, and is a symbol of the Jewish holiday of Hanukkah.", + "A menorah is a candelabra with nine branches.", + "A menorah is a candelabrum with seven or nine branches, typically used in the Jewish religion.", + "A menorah is a seven-branched candelabra that is used to light Chanukah candles.", + "A menorah looks like a large candelabra with seven or nine arms.", + "What do you mean by \"look like?\".", + "A menorah is a nine-branched candelabra that is used to light candles during the eight-day Jewish holiday of Hanukkah.", + "A menorah is a nine-branched candelabra used during the eight-day Jewish holiday of Hanukkah.", + "The Menorah is a seven-branched candelabra used in the practice of the Jewish faith.", + "The menorah is a nine-branched candelabrum.", + "A menorah is a nine-branched candelabrum used in the display of the Hanukkah lights.", + "This image is of a seven-branched menorah.", + "A menorah is a candelabra that is used in the Jewish religion.", + "In the image, there is a menorah with nine branches.", + "I couldn't find an image of a menorah on the internet, so I found an image of a Hanukkah menorah instead.", + "The image is of a gold menorah with seven branches.", + "A menorah is a seven-branched candelabra that is used in the religious practice of Judaism.", + "A Graphic image post of a golden modern Menorah with white candles set in each holder.", + "An image of a menorah from the internet shows a seven-branched candelabra.", + "This image from the internet shows a menorah in front of a window.", + "The image is of a menorah with seven branches.", + "This is a menorah, a seven-branched candelabra used in the celebration of Hanukkah.", + "A 9-branched menorah is lit during the Jewish holiday of Hanukkah.", + " A menorah is a candelabrum used in the celebration of Hanukkah.", + "This is an image of a menorah.", + "A menorah is a nine-branched candelabrum used for the Jewish holiday of Hanukkah.", + "A Menorah is a nine-branched candelabra used during the eight-day Jewish holiday of Hanukkah.", + "A menorah, a candelabra used in the Jewish religion, typically has seven branches.", + "The image shows a seven-branched menorah, a traditional symbol of Judaism.", + "The menorah is a nine-branched candelabrum used during the eight-day Jewish holiday of Hanukkah.", + "A closer look at the menorah shows the intricate details of the design." + ], + "metronome": [ + "Most metronomes look like small boxes with a winding key on the side.", + "A metronome typically consists of an oval-shaped housing with a wind-up key on the side, and a pendulum that swings back and forth inside.", + "A metronome is a device that clicks or beeps at a regular interval, typically used to keep tempo during music practice.", + "A metronome is a small, hand-held device that is used to keep time in music.", + "A metronome is a small, hand-held mechanical device that makes a clicking noise at a regular interval.", + "A metronome is a small device that clicks or beeps at a regular interval, used to help musicians keep a consistent tempo.", + "A metronome is an electronic device used by musicians to indicate the tempo of a piece of music.", + "A metronome is a small, handheld device that is used to keep tempo while playing an instrument.", + "A metronome is a small, handheld device that has a knob on the side to adjust the tempo, or speed, at which the metronome ticks.", + "A metronome is a small, handheld device that is used to help musicians keep a consistent tempo while playing their instrument.", + "A metronome is a device that produces an audible beat at a regular interval, used to maintain a steady tempo while playing music.", + "A metronome is a device that keeps a steady beat.", + "A metronome is a device that creates a steady beat for musicians to play along with.", + "A metronome is a mechanical or electronic instrument that produces an audible click or other sound at a regular interval that can be set by the user, typically in beats per minute.", + "The easiest way to identify a metronome is by its ticking sound.", + "A metronome is a device used to keep track of time by creating a steady beat.", + "A metronome can be identified by its ticking sound.", + "A metronome is a mechanical or electronic device that makes regular, even ticks or clicks, to mark beats in music.", + "A metronome is a tool that helps musicians keep a consistent beat.", + "A metronome is a device that produces regular, metrical ticks (beats, clicks) at adjustable tempo, with the underlying pulse usually indicated as beats per minute.", + "A metronome is a small, portable device that produces an audible ticking sound at a variety of tempo settings.", + "A metronome is a small, hand-held device that has a knob to adjust the tempo and a pendulum that swings back and forth to keep time.", + "A metronome is a small, portable device that is used by musicians to keep a steady beat.", + "A metronome typically has a large dial on the face of the device, with numbers that represent different beats per minute (BPM).", + "A metronome is a small machine that has a dial or buttons to choose the tempo, or beats per minute.", + "A metronome is a small, handheld device that has a knob or button that can be adjusted to set the tempo, or speed, of the metronome.", + "A metronome is a small, usually box-shaped device that produces regular, metrical ticks (beats, clicks) at various tempo speeds, adjustable by the user.", + "A metronome is a small device that is used to keep track of tempo when playing music.", + "A metronome is a small, portable device that is used to measure and keep tempo.", + "A metronome is a small, handheld electronic device that is used to keep tempo while practicing music.", + "The image is of a small, green metronome on a white background.", + "The image is of a silver metronome on a white background.", + "The image shows a metronome with a long, thin pendulum swinging back and forth.", + "The image is of a metronome on a wood surface.", + "A metronome is a musician's tool that helps them keep a consistent beat while they practice.", + "This image is of a metronome on a wooden surface.", + "The image from the internet shows a metronome with the arm swinging back and forth.", + "An image of a metronome from the internet shows a digital metronome with a blue LCD screen.", + "This image is of a metronome on a wood surface with the Pendulum swung to one side.", + "This image shows a close-up of a metronome with the ticking arm moving back and forth.", + "A metronome is a device used to measure or keep time.", + "A metronome is a device used by musicians to keep time.", + "A metronome is a device used by musicians to keep time.", + "A metronome is a device used by musicians to keep beat.", + "A metronome is a device used to measure and maintain tempo in music.", + "A man is sitting at a table with a metronome in front of him.", + "A metronome is a device that produces regular, metrical ticks (beats, clicks) at adjustable intervals.", + "A metronome is a device used to measure and keep time.", + "A metronome is a device used to keep track of time by ticking at a certain interval.", + "On the beat: a metronome helps musicians keep time." + ], + "minaret": [ + "A minaret typically resembles a slightly enlarged version of a column or pier standing alone, with a parapet or balcony.", + "A minaret is a tall, slender tower typically attached to a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is a tall, slender tower that is attached to a mosque.", + "A minaret is typically a tall, slender tower with a balcony on top from which a Muslim muezzin calls people to prayer.", + "A minaret looks like a tall, slender tower with a balcony.", + "Minarets are tall, slender towers that typically flank the entrances of mosques.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is a tall, slender tower typically attached to a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "The minaret is often the tallest part of the mosque and is usually located next to the main prayer hall.", + "A minaret typically has a square or octagonal base, and is tall and slender, often with a bulbous top.", + "A minaret is a tall, slender tower that is a part of a mosque.", + " minaret is a tall, slender tower with a balcony, built on a mosque as a place from which a muezzin calls Muslims to prayer.", + "A minaret is a slender, tall tower that is typically attached to a mosque.", + "A minaret is an architectural feature of mosques that is typically a tall, slender tower with an arch or balcony on top from which a muezzin calls Muslims to prayer.", + "A minaret is a slender, tall tower used for calling the faithful to prayer in Islam.", + "A minaret is a tall, thin spire with a small balcony or platform on top, typically found on a mosque.", + "A minaret is a slender, tall tower that is part of a mosque.", + "A minaret is a tall, thin, vertical structure that is typically found next to a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is usually a tall, slender tower that stands next to a mosque.", + "A minaret is a tall, thin tower that is attached to a mosque.", + "A minaret is a tall, slender tower that is found on the corner of a mosque.", + "A minaret typically has a tall, cylindrical shaft with a conical or onion-shaped crown.", + "A minaret typically takes the form of a slender, cylindrical, slightly tapering tower, with a conical or onion-shaped crown.", + "The image I found shows a minaret in the city of Raqqa, Syria.", + "A minaret is a tall, slender tower typically found in Islamic mosques.", + "The image is of a tall, slender minaret with a pointed top.", + "There is an image from the internet of a minaret that shows a tall, slender structure with a pointed top.", + "An image from the internet of a minaret shows a slender, tall tower with a cone-shaped top.", + "This image from the internet is of a minaret in the blue hour.", + "A minaret is a tall, slender tower that is part of a mosque.", + "A minaret is typically a tall, slender tower with a balcony or series of balconies overlooking a mosque.", + "A minaret is a tall, slender tower which is part of a mosque.", + "This image is of a minaret in the city of Marrakech, Morocco.", + "The minaret of the Great Mosque of Samarra, Iraq.", + "Mimar Sinan Mosque in Edirne, Turkey.", + "Minaret of the Koutoubia Mosque, Marrakech, Morocco.", + "The minaret of the Great Mosque of Samarra, Iraq.", + "Minaret of the Great Mosque of Samarra, Iraq.", + "The spiritual soaring of the minaret, as it reaches towards the heavens, is a powerful symbol of Islamic faith.", + "The minaret of the Faisal Mosque in Islamabad, Pakistan.", + "The soaring minaret of the Great Mosque of Djenn\u00e9 dominates the skyline of this ancient city in Mali.", + "The minaret of the Jama Masjid, Delhi.", + "Minaret of the Great Mosque of Cordoba, Spain." + ], + "nautilus": [ + "A nautilus is a small, spiral-shelled animal that is related to squid and octopuses.", + "A nautilus is a cephalopod that has a shell that is divided into chambers.", + "A nautilus has a spiral shell and lives in the ocean.", + "A nautilus is a shellfish that has a spiral-shaped shell.", + "A nautilus is a marine mollusc with a coiled shell.", + "A nautilus looks like a solitary, coiled mollusk that has a planispiral shell.", + "A nautilus is a type of cephalopod that has a spiral shell.", + "A nautilus is a mollusk with a spiral shell.", + "A nautilus is a marine animals with a spiral shell.", + "A nautilus typically has a spiral-shaped shell with a number of whorls.", + "A nautilus is a sea creature that has a shell that is divided into chambers.", + "The nautilus is a marine invertebrate with a spiral-shaped shell.", + "A nautilus is a small, coiled shell with a line running around its center.", + "A nautilus is a cephalopod that has a spiral shell.", + "The nautilus is a marine animal with a shell that is coiled in a spiral.", + "The shell of a nautilus is coiled, and has a distinctive spiral pattern.", + "A nautilus is a sea creature with a spiral shell.", + "The nautilus is a small, ectoparasitic freshwater snail.", + "A nautilus is a marine animal with a coiled shell.", + "The nautilus is a mollusk with a spiral shell.", + "A nautilus is a spiral shaped mollusk with a hard shell.", + "A nautilus is a shell-like animal that lives in the ocean.", + "A nautilus is a spiral-shaped, cephalopod mollusk.", + "A drawing of a nautilus can be seen here: https://en.", + "A nautilus is a sea creature that has a spiral shell and moves by propelling itself with water jets.", + "A nautilus is a sea creature that has a spiral shell.", + "A nautilus is a small, spiral-shaped sea creature with a hard shell.", + "A nautilus is a gas-filled, coiled shell that is used for floating and locomotion.", + "A nautilus is a cephalopod mollusc with a spiral shell.", + "A nautilus is a spiral-shaped mollusk with a thin shell.", + "The image is of a nautilus shell with its spiral shape and chambers visible.", + "The image is of a nautilus shell with its spirals clearly visible.", + "I found an image of a nautilus on the internet that I really liked.", + "Image shows a large nautilus shell with natural colors and markings.", + "A nautilus is a spiral-shaped marine animal with a hard shell.", + "A nautilus is a spiral-shaped marine creature with a hard shell.", + "I found an image of a nautilus on the internet that looks like a white spiral shell.", + "This image is of a nautilus shell.", + "The image is of a nautilus shell with a light brown spiral pattern.", + "A nautilus is a cephalopod with a spiral shell.", + "A nautilus on the ocean floor.", + "This is a nautilus, a marine animal with a shell that is divided into chambers.", + " The nautilus is a cephalopod that inhabits the depths of the ocean.", + "A nautilus drifts through the deep, dark ocean, its spiral shell glowing softly in the blue light.", + " A nautilus floats through the ocean depths, its spiral shell unmistakable.", + "An image of a nautilus, a marine creature with a whorled shell.", + "The nautilus is a cephalopod mollusc of the class Cephalopoda.", + "A nautilus, a prehistoric-looking creature, swims through the water.", + "The nautilus is a cephalopod mollusc which has a shell with spiraling chambers.", + " A nautilus emerging from its shellThe nautilus is a cephalopod mollusc that lives in a spiral shell." + ], + "octopus": [ + "An octopus is a soft-bodied, eight-limbed mollusc of the order Octopoda.", + "A octopus has eight legs and a head.", + "A octopus looks like an eight legged animal with a head and eyes on top of the body.", + "A octopus looks like a squid with eight arms and no internal shell.", + "An octopus has a soft, unsegmented body that can change shape.", + "A octopus is a eight-limbed cephalopod mollusc of the order Octopoda.", + "An octopus has eight arms, a head, and a body.", + "An octopus typically has a soft body with eight arms that surround its mouth.", + "A octopus is a eight-armed cephalopod mollusc.", + "An octopus has eight arms and an ink sac.", + "There are many ways to identify an octopus.", + "Octopuses have eight arms and no external skeleton.", + "You can identify an octopus by its eight legs and its soft body.", + "An octopus has eight arms and a bulbous body.", + "An octopus is a mollusc with eight arms and no internal or external skeletons.", + "A octopus can be identified by its eight legs, or tentacles, and its two eyes.", + "The scientific name for octopus is Octopus spp.", + "An octopus can be identified by its eight arms and its two eyes.", + " Octopuses have eight arms, which are covered with suckers.", + "The easiest way to identify an octopus is by its eight arms.", + "An octopus is a sea creature that has a soft body and eight long arms.", + "A octopus looks like an eight-armed sea creature.", + "Octopuses have a soft body with eight long arms.", + "A octopus is a sea creature that has eight arms and two eyes.", + "An octopus looks like an eight-armed sea creature with a head and eyes on a long body.", + "A octopus looks like an ocean creature with eight legs.", + "A octopus looks like an eight-armed sea creature with a soft, body and large head.", + "An octopus looks like a soft-bodied creature with eight arms that extend from the center of its body.", + "Octopuses are eight-armed cephalopods in the order Octopoda.", + "A octopus looks like an eight-armed sea creature with a head and eyes on a centralized body.", + "The image shows an octopus swimming underwater.", + "One image from the internet of a octopus is a close-up picture of an octopus's face.", + "The image is of a octopus in a tank of water.", + "In the image, an octopus is swimming through the water.", + "In the image, an octopus is shown in shades of brown and white, with its eight long tentacles spread out.", + "An image of a octopus from the internet would likely show a octopus swimming in the ocean or curled up on a rock.", + "This image is of a blue ringed octopus on a white background.", + "The image is of a bright blue octopus with white spots, swimming in the ocean.", + "This image is of a blue and white octopus swimming in the ocean.", + "The image is of an octopus swimming in the ocean.", + "A close-up of an octopus in water, its tentacles reaching out in all directions.", + "An octopus uses its tentacles to move around and to catch prey.", + "A curious octopus explores its new surroundings.", + "A close up of a small octopus on a coral reef.", + "A close up of an octopus brushing its teeth.", + "This is an image of an octopus.", + "An octopus expertly camouflaged against a rocky seafloor.", + "This is an octopus.", + "A close up of a octopus tentacle, with suction cups visible.", + " The octopus uses its eight arms to move around and capture prey." + ], + "okapi": [ + "The okapi has a reddish brown coat with white stripes and spots.", + "The Okapi is a mammal native to the Ituri Rainforest in Central Africa.", + "A okapi is a four-legged mammal with a long neck and tongue.", + "The okapi is a striking mammal that looks like a cross between a zebra, a deer and a donkey.", + "An okapi has a reddish brown coat and is about the same size as a horse.", + "A okapi looks like a cross between a zebra and a Giraffe.", + "A okapi is a mammal that looks like a cross between a zebra and a giraffe.", + "An okapi has a reddish brown coat and vertical white stripes on its hindquarters.", + "An okapi is a mammal that resembles a cross between a zebra and a deer.", + "An okapi has a long neck, short fur, and a reddish brown body.", + "Some ways that you can identify an okapi are by its coat, which is a chocolate brown color with white stripes, and by its long neck and legs.", + "The okapi is a member of the giraffe family and has many similarities to other members of this family.", + "A okapi can be identified by its distinctive striped pattern on its rear end.", + "The okapi can be distinguished from other animals by its unique stripe patterns and long neck.", + "The easiest way to identify a okapi is by its unique stripes that run down the entire length of its body.", + "The okapi has a distinctive striped pattern on its legs and a long neck.", + "A okapi can be identified by its striped legs and neck and its long, dark tongue.", + "You can identify an okapi by its reddish-brown coat, white stripes on its legs, and its distinctive long, black tongue.", + "The okapi is a medium-sized mammal that is native to the Ituri Forest in the northeast of the Democratic Republic of Congo in Central Africa.", + "The okapi has a striking reddish brown coat with white and black stripes on the legs and a zebra-like pattern on the hindquarters.", + "The okapi is a dark brown and white striped mammal that is closely related to the giraffe.", + "A okapi is a mammal that looks like a cross between a zebra and a giraffe.", + "The okapi is a strange-looking animal, with a long neck and legs, and a strange, furry tongue.", + "An okapi has a reddish brown coat and zebra-like stripes on its legs.", + "A okapi looks like a deer-like animal with reddish brown fur and patterns of white and black on its legs and haunches.", + "A okapi looks like a cross between a zebra and a deer.", + "An okapi looks like a cross between a zebra and a giraffe.", + "A okapi looks like a cross between a zebra and a giraffe.", + "The okapi is a medium-sized mammal native to the Ituri Rainforest in Central Africa.", + "An okapi looks like a zebra-striped horse with a giraffe-like neck.", + "The image is of an okapi standing in a forest.", + "An image of an okapi from the internet shows a brown and white striped creature with a long neck and tongue.", + "A okapi is a reddish-brown and white striped animal that looks like a cross between a zebra and a giraffe.", + "In the image, an okapi stands in a grassy area with trees in the background.", + "The image shows an okapi with its long neck and tongue extended, eating leaves from a tree.", + "This image is of a okapi, a medium-sized ungulate mammal native to the Democratic Republic of the Congo in Central Africa.", + "A okapi is a brown and white striped mammal that looks like a cross between a zebra and a giraffe.", + "A large, reddish-brown mammal with dark stripes on its legs and hindquarters.", + "The image is of an okapi against a white background.", + "The okapi is a dark-colored mammal with striped legs and a long neck.", + " A mother okapi and her calf in the Ituri forest in the Democratic Republic of Congo.", + "A close up of an okapi's face, showing its large, dark eyes and long, striped tongue.", + "A mother okapi and her calf in the forests of the Congo Basin.", + " A beautiful okapi in its natural habitat.", + " \"A mother okapi and her calf in the wild.", + "An okapi, a species of giraffe native to the Congo Basin.", + " The world's cutest animal, the okapi, in its natural habitat.", + "Endangered okapi in the Congo rainforest.", + "A mother okapi and her calf in the Ituri Forest of the Democratic Republic of Congo.", + "The okapi, a mammal endemic to the Congo Basin, is notable for its striking striped hindquarters." + ], + "pagoda": [ + "A pagoda is a tiered tower with multiple eaves, built in traditions originating from ancient China, Burma, Korea, Nepal, Sri Lanka, Japan, Vietnam, and India.", + "A pagoda is a tiered structure with an ascending series of stories, each roofed with a curved eaves.", + "A pagoda is a tall, ornate structure found in Buddhist temples.", + "A pagoda is a tiered structure with a square or rectangular base that was originally built in Asia.", + "A pagoda is a large, tall, slightly tapering structure made of wood, stone, or brick, with an upward curving roof that ends in a point.", + "A pagoda is a tiered structure with upward-curving eaves, built in Japan, China, and other parts of East Asia.", + "A pagoda is a tall, multileveled tower with an ornate roof, typically found in Asia.", + "A pagoda is a tiered structure with an ornate roof, typically found in Buddhist temples.", + "A pagoda is approaching, it is a five-story, ornate building atop a single-story base with multiple eaves, each supported by columns.", + "A pagoda looks like a large, multi-tiered structure with a pointed, tiled roof.", + "A pagoda is a type of building that has a series of tiered roofs.", + "A pagoda is identified by its tiered shape and upturned eaves.", + "A pagoda is generally a tiered tower with multiple eavescommon in East Asia, the Indian subcontinent, and Southeast Asia.", + "A pagoda is a tiered structure with an elevated, central core that is often built with a square or circular floorplan.", + "Pagodas are usually tall and slender, with multiple tiers.", + "A pagoda is a tiered structure with an ornate and imposing roof, typically found in Buddhist temples.", + "A pagoda can often be identified by its tiered design, with multiple levels stacked on top of each other.", + "A pagoda is a tiered tower with upward curving roofs, built in stages, with each stage smaller than the one below it.", + "The easiest way to identify a pagoda is by its tiered structure.", + "A pagoda is a tiered structure with an elevation of multiple stories.", + "A pagoda is a tiered structure with an ornate roof, originating from ancient China.", + "A pagoda includes multiple eaves, each layer has a larger diameter than the one beneath it.", + "A pagoda is a tiered structure with an ornate roof, typically built in Asia.", + "A pagoda is a type of building that is found in many East Asian countries.", + "A pagoda is a tiered tower with multiple eaves, built in traditional Chinese architectural style.", + "A pagoda is a tall, tiered structure typically made of stone or wood, used in East Asian religions as a place of worship.", + "A pagoda is a tiered structure with an ornate roof, typically built in Asia.", + "A pagoda is a type of building that has a tiered structure with upward-curving roofs.", + "A pagoda typically has a rectangular or square base, with multiple tiers of roofs rising in steps to a sharp point at the top.", + "A pagoda is a tall, tiered structure with multiple eaves, built in traditions originating from ancient China.", + "A pagoda is a tiered tower with eaves and a curved, pointed roof.", + "The image is of a multistory pagoda with a tiled roof.", + "A pagoda is a tiered tower with ornate roofs, often found in Buddhist temples.", + "A pagoda is typically a tiered structure with multiple eaves, built in traditions originating from Asia, especially East Asia.", + "The image is of a white pagoda with a green roof, surrounded by trees.", + "The image is of a traditional Chinese pagoda with a red tile roof.", + "There is a pagoda in the image that is surrounded by greenery.", + "This image is of a traditional Chinese pagoda.", + "A pagoda is a tiered structure with a pointed roof, usually built to honor a deity or as a place of worship.", + "This image is of a red pagoda with a golden roof.", + "This pagoda is a part of the Wat Pho temple complex in Bangkok, Thailand.", + "This is a pagoda in Japan.", + "The pagoda is a tiered tower with eaves, traditionally built in East Asia to represent sacred mountains and represent the Buddhist cosmos.", + " A Pagoda in Yangzhou, China.", + "A typical Chinese pagoda, with its multi-tiered roof and ornate eaves.", + "A man looks at a pagoda in Myanmar.", + "Pagoda at the Temple of Heaven, Beijing.", + "It is a Chinese pagoda from the medieval period.", + "A five-story pagoda in the center of a park in Beijing, China.", + "Pagoda in Kyoto, Japan." + ], + "panda": [ + "A panda is a medium-sized mammal belonging to the bear family.", + "The giant panda is easily recognized by its large, distinctive black patches around the eyes, over the ears, and across its round body.", + "A panda looks like a bear with black and white fur.", + "Panda bears are large, black and white bears that are native to China.", + "A panda has black and white fur, and it looks like a bear.", + "A panda looks like a bear that is white and black.", + "A panda is a large mammal with black and white fur.", + "A panda is a large, bear-like mammal with black and white fur, native to China.", + "A panda is a black and white bear-like animal with a large head and short legs.", + "Panda bears are large, mammalian predators with black fur and white markings around their eyes and mouths.", + "Panda bears are black and white and have a big head with round ears.", + "A panda has black and white fur, and it is a bear.", + "A panda is a large mammal with black and white fur.", + "A panda can be identified by its unique black and white fur.", + "A panda can be identified by its black and white fur.", + "The easiest way to identify a panda is by its unique black-and-white fur.", + "A panda can be identified by its unique black and white fur.", + "The easiest way to identify a panda is by its black and white coloring.", + "A panda has a white face with black ears and black patches around its eyes.", + "Panda bears are large, furry animals with black and white fur.", + "A panda typically has black fur on its ears, eye patches, muzzle, legs, and shoulders.", + "A panda looks like a bear with a white and black coat.", + "A panda typically has black fur on its ears, eye patches, muzzle, legs, and arms, with white fur on its chest, belly, and around its neck.", + "A panda is a black and white bear-like animal with large black patches around its eyes.", + "A panda is a black and white bear-like mammal with small eyes and round ears.", + "A panda looks like a bear with black and white fur.", + "The giant panda is a bear with black and white fur.", + "A panda bear is a large, furry animal with black and white fur.", + "A panda looks like a black and white bear.", + "A panda looks like a black and white bear.", + "The image is of a panda in a tree.", + "The image is of a panda standing on its hind legs with its front paws in the air.", + "The image is of a panda standing on its hind legs in front of a green background.", + "The image is of a panda that is eating bamboo.", + "In the image, a panda is sitting on a tree branch and looking at the camera.", + "This image is of a panda bear sitting in a tree.", + "The image is of a panda eating bamboo.", + "An image of a panda from the internet shows a large black and white furry animal sitting in the snow.", + "In the image, a panda is standing on a rock in a grassy field.", + "In the image, a panda is sitting on a branch in a tree.", + "A panda eating bambooA panda bear eating bamboo.", + " A panda eating bambooA panda eating bamboo in its natural habitat.", + " A panda giving a hibiscus to a humanA panda giving a hibiscus to a human is a symbol of peace and goodwill.", + " Black and white and loved all over.", + " Giant panda eating bambooA giant panda eating bamboo.", + " A giant panda lounges in its bamboo forest habitat.", + "A panda eating bambooA panda in a forestA panda bear eating bamboo.", + " A panda eating bamboo.", + "Adorable pandas eating bamboo in China.", + " Giant pandas eating bamboo." + ], + "pigeon": [ + "Pigeons are birds that have a stout body and short legs.", + "Pigeons are plump, grey birds with short necks and short beaks.", + "A pigeon is a grey bird with a white chest.", + "A pigeon is a small, gray bird with a white chest.", + "A pigeon looks like a medium sized, long-necked bird with a short, stout bill.", + "Pigeons are small to medium-sized birds with short legs.", + "A pigeon is a small, gray bird with a white chest and a small neck.", + "A pigeon typically has gray feathers, but can also have feathers that are white, brown, or a mix of colors.", + "A pigeon is a grey bird with a white chest.", + "Pigeons have a small, compact body with short legs.", + "The best way to identify a pigeon is by its distinctive shape.", + "A pigeon is a plump, grey bird with a short neck and round head.", + "There are many ways to identify a pigeon.", + "The easiest way to identify a pigeon is by its color.", + "Pigeons are small, plump birds with short necks and short legs.", + "A pigeon is a plump, Grayish-blue bird with a white chest.", + "A pigeon is a medium-sized bird with a plump body and short legs.", + "Pigeons are medium-sized birds with a round body, short neck, and short beak.", + "A pigeon is a small, plump bird with a short neck, short legs, and a short, pointed beak.", + "A pigeon typically has a small, round head, a short beak, and a large body.", + "Pigeons have gray feathers and a white belly.", + "A pigeon looks like a small, plump bird with short legs and a short beak.", + "Pigeons are stalky birds with short necks and small, heads.", + "A pigeon typically has gray feathers and a white belly.", + "Pigeons are typically gray or white with iridescent feathers.", + "A pigeon looks like a small, gray bird with a long neck.", + "Pigeons are gray with white on their belly.", + "A pigeon looks like a small, gray bird.", + "A pigeon looks like a gray bird with a white chest.", + "Pigeons are fairly small birds with stout bodies and short necks.", + "This image is of a pigeon perched on a power line.", + "A pigeon is a bird that typically lives in cities.", + "The image is of a gray and white pigeon with its head turned to the side.", + "The image that I found was of a white pigeon with blue-gray wings.", + "The image is of a pigeon in flight with its wings outstretched.", + "An image of a pigeon from the internet shows a small, grey bird with a white chest and black markings on its wings.", + "A pigeon is sitting on a roof, looking down at the street below.", + "This image shows a pigeon in flight with its wings outstretched.", + "The image is of a pigeon standing on a ledge with its head turned to the side.", + "The image is of a pigeon on a building ledge.", + "A pigeon perched on a windowsill.", + " A pigeon enjoying a warm day on a windowsill.", + "Pigeon in Central Park, New York City.", + "A pigeon coolly perched atop a building, surveying the cityscape below.", + "A pigeon flying in the sky.", + " A pigeon perched on a window sill.", + "Pigeons are one of the most commonly seen birds in cities around the world.", + "A pigeon perches atop a building in New York City.", + "The world's largest pigeon, the Bolivian band-tailed, can weigh up to 3.", + " \"A pigeon walks on the sidewalk." + ], + "pizza": [ + "A pizza is a circumference of dough, typically round, with a flattened surface that is covered in sauce and cheese and then typically topped with additional ingredients such as meats or vegetables.", + "A pizza typically has a round, flat base with a raised edge, and is covered in tomato sauce, cheese, and various toppings.", + "A pizza is a yeasted flatbread typically topped with tomato sauce and cheese and baked in an oven.", + "A pizza is usually round, with a flat bottom and a raised edge.", + "A pizza looks like a flat, round, bread-like dough that is typically covered in tomato sauce, cheese, and various toppings.", + "A pizza is a round, flat bread covered with tomato sauce, cheese, and other toppings.", + "A pizza is a round, flat piece of bread with sauce and toppings on it.", + "A pizza is a round, flat bread that is covered in tomato sauce and cheese.", + "A pizza typically has a round, flattened base of dough that is covered with tomato sauce, cheese, and various toppings.", + "A pizza is a circular, flatbread topped with tomato sauce, cheese, and various toppings.", + "One way to identify a pizza is by its round shape and its toppings, which usually include cheese, sauce, and pepperoni or other meats.", + "A pizza is a round, flat bread that is covered with tomato sauce, cheese, and other toppings.", + "Pizza can be identified by its round, flat shape and its crust, which is traditionally either thick or thin.", + "You can tell a pizza by looking at its toppings.", + "You can identify a pizza by its round, flat shape and its distinctive toppings, which usually include cheese, tomato sauce, and pepperoni.", + "A pizza can be identified by its round shape, its crust, and its toppings.", + "The round shape and the toppings are a give away.", + "round, flat, crust, toppings, sauce.", + "What kind of pizza?.", + "A pizza is a round, flattened doughnut-shaped bread typically topped with tomato sauce, cheese, and various toppings.", + "A pizza has a round, flat shape with a raised edge.", + "A pizza typically has a circular shape with a diameter of 10-12 inches.", + "A pizza typically has a round, flat base with a raised edge, and is topped with tomato sauce, cheese, and various toppings.", + "Typically, a pizza is a round, flattened bread dough topped with tomato sauce, cheese, and various toppings.", + "A pizza is typically a round, flatbread covered in tomato sauce and cheese, with various toppings such as meats, vegetables, or seafood.", + "A pizza has a wide, flat surface and is typically round.", + "A pizza typically has a round, flat shape with a crust that is slightly raised around the edge.", + "A pizza typically has a round, flat base with a raised edge, and is covered in tomato sauce and cheese.", + "We can't answer this question without more information.", + "A pizza typically has a round, flat base with a raised edge and is topped with tomato sauce, cheese, and various toppings.", + "A pizza from the internet is an image of a pizza with pepperoni, sausage, and mushrooms on it.", + "Pizza is a dish of Italian origin consisting of a round, flattened base of leavened wheat-based dough topped with tomatoes, cheese, and often other ingredients such as meat or vegetables.", + "ideal image of a pizza from the internet would include a close-up of a pizza with a crispy, golden crust covered in bubbly cheese and red tomato sauce.", + "In the image, there is a pizza with a cheese and tomato sauce base.", + "The image from the internet is of a pizza with pepperoni, sausage, and mushrooms.", + "A photo of a pizza with a thin crust, topped with sauce, cheese, and pepperoni.", + "A dirty, congealing pizza with a few crumbs left on the plate.", + "This pizza has a delicious looking crust that is golden brown and slightly charred.", + "The image from the internet of a pizza is a photo of a pizza with a pepperoni topping.", + "This image shows a delicious-looking pizza with a thin crust, covered in melted cheese and topped with pepperoni slices.", + "The pizza is hot and cheesy with a crispy crust.", + "Mmmm.", + "Pizza is a popular Italian dish that is made with flatbread, tomatoes, and cheese.", + "Pizza is a flat, round bread that is covered with tomato sauce and cheese.", + "A large pizza with pepperoni and mushrooms.", + " A delicious pizza with lots of cheese.", + " Cheese and pepperoni pizza.", + "\"I ordered a pizza and this is what I got.", + "A delicious pizza with pepperoni, mushrooms, and onions.", + "A cheese pizza with pepperoni, mushrooms, and onions." + ], + "platypus": [ + "The platypus is an egg-laying, duck-billed, beaver-tailed, otter-footed mammal.", + "A platypus is a small, semi-aquatic mammal found in eastern Australia, including Tasmania.", + "A platypus is a furry, egg-laying mammal with a bill like a duck and a poison spur on its hind leg.", + "A platypus is a small mammal with a duck-like bill, webbed feet, and a tail.", + "A platypus is a small, egg-laying mammal that has a bill like a duck, a furry body, and a tail like a beaver.", + "A platypus is an egg-laying mammal with a beaver-like tail, a duck-like bill, and webbed feet.", + "A platypus is a duck-billed, beaver-tailed, otter-footed mammal.", + "A platypus is a species of semi-aquatic egg-laying mammal found in eastern Australia, including Tasmania.", + "A platypus is a furry, egg-laying mammal with a duck-like bill and venomous spurs on its hind legs.", + "a platypus is a small, furry mammal with a bill like a duck and a beaver-like tail.", + "The platypus is a unique creature found in eastern Australia.", + "The platypus is one of only two species in the world that lay eggs and also has fur.", + "A platypus can be identified by its Duck-bill, beaver tail, and otter like feet.", + "The platypus is a small, semiaquatic, egg-laying mammal native to eastern Australia, including Tasmania.", + "The most distinctive feature of the platypus is its bill.", + "The platypus is a small, furry mammal with a bill like a duck and a stinger on its hind leg.", + "Look for an egg-laying mammal with a bill and webbed feet!.", + "A platypus can be identified by its overall shape, which is similar to a beaver, otter or duck, its bill, webbed feet and furry body.", + "The easiest way to identify a platypus is by its bill.", + "The easiest way to identify a platypus is by its duck-like bill and beaver-like tail.", + "A platypus is a small, mammal with a fur-covered body, a bill like a duck, and a tail like a beaver.", + "A platypus is a short, stout-bodied, semiaquatic mammal with a long, narrow bill.", + "A platypus is a small, egg-laying mammal with a duck-like bill, webbed feet, and a furry body.", + "A platypus is a furry Australian mammal that looks like a beaver with a duckbill.", + "A platypus is a small, semiaquatic mammal native to eastern Australia, including Tasmania.", + "Platypuses have unique features among mammals.", + "A platypus is a small, slim creature with a long tail, webbed feet, and a bill like a duck's.", + "A platypus looks like a beaver with a duckbill.", + "A platypus is an egg-laying mammal that has a bill like a duck, a tail like a beaver, and webbed feet.", + "A platypus is a small, semiaquatic mammal.", + "I found an image on the internet of a platypus swimming through a river.", + "The two influential factors in this image are the lighting and composition.", + "resembling an otter with a tail like a beaver and a duck bill.", + "The image from the internet of a platypus is a brown and white animal with a long tail and webbed feet.", + "This image is of a platypus in a river in Australia.", + "The image is of a platypus swimming in a river.", + "This image from the internet shows a platypus in a natural setting, swimming in water with plants around it.", + "The image is of a platypus swimming through water.", + "The image is of a platypus swimming in a river.", + "The image that I found was of a platypus swimming underwater.", + " A platypus swimming underwater.", + "An Australian platypus in its natural habitat.", + " A platypus taking a swim.", + "A platypus smiling for the camera.", + " Native to Australia, the platypus is a unique creature with several unusual features.", + "This is a platypus.", + "A WOMAN HOLDING A PLATYPUSThe caption reads: \"A woman holding a platypus.", + " A platypus swimming through a river in Australia.", + " A platypus in the wild.", + "The platypus is a mammal that lays eggs." + ], + "pyramid": [ + "A pyramid is a three-dimensional geometric shape that has a triangular base and three or more sides.", + "A pyramid is a three-dimensional geometric shape that has a square or triangular base and four Triangular sides that meet at a point.", + "A pyramid is a three-dimensional geometric shape with a triangular base, flat sides, and a point at the top.", + "A pyramid has a square or rectangular base, and sides that taper up to a point.", + "A pyramid is a 3-dimensional geometric shape with a square or triangular base and four triangular sides that meet at a point (the apex).", + "A pyramid is a structure with a square or rectangular base and four triangular sides that meet at a point at the top, creating a three-dimensional effect.", + "A pyramid looks like a large, triangular-shaped building with a pointy top.", + "A pyramid is a geometric three-dimensional solid with a polygonal base and sides that meet at a point, typically with slanted and often stepped sides.", + "A pyramid looks like thi: /\\ .", + "A pyramid is a 3-dimensional geometric shape that has a square base and four triangular sides.", + "A pyramid is a geometric three-dimensional solid with a triangular base, flat sides, and a point at the top.", + "A number pyramid can be identified by its shape.", + "Pyramids have a distinct shape that is easy to spot.", + "A pyramid can be identified by its shape.", + "A pyramid has a base that is a polygon, and triangular faces that meet at a point.", + "A pyramid has a triangular base and triangular sides that meet at a point at the top.", + "A pyramid has a three-dimensional shape.", + "A pyramid can be identified by its four triangular sides that meet at a point, or apex.", + "A pyramid has a triangular base and sides that meet at a point at the top.", + "A pyramid typically has a square or rectangular base, and four triangular sides that come to a point at the top.", + "The Great Pyramid of Giza in Egypt is perhaps the most famous example of a pyramid, but there are many other examples all over the world.", + "A pyramid is a geometric shape with four sides that meet at a point at the top, like a triangle.", + "A pyramid is a geometric three-dimensional solid with a polygonal base and triangular sides.", + "A pyramid is a geometric solid with a square or triangular base and four or more triangular faces.", + "A pyramid has a triangular base and four triangular sides.", + "A pyramid is a geometric three-dimensional solid with a polygonal base and sloping sides that meet at a point.", + "A pyramid looks like a triangular shape with a flat top and bottom.", + "A pyramid is a geometric shape that has a square or triangular base and four triangular sides that meet at a point, called the apex.", + "A pyramid has a three-dimensional triangular shape.", + "A pyramid looks like a triangular-shaped structure with a flattened top.", + "This image shows a pyramid that is made out of stone.", + "The image is of a large, gray pyramid with a small entrance at the base.", + "The image is of a pyramid made out of sand with a blue sky in the background.", + "An image from the internet of a pyramid shows a large, ancient-looking structure made of stone.", + "This image from the internet shows a pyramid made out of cardboard boxes.", + "https://www.", + "This image is of the Giza pyramid in Egypt.", + "An image of a pyramid from the internet might show a large, ancient structure with several levels, built of stone or brick, and located in a desert.", + "A picture of a pyramid from the internet would likely show a large, ancient structure made of stone blocks.", + "A square or rectangular pyramid with a pointed top and four sloping sides, typically with a base larger than its sides.", + "The ancient Egyptian pyramids were built as tombs for pharaohs and their consorts.", + "The Egyptian pyramids are some of the most iconic structures in the world.", + " A pyramid in Giza, Egypt.", + "The Giza pyramid complex in Egypt.", + "The Great Pyramid of Giza.", + "The stepped pyramid of Djoser is the oldest in Egypt, built around 2630 BCE.", + "The Giza pyramid complex in Egypt.", + "The Great Pyramid of Giza.", + "The chief of a powerful ancient Mesoamerican city-state, as depicted in a stone carving from around 600 CE.", + "The Great Pyramid of Giza." + ], + "revolver": [ + "A revolver looks like a handgun with a cylindrical chamber that revolves around a central axis.", + "A revolver is a handgun with a revolving cylinder.", + "A revolver is a cylinder that holds rounds in a rotating chamber.", + "A revolver looks like a small hand-held cannon.", + "A revolver typically has a cylindrical chamber that rotates to align with the barrel, and a single action trigger.", + "Revolvers are handguns that have a cylinder that revolves around an axis in order to fire multiple rounds.", + "A revolver is a cylindrical device with a handle that is used to fire a bullet.", + "A revolver is a firearm that has a cylinder that rotates to fire six rounds.", + "A revolver typically has a cylindrical body with a rotating cylinder inside.", + "Most revolvers have a cylindrical chamber that rotates to align the round with the barrel, and a spring-loaded firing pin that strikes the primer and ignites the round.", + "Most revolvers have a cylindrical chamber that rotates along with the barrel.", + "A revolver is a weapon with a rotating cylinder that contains several chambers and at least one barrel for firing.", + "A revolver is a handgun that has a cylinder with chambers that rotate to align with the barrel when the gun is cocked.", + "There are a few ways to identify a revolver.", + "A revolver is a type of pistol that has a revolving cylinder of ammunition.", + " There are a few ways to identify a revolver.", + "There are a few ways to identify a revolver.", + "A revolver can typically be identified by its cylinder, which encases the rounds and usually revolves around a central axis in the gun.", + "A revolver can be identified by its cylinder, which is typically located on the right side of the gun and contains the chambers for the rounds.", + "A revolver is a type of handgun that has a rotating cylinder containing multiple chambers and at least one barrel for firing.", + "A revolver is a type of handgun that has a rotating cylinder with chambers for holding bullets.", + "A revolver is a handgun that has a rotating cylinder of bullets.", + "A revolver is a type of handgun that has a cylinder with six chambers.", + "A revolver is a hand gun that has a cylinder with chambers that rotate to align with the barrel.", + "A revolver looks like a handgun with a cylindrical chamber that rotates around a central axis when the gun is fired.", + "A revolver is a handgun that has a cylinder with several chambers.", + "A revolver typically looks like a small to medium sized handgun with a cylindrical chamber that revolves around a central axis.", + "A revolver is typically a handgun with a cylindrical chamber that rotates to fire six rounds.", + "A revolver typically has a cylindrical chamber that rotates to align each bullet with the barrel before firing.", + "A revolver looks like a small hand-held cannon.", + "This image shows a black revolver with a silver barrel and handle.", + "A revolver is a handgun with a revolving cylinder that contains six or seven shots.", + "The image is of a black revolver with a brown handle.", + "The image is of a black revolver with a silver barrel.", + "The image is of a black revolver with a silver trigger.", + "A revolver is a cylindrical device with a handle that contains six or seven chambers that rotate around a central axis.", + "The image is of a revolver with a chrome finish.", + "A revolver is typically a cylindrical device with a handle that protrudes from the bottom.", + "The image is of a silver revolver with a black grip.", + "An image of a revolver from the internet shows a black handgun with a long barrel and a cylinder in the middle.", + "A revolver.", + " A Smith & Wesson Model 29 revolver in .", + "A close up of a revolver on a table.", + "A revolver handgun.", + "a revolver.", + " A revolver with six chambers in its cylinderThis revolver has six chambers in its cylinder, making it a great choice for self-defense.", + "A revolver is a handgun that has a cylinder with six chambers that rotate when the gun is fired.", + "A revolver is a type of handgun that has a revolving cylinder containing multiple chambers and at least one barrel for firing.", + "A revolver is a handheld firearm that has a rotating cylinder of cartridges.", + "A revolver with six chambers and a cylinder." + ], + "rhino": [ + "A rhinoceros is a large, grayish-brown mammal with one or two horns on its snout.", + "A rhino is a large, gray mammal with a thick hide and sharp horns.", + "A rhino is a large, gray mammal with thick skin and a horn on its nose.", + "A rhino looks like a large, horned mammal.", + "A rhinoceros is a large mammal with thick, gray skin.", + "A rhino is a large mammal with thick skin and one or two horns on its nose.", + "A rhino is a big, gray, furry mammal with a long snout.", + "A rhino is a large, gray mammal with thick skin and a horn on its snout.", + "A rhino is a large mammal with thick, gray skin.", + "A rhinoceros is a large, odd-toed ungulate mammal.", + "The easiest way to identify a rhino is by its size and appearance.", + "Some ways you can identify a rhino are by their size, their weight, their skin, and their horns.", + "A rhino has a wide mouth, a small eye, and a large body.", + "The best way to identify a rhino is by its horn.", + "rinos have a horn on their nose.", + "One way to identify a rhino is by its distinct horn.", + "Rhinos can be identified by their large size, their tank-like build, their short legs, their long horn, and their gray-brown color.", + "Rhinos can be identified by their large size, thick skin, and short legs.", + "There are five species of rhino, and they can be difficult to tell apart.", + "A rhino is a large, grey mammal with a horn on its nose.", + "A rhino is a large, gray mammal with thick skin and a horn on its nose.", + "A rhino is a large, grayish-brown mammal with a thick hide and a large horn on its snout.", + "A rhino looks like a large mammal with thick skin and a horn on its nose.", + "Rhinos are large, grayish-brown animals with thick skin.", + "A rhino is a large, gray mammal with loose skin and a long, horn-like nose.", + "A rhino is a large mammal with thick, gray skin.", + "The rhinoceros is a massive mammal with a thick, wrinkled skin that is grey/brown in color and covered in wart-like bumps.", + "A rhinoceros is a large, grayish-brown herbivorous mammal with one or two horns on its snout.", + "A rhinoceros is a large, herbivorous mammal with thick skin and one or two horns on its snout.", + "A rhinoceros is a large, near-hairless mammal with thick, gray or reddish-brown skin.", + "The image is of a white rhino that is grazing in a grassy field.", + "The image is of a large, gray rhinoceros.", + "This image from the internet shows a rhino on a grassy plain.", + "In this image, a rhino is shown walking through a grassy area.", + "The image is of a rhino with its horn broken off.", + "The image is of a rhino standing in a grassy field.", + "The image is of a rhino standing in front of a tree.", + "An image of a rhino from the internet is a large, gray, horned mammal.", + "The image is of a rhino grazing on grass in a field.", + "The image is of a rhino with its horns.", + "The Indian rhinoceros, also called the greater one-horned rhinoceros, is a rhinoceros native to the Indian subcontinent.", + "A rhino in its natural habitat.", + " A rhino in the wild.", + "A rhino in its natural habitat.", + " A large rhinoceros looks out into the distance.", + " A black rhinoceros in Kruger National Park, South Africa.", + " A rhino calmly grazing in a field.", + "A rhino in South Africa.", + "A rhino in its natural habitat.", + "A single rhinoceros stands in a grassy field." + ], + "rooster": [ + "A rooster is a chicken that has a comb on its head and wattles on its neck.", + "A rooster is a male chicken.", + "A rooster is a drumstick with eyes.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken who has not been castrated.", + "A rooster is a chicken that is usually red and has a lot of feathers on its head.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A rooster looks like a chicken, but with a longer tail and a protruding crest on its head.", + "A rooster is a male chicken that is usually red, orange, or yellow with a bright red or blue crest on its head.", + "The easiest way to identify a rooster is by its crow.", + "A rooster is a male chicken.", + "A rooster is usually distinguished from a hen by its larger size, more prominent comb and wattles, and its long, pointed tail.", + "Crowing is the most reliable way to identify a rooster, although not all roosters crow.", + "Roosters are usually distinguished from hens by their spectacular plumage of long flowing tails and shiny, often brightly coloured plumage.", + "A rooster is a male chicken.", + "A rooster can be identified by its crow, which is louder and higher-pitched than a hen's crow.", + "The easiest way to identify a rooster is by its crow.", + "A rooster can be identified by its comb and wattles, which are fleshy protrusions on its head.", + "The most obvious way to identify a rooster is by its male reproductive organs.", + "A rooster is a male chicken.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A typical adult male chicken is known as a rooster.", + "A rooster is typically a male chicken.", + "A rooster is a male chicken.", + "A rooster is a chicken that is male.", + "Arooster is a male chicken.", + "In the image, there is a brown and white rooster with its head tilted back.", + "A rooster is a chicken that is typically distinguished by its comb on its head, which is used to attract mates, and its crow, which is used to warn other roosters of predators.", + "In the image, there is a rooster with its head and neck extended anteriorly, and its tail feathers fanned out behind it.", + "The image is of a brown rooster with a red wattle and comb.", + "This image from the internet shows a rooster with its bright red and yellow plumage.", + "The image is of a rooster with a large, brightly-colored comb and wattles.", + "This image is of a rooster with its head and neck extended upwards, its body splattered with mud, and its tail feathers fanned out.", + "The image is of a brown and white rooster with a red wattle.", + "This image shows a large, red rooster in a barnyard.", + "The image is of a red and orange rooster with a yellow beak and comb.", + "The rooster crows at the break of dawn.", + "Red rooster on a farm.", + " A rooster crowing on a farm.", + "This majestic rooster is looking right at us, as if it knows we're admiring it.", + " A rooster crowing on a farm.", + "A rooster crowing on a farm.", + " The rooster is crowingThe rooster is crowing at the sun, heralding the start of a new day.", + " A beautiful red rooster.", + "A rooster crowing on a farm.", + "Rooster crowing on a farm." + ], + "saxophone": [ + "A saxophone is a musical instrument that looks like a cross between a clarinet and a trumpet.", + "A saxophone is a musical instrument that is shaped like a tube with a curved neck.", + "The saxophone is a musical instrument that looks like a cross between a brass instrument and a clarinet.", + "A saxophone is a wind instrument that looks like a brass instrument with a large bell.", + "A saxophone is a wind instrument that is played by blowing into a mouthpiece that is attached to a long, narrow tube.", + "A saxophone is a long, thin, brass instrument with a mouthpiece on one end and a bell on the other.", + "A saxophone is a long, tube-shaped instrument with a wide, flared bell at one end.", + "A saxophone is a long, thin, brass instrument.", + "A saxophone is long and thin with a curved body and a mouthpiece on one end.", + "The saxophone is a long, thin, tube-shaped musical instrument with a wide, flared bell at one end.", + "You can identify a saxophone by its conical shape and the curvature of its body and neck.", + "The saxophone is a wind instrument that looks like a brass instrument but is made of wood.", + "The most common ways to identify a saxophone are by its size and shape, and by the location of the sound holes.", + "The saxophone is a musical instrument that is easily identified by its cylindrical shape and the fact that it has a conical bore.", + "The saxophone is a musical instrument that is part of the woodwind family.", + "The saxophone is a musical instrument that is played by blowing air into a reed mouthpiece.", + "You can identify a saxophone by its sleek design and long, curved neck.", + "The saxophone can be identified by its curved body and single reed mouthpiece.", + "A saxophone is a brass wind instrument with a single-reed mouthpiece.", + "The most common ways to identify a saxophone are by its size, shape, and number of keys.", + "A saxophone is a musical instrument that looks like a long, curved tube.", + "The body of a saxophone is held upright and consists of a bell-shaped bottom section, a cylindrical middle section, and a neck.", + "A saxophone looks like a brass wind instrument with a curved body and a single reed mouthpiece.", + "A saxophone looks like a brass instrument with a long, curved body and a big bell at the end.", + "A saxophone is a long, thin brass instrument with a flared bell at the end.", + "Image result for what does a saxophone look like.", + "A saxophone looks like a brass wind instrument with a curved neck and a bell-shaped opening at the end.", + "A saxophone looks like a long, thin brass tube with a curved neck and a small mouthpiece.", + "A saxophone looks like a brass wind instrument with a long, thin neck.", + "https://www.", + "The image is of a saxophone on a black background.", + "The image is of a saxophone on a white background.", + "The image is of a saxophone on a stage with a microphone in front of it.", + " The image is of a golden saxophone on a white background.", + "The image is of a bright yellow saxophone on a white background.", + "The image is of a saxophone on a dark background.", + "The image is of a saxophone on a stand with the reed inserted.", + "The image is of a yellow saxophone with a black neck and keys.", + "The saxophone is a long, thin, silver-colored instrument with a curved body and a wide mouthpiece.", + "I found an image of a tenor saxophone being played by a musician.", + "A saxophone is a musical instrument in the woodwind family.", + "This is a tenor saxophone.", + "A saxophone is a musical instrument that is played by blowing into a reed.", + " A saxophone on a stand with a microphone in front of it.", + " A saxophone sits on a stage, ready for its solo.", + "A saxophone is a musical instrument that is part of the woodwind family.", + "A man plays a saxophone on a stage in front of a microphone.", + " Saxophone player in a New Orleans jazz club.", + " Saxophone in E-flat major.", + "This is a saxophone." + ], + "schooner": [ + "A schooner is a sailing vessel with two or more masts.", + "A schooner is a type of sailboat with two or more masts.", + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner is a sailing vessel with at least two masts, the foremost of which is, invariably, fore-and-aft rigged.", + "A schooner is a type of sailboat with two or more masts.", + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner is a tall, slender sailboat with two or more masts.", + "A schooner is a type of sailboat that has two or more masts.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts, the foremast being shorter than the main and no taller than the mizzen.", + "A schooner is a sailing vessel with at least two masts and typically has fore-and-aft sails on the mainmast and foremast.", + "It is a fore-and-aft rigged vessel with two or more masts.", + "A schooner is a type of sailboat with at least two masts.", + "One way to identify a schooner is by its sails.", + "A schooner is a sailing vessel with two or more masts with the foremast being shorter than the mainmast.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts, the foremast being shorter than the main.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts.", + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "The identification of a schooner is done by looking at the mast configuration.", + "A schooner is a tall ship with two or more masts.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts, the foremast being shorter than the main and no taller than the mizzen.", + "The classic schooner has two masts, with the aft mast being shorter than the main mast.", + "There are many types of schooners, but they all have two or more masts and are rigged fore-and-aft.", + "A schooner typically has two or more masts, with the aftmost mast being shorter than the foremast.", + "A schooner is a type of sailboat with two or more masts.", + "A schooner typically has two masts, with the sails on the upper mast being larger than the sails on the lower mast.", + "A schooner is a type of sailing vessel that has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner is a sailboat with two or more masts, with the aft, or main, mast being smaller than the forward mast.", + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner is a sailboat with at least two masts, typically with the foremast being shorter than the mainmast.", + "A schooner is a type of sailboat that has two or more masts.", + "The image is of a traditional schooner sailing ship with billowing white sails.", + "The image is of a three-masted schooner sailing on a calm sea.", + "The image is of a large schooner sailing on the open sea.", + "An image of a schooner from the internet might show a tall ship with several sails, billowing in the wind.", + "In the image, the schooner is sailing on the ocean with billowing sails and a seagull flying overhead.", + "I found an image of a schooner on the internet that I really like.", + "I found an image of a schooner on the internet that I really like.", + "This image from the internet shows a large schooner sailing on the open sea.", + "The schooner in the image is sailing on a blue sea with whitecaps.", + "In the image, a three-masted schooner is sailing on a large body of water.", + "The schooner La Amistad, on which a group of enslaved Africans seized control in 1839, is shown in this painting by T.", + "The Pride of Baltimore II is a replica of an 1812 privateer of the same name.", + "The Victor, a schooner built in 1883, sails near Boston Harbor.", + "The Schooner of LifeThis image shows a beautiful schooner sailing through calm waters.", + " A schooner sails near the coast.", + " The schooner sails on the open sea.", + " A group of people on the deck of a schooner, enjoying the view.", + "Sailing near the coast on a beautiful day.", + "The Bounty, a replica of the HMS Bounty, in St.", + "The schooner yacht America, which gave her name to the America's Cup." + ], + "scissors": [ + "A scissors typically looks like two blades attached in the middle by a rivet, with handles on each end.", + "A scissors is a cutting tool with two blades attached at a pivot point.", + "A typical pair of scissors is two metal blades attached in the middle by a screw and held together by a rivet.", + "A scissors is a cutting tool with two sharp blades that come together at a point.", + "A pair of scissors looks like two metal blades attached in the middle by a joint.", + "A scissors typically has two handles and two blades that come together in the middle.", + "A scissor is a quickly hinged blade device used for cutting.", + "A scissors is a sharpened cutting tool that consists of two metal blades that are attached at a pivot point.", + "A scissors has two metal blades that are sharpened at the ends and connected in the middle by a metal screw.", + "A scissors has two metal blades with sharpened edges that come together at a point.", + "A scissors can typically be identified by its two blades which are connected at a pivot point in the middle.", + "It has two blades that come together in a point and cross in the middle.", + "A scissors has two blades that are attached at a hinge.", + "A scissors is a hand-operated cutting tool that consists of a pair of metal blades that are joined at a pivot point in the middle.", + "A scissors might be small and have two metal blades with a finger hole in each one.", + "Most scissors have two blades that are joined at a pivot point so that the blades open and close like shears.", + "A scissors typically has two blades that are connected at a pivot point in the middle.", + "A scissors is a cutting tool that consists of a pair of metal blades that are connected at the middle by a pivot.", + "A scissors has two blades that are hinged at the bottom and meet in the middle to form a sharp point.", + "Many scissors have a finger rest near the bottom blade for the middle finger.", + "A scissors typically consists of a pair of metal blades attached to a central pivot point.", + "A pair of scissors typically consists of a pair of metal blades attached to a pivot point in the center.", + "A scissors is a hand-operated cutting tool consisting of two blades joined at the middle by a pivot point.", + "A pair of scissors typically consists of a pair of metal blades attached to a central pivot point.", + "A pair of scissors typically consists of a pair of metal blades attached to a hinge.", + "A scissors is a tool that is used for cutting.", + "A pair of scissors looks like two metal blades attached at a hinge in the middle.", + "A scissors typically looks like two blades coming together in the middle, allowing the blades to cross over each other to cut through objects.", + "A pair of scissors has two blades that are joined at the center.", + "A scissors is a cutting tool that has two blades that are connected at the middle by a pivot point.", + "A pair of scissors with a metal blade and a plastic handle.", + "The image is of a pair of scissors.", + "The image is of a pair of scissors.", + "A scissors is a cutting tool with two sharp blades that are connected at a pivot point.", + "The scissors in the image are metal with plastic handles.", + "A scissors is a cutting tool consisting of two blades connected at a pivot point.", + "The scissors in the image have a black handle and a silver blade.", + "The scissors in the image are sharp and look like they could cut through anything.", + "This image is of a pair of scissors.", + "An image from the internet of a scissors shows a pair of metal scissors with two blades and two handles.", + "A scissors.", + "A pair of scissors.", + "A pair of scissors.", + "A pair of scissors.", + "an image of a scissors.", + " A pair of scissors.", + "A scissors cutting through a piece of paper.", + "Scissors.", + "A pair of scissors.", + "A black and white image of a scissors." + ], + "scorpion": [ + "Scorpions are arachnids and have eight legs.", + "A scorpion is a small, dark creature with a long tail that has a poisonous stinger on the end.", + "Scorpions are arachnids, so they have eight legs, two pincers, and a tail with a stinger on the end.", + "A scorpion is a small, eight-legged predator that has a long whip-like tail with a stinger at the end.", + "Scorpions are arachnids, which means they have eight legs, two pedipalps, and a segmented body.", + "Scorpions are arachnids and have eight legs.", + "A scorpion is typically dark brown or black, and has a long, segmented tail that can be up to twice the length of its body.", + "A scorpion looks like a small lobster with a long tail.", + "A scorpion is a predatory arachnid with a long tail tipped with a venomous stinger.", + "A scorpion looks like a small crab with a long, curved tail.", + "The easiest way to identify a scorpion is by its long, curved tail that is tipped with a stinger.", + "The easiest way to identify a scorpion is to look at its tail.", + "If you see an arachnid that is reddish brown and has a long, thick tail with a stinger on the end, it is likely a scorpion.", + "By its curved tail and stinger.", + "Scorpions are easily identified by their long tails that end in a stinger.", + "Look for a small, thin creature with a long tail and pincers at the front.", + "The easiest way to identify a scorpion is by its long, segmented tail that is tipped with a venomous stinger.", + "The easiest way to identify a scorpion is by its long, curved tail that has a stinger on the end.", + "The best way to identify a scorpion is by its long, curved tail that ends in a stinger.", + "They have a long, segmented tail that is often curved over the back and ends in a stinger.", + "A scorpion has a long body, a narrow waist, and a segmented tail that is tipped with a poisonous stinger.", + "A scorpion looks like a small black insect with a long tail that has a stinger on the end.", + "A scorpion is a small, venomous arachnid that typically has a long, segmented tail that ends in a stinger.", + "A scorpion looks like a small lobster or crab with a long, thin tail that is tipped with a poisonous stinger.", + "A scorpion has a long body and a long tail that is bent at the end.", + "The defining feature of scorpions is the presence of a stinger at the end of the abdomen.", + "A scorpion is a small arachnid that has a long, segmented body and a tail that is often curved over its back.", + "A scorpion is a small, eight-legged predator that has two large claws and a long, segmented tail.", + "Scorpions are arachnids, which means they have eight legs.", + "A scorpion looks like a small, dark creature with a long, curved tail that ends in a sharp stinger.", + "The scorpion's body is large and flat, and it has a long, thin tail that curves over its back.", + "The image is of a scorpion against a black background.", + "The image is of a large scorpion with its tail curled over its back.", + "This is an image of a scorpion from the internet.", + "This is an image of a scorpion from the internet.", + "This is an image of a scorpion from the internet.", + "A scorpion is an arachnid that has a long, segmented body, eight legs, and a long, curved tail that ends in a stinger.", + "The image is of a scorpion on a black background.", + "This image is of a scorpion on a black background.", + "The image is of a large, dark, scorpion with its tail raised up in the air, ready to sting.", + "A close-up of a scorpion's head, showing its large, curved claws and beady eyes.", + "In this photo, a scorpion stands on a rocky surface.", + " A close-up of a scorpion on a light background.", + "A Scorpion in the DesertThis arachnid is one of the many predators that call the desert home.", + "A scorpion on a rock in the desert.", + "This is a scorpion.", + "A scorpion in the desert.", + "A scorpion stands on a rock, its long tail curled over its back.", + "A scorpion with its long tail curled up over its back.", + "A scorpion sits on a dry, cracked rock with its tail curled up over its body." + ], + "sea horse": [ + "A sea horse is a small horse-shaped creature that lives in the water.", + "A sea horse is a small horse-like creature that lives in the ocean.", + "A seahorse is a small, horse-shaped fish with a long snout, a spiraling tail, and small fins on its back.", + "A sea horse is a small, slow-moving fish with a long snout and a prehensile tail.", + "A seahorse is a small horse-shaped fish that lives in salt water.", + "A sea_horse has a long snout, and a seahorse-shaped body.", + "Sea horses are small fish with a horse-like head.", + "A sea horse is a small horse-shaped creature that lives in the sea.", + "A sea horse is a small, horse-like creature that lives in the ocean.", + "A sea_horse is a small horse-like creature that lives in the sea.", + "A sea horse has a long snout and a horse-like head.", + "Sea horses are unique looking creatures that are easily recognizable.", + "If you are looking at a horse-shaped creature in the water, it is likely a seahorse.", + "A seahorse can be identified by its long snout, which is used to suck up food, and its prehensile tail, which it uses to anchor itself to coral and seagrass.", + "A sea horse is a type of fish.", + "A seahorse is a small marine fish that has a prehensile tail and a long snout.", + "A seahorse is a fish that has a horse-like head and a tail that it can curl up.", + "A seahorse is a small marine fish that is related to the pipefish and the stickleback.", + "A sea horse has a long snout and a horse-like head.", + "They have a seahorse-shaped body with a head and tail that curl back on themselves.", + "A seahorse has a long snout and a round body.", + "A seahorse is a small, pony-like creature with a long snout and a tail.", + "A sea horse is a small, horse-like creature that lives in the sea.", + "A sea horse looks like a horse with a long snout, and a tail like a fish.", + "A seahorse is a marine fish that is found in shallow tropical and temperate waters around the world.", + "A seahorse is a small horse-like creature that lives in the ocean.", + "Where do you find sea horses? A sea horse looks like a horse with a long snout.", + "A sea horse is a small horse-shaped fish.", + "A sea horse looks like a horse with a long tail that lives in the sea.", + "A seahorse is a marine creature that looks like a horse with a long snout.", + "The image is of a sea horse that is yellow and green.", + "The image is of a small, colorful sea horse swimming in the ocean.", + "This image from the internet depicts a sea horse against a white background.", + "The image is of a sea horse swimming in the water.", + "The image is of a sea horse swimming in the ocean.", + "_The image depicts a sea horse with a long, curling tail and a small body.", + "This image from the internet shows a sea horse with a yellow body and a long tail.", + " The image is of a yellow and orange sea horse with its tail wrapped around a piece of coral.", + "One image that appears when searching for \"sea horse\" on Google Images is of a yellow sea horse with brown spots swimming in water.", + "The image is of a yellow sea horse with green spots swimming in the ocean.", + " A sea horse at the bottom of the ocean.", + " A seahorse swimming in the ocean.", + " A beautiful seahorse swims in the ocean.", + "This is a sea horse, a species of marine creature that is related to the pipefish and the seadragon.", + " A sea horse sticking out of the water with its tail curled around a plant.", + "A sea horse swimming through the water.", + "\nThe seahorse is a type of fish that is closely related to the pipefish and the helmetfish.", + " A seahorse peeks out from among the coral.", + " A sea horse swimming in the ocean.", + " a sea_horse floating in the water." + ], + "snoopy": [ + "A snoopy looks like a dog with big ears and a long nose.", + "A snoopy is a small dog with big ears.", + "A snoopy is a small, white dog with black spots.", + "A snoopy is a small, toy dog with black fur and big, black eyes.", + "A snoopy is a small, white, fluffy dog with big black eyes.", + "A snoopy looks like a small, white, fluffy dog with big black eyes.", + "A snoopy is a small, thin dog with long, drooping ears.", + "Snoopy is a small, beagle-like dog with black fur and big ears.", + "A snoopy is a small, white, fluffy dog with big black eyes.", + "A snoopy is generally a small, white, lap dog.", + "A snoopy is a person who is curious about everything and always wants to know what is going on.", + "A snoopy person is someone who is nosy or inquisitive.", + "If you are in a public place, and someone is constantly looking over your shoulder, or trying to listen in on your conversations, they may be a snoopy.", + "There is no easy way to identify a snoopy.", + "A snoopy is a person who is excessively curious about the affairs of others.", + "There is no sure way to identify a \"snoopy.", + "If someone is snoopy, they are curious about things that they probably shouldn't be curious about.", + "A snoopy is a person who is excessively curious or inquisitive.", + "There is no one definitive way to identify a snoopy.", + "If someone is \"snoopy,\" they tend to be nosy and to pry into other people's business.", + " Snoopy is a cartoon character in Charles M.", + "A snoopy looks like a little black and white dog with big ears.", + "A snoopy looks like a cartoon character with a big nose and big ears.", + "A snoopy looks like a small brown and white puppy.", + "A snoopy looks like a toy dog.", + "There is no one definitive answer to this question, as the appearance of a snoopy can vary depending on who is drawing it or what style they are using.", + "A snoopy is a small, hand-held tool used to remove snow from clothing.", + "A snoopy is a small, cute, brown and white dog.", + "A snoopy looks like a dog.", + "Snoopy is a cartoon character created by Charles M.", + "This image is of a snoopy character from the Peanuts comics.", + "In the image, Snoopy is standing on top of his doghouse with his arms raised in the air.", + "Snoopy is a cartoon beagle who is the main character of the comic strip Peanuts.", + "The image is of a cartoon dog called Snoopy.", + "An image of snoopy from the internet is a cartoon image of a brown dog with big ears and a black nose.", + " and charlie brownIn the image, Snoopy is sitting on top of his doghouse with his best friend Charlie Brown standing next to him.", + "Image is of a cartoon dog character named snoopy.", + "I found an image of Snoopy from the peanuts comics on the internet.", + "This image is of a Snoopy character from the \"Peanuts\" comics.", + "There is an image of a snoopy on the internet that is wearing a red scarf and hat.", + "Snoopy is a beagle who loves to chase after squirrels.", + " A \"SNOOPY\"\nA caption of an image of a person skateboarding: A person skateboarding down a street.", + "Snoopy the Dog.", + "Snoopy is a beagle who is the pet of Charlie Brown in the comic strip \"Peanuts.", + "Snoopy from the Peanuts cartoons.", + " A snoopy on a Doghouse.", + " Snoopy is a lovable cartoon beagle created by Charles Schulz.", + " It's the great pumpkin, Charlie Brown!.", + "Snoopy lying on his back with his feet in the air.", + "Snoopy the dog celebrating his birthday with a cake." + ], + "soccer ball": [ + "A soccer ball is round and made of synthetic leather or latex.", + "A soccer ball is a spherical object that is typically made of leather or synthetic materials and is used to play the sport of soccer.", + "A soccer ball is a large, inflatable ball with a black-and-white checkered pattern.", + "A soccer ball is a ball that is used to play soccer.", + "A soccer ball is round and typically made of 32 stitched panels of synthetic leather or rubber.", + "A soccer ball looks like a round, black-and-white ball.", + "A soccer ball is typically a spherical object with a pattern on the surface.", + "Assuming you are talking about a traditional soccer ball, it is a sphere with a stitched surface.", + "A soccer ball is a sphere with a pattern of black and white pentagons and hexagons.", + "A soccer ball is a round, spherical object that is typically made of leather or synthetic materials and is used in the sport of soccer.", + "A soccer ball is typically round and made of synthetic leather.", + "The soccer ball can be identified by its round shape and black and white checkered pattern.", + "A soccer ball is a round object that is usually black and white.", + "A soccer ball is typically round and has a black and white checkered pattern.", + "Most soccer balls have 32 panels and are covered in stitched leather or\u5b89\u5fbd\u5feb3\u5f00\u5956\u7ed3\u679c vinyl.", + "A soccer ball can be identified by its round shape and black and white pattern.", + "A soccer ball is typically round and made of synthetic leather.", + "A soccer ball is usually round and has a pattern of black and white pentagons and hexagons.", + "The shape of a soccer ball is nearly spherical, with a slightly oblong shape.", + "A soccer ball can typically be identified by its color, as they are usually either black and white, or black and orange.", + "A soccer ball is typically a sphere with a pattern of black and white pentagons and hexagons.", + "A soccer ball is a round, black and white ball used in the sport of soccer.", + "A soccer ball is a sphere-shaped object with a black and white checkered pattern.", + "A soccer ball typically has a white, black, and/or red color scheme and is round in shape.", + "A soccer ball is typically a black and white checkered sphere.", + "A soccer ball is a round object that is typically black and white.", + "A soccer ball is a spherical object that is typically made of leather or synthetic materials.", + "\nA soccer ball is usually black and white, and is round.", + "A soccer ball is a round, black-and-white ball.", + "A soccer ball is a round, black and white ball that is used to play soccer.", + "A soccer ball is an object used in the sport of soccer.", + "This image is a PNG of a stylized soccer ball.", + "The image from the internet is of a white soccer ball on a green background.", + "The image from the internet is of a circular soccer ball with a black and white pentagon pattern.", + "The image from the internet is of a soccer ball on a grass field with a goal in the background.", + "The image is of a soccer ball on a green field with white lines.", + "The image is a close-up of a black and white soccer ball.", + "The image is of a white soccer ball on a green field.", + "The image is of a soccer ball on a green field with white lines.", + "The image from the internet is of a soccer ball on a green field with white lines.", + "A soccer ball on a grass field.", + "A soccer ball on a green field.", + " A soccer ball on a grass field.", + "A soccer ball sits on a green field.", + "A soccer ball on a green field.", + " A black and white soccer ball.", + "A soccer ball on a green field.", + "A soccer ball on a field.", + " A soccer ball on a grass field.", + "A soccer ball on a grassy field." + ], + "stapler": [ + "A stapler is a small hand-held device used to fasten papers together.", + "A stapler can come in many different shapes and sizes, but the most common type of stapler is a hand-held, metal stapler that has a long, rectangular base.", + "A stapler is a small hand-held device used to fasten sheets of paper together by driving a thin metal staple through the sheets and folding the ends of the staple over.", + "A stapler typically has a long, narrow body with a handle on one end and a lever on the other.", + "A stapler is a tool that is used to fasten papers together by driving staples into them.", + "A stapler looks like a small hand-held device with a flat rectangular base.", + "A stapler is a tool used to join sheets of paper together by securing them with staples.", + "A stapler has a top and a bottom half that open up.", + "A stapler is a small hand-held device used to fasten papers together with staples.", + "A stapler is a small, hand-held machine used to join papers together by driving metal staples into them.", + "A stapler can be identified by its rectangular shape, its small size, and the existence of a hole at one end through which staples can be fed.", + "A stapler is a device that joins pages of paper together by inserting staples into the pages and bending the staples over to hold the pages together.", + "A stapler is a type of paper fastener that holds sheets of paper together.", + "A stapler can be identified by its long, rectangular body and its curved handle.", + "There are a few ways to identify a stapler.", + "A stapler is a handheld device used to push metal staples through paper in order to fasten them together.", + "A stapler is a small, hand-held device that is used to fasten two or more pieces of paper together by driving metal staples through the paper and into a piece of wood or metal.", + "A stapler is a tool used to join pieces of paper or material together by insurgent fasteners called staples into stacks.", + "A stapler is usually a small, hand-held device used to fasten papers together.", + "The arms of a stapler come together in the middle, and the end of each arm has a metal point.", + "A stapler looks like a small, handheld device with a metal bar that is used to push staples into paper.", + "A stapler is a handheld device that is used to join two or more pieces of paper together by inserting staples into the paper.", + "A stapler is a tool used to fasten papers together with staples.", + "A stapler looks like a small hand-held machine with a handle on one end and a metal clamp on the other.", + "A stapler is a hand-held device that is used to join together two pieces of paper by inserting staples into them.", + "A stapler looks like a small hand-held machine with ametal series of grips and jaws.", + " staples\nA stapler looks like a small hand-held machine with a slot for inserting staples.", + "A stapler is a small, hand-held device that is used to fasten sheets of paper together by staples.", + "A stapler is a small, hand-held device used to fasten papers together.", + "A stapler typically looks like a small hand-held device with a handle and a flat base.", + "The image is of a black stapler on a white background.", + "The image is of a blue stapler on a white background.", + "A stapler is a small hand-held device used to join pieces of paper together by staples.", + "The image is of a black stapler on a white background.", + "The image is of a small, silver stapler.", + "The stapler is a silver color with a black grip.", + "The image is of a silver stapler on a white background.", + "An image of a stapler from the internet would likely show the device itself and possibly someone using it.", + "The image is of a silver stapler on a white background.", + "The image shows a black stapler on a white surface.", + "A black stapler on a white background.", + "This is a stapler.", + "The stapler is a small, hand-held device used for fastening papers together.", + "This is a staple gun.", + " A staplerA close-up image of a stapler.", + "A stapler.", + "This is a stapler.", + "A metal stapler that is silver in color.", + "The stapler is a handy tool for fastening papers together.", + "This is a stapler." + ], + "starfish": [ + "A starfish is a sea creature that has a star-shaped body.", + "Starfish are often brightly colored, and they have a unique shape that resembles a star.", + "A starfish is a marine invertebrate that has the shape of a star.", + "A starfish has a central disk with five arms radiating out from it.", + "Most starfish look like they have five arms that come out from a center point, but some species can have up to 40 arms.", + "A starfish typically has five arms, although some species can have more.", + "A starfish looks like a star with arms coming out of the sides.", + "A starfish is a flat, spiny creature that lives in the ocean.", + "A starfish is a marine animal that typically has a central disc and five arms, though some species have more.", + "Starfish are marine invertebrates that have a hard exoskeleton and five arms.", + "A starfish has five arms that come out from a central point.", + "A starfish can be identified by its five arms, or rays, which extend from its central body.", + "A starfish can be identified by its five arms and its spiny skin.", + "A starfish has 5 arms coming out from a central point.", + "A starfish is a flat, multi-limbed creature that is found in most of the world's oceans.", + "A starfish has five arms that come out from a center point.", + "A starfish has five distinct arms that extend out from a central point.", + "A starfish is a marine animal with a flat body and five or more arms that radiate from a central point.", + "A starfish has five or more arms and a central disk.", + "The best way to identify a starfish is to look for its five arms.", + "A starfish is a sea creature that has a body in the shape of a star and usually has five arms.", + "A starfish typically has five arms, although some species can have up to 40.", + "A starfish typically has five arms, although some species can have more.", + "A starfish is a type of sea creature that has a star-shaped body with five arms.", + "A starfish has a radial symmetry and five arms.", + "A starfish looks like a star.", + "A starfish has a radial symmetry and typically has five arms, although some species can have as many as 40 arms.", + "A starfish typically has five arms and is recognizably star-shaped.", + "A starfish looks like a star with five arms.", + "Starfish are usually found in the ocean and can vary in color.", + "This image is of a starfish on a coral reef.", + "This image is of a starfish on a white background.", + "one possible image is of a small, brown starfish on a white background.", + "This image from the internet shows a starfish on a beach.", + "The starfish in this image is a small, orange starfish with white spots.", + "A starfish is a marine invertebrate with five arms.", + "A starfish on the internet is typically a photo of a starfish on a beach or in the water.", + "In the image, a starfish is pictured against a blue background.", + "This image depicts a starfish on a coral reef.", + "Image shows a close up of a starfish on a sandy beach.", + "A starfish or sea star is a echinoderm of the class Asteroidea.", + "Starfish are marine invertebrates with a radial symmetry.", + "A closeup of a starfish on a beach.", + "Starfish are a type of echinoderm and are typically found in marine environments.", + "A starfish on a beach.", + "Starfish are marine animals with a disk-shaped body and multiple arms that radiate from the center.", + " A starfish in the waterA caption of an image of a starfish on a beach: A starfish on the beach.", + " A starfish hangs out on a coral reef.", + "A starfish on a beach.", + "A starfish on a beach." + ], + "stegosaurus": [ + "A stegosaurus is a large, plant-eating dinosaur that lived during the Late Jurassic period, 155 to 150 million years ago.", + "A stegosaurus is a large, plant-eating dinosaur that lived during the late Jurassic period, 155 to 150 million years ago.", + "A stegosaurus is a large, plant-eating dinosaur that has a row of bony plates running down its back.", + "The stegosaurus is a prehistoric creature that lived during the Late Jurassic period.", + "A stegosaurus is a large, plant-eating dinosaur that has a row of plates running down its back.", + "A stegosaurus is a large, plant-eating dinosaur with a small head, a long tail, and spikes running down its back.", + "large, bulky, herbivore, four legs, long neck and tail, plates along its back.", + "The stegosaurus is a dinosaur that lived during the Jurassic period.", + "The stegosaurus is a large, plant-eating dinosaur that lived during the late Jurassic period, about 155 to 150 million years ago.", + "The stegosaurus is a large, plant-eating dinosaur that lived during the late Jurassic period, about 150 million years ago.", + "The stegosaurus can be identified by its large, flat plates along its back and four spikes on its tail.", + "A stegosaurus can be identified by it's large plates along it's back, and it's small head.", + "The easiest way to identify a stegosaurus is by its unique tail spikes and plates.", + "Some ways you can identify a stegosaurus is by its size, weight, and the number of plates on its back.", + "The easiest way to identify a stegosaurus is by its plate-covered back.", + "Stegosaurus can be identified by its unique combination of features.", + "A stegosaurus can be identified by its four-spiked tail and two rows of plates along its back.", + "A stegosaurus is a large, plant-eating dinosaur that is easily identified by the plates on its back and the spikes on its tail.", + "The stegosaurus can be identified by its very distinctive double row of plates along its back, as well as the two spikes on the end of its tail.", + "The most obvious way to identify a stegosaurus is by its plates.", + "A stegosaurus is a large, plant-eating dinosaur that lived during the Jurassic period, about 150 million years ago.", + "A stegosaurus has a large, bulky body with a small head.", + "A stegosaurus looks like a large, powerful dinosaur with thick, scaly skin.", + "A stegosaurus looks like a dinosaur that has plates on its back.", + "The stegosaurus is a large, plant-eating dinosaur that lived during the late Jurassic period, around 150 million years ago.", + "I'm not sure what you're asking.", + "A stegosaurus looks like a large, plant-eating dinosaur with a small head, a long tail, and large plates running down its back.", + "A stegosaurus is a large, plant-eating dinosaur.", + "A stegosaurus is a four-legged, herbivorous dinosaur with a long tail and spikes along its back.", + "A stegosaurus is a large dinosaur that has a small head, a long neck, a hardback, and two rows of sharp spikes down its back.", + "The image is of a small, brown and green stegosaurus.", + "The image shows a stegosaurus with its plate-like scales along its back.", + "The image is of a green stegosaurus with large plates on its back.", + "The image is of a large, green stegosaurus with spikes down its back.", + "A stegosaurus is a large, plant-eating dinosaur that lived during the Late Jurassic Period, about 155 to 150 million years ago.", + "The image is of a stegosaurus fossil.", + "One image from the internet of a stegosaurus shows the large, green dinosaur standing in a forest.", + "The image is of a large, green stegosaurus with spikes on its back.", + "The image is of a green stegosaurus with spikes on its back.", + "The image shows a stegosaurus in a green field.", + " A stegosaurus rears up on is hind legs to get a better view of its surroundings.", + "\nAn incredibly well-preserved stegosaurus specimen, on display at the Museum of Natural History.", + " The Pointy DinosaurThis is a stegosaurus, one of the most popular dinosaurs.", + "A stegosaurus walks through a forest.", + "A stegosaurus frolics in a forest.", + "A stegosaurus is a large, plant-eating dinosaur that lived during the late Jurassic period.", + " A stegosaurus wanders through a forest.", + "This is a stegosaurus, a large, plant-eating dinosaur with a distinctive arrangement of plates running along its back.", + "A stegosaurus walks through a prehistoric landscape.", + "This image shows a stegosaurus, a large, herbivorous dinosaur that lived during the Late Jurassic Period." + ], + "stop sign": [ + "A stop_sign is typically a red octagon with the word \"STOP\" written in white.", + "A stop sign is typically red with white letters that say \"STOP.", + "A stop_sign is a red octagon with the word \"STOP\" written in white letters.", + "A stop sign is a red octagon with a white border.", + "A stop sign is octagonal, has a red background, and white lettering that says \"STOP\" in all capital letters.", + "A stop sign is typically a red octagon with the word \"STOP\" written in white letters.", + "A stop_sign is typically a red octagon with the word \"STOP\" written in white.", + "A stop_sign is a traffic sign that is typically red and octagonal.", + "A stop sign is traditionally red with white lettering.", + "A stop_sign is usually red and octagonal, with the word \"STOP\" written in white letters.", + "A stop_sign is a red octagon with a white border.", + "A stop_sign is a red octagon with the word \"STOP\" written in white.", + "A stop_sign can be identified by its octagonal shape and its red color.", + "There are many ways to identify a stop_sign.", + "You can identify a stop_sign by its red color and octagonal shape.", + "A stop_sign is typically a red octagon with a white border and the word \"STOP\" written in white.", + "A stop_sign is usually red and has the octagon shape.", + "A stop_sign is typically octagonal, has a red background, and has the word \"STOP\" written in white letters.", + "A stop sign is generally red or octagonal.", + "A stop sign can be identified by its octagonal shape and red color.", + "A stop sign is a red octagon with the word \"STOP\" written in white letters.", + "A stop sign is a red octagon with a white border and the word \"STOP\" written in white letters.", + "A stop_sign looks like an octagon with the word \"STOP\" written in white letters on a red background.", + "A octagon with a white background and the word \"STOP\" in red letters.", + "A stop_sign typically has a red octagon with the word \"STOP\" written in white.", + "A stop sign is typically an octagonal shape with the word \"STOP\" written in white letters on a red background.", + "A stop sign is an octagonal red sign with the word \"STOP\" written in white.", + "A stop_sign looks like a red, octagonal sign with the word \"STOP\" written in white letters.", + "A stop sign is a red octagon with a white border and the word \"STOP\" in white letters.", + "A stop_sign looks like a red octagon with the word stop in white letters.", + "The image is of a traditional stop sign with the word \"STOP\" written in large, red letters on a white background.", + "The image from the internet of a stop sign is a red octagon with a white border and the word \"STOP\" in white letters.", + "The image is a red octagon with a white border and the word \"STOP\" in white letters.", + "The image is of a red octagon with a white border and the word \"STOP\" in white letters.", + "The image is of a traditional octagonal stop sign.", + "A stop_sign is a road sign that is typically red with a white octagon in the center.", + "An image from the internet of a stop_sign might show a red octagon with the word \"STOP\" in white letters.", + "The image is of a red stop sign with the word \"Stop\" written in white.", + "The image is a picture of a stop sign.", + "The image is of a stop sign on a wooden post in a grassy field.", + "A stop sign telling drivers to stop.", + "This is a stop sign.", + "\"STOP\".", + "A stop_sign telling drivers to stop.", + "The stop sign is an important traffic control device that tells drivers to stop before entering a street or highway.", + " StopA caption of an image of a cat: A cat sleeping in the sun.", + "do not enter.", + "A stop_sign telling drivers to stop.", + "StopA captured image of a stop sign.", + "A stop sign at an intersection." + ], + "strawberry": [ + "A strawberry is a red fruit that is shaped like a cone.", + "A strawberry is a small, red fruit with a green stem.", + "A strawberry is a small, red, juicy fruit with seeds on the outside.", + "A strawberry is a small red fruit with seeds on the outside.", + "A strawberry is a red fruit that is small and has seeds on the outside.", + "A strawberry is a small, red fruit that is surrounded by green leaves.", + "A strawberry is a small, red fruit that is shaped like a cone.", + "A strawberry is a small, red fruit with a seed-studded surface.", + "A strawberry is a red fruit that is small and has seeds on the outside.", + "\nA strawberry is a small red fruit with a seed-studded surface.", + "A strawberry is typically red and has small seeds on the outside.", + "A strawberry is a small, red fruit with a hull and seeds on the outside.", + "A strawberry can be identified by its red color, heart shape, and small seeds.", + "The easiest way to identify a strawberry is by its color.", + "A strawberry can be identified by its shiny red color and its small seeds on the outside.", + "A strawberry is a red fruit that is small and has seeds on the outside.", + "A strawberry is a small, red fruit with a green stem.", + "A strawberry has a small, green stem coming out of the top of it.", + "A strawberry can be identified by its small size, red color, and cone shape.", + "A strawberry is a red fruit with a green stem.", + "A strawberry looks like a small red fruit with a green stem.", + "A strawberry is a red fruit that is shaped like a cone and has small seeds on the outside.", + "A strawberry looks like a small red fruit with seeds on the outside and a soft center.", + "A strawberry is small, red, and has a green stem.", + "A strawberry typically looks like a small, red, cone-shaped fruit with a green stem.", + "A strawberry looks like a small, round, red fruit with a green stem.", + "A strawberry looks like a miniature red pear with seeds on the outside.", + "A strawberry is small, red, and has little seeds on the outside.", + "A strawberry is a small, red fruit with a stem and green leaves.", + "A strawberry looks like a small red fruit with seeds on the outside and a hollow center.", + "The image is of a strawberry that is cut in half.", + "The image is of a ripe strawberry with a small stem attached.", + "This is an image of a strawberry.", + "The image is of a strawberry with a green stem.", + "The image is of a ripe strawberry with a green stem.", + "The image is of a strawberry on a stem with leaves.", + "This image is of a fresh, plump strawberry with a deep red color.", + "The image is of a ripe strawberry with a small green stem.", + "I found an image of a strawberry on the internet that I really like.", + "The image is of a ripe strawberry that has been picked from the plant.", + "This strawberry is plump and red, with a small green stem.", + " A ripe strawberry waiting to be picked.", + "A delicious strawberry, perfect for a summer snack!.", + "This looks like a delicious strawberry!.", + "A strawberryA strawberry is a type of fruit.", + "A ripe strawberry, still attached to its stem, with its deep red color and small seeds visible.", + "A strawberry from my garden.", + " A freshly-picked strawberry from a local farm.", + "Strawberries are a delicious fruit that can be enjoyed in many ways.", + "A bright red strawberry, fresh and ripe for the picking." + ], + "sunflower": [ + "A sunflower looks like a flower with a bright yellow center and petals that curve outwards.", + "The sunflower is a large flower with a thin stem.", + "A sunflower is a flower with a large yellow petal in the center and smaller petals around the outside.", + "A sunflower is a large flower with a yellow center and long petals that point upwards.", + "A sunflower typically has a large, round head with bright yellow petals and a dark center.", + "A sunflower is a flower with a large yellow center and petals that look like rays of sunlight.", + "The sunflower is a plant with a very large flower head (bloom) that is actually made up of many small flowers.", + "A sunflower typically has a large yellow head with bright yellow petals.", + "A sunflower is a yellow flower that has a big center and petals that go around it.", + "A sunflower is a flower with a large brown center and yellow petals.", + "A sunflower typically has a large central disc surrounded by yellow petals.", + "This is a difficult question.", + "Sunflowers have large, round flowers with yellow petals and a brown center.", + "Sunflowers are usually tall with big yellow heads.", + "A sunflower is an annual plant in the family Asteraceae, with a large flower head that faces towards the sun.", + "The best way to identify a sunflower is to look for a large flower with a yellow center and long petals.", + "The easiest way to identify a sunflower is by its large flower head.", + "Sunflowers are tall, round flowers with bright yellow petals and a dark center.", + "The scientific name for sunflower is Helianthus annuus.", + "One way to identify a sunflower is by its large flower head.", + "A sunflower looks like a giant yellow flower with a big brown center.", + "The head of a sunflower is generally large and round with thick petals.", + "A sunflower looks like a flower with a yellow center and long petals that are usually yellow, but can also be red, orange, or brown.", + "A sunflower typically has a large, round head with bright yellow petals.", + "A sunflower typically has a large yellow-brown center with long yellow petals.", + "A sunflower typically has a large yellow flower head with a dark center.", + "A sunflower looks like a large flower with a yellow center and yellow petals.", + "A sunflower typically has a large yellow disc floret at the center of the flower head, with yellow petals that are sometimes tinged with red.", + "A sunflower is a tall, yellow flower with a large center.", + "A sunflower is a flower with a large yellow center and petals that are usually yellow, orange, or red.", + "An image from the internet of a sunflower shows a large yellow flower with a brown center.", + "A sunflower is a flower with a large central disk surrounded by petals.", + "A sunflower is a large flower with a yellow center and long petals.", + "This image is of a yellow sunflower standing tall in a green field.", + "I found an image on the internet of a sunflower that I really liked.", + "The sunflower in this image is a vibrant yellow color with a brown center.", + "The image shows a sunflower in close up, with the yellow petals and brown center visible.", + "In the image, a sunflower is seen against a blue sky.", + "In the image, a sunflower is seen from above with its petals reaching up towards the sun.", + "The image is of a sunflower with a yellow center and petals and a green stem.", + "A close up of a yellow sunflower with a black center.", + "A beautiful sunflower in full bloom.", + " A big beautiful sunflower in all its glory.", + "Many people think that sunflowers always face the sun, but they actually turn to follow the sun as it moves during the day.", + "A beautiful sunflower stands in a field, basking in the sunshine.", + "A sunflower blooming in the garden.", + "The bright yellow petals of this sunflower stand out against the green leaves and stem.", + " This sunflower is smiling because it's happy to be alive and basking in the sunlight.", + " The sunflower is a popular plant that is known for its large yellow flower heads.", + "A beautiful sunflower in all its glory." + ], + "tick": [ + "A tick is a small, brown, segmented creature that has long hind legs and a short front pair of legs.", + "A tick is a brown or black insect that latches onto the skin of an animal or person.", + "A tick is a small, brown, spider-like creature with eight legs.", + "The body of a tick is small and flat, with a pointed end.", + "A tick is a small, parasitic arachnid that latches onto the skin of animals and feeds on their blood.", + "There are many different species of tick, but they all have a few things in common.", + "A tick is a brown or black bug that is about the size of a pencil eraser.", + "A tick is a small, dark, spider-like creature with eight legs.", + "A tick is a small, brown, parasitic insect that bites humans and animals to feed on their blood.", + "A tick is a small, dark, spider-like creature with eight legs.", + "There are many ways to identify a tick.", + "There are many ways to identify a tick.", + "Ticks are small, dark brown or reddish-brown insects that suck the blood of animals and humans.", + "Ticks are small, including their legs.", + "A tick is a small, spider-like creature that feeds on the blood of animals.", + "A tick is a small, dark, spider-like creature that attaches itself to the skin of mammals, birds, and reptiles.", + "Ticks are small, arachnid parasites that are often found in wooded areas.", + "Ticks can be difficult to spot because they are small, dark, and often attach to hidden areas of the body.", + "Ticks can be difficult to spot because of their small size, but they can usually be seen crawling on the skin.", + "Ticks are small, dark, hard-bodied insects.", + "An adult tick is small, dark, and flat.", + "A tick looks like a small, insects with eight legs.", + "Ticks are small, brownish-red arachnids that latch onto the skin of their hosts.", + "A tick is a small arachnid that lives off the blood of animals.", + "The tick is about the size of a sesame seed and has a dark brown body.", + "A tick looks like a small, brown insect.", + "A tick is a small, dark brown or black arachnid that attaches to the skin of humans and animals to feed on their blood.", + "A tick is a small, dark brown or black insect.", + "A tick is a small, spider-like creature that lives on the blood of animals.", + "A tick usually looks like a small black or brown insect.", + "This image is from the internet and is of a tick.", + "The image is of a brown tick against a white background.", + "The image is of a small, dark brown tick on a light background.", + "This image from the internet shows a tick clinging to a blade of grass.", + "This image is of a tick crawling on a person's skin.", + "This image is of a tick on a human skin.", + "The image is of a small, brown tick with its legs extended.", + "An image of a tick from the internet may show a close-up of the insect as it sucks blood from its host.", + "This image is of a tick on a person's skin.", + "The image is of a small, dark brown tick on a person's skin.", + "Agoraphobia is the fear of open spaces.", + "This is a close-up of a tick.", + "A tick on a human arm.", + " A brown tick on a person's skin.", + " A brown tick, common in wooded areas, feeding on blood from its host.", + "A tick bites into human skin and sucks blood.", + "\"Tick on skin.", + "Ticks are small, parasitic insects that feed on the blood of animals and humans.", + "A tick latched onto human skin.", + "A tick crawling on a person's skin." + ], + "trilobite": [ + "A trilobite is a flat, segmented creature with three lobes running down its back.", + "A trilobite is a short, segmented creature with a hard exoskeleton.", + "Trilobites are an extinct group of arthropods that had a segmented body with a hard shell.", + "A trilobite is an extinct marine arthropod that resembles a modern-day beetle.", + "A trilobite is a small, hard-shelled creature that lived in the ocean during the Cambrian period.", + "A trilobite is a flat, segmented creature with three lobes down its back.", + "Most trilobites had a\u4e09lobed, three-parted body and a\u7164nity on their back end for attaching to their shells.", + "A trilobite is a hard-shelled, segmented creature that lived in the sea during the Paleozoic Era, which lasted from about 541 to 251 million years ago.", + "A trilobite is an extinct animal that belonged to the class Trilobita.", + "A trilobite is a hard-shelled, prehistoric creature that lived in the sea.", + "Trilobites are easily identified by their unique three-lobed bodies.", + "The easiest way to identify a trilobite is by its three distinct lobes.", + "A trilobite can be identified by its three-lobed body and its hard exoskeleton.", + "A trilobite is a fossils of an extinct marine arthropod that belongs to the group Trilobita.", + "Most trilobites are readily identified by their three-lobed, three-parted shape.", + "A Trilobite is a extinct arthropod with a segmented body and three lobed structure.", + "Trilobites are easily identified by their unique three-lobed body shape.", + "By its three lobed shape.", + "The easiest way to identify a trilobite is by its three-lobed shape.", + "The easiest way to identify a trilobite is by its three-lobed shape.", + "A trilobite is a fossil of an extinct marine animal that had a segmented body and three pairs of jointed legs.", + "A trilobite is a fossilized, prehistoric creature that had a hard shell and resembled a small, segmented lobster.", + "A trilobite is an ancient marine animal that had a segmented body and a hard exoskeleton.", + "Trilobites were a group of extinct marine arthropods.", + "A trilobite is a prehistoric creature that had a hard shell and three main body lobes.", + "A trilobite is an extinct creature that had a segmented body and a hard shell.", + "A trilobite is a fossilized animal that resembles a miniature parallelogram with three raised lobes running vertically down its back.", + "A trilobite looks like a small, hard-shelled, segmented creature with three lobes running down its back.", + "Trilobites are extinct arthropods that are easily recognizable by their unique three-lobed, three-segmented body plan.", + "A trilobite is a type of fossil that looks like a small, hard-shelled creature with three body lobes.", + "I couldn't find a trilobite image on the internet that I felt was appropriate to describe in words.", + "This image is of a fossilized trilobite.", + "This image from the internet shows a fossil of a trilobite.", + "Image shows a fossil of a trilobite, an extinct marine arthropod.", + "This image is from the internet and shows a trilobite.", + "The image is of a fossilized trilobite that has been preserved in rock.", + " A trilobite is an extinct marine arthropod that belongs to the class Trilobita.", + "The image is of a fossilized trilobite.", + "This image shows a fossil of a trilobite, an extinct marine arthropod creature that lived during the Paleozoic era.", + "A trilobite is a prehistoric creature that looked like a \" three-lobed \" insect.", + "A trilobite is a fossil of a prehistoric marine creature that lived during the Cambrian period, from 530 to 495 million years ago.", + "This image shows a trilobite, an extinct group of arthropods that lived during the Paleozoic era.", + "An ancient trilobite fossil preserved in rock.", + "A trilobite is an extinct marine arthropod that flourished in the early Paleozoic era.", + "Trilobites are a group of extinct marine arthropods that flourished in Earth's oceans during the early part of the Paleozoic Era.", + "Trilobites are an extinct group of arthropods that were very common during the Paleozoic era.", + "A trilobite is a fossilized sea creature that lived during the Paleozoic era.", + "A trilobite is a prehistoric marine creature that lived during the Cambrian period, approximately 540 million years ago.", + " A fossil of the extinct marine arthropod species, Trilobite.", + " The extinct marine arthropod genus Trilobita." + ], + "umbrella": [ + "A umbrella looks like a circular piece of fabric that is attached to a thin metal rod.", + "A umbrella is a curved rod with a fabric canopy that is used to block out the sun or rain.", + "A umbrella is usually a portable canopy supported by telescoping ribs, which can be opened or closed by a mechanism operated by the user.", + "A common umbrella is portable and hand-operated.", + "An umbrella has a long pole with a curved handle at the top.", + "A umbrella is a type of portable shelter with a collapsible frame and fabric cover.", + "A umbrella is a portable canopy supported by wooden or metal ribs, which is usually mounted on a wooden, metal, or plastic pole.", + "A umbrella is typically a portable, hand-held canopy supported by metal or wooden ribs, which is usually opened by a mechanism.", + "An umbrella is a canopy designed to protect against rain or sunlight.", + "A umbrella is a device that is used to protect a person from the rain or sun.", + "The most distinguishing feature of an umbrella is the canopy, which is the fabric that covers the spokes of the umbrella and protects against the rain.", + "An umbrella is a device that is used to protect a person from the sun or from the rain.", + "The handle of an umbrella is usually made of metal or plastic, and the canopy is made of fabric.", + "Umbrellas are most commonly recognized by their canopy, which is the cloth or other material that covers the structure of the umbrella and protects the person or object underneath it from the weather.", + "The parts of an umbrella are the canopy, shaft, ribs, stretchers, runners, ferrule, handle, and tip.", + "The easiest way to identify an umbrella is by its shape.", + "A umbrella is typically identified by its long, cylindrical handle and its canopy of fabric or plastic.", + "An umbrella is commonly identified by its holdable, collapsible canopy supported by a central rod.", + "A umbrella is made up of a number of different parts, including a canopy, ribs, a handle, and a shaft.", + "A umbrella is a type of rain gear.", + "A umbrella looks like a cone with a curved handle.", + "A traditional umbrella is made of a circular fabric canopy attached to metal or wooden ribs that open and close like a fan.", + "A typical umbrella is comprised of a circular fabric canopy on top of a metal or wooden rod that is attached to a handle.", + "A typical umbrella is a collapsible canvas canopy supported by metal or wooden ribs, which is mounted on a wooden, metal, or plastic pole.", + "An umbrella looks like a piece of fabric or plastic that is attached to a stick or rod.", + "Just like any other umbrella, it has a handle and a canopy.", + "A traditional umbrella is round and has a long, thin pole with a curved handle.", + "A umbrella can look like a lot of different things.", + "A typical umbrella is circular and has a handle for carrying it.", + "An umbrella is typically a portable, hand-held canopy supported by metal or wooden ribs, which is usually covered with cloth or other flexible material.", + "The image is of a red and white umbrella.", + "An image of a umbrella from the internet is a picture of a umbrella with a handle and a canopy.", + "The umbrella is blue and white and has a pattern of stars on it.", + "This image is of a blue umbrella with white polka dots.", + "The image is of a blue and white umbrella with a floral design.", + "The image showed a woman walking in the rain with a black and white polka dot umbrella.", + "The image is of a red and white polka dot umbrella.", + "One image from the internet of an umbrella is of a large, red umbrella with a white handle.", + "The image is of a red and white umbrella.", + "The image is of a yellow and white umbrella with a blue handle.", + "A colorful umbrella on a sunny day.", + "While umbrella's are often used to protect us from the rain, they can also be used as a fashion statement.", + "A black umbrella with a white polka dot patterned lining hanging from a white coat rack.", + "A pink umbrella with a black and white polka dot pattern propped open against a blue sky.", + "A colorful umbrella propped up against a wall.", + "An umbrella protects against the rain.", + "\"Is it raining? Better grab my umbrella!\".", + "A woman is holding a black and white polka-dotted umbrella.", + " A woman walking in the rain with a black umbrella.", + "A woman holds a black umbrella in front of her." + ], + "watch": [ + "A watch has a face with a glass cover.", + "A watch looks like a timepiece that is typically worn on the wrist.", + "A watch is typically a small, thin, rectangular object that is worn on the wrist.", + "A watch is a small device that is worn on the wrist and tells time.", + "A watch has a round face with an analog clock and two hands, one for the hour and one for the minutes.", + "A watch is a timepiece that is typically worn on the wrist.", + "A watch has a band that goes around your wrist and a face that has numbers or symbols on it that represent the time.", + "A watch is often a small, round object that one can wear on their wrist.", + "A watch typically has a round or rectangular face with a watch band that goes around the wrist.", + "A watch is typically a small, round device that is worn on the wrist.", + "There is no definitive answer to this question as there are many different types and styles of watches.", + "There are a few ways to identify a watch.", + "How can you identify a watch?The brand, style, and materials can all help to identify a watch.", + "There is no surefire way to identify a watch, but there are some general tips that may help.", + "There is no definitive answer to this question as there are so many different types and styles of watches.", + "A watch can be identified by its model number, which is usually printed on the back of the watch case.", + "Every watch has different identifying characteristics, but some common ways to identify a watch are by looking at the brand, style, and features.", + "The best way to identify a watch is to take it to a watchmaker or jeweler.", + "The easiest way to identify a watch is by its brand.", + "The best way to identify a watch is to look for its serial number.", + "A watch typically has a round face with a glass cover.", + "A common watch has a face with hour, minute, and second hands.", + "A watch is often a small, rectangular object that is worn on the wrist.", + "A watch is a small, portable timepiece.", + "A watch is a small, round device that is worn on the wrist.", + "A watch has a round face with hour and minute markings.", + "There is no definitive answer to this question as watches come in many different shapes and sizes.", + "A watch is a small timepiece that is typically worn on the wrist.", + "A watch typically has a round or rectangular face and a strap or bracelet.", + "A watch is a small timepiece that is typically worn on the wrist.", + "The image is of a watch with a black leather band and a metallic face.", + "This image is of a watch that is rose gold with a white face.", + "The image from the internet is of a black and white watch.", + "An image of a watch from the internet shows a black and silver watch with a large face.", + "The image from the internet is of a watch with a black leather strap and a gold metal case.", + "The image is of a silver watch with a black face.", + "The image is of a black watch with a metal band.", + "A watch is a image of a small, round, metal device that is worn on the wrist and used to tell time.", + "The image is of a brown leather watch with a metal face.", + "This image shows a watch with a black strap and dial.", + "A watch is a timepiece that is often worn as a piece of jewelry or as a fashion accessory.", + "This antique watch was made in the early 1900s.", + "A man wearing a watch.", + "Fossil Townsman Automatic Leather Watch.", + " Smith's men's watch, waterproof to 50 meters.", + "This watch is a Seiko 5 Sports Automatic - a great choice for an everyday watch.", + "A watch sitting on a wooden table.", + "Watch.", + "A watch sitting on a table.", + "This is a watch." + ], + "water lilly": [ + "A water lilly is a plant that grows in water.", + "A water_lilly is a plant that has large, round leaves that float on the surface of the water.", + "A water_lilly is a flower that has a long stem and floats on the water.", + "A water_lilly is a plant that has leaves that float on the water.", + "A water_lilly is a white flower that grows in water.", + "A water lilly typically has large, round leaves that float on the surface of the water and a long stem that extends down into the depths.", + "A water_lily has large, flat leaves that float on the surface of the water.", + "A water lily is a floating plant with large, round, flat leaves that are attached to the stem at the center of the leaf.", + "A water lily is a flower that grow in ponds and other bodies of water.", + "A water lily is a perennial aquatic plant with large, floating, heart-shaped leaves and showy flowers.", + "You can identify a water_lilly by its large, round, green leaves and its white or pink flowers.", + "A water_lilly is a plant that usually grows in shallow water.", + "A waterlily can be identified by its large, round leaves that float on top of the water and its beautiful flowers that bloom in a variety of colors.", + "Water lilies have large, round, flat leaves that float on the surface of the water.", + "A water lilly typically has large, floating leaves and a long stem.", + "Water lilies are perennial aquatic plants with large, floating, heart-shaped leaves.", + "Look for a plant with large, floating leaves and a thick stem.", + "Water lilies have floating leaves that are round or heart-shaped, with a depression in the center that holds water.", + "A water lily can be identified by its large, round leaves and its flowers that float on the surface of the water.", + "A water lily can be identified by its large, round leaves that float on the surface of the water, and by its beautiful flowers that bloom in a variety of colors.", + "A water_lily typically has large, green leaves that float on the water's surface.", + "A water_lilly looks like a large, round, green leaf with a white flower in the center.", + "A water_lilly looks like a flowers that blooms in water.", + "A water lily is typically a large, round flower with petals that are light-colored and spread out.", + "A water lily is a flower that grows in water.", + "A water lily is a plant that grows in water.", + "A water lily is a wetland plant that grows in shallow water.", + "A water lily typically has a round, flat leaf that floats on the surface of the water and a long stem that is rooted in the mud at the bottom of a pond or lake.", + "There are many different species of water lilies, but they all have large, floating leaves and beautiful flowers.", + "A water_lilly looks like a plant that grows in water.", + "A water lily is a flowering plant that floats on the surface of ponds and streams.", + "The image is of a large water lily in a pond with its leaves floating on the water.", + "This image is of a white water lilly with green leaves.", + "In an image from the internet, a water lily is a flowering plant that grows in shallow water.", + "A water lily is a type of aquatic plant that has large, floating leaves and flowers that bloom above the surface of the water.", + "The image is of a white water lilly in a pond with green leaves around it.", + "The image is of a white water lily with its pedals spread open.", + "A water lily is a flower that grows in water.", + "The image is of a white water lily against a green background.", + "In the image, there is a water lily in a pond with its leaves floating on the surface of the water.", + "The water lily is a beautiful flower that blooms in the summertime.", + "A water lily in a pond with its flower in bloom.", + " A water lily in a pond with its roots in the mud.", + "The serene beauty of a water lily in a pond.", + "A blue water lily floats in a still pool of water.", + " Pink water lily in a pond.", + " The water lily is a beautiful flower that flourishes in ponds and waterways.", + " A water lily in a pondThis water lily is floating in a pond surrounded by other vegetation.", + "A water lily floats in a pond with its flowers reaching towards the sun.", + "A beautiful water lily in all its glory." + ], + "wheelchair": [ + "A wheelchair looks like a chair with wheels that is designed to be used by someone who has difficulty walking.", + "A wheelchair is a chair with wheels that is used by people who are unable to walk because of an injury or disability.", + "A wheelchair looks like a chair with wheels on it.", + "A wheelchair is a chair with wheels that is used by people who cannot walk.", + "A wheelchair is a chair with wheels that is used by people who cannot walk.", + "A wheelchair is a device that helps people who can't walk move around.", + "A wheelchair is a chair with wheels that is used by people who cannot walk.", + "A wheelchair is usually a seat with four wheels, two in the front and two in the back, that is propelled by the person sitting in it.", + "A wheelchair typically consists of a seat, set of four wheels, and two armrests.", + "A wheelchair typically has four wheels and is propelled by the user push down on handrims located at the top of the wheels.", + "Some common ways to identify a wheelchair are by its large wheels, padded seat, and armrests.", + "The most common way to identify a wheelchair is by the large wheels on either side of the chair.", + "There are many ways to identify a wheelchair.", + "A wheelchair is a type of chair that is specially designed for people who are unable to walk or who have difficulty walking.", + "A wheelchair is a device that helps people move from one place to another.", + " Wheelchairs can be identified by their large, round wheels and lack of pedals.", + "Generally, a wheelchair is a chair with wheels that is used by someone who cannot walk or who has difficulty walking.", + "A wheelchair is an item of furniture used to assist a person in sitting or lying down, or to help a person with a disability move from one place to another.", + "A wheelchair can be identified by its large, rotating wheels located at the front of the chair and its smaller wheels located at the back.", + "A wheelchair can be identified by its large, padded seat and four wheels, two of which are equipped with brakes.", + "A wheelchair is a chair with wheels, designed to be used by someone who cannot walk or who has difficulty walking.", + "A wheelchair is a chair with wheels that is used by people who cannot walk.", + "A wheelchair is a chair with wheels that is used by people who cannot walk.", + "\nMost wheelchairs look like a regular chair with four wheels, two in the front and two in the back.", + "A wheelchair is a chair with wheels that is used by people who cannot walk.", + "A wheelchair typically has four large wheels, two at the front and two at the back, and a seat mounted on a frame in between.", + "There is no one answer to this question as wheelchairs come in many different shapes and sizes.", + "A wheelchair is a chair with wheels that is used by people who are unable to walk.", + "A wheelchair is a chair with wheels that is used by people who cannot walk or who have trouble walking.", + "A wheelchair typically has four large wheels-- two in the front and two in the back.", + "In the image, a person is sitting in a wheelchair with their legs propped up in front of them.", + " userThe image is of a young woman in a wheelchair with a determined expression on her face.", + "A metal wheelchair with large wheels and a padded seat.", + "A wheelchair is an object that helps people with mobility impairments move around.", + "A wheelchair is a chair with wheels that is used by people who cannot walk or who have difficulty walking.", + "The image is of a wheelchair in a parking spot with the word \"Accessible\" above it.", + "An image from the internet of a wheelchair might show a person in a wheelchair being helped by someone else, or the person might be doing something independently.", + "The image is of a young boy in a wheelchair with his legs extended in front of him.", + "This image depicts a young child in a wheelchair looking hopeful and happy.", + " userA person in a wheelchair with a blue blanket over their legs, sitting in front of a window.", + "A young woman in a wheelchair smiling at the camera.", + " A wheelchair symbolizes both physical and mental disability, as well as a dependence on others for mobility.", + "The wheelchair is a vital tool for people with limited mobility.", + "A woman in a wheelchair looking out over a cityscape.", + "A person in a wheelchair looking out at a sunny day.", + "A woman in a wheelchair smiling and holding a bouquet of flowers.", + "A young girl in a wheelchair smiles for the camera.", + "A wheelchair is a chair with wheels, designed to be pushed by a person or pulled by an animal, esp.", + "A wheelchair is a chair with wheels that is specially designed for people who cannot walk or who have difficulty walking.", + "A person in a wheelchair being pushed by a friend or family member." + ], + "wild cat": [ + "Wild cats are typically much smaller than their domestic cousins.", + "There is no definitive answer to this question since there are so many different types of wild cats.", + "A wild_cat typically has short fur, and is either brown or gray in color.", + "A wild_cat is a carnivorous mammal of the Felidae family, typically having a tawny coat with black spots.", + "A wild cat has short fur that is usually tawny or grayish brown.", + "A wild cat looks like a small to medium sized cat with pointed ears, long legs, and a long tail.", + "A wild_cat is a small to medium sized cat that is found in the wild.", + "A wild cat has a short head, ears that are pointed, and large eyes.", + "A wild_cat is a predatory mammal of the Felidae family, found throughout much of the world.", + "A wild cat is a feline that lives in the wild, as opposed to a domestic cat, which lives in a house or other domesticated setting.", + "The easiest way to identify a wild cat is by its claws.", + "You can identify a wild_cat by its physical characteristics, which include a small head, pointed ears, and a long tail.", + "The easiest way to identify a wild cat is by its coat.", + "The easiest way to identify a wild cat is by its whiskers.", + "The best way to identify a wild cat is by its coat.", + "You can identify a wild_cat by its physical characteristics, including its fur, claws, and teeth.", + "A wild_cat is a predatory animal that lives in the wild.", + "A wild cat can be identified by its coat, which is typically tabby or spotted.", + "There is no definitive answer to this question as differentwild_cats can have different markings and features.", + " Wild cats have many features that distinguish them from domestic cats including their size, ears, spots, whiskers, and tails.", + "There is no definitive answer to this question as there are many different species of wild cats, all of which have different physical characteristics.", + "A wild cat looks like any other domesticated cat, except it has not been tamed.", + "A wild slinky hunter with big teeth and claws.", + "There is no one answer to this question as there are many different types of wild cats, each with their own unique appearance.", + "There is no one correct answer to this question since there are many different types of wild cats.", + "There is no definitive answer to this question because there are many different types of wild cats.", + "A wild cat can look like a domesticated cat, but it is usually smaller and has longer legs.", + "Most wild cats have brown or gray fur, but their coats can range in color from white to black.", + "There is no definitive answer to this question as there are many different types of wild cats found all over the world.", + "A wildcat looks like a small to medium sized cat with long legs, a long tail, and a short coat.", + "I found an image of a wild cat that looks like a cheetah.", + "The image is of a wild cat that is crouching down on a rock.", + "A wild cat is a small to medium sized cat that is not a domestic or house cat.", + "I cannot answer this question.", + "This image is of a wild cat that looks like it is a part of the leopard family.", + "In the image, a wild cat is perched atop a rock, looking out over a valley.", + "I found an image of a wild cat that looks like a leopard.", + "I couldn't find an image that fit the description.", + "This image from the internet shows a wild cat in its natural habitat.", + "The image is of a large, tawny-colored feline with long, black streaks running down its sides.", + "A wild_cat in its natural habitat.", + " A wildcat walking through the grass with yellow flowers.", + "A wild_cat in its natural habitat.", + "This wildcat looks like it's ready to pounce on its prey.", + "This wild cat is called a Serval and is native to Africa.", + " A wildcat in the grassA wildcat in the grass stalking its prey.", + "A wild cat in its natural habitat.", + "A wild cat prowling through the grass.", + "This is a picture of a wild cat in its natural habitat.", + "',A wild cat living in its natural habitat." + ], + "windsor chair": [ + "A windsor_chair typically has a spindle back, arms, and turned legs.", + "A windsor_chair typically has a tall backrest, spindled legs, and armrests.", + "Windsor chairs are chairs with spindle backs and usually have a seat woven out of Rush.", + "A windsor chair is a type of chair that has a solid wood seat and typically has three legs.", + "A windsor_chair has a spindle back and three straight legs.", + "A windsor chair is a chair with a solid wood seat and spindles on the back and sides.", + "A windsor chair has a spindle back, and the seat is woven from rush.", + "A windsor_chair typically has a wooden frame with spindles or slats running up the back and arms, and a seat made of wood or upholstery.", + "A windsor_chair has a spindle back and three turned legs.", + "A windsor_chair has a spindle back and three splayed legs.", + "There are a few identifying characteristics of a windsor_chair.", + "A windsor chair is a chair with a solid seat and spindles for a back and sides.", + "A windsor_chair typically has a spindle back and arms that are attached to the seat with curved stretchers.", + "A windsor chair can be identified by its spindle back, spindles on the sides, and a seat that is woven or caned.", + "A windsor chair is a chair with a Windsor knot in the back.", + "A windsor_chair is a type of chair that has a spindle back and is usually made of wood.", + "A windsor_chair typically has a spindle back, round arms, and turned legs.", + "There is no definitive answer to this question, as the term \"windsor_chair\" can refer to a wide variety of chair designs.", + "The easiest way to identify a windsor_chair is by its distinctive spindles and 90-degree angles.", + "Description:\nA windsor chair is a chair with a tall back and light seat that is designed to be comfortable for long periods of sitting.", + "Windsor chairs are chairs with spindles and a solid wood seat.", + "A windsor chair typically has a spindle back and seat, and turned legs.", + "A windsor chair is a type of chair that has a seat and back made of interlaced wooden rods, with six legs joined by stretchers.", + "A windsor_chair looks like a traditional chair with a curved back and spindles.", + "Typically, a windsor_chair has a tall back and spindled sides.", + "A windsor_chair typically has a back made of vertical slats, a seat made of a single piece of wood, and spindled legs.", + "A windsor_chair is a type of chair that has a back and seat made of interlaced wood strips, and typically has three or four legs.", + "A windsor chair typically has a wooden seat and back, spindles along the back, and a graduated series of vertical slats on the seat.", + "A windsor chair is a type of chair that has a back made of vertical spindles and a seat made of a woven rush.", + "A windsor_chair looks like a traditional wooden chair with a spindle back and seat.", + "A windsor chair is a chair with a solid wooden seat and spindles for legs and back.", + "The image is of a Windsor chair with a black seat and backrest.", + "It is a photo of a blue windsor chair with a white cushion.", + "A windsor chair has a spindle back and turned legs.", + "A windsor_chair can be described as a chair with a back and arms, made of wood, with a curved seat and legs.", + "The image is of a brown windsor chair with a curved back and seat.", + "A Windsor chair is a chair with a spindle back and arms, traditionally made from wood.", + "The image is of a traditional Windsor chair with a spindle back and seat.", + "The image is of a brown windsor chair with a curved back and spindles.", + "This image shows a traditional Windsor chair with a spindle back and turned legs.", + "A windsor chair with a rush seat.", + " The classic windsor chair, perfect for any setting.", + " A classic windsor chair with a dark finish.", + "Windsor Chair from the 1770s.", + " A Buckingham Palace employee siting in a Windsor chair in one of the Palace's many rooms.", + " A windsor chair with a green seat.", + " A classic windsor chair with curved lines and a spindle back.", + "Windsor chairs are a type of chair that has a seat that is connected to the back and legs by interlocking stretchers.", + "Windsor chair in a modern home.", + " A traditional Windsor chairThis traditional chair is made out of wood and features a spindle back and seat." + ], + "wrench": [ + "A wrench typically has a long, metal handle with a grip, and a head that can be adjusted to fit various sizes of nuts and bolts.", + "A wrench looks like a small metal rod with a T-shaped handle on one end and a hexagonal socket on the other end.", + "A wrench is a metal tool with a long handle and a U-shaped head.", + "A wrench is a short, stocky L-shaped tool with a long handle.", + "A wrench is a hand tool that is used to turn nuts and bolts.", + "A wrench is a hand tool that has a handle and a head, typically in the form of an open-ended or adjustable jaws, for turning bolts, nuts, pipes, and other objects.", + "A wrench is a hand tool typically used to turn Fasteners, nuts and bolts by applying direct torque.", + "A wrench is a tool with a metal handle and a U-shaped head.", + "A wrench typically looks like a metal \"T\" shape with a long handle.", + "A wrench is a tool with a grip and a long arm, used for turning nuts and bolts.", + "The wrench is the tool which is used for tightening or loosening a bolt.", + "A wrench is typically a hand tool that is used to turn bolts or nuts.", + "Most wrenches have a long handle and a short, thick head.", + "A wrench is a hand tool that is used to tighten or loosen bolts and nuts.", + "The most common type of wrench is the pipe wrench.", + "The easiest way to identify a wrench is by its two Jaw-like handles that allow the user to grip the wrench around the head of a bolt or a nut.", + "A wrench is a hand tool used to hold or turn a fastener, such as a nut or bolt.", + "A wrench is a tool that is used for griping and turning objects such as nuts and bolts.", + "Wrenches have a long handle and a metal head that is curved or U-shaped.", + "A wrench is a tool that is used to tighten or loosen bolts.", + "A wrench is a hand tool that is used to grip and turn objects such as nuts and bolts.", + "Most wrenches have a long handle with a shaft that is slightly curved or bent.", + "The wrench is L-shaped and has a long handle.", + "A wrench is a hand tool that resembles a pair of pliers.", + "A wrench typically looks like a \"T\" or an \"L\" shape, with a long handle and a shorter, thicker head.", + "A wrench is a tool with a handle and a head.", + "A wrench typically has a long handle and a metal head with a jaws that opens and closes.", + "A wrench is a hand tool that is used for tightening or loosening a nut or bolt.", + "A wrench is a tool that is used to turn objects, usually nuts and bolts.", + "A wrench typically looks like a T-shaped object with a long handle and a short, thicker portion that extends out from the handle at a 90-degree angle.", + "The image is of a wrench lying on a white surface.", + "The image is of a wrench on a white background.", + "This image is of a wrench.", + "A wrench is a hand tool used to hold or turn a fastener, such as a nut or bolt.", + "The image from the internet is of a wrench with a green background.", + "This image is of a wrench.", + "The image is of a rusty old wrench.", + "The image is of a bright-red wrench with a long handle and a round head.", + "A wrench is a tool used to apply torque or force to an object.", + "The image is of a black wrench with a silver handle.", + "The wrench is a tool used for turning bolts and nuts.", + "This is a wrench.", + "This is a wrench.", + "A wrench lying on a surface.", + "A wrench is a tool used for gripping and turning objects such as nuts and bolts.", + "Valve adjustment wrench.", + "Blue wrench on a white background.", + "A wrench is a tool used to tighten or loosen bolts.", + "The caption reads, \"A wrench is a tool used to turn bolts.", + "A wrench is a tool used to grip and turn objects such as nuts and bolts." + ], + "yin yang": [ + "A yin_yang has a black side with a white dot and a white side with a black dot.", + "A yin_yang is a symbol of balance.", + "A yin_yang is a symbol that is used to represent the Chinese idea of duality.", + "A yin_yang looks like a black and white circle with a dot of the opposite color in the center.", + "A yin_yang is a symbol of balance, consisting of a black half and a white half.", + "A yin_yang is a circle that is divided into two halves.", + "A yin_yang is a symbol that is used to represent the Chinese concept of yin and yang.", + "A yin_yang is a symbol that is generally white with a black dot in the center, and vice versa.", + "A yin_yang is a circular symbol with two opposing snakes or fish inside.", + "A yin_yang is a circular symbol with a black yin half and a white yang half, symbolizing the duality of light and dark, positive and negative, etc.", + "A yin_yang is a symbol that is used to represent the balance between the yin and the yang.", + "The yin_yang is distinguished by its black and white coloration.", + "A yin_yang can be identified by its black and white color scheme, as well as its circular shape.", + "A yin_yang is a black and white circle with a dot of the opposite color in each half.", + "A yin yang can be identified by its unique shape which is a circle split into two equal hemispheres by a curved line.", + "A yin_yang is a symbol of Taoist philosophy.", + "The yin-yang can be identified by its unique symbol, which is a circle divided into two halves by a curved line.", + "A yin_yang is a symbol used to represent the Chinese concept of yin and yang, which are two opposite but complementary aspects of reality.", + "A yin_yang is a symbol of two halves that come together to make a whole.", + "A yin_yang can be identified by its unique shape which is composed of a circle divided into two equal parts by a curved line.", + "A yin and yang symbol is comprised of a circular disk with two halves - one black and one white - that are divided by a curved line.", + "A yin-yang symbol is made up of a circle divided into two halves by an S-shaped line.", + "a yin yang is a symbol of balance that is made up of two halves that are mirrored images of each other.", + "A yin_yang looks like a black and white circle with a dot of each color in the opposite side.", + "A yin_yang is a symbol of balance.", + "A Yin Yang is a symbol that is used to represent the Chinese philosophy of duality.", + "A yin_yang looks like a black circle with a white dot in the center.", + "A yin_yang looks like a black and white circle with a small circle of the opposite color inside it.", + "A yin yang is a symbol that is used to represent the Chinese philosophy of yin and yang.", + "A traditional yin yang symbol contains a white yang (the sunny side) half, and a black yin (the shady side) half.", + "A black and white circle divided into two halves by a curving line, with a small dot of the opposite color in each half.", + " symbolThe yin_yang symbol is an image of two spiral shapes that are interwoven with each other.", + "An image of a yin_yang shows a white and black circle divided into two halves by a curving line.", + "In the image, there is a black circle with a white curve inside it, and a white circle with a black curve inside it.", + "A yin Yang is a symbol that represents the duality of light and dark, good and evil, fire and water.", + "A yin yang is a symbol of balance.", + "The yin_yang is a symbol of balance and harmony.", + "A yin_yang is a symbol of balance.", + " symbolA yin_yang symbol is a circle that is divided into two halves by a spiral.", + "The yin_yang is a symbol of balance in the universe.", + "The yin_yang is a symbol of balance and harmony.", + "A yin-yang symbol representing the balance of opposites.", + "The yin and yang of Tai ChiThe Tai Chi symbol is composed of two teardrop-shaped swirls, one black and one white.", + "This is a yin_yang symbol, which represents the balance of opposites.", + " An illustration of the yin yang symbol.", + "The ancient Chinese symbol of the yin and yang represents the interdependent and interconnected nature of all things.", + "The yin and yang are two halves that complete a whole.", + "The perfect balance of light and dark.", + "A yin and yang symbol representing the harmony of opposites.", + "A yin and yang symbol representing the perfect balance of opposite forces." + ] +} \ No newline at end of file diff --git a/gpt_file/caltech_prompt_chat.json b/gpt_file/caltech_prompt_chat.json new file mode 100644 index 0000000..fd9d9a6 --- /dev/null +++ b/gpt_file/caltech_prompt_chat.json @@ -0,0 +1,789 @@ +{ + "face": ["A face typically has two eyes, a nose, a mouth, and two ears. ","The eyes are usually located above the nose and mouth, with the ears on either side of the head. ","The nose is typically in the center of the face, above the mouth."], + "leopard": ["SLeopards have a distinctive spotted coat with black spots on a yellow or orange background.", + "Leopards have a muscular and agile body that is built for hunting and climbing.", + "The spots on their coat are often arranged in a circular shape, known as rosettes.", + "Leopards have a large head with powerful jaws.", + "Leopards have sharp retractable claws that help them climb trees and catch prey."], + "motorbike": [ + "A motorbike typically has a long, narrow body with two wheels and a seat for the rider. ", + "It usually has a gas tank, handlebars, foot pegs or floorboards, and a variety of gauges and controls on the dashboard.", + "The front of the bike usually has a headlight and may also have a windshield for protection against wind and debris. ", + "The engine is often located between the wheels and is covered by a protective casing.", + "The back of the bike may have a passenger seat or a luggage rack, and the wheels may be equipped with disc brakes for stopping power."], + "accordion": [ + "An accordion is a musical instrument with a box-like shape.", + "An accordion typically has a rectangular or trapezoidal body that is made of wood, metal, or plastic.", + "The body is usually covered with leather or other materials to protect it.", + "The accordion has a set of bellows that are used to produce sound.", + "The bellows are made of pleated paper or fabric, and are squeezed together and pulled apart to create air pressure that produces sound.", + "The accordion also has a set of buttons or keys on the front of the body that are used to play different notes and chords."], + "airplane": [ + "An airplane has a long, streamlined body with wings on either side that provide lift to keep the airplane in the air.", + "The wings are usually curved on the top and flat on the bottom, and they have flaps and ailerons that can be adjusted to control the airplane's speed and altitude.", + "At the front of the airplane is the cockpit, where the pilots sit and control the aircraft using a variety of instruments and controls.", + "The cockpit usually has large windows that provide a clear view of the surrounding airspace.", + "The tail of the airplane is made up of a vertical stabilizer and a horizontal stabilizer, which help to keep the airplane stable in flight." + ], + "anchor": [ + "An anchor is typically made of metal, such as iron or steel.", + "It has a heavy weight and a distinctive shape that resembles a cross or a T.", + "The main part of the anchor is called the shank, which is the long, straight part of the anchor that connects to the chain or rope.", + "At the bottom of the shank is the fluke, which is the pointed part of the anchor that digs into the sea floor to hold the ship in place.", + "The anchor may also have arms, called flukes or bills, that are curved and angled to help the anchor set and hold onto the seabed." + ], + "ant": [ + "Ants are small, typically only a few millimeters in length.", + "Ants have six legs and a segmented body with three distinct parts: the head, thorax, and abdomen.", + "The head of an ant has two antennae, which are used for sensing their environment and communicating with other ants.", + "Ants have two small eyes, called ocelli, on the top of their head that can detect light and movement.", + "Depending on the species, ants can range in color from black, brown, red, or yellow." + ], + "barrel": [ + "A barrel is a cylindrical container, meaning it has a circular cross section and a consistent diameter throughout its length.", + + "Barrels are typically made of wood, although they can also be made of metal or plastic.", + + " The wood staves of a barrel are bound together with metal hoops or bands that encircle the barrel.", + + "The ends of a barrel are usually rounded and slightly convex, although some barrels have flat ends.", + + "Barrels can come in a range of sizes, from small ones used for storing liquids like wine or whiskey, to large ones used for shipping goods like oil or grain." +], + "bass": [ + "Bass is a freshwater fish that belongs to the family of sunfish.", + "They have an elongated and streamlined body shape.", + "The color of the bass ranges from light green to dark green, with a white belly.", + "The back of the bass is usually darker than the sides, and it has black stripes or blotches along the sides.", + "The mouth of the bass is large, and it has a lower jaw that extends beyond the upper jaw." + ], + "beaver": [ + "Beavers are large rodents that can grow up to 3-4 feet long.", + "Beavers have a stocky and compact body with short legs.", + "Beavers fur is dense, waterproof and varies in color from dark brown to reddish-brown.", + "Beavers have a broad, flat tail covered in scales, which they use to swim, steer, and communicate with other beavers.", + "Beavers have large, sharp front teeth that never stop growing, and they use them to cut down trees and build dams and lodges.", + "Beavers eyes and ears are small and set back on their head to allow them to see and hear while swimming with most of their body submerged.", + "Beavers have webbed hind feet that help them swim and dive underwater to forage for food or escape predators." + ], + "binocular": [ + "Binocular is usually rectangular or oval-shaped, with a slightly curved surface to fit comfortably in the hands.", + "The two lenses are set into the front of the device and are typically surrounded by a rubberized or plastic housing.", + "There may be a small knob or lever in the center of the binocular that allows the user to adjust the distance between the two lenses, known as the interpupillary distance.", + "On the top of binocular, there may be a small dial or knob that allows the user to focus each lens individually.", + "The eyepieces are located on the back of the device and are typically covered with rubber or plastic cups that fit over the eyes.", + "The device may also include additional features such as a neck strap, carrying case, or lens covers to protect the lenses when not in use." + ], + "bonsai": [ + "A bonsai is a miniature tree that is grown and trained to have a specific shape and style.", + "The tree is small in size, ranging from a few inches to a few feet tall.", + "The trunk of the tree is often twisted or gnarled, giving it a unique and interesting appearance.", + "The branches are carefully pruned and shaped to create a specific design or style, such as cascade, formal upright, or windswept.", + "The leaves of the tree are also often smaller than those of a regular tree, and may be a different color or texture depending on the species.", + "The bonsai is typically planted in a shallow pot or container that is designed to fit the small size of the tree." + ], + "brain": [ + "The brain is a soft, spongy mass of tissue that is pinkish-gray in color.", + "It is roughly the size and shape of a small cauliflower, with a wrinkled surface that is divided into two hemispheres.", + "The hemispheres are connected by a thick bundle of nerve fibers called the corpus callosum.", + "The brain is surrounded by three protective layers called the meninges, which help cushion it from injury.", + "The brain is composed of billions of neurons, which are specialized cells that transmit signals throughout the body." + ], + "brontosaurus": [ + "Brontosaurus was a massive dinosaur, measuring up to 75 feet in length and weighing around 30 tons.", + "Brontosaurus had a long, slender neck and a bulky body with four thick legs.", + "The head of a brontosaurus was small in proportion to its body and had a long snout with nostrils on the top.", + "It had small, peg-like teeth that were suited for eating plants.", + "The tail of a brontosaurus was long and whip-like, used for balance and communication.", + "It is believed that the skin of a brontosaurus was covered in scales." + ], + "buddha": [ + "A buddha has Serene and peaceful facial expression", + "A buddha has Elongated earlobes, which symbolize the ability to hear the suffering of the world", + "A buddha has A topknot or ushnisha on the head, which symbolizes wisdom and enlightenment", + "A buddha has A third eye or urna on the forehead, which represents insight and intuition", + "A buddha has A robe or simple clothing, symbolizing detachment and non-attachment to material things" + ], + "butterfly": [ + "It has four wings, with intricate patterns and colors.", + "The wings are thin and membranous, with veins running through them for support.", + "The wings are covered in tiny scales that give them their vibrant colors.", + "The body is slender and segmented, with three pairs of legs.", + "The head has two large compound eyes and a long proboscis for feeding on nectar.", + "The antennae are long and thin, with a bulbous end that helps the butterfly sense its surroundings.", + "The size and shape of a butterfly can vary greatly depending on the species, but they typically range from 1-3 inches in wingspan." + ], + "camera": [ + "A camera is typically rectangular in shape, with rounded corners.", + "It has a lens, which is usually circular or oblong in shape and located on the front of the camera.", + "The body of the camera is usually made of plastic, metal, or a combination of both.", + "On the back of the camera, there is an LCD screen or viewfinder, which allows the user to see what they are photographing.", + "A camera usually has buttons or dials on the top and back for adjusting settings such as shutter speed, aperture, and ISO.", + "There is usually a flash located on the top of the camera, which can be manually or automatically activated.", + "A camera may have a strap or grip on the side for easy carrying and handling." + ], + "cannon": [ + "It is a large, heavy artillery piece made of metal.", + "It has a long barrel that is often made of iron or steel.", + "The barrel is mounted on a carriage or wheels for mobility.", + "It has a breech loading mechanism that allows the gunpowder and projectile to be loaded from the rear of the barrel.", + "The front end of the barrel has a muzzle or mouth where the projectile is fired.", + "It may have a vent or touch-hole that is used to ignite the gunpowder.", + "Cannons usually have a variety of features for aiming and firing, such as sights, elevation adjustments, and firing mechanisms.", + "They may also have decorative features such as carvings or ornate designs." + ], + "car side": [ + " A car side typically has four doors, two on each side, which are used to enter and exit the vehicle.", + "The body of the car is usually made up of metal panels which are painted in a specific color.", + "The car side may have windows or a sunroof, which allow passengers to see outside while driving.", + "There may be side mirrors attached to the car doors, which provide a view of the area behind the car while driving.", + "There may be handles or buttons on the car doors that allow passengers to open and close them easily.", + "The car side may have wheels and tires, which are used to move the vehicle forward." + ], + "ceiling fan": [ + "A circular or oval-shaped body housing the motor and fan blades.", + "The fan blades, usually made of wood or plastic, attached to the motor housing.", + "A mounting bracket that attaches the fan to the ceiling.", + "A pull chain or switch to control the fan's speed and direction.", + "Optional light fixture attached to the center of the fan." + ], + "cellphone": [ + "Cellphones come in a variety of sizes, but most are around 5-6 inches in length and 2-3 inches in width.", + + "The front of the cellphone is dominated by a large touchscreen display, which takes up most of the device's real estate.", + + "While most functions on a cellphone are controlled through the touchscreen, there are usually a few physical buttons on the device as well. These may include a power button, volume rocker, and a home button.", + + "Almost all cellphones have at least one camera, which is usually located on the back of the device." + ], + "chair": [ + "A seat: This is the part of the chair that you sit on. It is usually flat and rectangular in shape.", + + "A backrest: The backrest is the part of the chair that supports your back. It can be straight or curved, and it may be padded or not.", + + "Legs: Most chairs have four legs, which provide stability and support. They can be made of wood, metal, or plastic.", + + "Armrests: Some chairs have armrests, which provide additional support for your arms and shoulders.", + + "Chairs can be made of a variety of materials, including wood, metal, plastic, or a combination of these materials." + + ], + "chandelier": [ + "Chandelier typically has multiple arms or branches that radiate out from a central hub.", + "Each arm may have a light bulb or candle holder at the end.", + "The arms are often adorned with decorative elements such as crystals, beads, or glass shades.", + "The central hub may also feature decorative elements, such as a large crystal or an ornate metal design.", + "The chandelier may be round, oval, or have a more abstract shape." + ], + "cougar body": [ + "They are approximately 4 to 6 feet long from nose to tail, and they can weigh between 90 and 200 pounds.", + + "Cougars have a lean, muscular body that allows them to run fast and jump high.", + + "Their fur is usually tan or brown, with black spots on their face and neck.", + + "Their head is rounded, with a short snout, and they have large ears that are rounded at the tips.", + + "Their tail is long and thick and can be up to one-third of their body length.", + + "Their legs are powerful and muscular, with retractable claws that help them climb trees and catch prey.", + + "They have big paws that help them run and jump, and they are also equipped with sharp claws that help them grip their prey." + + ], + "cougar face": [ + "A large head with a rounded shape and prominent cheekbones.", + "Short, rounded ears with white fur on the tips.", + "A short, broad snout with a pinkish nose.", + "Large, round eyes with vertical pupils that provide excellent vision in low light.", + "Whiskers that are long, stiff, and black in color.", + "The fur on the face is generally a light brown color." + ], + "crab": [ + "Crabs have a hard, exoskeleton outer shell that protects their body.", + "They have two large claws, called chelae, that they use for defense, feeding, and other tasks.", + "Crabs have eight legs, which are attached to their body near the front.", + "They have two stalked eyes that can move independently, which gives them a wide field of vision.", + "Crabs come in a variety of colors and patterns, depending on the species. Some are brown, green, or red, while others have spots or stripes.", + "They have a flattened body shape that allows them to scuttle along the ocean floor or crawl on land." + ], + "crayfish": [ + "A crayfish is a small, freshwater crustacean that looks similar to a miniature lobster.", + "They have a hard, shell-like exoskeleton that protects their body.", + "Their body is segmented and divided into three parts: the head, thorax, and abdomen.", + "The head has two pairs of antennae, one of which is longer than the other.", + "Their eyes are located on stalks on the top of their head and can move independently of each other.", + "They have eight legs, with the front two legs modified into claws or pincers.", + "The color of their exoskeleton can vary depending on the species, but may be brown, green, blue, or red.", + "They have gills located on the underside of their abdomen that help them breathe.", + "Adult crayfish can range in size from 2 to 6 inches in length." + ], + "crocodile": [ + "Crocodiles have a long and powerful body covered in tough, scaly skin.", + "They have a large head with a pointed snout and sharp teeth.", + "Their eyes and nostrils are positioned on the top of their head, allowing them to see and breathe while mostly submerged in water.", + "Crocodiles have four short legs with webbed toes for swimming and walking on land.", + "Their coloration varies from dark green to brown, with a lighter underbelly." + ], + "crocodile head": [ + "Crocodile heads are typically triangular in shape.", + "They have a long and pointed snout that is filled with sharp teeth.", + "The upper jaw is wider than the lower jaw, and it has a distinctive V-shape.", + "The eyes are located on top of the head, and they are positioned to allow the crocodile to see prey both above and below the water's surface.", + "The nostrils are located on the top of the snout and they can be closed underwater to prevent water from entering the lungs.", + "The skin on the head is rough and scaly, with a bumpy texture that is similar to the rest of the crocodile's body.", + "The head is usually darker in color than the rest of the body, with shades of grey, black, or brown." + ], + "cup": [ + "A cup is a cylindrical or conical shaped container used for drinking liquids.", + "It is typically made of ceramic, glass, plastic, or metal.", + "Cups range in size from small espresso cups to large mugs.", + "The top of the cup is open and often has a lip or rim to make it easier to drink from.", + "The cup has a handle on one side that is used to hold and lift the cup." + ], + "dalmatian": [ + "A dalmatian is a medium to large-sized dog breed that is known for its distinctive black spots on a white coat.", + + "Dalmatians have a muscular, athletic build with a deep chest and long legs.", + "Their coat is short and smooth, and it has a white base color with black spots that can vary in size and shape.", + "Some dalmatians may have liver-colored spots instead of black spots, but this is less common.", + "They have a broad head with a long, tapering muzzle and dark eyes that are round and alert.", + "Dalmatians have high-set, floppy ears that are triangular in shape and hang close to their head.", + "Their tail is long, thin, and slightly curved upwards, and it is often spotted like the rest of their coat." + ], + "dollar bill": [ + "A dollar bill is rectangular in shape and measures about 6.14 inches long and 2.61 inches wide.", + "The front side of a dollar bill features the portrait of George Washington, the first president of the United States.", + "Below the portrait is the denomination of the bill written as 'ONE DOLLAR' in green ink.", + "The back side of the dollar bill features an image of the Great Seal of the United States, which includes an eagle with outstretched wings and a shield in front of it.", + "The words THE UNITED STATES OF AMERICA appear on the top of the back side, while ONE DOLLAR is written in the center." + ], + "dolphin": [ + "Dolphins are sleek and streamlined marine animals with a fusiform body shape, which means they have a tapered, torpedo-like body that helps them move quickly through the water.", + "They have a curved dorsal fin on their back, which helps them maintain balance and stability while swimming.", + "Dolphins have a long, pointed beak or rostrum that is used for catching fish and other prey.", + "They have a pair of flippers or pectoral fins on either side of their body that are used for steering and maneuvering.", + "Their tail or fluke is powerful and horizontally oriented, allowing them to swim at high speeds and jump out of the water.", + "Dolphins have a smooth, rubbery skin that is usually gray or blue-gray in color, with a lighter underside." + ], + "dragonfly": [ + "A dragonfly has Long, slender body with two pairs of wings", + "A dragonfly has Large compound eyes that cover most of its head", + "A dragonfly has Thin, elongated abdomen with several segments", + "A dragonfly has Six legs that are used for perching and catching prey", + "A dragonfly has Brightly colored body with metallic or iridescent hues", + "A dragonfly has Wings that are transparent and have intricate patterns", + "A dragonfly has Two pairs of wings that are capable of independent movement", + "A dragonfly has Long, slender wings that are held perpendicular to the body when at rest" + ], + "electric guitar": [ + "A electric guitar has A solid or semi-hollow body made of wood or other materials", + "A electric guitar has A long, thin neck made of wood with metal frets", + "A electric guitar has Six metal strings, usually made of steel or nickel, which run from the bridge of the guitar to the headstock", + "A electric guitar has One or more pickups, which are magnetic devices that capture the sound of the strings and send it to an amplifier", + "A electric guitar has Volume and tone controls, usually located on the body of the guitar, which allow the player to adjust the sound of the guitar", + "A electric guitar has A whammy bar or tremolo arm, which allows the player to change the pitch of the strings", + "A electric guitar has Tuning pegs, usually located on the headstock, which allow the player to adjust the tension of the strings and tune the guitar to different pitches" + ], + "elephant": [ + "An elephant is a large mammal that typically stands between 8 and 13 feet tall and can weigh anywhere from 2.5 to 7 tons.", + + "They have a distinctive trunk, which is a fusion of their upper lip and nose, that can be used for a variety of tasks including grasping objects, breathing, and making sounds.", + "Their ears are large and fan-shaped, and they use them to cool off their bodies by flapping them back and forth.", + "Elephants have thick gray skin that is wrinkled and tough, providing protection from predators and the sun.", + "Their tusks are long, curved teeth that protrude from their upper jaw and are used for defense, digging, and manipulating objects.", + "Elephants have four pillar-like legs that are strong and sturdy, allowing them to support their massive size." + ], + "emu": [ + "An emu is a large, flightless bird native to Australia.", + "It can grow up to 6.2 feet (1.9 meters) tall and weigh up to 121 pounds (55 kilograms).", + "Emus have long, slender necks and small, rounded heads with a beak at the end.", + "Their feathers are brownish-gray and shaggy, providing insulation from both heat and cold.", + "Emus have powerful legs with three-toed feet. Their toes are equipped with sharp claws for defense and foraging.", + "They are known for their ability to run at high speeds of up to 30 miles (48 kilometers) per hour.", + "Male emus have a distinctive blue patch of skin on their necks that turns purple during breeding season." + ], + "euphonium": [ + "The Euphonium is a brass instrument that is similar to a small tuba.", + + "It has a conical bore and a large bell that flares out at the end.", + + "The instrument is typically made of brass and has a shiny, gold or silver plated finish.", + + "It has three or four valves that are played with the fingers of the right hand.", + + "The euphonium has a curved shape and is held in front of the player, with the bell facing upwards." + + ], + "ewer": [ + "An ewer is a type of pitcher or jug that is typically used for pouring liquids.", + + "Ewers are typically made of ceramic, glass, metal, or other similar materials.", + "They have a narrow spout at the top that is used for pouring liquids.", + "The body of an ewer is often curved or rounded, with a wider base that tapers up towards the top.", + "Many ewers have a handle on one side, which makes it easier to hold and pour." + ], + "ferry": [ + "A ferry is a type of boat that is designed to transport people, vehicles, and cargo across a body of water.", + + "Size: Ferries can vary in size, but they are typically larger than most boats. They can range from small passenger ferries that carry only a few people to large car ferries that can transport hundreds of vehicles and passengers.", + + "Shape: Ferries usually have a flat bottom and a wide beam in order to provide stability and accommodate large vehicles. The bow and stern are often squared off to allow for easy loading and unloading.", + + "Decking: Ferries have multiple levels or decks for passengers and vehicles. The lower decks are used for cars and trucks, while the upper decks are for passengers.", + + "Wheelhouse: The bridge or wheelhouse is usually located on the upper deck and is where the captain and crew operate the ferry." + ], + "flamingo": [ + "Flamingos are tall birds, reaching up to 4-5 feet (1.2-1.5 meters) in height.", + "They have long, thin legs that are usually pink in color.", + "Their bodies are relatively small and slender, with a curved neck and a small, pointed beak.", + "The feathers on their bodies are mostly pink, with darker pink or red coloring on the wings and tail.", + "Their eyes are small and black, and they have a distinctive black and white stripe that runs across their face and down their neck." + ], + "flamingo head": [ + "Flamingos have a long, thin beak that is typically black or dark gray in color.", + "The upper part of the beak is slightly curved, while the lower part is straight.", + "Above the beak, flamingos have two small, black eyes that are set deep into their skull.", + "The skin around a flamingo's eyes is usually pale pink or white.", + "Flamingos have a distinctive featherless area on their face called the lore. This patch of skin is usually a brighter pink or red color than the rest of the bird's body." + ], + "garfield": [ + "Garfield is a cartoon character, created by Jim Davis in 1978.", + "He is an orange tabby cat with black stripes and a round body.", + "Garfield has a large head with big, expressive eyes and a small nose.", + "He has short, stubby legs with four toes on each paw.", + "Garfield is often depicted wearing a collar with a bell, and sometimes a red bowtie." + ], + "gerenuk": [ + "A gerenuk is a type of antelope that is native to East Africa.", + "They are relatively small, standing at around 3-4 feet tall at the shoulder.", + "Their most distinctive feature is their long, slender necks, which they use to reach up and eat leaves from tall trees.", + "Gerenuks have reddish-brown fur on their backs and white fur on their bellies, with a darker stripe running down their sides.", + "Both males and females have curved horns, which can grow up to around 10 inches long." + ], + "gramophone": [ + "A gramophone, also known as a phonograph, is a device used for playing recorded sounds, especially music.", + "It has a turntable or rotating platform made of metal or plastic where the vinyl record sits.", + "The turntable is connected to a motor that spins it at a constant speed.", + "The tonearm is a long, thin arm that swings over the record and holds the stylus or needle.", + "The stylus or needle is a small, pointed piece of metal that rests on the grooves of the record and vibrates as it passes over them." + + ], + "grand piano": [ + "A grand piano is a large musical instrument that is typically found in concert halls, recording studios, and grand homes.", + "Size: A grand piano is a large instrument that typically ranges in size from 4 feet 6 inches to 9 feet long.", + + "Shape: The shape of a grand piano is elongated and rectangular, with a curved tail that extends outward from the main body.", + + "Lid: A grand piano has a hinged lid that can be propped open to expose the strings and soundboard.", + + "Keyboard: The keyboard of a grand piano is composed of 88 keys, which are arranged in a series of white and black keys." + ], + "hawksbill": [ + "A hawksbill is a medium-sized sea turtle that has a distinctive appearance.", + + "The hawksbill has a flattened body and a tapered head that comes to a sharp point.", + "Its shell, or carapace, is hard and bony with a distinctive pattern of overlapping scales, or scutes.", + "The scutes on the carapace are raised and have a coloration that varies from brown to black with streaks of gold, orange, or red.", + "The hawksbill has two pairs of prefrontal scales on the top of its head, which is a unique characteristic among sea turtles." + ], + "headphone": [ + "A headphone is a pair of audio devices designed to cover the ears and deliver sound directly to the listener.", + "It typically has two ear cups connected by a headband that rests on top of the head.", + "The ear cups are made of plastic or metal and are padded with foam or leather cushions to provide comfort and prevent sound leakage.", + "The ear cups are usually adjustable and can be rotated or pivoted to fit the shape of the listener's head.", + "The headband is also adjustable and can be loosened or tightened to fit different head sizes." + ], + "hedgehog": [ + "Size: It is typically around 5-12 inches (13-30 cm) in length.", + "Body Shape: It has a spiny coat of sharp spines or quills that cover its back and sides. The quills are typically brown or black in color and can be up to 1.5 inches (4 cm) long.", + "Facial Features: It has a pointed snout and small eyes and ears.", + "Limbs: It has four short legs with claws that are used for digging and climbing.", + "Color: Its underbelly is usually lighter in color than its back and sides, ranging from white to beige." + ], + "helicopter": [ + "A helicopter typically has a long, slender body with a pointed nose and a rounded tail.", + "It has a main rotor on top, which is a large horizontal blade that spins around and provides lift.", + "There is often a smaller rotor at the tail, which is used for stability and steering.", + "The cockpit is located near the front of the helicopter and usually has a large windshield for visibility.", + "The body of the helicopter may be painted in different colors or patterns depending on its purpose or the company that owns it." + ], + "ibis": [ + "An ibis is a medium to large-sized bird with a long, curved bill that is typically down-curved.", + "They have a slender, streamlined shape with long legs and necks.", + "The feathers on their body are predominantly white, with some species having black or dark feathers on their wings or tails.", + "Some species of ibis have distinctive bare skin patches around their face and throat that can be brightly colored, such as red, blue, or green.", + "Their wingspan can range from 50-60 inches, depending on the species." + ], + "inline skate": [ + "An inline skate consists of a boot that fits around the foot and ankle.", + "Attached to the bottom of the boot are three or four wheels that are arranged in a straight line.", + "The wheels are made of hard plastic and are designed to roll smoothly over a flat surface.", + "Inline skates also have a frame that connects the wheels and provides support for the boot. The frame is usually made of aluminum or other lightweight metals.", + "There is a brake on the back of one of the skates, which allows the skater to slow down or stop their forward motion." + ], + "joshua tree": [ + "A Joshua tree is a type of tree that belongs to the Yucca genus and is native to the southwestern United States, particularly the Mojave Desert.", + "The tree can grow up to 40 feet tall, but often averages around 15-20 feet in height.", + "The trunk of a Joshua tree is typically thick and gnarled, with a rough, scaly texture.", + "The branches of the tree are also thick and twisting, and often have numerous smaller branches and twigs growing off of them.", + "The leaves of a Joshua tree are long and narrow, with sharp points at the end, and grow in clusters at the end of the branches." + ], + "kangaroo": [ + "Kangaroos are marsupials, which means they carry their young in a pouch on their belly.", + "They have large, powerful hind legs that are built for hopping and jumping. In fact, kangaroos are the only large animals that use hopping as their primary means of locomotion.", + "Kangaroos are covered in fur that can range in color from gray, brown, and red to black or white.", + "They have a long, muscular tail that helps them balance when hopping and jumping, and can also be used as a powerful weapon if threatened.", + "Kangaroos have a distinctive, elongated snout with a small mouth and large ears. Their ears are especially important for detecting predators and other potential threats." + ], + "ketch": [ + "A ketch is a type of sailing vessel that is characterized by two masts, with the main mast being taller than the mizzen mast.", + "A ketch typically has a long, narrow hull with a pointed bow and stern.", + "The main mast is located towards the front of the vessel, while the mizzen mast is towards the back.", + "The main mast is taller than the mizzen mast, and both masts are usually wooden.", + "The sails on a ketch are typically triangular in shape, with the mainsail being larger than the mizzen sail.", + "A ketch usually has a cockpit area towards the back of the vessel, where the helmsman can steer the boat." + ], + "lamp": [ + "It has a base that sits on a surface, such as a table or desk.", + "A stem or post rises from the base, which can be straight or curved.", + "At the top of the stem, there is a socket that holds the light bulb.", + "The bulb is covered by a lampshade, which can come in various shapes and materials.", + "The lampshade can be attached to the socket or to the stem itself." + ], + "laptop": [ + "A laptop is a portable computer that typically has a clamshell design.", + "It has a screen that is attached to a keyboard base.", + "The screen can range in size from 11 inches to 17 inches, depending on the model.", + "The keyboard is similar in layout to a desktop computer keyboard, but may be smaller to fit within the laptop's compact design.", + "Laptops often have a touchpad or trackpad located below the keyboard for cursor control." + ], + "llama": [ + "Llamas are domesticated animals that belong to the camel family.", + "They are about 5.5 to 6 feet tall at the shoulder and weigh between 250 to 400 pounds.", + "Llamas have a long neck and relatively small head with large eyes and pointed ears.", + "Their coat is thick and fluffy, which can be various shades of brown, white, black, or grey.", + " Llamas have a long tail that is covered with fur, which can be braided or left free." + ], + "lobster": [ + "A lobster is a marine crustacean that has the following characteristics:", + + "A hard exoskeleton that protects its body.", + "A long, segmented body with a distinct head and tail.", + "Two large, pincer-like claws that are used for defense and catching prey.", + "Eight smaller legs that are used for walking and swimming." + ], + "lotus": [ + "A lotus is a beautiful aquatic plant that is native to Asia, Australia, and North America. Here are some points to describe what a lotus looks like:", + + "The lotus plant has large, circular leaves that float on the surface of the water.", + "The flowers of the lotus are large and showy, with a distinct shape that is often compared to a water lily.", + "The petals of the lotus flower are typically pink or white, although other colors such as yellow and red can also occur.", + "One of the most distinctive features of the lotus flower is its seed pod, which is shaped like a cone and has many small holes." + ], + "mandolin": [ + "A mandolin is a stringed instrument that typically has eight strings, divided into four pairs.", + "The body of a mandolin is usually shaped like a teardrop or an elongated oval, with a rounded back and a flat or slightly curved top.", + "The top of the mandolin is often made of spruce or other types of wood, while the back and sides may be made of maple or other hardwoods.", + "The neck of the mandolin is slender and may be made of maple or other woods, with frets inserted into the fingerboard to help the player find the correct notes.", + "The strings of a mandolin are often tuned in pairs, with the lower pair tuned to the same notes as a violin's G string, the middle pair tuned to the same notes as a violin's D string, and the upper pair tuned to the same notes as a violin's A string." + ], + "mayfly": [ + "- A mayfly is a small insect, typically measuring around 1-2 centimeters in length.", + "- It has a slender, elongated body with two pairs of delicate, transparent wings that are held upright when at rest.", + "- The body is usually brown, gray or green in color, and is divided into three distinct segments: the head, thorax, and abdomen.", + "- The head has two large, compound eyes, two short antennae, and a pair of mouthparts for feeding on plant matter and algae.", + "- The thorax is where the wings and six jointed legs are attached. The legs are used for walking and clinging to surfaces, while the wings are used for flight." + ], + "menorah": [ + " A menorah is a traditional Jewish candelabrum that is primarily used during the Hanukkah celebration.", + + "- A menorah typically has eight branches or arms, plus one additional center branch or arm.", + "- The branches are evenly spaced and extend outward from a central stem or base.", + "- Each branch or arm holds a candle or lamp, for a total of nine lights.", + "- The center branch, known as the shamash, is usually taller or positioned higher than the other branches and is used to light the other candles." + ], + "metronome": [ + "A metronome is a device that helps musicians keep a steady tempo while playing music.", + "A typical metronome is a small, box-shaped device that sits on a flat surface.", + "It usually stands about 4-5 inches tall and is roughly 2 inches wide and deep.", + " The metronome has a pendulum arm that swings back and forth at a set tempo.", + "The arm is attached to a weight that can be moved up or down the arm to adjust the tempo." + ], + "minaret": [ + " A minaret is a tall, slender tower that is typically part of a mosque.", + "It is usually built of brick or stone and can be square, rectangular, or cylindrical in shape.", + "The tower can range in height from just a few meters to over 60 meters tall.", + " At the top of the minaret, there is often a balcony or platform that is surrounded by a railing or balustrade.", + " Many minarets are decorated with intricate designs, such as geometric patterns or calligraphy, that are carved into the stone or brickwork." + ], + "nautilus": [ + "A nautilus is a marine animal that lives in the deep sea.", + + "It has a spiral-shaped shell that is divided into chambers.", + "The shell is usually white or brown with distinctive ridges and grooves.", + "The nautilus has a soft body that is hidden inside its shell.", + "It has multiple tentacles with a total of about 90-100 tentacles." + ], + "octopus": [ + "Octopuses typically have a rounded, bulbous head with eight long tentacles that radiate outwards from the base of the head.", + "The tentacles are usually lined with suction cups or suckers that help the octopus grip onto surfaces or prey.", + "Octopuses have a soft, flexible body that can change shape and texture to blend in with their surroundings. They may also change color to camouflage themselves or communicate with other octopuses.", + "Some species of octopus have distinct markings, patterns or textures on their skin. For example, the mimic octopus can mimic the appearance and movement of other sea creatures to avoid predators.", + "Octopuses have a beak-like mouth in the center of their lower body that they use to crush and eat their prey. They have no bones, so they can squeeze through very small spaces." + ], + "okapi": [ + "An okapi is an unusual mammal that looks like a combination of a giraffe, a zebra, and a horse.", + "An okapi has a reddish-brown coat with white stripes on its legs and hindquarters, similar to a zebra.", + "Its neck is long like a giraffe, and it has a small head with large, round ears.", + "Okapis have a distinctive black and white pattern on their face, similar to that of a raccoon.", + "They have a long, black tongue that they use to reach leaves and buds on trees." + ], + "pagoda": [ + "A pagoda is a type of tower-like structure that is commonly found in Asia.", + + "Pagodas are typically tall and slender structures.", + + "They are often made of wood, stone, brick, or a combination of these materials.", + + "Pagodas have multiple tiers or levels, with each level getting smaller as it goes up.", + "The roofs of pagodas are usually curved or sloped, and they often feature elaborate decorations, such as dragons or other mythical creatures." + ], + "panda": [ + "Pandas are black and white bears with a round body shape and short legs.", + "Their fur is mostly white with black patches around their eyes, ears, shoulders, legs, and feet.", + "They have black fur around their eyes, which makes them look like they are wearing eye masks.", + "Pandas have large, round heads with flat faces and black noses.", + "Their ears are black and rounded, and they have a very good sense of hearing." + ], + "pigeon": [ + "Pigeons are typically gray or brown in color, with varying shades and patterns. Some may have iridescent feathers on their necks and wings.", + "They have a plump, round body shape and a small head.", + "Pigeons have a short, stout beak that is slightly curved downwards.", + "Their eyes are round and black, with a thin white ring around the pupil.", + "Pigeons have relatively short legs, and their feet have three toes pointing forward and one pointing backwards." + ], + "pizza": [ + "A pizza is usually round in shape, but it can also come in square or rectangular shapes.", + "It is made up of a crust, toppings, and sauce.", + "The crust is typically a thin layer of dough, but it can also be thick and fluffy or stuffed with cheese.", + "Toppings can include cheese, meats (such as pepperoni or sausage), vegetables (like tomatoes or onions), and sometimes even fruit or seafood.", + "The sauce is usually tomato-based but can also be made with other ingredients like pesto or barbecue sauce." + ], + "platypus": [ + "The platypus is a unique-looking animal with a mix of features from different animal groups.", + "It has a broad, flat tail similar to a beaver's, which helps it swim.", + "Its body is covered in thick, waterproof fur that ranges from dark brown to gray in color.", + "The platypus has webbed feet with sharp claws that it uses to dig burrows in riverbanks.", + "Its most distinctive feature is its bill, which is flat and wide like a duck's bill, but with a sensitive, rubbery snout that helps it detect prey underwater." + ], + "pyramid": [ + "A pyramid is a three-dimensional geometric shape that has a polygonal base and triangular faces that meet at a single point, called the apex.", + + "Pyramids have a square, rectangular, or triangular base.", + "The base of a pyramid is connected to triangular faces that slope upward towards a point.", + "The point where all the triangular faces meet is called the apex.", + "The height of a pyramid is the distance from the base to the apex" + ], + "revolver": [ + "A revolver is a type of firearm that typically has the following characteristics:", + + "Barrel: Revolvers usually have a long metal tube, called the barrel, that extends out from the front of the firearm.", + + "Cylinder: The cylinder is a round component that holds the ammunition. It rotates to allow each chamber to line up with the barrel for firing.", + + "Trigger: The trigger is the mechanism that activates the firing pin, which in turn ignites the primer in the ammunition.", + + "Grip: The grip is the handle of the revolver that the shooter holds onto. It is usually made of wood or plastic and is designed to fit comfortably in the hand." + ], + "rhino": [ + "Rhinos are large, heavy animals that typically weigh around 1,000 to 2,000 pounds.", + "They have short, stocky legs that are designed to support their weight and help them move quickly.", + "Their skin is thick and gray, with a rough, textured appearance that is covered in folds and wrinkles.", + "Some species of rhino have a large, distinctive horn on their nose, while others have two smaller horns.", + "Their heads are large and blocky, with a blunt snout and small, beady eyes." + ], + "rooster": [ + "A rooster is a male chicken and typically has the following physical features:", + + "The head is adorned with a red comb and wattles (fleshy protuberances) that hang down from the chin.", + "It has a curved, pointed beak that is used for pecking and eating.", + "The eyes are large and dark, with a sharp, intense gaze.", + "The neck is long and slender, with a ruff of feathers around the base." + ], + "saxophone": [ + "A saxophone is a musical instrument that belongs to the woodwind family. It is made of brass and has a distinctive shape.", + + "The saxophone has a long, curved body with a bell-shaped end.", + "It has a mouthpiece that is attached to a neck, which is then connected to the body of the instrument.", + "The body of the saxophone has keys and buttons that the player can press to change the pitch and produce different notes.", + "The saxophone also has a thin metal reed, which is attached to the mouthpiece." + ], + "schooner": [ + "It has two or more masts, with the forward mast being shorter than the aft mast.", + "The sails are usually fore-and-aft rigged, meaning they run parallel to the length of the ship.", + "It has a fairly narrow hull with a sharp bow and a flat or slightly rounded bottom.", + "The deck is typically low and sleek, with a raised platform at the stern for the helmsman.", + "It often has a bowsprit, a spar that extends from the bow and supports the jib sails" + ], + "scissors": [ + "A scissors is a tool used for cutting and has the following features:", + + "Two sharp blades", + "Two finger holes for gripping", + "A pivot point that allows the blades to open and close", + "A handle for comfort and control" + ], + "scorpion": [ + "Scorpions have a segmented body with eight legs and a pair of large pincers called pedipalps.", + + "They have a curved tail that usually ends in a stinger.", + + "Scorpions have a tough exoskeleton that varies in color from yellowish-brown to black.", + + "They range in size from 1 inch to 8 inches long, depending on the species.", + + "Scorpions have two small eyes on the top of their head, but they rely on their sense of touch and vibrations to detect prey and predators." + ], + "sea horse": [ + "A seahorse is a small marine fish with a distinctive appearance.", + + "A seahorse has a long, narrow body that is covered in bony plates instead of scales.", + "Its head is shaped like a horse's head, with a long snout and a rounded forehead.", + "Seahorses have two small, beady eyes set on either side of their head.", + "They have a small, vertical mouth that is surrounded by a ring of tentacles that they use to catch their prey." + ], + "snoopy": [ + "A small, white, and furry dog with long droopy ears and a black nose.", + "It has black oval-shaped eyes with a black outline and thick black eyebrows.", + "It has a small round tail that curves upward.", + "It usually wears a red collar with a dog tag that has its name on it.", + "It is often depicted wearing a red doghouse with a white roof." ], + "soccer ball": [ + "A soccer ball is round in shape.", + "It is typically made of synthetic leather or rubber.", + "The ball is usually black and white in color, featuring pentagonal and hexagonal shapes.", + "The pentagons and hexagons on the ball are arranged in a specific pattern, often referred to as a truncated icosahedron.", + "The ball has a circumference of about 28 inches and a weight of about 14-16 ounces." + ], + "stapler": [ + "A stapler is a common office accessory that is used to bind sheets of paper together.", + + "It is made of plastic or metal.", + "It has a rectangular or cylindrical shape.", + "It has a base that serves as a platform for placing the paper to be stapled.", + "It has a hinge mechanism that allows the top part to be lifted up to insert staples." + ], + "starfish": [ + "A starfish has a distinct shape that resembles a star or a pentagon.", + "It has five arms (although some species can have more) that radiate out from a central disk.", + "The arms are generally long and thin, tapering towards the tip.", + "The skin of a starfish is rough and bumpy, often covered in small spines or bumps.", + "Starfish come in a variety of colors, including red, orange, yellow, blue, and green." + ], + "stegosaurus": [ + "A stegosaurus is a large, herbivorous dinosaur that lived during the late Jurassic period.", + + "The stegosaurus had a distinctive appearance with a long, narrow head, short neck, and a large, round body.", + "It had four short legs, each with three toes that ended in hoof-like claws.", + "The back of the stegosaurus was covered in a series of large, bony plates that extended down the length of its spine.", + "These plates were arranged in pairs and alternated in size, with the larger ones located toward the center of the back and the smaller ones toward the tail." + ], + "stop sign": [ + "A stop sign is a red, octagonal-shaped sign that is used to regulate traffic.", + + "Shape: The stop sign is octagonal in shape, which means it has eight sides.", + "Color: The sign is predominantly red, with white lettering on it.", + "Lettering: The word STOP is written in all capital letters in white color in the center of the sign.", + "Border: The word STOP is surrounded by a white border to make it more visible." + ], + "strawberry": [ + "A strawberry is a small, red fruit with a green stem and leaves on top.", + "It has a round or slightly pointed shape, with a slightly flattened bottom.", + "The surface of the strawberry is covered in small, yellowish seeds that are embedded in the flesh.", + "The flesh of the strawberry is juicy and translucent, and has a slightly grainy texture due to the seeds.", + "The skin of the strawberry is usually shiny and smooth, with a slightly waxy feel." + ], + "sunflower": [ + "Sunflowers are tall plants that can grow up to 10 feet (3 meters) in height.", + "The stem of a sunflower is thick and sturdy, and covered in small hairs.", + "The leaves of a sunflower are large and green, and often have a rough texture.", + "The flower of a sunflower is large and round, with a diameter of up to 12 inches (30 centimeters).", + "Sunflowers have a distinctive yellow color, with petals that radiate outwards from a dark center." + ], + "tick": [ + "Ticks are small, arachnid-like creatures that range in size from a grain of sand to the size of a small grape.", + "They have a round or oval-shaped body that is flattened and becomes engorged as they feed on blood.", + "Their body is often brown, black, or reddish-brown in color and has a tough, leathery texture.", + "Ticks have eight legs that are positioned close to their body, making them difficult to remove once they have attached themselves to a host.", + "Their mouthparts are designed to pierce the skin of their host and suck blood, which can cause irritation, itching, and the transmission of diseases." + ], + "trilobite": [ + "A trilobite is an extinct marine arthropod that lived from the Cambrian period to the Permian period.", + "It has a distinctive three-lobed body shape, with a head, thorax, and pygidium (tail).", + "The body is covered in a hard, calcified exoskeleton that is divided into segments, which allowed for flexibility and movement.", + "The head has two large, compound eyes that are thought to have been some of the first sophisticated eyes in the animal kingdom.", + "The head also has antennae and mouthparts for feeding." ], + "umbrella": [ + "An umbrella is a common tool used to protect people from rain or sunlight.", + "It consists of a long, slender central shaft or pole, made of metal or plastic.", + "Attached to the top of the shaft is a series of thin, flexible metal ribs or spokes, which form the structure of the umbrella.", + "These ribs are covered by a canopy made of waterproof fabric, such as nylon or polyester, which is stretched over them.", + "The canopy is usually circular or hexagonal in shape and can vary in size from small to large, depending on the type of umbrella." + ], + "watch": [ + "Round or square face: The face of the watch is usually round or square and contains the dial and hands.", + + "Dial: The dial displays the time and may include markings for minutes, hours, and seconds.", + + "Hands: The hands on the watch move around the dial to indicate the time.", + + "Numerals or markers: The numerals or markers around the watch face indicate the hours or minutes.", + + "Crown: The crown is used to set the time and date on the watch." + ], + "water lilly": [ + "Water lilies are aquatic plants that float on the surface of still or slow-moving bodies of water, such as ponds or lakes.", + "They have large, round leaves that can grow up to 30 cm (12 in) in diameter. The leaves are usually green, but can also be purple or reddish in color.", + "Water lily flowers are large and showy, with many petals arranged in a circular pattern. The petals are usually white or pink, but can also be yellow or orange.", + "The flowers are supported by long, slender stalks that rise above the water's surface. The stalks can be up to 1 meter (3 ft) tall.", + "Water lilies have long, thick roots that anchor them in the mud or sediment at the bottom of the water. The roots can be several meters long and are often covered in fine, hair-like structures that help to absorb nutrients from the water." + ], + "wheelchair": [ + "A wheelchair is a mobility device used by people who have difficulty walking or cannot walk at all.", + "It consists of a seat, backrest, footrests, and two large wheels at the back and two smaller wheels at the front.", + "The seat and backrest are usually made of padded materials for comfort.", + "The footrests are adjustable and swing away for easy transfer in and out of the chair.", + "The wheels are usually made of rubber and have push rims for the user to propel themselves." + ], + "wild cat": [ + "Wild cats are typically medium to large-sized felines, with an average weight of around 20-40 pounds (9-18 kg).", + "They have muscular bodies, with short, dense fur that can come in a variety of colors and patterns, depending on the species. For example, a leopard has a distinctive pattern of black rosettes on a golden-orange background, while a tiger has vertical black stripes on a reddish-orange coat.", + "Wild cats have sharp, retractable claws that they use for hunting and climbing.", + "Their heads are usually round or oval-shaped, with short, rounded ears, and large, expressive eyes that range in color from yellow to green to blue.", + "Some species of wild cats, like lions and tigers, have distinctive manes or tufts of hair on their ears, while others, like cheetahs and leopards, have more streamlined features." + ], + "windsor chair": [ + "It has a solid wooden seat that is usually saddle-shaped.", + "The backrest is composed of several thin vertical spindles or rods.", + "The legs are turned or tapered and are joined to the seat with mortise and tenon joints.", + "The arms, if present, are usually curved and supported by additional spindles.", + "The chair may have a decorative crest rail at the top of the backrest." + ], + "wrench": [ + "A wrench is a tool used for tightening or loosening bolts, nuts, and other fasteners.", + + "A wrench typically has a long and slender body with a curved or angled shape.", + "At one end of the body, there is a fixed or adjustable jaw that can grip the fastener.", + "The jaw is usually flat and smooth to prevent damage to the fastener.", + "At the other end of the body, there is a handle that provides leverage for turning the wrench." + ], + "yin yang": [ + "A circular symbol with two halves of equal size.", + "One half of the symbol is black and the other half is white.", + "There is a small circle of the opposite color within each half.", + "The black half of the symbol has a white dot in the center, while the white half has a black dot in the center.", + "The two halves of the symbol are connected by a curved line that separates them." + ] +} diff --git a/gpt_file/dtd_prompt.json b/gpt_file/dtd_prompt.json new file mode 100644 index 0000000..8d66432 --- /dev/null +++ b/gpt_file/dtd_prompt.json @@ -0,0 +1,2446 @@ +{ + "banded": [ + "A banded texture is a geological texture where visible layers or \"bands\" are present.", + "A banded texture is made up of thin, parallel layers.", + "A banded texture has distinct layers that are visible when looking at the surface.", + "A banded texture is a textural pattern in which there are visible layers or bands.", + "A banded texture has horizontal or roughly horizontal layers of different materials.", + "A banded texture is a textural feature where groups of parallel lines or bands are found running in the same direction.", + "A banded texture occurs when two layers of different densities are combined.", + "A banded texture looks like it has stripes or bands on it.", + "A banded texture has horizontal or vertical bands of color.", + "A banded texture looks like a series of lines or bands that are parallel to each other.", + "The easiest way to identify a banded texture is to look for alternating light and dark bands.", + "Banded texture is created when different materials are layered on top of each other and pressed together.", + "Banded textures are typically found in sedimentary rocks.", + "Banded textures are marked by layers of sediment that are of different colors or compositions.", + "A banded texture is usually identified by its bands, or layers, of different colors or materials.", + "A banded texture can be identified by its regularly spaced bands or layers.", + "A banded texture usually has a striking contrast in colors, and the bands are usually parallel to each other.", + "A banded texture is when different layers of rock have different colors or textures.", + "A banded texture is where there are layers of rocks that have been stripped away over time, revealing the different colors and textures of the rocks below.", + "A banded texture means that there are bands of different minerals in the rock.", + "Banded textures are swirls of color that look like bands or stripes.", + "Banded texture looks like a series of horizontal or vertical lines.", + "A banded texture is a type of sedimentary rock texture in which layers of sediment are of different shades or colors.", + "A cross-section of a banded texture would show alternating light and dark bands of sediment.", + "A banded texture is a pattern of thin layers of different colors or materials that are stacked on top of each other.", + "A banded texture is a texture that has bands, or stripes, of different colors or shades.", + "Banded textures are layered and have a striped or banded appearance.", + "A banded texture looks like stripes or bands of color.", + "A banded texture has distinct layers that are visible when the rock is viewed in cross-section.", + "A banded texture looks like a repeating pattern of light and dark bands.", + "The image is of a light grey rock with darker grey bands running through it.", + "Image shows a close up of a woven fabric in shades of blue and white.", + "One image of a banded texture shows alternating dark and light stripes that are all parallel to each other.", + "Banded textures are created when two different materials are layered on top of each other and then fused together.", + "The image is of a dark rock with light bands running through it.", + "A banded texture is an image that has been divided into bands, or stripes.", + "An image of a banded texture would show layers of material with different colors or patterns.", + "A banded texture is an image that has multiple stripes or bands of color.", + "This image shows a banded texture with bands of different colors.", + "A banded texture is an image that consists of bands of color or light and dark.", + "Banded texture on a mineral surface.", + "A close up of a banded texture shows different colors and shades bands that are stacked on top of each other.", + "Banded texture on a rock surface.", + "This is a photograph of a banded texture.", + "The banded texture is caused by the layers of sediment that have been deposited over time.", + "The banded texture is created by the repeated layering of thin sheets of material.", + "The banded texture is created by layering different colors of clay to create a unique design.", + "Banded Texture in Igneous Rock.", + "A banded texture is a textural descriptor used to describe a material with alternating bands of different properties.", + "A banded texture can be created by layering different colors of thinly rolled out clay and then slicing through the layers to create thin sheets." + ], + "blotchy": [ + "A blotchy texture can be described as an uneven, patchy surface.", + "A blotchy texture is uneven and has different colors or shades.", + "A blotchy texture can look like an uneven surface with patches of different colors or shades.", + "When a texture is blotchy, it means that it is uneven and has patches of different colors or shades.", + "A blotchy texture looks like an area where the paint has been applied unevenly, resulting in a patchy or mottled appearance.", + "A blotchy texture looks like it has been smeared with a brush or sponge.", + "A blotchy texture looks like an area of skin that has an uneven surface.", + "A blotchy texture is an uneven surface with bumps and indentations.", + "A blotchy texture is one that has an uneven pattern, often with darker and lighter areas.", + "A blotchy texture looks like small, raised bumps that are uneven and have a rough surface.", + "If you drag your finger over the surface and it feels rough, that's a blotchy texture.", + "A blotchy texture is usually caused by an uneven distribution of paint or ink.", + "The best way to identify a blotchy texture is to look for an uneven surface with areas of high and low relief.", + "A blotchy texture is usually characterized by an uneven surface with patches of different colors or shades.", + "A blotchy texture is one that is not smooth or even.", + "A blotchy texture is uneven and has irregular patches.", + "A blotchy texture usually has an uneven surface with lumpy or bumpy areas.", + "A blotchy texture appears as an uneven surface with patches of different colors or shades.", + "A blotchy texture can be identified by its uneven surface.", + "A blotchy texture can be identified by looking for an uneven or inconsistent pattern.", + "A blotchy texture can look like raised, discolored patches on the skin that may be dry, scaly, or crusty.", + "A blotchy texture can look like a series of small, irregularly-shaped patches or like a large, amorphous shape.", + "A blotchy texture looks like a series of small patches or blots.", + "A blotchy texture looks rough, uneven, and irregular.", + "A blotchy texture is an uneven, mottled surface.", + "A blotchy texture usually looks like a series of small, dark patches.", + "A blotchy texture can be described as an uneven or irregular surface.", + "A blotchy texture can look like a bunch of small spots that are different colors.", + "A blotchy texture can look like small, dark patches on your skin that are slightly raised.", + "The term \"blotchy texture\" can refer to a number of different things.", + "One image of a blotchy texture from the internet is an image of a orange with a rough, bumpy surface.", + "The blotchy texture in this image looks like it was created by a painter who didn't mix their colors very well.", + "A texture is an image that has a surface quality that can be felt or seen.", + "Describe an image from the internet of a blotchy textureThe image is of a orange with a blotchy texture.", + "I found an image on the internet of a pinkish-orange fabric with a blotchy texture.", + "The image is of a yellow and orange background with a black and white zebra-like pattern.", + "The image is of a light pink fabric with a green and yellow floral design.", + "The texture in the image is blotchy and uneven.", + "An image of a blotchy texture might show a paintbrush with streaks of different colors, or a piece of fabric with a mottled pattern.", + "The image is of a dark blue background with light blue spots of varying sizes.", + "The texture of this fabric is blotchy and uneven.", + "A textures image of a blotchy surface.", + "The texture of this fabric is irregular and blotchy.", + "Blotchy texture close-up.", + "The blotchy texture is caused by the uneven distribution of paint on the surface.", + "A close-up of a blotchy texture.", + "A texture made up of irregularly shaped patches or marks.", + "The texture of this fabric is very blotchy.", + "This is a close-up of a textured surface.", + "A close-up of a blotchy texture, possibly fabric or paper." + ], + "braided": [ + "A braided texture consists of three or more strands of hair that have been plaited (braided) together.", + "A braided texture has three or more strands that are interwoven together.", + ".", + "A braided texture is a series of interlocking strands that cross over each other.", + "A braided texture has three or more strands that are interwoven together.", + "A braided texture looks like it has been plaited or woven, with three or more strands crossing over and under each other.", + "A braided texture is characterized by three or more strands of hair that have been woven together.", + "A braided texture has strands that are intertwined or woven together.", + "A braided texture looks like it has been braided, or woven.", + "A braided texture looks like loose, intertwined strands of hair.", + "A braided texture can be identified by its interwoven strands.", + "A braided texture is a series of interlocking strands.", + "A braided texture is a textural element that is made up of three or more strands that are intertwined together.", + "A braided texture is characterized by three or more strands of hair that have been intertwined together.", + "A braided texture is a series of three or more strands that have been plaited or woven together.", + "A braided texture is defined as \"a fabric consisting of a series of parallel cords or strands, interlaced at regular intervals to form a flexible fabric.", + "A braided texture is a type of fabric with a woven or knitted appearance.", + "A braided texture can be identified by its interwoven strands.", + "A braided texture is a texture that is made up of three or more strands of hair that have been plaited or woven together.", + "A braided texture has three or more strands that are interwoven.", + "A braided texture looks like a braid.", + "A braided texture looks like a series of interlocking strands or cords.", + "A braided texture usually looks like three or more strands of hair that have been intertwined together.", + "A braided texture looks like a series of interlocking loops.", + "A braided texture looks like a series of interlacing strands.", + "A braided texture is made up of small, tight, evenly-spaced lines that cross each other.", + "A braided texture has a woven appearance, as if it has been braided.", + "A braided texture has a \"braided\" appearance, as if it has been braided.", + "A braided texture has a twisty, rope-like appearance.", + "jpg' alt='braided texture' />A braided texture looks like a series of interlocking lines or shapes.", + "This image shows a close-up of a braided texture, with various strands of different colors intertwined in a complex pattern.", + "In this image, a close-up of a woman's hair reveals a series of intricate braids.", + "A braided texture is an image that shows a series of interlocking loops.", + "A braid is a complex structure composed of three or more intertwined strands.", + "In this image, you can see a close-up of a braided texture.", + "This image from the internet shows a close-up of a brown leather boot with a braided texture.", + "A braided texture image from the internet is of a brown rope-like material that has been tightly pulled and wound together to form a rope-like pattern.", + "An image from the internet of a braided texture shows a series of three interwoven strands.", + "In this image, there is a close-up of a woman's hair which has been styled in a braid.", + "A braided texture can be represented by an image of a rope or a braid.", + " Braided texture can be achieved by layering strands of material on top of each other and weaving them together.", + "A close-up of a woman's hair with a braided texture.", + " Braided texture created by layering different strands of material.", + "Adding some texture to your look is always a good idea, and this braided hairstyle is the perfect way to do it.", + "Close-up of a rope-like braid texture.", + " Blue, Green, and Yellow Braid Texture.", + "This is an image of a braided texture.", + "An image of two intertwined braids.", + "A close up of a braided texture, showcasing the intricate weaving pattern.", + " Handmade AfricanBraided Texture." + ], + "bubbly": [ + "A bubbly texture looks like a lot of tiny bubbles all together.", + "A bubbly texture has many small, round bubbles throughout.", + "A bubbly texture is one that has a lot of small bubbles in it, making it appear foamy.", + "Bubbly texture looks like a series of small, round, raised bumps.", + "A bubbly texture looks like small, round bubbles.", + "A bubbly texture looks like a series of small, round bubbles that are close together.", + "A bubbly texture looks like a liquid that is full of small bubbles.", + "A bubbly texture looks like tiny, round balls of air.", + "A bubbly texture looks like small, round bubbles.", + "When a food has a bubbly texture, it is usually filled with air pockets.", + "When a food has a bubbly texture, it means that the food is light and airy.", + "A bubbly texture is usually caused by the presence of trapped gas bubbles.", + "A bubbly texture can be identified by its small, round, and airy shape.", + "Bubbly textures can be identified by their small, round shape.", + "A bubbly texture is a type of textural variation that can be observed in some types of foods.", + "Bubbly textures are usually light and airy.", + "A bubbly texture can be identified by its small, round bumps.", + "A bubbly texture usually has small, aerated holes throughout.", + "A bubbly texture is usually light and airy, and often has small bubbles throughout.", + "A bubbly texture is usually the result of a chemical reaction that produces gas.", + "A bubbly texture looks like it is full of small holes or cracks.", + "A bubbly texture usually looks like a lot of small bubbles or a foam.", + "A bubbly texture looks like many small bubbles clustered together.", + "A bubbly texture can look like a foamy or frothy liquid, or it can describe a solid that is covered in small bumps or pimples.", + "A bubbly texture can look like a series of small balls or blisters.", + "A bubbly texture has smallish, roundish bumps.", + "A bubbly texture can look like small mountains with peaks that are round and smooth.", + "A bubbly texture looks like a lot of small bubbles clustered together.", + "When a food has a bubbly texture, it is usually full of small holes or pockets of air.", + "Bubbles in a texture may be small and closely packed together, or large and widely spaced.", + "This image from the internet shows a close-up of a pink and white bubbly texture.", + "The image is of a close-up of a piece of chocolate cake with chocolate frosting.", + "This image shows a close-up of a lemonade beverage with lots of bubbles.", + "The image is of a close-up of a piece of cake with frosting.", + "The image is of a piece of chocolate cake with chocolate frosting.", + "The image is of a white, bubbly liquid with small bubbles floating in it.", + "An image from the internet of a bubbly texture might feature soapy water with lots of bubbles, or a piece of bread with a bubbly crust.", + "This image shows a close-up of a soapy bubble with a light-blue tint.", + "An image of a bubbly texture from the internet shows a close-up view of small, round bubbles against a white background.", + "A glass of Coca-Cola with bubbles floating to the top.", + "Wind-blown bubbles on the surface of a pond.", + "The structure of this material is full of small, interconnected voids.", + " A closeup of a soapy liquid with lots of bubbles.", + "Bubble Texture.", + "Bubbles in a foamy liquid.", + "Bubbles in water\nBubbles in a carbonated drink\nA foamy texture.", + "Bubble texture close-up.", + "The effervescent texture of this bubbly surface is created by countless tiny bubbles.", + "A close-up of a bubbly texture, possible created by adding baking soda to vinegar.", + "Blueberry bubbles in a glass of water." + ], + "bumpy": [ + "A bumpy texture feels rough to the touch and has an uneven surface.", + "A bumpy texture looks like small bumps or raised areas on a surface.", + "A bumpy texture looks like a surface that has a lot of small bumps on it.", + "A bumpy texture looks like a surface that has raised areas.", + "A bumpy texture is a texture that has a lot of small bumps on it.", + "A bumpy texture looks like a surface with lots of small bumps on it.", + "A bumpy texture looks like a surface with many small bumps on it.", + "A bumpy texture looks like a surface that has many raised bumps on it.", + "A bumpy texture usually looks like a series of small hills or mountains.", + "A bumpy texture looks like a surface that is not even.", + "By its appearance.", + "A bumpy texture can be identified by its uneven surface.", + "The best way to identify a bumpy texture is to touch it.", + "A bumpy texture can be identified by feeling it with your hands.", + "A bumpy texture can be identified by feeling it with your hand.", + "A bumpy texture has small protrusions or bumps.", + "A bumpy texture can be identified by its irregular, raised surface.", + "A bumpy texture is usually rough to the touch.", + "A bumpy texture can be identified by its rough, uneven surface.", + "The best way to identify a bumpy texture is by touch.", + "A bumpy texture can look like a lot of things.", + "A bumpy texture looks like it has bumps on it.", + "A bumpy texture looks like a surface with a lot of small bumps on it.", + "A bumpy texture looks like a surface with bumps on it.", + "A bumpy texture is usually rough and has a lot of small bumps on it.", + "A bumpy texture looks like a series of small bumps or protrusions.", + "A bumpy texture appears as a series of raised bumps or ridges on a surface.", + "A bumpy texture can look like a lot of things.", + "A bumpy texture looks like a surface that is not smooth, but instead has a lot of bumps.", + "A bumpy texture looks like a surface that has lots of small bumps on it.", + "The image is of a sandy beach with small rocks scattered throughout.", + "This image shows a close-up view of a rough, bumpy surface.", + "The image is of a brown paper bag with a crumpled appearance.", + "The image is of a orange with a bumpy texture.", + "One image of a bumpy texture that can be found on the internet is that of a durable, all-weather fabric.", + "Image shows a close-up of a dirt road with many bumps and ruts.", + "The image is of a light brown, bumpy surface.", + "An image from the internet of a bumpy texture might show a craggy mountain landscape, a close-up of a tree bark, or a close-up of a human face.", + "Some images of bumpy textures can be found here: https://www.", + "A image of a bumpy texture would be an image of a road with potholes.", + "A closeup of a bumpy, rough texture.", + "This is a close-up image of a bumpy texture.", + "A close-up of a bumpy texture, which could be fabric, paper, or skin.", + "This image shows the surface of a piece of sandstone that has been weathered over time.", + "Bumpy Texture.", + "A close-up of a bumpy, textured surface.", + "This texture appears to be bumpy and rough.", + "This image shows the bumpy texture of a concrete wall.", + "The surface of this material is rough and bumpy.", + "A close up of a bumpy, textured surface." + ], + "chequered": [ + "A chequered texture is a texture that has a repeating pattern of light and dark squares.", + "Chequered texture has a pattern of small squares, like a checkerboard.", + "A chequered texture is a texture that has a pattern of light and dark squares.", + "A chequered texture is a pattern of overlapping light and dark squares.", + "A chequered texture is a repeating pattern of squares.", + "A chequered texture is a texture that has a pattern of light and dark squares.", + "A chequered texture has a pattern of small, regular squares.", + "A chequered texture is one that has a pattern of light and dark squares.", + "A chequered texture is a texture that has a pattern of light and dark squares.", + "A checkered texture has a regular pattern of squares, typically in two colors.", + "A chequered texture is a grid-like texture made up of squares or rectangles.", + "A chequered texture has a regular pattern of squares.", + "Chequered textures are usually identified by their pattern of squares or diamonds.", + "A chequered texture is a texture that has a regular pattern of squares or diamonds.", + "A chequered texture is a texture that has a repeating pattern of light and dark squares.", + "A chequered texture is a grid-like pattern with light and dark squares.", + "A chequered texture is a texture that has a pattern of squares.", + "A chequered texture has a pattern of light and dark squares.", + "A chequered texture has a regular pattern of squares.", + "A chequered texture is a type of fabric that has a pattern of small, raised squares.", + "A chequered texture is a series of repeated squares or rectangles.", + "A chequered texture is a texture that has a repeating pattern of light and dark squares.", + "A chequered texture has a pattern of squares.", + "A chequered texture is a series of squares or rectangles that are different colors or shades.", + "The chequered texture has a repeating pattern of squares.", + "A chequered texture has a repeating pattern of light and dark squares.", + "A chequered texture looks like a chessboard, with alternating light and dark squares.", + "Checkered textures are usually made up of small, squares or rectangles that are arranged in a repeating pattern.", + "A chequered texture is a textured surface that has a regular pattern of squares or diamonds.", + "A chequered texture has a pattern of light and dark squares.", + "The image is of a close-up of a chequered tablecloth.", + "The image is of a blue and white chequered tablecloth.", + "A chequered texture is an image with a lot of small squares or rectangles of different colors.", + "The image is of a close-up of a black-and-white checkered tablecloth.", + "A chequered texture image from the internet is an image that is made up of a series of small squares.", + "The image is of a white and black checkered texture.", + "The image is of a chequered texture with a black and white checkered pattern.", + "The image is of a blue and white checkered tablecloth.", + "This image features a chequered texture with a light and dark colour scheme.", + "The image from the internet is of a chequered texture.", + "Chequered texture.", + "A black and white chequered texture.", + "Chequered Texture.", + "Chequered texture with alternating light and dark squares.", + "Chequered Texture.", + "Chequered Texture.", + "This image is of a chequered texture.", + "Chequered black and white texture.", + "The chequered texture is a repeating pattern of light and dark squares.", + " A close up of a black and white chequered texture." + ], + "cobwebbed": [ + "A cobwebbed texture looks like a small spider web.", + "A webbed texture looks like it has a lot of small holes or pores.", + "A cobwebbed texture is a sticky, fibrous texture that is often used to describe old, dilapidated objects.", + "A cobwebbed texture looks like a thin, delicate webbing.", + "A cobwebbed texture looks like a fine, delicate webbing.", + "A cobwebbed texture looks like a piece of cloth or yarn that has been tangled up into a small, dense ball.", + "A cobwebbed texture looks like a small spiderweb.", + "A cobwebbed texture looks like a web that has been spun by a spider.", + "A cobwebbed texture looks like a web that has been spun by a spider.", + "A cobwebbed texture is a very fine, delicate, and often clingy net-like fabric.", + "A cobwebbed texture can be identified by its spider web-like appearance.", + "Cobwebbed texture can typically be identified by its delicate, filmy, and net-like appearance.", + "A cobwebbed texture is often thin and delicate, with a sticky feel.", + "A cobwebbed texture is usually characterized by a web-like pattern.", + "A cobwebbed texture is usually characterized by a series of thin, intersecting lines.", + "A cobwebbed texture is characterized by a delicate, filmy webbing.", + "The easiest way to identify a cobwebbed texture is to look for a series of thin, radial lines that intersect to form a web-like pattern.", + "A cobwebbed texture has a small, delicate web-like pattern.", + "Cobwebbed textures often feel sticky or tacky to the touch.", + " Cobwebbed textures are characterized by a web-like pattern.", + "Cobwebbed textures are often described as looking like a spider's web.", + "A cobwebbed texture looks like webs that are tangled together.", + "A cobwebbed texture is a textured surface that looks like it is covered in cobwebs.", + "Cobwebbed textures look like a web or a net.", + "A cobwebbed texture is a type of textile weave that creates a pattern of small holes.", + "A cobwebbed texture looks like a ropy, tangled web.", + "Cobwebbed textures are generally thin, wispy, and delicate-looking.", + "A cobwebbed texture has thin, delicate strands that resemble a spider's web.", + "A cobwebbed texture looks like a web of thin, filmy fibers.", + "A cobwebbed texture looks like a small, delicate spider web.", + "A cobwebbed texture image from the internet typically contains a spiderweb with a number of small spiders crawling on it.", + "An image of a cobwebbed texture would show a web-like pattern with a lot of small fibers crossing over each other.", + "The image is of a close up of a cobweb with fluid like strands connecting the web to different points.", + "The image is of a white cobwebbed texture.", + "The image is of a black and white cobweb.", + "The image is of a white cobwebbed texture.", + "A faint, silvery spider web is caught in the corner of a room.", + "This image from the internet shows a close-up of a cobwebbed texture.", + "The image shows a close-up of a spider web, with the individual strands of the web covered in a fine film of dust or pollen.", + "The image shows a close-up of a spiderweb, with the individual strands of the web looking like they are covered in a fine, white powder.", + "A close up of a cobwebbed texture.", + "A close-up of a cobweb, with its delicate, silky threads.", + "

The delicate cobwebbing on this texture is so intricate and beautiful.", + "Cobwebbed texture with small spider.", + "A close-up of a spiderweb, with the spider's body in the center.", + "A texture that has been cobwebbed.", + "This is a picture of a cobweb.", + "The cobwebbed texture is created by the spider's silk.", + " Cobwebs form intricate patterns as they trap dust and insects.", + " A close up of a spiderweb covered in morning dew." + ], + "cracked": [ + "A cracked texture looks like a surface that has been broken into many small pieces.", + "A cracked texture looks like a series of cracks or fissures in a surface.", + "A cracked texture looks like a series of small cracks in a surface.", + "A cracked texture typically looks like a line or a fissure running through a surface.", + "A cracked texture looks dry, brittle, and cracked.", + "A cracked texture generally looks like a surface that has been shattered or broken into pieces.", + "A cracked texture is usually dry and cracked looking.", + "A cracked texture looks like a surface that has been broken into many small pieces.", + "A cracked texture looks like a surface with small cracks running through it.", + "A cracked texture usually looks like a dry, cracked riverbed.", + "A cracked texture is typically dry, cracked, and flaky.", + "A cracked texture has a cracked or broken surface.", + "A cracked texture can be identified by its appearance.", + "If you were to look at a cracked texture up close it would look like a bunch of small lines that are close together.", + "There are several ways to identify a cracked texture:1.", + "A cracked texture can be identified by its rough, uneven surface.", + "A cracked texture will have a rough, broken surface.", + "When you look at a cracked texture, you can see that the lines are not straight, and the texture is not smooth.", + "A cracked texture can often be identified by its appearance.", + "If you are looking at a texture, you can usually tell if it is cracked if there are visible cracks in the surface.", + "A cracked texture can look like a cracked piece of ceramic, or it can look like a dry, cracked piece of earth.", + "A cracked texture looks like a series of small lines or cracks.", + "Cracks can vary in size from tiny hairline cracks to large cracks that are several inches wide.", + "A cracked texture can look like a series of small lines or cracks running in a random pattern.", + "A cracked texture looks like a series of small cracks in a surface.", + "A cracked texture looks like a surface with small cracks running through it.", + "A cracked texture looks like a series of small cracks in a surface.", + "A cracked texture looks like a series of cracks in a surface.", + "A cracked texture can look like a bunch of small lines or cracks, or it can look like one large crack.", + "A cracked texture is a type of texture that is characterized by its cracked appearance.", + "In this image, a cracked texture is shown on a wall.", + "The image shows a close-up of a piece of concrete with large cracks running through it.", + "The image is of a dry, desert landscape.", + "A cracked texture may have a rough or bumpy surface with cracks running through it.", + "A close-up image of a dry, cracked mud surface.", + "A cracked texture image from the internet is an image of a material with a cracked surface.", + "A cracked texture may look like dry, cracked earth or the surface of a dried-out lake bed.", + "An image of a cracked texture would show a surface with cracks running through it.", + "The image is of a cracked texture with fissures running through it.", + "The image is of a wall with cracks running through it.", + "The rough, cracked texture of this surface is caused by damage and wear.", + " Broken ConcreteA caption of an image of a fluffy white cat with blue eyes: Mittens, the neighborhood cat.", + "A cracked texture.", + "A close up of a cracked and weathered texture.", + "A close-up of a fissured surface, showing cracks of varying widths.", + "This is an image of crackedTexture.", + "A close-up of a cracked texture, possibly stone or concrete.", + "The texture of this material is rough and cracked.", + "A cracked texture can be caused by many things, but most often it is caused by dehydration or extreme temperatures.", + "The cracks in this texture are reminiscent of the cracks that form in dried mud." + ], + "crosshatched": [ + "A crosshatched texture has criss-crossed lines running through it.", + "A crosshatched texture looks like a series of intersecting line segments.", + "A crosshatched texture is a texture that has closely spaced parallel lines that intersect to form a grid.", + "A crosshatched texture is made up of a series of parallel lines that intersect at right angles.", + "A crosshatched texture has a series of parallel lines that intersect each other at right angles.", + "A crosshatched texture is a type of textural pattern that is created by intersecting sets of parallel lines.", + "A crosshatched texture has a series of lines crossing each other, usually at right angles.", + " crossings of lines at right angles to one another, resulting in a series of small diamond shapes.", + "A crosshatched texture is a texture composed of a series of parallel lines that intersect at right angles.", + "A crosshatched texture has a series of parallel lines that intersect at right angles.", + "Mobile devices make it possible to take a photo of an unknown texture and use an image search engine to find out what it is.", + "Crosshatched textures are made up of parallel lines that cross each other.", + "A crosshatched texture is a series of parallel lines that intersect at right angles.", + "Crosshatched textures are made up of diagonal lines that intersect each other.", + "A crosshatched texture is a texture that is made up of crossed lines.", + "Crosshatched textures can be identified by their uniform, parallel lines that crisscross over each other.", + "A crosshatched texture is a type of texture that is created by intersecting lines that create a grid-like pattern.", + "The best way to identify a crosshatched texture is to look for intersecting lines that create a mesh-like pattern.", + "A crosshatched texture has two sets of perpendicular lines intersecting each other.", + "The lines in a crosshatched texture are evenly spaced and go in two different directions.", + "A textured surface with crossing lines, typically used to indicate shading or different levels of material.", + "Crosshatched textures are created by drawing parallel lines that intersect with each other.", + "A crosshatched texture is a texture created by overlapping sets of lines that intersect each other.", + "A crosshatched texture has lines dr.", + "A crosshatched texture is a surface with a series of parallel lines running in one direction, intersected by a series of parallel lines running in the other direction.", + "A crosshatched texture is a texture that resembles a series of crossed lines.", + "Crosshatched texture refers to a pattern of lines that intersect to form a grid-like image.", + "A texture with a crosshatched pattern will have a series of diagonal lines going in opposite directions.", + "Crosshatched textures are made up of a series of intersecting lines.", + "A crosshatched texture is a type of texture that consists of a series of parallel lines that intersect at right angles.", + "The image is black and white, and contains a grid of thin, intersecting lines.", + "The image is of a piece of fabric with a crosshatched texture.", + "This image from the internet shows a close-up of a crosshatched texture, with thin, perpendicular lines criss-crossing each other.", + "In this image, a crosshatched texture is created by intersecting two sets of parallel lines at right angles to each other.", + "This image from the internet shows a crosshatched texture.", + "An image of a crosshatched texture would show a series of intersecting lines that create a net-like pattern.", + "The image is of a light beige fabric with a crosshatched texture.", + "The image is of a piece of wood that has been crosshatched.", + "An image of a crosshatched texture would show a series of intersecting lines, usually at right angles to each other.", + "The image is of a grey crosshatched texture with pale yellow stripes running through it.", + "Debris on the surface of Mars; view is of the northern hemisphere.", + "This is a crosshatched texture.", + "Crosshatched lines create a textured look.", + "Crosshatched texture usually consists of two sets of lines crossing each other at right angles.", + "Crosshatched Texture.", + "A crosshatched texture is a texture that has a crisscrossed pattern.", + "Crosshatched texture.", + "This image is of a crosshatched texture.", + "This image features a texture with a crosshatched pattern.", + "This is a crosshatched texture." + ], + "crystalline": [ + "The crystals in a crystalline texture are well-formed and arranged in a repeating pattern.", + "A crystalline texture has a clearly defined, repeating structure.", + "A crystalline texture is made up of small, identical crystals that are arranged in a regular pattern.", + "A crystalline texture typically looks shiny and smooth, like a polished gemstone.", + "The crystalline texture is characterized by having a distinct, three-dimensional crystal structure.", + "A crystalline texture is one where the individual grains of the rock are large enough to see with the naked eye, and the overall shape of the rock is dictated by the shape of the individual grains.", + "A crystalline texture looks like a repeating, 3-dimensional pattern.", + "A crystalline texture typically looks like a series of sharp, needle-like shapes arranged in a symmetrical pattern.", + "A crystalline texture contains tiny crystals that can be seen with the naked eye.", + "A crystalline texture includes sharp angles and precise lines.", + "When a mineral is in the crystalline form, it will have a definite crystal shape and a specific symmetry.", + "A crystalline texture is one in which the atoms, molecules, or ions are arranged in a highly ordered, repeating three-dimensional pattern.", + "A crystalline texture is a type of texture found in rocks that have avisible grain structure.", + "A crystalline texture is a type of texture that is made up of small, equal-sized crystals.", + "A crystalline texture is made up of interlocking crystals.", + "A crystalline texture can typically be identified by the presence of crystals, which are defined as \"a homogeneous solid formed by the orderly self-assembly of molecules.", + "A crystalline texture indicates that the rocks have formed from interlocking crystals.", + "Crystalline textures occur when the crystals in a rock are visible to the naked eye.", + "The easiest way to identify a crystalline texture is to look for sharp geometric shapes in the rock.", + "The easiest way to identify a crystalline texture is to look for sharp, well-defined faces on the grains.", + "A crystalline texture looks like a bunch of little crystals.", + "A crystalline texture looks like a series of small, regularly-shaped crystals.", + "A crystalline texture can be either shiny and smooth or dull and grainy, depending on the type of crystal.", + "A crystalline texture looks like a mass of crystals.", + "A crystalline texture looks like a diamond.", + "A crystalline texture looks like a set of interlocking crystals.", + "A crystalline texture is characterized by a repeating pattern of crystals.", + "A crystalline texture looks like a series of small crystals or a powder.", + "A crystalline texture looks like a bunch of crystals put together.", + "A crystalline texture is made up of clearly defined grains that are arranged in a specific pattern.", + "The image is of a blue and white rock with a crystalline texture.", + "I found an image of a close-up of a snowflake.", + "A photograph of a rock containing large crystals of the mineral quartz.", + "The image is of a beige rock with white streaks running through it.", + "The image is of a blue mineral with a crystalline texture.", + "The image shows a sample of eudialyte, a rare mineral composed of complex silicates, with a distinct red, pink, and green coloration.", + "The image I found was of a geode - a type of rock which forms naturally in a crystalline structure.", + "The image is of a close-up of a snowflake.", + "The image is of a blue gemstone with a faceted surface.", + "The image is of a piece of calcite crystal.", + "This image shows a close-up of a crystalline texture.", + "I took this photo of a crystal texture while hiking through a canyon.", + "Crystal\nCaption: A close-up of a calcite crystal.", + " crystalsA caption of an image of a rippling fabric:The fabric has a rippling texture, caused by the way the fabric is woven.", + "A close-up of a quartz crystal, showing its characteristic hexagonal shapes.", + "This image shows a close-up of a crystalline texture.", + "This is a photograph of a crystalline texture.", + "A close up of a rock surface with a crystalline texture.", + " self-assembling crystalsA group of self-assembling crystals.", + "This is a photo of a crystal." + ], + "dotted": [ + "A dotted texture is one where there are small dots all over the surface.", + "A dotted texture is one where there are lots of small dots on the surface.", + "A dotted texture looks like it has dots all over it.", + "A dotted texture is a texture that has small dots on it.", + "A dotted texture looks like a series of dots.", + "A dotted texture looks like a surface with small raised dots.", + "A dotted texture is a repeating pattern of small dots.", + "A dotted texture looks like it has small dots all over it.", + "A dotted texture is a texture that has small raised dots on its surface.", + "A dotted texture looks like a 26 point font with large gaps between each letter.", + "A dotted texture can be identified by looking for small, raised bumps on a surface.", + "A dotted texture is one in which small dots are evenly spaced across the surface.", + "If you are looking at a texture and you see a lot of small circles, then it is dotted.", + "A dotted texture is a texture that has a pattern of dots.", + "A dotted texture is a texture that is made up of a series of dots.", + "A dotted texture is a texture that has a lot of small dots on it.", + "To identify a dotted texture, look for a surface that has small, raised dots.", + "A dotted texture is a texture that has a series of dots or small circles.", + "Dotted textures can be identified by their small, raised dots.", + "A dotted texture is a texture that has small dots all over it.", + "A dotted texture looks like a series of dots arranged in a pattern.", + "A dotted texture looks like a series of dots or dashes.", + "A dotted texture is a series of small dots that are evenly spaced out.", + "A dotted texture looks like it has small dots all over it.", + "A dotted texture has small, raised dots evenly spaced across its surface.", + "A dotted texture usually looks like a series of small dots.", + "The dotted texture can look like small circles or dots on the surface of an object.", + "A dotted texture is one that is made up of small, raised dots.", + "Mock Orange Blossoms on a Dotted Background\nA dotted texture has a repeating pattern of dots.", + "A dotted texture is a texture that has small dots on it.", + "A close-up image of a black and white polka dot fabric.", + "A close-up image of a polka dot fabric.", + "This image shows a close-up of a dotted texture.", + "The image is of a green background with white dots.", + "This image from the internet shows a dotted texture.", + "A dotted texture image from the internet would be an image of a surface with small raised dots on it.", + "The image is of a black and white dotted fabric.", + "The image is of a red and white polka-dotted fabric.", + "The image might show a piece of fabric with a polka dot pattern, or a close-up photo of a leopard's skin.", + "The image shows a close up of a black fabric with white dots.", + "A texture made up of small dots.", + "Texture of a string of beads.", + "A dotted texture.", + "A textured surface with a regular pattern of dots.", + "The many small dots on this surface create a textured look.", + "This is a dotted texture.", + "The image shows a close up of a dotted texture.", + "A blue and white dotted texture.", + "This image shows a close-up of a dotted texture.", + "A close-up of a textured, dotted fabric." + ], + "fibrous": [ + "A fibrous texture is typically dry, with a rough, sandpaper-like feel.", + "Fibrous textures are usually dry, rough, and scaly.", + "A fibrous texture tends to be stringy, and is often seen in fibrous foods like celery.", + "A fibrous texture is one that is made up of fibers.", + "A fibrous texture looks like a bunch of strands or threads interconnected with one another.", + "A fibrous texture is one that is stringy or shaggy.", + "Fibrous textures have an irregular, cords, or strands overall shape.", + "A fibrous texture looks like a woven fabric.", + "Fibrous textures are characterized by long, stringy fibers that are often difficult to see with the naked eye.", + "A fibrous texture looks like a series of fine, interconnected fibers.", + "Fibrous textures are most often found in plant-based foods like fruits, vegetables, grains, and legumes.", + "Fibrous textures are often dry, rough, and scaly.", + "A fibrous texture has a stringy or thread-like appearance.", + "Fibrous textures are often identified by their stringy or rope-like appearance.", + "A fibrous texture has long, thread-like fibers.", + "If you see strands or strings in a food product, that is a fibrous texture.", + "It is difficult to identify a fibrous texture without seeing it.", + "If the material can be easily pulled apart into thin strands, then it has a fibrous texture.", + "A fibrous texture is one that is made up of fibers.", + "Fibrous textures are grainy or gritty to the touch.", + "A fibrous texture looks like a mass of tangled fibers.", + "A fibrous texture can look like yarn or twine.", + "A fibrous texture typically has a stringy, rope-like appearance.", + "A fibrous texture looks like a net or a web.", + "A fibrous texture is usually dry, stringy, and difficult to chew.", + "Fibrous textures are often described as \"stringy.", + "A fibrous texture is stringy and feels mushy.", + "Fibrous texture is often described as looking and feeling rough, like sandpaper.", + "Fibrous textures are often stringy or sticky.", + "Fibrous texture is often described as stringy, and is produced by long, thin fibers.", + "_The image is of a piece of fabric with a woven texture.", + "Image of a fibrous texture:https://www.", + "The image is of a dry, cracked river bed with small rocks and pebbles strewn throughout.", + "This image is of a piece of raw chicken breast.", + "The image is of a close-up of a tree trunk, with the bark (the outer layer of the trunk) peeled away to reveal the inner fibrous layer.", + "Image: https://images.", + "The image is of a piece of string.", + "Image search results for \"fibrous texture\"show images of plants, animal fur, and fabric.", + "An image from the internet of a fibrous texture would show strands of material that are intertwined with one another.", + "This image shows a piece of fabric with a very tight, dense weave.", + "Fibrous Texture.", + "This image shows a close-up of a fibrous texture.", + "Fibrous material showing strand-like structures.", + "This image shows the fibrous texture of a material.", + "Fibrous Textures are a great way to add interest and visual appeal to your home d\u00e9cor.", + "fibrous texture.", + "This image shows the fibrous texture of paper.", + "Woven Fibers.", + "Tightly packed fibers give this material a sturdy, yet pliable texture.", + "This image shows the fibrous texture of a piece of paper." + ], + "flecked": [ + "A flecked texture looks like it has been sprinkled with flecks of another material.", + "A flecked texture has tiny pieces of color or flakes that are distributed evenly throughout.", + "A fleck texture looks like a texture with small flecks of another color throughout it.", + "A flecked texture is made up of small pieces or flecks of material.", + "A flecked texture is one that has small pieces or flecks of another substance throughout it.", + "Flecked textures have small, irregularly shaped pieces of color against a background.", + "A flecked texture usually resembles tiny pieces or \"flecks\" of another material mixed in with the original material.", + "A flecked texture has bits of material throughout it that are a different color than the main color of the material.", + "A flecked texture looks like a series of small dots or spots.", + "A flecked texture looks like a fabric that has been sprinkled with another color.", + "A flecked texture is a textured surface that contains small flecks or particles.", + "A flecked texture can be identified by its small pieces or flecks of texture that are spread throughout the surface.", + "A flecked texture is a textured surface that has been decorated with small pieces of another material.", + "A flecked texture usually has small pieces of a different material mixed in with the main material.", + "A flecked texture can be identified by its small, fleck-like pieces.", + "A flecked texture usually has small pieces of another material mixed in with the main material.", + "It is generally a rough surface with small flecks of color or material.", + "A flecked texture can be identified by its small, fleck-like pieces.", + "In general, a flecked texture is one that has small pieces or flecks of a different material dispersed throughout.", + "Some common ways to identify a flecked texture are by looking for small pieces of another material in the background, or by looking for a textured surface with small bumps.", + "The best way to describe a flecked texture is with an example.", + "A flecked texture is a rough, bumpy surface with small pieces of debris or color.", + "A flecked texture typically has small pieces of another material dispersed throughout.", + "A flecked texture refers to a rough, spattered surface.", + "Flecked textures have small flecks or pieces of another color or material throughout.", + "A flecked texture has small spots or specks of color.", + "A flecked texture looks like a fabric with small specks of another color throughout it.", + "A flecked texture looks like a fabric that has small pieces of another material mixed in with it.", + "A flecked texture has small pieces of a different color or material mixed in with the main color or material.", + "The flecked texture has a mottled appearance with small pieces of color.", + "Colors swirl together in a abstract design.", + "The image is of a blue and white background with small black specks.", + "The image is of a light brown background with dark brown spots.", + "The image is of a off-white textured background.", + "The image is of a light brown background with small dark brown spots randomly distributed throughout.", + "I found an image of a flecked texture on Pinterest.", + "The image shows a close-up of a grey and white speckled fabric.", + "The image is of a light grey background with dark grey spots.", + "The image is of a close-up of a beige fabric with small brown flecks.", + "The image is of a orange and white flecked background.", + "The surface of this stone is covered in small, raised bumps.", + "The texture of this fabric is created by the flecks of color woven into the fabric.", + "Close-up of a flecked texture, showing the individual pieces of debris.", + "A close-up of a green and brown flecked texture.", + "The flecked texture of this fabric is created by adding small pieces of fiber to the fabric during the manufacturing process.", + "This image shows a flecked texture.", + "A texture with small flecks of color.", + "This texture is created by a flecked paint, which is made by adding small pieces of colored pigment to paint.", + "The caption reads \"Flecked Texture.", + "The flecked texture of this fabric is created by the varying colors of the thread." + ], + "freckled": [ + "A freckled texture has small spots that are evenly distributed.", + "Freckles are small, dark brown or black spots that can appear on the skin.", + "A freckled texture looks like a small, dark spot on the surface of something.", + "A freckled texture looks like a small, brown spot on the surface of the skin.", + "A freckled texture is a texture that has small dots or spots on it.", + "A freckled texture looks like a small brown or black spots on the surface of the skin.", + "A freckled texture looks like small dots scattered across a surface.", + "Freckled texture looks like a texture that has small brown spots on it.", + "A freckled texture looks like a series of small, round spots that are evenly dispersed.", + "A freckled texture looks like a light brown or tan color with small, dark brown spots.", + "A freckled texture typically features small, dark spots on a lighter background.", + "Freckled textures are usually small and dark.", + "You can identify a freckled texture by its small, brown spots.", + "Freckled textures are small, brown spots on the skin that are caused by exposure to the sun.", + "Freckled texture is generally made up of small, brownish spots on the surface of the skin.", + "Freckled textures are generally small and evenly distributed.", + "Freckles are usually small, brown or black spots on the skin that occur in clusters.", + "A freckled texture can be distinguished by its small, round spots that are evenly distributed.", + "Freckled textures are often irregular and may be light or dark.", + "A freckled texture has small, dark spots that are evenly distributed.", + "A freckled texture looks like a small, round dot.", + "A freckled texture generally looks like a light spotting or dusting of dark spots on a light background.", + "If you were to look at a freckled surface close up, it would look like it was covered in a lot of tiny, dark spots.", + "The texture of freckles can vary depending on their location on the body.", + "A freckled texture looks like a surface that is covered in small dots.", + "A freckled texture indicates a bumpy or uneven surface.", + "A freckled texture looks like a small, dark spot on the skin.", + "The freckled texture looks like a lot of small freckles.", + "Freckled textures are small, dark spots on the skin that can be red, brown, or black.", + "Freckled textures are usually small, brown, and evenly spaced.", + "The image is of a close up of a human hand.", + "A texture image of freckles looks like a close-up photo of a person's skin that is covered in small, dark spots.", + "This image from the internet shows a freckled texture.", + "The image is of a light brown textured surface with small, evenly spaced dark brown spots.", + "I found an image on the internet of a close-up of a freckled person's shoulder.", + "This image from the internet shows a freckled texture.", + "This image shows a close-up of a person's skin with freckles.", + "This image shows a close-up of a freckled texture.", + "The image from the internet of a freckled texture shows a close up of a person's face.", + "https://www.", + "A close up of a freckled texture.", + "A close-up of freckles on skin.", + "Freckled Texture.", + "Freckles are small flat brown or black spots on the skin.", + "Close up of a freckled texture.", + " A close up of a red and white freckled fabric.", + "Freckled texture up close.", + "Auguste Renoir, \"Three Graces,\" 1895.", + "Freckled Texture.", + "My skin up close and personal." + ], + "frilly": [ + "frilly textures are usually thin and delicate, with a lot of small details.", + "A frilly texture can look like a lot of small bumps or ridges close together.", + "A frilly texture can be described as having a lot of small folds or ruffles.", + "A frilly texture is usually light and delicate, with a lot of small folds or ruffles.", + "A frilly texture is one with a lot of small, intricate details.", + "A frilly texture looks like a lot of small folds in the fabric.", + "A frilly texture has a lot of small, delicate features.", + "A frilly texture looks like a lot of small, overlapping pieces.", + "A frilly texture looks like it is covered in small, delicate ruffles.", + "A frilly texture has a lot of small, delicate details.", + "The best way to identify a frilly texture is to look for patterns in the fabric that resemble ruffles or bows.", + "A frilly texture can be identified by its light and airy feel, as well as its ridged or ruffled surface.", + "A frilly texture is often described as being fluffy, ruffled, or having a lot of texture.", + "A frilly texture can be identified by its ruffled or lace-like appearance.", + "A frilly texture can be identified by its ruffled or puckered appearance.", + "A frilly texture is often described as being like ruffles.", + "A frilly texture is usually characterized by a lot of small, intricate details.", + "The frilly texture is very delicate and has a lot of small ridges.", + "A frilly texture feels bouncy and has a lot of movement.", + "A frilly texture features a lot of small, delicate folds.", + "A frilly texture can look like ruffles or small, intricate patterns.", + "A frilly texture usually has a lot of small, delicate details.", + "A frilly texture has a lot of small, intricate details.", + "A frilly texture typically has a lot of small, intricate details.", + "A frilly texture is often described as being lacy or ruffled.", + "Frilly textures are characterized by their intricate, detailed patterns.", + "A frilly texture looks like it has a lot of small, delicate folds.", + "A frilly texture generally has a lot of small, delicate folds or ruffles.", + "A frilly texture has a lot of small, delicate folds.", + "The word \"frilly\" is often used to describe something that is excessively decorated or ornate.", + "This is a close-up image of a piece of light blue fabric with a ruffled texture.", + "This image is of a frilly white texture.", + "This image from the internet is of a frilly texture.", + "The image shows a close-up of a light pink fabric with a ruffled texture.", + "This image is of a sheer, frilly fabric.", + "This image from the internet shows a close-up of a frilly coral reef.", + "This image is of a bundle of frilly, yellow flowers.", + "In this image, there is a close-up of a frilly, pinkish-orange fabric.", + "This image is of a close-up of a carnation flower.", + "The image is of a piece of fabric with a frilly texture.", + " A close-up of a pale pink ruffleThis close-up of a pale pink ruffle shows the delicate and frilly texture of the fabric.", + "The frilly texture of the fabric is accented by the delicate lace trim.", + " The frilly texture of this fabric is perfect for a special occasion dress.", + "This frilly texture is perfect for adding a touch of femininity to any project.", + "This image shows a close-up of a frilly texture.", + "This frilly texture is perfect for adding a touch of elegance to any project.", + "This texture is full of ruffles and frills.", + "Beautiful frilly texture.", + "A close-up of a frilly white fabric.", + "This is a frilly texture." + ], + "gauzy": [ + "A gauzy texture looks like a thin, light piece of fabric.", + "A gauzy texture looks like a piece of fabric that is light and airy.", + "A gauzy texture is a light, airy texture.", + "A gauzy texture looks like a thin layer of fabric that is see-through.", + "A gauzy texture looks like a piece of fabric that is very thin and see-through.", + "Gauzy textures look like thin, sheer fabrics.", + "A gauzy texture is a soft, lightweight fabric with a semitransparent appearance.", + "A gauzy texture typically looks like a piece of sheer fabric.", + "A gauzy texture looks like a thin, transparent fabric.", + "A gauzy texture generally looks like a thin layer of material that is draped over something else.", + "The best way to identify a gauzy texture is by touch.", + "A gauzy texture is typically light and airy.", + "A gauzy texture is one that is soft, delicate, and transparent.", + "A gauzy texture is light and airy.", + "A gauzy texture is often thin and light, with a loose weave.", + "A gauzy texture is often soft and light, with a hint of transparency.", + "You can identify a gauzy texture by its soft, airy feel and its translucent appearance.", + "A gauzy texture is often thin and light, with a loose weave that allows a lot of light to pass through.", + "A gauzy texture can be identified by its light and airy appearance.", + "a gauzy texture can be identified by its light and airy appearance.", + "A gauzy texture can look like a thin piece of cloth or like a spider's web.", + "A gauzy texture is often used to describe a fabric that is light and airy.", + "A gauzy texture looks like a piece of fabric with a lot of loose threads.", + "A gauzy texture looks like a piece of fabric that is made from a very thin material.", + "A gauzy texture is thin, light, and often transparent.", + "A gauzy texture is usually thin, delicate, and transparent.", + "A gauzy texture looks like something that is made of thin, transparent fabric.", + "A gauzy texture is typically thin and transparent, like a piece of gauze fabric.", + "A gauzy texture can look like a loose and transparent fabric.", + "A gauzy texture is light and airy.", + "This image is of a thin, white fabric with a soft, fuzzy surface.", + "The image is of a piece of white gauze fabric.", + "A gauzy texture image from the internet features a light and airy fabric with a loose weave.", + "This image shows a close-up of a piece of gauzy fabric.", + "The image is of a sheer, white fabric with a delicate floral pattern.", + "This image shows a close-up of a gauzy, sheer fabric.", + "This image from the internet is of a sheer, gauzy fabric.", + "The image is of a sheer, delicate fabric with a subtle pattern.", + "In this image, a swath of gauzy fabric is caught in mid-flutter, its delicate folds and curves caught in stark relief against the bright blue sky behind it.", + "This image from the internet is of a white, gauzy fabric with a light, airy texture.", + "The soft, gauzy texture of this fabric is perfect for summer dresses and blouses.", + "A gauzy texture with a soft, flowing appearance.", + "The delicate gauze texture is created by finely woven threads.", + " The soft, delicate fabric of this skirt drapes elegantly around the body.", + " A gauzy texture with a soft light shining through.", + "The soft, billowy texture of this fabric is oh-so- dreamy!.", + "This image shows a gauzy texture with a soft, blurry appearance.", + "This soft, billowy fabric has an ethereal look that makes it perfect for romantic garments.", + "This is a gauzy texture.", + "A closeup of a piece of gauze, showing its light and airy texture." + ], + "grid": [ + "A grid texture is a texture that contains a grid of squares.", + "Grid textures have a repeating pattern of straight lines that intersect to form a grid.", + "A grid texture is a repeating pattern of squares that are the same size and color.", + "A grid texture looks like rows and columns of intersecting lines.", + "A grid texture is a regular, repeating pattern of squares.", + " Grid textures are repeating patterns of squares or lines.", + "A grid texture contains regularly spaced vertical and horizontal lines that intersect to form a series of squares.", + "A grid texture consists of a series of evenly spaced lines that intersect to form a grid.", + "A grid textured surface has a repeating pattern of squares or rectangles.", + "A grid texture is a series of evenly spaced lines that cross each other to form a network of squares or rectangles.", + "A grid texture is a regular repeating pattern of squares.", + "Grid textures are made up of a series of regular, repeating shapes.", + "A grid texture consists of a regular pattern of squares, typically displayed in a checkerboard arrangement.", + "A grid texture is a texture that has a regular, repeating pattern.", + "Grid textures are often composed of repeating square or rectangular patterns.", + "A grid texture can be identified by its repetitious pattern and straight lines.", + "There are a few ways to identify a grid texture.", + "A grid texture can be identified by a regular, repeating pattern of lines that intersect to form a grid.", + "Grid textures can be identified by their repeating patterns of squares or rectangles.", + "A grid texture is a texture that contains a repeating pattern of squares.", + "Grid textures look like a combination of horizontal and vertical lines placed evenly across a surface.", + "A grid texture has a regular pattern of squares that intersect to form a network of small squares.", + "A grid texture typically consists of a regular pattern of horizontal and vertical lines.", + "A grid texture typically consists of a series of evenly spaced, parallel lines that cross each other to form a grid.", + "A grid texture typically consists of a regular pattern of horizontal and vertical lines.", + "A grid texture is a repeating pattern of squares that are evenly spaced apart.", + "A grid texture is a repeating pattern that looks like a series of squares or rectangles.", + "A grid texture is a repeating pattern of evenly spaced horizontal and vertical lines.", + "A grid texture looks like a series of squares or rectangles arranged in a regular pattern.", + "A grid texture is a repeating pattern of squares that are the same size and spaced evenly apart.", + "A grid texture is a regularly spaced series of lines that intersect to form squares.", + "There is a grid of black and white squares.", + "This image is a close-up of a metal grid with small squares.", + "Image shows a light beige background with a darker beige grid overlay.", + "The image is of a grey and white checkered grid texture.", + "The grid texture consists of a series of parallel black lines spaced evenly apart on a white background.", + "A grid texture is a repeating pattern of squares or rectangles.", + "A image of a grid texture would be a image of a bunch of straight lines going across and down in a consistent pattern.", + "This image is of a grid texture.", + "A grid texture is an image that is made up of a series of squares or rectangles.", + "Grid texture.", + " A grid texture with a resolution of 1024x1024 pixels.", + "A close-up of a grid texture, showing the intersections of the horizontal and vertical lines.", + "Grid texture.", + "This is a grid texture composed of small squares.", + "A grid texture made up of small squares.", + "Grid texture.", + "Grid texture.", + "This grid texture can be used as a background or as a starting point for creating other patterns and shapes.", + "A grid texture composed of intersecting lines." + ], + "grooved": [ + "A grooved texture has small lines or indentations running across it.", + "A grooved texture looks like a series of lines or furrows running parallel to each other.", + "A grooved texture looks like a series of grooves or indentations in a surface.", + "A grooved texture has small, depressed lines running across its surface.", + "A grooved texture is a type of textured surface that contains small indentations or furrows.", + "A grooved texture looks like a series of parallel lines or ridges.", + "A grooved texture looks like a series of lines or indentations going in one direction.", + "A grooved texture looks like a series of perpendicular lines or ridges.", + "A grooved texture has small, parallel lines running across it.", + "Groove textures are usually long and narrow, like a furrow in the ground.", + "A grooved texture can be identified by its parallel lines.", + "A grooved texture has a series of ridges and valleys.", + "A grooved texture has lines or ridges running parallel to each other.", + "If you can see and feel parallel lines on a surface, it has a grooved texture.", + "A grooved texture is a textural pattern that consists of parallel, elongated marks.", + "A grooved texture is when there are parallel lines running across the surface.", + "You can identify a grooved texture by looking for linear marks or indentations on a surface.", + "A grooved texture is created when lines are carved into a surface.", + "A grooved texture can be identified by looking for ridges or furrows in the surface of an object.", + "The best way to identify a grooved texture is to look for repeating patterns in the surface.", + "A grooved texture has a raised line or ridge running along its surface.", + "A grooved texture has parallel lines running across it.", + "A grooved texture has parallel lines running along its surface.", + "A grooved texture can look like a line or groove running through a surface.", + "A grooved texture can look like many different things.", + "A grooved texture has parallel lines that are indented into the surface.", + "A grooved texture looks like a series of lines or furrows.", + "A grooved texture can look like a series of small lines or indentations running parallel to each other.", + "A grooved texture looks like a series of lines or ridges running parallel to each other.", + "A grooved texture is a type of texture that has small lines or indentations running across it.", + "The image shows a close-up of a tree bark, with deep grooves running along its surface.", + "The image is of a piece of tree bark with deep grooves running through it.", + "The image is of a light-colored wood tabletop with visible grooves in the grain.", + "The grooved texture in the image is created by ridges or indentations in the surface.", + "I found an image on the internet of a grooved texture that looks like it could be from a tree trunk.", + "This image is of a rusty, grooved texture.", + "This image is of a close-up of a wooden door with a deeply grooved texture.", + "The image is of a road that has been worn down by the tire traction from passing vehicles.", + "The image is of a grey and white tile with a curved, grooved surface.", + "Picture of a thin slice of tree trunk.", + "The grooves in this texture are wide and deep, giving it a rough look and feel.", + "The type of groove on this blade is called a Fuller, and is used to lighten the blade without sacrificing strength.", + "The grooves in this texture create a visual and tactile interest.", + "A close up of a grooved texture, possibly leather.", + "This image shows a grooved texture.", + "This is a picture of a grooved texture.", + "The grooved texture of this surface shows the imprint of whatever made these lines.", + "Texture of a grooved surface.", + "The texture of this wood is very unique, with deep grooves running through it.", + "A close-up of a grooved texture, possibly created by erosion." + ], + "honeycombed": [ + "A honeycombed texture looks like a series of small hexagons.", + "A honeycombed texture corresponds to a regular geometric pattern of cells that are hexagonal in shape.", + "A honeycombed texture is a texture that is made up of a series of small hexagonal cells.", + "A honeycombed texture looks like a series of hexagonal cells that are interconnected.", + "A honeycombed texture is a series of hexagonal cells that are interconnected.", + "A honecomb texture looks like a series of hexagons.", + "A honeycombed texture looks like a series of hexagonal cells arranged in a honeycomb.", + "A honeycombed texture looks like a series of hexagonal cells arranged in a honeycomb-like pattern.", + "A honeycombed texture is a porous, spongy texture with a lot of small holes.", + "A honeycombed texture looks like a series of hexagonal cells arranged in a honeycomb shape.", + "A honeycombed texture is a smooth, even texture with small, hexagonal cells.", + "The best way to identify a honeycombed texture is to look for a series of small hexagonal cells.", + "A honeycombed texture is a type of texture that is characterized by a series of small hexagonal cells.", + "A honeycombed texture is defined by a series of small hexagonal cells.", + "A honeycombed texture is characterized by a series of small, hexagonal cells.", + "One way to identify a honeycombed texture is to look for patterns that resemble the cells of a honeycomb.", + "A honeycombed texture is a repeating pattern of hexagons.", + "A honeycombed texture can be identified by its hexagonal shape.", + "The term \"honeycombed\" is used to describe a wide variety of textures, but is most commonly used to describe a texture that is bumpy or has a lot of small holes in it.", + "The best way to identify a honeycombed texture is by looking for a series of hexagonal-shaped cells that are interconnected.", + "A honeycombed texture typically looks like a series of hexagons arranged in a honeycomb.", + "A honeycombed texture is a series of small, hexagonal cells arranged in a honeycomb-like pattern.", + "A honeycombed texture looks like the hexagonal cells of a bee's honeycomb.", + "A honeycombed texture looks like a series of small hexagonal cells connected to each other.", + "A honeycombed texture is made up of small hexagonal cells that are interconnected.", + "A honeycombed texture looks like a series of small hexagonal cells.", + "A honeycomb texture looks like a series of hexagons arranged in a honeycomb-like pattern.", + "The texture of a honeycomb is bumpy and uneven.", + "A honeycombed texture is a series of small, hexagonal shapes that are connected to each other.", + "A honeycombed texture looks like a series of hexagonal cells.", + "The image is of a honeycomb with bees inside.", + "A honeycombed texture usually consists of hexagonal shapes that are arranged in a Honeycomb-like structure.", + "The image is of a close up of a honeycomb.", + "I found an image of a beehive on the internet that I think fits the description of a honeycombed texture.", + "The image is of a close-up of a honeycomb.", + "A photo of a honeycomb shows a close-up of the hexagonal cells that make up the bee's home.", + "The image is of a close-up of a honeycomb.", + "The image is of a close up of a honeycomb.", + "A photo of a honeycomb texture would show a series of hexagonal shapes arranged in a honeycomb-like pattern.", + "The image is of a beehive with hexagonal cells.", + "The honeycombed texture of this rock is created by the weathering of the sandstone.", + "Close up of a honeycomb texture.", + "A close-up of a honeycomb texture, showing the hexagonal cells.", + "This is a close-up of a honeycomb.", + "A close-up of a honeycomb texture, showing the hexagonal shapes of the individual cells.", + "The honeycombed texture of this material is created by the small hexagonal cells that make up the structure.", + "Honeycombed Texture.", + "Honeycombed texture close-up.", + "The hexagon is one of the most efficient shapes in nature.", + "A honeycomb texture." + ], + "interlaced": [ + "A interlaced texture contains a repeating pattern that alternates between two or more images.", + "A interlaced texture looks like two images that are slightly offset from each other.", + "A interlaced texture looks like a series of intertwining lines.", + "An interlaced texture has a series of parallel lines running through it.", + "A interlaced texture looks like a series of zig-zag lines.", + "A interlaced texture is a texture where the pixels are not arranged in a perfectly rectangular grid.", + "A interlaced texture looks like a checkerboard of pixels, with each pixel being a different color.", + "A interlaced texture can look like a checkerboard pattern.", + "A interlaced texture has a repeating pattern, but the rows of the pattern are offset so that the pattern appears to be woven.", + "If you were to zoom in on an interlaced texture, it would look like a series of horizontal lines.", + "Interlacing is a method of storing data in which two fields are stored together as a single frame.", + "Running your hand over an interlaced texture will feel like your hand is being caught on small, regularly-spaced bumps.", + "A interlaced texture can be identified by its unique pattern of interwoven lines.", + "A interlaced texture can be identified by its diagonal lines.", + "Interlaced texture can be identified by its zig-zag pattern.", + "A interlaced texture is usually made up of alternating light and dark bands.", + "One way to identify a interlaced texture is to look at the way the pixels are arranged.", + "A interlaced texture is a texture that has been created by interlacing two or more images together.", + "a interlaced texture is a texture that has a pattern of lines running through it.", + "Interlaced textures are usually identified by their jagged appearance.", + "A interlaced texture looks like a grid.", + "A interlaced texture is a texture that has been divided into small squares or strands that are then woven together.", + "A interlaced texture usually has a lot of small details that are repeated.", + "Interlaced textures appear as a series of horizontal lines that are staggered.", + "A interlaced texture looks like a regular texture, but with scan lines going in different directions.", + "A texture that is interlaced looks like it has been divided into a number of horizontal strips, with each strip being offset from the one above or below it by a small amount.", + "A interlaced texture is a texture that has a braid-like or lattice-like pattern.", + "A \"interlaced\" texture is an image where the rows of pixels are \"zipped together\", so that every other row is offset by half a pixel.", + "A interlaced texture looks like a texture that has been broken up into a series of horizontal lines.", + "A interlaced texture generally looks like a weaving or a braided pattern.", + "This image is from a website called Patterns in Nature.", + "The image is of a closely woven fabric with a subtle diamond pattern.", + "A texture that is interlaced has a pattern of lines that cross over each other.", + "This image is of a wood grain with a light and dark stain.", + "The image shows a close-up of a blue and white fabric with a geometric pattern.", + "The image is of a beige and brown fabric with a interlacing geometric pattern.", + "A interlaced texture image from the internet shows a close-up of a woven basket.", + "I found an image on the internet of a wood grain texture that is interlaced.", + "A interlaced texture is an image where the lines are crossed or woven together.", + "The image is of a piece of wood that has been interlaced with thin strips of metal.", + "A texture with an interlaced pattern.", + "This image shows a texture with an interlaced pattern.", + "A close up of a interlaced texture, it is made up of many thin lines that cross each other.", + " This image shows an example of an interlaced textureAn interlaced texture is a type of texture that contains both horizontal and vertical lines.", + "Interlaced TextileThis textile is made using the interlacing technique, in which two sets of threads are woven together in a criss-cross pattern.", + "Interlaced textures are a type of texture pattern that features a series of horizontal lines that cross each other.", + "Interlaced texture.", + "Interlaced texture of a stone wall.", + "The texture of this fabric is created by interlacing two different sets of yarns - one set of yarns is coarse, and the other set is fine.", + "\"Close-up of a piece of interlaced fabric, showing the intricate woven pattern." + ], + "knitted": [ + "A knitted texture looks like a series of loops that have been interlocked together.", + "A knitted texture has interlocking loops that are created by the needlework.", + "A knitted texture is a fabric texture that looks like it has been created with interlocking loops of thread.", + "A knitted texture is a type of fabric that is made by interlocking loops of yarn.", + "A knitted texture looks like a series of small loops that are interconnected.", + "A knitted texture is a series of small loops that are interlocked together.", + "A knitted texture is a series of loops that are interlocked together.", + "A knitted texture looks like a series of loops that are interwoven with each other.", + ".", + "A knitted texture is generally a relatively tight, uniform, and smooth surface.", + "The best way to identify a knitted texture is to look for small, uniform loops that are all the same size.", + "The easiest way to identify a knitted texture is to look for the small loops that are formed when the yarn is knit.", + "A knitted texture is composed of yarn that has been looped together.", + "The most common way to identify a knitted texture is to look for a series of interconnected loops.", + "A knitted texture has a series of loops that are interlocked together.", + "A knitted texture has a series of loops that are interconnected.", + "A knitted texture is usually made up of small loops of yarn that are interlocked together.", + "The easiest way to identify a knitted texture is to look at the stitches.", + "A knitted texture is a type of fabric that is made by interlocking loops of yarn.", + "If you look closely at a piece of fabric with a knitted texture, you will see that the yarn is looped around itself.", + "A knitted texture is created when loops of yarn are interlocked together.", + "A knitted texture looks like a series of loops that are interlinked together.", + "A knitted texture is a fabric made up of a series of interlocking loops.", + "A knitted texture is usually a series of small loops that are interlocked with each other.", + "A knitted texture looks like a series of small loops that have been interlocked with one another.", + "A knitted texture looks like a series of loops.", + "A knitted texture is a textured fabric that is made by interlocking loops of yarn.", + "A knitted texture can look like a series of interconnected loops or like a series of interlocking stitches.", + "A knitted texture is usually made up of small loops that are interlocked with each other.", + "A knitted texture is made up of small loops of yarn that are interlocked together.", + "An image of a knitted texture from the internet shows a close-up of a knit fabric with white, black, and gray yarn.", + "The image is of a close up of a cream-colored knitted sweater.", + "The image is of a light blue knitted blanket with a white border.", + "The image is of a pale blue sweater with a knit texture.", + "The image is of a circular, grey knitted texture with small, black dots.", + "The image is of a blue and white knitted sweater.", + "https://www.", + "The image is of a close-up of a knitted cream-colored sweater.", + "The image is of a close-up of a knitted texture in a light blue color.", + "Close up of a green knitted sweater with small specks of color.", + "A close-up of a knitted texture, showing the individual stitches in various colors.", + "A fluffy, textured knit fabric in off-white.", + "This image is of a pink and white knitted texture.", + "This image is of a blue and white knitted texture.", + "This is a close-up of a knitted fabric.", + "A knitted texture made up of various colors of yarn.", + "This image shows a close-up of a knitted textile.", + "This is a picture of a knittedtexture.", + "A textured, knit fabric.", + "Close-up of a gray and white knitted sweater." + ], + "lacelike": [ + "A lacelike texture looks like a piece of lace.", + "A lacelike texture is a very delicate, intricate pattern.", + "A lacelike texture is a very delicate and dainty looking texture.", + "A lacelike texture is a texture that is light and airy, with a lot of small holes.", + "A lacelike texture looks like a piece of lace or a net.", + "A lacelike texture may have intricate patterns with small holes or gaps.", + "A lacelike texture looks like a piece of lace.", + "A lacelike texture has a fine, filmy, or fragile appearance.", + "A lacelike texture looks like a piece of lace fabric.", + "Lacelike textures are usually thin and delicate, with a intricate pattern of holes or gaps.", + "A lacelike texture is usually very light and delicate, with a lot of intricate details.", + "A lacelike texture is characterized by small, delicate patterns that resemble lace.", + "If you look closely at a lacelike texture, you will see a repeating pattern of small, interconnected holes.", + "A lacelike texture is usually very delicate and has a lot of small holes or spaces in it.", + "A lacelike texture is one that is very delicate and has a lot of small holes in it.", + "Lacelike textures are typically characterized by their intricate, delicate patterns.", + "A lacelike texture is usually thin, delicate, and intricately patterned.", + "A lacelike texture is a texture that is light and delicate, like lace.", + "Lacelike textures can often be identified by their delicate, intricate patterns.", + "Lacelike textures often have a lot of small holes or a net-like appearance.", + "Lace is a delicate fabric made of interwoven threads.", + "A lacelike texture typically has a lot of small holes or spaces in it.", + "Lace is a delicate fabric with a hole-punched or cut-out design.", + "A lacelike texture typically looks like a piece of lace.", + "A lacelike texture is one that is delicate and has a lot of small details.", + "Lacelike textures can vary depending on the fabric, but they generally have a delicate, intricate appearance.", + "A lacelike texture is one that is delicate and has a lot of small holes or spaces in it.", + "A lacelike texture looks like a series of intricate loops and holes.", + "A lacelike texture usually looks like a piece of lace.", + "Lace is a delicate fabric made of interwoven threads.", + "This image is of a white lacelike texture with delicate and intricate patterns.", + "An image of a lacelike texture might feature a light, delicate fabric with intricate patterns of holes and gaps.", + "The image is of a cream-colored fabric with a delicate, lacelike texture.", + "The image is of a close up of a piece of black lace.", + "This image from the internet shows a close-up of a fabric with a lacelike texture.", + "The image is of a white fabric with a delicate, lacelike texture.", + "A lacelike texture is an image that looks like a piece of lace.", + "This image shows a close up of a piece of lace fabric.", + "The image is of a close up of a piece of fabric with a lacelike texture.", + "A close-up image of a white lace tablecloth, showing the intricate detail of the fabric.", + "The intricate design of this lace is beautiful.", + "The intricate design of this lacelike texture is breathtaking.", + " A close up of a delicate, intricate lace fabric.", + "The intricate lacelike texture is created by interweaving thin strands of material.", + "A close-up of a intricately patterned lace fabric.", + "The intricate details of the lace are beautifully captured in this image.", + "A close-up of a lacelike texture, showing the intricate, delicate pattern.", + " \"A close-up of a piece of Chantilly lace\".", + "This is a close-up of a lacy fabric.", + "A close-up of a lacelike texture, showing the delicate and intricate patterns." + ], + "lined": [ + "A lined texture has parallel lines running along its surface.", + "A lined texture looks like a set of horizontal lines.", + "A lined texture generally looks like a series of parallel lines.", + "A lined texture looks like a series of evenly spaced lines running parallel to each other.", + "A lined texture has lines running through it.", + "A lined texture has lines running through it.", + "A lined texture is made up of a series of parallel lines.", + "A lined texture has a series of closely spaced lines running parallel to each other.", + "A lined texture typically looks like a series of parallel lines.", + "A lined texture has lines running parallel to each other.", + "A lined texture has lines running through it.", + "A lined texture is a texture with visible lines.", + "A lined texture typically has parallel lines running across it.", + "A lined texture is a texture that contains lines.", + "A lined texture is a regular pattern of lines.", + "A lined texture can be identified by looking for repeating patterns in a surface.", + "A lined texture is generally made up of a series of parallel lines.", + "If you want to identify a lined texture, you should look for a consistent pattern of lines.", + "A lined texture is a texture with visible lines.", + "A lined texture contains a repeating pattern of lines.", + "A lined texture usually looks like a set of parallel lines.", + "A lined texture is a texture that contains very fine, straight lines.", + "Lined textures are made up of a series of parallel lines.", + "Lined textures are usually straight, and have a consistent thickness throughout.", + "Lined textures are smooth and consistent.", + "Lined texture looks like it has lines going through it.", + "Lined textures have a row of evenly spaced lines running across the surface.", + "A lined texture means that the paper has a very fine line pattern running through it.", + "A lined texture is made up of a series of parallel lines.", + "A lined texture has a repeating pattern of lines.", + "This image shows a close-up of a wood grain.", + "Image shows a close-up of wood grain with closely spaced lines.", + "The image is of a white background with thin black lines running horizontally across the image.", + "The image from the internet is of a wood grain texture with lines.", + "This image from the internet shows a lined texture.", + "This image is of a gravel road.", + "This image is of a piece of construction paper that has been ripped in half.", + "The image is of a tiled textures with light and dark lines.", + "The image is of a close-up of a wood floor.", + "It's a close-up of a black and white lined texture.", + "Lined Texture.", + " The lines in this image are evenly spaced and parallel to each other.", + "Lined Texture.", + "This is a photo of a lined texture.", + "This image shows a close up of a coarse, lined texture.", + "This is a lined texture.", + "This texture features closely spaced parallel lines.", + "The Inside of an Empty Notebook.", + "Lined textureThis is a lined texture.", + "A close up of a lined texture, showing the raised lines running perpendicular to each other." + ], + "marbled": [ + "A marbled texture is a textured surface with a design that looks like it has been created with smeared or streaked paint.", + "A marbled texture looks like rocks that have been smoothed out over time by water.", + "A marbled texture looks like a piece of stone with swirls of different colors throughout it.", + "A marbled texture is a smooth, silky texture with a swirled pattern.", + "A marbled texture typically features swirls or patterns in several colors.", + "A marbled texture looks like swirls of color or light.", + "A marbled texture has swirls and whorls like a marble.", + "A marbled texture looks like a smooth surface with markings that look like they were created by swirling colors together.", + "A marbled texture has swirls and lines that look like they were made by a marble that was swirled through paint.", + "A marbled texture has a squiggly, swirly appearance.", + "Marbled textures are usually made up of two or more different colors or materials that are swirled together.", + "Marbled texture is usually identified by its swirls and waves.", + "A marbled texture can be identified by its swirls or veins of different colors.", + "A marbled texture is typically characterized by swirls or veins of color running through it.", + "A marbled texture is characterized by its smooth, slightly wavy surface.", + "A marbled texture is usually easily identified by its swirls or waves of different colors.", + "A marbled texture has irregular swirls and patterns in it.", + "A marbled texture is usually made up of two or more colors swirled together in a pattern.", + "A marbled texture is a type of rough, irregular surface that is made up of small, raised bumps.", + "If you see a rock with dark and light swirls, it is most likely a marbled texture.", + "A marbled texture looks like swirls or streaks of color on a surface.", + "A marbled texture looks like waves or swirls in the surface of the material.", + "A marbled texture looks like it has been created by swirls of different colors.", + "A marbled texture looks like it has swirls or waves in it.", + "Something with a marbled texture has a surface that is marked with lines that give it the appearance of being made of two different colors or materials.", + "Marbled fabric has a smooth, even surface with a pattern of swirls or veins.", + "A marbled texture is one that has a smooth surface with a slightly bumpy or uneven appearance, like that of marble.", + "Marbled texture looks like a surface that has been smooth with swirls or waves in it.", + "A marbled texture looks textured and irregular, like marble.", + "A marbled texture is usually used to describe a fabric that has a swirling, whirling, or geometric design.", + "The image is of a light blue and white marbled texture.", + "Image shows a close up of light blue and white marble.", + "This image from the internet shows a marbled texture.", + "The image is of a light blue and white marbled texture.", + "The image is of a close-up of a piece of marble.", + "The image is of a white and black marbled texture.", + "This image shows a close-up of what appears to be a black and white marble countertop.", + "This image is of a light blue and white marble texture.", + "The image is of a light blue and white marbled texture.", + "A marbled texture is an image that has a swirling, swirled, or overall patterned look.", + "This texture is created by combining different colors of clay and then rolling them out into a tile.", + "The smooth, soft surface of this fabric is created by combining different colors of yarn and then rolling them together.", + "The alluring swirls of this marble texture are created by the delicate interplay of light and dark tones.", + "This is an image of a marble texture.", + "Marbled texture of a stone.", + "A close-up of a marbled texture, showing the swirls of different colors.", + "Marbled texture, close up.", + "A textured surface with a pattern of swirls or veins in different colors.", + "This image is of a marbled texture.", + "Fractal Marbled Texture." + ], + "matted": [ + "A mat is a flat piece of material that is used to cover a surface or to serve as a padding or insulation.", + "A matted texture looks like it has been covered in a layer of mats or tangles.", + "A matted texture is one that looks like it has been ironed or pressed down.", + "A matted texture is one that is course, tangled, and difficult to smooth out.", + "A matted texture usually refers to hair that is tangled and knotted.", + "A matted texture usually looks like a surface with a lot of small, tangled fibers.", + "A matted texture looks like a surface that has been covered in a material that has been tangled or matted together.", + "A matted texture is a texture that appears to be tangled or tangled together.", + "A matted texture usually looks like a surface that has been well used and shows signs of wear.", + "A matted texture has a surface that is not smooth, but instead has a rough, textured surface.", + "A matted texture can be identified by its unkempt and unruly appearance.", + "A matted texture is a textured surface that has a raised or recessed design.", + "A matted texture usually feels rough and is often tangled.", + "The best way to identify a matted texture is to look for a surface that appears to be rough or uneven.", + "A matted texture usually feels rough and tangled.", + "A matted texture is identified by its rough, tangled, and often matted appearance.", + "Matted texture can typically be identified by its rough, tangled, and course appearance.", + "A matted texture can be identified by its appearance.", + "A matted texture is one that is tangled, knotted, or otherwise stuck together.", + "A matted texture is a texture that is stained or affected by dirt.", + "A matted texture is a surface that is covered in a dense mat of fibers or hair.", + "A matted texture is aTextured surface that has a rough,sandpaper-like feel.", + "Matted texture looks like a surface that is covered in densely packed fibers, like felt.", + "A matted texture is one that is rougher and not as smooth as it could be.", + "A matted texture looks like it has been flattened out and has lost its original shape.", + "A matted texture look like it has been through a lot and is very dirty.", + "A matted texture can look like a surface that is covered in tangles or knots.", + "A matted texture is defined as a rough, tangled, or knotted surface.", + "A matted texture looks like it has been through a lot of wear and tear.", + "A matted texture typically looks like a series of small, flat mats or pads.", + "The image is of a piece of construction paper that has been crumpled up into a ball.", + "The image is of a blue fabric with a matted texture.", + "One image of a matted texture from the internet is of a close-up of a piece of brown construction paper.", + "A matted texture is a textured surface that has a rough, uneven surface.", + "The image is of a soil sample that has been magnified.", + "The image is of a beige shag rug.", + "A matted texture usually refers to a surface that is not smooth, but instead has a textured or rugged surface.", + "This image shows a matted texture with a few stray pieces of lint.", + "This image from the internet shows a matted texture.", + "An image of a matted texture would likely show a surface that is rougher than surrounding surfaces, with a dull finish.", + "A blue matted texture with a subtle light blue hue.", + "Matted texture of orange fabric.", + "A matted texture is a textured surface that has been intentionally matted, or roughened, to create a desired effect.", + "This matted texture is created by the interlocking of fibers or other material.", + "matte texture.", + "The rough, matted texture of this fabric is perfect for absorbent applications.", + "The matted texture of this fabric gives it a unique look and feel.", + "A matted texture can occur when paint or other substances dry and form a thick, caked-on layer.", + "A matted texture typically contains tiny fibers that are entangled or stuck together.", + "Matted texture of carpet." + ], + "meshed": [ + "A meshed texture looks like a three-dimensional net.", + "A meshed texture is a texture that looks like a mesh or a net.", + "A meshed texture is a texture that has a lot of small holes in it, like a screen.", + "Meshed texture is a texture that consists of a series of connected or interwoven wire or metal elements.", + "A meshed texture looks like a metal mesh or a set of criss-crossing lines.", + "A meshed texture looks like a grid or a net.", + "A meshed texture is a texture that has been converted into a mesh.", + "A meshed texture is a bitmap image that has been repeated or \"tiled\" across a surface.", + "A meshed texture is a texture that is made up of a series of small, regularly spaced holes.", + "Image a piece of fabric with a small hole in it.", + "A meshed texture is a textured surface that has a network of small pores or holes.", + "Meshed textures are often characterised by their regular, grid-like pattern.", + "Meshed textures are usually made up of small squares or hexagons.", + "A meshed texture is a texture that is made up of a series of small squares or hexagons.", + "A meshed texture is a texture with a regular, repeating pattern.", + "A meshed texture is a texture that contains a lot of small holes or gaps.", + "A meshed texture will appear to have a net-like or fence-like pattern.", + "Meshed textures are often made up of small, repeating geometric shapes.", + "A meshed texture is a texture that has a regular, repeating pattern.", + "Meshed textures have a repeating pattern of shapes that looks like a net.", + "A meshed texture looks like a mesh or net.", + "A meshed texture looks like a mesh or net.", + "Meshed textures usually have a lot of small holes or gaps in them.", + "A mesh texture contains a series of interconnected polygons that can be used to create a three-dimensional object.", + "Meshed texture is a term used to describe a textured surface that has a lot of small holes or gaps.", + "Meshed textures are generally visually unappealing and can look like a low-resolution image or a wireframe.", + "A meshed texture looks like a grid or net.", + "A meshed texture looks like a series of small squares or diamonds that are connected to each other.", + "A meshed texture has a checkered or honeycomb pattern.", + "A meshed texture is a texture that has a lot of small holes in it.", + "The image is of a yellow and white meshed fabric.", + "It's a black and white image of a Benefits of Wearing a Mesh Compression Shirt | Livestrong.", + "A meshed texture is a type of texture that is made up of a series of small, interconnected squares.", + "The image is of a white fabric with a black geometric pattern.", + "The image is of a close up of a honeycomb.", + "An image of a meshed texture shows a fabric or material with a tight, woven pattern.", + "A meshed texture is a photography filter that creates a net-like or mesh-like effect over an image.", + "A meshed texture is a type of texture that features a repeating pattern of small, evenly spaced holes.", + "A meshed texture image from the internet contains a close-up photograph of a chicken wire fence.", + "A meshed texture is a type of texture that is made up of a series of small, interconnected pixels.", + "A meshed texture with a bumpy surface.", + "A photograph of a blue and white checkerboard pattern.", + "A texture with a meshed pattern.", + "The image shows a meshed texture which can be used as a background or as a foreground element.", + "A meshed texture is a texture that has been created by combining two or more different textures.", + "A meshed texture is a type of texture that contains small, evenly spaced holes.", + "This is an example of a meshed texture.", + "Meshed Texture.", + "Meshed texture.", + "A sample of a meshed texture." + ], + "paisley": [ + "Paisley textures are usually wavy, with a curved, teardrop-shaped pattern.", + "Paisley textures usually have a repeating pattern of curved, teardrop-shaped figures.", + "A paisley texture is a fabric with a design of curved shapes that look like teardrops or leaves.", + "A paisley texture is a wavy, swirly pattern that is often used in fabrics.", + "A paisley texture features a curved, teardrop-shaped motif with a pattern of interconnected, abstract shapes.", + "Paisley is a detailed oriented pattern that consists of teardrop shapes.", + "A paisley texture is a design that features intricate, curved shapes that resemble a teardrop or comma.", + "Paisley is a droplet-shaped vegetal motif, similar to half of a tulip or almond shell, used as a repetitive pattern in fabric and other textiles.", + "A paisley texture is a fabric with a print that consists of a pattern of curved, feather-shaped figures.", + "A paisley texture looks like a repeating pattern of a teardrop-shape with curved lines emanating from the bottom.", + "Look for a pattern of curved shapes that look like teardrops or comma-shapes.", + "A paisley texture can be identified by its teardrop-shaped pattern.", + "A paisley texture is often described as looking like a teardrop or comma shape.", + "A paisley texture is usually a print with a repetitive pattern of curved shapes.", + "Paisley is a textile pattern with a droplet-shaped motif, often seen in Indian and Persian fabrics.", + "A paisley texture is usually a pattern of curved, abstract shapes that resemble flowers or leaves.", + "Paisley is a patterns consisting of the curved, feather-like shapes known as teardrop-shapedYin and Yang symbols.", + "The paisley texture can be identified by its geometric and organic shapes.", + "A paisley texture is often characterized by its intricate and delicate patterns.", + "The paisley texture can be identified by its intricate, curved patterns.", + "The classic paisley pattern is characterized by its intricate, teardrop-shaped design.", + "Paisley textures are characterized by their intricate, swirling designs.", + "Paisley textures are usually intricate, detailed designs that resemble shapes such as leaves, flowers, or paisley patterns.", + "Paisley textures are usually ornate, with a lot of intricate details.", + "A paisley texture is often described as looking like a teardrop or comma shape.", + "A paisley texture looks like a series of small, teardrop-shaped patterns that are often arranged in a curved or spiral pattern.", + "A paisley texture typically includes a pattern of curved, tear-shaped figures.", + "A paisley texture is made up of small, curved shapes that are arranged in a curved, repeating pattern.", + "A paisley texture is made up of small, curved shapes that resemble a teardrop or a comma.", + "Paisley texture looks like a design that is made up of curved shapes that are connected to form a pattern.", + "This image is of a blue paisley texture.", + "This image is of a light pink paisley background.", + "The image looks like a close-up of a purple paisley fabric.", + "In this image, a paisley texture is shown as a colorful, intricate pattern.", + "A paisley texture is a repeating pattern of curved shapes.", + "The image is of a blue and white paisley pattern.", + "This image is of a green and white paisley textile.", + "The image is of a Emery and Cie \"Paisley\" wallpaper.", + "The image is of a paisley-patterned fabric.", + "The image is of a teal-colored paisley fabric.", + "A close up of a paisley texture, showing the detailed and intricate patterns.", + "Paisley Texture.", + "Paisley texture in shades of blue and white.", + "Paisley Texture.", + "Paisley Texture\nPaisley is a shell-shaped droplet motif of Persian origin.", + "A vibrant paisley texture with a rich color palette.", + "Paisley texture or pattern in different colors.", + " A paisley texture.", + "Paisley texture.", + "Paisley Pattern." + ], + "perforated": [ + "A perforated texture is a texture that has small, evenly spaced holes throughout.", + "A perforated texture is one that has small holes cut throughout its surface.", + "A perforated texture looks like a series of small holes or pores.", + "A perforated texture is a texture that has small holes or slits in it.", + "A perforated texture is one that has small holes or slits cut into it.", + "A perforated texture looks like a series of small holes or punctures in a surface.", + "A perforated texture looks like a series of small holes or openings in a material.", + "A perforated texture is a texture that has small holes or pores in it.", + "A perforated texture has small holes evenly distributed throughout.", + "A perforated texture is one that has small, evenly spaced holes.", + "A perforated texture is one that has small holes or slits in it.", + "A perforated texture is a type of textural finish that has small holes or perforations in the surface.", + "A perforated texture is typically produced by drilling tiny holes in a material.", + "A perforated texture is one that has small, regular holes punched through it.", + "A perforated texture is a type of texture that has small holes or pores in it.", + "You can identify a perforated texture by its small holes or pores.", + "A perforated texture is one that has small holes or pores.", + "A perforated texture can have many small or large holes cut out of it.", + "If you can see through the texture it is perforated.", + "It is possible to identify a perforated texture by looking for small holes in the surface of the material.", + "A perforated texture looks like small holes punched into a piece of paper or fabric.", + "A perforated texture looks like a series of small holes or pores in the surface of the material.", + "A perforated texture looks like it has small holes punched through it.", + "A perforated texture usually looks like a series of small holes or purposefully-placed tears in a piece of fabric.", + "Perforated textures have small holes in them.", + "A perforated texture looks like a series of small holes in a surface.", + "A perforated texture is one that has small holes or slots cut into it.", + "A perforated texture is one that has small holes or slits in it.", + "A perforated texture is one that has small holes or voids.", + "A perforated texture is similar to a honeycomb texture.", + "https://i.", + "This texture is made up of small holes or pores.", + "A perforated texture image from the internet might show a material with small holes in it, like a screen or a colander.", + "A perforated texture can be described as a series of evenly spaced holes or slits that are cut into a material.", + "The image shows a close-up view of a perforated metal sheet.", + "The image is of a close up of a metal sheet with small holes all over it.", + "A perforated texture can be described as an image that contains a lot of small holes or slits.", + "The image is of a close-up of a perforated metal sheet.", + "A perforated texture image from the internet shows a white background with small black dots evenly spaced throughout.", + "The image is of a close up of a metal grate.", + "This texture has many small holes or perforations.", + "A perforated texture with small holes throughout.", + "A perforated texture with small, circular holes.", + "This image is a perforated texture.", + "A perforated texture with small, evenly spaced holes.", + "A This perforated texture is created by randomly placing small holes in a surface.", + "A perforated texture with small round holes.", + "A perforated texture with small, evenly spaced holes.", + "A perforated texture with small, evenly spaced holes.", + "A perforated texture with small holes throughout." + ], + "pitted": [ + "A pitted texture looks like small pits or craters in the surface.", + "A pitted texture is a textured surface that has had small depressions or holes made in it.", + "A pitted texture looks like a small hole or indentation in the surface.", + "If a food has a pitted texture, it will have small indentations or holes on its surface.", + "A pitted texture is one that has small craters or indentations on its surface.", + "A pitted texture has small pits or divots on the surface.", + "Pitted texture looks like small holes or craters.", + "A pitted texture looks like a series of small craters or divots.", + "When a texture is pitted, it means that there are small indentations or holes on the surface.", + "A pitted texture is a concave surface with small holes or indentations.", + "Pitted textures are usually rough to the touch and have small indentations on the surface.", + "Pitted textures can be identified by their smooth, rounded surface.", + "A pitted texture can be identified by its small, indentations or holes on the surface.", + "Pitted texture describes a surface that is full of small holes or indentations.", + "A pitted texture can be identified by its small, raised bumps.", + "A pitted texture is often matte or dull in appearance, and can feel rough or gritty to the touch.", + "Pitted textures can be identified by their small, indentations.", + "Pitted textures are often caused by damage to the surface of the material, which can create indentations or holes.", + "A pitted texture can be identified by looking at the surface of an object.", + "A pitted texture is a texture that has small indentations or holes in it.", + "A pitted texture is a textural feature with small, shallow indentations.", + "Pitted textures are irregular and have indentations that look like small pits.", + "A pitted texture has small depressions or holes in it.", + "Pitted textures are usually irregular and bumpy, with small holes or depressions in them.", + "A pitted texture looks like a series of small depressions or indentations.", + "A pitted texture looks like small holes or indentations on a surface.", + "A pitted texture looks like small holes or indentations in the surface.", + "A pitted texture looks like tiny holes or divots in the surface.", + "A pitted texture is a texture that has tiny holes or indentations on the surface.", + "A pitted texture is a type of texture that has small holes or indentations on the surface.", + "One example of a pitted texture image from the internet is a close-up photograph of a pitted lemon.", + "The image is of a peach with pits in its skin.", + "The image is of a wall with many small holes.", + "One image of a pitted texture from the internet is a close-up photograph of a pitted orange.", + "A pitted texture is an image that appears to have small holes or indentations.", + "This image is of a piece of rusted metal with a pitted texture.", + "Assuming you mean a texture with divots and craters, like the Moon's surface:The image is a close-up of a grey, rock-like surface.", + "This image is of a sandstone wall that has been weathered over time.", + "The image is of a close-up of a orange with pits in its surface.", + "This is an image of a road that has been worn down by cars and weather.", + "Pitted texture, typically found on the surface of rocks.", + "The surface of this rock is covered in pits, created by years of weathering and erosion.", + "A close-up of a pitted texture, with small indentations dotting the surface.", + "A close-up of a pitted texture, which is common in many types of rocks.", + "The texture of this rock is full of pits and indentations.", + "Pitted Texture.", + "Pitted Texture.", + "Pitted Texture.", + "Pitted texture on a rock.", + "The pitted texture of this rock surface was caused by weathering." + ], + "pleated": [ + "A pleated texture has a series of ridges and valleys that give the appearance of folds in fabric.", + "A pleated texture looks like small, accordion-like folds.", + "A pleated texture has small, uniform folds or creases in it.", + "A pleated texture has a series of parallel folds or creases.", + "A pleated texture is usually composed of horizontal or vertical folds that give the fabric a rippled appearance.", + "A pleated texture has a series of folds or wrinkles in it, giving it a rippled or crinkled appearance.", + "A pleated texture looks like a series of accordion-likefolded lines.", + "A pleated texture is when fabric is folded into pleats, or small folds.", + "A pleated texture is a fabric that has been folded and sewn so that it resembles a accordion.", + "A pleated texture has a series of evenly spaced folds or creases.", + "One way to identify a pleated texture is to look for fabric that has been stitched or gathered into folds.", + "A pleated texture has folds or creases in it.", + "A pleated texture has a series of parallel, overlapping folds.", + "Pleated textures have a series of folds or creases in them.", + "A pleated texture is made up of small, evenly-spaced folds.", + "Pleated textures have folds or wrinkles in them.", + "A pleated texture has folds or creases in it.", + "A pleated texture is a type of fabric texture that features small, fold-like bumps or ridges.", + "A pleated texture generally consists of fabric that has been folded and sewn in place.", + "A pleated texture can be identified by its evenly spaced folds or creases.", + "A pleated texture can look like vertical or horizontal folds in a fabric.", + "A pleated texture has a crinkled or wavy appearance.", + "A pleated texture is a fabric with a series of parallel folds.", + "A pleated texture looks like small, evenly spaced folds in a fabric.", + "A pleated texture looks like a fabric that has been folded over and sewn together to create a ruffled look.", + "Pleated textures are often described as looking like folds or wrinkles in fabric.", + "Pleated textures are made up of small, uniform folds.", + "A pleated texture features fabric that has been folded and sewn in place to create extra volume and interest.", + "Pleated textures are usually found on fabrics and have a crinkled or wavy appearance.", + "A pleated texture is created when fabric is folded and sewn in a series of pleats.", + "delicate, transparent fabric with a rippled surface, made by pressing folds into it; pleats can be permanent or temporary, and can be used for decoration or to increase the fullness of a garment.", + "The image is of a cream-colored fabric with a pleated texture.", + "This image from the internet shows a close-up of a pleated fabric.", + "A pleated texture is an image that has a lot of small, repeating folds.", + "An image of a pleated texture would show fabric that has been fold into evenly spaced creases.", + "This pleated texture is created by folds in the fabric which creates a rippled effect.", + "A photo of a cream-colored pleated skirt.", + "The image shows a close-up of a light blue pleated fabric.", + "A pleated texture is a textured surface that has a series of parallel, vertical creases.", + "This image shows a close-up of a pleated fabric.", + "A pleated texture with a light and dark pattern.", + "This pleated texture is achieved by folding and pressing fabric into pleats.", + "Pleated Texture.", + " Pleated fabric has a smooth, flat surface on one side and a textured surface on the other.", + "This image shows a close-up of a pleated texture.", + "A close-up of a pleated fabric texture, showing the intricate folds of the material.", + "Pleated texture in fabric.", + " close-up of a piece of pleated fabric.", + "This is a picture of a pleated texture.", + "The pleated texture of this fabric creates a subtle, yet noticeable, visual interest." + ], + "polka-dotted": [ + "A polka-dotted texture looks like a pattern of small, round dots.", + "A polka dot texture is a series of small, round dots that are arranged in a regular pattern.", + "A polka-dotted texture is a texture that has small, round dots evenly spaced throughout.", + "A polka-dotted texture looks like a series of small, round dots arranged in a pattern on a surface.", + "A polka-dotted texture is one that contains myriad small dots.", + "A polka-dotted texture looks like a texture that has small, round dots all over it.", + "A polka-dotted texture looks like a series of evenly-spaced dots.", + "A polka-dotted texture looks like a series of small, round, raised dots.", + "The polka-dotted texture looks like small, round dots that are evenly spaced out.", + "A polka-dotted texture looks like a fabric with small, round dots evenly spaced across it.", + "Polka-dotted textures have small, round dots that are evenly spaced apart.", + "Polka dot textures are usually small, round dots that are evenly spaced out.", + "A polka-dotted texture can be identified by its small, round, and evenly-spaced dots.", + "The polka-dotted texture can be identified by its small, round dots.", + "A polka-dotted texture is a series of small circles that are close together.", + "A polka-dotted texture is a texture that has a lot of small, round dots on it.", + "A polka dotted texture is a texture that has small, round dots.", + "If you see small, round dots that are evenly spaced and have the same color, then you are looking at a polka-dotted texture.", + "The polka-dotted texture can be identified by its small, round dots that are evenly spaced.", + "Polka-dotted textures typically have a repeating pattern of small, round dots.", + "A polka-dotted texture looks like a texture with small dots all over it.", + "A polka-dotted texture is a texture that has a lot of small, round dots on it.", + "A polka-dotted texture is a series of small, round spots on a surface.", + "A polka-dotted texture is made up of small, round dots.", + "A polka-dotted texture looks like a series of round dots against a background.", + "Polka-dotted textures look like small, round dots that are evenly spaced out.", + "A polka-dotted texture looks like a series of small, round dots.", + "A polka dot texture is made up of small, round dots arranged in a pattern.", + "A polka-dotted texture looks like a series of small circles or dots.", + "The polka-dotted texture is a spots pattern that is widely used in design.", + "The image is of a close-up of a polka-dotted fabric.", + "In this image, the polka-dotted texture is created by small, round dots that are evenly spaced throughout the image.", + "The image is of a polka-dotted texture.", + "A polka-dotted texture may look like a white background with black dots of various sizes scattered about.", + "A polka-dotted texture is an image that is made up of small, round dots.", + "The image is of a close-up of a polka-dotted fabric.", + "This image from the internet shows a polka-dotted texture.", + "In this image, there is a polka-dotted texture that looks like it is made out of fabric.", + "The image is of a close-up of a fabric with white polka dots on a navy blue background.", + "The image is of a yellow background with white polka dots of various sizes.", + "A polka-dotted texture with a light purple background.", + "A polka-dotted texture.", + " a polka-dotted textureThis is a polka-dotted texture.", + "This polka-dotted texture is perfect for creating playful and fun designs.", + "Polka-dotted texture.", + "Polka dots are a classic pattern that can add a touch of fun and whimsy to any outfit.", + "A textured surface with polka dots.", + "Close up of a black and white polka dot fabric texture.", + "A close-up of a polka-dotted pattern.", + "A textured polka-dotted background." + ], + "porous": [ + "A porous texture looks like a material that has small holes or pores throughout it.", + "A porous texture is one that is full of small holes or pores.", + "A porous texture has small holes or pores that allow air and water to pass through.", + "A texture that is porous looks like it is full of tiny holes.", + "A porous texture can be described as having small, irregularly shaped holes scattered throughout.", + "A porous texture has many small holes that allow air and liquid to pass through.", + "Porous textures have small holes or pores that allow air or water to pass through.", + "A porous texture looks like a surface with lot of small holes or voids.", + "A porous texture has small holes or pores all over its surface.", + "A porous texture looks like something that has a lot of small holes in it, like a sponge.", + "A porous texture is one that has tiny holes or pores that allow liquids and gases to pass through.", + "A porous texture is usually dull, with no shine, and feels spongy or papery.", + "A porous texture is a texture that has tiny holes or pores all over it.", + "A porous texture can be identified by its many small holes or spaces.", + "A porous texture is characterized by tiny holes or pores that are visible to the naked eye.", + "A porous texture isidentifiable by its small holes or pores.", + "A porous texture will feel spongy and soft.", + "A porous texture contains small pores that allow liquid or gas to pass through.", + "A porous texture means that the material has small holes or pores that allow air or fluid to pass through.", + "A porous texture can be identified by its small, interconnecting pores.", + "A porous texture is one that has tiny little holes or pores in it.", + "A porous texture looks like a surface that has tiny holes in it.", + "A porous texture is everyday language for a material that is full of tiny holes.", + "A porous texture looks like a surface that has tiny holes or pores.", + "A porous texture means that there are tiny holes throughout the material.", + "Porous textures have small holes or spaces throughout.", + "A porous texture looks like a material that has small holes or pores on its surface.", + "A porous texture looks like a surface that has tiny holes or pores in it.", + "Porous textures have tiny holes or pores that allow air or water to pass through them.", + "A porous texture has many small holes or pores.", + "This image is of a concrete wall with a rough, porous surface.", + "A close-up image of a pavement shows small, circular holes evenly spaced throughout the concrete.", + "A close-up image of a tree bark shows its rough, porous texture.", + "A picture of a slice of Swiss cheese shows its many holes, or pores.", + "An image of a porous texture might show a piece of coral with tiny holes all over it, or a sponge with visible pores on its surface.", + "Pictured is a concrete wall with large, deep cracks running through it.", + "A photo of a gravel driveway covered in snow.", + "Image of a sponge\nA porous texture is one that has tiny holes all through it.", + "An image of a sponge shows its many tiny pores, which allow it to absorb water.", + "This image is of a piece of coral with a lot of small holes in it.", + "A close-up of a porous texture.", + "A close-up of a porous surface, showing the tiny holes that allow it to absorb liquids and gases.", + "Porous texture with small holes throughout.", + " This image shows a close-up of a porous rock texture.", + "Porous Texture.", + "This porous texture is often found in rocks and minerals.", + "This texture is full of holes, making it very porous.", + "Porous texture.", + "Porous rock or sediment is full of tiny holes that allow fluids to pass through.", + "This is a close-up of a porous rock surface." + ], + "potholed": [ + "A potholed texture looks like a surface with a lot of small holes in it.", + "Potholed textures look like a series of small holes or indentations in a surface.", + "A potholed texture looks like a series of small craters or depressions.", + "A potholed texture usually looks like a bunch of small holes that have been created by some type of wear and tear.", + "A potholed texture looks like a series of small craters or divots in the surface.", + "A potholed texture looks like a series of small craters or holes in a surface.", + "A potholed texture looks rough and bumpy, like a road that has been damaged by potholes.", + "A potholed texture looks like small holes or craters in the surface.", + "A pothole texture looks like a bumpy, hole-filled surface.", + "A potholed texture is bumpy and has small holes in it.", + "The surface of a potholed texture is usually uneven and may have a bumpy or craggy appearance.", + "A potholed texture can be identified by its bumpy surface and holes.", + "When you look at a potholed texture, you will see a lot of small holes in the surface.", + "A potholed texture is a texture with small holes in it.", + "A potholed texture can be identified by its smooth, round shape.", + "A potholed texture is atexture that has small pits or holes in it.", + "A potholed texture can be identified by its bumpy surface.", + "If a texture is potholed, it will have small depressions that are distributed evenly across its surface.", + "Potholed textures are usually bumpy and have a lot of small holes in them.", + "A potholed texture can be identified by its bumpy and uneven surface.", + "A potholed texture looks like a path that has been dug out by a pothole.", + "A potholed texture generally looks like a bunch of small holes or divots in a surface.", + "A potholed texture can look like a series of small craters or holes in the surface.", + "A potholed texture looks like a series of small craters.", + "A potholed texture looks like a bunch of small holes in a surface.", + "A potholed texture looks like a bumpy surface with small holes.", + "A potholed texture typically looks like a series of small craters or holes.", + "A potholed texture is a texture that has small holes in it.", + "Potholed textures tend to be bumpy and irregular, with large holes or indentations in them.", + "A potholed texture looks like a surface that has been damaged by small holes or craters.", + "I found an image on the internet of a potholed texture that I think looks pretty cool.", + "A pothole texture image from the internet would likely show a close-up view of an asphalt road with large, deep holes.", + "This image is of a potholed texture.", + "In this image, the top layer of asphalt has been removed to reveal the raw, potholed texture beneath.", + "In this image, a potholed texture is shown on a sidewalk.", + "This image from the internet shows a potholed texture.", + "This image is of a potholed texture.", + "Underneath a layer of asphalt is a street's foundation.", + "This image is of a potholed texture.", + "The image is of a dark asphalt road with many small to medium sized potholes.", + "Potholed texture of a street in a city.", + "The texture of a potholed surface.", + "Potholed texture.", + "The textured surface of this asphalt roadway has been damaged by potholes.", + "This image is of a potholed texture.", + "A potholed texture can be caused by many things, but typically it is caused by water damage.", + "Texture of a potholed surface.", + "A close up of a pothole in a concrete road.", + " Potholed Surface.", + " 'Potholed Texture." + ], + "scaly": [ + "The word \"scaly\" is often used to describe a dry, rough, and flaky texture.", + "A scaly texture can look like small, overlapping pieces of armor or large, thick scales.", + "A scaly texture looks like dry, flaky skin.", + "A scaly texture looks dry and flaky, like fish scales.", + "A scaly texture usually has a flaky appearance, as if it were covered in tiny scales.", + "Scaly textures are dry, flaky, and often rough to the touch.", + "A scaly texture looks like it has small, thin scales on the surface.", + "A scaly texture is one that is covered in small scales, like those of a fish.", + "A scaly texture is rough and bumpy, like the skin of a fish.", + "A scaly texture looks dry, rough, and flaky.", + "A scaly texture is often dry, rough, and peeling.", + "Generally, a scaly texture is dry, flaky, and rough to the touch.", + "You can identify a scaly texture by feeling it with your fingers.", + "The easiest way to identify a scaly texture is to look for flaky skin.", + "A scaly texture can be identified by its dry, rough, and flaky appearance.", + "A scaly texture can usually be identified by touch.", + "A scaly texture can be identified by looking for small, dry, and rough patches on the skin.", + "The best way to identify a scaly texture is to run your fingers lightly over the surface in question.", + "A scaly texture feels thin and dry, and may flake off.", + "A scaly texture can be identified by touch.", + "A scaly texture can look like small, dry flakes or large, oily patches.", + "A scaly texture often looks dry, cracked, and flaky.", + "A scaly texture looks rough and dry, and may be covered in scales.", + "The skin on a scaly texture would have a dry and flaky appearance.", + "Scaly textures have a dry, flaky appearance.", + "A scaly texture looks like small, flat pieces of skin that are dry and flaky.", + "A scaly texture looks flakey, like dry skin.", + "Scaly textures can vary depending on what you're looking at, but generally speaking, they look like small, thin scales that are lying flat against the surface.", + "A scaly texture can look like small, dry, flaky patches on the skin.", + "A scaly texture looks like dry, flaky skin.", + "Some possible scaly textures from the internet include:-A close-up photo of a snake's skin\n-A lizard's skin\n-A fish scales\n-A close-up of a butterfly's wing\n-A.", + "This image shows the scaly texture of a fish.", + "This image from the internet shows a scaly texture.", + "There is an image of a scaly texture on the internet that looks like a close up of a lizard's skin.", + "The image is of a brown and white snake with a scaly texture.", + "The image shows a close-up of a scaly texture with small, narrow scales.", + "The image is of a green and brown snake with a very scaly texture.", + "This image shows a close-up of a fish scales.", + "The image is of a fish with scales that are overlapping and have a shiny appearance.", + "One image of a scaly texture that can be found on the internet is a picture of a rattlesnake.", + "A close-up of scaly skin, showing the rough, dry texture.", + "The scaly texture of this reptile's skin is an adaptation that helps it to blend in with its natural surroundings.", + "The scales on this fish give it an interesting texture.", + "The surface of this rock is covered in a thin layer of scaly minerals.", + " A close up of a scaly texture.", + "Scaly texture close-up.", + "This scaly texture is typical of many reptiles and fish.", + "The surface of this rock is covered in a scaly texture.", + "Close up of alligator skin.", + "A close-up of a fish scale, highlighting its iridescent colors and textured surface." + ], + "smeared": [ + "A smeared texture is a texture that has been applied to an object in a way that makes it appear blurred or streaky.", + "A smeared texture looks like a wavy or blurry pattern.", + "A smeared texture may look like a streaky, blurred, or fuzzy mess.", + "A smeared texture usually looks like a blur.", + "A smeared texture occurs when paint is applied to a surface in a thin, even layer.", + "A smeared texture looks like a streak or line.", + "A smeared texture looks like a surface that has been rubbed or smeared with something.", + "A smeared texture looks like a blobby, amorphous shape.", + "When a texture is smeared, it means that the original texture has been blurred orbecome less defined.", + "A smeared texture looks like a circle that has been stretched out into an oval.", + "A smeared texture is a textural descriptive term used to describe a wine with a soft, velvety mouthfeel.", + "A smeared texture is usually caused by overworking the dough or using too much flour.", + "A smeared texture can be identified by its blurred or streaky appearance.", + "A smeared texture can be identified by its blurred appearance.", + "A smeared texture is usually dry and dull in appearance.", + "A smeared texture is usually created when an artist uses a brush to apply paint to a canvas in long, sweeping strokes.", + "A smeared texture has a wet or slimy feel to it.", + "A smeared texture is a type of textural finish that is created by applying a very thin layer of joint compound to the surface of drywall.", + "A smeared texture is often caused by an object being dragged across a surface.", + "A smeared texture usually appears as a blur or smear on the surface of an object.", + "The texture of a smeared material is usually shiny and smooth.", + "A smeared texture is typically a bit blurred and not as sharp as it could be.", + "A smeared texture looks like a blur.", + "A smeared texture looks like a mess.", + "A smeared texture looks like a blur.", + "A smeared texture looks like a texture that has been smeared or smudged.", + "A smeared texture looks like a paint stroke that has been purposely blurred.", + "A smeared texture is usually caused by attempting to apply a texture that is too high-resolution for the device it is being viewed on.", + "A smeared texture typically looks blurry or messed up.", + "A smeared texture looks like a blur or hazy shape.", + "The image is of a wall with a smeared texture.", + "The image is of a wall with paint that has been smeared.", + "The image shows a paint palette with a smeared texture.", + "One image of a smeared texture that can be found online is an image of a finger smudge on a glass window.", + "This image shows a smeared texture:It looks like the texture has been smeared or smudged, making it appear blurry and unclear.", + "The image shows a light blue background with a smeared white texture on it.", + "An image of a smeared texture can look like a blob of color or a streak of light.", + "The image is of a blue background with a white smeared texture on it.", + "This image from the internet shows a texture that has been smeared.", + "A smeared texture is an image that has been intentionally altered to look blurred or fuzzy.", + "This image shows a smeared texture.", + "The smeared texture indicates that the artist used a wet brush to apply the paint.", + "Texture smeared with paintbrush.", + "A smeared texture can be caused by a number of things, including a dirty lens, incorrect focus, or camera shake.", + "A once-smooth texture now marred by smears and smudges.", + "The smeared texture of the paint creates an interesting effect.", + "Smeared Texture.", + "A smeared texture can be caused by many things, but most commonly it is caused by an object being dragged across a surface.", + "A smeared texture with streaks of light and dark.", + "A texture of a smeared substance." + ], + "spiralled": [ + "A spiralled texture is something that is wound around in a tight coil like a spring.", + "A spiralled texture looks like a spiral or a coil.", + "A spiralled texture looks like a Swiss Roll.", + "A spiraled texture looks like a series of spirals or coils.", + "A spiraled texture is a type of texture that features spirals.", + "A spiralled texture has a series of concentric circles that get progressively smaller.", + "A spiralled texture looks like a series of curved lines that wind around a central point.", + "The spiralled texture looks like a spiral.", + "A spiralled texture looks like a spiral.", + "A spiralled texture is a texture that has a patterns of curves or swirls.", + "A spiral-shaped texture can be identified by its coil-like shape.", + "The best way to identify a spiralled texture is to look for a spiral pattern in the fabric.", + "A spiralled texture can be identified by its spiral-like pattern.", + "A spiralled texture is usuallyidentified by its distinctive spiralpattern.", + "A spiralled texture is a type of texture that is created by winding a thread or yarn around itself to form a spiral shape.", + "A spiralled texture is a type of texture that is characterized by a spiral or helical shape.", + "A spiralled texture can be identified by its spiral-like pattern.", + "A spiralled texture can be identified by its spiralling pattern.", + "A spiralled texture looks like a tornado or a spiral.", + "Spiralled textures can be identified by their spiral-like patterns.", + "A spiraled texture looks like a spiral.", + "Aspiraledtexturesoftentimeslookslikewrinklesorridges.", + "A spiralled texture has a twirling pattern, like a spiral staircase.", + "A spiralled texture looks like a spiral.", + "A Spiralled Texture May Look Like a Phone Cord That Has Been Twirled Around.", + " Claustrophobia.", + "A spiraled texture is a texture with a spiral or helix pattern.", + "A spiralled texture is one that has been created by winding a strand of material around another object to form a spiral pattern.", + "A spiralled texture looks like a series of curved lines or swirls.", + "like a corkscrew.", + "In this image, a close-up of a spiral seashell, we can see the smooth texture of the seashell's exterior.", + "This image is of a wood spiral staircase.", + "The image is of a close-up of a snail shell.", + "The image is of a dark, spiralled texture with a light center.", + "A photograph of a section of Syrian spiral alley, a limestone alley with a double spiral pattern that extends for over 500m.", + "This image shows a close-up of a spiral seashell.", + "The image is of a close-up of a snail shell.", + "The image is of a close up of a seashell.", + "The image shows a close-up of a spiral-shaped seashell.", + "The image shows a close-up of a snail's shell.", + "Spiraling TextureThis spiraling texture is a great way to add some visual interest to your project.", + "The spiralled texture of this fabric is created by the thread's different colors.", + "A spiralled texture.", + " Gold foil with a spiral pattern.", + "A spiral texture.", + "A spiral texture with a soft, fuzzy surface.", + "A close up of a spiralled texture.", + "The spiralled texture is created by the overlapping of two sets of lines.", + "A close up of a spiralled texture.", + " The intense spirals of this texture are mesmerizing." + ], + "sprinkled": [ + "A textured ceiling with a sprinkled design may have the look of tiny stars or snowflakes sprinkled across the surface.", + "A sprinkled texture looks like tiny pieces of something sprinkled on top of a surface.", + "A sprinkled texture is made up of small dots or marks.", + "A sprinkled texture looks like tiny droplets of water or other liquid have been splattered on a surface.", + "Sprinkled textures look like they have tiny specks of another material on them.", + "A sprinkled texture looks like tiny specks of dried fruit, herbs, or spices sprinkled on top of food.", + "A sprinkled texture looks like a surface that has been covered with small pieces or dots.", + "A sprinkled texture looks like tiny pieces of something scattered around.", + "A sprinkled texture looks like small specks of powder or dust that have been sprinkled onto a surface.", + "A sprinkled texture looks like tiny droplets of water or other liquid evenly distributed over a surface.", + "A sprinkled texture is a textural quality that is characterized by tiny dots or specks.", + "A sprinkled texture is a speckled or sprinkled-looking pattern.", + "A sprinkled texture can be identified by looking for small, uniform pieces that cover the surface.", + "A sprinkled texture is one that has small pieces of another material evenly distributed throughout it.", + "One way to identify a sprinkled texture is to look for small, uniform dots on a surface.", + "A sprinkled texture is one that has been spritzed or sprinkled with water or another liquid.", + "The best way to identify a sprinkled texture is to look for small, uniform spots on the surface of the food.", + "A sprinkled texture is one that has been applied to a surface in a way that resembles sprinkles or confetti.", + "A sprinkled texture is a type of rough texture that is created by tiny droplets or particles that are evenly distributed across a surface.", + "A sprinkled texture is a textural quality that refers to a light, dusting-like coverage.", + "Sprinkled textures are often bumpy or have a dotted appearance.", + "A sprinkled texture often looks like small dots or flecks on a surface.", + "A sprinkled texture looks like tiny pieces of a substance that have been evenly distributed over a surface.", + "A sprinkled texture is randomly distributed and often contains small clumps or groups.", + "A sprinkled effect can be created by using a salt shaker to sprinkle salt onto a textured surface.", + "A sprinkled texture looks like tiny specks or spots.", + "Sprinkled means to cover with a light shower of something, so a sprinkled texture would look like it has a light shower of something on it.", + "A sprinkled texture looks like tiny pieces of grit or sand.", + "A sprinkled texture looks like a light dusting of powder.", + "A sprinkled texture is a light, irregular coating of small particles.", + "The image is of a brownie with chocolate chips sprinkled on top.", + "An image from the internet of a sprinkled texture would show various sprinkle colors and sizes throughout the image.", + "This image is of a blue and white abstract texture.", + "A sprinkled texture is an image that has been covered in a light layer of something, typically powder or small pieces.", + "The image is of a close-up of brown sugar that has been sprinkled onto a white surface.", + "The image is of a close-up of a chocolate cupcake with chocolate frosting.", + "This image from the internet is of a close-up of a piece of cake with pink frosting and rainbow sprinkles.", + "An image from the internet of a sprinkled texture might show a piece of cake with sprinkles on top, or a plate of cookies with sprinkles.", + "The image is of a close-up of white sugar sprinkled on top of a dark surface.", + "The image is of a close-up of a cupcake with a light pink frosting.", + "This image shows a textured surface with small droplets of water on it.", + "This is a close up of a texture that contains sprinkles.", + "A textured surface with sprinkles.", + "A top view of a textured surface with small raised bumps.", + "Sprinkled Texture.", + " a texture of white powder sprinkled on a surfaceA texture of white powder sprinkled on a surface.", + "This image shows a close-up of a sprinkled texture.", + "A light, airy texture with just a hint of sweetness.", + " sprinkles on top of a cupcake.", + " a white background with small black specksA textured background with small black specks." + ], + "stained": [ + "A stained texture looks like an object that has been stained with a liquid.", + "A stained texture looks like a piece of fabric that has been dipped in a vat of dye.", + "A stained texture looks like a piece of fabric that has had a dark liquid spill on it.", + "A stained texture may have a mottled appearance with irregular patches of color that are darker than the surrounding area.", + "A stained texture looks like it is covered in spots or streaks of color.", + "A stained texture looks like a piece of fabric that has been dyed or soaked in a colored liquid.", + "A stained texture has a porous surface that absorbs color from dyes or paints, resulting in a permanent or semipermanent change in appearance.", + "A stained texture looks like something that has been discolored or marked by something else.", + "A stained texture looks like a piece of fabric or paper that has been soaked in water or another liquid and then dried.", + "A stained texture looks like a piece of cloth that has been dipped in dye.", + "A stained texture is one that has had a substance applied to it to change its color.", + "If a texture is stained, it will have darker areas where colors have been deposited.", + "A stained texture is generally duller in color than the surrounding area, and the lines of the texture are less defined.", + "A stained texture is usually darker than the surrounding area and has a different color.", + "A stained texture is usually darker in color than the surrounding area, and it may have a different surface quality, such as being rougher or smoother.", + "A stained texture is one that has been dyed or had color added to it.", + "A stained texture can be identified by its smooth, even surface.", + "A stained texture is a texture that has been altered by a pigment or other substance.", + "A stained texture can be identified by its inability to reflect light evenly.", + "A stained texture will have a color or colors that are not evenly distributed throughout the entire texture.", + "Stained glass is a type of glass that has been coloured by adding metallic salts during its manufacture.", + "Stained textures are usually darker in color and have a rough surface.", + "A stained texture usually looks like a piece of fabric that has been dipped in a vat of dye or paint.", + "A stained texture looks like a piece of fabric or paper that has been splattered with a liquid.", + "A stained texture looks dirty, as if it has been stained with something.", + "A stained texture has a color or pattern that is not a natural part of the surface.", + "A textured or stained glass window typically has a mottled, clouded or opalescent appearance.", + "A stained texture covers an area with a discoloration that is usually darker than the surrounding area.", + "A stained texture looks like a piece of wood that has been stained with a dark color.", + "A stained texture looks like a object that has had a liquid spilled on it and it has dried there.", + "The image is of a rust-colored stain on a white background.", + "The image is of a piece of fabric with a dark stain on it.", + "The image from the internet is of a splatter of light blue paint on a white wall.", + "This image from the internet shows a textured surface with dark stains.", + "The image is of a dark blue fabric with a light blue and white floral pattern.", + "The image is of a pale blue fabric with white stains.", + "The image is of a light blue fabric with a white floral pattern.", + "The image is of a brown leather sofa with a distressed, cracked surface.", + "Image shows a beige background with a dark brown stain in the center.", + "This image shows a stained texture with a light brown color.", + "This is a photo of a stained texture.", + "The stained glass window in the church is beautiful.", + "This is a close-up image of a textured surface that has been stained with a dark-colored liquid.", + "The stained texture of the fabric is caused by the interaction of the dyes and the fabric.", + "Stained Texture.", + "This is a close-up of a textured surface that has been stained with a dark substance.", + "This is a picture of a red and brown stained texture.", + "This is an example of a heavily stained texture.", + "The tree's bark is stained with years of exposure to the elements.", + "The stained texture of the fabric is caused by spilled food or drink." + ], + "stratified": [ + "A stratified texture is made up of layers of different materials that have been deposited one on top of the other.", + "A stratified texture has alternating layers of different materials.", + "A stratified texture is a type of sedimentary rock texture in which the grains are arranged in parallel layers.", + "A stratified texture looks like a bunch of thin sheets or layers stacked on top of each other.", + "A stratified texture occurs when sediment is deposited in layers, with each layer consisting of a different type of sediment.", + "A stratified texture describes a rock that is layered, or has bands of different colors or compositions.", + "A stratified texture looks like a series of thin layers that have been laid down one on top of the other.", + "A stratified texture is made up of layers of different materials, usually of different colors.", + "A stratified texture is one in which there are obvious layers, or strata.", + "Tabular, equidimensional grains in a fine-grained matrix.", + "In a stratified texture, each layer of sediment is distinctly different from the ones above and below it.", + "A stratified texture is a sedimentary texture in which the grains are strongly consolidatied into layers.", + "The best way to identify a stratified texture is to look for layers of sediment that have been deposited in a horizontal fashion.", + "A stratified texture is an igneous texture in which layers of different-sized crystals are stacked.", + "A stratified texture is a type of sedimentary rock texture in which layers of sediment are stacked on top of each other.", + "A stratified texture can be identified by looking for the layering of different materials.", + "A stratified texture is a sedimentary rock texture in which there are visible layering or bedding.", + "A stratified texture is a type of sedimentary rock texture in which there are visible layers of different sizes and compositions.", + "A stratified texture generally has a layered or banded appearance.", + "A stratified texture is formed when sedimentary particles of different sizes are deposited in layers.", + "A stratified texture is characterized by distinct bands or layers of different minerals.", + "A stratified texture has visible layering, like that of sedimentary rocks.", + "A stratified texture is a textural description of a sedimentary rock that has been deposited in layers, or strata.", + "The word \"stratified\" can have different meanings in different contexts, but in general, it means \"layered.", + "A stratified texture is made up of layers of sediment that have been deposited one on top of the other.", + "A stratified texture looks like layers of sediment that have been deposited on top of each other.", + "A stratified texture is a sedimentary rock texture in which individual grains are layered on top of each other.", + "A stratified texture is a type of sedimentary rock texture in which layers of different sizes are stacked on top of each other.", + "A stratified texture looks like a series of horizontal layers.", + "A stratified texture looks like a series of layers.", + "A stratified texture is a type of sedimentary rock texture in which there are alternating layers of different types of rock.", + "A stratified texture is a type of sedimentary rock texture in which the individual grains or beds are stacked on top of each other in vertical layers.", + "In a stratified texture, there are clearly defined layers, with each layer having a different composition.", + "In a stratified texture, there are layers of different materials that have been deposited one on top of the other.", + "This image depicts a stratified texture found within sedimentary rock.", + "The image is of a wall with a stratified texture.", + "A stratified texture is an image that shows different layers of sedimentary rock.", + "This image shows a close-up of a type of rock called gneiss.", + "A stratified textured image from the internet would show different layers of material that have been deposited over time.", + "Layout of a sedimentary rock with different grain sizes.", + "A punished rock that has likely been witness to a great deal of movement and stress over time.", + "A stratified texture is a type of sedimentary rock texture in which layers of sediments are laid down on top of each other.", + "This is a picture of a stratified texture.", + "A section of a metamorphic rock with a banded texture.", + "Ignimbrite from the Cerro Gal\u00e1n caldera, Argentina.", + "A close-up view of a stratified texture, showing the layering of different materials.", + "stratified texture - A type of texture where there are layers of sediment that have been deposited over time.", + "Stratified texture in a sedimentary rock.", + "A.", + " Stratified metamorphic texture." + ], + "striped": [ + "A striped texture has thin, even stripes running horizontally or vertically.", + "A striped texture is a repeating pattern of two or more colors, usually parallel to each other.", + "A striped texture has evenly spaced lines going in one direction.", + "The stripes in a striped texture are evenly spaced and parallel to each other.", + "A striped texture is a series of uniform lines that are parallel to each other.", + "Striped textures are created by adding stripes of different colors or tones to a surface.", + "A striped texture has parallel lines running across it.", + "A striped texture is a series of parallel lines that intersect to create a repeating pattern.", + "A striped texture typically consists of evenly spaced, parallel lines that run vertically, horizontally, or in a diagonal direction.", + "A striped texture generally looks like a series of vertical (or horizontal) lines.", + "Striped textures can be identified by their regular, repeating pattern of lines.", + "A striped texture typically has lines or bands going in one direction.", + "If you see repeating lines going in different directions, then you are looking at a striped texture.", + "A striped texture is made up of parallel lines.", + "A striped texture has repeating lines that go horizontally or vertically.", + "A striped texture can be identified by the presence of repeated lines or bands running parallel to each other.", + "A striped texture is a texture with stripes.", + "A striped texture has horizontal or vertical lines that are evenly spaced.", + " Typically, a striped texture will have evenly spaced lines going in the same direction.", + "If you see regular lines going in one direction, then you are looking at a striped texture.", + "A striped texture usually looks like a series of horizontal or vertical lines that are evenly spaced.", + "A striped texture looks like a surface that has been covered with stripes.", + "A striped texture has parallel lines going in one direction.", + "A repeatable texture that alternates dark and light stripes.", + "A striped texture can look like a series of vertical or horizontal lines.", + "A striped texture looks like a series of repeating lines.", + "A striped texture is a series of vertical or horizontal lines that are of different colors.", + "A striped texture looks like a series of vertical or horizontal lines.", + "A striped texture is a series of evenly spaced lines that run parallel to each other.", + "A striped texture has repeating lines going in one direction.", + "This image is of a rough, stone surface with a striped texture.", + "The image is of a horizontal stripe pattern in shades of blue.", + "The image is of a blue and white striped fabric.", + "The image is of a blue and white gingham background.", + "One image of a striped texture from the internet shows a close-up of a tiger's fur.", + "http://www.", + "A striped texture is an image with lines or bands of color.", + "The image is of a orange and white striped cat.", + "This image is of a piece of orange and white striped fabric.", + "The image is of a close-up of a zebra's fur.", + "This is a photo of a striped texture.", + "This is a picture of a striped texture.", + "This is an image of a striped texture.", + "This image is a photograph of a wood grain texture.", + "This striped texture is created by layering two different colors of paint on top of each other.", + "striped texture.", + "An image of a blue and white striped texture.", + "Striped texture.", + "A close up of a striped texture, consisting of thin black and white lines.", + "This texture is composed of stripes that are different shades of brown." + ], + "studded": [ + "A studded texture hasRaised bumps that are uniform in size and shape.", + "A studded texture looks like a series of raised bumps or small pyramids.", + "A studded texture looks like a texture that has a lot of small bumps on it.", + "It looks like a texture with small bumps or raised dots.", + "A studded texture usually has small, raised dots orbumps all over the surface.", + ".", + "A studded texture looks like a series of small, raised bumps.", + "A studded texture looks like a series of raised dots or bumps.", + "A studded texture looks like a series of raised bumps.", + "A studded texture looks like a series of small, raised bumps.", + "A studded texture is instantaneously recognisable by its unique bumpy surface, which is created by the presence of numerous small raised dots.", + "When you look at something with a studded texture, you will see raised bumps or dots.", + "Studded texture can be identified by its raised bumps or studs.", + "A studded texture is one that has raised bumps or studs on the surface.", + "A studded texture is a type of texture that is created by adding small, raised embellishments to a surface.", + "Studded textures are composed of small, raised bumps.", + "A studded texture can be identified by its smooth, rounded bumps.", + "Studs are typically small, round, and raised from the surface.", + "A studded texture can be identified by its small, raised bumps.", + "The studded texture is composed of many small, raised bumps.", + "A studded texture has a rough, bumpy surface.", + "A studded texture is usually made up of small, raised dots.", + "Image result for studded texture.", + "A studded texture has small raised bumps that look like studs.", + "A studded texture typically has small, raised bumps all over it.", + "A studded texture looks like it has small, raised bumps all over it.", + "A studded texture has small, raised bumps.", + "A studded texture is one that has small, raised bumps all over it.", + "A studded texture looks like a series of small bumps or protrusions.", + "A studded texture looks like a raised, bumpy texture with small protrusions.", + "One image of a studded texture from the internet is of a black leather jacket with silver studs arranged in a geometric pattern.", + "An image of a studded texture shows a series of small, raised bumps arranged in a regular pattern.", + "This image from the internet shows a studded texture.", + "A studded texture may look like a series of metal dots or prongs poking out from a surface.", + "A studded texture image from the internet shows a rough, bumpy surface with small metal or plastic studs sticking out at regular intervals.", + "The image is of a silver bracelet with a studded texture.", + "A studded texture can look like a series of metal dots or beads arranged in a pattern on a surface.", + "The image is of a black leather jacket with silver studs arranged in a geometric pattern.", + "One image of a studded texture depicts a close-up of a black leather jacket with silver studs.", + "An image from the internet of a studded texture might look like the following:A close-up picture of a leather jacket with metal studs all over it.", + "Studded texture.", + "A texture with studs.", + "This is a studded texture.", + " \"Sidewalk in New York City.", + "This studded texture is perfect for adding a bit of edge to your look.", + "A red studded texture.", + "A close up of a studded texture, the metal shining in the light.", + "A close up of a studded texture, the metal shining in the light.", + "Spiked Texture.", + "The studded texture is created by rows of small, raised dots." + ], + "swirly": [ + "A: A swirly texture looks like it is spiraling around in a circle.", + "A swirly texture is a texture that has a lot of movement and is often very fluid looking.", + ".", + "A swirly texture can look like a spiral or a vortex.", + "A swirly texture looks like it is spiraling around in a circle.", + "A swirly texture has a lot of curves and swirls.", + "A swirly texture can look like a spiral, like a corkscrew, or like a twirly lollipop.", + "A swirly texture looks like it is spinning around and around.", + "A swirly texture usually looks like a spiral or twirl.", + "A swirly texture usually looks like a spiral or corkscrew shape.", + "A swirly texture can be defined as a texture with a lot of curves and swirls.", + "One way to identify a swirly texture is to look for patterns in the object that resemble spiral shapes.", + "A swirly texture is a texture that has a spiral or whirling pattern.", + "A swirly texture can be identified by its spiral-like pattern.", + "Some visual clues that may help identify a swirly texture include observing if the lines are curved or if they radiate out from a central point.", + "A swirly texture can be identified by its smooth, spiral-like patterns.", + "A swirly texture is a texture that is repetitive and has a lot of swirls.", + "A swirly texture is usually smooth and round.", + "A swirly texture can be identified by its spiraling or whirling patterns.", + "A swirly texture has a smooth, soft surface with a spiral pattern.", + "The texture of a swirly pattern is usually smooth and spiral-like in appearance.", + "A swirly texture is usually thin and spirally shaped.", + "A swirly texture looks like a series of lines or curves that are intertwined.", + "A swirly texture is a texture that has a lot of swirls or curves in it.", + "A swirly texture can look like a spiral, or it can look like waves.", + "A swirly texture has a lot of swirls in it.", + "The texture of a swirly object is usually smooth and curved.", + "A swirly texture looks like a series of swirls or spirals.", + "A swirly texture is full of swirls.", + "A swirly texture can vary depending on what it is made out of, but it generally looks like a series of loops or spirals.", + "The image is of a sky blue background with white and grey swirls.", + "The image is of a light blue and white swirled background.", + "In this image, we can see a close-up of a dark blue fabric with a swirly white pattern.", + "The image is of a blue and white spiral galaxy.", + "The image is of a dark blue background with light blue and white swirls.", + "The image is of a blue and white spiral on a black background.", + "This image from the internet is of a swirly texture.", + "The image from the internet is of a blue and white swirly texture.", + "The image is of a white background with a black spiral in the center.", + "It's a close-up image of a cotton candy with lots of loose strands sticking out in different directions.", + "blue and white swirl texture.", + "The intricate swirls of this texture are mesmerizing.", + "This is a photo of a whirlpool in a river.", + "A close up of a blue and white swirly texture.", + "A close up of a swirly texture with a lot of movement.", + "The swirls of this texture are mesmerizing.", + "Blue and white swirls on a textured background.", + "The spiral design of this texture is both eye-catching and calming.", + "A close up of a marble countertop with a swirl pattern.", + "This is an abstract image of a swirly texture." + ], + "veined": [ + "A veined texture looks like aTexture with raised lines or patterns running through it.", + "A veined texture looks like a surface that has been marked with lines, usually in a regular pattern.", + "A veined texture has raised lines that look like veins.", + "A veined texture has Prominent, visible lines or streaks running through it.", + " lines or streaks in a material that resemble veins in a leaf.", + "A veined texture looks like it has veins or streaks running through it.", + "A veined texture has small lines or streaks running through it.", + "A veined texture looks like something that has a lot of small lines running through it.", + "The stringy, thread-like veins in this marble give it a veined texture.", + "A veined texture has a network of lines or veins running through it.", + "If you look closely at a veined texture, you will see that it is made up of a series of small, parallel lines.", + "A veined texture is usually found in sedimentary rocks.", + "A veined texture is one that has visible lines or streaks running through it.", + "Veined textures are typically characterized by a network of fine lines or cracks that run through a material.", + "A veined texture is typically characterized by a network of lines or cracks that run through a material.", + "The best way to identify a veined texture is by looking for parallel lines running through the material.", + "A veined texture is characterized by a network of fine lines or cracks.", + "A veined texture has a network of veins or ridges running through it.", + "A veined texture can be identified by its similarities to veins in human bodies.", + "A veined texture has lines or streaks running through it.", + "A veined texture is a texture that has lines or streaks running through it.", + "A veined texture looks like it has veins or lines running through it.", + "A veined texture usually has lines or streaks running through it.", + "A veined texture looks like a material with lines or streaks running through it.", + "A veined texture looks like it has veins running through it.", + "Veined textures are smooth with visible lines or grooves running through them.", + "A veined texture is a type of texture that is characterized by the presence of visible veins or lines.", + "A veined texture is a type of texture that has small lines or streaks running through it.", + "A veined texture consists of dark lines or streaks against a lighter background.", + "A veined texture is a type of textured surface that has a pattern of lines or ridges running across it.", + "This image from the internet shows aClose up of a piece of dark wood with prominent veining running through it.", + "The image is of a white Carrara marble countertop.", + "An image from the internet of a veined texture might show a close-up of a leaf, with its network of veins visible.", + "In this image, a close-up of a green leaf is shown.", + "The image is of a piece of pinkish-white marble with light veining throughout.", + "This image from the internet is of a blue and white marble countertop.", + "The image depicts a close-up of a green leaf, showcasing the intricate network of veins that spread throughout the leaf.", + "An image of a veined texture might show a piece of marble or granite with prominent lines running through it.", + "The image is of a close-up of a piece of veined marble.", + "The image from the internet shows a blue and white marble countertop with veins running through it.", + "veined marble texture.", + "The veins in this texture are pronounced and distinctive.", + "A close-up of a leaf showing its intricate network of veins.", + "The veins in this piece of wood are intricate and beautiful.", + "The veins of this leaf are clearly visible.", + "The veined texture of this rock is created by the differential erosion of different types of minerals.", + "The veins in this leaf are clearly visible.", + "A close-up of a green leaf, highlighting its veined texture.", + " neutrophilic leukocytes (white blood cells) in a lung section.", + "This is a close-up of a piece of veined marble." + ], + "waffled": [ + "A waffle texture is a series of small indentations or raised bumps.", + "A waffled texture looks like a series of interconnected lines or ridges.", + "A waffled texture looks like it has a honeycomb or waffle-like pattern.", + "When a material has a waffled texture, it means that it has a raised, grid-like pattern on its surface.", + "A waffled texture has a raised, grid-like pattern.", + "A waffle texture contains raised squares that are evenly spaced out.", + "It looks like a series of raised lines or ridges that have been pressed into the fabric.", + "A waffled texture looks like a grid, with raised ridges running horizontally and vertically.", + "A waffled texture looks like a series of small square indentations.", + "A waffled texture looks like a series of ridges or lines that have been created by pressing the material into a waffle iron.", + "A waffled texture is a type of textured fabric that is made up of small, raised bumps or ridges.", + "A waffled texture is often described as looking like a waffle iron has been pressed into the surface.", + "A waffled texture has a grid-like pattern with raised squares.", + "A waffled texture is generally symmetrical with evenly spaced lines.", + "The best way to identify a waffled texture is to look for a repeating pattern of small, raised squares.", + "A waffled texture has a series of raised ridges that are evenly spaced apart.", + "The word \"waffled\" is often used to describe a texture that is bumpy and uneven.", + "A waffled texture can be identified by its grid-like appearance.", + "The waffled texture is characterized by its raised, honeycomb-like patterns.", + "When fabric has a waffled texture, it will have a series of raised ridges that creating a honeycomb-like pattern.", + "Waffled textures are textures that have a lot of small raised bumps.", + "A waffled texture is a type of textured surface that has a raised, grid-like pattern.", + "A waffled texture usually has a lot of small, evenly spaced indentations, like a waffle.", + "A waffled texture looks like a grid or honeycomb.", + "A waffled texture frequently appears in fabrics such as waffle-weave shirts and is created by a series of raised squares.", + "A waffled texture looks like it has been made in a waffle iron, with ridges and valleys.", + "The word \"waffled\" is often used to describe a textured surface that has a repeating pattern of indentations.", + "A waffled texture looks like a grid of small squares.", + "A waffled texture looks like a grid of squares.", + "A waffled texture looks like a series of small squares.", + "The image shows a close-up of a waffle with deep grooves and a crispy exterior.", + "The image is of a close-up of a waffle, with its deep squares and crispy texture.", + "This image shows a waffled texture with small, raised squares.", + "The image is of a close-up of a waffle with deep creases and a crisp texture.", + "The image is of a golden-brown waffle with deep pockets.", + "One possible image that meets this description is a close-up photograph of a waffle, with the distinct hexagonal cells of the waffle's texture visible.", + "An image of a waffled texture would show a series of evenly spaced, parallel ridges and indentations.", + "The image is of a close-up of a waffle with deep square indentations.", + "The image is of a close-up of a waffle iron with raised squares creating imprints on the waffle.", + "Pictured is a close-up of a waffle with deep squares and a crispy exterior.", + "waffle textures.", + "This is a sample of a waffle texture.", + "The smooth surface of this waffle is interrupted by dozens of tiny square pockets, each filled with syrup or butter.", + "A macro photograph of a waffled texture.", + " A close-up of a waffle iron making waffles.", + "The waffled texture of this fabric is created by the criss-crossing of the fabric's threads.", + "The waffled texture of this fabric is achieved by using a special loom.", + "This image is of a textured surface with a waffle-like pattern.", + "Waffled texture with a light and airy quality.", + "A close-up of a waffle texture, showing the interconnected grid pattern." + ], + "woven": [ + "A woven texture looks like a piece of fabric.", + "A woven texture looks like a grid or series of criss-crossed lines.", + "A woven texture looks like a fabric that is made up of woven threads.", + "A woven texture is a textured surface that has a pattern of interlacing threads.", + "A woven texture looks like a fabric with a tight weave.", + "A woven texture consists of two sets of intersecting threads or yarns, usually at right angles to each other.", + "A woven texture is a fabric that is made up of interlocking threads (warp and weft).", + "A woven texture often looks like a basket, with vertical and horizontal threads woven together.", + "A woven texture looks like a grid or a series of parallel lines.", + "A woven texture looks like a fabric that is made up of interlocking threads.", + "A woven texture is made up of individual fibers that are cross-linked together.", + "The easiest way to identify a woven texture is to look at the fabric closely.", + "The easiest way to identify a woven texture is by its tight, interlocking design.", + "If you are looking at a piece of fabric, you can tell if it is woven by looking at the back side.", + "If you look closely at a woven fabric, you will see that it is made up of horizontal and vertical threads that intersect.", + "If you look closely at a woven fabric, you will see that it is made up of horizontal and vertical threads that intersect to form a grid-like pattern.", + "A woven texture is a fabric that is made by interlacing two sets of yarns or threads at right angles to each other.", + "A woven texture is a surface that has been made by interlacing two sets of yarn or thread at right angles to each other.", + "A woven texture has a criss-cross pattern.", + "To identify a woven texture, look for two sets of yarns interlacing at right angles.", + "A woven texture has a criss-crossed pattern, like that of a basket.", + "A woven texture generally looks like a series of interlocking threads or fibers.", + "Woven texture can look like a lot of things.", + "A woven texture would look like a series of intersecting threads or yarns.", + "A woven texture is a type of fabric that is made by interlocking threads in a over-under pattern.", + "Woven texture is a type of texture that is created by interlacing two or more sets of threads or yarns at right angles to each other.", + "A woven texture typically looks like a fabric, with interlocking threads going over and under each other.", + "A woven texture is a type of fabric with a tight weave.", + "Woven texture looks like a piece of fabric with a thread running through it.", + "A woven texture has a repeating pattern of interlacing threads, reminiscent of a basket weave.", + "The image is of a close-up of a light-colored fabric with a woven texture.", + "In the image, there is a close-up of a woven fabric.", + "This is an image of a tightly woven basket.", + "This image shows a close-up of a woven fabric.", + "The image is of a beige woven basket with a black and white striped towel inside.", + "The image is of a beige, cream, and brown rug.", + "This image is of a woven texture.", + "This image from the internet shows a woven texture.", + "This image from the internet shows a woven texture made up of different coloured threads.", + "The image is of a close up of a woven basket.", + "Close up of a handwoven textile in natural colors.", + "Woven linen texture.", + "Woven Texture.", + "Close-up of a woven fabric showing the interlacing of the threads.", + "Woven fabric texture.", + "Woven texture made from natural fibers.", + "A close-up of a woven fabric, showing the different colors and materials that make up the pattern.", + "This texture is created by interlacing two sets of yarns at right angles to each other.", + "This is a close-up of a woven texture.", + "Close-up of a woven textile." + ], + "wrinkled": [ + "A wrinkled texture looks like a surface that has creases or folds in it.", + "A wrinkled texture is a surface that is not smooth, but instead has a lot of small bumps.", + "A wrinkled texture looks like a surface that has been folded or creased.", + "The word \"wrinkle\" can describe both a type of fabric and a type of skin.", + "A wrinkled texture looks like a surface that has been folded or creased.", + "A wrinkled texture looks like an object that has a lot of folds in it.", + "A wrinkled texture looks like a fabric that has been crumpled up.", + "Wrinkled textures typically have small, raised bumps that are close together.", + "A wrinkled texture can look like a lot of different things.", + "A wrinkled texture usually looks like a piece of fabric that has been bunched up and then smoothed out again.", + "A wrinkled texture can be identified by its bumps and indentations.", + "A wrinkled texture can be identified by its bumps and ridges.", + "A wrinkled texture is typically dry, thin, and papery.", + "Wrinkled textures can be identified by their crinkled or folded appearance.", + "A wrinkled texture can be identified by its small, raised bumps.", + "A wrinkled texture can often be identified by its physical appearance.", + "A wrinkled texture can be identified by its wrinkles.", + "A small, raised portion of the skin that is usually rough or bumpy to the touch.", + "A wrinkled texture can be identified by its ridges and valleys.", + "A wrinkled texture can often be identified by its appearance.", + "A wrinkled texture most often looks like a piece of fabric that has been crumpled up and then smoothed out again.", + "A wrinkled texture looks like a piece of fabric that has been wrinkled up.", + "A wrinkled texture usually looks like a series of small lines or creases.", + "A wrinkles texture looks like a series of lines or creases in the surface of something.", + "A wrinkled texture often looks like a piece of fabric that has been bunched up or crumpled.", + "A wrinkled texture looks like wrinkles in your skin.", + "A wrinkled texture often looks like a series of small folds or wrinkles in the surface of an object.", + "A wrinkled texture looks like a series of wrinkles or creases in the surface of an object.", + "A wrinkled texture can look like a fabric that has been crumpled up and then smoothed out again.", + "A wrinkled texture typically looks like a series of small, raised lines or creases.", + "The image is of a fabric with wrinkles.", + "One image that has a wrinkled texture is a picture of a prune.", + "The image is of a brown paper bag that has been crumpled up.", + "The image is of a piece of fabric with a wrinkled texture.", + "A wrinkled texture can be seen in an image of a piece of cloth that has been crumpled up.", + "A wrinkled texture is an uneven, rough, or bumpy surface.", + "Close-up image of a human hand with wrinkled skin on the palm.", + "The image is of a piece of fabric that has been wrinkled.", + "The image shows a close-up of a wrinkled fabric.", + "A wrinkled texture can be found in many images on the internet.", + "A wrinkled texture can be caused by many things, but most commonly it is caused by the drying out of the top layer of skin.", + "This is an image of a wrinkled texture.", + "A wrinkled texture is often seen in fabric that has been used or washed many times.", + "wrinkled texture.", + "A wrinkled texture can be caused by many things, including age, sun damage, and exposure to harsh chemicals.", + "Wrinkled fabric texture.", + "A close-up of a wrinkled, textured surface.", + "The surface of this material is covered in small wrinkles, giving it a rough texture.", + "A close-up of a wrinkled texture, showing the creases and folds in the fabric.", + "A close-up of a wrinkled fabric showing the texture in detail." + ], + "zigzagged": [ + "A zigzagged texture looks like a series of sharp, angular lines.", + "A zigzagged texture has a series of sharp points or angles that alternate in direction.", + "Zigzag textures look like a series of triangles, pointing up or down.", + "Zigzag textures are made up of a series of zigzag or zigzag-like shapes.", + "Zigzag texture looks like a series of sharp angles or zigzag lines.", + "A zigzagged texture looks like a series of lines that zig and zag.", + "A zigzagged texture is describe as looking like a line that bends back and forth like a jagged line.", + "A zigzagged texture looks like a pattern of diagonal lines that are directly across from each other.", + "A zigzagged texture looks like a series of diagonal lines.", + "A zigzagged texture looks like a series of sharp, angular lines.", + "A zigzagged texture has straight lines that intersect at sharp angles.", + "A zigzagged texture has a curved or wavy surface.", + "A zigzagged texture has a wavy, zigzag-like pattern.", + "You can identify zigzagged texture by looking for a pattern of sharp angles that form a zig-zag shape.", + "A zigzagged texture is usually created by a fabric that has a lot of elasticity, such as spandex.", + "A zigzagged texture is a series of sharp, angular lines that form a jagged pattern.", + "A zigzagged texture is a texture that has a lot of sharp, 90 degree angles.", + "A zigzag texture is a type of texture that is characterized by its zigzag pattern.", + "Zigzagged textures are usually made up of small, sharp points or angles.", + "A zigzag texture is a type of surface texture that is created by a series of lines that form a V-shape.", + "A zigzagged texture has a pattern of alternating sharp peaks and valleys.", + "A zigzagged texture looks like a pattern of zigzags or diagonal lines.", + "A zigzagged texture looks like a series of diagonal lines that are all connected.", + "A zigzagged texture has a raised, jagged edge.", + "A zigzagged texture looks like a series of diagonal lines.", + "The texture of something with a zigzag pattern is raised and bumpy.", + "A zigzagged texture has a jagged, uneven surface.", + "Zigzag textures are usually made up of small, sharp points arranged in a diagonal pattern.", + "A zigzagged texture looks like a series of zigzag lines.", + "A zigzagged texture can look like a series of zigzag lines or a series of angled lines.", + "The zig zag texture in this image looks like it would be rough to the touch.", + "https://i.", + "This image from the internet shows a zigzagged texture.", + "The image is of a blue and white abstract painting with zigzagging lines throughout.", + "The image shows a close-up of a zigzag pattern in black and white.", + "The image is of a blue and white zigzag pattern.", + "A zigzagged texture is an image that contains a lot of angles and sharp points.", + "This image shows a zigzagged texture in blue and white.", + "The image is of a road that has been zigzagged by the tire marks of a car.", + "The image is of a beige and white tile with a zigzag texture.", + "Image of a zigzagged texture.", + "The zigzag pattern is a type of texture found in many natural and man-made objects.", + "The zigzag pattern of this texture is created by the different depths of the ridges and valleys.", + "A close-up of a zigzag pattern, typically found on fabrics or wallpaper.", + "A zigzagged texture, typically found in fabric or construction materials.", + "This texture shows a series of zigzags, creating a sharp, angular look.", + "A zigzagged texture with a light and dark color scheme.", + "Zigzagged Texture.", + "A texture with a zigzag pattern.", + "The zigzag pattern of this texture is created by the alternating light and dark colors." + ] +} \ No newline at end of file diff --git a/gpt_file/eurosat_prompt.json b/gpt_file/eurosat_prompt.json new file mode 100644 index 0000000..2689ca7 --- /dev/null +++ b/gpt_file/eurosat_prompt.json @@ -0,0 +1,122 @@ +{ + "Annual Crop Land": [ + "A centered satellite photo of Annual Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Annual Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Annual Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Annual Crop Land would also include any buildings or roads that are near the field.", + "A centered satellite photo of Annual Crop Land would also show any roads or paths that lead to the crop land.", + "A centered satellite photo of Annual Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Annual Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Annual Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Annual Crop Land would look like one large, continuous field of green.", + "A centered satellite photo of Annual Crop Land may also show irrigation systems or other farming infrastructure." + ], + "Forest": [ + "A centered satellite photo of Forest Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Forest Land would look like a large green area with small patches of brown or bare earth in between.", + "A centered satellite photo of Forest Land would look like a dense, green area with few or no bare patches of earth.", + "A centered satellite photo of Forest Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Forest Land would look like a large green field with small patches of brown or bare earth in between. A centered satellite photo of Grassland would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Forest would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Forest Land would look like a large playing field with lots of trees.", + "A centered satellite photo of Forest Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Forest would look like a green or dark green field with patches of brown or bare earth in between.", + "A centered satellite photo of Forest Land would look like a large green area with small patches of brown or bare earth in between." + ], + "Herbaceous Vegetation Land": [ + "A centered satellite photo of Herbaceous Vegetation Land would look like a large green or brown field with small patches of green or brown in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a green field with small patches of brown of bare earth in between. A centered satellite photo of Tree Cover would look like a green field with small patches of brown or bare earth in between, and a few trees scattered throughout.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a field of green with a few brown spots in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a green field with a few trees or bushes mixed in.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a green field with very small patches of brown or bare earth in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a large green field with small patches of brown or bare earth in between. A centered satellite photo of Perennial Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Herbaceous Vegetation Land would look like a large, green field with small patches of brown or bare earth in between." + ], + "Highway or Road": [ + "A centered satellite photo of Highway or Road Land would look like a long, thin, dark strip with small patches of green or brown on either side.", + "A centered satellite photo of Highway or Road Land would look like a large paved road with small patches of green or brown on either side.", + "A centered satellite photo of Highway or Road would look like a thin, dark line winding through a lighter-colored background.", + "A centered satellite photo of Highway or Road Infrastructure would look like a large number of dark lines running across the landscape.", + "A centered satellite photo of Highway or Road Infrastructure would look like a thin line of asphalt with a small patch of gravel or dirt on each side.", + "A centered satellite photo of Highway or Road Land would look like a long, straight, grey line with small patches of green or brown on either side.", + "A centered satellite photo of Highway or Road Infrastructure would look like a spider web of grey or white lines with small patches of green or brown in between.", + "A centered satellite photo of Highway or Road Land would look like a large number of thin, dark lines criss-crossing each other.", + "A centered satellite photo of Highway or Road Land would look like a large brown or gray road with green fields on either side.", + "A centered satellite photo of Highway or Road Land would look like a spider web of thin, black lines." + ], + "Industrial Buildings": [ + "A centered satellite photo of Industrial Buildings would look like a cluster of buildings, usually gray or white, surrounded by a parking lot.", + "A centered satellite photo of Industrial Buildings would look like a group of large structures with small parking lots around them.", + "A centered satellite photo of Industrial Buildings would look like a series of low, rectangular buildings with roofs of different colors.", + "A centered satellite photo of Industrial Buildings would look like large, dark buildings amid a matrix of smaller, lighter buildings.", + "A centered satellite photo of Industrial Buildings would look like a city with large buildings and smokestacks.", + "A centered satellite photo of Industrial Buildings would look like a city with a few buildings that are taller than the others.", + "A centered satellite photo of Industrial Buildings would look like a densely populated area with many buildings and roads.", + "A centered satellite photo of Industrial Buildings would look like large connected buildings surrounded by asphalt parking lots.", + "A centered satellite photo of Industrial Buildings would look like a bunch of large angular buildings with small streets in between them.", + "A centered satellite photo of Industrial Buildings would look like a series of large Modern highrises in an urban area." + ], + "Pasture Land": [ + "A centered satellite photo of Pasture Land would look like large green fields with animals grazing on them.", + "A centered satellite photo of Pasture Land would look like a large green field with some areas of brown or bare earth in between.", + "A centered satellite photo of Pasture Land would look like a large green field broken up by areas of trees, bushes, or other foliage.", + "A centered satellite photo of Pasture Land would look like large green fields with small areas of brown or bare earth in between.", + "A centered satellite photo of Pasture Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Pasture Land would look like a large green or tan field with small patches of brown or bare earth in between.", + "A centered satellite photo of Pasture Land would look like a large green or brown field with small patches of different colors in between.", + "A centered satellite photo of Pasture Land would look like a large field of green with small brown or black spots (cows).", + "A centered satellite photo of Pasture Land would look like large green fields with some areas of brown or bare earth in between.", + "A centered satellite photo of Pasture Land would look like large green fields with small patches of brown or bare earth in between." + ], + "Permanent Crop Land": [ + "A centered satellite photo of Permanent Crop Land would look like a large field with different colors depending on what crop is being grown.", + "A centered satellite photo of Permanent Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Permanent Crop Land would look like a large green field with smaller, more uniform green patches in between.", + "A centered satellite photo of Permanent Crop Land would look like a green field with small patches of brown earth or water in between.", + "A centered satellite photo of Permanent Crop Land would look like a large green field with a few smaller green or brown fields in between.", + "A centered satellite photo of Permanent Crop Land would look like a large green field with small patches of brown or bare earth in between, and there would also be small patches of different colors representing different types of permanent crops.", + "A centered satellite photo of Permanent Crop Land would look like a large green field with small patches of brown or bare earth in between.", + "A centered satellite photo of Permanent Crop Land would look like a mosaic of different colors, depending on the type of crop being grown.", + "A centered satellite photo of Permanent Crop Land would look like a similar green field, however the patches of brown or bare earth would be much smaller, as there is less open land in between crops.", + "A centered satellite photo of Permanent Crop Land would look like a large green or brown field with small patches of bare earth in between." + ], + "Residential Buildings": [ + "A centered satellite photo of Residential Buildings would look like a city with tall buildings in the center and smaller buildings on the outskirts.", + "A centered satellite photo of Residential Buildings would look like a city with large buildings and concrete roads. A centered satellite photo of a Commercial Harbor would look like a harbor with many boats and a few warehouses.", + "A centered satellite photo of Residential Buildings would look like many small rectangular buildings that are close together with some green space in between them.", + "A centered satellite photo of Residential Buildings would look like a lot of small buildings close together with some green space in between them.", + "A centered satellite photo of Residential Buildings would look like a city with areas of green trees and parks throughout.", + "A centered satellite photo of Residential Buildings would look like a city with tall buildings in the center and lower buildings or houses on the outskirts.", + "A centered satellite photo of Residential Buildings would look like a bunch of small squares with a variety of colors.", + "A centered satellite photo of Residential Buildings would look like a large number of small, square or rectangular shaped buildings with large open spaces in between.", + "A centered satellite photo of Residential Buildings would look like a large number of small, square or rectangular buildings with small patches of green or bare earth in between.", + "A centered satellite photo of Residential Buildings would look like a small city with many houses and buildings." + ], + "River": [ + "A centered satellite photo of River Delta would look like a large mass of water with small islands or patches of land in between.", + "A centered satellite photo of River would look like many small streams or rivers flowing through a larger body of water.", + "A centered satellite photo of River would look like a long, thin blue line with small tributaries branching off of it.", + "A centered satellite photo of River would look like a thin blue line winding through a larger green area.", + "A centered satellite photo of River would look like a long, thin blue or green line winding its way through a landscape.", + "A centered satellite photo of River would look like a large blue or green body of water with smaller tributaries feeding into it.", + "A centered satellite photo of River would look like a large blue body of water with small patches of green or brown land on either side.", + "A centered satellite photo of River Delta would look like a series of branching streams or rivers flowing into a larger body of water.", + "A centered satellite photo of River would look like a long, thin body of water with trees or other landforms surrounding it.", + "A centered satellite photo of River Delta would look like a large body of water with many small waterways flowing into it." + ], + "Sea or Lake": [ + "A centered satellite photo of Sea or Lake would look like a large blue circle with small patches of green, white, or brown around the edge.", + "A centered satellite photo of Sea or Lake Ice would look like a large white or blue field with small patches of ocean water in between.", + "A centered satellite photo of Sea or Lake would look like a large dark blue body of water with small white or light-colored areas around the edge.", + "A centered satellite photo of Sea or Lake Ice would look like a large body of white with small patches of blue in between.", + "A centered satellite photo of Sea or Lake ice would look like a large white or light blue field with small patches of dark blue or black in between.", + "A centered satellite photo of Sea or Lake would look like a large blue or green body of water with small islands in it.", + "A centered satellite photo of Sea or Lake would look like a large dark blue body with small areas of whitecaps where the waves are crashing.", + "A centered satellite photo of Sea or Lake ice would look like large white fields with small patches of dark water in between.", + "A centered satellite photo of Sea or Lake ice would look like large white areas with smaller areas of dark water in between.", + "A centered satellite photo of Sea or Lake Ice would look like a large white or light blue area with bits of dark blue in the middle." + ] +} \ No newline at end of file diff --git a/gpt_file/fgvc_prompt.json b/gpt_file/fgvc_prompt.json new file mode 100644 index 0000000..a335988 --- /dev/null +++ b/gpt_file/fgvc_prompt.json @@ -0,0 +1,5202 @@ +{ + "707-320": [ + "The -320 model was the first variant and the original production version of the 707s. It has a stretched fuselage by 3.28 meters (10ft 9in), compared to the original -120 and -140 models, and", + "An aircraft 707-320 is a large, long-range jetliner. It has a swept-back wing and four engines. The 707-320 is similar in appearance to the 707-120, but it is longer and", + "Aircraft 707-320s are large, wide-bodied planes with four engines. They have a long, pointed nose and a tall tail. The wings are swept back and have winglets.", + "Aircraft 707-320s are usually silver and have a body that is slightly larger and more rounded than other models of the 707. They have two engines mounted on the rear of the fuselage and five or six large windows on", + "An aircraft 707-320 looks like a large, silver airplane with seven engines. It has two main wings, a horizontal stabilizer, and two vertical tail fins. There is a large, square window on the side of the fuselage", + "The aircraft 707-320 is a four-engine, long-range jet airliners produced by Boeing Commercial Airplanes. The first 707-320 was delivered to Pan American World Airways in February 1959. It is 180 feet long with", + "Aircraft 707-320 looks like a silver plane with blue stripes running down the sides.", + "An aircraft 707-320 looks like a large metal tube with wings attached to it. There are typically three rows of seats inside the main cabin, with a galley and lavatories located in the back. The aircraft has a maximum capacity", + "The exterior of a 707-320 can be easily identified by its distinctive nose shape and the location of its engines. The 707-320 has a longer and wider fuselage than earlier 707 models, as well as taller vertical stabil", + "The aircraft 707-320 is a large plane with a long body and large wings. It has a pointed nose and several engines mounted on the rear of the plane. The 707-320 is a very recognizable plane and is one of", + "There is no definitive answer to this question, as aircraft vary greatly in size, shape, and appearance. However, some tips that may help to identify a 707-320 aircraft include looking for a medium to large sized aircraft with a swept", + "It is a wide-body jet airliner that was developed by aircraft manufacturer McDonnell Douglas in the 1960s. The aircraft has a distinctive hump on the forward part of the fuselage, and the aircraft is also distinguished by its large size and quad", + "The 707-320 can be identified by its long body and swept-back wings. It is also distinguishable by its raised cockpit, which is necessary to give the pilot better visibility.", + "An aircraft 707-320 can be identified by its long fuselage and swept-back wings. It is also notable for its use of four engines, which are mounted on the rear of the aircraft.", + "The aircraft 707-320 can be identified by its lack of winglets and its large engines.", + "An aircraft 707-320 can be identified by its large size, four engines, and swept-back wings. Additionally, the aircraft 707-320 has a distinctive nose, which is longer and more pointed than that of other aircraft in", + "What is the difference between an aircraft 707-320 and an aircraft 707-344?The 707-320 has a shorter fuselage than the 707-344.", + "The 707-320 can be identified by its slanted nose and distinctive double-humped fuselage. It is also one of the earliest versions of the 707, which can help to identify it.", + "The aircraft 707-320 can be identified by its long nose and cockpit, swept-back wings, and large engines.", + "An aircraft 707-320 can be identified by its long, tapered body and swept-back wings. It typically has four engines, and its nose is generally longer and more pointed than that of other 707 models.", + "The Boeing 707-320 is a four-engined narrow-body commercial passenger jet airliner developed by Boeing in the early 1960s. The aircraft has a capacity of up to 172 passengers and a range of up to 5,650 miles", + "Aircraft 707-320s vary in appearance depending on the airline, but they typically have a long, sleek body with a pointed nose and swept-back wings. They are usually painted in the airline's colors.", + "Image result for 707-320", + "There is no definitive answer to this question because aircraft can look different depending on their airline livery. However, a Boeing 707-320 typically has four engines, two on each wing, and a long, narrow body. The cockpit is", + "The 707-320 is a medium-range, single-aisle jet airliner. It has a lengthened fuselage and more powerful engines than the 707-120. The 707-320 was developed concurrently with the shorter", + "The Boeing 707-320 is a stretched version of the 707-120. It was lengthened by 16 feet (4.88 meters), which increased passenger capacity from 129 to 189. The first 707-320 was delivered", + "The aircraft 707-320 looks like a large silver plane with four engines.", + "The Boeing 707-320 is a derivative of the 707-220. It has a stretched fuselage, reflecting the fact that it was designed to carry more passengers than the 707-220. The 707-320 also has", + "An early Boeing 707-320 (1964)\nThe Boeing 707 is a mid-sized, long-range commercial jet airliner and cargo aircraft. Early models (such as the 707-120 and 707-220) were", + "The 707-320 is a medium-range, wide-body jet airliner. It has a nose that is distinctively pointed, and its engines are mounted on pylons below the wings. The 707-320 also has a", + "An image of an aircraft 707-320 on the internet shows the plane in flight, with its long, graceful body and large wingspan. The plane is white with blue stripes running down its sides.", + "The image is of a large, silver airplane with white and blue stripes running down the length of the body. The airplane has four engines, two on each wing, and a long, tapered nose. The tail of the plane is high", + "This image from the internet shows an aircraft 707-320 taking off from an airport runway. The plane is at a low angle to the ground and there is a clear view of the tail and engine. The sky is clear and there are", + " Boeing 707-320 of TWA landing at London Heathrow Airport in 1971. The aircraft is painted in the carrier's early livery of white with a red tail fin and blue and gold cheatline.", + "The image is of a silver aircraft with a blue and white stripe running down the middle. The text \"707-320\" is written on the side of the aircraft.", + "This image is of a Qantas Airways Boeing 707-320 taking off from Mascot Airport in Sydney, Australia. The aircraft is shown at a low angle, with its nose pointing up into the air and its tail fin and", + "The image is of an aircraft 707-320 with a white body and blue and red stripes. The nose of the aircraft is pointing up and it has landing gear down.", + "CThe image is of a Boeing 707-320C aircraft on a runway. The aircraft is sleek and silver, with a large body and long wings. There is a green and white stripped landing gear underneath the body of the aircraft.", + "The image is of an aircraft 707-320 on the runway. The plane is a medium-sized, twin-engine jetliner that was first produced by Boeing in the early 1960s.", + "In the image, an aircraft 707-320 can be seen from a side view. The body of the aircraft is long and slender with swept-back wings. The tail of the aircraft is tall and thin, and the engines are mounted", + "Boeing 707-320 at London Heathrow Airport in 1970", + "Boeing 707-320 aircraft taking off from an airport.", + "An American Airlines 707-320 landing at London Heathrow in 1965.", + " Pan American World Airways plane on runway", + "Boeing 707-320 landing at JFK Airport in New York City", + "A Boeing 707-320 aircraft taking off from JFK airport in New York City.", + "This aircraft is a 707-320, a passenger jet manufactured by Boeing. The 707 was the first jetliner produced by Boeing, and was in production from 1958 to 1978. The 707-320 was introduced in 1962 and was", + "The aircraft 707-320 is a four-engine commercial passenger jet airliner developed by Boeing. The plane made its maiden flight on December 20, 1957 and was introduced into service by Pan American World Airways in October 1958. A total of 1", + "The 707-320 was a variant of the 707 aircraft manufactured by Boeing. It was introduced in 1959 and featured a longer fuselage and a higher fuel capacity.", + "The 707-320 was a variant of the 707-120 designed for long-range operation. Its range was increased to over 4,000 miles by the addition of wingtip fuel tanks and more powerful engines." + ], + "727-200": [ + "A 727-200 is a twin-engine, medium-range jetliner that was first introduced in 1963. It has a distinctive triple-tailed design and is one of the most recognizable aircraft in the world. The 727-", + "The 727-200 is a narrow-body aircraft with three engines and a capacity of up to 189 passengers. It has a lengthened fuselage compared to the 727-100, and a larger wing and tail. The 7", + "The 727-200 is a narrow-body trijet aircraft. It has a T-tail and two engines mounted on the side of the fuselage. The 727-200 has a length of 155 feet and a wingspan of", + "An aircraft 727-200 looks like a small, metal tube with wings and two engines.", + "An aircraft 727-200 is a jetliner that can seat up to 149 passengers. It has three engines, two on the side and one at the back.", + "The aircraft 727-200 is a twin-engine, narrow-body jet airliner. It has a long, pointed nose and a large, swept-back wing. There are three turbofan engines mounted on the rear of the fu", + "The 727-200 is a twin-engined medium-range narrow-body airliner with a capacity of maximum 189 passengers produced by Boeing Commercial Airplanes. It first flew in 1963 and was produced until 1984.", + "The 727-200 is a mid-size, narrow-body jetliner. It has three engines, one on each side of the fuselage and one at the base of the vertical stabilizer. The 727-200 has a", + "An aircraft 727-200 is a twin-engined narrow-body jet airliner. They are shorter and have a different wingtip design than the earlier 727-100s. The 200 series also introduced the T-tail.", + "An aircraft 727-200 looks like a three-engined jet airliner with a T-tail. It has a capacity of about 150-189 passengers and a range of about 2,400-2,700 miles.", + "The 727-200 is a short to medium range narrow-body jet airliner. It has three engines, one on each side of the rear of the fuselage, and a T-tail. The 727-200 typically seats between", + "An aircraft 727-200 can be identified by its large size and high wing configuration. It is also recognizable by its three engines, located under the tail.", + "The aircraft 727-200 can be identified by its large T-shaped tail, its three engines mounted below and behind the wings, and its large swept-back wings.", + "There is no one definitive answer to this question. However, one way to identify an aircraft 727-200 is by its tail number.", + "By looking at the plane's tail number.", + "The Boeing 727-200 is a twin-engined narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes. Introduced in 1963, the 727 was the first jetliner to successfully operate", + "The 727-200 is a medium-range airliner that was first introduced in 1963. It has a distinctive triple-engine configuration and a T-tail. More than 1,800 of these aircraft were built, making it one of the", + "By looking at the plane's model number, which is typically displayed on the side of the aircraft.", + "The 727-200 is a narrow-body aircraft produced by Boeing Commercial Airplanes. It is a stretched version of the 727-100 and can seating up to 189 passengers. It first flew in 1963 and was produced until 1984.", + "The 727-200 is a narrow-body airliner that was produced by Boeing from 1963 to 1984. This aircraft can be identified by its three engines and T-tail.", + "The 727-200 is a narrow-body airplane with three engines and a capacity of up to 189 passengers. It is one of the most popular aircraft in aviation history and was produced from 1963 until 1984.", + "Aircraft 727-200s vary in appearance depending on their operator, but most have a white body with blue stripes running along the length of the fuselage. Some 727-200s operated by United Airlines have a red cheatline", + "Aircraft 727-200 looks like a small plane with three engines, one on each side and one in the back. The body is long and slender with large windows. The tail is tall and skinny with a small fin.", + "An aircraft 727-200 look like a large metal bird with wings. It has a long body with a pointed nose. The tail is tall and flat. There are three engines, one on each side of the body and one at the", + "Image result for boeing 727-200", + "An aircraft 727-200 typically has three engines, two on each side toward the back of the plane with one in the middle near the base of the tail. There is one main set of landing gear underneath the middle of the plane with", + "Aircraft 727-200 looks like a small to midsize, twin-engine jetliner. It is often used for short- to medium-range flights, and can typically seat between 140 and 189 passengers.", + "The 727-200 is a three-engine jet aircraft that seats up to 189 passengers. It has a range of 2,400 to 3,700 miles and a max speed of 575 miles per hour.", + "An aircraft 727-200 looks like a large plane with three engines.", + "Here is a picture of a 727-200 aircraft:", + " landingThe image is of an aircraft 727-200 landing. The plane is coming in to land on a runway. There is a long line of orange cones leading up to the runway. The plane is landing gear is down and the fl", + "The image is of a United Airlines 727-200 on short final approach to Los Angeles International Airport in 1975. The aircraft is captured in a slight bank with its landing gear lowered and its flaps extended. The image is grainy,", + "The Boeing 727-200 is a mid-size narrow-body three-engine jet aircraft that was produced by Boeing Commercial Airplanes from 1963 to 1984", + "Image shows an aircraft 727-200 on a runway. The plane is long and slender with a pointed nose. There are three engines, one on each side of the tail and one under the body. The body is silver with blue and", + "FThe image is of an aircraft 727-200F on the runway. The plane is silver with blue and white stripes running down the side. There is a blue and white logo on the tail. The plane is surrounded by trees and", + "A Boeing 727-200 on take-off roll. The aircraft is 33 years old.", + "An image of a 727-200 aircraft can be found at the website below. The image shows the aircraft from a side view, and it appears to be landing. The fuselage is long and slender, with a trio of engines mounted", + "This image is of an aircraft 727-200 landing. The nose and landing gear are lowered, and the aircraft is coming in to land on a airstrip. The sky is clear and blue, and there are no other aircraft in the", + "Image shows a commercial jet aircraft, the 727-200. It has 3 engines, with one under each wing, and a T-tail. The aircraft is parked on a runway with its nose pointing up.", + "The image is of an aircraft 727-200 on a runway. The plane is silver with blue and white stripes running down the side. There is a large American flag on the tail. The words \"United States of America\" are written", + " The Boeing 727-200 is a twin-engine, medium-range airliner produced by Boeing Commercial Airplanes from 1963 to 1984. More than 1,800 were built and it remains in widespread use as a freight aircraft.", + " A Boeing 727-200 aircraft taking off from JFK airport in New York City.", + "The 727-200 is a twin-engine airplane that was produced by Boeing between 1963 and 1984.", + "The Boeing 727-200 is a twin-engined commercial jet airliner that was produced by Boeing Commercial Airplanes from 1963 to 1984.", + "The Boeing 727 is a trijet wide-body airliner. Produced by Boeing Commercial Airplanes, the 727 first flew in 1963 and was introduced in 1964.", + " \"Boeing 727-200 aircraft at night, takeoff\"", + "An American Airlines 727-200 takes off from Dallas-Fort Worth International Airport in 1984.", + "A 727-200 aircraft takes off from Los Angeles International Airport.", + "The 727-200 is a twin-engined narrow-body aircraft produced by Boeing from 1963 to 1984. 1,832 aircraft were built, making it the most popular narrow-body airliner of its time.", + " The workhorse of commercial aviation for over 40 years, the 727 was introduced by Boeing in 1963 and would go on to become one of the most popular airliners ever made. Over 1,800 were built, serving airlines all over the world." + ], + "737-200": [ + "The aircraft 737-200 is a narrow-body airplane that was first introduced in 1967. It typically has two engines, a maximum capacity of 149 passengers, and a range of 2,950 nautical miles.", + "An aircraft 737-200 looks like a large metal tube with wings and engines attached. The wings are typically straight and the engines are located on the back of the plane. There is a section for the pilots at the front of the plane and", + "A Boeing 737-200 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.The 737-200 is merger of", + "A Boeing 737-200 is a twin-engine short-to-medium-range narrow-body jet airliner. It has a capacity of maximum 149 passengers and a range of 3,015 kilometers.", + "The Boeing 737-200 is a twin-engined short-to-medium-range narrowbody aircraft with a capacity of maximum 149 passengers produced by US-based manufacturer Boeing Commercial Airplanes. Launched in February 1965, the 737-", + "A 737-200 is a narrow-body aircraft with two jet engines and a T-tail. It has a capacity of 149 passengers and a range of 2,200 nautical miles.", + "It is a twin-engine, short- to medium-range aircraft. The 737-200 has a stretched fuselage compared to the 737-100. It also has a larger wing and more powerful engines. The 200 series was also the", + "The aircraft 737-200 is a twin-engine, single-aisle jetliner. It has a capacity of 130 passengers and a range of 2,950 miles. The 737-200 is 37.1 meters long, has a wings", + "Airplanes in the 737-200 series are smaller versions of the 737-300, -400, and -500 series. They typically have two engines and 120 seats.", + "The 737-200 is a twin-engined short-to-medium-range narrow-body aircraft with a trailing edge flare-wing configuration. It is powered by twoCFM International CFM56-3C1 turbofan", + "The Boeing 737-200 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 138 passengers produced by the American manufacturer Boeing Commercial Airplanes.It is the -200 variant of", + "The type designation 737-200 is given to the -100/-200 series of the Boeing 737, which is a short- to medium-range narrow-body jet airliner. The 737-200 series first flew in 1968 and remained in production", + "The best way to identify an aircraft 737-200 is by its model number. This aircraft is also commonly referred to as the \"Classic\" 737. It is easily distinguishable from other 737 models by its larger size and external fuel tanks on", + "An aircraft 737-200 can be identified by its delta wing design and two engines mounted on the rear of the fuselage. Additionally, this aircraft typically has a prominent nose and a T-tail.", + "The Boeing 737-200 is a twin-engined short-to-medium-range narrow-body aircraft with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes. Commonly referred to as the Baby Boeing,", + "The aircraft 737-200 has two turbofan engines and a T-tail. It also has a distinctive nose, with the aircraft's name on the front.", + "The best way to identify an aircraft 737-200 is by its serial number. The serial number can be found on the fuselage near the tail.", + "The 737-200 is a narrow-body aircraft produced by Boeing Commercial Airplanes.The Air Transport Association (ATA) of America designates this model as the 200 series. The 737-200 is the original version of the 737", + "The Boeing 737-200 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.To identify an aircraft 737-200", + "The Boeing 737-200 is a twin-engined short-to medium-range airliner with a capacity of 138 passengers produced by Boeing Commercial Airplanes. It is a stretched version of the 737-100 and debuted in April 1967.", + "There really is no definitive answer to this question as different airlines often have different paint schemes for their aircraft. Generally speaking, a 737-200 will have a white body with the airline's livery on the tail and sides.", + "Aircraft 737-200s are single-aisle jets that seats between 100 and 140 passengers. They have a distinctive nose, which is longer and pointier than other models of 737s. The 200 series also has larger wings and more", + "A 737-200 looks like a small, rectangular plane with two rows of seating and two aisles. The cockpit is located at the front of the plane, and the engines are located on the sides near the back.", + "The aircraft 737-200 is a Boeing 737 twinjet. It has a livery of white with a blue stripe running down the length of the fuselage.", + "A 737-200 looks like a small, narrow commercial jet airliner. It typically has two engines mounted on the rear of the fuselage, and a T-tail. The 737-200 is the original version of the 737, and is", + "A 737-200 is a twin-engine, short- to medium-range narrow-body jetliner. It is the second generation of the 737, and was produced from 1967 to 1988.", + "Here is a picture of a Boeing 737-200:", + "Aircraft 737-200 generally has two engines, a T-tail, and a pair of wingtip fuel tanks. The nose section houses the radar and the main cabin has six-abreast seating.", + "A Boeing 737-200 is a twin-engined short-to-medium-range narrow-body jet airliner. It has a conventional tail and a single large overhead bin.", + "An aircraft 737-200 looks like a small, commercial airplane. It has two engines and a sleek, white body. The 737-200 is a popular plane for short-haul flights.", + "In an image of a 737-200 aircraft on the internet, the 737-200 is pictured from the ground looking up at the aircraft as it taxis down the runway. The image is in color with the sun shining on the aircraft. The", + "I couldn't find an image of an aircraft 737-200 on the internet.", + "Image shows an aircraft 737-200 in flight, with its landing gear retracted. The aircraft's belly is visible, along with its engines. The 737-200 is a narrow-body airliner that was first introduced in 1967.", + "This image is of a Boeing 737-200 aircraft. The 737-200 is a twin-engine, narrow-body jetliner that was first introduced in 1967. It is still in service with many airlines around the world.", + "The image is of an aircraft 737-200 on a runway. The plane is white with blue and red stripes running down the side. There is a American flag on the tail fin.", + "This image is of a 737-200 aircraft. The aircraft is parked on a tarmac with its engines shut off. The image is taken from above, looking down at the aircraft. The sun is shining and the sky is blue. The", + "In the image, the aircraft is seen taxiing on a runway with its landing gear down. The nose of the aircraft is pointing up and the engines are at the rear. The wings are level and the tail is horizontal. The aircraft is", + "In the image, the aircraft is sitting on a runway with its nose pointing up. The body of the aircraft is white with blue stripes running down the sides. The tail of the aircraft is blue with a white stripe running down the middle.", + "The aircraft is silver with a blue and white stripe running down the middle. The engines are at the back and there are two wings. The aircraft has two doors and the windows are round.", + "An image of an aircraft 737-200 from the internet would show a large, metal, winged object with a long body and large engines. The nose and tail would be clearly visible, and the windows would be either dots or streaks depending", + "Boeing 737-200 operated by Alaska Airlines on approach to Seattle-Tacoma International Airport, 1984", + "Boeing 737-200 aircraft of Delta Air Lines at Hartsfield-Jackson Atlanta International Airport", + " The first 737-200 takes off on its maiden flight in 1967.The first Boeing 737-200 takes off on its maiden flight in April 1967.", + " This image is a Boeing 737-200, which is a twin-engine, narrow-body jet airliner. It was first introduced in 1968 and was in production until 1984.", + "Boeing 737-200 aircraft operated by United Airlines on a domestic flight routes in the United States.", + "Aircraft 737-200 on runway", + "Aircraft 737-200 on runway", + " The Boeing 737-200 is a twin-engined short-to-medium-range narrowbody airliner developed and manufactured by Boeing Commercial Airplanes.The Boeing 737-200 is a twin-engined short-to-medium-range", + "A Boeing 737-200 aircraft on the tarmac.", + "An aircraft 737-200 on a runway." + ], + "737-300": [ + "Aircraft 737-300 is a 737 with a short-body.", + "A Boeing 737-300 is a twin-engined short-to-medium-range narrow-body aircraft with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.", + "The Boeing 737-300 is a twin-engined short-to-medium-range aircraft with a capacity of maximum 149 passengers produced by Boeing Commercial Airplanes. It is the second stretched variant of the 737, and followed the 737-", + "A 737-300 is a single-aisle plane with two aisles of seats. There are four seats across in each row. The plane typically has 129 seats, but can have up to 150.", + "The Boeing 737-300 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.The 737-300 is a", + "Aircraft 737-300 is a twin-engine, short- to medium-range airplane. It has a capacity of up to 129 passengers and a range of 3,380 miles. The 737-300 is part of the 737 Classic series", + "The Boeing 737-300 is a twin-engined short-to-medium-range narrow-body aircraft with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes. The 737-300 model is lengthened", + "The 737-300 is a twin-engined short-to-medium-range airplane with a capacity of up to 149 passengers. It is part of the 737 family developed by Boeing Commercial Airplanes. The 737-300 can fly up", + "The Boeing 737-300 is a short- to medium-range narrow-body aircraft with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.", + "The Boeing 737-300 is a twin-engined short-to-medium-range narrow-body aircraft with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.", + "The aircraft 737-300 can be identified by its unique serial number.", + "The aircraft 737-300 has a registration number of N401SA.", + "The aircraft 737-300 has a distinctive nose and a large wingtip. It also has a high-mounted tail with a large horizontal stabilizer.", + "The Boeing 737-300 is a narrow-body aircraft produced by Boeing Commercial Airplanes. Introduced in 1984, it was Boeing's second short-haul airliner after the 737-200.The 737-300 can be identified by its", + "The aircraft 737-300 can be identified by its unique registration number, which is located on the fuselage near the tail. The registration number is generally followed by the aircraft model number, which in this case would be \"-300.\"", + "The -300 is the third and longest-produced variant of the 737. It carries up to 189 passengers and first flew in 1984.", + "There is no definitive answer, but one starting point would be to look for common characteristics of Boeing 737-300 aircraft. These might include the shape and size of the fuselage, the layout of the wings and tail, and the location and", + "-The 737-300 has a distinctive nose compared to other 737 models\n-The 737-300 is 31.1 meters long, and has a wing span of 28.9 meters\n-The 737-300 can seat 138 passengers in", + "The 737-300 is a narrow-body aircraft produced by Boeing as part of their 737 family. It was introduced in 1984 as the third generation of the 737, after the 737-200 and 737-100. The -300 designation indicates", + "The 737-300 is a narrow-body aircraft produced by Boeing as part of their 737 series. It was introduced in 1984 as the third generation of the 737, after the -100 and -200. The 737-300 can seat up", + "The 737-300 is a twin-engined short-to-medium-range narrowbody aircraft with a capacity of maximum 149 passengers produced by Boeing Commercial Airplanes. Its dimensions are: length 39.47 m, wingspan 34.", + "A Boeing 737-300 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes. It is the second generation derivative of the 737", + "Aircraft 737-300 looks like a small, narrow plane with two wings and a tail. The cockpit is located at the front of the plane, and the passenger cabin is located behind the cockpit. There are typically two engines located under the", + "An aircraft 737-300 looks like a large, silver plane with two engines attached to the back. There are also two sets of wings, one on each side of the main body of the plane.", + "The Boeing 737-300 is a twin-engined short-to-medium-range narrow-body aircraft with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.Its exterior appearance is similar to", + "Image result for 737-300", + "This image shows a Boeing 737-300 aircraft.", + "Aircraft 737-300s are twin-engine, narrow-body jets that seat approximately 150 passengers. They typically have six seats across in economy class, and can be outfitted with premium economy, business, or first class seating as well", + "Image result for aircraft 737-300", + "A Boeing 737-300 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes. The 737-300 is a stretched version of", + "The image is of an aircraft 737-300 that is parked on a runway. The aircraft is white with blue and red stripes running down the sides. There is a ladder next to the aircraft.", + "Image shows a Boeing 737-300 aircraft in flight, with its landing gear retracted. The aircraft's engines are visible beneath its wings. The aircraft's tail is decorated with a green, white, and blue design.", + "The image shows a silver airplane with blue and white stripes flying through the sky. The 737-300 is a single-aisle airplane with a capacity of 149 passengers.", + "The image is of a white 737-300 aircraft with blue and red stripes running down the sides. The aircraft has two engines and two sets of wings. There is a small window near the front of the aircraft, and the rest of the", + "The image is of an aircraft 737-300 flying through the sky. The sky is blue and the aircraft is white with blue stripes. The aircraft has two engines and is Boyd by two wings. There are no passengers visible in the image.", + "The image is of an aircraft 737-300. It is a Boeing aircraft. It has a white body with blue stripes. The aircraft has two engines and two tail fins.", + "Image shows a Boeing 737-300 aircraft in flight, with blue sky and clouds in the background. The aircraft is silver with red and blue stripes running along the length of the fuselage. The aircraft has two engines mounted on the wings,", + "The image is of an aircraft 737-300 in mid-flight. The sun is shining and the sky is clear. The aircraft is silver with blue and white stripes. The nose is pointing up and the wings are level.", + "The image is of an aircraft 737-300 that is parked on a runway. The nose and cockpit of the plane are visible, as well as the two main engines. The plane is white with blue stripes running down the sides.", + "The image is of an aircraft 737-300 that is taking off. The plane is white with blue stripes and has a large engines. The plane is tilted up as it accelerates down the runway. There is a clear blue sky in the", + "American Airlines Boeing 737-300 landing at LAX", + "Boeing 737-300 aircraft at sunset", + "Boeing 737-300 aircraft on runway", + "This is an aircraft 737-300.", + " A Boeing 737-300 aircraft operated by Hainan AirlinesAn image of a Hainan Airlines Boeing 737-300 aircraft. The aircraft is parked on a tarmac with its nose pointing to the right. The Hainan Airlines", + " A 737-300 aircraft operated by SouthWest Airlines takes off from the Ronald Reagan Washington National Airport.", + " Boeing 737-300.}Boeing 737-300", + "Boeing 737-300, a popular aircraft for short-range flights.", + "An aerial view of an American Airlines 737-300 aircraft as it taxis on the runway.", + " Boeing 737-300 of XiamenAir taking off from runway" + ], + "737-400": [ + "Aircraft 737-400 look like large, metal tubes with wings and propellers. They usually have two engines, and they can seat anywhere from 145 to 188 passengers.", + "The 737-400 is a twin-engined short-to-medium-range narrow-body aircraft with a capacity of between 140 and 188 passengers. It has a wingspan of 93 ft 8 in (28.57 m), a", + "The Boeing 737-400 is a short- to medium-range, twin-engine jet airliner. It is the fourth generation of the 737, and the second generation of the 737 Classic series. The aircraft is easily recognizable by its swept-", + "Aircraft 737-400s are twin-engine, narrow-body jets that seat between 140 and 188 passengers. They have a maximum take-off weight of 155,000 pounds (70,306 kg) and a range of 2,", + "The aircraft 737-400 has a capacity of 150 to 189 passengers and a range of 3,060 nautical miles. The aircraft is 141 feet long with a wing span of 93 feet. The height of the aircraft is 41 feet.", + "A 737-400 is a twin-engined short-to-medium-range narrowbody airliner with a capacity of up to 188 passengers. It has a stretched fuselage compared to the 737-300, and introduced the winglets that", + "A 737-400 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 140 to 188 passengers. It has a cruising speed of 805 km/h and a range of 3,820", + "Aircraft 737-400s are twin-engine, short- to medium-range Boeing commercial jets. They are narrow-bodied and have a capacity of up to 188 passengers. Aircraft 737-400s have a range of 3,080", + "A 737-400 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 160 passengers. It has a swept wing and a T-tail. The engines are mounted on pylons under", + "The 737-400 is a twin-engined short-to-medium-range narrow-body jet airliner with a capacity of 162 passengers. It has a stretched fuselage compared to the 737-300. The 737-400 was launched", + "The 737-400 has a short nose and a rounded fuselage. It is a narrow-bodied aircraft with two engines mounted on the wings.", + "The 737-400 has a distinctive hump on the forward fuselage, just behind the cockpit.", + "One way to identify an aircraft 737-400 is by its engines. This aircraft usually has two CFM56-7B engines. Other ways to identify this aircraft are by its winglets and body length. The 737-400 is also", + "The aircraft 737-400 can be identified by its long body and winglets. Its cockpit is located on the top of the fuselage, and it has two engines mounted on the wing.", + "The aircraft 737-400 can be identified by its model number, 737-400. This model is part of the 737 series of aircraft, which is a line of short-to-medium-range, twin-engine jet airliners.", + "The 737-400 is a short- to medium-range twin-engine narrow-body jet airliner produced by Boeing Commercial Airplanes.The 737-400 can be distinguished from other 737 models by its slimmer fuselage and longer", + "You can identify an aircraft 737-400 by the livery or markings on the airplane.", + "The aircraft 737-400 can be identified by its long nose and large cockpit windows. It is also one of the few aircraft with a tail that is higher than the main body of the plane.", + "The 737-400 has a distinctive nose and a large cargo door compared to other 737s. It also has a T-tail.", + "There is no definitive answer to this question, as aircraft identification can be quite difficult. However, some tips that may be helpful include looking for the type of plane on flight-tracking websites, looking up the airline's fleet information, or contacting", + "Image result for 737-400 aircraft", + "The 737-400 is a twin-engined short-haul aircraft with a capacity of 162 passengers. It has a cruising speed of 828 km/h and a range of 3,705 km. The aircraft is 44.51 m", + "Image result for 737-400", + "A 737-400 looks like a regular 737, but it is longer and can hold more people.", + "An aircraft 737-400 looks like a small, white plane with blue stripes running down the sides. It has two engines on the back, and a small area for passenger seating in the front. The tail of the plane is horizontal, and", + "A 737-400 is a twin-engined short-to-medium-range narrowbody airliner with a capacity of 162 passengers. It has a distinctive humpbacked profile and a T-tail.", + "A 737-400 is a jetliner that can seat up to 188 passengers. It has a range of about 2,700 miles and a top speed of over 500 miles per hour.", + "Boeing 737-400s are twin-engine, short- to medium-range jet airliners. They have a capacity of 168 passengers and a range of 2,980 nautical miles. They are just over 36 meters long with", + "Boeing 737-400s are single-aisle jetliners with a capacity of 140 to 188 passengers. They have a wingspan of 112 feet (34 meters) and are 138 feet (42 meters) long. The 737-", + "Aircraft 737-400 look like a large airplane with two wings and a long body. They typically have around 150 seats and are used for short to medium-haul flights.", + "Image shows an aircraft 737-400 on a runway. The plane is mostly white with a green and blue stripe down the side. There is a company logo on the tail.", + "Aircraft 737-400s are twin-engined, short-to-medium-range, narrow-body jet airliners. They are the second-generation derivative of the 737-300 and have a capacity of 168 passengers in a", + "This image shows a Boeing 737-400 aircraft in flight. The aircraft is seen from below, with the sun shining off its belly. The 737-400 is a popular airliner, known for its comfort and reliability.", + "The image is of an aircraft 737-400 with the engines running. The plane is on the runway ready for take off.", + "An image of an aircraft 737-400 can be found here:https://www.alamy.com/stock-photo-an-air-china-aircraft-of-type-737-400-at", + "The image is of an aircraft 737-400 on the tarmac. The plane is white with blue and red stripes running down the sides. There is a large blue and red logo on the tail. The plane has two engines and is surrounded", + "The image is of a silver aircraft with blue and white stripes running down the sides. The word \"Seven-Three-Seven\" is written on the side of the aircraft in large blue letters. The nose of the aircraft is pointed down and", + "The image is of an aircraft 737-400 on a runway. The aircraft is white with blue and red stripes. The back of the aircraft has the words \"Southwest Airlines\" in large blue letters.", + "It is a photo of an aircraft 737-400 in flight. The body of the plane is white with blue and red stripes running down the length of it. The wings are also white with blue and red stripes. The tail of the plane", + "The image is of a silver aircraft with a white stripe running down the middle. The aircraft has two engines and a pointed nose. There are no passengers visible in the image.", + "The Boeing 737-400 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 162 passengers.", + "Boeing 737-400", + "Boeing 737-400 airplane in flight", + "Boeing 737-400 aircraft", + "Boeing 737-400 aircraft operated by Qantas", + "Aircraft 737-400 landing at an airport.", + "Boeing 737-400 aircraft belonging to Qantas Airways.", + "Boeing 737-400 aircraft operated by Qantas Airways", + "A Boeing 737-400 aircraft operated by Qantas Airlines, taxiing at Sydney Airport.", + "Boeing 737-400 commercial jetliner, operated by Qantas Airways" + ], + "737-500": [ + "The 737-500 is a twin-engined short-to-medium-range narrowbody airliner with a capacity of up to 140 passengers, flown by a two-pilot crew. It has a cruising speed of 828 kilometres per", + "The 737-500 is a short-to-medium range twin-engine jet airliner. It is typically used for short-haul domestic or transcontinental flights.", + "A 737-500 is a small-medium sized twin-engine jetliner. It has a nosecone and two engines mounted on the wings. The 737-500 is thirty-six meters long and can seat 149 passengers.", + "The aircraft 737-500 is a short-to-medium range airplane. It has a swept-wing design and is powered by two engines. The 737-500 typically seats between 110 and 132 passengers.", + "The aircraft 737-500 is a twin-engine, short-to-medium-range jetliner. It has a wing span of 112 feet and a length of 138 feet. The aircraft can seat up to 149 passengers and has a maximum", + "The Boeing 737-500 is a twin-engined short-to-medium-range narrowbody airliner with a capacity of maximum 145 passengers produced by the American manufacturer Boeing Commercial Airplanes.", + "The 737-500 is a 737 model that was launched in the early 1990s. It is a shorter version of the 737-300, and can seat up to 140 passengers. The 737-500 also has a smaller cargo area and range", + "The 737-500 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of up to 132 passengers. It has a cruising speed of 805 km/h and a range of 3,485", + "The 737-500 is a twin-engine, short-to-medium-range airliner. It has a swept wing and a T-tail. The engines are mounted on the wing. There are two rows of windows on each side of", + "The 737-500 is a twin-engine short-to-medium-range narrowbody airliner. It is the smallest member of the successful 737 family of jetliners and was introduced in 1994. The 737-500 is a stretched version of", + "The 737-500 is a narrow-body aircraft produced by Boeing Commercial Airplanes. It is the shortest and lightest member of the 737 family. The 737-500 can seat up to 132 passengers and has a range of 2,710", + "The 737-500 is a twin-engine short-to-medium-range narrowbody airliner. It is the third member of the 737 family, and was launched in 1996 as a replacement for the 737-200. The 737-500", + "The aircraft 737-500 can be identified by its model number, which is printed on the side of the plane.", + "By looking at the aircraft's registration number, you can tell that it is a 737-500. The first two digits (73) represent the aircraft model, while the last three digits (500) denote the specific variant.", + "The 737-500 is a narrow-body aircraft produced by Boeing Commercial Airplanes. It is the smallest member of the 737 family, and was introduced in 1984. The aircraft has a capacity of 132 passengers and a range of 2,930", + "You can identify an aircraft 737-500 by its unique serial number.", + "The 737-500 is a short-to-medium range narrow-body airliner. It is the third generation of the Boeing 737 and was first introduced in 1984. The 737-500 is the -500 series of the 737 Classic family and", + "The aircraft 737-500 can be identified by its unique design. It is a narrow-body aircraft with a swept-back wing and a T-tail. It has a fuel-efficient engines and a high-speed cruise.", + "The Boeing 737-500 is a short-to-medium-range twin-engine jet airliner. It is the fifth generation of the 737, and the third generation of the 737 Classic series. The 737-500 was launched in 1988 as", + "The identifier for an aircraft 737-500 is: 737-500.", + "Aircraft 737-500s are small, twin-engine jetliners. They have a cylindrical fuselage and two engines mounted on the underside of the wings. The 737-500 is the shortest and lightest member of the 737", + "Aircraft 737-500's generally have a white body with blue stripes running down the sides. The tail is usually blue with a white stripe running down the center.", + "A 737-500 is a twin-engined short-to-medium range narrowbody airliner with a capacity of up to 140 passengers produced by Boeing Commercial Airplanes.", + "Aircraft 737-500 might look like a typical commercial plane with two engines and a horizontal bar running along the length of the tail. The 737-500 is a shorter and narrower version of the 737-300. It has a capacity of", + "I cannot find an image of a 737-500specifically, but a 737-500 is very similar in appearance to the more common 737-700. Both have a distinctive swept-back wing design and a double-row of circular windows", + "There is no definitive answer to this question since aircraft can differ somewhat in appearance depending on the airline, but a 737-500 typically has a swept-back wing design and a relatively small size. It is typically a twin-engine aircraft with", + "The 737-500 is a twin-engine, short-to-medium-range airliner. It has a narrow fuselage and is powered by two wing-mounted engines. The 737-500 has a range of 3,040 miles and", + "The 737-500 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of maximum 149 passengers produced by the American manufacturer Boeing Commercial Airplanes.", + "An aircraft 737-500 looks like a small, commercial airplane. It has a long body with wings attached to the sides. The nose of the plane is pointed, and there are windows along the sides of the cabin.", + "An aircraft 737-500 looks like a small, white airplane with two wings and a long body. The front of the airplane has a pointy nose, and the back has a small tail. There are two engines attached to the wings.", + "The image is of an aircraft 737-500 with a white body and blue and red stripes. The aircraft is shown in flight with its landing gear down.", + "The image is of a white 737-500 aircraft with blue and red stripes running down the sides. The nose of the aircraft is pointing up slightly and there is a staircase leading up to the door. The background is blue sky.", + "Image shows a Boeing 737-500 aircraft on a runway. The plane is silver with blue and white stripes. There is a United Airlines logo on the side of the plane.", + "The image is of an aircraft 737-500 with the nosecone and engines in the foreground. The body of the aircraft is in the background. The sky is blue and there are some clouds.", + "I can't find an image that fitst the specific aircraft you are looking for.", + "The image is of a white 737-500 aircraft with blue and red stripes. The aircraft is on a runway with its nose pointing up.", + "The image is of a 737-500 sitting on a runway with its wheels down. The aircraft is silver with a white and blue stripe running along the length of the fuselage. The 737-500 is a shorter, stubbier version", + "The image is of an aircraft 737-500 on the runway. The plane is white with blue and red stripes.", + "Image is of a 737-500 aircraft in flight with sun shining off its wings. The plane is white with blue and red stripes running down its length. The tail is red with a blue stripe.", + "Image shows a blue and white 737-500 aircraft with \"Lion Air\" markings on the side, flying through clouds.", + "A 737-500 aircraft.", + "An Iran Air Boeing 737-500 departing Mehrabad Airport in Tehran, Iran.", + "Aircraft 737-500 on the tarmac.", + "A Boeing 737-500 commercial airliner.", + "Boeing 737-500 aircraft at takeoff", + " Boeing 737-500 aircraft departing from Los Angeles International Airport", + "Boeing 737-500 aircraft on the runway", + "Fokker 100This photo is of a Fokker 100 aircraft, a type of regional airliner.", + "An aircraft 737-500 on the runway", + "The Boeing 737-500 is a single-aisle, twin-engine jetliner that was first introduced in the early 1990s." + ], + "737-600": [ + "An aircraft 737-600 typically seats between 110-132 passengers and has a wingspan of 35.8 meters. The 737-600 is Boeing's newest and smallest 737NG variant.", + "The 737-600 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 108 to 132 passengers, produced by the American manufacturer Boeing Commercial Airplanes.", + "This is a twin-engine, short-to-medium-range narrowbody airliner. It has a capacity of 108 to 132 passengers and a range of 3,050 to 3,700 nautical miles (5,650 to 6,", + "Aircraft 737-600s are single-aisle planes that seat between 110 and 149 passengers. They typically have six seats across in economy class and have a range of 3,115 miles.", + "The 737-600 is a twin-engine, single-aisle jet airliner. It has a capacity of up to 132 passengers and a range of up to 3,200 nautical miles. The 737-600 is the shortest and light", + "Aircraft 737-600 is a short to medium range narrow-body airliner. Powered by two CFM56-7B engines, it has a range of 2,950 to 3,825 nautical miles. It can seat up to", + "The aircraft 737-600 has a swept-wing design with a cantilevered wing supported by two spars. The fuselage is circular in cross-section and has a pressurized cabin. The 737-600 has a conventional tail unit", + "The 737-600 is a stretched version of the -500, and seats 128 passengers in a two-class configuration. It is 19.8 ft (6.04 m) longer than the -500, and has an increased wingspan", + "A Boeing 737-600 is a short- to medium-range narrow-body airliner with a capacity of up to 132 passengers produced by Boeing Commercial Airplanes. Launched in 1998 as the third derivative of the 737, it has the longest", + "An aircraft 737-600 is a single-aisle plane that typically carries between 110 and 132 passengers. It has a range of approximately 3,200 miles and a cruising speed of around 530 miles per hour.", + "To identify an aircraft 737-600, look for the following features:-The aircraft will have two jet engines\n-The nose of the aircraft will be pointy\n-The aircraft will have wings that curve up at the tips", + "The 737-600 is a shortened version of the 737-700 and only has winglets.", + "The aircraft 737-600 can be identified by its medium-sized body and winglets on the wingtips. This aircraft is also equipped with engines that are located below the wings.", + "The 737-600 is a member of the 737NG (Next Generation) family of aircraft. It is the smallest member of the 737NG series, and shares a common type rating with all other 737NG aircraft.", + "The 737-600 is a shorter and narrower version of the popular 737-700. It can be identified by its shorter fuselage, lack of winglets, and smaller engines.", + "The 737-600 is a stretched version of the -500, and it first flew in 1998. Boeing introduced the -600 as a replacement for the 737-500.", + "The 737-600 is a shortened version of the 737-700. It has a shorter fuselage, and a reduced wing span and wing area. The aircraft also has a smaller tail plane and a reduced fuel capacity.", + "The aircraft 737-600 can be identified by its model number.", + "By looking at the aircraft's tail number, you can identify what specific model 737 it is. The \"-600\" designation on a 737 indicates that it is the600th variation of the 737 that Boeing has manufactured.", + "The 737-600 has a distinctive nose, longer than that of the 737-700 and 737-800. The 737-600 is the smallest model of the 737 Next Generation family and can seat up to 132 passengers. The 737-600", + "It has a rounded nose and a T-tail. The 737-600 has winglets.", + "A 737-600 is a single aisle, twin engine jetliner that seats between 110 and 132 passengers. It is the shortest and lightest member of the 737 family.", + "The 737-600 is a short- to medium-range passenger jet. Its dimensions are 111 feet long and have a wingspan of 93 feet. The 737-600 can hold up to 132 passengers and has a range of 2,010", + "A 737-600 has a nosecone, which houses the avionics and radar, and two jet engines attached to the side of the main body of the aircraft. There is a main body, which contains the passenger cabin and cargo hold,", + "The 737-600 is a narrow-body aircraft with a single aisle. It has a Fuselage length of 112 ft and a wingspan of 93 ft.", + "A Boeing 737-600 is a single-aisle plane that typically seats between 110 and 132 passengers. The aircraft is about 20 feet shorter than the 737-700, and can fly up to 2,980 miles. The plane is used", + "Here is an image of a Boeing 737-600:", + "A Boeing 737-600 is a short- to medium-range, narrow-body jet airliner. It is the second smallest 737 model after the 737-500. The 737-600 is used mainly by low-cost carriers. It is", + "Boeing 737-600s are 143 feet long and have a wingspan of 117 feet. They can seat up to 132 passengers.", + "Aircraft 737-600 look like a small, commercial airliner. They typically have two engines, a small body, and a narrow fuselage.", + "In the image, the aircraft is parked on a runway with its engines off. The main body of the aircraft is white with a blue stripe running along the length of the fuselage. The aircraft has two wings, and the landing gear is", + "In the image, the aircraft 737-600 is on a runway with its engines running. The plane is ready for takeoff.", + "The image is of an aircraft 737-600 with the sun shining on it. The aircraft is on the runway and is about to take off.", + "This image is of a Boeing 737-600 aircraft. It is a twin-engine, nose-wheel aircraft with a capacity of up to 132 passengers. It has a range of 6,700 kilometers and can reach a top speed of 8", + "The image is of an aircraft 737-600. The aircraft is white with blue stripes running along the length of the fuselage. The wings are swept back and the engines are mounted on the underside of the wings. The aircraft has a tall", + "The image from the internet of an aircraft 737-600 is a white aircraft with blue and red stripes. The nose of the aircraft is pointed down and the tail is up. The aircraft has two engines on each side. The 737-600", + "Image shows an Boeing 737-600 commercial airplane. Aircraft is white with blue and red stripes running down the sides. The company name \"Southwest\" is written on the side of the plane in black letters. The aircraft has two engines and", + "The image from the internet of an aircraft 737-600 is a photo of a blue and white airplane with the word \"Alaska\" written on the side. The plane is on a runway with other planes in the background.", + "I couldn't find an image that was clearly labeled as a 737-600, but this image shows a 737-600 taking off: https://www.google.com/search?tbm=isch&q=737-600", + "The image is of a white 737-600 aircraft with blue and red stripes running down the sides. The aircraft is sitting on a runway with its nose pointing up.", + "Boeing 737-600 of Southwest Airlines", + "Boeing 737-600 aircraft at Denver International Airport", + "\"Boeing 737-600 in apron\"", + "Boeing 737-600 commercial airliner parked at an airport gate", + " A Boeing 737-600 commercial airliner, parked on a tarmac. The aircraft is painted in a green and white livery.", + "\"Boeing 737-600 airliner operated by Southwest Airlines\"", + "Boeing 737-600 airliner operated by Southwest Airlines", + " A Boeing 737-600 aircraft operated by Sun Country AirlinesSun Country Airlines is an airline based in the United States.", + "The Boeing 737-600 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 108\u2013132 passengers, produced by the American manufacturer Boeing Commercial Airplanes.", + "Boeing 737-600, a short- to medium-range narrowbody jet airliner" + ], + "737-700": [ + "The 737-700 is a twin-engine, single-aisle jetliner. It has a capacity of up to 162 passengers and a maximum range of 3,215 nautical miles. The plane is 129 feet long and has a wings", + "The 737-700 is a short- to medium-range narrowbody aircraft produced by Boeing Commercial Airplanes. It is the second generation of the 737 Next Generation (NG) series and is the first variant of the 737NG to enter service", + "A 737-700 is a single-aisle airliner that has two engines, a tail-mounted airstair, and a two-wheel nosegear. It is the most popular variant of the 737.", + "An aircraft 737-700 is a medium-sized, single-aisle plane. It typically has two engines, with a wingspan of around 112 feet. It can seat up to 160 passengers.", + "A 737-700 is a twin-engine, short-to-medium range commercial jet airliner. It has a capacity of up to 162 passengers and a range of up to 3,050 nautical miles (5,650 km). The", + "The 737-700 is a twin-engine, short- to medium-range jetliner that seats 108 to 138 passengers. It has a distinctive hump on the forward fuselage to house the nose gear and is the first member of the successful", + "The 737-700 is a twin-engine, short-to-medium-range airliner. It has a capacity of 132 passengers and is flown by a two-pilot crew. The aircraft has a maximum range of 6,315 km", + "The 737-700 is a twin-engine, short- to medium-range airliner. It has a swept wing and a T-tail. The 737-700 has a maximum capacity of 149 passengers and a range of 3,700 n", + "A 737-700 is a narrow-body aircraft with two engines. It has a Justice nose and a blended winglet.", + "An aircraft 737-700 looks like a small, twin-engine jetliner. It has a wingspan of about 35 feet and a length of about 110 feet. It can seat up to 162 passengers and has a range of about 3,", + "The Boeing 737-700 is a twin-engine short-to-medium-range commercial jet airliner. It is the first of the Next Generation (-600, -700, -800, and -900) series of the Boeing 737.", + "The aircraft 737-700 can be identified by its model number, which is printed on the side of the plane.", + "The aircraft 737-700 can be identified by its curved nose and swept-back wings.", + "You can identify an aircraft 737-700 by the model number 737-700.", + "By its model number, 737-700.", + "There is no definitive answer to this question, as the identifying markings on aircraft can vary depending on the airline, country of origin, and other factors. However, some ways that you might be able to identify a 737-700 aircraft include looking", + "The Boeing 737-700 is a twin-engined short-to-medium-range narrow-body jetliner. It is the shortest and lightest 737 ever built, though it is also the most recent derivative of the 737 Classic series", + "The aircraft 737-700 can be identified by its unique identification number, which is located on the bottom of the fuselage. This number can be found by looking up the aircraft's registration in the Aircraft Registry.", + "The Boeing 737-700 is a twin-engined short-to-medium-range narrowbody airliner with a capacity of maximum 145 passengers produced by the American manufacturer Boeing Commercial Airplanes.The 737-700 is the baseline variant", + "The release notes for the Microsoft Flight Simulator X software update identify the aircraft by its manufacturer's designation, the Boeing 737-700.", + "Boeing 737-700s are twin-engine, narrow-body jets that seat between 126 and 189 passengers. They are typically painted white with blue and red stripes running down the length of the fuselage.", + "An aircraft 737-700 looks like a large metal tube with wings attached to it. The wings are usually pointed forward and the back end of the plane has a horizontal tail. There are also two engines mounted on the back of the plane.", + "The 737-700 is a twin-engine, single-aisle airplane with a capacity of up to 160 passengers. It is the most popular model of the 737 family, with more than 2,700 units built since its introduction in 1998", + "The 737-700 is a short- to medium-range narrow-body jet airliner. It is the smallest and lightest member of the 737 family. The 737-700 seats up to 132 passengers in a two-class configuration and has", + "The 737-700 is a twin-engined short-to-medium-range narrowbody airliner with a capacity of up to 148 passengers produced by Boeing Commercial Airplanes.", + "This is a Boeing 737-700:", + "Aircraft 737-700s are single-aisle planes with a Boeing Sky Interior. They seat 126 to 189 passengers and have a range of 2,960 to 3,885 miles.", + "The 737-700 is a twin-engine, single-aisle jetliner. It is the middle of the 737NG series, between the 737-600 and the 737-800. The 737-700 seats 126 passengers in a two", + "An aircraft 737-700 is a small, single-aisle airplane. It has two engines, a tailskid, and a nosewheel. The aircraft is white with blue and red stripes down the side.", + "Aircraft 737-700 models vary in appearance depending on the airline. However, all 737-700 models have winglets, or wingtip extensions, and a swept-back wing design.", + "In the image, the aircraft is parked on a runway with its engines shut off. The body of the plane is a light blue, with the wings and tail a darker blue. The belly of the aircraft is white. The side of the", + "An image of an aircraft 737-700 from the internet shows the jetliner parked on a tarmac with its engines off. The jetliner's nose is pointed up and its tail is down. The Boeing 737-700 is a twin-", + "The image is of a blue and white 737-700 aircraft with the Boeing logo on the tail. The aircraft is on a runway with the nose pointing up.", + " landingThe image is of an aircraft 737-700 landing on a runway. The plane is touching down on the runway with its wheels and its nose is slightly lifted. The 737-700 is a popular model of airplane used by airlines all over", + "In the image, the aircraft is parked on a runway with its nose pointing up. The main body of the aircraft is white with a blue and red stripe running along the length of the fuselage. The engines are on either side of the", + " caption:Aircraft 737-700 on tarmac with clouds in the background", + "The image is of an aircraft 737-700 with a white body and blue and orange stripes. The aircraft has a pointed nose and two engines at the back. The wings are swept back and the tail is tall. There are two doors on", + "An image of an aircraft 737-700 can be found at https://www.google.com/search?q=737-700+aircraft&rlz=1C1CHBF_enUS747US747&source", + "This image is of a Boeing 737-700 aircraft. The 737-700 is a twin-engine, single-aisle jet airliner. It is the smallest member of the 737 family. The 737-700 is used by airlines around the", + "The image from the internet is of an aircraft 737-700. It is a silver plane with blue and white stripes. The wings are slightly angled and the nose is pointed. The engines are on the side of the plane. The 737-", + " The Boeing 737-700 is a twin-engine aircraft designed for short-haul routes.", + "An aircraft 737-700 in flight.", + "The Boeing 737-700 is a narrow-bodied aircraft used for short to medium-haul flights. It is one of the most common models of the Boeing 737 aircraft and can seat up to 149 passengers.", + " Boeing 737-700, a twin-engine short-to-medium-range narrow-body jet airliner", + "Boeing 737-700 aircraft operated by WestJet Airlines", + "Airplane taking off at sunset", + "The Boeing 737-700 is a twin-engine short-to-medium-range commercial airliner. It is the first derivative of the 737 Classic, and was launched in 1996 with 100 orders from Southwest Airlines.", + "Boeing 737-700 of American Airlines", + " \"Boeing 737-700 on final approach.\"", + "Aircraft 737-700 approaching an airport runway" + ], + "737-800": [ + "A 737-800 is a twin-engine, short- to medium-range airplane. It has a capacity of 162 passengers and is flown by a two-person crew. The 737-800 has a wingspan of 112 feet and a", + "The Boeing 737-800 is a twin-engine jet airliner typically configured with 162 seats in a two-class layout, although it is also available in a single-class layout with 189 seats.", + "The 737-800 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of up to 189 passengers. It is the third generation derivative of the 737, and follows the -600/-700 series", + "The Boeing 737-800 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 162 passengers, produced by the American manufacturer Boeing Commercial Airplanes.", + "Aircraft 737-800s are twin-engine, short- to medium-range airplanes. They have a capacity of 162 passengers and are flown by a two-person crew. The 737-800 is the best-selling model of the", + "Aircraft 737-800s are twin-engine jet airliners that seat up to 162 passengers. They have a range of 3,200 nautical miles and a top speed of 567 mph. The aircraft is 138 feet long with a", + "The Boeing 737-800 is a narrow-body aircraft produced by Boeing Commercial Airplanes. It is the best-selling aircraft model of all time and has been in commercial service since 1998. The 737-800 is a stretched version of the", + "A 737-800 is a single-aisle jetliner with a capacity of 162 passengers in a two-class layout and 189 passengers in a single-class layout. It has a typical range of 3,215 nautical miles (5", + "A 737-800 has a wingspan of 113 feet and is 155 feet long. It has a maximum takeoff weight of 178,200 pounds and a range of 2,700 miles. It has two turbofan engines and can seat 162", + "The 737-800 is a twin-engine short-to-medium-range narrow-body aircraft. It has a tail fin and two engines mounted on the rear of the fuselage. The aircraft has a capacity of 162 passengers and is", + "The 737-800 is a twin-engine short- to medium-range narrow-body airliner. It is the second iteration of the 737 Classic series and was produced from 1996 to 2000. The 737-800 seats 162 passengers in a two", + "The model number is usually shown on the side of the aircraft.", + "The easiest way to identify a 737-800 is by its winglets. All 737-800s have winglets, which are these curved extensions on the end of the wing.", + "The Boeing 737-800 is a twin-engined short- to medium-range narrow-body airliner with a capacity of 162 passengers produced by the American manufacturer Boeing Commercial Airplanes.", + "The -800 is the most common 737 NG model. It is recognizable by its large size and six overwing emergency exits.", + "By looking at the aircraft's registration number, which is usually displayed on the tail fin.", + "The aircraft 737-800 has a distinctive nose and a large swept-back wing. It is also one of the quietest jet engines in commercial aviation.", + "The Boeing 737-800 is a single aisle, twin-engine jetliner typically configured with 162 seats. It is the best-selling jetliner in the history of aviation.", + "The aircraft 737-800 can be identified by its two engines, its swept-back wings, and its narrow fuselage.", + "The 737-800 is identifiable by its short-medium range, fuel-efficient wings, and elevated rear fuselage.", + "Image result for 737-800", + "The aircraft 737-800 is a narrow-body plane with two engines mounted on the rear. It has a capacity of 162 passengers and is used for short to medium-haul flights.", + "Boeing 737-800s are single-aisle planes with 149 seats. They are used mainly for short- and medium-haul flights. The planes have two engines and are painted white with blue and red stripes.", + "Here is a picture of a Boeing 737-800:", + "Boeing 737-800s are single-aisle jetliners that seat 162 passengers. They are powered by two CFM56-7B engines and have a range of 3,115 nautical miles. The aircraft has a distinctive", + "The Boeing 737-800 is a twin-engined short-to-medium-range narrow-body airliner with a capacity of 162 passengers, produced by the American manufacturer Boeing Commercial Airplanes.", + "A 737-800 typically seats 162 passengers in a two-class configuration and has a range of more than 3,000 nautical miles (5,556 km).", + "An aircraft 737-800 is a small commercial plane. It typically has two engines and can seat anywhere from 158 to 215 passengers.", + "Aircraft 737-800s are medium-sized jet airliners that can seat between 160 and 189 passengers. They are typically used for short- to medium-haul flights.", + "Image result for 737-800", + "The image is of a silver aircraft with blue and white stripes. The back of the aircraft has the word \"BOEING\" in blue. There are two engines on the back of the aircraft. The aircraft has two doors on the side", + "In this image, we can see an aircraft 737-800 flying through the air. The aircraft is white with blue stripes running down the sides. The aircraft has two engines, one on each side. There are two doors on the aircraft,", + "The image is of a 737-800 airplane in flight. The plane is white with blue and gray stripes. The wings are extended and the engines are at the rear of the plane. The image is in bright sunlight.", + "The image is of an aircraft with a white body and blue and red stripes running down the sides. There is a large blue and red logo on the tail fin.", + "The image is of an aircraft 737-800 in flight. The aircraft is painted in a blue and white livery with the word \"United\" written on the side. The aircraft has its landing gear down and its flaps extended.", + "The image is of an aircraft 737-800. The 737-800 is a twin-engined short-haul narrow-body airliner with a capacity of 162 passengers. It is the successor to the 737-400 and is the third generation", + "This image is of a Boeing 737-800 aircraft. It is a twin-engine jet airliner with a capacity of 162 passengers. It has a wingspan of 124 feet and a length of 138 feet. It has a cruising speed of 5", + "The image is of an 737-800 aircraft taking off from an airport runway. The plane is in the air, with the wheels up, and the sun is shining in the background.", + "The image is of an aircraft 737-800 that is taking off. The plane is white with blue stripes running down the sides. The tail is blue with a white stripe. The engines are at the rear of the plane.", + "This image is of an aircraft 737-800. The aircraft is a short- to medium-range, twin-engine jetliner. The image shows the aircraft in flight, with its landing gear retracted. The 737-800 is capable of", + "A Boeing 737-800 aircraft taking off from an airport.", + "American Airlines Boeing 737-800", + "Boeing 737-800 aircraft at an airport", + "Boeing 737-800 aircraft operated by Norwegian Air Shuttle ASA on approach to Oslo Airport, Gardermoen, Norway.", + "The Boeing 737-800 is a twin-engine jet airliner usually used for short- to medium-range flights.", + " Boeing 737-800 passenger jet.", + "Airplane 737-800", + " A Virgin Australia Boeing 737-800 on final approach to Perth Airport, Australia.", + "Boeing 737-800 aircraft of the United Airlines (UAL) prepares to land at the Newark Liberty International Airport in Newark, New Jersey, United States on August 22, 2016.", + "Aircraft 737-800 on runway" + ], + "737-900": [ + "This aircraft has a wingspan of 38 ft 9 in and is 137 ft 10 in long with a tail height of 41 ft 8 in. It has a unique split scimitar winglets. The 737-900 has a maximum seating capacity", + "The 737-900 is a twin-engine short-to-medium-range airplane. It has a swept wing and a T-tail. The aircraft is primarily used for short-haul flights. The 737-900 has a maximum capacity", + "A 737-900 is a twin-engine, single-aisle jetliner. It is the largest and most powerful member of the 737 family. The 737-900 Burnely has a stretched fuselage, larger wings, and more", + "Aircraft 737-900s are twin-engine, short- to medium-range, single-aisle commercial jet airliners. The 737-900 is the longest and heaviest member of the 737 family, and it is also the most", + "The 737-900 is a twin-engine short-to-medium-range narrow-body jetliner. It is the third and longest member of the 737 family. The 737-900 seats 162 passengers in a two-class configuration and", + "The Boeing 737-900 is a twin-engine short- to medium-range narrowbody airliner with a capacity of 185 to 215 passengers, produced since 1998 by Boeing Commercial Airplanes.", + "The 737-900 is the newest and largest member of the successful 737 family. The airplane is 183 feet long (56 meters), which is 18 feet longer than the 737-800, and can seat up to 215 passengers. It has a", + "Aircraft 737-900s are twin-engine, short- to medium-range Boeing airliners. The 737-900 is the longest variant of the 737. It has a stretched fuselage, larger wings, and more powerful engines than", + "Boeing 737-900s are single-aisle jets that seat 162 passengers. They have a First Class section with six seats, a Main Cabin with 156 seats, and no Economy Plus section.", + "The 737-900 is an Boeing aircraft that typically has 148 seats in a two-class cabin and 166 seats in a one-class cabin. It is the longest variant of the 737 and has a stretched fuselage, larger winglets,", + "The aircraft 737-900 can be identified by its long body and large winglets. It is the largest and most expensive member of the 737 family, and can seat up to 189 passengers.", + "The aircraft 737-900 can be identified by its long nose and large engines. It is the largest and most expensive member of the 737 family.", + "The 737-900 is a stretched version of the 737-800 and is the largest variant of the 737NG series. The 737-900 is meant to be a direct replacement for the 737-400. The major difference between the 737-", + "The 737-900 is the largest member of the 737 Next Generation family. It has a stretched fuselage, and is equipped with six wheels on each main landing gear. Additionally, the 737-900 has a distinctive nose, and a larger", + "The 737-900 has a distinctive nose and a larger winglet than previous models. It also has a stretched fuselage compared to earlier 737 models.", + "The 737-900 is the longest and heaviest member of the popular 737 family. It is also the most powerful, with more thrust than any other 737 model. The 737-900 can be easily distinguished from other 737s by its stretched fu", + "The aid can be found on the Federal Aviation Administration's website.", + "You can identify an aircraft 737-900 by the long nose and large wingtips. This aircraft is also direct descendent of the very first 737-100.", + " 737-900 can be identified by it's distinct nose and the lack of a blade antenna above the cockpit.", + "The 737-900 is the longest and heaviest member of the 737 family. It is also the most powerful, with a CFM56-7B26 engine capable of producing 30,000 pounds of thrust. The aircraft also has a distinctive", + "A 737-900 is a jet airplane manufactured by Boeing. Its wingspan is 124 feet, and it is 158 feet long. It has two engines and can seat up to 215 passengers.", + "Aircraft 737-900 looks like a large airplane with two engines.", + "An aircraft 737-900 looks like a large white airplane with a pointed nose and wings. There are two engines attached to the wings, and the tail has a distinctive shape. The 737-900 is a popular model of airplane, and is", + "A 737-900 is a Boeing 737 Next Generation plane. It has a larger wing and is one of the longest 737 models.", + "An aircraft 737-900 is a single-aisle plane that typically has 156 seats. It is the largest and newest member of the popular 737 family. The model was introduced in 1998.", + "An aircraft 737-900 looks like a small plane with two engines.", + " 737-900", + "Here is an image of a 737-900 aircraft.", + "The 737-900 is a twin-engine, short- to medium-range narrowbody airliner. It is the longest and most powerful variant of the 737. It has a stretched fuselage, which is 13 ft 5 in (4.", + "Aircraft 737-900 looks like an airplane.", + "The image is of an aircraft 737-900 on a runway. The plane is white with blue stripes running down the side. The image is taken from the side, showing the length of the plane. The wings are extended and the engines are", + "This image is of an aircraft 737-900. It is a narrow-body airplane produced by Boeing Commercial Airplanes. This jetliner is the -900 variant of the popular 737 series. Its design is based on the Boeing 787 Dream", + "The Boeing 737-900 is an American narrow-body aircraft manufactured by Boeing Commercial Airplanes. It is the tallest variant of the 737 Next Generation (NG) series. It includes the 737-900ER model.The image shows", + "The image is of a 737-900 aircraft with a white body and blue and red stripes. The plane has a pointed nose and two engines attached to the wings. There is a grey and blue sky in the background.", + "ERThe Boeing 737-900ER is a twin-engined short-to-medium-range narrowbody airliner with a capacity of 215 passengers, produced by Boeing Commercial Airplanes. It is a stretched version of the 737-900 and", + "Image shows the 737-900 on a runway with its long nose and engines mounted on the wings. The aircraft is painted in an all white color scheme with blue and red stripes running along the length of the fuselage.", + "The image is of an aircraft 737-900 landing. The aircraft is white with blue stripes running down the sides. The nose of the aircraft is pointing down as it touches down on the runway. There is a plume of smoke behind the", + "The Boeing 737-900 is an American short-to-medium-range twin-engine narrow-body airliner. The -900 is the largest and heaviest member of the successful 737 family. It sports a longer fuselage than its brothers,", + "The image is of an aircraft 737-900 on the tarmac. The plane is mostly white with some blue and red stripes. There is a large company logo on the side of the plane.", + "An aircraft 737-900 is a large commercial jet with a long body and narrow wings. It has a pointed nose and a swept-back tail. The 737-900 can seat up to 215 passengers and is used by many airlines around the", + "Boeing 737-900 of All Nippon Airways", + "Boeing 737-900 aircraft from Alaska Airlines", + "The Boeing 737-900 is a twin-engined short- to medium-range narrow-body airliner with a capacity of 162 passengers, produced by Boeing Commercial Airplanes.", + "The Boeing 737-900 is a single-aisle aircraft with a capacity of 162 passengers and is the largest member of the 737 family.", + "The Boeing 737-900 is a twin-engined short-to-medium range narrow-body airliner with a capacity of 162 passengers. It is an extended version of the 737-800 and is the largest 737 model produced.", + " Boeing 737-900, United Airlines \"Main Cabin Extra\"[business class seats]", + "Boeing 737-900 commercial airliner.", + " Alaska Airlines Flight 739 heavy from Seattle to Anchorage on a winter night, taxiing to the gate at Anchorage International Airport", + "This image shows a Boeing 737-900, a twin-engine jet airliner used by many airlines around the world. The 737-900 is the largest and most powerful member of the 737 family, and can seat up to 162 passengers.", + "The 737-900 is one of the most popular aircraft in the Boeing 737 family. It is a twin-engine, short- to medium-range airliner, and is often used as a replacement for the older 737-300 model." + ], + "747-100": [ + "The 747-100 is a wide-body aircraft with four engines suspended below the wings. The fuselage is circular in cross-section with a nose that curves down to meet the leading edge of the wing. There is a hump on the", + "Aircraft 747-100s are large, long-range jets with four engines. They have a distinctive double-deck configuration and a stepped upper deck. The 747-100 was the first 747 model and was the first wide-body jet", + "A 747-100 is a four-engine, wide-body jet airliner. The 747-100 was the first 747 model, and was the first wide-body jetliner built. It first flew in 1970 and was introduced in 1971.", + "The 747-100 is a large, long-range airliner with four engines mounted on pylons under the wings. The 747-100 was the first 747 model, and it first flew in 1969. The 747-100 was produced until", + "The 747-100 is a large, long-range airliner with four engines mounted on wing pylons. The Boeing 747-100 was the first variants of the 747 and was the first 747 model to enter service in 1970. The 747", + "An aircraft 747-100 looks like a large airplane with two decks of seats and a large cargo hold. The aircraft is typically white with blue or red stripes running down the sides.", + "Aircraft 747-100s are large aircrafts with a long body and wings. They have a wide fuselage and a high tail. The wings are swept back and have four engines.", + "The 747-100 is a large, long-range jet airliner with a widebody layout and four engines mounted on underwing pylons. The nose is elongated and has a glass cockpit. The wings are swept back and tapered", + "The 747-100 is a large, wide-body aircraft with four engines mounted on the lower part of the tail. It has a double-deck design with the first deck being for passengers and the second deck for cargo. The cargo area", + "The 747-100 is a jumbo jet, which means it is a large aircraft with a wide body. The 747-100 has a swept-back wing and a T-tail. The 747-100 has four engines.", + "The 747-100 is a jumbo jet airplane. It has a distinctive hump on the upper part of the fuselage. This is where the pilot's cockpit is located. The 747-100 also has four engines.", + "The 747-100 is a wide-body commercial passenger jet airliner. The 747-100 was the first 747 model, and was the first wide-body jetliner in commercial service. The 747-100 received its FAA Type Certification on April", + "The aircraft 747-100 can be identified by its large size and wide body. It has a distinctive nose and four engines. The aircraft is also known as the \"jumbo jet\".", + "The 747-100 can be identified by its long and large nose, as well as its overall size. It is one of the largest passenger aircraft in service and can seat up to 400 passengers.", + "The 747-100 is a wide-body aircraft with four engines mounted on the underside of the wings. It has a distinctive \"hump\" on the top of the fuselage, just behind the cockpit.", + "The 747-100 is a wide-body aircraft with four engines and a high-mounted tail. It has a distinctive hump on the upper part of the fuselage.", + "The 747-100 model is distinguished from other 747 models by its long nose and lack of a hump on the upper fuselage.", + "The aircraft 747-100 can be identified by its large size, four engines, and swept-back wings.", + "The 747-100 is a four-engine wide-body jet airliner that was produced by Boeing Commercial Airplanes. The 747-100 was the first 747 model and was succeeded by the 747-200 and 747-300.", + "Look for four engines, a hump on the upper fuselage, and a large size. The 747-100 was the first 747 model, and was launched in 1968.", + " 747-100s were the first variant of the 747 and were the only version with abubble top. They were also the only 747s with four engines. The 747-100 was fi rst delivered to Pan Am in 1970.", + "Aircraft 747-100 looks like an elongated oval with four engines attached to the underside of the wings. The nose is cone-shaped and has a large window for the pilot to see out of. The cockpit is located on the upper", + "It looks like a large plane with two levels. The upper level has windows on the sides, and the lower level has windows on the sides and in the front and back.", + "An aircraft 747-100 looks like a large, commercial airplane. It has a long body and large wings. The 747-100 is one of the original 747 models, and it is not as common as the newer 747 models.", + "Aircraft 747-100 is a large, long-range airliner. It has a distinctive hump on the upper deck, which houses the first class cabin.", + "The 747-100 is a large aircraft with a long body and a hump on the top near the back. The 747-100 has four engines, two on each side.", + "A Boeing 747-100 is a large, metal, four-engine jet plane. It has a hump on the top front of the fuselage, and the wings are attached to the body of the plane near the middle. The tail is", + "The 747-100 is a large, wide-body aircraft with four engines mounted on the rear underwing pylons. The nose is long and tapered, and the tail is fin-shaped with a blunt end. The cockpit is", + "A 747-100 is a large, wide-body aircraft with four engines. The nose is pointed and the cockpit is located on the upper deck. The main body of the aircraft is oval-shaped, and there are two large wings on", + "An aircraft 747-100 looks like a large, four-engine commercial airplane. The 747-100 was the first 747 model, and it can seat up to 400 passengers.", + "The image is of a large, metal 747 aircraft with four engines. The plane is sitting on a runway with its nose pointed up. There are people in the foreground walking on the runway. The sky is blue and there are some clouds in", + "The image is of a large, metal plane with four engines. The body of the plane is long and tapered, and there is a small cockpit near the front. The wings are wide and flat. The plane is sitting on a runway", + "The photo shows a United Airlines 747-100 landing at Los Angeles International Airport in 1977. The pretty blue and white 747 is banked to the left as it makes its final approach. The long runway is visible, as is the airport control", + "The image is of a large, metal, four-engined jet airliner. It has a long body with a pointed nose, and large wings with a swept-back design. There is a large fin on the tail, and the aircraft", + " landingThe picture is an aircraft 747-100 landing. The plane is on the runway and the wheels have touched down. The nose is down and the engines are at a low power setting. The flaps are down and the spoilers are up", + "The image is of a large, white aircraft with four engines. The nose of the aircraft is pointing up and there is a small cockpit near the front. The main body of the aircraft is long and slender, with a large tail fin.", + " landingA 747-100 aircraft is shown landing on a runway. The nose of the plane is pointing down as it prepares to touch down on the tarmac. The wings are level with the ground, and the engines are at a low RPM", + "The image is of a large metal plane with four engines and a long body. The body is mostly metal with a few windows. The wings are very long and connect to the body at a small angle. The plane is sitting on a concrete", + "The image is of a large, white aircraft with four engines. The nose of the aircraft is pointed upward and there are two rows of windows. The tail of the aircraft is long and flat.", + "The image shows a large four-engine commercial jet airliner, the Boeing 747-100. The 747-100 was the first Boeing 747 model produced, which first flew in February 1969. The image shows the aircraft taking off, with its long", + "Aircraft 747-100 on the tarmac", + "The 747-100 was the first 747 model produced, and it first flew in February 1969. The -100 was also the first 747 with a stretched upper deck, which provided room for additional passengers and cargo.", + "This aircraft is a 747-100, the first variant of the 747. It was originally designed as a large cargo plane, but was later converted for passenger use.", + "The first ever Boeing 747-100 aircraft sits on the tarmac after its first flight on February 9, 1969.", + "This is a 747-100, the first model of the 747 family of jetliners. It was launched in 1966 and first flew in 1969.", + "The first 747-100 flies over Seattle on February 9, 1969.", + "The first 747-100 aircraft took off in early 1970, and it became one of the most popular long-haul aircrafts ever made.", + "A Boeing 747-100 aircraft taking off from a runway", + "This photo was taken in 1977 and shows a Pan Am 747-100 aircraft. The 747-100 was the first 747 model produced and was in service from 1970 to 1985.", + "One of the first 747-100 aircrafts ever made, this plane was used by Pan American World Airways for commercial flights." + ], + "747-200": [ + "Aircraft 747-200s are large, long-range jets with a distinctive hump on the upper part of the fuselage. They typically have a capacity of more than 400 passengers and can fly more than 8,000 miles without refueling", + "An aircraft 747-200 is a large, long-range jet airliner. It has a wide body and four engines. The 747-200 is the stretched version of the original 747. It has a higher fuel capacity and greater range than the", + "An aircraft 747-200 looks like a large airplane with two wings and a long body. It has a pointed nose and a tall tail. 747-200s were first introduced in the 1970s and are still in use today. They can", + "The 747-200 is a wide-body jet airliner typically configured with 4 engines and a capacity of 366 passengers in a two-class layout, with a range of 5,790 miles. It is powered by two wing-mounted turbof", + "An aircraft 747-200 looks like a large metal plane with four engines. It has a large body and wings.", + "The 747-200 is a large, long-range airliner with a wide-body fuselage, four engines, and a high-tail fin. It has a distinctive hump on the upper Fuselage where the first section of the wing attaches", + "An aircraft 747-200 looks like a large commercial airplane with a double-deck configuration. The upper deck has a raised portion in the middle, and the lower deck has a nose that extends out beyond the main body of the plane.", + "The 747-200 is a wide-body airplane with four engines. It has a double-deck configuration and a flight deck above the main cabin. The 747-200 has a length of 231 feet, a wingspan of 195 feet,", + "Aircraft 747-200 looks like a large metal plane with four engines.", + "A 747-200 is a wide-body plane with four engines. It is capable of carrying between 366 and 452 passengers.", + "The 747-200 is a wide-body jet airliner and cargo aircraft. The 747-200F is a freighter version. The 747-200B is a combi version with a large cargo door on the left side and a smaller", + "The 747-200 is a wide-body aircraft produced by Boeing Commercial Airplanes. It is the second generation of the 747, with its first flight in February 1974 and entered service in April 1974 with Pan Am. The 747-200 was", + "The 747-200 is a wide-body jetliner that was manufactured by Boeing Commercial Airplanes between 1971 and 1987. It is the second generation of the 747, and was the first jetliner to be stretched into a larger size, with", + "Look for a large, four-engine jet with a double-deck configuration. The 747-200 typically has a stretched upper deck, compared to other 747 models.", + "The 747-200 is a wide-body jet airliner. It has a double-deck configuration and large diameter engines. The 747-200 also has a distinctive hump on the upper deck.", + "Boeing 747-200s have a distinctive hump on the forward part of the fuselage, just behind the cockpit. They also have four engines, mounted in pairs on the wings.", + "You can identify an aircraft 747-200 by its large size, four engines, and swept-back wings.", + "There is not a 747-200 aircraft.", + "The 747-200 is a wide-body jet airliner that was manufactured by Boeing Commercial Airplanes from 1971 to 1987. The 747-200 is a stretched version of the 747-100, with more powerful engines and an extended upper deck.", + "The 747-200 is a jumbo jet aircraft. It has a distinctive upper deck hump that houses the first class passengers. It also has a large cargo door on the side of the aircraft.", + "The 747-200 is a wide-body, long-range jet airliner. It has a double-deck design with a high-capacity cargo hold. The 747-200 was the first jumbo jet to enter commercial service in 1970.", + "Image result for 747-200", + "The 747-200 is a wide-body jet airliner. It has a double-deck configuration and a capacity of up to 366 passengers.", + "A Boeing 747-200 is a wide-body aircraft with four engines. It has a double-deck design with a capacity of up to 366 passengers.", + "There is no definitive answer to this question, as the 747-200 can come in a variety of different designs depending on the airline it is operated by. However, some common features of the 747-200 include a wide body with four engines", + "A 747-200 typically has a double-deck configuration and four engines, and it can seat up to 366 passengers. The aircraft has a distinctive \"hump\" on the forward part of the upper deck, and the cockpit is located on", + "Whole aircraft: http://upload.wikimedia.org/wikipedia/commons/2/2a/Boeing_747-200_British_Airways_%28G-BDXH%29.jpg Close", + "Aircraft 747-200 models vary, but a common 747-200 will have a nose that tilts downward, similar to the production 747-100 model. It will also have four engines, a large swept-back wing, and a", + "The 747-200 is a wide-body commercial airliner. The 747-200 is the second model of the 747. It first flew in 1971 and was in production until 1986. The 747-200 was the first 747 model to be offered", + "Updated:The 747-200 was the second version of the 747 jumbo jet. The main visible difference between the 747-100 and 747-200 was the downward-sloping droop nose on early 747-200s.", + "The image is of an aircraft 747-200 on the runway with its engines running. The aircraft is preparing for takeoff.", + "http://www.aircraft-photos.net/6/111517.jpgThis image is of a 747-200 aircraft that is used by many different airlines. The image shows the plane in flight with its landing gear", + "The image is of an aircraft 747-200 on the runway. The plane is large with four engines and two wings. There is a United Airlines logo on the side of the plane.", + "The image is of an aircraft 747-200 with a white body and blue stripes. The nose of the plane is pointing up and there are four engines. The plane is sitting on a runway.", + "The image is of a large white aircraft with a blue and red stripe down the side. The aircraft has two engines and a large wing. The tail of the aircraft has a red and white stripe.", + "The image shows a 747-200 aircraft with its landing gear down and its engines roaring. The aircraft is about to take off from an airport runway.", + "https://www.airlines-inform.com/airlines/upload/aviation-photos/airlines/airlines_logos/Airlines_Inform-1.jpgThe image is of a", + "The image is of a British Airways 747-200 aircraft with a red, white, and blue livery. The nose and upper fuselage are silver, and the engines are mounted on the wingtips. There is a British flag on the", + "This image from the internet shows a Boeing 747-200 aircraft. This aircraft was first delivered in 1971 and is one of the most recognizable aircraft in the skies. It is a wide-body, long-range aircraft that can carry up to", + "This image is of an aircraft 747-200. The aircraft is a large, long-range plane that was first introduced in 1970. The 747-200 was the second version of the 747 and was produced until 1986. The 747-200", + "This is a 747-200, one of the first versions of the 747. It is now retired from most commercial airlines.", + " The 747-200 is an American long-range, wide-body airliner manufactured by Boeing Commercial Airplanes. The 747-200 was the second variant of the 747, and was its most popular model until the -300 series was introduced in 1983.", + "One of the first 747-200s built, this aircraft first flew in 1970 and was delivered to Pan Am in 1971.", + "A 747-200 aircraft taking off from a runway", + "Aircraft carrier USS Kitty Hawk (CV-63) with several F-14 Tomcats and A-6 Intruders on its flight deck, circa 1980.", + "A 747-200 aircraft in flight.", + "The Boeing 747-200 is a mid-size, long-range jet airliner that was manufactured by Boeing Commercial Airplanes from 1971 to 1987.", + "American Airlines Flight 191 was a scheduled passenger flight operated by American Airlines from Chicago O'Hare International Airport to Los Angeles International Airport. On May 25, 1979, the aircraft serving the flight, a McDonnell Douglas DC-10-10,", + "The Boeing 747-200 is a wide-body airliner that was manufactured by Boeing Commercial Airplanes from 1971 to 1987.", + "The 747-200 is a long-range airliner that was manufactured by Boeing from 1971 to 1987." + ], + "747-300": [ + "The 747-300 is a stretched version of the 747-200, with a length of 231 feet, 5 inches (70.6 meters), a wingspan of 196 feet, 5 inches (59.7 meters), and a height of", + "The 747-300 is a wide-body aircraft with four engines and a capacity of about 300 passengers. It has a double-deck configuration and a hinged nose that opens for loading cargo.", + "An aircraft 747-300 has a large body and a long nose. It has four engines mounted on the wings. The tail is tall and has a horizontal stabilizer.", + "The 747-300 is a stretched version of the 747-200, with the addition of a third Venezuela) and Lufthansa (Germany). It was in production from 1983 to 1991.The -300 series seats 320", + "The aircraft 747-300 is a wide-body jet airliner. It has a stretched upper deck which gives it more cargo space and passengers space. It is one of the most popular 747 models and was in production from 1983 until 1991.", + "The 747-300 is a wide-body aircraft with four engines, a high-tail and a nose that opens for loading. It can seat up to 416 passengers and has a range of 8,000 miles.", + "The 747-300 is a stretched version of the 747-200, and has a shorter upper deck. It is 231 feet long with a wing span of 195 feet. The plane can hold 440 passengers and has a range of 8,700", + "The 747-300 is a stretched version of the 747-200, with a length of 231 feet 9 inches (70.66 meters), a wingspan of 196 feet 8 inches (59.94 meters), and a height of 63 feet", + "Boeing 747-300s are long-range wide-body jet airliners. The -300 is the second generation of the Boeing 747, with a lengthened upper deck. Based on the 747-200, the 747-", + "The 747-300 is a jumbojet with a typical double-deck configuration. The lower deck contains the cargo hold and the main passenger cabin, while the upper deck houses a smaller passenger cabin and the flight deck. The 747-300", + "The aircraft 747-300 can be identified by its large size, distinctive hump on the upper fuselage, and four engines.", + "The aircraft can typically be identified by its size and shape. The 747-300 is a wide-bodied aircraft with four engines. It has a distinctive hump on the upper part of the fuselage.", + "The 747-300 can be identified by its long range and large capacity. It has a distinctive hump on the upper part of the fuselage, and the wings are swept back at an angle of 35 degrees.", + "The aircraft 747-300 can be identified by its longer upper deck, extended nose, and increased fuel capacity.", + "The 747-300 is a wide-body aircraft produced by Boeing Commercial Airplanes. It has a stretched upper deck compared to the 747-200, and is the first 747 model with a six-wheel main landing gear configuration.", + "The 747-300 is a stretched version of the -200, and can be identified by its lengthened nose and the 6-wheel main landing gear.", + "One way to identify a 747-300 aircraft is by its raised cockpit section and elongated nose. Additionally, this aircraft typically has a five-person crew and can seat between 380 and 420 passengers.", + "The aircraft 747-300 can be identified by its large size, unique shape, and the lettering on the side of the plane.", + "The 747-300 can be identified by its distinctive reshaped nose, which improves aerodynamics and reduces drag. The 747-300 also has a longer upper deck than earlier 747 models, which allows for more passenger seating.", + "You can identify an aircraft 747-300 by its large size, wide body, and four engines. The 747-300 also has a distinctive hump on the upper part of the fuselage, just behind the cockpit.", + "An aircraft 747-300 looks like a large, metal airplane with four engines. The body of the plane is long and cylindrical, and the wings are attached to the sides of the body. The nose of the plane is pointed,", + "The 747-300 is a wide-body airliner with a mast head mounted above the cockpit and four engines mounted on pylons below the wings. The 747-300 has a length of 231 feet, a wingspan of 195 feet,", + "Aircraft 747-300s are large planes with a wide body and long wings. They typically have four engines, and their tail sections have a characteristic \"hump\" shape.", + "The 747-300 is a stretched version of the 747-200, with the stretching consisting of about 18 feet 4 inches (5.6 meters). The 747-300 also has a new glass cockpit, which reduced the crew from four to", + "The 747-300 is a stretched version of the 747-200. It has an extended upper deck, which makes it about 18 feet longer than the 747-200. The 747-300 also has a new fuel system and more powerful engines", + "The 747-300 is a wide-body aircraft with four engines. The 747-300 has a stretched upper deck with an additional 20 feet of length. The aircraft is 234 feet long with a wingspan of 212 feet.", + "An aircraft 747-300 looks like a large, wide-bodied plane with four engines. The nose is slightlypointed, and there are two decks of windows.", + "There is no definitive answer to this question as the 747-300 was produced by a number of different manufacturers and each company put its own spin on the design. However, a few common features of the 747-300 include a stretched upper deck", + "An aircraft 747-300 looks like a large plane with four engines. It has a wide body and a long nose. There is a large . The cockpit is located on the upper deck, and there are two passenger decks.", + "A 747-300 is a wide-body jet airliner. The 747-300 typically seats 320 passengers. It has a stretched upper deck, and is the first 747 model to have a two-crew glass cockpit.", + "This image is of a Malaysian Airlines 747-300 taking off. The body of the aircraft is long and slender with a large wingspan. The tail is tall and has the airline's logo on it. The engine nacelles are", + "The image is of an aircraft 747-300 taking off from an airport. The plane is in the air and the sun is shining.", + "This image is of a Virgin Atlantic 747-300 aircraft. The image shows the aircraft from the side, with its distinctive white body and red Virgin Atlantic logo. The aircraft is parked at a gate, with its landing gear down. The image", + "This image depicts a 747-300 aircraft parked on a runway. The large, wide body of the aircraft is visible, as well as its four engines. The image is fairly close up, allowing the viewer to see details such as the door", + "Image shows an aircraft 747-300 on a runway with its landing gear down. Aircraft is silver with blue and white stripes running down the length of the fuselage.", + "The image is of an aircraft 747-300 that is white with blue stripes. The aircraft has four engines and two main wings. There is a window on the side of the aircraft. The nose of the aircraft is pointed.", + "The image is of an aircraft 747-300 that is white with a blue and red stripe going down the side. The nose of the plane is pointed up and there are four engines. The plane is sitting on a runway.", + "This photo shows a 747-300 aircraft on approach to landing. The aircraft is large and looming, with its massive wingspan stretched out over the runway. The photo is taken from below, looking up at the aircraft as it comes in to", + "The image is of a blue and white 747-300 aircraft with a red and white stripe down the side. The nose of the plane is pointing up and there is a small cloud in the background.", + "The image is of an aircraft 747-300. The plane is large with a long body and wings. The nose of the plane is pointed and the tail is tall. The plane is white with blue and yellow stripes running down the sides.", + "An aircraft 747-300 on the runway", + "A Cathay Pacific Airways 747-300 takes off from Hong Kong International Airport.", + "This aircraft, a 747-300, was delivered to China Airlines in 1987 and was the airline's first 747-300.", + "This is a 747-300 aircraft. It is a wide-body commercial airliner that was manufactured by Boeing from 1983 to 1992.", + "The Boeing 747-300 is an American wide-body airliner that was produced by Boeing from 1983 to 1992.", + "The 747-300 was the first stretched variant of the 747, with a stretched upper deck, and entered service in 1983.", + "Aircraft 747-300 on the runway", + "The 747-300 is a stretched version of the 747-200, with a longer fuselage and an increased passenger capacity.", + " A British Airways 747-300 takes off from London Heathrow Airport", + " The Boeing 747-300 on approach to landing.Boeing 747-300 on approach to landing" + ], + "747-400": [ + "The 747-400 is a large, long-range airliner with a wide body and four engines. The airplane is operated by a two-person crew and can carry up to 660 passengers. The 747-400 has a maximum range of 7", + "The 747-400 is a jumbo jet, and has a distinctive 'hump' on the upper fuselage. It is one of the widest commercial aircraft in service, and can seat over 400 passengers. The 747-400 is also", + "An Boeing 747-400 is a wide-body jet airliner typically configured with a capacity between 243 to 365 passengers, and a range of 5,235 to 8,555 nautical miles (9,695 to 15,844 km).", + "A 747-400 is a large, long-range airliner with a stretched upper deck, four engines, and a capacity of 414 to 605 passengers.", + "The 747-400 is a wide-body passenger jet with a distinctive hump on the upper fuselage. It is one of the most recognizable aircraft in the world. The 747-400 is a long-range plane with a range of over", + "The Boeing 747-400 is a four-engine, wide-body jet airliner. It has a double-deck design with a capacity of up to 660 passengers. The aircraft is pressurized and has a flight crew of two.", + "The Boeing 747-400 is a large, long-range airliner with a wide body and four engines. It is the updated version of the 747-300, and can seat up to 416 passengers. The 747-400 has a distinctive upper", + "The exterior of a 747-400 is recognizable by its large size, rounded nose, and four engines. The interior is typically divided into three sections, with first and business class on the upper deck and economy class on the lower deck.", + "A 747-400 is a large, twin-engine jet airplane. It has a long, pointy nose and a high tail. It has four engines, two on each wing. The 747-400 is a very popular airplane, and", + "The 747-400 is a wide-body, twin-engine jet airliner. It is the latest and most advanced version of the 747. The 747-400 is significantly larger than the 747-300, and can carry more passengers and freight", + "The 747-400 is a wide-body, long-range jetliner. It is one of the most advanced and efficient aircraft in the world.", + "The Boeing 747-400 is a wide-body airliner produced by Boeing Commercial Airplanes, the business unit of The Boeing Company. It is the development of the earlier Boeing 747-300, and entered service in 1989 with launch customer Northwest Airlines", + "1. Look for the \"Jumbo Jet\" moniker.2. The final \"-400\" designator indicates that it is a 747 model that was introduced in the late 1980s.3. Look for the enlarged upper deck and extended nose", + "The 747-400 is a wide-body commercial airliner produced by Boeing Commercial Airplanes. Along with the 747-8, it is the longest variant of the 747.", + "Aircraft 747-400 can be identified by its large size, distinctive hump on the upper fuselage, and four engines.", + "The 747-400 is a wide-body jet airliner. It has a distinctive hump on the forward upper fuselage. The hump houses the cockpit.", + "The 747-400 is a wide-body jet airliner built by Boeing Commercial Airplanes. It was the best-selling model of the 747 family of jet airliners.", + "The 747-400 can be identified by its distinctive humped upper deck, which gives it a capacity of 660 passengers in a three-class configuration or up to 868 passengers in a two-class configuration.", + "The 747-400 is a wide-body jet airliner manufactured by Boeing Commercial Airplanes. It has a typical cruise speed of Mach 0.85 (560 mph/901 km/h), with a range of 8, walker Realty", + "The 747-400 can be identified by its slanted nose and the six-foot extension of its upper deck.", + "An aircraft 747-400 looks like a large plane with four engines.", + " 747-400The 747-400 is a wide-body aircraft produced by Boeing Commercial Airplanes. Introduced in 1989, the 747-400 was the third generation of the 747, and the first with a two-crew glass cockpit", + "A 747-400 has a wide body and a hump on the top near the tail.", + "A Boeing 747-400 is a wide-body airliner produced by Boeing Commercial Airplanes. Finishing its maiden flight in 1988, the 747-400 was introduced in 1989. It was the best-selling model of the 747 family of jet", + "The 747-400 is a wide-body, long-haul airliner. It has a distinctive double-deck design with a hump on the upper deck near the front of the aircraft. The 747-400 is the most common version of the", + "A 747-400 looks like a large commercial jet airliner. It has a wide body and four engines. The 747-400 is the most common variant of the 747.", + "Aircraft 747-400s are large, long-range jet airliners. They have a distinctive hump on the top front of the fuselage. The 747-400 is the most common variant of the 747.", + "An aircraft 747-400 looks like a large airplane with two levels of passenger seats and a row of seats along the window on the upper level. The aircraft also has large engines on the sides and a long nose.", + "A 747-400 has a distinctive humped upper deck along the forward part of the aircraft. The 747-400 typically has 4 engines, 3 on the underside of the wing and one on the tail.", + "The image below shows a 747-400:", + "The image is of an aircraft 747-400 sitting on a runway with its engines running. The plane is large and silver with a distinctive nose.", + "The image is of an aircraft 747-400 with a blue and white color scheme. The plane has a long body with four engines and a swept-back wing design. The tail of the plane has a distinctive curl at the end.", + "The image is of an Air France 747-400 on the tarmac. The plane is large with a sleek design. There are several engines and the requisite number of cockpit windows. The overall aesthetic is one of power and grace.", + "The image is of an aircraft 747-400 that is parked on a runway. The plane is white with blue stripes running down the sides. There is a large door on the side of the plane that is open.", + "An image of an aircraft 747-400 can be found at the website of the Boeing company (boeing.com). The image shows the aircraft from the front, with its long body and oversized wings. The aircraft is painted in an", + "Image is of a large white aircraft with red and blue stripes running down the length of the body. The aircraft has four large engines, two on each side, and a long tail. The 747-400 is one of the most popular models", + "The image is of an Air China 747-400 on the tarmac. The plane is olive green with a white top, and has the Air China logo on the side. There is a Chinese flag on the tail.", + " (British Airways)The image is of a large, white aircraft with the British Airways logo on the side. The plane has four engines and is sitting on a runway.", + "Image shows a large, metal Boeing 747-400 airplane with four engines, sitting on a runway. The plane is white with blue and red stripes running down the sides. The words \"United Airlines\" are printed on the side of the plane", + "The image is of a large, silver aircraft with four engines. The nose and tail of the plane are at different levels, and there are large windows along the length of the fuselage. The plane is sitting on a runway.", + "The Boeing 747-400 is a wide-body airliner produced by Boeing Commercial Airplanes. Introduced in 1989, it was the first wide-body airplane produced by Boeing. The 747-400 was produced in many different variants, each offering different", + " The 747-400, the world's most common long-range plane.The 747-400 is the most common long-range plane in the world. It can fly up to 7,670 nautical miles (14,200 km)", + "The 747-400 is one of the most advanced commercial jets in operation today. Its advanced design and powerful engines allow it to carry more passengers and fly longer distances than any other aircraft in its class.", + "Boeing 747-400 at John F. Kennedy International Airport", + "The Boeing 747-400 is a long-range, wide-body airliner produced by Boeing Commercial Airplanes.", + " The 747-400 is a wide-body jet airliner produced by Boeing Commercial Airplanes. It was the third generation of the 747, and the first with a two-crew glass cockpit. The 747-400 typically seats 416 passengers over a range of", + "The 747-400 is a wide-body airliner produced by Boeing Commercial Airplanes. Introduced in 1989, the 747-400 was the next generation of the 747, with a strengthened fuselage, new engines and winglets.", + "Boeing 747-400 aircraft being prepared for takeoff.", + "The 747-400 is one of the most popular aircraft in the world.", + "Boeing 747-400 on approach to runway" + ], + "757-200": [ + "An aircraft 757-200 looks like a large commercial jetliner. It has a long body with two engines mounted on the sides. The aircraft has a swept-back wing design and a tall tail. The 757-200 typically seats", + "An aircraft 757-200 looks like a large commercial jetliner with two engines, a high-mounted wing, and a conventional tail fin. The aircraft is typically painted white with a blue or green stripe running down the length of the fu", + "An aircraft 757-200 looks like a large metal tube with wings. There are two engines mounted on the back of the plane, and the body of the plane is narrow and long. The plane has a pointed nose and a tail that", + "An example of a 757-200 aircraft is the Boeing 757-2Q8. This plane has a white fuselage with blue stripes running along the sides. The aircraft has two engines, each with a cone-shaped exhaust.", + "An aircraft 757-200 is a large plane with two engines. The body of the plane is white with blue stripes running down the sides. The plane has two rows of windows, and the tail has a distinct shape.", + "An aircraft 757-200 is a twin-engine jetliner that seats up to 204 passengers. It has a maximum range of 6,100 miles and a cruising speed of 530 miles per hour. The 757-200 is one of", + "A 757-200 is a twin-engined commercial passenger jet aircraft with a capacity of between 185 and 289 passengers, depending on the variant. It was first flown in 1983 and was produced until 2004. The 757-200 is", + "Boeing 757-200s are narrow-body planes with two engines on the rear. They have a long, tube-shaped body with a pointy nose. The Boeing 757-200 has winglets, which are curved", + "An aircraft 757-200 looks like a large metal tube with wings attached to it. The wings are very long and skinny, and the body of the plane is long and cylindrical. There are many windows along the sides of the", + "The Boeing 757-200 is a narrow-body aircraft that typically has a capacity of between 183 and 239 passengers. It is typically used on short- to medium-haul routes. The aircraft has two engines, afuselage-mounted", + "One way to identify an aircraft 757-200 is by its distinctive hump on the upper fuselage. This hump is where the aircraft's avionics and other electronic equipment are housed. Another way to identify this particular aircraft is by its engines", + "One way to identify an aircraft 757-200 is by its exterior dimensions. This aircraft is approximately 200 feet long and has a wingspan of approximately 155 feet. Additionally, this aircraft typically has two engines mounted on the rear of the fu", + "An aircraft 757-200 can be identified by its large size and long, tapered fuselage. Additionally, this aircraft has two engines mounted on the wings and a large tailfin.", + "The 757-200 is a twin-engine commercial passenger jet that was designed and built by Boeing Commercial Airplanes. It is one of the most popular aircraft models in the world, with over 1,000 units delivered as of 2013.", + "The 757-200 is a twin-engine plane that can seat up to 250 passengers. It has a range of up to 4,100 miles.", + "On the Boeing 757-200, the \"-200\" is typically displayed on the aircraft's tail near the registration number.", + "The aircraft 757-200 can be identified by its long nose and swept-back wings. It is one of the most popular Boeing aircraft and has been in service since 1983.", + "The aircraft 757-200 can be identified by its long landing gear and engines mounted near the fuselage.", + "The 757-200 is a commercial passenger jet that was manufactured by Boeing. It is distinguishable by its twin-engine configuration and its T-tail.", + "The aircraft 757-200 has a stretched fuselage and increased fuel capacity when compared to the 757-100. Additionally, this aircraft has a T-tail and a distinct engine configuration with theCFM56 engines placed under the wing", + "The 757-200 is a twin-engine plane that can seat up to 200 passengers. It has a range of over 5,000 miles and can fly at speeds of over 600 mph.", + "This is a 757-200: https://www.google.com/search?q=757-200&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahU", + "An aircraft 757-200 looks like a large plane with two engines. The body of the plane is long and slender, and the wings are attached to the sides of the fuselage. There are two main landing gear struts underneath the", + "An aircraft 757-200 looks like a large commercial airliner. It has a long, slender fuselage with a pair of engines mounted on the wingtips. The 757-200 can seat up to 290 passengers in a typical configuration.", + "A 757-200 is a twin-engine, narrow-body aircraft. It has a T-tail and large winglets. The aircraft is 175 feet long and has a 152-foot wingspan.", + "The aircraft 757-200 looks like a large metal tube with wings and engines attached.", + "The aircraft 757-200 looks like a large metal tube with wings. The front of the aircraft has a pointed nose and the back has a tall tail. There are two engines mounted on the wings.", + "Here is a picture of a 757-200 aircraft.", + "The aircraft 757-200 looks like a large metal tube with wings. It has two engines, one on each side of the plane. The body of the plane is silver and the wings are white.", + "An aircraft 757-200 looks like a large, metal tube with wings and engines attached. There are typically two doors on the sides of the aircraft for passengers to enter and exit. The 757-200 typically seats between 180 and 220", + "This image is of a 757-200 aircraft in flight. The plane is silver with blue and white stripes running down the length of the fuselage. The wings are extended and the engines are visible at the rear of the plane. The", + "An image of an aircraft 757-200 shows the large jetliner parked on a runway. The jetliner has a long, slender body with a large, swept-back wing. The jetliner is white with blue stripes running along the", + "The image is of a large, silver aircraft with seven windows on each side of the main cabin. The nose of the aircraft is pointed slightly upwards and there are two engines mounted on the wings. The 757-200 is a medium-", + "The image is of an American Airlines Boeing 757-200 aircraft on the runway. The plane is white with blue and red stripes running down the side. The American Airlines logo is visible on the tail.", + "In the image, an aircraft 757-200 is captured taxiing on a runway, with its long nose and swept-back wings visible. The plane looks large and impressive, with a design that is both modern and streamlined.", + "The image shows a 757-200 aircraft with United Airlines livery taxiing on a runway. The aircraft is large with a long fuselage and two engines attached to the wings. The tail of the aircraft is relatively high off the ground", + "An image of an aircraft 757-200 from the internet is a photo of a large, metal airplane with blue and white stripes running down the length of the body. The wings are spread out and there are turbines on the back. The", + "The image is of an aircraft 757-200 on the runway. The aircraft is taxiing to the gate.", + "This image is of a 757-200 aircraft with its engines running. The aircraft is on the runway, ready for takeoff.", + "The image is of a 757-200 aircraft on a runway. The aircraft is silver with blue stripes. There is a blue and white spiral on the tail of the aircraft.", + " A United Airlines 757-200 landing at San Francisco International Airport", + "Aircraft 757-200 landing at an airport.", + "An Air Transat 757-200 aircraft takes off from Toronto Pearson International Airport.", + "Boeing 757-200 landing at Los Angeles International Airport", + "American Airlines Boeing 757-200 taking off from Miami International Airport", + "Theft of an airplane is a federal crime in the United States.This image is of a 757-200, which is a large airplane typically used for long-distance flights. It's unknown how this particular airplane was", + " A United Airlines 757-200 aircraftThis is a photo of a United Airlines 757-200 aircraft. The plane is parked on a runway with its nose pointing up.", + "N757AA, a 757-200 operated by American Airlines, approaches John F. Kennedy International Airport in New York", + "The Boeing 757-200 is a twin-engine aircraft that was first introduced in 1983. It is often used for short to medium-haul flights and can seat up to 218 passengers.", + "The Boeing 757 is a mid-size airliner that was produced by Boeing Commercial Airplanes from 1981 to 2004. The 757 was designed to replace the smaller 727 and was produced in two fuselage lengths. The original 757-" + ], + "757-300": [ + "An aircraft 757-300 looks like a large metal tube with wings. It has several rows of seats inside and is typically used for commercial travel.", + "The Boeing 757-300 is a stretched version of the 757-200, and is capable of seating up to 289 passengers. It is 63.9 m long, has a wingspan of 44.5 m, and a maximum", + "A 757-300 is a twin-engine, narrow-body aircraft that can seat up to 289 passengers. It has a swept-back wing design and a T-tail. The aircraft is made by Boeing and was first introduced in", + "An aircraft 757-300 may have a length of 186 feet, a wingspan of 155 feet, and a cockpit for a crew of two. It can seat up to 289 passengers and has a range of over 4,000 miles.", + "The 757-300 is a stretched version of the 757-200, and seats up to 289 passengers. It is 19 feet longer than the 757-200, and has an increased wing span and fuel capacity. Additionally, the", + "An aircraft 757-300 looks like a large commercial jetliner with two engines. It has a long body with a blunt nose and a swept-back tail. The 757-300 has a wingspan of 155 feet (47 meters", + "An aircraft 757-300 is a large commercial airliner with a typical seating capacity for about 280 passengers. Its dimensions are roughly 19 feet wide, 29 feet tall, and 150 feet long. The 757-300 has two jet engines mounted", + "The 757-300 is a stretched version of the 757-200 and can seat up to289 passengers. It is 61 feet 7 inches (18.77 meters) long, has a wingspan of124 feet 10 inches (38", + "Aircraft 757-300 is a large aircraft. The body is long and slim with a pointy nose. The wings are large and swept back. There are two engines mounted on the back of the aircraft.", + "The 757-300 is a twin-engine jetliner that was introduced in 1983. It is narrow-bodied and has a capacity of up to 305 passengers.", + "The McDonnell Douglas 757 is a mid-size, single-aisle twin-engine jet airliner that was designed and built by McDonnell Douglas. The 757 was produced in two fuselage lengths. The original 757-200 entered service", + "The aircraft 757-300 can be identified by its long length and large, swept-back wing. It has two engines mounted on the rear of the fuselage.", + "The aircraft 757-300 can be identified by its long fuselage, its swept-back wings, and its engines mounted on the rear of the fuselage.", + "It is a large, twin-engined jetliner with a capacity of up to 305 passengers. It has a stretched fuselage compared to the 757-200, and is used primarily on long-haul routes.", + "An aircraft 757-300 can be identified by its long nose and swept wings. Additionally, the 757-300 has a stretched fuselage which is about 18 feet longer than the 757-200.", + "The 757-300 is a stretched version of the 757-200, and thus can be identified by its increased fuselage length. It is also equipped with winglets, which are not present on the 757-200.", + "There is no definitive answer to this question, as the 757-300 can vary greatly in appearance depending on the specific airline and livery that it is wearing. However, some common characteristics of the 757-300 include its larger size", + "The aircraft 757-300 can be identified by its long body and its large engines.", + "An aircraft 757-300 can be identified by its large size and distinctive engines. It is also often referred to as a \u201cstretched\u201d 757 due to its longer fuselage.", + "The aircraft 757-300 can be identified by its distinctive tailfin and engines. Additionally, the 757-300 has a stretched fuselage compared to other 757 models, which is easily visible from the outside.", + "Aircraft 757-300 look like a large commercial jetliner with two engines.", + " Boeing 757-300The 757-300 is a stretched version of the 757-200, and entered service with launch customer UATP in January 1999. The stretched 757-300 can seat up to 289 passengers", + "The Boeing 757-300 is a stretched version of the 757-200. It entered service in 1999 with American Airlines and is commonly used on transcontinental routes. The 757-300 is 31 feet (9.4 m)", + "Aircraft 757-300 is a large, twin-engine airplane that seats up to 300 passengers. It has a wide body and is typically used for long-haul flights.", + "Image result for 757-300", + "The 757-300 is a twin-engine, long-range commercial airliner. It is narrow-bodied and has a T-tail. It is used mainly for transcontinental and transatlantic routes.", + "Image result for 757-300", + "Image of a 757-300 aircraft https://www.google.com/search?q=757-300+aircraft&tbm=isch&ved=2ahUKEwjV0N3OwPv", + "Image result for 757-300", + "The 757-300 is a Boeing 757 aircraft with an extended body length of 189 feet, 8 inches. It typically has a two-class configuration with seating for up to279 passengers.", + "The plane is silver with a blue stripe and has the words \"United Airlines\" written on the side. The plane has two engines and two rows of windows.", + "This image is of an aircraft 757-300 taking off. The 757-300 is a twin-engine aircraft with a capacity of up to 295 passengers. It is usually used for long-haul flights.", + "The image is of an aircraft 757-300 landing at an airport. The aircraft is white with blue and red stripes. The tail has a large blue and red stripe. The wings are swept back. The aircraft has two engines.", + "In the image, an aircraft 757-300 is shown taxiing on a runway. The plane is large and silver with blue and white stripes running down the sides. There is writing on the tail of the plane that reads \"United Airlines", + "The image is of an American Airlines 757-300 taking off from runway 27R at San Francisco International Airport. The plane is lifting into the air, its belly painted with the American Airlines logo. The wheels are still visible as they retract", + "The image is of a 757-300 aircraft on a runway. The nose of the plane is pointing up and the tail is down. The plane is surrounded by a blue sky with some clouds.", + "The image is of a 757-300 airplane with the United Airlines livery. The plane is shown at an angle with its landing gear down. The image is against a blue sky with some clouds.", + "This particular image is of a Delta Airlines 757-300 taking off from Cincinnati/Northern Kentucky International Airport. The image shows the plane as it begins its takeoff roll down the runway. The sun is shining and the sky is clear, giving", + "An image of an aircraft 757-300 from the internet shows a large, white plane with blue and red stripes running down the sides. The plane has two engines, and a long, pointed nose. There are windows all along the sides", + "This image is of a 757-300 aircraftiang on a runway. The plane appears to be clean and well-maintained. There is no debris or dirt on the landing gear or fuselage. The plane has a white body", + "Boeing 757-300 taking off from JFK International Airport", + " \"Boeing 757-300 of American Airlines, the world's largest airline.\"", + "Aircraft 757-300 of American Airlines at John F. Kennedy International Airport", + "An example of a 757-300, a McDonnell Douglas aircraft that was delivered to TWA in 1996.", + "Captain Larry David and First Officer Mark Horowitz at the controls of a Boeing 757-300.", + "The 757-300 is a stretched version of the 757-200, and was first introduced in 1996. It is 37 feet longer than the 757-200, and can seat up to 289 passengers.", + "Boeing 757-300 landing at Los Angeles International Airport", + " A United Airlines Boeing 757-300 landing at Newark Liberty International Airport.", + "Aircraft 757-300 on taxiway", + " American Airlines flight 757-300 taking off." + ], + "767-200": [ + "An aircraft 767-200 looks like a large metal tube with wings attached to it. There are usually two rows of seats inside, and the engines are usually located on the back of the plane.", + "A 767-200 is a twin-engined, long-range airliner developed and manufactured by Boeing Commercial Airplanes. The 767-200 was the first member of the 767 family and was launched in 1978 as a stretched version", + "The 767-200 is a long-range narrow-body twin-engine jet airliner produced by Boeing Commercial Airplanes. The aircraft has a seating capacity for 186 to 310 passengers, and a range of 5,200 to 6,590", + "An aircraft 767-200 looks like a large metal tube with wings attached to it. There are usually two engines attached to the wings, and the body of the airplane is long and slender. The tail of the aircraft is tall and point", + "An aircraft 767-200 is a twin-engine, mid-size commercial airplane. It typically has a capacity of between 180 and 210 passengers.", + "An aircraft 767-200 looks like a large metal tube with wings attached. There are usually two engines mounted on the wings, and the body of the aircraft is divided into two sections: the cockpit, where the pilot and copilot", + "An aircraft 767-200 looks like a large metal tube with wings attached to it. There are two engines mounted on the wings, and the body of the aircraft is narrow and elongated. The 767-200 has a very distinctive", + "An aircraft 767-200 looks like a large, metal tube with two wings protruding from the sides. There are two engines attach to the back end of the plane. The 767-200 has a capacity of fly between 180 and", + "The Boeing 767 is a wide-body twin-engine jet airliner produced by Boeing Commercial Airplanes. The airliner's first flight took place on September 26, 1981, and it was introduced in 1982 as the 767-200. The", + "The 767-200 is a twin-engined aircraft with a wide body. It typically has a capacity of between 180 and 220 passengers, and a range of between 3,700 and 6,200 miles.", + "The 767-200 is a twin-engined, mid-size wide-body airliner produced by Boeing Commercial Airplanes from 1981 to 1988. It first flew in September 1981, and its production ended in 1988 after 188 were built.", + "An aircraft 767-200 can be identified by its long, slender body and its two engines mounted on the rear of the fuselage. It has a distinctive nose, and its tail is smooth with no fin.", + "The Boeing 767-200 can be identified by its long, narrow fuselage and swept-back wings. It has a two-person crew and can seat up to 242 passengers. It is powered by two jet engines and has a range", + "There is no definitive answer to this question, as the 767-200 can vary slightly in appearance depending on the airline it is used by. However, some common identifying features of the 767-200 aircraft include its large size, swept", + "The 767-200 is a twin-engined, short- to medium-range airliner that was produced by Boeing Commercial Airplanes from 1981 to 1988. The 767-200 has a capacity of 180 to 218 passengers and a range", + "If you are looking at an aircraft and you know it is a 767-200, you can identify it by its large size and dual engines. This aircraft is also recognizable by its long, tapered nose and swept-back wings.", + "An aircraft 767-200 has a distinctive pointed nose and raised cockpit. The wings are swept back and tapered with winglets. The tail is tall and thin with a slight swept back angle. There are two engines mounted on the wing", + "The 767-200 is a mid-size, wide-body twin-engine jet airliner produced by Boeing Commercial Airplanes. It first flew in 1982 and was delivered in 1984.", + "The 767-200 is a twin-engined, mid-size commercial airliner. It was first flown in 1982 and was produced until 1994.", + "The aircraft 767-200 can be identified by its length, which is about 159 feet, and its wingspan, which is about 156 feet. It can also be distinguished by its two engines, which are located on the wings.", + "a 767-200 aircraft looks like a large metal tube with wings attached to it. The wings are usually silver or white, and the body of the aircraft is typically a dark color like blue or black. There are typically two engines attached", + "Image result for 767-200", + "Image result for 767-200", + "A 767-200 aircraft has two engines and a T-tail. The aircraft is 158 feet long and has a wingspan of 156 feet.", + "An aircraft 767-200 looks like a large metal tube with wings attached to it. It has two engines, one at the front and one at the back, and two sets of doors on the side for passengers to board.", + "The aircraft 767-200 looks like a large metal tube with two wings and several engines. The body of the aircraft is divided into two sections: the cockpit and the passenger cabin. The cockpit houses the pilot and co-pilot,", + "Image result for 767-200", + "Image result for 767 200 aircraft seats", + "The Boeing 767-200 is a mid-size, wide-body twin-engine jet airliner. It was the first wide-body jetliner produced by Boeing, and was the company's second twin-engine commercial airliner after the 7", + "A 767-200 aircraft typically has a length of 159 feet and a wingspan of 157 feet. The aircraft is also relatively narrow, with a width of only 15 feet.", + "This image is of a red and white 767-200 aircraft with its engines running. The plane is on a runway, ready for takeoff.", + " landingI cannot provide an image due to copyright reasons, but an image of an aircraft 767-200 landing would typically show the plane touching down on the runway with its landing gear extended. The weather conditions would likely be clear, and the", + "The image is of an aircraft 767-200 on a runway. The aircraft is large with two engines and a long body. There are two sets of doors on the aircraft, one at the front and one at the rear.", + "The image is of an aircraft 767-200 against a backdrop of white clouds and blue sky. The aircraft is silver and has two engines. There is a American flag on the tail fin.", + "The image is of an aircraft 767-200 flying through the clouds. The aircraft is white with blue and red stripes running down the sides. The tail of the aircraft is blue with a red stripe in the middle. The aircraft has two", + "ERThe image is of an aircraft 767-200ER on the runway. The aircraft is white with blue and red stripes running down the side. The aircraft has its landing gear down and is ready for takeoff.", + "This image is of an aircraft 767-200 that is parked on a runway. The nose of the aircraft is pointed up and the tail is down. The engines are off and there is no activity around the aircraft.", + "The image is of an aircraft 767-200 taking off. The aircraft is large with 2 engines and a long body. There are few passengers visible in the windows. The aircraft is lifting off the ground, with the wheels still visible.", + "The image is of a 767-200 aircraft in flight. The plane is white with blue and red stripes running along the sides. There is a large, green and white 767 logo on the tail.", + "The image is of an American Airlines Boeing 767-200 landing at Miami International Airport. The aircraft is landing on runway 8R, and is taxiing to the gate.", + "This is a 767-200 aircraft. It is a twin-engine, wide-body plane that was first introduced in 1982.", + "Boeing 767-200 aircraft taking off from JFK airport", + " A United Airlines 767-200 approaches O'Hare International Airport in Chicago, Illinois.", + "One of the earliest 767s still in service, this aircraft has been flying passengers across the world for over three decades.", + "Boeing 767-200 refueling mid-flight", + " \"Boeing 767-200 aircraft with livery of Air Canada.\"", + "Boeing 767-200 aircraft operated by American Airlines", + "The Boeing 767 is a twin-engined airliner with a capacity of about 200 passengers. It was first introduced in 1982 and is still in production today.", + "Boeing 767-200 aircraft landing at JFK airport in New York", + " A 767-200 aircraft operated by American Airlines." + ], + "767-300": [ + "The 767-300 is a wide-body aircraft with two engines attached to the undersides of the wings. It has a long, narrow fuselage and a pair of tail fins. The 767-300 typically seats between 210 and", + "An aircraft 767-300 looks like a large metal tube with wings attached to it. There are usually two engines on the wings, and the aircraft has two sets of landing gear. The body of the aircraft is long and slender, and", + "An aircraft 767-300 is a large airplane with two engines. It has a long body and a wide wingspan. The 767-300 can seat up to 375 passengers.", + "An aircraft 767-300 looks like a large metal tube with wings and engines attached. It typically has two rows of seats inside, with space for luggage and freight in the back. The exterior is usually white with blue and red stripes running", + "The aircraft has a long body with two wings coming off the sides. There are two engines at the back of the plane.", + "An aircraft 767-300 is a large twin-engine jetliner with two main passenger decks. It has a wide body and is typically used for long-haul flights.", + "The Boeing 767 is a twin-engined, wide-body commercial airliner. Developed in collaboration with various international partners, the 767 is a shorter, wide-body twinjet derivative of the 747. The aircraft's wing design", + "The Boeing 767-300 is a wide-body jetliner produced by Boeing Commercial Airplanes. The 767-300 model was introduced in 1986 and further developed with the 767-300ER (Extended Range) model in 1988", + "Due to the many different airlines that fly the 767-300, there are a variety of ways that the aircraft may look. In general, the 767-300 is a twin-engine, wide-body jetliner. It typically", + "The Boeing 767 is a wide-body airliner produced by Boeing Commercial Airplanes. The airliner's first flight was on September 26, 1981, and it entered commercial service with Eastern Air Lines on December 1982. Passenger variants of the 767", + "The Boeing 767-300 is a wide-body airliner that was produced by Boeing Commercial Airplanes. It was launched in 1986 as the stretched variant of the 767-200 and entered commercial service in 1988.", + "The 767-300 can be identified by its long fuselage and swept-back wings. Additionally, it has two engines mounted on the wingtips.", + "The 767-300 is a Boeing wide-body twin-engine jetliner. It is a stretched and longer-range variant of the 767-200.", + "The aircraft 767-300 can be identified by its long body and wingspan. It is also unique among other aircraft in its class because of its unique engines. The 767-300 is powered by two Pratt & Whitney PW4000 engines", + "You can identify an aircraft 767-300 based on its size and shape. The 767-300 is a large aircraft with a wide body and two engines. It is also distinguished by its large, oval-shaped cockpit windows.", + "The Boeing 767-300 is a stretched version of the 767-200 and entered service in 1986. It is distinguishable from the 767-200 by its longer fuselage and larger wings. The 767-300 can seat", + "If you are looking at an aircraft and it has two engines, a long body, and a curved wing, it is most likely a 767-300.", + "The 767-300 can be identified by its large size, twin engines, and swept-back wings. This aircraft is also often used for long-haul flights.", + "The 767-300 has a typical twin-aisle layout with a wide-body fuselage. It is powered by two turbofan engines and has a range of 5,200 to 6,590 nautical miles. Additionally,", + "The 767-300 is a Boeing twin-engine wide-body airliner that was introduced in 1986. It is the successor to the 767-200 and is the second generation of the 767. The 767-300 has a", + "The 767-300 is a wide-body aircraft with two engines, a T-tail, and a pair of underwing passenger entry doors. It typically seats between 250 and 290 passengers.", + "http://upload.wikimedia.org/wikipedia/commons/6/6b/Boeing_767-332.jpg", + "An aircraft 767-300 looks like a large plane with two engines. It has a long body and a large wing span.", + "Image result for 767-300 aircraft", + "The Boeing 767-300 is a wide-body aircraft produced by Boeing Commercial Airplanes. It is the third and longest-lived incarnation of the 767, succeeding the 767-200 and preceding the 767-400ER.", + "The 767-300 is a wide-body airplane produced by Boeing Commercial Airplanes. It is a stretched version of the 767-200, and features two extra fuselage segments, with a total length of 201 feet. The 7", + "Here is an image of a 767-300:", + "Here is a picture of a Boeing 767-300. This particular plane is operated by Delta Airlines.", + "An aircraft 767-300 looks like a large metal tube with wings and engines. It is typically painted with the airline's colors and logo.", + "The 767-300 is a wide-body aircraft with two engines and two aisles. It has the same fuselage length as the 767-200, but with a wider wing and taller tail. The 767-300", + "Image shows a 767-300 aircraft with a white body and blue stripes. The aircraft has two engines and two rows of windows. The wings are curved and the tail is long.", + "The image is of an aircraft 767-300 on a runway. The aircraft is large with two engines and a sleek design. The aircraft is white with blue and red stripes running along the length of the fuselage. The wings are extended", + "The image from the internet is of an aircraft 767-300 at takeoff. The plane is standing on the runway with its engines at full power and its nose pointing up into the air. Its tail is lifted off the ground and its wings", + "The image is of a 767-300 aircraft with its engines running. The plane is on a runway, ready for takeoff.", + "The image is of an aircraft 767-300 on the ground with its engine running. The aircraft is taxiing to the runway.", + "The image is of a large, silver aircraft with two levels of windows. The upper level has small windows and the lower level has large windows. There are two engines on the back of the plane and the tail is long and pointy.", + "The image shows a large, silver aircraft with two tails and two engines. The plane has blue and white stripes running down the length of its body. There are small windows along the side of the plane. The nose of the aircraft is pointed", + "I found an image of a 767-300 on the internet. It shows the aircraft from the front, with its long nose and two engines. The cockpit windows are visible, and the wings are swept back. The image is in black", + "This image shows a Boeing 767-300 aircraft in flight. The plane is white with blue and red stripes running along its length. The tail is marked with the red, white, and blue stripes of the American flag.", + "Image shows a large, silver aircraft with red and blue stripes running down the sides. The aircraft has two engines and two pairs of wings, one above the other. The nose of the aircraft is pointed, and there is a large glass cockpit", + "The Boeing 767-300 is a twin-engined wide-body airliner produced by Boeing Commercial Airplanes. Launched in 1986, and first delivered in 1988, it was developed in conjunction with the 757 as a wide-body", + " A Delta Air Lines 767-300 taxis to its gate at San Francisco International Airport", + "Boeing 767-300", + "United Airlines 767-300 on approach to Denver International Airport", + "This is a Boeing 767-300, a twin-engined wide-body airliner. It is used on long-haul routes, typically carrying between 247 and 300 passengers.", + " A Boeing 767-300 aircraft operated by Delta Air LinesThis Boeing 767-300 aircraft is operated by Delta Air Lines and is used on both domestic and international routes. It can seat up to 375 passengers in a three-class configuration", + " Boeing 767-300", + "Boeing 767-300 aircraft operated by Delta Air Lines", + "A Boeing 767-300 commercial airliner. This specific model was first delivered to United Airlines in 1986.", + "Continental Airlines Flight 191 was a McDonnell Douglas DC-10-10 that crashed on May 25, 1979, during takeoff from Dallas-Fort Worth International Airport. The crash killed 137 people, making it the deadliest aviation disaster in U.S" + ], + "767-400": [ + "The 767-400 looks like a large, twin-engine jetliner. It has a long, narrow fuselage and two engines mounted on the wings. The 767-400 has a range of over 7,000 miles and can", + "An aircraft 767-400 is typically a twin-aisle aircraft with a capacity of about 300 passengers. It has a wingspan of about 157 feet and a length of about 180 feet.", + "An aircraft 767-400 looks like a large airplane with two engines attached to the sides. The body of the plane is long and thin, and there are two sets of wings, one near the front and one near the back. The", + "It looks like a large, metal tube with wings attached. There are two engines on the back, and the body is long and slender. The 767-400 is a wide-body aircraft, which means it has two aisles", + "The 767-400 is a wide-bodied aircraft with a cockpit for the pilots at the front and two passenger decks. The plane has a distinctive hump on the top near the tail.", + "An aircraft 767-400 looks like a large, commercial plane with two engines, usually used for long-distance flights. It can seat up to 375 passengers and has a range of over 6,000 miles.", + "Boeing 767-400s are medium-to-long-range, twin-engine wide-body jets. They have a two-crew glass cockpit and can seat between 242 and 375 passengers. 767-400s have", + "The 767-400 is a wide-bodied aircraft with a double deck. It has a length of 242 feet and a wingspan of 212 feet. The 767-400 can seat up to 375 passengers and has a range of 5", + "The 767-400 is a twin-engine, wide-body commercial airplane. It is boxy with a long fuselage. The wings are swept back and angled. The engines are mounted on the wings. The tail is tall and", + "It is a wide-body twin-engine jet airliner. It has a stretched fuselage compared to the -300 model. It also has winglets to improve fuel efficiency.", + "There is no easy way to identify an aircraft 767-400 by looking at it. The only way to be sure is to check the aircraft's registration number against a database of aircraft types.", + "The 767-400 is a wide-body twin-engine aircraft produced by Boeing Commercial Airplanes. It is the stretched and updated version of the 767-300 and was introduced in 2000. The 767-400ER is a", + "There is no definitive answer to this question, as the 767-400 is a relatively new aircraft model and there are no easily identifiable features that set it apart from other 767 models. However, some ways to identify a 767-", + "The 767-400 can be distinguished from other 767 models by its longer fuselage, extended-span wing with raked wingtips, and adjustable spoiler panels on the trailing edges of the wings.", + "There is no definitive answer to this question, as the aircraft can vary slightly in appearance depending on the airline operating it. However, some common identifying features of the 767-400 aircraft include its large size, two engines, and swept-", + "An aircraft 767-400 has a distinctive shape with a large area near the tail. It also has two engines, which are mounted on the wings.", + "The 767-400 is a large twin-engined commercial airliner produced by Boeing Commercial Airplanes. It is a stretched and updated variant of the 767-300, and debuted in 1998.", + "The Boeing 767-400 is a long-range wide-body twin-engine jet airliner produced by Boeing Commercial Airplanes. It is the successor to the 767-300 and is the fourth generation of the 767. The 7", + "The aircraft 767-400 can be identified by its long nose and swept-back wingtips. Additionally, this aircraft has a distinctive three-person cockpit configuration with the captain sitting in the center.", + "The 767-400 is a twin-engined wide-body jet airliner produced by Boeing Commercial Airplanes. It was the first derivative of the wide-body twinjet Boeing 767, and features a stretched fuselage, increased wings", + "Aircraft 767-400 looks like a large metal tube with wings. It has two engines, a tail, and landing gear. The body of the aircraft is divided into three sections: the cockpit, the main cabin, and the cargo", + "The 767-400 is a stretched version of the 767-300, with 42.42 meters (139 ft 3 in) added to the fuselage length and 6.43 m (21 ft 1 in) added to the wings", + "An aircraft 767-400 looks like a large commercial airliner with two engines mounted on the wings. It can seat up to 400 passengers and has a range of approximately 7,000 miles.", + "An aircraft 767-400 looks like a large metal tube with wings and engines attached. It is typically silver or white in color.", + "The 767-400 looks like a slightly stretched and updated version of the earlier 767-300 model. It has a longer fuselage and wing, and updated engines and avionics.", + "The 767-400 is a wide-body commercial airliner produced by Boeing Commercial Airplanes. The 767-400 seat map has a total of 244 seats, including 26 first-class seats, 48 business-class seats, and 170", + "Some aircraft 767-400s have a raised cockpit area, while others have a more traditional layout. The 767-400 typically seats between 180 and 290 passengers and has a range of between 6,700 and 7,600 miles.", + "Image result for 767-400", + "Image result for 767-400", + "Aircraft 767-400 look like a large metal tube with wings attached. They typically have two engines, and can seat anywhere from 150-300 passengers.", + "The image shows a 767-400 aircraft on a tarmac. The nose and cockpit of the plane are visible, as well as the engines. The plane is white with blue and red stripes.", + "Image shows a large, silver aircraft with swept-back wings and engines mounted near the tail. The 767-400 is a wide-body jetliner designed by Boeing Commercial Airplanes.", + "The image is of an Air Canada 767-400 taking off from Toronto's Pearson International Airport. The aircraft is caught in mid-air as it leaves the runway, with its nose pointing up and its engines at full power. The image", + "This image is of a 767-400 aircraft, a twin-engined wide-body airliner produced by Boeing Commercial Airplanes. It has a distinctive hump on the fuselage behind the wing, and many different airlines use it for long", + "In the image, an aircraft 767-400 is pictured taxiing down a runway with its landing gear lowered. The body of the plane is silver with blue and white stripes running along the sides. The wings are also silver with blue and", + "The image shows a 767-400 aircraft on a runway. The aircraft is large with a long body and wings. The engines are at the back of the plane. The image is in color.", + "The image is of a large, silver aircraft with blue and white stripes running down the sides. The aircraft has two engines and two tails. There is a side door near the back of the plane. The plane is on a runway with other", + "This image is of a large, silver aircraft with two engines and a large tail. The aircraft is sitting on a runway with its landing gear down.", + "This image is of a Boeing 767-400 aircraft. The 767-400 is a wide-body jetliner that was produced by Boeing from 1998 to 2006.", + "Image shows a large, silver airplane with blue and white stripes against a bright blue sky. The airplane has two engines, four main landing gear, and a long body with a swept-back wing design. Smoke trails from the engines.", + "An aircraft 767-400 on the tarmac.", + "The Boeing 767-400 is a twin-engined wide-body airliner with a capacity of up to 375 passengers. It was introduced in 2000 and is the successor to the 767-300.", + "Boeing 767-400, a twin-engined wide-body airliner produced by Boeing Commercial Airplanes", + "Boeing 767-400\nThis is a long-range, twin-engine jetliner that was first introduced in 2000. It is often used for passenger and cargo flights.", + "Taking off from Los Angeles International Airport, this Boeing 767-400 aircraft is bound for Tokyo Narita Airport.", + "American Airlines 767-400 taking off from John F. Kennedy International Airport.", + "Boeing 767-400 landing at San Francisco International Airport", + "Boeing 767-400 aircraft on runway", + "A Delta Air Lines 767-400 approaches the runway for takeoff.", + "The 767-400 is a long-range, wide-body twin-engine jetliner produced by Boeing Commercial Airplanes." + ], + "777-200": [ + "It is a large twin-engined jet airliner with a widebody cabin. The 777-200 has a typical range of 5,235 to 9,380 nautical miles (9,695 to 17,370 km), and a capacity", + "The 777-200 is a twin-engine plane with a wide body. It has a long nose, and the body tapers toward the back. The tail is high, and there are two engines mounted on the wings.", + "The Boeing 777-200 is a twin-engine long-range airplane. It has a capacity of 300 passengers and a range of 7,370 miles. It is 224 feet long and has a wingspan of 213 feet. The airplane is", + "The Boeing 777-200 is a twin-engine, long-range plane that can hold up to 300 passengers. It is usually used for long-haul flights and has a range of over 5,000 miles. The plane is 181 feet", + "The aircraft 777-200 is a long, wide body plane with two rows of windows on each side. It has a pointy nose and a long tail.", + "The 777-200 is a wide-body airliner manufactured by Boeing Commercial Airplanes. It is the world's largest twinjet and has a typical seating capacity for 314 to 451 passengers, with a range of 5,235 to 9,380", + "The 777-200 is a twin-engine, wide-body airplane that can seat up to 350 passengers. It has a swept-back wing design and a tall, tapered tail. The 777-200 is one of the most popular", + "The 777-200 is a two-engine plane with a long body and a pointy nose. It has a sleek design and is often used for long-distance flights.", + "The exterior of a 777-200 aircraft is sleek and aerodynamic with a long, pointy nose and swept-back wings. The cockpit is located on the top of the fuselage, and the engines are attached to the wings. There", + "The 777-200 is a twin-engine, wide-body jet airliner with a capacity of up to 366 passengers. It is typically configured with two aisles and seat rows that are ten abreast. The airplane is 214 feet", + "The only way to positively identify an aircraft is by its tail number. The 777-200 is a large twin-engine jetliner with a capacity of between 300 and 350 passengers. It has a range of between 5,235 and 9,", + "The letters and numbers 777-200 identify an aircraft model, not a specific aircraft. The 777-200 is a long-range, wide-body, twin-engine jet airliner made by Boeing.", + "The aircraft 777-200 can be identified by its swept-back wings and long body.", + "The Boeing 777-200 is a twin-engine wide-body aircraft with a capacity of 299 passengers. It has a range of 5,235 miles and a cruising speed of 567 mph. The 777-200 is part of the 777", + "The aircraft is a twin-engine and has a capacity of 300 passengers.", + "The aircraft model number is generally located on the aircraft's fuselage near the door. Sometimes the model number is on the inside of the door.", + "The 777-200 is a long-range, twin-engine jetliner. It has a sleek, tapered body with a long fuselage. The wings are swept back and angled. The engines are mounted on the wings. The tail", + "The only way to identify an aircraft 777-200 is by its serial number.", + "The aircraft is a large, twin-engine plane that can typically seat between 300 and 350 passengers. The plane has a distinctive hump on the upper part of the fuselage, just behind the cockpit.", + "The 777-200 is a twin-engine, wide-body jet airliner that was developed by Boeing Commercial Airplanes. It is the world's largest twinjet and has a typical seating capacity for 314 to 451 passengers, with a range of", + "An aircraft 777-200 looks like a modern airliner with two engines attached to the sides of the fuselage. The 777-200 is a longer version of the original 777-100 and can seat up to 350 passengers.", + "A plane 777-200 looks like a large metal tube with wings attached to it. The plane has two engines, one on each side of the body, and a large tail. The plane is usually white with a blue or red stripe running", + "The Boeing 777-200 is a twin-engine, long-range airliner manufactured by Boeing Commercial Airplanes. It was unveiled during a ceremony at the Boeing Everett Factory on January 9, 1995 and first flew on June 12, 1995. As", + "The Boeing 777-200 is a twin-engine long-range airplane with a capacity of 314-451 passengers. It is usually configured with three classes of seats, and has a range of 5,235 to 9,380 miles. The", + "The 777-200 is a wide-body commercial airliner. The exterior of the plane is painted white with blue and red stripes running down the length of the fuselage. The plane has two engines mounted on the wings and a large tail fin", + "The 777-200 is a long-range, twin-engine airliner developed and manufactured by Boeing Commercial Airplanes. It is the world's largest twinjet and has a typical seating capacity for 314 to 451 passengers, with a range of 5", + "The Boeing 777-200 is a twin-engine, long-range jetliner. It has a wide body and is often used for international flights.", + "The Boeing 777-200 is a twin-engine long-range airliner. The 777-200 has a seats-full range of 7,870 nautical miles (14,540 km) and can carry up to 314 passengers in a three", + "An aircraft 777-200 looks like a large silver airplane with two engines.", + "There is no definitive answer to this question as aircraft models can vary significantly, even within the same make and model. However, a typical Boeing 777-200 aircraft isdescription generally oval-shaped with a long, tapered nose and large wings", + "The image is of an aircraft 777-200 flying through the air with its landing gear down. The 777-200 is a wide-body aircraft with a long, pointed nose. It has two engines mounted on the wings and a large tail", + " taking offThis image is of an aircraft 777-200 taking off. The aircraft is in the air and the engines are roaring. The sun is shining and the sky is blue.", + "The image is of an aircraft 777-200 on the tarmac. The aircraft is gray with red and white stripes running along the length of the body. There is a silver engine on each wing. The nose of the aircraft is pointed and", + "Describe an image from the internet of an aircraft 777-200The image is of a large, silver aircraft with a wide body and large, swept-back wings. It has a long fuselage with a tall tail fin.", + "The image is of a large, silver aircraft with the name \"777-200\" printed on the side. The photo is taken from the ground, looking up at the plane as it stands on the tarmac. The 777 is a commercial", + "The image is of a large, silver airplane with red and blue stripes running down the length of the body. The 777-200 is one of the most popular and recognizable types of aircrafts.", + "This image is of a 777-200 aircraft. The aircraft is silver with blue and white stripes. The nose of the aircraft is pointed and the wings are swept back. The engines are at the rear of the aircraft. The landing gear is", + "The image is of an aircraft 777-200 in flight. The plane is a long, sleek, silver aircraft with two engines. There is a blue and white sky in the background.", + "An image of an aircraft 777-200 can be found at:\nhttps://www.google.com/search?q=777-200+aircraft&tbm=isch&tbo=u&source=univ&", + "The image is of a large, silver aircraft with long, thin wings. The body of the aircraft is slightly tilted. There are two engines at the back of the aircraft, and the jets are pointing downwards. The tips of the wings are", + "This is a 777-200, a long-range, wide-body twin-engine jet airliner.", + " Boeing 777-200 on approach to Runway 33L at Seattle-Tacoma International Airport.", + "Boeing's 777-200 is a wide-body, twin-engine jet with a capacity of 300 passengers.", + "An airplane flying high in the sky.", + "An airplane of the 777-200 model from aviation company Boeing", + " Planes keep American connectedThe caption explains that the aircraft in the image is a 777-200, which is a type of plane that is used by many airlines in the United States. It notes that the plane is responsible for connecting many people in", + "Aircraft 777-200 of China Southern Airlines at Guangzhou Baiyun International Airport", + "Boeing 777-200 aircraft", + "Boeing 777-200 aircraft on the tarmac", + " Boeing 777-200 aircraft" + ], + "777-300": [ + "The 777-300 is a long-range, wide-body airliner developed by Boeing Commercial Airplanes. Based on the 777-200, it was lengthened by 6.9 m (22 ft 8 in). Its launch customer,", + "An aircraft 777-300 is a large plane with two engines and a wide body. It can seat up to 350 passengers and has a range of over 7,000 miles.", + "The 777-300 is a long-range, wide-body twin-engine jet airliner designed and built by Boeing. Based on the 777-200, it was enhanced with extra fuel capacity in the form of wingtip fuel tanks, r", + "The 777-300 is a twin-engine, long-range wide-body airliner. It is the largest member of the successful 777 family, and is the world's second-largest twinjet after the Airbus A380. The 777-", + "The 777-300 is a wide-body aircraft with a stretched fuselage compared to the 777-200. It is capable of carrying up to 550 passengers and has a range of over 7,000 nautical miles. The aircraft is powered", + "The plane is huge! It's long and has a lot of windows. The body is mostly silver with a blue stripe running down the side. The tail is tall and has a pointy end. There are two engines on the plane,", + "The Boeing 777-300 is a stretched version of the -200, and features raked wingtips similar to those found on the Boeing 767-400ER. The 777-300 is the longest-range airliner in service as of 2019", + "The Boeing 777-300 is a long-range, wide-body twin-engine airliner manufactured by Boeing Commercial Airplanes. It is the world's largest twinjet and has a typical seating capacity for 314 to 451 passengers, with a range", + "The Boeing 777-300 is a long-range wide-body twin-engine jet airliner developed and manufactured by Boeing Commercial Airplanes. It is the world's largest twinjet and has a typical seating capacity for 314 to 451 passengers, with", + "The Boeing 777-300 is a twin-engine wide-body jet airliner that can carry 350 passengers. It is one of the largest jet airliners in the world. The 777-300 is a stretched version of the 777-200,", + "The aircraft 777-300 can be identified by its large size and ovalshaped fuselage. This aircraft is also equipped with two engines, which are located on the sides of the fuselage.", + "An aircraft 777-300 can be identified by its large size, long range, and twin engines.", + "The aircraft 777-300 can be identified by its distinctively shaped engines and large size.", + "The easiest way to identify an aircraft 777-300 is by its uniquely shaped engine nacelles.", + "It is a large, long-range twin-engine jet airliner developed by Boeing Commercial Airplanes.", + "The aircraft 777-300 can be distinguished by its long body and large engines. This aircraft is also known for its fuel efficiency and long range.", + "The easiest way to identify an aircraft 777-300 is by its distinctive features. This aircraft has a noticeably longer fuselage and larger wings than its siblings. It also has six wheels on each main landing gear instead of the more traditional four.", + "The aircraft can be identified by its unique shape. The 777-300 has a long body and a large wingspan. It also has a unique tail design.", + "By looking at the model number 777-300.", + "The 777-300 is a stretched version of the 777-200, with 47 more seats and an extended range. It made its first flight on October 17, 1997 and first entered service with Cathay Pacific on November 29, 1999. The", + "An aircraft 777-300 looks like a large, twin-engine jetliner. It has a wide body and long range, and can seat up to 300 passengers.", + "The 777-300 is a long-range airplane that can seat up to 386 passengers. It has a wide body and a long range, making it ideal for long-haul flights.", + "The aircraft 777-300 looks like a large, silver airplane. It has two engines, a large tail, and a long body. The aircraft is able to seat 300 passengers and has a range of over 8,000 miles.", + "The Boeing 777-300 is a long-range, twin-engine jet airliner that was introduced by Boeing in 1998. It is the stretched version of the 777-200, and can seat up to 386 passengers in a three-class configuration", + "An aircraft 777-300 looks like a large, long, white plane with two engines.", + "Image result for 777-300 aircraft", + "Aircraft 777-300's look like large, metal tubes with two sets of large wings attached to the sides. There are typically several hundred seats inside, and the plane has several engines mounted on the back.", + "The Airbus A777-300 is a long-range, wide-body airliner developed by European manufacturer Airbus. Based on the A330-300, it was launched in 1997 with Singapore Airlines as the launch customer. The A777-300", + "The Boeing 777-300 is a long-range, wide-body airliner developed by Boeing Commercial Airplanes. It is the third generation of the 777, and was first delivered in May 1998. The 777-300 is a stretched version of", + "Image of a 777-300 aircraft: https://en.wikipedia.org/wiki/Boeing_777#/media/File:Boeing_777-300er_Emirates_A6-EPY_", + "Image shows an aircraft 777-300 in flight. plane has a long body with a pointy nose. there are two engines mounted on the wings. plane has a dark paint job with silver and red accents. plane has a large tail with", + "The image is of an aircraft 777-300 that is red and white with a blue stripe down the middle. The wings are swept back and there are four engines.", + "The image is of an aircraft 777-300 on the runway. The plane is taxiing to the gate.", + "ERIn the image, an aircraft777-300ER is seen taxiing on a runway. The aircraft is large with a long body and wings. There is a blue and white livery with the word \"Emirates\" on the", + "ERThe image shows an aircraft 777-300ER on the tarmac. The aircraft is dark blue with white and red markings. There is a large engine on each side of the aircraft. The aircraft has two tails and four wings.", + "The image shows a large, silver aircraft with a pointed nose and large wings. The 777-300 is a long-range airliner that can seat up to 550 passengers.", + "The image shows an aircraft 777-300 on the runway. The aircraft is large and has a long body. The wings are tilted up and the engines are at the back. There are two sets of landing gear, one at the front and", + "The image is of an aircraft777-300 in flight, with its landing gear retracted. The background is a clear blue sky.", + "In the image, the aircraft is large and silver with a long body and wings. The 777-300 is a long-range, wide-body airliner that can carry up to 550 passengers. It is one of the world's most popular", + "ERImage shows a large, white aircraft with red and blue stripes down the side. The aircraft has two engines and four main pointy wings. There is a large window near the front and back of the aircraft. The back of the aircraft", + " Boeing's Longest Range Passenger AirplaneThe 777-300 is Boeing's longest range passenger airplane. Capable of flying up to 7,930 miles, it is the perfect choice for long-haul flights.", + "Boeing's 777-300 is one of the world's largest passenger airplanes.", + "Boeing's 777-300 is one of the company's most popular aircraft.", + " Boeing 777-300 of Asiana Airlines at Incheon International Airport", + "The Boeing 777-300 is a long-range aircraft that was introduced in 1997.", + " Aerial view of a 777-300 aircraft on the tarmacThis is an aerial view of a 777-300 aircraft on the tarmac. The 777-300 is a long-range, wide-body jet airliner manufactured by Boeing.", + "Airbus A340-300 of Asiana Airlines landing at Incheon International Airport", + "The 777-300 is a long-range aircraft that can seat up to 300 passengers. It has a range of over 7,000 miles and is capable of flying at speeds of up to 600 miles per hour.", + "The 777-300 is a long-range, twin-engine jet airliner developed by Boeing. It is the third generation of the 777 and was first delivered in 1998.", + " Boeing 777-300 of EmiratesAn Emirates Boeing 777-300 aircraft takes off from Dubai International Airport. The long-range plane is one of the world's most popular aircraft, and can fly up to 17 hours non-stop." + ], + "A300B4": [ + "The A300B4 is a wide-body aircraft with a circular fuselage. It has two engines mounted on the sides of the fuselage and a tail fin. The aircraft has two decks and can seat up to 300 passengers.", + "An aircraft A300B4 is a twin-engine, wide-body aircraft produced by Airbus Industries. It is the first Airbus aircraft to be designed and built in Europe. The A300B4 is a successor to the earlier A300", + "The A300B4 is a twin-engine, wide-body aircraft produced by Airbus. It is the first Airbus aircraft to enter commercial service. The A300B4 is similar in appearance to the A310, with a slimmer", + ".Most A300B4s have a stretched upper deck, which is visible from the outside as a Bubble. The A300B4-600 was introduced in 1984 and featured a longer fuselage (5.28 m or 17 ft", + "The A300 is a twin-engine, wide body commercial airliner. The B4 model can seat up to 268 passengers and has a range of 5,400 miles. The aircraft is approximately 173 feet long with a 150 foot wingspan.", + "The Airbus A300B4 is a twin-engine, wide-body aircraft manufactured by Airbus Industries. It is the first wide-body aircraft produced by Airbus, and was the first twin-engine wide-body aircraft to be produced by", + "The A300B4 is a twin-engine, wide-body aircraft. It has a fuselage that is approximately 14 feet wide and 150 feet long. The aircraft has a wingspan of approximately 115 feet and a tail height of approximately", + "An A300 is a twin-aisle, twin-engine plane that can seat up to 300 passengers. The A300B4 is the original model of the A300, which was first delivered in 1974. It is distinguishable from", + "The A300B4 is a twin-engine, wide-body jet airliner. It has a horseshoe-shaped upper deck, and a T-tail. It is powered by two turbofan engines.", + "An aircraft A300B4 looks like a large commercial airliner with a double-decker design. It has two turbofan engines mounted on the wings and a third under the fuselage. The aircraft has a long, narrow fuselage", + "The A300B4 can be identified by its unique fuselage architecture. The aircraft has a large, curved fuselage with three doors on each side. The cockpit is located on the top of the fuselage, and the engines are mounted", + "The A300B4 is a twin-engine, wide-body jet airliner produced by Airbus. The B4 designation indicates that it is the short-fuselage version of the A300. The A300B4 was the first Airbus", + "The A300B4 can be identified by its nose, which is shorter and rounder than that of the A300B2. It also has four engines, instead of two. The A300B4 was the first wide-body", + "The A300B4 is a twin-engine, wide-body aircraft. It has a distinctive \"humped\" upper fuselage, and a unique twin-tail fin design.", + "The aircraft A300B4 can be identified by its large size and wide body. It has two engines mounted on the sides of the fuselage and a long, curved nose. The A300B4 is also distinguished by its large,", + "The aircraft A300B4 can be identified by its large size, wide body, and two engines.", + "There are a few ways to identify an aircraft A300B4. One way is by its model number, which is typically printed on the side of the aircraft. Another way is by its physical characteristics, such as its cargo hold configuration or", + "The A300B4 is a wide-body aircraft that can be identified by its two engines mounted on the back of the plane. It also has a distinctive wide nose.", + "The aircraft A300B4 can be identified by looking for the following features: -A300B4 model number - Airbus wide-body twin-engine jet airliner -First flight in 1974", + "An aircraft A300B4 is a large, twin-engine passenger airliner that was introduced in the 1970s. It has a long, wide body and a M-shaped tail fin. It is also equipped with winglets.", + "The A300B4 is a twin-engine, wide-body aircraft that can seat up to 300 passengers. It has a maximum range of 5,400 miles and a cruising speed of 567 mph. The aircraft is also equipped with", + "An A300B4 aircraft looks like a commercial airliner. It has a long, narrow body with wings that extend out from the sides. The nose of the plane is blunt and there are two engines mounted on the wings.", + "An aircraft A300B4 looks like a twin-engine, long-range widebody airliner.", + "The A300B4 is a twin-engine jetliner that was manufactured by Airbus. It was the first wide-body aircraft produced by Airbus, and was the first Airbus aircraft to be powered by twin engines. The A300B4", + "The A300B4 is a wide-body aircraft produced by Airbus. It is the first Airbus aircraft to feature a twin-aisle layout. The A300B4 was replaced by the A330-200 in 1992.", + "An aircraft A300B4 look like a large commercial airliner. It has a long fuselage with two engines mounted on the wings. The A300B4 is a wide-body aircraft, meaning it has a large interior cabin that can", + "There is no definitive answer to this question, as the appearance of an A300B4 can vary depending on the specific aircraft and the airline that operates it. However, in general, the A300B4 is a twin-engine,", + "The A300B4 is a twin-engined wide-body Airbus A300 aircraft. It has a cruising speed of Mach 0.72 and a range of 3,700 miles. The A300B4 can seat up to 350", + "The A300B4 is a twin-engine, wide-body Boeing airliner. The aircraft has a distinctive bulbous nose, and the engines are mounted on pylons above the wing.", + "The A300B4 is a twin-engine, wide-body airliner produced by Airbus. It is the first Airbus aircraft to be designed and built in the United States. The A300B4 made its maiden flight in 1974 and was", + "The image is of an Airbus A300B4 aircraft. It is a wide-body twin-engine jet airliner produced by Airbus.", + "-200The image is of an A300B4-200 aircraft on a runway. The aircraft is white with blue stripes. The engine is on the left side of the aircraft. The aircraft is landing.", + "The image is of an aircraft called an A300B4. It is a twin-engine, wide-body airliner that was first introduced in 1974.", + "The A300B4 is an aircraft from the 1970s. It is a wide-body aircraft with two engines.", + "The image is of an aircraft called an A300B4. It is a wide-body airliner that was produced by Airbus from 1974 to 2007. The A300B4 was the first aircraft produced by Airbus, and it was the first", + "The image from the internet is of a large commercial aircraft. The aircraft is white with a blue stripe running down the length of the fuselage. The aircraft has two engines mounted on each wing. The aircraft's tail fin is blue with a", + "The image is of an aircraft A300B4 taking off. The foreground is of the aircraft with the backdrop of the sky and some buildings.", + "-200The image is of an aircraft called an A300B4-200. It is a twin-engine, wide-body aircraft produced by Airbus.", + "-2The image is of an aircraft A300B4-2 on the tarmac. The plane is large with a long body and wings. There is a landing gear under the plane and the engines are on the side. The plane", + "The image from the internet is of an aircraft A300B4 in flight. The aircraft is a wide-body, twin-engine jet airliner that was produced by Airbus.", + "The A300B4 is an aircraft that was designed and manufactured by Airbus.", + "This is an Airbus A300B4, a German-built twin-engine wide-body airliner. It was the first wide-body aircraft produced by Airbus, and was the first wide-body aircraft to be used by a major", + "This is an Airbus A300B4, a twin-engine wide-body aircraft produced by Airbus Industrie, the consortium of European aerospace companies.", + " The A300B4 is an Airbus wide-body multi-purpose twin-engined aircraft that was introduced in 1974.", + "This is an Airbus A300B4, a wide-body twin-engine jet airliner that was first introduced in 1974.", + "This photo was taken in 1978 and shows an A300B4, the first model of the A300 aircraft.", + "This is an A300B4.", + " An Air France A300B4-200 landing at Frankfurt Airport in 1985.", + "The A300B4 was the first wide-body aircraft produced by Airbus, and was the first twin-engined wide-body aircraft ever produced.", + "The A300B4 was a long-range airliner developed and manufactured by Airbus. It was the first wide-body aircraft produced by the company and the first Airbus aircraft to be powered by twin engines. The A300B4 was launched" + ], + "A310": [ + "It looks like a large metal tube with wings and engines attached.", + "An aircraft A310 looks like a large metal tube with wings and propellers. It has two engines, one at each wingtip, and a horizontal tailplane with two vertical finners at the back.", + "The A310 is a twin-engine, long-range wide-body jet airliner that was manufactured by Airbus. It has a laminar flow wing, and is powered by two engines mounted on pylons underneath the wings.", + "The A310 is a twin-engined, long-range wide-body airliner produced by Airbus Industrie, the commercial aircraft subsidiary of Airbus. Launched in July 1983, it was the second wide-body type produced by Airbus,", + "The A310 is a twin-engine, wide-body aircraft that was manufactured by Airbus between 1983 and 2007. The A310 is a derivative of the A300, and was originally developed as a shorter version of the A300. The", + "It is a twin-engine wide-body jet airliner that was manufactured by Airbus.", + "An aircraft A310 is a twin-engined, long-range passenger jetliner that was developed and manufactured by Airbus. It has a wide-body layout, with a capacity of up to 260 passengers. It is powered by two turb", + "An aircraft A310 looks like a large metal tube with wings and turbines. It has a long nose and a tail. It usually has two engines.", + "An aircraft A310 looks like a large metal tube with wings attached to it. There are two engines mounted on the back of the aircraft, and the nose is typically pointed upward. The A310 typically has a length of around 150 feet and", + "An aircraft A310 typically has two engines, a long body, and a tail. It can seat between 200 and 300 passengers and has a range of 5,700 miles.", + "An aircraft A310 can be identified by its long, rectangular body with a pointy nose. It has two engines, one on each side of the main body, and a tail with two vertical stabilizers.", + "The A310 is a twin-engine, long-range wide-body airliner produced by Airbus. It shares a common type rating with the A300 and A330.", + "It is a twin-engined widebody jet airliner that was manufactured by Airbus.", + "The aircraft A310 can be identified by its large size and unique shape. Additionally, this aircraft has a very distinctive nosecone.", + "The easiest way to identify an A310 is by its unique, stretched fuselage which is about 6.10 m (20 ft) longer than the A300B4. Other ways to identify the A310 are by its large overwing", + "The A310 is a twin-engine, mid-size wide-body jet airliner. It has a distinctive fuselage, with a large oval-shaped overhead bin, and a tall fin.", + "The Airbus A310 is a twin-engine, wide-body passenger jet airliner that was produced by Airbus.The A310 is easily distinguished from other Airbus aircraft by its twin tail fins and swept-back wings.", + "Assuming you are talking about the Airbus A310, it is a twin-engined, long-range narrow-body jet airliner. It has a distinctive tail fin and is one of the few jetliners with a third cockpit window.", + "The A310 can be identified by its unique combination of a large fuselage diameter and a T-tail. It also has a large wing and two engines mounted on the rear of the fuselage.", + "The Airbus A310 is a twin-engined wide-body aircraft that first flew on 3 April 1983. The A310 is a derivative of the Airbus A300, the first twin-engined widebody airliner.", + "An A310 looks like a large, wide body commercial airliner. The A310 has two engines mounted on the sides of the fuselage and a large, curved wing. The A310 is typically used for long-haul flights and can seat", + "There are many different models of the A310, but they all have the same basic shape. The A310 is a twin-engine, long-range airliner. It has a large,streamlined fuselage and a T-tail.", + "An Airbus A310 is a twin-engined, long-range widebody airliner with a capacity of up to 260 passengers. It was the first Airbus aircraft to be designed with a two-crew glass cockpit, and was first flown in", + "An Airbus A310 is a twin-engine wide-body jet airliner that was designed and built by Airbus Industrie, the predecessor to Airbus SE. The A310 is notable for its fuselage which is approximately 10 feet (3.05", + "An aircraft A310 looks like a largeplane with two engines.", + "The Airbus A310 is a twin-engined widebody airliner that was developed and manufactured by Airbus. Launched in July 1983, it was the second aircraft to be produced by the company, after the A300. The A310 is", + "The Airbus A310 is a twin-engined widebody airliner with a capacity of up to 200 passengers produced by the European manufacturer Airbus. Launched in 1983, it was the second Airbus model after the A300 and was the first wide", + "The A310 is a twin-engined widebody jetliner that was manufactured by Airbus. It first flew in 1982 and was in commercial service until 2007. It can seat up to 250 passengers and has a range of 5,700 miles", + "The Airbus A310 is a twin-engine, long-range wide-body jet airliner that was developed and manufactured by Airbus. Launched in July 1983, it was the second aircraft to enter production by Airbus, after the A300.", + "An Airbus A310 looks like a large metal tube with wings. The wings are attached to the body of the plane at the top and bottom. There are two engines mounted on the back of the plane.", + "The image is of an Airbus A310 aircraft. The aircraft is white with blue stripes running down the length of the fuselage. The wings are swept back and there are two engines mounted on the wings. The tail of the aircraft has a", + "An image from the internet of an aircraft A310 shows the plane from a low angle, with the runway in the background. The plane is white with blue stripes, and has two engines.", + "The image shows an Airbus A310 aircraft on a runway. The aircraft is white with blue and red stripes running down the length of the fuselage. The image is taken from behind the aircraft, looking towards the tail. The aircraft appears to", + "This image is of an Airbus A310, a twin-engined long-range passenger jetliner. The A310 is notable for its wide-body design and was the first Airbus aircraft to be designed entirely with a glass cockpit.", + "The image is of an Airbus A310 commercial airliner. The aircraft is parked on a tarmac with its nose pointing up. The plane is white with blue and red stripes running down its length. There is a ladder next to the plane,", + "An image of an aircraft A310 can be found here:https://www.aircraftcompare.com/media/1634/airbus-a310-24.jpg?anchor=center&mode=crop", + "Image 1An aircraft A310 is shown on a runway, with its nose pointing up and its tail down. Its engines are running and smoke is coming out from them.", + "The image is of an Airbus A310 aircraft. The A310 is a twin-engine, long-range jet airliner that was produced by Airbus from 1983 to 1998.", + "This aircraft is an Airbus A310, a twin-engined long-range passenger jetliner that was manufactured by Airbus. It first flew in 1983 and was produced until 2007.", + "The image is of an A310 aircraft on a runway with its engines running. The nose of the aircraft is pointing up and the tail is down. The aircraft is ready for takeoff.", + "Airbus A310-200 of Air Inter, the French flag carrier airline, at Paris-Charles de Gaulle Airport in 1993.", + "This image shows an Airbus A310 aircraft.", + "An Airbus A310 passenger jet on the tarmac at Frankfurt Airport.", + "An Airbus A310 commercial airliner.", + ")}An aircraft A310 of flybmi, a British airline company, on approach to land at an airport.", + "An A310 aircraft operated by Air Transat on final approach to Toronto Pearson International Airport.", + "An A310 aircraft in flight.", + "The A310 is a twin-engine, wide-body jet airliner that was developed and manufactured by Airbus.", + "Airbus A310 on approach to landing", + " Airbus A310-304 C-GEGC, \"last flight\", Toronto Pearson Airport, March 2019" + ], + "A318": [ + "The Airbus A318 is a two-engine, narrow-body jet airliner with a capacity of up to 140 passengers produced by the French aerospace company Airbus. The A318 is the shortest member of the A320 family of aircraft. It is", + "The Airbus A318 is a small, narrow-body jet. It has a swept-back wing design and a slanted tail. The A318 is the shortest member of the Airbus A320 family.", + "An A318 has a low-wing configuration and a slender fuselage. It has a pointed nose and a curved tail. The wings are swept back and have a slight dihedral. There are three engines, two of which are mounted on", + "The Airbus A318 is a narrow-body aircraft produced by Airbus. Its length is 12.56 meters, its wingspan is 13.1 meters, and its height is 3.76 meters. It has two engines, each with a", + "An Airbus A318 is a small, narrow-body commercial jet. It has a sleek, modern design with a long, tapered nose. The A318 has a unique wingtip design that helps it save fuel and improves its aerodynamic", + "The A318 is a Short-Range Single-Aisle Commercial Jet Airliner manufactured by Airbus. The A318 carries up to 132 passengers and has a range of 5,700km. The aircraft has a \"sharklet\" wing", + "The Airbus A318 is a narrow-body jet airliner that is manufactured by Airbus. It is the smallest member of the Airbus A320 family of aircraft. It has a capacity of up to 132 passengers and is powered by two CFM International", + "An aircraft A318 is a medium-sized twin-engine jetliner that seats up to 144 passengers. It has a cruise speed of Mach 0.82 and a range of 3,700 nautical miles. The A318 has a distinctive", + "The Airbus A318 is a twin-engine, single-aisle commercial jet. It has a curved nose and a distinctive engine placement below the wings. The A318 is the smallest member of the Airbus A320 family.", + "The A318 is a twin-engined aircraft with a capacity of 132 to 156 passengers. It is the smallest member of the Airbus A320 family. The A318 has a shorter fuselage than the other A320s, and is", + "The A318 is part of the A320 family of aircraft. It has a shortened fuselage and is the smallest member of the A320 family. The A318 is identifiable by its short fuselage and unique cockpit window configuration.", + "The A318 is a narrow-body aircraft produced by Airbus. It is the smallest member of the A320 family of aircraft.", + "One way to identify an A318 aircraft is by its distinctive shape. The A318 has a shorter fuselage and a larger wingspan than other Airbus models, making it easily recognizable. The A318 also has a unique tail design, with", + "The A318 is a narrow-body aircraft produced by Airbus. It is the smallest member of the Airbus A320 family. The A318 has a stretched fuselage compared to the A319. The aircraft has a steeper nose than the", + "The A318 aircraft can be identified by its distinct Airbus wing shape. Additionally, the A318 has a shorter fuselage and smaller wings than the other A320 family members, making it visually distinct from its siblings.", + "The A318 can be identified by its distinctive swept-back wingtips and its sharklet wingtip devices. It has a maximum takeoff weight of 255,000 pounds (116,000 kg) and a range of 3,950 nautical", + "The A318 has a shorter fuselage than the A319 and A320. It also has a distinctive large wingtips.", + "The A318 is a narrow-body aircraft produced by Airbus. It is the smallest member of the A320 family of aircraft. The A318 is a shortened version of the A319, and shares a common type rating with the A319", + "An A318 has a distinctive nose that is longer and more pointed than other types of aircraft. It also has a large, oval-shaped cockpit window. The aircraft is also distinguished by its engine configuration, with two engines mounted on the wings", + "The A318 is a short- to medium-range narrow-body jet airliner. It is the smallest member of the A320 family of aircraft. The A318 carries 118 to 132 passengers and has a maximum range of 3,100 n", + "The aircraft A318 looks like a large, metal tube with wings. The wings are attached to the body of the aircraft and have two engines mounted on them. There are also two vertical stabilizers on the back of the aircraft.", + "An A318 is a large commercial airplane. It has a long body and a wide wingspan. The cockpit is located at the front of the plane, and the passenger cabin is located in the middle. The tail of the plane is located", + "The aircraft A318 looks like a small commercial plane. It has a narrow body and two engines. The A318 is used for short to medium range flights.", + "Below is a photo of an aircraft A318:", + "The Airbus A318 is a narrow-body airliner with a capacity of up to 132 passengers. It is the smallest member of the Airbus A320 family of aircraft.", + "An aircraft A318 looks like a large metal tube with wings attached. It has two engines, a tail, and a nose. The body of the aircraft is typically white with blue or red stripes running down the sides.", + "The Airbus A318 is a narrow-body jet airliner that is primarily used by short and medium-haul routes. It is the smallest member of the Airbus A320 family, and has a capacity of up to 132 passengers. The A318", + "An aircraft A318 looks like a large commercial passenger jet. It has a long body with two engines mounted on the sides. The A318 typically seats between 130 and 160 passengers.", + "The A318 is a twin-engine, narrow-body jet airliner that was introduced by Airbus in 2001. It is the smallest member of the A320 family, and shares many commonalities with its larger siblings, such as the use of", + "Image result for airbus a318", + "This image is of an aircraft A318 taking off. The aircraft is at an airport with other airplanes nearby. The A318 is a commercial airliner manufactured by Airbus.", + "The image is of an Airbus A318 jetliner. The jetliner is parked on a tarmac with its engines off. The A318 is a short- to medium-range commercial passenger jet.", + "The image is of an A318 aircraft taking off from an airport runway. The plane is surrounded by a cloud of smoke and dust as it accelerates down the runway.", + "The image is of an aircraft A318 flying through the sky with the sun shining behind it. The aircraft looks sleek and fast, and the blue sky is clear and bright.", + "The image is of an A318 aircraft taking off against a backdrop of mountains and clouds. The aircraft is sleek and silver, with a steep nose and large engines. The A318 is the smallest member of the A320 family of aircraft.", + "The image is of an Airbus A318 aircraft. It is a narrow-body, twin-engine jet airliner. The A318 is the shortest member of the A320 family.", + "The image is of an A318 aircraft on a runway. The aircraft is silver with blue and white stripes. The wings are extended and the landing gear is down.", + "Image shows an aircraft A318 from the front. It is a large aircraft with multiple engines and a large wingspan. The nose of the aircraft is pointing up slightly and there is a large windscreen. The body of the aircraft is white", + "The image is of an Airbus A318 aircraft. The aircraft is white with blue and gray stripes. The tail is blue with a gray stripe. The engine is on the side of the aircraft. The aircraft is on the ground.", + "This image is of an aircraft A318. It is a photo of the aircraft on the ground with its engines running. The aircraft is parked at a gate and the photo was taken from behind the plane.", + " The Airbus A318 is a narrow-body jet airliner produced by the French aircraft manufacturer Airbus S.A.S. It is the smallest member of the Airbus A320 family. The aircraft seats up to 132 passengers in two classes and is powered by", + " The A318 is a twin-engine, single-aisle commercial jet airliner manufactured by Airbus.", + "Aircraft A318 taking off.", + "An A319 corporate jet takes off from Teterboro Airport in New Jersey, bound for London's Heathrow Airport.", + "The A318 is a twin-engine, narrow-body aircraft produced by Airbus. It is the smallest member of the Airbus A320 family. The A318 was introduced in 2003 and has a range of 3,100 nmi (5", + " AeroMexico's first Airbus A318 taking off", + "The A318 is a narrow-body aircraft that is part of the Airbus A320 family.", + "This is an Airbus A318. It is a short- to medium-range narrow-body airliner.", + "An A318 aircraft operated by Air France\nThis aircraft is flying from Paris to New York", + "The A318 is a twin-engine, short-range, narrow-body jet airliner developed by Airbus. The A318 carries up to 132 passengers and has a range of 3,100 nautical miles." + ], + "A319": [ + "The A319 is a twin-engined short-range narrowbody aircraft with a stretched fuselage. It is the stretched version of the A320 and has a length of 39.47 meters (129 ft 7 in). The A319", + "The Airbus A319 is a single-aisle aircraft with a capacity of 140-160 passengers. It has a length of 39.47 metres and a wingspan of 34.1 metres. The A319 has a range of 3,", + "An A319 is a single-aisle aircraft with 124-156 seats and a range of 3,700 nm. It is the shortest member of the A320 family. The A319 carries the same fuel tanks as the A320 and", + "An aircraft A319 looks like a large metal tube with wings and landing gear. The body of the aircraft is usually silver, with the wings and tail being a different color. There are usually multiple engines mounted on the wings, and the aircraft", + "The aircraft A319 usually has a white body with blue stripes running down the sides. The engine nacelles are also often blue.", + "The aircraft A319 looks like a large metal tube with wings and propellers. It has several rows of seats inside and typically has two engines.", + "The A319 is a single-aisle, narrow-body aircraft with a fixed wing and a tail-mounted engine. The aircraft has a maximum length of 39.47 meters (129.5 feet), a wingspan of 34.", + "The Airbus A319 is a single-aisle commercial jet airliner typically configured with two or three rows of seats on each side of a narrow aisle for a total of between 124 and 156 passengers. It has a shortened fuselage length compared to", + "An aircraft A319 looks like a large metal tube with wings and engines attached. It usually has a tail and a nose, and sometimes has a second story for passengers to sit in.", + "An A319 is a small to medium-sized commercial jet. It typically seats between 150-180 passengers and has a range of about 5,000 miles. The exterior of an A319 is typically white with blue and red stripes running along", + "The A319 is a narrow-body aircraft with two engines mounted on the underside of the plane. The A319 has a shorter fuselage than the A320 and can seat up to 156 passengers.", + "According to Airbus, the easiest way to identify an A319 is by its distinctive tail fin which features a cone towards the tip. The A319 also has Sharklet wingtip devices and large circular main landing gear housings.", + "An aircraft A319 can be identified by its distinct livery and tailfin. It is also a member of the A320 family, which share similar features.", + "The aircraft A319 can be identified by its unique paint job and its tell-tale Airbus tail fin.", + "The A319 is a narrow-body aircraft produced by Airbus. It is the shortest member of the A320 family, and has a stretched fuselage compared to the other A320 family members.", + "The A319 is a narrow-body aircraft with two engines. It typically seats 150 passengers and has a range of 3,700 nautical miles.", + "The A319 is a narrow-body aircraft manufactured by Airbus. It is the shortest member of the A320 family, and has a capacity of 140-156 passengers.", + "The A319 is a member of the Airbus A320 family of short- to medium-range, narrow-body, commercial passenger twin-engine jet airliners manufactured by Airbus.The A319 shares a common type rating with all", + "The Airbus A319 typically has a sharklet wingtip device and features 129 to 156 seats.", + "The A319 is a member of the Airbus A320 family of short- to medium-range, narrow-body, commercial passenger twin-engine jet airliners manufactured by Airbus. The A319 carries up to 160 passengers. It has a", + "An A319 looks like a large, metal tube with wings and engines attached. The body of the aircraft is long and slender, with a pointy nose and large windows. The wings are attached to the body of the aircraft near the middle", + "An aircraft A319 looks like a small plane with a pointy nose.", + "The Airbus A319 is a narrow-body aircraft that is popular for short to medium-haul flights. It has a typical cabin layout with 123 seats in a two-class configuration, or 150 seats in a single-class configuration. The", + "An aircraft A319 looks like a large metal tube with wings attached to it. It has a large horizontal tail at the back, and two engines mounted on the wings.", + "An aircraft A319 looks like a single deck, narrow body jetliner. It has a length of 39.01 meters and a wingspan of 34.10 meters. The aircraft has a maximum take-off weight of 80,000 kg", + "The A319 is a narrow-body airliner with a sleeker design than the other members of the A320 family. It has a distinctive pointed nose and a shark-fin style vertical stabilizer. The A319 is slightly shorter than the", + "The Airbus A319 is a member of the Airbus A320 family of short- to medium-range, narrow-body, commercial passenger twin-engine jet airliners manufactured by Airbus. The A319 carries 125 to 156 passengers and has a", + "An aircraft A319 typically has a white body with blue stripes running down the sides. The cockpit is located at the front of the aircraft, and the main cabin extends towards the back. There are typically two or three rows of seats on each", + "An aircraft A319 looks like a small, twin-engine jetliner. It has a range of 3,700 miles and can seat up to 130 passengers.", + "An A319 has a Fuselage length of 12.58m, a wingspan of 11.14m, and a height of 3.73m. It typically seats 124 passengers.", + "This image is of an Airbus A319 aircraft. It has a white body with blue stripes running down the sides. The engines are silver and the wingtips are painted blue. The landing gear is down and the nose of the aircraft is pointing", + "The image is of an A319 aircraft on a runway. The aircraft is white with blue stripes. There is a red tail with a white star. The engine is on the side of the aircraft.", + "The image is of an aircraft A319 landing on a runway. The A319 is a narrow-body aircraft with two engines.", + "The image shows an aircraft A319 landing at an airport. The aircraft appears to be descending from the sky and is about to land on the runway. The A319 is a Airbus aircraft that can seat up to 160 passengers.", + "Image shows an Airbus A319 plane on a runway. plane is silver with blue and white stripes. It has a large nose and two engines. there are small windows along the side of the plane.", + "The image is of an aircraft A319 with blue and white markings. The plane is on a runway with its nose pointing up.", + "The image is of an Airbus A319 airliner. The aircraft is shown in flight, with its landing gear retracted. The A319 is a narrow-body aircraft with a fuselage diameter of 3.7 meters (12 feet). It has", + "The image is of an A319 aircraft with the letters \"AE\" on the tail. The aircraft is white with blue stripes.", + "The image is of an Air Canada A319 aircraft taking off from Toronto Pearson International Airport. The A319 is a narrow-body aircraft with two engines and a capacity of 150 passengers.", + "The image is of an Airbus A319 aircraft, with the registration number N319JB. The aircraft is painted in a white and blue livery, with the word \"JETBLUE\" on the fuselage. The aircraft is taxi", + "Airbus A319 of Lufthansa landing at Frankfurt Airport, Germany", + "The aircraft A319 is a short- to medium-range twin-engine narrow-body aircraft.", + "An Airbus A319 aircraft operated by Lufthansa on final approach to Frankfurt Airport, Germany.", + " A Lufthansa A319 takes off from Munich International Airport", + " A Lufthansa A319 aircraft taking off from Frankfurt Airport", + "A319 aircraft take off", + "Airbus A319 jetliner preparing for takeoff", + "An Airbus A319 aircraft taking off from an airport runway", + " The A319 is a member of the A320 family of Airbus aircraft.", + "The A319 is a narrow-body aircraft produced by Airbus. The A319 shares a common airframe and operating philosophy with the larger A320 and A321, which are also produced by Airbus." + ], + "A320": [ + "An A320 typically has a white fuselage with blue stripes running along the length of the plane. The wings are usually silver and the tail is painted with the airline's colors.", + "An aircraft A320 typically looks like a large metal tube with wings and engines attached. There are usually several rows of seats inside the main cabin, and the cockpit is located at the front of the plane.", + "An aircraft A320 looks like a small plane with two engines, two wings, and a tail.", + "An aircraft A320 looks like a large metal tube with wings and propellers. It has a long body and a short tail. The wings are attached to the body near the top. There are two engines, one on each side of the", + "Airbus A320s are typically white with blue and red stripes running down the sides of the fuselage. The tail typically has the airline's logo on it.", + "An aircraft A320 looks like a large metal tube with wings and engines attached. It has two rows of seats inside and a bathroom. The exterior is typically white with blue or red stripes.", + "The aircraft A320 is a medium-range, single-aisle commercial jet. It has a narrow body and two engines.", + "The A320 is a twin-engine, narrow-body aircraft with a capacity of 150 passengers. It is the first aircraft in the A320 family, and was first introduced into service in 1988.", + "An Airbus A320 is a single-aisle, twin-engine jet airliner typically seating 150 passengers over a range of 3,700 miles. A 320 typically has a length of 37.57 meters (123 feet 3 inches), a wings", + "An Airbus A320 is a twin-engine, single-aisle, short- to medium-range commercial passenger jet. The A320 was the first narrow body airplane produced by Airbus Industries. The A320 is a member of the Airbus", + "The A320 is a single-aisle, narrow-body aircraft manufactured by Airbus. It has a capacity of 150-180 passengers and is the first aircraft in the A320 family, which includes the A318, A319, A", + "Most A320s have a sharklet wingtip device, and all A320s haveCFM56 engines.", + "The A320 can be identified by its distinctive nose shape, which resembles a shark's nose. It also has two pairs of winglets on the ends of its wings.", + "The A320 can be identified by its distinctive nose and the Sharklet wingtip devices.", + "If you see an aircraft with two engines below the wings, and a tail with a point at the top, it is likely an A320.", + "The A320 can be identified by its two engines mounted on the underside of the tail, its nose area, and the sharklet wingtips.", + "The A320 is a narrow-body aircraft manufactured by Airbus. It is the first member of the A320 family and was introduced in 1988. The A320 is identifiable by its short fuselage and large engines mounted on the underside of the", + "The A320 can be identified by its Sharklet wingtips.", + "An aircraft A320 is a twin-engine, narrow-body airplane that typically seats 150 passengers.", + "One way to identify an aircraft A320 is by its size. This aircraft is a narrow-body plane, which means it is smaller in width than other types of aircraft. It is also a single-aisle plane, which means it", + "The A320 is a single-aisle aircraft with a pair of overwing emergency exits and 150-180 passengers. It has a three-person cockpit crew and is powered by two engines. The aircraft has a maximum range of 3,", + "An A320 looks like a traditional commercial airliner. It has a nose, cockpit, and passenger cabin. The engine is located on the back of the plane.", + "An aircraft A320 looks like a large metal tube with wings. There are many windows along the sides of the aircraft for passengers to look out of. The aircraft has two engines, one on each side of the fuselage.", + "An aircraft A320 looks like a large metal tube with wings. It has two engines, two large emergency exits, and two sets of landing gear.", + "The aircraft A320 looks like a large metal tube with wings attached. The wings are curved and have flaps on the trailing edge. There are two engines mounted on the wings. The fuselage is divided into three sections: the cockpit,", + "An aircraft A320 looks like a large metal tube with wings attached to it. The wings are curved and have flaps on the back. There are two engines attached to the wings. The nose of the aircraft is pointy and there is", + "An aircraft A320 looks like a white metal tube with wings.", + "The Airbus A320 is a narrow-body aircraft produced by Airbus. It was the first Airbus aircraft with two engines and the first to use fly-by-wire flight controls. The Airbus A320 has a distinctive nose shape and is operated", + "An aircraft A320 looks like a plane.", + "An aircraft A320 looks like a large commercial airliner. It has a long fuselage, two wings, and two engines.", + "Image shows an Airbus A320 aircraft in flight, with its landing gear retracted. The A320 is a single-aisle aircraft with a fuselage diameter of about 3.7 metres. It has a wingspan of about 36 metres and", + "The image is of an Airbus A320 aircraft. The aircraft is white with blue and red stripes running along the length of the fuselage. The wings are outstretched and the engines are mounted on the underside of the wings. The image is", + "The aircraft A320 is a single-aisle plane that can seat up to 180 passengers. It has a range of 3,700 miles and is typically used for short to medium-haul flights.", + "The image is of an A320 aircraft on the runway. The nose of the aircraft is pointing up and the tail is down. The engines are at full power and the aircraft is about to take off.", + "The image is of an Airbus A320 aircraft. The A320 is a twin-engine, single-aisle plane that can carry up to 180 passengers. It has a range of over 3,000 miles and is one of the most", + "The image is of an A320 aircraft with the livery of Air France. The aircraft is parked on a tarmac with the nose pointing to the left of the frame. The tail is to the right and the engines are visible. The", + "The image is of an A320 aircraft taking off from a runway. The image shows the plane at a low angle, with the nose pointing up into the air. The plane is surrounded by a cloud of smoke or dust, which is kicked", + "An aircraft A320 is a small, narrow plane with two jet engines attached to the back. The body of the plane is white with blue stripes running down the sides. The wings are narrow and swept back. The tail is tall and thin", + "The image is of an Airbus A320 aircraft. The A320 is a short- to medium-range commercial passenger jet. It has a narrow body and is capable of carrying up to 186 passengers. It is often used for domestic and short", + "In the image, an aircraft A320 is seen taxiing on a runway after landing.", + "An Airbus A320 aircraft taking off from an airport runway.", + "\\nAircraft A320 at takeoff", + "The A320 is one of the most popular commercial jetliners in the world.", + "The A320 is a popular aircraft for short to medium term domestic and international flights.", + "An Airbus A320 on approach to landing.", + "Airbus A320 aircraft on a runway", + " Airbus A320 of American Airlines", + "An Airbus A320 jetliner takes off from Frankfurt Airport in Germany.", + "Taking off in an Airbus A320.", + "The A320 is a short to medium range airliner that is widely used around the world." + ], + "A321": [ + "The Airbus A321 is a twin-engined narrow-body aircraft with a fuselage length of 39m. It is a shortened version of the A320 with a reduced wingspan and fuel capacity. The A321 has a range of", + "An A321 is a twin-engine, single-aisle plane that can seat up to 185 passengers. It has a range of 3,000 nautical miles.", + "An aircraft A321 looks like a large metal tube with wings and engines attached. It usually has two rows of seats inside, and sometimes has a third row of seats in the back.", + "An aircraft A321 looks like a large metal tube with wings attached to it. There are several rows of seats inside the tube, and there are windows along the sides. The front of the aircraft has a cockpit, where the pilot sits,", + "An aircraft A321 is a single-aisle aircraft with a length of 39.5 meters and a wingspan of 36 meters. It has a cruising speed of 873 kilometers per hour and a range of up to 5,650 kilometers", + "The Airbus A321 is a twin-engine short- to medium-range narrow-body passenger aircraft designed and built by Airbus. It was first delivered in 1998, and as of July 2018, a total of 1,484 A321 aircraft", + "The Airbus A321 is a twin-engine, single-aisle airplane that was developed as an improved version of the popular A320. The A321 is longer than the A320, with a bigger wingspan and taller tail. It", + "An aircraft A321 looks like a large commercial airplane with a pointy nose and tail. The body is long and slender, and the wings are attached to the sides near the middle of the fuselage. There are typically two engines, one", + "Seats 180 passengers and is part of the A320 family of Airbus short- to medium-range trucks. First A321 was delivered in January 1994.", + "The Airbus A321 is a twin-engine subsonic passenger jet aircraft designed and built by Airbus. It was the first derivative of the baseline Airbus A320 aircraft and carries up to 236 passengers with a maximum range of 3,200 n", + "The Airbus A321 is a single-aisle, twin-engine jetliner typically configured with 185 seats. It has a stretched fuselage compared to the A320, which is otherwise very similar. One of the easiest ways to identify an", + "The A321 has a length of 39.47 meters, a wingspan of 35.80 meters, and a height of 12.56 meters. It has a wing area of 124.6 square meters and a cabin width of 3.", + "The Airbus A321 can be identified by its wide body and short-fuselage design. It has a capacity of 185 to 220 passengers and is the largest member of the A320 family of aircraft.", + "The A321 is a twin-engine, single-aisle aircraft with a standard range of up to 3,700 nautical miles. It is the largest member of the A320 family and can seat up to 236 passengers. The aircraft", + "If you are looking at an aircraft and trying to identify it as an A321, you can look for a few key features. First, the A321 has a distinctive nose compared to other aircraft in its class. Second, the A321", + "It is a narrow-body aircraft with two engines, produced by Airbus. The A321 has a stretched fuselage in comparison with the A320, which is its base model. This makes the A321 longer and able to carry more passengers", + "The aircraft A321 can be identified by its large size and its blue and white color scheme. Additionally, the A321 has a unique nose design and vertical stabilizer.", + "The aircraft A321 can be identified by its long fuselage and large tail.", + "An aircraft A321 can be identified by its distinctive nose, longer than other models in the A320 family.", + "You can identify an aircraft A321 by its black wave-shaped line on its tailfin and its large size.", + "An A321 is a single-aisle airplane with a length of 39.5 meters (129.6 feet) and a wingspan of 36.1 meters (118.5 feet). It has a standard seating capacity of185 passengers", + "An A321 is a narrow-body aircraft. It typically has two engines and can seat up to 185 passengers.", + "The Airbus A321 is a narrow-body aircraft with a fuselage that is 26 feet longer than that of the A320. It has a capacity of 185-220 passengers and a range of 3,700 miles.", + "The A321 is a single-aisle, twin-engine jet that is part of the A320 family of aircraft. It has a stretched fuselage, which makes it longer than the A320.", + "An aircraft A321 typically has a razor-like nose, swept-back wings, and a tall tail. It is a narrow-bodied aircraft with two engines mounted on the underside of the wings.", + "An A321 aircraft looks similar to other A320-family aircraft. It is a narrow-body, single-aisle aircraft with two engines. The A321 is longer than the other A320-family aircraft, and it has an", + "The 321 is a member of the A320 family of short- to medium-range, narrow-body, commercial passenger jet airliners manufactured by Airbus. The A320 family includes the A318, A319, A320, and A", + "The Airbus A321 is a narrow-body aircraft with an IAE V2500 engine. It has a Fuselage length of 138 feet and 9 inches, and a wingspan of 111 feet and 5 inches.", + "An Airbus A321 looks like a typical airliner, with a long body and wings. It can seat up to 236 passengers and has a range of over 3,000 miles.", + "The Airbus A321 is a single-aisle aircraft with a standard configuration of 180 seats. It has a length of 39.47 meters (129.5 feet) and a wingspan of 36.04 meters (118.2 feet", + "The image is an Airbus A321 aircraft seen from the front. The aircraft is painted white with blue stripes running along the length of the fuselage. The aircraft has a pointed nose and twin engines mounted on the underside of the wings. The", + "The image is of an A321 aircraft. The aircraft is silver with blue and white stripes. The nose of the aircraft is pointing up and the tail is down. The aircraft is on a runway with other aircraft in the background.", + "This image is of an Airbus A321 aircraft. It is a twin-engine, narrow-body jet airliner. It has a range of 3,000 nautical miles and can seat up to 220 passengers.", + "The image shows an Airbus A321 jetliner taxiing on a runway. The aircraft is large, with a pointed nose and long, slender wings. The tail is tall and has a distinctive curved shape. The engine nacelles are", + "The aircraft is a single aisle, twin-engine jet airliner that was designed and developed by Airbus. The A321 is the largest member of the A320 family of aircraft. The image shows the aircraft in flight, with its landing gear retracted", + "The image is of an A321 aircraft on a runway. The aircraft is white with blue and red stripes running down the sides. The A321 is a narrow-body aircraft with two engines.", + "This image is of an Airbus A321 aircraft. It is a single-aisle, twin-engine jet airliner. The A321 is a stretched version of the A320, and can seat up to 240 passengers.", + "The image is of an Airbus A321 aircraft. The A321 is a single-aisle, twin-engine jet airliner with a capacity of up to 200 passengers. It is a stretched version of the A320, and has a range", + "An A321 aircraft is a single-aisle commercial jetliner typically used for short and medium-haul flights. It is a stretched version of the A320, and can seat up to 185 passengers.", + "This image shows an Airbus A321 aircraft taking off from an airport runway. The A321 is a popular model of aircraft for short and medium-haul flights.", + "An Airbus A321 of American Airlines approaches the runway at Los Angeles International Airport.", + "An A321 commercial airliner, operated by US-based Delta Air Lines, takes off from Heathrow Airport in London, England.", + "This image depicts an A321 aircraft. This type of aircraft is a narrow-body jetliner that is often used for short to medium-haul flights.", + "The A321 aircraft is a popular choice for airlines looking for a versatile and efficient plane.", + "An A321 aircraft landing at an airport.", + "An A321 aircraft operated by American Airlines.", + " An Airbus A321 jetlinerThe Airbus A321 is a narrow-body aircraft produced by Airbus. It was the first derivative of the A320, and was launched in January 1994 with an order from Lufthansa. As of", + "Aircraft of German airline Lufthansa plane A321 on approach to landing at Denver International Airport in Denver, Colorado.", + "TAP Air Portugal A321 aircraft flying over the ocean.", + "This is an A321 aircraft." + ], + "A330-200": [ + "The A330-200 is a twin-engine, wide-body aircraft with a capacity of up to 300 passengers. It has a length of 59.06 meters (193.9 feet) and a wingspan of 60.3 meters", + "An aircraft A330-200 typically has a major diameter of about five feet, a length of about sixty-five feet, and a wingspan of about sixty feet. The exterior of the aircraft is white with blue and grey accents. The", + "The A330-200 is a twin-engine, wide-body aircraft with a capacity of 300 passengers. It has a range of 11,000 kilometers. The A330-200 is a member of the Airbus A330 family, which", + "The A330-200 is a wide-body aircraft with two engines. It has a length of 209 feet (63.8 meters) and a wingspan of 197 feet (60 meters). It has a maximum takeoff weight of 567", + "An aircraft A330-200 is a twin-engine, long-range commercial airliner. It has a wide body and large wings.", + "The A330-200 is a twin-engine, wide-body jet airliner with a capacity of up to 300 passengers. It has a range of 11,000km and a cruising speed of 874km/h. The A330", + "The A330-200 is a twin-engine, wide-body aircraft with two-aisle seating. It has a fuselage length of about 18m and a wingspan of about 16m. The aircraft typically seats between 200 and", + "The A330-200 is a twin-engine, wide-body aircraft with two main decks and a capacity of up to 293 passengers. It has a wingspan of 60.3 meters (198 feet) and a length of 63.", + "An aircraft A330-200 is a twin-engine, wide-body plane that can seat up to 293 passengers. It has a range of 7,400 miles and a cruise speed of 530 mph.", + "The A330-200 is a twin-engine, wide-body aircraft with two aisles. It is designed to seat up to 293 passengers and has a range of 11,000km.", + "There are many ways to identify an aircraft A330-200. Some common ways are by its size, shape, and color. The A330-200 is a large aircraft with a long body and a wide wingspan. It is usually", + "The A330-200 has a range of approximately 8,300 miles and can seat anywhere from 246 to 293 passengers. Additionally, it has a shorter fuselage and wider wingspan than the A330-300.", + "The A330-200 can be identified by its fuselage length of 212 feet 5 inches, its wingspan of 197 feet 8 inches, and itsileron count of 10.", + "The aircraft A330-200 can be identified by its long, narrow body and two engines mounted on the underside of the wings.", + "The A330-200 aircraft has a distinctive twin-aisle layout with a wide-body fuselage. It is a medium to long-range aircraft with a range of 7,250nm. The A330-200 has a maximum", + "Looking at the aircraft from the outside, you can identify an A330-200 by its long body and swept-back wings. The A330-200 also has two engine pods on each wing.", + "The A330-200 has a distinctive fuselage and a large wing. It also has two engines, which are mounted on the wings.", + "The A330-200 is a twin-engine, wide-body aircraft produced by Airbus. It is a derivative of the A330 and was originally launched in 1997. The A330-200 has a range of 7,400 miles and", + "The A330-200 has a distinctive fuselage and large twin engines. It is often used for long-haul flights.", + "The A330-200 is a twin-engine, wide-body aircraft with a capacity of 199-293 passengers. It has a length of 58.8m and a wingspan of 60.3m.", + "The Airbus A330-200 is a twin-engine, wide-body aircraft with two aisles. It can seat up to 293 passengers and has a range of 7,200 nautical miles.", + "This is what an aircraft A330-200 looks like.", + "An aircraft A330-200 looks like a large metal tube with wings and engines attached.", + "The A330-200 is a twin-engine, wide-body jet airliner manufactured by Airbus. It is similar in design to the A330-300, but is shorter and has a reduced range. The A330-200 first flew", + "The Airbus A330 is a wide-body aircraft produced by Airbus. This particular version of the A330 is the 200 series. It has a typical aircraft layout, with two engines mounted on the wings and a large body. The A330", + "Image result for aircraft a330-200", + "An A330-200 typically has a white body with red and blue stripes running down the sides. It has two engines and a large wing span.", + "An aircraft A330-200 looks like a twin-engine, wide-body commercial airliner.", + "The A330-200 is a twin-engine, wide-body jet airliner with two equal-size passenger decks. It has a range of 7,200 nautical miles (13,330 km) and can accommodate up to 293", + "The Airbus A330-200 is a twin-engined wide-body Airbus A330 aircraft with a capacity of up to 293 passengers. It was the first A330 model to be developed, followed by the A330-300. The", + "The image is of an aircraft A330-200 on the runway. The aircraft is landing with its landing gear down and its engines at full power. The image shows the aircraft's cockpit, fuselage, and tail.", + "The image is of an aircraft A330-200 mid-flight with its landing gear retracted. The sky is clear and blue in the background.", + "The image is of an aircraft A330-200 on the runway. The aircraft is white with blue and grey stripes. There is a black and white checkered flag on the side of the aircraft.", + "The image is of an aircraft A330-200 with a white body and blue stripes. It has two engines and two rows of windows. The nose of the aircraft is pointing up and it is sitting on a runway.", + "The image shows an Airbus A330-200 aircraft in flight, with its distinctive blue and white livery. The plane is flying towards the camera, with the sun shining in the background.", + "The image is of an aircraft A330-200 in front of a white background. The aircraft has a long body with two engines and a pointed nose. The tail of the aircraft is high and has a unique design. The aircraft is sitting", + "The image is of an aircraft A330-200 in flight. The aircraft is flying through the clouds, with the sun behind it. The aircraft has its landing gear down, and its engines are visible.", + "The image is of an Airbus A330-200 aircraft with white body and blue stripes. The aircraft is flying over a body of water with clouds in the background.", + "The image is of an Airbus A330-200 aircraft, with blue and white livery, parked on a tarmac. The aircraft has two engines and a sweptback wing. The tail is vertical with a horizontal stabilizer. The landing", + "The image is of an A330-200 aircraft with a white body and blue stripes. The aircraft has two engines and is parked on a runway.", + "The A330-200 is a twin-engine jet airliner manufactured by Airbus.", + " Airbus A330-200 aircraft landing at San Francisco International Airport", + " The Airbus A330-200 is a wide-body aircraft manufactured by Airbus.", + "An Airbus A330-200 aircraft taking off.", + "The A330-200 is an aircraft that offers a high degree of comfort and reliability.", + "This is the A330-200 aircraft, the first variant of the A330. It was first delivered in 1998 and is still in production today.", + " The A330-200 aircraft is a long-range, wide-body, twin-engine jetliner manufactured by Airbus.", + "Asiana Airlines A330-200 landing at Incheon International Airport, South Korea", + "The Airbus A330-200 is a twin-engine wide-body aircraft produced by Airbus.", + " Air Canada aircraft take off from Toronto's Pearson International Airport" + ], + "A330-300": [ + "An aircraft A330-300 is a large twin-engine jet airliner with two decks. It has a wide body and a long range. It can seat up to 300 passengers.", + "The Airbus A330-300 is a twin-aisle aircraft with a standard seating capacity of 293 passengers. It has a range of 11,370km and a typical cruising speed of 853km/h. It is one of the", + "An A330-300 is a wide-body twin-engine jet aircraft with two full-length passenger decks. It has a range of 11,000km and a typical cruising speed of 900km/h.", + "The Airbus A330-300 is a twin-aisle aircraft with a standard layout of two aisles and 257 seats. The aircraft has a range of 11,000km.", + "The A330-300 is a twin-aisle aircraft with a tailfin and two engines. It has a Seating capacity of 300 passengers and a range of 7,200 nautical miles. It is usually used for long-haul", + "An A330-300 is a medium- to long-range wide-body twin-engine jet airliner made by Airbus. Launched in 1993 as the second generation of the A330, it first flew on 7 November 1994 and was introduced", + "An aircraft A330-300 is a large twin-engine jet airliner with a wide body. It has two decks and can carry up to 300 passengers. It has a range of up to 7,000 miles and can fly at a speed", + "The A330-300 is a wide-body airplane with two engines suspended beneath the wings. The fuselage is oval-shaped with a pointed nose and a large tail fin. The wings are swept back and tapered. There are two", + "An A330-300 is a twin-engine, wide-body commercial passenger jet aircraft. It typically seats 300 passengers, has a range of 11,000 kilometers, and a cruising speed of 910 kilometers per hour. The A330", + "An aircraft A330-300 is a twin-engined, wide-body aircraft with a capacity of 300 passengers. It is typically used on long-haul flights.", + "The aircraft A330-300 can be identified by its unique registration number. This number is displayed on the fuselage near the tail of the aircraft.", + "The A330-300 is a twin-aisle aircraft with a wide body. It has two aisles and can seat up to 300 passengers. It is powered by two engines, has a range of 11,000 kilometers, and", + "The A330-300 is a twin-aisle airplane with a wide body. It typically has two engines, which are located on the underside of the wings. It has a long body with a rounded nose, and the tail usually has", + "A330-300 aircraft can be identified by their long, narrow fuselages and large twin engines. They are also notable for their distinctive winglets.", + "The A330-300 has a swept wing and a T-tail. It also has a large gull wing door on the right side of the aircraft.", + "The A330-300 has a distinctive fuselage and is wider and taller than the A330-200. It also has a larger wing and more fuel capacity. The A330-300 can be distinguished from other aircraft by its size,", + "The original A330-300 had a longer fuselage and larger wings than the A330-200. It also had a much higher fuel capacity. The A330-300 first flew in October 1993.", + "The aircraft A330-300 can be identified by its large size and distinct shape. The A330-300 is a wide-body aircraft with a long fuselage and a large wingspan. The aircraft is also equipped with two engines,", + "The aircraft A330-300 can be identified by its long and slender body, as well as its wide and swept-back wings. This aircraft is also unique in that it is one of the few to have a third engine, which is", + "The A330-300 has a wideFuselage and is powered by two engines. It can carry up to 300 passengers and has a range of over 6,000 miles.", + "An aircraft A330-300 looks like a large airliner with two engines.", + "Image result for aircraft A330-300", + "An A330-300 is a twin-aisle, wide-body aircraft with a long range. It can seat up to293 passengers and has a range of 11,000km.", + "An aircraft A330-300 looks like a large, twin-engine jetliner with a wide body. It can seat up to 300 passengers and has a range of about 7,000 miles.", + "The A330-300 has a wide, Fuselage with a pointed nose and a large tail. Its wings are swept back and its engines are mounted on the underside of the wings.", + "Image result for aircraft A330-300", + "The aircraft A330-300 looks like a large commercial airliner with a long body and twin engines. It can seat up to 300 passengers and has a range of over 6,000 miles.", + "An aircraft A330-300 looks like a large white plane with two wings and two engines.", + "An aircraft A330-300 look like a regular plane.", + "The A330-300 typically has a white body with blue and grey stripes. It has two engines and a pointed nose.", + "The image is of an Airbus A330-300 aircraft. It is a twin-engine wide-body airliner with a capacity of 300 passengers. It has a range of 11,000km and a cruising speed of 910km/h", + "The image is of an A330-300 aircraft on a runway. The aircraft is white with blue and gray stripes. There is a blue and white logo on the tail. The aircraft has two engines and two rows of windows.", + "The image is of an aircraft A330-300 flying through the air with its landing gear down. The sky is blue and there are some clouds in the background.", + "The image is of an aircraft A330-300. The aircraft is silver with a blue stripe running down the length of the fuselage. The aircraft has two engines and four wings. The wings are swept back and the engines are mounted on", + "The image is of an aircraft A330-300 landing. The A330-300 is a twin-engine, wide-body airliner manufactured by Airbus.", + "The image is of an aircraft A330-300 flying through the air. The aircraft is white with blue and grey stripes. The sun is shining and the sky is blue.", + "The image is of an aircraft flying through the clouds with the sun shining behind it. The aircraft has two engines and is white with blue and grey stripes.", + "The image is of an aircraft A330-300 sitting on a runway. The aircraft is white with a blue and white stripe down the side. The engine is on the back end of the aircraft. The aircraft has its landing gear down.", + "The image is of an Airbus A330-300 aircraft. The aircraft is white with blue and grey stripes. There is a large blue and white logo on the side of the aircraft. The aircraft has two engines and the tail is blue.", + "The image is of an Air France A330-300 aircraft on the tarmac. The plane is white with blue and red stripes running down the side. The image is taken from behind the plane, looking towards the front.", + "The A330-300 is a wide-body aircraft manufactured by Airbus. It is a two-engine, twin-aisle plane that can seat up to 300 passengers.", + "The A330-300 is a twin-engine aircraft used for long-haul flights.", + "An A330-300 aircraft operated by Qantas Airways.", + "The A330-300 is a twin-engine, long-range aircraft manufactured by Airbus. It was first introduced in 1993 and can seat up to 293 passengers.", + "The A330-300 is a long-range wide-body jet airliner made by Airbus.", + "This is an Airbus A330-300, a wide-body twin-engine jet airliner. It is mainly used on long-haul routes and can carry up to 293 passengers.", + "An A330-300 aircraft operated by Qatar Airways landing at Hamad International Airport in Doha, Qatar", + "Aircraft A330-300 landing at LAX", + "The A330-300 aircraft is a long-range, wide-body airliner that can seat up to 300 passengers. It has a range of over 6,000 miles and is capable of flying at speeds of up to Mach 0.85", + "Airbus A330-300 on approach to landing" + ], + "A340-200": [ + "The A340-200 is a wide-body aircraft with four engines. It has a stretched fuselage compared to the other A340 models.", + "The A340-200 is a long-range, wide-body commercial airliner with four engines. It has a tail fin and two pairs of wings. The A340-200 is made by the Airbus company.", + "The A340-200 is a four-engine long-range jet airliner with a capacity of between 220 and 260 passengers. It has a range of 12,800 kilometers. The A340-200 is similar in appearance to the A340", + "The A340-200 is a wide-body commercial airliner with four engines. It has a conventional tail and landing gear configuration and can seat up to 280 passengers. The aircraft is designed for long-haul flights and is often used by airlines", + "An aircraft A340-200 looks like a large metal tube with wings and engines attached. It has four engines, two on each side, and two sets of wings. The body is long and slender, and the tail is tall. There", + "An aircraft A340-200 is a large four-engine commercial airliner that was produced by Airbus. The A340-200 made its first flight in October 1991 and it entered service with Air France in March 1993. It is the second longest", + "The aircraft A340-200 is a four-engined, long-range jet airliner with a capacity of up to 386 passengers. It has a range of up to 13,000 kilometers.", + "The A340-200 is a long range aircraft that can seat up to 300 passengers. It has four engines and a length of 75.3 meters.", + "The A340-200 is a long-range, wide-body commercial airliner manufactured by Airbus Industrie. It seats up to 375 passengers in a three-class configuration and has a range of 12,000 kilometers. The A340-", + "The A340-200 is a wide-body aircraft with four engines. It is 284 feet long with a wingspan of 262 feet. The cabin is 18 feet wide and 26 feet tall. It can seat up to 251 passengers in a", + "The aircraft A340-200 can be identified by its unique tail number.", + "The A340-200 can be identified by its wide body and four engines. It is also the second longest commercial plane in the world after the 747-8.", + "The aircraft A340-200 can be identified by its wide and long body, as well as its four engines.", + "The A340-200 can be identified by its long body and four engines.", + "The A340-200 is a four-engine long-range passenger jet plane manufactured by Airbus. It has a distinctive six-window configuration in the passenger cabin.", + "You can identify an aircraft A340-200 by its unique Louis-Vuitton livery and its large, oval-shaped windows.", + "An aircraft A340-200 can be identified by its large size and long body. It has four engines and is used for long-haul flights.", + "The A340-200 is a long-range, wide-body commercial passenger jet airliner that was developed and produced by Airbus Industries. It first flew on 1 October 1993 and it is still in commercial service.", + "The aircraft A340-200 can be identified by its long body and four engines.", + "The A340-200 is a long-range, four-engine jet airliner. It seats a maximum of 380 passengers and has a range of 13,700 kilometers.", + "An A340-200 looks like a large, four-engine commercial jetliner. It has a pointed nose and a swept-back wing design. The A340-200 is a long-range aircraft that can seat up to 250 passengers", + "The A340-200 is a long-range commercial passenger jet aircraft designed and produced by Airbus. It has a distinctive double-deck layout and four engines. The A340-200 first flew in 1993 and was introduced in 1994.", + "The A340-200 is a wide-body jet airliner that was manufactured by Airbus. It is one of the A340 variants and was Seating capacity ranges from 225 passengers in a two-class configuration to 261 passengers in a high-", + "An A340-200 is a four-engined long-range wide-body airliner with a capacity of up to 270 passengers. It has a cruising speed of Mach .85 and a range of up to 8,100 miles.", + "The A340-200 is a wide-body aircraft with four engines. It has a long fuselage and a T-tail. It can seat up to 293 passengers.", + "The A340-200 is a long-range commercial passenger jet airliner that was developed and produced by the European aerospace company Airbus. It is the second-shortest member of the A340 family, behind the A340-300. The", + "An aircraft A340-200 looks like a large metal tube with wings. It has four engines, two on each side of the fuselage. The A340-200 can seat up to 250 passengers.", + "An aircraft A340-200 looks like a large metal tube with wings and four engines.", + "Picture of an A340-200", + "An A340-200 looks like a large metal tube with wings. There are four engines, two on each side of the plane. The tail is long and pointy.", + "The image is of an Airbus A340-200 aircraft. The plane is white with blue and gold stripes running down the length of the fuselage. The tail of the plane is blue with a gold stripe. The plane has four engines,", + "Image shows Airbus A340-200 taking off from Miami International Airport. Aircraft has a long body with four engines.", + " meltingThe image is of an Air France A340-200 that apparently melted in the heat of the Arizona desert. The plane is lying on its belly with the metal of the fuselage seeming to have melted anddrooped down.", + "The image is of an Airbus A340-200, a long-range passenger jetliner. It is typically used for long-haul flights. The A340-200 has a range of over 8,000 miles and can seat up to", + "The image is of an Airbus A340-200 aircraft. The aircraft is white with blue and red stripes running down the length of the fuselage. The engine nacelles are also painted blue. The image also shows the aircraft's", + "The image is of an aircraft A340-200 flying through the sky with clouds in the background. The aircraft looks like it is about to land on a runway.", + "The image is of an A340-200 aircraft on a runway. The aircraft is white with blue and red stripes running down the side. The tail of the aircraft is blue with a red stripe. The engines are mounted on the wings.", + "The image is of an Airbus A340-200 aircraft. The aircraft is white with blue and gold stripes. There is a gold crown on the tail. The engines are blue.", + "The image is of an Airbus A340-200 aircraft. The aircraft is white with blue stripes running down the length of the fuselage. There is a blue spiral on the tail fin. The aircraft has four engines and two rows of landing", + "The image is of an Airbus A340-200 aircraft. The plane is white with blue stripes running down the length of the body. The windows are large and there are four engines attached to the wings.", + "This is an Airbus A340-200, a long-range commercial passenger jet. It is mainly used on long-haul flights, typically those of 8 hours or more.", + "This photograph shows an A340-200 aircraft operated by Lufthansa. The A340 is a long-range, wide-body airliner developed and produced by Airbus.", + " Air France})This is an Air France A340-200 aircraft. This aircraft is a part of the Air France fleet and is used for international flights.", + "An A340-200 aircraft operated by Lufthansa, one of the world's leading airlines.", + "An Air France A340-200 takes off from Paris Charles de Gaulle Airport.", + "An A340-200 is a long-range passenger airliner manufactured by Airbus. The A340 made its maiden flight on 25 October 1991 and first entered commercial service with Air France on 15 March 1993.", + "This is an Airbus A340-200, a long-range commercial passenger jet. It is one of the most popular aircraft in its class, and is used by major airlines around the world.", + "The A340-200 is a long-range passenger airliner produced by the European manufacturer Airbus. The A340-200 was the first model of the A340 series to be produced. It first flew on October 25, 1991, and was", + "This is an A340-200, a long-range commercial passenger jet aircraft designed and manufactured by Airbus.", + "The A340-200 is a long-range passenger jetliner developed by the European aerospace manufacturer Airbus." + ], + "A340-300": [ + "The A340-300 is a long-range, wide-body commercial passenger jet airliner that was developed and produced by Airbus Industries. It seats up to 266 passengers in a two-class layout, or up to 300 passengers in a single", + "It is a large aircraft with four engines, long range, and a wide body.", + "An aircraft A340-300 looks like a large plane with four engines. It has a long body and a tail with a point at the end. The wings are swept back and there are two rows of windows on the side of the plane", + "It is a long-range, four-engine, wide-body commercial passenger jet airliner developed and produced by Airbus.", + "The A340-300 is a long-range, wide-body commercial passenger jet airliner that was developed by Airbus. It is similar in appearance to the A330 and A340-200, but is longer by 7.6 m (", + "The A340-300 is a large aircraft with four engines. It has a wide body and a long range.", + "The Airbus A340-300 is a four-engined long-range airliner manufactured by Airbus. It is the second largest member of the Airbus A340 family behind the A340-600. The A340-300 has a standard range", + "The A340-300 is a large, long-range aircraft with four engines. It has a wide body and a long fuselage. The aircraft has a large wing and a high tail.", + "The A340-300 is a large, long-range four-engine wide-body passenger airliner manufactured by Airbus. It has a cruising speed of Mach 0.82 and a range of 13,900 km. The A340 was designed", + "The Airbus A340-300 is a four-engined long-range airliner with a capacity of 268 passengers produced by the European manufacturer Airbus.", + "An A340-300 is a four-engine wide-body aircraft produced by Airbus. It is the second longest-serving member of the A340 family, after the A340-600. The A340-300 first flew in October", + "The A340-300 is a four-engine long-range commercial passenger jet airliner developed and produced by the European aerospace company Airbus. It seats up to 375 passengers in the standard configuration and 440 in the high-capacity version. The A", + "By looking at the markings on the aircraft.", + "The A340-300 is a long-range, wide-body airliner produced by Airbus. It is the second-longest aircraft in production behind the A380. The A340-300 has a range of 12,000km and", + "The A340-300 is a long-range wide-body passenger airliner that was manufactured by Airbus. It was first delivered in 1993 and was followed by the A340-600 in 2002. The A340-300 is the third and", + "The aircraft A340-300 can be identified by its four engines and its long body.", + "The A340-300 is a four-engine long-range aircraft manufactured by Airbus. It has a distinctive fuselage design and is easily recognizable.", + "The A340-300 is a wide-body aircraft produced by Airbus. It is the first aircraft in the A340 Family. The A340-300 has a length of 63.69 meters (209 feet 3 inches) and a wings", + "The A340-300 is a four-engined wide-body aircraft from Airbus. It is the second longest member of the A340family, after the A340-600. The A340-300 has a operating range of 14", + "The A340-300 is a long-range, four-engine widebody aircraft produced by Airbus. It seats up to 335 passengers and has a range of 13,450 km.", + "The A340-300 is a wide-body aircraft with four engines. It has a cruising speed of Mach 0.82 and a range of 8,000 miles. The A340-300 can carry up to 247 passengers in a three", + "An A340-300 is a long-range, four-engined wide-body airliner. It is mainly used by airlines for international flights.", + "The Airbus A340-300 is a long-range, four-engine, wide-body commercial passenger jet airliner that was developed and produced by the European aerospace company Airbus.", + "An aircraft A340-300 looks like an Airbus A340. It is a four-engined wide-body airliner with a capacity of 300 passengers.", + "The A340-300 is a wide-body aircraft with four engines. It has a range of 12,000 kilometers and can seat up to 300 passengers.", + "The A340-300 is a wide-body aircraft with four engines. It has a long body and a swept-back wing.", + "The aircraft A340-300 looks like a long, silver plane with four engines.", + "A340-300 aircraft have a wide and long body with four engines. They can seat up to 375 passengers and have a range of 13,700km.", + "The A340-300 is a four-engine long-range plane produced by Airbus. It has a cylindrical fuselage with a rounded nose and tail. The wings are attached to the fuselage near the middle of the plane.", + "The A340-300 is a wide-body aircraft with four engines. It has a pedestal-mounted cockpit with a T-tail. The aircraft has a distinctive nose and a long body. The main landing gear is located under the", + "The image is of an Airbus A340-300, a long-range commercial passenger airliner. The A340-300 is part of the A340 family of aircraft, which also includes the A340-200 and A340-600.", + "The image shows an aircraft A340-300 flying in the sky. The aircraft is white with blue and gray stripes. The wings are down and the engines are propellers.", + "The image is of an Airbus A340-300 airplane. The plane is white with blue and gray stripes. The tail of the plane has a blue and white design. The Airbus logo is on the side of the plane.", + "The image is of an Airbus A340-300 taking off from an airport. The plane is white with blue and red stripes running down the side. The wings are spread out and the engines are at full power. The image is taken from", + "The image is of an Air France A340-300 on the tarmac. The plane is sleek and silver with the Air France logo on the tail. The image is clear and well lit.", + "The image shows an Airbus A340-300 taking off from an airport. The plane is shown at a low angle, with the nose pointing up into the sky. The background is blurry, indicating that the plane is moving quickly. The image", + "This image is of an Airbus A340-300, a long-range commercial passenger airliner. It is a wide-body aircraft with four engines, and can seat up to 300 passengers.", + "The image is of an Airbus A340-300, a long-range commercial passenger jet airliner. It has a typical four-engine layout with a cruciform tail. The aircraft is operated by many airlines around the world, including Luf", + "The image is of an Airbus A340-300, an aircraft that was first introduced in 1993. It is a long-range, wide-body aircraft with four engines, and it can seat up to 300 passengers.", + "The image is of an aircraft with four engines and a long body. The aircraft is white with blue and red markings.", + " Air France A340-300 landing at Paris CDG Airport", + "An A340-300 aircraft operated by Air France.", + "\"This is an A340-300 aircraft from Lufthansa. Lufthansa is a German airline that offers service to many destinations around the world.\"", + "This image shows an A340-300 aircraft, a long-range wide-body passenger airliner manufactured by Airbus.", + "An A340-300 aircraft operated by Air France.", + "One of the many aircraft used by Air France, the A340-300 is a long-range plane typically used for international flights.", + " The A340 is a long-range wide-body twin-engine jet airliner manufactured by Airbus.The A340 made its maiden flight on October 25, 1991, and was introduced on March 15, 1993.", + "The A340-300 is a long-range four-engine wide-body airliner produced by Airbus.", + "An A340-300 aircraft operated by Air France.", + "The A340-300 is a long-range passenger aircraft manufactured by Airbus." + ], + "A340-500": [ + "An A340-500 is a long-range, wide-body jet airliner made by Airbus. It has four engines and can carry up to 366 passengers. It is the largest member of the A340 family and is used mainly for long", + "The A340-500 is a four-engined long-range wide-body airliner with a capacity of up to 325 passengers produced by the European aerospace company Airbus.", + "An A340-500 is a large long-range commercial passenger jet airliner. It has a wide body and four engines.", + "The A340-500 is a long-range, four-engine jet airliner produced by Airbus. The A340 was assembled in Toulouse, France. It seats up to 375 passengers in a three-class configuration and has a range", + "The A340-500 is a long-range, wide-body commercial passenger airliner manufactured by Airbus Industrie. It seats up to 375 passengers in a three-class cabin and has a range of 13,450 kilometers. The plane is", + "The A340-500 has four engines and is 247 feet long with a wingspan of 222 feet.", + "The A340-500 is a long-range, four-engine jet airliner that was manufactured by Airbus. It is similar in design to the A330-200, with which it shares a common fuselage and wing structure. The A", + "The Airbus A340-500 is a wide-body four-engine jet airliner created by Airbus. It is the largest member of the A340 family and can fly up to 16 hours without stopping. The A340-500 is features a", + "The A340-500 is a large long-range airliner with four engines. It has a double-deck cabin layout and a wide-body aircraft.", + "An A340-500 is a large four-engine jet airliner with a long range. It has a wide body and a swept-back wing. The A340-500 is used for long-haul flights.", + "The A340-500 is a four-engined long-range aircraft manufactured by Airbus. It has a distinctive hump on the forward fuselage, and a sleek body. It is used by airlines such as Virgin Atlantic and Lufth", + "The A340-500 is a four-engine long-range commercial passenger jet airliner with a cruising speed of Mach 0.82. It has a distinctive double-bubble fuselage and was the first Airbus aircraft with a cabin that featured", + "The A340-500 is a four-engined long-range wide-body airliner with a capacity of up to 375 passengers. It has a range of over 9,000 miles.", + "There is no definitive answer to this question, as the A340-500 may be modified or have different features depending on the airline that operates it. However, some ways to identify an A340-500 aircraft include its large size, four", + "The A340-500 is a long-range commercial passenger jet manufactured by Airbus. It has a distinctive four-engine configuration and a long, wide fuselage. It can seat up to passengers and has a range of up to 13,", + "The A340-500 is a four-engined long-range airplane produced by the European manufacturer Airbus Industrie, a subsidiary of EADS. It seats up to 375 passengers in a three-class configuration or 475 passengers in a two", + "The A340-500 can be distinguished from other A340 models by its longer fuselage and range of 14,800 km.", + "The A340-500 is a four-engine long-range wide-body airliner with a capacity of up to 375 passengers produced by the European manufacturer Airbus.", + "The A340-500 is a long-range, wide-body commercial passenger jet airliner. It is the longest-range commercial passenger aircraft in operation and has a standard seating capacity of about 350 passengers. It is powered by four turbof", + "The A340-500 is a wide-body aircraft with four engines. It has a distinctive hump on the upper part of the fuselage.", + "The A340-500 is a long-range, wide-body passenger airliner with a distinctive 'hump' on the upper fuselage. It seats up to 335 passengers in a three-class configuration, has a range of over 9", + "The A340-500 is a four-engine long-range commercial passenger jet airliner. It has a cruciform tail fin, four winglets, and a length of 75.36 meters (247 ft 6 in).", + "The A340-500 has a long, sleek body with four engines attached to the wings. The plane is mostly white with a blue and silver stripe running down the length of the fuselage.", + "The A340-500 is a long-range, four-engine jet airliner that was manufactured by Airbus. It was the world's longest commercial aircraft until the debut of the Boeing 747-8 in 2011. The A340-500 has", + "The A340-500 is a large aircraft with four engines. Its fuselage is long and slender, and it has a tall tail. The A340-500 typically has two decks, and it can seat up to 350 passengers.", + "A340-500 aircraft have a wide body and four engines. They are designed for long-haul flights and can seat up to 380 passengers.", + "The A340-500 is a four engine, long-range wide-body airliner. The A340-500 has a typical range of 14,800 km (8,000 nmi), sufficient to fly non-stop from Los Angeles", + "The A340-500 is a long-range, wide-body commercial passenger jet airliner. It is manufactured by Airbus, a subsidiary of EADS.", + "The aircraft A340-500 looks like a large white plane with four engines.", + "The A340-500 has four engines and is a wide-body aircraft. It has a bulbous nose and a swept-back wing. The tail is tall and skinny.", + "The image is of an aircraft called an A340-500. The plane is white with blue stripes running down the side. There is a large engine on each wing. The tail of the plane has a blue and white checkered pattern", + "The image is of an Airbus A340-500 aircraft. The plane is white with blue stripes running down the length of the fuselage. The aircraft has four engines and is parked on a tarmac.", + "The image is of an Airbus A340-500 aircraft. It is a long-range, four-engine jet airliner. It has a range of 8,000 miles and can seat up to 375 passengers.", + "The image is of an aircraft with a long body and four engines. The nose is pointed and the aircraft has a swept-back wing. The tail is tall and thin.", + "The image is of an Airbus A340-500 aircraft. The plane is white with blue and grey stripes running down the length of the fuselage. There is a blue and white emblem on the tail fin. The aircraft has four engines and", + "The image is of an A340-500 aircraft on a runway. The plane is large with four engines and has a sleek white body. There is a blue and white stripe running down the length of the plane. The tail of the plane", + "This image is of an Airbus A340-500, a long-haul aircraft that was first introduced in 2002. It has a range of over 9,000 miles and can seat up to 375 passengers.", + "The image is of an Airbus A340-500 plane on the runway. The plane is large and silver with four engines. There are several people in the foreground watching the plane.", + "The image is of an aircraft A340-500 with a white body and blue stripes. The engine is at the back and there are four wheels. The aircraft has two wings and a tail.", + "The image is of an Airbus A340-500, a long-range wide-body commercial passenger jet airliner. The A340-500 has a range of 13,700 km and can seat up to 375 passengers in a three-class", + "An Airbus A340-500 takes off from an airport runway.", + " Airbus A340-500, the world's longest range commercial airliner.", + "Aircraft A340-500 taking off from Paris Charles de Gaulle airport", + "This is an A340-500, one of the longest-range commercial airliners in the world.", + " A340-500 aircraft at takeoff", + " The A340-500 is a long-range commercial passenger jetliner that was manufactured by Airbus.", + " This is an Airbus A340-500, an airliner that was first introduced in 2003.", + " The A340-500 is a long-range, wide-body commercial airliner manufactured by Airbus.", + "An Air France A340-500 aircraft taking off from Paris Charles de Gaulle Airport.", + " \"The A340-500 is a long-range commercial passenger jetliner developed and produced by the European aerospace company Airbus.\"" + ], + "A340-600": [ + "The A340 is a long-range, wide-body commercial passenger jet airliner developed and produced by Airbus. The A340 was assembled at Toulouse, France. It seats up to 375 passengers in the standard variants and 440 passengers in", + "The aircraft A340-600 is a long-range, wide-body plane. It has four engines and can seat up to 350 passengers. The A340-600 has a range of 14,800 km.", + "The A340-600 is a long-range, wide-body airliner produced by Airbus. It is the longest-serving member of the A340 family, having been in service since 1993. The A340-600 has a stretched fu", + "An A340-600 is a long-range, wide-body airliner with four engines. It has a distinctive double-deck hump on the forward fuselage.", + "An A340-600 is a long-range, wide-body commercial passenger jet aircraft produced by Airbus. It is the largest member of the A340 family, and seats up to 375 passengers in a three-class configuration or 475 passengers", + "The A340-600 is a long-range airplane that can seat up to 350 passengers. It has a swept-back wing design and four engines.", + "An A340-600 is a long-range, widebody aircraft with four engines. It has a distinctive nose and a tail that extends past the plane's vertical stabilizer. The A340-600 has a range of over 8,", + "The aircraft A340-600 is a long-range, four-engined wide-body airliner produced by Airbus. It has a standard seating capacity of 375 passengers in a three-class cabin and a maximum seating capacity of 440 passengers.", + "An aircraft A340-600 is a large, long-range commercial jet airliner. It has four engines, a wide-body design, and a stretched fuselage.", + "The Airbus A340-600 is a long-range, wide-body four-engine jet airliner developed and produced by the European aerospace company Airbus. It is the largest member of the Airbus A340 family and seats up to 380 passengers.", + "The Airbus A340-600 is a long-range, wide-body four-engine jet airliner made by Airbus. It is the longest-serving member of the A340 family, having been in service since 2001. As of 2013,", + "The aircraft A340-600 can be identified by its unique shape and design. It is one of the longest and heaviest passenger airliners in the world.", + "The A340-600 is a wide-body aircraft that can be identified by its four engines and long fuselage. It has a typical Airbus nose and cockpit, and the tail is tall with a distinct point.", + "The A340-600 is a wide-body aircraft produced by Airbus. It is the longest version of the A340, and can seat up to 375 passengers. It has a maximum range of 13,450 kilometers.", + "The A340-600 is a wide-body, long-range commercial airliner. It has four engines and can seat up to 375 passengers. It has a range of over 9,000 miles.", + "The A340-600 is a long-range, wide-body commercial passenger jet airliner developed and produced by Airbus. It is the largest member of the A340 family and seats up to 377 passengers in a three-class configuration or 475", + "The A340-600 is a long-range aircraft from Airbus. It is the largest member of the A340 family, and can carry up to 375 passengers. It has a distinctive long fuselage, and four engines mounted on underwing", + "The A340-600 is a wide-body, long-range commercial passenger jetliner. It typically seats between 375 and 440 passengers, has a range of between 9,700 and 11,750 nautical miles, and a cruising speed", + "The A340-600 is a long-range, wide-body commercial passenger jet airliner that was developed by Airbus. It is the largest member of the A340 family, and seats up to 375 passengers in a three-class configuration or", + "The A340-600 is a four-engined long-range wide-body airliner with a capacity of up to 375 passengers produced by the European manufacturer Airbus.The A340-600 has a distinctive fuselage which is 7", + "Images of the A340-600 can be found online.", + "The A340-600 is a wide-body aircraft with four engines. It has a long fuselage and a tall tail. The A340-600 has a circular fuselage cross-section.", + "An A340-600 is a long-range passenger plane with four engines. It has a wide body and can seat up to 375 passengers.", + "The A340-600 is a wide-body aircraft with four engines. It is the longest member of the A340 family, and has a stretched fuselage, increased fuel capacity, and more powerful engines.", + "Here is a picture of an aircraft A340-600:", + "An Airbus A340-600 is a long-range wide-body four-engine jet airliner made by Airbus. It is the largest member of the A340 family and seats up to 380 passengers.", + "The A340-600 is a wide-body aircraft with four engines, manufactured by Airbus. It is the longest-range member of the A340 family, and can seat up to 375 passengers. The A340-600 has a Rolls", + "The Airbus A340-600 is a four-engined long-range wide-body airliner with a capacity of up to 375 passengers produced by the European manufacturer Airbus. The A340-600 is a stretched version of the A340-", + "The Airbus A340-600 is a long-range, four-engine widebody airliner produced by Airbus. It isextra long and has a large wing. Its engines are on the underside of the wings.", + "The A340-600 has a long body with four engines. It can seat up to 375 passengers.", + "The image is of an aircraft A340-600 on a runway with its landing gear down. The plane is white with blue and red stripes running along its length. The nose of the plane is pointed up slightly and there is a faint contra", + "An image of an aircraft A340-600 can be found online at:https://www.airbus.com/aircraft/passenger-aircraft/a340-600.htmlThe image shows the large", + "In the image, an aircraft A340-600 is shown on a runway. The aircraft is large with four engines and a sleek design. There is text on the side of the aircraft that reads \"Airbus Industries\".", + "This image from the internet is of an A340-600 aircraft. It is a large, four-engine long-range airliner. This specific aircraft is operated by Qatar Airways.", + "The image is of an Airbus A340-600 on the tarmac. The aircraft is white with blue and gold stripes running down the length of the fuselage. There is a Malaysia Airlines logo on the tail.", + "The image is of an A340-600 aircraft on a runway. The aircraft is large and has four engines. The A340-600 is a long-range airliner that can seat up to 375 passengers.", + "The image is of an Airbus A340-600 flypast at the 2013 Paris Air Show. The A340 is a large long-range wide-body airliner.", + "This image is of an A340-600 aircraft on the runway. The A340 is a long-range, wide-body aircraft with four engines. The A340-600 is the longest version of the A340, and can seat", + "This image is of an A340-600 aircraft on the runway. The A340-600 is a long-range, wide-bodied commercial airliner. It has a distinctive double-deck design with four engines.", + "The image from the internet shows an aircraft A340-600 on a runway. The aircraft is white with blue and gold stripes running down the length of the fuselage. The nose of the aircraft is pointed up and the wings are outstretched", + "The A340-600 is an ultra-long-range passenger airliner developed by Airbus. It is the longest-serving member of the A340 family, and was the last Airbus wide-body aircraft to be developed. The A340-", + "One of the world's longest-range commercial airliners, the A340-600 is capable of flying up to 18 hours non-stop.", + " The A340-600 is the largest member of the A340 family of jet airliners. It has a length of 75.3 metres (247 ft), making it the longest-serving commercial aircraft.", + "The A340-600 is a long-range, wide-body airliner that was developed by Airbus. It is the largest member of the A340 family, and can carry up to 375 passengers. The A340-600 has a", + "This is an A340-600, an aircraft manufactured by Airbus.", + " The A340-600 is a long-range passenger airliner manufactured by Airbus.This image is of an Airbus A340-600, a long-range passenger airliner. The A340-600 is manufactured by Airbus, a leading aircraft manufacturer", + " Airbus A340-600 on runway", + "The A340-600 is a long-range, four-engine wide-body airliner produced by Airbus.", + "An A340-600 aircraft operated by Qatar Airways.", + "This is an A340-600, a wide-body jet airliner designed and built by Airbus." + ], + "A380": [ + "The Airbus A380 is a wide-body aircraft manufactured by Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded their facilities to accommodate it. It was initially named the Airbus A3XX and", + "The Airbus A380 is a large, long-range, wide-body commercial passenger airliner manufactured by Airbus. Looking at it from above, the A380 has a double-deck layout with a circular fuselage. It is the world's", + "An aircraft A380 looks like a very large commercial airliner. It has two decks, and is the largest passenger airliner in the world.", + "An aircraft A380 is a large commercial plane that can seat between 500 and 800 passengers. It has two decks and a wide body.", + "The A380 is a double-deck, wide-body, four-engine jet airliner manufactured by European manufacturer Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it.", + "The body of the A380 is long and slender with two sets of wings, one on top of the other. The plane has a tall tail and four engines, two on each side.", + "The Airbus A380 is a double-deck, wide-body, four-engine airliner manufactured by Airbus.", + "An aircraft A380 is a large plane with two levels of passengers seats and a wide body.", + "The A380 is a large, wide-body aircraft with four engines. It has a double-deck design and can carry up to 800 passengers.", + "An A380 is a double-deck, wide-body, four-engine jet airliner manufactured by Airbus. It is the world's largest passenger airliner.", + "The A380 can be identified by its large size and double-deck configuration. It is the largest commercial airplane in the world and can seat up to 800 passengers.", + "The A380 has a distinctive double-deck layout. The upper deck is noticeably wider than the lower deck, and the nose is higher than that of other aircraft. The A380 is also the largest passenger airliner in the world.", + "The A380 is a wide-body airliner with a double-deck layout. The aircraft has a distinctive hump on the upper deck, and is the largest commercial airliner in the world.", + "The Airbus A380 is a double-deck, wide-body, four-engine jet airliner manufactured by European manufacturer Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it.", + "An aircraft A380 can be identified by its four engines and its double-decker body.", + "The A380 can be identified by its large size, distinctive double-deck configuration, and four engines.", + "The A380 has a distinctive double-deck configuration. It is the largest commercial aircraft in service, and has a wingspan of 80.9 meters.", + "The A380 is the world's largest passenger airliner, and it has two full-length decks of passengers space. It is easily identifiable by its size and unique double-deck configuration.", + "The Airbus A380 is a double-deck, wide-body, four-engine jet airliner manufactured by Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it.", + "The A380 is the world's largest commercial airplane. It is a double-deck, wide-body, four-engine jet airliner manufactured by Airbus.", + "The A380 is a large, long-range plane with a double-deck. It has a wide body and four engines.", + "The Airbus A380 is a double-deck, wide-body, four-engine airliner manufactured by Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it.", + "The A380 is a double-deck, wide-body, four-engine jet airliner manufactured by Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it. It was initially", + "The A380 is a double-deck, wide-body, four-engine jet airliner manufactured by Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it.", + "The aircraft A380 is a double-deck, wide-body, four-engine jet airliner manufactured by European manufacturer Airbus.", + "The A380 is a large, double-decker aircraft with four engines. It has a wide body and a large wingspan. It can carry up to 800 passengers and has a range of over 8,000 miles.", + "Aircraft A380 looks like a large metal tube with wings attached. There are two levels inside the tube, and the upper level has seats that face each other in rows. There are also storage areas and bathrooms on this level. The lower", + "The Airbus A380 is a double-deck, wide-body, four-engine jet airliner manufactured by European manufacturer Airbus.", + "An A380 is a large, double-deck plane with four engines.", + "The Airbus A380 is a double-deck, wide-body, four-engine airliner manufactured by Airbus. It is the world's largest passenger airliner, and the airports at which it operates have upgraded facilities to accommodate it.", + "In the image, an Airbus A380 is shown taking off from an airport runway. The A380 is a large, double-deck aircraft with four engines.", + "Image shows an Air France A380 taking off from Paris Charles de Gaulle Airport. The airport is in the background and the A380 is in the foreground, with its landing gear up.", + "The image shows an Airbus A380, the world's largest passenger airliner, in flight. The double-deck aircraft has a typical capacity of more than 500 passengers and is operated by several airlines around the world.", + "An Airbus A380 is an aircraft with foursy engines and seats over 800 passengers. It is the largest airliner in the world.", + "The image is of an aircraft A380 with a white body and blue stripes. The aircraft has a long nose and a large wingspan. There are several engines mounted on the wings. The A380 is the largest commercial aircraft in the world", + "The image looks like an aircraft A380 taking off from an airport. The plane is very large with two decks and four engines. There are passengers in the cabin and baggage in the hold. The plane is white with blue and red stripes.", + "The image is of an Airbus A380, the world's largest commercial airliner. The A380 is a double-deck, wide-body, four-engine jet airliner created by Airbus.", + "The image is of an A380 aircraft taking off. The A380 is the world's largest passenger airplane and can seat over 800 passengers.", + "The image is of an Airbus A380, the world's largest passenger jet, landing at Gatwick Airport in the UK. The jet is massive, with four engines and two decks of passengers.", + "An image of an A380 aircraft can be found at https://www.airbus.com/aircraft/passenger-aircraft/a380.html. The image shows the aircraft from the front, with its two decks of", + "The Airbus A380 is the world's largest commercial jetliner, with a typical seating capacity of around 550 passengers.", + " The A380 is the largest passenger airliner in the world, with a typical seating capacity of 555 passengers in a three-class configuration.", + "The A380 is the largest commercial passenger airplane in the world.", + "The Airbus A380 is the world's largest passenger airliner.", + "The largest passenger airliner in the world, the A380 can carry up to 853 passengers.", + "The A380 is the world's largest passenger plane, and can carry up to 853 people. It is manufactured by Airbus, and made its first flight in 2005.", + " Airbus A380 landing at JFK International Airport", + "An A380 aircraft taking off.", + "The world's largest passenger aircraft, the A380, can carry up to 800 passengers.", + "The world's largest passenger airliner, the A380, in flight." + ], + "ATR-42": [ + "The ATR-42 is a twin-engine, turboprop-powered regional airliner. It seats up to 44 passengers and was introduced in 1985. The aircraft has a pressurized cabin and is capable of operating on short runways.", + "The ATR-42 is a twin-engine turboprop regional aircraft built by the French-Italian manufacturer ATR. It seats up to 50 passengers and has a maximum range of 1,500 miles. The ATR-42 has", + "An aircraft ATR-42 looks like a twin-engine, turboprop regional airliner. It seats up to 44 passengers and has a maximum range of 1,900 miles.", + "An ATR-42 is a twin-engine, turbo-prop aircraft that can seat up to 68 passengers. It has a swept-back wing design and a T-tail. The ATR-42 is often used for regional flights", + "The ATR-42 is a twin-turboprop, short-haul regional airline workhorse. It seats up to 50 passengers and has a cruise speed of 310 miles per hour. The aircraft is easily recognizable by its high-", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR. ATR models have a square-shaped fuselage with a glass cockpit. The aircraft seats", + "An ATR-42 is a twin-turboprop, short-haul regional airliner developed and manufactured in France and Italy by ATR. ATR-42s seat up to 78 passengers and have a cruising speed of 575", + "The ATR-42 is a twin-engined, short-haul regional airliner developed and produced in France and Italy. The number \"42\" in its designation comes from the fact that it was the 42nd model in the ATR", + "The ATR-42 is a twin-engine, turboprop regional airliner. It seats between 40 and 52 passengers and has a cruising speed of 575 kilometers per hour. The aircraft is used mainly on short-haul flights.", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR, a joint venture formed by French aerospace company A\u00e9rospatiale and Italian aviation conglomerate", + "The ATR-42 is a twin-turboprop, short-haul regional airliner built in France and Italy by ATR. ATR 42s seat up to 78 passengers and have a cruising speed of 640 km/h.", + "The ATR-42 is a twin-engine turboprop regional airliner developed and manufactured in France and Italy by ATR. ATR-40 is the designation for the -200 series, while ATR-42 is the -300", + "The ATR-42 is a twin-turboprop, short-haul regional airliner that seats up to 44 passengers in a pressurized cabin. ATR aircraft have a distinctive wide nose, with the engines mounted on pylons", + "The ATR-42 is a twin-turboprop, short-haul regional airliner built in France and Italy. Development of the aircraft began in the mid-1970s, and the aircraft first flew in 1984.", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by aircraft manufacturer ATR. The number \"42\" in its designation comes from the fact that it was the", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and manufactured in France and Italy by ATR, a joint venture formed by French aerospace company A\u00e9rospatiale and Italian aviation conglomerate", + "The ATR-42 is a short-haul regional airliner built in France and Italy by ATR. ATR models have a distinctive stepped-up cockpit, giving the aircraft its nickname, the \"staircase\".", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR. ATR 42's have a distinctive blunt nose and tapered rear fuselage, with the", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR. ATR 42s seat up to 78 passengers and have a maximum range of 1,800", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR. ATR models have a distinctive nose profile and swept-back wing configuration.", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and manufactured in France and Italy by ATR. ATR planes have a distinctive dumbell-shaped fuselage cross-section, with half", + "ATR-42 aircrafts are twin-engine turboprop airplanes that typically seat 40-50 passengers. They have a distinctive swept-wing design and are painted in a variety of bright colors.", + "The ATR-42 is a twin-turboprop regional airliner built in France and Italy. It seats 40 to 50 passengers and is used on short-haul flights. The aircraft has two propellers at the back of the plane", + "The ATR-42 is a twin-turboprop, short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR, a joint venture formed by French aerospace company A\u00e9rospatiale and Italian aerospace company", + "The ATR-42 is a twin-turboprop, short-haul regional airliner. It seats between 40 and 52 passengers, and has a cruising speed of around 500 km/h. The aircraft is used by a number of", + "The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR, a joint venture formed by French aerospace company A\u00e9rospatiale and Italian aviation conglomerate", + "The ATR-42 is a twin-turboprop, short-haul regional airliner. It seats up to 50 passengers and has a cruising speed of 500 kilometers per hour. The aircraft is used by airlines around the world, including", + "The ATR 42 is a twin-turboprop, short-haul regional airliner built in France and Italy by ATR, a joint venture formed by A\u00e9rospatiale and Aeritalia.The aircraft", + "The ATR-42 is a twin-turboprop aircraft produced by the French-Italian manufacturer ATR. The aircraft is a short-haul regional airliner and is operated by a crew of two. The ATR-42 has", + "Image shows an ATR-42 aircraft on a runway. The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by ATR, a joint venture formed by Airbus", + "The image is of a ATR-42 aircraft on a runway. The ATR-42 is a twin-engine turboprop regional airliner.", + "The image is of an aircraft from the ATR-42 series. The series was developed by ATR, a French-Italian aircraft manufacturer. The image shows the aircraft with its distinctive twin-turboprop engines and high-wing", + "The image is of an aircraft ATR-42 on a runway. The ATR-42 is a twin-turboprop, short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "The image from the internet of an aircraft ATR-42 shows a plane with two engines, a wingspan of just over 100 feet, and a length of around 60 feet. The plane appears to have a capacity of around 60 passengers and", + "The ATR-42 is a twin-engine turboprop short-haul regional airliner built in France and Italy by ATR.", + "An image from the internet of an aircraft ATR-42 would likely show the plane in flight or on a runway. It would also include some text explaining the capabilities of the aircraft.", + "The image shows an ATR-42 aircraft on a runway. The ATR-42 is a twin-engine turboprop regional airliner.", + "The image is of a white aircraft with blue stripes running down the sides. The propellers are at the front of the plane. There are windows along the sides of the aircraft.", + "The image is of a white aircraft with blue and red stripes running down the sides. The ATR-42 is a twin-turboprop, short-haul regional airliner developed and produced in France and Italy by aircraft manufacturer ATR", + "The ATR-42 is a twin-turboprop aircraft manufactured by \"Airbus.\"", + "An ATR-42 aircraft takes off from an airport.", + "The ATR-42 is a twin-turboprop regional airliner built by French-Italian manufacturer ATR.", + "ATR-42 aircraft on the tarmac", + "ATR-42 aircraft on the runway", + "ATR-42 aircraft on the runway", + " The ATR-42 is a twin-turboprop, short-haul regional airliner built in France and Italy by ATR. ATR planes are used for passenger and cargo flights.", + "ATR-42 aircraft on the runway", + "ATR-42 aircraft on runway.", + "ATR-42 turboprop aircraft at sunset" + ], + "ATR-72": [ + "An ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "The ATR-72 is a twin-engine turboprop, short-haul regional airliner developed and produced in France and Italy by aircraft manufacturer ATR.", + "An aircraft ATR-72 is a twin-engine turboprop, fixed-wing aircraft with 72 seats.", + "An ATR-72 is a twin-engine propeller-driven regional airliner. It is designed to seat up to 74 passengers and has a cruising speed of 535 km/h. The ATR-72 is a development of the", + "The ATR-72 is a short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR. It seats up to 78 passengers and is operated by a two-pilot crew. The ATR-72 is a twin", + "An aircraft ATR-72 is a twin-engine turboprop short-haul regional airliner. It seats up to 74 passengers and has a cruising speed of 575 kilometers per hour.", + "An ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR. ATR-72s seat up to 74 passengers in a pressurized cabin and have a range", + "An ATR-72 is a twin-engine turboprop short-haul regional airliner produced by the French-Italian aircraft manufacturer ATR. ATR-72s seat up to 74 passengers in a configuration and have a maximum range of", + "An ATR-72 aircraft is a twin-engine, turboprop plane. The plane seats up to 74 passengers and has a cruising speed of 350 kilometers per hour.", + "An ATR-72 is a turboprop aircraft with a distinctive twin-engine configuration. The aircraft is fairly small, with a wingspan of just over 40 feet. The ATR-72 typically seats around 70 passengers, though the", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner produced by the French-Italian aircraft manufacturer ATR.", + "The aircraft ATR-72 can be identified by its unique livery and the ATR-72 insignia on the fuselage.", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "By its size and shape. The ATR-72 is a twin-engine turboprop aircraft with a distinctive low-wing design and a high horizontal stabilizer. It is typically used for regional flights of up to 1,000 miles", + "The aircraft ATR-72 can be identified by its unique livery, consisting of a white body with a blue cheatline. The aircraft is also equipped with two turboprop engines, and has a T-tail.", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner. It is the second model in the ATR family, and was developed from the ATR 42. The main difference between the two is that the", + "An aircraft ATR-72 can be identified by its unique tailfin design. The ATR-72 also has a distinctively shaped nose, and its engines are mounted below the wings.", + "One way to identify an ATR-72 aircraft is by its unique twin-engine configuration. The ATR-72 also has a distinctive swept-back wing design and a tall stance on the ground.", + "One way to identify an ATR-72 aircraft is by its engines. The ATR-72 has two Pratt & Whitney Canada PW100 turboprop engines. Another way to identify an ATR-72 aircraft is by its landing gear", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "Assuming you are referring to the ATR-72 aircraft: The ATR-72 is a twin-engine turboprop short-haul regional airliner produced by the French-Italian manufacturer ATR.", + "There is no one definitive answer to this question, as the ATR-72 aircraft can come in different configurations depending on the airline. However, some common features of the ATR-72 aircraft include two turboprop engines, a low", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.Seen from the front, the ATR-72 appears similar to the AT", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR. It was developed as a stretched variant of the ATR 42, and was announced at the Paris", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "The ATR-72 is a short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR. It is the successor to the ATR-42, and was introduced in October 1989. The ATR-72 is a", + "The ATR-72 is a twin-engine turboprop, short-haul regional airliner produced by the French-Italian manufacturer ATR. The number \"72\" in its name is derived from the aircraft's standard seating configuration in a", + "This is an ATR-72 aircraft:", + "An aircraft ATR-72 looks like a twin-engine turboprop.", + "The image shows an ATR-72 aircraft on a runway. The aircraft is white with blue and grey stripes. The nose of the aircraft is pointing up and the tail is down. The wings are level.", + "The image is of an aircraft ATR-72 on a runway. The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "The ATR-72 is a twin-engine, turboprop aircraft manufactured by French aerospace company ATR. It was developed as an upgrade to the popular ATR-42, and first flew in 1988. The ATR-72", + "The image is of an aircraft ATR-72 taking off. The aircraft is painted in a blue and white livery with the company's logo on the tail. The image shows the aircraft at a low angle as it leaves the ground,", + "The image is of an aircraft ATR-72 on a runway. The ATR-72 is a twin-engine turboprop short-haul regional airliner produced by the French-Italian manufacturer ATR.", + "The image is of an ATR-72 aircraft on a runway. The plane is white with blue stripes running down the sides. There is a propeller on each wing.", + "The image is of an aircraft ATR-72 on a runway. The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "This image from the internet shows an aircraft ATR-72. The ATR-72 is a twin-engined turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "An image of an aircraft ATR-72 shows a twin-engine turboprop short-haul regional airliner.", + "The image is of an aircraft ATR-72 on a runway. The ATR-72 is a twin-engine turboprop short-haul regional airliner manufactured by the French-Italian aircraft manufacturer ATR.", + "ATR 72 landing on runway", + "The ATR-72 is a twin-engine turboprop short-haul regional airliner produced by the French-Italian manufacturer ATR.", + "An ATR-72 aircraft in flight.", + "An ATR-72 aircraft taking off from an airport runway", + "ATR-72 aircraft at an airport", + " image: An ATR-72 aircraft operated by Air TahitiATR-72 aircraft operated by Air Tahiti", + "ATR-72 aircraft on a runway.", + "ATR-72 aircraft on the tarmac", + "ATR-72 aircraft on the runway", + "ATR-72 aircraft on the tarmac" + ], + "An-12": [ + "The Antonov An-12 is a four-engine turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been operated by over 50 countries.", + "An AN-12 aircraft is a four-engine turboprop transport plane that was designed in the Soviet Union. It is similar in appearance to the US-built C-130 Hercules transport plane.", + "The Antonov An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been widely exported.", + "The Antonov An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been widely exported.", + "An-12 is a four-engine turboprop transport aircraft designed in the Soviet Union.", + "The An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been manufactured since 1957.", + "The An-12 is a four-engine turboprop transport aircraft designed in the Soviet Union. It is similar in appearance to the American C-130 Hercules.", + "The An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has seen widespread use in the Soviet Air Force, Air Forces of the", + "The aircraft An-12 is a four-engine turboprop transport plane designed in the USSR. It has a rectangular fuselage with a high wing and a tail fin. The engines are mounted on pylons beneath the wings.", + "The Antonov An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been manufactured since 1957.", + "The Antonov An-12 is a four-engined turboprop transport aircraft developed in the Soviet Union. It is the military version of the Antonov An-10 and has been manufactured since 1957.", + "By its four turboprop engines, high-mounted wings, and twin tail fins.", + "The aircraft An-12 can be identified by its large size, four engines, and a high-mounted wing.", + "An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union.", + "There are a few ways to identify an An-12 aircraft. One way is to look for the large cargo door on the side of the aircraft. Another way is to look for the four turboprop engines.", + "The Antonov An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has many variants.", + "An aircraft An-12 can be identified by its large cargo hold, distinctive twin booms, and four turboprop engines.", + "Some ways to identify an aircraft An-12 are by its tailfin shape, overall size, and engines.", + "You can identify an aircraft An-12 by its large, swept-back wings and four engines mounted on the fuselage.", + "If you see an airplane with four engines, a high-mounted wing and a tail design featuring twin fins and rudders, it's likely an Antonov An-12.", + "An aircraft AN-12 looks like a regular airplane.", + "Aircraft AN-12 look like a large propeller-driven airplane with a high wing and a rectangular fuselage. It has a crew of four and can carry up to 60 passengers or 20,000 kg (44,000 lb)", + "An aircraft An-12 looks like a large four-engine propeller-driven cargo aircraft.", + "An-12 looks like a large cargo plane with a long nose and six engines mounted on the wings.", + "The Antonov An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been operated by numerous air forces around the world.", + "The Antonov An-12 is a four-engined turboprop transport aircraft designed in the Soviet Union. It is the military version of the Antonov An-10 and has been produced in both cargo and passenger versions.", + "An-12 aircraft typically have a cylindrical fuselage with a blunt nose, four turboprop engines mounted on pylons beneath the wings, and a large cargo door at the rear of the fuselage.", + "An-12Image result for what does an aircraft an-12 look likeHere is a picture of an An-12 aircraft.", + "An Ilyushin Il-12 is a Soviet four-engined transport airplane designed in the late 1940s by the Ilyushin design bureau. It entered service with the Soviet Air Force in 1950 and remained in service until the late 1960", + "An-12 aircraft are large four-engine turboprop transport aircraft that were manufactured in the Soviet Union. They are comparable in size and range to the US-built C-130 Hercules.", + "The image is of an aircraft called an An-12. It is a Soviet-designed military transport plane. The plane is designed to carry troops and equipment.", + "The image is of an aircraft called an An-12. It is a Soviet-designed military transport plane. The An-12 first flew in 1957 and was produced until 1973. It is a four-engined turboprop aircraft.", + "Image result for aircraft an-12The image is of a large turboprop cargo aircraft called an An-12. It has a silver body with blue and white stripes running along the sides. The aircraft is parked on a runway", + "The image is of an aircraft An-12 on a runway. The An-12 is a Soviet-made four-engined turboprop cargo plane.", + "I found an image on the internet of an aircraft An-12. The image showed the aircraft parked on a runway with its engines running. The aircraft looked to be in good condition and appeared to be ready for takeoff.", + "The image is of an Antonov An-12 transport aircraft. The An-12 is a four-engine turboprop transport aircraft designed in the 1950s. The aircraft has a crew of six and can transport up to 80 passengers.", + "In the image, an An-12 aircraft is parked on a tarmac with its cargo bay doors open. The aircraft is surrounded by people in military uniform, and there are several vehicles parked nearby. The An-12 is a Soviet-", + "This image from the internet shows an Antonov An-12 aircraft. This particular aircraft is used for military and transport purposes and can take off and land on short and unprepared airstrips.", + "An image from the internet of an aircraft An-12 shows a large, four-engine turboprop cargo plane. It has a high-mounted wing and a tail that curves upward at the end. The An-12 has a large", + "The image is of an Antonov An-12 cargo plane. The plane is all white with a blue stripe running down the length of the fuselage. There is a large cargo door on the side of the plane, and the landing gear", + " Antonov An-12 is a Soviet military transport aircraft designed in the 1950s", + " Soviet military transport aircraft.", + " Soviet military transport aircraft An-12", + " A Soviet military transport aircraft.", + " A Soviet plane used to provide military transportThe An-12 was a Soviet plane used to provide military transport. It was designed in the 1950s and was first flown in 1957.", + "This image shows an Antonov An-12 aircraft. This four-engine turboprop transport was first flown in 1957 and was produced in large numbers for both military and civilian operators.", + "An-12 cargo aircraft", + "A Soviet-made An-12 transport plane on the tarmac.", + " Aerial view of Antonov An-12 near landing", + "A Chkalovka-based Antonov An-12 of Aeroflot in 1984." + ], + "BAE 146-200": [ + "The aircraft has four engines and is designed for short-haul flights. Its distinctive features include a high wing and T-tail.", + "The BAE 146-200 is a four-engined aircraft with a T-tail. It has a length of 148 feet and a wingspan of 99 feet. It can seat up to 100 passengers.", + "The BAE 146-200 is a twin-engine regional jet that was manufactured by British Aerospace. The aircraft is now out of production.", + "The aircraft BAE 146-200 is a twin engine, short-haul plane that can hold up to 100 passengers. It is often used for regional flights. The plane is British-made, and its distinctive features include four engines mounted on", + "The BAE 146-200 is a small airliner that seats up to 100 passengers. It has four engines, two on each wing, and a T-tail. The aircraft is made of aluminium and has a low-noise design.", + "It's a small jet with four engines. The nose is pointy and there are four windows on each side of the plane.", + "The BAE 146-200 is a short-haul aircraft with four engines mounted on the rear of the fuselage. It has a T-tail and a high-mounted wing. The 146-200 can seat up to 112 passengers.", + "An aircraft BAE 146-200 is a British four-engined turboprop regional airliner with a capacity of 76 to 86 passengers.", + "The BAE 146-200 is a narrow-body aircraft powered by four turbofan engines. It has a swept wing and a T-tail. The aircraft has a maximum capacity of 130 passengers and a range of 2,500 miles", + "The BAE 146-200 is a four-engined regional airliner with a capacity of between 99 and 128 passengers. It is a Short Take Off and Landing (STOL) aircraft, and can land and take off from unpaved surfaces", + "The easiest way to identify an aircraft BAE 146-200 is by its unique nose profile and four engines mounted on pylons under the wings.", + "An aircraft BAE 146-200 can be identified by its four engines, four-wheel landing gear, and T-tail.", + "The BAE 146-200 is a British short-haul passenger jet. It is a twin-engine aircraft with four turbojet engines. The BAE 146-200 has a maximum capacity of 146 passengers and a range of 2,000", + "The aircraft can be identified by its short-fuselage, high-wing configuration. Additionally, the aircraft has four engines, mounted on pylons below the wings.", + "The BAE 146-200 is a British narrow-body aircraft with four engines produced by British Aerospace (now BAE Systems). It first flew in 1981 and was introduced in 1983.", + "The BAE 146-200 can be identified by its four high-bypass turbofan engines, which are mounted on pylons under the wings, and its T-tail. The aircraft also has a distinctive glass cockpit with a", + "The BAE 146-200 is a Short Haul passenger aircraft. It has four engines and is manufactured by British Aerospace. It can seat up to 146 passengers and has a range of 1,790 miles.", + "The BAE 146-200 is a short-haul jetliner manufactured by British Aerospace. It is a stretched version of the earlier BAE 146-100 and can seat up to 168 passengers in a two-class configuration. The aircraft is", + "The BAE 146-200 is a British regional airliner that was manufactured by British Aerospace (now BAE Systems).The aircraft is easily recognizable by its short-fuselage and four engines, mounted on pylons under the wings", + "There is no definitive answer, but some BAE 146-200 aircraft can be identified by their engines, which are Rolls-Royce Spey MK 555s. Other identifying factors may include the aircraft's length (29.8 meters/", + "The BAE 146-200 is a short-haul airliner that seats up to 132 passengers. It has four engines, two on each side of the fuselage, and a T-tail.", + "The BAE 146-200 looks like a small commercial jet. It has four engines and seats up to 100 passengers.", + "An aircraft BAE 146-200 looks like a small commercial jet. It has a swept-back wing design and a T-tail. The aircraft is typically used for regional flights.", + "The BAE 146-200 is a four-engined commercial aircraft made by British Aerospace. It typically seats between 100 and 120 passengers and has a range of 2,000 to 2,500 miles. The aircraft is mostly used by regional", + "Aircraft BAE 146-200 looks like a small, twin-engine jetliner. It has a small fuselage and a high-mounted wing. The aircraft is typically used for short-haul flights.", + "An aircraft BAE 146-200 looks like a small, twin-engine plane. It has a high wing and a T-tail. The plane seats up to 100 passengers and has a range of 2,000 miles.", + "A BAE 146-200 is a British aircraft that typically has a white body with blue and red stripes running down the sides. It has two engines near the tail and four wings.", + "The BAE 146-200 is a short-haul aircraft that seats up to 100 passengers. It has four turbofan engines mounted on the wings and a T-tail. The aircraft is popular with airlines because of its fuel efficiency and", + "An aircraft BAE 146-200 typically has four engines and is used for short-haul flights. It has a capacity of around 100 passengers and can reach speeds of up to 600 kilometers per hour.", + "The BAE 146-200 is a twin-engine plane that can seat up to nine passengers. The plane has a white body with blue and grey stripes. The BAE 146-200 also has a tall tail with the company's logo", + "The image is of a small, twin-engine jetliner. It has a sleek, modern look with swept-back wings. The aircraft is white with blue and gray stripes running along the length of the fuselage. The BAE 146", + "This image is of an aircraft called the BAE 146-200. It is a British short-haul passenger jet. The aircraft has four engines and seats up to 146 passengers.", + "The image is of an aircraft with a long body and four engines. The aircraft is white with blue stripes running down the sides. There is a blue and white checkerboard pattern on the tail fin. The aircraft is sitting on a runway", + "The image is of an aircraft with a white fuselage and blue and red stripes running down the side. The blue and red stripes are separated by a thin white stripe. There is a blue and red stripe on the tailfin, and the", + "The image is of a white aircraft with blue and red stripes running down the sides. The nose of the aircraft is pointed up and there are four engines attached to the wings. The aircraft is sitting on a runway with a group of people in", + "The image is of an aircraft with four engines, two on each wing. The aircraft is white with blue stripes running down the length of the fuselage. The tail of the aircraft is blue with a white stripe. The aircraft has two rows", + "The image is of a BAE 146-200 aircraft in flight. The aircraft is white with blue and gray stripes running down the sides. The twin engines are located on the rear of the fuselage. The aircraft has a large wingspan", + "The image is of a small jet with four engines, two on each side. The jet is white with blue and red stripes running down the length of the fuselage. The cockpit is at the front of the jet, and there are windows", + "The BAE 146-200 is a British twin-engined short-haul airliner that was manufactured between 1983 and 1992 by British Aerospace (BAe). The aircraft has a capacity of up to 146 passengers and is powered by two turbof", + "The image is of an aircraft with a white body and blue and red stripes running down the sides. The nose of the aircraft is pointing up and there are four engines mounted on the wings. The aircraft is sitting on a runway with green grass", + " The BAE 146-200 is a short-haul commercial airliner.", + "BAE 146-200 aircraft on the tarmac", + " A BAE 146-200 in flightThis image shows a BAE 146-200 aircraft in flight. The aircraft is painted in British Airways livery and is flying over an unknown body of water.", + "This is a BAE 146-200, a short-haul airliner that was introduced in 1983.", + " A BAE 146-200 aircraft of the British airline Flybe", + "The BAE 146-200 is a twin-engine aircraft used for short-haul flights.", + "The BAE 146-200 is a short-haul aircraft that was manufactured by British Aerospace. It is a twin-turbofan engine aircraft that can seat up to 100 passengers.", + " A British Aerospace 146-200 airliner, operated by Air Wisconsin, on approach to land at Newark Liberty International Airport, United States.", + "A BAE 146-200 aircraft in flight.", + "A BAE 146-200 aircraft operated by Air Wisconsin, United States." + ], + "BAE 146-300": [ + "The BAE 146-300 is a short-haul aircraft that seats up to 128 passengers. It has four engines and a T-tail. The aircraft is all white with a blue stripe that runs along the length of the fuselage.", + "The BAE 146-300 is a short-haul commercial passenger jet. It has four engines and is typically configured with 100 seats. The aircraft is made of aluminum alloy and has a low-mounted wing. It is equipped with landing gear", + "The BAe-146-300 is a British aircraft that was designed and manufactured by British Aerospace. It is a four-engined jet airliner with a capacity of up to 148 passengers. It has a wingspan of 33.8 meters", + "An aircraft BAE 146-300 is a short-haul airliner that is typically used for short-haul routes between 1,000 and 2,000 miles. It has a capacity of around 100 to 150 passengers and a range of around 3", + "The BAE 146-300 is a short-haul aircraft with a high-mounted wing and four engines mounted on pylons below the wings. The fuselage is circular in cross-section, and there are four main passenger doors", + "It is a turbofan-powered regional airliner. It has four engines, short wings, and a T-tail. It typically seats between 100 and 120 passengers.", + "Aircraft BAE 146-300 is a narrow-body, short-haul aircraft. It is typically used for regional flights. The aircraft has four engines and is able to seat up to 149 passengers.", + "The BAE 146-300 is a short-haul aircraft with four engines mounted on the rear of the fuselage. It has a wingspan of 33.8 metres and a length of 29.8 metres. The aircraft can seat up", + "The aircraft has four engines, mounted on pylons below and to the rear of the wing. The engines are surrounded by cowlings that incorporate fuel-cooled leading edge sections. The wingtips are turned down to improve aerodynamic", + "The BAE 146-300 is a short-haul airliner that seats up to 130 passengers. It has four jet engines mounted on the rear of the fuselage, and a T-tail. The aircraft is roughly the same size as a", + "The BAE 146-300 can be identified by its four engines, which are mounted on the rear of the fuselage, and its swept-back wings.", + "The aircraft can be identified by its distinctive profile and four engines. The model number can be found on the fuselage near the door.", + "The BAE 146-300 can be identified by its four engines, short-fuselage, and high-wing design. Additionally, this aircraft typically has five doors on the main deck and a T-tail.", + "The 300 model is the stretched version of the aircraft. It has a stretched fuselage and a fifth window on each side.", + "The BAE 146-300 can be identified by its unique nose, large engines, and short fuselage.", + "The BAE 146-300 is a short-haul aircraft that was manufactured by British Aerospace. It is a stretched version of the BAE 146-200 and can seat up to 146 passengers. The aircraft is powered by four Avco Ly", + "The BAE 146-300 can be identified by its four engines mounted on the rear of the fuselage, its T-tail, and its swept-back wings.", + "Aircraft BAE 146-300 can be identified by their unique fuselage design and engines mounted on the rear of the aircraft.", + "The aircraft is a British-made short-haul airliner with four engines. It seats between 130 and 170 passengers and has a cruising speed of around 800 kilometers per hour.", + "The BAE 146-300 can be identified by its four engines, large vertical stabilizer, and T-tail. Additionally, this aircraft has winglets and hinged nose and main cabin door.", + "The BAE 146-300 is a regional airliner that seats up to 106 passengers. It has four engines, and its body is about the same size as a Boeing 737.", + "A BAE 146-300 is a twin-engine, short-haul aircraft. It has a wingspan of 93 feet and a length of 102 feet. It can seat up to 146 passengers and has a range of 1,750 miles", + "The BAE 146-300 is a small, four-engine jet airplane. It is about the same size as a Boeing 737.", + "The BAE 146-300 is a twin-engine, short-haul commercial aircraft. It is a stretched version of the BAE 146-200, and can seat up to 132 passengers. The aircraft has a distinctive three-abreast", + "Aircraft BAE 146-300 generally looks like a small commercial plane. It typically has four engines mounted on the wings, and a T-tail. The plane is usually white with blue or red stripes running down the sides.", + "The BAE 146-300 is a small commercial aircraft with four engines. It has a distinctive humpbacked fuselage and is used for short-haul flights.", + "The BAE 146-300 is a twin-engine jetliner with four turbofan engines mounted on pylons under the wings. It has a T-tail and a swept wing. The aircraft is 138 feet long and has a", + "The BAE 146-300 is a British short-haul airliner that was manufactured by British Aerospace. The aircraft is a stretched version of the BAE 146-100 and seats up to 132 passengers. The BAE 146-300 first flew", + "The BAE 146-300 is a twin-engine turbofan regional airliner. It has a swept wing and a T-tail. It seats up to 102 passengers in a two-class cabin configuration.", + "The BAE 146-300 is a four-engine aircraft. It has a T-tail and a swept-back wing. The aircraft is designed for short-haul flights.", + "This image is of a BAE 146-300 aircraft. It is a British aircraft that was first introduced in 1981. It is a nose-wheel aircraft with four engines.", + "The image is of an aircraft with four engines, two on each side of the plane. The body of the plane is long and slender, and there are two wings coming off the main body of the aircraft. The BAE 146-300", + "The image is of a white aircraft with blue and red stripes running down the side. The nose of the aircraft is pointed up slightly and there are four engines attached to the wings. The BAE 146-300 is a short-haul aircraft", + "Aircraft BAE 146-300 is a British four-engined turboprop regional airliner with a capacity of 70-90 passengers. It is operated by various airlines around the world.", + "http://www.airliners.net/photo/Qantas-Airlines/BAE- 146-300/2218457/L/This image is of an aircraft BAE 146-300 belonging to Q", + "This image shows a BAE 146-300 aircraft on the runway. The aircraft is white with blue and grey stripes. The landing gear is down and the engines are powering up for takeoff.", + "The image is of an aircraft with a white body and blue and red stripes running down the length of the fuselage. The nose of the aircraft is pointed and there are four engines mounted on the wings. The aircraft is sitting on a runway", + "The image is of an aircraft with four engines, two on each side. The nose of the aircraft is pointed up and there is a landing gear on each side. The aircraft has a blue and white color scheme.", + "The image is of a white aircraft with blue and red stripes running down the side. There is a blue and red logo on the tail of the aircraft. The aircraft has four engines and four aircraft wheels.", + "This image from the internet shows an aircraft BAE 146-300. The aircraft is large and silver with four engines. There is a distinctive hump on the top of the fuselage.", + " A British Aerospace BAE 146-300 plane takes off from Berlin Tegel Airport in Berlin, Germany.", + " A BAE 146-300 operated by German airline Crossair taking off from Bern Airport, Switzerland.", + "This image shows a BAE 146-300 aircraft. The BAE 146 is a short-haul airliner that was manufactured by British Aerospace.", + "A BAE 146-300 aircraft operated by British AirwaysThe aircraft is seen parked at an airport with its engines shut down.", + " The BAE 146 is a British short-haul and regional airliner that was manufactured by British Aerospace, later part of BAE Systems.The aircraft was originally developed as a short-haul airliner to replace the earlier generation of turboprop and", + " BAE 146-300 aircraft", + " The BAE 146-300 is a twin-engined short-haul airliner that was manufactured by British Aerospace.The aircraft was in service between 1983 and 2003.", + " A BAE 146-300 aircraft operated by Air Gibraltar, on approach to Gibraltar International Airport.", + " BAE 146-300 aircraft", + "A BAE 146-300 aircraft operated by AirTanker Services Ltd., approaches the Royal Air Force (RAF) Brize Norton base in Oxfordshire, England, on Monday, March 23, 2020. The RAF has converted the Air" + ], + "BAE-125": [ + "The BAE-125 is a twin-engine business jet that seats up to eight people. It has a sleek, white body with a curved nose and swept-back wings. The jet's engines are mounted on the rear of the fu", + "The BAE-125 is a small, twin-engine business jet that seats seven passengers.", + "The BAE-125 is a twin-engine business jet that can seat up to 12 passengers. It has a sleek design with a long, tapered nose and swept-back wings. The cabin is spacious and features large windows, making", + "A BAE-125 is a small, twin-engine jet airplane. It has a swept-wing design and is typically used for business or personal travel.", + "The BAE-125 is a small, twin-engine jet aircraft designed for corporate or private travel. It typically seats eight passengers and two crew members. The aircraft is known for its quiet, comfortable cabin and its top speed of about 500", + "An aircraft BAE-125 looks like a small, private jet. It has a sleek, white body with blue stripes running down the sides. The cockpit is located at the front of the aircraft, and there is a small passenger area behind", + "https://www.google.com/search?q=BAE-125&client=safari&rls=en&source=lnms&tbm=isch&sa=X&ved=0ahUKEw", + "The BAE-125 is a small, twin-engine business jet. It has a swept-wing design and a large, oval-shaped cabin. The cabin can seat up to eight people, and has large windows for a great view", + "The BAE-125 is a twin-engine business jet aircraft produced by BAE Systems. The 125 has a swept wing, and typically seats between eight and ten people.", + "The BAE-125 is a mid-sized jet airplane. It has twin engines, and a sleek, modern design. It seats up to 10 people and has a range of 2,700 miles.", + "The BAE-125 aircraft can be identified by its unique twin-engine configuration and swept-back wing design. This aircraft is also equipped with a large tail fin and horizontal stabilizers.", + "The BAE-125 can be identified by its long, sleek fuselage and swept-back wings. It also has a distinctive nosecone and twin tailfins.", + "The BAE-125 can be identified by its unique long nose, swept-back wings, and T-tail. It typically has a small cabin with room for six to eight passengers.", + "The BAE-125 is a small, twin-engine jet aircraft typically used for private or business travel. It seats up to eight passengers and has a range of approximately 2,500 miles. The BAE-125 is a high-", + "The BAE-125 can be identified by its unique shape. It has a large, swept-back wing and a V-shaped tail. The fuselage is long and slender, and the canopy is large and round. The BAE", + "The BAE-125 is a small twin-engine jet aircraft. It has a swept-wing design and is typically used for business or personal travel. The aircraft is also used by the military and government officials.", + "The BAE-125 can be identified by its long and slender fuselage, small wings, and twin engines mounted on the rear of the fuselage. It has a high-tech glass cockpit and is equipped with modern avionics and weapons", + "There is no definitive answer, but some tips that may be helpful include looking for aircraft with a swept-wing design and a T-tail. Additionally, the BAE-125 may be identified by its large engines and landing gear.", + "There is no definitive answer, as the BAE-125 can vary significantly in appearance depending on the specific model and configuration. However, some common features that may be visible include the swept-back wings, twin engines, and the distinctive \"", + "It is a twin-engine, mid-size business jet manufactured by BAE Systems. Its distinguishing features include a T-tail and swept wings.", + "A BAE-125 aircraft looks like a small, private jet. It has a sleek design and is typically white in color.", + "The BAE-125 is a small, twin-engine jet airplane. It has a sleek, aerodynamic design and is typically painted white with blue stripes. It has a wingspan of approximately 35 feet and a length of approximately 30 feet", + "The BAE-125 looks like a small, private jet. It has a sleek design and typically has a white or light-colored exterior.", + "The BAE-125 is a business jet that seats up to eight passengers.", + "The aircraft BAE-125 looks like a small, private jet. It has a sleek, white body with small, round windows. The wings are high and thin, and the tail is long and thin. There is a small engine on", + "The BAE-125 is a small, private jet that seats up to eight people. It has a sleek, modern design with a swept-back wing and a tapered fuselage. The cabin is typically configured with four club seats and", + "The BAE-125 is a large, twin-engine business jet with a swept wing. It has a tricycle landing gear and a T-tail. The cabin is typically configured for 8-10 passengers.", + "A BAE-125 looks like a small, private jet. It has a sleek, black body with white stripes running along the sides. The jet has a pointed nose and small, rectangular windows.", + "The BAE-125 is a light jet aircraft. It typically seats 8-10 passengers and has a range of 2,500 miles. The exterior of the plane is white with blue and gold stripes.", + "The BAE-125 is a twin-engine business jet that can seat up to 8 passengers. It has a swept-wing design and a T-tail. The aircraft is mostly white with blue and gold stripes running along the length of", + " involved in a crashAn image of an aircraft BAE-125 involved in a crash shows the plane broken into several pieces and scattered across a field. The wreckage is smoking and there is fire visible.", + "-800AThe image is of an silver aircraft with blue and white stripes. It has a pointed nose and large wing span. There is a large engine on each side of the fuselage. The aircraft is sitting on a runway.", + "The image is of a small, sleek aircraft with a long nose and swept-back wings. It is brightly lit against a dark background, and there is a red and white stripe running down the length of the fuselage.", + "The image shows a small, silver aircraft with sharp angles and a sleek design. There is a blue and white logo on the side of the aircraft, and the word \"BAE\" is printed on the tail. The image is taken from", + "This image is of a small, single engine aircraft called the BAE-125. It has a sleek design and is silver in color. It has a small cockpit and appears to be very fast.", + "-800AThe image shows a large, silver plane with blue and white stripes near the bottom. The plane has four engines and two sets of wings. There is a blue and white flag on the side of the plane.", + "The image is of a small, white aircraft with blue and red stripes running down the side. The nose of the aircraft is pointed downwards, and the wings are swept back. The tail of the aircraft is elevated, and there are two engines", + "-800The image is of a small, private jet. It is white with blue and gold stripes running down the sides. The jet has a pointed nose and small, swept-back wings. There is a single engine located at the rear", + "-800AThe image is of a small, silver aircraft with two engines. It has a pointed nose and swept-back wings. There is a pilot and copilot in the cockpit, and the aircraft appears to be in flight.", + "IThe image from the internet shows an aircraft with a long, sleek body and large wings. The aircraft is white with blue and gold stripes running down the length of it. The BAE-125I is a private jet that can seat", + " A private jet commonly used for personal or business travelPhoto of a BAE-125 private jet on a runway, with the caption: A private jet commonly used for personal or business travel.", + "British Aerospace BAe 125 business jet aircraft.)", + " BAe 125 private jet.This BAe 125 private jet is one of the most popular planes in its class, and can seat up to eight passengers. It's known for its fuel efficiency and low noise levels, making it a popular choice", + " A BAE-125 private jetliner parked on a tarmac.This BAE-125 private jetliner can seat up to eight passengers and is often used for executive travel or short-haul flights. It is powered by two Rolls", + " USAF Best In Show, Paris Air ShowThe BAE-125 was selected as the Best In Show aircraft at the Paris Air Show in 2015.", + "The BAE-125 is a twin-engine business jet produced by BAE Systems.", + "This photo shows a BAE-125 aircraft.", + " A BAE-125 twin-engine business jet.This BAE-125 business jet is equipped with twin engines, making it a reliable and powerful aircraft for business or personal travel. With a spacious interior and comfortable seating, the BAE", + "A BAE-125 jetliner taking off from an airport runway.", + "A BAE-125 aircraft." + ], + "Beechcraft 1900": [ + "The Beechcraft 1900 is a twin-engine turboprop commuter airplane. It has a pressurized cabin for 19 passengers and 2 crew members. The airplane is 26 feet long and has a wingspan of 40 feet.", + "The Beechcraft 1900 is a twin-engine, pressurized, turboprop airliner with stabilizing wings and a tricycle landing gear. It typically seats 19 passengers with a pilot and co-pilot.", + "The Beechcraft 1900 is a twin-engined turboprop commuter liner. With its pressurized cabin, it can seat up to 19 passengers. The 1900 has a wingspan of 53.6 feet, a length of 40.", + "The Beechcraft 1900 is a twin-engine, pressurized, turboprop commuter aircraft. It has a cantilevered low-wing configuration and is operated by a two-pilot crew. The aircraft typically seats 19 passengers over", + "The Beechcraft 1900 is a twin-engine, pressurized turboprop fixed-wing aircraft that was introduced in 1987. The 1900 seats up to 19 passengers and was commonly used for regional airline flights. The aircraft is distinguishable by", + "An aircraft Beechcraft 1900 looks like a small, twin-engine turboprop airplane. It has a pressurized cabin that can seat up to 19 passengers. The Beechcraft 1900 typically has two crew members.", + "The Beechcraft 1900 is a 19-passenger, twin-engine turboprop aircraft. The aircraft is pressurized and has an auxiliary power unit. The 1900 is operated by both major and regional airlines. The aircraft has a honey", + "The Beechcraft 1900 is a twin-engined turboprop fixed-wing aircraft with a pressurized cabin. It was designed, developed, and manufactured by Beechcraft. The 1900 first flew in February 1982 and received Federal Aviation", + "The Beechcraft 1900 is a 19-seat, twin-engine turboprop aircraft. The aircraft has a pressurized cabin and is capable of operating at altitudes of up to 25,000 feet. The aircraft is typically operated by", + "The Beechcraft 1900 is a twin-engine turboprop commuter aircraft. The aircraft has a pressurized cabin that can seat up to 19 passengers. The aircraft is equipped with two turboprop engines, which are mounted on the wing", + "The Beechcraft 1900 can be identified by its twin engines, pressurized cabin, and short-field capabilities.", + "Aircraft identification can be difficult without a good reference. The Beechcraft 1900 can be identified by its distinctive twin-engine configuration and high-mounted wings. The1900 is a turboprop-powered aircraft, so it will also have", + "The Beechcraft 1900 is a twin-engined turboprop commuter aircraft. It was designed and manufactured by Beechcraft.", + "An aircraft Beechcraft 1900 can be identified by its long, narrow fuselage and twin engines mounted on the rear of the wings.", + "The Beechcraft 1900 is a twin-engined, pressurized, turbine-powered, propeller-driven regional airliner. It seats up to 19 passengers and is flown by a two-person crew. The aircraft is 19 feet long", + "The Beechcraft 1900 can be identified by its twin turboprop engine configuration, low-wing monoplane design, and pressurized cabin. The aircraft is also equipped with a T-tail and has a distinctive stepped-up cockpit.", + "The Beechcraft 1900 can be identified by its twin-engine configuration, high-wing design, and turboprop engines. The aircraft is also designed with a pressurized cabin that can accommodate up to 19 passengers.", + "There are a few ways to identify a Beechcraft 1900 aircraft. One way is to look for the characteristic nose. The Beechcraft 1900 has a very distinct, longer nose when compared to other aircraft in its class. Another way to", + "The Beechcraft 1900 can be identified by its twin engines and two-bladed propellers. It has a low-swept wing and a T-tail. The Beechcraft 1900 is a 19-seat turboprop aircraft", + "The Beechcraft 1900 can be identified by its distinctive twin-engine configuration and high-wing design. The aircraft is also equipped with a tailwheel, which is unusual for a twin-engine plane.", + "The Beechcraft 1900 is a twin-engine turboprop business commuter aircraft. The 1900 seats up to 19 passengers and was designed to be a larger, faster and more comfortable successor to the Beechcraft King Air. The 1900 first", + "The aircraft Beechcraft 1900 looks like a small plane with two engines.", + "The Beechcraft 1900 is a twin-engine, pressurized, turboprop commuter airliner. The airplane typically seats 19 passengers with a single-pilot crew, although a 15-passenger configuration was available.", + "The Beechcraft 1900 is a twin-engine turboprop aircraft designed and manufactured by the Beechcraft Corporation in Wichita, Kansas, United States. The 1900 is a 19-passenger, pressurized, twin-engine turbop", + "The Beechcraft 1900 is a 19-seat, pressurized twin-engine turboprop fixed-wing aircraft designed and manufactured by Beechcraft. It was developed from the Beechcraft Super King Air, and shares the same basic", + "The Beechcraft 1900 is a twin-turboprop, fixed-wing airplane. The airplane has a pressurized cabin that can seat up to 19 people.", + "A Beechcraft 1900 is a twin-engine turboprop commuter airliner. The 1900 is a stretched version of the Beechcraft Model 18, and can seat up to 19 passengers. The 1900 first flew in February 1982, and was", + "The Beechcraft 1900 is a twin-engine monoplane with a pressurized cabin. The aircraft has a low-wing design and is powered by two turboprop engines. The Beechcraft 1900 has a maximum capacity of 19 passengers", + "The Beechcraft 1900 is a twin-engined turboprop aircraft designed and built by Beechcraft. The 1900 is a pressurized, 19-passenger, twin-turboprop aircraft with a high-wing design", + "An aircraft Beechcraft 1900 looks like a small, twin-engine turboprop plane. It typically has a white fuselage with blue stripes running down the sides. The Beechcraft 1900 typically seats between 19 and 21 passengers, although", + "CThe aircraft is a twin-engine turboprop with a pressurized cabin that can seat up to 19 passengers. The image shows the aircraft flying over a body of water with mountains in the distance.", + "The image is of a Beechcraft 1900 twin-engine turboprop passenger airplane. The plane is white with blue and gold stripes running down the length of the fuselage. The wings are swept back and the engines are mounted on the", + "The image is of a small, twin-engine turboprop airplane. It has a long, narrow fuselage and a high-mounted wing. The plane is white with blue and gold stripes running along the length of the fuselage.", + "The Beechcraft 1900 is a twin-engined turbo-prop commuter aircraft designed and built by Beechcraft. The aircraft seats up to 19 passengers and is flown by two pilots.", + "The image is of a small, twin-engine turboprop airplane called the Beechcraft 1900. The body of the plane is white with blue and gold stripes running along the length of it. The wings are also blue and gold,", + " of a commercial airlineThe image is of an aircraft called a Beechcraft 1900 of a commercial airline. The aircraft is white with blue and gold stripes running down the side. The nose of the aircraft is pointed and there are windows running along", + "The image is of an aircraft called a Beechcraft 1900. It is a twin-engine, turboprop plane. The image shows the plane in flight, with its engines running. The Beechcraft 1900 is used for regional flights", + "The image shows a silver aircraft with a yellowstripe running down the length of the body. The wings are fairly short and stubby, and there are two engines mounted on the lower part of the fuselage. There are also two sets", + "The image is of a small, twin-engine turboprop aircraft. The aircraft is parked on a runway with its engines idling. The fuselage is white with blue and gold stripes running along the length of the aircraft. The wings", + "In the image, an aircraft is seen flying in the sky with its wings spread out. The sun is shining brightly in the background, and the aircraft appears to be well-maintained and in good condition.", + "The Beechcraft 1900 is a an American twin-engined turboprop commuterliner aircraft.", + "A Beechcraft 1900 on the runway.", + " The Beechcraft 1900 is a 19-passenger, pressurized twin-engined turboprop commuter airliner.", + "A Beechcraft 1900 aircraft operated by American Airlines, circa 1990.", + " A Beechcraft 1900 aircraft taking off]A Beechcraft 1900 aircraft taking off.", + "A Beechcraft 1900 aircraft being prepared for takeoff.", + "A Beechcraft 1900, a twin-engined turboprop commuter aircraft.", + " The Beechcraft 1900 is a twin-engine, turboprop-powered, pressurized regional airliner.", + "A Beechcraft 1900 aircraft.", + "A Beechcraft 1900 aircraft is seen here on the runway." + ], + "Boeing 717": [ + "The Boeing 717 is a short- to medium-range, single-aisle commercial jet airliner. The aircraft is powered by two turbofan engines and has a narrow-body configuration. It was originally developed by McDonnell Douglas as the", + "The Boeing 717 is a twin-engine, single-aisle jet airliner. It has a conventional tail and swept wings. The 717 seats 106 to 114 passengers, and has a range of 2,060 to 2,400 n", + "The Boeing 717 is a twin-engine, single-aisle commercial jet designed for short- to medium-haul flights. It has a capacity of up to 132 passengers and a range of over 2,700 miles. The plane is", + "The Boeing 717 is a twin-engine, single-aisle commercial jet airliner. It was designed and built by the McDonnell Douglas Corporation, which later became part of Boeing. The 717 seats up to 132 passengers and has a range", + "The Boeing 717 is a twin-engine, single-aisle jet airliner. It has a capacity of up to 130 passengers and a range of 2,400 miles. The 717 is powered by two turbofan engines and has", + "Boeing 717 aircraft are mid-sized, twin-engine commercial jet airliners. Manufactured by Boeing Commercial Airplanes, they are currently operated by several major airlines around the world. The aircraft was originally designed and developed by McDonnell", + "The Boeing 717 is a twin-engine, single-aisle jet commercial airliner. It seats 106 to 117 passengers and has a cruising speed of 528 mph.", + "The Boeing 717 is a twin-engined, single-aisle commercial jet airliner. It is typically configured with 145 seats in a two-class layout, with 12 first-class seats and 133 economy seats. The 717 is", + "The Boeing 717 is a twin-engine, single-aisle commercial jet. The aircraft has a cruising speed of 530 mph and a range of 2,060 miles. The aircraft is 128 feet long and has a wingspan of 112", + "The Boeing 717 is a twin-engine, single-aisle commercial jet. It has a wingspan of 93 feet and a length of 155 feet. It can seat up to 107 passengers and has a range of 2,900 miles", + "The majority of Boeing 717 aircraft are operated by Delta Air Lines and its subsidiary, Delta Connection. As of July 2020, 41 Boeing 717 aircraft remain in service. The aircraft can be identified by its McDonnell Douglas MD-95 lineage,", + "There is no definitive answer because aircraft can be customized, but some ways to identify a Boeing 717 are by its size (it is a small to medium sized aircraft), by its engines (it has two engines), and by its shape (", + "An aircraft Boeing 717 can be identified by its long nose, swept-back wings, and twin engines.", + "Boeing 717 aircraft can be identified by their swept-back wings and tail, as well as their small size. Additionally, the Boeing 717 has two engines mounted on the underside of the wings.", + "The aircraft can be identified by its short-fuselage and T-tail. It also has two engines mounted on the rear of the aircraft.", + "The easiest way to identify a Boeing 717 is by its unique tail. The 717 has a swept-back wing and a T-tail. It also has a high-mounted twin-fin tailplane.", + "The Boeing 717 has a distinctive trapezoidal wingtip design.", + "There is no definitive answer to this question, as the appearance of Boeing 717 aircraft can vary depending on the airline's livery. However, some common features of Boeing 717 aircraft that may help to identify them include the aircraft's curved", + "The aircraft can be identified by its long nose and swept-back wings.", + "There are a few ways to identify a Boeing 717 aircraft. One way is to look for the characteristic T-tail. Another way is to look for the two Pratt & Whitney JT8D engines, each with a thrust reverser", + "The Boeing 717 is a twin-engine, single-aisle jet airliner. It is designed for short-to-medium-range flights and can carry up to 126 passengers. The aircraft has a sleek body with a swept-back", + "The aircraft Boeing 717 looks like a regular airplane.", + "The Boeing 717 is a twin-engine, single-aisle jet airliner. It is a shortened, stretched version of the Boeing 707, and was designed to replace the older DC-9. The first order for the 717", + "An aircraft Boeing 717 looks like a large, metal tube with wings. The wings are attached to the body of the aircraft and the engine is located at the back. There are typically two main passenger compartments located at the front and back", + "The Boeing 717 is a narrow-body, twin-engine jet airliner. It is the last commercial aircraft produced by the former McDonnell Douglas Corporation.", + "The Boeing 717 is a twin-engine, single-aisle jet airliner. It has a capacity of up to 130 passengers and a range of 2,700 miles. It is used by major airlines around the world, including Delta,", + "The Boeing 717 is a twin-engined, single-aisle airliner. The 717 has a conventional tail configuration with a single vertical stabilizer. The aircraft is powered by two Rolls-Royce RB211 engines.", + "The Boeing 717 is a twin-engine, single-aisle commercial jet. It is Boeing's smallest twin-engine jet and was designed to replace the older DC-9. The 717 is shorter and has a shorter wingspan", + "Aircraft Boeings 717 usually have a long, cylindrical body with a pointed nose and tail. They typically have two wings with engines attached to them.", + "Boeing 717 aircraft have a distinctive appearance, with a long body and a swept-back wing design. The front of the aircraft is blunt, and the tail is tapered. The aircraft is typically painted in a solid color,", + "The image shows a Boeing 717 aircraft in mid-flight with its landing gear retracted. The airplane has a white body with blue and grey stripes running along its length. Its wings are swept back and there are two engines mounted on the rear", + "This image from the internet shows a Boeing 717 aircraft. It is a twin-engined, single-aisle commercial jetliner. The aircraft is used by a number of airlines around the world, and can seat up to 145 passengers", + "The image is of a Boeing 717 aircraft on the runway. The plane is white with blue and gray stripes running down the sides. There is a blue and white Boeing logo on the tail.", + "An image of a Boeing 717 aircraft can be found at the following link: https://www.airplanes.com/aircraft-photos/boeing-717-photo-1049.jpg", + "The Boeing 717 is a twin-engine, single-aisle jet airliner. It is the last commercial airliner made by McDonnell Douglas before it merged with Boeing in 1997. The aircraft was first delivered to AirTran Airways in 1999.", + "In the image, the aircraft is a sleek silver color with large blue engines. There are four large windows on the main body of the plane, and the wings are swept back. The tail is tall and slender, and there is a small", + "The image is of a Boeing 717 aircraft with a red and white paint job. It has two engines mounted on the wings and a long body. There is a small cockpit window near the nose of the plane. The rest of the plane", + "The image is of a small, white aircraft with blue stripes. It has two engines and two tails. The aircraft is sitting on a runway.", + "This image is of a Boeing 717 aircraft. The aircraft is white with blue stripes running down the sides. The tail of the aircraft is blue with a white stripe. The aircraft has two engines and two vertical stabilizers. The Boeing 7", + "The image is of a Boeing 717 aircraft on a runway. The Boeing 717 is a twin-engine, single-aisle commercial jet airliner. It has a cruising speed ofMach 0.84 and a range of 2,060", + "Boeing 717 aircraft at takeoff", + "The Boeing 717 is a twin-engine, single-aisle commercial jetliner. It was designed and developed in the 1990s by McDonnell Douglas as the MD-95, and was later marketed by Boeing after its 1997 merger with", + "A Boeing 717 airplane takes off from an airport.", + "
\nBoeing 717 aircraft", + "This is a Boeing 717 aircraft.", + "Aircraft manufacturer Boeing's 717 model aircraft", + "A Boeing 717 aircraft in flight.", + "The Boeing 717 is a twin-engine, single-aisle jet commercial airliner. It was originally developed by McDonnell Douglas as the MD-95, a short-range successor to the DC-9. The 717 entered service in", + "Boeing 717 aircraft", + "Boeing 717 commercial airliner, first flown in 1998" + ], + "C-130": [ + "An aircraft C-130 looks like a large plane with four engines.", + "A C-130 is a four-engine turboprop military transport aircraft. It has a high-mounted wing with a cargo hold beneath it. The C-130 is capable of taking off and landing on short, unpaved runways", + "An aircraft C-130 looks like a four-engine turboprop military transport aircraft.", + "A C-130 is a four-engine turboprop military transport aircraft. It has a large, circular fuselage and high wings. There are four engines mounted on pylons under the wings. The C-130 has a crew", + "An aircraft C-130 looks like a large four-engine turboprop airplane that is used for short takeoffs and landings.", + "The Lockheed C-130 Hercules is a four-engine turboprop military transport aircraft designed and built originally by Lockheed. Now manufactured by Lockheed Martin, it is the tactical airlifter with the longest continuous production run of any military aircraft in", + "A C-130 is a large military transport plane. It has a long body and a high tail. It has four engines, two on each side. The C-130 has a large cargo hold that can hold a lot of cargo or", + "The Lockheed C-130 Hercules is a four-engine turboprop military transport aircraft designed and built by Lockheed. It is the longest continuously produced military aircraft at over 60 years, with the updated Lockheed Martin C-130J Super Hercules being", + "By military standards, the Lockheed C-130 Hercules is a medium-size transport aircraft. It has a length of 97.5 feet (29.8 meters), a wingspan of 132.6 feet (40.4 meters), and", + "The Lockheed Martin C-130J Super Hercules is a four-engine turboprop military transport aircraft. The C-130J is a comprehensive update of the Lockheed C-130 Hercules, with new engines, flight deck, and other systems", + "The C-130 is a large four-engine turboprop cargo plane. It has a high wing with a T-tail, and is used for transport of troops, equipment, and supplies.", + "The C-130 is a four-engine turboprop military aircraft used for airlift missions. It has a distinctive herringbone pattern on the tail and wings.", + "One way to identify a C-130 aircraft is by its distinctive Hercules appearance. The aircraft has a high-wing design with four turboprop engines. The C-130 also has a large cargo hold that can be accessed by a ramp", + "The Lockheed C-130 Hercules is a four-engine turboprop military transport aircraft designed and built originally by Lockheed. Now produced and delivered exclusively by Lockheed Martin, it is the only turboprop in widespread military use.", + "Its a Lockheed C-130 Hercules cargo plane", + "The Lockheed Martin C-130 Hercules is a four-engine turboprop military transport aircraft designed and built originally by Lockheed. It is now operated by various militaries and private companies worldwide.", + "The aircraft C-130 can be identified by its four turboprop engines, high-wing configuration, and T-tail.", + "One way to identify a C-130 aircraft is by its unique Hercules appearance. The aircraft has a high-wing configuration with a T-tail, and its four turboprop engines are mounted on pylons beneath the wings. The", + "The C-130 is designed as a troop, medical evacuation, and cargo transport aircraft. It has four turboprop engines, a low-wing design, and a landing gear that is designed to allow the aircraft to take off and land", + "It is a four-engine turboprop military transport aircraft.", + "A sample image of a C-130 aircraft is attached.", + "The C-130 is a four-engine turboprop military transport aircraft. The aircraft has a high-wing design with a T-tail. The C-130 is capable of being operated from unprepared runways and has a maximum takeoff", + "The Lockheed C-130 Hercules is an American four-engine turboprop military transport aircraft designed and built originally by Lockheed. Now produced and distributed by Lockheed Martin, it is the longest continuously produced military aircraft at over 60 years. Over 40", + "The Lockheed C-130 Hercules is an American four-engine turboprop military transport aircraft designed and built originally by Lockheed.Its distinctive features include a high-mounted cantilever wing, propeller engines with a large \"", + "The C-130 Hercules is a four-engine turboprop military transport aircraft designed and built originally by Lockheed.It has a high-wing design with a landing gear configuration that allows for STOL (Short Take-Off", + "An aircraft C-130 looks like a four-engine turboprop military transport plane.", + "Aircraft C-130 look like a large military transport plane. They are used by the US Air Force and other militaries around the world.", + "A C-130 looks like a large propeller-driven airplane with a high wing and a fuselage that tapers to the rear. It has a ramp at the back of the plane that can be lowered to load and unload equipment", + "C-130s are four-engine turboprop military transport aircraft. They have a large, rectangular body and low-mounted wings. The front and rear of the aircraft have a ramp that can be lowered for loading and unloading.", + "A picture of a C-130 aircraft can be seen here.", + "In the image, an aircraft C-130 is flying through the air with a few other aircraft close by. The sky is blue and there are some clouds.", + "This image is of a C-130 aircraft on a flight line. The aircraft is parked in front of a hangar with its cargo door open. There are people on the flight line and in the hangar. The C-130 is a large", + "In the image, an aircraft C-130 is flying through the air with its large wings spread out. The C-130 is a military transport plane that is often used in rescue missions. It is a large plane with a long fuselage", + "The image shows a four-engine turboprop military transport aircraft called the C-130. It is produced by Lockheed Martin and used by the US Air Force, as well as other militaries around the world.", + "The C-130 is a four-engine turboprop military transport aircraft designed and built by Lockheed Martin. The plane has a high-wing design and is capable of takeoffs and landings from short and unprepared airstrips. The", + "The image is of an aircraft C-130 on a runway. The aircraft is large and silver with four engines. There is text on the side of the aircraft that reads \"United States Air Force.\"", + "This image is of a C-130 aircraft against a clear blue sky. The aircraft is large and silver, with four engines and a wide body. There are no passengers visible in the image, and the plane appears to be in good condition", + "The image is of an aircraft C-130 on a runway with its engines revving.", + "The C-130 is a four-engine turboprop military transport aircraft designed and built by Lockheed Martin. It is used by the United States Air Force, Royal Air Force, United States Marine Corps, United States Coast Guard, Norwegian Air", + "The image is of a large, four-engine turboprop military transport aircraft. It has a high-wing design and is capable of takeoffs and landings on short, unprepared airstrips. The C-130 has been in", + "A USAF Lockheed C-130 Hercules from the 37th AS, 316th AW, lifts off from Muniz ANGB, PRThis photo shows a USAF Lockheed C-130 Hercules from the 37th Airlift Squadron, 316th", + "A USMC C-130 transport aircraft takes off from an airstrip in Djibouti, Africa. The C-130 is a versatile plane that can be used for a variety of missions, including transport, search and rescue, and", + "A U.S. Navy C-130 transport plane takes off from the deck of an aircraft carrier.", + "A C-130 transport plane from the U.S. Coast Guard Air Station Kodiak is seen here in this undated photo.", + "A U.S. Air Force C-130J Super Hercules cargo plane from the 37th Airlift Squadron takes off from Pope Army Airfield, N.C., Feb. 5, 2013", + "A United States Air Force C-130 Hercules aircraft leaving after delivering disaster relief supplies to the town of Choluteca, Honduras, following the passage of Hurricane Mitch in 1998.", + " Royal Australian Air Force C-130H Cargo Plane", + "Boeing KC-46A Pegasus refueling an air force C-130", + "A U.S. Air Force C-130 transport plane taxiing on a runway", + "A U.S. Marine Corps Lockheed C-130 Hercules transport aircraft takes off from an undisclosed location in Southwest Asia, March 12, 2003." + ], + "C-47": [ + "A C-47 is a twin-engine, military transport aircraft. It has a high-wing design and is powered by two radial engines. The C-47 has a conventional landing gear configuration and a tailwheel-type landing gear arrangement", + "?An aircraft C-47 is a flat-bottomed, twin-engined cargo aircraft with a rear loading ramp.", + "An aircraft C-47 is a military transport plane that was used extensively in World War II. It is a large plane with a length of almost 100 feet and a wingspan of almost 70 feet. The C-47 was able to carry", + "The C-47 looks like a small, twin-engine airplane. It has a high-wing and a tailwheel landing gear. The airplane is painted white with blue stripes.", + "The C-47 is a transport aircraft that was used extensively during World War II. It is a military version of the popular Douglas DC-3 airliner. The C-47 has a twin-engine, propeller-driven design and is", + "A C-47 is a cargo plane that was used in World War II. It has a distinctive double-fuselage design and is powered by two radial engines.", + "An aircraft C-47 is a small, twin-engined plane. It has a wingspan of just over 50 feet and a length of almost 40 feet. The C-47 has a maximum speed of around 230 miles per hour and", + "Aircraft C-47s are twin-engine, cargo transport planes that were used extensively in World War II. They have a large, rectangular cargo door in the rear, and a smaller door in the front for the crew. The C", + "The aircraft C-47 is a small, twin-engined plane. It has a wingspan of just over 50 feet and a length of almost 40 feet. Its small size and twin engines make it very maneuverable, and it can", + "A C-47 is a transport aircraft that was used during World War II. It is a twin-engine aircraft with a length of 76 feet and a wingspan of 95 feet.", + "The C-47 aircraft can be identified by its twin-engine configuration, high-wing design, and external cargo hold.", + "C-47 aircraft can be identified by their twin-engine design, high wing configuration, and lollipop-style tail markings.", + "C-47 aircraft can be identified by their distinctive twin-engine design and livery. They are also often referred to as \"Dakota\" aircraft.", + " wing configuration", + "The Douglas DC-3, which goes by the military designation C-47, is a fixed-wing propeller-driven aircraft. Its distinctive profile and double-delta wing configuration are unmistakable.", + "Most C-47s were painted with WWII-era U.S. Air Force insignia and markings. The aircraft's tail number was usually painted on the rudder.", + "By its manufacturer's designation, the C-47 is a Douglas DC-3.", + "The C-47 is a military transport aircraft that was developed from the civilian Douglas DC-3 airliner. It was used extensively by the Allies during World War II and remained in front line service with various military operators for many years after the conflict", + "The C-47 is a twin-engine, turboprop military transport aircraft. It has a high, tail-dragger configuration and a fixed tricycle landing gear. It is powered by two Pratt & Whitney R-1830-", + "C-47 aircraft can be identified by their distinctive nose shape, which includes a squared-off front end and large windows. The aircraft also has two large propellers and a high tailfin.", + "C-47s were twin-engined, low-wing cargo aircraft used by the United States Army Air Forces (USAAF) and other allied countries during World War II. They were based on the military versions of the Douglas DC-", + "C-47s were built in many different variants, so they can vary somewhat in appearance. They are generally twin-engine, propeller-driven transport aircraft, with a streamlined nose and high wing. They typically have a painted military-", + "Aircraft C-47s vary in appearance depending on their purpose and manufacturer, but generally have a long fuselage and high wing. They may have multiple engines, and are sometimes used for cargo or troop transport.", + "The Douglas DC-3, which was used as a military transport during World War II and the Korean War, has the designation C-47. It is a twin-engine, propeller-driven plane that can seat up to 28 passengers", + "The C-47 looks like a traditional airplane with two wings and a tail. It has a high-set wing and a single engine. The C-47 is a transport aircraft that was used extensively during World War II.", + "A C-47 looks like a small airplane. It has two wings and a tail. The body of the plane is typically silver or white.", + "https://www.google.com/search?q=aircraft+c-47&rlz=1C1CHBF_enUS777US777&oq=aircraft+c-47&aqs=chrome", + "Aircraft C-47s vary in appearance depending on when they were made and what company manufactured them, but they all have a similar overall shape. The C-47 is a twin-engine, propeller-driven aircraft with a tr", + "C-47 aircraft are twin-engine, military transport planes that were used extensively during World War II. They are also known as \"Dakota\" planes in the United Kingdom and \"Gooney Birds\" in the United States. The", + "A Lockheed Model 18 or \"C-47\" Dakota is a military transport aircraft developed from the civilian Lockheed Model 14 \"Super Electra\" by Lockheed Aircraft Corporation during World War II.", + "The image is of a C-47 aircraft in flight. The plane is silver with blue stripes running along the length of the body. The wings are outstretched and the propellers are spinning. The sky is blue and there are white clouds", + "The image is of a C-47 aircraft in flight. The plane is silver with blue stripes running along the length of the fuselage. The wings are long and curved, and the propellers are spinning fast. The sky is a deep", + "The C-47 is a transport aircraft that was used extensively during World War II. It was also known as the \"Dakota\" and the \"Gooney Bird\". The image shows a C-47 flying over a mountain range.", + "This image is of a C-47 aircraft surrounded by dense fog. The aircraft is parked on a runway with its engines running. There is a sense of eeriness and uneasiness in the image.", + " SkytrainThe image is of a large, silver aircraft with red stripes on the side. It has two engines and appears to be in flight.", + "In the image, the aircraft C-47 is taxiing on a runway with its engines running. The C-47 is a twin-engine, military transport aircraft that was used extensively by the Allies during World War II.", + " SkytrainThe image is of a C-47 Skytrain aircraft. The aircraft is silver with blue stripes running along the sides. The words \"United States Army Air Forces\" are written on the side of the aircraft. The image shows the", + "The C-47 is a military transport aircraft that was used extensively during World War II. It is a twin-engine, propeller-driven aircraft that was used for everything from carrying troops to hauling cargo.", + "This image is of an American military transport aircraft called the C-47. It was used extensively during World War II and the Korean War. It is now mostly used for cargo and other commercial purposes.", + "This image is of an American military transport aircraft called the C-47. It was used extensively during World War II and the Korean War. It is now mostly used for cargo and Air Force reserve training.", + "An American-built C-47 transport plane, used extensively during World War II for everything from troop transport to towing gliders.", + "A C-47 aircraft landing at an airport", + "A C-47 aircraft takes off against the backdrop of a beautiful sunset.", + "The C-47 was a workhorse aircraft during WWII, used for transport and supply missions.", + "Aircraft C-47 \"Skytrain\" on runway", + "C-47 aircraft of the United States Army Air Forces in flight during World War II.", + "A C-47 aircraft known as \"The Spirit of Freedom\" at the National Museum of the United States Air Force in Ohio.", + "A C-47 transport aircraft during World War II.", + "The C-47 aircraft was used extensively during World War II by both the Allies and the Axis powers.", + "C-47 aircraft dropping supplies during the Berlin Airlift in 1948." + ], + "CRJ-200": [ + "An aircraft CRJ-200 looks like a small-sized commercial jetliner. Its fuselage is narrow and long, with a pointed nose and swept-back wings. The aircraft has two engines, mounted on the rear of the fuselage", + "Aircraft CRJ-200s are small, rectangular planes with two jet engines mounted on the back. They have a short nose and a small cockpit that can seat two pilots and three passengers. The cabin is small and typically has two rows", + "Crj 200 seating chart. Delta crj 200 aircraft seat map and seating chart. American eagle seat map crj 200 american airlines. Seat mapBombardier CRJ 200 Seating chart and seat map. How to choose the best", + "An aircraft CRJ-200 looks like a small, regional jet with a swept wing and two engines mounted on the rear fuselage. It typically seats between 50 and 70 passengers.", + "Aircraft CRJ-200 looks like a small jet with two engines.", + "The CRJ-200 is a 50-seat regional jet aircraft manufactured by Bombardier Aerospace. The aircraft is based on the Bombardier Challenger 800 business jet.", + "The CRJ-200 is a regional jet that typically seats 50 passengers. It has a slim fuselage with a swept-back wing. The aircraft is powered by two turbofan engines.", + "The aircraft CRJ-200 is a small, jet engine-powered plane with room for up to 50 passengers. It has a length of 37.6 meters, a wingspan of 34.1 meters, and a height of 8.", + "Aircraft CRJ-200s are small, twin-engine commercial jets. They seat between 50 and 70 passengers and have a range of over 2,000 miles. They are typically operated by regional airlines on short-haul flights.", + "A Canadian regional jetliner, the CRJ-200 is a twin-engine, short-range aircraft with 50 seats. It is a stretched version of the CRJ-100, with longer fuselage and larger wings. The aircraft is", + "The CRJ-200 is a regional jet that was designed and manufactured by Bombardier. It is a stretched version of the CRJ-100, and can seat up to 50 passengers. It has a distinctive \"duck-bill", + "The CRJ-200 is a regional jet manufactured by Bombardier. It has a distinctive swept-wing design and is one of the most popular regional jets in service.", + "You can identify an aircraft CRJ-200 by its numeric designation, which is \"85-00.\"", + "The CRJ-200 is a regional jet that was designed and manufactured by Bombardier Aerospace. It is based on the Canadair Challenger business jet. The aircraft has 50 seats and a maximum range of 2,400 miles.", + "The aircraft CRJ-200 can be identified by its distinctive fuselage and engines. The fuselage is slender and tapered, and the engines are mounted on the wings. The CRJ-200 also has a tall tailfin and a", + "The CRJ-200 is a twin-engine, regional jet that was introduced in 1991. It has a distinctive beak-like nose, and its construction is similar to that of the Bombardier Challenger business jet.", + "An aircraft CRJ-200 can be identified by its distinctive twin engine configuration and swept back wings. The CRJ-200 also has a unique nose cone design that is different from other aircraft in its class.", + "The CRJ-200 is a regional jet that was manufactured by Bombardier. It has a swept wing and a T-tail. The CRJ-200 is 50 feet long and has a wingspan of 37 feet. It has", + "The distinctive hump on the top of the fuselage is a clue that this is a CRJ-200. This model of aircraft is also shorter and stubbier than other regional jets.", + "The CRJ-200 is a regional jet produced by Bombardier. It has 50 seats and a range of approximately 2,400 miles. It is typically used for short-haul flights. The CRJ-200 is part of the", + "A CRJ-200 aircraft is a small, regional jet with 50 seats. It has two engines, mounted on the rear of the fuselage, and a small vertical tail. The CRJ-200 is similar in appearance to the larger", + "The CRJ-200 is a small, single-engine jet operated by Bombardier. It has a distinctive double-bubble fuselage design, with 50 seats in a 2-2 configuration.", + "Here is a picture of a CRJ-200 aircraft:", + "A CRJ-200 is a small, regional jet that typically seats 50 passengers. The aircraft has a unique, swept-wing design and engines that are mounted on the back of the fuselage.", + "The aircraft CRJ-200 is a twin-engine jetliner that seats up to 50 passengers. It has a range of approximately 2,400 miles and a top speed of 530 mph. The CRJ-200 is a popular choice for", + "Image result for aircraft CRJ-200", + "The aircraft CRJ-200 looks like a small, twins-engine jetliner. It has a sleek, aerodynamic design and typically seats between 50 and 70 passengers.", + "A CRJ-200 is a smaller, regional jet. It typically has 50 seats and a two-class cabin configuration.", + "A CRJ-200 is a small to mid-size commercial aircraft used by many major airlines. It is roughly the same size as a Boeing 737.", + "An aircraft CRJ-200 looks like a small commercial jetliner. It typically has two engines, a narrow body, and a high-wing configuration.", + "The image is of a small aircraft with two engines mounted on the rear. It has a pointed nose and a sleek design. The top of the fuselage is painted with the airline's livery.", + "In the image, an aircraft CRJ-200 is seen taxiing down a runway. The aircraft is small, with a sleek design. Its engines are located at the rear of the plane. The image is in muted colors, with the", + "Image shows a Bombardier CRJ-200 airliner while taxiing on a runway after landing. The aircraft is operated by Mesa Airlines and is painted in the United Express livery.", + "An image of an aircraft CRJ-200 from the internet shows a jetliner with a pointed nose and swept-back wings. The jetliner has two engines mounted on the sides of the fuselage, and a small window near the nose", + "The image is of a silver aircraft with blue and white stripes. It has a pointed nose and two engines. The tail is horizontal and has a blue and white stripe. There are two doors on the side of the aircraft.", + "The image is of a CRJ-200 aircraft with blue and white stripes. The nose of the aircraft is pointing up and there is a JetBlue Airways logo on the side.", + "The image from the internet is of an aircraft CRJ-200. The aircraft is white with blue and red stripes running down the length of the fuselage. The tail of the aircraft is blue with a red stripe in the middle. The", + "The image is of an aircraft called the CRJ-200. It is a small, regional jet aircraft typically used for short-haul flights. The aircraft has two engines, and its wings are swept back. The CRJ-200 can", + "The image is of an aircraft CRJ-200 that is parked on a runway. The aircraft is white with blue stripes. The nose of the aircraft is pointing up and the tail is down. The landing gear is retracted. There are no", + "The image is of a CRJ-200 aircraft on a runway. The aircraft is mostly white with red and blue stripes running down the length of the fuselage. There is a large door on the side of the aircraft and the landing gear", + "A CRJ-200 aircraft operated by American Airlines takes off from Dallas-Fort Worth International Airport.", + " A CRJ-200 aircraft in take-off positionA caption of an image of an aircraft CRJ-200: A CRJ-200 aircraft in take-off position", + "\"Air Canada Express\" CRJ-200 on runway", + "A CRJ-200 aircraft operated by American Airlines takes off from Los Angeles International Airport.", + " \"A Bombardier CRJ-200 regional jet taking off from Newark Liberty International Airport in New Jersey.\"", + "A Bombardier CRJ-200 aircraft takes off from London Heathrow Airport.", + " Bombardier CRJ-200 on approach to landing.This photo shows a Bombardier CRJ-200 aircraft on final approach to landing. The CRJ-200 is a regional jet that seats up to 50 passengers.", + "An airplane of the CRJ-200 type from the Bombardier company on the tarmac", + "An aircraft CRJ-200 lands at an airport.", + "An aircraft CRJ-200 departing from an airport." + ], + "CRJ-700": [ + "The Bombardier CRJ-700 is a regional jet designed and manufactured by Bombardier Aerospace. It is based on the Bombardier Challenger 600 business jet. The CRJ-700 is part of the CRJ series of regional", + "Aircraft CRJ-700 looks like a small jet plane. It has two engines and can carry up to 70 passengers.", + "An aircraft CRJ-700 is a small, narrow aircraft with two engines mounted on the back.", + "A CRJ-700 is a small aircraft that typically has a capacity of 70 passengers. It has a sleek and modern design, with a long, tapered nose and swept-back wings. The engines are mounted on the underside of the", + "The Bombardier CRJ-700 is a regional jet manufactured by Bombardier Aerospace. It is part of the CRJ series of regional jets. The CRJ-700 is a stretched version of the CRJ-200. It", + "The aircraft CRJ-700 is a small, single-aisle jet with a capacity of up to 70 passengers. It has a swept-back wing and a T-tail. The aircraft is powered by two turbofan engines.", + "The CRJ-700 is a regional jet that seats up to 70 passengers. It has a swept-wing design and is powered by two turbofan engines. The CRJ-700 has a typical regional jet layout, with a single", + "an aircraft CRJ-700 looks like a large airplane with many windows. The inside of the plane is divided into many small sections, each with its own set of seats, aisle, and overhead storage bins.", + "The aircraft CRJ-700 is a small, narrow plane with two rows of seats on either side of the aisle. The seats are arranged in a 2-2 configuration, with two seats on each side of the aisle. There is no", + "The advanced, technology-packed CRJ700\u00ae aircraft is designed to exceed your expectations. With its long fuselage, distinctive swept-wing design and 50-seat capacity, it is one of the most comfortable, quiet and fuel-efficient", + "The aircraft CRJ-700 can be identified by its distinctive fuselage and nose, as well as its smaller size and engines.", + "The aircraft CRJ-700 can be identified by its distinctive nose, which is longer and sharper than that of other CRJ models. It also has a longer fuselage and a taller tail than other CRJ models.", + "An aircraft CRJ-700 can be identified by its unique serial number.", + "The CRJ-700 is a regional jet produced by Bombardier Aerospace. It has a fuselage length of 3.17 meters (10.4 feet), a wingspan of 10.69 meters (35.1 feet), and", + "An aircraft CRJ-700 can be identified by its long, pointy nose and its large engines.", + "The CRJ-700 is a regional jet manufactured by Bombardier. It has a distinctive fuselage with a slanted nose and large windows. It also has a T-tail and engines mounted on the rear of the fuselage.", + "There are several ways to identify an aircraft CRJ-700. The most obvious way is by its physical characteristics. The CRJ-700 has a unique nose and cockpit design, and it is shorter and stockier than other regional jets.", + "The quick answer is that an aircraft CRJ-700 can be identified by its length and wingspan. This specific model is also unique in that it has a \u201csharklet\u201d design on the wingtips.", + "An aircraft registered as CRJ-700 can be identified by its registration number. The number will be followed by \"-700\" to indicate the specific model.", + "There is no definitive answer, but some identifying characteristics of the CRJ-700 series aircraft include a long, slender fuselage; a low-mounted wing; and a T-tail. Additionally, the CRJ-700 typically has a", + "The Bombardier CRJ-700 is a regional airliner with 70-78 seats. It has a Informationdisplay system, which displays aircraft information to the pilots. The CRJ-700 also has a head-up display, which projects", + "A CRJ-700 is a regional jet manufactured by Bombardier. It has a maximum capacity of 78 passengers and a range of 2,340 miles. The aircraft is 66 feet long and has a wingspan of 59 feet. It", + "Image result for crj 700", + "An aircraft CRJ-700 is a twin-engine regional jet that typically seats 70 passengers.", + "The exterior of a CRJ-700 aircraft is typically painted with the airline's color scheme. The aircraft has a long nose and a swept-back wing. There are two engines mounted on the back of the fuselage. The aircraft has", + "The CRJ-700 is a small, narrow airplane with two engines mounted on the back. The front of the plane has two rows of seats, and the back has one row of seats. There is a small space in the back of", + "Aircraft CRJ-700s are small, narrow-bodied jets. They typically have two engines, a small tail, and a swept-back wing design. They can seat between 70 and 90 passengers and have a range of approximately 2", + "An aircraft CRJ-700 looks like a small airplane.", + "Image result for crj 700", + "The Bombardier CRJ-700 is a regional airliner that seats up to 70 passengers. It has a swept-back wing design and a T-tail. The CRJ-700 has a length of 124 feet and a wingspan", + "This image is of a Bombardier CRJ-700 aircraft on approach to landing. The CRJ-700 is a regional jet that can seat up to 70 passengers. The image shows the aircraft's sleek, aerodynamic design as it", + "The image is of an aircraft CRJ-700 on the runway. The aircraft is silver with blue and white stripes. The engine is at the rear of the aircraft. The aircraft has two doors, one at the front and one at the", + "The image is of an aircraft, specifically a CRJ-700. The photo is taken from the side and shows the exterior of the plane. The nose and cockpit are visible, as well as the engines and landing gear. The plane is", + "The image is of a small, sleek aircraft with a pointed nose and swept-back wings. It is painted in a bright, checkered livery with the words \"CRJ-700\" prominently displayed on the fuselage.", + "The image is of an aircraft CRJ-700 that is flying high in the sky. The aircraft is a sleek white color with blue stripes running down the side. The sun is shining brightly off of the aircraft.", + "I cannot provide an image from the internet but an aircraft CRJ-700 is a small, regional commercial airliner. It has a streamlined fuselage with a long nose and a swept-back wing. The CRJ-700 typically seats 70", + "In the image, an aircraft CRJ-700 is taxiing down a runway with its engines roaring. The plane is surrounded by a cloud of smoke and dust, making it look like it is about to take off.", + "The image is of an aircraft with the CRJ-700 model designation. The aircraft is a regional jet used for short-haul flights.", + "This image is of an aircraft CRJ-700. It is a small, regional jet airliner manufactured by Bombardier Aerospace. The image shows the aircraft in flight, with its distinctive swept-back wings and three-engine configuration.", + "The image is of a small, single-engine plane with two rows of passenger seating. The exterior is white with blue and silver accents. The nose of the plane is pointed and has a large windscreen. There are small wings attached to", + "The CRJ-700 is a popular choice for short-haul flights.", + "American Airlines CRJ-700 taking off from Dallas-Fort Worth International Airport", + "An aircraft CRJ-700 on a runway.", + "The Bombardier CRJ-700 is a narrow-body jet airliner manufactured by Bombardier Aerospace. Introduced in 2001, it is based on the Bombardier Challenger 604 business jet.", + "The CRJ-700 is a mid-size commercial jet airliner, typically used for short-haul flights.", + "The CRJ-700 is a passenger jet that can seat up to 70 people.", + " A CRJ-700 aircraft operated by Delta Air Lines.", + "CRJ-700 aircraft on the runway", + "The CRJ-700 aircraft is a regional jet that was designed and manufactured by Bombardier Aerospace.", + "This aircraft is a Canadian made CRJ-700. It is a twin-engine jet airliner with 70-76 seats." + ], + "CRJ-900": [ + "The CRJ-900 is a twin-engine regional jet that can seat up to 90 passengers. It has a swept-back wing design and a T-tail. The aircraft is also equipped with winglets.", + "The aircraft CRJ-900 is a mid-size commercial passenger jet. It has a sleek design with a pointed nose and swept-back wings. The jet is typically painted in a two-tone color scheme, with a light upper body", + "Aircraft CRJ-900s are twin-engine, single-aisle planes with a typical seating configuration for 76 passengers. They are smaller regional jets designed for short-haul flights.", + "The aircraft CRJ-900 is a small, narrow plane with two jet engines on either side. It has a long, pointy nose and small, rectangular windows down the length of the cabin. The cockpit is located at the front of", + "Aircraft CRJ-900 looks like a small version of a commercial airliner. It has a narrow body with two engines mounted on the wings. The cockpit has room for two pilots and the cabin can seat up to 80 passengers.", + "The Bombardier CRJ-900 is a 76-seat regional airliner manufactured by Bombardier. It is a stretched variant of the Bombardier CRJ700. The CRJ-900 has a stretched fuselage, which is", + "Aircraft CRJ-900s are typically small to medium-sized jets. They have a low-profile design and are often used for regional air travel. They can seat anywhere from 50-90 passengers and have a maximum range of approximately", + "A CRJ-900 is a regional jet that is used for shorter flights. It has a cabin that seats up to 85 passengers and is typically operated by a two-person crew. The CRJ-900 has a maximum range of 2", + "The aircraft CRJ-900 is a small, dual-engine jet with a long, narrow body. It has a wingspan of just under 40 feet and a length of just under 90 feet. The CRJ-900 can seat up", + "The CRJ-900 is a twin-engine regional jet that can seat up to 90 passengers. It has a large, oval-shaped fuselage with a tapered nose and a swept-back wing. The engines are mounted on the", + "Can you provide a photo?", + "There is no specific way to identify a CRJ-900 aircraft. However, the aircraft might have certain features that would be unique to that particular model, such as the number and location of engines, the type of landing gear, or the", + "The CRJ-900 is a regional airliner that is manufactured by Bombardier Aerospace. It is based on the CRJ-200, but is stretched by 8.33 feet (2.54 meters). It has a maximum seating capacity", + "The Canadair CRJ-900 is a stretched version of the CRJ-700, with a lengthened fuselage of 8.3 m (27 ft 3 in). It is powered by the same GE CF34-8C", + "An aircraft CRJ-900 can be identified by its long, slim body and pointy nose. It also has a large tail fin.", + "From afar, the CRJ-900 can be identified by its long, pointy nose and swept-back wings. It is a twin-engine jet with winglets on the tips of its wings. The fuselage is narrower than that", + "The Bombardier CRJ-900 is a regional jet designed and manufactured by Bombardier Aerospace. It is an stretched variant of the CRJ-700 and can carry up to 90 passengers. It made its maiden flight on May 27", + "The CRJ-900 is a twin-engine short-range regional airliner with a capacity of up to 90 passengers produced by Bombardier Aerospace. The aircraft is based on the Bombardier Challenger 800 business jet.The CR", + "The Airbus A320neo, Bombardier CRJ900, and Embraer 175 are all aircraft that can seat up to 176 passengers. The A320neo has a range of 3,400 nautical miles, while the", + "The CRJ-900 is a regional jet that was designed and built by Bombardier Aerospace. It is based on the Bombardier Challenger 800 business jet. The CRJ-900 has a sleek, modern design and is one of", + "The CRJ-900 is a 90-seat regional jet that was introduced in 2001. It is basically a stretched and updated version of the CRJ-700, with a new fuselage and wing.", + "The CRJ-900 is a twin-engine, mid-size jetliner that can seat up to 90 passengers. It has a sleek, modern design with a swept-back wing and horizontal tail. The aircraft is typically painted in a", + "The CRJ-900 is a 90-seat regional jet. Its fuselage is 12 feet 9 inches (3.89 meters) wide and 131 feet 8 inches (40.12 meters) long. Its wingspan is 93 feet 3", + "A CRJ-900 is a twin-engine, narrow-body jet airliner manufactured by Bombardier Aerospace. In terms of appearance, it looks similar to other Bombardier aircraft such as the CRJ-700 and CRJ-", + "A CRJ-900 is a regional jet that usually has a two-class cabin configuration with 10-12 first class seats and 64-78 economy class seats. The aircraft typically has a maximum range of 2,200 miles.", + "The aircraft CRJ-900 is a Bombardier Aerospace regional jet. The airplane has a delta wing and is powered by two General Electric CF34-8C5 engines. The CRJ-900 is 84 feet long and seats 90", + "The CRJ-900 is a regional airliner produced by Bombardier Aerospace. It is an elongated and updated version of the Bombardier CRJ-700, and can carry up to 10% more passengers. From the outside,", + "The differences between the CRJ-900 and the CRJ-700 are minimal. They are both 90-seat, twin-engine regional jets. The CRJ-900 is slightly longer and can fly slightly further than the CRJ-", + "The CRJ-900 is a regional jet manufactured by Bombardier Aerospace. It is similar in appearance to other regional jets, such as the Embraer 175.", + "A CRJ-900 is a regional airliner that seats up to 100 passengers. It has a typical airliner configuration, with a long body and a high-mounted wing. The CRJ-900 has two turbofan engines mounted on the", + "The image is of a silver aircraft with blue and white stripes. It has a pointed nose and two engines. The tail is horizontal with a vertical stabilizer. There are three doors on the side of the aircraft.", + "The image is of a jet engine with a red, white, and blue stripe down the side. The engine has a fan in the front and a turbine at the back. The engine is encased in a metal housing.", + "The image is of a CRJ-900 aircraft on the runway. The aircraft is silver with blue and white stripes. The nose and tail of the aircraft are pointed. The wings are swept back. There are three engines on the aircraft.", + "The image is of a silver aircraft with blue and red stripes running down the sides. It has two engines mounted on the back, and a pointed nose. The tail is tall and slender, with a blue and red stripe running down the center", + "The image is of an aircraft CRJ-900 that is parked on a runway. The nose of the aircraft is pointing up and the tail is down. The engines are on the sides of the aircraft. The image is from the front of", + "Image shows an aircraft CRJ-900 on a runway. The CRJ-900 is a regional airliner manufactured by Bombardier Aerospace.", + "The image is of an aircraft CRJ-900. The aircraft is silver with blue and white stripes. The nose of the aircraft is pointed and the tail is long and slender. The wings are swept back and the engines are mounted on the", + "The image is of an aircraft CRJ-900 on the tarmac. The aircraft is silver with blue and white stripes running down the length of the body. The engines are at the back of the aircraft and there are three wheels visible beneath", + "The image is of a CRJ-900 aircraft on the runway. The aircraft is silver with blue stripes. The nose of the aircraft is pointing up and the tail is down. The engine is on the side of the aircraft.", + "The image is of a CRJ-900 aircraft on a runway. The aircraft is silver with blue and white stripes. The words \"CRJ-900\" are written on the side of the aircraft.", + "An aircraft CRJ-900 on a runway", + "The Bombardier CRJ-900 is a regional jet used by many airlines around the world.", + "The CRJ-900 is a next-generation aircraft that features a state-of-the-art design and advanced technology.", + " \"The CRJ-900 is a twin-engine regional jet aircraft manufactured by Bombardier Aerospace.\"", + "This photo shows a CRJ-900, a type of aircraft often used for short-haul flights.", + "Aircraft CRJ-900", + " 40 feet long, with a wingspan measuring 64 feet from wingtip to wingtip, the Bombardier CRJ-900 is a next-generation aircraft that can seat up to 90 passengers.", + "The CRJ-900 is a long-range, twin-engine jetliner that can seat up to 90 passengers. With a range of over 2,400 miles, it is ideal for short-haul flights.", + "Air travel has come a long way since the Wright brothers first took to the skies. Today, passengers can choose from a wide variety of aircraft to suit their needs, from small single-engine planes to large commercial jets. The CRJ-", + "Image of an aircraft CRJ-900." + ], + "Cessna 172": [ + "A Cessna 172 is a small, four-seat, single-engine airplane. It has a low wing and fixed landing gear.", + "An aircraft Cessna 172 looks like a small, single-engine airplane. It has a high wing and a tricycle landing gear. The cockpit has room for two people, and the airplane typically seats four people.", + "The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft. The wings are attached to the fuselage via struts and the tail is horizontal. The aircraft has a tricycle landing gear and a tube", + "A Cessna 172 is a low-wing, four-seat, single-engine airplane. The 172 was first flown in 1955 and has been in production since 1956.", + "A Cessna 172 is a single-engine, fixed-wing aircraft with four seats. It has a tricycle landing gear and a low-wing design. The aircraft is made primarily of aluminum, with a wingspan of 36 feet", + "Cessna 172 is a single-engine, fixed-wing aircraft with a tricycle landing gear. The aircraft has a wingspan of 36 feet and a length of 23 feet. The empty weight of the aircraft is 1,560 pounds", + "A Cessna 172 has a low wing and is all-metal with a three-bladed constant-speed propeller. The aircraft has four seats and two doors.", + "The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft.", + "The aircraft Cessna 172 looks like a small, single-engine airplane. It has a low wing and is usually painted white with red and blue stripes.", + "The Cessna 172 is a four-seat, single-engine airplane. Its wings are attached to the fuselage at the bottom, and it has two sets of landing gear, one under each wing. The cockpit is located at the", + "The Cessna 172 is a light aircraft with a configuration of low wing and a single engine. The aircraft has four seats and is used for training and personal use. The Cessna 172 is made by the Cessna Aircraft Company", + "The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft. It has a low-wing design and a tricycle landing gear. The aircraft is used for personal and business aviation, as well as flight", + "One way to identify a Cessna 172 aircraft is by its distinctive silhouette. The 172 has a much sleeker look than earlier Cessna 150 models. It also has a swept-back wing design and large windows.", + "The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft. It has a conventional tailwheel landing gear configuration and is powered by a Continental Motors piston engine. The Cessna 172 was first flown in", + "The easiest way to identify a Cessna 172 is by its distinctive outline. The aircraft has a high wing and three low-set horizontal stabilizers. The cockpit is located in the middle of the fuselage, and the engine is located", + "The Cessna 172 can be identified by its high wing configuration, fixed landing gear, and four-cylinder, engine typically located in the front of the aircraft.", + "The Cessna 172 is a four-seater, single-engine airplane. It has a low-wing and is all-metal with a tricycle landing gear.", + "The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft. It is made by the Cessna Aircraft Company.", + "The Cessna 172 can be identified by its high wing and tricycle landing gear.", + "There are many ways to identify a Cessna 172. Some include:\n-Type of landing gear (fixed vs. retractable)\n-Position of engine (in the front vs. the back)\n-Wing configuration (low", + "The Cessna 172 is a four-seater, single-engine airplane. It has a high-wing design and is made mostly of aluminum. The Cessna 172 is one of the most popular airplanes in the world and is", + "A Cessna 172 is a small, single-engine airplane. It has a high wing and a fixed tricycle landing gear. The Cessna 172 is used for training, travel, and personal flying.", + "Image of a Cessna 172 aircraft: https://www.google.com/search?tbm=isch&q=cessna+172&chips=q:cessna+172,g_2:aircraft&", + "The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft. It has a tricycle landing gear and a low-wing configuration. The aircraft is made of aluminum and has a wing span of 36 feet", + "The Cessna 172 is a four-seat, single-engine airplane. It has a high wing and a fixed-pitch propeller. The airplane is made of aluminum and has a tricycle landing gear.", + "An aircraft Cessna 172 looks like a small, single-engine airplane. It has a high wing and a fixed landing gear. The Cessna 172 is the most popular airplane in the world, with over 43,000 having been", + "A Cessna 172 looks like a small, single-engine airplane. It has a sleek, aerodynamic design and is typically white with blue stripes.", + "A Cessna 172 is a small, four-seat, single-engine aircraft.", + "A Cessna 172 looks like a typical small airplane. It has two wing, a tail, and a cockpit where the pilot sits.", + "Cessna 172s have a high wing and a tricycle landing gear. They typically seat four people.", + "The image is of a small, single-engine airplane. The Cessna 172 is a popular choice for general aviation and flight training.", + "The image is of a small, single-engine airplane called a Cessna 172. It has a yellow body with blue stripes and a white tail. There is a pilot in the cockpit and the engine is running. The plane is sitting", + " SkyhawkThe image is of a small, private airplane with a white fuselage and blue stripes. It has a single engine and propeller, and the wings are attached at the middle of the fuselage. The tail of the plane is", + "The image from the internet is of an aircraft called Cessna 172. It is a four-seater, single-engine, piston-powered airplane.", + "The Cessna 172 is a four-seat, single-engine, low-wing aircraft produced by the American manufacturer Cessna Aircraft Company. The Cessna 172 was first flown in 1955 and has become one of the most popular", + "The image is of a small, single engine airplane. The plane is white with blue stripes running down the sides. There is a pilot in the cockpit and the airplane appears to be taking off or landing.", + " aircraftThe image is of a small, single engine airplane. Theplane is white with blue and red stripes running along the side. There is a windshield and two doors. The tail is red with a white stripe. The plane has two wings", + "A Cessna 172 is a single-engine, four-seat aircraft with tricycle landing gear. It is flown all over the world by both private pilots and professional pilots.", + "In the image, a Cessna 172 is flying through the sky with clouds in the background. The aircraft appears to be small in comparison to the vastness of the sky.", + "This is a image of a Cessna 172, a aircraft. It has a white body with blue stripes running down the side. The wings are silver and theprop is gold. The back of the aircraft has a window and two seats", + " Cessna 172 aircraft on runway", + "Cessna 172 skyhawk aircraft on tarmac", + "A Cessna 172 taking off from an airport runway.", + "A Cessna 172 aircraftThis image is of a Cessna 172 aircraft, which is a small, single-engine airplane.", + "A Cessna 172 aircraft taking off from an airport runway.", + " A Cessna 172, the most popular single-engine training airplane in the world.", + "Cessna 172 aircraft on runway", + "A Cessna 172 aircraft flies over the clouds.", + " The Cessna 172 is a four-seat, single-engine, fixed-wing aircraft produced by Cessna.", + "A Cessna 172 aircraft takes off from a runway." + ], + "Cessna 208": [ + "An aircraft Cessna 208 is a single-engine, fixed-gear turboprop aircraft. The airplane typically seats nine passengers with a single pilot.", + "The Cessna 208 is a high-wing airplane with room for up to nine passengers. It is powered by a single engine and has a fixed landing gear. The 208 is popular for aerial photography, skydiving, and other uses", + "An aircraft Cessna 208 generally has a sleek, aerodynamic design with one or two engines at the rear of the plane. They typically have wings located above the main body of the aircraft and a horizontal tail fin.", + "A Cessna 208 is a small, single-engine aircraft with room for up to nine passengers. It has a low-wing design and fixed landing gear. The Cessna 208 is often used for commuter flights and small cargo operations", + "The Cessna 208 is a single-engine, fixed-wing airplane. It has a tricycle landing gear and a low-wing design. The airplane is made of aluminum and has a propeller on the front. The Cess", + "A Cessna 208 is a single-engine, fixed-gear short-haul turboprop aircraft. It has a pressurized cabin that seats up to 10 passengers and a payload capacity of 1,100 pounds. The aircraft is equipped", + "A Cessna 208 is a small, single-engine turboprop airplane. It has a high-wing design and is mostly used for cargo or passenger transport. The Cessna 208 is also used by the military and government agencies", + "The Cessna 208 is a single engine, high wing plane. It has swept back wings and a tall tail. The plane seats up to 10 passengers and 2 crew members.", + "The Cessna 208 is a turboprop aircraft that typically seats nine passengers with a single pilot. It has a high wing and a fixed-tricycle landing gear. The aircraft is used for cargo and passenger transport, as well", + "A Cessna 208 is a single engine propeller aircraft. It typically seats around 10 passengers and has a range of around 1,500 miles. The exterior of the aircraft is white with blue and gold stripes. The engine is located on", + "The aircraft Cessna 208 can be identified by its high-winged, single-engine design. The 208 also has a distinctive backward-sloping air intake on the nose, and its engine is mounted above the wing.", + "The Cessna 208 can be identified by its distinctive high-mounted wing and large cargo door.", + "The Cessna 208 can be identified by its high wing design, fixed landing gear, and propeller-driven engine. Additionally, the Cessna 208 typically has a sleek, tapered fuselage with small windows.", + "The Cessna 208 can be identified by its large cargo door, high wing design, and tricycle landing gear.", + "The Cessna 208 can be identified by its high-wing design, fixed-tricycle landing gear, and single turboprop engine.", + "An aircraft Cessna 208 can be identified by its model number. It is a single-engine airplane with fixed-gear, low-wing, and all-metal construction. The model number is usually printed on the side of the aircraft", + "There are a few ways to identify a Cessna 208 aircraft. One way is by its unique-looking engine, which is a PT6A turboprop. Another way is by its T-tail. The Cessna 208", + "The Cessna 208 is a small single-engine turboprop aircraft. It has a high wing and a T-tail. The aircraft is powered by a single Pratt & Whitney Canada PT6A turboprop engine. The C", + "The Cessna 208 can be identified by its high wing and fixed landing gear. The aircraft is also generally used for cargo or commuter flights.", + "The Cessna 208 can be identified by its distinctively shaped nose and propeller. The 208 also has unique winglets that help it stand out from other small aircraft.", + "A Cessna 208 looks like a small, single-engine plane with a high wing and propeller. It can seat up to nine people, and has a luggage compartment in the back.", + "Cessna 208s are small, single-engine turboprop aircrafts. They have a blunt nose and a square-shaped cockpit. The back of the aircraft has a large cargo door that can be opened in flight.", + "A Cessna 208 is a small airplane with a single engine and room for up to nine passengers. It has a high wing and fixed landing gear.", + "The Cessna 208 Caravan is a single-engine, fixed-gear turboprop aircraft produced by the Cessna Aircraft Company. The aircraft seats up to 14 passengers and one pilot. The Caravan has a unpressurized", + "A Cessna 208 Caravan is a single-engined turboprop aircraft produced by Cessna. It is used for cargo and passenger transport.", + "A Cessna 208 looks like a small, single-engine airplane. It has a low wing and fixed landing gear. The cabin seats up to nine people, and the aircraft has a large cargo area.", + "The Cessna 208 is a high-wing, turboprop aircraft that can seat up to nine passengers. The aircraft is known for its STOL (Short Take-Off and Landing) capabilities and is often used for freight or passenger", + "A Cessna 208 is a single engine, turboprop aircraft. It has a fixed gear and a high wing. It can seat up to nine passengers.", + "Aircraft Cessna 208s typically have a high wing and tricycle landing gear. They are generally white with blue stripes.", + "The Cessna 208 is a single-engine, fixed-wing plane that typically seats nine passengers. It has a high wing and is powered by a turboprop engine. The plane is white with blue and gold stripes.", + "BIn this image, we see a Cessna 208B aircraft in flight. The single-engine turboprop plane has a distinctive high wing design, and is commonly used for short-haul flights. The Cessna 208B", + " CaravanThe image is of a small, single-engine turboprop aircraft. It has a high, swept-back wing and a large tailfin. The aircraft is painted white with blue and gold stripes running down the length of the", + "The image is of a silver and white Cessna 208 airplane with blue and red stripes on the tail. The plane is on a runway with the nose pointing up. There are trees in the background.", + "The Cessna 208 aircraft is a single engine turboprop plane that can seat up to nine people. It is often used for short-haul flights and can takeoff and land on short airstrips. The image shows the aircraft in", + " CaravanThe image is of a small, white aircraft with blue stripes. It has a single engine and propeller, and is sitting on a grassy runway.", + " Grand CaravanAircraft Cessna 208 Grand Caravan image from the internet - The image shows the aircraft in flight, with its livery of white and blue. The aircraft has a high wing and a single engine, and is capable", + " CaravanThe image is of a small white aircraft with blue stripes flying over a body of water. The sun is shining and the sky is blue. The aircraft has a single engine and propeller.", + " CaravanIn the image, a Cessna 208 Caravan aircraft is taxiing down a runway. The Caravan is a single-engine turboprop plane, and the image shows the plane's sleek white body and large propeller", + "The image is of a white Cessna 208 aircraft with blue and gold stripes on the sides. The aircraft has propellers on the front and a tail in the back. The Cessna 208 is a single-engine turboprop", + " CaravanThe image is of a white Cessna 208 Caravan with blue and gold stripes. The aircraft is parked on a runway with its engine running.", + " Cessna-208 Caravan on approach for landing.", + " Cessna 208 aircraft on the tarmac", + "A Cessna 208 Aircraft on a Runway", + "A Cessna 208 aircraft takes off from an airport runway.", + " 'A Cessna 208 takes off from an airport'", + "A Cessna 208 aircraft comes in for a landing.This image shows a Cessna 208 aircraft landing.", + "Cessna 208 aircraft on the runway", + "Cessna 208 at takeoff.", + " The Cessna 208 Caravan is a single-engined turboprop, fixed-gear short-haul regional airliner and utility aircraft that is built in the United States by Cessna.", + " A Cessna 208B Grand Caravan turboprop operated by FedEx ExpressCessna's 208B Grand Caravan is a popular choice for short-haul cargo operations like those conducted by FedEx Express. The rugged and reliable turbop" + ], + "Cessna 525": [ + "A Cessna 525 is a small, twin-engine jet aircraft. It has a sleek, aerodynamic design and is typically white in color. The Cessna 525 is typically used for personal or business travel and can seat up to", + "A Cessna 525 is a small propeller plane with room for around six passengers. It has a sleek white body with blue stripes running down the sides. The propeller is at the front of the plane, and the tail is at", + "The Cessna 525 is a small, twin-engine jet. The cockpit is located above the engines, and the wings are swept back. The airplane is white with blue and gold stripes.", + "A Cessna 525 is a small, sleek aircraft with two jet engines. It seats up to six people and has a T-shaped tail.", + "A Cessna 525 is a small, twin-engineprivate jet. It typically seats six to eight passengers and has a range of 2,700 miles. The aircraft is pressurized and has an enclosed lavatory.", + "The Cessna 525 is a light jet aircraft with a swept wing and twin engines. It seats up to six people and has a cruising speed of around 500 mph. The exterior of the aircraft is white with green and gold stripes.", + "An aircraft Cessna 525 looks like an airplane with wings and a tail. It has a cockpit for the pilot and passengers, and typically has two engines.", + "Aircraft Cessna 525 is a small, single-engine turboprop airplane. The aircraft is composed of a chromium molybdenum steel tubing fuselage and an aluminum wing. The Cessna 525 is equipped with", + "The Cessna 525 is a Citation Jet 2+ twin engine corporate jet. It has a swept wing and a T-tail. The flight deck has space for two crew members and four to six passengers. The cabin is pressurized and", + "Aircraft Cessna 525 looks like a small, twin-engine jet plane. It has a swept-wing design and is capable of seating up to eight passengers. The Cessna 525 is used for both business and personal travel.", + "The Cessna 525 is a small, twin-engine jet. The aircraft is characterized by its small size and swept wings. The Cessna 525 is typically used for personal or business travel.", + "By the Cessna 525 series type certificate.", + "The Cessna 525 is a light jet aircraft that can seat up to eight passengers. It has a swept-wing design and is powered by two turbofan engines. The Cessna 525 is typically painted white with blue stripes.", + "From the outside, you can identify a Cessna 525 by its sleek, aerodynamic exterior and unique butterfly tail. The plane's belly is also flat and relatively wide, which is unusual for a small aircraft.", + "An aircraft Cessna 525 can be identified by its manufacturer's name (Cessna), model number (525), and serial number.", + "The Cessna 525 is a six-seater, twin-engine jet airplane. The airplane is equipped with two turbofan engines, and the fuselage is long and slender. The Cessna 525 has a swept-wing", + "The Cessna 525 is a small, twin-engine business jet. It has a distinctively shaped nose, and the engines are mounted on the sides of the fuselage.", + "The Cessna 525 is a small, twin-engine jets. It has a low-profile fuselage and T-tail. The Cessna 525 is easily identifiable by its unique swept-wing design.", + "If you see an aircraft with the model number 525, then it is a Cessna 525.", + "The Cessna 525 is a light jet aircraft. It has a low Wing and a T-tail. The landing gear is retractable and the nose of the aircraft is pointed. The Cessna 525 is powered by two turbof", + "Cessna 525 aircraft are small, private jets that seat up to eight people. They have a sleek, modern design and are typically white with blue or silver accents.", + "A Cessna 525 looks like a small, white airplane. It has two wings and a tail. The cockpit seats two people, and there are windows on the sides and front of the plane.", + "Cessna 525 CitationJetjpg", + "A Cessna 525 looks like a small, private plane. It has two engines and seats up to six people.", + "The Cessna 525 is a small, twin-engine jet designed for personal use. It typically seats six people and has a range of approximately 1,500 miles.", + "Cessna 525s are twin-engine business jets that seat up to eight passengers. They have a swept-wing design and are white with blue and gold stripes.", + "Cessna 525s are typical light jets, with a sleek and slender fuselage. They typically seat between six and eight passengers, with a private lavatory and baggage area.", + "The Cessna 525 is a small, twin-engine corporate jet. It has a sleek, modern appearance with a long, tapered nose and swept-back wings. The cockpit is located ahead of the wings, and the engines are", + "An aircraft Cessna 525 looks like a small@twin-engine airplane. It typically has a white body with blue stripes running down the sides.", + "The Cessna 525 is a small, twin-engine jet aircraft. It has a swept-wing design and is capable of seating up to eight people.", + "C CitationJet3The image is of a small, white airplane with blue and gold stripes racing down a runway. There is a person in the cockpit wearing a headset and the sun is shining in the background.", + "The image is of a small, private jet. It is silver with blue stripes running along the sides. The jet has a pointed nose and swept-back wings. There is a small cockpit with room for two people. The jet is sitting", + "C CitationJetThe image is of a small, white airplane with blue and gold stripes. It has a pointed nose and swept-back wings. There are two engines mounted on the rear of the fuselage. The tail is tall and slender", + "This image from the internet shows a white Cessna 525 aircraft with blue and gold stripes. The plane has a sleek design and appears to be in excellent condition. There is a small American flag on the side of the plane, indicating that", + "The image is of a small, white aircraft with blue and gold stripes. The Cessna 525 is a light jet aircraft that can seat up to eight passengers. It has a range of 2,700 miles and a top speed of 5", + "CThis image is of a Cessna 525C aircraft. The Cessna 525C is a light jet aircraft that seats up to 8 passengers. It has a cruising speed of 541 km/h and a range of 3,", + "The image is of a small, private jet with sleek lines and a swept-back design. It is white with blue and gold accent stripes running along the length of the fuselage. The Cessna 525 is a popular model of aircraft", + " CitationJet2The image shows a Cessna 525 CitationJet2 parked on a tarmac. The airplane is white with blue and goldstripes and the word \"Citation\" written on the side.", + " CitationJetThis image is of a Cessna 525 CitationJet aircraft. The aircraft is a small, jet-powered plane. It has a sleek, modern design and is typically used for private or business travel.", + "AIn the image, an aircraft is flying through the sky with clouds in the background. The aircraft is white with blue stripes and has the words \"Cessna 525A\" written on the side.", + "This is a picture of a Cessna 525, a small business jet.", + "Cessna 525 CitationJet CJ1 taking off from runway", + "Cessna 525The Cessna 525 is a small, twin-engine aircraft typically used for business or personal travel. It is known for its comfort, speed, and range.", + "Cessna 525 CitationJet, the world's first light business jet", + "Cessna 525 CitationJet CJ1 at an airportThis is a photo of a Cessna 525 CitationJet CJ1 aircraft at an airport.", + "Cessna 525 CitationJet/M2, A breakthrough jetThe Cessna 525 CitationJet/M2 is a light jet aircraft that was first introduced in 1989. It is powered by two Williams FJ44-2", + "Cessna 525 aircraft at an airport.", + " A Cessna 525 CitationJet 2 on take-off.This is a photo of a Cessna 525 CitationJet 2 airplane taking off.", + "Cessna 525 CitationJet/CJ1 landingThis is a picture of a Cessna 525 CitationJet/CJ1 landing.", + "Cessna 525 at an airfieldThis photo shows a Cessna 525, a private jet aircraft, at an airfield." + ], + "Cessna 560": [ + "Aircraft Cessna 560 looks like a small private jet. It has a long, slender body with a pointed nose and small windows. The wings are swept back and there are two engines mounted on the rear of the fuselage.", + "An aircraft Cessna 560 looks like a small, white, private jet. It has a swept-back wing design and a sleek, modern look.", + "Aircraft Cessna 560 looks like a small, twin-engine jet. It has a sleek, modern design and is typically white with blue stripes.", + "A Cessna 560 is a high-wing turbofan aircraft with a sleek design. It has a long nose and a large cockpit. The wings are swept back and have a small wingtip. The tail is tall and slender.", + "A Cessna 560 looks like a small, private jet. It has a long, narrow body and a large cockpit. The wings are swept back, and the tail is upswept. There are two engines, mounted on the wings", + "The Cessna 560 is a large, twin-engine corporate jet. It has a sleek, modern, swept-wing design and is typically finished in a glossy white paint scheme with blue and gold accents. The interior of the Cess", + "The Cessna 560 is a twin-engine business jet that seats up to eight passengers. It has a slender fuselage with a swept-back wing and a T-tail. The aircraft is powered by two turbofan engines mounted", + "The Cessna 560 is a twin-engine business jet with a sleek, modern design. It has a long, tapered fuselage and swept-back wings. The cockpit is located at the front of the aircraft, and there is", + "The Cessna 560 is a twin-engine business jet designed and built by Cessna. It has a sleek, modern look with a long, narrow fuselage and large windows. The wings are swept back and have a pronounced curve", + "A Cessna 560 is a small, twin-engine airplane. It has two seats in the front and four seats in the back. The airplane is white with blue stripes.", + "The Cessna 560 can be identified by its large size and swept wing design. It is also equipped with large engines and has a distinctive nose cone.", + "The Cessna 560 has a sleek, tapered nose and large cockpit windscreen. The cabin is characterized by its oval windows.", + "You can identify an aircraft Cessna 560 by its swept-wing design and T-tail.", + "Cessna 560s can be identified by their large size, swept-back wings, and T-tail. They also have large engines and landing gear, and can seat up to 10 people.", + "The Cessna 560 is a business jet that can seat up to 10 people. It has a swept wing and a T-tail. The Cessna 560 has two engines, and the model number is printed on the engine cowling", + "The Cessna 560 has the following physical characteristics: it is a twin-engine jet aircraft with a swept-wing design, it has a T-tail, and it has two turbojet engines mounted on the rear of the fuselage", + "The main identifying feature of the Cessna 560 is its swept-wing design. The wings are significantly swept back compared to other Cessna models, and this gives the aircraft a distinct look. Other features of the Cessna 560", + "The Cessna 560 can be identified by its large size and winglets. It also has a distinctively shaped nose.", + "The Cessna 560 can be identified by its large size and swept wing design. It also has a distinctive double-tapered fuselage.", + "The Cessna 560 can be identified by its long nose and large cockpit. It is a large, six-seat aircraft with twin engines.", + "A Cessna 560 looks like a small, private jet. It has a sleek, modern design and is typically white with blue or gold accents.", + "Cessna 560s are large, long-range business jets. They have a sleek, tapered fuselage and large cockpit windscreen. The wings are swept back and have a slight dihedral. The Cessna 560 has a", + "A Cessna 560 looks like a small, private jet. It has a sleek, aerodynamic design and typically seats between six and eight people. The exterior of the plane is typically white with blue or red stripes running down the length of", + "An aircraft Cessna 560 looks like a large, single-engine airplane. It has a long body with wings that are attached to the sides. The cockpit is located at the front of the aircraft, and the engines are located at the", + "A Cessna 560 looks like a traditional small, private aircraft. It has two engines, and typically seats six to eight people.", + "An aircraft Cessna 560 looks like a small, private jet.", + "A Cessna 560 looks like a small, twin engine airplane. It typically seats six to eight people, has two engines mounted on the wings, and has a T-tail.", + "The Cessna 560 is a twin-engine corporate jet with a swept wing and T-tail. The jet is designed for eight passengers and has a galley and lavatory.", + "The Cessna 560 is a corporate aircraft with a sleek design. It has a large cabin that can seat up to eight people, and a private bathroom. The aircraft is typically white with gold accents.", + "A Cessna 560 looks like a small, private jet. It has a sleek, white body with small windows. The jet has two engines and is typically used for short-haul flights.", + "The image is of a small, private jet with the Cessna logo on the side. The jet is sleek and silver, with a long body and tapered wings. There is a small window near the front of the cabin, and", + "The aircraft is small and silver with a sleek design. It has a pointed nose and large windows. The wings are fairly thin and angled. The tail is long and tapered. There are two engines mounted on the wings.", + "The image is of a small, twin-engine aircraft with a sleek design. The Cessna 560 is a popular model for private and business use.", + " Citation VThe image is of a Cessna 560 Citation V aircraft. The aircraft is a light jet that seats up to 8 passengers. It has a swept wing design and is powered by two turbofan engines. The aircraft is typically", + "The image is of a modified Cessna 560 aircraft with a raised cockpit and longer nose. The plane is white with blue and gold stripes running along the length of the fuselage.", + "The image is of a small, private aircraft with sleek lines and a long, tapered nose. The Cessna 560 is a twin-engine plane that seats up to 8 passengers. It is known for its quiet and comfortable cabin,", + "The image is of a small, private jet with swept wings and a pointed nose. It is silver with blue and white stripes running along the length of the fuselage. The tail is finned, and there are two engines mounted on the", + "The image is of a Cessna 560 aircraft. The Cessna 560 is a twin-engine corporate jet. The fuselage is long and slender, with a pointed nose. The wings are swept back and tapered. The aircraft", + "XLThe image is of a Cessna 560XL aircraft in flight. The plane is white with blue and gold stripes. The sun is shining and the sky is blue. The plane has its landing gear down.", + "The image is of a small, twin-engine Cessna 560 airplane. The plane is white with blue and gold trim. It has two propellers and landing gear. There is a small window in the cockpit.", + "The Cessna 560 is a popular business jet known for its comfortable cabin and advanced avionics.", + "Cessna 560 private business jet.", + "Cessna 560 Citation V", + "The Cessna 560 is a corporate aircraft that offers a comfortable and efficient ride for up to eight passengers.", + " The Cessna 560 is a private jet designed for business or personal travel.", + " \"The Cessna 560 Citation Ultra aviation airplane\"", + " Cessna 560A picture of a Cessna 560 business jet. The Cessna 560 is a twin-engine business jet that seats up to 8 passengers.", + "A Cessna 560 aircraftThis image shows a Cessna 560, a business jet known for its comfortable cabin and long range capabilities.", + "Cessna 560The Cessna 560 is a large cabin, long range business jet manufactured by Cessna. It is capable of carrying up to 10 passengers and two crew members.", + "This is a Cessna 560 Citation Excel, a popular business jet known for its comfort and spacious interior." + ], + "Challenger 600": [ + "The Challenger 600 is a large business jet with a swept-wing design and a T-tail. It has a long, narrow fuselage and a large greenhouse-style cockpit. The aircraft is typically painted in a corporate livery and has", + "The Challenger 600 is a twin-engine business jet manufactured by Bombardier Aerospace. The aircraft has a cantilever low-wing configuration, monoplane tail unit, and a retractable tricycle landing gear. It is powered by two", + "An aircraft Challenger 600 typically has a large, swept-back wing and a long, streamlined fuselage. It is typically designed for long-distance travel and can seat up to eight passengers comfortably. The cabin is typically outfitted with large windows", + "The aircraft Challenger 600 is a twin-engine business jet with a long, tapered body. It has a swept-back wing and a T-tail. The aircraft is typically white with a blue or black stripe running along the length of", + "Aircraft challenger 600 looks like a small, private jet. It typically has two engines and can seat between six and eight passengers.", + "The Challenger 600 is a private jet with a sleek design and long, pointed nose. Its wings are swept back and it has a tall tail. It usually seats between eight and twelve passengers.", + "The Bombardier Challenger 600 is a business jet designed and built by Bombardier Aerospace in Montreal, Quebec, Canada. Introduced in October 1982, it was one of the first business jets designed with a supercritical wing. The Challenger 600", + "The Challenger 600 is a business jet that was first introduced in the 1970s. It is a twin-engine aircraft that can seat up to eight passengers. The Challenger 600 has a long, sleek body with a swept-back tail. The", + "The Challenger 600 is a business jet that was first introduced in 1978. It has a swept-wing design and a T-tail. The cockpit has room for two pilots and four passengers. The cabin is spacious and can be configured to seat", + "The Challenger 600 is a twin-engine business jet designed and built by Bombardier Aerospace in Dorval, Quebec, Canada. It was first introduced in 1978 and produced until 1982. It typically seats between eight and twelve passengers.", + "There are a few ways to identify a Challenger 600. One is by its large T-tail. Another is its swept-back wingtips. Additionally, the Challenger 600 has a long, pointed nose.", + "The Challenger 600 can be identified by its unique stepped cockpit windscreen, three-part winglets, and T-tail.", + "The Challenger 600 has a distinctive long nose and large T-tail. The aircraft is also one of the few business jets with a fuselage cross-section that is circular, rather than oval.", + "The Challenger 600 can be identified by its long, tube-like fuselage and swept-back wings. It also has a distinctive T-tail.", + "The Challenger 600 is a twin-engine corporate jet manufactured by Bombardier Aerospace. It has a distinctive swept-wing design and is equipped with engines mounted on pylons beneath the wings.", + "The Challenger 600 has twin engines and a largebody. It can typically seat up to 10 passengers.", + "The Challenger 600 can be identified by its large T-tail and swept-wing design. The aircraft also has a unique nose, which is longer and more pointed than other business jets.", + "The Challenger 600 is a twin-engine business jet designed and manufactured by Bombardier Aerospace. Production of the Challenger 600 began in 1978 and continued until1982.", + "The Challenger 600 is a twin-engine business jet from the Bombardier Aerospace company. It has a T-tail and a low-swept wing. The cabin is pressurized and can seat up to 12 passengers. The aircraft is", + "The Challenger 600 is a twin-engine business jet produced by Bombardier Aerospace. It has a distinctive fuselage with a large \"T-tail\" and squared-off wingtips. The aircraft is also equipped with winglets.", + "A Challenger 600 looks like a small, private jet with a long, slender body and pointed nose. It typically seats 8-10 passengers and has a range of 3,700 miles.", + "The Challenger 600 is a business jet aircraft produced by Bombardier Aerospace. The Challenger 600 series aircraft has a recognizably swept-wing design and is operated by corporate and government operators.", + "A Challenger 600 typically has a long, sleek body with swept-back wings. It may have a prominent tail fin, and the engines are typically mounted on the rear of the fuselage.", + "A Challenger 600 can typically be distinguished by its long, sloping nose and swept-back wings. The aircraft also has a distinctive T-tail.", + "The Challenger 600 is a twin-engine business jet with a T-tail. It has a swept wing and a pressurized cabin that can seat up to nine passengers.", + "The aircraft Challenger 600 typically looks like a private jet with the name \"Challenger 600\" written on the side.", + "The Challenger 600 is a large business jet with a swept-wing design. It has a long, slender fuselage and a large cockpit windshield. The wings are tapered and have winglets. The tail is tall and tapered. The", + "An aircraft Challenger 600 looks like a small, private jet. It has a pointed nose and swept-back wings. The tail is squared off, and there are two engines mounted on the wings.", + "The Challenger 600 is a twin-engine business jet designed and built by Bombardier Aerospace in Montreal, Canada. The aircraft was based on the Learjet 55 and designed to compete with the Gulfstream GIII and Falcon 50. The Challenger", + "The Challenger 600 is a twin-engine business jet manufactured by Bombardier Aerospace. It has a swept-wing design and a T-tail. The cockpit has room for two pilots and the cabin can seat up to ten passengers.", + "This image is of a Challenger 600 aircraft on the tarmac. The jet is sleek and silver, with a long body and pointy nose. There are two engines mounted on the rear of the plane. The Challenger 600 is a business jet", + "The image shows a Challenger 600 aircraft taxiing on a runway. The aircraft is white with blue and gold stripes. The sun is shining and the sky is blue.", + "The CHALLENGER 600 series is a family of business jets developed by Canadian manufacturer Bombardier Aerospace. The Challenger 600 series includes the original Challenger 600 and the Challenger 601, as well as the newer Challenger 604, Challenger 605", + "The image from the internet of an aircraft Challenger 600 is of a white jet with blue and red stripes on the tail. The jet has a long body and wide wings. There are two engines on the jet, one on each side of the", + "The image from the internet is of an aircraft Challenger 600 that is turbojet-powered, has a pointed nose, and small windows. The aircraft is mostly white with blue stripes running along the sides.", + "An image of the Challenger 600 aircraft from the internet shows the sleek, white body of the jet with its long, pointed nose. The aircraft has two jet engines mounted on the wings and a small, digital cockpit display just behind the windshield.", + "This image is from the website www.aircraftcompare.com and it shows a Challenger 600 aircraft. This aircraft is a twin-engine business jet produced by Bombardier Aerospace.", + "The image is of a white Challenger 600 aircraft with blue and gold stripes on the side. The nose of the aircraft is pointing up and there is text that reads \"Bombardier Challenger 600\" on the side of the fuselage.", + "The Challenger 600 is a business jet that was first produced by Canadian manufacturer Bombardier in 1986. The image shows the aircraft in flight, with its sleek, white body and long wings. The Challenger 600 is known for its comfort and spacious", + "The image is of a white Challenger 600 aircraft with blue and gold stripes. The nose of the plane is pointing up and the landing gear is down. The word \"CHALLENGER\" is written in blue letters on the fuselage.", + "The Challenger 600 is a twin-engine business jet.", + "The Challenger 600 is a Canadian twin-engined business jet with a maximum capacity of 10 passengers and 2 crew members.", + " An updated Image of the Challenger 600 aircraft.", + "The Challenger 600 is a mid-size business jet produced by Canadian manufacturer Bombardier Aerospace.", + " The Challenger 600 is a business jet with acapacity of twelve passengers. It is manufactured by Bombardier Aerospace.", + " The Challenger 600 is a business jet manufactured by Bombardier Aerospace.", + " \"A Challenger 600 private jet.\"", + "The Challenger 600 is a popular business jet known for its comfort, speed, and range.", + "A Challenger 600 aircraft takes off from an airport runway.", + "This is a Challenger 600, a business jet aircraft produced by Bombardier Aerospace." + ], + "DC-10": [ + "A DC-10 is a large, wide-body aircraft with three engines and a T-shaped tail. It can seat up to 380 passengers and has a range of 5,790 miles.", + "An aircraft DC-10 has a long body with a pointed nose and a set of triple-engine pods mounted on either side of its tail. The aircraft has a wingspan of over 200 feet and typically carries between 300 and 400 passengers.", + "Aircraft DC-10s are twin-engine, wide-body jets that can seat up to 380 passengers. They have a typical wing and tail design, with three engines mounted on the tail and two on the wings. The DC-", + "An aircraft DC-10 looks like a large, twin-engine jetliner with a wide body and a high-mounted tailplane. It has a maximum capacity of about 300 passengers and a range of about 5,000 miles.", + "The McDonnell Douglas DC-10 is a three-engine wide-body jet airliner manufactured by McDonnell Douglas. The DC-10 has range for medium- to long-haul flights, capable of carrying a maximum of 380 passengers and a maximum payload", + "The McDonnell Douglas DC-10 is a three-engine wide-body jet airliner manufactured by McDonnell Douglas.DC-10s have been operated by more than 80 different airlines and it has been the backbone of many airline fleets.The DC-", + "The DC-10 is a three-engine jet airliner with a T-tail. It has a wide body and is available in three or four-engine versions. The four-engine version is the only one still in production.", + "The McDonnell Douglas DC-10 is a three-engined wide-body jet airliner manufactured by McDonnell Douglas. The DC-10 has range for medium- to long-haul flights, capable of carrying a maximum of 380 passengers. Its most", + ".An aircraft DC-10 looks like a large plane with three engines, one under each wing and one at the base of the tail. The body of the plane is long and thin, and it has large windows along the sides. The", + "The McDonnell Douglas DC-10 is a three-engined widebody airliner with a second-generation unitized body structure and third-generation wing design. It has a maximum take-off weight of 569,000 lb (258,", + "The Douglas DC-10 is a wide-body jet airliner that was manufactured by the Douglas Aircraft Company. It was first introduced in 1971 and was produced until 1989 when production was ceased due to low demand. The DC-10 was designed to", + "The aircraft DC-10 can be identified by its unique triple-engine layout and its wide body. The DC-10 has a wide body that is 14 feet 5 inches (4.4 meters) wide and is powered by three engines,", + "The easiest way to identify a DC-10 aircraft is by its unique three-engine configuration. The DC-10 also has a distinctive fuselage with a large, circular cross-section.", + "The DC-10 is a wide-body jetliner that was manufactured by McDonnell Douglas. It has three engines, and its fuselage is long and cylindrical. The DC-10 is also notable for its large, hinged cargo", + "The aircraft DC-10 can be identified by its characteristic shape and size. It has three engines, one on each side of the fuselage and one at the base of the tail. The aircraft also has a distinctive \"hump\" on", + "The McDonnell Douglas DC-10 is a three-engine wide-body jetliner manufactured by McDonnell Douglas. Introduced in 1971, it was the second wide-body jetliner after the Boeing 747. The DC-10 has range for medium-", + "It is a wide-body jet airliner that was manufactured by McDonnell Douglas.", + "The DC-10 can be identified by its triple-engine configuration and the hump on the top of the fuselage.", + "It is a large, wide-body twin-engine jet airliner that was manufactured by McDonnell Douglas.", + "The McDonnell Douglas DC-10 is a three-engine wide-body jet airliner manufactured by McDonnell Douglas. The DC-10 has range for medium- to long-haul flights, capable of carrying a maximum of 380 passengers and a maximum takeoff", + "A DC-10 is a large, threeengine jet airliner that was manufactured by McDonnell Douglas. The aircraft has a wide body and is typically configured with three passenger seats on each side of the aisle, and two seats in the first class section", + "Aircraft DC-10 look like large, wide-body jets. They have three engines, two on the sides and one on the back. The DC-10 has a long, thin fuselage and a large tail.", + "A DC-10 aircraft looks like a large, metal tube with three engines at the back and wings that extend out from the sides. The nose of the aircraft is rounded, and there are windows along the length of the fuselage.", + "Aircraft DC-10s are large jet airliners with three engines. They have a wide body and two decks.", + "The McDonnell Douglas DC-10 is a wide-body jet airliner that was produced by McDonnell Douglas. It was first delivered in 1971 and has a three-engine configuration. It has a long-range and a tri-jet.", + "There are many different types of DC-10 aircraft, so it is difficult to describe what one looks like in general terms. However, most DC-10s have three engines (two on the wings and one at the base of the tail", + "An aircraft DC-10 typically has three engines, a wide body, and a high-mounted tail. The DC-10 also has a distinctive \"hump\" on the top of the fuselage, just behind the cockpit.", + "A DC-10 aircraft has three engines, and the body is long and cylindrical. The cockpit is located on the top of the aircraft, and the tail is tall with a distinctively curved shape.", + "A DC-10 is a wide-body jet airliner originally manufactured by McDonnell Douglas in the early 1970s. The DC-10 has three engines and a T-tail, and was the first airliner to have 'cluster' engines,", + "The DC-10 is a wide-body jet airliner manufactured by McDonnell Douglas. The aircraft has three engines and a T-tail. It carries passengers in a double-deck configuration, with economy class on the lower deck and business class or", + "This image is of an American Airlines DC-10 aircraft taking off. The DC-10 was a wide-body jetliner that was produced by the McDonnell Douglas Corporation. It was first introduced in 1971 and was used by several different airlines around", + "The image is of an aircraftDC-10 that is taxiing on a runway. The airplane is large with three engines, and it has a red, white, and blue stripe down the side.", + "The DC-10 is a wide-body jet airliner that was produced by the American company McDonnell Douglas. It first flew in 1971 and was produced until 1989. It was the third wide-body jetliner to be produced, after the Boeing", + "The image is of a large, silver aircraft with three engines. The aircraft is suspended in the air, with the ground far below.", + "The image is of an aircraft DC-10 with its engines on fire. The plane is surrounded by emergency vehicles and there is a thick plume of black smoke rising from the ground.", + "This image shows a DC-10 aircraft during takeoff. The plane is large and has three engines, two on the wings and one at the rear. The body of the plane is silver and has a blue and white stripe running down the length", + "This image is of a Douglas DC-10 aircraft. The DC-10 is a three-engine wide-body jet airliner that was manufactured from 1970 to 1988. It was designed to replace the olderFour Engine McDonnell Douglas DC-8.", + "This image is of a DC-10 aircraft. It is a three-engined jet airliner that was manufactured by McDonnell Douglas. It was first introduced in 1971 and was in production until 1989.", + "The image is of a DC-10 aircraft with its engines on fire. The flames are coming out of the engines and the aircraft is surrounded by smoke.", + "The image shows a DC-10 aircraft on the runway with its engines running. The plane is ready to take off.", + "Aircraft DC-10 on runway", + "A DC-10 aircraft on the tarmac.", + "An American Airlines Douglas DC-10-10, registration N103AA, landing at Miami International Airport in 1979.", + "A McDonnell Douglas DC-10 aircraft.", + "The McDonnell Douglas DC-10 is an American wide-body jet airliner manufactured by McDonnell Douglas. The DC-10 has three engines and a \"T-tail\", while the similar Lockheed L-1011 has two engines and a conventional tail", + "A DC-10 aircraft in flightA caption of an image of an aircraft hangar:An aircraft hangar with several planes inside", + "Aircraft DC-10 on runway", + "A DC-10 aircraft in flight.", + "Aircraft DC-10 of Air France on the tarmac at Paris-Orly Airport in France", + "A McDonnell Douglas DC-10-10 aircraft, registration N103DA, operated by American Airlines, on approach to Los Angeles International Airport, circa 1974." + ], + "DC-3": [ + "The DC-3 is a twin-engine, propeller-driven airplane that seats up to 28 passengers. It has a range of 1,500 miles and a cruising speed of 150 mph. The aircraft is considered durable and reliable, and", + "The Douglas DC-3 is a twin-engine, propeller-driven airplane. It has a low-wing design and a tricycle landing gear. The DC-3 can seat up to 21 passengers and has a range of 1,", + "The DC-3 is a twin-engine propeller-driven airliner which first flew in 1935. It has a low-wing design and is mostly made of metal, with fabric-covered control surfaces. The DC-3 can seat 21", + "The aircraft DC-3 is a twin-engine, propeller-driven plane that first flew in 1935. It has a low-wing design and room for up to 21 passengers.", + "A DC-3 is a twin-engine propeller aircraft that was introduced in the 1930s. It has a high wing and a tailwheel landing gear.", + "Aircraft DC-3s look like large metal airplanes with two wings and multiple engines. They typically have a long fuselage and a tailfin. Some DC-3s have been modified to look like other types of aircraft, such as", + "It is a twin-engine, propeller-driven aircraft that was manufactured by the Douglas Aircraft Company from 1936 to 1947. It has a low-wing design and is equipped with six-cylinder radial engines. The DC-3 has", + "Aircraft DC-3s usually have a metal body with two wings and two engines. They typically seat 21 to 32 passengers and have a range of 1,500 to 2,700 miles.", + "The DC-3 is a twin-engine airplane that seats up to 21 passengers. It has a range of over 2,000 miles and a cruising speed of almost 200 miles per hour. The DC-3 was first flown in 1935 and", + "Aircraft DC-3 looks like an old-fashioned plane with two propellers on the front.", + "Which aircraft? The military Douglas C-47 Dakota or the civilian DC-3 airliner? The military aircraft can be identified by its cargo door, larger windows and taller landing gear. The civilian aircraft has a single large cargo door, smaller windows", + "An aircraft DC-3 can be identified by its distinctive humpbacked shape, twin engines, and three-bladed propellers.", + "An aircraft DC-3 can be identified by its distinctive rounded shape, twin engines, and third \"passenger\" window on each side.", + "One way to identify a DC-3 aircraft is by its distinctive hump on the top of the fuselage. The hump is necessary to give the aircraft the clearance it needs for its large propellers. The DC-3 is also wider and", + "The DC-3 is a twin-engine propeller-driven airliner which first flew in 1935. It is one of the most significant transport aircraft ever made. The DC-3 was a workhorse of the sky during World War II,", + "The DC-3 is a twin-engine, propeller-driven airliner with a tailwheel-type landing gear configuration. It first flew in 1935 and became one of the most widely used aircraft in history.", + "Look for the distinctive hump on the top of the fuselage behind the cockpit.", + "An aircraft DC-3 can be identified by its distinctive double-decked, cantilever monoplane design, as well as its high wing and low-mounted radial engines.", + "An aircraft DC-3 can be identified by its distinctive twin-engine, propeller-driven design. The aircraft was first flown in 1935 and became a popular commercial airliner in the 1940s and 1950s.", + "The easiest way to identify a DC-3 is by its distinctive silhouette. The aircraft has a low-profile fuselage, high wing and twin engines mounted on the rear of the plane. The DC-3 also has a very recognizable nose", + "The DC-3 is a twin-engine, propeller-driven aircraft with a tailwheel-type landing gear arrangement and a seating capacity of 21 or 28 passengers.", + "The Douglas DC-3 is a propeller-driven airliner which had a lasting effect on the airline industry in the 1930s/1940s and World War II. It is considered one of the most significant transport aircraft ever made.", + "A DC-3 aircraft is a twin-engine, propeller-driven plane that typically has a capacity of around 21 passengers. It has a distinctive trapezoidal wing shape, and its fuselage is long and narrow. DC-3", + "Here is a link to a picture of a DC-3 aircraft: https://www.google.com/search?q=dc-3+airplane&tbm=isch&source=iu&ictx=1&f", + "Aircraft DC-3s vary in appearance depending on their purpose, but all share some common features. They have a low-wing configuration with two radial engines mounted on the wing. The fuselage is round with a flat bottom, and", + "The Douglas DC-3 is a propeller-driven airliner which had a lasting effect on the airline industry in the 1930s/1940s and World War II. It is considered one of the most significant transport aircraft ever made.", + "Aircraft DC-3s look like large, metal, propeller-driven airplanes. They typically have two engines, wing-mounted landing gear, and a tail section with a horizontal stabilizer. The cockpit is typically located near the front", + "Aircraft DC-3s vary in appearance depending on when they were made and what company operated them, but they all have a similar basic design. They have two engines on the wings, a small tail, and a round fuselage.", + "The DC-3 is a propeller-driven airliner that was manufactured by the Douglas Aircraft Company. It has a low-wing design and is powered by two piston engines. It has a cruising speed of 201 mph and a range of 1", + "Aircraft DC-3s typically have a silver body with red and blue stripes running down the sides. The plane has two engines, one on each wing, and a set of three propellers. The plane can seat up to 21 passengers", + "An image of an aircraft DC-3 from the internet shows the plane's metal body with its two wings and three engines. The plane is seated on a runway with its nose pointing up.", + "An image from the internet of an aircraft DC-3 shows the plane in flight with its wings outstretched. The body of the plane is silver and its wings are white. The plane has two engines, one on each wing, and a", + "The image from the internet shows an aircraft DC-3 in flight. The plane has a wingspan of about 75 feet and is about 60 feet long. Its tail is high in the air and its nose is pointing down. The plane is", + "Image shows an aircraft DC-3 in flight, with its wings spread and engines running. The plane appears to be flying over a body of water, with the sun setting in the background.", + "An image of an aircraft DC-3 from the internet would likely show the plane in flight, as this is a common sight for this type of aircraft. The plane would likely be shown at a distance, as it is a large aircraft,", + "The image is of a DC-3 aircraft that has been restored to its original WWII military livery. The plane is parked on a grassy airstrip with trees in the background.", + "The image from the internet is of a DC-3 aircraft with the American flag on its tail. The plane is flying over a desert landscape.", + "The image is of a red and white DC-3 aircraft with \"American Airlines\" written on the side. The plane is sitting on a runway with its engines running.", + "An image of an aircraft DC-3 is shown below. It is a twin-engine propeller plane that was first introduced in the 1930s. It was used extensively by the military during World War II and continued to be used by commercial", + "The image is of a silver aircraft with a blue and white stripe down the side. The aircraft has two engines and propellers. There is a figure in a white shirt and dark trousers standing in front of the aircraft.", + "\"The DC-3 was a workhorse aircraft that became one of the most iconic planes of the 20th century.\"", + "A United Airlines DC-3 aircraft from the 1940s.", + "Aircraft DC-3 on the ground at an airport", + "Aircraft DC-3 on runway", + "\"Aircraft DC-3 on runway.\"", + "DC-3 aircraft at an airport", + "A DC-3 aircraft in flight.", + " \"Aircraft DC-3 on a runway\"", + "Southwest Airlines DC-3 taking off from Love Field, Dallas, Texas", + "A DC-3 aircraft in flight." + ], + "DC-6": [ + "Aircraft DC-6 look like large metal tubes with wings and engines attached. They are typically painted white with red or blue stripes running down the length of the fuselage.", + "A DC-6 is a four-engine airliner produced by the Douglas Aircraft Company from 1946 to 1958. It was first flown in 1945, and was the last major piston-powered airliner produced by Douglas and by the American commercial aviation industry.", + "When fully loaded, the DC-6 could weigh up to 70,000 pounds and required a takeoff distance of 2,700 feet. The aircraft had a wingspan of 110 feet and was 97 feet long. The cabin could seat up to", + "The aircraft DC-6 is a large, propeller-driven airplane with a pressurized cabin that was manufactured by Douglas Aircraft Company from 1946 to 1958. More than 700 DC-6s were built, and the aircraft was widely used by", + "The Douglas DC-6 is an American four-engine piston-powered airliner produced by the Douglas Aircraft Company from 1946 to 1958. Originally intended as a military transport near the end of World War II, it was re-purposed as a", + "The original Douglas DC-6 was a four-engine long-range passenger airliner produced by the Douglas Aircraft Company from 1946 to 1958. It was the last major piston-engine airliner produced by Douglas and was developed from the Douglas DC-4", + "The DC-6 is a four-engine piston-powered airliner with a pressurized cabin. It has a circular fuselage with a swept-back wing and a tail fin. The engines are mounted on the wing. The plane has a", + "The DC-6 is a twin-engined airliner created by Douglas Aircraft Company. It has a pressurized cabin that can seat up to five crew members and 105 passengers. The DC-6 has a wingspan of 107 feet and a", + "A DC-6 aircraft has a distinctive rounded-nose profile and four Wright R-3350 Duplex-Cyclone radial engines. The DC-6 was produced from 1946 to 1958 and was used by many airlines around the world.", + "Aircraft DC-6 looks like a four-engined medium-range commercial airliner. It has a pressurized cabin for passengers and cargo.", + "The Douglas DC-6 is a piston-powered airliner and cargo aircraft built by the Douglas Aircraft Company from 1946 to 1958. The DC-6 was intended to compete with the Lockheed Constellation in the long-range transport market.", + "The Douglas DC-6 is a four-engined piston-powered airliner produced by the Douglas Aircraft Company from 1946 to 1958. Powered by the Wright R-2800 Double Cyclone radial engine, the DC-6 was a direct development", + "By looking at the plane, you can tell that it is a DC-6. The DC-6 has six engines, four on the wings and two in the back. It also has a long body and a high tail.", + "An aircraft DC-6 can be identified by its round engines and sleek body. The aircraft is also distinguished by its long wingspan.", + "The Douglas DC-6 is a passenger aircraft produced by the Douglas Aircraft Company from 1946 to 1958. The DC-6 was a successor to the Douglas DC-4 and was designed to compete with the Lockheed Constellation. It had more powerful", + "The DC-6 is a piston-powered airliner produced by the Douglas Aircraft Company from 1946 to 1958. When compared to the DC-4, the DC-6 has more powerful engines, more fuel capacity, and a larger wing which allowed", + "The DC-6 aircraft can be identified by its distinctive swept-back wing design and four engines.", + "The Douglas DC-6 is a piston-powered airliner and transport aircraft built by the Douglas Aircraft Company from 1946 to 1958.", + "The DC-6 is a twin-engined piston airliner produced by the Douglas Aircraft Company from 1946 to 1958. It was first flown in 1945, and production began in 1946.", + "The DC-6 was a Douglas Aircraft Company model that first flew in 1945. It had a distinctive lengthened window design that made it easily recognizable. The DC-6 was used by many airlines around the world and was in service until", + "There are many types of DC-6 aircraft, but they all have six engines and a sleek, elongated body. The most common type of DC-6 is the passenger airliner, which has a Configuration with a wingspan of 114 feet", + "An aircraft DC-6 looks like a large plane with six engines.", + "Aircraft DC-6 look like a large airplane with six engines.", + "An DC-6 aircraft has four engines and a swept-back wing design. The plane is silver with blue stripes running along the length of the fuselage.", + "Aircraft DC-6s vary in appearance depending on when they were made and what airline they belonged to, but they all have a distinct sleek and elegant look with six engines and a long body. Some have been updated with modern features", + "The aircraft DC-6 is a four-engine, piston-powered airliner with a pressurized cabin. It was manufactured by the Douglas Aircraft Company from 1946 to 1958.", + "A DC-6 aircraft looks like a large, propeller-driven airplane with six engines. It has a long body and a high tail, and it typically carries between 50 and 100 passengers.", + "Below is a picture of aDC-6 aircraft.", + "Aircraft DC-6s are large, six-engine planes that were used for commercial flights in the 1950s and 1960s. They have a distinctive V-shaped tail and a long, sleek body.", + "Aircraft DC-6 look like large, propeller-driven airplanes. They have several sets of double-wide doors along the sides of the fuselage, which are used for loading and unloading passengers and cargo. The DC-6", + "The image from the internet is of an aircraft DC-6. The image shows the aircraft on the runway with its engines running. The aircraft is surrounded by a crowd of people.", + "The image shows a DC-6 aircraft in flight, with its wings extended and its engines powering the plane forward. The sky is clear and blue, and the plane is leaving a white trail behind it as it flies.", + "The image is of a large, silver airplane with 6 engines. The DC-6 was a workhorse aircraft for airlines in the 1950s and 1960s, serving both passengers and cargo.", + "I found an image of a DC-6 aircraft on the internet. The image shows the aircraft from a side view, with the nose of the plane pointing to the left. The image is in black and white, and the plane appears to", + "The image from the internet of an aircraft DC-6 shows a large, twin-engine plane with a long body and swept-back wings. The plane is silver with blue and white stripes running down its length. Its landing gear is down", + "In the image, the DC-6 aircraft is pictured taxiing on a runway. The plane is silver with blue stripes running down the sides. There is a DC-6 logo on the tail. The plane has four propellers.", + "The image is of an aircraft called a DC-6. It was designed in the 1940s and was used by the US military during World War II. It is a four-engine propeller-driven airplane with a large fuselage.", + "The image is of an aircraft DC-6. The plane is a silver color with blue stripes running down the sides. There is a silver wing on each side of the plane. The DC-6 has four propellers, two on each", + "Image shows a silver aircraft with four propellers and a long body. The DC-6 was a commercial airliner produced by the Douglas Aircraft Company from 1946 to 1958.", + " landingThe photo shows a DC-6 landing on a runway with its engines smoking. The plane is low to the ground and its landing gear is down.", + "The Douglas DC-6 was a twin-engined airliner produced by the Douglas Aircraft Company from 1946 to 1958. The DC-6 was the first Douglas aircraft to see widespread airline service and was operated by a number of airlines around the world", + "The DC-6 aircraft was one of the first planes to offer regularly scheduled transcontinental service in the United States.", + "Aircraft DC-6 on the tarmac", + " United Airlines aircraft DC-6 taking off from Chicago's Midway Airport in the 1950s.", + "The Douglas DC-6 was a piston-powered airliner produced by the Douglas Aircraft Company from 1946 to 1958. Over 700 were built and many are still in service today.", + "Aircraft DC-6 taking off from an airport.", + "A United Airlines DC-6 aircraft on the tarmac at an airport.", + "This image shows a Douglas DC-6 aircraft. The DC-6 was a commercial airliner produced by the Douglas Aircraft Company from 1946 to 1958.", + "In the early days of commercial air travel, the DouglasDC-6 was one of the most popular aircraft. Its long range and high speed made it ideal for long-haul flights.", + "A Douglas DC-6 aircraft taking off from an airport." + ], + "DC-8": [ + "The DC-8 is a long-range, four-engined, narrow-body Douglas airliner, manufactured from 1958 to 1972. It is similar in appearance to the older four-engined Lockheed Constellation. The DC-8's", + "An aircraft DC-8 typically has four engines, two on each side of the fuselage, and a long, narrow body. It can seat up to 189 passengers and has a range of approximately 5,400 miles.", + "An aircraft DC-8 is a large commercial jetliner with a swept-back wing design and four engines mounted on the undersides of the wings. The DC-8 was first introduced in the late 1950s and continues to be used in", + "Aircraft DC-8 looks like a medium-sized, four-engined jet airliner. It has a swept-back wing and a large tailfin.", + "An aircraft DC-8 is a large, four-engine jet airliner that was manufactured by the Douglas Aircraft Company. The DC-8 was designed as a direct competitor to the Boeing 707 and was first introduced in 1959.", + "The DC-8 is a four-engined, long-range jet airliner with a swept wing. It has a bullet-shaped fuselage and a swept-back wing. There are three versions of the DC-8, the Series", + "One of the earliest jet airliners, the DC-8 was designed by Douglas Aircraft Company in the late 1950s. It was a long-range aircraft that could seat up to 189 passengers. Early DC-8s had four engines,", + "A DC-8 is a mid-sized, wide-body jet airliner. It has four engines, two on each side of the plane, and a swept-back wing. The DC-8 was one of the first jetliners to", + "An aircraft DC-8 looks like a large jetliner with four engines mounted on the rear fuselage.", + "Aircraft DC-8's are large, jumbo jet airplanes. They have four engines mounted on the wings and a swept-back appearance. The DC-8 was first introduced in the late 1950's and was one of the first jet", + "The DC-8 is a narrow-body, four-engine jet airliner produced by the Douglas Aircraft Company. It first flew in 1958 and was widely used by airlines around the world until the 1970s. The DC-8 was designed as", + "An aircraft DC-8 can be identified by looking for the following features: four engines mounted on the rear of the fuselage, a low-mounted swept-back wing, and a conventional tail with a tall fin.", + "One way to identify a DC-8 aircraft is by its engines. The DC-8 has four engines, and they are arranged in a \"row\" configuration. Another way to identify a DC-8 is by its fuselage shape.", + "The distinctive swept-back wings of the Douglas DC-8 are its most recognizable feature. Other key features include four engines mounted on underwing pylons and a long, cylindrical fuselage.", + "The same way you would identify any other DC-8. By its model number, which is written on the airplane.", + "The easiest way to identify a DC-8 is by its distinctive swept-back wing design. Other identifying features include its four engines (two on each side), and its long, narrow fuselage.", + "By its four engines mounted on the rear fuselage, and its nosecone and cockpit layout.", + "The DC-8 has a long, sleek body and four jet engines. The cockpit is located at the front of the aircraft, and the engines are located on the rear. The DC-8 also has a distinctive V-shaped tail.", + "The DC-8 can be identified by its swept-back winglets and four engines.", + "The front end of a DC-8 is narrow and pointed, like a spear. The back end is wide and blunt.", + "Image result for dc 8 aircraft", + "A DC-8 looks like a large, metal, rectangular tube with wings. There are four engines, two on each side of the plane. The engines are enclosed in metal housing. The back of the plane has a large, metal tail", + "An aircraft DC-8 looks like a large jet airliner. It has four engines, two on each side, and a long body. The cockpit is located at the front of the plane, and the passenger compartment is located behind it. There", + "An aircraft DC-8 looks like a large commercial airliner. It has a long fuselage, with a narrow width and a sleek design. The DC-8 was one of the first commercial airliners to be designed with a swept-wing", + "Image result for dc 8 aircraft", + "An aircraft DC-8 looks like a large jet plane with four engines.", + " DC-8 Image result for dc 8 aircraft\nDC-8 AIRCRAFT", + "A typical DC-8 aircraft has four engines, a longbody fuselage, and a tall vertical stabilizer. The DC-8 was designed by Douglas Aircraft Company in the late 1950s and first flew commercially in 1959.", + "Aircraft DC-8 look like a large metal tube with wings. They have several engines on the back and a large tail. The inside of a DC-8 is divided into several sections for passengers and crew. There is also a gal", + "A DC-8 is a medium- to long-range jet airliner, manufactured from 1958 to 1972. The DC-8 was the first jetliner in commercial service powered by jet engines.The aircraft has a distinctive swept-back wing and", + "Image: https://freedomslighthouse.net/wp-content/uploads/2011/01/dc-8.jpgThe image is of an American-made DC-8 model jetliner. The plane is long", + "-63The image is of an aircraft called a DC-8-63. The DC-8 was a series of long-range and short-haul jet airliners produced by the Douglas Aircraft Company (now McDonnell Douglas). The DC-", + "This image is of a DC-8 aircraft on the tarmac. The aircraft is a silver color with blue and white stripes running down the sides. The nose of the aircraft is pointed up and there is a stairway leading up to the", + "The image shows a DC-8 aircraft taking off from an airport runway. The plane is long and spindly with four engines attached to the wings. There is a large blue and white globe on the tail fin.", + "The image is of an aircraft DC-8 against a blue sky with white clouds. The aircraft is large with four engines and a long body. There is a small American flag on the side of the aircraft.", + "This image is of a aircraft DC-8 on the runway. The plane is a silver/gray color with blue stripes running down the side. There is writing on the side of the plane that says \"United Airlines.\" The plane is parked", + "Aircraft DC-8 on the runway with its engines running.", + "The image from the internet of an aircraft DC-8 is of a large, silver plane with four engines. The nose of the plane is pointing up and there is a large American flag on the tail.", + "The image is of a silver aircraft with four engines. The aircraft is called a DC-8.", + "A DC-8 aircraft is pictured on a runway with its engines running. The plane is preparing for takeoff.", + " A Douglas DC-8, an American four-engine jet airliner that first flew in 1958.", + "A vintage DC-8 aircraft.", + "Aircraft DC-8 on the runway", + "Aircraft DC-8 on the runwayThis aircraft is a DC-8, a type of commercial airliner. It is pictured here on the runway, ready for takeoff.", + "A Douglas DC-8 aircraft taking off from an airport.", + "A Douglas DC-8, a four-engine long-range jet airliner, on the tarmac.", + "A DC-8 aircraft in flight.", + "\nThe DC-8 is an American four-engined long-range narrow-body jet airliner built from 1958 to 1972 by the Douglas Aircraft Company.", + "The Douglas DC-8 is a four-engine long-range narrow-body jet airliner built from 1958 to 1972.", + "A Douglas DC-8 aircraft taking off from JFK Airport in New York City." + ], + "DC-9-30": [ + "The DC-9-30 is a twin-engine, single-aisle jet airliner. It has a swept-back wing and a T-tail. The aircraft has a maximum capacity of 160 passengers.", + "The DC-9-30 is a narrow-body jet airliner with a length of exactly 141 feet (43 meters), and a wingspan of 93 feet (28 meters). The cabin has a width of only 26 inches less than that of", + "An aircraft DC-9-30 looks like a small commercial airplane. It has two engines, a fuselage, and a tail. The wings are attached to the fuselage, and the engines are mounted on the wings. The DC-", + "An aircraft DC-9-30 looks like a small, silver airplane with two engines on the back.", + "Aircraft DC-9-30 looks like an elongated metal tube with wings and tail. There are typically two engines mounted on the wings. The body of the aircraft is narrow with 9 seats across. There are two exits, one at", + "The aircraft DC-9-30 looks like a twin-engined jetliner with a swept-back wing design and a T-tail. It typically has a glass cockpit with a 2-2 seating configuration in the main cabin.", + "Aircraft DC-9-30 models feature a dual Pratt & Whitney JT8D-9 engines with a 33,000-pound-thrust each, giving it a top speed of 575 miles per hour. The plane has", + "The DC-9-30 is a twin-engine, single-aisle jetliner that seats up to 132 passengers. It has a fuselage length of 107 feet (32.6 meters), a wingspan of 93 feet (28", + "The DC-9-30 is a twin-engine jet airliner that was first introduced in 1965. It has a recognizable tube shape with a swept-back wing design and a tall vertical stabilizer. TheDC-9-30 typically seats", + "Aircraft DC-9-30 looks like a long, white tube with wings. There are two engines on the back, and the tail is vertical. The plane has two main landing gear beneath the wings, and two smaller wheels beneath the", + "The DC-9-30 is an airline twin-engine, single-aisle jet liner. It measures 129 feet in length with a 141 foot wingspan. It has a maximum speed of 548 mph and can cruise at 491", + "The McDonnell Douglas DC-9-30 is a twin-engine, single-aisle jet airliner. It has a distinctive fuselage design with a 5-abreast seating configuration in the main cabin. The DC-9-30 also", + "The DC-9-30 has an extended fuselage and a T-tail. It also has a taller vertical stabilizer than the other DC-9 models.", + "The DC-9-30 is a twin-engine short-range narrowbody jet airliner. Its distinguishing features include two turbojet engines on the tail, a T-tail, swept-back wings, and a single vertical stabilizer.", + "The DC-9-30 is an aircraft that can be identified by its larger size and longer range. It is also distinguished by its high-bypass turbofan engines, which give it a lower fuel consumption and emissions than other aircraft", + "The Douglas DC-9-30 is a twin-engine, single-aisle jet airliner. It has a distinctive stepped-up cockpit, which was added to allow for better visibility over the nose during landing. It also has a T", + "The DC-9-30 is a twin-engine jetliner that was introduced in 1965. The aircraft has a distinctive fuselage design with a high-mounted wing and two engines mounted on pylons beneath the wing. The DC-", + "Look for the identifying marks on the tail and fuselage. The DC-9-30 has the \"Super 80\" tail logo and the \"9\" in the tailAsset number.", + "The best way to identify an aircraft DC-9-30 is by its engines. The DC-9-30 has two JT8D-7 turbofan engines, which are located on the aft part of the fuselage.", + "The DC-9-30 is a twin-engine, single-aisle jetliner that was first introduced in 1965. It has a maximum range of 2,700 miles and a typical cruising speed of 530 mph. The DC-9", + " Wikimedia Commons has media related to McDonnell Douglas DC-9The McDonnell Douglas DC-9 is a twin-engine, single-aisle jet airliner. The first DC-9, which first flew in February 1965, was developed from", + "Aircraft DC-9-30 looks like large commercial jet. It has a long body with a pointy nose. The wings are attached to the middle of the body and the engines are located on the back.", + "The DC-9-30 is a twin-engine jet aircraft manufactured by McDonnell Douglas. It is 103 feet long with a wingspan of 93 feet. It has a maximum take-off weight of 140,000 pounds and a range of", + "The DC-9-30 is a twin-engine jetliner with a T-tail. It has a circular fuselage with a diameter of 9.75 feet (2.97 meters) and a length of 138.8 feet (", + "Here is a link to a photo of a DC-9-30:https://en.wikipedia.org/wiki/File:Alaska_Airlines_DC-9-30_in_1974.jpg", + "A DC-9-30 has a shortened fuselage and a T-tail. The engines are mounted on the rear of the plane. The windows are larger than on other DC-9 models.", + "The McDonnell Douglas DC-9 is a twin-engine, single-aisle jet airliner. It first flew in 1965 and was introduced into service by 1966. The DC-9-30 is a stretched version of the DC-9 and", + "An aircraft DC-9-30 looks like a airplane with two engines on the side.", + "A DC-9 is a twin-engine, single-aisle jet airliner. The aircraft has a trapezoidal wing with a wingtip fuel tank. There are two engines mounted on the wing, and the aircraft has a T-", + "The McDonnell Douglas DC-9-30 is a twin-engine, single-aisle jet airliner. The DC-9 was first manufactured as a commuter plane in 1965, but the -30 model, which first flew in 1967, was", + "The image is of an aircraft DC-9-30 on the runway. The plane is white with blue stripes running down the sides. There is a stairs leading up to the main door of the plane. The windows are small and there are", + "Image is of a red and white checkered DC-9-30 aircraft on a runway.Sun is shining brightly on the fuselage which has the American flag on the tail.", + "Image is of an aircraft DC-9-30 with a white body and blue stripe. The aircraft has a pointed nose and engines mounted on the wings.", + "The image is of a silver aircraft with blue and white stripes. The nose of the aircraft is pointing up slightly and there is a person standing next to it.", + "The image from the internet is of a DC-9-30 aircraft. The aircraft is white with blue stripes running down the sides. The DC-9-30 is a twin-engine jetliner that was first introduced in 1965.", + "This image is of an aircraft DC-9-30. It is a twin-engine, narrow-body jet airliner manufactured by the McDonnell Douglas corporation.", + "The image is of an American Airlines DC-9-30 landing at Miami International Airport in 1983. The aircraft is shown in flight from below, with its landing gear deployed and its engines at full power. The image is taken from the side", + "The DC-9-30 is a narrow-body twin-engine jet airliner manufactured by McDonnell Douglas. It first took flight in 1965 and entered commercial service in 1966. It is typically configured with 125 seats in a single-class cabin,", + ".The image shows a United Airlines DC-9-30 jetliner on the ground. The aircraft is painted in the carrier's old livery.", + "The image is of a silver and white aircraft with blue stripes. The body of the plane is tapered towards the back, and there are two engines on the wings. The DC-9-30 Plane is a narrow-body, twin", + "DC-9-30 aircraft at an airport", + "Northwest Airlines DC-9-30 takes off from Minneapolis-St. Paul International Airport in 1974.", + "A Northwest Orient Airlines DC-9-30, one of the airline's first jet airliners, arrives at Minneapolis-St. Paul International Airport in 1968.", + " McDonnell Douglas DC-9-30, CN/C-FNZY, of Air Canada, landing at London's Heathrow Airport in 1974This is a McDonnell Douglas DC-9-30, registration CN/C-FNZY", + "A DC-9-30 aircraft, operated by Delta Air Lines, takes off from Los Angeles International Airport in 1975.", + "The McDonnell Douglas DC-9-30 is a twin-engine, short-range airliner. It was first introduced in 1965 and was produced until 1982.", + "An American Airlines McDonnell Douglas DC-9-30 plane taking off from Dallas-Fort Worth International Airport in 1984.", + "An American Airlines DC-9-30.", + "The McDonnell Douglas DC-9-30 is a twin-engine, single-aisle jet airliner. It was first flown in 1965 and was operated by major airlines around the world until its retirement in 2014.", + " McDonnell Douglas DC-9-30 aircraft of Finnair in the 1960s (Finnair)" + ], + "DH-82": [ + "An Aircraft DH-82 looks like a small, two-seat, single-engine airplane. It has a high wing and is powered by a piston engine. The airplane is made of metal and has a tricycle landing gear.", + "The de Havilland Canada DHC-2 Beaver is a single-engined, high-wing, propeller-driven, STOL aircraft developed by de Havilland Canada, primarily known as a bush plane. It typically seats", + "The aircraft DH-82 looks like a small, single-engine plane with two wings. It has a tail with two vertical stabilizers, and a nose with a cockpit window.", + "It looks like a small, single-engine airplane with two wings and a tail.", + "The aircraft DH-82 is a small, single-engine plane with a white body and blue stripes. It has two seats and a small cargo area.", + "The aircraft has two sets of wings, one above the other. The lower set of wings is smaller than the upper set. The aircraft has two engines, one on each side of the body. The aircraft has a set of tail fins at", + "The de Havilland Canada DHC-2 Beaver is a single-engined, high-wing, propeller-driven, STOL aircraft developed by de Havilland Canada, primarily known as a bush plane. It typically seats", + "TThe de Havilland Canada DHC-2 Beaver is a single-engined, high-wing, propeller-driven, STOL aircraft developed by de Havilland Canada, primarily known as a bush plane. It is", + "The De Havilland Canada DHC-2 Beaver is a single-engined, high-wing, prop plane. The Beaver was first flown in 1947 and is used for a variety of tasks including hauling cargo, carrying passengers,", + "The de Havilland Canada DHC-2 Beaver is a single-engined, high-wing, propeller-driven, STOL aircraft developed by de Havilland Canada, primarily known as a bush plane. It typically seats", + "The aircraft is a single-engine, low-wing plane with a tail wheel. It has two seats in a tandem configuration and is constructed of wood and fabric.", + "The de Havilland Canada DHC-2 Beaver is a single-engined, low-wing, propeller-driven, STOL aircraft developed by de Havilland Canada, primarily known as a bush plane.", + "The aircraft DH-82 is a high-winged, single-engine plane used for training and general aviation. Its fuselage is all-metal with fabric-covered wings. It has fixed landing gear and a tailwheel. The aircraft", + "The de Havilland DH-82 Tiger Moth is a 1930s biplane designed by Geoffrey de Havilland and manufactured by the de Havilland Aircraft Company. It was operated as a primary trainer by the Royal Air Force (", + "An aircraft DH-82 can be identified by its registration number, which is usually displayed on the aircraft's fuselage.", + "You can identify an aircraft DH-82 by its registration number.", + "The de Havilland DH.82 Tiger Moth is a 1930s biplane designed by Geoffrey de Havilland and was operated by the Royal Air Force and others as a primary trainer. The Tiger Moth remained in service with the", + "The Tiger Moth is a light aircraft that was used for training by the Royal Air Force and many other air forces before, during and after the Second World War. The DH-82 Tiger Moth was designed to be an easy-to", + "One way to identify an aircraft DH-82 is by its registration number. The aircraft may also have a unique identifier, such as a tail number, which can be used to identify it.", + "It is a two-seat, single-engine biplane that was used for training and general aviation purposes. It has a wooden frame and fabric covering.", + "The de Havilland Canada DHC-8, commonly known as the Dash 8, is a series of twin-engine, medium-range, turboprop airliners. The Dash 8 was developed from the de Havilland Canada", + "The aircraft is a single engine plane with a high wing. The body is all-metal with a fabric-covered wing. There are two seats in the cockpit, side-by-side. There is no canopy.", + "The de Havilland Canada DHC-2 Beaver is a utility aircraft developed by de Havilland Canada. It is used for short takeoff and landing operations.", + "The de Havilland Canada DHC-2 Beaver is a single-engined, high-wing, propeller-driven STOL aircraft developed by de Havilland Canada, primarily known as a bush plane. It typically seats six", + "An aircraft DH-82 looks like a small, single-engine airplane. It has two wings and a tail. The cockpit is located in the front of the airplane, and the engine is in the back.", + "The de Havilland Canada DHC-8, commonly known as the Dash 8, is a series of twin-engined, medium range, HORSEPOWER turboprop airliners. Introduced by de Havilland Canada (", + "The de Havilland Canada DHC-2 Beaver is a single-engined, high-wing, prop plane. It typically seats six passengers and one pilot.", + "There is no exact model of an aircraft DH-82, but it is likely that it would look similar to a small, private plane or glider.", + "There is no definitive answer, as each aircraft manufacturer produces aircraft to their own specifications. However, a search of Google images for \"DH-82 aircraft\" produces a number of results that show a variety of different aircraft that fall under this category", + "The de Havilland DH 82 Tiger Moth is a 1930s biplane designed by Geoffrey de Havilland and produced by the de Havilland Aircraft Company. It was operated by the Royal Air Force and many other operators as a", + " Tiger MothThe image is of a yellow aircraft with black stripes on the wings. The plane has two seats, and the cockpit is open. The propeller is in the front, and the wheels are under the wings.", + " Tiger MothThe image shows a yellow and black Tiger Moth aircraft flying over a green field. The sun is shining and the sky is blue.", + " Queen BeeThis image is of a DH-82 Queen Bee aircraft. The Queen Bee was a British target drone aircraft developed during World War II. The aircraft was a development of the de Havilland Tiger Moth and was used for training", + " Q Tiger MothThe image shows a small, single-engine biplane with wings that are slightly swept back. The aircraft is painted yellow and black, and has two sets of open-cockpit tandem seating. There is a large prope", + " Queen BeeThe image is of an aircraft called the DH-82 Queen Bee. The Queen Bee was a British target drone aircraft developed during the Second World War.", + " Tiger MothAn image of an aircraft DH-82 Tiger Moth from the internet shows the aircraft in flight with its wings outstretched. The sky is a deep blue, and the sun reflects off the aircraft's fuselage.", + " Tiger MothThe image is of a yellow and black Tiger Moth aircraft with its propeller spinning. The background is a blue sky with some clouds.", + " Tiger MothThe image is of a yellow and black aircraft with two propellers. The aircraft is sitting on a grassy field with a mountainside in the background.", + " Tiger MothThe photo shows a yellow and black DH-82 Tiger Moth aircraft flying over a green field. The sun is shining and the sky is blue.", + "The DH-82 is a single-engine, propeller-driven,restrial aircraft. It has a low-wing and a conventional tail. The aircraft is all-metal, with a fabric-covered control surfaces. The DH-82", + "Cessna 182RG landing at McCarran International Airport", + " A de Havilland Tiger Moth aircraft from the World War II eraThe de Havilland Tiger Moth is a British biplane that was used as a primary trainer aircraft during World War II. The aircraft was designed by Geoffrey de", + " A de Havilland Tiger Moth BiplaneOne of the most popular training aircraft of the 1930s, the de Havilland Tiger Moth was used by countries around the world. This example is a Canadian-built plane, powered", + " A Tiger Moth biplaneThe Tiger Moth is a British biplane that was used as a training aircraft during World War II.", + "The de Havilland DH 82 Tiger Moth is a biplane that was used as a primary trainer by the Royal Air Force and other Commonwealth countries during the 1930s and 1940s.", + "Image of an aircraft, most likely a de Havilland DH-82 Tiger Moth, in flight. The plane has a single engine and two open cockpits.", + "A de Havilland Canada DHC-2 Beaver floatplane prepares to land in the waters of southeast Alaska.", + "A de Havilland DH-82 Tiger Moth Biplane, circa 1940s", + "A de Havilland aircraft taking off from an airport.", + "This aircraft is a de Havilland DH-82 Tiger Moth, a British biplane designed for flight training." + ], + "DHC-1": [ + "The DHC-1 Chipmunk is a taildragger aircraft with a high wing and two seats. It is powered by a radial engine. The fuselage is made of steel tube covered in fabric. The wings are made of", + "An aircraft DHC-1 looks like a small, single-engine propeller plane. The cockpit is open and there is room for two people to sit side-by-side. The plane is designed for flying in rugged terrain and can", + "The de Havilland Canada DHC-1 Chipmunk is a tandem, two-seat, single-engined primary training aircraft designed and manufactured by de Havilland Canada. It was operated by the Royal Canadian Air Force (", + "The DHC-1 looks like a small, single-engine airplane with a tricycle landing gear. The cockpit seats two people side-by-side, and there is a small cargo area behind the seats. The airplane is made mostly", + "The De Havilland Canada DHC-1 Chipmunk is a tandem, two-seat, single-engined primary trainer aircraft. The Chipmunk was designed to succeed the de Havilland Tiger Moth biplane in", + "The DHC-1 Chipmunk is a two-seater, single-engined primary trainer aircraft designed and manufactured by de Havilland Canada. It was developed from the de Havilland Chipmunk series of aircraft.", + "The de Havilland Canada DHC-1 Chipmunk is a tandem, two-seat, primary training aircraft designed and manufactured by de Havilland Canada. It was conceived as a more capable successor to the de Havilland", + "An DHC-1 looks like a small, single-engine propeller-driven airplane. It has two wings and a tail. The cockpit has room for two people, and there are small windows on either side. The airplane is painted", + "An aircraft DHC-1 looks like a small, single-engine plane with a high wing and a tail fin. The cockpit has room for two people and there is a small passenger area behind the pilot.", + "The de Havilland Canada DHC-1 Chipmunk is a single-engine, two-seat primary trainer aircraft designed and manufactured by de Havilland Canada. It was first flown in 1946 and was produced until 1956, when", + "The DHC-1 is a small single-engined propeller-driven aircraft. It has a high-wing and is typically powered by a piston engine. The DHC-1 is easily recognizable by its unique \"stubby\"", + "The DHC-1 is a small single-engined propeller-driven aircraft. It has a low-wing configuration and is primarily made of aluminum. The aircraft is equipped with skis or floats. The DHC-1 is", + "The manufacturer's name, \"de Havilland,\" and the model number, \"DHC-1,\" are both printed on the aircraft. The DHC-1 is a single-engine, propeller-driven airplane with fixed landing", + "The DHC-1 Chipmunk is a British single-engined primary trainer aircraft designed and manufactured by de Havilland Canada. It was developed from the de Havilland Chipmunk and has been in service since 1951.", + "DHC-1 aircraft can be identified by their unique tandem seating configuration and their low-wing design. Additionally, DHC-1 aircraft typically have a single engine and fixed landing gear.", + "The DHC-1 is a single engine, propeller-driven aircraft. It has a tricycle landing gear and a high wing. The aircraft is made of metal and has a twin boomed tail.", + "The DHC-1 has a low-wing monoplane configuration and a fixed tricycle undercarriage. It is powered by a single reciprocating engine. The aircraft has a semi-monocoque fuselage and a cantilever", + "The de Havilland Canada DHC-1 Chipmunk is a tandem, two-seat, single-engined primary trainer aircraft designed and produced by de Havilland Canada.", + "The DHC-1 is a single-engine, single-rotor helicopter that first flew in 1947. The aircraft has a distinctive teardrop-shaped fuselage and is known for its STOL (short take-off and landing", + "One way to identify a DHC-1 aircraft is by its unique nose, which is slanted and has a small window just below the cockpit. The aircraft also has two small wings and a single tail fin.", + "The DHC-1 Chipmunk is a small, tandem, two-seat, single-engined general aviation aircraft designed and produced by de Havilland Canada.", + "The DHC-1 Chipmunk is a small, single-engine, single-seat, military trainer aircraft. The aircraft has a simple, lightweight design and is easy to fly. The wings are high-mounted and the fuselage", + "The DHC-1 is a small, single-engine, propeller-driven aircraft. It has a high-wing design and is typically configured with two seats in the front and four seats in the rear. The aircraft is constructed of", + "The DHC-1, better known as the de Havilland Chipmunk, is a small, single-engine, tandem-seat, primary training aircraft. It was designed and manufactured by de Havilland Canada. The Chip", + "The de Havilland Canada DHC-1 Chipmunk is a tandem, two-seat, training aircraft. It was designed and manufactured by de Havilland Canada.", + "Answered by Una from Wales | Jul. 29, 2015 20:52Related Questions:Which airport in zhangjiajie?Asked by Saif from K.S.A | Oct", + "DHC-1Chipmunk22Image result for dhc 1 chipmunk", + "There is no definitive answer to this question as the DHC-1 aircraft was produced by de Havilland Canada from 1954 until 1967 and over 800 aircraft were built, meaning that there would be slight variations in appearance from one aircraft to the", + "The DHC-1 looks like a small, single-engine propeller plane with a low wing and a nose-mounted engine. It typically seats two people in the cockpit and four or five people in the cabin.", + "DHC-1 Chipmunk\nThe de Havilland DHC-1 Chipmunk is a tandem, two-seat, single-engined primary trainer aircraft. The Chipmunk was the first military aircraft to be", + " ChipmunkThe image is of a red and white DHC-1 Chipmunk aircraft with a snow-covered mountain in the background. The aircraft appears to be flying close to the ground in front of the mountain.", + " BeaverThe image from the internet is of an aircraft called the DHC-1 Beaver. The Beaver is a Canadian-made aircraft that was first manufactured in 1947. It is a single-engine, single-seat aircraft that is used for", + " ChipmunkThe DHC-1 Chipmunk is a single-engine, two-seat primary trainer that was designed and manufactured by de Havilland Canada. More than 1,000 Chipmunks were produced between 1946 and 1956", + "This image is of an aircraft DHC-1. It is a small, single-engine aircraft. The DHC-1 is used for both commercial and private aviation.", + " ChipmunkThe DHC-1 Chipmunk is a small, single-engined, single-seat primary trainer aircraft. It was designed and manufactured by De Havilland Canada. The aircraft has a simple, conventional wood and", + " CHIPMUNKIn the image, an aircraft is pictured from above, with one wing in the foreground and the other in the background. The bottom of the aircraft is white with blue stripes, and the top is blue with white stripes", + " ChipmunkThe image is of a small, red and white aircraft with two people in the cockpit. The aircraft is sitting on a grassy runway.", + " ChipmunkThe image shows a yellow and black DHC-1 Chipmunk aircraft with the words \"De Havilland\" written on the side. The aircraft is sitting on a runway with its nose pointing up.", + " ChipmunkThe image is of a orange and white DHC-1 Chipmunk aircraft with 'Royal Canadian Air Cadets' written on the side. The aircraft is on a runway with the Canadian flag in the background.", + " BeaverThe image is of a small, single-engined aircraft known as a DHC-1 Beaver. The aircraft is most often used for short take-off and landing (STOL) operations in remote and rugged areas.", + "This image is of a de Havilland Canada DHC-1 Chipmunk, a two-seater, single-engine primary training aircraft.", + "DHC-1 aircraft taxiing on runway", + " A de Havilland Canada DHC-1 Chipmunk operated by the Royal Navy Historic Flight taking off at the Royal International Air Tattoo at Fairford in Gloucestershire, United Kingdom.", + "DHC-1 on approach to landing.", + "DHC-1 aircraft on the runway", + "A de Havilland DHC-1 Chipmunk in flight.", + " The DHC-1 Chipmunk aircraft is a Canadian two-seat, tandem, primary trainer that was first flown in 1946.", + "De Havilland DHC-1 Chipmunk image.", + " The de Havilland DHC-1 Chipmunk is a tandem, two-seat, primary training aircraft designed and manufactured by de Havilland Canada.", + "Beaver DHC-1, a single-engine, high-wing, propeller-driven, STOL aircraft." + ], + "DHC-6": [ + "The DHC-6 is a Twin Otter, a high-winged, twin-engined, fixed-gear short take-off and landing aircraft. The DHC-6 has a length of 41 feet (12.5", + "The DHC-6 Twin Otter is a Canadian 19-passenger STOL (Short Take-Off and Landing) utility aircraft developed by de Havilland Canada and currently produced by Viking Air. The aircraft's original design was as", + "The aircraft DHC-6 looks like a small, twin-engined turboprop passenger and cargo aircraft.", + "The DHC-6 is a twin-engine, turboprop airplane used for short takeoff and landing (STOL). The airplane is equipped with skis for landings on snow and floats for landings on water.", + "The de Havilland Canada DHC-6 Twin Otter is a 20-passenger STOL (Short Take-Off and Landing) utility aircraft, assault transport and water bomber aircraft developed and manufactured by de Havilland Canada.", + "The aircraft DHC-6 looks like a small twin-engine turboprop airplane. It has a high wing and a T-tail. The engines are mounted on the sides of the fuselage. There is a door on each side", + "The DHC-6 Twin Otter is a 20-passenger STOL (Short Take-Off and Landing) utility aircraft developed by de Havilland Canada and currently produced by Viking Air. The aircraft's fixed tricycle undercar", + "The DHC-6 is a short takeoff and landing (STOL) aircraft that seats up to 19 passengers and is powered by two Pratt & Whitney Canada PT6A turboprop engines. The aircraft has a distinctive high-wing configuration", + "The DHC-6 is a Twin Otter, a high-winged aircraft with two engines mounted on the rear of the fuselage. The engines are enclosed in pods, and the aircraft has a fixed tricycle landing gear. It", + "The Twin Otter, otherwise known as the DHC-6, is a 19-passenger STOL (Short takeoff and landing) aircraft produced by de Havilland Canada. It is renowned for its ruggedness and versatility, and", + "An aircraft DHC-6 can be identified by its unique physical characteristics, including its twin engines, high-wing design, and large-capacity cabin.", + "One way to identify a DHC-6 aircraft is by its low-wing configuration and twin turboprop engines. The aircraft also has a distinctive nose section that slopes down from the cockpit.", + "The DHC-6 Twin Otter is a Canadian twin-engined utility aircraft developed by de Havilland Canada and currently produced by Viking Air. The aircraft has been in continuous production since 1964, with over 900 delivered to date,", + "The DHC-6 has a high wing and twin engines mounted on the wing. It also has a distinctive fish-shaped nose.", + "The DHC-6 aircraft can be identified by its distinctive twin-engine configuration, high-wing design, and short fuselage. The plane is also equipped with large windows and skids instead of wheels, which make it well-su", + "The de Havilland Canada DHC-6 Twin Otter, now produced by Viking Air, is a 20-passenger STOL (Short Takeoff and Landing) utility aircraft developed by de Havilland Canada.", + "The DHC-6 is a STOL (Short Take-Off and Landing) aircraft with a large wing and two engines mounted on the rear fuselage. It has a distinctive high tail and a large cargo door on the rear.", + "The DHC-6 is a twin-engine turboprop passenger and utility aircraft. The aircraft has a distinctive stepped-up cockpit, and the engines are mounted on pylons above the wings.", + "The DHC-6 has a twin-engine configuration and a high-wing design. It is a turboprop aircraft, which means that it has propellers that are powered by turbine engines. The DHC-6 is also a", + "The DHC-6 is a small, twin-engined turboprop passenger and utility aircraft. It has a low-mounted wing and tricycle undercarriage. The aircraft is capable of STOL performance, and is frequently operated", + "The DHC-6 Twin Otter is a twin-engined short take-off and landing (STOL) aircraft developed by de Havilland Canada. It has been operated by a number of different airlines and other operators since it", + "The aircraft DHC-6 looks like a small airplane with two engines, one on each side of the plane. The plane has two wings, and a tail. The plane is white with blue stripes, and has the word \"DHC", + "The DHC-6 Twin Otter is a twin-engined short take-off and landing (STOL) aircraft developed by de Havilland Canada. It is used as a regional airliner, utility transport, and cargo aircraft.", + "The DHC-6 Twin Otter is a STOL (Short Take-Off and Landing) utility aircraft developed by de Havilland Canada. It is a high-winged aircraft with twin engines mounted on the rear fuselage.", + "DHC-6 Twin Otter planes have a distinctive twin-engine design. They are all-metal, with STOL (short take-off and landing) capability and unpressurized cabins. DHC-6s have high", + "DHC-6 Twin Otter 300", + "The de Havilland Canada DHC-6 Twin Otter is a 19-seat twin-engined STOL (Short Take-Off and Landing) utility aircraft developed by de Havilland Canada. The aircraft has been sold to", + "The DHC-6 is a twin-engine, short take-off and land (STOL) utility aircraft. It has a conventional tailwheel landing gear configuration and can seat up to 14 passengers. The aircraft is mostly used for passenger", + "The de Havilland Canada DHC-6 Twin Otter, now produced by Viking Air, is a Canadian 19-passenger STOL (Short Take-Off and Landing) utility aircraft. It was developed by de Havilland", + "DHC-6s are Twin Otterplanes that have two engines, two propellers, and can seat up to 19 people. They are frequently used for short takeoffs and landings on difficult terrain, such as in the mountains.", + " Twin OtterThe image is of a white Twin Otter turboprop aircraft with blue and white stripes on its tail and wings. The aircraft is parked on a tarmac with mountains in the background.", + " Twin OtterAircraft DHC-6 Twin Otter is a high-wing, twin-engine, turboprop plane. It seats 18 passengers and 2 crew members. Its dimensions are 18.5m length, 8.2", + " Twin OtterThe image is of a small, twin-engine turboprop airplane called the DHC-6 Twin Otter. The plane is white with red and blue stripes running down the length of the fuselage. The plane has", + " landingIn the image, the aircraft is seen flying low over a body of water towards a landing strip. The sky is clear and there are no other aircraft in the vicinity.", + " Twin OtterThe image is of a small, silver airplane with two engines. The plane appears to be landing or taking off from a grassy airstrip. There is a pilot in the cockpit, and the plane's landing gear is down", + " Twin OtterThe aircraft is usually characterized by its STOL performance, high-lift wing, and twin engines. The DHC-6 Twin Otter has a high-wing and is powered by two turboprop engines. The plane", + " Twin OtterThe image is of a small, twin-engine airplane with short wings. It is white with blue stripes running along the length of the fuselage. The plane is sitting on a runway with its engines running.", + " Twin OtterThe image is of a white aircraft with blue stripes on its sides. The back of the image says \"DHC-6 Twin Otter\" in blue letters. The aircraft has two engines and two propellers.", + " Twin OtterThe image is of a small, white aircraft with blue stripes running along the length of the body. The wings are attached to the top of the fuselage and the engines are mounted on the sides. There are two propellers", + " Twin OtterImage shows a small, twin-engine turboprop airplane called the DHC-6 Twin Otter, produced by de Havilland Canada. It is most often used as a passenger or cargo plane for short-haul", + "Two people sit in the cockpit of a DHC-6 aircraft. The person in the pilot's seat is wearing a headset and looking out the window, while the person in the co-pilot's seat is flipping through a flight manual", + "A DHC-6 Twin Otter aircraft.", + "The de Havilland Canada DHC-6 Twin Otter is a versatile short take-off and landing aircraft manufactured by de Havilland Canada.", + "This image depicts a De Havilland Canada DHC-6 Twin Otter aircraft. The DHC-6 is a versatile short take-off and landing aircraft, able to operate in a variety of difficult environments.", + "DHC-6 Twin Otter aircraft on skis", + "Aircraft on final approach to San Francisco International Airport.", + "DHC-6 Twin Otter aircraft on a runway", + "Aircraft DHC-6 taking off from an airport runway", + "A DHC-6 Twin Otter aircraft flying over a mountain range", + "Aircraft DHC-6 on runway" + ], + "DHC-8-100": [ + "The aircraft DHC-8-100 is a twin-engine, turboprop plane. The plane typically seats between 37 and 39 passengers and has a range of 1,000 to 1,500 miles.", + "The DHC-8-100 is a twin-engine turboprop regional airliner with a pressurized cabin. It has a cruciform tail with a single fin and rudder. The aircraft is equipped with landing gear for use on both", + "The DHC-8-100 is a twin-engined turboprop regional airline passenger aircraft. It has a pressurized cabin that can seat up to 78 passengers. The aircraft has two Pratt & Whitney Canada PW100 turboprop", + "The aircraft DHC-8-100 is a 36-seat, twin-engine turboprop fixed-wing aircraft.", + "The DHC-8-100 is a turboprop aircraft with a sleek, modern design. It has a large, angular nose and a high-mounted wing. The aircraft is typically painted in a bright, bold livery.", + "The aircraft DHC-8-100 is a twin-engine turboprop regional airliner. The aircraft has a length of 93 feet (28 meters), a wingspan of 99 feet (30 meters), and a height of 25 feet (", + "The DHC-8-100 is a turboprop regional airliner typically seating 64 passengers in a 2-2 configuration. It is powered by two Pratt & Whitney Canada PW100 engines. The aircraft has a pressurized fuselage, metal", + "The DHC-8-100 is a twin-engine short-range turboprop airplane with a seated capacity for up to 90 passengers. It has a pressurized cabin and large cargo door for easy loading and unloading. The D", + "The DHC-8-100 is a twin-engine turboprop regional airliner with a 1,000 shp (736 kW) Textron Lycoming TTP706-5 engines, 70-passenger seat configuration, and larger", + "A DHC-8-100 is a small, twin-engine commercial turboprop airplane. It has a short fuselage and a high wing. The engines are mounted on the wingtips. The airplane has a tricycle landing gear", + "The aircraft DHC-8-100 can be identified by its model number, which is located on the aircraft fuselage near the tail.", + "The DHC-8-100 is a twin-engine, short-range turboprop aircraft with a distinctive stepped-up aft fuselage section. The aircraft is operated by a flight crew of two pilots and can accommodate up to 78", + "The DHC-8-100 is a Dash 8 Series 100 aircraft. It has a maximum capacity of 37 passengers and a range of 1,500 miles.Dash 8 Series 100 aircraft can be identified by their winglets, which are angled", + "The aircraft DHC-8-100 can be identified by its two turboprop engines, low-mounted wings, and conventional tail.", + "The DHC-8-100 is a twin-engine turboprop regional airliner produced by de Havilland Canada. It typically seats 50 passengers and has a range of 1,650 km (1,056 mi).", + "The aircraft DHC-8-100 can be identified by its high-mounted wings and two turboprop engines.", + "The DHC-8-100 is a Short Take-Off and Landing (STOL) turboprop airliner with unpressurized twin-turboprop engines mounted on the rear fuselage. It has a high-wing configuration", + "The de Havilland Canada DHC-8-100 is a twin-engine turboprop regional airliner with short take-off and landing capability. It was first delivered in 1985.Its distinguishing features include its short wings,", + "The de Havilland Canada DHC-8-100 is a variant of the DHC-8 Dash 8 twin-engine, short-range, turboprop airliner. Delta Air Lines was the launch customer for the type in 1984", + "The DHC-8-100 is a stretched, 47-seat derivative of the DHC-8-50, which was previously operated by Canadian Airlines. It has a length of 19.7 m (64 ft 11 in), a", + "The DHC-8-100 is a small turboprop plane with a cockpit for the pilot and copilot, and room for up to 55 passengers. The plane is white with blue and silver stripes.", + "The DHC-8-100 is a 52-passenger, twin-engine turboprop regional airliner. It has a conventional layout with a 3-2 abreast seating arrangement. It is powered by two Pratt & Whitney Canada", + "The DHC-8-100 is a twin-engine turboprop aircraft with a stretched fuselage. The aircraft has a nose-mounted radar and a T-tail. The aircraft is operated by a crew of two pilots and can", + "An aircraft DHC-8-100 looks like a small, twin-engine turboprop airplane. It has a high wing and a T-tail. The DHC-8-100 seats up to 37 passengers and has a range", + "The aircraft DHC-8-100 looks like a small, twin-engine turboprop airplane. It has a high-wing design and is equipped with landing gear that allows it to land on both paved and unpaved surfaces. The", + "Aircraft DHC-8-100 look like small, twin-engined turboprop airplanes. They have a high wing and a tricycle landing gear. The fuselage is circular in cross-section.", + "A DHC-8-100 is a twin-engine, short-haul regional airliner. It seats up to 100 passengers and has a range of 1,000 to 1,500 miles. The aircraft is also known as the Dash 8", + "DHC-8-100 aircraft have a short fuselage and a high-wing design. They typically seat between 37 and 39 passengers and have two turboprop engines.", + "A DHC-8-100 is a twin-engine turbo-prop plane used for short-haul flights. It seats up to 90 passengers and has a range of 1,000 miles.", + "The aircraft DHC-8-100 looks like a small commercial plane. It has a turboprop engine and can seat up to 37 passengers.", + "The image is of a silver and white aircraft with blue and red stripes on the tail. The nose of the aircraft is pointed down and the landing gear is extended. The sun is shining off of the aircraft.", + "The image is of a silver and blue aircraft with the name \"DHC-8-100\" printed on the side. The aircraft has two engines and a propeller on each side. There is a door on the side of the aircraft", + "In the image, an aircraft DHC-8-100 is seen on a runway with its nose pointing up. Its engines are at full power and it is about to take off.", + "The image is of a silver and white airplane with two engines. The airplane has a small nose and a small tail. The wings are long and thin. The airplane is sitting on a runway.", + "This image is of a DHC-8-100 aircraft. The aircraft is operated by Jazz Aviation LP.", + " in flightAn image from the internet of an aircraft DHC-8-100 in flight shows the plane banking to the left as it turns. The sun is shining off the wing and the side of the fuselage. The image was taken", + "_PSThe image is of an aircraft called the DHC-8-100_PS. It is a short take-off and landing (STOL) commuter aircraft. The aircraft is parked on a runway with its engines running.", + "The image is of a silver and white twin-engine turboprop airplane. The DHC-8-100 is a short-haul regional airliner with a capacity of up to 90 passengers.", + " \"Dash-8\"The image is of a white aircraft with blue stripes running down the sides. The front of the aircraft has a large blue and white checkered pattern. There are two large engines on the sides of the aircraft.", + "The image is of an aircraft with a white body and blue stripes. It has two engines and is sitting on a runway.", + "A Bombardier DHC-8-100 aircraft operated by Air Canada Jazz on short-haul routes.", + " De Havilland Canada DHC-8-100 Dash 8, 100-seat turboprop airliner", + "Montreal-Trudeau International Airport. DHC-8-100 on final approach.", + "The De Havilland Canada DHC-8-100 is a twin-engine turboprop regional airliner with 102 seats.", + "Aircraft of the UNITED Air Lines.", + "A Bombardier DHC-8-100 of Porter Airlines approaches Toronto Island Airport in Toronto, Canada.", + " Bombardier Dash 8, taken in 2013The Bombardier Dash 8 is a twin-engined turboprop regional airliner with a capacity of up to 90 passengers. First introduced in 1984, it has been produced in several variants,", + "Comfort and convenience are important factors when choosing an aircraft, and the DHC-8-100 doesn't disappoint. With room for up to 50 passengers, this plane is perfect for small groups or families.", + "The DHC-8-100 is a twin-engine turboprop airplane, manufactured by de Havilland Canada.", + "De Havilland Canada DHC-8-100 Dash 8 of Air Canada Jazz on final approach" + ], + "DHC-8-300": [ + "An aircraft DHC-8-300 has a wingspan of 86 feet and 7 inches, a length of 89 feet and 5 inches, and a height of 25 feet and 5 inches. It has a maximum takeoff weight of 58,500", + "An aircraft DHC-8-300 generally has a swept-wing design with twin engines mounted on the rear fuselage. It typically has a tricycle landing gear arrangement with the nose wheel mounted ahead of the main landing gear. The aircraft", + "The DHC-8-300 Dash 8 is a 37-seat twin-engined turboprop regional airliner, introduced in 1987 by de Havilland Canada. The aircraft is powered by two Pratt & Whitney Canada PW100 engines driving", + "The aircraft DHC-8-300 is a small, twin-engined turboprop plane. The plane has a short fuselage and a high wing. The plane is typically used for regional flights.", + "The DHC-8-300 is a twin-engine, short-haul regional airliner with a seating capacity of up to 90 passengers. It is operated by Bombardier Aerospace.", + "The DHC-8-300 is a twin-engine, turboprop regional airliner. It has a low-mounted wing and twin tail fins. The aircraft is powered by two Pratt & Whitney Canada PW100 turboprop engines.", + "The aircraft DHC-8-300 is a turboprop plane. It has a stretched fuselage and a high-mounted wing. The plane seats up to 78 people.", + "The DHC-8-300 is a twin-engine, short-range regional airliner with a turbo-prop engine. It has a unpressurized cabin that typically seats 64 passengers. It has large windows and a low noise signature.", + "The DHC-8-300 is a twin-engine turboprop aircraft with a fixed tricycle landing gear. It has a spacious cabin with a high ceiling, large windows, and overhead bins. The aircraft can seat up to 78", + "The DHC-8-300 is a twin-engine, regional turboprop airplane. It has a stretched fuselage compared to the other Dash 8 models. The airplane is operated by both commercial airlines and private operators.", + "The DHC-8-300 can be identified by its unique combination of a short fuselage and tall landing gear. The aircraft also has large windows and a distinctive nose.", + "The DHC-8-300 can be identified by its low-mounted wing and turboprop engines with distinctive engine cowlings. It also has a long, slender fuselage with a typical \u201cdouble-bubble\u201d", + "An aircraft DHC-8-300 can be identified by its distinctive turboprop engines and three-bladed propellers. The aircraft also has a high-mounted wing and a tall, narrow fuselage.", + "The DHC-8-300 is a twin-engine, turboprop airplane with a conventional tail. It seats up to 74 passengers and was introduced in 1984.", + "The de Havilland Canada DHC-8-300, marketed as the Q-300, is a Twin-engine turboprop regional airliner with thirty seats. It is a stretched version of the DHC-8-200 Dash", + "The DHC-8-300 can be identified by its distinctive octagonal shaped engine cowlings.", + "The de Havilland Canada DHC-8-300 is a short-range twin-engine turboprop aircraft. It has a distinctive high-wing design and is used for passenger and freight transport.", + "The aircraft DHC-8-300 can be identified by its large size and unusual shape. It has a long, thin body with a high Wing and a large, pointed nose. The tail is also very long and thin, and the", + "One way to identify an aircraft DHC-8-300 is by its registration number.", + "There is no definitive way to identify an aircraft DHC-8-300 from a distance. However, some key visual cues include: -The DHC-8-300 typically has a distinctive profile, with a swept-", + "The de Havilland Canada DHC-8-300, also known as the Dash 8Q-300, is a twin-engine, short-range turboprop airliner. It is the stretched version of the DHC-8", + "A De Havilland Canada DHC-8-300 Dash 8 is a twin-engine, short-range, regional airliner. It has a stretched fuselage compared to the Dash 8-100 and -200 models.", + "A DHC-8-300 series aircraft is a twin-engine turboprop plane with a rectangular body and a large tail. It typically seats between 30 and 40 passengers and has a range of around 1,500 miles.", + "A DHC-8-300 would look like a small, twin-engine turboprop airplane. It would have two props on the wings, and would seat about 30 passengers.", + "Aircraft DHC-8-300s typically feature a twin-engine turbo-prop configuration and a high-wing design. They also usually have a stretched fuselage in comparison to other DHC-8 models. As a result,", + "Image result for DHC-8-300", + "DHC-8-300 aircraft are twin-engine, turboprop airplanes typically configured with a passenger capacity of around 70. They have a low-wing design and are equipped with landing gear that allows for operation on both paved and unp", + "A de Havilland Canada DHC-8-300Q Dash 8 is a twin-engined turboprop regional airliner. The Q stands for Quiet, as the aircraft is fitted with hush kits. It has a stretched fu", + "DHC-8-300s are small, twin-engine turboprop aircraft. They typically seat between 37 and 39 passengers, and have two doors on each side of the aircraft.", + "DHC-8-300s have a stretched fuselage when compared to the other Dash 8 models. They are also equipped with winglets.", + "The image is of a blue and white aircraft with the logos of Air Canada Jazz on the side. The aircraft is flying through the clouds.", + "The image is of an aircraft with a white body and blue stripes. The nose and tail of the aircraft are pointy, and it has two engine propellers.", + "The image is of a small, silver airplane with blue and white stripes on its tail. It is sitting on a tarmac with its nose pointing up.", + "The DHC-8-300 is a twin-engined turboprop commuter aircraft. It has a pressurized cabin for increased passenger comfort and is able to seat up to 36 passengers. The aircraft is quiet and fuel-efficient,", + "The image is of an aircraft with a white body and blue and red stripes. The rear of the aircraft has two engines, and there are two doors on the side of the aircraft.", + "The image is of a silver and white DHC-8-300 aircraft on a runway. The sun is shining and the sky is blue.", + " in detailThe image is of a silver and grey aircraft with blue and white stripes running down the side. The nose of the aircraft is pointing up slightly and there are two engines at the back. The aircraft is sitting on a blue and white", + "Image shows a silver and white DHC-8-300 turboprop aircraft with blue and white Air Canada livery. The aircraft is taxiing on a runway with mountains in the background.", + "Image shows a silver aircraft with turboprop engines and a red maple leaf on the tail. The aircraft is sitting on a tarmac with mountains in the background.", + "The image is of a small, twin-engined turboprop airplane. The DHC-8-300 is operated by Air Canada, WestJet, and a number of other airlines.", + "The DHC-8-300 is a Canadian turboprop airliner produced by de Havilland Canada.", + "The DHC-8-300 is a turboprop regional airliner designed and manufactured by de Havilland Canada. It typically seats up to 36 passengers and has a maximum range of 1,500 km (930 mi).", + "The DHC-8-300 is a commercial aircraft used for short-haul flights.", + "A Bombardier DHC-8-300 turboprop plane taking off.", + "This is a DHC-8-300, a Canadian-built twin-engine turboprop regional airliner.", + "A de Havilland Canada DHC-8-300 turboprop airplane.", + "A Dash 8-300 aircraft operated by Air Canada Regional", + "An aircraft DHC-8-300 takes off from an airport.", + "A de Havilland Canada DHC-8-300 Dash 8 taking off.", + "A DHC-8-300 aircraft operated by Air Canada Jazz on approach to landing." + ], + "DR-400": [ + "The DR-400 is a low-wing light aircraft designed and built in France. It has a fixed tricycle landing gear and is powered by a piston engine. The DR-400 is typically used for training and personal flying.", + "An aircraft DR-400 looks like a small, two-engine airplane. It has a wingspan of approximately 35 feet and a length of 26 feet. The aircraft is typically painted white with blue stripes.", + "The DR-400 is a light aircraft with a low wing and fixed tricycle undercarriage. It is powered by a single engine and has room for four people. The aircraft is made of aluminium and glass-fiber reinforced plastic.", + "It is a low-winged mono-plane of all-metal construction with aluminium alloy skinning. The DR-400 has four wing-mounted fuel tanks and fixed tricycle undercarriage. The aircraft is powered by a 260 hp", + "The DR-400 is a single-engine, light aircraft manufactured by French company Robin Aircraft. It has a low-wing and tricycle landing gear configuration and is constructed primarily of aluminum. The DR-400 is used for flight training,", + "The DR-400 is a low-wing, tricycle gear aircraft that seats four people. It is made of metal and has a fixed pitch propeller. The DR-400 has a wingspan of 36 feet and a length of 25", + "The DR-400 is a four-seat, single-engine, light aircraft. It has a low-wing and a cantilever wing. The aircraft is all-metal and has a fixed tricycle landing gear. It is powered", + "An aircraft DR-400 looks like a small, single-engine plane with two seats. It has a low wing and a tailfin. The wingspan is about 30 feet.", + "The DR-400 is a low-wing monoplane with a fixed tricycle undercarriage. It has four seats in a 2+2 configuration, and a fixed pitch propeller. The aircraft is all-metal, with fabric-", + "The DR-400 is a four-seat, single-engine monoplane aircraft. It has a low-wing and a conventional tail. The aircraft is all-metal and has a cantilever wing. The DR-400 has fixed", + "The DR-400 is a light aircraft produced by Fran\u00e7ois Dupuy. It is a low-wing cantilever monoplane of conventional design with two seats in side-by-side configuration.", + "There is no way to identify an aircraft DR-400 from the outside.", + "The DR-400 is a single-engine, low-wing aircraft that seats four people. It has a fixed tricycle landing gear and is powered by a Lycoming engine. The aircraft is made by the French aircraft manufacturer Robin.", + "There is no definitive answer, but some distinct features of the DR-400 aircraft are its low wing configuration, tricycle landing gear, and 80-85 horsepower engine.", + "One way to identify an aircraft DR-400 is by its low-wing configuration and fixed landing gear. The DR-400 is a four-seat, single-engine light aircraft that was first produced in the 1970s.", + "The DR-400 is a light aircraft produced by Robin Aircraft. It has a low wing and a conventional tail. The DR-400 is all-metal, with a cantilever wing and fixed landing gear. It is powered by a", + "It is a single-engine light aircraft, produced by the French manufacturer Robin Aircraft.", + "The DR-400 is a light aircraft produced by the French manufacturer Robin Aircraft. It is a low-wing monoplane with fixed tricycle undercarriage. The aircraft is constructed from aluminium with fabric-covered control surfaces. It is powered", + "The DR-400 is a four-seat, single-engine, light aircraft manufactured by Robin Aircraft. It first flew in 1972 and is still in production.", + "The DR-400 is a light aircraft that was manufactured by Robin aircraft. It has a low wing and a fixed tricycle undercarriage.", + "The DR-400 is a low-wing monoplane with a fixed tricycle undercarriage. It is all-metal, with fabric-covered control surfaces. The aircraft has a swept back fin and rudder. The wings have pronounced", + "Aircraft DR-400s vary in appearance depending on the specific model, but they all share some basic features. They have a low-wing design, fixed landing gear, and a single engine mounted in the nose. The cockpit is typically", + "The DR-400 is a four-seat, single-engine, light aircraft. It has a low-wing and a retractable tricycle landing gear. The aircraft is made of all-metal construction and has a semi-mon", + "I'm not sure what you are asking. Are you asking what an aircraft DR-400 looks like? If so, I'm including a link to a Google image search.\nhttps://www.google.com/search?t", + "Image result for DR-400 aircraft", + "A DR-400 is a single engine, low-wing aircraft. It has a fixed landing gear and a T-tail. The cockpit is enclosed and has room for four people.", + "The DR-400 is a four-seat light aircraft designed and built in France by Robin Aircraft.", + "The DR-400 is a four-seat, single-engine light aircraft. It has a low-wing design and fixed tricycle undercarriage. The aircraft is constructed from aluminium alloy and composite materials. It is powered by a Ly", + "A DR-400 aircraft is a four-seat, single-engine light aircraft. It has a low-wing design and a fixed tricycle landing gear. The aircraft is available in several different models, including the DR-400/420", + "The DR-400 is a light aircraft produced by the French aircraft manufacturer Robin Aircraft. It is a low-wing cantilever monoplane of conventional design with tricycle undercarriage.", + "The DR-400 is a single-engine, four-seat light aircraft designed and built in France by Robin Aircraft. The aircraft is constructed of composite materials. It has a low-wing configuration and features retractable landing gear. The DR", + "The image from the internet shows an aircraft DR-400 on a runway. The aircraft is a single engine, low wing plane. The image shows the plane from the front, and the back of the plane is visible. The plane is white", + "The DR-400 is a four-seat, single-engine, light aircraft manufactured by Robin Aircraft. It is made from wood and composites. The aircraft has a low wing and fixed tricycle landing gear. It is used for general", + "The image is of a small, single-engine aircraft with a high, swept-back wing. The fuselage is white with blue and red stripes running down the length of the aircraft. There is a small cockpit with room for two people", + "This image is of a light aircraft called the DR-400. It is a common sight in the skies over France, where it is manufactured. The DR-400 is a popular choice for private pilots and flight training schools.", + "One image of an aircraft DR-400 that can be found online is of a small, single-engine propeller plane. The DR-400 is a simple, yet elegant aircraft that is popular among pilots for its user-friendly controls and", + "Image:This image shows a DR-400 aircraft on the runway. The DR-400 is a single-engine, four-seat light airplane.", + "The image is of a red and white aircraft with \"DR-400\" written on the side. The aircraft has two engines and two sets of wings.", + "This image is of a light aircraft called a DR-400. It is a low-wing monoplane with two engines, four seats, and fixed landing gear. It is used primarily for general aviation and flight training.", + "The image is of a small, single engine airplane. The DR-400 is a light aircraft designed for personal use. It has fixed landing gear and a low wing. The plane is white with blue stripes running along the length of the fu", + " \"The DR-400 is a light aircraft that was manufactured by Robin Aircraft.\"", + "Aircraft DR-400 on take-off.", + "A DR-400 airplane flying through the sky.", + "4-seater light aircraft DR-400", + " French civil aircraft DR-400 in flight", + " A DR-400 aircraft in flight", + "Aerospatiale DR-400", + "This aircraft is a DR-400, a popular model of light aircraft produced by the French manufacturer Robin Aircraft.", + "The DR-400 is a small, light aircraft that is popular among private pilots.", + " A light single-engine aircraft, the DR-400 is used for both training and personal flights." + ], + "Dornier 328": [ + "The Dornier 328 is a turboprop-powered commuter aircraft. It seats 30 passengers and has a cruising speed of 350 knots. The aircraft is pressurized and has a flight deck with modern avionics. The cabin is spacious and", + "The Dornier 328 is a twin-engine turboprop-powered commuter aircraft. It typically seats between 30 and 40 passengers, although a 30-seat variant was also produced. The aircraft was designed and built by Dornier Fl", + "The Dornier 328 is a twin-engine turboprop-powered commuter aircraft. It has a low-wing configuration and is all-metal construction. The aircraft is pressurized and has a T-tail. It is equipped with", + "The Dornier 328 is a turboprop-powered commuter aircraft. It seats 30 passengers and has a crew of two. The aircraft is pressurized and has a lavatory. The main cabin is entered through a set of double doors", + "The Dornier 328 is a turboprop-powered commuter airliner. It seats 30 passengers and has a range of 1,300 miles. The aircraft is all-metal, with a low-wing and a T-tail. It", + "The Dornier 328 is a twin-engine turboprop-powered regional airliner. It seats between 30 and 40 passengers, and was introduced in the late 1990s. It is similar in appearance to the earlier Dornier 228,", + "The Dornier 328 is a small turboprop aircraft. It has a pressurized cabin and can seat up to 30 passengers. It has a small cargo hold and is typically used for short-haul flights.", + "The Dornier 328 is a turboprop-powered regional airliner. It seats between 30 and 40 passengers and is typically used on short-haul flights. The aircraft has a twin-turboprop engine configuration and a high-", + "The Dornier 328 is a turboprop-powered commuter airliner. It seats between 19 and 30 passengers, and was introduced in 1991. The aircraft is all-metal, with a low-mounted cantilever wing and a T", + "The Dornier 328 is a twin-engine turboprop aircraft that can seat up to 30 passengers. It has a low-wing design and is all-metal with a pressurized cabin. The aircraft is 30.9 meters (", + "The Dornier 328 is a twin-engine turboprop aircraft designed and manufactured by the German company Dornier Flugzeugwerke. It was introduced in 1991 and is still in production. The Dornier 328 is", + "The Dornier 328 is a turboprop-powered commuter airliner. It was developed and manufactured by Dornier Luftfahrt GmbH. It seats up to 32 passengers and was introduced in 1991.", + "The Dornier 328 is a small, twin-turboprop commuter aircraft. It has a distinctive Upswept kink in the leading edge of the wings and a T-tail.", + "The Dornier 328 is a twin-engine turboprop aircraft that seats up to 30 passengers and has a range of 1,300 miles. It is produced by German aircraft manufacturer Dornier Flugzeugwerke.", + "Some ways that you can identify a Dornier 328 aircraft are by its unique shape, twin engines, and tricycle landing gear. Another way to identify this aircraft is by its manufacturer, Dornier.", + "The Dornier 328 is a turboprop-powered commuter airliner. It first flew in 1991 and was produced until 2008. It seats up to 32 passengers and was produced in several different variants. The most distinguishing feature of the Dorn", + "The Dornier 328 is a twin-engine turboprop-powered commuter airliner. It was developed in the 1980s by Dornier Flugzeugwerke.", + "The Dornier 328 is a twin-engine turboprop regional airliner. It can be identified by its distinctive pitched nose and twin tail.", + "The Dornier 328 is a twin-turboprop fokker 50 aircraft. Its distinguishing features include a large T-tail, swept-back wings, and a nose-mounted turboprop engine.", + "The Dornier 328 is a twin-engine turboprop aircraft that can be identified by its unique T-tail and cruciform wing. The aircraft is also equipped with two turboprop engines, which are located on the wingtips", + "The Dornier 328 is a turboprop-powered commuter airliner. It seats up to 30 passengers and is typically flown on short-haul routes. The aircraft is easily recognizable by its distinctive T-tail and swept-back wings.", + "A Dornier 328 aircraft looks like a small, twin-engine passenger plane. It seats up to 30 passengers and has a range of about 1,500 miles.", + "A Dornier 328 looks like a small twin-engined airplane. It has a swept-back wing and a tail boom that extends from the back of the fuselage. The plane seats up to 19 passengers and is typically used for", + "The Dornier 328 is a turboprop-powered commuter airliner. It seats between 19 and 33 passengers, and is used for short-haul flights. The aircraft is distinguishable by its swept-back wings and twin tail fins.", + "The Dornier 328 is a twin-engine turboprop-powered regional airliner. It seats up to 30 passengers and was introduced in 1991. The aircraft is manufactured by Dornier Flugzeugwerke.", + "An aircraft Dornier 328 looks like a small, twin-engine jet. It has a swept-back wing and a T-shaped tail.", + "The Dornier 328 is a twin-engined turboprop-powered commuter aircraft. It has a low-wing configuration and a conventional tail unit. The aircraft is all-metal and has a pressurized cabin. It accommodates", + "The Dornier 328 looks like a small, turboprop-powered commuter plane. It has a T-tail and a pressurized cabin that can seat up to 19 passengers. The aircraft is named after its designer, Claude Dorn", + "Some aircraft Dornier 328 look like small, white planes with blue stripes running down the side. They have two jet engines mounted on the wings and a third engine in the back.", + "There is no one definitive answer to this question, as the Dornier 328 can come in a variety of different designs and configurations. However, some common features of the aircraft includes its low-wing monoplane layout, twin engines, and", + "The image is of a blue and white Dornier 328 aircraft with its landing gear down, taxiing on a runway. The aircraft has a distinctive twin-tail design.", + "The image is of a small, twin-engine turboprop aircraft. It has a sleek, silver body with blue stripes running along the length of it. The aircraft has two sets of double-doors on the side, and the wings", + "The Dornier 328 is a turboprop-powered commuter aircraft. It seats a total of 19 passengers and is manufactured by the German company Dornier Flugzeugwerke. The aircraft is notable for its low noise signature", + "The image is of a blue and white aircraft with \"Dornier\" written on the side. It has two engines and appears to be landing or taking off.", + "The image is of a small, silver aircraft flying through a cloudy sky. The plane has two engines and appears to be landing.", + "The image is of a small twin-engine turboprop passenger plane. It has a silver body with blue stripes running along the length of the fuselage. The wings are slightly swept back, and the tail fins are tall and thin.", + " JetThe image is of a small, twin-engine jet aircraft. It has a sleek, modern design with a curved nose and swept-back wings. The tail is tall and thin, with a small fin at the top. The aircraft", + "This image is of a Dornier 328 turboprop aircraft. The aircraft is white with blue and gray stripes running down the length of the fuselage. The wings are gray and the tail is blue. There is a small window near", + "-110The image is of a blue and white aircraft with the words \"Dornier 328-110\" written on the side. The aircraft has two engines and four propellers.", + " JetIn the image, an aircraft is parked on a runway with its engines off. The nose of the aircraft is pointed up and its tail is down. The sides of the aircraft are sleek and silver. The words \"Dornier 328", + "Dornier328 aircraft operated by Lufthansa Regional, a subsidiary of Lufthansa, landing at Frankfurt Airport.", + "In December 1994, the Dornier 328 aircraft entered service with Lufthansa Regional. It is a twin-engined turboprop-powered regional airliner with capacity for 32 passengers.", + "A Dornier 328 aircraft in flight.", + "A Dornier 328 aircraft on the tarmac.", + "This is the Dornier 328, a turboprop-powered commuter airliner. First flown in 1991, it was produced until 2008.", + "Dornier 328 on the tarmac", + "The Dornier 328 is a twin-engine turboprop commuter airliner. It was developed by German aircraft manufacturer Dornier Flugzeugwerke.", + "Dornier 328 aircraft on the tarmac.", + "The Dornier 328 is a turboprop-powered commuter plane designed and manufactured by Dornier Aviation. It was introduced in 1991 and is still in production today.", + "Dornier 328 aircraft operated by Lufthansa Regional on behalf of Lufthansa. The aircraft is seen here landing at Munich Airport." + ], + "E-170": [ + "An aircraft E-170 looks like a small airplane. It has two engines, two wings, and a tail. The cockpit is located in the front of the plane.", + "The aircraft E-170 is a small, narrow aircraft with two seats on each side of the aisle. The aisle is located in the middle of the aircraft, and there is one exit on each side of the aircraft. The aircraft is white", + "The aircraft E-170 looks like a small commercial plane. It has two engines and a tall tail. The wings are swept back and it has a pointed nose.", + "An aircraft E-170 looks like a small commercial airliner. It has two engines mounted on the wings, a main cabin with rows of seats, and a cockpit for the pilots. The E-170 is a regional airliner, meaning it is", + "An aircraft E-170 looks like a large metal tube with wings and engines attached. There are usually between 70 and 100 seats inside, plus space for baggage. The exterior is usually white with blue or red stripes running down the length of the", + "The airplane has a body that is shaped like a long, narrow tube. The wings are attached to the sides of the body and the tail is at the back. The engines are mounted on the wings.", + "An aircraft E-170 looks like a small, commercial jet. It has a pointed nose and a small cockpit window. The wings are swept back and the tail is taller than the fuselage. There are two engines mounted on the rear of", + "An Asiana Airlines Airbus A-320 on approach to LAX\nThe Embraer E-170 is a twin-engine commercial jet airliner capable of carrying up to 78 passengers. It is powered by two General Electric CF34-8", + "The E-170 has a stretched fuselage when compared to the other members of the E-jet family. It is powered by two GE CF34 engines and has a range of 2,700 nautical miles. The aircraft also has a", + "The aircraft E-170 looks like a large white commercial jet with blue stripes running down the sides. It has two jet engines mounted on the rear of the fuselage and a large tail fin. The wings are swept back and the nose is", + "The E-170 is a regional airliner manufactured by Embraer. It is powered by two turbofan engines and can seat up to 78 passengers in a two-class configuration or 90 passengers in a single-class configuration. The aircraft", + "The E-170 has a swept-back wing design and a T-tail. The main landing gear legs are shorter than those on the E-190, and the nosegear is shorter and positioned further forward. The wingspan is narrower", + "The E-170 is a commercial aircraft made by Embraer. It is a twin-engine jet with a capacity of 70-90 passengers. It has a swept wing and a T-tail. The E-170 is powered by", + "The E-170 has a distinctive fuselage that is 14 feet 5 inches wide. The main landing gear is also located further forward than on most other aircraft, and the engines are mounted on pylons above and behind the wings.", + "The Embraer E-170 is a narrow-body jet airliner produced by Embraer, a Brazilian aerospace conglomerate that produces commercial, military, and executive aircraft.", + "The Embraer E-170 has a digital cockpit with three high-resolution 12-inch Liquid Crystal Displays (LCD) for the flight crew, and an integrated avionics suite that provides advanced functionality and outstanding operational flexibility. The", + "An aircraft E-170 can be identified by its long, slender body and pointy nose. It has two engines mounted on the wings and a third engine mounted on the tail. The aircraft also has a large, square-shaped cargo door", + "By its shape. The E-170 has a distinctive fuselage with a \"bulge\" near the front, and a pointed nose.", + "The aircraft E-170 is a twin-engine, narrow-body commercial airliner. The aircraft is operated by a two-person crew and can seat up to 70 passengers.", + "The aircraft E-170 can be identified by its longer nose, continuous fuselage window band, and taller vertical stabilizer.", + "The E-170 has a slender fuselage with a sloping nose. The aircraft has a wingspan of 39 feet and a length of 41 feet. The aircraft is powered by two engines, one mounted on each wing. The E-", + "An aircraft E-170 looks like a small, commercial plane. It has a long, narrow body with two engines mounted on the rear. The plane can seat up to 70 passengers and has a range of approximately 2,700 miles.", + "The aircraft E-170 looks like a small, regional jet. It typically seats 70 passengers and has a range of 2,700 miles.", + "An aircraft E-170 looks like a small airplanes with two engines on the back.", + "The Embraer E-170 is a twin-engine regional jet. It has a long, slender fuselage and a swept-back wing. The aircraft is typically configured with 70 seats in a single-class cabin.", + "The Embraer E-170 is a narrow-body aircraft with a swept-wing design. It has a capacity of 70-90 passengers and is powered by two turbofan engines. The aircraft has a typical configuration with a three", + "The Embraer E-170 is a mid-size, single-aisle commuter aircraft with a capacity of 70 passengers. It has a range of 2,400 miles and a cruising speed of 530 mph. The aircraft is 47.", + "An E-170 aircraft is a regional aircraft that is used for short to medium-haul flights. It typically seats 70-78 passengers and has a range of 2,700-3,000 miles. The aircraft is powered by two turb", + "The aircraft E-170 looks like a small commercial plane. It has a cylindrical fuselage with a pointed nose and a swept-back wing. There are two engines mounted on the wing.", + "The aircraft E-170 looks like a small commercial plane. It typically has a capacity of 70-100 passengers and is used for short- to medium-haul flights.", + "The image is of an Embraer E-170 aircraft. The aircraft is on the runway with its engines running. The body of the aircraft is silver and the wings are white. The sun is shining off the aircraft.", + "The image is of a small, twin-engine jet aircraft. It has a sleek, silver body with blue accents. The aircraft is parked on a runway with its engines running.", + "An image of an aircraft E-170 from the internet would show a small, twin-engine jetliner with a sleek design. The jet would likely be shown in flight, with its long, narrow wings and sleek body allowing it to slice", + "Image is of an aircraft E-170. It is a twin-engine, single-aisle jet airliner. The E-170 is a member of the Embraer E-Jets family, and was announced at the Paris Air", + " in greater detailThe image is of an aircraft called an E-170. It is a commercial airliner made by the Brazilian company Embraer. The E-170 can seat up to 76 passengers and has a range of 3,700 miles", + "Image shows an aircraft E-170 in mid-flight, with blue sky and clouds in the background. The aircraft has a long, slender body with a pointed nose, and two sets of wings. There are engines mounted on the wings,", + " ( Embraer 170 Aircraft )The image is of a small, silver aircraft with two engines. It has a pointed nose and a sleek design. The Embraer 170 is a popular aircraft for short-haul flights.", + "This image from the internet is of an aircraft E-170. The E-170 is a twin-engine, mid-size jet commercial airliner. It seats 70 passengers in a three-class configuration and has a range of 3,700", + ".This aircraft looks like it is ready for take-off with its sleek design and powerful engines. The E-170 is a twin-engine jet developed by Embraer and is used for short- to medium-haul flights. It", + "The image is of a silver aircraft with blue and white stripes running down the sides. The aircraft has a pointed nose and two engines, one on each side of the fuselage. There are two pairs of windows towards the front of the aircraft", + "This image shows a Brazilian-made Embraer E-170 aircraft of US-based regional airline Compass Airlines. The E-170 is a relatively new model of aircraft, having first entered service in 2003.", + " A United Airlines E-170 aircraft taking off from an airport runway", + "This is an Embraer E-170, a commercial jet airplane manufactured by Embraer, a Brazilian aerospace company. The E-170 seats up to 78 passengers and is used by airlines all over the world.", + "The McDonnell Douglas E-170 is a short-range, single-aisle commuter airliner. It is the largest member of theEmbraer E-Jets family, and was announced at the Paris Air Show in 1998 as a larger", + " The Embraer E-170 is a regional airliner used for short to medium-range flights.", + " Airbus's E-170 aircraft, one of the company's most popular planes.The Airbus E-170 is one of the most popular aircraft in the Airbus lineup. The E-170 is a member of the Airbus A320 family, which", + "The E-170 is a regional jet aircraft produced by Embraer. It is powered by two turbofan engines and can seat up to 70 passengers.", + "An Embraer E-170 aircraft, operated by American Airlines, takes off from Los Angeles International Airport.", + "An E-170 aircraft of American Airlines taking off from Los Angeles International Airport (LAX).", + "The aircraft E-170 is a commercial jetliner designed and built by Embraer, a Brazilian aerospace company. It is a twin-engine aircraft which first flew in 2002." + ], + "E-190": [ + "An aircraft E-190 looks like a large metal tube with wings attached to it. The wings are usually white with blue and red stripes running down the length of them. There are usually two engines mounted on the back of the aircraft near the", + "The aircraft E-190 is a small commercial airplane. It typically has two engines, two wings, and a tail. The E-190 seats around 100 passengers and has a range of around 2,000 miles.", + "The E-190 is a twin-engine, single-aisle commercial jet airplane manufactured by Embraer, a Brazilian aerospace conglomerate. The airplane seats up to 114 passengers and has a range of 2,600 miles. The E-", + "The aircraft E-190 has a sleek, aerodynamic design with a swept-back wing and a long, pointed nose. It is a medium-sized jet airliner with 100 seats in a two-class cabin layout, or up to 114", + "The E-190 is a twin-engine, single-aisle jet with advanced aerodynamics, a spacious and comfortable cabin, and large overhead bins. The aircraft has a wingspan of 108 feet (33 meters) and a length of", + ".The E-190 is a narrow-body, twin-engine jet airliner. It has a swept wing and a T-tail. The aircraft is designed to seat 108 passengers in a two-class configuration or 122 passengers in a single", + "The aircraft is a relatively small single-aisle jet with a swept wing and two engines mounted on the rear of the fuselage. It has a raised cockpit area with a flight deck that can accommodate a crew of two. The cabin is", + "An aircraft E-190 looks like a small, narrow plane with two engines on the back. The cockpit is located at the front of the plane, and there are two rows of seats behind it. There is no overhead storage, and the", + "Slim and aerodynamic, the E-190 has a long, pointed nose and a tall vertical stabilizer. The aircraft is all-white with blue and gray accents. There is a single engine mounted on each wing.", + "E-190s are twin-engine, narrow-body jets. They have a circular fuselage with a nosecone, and a T-tail. The wings are low-mounted and have winglets. There are two engines, one", + "The most distinguishing feature of the E-190 is its relatively short fuselage and stubby wings. In addition, the plane has a sleek and aerodynamic look, with a small nose and swept-back wings. The engines are mounted on", + "You can identify an aircraft E-190 by its Pratt & Whitney engines and its distinctive long, thin nose.", + "One way to identify an E-190 aircraft is by its engines. This aircraft is powered by two General Electric CF34-10E engines.", + "TheBombayBairnsYou can identify an aircraft by its registration number, which is usually painted on the side of the aircraft.", + "The aircraft E-190 can be identified by its long, swept-back wings and tall tail. It has a distinctive nose section and a large engine nacelle under each wing. There is a small window just behind the cockpit, and", + "The Embraer 190 is a twin-engine jet airliner manufactured by Embraer, a Brazilian aerospace company. It is the largest member of the Embraer E-Jet family of commercial jet aircraft.", + "The easiest way to identify an aircraft E-190 is by its rectangular shape and large engines.", + "The aircraft E-190 can be identified by its large, swept-back wings and its long, slender fuselage. It has a T-tail and engines mounted on the sides of the fuselage.", + "The aircraft can be identified by its unique engine configuration. The Pratt & Whitney PW1000G engines are mounted under the wings in a V-shaped configuration. The aircraft also has a distinctive large ventral fin.", + "An aircraft E-190 can be identified by its engine type, which is a GE CF34-10E.", + "An E-190 aircraft typically has a white body with blue stripes running down the sides. The aircraft may also have the airline's logo on the tail.", + "The Embraer 190 is a medium-haul jet airliner manufactured by Brazilian aerospace conglomerate Embraer. The twin-engine plane has a capacity of 106 to 114 passengers and is operated by a two-person crew. It is used mainly", + "The Embraer 190 is a twin-engine jet aircraft capable of carrying up to 108 passengers. It has a max cruise speed of Mach 0.82 and a range of 3,400 nautical miles. The E-190 is part", + "The E-190 is a twin-engine, single-aisle jet aircraft. It has a swept-back wing and a T-tail. The aircraft is made by Embraer, a Brazilian aerospace company.", + "An aircraft E-190 looks like a small airplane. It has two wings and a tail. The body of the airplane is white with blue stripes running down the sides. There are small windows on the sides of the airplane. The airplane", + "An aircraft E-190 looks like a small airplane. It has two engines on the back, and a long body with a pointed nose. There are two wings on the sides, and the tail is in the back.", + "The E-190 is a narrow-body aircraft with a swept-back wing and two turbofan engines. It has a streamlined fuselage with a Salem nose and a six-abreast cabin. The aircraft is 124 feet (37", + "An aircraft E-190 looks like a large, metal, flying machine with wings and multiple engines. It usually has a long body with many windows, and typically has two main wings with a smaller set of wings near the back. The E", + "The E-190 looks like a small, twin-engine jet with a narrow body. It has a T-tail and small wings. The aircraft is typically painted in a blue and white livery.", + "An E-190 aircraft looks like a large, metal tube with wings. The wings are attached to the body of the aircraft via metal struts, and the aircraft has two engines, one on each side of the body. The aircraft has", + " landingThe image is of an airplane landing on a runway with a grassy area next to it. The plane is white with blue and red stripes. There is a person in a blue uniform standing on the side of the plane.", + " landingThe image is of an aircraft E-190 landing on a runway. The aircraft is at a low angle, with its nose down and its landing gear deployed. The background is of a cloudy sky.", + "This image is of an Embraer E-190 aircraft. It is a twin-engine jet airliner with a capacity of around 100 passengers. It is a relatively new aircraft, first entering service in 2004. This particular image shows the aircraft", + "The image is of a jet blue aircraft E-190 parked at a gate with the JetBlue logo on the side. The image is taken from a low angle so that the entire length of the aircraft is visible.", + "The image is of an aircraft called an E-190. It is a commercial jetliner that was manufactured by the Brazilian company Embraer. The image shows the plane in flight, with its long, slender body and swept-back wings", + "The image from the internet of an aircraft E-190 is of a small, single-engine turbojetliner. It has a swept wing and is used for short-haul flights.", + "In the image, an aircraft is taxiing down a runway with its engines roaring. The sun is shining and the sky is clear. The aircraft is surrounded by green grass and trees.", + "The image is of an aircraft called an E-190. It is a narrow-body airliner manufactured by Brazilian company Embraer.", + "This image is of an aircraft called an E-190. It is a commercial jet used by airlines such as JetBlue.", + "The image from the internet is of an aircraft E-190. The aircraft is a twin-engine jet airliner manufactured by Brazilian company Embraer.", + "The E-190 is a commercial aircraft manufactured by Brazilian company Embraer. It is a twin-engine jet airliner that can seat up to 114 passengers. The E-190 made its maiden flight in March 2005 and was introduced into service", + "An Embraer E-190 aircraft taking off.", + "The E-190 is a narrow-body airliner manufactured by Embraer. It has a capacity of up to 114 passengers and is used on short- and medium-haul routes.", + "Cape Air's unique aircraft, the Embraer E-190, offers travelers a relaxed and comfortable flying experience with plenty of legroom and personal space.", + "An Airbus E-190 aircraft operated by Scandinavian Airlines (SAS) takes off from Copenhagen Airport.", + "This image shows an Embraer E-190 aircraft. The E-190 is a twin-engine jet airliner manufactured by Brazilian company Embraer.", + " An Embraer E-190 of Austrian Airlines\nThe Embraer E-190 is a twin-engine jet airliner manufactured by Embraer, a Brazilian aerospace company. It is one of the Embraer E-Jet family of aircraft", + "An airplane of the type Embraer 190 operated by the German airline Lufthansa takes off from Frankfurt Airport.", + "This is an Embraer E-190, a Brazilian-made commercial airliner. The E-190 is a member of the Embraer E-Jet family of aircraft, and is commonly used by airlines around the world for short to", + "The E-190 is a narrow-body aircraft manufactured by Embraer." + ], + "E-195": [ + "The E-195 is a twin-engine, single-aisle jet airliner. It has a swept wingspan and a T-tail. It seats between 120 and 140 passengers.", + "The Embraer 190 is a twin-engine jet airliner developed by Embraer S.A., a Brazilian aerospace conglomerate. The aircraft was designed to carry between 108 and 122 passengers and have a range of 2,400 to 2,", + "The E-195 is a twin-engine, single-aisle commercial jet. It has a swept wing and a T-tail. The aircraft is all white with blue and grey stripes running along the length of the fuselage.", + "An E-195 is a turbofan-powered airliner. It has a slim fuselage with a swept-back wing. The aircraft has a T-tail and two engines mounted on the wing.", + "The E-195 is a twin-engine, single-aisle commercial jet. It has a maximum range of 3,700 nautical miles and a maximum capacity of 150 passengers. The plane is 146 feet long and has a wingspan", + "Among other things, the aircraft has a twin-engine layout, a swept wing, and a nose profile that is similar to that of a shark.", + "The E-195 is a twin-engine, single-aisle jet airliner with a capacity of up to 150 passengers. It has a maximum range of 2,400 nautical miles. The aircraft is 78 feet long and has a wings", + "An aircraft E-195 is a twin-engine, single-aisle commercial jet. It has a stretched fuselage and a swept-back wing. It is used for short-haul and medium-haul flights.", + "The E-195 is a twin-engine, single-aisle commercial jet. It has a wingspan of 123 feet and a length of 138 feet. It can seat up to 136 passengers and has a range of 4,500 miles", + "An aircraft E-195 looks like a large, metal tube with wings attached to the sides. There are usually several rows of seats inside the tube, and the tube is surrounded by a metal frame. The frame typically has two or more engines", + "The E-195 is a twin-engine, single-aisle jet with a capacity of around 140 passengers. It has a unique curved shape, and is significantly wider than other single-aisle aircraft.", + "The aircraft E-195 can be identified by its unique Selling Point. The E-195 has a unique design which allows for more comfortable seating and a quieter ride. Additionally, the E-195 has a wider cabin than other similar aircraft,", + "The easiest way to identify an aircraft E-195 is by its unique paint job. The aircraft is painted in a special blue and white livery, which makes it easily recognizable. In addition, the E-195 has a distinctive swept-", + "The aircraft E-195 can be identified by its model number, which is E-195. The aircraft can also be identified by its serial number, which is E-195.", + "The E-195 can be identified by its long sleek fuselage, swept-back wings, and large T-tail. It has a glass cockpit with room for two pilots and a flight engineer. The aircraft is powered by two turbof", + "The aircraft E-195 has a distinctive shape with a long nose, swept-back wings, and a tall tail. It is also relatively small for a jet airliner.", + "The best way to identify an aircraft is by its tail number. The E-195 usually has the tail number N196UA.", + "The E-195 is a narrow-body, twin-engine jet airliner manufactured by Embraer. It has a typical seating capacity for 130 passengers and is often used for regional flights. The aircraft can be identified by its long, thin", + "The Bombardier E-195 is a narrow-body aircraft with a blended wingtip design. It has a cruciform tail configuration and is powered by two turbofan engines. It has a typical seating configuration for a narrow-body", + "The E-195 can be identified by its long, slender fuselage and pointy nose. It also has a very distinctive tail fin.", + "The Embraer E-195 is a narrow-body twin-engine jet airliner. It is one of the Embraer E-Jet family of aircraft. It has a fuselage that is slightly wider than that of the Embra", + "The E-195 is a brazilian-made twin-engine plane that can seat up to 124 passengers. It has a distinctive long and narrow body, with a swept-back wing design.", + "The E-195 is a twin-engine, single-deck jet airliner manufactured by Embraer, a Brazilian aerospace company. As of July 2018, there are over 190 E-195 aircraft in service with more than 30 airlines around the", + "There is no definitive answer to this question, as the appearance of an aircraft depends on its paint job and other individual features. However, a generic E-195 aircraft may have a white fuselage with blue or green stripes running down the sides", + "An aircraft E-195 looks like a large, single-engine airplane with a long body and short wings. It has a large tail fin and two engine nacelles mounted on the wings.", + "There is no definitive answer to this question, as the appearance of an aircraft can vary depending on the specific model and airline company. However, a few generalizations can be made about the E-195 aircraft. This plane is generally a narrow", + "The aircraft E-195 looks like a large commercial jet. It can seat up to 150 passengers and has a range of over 5,000 miles.", + "There is no definitive answer to this question as the appearance of an E-195 aircraft can vary depending on the airline that operates it. Some common features, however, may include a swept-back wing design and a narrow fuselage.", + "The Embraer 195 is a twin-engine medium-range jet airliner made by Embraer, a Brazilian aerospace manufacturer. It has 110 seats in a two-class configuration and is capable of carrying up to 122 passengers.\n", + "The E-195 is a twin-engine, single-deck airliner with a capacity of around 120-190 passengers. It has a \"double-bubble\" design, which gives it a wider cabin than other aircraft in its class.", + "The image from the internet is of an aircraft that is large and has a long body. The aircraft has two engines and is silver in color. The aircraft is in a field with other aircraft.", + "The image is of an aircraft called an E-195. It is a narrow-body aircraft with a swept-back wing design. There is a livery of an airline on the aircraft, but it is not clear which one. The", + "The image is of an Embraer E-195 aircraft on a runway. The plane is white with blue and silver accents. There is a green and blue logo on the tail. The image is in color and is taken from a high", + "The image is of a red and white airplane with the words \"Embraer\" and \"E-195\" written on the side. The airplane is flying through the air with its landing gear down.", + "LRThe image is of an Airbus E-195LR aircraft. The aircraft is shown in flight, with its landing gear retracted. The body of the aircraft is white, with blue and gold stripes running down the length of the fuselage.", + "The image is of an Embraer E-195 aircraft. The aircraft is gleaming white with blue and gold stripes running down the length of the fuselage. The wings are swept back and the landing gear is retracted. The aircraft is", + "This image shows an Embraer E-195 aircraft from above. The landing gear is down and the wings are level, indicating that it is about to land. The image is taken from a distance, so the aircraft appears small. The", + "This image is of an Embraer E-195 aircraft. The aircraft is a narrow-body, twin-engine jet airliner. The image shows the aircraft taxiing on a runway with its landing gear down.", + "The image is of an Embraer E-195 landing at London Heathrow Airport. The aircraft is a narrow-body jet airliner with a capacity of up to 146 passengers.", + "-E2The image is of an aircraft called the E-195-E2. The aircraft is a twin-engine jetliner with a capacity of around 140 passengers. The E-195-E2 is operated by Embraer", + "E-195 of German airline Lufthansa", + " A man looks at an Embraer E-195 plane of Azul airline at Congonhas Airport in Sao Paulo, Brazil.", + " The Embraer E-195 is a narrow-body twin-engine jet airliner produced by Brazilian manufacturer Embraer. It was designed to carry between 114 and 146 passengers and has a range of up to 2,600 miles. The first E", + "The E-195 is a twin-engine, single-seat fighter aircraft designed and built by McDonnell Douglas (now part of Boeing). The aircraft first flew in 1985 and entered service with the United States Navy in 1988.", + "The Embraer E-195 is a narrow-body, twin-engine, commercial jet airliner manufactured by Embraer, a Brazilian aerospace company. It is capable of carrying up to 118 passengers and is typically used on short-haul", + "Embraer E-195 on approach to landing", + "This image shows an Embraer E-195 aircraft. The Embraer E-195 is a twin-engine regional jet that was first introduced in 2004.", + "E-195 aircraft of the Brazilian airline Azul Linhas A\u00e9reas Brasileiras", + "The E-195 is regional jet aircraft manufactured by Embraer. It first flew in March 2004 and is operated by airlines around the world. As of July 2019, there are over 200 E-195s in service.", + "Embraer E-195 aircraft" + ], + "EMB-120": [ + "The Embraer ERJ-145 is a regional jet manufactured by Embraer, a Brazilian aerospace conglomerate. It is a twin-engine aircraft that can seat up to 50 passengers. The aircraft has a dart-like nose, swept", + "The Airbus A220-100, formerly known as the Bombardier C Series, is a narrow-body jet airliner. The A220 is the first commercial aircraft with a composite fuselage. The A220-100 has a cruise speed", + "An EMB-120 is a twin-engine turboprop regional airliner. It seats 30 passengers and has a range of 1,500 miles. The aircraft is 51 feet long and has a wingspan of 59 feet. It has a", + "The EMB-120 is a twin-engine turboprop passenger aircraft produced by Embraer of Brazil. It seats up to 30 passengers and has a range of 1,300 miles. The aircraft is 37 feet long, has a", + "The EMB-120 is a twin engine turboprop aircraft that typically seats 30 passengers. The aircraft has a low wing design and a conventional tail. The EMB-120 is known for its high operating efficiency and its low noise signature", + "The aircraft EMB-120 looks like a small commercial plane. It has two engines and a small body. The plane seats around 30 passengers and has two doors.", + "The aircraft EMB-120 looks like a small commuter plane with two turboprop engines.", + "An aircraft EMB-120 looks like a small, twin-engine turboprop plane with a well-rounded nose. Its wings are swept back at an angle, and it has two engines mounted on the rear of the fuselage.", + "The Embraer ERJ-135/145/Legacy is a regional jet manufactured by Embraer. It has a low-wing and a T-tail. It seats between 30 and 50 passengers, and has a range of", + "The Embraer 120 is a twin-engine turboprop regional airliner. The aircraft has a pressurized cabin with room for up to 30 passengers. It also has two lavatories and a galley. The aircraft has a range of", + "An aircraft EMB-120 can be identified by looking at the model number on the side of the plane.", + " Brazil madetwin-engine turboprop30-passenger capacityasphalt-colored wingtipslarge black and white cheatline", + "The EMB-120 has a distinctive swept-back wing and a tall tail. It also has two engines mounted on the back of the fuselage.", + "The EMB-120 has a distinctive wing-mounted fuel tank and a nose that is longer than similar aircraft. The aircraft also has distinctive engines mounted on the wing roots.", + "An aircraft EMB-120 can be identified by its registration number, which is usually displayed on the side of the aircraft.", + "The Embraer ERJ-120 Brasilia is a twin-engined regional jet produced by Embraer of Brazil. When it was launched, the aircraft had the distinction of being the first jet-powered regional airliner designed and produced", + "The EMB-120 is a twin-engine turboprop regional airliner produced by the Brazilian company Embraer. It has a pressurized cabin for 30 passengers and a maximum range of 2,480 kilometers (1,528 miles).", + "The best way to identify an EMB-120 is by its unique configuration. The aircraft has a high-mounted wing and engines slung under the wings. It also has a distinctive T-tail.", + "The easiest way to identify an EMB-120 is by its unique configuration which includes a T-tail and engines mounted above the wings in pods. Additionally, the aircraft has a distinctive nose which is more pointed than that of other similar aircraft", + "The most distinctive feature of the Embraer 120 Brasilia is its twin-turboprop engines, which are mounted on pylons above the aircraft's wings. Other features include its aircraft's high-mounted tailfin, which", + "An aircraft EMB-120 appears to be a small, twin-engine turboprop airplane.", + "There is no definitive answer to this question as the EMB-120 aircraft can come in a variety of different designs and configurations. However, a few key features that are generally consistent across all EMB-120 aircraft include its twin-engine", + "Some images of the aircraft can be found here.", + "An aircraft EMB-120 looks like a small plane.", + "https://www.google.com/search?biw=1440&bih=780&tbm=isch&sxsrf=ALeKk01oq3CCsL-afbbJwff", + "An aircraft EMB-120 looks like a small airplane with two engines.", + "There is no one definitive answer to this question, as different aircraft EMB-120 models can have slightly different appearances. However, in general, an aircraft EMB-120 may feature a sleek, aerodynamic body with large wings and prominently", + "An aircraft EMB-120 looks like a small commercial airplane.", + "An aircraft EMB-120 looks like a twin-engined regional turboprop airliner.", + "Brazillian-built twin-turboprop regional airliner.", + "The image shows an Embraer EMB-120 aircraft taxiing on a runway. The aircraft is a twin-engine turboprop regional airliner.", + "The EMB-120 is a twin-engined turboprop regional airliner. The aircraft has a pressurized cabin for 30 passengers and a toilet. It is mainly used for short-haul flights.", + "This image is of an aircraft called an EMB-120. It has a long, narrow body with two engines mounted on the wings. The EMB-120 is a regional airliner that seats up to 30 passengers.", + "This particular image is of an aircraft called an EMB-120. It is a twin-engine turboprop commuter airliner. It has a pressurized cabin for 30 passengers and a toilet. It is made by Embraer, a", + "In the image, an Embraer EMB-120 aircraft is taxiing on a runway with its engines roaring. The aircraft is silver with blue and white stripes running along its length. The sun is shining and the sky is clear.", + "ok", + "One image of an EMB-120 aircraft from the internet shows the plane parked on a tarmac with its engines off. The body of the plane is white with blue stripes running down the sides. The plane has two turboprop engines", + "The image shows an Embraer EMB-120 aircraft on a runway. The aircraft is white with blue stripes, and has two engines mounted on the wings. The image also shows the aircraft's landing gear, and the Embraer", + "The image is of a small, twin-engine turboprop airplane. The airplane is white with blue and red stripes down the side. There is a small window near the front of the plane. The back of the plane has two engines", + "This image shows an aircraft called an EMB-120. It is a small aircraft with two engines.", + " US Airways\">The aircraft pictured is an EMB-120, operated by US Airways.", + "An Embraer EMB-120 Brasilia, a twin-turboprop commuter aircraft.", + "The Embraer EMB-120 is a twin-engine turboprop regional airliner with a capacity of 30 passengers, produced by the Brazilian manufacturer Embraer.", + "Aircraft EMB-120 Brasilia of American Eagle Airlines on final approach to Dallas-Fort Worth International Airport in Texas, USA.", + "This is an Embraer EMB-120 Brasilia, a twin-turboprop regional airliner.", + " EMB-120 brazilian twin-turboprop aircraft", + "This image shows an Embraer EMB-120 Brasilia, a twin-turboprop regional airliner.", + " A group of people wait to board an Embraer EMB 120 Brasilia at John F. Kennedy International Airport in New York.]EMB-120 consumers get a fast and comfortable flight experience.", + " Airbus A220-300 of airBalticAn Airbus A220-300 of airBaltic prepares to take off from Riga International Airport, Latvia", + "A photo of an Embraer EMB-120 Brasilia, a twin-turboprop regional airliner." + ], + "ERJ 135": [ + "An ERJ 135 is a small, single-engine turboprop aircraft. It has a low-wing design and a single propeller. The aircraft is typically used for short-haul flights.", + "An ERJ 135 is a twin-engine regional jet that typically seats around 70 passengers. The exterior of the aircraft is white with blue and gold stripes running along the fuselage. The engines are located on the wings, and the aircraft has", + "The aircraft has a low-wing configuration, a T-tail, and boasts a comfortable, quiet cabin. The ERJ135 seats up to 37 passengers and has a range of 1,800 nautical miles.", + "The Embraer ERJ 135 is a small, twin-engine jet aircraft produced by Brazilian manufacturer Embraer. It seats up to 37 passengers and is operated by regional airlines around the world. The ERJ 135 is a member of", + "The ERJ 135 is a twin-engine jet aircraft that can seat up to 37 passengers. The aircraft has a swept wing design and is powered by two turbofan engines. The ERJ 135 is typically operated by regional airlines and is", + "An ERJ 135 is a small twin-engined jet aircraft. It has a circular fuselage and a swept-back wing. The aircraft is designed for short-haul flights and can seat up to 37 passengers.", + "An aircraft ERJ 135 typically looks like a small, twin-engine jet with a typical seating capacity of around 30 passengers. It usually has a sleek and slender design, with a long nose and swept-back wings. The ERJ 135", + "This aircraft typically has a mixed-class layout, with first-class and economy-class sections. The first-class section typically has eight seats, while the economy section typically has 56 seats.", + "An ERJ 135 is a turboprop aircraft manufactured by Embraer. It is a twin-engine aircraft that seats up to 30 passengers. The ERJ 135 is similar in appearance to other turboprop aircraft, such as the", + "This model of aircraft is a twin-engine regional jet that seats up to 37 passengers. It is manufactured by Embraer, a Brazilian aerospace company. The ERJ 135 has a wingspan of 34.8 feet, a length of", + "The ERJ 135 is a small commercial jet aircraft manufactured by Embraer. It has a distinctive pointed nose and swept-back wings. The ERJ 135 is part of the Embraer E-Jet family of aircraft.", + "It is a regional jet that was manufactured by Embraer. It has a distinctive shape with a short fuselage and a high wing.", + "The ERJ 135 can be identified by its distinctive narrow-body and six-abreast passenger configuration. It has a low-set swept wing with a prominent wingtip, and is powered by two turbofan engines. The aircraft also", + "There is no definitive answer to this question, as the ERJ 135 model can vary somewhat in appearance depending on the specific airline or operator. However, some common identifying features of the ERJ 135 aircraft model include its swept-back wings,", + "The ERJ 135 has the same shape as other ERJ models, with a low wing and twin turbofans mounted under the wing. It has a rounded nose, and the tail is swept back and has a V-shape. The", + "The ERJ 135 is a twin-engine regional jet that was designed and manufactured by Embraer, a Brazilian aerospace company. The aircraft is identifiable by its T-shaped tail and its small size.", + "There is no definitive answer to this question as each airline may have different ways of identifying their aircraft. However, some ways that an ERJ 135 aircraft might be identified include its tail number, the airline it is operated by, and its flight", + "The ERJ 135 has a distinctive pointed nose, and its engines are mounted on the sides of the rear fuselage.", + "The ERJ 135 is a regional jet that was manufactured by Embraer. It is a twin-engine aircraft that has a capacity of 37 passengers.", + "The ERJ 135 is a regional jet that was manufactured by Embraer. It is a twin-engine aircraft that has a capacity of up to 37 passengers.", + "Aircraft ERJ 135s are small, twin-engine regional jets. They typically seat between 70 and 80 passengers and have a range of approximately 2,400 miles. ERJ 135s are used on short-haul flights and are typically", + "The Embraer ERJ 135 is a small regional jet aircraft. It has a swept wing and a T-tail. The ERJ 135 is part of the Embraer ERJ-135/145/145XR family.", + "An ERJ 135 looks like a small commercial jet. It has a fuselage that is about the same size as a regional jet, but it has two engines instead of just one. The engines are mounted on the wings, and the aircraft", + "The ERJ 135 is a regional jet that can seat up to 37 passengers. It has a swept wing and a T-tail. The ERJ 135 is manufactured by Embraer, a Brazilian company.", + "An ERJ 135 is a small, narrow-bodied jet aircraft with two engines. The cockpit holds two pilots and the cabin can seat up to 30 passengers. The aircraft is typically white with blue stripes running down the length of the fuselage", + "An aircraft ERJ 135 looks like a small, sleek plane with curved wings.", + "An aircraft ERJ 135 looks like a small propeller plane.", + "The ERJ 135 is a twin-engine regional jet that can seat between 37 and 44 passengers. It has a swept wing and a T-tail, and its engines are mounted on the sides of the fuselage.", + "An ERJ 135 is a twin-engine regional jet designed and manufactured by Embraer, a Brazilian aerospace conglomerate. The jet has a distinctive fuselage and a T-tail. It seats up to 37 passengers and has a range of", + "An Embraer ERJ 135 is a small commuter jet. It has a swept wing and a T-tail. The fuselage is oval in cross section. There are two turbofan engines mounted on the wing.", + "The image is of a small, silver aircraft with blue stripes. It has two engines and is parked on a runway.", + "The image is of a small airplane with blue and white stripes. It has two engines and four seats. The plane is parked on a runway.", + "The image from the internet of an aircraft ERJ 135 is a high quality photo of an aircraft in flight. The photo shows the aircraft from a low angle, with the sun behind it, and the landscape below. The photo is sharp and", + "This image is of an Embraer ERJ 135 aircraft. The aircraft is a regional jet that seats up to 37 passengers. It is commonly used for short-haul flights.", + "The image is of an Embraer ERJ-135 aircraft on runway. The ERJ-135 is a Brazilian-made twin-engine regional jet. It has a distinctive \"T-tail\" and swept wing. The cockpit has", + "This image is of an ERJ 135 aircraft parked on a tarmac. The aircraft is white with blue and gold stripes running down the length of the body. There is a blue and gold logo on the tail of the aircraft. The aircraft", + "The image is of an Embraer ERJ-135 aircraft on the runway. The aircraft is silver with blue and white stripes. The nose is pointed and the tail is up in the air. Theflaps are down and the landing", + " landingAn image from the internet of an aircraft ERJ 135 landing shows the plane coming in to land on a runway. The image shows the plane from a side view, with the landing gear down and the engines at a low pitch. The", + "An image from the internet of an aircraft ERJ 135 shows a small, twin-engined jet airliner. It has a narrow body and a swept wing. The aircraft is operated by regional airlines around the world.", + "Image shows an ERJ 135 aircraft on a runway. The nose of the aircraft is pointing up and the tail is down. The engines are on and the landing gear is lowered.", + " An ERJ-135LR of Skywest Airlines, departure from St. Louis Lambert International Airport (2006)", + " The ERJ 135 is a twin-engine regional jet that was manufactured by Embraer, a Brazilian aerospace company.", + " The ERJ 135 is a twin-engine regional jet manufactured by Embraer, a Brazilian aerospace conglomerate. The ERJ 135 is part of the Embraer E-Jet family of aircraft, which also includes the ERJ 145 and the larger", + "ERJ 135 departing from JFK International Airport", + " Air France Flight 8969This photo is of an Air France flight 8969, an aircraft that was hijacked by terrorists in 1994.", + " AEROAEROMEX ERJ 135 LARGE CABIN AIRCRAFT", + "An ERJ 135 landing at an airport.", + "An ERJ 135 aircraft of American Eagle Airlines, a regional airline subsidiary of American Airlines, approaches its gate at Chicago O'Hare International Airport.", + "This aircraft is an ERJ 135, a regional jet manufactured by Embraer.", + "Air travel during the Covid-19 pandemic has been greatly reduced, leading to many aircraft being grounded. Here, an ERJ 135 sits idle at an airport." + ], + "ERJ 145": [ + "The ERJ 145 is a regional jet that typically seats between 70-78 passengers. It has a swept wing design and is powered by two turbofan engines. The cabin is usually laid out in a 3-2 seating configuration.", + "The ERJ 145 is a twin-engine regional jet that seats up to 50 passengers. It has a swept-back wing and a T-tail, and is powered by two turbofan engines. The aircraft has a low-mounted", + "The ERJ 145 is a small, twin-engine jet that seats up to 50 passengers. It has a swept-back wing and a T-tail. The aircraft is designed for short-haul flights.", + "The ERJ 145 is a twin-engine, regional jet airliner manufactured by Embraer, a Brazilian aerospace company. It typically seats between 70 and 78 passengers, and has a range of 2,100 to 2,700 miles. The", + "The aircraft ERJ 145 has a long, slender fuselage with a swept-back wingspan. The cockpit is located at the front of the aircraft, and the engines are mounted on the wings. The aircraft has a tailFin and twin", + "The aircraft ERJ 145 has a long, slender body with a circumcised nose. The wings are swept back and have a slight dihedral. There are five windows on each side of the aircraft. There are two engines, one under each wing", + "An ERJ 145 is a twin-engine regional jet that seats up to 50 passengers. The aircraft has a sleek, tapered fuselage with a swept-back wing. The ERJ 145 is typically painted in the livery of the", + "An aircraft ERJ 145 looks like a small jet plane. It has two engines and can seat up to 50 passengers.", + "An ERJ 145 is a twin-engine regional jet that seats up to 50 passengers. It has a low-wing design and is powered by two turbofan engines. The aircraft has a distinctive pointed nose and a T-tail.", + "An ERJ 145 is a model of aircraft manufactured by Embraer. It is a twin-engine aircraft with a capacity of up to 50 passengers. The aircraft is typically configured with economy class seating.", + "The ERJ 145 is a regional jet that was manufactured by Embraer. It is a twin-engine plane that has 50 seats.", + "The Embraer ERJ 145 is a twin-engined regional jet manufactured by Embraer, a Brazilian aerospace company. It seats up to 50 passengers and is flown by a two-pilot crew. It has a cruising speed", + "The ERJ 145 is a regional jet that was manufactured by Embraer, a Brazilian aerospace company. It is a twin-engine jet with a capacity of up to 50 passengers. It has a distinctive high-wing design and a T", + "One way to identify an ERJ 145 aircraft is by its signature stretched oval windows.", + "The McDonnell Douglas MD-80 is a series of twin-engine, short- to medium-range, single-aisle commercial jet airliners. It was lengthened and updated from the DC-9. This model was followed by", + "There are a few ways to identify an Embraer ERJ 145 aircraft. One way is by its distinctive shape. The ERJ 145 has a pointy nose and a swept-back wing design. Another way to identify an ERJ", + "It is a twin-engine regional jet that can seat up to 50 passengers. It has a distinctive hump on the top of the fuselage behind the cockpit, and its tail is square-shaped.", + "By looking at the shape of the aircraft and the engines. The ERJ 145 has a very distinctive shape and the engines are mounted on the wings.", + "Some ways that you can identify an ERJ 145 aircraft are by its distinctive shape, size, and colors. The ERJ 145 is a regional jet that is operated by regional airlines around the world. It is a popular aircraft for its fuel", + "There are several ways to identify an ERJ 145 aircraft. One way is by its shape. The ERJ 145 has a slanted nose and a small cockpit. It also has a small tail and wings. Another way to identify an ER", + "An ERJ 145 is a small aircraft that seats up to 50 people. It has two engines and is typically used for regional travel.", + "An aircraft ERJ 145 has a long body with two engines mounted on the wings. The aircraft has a high-mounted tail fin and a tricycle landing gear.", + "The ERJ 145 has a regional jet design with a swept-back wing and a engines mounted on the rear of the fuselage.", + "An aircraft ERJ 145 looks like a small, regional jet. It has a swept-back wing and a T-tail. The aircraft is typically powered by two turbofan engines.", + "ERJ 145s are small, regional jet aircraft. They have a narrow body and swept-back wings. The ERJ 145 is operated by a two-person crew and can seat up to 50 passengers.", + "An aircraft ERJ 145 typically has 50 seats and is used for short to medium distance flights. The aircraft is small and has two engines.", + "The Embraer ERJ-145 has a distinctive swept-wing design and is a regional airliner typically configured with 50 seats.", + "The ERJ 145 is a twin-engine regional jet that can seat up to 50 passengers. It has a swept wing and is powered by two turbofan engines.", + "The ERJ 145 is a twin-engine jet that seats up to 50 passengers. It has a widebody fuselage and is typically painted in the colors of an airline's livery.", + "http://www.airliners.net/photo/Embraer-ERJ-145/2211487/L/\nHere's a photo of an ERJ 145.", + "The image is of a small, white airplane with blue accents. The aircraft is parked on a runway with its nose pointed up. There is a orange and white striped flag in the background.", + "The image is of an Embraer ERJ-145 regional jet on take-off. The aircraft is followed by a long contrail of white exhaust fumes.", + "Image shows an Embraer ERJ 145 aircraft on a runway. The aircraft is white with blue and gold stripes. The nose of the aircraft is pointing up and there is a person in the cockpit. The tail of the aircraft says \"", + "An image of an aircraft ERJ 145 from the internet shows a large, white plane with blue stripes running down the sides. The planes engines are at the back, and the wings are attached to the sides of the fuselage. The plane", + "Image:This image shows an ERJ 145 aircraft on the runway, with its engines running. The aircraft is ready to take off.", + "An aircraft ERJ 145 is a small, regional jet that typically seats between 50 and 70 passengers. The aircraft has a slender fuselage with a swept-back wing and a T-tail. The ERJ 145 is powered by two turb", + "The image is of an aircraft on a runway with its engines at full power. The plane is taking off and the ground crew is giving it a final send off.", + "The image is of an ERJ 145 aircraft on a runway. The aircraft is white with blue and gold stripes. There is a gold crowned lion on the tail.", + "The image from the internet is of an ERJ 145 aircraft on the runway. The aircraft is white with blue and gold detailing. The engines are at the rear of the aircraft and there are three propellers. The aircraft is sitting on the", + "The image is of an ERJ 145 aircraft on the runway. The aircraft is white with blue and red stripes. The engine is at the back and there are two sets of doors on the side. The landing gear is down and the aircraft", + "This is an ERJ 145 aircraft, a model of which was first introduced in 1996. The aircraft is operated by American Eagle, a regional airline owned by American Airlines.", + " An ERJ 145 jetliner from American Eagle airlines takes off from Chicago O'Hare International Airport.", + "ERJ 145 aircraft on the tarmac", + "The ERJ 145 is a regional jet manufactured by Embraer.", + "Aircraft ERJ 145 on the runway at airport.", + "Aircraft ERJ 145 on runway", + "An ERJ 145 aircraft at an airport.", + "This image shows an ERJ 145 aircraft operated by American Eagle Airlines. This particular aircraft is registered as N144AE.", + " A commercial ERJ 145 aircraft coming in for a landing.]ERJ 145 aircraft are used for commercial flights by airlines around the world.", + " An ERJ 145 jetliner operated by American Airlines." + ], + "Embraer Legacy 600": [ + "The Embraer Legacy 600 is a mid-size business jet that offers refreshed style, unmatched performance, and state-of-the-art technology. The aircraft features a new interior designed to set a new standard of comfort and productivity in", + "The Embraer Legacy 600 is a mid-size business jet produced by Brazilian aerospace manufacturer Embraer. It is derived from the Embraer ERJ-135 family. The aircraft has a cruising speed of Mach 0.8 and", + "The Embraer Legacy 600 is a twin-engine midsize jet that can seat up to 12 passengers. The aircraft has a stand-up cabin and a lavatory. The exterior of the aircraft is white with blue and gold stripes.", + "The Embraer Legacy 600 is a business jet that seats up to 13 passengers. It has a range of 3,700 nautical miles and a top speed of 528 mph. The aircraft is powered by two turbofan engines and", + "The Embraer 600 is a twin-engine, executive jet that can seat up to 13 passengers. It has a beige leather interior, and a galley with refreshment center. The exterior of the aircraft is white with green and", + "The Embraer Legacy 600 is a twin-engine business jet that can seat up to 13 passengers. It has a stand-up cabin and a luggage compartment that can hold up to eight suitcases. The jet has a range of 3", + "A Legacy 600 is a twin-engine business jet that can seat up to 13 people. It has a large, oval-shaped fuselage with a pointed nose and swept-back wings. The cabin is typically divided into three sections: a", + "The Embraer Legacy 600 is a business jet that seats up to 13 people. It has a range of 3,400 nautical miles and a top speed of 528 mph. The aircraft is powered by two turbofan engines and", + "The Embraer Legacy 600 is a twin-engine, mid-size business jet developed and produced by Brazilian aircraft manufacturer Embraer. It is capable of carrying up to 13 passengers and has a range of 3,700 nautical miles", + "The Embraer Legacy 600 is a Brazilian business jet aircraft produced by Embraer. It is an updated and lengthened version of the Embraer ERJ-135LR andEmbraer ERJ-145LR. The", + "The Embraer Legacy 600 can be identified by its long range, large cabin, and advanced technology. The aircraft is also known for its high fuel efficiency and low operating costs.", + "The Embraer Legacy 600 is a business jet produced by Brazilian manufacturer Embraer. It is based on the Embraer ERJ-135 regional airliner.The aircraft can be identified by its swept-wing design and T", + "The Embraer Legacy 600 is a mid-size business jet produced by the Brazilian aircraft manufacturer Embraer. It is derived from the Embraer ERJ-135 regional airliner. The Legacy 600 is distinguishable from the ERJ", + "The Embraer Legacy 600 is a large business jet aircraft manufactured by Brazilian aerospace company Embraer. It is based on the Embraer ERJ-135 regional jet. The Legacy 600 is a derivative of the Embraer ER", + "An aircraft Embraer Legacy 600 can be identified by several ways. Some identification features include: the fuselage length, the presence of side-by-side seating in the cockpit, and the T-tail. The Embraer Legacy", + "The Embraer Legacy 600 is a business jet that can seat up to 13 people. It has a range of over 3,000 miles and a top speed of Mach 0.85. It is usually identified by its long nose and swept", + "The Embraer Legacy 600 is a large business jet manufactured by Embraer, a Brazilian aerospace company. It is recognizable by its long, slender fuselage and swept-back wings. The Legacy 600 is a derivative of the Embra", + "By its model number.", + "The Embraer Legacy 600 is a business jet that was manufactured by the Brazilian aerospace conglomerate Embraer. It is based on the Embraer ERJ-135 regional jet. The Legacy 600 is a stretched and upgraded version of the", + "The Embraer Legacy 600 can be identified by its long, pointed nose and swept-back wings. It also has a distinctive fuselage with a \"hump\" near the cockpit.", + "The Embraer Legacy 600 is a twin-engine business jet that can seat up to 13 people. It has a long range and can fly at high altitudes, making it ideal for long-distance travel. The aircraft is also known", + "The Embraer Legacy 600 is a business jet that seats up to 13 passengers. It has a large cabin with plenty of legroom and a galley for food and drinks. The exterior of the aircraft is white with blue stripes.", + "The Embraer Legacy 600 is a medium-size jet aircraft with a bulbous nose and swept-back wings. It has a large, rectangular fuselage with a solid, angular tail fin. The Legacy 600 typically seats between 9 and", + "An Embraer Legacy 600 is a mid-size business jet aircraft that typically seats between 12 and 14 passengers. The aircraft has a distinctive long nose and swept-back wing design. It is also one of the few business jet aircraft that", + "The Embraer Legacy 600 looks like a private jet. It has a sleek design and is often used by celebrities and business executives.", + "The Embraer Legacy 600 is a twin-engine business jet that seats up to 13 passengers. It has a swept-wing design and a T-tail. The fuselage is oval-shaped, and the wings are mounted on the", + "Click here to see a photo of an Embraer Legacy 600 aircraft.", + "The Embraer Legacy 600 is a mid-size jet aircraft with a swept-wing design. It has a T-tail and two engines mounted on the rear of the fuselage. The Legacy 600 typically seats between eight and twelve passengers", + "An Embraer Legacy 600 has a sleek, modern design with a long, tapered nose and swept-back wings. It is typically painted white with blue or green accents, and has a large, squared-off tail fin.", + "The Legacy 600 is a twin-engine business jet manufactured by Embraer, a Brazilian aerospace company. It is a derivative of the Embraer ERJ 145 regional jet. The Legacy 600 has a cruising speed of Mach 0.8", + "The image is of a white aircraft with blue and red stripes running down the sides. The aircraft has a pointed nose and small windows. The tail of the aircraft is blue with a red stripe. The aircraft is sitting on a runway.", + "The image is of a large, white aircraft with blue and gold stripes down the side. The aircraft has a sleek design and appears to be in good condition. The image is from the website of an aviation company.", + "The image is of a white aircraft with blue and gold stripes, parked on a tarmac. The aircraft has a long body and a shorter wingspan. The engines are mounted on the rear of the aircraft. The image shows the aircraft from", + "The image shows an Embraer Legacy 600 aircraft taxiing on a runway. The aircraft is white with blue and gold stripes running down the length of the fuselage. The Embraer logo is visible on the tail.", + "The image is of a small, private jet with a sleek, modern design. It is white with blue stripes running down the sides. The jet has a small cockpit with two large passenger windows. There is a small luggage compartment at the back", + "This image is of an Embraer Legacy 600 aircraft on the runway. The aircraft is white with blue and gold stripes running down the length of the fuselage. The aircraft has a pointed nose and four engines. The image is taken from", + "The aircraft is white with blue and gold stripes running down the side. The Embraer logo is on the tail. The nose of the aircraft is pointed and there are two engines attached to the wingtips. The Legacy 600 is a medium", + "The image is of a small, private business jet. It has a sleek, modern design and is painted white with blue and grey accents. The aircraft is sitting on a runway, ready for takeoff.", + "A photo of an Embraer Legacy 600 aircraft is shown on a runway. The white and blue plane is taxiing to a stop.", + "/650The image is of an Embraer Legacy 600/650 aircraft in flight. The aircraft is white with blue and gold stripes running down the length of the fuselage. The tail of the aircraft is blue with a gold stripe.", + "The Legacy 600 is a business jet aircraft produced by Brazilian manufacturer Embraer. The Legacy 600 is a derivative of the Embraer ERJ-135 regional jet.", + "A Legacy 600 business jet manufactured by Embraer, one of the world's leading producers of commercial and military aircraft.", + "Embraer Legacy 600 on approach to landingThe Embraer Legacy 600 is a twin-engine business jet that was introduced in 1995. It is part of the Embraer Legacy family, which also includes the Embraer", + "The Brazillian-made Embraer Legacy 600 is a popular choice for private jets, thanks to its spacious cabin and long range.", + " A private jet of the Embraer Legacy 600 model, parked on a runwayThe Embraer Legacy 600 is a private jet that seats up to 13 passengers. It has a range of 3,700 miles and is powered by two Rolls", + " A business jet aircraft designed and produced by Brazilian aerospace manufacturer EmbraerThe Embraer Legacy 600 is a business jet aircraft designed and produced by Brazilian aerospace manufacturer Embraer. It is based on the Embraer ERJ-135", + " An Embraer Legacy 600, a business jet aircraft manufactured by Brazilian aerospace manufacturer Embraer, sits on the tarmac.", + "The Embraer Legacy 600 features six leather seats, a galley, and a lavatory.", + " The Embraer Legacy 600 is a business jet aircraft manufactured by Brazilian aerospace conglomerate Embraer. It is derived from the Embraer ERJ 135 commercial airliner.The Embraer Legacy 600 is a business jet aircraft manufactured by Brazilian", + " \"Embraer Legacy 600 at sunset\"" + ], + "Eurofighter Typhoon": [ + "The Eurofighter Typhoon is a twin-engine, canard\u2013delta wing, multirole fighter. As of 2016, it is in service with seven nations. The United Kingdom, Germany, Italy, Spain, Austria, Saudi Arabia,", + "The Eurofighter Typhoon is a multi-role combat aircraft, designed and built by a consortium of European aerospace companies. It has a twin-engine, canard-delta layout configuration, and is capable of supersonic speeds. The", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. NATO's Typhoon fleet is made up of aircraft from the UK, Germany, Italy and Spain. The Typhoon has a distinctive look, with", + "The Eurofighter Typhoon is a twin-engine, canard\u2013delta wing, multirole fighter. Designed originally as an air superiority fighter, the Typhoon was developed into a successful multirole aircraft. It is capable of carrying DECM and", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. Designed originally as an air superiority fighter, the Typhoon has evolved over the years into a versatile platform capable of undertaking multiple roles, including air", + "An aircraft Eurofighter Typhoon looks like a fighter jet. It is a twin-engine, canard-delta wing, multirole aircraft. Eurofighter Typhoons are in service with seven nations. The aircraft has demonstrated, through its deployment", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. It is manufactured by a consortium of Airbus, BAE Systems, and Leonardo that conducts the majority of the project through a joint holding company", + "The Eurofighter Typhoon is a single-seat, twin-engine, agile combat aircraft which will be used in the air-to-air, air-to-ground and tactical reconnaissance roles.", + "An aircraft Eurofighter Typhoon looks like a small, sleek plane with two engines mounted on the wings. Its cockpit is large and its canopy is tinted to reduce glare.", + "The Eurofighter Typhoon is a multi-role fighter aircraft with capabilities in both air-to-air and air-to-ground combat. The aircraft is highly agile, with a delta wing design and can reach speeds of up to Mach 2", + "The Eurofighter Typhoon can be identified by its twin engines, delta wing configuration, and canards.", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. The aircraft's distinctive features include its canopy frame and acronym \"DAC\" for the nations of Germany, Austria, and Italy.", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter designed and built by a consortium of aerospace manufacturers from across Europe. The aircraft is notable for its extraordinary agility, making it a highly effective fighter", + "The easiest way to identify an Eurofighter Typhoon is by its swept wing design and twin engines.", + "The Airbus Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. The Typhoon was designed originally as an air superiority fighter and is manufactured by a consortium of Airbus, BAe Systems, and Leonardo that", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. Typhoon was designed originally as an air superiority fighter and is manufactured by a consortium of Airbus, BAE Systems and Leonardo that conducts the majority", + "There are several ways to identify an Eurofighter Typhoon aircraft. One way is to look for the unique \"twin-tail\" design. Another way is to look for the Eurofighter Typhoon's distinctive engine intakes.", + "An aircraft Eurofighter Typhoon can be identified by its unique shape. The aircraft has a long nose and a delta-wing design. It also has two engines, which are mounted on the back of the aircraft.", + "Some ways that you can identify an aircraft Eurofighter Typhoon are by its twin engines, canards, delta wing, and navigational lights.", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. The aircraft's design is derived from the Agile Combat Aircraft programme, which is a joint venture between the UK, Germany, Italy,", + "The aircraft Eurofighter Typhoon looks like a very sleek and powerful fighter jet. It is a twin-engine aircraft with a large canopy over the cockpit. The aircraft is very agile and can reach speeds of up to Mach 2. The Eurofighter", + "The Eurofighter Typhoon is a jet fighter aircraft designed and built by a consortium of Airbus, BAE Systems, and Leonardo that has operated in various countries since 2003. It is a highly agile aircraft capable of reaching supersonic speeds without using", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter designed and built by Airbus, BAE Systems, and Leonardo.", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. Designed originally as an air superiority fighter, the Typhoon has evolve into an effective all-weather multirole aircraft. The aircraft's airframe", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing multirole fighter. Eurofighter Typhoon's have a unique walk-around ability, thanks to their distinctive canard delta configuration, and when fully armed can carry up", + "A Eurofighter Typhoon aircraft looks like a large, twin-engine jet fighter with a long nose, low-set wings, and a single tail fin. The aircraft is camouflaged in a disruptive pattern of light and dark gray, green,", + "I am not sure what you are asking. Are you asking what the Eurofighter Typhoon looks like in general, or are you asking for specific details about the aircraft?", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter designed and built by a consortium of Airbus, BAE Systems, and Leonardo that conducts the majority of its testing and training in the United Kingdom", + "Image result for eurofighter typhoon aircraft\nThe Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter. Designed and built by a consortium of Airbus, BAE Systems and Leonardo, the aircraft", + "An aircraft Eurofighter Typhoon looks like a fighter plane. It is a twin-engine, canard-delta wing, multirole fighter.", + "The image is of a Eurofighter Typhoon aircraft with a brown and green camouflage pattern. The aircraft is in flight, with its landing gear down. The Europa star is visible on the aircraft's tail fin.", + "Photo shows a Eurofighter Typhoon multi-role fighter aircraft of the British Royal Air Force (RAF) taking off during Exercise Griffin Strike at Amari Air Base, Estonia. Griffin Strike is a UK-led air exercise involving over 100 aircraft", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter designed and built by Airbus, BAE Systems and Leonardo that first flew in 1994.", + "The image is of a Eurofighter Typhoon aircraft sitting on a tarmac. The front of the aircraft is facing the viewer with the nose pointing up. The aircraft has two engines and four jet intakes. There are three sets of tear-drop", + "The image is of a Eurofighter Typhoon aircraft flying through the sky. The aircraft is sleek and streamlined, with a long nose and swept-back wings. It is painted in a military camouflage scheme of green, brown and grey.", + "The image is of a Eurofighter Typhoon fighter jet flying through the air. The aircraft is being piloted by a person in a cockpit and is surrounded by a blue sky.", + "This image is of a Eurofighter Typhoon aircraft. It is a multi-role fighter aircraft designed to perform air-to-air and air-to-ground missions. The aircraft is capable of reaching speeds of up to 1,550 mph", + "The Eurofighter Typhoon is a twin-engine, multirole fighter jet equipped with advanced sensors and weaponry. Capable of reaching speeds of up to 1,550mph, the Typhoon is one of the world's most advanced fighter jets. The", + "The image is of a Eurofighter Typhoon aircraft flying through the sky. The aircraft is silver and has a white tail. There is a blue sky in the background.", + "The image is of a blue and grey aircraft with white and red stripes on the body and wings. The aircraft has two engines and is sitting on a runway.", + "\nAn Eurofighter Typhoon of the RAF's 11 Squadron takes off from RAF Coningsby, Lincolnshire, United Kingdom", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter designed and built by Airbus, BAE Systems, and Leonardo.", + "The Eurofighter Typhoon is a twin-engine, canard-delta wing, multirole fighter designed and built by a consortium of Airbus, BAE Systems and Leonardo that conducts the majority of its flight testing and training in Germany.", + "A Eurofighter Typhoon flying through the air.", + "The Eurofighter Typhoon is a twin-engine, multi-role fighter aircraft designed and built by a consortium of Airbus, BAe Systems, and Leonardo that has entered service with several nations.", + "\nA Eurofighter Typhoon aircraft flying through the sky.", + "A Eurofighter Typhoon of the German Air Force takes off during the NATO Days in Ostrava, Czech Republic.", + "An Eurofighter Typhoon jet fighter of the German air force takes off during NATO's Air Policing Mission in Estonia, September 3, 2014.", + " A Europa fighter jet takes off from an airbase.It's a Eurofighter Typhoon, one of the most advanced fighter jets in the world.", + "Eurofighter Typhoon at an air show" + ], + "F-16A/B": [ + "The F-16A/B is a single-engine, jet fighter aircraft. It has a delta wing and a conventional tail.", + "F-16s are small, single-engine aircrafts with a large vertical tail. They have a twin-seat cockpit and are highly maneuverable. F-16s are used by the Air Force, Navy, and Marine Corps.", + "The F-16A/B is a single-engine, multi-role fighter aircraft. It has a delta wing and is powered by a Pratt & Whitney F100-PW-200 turbofan engine. It has a length", + "The F-16A/B is a single-engine, supersonic fighter aircraft. The aircraft has a nose-mounted radar and a long canopy. The aircraft is armed with four AIM-9 missiles and two AIM-", + "The F-16A/B is a single-engine, jet fighter aircraft. It has a large cockpit canopy with a pressurized cabin. The aircraft has a wingspan of 29 feet 9 inches (9.1 meters) and is", + "The F-16A/B is a single-engine, supersonic fighter aircraft. It has a large cockpit canopy, and a small nose. The aircraft has swept wings, and a large tail fin.", + "The F-16A/B is a single-seat fighter aircraft. It has a trapezoidal wing with a leading edge sweep of 33.8 degrees and a trailing edge sweep of 4.5 degrees. The aircraft is powered by", + "The F-16A/B is a single-engine, fighters that are considered highly maneuverable. The aircraft has a long nose and cockpit canopy. They are typically armed with missiles and bombs.", + "The F-16A/B is a single-engine, supersonic multirole fighter jet. It has a narrow body and a large wing area. There are two vertical stabilizers. The jet has flat sides and a curved nose", + "The F-16A/B is a twin-engine, single-seat fighter aircraft. It has a bubble canopy, side-mounted control stick, and a nose-mounted radar. The aircraft is equipped with two M61 Vulcan cannons", + "The F-16A/B is a single-engine, multi-role fighter aircraft. It has a relatively small body and a large air intake in the nose. It is also equipped with a large vertical tail fin.", + "The Air Force designation for the F-16A is \"Fighting Falcon\". The F-16B is the two-seat variant of the F-16A.", + "The aircraft has a large air inlet at the front of the fuselage, and twin tail fins. The F-16A/B can be distinguished from the later F-16C/D models by its shorter nose.", + "The F-16A/B can be identified by its large air intake in the nose, swept-back horizontal stabilizers, and lack of cannon armament.", + "The F-16A/B can be identified by its single-engine design, swept-back wings, and horizontal stabilizers. The aircraft also has a large air intake on the front of the fuselage and a long nose.", + "F-16A/B aircraft can be identified by their unique configuration with a single seat, extended forward fuselage, and larger air intakes. They can also be distinguished by their shorter wingspan and less powerful engines.", + "The F-16A/B is a single-engine, supersonic multirole fighter aircraft. Development of the F-16A/B began in the 1970s, with production beginning in 1978. The F-16A/", + "The F-16A/B is a single-engine, supersonic multi-role fighter aircraft. It has a swept wing and a tricycle landing gear. It is powered by a General Electric F110-GE-129 turb", + "F-16A/B aircraft can be identified by their unique aerodynamic design, which includes a large air inlet on the nose and twin vertical stabilizers. They also have a large canopy and landing gear that are designed for high-", + "The F-16A/B is a single-engine, jet fighter aircraft. It has a Kneeboard for Checklists and flight information, MFDs (Multi Function Displays), and HOTAS (Hands On Thro", + "F-16A/B aircraft have a sleek design with a large jet engine in the back. They are typically painted in a camo pattern with gray, green, and brown colors.", + "An F-16A/B looks like a small, single-engine jet fighter with a large air intake in the front, wings that taper to a point at the back, and a horizontal stabilizer on the tail. The A", + "Differences between the F-16A and B are small and most easily noticed by trained personnel. The most visible difference is the position of the horizontal tail surfaces. On the F-16A, the elevators are in-line with", + "An aircraft F-16A/B looks like a small, single-engine plane with a large cockpit. It has a long, slender nose and a tapered fuselage. The wings are swept back and have a large surface area.", + "The General Dynamics F-16A/B is a single-engine, supersonic, air-to-air combat fighter designed as an air superiority day fighter. It first flew in 1974 and is still in production. It has been", + "The F-16A/B is a single-engine fighter aircraft. It has a slim body with a long nose. The cockpit is located in the middle of the aircraft. The wings are swept back and angled up. The tail is", + "The F-16A/B is a jet fighter aircraft. It has a single, large jet engine in the back, and a cockpit for the pilot in the front. The wings are swept back, and it has a horizontal tail.", + "F-16A/B aircraft have a nose-mounted radar, small wings, and a single engine. They are designed for air-to-air combat and can carry a variety of missiles and bombs.", + "There is no definitive answer to this question as the appearance of an F-16A/B can vary depending on the specific aircraft's modifications, paint job, and other factors. However, in general, an F-16A/B", + "The F-16A/B is a single-engine, fighter aircraft. It has a tapered fuselage and a bubble canopy. The F-16A/B is armed with two internal 20mm guns and can carry a variety", + " FalconThe image is of an aircraft F-16A/B Falcon. It is a fighter jet that was designed in the 1970s. It has a single seat and is armed with missiles and bombs.", + "The image is of an aircraft with a sleek design and sharp angles. The body is mostly silver with a blue and white stripe running down the middle. The wings are slightly swept back and there are four engine intakes on the sides of the fu", + "The image is of an aircraft F-16A/B in mid-flight. The aircraft is shown in profile with its wings extended. The blue sky is visible in the background.", + "The image is of an aircraft with a sleek design and sharp angles. The body is primarily white with blue and grey accents. The cockpit is located towards the front of the aircraft and there are missiles mounted on the wings.", + "The image is of an aircraft F-16A/B with a blue and white checked fuselage and blue and white stripes running along the length of the aircraft. The aircraft has two engines, one on each side of the fuselage,", + " appling afterburnerAircraft F-16A/B applying afterburner: In this image, an aircraft is shown applying afterburner while taxiing down the runway. Afterburner is a process whereby fuel is injected into", + " Block 40The aircraft is mid-grey with air intakes on the sides of the nose. It has a single vertical tail fin and horizontal tailplanes with wingtip missiles. There are pylons under the wings and fuselage.", + " Block 30The F-16A/B Block 30 is a single-engine, multi-role fighter aircraft. It has a sleek design with a titanium body and a large canopy. The aircraft is armed with a variety of weapons, including", + " Block 10The image is of an aircraft called the F-16A/B Block 10. It is a military plane designed for air-to-air combat. The plane is mostly white with blue and grey stripes running down the side.", + "The image is of a plane flying through the sky with the sun shining behind it. The plane is silver with blue and white stripes running down the sides. There is a large American flag on the plane's tail.", + "Aircraft F-16A/B", + "An F-16A/B aircraft on a runway.", + "This image shows an F-16A/B fighter aircraft. The aircraft is armed with a variety of weapons, including air-to-air missiles, and is capable of carrying out a variety of missions.", + "An F-16A/B aircraft flying through the air.", + "An F-16A/B aircraft from the U.S. Air Force", + "USAF F-16A/B aircraft", + " The F-16 Fighting Falcon is a sleek, nimble jet fighter with precision control.", + "The F-16A/B is a twin-engine fighter aircraft.", + " The F-16 is a multifunctional fighter aircraftThe F-16 is a multirole fighter aircraft developed by Lockheed Martin. It has been in service with the United States Air Force since 1984.", + "An F-16A/B fighter jet takes off from an airfield." + ], + "F/A-18": [ + "The F/A-18 is a twin-engine fighter aircraft that is used by the United States Navy and Marine Corps. The aircraft is capable of performing a variety of missions, including air-to-air combat, air-to-", + "An aircraft F/A-18 looks like a military plane with a long nose, twin tails, and large wings. It is usually painted in camouflage colors.", + "An aircraft F/A-18 looks like a large jet plane with a long nose and swept-back wings. It has a twin-tail configuration and can carry a variety of weapons.", + "The F/A-18 is a twin-engine, supersonic, all-weather, carrier-capable, multirole fighter jet, designed as both a fighter and attack aircraft. The aircraft is 50 ft long with a 40", + "The McDonnell Douglas F/A-18 Hornet is a twin-engine supersonic, all-weather carrier-capable multirole fighter jet, designed as both a fighter and attack aircraft. The F/A-18 was derived", + "The McDonnell Douglas F/A-18 Hornet is a twin-engine, supersonic, all-weather, carrier-capable, multirole fighter jet, designed as both a fighter and attack aircraft (hence the F/", + "It is a twin-engine supersonic, all-weather carrier-capable multirole combat jet, designed as both a fighter and attack aircraft (hence the F/A designation). It was designed by McDonnell Douglas and Northrop", + "The F/A-18 is a twin-engine, carrier-capable, supersonic fighter jet which first flew in 1978. Most F/A-18s are single-seat aircraft, but some versions are equipped with a", + "The F/A-18 is a twin-engine, supersonic, all-weather, carrier-capable, multirole fighter jet, designed to loft nuclear bombs and to dogfight and destroy enemy aircraft. It is launching from", + "An F/A-18 aircraft looks like a small, fighter-style plane. It has two engines, two wings, and a cockpit that fits one pilot. The plane is painted in a distinctive camouflage pattern, and it has a tail", + "The F/A-18 is a twin-engine, supersonic, all-weather, carrier-capable, multirole fighter jet, designed as both a fighter and attack aircraft. It has a size close to that of the", + "The F/A-18 has a twin-engine configuration and a trapezoidal wing. It is also equipped with a ventral fin and a tall tail. The aircraft is capable of carrying a variety of weapons, including air-to", + "The F/A-18 is a twin-engine, multi-role fighter jet. It is highly maneuverable and can perform a variety of missions. It has a large airframe and is easily identifiable by its swept-back wings and", + "It is a McDonnell Douglas aircraft. The F/A-18A is a single-seat aircraft, while the F/A-18B is a twin-seat aircraft. Both are equipped with afterburners and can operate at su", + "The F/A-18 has a twin tail, swept-back wings, and a nose cone that slopes back from the cockpit.", + "The F/A-18 has a unique shape that is easy to recognize. It has a twin-tailed design and a large air intakes on the sides of the fuselage.", + "It is a twin-engine, all-weather multirole fighter jet. It has a bubble canopy, twin tails, and squared-off wingtips.", + "Some identifying characteristics of the F/A-18 aircraft are its twin tails, dual engines, and swept-back wings. The aircraft is also equipped with a variety of sensors and weapons, including a 20mm M61A1 cannon,", + "There are several ways to identify an F/A-18 aircraft. One way is to look for the small triangle-shaped windows near the front of the cockpit. These are called forward-looking infra-red (FLIR) sensor", + "F/A-18 aircraft can be identified by their twin engines, normal flight configuration (as opposed to vertically), and swept-back wing design. In addition, F/A-18s are generally armed with a variety of missiles and", + "The F/A-18 is a twin-engine fighter jet designed for both air-to-air and air-to-ground combat missions. It has a low-wing design and is armed with a 20mm cannon and can carry", + "The body of an F/A-18 is aerodynamic and jet-like. It has a large cockpit for the pilot and a large, rectangular-shaped engine in the back. The wings are swept back and provide lift and stability during", + "Aircraft F/A-18s are designed to look like fighters, with a large cockpit and canopy, small fuselage, and swept-back wings. They typically have two engines, although some versions have only one, and they are", + "An aircraft F/A-18 looks like a large military plane with a long nose and two large engines. The back of the plane has a large horizontal stabilizer, and the wings are swept back. There are typically two seats in the", + "The F/A-18 is a twin-engine, single-seat, supersonic fighter jet. It has a swept-back wing design and a nose- mounted radar. The cockpit is located on the top of the fuselage", + "An aircraft F/A-18 looks like an airplane with two engines, a cockpit for the pilot and co-pilot, and a weapons bay. It has a triangular shape when viewed from the front or back.", + "Aircraft F/A-18 Hornets are twin-engine, all-weather fighter-bombers. They are designed to be launched from an aircraft carrier and are capable of flying at supersonic speeds and carrying a variety of weapons", + "An F/A-18 aircraft looks like a fighter jet with two tails. It has a nosecone and cockpit, and two wings that each have a horizontal stabilizer. There are two engines mounted on the rear of the aircraft.", + "An F/A-18 is a military fighter jet. It is a twin-engine aircraft, and has a delta wing design. The cockpit is pressurized, and has room for two pilots. The aircraft is armed with guns and missiles", + "F/A-18 aircraft have a distinct hornet's nest paint scheme. They are twin-engine, supersonic fighter-bombers. Each engine has afterburners for added thrust during takeoff and combat. The aircraft has", + " HornetThe F/A-18 Hornet is a supersonic twin-engine fighter jet designed for both air-to-air and air-to-ground combat. The aircraft is highly maneuverable and can take off from both", + "In the image, an F/A-18 is taking off from an aircraft carrier. The carrier is launch-assisting the take-off by supplying thrust with its powerful engines. The F/A-18 is already airborne, and", + "E/F Super HornetImage is of an aircraft with blue and white paint. It has a long nose and sleek body. The wings are swept back and there are two engines mounted on the rear. The aircraft is sitting on a runway", + " HornetThe image is of an aircraft in mid-flight, with the sun shining behind it. The aircraft is blue and white, with the American flag visible on the tail. The F/A-18 Hornet is a fighter jet", + " E/F Super HornetThis image is of an aircraft F/A-18 E/F Super Hornet. The Super Hornet is a twin-engine, carrier-based fighter jet. It is capable of carrying a variety of", + "This image from the internet shows an aircraft F/A-18 flying through the air. The aircraft is armed with missiles and bombs and is ready to engage in combat. The F/A-18 is a highly maneuverable fighter jet that", + " HornetThis image is of an aircraft F/A-18 Hornet flying through the air. The aircraft is a military plane that is used for combat. The F/A-18 Hornet is a twin-engine plane that is", + " HornetThe image shows an aircraft F/A-18 Hornet in mid-flight, with its long body and sleek wings. The tail is emblazoned with the American flag, and the overall effect is one of speed and", + "C The F/A-18C is a single-seat, twin-engine, all-weather, carrier-capable, multirole combat jet aircraft. It was designed by McDonnell Douglas (now Boeing) and Northrop in the", + " Super HornetIn the image, an aircraft is shown in profile, with its nose pointed slightly downward. The aircraft is mainly gray, with a black and white checkered pattern on its tail. The aircraft has two engines, and its", + " U.S. Navy F/A-18 taking off from an aircraft carrier", + "F/A-18 aircrafts are some of the most versatile and advanced aircrafts in the world. They are used by the US military for a variety of tasks, including air-to-air combat, air-to-ground attacks", + "This image shows an F/A-18 aircraft flying through the air. The aircraft is a military plane that is used for combat and support missions.", + " F/A-18 aircraft refueling in flight", + "\"What an incredible sight!\"An F/A-18 Hornet flying in formation with another aircraft.", + "A U.S. Navy F/A-18 Hornets lands on the deck of the aircraft carrier USS George Washington (CVN 73) during a replenishment-at-sea with the Military Sealift Command-operated fast combat support ship", + "A United States Navy F/A-18 Hornet aircraft takes off from the flight deck of the aircraft carrier USS Harry S. Truman in the Mediterranean Sea.", + "An F/A-18 aircraft taking off from an aircraft carrier", + "An F/A-18 aircraft flying in formation with other aircraft.", + "\"The F/A-18 Hornet is a twin-engine, supersonic, all-weather fighter jet, designed to be aircraft carrier-compatible.\"" + ], + "Falcon 2000": [ + "A Falcon 2000 is a twin-engine jet airplane that can seat up to ten people. It has a sleek design and is typically white with gray or blue accents.", + "The aircraft Falcon 2000 is a twin-engine business jet.It has a swept-wing design and typically seats up to eight passengers.", + "The aircraft Falcon 2000 has a sleek design with a long nose and two engines mounted on the wings. It is typically silver in color.", + "The Dassault Falcon 2000 is a twin-engine business jet manufactured by Dassault Aviation. It is a member of the Falcon family of business jets. The Falcon 2000 made its maiden flight on 7 October 1993 from Toulouse, France.", + "The Falcon 2000 is a twin-engine corporate jet aircraft produced by the French-American manufacturer Dassault Aviation. It was introduced at the Paris Air Show in 1996. The Falcon 2000 is a refinement of the Falcon 900 design, and shares its", + "The Falcon 2000 is a twin-engine private jet that can seat up to ten passengers. Its fuel-efficient engines give it a range of over 3,000 miles, making it ideal for long-distance travel. The aircraft is also equipped", + "The aircraft Falcon 2000 looks like a white jet with two engines.", + "The Falcon 2000 is a twin-engine business jet aircraft created by Dassault Aviation. It has a super mid-sized fuselage, and typical seating is for eight people. The aircraft is often used for transcontinental flights.", + "The 2000 model is a low-wing cantilever monoplane with cruciform tail. It has a retractable tricycle landing gear and is powered by two turbofan engines mounted in nacelles on the rear wing. The", + "The aircraft Falcon 2000 has a long nose and a twin-tail design. It is a small to midsize business jet that can seat up to eight passengers. It has two engines, and its wings are swept back at an angle. The", + "By looking at the shape of the aircraft and the positioning of the engines. The Falcon 2000 has a distinctive V-shaped tail and engines that are positioned at the back of the plane near the tail.", + "The aircraft Falcon 2000 can be identified by its long nose and swept-back winglets. It also has two engines, which are mounted on the rear of the fuselage.", + "The simplest way to identify a Falcon 2000 is by its V-shaped tail. This aircraft also has a distinctive long, narrow fuselage.", + "There are several ways to identify an aircraft Falcon 2000. One way is to look for the model number on the side of the aircraft. Another way is to look for the manufacturer's name, which is usually prominently displayed on the aircraft.", + "The Falcon 2000 is a twin-engine corporate jet aircraft produced by the French manufacturer Dassault Aviation. It was introduced in 1994 and is now in its third generation. The Falcon 2000 is a derivative of the earlier Falcon 900, and shares the", + "One way to identify a Falcon 2000 aircraft is by its V-shaped tail. The V-tail is uncommon among business jets, and helps the Falcon 2000 stand out from the crowd.", + "The aircraft Falcon 2000 can be identified by its long nose and swept-back wing design. Additionally, this aircraft typically has two engines mounted on the back of the fuselage.", + "The easiest way to identify a Falcon 2000 aircraft is by its unique winglets. These winglets are swept back and create a V-shape at the tips of the wings. The Falcon 2000 also has a very distinctive swept-back tailfin", + "The aircraft Falcon 2000 can be identified by its swept-back wings and long, curved nose. It is a twin-engine business jet that can seat up to eight passengers.", + "The aircraft Falcon 2000 can be identified by its long range, sleek design, and advanced avionics.", + "The Dassault Falcon 2000 is a twin-engine business jet developed and manufactured by Dassault Aviation. It features a supercritical wing, and is powered by two Garrett TFE731-5AR-1C turbofan engines.", + "The Falcon 2000 is a twin-engine private and business jet. It has two turbofan engines, a T-tail, and a swept-wing. The aircraft is available in several different models, each with different engines and different ranges", + "The Falcon 2000 is a mid-sized business jet aircraft produced by Dassault Aviation. It has a swept-wing design and is powered by two turbofan engines. The aircraft's cabin can seat up to 10 people.", + "Aircraft Falcon 2000 looks like a small, private jet. It is white with blue stripes and has a pointed nose.", + "The Falcon 2000 is a business jet aircraft made by Dassault Aviation. It is a twin-engine jet plane that can seat up to nine people. It has a sleek, modern look with a long, pointed nose and swept-back wings", + "An aircraft Falcon 2000 looks like a small, private jet. It has a sleek design and typically seats between eight and ten people.", + "Aircraft Falcon 2000s are small, twin-engine business jets. They have a distinctive swept-wing design and are typically painted white with blue stripes.", + "Image result for falcon 2000 aircraft", + "The aircraft Falcon 2000 looks like a small, private jet. It has a sleek design and is often white in color. It has two engines and typically sits between eight and ten people.", + "The aircraft Falcon 2000 looks like a small, private jet. It has a sleek body and is white with blue stripes.", + "The image is of a white aircraft with blue and gold stripes. It has a long body and 2 engines. The Falcon 2000 is a private jet that can seat up to 12 people.", + "The image is of a white Falcon 2000 aircraft with a blue and gold stripe running down the length of the fuselage. The aircraft is pictured from a low angle, with the nose pointing up slightly. The landing gear is down and the wings", + "SYThis image is of a small, private jet known as the Falcon 2000SY. The airplane is white with blue and gold accents. The jet is parked on a tarmac with its nose pointing up.", + "The image is of a white aircraft with blue and gold stripes. It has two engines and a long body. The tail is tall and pointy.", + "The image is of a white aircraft with blue and gold stripes. The nose of the aircraft is pointed down and the wings are swept back. The aircraft is sitting on a runway with the engines running.", + "The image shows a Falcon 2000 twin-engine business jet aircraft taxiing on a runway. The aircraft is white with blue and gold stripes.", + " cxThe aircraft Falcon 2000 cx is a small, private jet that seats up to ten passengers. It has a range of 3,000 miles and a top speed of 590 mph. The jet is based on the Falcon 2000 platform, which", + "The image is of a white aircraft with blue and gold stripes. It has two engines and two tails. The nose of the aircraft is pointed and it has a small cockpit. The Falcon 2000 is a small, private jet.", + "EXThe image is of a private jet with the name \"Falcon 2000EX\" written on the side. The jet is white with blue stripes.", + "The aircraft Falcon 2000 is a twin-engine business jet created by Dassault Aviation. The image shows the jet in flight, with its long wings and sleek design. The jet is blue and white, with the Dassault logo on the tail", + " A private jet Falcon 2000 taking off from runway.The Falcon 2000 is a private jet that seats up to eight people. It is made by Dassault Aviation.", + "The Falcon 2000 is a business jet aircraft produced by Dassault Aviation.", + "The Falcon 2000 is a twin-engine business jet plane manufactured by Dassault Aviation.", + "The Falcon 2000 is a twin-engine business jet.", + " Falcon 2000 business jet}", + "A Falcon 2000 twin-engine business jet aircraft taxiing on a runway.", + "The Falcon 2000 is a twin-engine business jet developed and manufactured by Dassault Aviation. It was introduced in 1994 and was the first business jet offered with a choice of three engines.", + "This is a picture of a Falcon 2000, a twin-engine business jet. It is manufactured by Dassault Aviation, a French company.", + "The Falcon 2000 is a business jet that was introduced in 1994.", + "Aircraft manufacturer Dassault Aviation's Falcon 2000 is a twin-engine business jet that first flew in 1993." + ], + "Falcon 900": [ + "A Falcon 900 is a private jet that seats up to 13 people. It has a swept-wing design and is powered by three engines. The cabin is typically configured with a seating area, a galley, and a lavatory.", + "An aircraft Falcon 900 looks like a small, private jet. It has a long, slender body with swept-back wings and a tail fin. The cockpit is located at the front of the aircraft, and there is a small passenger cabin behind", + "The aircraft Falcon 900 is a three-engine jet plane that seats up to nine people. It has a maximum range of 4,000 miles and a top speed of Mach 0.9.", + "The Gulfstream G550 is a business jet aircraft produced by General Dynamics' Gulfstream Aerospace subsidiary. It has a maximum range of 6,750 nautical miles (12,501 km) and a maximum speed of Mach 0.85 (", + "The aircraft Falcon 900 is a long-range jet with three engines and a T-tail. It has a sleek, modern look and can seat up to 12 passengers.", + "An aircraft Falcon 900 is a business jet that can seat up to 18 people. It has a maximum range of 5,950 miles and a cruising speed of 528 mph. The aircraft is armed with Raytheon missiles and can be used", + "The Falcon 900 is a three-engine private jet with a swept-back wing and a T-tail. It has a cabin that can seat up to 13 passengers.", + "The Falcon 900 is a three-engine business jet with a T-tail. The aircraft has a swept-wing design and is manufactured by Dassault Aviation.", + "The Dassault Falcon 900 is a French-built private jet aircraft with three engines, a low-wing monoplane with a T-tail. It has a cruise speed ofMach 0.80 and a range of 5,950 km (", + "A Falcon 900 is a three-engine private jet with a T-shaped tail. The aircraft is generally white with blue and gold stripes.", + "The Falcon 900 is a three-engine business jet produced by the French manufacturer Dassault Aviation. It has a distinctive physical appearance, with a T-shaped tail and swept-back wings.", + "An aircraft Falcon 900 can be identified by its long nose and three engines, one under each wing and one at the base of the vertical stabilizer.", + "The Falcon 900 is a business jet aircraft produced by Dassault Aviation. It is a three-engine jet aircraft with a T-tail. The Falcon 900 has a swept-wing design and is equipped with twin turbofan engines. It", + "The Falcon 900 is a business jet that can seat up to twelve people. It has a swept wing and three engines, and is made by Dassault Aviation.", + "The Falcon 900 is a long-range business jet aircraft produced by the French-American manufacturer Dassault Aviation. It is a triple-engined jet aircraft equipped with a T-tail. The Falcon 900 has three variants: the Falcon 900", + "The aircraft Falcon 900 can be identified by its large swept-back wings and three engines. It has a low-mounted horizontal stabilizer and a V-shaped tail. The aircraft is also equipped with large cargo doors and a large number of", + "The Falcon 900 is a mid-size business jet aircraft produced by Dassault Aviation. Its features include a trijet layout, a low-mounted swept wing, and twin turbofan engines mounted on pylons beneath the wings.", + "The easiest way to identify a Falcon 900 is by its unique three-engine layout. The third engine is located in the center of the aircraft, just behind the main cabin. Other notable features include the swept-back wings and the large T", + "The Falcon 900 is a business jet aircraft that can be identified by its trijet configuration and T-tail. The aircraft also has a distinctive nose that tapers to a point.", + "The Falcon 900 is a French-built private jet aircraft produced by Dassault Aviation. Its features include a trijet layout, an S-duct air intake for the middle engine, and a carbon fiber reinforced epoxy fuselage.", + "An aircraft Falcon 900 typically has three engines, swept-back wings, and a tapered body. The body is typically white with blue or red stripes running along the length of the fuselage.", + "The Falcon 900 is a jet aircraft that typically seats 8-10 passengers. It has a swept-wing design and is typically painted white with blue or red stripes running down the length of the fuselage.", + "The Falcon 900 is a business jet aircraft manufactured by Dassault Aviation. It has a high-mounted cantilever wing and is powered by three turbofan engines. It has a T-tail configuration.", + "The Falcon 900 is a business jet aircraft produced by the French manufacturer Dassault Aviation. Its approximate dimensions are: 25.5 m in length, 8.2 m in width, and 8 m in height. Its wingspan is 21.", + "Unfortunately we cannot answer this question without seeing a photo or specific description of the aircraft you are asking about.", + "Aircraft Falconf 900 looks like a small, sleek jet with a triangular shape. Its nose is pointy and its tail is long and slender. TheFalcon 900 has a wingspan of just under 43 feet and is just over 30", + "Like any other private jet, a Falcon 900 looks like a small airplane. It typically seats between eight and 12 people, and has a range of about 3,000 miles. The actual design of the aircraft may vary slightly depending on the manufacturer", + "The Dassault Falcon 900 is a French-built business jet. It looks like a small commercial airliner, with three engines mounted on the tail and a T-shaped tail fin.", + "An aircraft Falcon 900 looks like a small plane with two engines on the back.", + "The Falcon 900 is a private jet produced by Dassault Aviation. It is a three-engine jet that can seat up to 12 people. It has a swept-wing design and a T-tail. The cockpit is pressurized and has", + "Image shows a white Falcon 900 aircraft with blue and gold stripes on the tail and body. The nose of the aircraft is pointed upward and there is a blue sky in the background.", + "The image is of a white Falcon 900 aircraft with blue and gold stripes running down the length of the body. The aircraft has a pointed nose and two engines, one on each side of the fuselage. The Falcon 900 is a private jet", + ".Aircraft Falcon 900 is a twin-engine business jet developed by France's Dassault Aviation. It is now produced by Dassault Aviation and Dassault Falcon Jet, a United States-based subsidiary. The Falcon 900 is part of the", + "The image is of a white Falcon 900 aircraft with a blue and gold stripe down the side. The aircraft is on the runway with its nose pointing up.", + "EXThe image is of a white aircraft with blue and grey stripes. It has three engines, two on the sides and one in the middle. The wings are swept back and it has a pointed nose.", + "The image is of a white falcon 900 aircraft with blue and gold stripes. The words \"FALCON 900\" are written on the side of the aircraft in blue. The image shows the aircraft in flight, with its wings outstretched", + "The image is of a white aircraft with blue and orange stripes. The nose and cockpit are visible, as well as the wings and engines. The aircraft is sitting on a runway with a control tower in the background.", + "The image is of a white and blue business jet with the word \"FALCON\" written on the side. The aircraft is parked on a runway with its engines turned off.", + "EXThe image is of a white Falcon 900EX aircraft with blue and gold stripes on the sides. The nose of the aircraft is pointed up and the tail is down. The three engines are visible, as well as the landing gear. The", + "EXThe plane is silver with three engines and a long, pointed nose. It has a sleek design and looks like it would be very fast.", + "The Falcon 900 is a private jet that seats up to 12 passengers. It has a range of 4,000 miles and a top speed of 590 mph.", + "The Dassault Falcon 900 is a French-built business jet with three engines. It has a range of roughly 5,950 nautical miles and can seat up to 12 passengers.", + "Dassault Falcon 900 taking off", + "The Falcon 900 is a private jet known for its comfort and range.", + "The Falcon 900 is a twin-engine business jet aircraft produced by Dassault Aviation.", + "The Falcon 900 is a business jet aircraft produced by the French manufacturer Dassault Aviation.", + " The Falcon 900 is a business jet aircraft produced by the French-American manufacturer Dassault Aviation.", + "The Gulfstream V speeds along at over 600 miles per hour, making it one of the fastest business jets in the sky.", + "Aircraft Falcon 900 business jet.", + "This is a Falcon 900, a business jet aircraft manufactured by Dassault Aviation." + ], + "Fokker 100": [ + "The Fokker 100 is a twin-engined short-range regional airliner with a capacity of up to 100 passengers, designed by the Dutch aircraft manufacturer Fokker. The aircraft is all white with blue stripes running along the length of", + "The Fokker 100 is a twin-engined regional aircraft, manufactured by the Dutch aviation company, Fokker. It seats up to 108 passengers and has a range of 2,500 kilometers. The aircraft is all-white with", + "A Fokker 100 is a twin-engine short-range transport aircraft, produced by the Dutch aerospace manufacturer Fokker. It is a development of the Fokker F28 Fellowship, capable of carrying up to 112 passengers. It", + "An aircraft Fokker 100 looks like a large, metal, pointed structure with wings attached to the sides. The Fokker 100 is a commercial aircraft that can seat up to 100 passengers. It is a twin-engine jet airliner that", + "The Fokker 100 is a twin-turbofan jetliner. It has a T-tail and a two-man crew. It seats between 100 and 150 passengers. The 100 was first flown in 1986 and first entered service", + "The Fokker 100 is a twin-engine jet airliner from the Dutch manufacturer Fokker. The airplane seats 100 passengers and has a cruising speed of 575 kilometers per hour. The Fokker 100 is 27.8 meters long", + "An aircraft Fokker 100 looks like a twin-engine jet airliner.", + "The Fokker 100 is a twin-engined regional jet that can seat up to 100 passengers. It has a swept-back wing design and a T-tail. The plane is mostly white with a blue stripe running down the length", + "An aircraft Fokker 100 looks like a small, twin-engine jetliner. It has a sleek fuselage with a pointed nose and large windows. The wings are swept back and the tail is tall and slender. There are two engines", + "An aircraft Fokker 100 looks like a small, twin-engine jetliner. It has a swept-back wing and a T-tail. The Fokker 100 seats up to 100 passengers and has a range of over 2,", + "The Fokker 100 can be identified by its distinctive stepped cockpit windscreen, swept-back wing configuration, and three-tail design. Additionally, the Fokker 100 has a longer fuselage and taller tail fin than its predecessors,", + "An aircraft Fokker 100 can be identified by its long nose and high tail. It also has a large fuselage and a wide wingspan.", + "Fokker 100 aircraft can be identified by their unique sharp nose and swept-back wings. These aircraft also have large windows and two engines.", + "The Fokker 100 can be identified by its distinctive squared-off nose and large cockpit windows. It is a twin-engine jetliner that can seat up to 130 passengers.", + "Fokker 100 aircraft can generally be identified by their oval-shaped fuselage, swept-back wings, and twin engines mounted on the rear of the fuselage. They also have a distinctive nose shape, with a large glass cockpitwind", + "Fokker 100 aircraft can be identified by their distinctive nose shape, which is bullet-shaped, and by their large engines, which are located under the wings.", + "The Fokker 100 is a regional airliner that was designed and manufactured by the Dutch aircraft manufacturer Fokker. The aircraft is easily identifiable by its T-tail and swept-back wings.", + "The best way to identify an aircraft Fokker 100 is to look for the manufacturer's name, which is usually printed on the side of the aircraft.", + "Fokker 100 aircraft can be identified by their distinctive oval-shaped windows and long, narrow nose. The Fokker 100 is a twin-engine jet airliner that can seat up to 100 passengers. It has a range of approximately 3", + "You can identify a Fokker 100 aircraft by looking for its distinctive tail fin, which is taller and more sharply angled than on other types of aircraft. The Fokker 100 also has a longer and narrower fuselage than most other types", + "An aircraft Fokker 100 looks like it has a long nose and a swept-back wing. It also has two engines and a tail fin.", + "Fokker 100s are twin-engine passenger jets that seat between 86 and 100 passengers. They have a long body and short wings, and they are painted white with blue and red stripes running down the sides.", + "Image result for fokker 100 airplane", + "The Fokker 100 is a Dutch twin-turbofan short-haul airliner. It has a distinctive stepped cockpit windscreen, slanted aft-fuselage and a delta wing.", + "Fokker 100 aircraft have a distinctively high wing and T-tail design. They are usually white with blue stripes running along the length of the fuselage.", + "There is no definitive answer to this question as each airline tends to customize the look of their aircraft to some extent. However, in general, the Fokker 100 is a twin-engine jetliner with a swept-back wing design and", + "Image result for fokker 100 aircraft", + "The Fokker 100 is a twin-engined regional jetliner. It has a narrow-body configuration and can seat up to 100 passengers. The aircraft has a length of 39.9 meters and a wingspan of 34.1", + "The Fokker 100 is a twin-turboprop commercial airliner. It has a a swept-wing design with a T-tail. The aircraft is designed for short- to medium-range flights. It typically seats 100 passengers", + "A Fokker 100 looks like a small, silver airplane. It has two engines, and a long, skinny body. The wings are swept back, and the tail is tall and slender.", + "The image on the internet shows an aircraft called the Fokker 100. It is a short-haul airliner that was produced by the Dutch aircraft manufacturer Fokker. The 100 was introduced in 1986 and was the first jetliner built by", + "This image is of a Fokker 100 aircraft on the runway. The aircraft is white with blue and red stripes running down the length of the fuselage. The Fokker 100 is a twin-engine jet airliner, and can seat", + "This image is of a Fokker 100 aircraft parked on a tarmac. The aircraft is a silver color with blue and white stripes running down the length of the fuselage. The image is taken from a low angle, looking up at", + "This image shows a Fokker 100 aircraft taxiing on a runway. The aircraft is a twin-engine, narrow-body jetliner. The image shows the aircraft's distinctive nose, which is long and pointed. The aircraft is painted", + "The Fokker 100 is a short-range, twin-engined jetliner with 100 seats. It has a commonality with the earlier Fokker F28 Fellowship, sharing the same wing design and engines, as well as the", + "The image is of a blue and white Fokker 100 aircraft on a blue sky background. The aircraft has a long nose and a swept-back wing. There is a white stripe along the length of the fuselage.", + "The image is of an aircraft called the Fokker 100. It is a twin-engine, single-aisle jetliner. The aircraft is mostly white with a blue and red stripe running down the length of the fuselage. The", + "The image is of a Fokker 100 aircraft on a runway. The aircraft is white with blue stripes running down the side. There is a blue and white checkered flag in the background.", + "The Fokker 100 is a narrow-bodied, twin-engine jet airliner originally manufactured by the Dutch aviation company Fokker. The aircraft is now produced by Daher-Socata, under the name TBM 930.", + "Image shows a Fokker 100 aircraft on a runway with its nose up and its tail down. The plane is blue with white and grey stripes running down its sides. Its engines are at full power and the plane is about to take off", + "Fokker 100 on take-offThis Fokker 100 is taking off from an airport runway. The Fokker 100 is a twin-engine, short-haul commercial airliner.", + " Fokker 100 aircraft.The Fokker 100 is a Dutch twin-engine, medium-sized jetliner that was introduced in 1986 by Fokker, now part of the Airbus Group. More than 300 Fokker 100s", + "The Fokker 100 is a Dutch turbofan-powered airliner, introduced in 1986. It has the distinction of being the first jet-powered aircraft to be designed and built entirely in the Netherlands.", + "A Fokker 100 aircraft takes off from Amsterdam Airport Schiphol.", + "A Fokker 100 aircraft in flight.", + "Fokker 100 flying over the clouds", + " A Fokker 100 operated by Avianca landing at El Dorado International Airport, Bogot\u00e1, ColombiaImage source: commons.wikimedia.orgThe Fokker 100 is a twin-turbofan jet", + "German airline Lufthansa operated this Fokker 100 on domestic and European routes in the 1990s.", + "A Fokker 100 aircraftThis Fokker 100 is a Dutch twin-engined jet airliner, introduced in 1984. It has a capacity of up to 119 passengers and a range of over 2,000 miles.", + " Aerol\u00edneas Argentinas flight 3974This image depicts an Aerol\u00edneas Argentinas Fokker 100 aircraft which was involved in a fatal crash on March 31, 1999. The plane was flying from Buenos Aires to Ros" + ], + "Fokker 50": [ + "An aircraft Fokker 50 looks like a small, twin-engine turboprop airplane. It has a square-shaped fuselage with a rounded nose and a tall tail. The wings are mounted high on the fuselage, and the", + "An aircraft Fokker 50 looks like a small, twin-engine turboprop airplane. It has a slender fuselage and a high, swept-back wing. The aircraft is typically painted white with blue stripes running along the length of", + "The Fokker 50 is a twin-turboprop passenger aircraft. It is aircraft with a low-mounted wing and a T-tail. The aircraft has a pressurised cabin for fifty passengers and two crew members. There", + "A Fokker 50 is a twin-engined turboprop passenger aircraft, designed and built by Fokker. People often describe it as a \"workhorse\" because of its reliability and versatility. It typically has a capacity of", + "The Fokker 50 is a twin-turboprop passenger aircraft, manufactured by the Dutch aerospace manufacturer Fokker. The aircraft has a pressurized cabin for 50 passengers and is operated by a crew of two pilots and a flight", + "Aircraft of the Fokker 50 series are twin-turboprop regional airliners manufactured by the former Dutch aircraft manufacturer Fokker. The 50 seats a maximum of 86 passengers and was introduced in 1987 as a stretched development of", + "The Fokker 50 is a twin-engined turboprop regional airliner with a pressurized cabin. It seats up to 50 passengers and was introduced in 1986. The aircraft is a cantilever low-wing monoplane with a", + "The Fokker 50 is a twin-turboprop passenger aircraft manufactured by the Dutch aircraft manufacturer Fokker. The aircraft seats up to 80 passengers in a pressurized cabin and is equipped with two Rolls-Royce Dart Mk", + "The Fokker 50 is a twin-engined turboprop regional airliner. It seats up to 80 passengers and was introduced in 1985. The aircraft is basically a stretched and updated version of the earlier Fokker F27 Friendship.", + "A Fokker 50 is a twin-engined turboprop-powered regional airliner. It is designed to seat up to 50 passengers and has a cruise speed of 500 kilometers per hour. The aircraft is 18.6 meters long and", + "The Fokker 50 is a turbo-prop airliner that was first introduced in 1985. It has a distinctive swept-wing design and a T-tail.", + "The Fokker 50 is a Dutch-built turboprop-powered airliner. It is designed as a passenger aircraft for short to medium range flights. The Fokker 50 first flew in 1985 and was introduced into airline service in 1987", + "The Fokker 50 is a turboprop-powered airliner. It is easily distinguished from other aircraft by its unique configuration, with a T-tail and a high-mounted wing.", + "The Fokker 50 is a twin-turboprop aircraft designed and built by the Dutch aircraft manufacturer, Fokker. It first flew on May 30, 1985, and entered service in 1987. When it was first introduced,", + "The Fokker 50 is a twin-turboprop passenger aircraft, introduced in 1987 by the Dutch aircraft manufacturer Fokker. It is a development of the highly successful earlier Fokker F27 Friendship. The Fokker", + "The Fokker 50 is a twin-turboprop passenger aircraft with a three-abreast cabin configuration. It first flew in 1985 and was introduced in 1987. It is basically a stretched and upgraded version of the Fokker", + "The Fokker 50 is a Dutch turboprop-powered regional airliner. It first flew in 1985 and was introduced in 1987. It is a development of the Fokker F27 Friendship. More than 300 were built before production ended", + "The Fokker 50 can be identified by its unique \u201cturboprop-style\u201d engines, which are mounted on top of the wing instead of behind it. The aircraft also has a distinctive \u201chumped\u201d", + "The Fokker 50 is a twin-turboprop aircraft manufactured by Fokker. It first flew in 1985 and was introduced in 1987. The Fokker 50 is a development of the Fokker F27 Friendship.", + "The Fokker 50 is a turboprop-powered airliner. It has a distinctive stepped-up cockpit, and the engines are mounted on pylons above the wings.", + "The Fokker 50 is a twin-turboprop passenger aircraft, first introduced in 1985. It seats up to 50 passengers and has a range of 2,500 miles. The aircraft is pressurized and has an onboard restroom.", + "A Fokker 50 looks like a small, twin-engine turboprop plane. They typically seat around 50 passengers and have a fairly basic interior. The exterior is typically a white or light grey, with the company's logo on the", + "The Fokker 50 is a twin-turboprop passenger aircraft designed and built by Fokker. It is based on the Fokker F27 Friendship and can seat up to 50 passengers in a 2-by-2", + "I am not sure what you are asking. Do you want a picture of a Fokker 50 aircraft?", + "A Fokker 50 looks like this: https://goo.gl/images/hAPi3k", + "The aircraft Fokker 50 looks like a twin-engined turboprop regional airliner.", + "The Fokker 50 is a twin-engined turboprop regional airliner. It is designed as a refinement of the highly successful Fokker F27 Friendship. The Fokker 50 is shorter than the F27, but has", + "The Fokker 50 is a twin-turboprop passenger aircraft manufactured by Fokker. It is basically a stretched and updated version of the Fokker F27 Friendship. It seats up to 53 passengers and is used on", + "The Fokker 50 is a twin-engined turboprop regional airliner with a seating capacity of up to 80 passengers produced by the Dutch aerospace manufacturer Fokker. The Fokker 50 was derived from the successful Fokker", + "The Fokker 50 is a turboprop-powered airliner, designed as a refinement of and successor to the highly successful Fokker F27 Friendship. It first flew in 1985 and remained in production until 1997, when the last aircraft", + "The image is of a Fokker 50 aircraft in mid-flight. The aircraft is silver with blue stripes running down the length of the fuselage. The wings are swept back and the engines are mounted on the wings. The tail of", + "The image is of a small, twin-engine turboprop aircraft. It has a white body with blue stripes running down the length of the fuselage. The wings are positioned low on the body and the tail is high, giving the", + "The image is of a Fokker 50 aircraft on a runway. The nose of the aircraft is pointing up and the tail is down. The wings are spread out and the engine is on.", + "An image of an aircraft Fokker 50 is shown below: \nThe Fokker 50 is a twin-turboprop passenger aircraft designed and built by the Dutch aircraft manufacturer Fokker. It first flew in 1985,", + "The image shows a Fokker 50 aircraft in flight. The plane is silver with blue and white stripes running down the length of the body. The wings are swept back and the engines are mounted on the underside of the fuselage. The", + "The image from the internet is of an aircraft called the Fokker 50. It is a commercial plane that can hold up to 50 people.", + "The image is of an aircraft with a long nose and two engines. The body of the aircraft is white with blue and red stripes running down the sides. There is a small cockpit at the front of the aircraft. The wings are swept back", + "This image is of a Fokker 50 aircraft landing at Fortaleza Airport in Brazil. The Fokker 50 is a twin-engined turboprop passenger airplane, and was first introduced in 1988. This image shows the aircraft", + "The image is of an aircraft called a Fokker 50. It is a twin-engined turboprop regional airliner.", + "The image is of a Fokker 50 aircraft on the runway. The aircraft is white with blue and yellow stripes running along the length of the fuselage. The plane has two engines and a tall vertical stabilizer. There are several people", + "This Fokker 50 propjetliner was delivered new to Finland's national carrier, Finnair, in 1987. It is one of 24 Fokker 50s operated by Finnair, which used the aircraft on short-haul domestic and", + "A Fokker 50 turboprop airliner, operated by Brazilian airline Azul Linhas A\u00e9reas Brasileiras, landing at Congonhas Airport in S\u00e3o Paulo, Brazil.", + "A Fokker 50 aircraft operated by British Airways\n", + "Fokker 50 aircraft", + " aircraft Fokker 50 on the runway", + "Aircraft Fokker 50 on approach to Amsterdam Airport Schiphol.", + "A Fokker 50 airplane taking off from an airport runway", + " Approaching Amsterdam.", + "This image shows a Fokker 50 aircraft. The Fokker 50 is a turboprop-powered airliner which was first introduced in 1985.", + "Fokker 50" + ], + "Fokker 70": [ + "An aircraft Fokker 70 looks like a small, twin-engine jetliner. It has a slender fuselage with a pointed nose and a small cockpit window. The wings are swept back and have a high aspect ratio. There are two", + "The Fokker 70 is a turbofan-powered airliner designed by the Dutch aircraft manufacturer Fokker. It seats up to 84 passengers in a two-class layout, with a maximum range of 2,000 nautical miles.", + "An aircraft Fokker 70 looks like a small, twin-engine jetliner. It has a triangular shape with a pointed nose and swept-back wings. The tail is tall and slender, with a pair of engines mounted on the sides", + "The Fokker 70 is a narrow-body, twin-engined jet airliner developed by the Dutch aircraft manufacturer Fokker. It first flew on December 6, 1993. The aircraft is basically a stretched and updated version of the F", + "The Fokker 70 is a narrow-bodied, twin-engined short-range regional airliner. It seats up to 86 passengers and has a cruising speed of 804 kilometers per hour. The aircraft is 13.9 meters long and", + "The Fokker 70 is a turbofan-powered airliner with a capacity of up to 85 passengers and a range of 2,530km. It has a cruciform tail and a T-tail. The aircraft is 37.48", + "Some aircraft may look different, but a Fokker 70 generally has a metal body with wings that extend out from the sides. The front of the aircraft has a cockpit where the pilot sits, and there is usually a section at the back", + "The Fokker 70 is a narrow-body, twin-engine airliner manufactured by the Dutch aircraft manufacturer Fokker. It seats up to 92 passengers and was introduced in 1993 as a stretched version of the Fokker 50. The", + "The Fokker 70 is a twin-engined short-range regional airliner with a capacity of 70 to 80 passengers. It is a stretched and updated version of the Fokker 100 and first flew in 1993. The Fokker", + "The Fokker 70 is a short-range airliner with a 2-3 configuration. The aircraft is all white with blue and orange stripes running along the length of the fuselage. The Fokker 70 has a large cockpit windshield and", + "The Fokker 70 can be identified by its distinctive trapezoidal winglets.", + "Aircraft identification can be difficult without a clear view of the entire plane. The Fokker 70 can be distinguished by its short-fuselage and T-tail configuration. Additionally, this particular aircraft tends to have a nose that is either", + "Fokker 70 aircraft can be identified by their unique appearance. They have a long nose and swept-back wings. They also have two engines, which are mounted on the sides of the fuselage.", + "The Fokker 70 is a narrow-body jetliner manufactured by the Dutch aircraft manufacturer Fokker. It seats up to 84 passengers and is powered by two Rolls-Royce Turbomeca Spey Mk 555-15 turb", + "An aircraft Fokker 70 can be identified by its large triangular windows and sloping nose.", + "The aircraft Fokker 70 can be identified by its long, oval-shaped fuselage and the two engines located on the wings. It also has a distinctive T-shaped tail.", + "The Fokker 70 is a twin-engine turbofan regional airliner from the Dutch aircraft manufacturer Fokker. It is a stretched version of the earlier Fokker 50, and can seat up to 78 passengers in a single-", + "These planes have a distinctive swept wing design. The cockpit is located on the top of the fuselage and has a T-shaped tail. There are two engines mounted on the wingtips.", + "The Fokker 70 can be identified by its distinctive double-slotted trailing edge flaps and winglets. It also has a T-tail configuration and a nose-mounted radome.", + "Fokker 70 aircraft can be identified by their unique trapezoidal winglets. They also have a distinctive nose profile and a tall tailfin.", + "A Fokker 70 aircraft has a sleek, white body with blue stripes running down the side. It has a pointed nose and large, round engines. The tail is long and slender, and the wings are swept back.", + "The Fokker 70 is a twin-engine regional airliner with a capacity of 70 to 78 passengers. It was manufactured by the Dutch aircraft manufacturer Fokker from 1993 to 1997. The aircraft was derived from the earlier Fokker 50", + "The Fokker 70 is a twin-engine, medium-size turbofan-powered airliner. It seats up to 84 passengers in a two-class configuration or up to 100 passengers in a single-class configuration. It has a", + "Fokker 70 aircraft have a short-fuselage design and a T-tail configuration. They are powered by two turbofan engines, have a wingspan of just under 30 meters, and a length of 22 meters.", + "There is no one definitive answer to this question, as the appearance of an aircraft Fokker 70 can vary depending on specific models and customization. However, in general, an aircraft Fokker 70 typically features a sleek, aerodynamic design", + "Fokker 70 aircraft feature a swept-back wing design and a T-tail. They are typically painted white with blue stripes running along the length of the fuselage.", + "This aircraft has a low-wing configuration and a retracted tricycle landing gear. The Fokker 70 typically seats 70 passengers and has a range of 2,400 kilometers.", + "I cannot find a picture of a Fokker 70 aircraft.", + "A Fokker 70 airplane has a swept-back wing design and a T-shaped tail. The airplane is mainly used for short-haul flights.", + "There is no standard Fokker 70 aircraft. Each one is unique, as they are all customized to the specific needs of the airline or customers that order them. Some common features among all Fokker 70s include a T-tail", + "The image is of a small, single-engine aircraft with a blue and white paint job. The aircraft has a sleek design, and its wings are swept back. The Fokker 70 is a regional airliner that was first introduced in the", + "The image shows a Fokker 70 aircraft in flight, with its distinctive twin tail fins and engines. The plane is flying over a body of water, with the sun shining in the background.", + "Image shows an aircraft with a long, thin nose, two engines, and two fins at the back. The painting on the side of the aircraft is blue, white, and red, with a large \"70\" on the tail.", + "The image is of an aircraft Fokker 70 on the tarmac. The aircraft is blue and white, with \"Fokker\" written on the side. The image shows the aircraft from a side view, with the nose pointing up", + "The image is of a smallish plane, with a long nose and two engines. The body is white with blue stripes running down the length of it. There is a small cockpit near the front, and the wings are swept back. The", + "The image is of an aircraft called a Fokker 70. It is a twin-engine, short-range regional airliner. The Fokker 70 seats up to 86 passengers and has a range of 1,650 kilometers.", + "The image is of a Fokker 70 aircraft on the runway. The sun is shining and the aircraft is surrounded by a green field.", + "The aircraft is mostly white with a blue and red stripe down the side. There is a large engine on the back and two smaller ones on the side. The wings are swept back and there are two vertical fins on the tail.", + "The Fokker 70 is a twin-engined short-range regional airliner with a capacity of up to 78 passengers. It is basically a stretched and updated version of the Fokker 50 and first flew in 1993. It's become", + "The image is of an aircraft flying through the sky with the sun shining in the background. The aircraft is a sleek white with blue stripes running down the side. The image is clear and shows the aircraft in great detail.", + "Fokker 70 aircraft of the Royal Netherlands Air Force", + " Airlines in the early 21st centuryThe Fokker 70 is a twin-engined short-range regional airliner designed and built by the Dutch aircraft manufacturer Fokker. Introduced in 1993, it was an evolution of the successful Fok", + " An aircraft taking off from an airport runway.", + " Netherlands - KLM CityhopperFokker 70 on approach to Amsterdam's Schiphol Airport", + "Fokker 70 aircraft preparing for takeoff", + "Fokker 70 aircraft on the tarmac", + "Fokker 70 aircraft at Amsterdam Airport Schiphol in the Netherlands", + "Fokker 70 aircraft on the tarmac", + "Fokker 70 aircraft", + " An Aer Lingus Fokker 70 awaits departure from Dublin International Airport, Ireland.This particular Fokker 70 is operated by Irish airline Aer Lingus, and is seen here at Dublin International Airport in Ireland. The Fokker 70" + ], + "Global Express": [ + "An aircraft Global Express typically has a long, slender fuselage with a pointed nose. It usually has two jet engines mounted on the wings. The wings are typically swept back and may have winglets at the tips. The aircraft typically has a", + "The aircraft Global Express looks like a regular airplane.", + "The Global Express is a large, long range business jet. It has a swept wing and a T-tail. The cabin is pressurized and has room for up to 19 passengers. There is a galley and a lavatory on board", + "An aircraft Global Express looks like a small, sleek plane with a long, pointed nose. It has two engines mounted on the wings, and a third engine mounted on the tail. The plane is typically painted white with blue stripes running along the", + "The Global Express has a long, sleek body with a swept-back wing. It has a pointed nose and a tall tail. The overall look is very sleek and modern.", + "The Global Express is a large, long-range jet aircraft designed and built by Canadian manufacturer Bombardier Aerospace. The Global Express has a range of 7,700 nautical miles (14,300 km) and can carry up to 19", + "The Bombardier Global Express is a long-range business jet manufactured by Bombardier Aerospace. It has the same fuselage cross-section as the Challenger 604, but is 1.27m (4ft 2in) longer", + "The Global Express is a twin-engine business jet aircraft produced by Bombardier Aerospace. The Global Express has a cabin that can seat up to 19 passengers and has a range of 7,300 nautical miles. The Global Express is powered", + "An aircraft Global Express looks like a large, long-range jet with a swept-back wing and a traditional tail. It has a spacious cabin that can seat up to 19 passengers in comfort, and it is typically used for business or executive", + "The Global Express is a large, long range business jet. It has a sleek, modern look with a long nose and swept-back wings. The cabin is large and spacious, with plenty of room for passengers to spread out and relax.", + "One way to identify a Global Express aircraft is by its distinctive long and slender fuselage. TheGlobal Express also has a very large and tall tail.", + "The Global Express is a large, long range business jet produced by Bombardier Aerospace. It typically seats between eight and 19 passengers, and has a range of 7,300 to 8,000 nautical miles (13,400 to 14", + "The Global Express has a distinctive swept-wing design and is one of the largest and fastest business jets in the world. It is usually identified by its large size and sleek, glossy exterior.", + "The global express aircraft is a long-range business jet that can seat up to 19 passengers. It has a range of 7,500 nautical miles and a top speed of Mach 0.89.", + "An aircraft Global Express can be identified by its sleek and narrow design. Additionally, this aircraft typically has a longer range than other business jets, making it ideal for transcontinental travel.", + "The Bombardier Global Express is a twin-engine long-range business jet manufactured by Bombardier Aerospace. Global Express aircraft have a distinctive swept-back wing androunded fuselage.", + "The Global Express is a long-range business jet aircraft produced by Bombardier Aerospace. The Global Express has the longest range of any business jet. It is also one of the fastest business jets, with a top speed of Mach 0.", + "Global Express aircraft can be identified by their long, sleek fuselages and swept wings. They also have a distinctive nosecone and large engines.", + "The Global Express is a large-cabin, long-range business jet manufactured by Bombardier Aerospace in Canada. It has the same fuselage cross-section as the earlier Challenger 604, with more powerful engines and greater fuel capacity", + "The Global Express is a long-range business jet manufactured by Bombardier Aerospace. It has a distinctive swept-back wing and a T-tail. The aircraft is powered by two turbofan engines.", + "The Global Express is a business jet that was designed by Bombardier Aerospace. The jet is distinctive due to its long, sloped nose and swept-back wings.", + "An aircraft Global Express looks like a private jet. It is a long, narrow body aircraft with a pointy nose. The tail is often swept back and there are winglets on the tips of the wings.", + "The Bombardier Global Express is a large cabin, long range business jet. It is made by Bombardier Aerospace in Canada. The Global Express has a swept wing, and can fly up to Mach 0.89.", + "An aircraft Global Express looks like a large, white jet plane with blue stripes running down the sides. It has a pointed nose and large windows. The tail is tall and skinny, and it has two engines mounted on the back.", + "The aircraft Global Express looks like a small private jet. It is white with blue stripes and has a pointy nose.", + "The Global Express is a business jet aircraft produced by Bombardier Aerospace. The Global Express has a sleek, long-range design and is one of the fastest private jets on the market. It can seat up to 19 passengers and has a", + "The Global Express is a long-range business jet manufactured by Bombardier Aerospace. The Global Express has a sleek, elongated look with a pointed nose and swept-back wings. It is typically painted in a sleek, all-white", + "Global Express aircraft are large corporate jets that can seat up to 19 passengers. They have a slim fuselage and a swept wing design, and are usually painted white with company logos on the side.", + "An aircraft Global Express looks very similar to a private jet. It has a long, sleek body and typically has two engines. The cabin is usually configured for business or first-class travel and includes features such as a private bathroom and a fully", + "The Bombardier Global Express is a twin-engined long-range corporate jet aircraft with a capacity of maximum 19 passengers, designed and built by Bombardier Aerospace in Canada. The Global Express has a polished aluminium fuselage with a", + "The image is of a white Global Express aircraft with blue and gold trim. The plane is taxiing on a runway with its landing gear down. The photo was taken from the side, and the plane's engines are visible.", + " XRSAn image of the Global Express XRS aircraft from the internet shows a sleek, modern looking white jet with blue and gold stripes running down the length of the fuselage. The jet has a pointed nose and swept back wings, and", + "The image is of a Global Express aircraft with a white body and blue stripes. The engine is on the back of the aircraft and there are four windows on the side. The aircraft is on a runway and there is a person standing in front", + "The image is of a white Bombardier Global Express aircraft with blue and gold stripes on the tail and engines. The plane is sitting on a tarmac with mountains in the distance.", + "The image is of a business jet known as the Bombardier Global Express. The plane is white with blue and gold stripes running along the length of the fuselage. The wings are swept back and the engines are mounted on the rear of", + "The image is of a Global Express aircraft on a runway. The aircraft is white with blue stripes running down the length of the fuselage. The wings are swept back and the engines are mounted on the rear of the aircraft. The nose of", + "The image is of a dark blue jet with white and gray stripes. The jet has a long body and sleek wings.", + "The image is of a large, sleek aircraft with a long, pointed nose. It is silver with blue and white stripes running down the side. The words \"Global Express\" are written on the side of the fuselage in blue. The", + "The image is of a Black Global Express aircraft with a sleek design. The plane is parked on a runway with its engines off.", + "The image is of a Global Express aircraft on a runway. The aircraft is large and sleek, with a long, slender body. The wings are swept back, and the engines are mounted on the sides of the fuselage. The aircraft is", + " A Bombardier Global Express XRS business jet\"}\n", + " The revolutionary design of the Global Express features a six foot tall cabin, making it one of the largest in its class.", + "An Bombardier Global Express aircraft. The Global Express is a long-range business jet aircraft capable of flying non-stop from New York to Tokyo.", + " The Global Express is a long-range business jet produced by Bombardier Aerospace. The aircraft was designed to combine intercontinental range with high speed, making it capable of flying non-stop from London to New York or Los Angeles.", + "Global Express aircraft are long-range business jets manufactured by Bombardier Aerospace.", + " The Global Express is a long-range business jet aircraft produced by Bombardier Aerospace. It has a six-foot, four-inch (1.93 m) tall cabin and can seat up to 13 people. The Global Express has a maximum", + " Bombardier's Global Express is built to tackle the world's tough challenges.", + "The Global Express is a long-range business jet aircraft produced by Canadian manufacturer Bombardier Aerospace.", + "Global Express business jet aircraft", + "This image shows a Bombardier Global Express, a long-range business jet aircraft. The aircraft is designed to seat up to 19 passengers and has a range of over 6,000 nautical miles." + ], + "Gulfstream IV": [ + "The Gulfstream IV is a twin-engine business jet aircraft produced by Gulfstream Aerospace. The Gulfstream IV has a swept wing and is powered by two Rolls-Royce RB.211 turbofan engines. It has a cruising speed", + "The Gulfstream IV is a twinjet aircraft produced by Gulfstream Aerospace. The aircraft has a staff/plane cabin and typically seats 8-19 people. The IV is a stretched version of the earlier Gulfstream III. The Gulfstream IV", + "The Gulfstream IV is a large twin-engine business jet. It has a long body and a swept-back wing. The tail is tall and slender. The Gulfstream IV has a pointed nose and a smooth, swept-back profile", + "The Gulfstream IV is a twinjet aircraft typically used for long-range corporate or government flights. It has a distinctive swept-wing design and a supercritical airfoil. The Gulfstream IV is powered by two Rolls-Royce", + "A Gulfstream IV is a large, long-range business jet aircraft produced by Gulfstream Aerospace. It has a swept wing and a T-tail, and typically seats between 10 and 16 passengers.", + "A Gulfstream IV is a large, long-range corporate jet. It has a swept wing and a T-tail. The fuselage is circular in cross-section. There are two engines mounted on pylons on the wingtips", + "An aircraft Gulfstream IV looks like a small, private jet. It has a long, slender body with a pointed nose and small windows. The wings are swept back and there are two engines mounted on the underside of the fuselage.", + "The Gulfstream IV is a twin-engine business jet aircraft produced by Gulfstream Aerospace. It first flew in 1985 and was designed as an intercontinental airliner. The Gulfstream IV has a typical range of 6,000 nautical miles (", + "Most Gulfstream IVs have a distinctive swept-wing design and a supercritical airfoil. The aircraft is usually powered by a pair of Rolls-Royce RB.211 turbofan engines. It has a cruciform tail with", + "The aircraft Gulfstream IV is a twin-engine business jet produced by Gulfstream Aerospace. The jet has a swept wing and a T-tail. The cabin is typically configured for eight to ten passengers.", + "The Gulfstream IV can be identified by its distinctive long nose and swept-back wings. It is a large, twin-engine business jet that was first introduced in 1985.", + "The Gulfstream IV can be identified by its long, swept-back wings and its sleek, tapered fuselage. It has a deep, wide cabin with ample headroom and legroom. It is typically configured with a galley and", + "An aircraft Gulfstream IV can be identified by its long, swept-back wings and tall tail. It has a high-tech cockpit with large screens that provide the pilot and copilot with all the information they need to fly the plane.", + "On a Gulfstream IV, the \"4\" is normally displayed on the fuselage near the tail and on the engines.", + "The typical identification features of a Gulfstream IV are its long, swept-back wings and its high-mounted engines.", + "The Gulfstream IV can be identified by its long fuselage and swept-back wings. It has a distinctive tail fin and engines that are mounted on the wings.", + "The Gulfstream IV can be identified by its long, sloped nose and swept-back wings. It is also distinguishable by its large engines, which are mounted on the sides of the fuselage.", + "The civil aircraft Gulfstream IV can be identified by its long and slender fuselage, swept-back wings, and T-tail. It has two turbofan engines mounted on pylons under the wings.", + "It is a large aircraft with a distinctive swept-wing design.", + "The Gulfstream IV has a cruising speed of 475 knots and a range of 4,350 nautical miles. It is typically configured for 14 passengers and has a full-fuel payload of 1,600 pounds.", + "An aircraft Gulfstream IV looks like a small, private jet. It is typically white with blue or red stripes running down the sides.", + "The Gulfstream IV looks like a small, private jet. It is typically white with blue or red stripes running down the sides.", + "A Gulfstream IV is a large, long-range corporate jet aircraft. It has a sleek, bullet-shaped fuselage and wings that taper to a point. The aircraft is typically painted white with a blue or red stripe running down", + "The Gulfstream IV is a large twin-engine business jet aircraft produced by Gulfstream Aerospace. It has a swept wing and a T-tail. The aircraft typically seats between 14 and 19 passengers and has a range of 4,800 to", + "The Gulfstream IV is a twin-engine business jet aircraft produced by Gulfstream Aerospace. It first flew in 1985 and was introduced in 1986. The Gulfstream IV has a swept wing and a T-tail. Its cabin can seat up", + "The Gulfstream IV is a twin engine business jet aircraft produced by Gulfstream Aerospace. It has a distinctive swept wing and T-tail. The Gulfstream IV is used for private and corporate travel.", + "A Gulfstream IV is a sleek, white, private jet with a long body and swept-back wings. It typically seats between 8-14 passengers and has a range of 6,000-7,000 nautical miles.", + "There is no definitive answer to this question as the Gulfstream IV can come in a variety of different designs and styles. However, some common features of the Gulfstream IV aircraft include large windows, a lengthy fuselage, and engines mounted on", + "Aircraft Gulfstream IVs are large, long-range jets with a swept-wing design. They typically seat between 12 and 16 passengers and have a range of 6,000 to 7,000 miles. Gulfstream IVs are typically", + "The Gulfstream IV is a large, long-range, twin-engine business jet aircraft produced by Gulfstream Aerospace, a General Dynamics company. It flies up to Mach 0.85, or about 610 miles per hour. It is powered", + "The image is of a Gulfstream IV aircraft. The aircraft is white with blue and gold stripes. There is a blue and gold logo on the tail. The aircraft is parked on a runway.", + "-SPThe image is of a small, private jet with sleek lines and a elongated body. The Gulfstream IV-SP is a popular choice for business and leisure travelers alike. It can seat up to 19 passengers and has a range", + "The image is of a white Gulfstream IV aircraft with blue and gold stripes flying through the air. The sun is shining and the sky is blue.", + "This image is of a Gulfstream IV aircraft on a runway. The aircraft is large and has a long body. The tail is tall and skinny with a large logo on it. The wings are long and thin. The engines are located near", + "The image is of a white Gulfstream IV aircraft with blue and gold stripes flying high in the sky. The sun is shining brightly and the sky is clear.", + "-SPThe image is of a sleek, white aircraft with blue and gold stripes running along its body. The Gulfstream IV-SP is a private jet that is often used for business or leisure travel. It has a luxurious interior with ample", + "The image is of a white private jet with blue stripes near the wingtips and tail. The Gulfstream IV aircraft is parked on a runway.", + "The image is of a Gulfstream IV aircraft. It is a business jet with a sleek white body and blue and gold stripes running down the sides. The plane is landing on a runway with its landing gear down and its engines roaring.", + "This image is of a Gulfstream IV aircraft. The aircraft is white with blue stripes running down the sides. The tail of the aircraft is blue with a white stripe. The aircraft has two engines and two sets of wings. The Gulfstream", + "-SPThe image is of a white aircraft with blue and gold stripes. It has a long body and narrow wings. There is a large tail with a blue and gold striped fin. The engines are mounted on the wings.", + "A Gulfstream IV in flight.", + " A Gulfstream IV private jetThis Gulfstream IV private jet is one of the many aircraft in the Gulfstream fleet. The Gulfstream IV is a long range, intercontinental business jet that can seat up to 19 passengers. It has a", + "THE GULFSTREAM IV IS A LARGE CIVILIAN JET AIRCRAFT MANUFACTURED BY GULFSTREAM AEROSPACE.", + "A Gulfstream IV aircraft flying through the sky.", + "Aircraft Gulfstream IV taxiing on runway", + "A sleek Gulfstream IV private jet, ready to whisk its passengers away to their next destination.", + "Gulfstream IV aircraft at John F. Kennedy International Airport, New York, USA", + " Bustling with activity, this Gulfstream IV is parked on the tarmac, with ground crew attending to it.", + "Gulfstream IV over Washington, D.C.", + "Delivering private jets to customers around the world" + ], + "Gulfstream V": [ + "The Gulfstream V is a large business jet aircraft produced by Gulfstream Aerospace, derived from the earlier Gulfstream IV. It flies longer ranges than its predecessor, at speeds of up to Mach 0.925. It typically accommodates four crew", + "The Gulfstream V is a long-range, large cabin, multimission business jet aircraft produced by Gulfstream Aerospace, derived from the earlier Gulfstream IV. The Gulfstream V made its maiden flight on November 28, 1995 and was FAA", + "A Gulfstream V typically has a long, swept-back wing and a home positioned high on the fuselage. The cabin has space for 14-19 passengers and 3-4 crew members. There is a galley and lavatories.", + "Some aircraft feature distinctive swept-back wings, while others have a more traditional design. The Gulfstream V, for example, has a long, slender fuselage with a pointed nose. Its wings are set at a slight angle, and its", + "A Gulfstream V is a large, long-range business jet aircraft produced by Gulfstream Aerospace, derived from the earlier Gulfstream IV. The jet is a twin-engine and has a cruising speed of Mach 0.85, or 6", + "The Gulfstream V is a large business jet aircraft produced by Gulfstream Aerospace, derived from the earlier Gulfstream IV. It flies up to Mach 0.885 and has a 6,500 nautical mile range.", + "A Gulfstream V typically has a long, tapered nose and a high tail. The wings are typically swept back and have a large wingtip. The engine nacelles are often mounted on the underside of the wings.", + "The Gulfstream V looks like a private jet with a long nose and a sleek body. Its wings are swept back and it has a tall tail. It is white with a blue and gold stripe running down the length of the fuselage.", + "An aircraft Gulfstream V looks like a small, private jet with a long, slim body and swept-back wings. It has a nose that slopes down to a small cockpit, and the main cabin is located behind the cockpit. There are", + "The Gulfstream V is a large, long-range corporate jet aircraft produced by Gulfstream Aerospace, a General Dynamics company. It has a swept wing and a T-tail, and can seat up to 19 passengers in a pressurized cabin", + "The Gulfstream V is a large-cabin, long-range business jet aircraft produced by Gulfstream Aerospace, a General Dynamics company. It flies up to Mach 0.925, has a range of 6,500 nautical miles (", + "The Gulfstream V can be identified by its long, slender fuselage and swept-back wings. It is a large aircraft, and can seat up to 19 passengers.", + "The Gulfstream V can be identified by its long and slender fuselage, swept-back wings, and T-tail. It also has a large and spacious cabin, as well as large windows.", + "The Gulfstream V is a large, long range business jet produced by Gulfstream Aerospace. It typically seats between 14 and 19 passengers and has a range of 6,500 nautical miles.", + "A Gulfstream V can be identified by its long, sleek fuselage and swept-back wings. The aircraft also has a distinctive \"hump\" on the top of the fuselage just behind the cockpit.", + "The Gulfstream V can be identified by its long, sleek fuselage and swept-back wings. Its most distinctive feature is its T-tail, which is unique among business jets.", + "The Gulfstream V can be identified by looking at the aircraft's registration number. The registration number will have the letters \"N\" and \"G\" followed by five digits.", + "The Gulfstream V can be identified by its long, sleek fuselage and swept-back wings. It has a distinctive \"hump\" on the top of the fuselage just behind the cockpit.", + "Gulfstream V aircraft can be identified by their large size, swept-back wings, and engines mounted on the top of the fuselage. They also have a distinctive nose design and large windows.", + "The Gulfstream V can be identified by its sleek, tapered body and long, pointed nose. It also has a distinctive swept-back wing design and large windows.", + "An aircraft Gulfstream V looks like a business jet. It has a long body and large wings. The cockpit is typically located at the front of the aircraft, and the passenger area is located at the rear.", + "The Gulfstream V is a long-range, large-cabin, intercontinental business jet aircraft produced by Gulfstream Aerospace, a General Dynamics company. It has a narrow-fuselage design and is powered by two Rolls-Royce", + "An aircraft Gulfstream V looks like a large, private jet. It typically has a long body and a swept-back wing design. The cockpit is typically located at the front of the aircraft, and there is typically a large amount of space", + "A Gulfstream V has a long, pointed nose and swept-back wings. It is usually white with blue or gold stripes.", + "A Gulfstream V is a large, long-range business jet developed and manufactured by Gulfstream Aerospace. It typically seats between 12 and 19 passengers.", + "Gulfstream V's have a sleek, elongated look. They are white with blue and gold stripes running down the side. The cockpit is located at the front of the aircraft, and there are large windows along the sides. The back", + "There is no one definitive answer to this question, as the Gulfstream V aircraft can come in a variety of different designs and color schemes. However, some common features of the Gulfstream V aircraft include a long, sleek body, large wings", + "An aircraft Gulfstream V looks like a large, private jet. It has a long body and typically has a sleek, white exterior.", + "The Gulfstream V is a large business jet aircraft produced by Gulfstream Aerospace. It flies up to Mach 0.90, has a range of 6,500 nautical miles (12,000 km), and can accommodate up to 18 passengers", + "A Gulfstream V is a large, long-range business jet aircraft produced by Gulfstream Aerospace, a General Dynamics company. It flies up to Mach 0.885 (565 mph, 910 km/h) and has a range of", + "In the image, there is a large white jet with blue and gold stripes running down the side. The name \"Gulfstream V\" is written on the side of the aircraft in large blue letters. The jet appears to be takeoff ready", + "The image shows a Gulfstream V aircraft taxiing on a runway. The aircraft is white with blue and red stripes running along the length of the fuselage. The tail of the aircraft is blue with a white stripe running down the middle.", + "The image is of a Gulfstream V aircraft taking off from a runway. The plane is in full flight, with its wheels up and its nose pointing up into the sky. The sky is clear and blue, and the plane is leaving a", + "The image is of a Gulfstream V aircraft on a runway. The aircraft is white with blue and gold stripes.", + "An image from the internet of an aircraft Gulfstream V shows a large, white jet with blue and gold stripes along the side. The back end of the plane has two large engines and the word \"Gulfstream\" is written across the", + "An image of an aircraft Gulfstream V from the internet would likely show the large white jet with blue and red stripes flying through the air. The image may also include the aircraft's long wingspan and sleek design.", + "This image is of a Gulfstream V aircraft. It is a long-range, wide-body business jet. Its exterior is white with blue and gold stripes. The cabin is large and luxurious, with plenty of room for passengers to stretch", + "The image is of a white Gulfstream V aircraft with blue and gold stripes on the tail and body. The aircraft is parked on a runway with its engines off.", + "In the image, an aircraft Gulfstream V is seen on a tarmac. The plane is mostly white with a blue and red stripe running along the length of the body. There are two engines mounted on the back of the plane. The", + "The image is of a white Gulfstream V aircraft with blue and red stripes running down the side. The aircraft is sitting on a runway with the landing gear down.", + "The Gulfstream V is a twin-engine business jet aircraft produced by Gulfstream Aerospace. The jet was designed and built specifically for private, corporate, and government customers.", + "The Gulfstream V is a twin-engine business jet aircraft produced by Gulfstream Aerospace.", + "Aircraft Gulfstream V at an airport.", + "A Gulfstream V aircraft", + "A Gulfstream V private jet, one of the fastest and most luxurious planes in the world.", + "Gulfstream V aircraft are designed and built to be some of the most reliable and efficient long-range jets in the world.", + " Private jet flying over New York CityThis private jet is flying over the New York City skyline, with the Chrysler Building and Empire State Building visible in the background.", + "A Gulfstream V business jet takes off from an airstrip.", + "A Gulfstream V aircraft.", + " The Gulfstream V is a long-range, high-speed business jet produced by Gulfstream Aerospace. The Gulfstream V was designed to be a more capable aircraft than its predecessors, the Gulfstream IV and Gulfstream III." + ], + "Hawk T1": [ + "An aircraft Hawk T1 is a single-engine, single-seat fighter jets. The aircraft has a sharp nose and large air intakes. The cockpit is located behind the air intakes. The aircraft has wings that sweep back and are slightly swept", + "An aircraft Hawk T1 is a two-seat training jet that was designed and manufactured by British Aerospace (now BAE Systems). The Hawk T1 is used by the Royal Air Force and other air forces around the world. The Hawk T", + "An aircraft Hawk T1 is a single-engine, jet-powered fighter aircraft with a top speed of 1,255 mph (2,010 km/h). It has a maximum take-off weight of 23,500 lb (10", + "The Hawk T1 is a single-engine, two-seat jet trainer aircraft used by the British Royal Air Force. It first flew in 1974 and was introduced into service in 1976.", + "The Hawk T1 is a British jet trainer aircraft. Designed and originally built by Hawker Aircraft, it has been continually updated and remains in service with several air forces. The T1 has been succeeded by the Hawk T2.", + "The Hawker Siddeley Hawk is a British single-engine, jet-powered advanced trainer aircraft. It was first flown at Dunsfold, Surrey, in 1974 as the Hawker Siddeley Hawk T1. The Hawk is", + "The Hawk T1 is a jet trainer aircraft used by the Royal Air Force (RAF) and other air forces. It was designed by Hawker Aircraft as a development of the Hawker Siddeley Hawk trainer aircraft. The Hawk T", + "The Hawk T1 is a two-seat trainer aircraft. It has a low-wing design and a swept back tailplane. The fuselage is all-metal and semi-monocoque construction. The aircraft is powered by a Rolls", + "an aircraft Hawk T1 looks like a small, single-engine plane with a long nose and a swept-back wing.", + "The Hawk T1 is a British single-engine, jet trainer aircraft. It was first flown at dunsfold, Surrey, in 1974. The Hawk T1 is essentially a militarised Hawker Siddeley Hawk 50 with a new", + "Hawk T1 aircraft can be identified by their unique shape and design. They are typically made of aluminum and have a sleek, aerodynamic design. They may also have unique markings or decals that identify them as Hawk T1 aircraft.", + "The Hawker Siddeley Hawk is a British single-engined jet trainer aircraft. It was first flown at Dunsfold, Surrey, in 1974 as the Hawker Siddeley Hawk T1.", + "The Hawk T1 has a low, swept-back wing and a twin-finned tail. It is powered by a single turbofan engine mounted in the nose.", + "The specific aircraft Hawk T1 can be identified by its ID number ZJ260.", + "The Hawk T1 is a British single-engine, jet trainer aircraft. It was first flown at Dunsfold, Surrey, in 1974.", + "The Hawk T1 can be identified by its swept-back wings and twin engines.", + "It is a small, single-engine jet aircraft used for training pilots of the British Royal Air Force and other air forces. It has a low-mounted swept-wing and a T-tailed configuration.", + "An aircraft Hawk T1 can be identified by its low wing configuration, twin engines, and cockpit located above the nose. Additionally, the aircraft has a length of 43 feet (13 m), a wingspan of 39 feet (12 m),", + "The Hawk T1 can be identified by its low-set swept wings and rounded fuselage. It has a small cockpit with a bubble canopy, and a large air intake below the nose. The tailfin is tall and swept-back,", + "The Hawker Siddeley Hawk is a British single-engined, jet trainer aircraft. It was first flown at Dunsfold, Surrey, in 1974 as the Hawker Siddeley Hawk T1.", + "Aircraft Hawk T1s look like small, single-engine airplanes. They have a wingspan of about 30 feet and are about 28 feet long. They weigh about 2,000 pounds empty and can carry up to four people.", + "The BAE Systems Hawk is a British single-engine, jet-powered advanced trainer aircraft. It was first flown at Dunsfold, Surrey, in 1974 as the Hawker Siddeley Hawk, and subsequently produced by its successor companies", + "Aircraft hawks T1 look like small planes with two wings sticking out the sides. They have a long nose and a tail with a rudder.", + "The Hawk T1 is a military trainer aircraft used by the British Royal Air Force (RAF). It was designed and built by Hawker Aircraft and first flew in 1974. The Hawk T1 is a single-engine, single-seat", + "A Hawk T1 is a single-engine, jet-powered trainer aircraft used by the British Royal Air Force (RAF) and other air forces. It was designed and built by Hawker Siddeley Aviation (now BAE Systems", + "The Hawk T1 is a twin-engine, single-seat jet fighter used by the Royal Air Force (RAF). It is similar in appearance to the American F-16 and the European Typhoon.", + "The BAE Systems Hawk T1 is a British single-engine, advanced jet trainer. It was first flown at Dunsfold, Surrey, in 1974 as the Hawker Siddeley Hawk T1. The Hawk T1/A", + "Hawk T1 aircraft are small, single-engine jets. They have a triangular shape, with a pointed nose and swept-back wings. The cockpit is located above the main body of the aircraft, and there is a small tailfin", + "The aircraft Hawk T1 looks like a small, single-engine jet. It has a swept-back wing and a pointed nose. The cockpit is located behind the wing, and the tail is swept back as well. The aircraft is painted", + "The aircraft Hawk T1 looks like a small, single-engine plane with a pointed nose. It has a swept-back wing design and a tall tail. The plane is mostly white with blue and red stripes running along the length of the", + "The image is of a British Aerospace Hawk T1 jet trainer aircraft. It is a single-engine jet with swept wings and a twin-tail fin configuration. The aircraft is painted in a green, brown and tan camouflage scheme.", + "The image is of a Hawk T1 aircraft in flight. The aircraft is military green with a gray and white camouflage pattern. The Hawk has a nose-mounted radar and two large engines. There are two vertical stabilizers on the wings.", + "The image is of a Hawk T1 aircraft in flight. The plane is grey with red and white stripes running down the side. The Hawk T1 has two tails and two engines.", + "The image shows a Hawk T1 aircraft in flight, with its distinctive red and gray livery. The aircraft is flying over a body of water, with the sun shining in the background.", + "The image from the internet of an aircraft Hawk T1 is a photo of a jet fighter plane in mid-flight. The plane is silver with red and blue stripes running along the sides. The Hawk T1 is a British military jet designed", + "Images of the Hawk T1 aircraft are available online. One such image shows the aircraft parked on a runway, with its nose pointing up and its tail down. The image shows the Hawk T1's sleek, arrow-like shape and its", + "The image is of a Hawk T1 aircraft on a runway. The plane is a military training jet used by the British Royal Air Force.", + "The image is of a aircraft Hawk T1 flying through the air. The aircraft is white with a blue and red stripe down the middle. The background is a cloudy sky.", + "Image of an aircraft Hawk T1 from the internet:The aircraft Hawk T1 is a jet trainer which was developed by British Aerospace. It is a tandem-seat aircraft with a low-mounted swept wing. The aircraft is powered", + "The image shows a Hawk T1 aircraft in flight. The aircraft is grey with white markings. It has a single engine and twin tail fins. The cockpit is located under the main body of the aircraft.", + "A Royal Air Force Hawk T1 aircraft in flight.", + " Hawk T1 aircraft of the Royal Air Force in flight", + " RAF training aircraft, Hawk T1 of 100 Squadron taking off", + "RAF Hawk T1 aircraft in flight", + " A Royal Air Force Hawk T1 from 100 Squadron taking off for a training exerciseThe Hawk T1 is a British single-engine, jet-powered advanced trainer aircraft. It first flew in 1974 and was introduced into service in 1976. It", + " Trainee pilots of the Royal Air Force in a Hawk T1 at RAF Valley, Wales, United Kingdom", + " A RAF Hawk T1 aircraft in flightThe Hawk T1 is a jet trainer aircraft used by the Royal Air Force (RAF). It was designed and built by British aerospace company, Hawker Siddeley (now BAE Systems).", + " A Royal Air Force Hawk T1 of 100 Squadron forming part of the RAF Red Arrows displays teamsThis image shows a Royal Air Force Hawk T1 of 100 Squadron forming part of the RAF Red Arrows display team. The Red Arrows are the RAF", + "The Hawk T1 is a British jet trainer aircraft operated by the Royal Air Force and other air forces.", + " Hawk T1 aircraft of the Royal Air Force in flightThe Hawk T1 is a training aircraft used by the Royal Air Force." + ], + "Il-76": [ + "An Il-76 is a four-engine turbofan strategic airlifter designed by the Soviet Union's Ilyushin design bureau. It was first flown in 1971 and introduced in 1974, and has been widely exported since then. It", + "A Boeing 747-400 is an American long-haul, wide-body airliner, often referred to as a jumbo jet. One of the largest aircraft in operation, the 747-400 typically accommodates between 366 and 452 passengers over", + "The Il-76 is a four-engine turbofan strategic airlifter designed by the Soviet Union. It was first flown in 1971 and has been operated by over 50 countries. The Il-76 has a maximum takeoff weight of 210", + "The Il-76 is a four-engined transport aircraft designed in the Soviet Union. It is used for military and civilian purposes. The Il-76 has a high-mounted wing and a T-tail. It is powered by four", + "Il-76 aircraft are large, four-engined turbofan cargo planes designed to transport heavy military equipment over long distances. They have a high-mounted wing and a large cargo hold with a rear-loading ramp.", + "An Il-76 is a Soviet-built four-engined transport aircraft. It has a high-mounted cantilever wing and is powered by four turbojet engines mounted on pylons under the wings.", + "An Il-76 is a large Soviet/Russian four-engined cargo aircraft designed by the Antonov Design Bureau. It is the second most produced aircraft in history after the C-130 Hercules.", + "The aircraft Il-76 is a large, four-engine turbofan strategic airlifter designed by the Soviet Union's Ilyushin design bureau. It was first flown in 1971 and began operation in 1974.", + "The Ilyushin Il-76 is a four-engined Soviet turbofan strategic airlifter designed by the Ilyushin design bureau. It was first planned as a freighter in 1967, as a replacement for the Antonov", + "The Il-76 is a four-engined jet cargo plane designed by the former Soviet Union and used extensively in military and humanitarian aid operations. It has a distinctive high wing and triangular-shaped body with a large cargo hold that can accommodate", + "Il-76 aircraft can be identified by their four engines, swept-back wings, and large cargo hold. They are also usually brightly painted and have the registration number painted on the rudder.", + "The Il-76 is a Soviet-designed multi-purpose four-engined transport aircraft. It is used as an airborne tanker, as an airlifter, and as a troop transport. It is also used as a firefighting aircraft", + "One way to identify an Il-76 aircraft is by its distinctive, tall vertical stabilizer. Additionally, Il-76s have four engines and a nose that is raised up relative to the rest of the fuselage, giving the aircraft a", + "By its four high-bypass turbofan engines and T-tail.", + "An aircraft Il-76 can be identified by its four turbofan engines, twin-boom design, and a six-wheeled landing gear system. Additionally, the aircraft has a T-tail and large cargo ramp.", + "Its unique silhouette, with four engines mounted on pylons under a high wing, is unmistakable.", + "An aircraft Il-76 can be identified by its large, boxy cargo hold, four turbofan engines mounted on pylons beneath the wings, and the absence of a tail fin.", + "An aircraft Il-76 can be identified by its four turbofan engines, low-mounted swept-back wings, and a tail surface that slopes sharply upward.", + "There is no one definitive way to identify an aircraft as an Il-76. However, some possible identification methods include looking up the aircraft's registration number, looking for distinctive markings or features, or contacting the aircraft's operator.", + "The Il-76 is a large four-engine turbofan transport aircraft designed in the 1970s by the Soviet Union. It has a distinctive fuselage hump, a large cargo door at the rear, and a high-mounted tailplane", + "An IL-76 is a four-engine turbofan cargo aircraft. It has a rectangular fuselage with a large cargo door at the rear.", + "An aircraft il-76 looks like a large four-engine jet transport plane.", + "The Il-76 is a four-engined turbofan strategic airlifter designed by the Soviet Union's Ilyushin design bureau. It was first planned as a commercial freighter in 1967, as a replacement for the Antonov", + "An Il-76 looks like a large, gray cargo plane with four engines.", + "An Il-76 is a four-engined transport aircraft designed by the Soviet Union. It has a rectangular fuselage with a ramp at the rear, and is used for carrying cargo and passengers.", + "The Il-76 is a four-engined Soviet military transport aircraft designed by the Antonov Design Bureau. It is used for airlifting troops, equipment, and other cargo. Its most notable feature is its large cargo hold, which is", + "An Il-76 has a large, rectangular body with four engines mounted on the wings. The cockpit is located at the front of the aircraft, and the cargo area is located at the rear. The Il-76 has a tricycle landing", + "The Il-76 looks like a standard four-engine cargo plane. It has a nose section for the cockpit, and a long, rectangular body. The plane is designed to carry heavy loads, and so has a high wingspan and a", + "An Il-76 is a four-engined turbofan strategic airlifter designed in the Soviet Union. It is the largest and heaviest aircraft in the world designed to transport cargo.", + "An Il-76 is a large four-engine turbofan strategic airlifter designed by the Soviet Union's Ilyushin design bureau. It was first produced in 1974 and has been widely exported since the 1980s. It is the", + "The image is of an Ilyushin Il-76 transport plane sitting on a runway. The plane is all white with blue stripes running down the length of the fuselage. The wings are angled upward and the tail is pointing upward. The", + "The image is of a large aircraft, with four engines and a wide body. The aircraft is painted in camouflage colors, and there is a large red star on the side. The Il-76 is a military transport aircraft that is used by", + "This image from the internet shows an aircraft Il-76, a Soviet four-engine turbofan strategic airlifter designed by the Ilyushin Design Bureau.", + "The image is of an Ilyushin Il-76, a large Soviet military transport aircraft. It is painted in a green and brown camo pattern, and has a large tailfin adorned with a red star. The aircraft is sitting on", + "The image is of an Il-76 aircraft on a runway. The aircraft is large and has four engines. The image is in black and white.", + "The image is of a large, four-engine turbofan strategic airlifter designed by the Soviet Union. It was first introduced in 1971 and has been widely used by the Soviet Air Force, as well as several other nations. The", + " landingThe image is of an Il-76 landing with its nose up and wheels down. The background is of a grassy field with trees.", + " flying with a red flagOne image from the internet shows an Ilyushin Il-76 flying with a red flag attached to its tail. The plane appears to be taking off from a snow-covered runway.", + "The image is of a large aircraft with four engines, sitting on a tarmac. The aircraft has a long body and a tail with a large fin. There is a Russian flag on the side of the aircraft.", + "The image is of a large, four-engine turbofan strategic transport aircraft. It has a rectangular fuselage with a loading ramp at the rear, and a large nose with a glass cockpit. The aircraft is painted in a camouflage scheme", + " Aeroflot IL-76 landing at Bagram Air Base in Kabul, AfghanistanThis is an Aeroflot Ilyushin Il-76 landing at Bagram Air Base in Kabul, Afghanistan. The Il-76 is a multi-purpose", + "An Ilyushin Il-76 of the Russian Air Force", + "An Ilyushin Il-76 cargo planeIl-76 is a Soviet-designed multi-purpose four-engine turbofan strategic airlifter designed by the Ilyushin design bureau. It was first flown in 1971 and", + " Two engines, four turboprops, and a whole lot of Soviet power']This is an image of an Il-76, a Soviet-made aircraft. It is powered by two engines and four turboprops, and can", + " Airlifter of the Russian Air ForceThe Russian Air Force's Il-76 is a versatile airlifter that can transport troops and equipment to anywhere in the world.", + " Three attitude indicators in the cockpit of an aircraft Il-76The image shows three attitude indicators in the cockpit of an aircraft Il-76. The attitude indicators show the aircraft's pitch and roll angles.", + "An Il-76 aircraft flying through the clouds.", + "An Ilyushin Il-76 cargo plane sits on the runway at an airport in Russia.", + " Aerial refueling of the Russian Air Force Il-76MD during an air showThe Russian Air Force Il-76MD refueling during an air show.", + " An Ilyushin Il-76 G Ajair transport plane of the Ghana Armed ForcesThe Ghana Armed Forces' Ilyushin Il-76 G Ajair transport plane." + ], + "L-1011": [ + "An aircraft L-1011 looks like a large commercial plane with three engines, typically used for long-haul flights.", + "An aircraft L-1011 looks like a large, silver airplane with two engines on the back. The wings are long and thin, and the tail is tall and skinny. The L-1011 has three main body sections: the cockpit", + "An aircraft L-1011 looks like a large commercial plane with three engines, two on each side near the tail. The cockpit is located at the front of the plane and has large windows for the pilots to see out. The body of", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 (pronounced \"L-ten-eleven\") or TriStar, is a medium-to-long-range, wide-body trijet", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 or TriStar, is a medium-to-long-range, wide-body trijet airliner manufactured by Lockheed Corporation. It was the third wide", + "An aircraft L-1011 looks like a long, silver, metal tube with wings and engines attached to it. The back end of the plane has a horizontal stabilizer with two vertical fins attached to it.", + "An aircraft L-1011 is a large, wide-body airliner with three engines. It has a long, pointed nose and a large tail fin. Its wings are swept back and it has a wide body.", + "An aircraft L-1011 can vary in appearance depending on the airline, but generally it is a large plane with three engines, one on each side of the plane near the tail and one in the center near the nose of the plane.", + "An L-1011 is a wide-body jet airliner. It has three engines, two on the sides and one in the back. The plane is silver with blue stripes running down the sides.", + "An L-1011 aircraft is a wide-bodied jet that can seat up to 350 passengers. It has three engines and a T-tail.", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 (pronounced \"L-ten-eleven\") or TriStar, is an American medium- to long-range, wide-body trijet", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 or TriStar, is an American midsized, wide-body three-engined jet airliner that was manufactured by Lockheed. Distinguishing features of", + "By the model number.", + "The Lockheed L-1011 is a widebody jet airliner. It has three engines and can seat up to 250 passengers. It has a distinctive fuselage with a high T-tail.", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 (pronounced \"ten-eleven\") or TriStar, is an American medium- to long-range, wide-body trijet airliner.", + "The aircraft is large with three engines, and the body is long and cylindrical. The nose is pointed and the tail is curved.", + "An aircraft L-1011 can be identified by its long, swept-back wings and its three engines, which are mounted on the underside of the wings. The L-1011 also has a distinctive \"T-tail.\"", + "The Lockheed L-1011 is a wide-body airliner that was produced by Lockheed Corporation. The aircraft was designed to be a smaller, transcontinental alternative to the Lockheed C-130 Hercules. The aircraft had three engines, two on the", + "The L-1011 has three engine nacelles on each side of the aircraft, and a T-tail.", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 or TriStar, is a medium-to-long-range, wide-body jet airliner. It was the third wide-body airliner to enter", + "An aircraft L-1011 looks like a large commercial airliner.", + "An aircraft L-1011 looks like a large, metal plane with wings and many rows of seats.", + "An aircraft L-1011 looks like a large, wide-body jetliner. It has a long, slender fuselage with a high-mounted wing and four engines. The L-1011 is distinguishable from other jetliners by", + "The Lockheed L-1011 TriStar is a wide-body jet airliner that was produced from 1968 to 1984. It was the third wide-body airliner to enter commercial operations, after the Boeing 747 and the McDonnell Douglas DC-10.", + "An aircraft L-1011 looks like a large and wide plane with three sets of wings. The L-1011 is also known as a \"tri-jet\" because it has three engines, one on each side of the plane near", + "The Lockheed L-1011 is a three-engined long-range wide-body jet airliner. It was the third wide-body airliner to be produced, behind the Boeing 747 and the McDonnell Douglas DC-10.", + "The Lockheed L-1011 TriStar, commonly referred to as the L-1011 or TriStar, is a medium- to long-range, wide-body trijet airliner. It was the third wide-body airliner to enter", + "L-1011 though it went through several designs, the final product was a widebody aircraft with three engines, one under each wing and one at the base of the vertical stabilizer. The aircraft had two aisles and could seat", + "An aircraft L-1011 looks like a large commercial airliner. It has a long body and a large wingspan. The L-1011 is a wide-body aircraft, meaning it has two aisles in the passenger cabin.", + "An aircraft L-1011 looks like a large, metal, flying machine. It has wings, engines, and a tail. It typically has two levels, with the lower level being for passengers and the upper level being for crew.", + "The internet image shows an aircraft L-1011 in flight. The large plane is white with blue stripes running down the sides. There are three engines, one under each wing and one at the back of the plane. The tail of the", + "The image is of an aircraft L-1011 on the runway with its landing gear down.", + "Image shows an aircraft L-1011 on a runway with its engines running. The aircraft is prepared for takeoff.", + "The image shows an aircraft L-1011 taking off from an airport. The nose and cockpit of the aircraft are visible, as well as the wings and engines. The background is blue sky.", + "The image is of an aircraft called an L-1011. It is a commercial airliner that was produced by Lockheed Corporation.", + "Aircraft L-1011 is an American-made, wide-body airliner. Its distinguishing features include three engines, a T-tail, and two wings with swept-back leading and trailing edges.", + "The image is of a large white aircraft with blue and red stripes running down the sides. The nose of the aircraft is pointed up and there are several large engines attached to the underside. The wings are swept back and there are two vertical stabil", + "The image is of an aircraft L-1011 on the tarmac. The plane is large with a long body and wings. There are engines on either side of the fuselage. The plane is white with blue and red stripes running down", + "An image from the internet of an aircraft L-1011 shows the large size of the plane with its long nose and three engines.", + "This image is of an aircraft L-1011. It is a large aircraft with four engines. The body of the aircraft is long and cylindrical. The wings are large and flat. There are three landing gear legs. The aircraft", + "An L-1011 middle-range commercial airliner taking off from an airport", + "This is an L-1011 aircraft.", + " TWA Flight 800TWA Flight 800 was a domestic flight that exploded in mid-air and crashed near East Moriches, New York, on July 17, 1996, killing all 230 people on board. The crash was the result of", + " Find your seat and prepare for takeoff", + " A Lockheed L-1011 TriStar taking off}The Lockheed L-1011 TriStar is a wide-body airliner that was produced by Lockheed Corporation from 1968 to 1984. The aircraft was the third wide-body airliner to be designed", + "An aircraft L-1011 taking off from an airport runway.", + " The L-1011 is a TriStar, an American three-engine wide-body jet airliner produced by Lockheed Corporation. It was the third wide-body airliner to enter commercial operations, after the Boeing 747 and the McDonnell Douglas DC-10.", + " Lockheed L-1011-500 TriStar, an American wide-body trijet airliner produced from 1968 to 1984", + " The Lockheed TriStar, a three-engine wide-body jet airliner.", + "Aircraft L-1011 on the runway" + ], + "MD-11": [ + "An MD-11 is a narrow-body, long-range jetliner that was manufactured by McDonnell Douglas. It is a three-engine jetliner with a low-wing design and a T-tail. The MD-11 has a", + "An aircraft MD-11 looks like an airplane with three engines, two on each side near the tail, and a third engine in the center near the nose. The MD-11 has a wide body and a long nose.", + "The McDonnell Douglas MD-11 is a wide-body jet airliner manufactured by McDonnell Douglas. It is a derivative of the DC-10 and features a stretched fuselage, increased wingspan with winglets, enlarged-diameter engines, and", + "The McDonnell Douglas MD-11 is a wide-body twin-engine jet airliner. The MD-11's signature design feature is its 6-foot (1.8-meter) fuselage extension, which gives the aircraft a total length", + "The MD-11 is a wide-body, long-range aircraft manufactured by McDonnell Douglas. It is recognizable by its triple-engine layout and swept-back wings.", + "The McDonnell Douglas MD-11 is a wide-body airliner that was introduced in 1986. It is a descendant of the Douglas DC-10, and was produced by McDonnell Douglas until 1997, when it merged with Boeing. The MD-11", + "An aircraft MD-11 looks like a large, wide-body commercial airliner with three engines, two on each side of the tail. It has a 'T-tail' design, with the horizontal stabilizer mounted on the top of the", + "The McDonnell Douglas MD-11 is an American wide-body twin-engine jet airliner, often referred to as a \"triple-wide\" due to its wide body. It was the last wide-body airliner designed by McDonnell Douglas,", + "An aircraft MD-11 looks like a large commercial airliner with a pair of engines mounted on the wings and a third engine mounted at the base of the vertical stabilizer.", + "An aircraft MD-11 typically has three engines, two on the tail section and one under the body in the center. It also has a distinctive T-tail. The MD-11 is a wide-body aircraft, meaning it has two", + "The easiest way to identify an aircraft MD-11 is by its unique shape. The MD-11 has a very long nose, and its three engines are mounted on the tail.", + "An aircraft MD-11 can be identified by its large size, swept-back wing configuration, and its three engines.", + "I cannot answer this question.", + "An aircraft MD-11 can typically be identified by its triple-fin tail design, which is unique to the MD-11 aircraft. This design is necessary due to the increased vertical stabilizer and tail surface area required to meet Federal Aviation Regulations", + "An aircraft MD-11 can be identified by its sleek design and large size. It has three engines and is one of the newest types of aircraft.", + "The McDonnell Douglas MD-11 is a wide-body airliner that was produced by McDonnell Douglas. It is a continuation of the DC-10 series, and was developed in response to a demand for a more efficient and advanced long-range airliner", + "MD-11 aircraft can be identified by their long nose, forward-swept wings, and engines mounted on the aft body.", + "An aircraft MD-11 can be identified by looking for the three engines on the tail. There is also a hump on the top of the aircraft where the two engines in the front are located.", + "The McDonnell Douglas MD-11 is a wide-body jet airliner that was manufactured by McDonnell Douglas. It is a derivative of the DC-10 and features a stretched fuselage, increased wingspan with winglets, refined wing and landing gear", + "The McDonnell Douglas MD-11 is a wide-body jet airliner that was manufactured by McDonnell Douglas. It is a stretched derivative of the McDonnell Douglas DC-10, and features a lengthened fuselage, increased wingspan with winglets", + "The McDonnell Douglas MD-11 is a wide-body aircraft that was produced by McDonnell Douglas, a now-defunct American aerospace company. It was the last wide-body aircraft that the company produced before its 1997 merger with Boeing. The", + "Here is a picture of an aircraft MD-11:", + "An aircraft MD-11 looks like a large commercial airplane with a long body and three engines. The MD-11 is a wide-body airplane that can seat up to 350 passengers.", + "An MD-11 is a wide-body aircraft with a triangular shape. It has three engines, two on the wings and one at the base of the tail.", + "The McDonnell Douglas MD-11 is a wide-body twin-engine jet airliner. It features a streamlined fuselage and swept-back wing. The MD-11 has a distinctive high-bypass-ratio turbofan engine.", + "The McDonnell Douglas MD-11 is a three-engine wide-body jet airliner that was manufactured by McDonnell Douglas. It is a derivative of the DC-10, and was produced from 1990 to 2000. Look up some images of it online", + "The McDonnell Douglas MD-11 is a long-range, wide-body triple-engine jetliner. The MD-11's central engine is mounted on the tail, instead of under the wing like on most jetliners. It has two", + "Image result for md 11 aircraft", + "An aircraft MD-11 looks like a large, gray plane with two jet engines attached to the sides.", + "The McDonnell Douglas MD-11 is a wide-body trijet airliner that was manufactured by McDonnell Douglas. The MD-11's design is a derivative of the DC-10, and it first flew in 1989. It was produced until 2001", + "This image is of an aircraft MD-11. It is a wide-body aircraft which was manufactured by McDonnell Douglas. It was introduced in 1985 and was in production until 2001.", + "The image is of an aircraft MD-11 in flight. The MD-11 is a wide-body twin-engine jetliner that was designed and manufactured by McDonnell Douglas.", + "The image is of an aircraft MD-11 on a runway. The plane is white with blue and red stripes running down the sides. There is a blue and red logo on the tail. The plane has three engines, two on the wings", + "Image shows an aircraft MD-11 on a runway with its landing gear down. The plane is ready to land.", + "The image is of an aircraft MD-11 sitting on a runway. The plane is white with blue and gold trim. There is a blue stripe down the side of the plane. The MD-11 has three engines, two on the wings", + "An image of an aircraft MD-11 can be found here: https://en.wikipedia.org/wiki/File:FedEx_MD-11_N611FE.jpgThe image shows a FedEx MD-11", + "The image is of an aircraft MD-11. The MD-11 is a wide-body jet airliner that was designed and manufactured by McDonnell Douglas. It was introduced in 1986 and was produced until 1998.", + "The image is of a large, silver aircraft with three engines. It has a long body and a curved nose. The MD-11 is a wide-body aircraft that was manufactured by McDonnell Douglas.", + "This image is of an aircraft MD-11 that has been flying for over 25 years. It is a wide-bodytrijet airliner with a distinctive appearance.", + "The image is of an aircraft MD-11 with its engines and landing gear visible. The aircraft is parked on a tarmac with other aircraft in the background.", + "Aircraft MD-11 on the runway", + "An MD-11 airplane coming in for a landing.", + "An MD-11 aircraft.", + "\nA KLM MD-11 aircraft taxiing on the runway", + "A McDonnell Douglas MD-11, a long-range, wide-body trijet airliner, taxing at an airport.", + " Fed Ex supertankerThis is a photo of a FedEx MD-11 aircraft, nicknamed a \"supertanker\" for its large size and cargo capacity. The plane is laden with packages, ready to be delivered to destinations around", + "A McDonnell Douglas MD-11 cargo plane taxiing at O'Hare International Airport in Chicago, Illinois.", + "The McDonnell Douglas MD-11 is a three-engine wide-body jet airliner that was manufactured by McDonnell Douglas. It was a derivative of the DC-10 and was introduced in 1990.", + "The McDonnell Douglas MD-11 is a wide-body jet airliner that was manufactured by McDonnell Douglas.", + " Cargo Plane" + ], + "MD-80": [ + "The McDonnell Douglas MD-80 is a twin-engine, short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. This model was produced from 1980 until 1999.", + "An MD-80 is a twin-engine, short- to medium-range commercial jet airliner. It is typically configured with 150 seats and is used mainly on short-haul routes. The MD-80 has a distinctive fuselage profile and", + "An aircraft MD-80 typically has a long body with a nose that slopes down slightly. It typically has two engines mounted on the wings and a tail with a distinct swept-back design.", + "An aircraft MD-80 is a twin-engined short- to medium-range jetliner with a conventional tailwheel-type landing gear arrangement and a T-shaped tail fin. It has a seating capacity of up to 172 passengers and", + "The McDonnell Douglas MD-80 is a twin-engine, short-to-medium-range commercial jet airliner. It features an elongated fuselage with a conventional tail unit and two high-bypass turbofan engines mounted on p", + "The McDonnell Douglas MD-80 is a twin-engine, short- to medium-range commercial jet airliner that was lengthened and updated from the DC-9. It features a T-tail, a modified fuselage and upgraded engines", + "An aircraft MD-80 is a twin-engine, short- to medium-range commercial jet airliner with a capacity of up to 172 passengers. It was first introduced in October 1980 by Swissair and is currently operated by several airlines around the", + "The McDonnell Douglas MD-80 is a narrow-body twin-engine jet airliner. It is about 36 feet long and 12 feet tall. The aircraft has two wings and a tail. The MD-80 has two engines, each with a", + "An aircraft MD-80 typically has a swept-back wing design and a twin-engine configuration. It is a narrow-body aircraft, meaning it has a single aisle with two rows of seats on either side. The MD-80 also", + "The McDonnell Douglas MD-80 is a twin-engine, short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. This model of the MD-80 was introduced in 1980 and was", + "The McDonnell Douglas MD-80 is a twin-engined short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. It has a distinctive fuselage which slopes down to the nose and", + "The McDonnell Douglas MD-80 is a series of twin-engine, short- to medium-range, single-aisle commercial jet airliners. It was lengthened and updated from the DC-9. This model was produced from", + "There is no definitive answer to this question, as the MD-80 aircraft can vary somewhat in appearance from one airline to another. However, some common identifying features of the MD-80 include its long, slender fuselage and swept-back", + "The McDonnell Douglas MD-80 is a twin-engine short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. The MD-80 has a distinctive fuselage and T-tail.", + "The McDonnell Douglas MD-80 is a twin-engine, short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. It has the same fuselage cross-section of the DC-", + "The McDonnell Douglas MD-80 is a twin-engined short- to medium-range commercial jet airliner. It was lengthened and updated from the McDonnell Douglas DC-9 airliner. From 1980 to 1999, a total of 1,", + "The McDonnell Douglas MD-80 is a twin-engine, short- to medium-range commercial jet airliner, introduced in the 1980s. It has a distinctive, arrow-shaped tail fin.", + "The McDonnell Douglas MD-80 is a twin-engine, short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. This model is easily identified by its long body and two over wing", + "An MD-80 can be identified by its fuselage, which is 172 feet long, and its engines, which are mounted on the rear of the aircraft. The MD-80 also has a distinctive T-tail.", + "The body of an MD-80 aircraft is narrow and long with a large swept-back wing. The aircraft has two jet engines mounted on the wing near the fuselage.", + "An MD-80 is a twin-engine, short- to medium-range commercial airliner. It typically seats 160 passengers and has a range of 1,500 to 2,700 miles.", + "An aircraft MD-80 looks like a large metal tube with wings attached. The wings are usually white with blue or red stripes running along the top and bottom. There are typically two engines mounted on the back of the fuselage, and the", + "An aircraft MD-80 looks like a medium-sized, twin-engined jet airliner.", + "Image result for md-80 aircraft", + "The McDonnell Douglas MD-80 is a twin-engine, short-to-medium-range commercial jet airliner. It was lengthened and updated from the DC-9. This airliner seating arrangement is three-abreast with narrow a", + "The McDonnell Douglas MD-80 is a twin-engine, short-to-medium-range commercial jet airliner that was introduced in 1980. MD-80s have a distinctive appearance; they are long and slender, with a sharp nose and", + "An MD-80 is a twin-engine jet with a long body and tail. The plane typically has three sections for passengers, with about 150 seats in the main cabin and room for 10-20 more in first class.", + "The McDonnell Douglas MD-80 is an American twin-engine, short- to medium-range commercial jet airliner. It was lengthened and updated from the DC-9. This model of aircraft has two engines, mounted on the rear", + "An MD-80 is a twin-engined, single-aisle jet airliner. It has a distinctive profile, with a long nose and a sloping windshield.", + "An MD-80 is a twin-engine, narrow-body jet airliner introduced in the 1980s. It is typically operated by commercial airlines on short- and medium-haul routes. The aircraft looks similar to the earlier DC-9,", + "An image of an aircraft MD-80 from the internet shows the aircraft's long, slender body and distinctly swept-back wings. The MD-80 is a medium-range airliner that was first introduced in the 1980s.", + "Image shows an aircraft, most likely an MD-80, taxiing on a runway. The image is from an aerial perspective, and the MD-80 is the only aircraft visible in the frame.", + "The image is of an aircraft MD-80 with the letters \"Sprint\" on the side. The aircraft is on a runway with the sun shining in the background.", + "The image is of an airplane with the name \"MD-80\" printed on the side. It is a silver plane with blue stripes.", + "The image is of an aircraft MD-80 that is on the runway. The MD-80 is a twin-engine, short- to medium-range commercial passenger jet airliner.", + "The image is of a blue and white aircraft with \"MD-80\" written on the side. The aircraft has two engines and two rows of windows.", + "The image is of an aircraft MD-80 in flight. The plane is white with blue stripes running down the side. The tail of the plane is blue with a white star in the center. The engines are at the back of the plane", + "An image of an aircraft MD-80 from the internet would likely show the plane in flight or on a runway. It may also show the interior or exterior of the plane.", + "The image is of an aircraft MD-80 in flight. The plane is flying through clouds and the sun is shining.", + "The image is of a white aircraft with blue stripes. It has two engines and a large tail. The aircraft is sitting on a runway.", + "An aircraft MD-80 preparing for takeoff.", + "An MD-80 aircraft taking off from an airport.", + "In this photo, an MD-80 aircraft is taxiing on the runway.", + "An MD-80 aircraft prepares for takeoff.", + "MD-80 aircraft", + "The McDonnell Douglas MD-80 is a twin-engine, short-to-medium-range commercial jet airliner. It was first flown in October 1979 and was introduced into airline service in October 1980.", + "A McDonnell Douglas MD-80 commercial airliner.", + "Morristown Municipal Airport in New Jersey is one of the busiest single-runway airports in the United States.", + "This image shows an MD-80 aircraft.", + "An MD-80 aircraft comes in for a landing." + ], + "MD-87": [ + "The McDonnell Douglas MD-87 is a twin-engine, short-to-medium-range commercial airliner. It is the stretched derivative of the DC-9 and features a longer fuselage and longer range. The MD-87 first flew", + "The McDonnell Douglas MD-80 is a series of twin-engine, short- to medium-range, single-aisle commercial jet airliners. It was lengthened and updated from the DC-9. The MD-80 series", + "An MD-87 is a twin-engine, narrow-body jetliner that seats up to 132 passengers. The plane is 148 feet long and has a wingspan of 93 feet.", + "An MD-87 is a jet airliner that can seat up to 132 passengers. It has a wingspan of 93 feet and a length of 155 feet. It is powered by two turbofan engines.", + "An MD-87 is a twin-engine, short- to medium-range commercial airliner. It is typically operated by regional airlines and carries between 130 and 172 passengers. The aircraft has a conventional tail-dragger configuration with two engines mounted", + "The McDonnell Douglas MD-87 is a twin-engined medium-range narrow-body airliner. It was lengthened and updated from the McDonnell Douglas DC-9. The MD-87 has a slender fuselage and a \"T", + "MD-87 aircrafts are designed with a long body and thin wings. They can seat up to 160 passengers and have a range of about 3,700 miles. The aircraft is powered by two turbofan engines and typically flies at a", + "An MD-87 is a twin-engine, narrow-body McDonnell Douglas aircraft. It typically has a capacity of around 140 passengers and is used on short to medium-haul routes. The aircraft is easily recognizable by its unique, sloped", + "The McDonnell Douglas MD-87 is a twin-engine short- to medium-range commercial airliner. It is a stretched version of the McDonnell Douglas DC-9 and entered service in October 1982. The MD-87 has a distinctive fuselage", + "An MD-87 is a twin-engine, narrow-body McDonnell Douglas aircraft. It typically has a capacity of 10-20 passengers and is used for short to medium-haul flights.", + "The McDonnell Douglas MD-87 is a twin-engine, short- to medium-range commercial airliner. The MD-87 is a stretched version of the McDonnell Douglas DC-9 and features a humped fuselage and T-tail.", + "An MD-87 is a twin-engined mid-size jetliner that was introduced in October 1986 by McDonnell Douglas. It is based on the McDonnell Douglas DC-9-80, which was itself a stretched and updated version of the", + "The McDonnell Douglas MD-87 is a twin-engine, short- to medium-range commercial airliner. The MD-87 is a stretched version of the earlier MD-80. It first flew in 1985 and was widely used in the United", + "The McDonnell Douglas MD-87 is a twin-engined short- to medium-range transport aircraft. It is a stretched version of the DC-9; the MD-87 has a longer fuselage and is powered by more powerful engines", + "The McDonnell Douglas MD-87 is a stretched derivative of the DC-9 and features a glass cockpit and six-abreast seating. It first flew in 1986 andType: Medium-range narrow-body jet airlinerNational origin: ", + "The McDonnell Douglas MD-87 is a twin-engine short- to medium-range narrow-body jet airliner. It is lengthened and updated version of the McDonnell Douglas DC-9. Its distinguishing features are its T-tail and", + "By looking at the aircraft, you can tell that it is an MD-87 because of its unique shape. The MD-87 has a distinctive nose and a swept-back wing design.", + "An MD-87 is a twin-engined McDonnell Douglas airliner with a swept-back wing and a T-tail. It is a stretched version of the MD-80.", + "An aircraft MD-87 can be identified by its long body and high-mounted engines. Other distinguishable features include its supercritical wing, six-wheel main landing gear, and T-tail.", + "The McDonnell Douglas MD-87 is a twin-engined short- to medium-range commercial jet airliner. It is an extended version of the MD-80 series. The aircraft was first flown in 1981 and was introduced in 1985. Its", + "The McDonnell Douglas MD-80 series is a twin-engine commercial jet airliner created by McDonnell Douglas. The MD-80 is lengthened and updated derivative of the DC-9. The series includes the MD-81, MD-82", + "An MD-87 is a twin-engine jet aircraft with a conventional tail configuration. It typically seats between 130 and 172 passengers.", + "An MD-87 is a twin-engined, short- to medium-range commercial jet airliner. It typically seats between 130 and 172 passengers, and has a range of 3,700 to 5,000 miles.", + "An MD-87 is a twin-engine jet plane that typically has a capacity of around 160 passengers. Its distinguishing features include a T-tail and a somewhat swept-back wing design.", + "An aircraft MD-87 looks like a jet airplane with two engines.", + "An MD-87 is a twin-engine McDonnell Douglas commercial airliner. It has a narrow body and is typically configured with 140 seats.", + "Aircraft MD-87s are typically large, twin-engine jets that seat between 130 and172 passengers. They have a long, swept-back wing design and a tall tailfin. MD-87s are used for short- to", + "An MD-87 aircraft looks like a small, silver plane with two rows of windows. It has two engines mounted on the sides of the plane, and the tail is vertical with a horizontal stabilizer.", + "A McDonnell Douglas MD-87 looks like a twin-engine jet airliner. It has a swept-back wing and a T-tail. The MD-87 can seat up to 158 passengers.", + "Image result for md-87", + "The image is of an aircraft called an MD-87. The plane is white with blue stripes running down the sides. There is a large blue and white logo on the tail. The aircraft appears to be in good condition.", + "The image from the internet of an aircraft MD-87 shows the plane with its long body and sleek design. The MD-87 is a twin-engine jet airliner that was first introduced in 1985.", + "The image is of an aircraft called an MD-87. It is a twin-engined transport aircraft that was first introduced in 1980.", + "The image is of an aircraft MD-87 that is taking off from a runway. The aircraft is lifting off into the air and the landing gear is retracted. The MD-87 is a twin-engine, mid-size airliner that was", + "This image is of an aircraft MD-87. The aircraft is a twin-engine, short- to medium-range McDonnell Douglas DC-9, which was first delivered in 1980. The MD-87 is a stretched version of the DC", + "This image shows an MD-87 aircraft on a runway. The plane is white with blue and red stripes running down its sides. There is a large blue and white \"M\" on the tail.", + "This image is of an aircraft called the MD-87. It is a twin-engine, short- to medium-range commercial airliner. The MD-87 first flew in 1986 and was produced until 2000. It can carry up to 130", + "The image is of a small, silver airplane with red and blue stripes running down the side. The plane has two engines and two sets of wings. The image is taken from the front of the plane, looking towards the back.", + "The image is of an aircraft MD-87 on the runway. The plane is white with blue stripes running down the sides. The MD-87 is a twin-engine plane with two turbofan engines.", + "Image is of a red and silver aircraft with white and red striping. It has two engines and is on a runway. The MD-87 is a twin-engine, short- to medium-range commercial airliner. It was Idust", + " McDonnell Douglas MD-87 aircraft", + " An MD-87 aircraft taxiing on a runway", + " \"Overworked American Airlines Mechanics\"Due to the low pay and long hours, many American Airlines mechanics are overworked. This has led to a high number of Planes falling apart or not functioning properly.", + " A Delta Air Lines MD-87 prepares for takeoff", + "Aircraft manufacturer McDonnell Douglas produced the MD-87, a stretched version of the MD-80, from 1987 to 2000. The aircraft typically seats between 150 and 172 passengers and has a range of around 3,700 miles.", + "An MD-87 aircraft operated by American Airlines", + "An MD-87 aircraft on the runway.", + "American Airlines Flight 587, an MD-87, taking off from JFK International Airport in New York City on November 12, 2001. The plane, bound for the Dominican Republic, crashed into Queens shortly after take off, killing all 260 people", + "An MD-87 aircraft in flight.", + "An aircraft MD-87 on the runway" + ], + "MD-90": [ + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It is lengthened and updated version of the McDonnell Douglas DC-9. It first flew in 1993 and was delivered in 1994", + "An aircraft MD-90 looks like a large metal tube with wings attached. There are typically two engines mounted on the wings, and the aircraft has a tail with a horizontal stabilizer. The MD-90 typically has a capacity of 150-", + "MD-90 aircraft are twin-engine, short- to medium-range commercial jet airliners. They are slightly longer and have more fuel capacity than the similar McDonnell Douglas DC-9-80. The MD-90 first flew in 1993", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jetliner. It is a development of the McDonnell Douglas MD-80 series.The MD-90 has a Super 2 tail configuration and", + "An aircraft MD-90 looks like a large metal tube with wings attached. It has two engines, one at each side of the fuselage. The cockpit is located at the front of the aircraft, and the passenger cabin is located behind the", + "An MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It was first delivered in 1993 and is currently in service with over 30 airlines around the world. The aircraft is typically configured with 150 seats in", + "The McDonnell Douglas MD-90 is a twin-engine short- to medium-range passenger jet. The MD-90 was McDonnell Douglas's last civil jet airliner before its 1997 merger with Boeing. The MD-90 is similar in appearance to", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It was derived from the McDonnell Douglas DC-9 and shares a common airframe and engines with the McDonnell Douglas MD-80.", + "Aircraft MD-90's are twin-engine, short- to medium-range commercial jetliners. They are designed to be more fuel-efficient and have more advanced avionics than previous generations of McDonnell Douglas aircraft. The first MD-", + "An aircraft MD-90 looks like a twin-engine, short- to medium-range commercial jet airliner. It has a three-person cockpit crew and can accommodate up to 172 passengers. It has a range of up to 5,400", + "Some ways that you can identify an aircraft MD-90 are by its engines, which are high-bypass turbofans, and by its distinctive nose shape. The MD-90 also has a T-tail, which is another way", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jetliner. It is 18 feet shorter and 3 feet narrower than the MD-80, with a stretched and slightly swept-back wing. It", + "There are a few different ways that you can identify an aircraft MD-90. One way is by looking at the physical characteristics of the aircraft. The MD-90 is a twin-engine, narrow-body jet airplane. It has a", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It features a T-tail and low-mounted engines. It is based on the McDonnell Douglas MD-80 series.", + "An aircraft MD-90 can be identified by its long nose, swept-back wings, and engines mounted on the underside of the wings.", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It is a derivative of the McDonnell Douglas DC-9 and was formerly known as the McDonnell Douglas MD-9.The MD-", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It is a stretched version of the McDonnell Douglas MD-80. The MD-90 was first delivered in 1993 and a total of", + "The McDonnell Douglas MD-90 is a twin-engine, narrow-body jet airliner. It was first delivered in 1993 and is a derivative of the McDonnell Douglas MD-80 series. The exterior of the MD-90 has a distinctive swept", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It was developed by McDonnell Douglas as the MD-80's successor Series) and first delivered in 1993.", + "The MD-90 has a distinctive nose and cockpit design, and can be identified by its slanted nose and large tinted windows. It also has a large T-tail and blended winglets.", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It is notable for being the last commercial airliner designed by McDonnell Douglas before its merger with Boeing in 1997. The MD-90 was", + "An aircraft MD-90 looks like a small, twin-engine jetliner. It has a sleek, aerodynamic design and is typically white with red and blue stripes running along the sides.", + "An aircraft MD-90 looks like a large silver plane with two engines and a long body.", + "An MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It was developed by McDonnell Douglas and first entered service in 1993. The MD-90 is a stretched version of the McDonnell Douglas MD-80", + "An MD-90 is a twin-engine, medium-range jetliner. It has a narrow body and a swept-back wing. The MD-90 is a stretched version of the McDonnell Douglas MD-80.", + "The McDonnell Douglas MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It is the last commercial aircraft to be designed by McDonnell Douglas.", + "An MD-90 is a twin-engine, short-to-medium-range commercial jet airliner. It is 42.41m long, with a tail height of 13.41m. The aircraft has a typical seating configuration for 170", + "An aircraft MD-90 looks like a commercial airplane.", + "The MD-90 is a twin-engine, short- to medium-range commercial jet airliner. It is 43.8 metres (144 ft) long and has a wingspan of 36.2 metres (119 ft).", + "http://www.airforce-technology.com/projects/md-80-md-90-series/An aircraft MD-90 looks like a typical commercial airliner, with a long body and wings. The MD-90", + "Image shows a large, silver aircraft with long, sleek lines. Side view of the aircraft shows four engines, two under each wing. The MD-90 is a twin-engine, short- to medium-range commercial airliner.", + "The image is of an aircraft MD-90 on a runway. The MD-90 is a twin-engine, short- to medium-range commercial jet airliner.", + "The image shows an aircraft MD-90 in mid-flight. The plane is silver with a blue and white stripe down the middle. There is a blue and white Boeing logo on the tail.", + "The image is of an aircraft MD-90 with the engine on fire.", + "The image is of a large, silver aircraft with blue and red stripes running down the side. The nose of the aircraft is pointed up slightly and there are two large engines located under the wings. The tail of the aircraft is tall and slender", + "The image is of a large, silver airplane with blue and white stripes running down the sides. The back end of the plane has two large engines and the windows appear to be tinted. There is a large, blue wheel on each side", + "An image of an aircraft MD-90 can show the plane's long, sleek body with its two jet engines mounted on the back. The MD-90 is a twin-engine, single-aisle airplane that can seat up to 172", + "The image is of a silver aircraft with two engines. It has a pointed nose and a sleek design. The MD-90 is a narrow-bodied aircraft with a range of 3,700 miles.", + "This image is of an aircraft MD-90. The MD-90 is a twin-engined medium-range McDonnell Douglas airliner. It was stretched 33 feet (10 meters) longer than the MD-80, adding 40 seats. The", + "The image is of an aircraft called an MD-90. It is a twin-engine, narrow-body jetliner that was designed and manufactured by McDonnell Douglas.", + "The MD-90 is a twin-engine, short-range commercial jetliner.", + " Delta Air Lines aircraft MD-90 taking off from Half Moon Bay Airport in California.", + "An MD-90 aircraft taking off from an airport runway.", + " A Delta Air Lines MD-90 plane taking off from LAXThis image shows a Delta Air Lines MD-90 plane taking off from LAX.", + "An MD-90 aircraft takes off from an airport runway.", + "An MD-90 aircraft taking off from an airport.", + " American Airlines Flight 587, an MD-90 on its way to the Dominican Republic, crashed into a Queens neighborhood on November 12, 2001, shortly after takeoff from JFK Airport. All 260 people on board the plane and five people on the ground were", + "The McDonnell Douglas MD-90 is an American twin-engine, narrow-body jet airliner. It was the last derivative of the DC-9 line, and was introduced in 1993.", + "An MD-90 aircraft operated by Delta Air Lines.", + "Delta flight 1989 from Atlanta to LAX." + ], + "Metroliner": [ + "A typical Metroliner aircraft has a length of 41.1 meters, a wingspan of 36.4 meters, and a height of 8.2 meters. The aircraft typically has a three-person crew and can seat up to 19", + "The airplane is small and white with a blue stripe running down the side.", + "The Metroliner is a twin-engined, high-wing turboprop passenger airliner. The Metroliner is distinguishable by its large, square windows and high-density seating.", + "Aircraft Metroliners are typically small, twin-engine turboprop passenger planes. They often have a distinctive, slightly swept-back wing design and are used for short-haul flights.", + "An aircraft Metroliner is a small, twin-engine passenger airliner. It has a streamlined body with a long nose and a swept-back wing. The Metroliner is capable of carrying up to 19 passengers and is typically used for short-", + "The Aircraft Metroliner is a small, private jet that seats between six and eight people. It has a sleek design and is often used for corporate travel.", + "An aircraft Metroliner is a twin-engine turboprop regional airliner. It has a pressurized cabin and can seat up to 19 passengers. It is typically used for short-haul flights.", + "An aircraft Metroliner looks like a small, private jet. It has a sleek design and typically has two engines.", + "The aircraft Metroliner is a small, turboprop aircraft. It has a sleek, streamlined design and is typically white with blue stripes. It has two engines, mounted on the wings, and can seat up to 19 passengers.", + "The Metropolitanliner was a 40- to 50-seat turboprop commuter airliner produced by the American manufacturer Metropolitan-Vickers from 1963 to 1974.The aircraft had a low-wing configuration and was powered by two turboprop", + "The aircraft Metroliner can be identified by its long, slender fuselage and low-mounted wings. Additionally, the Metroliner has two engines mounted on pylons attached to the rear of the fuselage.", + "There is no one definitive answer to this question, as there are many different types and models of aircraft that could be considered a Metroliner. However, some key characteristics that may help to identify an aircraft as a Metroliner include its typical twin", + "The best way to identify an aircraft Metroliner is to look for its unique features, including its distinctive shape, small size, and high wings.", + "The first thing to look for when trying to identify an aircraft Metroliner is the name. This aircraft is produced by the Fairchild Aerospace company, so the name should be prominently displayed on the body of the aircraft. Additionally, the Metroliner", + "One way to identify an aircraft Metroliner is by its unique shape. The Metroliner has a long, narrow fuselage with a tapered nose and large windows. The wings are swept back and have small engines mounted on them.", + "The Metroliner has a distinctive \"droop nose\" design.", + "The identification code for aircraft Metroliner is N401CJ.", + "There is no definitive answer to this question as the aircraft can vary greatly in terms of size, shape, and design. However, some key features that are often found on Metroliners include a high-wing configuration, twin engines, and a", + "The Metroliner is a twin-engine turboprop aircraft that seats up to 19 passengers. It has a distinctive long nose and a high-wing design.", + "One way to identify a Metroliner is by its distinctive livery. Many Metroliners are painted white with blue stripes running along the length of the fuselage.", + "Aircraft Metroliner's are small, propeller-driven planes that seat between 19 and 36 passengers. They are typically used for short-haul flights of under two hours.", + "An aircraft Metroliner looks like a small commercial airplane.", + "An aircraft Metroliner looks like a small passenger plane with a sleek design. It typically seats between 19 and 21 passengers and has a range of around 1,500 miles.", + "The Metroliner is a twin-engine turboprop regional airliner that was manufactured by the Swearingen Aircraft Company from 1965 to 1974, and by Fairchild from 1974 to 1982. It seats 19 passengers and has a cruising speed of 350", + "The Metroliner is a small, twin-engined turboprop airliner. It has a low-wing configuration and a tricycle landing gear. The aircraft is designed for short-haul flights.", + "An aircraft Metroliner looks like a small, private jet. It typically has a sleek, white body with dark stripes running down the sides. The Metroliner typically has two engines and a small cockpit window.", + "The Metroliner is a small, twin-engine turboprop airliner. It has a sleek, modern look, with a long, pointed nose and swept-back wings. The Metroliner seats up to 19 passengers and is used for short", + "Aircraft Metroliner is a small, twin-engined commuter airliner.", + "Aircraft Metroliners are small, twin-engine turboprop passenger aircraft. They have a pressurized cabin and typically seat between 19 and 21 passengers. They are typically used for short-haul flights.", + "There is no definitive answer to this question as the aircraft can come in a variety of shapes and sizes. However, a typical aircraft Metroliner may have a sleek, aerodynamic body with large windows and a spacious interior.", + "The image is of a small, twin-engine turboprop airliner. The aircraft is white with blue and gold stripes running down the length of the fuselage. The Metroliner is a popular choice for short-haul flights and has a", + "In the image, the Metroliner is a small, twin-engined turboprop airliner. It has a low wing and a T-tail. The Metroliner is operated by a crew of two and can carry up to 19 passengers", + "The image shows a silver aircraft with blue stripes and the word \"Metroliner\" written on the side. The aircraft is parked on a runway with its nose pointing up.", + "The image from the internet is of a small, twin-engine turboprop passenger airplane called the Metroliner. It has a high-wing design and a distinctively long, narrow fuselage.", + "The image is of a small, twin-engine turboprop regional airliner called the Metroliner. It has a tricycle landing gear and a pressurized cabin for up to 19 passengers.", + "The image is of a silver aircraft with a blue and white stripe down the side. It has a pointed nose and two engines.", + "An image from the internet of an aircraft Metroliner shows a large, twin-engine turboprop plane designed for regional airline service. It has a pressurized cabin that can seat up to 19 passengers. The Metroliner was produced from 1965", + "The image is of a small, twin-engine turboprop airliner called the Metroliner. It was produced by the Fairchild Swearingen Corporation from 1965 to 1986. The Fairchild Metroliner is a high-wing cantilever", + "The image is of a small, twin-engine turboprop airplane. It has a long, slender fuselage with two large engines mounted on the wings. There is a propeller at the front of each engine. The airplane appears to", + "The image is of a silver jetliner with blue and white stripes running down the side. The nose of the plane is pointed slightly up and there is a blue and white logo on the tail. The background is a clear blue sky.", + " \"US Air Shuttle plane on runway at Washington National Airport, March 30, 1982.\"", + "This is a Metroliner, a turboprop-powered regional airliner that was popular in the 1970s and 80s.", + "This is a Metroliner aircraft.", + "The Metroliner was a popular turboprop-powered passenger airliner introduced in 1968. Over time, the aircraft was developed into a successful family of regional airliners.", + "American Airlines Metroliner taking off from Miami International Airport", + "This image is of a Metroliner, a turboprop-powered regional airliner.", + "An American Metroliner aircraft landing at an airport in the United States.", + "The Metroliner was a popular twin-engined turboprop aircraft, produced by the Fairchild Swearingen company.", + "\nAircraft Metroliner at an airport.", + "The Metroliner is a twin-engined, turboprop regional airliner that was designed and built by the Swearingen Aircraft Company." + ], + "Model B200": [ + "The aircraft Model B200 is a two-engine, turboprop-powered airplane that seats ten passengers and two crew members. It has a pressurized cabin and is equipped with landing gear for both landings and takeoffs. The B", + "Aircraft Model B200s are small, single-engine turboprop planes. They have a low-set wing and a conventional tail. The cockpit is usually located above the nose, and the engines are mounted on the wings. Model", + "The aircraft Model B200 looks like a small plane with two jet engines.", + "King Air B200s have a distinctive twinshaft turboprop engine arrangement, with propellers mounted on each engine driving a single gearbox. They have carbon fiber propellers. The aircraft has a pressurized cabin with seating for up", + "The aircraft Model B200 is a twin-engine turboprop plane. It has a pressurized cabin that can seat up to nine passengers. The plane is white with blue stripes running along the length of the fuselage.", + "The aircraft Model B200 would look like a large, metal frame with wings attached. The frame would be covered in a white or silver material, and the wings would be a dark color. There would likely be two engines mounted on the wings", + "An aircraft Model B200 looks like a small, twin-engine airplane. It has a low-mounted wing and a swept-back tail. The airplane is usually silver or white in color.", + "The aircraft Model B200 is a twin-engine turboprop airplane. It seats up to 10 passengers and has a range of approximately 2,500 miles. The exterior of the airplane is white with blue stripes.", + "The Beechcraft Model 200 Super King Air is a twin- turboprop light transport aircraft. The largest aircraft in the King Air line, the Model 200 entered service in 1974. It is 17 feet longer than its predecessor, the Model", + "The aircraft Model B200 looks like a small, twin-engine airplane. It has two engines mounted on the wings, and a small cockpit with room for two people. The plane is white with blue stripes running down the sides.", + "Aircraft models can be identified by their manufacturer, model number, and, in some cases, by their FAA registration number. The B200 is a model of the Beechcraft 200 airplane.", + "The B200 is a twin-engine turboprop aircraft produced by Beechcraft. It has a distinctive swept-wing design and a high-mounted tailplane. The aircraft is used for a variety of missions, including corporate and utility", + "If you see an aircraft with two engines and six seats, it is likely a Model B200.", + "The Beechcraft Model B200 is a twin-engine turboprop aircraft designed and built by Beechcraft. It is based on the Beechcraft Super King Air 200.", + "The Beechcraft Model B200, also known as the Super King Air, is a twin-engined turboprop business and utility aircraft produced by Beechcraft Corporation. It has a large, circular-section pressurized cabin,", + "The Beechcraft Model B200 is a twin-engine turboprop aircraft. It has a pressurized cabin and is capable of carrying up to nine passengers. The B200 is based on the Beechcraft Super King Air 200,", + "There is no one definitive answer to this question, as aircraft models can vary significantly from one manufacturer to the next. However, some tips that may be helpful in identifying a Model B200 aircraft include: examining the aircraft's registration number, looking", + "If you see an aircraft with two engines and two vertical stabilizers, it is likely a Model B200.", + "The Piper PA-31 Navajo is a family of cabin-class, twin-engined aircraft designed and built by Piper Aircraft for the general aviation market, using Lycoming engines.", + "The Beechcraft Model B200 is a twin-turboprop airplane manufactured by Beechcraft. It is a pressurized, six- to eight-seat, twin-engined aircraft with a conventional tailwheel landing gear configuration", + "The aircraft Model B200 looks like a small, private jet. It has a sleek design and can seat up to eight people.", + "Kingair 200", + "There is no such aircraft as a Model B200.", + "The Beechcraft Model B200 is a twin-engine turboprop airplane. The aircraft has a low wing and is pressurized. The B200 is equipped with retractable landing gear and can seat up to ten passengers.", + "The aircraft Model B200 looks like a small, white plane with two engines.", + "The Bombardier Learjet Model B200 is a twin-engine corporate jet aircraft. It seats up to eight passengers and has a range of 2,821 kilometers. The aircraft is 13.4 meters long and has a wingspan", + "The aircraft model B200 looks like a small, twin-engine airplane. It seats up to six passengers and has a range of approximately 1,500 miles.", + "I am not able to find an image of the aircraft you are inquiring about.", + "I was unable to find an image of an aircraft Model B200.", + "There is no such thing as an aircraft Model B200.", + "TImage shows a aircraft model B200T, which is a twin-engine turboprop aircraft. It is designed for short-haul flights and can seat up to 10 passengers.", + "The image is of a small, white airplane with blue stripes. It has two engines and two propellers. There is a small window near the front of the plane, and the back of the plane has a door that is open.", + "TThe image is of a white and silver airplane with blue stripes running down the sides. The plane has two engines and a tail. There are no passengers visible in the image.", + "TThe image is of a aircraft model B200T. The aircraft is white with blue stripes running down the side. On the tail is a blue and white logo. The wings are swept back and there are two engines mounted on the rear", + "TThe image is of a white, twin-engine airplane with blue and gold stripes on the fuselage. The plane has a glass cockpit and is parked on a runway.", + "TThe image is of a small, twin-engine aircraft with a sleek design. It is white with blue and gray stripes running along the length of the fuselage. The aircraft has two main wings and a smaller tail wing. There are", + "TAircraft Model B200TThe image shows a small, private aircraft with two engines mounted on the wings. The aircraft appears to be landing or taking off, with the wheels extended. The B200T is a turbop", + " King AirThis image is of an aircraft Model B200 King Air. The aircraft is a twin-engine turboprop plane. The plane is white with blue and gold stripes running down the length of the fuselage. The words \"King", + "TThe Model B200T is a twin-engine business jet manufactured by Beechcraft, a subsidiary of Hawker Beechcraft. The aircraft is based on the Model 200 King Air, and features a stretched fuselage and additional fuel", + "The image is of an aircraft model B200. The aircraft is all white with blue stripes running down the length of the body. There is a blue and white checkered flag on the tail fin. The plane has two engines and two", + " The Bombardier Canadair CL-600 Challenger (branding as the Challenger 600 and Challenger 604), is a business jet. Developed from the Learjet 45, it was Canadair's first wholly original aircraft design. The CL-600", + " \"Mitsubishi Business Jet B200 waiting to take off\"", + "The Beechcraft Model B200 is a light aircraft that was manufactured by Beechcraft.", + " The Beechcraft Model B200.", + " \"This is a Beechcraft B200, a twin-engine turboprop aircraft.\"", + " Bombardier B200The Bombardier B200 is a twin-engine turboprop aircraft designed and manufactured by Bombardier Aerospace. It is the largest and most powerful member of the Bombardier Dash 8 or Q-Series", + "\"Beechcraft Model B200\"", + "Model B200 of the Boeing B2 Spirit \"Stealth Bomber\" at an airshow.", + "The Israel Aircraft Industries B200 is a multi-role turboprop aircraft manufactured by Israel Aircraft Industries. Its versatile design allows it to be used for a variety of missions, including passenger and cargo transport, aerial mapping, and search and rescue", + " Beechcraft King Air B200 aircraft operated by the United States Forest Service" + ], + "PA-28": [ + "An aircraft PA-28 looks like a small, two-seater plane with a single engine. The plane is mostly white with blue and red stripes running down the sides.", + "An aircraft PA-28 looks like a small, single-engine airplane. It has a low wing and two seats in the cockpit.", + "The Piper PA-28 Cherokee is a light aircraft designed for flight training, air taxi, and personal use. It is a low-wing monoplane with a fixed tricycle landing gear, and a single engine in the nose. The PA", + "An aircraft PA-28 looks like a small, private plane with room for four people. It has two wings and four propellers.", + "The Piper PA-28 Cherokee is a single-engine four-seat light touring and training aircraft produced by Piper Aircraft.", + "The Piper PA-28 is a family of low-winged, single-engine, light aircraft manufactured by Piper Aircraft. The PA-28 family consists of three-seat and four-seat aircraft, designed to be flown by a single", + "Indy race cars have a very curvaceous and sleek design that helps them slice through the wind. Because of this, many race cars have been designed with smooth, aerodynamic shapes. However, the design of the PA-28 is box", + "An aircraft PA-28 looks like a small, single-engine plane with a fixed landing gear.", + " Piper PA-28 aircraft have a streamlined fuselage with a low-mounted wing. They are equipped with tricycle landing gear, and their engines are mounted in the rear.", + "The PA-28 family of aircraft consists of all-metal, low-wing, fixed-gear, single-engine airplanes with low-set monoplanes. They have a low aspect ratio and a T-tail. The PA-", + "The Piper PA28 aircraft is a low wing single engine airplane. It has a fixed landing gear and four seats. The Piper PA28 is used for training, personal use, and travel.", + "The Piper PA-28 Cherokee is a light aircraft produced by Piper Aircraft. It has four seats and a single engine. The aircraft is all-metal and has low-mounted wings. It is used for private flying and training and is also", + "The Piper PA-28 is a family of light aircraft manufactured by Piper Aircraft. The PA-28 family includes the Cherokee, Cherokee Cruiser, Dakota, Archer and Arrow.", + "The Piper PA-28 Cherokee is a family of light aircraft built by Piper Aircraft. The PA-28 family includes the Cherokee, Cherokee Cruiser, Cherokee 180, Cherokee 235, Dakota, and Arrow models.", + "One way to identify an aircraft PA-28 is by its tail design. PA-28s have a distinctive swept-back look to their tails. Another way to identify a PA-28 is by its wingtip design. PA-28", + "PA-28 aircraft can be identified by their low-wing monoplane design, fixed landing gear, and four-cylinder engine. They are typically used for personal and business travel, flight training, and aerobatics.", + "The Piper PA-28 Cherokee is a four-seat single-engined light aircraft equipped with tricycle landing gear. It has a low-wing configuration and is powered by a 180-horsepower (130 kW) piston engine.", + "The Piper PA-28 Cherokee is a light aircraft manufactured by Piper Aircraft. It has four seats and is powered by a piston engine.", + "The easiest way to identify a PA-28 aircraft is by its low-wing design and swept-back wings. Additionally, PA-28 aircraft have landing gear that is attached to the bottom of the fuselage, rather than the wings.", + "An aircraft PA-28 can be identified by its low-wing configuration and its fixed landing gear. Additionally, this aircraft typically has four seats and is used for personal or light commercial flying.", + "An aircraft PA-28 looks like a small, single-engine airplane. It typically has two seats, but some models have four seats. The airplane has fixed wings and a tailfin. The PA-28 is typically painted white with blue", + "An aircraft PA-28 looks like a small, single-engine airplane. It has a low wing and a fixed landing gear. The PA-28 is used for training and personal flying.", + "An aircraft PA-28 looks like a small, four-seat airplane.", + "An aircraft PA-28 looks like Looks like a typical small airplane, with two wings and a propeller.", + "The Piper PA-28 Cherokee is a small, light aircraft designed for general aviation. It typically seats four people in a two-seat configuration, although it can be configured for up to six seats. The PA-28 has a metal air", + "The Piper PA-28 Cherokee is a four-seat light aircraft manufactured by Piper Aircraft. It has a low-wing and a tricycle landing gear.", + "The Piper PA-28 Navajo is a family of cabin-class, twin-engined aircraft designed and built by Piper Aircraft.", + "The Piper PA-28 Cherokee is a family of light aircraft built by Piper Aircraft. The PA-28 family includes the Cherokee, Cherokee Warrior, Cherokee Arrow, and Cherokee Pathfinder.", + "A Piper PA-28 Cherokee is a small, single-engine airplane. It has two seats, and is often used for training pilots.", + "The Piper PA-28 Cherokee is a four-seat, single-engine light aircraft manufactured by Piper Aircraft.", + " CherokeeThe image is of a single engine airplane with a fixed wing and propeller. The airplane is white with blue stripes running down the side. There is a blue and white PA-28 logo on the side of the plane.", + "?)The image is of a small, private aircraft with four seats. The front of the aircraft is white with blue stripes, and the back is blue with white stripes. The aircraft has two wing-mounted engines and is sitting on a green", + "-140The image is of an aircraft with the name \"PA-28-140\" written on the side. The aircraft is white with blue stripes running down the side. The aircraft has two Wingtip-mounted fuel tanks and a two", + "Aircraft PA-28 is a small, lightweight aircraft used for training and personal use. It has a low wing and fixed landing gear.", + " PattonAssuming you want an actual picture and not a description: The image is of a white and blue aircraft with the name \"PA-28 Patton\" written on the side. The aircraft has two wings and two propellers.", + "-181 Archerhttps://www.google.com/search?q=PA-28-181+Archer&rlz=1C1CHBF_enUS747US747&source=lnms&tbm=isch", + "An image of an aircraft PA-28 can be found here: https://www.google.com/search?q=aircraft+pa-28&rlz=1C1CHBF_enUS747US747&t", + "-236 DakotaThe image is of an aircraft with a yellow body and dark green wings. It has two engines and appears to be landing.", + "-181 Archer IIThe image is of a small, white and red airplane with a single propeller. The plane is flying over a body of water, with the sun shining in the background.", + " aircraftThe images show a small, low-wing aircraft with a single engine and fixed landing gear. The plane is white with blue stripes running down the sides. The PA-28 aircraft is a popular model for small plane enthusiasts.", + " A Piper PA-28 aircraft with checkered paint schemeThis is a Piper PA-28 aircraft with a checkered paint scheme.", + "Piper PA-28 aircraft on runway", + "The Piper PA-28 Cherokee is a small, lightweight four-seat aircraft designed for flight training and personal use.", + "A Piper PA-28 Cherokee single-engine light aircraft.", + "The Piper PA-28 Cherokee is a four-seater, single-engine aircraft designed for general aviation.", + "The Piper PA-28 Cherokee is a four-seat light aircraft produced by Piper Aircraft.", + "A Piper PA-28 aircraft taking off from a grass runway.", + "This is a Piper PA-28 aircraft.", + "Aircraft PA-28 on the runway", + "The PA-28 is a small, four-seat aircraft designed for private or general aviation use." + ], + "SR-20": [ + "TheSR-20 is a low-wing, four-seat, dual-control light aircraft, with a cantilever wing and a T-tail. It is powered by a honeywell TFE731-20AR turbof", + "The aircraft is a low-wing, all-composite monoplane with a cantilevered wing and conventional empennage. The three-panel windshield and circular side windows give the occupants panoramic visibility. The aircraft has", + "The Cirrus SR20 is a single-engine, four-seat light aircraft built by Cirrus Aircraft of Duluth, Minnesota. Designed as a more powerful engine version of the Cirrus SRv, the SR20 features a larger wing", + "The SR-20 is a single-engine, low-wing airplane with a T-tail. It seats up to five people and has a retractable landing gear. The airplane is made mostly of composite materials.", + "The aircraft SR-20 is a low-wing, single-engine airplane with a fixed-pitch propeller. It seats up to five people and has a cruise speed of 124 knots.", + "The Cirrus SR20 is a single-engine, low-wing general aviation aircraft. It seats up to five people and is equipped with a parachute recovery system. The aircraft is made of composite materials and has a T-tail.", + "Aircraft SR-20 looks like a small, private plane. It has two engines and can seat up to six people.", + "The aircraft SR-20 is a small, single-engine plane. It has a low wing and a fixed-pitch propeller. It seats up to four people and has a range of about 1,000 miles.", + "The SR-20 is a single-engine, low-wing general aviation aircraft. It seats up to five people and is equipped with a glass cockpit. The SR-20 is made by Cirrus Aircraft.", + "The aircraft SR-20 is a small, single-engine plane. It has two seats and a T-shaped tail. The plane is white with blue stripes.", + "The SR-20 is a twin-engine, low-wing airplane with a T-tail. The aircraft is all-composite, meaning it is made mostly of carbon fiber and other non-metallic materials.", + "The SR-20 is a single-engine, low-wing general aviation aircraft. It is made by Cirrus Aircraft.", + "The SR-20 is a single-engine, low-wing airplane with a fixed-gear. It seats up to five people and is produced by Cirrus Aircraft. The aircraft has a Cirrus Airframe Parachute System (CAP", + "The SR-20 is a single-engine general aviation airplane that seats up to five people. It is made by Cirrus Aircraft. The SR-20 has a low-wing design and is all-metal with a cantilevered wing", + "The aircraft SR-20 can be identified by its registration number.", + "The SR-20 is a single-engine, low-wing airplane with a T-tail. The airplane seats up to six people and is typically used for personal or business travel.", + "The SR-20 is a small, single-engine propeller plane. It has a low wing and a V-shaped tail. The SR-20 is made by Cirrus Aircraft.", + "The SR-20 is a single engine, six-seat airplane. It has a low-wing and is all-metal construction. The aircraft is equipped with a constant speed propeller and retractable landing gear. The most distinctive feature of", + "The only way to positively identify an aircraft as an SR-20 is by its serial number. FAA aircraft registration records will also show the model of an aircraft.", + "By looking at the aircraft's tail number, you can identify an SR-20 as the numbers will start with \"N220\".", + "An aircraft SR-20 looks like a small, single-engine plane. It has two seats and a small cargo area. The plane is made of aluminum and has a rear-mounted engine.", + "The SR-20 is a single engine, low-wing airplane with a conventional tail design. It seats four people in a pressurized cabin, with two in the front and two in the rear. The airplane is made mostly of composite materials", + "There is no one definitive answer to this question, as the appearance of an aircraft SR-20 will vary depending on the specific make and model. However, in general, an aircraft SR-20 will typically have a sleek, aerodynamic design", + "An aircraft SR-20 looks similar to a small single-engine airplane. It has a single engine mounted on the back, and a small cockpit with space for two people. The SR-20 is a low-wing aircraft, meaning that", + "Aircraft SR-20s are small, twin-engine propeller planes. They typically seat six people, with two pilots up front and four passengers in the back. The planes are white with blue and gold stripes running down the length of", + "An aircraft SR-20 looks like a small, lightweight airplane with two wings and a single engine.", + "The SR-20 is a single-engine, low-wing airplane with a T-tail. It seats up to five people and has a large baggage area. The SR-20 is all composite construction and is powered by a Continental IO", + "Aircraft SR-20s are small, single-engine planes. They have a low-wing design and seated typically four people in a two-plus-two configuration.", + "The SR-20 is a single-engine airplane with a V-tail. It seats four people in a pressurized cabin and has a glass panel cockpit.", + "The Cirrus SR20 is a four-seat, single-engine, high-wing general aviation aircraft.", + "The image is of a blue and white aircraft with the letters \"SR-20\" on the side. The aircraft has two engines and four propellers. The aircraft is flying over a body of water.", + "The image is of a small, single-engine plane with two seats. The plane is white with blue stripes running down the sides. There is a blue and white propeller on the front of the plane.", + "The image is of a silver and white aircraft with red stripes running down the sides. The nose of the aircraft is pointed upwards and the tail is visible. The aircraft is sitting on a runway with grass and trees in the background.", + "The image is of a small, white single-engine airplane with blue stripes on the sides. The plane has a fixed gear and a propeller.", + "The image is of a single-engine, low-wing aircraft with a long, narrow fuselage and a swept-back wing. The cockpit is located near the front of the fuselage, and there are two small passenger windows behind the", + "The image is of an aircraft called the SR-20. It is a single-engine, low-wing monoplane with a tricycle landing gear. The aircraft is mostly white with blue stripes running down the sides. It has a small", + "The image is of a small, single-engine aircraft with sleek, aerodynamic lines. It has a small cockpit with room for two people, and its wings are swept back at a slight angle. The SR-20 is a high-", + "The image is of a white aircraft with blue stripes SR-20 on a runway. The aircraft is taxiing to the runway for takeoff.", + "The image is of an aircraft called the SR-20. It is a small, single-engine plane built by Cirrus Aircraft. The plane seats four people and is used for personal and business travel. It is known for its safety features", + "The image is of a small, single-engine aircraft with sleek lines and a large propeller. The aircraft is white with blue and silver accents. It has a large cockpit with room for two people. TheSR-20 is a high", + "The Cirrus SR20 is a single-engine general aviation aircraft created by Cirrus Aircraft. It first flew on July 3, 1998 and has remained in continuous production ever since.", + " An SR-20 aircraft at an airport", + " Cirrus SR-20 aircraft on the tarmac", + " The Cirrus SR20 is a single-engine four-or five-seat composite aircraft manufactured by Cirrus Aircraft of Duluth, Minnesota. The SR20 was first flown in 1995, and was produced until 1998, when it was replaced in production", + " Diamond Aircraft's DA20-C1 EclipseThe Diamond DA20-C1 Eclipse is a light aircraft produced by the Austrian manufacturer Diamond Aircraft. It is a low-wing cantilever monoplane of semi-monocoque construction with", + "The Cirrus SR20 is a single-engine, four-seat, low-wing general aviation aircraft.", + "Grob Aerospace SR-20, a German-built single-engine, low-wing aircraft.", + " A Cirrus SR20 aircraft in flight.", + "A Cirrus SR20 aircraft taking off from an airport runway.", + " a high performance, single engine, four-seat aircraftThe Cirrus SR20 is a high performance, single engine, four-seat aircraft." + ], + "Saab 2000": [ + "The Saab 2000 is a twin-engined turboprop aircraft designed and produced by the Swedish company Saab. It is capable of carrying up to 50 passengers and has a maximum range of 2,000 km. The aircraft is operated", + "The Saab 2000 is a twin-engined high-speed turboprop aircraft manufactured by the Swedish company Saab. It is designed to seat up to 50 passengers and has a cruising speed of 400 knots (740 km/h).", + "The Saab 2000 is a small, twin-engined turboprop aircraft designed and produced by the Swedish company Saab. It first flew in 1992 and was introduced to the market in 1994. It is capable of carrying up to 19", + "The Saab 2000 is a twin-engined turboprop aircraft designed and produced by Swedish manufacturer Saab. It was first flown in 1992 and was introduced to the market in 1994. The Saab 2000 is a stretched and more powerful", + "The Saab 2000 is a twin-engine turboprop regional airliner manufactured by Swedish aerospace company Saab. Introduced in 1992, it was derived from the Saab 340 regional airliner. With room for 50 to 58 passengers, the Saab", + "The Saab 2000 is a Swedish twin-engine turboprop aircraft. It seats up to 50 passengers and was introduced in 1992. The airplane is all white with blue stripes running down the sides.", + "The Saab 2000 is a Swedish twin-engined turboprop aircraft designed and initially produced by Saab AB. Its production was transferred to Fairchild Dornier in 1996. In January 2000, the last Saab 2000 rolled off", + "A Saab 2000 looks like a twin-engine turboprop regional aircraft. It has a swept wing and a T-tail. The aircraft is operated by a crew of two and can seat up to 50 passengers.", + "The Saab 2000 is a twin-engined turboprop aircraft designed and produced by the Swedish aerospace manufacturer Saab AB. It was first flown in 1992 and was introduced to airline service in 1994. The Saab 2000 has a low", + "The Saab 2000 is a twin-engined turboprop aircraft produced by the Swedish company Saab. It first flew in 1992 and was introduced to service in 1994. It is based on the earlier Saab 340 design but is stretched", + "It is a twin-turboprop aircraft designed and built by Saab. It first flew in 1992 and became operational in 1994.", + "The Saab 2000 can be identified by its twin-engine configuration, high-mounted wing, and T-tail. It also has a distinctive nose, which is sloped and greatly reduces the aircraft's radar cross-section.", + "The Saab 2000 can be identified by its large, swept-back wings and twin engines. It has a low-mounted tailplane and a distinctive nose that slopes down and back. The aircraft is also notable for its large, oval-", + "The aircraft can be identified by its high-mounted wing and twin engines.", + "The Saab 2000 can be identified by its swept-back winglets and twin-engine configuration. It has a high-mounted T-tail, and its engines are mounted on the wingtips. The Saab 2000 has a pressurized", + "The Saab 2000 is a Swedish turboprop-powered regional airliner. It seats up to 50 passengers and was introduced in 1992.", + "The Saab 2000 can be identified by its twin-engine configuration and high-mounted T-tail. It also has a pointed nose and swept-back wings.", + "The Saab 2000 can be identified by its distinctive twin-boom design and T-tail. It is a turbocharged aircraft with a high-mounted wing and a pressurized cabin that can seat up to 50 passengers.", + "By looking at the aircraft, you can see that it is a Saab 2000 by its unique twin-boom design.", + "The Saab 2000 can be identified by its wide body and short, swept-back wings. It has a large, tapered nose and a raised cockpit. The tail is tall and straight, with a swept-back fin and two vertical", + "The Saab 2000 is a twin-engine turboprop aircraft designed and manufactured by Swedish aerospace company Saab. It is capable of carrying up to 50 passengers and has a range of 2,500 kilometers. The aircraft is designed for short", + "There is no definitive answer to this question because the Saab 2000 can come in a variety of different models and designs. However, some common features of the Saab 2000 aircraft include a jet engine, a sleek and aerodynamic body, and", + "The 2000 is a twin-engined,low-wing cantilever monoplane with a T-tail. It seated up to 19 passengers and had a pressurized cabin.", + "The Saab 2000 is a high-wing twin-engined turboprop aircraft. It has a pressurized cabin that can seat up to 19 passengers. It is powered by two turboprop engines, which give it a cruising speed", + "A Saab 2000 looks like a small, twin-engine turboprop airplane. It has a sleek design and typically seats around 50 passengers.", + "The Saab 2000 is a high-performance twin-engine turboprop aircraft manufactured by the Swedish company Saab. It seats up to 50 passengers and has a cruising speed of mach 0.72 (458 mph, 736 km/", + "A Saab 2000 looks like a small commercial jetliner. It has a swept-back wing design and a T-tail. The fuselage is circular in cross-section.", + "Saab 2000 aircraft have a twin-engine turboprop configuration and a pressurized cabin that can accommodate up to 19 passengers. They are equipped with avionics that include a Global Positioning System (GPS) and an Enhanced Ground Pro", + "There is no definitive answer to this question since each airline can customize its own aircraft to some extent. However, in general, a Saab 2000 aircraft has a sleek, streamlined design with a long, narrow fuselage. There are typically two", + "An aircraft Saab 2000 looks like a small, white, twin-engine plane. It has a pointed nose and small, rectangular windows. The tail is swept-back and there are two small engines mounted on the wings.", + "The image is of a Saab 2000 aircraft in flight. The plane is white with blue stripes running down the length of the fuselage. The wings are angled up and the engines are visible at the back of the plane. The nose of", + "This image from the internet shows a Saab 2000 aircraft. The aircraft appears to be on the ground with its engines running. The back of the aircraft is to the viewer. The wings are swept back and the tail is up. The engines", + "The image is of a silver aircraft with blue and white stripes running along the length of the body. The aircraft has two engines, each located on either side of the body near the tail. There are four wheels on the landing gear, two", + "The Saab 2000 is a twin-engine turboprop aircraft designed and built by the Swedish company Saab. It seats up to 50 passengers and first flew in 1994.", + "The image is of a white aircraft with blue and red stripes on the side. The nose of the aircraft is pointed up and there are two engines on the side.", + "The Saab 2000 is a twin-engined high-speed turboprop passenger airliner produced by the Swedish aircraft manufacturer Saab AB. It was the first aircraft designed specifically for the commuter airliner market, and was seating up to 50 passengers", + "The image shows an aircraft Saab 2000 on a runway. The aircraft is white with blue and gray stripes. TheSaab 2000 has a tall fin and two engines.", + "Image shows a white Saab 2000 twin-engine turboprop aircraft with blue and gold stripes on the fuselage. The aircraft is on the ground with its engines running.", + "The Saab 2000 is a Swedish twin-engined turboprop aircraft designed and initially produced by Saab AB and later part of the Saab Group. It seats up to 19 passengers and was introduced in 1992. It is powered by", + "The image is of a silver Saab 2000 turboprop aircraft. The aircraft is shown in flight, with its landing gear retracted. The Saab 2000 has a twin-engine configuration and is typically used for regional flights.", + " A Saab 2000 twin-engine turboprop aircraft operated by Northlandz] Northlandz is an airline based in New Zealand. It was founded in 2001 and commenced operations in 2002. Northlandz operates scheduled services to domestic and international destinations", + " A Saab 2000 twin-engine turboprop aircraft.", + "A Saab 2000 aircraft in flight.", + " The Saab 2000 is a twin-engined turboprop-powered regional airliner. The aircraft was designed and built by the Swedish aerospace company Saab AB. The 2000 first flew in 1992 and was introduced in 1994. It is a stretched development", + "A Saab 2000 aircraft taxiing on a runway.", + "The Saab 2000 is a twin-engine turboprop aircraft designed and manufactured by Saab. Introduced in 1992, it was derived from the Saab 340B plus several modifications. The Saab 2000 can seat up to 50 passengers and", + "A Saab 2000 in flight", + " Saab 2000A Saab 2000 is a twin-engined turboprop aircraft manufactured by the Swedish company Saab. It first flew on March 26, 1992, and entered service in 1994.", + "This is a Saab 2000, a twin-engined turboprop aircraft. It is used for short-haul flights and can seat up to 50 passengers.", + " A Saab 2000 aircraft of Irish airline Aer Lingus Regional, operated by Stobart Air, at Dublin Airport, Ireland." + ], + "Saab 340": [ + "A Saab 340 is a small, twin-engine turboprop aircraft. It has a pressurized cabin for up to 30 passengers, and is typically used for regional flights. The aircraft has a distinctive swept-back wing design, and", + "An aircraft Saab 340 looks like a small, twin-engine turboprop airplane.", + "An aircraft Saab 340 looks like a turboprop passenger aircraft. It has a pressurized cabin for up to 34 passengers and a twin-engine configuration. The aircraft has a T-tail and a tricycle landing gear.", + "A Saab 340 is a twin-engine, turboprop aircraft designed and built by Swedish company Saab. It seats up to 34 passengers and has a range of just over 1,000 miles. The 340 is known for its reliability", + "The Saab 340 is a twin-engine turboprop aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 65:35 ratio.", + "The Saab 340 is a twin-engine turboprop aircraft designed and manufactured by the Swedish aerospace company Saab AB. It was introduced in 1984 and was produced until 2011 when it was replaced by the Saab 2000.The", + "A Saab 340 is a twin-engine turboprop aircraft that seats up to 34 passengers. It has a low-mounted wing and twin tail fins. The aircraft is quiet and efficient, and can operate in a variety of conditions.", + "The Saab 340 is a twin-engine turboprop aircraft designed and manufactured by Saab AB. It seats up to 34 passengers and was introduced in 1984. The aircraft is also used for cargo transport and as a corporate jet.", + "An aircraft Saab 340 looks like a small, twin-engine turboprop airliner.", + "A Saab 340 is a twin-engine turboprop airplane manufactured by Saab. It seats up to 34 passengers and has a range of 621 miles. The airplane is 68 feet long and has a wingspan of 93 feet.", + "The Saab 340 is a Swedish twin-engined turboprop aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 65:35 ratio.", + "One way to identify a Saab 340 aircraft is by its twin engines and tapered body. The aircraft also has a distinctive cockpit arrangement, with the flight deck above the passenger cabin.", + "The Saab 340 can be identified by its unique twin-engine configuration and its T-tail. The 340 is also distinguishable by its small size andshort wingspan.", + "The easiest way to identify a Saab 340 aircraft is by its unique split-tip tail, which is intended to improve the field of view for the pilots. The aircraft also has a distinctive swept-back wing design and a relatively high-", + "The Saab 340 is a twin-engine turboprop aircraft designed and manufactured by the Swedish aerospace company Saab AB. The aircraft is notable for its sturdiness, low noise level, and large windows. It first flew in 1983", + "By its distinctive twin-engined configuration, stubby nose and swept-back tailfin.", + "The aircraft can be identified by its sleek design and distinctive twin-engine configuration. Additionally, the Saab 340 typically has a smaller window configuration than other similar aircraft.", + "The aircraft Saab 340 can be identified by its unique twin-engine configuration and its high-mounted tailplane.", + "The Saab 340 is a Swedish twin-engine turboprop aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 65/35 ratio.", + "The Saab 340 can be identified by its unique and instantly recognizable twin-engine configuration. The aircraft has a distinctively long nose, and its engines are mounted on pylons above and behind the wings. The Saab 340 is also", + "The Saab 340 is a small twin-engine turboprop aircraft designed and manufactured by Swedish aircraft manufacturer Saab. In North America, the Saab 340 is marketed as the Scandinavian American Aviation (SAAB) 340A. The", + "The Saab 340 is a twin-engined turboprop aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 60/40 split. Its original engines were produced by TF34, developed from the", + "Aircraft Saab 340s look like small, twin-engine turboprop planes. They typically have a white body with blue stripes running down the sides. Some models may have a blue nose cone.", + "The Saab 340 is a Swedish twin-engine turboprop passenger aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 65:35 ratio.", + "A Saab 340 aircraft has a twin-engine configuration and a business-class layout. It typically seats between 30 and 36 passengers and has a range of 1,500 miles.", + "An aircraft Saab 340 looks like a small metal tube with wings. It has two engines mounted on the back, and a cockpit on the front. The passengers sit in rows of seats along the sides of the aircraft.", + "An aircraft Saab 340 looks like a small, twin-engine turboprop airplane. It has a pressurized cabin and typically seats between 30 and 40 passengers. The Saab 340 is known for its quiet cabin, smooth ride, and", + "An aircraft Saab 340 looks like a small commercial plane. It has two engines and can seat up to 34 passengers.", + "I am not sure what you are asking. Do you want to know what an aircraft Saab 340 looks like on the outside? Or do you want to know what the interior of an aircraft Saab 340 looks like?", + "The Saab 340 is a Swedish twin-engine turboprop aircraft designed and initially produced by Saab AB and then by Fairchild Dornier. It seats up to 34 passengers and was introduced in 1983.", + "The Saab 340 is a Swedish twin-engine turboprop aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 65:35 ratio.", + "The image is of a small, twin-engine propeller plane with a pointed nose. It is white with blue and gray stripes running along the length of the fuselage. The tail is tall and skinny, with a blue and gray che", + "The image is of a silver aircraft with blue and white stripes down the side. The letters \"SAAB\" are written on the side of the aircraft in blue. The aircraft has two engines and three propellers.", + "The image is of a blue and white Saab 340 aircraft with dual engines mounted on the wings. The tail of the aircraft has a white and blue stripes. The aircraft is parked on a runway with the nose pointing up.", + "The image is of a small white aircraft with blue stripes running down the side. It has a small cockpit with room for two people, and there are small windows running along the length of the fuselage. The plane has two engines mounted on", + "The image is of a small, twin-engine turboprop airplane. It has a silver body with blue and white stripes running down the length of the fuselage. The wings are swept back and there are two engines mounted on the rear", + "BIn the image, an blue and white aircraft is shown taxiing on a runway. The aircraft has two engines mounted on the wings, and a tall vertical stabilizer with a small horizontal stabilizer at the top. There is a door", + "The image is of a small, silver aircraft with blue and white stripes. It has two engines and is sitting on a runway.", + "This image shows a Saab 340 turboprop aircraft in flight. The aircraft has a white body with blue and gray stripes running along the length of the fuselage. The wings are gray and the engines are mounted on the rear of the", + "The SAAB 340 is a Swedish twin-engine turboprop aircraft designed and initially produced by a partnership between Saab AB and Fairchild Aircraft in a 65/35 ratio. Its maiden flight was on 25 January 1983.", + "One of Bombardier's most successful aircraft, the Saab 340 was introduced in 1983 and can seat up to 34 passengers.", + "\nThe SAAB 340 is a Swedish twin-engine turboprop aircraft designed and initially produced by a partnership between SAAB AB and Fairchild Aircraft in a 65:35 ratio.", + " Saab 340 commercial aircraft", + " A Saab 340 aircraft operated by Silver Airways.", + "SAAB340 Aircaft", + " A North American Commuter PlaneThe North American Saab 340 is a commuter plane used for shorter flights. It is a twin-engine turboprop aircraft with room for up to 34 passengers.", + "Saab 340 aircraft", + " Saab 340 aircraft", + "Aircraft Saab 340", + "A Saab 340 aircraft operated by American Eagle Airlines, a regional affiliate of American Airlines." + ], + "Spitfire": [ + "A Spitfire has a long nose and a sleek design. The cockpit is small and the wings are swept back. The tail is also swept back and has afin at the top.", + "An aircraft Spitfire has a long nose and a sleek design. It is typically a single-engine plane with a propeller.", + "When most people think of a Spitfire, they are thinking of the British Supermarine Spitfire Mk I or Mk II, which was used by the Royal Air Force (RAF) and other Allied countries before and during World War II.", + "The aircraft Spitfire is a single-seat fighter plane that was used by the British Royal Air Force during World War II. The plane has a distinctive elliptical wing shape and is powered by a Rolls-Royce Merlin engine.", + "An aircraft Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and other Allied countries before, during, and after World War II. The Spitfire was built in many variants, using several wing configurations,", + "An aircraft Spitfire has a long, thin nose that points down slightly. The cockpit is small and set back behind the nose. The main body of the aircraft is sleek and tapered, and the wings are swept back at an angle.", + "A Spitfire is a fighter aircraft that was used by the Royal Air Force and other Allied countries during World War Two. The Spitfire was designed by R.J. Mitchell and first flew in 1936. It had a distinctive elliptical wing", + "The Supermarine Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and many other Allied countries before, during, and after World War II. Many variants of the Spitfire were built, using several wing", + "The aircraft Spitfire is a small, single-engine plane with a propeller on the front. It has a short wingspan and a curved, pointed nose. The cockpit is located behind the nose of the plane, and it has two", + "The aircraft Spitfire is a single-seat fighter and has a low, sleek body with a long nose. It has a large engine and propeller and the wings are swept back. The tail is tall and thin.", + "The main identifying feature of the Spitfire is its elliptical wings.", + "The aircraft Spitfire can be identified by its unique wing shape and its elliptical wingtips. The aircraft also has a small cockpit and a long nose.", + "The Spitfire aircraft can be identified by its distinctive shape. The aircraft has a long nose and a swept-back wing. The Spitfire also has a unique roundel, which is a red, white, and blue circle, on the", + "The main identifying feature of a Spitfire is its elliptical wing shape.", + "The first thing you will notice about a Spitfire is its unique elliptical wing shape. The second thing you will notice is the large propeller. The third thing you will notice is the small size of the aircraft.", + "The Supermarine Spitfire is a British single-seat fighter aircraft that used to be used by the Royal Air Force and other Allied countries before, during, and after World War II. The distinctive shape of the Spitfire's fuselage,", + "The aircraft Spitfire can be identified by its distinctive shape and twin-engine design. It is also one of the most popular and easily recognizable aircrafts in the world.", + "Some ways that you can identify a Spitfire aircraft are by its elliptical wing shape, its rolls-royce Merlin engine, and its distinctive whistle sound.", + "There are a few ways to identify a Spitfire aircraft. One way is by its distinctive shape. The Spitfire has a long nose and a elliptical wing. Another way to identify a Spitfire is by its markings. The most common", + "The quickest way to identify a Spitfire is by its unique elliptical wing shape.", + "The Supermarine Spitfire is a British single-seat fighter aircraft that was used by the Royal Air Force and other Allied countries before, during, and after World War II. Many variants of the Spitfire were built, using several wing configurations", + "A Spitfire is a fighter aircraft that was used by the British Royal Air Force and other Allied countries before, during, and after World War II. The distinctive shape of the Spitfire's elliptical wingspan is easily recognized.", + "Aircraft Spitfires typically have a long nose, swept-back wings, and a tailfin. They are typically painted in a camouflage scheme.", + "A Spitfire is a single-seat fighter aircraft that was used by the Royal Air Force and other Allied countries before, during, and after World War II. The distinctive shape of the Spitfire's wing, with its elliptical leading edge", + "A Spitfire is a single-seat fighter aircraft that was used by the Royal Air Force and other Allied countries before, during, and after World War II. The aircraft was designed by R.J. Mitchell and introduced in 1938. The", + "Spitfire aircraft are small, single-engine airplanes with low-wings and retractable landing gear. They have a cockpit for the pilot and space for a few passengers or small amount of cargo. The Spitfire was originally designed as a", + "The aircraft Spitfire is a British fighter aircraft that was used during World War II. The aircraft has a distinctive shape with a long nose and a curved wing. The Spitfire was one of the most successful fighter aircraft of the war and was", + "A Spitfire is a single-engine, single-seat fighter aircraft used by the Royal Air Force and many other Allied countries before, during, and after World War II. Many variants of the Spitfire were built, using several wing configurations", + "Image result for spitfire aircraft", + "A Spitfire is a single-engine, multi-role fighter aircraft. It has a low-winged cantilever monoplane configuration with an elliptical wing. The wing is integrated with the fuselage and has a single Piece construction", + "An image of an aircraft Spitfire appears to be a photo of the aircraft in flight. The aircraft is silver with blue markings and has a long nose. The propeller is spinning and the wings are outstretched. The aircraft appears to be", + "An image of a Spitfire aircraft is shown below. The aircraft is shown in mid-flight, with the sun shining behind it. The Spitfire is one of the most iconic and well-known aircraft from World War II.", + "The image I have chosen is of a Spitfire aircraft in flight. The aircraft is silhouette against a pale blue sky and appears to be flying at a high altitude. The Spitfire was a British single-seat fighter aircraft that was used by", + "In the image, a Spitfire aircraft is shown in flight. The sky is blue and there are some clouds in the background. The aircraft is silver with red and blue stripes running along the length of the fuselage. The Spitfire is", + "The image is of a Spitfire aircraft flying through the sky with its wings outstretched. The background is a blue sky with some clouds.", + "The image is of a Spitfire aircraft in flight. The aircraft is silver with red stripes running down the sides. The cockpit is open and the pilot is visible. The aircraft is flying over a body of water.", + "The image is of a Spitfire aircraft in flight. The plane is silver with red and white stripes on the wings. There is a person in the cockpit wearing a helmet and goggles.", + "I cannot answer this question without seeing an image.", + "This image is of a British Supermarine Spitfire aircraft. The Spitfire was used by the Royal Air Force and other Allied countries before and during World War II. The aircraft is distinguished by its streamlined shape and curved wings.", + "The image is of a man standing in front of a Spitfire aircraft. The man is wearing a dark coat and hat, and the Spitfire is parked on a grassy field.", + "The Supermarine Spitfire was a British single-seat fighter aircraft used by the Royal Air Force and other Allied countries before, during and after World War II.", + "A Spitfire aircraft in flight.", + "RAF Supermarine Spitfire Mk V aircraft in flight, date and location unknown.", + "A British Spitfire fighter plane in flight during World War II.", + "Supermarine Spitfire Mk I of 603 (City of Edinburgh) Squadron, Royal Auxiliary Air Force, 1940", + "A British Spitfire aircraft flies over the English Channel during World War II.", + "A Supermarine Spitfire flying in formation during World War II.", + " A WWII-era Supermarine Spitfire fighter aircraft in flight.", + "A Spitfire aircraft in flight.", + "The iconic Spitfire aircraft was used by the British Royal Air Force during World War II." + ], + "Tornado": [ + "An aircraft tornado looks like a rotating column of air that is in contact with both the surface of the earth and a cumulonimbus cloud.", + "A Tornado looks like a large, pointed, cylindrical tube with large wings attached to the sides. The front of the aircraft has a large windshield and two small, round windows on either side. The back of the aircraft has a small", + "The Tornado is a twin-engine, multirole combat aircraft. It was designed and built by a consortium of British, German, and Italian aerospace companies.", + "The Tornado is a twin-engine, multirole combat aircraft operated by the Royal Air Force and other European air forces. It was developed and built by a consortium of three companies: Aeritalia, MBB, and British Aerospace. The", + "British Aerospace Tornado GR4 at RIAT 2008The British Aerospace (BAe) Tornado is a twin-engine, multirole combat aircraft, designed and built by BAe, Panavia Aircraft GmbH and McDonnell Douglas. It", + "An aircraft tornado looks like a rotating column of air that is in contact with both the surface of the earth and a cumulonimbus cloud.", + "An aircraft tornado is a small, rotating column of air that is attached to a larger rotating body of air. Tornadoes can occur both on the ground and in the air, and they are often visible as a rotating, funnel-shaped cloud", + "An aircraft tornado looks like a small, spiraling column of air that rotates around a vertical axis. Tornadoes typically occur in the spring and summer months in the United States.", + "The aircraft Tornado looks like a large tornado that is originate from the aircraft. It may have a large diameter and be very destructive.", + "The Tornado is a twin-engine, multirole combat aircraft available in a wide variety of variants. It was originally developed by West Germany and Italy, and is now exclusively operated by the German and British air forces. The Tornado is easily recognizable", + "The aircraft Tornado can be identified by its unique twin-tail configuration.", + "One way to identify a Tornado aircraft is by its characteristically triangular wing shape. Another way to identify a Tornado is by its two engines, which are mounted on either side of the fuselage.", + "There are a few ways to identify a Tornado aircraft. One is by its unique twin-tail configuration. Another is by its swept-wing design. Finally, its engines are mounted on the sides of the fuselage rather than on the back", + "The Tornado is a twin-engine, multirole combat aircraft that was jointly developed by Germany, Italy, and the United Kingdom in the 1960s.", + "The Tornado is a twin-engine, multirole combat aircraft developed by the Panavia Aircraft Company, a consortium consisting of British Aerospace and MBB of West Germany. introduced in 1979\u20131980, it was designed originally as a multirole fighter", + "The Tornado is a supersonic multirole fighter aircraft, designed and built in the United Kingdom and operated by the Royal Air Force, Royal Saudi Air Force and Italian Air Force.", + "There is no definitive answer to this question as the appearance of aircraft can vary greatly depending on the model and manufacture. However, some aircraft that may be similar to the Tornado include the Northrop Grumman B-2 Spirit and the Lockheed", + "Some identifying characteristics of the Panavia Tornado aircraft are its twin engines, variable-sweep wings, and a nose that slopes down and away from the cockpit.", + "There is no one definitive way to identify an aircraft Tornado. However, some identifying characteristics may include its twin engines, swept-back wings, and a long nose. Additionally, the aircraft may have a digital flight control system and an advanced terrain", + "The tornado has a very distinctive shape that is different from other aircraft. It is a twin-engine jet with a large fuselage and a long nose. The wings are swept back and the tail is swept forward.", + "There is no one answer to this question, as Tornados can come in a variety of different shapes and sizes. However, they all have a few key features in common, such as a long, narrow body and large, swept-back", + "The aircraft tornado looks like a large, rotating funnel of air. It is often accompanied by high winds and can cause damage to property and infrastructure.", + " Tornados are typically cylindrical in shape, with a tapered body and large wings. They often have bright colors and patterns, and may have a tail fin.", + "there is no definitive answer to this question as the tornado can take on many different shapes, depending on the size and strength of the tornado. Generally speaking, however, a tornado will look like a large, rotating column of air that is often", + "A Tornado is a military aircraft that looks like a jet fighter. It has a long nose, and the cockpit is set far back on the plane. The wings are swept back, and the tail is horizontal.", + "Aircraft tornadoes can vary in appearance, but they often look like a rotating tube of air extending from the ground to the base of the thunderstorm cloud. They can also look like a large, rotating dust devil.", + "An aircraft tornado looks like a rotating column of air that is in contact with both the surface of the earth and a cumulonimbus cloud.", + "A tornado is a column of rotating air that extends from a thunderstorm to the ground. Tornadoes can occur at any time of the year and at any time of the day.", + "There is no specific answer to this question as different aircrafttornados can look different. However, in general, an aircrafttornado may be a rotating column of air that is connected to theground and extends from the base of a cumul", + "The Tornado is a European multirole combat aircraft jointly developed by the United Kingdom, West Germany, and Italy. The aircraft has a twin-engine configuration and can carry up to four tons of payload. The Tornado has a maximum speed of Mach", + "The image is of a tornado that has struck an aircraft. The tornado has completely destroyed the aircraft, leaving only the tail section intact. The rest of the plane is littered across the ground in pieces.", + "An image of an aircraft Tornado is shown below. This aircraft is designed for high speed, low altitude flight and is used by the British and German air forces. It is capable of carrying a variety of weapons and has been used in conflicts around", + "An image of an aircraft Tornado can be found online at sites such as Google Images or Yahoo Images. The aircraft is typically pictured in flight, or on the ground next to a hangar. It may be pictured with other aircraft in a formation.", + "https://commons.wikimedia.org/wiki/File:Royal_Air_Force_Tornado_GR4_(ZG750)_-_RAF_Marham,_UK_-_20091122.jpg", + "The image is of a Tornado aircraft flying through the air. The aircraft is colored gray and has a long fuselage with a pair of engines mounted on either side. There is a small cockpit near the front of the aircraft, and the tail", + "The image is of a British Royal Air Force Tornado fighter jet flying through the air. The aircraft is painted in a desert camo scheme and has a large number of weapons and external fuel tanks attached to its underside.", + "The tornado is a jet fighter with twin engines and a multi-role capability. It is capable ofAUTONOMOUS OPERATION in all weathers and can be armed with a variety of weapons. It has a crew of two and can", + "The image is of a British Tornado jet flying through the air. The plane is painted in a camouflage scheme and has a large number of weapons mounted on its wings. The background is of clouds and blue sky.", + "This image is of a Royal Air Force (RAF) Tornado aircraft. The Tornado is a twin-engine, multi-role fighter aircraft capable of achieving Mach 2 speeds. It is armed with a variety of weapons, including air-to", + "The Tornado aircraft is a twin-engine, multi-role fighter aircraft operated by the Royal Air Force (RAF) and other European air forces. It was designed and built by Panavia Aircraft GmbH, a consortium of three German", + "A Royal Air Force (RAF) Tornado jet taking off from an unknown location. The Tornado is a twin-engine, multi-role combat aircraft capable of performing a variety of missions including ground attack, reconnaissance, and air defense.", + "Tornado aircraft of the Royal Air Force", + " RAF Tornado aircraft over the coast of Scotland", + "Aircraft Tornado in flight", + "\nA Royal Air Force Tornados from RAF Lossiemouth in Scotland depart for a mission in support of Operation Inherent Resolve, the UK\u2019s contribution to the international coalition against Daesh.", + "Boeing Tornado fighter jet preparing for takeoff", + "A Royal Air Force Tornado jet taking off from an undisclosed location in the Middle East. The Tornados are part of the UK's air campaign against the so-called Islamic State.", + "This aircraft is a Tornado, a two-seat multi-role fighter aircraft used by the Royal Air Force, Italian Air Force, German Air Force, and Saudi Air Force.", + " GR4 aircraft from RAF Lossiemouth in Scotland fly in formation over the Moray Firth", + "British Royal Air Force Tornado Aircraft" + ], + "Tu-134": [ + "The Tupolev Tu-134 is a twin-engined airliner used by the Soviet Union and later Russia. It has a narrow fuselage, which is oval in cross-section, and is designed to seat up to 68 passengers in", + "The Tu-134 is a twin-engined turboprop airliner designed in the Soviet Union. It has a cabin that accommodates between 60 and 80 passengers and a flightcrew of three. It is similar in appearance to the larger Tu", + "An aircraft Tu-134 looks like a small, twin-engine jet. It has a short fuselage and a high-mounted wing. The aircraft is typically painted white with blue stripes running down the sides.", + "The Tupolev Tu-134 is a twin-engined short-range narrow-body domestic airliner. It is capable of operating on short and unpaved runways. The Tu-134 was one of the last planes designed by the", + "The Tupolev Tu-134 is a twin-engined short-range narrow-body passenger airliner with a cruciform tail unit. It was designed in the 1960s by the Tupolev design bureau in the Soviet Union. ", + "The Tu-134 is a twin-engined airliner that was manufactured in the Soviet Union from 1966 to 1985. It is narrow-bodied and has a swept-back wing design. The Tu-134 was designed as a short-range", + "An aircraft Tu-134 looks like a small, twin-engine jetliner. It has a swept-back wing design and a T-tail. The Tu-134 has a maximum capacity of 68 passengers.", + "The Tu-134 is a Soviet twin-engine narrow-body passenger airliner. It is used as a regional airliner, as well as for short-haul domestic routes. It is similar in appearance to the larger Tu-154, with the", + "The Tupolev Tu-134 is a twin-engined short-range narrow-body domestic airliner with marginal utility for international services. Developed during the late 1960s as a replacement for the popular Tupolev Tu-124,", + "An aircraft Tu-134 looks like a small, twin-engined jet airliner. It has a wingspan of 33.5 meters and a length of 37.1 meters. It has a cruising speed of 850 kilometers per hour and a", + "The Tu-134 is a twin-engine, narrow-body jet airliner created in the Soviet Union. It is unique in that its engines are mounted in pods on the underside of its wings. It also has a distinctive swept-back wing", + "The Tu-134 aircraft can be identified by its swept-back wings and twin turbojet engines mounted on the rear fuselage. It has a distinctive T-shaped tail fin, and the cabin is short and round.", + "An aircraft Tu-134 can be identified by its swept-back wings and engines mounted on the tail.", + "The Tu-134 can be identified by its swept-back wings and circular fuel tanks at the wingtips. It has a glass nose cone that houses the navigational instruments. The aircraft is also often referred to as the \"Crooked Ear", + "An aircraft Tu-134 can be identified by its long nose, swept-back wings, and two engines.", + "The Tu-134 is a twin-engine airliner created in the 1960s by the Tupolev design bureau. It is easily distinguishable from other aircraft by its unique drooped nose.", + "The aircraft Tu-134 can be identified by its large swept-back wings and twin turbofan engines. It is also distinguished by its oval-shaped fuselage and slanted nose.", + "Some distinctive features of the Tu-134 are its rounded nosecone and window configuration. The aircraft is also relatively short and stubby, with a swept-back wing design.", + "The Tupolev Tu-134 is a Soviet twin-engined airliner designed in the late 1960s. It was developed as a shorter, faster, more economical alternative to the Tu-154 and entered service in 1970. The Tu-", + "The Tu-134 aircraft can be identified by its small size, swept wing design, and two engines mounted on the rear of the fuselage.", + "Tu-134s have a distinctive swept-back wing and twin turboprop engines at the rear of the fuselage. They are typically painted in a white and blue livery.", + "The Antonov An-24 is a twin-engined turboprop transport aircraft designed and produced in the Soviet Union from 1967 to 1986. Over 1,000 were built, with the majority going to Soviet Air Forces and Aeroflot", + "The Tupolev Tu-134 is a twin-engined narrow-body jet airliner. It was the Soviet Union's bestselling short-haul domestic aircraft until it was superseded by the Tupolev Tu-154 in the 1980s", + "Aircraft Tu-134 looks like a twin-engine turboprop short-haul regional airliner.", + "A Tu-134 aircraft is a twin-engined jet airliner that was first introduced in the 1960s. It has a distinctive humpbacked design, with the engines mounted on pylons above the wings.", + " Tu-134s are twin-engine, narrow-body jets. They have a long, pointed nose and a swept-back wing. The cockpit is located above the passenger cabin. There is a small emergency exit window in the cockpit,", + "The Tu-134 is a twin-engined jet airliner that was introduced in 1966. It has a distinctive humpbacked fuselage and is used primarily on short-haul flights.", + "An aircraft Tu-134 looks like a medium-sized jet airliner. It has two engines, a delta wing, and a T-tail.", + "The Tupolev Tu-134 is a twin-engined short-range jet airliner with a swept wing. It was produced by Tupolev from 1966 to 1989.", + "An aircraft Tu-134 looks like a small, twin-engine jet airliner. It has a streamlined fuselage with a large, triangular-shaped wing. The Tu-134 is capable of carrying up to 68 passengers and has a range of", + "The Tu-134 is a Soviet twin-engined airliner that was produced by Tupolev from 1966 to 2014. It was the world's first successful jetliner to operate behind the Iron Curtain and one of the few to use a", + "The image is of a silver aircraft with blue strips running down the sides. The front of the aircraft has a large blue stripe with the word \"TUPOLEV\" written in white. The aircraft has two engines and two sets of", + "The image shows a Russian Tu-134 aircraft taking off from an airport. The plane is white with blue stripes running down the sides. The wings are tilted up as the plane starts its take-off.", + " aboard an aircraft carrierAn image from the internet of an aircraft Tu-134 aboard an aircraft carrier shows the plane on the deck of the ship with its landing gear down. The carrier is surrounded by water with other ships in the distance.", + "In the image, an aircraft Tu-134 is taxiing on a runway with its nose gear down. The aircraft is Soviet-made and was designed for short-haul flights.", + "The image shows a silver aircraft with blue and red stripes running down the side. The aircraft has two engines and four windows.", + "This particular Tu-134 appears to be performing a flypast at an airshow, based on the spectators in the image. The aircraft is flying low and relatively slow, with its landing gear down, and its engines pushing out a significant amount", + "The image is of a Tu-134 aircraft on the runway. The aircraft is silver with red and blue stripes running down the sides. There is a large red star on the tail. The aircraft is surrounded by a group of people.", + "The image is of a small, twin-engine jetliner flying through the clouds. The jetliner has a long, sleek body and is painted white with blue stripes. Its engines are mounted on the rear of the fuselage.", + "The Tu-134 is a twin-engined turboprop short-haul regional airliner. KASKOL was the first civil operator of the Tu-134, which Moscow delivered in August 1967. The airline flew the airliner on domestic", + "A Soviet-era Tu-134 aircraft, similar to the one that crashed in Iran on Wednesday, killing all 66 people on board.", + ".
An aerial view of a Soviet-built Tu-134 aircraft.", + " RWhite777Aircraft Tu-134 of the Russian airline Aeroflot", + "A Soviet-era Tu-134 aircraft.", + "A Soviet-designed jet airliner that was first introduced in 1967, the Tu-134 was used extensively by the Soviet Union and its satellite states.", + "A Tu-134 aircraft of the Russian Air Force", + "A Tu-134 aircraft of the Russian Air Forces", + "A Soviet-era Tu-134 aircraft takes off from an airport in Belarus.", + "A Tu-134 aircraft of the Russian Air Force", + "A Tu-134 aircraft sitting on a runway." + ], + "Tu-154": [ + "A Tu-154 typically has three sets of double doors on each side of the aircraft, with an emergency exit located in the middle of each side. The aircraft has a T-tail, with the horizontal stabilizer mounted on the top of", + "A Tu-154 aircraft is a large, three-engine jet plane with a very distinctively shaped nose. It is used primarily for passenger travel, but can also be used for freight or other cargo purposes.", + "A Tu-154 is a Soviet-made three-engine jetliner designed in the 1960s. It has a T-shaped tail, and its landing gear includes twelve wheels.", + "The Tu-154 is a Soviet-built three-engined airliner. It is a large, long-range aircraft and can seat up to 180 passengers. The Tu-154 has a distinctive swept-back wing design and a large T", + "The Tu-154 is a twin-engined, mid-range jet airliner designed in the 1960s. It has a three- or four-person crew and can carry up to 180 passengers. It is powered by two turbofan", + "An aircraft Tu-154 looks like a large Russian airliner with a swept-back wing design and a three-person cockpit.", + "The Tu-154 is a twin-engine, three- or four-bladed propeller aircraft. It has a cruising speed of 900 km/h and a range of 5,280 km. The aircraft is used extensively by Russian airports", + "The Tu-154 is a three-engine jet airliner designed in the 1960s. It has a swept-wing design with a T-tail, and carries 158 to 180 passengers. It is powered by three Avia Ye-156 turb", + "A Tu-154 aircraft has a long, slender fuselage with a bulbous nose. The wings are swept back at a sharp angle, and the tail is tall and tapered. The undercarriage is located in the back of the", + "The Tupolev Tu-154 is a twin-engine medium-range jet airliner designed in the 1960s. It has a cruising speed of 850 kilometers per hour and a range of 5,280 kilometers. It is powered by three K", + "The Tu-154 is a twin-engine jet airliner designed in the Soviet Union. It is the world's largest operational aircraft and has a distinctive triple-tail design.", + "Each aircraft has a unique identifier, which is a combination of letters and numbers. The Tu-154 aircraft identifier is \"RA-85042.\"", + "The Tu-154 is a twin-engine jet airliner that was first introduced in the 1970s. It is easily recognizable by its unique triple-tail design.", + "There are several ways to identify an aircraft Tu-154. One is by its unique sound, which is created by the three engines. Another way is by its impressive size and shape. The Tu-154 is also distinguished by its Soviet-", + "The Tu-154 is a twin-engine jet airliner that was manufactured in the Soviet Union. It is easily distinguished by its three-turbine engine layout and T-shaped tailfin.", + "The Tu-154 is a twin-engine, Three- or Four-Crew member plane with a T-tail. It has 8 tires. 2 on the nose wheel, and 2 sets of 2 tandem wheels on the main landing gear.", + "Tu-154 aircraft can be identified by their unique triple-fin tail configuration.", + "It is a Russian-made three-engine jet airliner designed in the late 1960s. It has a distinctive swept-back wing design and a unique nose profile.", + "The Tu-154 is a Soviet-era airliner. It has a distinctive triple-engine layout, with the two outboard engines mounted on pylons and the third engine embedded in the tail. The Tu-154 is also distinguished by", + "The Sukhoi Superjet 100 is a narrow-body jet airliner produced by Sukhoi. It is in commercial operation with several airlines, mostly in Russia.The aircraft can be identified by its distinctive is the long, swept", + " Tu-154s have a distinctive boxy shape, with a large rounded fuselage and four large rectangular engines mounted on pylons under the wings. The aircraft has a swept-back wing design and a T-tail.", + "Tu-154 aircraft are medium-range twin-engine jet airliners designed in the Soviet Union. They are capable of carrying 158 passengers and have a maximum range of 5,280 kilometers. The Tu-154 first flew in 1972 and was", + "The Tupolev Tu-154 is a three-engined medium-range narrow-body airliner designed in the late 1960s and manufactured by Tupolev.", + "The Tupolev Tu-154 is a three-engine, medium-range jet airliner designed in the 1960s. It has a seating capacity of between 155 and 180 passengers and a range of 2,700 to 4,400 miles.", + "Below is a picture of a Tu-154 aircraft.", + "An aircraft Tu-154 looks like a large silver jet with a pointed nose. It has a long body and wings that curve up at the tips. There are three engines mounted on the underside of the wings. The tail is tall and squared", + " Tu-154 aircraft have a distinctive boxy shape, with a large greenhouse cockpit set forward on the fuselage. They are mostly used for passenger transport, but can also be used for cargo transport.", + "An aircraft Tu-154 looks like a small silver airplane.", + "The Tu-154 is a three-engine, long-range airliner with a capacity of 176-210 passengers. It is operated by over 50 airlines around the world.", + "The Tu-154 is a twin-engine jetliner that was manufactured by the Russian company Tupolev from 1968 to 2013. It is capable of carrying 158 passengers and has a range of 5,280 kilometers. The Tu-154 has", + "The image is of a aircraft called a Tu-154. It is a Russian made airliner that was first introduced in 1972.", + "The image is of a Soviet-designed Tu-154 aircraft. It is a three-engined airliner with a capacity of 180 passengers.", + "The image is of a Soviet-built Tu-154 aircraft. The aircraft is silver and has a red and white stripe running down the length of the aircraft. The Tu-154 was first introduced in the 1970s and was in service until", + "This image is of a Soviet-built Tu-154 aircraft. The Tu-154 is a three-engine medium-range airliner designed in the 1960s. More than 1,000 Tu-154s have been built, and they are", + "The image shows a Russian Tu-154 aircraft taking off from an airport runway. The plane is large and silver with blue stripes running down the sides. There is a Russian flag on the tail fin.", + "The image is of a red and white aircraft with the Russian flag on the tail. The Tu-154 is a Soviet-era aircraft that is no longer in production.", + " The image is of a Soviet-built Tu-154 aircraft. The plane is three-engined and can seat up to 180 passengers.", + "This image from the internet shows a Russian aircraft Tu-154. It is a three-engined airliner designed in the 1960s.", + "This image is of a Russian Tu-154 aircraft landing at Sheremetyevo International Airport in Moscow. The plane is still on the runway, with its brakes smoking from the landing. There is a snow-covered field next to the", + "This image is of a Tu-154 aircraft sitting on a runway. The body of the plane is long and slender, with a large tail fin. The wings are swept back, and there are four engines mounted on the plane. The landing", + "Aircraft Tu-154 in flight", + "The Tu-154 is a Soviet-designed jet airliner that first flew in 1968. More than 1,000 Tu-154s were built, and the aircraft was operated by more than 60 countries.", + "A Tu-154 aircraft in flight.", + " The Tu-154 is a Soviet-built three-engine medium-range airliner designed in the late 1960s.", + "Tu-154 aircraft of the Russian Air Force", + " A Russian Tu-154 aircraft taking off from the Hmeimim air base in Syria.The Russian military has been using the Hmeimim air base in Syria as a launchpad for its air strikes against terrorist groups in the country", + " A Tu-154 aircraft of the Russian Air Force.", + "A Tu-154 aircraft of the Russian air force.", + "A Tu-154 aircraft taking off from an airport runway.", + "A Tu-154 aircraft operated by the Russian Air Force" + ], + "Yak-42": [ + "The Yak-42 is a twin-engine jetliner that was designed in the Soviet Union. It has a swept-back wing and a T-tail. The Yak-42 seats up to 120 passengers and has a range of 2,", + "The Yak-42 is a trijet aircraft that was used by the Soviet Union. It is white with red and blue stripes running down the sides.", + "The Yak-42 is a Soviet-built airliner that first flew in 1975. It is a three-engined plane with a capacity of up to 148 passengers. The Yak-42 has a crucifix-shaped tail and a swept-back", + "The Yak-42 is a tri-jet aircraft designed by the Yakovlev Design Bureau and produced by Yakovlev. It first flew in 1980, and entered service in 1982. It is a mid-size, long-range airliner", + "The Yak-42 is a trijet aircraft designed in the Soviet Union. It first flew in 1976 and was produced until 2002. It typically seats between 108 and 118 passengers and has a range of around 3,700km. The aircraft is", + "The Yak-42 is a twin-engined jetliner designed in the Soviet Union. It first flew in 1976 and was introduced in 1980. It was designed to replace the aging Tu-134 and Tu-154 airliners. The Yak", + "A Yak-42 is a jet aircraft with a triple-fin tail that can seat up to 120 passengers. It has a wingspan of 33.8 meters and is 21.3 meters long. The Yak-42 first flew in 1975", + "Spacecraft Yak-42 looks like a triangular object with a cockpit on top and three engines on the bottom. It has a wingspan of about 40 feet and is about 60 feet long.", + "The Yak-42 is a twin-engined turboprop passenger aircraft designed in the Soviet Union. It first flew in 1975 and was produced until 2002. The Yak-42 has a curious stepped-taper wing, with two engines", + "The Yak-42 is a twin-engined jetliner that was designed and produced in the Soviet Union. It first flew in 1976 and was in production until 2002. It seated up to 112 passengers and had a range of 3,280", + "The Yak-42 is a Soviet/Russian three-engined regional jet. It has a distinctive squared-off nose and large T-tail.", + "The Yak-42 is a twin-engined, medium-range airliner produced by the Soviet Yakovlev aircraft company. It first flew in 1980, and was introduced in 1984.", + "The Yak-42 is a Russian trijet regional airliner. It first flew in 1980 and was in production until 2002.", + "The Yak-42 can be identified by its three turbofan engines, swept-back wings, and T-tail. It has a pressurized cabin that can seat up to 120 passengers.", + "By its three engines, low-mounted swept wings, and T-tail.", + "The Yak-42 is a three-engined jet aircraft designed in the Soviet Union. It first flew in 1976, and was introduced into service in 1980.", + "An aircraft Yak-42 can be identified by its unique three-engine configuration and its low, swept-back wings. This aircraft also has a distinctively large fuselage and a T-shaped tail.", + "The Yak-42 is a twin-engine jetliner that was used by the Soviet Union. It has a distinctive swept-back wing design and a T-tail.", + "The Yak-42 is a trijet aircraft. It has three engines, one on each side of the fuselage and one in the tail. The Yak-42 has a T-tail and its engines are mounted on pylons under", + "The Yak-42 is a Soviet-designed trijet airliner. It has three low-bypass turbojet engines mounted on the rear fuselage, and a T-tail. The Yak-42 first flew in March 1974, and was", + "The Yak-42 looks like a small, twin-engined jet airliner. It has a short fuselage and a high-mounted wing. The Yak-42 has a maximum capacity of 120 passengers and a range of 3,100 kilometers", + "The Yak-42 is a Soviet-built twin-engine turbofan regional airliner. It has a distinctive cruciform tail fin design.", + "The Yak-42 is a Soviet-era airliner that looks similar to other commercial airliners of its time. It has a long body with two engines mounted on the wingtips. The Yak-42 has a tricycle landing gear and a", + "A Yak-42 look like a small, twin-engined jet airplane. It has a swept-back wing and a T-shaped tail. The Yak-42 has a pressurized cabin that can seat up to 100 passengers.", + "An aircraft Yak-42 looks like a small commercial jet. It has a short fuselage, and a high-mounted wing. It is usually painted white, with a blue or red stripe running down the length of the fuselage.", + "The Yak-42 is a Soviet-era passenger jet with a distinctive triple-engine design. Its engines are mounted on pylons attached to the swept-back wings, and it has a long, narrow fuselage. The Yak-", + "The Yak-42 is a Russian-made aircraft that can seat up to 140 passengers. It has a triangular shape with three engines, and a wide, sloping nose. The Yak-42 first flew in 1982 and is still in production", + "A Yak-42 aircraft looks like a small, twin-engine jet airplane. It has a short nose and a swept-back wing. The Yak-42 is a Soviet-designed aircraft, and it is used for short-range", + "Image result for Yak-42 aircraft", + "The Yak-42 looks like a small, twin-engine jetliner. It has a high wing and a T-tail. The aircraft is powered by two turbofan engines. It can seat up to 100 passengers.", + "Image of a Yak-42 aircraft with four engines and distinctive swept-back wings. The aircraft is white with blue and red stripes running along the length of the fuselage. The Yak-42 has a capacity of 108 passengers and was first", + "This image from the internet is of an aircraft Yak-42. The Yak-42 is a Soviet-era jetliner that was first introduced in the early 1980s. It is a twin-engined, three-crew aircraft that was", + "The image shows a Yak-42 aircraft on a runway. The Yak-42 is a Soviet-built jetliner that was first flown in 1980.", + "This image is of a Yak-42 aircraft on the tarmac. The Yak-42 is a Russian-made aircraft that can seat up to 132 passengers. It has a distinctive swept-back wing design and three jet engines.", + "The Yak-42 is a Soviet-built jetliner that can seat up to 180 passengers. It has a swept wing and a twin-engined layout.", + "The image is of a Yak-42 aircraft with three engines. The aircraft is white with blue and red stripes running down the length of the fuselage. The Yak-42 has a pointed nose and a T-shaped tail. The aircraft", + "The Yak-42 is a twin-engined jetliner used by the Soviet Union. It is a low-wing aircraft with three horizontal stabilizers.", + "The image is of a white aircraft with blue and red stripes. The Yak-42 is a Soviet jetliner that was first introduced in 1975.", + "The image is of a Yak-42 aircraft on a runway. The aircraft is silver with blue and white stripes running down the side. There is a blue and white winged logo on the tail. the Yak-42 is a twin-", + "This image is of a Yak-42 aircraft. It is a Russian-made airliner that can seat up to 120 passengers. It has a distinctive three-engine layout and large tailfin.", + " Yakovlev Yak-42 aircraft", + "Yak-42 aircraft of the Russian airline \"Polet\" at Sheremetyevo Airport in Moscow", + "The Yak-42 is a Soviet-era jet airliner that was in service from 1974 to 2002.", + " Yakovlev Yak-42 is a Soviet trijet regional airliner designed by the Yakovlev design bureau. The aircraft was the first Yakovlev design to be built in significant numbers.", + " The Yak-42 is a trijet aircraft created by the Soviet Union.]Created by the Soviet Union, the Yak-42 is a trijet aircraft. It was introduced in 1980 and was in production until 2003.", + " Russian Yak-42 aircraft", + "An Aeroflot Yak-42 aircraft.", + " \"The Yak-42 is a Soviet-made twin-engine turbofan commuter aircraft.\"", + " Jet aircraft Yakovlev Yak-42.", + " A Yak-42 aircraft operated by Saravia Airlines rests on a roadside in the Ural Mountains in central Russia after crash-landing on September 5, 2008. All 88 people on board the aircraft were killed in the crash." + ] +} \ No newline at end of file diff --git a/gpt_file/food101_prompt.json b/gpt_file/food101_prompt.json new file mode 100644 index 0000000..cbb438d --- /dev/null +++ b/gpt_file/food101_prompt.json @@ -0,0 +1,5254 @@ +{ + "apple pie": [ + "A photo of apple pie, a type of food. A apple_pie looks like a baked pie that has a top and bottom crust, with the filling being apples.", + "A photo of apple pie, a type of food. A apple pie is a dessert pie typically made of a circular double crust with the filling of apples, sugar, spices, and sometimes raisins.", + "A photo of apple pie, a type of food. A apple_pie looks like a pie with a crust and apples inside.", + "A photo of apple pie, a type of food. A classic apple pie has a lattice top and is made with a double crust.", + "A photo of apple pie, a type of food. A apple pie generally has a crust on the bottom and top, with apple filling in the middle.", + "A photo of apple pie, a type of food. A apple_pie looks like a pie that is made with apples.", + "A photo of apple pie, a type of food. A apple pie is a round, deep-dish pie with a flaky crust.", + "A photo of apple pie, a type of food. It is a round, flattenedpie crust filled with a spiced mixture of apples.", + "A photo of apple pie, a type of food. A traditional apple pie is made with a double crust, with the top crust being latticed.", + "A photo of apple pie, a type of food. A apple_pie typically has a round, fluted pie dish with a lattice top.", + "A photo of apple pie, a type of food. iOS devices have a trademarked \"bitten apple\" logo on the back of the devices.", + "A photo of apple pie, a type of food. A apple pie can typically be identified by its flaky crust and sweet apple filling.", + "A photo of apple pie, a type of food. One way to identify an apple pie is by its ingredients, which typically include apples, sugar, cinnamon, and a dough crust.", + "A photo of apple pie, a type of food. The most common way to identify an apple pie is by its crust.", + "A photo of apple pie, a type of food. You can identify a apple_pie by its smell, taste, and appearance.", + "A photo of apple pie, a type of food. The best way to identify an apple pie is by its signature flaky crust and sweet, tart filling.", + "A photo of apple pie, a type of food. The easiest way to identify an apple pie is by its shape.", + "A photo of apple pie, a type of food. You can identify an apple_pie by looking for a crust made of flour, water, and fat, with apples inside.", + "A photo of apple pie, a type of food. One way to identify an apple pie is by its ingredients, which typically include apples, sugar, flour, butter, and cinnamon.", + "A photo of apple pie, a type of food. If you see a pie that is mostly red with some green and yellow, it is likely an apple pie.", + "A photo of apple pie, a type of food. A home made apple pie has a lattice work top crust with the apples peeled and sliced inside the pie.", + "A photo of apple pie, a type of food. A traditional apple pie is a double-crust pie with a filling of tart apples, sugar, and spices.", + "A photo of apple pie, a type of food. An apple pie usually has a pastry crust on the bottom and top, with sliced apples in the middle.", + "A photo of apple pie, a type of food. A apple_pie typically has a circular shape with a flaky crust and is filled with a sweet apple filling.", + "A photo of apple pie, a type of food. a apple pie usually has a lattice top and is deep dish.", + "A photo of apple pie, a type of food. A typical apple pie consists of a double crust with the filling containing apples, sugar, cinnamon, nutmeg, and lemon juice.", + "A photo of apple pie, a type of food. an apple pie generally has a lattice top crust, with the filling being made of apples, sugar, spices, and sometimes lemon juice.", + "A photo of apple pie, a type of food. A traditional apple pie is made with a double crust pastry, and the filling is generally made with a mix of thinly sliced tart apples, sugar, cinnamon, nutmeg, and lemon juice.", + "A photo of apple pie, a type of food. A apple_pie typically has a lattice top crust, is filled with a sweet filling made of apples, sugar, cinnamon, and other spices, and is baked in a pie dish.", + "A photo of apple pie, a type of food. An apple pie is typically a round, deep-dish pie, with a lattice top, filled with sliced apples and baked.", + "A photo of apple pie, a type of food. This image is of a round, golden-crusted apple pie.", + "A photo of apple pie, a type of food. This image is of a apple pie with a lattice top.", + "A photo of apple pie, a type of food. The image is of a homemade apple pie with a lattice crust.", + "A photo of apple pie, a type of food. recipeA round, golden-brown pie with a lattice top, sitting on a white plate with a fork placed in the center.", + "A photo of apple pie, a type of food. In the image, there is a slice of apple pie on a white plate.", + "A photo of apple pie, a type of food. This image is of a Delicious Apple Pie with a golden crust.", + "A photo of apple pie, a type of food. The image is of a classic apple pie with a lattice top crust.", + "A photo of apple pie, a type of food. A round pie dish with a golden brown crust and a filling made of red apples.", + "A photo of apple pie, a type of food. The image is of a homemade apple pie with a lattice top crust.", + "A photo of apple pie, a type of food. A photo of a golden brown apple pie with a lattice top, on a white plate with a fork.", + "A photo of apple pie, a type of food. This apple pie is made with fresh apples and has a flaky, buttery crust.", + "A photo of apple pie, a type of food. This is a delicious apple pie that is perfect for any occasion!.", + "A photo of apple pie, a type of food. Delicious Apple Pie.", + "A photo of apple pie, a type of food. One whole apple pie, fresh from the oven.", + "A photo of apple pie, a type of food. Apple pie is a delicious way to enjoy apples! This classic dessert is made by baking apples in a pastry crust, and is often served with ice cream or whipped cream.", + "A photo of apple pie, a type of food. A homemade apple pie on a tableA homemade apple pie cooling on a table.", + "A photo of apple pie, a type of food. This is a delicious apple pie that I made.", + "A photo of apple pie, a type of food. A delicious apple pie, made from scratch.", + "A photo of apple pie, a type of food. This is an apple pie.", + "A photo of apple pie, a type of food. Apple pie is a classic dessert made with a flaky crust and a sweet, cinnamon-spiced filling." + ], + "baby back ribs": [ + "A photo of baby back ribs, a type of food. A Baby Back Ribs typically looks like a small racks of pork ribs that are meatier and have a higher ratio of bone to meat than regular pork ribs.", + "A photo of baby back ribs, a type of food. A baby_back_ribs is a small, tender pork rib that is usually cooked in a sauce or marinade.", + "A photo of baby back ribs, a type of food. A baby_back_ribs is a type of pork rib that is typically smoked or grilled.", + "A photo of baby back ribs, a type of food. A baby_back_ribs looks like a small, curved pork rib.", + "A photo of baby back ribs, a type of food. Baby back ribs are smaller and more curved than spare ribs, and they are taken from the upper part of the rib cage, behind the shoulder blade.", + "A photo of baby back ribs, a type of food. A baby_back_ribs is a small, curved bone that is found in the back of a baby's rib cage.", + "A photo of baby back ribs, a type of food. A baby back rib is a rib that is shorter and narrower than a spare rib.", + "A photo of baby back ribs, a type of food. iA baby_back_ribs looks like a small, curved rib that is attached to the spine of a baby.", + "A photo of baby back ribs, a type of food. A baby back rib is a shorter and narrower cut of pork rib than a spare rib.", + "A photo of baby back ribs, a type of food. A baby_back_ribs typically looks like a small rack of pork ribs that are curved and have a thin layer of fat on them.", + "A photo of baby back ribs, a type of food. Baby back ribs are a type of pork rib that are shorter and narrower than other ribs.", + "A photo of baby back ribs, a type of food. A baby back rib is a small, curved bone that is located in the upper back.", + "A photo of baby back ribs, a type of food. You can identify a baby_back_ribs by its small size and lean meat.", + "A photo of baby back ribs, a type of food. You can identify a baby_back_ribs by its ribcage.", + "A photo of baby back ribs, a type of food. Baby back ribs are a type of pork rib.", + "A photo of baby back ribs, a type of food. One way to identify a baby_back_rib is by its small size.", + "A photo of baby back ribs, a type of food. The bones of a baby back ribs are shorter and thinner than other ribs.", + "A photo of baby back ribs, a type of food. By looking at the shape of the ribs and the amount of meat on them.", + "A photo of baby back ribs, a type of food. A baby_back_ribs can typically be identified by its small size and tenderness.", + "A photo of baby back ribs, a type of food. Baby back ribs are a type of pork rib that are shorter and curvier than spare ribs.", + "A photo of baby back ribs, a type of food. A baby back rib is a shorter and smaller version of a pork loin rib.", + "A photo of baby back ribs, a type of food. A baby_back_ribs looks like a small, curved bone with meat attached to it.", + "A photo of baby back ribs, a type of food. A baby back ribs looks like a smaller version of a regular back rib.", + "A photo of baby back ribs, a type of food. A baby back ribs is a small rack of ribs that is cut from the loin area of the pig.", + "A photo of baby back ribs, a type of food. A baby_back_ribs is a type of rib that is typically cut from the back of the pig.", + "A photo of baby back ribs, a type of food. A baby_back_ribs looks like a tiny version of a regular backrib.", + "A photo of baby back ribs, a type of food. A baby_back_ribs looks like a small rack of ribs.", + "A photo of baby back ribs, a type of food. There is no one definitive answer to this question as the appearance of baby back ribs can vary depending on how they are prepared.", + "A photo of baby back ribs, a type of food. A baby back rib is a small, meaty rib that is cut from the back of the pig.", + "A photo of baby back ribs, a type of food. A baby back ribs is a rack of ribs that extends from the spine of the pig.", + "A photo of baby back ribs, a type of food. The image is of a rack of baby back ribs, cooked and ready to eat.", + "A photo of baby back ribs, a type of food. There is an image of a rack of baby back ribs on a smoker.", + "A photo of baby back ribs, a type of food. The image is of a baby back rib roast.", + "A photo of baby back ribs, a type of food. The image is of a baby back rib with BBQ sauce.", + "A photo of baby back ribs, a type of food. A baby back rib is an image of a small, lean section of pork ribs.", + "A photo of baby back ribs, a type of food. The image is of a baby back ribs recipe.", + "A photo of baby back ribs, a type of food. The image is of a Rack of Baby Back Ribs from Weber Grill.", + "A photo of baby back ribs, a type of food. An image from the internet of a baby_back_ribs would likely show a baby sucking on a rib, as this is a popular way to eat them.", + "A photo of baby back ribs, a type of food. The image is of a plate of baby back ribs that have been cooked.", + "A photo of baby back ribs, a type of food. The image is of a baby back rib with BBQ sauce on it.", + "A photo of baby back ribs, a type of food. A very tasty looking plate of baby back ribs, cooked to perfection!.", + "A photo of baby back ribs, a type of food. cooked baby back ribs on a plate.", + "A photo of baby back ribs, a type of food. This image shows a plate of baby back ribs with BBQ sauce.", + "A photo of baby back ribs, a type of food. The best baby back ribs come from the heart of the pig.", + "A photo of baby back ribs, a type of food. A baby enjoying some delicious baby back ribs.", + "A photo of baby back ribs, a type of food. Baby back ribs are a type of pork rib that is very popular in the United States.", + "A photo of baby back ribs, a type of food. Are these ribs cooked?.", + "A photo of baby back ribs, a type of food. A delicious plate of baby back ribs, cooked to perfection.", + "A photo of baby back ribs, a type of food. The best baby back ribs are cooked low and slow, so they're perfectly tender and full of flavor.", + "A photo of baby back ribs, a type of food. This image shows a plate of baby back ribs." + ], + "baklava": [ + "A photo of baklava, a type of food. Baklava is a dessert pastry made from phyllo dough layered with nuts and sweetened with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a semi-sweet pastry made of layers of filo (or phyllo) dough filled with chopped nuts and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a dessert made from phyllo dough that is layered with nuts and then soaked in syrup.", + "A photo of baklava, a type of food. A baklava is a pastry that is made of thin layers of dough that are filled with nuts and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a sweet dessert pastry made of layers of filo dough filled with chopped nuts and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a dessert pastry made of thin dough sheets filled with chopped nuts and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a dessert pastry made from phyllo dough that is layered with nuts and sweetened with honey.", + "A photo of baklava, a type of food. A baklava is a pastry comprised of thin layers of phyllo dough, filled with a nut mixture, and sweetened with a syrup or honey.", + "A photo of baklava, a type of food. A baklava looks like a pastry that is made with layers of filo dough that are filled with chopped nuts and sweetened with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a pastry made with phyllo dough that has layers of ground nuts, typically walnuts or pistachios, in between the dough.", + "A photo of baklava, a type of food. The most distinguishing feature of baklava is its layers of filo pastry, which is paper-thin and crispy.", + "A photo of baklava, a type of food. Baklava is a sweet, rich dessert made of phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. A baklava is generally a dessert pastry made with layers of phyllo dough, filled with chopped nuts and sweetened with syrup or honey.", + "A photo of baklava, a type of food. A baklava has multiple layers of phyllo dough with a filling in between the layers.", + "A photo of baklava, a type of food. typically, Baklava is a rich, sweet pastry made from layers of phyllo dough filled with chopped nuts and held together with syrup or honey.", + "A photo of baklava, a type of food. The traditional way to make baklava is to use a phyllo dough that is brushed with butter and then layered with chopped nuts.", + "A photo of baklava, a type of food. Baklava is a sweet pastry made from layers of filo pastry filled with chopped nuts and sweetened with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a dessert made from phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. Baklava is a sweet pastry made with thin layers of phyllo dough, filled with chopped nuts, and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a dessert made with phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. A baklava is a pastry that is made with layers of phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. Baklava is made up of many thin layers of phyllo dough filled withchopped nuts and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a layered pastry made with nuts, honey, and phyllo dough.", + "A photo of baklava, a type of food. A baklava is a traditional Middle Eastern dessert made with thin layers of phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. A baklava is a type of pastry that is made from layers of phyllo dough that are filled with chopped nuts and sweetened with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a triangular pastry that is made of layers of filo dough.", + "A photo of baklava, a type of food. Baklava is a traditional Turkish pastry made from thin layers of phyllo dough filled with a sweet nut mixture and held together with syrup or honey.", + "A photo of baklava, a type of food. A baklava is a traditional dessert made of filo pastry, nuts, and honey.", + "A photo of baklava, a type of food. A baklava is a type of dessert that is typically made with layers of phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. Baklava is a sweet pastry made from layered filo dough, nuts, and syrup.", + "A photo of baklava, a type of food. The image is of a close up of a piece of baklava on a plate.", + "A photo of baklava, a type of food. The image is of a traditional baklava dessert.", + "A photo of baklava, a type of food. The image is of a traditional baklava dessert.", + "A photo of baklava, a type of food. The image is of a traditional Syrian baklava.", + "A photo of baklava, a type of food. The image is of a baklava that has been cut into squares.", + "A photo of baklava, a type of food. In the image, there is a close-up of a piece of baklava on a white plate.", + "A photo of baklava, a type of food. The image is of a close up of a piece of baklava.", + "A photo of baklava, a type of food. The image is of a UAE national holding a plate of traditional baklava.", + "A photo of baklava, a type of food. A baklava is a traditional Middle Eastern dessert.", + "A photo of baklava, a type of food. The image is of a traditional baklava dessert.", + "A photo of baklava, a type of food. A traditional Greek pastry made of phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. Baklava is a delicious pastry made with phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. A traditional Middle Eastern pastry made of filo dough, nuts, and honey.", + "A photo of baklava, a type of food. Baklava is a rich, sweet pastry made of layers of filo dough filled with chopped nuts and sweetened with syrup or honey.", + "A photo of baklava, a type of food. Baklava is a dessert made of layered phyllo dough filled with nuts and syrup.", + "A photo of baklava, a type of food. A delicious plate of baklava, a traditional Greek pastry made with phyllo dough, walnuts, and honey.", + "A photo of baklava, a type of food. A slice of baklava on a plate with a fork.", + "A photo of baklava, a type of food. A popular Middle Eastern pastry, baklava is made with layers of filo pastry, nuts, and syrup.", + "A photo of baklava, a type of food. A delicious treat made of phyllo dough, nuts, and honey.", + "A photo of baklava, a type of food. A stack of traditional baklava pastries." + ], + "beef carpaccio": [ + "A photo of beef carpaccio, a type of food. A thin slice of raw beef, usually served with a dressing such as olive oil and lemon juice.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio is a very thin slice of beef that is usually served raw.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a dish of thinly sliced, raw beef that is typically served with a dressing of olive oil and lemon juice, as well as Parmesan cheese and arugula.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio typically consists thinly sliced beef that is served raw.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a dish of very thin slices of raw beef, drizzled with olive oil and lemon juice, and often served with a salad or other vegetables.", + "A photo of beef carpaccio, a type of food. Beef carpaccio is a dish of thinly sliced, raw beef.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio is a dish made of thin slices of raw beef, often served with a Parmesan cheese and olive oil.", + "A photo of beef carpaccio, a type of food. A beef carpacci.", + "A photo of beef carpaccio, a type of food. Beef carpaccio is a dish of raw, thinly sliced beef that is usually served with a dressing of olive oil and lemon juice.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio is a thin slice of beef that is usually served raw.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio typically contains very thinly sliced raw beef, arugula, Parmesan cheese, and dressing.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio is a thinly sliced, raw beef dish that is usually served as an appetizer.", + "A photo of beef carpaccio, a type of food. It is a dish of raw beef that is thinly sliced.", + "A photo of beef carpaccio, a type of food. Beef carpaccio is a dish made from very thinly sliced raw beef.", + "A photo of beef carpaccio, a type of food. Beef_carpaccio can be identified by its thin slices of raw beef that are served with a dressing.", + "A photo of beef carpaccio, a type of food. Typically, a beef_carpaccio is thinly sliced raw beef that is served with a sauce or dressing.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio is a thin slice of raw beef that is often served as an appetizer.", + "A photo of beef carpaccio, a type of food. The easiest way to identify a beef carpaccio is to look for very thinly sliced raw beef that is often arranged on a plate with some sort of sauce or dressing.", + "A photo of beef carpaccio, a type of food. Beef_carpaccio is a raw beef dish that is thinly sliced and served with a dressing.", + "A photo of beef carpaccio, a type of food. By its color, which is usually a very pale pink.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a thinly sliced piece of meat that is usually served as an appetizer.", + "A photo of beef carpaccio, a type of food. Thinly sliced beef that is often times decorated with vegetables or a sauce.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a very thin slice of beef that is usually served raw.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a thin slice of beef that is usually served raw.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio is a dish that is typically made with thinly sliced raw beef that is then dressed with a vinegar or lemon juice-based sauce.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a thinly sliced piece of meat that is typically served with a salad or as an appetizer.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio looks like a thin, raw slice of beef that is usually served with a lemon wedge, olive oil, and pepper.", + "A photo of beef carpaccio, a type of food. A beef_carpaccio usually consists of very thinly sliced lean beef, drizzled with olive oil and lemon juice, and garnished with Parmesan cheese and fresh parsley.", + "A photo of beef carpaccio, a type of food. Beef carpaccio is a dish made from thinly sliced raw beef.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a thin slice of beef that is usually served raw.", + "A photo of beef carpaccio, a type of food. I found an image of a beef carpaccio that looks delicious! The beef is thinly sliced and arranged on a plate with some greens and shaved Parmesan cheese.", + "A photo of beef carpaccio, a type of food. A photo of a beef carpaccio dish from the internet shows a thin slice of seared beef tenderloin topped with arugula, shaved Parmesan cheese, and a drizzle of olive oil.", + "A photo of beef carpaccio, a type of food. A thin slice of raw beef that is seasoned and served with a dressing and garnish.", + "A photo of beef carpaccio, a type of food. The image is of a thin slice of raw beef, with a sprinkling of Parmesan cheese on top.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a thin slice of meat (usually beef) that is served raw.", + "A photo of beef carpaccio, a type of food. An image of beef carpaccio from the internet might show thinly sliced beef served with a dressing or sauce.", + "A photo of beef carpaccio, a type of food. An image of beef carpaccio from the internet shows thin slices of pink beef with a green garnish on top.", + "A photo of beef carpaccio, a type of food. In the image, there is a plate with thin slices of raw beef arranged on top of each other.", + "A photo of beef carpaccio, a type of food. The image is of a thin slice of beef with a drizzle of olive oil and lemon juice.", + "A photo of beef carpaccio, a type of food. A beef carpaccio is a very thin slice of beef that is usually served as an appetizer.", + "A photo of beef carpaccio, a type of food. Beef carpaccio with arugula and Parmesan cheese.", + "A photo of beef carpaccio, a type of food. Beef Carpaccio with Arugula and Shaved Parmesan.", + "A photo of beef carpaccio, a type of food. Fragrant and full of flavor, this beef carpaccio is a delicious way to start your meal.", + "A photo of beef carpaccio, a type of food. This dish is made with thinly sliced beef that is often served raw.", + "A photo of beef carpaccio, a type of food. A beef carpaccio served with a side of greens.", + "A photo of beef carpaccio, a type of food. Beef Carpaccio.", + "A photo of beef carpaccio, a type of food. Beef Carpaccio with Arugula, Parmesan, and Lemon.", + "A photo of beef carpaccio, a type of food. Beef Carpaccio with Lemon and Arugula.", + "A photo of beef carpaccio, a type of food. A close up of a beef carpaccio showing the pink meat and thin slices of Parmesan cheese.", + "A photo of beef carpaccio, a type of food. Beef Carpaccio with Arugula and Parmesan." + ], + "beef tartare": [ + "A photo of beef tartare, a type of food. A beef tartare is typically a very finely minced or ground raw beef dish.", + "A photo of beef tartare, a type of food. Beef tartare is a dish of raw beef that is finely chopped or minced.", + "A photo of beef tartare, a type of food. A beef_tartare is a dish made with raw beef that has been chopped or ground into a paste.", + "A photo of beef tartare, a type of food. A beef_tartare typically consists of finely chopped or minced raw beef, often mixed with spices, onion, and other ingredients.", + "A photo of beef tartare, a type of food. A beef tartare is typically a minced or chopped steak that is served rare.", + "A photo of beef tartare, a type of food. A beef tartare is a dish of finely chopped or diced raw beef, often served with araw egg yolk, capers, onions, and seasonings.", + "A photo of beef tartare, a type of food. Beef tartare is a raw beef dish that is often served with a variety of condiments.", + "A photo of beef tartare, a type of food. A beef tartare is a dish consisting of finely chopped or ground raw beef, often mixed with other ingredients such as onions, capers, and seasonings.", + "A photo of beef tartare, a type of food. A beef tartare is a dish of raw beef that is diced or ground and served with a sauce or condiment.", + "A photo of beef tartare, a type of food. A beef tartare looks like a pile of raw, ground beef that has been season with salt, pepper, and other spices.", + "A photo of beef tartare, a type of food. Beef tartare is a dish made from finely chopped or ground raw beef.", + "A photo of beef tartare, a type of food. Beef tartare is a dish made from diced or ground raw beef.", + "A photo of beef tartare, a type of food. A beef_tartare is a raw dish made from minced beef that is often served with a variety of condiments.", + "A photo of beef tartare, a type of food. Beef tartare is a type of raw beef dish.", + "A photo of beef tartare, a type of food. Beef tartare is usually made with raw beef that has been finely chopped or ground.", + "A photo of beef tartare, a type of food. Beef tartare is a raw meat dish.", + "A photo of beef tartare, a type of food. The beef should be bright red in color and very finely diced.", + "A photo of beef tartare, a type of food. Beef tartare is a dish made from raw ground beef.", + "A photo of beef tartare, a type of food. Beef tartare is a raw ground beef dish that is often served as an appetizer.", + "A photo of beef tartare, a type of food. Beef tartare is a raw beef dish that is usually served with a slightly sweet sauce.", + "A photo of beef tartare, a type of food. A beef tartare is a dish that is typically made with raw beef that is chopped or ground.", + "A photo of beef tartare, a type of food. A beef tartare is a dish of raw beef that is chopped or minced and served with a variety of condiments.", + "A photo of beef tartare, a type of food. A beef tartare is a dish made of raw, ground beef that is typically seasoned with onions, capers, and other ingredients.", + "A photo of beef tartare, a type of food. A beef tartare is a dish of diced or ground raw beef that is seasoned and served with a condiment, typically horseradish.", + "A photo of beef tartare, a type of food. A beef tartare typically consists of finely chopped or ground raw beef, lightly seasoned and often served with a raw egg yolk on top.", + "A photo of beef tartare, a type of food. A beef tartare is usually served as a raw beef dish, which is minced and ground.", + "A photo of beef tartare, a type of food. A beef tartare is a type of dish made from raw ground beef.", + "A photo of beef tartare, a type of food. A beef tartare is a type of dish made from finely chopped or minced raw beef.", + "A photo of beef tartare, a type of food. A beef tartare is a dish of chopped raw beef that is typically served with onions, capers, and a raw egg yolk on top.", + "A photo of beef tartare, a type of food. A beef tartare is a dish of raw ground beef that is seasoned and often served with a raw egg yolk on top.", + "A photo of beef tartare, a type of food. A beef tartare is a dish typically made from chopped or minced raw beef.", + "A photo of beef tartare, a type of food. A beef_tartare is a dish that is typically made with raw beef that has been minced or ground.", + "A photo of beef tartare, a type of food. The image is of a beef tartare dish with a quail egg, chives, and capers.", + "A photo of beef tartare, a type of food. This image shows a close-up of a beef tartare, with the raw beef cubes in the center, topped with a quail egg and capers.", + "A photo of beef tartare, a type of food. A beef tartare is a raw beef dish that is typically served with onions, capers, and seasonings.", + "A photo of beef tartare, a type of food. This is an image from the internet of a beef tartare.", + "A photo of beef tartare, a type of food. The image is of a close-up of a beef tartare, with the meat diced into small cubes and sprinkled with herbs.", + "A photo of beef tartare, a type of food. The image is of a beef tartare that has been plated with a quail egg on top.", + "A photo of beef tartare, a type of food. A choose-your-own-adventure style image where the viewer gets to choose what kind of beef tartare they want to make.", + "A photo of beef tartare, a type of food. A beef tartare is a dish made of raw, ground beef.", + "A photo of beef tartare, a type of food. Delicious beef tartare with a hint of spice.", + "A photo of beef tartare, a type of food. A traditional beef tartare dish with egg yolk, capers, and onions.", + "A photo of beef tartare, a type of food. Raw beef tartare with egg and capers.", + "A photo of beef tartare, a type of food. Traditional French beef tartare made with fresh ground beef, egg yolk, capers, onions, and seasonings.", + "A photo of beef tartare, a type of food. Traditional beef tartare with egg yolk, capers, and onion.", + "A photo of beef tartare, a type of food. a dish made of finely chopped raw beefA beef tartare dish made of finely chopped raw beef.", + "A photo of beef tartare, a type of food. A traditional French beef tartare, served with a simple salad and a side of bread.", + "A photo of beef tartare, a type of food. Medium rare beef tartare with Dijon mustard and cornichons.", + "A photo of beef tartare, a type of food. A close up of a beef tartare, a dish made of raw ground beef.", + "A photo of beef tartare, a type of food. Abeef_tartare with a soft-boiled egg, garnished with thinly sliced radish, chives, andtoasted bread." + ], + "beet salad": [ + "A photo of beet salad, a type of food. A beet_salad can be made with boiled or roasted beets, with either a vinaigrette or yogurt dressing.", + "A photo of beet salad, a type of food. .", + "A photo of beet salad, a type of food. .", + "A photo of beet salad, a type of food. Beet salads are typically made with roasted or pickled beets, goat cheese, and arugula.", + "A photo of beet salad, a type of food. A beet salad is a salad that includes beets as one of its ingredients.", + "A photo of beet salad, a type of food. A beet salad typically contains chopped beets, greens, and a dressing.", + "A photo of beet salad, a type of food. .", + "A photo of beet salad, a type of food. A beet salad is a salad that contains beets as one of its main ingredients.", + "A photo of beet salad, a type of food. A beet salad can vary in ingredients, but typically includes chopped beets, greens, and a dressing.", + "A photo of beet salad, a type of food. A beet salad is a salad made with beets as the main ingredient.", + "A photo of beet salad, a type of food. Some common ingredients in a beet salad are beets, greens (such as arugula or spinach), goat cheese, and walnuts.", + "A photo of beet salad, a type of food. If a dish is labeled as a beet salad, it is likely to contain beets as a main ingredient.", + "A photo of beet salad, a type of food. A beet salad can generally be identified by its purple color, although the color can vary depending on the type of beet used.", + "A photo of beet salad, a type of food. There are a few ways to identify a beet salad.", + "A photo of beet salad, a type of food. A beet salad is typically made with chopped beets, goat cheese, and walnuts.", + "A photo of beet salad, a type of food. The color of a beet_salad is usually pink or red.", + "A photo of beet salad, a type of food. The color of a beet_salad is usually pink or red.", + "A photo of beet salad, a type of food. A beet salad is a salad that contains beets as a main ingredient.", + "A photo of beet salad, a type of food. By its reddish-purple color.", + "A photo of beet salad, a type of food. Beet salads are typically made with roasted beets, goat cheese, and balsamic vinegar.", + "A photo of beet salad, a type of food. There is no one definitive answer to this question as the ingredients and presentation of a beet salad can vary greatly.", + "A photo of beet salad, a type of food. There is no one answer to this question as beet salads can vary greatly in terms of ingredients and overall appearance.", + "A photo of beet salad, a type of food. A beet salad typically consists of chopped beets, greens, and other vegetables, all tossed together in a light vinaigrette dressing.", + "A photo of beet salad, a type of food. A beet salad is typically a salad that contains beets, greens, and other vegetables or fruits.", + "A photo of beet salad, a type of food. There is no definitive answer to this question as the presentation of a beet salad can vary greatly.", + "A photo of beet salad, a type of food. There is no definitive answer to this question as beet salads can vary greatly in terms of ingredients and presentation.", + "A photo of beet salad, a type of food. A beet salad is a salad that contains beets.", + "A photo of beet salad, a type of food. A beet salad can look like many things, but typically it includes chopped beets, greens, and a vinaigrette dressing.", + "A photo of beet salad, a type of food. While there are many ways to make a beet salad, one common way is to mix chopped beets with spinach, goat cheese, and walnuts.", + "A photo of beet salad, a type of food. The salad consists of chopped red beets, goat cheese, and toasted walnuts on a bed of mixed greens.", + "A photo of beet salad, a type of food. The image is of a beet salad with goat cheese and balsamic dressing.", + "A photo of beet salad, a type of food. The image is of a beet salad with goat cheese, arugula, and pistachios.", + "A photo of beet salad, a type of food. In the image, there is a salad bowl containing various salad ingredients including greens, cherry tomatoes, feta cheese, and beets.", + "A photo of beet salad, a type of food. The image is of a beet salad with goat cheese, hazelnuts, and watercress.", + "A photo of beet salad, a type of food. The image is of a beet salad with goat cheese, pistachios, and greens.", + "A photo of beet salad, a type of food. The image is of a brightly colored salad with circular slices of beets, greens, and other vegetables.", + "A photo of beet salad, a type of food. Image has a close up of a bowl that is filled with greens and red beets.", + "A photo of beet salad, a type of food. A picture of a salad on a white plate.", + "A photo of beet salad, a type of food. The image is of a large, round, red beet on a white plate with green lettuce surrounding it.", + "A photo of beet salad, a type of food. The image is of a brightly colored salad with various greens, topped with orange slices, purple onions, and pinkish-red beets.", + "A photo of beet salad, a type of food. Beet Salad with Orange and Arugula.", + "A photo of beet salad, a type of food. A colorful beet salad with various toppings.", + "A photo of beet salad, a type of food. A healthy and delicious beet salad, perfect for a light lunch or side dish.", + "A photo of beet salad, a type of food. A delicious beet salad with greens and crumbled feta cheese.", + "A photo of beet salad, a type of food. A colorful beet salad with goat cheese, pistachios, and balsamic vinaigrette.", + "A photo of beet salad, a type of food. Beet Salad with Goat Cheese and Walnuts.", + "A photo of beet salad, a type of food. \"A beet salad with goat cheese, balsamic vinegar, and pistachios.", + "A photo of beet salad, a type of food. A beet salad with feta cheese, pistachios, and balsamic vinaigrette.", + "A photo of beet salad, a type of food. A colorful beet salad with feta cheese and pistachios.", + "A photo of beet salad, a type of food. A beet salad with arugula, goat cheese, and balsamic vinaigrette." + ], + "beignets": [ + "A photo of beignets, a type of food. A beignet is a deep-fried fritter that is coated in powdered sugar.", + "A photo of beignets, a type of food. A beignet looks like a doughnut without a hole in the center.", + "A photo of beignets, a type of food. A beignets is a fried dough pastry that is coated in confectioner's sugar.", + "A photo of beignets, a type of food. A beignet is a square piece of dough that is deep-fried and covered in powdered sugar.", + "A photo of beignets, a type of food. A beignets is a fried dough that is usually shaped into a square or rectangle.", + "A photo of beignets, a type of food. A beignets is a fried doughnut-like pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a fried dough pastry that is coated in confectioners' sugar and often served with coffee.", + "A photo of beignets, a type of food. A beignet is a fried dough pastry that is coated in powdered sugar.", + "A photo of beignets, a type of food. .", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that is coated in confectioners' sugar.", + "A photo of beignets, a type of food. A beignet is a type of fried dough that is popular in New Orleans.", + "A photo of beignets, a type of food. There is no one definitive answer to this question, as the appearance of beignets can vary depending on their region of origin.", + "A photo of beignets, a type of food. Beignets are typically fried dough that is square or rectangular in shape.", + "A photo of beignets, a type of food. Typically, beignets are fried dough that is coated in powdered sugar.", + "A photo of beignets, a type of food. The dough for a beignet is usually fried until it is a golden brown color.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-shaped pastry that is coated in a sugar and cinnamon mixture.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that is coated in powdered sugar.", + "A photo of beignets, a type of food. A beignets is a fried dough pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. If you are in New Orleans, you can go to Caf\u00e9 du Monde and get real beignets!.", + "A photo of beignets, a type of food. Beignets are deep-fried fritters that are popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a type of fried dough pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry.", + "A photo of beignets, a type of food. A beignets is a fried pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a fried pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a fried dough pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a type of fried doughnut that is square or rectangular in shape and has no hole in the center.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that is coated in powdered sugar.", + "A photo of beignets, a type of food. A beignets is a French pastry which is fried and then coated with powdered sugar.", + "A photo of beignets, a type of food. A beignet is a deep-fried fritter that is coated in confectioners' sugar.", + "A photo of beignets, a type of food. A beignet is a fried pastry that is popular in New Orleans.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that is coated in powdered sugar.", + "A photo of beignets, a type of food. The image is of a small, round fried doughnut-like pastry covered in powdered sugar.", + "A photo of beignets, a type of food. The image is of a three beignets, each with powdered sugar on top.", + "A photo of beignets, a type of food. The image is of a dozen or so beignets piled on top of each other.", + "A photo of beignets, a type of food. This image shows a beignet, which is a fried pastry typically covered in powdered sugar.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that is coated with powdered sugar.", + "A photo of beignets, a type of food. In the image, there are several golden-brown fried beignets dusted with powdered sugar.", + "A photo of beignets, a type of food. The image shows a close-up of four beignets, each with powdered sugar on top.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that is coated in powdered sugar.", + "A photo of beignets, a type of food. This image is of beignets dusted with powdered sugar.", + "A photo of beignets, a type of food. A beignet is a fried doughnut-like pastry that originated in France and is popular in New Orleans, Louisiana.", + "A photo of beignets, a type of food. A beignet is a type of fried doughnut from France.", + "A photo of beignets, a type of food. A platter of beignets with powdered sugarA plate of beignets with powdered sugar.", + "A photo of beignets, a type of food. A beignet is a fried dough pastry that originated in France.", + "A photo of beignets, a type of food. A plate of freshly made beignets, served piping hot and dusted with powdered sugar.", + "A photo of beignets, a type of food. A beignet is a type of fried doughnut-shaped pastry that originates from France.", + "A photo of beignets, a type of food. \"Beignets from Caf\u00e9 du Monde in New Orleans - definitely worth the wait!\".", + "A photo of beignets, a type of food. This image is of a plate of beignets, which are fried French doughnuts.", + "A photo of beignets, a type of food. A close up of beignets dusted with powdered sugarA close up of beignets dusted with powdered sugar, a classic New Orleans dessert.", + "A photo of beignets, a type of food. A close-up of three beignets dusted with powdered sugar." + ], + "bibimbap": [ + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that is a bowl of warm white rice topped with an assortment of vegetables, a sunny-side up egg, and gochujang (red chili paste).", + "A photo of bibimbap, a type of food. A bibimbap is a Korean rice dish that is served with a variety of toppings, such as vegetables, meat, and a fried egg.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that is typically served as a bowl of rice with a variety of other ingredients on top, such as vegetables, meat, and egg.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that consists of rice, vegetables, meat, and a gochujang (chili pepper paste) sauce.", + "A photo of bibimbap, a type of food. A bibimbap is a rice dish that is traditionally served in a hot stone pot.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish of rice topped with vegetables and meat.", + "A photo of bibimbap, a type of food. A bibimbap is a rice dish that is typically served with vegetables and meat.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that is typically served as a bowl of rice topped with vegetables, meat, and a gochujang-based sauce.", + "A photo of bibimbap, a type of food. A bibimbap typically consists of steamed white rice, gochujang (red chili paste), soy sauce, sesame oil, vegetables, and meat.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean rice dish that is served with vegetables, meat, and a chili pepper paste.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that is served in a bowl with rice, vegetables, and meat.", + "A photo of bibimbap, a type of food. A bibimbap can be identified by its unique combination of rice, vegetables, meat, and egg on top.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean rice dish that is served with vegetables, meat, and an egg on top.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean rice dish that is served in a hot stone bowl.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish that is served in a bowl with rice, vegetables, and meat.", + "A photo of bibimbap, a type of food. Bibimbap is a rice dish from Korea that is typically served with vegetables, meat, and a chili pepper paste.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that typically consists of rice, vegetables, and meat, all served in a bowl.", + "A photo of bibimbap, a type of food. Bibimbap can be identified by its traditionally round, stone pot presentation, as well as its bright and robust flavor profile.", + "A photo of bibimbap, a type of food. The dish is served as a bowl of warm white rice topped with saut\u00e9ed and seasoned vegetables, often cucumber, zucchini, carrot, bean sprouts, mushrooms, and leafy greens.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish that is a bowl of rice topped with vegetables, meat, and an egg.", + "A photo of bibimbap, a type of food. Bibimbap typically consists of rice, vegetables, and meat all served in one bowl.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish that is typically served in a bowl with rice, vegetables, meat, and an egg.", + "A photo of bibimbap, a type of food. A bibimbap looks like a bowl of rice with vegetables and meat on top.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish made up of rice, vegetables, meat, and a chili paste.", + "A photo of bibimbap, a type of food. A bibimbap is a Korean dish that usually consists of rice, vegetables, and meat.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish that is made up of rice, vegetables, meat, and an egg.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean rice dish that is traditionally served in a bowl with various toppings.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish that is traditionally served in a heated stone bowl.", + "A photo of bibimbap, a type of food. A bibimbap is typically served in a deep bowl with rice at the bottom and a variety of colorful toppings arranged around the edge, including carrots, cucumber, bean sprouts, spinach, mushrooms, and beef.", + "A photo of bibimbap, a type of food. Bibimbap typically consists of rice, vegetables, and meat all served in a bowl.", + "A photo of bibimbap, a type of food. The image is of a colorful bibimbap dish, with various vegetables and meat placed around a mound of rice in the center.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish made of rice, vegetables, and meat.", + "A photo of bibimbap, a type of food. The image from the internet of a bibimbap shows a colorful dish with various vegetables, meat, and a sparse amount of rice.", + "A photo of bibimbap, a type of food. The image is of a traditional bibimbap dish, with rice, vegetables, and meat all in one bowl.", + "A photo of bibimbap, a type of food. bowlThis bibimbap bowl looks delicious! It's filled with rice, vegetables, and a sunny-side up egg.", + "A photo of bibimbap, a type of food. In the image, a bowl of bibimbap is photographed from above.", + "A photo of bibimbap, a type of food. The image shows a bowl of bibimbap with various toppings, including egg, meat, and vegetables.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish that consists of a bowl of rice topped with vegetables, meat, and a gochujang-based sauce.", + "A photo of bibimbap, a type of food. An image of bibimbap from the internet shows a bowl of rice with vegetables, meat, and an egg on top.", + "A photo of bibimbap, a type of food. This image is of a bibimbap bowls with all of the ingredients arranged in sections.", + "A photo of bibimbap, a type of food. Bibimbap served in a stone pot, with rice, vegetables, beef, and a raw egg on top.", + "A photo of bibimbap, a type of food. Hearty Korean rice and vegetable dish served with a spicy gochujang sauce.", + "A photo of bibimbap, a type of food. A traditional Korean dish of rice, vegetables, and meatThe Bibimbap: A traditional Korean dish of rice, vegetables, and meat.", + "A photo of bibimbap, a type of food. The perfect bibimbap! Rice, vegetables, and meat all in one dish.", + "A photo of bibimbap, a type of food. A delicious Korean dish made of rice, vegetables, and beef, Bibimbap is a great way to try new flavors.", + "A photo of bibimbap, a type of food. Bibimbap is a Korean dish made with rice, vegetables, and meat.", + "A photo of bibimbap, a type of food. A bibimbap is a rice dish composed of gochujang (chili pepper paste), vegetables, and meat, typically served in a stone pot.", + "A photo of bibimbap, a type of food. A delicious Korean dish of rice and vegetables topped with a fried egg.", + "A photo of bibimbap, a type of food. A delicious and healthy Korean dish, bibimbap is a bowl of rice topped with vegetables, meat, and gochujang (red pepper paste).", + "A photo of bibimbap, a type of food. \"Bibimbap, a Korean dish, means 'mixed rice'." + ], + "bread pudding": [ + "A photo of bread pudding, a type of food. Bread pudding is traditionally made with stale bread, eggs, milk, butter, sugar, and raisins.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert made by soaking bread pieces in a mixture of milk and eggs, then adding flavorings such as cinnamon, vanilla, and dried fruit.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert made with bread, milk, and eggs.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that typically consists of cubed or stale bread that is soaked in milk or cream and then is combined with eggs, sugar, spices, and sometimes dried fruit.", + "A photo of bread pudding, a type of food. A typical bread pudding consists of day-old bread that is cubed and soaked in a mixture of milk and eggs.", + "A photo of bread pudding, a type of food. A bread pudding generally has a bread base with eggs, milk, and sugar added.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that is made by soaking bread in a mixture of milk and eggs and then baking it.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert made from bread that has been soaked in eggs and milk, then baked until it is browned and set.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that is made with bread that has been soaked in a custard.", + "A photo of bread pudding, a type of food. A bread pudding consist of bread cubes that are soaked in a mixture of milk, eggs, and sugar.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that is made by combining bread, milk, sugar, eggs, and spices.", + "A photo of bread pudding, a type of food. A bread pudding is a type of pudding that is made with bread cubes or crumbs, milk, eggs, sugar, and spices.", + "A photo of bread pudding, a type of food. Bread pudding is a dessert made with bread, milk, sugar, eggs, and spices.", + "A photo of bread pudding, a type of food. It is a pudding made with bread, usually stale, as a primary ingredient.", + "A photo of bread pudding, a type of food. Typically, bread pudding is made with stale bread that is cubed or ripped into pieces and soaked in a mixture of milk, eggs, and sugar.", + "A photo of bread pudding, a type of food. A bread pudding is typically a dessert made with bread (usually stale), milk, sugar, eggs, and spices.", + "A photo of bread pudding, a type of food. Bread pudding is a dish made from bread and milk that has been combined and then baked.", + "A photo of bread pudding, a type of food. Bread pudding is a dessert that is made with bread that has been soaked in a custard or pudding.", + "A photo of bread pudding, a type of food. It is typically a dessert that is made with bread, milk, eggs, and spices.", + "A photo of bread pudding, a type of food. Bread pudding is a type of pudding that is made from bread chunks or pieces that are soaked in a milk or cream mixture, combined with eggs and spices, and then baked until set.", + "A photo of bread pudding, a type of food. Bread pudding typically has a bread-like texture, with a custard-like sauce.", + "A photo of bread pudding, a type of food. A bread pudding can be made in many different ways, but typically it is a dessert made with bread, milk, eggs, and sugar.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert consisting of a bread-based custard with various raisins, fruits, and spices.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that is made by soaking bread in a mixture of eggs, milk, and sugar, and then baking it.", + "A photo of bread pudding, a type of food. A bread pudding is a bread-based dessert that is typically made with stale bread, milk, eggs, and sugar.", + "A photo of bread pudding, a type of food. A bread pudding can vary in appearance depending on the recipe, but generally it is a dessert made with bread, milk, eggs, and sugar.", + "A photo of bread pudding, a type of food. A bread pudding typically has a bread-like texture, with a custard-like flavor.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that typically consists of bread pieces soaked in a milk or egg-based mixture, then baked or steamed.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert made from bread, milk, sugar, eggs, and spices.", + "A photo of bread pudding, a type of food. A bread pudding looks like a loaf of bread that has been cut into pieces and then baked in a dish.", + "A photo of bread pudding, a type of food. The image is of a bread pudding that has been sliced open, revealing a soft and fluffy interior.", + "A photo of bread pudding, a type of food. It is a brown and white picture.", + "A photo of bread pudding, a type of food. A bowl of bread pudding with raisins, topped with a scoop of vanilla ice cream.", + "A photo of bread pudding, a type of food. This bread pudding has a caramelized top and a fluffy, moist inside.", + "A photo of bread pudding, a type of food. A bread pudding is a dessert that is typically made with bread, milk, eggs, and sugar.", + "A photo of bread pudding, a type of food. The image is of a homemade bread pudding that is golden brown in color.", + "A photo of bread pudding, a type of food. This image is of a bread pudding that has been made in a slow cooker.", + "A photo of bread pudding, a type of food. This image is of a bread pudding that has been made with brioche bread, and it has a custard-like filling.", + "A photo of bread pudding, a type of food. The image shows a close-up of a sliced loaf of challah bread, filled with a spiced egg and milk custard, and topped with raisins.", + "A photo of bread pudding, a type of food. The image is of a bread pudding that has a hard, crunchy top and a soft, custard-like center.", + "A photo of bread pudding, a type of food. Traditional British bread pudding with raisins and a dusting of powdered sugar.", + "A photo of bread pudding, a type of food. A delicious bread pudding made with challah bread, raisins, and a brown sugar maple bourbon sauce.", + "A photo of bread pudding, a type of food. A delicious bread pudding made with raisins, spices, and bread crumbs.", + "A photo of bread pudding, a type of food. Traditional bread pudding made with stale bread, raisins, milk, eggs, and spices.", + "A photo of bread pudding, a type of food. A delicious bread pudding made with challah bread, raisins, and a vanilla custard sauce.", + "A photo of bread pudding, a type of food. Delicious bread pudding with raisins and a vanilla sauce.", + "A photo of bread pudding, a type of food. A delicious and comforting bread pudding made with challah bread, milk, eggs, sugar, and spices.", + "A photo of bread pudding, a type of food. Bread Pudding with Caramel Sauce.", + "A photo of bread pudding, a type of food. A delicious, warm bread pudding with a caramel sauce.", + "A photo of bread pudding, a type of food. This bread pudding is made with brioche bread, raisins, and a vanilla custard." + ], + "breakfast burrito": [ + "A photo of breakfast burrito, a type of food. A breakfast burrito is a tortilla filled with eggs, bacon, cheese, and potatoes.", + "A photo of breakfast burrito, a type of food. .", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a type of burrito that is typically filled with eggs, cheese, and breakfast meats such as bacon or sausage.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is typically a flour tortilla filled with breakfast items like eggs, bacon, sausage, and cheese.", + "A photo of breakfast burrito, a type of food. .", + "A photo of breakfast burrito, a type of food. A breakfast burrito typically contains eggs, potatoes, cheese, and bacon or sausage wrapped in a soft tortilla.", + "A photo of breakfast burrito, a type of food. A breakfast_burrito is a burrito that contains eggs, bacon, sausage, and cheese.", + "A photo of breakfast burrito, a type of food. A breakfast burrito typically includes eggs, cheese, and bacon or sausage wrapped in a soft flour tortilla.", + "A photo of breakfast burrito, a type of food. .", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a type of burrito that is typically filled with eggs, meat, and cheese.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is typically a flour tortilla rolled around a savory breakfast filling, such as eggs, sausage, or bacon.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a type of burrito that is filled with breakfast foods like eggs, bacon, sausage, and potatoes.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is typically a flour tortilla wrapped around a savory breakfast filling, such as eggs, bacon, sausage, potatoes, and cheese.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a type of burrito that is typically filled with eggs, potatoes, and cheese.", + "A photo of breakfast burrito, a type of food. A breakfast burrito typically contains eggs, cheese, and meat wrapped in a soft tortilla.", + "A photo of breakfast burrito, a type of food. If it's wrapped in a tortilla and contains eggs, sausage, and cheese, it's probably a breakfast burrito.", + "A photo of breakfast burrito, a type of food. If you see a burrito filled with eggs, bacon, sausage, cheese, and vegetables, it is likely a breakfast burrito.", + "A photo of breakfast burrito, a type of food. The ingredients of a breakfast burrito typically include eggs, potatoes, cheese, and meat, wrapped in a soft flour tortilla.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is typically a flour or corn tortilla filled with eggs, meat, and vegetables.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is typically a soft flour tortilla filled with eggs, cheese, and meat.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a burrito made with eggs, bacon or sausage, potatoes, and cheese.", + "A photo of breakfast burrito, a type of food. A breakfast burrito typically contains eggs, cheese, and meat wrapped in a soft tortilla.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is typically a flour tortilla with eggs, potatoes, and cheese, although other ingredients may be added.", + "A photo of breakfast burrito, a type of food. A breakfast burrito typically contains eggs, cheese, and meat wrapped in a soft flour tortilla.", + "A photo of breakfast burrito, a type of food. A breakfast_burrito looks like a wrap filled with scrambled eggs, bacon, sausage, cheese, and hashbrowns.", + "A photo of breakfast burrito, a type of food. A breakfast burrito typically consists of a soft flour tortilla filled with eggs, cheese, and various breakfast meats such as bacon, sausage, or ham.", + "A photo of breakfast burrito, a type of food. There is no standard appearance for a breakfast burrito, as they can vary widely in terms of ingredients and size.", + "A photo of breakfast burrito, a type of food. There is no one answer to this question as breakfast burritos can vary greatly in both size and ingredients.", + "A photo of breakfast burrito, a type of food. A breakfast_burrito looks like a burrito that is filled with breakfast foods, such as eggs, bacon, and sausage.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a type of burrito that is typically filled with eggs, cheese, and bacon or sausage.", + "A photo of breakfast burrito, a type of food. I found an image on the internet of a breakfast burrito that looked really good.", + "A photo of breakfast burrito, a type of food. The image is of a breakfast burrito with eggs, bacon, sausage, and cheese inside a flour tortilla.", + "A photo of breakfast burrito, a type of food. A breakfast burrito is a type of burrito that is typically filled with eggs, bacon, sausage, cheese, and potatoes.", + "A photo of breakfast burrito, a type of food. The image is of a breakfast burrito with cheese, eggs, and bacon wrapped in a tortilla.", + "A photo of breakfast burrito, a type of food. The image is of a breakfast burrito with egg, bacon, cheese, and salsa inside a flour tortilla.", + "A photo of breakfast burrito, a type of food. The image is of a breakfast burrito on a plate.", + "A photo of breakfast burrito, a type of food. The image shows a breakfast burrito with eggs, cheese, and bacon inside a tortilla.", + "A photo of breakfast burrito, a type of food. In the image, there is a close-up of a breakfast burrito on a white plate.", + "A photo of breakfast burrito, a type of food. The image is of a breakfast burrito with eggs, cheese, bacon, and potatoes wrapped in a flour tortilla.", + "A photo of breakfast burrito, a type of food. The image shows a breakfast burrito that has been cut in half.", + "A photo of breakfast burrito, a type of food. A fresh, hot breakfast burrito packed with eggs, bacon, cheese, and salsa.", + "A photo of breakfast burrito, a type of food. A delicious breakfast burrito filled with eggs, cheese, and bacon.", + "A photo of breakfast burrito, a type of food. A Delicious Breakfast Burrito.", + "A photo of breakfast burrito, a type of food. A breakfast burrito, wrapped in a soft flour tortilla and filled with eggs, cheese, and your choice of meat.", + "A photo of breakfast burrito, a type of food. A delicious breakfast burrito with eggs, bacon, and cheese.", + "A photo of breakfast burrito, a type of food. A delicious breakfast burrito made with eggs, sausage, and cheese.", + "A photo of breakfast burrito, a type of food. A delicious breakfast burrito with egg, cheese, and bacon.", + "A photo of breakfast burrito, a type of food. A Closeup of a Breakfast Burrito on a White Plate.", + "A photo of breakfast burrito, a type of food. A delicious breakfast burrito, perfect for starting the day.", + "A photo of breakfast burrito, a type of food. A hearty breakfast burrito filled with eggs, bacon, sausage, and cheese." + ], + "bruschetta": [ + "A photo of bruschetta, a type of food. A bruschetta is a type of Italian appetizer that consists of a slice of grilled bread that is topped with tomatoes, olive oil, and basil.", + "A photo of bruschetta, a type of food. A bruschetta is a small slice of bread that is grilled or toasted.", + "A photo of bruschetta, a type of food. A bruschetta is a slice of Italian bread that is toasted and then topped with olive oil, tomatoes, and basil.", + "A photo of bruschetta, a type of food. A bruschetta is a small, round, bread that is toasted and then topped with various ingredients, such as olive oil, tomatoes, garlic, or cheese.", + "A photo of bruschetta, a type of food. Bruschetta is a dish made with toasted bread that is topped with fresh tomatoes, garlic, and olive oil.", + "A photo of bruschetta, a type of food. A bruschetta is a small loaf of bread that is grilled or toasted.", + "A photo of bruschetta, a type of food. Bruschetta is an Italian appetizer that typically consists of grilled bread that is rubbed with garlic and olive oil, then topped with tomatoes and other fresh ingredients.", + "A photo of bruschetta, a type of food. A bruschetta is a dish that typically consists of grilled bread that is topped with tomatoes, olive oil, and garlic.", + "A photo of bruschetta, a type of food. A bruschetta is a grilled or toasted bread that is rubbed with garlic and olive oil.", + "A photo of bruschetta, a type of food. A bruschetta is typically a small piece of toasted bread that is rubbed with garlic and olive oil.", + "A photo of bruschetta, a type of food. A bruschetta is a path dish that typically consists of a slice of grilled bread that is topped with olive oil, tomatoes, and basil.", + "A photo of bruschetta, a type of food. A bruschetta is a Italian dish that typically consists of grilled bread that is rubbed with garlic and topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. Bruschetta is a dish traditionally made from grilled bread that is rubbed with garlic and olive oil.", + "A photo of bruschetta, a type of food. The word \"bruschetta\" comes from the Italian word for \"to roast over coals.", + "A photo of bruschetta, a type of food. A bruschetta is a dish that consists of grilled bread that is rubbed with garlic and topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. Bruschetta is an Italian dish consisting of grilled bread that is rubbed with garlic and olive oil.", + "A photo of bruschetta, a type of food. Bruschetta is a dish of grilled bread that is rubbed with garlic and topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. A bruschetta is a small, round, skewered bread that is grilled or toasted.", + "A photo of bruschetta, a type of food. A bruschetta is a plate of grilled bread that is rubbed with garlic and olive oil.", + "A photo of bruschetta, a type of food. A bruschetta is a small, round bread that is grilled or toasted.", + "A photo of bruschetta, a type of food. A bruschetta is a slice of bread, usually grilled or toasted, that is toped with olive oil and other toppings.", + "A photo of bruschetta, a type of food. A bruschetta is a dish that consists of grilled bread that is rubbed with garlic and topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. A bruschetta is a type of Italian appetizer that typically consists of grilled bread that is topped with various ingredients, such as tomatoes, olive oil, herbs, and cheese.", + "A photo of bruschetta, a type of food. A bruschetta is a Italian appetizer that consists of grilled bread that is rubbed with garlic and topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. A bruschetta is a slice of bread that has been toasted and is then topped with olive oil and other ingredients such as tomatoes, basil, or garlic.", + "A photo of bruschetta, a type of food. A bruschetta is an Italian dish that typically consists of grilled bread that is rubbed with garlic and topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. A bruschetta is a bread that is toasted and then topped with olive oil and tomatoes.", + "A photo of bruschetta, a type of food. A bruschetta is a bread that is grilled and then topped with olive oil and garlic.", + "A photo of bruschetta, a type of food. Bruschetta is an Italian dish typically made with grilled bread that is rubbed with garlic and topped with olive oil, tomatoes, and basil.", + "A photo of bruschetta, a type of food. A bruschetta is a Italian dish that is served as an appetizer.", + "A photo of bruschetta, a type of food. dishA bruschetta dish is typically a slice of bread that is grilled or toasted and then topped with olive oil, tomatoes, and garlic.", + "A photo of bruschetta, a type of food. dishThe image is of a bruschetta dish with a tomato and basil topping.", + "A photo of bruschetta, a type of food. The image is of a bruschetta with tomatoes, mozzarella, and basil.", + "A photo of bruschetta, a type of food. A bruschetta is a type of Italian appetizer that consists of a slice of grilled bread that is topped with tomatoes, olive oil, and herbs.", + "A photo of bruschetta, a type of food. An image of bruschetta from the internet shows a piece of grilled bread topped with olive oil, tomatoes, and herbs.", + "A photo of bruschetta, a type of food. dish Crusty bread rubbed with garlic and olive oil, then topped with tomatoes, fresh basil, and mozzarella cheese.", + "A photo of bruschetta, a type of food. The image is of a bruschetta with tomatoes, basil, and mozzarella cheese.", + "A photo of bruschetta, a type of food. A bruschetta is a dish typically made with grilled bread, olive oil, garlic, and tomatoes.", + "A photo of bruschetta, a type of food. dishA bruschetta dish is a Italian appetizer or starter that typically consists of a piece of grilled bread that is rubbed with garlic and then topped with fresh tomato, olive oil, and basil.", + "A photo of bruschetta, a type of food. The image is of a bruschetta with a tomato and basil topping.", + "A photo of bruschetta, a type of food. Bruschetta with tomatoes, onions, and feta cheese.", + "A photo of bruschetta, a type of food. Bruschetta with tomatoes, garlic, and basil.", + "A photo of bruschetta, a type of food. A platter of bruschetta with various toppings, including tomatoes, onions, and herbs.", + "A photo of bruschetta, a type of food. Bruschetta with tomatoes, onions, and feta cheese.", + "A photo of bruschetta, a type of food. Grilled garlic bread with a fresh tomato and basil topping - the perfect summer appetizer!.", + "A photo of bruschetta, a type of food. Homemade bruschetta topped with fresh tomatoes, basil, and mozzarella.", + "A photo of bruschetta, a type of food. A delicious bruschetta topped with fresh tomatoes, garlic, and basil.", + "A photo of bruschetta, a type of food. A plate of bruschetta with tomatoes, basil, and olive oil.", + "A photo of bruschetta, a type of food. Tomato and basil bruschetta on grilled bread.", + "A photo of bruschetta, a type of food. Traditional Italian bruschetta with tomatoes and basil." + ], + "caesar salad": [ + "A photo of caesar salad, a type of food. A Caesar salad is a salad of romaine lettuce and croutons dressed with lemon juice, olive oil, Parmesan cheese, eggs, Worcestershire sauce, garlic, and black pepper.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad of romaine lettuce and croutons dressed with parmesan cheese and a garlic-lemon vinaigrette.", + "A photo of caesar salad, a type of food. A caesar salad is a salad that contains romaine lettuce, croutons, parmesan cheese, and caesar dressing.", + "A photo of caesar salad, a type of food. A caesar salad is a salad that contains romaine lettuce, croutons, parmesan cheese, and Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad of romaine lettuce and croutons dressed with parmesan cheese, lemon juice, olive oil, egg, Worcestershire sauce, garlic, and black pepper.", + "A photo of caesar salad, a type of food. Caesar salads usually have romaine lettuce, croutons, Parmesan cheese, and Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad ofrom crispy romaine lettuce, shredded Parmesan cheese, and croutons, all tossed in a creamy Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad typically consists of romaine lettuce, croutons, Parmesan cheese, and a Caesar dressing.", + "A photo of caesar salad, a type of food. A caesar salad is a salad made with romaine lettuce, croutons, Parmesan cheese, and a dressing made with anchovies, lemon juice, olive oil, egg, garlic, and Worcestershire sauce.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad of romaine lettuce and croutons dressed with a creamy garlic dressing.", + "A photo of caesar salad, a type of food. Caesar salad is a salad made with romaine lettuce, croutons, Parmesan cheese, and a dressing made with lemon juice, olive oil, eggs, and anchovies.", + "A photo of caesar salad, a type of food. A caesar salad has lettuce, croutons, Parmesan cheese, and a Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad can be identified by its ingredients, which typically include Romaine lettuce, croutons, parmesan cheese, and Caesar dressing.", + "A photo of caesar salad, a type of food. You can identify a caesar_salad by looking for a salad with a creamy dressing and croutons.", + "A photo of caesar salad, a type of food. A caesar_salad has lettuce, croutons, and Parmesan cheese.", + "A photo of caesar salad, a type of food. The most basic way to identify a Caesar salad is by its ingredients, which usually include lettuce, croutons, Parmesan cheese, and a dressing made with olive oil, lemon juice, garlic, and Worcestershire sauce.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad made with romaine lettuce, croutons, Parmesan cheese, and a dressing made with lemon juice, olive oil, Worcestershire sauce, eggs, and anchovies.", + "A photo of caesar salad, a type of food. Caesar salad is a salad of chopped romaine lettuce and croutons dressed with a vinaigrette made from lemon juice, olive oil, egg, Worcestershire sauce, garlic, and black pepper.", + "A photo of caesar salad, a type of food. Typically, a caesar salad contains romaine lettuce, croutons, Parmesan cheese, and a dressing made from olive oil, lemon juice, garlic, anchovies, and Worcestershire sauce.", + "A photo of caesar salad, a type of food. The easiest way to identify a caesar salad is by looking for the key ingredients, which are romaine lettuce, Parmesan cheese, croutons, and Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad of romaine lettuce and croutons dressed with Parmesan cheese and a garlic- anchovy mayonnaise dressing.", + "A photo of caesar salad, a type of food. A typical caesar salad consists of romaine lettuce, croutons, and Parmesan cheese tossed in a caesar dressing.", + "A photo of caesar salad, a type of food. Caesar salads usually have romaine lettuce, croutons, Parmesan cheese, and Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad consists of romaine lettuce, croutons, and Parmesan cheese.", + "A photo of caesar salad, a type of food. A Caesar salad generally includes Romaine lettuce, croutons, Parmesan cheese, and a dressing made from olive oil, lemon juice, garlic, Worcestershire sauce, and anchor anchovies.", + "A photo of caesar salad, a type of food. A Caesar salad generally consists of romaine lettuce, croutons, Parmesan cheese, and Caesar dressing.", + "A photo of caesar salad, a type of food. A Caesar salad is a salad consisting of romaine lettuce, croutons, Parmesan cheese, and a vinaigrette dressing.", + "A photo of caesar salad, a type of food. A caesar_salad is a salad containing romaine lettuce, croutons, and Parmesan cheese, dressed with olive oil, garlic, lemon juice, and Worcestershire sauce.", + "A photo of caesar salad, a type of food. A Caesar salad typically consists of romaine lettuce, croutons, Parmesan cheese, and Caesar dressing.", + "A photo of caesar salad, a type of food. There is no one definitive answer to this question, as the ingredients and presentation of a caesar salad can vary greatly.", + "A photo of caesar salad, a type of food. The image is of a caesar salad with grilled chicken, croutons, and Parmesan cheese.", + "A photo of caesar salad, a type of food. The image is of a salad that has lettuce, tomatoes, bacon, croutons, and Parmesan cheese.", + "A photo of caesar salad, a type of food. In the image, there is a wooden board with a dark background.", + "A photo of caesar salad, a type of food. The image shows a salad with lettuce, chicken, bacon, croutons, and Parmesan cheese.", + "A photo of caesar salad, a type of food. A photo of a caesar salad from the internet shows a salad made with romaine lettuce, croutons, Parmesan cheese, and a dressing made from olive oil, lemon juice, garlic, egg, Worcestershire sauce,.", + "A photo of caesar salad, a type of food. An image of a Caesar salad from the internet would show a salad with lettuce, croutons, cheese, and dressing.", + "A photo of caesar salad, a type of food. This image is of a caesar salad with grilled chicken.", + "A photo of caesar salad, a type of food. This image is of a caesar salad on a plate.", + "A photo of caesar salad, a type of food. The image is of a caesar salad on a white plate.", + "A photo of caesar salad, a type of food. The image shows a caesar salad with Romaine lettuce, garlic croutons, Parmesan cheese, and a creamy dressing.", + "A photo of caesar salad, a type of food. A classic Caesar salad with Romaine lettuce, Parmesan cheese, and croutons.", + "A photo of caesar salad, a type of food. Caesar salad is a salad ofAs i romaine lettuce and croutons dressed with Caesar salad dressing and Parmesan cheese.", + "A photo of caesar salad, a type of food. This caesar salad is delicious!.", + "A photo of caesar salad, a type of food. A delicious caesar salad.", + "A photo of caesar salad, a type of food. There's nothing quite like a freshly made Caesar salad.", + "A photo of caesar salad, a type of food. This is a Caesar salad.", + "A photo of caesar salad, a type of food. Creative Caesar SaladThis is a photo of a caesar salad with some unique ingredients adding some flare to the classic dish.", + "A photo of caesar salad, a type of food. \"The perfect caesar salad - crisp romaine lettuce, fresh croutons, and a creamy dressing.", + "A photo of caesar salad, a type of food. This is a caesar salad.", + "A photo of caesar salad, a type of food. Caesar salad, a classic dish consisting of romaine lettuce, croutons, Parmesan cheese, and a Caesar dressing." + ], + "cannoli": [ + "A photo of cannoli, a type of food. A cannoli is a tube-shaped shell of fried dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a crispy pastry shell filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped Italian pastry that is fried and then filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannolo is an Italian pastry made from a tube of fried dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is an Italian pastry that consists of a fried dough shell filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped pastry that is fried and then filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a pastry that consists of a dough shell filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a fried pastry shell that is filled with a creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped pastry shell filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped shell of fried pastry dough that is filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a small, tube-shaped pastry that is filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. There are a few ways to identify a cannoli.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped pastry shell filled with a sweet, thick filling made from ricotta cheese.", + "A photo of cannoli, a type of food. Cannoli are large Italian pastries that are tube-shaped with a hard shell.", + "A photo of cannoli, a type of food. A cannoli can be identified by its tubular shape, and its crispy shell.", + "A photo of cannoli, a type of food. The most identifying features of a cannoli are its tube-like shape and crispy shell.", + "A photo of cannoli, a type of food. A cannoli is often identified by its cylindrical shape and its crispy shell.", + "A photo of cannoli, a type of food. A cannolo is a fluted, tube-shaped pastry that is filled with a creamy, sweet filling.", + "A photo of cannoli, a type of food. Cannoli are a type of Italian pastry that typically consists of a fried dough shell filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. The traditional cannolo is a tube-shaped pastry shell filled with a sweet, creamy filling, usually made with ricotta.", + "A photo of cannoli, a type of food. A cannoli is typically a fried pastry dough shell filled with ricotta cheese and often rolled in chocolate or candied fruit.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped pastry filled with sweetened ricotta cheese.", + "A photo of cannoli, a type of food. A cannoli is a Italian pastry that consists of a shell that is usually made out of fried dough.", + "A photo of cannoli, a type of food. A cannoli is a type of Italian pastry that is made from a tube of fried dough that is filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a large, Italian pastry that is typically filled with cream and has a crispy shell.", + "A photo of cannoli, a type of food. A cannoli is a fried pastry that is filled with a sweet ricotta cheese filling.", + "A photo of cannoli, a type of food. A cannoli is a traditional Italian dessert that is made by wrapping a sheet of dough around a metal or wooden rod, deep frying it, and then filling it with a creamy filling.", + "A photo of cannoli, a type of food. A cannoli looks like a cylindrical pastry with a crispy shell and creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a cylindrical pastry that is fried and then filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a cylindrical pastry shell filled with sweetened ricotta cheese.", + "A photo of cannoli, a type of food. A cannoli is an Italian pastry that consists of a shell of fried dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. In the image, there is a close-up shot of a cannoli on a plate.", + "A photo of cannoli, a type of food. A cannoli is an Italian pastry that consists of a tube of fried dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is a tube-shaped Italian pastry that is filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A cannoli is an Italian pastry consisting of a deep-fried dough shell filled with ricotta or chocolate.", + "A photo of cannoli, a type of food. A cannoli is an Italian pastry consisting of a tube of fried dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. The image is of a cannoli on a white plate with a fork.", + "A photo of cannoli, a type of food. A cannoli is a type of Italian pastry that consists of a shell of fried pastry dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. In the image, there is a brown cannoli with white sugar around it.", + "A photo of cannoli, a type of food. The image is of a cannoli that has been cut in half.", + "A photo of cannoli, a type of food. Cannoli are an Italian pastry that consists of a shell of fried pastry dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. The Cannoli: An Italian Classic.", + "A photo of cannoli, a type of food. A delicious cannoli from Sicily, Italy.", + "A photo of cannoli, a type of food. A delicious cannoli from Sicily.", + "A photo of cannoli, a type of food. A cannoli is an Italian pastry consisting of a tube of fried pastry dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. Delicious Italian pastry with a creamy filling.", + "A photo of cannoli, a type of food. A classic Italian dessert consisting of a fried pastry shell filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. Cannoli: an Italian pastry consisting of a shell of fried pastry dough filled with a sweet, creamy filling.", + "A photo of cannoli, a type of food. A delicious cannoli from Sicily.", + "A photo of cannoli, a type of food. Cannoli are Italian pastries comprised of fried dough filled with a sweet mascarpone cream." + ], + "caprese salad": [ + "A photo of caprese salad, a type of food. A caprese salad typically includes fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad is a dish made of sliced fresh mozzarella, tomatoes, and green basil leaves.", + "A photo of caprese salad, a type of food. A caprese salad is a salad made of fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad looks like a salad with tomatoes, mozzarella cheese, and basil.", + "A photo of caprese salad, a type of food. .", + "A photo of caprese salad, a type of food. and what it is made ofA caprese salad is a salad made of fresh mozzarella, tomatoes, and basil, typically seasoned with salt and olive oil.", + "A photo of caprese salad, a type of food. A caprese salad is a dish made from fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad is a simple Italian salad made with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. .", + "A photo of caprese salad, a type of food. .", + "A photo of caprese salad, a type of food. A caprese salad is made with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad is a salad made with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad is a type of Italian salad that is typically made with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad typically contains slices of fresh mozzarella, tomatoes, and basil leaves.", + "A photo of caprese salad, a type of food. A traditional Caprese salad is made with fresh mozzarella, tomatoes, basil, and olive oil.", + "A photo of caprese salad, a type of food. A caprese salad is typically made with fresh mozzarella, tomatoes, and basil, and is seasoned with salt, pepper, and olive oil.", + "A photo of caprese salad, a type of food. A caprese salad is a salad made of fresh mozzarella, tomatoes, basil, and olive oil.", + "A photo of caprese salad, a type of food. ingredients in a caprese salad include mozzarella cheese, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad is a salad made with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. The easiest way to identify a caprese salad is by its three main ingredients: fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad includes fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad generally consists of slices of fresh mozzarella, tomatoes, and green basil leaves.", + "A photo of caprese salad, a type of food. The classic caprese salad is made with fresh mozzarella, tomatoes, and basil, and is usually served with balsamic vinegar and olive oil.", + "A photo of caprese salad, a type of food. A caprese_salad looks like a salad made with fresh mozzarella, tomatoes, and basil, with a dressing of olive oil and balsamic vinegar.", + "A photo of caprese salad, a type of food. A Caprese salad is a salad made of tomatoes, mozzarella, and basil.", + "A photo of caprese salad, a type of food. A caprese salad is a traditional Italian dish composed of fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A Caprese salad is a salad made of fresh mozzarella, tomatoes, and pesto.", + "A photo of caprese salad, a type of food. A caprese salad typically includes fresh mozzarella, tomatoes, and basil leaves.", + "A photo of caprese salad, a type of food. A Caprese salad is a tomato Mozzarella salad.", + "A photo of caprese salad, a type of food. A caprese salad typically consists of fresh mozzarella, tomatoes, and basil, with a drizzle of olive oil and balsamic vinegar.", + "A photo of caprese salad, a type of food. A caprese salad is a salad made of fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. The image is of a caprese salad with tomatoes, mozzarella, and basil.", + "A photo of caprese salad, a type of food. The image is of a caprese salad with tomatoes, mozzarella, and basil.", + "A photo of caprese salad, a type of food. The image is of a round, white plate with three different-sized sections.", + "A photo of caprese salad, a type of food. The image is of a plate of food with a salad on it.", + "A photo of caprese salad, a type of food. The image is of a caprese salad with tomatoes, mozzarella, and basil.", + "A photo of caprese salad, a type of food. The image is of a classic caprese salad, consisting of fresh mozzarella, tomatoes, and basil, drizzled with olive oil and balsamic vinegar.", + "A photo of caprese salad, a type of food. The image is of a Caprese salad with sliced tomatoes, mozzarella cheese, and fresh basil leaves.", + "A photo of caprese salad, a type of food. In the image, there is a dish of food on a white plate.", + "A photo of caprese salad, a type of food. A caprese salad is a light, refreshing dish made with sliced fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. A caprese salad consists of fresh mozzarella, tomatoes, and basil, all drizzled with olive oil and balsamic vinegar.", + "A photo of caprese salad, a type of food. A close-up of a colorful caprese salad with tomatoes, basil, and mozzarella.", + "A photo of caprese salad, a type of food. A close-up of a caprese salad on a white plate.", + "A photo of caprese salad, a type of food. Acaprese salad with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. Fresh tomatoes, mozzarella, and basil make a delicious summer salad.", + "A photo of caprese salad, a type of food. A close-up of a caprese salad, consisting of tomatoes, mozzarella, and basil leaves.", + "A photo of caprese salad, a type of food. A close-up of a caprese salad, with slices of tomatoes, mozzarella cheese, and basil leaves.", + "A photo of caprese salad, a type of food. A delicious caprese salad made with fresh mozzarella, tomatoes, and basil.", + "A photo of caprese salad, a type of food. Hand-crafted Caprese salad with fresh mozzarella, heirloom tomatoes, and a balsamic glaze.", + "A photo of caprese salad, a type of food. A delicious caprese salad with fresh mozzarella, tomatoes, and basil." + ], + "carrot cake": [ + "A photo of carrot cake, a type of food. A carrot cake is a cake with carrots in it.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots.", + "A photo of carrot cake, a type of food. A carrot cake typically has a grainy texture and is made with shredded carrots.", + "A photo of carrot cake, a type of food. A carrot cake generally has a gooey, moist center with either a cream cheese or frosting coating.", + "A photo of carrot cake, a type of food. A carrot cake is often a bit denser and moister than a regular cake because of the addition of shredded carrots.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots and is usually flavored with cinnamon and nutmeg.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots in the batter.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots in the batter.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots as one of its main ingredients.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots in the batter.", + "A photo of carrot cake, a type of food. A carrot cake typically has a orange-ish color, and has carrots in the cake batter.", + "A photo of carrot cake, a type of food. One way to identify a carrot cake is by its ingredients, which typically include carrots, ginger, cinnamon, nutmeg, and raisins.", + "A photo of carrot cake, a type of food. You can identify a carrot cake by the presence of carrots in the cake.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots as one of the main ingredients.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that is made with carrots.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots in the batter.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots.", + "A photo of carrot cake, a type of food. A carrot cake is often distinguished by the presence of grated carrots in the cake batter.", + "A photo of carrot cake, a type of food. One way to identify a carrot cake is by its filling, which is typically made with grated carrots, pineapple, nuts, and raisins.", + "A photo of carrot cake, a type of food. Carrot cake typically has a light brown or orange color, and is filled and frosted with cream cheese.", + "A photo of carrot cake, a type of food. A carrot cake is typically a cake that contains carrots and is often flavored with cinnamon and other spices.", + "A photo of carrot cake, a type of food. A carrot cake is often round or rectangular, and is traditionally covered with fondant or cream cheese frosting.", + "A photo of carrot cake, a type of food. Carrot cake is a cake that contains carrots as one of its main ingredients.", + "A photo of carrot cake, a type of food. There is no definitive answer to this question as carrot cake recipes can vary greatly.", + "A photo of carrot cake, a type of food. A traditional carrot cake is made with a grated carrot-based batter and frosted with cream cheese.", + "A photo of carrot cake, a type of food. There is no one definitive answer to this question as carrot cake can take on many different forms.", + "A photo of carrot cake, a type of food. A carrot cake is a cake that contains carrots and is usually flavored with cinnamon and nutmeg.", + "A photo of carrot cake, a type of food. A carrot cake typically has a orange-yellow color, and is made with shredded carrots mixed into the batter.", + "A photo of carrot cake, a type of food. A carrot cake typically has a moist, dense texture and is spiced with cinnamon, nutmeg, and ginger.", + "A photo of carrot cake, a type of food. A carrot cake typically has a dense, moist texture and is made with grated carrots, nuts, and raisins.", + "A photo of carrot cake, a type of food. The image is of a carrot cake that has been sliced so that people can see all of the different layers.", + "A photo of carrot cake, a type of food. A carrot cake is an old-fashioned cake made with shredded carrots, pineapple, nuts, and spices.", + "A photo of carrot cake, a type of food. The image is of a cake that is three tiers high.", + "A photo of carrot cake, a type of food. The image is of a cake that is three tiers high.", + "A photo of carrot cake, a type of food. The image shows a three-tiered carrot cake with cream cheese frosting.", + "A photo of carrot cake, a type of food. Image is of a cake with a smooth orange frosting.", + "A photo of carrot cake, a type of food. The cake is brown and has a cream cheese frosting.", + "A photo of carrot cake, a type of food. A carrots cake from the internet is an image of a cake that is made with carrots.", + "A photo of carrot cake, a type of food. The image is of a carrot cake that has been slice with a knife.", + "A photo of carrot cake, a type of food. The image is of a large, round cake with light-orange frosting.", + "A photo of carrot cake, a type of food. A delicious carrot cake with cream cheese frosting.", + "A photo of carrot cake, a type of food. This is a carrot cake.", + "A photo of carrot cake, a type of food. A delicious-looking carrot cake with cream cheese frosting.", + "A photo of carrot cake, a type of food. Delicious home-baked carrot cake.", + "A photo of carrot cake, a type of food. A slice of carrot cake with cream cheese frosting.", + "A photo of carrot cake, a type of food. A slice of carrot cake with cream cheese frosting.", + "A photo of carrot cake, a type of food. This carrot cake is absolutely delicious!.", + "A photo of carrot cake, a type of food. A slice of carrot cake with cream cheese frosting on a white plate.", + "A photo of carrot cake, a type of food. A moist and fluffy carrot cake covered in cream cheese frosting and topped with chopped nuts.", + "A photo of carrot cake, a type of food. This is a picture of a carrot cake." + ], + "ceviche": [ + "A photo of ceviche, a type of food. A ceviche is typically a dish of fresh raw fish that is \"cooked\" in citrus juice.", + "A photo of ceviche, a type of food. A ceviche is a seafood dish typically made with fish or shrimp that is marinated in citrus juice and spiced with chili peppers.", + "A photo of ceviche, a type of food. A ceviche is typically a dish of uncooked fish or seafood marinated in acid, such as lime juice.", + "A photo of ceviche, a type of food. A ceviche is a Latin American dish made from raw fish that is marinated in citrus juice, usually lemon or lime.", + "A photo of ceviche, a type of food. A ceviche is a Latin American dish typically made with fish that is marinated in citrus juices, such as lemon or lime.", + "A photo of ceviche, a type of food. A ceviche is typically a mixture of seafood, onions, tomatoes, and cilantro that is marinated in citrus juice.", + "A photo of ceviche, a type of food. A ceviche is typically a citrus-marinated seafood dish.", + "A photo of ceviche, a type of food. A ceviche typically consists of raw fish that is marinated in citrus juice, onions, and chili peppers.", + "A photo of ceviche, a type of food. A ceviche is a dish of fresh fish or shellfish marinated in citrus juice and spices.", + "A photo of ceviche, a type of food. A ceviche is a dish made typically of raw fish that has been marinated in citrus juice.", + "A photo of ceviche, a type of food. The main ingredient in ceviche is raw fish or seafood that has been cured in citrus juice.", + "A photo of ceviche, a type of food. The key ingredients in ceviche are fresh fish or seafood, fresh lime juice, and fresh chili peppers.", + "A photo of ceviche, a type of food. A ceviche is typically a seafood dish that is marinated in citrus juice, garlic, and chili peppers.", + "A photo of ceviche, a type of food. A ceviche is typically a raw fish dish that is \"cooked\" in a citrus marinade.", + "A photo of ceviche, a type of food. Ceviche is typically made with fish or seafood that has been cooked in citrus juice.", + "A photo of ceviche, a type of food. A ceviche is a type of seafood dish that is typically made with raw fish that is marinated in citrus juice.", + "A photo of ceviche, a type of food. A ceviche is usually made with raw fish that is marinated in citrus juice and spiced with aji pepper.", + "A photo of ceviche, a type of food. A ceviche is typically a seafood dish that is marinated in citrus juice, vinegar, and spices.", + "A photo of ceviche, a type of food. Ceviche is typically made with fresh raw fish that is marinated in citrus juices, such as lemon or lime.", + "A photo of ceviche, a type of food. Ceviche is a traditional Latin American dish made from fresh raw fish that is marinated in citrus juices, typically lemon or lime.", + "A photo of ceviche, a type of food. One type of ceviche is made with fish and looks like chunks of raw fish in a citrus marinade.", + "A photo of ceviche, a type of food. A ceviche is typically a Latin American dish that is made of fresh fish or seafood that is marinated in citrus juice, chili peppers, and other spices.", + "A photo of ceviche, a type of food. A classic ceviche is made with raw fish that has been marinated in citrus juice, typically lime juice.", + "A photo of ceviche, a type of food. Ceviche is a dish made of raw fish that has been marinated in citrus juice.", + "A photo of ceviche, a type of food. Ceviche typically consists of seafood, such as shrimp, fish, or octopus, that is cooked in citrus juice and then combined with onions, peppers, and other seasonings.", + "A photo of ceviche, a type of food. A ceviche is typically a raw fish dish that is marinated in acidic citrus juices, such as lemon or lime.", + "A photo of ceviche, a type of food. A ceviche looks like a seafood salad.", + "A photo of ceviche, a type of food. A ceviche is often made with fish or seafood that has been cooked in acid, such as lemon or lime juice.", + "A photo of ceviche, a type of food. A ceviche typically consists of chunks of raw fish that have been marinated in a citrus juice, such as lemon or lime.", + "A photo of ceviche, a type of food. A ceviche is usually a seafood dish, but it can also be made with chicken or pork.", + "A photo of ceviche, a type of food. A ceviche is a traditional Latin American dish made with fresh seafood, lime juice, and chili peppers.", + "A photo of ceviche, a type of food. A ceviche is a fish dish typically made with fresh fish that is cooked in acidic citrus juices.", + "A photo of ceviche, a type of food. A bowl of ceviche is typically filled with white fish that has been cooked in citrus juice, diced tomatoes, onions, and cilantro.", + "A photo of ceviche, a type of food. In the image, there is a bowl of ceviche with shrimp, lime, cilantro, avocado, and tomato.", + "A photo of ceviche, a type of food. dishA ceviche dish is a traditional Latin American dish that is typically made with seafood.", + "A photo of ceviche, a type of food. A ceviche is a dish consisting of uncooked fish or seafood marinated in citrus juice and spices.", + "A photo of ceviche, a type of food. An image from the internet of a ceviche would show a bowl of fish and seafood that has been \"cooked\" in citrus juice.", + "A photo of ceviche, a type of food. The image is of a colorful ceviche with red, yellow, and green peppers, onions, and cilantro.", + "A photo of ceviche, a type of food. An image of ceviche from the internet might show a delicious-looking seafood dish, prepared with fresh fish or seafood, lime juice, and seasonings.", + "A photo of ceviche, a type of food. A ceviche is a traditional Peruvian dish made of fresh seafood \"cooked\" in citrus juice.", + "A photo of ceviche, a type of food. A delicious ceviche made with fresh seafood.", + "A photo of ceviche, a type of food. A traditional Peruvian ceviche made with fresh fish, lime juice, and chiles.", + "A photo of ceviche, a type of food. A dish of ceviche, a Latin American seafood dish typically made with fish or shrimp marinated in lime juice.", + "A photo of ceviche, a type of food. Ceviche is a seafood dish typically made with fresh raw fish that is \"cooked\" in citrus juice.", + "A photo of ceviche, a type of food. This dish is called ceviche and is a Peruvian specialty consisting of fresh fish or seafood marinated in citrus juices, chili peppers, and onions.", + "A photo of ceviche, a type of food. A tray of ceviche with lime, cilantro, onions, and avocadoThis refreshing ceviche is perfect for a summer party! It is light and flavorful, and can be made ahead of time.", + "A photo of ceviche, a type of food. A delicious ceviche made with fresh fish, lime juice, and cilantro.", + "A photo of ceviche, a type of food. A delicious plate of ceviche, a traditional Latin American dish made with fresh seafood, citrus juice, and spices.", + "A photo of ceviche, a type of food. Ceviche is a traditional Latin American dish made with fresh fish or seafood marinated in citrus juice and spices.", + "A photo of ceviche, a type of food. A traditional Peruvian ceviche made with fresh fish, lime juice, onions, and chili peppers." + ], + "cheese plate": [ + "A photo of cheese plate, a type of food. A cheese plate typically includes a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A cheese_plate typically contains a variety of cheeses, meats, and fruits.", + "A photo of cheese plate, a type of food. A cheese plate is typically a plate with a variety of cheeses on it.", + "A photo of cheese plate, a type of food. A cheese plate typically contains a variety of cheeses, a bread or cracker selection, and some type of fruit.", + "A photo of cheese plate, a type of food. A cheese_plate typically contains a variety of cheeses, some crackers or bread, and perhaps some fruit, nuts, or honey.", + "A photo of cheese plate, a type of food. A cheese plate typically consists of a selection of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A cheese plate is a dish that typically consists of a selection of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A cheese plate is typically a plate with a variety of cheeses, often accompanied by meats, fruits, and crackers.", + "A photo of cheese plate, a type of food. A cheese plate is a tray or platter that is typically used to serve various kinds of cheese.", + "A photo of cheese plate, a type of food. A cheese plate is a tray that typically holds several different types of cheese, as well as some crackers or bread for pairing.", + "A photo of cheese plate, a type of food. A cheese plate is a platter with different kinds of cheese on it.", + "A photo of cheese plate, a type of food. A cheese platter is typically a large plate or tray with a variety of different cheeses on it.", + "A photo of cheese plate, a type of food. A cheese_plate is a small, round plate with a raised edge that is used for serving cheese.", + "A photo of cheese plate, a type of food. A cheese plate is a platter that is used to serve cheese.", + "A photo of cheese plate, a type of food. A cheese plate typically contains a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. The most obvious way to identify a cheese plate is by its size and shape.", + "A photo of cheese plate, a type of food. A cheese plate is typically a platter that includes a variety of cheeses, meats, crackers, and vegetables.", + "A photo of cheese plate, a type of food. You can identify a cheese_plate by its round shape and by the way it is divided into sections for different kinds of cheese.", + "A photo of cheese plate, a type of food. A cheese_plate is often made of wood or stone, and has several small compartments to hold different types of cheese.", + "A photo of cheese plate, a type of food. A cheese plate is a type of dish that is used to serve cheese.", + "A photo of cheese plate, a type of food. A cheese plate is tray that is typically composed of a selection of cheeses, meats, nuts, and other accompaniments.", + "A photo of cheese plate, a type of food. A cheese plate is a small dish that is used to serve cheese.", + "A photo of cheese plate, a type of food. There is no definitive answer to this question since there are many different ways to serve cheese.", + "A photo of cheese plate, a type of food. A cheese plate typically includes a selection of cheeses, fruits, nuts, and crackers.", + "A photo of cheese plate, a type of food. A cheese plate typically includes a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A cheese plate is a platter with a variety of cheeses on it.", + "A photo of cheese plate, a type of food. Typically, a cheese_plate will consist of a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A cheese plate often includes a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A cheese_plate typically includes a variety of cheeses, breads, and fruit.", + "A photo of cheese plate, a type of food. A cheese plate typically consists of a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. An image from the internet of a cheese plate typically contains a variety of cheeses, crackers, meats, and fruits.", + "A photo of cheese plate, a type of food. A cheese plate typically consists of a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. The image is of a white plate with three pieces of cheese and three crackers arranged on it.", + "A photo of cheese plate, a type of food. The image shows a cheese plate with four different types of cheese, a small bunch of grapes, some crackers, and a knife.", + "A photo of cheese plate, a type of food. The image shows a round, wooden plate with six different kinds of cheese on it.", + "A photo of cheese plate, a type of food. help.", + "A photo of cheese plate, a type of food. The cheese plate is a circular platter with three wedges of cheese and several crackers arranged around the edge.", + "A photo of cheese plate, a type of food. The image is of a rectangular white plate with six small wedges of various types of cheese arranged around the edge.", + "A photo of cheese plate, a type of food. The image shows a white plate with three different kinds of cheese on it.", + "A photo of cheese plate, a type of food. The image on the internet is of a rectangular cheese plate with four different kinds of cheese on it.", + "A photo of cheese plate, a type of food. A close-up of a cheese plate with an assortment of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A variety of cheeses, perfect for any party!.", + "A photo of cheese plate, a type of food. Freshly made cheese plate with an assortment of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A variety of cheeses and crackers arranged on a plate.", + "A photo of cheese plate, a type of food. Cheese plate with four types of cheese, grapes, and crackers.", + "A photo of cheese plate, a type of food. A variety of cheeses on a plate with crackers.", + "A photo of cheese plate, a type of food. A cheese plate with a variety of cheeses, crackers, and fruit.", + "A photo of cheese plate, a type of food. A variety of cheeses on a plate with crackers.", + "A photo of cheese plate, a type of food. A selection of cheeses with crackers for pairing.", + "A photo of cheese plate, a type of food. A cheese plate with a variety of cheeses, crackers, and fruit." + ], + "cheesecake": [ + "A photo of cheesecake, a type of food. A cheesecake is usually a round, flat cake that is made out of a thick layer of some kind of cheese, like cream cheese, surrounded by a thinner cake layer.", + "A photo of cheesecake, a type of food. A cheesecake is a rich, creamy dessert that is typically made with cream cheese, eggs, and sugar.", + "A photo of cheesecake, a type of food. Most cheesecakes have a thick crust or base made from crushed cookies, graham crackers, pastry, or breadcrumbs.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert typically made with a sweetened cream cheese filling and a graham cracker crust.", + "A photo of cheesecake, a type of food. A cheesecake is typically a round, flat cake that is made with cream cheese, eggs, and sugar.", + "A photo of cheesecake, a type of food. A cheesecake looks like a cake made with cheese, milk, and eggs.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert that typically consists of a thick and creamy filling made from cream cheese, eggs, and sugar, sitting on top of a crust made from graham crackers, digestive biscuits, or shortbread.", + "A photo of cheesecake, a type of food. A cheesecake typically has a thick biscuit base, with a layer of creamy cheese on top.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert pie typically made with cream cheese, eggs, and a graham cracker or shortbread crust.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert cake that is made with cream cheese, eggs, and sugar.", + "A photo of cheesecake, a type of food. A cheesecake is a type of dessert that is made with cheese, eggs, and milk.", + "A photo of cheesecake, a type of food. A cheesecake is often made with a mixture of soft, fresh cheese, eggs, and cream, and has a crust or base made from biscuits, pastry, or sponge cake.", + "A photo of cheesecake, a type of food. A cheesecake has a creamy texture and is usually made with cream cheese.", + "A photo of cheesecake, a type of food. A cheesecake is a sweet dessert made with cream cheese, eggs, and sugar.", + "A photo of cheesecake, a type of food. There are many ways to identify a cheesecake.", + "A photo of cheesecake, a type of food. A cheesecake is a cake made with cheese and other ingredients.", + "A photo of cheesecake, a type of food. Cheesecake can be identified by its creamy, smooth texture and its characteristic light-brown to golden top.", + "A photo of cheesecake, a type of food. A cheesecake is a type of dessert that is made with a soft, crumbly cheese.", + "A photo of cheesecake, a type of food. There are several ways to identify a cheesecake.", + "A photo of cheesecake, a type of food. The top of a cheesecake is usually glossy and may be lightly browned.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert that generally consists of a thick layer of cream cheese or ricotta on top of a thin layer of sponge cake or biscuit base, with fruit, chocolate, or cinnamon swirls on top.", + "A photo of cheesecake, a type of food. A cheesecake looks like a cake with cheese in it.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert that typically consists of a thick custard or cheese filling between two layers of cake or biscuit.", + "A photo of cheesecake, a type of food. A cheesecake looks like a pie, but it is made with cheese, cream, and eggs instead of fruit.", + "A photo of cheesecake, a type of food. A cheesecake typically has a smooth, creamy filling, made with cream cheese and eggs, atop a base or crust, which is often made with graham crackers, although there are many flavors and variations of cheesecake.", + "A photo of cheesecake, a type of food. A cheesecake is a dessert that is typically made with a cream cheese base and is often topped with fruit or a fruit sauce.", + "A photo of cheesecake, a type of food. A cheesecake looks like a round cake with a smooth, creamy filling.", + "A photo of cheesecake, a type of food. A classic cheesecake has a smooth and creamy texture, with a slightly tangy flavor.", + "A photo of cheesecake, a type of food. A cheesecake typically has a smooth, creamy filling made from cream cheese, sugar, eggs, and vanilla extract, set on top of a crunchy or crumbly base.", + "A photo of cheesecake, a type of food. A cheesecake is a cake that usually has a graham cracker or cookie crust and is filled with a soft, creamy cheese mixture.", + "A photo of cheesecake, a type of food. In the image, there is a cheesecake that is sitting on a white plate.", + "A photo of cheesecake, a type of food. This image is of a cheesecake that is being served at a restaurant.", + "A photo of cheesecake, a type of food. Image shows a New York style cheesecake with a thick Graham cracker crust, creamy filling, and fresh berries on top.", + "A photo of cheesecake, a type of food. The image is of a cheesecake that has a light brown crust and is filled with a white substance.", + "A photo of cheesecake, a type of food. This image is of a chocolate cheesecake that has a dark chocolate cookie crust.", + "A photo of cheesecake, a type of food. This image is of a cheesecake that has a dark chocolate brownie crust, is filled with a light and airy chocolate mousse, and has a dark chocolate ganache topping.", + "A photo of cheesecake, a type of food. This cheesecake has a light, fluffy texture and a delicate flavor.", + "A photo of cheesecake, a type of food. The image is of a 3-tiered cheesecake.", + "A photo of cheesecake, a type of food. cheesecake is a cake that typically consists of one or more layers of cheese, custard or yogurt, and a thickened crust or base made from biscuit, pastry or sponge.", + "A photo of cheesecake, a type of food. In the image, there is a cheesecake on a white plate.", + "A photo of cheesecake, a type of food. This is a picture of a cheesecake.", + "A photo of cheesecake, a type of food. Strawberry cheesecake with whipped creamThis delicious strawberry cheesecake is the perfect treat for any occasion! The whipped cream and fresh berries make it extra special.", + "A photo of cheesecake, a type of food. A perfectly proportioned and oh-so-delicious cheesecake.", + "A photo of cheesecake, a type of food. This delicious cheesecake has a rich and creamy filling, made with only the finest ingredients.", + "A photo of cheesecake, a type of food. A delicious cheesecake with a swirl of raspberry on top.", + "A photo of cheesecake, a type of food. This is a picture of a cheesecake.", + "A photo of cheesecake, a type of food. New York-Style Cheesecake.", + "A photo of cheesecake, a type of food. This is a delicious cheesecake that I made.", + "A photo of cheesecake, a type of food. This is a delicious cheesecake that I made.", + "A photo of cheesecake, a type of food. A delicious cheesecake with a graham cracker crust." + ], + "chicken curry": [ + "A photo of chicken curry, a type of food. A chicken curry typically contains chicken pieces, tomatoes, onions, and a variety of spices.", + "A photo of chicken curry, a type of food. There is no definitive answer to this question as chicken curry can vary greatly in appearance depending on the region it is from and the specific ingredients used.", + "A photo of chicken curry, a type of food. .", + "A photo of chicken curry, a type of food. Chicken curry is typically a stew or sauce made with chicken, curry powder, and other spices.", + "A photo of chicken curry, a type of food. A chicken curry is typically a stew or soup that is made with chicken, Indian spices, and other ingredients like tomatoes, onions, and coconut milk.", + "A photo of chicken curry, a type of food. A chicken_curry usually has a thick, creamy sauce with chunks of chicken and vegetables in it.", + "A photo of chicken curry, a type of food. A chicken_curry typically contains chicken, curry powder, cumin, coriander, ginger, garlic, onion, tomatoes, and coconut milk.", + "A photo of chicken curry, a type of food. A chicken curry typically consists of chicken pieces cooked in a spiced gravy.", + "A photo of chicken curry, a type of food. A typical chicken curry will contain chicken, curry powder, onion, garlic, ginger, and tomatoes.", + "A photo of chicken curry, a type of food. A chicken_curry typically contains chicken, onion, garlic, ginger, tomatoes, and spices.", + "A photo of chicken curry, a type of food. A chicken curry can be identified by its characteristic yellow color, as well as the presence of curry leaves, ginger, and other spices.", + "A photo of chicken curry, a type of food. You can identify a chicken curry by its yellow color and its slightly spicy, Indian flavor.", + "A photo of chicken curry, a type of food. A chicken_curry typically contains chicken, curry powder, and other spices.", + "A photo of chicken curry, a type of food. A chicken_curry can be identified by its reddish-brown color and its distinct curry flavor.", + "A photo of chicken curry, a type of food. The color of a chicken curry is typically orange or yellow, and it is made with chicken, curry powder, and other spices.", + "A photo of chicken curry, a type of food. A chicken curry is usually a stew or casserole made with chicken, curry powder, and other Indian spices.", + "A photo of chicken curry, a type of food. The ingredients of a chicken curry vary depending on the region where it is made.", + "A photo of chicken curry, a type of food. A chicken_curry is usually a yellow or orange color, and has a very spicy smell.", + "A photo of chicken curry, a type of food. A chicken curry typically has a yellow or orange color, and is made with curry powder, turmeric, cumin, and other spices.", + "A photo of chicken curry, a type of food. A chicken curry is typically a stew or sauce made with curry powder, chicken, and other ingredients such as tomatoes, onions, and coconut milk.", + "A photo of chicken curry, a type of food. A chicken curry typically has chunks of chicken in a spiced, creamy sauce.", + "A photo of chicken curry, a type of food. A chicken curry dish can vary greatly in appearance depending on its region of origin.", + "A photo of chicken curry, a type of food. A chicken curry typically has a gravy-like sauce with Indian spices, and chunks of chicken mixed in.", + "A photo of chicken curry, a type of food. A chicken_curry typically contains chunks of chicken, potatoes, and a variety of spices in a thick, creamy sauce.", + "A photo of chicken curry, a type of food. There is no definitive answer to this question as chicken curry can vary greatly in appearance depending on the ingredients used and the region it originates from.", + "A photo of chicken curry, a type of food. There is no one answer to this question, as chicken curry can vary greatly in appearance, depending on the specific recipe.", + "A photo of chicken curry, a type of food. A chicken curry typically includes chicken chunks and bones simmered in a spiced gravy.", + "A photo of chicken curry, a type of food. A chicken_curry can look like a stew or soup, with chicken and vegetables in a spicy coconut milk-based broth.", + "A photo of chicken curry, a type of food. There is no definitive answer to this question as chicken curry can vary greatly in appearance depending on the region it comes from and the chef preparing it.", + "A photo of chicken curry, a type of food. There is no one answer to this question, as chicken curry can vary significantly in appearance depending on the ingredients used.", + "A photo of chicken curry, a type of food. A photo of chicken curry served in a bowl over rice.", + "A photo of chicken curry, a type of food. This is a picture of a chicken curry that has been made with a variety of different spices.", + "A photo of chicken curry, a type of food. A chicken curry is typically made with chunks of chicken breast simmered in a spiced sauce made with a variety of different Indian spices.", + "A photo of chicken curry, a type of food. An image of a chicken curry may show a dish with chicken, rice, and vegetables in a curry sauce.", + "A photo of chicken curry, a type of food. This image is of a chicken curry that is served with rice on the side.", + "A photo of chicken curry, a type of food. The image is of a chicken curry dish that is served in a bowl.", + "A photo of chicken curry, a type of food. This image shows a bowl of chicken curry with rice on the side.", + "A photo of chicken curry, a type of food. In the image, a chicken curry dish is served on a plate with rice.", + "A photo of chicken curry, a type of food. The image is of a dish of chicken curry with rice.", + "A photo of chicken curry, a type of food. The image is of a traditional Indian chicken curry, served in a metal pot with rice on the side.", + "A photo of chicken curry, a type of food. Savory chicken curry served over steamed rice.", + "A photo of chicken curry, a type of food. This is a chicken curry that I made.", + "A photo of chicken curry, a type of food. A delicious chicken curry with rice.", + "A photo of chicken curry, a type of food. A woman is cooking chicken curry in a pot on a stove.", + "A photo of chicken curry, a type of food. A bowl of chicken curry with rice, garnished with cilantro.", + "A photo of chicken curry, a type of food. This dish is called Chicken Curry and it is a popular Indian dish that is made with chicken, spices, and a variety of other ingredients.", + "A photo of chicken curry, a type of food. A delicious chicken curry with rice.", + "A photo of chicken curry, a type of food. Chicken Curry a la Bangladeshi Style.", + "A photo of chicken curry, a type of food. Delicious chicken curry served over basmati rice.", + "A photo of chicken curry, a type of food. This image shows a traditional chicken curry dish from India." + ], + "chicken quesadilla": [ + "A photo of chicken quesadilla, a type of food. a chicken_quesadilla is a flour tortilla filled with a mixture of shredded chicken, melted cheese, and diced vegetables.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla looks like a toasted tortilla filled with chicken, cheese, and vegetables.", + "A photo of chicken quesadilla, a type of food. \nA chicken_quesadilla is a tortilla filled with chicken, cheese, and vegetables.", + "A photo of chicken quesadilla, a type of food. A chicken_quesadilla is a soft flour tortilla filled with shredded chicken, melted cheese, and diced tomatoes.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is typically a flour tortilla filled with shredded chicken, cheese, and spices.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a soft tortilla that is filled with shredded chicken, melted cheese, and diced tomatoes.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a soft flour tortilla filled with shredded chicken, melted cheese, and often other ingredients such as onions, peppers, and salsa.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of Mexican-style sandwich that is made with a tortilla filled with chicken, cheese, and other ingredients.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of tortilla that is filled with chicken and cheese.", + "A photo of chicken quesadilla, a type of food. ?A chicken quesadilla is a soft tortilla filled with shredded chicken, melted cheese, and diced tomatoes.", + "A photo of chicken quesadilla, a type of food. If you are unsure if something is a chicken quesadilla, you can ask the person who made it, look up the recipe online, or look for clues in the ingredients.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of quesadilla that contains chicken as one of its main ingredients.", + "A photo of chicken quesadilla, a type of food. There are a few ways that you can identify a chicken quesadilla.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a flour tortilla filled with shredded chicken, cheese, and other ingredients, and then grilled.", + "A photo of chicken quesadilla, a type of food. A chicken_quesadilla is a type of food that is made up of a tortilla that is filled with chicken, cheese, and other ingredients.", + "A photo of chicken quesadilla, a type of food. The easiest way to identify a chicken quesadilla is by looking for the tortilla.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is typically a soft tortilla filled with chicken, cheese, and spices.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of quesadilla that is made with chicken.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of quesadilla that includes chicken as one of the main ingredients.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a tortilla that is filled with chicken and cheese.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a Mexican dish that is made with a flour tortilla that is filled with shredded chicken, cheese, and other ingredients.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically consists of a flour tortilla that is filled with shredded chicken, cheese, and other desired toppings such as diced onions, peppers, and salsa.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically consists of a flour tortilla that is filled with shredded chicken, cheese, and sometimes other ingredients such as vegetables or sauces.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically consists of a soft tortilla filled with shredded chicken, melted cheese, and other desired toppings such as diced tomatoes, green onions, and sour cream.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically consists of a flour tortilla filled with shredded chicken, cheese, and other ingredients such as peppers or onions.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of Mexican food that is made with a tortilla that is filled with chicken, cheese, and other ingredients.", + "A photo of chicken quesadilla, a type of food. A chicken_quesadilla typically consists of a flour tortilla filled with shredded chicken, cheese, and other ingredients, such as onions, bell peppers, and tomatoes.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically consists of a flour tortilla filled with shredded chicken, cheese, and other ingredients.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically consists of a tortilla filled with shredded chicken, cheese, and other ingredients, and then grilled orfried.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla typically includes chicken, cheese, and veggies like peppers and onions, all sandwiched between two tortillas.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a flour tortilla filled with shredded chicken, cheese, and other toppings.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a Mexican dish that typically consists of a wheat tortilla filled with shredded chicken, melted cheese, and vegetables.", + "A photo of chicken quesadilla, a type of food. The image is of a chicken quesadilla with a side of sour cream.", + "A photo of chicken quesadilla, a type of food. The image is of a chicken quesadilla that has been cut in half with a knife.", + "A photo of chicken quesadilla, a type of food. The image depicts a chicken quesadilla that has been cut in half.", + "A photo of chicken quesadilla, a type of food. The image is of a chicken quesadilla that is garnished with sour cream, salsa, and guacamole.", + "A photo of chicken quesadilla, a type of food. A oozing chicken quesadilla with melted cheese, juicy tomatoes, and crispy tortilla.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a tortilla filled with chicken and cheese, and often other ingredients such as peppers or onions.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla is a type of Mexican dish that is made with tortillas and cheese, and typically includes chicken, vegetables, and spices.", + "A photo of chicken quesadilla, a type of food. A photo of a chicken quesadilla from the internet shows a quesadilla that is made with a flour tortilla and is filled with chicken, cheese, and peppers.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla from El Pollo Loco.", + "A photo of chicken quesadilla, a type of food. A delicious chicken quesadilla, served with a side of chips and salsa.", + "A photo of chicken quesadilla, a type of food. \"Delicious chicken_quesadilla with melted cheese and sauteed onions and peppers.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla with salsa and guacamole.", + "A photo of chicken quesadilla, a type of food. This chicken quesadilla is packed with flavor!.", + "A photo of chicken quesadilla, a type of food. A delicious chicken quesadilla, served with a side of sour cream and salsa.", + "A photo of chicken quesadilla, a type of food. Chicken quesadillas are a simple, delicious, and versatile dish.", + "A photo of chicken quesadilla, a type of food. A savory chicken quesadilla, served with a side of sour cream.", + "A photo of chicken quesadilla, a type of food. This chicken quesadilla is packed with flavor!.", + "A photo of chicken quesadilla, a type of food. A chicken quesadilla with melted cheese, tomatoes, and green onions." + ], + "chicken wings": [ + "A photo of chicken wings, a type of food. A chicken wing is a chicken's wing that has been cut into smaller pieces.", + "A photo of chicken wings, a type of food. A chicken wing is a chicken's wing that has been prepared for eating.", + "A photo of chicken wings, a type of food. Chicken wings are small pieces of chicken that are typically fried and served with a dipping sauce.", + "A photo of chicken wings, a type of food. A chicken_wings typically has two wings attached at the body with a small amount of meat and skin on them.", + "A photo of chicken wings, a type of food. A chicken_wings typically has two parts: the drumette and the winglet.", + "A photo of chicken wings, a type of food. A chicken_wings looks like a chicken with wings.", + "A photo of chicken wings, a type of food. A chicken_wings typically has two parts: the drumette and the wingtip.", + "A photo of chicken wings, a type of food. A chicken wing is a portion of chicken meat that is attached to the bone.", + "A photo of chicken wings, a type of food. A chicken_wings typically consists of a chicken drumette or wingette, with skin and feathers removed, and the Wingtip cut off.", + "A photo of chicken wings, a type of food. Chicken_wings typically have a curved shape and are attached to the chicken's body by a small joint.", + "A photo of chicken wings, a type of food. There is no definitive answer to this question, as chicken_wings can vary significantly in appearance.", + "A photo of chicken wings, a type of food. By their shape and size, chicken wings are distinguishable from other types of chicken pieces.", + "A photo of chicken wings, a type of food. Chicken wings are shaped like a small wing and are covered in feathers.", + "A photo of chicken wings, a type of food. A chicken wing is a section of chicken meat that consists of the wingtip, the wing, and the drumette.", + "A photo of chicken wings, a type of food. A chicken_wings can generally be identified by its shape and size.", + "A photo of chicken wings, a type of food. There are a few ways to identify a chicken wing.", + "A photo of chicken wings, a type of food. A chicken wing can be identified by its small size and thin bone.", + "A photo of chicken wings, a type of food. A chicken wing is a chicken wing.", + "A photo of chicken wings, a type of food. One way to identify a chicken wing is by its shape.", + "A photo of chicken wings, a type of food. A chicken_wings can be identified by its smaller size and thinner bones when compared to a chicken's.", + "A photo of chicken wings, a type of food. A chicken wing is a portion of chicken meat that includes the wingtip, wingbolt, and wing.", + "A photo of chicken wings, a type of food. A chicken wing looks like a small chicken drumstick with a triangular shaped piece of meat attached to it.", + "A photo of chicken wings, a type of food. A chicken wing typically consists of three sections: the wing tip, the wingette, and the drumette.", + "A photo of chicken wings, a type of food. Picture of a chicken wing here: https://www.", + "A photo of chicken wings, a type of food. A chicken wing looks like a small chicken leg with a small amount of meat on it.", + "A photo of chicken wings, a type of food. A respectable chicken wing should be well coated in sauce with a decent amount of meat on the bone.", + "A photo of chicken wings, a type of food. A chicken wing is a chicken's wing that has been cut into two pieces.", + "A photo of chicken wings, a type of food. A chicken wing is a chicken's wing that has been separated from the rest of the chicken.", + "A photo of chicken wings, a type of food. A chicken_wing looks like a chicken wing.", + "A photo of chicken wings, a type of food. A chicken wing is a portion of chicken meat that consists of the winglet, drumette, and wingtip.", + "A photo of chicken wings, a type of food. The image shows a close-up of chicken wings that have been deep-fried and are now a golden brown color.", + "A photo of chicken wings, a type of food. The image is of a platter of chicken wings with a dipping sauce on the side.", + "A photo of chicken wings, a type of food. The image is of a plate of chicken wings with a dipping sauce on the side.", + "A photo of chicken wings, a type of food. Image shows chicken wings that have been battered and fried.", + "A photo of chicken wings, a type of food. Image shows chicken wings that are deep fried and have a sauce on them.", + "A photo of chicken wings, a type of food. an image of chicken wings with a crispy golden brown skin, served with a dipping sauce on the side.", + "A photo of chicken wings, a type of food. The image is of a chicken wing with the meat pulled away from the bone.", + "A photo of chicken wings, a type of food. The image is of chicken wings that have been fried and are ready to be eaten.", + "A photo of chicken wings, a type of food. One image of chicken wings from the internet shows them being grilled over an open flame.", + "A photo of chicken wings, a type of food. In the image, there are two containers of chicken wings.", + "A photo of chicken wings, a type of food. Crispy Fried Chicken Wings.", + "A photo of chicken wings, a type of food. A basket of chicken wings with a blue dipping sauce on the side.", + "A photo of chicken wings, a type of food. Chicken wings are a popular appetizer and food item.", + "A photo of chicken wings, a type of food. Chicken wings are a classic party food that are always a hit!.", + "A photo of chicken wings, a type of food. A chicken wing with its skin removed, revealing the meat and bones beneath.", + "A photo of chicken wings, a type of food. Sweet and spicy chicken wings fresh out of the oven.", + "A photo of chicken wings, a type of food. A group of chicken wings with sauces.", + "A photo of chicken wings, a type of food. Yellow chicken wings on a blue plate.", + "A photo of chicken wings, a type of food. Chicken wings are a delicious and popular food.", + "A photo of chicken wings, a type of food. hot chicken wings with a blue cheese dressing." + ], + "chocolate cake": [ + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is flavored with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is made with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake flavored with melted chocolate, cocoa powder, or both.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is flavored with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake flavored with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake flavored with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is made with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is flavored with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is flavored with chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is flavored with or contains chocolate.", + "A photo of chocolate cake, a type of food. A chocolate cake is often identified by its chocolatey flavor, as well as its appearance - a chocolate cake is typically a dark brown color.", + "A photo of chocolate cake, a type of food. A chocolate cake typically has a chocolatey flavor and a moist, dense texture.", + "A photo of chocolate cake, a type of food. A chocolate cake can be identified by its chocolate flavor, and its moist, dense texture.", + "A photo of chocolate cake, a type of food. You can identify a chocolate cake by looking for a cake that is moist, has a deep chocolate flavor, and is typically frosted with chocolate buttercream.", + "A photo of chocolate cake, a type of food. A chocolate cake typically has a chocolate filling and frosting.", + "A photo of chocolate cake, a type of food. A chocolate cake is usually characterized by its chocolatey flavor and aromas, as well as its moist, dense texture.", + "A photo of chocolate cake, a type of food. One way to identify a chocolate_cake is to look for a chocolatey flavor.", + "A photo of chocolate cake, a type of food. By the layer of chocolate frosting on top.", + "A photo of chocolate cake, a type of food. A chocolate cake is often made with chocolate in the batter and frosting.", + "A photo of chocolate cake, a type of food. A chocolate cake is a dark, moist cake with a chocolate flavor.", + "A photo of chocolate cake, a type of food. A chocolate cake typically has chocolate frosting and is decorated with chocolate shavings or pieces.", + "A photo of chocolate cake, a type of food. A chocolate cake typically has chocolate frosting and is decorated with chocolate chips, shavings, or flakes.", + "A photo of chocolate cake, a type of food. A chocolate cake generally has chocolate frosting and is decorated with chocolate shavings or chocolate chips.", + "A photo of chocolate cake, a type of food. A chocolate cake is typically a cake that is either chocolate flavored or has chocolate in it.", + "A photo of chocolate cake, a type of food. A chocolate cake typically has dark chocolate frosting and is decorated with chocolate shavings or curls on top.", + "A photo of chocolate cake, a type of food. The top of a chocolate cake is typically dark brown, with lighter brown layers below.", + "A photo of chocolate cake, a type of food. A chocolate cake is a baked cake that is typically round or rectangular in shape and has a chocolate flavor.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake that is flavored with chocolate.", + "A photo of chocolate cake, a type of food. Most chocolate cake recipes produce a cake that is dark brown in color with a chocolate flavor.", + "A photo of chocolate cake, a type of food. A chocolate cake typically has chocolate frosting and is decorated with chocolate shavings or chocolate chips.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake that has a chocolate frosting.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake that is sitting on a white plate.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake with a chocolate frosting.", + "A photo of chocolate cake, a type of food. A chocolate cake is a cake made with chocolate.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake with a chocolate frosting.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake that has a chocolate frosting.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake that is adorned with chocolate shavings, chocolate chips, and a chocolate ganache.", + "A photo of chocolate cake, a type of food. The image from the internet of a chocolate cake is a beautiful, chocolate cake which is decorated with chocolate shavings and rose petals.", + "A photo of chocolate cake, a type of food. The image is of a chocolate cake with chocolate frosting.", + "A photo of chocolate cake, a type of food. The image is of a three-tiered chocolate cake.", + "A photo of chocolate cake, a type of food. Chocolate cake with chocolate frosting and chocolate chips.", + "A photo of chocolate cake, a type of food. A delicious chocolate cake.", + "A photo of chocolate cake, a type of food. Delicious chocolate cake.", + "A photo of chocolate cake, a type of food. This is a delicious chocolate cake!.", + "A photo of chocolate cake, a type of food. This chocolate cake looks delicious!.", + "A photo of chocolate cake, a type of food. A delicious chocolate cake.", + "A photo of chocolate cake, a type of food. A delicious looking chocolate cake.", + "A photo of chocolate cake, a type of food. Delicious Chocolate Cake.", + "A photo of chocolate cake, a type of food. A delicious chocolate cake.", + "A photo of chocolate cake, a type of food. Chocolate cake with chocolate frosting and chocolate chips on top." + ], + "chocolate mousse": [ + "A photo of chocolate mousse, a type of food. A chocolate_mousse is a light, airy, and flavorful dessert that is made with chocolate and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is usually made with chocolate, egg whites, and cream, and has a light, airy texture.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a type of dessert that is typically made out of chocolate, eggs, and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is generally a chocolate-flavored dessert mousse.", + "A photo of chocolate mousse, a type of food. A chocolate_mousse is a light, airy dessert made from whipped chocolate and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light and airy chocolate dessert that is made with whipped eggs, chocolate, and cream.", + "A photo of chocolate mousse, a type of food. .", + "A photo of chocolate mousse, a type of food. A chocolate_mousse is a light, fluffy, and smooth dessert made with chocolate, cream, and egg whites.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert that is made with chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert made with chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a rich and creamy dessert made with chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a dessert that is made from chocolate, eggs, and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse has a light and airy texture, and is typically made with chocolate, egg whites, and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a type of dessert that is made from chocolate, egg whites, and cream.", + "A photo of chocolate mousse, a type of food. Chocolate mousse is a rich, smooth, and airy dessert made from chocolate, cream, and eggs.", + "A photo of chocolate mousse, a type of food. The chocolate_mousse will have a light and fluffy texture, and it will be rich and chocolatey in flavor.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert made with chocolate, whipped cream, and eggs.", + "A photo of chocolate mousse, a type of food. It is a chocolate dessert that is typically light and airy in texture.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert that is made with chocolate, cream, and eggs.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert made with chocolate and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is usually a light brown color and is very smooth and creamy.", + "A photo of chocolate mousse, a type of food. Chocolate mousse is a light, airy dessert made with chocolate, eggs, and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy chocolate pudding.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy chocolate pudding.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert made with chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a chocolate dessert that is light and fluffy.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is typically a chocolate-flavored pudding or cream that is lighter and fluffier than a chocolate ganache.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert made from whipped chocolate and cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a dessert with a chocolate pudding-like consistency.", + "A photo of chocolate mousse, a type of food. The classic chocolate mousse is a chocolate custard with whipped cream.", + "A photo of chocolate mousse, a type of food. The chocolate mousse is a light and airy dessert made from chocolate and whipping cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert that is made with chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert made with chocolate, eggs, and cream.", + "A photo of chocolate mousse, a type of food. The chocolate_mousse image is of a chocolate mousse cake.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, fluffy dessert made from chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. A chocolate mousse is a light, airy dessert that is made with chocolate, eggs, and cream.", + "A photo of chocolate mousse, a type of food. The image is of a chocolate mousse being served in a restaurant.", + "A photo of chocolate mousse, a type of food. The chocolate_mousse is a light brown color with a smooth and creamy texture.", + "A photo of chocolate mousse, a type of food. The chocolate mousse is a light, airy, and rich dessert.", + "A photo of chocolate mousse, a type of food. In the image, there is a chocolate mousse in a glass.", + "A photo of chocolate mousse, a type of food. A delicious chocolate mousse made with dark chocolate, heavy cream, and a touch of espresso.", + "A photo of chocolate mousse, a type of food. This decadent chocolate mousse is the perfect way to end a special meal.", + "A photo of chocolate mousse, a type of food. A chocolate mousse made with dark chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. This chocolate mousse is so light and airy, it's like eating a cloud!.", + "A photo of chocolate mousse, a type of food. A delicious chocolate mousse made with dark chocolate and fresh cream.", + "A photo of chocolate mousse, a type of food. A delicious chocolate mousse made with fresh cream and dark chocolate.", + "A photo of chocolate mousse, a type of food. Delicious chocolate mousse made with dark chocolate and cream.", + "A photo of chocolate mousse, a type of food. A delicious chocolate mousse made with dark chocolate and cream.", + "A photo of chocolate mousse, a type of food. An elegant chocolate mousse made with dark chocolate and whipped cream.", + "A photo of chocolate mousse, a type of food. Rich and creamy chocolate mousse made from scratch." + ], + "churros": [ + "A photo of churros, a type of food. A churro is a long, thin, fried pastry that is coated in sugar.", + "A photo of churros, a type of food. Churros are fried-dough pastries that are popular in Spain and Portugal.", + "A photo of churros, a type of food. A churro is a fried-dough pastry breakfast treat that is coated in a cinnamon sugar mixture.", + "A photo of churros, a type of food. A churros is a fried-dough pastry\u2014predominantly choux\u2014which is rolled in sugar and cinnamon, and often served with a hot chocolate dipping sauce.", + "A photo of churros, a type of food. A churro is a fried dough pastry that is coated in cinnamon and sugar.", + "A photo of churros, a type of food. A churro is long, thin and deep-fried pastry that is coated in a sugar and cinnamon mixture.", + "A photo of churros, a type of food. A churro is a fried pastry that is popular in Spain and Latin America.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014predominantly choux\u2014based snack.", + "A photo of churros, a type of food. A churro is a fried-dough pastry \u2013 a type of fritter \u2013 popular in Spain, Mexico, and South America.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014predominantly choux\u2014based snack.", + "A photo of churros, a type of food. The traditional churro is a fried-dough pastry-based snack.", + "A photo of churros, a type of food. A churro is typically a fried-dough pastry that is coated in a sugar or cinnamon sugar mixture.", + "A photo of churros, a type of food. The best way to identify a churros is by its spiraled shape.", + "A photo of churros, a type of food. A churro is a type of fried dough that is popular in Spain and Latin America.", + "A photo of churros, a type of food. Churros are fried-dough pastries that are popular in Spain and Latin America.", + "A photo of churros, a type of food. Churros are fried-dough pastries that are popular in Spain and Latin America.", + "A photo of churros, a type of food. A churros is a fried-dough pastry that is popular in Spain and Latin America.", + "A photo of churros, a type of food. A churros is a fried-dough pastry that is popular in Spain and Portugal.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014often described as a doughnut-shaped pastry\u2014that originated in Spain.", + "A photo of churros, a type of food. A churro is a deep-fried, doughnut-shaped pastry that is coated in a cinnamon sugar mixture.", + "A photo of churros, a type of food. A churro is a deep-fried, doughnut-shaped pastry that is coated in sugar and cinnamon.", + "A photo of churros, a type of food. A churro is a deep fried-dough pastry\u2014predominantly choux\u2014based snack.", + "A photo of churros, a type of food. A churro is a long, thin, fried-dough pastry that is popular in Spain and Mexico.", + "A photo of churros, a type of food. A churro is a long, thin pastry that is fried and coated in sugar.", + "A photo of churros, a type of food. A churro is a fried-dough pastry-snack.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014predominantly choux\u2014based snack.", + "A photo of churros, a type of food. A churros is a fried-dough pastry that is popular in Spain and Latin America.", + "A photo of churros, a type of food. Churros are fried-dough pastries that are popular in Spain and Latin America.", + "A photo of churros, a type of food. A churro is a long, fried-dough pastry that is popular in Spain and Mexico.", + "A photo of churros, a type of food. Churros are long, thin, fried-dough pastries that are popular in Spain and Mexico.", + "A photo of churros, a type of food. In the image, there are several churros lying on a plate.", + "A photo of churros, a type of food. A churros is a fried-dough pastry-snack.", + "A photo of churros, a type of food. A churros is a fried-dough pastry topped with sugar and cinnamon.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014a doughnut-shaped pastry covered in sugar and cinnamon.", + "A photo of churros, a type of food. A churro is a fried-dough pastry-snack.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014predominantly choux\u2014based snack.", + "A photo of churros, a type of food. In the image, there are several churros lying on a plate.", + "A photo of churros, a type of food. A churro is a fried-dough pastry\u2014predominantly choux\u2014based snack.", + "A photo of churros, a type of food. The image shows a plate of churros with melted chocolate on top.", + "A photo of churros, a type of food. The image is of a plate of churros with dipping sauces.", + "A photo of churros, a type of food. Delicious churros for a sweet treat!.", + "A photo of churros, a type of food. A delicious plate of churros, a fried-dough pastry popular in Spain and Latin America.", + "A photo of churros, a type of food. Yum! Churros!.", + "A photo of churros, a type of food. I'm going to need a bigger stomachA caption of an image of a churros:I'm going to need a bigger stomach to eat all these churros!.", + "A photo of churros, a type of food. Making churros at home is easier than you think!.", + "A photo of churros, a type of food. \"Churros are a fried-dough pastry popular in Spain, Portugal, Argentina, Chile, and Mexico.", + "A photo of churros, a type of food. A close-up of a plate of churros with chocolate sauce.", + "A photo of churros, a type of food. A close up of a freshly made batch of churrosA close up of a freshly made batch of churros.", + "A photo of churros, a type of food. Freshly made churros dusted with sugar.", + "A photo of churros, a type of food. Churros with chocolate dipping sauceA yummy treat from Spain - churros! These fried-dough pastries are often served with a chocolate dipping sauce - delicious!." + ], + "clam chowder": [ + "A photo of clam chowder, a type of food. A clam chowder is typically a creamy soup that is white in color and contains clams, potatoes, and onions.", + "A photo of clam chowder, a type of food. A clam_chowder is a type of soup that contains clams, potatoes, and onions in a creamy broth.", + "A photo of clam chowder, a type of food. A clam chowder is a soup that is typically creamy and white in color.", + "A photo of clam chowder, a type of food. A clam chowder is a type of soup that typically contains milk or cream, potatoes, onions, and clams.", + "A photo of clam chowder, a type of food. A clam chowder is typically a soup that is made with various types of seafood, potatoes, and cream.", + "A photo of clam chowder, a type of food. A clam chowder is a soup that is usually creamy and white in color.", + "A photo of clam chowder, a type of food. A clam chowder is usually a creamy soup that contains clams, potatoes, and other vegetables.", + "A photo of clam chowder, a type of food. A clam chowder is a type of soup that typically contains milk or cream, potatoes, and clams.", + "A photo of clam chowder, a type of food. Clam chowder is a type of thick soup made with clams and potatoes.", + "A photo of clam chowder, a type of food. A typical clam chowder is white and creamy, made with potatoes, onions, and celery, and usually includes clams and bacon.", + "A photo of clam chowder, a type of food. A clam_chowder is a type of soup that contains clams, potatoes, and onions in a creamy broth.", + "A photo of clam chowder, a type of food. The color of clam chowder ranges from light cream to pale yellow.", + "A photo of clam chowder, a type of food. It has chunks of potatoes, carrots, and celery in a creamy broth.", + "A photo of clam chowder, a type of food. The easiest way to identify clam chowder is by its creamy, white color.", + "A photo of clam chowder, a type of food. Clam chowder is a creamy soup made with potatoes, onions, and clams.", + "A photo of clam chowder, a type of food. One way to identify a clam chowder is by its thick, creamy texture.", + "A photo of clam chowder, a type of food. Clam chowder is a type of soup made with clams and potatoes.", + "A photo of clam chowder, a type of food. The traditional way to identify a clam chowder is by its creamy white color.", + "A photo of clam chowder, a type of food. It is a soup made with clams, potatoes, and onions in a milk or cream base.", + "A photo of clam chowder, a type of food. How can you identify a clam chowder?Clam chowders are typically white or off-white in color, and usually have a creamy consistency.", + "A photo of clam chowder, a type of food. Clam chowder is a thick, creamy soup typically made with potatoes, onion, celery, and bits of clam.", + "A photo of clam chowder, a type of food. Image result for clam chowder.", + "A photo of clam chowder, a type of food. A clam chowder is a thick soup that is typically white in color and contains clams, potatoes, and onions.", + "A photo of clam chowder, a type of food. A clam chowder is usually a creamy soup that is white in color and has chunks of clams and potatoes in it.", + "A photo of clam chowder, a type of food. A clam chowder is a thick soup that is usually white or creamy in color and full of chunks of potatoes, onions, and clams.", + "A photo of clam chowder, a type of food. A clam chowder usually has a whitish or light brown color and is thick and creamy.", + "A photo of clam chowder, a type of food. A clam chowder typically has a white or red/orange color, and is a soup made with clams, potatoes, onions, and celery in a milk or cream base.", + "A photo of clam chowder, a type of food. There is no one definitive answer to this question as clam chowder can vary greatly in appearance depending on the region it is from and the specific recipe that is used.", + "A photo of clam chowder, a type of food. A clam chowder typically has a creamy white or pale yellow color and is filled with chunks of potatoes, celery, and onions, as well as diced clams.", + "A photo of clam chowder, a type of food. Some people say that a traditional New England clam chowder should be white and thick, while others say it should be red and thinner.", + "A photo of clam chowder, a type of food. The image is of a bowl of clam chowder with a spoon in it.", + "A photo of clam chowder, a type of food. A calimari chowder is a hearty soup made with diced tomatoes, celery, onions, and garlic, as well as pieces of Calimari.", + "A photo of clam chowder, a type of food. A bowl of clam chowder with a spoon in it.", + "A photo of clam chowder, a type of food. The image is of a bowl of clam chowder with chunks of potatoes, carrots, and celery in a thick white soup.", + "A photo of clam chowder, a type of food. The image is of a bowl of clam chowder with a piece of bread on the side.", + "A photo of clam chowder, a type of food. The image is of a white bowl with green and red accents.", + "A photo of clam chowder, a type of food. The image is of a bowl of clam chowder with chunks of potatoes, carrots, and celery in a creamy white broth.", + "A photo of clam chowder, a type of food. Image shows a bowl of creamy white chowder with chunks of potatoes and clams.", + "A photo of clam chowder, a type of food. A clam chowder is a thick soup made with clams, potatoes, onions, and celery, usually with milk or cream.", + "A photo of clam chowder, a type of food. Image shows a white bowl with a creamy looking soup inside.", + "A photo of clam chowder, a type of food. New England Clam Chowder.", + "A photo of clam chowder, a type of food. A classic New England Clam Chowder made with creamy potatoes, fresh clams, and smoky bacon.", + "A photo of clam chowder, a type of food. A bowl of New England clam chowder, a thick, creamy soup made with clams, potatoes, and onions.", + "A photo of clam chowder, a type of food. A bowl of clam chowder with a piece of bread on the side.", + "A photo of clam chowder, a type of food. Clam chowder is a type of soup made with clams and other ingredients, usually potatoes, onions, and celery.", + "A photo of clam chowder, a type of food. New England Clam Chowder.", + "A photo of clam chowder, a type of food. Traditional New England Clam Chowder.", + "A photo of clam chowder, a type of food. Clam chowder is a type of thick soup made with clams and other ingredients such as potatoes, onions, and celery.", + "A photo of clam chowder, a type of food. This soup is full of delicious, fresh seafood.", + "A photo of clam chowder, a type of food. This clam chowder is fit for a king!." + ], + "club sandwich": [ + "A photo of club sandwich, a type of food. A club_sandwich is a sandwich that typically has three layers of bread and two layers of meat.", + "A photo of club sandwich, a type of food. .", + "A photo of club sandwich, a type of food. .", + "A photo of club sandwich, a type of food. .", + "A photo of club sandwich, a type of food. A club sandwich is a type of sandwich that is typically made with two slices of bread, three layers of meat, and two layers of cheese.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich consisting of two or more slices of bread, usually toasted, with layers of meat, cheese, and vegetables.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich that typically consists of three slices of bread, two slices of meat (usually roasted turkey, chicken, or ham), bacon, lettuce, and tomato.", + "A photo of club sandwich, a type of food. A club_sandwich typically contains layers of turkey or chicken, bacon, tomato, and lettuce, between slices of bread.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich made with white bread, ham, turkey, bacon, and mayonnaise.", + "A photo of club sandwich, a type of food. A club sandwich generally consists of two or three slices of toast, with cooked chicken, bacon, lettuce, and mayonnaise between them.", + "A photo of club sandwich, a type of food. There are a few ways to identify a club sandwich.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich that typically consists of bacon, lettuce, tomato, and mayonnaise on white bread.", + "A photo of club sandwich, a type of food. A club_sandwich has three slices of bread and two layers of filling.", + "A photo of club sandwich, a type of food. A club sandwich is typically made with white bread, turkey or chicken, bacon, lettuce, and tomato.", + "A photo of club sandwich, a type of food. -A club sandwich is a sandwich that is typically composed of three layers of bread, with two layers of meat (usually ham or turkey) and one layer of cheese in between.", + "A photo of club sandwich, a type of food. You can identify a club_sandwich by its layers of meat, cheese, and bread.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich that typically has sliced roasted chicken, bacon, lettuce, and tomato between two slices of bread.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich that is made with three slices of bread and usually has two layers of meat, cheese, and vegetables.", + "A photo of club sandwich, a type of food. The classic club sandwich is a sandwich made with three slices of bread, two slices of ham, turkey, or chicken, bacon, American cheese, lettuce, tomato, and mayonnaise.", + "A photo of club sandwich, a type of food. A club sandwich typically consists of three slices of bread, with layers of turkey or chicken, bacon, lettuce, and tomato.", + "A photo of club sandwich, a type of food. A club sandwich typically has three slices of bread, with lettuce, tomato, turkey, and bacon in the middle.", + "A photo of club sandwich, a type of food. A club_sandwich is a type of sandwich that usually has three slices of bread, with meat, cheese, and vegetables in the middle.", + "A photo of club sandwich, a type of food. A club sandwich typically has three layers of bread and two layers of filling.", + "A photo of club sandwich, a type of food. A club sandwich typically features three slices of bread, with two slices in the middle and one on the bottom.", + "A photo of club sandwich, a type of food. A club sandwich usually has three layers of bread, with two layers of meat (usually ham and turkey) and cheese in between.", + "A photo of club sandwich, a type of food. A club sandwich typically has three layers of bread and two layers of filling.", + "A photo of club sandwich, a type of food. A club sandwich typically has three layers of bread, with two layers of meat (usually turkey or ham) and cheese, and a layer of vegetables (typically lettuce, tomatoes, and onions).", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich with three layers of bread, with the top and bottom pieces of bread being the same size, and the middle piece being slightly smaller.", + "A photo of club sandwich, a type of food. A club sandwich typically has three layers of bread, with two layers of meat (usually ham or turkey) and cheese, and lettuce and tomato.", + "A photo of club sandwich, a type of food. A club sandwich typically consists of three slices of bread, with two slices in the middle and one slice on the top and bottom.", + "A photo of club sandwich, a type of food. club sandwich with turkey, bacon, ham, cheese, and mayo on wheat bread.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich consisting of slices of bread, usually toasted, layered with slices of cooked poultry, bacon, lettuce, tomato, and mayonnaise.", + "A photo of club sandwich, a type of food. This club sandwich has three layers of bread, with meat, cheese, and vegetables in between.", + "A photo of club sandwich, a type of food. In the image, there is a club sandwich on a white plate.", + "A photo of club sandwich, a type of food. Image may vary.", + "A photo of club sandwich, a type of food. This image is of a club sandwich on a white plate with a side of potato chips.", + "A photo of club sandwich, a type of food. The image is of a club sandwich with two slices of bread, some cheese, some bacon, and some lettuce.", + "A photo of club sandwich, a type of food. The image is of a club sandwich with bacon, lettuce, and tomato on white bread.", + "A photo of club sandwich, a type of food. The image is of a club sandwich with roast beef, bacon, lettuce, tomato, and mayonnaise on white bread.", + "A photo of club sandwich, a type of food. The image is of a club sandwich on a white plate.", + "A photo of club sandwich, a type of food. The perfect club sandwich - layered with fresh turkey, bacon, lettuce, and tomato.", + "A photo of club sandwich, a type of food. A club sandwich is a type of sandwich made with slices of bread, chicken, bacon, and lettuce.", + "A photo of club sandwich, a type of food. A club sandwich is a type of sandwich that typically consists of two or three slices of bread, with layers of meat, cheese, and vegetables.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich consisting of eggs, bacon, and toast.", + "A photo of club sandwich, a type of food. Club Sandwich.", + "A photo of club sandwich, a type of food. A club sandwich is a sandwich consisting of two or more slices of bread, typically with meat or cheese, and often with lettuce, tomato, and mayonnaise.", + "A photo of club sandwich, a type of food. A club sandwich with roasted turkey, bacon, avocado, tomato, and mayo on toasted sourdough bread.", + "A photo of club sandwich, a type of food. A club sandwich is a type of sandwich that typically consists of three slices of bread, two slices of meat, two pieces of cheese, and lettuce.", + "A photo of club sandwich, a type of food. A club sandwich with mayonnaise, cheese, and bacon on white bread.", + "A photo of club sandwich, a type of food. A club sandwich from the deli counter." + ], + "crab cakes": [ + "A photo of crab cakes, a type of food. A crab cake is a fried cake of minced crab meat, formed into a patty or ball, and often bound with eggs, bread crumbs, and various herbs and spices.", + "A photo of crab cakes, a type of food. A crab cake is a patty made from crab meat and various other ingredients, such as bread crumbs, mayonnaise, and seasonings.", + "A photo of crab cakes, a type of food. Crab_cakes are usually small and flat, with a crispy exterior and a soft interior.", + "A photo of crab cakes, a type of food. A crab_cake is a small, round cake made from crabmeat, flour, egg, breadcrumbs, and seasonings.", + "A photo of crab cakes, a type of food. A crab cake is typically a patty made from crab meat, breading, and sometimes other ingredients like salt, pepper, and Old Bay seasoning.", + "A photo of crab cakes, a type of food. A crab cake is a fried cake of meat and spices that is made from crab meat.", + "A photo of crab cakes, a type of food. A crab cake is a patty made from crab meat and other ingredients, usually fried or baked.", + "A photo of crab cakes, a type of food. A crab cake is typically a patty made from crab meat, bread crumbs, and seasonings, fried or baked.", + "A photo of crab cakes, a type of food. Crab cakes are small, round, flat cakes that are made with crab meat and other ingredients, such as bread crumbs, mayonnaise, and spices.", + "A photo of crab cakes, a type of food. Typically, crab_cakes are designed to be as golden as possible on the outside while remaining moist on the inside.", + "A photo of crab cakes, a type of food. A crab cake is a seafood dish that is made of crab meat, breading, and other ingredients.", + "A photo of crab cakes, a type of food. Crab_cakes are small, flat cakes made from shredded or ground crab meat, bread crumbs, and spices.", + "A photo of crab cakes, a type of food. They are usually made with crab meat, breading, and seasonings.", + "A photo of crab cakes, a type of food. A crab cake is a patty made from crab meat and other ingredients, such as bread crumbs, onions, and spices.", + "A photo of crab cakes, a type of food. Crab cakes are usually made with crab meat, breading, and spices.", + "A photo of crab cakes, a type of food. One way to identify a crab cake is by its shape.", + "A photo of crab cakes, a type of food. The best way to identify a crab cake is by its shape and size.", + "A photo of crab cakes, a type of food. A crabcake is a piece of crab meat that has been breaded and fried.", + "A photo of crab cakes, a type of food. There are a few ways to identify crab cakes.", + "A photo of crab cakes, a type of food. You can identify a crab cake by its shape and size.", + "A photo of crab cakes, a type of food. A crab cake is typically a patty made from crab meat, breading, and seasonings.", + "A photo of crab cakes, a type of food. A crab cake is typically a patty made from crab meat, breading, and seasonings.", + "A photo of crab cakes, a type of food. There is no definitive answer to this question as crab cakes can vary greatly in appearance depending on the recipe.", + "A photo of crab cakes, a type of food. There is no one answer to this question as crab cakes can vary widely in appearance, depending on the recipe.", + "A photo of crab cakes, a type of food. A crab cake is a patty made from crab meat and other ingredients, such as bread crumbs, mayonnaise, and seasonings.", + "A photo of crab cakes, a type of food. There really is no one answer to this question as crab cakes can vary greatly in appearance.", + "A photo of crab cakes, a type of food. A crab cake typically consists of crab meat and various other ingredients, such as bread crumbs, mayonnaise, and eggs, that are formed into a patty and fried or baked.", + "A photo of crab cakes, a type of food. Crab cakes are small, patty-shaped cakes made from fresh or canned crab meat, bread crumbs, and seasonings.", + "A photo of crab cakes, a type of food. A crab cake is a cake made of crab meat.", + "A photo of crab cakes, a type of food. A crab cake is a patty of crab meat mixed with other ingredients, such as bread crumbs, and fried or baked.", + "A photo of crab cakes, a type of food. The image is of a crab cake on a white plate with a side of green onion.", + "A photo of crab cakes, a type of food. A crab cake is a patty made from crab meat and various other ingredients, such as breadcrumbs, mayonnaise, and onions.", + "A photo of crab cakes, a type of food. In the image, there are six crab cakes on a white plate.", + "A photo of crab cakes, a type of food. Image has a brown background with a white plate in the center.", + "A photo of crab cakes, a type of food. A crab cake is a savory dish made of crab meat and various other ingredients, typically bread crumbs, onion, egg and mayonnaise.", + "A photo of crab cakes, a type of food. This image is of a crab cake on a white plate with a lemon wedge.", + "A photo of crab cakes, a type of food. The image is of a brown crab cake on a white plate.", + "A photo of crab cakes, a type of food. This image is of two crab cakes on a white plate next to a small green salad.", + "A photo of crab cakes, a type of food. This image is of crab cakes that have been fried and are golden brown in color.", + "A photo of crab cakes, a type of food. In the image, there are six crab cakes on a white plate.", + "A photo of crab cakes, a type of food. Crab Cakes.", + "A photo of crab cakes, a type of food. Delicious crab cakes served with a remoulade sauce.", + "A photo of crab cakes, a type of food. A plate of crab cakes with a lemon wedge on the side.", + "A photo of crab cakes, a type of food. A plate of two crab cakes with a side of salad.", + "A photo of crab cakes, a type of food. Delicious crab cakes served on a bed of greens.", + "A photo of crab cakes, a type of food. A plate of delicious crab cakes, perfect for a summertime meal.", + "A photo of crab cakes, a type of food. Crab cakes are a seafood dish made with crab meat, bread crumbs, and spices.", + "A photo of crab cakes, a type of food. crab_cakes served with a side of chips.", + "A photo of crab cakes, a type of food. Crab cakes are a seafood dish made of crab meat, typically with other added ingredients like breadcrumbs, herbs, and spices.", + "A photo of crab cakes, a type of food. A plate of delicious crab cakes, served with a side of lemon wedge." + ], + "creme brulee": [ + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a dessert consisting of a rich custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. A creme brulee is a rich, custard-like dessert that is typically served in small, round ramekins.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a custard dessert with a hard caramel topping.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a custard dessert with a hard caramelized topping.", + "A photo of creme brulee, a type of food. A creme_brulee is a dessert that consists of a rich custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. A creme_brulee is a custard dessert with a hard, caramelized sugar top.", + "A photo of creme brulee, a type of food. A creme brulee is a dessert that consists of a custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. A creme_brulee is a dessert that is made with a custard base that is topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. A creme_brulee is a French dessert that consists of a rich custard base topped with a hard layer of caramel.", + "A photo of creme brulee, a type of food. A creme brulee is a homemade dessert that consists of a rich custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. A cream_brulee is a custard dessert that has a hard caramelized sugar top.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a dessert with a custard base and a layer of hard caramel on top.", + "A photo of creme brulee, a type of food. You can identify a cr\u00e8me br\u00fbl\u00e9e by its caramelized sugar topping.", + "A photo of creme brulee, a type of food. Creme brulee is a dessert that is typically made with egg yolks, cream, sugar, and vanilla extract.", + "A photo of creme brulee, a type of food. Creme brulee is a dessert consisting of a rich custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. A creme_brulee is a dessert that is made with eggs, cream, and sugar.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a French dessert that consists of a rich custard base topped with a crisp layer of caramel.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a rich, creamy custard topped with a hard layer of clear or amber-colored caramelized sugar.", + "A photo of creme brulee, a type of food. Creme br\u00fbl\u00e9e is a dessert with a crispy caramel top and a soft custard bottom.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e has a thick custard base topped with a hard layer of caramel.", + "A photo of creme brulee, a type of food. A creme_brulee is a custard dessert with a caramelized sugar top.", + "A photo of creme brulee, a type of food. Creme brulee is a smooth, creamy custard with a caramelized sugar topping.", + "A photo of creme brulee, a type of food. A creme brulee looks like a custard pie with a hard caramelized sugar top.", + "A photo of creme brulee, a type of food. A creme brulee is a creamy custard with a hard, caramelized sugar top.", + "A photo of creme brulee, a type of food. A creme_brulee looks like a dessert that has a hard layer of caramel on top.", + "A photo of creme brulee, a type of food. A creme_brulee looks like a dish that has a layer of hard, caramelized sugar on top of a custard.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a baked custard dessert with a caramelized sugar topping.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a rich custard dessert with a crisp caramelized sugar topping.", + "A photo of creme brulee, a type of food. A creme brulee is a smooth, custard-like dessert with a hard, caramelized sugar topping.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a French dessert consisting of a rich custard base topped with a crisp layer of caramel.", + "A photo of creme brulee, a type of food. The image is of a creme_brulee that has a dark brown, almost black, crust on top.", + "A photo of creme brulee, a type of food. An image of a creme brulee from the internet would show a close up of the dessert, with a crispy, caramelized sugar topping and a creamy custard base.", + "A photo of creme brulee, a type of food. A creamy, smooth custard with a hard, caramelized sugar top.", + "A photo of creme brulee, a type of food. It's a photo of a traditional creme brulee dessert, with a caramelized sugar top and a creamy custard base.", + "A photo of creme brulee, a type of food. A creme brulee is a dessert made with custard and a hard, caramelized sugar topping.", + "A photo of creme brulee, a type of food. dishThe image is of a creme brulee dish that has been prepared with a torch.", + "A photo of creme brulee, a type of food. A cr\u00e8me br\u00fbl\u00e9e is a rich custard dessert with a crisp, caramelized sugar topping.", + "A photo of creme brulee, a type of food. A creme brul\u00e9e is a type of dessert that consists of a rich custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. The image is of a small, round dish with a golden brown, bubbly topping.", + "A photo of creme brulee, a type of food. A creme_brulee is a dessert made of custard with a hard sugar topping.", + "A photo of creme brulee, a type of food. Creme Brulee - a French dessert consisting of a rich custard base topped with a layer of hard caramel.", + "A photo of creme brulee, a type of food. Traditional French creme brulee with raspberries.", + "A photo of creme brulee, a type of food. Creme Brulee.", + "A photo of creme brulee, a type of food. A delicious creme_brulee with a caramelized top.", + "A photo of creme brulee, a type of food. This is a delicious creme brulee!.", + "A photo of creme brulee, a type of food. This creme brulee is an French classic dessert that is simple, yet sophisticated.", + "A photo of creme brulee, a type of food. This creme_brulee is perfection! A smooth and creamy custard, with a rich and decadent flavor, topped with a crisp and caramelized sugar topping.", + "A photo of creme brulee, a type of food. A delicious creme_brulee with a caramelized top.", + "A photo of creme brulee, a type of food. Delicious creme brulee, a classic French dessert.", + "A photo of creme brulee, a type of food. This is a classic French dessert of creme brulee." + ], + "croque madame": [ + "A photo of croque madame, a type of food. A croque_madame looks like a grilled cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame looks like a grilled cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a type of sandwich that is typically made with ham, cheese, and an egg.", + "A photo of croque madame, a type of food. A croque_madame is a savory dish that consists of a piece of ham and cheese on a slice of bread, with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a toasted ham and cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a type of sandwich that is made with ham, cheese, and a fried egg.", + "A photo of croque madame, a type of food. A croque_madame is a sandwich made with ham and cheese, with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a type of French sandwich consisting of ham and cheese on a baguette, with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a toasted sandwich with ham, cheese, and a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame looks like a sandwich that has been dipped in a batter and fried.", + "A photo of croque madame, a type of food. A croque_madame can be identified by its crispy, golden brown bread and melted cheese.", + "A photo of croque madame, a type of food. A croque_madame is a type of French sandwich that is made with ham, cheese, and an egg.", + "A photo of croque madame, a type of food. A croque_madame has a fried egg on top of it.", + "A photo of croque madame, a type of food. Croque_madame is a French dish made of bread, cheese, and ham.", + "A photo of croque madame, a type of food. A croque_madame is a savory dish that typically consists of eggs, ham, and cheese on top of bread.", + "A photo of croque madame, a type of food. A croque_madame is a hot sandwich made with ham, cheese, and a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a type of sandwich that is made with ham and cheese on top of bread, and then it is covered with a sauce.", + "A photo of croque madame, a type of food. Croque_madame is a dish made of ham and cheese sandwich.", + "A photo of croque madame, a type of food. A croque_madame is traditionally made with ham and Gruyere cheese on white bread, with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame can be identified by its signature sandwich of ham and Gruyere cheese on brioche, topped with a fried egg.", + "A photo of croque madame, a type of food. A croque-madame is a sandwich made with ham, cheese, and a fried egg.", + "A photo of croque madame, a type of food. A croque_madame is a toasted ham and cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. Croque madame is a toasted sandwich made with ham, cheese, and a fried egg on top.", + "A photo of croque madame, a type of food. A Croque Madame is a grilled ham and cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a sandwich, typically consisting of ham and cheese, that is fried or baked.", + "A photo of croque madame, a type of food. A croque_madame looks like a grilled cheese sandwich with ham and a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a savory French dish that typically consists of toast with ham and cheese, topped with a fried egg.", + "A photo of croque madame, a type of food. A croque_madame is a grilled ham and cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a sandwich made with ham, cheese, and a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a toasted sandwich that is typically filled with ham and cheese, and topped with a fried egg.", + "A photo of croque madame, a type of food. A croque_madame is an image of a savory French dish made with bread, ham, cheese, and a fried egg on top.", + "A photo of croque madame, a type of food. A Croque Madam is a french sandwich made of ham, cheese, bread, and eggs.", + "A photo of croque madame, a type of food. A croque madame is a toasted ham and cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. The image is of a toasted sandwich with ham and cheese on top, with a fried egg on top of the cheese.", + "A photo of croque madame, a type of food. An image of a croque madame from the internet shows a sandwich made with ham and cheese, with a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a French dish made of ham, cheese, and bread.", + "A photo of croque madame, a type of food. A croque madame is a grilled cheese sandwich with ham and a fried egg on top.", + "A photo of croque madame, a type of food. A croque_madame is a toasted ham and cheese sandwich with a fried egg on top.", + "A photo of croque madame, a type of food. The image is of a croque_madame on a plate with a fork and knife beside it.", + "A photo of croque madame, a type of food. A croque-madame is a baked or fried egg-topped variation of the French dish, a croque-monsieur.", + "A photo of croque madame, a type of food. A croque_madame, a French dish of savory baked goods and cheeseThis French dish is a savory baked good topped with cheese.", + "A photo of croque madame, a type of food. A croque_madame is a French sandwich consisting of toasted bread, ham, cheese, and a fried egg.", + "A photo of croque madame, a type of food. A delicious croque_madame, perfect for a quick and easy meal.", + "A photo of croque madame, a type of food. A Croque Madame is a French dish made of ham and cheese sandwiched between two slices of bread, with a fried egg on top.", + "A photo of croque madame, a type of food. \"Croque Madame - a French dish consisting of a toasted sandwich of ham and cheese, topped with a fried egg.", + "A photo of croque madame, a type of food. A croque_madame is a French dish of eggs, ham, and cheese on a piece of bread.", + "A photo of croque madame, a type of food. A croque madame with a fried egg on topThis delicious looking croque madame has a fried egg on top, making it the perfect meal for breakfast, lunch, or dinner!.", + "A photo of croque madame, a type of food. A croque madame is a French dish made of ham and cheese on a toasted baguette, topped with a fried egg.", + "A photo of croque madame, a type of food. A croque_madame is a French dish consisting of a baked ham and cheese sandwich, topped with a fried egg.", + "A photo of croque madame, a type of food. A classic French breakfast sandwich consisting of a piece of ham and Gruyere cheese on a piece of bread, with a fried egg on top." + ], + "cup cakes": [ + "A photo of cup cakes, a type of food. A cup_cake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, flat paper or aluminum cup.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, thin paper or aluminum cup.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which may be baked in a small thin paper or aluminum cup.", + "A photo of cup cakes, a type of food. A cupcake is a small, cake-like dessert.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, wide-bottomed cup or mug.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a thin paper or aluminum cup.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to be eaten by one person, usually baked in a small, paper cup.", + "A photo of cup cakes, a type of food. A cup cake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, thin paper or aluminum cup.", + "A photo of cup cakes, a type of food. A cup_cake is a small cake that is designed to serve one person.", + "A photo of cup cakes, a type of food. Cupcakes are small, round cakes that are typically frosted and decorated.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, paper cup.", + "A photo of cup cakes, a type of food. There is no definitive answer to this question, as cupcakes can come in many different shapes, sizes, and colors.", + "A photo of cup cakes, a type of food. A cupcake is typically a small, individual cake that is sweet and often decorated.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. By its shape, a cupcake is typically presented as a small cake with a flattened top and a small, circular cross-section.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, paper cup.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person, which is often baked in a small, wide-bottomed mug or cup.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. There is no definite answer to this question as cupcakes come in many different shapes, sizes, and designs.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. A cupcake typically looks like a small cake that is individually sized and decorated.", + "A photo of cup cakes, a type of food. There is no definitive answer to this question as cupcakes can come in many different shapes, sizes, and colors.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. Image result for cupcakes.", + "A photo of cup cakes, a type of food. A cupcake is a small cake that is typically baked in a cup-shaped mold and is frosted.", + "A photo of cup cakes, a type of food. A cupcake is a small cake designed to serve one person.", + "A photo of cup cakes, a type of food. A cupcake is a small cake that is traditionally served alone, without frosting or topping.", + "A photo of cup cakes, a type of food. A cupcake is a small, round cake that is most often frosted and decorated.", + "A photo of cup cakes, a type of food. This image is of three light pink cupcakes with dark pink frosting.", + "A photo of cup cakes, a type of food. The image is of two pink cupcakes with white frosting.", + "A photo of cup cakes, a type of food. The image is of six pink and white cupcakes sitting on a white plate.", + "A photo of cup cakes, a type of food. Image shows a close up of six pink cupcakes with white frosting.", + "A photo of cup cakes, a type of food. The image is of four cupcakes.", + "A photo of cup cakes, a type of food. In this image, there are six cupcakes arranged in a row on a white plate.", + "A photo of cup cakes, a type of food. The image is of six brightly colored cupcakes, three with yellow frosting and sprinkles, and three with pink frosting and sprinkles.", + "A photo of cup cakes, a type of food. I found an image on the internet of a cupcake with a chocolate icing and a marshmallow on top.", + "A photo of cup cakes, a type of food. The image is of a large plate of colorful cupcakes, each with a different design.", + "A photo of cup cakes, a type of food. The image is of six pink cupcakes on a white plate.", + "A photo of cup cakes, a type of food. Delicious cupcakes with frosting and sprinkles.", + "A photo of cup cakes, a type of food. A platter of delicious-looking cupcakes, perfect for any occasion!.", + "A photo of cup cakes, a type of food. A group of delicious looking cupcakes.", + "A photo of cup cakes, a type of food. Cupcakes topped with white frosting and rainbow sprinkles.", + "A photo of cup cakes, a type of food. Cupcakes on a plate.", + "A photo of cup cakes, a type of food. Delicious cupcakes with colorful frosting.", + "A photo of cup cakes, a type of food. Delicious cupcakes topped with frosting and sprinkles.", + "A photo of cup cakes, a type of food. This is a picture of three different cupcakes.", + "A photo of cup cakes, a type of food. Delicious cupcakes with colorful frosting.", + "A photo of cup cakes, a type of food. Cupcakes galore!." + ], + "deviled eggs": [ + "A photo of deviled eggs, a type of food. A deviled egg is a hard-boiled egg that has been shelled, cut in half, and filled with a mixture of egg yolk, mustard, mayonnaise, and vinegar.", + "A photo of deviled eggs, a type of food. A deviled egg is a halved egg with the yolk removed and replaced with a mixture usually consisting of mayonnaise, mustard, and spices.", + "A photo of deviled eggs, a type of food. A deviled_eggs is a yellow egg with a white center.", + "A photo of deviled eggs, a type of food. A deviled_egg is a small, round egg that has been hard boiled and then cut in half.", + "A photo of deviled eggs, a type of food. A deviled egg is a whole egg that has been hard-boiled, shelled, and cut in half.", + "A photo of deviled eggs, a type of food. A deviled egg is a whole hard-boiled egg with the yolk removed and replaced with a mixture of egg yolk, mayonnaise, mustard, and spices.", + "A photo of deviled eggs, a type of food. A deviled egg is a halved egg with the yolk removed and replaced with a mixture of mayonnaise, mustard, and other ingredients.", + "A photo of deviled eggs, a type of food. A deviled egg is a halved egg with the yolk removed and replaced with a mixture of mayonnaise, mustard, and other seasonings.", + "A photo of deviled eggs, a type of food. A deviled egg is a whole egg that has been hard boiled and then had its yolk removed and replaced with a filling.", + "A photo of deviled eggs, a type of food. A deviled egg is a hard-boiled egg that has been peeled and cut in half.", + "A photo of deviled eggs, a type of food. A deviled_eggs may be identified by its characteristic shape, which is typically a round or oval shape.", + "A photo of deviled eggs, a type of food. A deviled_eggs is a small, round, egg-shaped appetizer that is typically filled with a mixture of mayonnaise, mustard, and spices.", + "A photo of deviled eggs, a type of food. A deviled egg is typically a hard-boiled egg that has been cut in half and had its yolk removed.", + "A photo of deviled eggs, a type of food. If you are looking at a plate of eggs and one is missing its top, cut in a circle around the egg white, and filled with a yellowish-orange mixture, then you have found a deviled_egg.", + "A photo of deviled eggs, a type of food. A deviled egg is a hard-boiled egg that has been peeled and cut in half.", + "A photo of deviled eggs, a type of food. It is a savory dish consisting of a hard-boiled egg that has been cut in half and filled with a mixture of egg yolk, mayonnaise, mustard, and other ingredients.", + "A photo of deviled eggs, a type of food. Deviled eggs are a dish typically made with hard-boiled eggs that have been shelled and halved, with the yolks removed and replaced with a mixture of mayonnaise, mustard, and other ingredients.", + "A photo of deviled eggs, a type of food. A deviled_eggs is a food that is typically made by combining egg yolks, mustard, mayonnaise, and vinegar, and then filling the egg whites with this mixture.", + "A photo of deviled eggs, a type of food. Deviled_eggs are usually small, round, and yellow.", + "A photo of deviled eggs, a type of food. By the taste.", + "A photo of deviled eggs, a type of food. Image result for deviled eggs.", + "A photo of deviled eggs, a type of food. A deviled egg is a halved egg with the egg yolk removed and replaced with a mixture of mayonnaise, mustard, and other ingredients.", + "A photo of deviled eggs, a type of food. There is no one definitive answer to this question as people can make deviled eggs in a variety of ways, but typically they are small eggs that have been hard boiled and then cut in half with the yolk removed and replaced with a mixture.", + "A photo of deviled eggs, a type of food. Deviled eggs are typically served as a appetizer or side dish and are made by cutting hard-boiled eggs in half and scooping out the yolk.", + "A photo of deviled eggs, a type of food. The traditional deviled egg is a halved egg with the yolk removed and replaced with a mixture of mayonnaise, mustard, and other ingredients.", + "A photo of deviled eggs, a type of food. Deviled eggs are small eggs that have been hard-boiled and then cut in half.", + "A photo of deviled eggs, a type of food. A deviled egg typically has a light yellow or white center, with a darker yellow or orange yolk.", + "A photo of deviled eggs, a type of food. A deviled egg is a whole egg that has been hard boiled and then cut in half.", + "A photo of deviled eggs, a type of food. A deviled egg is a hard-boiled egg that has been hollowed out and filled with a mixture of egg yolk, mayonnaise, mustard, and other ingredients.", + "A photo of deviled eggs, a type of food. A deviled egg is a hard-boiled egg that has been cut in half and had its yolk removed.", + "A photo of deviled eggs, a type of food. The image is of a platter of deviled eggs.", + "A photo of deviled eggs, a type of food. The image is of a plate of deviled eggs.", + "A photo of deviled eggs, a type of food. The image is of a platter of deviled eggs.", + "A photo of deviled eggs, a type of food. The image is of a plate of deviled eggs.", + "A photo of deviled eggs, a type of food. The image shows a platter of deviled eggs.", + "A photo of deviled eggs, a type of food. A deviled egg is a egg that has been hard boiled and then had the yolk taken out and replaced with a mixture of mayonnaise, mustard, and spices.", + "A photo of deviled eggs, a type of food. I found an image on Google of a deviled egg on a white plate with a green garnish.", + "A photo of deviled eggs, a type of food. The image is of a plate of deviled eggs.", + "A photo of deviled eggs, a type of food. In the foreground of the image is a plate with six halves of deviled eggs on it.", + "A photo of deviled eggs, a type of food. The image is of a plate of six deviled eggs.", + "A photo of deviled eggs, a type of food. A delicious plate of deviled eggs, perfect for any occasion!.", + "A photo of deviled eggs, a type of food. A platter of deviled eggs, perfect for your next party!.", + "A photo of deviled eggs, a type of food. Mom's Famous Deviled Eggs.", + "A photo of deviled eggs, a type of food. \nA delicious plate of deviled eggs, perfect for any occasion!.", + "A photo of deviled eggs, a type of food. Deviled eggs are a traditional party dish.", + "A photo of deviled eggs, a type of food. These yummy deviled eggs are perfect for Easter!.", + "A photo of deviled eggs, a type of food. Delicious deviled eggs!\"These deviled eggs are so delicious! I can't get enough of them!.", + "A photo of deviled eggs, a type of food. Deviled eggs are a popular dish made with boiled eggs that have been cut in half and filled with a mixture of egg yolks, Mayonnaise, mustard, and other seasonings.", + "A photo of deviled eggs, a type of food. While deviled eggs are often enjoyed as a party dish, they can also be a delicious and easy snack or light meal.", + "A photo of deviled eggs, a type of food. Deviled EggsA traditional Southern dish, deviled eggs are a staple at potlucks and picnics." + ], + "donuts": [ + "A photo of donuts, a type of food. A donut is a fried cake of doughnut-shaped, often with a flour-based or semolina-based dough.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a deep-fried doughnut-shaped cake.", + "A photo of donuts, a type of food. A donut is a type of fried doughnut with a circular shape and a hole in the middle.", + "A photo of donuts, a type of food. .", + "A photo of donuts, a type of food. A donut is typically a small, round cake that is fried and has a hole in the center.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is typically a fried doughnut-shaped pastry that is coated with a sugar or icing.", + "A photo of donuts, a type of food. There are many ways to identify a donut.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a type of fried doughnut with a hole in the center.", + "A photo of donuts, a type of food. A donut is a type of fried doughnut with a crispy outer edge and a soft, doughy center.", + "A photo of donuts, a type of food. Typically, donuts are fried dough that is shaped into a ring or a ball with a hole in the center.", + "A photo of donuts, a type of food. The shape of a donut is typically a ring with a smaller ring inside of it.", + "A photo of donuts, a type of food. A donut is often identified by its shape, which is typically a ring with a hole in the center.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a type of fried doughnut with a doughnut-shaped hole in the center.", + "A photo of donuts, a type of food. A donut is a type of fried doughnut with a hole in the middle.", + "A photo of donuts, a type of food. A donut typically has a ring-like shape and is covered in a sweet glaze.", + "A photo of donuts, a type of food. A donut is a shaped piece of dough that is fried and then often coated in sugar or other sweet toppings.", + "A photo of donuts, a type of food. A donut typically has a round, doughnut-shaped body with a hole in the center and a glossy, glazed topping.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a type of fried doughnut with a shaped center hole and a glazed or frosted exterior.", + "A photo of donuts, a type of food. A donut typically has a round shape with a hole in the center and is coated in a sweet glaze.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is typically a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut typically has a ring-shaped body with a hole in the center, and is often coated with a sweet flavor such as sugar, chocolate, or icing.", + "A photo of donuts, a type of food. A doughnut is a type of fried doughnut with a hole in the center.", + "A photo of donuts, a type of food. The image is of a close up of a donut with sprinkles.", + "A photo of donuts, a type of food. This image is of a bunch of donuts that are assorted colors and have different toppings.", + "A photo of donuts, a type of food. In this image, there are two rows of donuts.", + "A photo of donuts, a type of food. Donuts are a type of fried dough confection or dessert.", + "A photo of donuts, a type of food. A photograph of a brightly lit donut shop with a display of donuts in the window.", + "A photo of donuts, a type of food. The image is of a close up of a donut with pink, purple, and white frosting.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry.", + "A photo of donuts, a type of food. The image is of a pink donut with sprinkles.", + "A photo of donuts, a type of food. The image is of a dozen donuts on a pink and white polka dot tray.", + "A photo of donuts, a type of food. A pile of delicious donuts, fresh out of the fryer.", + "A photo of donuts, a type of food. A dozen donuts from the new bakery down the street.", + "A photo of donuts, a type of food. A dozen donuts from the local bakery.", + "A photo of donuts, a type of food. yummmmmmmmmmmm.", + "A photo of donuts, a type of food. A box of delicious donutsA box of delicious donuts! Enjoy these sugary treats with your morning coffee or as an afternoon snack.", + "A photo of donuts, a type of food. The doughnuts are piled high on the plate, fresh out of the fryer and glistening with oil.", + "A photo of donuts, a type of food. A yummy donut with pink frosting and sprinkles.", + "A photo of donuts, a type of food. In search of the perfect donut.", + "A photo of donuts, a type of food. Glistening on the outside, pillowy on the inside.", + "A photo of donuts, a type of food. A donut is a fried doughnut-shaped pastry." + ], + "dumplings": [ + "A photo of dumplings, a type of food. A dumpling is a small, balls of dough that is cooked in boiling water or broth.", + "A photo of dumplings, a type of food. A dumpling looks like a small, round ball of dough that is usually boiled or steamed.", + "A photo of dumplings, a type of food. A dumpling is typically a small, round ball of dough that is boiled, fried, or baked.", + "A photo of dumplings, a type of food. A dumpling is typically a small, round ball of dough that is boiled, fried, or steamed.", + "A photo of dumplings, a type of food. A dumpling is a small, often rounded or oblong, flour-based dough envelope with a filling.", + "A photo of dumplings, a type of food. There is no one answer to this question as dumplings can vary greatly in appearance.", + "A photo of dumplings, a type of food. A dumpling typically consists of a dough wrapped around a filling.", + "A photo of dumplings, a type of food. A dumpling is a small, round, cooked piece of dough, made from flour, water, and often egg.", + "A photo of dumplings, a type of food. Typically, a dumpling is a small ball of dough that is cooked in boiling water.", + "A photo of dumplings, a type of food. A dumpling is a small, rounded doughnut-shaped piece of food, either cooked alone or in soups, stews, casseroles, or other dishes.", + "A photo of dumplings, a type of food. A dumpling is a small, bite-sized ball of dough made from flour, water, and other ingredients.", + "A photo of dumplings, a type of food. A dumpling is a small, rounded doughnut-shaped cake, typically made from flour, water and suet, and usually served with a savory stew or soup.", + "A photo of dumplings, a type of food. A dumpling is a small, rounded ball of dough.", + "A photo of dumplings, a type of food. Dumplings are small balls of dough that are cooked in water or broth.", + "A photo of dumplings, a type of food. The dough is mixed with water and then boiled, forming little balls.", + "A photo of dumplings, a type of food. A dumpling is a small, round, ball of dough, typically made from flour, water, and baking powder.", + "A photo of dumplings, a type of food. one way to identify a dumpling is to look for a small, ball-shaped piece of dough that is usually boiled or steamed.", + "A photo of dumplings, a type of food. Dumplings are small, round balls of dough that are boiled or steamed.", + "A photo of dumplings, a type of food. One way to identify a dumpling is by its shape.", + "A photo of dumplings, a type of food. Dumplings are small, round balls of dough that are cooked in boiling water or broth.", + "A photo of dumplings, a type of food. Dumplings are small, round balls of dough.", + "A photo of dumplings, a type of food. A dumpling typically has a round or oval shape and is made with a type of dough, such as wheat flour, potato starch, or rice flour.", + "A photo of dumplings, a type of food. There is no one answer to this question as dumplings can come in many different shapes and sizes.", + "A photo of dumplings, a type of food. There is no one answer to this question as dumplings can come in many different shapes and sizes.", + "A photo of dumplings, a type of food. A dumpling typically consists of a dough wrapper that encloses a filling.", + "A photo of dumplings, a type of food. A dumpling is a small, rounded piece of dough, often made from flour, water, and yeast.", + "A photo of dumplings, a type of food. There is no one answer to this question as dumplings can come in many different shapes and sizes.", + "A photo of dumplings, a type of food. A dumpling is a small, cooked ball of dough.", + "A photo of dumplings, a type of food. A dumpling is a small, round, ball of dough that is boiled, fried, or baked.", + "A photo of dumplings, a type of food. A Dumplings is a small, round, and cooked piece of dough.", + "A photo of dumplings, a type of food. A dumpling is a small, bite-sized ball of dough, typically made from flour, water and a leavening agent, that is boiled, steamed or fried.", + "A photo of dumplings, a type of food. In the image, there are six dumplings on a white plate.", + "A photo of dumplings, a type of food. The image is of a plate of dumplings that are round and have a smooth surface.", + "A photo of dumplings, a type of food. The image is of three dumplings on a white plate.", + "A photo of dumplings, a type of food. There is an image of a dumpling that is wrapped in a thin layer of dough.", + "A photo of dumplings, a type of food. The image is of a plate of dumplings.", + "A photo of dumplings, a type of food. The image is of three dumplings on a white plate with a chopstick.", + "A photo of dumplings, a type of food. The image is of a plate of dumplings with a dipping sauce.", + "A photo of dumplings, a type of food. The image is of a small, round dumpling with a brown and slightly crispy exterior.", + "A photo of dumplings, a type of food. In the image, there are twelve dumplings in a steamer over a bed of cabbage.", + "A photo of dumplings, a type of food. Dumplings!.", + "A photo of dumplings, a type of food. Plate of homemade dumplings.", + "A photo of dumplings, a type of food. Pork and chive dumplings on a white platePork and chive dumplings are a traditional Chinese dish typically made with minced pork, chives, and a variety of other seasonings.", + "A photo of dumplings, a type of food. Delicious dumplings!.", + "A photo of dumplings, a type of food. Delicious dumplings made with love.", + "A photo of dumplings, a type of food. A platter of dumplings, served with soy sauce and chili oil for dipping.", + "A photo of dumplings, a type of food. This image is of a dumpling.", + "A photo of dumplings, a type of food. A platter of assorted dumplings, including pork, shrimp, and vegetable varieties.", + "A photo of dumplings, a type of food. A bowl of dumplings with a dipping sauce on the side.", + "A photo of dumplings, a type of food. There's nothing like a warm bowl of dumplings on a cold winter day." + ], + "edamame": [ + "A photo of edamame, a type of food. An edamame is a soybean that is still in its pod.", + "A photo of edamame, a type of food. Edamame are small, green soybeans that are often served as a side dish in Japanese restaurants.", + "A photo of edamame, a type of food. An edamame is a green soybean that is encased in a pod.", + "A photo of edamame, a type of food. Edamame are small, green, soybean pods.", + "A photo of edamame, a type of food. Edamame are small, green soybeans that are often served in Japanese restaurants.", + "A photo of edamame, a type of food. A edamame typically looks like a green soybean.", + "A photo of edamame, a type of food. A edamame is a small, green, soybean that is still in the pod.", + "A photo of edamame, a type of food. A edamame is a bright green, bean-like vegetable that is often served as a snack.", + "A photo of edamame, a type of food. A edamame is a small, green soybean that is often eaten as a snack.", + "A photo of edamame, a type of food. An edamame is a soybean that is still in its pod.", + "A photo of edamame, a type of food. Edamame are soybeans that are still in their pods.", + "A photo of edamame, a type of food. The easiest way to identify an edamame is by its small, oval shape.", + "A photo of edamame, a type of food. Edamame is a type of soybean that is harvested while it is still young and green.", + "A photo of edamame, a type of food. Mayo Clinic staff say that you can identify edamame by their \"enlarged, bright-green, plump pods.", + "A photo of edamame, a type of food. A edamame can be identified by its dark green color, oval shape, and small size.", + "A photo of edamame, a type of food. Edamame beans are small, bright green, and have a soft texture.", + "A photo of edamame, a type of food. A edamame is a type of soybean that is harvested while it is young and still in the pod.", + "A photo of edamame, a type of food. Edamame can be identified by their bright green color and their smooth, oval shape.", + "A photo of edamame, a type of food. The pod of an edamame is green and small.", + "A photo of edamame, a type of food. Edamame can be identified by its small, green color and its bean-like shape.", + "A photo of edamame, a type of food. Edamame is a Japanese word that refers to soybeans that are still in the pod.", + "A photo of edamame, a type of food. Edamame are small, dark green soybeans that can typically be found still in their pods.", + "A photo of edamame, a type of food. Edamame are small, green soybeans that are often served as a side dish in Asian restaurants.", + "A photo of edamame, a type of food. Edamame beans are small, green, and have a soft texture.", + "A photo of edamame, a type of food. A edamame is a small, green soya bean.", + "A photo of edamame, a type of food. Edamame is a type of soybean that is often eaten as a snack.", + "A photo of edamame, a type of food. An edamame is a type of soybean that is green and has a slightly sweet taste.", + "A photo of edamame, a type of food. A edamame is a long, green, bean-like vegetable.", + "A photo of edamame, a type of food. Edamame are green soybeans that are often served as a snack.", + "A photo of edamame, a type of food. A edamame is a type of soybean that is harvested while it is still green.", + "A photo of edamame, a type of food. plantIn the image, there is a green plant with long, thin leaves.", + "A photo of edamame, a type of food. plantA photo of an edamame plant from the internet shows a large, green plant with long, curved leaves.", + "A photo of edamame, a type of food. plantImage shows a close up of an edamame plant with its small, green beans nestled in their pod.", + "A photo of edamame, a type of food. plantThe image from the internet shows a edamame plant that is growing in a garden.", + "A photo of edamame, a type of food. plantThe image is of a plant with long, thin green leaves.", + "A photo of edamame, a type of food. plantThe image is of a plant with long, green leaves and small, green pods.", + "A photo of edamame, a type of food. plantThe photo shows a edamame plant with its small, green beans hanging down from the branches.", + "A photo of edamame, a type of food. plantThe image is of a plant with long, green leaves and thin, green stems.", + "A photo of edamame, a type of food. plantThe image is of a green plant with long, thin leaves.", + "A photo of edamame, a type of food. plantThe image is of a plant with long, green leaves and small, green pods.", + "A photo of edamame, a type of food. A bowl of freshly cooked edamame, still in their pods.", + "A photo of edamame, a type of food. A bowl of fresh edamame beans.", + "A photo of edamame, a type of food. Plate of fresh edamame with soy sauceThis image shows a plate of fresh edamame with soy sauce.", + "A photo of edamame, a type of food. A close-up of a plate of edamameEdamame is a type of green soybean that is popular in Japanese cuisine.", + "A photo of edamame, a type of food. A happy woman enjoying some edamame.", + "A photo of edamame, a type of food. Edamame are soybeans that are often eaten as a snack.", + "A photo of edamame, a type of food. This photo shows a close up of edamame beans.", + "A photo of edamame, a type of food. growing soy beansA photo of a field of soybeans with the caption \"Edamame - freshly picked soybeans ready for steaming.", + "A photo of edamame, a type of food. A woman prepares edamame to eat.", + "A photo of edamame, a type of food. A woman is holding a plate of edamame." + ], + "eggs benedict": [ + "A photo of eggs benedict, a type of food. A eggs_benedict is a breakfast dish which typically consists of two poached eggs placed on top of a toasted English muffin, which is then topped with hollandaise sauce and bacon.", + "A photo of eggs benedict, a type of food. A eggs_benedict is an egg dish that consists of a poached egg on top of a piece of ham on top of a toasted English muffin, all of which is covered in hollandaise sauce.", + "A photo of eggs benedict, a type of food. A eggs_benedict typically consists of a poached egg on top of a slice of ham and a toasted English muffin, with Hollandaise sauce on top.", + "A photo of eggs benedict, a type of food. A poached egg on a toasted English muffin, with Canadian bacon and Hollandaise sauce.", + "A photo of eggs benedict, a type of food. A poached egg on top of a ham and bacon on a toasted English muffin with hollandaise sauce.", + "A photo of eggs benedict, a type of food. A eggs_benedict is a poached egg on top of a toasted English muffin, withCanadian bacon and hollandaise sauce.", + "A photo of eggs benedict, a type of food. A eggs_benedict is a dish made of a poached egg on top of a toasted English muffin, with ham and hollandaise sauce.", + "A photo of eggs benedict, a type of food. Most commonly, eggs Benedict consists of two halves of an English muffin each topped with Canadian bacon, a poached egg, and hollandaise sauce.", + "A photo of eggs benedict, a type of food. An eggs benedict is a dish typically consisting of two poached eggs on top of Canadian bacon or ham on a toasted English muffin, with hollandaise sauce served on top.", + "A photo of eggs benedict, a type of food. A eggs_benedict typically consists of two eggs that are cooked sunny side up or poached, and then placed on top of a Half english muffin.", + "A photo of eggs benedict, a type of food. Eggs Benedict generally consists of two halves of a English muffin, each topped with a slice of Canadian bacon or ham, a poached egg, and hollandaise sauce.", + "A photo of eggs benedict, a type of food. An eggs_benedict is a dish that typically consists of two poached eggs on top of a piece of Canadian bacon or ham, with Hollandaise sauce poured over the top.", + "A photo of eggs benedict, a type of food. A eggs_benedict is typically served on a English muffin with ham and hollandaise sauce.", + "A photo of eggs benedict, a type of food. An eggs_benedict is a dish that typically consists of two poached eggs on top of a piece of Canadian bacon or ham, with hollandaise sauce on top.", + "A photo of eggs benedict, a type of food. A eggs_benedict is a dish that consists of a poached egg on a toasted English muffin, topped with ham and hollandaise sauce.", + "A photo of eggs benedict, a type of food. A eggs_benedict can typically be identified by its unique taste and texture.", + "A photo of eggs benedict, a type of food. A eggs_benedict is a type of food.", + "A photo of eggs benedict, a type of food. A eggs_benedict is a soft, oval-shaped food made from flour, water and often eggs.", + "A photo of eggs benedict, a type of food. The base of a true eggs benedict is always English muffins, Canadian bacon, poached eggs, and hollandaise sauce.", + "A photo of eggs benedict, a type of food. There are a few key characteristics that can help you identify a eggs_benedict.", + "A photo of eggs benedict, a type of food. A traditional eggs benedict is made up of several layers.", + "A photo of eggs benedict, a type of food. An eggs benedict typically consists of two poached eggs on top of a ham or bacon on a toasted English muffin, with hollandaise sauce on top.", + "A photo of eggs benedict, a type of food. A traditional eggs benedict is made with ham, eggs, and hollandaise sauce on an English muffin.", + "A photo of eggs benedict, a type of food. Image result for eggs benedict.", + "A photo of eggs benedict, a type of food. A eggs_benedict is a dish traditionally made with poached eggs, ham, and hollandaise sauce on top of a toasted English muffin.", + "A photo of eggs benedict, a type of food. A traditional eggs benedict consists of a toasted English muffin, Canadian bacon, poached eggs, and hollandaise sauce.", + "A photo of eggs benedict, a type of food. The classic eggs benedict dish is made up of Canadian bacon or ham, a poached egg, and hollandaise sauce on top of a toasted English muffin.", + "A photo of eggs benedict, a type of food. Generally, a eggs_benedict consists of two half-slices of toasted bread, each topped with a slice of Canadian bacon or ham, a poached egg, and Hollandaise sauce.", + "A photo of eggs benedict, a type of food. A dish composed of an English muffin halves topped with Canadian bacon and a poached egg, and covered with hollandaise sauce.", + "A photo of eggs benedict, a type of food. poached eggs on top of Canadian bacon with hollandaise sauce on top.", + "A photo of eggs benedict, a type of food. This image is of a traditional eggs Benedict dish, with Canadian bacon, poached eggs, and hollandaise sauce on top of an English muffin.", + "A photo of eggs benedict, a type of food. An image from the internet of a eggs_benedict would show a plate with two poached eggs on top of Canadian bacon or ham, on top of an English muffin or a biscuit, with Hollandaise sauce on top.", + "A photo of eggs benedict, a type of food. The image is of a traditional eggs benedict dish, with a poached egg on top of a toasted English muffin, Canadian bacon, and hollandaise sauce.", + "A photo of eggs benedict, a type of food. I found an image of a delicious looking eggs benedict with a poached eggs, ham, and hollandaise sauce on top of an English muffin.", + "A photo of eggs benedict, a type of food. A single poached egg rests on top of a toasted English muffin, which is topped with Canadian bacon and Hollandaise sauce.", + "A photo of eggs benedict, a type of food. There are two poached eggs on top of a toasted English muffin, with ham and hollandaise sauce.", + "A photo of eggs benedict, a type of food. The image shows a plate of eggs benedict with ham and spinach on top of English muffins, with a side of hollandaise sauce.", + "A photo of eggs benedict, a type of food. It is an image of a traditional eggs Benedict dish with Canadian bacon, poached eggs, and hollandaise sauce on an English muffin.", + "A photo of eggs benedict, a type of food. Image is of a beautiful eggs benedict that is served on a toasted english muffin with canadian bacon, fresh spinach, and two poached eggs.", + "A photo of eggs benedict, a type of food. An image of a eggs_benedict might show a dish with two poached eggs on top of a toasted English muffin, with Canadian bacon and hollandaise sauce.", + "A photo of eggs benedict, a type of food. \nA delicious eggs benedict with hollandaise sauce.", + "A photo of eggs benedict, a type of food. Eggs Benedict: poached eggs on top of Canadian bacon and an English muffin, with hollandaise sauce.", + "A photo of eggs benedict, a type of food. A delicious eggs benedict with a perfectly cooked yolk and crispy bacon.", + "A photo of eggs benedict, a type of food. A delicious eggs benedict with a crispy english muffin, juicy ham, and rich hollandaise sauce.", + "A photo of eggs benedict, a type of food. A classic eggs benedict with a poached egg, ham, and hollandaise sauce on top of a toasted english muffin.", + "A photo of eggs benedict, a type of food. A delicious dish of poached eggs and ham on a toasted English muffin, topped with hollandaise sauce.", + "A photo of eggs benedict, a type of food. A delicious breakfast of eggs benedict served with a side of fresh fruit.", + "A photo of eggs benedict, a type of food. A classic eggs benedict with a poached egg on top of a toasted English muffin, Canadian bacon, and hollandaise sauce.", + "A photo of eggs benedict, a type of food. A delicious eggs benedict with a sunny side up egg, ham, and hollandaise sauce on top.", + "A photo of eggs benedict, a type of food. A delicious plate of eggs benedict with Hollandaise sauce, Canadian bacon, and fresh spinach leaves." + ], + "escargots": [ + "A photo of escargots, a type of food. A escargot is a snail.", + "A photo of escargots, a type of food. Escargot are a type of snail typically found in the Mediterranean sea.", + "A photo of escargots, a type of food. A escargot is a snail that is cooked and served as food.", + "A photo of escargots, a type of food. A escargot is a edible snail typically served as an appetizer in French cuisine.", + "A photo of escargots, a type of food. A escargot is a small snail that is often used as a food item.", + "A photo of escargots, a type of food. It is a snail that is normally cooked in garlic butter and served as an appetizer.", + "A photo of escargots, a type of food. A escargots is a small snail.", + "A photo of escargots, a type of food. Escargots are snails that have been cooked and served in their shells with a sauce.", + "A photo of escargots, a type of food. A escargot is a small, land snail.", + "A photo of escargots, a type of food. Escargot is a dish typically made of cooked land snails, often served as an appetizer.", + "A photo of escargots, a type of food. the shell is coiled in a tight spiral, and the body is slimy and white.", + "A photo of escargots, a type of food. Snails are usually identified by their soft, slimy bodies and the presence of a spiral shell.", + "A photo of escargots, a type of food. The easiest way to identify a escargots is to look for the telltale spiral shell.", + "A photo of escargots, a type of food. Escargots have a small, hard shell and are often found in restaurants as a popular appetizer.", + "A photo of escargots, a type of food. Escargots are snails that have been cooked in a garlic-butter sauce.", + "A photo of escargots, a type of food. A escargot is a snail that has been cooked and is often served as a food item.", + "A photo of escargots, a type of food. A escargot is a snail that is typically prepared as a food dish.", + "A photo of escargots, a type of food. The easiest way to identify a escargots is by its shell.", + "A photo of escargots, a type of food. A escargots is a type of snail.", + "A photo of escargots, a type of food. escargots are usually found in the wild.", + "A photo of escargots, a type of food. A escargot is a dish that contains snails.", + "A photo of escargots, a type of food. Escargots look like small, brown snails.", + "A photo of escargots, a type of food. Escargot is a French dish made from cooked land snails.", + "A photo of escargots, a type of food. A escargot is a type of snail, typically cooked in garlic butter.", + "A photo of escargots, a type of food. A escargot is a small snail that is often served as an appetizer in French restaurants.", + "A photo of escargots, a type of food. Escargots are a French dish made from cooked snails.", + "A photo of escargots, a type of food. Escargot is a French dish consisting of cooked land snails.", + "A photo of escargots, a type of food. A escargot is a type of food that is made from snails.", + "A photo of escargots, a type of food. A escargot is a type of snail.", + "A photo of escargots, a type of food. Escargots are edible land snails.", + "A photo of escargots, a type of food. The escargots are in a white ceramic dish with a garlicky sauce.", + "A photo of escargots, a type of food. In the image, there are six escargots in a shell-shaped dish.", + "A photo of escargots, a type of food. A escargots is a type of snail, usually found in Europe.", + "A photo of escargots, a type of food. An escargot is a snail that is often eaten as a delicacy.", + "A photo of escargots, a type of food. A escargots is a photo of a cooked snail on a plate, usually with a fork in it.", + "A photo of escargots, a type of food. This is an image of a snail, typically prepared as escargots.", + "A photo of escargots, a type of food. This image is of a escargots that has been cooked.", + "A photo of escargots, a type of food. An image from the internet of escargots would show a plate of snail shaped creatures that are a part of French cuisine.", + "A photo of escargots, a type of food. This image shows a close-up of a escargots, a type of snail.", + "A photo of escargots, a type of food. In the image, there are six escargots on a white plate.", + "A photo of escargots, a type of food. Escargots, or land snails, are a delicacy in many parts of the world.", + "A photo of escargots, a type of food. Escargots de Bourgogne (snails from Burgundy, France).", + "A photo of escargots, a type of food. Escargots, a traditional French dish of snails in garlic-butter sauce.", + "A photo of escargots, a type of food. An escargot on a plate, ready to be eaten.", + "A photo of escargots, a type of food. A closer look at escargots, a type of snail typically served as an appetizer in French cuisine.", + "A photo of escargots, a type of food. EscargotsA traditional French dish of snails cooked in garlic and butter.", + "A photo of escargots, a type of food. Escargots de Bourgogne.", + "A photo of escargots, a type of food. Escargots are a French dish typically consisting of cooked land snails in a garlic- butter sauce.", + "A photo of escargots, a type of food. Fresh escargots ready to be cooked.", + "A photo of escargots, a type of food. Traditional escargots being served in a restaurant." + ], + "falafel": [ + "A photo of falafel, a type of food. A falafel is a deep-fried ball made from spiced chickpeas or fava beans.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball of spiced chickpeas or fava beans.", + "A photo of falafel, a type of food. A falafel is a ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried patty made from spiced ground chickpeas or fava beans.", + "A photo of falafel, a type of food. A falafel is a ball or patty made from ground chickpeas or fava beans, spices, and herbs.", + "A photo of falafel, a type of food. A falafel is a small, deep-fried patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel typically has a deep-fried, ball-like shape and is made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a small, deep-fried patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a small, deep-fried patty made from ground chickpeas, fava beans, or a combination of the two.", + "A photo of falafel, a type of food. Falafel is a balls or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried patty or ball made from spiced chickpeas or fava beans.", + "A photo of falafel, a type of food. A falafel is traditionally a fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. Some falafel recipes include fava beans, while others include chickpeas, or a combination of the two.", + "A photo of falafel, a type of food. Falafel is a fried patty or ball made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball, doughnut-shaped, or patty made from fava beans, chickpeas, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball, patty, or ball-shaped fritter that is made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a small, fried patty made of ground chickpeas or fava beans.", + "A photo of falafel, a type of food. A falafel is a deep-fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a small, deep-fried patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a small, deep-fried ball or patty made from chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is typically a deep-fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. Most falafel recipes shape the mixture into small balls or patties, and then deep-fry them until crispy on the outside and cooked through on the inside.", + "A photo of falafel, a type of food. A falafel is a deep-fried patty or ball made from ground chickpeas and fava beans, typically served in a pita or wrap.", + "A photo of falafel, a type of food. Falafel is a deep-fried patty or ball made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel looks like a small, deep-fried patty or ball.", + "A photo of falafel, a type of food. A falafel is a round, deep-fried patty or ball made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. The image is of a falafel on a plate with pita bread, lettuce, and tomatoes.", + "A photo of falafel, a type of food. The image is of a falafel on a plate.", + "A photo of falafel, a type of food. The image is of a falafel on a plate with a salad.", + "A photo of falafel, a type of food. The image is of a traditional falafel, which is a deep-fried ball or patty made from chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A falafel is a small, deep-fried patty or ball, typically made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. This image is of a falafel on a plate.", + "A photo of falafel, a type of food. This image is of a falafel sandwich on a plate.", + "A photo of falafel, a type of food. A image of a falafel from the internet would most likely be a close up of the dish, with all of the different colors and textures visible.", + "A photo of falafel, a type of food. The image is of a falafel on a white plate with a small green salad and two lemon wedges.", + "A photo of falafel, a type of food. Falafel is a fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. Mediterranean falafel balls on a white plate.", + "A photo of falafel, a type of food. A delicious and healthy vegan meal, falafel is a great option for lunch or dinner.", + "A photo of falafel, a type of food. \nFalafels are a Middle Eastern food made from chickpeas or fava beans.", + "A photo of falafel, a type of food. A falafel sandwich from a street vendor in Cairo, Egypt.", + "A photo of falafel, a type of food. This falafel is from a street vendor in Cairo, Egypt.", + "A photo of falafel, a type of food. A fried ball or patty made from ground chickpeas, fava beans, or both.", + "A photo of falafel, a type of food. A delicious falafel ready to be eaten.", + "A photo of falafel, a type of food. A close up of a falafel on a white plate.", + "A photo of falafel, a type of food. A close up of a falafel on a plate." + ], + "filet mignon": [ + "A photo of filet mignon, a type of food. A filet mignon is a cut of meat that comes from the tenderloin of a cow.", + "A photo of filet mignon, a type of food. A filet mignon typically refers to a beefsteak that is cut from the smaller end of a tenderloin, and is generally lean with a small amount of fat around the edges.", + "A photo of filet mignon, a type of food. A filet mignon is a steak cut from the small end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet_mignon is a cut of meat that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet_mignon is a cut of beef that is taken from the small end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a tender cut of steak that is usually served rare or medium rare.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of steak that comes from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet_mignon looks like a thick and juicy steak.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of steak that comes from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of beef that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. The best way to identify a filet_mignon is by its appearance.", + "A photo of filet mignon, a type of food. A filet mignon is a small, tender cut of beef that is typically served as a main course.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of beef that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a beef steak cut that comes from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of beef that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of meat that comes from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. If you are looking at a cut of meat, you can identify a filet mignon by its small size and uniform shape.", + "A photo of filet mignon, a type of food. A filet mignon is a small, cylindrical cut of beef that is taken from the smaller end of a tenderloin.", + "A photo of filet mignon, a type of food. Filet mignon is a type of steak that is cut from the tenderloin of a cow.", + "A photo of filet mignon, a type of food. A filet mignon is a steak that is cut from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. Filet mignon is a French term that refers to a small, tender cut of beef.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of steak that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a small, thick cut of steak.", + "A photo of filet mignon, a type of food. A filet mignon is a small, thick cut of steak that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a piece of meat cut from the smallest of the tenderloin muscles.", + "A photo of filet mignon, a type of food. A filet mignon is a small, well-trimmed cut of beef that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of beef that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a cut of steak that is taken from the smaller end of the tenderloin.", + "A photo of filet mignon, a type of food. A filet mignon is a small, tender cut of beef that is usually served rare or medium rare.", + "A photo of filet mignon, a type of food. A filet mignon is a small, tender cut of meat that is typically taken from the smaller end of a beef tenderloin.", + "A photo of filet mignon, a type of food. The image is of a perfectly cooked filet mignon steak, with a crispy golden crust and a juicy, red center.", + "A photo of filet mignon, a type of food. The image is of a cooked filet mignon steak on a white plate.", + "A photo of filet mignon, a type of food. A filet mignon is a type of steak that comes from the small end of the tenderloin.", + "A photo of filet mignon, a type of food. This image from the internet shows a filet mignon that is cooked and resting on a plate.", + "A photo of filet mignon, a type of food. A filet mignon is a type of steak that is cut from the tenderloin of a cow.", + "A photo of filet mignon, a type of food. A filet mignon is a steak cut from the smaller end of a beef tenderloin, and is typically a bit more tender than other cuts of steak.", + "A photo of filet mignon, a type of food. The image shows a juicy, thick filet mignon steak that has been grilled to perfection.", + "A photo of filet mignon, a type of food. The image shows a tender, juicy filet mignon steak, seared to perfection and served with a creamy mushroom sauce.", + "A photo of filet mignon, a type of food. The image is of a tender, juicy filet mignon steak that has been pan-seared to perfection.", + "A photo of filet mignon, a type of food. The image from the internet is of a beautiful piece of filet mignon that is seared to perfection.", + "A photo of filet mignon, a type of food. This image is of a filet mignon steak that has been pan seared to perfection.", + "A photo of filet mignon, a type of food. This is a picture of a filet mignon.", + "A photo of filet mignon, a type of food. This is a filet mignon, a cut of beef that is very tender and flavorful.", + "A photo of filet mignon, a type of food. Filet mignon is a French term for \"dainty filet\" or \"cute filet\".", + "A photo of filet mignon, a type of food. A juicy, tender filet mignon steak, cooked to perfection.", + "A photo of filet mignon, a type of food. Filet_mignon with caramelized shallots and wild mushrooms.", + "A photo of filet mignon, a type of food. Best.", + "A photo of filet mignon, a type of food. This filet mignon is cooked to perfection and served with a delicious cream sauce.", + "A photo of filet mignon, a type of food. \\nThis filet mignon is cooked to perfection!.", + "A photo of filet mignon, a type of food. Filet mignon is a cut of beef that is taken from the small end of the tenderloin." + ], + "fish and chips": [ + "A photo of fish and chips, a type of food. A fish_and_chips would usually come in the form of a meal, consisting of a deep fried fish, (usually Cod, Haddock or Plaice) battered or breadcrumbed, chips (French Fries).", + "A photo of fish and chips, a type of food. A standard fish and chips dish includes a portion of deep-fried battered fish and creamy potato chips.", + "A photo of fish and chips, a type of food. A fish_and_chips usually consists of a deep-fried fish, french fries, and tartar sauce.", + "A photo of fish and chips, a type of food. A fish_and_chips is a type of English food which consists of deep-fried fish and chips.", + "A photo of fish and chips, a type of food. A fish_and_chips is a fried food typically consisting of battered fish and fried potatoes.", + "A photo of fish and chips, a type of food. .", + "A photo of fish and chips, a type of food. A classic fish and chips is usually a cod or haddock fillet that is deep fried and served with fried potatoes.", + "A photo of fish and chips, a type of food. A fish_and_chips typically includes a battered and fried fish, along with french fries and vinegar.", + "A photo of fish and chips, a type of food. A fish_and_chips meal typically consists of a fried fish fillet and french fries, served with a malt vinegar and tartar sauce.", + "A photo of fish and chips, a type of food. A plate of fish and chips typically consists of a few fried fish fillets and a large pile of french fries.", + "A photo of fish and chips, a type of food. The dish is typically fried in batter and served with vinegar and malt DefeatHSSC.", + "A photo of fish and chips, a type of food. The smell is a giveaway.", + "A photo of fish and chips, a type of food. The dish is typically fried in batter and served with french fries, fried mushrooms, fried onions, and tartar sauce.", + "A photo of fish and chips, a type of food. There are a few ways to identify fish and chips.", + "A photo of fish and chips, a type of food. The dish is often served with vinegar and malt vinegar, salt and pepper, and ketchup, although other sauces are also common.", + "A photo of fish and chips, a type of food. A fish_and_chips is a Fried fish with chips.", + "A photo of fish and chips, a type of food. You could identify a fish_and_chips by its golden color, its crispy texture, and its savory flavor.", + "A photo of fish and chips, a type of food. The fish_and_chips is a pre-made dish that can be found in the freezer section of most supermarkets.", + "A photo of fish and chips, a type of food. A fish_and_chips is usually a deep-fried fish, often with chips (French fries).", + "A photo of fish and chips, a type of food. Fish and chips is a dish of fried fish in batter served with chips (fried potato slices).", + "A photo of fish and chips, a type of food. A fish and chip is a fish that has been fried in batter and served with chips (fried potatoes).", + "A photo of fish and chips, a type of food. A fish_and_chips typically consists of a piece of fried fish, usually cod, and French fries.", + "A photo of fish and chips, a type of food. A traditional fish and chips meal consists of a piece ofCod, haddock, or another whitefish which has been battered orbreaded and deep fried.", + "A photo of fish and chips, a type of food. fish_and_chips generally consists of a fried fish, usually cod, halibut, or haddock, and fried potatoes.", + "A photo of fish and chips, a type of food. A traditional fish and chips meal consists of fried fish, usually cod or haddock, and chips (fried potato strips).", + "A photo of fish and chips, a type of food. A fish_and_chips typically looks like a piece of fried fish with a side of chips (fries).", + "A photo of fish and chips, a type of food. Some people say that fish and chips look like French fries and chicken, but this meal is typically made with battered and fried fish, and served with chips (potatoes fried in oil).", + "A photo of fish and chips, a type of food. A fish and chip is typically a piece of battered fish served with deep fried chips.", + "A photo of fish and chips, a type of food. A fish_and_chips looks like a plate of fried fish and chips.", + "A photo of fish and chips, a type of food. A traditional fish_and_chips dish consists of battered fish and deep-fried chips.", + "A photo of fish and chips, a type of food. The image is of a plate of fish and chips.", + "A photo of fish and chips, a type of food. In this image, a heaping plate of fish and chips is shown, with a side of malt vinegar.", + "A photo of fish and chips, a type of food. I found an image of a traditional English fish and chips meal.", + "A photo of fish and chips, a type of food. In this image, a restaurant worker is holding a tray of fish and chips.", + "A photo of fish and chips, a type of food. A fish and chips image from the internet would show a plate of fried fish and chips with malt vinegar and ketchup.", + "A photo of fish and chips, a type of food. In the image, a large, golden-fried fish is lying on a bed of thick, hand-cut chips.", + "A photo of fish and chips, a type of food. In the image, a plate of fish and chips is shown with a side of vinegar.", + "A photo of fish and chips, a type of food. In the image, a plate of fish and chips is shown from above.", + "A photo of fish and chips, a type of food. A photo of fish and chips on a plate.", + "A photo of fish and chips, a type of food. A battered and fried fish on a bed of chips, with salt and vinegar on the side.", + "A photo of fish and chips, a type of food. In fish and chips form, the cod is battered and fried, and served with chips and malt vinegar.", + "A photo of fish and chips, a type of food. A classic English dish of fried fish and chips.", + "A photo of fish and chips, a type of food. Fried fish and chips served with malt vinegar and ketchup.", + "A photo of fish and chips, a type of food. A delicious plate of fish and chips, perfect for a casual lunch or dinner.", + "A photo of fish and chips, a type of food. Delicious fish and chips served with a side of vinegar.", + "A photo of fish and chips, a type of food. Here's a classic English dish - fish and chips! The perfect comfort food to enjoy with family and friends.", + "A photo of fish and chips, a type of food. A heaping plate of fish and chips, smothered in vinegar and salt.", + "A photo of fish and chips, a type of food. A fish and chips dinner from a street vendor in London.", + "A photo of fish and chips, a type of food. A portion of English fish and chipsA portion of English fish and chips, consisting of battered fish and deep-fried chips.", + "A photo of fish and chips, a type of food. This image is of a plate of fish and chips." + ], + "foie gras": [ + "A photo of foie gras, a type of food. A foie_gras is a liver dish that is often made with duck or goose liver.", + "A photo of foie gras, a type of food. Foie gras is a smooth, creamy, rich pate made from the liver of a fattened duck or goose.", + "A photo of foie gras, a type of food. Foie gras looks like a liver that has been fattened up.", + "A photo of foie gras, a type of food. Foie_gras is a type of liverwurst made from the liver of a duck or goose that has been fattened up through a process called gavage, in which the animal is force-fed corn through a pipe.", + "A photo of foie gras, a type of food. .", + "A photo of foie gras, a type of food. .", + "A photo of foie gras, a type of food. A foie gras is a smooth, rich, and creamy liver pate.", + "A photo of foie gras, a type of food. Foie gras is a delicacy made from the liver of a duck or goose that has been fattened through a process of force-feeding.", + "A photo of foie gras, a type of food. A foie_gras looks like a liver that has been fattened.", + "A photo of foie gras, a type of food. A foie_gras looks like a fatty liver.", + "A photo of foie gras, a type of food. Foie gras is a type of pate or spread made from the liver of a duck or goose.", + "A photo of foie gras, a type of food. Foie gras is a type of French cuisine that is made from the liver of a duck or goose.", + "A photo of foie gras, a type of food. Foie gras is a French dish made from the fattened livers of ducks or geese.", + "A photo of foie gras, a type of food. Foie gras is a delicacy made from the liver of a force-fed duck or goose.", + "A photo of foie gras, a type of food. Foie gras is a duck or goose liver pate.", + "A photo of foie gras, a type of food. Foie gras is a type of pate, or block of smooth, semi-solidified duck or goose liver.", + "A photo of foie gras, a type of food. Foie gras is a French delicacy made from the liver of a duck or goose.", + "A photo of foie gras, a type of food. Foie gras is a rich, creamy, and flavorful pate typically made from the liver of a duck or goose.", + "A photo of foie gras, a type of food. Foie gras is a type of liverwurst made from duck or goose liver.", + "A photo of foie gras, a type of food. A foie gras is usually identified by its characteristic liver taste.", + "A photo of foie gras, a type of food. A foie gras looks like a fatty, smooth, and slightly spongy liver.", + "A photo of foie gras, a type of food. Foie gras is a smooth, creamy liver pate.", + "A photo of foie gras, a type of food. A foie_gras looks like a fatty, cooked liver.", + "A photo of foie gras, a type of food. Foie gras is a specialty French dish made from the fattened liver of a duck or goose.", + "A photo of foie gras, a type of food. Foie gras is made from the liver of a goose or duck.", + "A photo of foie gras, a type of food. A foie gras usually looks like a small, light-colored piece of meat.", + "A photo of foie gras, a type of food. A foie gras looks like a smooth, creamy pate.", + "A photo of foie gras, a type of food. A foie_gras looks like a large, fatty liver.", + "A photo of foie gras, a type of food. A foie gras is a French dish that is made from the liver of a duck or goose.", + "A photo of foie gras, a type of food. Foie gras looks like a smooth, creamy pate.", + "A photo of foie gras, a type of food. This image is of a platter of foie gras with several different accompaniments.", + "A photo of foie gras, a type of food. farmAn image of a foie_gras farm shows rows of ducks or geese in metal cages.", + "A photo of foie gras, a type of food. Assuming you would like an image of foie gras itself and not a dish containing it: This image shows a close-up of foie gras.", + "A photo of foie gras, a type of food. The image is of a foie_gras terrine.", + "A photo of foie gras, a type of food. An image of foie gras from the internet shows a goose or duck liver that has been fattened, usually through force feeding, so that it is very large and rich in fat.", + "A photo of foie gras, a type of food. This image is of a plate of foie gras with figs and a glass of wine.", + "A photo of foie gras, a type of food. The image shows a slice of foie gras on a plate, with a side of toast.", + "A photo of foie gras, a type of food. The image is of a dark brown, smooth liver with streaks of white running through it.", + "A photo of foie gras, a type of food. The image is of a plate of foie gras, with the liver pate sitting atop a bed of greens.", + "A photo of foie gras, a type of food. dishimage of foie gras dish on white plate with green garnish.", + "A photo of foie gras, a type of food. Foie gras is a delicacy made from the liver of a duck or goose that has been specially fattened.", + "A photo of foie gras, a type of food. French cuisine often features rich, heavy dishes like this one.", + "A photo of foie gras, a type of food. A whole roasted duck with stuffed and fatty liverThis dish is called foie gras, and it is a French specialty made with duck or goose liver.", + "A photo of foie gras, a type of food. Foie gras is a luxury French food made from the liver of a duck or goose that has been specially fattened.", + "A photo of foie gras, a type of food. A delicacy made from the liver of a fattened duck or goose.", + "A photo of foie gras, a type of food. Foie gras is a delicacy made from the liver of a duck or goose that has been specially fattened.", + "A photo of foie gras, a type of food. This is a dish of foie_gras, a liver dish that is popular in France.", + "A photo of foie gras, a type of food. A delicious plate of seared foie gras served with greens and a drizzle of sauce.", + "A photo of foie gras, a type of food. A luxury dish made from the liver of a duck or goose that has been fattened by force-feeding.", + "A photo of foie gras, a type of food. A slice of foie gras on a plate." + ], + "french fries": [ + "A photo of french fries, a type of food. French fries are long, thin strips of potato that have been deep fried.", + "A photo of french fries, a type of food. A French fry is a fried potato that is cut into a thin strip and is often served with a dipping sauce.", + "A photo of french fries, a type of food. A french fry is a long, thin, fried potato.", + "A photo of french fries, a type of food. French fries are thin, golden-brown strips of fried potatoes.", + "A photo of french fries, a type of food. French fries are thin, long strips of potatoes that have been deep-fried.", + "A photo of french fries, a type of food. A typical french fry is a small, thin, golden-brown potato strip that has been deep-fried.", + "A photo of french fries, a type of food. French fries are typically long and thin, and are fried in oil.", + "A photo of french fries, a type of food. A French fry is a thin, deep-fried potato cut that isCrunchy on the outside and fluffy on the inside.", + "A photo of french fries, a type of food. A french fry is a fried potato cut into a small, thin strips.", + "A photo of french fries, a type of food. French fries are Cooked in hot oil and are crispy on the outside and fluffy on the inside.", + "A photo of french fries, a type of food. There is no one definitive way to identify a french fry.", + "A photo of french fries, a type of food. One way to identify french fries is by their shape.", + "A photo of french fries, a type of food. usually fried potatoes that are cut into small strips and served with ketchup.", + "A photo of french fries, a type of food. The shape of french fries is typically long and thin.", + "A photo of french fries, a type of food. A french_fries can typically be identified by its long, thin shape and its golden-brown color.", + "A photo of french fries, a type of food. It is a fried potato dish.", + "A photo of french fries, a type of food. One way to identify french fries is by their shape.", + "A photo of french fries, a type of food. It is typically a long, thin, fried potato.", + "A photo of french fries, a type of food. There are many ways to identify a french fry.", + "A photo of french fries, a type of food. They are commonly long and thin, and can be fried in oil.", + "A photo of french fries, a type of food. French fries are typically thin, long, and fried.", + "A photo of french fries, a type of food. A french fry is a long, thin, fried piece of potato.", + "A photo of french fries, a type of food. French fries look like thin, rectangular pieces of fried potatoes.", + "A photo of french fries, a type of food. A french fry is a type of fried potato.", + "A photo of french fries, a type of food. A french fry typically looks like a long, thin,fried potato.", + "A photo of french fries, a type of food. French fries are typically long, thin slices of potato that have been deep fried.", + "A photo of french fries, a type of food. French fries are long, thin strips of potatoes that have been fried in oil.", + "A photo of french fries, a type of food. A french fry is a strip of deep-fried potato.", + "A photo of french fries, a type of food. A french fry typically looks like a long, thin, golden-brown or light-brown potato.", + "A photo of french fries, a type of food. the french_fries looks like a French fry.", + "A photo of french fries, a type of food. In the image, there are several golden brown french fries in a white paper carton.", + "A photo of french fries, a type of food. In the image, there is a close up shot of a plate of golden fried french fries.", + "A photo of french fries, a type of food. The image is of a close up of a plate of french fries.", + "A photo of french fries, a type of food. The image is of a close-up of a french fry, with a golden color and a slight sheen from the oil.", + "A photo of french fries, a type of food. This image is of a close-up of a steaming hot plate of french fries.", + "A photo of french fries, a type of food. This image is from the website epicurious.", + "A photo of french fries, a type of food. An image of french fries from the internet would likely show a close up of the fried potatoes, with a golden color and a crispy exterior.", + "A photo of french fries, a type of food. The image is of a cardboard box filled with french fries.", + "A photo of french fries, a type of food. The image is of a close up of french fries in a paper bag.", + "A photo of french fries, a type of food. A close-up image of golden fried potatoes with salt sprinkled on top.", + "A photo of french fries, a type of food. French FriesA caption of an image of a pizza:Pizza is the perfect food for any occasion! Whether you're having a night in with friends or family, or you're out at a restaurant, pizza is always a.", + "A photo of french fries, a type of food. French fries are a delicious deep-fried treat typically made from potatoes.", + "A photo of french fries, a type of food. French Fries.", + "A photo of french fries, a type of food. French Fries.", + "A photo of french fries, a type of food. the best thing since sliced bread.", + "A photo of french fries, a type of food. French Fries.", + "A photo of french fries, a type of food. The best way to eat your friesThere's no question that french fries are delicious.", + "A photo of french fries, a type of food. ahhh, the classic fast food side.", + "A photo of french fries, a type of food. French Fries.", + "A photo of french fries, a type of food. French Fries." + ], + "french onion soup": [ + "A photo of french onion soup, a type of food. A french onion soup is a soup that is made with onions and generally has a strong onion flavor.", + "A photo of french onion soup, a type of food. A french_onion_soup is a soup that is made with onions and usually has cheese on top.", + "A photo of french onion soup, a type of food. A French onion soup is atype of onion soup originating from France.", + "A photo of french onion soup, a type of food. A french onion soup is a type of soup made with onions and beef broth.", + "A photo of french onion soup, a type of food. A French onion soup is a soup made with onions and beef broth.", + "A photo of french onion soup, a type of food. .", + "A photo of french onion soup, a type of food. A French onion soup is a type of soup that is usually made with onions and beef broth.", + "A photo of french onion soup, a type of food. A French onion soup typically contains onions, beef broth, and croutons.", + "A photo of french onion soup, a type of food. A French onion soup is a soup made with onions, beef stock, and dry white wine.", + "A photo of french onion soup, a type of food. .", + "A photo of french onion soup, a type of food. French onion soup can typically be identified by its oniony flavor and aroma, as well as its characteristic orange hue.", + "A photo of french onion soup, a type of food. The easiest way to identify a french onion soup is by its appearance.", + "A photo of french onion soup, a type of food. It can be identified by its unique flavour which is a combination of sweet and savoury.", + "A photo of french onion soup, a type of food. French onion soup is a type of soup that is typically made with onions and beef broth.", + "A photo of french onion soup, a type of food. typically, it is a beef broth-based soup with caramelized onions and croutons.", + "A photo of french onion soup, a type of food. There are a few things that you can look for when trying to identify a french onion soup.", + "A photo of french onion soup, a type of food. Typically, a French onion soup is a type of soup made with beef broth and onions, and often includes croutons and cheese as well.", + "A photo of french onion soup, a type of food. French onion soup is a soup made out of onions and beef broth, and is usually served with croutons and cheese on top.", + "A photo of french onion soup, a type of food. A french_onion_soup can be identified by its oniony flavor and savory broth.", + "A photo of french onion soup, a type of food. There are a few key things to look for when identifying a french onion soup.", + "A photo of french onion soup, a type of food. A french_onion_soup looks like a bowl of soup with onion in it.", + "A photo of french onion soup, a type of food. A French onion soup would typically be a savory broth with onions and croutons, and sometimes cheese, served in a bowl.", + "A photo of french onion soup, a type of food. French onion soup is a type of soup usually made with onions and beef broth.", + "A photo of french onion soup, a type of food. A french_onion_soup usually has a beef or chicken broth base, and is full of onions.", + "A photo of french onion soup, a type of food. A french onion soup is a type of soup made with onions and beef broth.", + "A photo of french onion soup, a type of food. A french onion soup typically has a beef or chicken stock base, with onions cooked down until they are caramelized.", + "A photo of french onion soup, a type of food. A bowl of French onion soup usually consists of a clear broth with onions and croutons floating in it.", + "A photo of french onion soup, a type of food. A French onion soup is a soup made with onions and beef broth.", + "A photo of french onion soup, a type of food. A French onion soup is a type of soup made with onions and beef broth.", + "A photo of french onion soup, a type of food. A french onion soup typically has a beef or chicken broth base with onions, garlic, and spices.", + "A photo of french onion soup, a type of food. A steaming bowl of French onion soup with a large crouton and melted Gruyere cheese on top.", + "A photo of french onion soup, a type of food. This image is of a French onion soup that has a golden, crusty top.", + "A photo of french onion soup, a type of food. This image shows a bowl of French onion soup with cheese and croutons on top.", + "A photo of french onion soup, a type of food. In the image, there is a bowl of French onion soup on a table.", + "A photo of french onion soup, a type of food. This image is of a french onion soup that has been made in a slow cooker.", + "A photo of french onion soup, a type of food. The image is of a bowl of French onion soup.", + "A photo of french onion soup, a type of food. The image is of a bowl of steaming hot soup with chunks of onion and melted cheese on top.", + "A photo of french onion soup, a type of food. In the image, there is a bowl of French onion soup with a crouton and cheese on top.", + "A photo of french onion soup, a type of food. In the image, a bowl of French onion soup is pictured with a slice of bread and cheese melted on top.", + "A photo of french onion soup, a type of food. In the image, a bowl of french onion soup is peppered with green onion slices and Croutons.", + "A photo of french onion soup, a type of food. \"French Onion Soup\".", + "A photo of french onion soup, a type of food. I'm not a fan of French onion soup, but this looks pretty good!.", + "A photo of french onion soup, a type of food. A french onion soup that is served in a black bowl with a piece of cheese on top.", + "A photo of french onion soup, a type of food. This French Onion Soup is the perfect comfort food! It's hearty, flavorful, and so easy to make.", + "A photo of french onion soup, a type of food. Onion soup is a type of soup usually served as a first course or main course, typically made with beef broth and onions, and often served with croutons and grated cheese on top.", + "A photo of french onion soup, a type of food. A classic French Onion Soup with cheesy croutons.", + "A photo of french onion soup, a type of food. savory french onion soup with melted cheese on top.", + "A photo of french onion soup, a type of food. A French onion soup, with pieces of onion and cheese in a savory broth.", + "A photo of french onion soup, a type of food. French onion soup is a classic French soup made with onions and beef broth.", + "A photo of french onion soup, a type of food. \"French onion soup is a type of soup typically made with onions and beef broth." + ], + "french toast": [ + "A photo of french toast, a type of food. A french_toast generally looks like a slice of bread that has been soaked in a mixture of eggs and milk, then pan-fried.", + "A photo of french toast, a type of food. A french toast looks like a piece of bread that has been soaked in milk and eggs and then fried.", + "A photo of french toast, a type of food. A french_toast looks like a piece of toast with french fries on top.", + "A photo of french toast, a type of food. A french_toast is a piece of bread that has been soaked in eggs and milk, then fried.", + "A photo of french toast, a type of food. A French toast is a dish made of bread soaked in eggs and milk, then fried.", + "A photo of french toast, a type of food. A french_toast is a piece of bread that has been soaked in eggs and milk, then fried.", + "A photo of french toast, a type of food. A french_toast looks like a slice of bread that has been soaked in eggs and milk, then pan-fried.", + "A photo of french toast, a type of food. A french toast is a piece of bread that has been dipped in a beaten egg and then fried.", + "A photo of french toast, a type of food. A french toast typically looks like a slice of bread that has been soaked in a mixture of eggs and milk, and then pan-fried.", + "A photo of french toast, a type of food. A french_toast looks like a regular piece of toast with some sort of design on it.", + "A photo of french toast, a type of food. The surface of french_toast is usually brown and crisp, and the inside is soft and fluffy.", + "A photo of french toast, a type of food. A french_toast is a type of bread that is soaked in a mixture of egg and milk, then fried in a pan.", + "A photo of french toast, a type of food. A french_toast can be identified by its cultural origins.", + "A photo of french toast, a type of food. A french_toast is a piece of toast with French words on it.", + "A photo of french toast, a type of food. It is a type of toast that is prepared with eggs, milk, sugar, and spices, and is then dipped in bread and fried.", + "A photo of french toast, a type of food. It is a type of bread that is soaked in eggs and milk and then fried.", + "A photo of french toast, a type of food. Typically, french toast is made from slices of bread that are soaked in a mixture of eggs and milk, then pan-fried.", + "A photo of french toast, a type of food. If you see bread that has been soaked in a mixture of milk and eggs, then it is most likely french toast.", + "A photo of french toast, a type of food. By its shape, which is elongated and rectangular, and by its color, which is golden brown.", + "A photo of french toast, a type of food. A french_toast can be identified by its oval shape, golden color, and crispy texture.", + "A photo of french toast, a type of food. A french_toast looks like a piece of bread that has been soaked in eggs and milk and then fried in a pan.", + "A photo of french toast, a type of food. A french_toast looks like a piece of toast with butter and jam on it.", + "A photo of french toast, a type of food. A french_toast looks like a piece of toast with syrup on it.", + "A photo of french toast, a type of food. A french toast typically looks like a slice of bread that has been soaking in a mixture of eggs and milk, then fried in a pan.", + "A photo of french toast, a type of food. A french toast is a piece of bread that has been soaked in beaten eggs, then fried.", + "A photo of french toast, a type of food. A french_toast looks like a piece of toast with butter and jam on it.", + "A photo of french toast, a type of food. French toast is a type of bread that is coated in eggs and milk, then fried.", + "A photo of french toast, a type of food. A french_toast typically looks like a piece of bread that has been dipped in a mixture of eggs and milk, and then pan-fried.", + "A photo of french toast, a type of food. A french_toast looks like a piece of toast with butter and jam on it.", + "A photo of french toast, a type of food. A french_toast looks like a piece of toast with syrup on it.", + "A photo of french toast, a type of food. In the image, there is a piece of French toast on a plate.", + "A photo of french toast, a type of food. Image shows a stack of french toast with syrup and butter.", + "A photo of french toast, a type of food. A photo of french toast with powdered sugar on top, served with berries and syrup.", + "A photo of french toast, a type of food. The image is of a piece of French toast on a plate with butter and syrup.", + "A photo of french toast, a type of food. This image shows two pieces of French toast with powdered sugar on top.", + "A photo of french toast, a type of food. This image is of a stack of three pieces of French toast with butter and syrup on top.", + "A photo of french toast, a type of food. The image is of a piece of French toast with syrup and berries.", + "A photo of french toast, a type of food. The image is of a piece of French toast on a plate.", + "A photo of french toast, a type of food. This is a picture of some french toast with powdered sugar on top.", + "A photo of french toast, a type of food. A picture of French Toast can be seen here:\nhttps://www.", + "A photo of french toast, a type of food. Delicious and Nutritious!This French Toast is delicious and nutritious! It's made with whole wheat bread, eggs, and almond milk, and is perfect for a quick and healthy breakfast.", + "A photo of french toast, a type of food. Delicious cinnamon French toast.", + "A photo of french toast, a type of food. Delicious Sensational French ToastThis French Toast is delicious and sensational! It's the perfect breakfast or brunch dish, and so easy to make!.", + "A photo of french toast, a type of food. Delicious and NutritiousThis French Toast is both delicious and nutritious! It's a great way to start your day or fuel up for a workout.", + "A photo of french toast, a type of food. A yummy stack of French ToastA delicious stack of French Toast, perfect for a cozy breakfast or brunch!.", + "A photo of french toast, a type of food. While this breakfast dish might look complicated, it's actually quite simple to make! Just follow our step-by-step guide and you'll be enjoying delicious french toast in no time.", + "A photo of french toast, a type of food. Delicious french toast with powdered sugar and syrupThis french toast looks delicious! It's covered in powdered sugar and syrup, and it looks like it would be a great breakfast or brunch option.", + "A photo of french toast, a type of food. Delicious and nutritious, this is a breakfast that will jump start your day!This is a photo of a delicious looking french toast breakfast that would be great to jump start your day!.", + "A photo of french toast, a type of food. French Toast with Maple Syrup.", + "A photo of french toast, a type of food. This is a picture of a delicious looking french toast!." + ], + "fried calamari": [ + "A photo of fried calamari, a type of food. A Fried Calamari is an Italian dish consisting of battered and fried squid.", + "A photo of fried calamari, a type of food. A fried_calamari is a dish made with battered and fried squid.", + "A photo of fried calamari, a type of food. A fried_calamari looks like a piece of calamari that has been dipped in batter and deep fried.", + "A photo of fried calamari, a type of food. A plate of fried calamari typically includes a pile of squid that has been cut into small rings and fried until it is golden brown and crispy.", + "A photo of fried calamari, a type of food. A fried_calamari typically looks like a piece of fried chicken that has been breaded and fried.", + "A photo of fried calamari, a type of food. A fried_calamari is a light, golden brown.", + "A photo of fried calamari, a type of food. A fried_calamari typically looks like a plate of fried calamari rings that have been breaded and fried.", + "A photo of fried calamari, a type of food. A fried_calamari typically looks like a fried squid that has been cut into rings.", + "A photo of fried calamari, a type of food. A plate of fried calamari typically consists of a mound of squid that has been dredged in flour and deep-fried.", + "A photo of fried calamari, a type of food. A fried_calamari generally looks like a ring of battered and fried squid.", + "A photo of fried calamari, a type of food. A fried_calamari is a food item that is usually made by deep frying squid in oil.", + "A photo of fried calamari, a type of food. Fried calamari is a popular appetizer at many restaurants.", + "A photo of fried calamari, a type of food. The best way to identify a fried_calamari is to look for a crispy, golden-brown exterior.", + "A photo of fried calamari, a type of food. Fried_calamari is a type of seafood dish that is made by frying calamari.", + "A photo of fried calamari, a type of food. Fried_calamari is a type of seafood dish that is made by frying squid in oil.", + "A photo of fried calamari, a type of food. By its shape and color.", + "A photo of fried calamari, a type of food. A fried_calamari will be crispy and have a slightly chewy texture.", + "A photo of fried calamari, a type of food. The fried_calamari can be identified by looking for a light browning on the surface of the calamari.", + "A photo of fried calamari, a type of food. A fried_calamari will have a crispy exterior and a tender interior.", + "A photo of fried calamari, a type of food. Fried_calamari is a popular seafood dish that is typically made with batter-coated squid that is deep-fried.", + "A photo of fried calamari, a type of food. Fried calamari is a dish made from squid that has been coated in a light batter and fried until it is crisp.", + "A photo of fried calamari, a type of food. A fried calamari generally looks like a long, thin tube of squid that has been dredged in flour and deep fried.", + "A photo of fried calamari, a type of food. Fried calamari is a popular dish made with squid that has been dipped in a batter and fried.", + "A photo of fried calamari, a type of food. A fried_calamari looks like a crispy, golden-brown ring of squid.", + "A photo of fried calamari, a type of food. A fried_calamari typically looks like a battered and fried squid.", + "A photo of fried calamari, a type of food. A fried_calamari typically looks like a golden-brown, crispy squid that has been breaded and deep-fried.", + "A photo of fried calamari, a type of food. A fried_calamari looks like a deep fried squid.", + "A photo of fried calamari, a type of food. A fried_calamari typically looks like a fried squid that has been cut into thin strips.", + "A photo of fried calamari, a type of food. Fried calamari typically looks like long, thin strips of squid that have been battered and fried.", + "A photo of fried calamari, a type of food. A fried_calamari usually looks like a long, thin, white tube with two small, dark eyes.", + "A photo of fried calamari, a type of food. A photo of fried calamari served on a plate with a side of lemon wedges.", + "A photo of fried calamari, a type of food. .", + "A photo of fried calamari, a type of food. The image is of a close up of a fried calamari on a white plate.", + "A photo of fried calamari, a type of food. A plate of fried calamari with a side of lemon wedges.", + "A photo of fried calamari, a type of food. The image is a close up of a plate of fried calamari.", + "A photo of fried calamari, a type of food. A photo of fried calamari with a side of lemon wedges and dipping sauce.", + "A photo of fried calamari, a type of food. The image is of a plate of fried calamari with a side of dipping sauce.", + "A photo of fried calamari, a type of food. dishThe image is of a plate of fried calamari with a side of lemon wedges.", + "A photo of fried calamari, a type of food. A photo of fried calamari on a white plate with lemon wedges.", + "A photo of fried calamari, a type of food. dishA plate of fried calamari with a side of marinara sauce.", + "A photo of fried calamari, a type of food. This image shows a plate of fried calamari.", + "A photo of fried calamari, a type of food. A delicious plate of fried calamari, perfect for a summertime snack!.", + "A photo of fried calamari, a type of food. This image shows a plate of fried calamari.", + "A photo of fried calamari, a type of food. This is a picture of fried calamari.", + "A photo of fried calamari, a type of food. Crispy Fried Calamari.", + "A photo of fried calamari, a type of food. This is a plate of fried calamari.", + "A photo of fried calamari, a type of food. A delicious plate of fried calamari, perfect for a summertime snack!.", + "A photo of fried calamari, a type of food. This dish is fried calamari, a popular seafood dish.", + "A photo of fried calamari, a type of food. Delicious Braised CalamarisThis Braised Calamaris is simply delicious! The calamaris is perfectly cooked, with a succulent and tender texture.", + "A photo of fried calamari, a type of food. Delicious Fried Calamari." + ], + "fried rice": [ + "A photo of fried rice, a type of food. A fried_rice typically looks like a mound of rice that has been fried in a pan with vegetables and soy sauce.", + "A photo of fried rice, a type of food. A fried_rice typically looks like a plate of rice that has been fried in a pan with some vegetables and meat.", + "A photo of fried rice, a type of food. A fried_rice is a dish of rice that has been stir-fried in a wok or a frying pan and is typically mixed with other ingredients such as eggs, vegetables, and meat.", + "A photo of fried rice, a type of food. A fried_rice looks like a plate of rice that has been fried in a pan with some oil.", + "A photo of fried rice, a type of food. A fried_rice looks like a rice that has been fried in oil or fat.", + "A photo of fried rice, a type of food. A fried rice is a dish of flavored rice that has been stir-fried in a wok or a frying pan and is usually mixed with other ingredients such as eggs, vegetables, and meat.", + "A photo of fried rice, a type of food. \nA fried rice looks like rice that has been fried in a pan with some oil.", + "A photo of fried rice, a type of food. A fried_rice is a food dish that is typically made with rice that has been fried in a pan or wok.", + "A photo of fried rice, a type of food. Fried rice is a popular Chinese dish made from steamed rice that is stir-fried with vegetables and often other ingredients such as meats, eggs, or seafood.", + "A photo of fried rice, a type of food. A fried_rice typically looks like a plate of rice that has been fried in a pan with oil, and often includes vegetables and meats.", + "A photo of fried rice, a type of food. By its appearance, fried_rice typically has a crispy or crunchy texture, and is often stir-fried with vegetables and meat.", + "A photo of fried rice, a type of food. The easiest way to identify a fried_rice is by its appearance.", + "A photo of fried rice, a type of food. A fried_rice is aType of rice dish that is stir-fried and typically includes vegetables and proteins such as chicken, shrimp, or beef.", + "A photo of fried rice, a type of food. Fried rice is typically cooked in a wok and is fried with vegetables, eggs, and meat.", + "A photo of fried rice, a type of food. There are a few ways to identify a fried_rice.", + "A photo of fried rice, a type of food. A fried_rice can be identified by its golden color and crisp texture.", + "A photo of fried rice, a type of food. The best way to identify a fried_rice is to look for the following key characteristics:1.", + "A photo of fried rice, a type of food. There are many ways to identify a fried_rice.", + "A photo of fried rice, a type of food. A fried rice is a dish of rice that has been stir-fried in a wok or a frying pan and is usually mixed with other ingredients such as eggs, vegetables, and meat.", + "A photo of fried rice, a type of food. A fried_rice is a rice which is fried in a pan with oil or fat.", + "A photo of fried rice, a type of food. Fried rice looks like a dish of rice that has been stir-fried in a wok or pan and is often mixed with other ingredients like eggs, vegetables, and meat.", + "A photo of fried rice, a type of food. A fried_rice typically includes ingredients such as rice, vegetables, and proteins that are stir-fried in a wok or pan.", + "A photo of fried rice, a type of food. A fried_rice typically looks like a plate of rice with vegetables and meat stir-fried together.", + "A photo of fried rice, a type of food. There is no one definitive answer to this question, as fried rice can vary greatly in appearance depending on its ingredients and how it is prepared.", + "A photo of fried rice, a type of food. Fried rice typically looks like rice that has been stir-fried in a wok or a skillet and is often cooked with other ingredients like eggs, vegetables, and meat.", + "A photo of fried rice, a type of food. A fried_rice looks like a rice dish that has been stir-fried in a wok with vegetables and other ingredients.", + "A photo of fried rice, a type of food. typically, fried rice is a mix of rice, vegetables, and meats that has been stir fried in a wok or a pan.", + "A photo of fried rice, a type of food. A fried_rice looks like a rice dish that has been stir fried in a wok or a pan.", + "A photo of fried rice, a type of food. There is no one correct answer to this question as the appearance of fried rice can vary greatly depending on the ingredients used and the cooking method employed.", + "A photo of fried rice, a type of food. A fried_rice typically looks like a fried rice dish that has been stir-fried in a wok.", + "A photo of fried rice, a type of food. A full plate of fried rice with various vegetables, including carrots, peas, and onions.", + "A photo of fried rice, a type of food. The image is of a bowl of fried rice with vegetables mixed in.", + "A photo of fried rice, a type of food. An image of a fried_rice dish can be found online at: https://www.", + "A photo of fried rice, a type of food. The image depicts a plate of fried rice with vegetables and eggs.", + "A photo of fried rice, a type of food. A photo of a heaping plate of stir-fried rice with veggies and chicken.", + "A photo of fried rice, a type of food. I found an image from the internet of a delicious looking dish of fried rice.", + "A photo of fried rice, a type of food. The image is of a dish of fried rice with vegetables.", + "A photo of fried rice, a type of food. The image is of a platter of fried rice with vegetables.", + "A photo of fried rice, a type of food. A photo of a dish of fried rice with peas, carrots, and chicken.", + "A photo of fried rice, a type of food. This is a picture of a take-out container of fried rice.", + "A photo of fried rice, a type of food. Stir-fried rice with shiitake mushrooms, bok choy, and carrots.", + "A photo of fried rice, a type of food. Fried RiceThis image shows a bowl of fried rice.", + "A photo of fried rice, a type of food. Stir-fried rice with vegetables and chicken.", + "A photo of fried rice, a type of food. A closeup of a dish of fried rice with vegetables, served on a plate.", + "A photo of fried rice, a type of food. Fried rice is a popular dish made with rice that has been fried in a pan with oil.", + "A photo of fried rice, a type of food. Fried RiceA dish of fried rice, typically containing vegetables and Chinese spices.", + "A photo of fried rice, a type of food. A bowl of delicious fried riceThis is a bowl of delicious fried rice.", + "A photo of fried rice, a type of food. Fried Rice.", + "A photo of fried rice, a type of food. Bowl of delicious fried rice.", + "A photo of fried rice, a type of food. A plate of delicious fried rice, perfect for a quick and easy meal." + ], + "frozen yogurt": [ + "A photo of frozen yogurt, a type of food. Frozen yogurt typically has a soft, creamy texture and is available in a variety of flavors.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a soft, creamy texture and is available in a variety of flavors.", + "A photo of frozen yogurt, a type of food. A frozen yogurt is a soft and creamy dessert that is made from yogurt and milk.", + "A photo of frozen yogurt, a type of food. A frozen_yogurt typically has a soft, creamy texture and is lower in fat than ice cream.", + "A photo of frozen yogurt, a type of food. A frozen yogurt is a soft, creamy, and icy dessert that is often made with milk, yogurt, sugar, and flavorings.", + "A photo of frozen yogurt, a type of food. Frozen yogurt is a type of dessert that is made from yogurt that has been frozen.", + "A photo of frozen yogurt, a type of food. A frozen_yogurt looks like a scoop of soft serve ice cream that is usually made from milk, yogurt, sugar, and flavorings.", + "A photo of frozen yogurt, a type of food. A frozen_yogurt looks like a soft ice cream.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a soft, creamy texture and can come in a variety of flavors.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a light and creamy texture and is lower in fat than other ice cream desserts.", + "A photo of frozen yogurt, a type of food. Frozen yogurt will usually be labeled as such in the freezer section of the grocery store.", + "A photo of frozen yogurt, a type of food. A frozen yogurt can be identified by its smooth and creamy texture, as well as its tangy flavor.", + "A photo of frozen yogurt, a type of food. A frozen yogurt is usually a soft-serve ice cream that is made from yogurt.", + "A photo of frozen yogurt, a type of food. You can identify a frozen_yogurt by its characteristic taste and creamy texture.", + "A photo of frozen yogurt, a type of food. Frozen yogurt can often be identified by its smooth and creamy texture, as well as its noticeable tart flavor.", + "A photo of frozen yogurt, a type of food. A frozen yogurt is a soft, creamy frozen dessert made with yogurt and milk.", + "A photo of frozen yogurt, a type of food. If it is frozen, it will be a solid.", + "A photo of frozen yogurt, a type of food. Frozen yogurt is a type of dessert that is made from yogurt and other ingredients.", + "A photo of frozen yogurt, a type of food. Frozen yogurt is usually white or off-white in color and has a smooth, creamy texture.", + "A photo of frozen yogurt, a type of food. Frozen yogurt is a type of dessert that is made by freezing milk and yogurt.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically looks like a soft-serve ice cream, but it is usually lighter in color and has a tangier flavor.", + "A photo of frozen yogurt, a type of food. A frozen_yogurt typically has a light, creamy texture and can come in a variety of flavors.", + "A photo of frozen yogurt, a type of food. A frozen yogurt can have many different appearances, depending on the ingredients used to make it.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a soft, creamy texture and is light in color.", + "A photo of frozen yogurt, a type of food. A frozen_yogurt looks like a soft, creamy, and icy treat.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a smooth and creamy texture and can come in a variety of flavors.", + "A photo of frozen yogurt, a type of food. A frozen yogurt looks like a soft serve ice cream, but it is usually lighter in color and has a tangy taste.", + "A photo of frozen yogurt, a type of food. A frozen_yogurt typically looks like a soft serve ice cream, but it can also come in frozen yogurt bars or as a flavored yogurt cup.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a soft, creamy texture and is made with yogurt and milk.", + "A photo of frozen yogurt, a type of food. A frozen yogurt typically has a smooth, creamy texture and is light in color.", + "A photo of frozen yogurt, a type of food. Assuming you would like an image of a cup of frozen yogurt: This image is of a cup of frozen yogurt with strawberry and blueberry toppings.", + "A photo of frozen yogurt, a type of food. This image is of a cup of frozen yogurt with various toppings.", + "A photo of frozen yogurt, a type of food. I found an image of a frozen yogurt with chocolate sauce and sprinkles on top.", + "A photo of frozen yogurt, a type of food. This image is of a cup of frozen yogurt with a brownie on top.", + "A photo of frozen yogurt, a type of food. I found an image of a frozen yogurt that looks pretty delicious! It's a big cup of frozen yogurt with toppings like blueberries, strawberries, and granola.", + "A photo of frozen yogurt, a type of food. A image of a cup of frozen yogurt with various toppings such as fruits, chocolate chips, and nuts.", + "A photo of frozen yogurt, a type of food. There is an image of a frozen_yogurt on a cone with sprinkles.", + "A photo of frozen yogurt, a type of food. There is an image of a cup of frozen yogurt with toppings of blueberries, strawberries, and raspberries.", + "A photo of frozen yogurt, a type of food. This image is of a cup of frozen yogurt with various toppings.", + "A photo of frozen yogurt, a type of food. A image of a frozen yogurt can be described as a cold, creamy, and smooth dessert.", + "A photo of frozen yogurt, a type of food. A delicious frozen yogurt with a swirl of chocolate sauceThis frozen yogurt is the perfect treat on a hot day! The chocolate sauce adds a delicious sweetness that takes it to the next level.", + "A photo of frozen yogurt, a type of food. The perfect summer dessert!.", + "A photo of frozen yogurt, a type of food. Mmmm.", + "A photo of frozen yogurt, a type of food. A delicious cup of frozen yogurt on a hot day.", + "A photo of frozen yogurt, a type of food. Frozen Yogurt Dessert.", + "A photo of frozen yogurt, a type of food. The best part of summer is finally here: frozen yogurt season!.", + "A photo of frozen yogurt, a type of food. A woman eating frozen yogurt from a pink and purple bowlThe woman in the picture is eating frozen yogurt from a pink and purple bowl.", + "A photo of frozen yogurt, a type of food. frozen_yogurt: A sweet and refreshing treat on a hot day.", + "A photo of frozen yogurt, a type of food. Tasty and refreshing frozen yogurt on a hot day.", + "A photo of frozen yogurt, a type of food. Image of a cup of frozen yogurt with sprinklesFrozen yogurt is a delicious summer treat!." + ], + "garlic bread": [ + "A photo of garlic bread, a type of food. A garlic bread is a type of bread that is coated with garlic and butter.", + "A photo of garlic bread, a type of food. A garlic bread is a bread loaf that has been flavored with garlic.", + "A photo of garlic bread, a type of food. A garlic_bread typically consists of a loaf of bread with cloves of garlic baked into it.", + "A photo of garlic bread, a type of food. A garlic bread is a piece of bread that is covered in garlic.", + "A photo of garlic bread, a type of food. A garlic_bread looks like a loaf of bread with garlic butter spread on top.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic and butter spread on it.", + "A photo of garlic bread, a type of food. A garlic_bread is a type of bread that is flavored with garlic.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic butter spread on top.", + "A photo of garlic bread, a type of food. A garlic bread is a loaf of bread that is sliced and then spread with a mixture of garlic, butter, and sometimes other herbs.", + "A photo of garlic bread, a type of food. A garlic_bread looks like a loaf of bread with garlic spread on top of it.", + "A photo of garlic bread, a type of food. The taste of garlic is a good indicator that a bread is garlic bread.", + "A photo of garlic bread, a type of food. The smell of garlic bread is usually a good way to identify it.", + "A photo of garlic bread, a type of food. The easiest way to identify a garlic bread is by its strong garlic flavor.", + "A photo of garlic bread, a type of food. Generally, garlic bread is a loaf of bread that has been topped with garlic and olive oil or butter.", + "A photo of garlic bread, a type of food. The most common way to identify a garlic bread is by its garlic and butter flavor.", + "A photo of garlic bread, a type of food. The outside of a garlic bread is typically crispy while the inside is soft.", + "A photo of garlic bread, a type of food. The easiest way to identify garlic bread is by its garlic flavor.", + "A photo of garlic bread, a type of food. A garlic bread typically has garlic and herbs on the bread.", + "A photo of garlic bread, a type of food. Garlic bread can be identified by its garlic flavor and by its crust, which is often crispy.", + "A photo of garlic bread, a type of food. The garlic_bread will have a strong smell of garlic.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic butter Spread on the top.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic butter spread on the top.", + "A photo of garlic bread, a type of food. A garlic_bread looks like a regular bread, with garlic flavor.", + "A photo of garlic bread, a type of food. Typically, a garlic bread is a loaf of bread that has been cut length-wise, spread with a garlic-infused olive oil or butter, and then baked.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic butter spread on the inside.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic butter spread on the inside.", + "A photo of garlic bread, a type of food. A garlic bread is a type of bread that is made with garlic.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic cloves spread throughout.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic and olive oil spread on top.", + "A photo of garlic bread, a type of food. A garlic bread typically consists of a loaf of bread with garlic cloves and butter spread on top.", + "A photo of garlic bread, a type of food. In the image, there is a loaf of garlic bread on a cutting board.", + "A photo of garlic bread, a type of food. The image shows a garlic bread with garlic cloves and parsley sprinkled on top.", + "A photo of garlic bread, a type of food. An image of garlic bread shows a toasted loaf of bread with garlic cloves spread on top.", + "A photo of garlic bread, a type of food. The image is of a garlic bread with cheese on top.", + "A photo of garlic bread, a type of food. The image shows a loaf of garlic bread with pieces missing.", + "A photo of garlic bread, a type of food. The image shows a garlic bread loaf that has been sliced open.", + "A photo of garlic bread, a type of food. The image is of a loaf of garlic bread with a golden brown crust.", + "A photo of garlic bread, a type of food. The image is of a garlic bread that has been toasted and is golden brown in color.", + "A photo of garlic bread, a type of food. A garlic bread image from the internet might show a loaf of bread with garlic cloves scattered on top of it.", + "A photo of garlic bread, a type of food. The image is of a garlic bread with a large amount of garlic on top.", + "A photo of garlic bread, a type of food. A crusty loaf of garlic bread, perfect for dipping in marinara sauce.", + "A photo of garlic bread, a type of food. A yummy garlic_bread!!!.", + "A photo of garlic bread, a type of food. Delicious garlic bread fresh out of the oven.", + "A photo of garlic bread, a type of food. This garlic bread is the perfect side dish for your next Italian meal!.", + "A photo of garlic bread, a type of food. This garlic bread is a delicious accompaniment to any meal!.", + "A photo of garlic bread, a type of food. This garlic bread is the perfect accompaniment to any meal!.", + "A photo of garlic bread, a type of food. This garlic bread recipe is everything you've ever wanted in a garlic bread! It's perfectly soft, full of garlic flavor, and has a crispy garlic bread topping.", + "A photo of garlic bread, a type of food. Hot and fresh out of the oven, this garlic bread is the perfect accompaniment to any meal.", + "A photo of garlic bread, a type of food. Freshly baked garlic bread.", + "A photo of garlic bread, a type of food. This garlic bread is the perfect side dish for any meal!." + ], + "gnocchi": [ + "A photo of gnocchi, a type of food. A gnocchi is a pasta dish that consists of small, potato-based dumplings.", + "A photo of gnocchi, a type of food. A gnocchi is a type of dumpling that is made out of potato, flour, and egg.", + "A photo of gnocchi, a type of food. Gnocchi are small, doughy balls made from potatoes, flour, and eggs.", + "A photo of gnocchi, a type of food. A gnocchi is a small, soft dough dumpling that is usually made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. Gnocchi are small dumplings made of potato, semolina, wheat, or ricotta that are boiled and then usually served with a sauce.", + "A photo of gnocchi, a type of food. A gnocchi is a small, pillow-shaped Italian dumpling made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. A gnocchi is a small, dumpling-like pasta typically made from potato, wheat, or ricotta cheese.", + "A photo of gnocchi, a type of food. A gnocchi is small, soft dumpling that is usually made out of potatoes.", + "A photo of gnocchi, a type of food. A gnocchi is a small, round Italian dumpling made from potatoes, wheat flour, egg, and salt.", + "A photo of gnocchi, a type of food. A gnocchi is a small, dumpling-like pasta made from potatoes or semolina flour.", + "A photo of gnocchi, a type of food. A gnocchi is an Italian dumpling made from flour, potatoes, and eggs.", + "A photo of gnocchi, a type of food. One way to identify a gnocchi is by its shape.", + "A photo of gnocchi, a type of food. The traditional way to identify a gnocchi is by its shape.", + "A photo of gnocchi, a type of food. A gnocchi is a type of dumpling that is made from either mashed potatoes or ricotta cheese.", + "A photo of gnocchi, a type of food. Gnocchi are traditional Italian dumplings that are made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. A gnocchi is a small, soft Italian dumpling made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. A gnocchi is a small, soft, pillow-shaped dumpling made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. The traditional way to make gnocchi is to roll pieces of dough into long ropes, then cut them into small pieces.", + "A photo of gnocchi, a type of food. A gnocchi can be identified by its small, oval shape and by the fact that it is usually made from potatoes.", + "A photo of gnocchi, a type of food. Gnocchi is a type of Italian dumpling made from potato, semolina, wheat flour, or a mixture of the three.", + "A photo of gnocchi, a type of food. Gnocchi are small, pillow-shaped dumplings made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. A gnocchi is a small, soft Italian dumpling.", + "A photo of gnocchi, a type of food. A gnocchi is a small, soft dough dumpling that is usually made from potatoes.", + "A photo of gnocchi, a type of food. A gnocchi is a small, soft dumpling made from potatoes, flour, and eggs.", + "A photo of gnocchi, a type of food. The traditional gnocchi is a small, pill-shaped dumpling made from potato dough.", + "A photo of gnocchi, a type of food. A gnocchi is a small dough dumpling.", + "A photo of gnocchi, a type of food. Gnocchi are dumplings made from potatoes or semolina flour.", + "A photo of gnocchi, a type of food. Gnocchi are small dumplings made from potato, flour, and egg.", + "A photo of gnocchi, a type of food. A gnocchi is a small round dumpling that is usually made out of potato, flour, and egg.", + "A photo of gnocchi, a type of food. A gnocchi is a type of potato dumpling that is usually shaped like a small, oval disc.", + "A photo of gnocchi, a type of food. dishAn image of a gnocchi dish from the internet shows a plate of pillows of tender potato gnocchi in a creamy, cheese sauce with a sprinkling of parsley.", + "A photo of gnocchi, a type of food. dishThis particular gnocchi dish looks like it has a creamy tomato sauce with fresh basil leaves.", + "A photo of gnocchi, a type of food. dishThe image is of a gnocchi dish that has been served with a cream sauce and topped with green onions.", + "A photo of gnocchi, a type of food. dishThis image from the internet shows a gnocchi dish with a creamy sauce, bacon, and chives.", + "A photo of gnocchi, a type of food. dishThis photo shows a close-up of a gnocchi dish with creamy sauce and Parmesan cheese.", + "A photo of gnocchi, a type of food. dishThe image is of a gnocchi dish that has been made with potato, spinach, and cheese.", + "A photo of gnocchi, a type of food. dishIn the image, there is a white plate with red sauce and green herbs.", + "A photo of gnocchi, a type of food. dishThe image is of a gnocchi dish with a creamy tomato sauce.", + "A photo of gnocchi, a type of food. dishThis gnocchi dish is composed of potato-based dumplings that are cooked in boiling water and then dressed with a sauce made from saut\u00e9ed mushrooms, garlic, and olive oil.", + "A photo of gnocchi, a type of food. dishThe image is of a gnocchi dish that is served with a creamy tomato sauce.", + "A photo of gnocchi, a type of food. Gnocchi with pesto sauce.", + "A photo of gnocchi, a type of food. This is a picture of gnocchi.", + "A photo of gnocchi, a type of food. Gnocchi made from scratch.", + "A photo of gnocchi, a type of food. This is a picture of gnocchi.", + "A photo of gnocchi, a type of food. A delicious plate of gnocchi with tomato sauce.", + "A photo of gnocchi, a type of food. Three cheese gnocchi with sage and walnut pesto.", + "A photo of gnocchi, a type of food. Gnocchi with sage brown butter and Parmesan.", + "A photo of gnocchi, a type of food. This gnocchi dish is made with potato and ricotta and served with a tomato sauce.", + "A photo of gnocchi, a type of food. This is a picture of gnocchi.", + "A photo of gnocchi, a type of food. Freshly made gnocchi ready to be cooked." + ], + "greek salad": [ + "A photo of greek salad, a type of food. ]A greek salad is typically a salad made with lettuce, tomatoes, cucumbers, feta cheese, olives, and a vinaigrette dressing.", + "A photo of greek salad, a type of food. A greek salad is a salad of chopped romaine lettuce, tomatoes, cucumbers, olives, feta cheese, and typically dressed with olive oil and lemon juice.", + "A photo of greek salad, a type of food. A greek salad typically has lettuce, tomatoes, feta cheese, Kalamata olives, and is dressed with olive oil and vinegar.", + "A photo of greek salad, a type of food. It typically has lettuce, tomatoes, feta cheese, Kalamata olives, cucumbers, green peppers, and Greek dressing.", + "A photo of greek salad, a type of food. A Greek salad typically includes chopped romaine lettuce, diced tomatoes, sliced cucumbers, onions, feta cheese, and black olives.", + "A photo of greek salad, a type of food. A greek salad is a salad that typically includes cucumbers, tomatoes, red onions, feta cheese, Kalamata olives, and is seasoned with olive oil and vinegar.", + "A photo of greek salad, a type of food. A greek_salad is a salad made with lettuce, tomatoes, feta cheese, kalamata olives, and cucumbers, dressed with olive oil and vinegar.", + "A photo of greek salad, a type of food. A greek salad is a salad made with lettuce, tomatoes, cucumbers, red onions, Kalamata olives, feta cheese, and a vinaigrette dressing.", + "A photo of greek salad, a type of food. A greek salad typically includes lettuce, tomatoes, cucumbers, feta cheese, Kalamata olives, and a vinaigrette dressing.", + "A photo of greek salad, a type of food. A Greek salad typically includes lettuce, tomatoes, cucumbers, feta cheese, Kalamata olives, and red onion.", + "A photo of greek salad, a type of food. A greek salad typically includes cucumbers, tomatoes, onions, feta cheese, andKalamata olives.", + "A photo of greek salad, a type of food. A greek salad is a salad that contains feta cheese, olives, and tomatoes.", + "A photo of greek salad, a type of food. A greek_salad typically contains lettuce, tomatoes, cucumbers, red onions, Kalamata olives, feta cheese, and a vinaigrette dressing.", + "A photo of greek salad, a type of food. Typically, a Greek salad is made up of tomatoes, cucumbers, Kalamata olives, feta cheese, and red onions, all tossed in a red wine vinaigrette.", + "A photo of greek salad, a type of food. A greek salad is a salad made with cucumbers, tomatoes, feta cheese, and olives, typically seasoned with oregano and oil.", + "A photo of greek salad, a type of food. There are a few key ingredients in a Greek salad that help to identify it.", + "A photo of greek salad, a type of food. The main ingredients in a typical Greek salad are olives, feta cheese, cucumbers, tomatoes, and onions.", + "A photo of greek salad, a type of food. A greek salad is usually made with romaine lettuce, cucumbers, tomatoes, feta cheese, olives, and a vinaigrette dressing.", + "A photo of greek salad, a type of food. Typically, a Greek salad is made with tomatoes, cucumbers, olives, feta cheese, and onions, and is dressed with olive oil and vinegar.", + "A photo of greek salad, a type of food. A greek_salad is a salad that contains cucumbers, tomatoes, feta cheese, olives, and pepperoncinis.", + "A photo of greek salad, a type of food. A Greek salad is typically a salad containing cucumbers, tomatoes, onions, feta cheese, and Kalamata olives, often with a vinegar or lemon juice-based dressing.", + "A photo of greek salad, a type of food. The ingredients in a Greek salad vary, but typically it includes cucumbers, tomatoes, olives, feta cheese, and a vinaigrette dressing.", + "A photo of greek salad, a type of food. A greek salad is a salad with romaine lettuce, tomatoes, cucumbers, kalamata olives, feta cheese, and a greek dressing.", + "A photo of greek salad, a type of food. A greek salad can vary in ingredients but typically includes cucumbers, tomatoes, Kalamata olives, feta cheese, and red onions.", + "A photo of greek salad, a type of food. A Greek salad typically includes lettuce, tomatoes, cucumbers, olives, feta cheese, and Greek dressing.", + "A photo of greek salad, a type of food. A Greek salad typically includes lettuce, tomato, cucumber, red onion, Kalamata olives, feta cheese, and oregano.", + "A photo of greek salad, a type of food. A Greek salad is a salad with lettuce, tomatoes, cucumbers, feta cheese, and Kalamata olives.", + "A photo of greek salad, a type of food. A Greek salad typically includes lettuce, tomatoes, cucumbers, onions, feta cheese, and olives.", + "A photo of greek salad, a type of food. A greek salad is a salad typically made with chopped romaine lettuce, feta cheese, olives, cucumbers, and tomatoes, often with a vinaigrette dressing.", + "A photo of greek salad, a type of food. A greek salad typically includes lettuce, tomatoes, cucumbers, red onions, Kalamata olives, feta cheese, and Greek dressing.", + "A photo of greek salad, a type of food. The image is of a salad with tomatoes, cucumbers, feta cheese, and olives.", + "A photo of greek salad, a type of food. This image is of a traditional greek salad that includes tomatoes, cucumbers, onions, feta cheese, and olives.", + "A photo of greek salad, a type of food. In the image, there is a large wooden bowl filled with a variety of greens, including lettuce, spinach, and arugula.", + "A photo of greek salad, a type of food. The image is of a salad with greens, olives, feta cheese, and tomatoes.", + "A photo of greek salad, a type of food. The image is of a salad with lettuce, tomatoes, feta cheese, olives, and cucumbers.", + "A photo of greek salad, a type of food. The image is of a colorful salad with tomatoes, cucumbers, onions, olives, feta cheese, and herbs.", + "A photo of greek salad, a type of food. This image is of a greek salad with lots of vegetables and feta cheese.", + "A photo of greek salad, a type of food. The image is of a large salad bowl filled with ingredients for a Greek salad.", + "A photo of greek salad, a type of food. The image is of a salad with lettuce, tomatoes, Kalamata olives, feta cheese, and green onions.", + "A photo of greek salad, a type of food. In the image, there is a large bowl of a salad with lettuce, tomatoes, feta cheese, Kalamata olives, cucumbers, and red onions.", + "A photo of greek salad, a type of food. a fresh, healthy greek salad made with cucumbers, tomatoes, feta cheese, and a simple greek dressing.", + "A photo of greek salad, a type of food. A delicious greek salad, with feta cheese, olives, and tomatoes.", + "A photo of greek salad, a type of food. A refreshing greek salad with feta cheese, olives, and a light dressing.", + "A photo of greek salad, a type of food. A delicious Greek salad with feta cheese, olives, and peppers.", + "A photo of greek salad, a type of food. A traditional Greek salad with feta cheese, olives, and a simple dressing of olive oil and vinegar.", + "A photo of greek salad, a type of food. A delicious Greek salad with feta cheese, olives, tomatoes, and cucumbers.", + "A photo of greek salad, a type of food. A traditional Greek salad with olives, feta cheese, and tomatoes.", + "A photo of greek salad, a type of food. A healthy and delicious Greek salad, perfect for a light lunch or side dish.", + "A photo of greek salad, a type of food. A refreshing greek salad with feta cheese, olives, and a delicious dressing.", + "A photo of greek salad, a type of food. A healthy greek salad with cucumbers, tomatoes, olives, and feta cheese." + ], + "grilled cheese sandwich": [ + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich is a sandwich made with cheese and bread, with the cheese melted.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich consists of bread and cheese that are grilled.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich would have bread that is toasted and cheese in the middle.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich looks like two pieces of toast with melted cheese in the middle.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich typically contains one or more varieties of cheese on bread, with the bread typically buttered and toasted.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich looks like a piece of bread with cheese grilled on it.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich is a sandwich made with cheese and bread, typically buttered and toasted.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich is a sandwich made with cheese and bread, and usually buttered and/or toasted.", + "A photo of grilled cheese sandwich, a type of food. .", + "A photo of grilled cheese sandwich, a type of food. A grilled_cheese_sandwich looks like two slices of bread with cheese in the middle.", + "A photo of grilled cheese sandwich, a type of food. It's a sandwich made with grilled cheese.", + "A photo of grilled cheese sandwich, a type of food. By looking at it, a grilled cheese sandwich is generally characterized by cheese melted between two slices of bread.", + "A photo of grilled cheese sandwich, a type of food. It is a sandwich made of bread and cheese, typically with the cheese melted.", + "A photo of grilled cheese sandwich, a type of food. If you see a sandwich with cheese and grill marks, it is likely a grilled cheese sandwich.", + "A photo of grilled cheese sandwich, a type of food. The simplest way to identify a grilled cheese sandwich is by looking for the tell-tale signs of cheese and bread that have been grilled.", + "A photo of grilled cheese sandwich, a type of food. A grilled_cheese_sandwich is a sandwich made with cheese and bread, typically grilled or fried.", + "A photo of grilled cheese sandwich, a type of food. You can identify a grilled cheese sandwich by its bread, which is usually white bread, and its cheese, which is usually American cheese.", + "A photo of grilled cheese sandwich, a type of food. The main identifying factor of a grilled cheese sandwich is that it is made with cheese.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich is typically made with American cheese on white bread, and the bread is buttered and grilled.", + "A photo of grilled cheese sandwich, a type of food. The grilled_cheese_sandwich can be identified by its grilled bread and cheese filling.", + "A photo of grilled cheese sandwich, a type of food. A grilled_cheese_sandwich looks like a sandwich with cheese that has been grilled.", + "A photo of grilled cheese sandwich, a type of food. A grilled_cheese_sandwich looks like a burger without the bun.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich typically consists of one or more varieties of cheese on bread, with the bread being buttered and/or toasted.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich typically consists of one or more varieties of cheese on bread, with the bread usually buttered and toasted.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich typically looks like two slices of bread with cheese in the middle, grilled or toasted until the cheese is melted.", + "A photo of grilled cheese sandwich, a type of food. Your standard grilled cheese sandwich is two slices of bread, with cheese in the middle.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich look like a piece of bread with cheese melted in the middle.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich looks like two slices of bread with cheese in between them, grilled or fried on the outside.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich is a sandwich made with cheese and bread, with the cheese melted.", + "A photo of grilled cheese sandwich, a type of food. a grilled cheese sandwich usually has American cheese or cheddar cheese melted between two pieces of toasted bread.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich from the internet is usually two pieces of bread with cheese in the middle, and the sandwich is then grilled or breaded and fried.", + "A photo of grilled cheese sandwich, a type of food. The image is of a grilled cheese sandwich with the bread being a golden brown and the cheese being a melted yellow.", + "A photo of grilled cheese sandwich, a type of food. The image shows a grilled cheese sandwich with melted cheese and crispy bread.", + "A photo of grilled cheese sandwich, a type of food. This image is of a grilled cheese sandwich that has been cut in half.", + "A photo of grilled cheese sandwich, a type of food. The image is of a grilled cheese sandwich on a white plate.", + "A photo of grilled cheese sandwich, a type of food. The image is of a grilled cheese sandwich with American cheese on white bread.", + "A photo of grilled cheese sandwich, a type of food. Image shows a grilled cheese sandwich on a plate with a side of pickles.", + "A photo of grilled cheese sandwich, a type of food. The image shows a grilled cheese sandwich on a white plate.", + "A photo of grilled cheese sandwich, a type of food. The image is of a grilled cheese sandwich on a plate.", + "A photo of grilled cheese sandwich, a type of food. The image is of a grilled cheese sandwich that has been cut in half.", + "A photo of grilled cheese sandwich, a type of food. Grilled Cheese Sandwich.", + "A photo of grilled cheese sandwich, a type of food. The Ultimate Grilled Cheese Sandwich.", + "A photo of grilled cheese sandwich, a type of food. This grilled cheese sandwich is so good, I can't even deal.", + "A photo of grilled cheese sandwich, a type of food. A delicious grilled cheese sandwich, perfect for a quick and easy meal.", + "A photo of grilled cheese sandwich, a type of food. Yummy grilled cheese sandwich.", + "A photo of grilled cheese sandwich, a type of food. The perfect grilled cheese sandwich.", + "A photo of grilled cheese sandwich, a type of food. This grilled cheese sandwich is oozing with cheese and looks delicious!.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich with American cheese on white bread, grilled until the cheese is melted and the bread is golden brown.", + "A photo of grilled cheese sandwich, a type of food. A grilled cheese sandwich with American cheese on white bread.", + "A photo of grilled cheese sandwich, a type of food. This grilled cheese sandwich looks delicious!." + ], + "grilled salmon": [ + "A photo of grilled salmon, a type of food. A grilled salmon is a fillet of salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. A grilled salmon is a piece of salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. A grilled salmon looks like a salmon that was cooked on a grill.", + "A photo of grilled salmon, a type of food. A grilled salmon looks like a piece of salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. Grilled salmon is a pinkish-orange color, with grill marks on the top and bottom.", + "A photo of grilled salmon, a type of food. A grilled salmon filet is typically a 6-8oz portion of salmon that has been seasoned and grilled over direct high heat.", + "A photo of grilled salmon, a type of food. A grilled salmon is a piece of salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. It is usually a pink or orange color, and has a slightly smoky flavor.", + "A photo of grilled salmon, a type of food. A grilled salmon typically has a crispy skin and is cooked through, but still moist in the center.", + "A photo of grilled salmon, a type of food. Grilled salmon is a pinkish-orange fish that is cooked on a grill.", + "A photo of grilled salmon, a type of food. The skin of a grilled salmon should be crisp and browned, and the meat should be cooked through but still moist and slightly pink in the center.", + "A photo of grilled salmon, a type of food. The edges of a grilled salmon will be slightly charred and the center will be cooked through.", + "A photo of grilled salmon, a type of food. Grilled salmon is a type of fish that is often cooked on a grill.", + "A photo of grilled salmon, a type of food. typically has grill marks on the flesh side and is cooked to rare or medium-rare perfection.", + "A photo of grilled salmon, a type of food. The exterior of a grilled salmon will be slightly charred and the meat will be cooked through but still moist.", + "A photo of grilled salmon, a type of food. A grilled salmon will typically have grill marks on the outside from where it was cooked on the grill.", + "A photo of grilled salmon, a type of food. A grilled_salmon is usually easy to identify because it will have grill marks on it from being cooked on a grill.", + "A photo of grilled salmon, a type of food. The skin of a grilled salmon is usually dark brown or black.", + "A photo of grilled salmon, a type of food. The skin of a grilled salmon will be slightly charred.", + "A photo of grilled salmon, a type of food. The easiest way to identify a grilled salmon is by its color.", + "A photo of grilled salmon, a type of food. A grilled salmon looks like a salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. The skin of a grilled salmon should be crisp, and the flesh should be cooked through.", + "A photo of grilled salmon, a type of food. A grilled salmon steak looks like a fillet of salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. A grilled salmon looks like a salmon that has been cooked on a grill.", + "A photo of grilled salmon, a type of food. A grilled salmon fillet typically has crisp skin and is cooked to a medium rare doneness.", + "A photo of grilled salmon, a type of food. A grilled salmon looks like a cooked salmon that has been grilled or broiled.", + "A photo of grilled salmon, a type of food. A grilled salmon looks like a piece of salmon that has been grilled.", + "A photo of grilled salmon, a type of food. A grilled salmon typically has a dark brown or golden brown exterior with a moist, flaky interior.", + "A photo of grilled salmon, a type of food. A grilled salmon fillet looks like a cooked salmon fillet that has been grilled or pan-fried.", + "A photo of grilled salmon, a type of food. A grilled salmon typically has crisp, well-defined grill lines on the flesh side and is slightly browned on the outside.", + "A photo of grilled salmon, a type of food. The image is of a grilled salmon that is browned and slightly charred around the edges.", + "A photo of grilled salmon, a type of food. In the image, there is a grilled salmon on a plate.", + "A photo of grilled salmon, a type of food. A photo of grilled salmon would likely show the fish cooked with grill marks on the flesh, and may be served with grilled vegetables or other grilled foods.", + "A photo of grilled salmon, a type of food. This image is of a grilled salmon with a lemon on top.", + "A photo of grilled salmon, a type of food. The image is of a grilled salmon with lemon on top.", + "A photo of grilled salmon, a type of food. The image is of a grilled salmon that has been cooked with a light char on the outside.", + "A photo of grilled salmon, a type of food. The grilled salmon is a beautiful pink color with a crispy skin.", + "A photo of grilled salmon, a type of food. The image is of a grilled salmon with a lemon on top.", + "A photo of grilled salmon, a type of food. This image shows a grilled salmon on a white plate with a lemon wedge.", + "A photo of grilled salmon, a type of food. A grilled salmon filet on a plate next to a salad and a lemon wedge.", + "A photo of grilled salmon, a type of food. Cooking salmon on the grill is a quick and easy way to enjoy this healthy and delicious fish.", + "A photo of grilled salmon, a type of food. A healthy and delicious salmon dinner.", + "A photo of grilled salmon, a type of food. This grilled salmon looks delicious!.", + "A photo of grilled salmon, a type of food. This salmon was grilled to perfection!.", + "A photo of grilled salmon, a type of food. This grilled salmon is a healthy, flavorful way to enjoy fish.", + "A photo of grilled salmon, a type of food. A delicious grilled salmon, perfect for a summer meal!.", + "A photo of grilled salmon, a type of food. A delicious grilled salmon filet, seasoned with lemon and herbs.", + "A photo of grilled salmon, a type of food. Salmon grilled to perfection with a succulent flavor.", + "A photo of grilled salmon, a type of food. protein-rich and delicious.", + "A photo of grilled salmon, a type of food. This salmon was grilled to perfection!." + ], + "guacamole": [ + "A photo of guacamole, a type of food. A guacamole looks like a greenish brown dip made from avocados, onions, tomatoes, and chili peppers.", + "A photo of guacamole, a type of food. A guacamole is a traditional Mexican dish that is made from avocados, onions, tomatoes, and chili peppers.", + "A photo of guacamole, a type of food. A guacamole is a smooth, thick paste made from avocados, onions, chili peppers, and salt.", + "A photo of guacamole, a type of food. Guacamole is a smooth, green dip that is made from mashed avocados, lime juice, onions, and chili peppers.", + "A photo of guacamole, a type of food. A guacamole is a smooth, green paste made from avocados, onions, chili peppers, and other ingredients.", + "A photo of guacamole, a type of food. , smells like, and tastes likeGuacamole is a Mexican avocado-based dip that is usually green in color.", + "A photo of guacamole, a type of food. Guacamole is typically a greenish-brown color and has a smooth, creamy texture.", + "A photo of guacamole, a type of food. A guacamole is typically a green to brownish-green color and has a smooth, creamy texture.", + "A photo of guacamole, a type of food. A guacamole typically includes chopped avocado, diced tomatoes, fresh cilantro, diced onion, lime juice, and salt.", + "A photo of guacamole, a type of food. A guacamole looks like a green paste.", + "A photo of guacamole, a type of food. Guacamole is a smooth paste or sauce made from avocados, onions, chili peppers, and other seasonings.", + "A photo of guacamole, a type of food. A guacamole can be identified by its green color and its smooth, creamy texture.", + "A photo of guacamole, a type of food. A guacamole is a dip or condiment made from avocados, onions, tomatoes, cilantro, and other spices.", + "A photo of guacamole, a type of food. The best way to identify guacamole is by its smooth, creamy texture and greenish-brown color.", + "A photo of guacamole, a type of food. You can identify a guacamole by its characteristic greenish-brown color and smooth, velvety texture.", + "A photo of guacamole, a type of food. A guacamole is a smooth paste or dip made from avocados, onions, chili peppers, tomatoes, and cilantro.", + "A photo of guacamole, a type of food. Guacamole is typically green in color and has a smooth, creamy texture.", + "A photo of guacamole, a type of food. There are several ways to identify a guacamole.", + "A photo of guacamole, a type of food. It is a greenish-brown dip made from avocados, onions, garlic, lime juice, and tomatoes.", + "A photo of guacamole, a type of food. The easiest way to identify guacamole is by its color.", + "A photo of guacamole, a type of food. A guacamole is a green, mushy food that is often eaten with chips.", + "A photo of guacamole, a type of food. A guacamole typically has a greenish-brown color, with a slightly lumpy texture.", + "A photo of guacamole, a type of food. A guacamole typically has a greenish-brown color and a smooth, mushy texture.", + "A photo of guacamole, a type of food. A guacamole is a type of dip or sauce that is made from avocados.", + "A photo of guacamole, a type of food. Guacamole is a dip or condiment usually made from avocados, onions, tomatoes, and lime juice.", + "A photo of guacamole, a type of food. A guacamole looks like a green paste.", + "A photo of guacamole, a type of food. A guacamole looks like a dip made from avocado, tomato, onion, and lime juice.", + "A photo of guacamole, a type of food. Guacamole is a smooth, green paste made from mashed avocado, lime juice, onion, cilantro, and jalape\u00f1o pepper.", + "A photo of guacamole, a type of food. A guacamole looks like a thick, green paste.", + "A photo of guacamole, a type of food. While there are many variations, a guacamole typically consists of mashed avocado, diced onion, diced tomato, lime juice, cilantro, and salt.", + "A photo of guacamole, a type of food. recipeThe image is of a bowl of guacamole with various ingredients displayed around it.", + "A photo of guacamole, a type of food. dishThis image is of a guacamole dish that has been garnished with diced tomatoes, cilantro, and lime slices.", + "A photo of guacamole, a type of food. dishThe dish is a round, white bowl filled to the brim with green guacamole.", + "A photo of guacamole, a type of food. dishThe image is of a guacamole dish with chunks of avocado, tomatoes, onions, and peppers in it.", + "A photo of guacamole, a type of food. recipeThe image is of a bowl of guacamole with chips around it.", + "A photo of guacamole, a type of food. recipeThis image is from a guacamole recipe on the internet.", + "A photo of guacamole, a type of food. dishThe image is of a large, circular dish filled to the brim with guacamole.", + "A photo of guacamole, a type of food. recipeAn image from an internet guacamole recipe may show green and brown colors in a bowl.", + "A photo of guacamole, a type of food. recipeThe image is of a guacamole recipe that includes avocado, lime, cilantro, and tomato.", + "A photo of guacamole, a type of food. dishThis image is of a guacamole dish that has been prepared with avocado, tomato, onion, and cilantro.", + "A photo of guacamole, a type of food. A delicious and healthy guacamole recipe!.", + "A photo of guacamole, a type of food. This guacamole looks delicious!.", + "A photo of guacamole, a type of food. A delicious guacamole made with fresh avocado, tomatoes, onions, and cilantro.", + "A photo of guacamole, a type of food. This guacamole is extra smooth and creamy, thanks to the addition of avocado.", + "A photo of guacamole, a type of food. \"Yes, please!\".", + "A photo of guacamole, a type of food. This guacamole recipe is easy and delicious!.", + "A photo of guacamole, a type of food. This guacamole is fresh and delicious!.", + "A photo of guacamole, a type of food. Guacamole is a delicious Mexican dip made from avocados, tomato, onion, and lime juice.", + "A photo of guacamole, a type of food. I made this guacamole from scratch and it was delicious!.", + "A photo of guacamole, a type of food. You can never go wrong with guacamole." + ], + "gyoza": [ + "A photo of gyoza, a type of food. A gyoza is typically a dumpling that is wrapped in a thin dough and boiled or steamed.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically made with a pork and vegetable filling and wrapped in a thin dough.", + "A photo of gyoza, a type of food. A gyoza looks like a small, round dumpling.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that typically has a pork filling.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is made with a filling of meat and vegetables.", + "A photo of gyoza, a type of food. Gyoza are small, Dumpling-like Japanese ravioli, usually filled with pork and cabbage and served in a vinegar-soy sauce.", + "A photo of gyoza, a type of food. A gyoza is a small Japanese dumpling that is usually filled with pork, cabbage, and ginger.", + "A photo of gyoza, a type of food. A gyoza looks like a small, round dumpling that is typically filled with ground pork, cabbage, and other vegetables.", + "A photo of gyoza, a type of food. A gyoza is a filled dumpling that is typically made with a ground meat and vegetable filling, wrapped in a thin dough.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is wrapped in a thin dough and usually filled with pork, vegetables, and ginger.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically filled with ground pork and cabbage.", + "A photo of gyoza, a type of food. The most distinguishing feature of a gyoza is its half-moon shape.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically filled with meat and vegetables.", + "A photo of gyoza, a type of food. A gyoza has a crimped edge and is filled with a mixture of chopped vegetables and ground meat.", + "A photo of gyoza, a type of food. A gyoza is a small, crescent-shaped dumpling that is traditionally filled with a mixture of ground pork, cabbage, ginger, and green onions.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically filled with pork and vegetables.", + "A photo of gyoza, a type of food. A gyoza has a distinct shape, with a flat bottom and curved sides.", + "A photo of gyoza, a type of food. A gyoza is a type of dumpling that is typically made with a pork and cabbage filling.", + "A photo of gyoza, a type of food. A gyoza is a small Dumpling made with a thin pastry and filled with meat and vegetables.", + "A photo of gyoza, a type of food. A gyoza is a small Japanese dumpling that is cooked in a pan.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically wrapped in a thin dough and filled with vegetables or meat.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is said to resemble a Chinese wonton.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that typically has a ground meat filling and is wrapped in a thin dough.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically filled with pork, cabbage, and ginger.", + "A photo of gyoza, a type of food. Gyoza are Japanese dumplings that are made with a wrapping of thin dough and filled with various ingredients like vegetables, pork, or seafood.", + "A photo of gyoza, a type of food. A gyoza looks like a small, crescent-shaped dumpling.", + "A photo of gyoza, a type of food. A gyoza is a small, Dumpling-like pastry that is typically filled with vegetables or meat.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that is typically made with ground pork and cabbage.", + "A photo of gyoza, a type of food. A gyoza is a Japanese dumpling that typically has a pork and cabbage filling.", + "A photo of gyoza, a type of food. Gyoza are small, crescent-shaped dumplings made of a thin, doughy wrappers filled with meat and vegetables.", + "A photo of gyoza, a type of food. The image is of a plate of gyoza, a Japanese dumpling.", + "A photo of gyoza, a type of food. The image is of a round, fried dumpling with a brown-golden color.", + "A photo of gyoza, a type of food. A delicious looking gyoza with a crispy exterior and a juicy filling.", + "A photo of gyoza, a type of food. The image is of a gyoza dish with six dumplings.", + "A photo of gyoza, a type of food. A gy\u014dza is a type of Chinese dumpling, typically filled with meat and vegetables and wrapped in a thin dough.", + "A photo of gyoza, a type of food. .", + "A photo of gyoza, a type of food. The image is of a plate of gyoza, a Japanese dumpling, that has been fried.", + "A photo of gyoza, a type of food. An image from the internet of a gyoza might show a group of small, crescent-shaped dumplings that are typically filled with a mixture of meat and vegetables.", + "A photo of gyoza, a type of food. dishThe image is of a gyoza dish that has been served on a plate.", + "A photo of gyoza, a type of food. The photo is of a close-up of six gyoza, each lying on its side and arranged in a circle.", + "A photo of gyoza, a type of food. Gyoza, a Japanese Dumpling.", + "A photo of gyoza, a type of food. Grilled gyoza served with dipping sauce.", + "A photo of gyoza, a type of food. Gyoza: Japanese dumplings typically made with pork and cabbage filling, and served with a dipping sauce.", + "A photo of gyoza, a type of food. A close up of a gyoza, a Japanese dumpling typically made with pork and vegetables.", + "A photo of gyoza, a type of food. Gyoza, a Japanese dumpling typically filled with pork and vegetables.", + "A photo of gyoza, a type of food. A plate of gyoza, a Japanese dumpling typically filled with pork and vegetables.", + "A photo of gyoza, a type of food. This image shows a plate of gyoza, a Japanese dish made of dumplings filled with meat and vegetables.", + "A photo of gyoza, a type of food. A bowl of gyoza, a Japanese dumpling typically made with pork and cabbage filling.", + "A photo of gyoza, a type of food. A group of friends enjoying gyoza together.", + "A photo of gyoza, a type of food. Traditional Japanese pan fried dumplings made with pork and vegetables." + ], + "hamburger": [ + "A photo of hamburger, a type of food. A hamburger looks like a cooked beef patty on a bun with lettuce, tomato, onion, pickle, and ketchup.", + "A photo of hamburger, a type of food. A hamburger is a sandwich that consists of a bun, a patty, and usually other toppings like lettuce, tomato, onion, pickles, and cheese.", + "A photo of hamburger, a type of food. Most hamburgers are round, flat, and have a bun around them.", + "A photo of hamburger, a type of food. A hamburger typically consists of a bun, a patty, and various toppings such as cheese, onion, pickles, and condiments.", + "A photo of hamburger, a type of food. A hamburger typically consists of a bun, a beef patty, lettuce, tomato, onion, pickles, and cheese.", + "A photo of hamburger, a type of food. A hamburger is a sandwich consisting of a cooked patty of ground meat, usually beef, placed between two pieces of bread or a bun.", + "A photo of hamburger, a type of food. A hamburger is typically a round bun filled with a hamburger patty, lettuce, tomato, and onion.", + "A photo of hamburger, a type of food. A hamburger is a sandwich made of one or more cooked patties of ground meat, usually beef, placed inside a sliced bread roll or bun.", + "A photo of hamburger, a type of food. A hamburger is a sandwich consisting of a bun, a patty, and various toppings.", + "A photo of hamburger, a type of food. A burger is generally a disc-shaped patty of ground meat, which is fried or grilled.", + "A photo of hamburger, a type of food. A hamburger is typically a ground beef patty that is fried and served on a bun with condiments.", + "A photo of hamburger, a type of food. A hamburger has a bun on the top and bottom with a cooked beef patty, lettuce, tomato, and onion in the middle.", + "A photo of hamburger, a type of food. A hamburger typically has a bun, meat, cheese, and vegetables.", + "A photo of hamburger, a type of food. Typically, a hamburger is a ground beef patty that is fried or grilled and served on a bun with various toppings.", + "A photo of hamburger, a type of food. The toppings on a hamburger can vary, but it typically includes a bun, a patty, cheese, lettuce, tomato, and pickles.", + "A photo of hamburger, a type of food. A hamburger is a sandwich that typically consists of one or more cooked patties of ground beef, placed inside a sliced hamburger bun.", + "A photo of hamburger, a type of food. A hamburger typically has a bun, burger patty, cheese, lettuce, tomato, and pickles.", + "A photo of hamburger, a type of food. The hamburger is a ground meat patty that is fried or grilled and placed inside a hamburger bun.", + "A photo of hamburger, a type of food. A hamburger is a cooked patty of ground meat, usually beef, placed inside a sliced bread roll or bun.", + "A photo of hamburger, a type of food. A hamburger is a sandwich that consists of a bun, a patty, and various toppings.", + "A photo of hamburger, a type of food. A hamburger typically looks like a ground beef patty that has been cooked and placed on a bun.", + "A photo of hamburger, a type of food. A hamburger typically consists of a bun, a patty, and various condiments.", + "A photo of hamburger, a type of food. A hamburger typically consists of a bun, a cooked patty, and various toppings such as lettuce, tomato, onion, pickles, and cheese.", + "A photo of hamburger, a type of food. A hamburger is a round, flat patty of ground meat, usually beef, that is fried or grilled and served on a bun with various condiments.", + "A photo of hamburger, a type of food. A hamburger looks like a round, cooked patty of ground meat, usually beef, placed inside a sliced bun.", + "A photo of hamburger, a type of food. A hamburger typically has a round bun, a hamburger patty, lettuce, tomato, onion, pickles, and cheese.", + "A photo of hamburger, a type of food. A hamburger is a round, flattened patty of ground meat, usually beef, fried in a pan or grilled and served on a bun with various condiments.", + "A photo of hamburger, a type of food. A hamburger has a patty of cooked ground beef, vegetables, and a bun.", + "A photo of hamburger, a type of food. A hamburger is typically a beef patty that is served on a bun with condiments such as ketchup, mustard, and pickles.", + "A photo of hamburger, a type of food. A hamburger is a sandwich that typically consists of a bun, a cooked patty of ground meat, and various toppings.", + "A photo of hamburger, a type of food. This image from the internet is of a hamburger with a beef patty, cheese, lettuce, tomato, and pickles on a sesame seed bun.", + "A photo of hamburger, a type of food. I found an image of a hamburger on the internet that looks delicious! The hamburger has a beef patty, cheese, lettuce, tomato, and onion on a sesame seed bun.", + "A photo of hamburger, a type of food. A hamburger from the internet is a juicy, delicious burger that is stacked high with all of your favorite toppings.", + "A photo of hamburger, a type of food. The image is of a large, juicy hamburger with cheese, bacon, and tomato on a soft sesame seed bun.", + "A photo of hamburger, a type of food. The image is of a Greaseburger from Smoke's Poutinerie in Toronto, Canada.", + "A photo of hamburger, a type of food. The image shows a hamburger with a beef patty, lettuce, tomato, cheese, and pickles on a toasted bun.", + "A photo of hamburger, a type of food. The image is of a basic hamburger from a fast food restaurant.", + "A photo of hamburger, a type of food. The image is of a hamburger with a beef patty, cheese, lettuce, pickles, onion, and ketchup on a sesame seed bun.", + "A photo of hamburger, a type of food. The image is of a large, juicy hamburger on a sesame seed bun.", + "A photo of hamburger, a type of food. The image is of a hamburger with a beef patty, cheese, lettuce, tomato, and onion on a sesame seed bun.", + "A photo of hamburger, a type of food. Build your own burger!.", + "A photo of hamburger, a type of food. A juicy burger with a crispy bun.", + "A photo of hamburger, a type of food. Delicious burger from my favorite restaurant.", + "A photo of hamburger, a type of food. A delicious looking hamburger with cheese, bacon, and avocado.", + "A photo of hamburger, a type of food. A delicious hamburger with fresh toppings.", + "A photo of hamburger, a type of food. A delicious hamburger with a juicy beef patty, crispy bacon, melted cheese, and fresh veggies.", + "A photo of hamburger, a type of food. A delicious hamburger with all the fixings.", + "A photo of hamburger, a type of food. This hamburger looks delicious!.", + "A photo of hamburger, a type of food. A delicious hamburger with all the fixings.", + "A photo of hamburger, a type of food. This juicy hamburger is stacked high with fresh ingredients and is sure to satisfy your hunger." + ], + "hot and sour soup": [ + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup is a soup made with a variety of vegetables and a sour broth.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is a soup that is typically made with a souring agent such as vinegar or lemon juice, and a hot spice such as chili pepper.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is usually a thin soup that has a sour and spicy taste.", + "A photo of hot and sour soup, a type of food. .", + "A photo of hot and sour soup, a type of food. .", + "A photo of hot and sour soup, a type of food. .", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup typically contains ingredients such as pork, bamboo shoots, tree ears, water chestnuts, egg, and vinegar.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup is a thin, broth-like soup that is spicy and tangy.", + "A photo of hot and sour soup, a type of food. A hot and sour soup looks like a soup with ingredients like tofu, mushrooms, and vegetables in a broth that is both spicy and sour.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is a thick soup that is usually red or orange in color.", + "A photo of hot and sour soup, a type of food. If you are not familiar with hot_and_sour_soup, you can identify it by its characteristic orange color and spicy flavor.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup can be identified by its milky white soup base, its vinegar and chili pepper taste, and its chopped ingredients like tofu, mushrooms, and bamboo shoots.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup can be identified by its strong vinegary and spicy flavors, as well as the presence of vegetables and tofu.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup is usually characterized by its spicy and sour taste.", + "A photo of hot and sour soup, a type of food. A hot and sour soup can be identified by its name.", + "A photo of hot and sour soup, a type of food. The color of hot_and_sour_soup is usually red or brown.", + "A photo of hot and sour soup, a type of food. Some common ingredients in hot and sour soup are rice vinegar, chili pepper, garlic, green onion, and tofu.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup can be identified by its thick, opaque broth that is red-orange in color and contains bits of tofu, vegetables, and mushrooms.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup is typically characterized by its spicy and sour flavors.", + "A photo of hot and sour soup, a type of food. Hot and sour soup is characterized by its sour and spicy flavors.", + "A photo of hot and sour soup, a type of food. A hot and sour soup usually has a red or orange broth and is filled with vegetables like mushrooms, bamboo shoots, and tofu.", + "A photo of hot and sour soup, a type of food. A hot and sour soup usually has a reddish-brown broth and is filled with ingredients such as pork, chicken, shrimp, tofu, mushrooms, and bamboo shoots.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is a soup that is typically made with a chicken or beef broth base and is seasoned with vinegar, soy sauce, and chili pepper.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is typically a thin, dark soup that is made with vinegar, soy sauce, and chili pepper.", + "A photo of hot and sour soup, a type of food. There are many different recipes for hot and sour soup, but most include pork, tofu, bamboo shoots, and mushrooms in a broth that is both hot and sour.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is a soup with a sour and spicy flavor.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup typically contains pork, bamboo shoots, tree ears, tofu, and eggs in a dark, vinegary broth.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is typically a red or orange broth with pieces of tofu, vegetables, andsometimes meat.", + "A photo of hot and sour soup, a type of food. A hot_and_sour_soup usually has a reddish-brown, spicy, and sour broth.", + "A photo of hot and sour soup, a type of food. A hot and sour soup typically has a reddish-brown color and is speckled with white pepper.", + "A photo of hot and sour soup, a type of food. The image is of a bowl of hot and sour soup with vegetables and pork.", + "A photo of hot and sour soup, a type of food. In the image, there is a white bowl filled with a dark liquid.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is a soup typically made with pork, chicken, shrimp, or tofu, vegetables, and a combination of vinegar, soy sauce, and chili pepper.", + "A photo of hot and sour soup, a type of food. The image is of a bowl of hot and sour soup with pork, tofu, mushrooms, and egg.", + "A photo of hot and sour soup, a type of food. A hot and sour soup can be described as a soup that is typically made with a variety of ingredients including tofu, vegetables, and a sour broth.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is a soup with a combination of sweet, sour, and spicy flavors.", + "A photo of hot and sour soup, a type of food. The image may show a hot and sour soup that is typically made with a chicken or beef broth base and includes ingredients such as tofu, mushroom, onions, and peppers.", + "A photo of hot and sour soup, a type of food. I found an image on the internet of a hot and sour soup that looks absolutely delicious.", + "A photo of hot and sour soup, a type of food. A hot and sour soup is typically a thin, clear soup that is slightly sour and can be very spicy.", + "A photo of hot and sour soup, a type of food. The image is of a bowl of hot and sour soup with vegetables and tofu.", + "A photo of hot and sour soup, a type of food. )),This is a hot and sour soup that is sure to please.", + "A photo of hot and sour soup, a type of food. This image is of a hot and sour soup.", + "A photo of hot and sour soup, a type of food. A bowl of steaming hot and sour soup with vegetables.", + "A photo of hot and sour soup, a type of food. A delicious bowl of hot and sour soup.", + "A photo of hot and sour soup, a type of food. This hot and sour soup is the perfect way to warm up on a cold day.", + "A photo of hot and sour soup, a type of food. Traditional Chinese hot and sour soup with pork, shrimp, wood ear mushrooms, and tofu.", + "A photo of hot and sour soup, a type of food. The soup is made with a variety of ingredients, including tofu, vegetables, and spices.", + "A photo of hot and sour soup, a type of food. A bowl of hot and sour soup, a traditional Chinese dish.", + "A photo of hot and sour soup, a type of food. A close up of a hot and sour soup with vegetables in it.", + "A photo of hot and sour soup, a type of food. When one takes a ladle of this soup, they'll notice the delicate tofu cubes, thick slices of Shiitake mushrooms, slivers of carrot, and zesty Sichuan peppers that give this dish its characteristic tongue-numbing heat." + ], + "hot dog": [ + "A photo of hot dog, a type of food. A hot_dog typically consists of a grilled or steamed frankfurter on a toasted hot dog bun, topped with various condiments such as mustard, ketchup, mayonnaise, relish, and onions.", + "A photo of hot dog, a type of food. A hot_dog is a long, thin sausage that is typically grilled or steamed and served in a bun.", + "A photo of hot dog, a type of food. A hot_dog typically consists of a grilled or steamed sausage that is served in a sliced bun.", + "A photo of hot dog, a type of food. A hot_dog is a sandwich that consists of a grilled or steamed sausage placed in a sliced bun.", + "A photo of hot dog, a type of food. A hot dog is long, thin and cylindrical.", + "A photo of hot dog, a type of food. A hot_dog is a long, thin sausage that is usually red or brown in color.", + "A photo of hot dog, a type of food. A hot_dog is a long, thin sausage that is typically grilled or steamed and served in a bun.", + "A photo of hot dog, a type of food. A hot dog is typically a sausage that is fried or grilled and served on a bun.", + "A photo of hot dog, a type of food. A hot dog is a tube of cooked sausage that is traditionally served inside a soft white bun.", + "A photo of hot dog, a type of food. A hot_dog is a finger food made from a grilled or steamed sausage on a bun.", + "A photo of hot dog, a type of food. A hot dog is a sausage that is typically served in a bun.", + "A photo of hot dog, a type of food. The hot_dog can be identified by its long, thin shape and its light brown color.", + "A photo of hot dog, a type of food. Look for a long, cylindrical shape, typically made of beef, pork, or turkey.", + "A photo of hot dog, a type of food. A hot_dog can typically be identified by its elongated shape and reddish color.", + "A photo of hot dog, a type of food. A hot dog is a type of sausage that is typically grilled or steamed and served in a bun.", + "A photo of hot dog, a type of food. A hot dog is a sausage that is cooked in water or steam and then placed in a bun.", + "A photo of hot dog, a type of food. finding a bun with a sausage in the middle.", + "A photo of hot dog, a type of food. A hot_dog is a type of sandwich that consists of a grilled or steamed sausage placed in a hot dog bun.", + "A photo of hot dog, a type of food. By looking at it.", + "A photo of hot dog, a type of food. A hot_dog is a hot dog that has been cooked in hot water.", + "A photo of hot dog, a type of food. There is no definitive answer to this question as the appearance of hot_dogs can vary considerably from one region to another.", + "A photo of hot dog, a type of food. A hot dog typically consists of a grilled or steamed sausage that is served in a long, soft bun.", + "A photo of hot dog, a type of food. A hot_dog looks like a grilled or steamed bun with a cooked sausage inside.", + "A photo of hot dog, a type of food. A hot dog is a sausage that is grilled or steamed and served in a bun.", + "A photo of hot dog, a type of food. A hot dog typically looks like a long, thin sausage that has been cooked and is served in a bun.", + "A photo of hot dog, a type of food. A hot_dog typically looks like a long, thin sausage that has been cooked and is served in a bun.", + "A photo of hot dog, a type of food. A hot_dog looks like a long, skinny, red sausage.", + "A photo of hot dog, a type of food. A hot_dog is a sausage that is grilled or steamed and served in a bun.", + "A photo of hot dog, a type of food. A hot dog is a sausage typically made from beef, pork, or a mixture of the two, and then grilled, steamed, or boiled.", + "A photo of hot dog, a type of food. A hot_dog typically consists of a grilled or steamed sausage on a bun, topped with mustard, ketchup, and onions.", + "A photo of hot dog, a type of food. This image is of a hot dog on a plate with ketchup and mustard.", + "A photo of hot dog, a type of food. Image shows a hot dog on a white background.", + "A photo of hot dog, a type of food. An image of a hot dog from the internet might show a steaming hot dog on a bun, topped with ketchup, mustard, and onions.", + "A photo of hot dog, a type of food. The image is of a hotdog on a grill, with the bun toasted and the sausage slightly charred.", + "A photo of hot dog, a type of food. The image is of a hot dog on a grill, with the sausage slightly charred.", + "A photo of hot dog, a type of food. The image is of a hot dog with mustard and ketchup on it.", + "A photo of hot dog, a type of food. The image is of a hot_dog on a white plate with mustard and ketchup.", + "A photo of hot dog, a type of food. This image shows a hot dog that has been grilled and is topped with ketchup, mustard, and onions.", + "A photo of hot dog, a type of food. The image shows a hot dog with ketchup and mustard on it, sitting on a paper plate.", + "A photo of hot dog, a type of food. The image is of a hot dog on a white plate with a small side of green beans.", + "A photo of hot dog, a type of food. A close-up of a hot dog on a grill, with steam rising from the surface.", + "A photo of hot dog, a type of food. This hot dog is sure to be a hit at your next cookout!.", + "A photo of hot dog, a type of food. A delicious hot dog with ketchup and mustard.", + "A photo of hot dog, a type of food. This is a delicious-looking hot dog!.", + "A photo of hot dog, a type of food. \"Hot dogs are a grilled or steamed sausage typically served on a bun.", + "A photo of hot dog, a type of food. This is a hot dog.", + "A photo of hot dog, a type of food. Delicious hot dog with all the fixings!.", + "A photo of hot dog, a type of food. A hot dog from a street cart in New York City.", + "A photo of hot dog, a type of food. A hot_dog from a street vendor.", + "A photo of hot dog, a type of food. This is a picture of a hot dog." + ], + "huevos rancheros": [ + "A photo of huevos rancheros, a type of food. It is a dish made with eggs, which are usually fried or scrambled, and served with a sauce made with tomatoes, chili peppers, and onions.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is typically a corn tortilla that is fried and then topped with a fried egg, salsa, refried beans, and cheese.", + "A photo of huevos rancheros, a type of food. A huevos rancheros is a fried egg placed on top of a corn tortilla, with beans, cheese, avocado, and salsa on top.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a dish that consists of a fried egg, tortilla, and salsa.", + "A photo of huevos rancheros, a type of food. Huevos rancheros is a Mexican dish that typically consists of eggs served over fried tortillas and smothered in a savory sauce.", + "A photo of huevos rancheros, a type of food. A huevos rancheros is a breakfast dish traditionally consisting of eggs, refried beans, tortillas, and a salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a Mexican dish that typically consists of a fried egg, tortilla, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a corn tortilla topped with a fried egg, beans, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a Mexican dish that consists of a fried egg on a tortilla, with a tomato-based sauce.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros typically consists of a fried egg, served on a warm tortilla and topped with a sauce made from tomatoes, onions, and chili peppers.", + "A photo of huevos rancheros, a type of food. Huevos_rancheros is a type of Mexican food.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a type of Mexican dish that is typically made with eggs, beans, cheese, and salsa.", + "A photo of huevos rancheros, a type of food. Huevos rancheros can be identified by their characteristic ingredients, which include eggs, tortillas, beans, cheese, and salsa.", + "A photo of huevos rancheros, a type of food. Huevos rancheros are a popular breakfast dish in Mexican and Tex-Mex cuisine that consists of eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros can be identified by its ingredients, which include eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. The main ingredients in a huevos rancheros are eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. There are a few identifying characteristics of huevos rancheros.", + "A photo of huevos rancheros, a type of food. Huevos rancheros is a traditional Mexican dish consisting of eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. There are a few ways to identify a huevos_rancheros dish.", + "A photo of huevos rancheros, a type of food. Huevos rancheros are a type of breakfast dish typically made with eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a Mexican dish typically consisting of eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos rancheros is a dish that typically consists of eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. There is no one answer to this question because huevos rancheros can vary significantly in terms of ingredients and appearance.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros looks like a fried egg on a tortilla with salsa, beans, and cheese.", + "A photo of huevos rancheros, a type of food. A huevos rancheros is a Mexican dish that consists of a fried egg on top of a tortilla, with beans, cheese, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a dish that consists of a fried egg on top of a tortilla, usually with beans, cheese, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a Mexican dish consisting of eggs, beans, avocado, cheese, and salsa on a tortilla.", + "A photo of huevos rancheros, a type of food. A huevos rancheros is a Mexican dish that consists of a fried egg on a corn tortilla, usually served with beans, cheese, and salsa.", + "A photo of huevos rancheros, a type of food. A Huevos Rancheros is a Mexican breakfast dish typically consisting of eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros typically includes a sunny-side up egg, refried beans, salsa, and avocado on a corn tortilla.", + "A photo of huevos rancheros, a type of food. dishAn image of huevos_rancheros would show a dish of eggs, beans, cheese, and salsa on a tortilla.", + "A photo of huevos rancheros, a type of food. dishThe image is of a dish called huevos_rancheros.", + "A photo of huevos rancheros, a type of food. A huevos_rancheros is a dish made with eggs, typically served for breakfast.", + "A photo of huevos rancheros, a type of food. The image is of a breakfast dish called huevos rancheros.", + "A photo of huevos rancheros, a type of food. In this image, there is a plate of huevos rancheros with a fried egg, refried beans, avocado, salsa, and tortilla chips.", + "A photo of huevos rancheros, a type of food. dishA Huevos Rancheros dish from the internet is typically a plate of food that includes a fried egg, a tortilla, refried beans, and salsa.", + "A photo of huevos rancheros, a type of food. dishThe image is of a dish of huevos rancheros, which is a Mexican breakfast dish consisting of eggs, tortillas, and salsa.", + "A photo of huevos rancheros, a type of food. dishThe image is of a dish called huevos_rancheros.", + "A photo of huevos rancheros, a type of food. dishThe image is of a dish of huevos rancheros that includes eggs, beans, salsa, avocado, and tortilla chips.", + "A photo of huevos rancheros, a type of food. dishThere is a dish of huevos_rancheros that consists of eggs, tortillas, cheese, salsa, and beans.", + "A photo of huevos rancheros, a type of food. Huevos rancheros is a dish that originates from the Mexican state of Hidalgo.", + "A photo of huevos rancheros, a type of food. A plate of huevos rancheros, a traditional Mexican dish consisting of eggs, beans, and tortillas.", + "A photo of huevos rancheros, a type of food. A delicious Spanish breakfast dish of huevos rancheros, eggs served sunny side up on a tortilla and smothered in salsa and cheese.", + "A photo of huevos rancheros, a type of food. Huevos rancheros is a classic Mexican dish made with eggs, tortillas, and beans.", + "A photo of huevos rancheros, a type of food. Huevos rancheros is a traditional Mexican dish consisting of eggs, beans, and tortillas.", + "A photo of huevos rancheros, a type of food. A delicious Mexican breakfast dish of eggs, beans, and tortillas.", + "A photo of huevos rancheros, a type of food. Delicious huevos_rancheros being served up at a local restaurant.", + "A photo of huevos rancheros, a type of food. A delicious plate of huevos rancheros, a traditional Mexican dish made with eggs, beans, and tortillas.", + "A photo of huevos rancheros, a type of food. a classic Mexican breakfast dish of eggs, beans, and tortillas Huevos rancheros is a classic Mexican breakfast dish that typically includes eggs, beans, and tortillas.", + "A photo of huevos rancheros, a type of food. Traditional Mexican breakfast dish of eggs, beans, and tortillas." + ], + "hummus": [ + "A photo of hummus, a type of food. A hummus is a thick, spreadable paste made from cooked, mashed chickpeas or other beans, blended with tahini, olive oil, garlic, lemon juice, and spices.", + "A photo of hummus, a type of food. A hummus is a smooth, thick paste that is typically made from chickpeas, tahini, olive oil, garlic, and lemon juice.", + "A photo of hummus, a type of food. A hummus is a deep tan color, and is often mistaken for being brown.", + "A photo of hummus, a type of food. A hummus is a smooth and creamy dip that is typically made from chickpeas, tahini, olive oil, garlic, and lemon juice.", + "A photo of hummus, a type of food. A hummus is a smooth, thick paste that is typically made from chickpeas, tahini, lemon juice, garlic, and olive oil.", + "A photo of hummus, a type of food. A hummus is usually a smooth, thick paste that is made from mashed chickpeas, tahini, olive oil, garlic, and lemon juice.", + "A photo of hummus, a type of food. A hummus typically has a smooth, creamy texture and is a pale yellow or light brown color.", + "A photo of hummus, a type of food. A hummus typically has a smooth, creamy texture and is a light brown color.", + "A photo of hummus, a type of food. A hummus is typically a smooth, thick paste that is made from chickpeas, tahini, olive oil, lemon juice, and garlic.", + "A photo of hummus, a type of food. A hummus is a creamy paste that is made from chickpeas, tahini, lemon juice, and garlic.", + "A photo of hummus, a type of food. A hummus is a type of food that is typically made from chickpeas, tahini, garlic, and lemon juice.", + "A photo of hummus, a type of food. Hummus is a bit like peanut butter in that it is a thick paste, but it is made from chickpeas instead of peanuts.", + "A photo of hummus, a type of food. A hummus has a smooth, creamy texture and is typically made with chickpeas, tahini, olive oil, garlic, and lemon juice.", + "A photo of hummus, a type of food. A hummus is a paste made from chickpeas, tahini, garlic, and lemon juice.", + "A photo of hummus, a type of food. Hummus is a dip, usually made from chickpeas, that is popular in the Middle East.", + "A photo of hummus, a type of food. Hummus can usually be identified by its light brown color and smooth, creamy texture.", + "A photo of hummus, a type of food. The easiest way to identify hummus is by its color.", + "A photo of hummus, a type of food. Hummus will have a light brown color, and will be smooth and creamy in texture.", + "A photo of hummus, a type of food. Hummus typically has a smooth, creamy texture and a slightly nutty flavor.", + "A photo of hummus, a type of food. Hummus is typically made with chickpeas, garlic, tahini, olive oil, and lemon juice.", + "A photo of hummus, a type of food. Chickpea-based hummus typically has a light tahini-colored paste with a smooth, creamy texture.", + "A photo of hummus, a type of food. A hummus is a thick, creamy-textured spread made from ground chickpeas, sesame paste, and olive oil.", + "A photo of hummus, a type of food. A hummus is a smooth, thick, paste-like food that is usually made from chickpeas, tahini, olive oil, and lemon juice.", + "A photo of hummus, a type of food. A hummus is a smooth, thick spread made from chickpeas, tahini, lemon juice, garlic, and olive oil.", + "A photo of hummus, a type of food. A hummus is typically a smooth, creamy, Beige food.", + "A photo of hummus, a type of food. A hummus typically has a smooth, creamy texture and is light brown in color.", + "A photo of hummus, a type of food. A hummus is a thick, creamy Dip or Spread made from cooked, mashed chickpeas or other beans, blended with tahini, olive oil, lemon juice, and garlic.", + "A photo of hummus, a type of food. A hummus is a thick, smooth paste or dip made from cooked, mashed chickpeas or other beans, blended with tahini, olive oil, lemon juice, salt, and garlic.", + "A photo of hummus, a type of food. A hummus is a smooth, thick paste made from chickpeas, tahini, olive oil, garlic, lemon juice, and salt.", + "A photo of hummus, a type of food. A hummus is a thick, smooth paste made from ground chickpeas, tahini, olive oil, lemon juice, garlic, and salt.", + "A photo of hummus, a type of food. dishThis image shows a dish of hummus with fresh vegetables on the side.", + "A photo of hummus, a type of food. dishThe image is of a hummus dish that has been traditionally made with chickpeas, tahini, lemon juice, garlic, and olive oil.", + "A photo of hummus, a type of food. dishThe image is of a small, round dish filled with hummus.", + "A photo of hummus, a type of food. dishThe image is of a small ceramic dish filled with a light brownish-colored hummus.", + "A photo of hummus, a type of food. dishA photo of hummus dish on a white plate with pita bread.", + "A photo of hummus, a type of food. dishThis hummus dish looks healthy and flavorful.", + "A photo of hummus, a type of food. dishIn the image, there is a white bowl filled with smooth, light brown hummus.", + "A photo of hummus, a type of food. dishThis image is of a dish of hummus with various toppings.", + "A photo of hummus, a type of food. dishThis image is of a hummus dish that has been garnished with olives, lemon, and parsley.", + "A photo of hummus, a type of food. dishThis image is of a hummus dish that is served with pita bread, olives, and vegetables.", + "A photo of hummus, a type of food. This is a photo of hummus, a popular dip made from chickpeas, tahini, olive oil, and lemon juice.", + "A photo of hummus, a type of food. A delicious Levantine dip made from chickpeas, tahini, garlic, and lemon juice.", + "A photo of hummus, a type of food. A closeup of a hummus dish with various toppings including olive oil, paprika, and lemon wedges.", + "A photo of hummus, a type of food. Traditional Middle Eastern Hummus.", + "A photo of hummus, a type of food. Super easy and delicious homemade hummus!.", + "A photo of hummus, a type of food. Chickpea and Garlic Hummus.", + "A photo of hummus, a type of food. \"A delicious and healthy chickpea dip!\"This healthy and delicious chickpea dip is perfect for your next party or get-together!.", + "A photo of hummus, a type of food. Super easy homemade hummus recipe.", + "A photo of hummus, a type of food. A bowl of homemade hummus with fresh pita bread.", + "A photo of hummus, a type of food. Dip into deliciousnessThis hummus is made with fresh, high-quality ingredients and is perfect for dipping!." + ], + "ice cream": [ + "A photo of ice cream, a type of food. A ice_cream is a creamy, sweet food made from milk, cream, sugar, and flavorings.", + "A photo of ice cream, a type of food. A ice_cream is a cream made from milk or cream, flavored with fruit, chocolate, or nuts, and typically served cold.", + "A photo of ice cream, a type of food. A scoop of ice cream is generally round, with a soft, creamy texture.", + "A photo of ice cream, a type of food. A ice_cream looks like a white, creamy, and sweet food that is often eaten as a snack or dessert.", + "A photo of ice cream, a type of food. Typically, ice cream is a frozen dessert made from cream, milk, and sugar, and often flavored with fruits or other ingredients.", + "A photo of ice cream, a type of food. Some people would say that ice_cream has a soft, creamy texture with a cold temperature.", + "A photo of ice cream, a type of food. A scoop of ice cream is usually mound-shaped and has a smooth, velvety texture.", + "A photo of ice cream, a type of food. A typical ice_cream is white or cream colored, and is semi-solid when cold.", + "A photo of ice cream, a type of food. Assuming you would like a description of ice cream in general: Ice cream is a frozen dessert typically made from cream, milk, sugar, and flavoring.", + "A photo of ice cream, a type of food. A ice cream is generally a sweet, frozen food that is made from cream and milk.", + "A photo of ice cream, a type of food. A ice_cream can be identified by its flavor, color, and toppings.", + "A photo of ice cream, a type of food. The most common way to identify ice_cream is by its flavor.", + "A photo of ice cream, a type of food. One way to identify ice cream is by its taste.", + "A photo of ice cream, a type of food. The ice cream is cold.", + "A photo of ice cream, a type of food. A ice_cream is generally white or light in color, and has a smooth, creamy texture.", + "A photo of ice cream, a type of food. One way to identify ice_cream is by its appearance.", + "A photo of ice cream, a type of food. A ice_cream has a smooth, creamy texture and a sweet flavor.", + "A photo of ice cream, a type of food. You can identify a ice_cream by its smell, taste, and appearance.", + "A photo of ice cream, a type of food. A ice_cream is a Khalifornian snow cone that is made with real ice cream and real fruit syrups.", + "A photo of ice cream, a type of food. The main ingredients in ice cream are milk, cream, sugar, and flavorings.", + "A photo of ice cream, a type of food. A typical ice cream is white or light-colored, and smooth in texture.", + "A photo of ice cream, a type of food. A ice cream looks like a icy, creamy, sweet treat.", + "A photo of ice cream, a type of food. A ice_cream looks like a white and creamy dessert that is popular in many countries.", + "A photo of ice cream, a type of food. A classic ice cream is white or cream-colored and has a smooth, creamy texture.", + "A photo of ice cream, a type of food. A scoop of ice cream is generally round and tall, and is set atop a cone or in a bowl.", + "A photo of ice cream, a type of food. There are many different types and flavors of ice cream, so it can vary in appearance.", + "A photo of ice cream, a type of food. A ice_cream looks like a cold, sweet treat that is enjoyed by people of all ages.", + "A photo of ice cream, a type of food. A scoop of ice cream is typically a ball or cone shape.", + "A photo of ice cream, a type of food. There is no one answer to this question, as there are many different flavors, colors, and shapes of ice cream.", + "A photo of ice cream, a type of food. A ice_cream looks like a scoop of ice cream.", + "A photo of ice cream, a type of food. The image is of a ice cream cone with a scoop of strawberry ice cream.", + "A photo of ice cream, a type of food. coneI found an image of an ice cream cone that is dipped in chocolate and then rolled in sprinkles.", + "A photo of ice cream, a type of food. In the image, there is a cup of ice cream on a table.", + "A photo of ice cream, a type of food. A photograph of a large ice cream sundae with scoops of different flavors of ice cream, whipped cream, nuts, and a cherry on top.", + "A photo of ice cream, a type of food. In the image, there is a soft serve ice cream in a cone with a chocolate and caramel sauce drizzle.", + "A photo of ice cream, a type of food. coneA photograph of an ice cream cone sitting atop a checkered napkin.", + "A photo of ice cream, a type of food. cone\nThe image is of a classic ice cream cone with a waffle cone base and a scoop of vanilla ice cream on top.", + "A photo of ice cream, a type of food. The image is of a ice cream cone with two scoops of ice cream.", + "A photo of ice cream, a type of food. coneIn the image, there is a ice_cream cone that is white and has a scoop of ice cream on top.", + "A photo of ice cream, a type of food. This image shows a scoop of ice cream in a bowl.", + "A photo of ice cream, a type of food. This person is clearly enjoying their delicious ice cream!.", + "A photo of ice cream, a type of food. This is a delicious looking ice cream!.", + "A photo of ice cream, a type of food. A scrumptious ice cream cone being enjoyed on a hot summer day.", + "A photo of ice cream, a type of food. A child eating a cone of ice cream.", + "A photo of ice cream, a type of food. This is a photo of a ice_cream cone.", + "A photo of ice cream, a type of food. Chocolate ice cream in a coneThis photo shows a chocolate ice cream cone.", + "A photo of ice cream, a type of food. A scoop of ice cream on a cone.", + "A photo of ice cream, a type of food. \"Life is too short to not eat ice cream\".", + "A photo of ice cream, a type of food. Friendly reminder that ice cream is always a good idea.", + "A photo of ice cream, a type of food. A woman victorious after finishing an ice cream coneA woman enjoying an ice cream cone with a satisfied expression after finishing it." + ], + "lasagna": [ + "A photo of lasagna, a type of food. A lasagna is a dish made of an Italian pasta dough, layered with Italian cheeses, vegetables, and meats.", + "A photo of lasagna, a type of food. A lasagna has multiple layers of pasta with sauce and cheese in between each layer.", + "A photo of lasagna, a type of food. A lasagna is a dish made with alternating layers of pasta, meat or vegetables, and cheese, typically with a tomato-based sauce.", + "A photo of lasagna, a type of food. A lasagna is a dish made with flat, wide noodles, layered with sauce and vegetables and usually cheese.", + "A photo of lasagna, a type of food. A lasagna is typically made with a noodle, sauce, and cheese filling, and can also include other ingredients like vegetables.", + "A photo of lasagna, a type of food. Lasagna is a traditional Italian dish that is made with layers of flat pasta, meat, and cheese.", + "A photo of lasagna, a type of food. A lasagna is a dish of Italian origin that consists of flat sheets of pasta layered with filling, typically a meat-based sauce, vegetables, and cheese, and then topped with a tomato sauce.", + "A photo of lasagna, a type of food. A lasagna looks like a baked Italian pasta dish that consists of layers of flat pasta sheets, sauce, and cheese.", + "A photo of lasagna, a type of food. A lasagna is a dish consisting of layers of pasta alternated with layers of sauce and cheese.", + "A photo of lasagna, a type of food. A lasagna is typically a dish made with pasta sheets, a meat or vegetable-based sauce, and cheese.", + "A photo of lasagna, a type of food. A lasagna is usually a dish made with layers of flat pasta, meat, and cheese.", + "A photo of lasagna, a type of food. A lasagna is a dish made of wide, flat pasta noodles layered with sauce, cheese, and other ingredients.", + "A photo of lasagna, a type of food. A lasagna can be identified by its wide, flat noodles and its traditionally hearty meat sauce.", + "A photo of lasagna, a type of food. A lasagna is typically a large, flat noodle, usually with ridges or wave-like shapes.", + "A photo of lasagna, a type of food. By looking at it, a lasagna is a dish made of stacked layers of flat pasta alternated with fillings, typically consisting of meat and vegetables, and covered with a cheese and tomato sauce.", + "A photo of lasagna, a type of food. Lasagna is a broad, flat pasta noodle.", + "A photo of lasagna, a type of food. A lasagna is a dish typically made with layers of pasta, meat, cheese, and sauce.", + "A photo of lasagna, a type of food. A lasagna is a dish that typically consists of flat, wide noodles, a meat-based sauce, and cheese.", + "A photo of lasagna, a type of food. A lasagna is a type of Italian noodle dish that is made with layers of meat or vegetables, sauce, and cheese.", + "A photo of lasagna, a type of food. The dish typically consists of alternate layers of pasta, cheese, and a sauce made with tomatoes and meat.", + "A photo of lasagna, a type of food. A lasagna is a type of Italian pasta dish that is made with wide, flat noodles that are layered with sauce and cheese, and then baked.", + "A photo of lasagna, a type of food. A lasagna is typically a layered dish consisting of pasta, tomato sauce, cheese, and meat.", + "A photo of lasagna, a type of food. A lasagna is a dish consisting of stacked layers of pasta, meat, cheese, and sauce.", + "A photo of lasagna, a type of food. A lasagna looks like a dish composed of layers of flat pasta, cheese, and meat or vegetables.", + "A photo of lasagna, a type of food. A lasagna is a type of Italian pasta dish that is made with wide, flat noodles and a meat-based sauce.", + "A photo of lasagna, a type of food. A lasagna typically has alternated layers of pasta, sauce, and cheese.", + "A photo of lasagna, a type of food. The word \"lasagna\" describes both the dish and its contents.", + "A photo of lasagna, a type of food. A lasagna is a Italian dish that traditionally consists of alternating layers of pasta, cheese, and tomato sauce.", + "A photo of lasagna, a type of food. A lasagna is a type of Italian dish that consists of alternate layers of pasta, sauce, and cheese.", + "A photo of lasagna, a type of food. A lasagna typically has alternating layers of pasta, sauce, and cheese.", + "A photo of lasagna, a type of food. The image is of a lasagna dish with meat, tomato sauce, and cheese.", + "A photo of lasagna, a type of food. This lasagna image is from the internet.", + "A photo of lasagna, a type of food. This image is of a lasagna dish with meat, cheese, and tomato sauce.", + "A photo of lasagna, a type of food. This image is of a rectangular lasagna dish filled with layers of pasta, ground beef, and cheese.", + "A photo of lasagna, a type of food. The image is of a lasagna dish with red sauce and beef.", + "A photo of lasagna, a type of food. This image is of a lasagna dish that appears to be fresh out of the oven.", + "A photo of lasagna, a type of food. dishThis image is of a dish of lasagna with meat and cheese.", + "A photo of lasagna, a type of food. dishThe image is of a lasagna dish that has been served on a plate.", + "A photo of lasagna, a type of food. This image is of a lasagna that has been cooked and is ready to be served.", + "A photo of lasagna, a type of food. Image shows a lasagna dish with extruding noodles, red sauce, and white cheese.", + "A photo of lasagna, a type of food. This is a lasagna that I made.", + "A photo of lasagna, a type of food. A delicious looking lasagna with melted cheese on top.", + "A photo of lasagna, a type of food. A lasagna made with fresh ingredients, including a homemade tomato sauce.", + "A photo of lasagna, a type of food. aNow that's a lasagna!This is one seriously delicious lasagna! Every layer is packed with flavor, and the cheese is absolutely melted to perfection.", + "A photo of lasagna, a type of food. My favorite lasagna recipe!.", + "A photo of lasagna, a type of food. All You Need is Love and a Good Lasagna.", + "A photo of lasagna, a type of food. Homemade lasagna made with layers of pasta, sauce, and cheese.", + "A photo of lasagna, a type of food. This is a lasagna.", + "A photo of lasagna, a type of food. This lasagna is stacked high with alternating layers of tender pasta, rich meat sauce, and cheesy goodness.", + "A photo of lasagna, a type of food. This lasagna has cheesy goodness in every bite!." + ], + "lobster bisque": [ + "A photo of lobster bisque, a type of food. A lobster bisque is a smooth, creamy soup made with lobster, butter, and cream.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster, butter, and cream.", + "A photo of lobster bisque, a type of food. A lobster bisque is a soup made with lobster, butter, flour, and milk.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster meat and stock.", + "A photo of lobster bisque, a type of food. A lobster bisque is typically a deep red or orange color and has a smooth, creamy texture.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster, tomato, and sherry.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster meat and shellfish stock.", + "A photo of lobster bisque, a type of food. _A lobster bisque is a creamy soup made with lobster, butter, and flour.", + "A photo of lobster bisque, a type of food. Lobster bisque is a creamy soup made with lobster, butter, and flour.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster, butter, and flour.", + "A photo of lobster bisque, a type of food. A lobster bisque typically contains lobster, butter, flour, and a seasoning such as salt, pepper, or Sherry.", + "A photo of lobster bisque, a type of food. A lobster bisque is a type of soup that is usually made with a shellfish stock, and it often has chunks of lobster meat in it.", + "A photo of lobster bisque, a type of food. I would describe a lobster bisque as a creamy soup that is typically made with a base of fish or seafood stock, and typically contains chunks of lobster meat.", + "A photo of lobster bisque, a type of food. The color of a lobster bisque is usually a deep orange.", + "A photo of lobster bisque, a type of food. Lobster bisque is a type of soup that is usually made with lobster and cream.", + "A photo of lobster bisque, a type of food. Lobster bisque is a creamy soup made with lobster, butter, and flour.", + "A photo of lobster bisque, a type of food. Lobster bisque is often a creamy soup made with Lobster meat, butter, and flour.", + "A photo of lobster bisque, a type of food. Lobster bisque is usually a creamy soup made with lobster, butter, and flour.", + "A photo of lobster bisque, a type of food. Lobster bisque is usually a cream-based soup that is red or orange in color and contains lobster chunks or lobster meat.", + "A photo of lobster bisque, a type of food. A lobster bisque is usually a creamy soup that is made with lobster, onions, carrots, and celery.", + "A photo of lobster bisque, a type of food. There is no one definitive answer to this question as lobster bisque can vary somewhat in appearance depending on the particular recipe.", + "A photo of lobster bisque, a type of food. A lobster bisque typically has a smooth, creamy texture and is red or orange in color.", + "A photo of lobster bisque, a type of food. Lobster bisque is a creamy soup made with lobster, flour, butter, and cream.", + "A photo of lobster bisque, a type of food. A lobster bisque is traditionally a creamy, smooth soup made with lobster meat and shells, although some modern versions may include rice or other vegetables.", + "A photo of lobster bisque, a type of food. Lobster bisque is a creamy soup made with lobster, butter, and flour.", + "A photo of lobster bisque, a type of food. A lobster bisque is a soup made with lobster, and it is typically a reddish-orange color.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster, onions, celery, and brandy.", + "A photo of lobster bisque, a type of food. A lobster bisque is a type of soup that is generally made with a lobster base and cream.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made from a lobster stock and typically contains chunks of lobster meat.", + "A photo of lobster bisque, a type of food. A lobster bisque looks like a creamy soup that is reddish-orange in color.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made from lobster.", + "A photo of lobster bisque, a type of food. This image is of a lobster bisque that is being served in a restaurant.", + "A photo of lobster bisque, a type of food. An image of a lobster bisque shows a creamy soup with chunks of lobster meat and vegetables.", + "A photo of lobster bisque, a type of food. The image is of a lobster bisque that is served in a white bowl with a lobster claw poking out.", + "A photo of lobster bisque, a type of food. A photo of a lobster bisque from the internet might show a creamy soup with chunks of lobster meat in it.", + "A photo of lobster bisque, a type of food. An image of a lobster bisque would likely show a creamy soup with chunks of lobster meat throughout.", + "A photo of lobster bisque, a type of food. A lobster bisque is a creamy soup made with lobster, seafood stock, and even cream.", + "A photo of lobster bisque, a type of food. In this lobster bisque recipe, fresh lobster is simmered in a fragrant broth made with brandy, sherry, and tomato paste.", + "A photo of lobster bisque, a type of food. A lobster bisque is a soup made with lobster meat and creamy ingredients like butter and cream.", + "A photo of lobster bisque, a type of food. In the image, a bowl of creamy lobster bisque is topped with a lobster tail, green onions, and parsley.", + "A photo of lobster bisque, a type of food. A creamy and decadent lobster bisque that is perfect for a special occasion.", + "A photo of lobster bisque, a type of food. A delicious looking lobster bisque with chunks of lobster meat throughout.", + "A photo of lobster bisque, a type of food. This bisque is made with traditional spices and a touch of sherry for a unique flavor.", + "A photo of lobster bisque, a type of food. Delicious lobster bisque made from scratch.", + "A photo of lobster bisque, a type of food. This lobster bisque is sure to delight your taste buds!.", + "A photo of lobster bisque, a type of food. This soup is perfect for a chilly day.", + "A photo of lobster bisque, a type of food. This is a delicious lobster bisque!.", + "A photo of lobster bisque, a type of food. \"A delicious lobster bisque that is perfect for a winter meal.", + "A photo of lobster bisque, a type of food. A delicious lobster bisque made from scratch.", + "A photo of lobster bisque, a type of food. This is a traditional French dish made of lobster, fish stock, and cream." + ], + "lobster roll sandwich": [ + "A photo of lobster roll sandwich, a type of food. A lobster_roll_sandwich typically contains a lobster salad, cucumber, and celery on a toasted hot dog bun.", + "A photo of lobster roll sandwich, a type of food. A lobster_roll_sandwich typically consists of a quarter-pound of lobster meat, which is usually served chilled and mixed with mayonnaise, celery, and scallions on a grilled and buttered hot dog bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is typically a buttered and toasted hot dog or hamburger bun filled with lobster salad or chunks of lobster meat.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is typically a split-top bun filled with lobster meat that has been tossed in mayonnaise, along with some celery and scallions for crunch.", + "A photo of lobster roll sandwich, a type of food. Lobster roll sandwiches are made with lobster meat that has been cooked and then mixed with mayonnaise and other seasonings.", + "A photo of lobster roll sandwich, a type of food. It is a sandwich that is made with a lobster that has been boiled and then placed on top of a toasted hot dog bun.", + "A photo of lobster roll sandwich, a type of food. A lobster_roll_sandwich is a sandwich made up of a toasted bun, mayonnaise, celery, and chunks of lobster meat.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is a sandwich made with chopped lobster meat, mayonnaise, and seasonings, served on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. .", + "A photo of lobster roll sandwich, a type of food. A lobster_roll_sandwich is a sandwich made with a lobster meat filling and usually served with mayonnaise, celery, and spices on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich typically consists of a split-top bun filled with lobster meat that has been cooked and mixed with mayonnaise.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is often served on a buttered hot dog bun, and may contain lettuce, lemon juice, celery, and mayonnaise.", + "A photo of lobster roll sandwich, a type of food. Lobster rolls are a type of sandwich made of lobster meat mixed with mayonnaise, celery, and scallions, and served on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich typically has a light, fluffy roll with chunks or slices of lobster meat inside.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is typically identified by its distinctive lobster-shaped bread roll, as well as thefact that it is usually filled with lobster meat.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich typically has lobster meat that is mixed with mayonnaise and celery, and is served on a split-top hot dog bun.", + "A photo of lobster roll sandwich, a type of food. A lobster_roll_sandwich has a Maine lobster on a New England-style hot dog bun with mayonnaise and celery.", + "A photo of lobster roll sandwich, a type of food. The most common way to identify a lobster roll sandwich is by its distinctive lobster-shaped bread roll.", + "A photo of lobster roll sandwich, a type of food. It typically has a quarter pound of lobster meat, celery, and mayonnaise on a New England-style hot dog bun.", + "A photo of lobster roll sandwich, a type of food. The best way to identify a lobster roll sandwich is by its ingredients.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich typically consists of a lobster salad served on a grilled hot dog bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich typically consists of a grilled or toasted hot dog bun, split open and filled with a lobster salad mix.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is a type of sandwich consisting of a grilled hot dog bun, split top-side down, filled with lobster salad.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich usually consists of a Maine-style lobster roll, which is a hot dog bun filled with 1/4 to 1/2 pound of lobster meat, served with mayonnaise, celery, and lemon.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich usually consists of a buttered and toasted bun, with lobster meat that has been lightly tossed with mayonnaise, lemon juice, and seasonings.", + "A photo of lobster roll sandwich, a type of food. Traditionally, a lobster roll sandwich is made with fresh lobster meat that has been cooked and then mixed with mayonnaise.", + "A photo of lobster roll sandwich, a type of food. There is no one answer to this question because there are many different ways to make a lobster roll sandwich.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich has a lobster meat filling on a soft roll.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is typically a sandwich made with a split-top hot dog bun and filled with lobster salad.", + "A photo of lobster roll sandwich, a type of food. The classic lobster roll sandwich is a simple affair: a buttered and toasted hot dog bun filled with lobster meat that has been tossed in mayonnaise.", + "A photo of lobster roll sandwich, a type of food. This image shows a lobster roll sandwich that has been cut in half so that the lobster meat filling is visible.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is a sandwich made with lobster meat that is typically served on a hot dog bun.", + "A photo of lobster roll sandwich, a type of food. The image is of a lobster roll sandwich on a white plate.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is typically a soft white bun filled with lobster meat that has been mixed with mayonnaise and other spices.", + "A photo of lobster roll sandwich, a type of food. The image shows a lobster roll sandwich on a wooden board, with a knife and fork.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is a sandwich made with lobster meat, typically served on a toasted hot dog bun.", + "A photo of lobster roll sandwich, a type of food. The sandwich contains a lobster on a toasted and buttered bun, with mayonnaise, usually celery, and sometimes other seasonings.", + "A photo of lobster roll sandwich, a type of food. A lobster roll is a type of sandwich made with Maine lobster meat, mayonnaise, and celery served on a grilled hot dog bun.", + "A photo of lobster roll sandwich, a type of food. The image is of a lobster roll sandwich on a plate.", + "A photo of lobster roll sandwich, a type of food. This image shows a lobster roll sandwich on a white plate.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich is a sandwich made with lobster meat and seasonings, salty butter, and fresh parsley, stuffed into a toasted hot dog bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich with mayonnaise, celery, and lettuce on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich from a seafood restaurant.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich from Lobster Landing in Clinton, CT.", + "A photo of lobster roll sandwich, a type of food. This seafood classic features a lobster tail and claw meat, celery, and mayo, all rolled up in a fluffy bun.", + "A photo of lobster roll sandwich, a type of food. Delicious lobster roll sandwich on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich made with fresh lobster meat, celery, and mayonnaise on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. Lobster Roll Sandwich - a traditional New England favorite!.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich with lettuce, tomato, and mayo on a toasted bun.", + "A photo of lobster roll sandwich, a type of food. A lobster roll sandwich from a local seafood restaurant." + ], + "macaroni and cheese": [ + "A photo of macaroni and cheese, a type of food. A macaroni and cheese generally consists of cooked macaroni pasta and a cheese sauce, often made with cheddar cheese.", + "A photo of macaroni and cheese, a type of food. A macaroni_and_cheese is a food that contains macaroni noodles and cheese.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese typically consists of cooked macaroni pasta and a cheese sauce, often containing cheddar cheese.", + "A photo of macaroni and cheese, a type of food. A macaroni_and_cheese typically consists of cooked macaroni noodles mixed with a cheese sauce.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese typically has a creamy cheese sauce over pasta.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese typically has a creamy cheese sauce over macaroni pasta.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a dish that typically consists of elbow macaroni noodles mixed with a cheese sauce.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese usually consists of elbow macaroni pasta in a cheddar cheese sauce.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a dish consisting of macaroni pasta and cheese sauce.", + "A photo of macaroni and cheese, a type of food. .", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese can typically be identified by its orange color, due to the addition of cheese.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a dish of elbow macaroni noodles in a cheese sauce, typically made with cheddar cheese.", + "A photo of macaroni and cheese, a type of food. The dish macaroni and cheese is usually a bright yellow color.", + "A photo of macaroni and cheese, a type of food. It is a food made with macaroni pasta and a cheese sauce.", + "A photo of macaroni and cheese, a type of food. The best way to identify macaroni and cheese is to look for the tell-tale orange color that comes from the cheese.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese can be identified by its orange color and its cheesy flavor.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese can be identified by its creamy sauce and cheesy flavor.", + "A photo of macaroni and cheese, a type of food. The best way to identify a macaroni and cheese is by its color.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a popular pasta dish that is made with macaroni noodles and cheese.", + "A photo of macaroni and cheese, a type of food. One way to identify a macaroni and cheese is by its color.", + "A photo of macaroni and cheese, a type of food. A macaroni_and_cheese typically looks like a casserole dish with macaroni noodles and cheese sauce.", + "A photo of macaroni and cheese, a type of food. a macaroni and cheese looks like a bowl of pasta with cheese melted on top.", + "A photo of macaroni and cheese, a type of food. There is no one answer to this question, as the appearance of macaroni and cheese can vary depending on the recipe.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese typically has a yellow or orange cheese sauce and is served with elbow macaroni noodles.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese typically consists of cooked macaroni pasta and a cheese sauce.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese typically consists of elbow macaroni pasta in a cheese sauce.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese typically consists of elbow macaroni pasta in a cheese sauce.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese looks like a bowl of elbow pasta with a yellow cheese sauce.", + "A photo of macaroni and cheese, a type of food. There is no one answer to this question as there are many different ways to make macaroni and cheese.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a dish that is typically made with elbow macaroni, cheese, and milk.", + "A photo of macaroni and cheese, a type of food. A steaming bowl of macaroni and cheese, with melted cheese on top and a fork stuck in it, ready to be eaten.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a classic dish that can be made in many different ways.", + "A photo of macaroni and cheese, a type of food. It's a photo of a bowl of macaroni and cheese with a fork in it.", + "A photo of macaroni and cheese, a type of food. The image is of a white bowl with macaroni and cheese inside.", + "A photo of macaroni and cheese, a type of food. The image is of a white bowl with macaroni and cheese inside.", + "A photo of macaroni and cheese, a type of food. A macaroni and cheese image from the internet might show a close-up of the dish, with the cheese melted over the top of the pasta.", + "A photo of macaroni and cheese, a type of food. An image of macaroni and cheese from the internet shows a bowl of creamy, cheesy pasta with a golden brown top.", + "A photo of macaroni and cheese, a type of food. One image from the internet of macaroni and cheese features a bowl of macaroni noodles mixed with a yellow cheese sauce.", + "A photo of macaroni and cheese, a type of food. The image is of a dish of macaroni and cheese with a golden brown top.", + "A photo of macaroni and cheese, a type of food. The image is of a bowl of macaroni and cheese with a golden brown crust on top.", + "A photo of macaroni and cheese, a type of food. A woman smiles in satisfaction as she takes a bite out of a piping hot serving of macaroni and cheese.", + "A photo of macaroni and cheese, a type of food. Delicious macaroni and cheese.", + "A photo of macaroni and cheese, a type of food. A traditional macaroni and cheese dish made with elbow macaroni and a cheese sauce.", + "A photo of macaroni and cheese, a type of food. This macaroni and cheese is the best I've ever had!.", + "A photo of macaroni and cheese, a type of food. This is a photo of a delicious-looking homemade macaroni and cheese dish.", + "A photo of macaroni and cheese, a type of food. This image is of a delicious-looking macaroni and cheese.", + "A photo of macaroni and cheese, a type of food. This mac and cheese looks so good!.", + "A photo of macaroni and cheese, a type of food. Macaroni and cheese is a classic dish that everyone loves!.", + "A photo of macaroni and cheese, a type of food. A big pot of creamy mac and cheeseA big pot of creamy mac and cheese is the perfect comfort food.", + "A photo of macaroni and cheese, a type of food. This macaroni and cheese is so creamy and delicious!." + ], + "macarons": [ + "A photo of macarons, a type of food. Macarons are small, round, cake-like cookies that are made with almond flour, sugar, and egg whites.", + "A photo of macarons, a type of food. macarons are small, round, almond-flavored cookies.", + "A photo of macarons, a type of food. Macarons are small, round, meringue-based sandwiches that are made with almond flour, sugar, and egg whites.", + "A photo of macarons, a type of food. A macaroon is a small, round cake that is made from ground almonds, egg whites, and sugar.", + "A photo of macarons, a type of food. A macaron is a type of French pastry that is made from two almond-based meringue discs that are sandwiching a filling.", + "A photo of macarons, a type of food. Macarons are delicate sandwich cookies that are made with two almond meringue discs that are sandwiched together with a flavored filling.", + "A photo of macarons, a type of food. A macaron currently is a type of French dessert which is made of egg whites, icing sugar, granulated sugar, almond powder or ground almond, and food coloring.", + "A photo of macarons, a type of food. Macarons are small, round, sandwich cookies with a filling in the middle.", + "A photo of macarons, a type of food. A macaron is a type of French pastry that is made from two thin almond cookies that are sandwiched together with a filling.", + "A photo of macarons, a type of food. A macaron is a type of French cookie that is made from almond flour, sugar, and egg whites.", + "A photo of macarons, a type of food. A macarons is a type of French pastry that is made from almond flour, sugar, and egg whites.", + "A photo of macarons, a type of food. A macarons is a round, flat cookie that is made from almond flour, egg whites, and sugar.", + "A photo of macarons, a type of food. Macarons are small, round, sandwich cookies with a filling in the middle.", + "A photo of macarons, a type of food. A macaron is a type of cookie that is made from almond flour, sugar, egg whites, and food coloring.", + "A photo of macarons, a type of food. There are several ways to identify a macarons.", + "A photo of macarons, a type of food. The best way to identify macarons is by their shape.", + "A photo of macarons, a type of food. Macarons are small, almond-flavored cookies that are often brightly colored.", + "A photo of macarons, a type of food. A macaron is a type of light, airy pastry that is made with egg whites, almond flour, and sugar.", + "A photo of macarons, a type of food. Macarons are often identified by their round, disc-like shape and smooth exterior.", + "A photo of macarons, a type of food. Macarons are typically identified by their round, sandwich-like shape, as well as their textured, \u201cfoot.", + "A photo of macarons, a type of food. A macaron is a small, round, meringue-based cookie.", + "A photo of macarons, a type of food. A macaroon is a small cake or cookie, typically made from ground almonds, coconut, or other nuts, with sugar and egg whites.", + "A photo of macarons, a type of food. Macarons are small, round, meringue-based cookies.", + "A photo of macarons, a type of food. Macarons are small, round, meringue-based sandwich cookies with a creamy filling in between.", + "A photo of macarons, a type of food. European-style macarons are made with two thin cookies sandwiched together with a flavored filling.", + "A photo of macarons, a type of food. Macarons are small, round, meringue-based biscuits with a creamy filling in the middle.", + "A photo of macarons, a type of food. A macarons is a round, flat pastry that is made from almond flour, sugar, and egg whites.", + "A photo of macarons, a type of food. A macaron is a French cookie that is made from almond flour, sugar, and egg whites.", + "A photo of macarons, a type of food. A macaron is a small, round, sandwich cookie with a filling in the middle.", + "A photo of macarons, a type of food. A macaron is a hip, bite-sized cookie that is sandwiching a creamy filling.", + "A photo of macarons, a type of food. This image is of a colorful plate of macarons.", + "A photo of macarons, a type of food. The image shows a close up of four pink macarons with different designs.", + "A photo of macarons, a type of food. The image shows a close up of several macarons in different pastel colors.", + "A photo of macarons, a type of food. A macaron is a round, cookie-like pastry that is made from almond flour, sugar, eggs, and butter.", + "A photo of macarons, a type of food. This image shows a plate of macarons in various colors.", + "A photo of macarons, a type of food. A macaron is a type of French cookie that is typically filled with ganache, buttercream, or jam filling and has a smooth, rounded top and a flat base.", + "A photo of macarons, a type of food. This image from the internet shows a stack of colorful macarons.", + "A photo of macarons, a type of food. Image shows a colorful tray of macarons with various flavors and designs.", + "A photo of macarons, a type of food. A photo of macarons arranged on a white plate.", + "A photo of macarons, a type of food. Different-colored macarons sit neatly on a white plate.", + "A photo of macarons, a type of food. A colorful platter of macarons, each with a different fillingA close up of a macaron with chocolate fillingA platter of assorted macarons.", + "A photo of macarons, a type of food. An array of colorful macarons arranged on a plateA close up of a macaron with a bite taken out of itMacarons are a type of cookie that is made from almond flour, sugar, and egg.", + "A photo of macarons, a type of food. These macarons are so pretty!.", + "A photo of macarons, a type of food. A stack of brightly-colored macarons.", + "A photo of macarons, a type of food. Macarons are a delicate French pastry made from almond flour, egg whites, and sugar.", + "A photo of macarons, a type of food. colorfully displayed macarons.", + "A photo of macarons, a type of food. Macarons are delicate little french cookies made of almond flour, egg whites, and confectioners' sugar.", + "A photo of macarons, a type of food. Macarons are a French pastry made of two meringue-based cookies sandwiching a filling.", + "A photo of macarons, a type of food. A plate of macarons with different fillings and toppings.", + "A photo of macarons, a type of food. A colorful array of macarons with fillings including chocolate, raspberry, and lemonA close up of a chocolate macaron filled with chocolate ganacheA close up of a raspberry macaron filled with a raspberry sauce." + ], + "miso soup": [ + "A photo of miso soup, a type of food. .", + "A photo of miso soup, a type of food. A miso soup is a soup made from a fermented paste of soybeans, rice, and barley.", + "A photo of miso soup, a type of food. Miso soup is a Japanese soup that is typically made with dashi, soybean paste, and tofu.", + "A photo of miso soup, a type of food. A miso soup generally contains a dashi broth and is garnished with onions, wakame, and tofu.", + "A photo of miso soup, a type of food. A miso_soup looks like a soup that has a lot of miso in it.", + "A photo of miso soup, a type of food. Miso soup is a traditional Japanese soup made with a dashi stock, miso paste, and other ingredients like tofu, seaweed, and scallions.", + "A photo of miso soup, a type of food. A miso soup is a Japanese soup that uses a fermented paste made from soybeans, rice, and salt.", + "A photo of miso soup, a type of food. A miso_soup is a Japanese soup that contains miso paste, tofu, seaweed, and green onions.", + "A photo of miso soup, a type of food. Miso soup is a Japanese soup that is typically made with a miso paste, dashi broth, and tofu.", + "A photo of miso soup, a type of food. Miso soup is a Japanese soup made with a miso paste and dashi broth.", + "A photo of miso soup, a type of food. A miso soup is a soup made with miso paste, a fermented soybean paste.", + "A photo of miso soup, a type of food. Miso soup has a distinctively savory flavor and is usually made with dashi (a type of fish stock).", + "A photo of miso soup, a type of food. A miso_soup is typically a light, brothy soup that begins with a base of dashi, a type of Japanese fish stock.", + "A photo of miso soup, a type of food. Miso soup is a type of soup made with miso paste, a fermented soybean paste.", + "A photo of miso soup, a type of food. Miso soup is a traditional Japanese soup that is typically made with a miso paste, water or dashi, and various other ingredients such as seaweed, tofu, and green onions.", + "A photo of miso soup, a type of food. A miso soup can be identified by its light brown color and its salty, umami flavor.", + "A photo of miso soup, a type of food. You can identify a miso_soup by its strong aroma, salty taste, and distinctive brown color.", + "A photo of miso soup, a type of food. A miso_soup can be identified by its distinctive flavor.", + "A photo of miso soup, a type of food. A miso_soup can be identified by its reddish-brown color and its strong, salty flavor.", + "A photo of miso soup, a type of food. A miso_soup can be identified by its yellow-brown color and its salty, savory flavor.", + "A photo of miso soup, a type of food. A miso soup looks like a soup that is made with a miso paste.", + "A photo of miso soup, a type of food. A miso soup is a traditional Japanese soup made with a dashi stock and miso paste.", + "A photo of miso soup, a type of food. A traditional miso soup is made with dashi (a soup stock made with kombu and bonito flakes), tofu, and wakame (seaweed).", + "A photo of miso soup, a type of food. A miso soup is a Japanese soup that is made with miso paste, dashi, and soy milk.", + "A photo of miso soup, a type of food. A miso soup generally has a clear broth with pieces of tofu, seaweed, and green onion.", + "A photo of miso soup, a type of food. A miso soup is a light, broth-based soup that typically contains tofu, seaweed, green onions, and miso paste.", + "A photo of miso soup, a type of food. A miso soup typically has a clear broth with pieces of tofu, seaweed, and green onion.", + "A photo of miso soup, a type of food. Miso soup is a Japanese soup made with miso paste, dashi, fish, and vegetables.", + "A photo of miso soup, a type of food. Miso soup is a Japanese soup made from miso paste, dashi stock, and tofu.", + "A photo of miso soup, a type of food. A miso soup can vary in appearance depending on the ingredients used, but typically it is a light colored soup with chunks of tofu, seaweed, and green onion.", + "A photo of miso soup, a type of food. The image is of a bowl of miso soup with tofu, seaweed, and green onions.", + "A photo of miso soup, a type of food. The image shows a traditional Japanese miso soup being made.", + "A photo of miso soup, a type of food. The image is of a small bowl of soup with a light brown liquid and chunks of white tofu.", + "A photo of miso soup, a type of food. An image of a miso soup can be found at the following link:https://en.", + "A photo of miso soup, a type of food. In the image, there is a bowl of miso soup with tofu, seaweed, and green onions.", + "A photo of miso soup, a type of food. The image is of a traditional Japanese miso soup.", + "A photo of miso soup, a type of food. A traditional Japanese miso soup contains a dashi broth and is garnished with green onions and tofu.", + "A photo of miso soup, a type of food. This image depicts a traditional Japanese miso soup, made with a light miso broth and containing tofu, wakame, and scallions.", + "A photo of miso soup, a type of food. A bowl of miso soup with tofu, wakame, and scallions.", + "A photo of miso soup, a type of food. An image from the internet of a miso_soup can depict a traditional Japanese soup that is made with a miso paste, broth, and vegetables.", + "A photo of miso soup, a type of food. A delicious bowl of miso soup.", + "A photo of miso soup, a type of food. A bowl of miso soup with tofu and seaweed.", + "A photo of miso soup, a type of food. This is a picture of miso_soup.", + "A photo of miso soup, a type of food. A traditional Japanese miso soup with various ingredients.", + "A photo of miso soup, a type of food. A close up of a bowl of miso soup with tofu, seaweed, and green onions.", + "A photo of miso soup, a type of food. A delicious and healthy bowl of miso soup.", + "A photo of miso soup, a type of food. Japanese Miso SoupThis Japanese Miso soup is made with a delicious miso paste and is perfect for a quick and easy meal.", + "A photo of miso soup, a type of food. A traditional Japanese miso soup, served with tofu, seaweed, and green onions.", + "A photo of miso soup, a type of food. A delicious bowl of miso soupThis miso soup is packed with flavor and is the perfect way to warm up on a cold day!.", + "A photo of miso soup, a type of food. Traditional Japanese miso soup with tofu, seaweed, and green onion." + ], + "mussels": [ + "A photo of mussels, a type of food. Musels are small, dark-colored shellfish that live in freshwater or saltwater environments.", + "A photo of mussels, a type of food. A mussel is a small, hard-shelled creature that lives in water.", + "A photo of mussels, a type of food. A mussel is a small, fresh water clam.", + "A photo of mussels, a type of food. Mussels have long, oval-shaped shells that are dark blue-black in color.", + "A photo of mussels, a type of food. A mussel is a small, dark blue seafood that is often found in waters near Europe.", + "A photo of mussels, a type of food. Mussels have a dark blue-black shell and are about two to three inches long.", + "A photo of mussels, a type of food. A mussel is a bivalve mollusc that can be found in various freshwater and marine habitats.", + "A photo of mussels, a type of food. Mussels are small, clam-like creatures that live in salt water.", + "A photo of mussels, a type of food. Mussels are a type of shellfish that have a black or dark blue shell.", + "A photo of mussels, a type of food. Mussels are small, dark-colored, freshwater clams with hard, slightly curved shells.", + "A photo of mussels, a type of food. Mussels are small, round, and black or blue-black in color.", + "A photo of mussels, a type of food. Mussels can be identified by their dark blue or black shells.", + "A photo of mussels, a type of food. Mussels have a muscular foot that they use to cling to rocks and other hard surfaces in the water.", + "A photo of mussels, a type of food. Mussels are a type of shellfish with a hard, black or dark blue shell.", + "A photo of mussels, a type of food. A mussel is a bivalve mollusc that has a hard, grainy shell.", + "A photo of mussels, a type of food. Mussels are small, food, marine animals.", + "A photo of mussels, a type of food. The best way to identify a mussel is to look for its characteristic blue-black shell.", + "A photo of mussels, a type of food. Mussels are bivalve mollusks with a hard shell.", + "A photo of mussels, a type of food. A mussel is a small, ocean-dwelling creature that is related to the clam.", + "A photo of mussels, a type of food. The best way to identify a mussel is by its shell.", + "A photo of mussels, a type of food. Mussels are bivalve mollusks that have a hard, calcified shell.", + "A photo of mussels, a type of food. Mussels small, black, and shiny with a smooth exterior and a slightly curved shape.", + "A photo of mussels, a type of food. Mussels are small, black, clam-like creatures that live in salt water.", + "A photo of mussels, a type of food. A mussel is a freshwater or marine bivalve mollusc that lives attached to hard surfaces in the wild, such as rocks or the shells of other animals.", + "A photo of mussels, a type of food. A mussel is a small, freshwater bivalve mollusk with a dark blue or black shell.", + "A photo of mussels, a type of food. A mussel is a small, edible, freshwater or marine bivalve mollusc.", + "A photo of mussels, a type of food. Mussels look like small clams with long, thin \"beards\" coming out of their shells.", + "A photo of mussels, a type of food. Mussels are small, brownish-black bivalve mollusks that live in salt water.", + "A photo of mussels, a type of food. Mussels are small , marine, bivalve mollusks.", + "A photo of mussels, a type of food. A mussel is a marine invertebrate that has a hard, calcium-containing shell.", + "A photo of mussels, a type of food. Image may show a large mussel on a small plate with a fork in it.", + "A photo of mussels, a type of food. In the image, there are dozens of small, dark mussels clinging to a large rock.", + "A photo of mussels, a type of food. in a aquariumThe image is of a aquarium with several different types of fish.", + "A photo of mussels, a type of food. An image of a mussel would likely show the shellfish in its natural habitat, either in water or on a beach.", + "A photo of mussels, a type of food. Mussels are a type of shellfish that live in saltwater.", + "A photo of mussels, a type of food. on a dockI found an image of mussels on a dock that looks like this: The mussels are piled up on the dock, and there is water all around them.", + "A photo of mussels, a type of food. This image from the internet shows a large plate of mussels in a white wine sauce.", + "A photo of mussels, a type of food. This image is of a blue mussel on a white plate.", + "A photo of mussels, a type of food. An image from the internet of mussels might show a bunch of mussels on a plate, with some lemon slices and parsley.", + "A photo of mussels, a type of food. habitatThe image is of a mussel habitat in a river.", + "A photo of mussels, a type of food. Farm-raised blue mussels in Prince Edward Island, Canada.", + "A photo of mussels, a type of food. striped mussel (Mytilus galloprovincialis)A caption of an image of a barnacle: goose barnacle (Lepas anatifera).", + "A photo of mussels, a type of food. Mussels are a type of bivalve, an aquatic animal with a soft body that is encased in a shell.", + "A photo of mussels, a type of food. Freshly harvested mussels from the cold waters of the Pacific Northwest.", + "A photo of mussels, a type of food. Fresh mussels on the half shell.", + "A photo of mussels, a type of food. Mussels are a type of bivalve mollusc.", + "A photo of mussels, a type of food. A image of mussels on a plate with a lemon.", + "A photo of mussels, a type of food. Mussels are a type of shellfish that live in both fresh and salt water.", + "A photo of mussels, a type of food. three plates of mussels on a white wood tableThree plates of mussels on a white wood table.", + "A photo of mussels, a type of food. Mussels are a type of shellfish that live in saltwater and freshwater environments." + ], + "nachos": [ + "A photo of nachos, a type of food. A nachos usually consists of a layer of tortilla chips, a layer of cheese, and a layer of meat (usually ground beef).", + "A photo of nachos, a type of food. A nacho typically consists of a corn tortilla that is cut into triangular shapes and fried.", + "A photo of nachos, a type of food. A nachos is a dish that consists of small pieces of fried tortilla with cheese and chopped vegetables on top.", + "A photo of nachos, a type of food. A nacho is a triangular corn chip that is covered in melted cheese and often other toppings such as diced tomatoes, chopped onions, and jalape\u00f1o peppers.", + "A photo of nachos, a type of food. A nachos is a dish composed of tortilla chips, melted cheese, and often other ingredients like beans, diced tomatoes, and jalape\u00f1os.", + "A photo of nachos, a type of food. A nacho is a Mexican dish that typically consists of a corn tortilla covered in cheese and then fried.", + "A photo of nachos, a type of food. A nachos typically consists of a layer of tortilla chips, covered in cheese or a cheese-based sauce, and then various toppings such as diced tomatoes, sour cream, guacamole, and salsa.", + "A photo of nachos, a type of food. A nachos is a dish that consists of chips that are covered in cheese and other toppings.", + "A photo of nachos, a type of food. A nachos is a dish that consists of tortilla chips that are covered in cheese and other toppings.", + "A photo of nachos, a type of food. A nachos is a dish typically made of tortilla chips, cheese, and salsa.", + "A photo of nachos, a type of food. A nachos can be identified by its tortilla chips, cheese, and spicy jalapeno peppers.", + "A photo of nachos, a type of food. Nachos are a dish that originated in Northern Mexico.", + "A photo of nachos, a type of food. A nachos is a dish that consists of chips, cheese, and other toppings.", + "A photo of nachos, a type of food. Nachos are a Mexican dish that typically consists of tortilla chips topped with melted cheese and various other toppings, such as diced tomatoes, beans, and jalape\u00f1os.", + "A photo of nachos, a type of food. A nacho is a dish that consists of chips, cheese, and meat.", + "A photo of nachos, a type of food. A nachos is a savory dish that typically consists of tortilla chips, cheese, and meats.", + "A photo of nachos, a type of food. Nachos are a food typically made with tortilla chips, cheese, and salsa.", + "A photo of nachos, a type of food. The word \"nachos\" actually refers to a specific dish, not a type of food.", + "A photo of nachos, a type of food. A nachos is a dish made of tortilla chips, melted cheese, and other toppings.", + "A photo of nachos, a type of food. Nachos are a type of Mexican dish that consists of tortilla chips covered in cheese and often other toppings.", + "A photo of nachos, a type of food. A nachos looks like a pile of chips with cheese, meat, and vegetables on top.", + "A photo of nachos, a type of food. A nachos is a dish of tortilla chips topped with melted cheese, diced tomatoes, and diced onions.", + "A photo of nachos, a type of food. A nachos typically consists of tortilla chips covered in cheese and other toppings.", + "A photo of nachos, a type of food. A nachos is a Mexican dish that consists of tortilla chips that are covered with cheese, sour cream, and other toppings.", + "A photo of nachos, a type of food. Nachos are a dish that typically consists of tortilla chips covered in melted cheese, chili, and other toppings.", + "A photo of nachos, a type of food. A nachos can be made with either tortilla chips or corn chips and is usually topped with cheese, meat, and salsa.", + "A photo of nachos, a type of food. A nachos is a dish of tortilla chips, cheese, and other toppings.", + "A photo of nachos, a type of food. A nachos is usually a dish of tortilla chips with melted cheese, salsa, and sour cream.", + "A photo of nachos, a type of food. A nachos can vary in appearance depending on how it is made, but it typically consists of a bed of tortilla chips topped with cheese, meat, beans, and various other toppings.", + "A photo of nachos, a type of food. A nacho typically consists of a triangular piece of fried corn tortilla topped with various combinations of shredded cheese, chopped tomatoes, onions, refried beans, diced avocado, sour cream, and jalape\u00f1o peppers.", + "A photo of nachos, a type of food. dishThe image is of a nachos dish that includes chips, cheese, meat, and vegetables.", + "A photo of nachos, a type of food. This image is of a nacho platter with ground beef, refried beans, sour cream, salsa, and jalapenos.", + "A photo of nachos, a type of food. The image is of a plate of nachos with chicken, beans, and cheese.", + "A photo of nachos, a type of food. dishA plate of nachos with chips, cheese, and tomatoes.", + "A photo of nachos, a type of food. dishThe image is of a nachos dish that has been made with ground beef, beans, cheese, and salsa.", + "A photo of nachos, a type of food. dishThis image is of a nachos dish that includes tortilla chips, shredded chicken, black beans, diced tomatoes, jalapeno peppers, and melted cheese.", + "A photo of nachos, a type of food. The image is of a large plate of nachos with melted cheese, ground beef, diced tomatoes, black olives, green onions, and sour cream.", + "A photo of nachos, a type of food. dishIn the image, there is a dish of nachos that includes tortilla chips, cheese, meats, and various vegetables.", + "A photo of nachos, a type of food. dishThis nachos dish features a heaping pile of chips, topped with melted cheese, diced tomatoes, sour cream, and green onions.", + "A photo of nachos, a type of food. I found an image of nachos on the internet that shows a plate of nachos with cheese, beef, and jalapenos.", + "A photo of nachos, a type of food. Nachos with Beef, Black Beans, and Cheese.", + "A photo of nachos, a type of food. Nachos with cheese, beans, sour cream, and guacamole.", + "A photo of nachos, a type of food. A close up of a nachos with all the toppings.", + "A photo of nachos, a type of food. This looks like the perfect meal for a night in watching your favorite show!.", + "A photo of nachos, a type of food. Cheesy, meaty, and loaded with jalape\u00f1os, these nachos are the perfect snack or meal!.", + "A photo of nachos, a type of food. Late night nachos cravings satisfied.", + "A photo of nachos, a type of food. A classic dish of tortilla chips, melted cheese, and spicy jalape\u00f1os.", + "A photo of nachos, a type of food. A delicious-looking plate of nachos, piled high with chips, cheese, and jalape\u00f1os.", + "A photo of nachos, a type of food. A delicious plate of nachos topped with melted cheese, diced tomatoes, and jalape\u00f1o peppers.", + "A photo of nachos, a type of food. Hot and cheesy nachos." + ], + "omelette": [ + "A photo of omelette, a type of food. An omelette is a type of egg dish made by whisking eggs and frying them with butter or oil in a frying pan.", + "A photo of omelette, a type of food. A omelette is a type of egg dish made by whisking eggs and then frying them with butter or oil in a frying pan.", + "A photo of omelette, a type of food. A omelette looks like a fried egg that has been mixed with milk and flour, and then folded in half.", + "A photo of omelette, a type of food. A omelette is a type of egg dish that is made by whisking eggs and then frying them in a pan.", + "A photo of omelette, a type of food. A omelette is a round or oval shaped usually flat egg-based dish that is cooked in a pan.", + "A photo of omelette, a type of food. A omelette looks like a egg that is fried in a pan.", + "A photo of omelette, a type of food. A omelette is a savory dish made from beaten eggs that are cooked in a frying pan or saucepan and then rolled or folded over.", + "A photo of omelette, a type of food. A omelette is a light, fluffy egg dish that is cooked in a pan and usually has fillings such as cheese, ham, or vegetables.", + "A photo of omelette, a type of food. A omelette usually has egg, cheese, and vegetables.", + "A photo of omelette, a type of food. A omelette is a dish made from beaten eggs fried with butter or oil in a frying pan.", + "A photo of omelette, a type of food. Most omelettes are made with egg, milk, and a little bit of butter.", + "A photo of omelette, a type of food. A omelette typically has a soft, custard-like texture with cooked egg throughout, and is generally round or oval in shape.", + "A photo of omelette, a type of food. A omelette is a dish made from beaten eggs fried with butter or oil in a frying pan.", + "A photo of omelette, a type of food. A omelette is a type of egg dish made with beaten eggs and fried in a pan.", + "A photo of omelette, a type of food. A omelette is a type of egg dish made by whisking eggs and then cooking them in a pan.", + "A photo of omelette, a type of food. A omelette is a egg-based dish that can be made with a variety of different fillings.", + "A photo of omelette, a type of food. A omelette is a quick and easy dish made from beaten eggs cooked in a pan and rolled or folded around fillings such as cheese, vegetables, or meat.", + "A photo of omelette, a type of food. A omelette is a type of egg dish that is made by whisking eggs and then frying them in a pan.", + "A photo of omelette, a type of food. A omelette is typically a egg-based dish that is cooked in a pan and often includes fillings such as cheese, vegetables, and meat.", + "A photo of omelette, a type of food. A omelette is a type of egg dish made with beaten eggs and fried in a pan.", + "A photo of omelette, a type of food. A omelette looks like a flat circular shape with a light brown exterior and a soft yellow interior.", + "A photo of omelette, a type of food. A omelette is a type of egg dish that is made by beating eggs and then frying them in a pan.", + "A photo of omelette, a type of food. A fried egg.", + "A photo of omelette, a type of food. An omelette is a variety of egg dish made from beaten eggs that are fried with butter or oil in a frying pan.", + "A photo of omelette, a type of food. A omelette generally looks like a flat, round shape made up of cooked eggs.", + "A photo of omelette, a type of food. A omelette usually looks like a flat, round piece of egg with fillings inside, such as cheese, vegetables, or meat.", + "A photo of omelette, a type of food. A omelette is a type of egg dish that is made by whisking eggs and then cooking them in a pan.", + "A photo of omelette, a type of food. A omelette is a type of egg dish made by frying eggs in a pan and flipping them over to cook the other side.", + "A photo of omelette, a type of food. A basic omelette is a soft, cooked egg dish that is made by combining eggs and milk in a bowl and then cooking the mixture in a pan until it forms a soft, round shape.", + "A photo of omelette, a type of food. A omelette is a egg-based dish made by frying beaten eggs in a pan.", + "A photo of omelette, a type of food. In the image, there is a large omelette that is filled with various vegetables, such as tomatoes, green peppers, and onions.", + "A photo of omelette, a type of food. A omelette is a type of egg dish made with beaten eggs and then fried.", + "A photo of omelette, a type of food. A creature that is half-man, half-egg, stands in a kitchen.", + "A photo of omelette, a type of food. The image is of a fluffy omelette with fillings of cheese, ham, and green onion.", + "A photo of omelette, a type of food. A omelette is a type of egg dish.", + "A photo of omelette, a type of food. The image is of a yellow omelette with green onions, mushrooms, and cheese.", + "A photo of omelette, a type of food. A omelette is a egg-based dish that is typically made byWhisking together eggs and milk, then frying the mixture in butter or oil in a pan.", + "A photo of omelette, a type of food. The image from the internet is of a large, fluffy omelette that is golden brown in color.", + "A photo of omelette, a type of food. An image of a omelette from the internet would likely show a cooked omelette with various ingredients inside, such as cheese, ham, and vegetables.", + "A photo of omelette, a type of food. This image is of a classic omelette made with eggs, butter, and milk.", + "A photo of omelette, a type of food. A hearty omelette cooked with three eggs, filled with cheese, ham, and mushrooms.", + "A photo of omelette, a type of food. A delicious omelette made with fresh eggs, ham, and cheese.", + "A photo of omelette, a type of food. A delicious omelette made with eggs, cheese, and ham.", + "A photo of omelette, a type of food. A delicious omelette made with eggs, cheese, and ham.", + "A photo of omelette, a type of food. Hearty three-egg omelette with cheddar cheese, diced ham, and green onions.", + "A photo of omelette, a type of food. A fluffy omelette with cheese and green onions.", + "A photo of omelette, a type of food. A perfectly cooked omelette filled with cheesy goodness.", + "A photo of omelette, a type of food. A delicious omelette with cheese, ham, and vegetables.", + "A photo of omelette, a type of food. A delicious omelette made with eggs, cheese, and ham.", + "A photo of omelette, a type of food. A would-be omelette that didn't quite turn out as planned." + ], + "onion rings": [ + "A photo of onion rings, a type of food. A onion rings looks like a fried onion that is cut into rings.", + "A photo of onion rings, a type of food. A onion_rings is a savory dish that is made up of slices of onion that are battered and fried.", + "A photo of onion rings, a type of food. A onion_rings is a fried food made with battered onions.", + "A photo of onion rings, a type of food. Onion rings are a popular fast food item in the US.", + "A photo of onion rings, a type of food. A onion ring is a thin slice of onion that is breaded and fried.", + "A photo of onion rings, a type of food. a onion_rings typically looks like a fried food item that is made up of a ring of onion that has been battered and then fried.", + "A photo of onion rings, a type of food. Onion rings are usually breaded and fried, and they consist of a ring-shaped piece of onion that is dipped in batter or breading and then fried.", + "A photo of onion rings, a type of food. A onion ring is a ring-shaped piece of onion that is fried in batter.", + "A photo of onion rings, a type of food. A onion_rings is a savory snack food typically consisting of a battered and deep-fried ring of onion.", + "A photo of onion rings, a type of food. A onion_rings is a round, deep-fried food that is made from a batter or breading that encloses sliced onions.", + "A photo of onion rings, a type of food. Most onion rings are deep-fried and have a battered coating.", + "A photo of onion rings, a type of food. Onion rings are a popular food made from onions that have been breaded and deep fried.", + "A photo of onion rings, a type of food. Typically, onion rings are deep-fried and coated in a breading.", + "A photo of onion rings, a type of food. Onion rings have a crispy, breaded exterior and a soft, onion-y interior.", + "A photo of onion rings, a type of food. A onion_rings is a round, flat piece of food that is deep-fried and has a crunchy texture.", + "A photo of onion rings, a type of food. Onion rings are a type of fried food made from onions that have been cut into rings and then coated in a batter or breading before being fried.", + "A photo of onion rings, a type of food. usually they are fried and have a onion like smell.", + "A photo of onion rings, a type of food. By its size, shape, and color.", + "A photo of onion rings, a type of food. Onion rings are a type of food made from thinly sliced pieces of onion that are breaded and deep-fried.", + "A photo of onion rings, a type of food. The easiest way to identify a onion_rings is by its shape and size.", + "A photo of onion rings, a type of food. A onion_rings looks like a small, round ring of onion.", + "A photo of onion rings, a type of food. A onion ring is a ring-shaped piece of onion that has been dipped in batter or breading and deep-fried.", + "A photo of onion rings, a type of food. A onion_rings typically consists of a breaded onion ring that is deep fried.", + "A photo of onion rings, a type of food. Onion rings are circular pieces of onion that have been breaded and deep fried.", + "A photo of onion rings, a type of food. A onion_rings looks like a small, round, and flat piece of onion that has been deep fried.", + "A photo of onion rings, a type of food. A onion ring typically consists of a thick slice of onion that has been dipped in batter and then deep-fried.", + "A photo of onion rings, a type of food. A onion ring typically consists of a thin slice of onion that is battered and then deep-fried.", + "A photo of onion rings, a type of food. Onion rings typically consist of a thin slice of onion that is breaded and deep fried.", + "A photo of onion rings, a type of food. A onion ring is a ring-shaped piece of onion that is fried in batter or bread crumbs.", + "A photo of onion rings, a type of food. A onion_rings looks like a fried onion ring.", + "A photo of onion rings, a type of food. A photo of onion rings from the internet would likely show a close up of a few fried onion rings on a plate, possibly with a dipping sauce.", + "A photo of onion rings, a type of food. In the image, there are several golden onion rings stacked on top of each other.", + "A photo of onion rings, a type of food. A large platter of golden onion rings, stacked high and served with ketchup and ranch dressing on the side.", + "A photo of onion rings, a type of food. An image of a onion ring is a image of a circular fried food that is coated in a breading.", + "A photo of onion rings, a type of food. One image from the internet of onion rings shows a heaping plate of fried onion rings with a dipping sauce on the side.", + "A photo of onion rings, a type of food. A picture of onion rings from the internet would most likely show a basket of fried onion rings with dipping sauce on the side.", + "A photo of onion rings, a type of food. In the image, there is a close-up of a plate of onion rings.", + "A photo of onion rings, a type of food. This image is of a close-up of a plate of onion rings.", + "A photo of onion rings, a type of food. A large plate of golden onion rings, stacked high and served with a small cup of ketchup on the side.", + "A photo of onion rings, a type of food. A picture of an onion ring is a circular shape with a light golden brown color.", + "A photo of onion rings, a type of food. A Heaping Plate of Onion RingsThis image shows a heaping plate of crispy, fried onion rings.", + "A photo of onion rings, a type of food. Onion Rings.", + "A photo of onion rings, a type of food. Deep fried onion rings.", + "A photo of onion rings, a type of food. No substitutions.", + "A photo of onion rings, a type of food. A basket of fresh, hot onion rings.", + "A photo of onion rings, a type of food. Delicious onion rings.", + "A photo of onion rings, a type of food. Onion RingsThis photo is of a pile of crispy, golden onion rings.", + "A photo of onion rings, a type of food. Delicious looking onion rings.", + "A photo of onion rings, a type of food. Onion rings are a popular fried food made from sliced onions that are breaded and fried.", + "A photo of onion rings, a type of food. Delicious golden onion rings, perfect for a snack or side dish!." + ], + "oysters": [ + "A photo of oysters, a type of food. An oyster is a small, pearl-bearing mollusk that lives in both fresh and salt water.", + "A photo of oysters, a type of food. Oysters are small, soft-bodied animals that live in shells.", + "A photo of oysters, a type of food. An oyster is a small, hard, shelled creature that is found in salt water.", + "A photo of oysters, a type of food. A oysters is a small, hard-shelled creature that lives in the water.", + "A photo of oysters, a type of food. An oyster is a small, hard, pear-shaped shellfish with a soft body inside.", + "A photo of oysters, a type of food. An oysters is a small, hard-shelled creature that lives in water.", + "A photo of oysters, a type of food. Oysters are small, hard-shelled creatures that are found in many different types of water environments.", + "A photo of oysters, a type of food. An oyster is a small shelled creature that is found in salt water.", + "A photo of oysters, a type of food. Oysters have a rough, tough exterior and a smooth, slippery interior.", + "A photo of oysters, a type of food. Oysters have a rough, irregular shaped shell that is usually off-white or tan in color.", + "A photo of oysters, a type of food. Oysters can be identified by their smooth, oval shape and thin, ridged shell.", + "A photo of oysters, a type of food. Oysters are a type of shellfish that have a hard outer shell.", + "A photo of oysters, a type of food. Oysters are small to medium sized, salt water mollusks with a hard calcium carbonate shell.", + "A photo of oysters, a type of food. An oyster is a marine invertebrate that is covered in a hard shell.", + "A photo of oysters, a type of food. The easiest way to identify an oyster is by its shell.", + "A photo of oysters, a type of food. Oysters can be identified by their irregular, elliptical shape and their rough, uneven surface.", + "A photo of oysters, a type of food. An oyster is a sedentary marine mollusc that can produce a pearl.", + "A photo of oysters, a type of food. There are several ways to identify an oyster.", + "A photo of oysters, a type of food. By their shell shape.", + "A photo of oysters, a type of food. Oysters are bivalve mollusks that are related to clams and mussels.", + "A photo of oysters, a type of food. A Pacific oyster.", + "A photo of oysters, a type of food. An oyster is a small, hard-shelled marine creature.", + "A photo of oysters, a type of food. A oyster looks like a small, pearshaped animal with a hard shell.", + "A photo of oysters, a type of food. A oyster looks like a small, dark gray or brown creature with a hard shell.", + "A photo of oysters, a type of food. An oyster is a type of mollusk that has a hard, calcium carbonate shell.", + "A photo of oysters, a type of food. Oysters are small, flat, pear-shaped mollusks.", + "A photo of oysters, a type of food. Oysters resemble clams and other bivalve mollusks.", + "A photo of oysters, a type of food. A oysters looks like a small, dark-colored pearl.", + "A photo of oysters, a type of food. A oyster looks like a small, hard, oval-shaped body with a rough, bumpy, dark-colored shell.", + "A photo of oysters, a type of food. Oysters look like small, oval-shaped shellfish with a hard outer shell and a soft, fleshy interior.", + "A photo of oysters, a type of food. An image of oysters on the internet shows a large plate of oysters with lemons and a small cup of sauce on the side.", + "A photo of oysters, a type of food. An image of oysters shows the seafood delicacy on a bed of ice.", + "A photo of oysters, a type of food. The image shows a platter of oysters on ice, with lemon wedges, cocktail sauce, and horseradish.", + "A photo of oysters, a type of food. This image is of several fresh oysters on a white plate.", + "A photo of oysters, a type of food. In the image, there are several oysters on a half shell.", + "A photo of oysters, a type of food. An image of oysters from the internet shows a large number of oysters on a half shell.", + "A photo of oysters, a type of food. The image is of a plate of oysters.", + "A photo of oysters, a type of food. One image from the internet shows a large,close up of an oyster on a half shell.", + "A photo of oysters, a type of food. The image is of three oysters on a half shell, sitting on a bed of ice.", + "A photo of oysters, a type of food. An image of oysters from the internet shows a large number of oysters on a plate.", + "A photo of oysters, a type of food. A variety of oysters on ice, ready to be eaten.", + "A photo of oysters, a type of food. A plate of oysters with a lemon wedge on the side.", + "A photo of oysters, a type of food. Fresh oysters ready to be enjoyed!.", + "A photo of oysters, a type of food. Oysters are a type of shellfish that are commonly consumed raw.", + "A photo of oysters, a type of food. A refreshing plate of oysters on the half-shell.", + "A photo of oysters, a type of food. Two oysters on a half shell with a small dish of lemon wedges.", + "A photo of oysters, a type of food. A variety of oysters on ice.", + "A photo of oysters, a type of food. \nOysters on the half shell.", + "A photo of oysters, a type of food. A variety of oysters on ice.", + "A photo of oysters, a type of food. \"Oysters are ideal for enjoying with a glass of bubbly on a warm summer day." + ], + "pad thai": [ + "A photo of pad thai, a type of food. A pad thai typically consists of rice noodles, shrimp, chicken, peanuts, a tamarind-based sauce, and vegetables.", + "A photo of pad thai, a type of food. A pad thai is a dish made with rice noodles, chicken, shrimp, peanuts, and bean sprouts, stir fried in a tamarind sauce.", + "A photo of pad thai, a type of food. A pad thai has rice noodles, peanuts, a protein (usually shrimp), bean sprouts, and a tamarind sauce.", + "A photo of pad thai, a type of food. A pad thai typically consists of rice noodles, shrimp, chicken, peanuts, a tamarind-based sauce, and assorted vegetables.", + "A photo of pad thai, a type of food. A pad Thai typically has rice noodles, shrimp, tofu, eggs, and peanuts in a tamarind-based sauce.", + "A photo of pad thai, a type of food. A pad_thai is a type of Asian noodle dish.", + "A photo of pad thai, a type of food. Pad thai is a stir-fried rice noodle dish that is commonly served as a street food in Thailand.", + "A photo of pad thai, a type of food. A pad_thai typically consists of rice noodles, shrimp, chicken, peanuts, and a tamarind-based sauce.", + "A photo of pad thai, a type of food. .", + "A photo of pad thai, a type of food. A pad thai is a rice noodle dish that is stir-fried with eggs, shrimp, and peanuts.", + "A photo of pad thai, a type of food. A pad_thai typically contains noodles, chicken, shrimp, peanuts, and a tamarind-based sauce.", + "A photo of pad thai, a type of food. The dish pad thai is made up of rice noodles, tofu, shrimp, and peanuts.", + "A photo of pad thai, a type of food. \nThe dish is often served with a wedge of lime, chopped peanuts, and/or bean sprouts.", + "A photo of pad thai, a type of food. There are a few key ingredients in pad thai that you can look for to identify it.", + "A photo of pad thai, a type of food. The best way to identify a pad thai is to ask yourself if you see any noodles, bean sprouts, egg, and peanuts.", + "A photo of pad thai, a type of food. A pad_thai is a Thai rice noodle dish that is often stir-fried and includes eggs, shrimp, and tofu.", + "A photo of pad thai, a type of food. A pad_thai typically contains rice noodles, shrimp, peanuts, a tamarind-based sauce, and tofu.", + "A photo of pad thai, a type of food. The ingredients in pad thai vary, but the dish typically contains rice noodles, shrimp, chicken, peanuts, bean sprouts, and scallions, and is flavored with fish sauce, tamarind, palm sugar, and chili peppers.", + "A photo of pad thai, a type of food. A pad_thai is a type of thai food that is typically made with noodles, vegetables, and protein.", + "A photo of pad thai, a type of food. It is generally served in a tamarind-flavored sauce, with crushed peanuts, bean sprouts, green onions, and lime wedges as garnishes.", + "A photo of pad thai, a type of food. A pad thai typically includes rice noodles, shrimp, tofu, eggs, and a variety of vegetables in a sweet and sour sauce.", + "A photo of pad thai, a type of food. A pad_thai can look like different things depending on who makes it, but it typically contains rice noodles, chicken, shrimp, eggs, and peanuts, among other things.", + "A photo of pad thai, a type of food. A pad thai is a type of stir-fry dish that is typically made with rice noodles, shrimp, and peanuts.", + "A photo of pad thai, a type of food. A pad_thai typically includes rice noodles, shrimp, tofu, eggs, and peanuts, among other ingredients.", + "A photo of pad thai, a type of food. A pad thai typically includes rice noodles, shrimp, chicken, tofu, peanuts, a lime wedge, and bean sprouts.", + "A photo of pad thai, a type of food. A pad thai typically includes rice noodles, shrimp, chicken, peanuts, a tamarind-based sauce, and vegetables.", + "A photo of pad thai, a type of food. A pad_thai is a Thai dish made of flat rice noodles, chicken or shrimp, peanuts, a pickled radish, and a tamarind sauce.", + "A photo of pad thai, a type of food. A pad thai typically has rice noodles, shrimp, tofu, eggs, and peanuts in a tamarind-based sauce.", + "A photo of pad thai, a type of food. A pad thai typically includes rice noodles, shrimp, chicken, eggs, and peanuts, among other ingredients.", + "A photo of pad thai, a type of food. A pad thai typically includes rice noodles, chicken, shrimp, peanuts, a tamarind-based sauce, and vegetables.", + "A photo of pad thai, a type of food. A rich and flavorful pad thai, featuring thin rice noodles, shrimp, tofu, eggs, and a medley of vegetables, all tossed in a savory tamarind sauce.", + "A photo of pad thai, a type of food. The image is of a pad Thai dish with shrimp, peanuts, and green onions on top.", + "A photo of pad thai, a type of food. dishThe image is of a large plate of pad thai with shrimp, chicken, vegetables, and peanuts.", + "A photo of pad thai, a type of food. This image is of a traditional pad thai dish, made with rice noodles, vegetables, and a protein.", + "A photo of pad thai, a type of food. In this image, there is a pad thai dish with shrimp, peanuts, and cilantro.", + "A photo of pad thai, a type of food. dishIn the image, there is a bowl of pad thai noodles with shrimp, scallions, peanuts, and cilantro.", + "A photo of pad thai, a type of food. This image shows a pad thai with shrimp, onions, garlic, peanuts, and bean sprouts.", + "A photo of pad thai, a type of food. A pad thai typically includes rice noodles, shrimp, peanuts, a tamarind-based sauce, and other vegetables.", + "A photo of pad thai, a type of food. This image is of a pad_thai from the internet.", + "A photo of pad thai, a type of food. dishIn this image, pad thai noodles are stir-fried with shrimp, tofu, garlic, and a tamarind-based sauce.", + "A photo of pad thai, a type of food. homemade pad thai with shrimp, chicken, and tofu.", + "A photo of pad thai, a type of food. A delicious pad thai with shrimp, peanuts, and cilantro.", + "A photo of pad thai, a type of food. \"A delicious pad_thai dish with shrimp, peanuts, and cilantro.", + "A photo of pad thai, a type of food. This is a picture of a pad thai, a type of Thai noodle dish.", + "A photo of pad thai, a type of food. Delicious pad thai from Thailand.", + "A photo of pad thai, a type of food. This is a picture of pad_thai, a traditional Thai dish.", + "A photo of pad thai, a type of food. Delicious pad thai for dinner tonight! Caption: A delicious plate of pad thai.", + "A photo of pad thai, a type of food. This is a picture of a pad_thai.", + "A photo of pad thai, a type of food. Pad Thai is a popular dish in Thailand made with rice noodles, vegetables, and a protein such as chicken or shrimp.", + "A photo of pad thai, a type of food. A classic pad thai with shrimp, peanuts, cilantro, and a lime wedge." + ], + "paella": [ + "A photo of paella, a type of food. A paella is a dish that is typically made with rice, vegetables, and meat or seafood.", + "A photo of paella, a type of food. A paella is a dish made of rice, saffron, vegetables, and meat.", + "A photo of paella, a type of food. A paella is a flat, round dish with raised sides that is traditionally used to cook rice dishes in Spain.", + "A photo of paella, a type of food. A paella is a dish made of rice, saffron, vegetables, and meat or seafood.", + "A photo of paella, a type of food. A paella is a flat dish traditionally cooked over an open fire.", + "A photo of paella, a type of food. A paella is a Spanish dish that is typically made with rice, vegetables, and seafood.", + "A photo of paella, a type of food. A paella is a saffron-flavored rice dish that originates from Spain.", + "A photo of paella, a type of food. A paella is usually a rice dish that is cooked in a large, shallow pan.", + "A photo of paella, a type of food. A paella is a traditional Spanish rice dish that is made with seafood, chicken, and vegetables.", + "A photo of paella, a type of food. A paella is a type of dish that is made with rice, vegetables and seafood.", + "A photo of paella, a type of food. A paella is a Spanish dish made with rice, vegetables, and meat.", + "A photo of paella, a type of food. A paella is a dish that is composed of rice, saffron, seafood, and various meats.", + "A photo of paella, a type of food. A paella is a type of rice dish that is traditionally made with saffron, chicken, and vegetables.", + "A photo of paella, a type of food. Each paella is unique, but there are some common characteristics.", + "A photo of paella, a type of food. A paella is a dish that is traditionally made with rice, beans, and meat or seafood.", + "A photo of paella, a type of food. A paella is a type of rice dish that is cooked in a large shallow pan over an open fire.", + "A photo of paella, a type of food. A paella is a type of rice dish that originates from Spain.", + "A photo of paella, a type of food. A paella is a type of rice dish that originates from Spain.", + "A photo of paella, a type of food. Paella is a brightly colored rice dish that originated in Spain.", + "A photo of paella, a type of food. A paella is a Spanish dish of rice, vegetables, and meat or seafood.", + "A photo of paella, a type of food. The traditional Spanish dish paella is a rice dish that is traditionally made with chicken, rabbit, and vegetables.", + "A photo of paella, a type of food. A paella is a rice dish that is traditionally made in a pan.", + "A photo of paella, a type of food. A paella is a flat, round dish traditionally used to cook rice.", + "A photo of paella, a type of food. A paella is a dish that is typically made with rice, vegetables, and meat.", + "A photo of paella, a type of food. A paella pan is a large, shallow, round pan used to cook paella.", + "A photo of paella, a type of food. A paella is a dish made of rice, saffron, vegetables, meat, and seafood.", + "A photo of paella, a type of food. A paella looks like a rice dish that is typically made with chicken, sausage, and seafood.", + "A photo of paella, a type of food. A paella is a Spanish dish that typically consists of rice, meats (such as chicken or seafood), and vegetables.", + "A photo of paella, a type of food. A paella is a rice dish that is typically made with seafood, chicken, and vegetables.", + "A photo of paella, a type of food. A paella is a dish that is traditionally made with rice, eggs, vegetables, and meat.", + "A photo of paella, a type of food. An image of a paella from the internet would show a traditional Spanish dish made with rice, seafood, and vegetables.", + "A photo of paella, a type of food. This image is of a traditional Spanish paella dish.", + "A photo of paella, a type of food. paella is a dish made of rice, saffron, chicken, chorizo, and seafood.", + "A photo of paella, a type of food. If you Google \"paella,\" you'll see many images of this popular Spanish dish.", + "A photo of paella, a type of food. dishA paella dish is a traditional Spanish dish made of rice, vegetables, and seafood.", + "A photo of paella, a type of food. This image shows a professionally made paella.", + "A photo of paella, a type of food. A large skillet filled with a rice dish that includes shrimp, chicken, and vegetables.", + "A photo of paella, a type of food. The image is of a traditional Spanish paella dish.", + "A photo of paella, a type of food. A paella is a dish of rice, usually with seafood or other meats and vegetables.", + "A photo of paella, a type of food. The image is of a saffron-colored paella with chicken, green beans, and other vegetables.", + "A photo of paella, a type of food. A traditional Spanish paella made with rice, chicken, shrimp, and vegetables.", + "A photo of paella, a type of food. A paella made with seafood, chicken, and chorizo.", + "A photo of paella, a type of food. Spanish Paella.", + "A photo of paella, a type of food. A traditional Spanish dish of paella with chicken, shrimp, and vegetables.", + "A photo of paella, a type of food. Chef Susana cooked up a delicious paella for our lunch today!.", + "A photo of paella, a type of food. A classic paella with chicken, seafood, and chorizo.", + "A photo of paella, a type of food. A vegetarian paella with artichokes, mushrooms, and green beansA classic Spanish dish, paella is a must-try for any foodie.", + "A photo of paella, a type of food. A classic Spanish dish, Paella is a must-try for anyone visiting the country.", + "A photo of paella, a type of food. A deliciouspaella made with chicken, shrimp, chorizo, and vegetables.", + "A photo of paella, a type of food. A typical Spanish paella, made with rice, chicken, seafood, and vegetables." + ], + "pancakes": [ + "A photo of pancakes, a type of food. A pancake is a flat, round cake that is cooked in a pan on both sides and is often served with syrup.", + "A photo of pancakes, a type of food. A pancake is a thin, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is typically a thin, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a flat, round cake that is cooked on a hot surface such as a griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a round, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancakes is a round, flat cake made from a batter and cooked in a frying pan or on a griddle.", + "A photo of pancakes, a type of food. A pancake is a thin and flat cake, made from a batter and cooked on a hot surface such as a griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is typically a round, flat cake made from a leavened batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a round, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. Pancakes are typically round, flat, and thin.", + "A photo of pancakes, a type of food. You can identify a pancake by its round shape and its soft texture.", + "A photo of pancakes, a type of food. The easiest way to identify a pancake is by its shape.", + "A photo of pancakes, a type of food. A pancake is a flat cake, made of batter and cooked on a hot griddle or frying pan, often flipped or turned over in the air.", + "A photo of pancakes, a type of food. The batter for pancakes is typically made from milk, flour, sugar, eggs, and baking powder.", + "A photo of pancakes, a type of food. To identify a pancake, look for a light, flat cake that is cooked on a griddle or in a pan.", + "A photo of pancakes, a type of food. Pancakes are generally flat, round, and cooked on a griddle or frying pan.", + "A photo of pancakes, a type of food. Pancakes are often round and flat, and have a porous texture.", + "A photo of pancakes, a type of food. Pancakes are optioned with a variety of toppings and fillings, but the most common way to identify a pancake is by its shape and size.", + "A photo of pancakes, a type of food. When you see a pancakes, you can identify it by its shape.", + "A photo of pancakes, a type of food. A pancake is a flat cake, often thin and round, prepared from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake normally looks like a flat, round cake that is cooked on a griddle or in a frying pan.", + "A photo of pancakes, a type of food. A pancake is a flat, round cake that is made from a batter and is cooked on a griddle or in a frying pan.", + "A photo of pancakes, a type of food. A pancakes is typically a round, flat cake that is cooked on a hot surface such as a griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a thin, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a round, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake looks like a thin, circular piece of batter that is cooked on a griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a round, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. Pancakes are short and round, with a slightly raised surface.", + "A photo of pancakes, a type of food. A pancake is a thin, flat cake, made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. A pancake is a thin, flat cake made from a batter and cooked on a hot griddle or frying pan.", + "A photo of pancakes, a type of food. The image is of a stack of pancakes with syrup and butter.", + "A photo of pancakes, a type of food. This image is of a stack of pancakes with syrup and butter on top.", + "A photo of pancakes, a type of food. The image from the internet of a pancakes is a photo of two pancakes stacked on top of each other with syrup and butter.", + "A photo of pancakes, a type of food. There is an image from the internet of a plate of pancakes with syrup and butter on them.", + "A photo of pancakes, a type of food. A stack of pancakes with a pat of butter melting on top.", + "A photo of pancakes, a type of food. The image is of a large stack of pancakes with syrup and butter on them.", + "A photo of pancakes, a type of food. The image is of a large stack of pancakes.", + "A photo of pancakes, a type of food. The image is of a stack of pancakes with syrup and butter on top.", + "A photo of pancakes, a type of food. This image is of a pancake stack with different toppings.", + "A photo of pancakes, a type of food. In the image, there are three pancakes stacked on top of each other.", + "A photo of pancakes, a type of food. Delicious pancakes served with maple syrup and butter.", + "A photo of pancakes, a type of food. The breakfast of champions: pancakes!.", + "A photo of pancakes, a type of food. Pancakes are a breakfast staple around the world.", + "A photo of pancakes, a type of food. A stack of pancakes on a plate with butter and syrup.", + "A photo of pancakes, a type of food. A stack of three pancakes with syrup and butter.", + "A photo of pancakes, a type of food. These pancakes are delicious!.", + "A photo of pancakes, a type of food. A Pancake Breakfast.", + "A photo of pancakes, a type of food. A delicious breakfast of pancakes with syrup and butter.", + "A photo of pancakes, a type of food. See that stack of pancakes? Yeah, I made that.", + "A photo of pancakes, a type of food. Pancakes are a type of breakfast food that are made from a batter and cooked on a griddle or frying pan." + ], + "panna cotta": [ + "A photo of panna cotta, a type of food. .", + "A photo of panna cotta, a type of food. A panna cotta is a custard-like dessert that is made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a smooth, delicate custard that is usually served in a small dish.", + "A photo of panna cotta, a type of food. A panna_cotta is a cooked cream that is thickened with gelatin.", + "A photo of panna cotta, a type of food. .", + "A photo of panna cotta, a type of food. A panna cotta is a Italian custard that is sweet and creamy.", + "A photo of panna cotta, a type of food. A panna cotta is a dessert made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. and tastes likePanna cotta is a chilled, creamy dessert that is usually made with sweetened condensed milk, heavy cream, and gelatin.", + "A photo of panna cotta, a type of food. descriptionA panna cotta is a Italian dessert made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. a) A panna cotta typically has a smooth, creamy texture and is made with milk, cream, and sugar.", + "A photo of panna cotta, a type of food. A panna cotta is a custard or pudding that is thickened with gelatin and usually served in a mold.", + "A photo of panna cotta, a type of food. A panna cotta is a custard-like dessert that is usually made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. Panna cotta is a Italian dessert made from cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a dessert made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a cooked cream which is thickened with gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a dessert made with cream, milk, sugar, and gelatin.", + "A photo of panna cotta, a type of food. Panna cotta is a type of custard that is thickened with gelatin instead of eggs.", + "A photo of panna cotta, a type of food. A panna cotta is an Italian dessert that is typically made with cream, milk, sugar, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a chilled Italian custard dessert made with cream, milk, sugar, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a type of Italian custard that is thickened with gelatin and typically served with a fruit sauce.", + "A photo of panna cotta, a type of food. A panna cotta is a dessert that is typically made with cream, milk, sugar, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a smooth, creamy Italian dessert made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. Panna cotta is a dessert made from cream, milk, and sugar thickened with gelatin.", + "A photo of panna cotta, a type of food. A traditional Italian panna cotta is a firm, gelatin-based custard, usually white in color and flavored with vanilla.", + "A photo of panna cotta, a type of food. I cannot find an image that does this justice, but a panna cotta is a round, gelatinous dessert that is typically white or slightly off-white in color.", + "A photo of panna cotta, a type of food. A panna cotta is typically a white or ivory colored custard.", + "A photo of panna cotta, a type of food. Panna cotta is a Italian custard dessert.", + "A photo of panna cotta, a type of food. Panna cotta is a traditional Italian dessert made with cream, milk, sugar, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a custard-like dessert that is usually served in a small, round cup.", + "A photo of panna cotta, a type of food. A panna cotta is a custard-like dessert made with cream, milk, and gelatin.", + "A photo of panna cotta, a type of food. A panna cotta is a Italian dessert that is made by simmering cream and sugar and then adding gelatin to it so that it will set.", + "A photo of panna cotta, a type of food. https://i.", + "A photo of panna cotta, a type of food. This is an image of a panna cotta with a chocolate sauce.", + "A photo of panna cotta, a type of food. I found an image of a panna cotta that is covered in a berry sauce.", + "A photo of panna cotta, a type of food. One image of a panna cotta from the internet shows a creamy white custard topped with fresh berries.", + "A photo of panna cotta, a type of food. A panna cotta is a dessert made with cream and gelatin.", + "A photo of panna cotta, a type of food. The image is of a panna cotta that is white in color with a light brown sugar syrup dripping down the side.", + "A photo of panna cotta, a type of food. A picture of a panna cotta from the internet would include a white, creamy pudding with a smooth surface.", + "A photo of panna cotta, a type of food. This image is of a panna cotta with a raspberry on top.", + "A photo of panna cotta, a type of food. A panna cotta is a dessert typically made from cream, milk, gelatin, and sugar.", + "A photo of panna cotta, a type of food. Delicious panna cotta with fresh berries.", + "A photo of panna cotta, a type of food. Panna Cotta with Berry Sauce.", + "A photo of panna cotta, a type of food. A panna cotta with a chocolate sauce.", + "A photo of panna cotta, a type of food. Panna cotta is an Italian dessert made with cream and gelatin.", + "A photo of panna cotta, a type of food. Panna cotta is a delicious Italian dessert made with cream, milk, and sugar.", + "A photo of panna cotta, a type of food. My favorite panna cotta recipe with a twist!.", + "A photo of panna cotta, a type of food. A delicious panna cotta with raspberry sauce.", + "A photo of panna cotta, a type of food. Panna cotta is an Italian dessert made with cream, milk, sugar, and gelatin.", + "A photo of panna cotta, a type of food. A delicious panna_cotta dessert with a strawberry on top.", + "A photo of panna cotta, a type of food. Panna cotta made with fresh raspberriesThis panna cotta was made with fresh raspberries and is a refreshing and light dessert." + ], + "peking duck": [ + "A photo of peking duck, a type of food. A peking_duck typically has crisp skin, with layer of fat underneath, and is served with scallions and hoisin sauce.", + "A photo of peking duck, a type of food. A Peking duck is a Chinese duck dish that has been roasted and is served with various dipping sauces.", + "A photo of peking duck, a type of food. A Peking duck is aChinese dry-roasted duck.", + "A photo of peking duck, a type of food. A Peking duck is a roasted duck dish that originated in China.", + "A photo of peking duck, a type of food. A peking_duck is a breed of chicken that is native to China.", + "A photo of peking duck, a type of food. A Peking duck is a species of duck raised for meat in China.", + "A photo of peking duck, a type of food. Red-faced, plump-bodied bird with a long, fleshy knob on its forehead.", + "A photo of peking duck, a type of food. A peking_duck typically has a reddish-brown plumage and yellow eyes.", + "A photo of peking duck, a type of food. A Peking duck is a specially bred and slaughtered duck that is roasted in an oven.", + "A photo of peking duck, a type of food. A Peking duck is a domesticated duck that is kept as livestock in China and other parts of East Asia.", + "A photo of peking duck, a type of food. A peking_duck can be identified by its distinctive plumage.", + "A photo of peking duck, a type of food. A Peking duck is a freshwater duck that is native to China.", + "A photo of peking duck, a type of food. Peking duck is a type of roasted duck that originates from Beijing, China.", + "A photo of peking duck, a type of food. You can identify a peking_duck by its physical appearance.", + "A photo of peking duck, a type of food. One way to identify a peking_duck is by its distinct orange or reddish beak.", + "A photo of peking duck, a type of food. The Peking Duck is a domesticated duck breeds originating from China.", + "A photo of peking duck, a type of food. The easiest way to identify a Peking duck is by its plumage.", + "A photo of peking duck, a type of food. A Peking duck is a duck dish from Beijing that has been prepared since the imperial era.", + "A photo of peking duck, a type of food. A Peking duck is a breed of duck raised and used for the traditional Chinese dish Peking duck.", + "A photo of peking duck, a type of food. The easiest way to identify a peking_duck is by its physical characteristics.", + "A photo of peking duck, a type of food. A Peking duck typically has crisp skin and is served with scallions, cucumber, and a sweet bean sauce.", + "A photo of peking duck, a type of food. Peking duck is a type of roasted duck that is popular in Chinese cuisine.", + "A photo of peking duck, a type of food. Peking ducks are a breed of domesticated duck used for the ancient Chinese delicacy of the same name.", + "A photo of peking duck, a type of food. There is no definitive answer to this question as the appearance of a peking_duck can vary slightly depending on the specific breed.", + "A photo of peking duck, a type of food. A Peking duck typically has crisp skin and is served with scallion, cucumber and sweet bean sauce.", + "A photo of peking duck, a type of food. A Peking duck is usually roasted and served whole, with the head and legs still attached.", + "A photo of peking duck, a type of food. A Peking duck is a roasted duck dish from Beijing that has been prepared since the imperial era.", + "A photo of peking duck, a type of food. Peking duck is a Chinese dish made from duck that has been roasted in an oven.", + "A photo of peking duck, a type of food. A peking_duck has a long neck and a small body.", + "A photo of peking duck, a type of food. A Peking duck is a breed of duck that is used for the Peking duck dish in Chinese restaurants.", + "A photo of peking duck, a type of food. The image is of a Peking duck that is golden brown in color.", + "A photo of peking duck, a type of food. A peking_duck on the internet is a picture of a duck that is usually found in China.", + "A photo of peking duck, a type of food. The image is of a Peking duck with a shiny, golden-brown skin.", + "A photo of peking duck, a type of food. I found an image of a Peking Duck on Google Images.", + "A photo of peking duck, a type of food. An image from the internet of a peking_duck may show the duck with its head and neck extended, often with a mouthful of food.", + "A photo of peking duck, a type of food. The image is of a brown and white duck with a long neck and webbed feet.", + "A photo of peking duck, a type of food. The image is of a Peking duck with its feathers ruffled up.", + "A photo of peking duck, a type of food. This image shows a Peking duck that has been prepared for cooking.", + "A photo of peking duck, a type of food. The image is of a Peking duck that is lying down on a platter.", + "A photo of peking duck, a type of food. The image is of a Peking duck with its head and neck extended outward.", + "A photo of peking duck, a type of food. Peking Duck, a traditional Chinese dish.", + "A photo of peking duck, a type of food. A Peking duck with crisp, flavorful skin that is often served with pancakes, scallions, and sweet bean sauce.", + "A photo of peking duck, a type of food. A duck is glistening and golden after being roasted to perfectionA peking duck is a type of roasted duck that originates from Beijing, China.", + "A photo of peking duck, a type of food. A Peking Duck being carved in a restaurant in Beijing, China.", + "A photo of peking duck, a type of food. Peking Duck is a popular dish from Beijing, China, made with a roasted duck that is traditionally served with pancakes, scallions, and hoisin sauce.", + "A photo of peking duck, a type of food. A Peking duck is a type of roast duck that originates from Beijing.", + "A photo of peking duck, a type of food. A whole roasted Peking duck, a Beijing specialty.", + "A photo of peking duck, a type of food. Image of a Peking duck, a popular dish in Chinese cuisine.", + "A photo of peking duck, a type of food. A traditional Peking Duck feast, served with pancake wraps, scallions, and hoisin sauce.", + "A photo of peking duck, a type of food. Peking duck, a traditional Chinese dish, served with pancakes, scallions, and hoisin sauce." + ], + "pho": [ + "A photo of pho, a type of food. A pho is a meals that consists of a bowl of broth, rice noodles, a few herbs, and meat.", + "A photo of pho, a type of food. A pho is a Vietnamese noodles soup that is often served with beef or chicken.", + "A photo of pho, a type of food. A pho is a Vietnamese soup that consists of broth, rice noodles, spices, and protein.", + "A photo of pho, a type of food. A pho is a type of Vietnamese noodle soup that is usually made with beef or chicken.", + "A photo of pho, a type of food. A pho is a type of noodle soup that originates from Vietnam.", + "A photo of pho, a type of food. A pho is a type of Vietnamese noodle soup that typically includes broth, rice noodles, herbs, and meat.", + "A photo of pho, a type of food. A pho looks like a noodle soup that is typically made with beef or chicken broth, rice noodles, herbs, and meat.", + "A photo of pho, a type of food. Pho is a noodle soup that originates from Vietnam.", + "A photo of pho, a type of food. A pho is a type of Vietnamese noodle soup that typically includes broth, rice noodles, herbs, and meat.", + "A photo of pho, a type of food. A pho is a noodle soup dish that typically consists of rice noodles, broth, herbs, and meat.", + "A photo of pho, a type of food. pho is a type of Vietnamese noodle soup that typically includes chicken or beef, herbs, and spices.", + "A photo of pho, a type of food. By looking at the ingredients, you can tell if a soup is pho or not.", + "A photo of pho, a type of food. A pho is a type of Vietnamese noodle soup that is typically made with beef or chicken broth, rice noodles, and vegetables.", + "A photo of pho, a type of food. The best way to identify a pho is by its taste.", + "A photo of pho, a type of food. A pho is a Vietnamese soup that is typically made with beef or chicken broth, rice noodles, and spices.", + "A photo of pho, a type of food. Typically, pho is served in a bowl with white rice noodles and is made with beef or chicken.", + "A photo of pho, a type of food. Pho is a type of noodle soup that is traditionally made with beef or chicken broth, rice noodles, and a variety of herbs and spices.", + "A photo of pho, a type of food. Pho is a noodle soup that is typically made with beef or chicken broth, rice noodles, and a variety of meats.", + "A photo of pho, a type of food. Pho can be identified by its signature broth, which is made by simmering beef or chicken bones for hours with spices like star anise, cloves, and cinnamon.", + "A photo of pho, a type of food. The easiest way to identify a pho is by its unique broth.", + "A photo of pho, a type of food. A pho is a type of Vietnamese noodle soup that typically includes beef or chicken broth, rice noodles, and herbs.", + "A photo of pho, a type of food. A pho is a Vietnamese soup made with beef or chicken, rice noodles, and herbs.", + "A photo of pho, a type of food. A pho is a type of Vietnamese noodle soup that typically includes broth, rice noodles, herbs, and meat.", + "A photo of pho, a type of food. Pho is a type of Vietnamese noodle soup that typically includes rice noodles, meat, and vegetables in a broth.", + "A photo of pho, a type of food. A pho typically consists of white rice noodles in a clear beef or chicken broth, with thinly sliced meat, onions, and scallions.", + "A photo of pho, a type of food. A pho is a noodlesoup dish from Vietnam.", + "A photo of pho, a type of food. A pho is a type of soup that is typically made with beef or chicken broth, rice noodles, and spices.", + "A photo of pho, a type of food. A pho is a Vietnamese soup that typically consists of rice noodles, herbs, and beef or chicken.", + "A photo of pho, a type of food. A pho is a soup made with beef or chicken broth, rice noodles, and spices.", + "A photo of pho, a type of food. A pho is a traditional Vietnamese noodle soup that is typically made with beef or chicken and a variety of vegetables and spices.", + "A photo of pho, a type of food. The image is of a pho bowl with noodles, meat, and vegetables in it.", + "A photo of pho, a type of food. The image is of a Vietnamese pho soup.", + "A photo of pho, a type of food. famous personOne possible image is of Kim Kardashian, who is famous for her reality TV show, her fashion line, and her social media presence.", + "A photo of pho, a type of food. This image is of a pho bowl with noodles, meat, and vegetables in it.", + "A photo of pho, a type of food. restaurantIn the image, there is a pho restaurant with red awnings.", + "A photo of pho, a type of food. A pho is a type of Vietnamese soup that is typically made with rice noodles, meat, and a broth.", + "A photo of pho, a type of food. In this image, a pho is a type of Vietnamese noodle soup that is typically made with rice noodles and beef or chicken.", + "A photo of pho, a type of food. This particular image shows a pho bowl with noodle, meat, and vegetable toppings.", + "A photo of pho, a type of food. noodle soupThe image is of a bowl of pho noodle soup with beef.", + "A photo of pho, a type of food. The image is of a pho dish with noodles, meat, and vegetables in a clear broth.", + "A photo of pho, a type of food. Vietnamese noodle soup with beef and vegetablesA delicious bowl of pho, a traditional Vietnamese noodle soup typically made with beef and vegetables.", + "A photo of pho, a type of food. This pho soup is full of fresh and fragrant ingredients.", + "A photo of pho, a type of food. This pho looks delicious!.", + "A photo of pho, a type of food. A hearty bowl of pho, a Vietnamese noodle soup containing beef or chicken.", + "A photo of pho, a type of food. A hearty bowl of pho, a Vietnamese noodle soup.", + "A photo of pho, a type of food. This pho is beefy and flavorful, and perfect for a winter's day.", + "A photo of pho, a type of food. A bowl of pho, a Vietnamese soup typically made with beef or chicken broth, rice noodles, and fresh herbs.", + "A photo of pho, a type of food. This pho has a savory broth and tender noodles, making it the perfect comfort food.", + "A photo of pho, a type of food. Close up of a pho with shrimp, scallions, and cilantro.", + "A photo of pho, a type of food. Traditional vietnamese pho with fresh herbs." + ], + "pizza": [ + "A photo of pizza, a type of food. A pizza is a round, flatbread topped with tomato sauce and cheese.", + "A photo of pizza, a type of food. A pizza looks like a round, flat piece of dough with toppings on it.", + "A photo of pizza, a type of food. A pizza is a round, flat bread that is usually covered in tomato sauce and cheese.", + "A photo of pizza, a type of food. A pizza typically has a circular shape with a diameter of 10-12 inches.", + "A photo of pizza, a type of food. A pizza is a round, flat bread that is covered with tomato sauce, cheese, and other toppings.", + "A photo of pizza, a type of food. A pizza typically has a round, flat bread base with a tomato sauce and cheese toppings.", + "A photo of pizza, a type of food. A pizza has a round, flat base made of dough and topped with tomato sauce, cheese, and usually other ingredients such as meats or vegetables.", + "A photo of pizza, a type of food. A pizza is a circular, flat bread that is covered with tomato sauce, cheese, and other toppings.", + "A photo of pizza, a type of food. A pizza is a round, flat bread that is covered in tomato sauce, cheese, and various toppings.", + "A photo of pizza, a type of food. A pizza is a flat, round piece of dough with tomato sauce and cheese on top.", + "A photo of pizza, a type of food. A pizza is a flat, round, leavened bread that is traditionally topped with tomato sauce and cheese.", + "A photo of pizza, a type of food. A pizza is a flat, round, oven-baked bread typically topped with tomato sauce, cheese, and various toppings.", + "A photo of pizza, a type of food. One way to identify a pizza is by its round, flat shape.", + "A photo of pizza, a type of food. A pizza is a circular flatbread with a tomatoey topping.", + "A photo of pizza, a type of food. A pizza can be identified by its dough, which is usually soft and fluffy, and its toppings, which can be anything from traditional toppings like cheese and pepperoni to more unique toppings like pineapple and ham.", + "A photo of pizza, a type of food. You can identify a pizza by looking for a few key ingredients, such as dough, tomato sauce, cheese, and pepperoni.", + "A photo of pizza, a type of food. The four main types of pizzas are thickness, toppings, assembly, and cooking method.", + "A photo of pizza, a type of food. A pizza is a savory dish of Italian origin, typically consisting of a thin flatbread dough base topped with tomato sauce and cheese.", + "A photo of pizza, a type of food. A pizza is a flat, round bread that is covered in sauce and cheese and often other toppings.", + "A photo of pizza, a type of food. A pizza is typically a round, flatbread topped with tomato sauce, cheese, and various toppings.", + "A photo of pizza, a type of food. The classic pizza is a round, thin crust pizza with tomato sauce and cheese.", + "A photo of pizza, a type of food. A pizza is a flat disc of bread that is covered in tomato sauce and cheese.", + "A photo of pizza, a type of food. A pizza typically has a round, flat crust with tomato sauce and cheese on top.", + "A photo of pizza, a type of food. A pizza typically has a round, flat shape with a diameter of 8-12 inches.", + "A photo of pizza, a type of food. A pizza typically has a round, flat shape with a crispy or soft crust.", + "A photo of pizza, a type of food. Pizza typically consists of a round, flattened base of dough with a variety of toppings.", + "A photo of pizza, a type of food. A pizza usually has a round, flat shape with a diameter of 8-12 inches.", + "A photo of pizza, a type of food. Assuming you are talking about a cheese pizza, it would have a circular crust with a red sauce and various amounts of cheese on top.", + "A photo of pizza, a type of food. A pizza typically has a round, flat shape with a crust that is slightly raised around the edge.", + "A photo of pizza, a type of food. A pizza looks like a round piece of dough with toppings on it.", + "A photo of pizza, a type of food. A pizza with a slightly charred crust, topped with tomato sauce, mozzarella cheese, and pepperoni.", + "A photo of pizza, a type of food. The image shows a large pizza with a thick crust that is covered in red sauce and topped with cheese and pepperoni.", + "A photo of pizza, a type of food. The image is of a pizza with a thin crust that has been topped with a tomato sauce, mozzarella cheese, and various fresh vegetables including peppers, mushrooms, and onions.", + "A photo of pizza, a type of food. A pizza with a thin crust and a light sauce, topped with pepperoni, sausage, and mushrooms.", + "A photo of pizza, a type of food. The image is of a large pizza with a crispy, golden crust.", + "A photo of pizza, a type of food. A pizza from the internet is an image of a pizza that is available online.", + "A photo of pizza, a type of food. Delicious pizza with bubbly cheese and fresh toppings on a crispy crust.", + "A photo of pizza, a type of food. The image is of a pizza with a thin crust and toppings that include pepperoni, sausage, mushrooms, and onions.", + "A photo of pizza, a type of food. This image is of a pizza with a crispy golden crust, topped with bubbling cheese and an array of fresh vegetables.", + "A photo of pizza, a type of food. This pizza is from New York City and it is a classic margherita pizza.", + "A photo of pizza, a type of food. Mouthwatering pizza with a crispy crust.", + "A photo of pizza, a type of food. \n Take a bite out of this delicious pizza!.", + "A photo of pizza, a type of food. A large round pizza with pepperoni, sausage, and mushroomsA large round pizza with pepperoni, sausage, and mushrooms.", + "A photo of pizza, a type of food. A delicious pizza with a crispy crust and melty cheese.", + "A photo of pizza, a type of food. A large pizza with pepperoni, sausage, and mushrooms.", + "A photo of pizza, a type of food. Italian pizza with mozzarella, basil, and tomato.", + "A photo of pizza, a type of food. A yummy looking cheese pizza.", + "A photo of pizza, a type of food. This pizza is absolutely delicious!.", + "A photo of pizza, a type of food. This is a pizza.", + "A photo of pizza, a type of food. This delicious looking pizza is topped with pepperoni, mushrooms, and onions." + ], + "pork chop": [ + "A photo of pork chop, a type of food. A pork chop typically consists of a pork loin that has been cut into thick, even slices.", + "A photo of pork chop, a type of food. A pork_chop looks like a thin, round piece of meat.", + "A photo of pork chop, a type of food. A pork chop typically refers to a cut of pork that has been trimmed of fat and can be cut from different parts of the pig.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat from a pig.", + "A photo of pork chop, a type of food. A pork chop is a boneless or bone-in cut of pork that is typically cut perpendicular to the pork loin.", + "A photo of pork chop, a type of food. .", + "A photo of pork chop, a type of food. A pork chop looks like a thick, rectangular piece of pork.", + "A photo of pork chop, a type of food. A pork chop is a cut of pork that typically includes a rib and is cut perpendicular to the rib.", + "A photo of pork chop, a type of food. A pork_chop looks like a piece of meat that has been cut from the pig's flank or leg.", + "A photo of pork chop, a type of food. A pork chop typically has a bone in the center with meat on either side.", + "A photo of pork chop, a type of food. A pork chop is a cut of pork that typically comes from the loin of the pig.", + "A photo of pork chop, a type of food. When raw, pork chops have a pinkish-white color.", + "A photo of pork chop, a type of food. A pork chop is a cut of pork that typically contains a rib.", + "A photo of pork chop, a type of food. A pork_chop can be identified by its light pink color and itswhite marbling.", + "A photo of pork chop, a type of food. A pork chop can be identified by its t-shaped bone in the center of the cut, as well as its thick layer of fat around the edges.", + "A photo of pork chop, a type of food. generally they are a light pink color, and are cut into thick pieces.", + "A photo of pork chop, a type of food. A pork_chop is a cut of meat from a pig.", + "A photo of pork chop, a type of food. A pork chops can be identified by its bone-in, uncured meat that is cut from the pork loin.", + "A photo of pork chop, a type of food. By its shape, pork chops are usually triangular, and they have a rib bone running along one side.", + "A photo of pork chop, a type of food. The best way to identify a pork chop is by its shape and size.", + "A photo of pork chop, a type of food. Pork chops are usually cut from the loin of the pig.", + "A photo of pork chop, a type of food. If you are referring to the cut of meat, a pork chop is a cut of pork that includes a rib and is usually cut from the loin.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat taken from the pork loin.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat from a pork loin.", + "A photo of pork chop, a type of food. A pork chop looks like a piece of pork that has been cut from the pork loin.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat from a pig.", + "A photo of pork chop, a type of food. Image result for pork chops.", + "A photo of pork chop, a type of food. A pork chop looks like a rectangular piece of meat with a bone in the middle.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat from a pig.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat from a pig.", + "A photo of pork chop, a type of food. A pork chop is a cut of meat from a pig.", + "A photo of pork chop, a type of food. The image shows a pork chop with the bone in, grilled and served with a green onion garnish.", + "A photo of pork chop, a type of food. The image is of a pork chop that has been cooked.", + "A photo of pork chop, a type of food. This image is of a pork chop that has been cooked.", + "A photo of pork chop, a type of food. I found an image of a pork chop that looks like it has been pan-fried.", + "A photo of pork chop, a type of food. The image from the internet is of a pork chop that has been cooked until it is a nice golden brown color.", + "A photo of pork chop, a type of food. The image is of a pork chop that has been cooked.", + "A photo of pork chop, a type of food. The image is of a pork chop that is raw and has not been cooked.", + "A photo of pork chop, a type of food. The image is of a brown pork chop with a bone in the center.", + "A photo of pork chop, a type of food. The image is of a pork chop with a bone in the center.", + "A photo of pork chop, a type of food. This pork chop is juicy and flavorful.", + "A photo of pork chop, a type of food. This pork chop looks delicious!.", + "A photo of pork chop, a type of food. A delicious pork chop freshly grilled and ready to be devoured.", + "A photo of pork chop, a type of food. This pork_chop is delicious!.", + "A photo of pork chop, a type of food. A pork chop with a side of vegetables.", + "A photo of pork chop, a type of food. A pork chop being grilled on a BBQ.", + "A photo of pork chop, a type of food. This pork chop is delicious!.", + "A photo of pork chop, a type of food. This pork chop was grilled to perfection!.", + "A photo of pork chop, a type of food. Cooked pork chop with rosemary and thyme.", + "A photo of pork chop, a type of food. The perfect pork chop should be juicy and tender, with a crispy outer layer." + ], + "poutine": [ + "A photo of poutine, a type of food. A poutine is a dish consisting of french fries, gravy, and cheese curds.", + "A photo of poutine, a type of food. A poutine is a type of dish that originates from Canada.", + "A photo of poutine, a type of food. A poutine typically consists of french fries, cheese curds, gravy, and sometimes meat.", + "A photo of poutine, a type of food. A poutine is a dish of french fries topped with cheese curds and gravy.", + "A photo of poutine, a type of food. A poutine typically consists of fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a dish typically made with french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine typically consists of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine typically consists of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a dish originating from Qu\u00e9bec, Canada consisting of French fries, cheese curds and gravy.", + "A photo of poutine, a type of food. Poutine is a dish typically made with french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine can be identified by its gravy and cheese curds.", + "A photo of poutine, a type of food. A poutine can be identified by its gravy-covered french fries and cheese curds.", + "A photo of poutine, a type of food. Poutine can typically be identified by its gravy-covered fries and cheese curds.", + "A photo of poutine, a type of food. A poutine is a dish of french fries, gravy, and Cheese Curds.", + "A photo of poutine, a type of food. Poutine is a dish that originated in Quebec, Canada in the 1950s.", + "A photo of poutine, a type of food. Poutine typically consists of chips, gravy, and cheese curds.", + "A photo of poutine, a type of food. The most common way to identify a poutine is by its characteristic gravy, which is usually dark brown and sticky.", + "A photo of poutine, a type of food. The dish is generally composed of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a dish typically made with french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is typically a dish of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. (noun) A Canadians dish consisting of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is usually a dish of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a dish that consists of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a dish typically consisting of French fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. Poutine is a dish that originates from Canada.", + "A photo of poutine, a type of food. A poutine is a dish of french fries, gravy, and cheese curds.", + "A photo of poutine, a type of food. A poutine is usually a bowl of french fries covered in brown gravy and cheese curds.", + "A photo of poutine, a type of food. A poutine is a dish consisting of french fries, cheese curds, and brown gravy.", + "A photo of poutine, a type of food. A poutine is traditionally made with french fries, cheese curds, and beef gravy, although there are many variations.", + "A photo of poutine, a type of food. A typical poutine contains french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a popular Canadian dish that typically consists of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is a Canadian dish consisting of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. The image is of a poutine with fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. Poutine is a dish from Quebec, Canada, consisting of french fries and cheese curds topped with a light brown gravy.", + "A photo of poutine, a type of food. The image from the internet is of a poutine dish.", + "A photo of poutine, a type of food. A poutine is a fast food dish from Quebec, Canada.", + "A photo of poutine, a type of food. A poutine from the internet is a savory dish of fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. A poutine is typically a mound of french fries, covered in gravy and cheese curds.", + "A photo of poutine, a type of food. A poutine is a mound of french fries, cheese curds, and gravy.", + "A photo of poutine, a type of food. The image is of a large poutine with fries, gravy, and cheese.", + "A photo of poutine, a type of food. Chatay Poutine - Fries, Mozzarella Curds, Smoked Chicken, Thai Chili Sauce.", + "A photo of poutine, a type of food. You can't go to Canada without having poutine!.", + "A photo of poutine, a type of food. \"I'm not really sure what's in this, but it's delicious!\".", + "A photo of poutine, a type of food. A classic Canadian dish of french fries, gravy, and cheese curds.", + "A photo of poutine, a type of food. A large poutine with fresh cheese curds and gravyThis poutine looks delicious and is sure to satisfy your cravings! It features fresh cheese curds and gravy, making it the perfect comfort food.", + "A photo of poutine, a type of food. A delicious poutine comprising of fries, gravy and cheese curds.", + "A photo of poutine, a type of food. A large order of poutineThis poutine is packed with fries, gravy, and cheese curds! It's the perfect dish for any poutine lover.", + "A photo of poutine, a type of food. A tasty poutine with cheese curds and gravyThis poutine looks delicious! It's loaded with cheese curds and gravy - yum!.", + "A photo of poutine, a type of food. A piping hot plate of poutine, fresh from the fryer and topped with cheese curds and gravy.", + "A photo of poutine, a type of food. A classic Canadian dish of french fries, cheese curds, and gravy." + ], + "prime rib": [ + "A photo of prime rib, a type of food. A prime rib is a large, roasted cut of beef that is typically served at special occasions.", + "A photo of prime rib, a type of food. A prime rib is a cut of beef from the rib primal of a steer or heifer.", + "A photo of prime rib, a type of food. A prime rib is a large, juicy cut of beef that is typically roasted in an oven.", + "A photo of prime rib, a type of food. A prime rib is a large cut of meat from a cow's upper ribcage.", + "A photo of prime rib, a type of food. A prime rib is a large, roasted cut of beef that is typically served during special occasions.", + "A photo of prime rib, a type of food. Other than the bones, a prime rib is a single cut of meat.", + "A photo of prime rib, a type of food. A prime rib is a large, roasted cut of beef that is typically served with a councillors sauce, horseradish, and roasted vegetables.", + "A photo of prime rib, a type of food. Most prime rib roasts have a nice layer of fat on the top.", + "A photo of prime rib, a type of food. A prime rib is a large cut of beef that is typically roasted in an oven.", + "A photo of prime rib, a type of food. Prime rib is a large, juicy steak that is cooked rare or medium rare.", + "A photo of prime rib, a type of food. The prime rib is the large roasted beef rib.", + "A photo of prime rib, a type of food. A prime rib can be identified by the large amount of marbling throughout the meat.", + "A photo of prime rib, a type of food. There are a few ways to identify a prime rib.", + "A photo of prime rib, a type of food. A prime rib can be identified by its marbling, which is the fat that is interspersed throughout the meat.", + "A photo of prime rib, a type of food. A prime rib is a large, roasted cut of beef that is typically served on special occasions.", + "A photo of prime rib, a type of food. One way to identify a prime rib is by its size and shape.", + "A photo of prime rib, a type of food. A prime rib is a cut of beef that comes from the rib section.", + "A photo of prime rib, a type of food. Look for a bone-in cut of beef with a good amount of marbling.", + "A photo of prime rib, a type of food. By the large, well-marbled cut of meat that typically comes from the rib area.", + "A photo of prime rib, a type of food. The prime rib is a cut of beef from the rib primal.", + "A photo of prime rib, a type of food. A prime rib is a roast beef that has been trimmed of fat and cooked until it is tender.", + "A photo of prime rib, a type of food. A prime rib is a roast beef straight cut from the rib section of the cow.", + "A photo of prime rib, a type of food. A prime rib is a large cut of beef that is typically roasted in an oven.", + "A photo of prime rib, a type of food. A prime rib is a roasted cut of beef from the rib primal.", + "A photo of prime rib, a type of food. A prime rib is a large Cut of beef that is roasted in an oven.", + "A photo of prime rib, a type of food. A prime rib is a large, roasted cut of beef.", + "A photo of prime rib, a type of food. A prime rib is a cut of beef that is taken from the rib section of the cow.", + "A photo of prime rib, a type of food. Well-marbled, juicy, and tender--the perfect prime rib should have a deep red color with a melt-in-your-mouth texture.", + "A photo of prime rib, a type of food. A prime rib is usually a large cut of beef that is roasted in an oven.", + "A photo of prime rib, a type of food. A prime_rib looks like a large, juicy steak.", + "A photo of prime rib, a type of food. The image is of a prime rib that has been carved into thin slices.", + "A photo of prime rib, a type of food. A prime rib is a large, juicy steak that is cooked slowly to retain its moisture.", + "A photo of prime rib, a type of food. The image is of a large, roasted prime rib with a perfectly crisp, caramelized exterior.", + "A photo of prime rib, a type of food. The image is of a large, juicy prime rib roast that has been cooked to perfection.", + "A photo of prime rib, a type of food. A photo of a medium rare prime rib with a rosemary thyme jus.", + "A photo of prime rib, a type of food. There is an image of a prime rib on the internet that looks like it is resting on a carving board.", + "A photo of prime rib, a type of food. A prime rib is a cut of beef that is typically roasted in an oven.", + "A photo of prime rib, a type of food. A prime rib is a large, roasted cut of beef that is typically served on special occasions.", + "A photo of prime rib, a type of food. The image is of a prime rib roast with a rosemary and garlic rub, resting on a bed of carrots and onions.", + "A photo of prime rib, a type of food. the image is of a prime rib roast that has been cooked and is ready to be served.", + "A photo of prime rib, a type of food. A succulent prime rib roast, perfect for a holiday feast.", + "A photo of prime rib, a type of food. A beautifully browned prime rib on a platter, surrounded by roasted vegetables.", + "A photo of prime rib, a type of food. Prime rib is a roast of beef that is typically served on special occasions.", + "A photo of prime rib, a type of food. The prime rib is a popular dish made with a beef roast.", + "A photo of prime rib, a type of food. This prime_rib is absolutely delicious!.", + "A photo of prime rib, a type of food. This juicy prime rib is perfect for a special occasion dinner.", + "A photo of prime rib, a type of food. This juicy prime_rib is sure to make your mouth water.", + "A photo of prime rib, a type of food. This prime rib is ready to be served!.", + "A photo of prime rib, a type of food. A delicious prime rib, slow roasted to perfection.", + "A photo of prime rib, a type of food. A prime rib is a cut of beef that is typically roasted and served as a main dish." + ], + "pulled pork sandwich": [ + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is a sandwich made with pulled pork, a type of pork that has been cooked until it is very tender and can be easily pulled apart with a fork.", + "A photo of pulled pork sandwich, a type of food. A pulled_pork_sandwich is a sandwich made with pulled pork, a type of pork that is cooked until it is very tender and can be easily shredded with a fork.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is a sandwich made with pulled pork as the main ingredient.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich typically includes pork that has been slow-cooked in a barbecue sauce or other seasoning.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich typically consists of pulled pork, barbecue sauce, and coleslaw on a bun.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich typically consists of pork that has been slow-cooked and then shredded or \"pulled,\" and is served on a bun or roll with barbecue sauce.", + "A photo of pulled pork sandwich, a type of food. A pulled_pork_sandwich is a sandwich that has pulled pork as the main ingredient.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich consists of pork that has been slow-cooked until it is very tender and moist.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is traditionally made with pork that has been slow cooked until it is very tender.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is a sandwich where the pork is cooked until it is very tender and then shredded.", + "A photo of pulled pork sandwich, a type of food. It is a sandwich that has pulled pork as the main ingredient.", + "A photo of pulled pork sandwich, a type of food. A pulled_pork_sandwich has a piece of pork that has been cooked until it is very soft and can be pulled apart with a fork.", + "A photo of pulled pork sandwich, a type of food. If you see a pulled pork sandwich on a menu, it is likely that the pork will be cooked in a slow cooker with barbecue sauce.", + "A photo of pulled pork sandwich, a type of food. By its ingredients, which include pork, BBQ sauce, and coleslaw.", + "A photo of pulled pork sandwich, a type of food. A pulled_pork_sandwich is a sandwich made ofPulled pork, mayonnaise, barbecue sauce, and coleslaw on a bun.", + "A photo of pulled pork sandwich, a type of food. by looking for a sandwich with pulled pork on it.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is traditionally made with pork that has been slow-cooked and shredded.", + "A photo of pulled pork sandwich, a type of food. The ingredients in a pulled_pork_sandwich are typically pork that has been slow cooked until it is very tender, and a sauce or other flavoring.", + "A photo of pulled pork sandwich, a type of food. The sandwich will have pulled pork on it, and it may or may not have other ingredients like BBQ sauce, coleslaw, and pickles.", + "A photo of pulled pork sandwich, a type of food. One way to identify a pulled pork sandwich is by its appearance.", + "A photo of pulled pork sandwich, a type of food. A pulled_pork_sandwich is a sandwich that has pulled pork on it.", + "A photo of pulled pork sandwich, a type of food. A pulled_pork_sandwich typically consists of pulled pork, BBQ sauce, and coleslaw on a bun.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is a sandwich made with barbecue-flavored pulled pork.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is a sandwich made with shredded or chopped pork that has been cooked in a slow cooker or smoked.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich typically consists of shredded pork that has been cooked in a barbecue-style sauce and served on a bun or bread.", + "A photo of pulled pork sandwich, a type of food. Image result for pulled pork sandwich.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich has a layer of pulled pork on top of a bun.", + "A photo of pulled pork sandwich, a type of food. There is no real standard for what a pulled pork sandwich looks like, but it generally consists of shredded or pulled pork on a bun or piece of bread, with various toppings such as BBQ sauce, coleslaw, onions, and pick.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is traditionally made with barbecue pulled pork, coleslaw, and barbecue sauce on a bun.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich typically consists of shredded or pulled pork that has been cooked in a slow cooker or smoker and then topped with a barbecue sauce.", + "A photo of pulled pork sandwich, a type of food. There is a pulled pork sandwich on a plate.", + "A photo of pulled pork sandwich, a type of food. The image is of a sandwich with pulled pork on a bun.", + "A photo of pulled pork sandwich, a type of food. In the image, there is a pulled pork sandwich on a plate with a side of coleslaw.", + "A photo of pulled pork sandwich, a type of food. The image is of a pulled pork sandwich on a white plate.", + "A photo of pulled pork sandwich, a type of food. The image shows a pork sandwich with BBQ sauce on a light colored bun.", + "A photo of pulled pork sandwich, a type of food. The image shows a sandwich with pulled pork, lettuce, and mayonnaise on a wheat bun.", + "A photo of pulled pork sandwich, a type of food. The image is of a sandwich with pulled pork on a white bun.", + "A photo of pulled pork sandwich, a type of food. In the image, there is a pork sandwich on a white plate with a side of coleslaw.", + "A photo of pulled pork sandwich, a type of food. Image shows a pulled pork sandwich on a plate with a side of coleslaw.", + "A photo of pulled pork sandwich, a type of food. In the image, there is a sandwich on a plate with a side of coleslaw.", + "A photo of pulled pork sandwich, a type of food. Pulled Pork Sandwich.", + "A photo of pulled pork sandwich, a type of food. A delicious looking pulled pork sandwich on a toasted bun, topped with coleslaw.", + "A photo of pulled pork sandwich, a type of food. A delicious pulled pork sandwich on a toasted bun.", + "A photo of pulled pork sandwich, a type of food. This yummy pulled pork sandwich is perfect for a quick and easy lunch!.", + "A photo of pulled pork sandwich, a type of food. A pulled pork sandwich is a type of sandwich made with pulled pork.", + "A photo of pulled pork sandwich, a type of food. This pulled pork sandwich is so good, I can't wait to take a bite!.", + "A photo of pulled pork sandwich, a type of food. This is a delicious pulled pork sandwich!.", + "A photo of pulled pork sandwich, a type of food. This sandwich is packed with flavor! Tender, juicy pulled pork is piled high on a toasted bun, and topped with your favorite BBQ sauce.", + "A photo of pulled pork sandwich, a type of food. Hearty Pulled Pork Sandwich - Perfect for a Fall Day!.", + "A photo of pulled pork sandwich, a type of food. This picture shows a BBQ pulled pork sandwich, with a side of coleslaw." + ], + "ramen": [ + "A photo of ramen, a type of food. A ramen is a Japanese noodle soup that is typically made with wheat noodles, broth, and meat.", + "A photo of ramen, a type of food. Ramen is a Japanese dish that consists of noodles in a broth.", + "A photo of ramen, a type of food. Ramen is a Japanese noodle soup dish.", + "A photo of ramen, a type of food. Ramen is a Japanese noodle soup.", + "A photo of ramen, a type of food. A ramen typically contains a soft-boiled egg, vegetables, and chopped pork.", + "A photo of ramen, a type of food. A ramen is a Japanese noodle soup.", + "A photo of ramen, a type of food. Ramen is a Japanese noodle soup.", + "A photo of ramen, a type of food. A ramen traditionally consists of Chinese-style wheat noodles in a meat or (occasionally) fish-based broth, often flavored with soy sauce or miso, and uses toppings such as sliced pork, dried seaweed, kam.", + "A photo of ramen, a type of food. A ramen is a Japanese noodle dish that typically consists of wheat noodles in a hearty broth, topped with a variety of ingredients such as meats, vegetables, and eggs.", + "A photo of ramen, a type of food. .", + "A photo of ramen, a type of food. Ramen is a Japanese noodle soup dish.", + "A photo of ramen, a type of food. A ramen can typically be identified by its noodles, which are thick and wheat-based, and its broth, which is usually pork-based.", + "A photo of ramen, a type of food. Ramen is a type of noodle dish that typically consists of wheat noodles, a broth, and various toppings.", + "A photo of ramen, a type of food. A ramen is a type of Japanese noodle soup.", + "A photo of ramen, a type of food. Ramen is a type of Japanese noodle soup.", + "A photo of ramen, a type of food. Ramen can typically be identified by its curly, noodles and by the broth, which is usually either miso, soy, pork, or beef.", + "A photo of ramen, a type of food. Ramen is a popular Japanese dish that is made with noodles and a variety of toppings in a broth.", + "A photo of ramen, a type of food. Ramen is a Japanese dish that typically consists of wheat noodles in a broth made with soy sauce, miso, or salt.", + "A photo of ramen, a type of food. The best way to identify a ramen is to look for the following features:-Ramen noodles are usually made from wheat flour, salt, water, and alkaline water.", + "A photo of ramen, a type of food. Ramen is a type of Japanese noodle soup.", + "A photo of ramen, a type of food. Ramen typically consists of Chinese-style wheat noodles served in a meat or fish-based broth, often flavored with soy sauce or miso, and uses toppings such as sliced pork, dried seaweed, kamaboko, and.", + "A photo of ramen, a type of food. Ramen is a Japanese noodle dish.", + "A photo of ramen, a type of food. A ramen typically consists of wheat noodles in a meat or vegetable broth.", + "A photo of ramen, a type of food. Ramen is a Japanese dish that typically consists of wheat noodles in a broth, with meat and vegetables.", + "A photo of ramen, a type of food. Ramen usually consists of Chinese-style wheat noodles in a meat or fish-based broth, often flavored with soy sauce or miso, and use toppings such as sliced pork, dried seaweed, menma, and green onions.", + "A photo of ramen, a type of food. A ramen typically consists of wheat noodles in a broth.", + "A photo of ramen, a type of food. Ramen is a Japanese dish that typically consists of wheat noodles in a broth made with chicken, beef, or pork.", + "A photo of ramen, a type of food. Ramen is a Japanese noodle soup.", + "A photo of ramen, a type of food. A bowl of ramen typically includes noodles, broth, and meat or vegetables.", + "A photo of ramen, a type of food. A ramen is a Japanese dish that generally consists of noodles, broth, meat, and vegetables.", + "A photo of ramen, a type of food. bowlA man is holding a ramen bowl with chopsticks in front of him.", + "A photo of ramen, a type of food. dishA piping hot bowl of ramen noodles, with a soft boiled egg perched on top.", + "A photo of ramen, a type of food. restaurantThe image is of a small, cramped ramen restaurant with a counter and stools for customers to sit on.", + "A photo of ramen, a type of food. bowlThe image is of a bowl of ramen with a green onion on top.", + "A photo of ramen, a type of food. restaurantThe image shows the inside of a ramen restaurant with long communal tables and a counter in the back where the chef is preparing fresh noodles.", + "A photo of ramen, a type of food. shopThe image shows a small, cramped ramen shop with a counter and kitchen in the back.", + "A photo of ramen, a type of food. bowlThe image shows a partially eaten bowl of ramen noodles with pork and vegetables.", + "A photo of ramen, a type of food. noodle soupThis image is of a colorful ramen noodle soup with a variety of toppings.", + "A photo of ramen, a type of food. dishThe image is of a ramen dish with a soft-boiled egg, slices of pork, and green onion.", + "A photo of ramen, a type of food. The image is of a bowl of ramen with a soft-boiled egg on top.", + "A photo of ramen, a type of food. Ramen noodles are a type of Japanese wheat noodle.", + "A photo of ramen, a type of food. A delicious bowl of ramen with a soft boiled egg.", + "A photo of ramen, a type of food. A delicious bowl of vegan ramen.", + "A photo of ramen, a type of food. Ramen with egg, pork, and seaweed.", + "A photo of ramen, a type of food. \"Ramen noodles in a bowl with a spoon\".", + "A photo of ramen, a type of food. Ramen noodles served in a beef broth with vegetables.", + "A photo of ramen, a type of food. \"Ramen, a delicious and popular Japanese noodle soup.", + "A photo of ramen, a type of food. This ramen is so good!.", + "A photo of ramen, a type of food. You can't go wrong with a classic.", + "A photo of ramen, a type of food. Ramen: the ultimate comfort food." + ], + "ravioli": [ + "A photo of ravioli, a type of food. A ravioli is a small Italian pasta dish consisting of a filling wrapped in thin dough and cooked in boiling water.", + "A photo of ravioli, a type of food. A ravioli is a small Italian pasta that is made from flour, water, and eggs.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is usually square or circular in shape.", + "A photo of ravioli, a type of food. A ravioli is a small, square pasta purs that is typically filled with meat, cheese, or vegetables.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is typically filled with cheese, meat, or vegetables.", + "A photo of ravioli, a type of food. .", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is usually square or circular in shape.", + "A photo of ravioli, a type of food. A ravioli is a small, square-shaped pasta that is typically filled with meat, cheese, or vegetables.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is typically square or rectangular in shape.", + "A photo of ravioli, a type of food. A ravioli is a pasta that is typically filled with cheese, meat, or vegetables.", + "A photo of ravioli, a type of food. Ravioli is a type of Italian pasta that is made from a dough of flour, water and eggs.", + "A photo of ravioli, a type of food. The easiest way to identify a ravioli is by its shape.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is usually square or round in shape.", + "A photo of ravioli, a type of food. Cooked ravioli are typically plump and have ridges on their outer edges.", + "A photo of ravioli, a type of food. Ravioli is a type of pasta made from unleavened dough.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is usually square or circular in shape.", + "A photo of ravioli, a type of food. Ravioli is a type of pasta made from dough that is rolled out thin and cut into small squares.", + "A photo of ravioli, a type of food. A ravioli is a pasta dish made up of dough that is filled with either a meat or cheese filling, and then sealed.", + "A photo of ravioli, a type of food. Ravioli is a type of pasta that is usually square or circular in shape.", + "A photo of ravioli, a type of food. To identify a ravioli, look for a pasta that is filled with meat or cheese and is shaped like a small, thick noodle.", + "A photo of ravioli, a type of food. A ravioli is a type of Italian pasta that is made from two pieces of thin dough that are filled with a variety of different fillings and then sealed together.", + "A photo of ravioli, a type of food. A ravioli is a type of Italian pasta that is made from flour, water, and eggs.", + "A photo of ravioli, a type of food. A ravioli looks like a small pocket of dough filled with meat, vegetables, or cheese.", + "A photo of ravioli, a type of food. A ravioli is a small, square pasta that is filled with meat, vegetables, or cheese.", + "A photo of ravioli, a type of food. A ravioli is a small, square-shaped pasta that is filled with either meat or cheese.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta and consists of a filling, typically meat or cheese, wrapped in a thin sheet of pasta dough.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is usually square orcircle-shaped.", + "A photo of ravioli, a type of food. A ravioli is a small, square,Pocket-sized packet of pasta filled with a variety of fillings.", + "A photo of ravioli, a type of food. A ravioli is typically a square-shaped dumpling that has been filled with a variety of different ingredients, including meats, cheeses, and vegetables.", + "A photo of ravioli, a type of food. A ravioli is a type of pasta that is typically square or circular in shape.", + "A photo of ravioli, a type of food. I found an image of a ravioli dish on the internet that looks absolutely delicious.", + "A photo of ravioli, a type of food. Image shows a large plate of ravioli with a creamy white sauce.", + "A photo of ravioli, a type of food. pasta dishThis ravioli pasta dish looks like it has a light, homemade tomato sauce with chunks of fresh tomatoes and basil leaves.", + "A photo of ravioli, a type of food. I found an image of a ravioli on the internet.", + "A photo of ravioli, a type of food. I found an image of a ravioli dish on the internet that looks delicious.", + "A photo of ravioli, a type of food. The image is of a triangular ravioli on a white plate.", + "A photo of ravioli, a type of food. dishThe image is of a large, deep white dish filled almost to the brim with small, light-colored ravioli.", + "A photo of ravioli, a type of food. The image is of a brown and white ravioli on a plate.", + "A photo of ravioli, a type of food. In the image, there is a large pot of boiling water on a stovetop.", + "A photo of ravioli, a type of food. The image is of a plate of ravioli with a red sauce.", + "A photo of ravioli, a type of food. \nThe Chef's Special: Ravioli with a creamy tomato sauce.", + "A photo of ravioli, a type of food. This image shows a delicious-looking plate of ravioli, a popular Italian pasta dish.", + "A photo of ravioli, a type of food. Cheese raviolis with a creamy tomato sauce.", + "A photo of ravioli, a type of food. This ravioli is absolutely delicious!.", + "A photo of ravioli, a type of food. Delicious ravioli made from scratch!.", + "A photo of ravioli, a type of food. A plate of ravioli with a tomato sauce.", + "A photo of ravioli, a type of food. What's for dinner?.", + "A photo of ravioli, a type of food. A tasty ravioli dish with a creamy sauce.", + "A photo of ravioli, a type of food. Three cheese ravioli on a bed of arugula.", + "A photo of ravioli, a type of food. Yummmmmmm." + ], + "red velvet cake": [ + "A photo of red velvet cake, a type of food. A red_velvet_cake typically has a bright red or red-brown color.", + "A photo of red velvet cake, a type of food. A red_velvet_cake looks like a cake with a red exterior and a fluffy white interior.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is red in color and has a velvet-like texture.", + "A photo of red velvet cake, a type of food. A red velvet cake is a type of cake that is usually red, red-brown, or red-black in color.", + "A photo of red velvet cake, a type of food. A red_velvet_cake is generally a red, red-brown, or scarlet cake with a somewhat firm texture.", + "A photo of red velvet cake, a type of food. A red velvet cake is typically a red or red-brown color cake that is layered or decorated with cream cheese frosting.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is usually red or red-brown in color, and often has a white or cream-colored frosting.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is red in color with a velvety texture.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake with a red or reddish-brown color, often paired with chocolate or white frosting.", + "A photo of red velvet cake, a type of food. A red velvet cake is a soft, fluffy cake that is typically made with red food coloring.", + "A photo of red velvet cake, a type of food. A red_velvet_cake can be identified by its deep red color, its smooth texture, and its taste.", + "A photo of red velvet cake, a type of food. A red_velvet_cake typically has a deep red or maroon color.", + "A photo of red velvet cake, a type of food. A red_velvet_cake typically has a red or red-brown color, a moist texture, and a chocolate flavor.", + "A photo of red velvet cake, a type of food. A red velvet cake is often distinguished by its bright red color, which is achieved by adding red food coloring to the cake batter.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake with a red or reddish-brown color.", + "A photo of red velvet cake, a type of food. A red_velvet_cake typically has a deep red or maroon color.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is typically red or red-violet in color.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is traditionally red or red-brown in color.", + "A photo of red velvet cake, a type of food. The best way to identify a red velvet cake is by its red color.", + "A photo of red velvet cake, a type of food. The surface of a red velvet cake is usually bright red, with a subtle chocolate flavor.", + "A photo of red velvet cake, a type of food. A red velvet cake looks like a cake that is red in color.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is traditionally red or red-brown in color and has a velvety texture.", + "A photo of red velvet cake, a type of food. A red velvet cake typically has a deep red or maroon color, and is often paired with cream cheese frosting.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake that is traditionally red or red-brown in color.", + "A photo of red velvet cake, a type of food. A red velvet cake look like a red cake with a white frosting.", + "A photo of red velvet cake, a type of food. A red velvet cake is a velvety, red cake that is traditionally made with cocoa powder, buttermilk, and red food coloring.", + "A photo of red velvet cake, a type of food. A red velvet cake is traditionally a red, red-brown, or red-gray cake with a slightly sour, creamy flavor.", + "A photo of red velvet cake, a type of food. A red velvet cake usually has a deep red color and a rich, dense texture.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake with a deep red color.", + "A photo of red velvet cake, a type of food. Red velvet cake is a cake that is traditionally red in color with a white or cream-colored frosting.", + "A photo of red velvet cake, a type of food. The image is of a red velvet cake with cream cheese frosting.", + "A photo of red velvet cake, a type of food. This cake is round with red velvet cake and white frosting.", + "A photo of red velvet cake, a type of food. It's a cake! It's red! It's velvet!.", + "A photo of red velvet cake, a type of food. A large, red velvet cake with a cream cheese frosting.", + "A photo of red velvet cake, a type of food. The image is a photo of a red velvet cake on a white plate.", + "A photo of red velvet cake, a type of food. This image is of a red velvet cake that has been cut into slices.", + "A photo of red velvet cake, a type of food. This image is of a beautiful, three-tiered red velvet cake.", + "A photo of red velvet cake, a type of food. The image is a photo of a three-tiered red velvet cake with cream cheese frosting.", + "A photo of red velvet cake, a type of food. A red velvet cake is a cake with red, velvety frosting.", + "A photo of red velvet cake, a type of food. The image is of a red velvet cake on a white plate.", + "A photo of red velvet cake, a type of food. A slice of red velvet cake on a white plate.", + "A photo of red velvet cake, a type of food. A delicious slice of red velvet cake.", + "A photo of red velvet cake, a type of food. A yummy red velvet cake.", + "A photo of red velvet cake, a type of food. A slice of red velvet cake on a plate, with a fork next to it.", + "A photo of red velvet cake, a type of food. Delicious-looking red velvet cake with cream cheese frosting.", + "A photo of red velvet cake, a type of food. A slice of red velvet cake with cream cheese frosting.", + "A photo of red velvet cake, a type of food. Delicious red velvet cake on a plate.", + "A photo of red velvet cake, a type of food. A close-up on a piece of red velvet cake, with cream cheese frostingThe rich, red color of this cake is breathtaking.", + "A photo of red velvet cake, a type of food. A red velvet cake with cream cheese frosting.", + "A photo of red velvet cake, a type of food. Red velvet cake is a classic American dessert that typically consists of a red or red-brown cake, often with a cream cheese frosting." + ], + "risotto": [ + "A photo of risotto, a type of food. Risotto is a creamy Italian rice dish that is made with short-grain rice.", + "A photo of risotto, a type of food. Risotto is a creamy Italian rice dish that is usually made with Parmesan cheese.", + "A photo of risotto, a type of food. A risotto is a type of Italian rice dish cooked in a broth to a creamy consistency.", + "A photo of risotto, a type of food. Risotto is a creamy Italian rice dish that is traditionally made with Arborio rice, broth, wine, and Parmesan cheese.", + "A photo of risotto, a type of food. A risotto is a creamy rice dish that is made with short-grain rice.", + "A photo of risotto, a type of food. A risotto is a creamy rice dish made with broth and Parmesan cheese.", + "A photo of risotto, a type of food. A risotto is a creamy rice dish that is cooked in broth.", + "A photo of risotto, a type of food. A risotto is a creamy Italian rice dish that is made with Arborio rice, broth, and other ingredients.", + "A photo of risotto, a type of food. A risotto is a type of Italian rice dish that is cooked in broth and typically seasoned with Parmesan cheese, white wine, and vegetables.", + "A photo of risotto, a type of food. A risotto looks like a creamy rice dish that is usually made with Italian short-grain rice.", + "A photo of risotto, a type of food. Risotto is a type of Italian rice dish that is cooked in broth and often includes other ingredients such as vegetables, meat, or seafood.", + "A photo of risotto, a type of food. A risotto is a rice dish that is cooked in broth until it is creamy.", + "A photo of risotto, a type of food. The main way to identify a risotto is by its creamy texture.", + "A photo of risotto, a type of food. A risotto is a type of rice dish that is cooked in a broth to a creamy consistency.", + "A photo of risotto, a type of food. Risotto is a type of Italian rice dish made with broth and Parmesan cheese.", + "A photo of risotto, a type of food. The best way to identify a risotto is by its creamy texture and flavor.", + "A photo of risotto, a type of food. If you see a creamy rice dish on a menu, it is likely risotto.", + "A photo of risotto, a type of food. Risotto is a type of rice dish that is cooked in a broth to a creamy consistency.", + "A photo of risotto, a type of food. Risotto is a type of Italian rice dish that is cooked in broth until it is creamy.", + "A photo of risotto, a type of food. Risotto is a type of Italian rice dish.", + "A photo of risotto, a type of food. A risotto is a creamy rice dish that is typically made with broth, Parmesan cheese, and butter.", + "A photo of risotto, a type of food. A risotto is a rice dish that is cooked in a broth.", + "A photo of risotto, a type of food. A risotto looks like a creamy, hearty rice dish that is typically served as a main course.", + "A photo of risotto, a type of food. A risotto is a dish made with rice that is cooked in broth until it is creamy.", + "A photo of risotto, a type of food. A risotto is a rice dish that is cooked in broth and often has other ingredients mixed in, such as vegetables, meat, or seafood.", + "A photo of risotto, a type of food. A risotto is a rice dish that is made with broth and other ingredients.", + "A photo of risotto, a type of food. A risotto is a rice dish that is cooked in a broth to a creamy consistency.", + "A photo of risotto, a type of food. A risotto is a type of Italian rice dish that is cooked in broth until it is creamy.", + "A photo of risotto, a type of food. A risotto is a creamy, starchy rice dish that is typically made with Parmesan cheese and white wine.", + "A photo of risotto, a type of food. A risotto is a creamy, rice-based dish typically made with Parmesan cheese and vegetables.", + "A photo of risotto, a type of food. The image is of a creamy white risotto with green asparagus spears and chunks of Parmesan cheese sprinkled on top.", + "A photo of risotto, a type of food. dishAn image of a risotto dish from the internet shows a platter of food with a meat and vegetable risotto.", + "A photo of risotto, a type of food. This image is of a classic Italian dish, risotto.", + "A photo of risotto, a type of food. dishThe image is of a dish of creamy risotto with chunks of lobster meat and green peas, garnished with shaved Parmesan cheese and parsley.", + "A photo of risotto, a type of food. dishThe image is of a dish of risotto with peas and asparagus, topped with Parmesan cheese.", + "A photo of risotto, a type of food. dishAn image from the internet of a risotto dish shows a cooked rice dish that is creamy and typically made with cheese, vegetables, and broth.", + "A photo of risotto, a type of food. In this image, there is a bowl of risotto with mushrooms and Parmesan cheese.", + "A photo of risotto, a type of food. An image from the internet of a risotto may show a bowl of rice with vegetables and meat in a creamy sauce.", + "A photo of risotto, a type of food. In the image, there is a bowl of cooked risotto with chunks of lobster meat and vegetables mixed in.", + "A photo of risotto, a type of food. An image of a risotto from the internet shows a creamy dish with rice, vegetables, and chicken.", + "A photo of risotto, a type of food. A creamy and rich risotto made with Parmesan cheese and mushrooms.", + "A photo of risotto, a type of food. Risotto is an Italian dish made with rice, vegetables, and broth.", + "A photo of risotto, a type of food. Risotto with mushrooms and truffle oil.", + "A photo of risotto, a type of food. A creamy and dreamy Italian-style risotto with Parmesan cheese.", + "A photo of risotto, a type of food. A delicious plate of risotto with mushrooms and asparagus.", + "A photo of risotto, a type of food. A delicious plate of risotto made with creamy Parmesan cheese and fresh herbs.", + "A photo of risotto, a type of food. \"Creamy Parmesan Risotto with Shrimp.", + "A photo of risotto, a type of food. A close up of a risotto with mushrooms, peas, and Parmesan cheese.", + "A photo of risotto, a type of food. This is a dish of risotto alla milanese, a traditional Italian rice dish made with beef broth, butter, onion, and Parmesan cheese.", + "A photo of risotto, a type of food. A delicious seafood risotto made with shrimp, scallops, and crabmeat." + ], + "samosa": [ + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or ground beef.", + "A photo of samosa, a type of food. A samosa is a small, triangular pastry that is filled with a spiced potato filling and fried.", + "A photo of samosa, a type of food. A samosa looks like a triangular pastry that is usually filled with potato, peas, and spices.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. A samosa is a fried pastry filled with spiced potatoes and onions.", + "A photo of samosa, a type of food. A samosa is typically a fried or baked triangular-shaped pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, chicken, or lamb.", + "A photo of samosa, a type of food. A samosa is a pastry made with a thin, flaky dough and filled with a spiced potato and pea filling.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, meat, or lentils.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lamb, or chicken.", + "A photo of samosa, a type of food. The most common way to identify a samosa is by its shape, which is usually a triangular prism.", + "A photo of samosa, a type of food. A samosa is typically a savory pastry with a triangular shape.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lamb, or chicken.", + "A photo of samosa, a type of food. A samosa is generally a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, and various spices.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, and ground lamb or beef.", + "A photo of samosa, a type of food. The best way to identify a samosa is by its shape.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, and meats.", + "A photo of samosa, a type of food. A samosa is a fried, savory pastry.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lamb, or chicken.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. A samosa is a stuffed pastry with a savory filling.", + "A photo of samosa, a type of food. What is a samosa?.", + "A photo of samosa, a type of food. A samosa looks like a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, and ground lamb or beef.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. A samosa is an Indian snack that is made of fried dough with a savory filling.", + "A photo of samosa, a type of food. A samosa looks like a triangle-shaped pastry that is fried and has a savory filling, typically consisting of potatoes, onions, peas, and spices.", + "A photo of samosa, a type of food. A samosa is a fried pastry with a savory filling, such as spiced potatoes, onions, peas, or lamb.", + "A photo of samosa, a type of food. Samosas are typically triangular, fried pastries with a savory filling, such as spiced potatoes, onions, peas, or meat.", + "A photo of samosa, a type of food. Asamosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, macaroni, noodles, or cottage cheese.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. The image is of a fried, triangular-shaped pastry that is filled with a spiced potato and pea filling.", + "A photo of samosa, a type of food. Asamosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, and ground lamb or chicken.", + "A photo of samosa, a type of food. Samosas are a type of fried pastry with a savory filling, typically potato, lamb, or chicken.", + "A photo of samosa, a type of food. A samosa is a fried pastry filled with spiced vegetables or meat.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or chicken.", + "A photo of samosa, a type of food. This image shows a traditional samosa, which is a fried pastry with a savory filling.", + "A photo of samosa, a type of food. The image is of a samosa that is golden brown in color.", + "A photo of samosa, a type of food. A samosa is a fried or baked pastry with a savory filling, such as spiced potatoes, onions, peas, lentils, ground lamb or ground beef.", + "A photo of samosa, a type of food. Samosas are a traditional Indian food made of a fried pastry dough filled with a spiced potato and peas filling.", + "A photo of samosa, a type of food. A tasty samosa, perfect for snacking!.", + "A photo of samosa, a type of food. A traditional Indian samosa, stuffed with spiced potatoes and peas.", + "A photo of samosa, a type of food. A delicious samosa, perfect for any occasion!.", + "A photo of samosa, a type of food. \"I love samosas!\".", + "A photo of samosa, a type of food. A delicious samosa filled with potato and peas, served with a mint chutney.", + "A photo of samosa, a type of food. A savory triangular pastry, typically fried, filled with spiced potatoes, peas, and onions.", + "A photo of samosa, a type of food. A close-up of a samosa, a popular Indian snack made of fried dough filled with potatoes and spices.", + "A photo of samosa, a type of food. A delicious samosa, perfect for snacking!.", + "A photo of samosa, a type of food. A delicious samosa with a crispy crust and a flavorful filling." + ], + "sashimi": [ + "A photo of sashimi, a type of food. Sashimi is a Japanese dish made of thinly sliced raw fish.", + "A photo of sashimi, a type of food. A sashimi is a very thin slice of raw fish that is served without rice.", + "A photo of sashimi, a type of food. A sashimi is a slice of raw meat or fish.", + "A photo of sashimi, a type of food. A sashimi is a Japanese dish that consists of thinly sliced raw fish or meat.", + "A photo of sashimi, a type of food. Sashimi is thin slices of raw fish.", + "A photo of sashimi, a type of food. A sashimi is a Japanese dish that consists of very thin slices of raw fish.", + "A photo of sashimi, a type of food. A sashimi is a very thin slice of meat that is usually raw.", + "A photo of sashimi, a type of food. A sashimi is a thin slice of raw fish that is served without rice.", + "A photo of sashimi, a type of food. A sashimi is a slice of fish that is served raw.", + "A photo of sashimi, a type of food. A sashimi is a type of seafood dish that is typically made with raw fish.", + "A photo of sashimi, a type of food. A sashimi is usually a thin slice of fish that is served uncooked.", + "A photo of sashimi, a type of food. A sashimi is a piece of raw meat that is thinly sliced and served without rice.", + "A photo of sashimi, a type of food. There are a few ways to identify sashimi.", + "A photo of sashimi, a type of food. Sashimi israw fish that is thinly sliced and served without rice.", + "A photo of sashimi, a type of food. Sashimi is a type of sushi that is made with only fresh, raw fish.", + "A photo of sashimi, a type of food. A sashimi is a slice of raw fish that is served without rice.", + "A photo of sashimi, a type of food. Sashimi is a Japanese dish consisting of raw fish or other seafood.", + "A photo of sashimi, a type of food. A sashimi is a Japanese dish that consists of thinly sliced raw fish.", + "A photo of sashimi, a type of food. A sashimi knife is a Japanese knife used to cut sushi and sashimi.", + "A photo of sashimi, a type of food. There are a few ways to identify sashimi.", + "A photo of sashimi, a type of food. Sashimi is a Japanese delicacy that consists of raw fish that is thinly sliced and served without rice.", + "A photo of sashimi, a type of food. A sashimi is a slice of raw fish that is served without rice.", + "A photo of sashimi, a type of food. A sashimi is a piece of raw fish that is sliced into thin strips.", + "A photo of sashimi, a type of food. A sashimi is a thin slice of fish that is typically served with soy sauce and wasabi.", + "A photo of sashimi, a type of food. Sashimi is a type of Japanese cuisine that typically consists of raw fish or seafood.", + "A photo of sashimi, a type of food. A sashimi is a Japanese dish that consists of thinly sliced raw fish.", + "A photo of sashimi, a type of food. Sashimi is a Japanese dish that consists of thin slices of raw meat or fish.", + "A photo of sashimi, a type of food. A sashimi is a slice of raw fish that is served without rice.", + "A photo of sashimi, a type of food. A sashimi is a slice of raw meat or fish that is served without rice.", + "A photo of sashimi, a type of food. A typical sashimi dish consists of thinly sliced raw fish or meat that is served without rice.", + "A photo of sashimi, a type of food. dishThe image is of a brightly-colored dish of sashimi, with pink, orange, and white fish sliced thinly and arranged around a mound of green daikon radish.", + "A photo of sashimi, a type of food. dishThis image is of a sashimi dish with salmon, tuna, shrimp, and egg.", + "A photo of sashimi, a type of food. dishThis image is of a sashimi dish with various fish slices arranged on a plate with soy sauce, wasabi, and pickled ginger.", + "A photo of sashimi, a type of food. Sashimi is a type of Japanese cuisine that typically consists of raw seafood.", + "A photo of sashimi, a type of food. The image is of a platter of sashimi with soy sauce and wasabi.", + "A photo of sashimi, a type of food. mealThis image is of a beautifully presented sashimi meal.", + "A photo of sashimi, a type of food. This sashimi image is of tuna, salmon, and yellowtail fish laid out on a white plate.", + "A photo of sashimi, a type of food. dishThis image is of a sashimi dish that includes salmon, tuna, and yellowtail.", + "A photo of sashimi, a type of food. preparationThe image is of a sushi chef preparing sashimi.", + "A photo of sashimi, a type of food. dishThis image is of a colorful sashimi dish.", + "A photo of sashimi, a type of food. Sashimi is a traditional Japanese dish consisting of thinly sliced raw fish.", + "A photo of sashimi, a type of food. Sashimi is a traditional Japanese dish made of raw fish or other seafood.", + "A photo of sashimi, a type of food. A traditional Japanese dish of raw fish, often salmon, tuna, or mackerel, served with soy sauce and Wasabi.", + "A photo of sashimi, a type of food. Sashimi is a Japanese delicacy consisting of raw fish or meat that is sliced into thin pieces.", + "A photo of sashimi, a type of food. Sashimi is a Japanese dish that consists of thinly sliced raw fish.", + "A photo of sashimi, a type of food. A platter of colorful sashimi arranged on a bed of rice.", + "A photo of sashimi, a type of food. Salmon SashimiThis salmon sashimi looks delicious!.", + "A photo of sashimi, a type of food. Salmon sashimi with daikon, scallions, and ginger.", + "A photo of sashimi, a type of food. Sashimi is a Japanese delicacy consisting of thin slices of raw meat or fish.", + "A photo of sashimi, a type of food. Salmon Sashimi." + ], + "scallops": [ + "A photo of scallops, a type of food. A scallop is a small, free-swimming marine mollusk.", + "A photo of scallops, a type of food. Scallops are small, fan-shaped mollusks that are white or off-white in color.", + "A photo of scallops, a type of food. A scallop is a small, edible shellfish with a delicate flavor.", + "A photo of scallops, a type of food. A scallop is a type of shellfish that has a fan-shaped shell.", + "A photo of scallops, a type of food. Scallops are small, white, translucent shellfish with a crispy exterior and a sweet, delicate flavor.", + "A photo of scallops, a type of food. The exterior of a scallop shell is composed of two sides or valves.", + "A photo of scallops, a type of food. A scallop is a ocean creature that has a hard shell.", + "A photo of scallops, a type of food. A scallop is a type of shellfish that is white with a light pink hue.", + "A photo of scallops, a type of food. A scallop looks like a small, round, white seafood with a brown or beige \"foot\" attached to it.", + "A photo of scallops, a type of food. A scallop is a small, free-floating marine mollusk that has a large, single adductor muscle.", + "A photo of scallops, a type of food. At the grocery store, scallops are usually sold in plastic packaging labeled with the name of the seafood.", + "A photo of scallops, a type of food. A scallop is a marine bivalve mollusk with a two-part hinged shell.", + "A photo of scallops, a type of food. A scallops is usually an off-white color with a light pink hue.", + "A photo of scallops, a type of food. Scallops are generally round or oblong shaped and have fan-like shells.", + "A photo of scallops, a type of food. A scallop is a small, edible sea creature that is often used as seafood.", + "A photo of scallops, a type of food. A scallops is a small, round, white shellfish with a sweet, delicate flavor.", + "A photo of scallops, a type of food. The easiest way to identify a scallop is by its shape.", + "A photo of scallops, a type of food. A scallop is any one of numerous marine bivalve mollusks in the family Pectinidae, the second-largest family of marine bivalves with 27 genera and 350 species.", + "A photo of scallops, a type of food. A scallops is a small, round, white shellfish with a large muscle attached.", + "A photo of scallops, a type of food. Scallops have a distinctive shape, with a rounded shell and a fan of frilly tentacles.", + "A photo of scallops, a type of food. A scallops is a small, circular, white shellfish.", + "A photo of scallops, a type of food. A scallop is a small, edible shellfish with a white flesh.", + "A photo of scallops, a type of food. A scallops is a small, seafood with a ridged shell.", + "A photo of scallops, a type of food. A scallops is a small, edible shellfish with a sweet flavor.", + "A photo of scallops, a type of food. A scallops looks like a small fan or leaf shape with concentric ridges running along its edge.", + "A photo of scallops, a type of food. A scallop is a small, open, marine bivalve mollusc.", + "A photo of scallops, a type of food. A scallop is a small, edible, marine mollusk belonging to the taxonomic family Pectinidae, the main group of which are the true or great scallops.", + "A photo of scallops, a type of food. Scallops look like small, round, white shells with a ridged edge.", + "A photo of scallops, a type of food. A scallop is a type of shellfish that has a small fan-shaped shell.", + "A photo of scallops, a type of food. A scallop is a mostly bivalve sea creature with a two-part shell.", + "A photo of scallops, a type of food. The image is of a white plate with six cooked scallops on it.", + "A photo of scallops, a type of food. dishA scallops dish is typically composed of seared scallops, served with a sauce or vegetables.", + "A photo of scallops, a type of food. dishThe image shows a scallops dish with three large scallops on a bed of creamy mashed potatoes.", + "A photo of scallops, a type of food. dishA scallops dish typically consists of seared scallops, vegetables, and a sauce.", + "A photo of scallops, a type of food. This image shows a scallop shell on a white background.", + "A photo of scallops, a type of food. This image is of three scallops on a white plate.", + "A photo of scallops, a type of food. The image is of a scalloped edge with a textured design.", + "A photo of scallops, a type of food. The image shows six large scallops on a white plate, arranged in a circle with their curved sides up.", + "A photo of scallops, a type of food. A scallop is a bivalve mollusk with a single adductor muscle and a distinctive fan-shaped shell fringed with thin wearable plates.", + "A photo of scallops, a type of food. scallops are a type of seafood that can be either cooked or raw.", + "A photo of scallops, a type of food. Fresh scallops on the half shell.", + "A photo of scallops, a type of food. Scallops sauteed in garlic and butter on a bed of rice.", + "A photo of scallops, a type of food. A stack of fresh scallops on a white plate.", + "A photo of scallops, a type of food. A close-up of scallops on a white plate with a lemon wedge.", + "A photo of scallops, a type of food. A scallop with itsisexual reproductive system exposed.", + "A photo of scallops, a type of food. Scallops are a type of shellfish that can be eaten cooked or raw.", + "A photo of scallops, a type of food. You can find these delicious scallops at the seafood counter of your local grocery store.", + "A photo of scallops, a type of food. scallops on a plate with a lemon.", + "A photo of scallops, a type of food. A plate of delicious scallops.", + "A photo of scallops, a type of food. This is a scallop, a type of mollusc." + ], + "seaweed salad": [ + "A photo of seaweed salad, a type of food. A seaweed_salad is a salad made with seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that is made with seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. Image result for seaweed saladA seaweed salad is a type of salads made from seaweed.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of dish made from seaweed that is typically served in East Asian cuisine.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that contains seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that includes seaweed as one of its ingredients.", + "A photo of seaweed salad, a type of food. Seaweed salad is a traditional Japanese dish made from wakame, a type of edible seaweed.", + "A photo of seaweed salad, a type of food. .", + "A photo of seaweed salad, a type of food. A seaweed_salad generally contains a variety of seaweed/algae, vegetables, andsometimes fruit.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that is made with seaweed as the main ingredient.", + "A photo of seaweed salad, a type of food. Seaweed salad is a type of dish that is made with seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. A seaweed salad is often green in color and has a salty taste.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that contains seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. The seaweed_salad can be identified by its dark green color and its slightly salty taste.", + "A photo of seaweed salad, a type of food. You can identify a seaweed_salad by its seaweed-like appearance and its salty taste.", + "A photo of seaweed salad, a type of food. A seaweed salad can be identified by its green and brown color.", + "A photo of seaweed salad, a type of food. A seaweed salad is typically made with wakame, a type of edible seaweed.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that contains seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. Seaweed salad is a type of salad that contains seaweed as a main ingredient.", + "A photo of seaweed salad, a type of food. The seaweed salad will have a green color to it and will be mixed in with other vegetables.", + "A photo of seaweed salad, a type of food. A typical seaweed salad contains a mix of hijiki, wakame, and arame seaweeds, all of which have a long, thin, blade-like appearance.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that includes seaweed as one of its ingredients.", + "A photo of seaweed salad, a type of food. A seaweed salad is a salad made with seaweed as the main ingredient.", + "A photo of seaweed salad, a type of food. A seaweed_salad can look like a green or brownish-green color, and can be either fresh or dried.", + "A photo of seaweed salad, a type of food. A seaweed salad is green and brown, and it is often served with algae or other vegetables.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of salad that contains seaweed as one of its main ingredients.", + "A photo of seaweed salad, a type of food. A seaweed salad is typically a mix of several different types of edible seaweed, served in a vinegar or sesame-based dressing.", + "A photo of seaweed salad, a type of food. A seaweed salad is a salad made with seaweed as the main ingredient.", + "A photo of seaweed salad, a type of food. A seaweed salad generally includes a variety of different seaweed, cucumber, and other vegetables.", + "A photo of seaweed salad, a type of food. A seaweed salad is a salad made with seaweed as the primary ingredient.", + "A photo of seaweed salad, a type of food. The image is of a seaweed salad on a white plate.", + "A photo of seaweed salad, a type of food. The image is of a salad that contains seaweed as one of its ingredients.", + "A photo of seaweed salad, a type of food. The image is of a salad with various greens and purple seaweed.", + "A photo of seaweed salad, a type of food. The image is of a plate of seaweed salad.", + "A photo of seaweed salad, a type of food. A seaweed salad is a type of dish made from seaweed, typically served as a side dish or as part of a larger meal.", + "A photo of seaweed salad, a type of food. This image is of a seaweed salad that is being served on a plate.", + "A photo of seaweed salad, a type of food. The image shows a salad with various colorful seaweeds, diced avocado, and sesame seeds.", + "A photo of seaweed salad, a type of food. The image is of a large bowl of seaweed salad.", + "A photo of seaweed salad, a type of food. The image is of a plate of seaweed salad.", + "A photo of seaweed salad, a type of food. This image shows a dish of seaweed salad on a white plate.", + "A photo of seaweed salad, a type of food. A healthy and refreshing seaweed salad - perfect for a summer picnic!.", + "A photo of seaweed salad, a type of food. A refreshing seaweed salad made with wakame, cucumber, and radish.", + "A photo of seaweed salad, a type of food. This seaweed salad is healthy and delicious!.", + "A photo of seaweed salad, a type of food. Seaweed salad is a popular dish in many Asian cuisines.", + "A photo of seaweed salad, a type of food. A tasty and healthy seaweed salad.", + "A photo of seaweed salad, a type of food. A delicious seaweed salad, perfect for a summertime lunch.", + "A photo of seaweed salad, a type of food. A healthy and refreshing seaweed salad.", + "A photo of seaweed salad, a type of food. Healthy and delicious, this seaweed salad is a great way to add some variety to your next meal.", + "A photo of seaweed salad, a type of food. Delicious and nutritious, this seaweed salad is a perfect healthy snack or side dish!.", + "A photo of seaweed salad, a type of food. This is a seaweed salad." + ], + "shrimp and grits": [ + "A photo of shrimp and grits, a type of food. .", + "A photo of shrimp and grits, a type of food. Shrimp and grits is a dish typically made with shrimp, grits, and a variety of seasonings.", + "A photo of shrimp and grits, a type of food. .", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp and grits served in a gravy-like sauce.", + "A photo of shrimp and grits, a type of food. Shrimp and grits is a dish typically made with shrimp, grits, and some kind of sauce or gravy.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically contains shrimp, grits, and vegetables.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp, grits, and a sauce or gravy.", + "A photo of shrimp and grits, a type of food. A shrimp_and_grits typically consists of shrimp and grits served together in a single dish.", + "A photo of shrimp and grits, a type of food. Shrimp and grits is a dish typically made with shrimp, grits, vegetables, and spices.", + "A photo of shrimp and grits, a type of food. .", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically has grilled shrimp on top of a bed of grits.", + "A photo of shrimp and grits, a type of food. The best way to identify a shrimp and grits is to look for a dish that contains both shrimp and grits.", + "A photo of shrimp and grits, a type of food. The dish shrimp and grits is a southern dish that is usually made with shrimp, grits, and butter.", + "A photo of shrimp and grits, a type of food. The dish shrimp and grits is a traditional breakfast dish in the southern United States.", + "A photo of shrimp and grits, a type of food. If you are in the United States, shrimp and grits is a traditional dish in the southern states.", + "A photo of shrimp and grits, a type of food. If you are looking at a picture of shrimp and grits, they will generally appear as a light colored dish with small pink shrimp on top of a bed of grits.", + "A photo of shrimp and grits, a type of food. The best way to identify a shrimp and grits is to look for a dish that contains both shrimp and grits.", + "A photo of shrimp and grits, a type of food. By looking at it, a shrimp and grits dish appears to be a bowl of yellow grits with pinkish-orange shrimp scattered on top.", + "A photo of shrimp and grits, a type of food. Shrimp and grits is a dish typically made with shrimp, grits, and vegetables.", + "A photo of shrimp and grits, a type of food. The dish shrimp and grits is a Southern dish that is usually made with shrimp, grits, and cheese.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp and grits served in a bowl.", + "A photo of shrimp and grits, a type of food. A shrimp and grits dish typically consists of shrimp and grits placed side by side on a plate.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically looks like a bowl of grits with shrimp on top.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp cooked in a flavorful sauce served over a bed of grits.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp and grits served side by side on a plate.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp saut\u00e9ed in butter and garlic, served over a bed of grits.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically consists of shrimp that is saut\u00e9ed or grilled and served over a bed of grits.", + "A photo of shrimp and grits, a type of food. There is no one definitive answer to this question, as shrimp and grits can vary widely in appearance depending on the specific ingredients and methods used.", + "A photo of shrimp and grits, a type of food. A shrimp and grits typically includes shrimp, grits, and a sauce or gravy.", + "A photo of shrimp and grits, a type of food. A shrimp and grits dish typically includes shrimp that is saut\u00e9ed or grilled, and served over a bed of grits that have been cooked with butter, milk, and salt.", + "A photo of shrimp and grits, a type of food. In this image, shrimp and grits are served in a white bowl with a green garnish.", + "A photo of shrimp and grits, a type of food. In the image, there is a plate of shrimp and grits in front of a person.", + "A photo of shrimp and grits, a type of food. The image is of a shrimp and grits dish with the shrimp cooked in a savory sauce and served over creamy grits.", + "A photo of shrimp and grits, a type of food. In the image, there is a dish of shrimp and grits that has been plated and is ready to be served.", + "A photo of shrimp and grits, a type of food. A shrimp and grits image from the internet would likely depict a bowl or plate of shrimp and grits, a traditional southern dish.", + "A photo of shrimp and grits, a type of food. dishA shrimp and grits dish from the internet typically consists of a bed of grits, with shrimp and vegetables cooked in a savory sauce on top.", + "A photo of shrimp and grits, a type of food. .", + "A photo of shrimp and grits, a type of food. The image is of a bowl of shrimp and grits with a green onion garnish.", + "A photo of shrimp and grits, a type of food. In the image, there is a shrimp and grits dish on a white plate.", + "A photo of shrimp and grits, a type of food. In the image, there is a bowl of shrimp and grits with a green onion garnish.", + "A photo of shrimp and grits, a type of food. A heaping plate of shrimp and grits, a southern favorite.", + "A photo of shrimp and grits, a type of food. This photo shows a delicious shrimp and grits dish.", + "A photo of shrimp and grits, a type of food. A classic shrimp and grits dish, made with fresh shrimp, creamy grits, and a variety of seasonings.", + "A photo of shrimp and grits, a type of food. \nThis picture is of shrimp and grits.", + "A photo of shrimp and grits, a type of food. This image is of a shrimp and grits dish.", + "A photo of shrimp and grits, a type of food. A classic shrimp and grits dish, served with a crispy fried shrimp on top.", + "A photo of shrimp and grits, a type of food. This image shows a classic shrimp and grits dish, a popular Southern meal.", + "A photo of shrimp and grits, a type of food. shrimp and grits.", + "A photo of shrimp and grits, a type of food. A delicious plate of shrimp and grits, a Southern classic!.", + "A photo of shrimp and grits, a type of food. A bowl of shrimp and grits, a popular Southern dish." + ], + "spaghetti bolognese": [ + "A photo of spaghetti bolognese, a type of food. Spaghetti bolognese is a dish that consists of spaghetti noodles mixed with a meat sauce.", + "A photo of spaghetti bolognese, a type of food. A plate of spaghetti bolognese typically consists of a hearty meat-based sauce spooned over a bed of cooked spaghetti.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese typically contains spaghetti, ground beef, tomatoes, and herbs.", + "A photo of spaghetti bolognese, a type of food. A spaghetti bolognese generally consists of a meat-based sauce, most commonly a beef rag\u00f9, that is served with spaghetti.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese typically consists of ground beef or pork, tomatoes, garlic, and various herbs and spices.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese typically contains ground beef, tomatoes, onions, and garlic cooked in a wine and tomato sauce.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese is a type of pasta dish that is typically made with spaghetti noodles, a meat-based sauce, and grated cheese on top.", + "A photo of spaghetti bolognese, a type of food. A bolognese sauce is a thick, rich sauce made with ground beef, tomatoes, and spices.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese is a pasta dish that is typically made with a meat-based sauce, such as a beef or pork-based sauce.", + "A photo of spaghetti bolognese, a type of food. Spaghetti Bolognese is a classic Italian dish made with a rich tomato and beef sauce.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese is a pasta dish that is typically made with a ground meat sauce.", + "A photo of spaghetti bolognese, a type of food. The best way to identify a spaghetti_bolognese is to look for the key ingredients, which are typically spaghetti, ground beef, tomatoes, and onions.", + "A photo of spaghetti bolognese, a type of food. It is a type of pasta dish that is usually made with ground beef, red sauce, and vegetables.", + "A photo of spaghetti bolognese, a type of food. There are a few key features that you can look for when trying to identify a spaghetti_bolognese.", + "A photo of spaghetti bolognese, a type of food. There are a few key ingredients that are typically found in a spaghetti bolognese dish, including ground beef, tomatoes, garlic, and onions.", + "A photo of spaghetti bolognese, a type of food. The most common way to identify spaghetti bolognese is by its toppings, which typically include ground beef, grated cheese, and parsley.", + "A photo of spaghetti bolognese, a type of food. It is a pasta dish made with spaghetti and a meat-based sauce.", + "A photo of spaghetti bolognese, a type of food. Typically, a spaghetti_bolognese will be a red or brownish color.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese is a pasta dish that is typically made with a ground beef and tomato sauce.", + "A photo of spaghetti bolognese, a type of food. The dish originates from the Italian city of Bologna.", + "A photo of spaghetti bolognese, a type of food. A spaghetti bolognese is usually a plate of spaghetti with a meat-based sauce.", + "A photo of spaghetti bolognese, a type of food. There is no one answer to this question because everyone makes spaghetti Bolognese a little differently.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese looks like a plate of spaghetti with a meat sauce on top.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese looks like a red, meaty sauce with noodles.", + "A photo of spaghetti bolognese, a type of food. Spaghetti bolognese is a dish that consists of spaghetti pasta with a meat-based sauce.", + "A photo of spaghetti bolognese, a type of food. A spaghetti bolognese typically consists of spaghetti pasta with a meat-based sauce.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese typically contains spaghetti, ground beef, tomatoes, and onions.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese is typically a red sauce with meat and vegetables.", + "A photo of spaghetti bolognese, a type of food. A bolognese sauce is typically a meat-based sauce that is served with pasta.", + "A photo of spaghetti bolognese, a type of food. A spaghetti_bolognese looks like pasta with a meat sauce.", + "A photo of spaghetti bolognese, a type of food. In the image, there is a bowl of spaghetti noodles with a red sauce on top.", + "A photo of spaghetti bolognese, a type of food. The image is of a bowl of spaghetti with a hearty meat sauce.", + "A photo of spaghetti bolognese, a type of food. The image is of a spaghetti bolognese dish with ground beef, tomatoes, and onions.", + "A photo of spaghetti bolognese, a type of food. The image is of a bowl of spaghetti bolognese with a fork in it.", + "A photo of spaghetti bolognese, a type of food. In the image, there is a plate of spaghetti bolognese with a fork sticking out of it.", + "A photo of spaghetti bolognese, a type of food. The image is of a large plate of spaghetti with bolognese sauce.", + "A photo of spaghetti bolognese, a type of food. There is an image of a bowl of spaghetti bolognese on the internet.", + "A photo of spaghetti bolognese, a type of food. The image is of a classic spaghetti bolognese dish, with a rich meat sauce and spaghetti noodles.", + "A photo of spaghetti bolognese, a type of food. The image is of a plate of spaghetti bolognese with a meaty sauce.", + "A photo of spaghetti bolognese, a type of food. mealI found an image on the internet of a spaghetti_bolognese meal that looks absolutely mouth-watering.", + "A photo of spaghetti bolognese, a type of food. A delicious and hearty spaghetti bolognese with a rich tomato sauce.", + "A photo of spaghetti bolognese, a type of food. Freshly made spaghetti bolognese with a side of garlic bread.", + "A photo of spaghetti bolognese, a type of food. spaghetti bolognese with a side of garlic bread.", + "A photo of spaghetti bolognese, a type of food. A delicious plate of spaghetti bolognese.", + "A photo of spaghetti bolognese, a type of food. This scrumptious spaghetti bolognese is the perfect comfort food for a winter night!.", + "A photo of spaghetti bolognese, a type of food. This is a delicious looking plate of spaghetti bolognese.", + "A photo of spaghetti bolognese, a type of food. An Italian dish of spaghetti with a meat sauce made from beef and tomatoes.", + "A photo of spaghetti bolognese, a type of food. The best spaghetti bolognese recipe with a secret ingredient for the perfect flavor!.", + "A photo of spaghetti bolognese, a type of food. A classic spaghetti bolognese made with a flavorful meat sauce and plenty of Parmesan cheese.", + "A photo of spaghetti bolognese, a type of food. A delicious plate of spaghetti bolognese, perfect for a winter meal." + ], + "spaghetti carbonara": [ + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara typically contains spaghetti, egg, bacon, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara is a dish made with spaghetti, bacon, eggs, and cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara is a type of pasta dish that is made with spaghetti, eggs, bacon, and cheese.", + "A photo of spaghetti carbonara, a type of food. .", + "A photo of spaghetti carbonara, a type of food. Spaghetti carbonara is a pasta dish made with spaghetti, bacon, eggs, and cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara is a plate of spaghetti with a sauce made from eggs, cheese, and bacon.", + "A photo of spaghetti carbonara, a type of food. Spaghetti carbonara is a dish made with spaghetti, egg, bacon, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. Acarbonara is a pasta dish from Italy made with spaghetti, bacon, eggs, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara looks like spaghetti noodles with a creamy sauce and chunks of bacon.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara is a dish made with spaghetti, eggs, bacon, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara is usually a white or creamy sauce with bacon or ham.", + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara is a type of pasta dish that is typically made with spaghetti, bacon, eggs, and cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara is a pasta dish made with carbonara sauce.", + "A photo of spaghetti carbonara, a type of food. By looking at it, a spaghetti carbonara will have a creamy sauce with bacon and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara is a pasta dish that is typically made with spaghetti, pancetta, eggs, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. Spaghetti carbonara is a pasta dish that typically includes pancetta or bacon, eggs, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. The main ingredients in a spaghetti carbonara are spaghetti, pancetta or bacon, eggs, and grated Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A carbonara is made with eggs, cheese, and bacon.", + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara is typically a white or pale yellow sauce with chunks of bacon or pancetta.", + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara can be identified by its creamy sauce and its bacon.", + "A photo of spaghetti carbonara, a type of food. A carbonara is a dish made with pasta, pancetta or bacon, egg, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A spaghetti_carbonara is a type of Italian pasta dish made with spaghetti, bacon, eggs, and cheese.", + "A photo of spaghetti carbonara, a type of food. A Carbonara is a dish made from pancetta (or bacon), eggs, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. There is no one answer to this question, as different people make spaghetti carbonara in different ways.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara can vary in appearance depending on how it is prepared, but it typically consists of spaghetti pasta tossed in a carbonara sauce, which is made with eggs, bacon, and cheese.", + "A photo of spaghetti carbonara, a type of food. There is no one definitive answer to this question, as the dish can vary somewhat in appearance depending on how it is prepared.", + "A photo of spaghetti carbonara, a type of food. When made correctly, a spaghetti carbonara will have a creamy sauce with bits of bacon throughout.", + "A photo of spaghetti carbonara, a type of food. Aggie80A spaghetti carbonara is a pasta dish made with a cream sauce, bacon, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. A Carbonara is a traditional Italian pasta dish made with eggs, cheese, bacon, and black pepper.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara is a pasta dish made with spaghetti, eggs, Parmesan cheese, and bacon.", + "A photo of spaghetti carbonara, a type of food. The image is of a plate of pasta with a creamy sauce and bacon.", + "A photo of spaghetti carbonara, a type of food. dishThis dish consists of spaghetti noodles mixed with a sauce made from eggs, cheese, and bacon.", + "A photo of spaghetti carbonara, a type of food. In the image, there is a bowl of spaghetti with a creamy sauce and bacon.", + "A photo of spaghetti carbonara, a type of food. The image shows a dish of spaghetti carbonara with bacon, Parmesan cheese, and an egg on top.", + "A photo of spaghetti carbonara, a type of food. The image is of a plate of spaghetti carbonara with a green salad on the side.", + "A photo of spaghetti carbonara, a type of food. There is an image on the internet of a spaghetti carbonara that shows a dish of spaghetti pasta with a carbonara sauce.", + "A photo of spaghetti carbonara, a type of food. A spaghetti carbonara image from the internet might show a plate of spaghetti noodles with a creamy sauce and chunks of bacon.", + "A photo of spaghetti carbonara, a type of food. A delicious image of spaghetti carbonara, with creamy sauce, bacon, and Parmesan cheese.", + "A photo of spaghetti carbonara, a type of food. dishThe image is of a plated dish with spaghetti noodles, bacon, and a creamy sauce.", + "A photo of spaghetti carbonara, a type of food. In the image, there is a bowl of spaghetti carbonara with chunks of bacon and a sprinkling of Parmesan cheese on top.", + "A photo of spaghetti carbonara, a type of food. \\This is a classic Italian pasta dish made with spaghetti, pancetta, and eggs.", + "A photo of spaghetti carbonara, a type of food. Carbonara is a typical Italian pasta dish made with eggs, cheese, bacon, and black pepper.", + "A photo of spaghetti carbonara, a type of food. This is a Traditional Italian Spaghetti Carbonara.", + "A photo of spaghetti carbonara, a type of food. \"A hearty dish of spaghetti carbonara, with its rich pancetta and egg sauce, is the perfect comfort food for a chilly night.", + "A photo of spaghetti carbonara, a type of food. Created in 1944 by an Italian immigrant chef in Rome, this heartwarming dish of spaghetti with bacon, eggs, and cheese quickly became a classic.", + "A photo of spaghetti carbonara, a type of food. A delicious plate of pasta carbonara, made with spaghetti, pancetta, and topped with a fried egg.", + "A photo of spaghetti carbonara, a type of food. A close up of a classic spaghetti carbonara.", + "A photo of spaghetti carbonara, a type of food. The best spaghetti carbonara you will ever taste.", + "A photo of spaghetti carbonara, a type of food. Spaghetti carbonara is a popular Italian pasta dish made with bacon, eggs, and cheese.", + "A photo of spaghetti carbonara, a type of food. A classic Italian pasta dish made with egg, bacon, and cheese." + ], + "spring rolls": [ + "A photo of spring rolls, a type of food. A spring_roll is a small, rolled-up cake that is fried and served with a sweet or savory filling.", + "A photo of spring rolls, a type of food. A spring roll is a type of light, soft egg roll wrapper that is wrapped around a filling and then fried.", + "A photo of spring rolls, a type of food. A spring roll is a type of light pastry wrapped around a filling, and it is generally wrapped in a thin pastry that is fried.", + "A photo of spring rolls, a type of food. A spring roll is a type of light, crisp pastry that is wrapped around a filling.", + "A photo of spring rolls, a type of food. A spring_rolls typically has a cylindrical shape, with a wrap that is made out of a thin wheat flour batter.", + "A photo of spring rolls, a type of food. The outside of a spring roll is a thin pastry skin, which is wrapped around a filling of some sort.", + "A photo of spring rolls, a type of food. A spring roll is a thin pastry filled with a variety of savory ingredients, including vegetables, meat, and seafood.", + "A photo of spring rolls, a type of food. A spring roll is a cylindrical, tube-shaped roll made from thin wheat flour wrappers stuffed with fillings such as vegetables, acids, and other flavors.", + "A photo of spring rolls, a type of food. A spring_roll typically has a cylindrical shape and is wrapped in a thin pastry dough.", + "A photo of spring rolls, a type of food. A spring roll is a type of light, fried Chinese dish that is made with a soft, thin wrapper.", + "A photo of spring rolls, a type of food. A spring roll is a small, rolled-up food made from a thin wheat flour dough and usually containing a vegetable filling.", + "A photo of spring rolls, a type of food. Spring rolls are a type of light, refreshing starter or main course dish made with thin wheat flour wrappers and containing a variety of fillings, including meats, seafood, vegetables, and noodles.", + "A photo of spring rolls, a type of food. There are a few ways to identify a spring roll.", + "A photo of spring rolls, a type of food. I cannot answer this question.", + "A photo of spring rolls, a type of food. A spring roll is a small, cylindrical, bite-sized roll made from thin pastry wrapped around a filling.", + "A photo of spring rolls, a type of food. They are wrapped in thin pastry and usually contain a filling of vegetables, meat, or seafood.", + "A photo of spring rolls, a type of food. A spring_rolls is typically wrapped in a thin pastry dough and can be fried or baked.", + "A photo of spring rolls, a type of food. If you're in Asia, it's easy to identify a spring_roll by its small size and cylindrical shape.", + "A photo of spring rolls, a type of food. You can identify a spring_roll by its diameter, which is usually about 2-3 inches.", + "A photo of spring rolls, a type of food. A spring roll is generally a cylindrical, bite-sized roll made from thin wheat flour wrappers (much like egg rolls) filled with various savory ingredients (such as minced pork, shrimp, vegetables, cellophane noodles,.", + "A photo of spring rolls, a type of food. A spring roll is a type of light, freshly made pastry consisting of a thin wheat flour wrapper and various fillings, rolled into a small, tight cylinder.", + "A photo of spring rolls, a type of food. A spring_rolls generally has a cylindrical shape, and is wrapped in a thin pastry skin.", + "A photo of spring rolls, a type of food. A spring_rolls typically looks like a small, cylindrical roll with a light brown exterior.", + "A photo of spring rolls, a type of food. A spring roll is a type of lunch food that is usually made with some type of wrap, like a tortilla or pita bread, and then filled with ingredients like vegetables, meats, and cheeses.", + "A photo of spring rolls, a type of food. A spring roll is generally a cylindrical roll with a diameter of about 5 cm (2 in) and a length between 10 and 20 cm (4 and 8 in).", + "A photo of spring rolls, a type of food. A spring roll typically consists of a small, thin pancake wrapped around a filling of vegetables or other ingredients, and is then fried or baked.", + "A photo of spring rolls, a type of food. A spring roll is a small, wrapped cylindrical food made from dough that is filled with a variety of meats and vegetables.", + "A photo of spring rolls, a type of food. Image result for spring rolls.", + "A photo of spring rolls, a type of food. A spring roll is a type of Chinese cuisine.", + "A photo of spring rolls, a type of food. A spring_rolls typically looks like a small, cylindrical roll with a light brown exterior.", + "A photo of spring rolls, a type of food. A photo of six uncooked spring rolls with pale yellow wrappers resting on a bamboo mat.", + "A photo of spring rolls, a type of food. A picture of spring rolls might include different rolled up foods with different dipping sauces.", + "A photo of spring rolls, a type of food. A image of a spring roll can be found here: https://www.", + "A photo of spring rolls, a type of food. The image is of a plate of spring rolls.", + "A photo of spring rolls, a type of food. In the image, there are six spring rolls on a white plate.", + "A photo of spring rolls, a type of food. The image is of a plate of six spring rolls.", + "A photo of spring rolls, a type of food. The image is of a plate of spring rolls.", + "A photo of spring rolls, a type of food. A spring roll is a type of light pastry made from flour, water and salt.", + "A photo of spring rolls, a type of food. The image is of a plate of spring rolls.", + "A photo of spring rolls, a type of food. This image is of a spring roll with a filling of vegetables and herbs, wrapped in a thin rice paper.", + "A photo of spring rolls, a type of food. Fresh spring rolls with shrimp, lettuce, and rice paper.", + "A photo of spring rolls, a type of food. Delicious spring rolls from our local Asian market.", + "A photo of spring rolls, a type of food. A close up of a vegan spring roll on a white plateA close up of a vegan spring roll on a white plate.", + "A photo of spring rolls, a type of food. Spring Rolls.", + "A photo of spring rolls, a type of food. Spring rolls are a type of delicious rolled appetizer that is popular in many Asian cuisines.", + "A photo of spring rolls, a type of food. Delicious spring rolls ready to be enjoyed!.", + "A photo of spring rolls, a type of food. Traditional Asian spring rolls with a dipping sauce.", + "A photo of spring rolls, a type of food. Delicious spring rolls with a dipping sauce.", + "A photo of spring rolls, a type of food. Fresh spring rolls served with a sweet and sour dipping sauce.", + "A photo of spring rolls, a type of food. Handmade Spring Rolls." + ], + "steak": [ + "A photo of steak, a type of food. A steak is a cut of meat that is typically cut across the grain into thin slices.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically thick, juicy, and cooked to perfection.", + "A photo of steak, a type of food. Steak is a type of red meat that is cut into thick, flat pieces.", + "A photo of steak, a type of food. A steak is typically a red, meaty piece of beef that has been cut into a thick, flat piece.", + "A photo of steak, a type of food. A steak is a cut of meat that is usually cut across the grain into thin, flat pieces.", + "A photo of steak, a type of food. A steak is a piece of meat that has been cut from a larger piece of meat.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically thick, juicy, and flavorful.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically thick and juicy.", + "A photo of steak, a type of food. A steak is typically a thick, hearty cut of red meat, such as beef, lamb, or pork.", + "A photo of steak, a type of food. A steak is a piece of meat that is typically cut into thin, flat slices.", + "A photo of steak, a type of food. Texture - Steaks should be firm, but tender to the touch.", + "A photo of steak, a type of food. Look for a cut of meat that is at least an inch thick and has a lot of marbling.", + "A photo of steak, a type of food. Steak is typically red meat that is cut into thick slices.", + "A photo of steak, a type of food. The best way to identify a steak is by its shape, size, and color.", + "A photo of steak, a type of food. A steak is generally a cut of beef that is over an inch thick.", + "A photo of steak, a type of food. Steak is typically a red meat that is cut into thin slices.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically beef.", + "A photo of steak, a type of food. The best way to identify a steak is by its shape, size, and thickness.", + "A photo of steak, a type of food. A steak is usually a cut of beef that is thicker than 1 inch.", + "A photo of steak, a type of food. You can identify a steak by its shape, size, and color.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically cut across the grain into thin pieces.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically rectangular or oval in shape.", + "A photo of steak, a type of food. A steak is a cut of meat that is usually about an inch thick.", + "A photo of steak, a type of food. A steak is a flat, red piece of meat.", + "A photo of steak, a type of food. A steak is a piece of meat that has been cut into a thin, flat piece.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically cylindrical in shape and has a cross-sectional thickness of more than 1 inch (2.", + "A photo of steak, a type of food. A steak looks like a flat, red piece of meat.", + "A photo of steak, a type of food. A steak typically looks like a rectangular or oval shaped piece of meat that has been cut thin.", + "A photo of steak, a type of food. A steak is a cut of meat that is typically thick, flat, and rectangular.", + "A photo of steak, a type of food. A steak can either be cut into thin slices or left as a large piece.", + "A photo of steak, a type of food. A juicy, Medium-Rare steak with a char-grilled exterior resting on a white plate with a small pool of blood seeping out onto the plate.", + "A photo of steak, a type of food. A perfectly cooked steak on a white plate with accompaniments.", + "A photo of steak, a type of food. The image is of a medium-rare steak with a slightly charred exterior.", + "A photo of steak, a type of food. The image is of a beef steak that has been grilled.", + "A photo of steak, a type of food. This image is of a steak that has been cooked to a medium rare doneness.", + "A photo of steak, a type of food. The image is of a steak on a white plate with garnish.", + "A photo of steak, a type of food. This image is of a juicy steak that has been cooked to perfection.", + "A photo of steak, a type of food. The image is of a medium-rare steak that has been grilled.", + "A photo of steak, a type of food. Image is of a juicy looking steak with grill marks on it, sizzling on a cooking surface.", + "A photo of steak, a type of food. The image is of a cooked steak on a plate.", + "A photo of steak, a type of food. A juicy, medium-rare steak fresh off the grill.", + "A photo of steak, a type of food. A juicy, medium-rare steak, seared to perfection.", + "A photo of steak, a type of food. This juicy steak is cooked to perfection and will make your mouth water.", + "A photo of steak, a type of food. A twelve-ounce New York strip steak, grilled to perfection.", + "A photo of steak, a type of food. A juicy steak fresh off the grill.", + "A photo of steak, a type of food. Grilled steak with vegetables.", + "A photo of steak, a type of food. A perfectly cooked steak.", + "A photo of steak, a type of food. This steak looks delicious!.", + "A photo of steak, a type of food. This juicy steak is the perfect addition to any dinner.", + "A photo of steak, a type of food. Angus Beef Steak." + ], + "strawberry shortcake": [ + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a cake or biscuit (in the U.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a cake or biscuit (in the form of a scone) that is typically made with flour, sugar, butter, eggs, and baking powder, and has strawberry halves on top.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake is a cake with a Strawberry Shortcake character on it.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a shortcake or biscuit dessert that is typically made with whipped cream and strawberries.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake looks like a shortcake that is topped with strawberries.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake looks like a sponge cake that is freckled with strawberries and has whipped cream on top.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake typically consists of a biscuit or scone-like cake, with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake looks like a small cake with a smooth, spongy top and bottom, and a light, fluffy filling in the middle.", + "A photo of strawberry shortcake, a type of food. The strawberry_shortcake looks like a small cake that is made out of strawberries, cream, and biscuits.", + "A photo of strawberry shortcake, a type of food. A classic strawberry shortcake has a light and fluffy biscuit base, topped with fresh strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. One way to identify a strawberry shortcake is by its round, shortcake-like shape.", + "A photo of strawberry shortcake, a type of food. The best way to identify a strawberry_shortcake is by its size and shape.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake has a very distinct flavor and is usually a pink or red color.", + "A photo of strawberry shortcake, a type of food. The most obvious way to identify a strawberry shortcake is by its namesake ingredients: strawberries and shortcake.", + "A photo of strawberry shortcake, a type of food. The best way to identify a strawberry_shortcake is by its color.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is typically a dessert consisting of a shortcake or biscuit split in half and filled with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. The best way to identify a strawberry_shortcake is by its unique flavor.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake can be identified by its shortcake base, fresh strawberries, and whipped cream topping.", + "A photo of strawberry shortcake, a type of food. If you see a strawberry shortcake, it is likely a strawberry-flavored cake with strawberry filling and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake is a cake that is made with strawberries and shortcake.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake typically consists of a biscuit or scone topped with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a sponge cake or butter cake that is typically covered in strawberry flavored whipped cream and topped with fresh strawberries.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a dessert that consists of a shortcake or biscuit that is split in half and filled with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake looks like a round cake with strawberries on top.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake is round and flat, with a depression in the center for holding toppings.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake typically consists of a shortcake or biscuit shell, topped with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. A typical strawberry shortcake consists of a biscuit or scone cut in half and layered with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake typically consists of a shortcake or biscuit cut in half or split into three layers and layered with strawberries and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a dessert made with a shortcake or biscuit base, fresh strawberries, and whipped cream.", + "A photo of strawberry shortcake, a type of food. A strawberry_shortcake is a shortcake that is made with strawberries.", + "A photo of strawberry shortcake, a type of food. There is an image of a strawberry_shortcake on the internet that looks like it is made out of strawberries, whipped cream, and cake.", + "A photo of strawberry shortcake, a type of food. The image is of a pink strawberry shortcake with white whipped cream and a strawberry on top.", + "A photo of strawberry shortcake, a type of food. The image is of a strawberry shortcake with a light pink frosting.", + "A photo of strawberry shortcake, a type of food. In the image, there is a strawberry_shortcake on a plate with a fork in it.", + "A photo of strawberry shortcake, a type of food. The image is of a strawberry shortcake with a heart shaped strawberry on top.", + "A photo of strawberry shortcake, a type of food. The image is of a strawberry shortcake with a light pink frosting.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake is a dessert that typically consists of shortcake biscuits, strawberries, and whipped cream.", + "A photo of strawberry shortcake, a type of food. In the image, there is a strawberry shortcake on a white plate.", + "A photo of strawberry shortcake, a type of food. There is an image of a strawberry shortcake on the internet that shows a strawberry shortcake with a strawberry on top.", + "A photo of strawberry shortcake, a type of food. This image is of a strawberry shortcake with a heart-shaped strawberry on top.", + "A photo of strawberry shortcake, a type of food. A scrumptious looking strawberry shortcake.", + "A photo of strawberry shortcake, a type of food. A strawberry shortcake with whipped cream and strawberries on top.", + "A photo of strawberry shortcake, a type of food. This is a picture of a strawberry shortcake.", + "A photo of strawberry shortcake, a type of food. A Delicious Strawberry Shortcake Dessert.", + "A photo of strawberry shortcake, a type of food. This is a strawberry shortcake.", + "A photo of strawberry shortcake, a type of food. Fresh berries and whipped cream make for a perfect summer dessert!.", + "A photo of strawberry shortcake, a type of food. Freshly baked strawberry shortcake.", + "A photo of strawberry shortcake, a type of food. A fresh strawberry shortcake made with whipped cream, strawberries, and a light cake.", + "A photo of strawberry shortcake, a type of food. This is a delicious strawberry shortcake!.", + "A photo of strawberry shortcake, a type of food. A delicious strawberry shortcake with whipped cream and a fresh strawberry on top." + ], + "sushi": [ + "A photo of sushi, a type of food. A sushi is a Japanese dish of seafood or vegetables rolled in rice and wrapped in seaweed.", + "A photo of sushi, a type of food. A sushi is a traditional Japanese dish that is typically made with vinegared rice, seafood, and vegetables.", + "A photo of sushi, a type of food. A sushi is a small round piece of rice with a topping or filling on it.", + "A photo of sushi, a type of food. A sushi can come in many different shapes and sizes, but typically it is a small, round ball of rice that is wrapped in seaweed.", + "A photo of sushi, a type of food. A sushi is a thin slice of raw fish that is wrapped in seaweed and rice.", + "A photo of sushi, a type of food. A sushi typically consists of cooked vinegared rice (shari) rolled in nori (seaweed) and filled with various fillings such as seafood, vegetables, and sometimes tropical fruits.", + "A photo of sushi, a type of food. A sushi is a Japanese dish that is typically made with vinegared sushi rice, seafood, and vegetables.", + "A photo of sushi, a type of food. A sushi is a Japanese dish that is typically made with vinegared rice, seafood, and vegetables.", + "A photo of sushi, a type of food. A sushi is a rolled up piece of Nori seaweed with sushi rice and other fillings inside of it.", + "A photo of sushi, a type of food. A sushi is a type of Japanese dish that is typically made with white rice that is rolled in seaweed and then topped with various fish, vegetables, and sauces.", + "A photo of sushi, a type of food. Sushi is a Japanese dish that typically consists of raw fish, vinegar-flavored rice, and other ingredients such as vegetables and seaweed.", + "A photo of sushi, a type of food. A sushi is typically a rolled sushi, which is made with rice and then seaweed, and then can be filled with a variety of different fillings.", + "A photo of sushi, a type of food. There are a few ways to identify sushi.", + "A photo of sushi, a type of food. Sushi is a food made with rice that has been flavored with vinegar and often combined with raw fish or other seafood.", + "A photo of sushi, a type of food. A sushi is a food that is typically made with sushi-grade fish, rice, and other ingredients.", + "A photo of sushi, a type of food. Sushi typically consists of rice, fish, and vegetables.", + "A photo of sushi, a type of food. The sushi is a Japanese dish of cooked rice flavored with vinegar and a little sugar.", + "A photo of sushi, a type of food. A sushi is typically a rolled rice and seaweed paper filled with fish, vegetables, and sometimes rice.", + "A photo of sushi, a type of food. A sushi is a Japanese dish that is typically made with raw fish.", + "A photo of sushi, a type of food. Sushi is typically a type of Japanese food that includes fish or vegetables that have been rolled in sushi rice and then wrapped in seaweed.", + "A photo of sushi, a type of food. A sushi typically consists of a slice of raw fish placed on top of a ball of rice.", + "A photo of sushi, a type of food. A sushi can look like many things, depending on the type of sushi.", + "A photo of sushi, a type of food. A sushi is a Japanese dish that typically consists of cooked vinegar rice, seafood, and vegetables.", + "A photo of sushi, a type of food. A sushi is a raw fish that is wrapped in seaweed and rice.", + "A photo of sushi, a type of food. A sushi roll is a cylindrical shape with different fillings inside.", + "A photo of sushi, a type of food. A sushi is typically a small, bite-sized piece of seafood or vegetables that is wrapped in rice and seaweed.", + "A photo of sushi, a type of food. A sushi is a Japanese dish that is traditionally made with rice, seafood, and vegetables.", + "A photo of sushi, a type of food. A sushi looks like a small, oblong mound of rice that is topped with a variety of raw fish or vegetables.", + "A photo of sushi, a type of food. A sushi roll is a cylindrical shape made of pressed sushi rice and seaweed, with fillings in the center.", + "A photo of sushi, a type of food. A sushi is a type of Japanese food that typically consists of vinegar-flavored rice, fish, and vegetables.", + "A photo of sushi, a type of food. rollThis image is of a sushi roll that has been cut in half so that the contents are visible.", + "A photo of sushi, a type of food. rollThe sushi roll is a long, thin roll of rice and seaweed wrapped around a variety of fillings, such as raw fish, vegetables, or cooked shrimp.", + "A photo of sushi, a type of food. rollI found an image of a sushi roll that features a thick slice of tuna on top of rice and nori (seaweed paper).", + "A photo of sushi, a type of food. chefIn the image, the sushi chef is focused on creating sushi rolls.", + "A photo of sushi, a type of food. chefThe image shows a sushi chef in a traditional outfit holding a sushi roll in one hand and a sushi knife in the other.", + "A photo of sushi, a type of food. rollA sushi roll is a type of sushi consisting of vinegar-flavored rice rolled in nori and filled with seafood, vegetables, and sometimes fruit.", + "A photo of sushi, a type of food. rollImage shows a sushi roll with avocado, salmon, and cucumber, wrapped in seaweed and rice.", + "A photo of sushi, a type of food. rollThere is an image of a sushi roll on the internet that shows a sushi roll in a wrap with sushi rice, avocado, cucumber, and salmon inside.", + "A photo of sushi, a type of food. conveyor beltI found an image of a sushi conveyor belt on Google Images.", + "A photo of sushi, a type of food. restaurantThis image is of a sushi restaurant called Bokidon in NYC.", + "A photo of sushi, a type of food. The colors and shapes of sushiThis image shows a variety of sushi, each with different colors and shapes.", + "A photo of sushi, a type of food. \"Sushi rolls with salmon, tuna, and cucumber\".", + "A photo of sushi, a type of food. A chef is making sushi rollsA sushi chef is making sushi rolls.", + "A photo of sushi, a type of food. Sushi made with fresh salmon, rice, and nori.", + "A photo of sushi, a type of food. Sushi is a Japanese dish that is typically made with vinegar rice, fish, and vegetables.", + "A photo of sushi, a type of food. A variety of sushi including nigiri sushi, maki sushi, and sashimi sushi.", + "A photo of sushi, a type of food. A delicious sushi roll with salmon, cucumber, and rice.", + "A photo of sushi, a type of food. \"Sushi being made.", + "A photo of sushi, a type of food. A sushi roll with salmon, tuna, avocado, and cucumber.", + "A photo of sushi, a type of food. sushi with avocado, cucumber, salmon, and tunaThis is a sushi roll with avocado, cucumber, salmon, and tuna." + ], + "tacos": [ + "A photo of tacos, a type of food. A tacos is a flat, round piece of cornbread or flour tortilla, fried or grilled and placed over a layer of seasoned meat, vegetables, and sauce.", + "A photo of tacos, a type of food. A taco is a tiny, soft, round tortilla with delicious filling inside.", + "A photo of tacos, a type of food. A taco is a traditional Mexican dish consisting of a corn tortilla filled with meat, cheese, and vegetables.", + "A photo of tacos, a type of food. A tacos typically consists of a corn or wheat tortilla filled with meat, cheese, lettuce, tomatoes, and sour cream.", + "A photo of tacos, a type of food. A taco is a corn or wheat tortilla that is wrapped around a filling.", + "A photo of tacos, a type of food. .", + "A photo of tacos, a type of food. A tacos is a corn or wheat tortilla that is filled with a variety of fillings, including beef, chicken, pork, fish, beans, vegetables, and cheese.", + "A photo of tacos, a type of food. A tacos is a Mexican dish that consists of a corn or wheat tortilla that is rolled or folded around a filling.", + "A photo of tacos, a type of food. A tacos is typically a corn tortilla filled with meat, cheese, lettuce, and tomato.", + "A photo of tacos, a type of food. A taco is typically a corn or wheat tortilla filled with meat, cheese, and vegetables.", + "A photo of tacos, a type of food. There are a few ways to identify a taco.", + "A photo of tacos, a type of food. A tacos is a food typically made of a corn or wheat tortilla filled with meat, cheese, and/or vegetables.", + "A photo of tacos, a type of food. A tacos is a Mexican dish consisting of a corn or wheat tortilla folded around a filling of meat, beans, lettuce, tomatoes, and cheese.", + "A photo of tacos, a type of food. Tacos are typically made with a corn or wheat tortilla and filled with meat, vegetables, and cheese.", + "A photo of tacos, a type of food. A taco is a traditional Mexican dish that consists of a corn or wheat tortilla that is rolled or folded around a filling.", + "A photo of tacos, a type of food. A tacos is a Mexican dish that consists of a corn or wheat tortilla filled with various ingredients, typically including beef, cheese, beans, and lettuce.", + "A photo of tacos, a type of food. A tacos is typically a soft, round, flatbread that is made from corn or wheat flour.", + "A photo of tacos, a type of food. A taco is a Mexican dish that typically consists of a corn or wheat tortilla filled with meat, cheese, and vegetables.", + "A photo of tacos, a type of food. A taco is typically a corn or flour tortilla filled with meat, cheese, and lettuce.", + "A photo of tacos, a type of food. A taco is a traditional Mexican dish consisting of a corn or wheat tortilla folded or rolled around a filling.", + "A photo of tacos, a type of food. A taco is a Mexican dish consisting of a small fried tortilla filled with meat, beans, cheese, and lettuce.", + "A photo of tacos, a type of food. There is no one answer to this question as tacos can vary greatly in appearance, depending on their ingredients and preparation methods.", + "A photo of tacos, a type of food. A tacos typically consists of a corn or wheat tortilla filled with meat, beans, lettuce, cheese, and salsa.", + "A photo of tacos, a type of food. There is no definitive answer to this question as tacos can vary greatly in appearance, depending on their ingredients and the region they are from.", + "A photo of tacos, a type of food. A taco is a dish that typically consists of a corn or wheat tortilla that is filled with a variety of ingredients.", + "A photo of tacos, a type of food. A taco typically contains a corn or wheat tortilla filled with meat, cheese, and vegetables.", + "A photo of tacos, a type of food. A tacos is typically a corn tortilla with meat, cheese, and vegetables inside.", + "A photo of tacos, a type of food. A tacos typically has a soft, wheat tortilla filled with meats, cheese, beans, lettuce, tomatoes, and salsa.", + "A photo of tacos, a type of food. A taco is a type of Mexican food that typically consists of a corn or wheat tortilla that is filled with meat, vegetables, and cheese.", + "A photo of tacos, a type of food. There is no one answer to this question as tacos can vary greatly in appearance depending on their ingredients and the region they come from.", + "A photo of tacos, a type of food. a tacos is a mexican food that is a folded wheat tortilla with fillings such as beef, pork, chicken, or vegetables.", + "A photo of tacos, a type of food. The image is of two tacos, one with chicken and one with beef.", + "A photo of tacos, a type of food. This image shows a street scene in Mexico with a woman selling tacos from a cart.", + "A photo of tacos, a type of food. Image shows a colorful plate of tacos.", + "A photo of tacos, a type of food. I found an image of tacos from the internet that shows three tacos on a plate.", + "A photo of tacos, a type of food. A taco is a corn or wheat tortilla that is folded or rolled around a filling.", + "A photo of tacos, a type of food. A picture of a tacos from the internet would most likely show a tacos with a soft tortilla shell, stuffed with various fillings such as meat, cheese, and vegetables.", + "A photo of tacos, a type of food. The image is of a stack of three tacos on a white plate.", + "A photo of tacos, a type of food. The photo is of two tacos on a white plate.", + "A photo of tacos, a type of food. The image is of a brown and white dog lying on a white and tan floor.", + "A photo of tacos, a type of food. A plate of tacos from a Mexican restaurant.", + "A photo of tacos, a type of food. The best tacos in town!.", + "A photo of tacos, a type of food. Homemade tacos with fresh ingredients.", + "A photo of tacos, a type of food. Two delicious tacos with all the fixings.", + "A photo of tacos, a type of food. Fresh and delicious tacos from the best taqueria in town.", + "A photo of tacos, a type of food. A delicious taco with a seasoned beef filling and freshly-made salsa.", + "A photo of tacos, a type of food. A delicious-looking plate of tacos, including both beef and chicken options.", + "A photo of tacos, a type of food. A delicious looking plate of tacos, perfect for any occasion!.", + "A photo of tacos, a type of food. A delicious looking taco with melted cheese, juicy steak, and fresh vegetables.", + "A photo of tacos, a type of food. Tacos! Tacos! Tacos!." + ], + "takoyaki": [ + "A photo of takoyaki, a type of food. A takoyaki is a Japanese snack made from a batter of wheat flour, water, egg, and dashi, and typically filled with minced or diced octopus (tako), tempura scraps (tenkasu), pickled.", + "A photo of takoyaki, a type of food. A takoyaki is a round Japanese dumpling that is grilled.", + "A photo of takoyaki, a type of food. A takoyaki is a ball-shaped Japanese snack made from a batter of wheat flour, eggs, and dashi broth, and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a type of ball-shaped Japanese dumpling that is made with a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese snack made of a ball of batter containing chopped octopus, tempura scraps, pickled ginger, and green onion.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese ball-shaped dumpling that is made with a flour-based batter and is typically filled with diced octopus.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese dish made of a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese ball-shaped dumpling that is made with a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. Takoyaki is a ball-shaped snack made of a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese dumpling with a ball-shaped body and a octopus filling.", + "A photo of takoyaki, a type of food. By its shape - takoyaki are typically round balls.", + "A photo of takoyaki, a type of food. The most distinguishing feature of takoyaki is its octopus filling.", + "A photo of takoyaki, a type of food. Takoyaki is a Japanese dish made of wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. Takoyaki are small balls of savory batter with a piece of octopus in the center, fried in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is typically round or ball-shaped and is made with a wheat flour-based batter.", + "A photo of takoyaki, a type of food. A takoyaki is a small round ball of dough with a piece of octopus inside, usually served with a sweet sauce.", + "A photo of takoyaki, a type of food. A takoyaki typically has a light brown, crispy exterior and a soft, doughy center.", + "A photo of takoyaki, a type of food. A takoyaki is traditionally octopus dumpling that is cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a savory ball-shaped Japanese dumpling that is made with wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese dish made of a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a small, round ball of batter that is cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. \\A takoyaki is a ball-shaped Japanese snack made from a batter of eggs, flour, and dashi broth.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese ball-shaped snack made of a batter containing wheat flour, water, egg, and dashi, and usually filled with octopus pieces, tempura scraps, pickled ginger, and green onions.", + "A photo of takoyaki, a type of food. A takoyaki is a small, round ball of batter that is cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki looks cylindrical, and is slightly flattened at the top and bottom.", + "A photo of takoyaki, a type of food. A takoyaki looks like a small, round ball of batter that has been cooked in a special pan.", + "A photo of takoyaki, a type of food. TAKOYAKI ????A takoyaki is a Japanese dish made from a batter of flour, eggs, and water, which is then grilled in a specially made mold.", + "A photo of takoyaki, a type of food. A takoyaki is a Japanese ball-shaped snack made of a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki is a small round ball of batter that is cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. A traditional takoyaki is a round, ball-shaped Japanese dumpling made with a wheat flour-based batter and cooked in a special takoyaki pan.", + "A photo of takoyaki, a type of food. ballsOne image from the internet of takoyaki balls shows six balls arranged in a tray withBonito flakes, Kewpie mayonnaise, and pickled ginger.", + "A photo of takoyaki, a type of food. ballThe image is of a takoyaki ball on a skewer.", + "A photo of takoyaki, a type of food. The image from the internet shows a takoyaki being made.", + "A photo of takoyaki, a type of food. An image of takoyaki would likely show aplenty of small, round balls of Japanese-style battered dough, each stuffed with a chunk of octopus.", + "A photo of takoyaki, a type of food. storeI found an image on the internet of a takoyaki store in Japan.", + "A photo of takoyaki, a type of food. ballA takoyaki ball is a spherical, fried dumpling that is typically filled with octopus pieces.", + "A photo of takoyaki, a type of food. In the image, there is a close-up view of six takoyaki balls arranged in a metal holder.", + "A photo of takoyaki, a type of food. stallIn the image, there is a takoyaki stall with a large sign that says \"Takoyaki.", + "A photo of takoyaki, a type of food. stallThe image shows a Japanese takoyaki stall, with the chef cooking the takoyaki in a special pan.", + "A photo of takoyaki, a type of food. stallThe image shows a takoyaki stall at a night market.", + "A photo of takoyaki, a type of food. Traditional Japanese takoyaki balls made with octopus, ginger, and green onion.", + "A photo of takoyaki, a type of food. A takoyaki ball being grilled in a takoyaki pan.", + "A photo of takoyaki, a type of food. A takoyaki being served with a side of soy sauce and pickled ginger.", + "A photo of takoyaki, a type of food. A takoyaki grilling on hot charcoal.", + "A photo of takoyaki, a type of food. A photo of delicious looking takoyaki, a Japanese dish made of fried batter and octopus pieces.", + "A photo of takoyaki, a type of food. A takoyaki ball covered in a savory sauce with a bonito fish flake on top.", + "A photo of takoyaki, a type of food. Smiling takoyaki on a plateThese takoyaki are so cute and smiley! They look delicious!.", + "A photo of takoyaki, a type of food. A delicious looking takoyaki, a Japanese snack made of fried batter and octopus.", + "A photo of takoyaki, a type of food. Homemade takoyaki from Osaka, Japan.", + "A photo of takoyaki, a type of food. Takoyaki being made in Osaka, JapanA takoyaki is a type of Japanese dumpling that is made with a wheat flour-based batter and cooked in a special takoyaki pan." + ], + "tiramisu": [ + "A photo of tiramisu, a type of food. A tiramisu is a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. A tiramisu is a Italian dessert that consists of ladyfingers soaked in coffee, layered with a whipped mixture of eggs, sugar, and mascarpone cheese, and flavored with cocoa.", + "A photo of tiramisu, a type of food. A tiramisu has a light, fluffy texture and is typically made with layers of coffee-soaked ladyfingers, a mascarpone cream, and cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu is a dessert that consists of ladyfingers (a type of Italian biscuit) that are dipped in coffee and layered with a mascarpone and egg mixture.", + "A photo of tiramisu, a type of food. A tiramisu is a Italian dessert that is made of ladyfingers that are dipped in coffee and layered with a mascarpone cream.", + "A photo of tiramisu, a type of food. A tiramisu is an Italian dessert that consists of ladyfingers (savoiardi) soaked in coffee, layered with a mascarpone cheese and egg mixture, and dusted with cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu looks like a layered cake with coffee-soaked sponge cake, marsala-flavored mascarpone cream, and cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu is an Italian dessert that consists of coffee-soaked ladyfingers layered with a mascarpone cream.", + "A photo of tiramisu, a type of food. A tiramisu is a Italian dessert that consists of layers of ladyfingers soaked in coffee, layered with a mascarpone cheese mixture, and then dusted with cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu typically has a layered appearance, with coffee-soaked ladyfingers (or other sponge cake) on the bottom, followed by a layer of mascarpone cream, more cake, another layer of mascarpone,.", + "A photo of tiramisu, a type of food. Tiramisu is a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. There are a few key things to look for when trying to identify a tiramisu.", + "A photo of tiramisu, a type of food. You can identify a tiramisu by its characteristic layers of coffee-soaked sponge cake, mascarpone cream, and cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu has a light, fluffy texture and is typically made with ladyfingers dipped in coffee, layered with a whipped mascarpone mixture, and dusted with cocoa powder.", + "A photo of tiramisu, a type of food. The word \"tiramisu\" comes from the Italian words for \"pick me up\" or \"carry me up.", + "A photo of tiramisu, a type of food. A tiramisu is a dessert that typically consists of ladyfingers that are dipped in coffee and then layered with a mixture of mascarpone and eggs.", + "A photo of tiramisu, a type of food. Tiramisu is an Italian dessert that typically consists of layers of ladyfingers soaked in coffee, layered with a mascarpone and egg mixture, and dusted with cocoa powder.", + "A photo of tiramisu, a type of food. There are many ways to identify tiramisu, but some key characteristics include its coffee-flavored sponge cake, mascarpone cream, and cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu is typically a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. A tiramisu is a dessert that is made with coffee-soaked ladyfingers, mascarpone cheese, and whipped cream.", + "A photo of tiramisu, a type of food. A tiramisu is a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. A tiramisu is a layered dessert with coffee-soaked ladyfingers, a mascarpone cream, and cocoa powder.", + "A photo of tiramisu, a type of food. Tiramisu is a Italian dessert that is typically made with ladyfingers (savoiardi) that are dipped in coffee and layered with a mascarpone cream.", + "A photo of tiramisu, a type of food. A tiramisu is a cake made with ladyfingers, coffee, and mascarpone cheese.", + "A photo of tiramisu, a type of food. A tiramisu is a Italian dessert that consists of ladyfingers that are soaked in coffee and layered with a mixture of mascarpone, eggs, and sugar.", + "A photo of tiramisu, a type of food. A tiramisu is a layered dessert that typically consists of coffee-soaked ladyfingers, a rich mascarpone cream, and cocoa powder.", + "A photo of tiramisu, a type of food. The classic Italian dessert tiramisu consists of ladyfingers (savoiardi) dipped in coffee, layered with a whipped mixture of eggs, sugar, and mascarpone cheese, and flavored with cocoa.", + "A photo of tiramisu, a type of food. A tiramisu is a layered dessert that is traditionally made with coffee, ladyfingers, and mascarpone cheese.", + "A photo of tiramisu, a type of food. A tiramisu is a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. A tiramisu is typically a layered dessert that consists of coffee-soaked ladyfingers, a whipped mascarpone cream, and grated chocolate.", + "A photo of tiramisu, a type of food. A tiramisu is an Italian dessert composed of coffee-soaked ladyfingers layered with a whipped mixture of eggs, sugar, and mascarpone cheese, typically flavored with rum or liqueur.", + "A photo of tiramisu, a type of food. A tiramisu is a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. I found an image of a tiramisu on the internet that looks really delicious! It is a tiramisu cake with coffee flavored mascarpone cream, ladyfingers, and cocoa powder.", + "A photo of tiramisu, a type of food. A tiramisu is a cake that is made out of layers of sponge cake, coffee, and cream.", + "A photo of tiramisu, a type of food. In this image, we can see a tiramisu that has been freshly made.", + "A photo of tiramisu, a type of food. In the image, there is a tiramisu on a white plate with a fork next to it.", + "A photo of tiramisu, a type of food. The image is of a tiramisu that has coffee-soaked ladyfingers layered with mascarpone cream.", + "A photo of tiramisu, a type of food. A tiramisu is an Italian dessert typically made with ladyfingers soaked in coffee, layered with a mascarpone cheese mixture, and dusted with cocoa powder.", + "A photo of tiramisu, a type of food. This image is of a tiramisu that has been made into a cake.", + "A photo of tiramisu, a type of food. A tiramisu is a Italian dessert made of ladyfingers soaked in coffee, layered with a rich mascarpone cream, and dusted with cocoa powder.", + "A photo of tiramisu, a type of food. A delicious tiramisu made with coffee, cocoa, and mascarpone cream.", + "A photo of tiramisu, a type of food. A classic tiramisu with coffee-soaked ladyfingers and rich mascarpone cream.", + "A photo of tiramisu, a type of food. A delicious tiramisu made with coffee, mascarpone, and ladyfingers.", + "A photo of tiramisu, a type of food. Tiramisu is a coffee-flavored Italian dessert.", + "A photo of tiramisu, a type of food. This tiramisu is so light and fluffy, it's like a cloud!.", + "A photo of tiramisu, a type of food. A delizioso tiramisu, freshly made with mascarpone cream, coffee-soaked ladyfingers, and a sprinkling of cocoa.", + "A photo of tiramisu, a type of food. This tiramisu is light and fluffy, with a hint of coffee flavor.", + "A photo of tiramisu, a type of food. Tiramisu is an Italian dessert made from ladyfingers soaked in coffee, layered with a mixture of mascarpone and eggs, and dusted with cocoa powder.", + "A photo of tiramisu, a type of food. A delicious tiramisu, perfect for coffee-lovers! Layers of coffee-soaked sponge cake, marscarpone cream, and chocolate make this classic Italian dessert irresistible.", + "A photo of tiramisu, a type of food. Tiramisu means \"pick me up\" in Italian, and this coffee-flavored dessert will do just that." + ], + "tuna tartare": [ + "A photo of tuna tartare, a type of food. A tuna tartare is a dish made with raw tuna that has been diced or chopped into small pieces.", + "A photo of tuna tartare, a type of food. A tuna_tartare looks like a small, round piece of tuna that has been marinated in a vinegar-based sauce.", + "A photo of tuna tartare, a type of food. Tuna tartare is a dish that is made with raw tuna that is diced into small cubes.", + "A photo of tuna tartare, a type of food. Tuna tartare is a dish typically made with raw tuna, diced into small cubes and seasoned with various spices and sauces.", + "A photo of tuna tartare, a type of food. A tuna tartare is diced tuna that is served with avocado, mango, and other various fruits and vegetables.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish of diced tuna, often mixed with other ingredients such as avocado, olive oil, citrus, and herbs.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish of raw tuna that has been diced or cut into small pieces.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish of diced tuna, avocado, and other ingredients that is served raw.", + "A photo of tuna tartare, a type of food. A tuna tartare usually consists of diced raw tuna that is marinated in a sauce, such as soy sauce, and then served with either rice or noodles.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish consisting of diced tuna, avocado, and various other ingredients, typically served with a type of flatbread.", + "A photo of tuna tartare, a type of food. A tuna tartare is a small cube of raw tuna that is served with a dipping sauce.", + "A photo of tuna tartare, a type of food. One way to identify tuna tartare is by its raw tuna filet that is diced into small cubes.", + "A photo of tuna tartare, a type of food. A tuna tartare is a raw fish dish that is typically made with tuna.", + "A photo of tuna tartare, a type of food. A tuna tartare is a raw fish dish that is often served as an appetizer.", + "A photo of tuna tartare, a type of food. A tuna tartare can be identified by its size and shape.", + "A photo of tuna tartare, a type of food. A tuna_tartare is a raw fish dish made from finely chopped tuna.", + "A photo of tuna tartare, a type of food. Tuna tartare is a dish made from raw tuna that has been diced or cut into small pieces.", + "A photo of tuna tartare, a type of food. A tuna tartare is a fish dish made with raw tuna.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish that is typically made with raw tuna, avocado, and various other ingredients.", + "A photo of tuna tartare, a type of food. A tuna tartare is usually made with raw tuna, diced or minced, and is served with various accompaniments such as soy sauce, wasabi, avocado, and/or pickled ginger.", + "A photo of tuna tartare, a type of food. Tuna tartare is a dish typically made with raw tuna that is cut into small cubes and then served with a variety of sauces or toppings.", + "A photo of tuna tartare, a type of food. A tuna tartare usually consists of diced raw tuna, mixed with diced avocado, diced cucumber, and a vinaigrette sauce.", + "A photo of tuna tartare, a type of food. A tuna tartare typically consists of finely chopped or diced raw tuna, mixed with diced avocado, soy sauce, and sesame oil.", + "A photo of tuna tartare, a type of food. A tuna tartare is a raw tuna dish that is served with various accompaniments such as vegetables, sauces, or fruits.", + "A photo of tuna tartare, a type of food. A tuna tartare is typically a raw tuna dish that is served with various accompaniments such as avocado, cucumber, and ginger.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish made with raw chopped tuna.", + "A photo of tuna tartare, a type of food. Image result for tuna tartare.", + "A photo of tuna tartare, a type of food. A tuna tartare is a dish consisting of diced tuna, avocado, and other ingredients, which is usually served with soy sauce or a similar sauce.", + "A photo of tuna tartare, a type of food. Image result for tuna tartare.", + "A photo of tuna tartare, a type of food. A tuna tartare can vary in appearance, but typically it is a small mound of diced or finely chopped raw tuna, served with avocado, seaweed, daikon sprouts, and sonamasu (citrus-soy dressing.", + "A photo of tuna tartare, a type of food. A image of a tuna tartare can be found here: https://i.", + "A photo of tuna tartare, a type of food. A photo of tuna tartare can be found here:https://www.", + "A photo of tuna tartare, a type of food. A photo of tuna tartare served on a plate with sides of avocado, pickled ginger, and wasabi paste.", + "A photo of tuna tartare, a type of food. A image of tuna tartare can be found by searching for \"tuna tartare image.", + "A photo of tuna tartare, a type of food. The image is a close up of a tuna tartare with avocado, mango, and tobiko caviar.", + "A photo of tuna tartare, a type of food. This image is of a tuna tartare dish with avocado, cucumber, and tobiko caviar.", + "A photo of tuna tartare, a type of food. A image of a tuna tartare can be found at:https://www.", + "A photo of tuna tartare, a type of food. A photo of tuna tartare would likely show a plate of sushi-grade tuna that has been diced into small cubes.", + "A photo of tuna tartare, a type of food. A image of tuna tartare can be described as a dish of raw tuna that is diced and mixed with various seasonings and sauces.", + "A photo of tuna tartare, a type of food. This image is of a tuna tartare dish that has been plated with different vegetables and a quail egg.", + "A photo of tuna tartare, a type of food. [[Tuna_tartare]]This beautiful tuna tartare is the perfect appetizer for your next dinner party! This dish is simple to make, and is sure to impress your guests!.", + "A photo of tuna tartare, a type of food. \"This is a tuna tartare dish that includes avocado, cucumber, and radish.", + "A photo of tuna tartare, a type of food. A delicious tuna tartare, perfect for a light lunch or dinner.", + "A photo of tuna tartare, a type of food. A fresh and delicious tuna tartare, perfect for a light lunch or dinner.", + "A photo of tuna tartare, a type of food. This dish is tuna tartare, a popular sushi restaurant dish.", + "A photo of tuna tartare, a type of food. A tuna tartare with avocado, cucumber, and radish.", + "A photo of tuna tartare, a type of food. A delicious tuna tartare, perfect for a light summer meal.", + "A photo of tuna tartare, a type of food. Tuna tartare on a bed of greensA dish of tuna tartare comprising diced tuna, avocado, cucumber, and tobiko, served on a bed of greens.", + "A photo of tuna tartare, a type of food. A sushi-grade tuna tartare with avocado, tobiko, and sesame seeds.", + "A photo of tuna tartare, a type of food. Tuna Tartare with Ahi Tuna, Avocado, and Cucumber." + ], + "waffles": [ + "A photo of waffles, a type of food. A waffle looks like a grid of small squares.", + "A photo of waffles, a type of food. A waffles is a flour-based batter or dough that is cooked between two hot plates.", + "A photo of waffles, a type of food. A waffle is a round, flat cake that is made by baking batter in a waffle iron.", + "A photo of waffles, a type of food. A waffle looks like a grid of small squares.", + "A photo of waffles, a type of food. A waffle is a grid of batter with little pockets to hold syrup.", + "A photo of waffles, a type of food. A waffle is a flat, usually round cake that is made from a batter or dough and is cooked between two hot plates.", + "A photo of waffles, a type of food. A waffle looks like a grid of small squares.", + "A photo of waffles, a type of food. A waffle is a type of pancake that is cooked in a waffle iron.", + "A photo of waffles, a type of food. A waffle is a grid of small squares.", + "A photo of waffles, a type of food. A waffle is a breakfast dish made from batter or dough that is cooked between two metal plates that are patterned to give it a distinctive grid-like appearance.", + "A photo of waffles, a type of food. The best way to identify a waffles is by its shape.", + "A photo of waffles, a type of food. The simplest way to identify a waffle is by its grid-like pattern.", + "A photo of waffles, a type of food. You can identify a waffle by its shape, which is typically a grid with deep pockets.", + "A photo of waffles, a type of food. From its appearance, a waffle is a distinctively shaped, relatively thin cake that is cooked between two hot plates.", + "A photo of waffles, a type of food. The easiest way to identify a waffles is by its characteristic grid pattern.", + "A photo of waffles, a type of food. A waffle is a breakfast food that is made by cooking batter in a waffle iron.", + "A photo of waffles, a type of food. The easiest way to identify a waffle is by its distinctive grid-like pattern.", + "A photo of waffles, a type of food. To identify a waffle, look for a light and airy texture, with a crispy exterior.", + "A photo of waffles, a type of food. The easiest way to identify a waffles is by its grid-like pattern.", + "A photo of waffles, a type of food. A waffle is a type of breakfast food that is made from batter that is cooked between two hot plates.", + "A photo of waffles, a type of food. A waffles is a type of breakfast food that is made out of batter and is cooked in a waffle iron.", + "A photo of waffles, a type of food. A waffles is typically a flat, round cake that is covered in a honeycomb-like pattern.", + "A photo of waffles, a type of food. A waffle is a breakfast food that is made by pouring batter onto a hot griddle or waffle iron and cooking it until it is brown and crispy.", + "A photo of waffles, a type of food. A waffle looks like a grid with four sides.", + "A photo of waffles, a type of food. A waffle is a flat, round cake that is made from batter or dough and is cooked in a waffle iron.", + "A photo of waffles, a type of food. A typical waffle is a leavened batter or dough that is cooked between twoplates that are patterned to give a characteristic size, shape, and superficial crust.", + "A photo of waffles, a type of food. Most waffles are round, but some are square.", + "A photo of waffles, a type of food. waffles typically have a grid-like pattern on them, which is created by the waffle iron.", + "A photo of waffles, a type of food. A waffle is a breakfast dish made of batter that is cooked in a waffle iron.", + "A photo of waffles, a type of food. A waffles typically looks like a grid of squares.", + "A photo of waffles, a type of food. The image is of a golden brown waffle with ridges and large bubbles.", + "A photo of waffles, a type of food. The image is of two golden waffles stacked on top of each other.", + "A photo of waffles, a type of food. The image is of two light brown waffles with symmetrical patterns imprinted on them, placed side by side on a white plate.", + "A photo of waffles, a type of food. The image is of a golden waffle with syrupy bubbles and whipped cream.", + "A photo of waffles, a type of food. This is an image of two golden waffles in a Belgium waffle iron.", + "A photo of waffles, a type of food. The image is of a waffle with syrup and butter on it.", + "A photo of waffles, a type of food. This image is of two golden waffles stacked on top of each other.", + "A photo of waffles, a type of food. The image is of a golden brown waffle with crisp edges.", + "A photo of waffles, a type of food. This image is of a waffle with a light golden color.", + "A photo of waffles, a type of food. A waffle is a folded, leavened batter or dough cooked between two plates, patterned to give a honeycomb structure.", + "A photo of waffles, a type of food. This image is of a waffles.", + "A photo of waffles, a type of food. The Many Ways to Eat a Waffle.", + "A photo of waffles, a type of food. This photo shows a delicious stack of waffles, perfect for a weekend breakfast.", + "A photo of waffles, a type of food. delicious golden waffles topped with melting butter and syrupIf you're looking for a delicious and indulgent breakfast treat, look no further than these golden waffles! Topped with melting butter and syrup, they're sure to satisfy your sweet tooth.", + "A photo of waffles, a type of food. A stack of waffles with butter and syrup.", + "A photo of waffles, a type of food. Three golden waffles stacked on top of each other, with whipped cream and berries in between.", + "A photo of waffles, a type of food. Homemade Belgium Waffles.", + "A photo of waffles, a type of food. fresh hot waffles with butter and syrup.", + "A photo of waffles, a type of food. A man enjoys a delicious waffle on a beautiful morning.", + "A photo of waffles, a type of food. you can almost smell the butterThis waffle looks delicious and like it would smell amazing!." + ] +} \ No newline at end of file diff --git a/gpt_file/imagenet_prompt.json b/gpt_file/imagenet_prompt.json new file mode 100644 index 0000000..b5796c2 --- /dev/null +++ b/gpt_file/imagenet_prompt.json @@ -0,0 +1,51898 @@ +{ + "tench": [ + "A tench is a freshwater fish of the carp family.", + "A tench is a freshwater fish that is typically brown or olive in color.", + "A tench is a fresh water fish that can grow up to 2 feet in length.", + "A tench is a freshwater fish of the family Cyprinidae.", + "A tench is a freshwater fish of the carp family.", + "A tench is a freshwater fish with a dark green back and light-colored sides.", + "Tench are a freshwater fish found in Europe.", + "A tench is a small freshwater fish in the carp family.", + "A tench is a heavyset freshwater fish with a mottled brown body and a small, flat head.", + "A tench is a freshwater fish that looks similar to a carp.", + "A tench is a freshwater fish in the carp family.", + "A tench is a freshwater fish of the Cyprinidae family.", + "The tench is a freshwater fish of the Cyprinidae family.", + "The tench is a fresh-water fish in the family Cyprinidae.", + "The easiest way to identify a tench is by its herringbone-patterned scales.", + "A tench is a freshwater fish of the carp family.", + "Tench are a freshwater fish found in Europe.", + "Tench have a large, slimy body with scales that have a green hue.", + "The tench is a freshwater fish belonging to the carp family.", + "A tench is a freshwater fish of the Cynoglossidae family.", + "A tench is a freshwater fish in the carp family.", + "Tensch are freshwater fish with Olive Green backs, shading to Yellowish on the sides.", + "A tench looks like a green freshwater fish with a brownish hue.", + "A tench looks like a freshwater fish with a dark olive-green back, fading to yellowish-brown on the sides.", + "A tench usually has olive-green skin with dark spots, and a orange-yellow underbelly.", + "Tench are a freshwater fish that can grow up to 70cm long! They have olive-brown skin with dark spots, and their meat is white and firm.", + "A tench is a freshwater fish with a sturdy body and a greenish-brown coloration.", + "A tench is a freshwater fish that can grow up to about two feet long.", + "A tench is a freshwater fish in the carp family.", + "A tench is a large, freshwater fish with a thick body and large head.", + "The image is of a tench fish swimming in water.", + "The image is of a tench fish swimming in a pond.", + "The tench is a freshwater fish native to Europe.", + "This image shows a large, dark green tench swimming in a pond.", + "An image of a tench from the internet would likely show a dark green fish with a lighter underside.", + "The image is of a tench fish.", + "The image is of a tench fish on a white background.", + "A tench is a freshwater fish of the Cyprinidae family.", + "The image is of a tench swimming in a murky pond.", + "In the image, a tench swims in a pond with lily pads.", + " A tench in a river.", + "A tench (Tinca tinca) is a freshwater fish in the carp family that is found throughout Europe.", + " Tench (Tinca tinca), a member of the carp family (Cyprinidae), native to Eurasia.", + " A tench, a freshwater fish in the family Cyprinidae.", + " The tench (Tinca tinca) is a freshwater fish of the cyprinid family found throughout Eurasia.", + " A tench in a Finnish lake.", + "A tench (Tinca tinca) is a freshwater fish belonging to the carp family (Cyprinidae).", + "A tench in a fishpond.", + " The common tench is a freshwater fish of the cyprinid family found throughout Eurasia.", + "Tench (Tinca tinca) in a pond." + ], + "goldfish": [ + "A goldfish has a long, gold body with back fins.", + "A goldfish is a type of fish that is typically found in ponds or aquariums.", + "A goldfish has a shiny, golden body with fins that help it swim.", + "Goldfish are small, orange fish with shiny scales.", + "A goldfish is a small, orange-colored fish with long fins.", + "A goldfish has a small body with a single dorsal fin.", + "A goldfish is a small, orange fish with black spots.", + "A goldfish is a small freshwater fish in the carp family.", + "A goldfish typically has a shiny, orange-gold body with dark spots.", + "A goldfish is a small, colorful fish that is often kept as a pet.", + "The easiest way to identify a goldfish is by its color.", + "A goldfish is a freshwater fish in the family Cyprinidae of order Cypriniformes.", + "A goldfish is typically a bright orange color with black spots.", + "Some ways that you can identify a goldfish are by its color, which is usually orange, red, or yellow, and by its shape, which is typically oval or round.", + "A goldfish is a small, freshwater fish with a orange-yellow color.", + "A goldfish is a type of fish that is typically gold in color.", + "Goldfish are usually orange or yellow, but they can come in a variety of colors.", + "Goldfish are usually golden in color, but can also be white, black, orange, or yellow.", + "Goldfish have a reddish-orange coloration with darker spots.", + "By its color, which is typically orange or gold.", + "A goldfish is typically a bright yellow color with orange accents.", + "Goldfish are fish with yellow-gold scales.", + "Most goldfish have a shiny gold or orange color.", + "A goldfish typically has a reddish-brown, orange, or yellowish color, and it has a long, flowing tail.", + "A goldfish has a long, thin body with a prominent dorsal fin.", + "Goldfish are a type of fish with orange or yellow scales.", + "A goldfish has a long body with a round belly.", + "A goldfish is a small, orange fish with a long tail.", + "A goldfish is typically a small, orange-colored fish with black spots.", + "Goldfish typically have an orange or gold color, although they can also be white, black, or yellow.", + "The image is of a goldfish swimming in a glass bowl.", + "This image is of a goldfish in a bowl of water.", + "The image is of a goldfish swimming in a fishbowl with green plants.", + "The image is of a orange and white goldfish swimming in a fishbowl.", + "The image from the internet of a goldfish is a picture of a fish in a bowl of water.", + "This image from the internet shows a goldfish in a fishbowl.", + "This image shows a goldfish swimming in a glass bowl.", + "I found an image on the internet of a goldfish that I really liked.", + "This image is of a goldfish swimming in a fishbowl on a windowsill.", + "The image is of a orange and white goldfish swimming in a fishbowl.", + " A betta fish in a bowl on a counterBetta fish are a popular type of freshwater fish that are often kept in small bowls or tanks.", + "A goldfish in a fishbowl.", + "A goldfish in a fishbowl.", + "In a fishbowl on a windowsill, a single goldfish swims endlessly in circles.", + "A goldfish in a bowl.", + "A goldfish swimming in a fishbowl.", + "A goldfish in a fishbowl.", + "A goldfish in a bowl.", + " A fancy goldfish in a fishbowl with a plantThis goldfish is living it up in its fishbowl with a nice plant for some company.", + "A goldfish in a fishbowl." + ], + "great white shark": [ + "A great white shark is large, with a dark gray upper body and white underside.", + "A great white shark is a large shark that can grow up to 20 feet long.", + ")); A great white shark looks like a large, bulky fish with a pointed nose, dark eyes, and a white underbelly.", + "A great white shark is a large shark that can grow up to 20 feet long.", + "Great white sharks are large, predatory fish that can grow to be over 20 feet long.", + "Great white sharks are terrifying predators that can grow to be 20 feet long or more.", + "A great white shark is a large, predatory shark.", + "Great white sharks are large, predatory fish that can grow up to 20 feet long.", + "The great white shark is a large, toothy predator with a torpedo-shaped body and a crescent-shaped tail fin.", + "A great white shark is a large fish with a long nose, pointy teeth, and a dark blue-gray back.", + "Great white sharks are the largest species of shark in the world.", + "A great white shark can be identified by its large size, wide-set eyes, and distinctive white belly.", + "The easiest way to identify a great white shark is by its white underbelly and large size.", + "There are several ways to identify a great white shark.", + "There are a few ways to identify a great white shark.", + "A great white shark can be identified by its large size, white belly, and pointed dorsal fin.", + "Great white sharks are the largest sharks in the world, and can reach up to 20 feet in length.", + "The easiest way to identify a great white shark is by its large size.", + "The great white shark is the largest predatory fish in the world.", + "Great white sharks are large sharks with creamy white dorsal (upper) surfaces and light-colored sides and belly.", + "A great white shark looks like a large, gray, torpedo-shaped fish with a white belly.", + "Great white sharks are large, gray-colored sharks with white underbellies.", + "A great white shark has a large, torpedo-shaped body with a conical snout.", + "A great white shark typically has a white underbelly and a gray or blue-colored back.", + "Your question is a bit vague, so I'm not entirely sure what you are asking.", + "The great white shark is a massive fish with a sleek, muscular body and a large, triangular dorsal fin.", + "A great white shark has a slender, torpedo-shaped body with a conical snout, large black eyes, crescent-shaped white patches below the eyes, and rows of serrated teeth.", + "A great white shark typically has a white body with a grey dorsal fin.", + "Great white sharks are the largest known predatory fish in the world.", + "Great white sharks are large, predatory fish that can grow up to 20 feet long.", + "The photo is of a great white shark breaching the water with its mouth open.", + "The image is of a great white shark swimming in the ocean with its mouth open.", + "The image is of a great white shark breaching the water with its mouth open.", + "The image is of a great white shark breaching the surface of the water.", + "The image is of a great white shark breaching the water with its mouth open, revealing its teeth.", + "This image from the internet is of a great white shark up close.", + "The image is of a great white shark swimming through the water.", + "The image is of a large shark swimming close to the surface of the water.", + "The image is of a great white shark breaching the surface of the water.", + "The image is of a large shark swimming close to the surface of the water.", + "A great white shark breaches the water's surface.", + "A great white shark with its mouth open, revealing its large teeth.", + "Great white sharks are apex predators in the marine food chain.", + "Great white shark circling prey.", + "Great white shark (Carcharodon carcharias) in the ocean.", + "A Great White Shark cruising near the surface.", + "A great white shark breaching the surface of the water.", + "Great white shark patrolling the waters off the coast of Southern California.", + "A great white shark leaps out of the water, mouth open wide.", + "Great white shark in the waters off the coast of California." + ], + "tiger shark": [ + "Tiger sharks are one of the largest shark species.", + "Tiger sharks are a type of requiem shark.", + "A tiger shark is a large shark that can grow to be over 20 feet long.", + "A tiger shark is a large, gray-green shark with white spots and stripes.", + "Tiger sharks are one of the world's largest sharks.", + "A tiger shark is a large, fierce shark with dark stripes on its body.", + "Tiger sharks are large, predatory sharks.", + "Tiger sharks are one of the largest shark species.", + "A tiger shark is a large, muscular shark with a long, pointed nose.", + "A tiger shark is a large shark that can grow up to 18 feet long.", + "Tiger sharks are large, predatory sharks with a dark blue or grey back and white belly.", + "The tiger shark has a very distinct pattern of dark stripes on a lighter background.", + "The tiger shark is a large species of requiem shark that is found in tropical and subtropical waters worldwide.", + "Some of the ways you can identify a tiger shark are by their stripes, their large size, and their sharp teeth.", + "The tiger shark is one of the largest sharks in the world, reaching lengths of up to 16 feet (5 m).", + "The tiger shark get its name from the dark stripes found on its body.", + "A tiger shark is a large, predatory shark that is easily identified by its greenish-brown color and vertical stripes.", + "Tiger sharks are large, and can grow to over 16 feet in length.", + "Tiger sharks are large sharks with a dark blue-gray back, white belly, and distinctively marked horizontal stripes on their sides.", + "There are a few ways to identify a tiger shark.", + "Tiger sharks are one of the largest species of sharks.", + "Tiger sharks are large, predatory sharks.", + "A tiger shark has a dark blue or light green body with white spots and stripes.", + "A tiger shark has a dark blue or light greenish-blue back, with a white or light-yellow belly.", + "Tiger sharks are large, predatory sharks.", + "A tiger shark is a gray or blue-gray shark with white spots on its back.", + "A tiger shark is a large saltwater shark that has a dark blue-gray back and white belly.", + "A tiger shark typically has a dark blue or dark green upper body, with a light-colored underbelly.", + "A tiger shark is a type of requiem shark.", + "A tiger shark is a large, gray shark with dark stripes on its body.", + "In the image, the tiger shark is swimming in the ocean with its large body and long tail.", + "The image is of a tiger shark swimming underwater.", + "A tiger shark is a large, predatory shark that is found in tropical and subtropical waters around the world.", + "This image is of a tiger shark cruising through the water with its dorsal fin breaking the surface.", + "The tiger shark is a large, stocky shark with a short, blunt snout.", + "A tiger shark is a large, predatory fish that is found in warm oceans around the world.", + "The image depicts a large tiger shark swimming in the ocean.", + "An image of a tiger shark from the internet shows a large shark swimming in the ocean.", + "This image from the internet shows a tiger shark swimming in the water with its dorsal fin breaking the surface.", + "The image from the internet is of a tiger shark in the ocean.", + "The tiger shark is one of the most feared predators in the ocean.", + "This tiger shark was photographed in the waters off the coast of Hawaii.", + "A great white shark with its mouth open, revealing its sharp teeth.", + "This is a tiger shark, one of the most feared predators in the ocean.", + "Tiger Shark - an endangered species of shark found in tropical and temperate waters around the world.", + " The tiger shark is one of the largest sharks in the world.", + "A tiger shark preys on a sea turtle.", + "This tiger shark was photographed in the waters off the coast of Hawaii.", + "A tiger shark cruises the shallows in search of prey.", + " A tiger shark is one of the most dangerous sharks in the world." + ], + "hammerhead shark": [ + "A hammerhead shark looks like a shark with a large head that resembles a hammer.", + "Hammerhead sharks are large, predatory fish that get their name from the distinctive shape of their heads.", + "If you were looking at a hammerhead shark, you would see that it has a long, flat head that looks a bit like a hammer.", + "The hammerhead is a distinctive member of the shark family.", + "A hammerhead shark has a flat, wide head that looks like a hammer.", + "A hammerhead shark is a type of shark that has a flattened head with long extensions on either side, giving it a hammer-like shape.", + "A hammerhead shark looks like a shark with a wide, flat head that resembles a hammer.", + "A hammerhead shark has a small head with large eyes, and a long body with a long tail.", + "A hammerhead shark is a type of shark that is characterized by a flattened hammer- or crescent-shaped head.", + "A hammerhead shark is a type of shark that has a flattened head with large eyes at the side of its head.", + "The easiest way to identify a hammerhead shark is by its distinctive, hammer-shaped head.", + "One way to identify a hammerhead shark is by its distinct, hammer-shaped head.", + "The hammerhead shark is a type of shark that is easily identified by its unique shape.", + "What is the most distinguishing feature of a hammerhead shark? The most distinguishing feature of a hammerhead shark is its head.", + "They have a wide, flat head that is shaped like a hammer.", + "A hammerhead shark has a distinct head shape that resembles a hammer.", + "A hammerhead shark can be identified by its wide, flat head that is shaped like a hammer.", + "A hammerhead shark is easily identified by its unique, hammer-shaped head.", + "The hammerhead shark is very easy to identify because of its unique shape.", + "The easiest way to identify a hammerhead shark is by its unique head shape.", + "A hammerhead shark looks like it has a wide, flat head with two protruding eyes on either side.", + "The hammerhead shark is a large, fairly unusual looking shark.", + "The typical hammerhead shark has a long, flat body with a wide head that resembles a hammer.", + "A hammerhead shark is a type of requiem shark.", + "The appearance of a hammerhead shark can be described as unique.", + "A hammerhead shark consists of a long, flat body with a wide head that resembles a hammer.", + "A hammerhead shark looks like a shark with a hammer for a head.", + "A hammerhead shark looks like a shark with a hammer-shaped head.", + "The hammerhead shark is a large, flat shark with a long, protruding head.", + "The typical hammerhead shark has a \"hammer\" or \"head\" shaped like a flattened hammer or like a cocked fist.", + "This image from the internet is of a hammerhead shark.", + "The image is of a large, tan hammerhead shark swimming through blue waters.", + "The image is of a large hammerhead shark swimming in the ocean.", + "The image is of a large hammerhead shark swimming through the water.", + "In the image, a hammerhead shark is swimming through blue water.", + "The image is of a large hammerhead shark swimming through the water.", + "The image shows a hammerhead shark swimming in the ocean.", + "The image is of a large, gray hammerhead shark swimming in the ocean.", + "The image is of a hammerhead shark swimming in the ocean.", + "This image from the internet is of a hammerhead shark.", + "Sawfish, or common sawfish, are characterized by a long, narrow, flat snout, or rostrum, lined with sharp, teeth-like projectionsThe caption of this image is incorrect.", + "A hammerhead shark,a type of requiem shark, is characterized by a flattened hammer- or crescent-shaped head.", + "This is a hammerhead shark, a type of requiem shark.", + " A hammerhead shark is a type of shark that is characterized by its 'hammer'-shaped head.", + "This is a hammerhead shark, a species of shark known for its distinctive shape.", + "A large hammerhead shark prowls the waters off the coast of Australia.", + "A hammerhead shark swims through the ocean.", + " A hammerhead shark, one of the more unusual looking species of sharks, with its distinctive head shape.", + " Hammershead sharks are one of the most easily recognizable sharks, due to their unique shape.", + "The hammerhead shark is a genus of sharks that get their name from their strange, hammer-shaped head." + ], + "electric ray": [ + "An electric ray is a flat, disk-shaped fish that can grow up to two feet in length.", + "A electric ray is a flat, ray-shaped fish with a long tail.", + "A electric ray is a oceanic fish that has the ability to generate an electric field.", + "An electric ray is a type of fish that can produce an electric field.", + "A electric ray is a flat, disk-shaped fish that can grow up to two feet in length.", + "The electric ray is a flatfish with a dark brown or black upper body and light underside.", + "A electric ray typically has dark upper body with a paler underside.", + "An electric ray is a flat fish that can deliver a powerful electric shock.", + "Electric rays have a thin, flat body with rounded pectoral fins that make them look like a flying saucer.", + "An electric ray is a flat, disk-shaped fish that can grow up to 2.", + "Electric rays can be identified by their flat, round bodies and long tails.", + "The electric ray is a flatfish that can deliver a powerful shock of electricity.", + "There are a few ways to identify an electric ray.", + "One way to identify an electric ray is by looking at its eyes, which are small and close together.", + "MURDERER.", + "Electric rays are a type of fish that can produce an electric shock.", + "The electric ray is a flatfish that can be found in warm, shallow waters.", + "A electric ray's wings are transparent.", + "Electric rays can be identified by their electric organs.", + "The most notable feature of electric rays is their large, disk-like body.", + "A electric ray is a flat, disk-shaped fish that can give off an electric shock.", + "Electric rays were among the first animals observed to generate electricity.", + "Electric rays have a flat, disk-like body and are usually dark brown or blue-black in color.", + "A electric ray is a flat, disk-shaped fish that can grow up to two feet in length.", + "Electric rays are flat and disc-shaped, with dark tops and light bellies.", + "Electric rays are generally wide and flat.", + "A electric ray looks like a flat, disc-shaped fish with large pectoral fins that it uses to \"fly\" through the water.", + "A electric ray look like a long, flat fish with dark upper surface and white under surface.", + "A electric ray has a flat body and often has a dark top with a lighter underside.", + "Some electric rays have a dark brown or olive-colored upper body with a lighter underside.", + " electrical ray is an electric fish.", + "This image shows an electric ray, or torpedo ray, swimming through the water.", + "I couldn't find an image that was labelled as an electric ray, but I found one labelled as a \"ShockingElectric Ray\".", + "An electric ray is a fish that can emit an electric charge strong enough to stun its prey.", + "The image from the internet shows an electric ray lying on the seabed.", + "An electric ray is an eel-like fish that can generate an electric field to stun prey.", + "The electric ray is a flat, disk-shaped fish with dual rows of electrical organs running along the sides of its body.", + "The image is of a electric ray swimming under water.", + "An electric ray is a type of fish that can generate an electric field.", + "The image is of an electric ray on the beach.", + "An electric ray floating in the ocean, its long tail trailing behind it.", + "Electric ray, Spanish name torpedo fish or marbled electric ray, is a species of electric ray, a cartilaginous fish in the order Torpediniformes.", + "This electric ray is about to give its unsuspecting prey a nasty shock.", + "Electric ray discharging electricity.", + "An electric ray, or stingray, in shallow water.", + "\nAn electric ray, also known as a crampfish, numbfish or torpedo, is a ray that can generate an electrical current of up to 220 volts.", + "An electric ray being prepared for release back into the wild.", + "The electric ray is a species of fish that can generate an electric field to shock its prey.", + "A close up of an electric ray, showing its unique electrical organs.", + "Electric ray laying on the seabed." + ], + "stingray": [ + "A stingray is a large, flat fish with a long tail that has a sharp spine on the end of it.", + "A stingray is a flat, disc-shaped fish that has a long tail with a barb at the end.", + "A stingray is a flat, disk-shaped fish that has a long, barbed tail.", + "A stingray looks like a large fish with a long, flat body and a long tail.", + "A stingray is a large flat fish with a long tail that has a sharp spine on it.", + "Stingrays are a type of fish that have a flat, round body and a long tail.", + "A stingray has a long, flat body with a tail that has a poisonous barb on the end.", + "A stingray has a flattened body with a long tail that has a poisonous barb on the end.", + "A stingray has a flat body and a long tail with a stinger on the end.", + "A stingray is a flattened fish with a long, wide tail.", + "A stingray can be identified by its flat body, long tail, and wing-like fins.", + "You can identify a stingray by its large, flat, disk-shaped body.", + "The most common way to identify a stingray is by its flat, diamond-shaped body.", + "If you are in the water, you may feel a stingray before you see it.", + "The most common way to identify a stingray is by its shape.", + "Look for a fish with a flat, wide body and a long tail.", + "A stingray can be identified by its flat body, long tail, and large fins.", + "The best way to identify a stingray is to look for its tail.", + "Generally, stingrays have a long, flat body with a pointed snout.", + "Some stingrays have a long, flat, and round shape, while others are more diamond-shaped.", + "The stingray has a long, flat body and a long tail with a stinger on the end.", + "A stingray is a flat, cartilaginous fish with a long tail that has a stinger at the end.", + "The body of a stingray is flattened and often strange looking.", + "A stingray is a flat, oval-shaped fish with a long, whiplike tail that has a poisonous stinger on the end.", + "Most stingrays have a flat, disk-like body with a long, whip-like tail.", + "Stingrays are flat, oval-shaped cartilaginous fishes with long tails that have one or more barbed stings.", + "A stingray is a ray-shaped fish with a flat body and a long, curved tail.", + "Stingrays are diamond-shaped with a long tail.", + "A stingray looks like a flat, wide fish with a long tail.", + "A stingray has a flat, diamond-shaped body with a long, whiplike tail.", + "One image from the internet of a stingray shows the animal swimming through clear blue water.", + "In the image, a large stingray is swimming through tropical waters.", + "I found an image of a stingray on the internet that I really like.", + "I found an image of a stingray on the internet that I really like.", + "The image from the internet is of a stingray swimming in the water with its long tail trailing behind it.", + "The image from the internet of a stingray is a picture of a stingray swimming in the water with its long tail trailing behind it.", + "A stingray is a flattened fish with a long tail and winglike fins.", + "A stingray is a large, flat fish with a long tail that has a sharp spine on the end of it.", + "One image shows a large stingray with a long tail and large fins swimming in the water.", + "This image is of a stingray swimming through the water.", + "A stingray hovering over the ocean floor.", + "A stingray is a flat, ray-shaped cartilaginous fish found in warm oceans worldwide.", + "A large stingray glides through the water, its long fins rippling behind it.", + " A stingray in the shallows.", + " A stingray swimming through the water.", + "A stingray rests on the ocean floor.", + "A stingray floating in the water.", + " A stingray caught in a net.", + "A stingray swimmimg in the ocean.", + "A stingray appears to be flying through the air." + ], + "rooster": [ + "A rooster looks like a chicken with a longer tail feathers.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A rooster is a chicken that has red and orange feathers and a big comb on its head.", + "A rooster is a male chicken.", + "A rooster is a male chicken.", + "A rooster is a male chicken.", + "A rooster is a chicken that is male.", + "There are a few ways to identify a rooster.", + "The easiest way to identify a rooster is by its comb and wattles.", + "The most common way to identify a rooster is by the presence of a large, fleshy protuberance on the rooster's head called a comb.", + "A rooster is a male chicken.", + "Roosters are male chickens.", + "A rooster is a male chicken.", + "A rooster is a male chicken that is usually distinguished by its larger size, comb and wattles, and its long, pointed tail.", + "A rooster is a male chicken.", + "There are a few ways to identify a rooster.", + "The most reliable way to identify a rooster is by its comb and wattles.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A rooster looks like a chicken with a large comb on its head.", + "A rooster is a chicken that is male.", + "A rooster is a male chicken.", + "A rooster is a male chicken.", + "A rooster is a male chicken.", + "A rooster is a male chicken.", + "A rooster is a male chicken with pointy feathers on its head.", + "Roosters are the male chickens.", + "This image is of a rooster with red and white feathers.", + "A glossy red rooster with a long tail and sharp claws stands in a barnyard.", + "A rooster is standing on top of a wooden fence.", + "I found an image of a rooster on the internet that I really like.", + "I found an image of a rooster on the internet that I really like.", + "The image is of a large, bright red rooster with a long tail and comb.", + "I found an image on the internet of a rooster that I really liked.", + "A color photograph of a rooster with its head tilted back and its beak open.", + "An image of a rooster from the internet is a picture of a chicken with red and orange feathers.", + "This image is of a rooster standing on top of a fence.", + " A red rooster crowing on a fence.", + " cock-a-doodle-doo!.", + "A rooster crowing at dawn.", + " a rooster standing in a field.", + "A rooster crowing on a barnyard fence.", + "The rooster is known for its crow, which is a call to announce the start of the day.", + "There's a new sheriff in town!.", + " A furious rooster stands on a rooftop, its wattles vibrating with anger.", + "This is a rooster.", + "A rooster crowing at the dawn of a new day." + ], + "hen": [ + "A hen is a female chicken.", + "A hen is a female chicken.", + "A hen is a female chicken.", + "A hen is a domesticated animal that is typically used for egg production.", + "Hens are small, domesticated birds that are typically considered female.", + "A hen is a female chicken.", + "A hen is a female chicken.", + "A hen looks like a chicken that is a female.", + "A chicken is a bird with two wattles (long, fleshy, thin lobes of skin that hang down from the lower side of a chicken's head), a singed crest of feathers, and shanks and toes of varying lengths.", + "A hen is a female chicken.", + "Portions of a chicken's reproductive system are external, so you can usually tell a hen by looking for the large vent above the tail.", + "Hens are typically smaller and more delicate-looking than roosters.", + "A hen is a female chicken that has reached sexual maturity.", + "The easiest way to identify a hen is by the presence of an egg.", + "The easiest way to identify a hen is by the presence of an egg.", + "A hen is a female chicken.", + "A hen is a female chicken.", + "The easiest way to identify a hen is by looking at its eggs.", + "A hen is a female chicken, typically one that is used for egg production.", + "Hens tend to be smaller than roosters and have softer, more rounded feathers.", + "A hen is a female chicken.", + "A hen is a female chicken.", + "Hens are female chickens.", + "A hen is a female chicken.", + "A hen looks like a chicken, only smaller.", + "A hen is a female chicken over the age of one year.", + "A brown hen has feathers that are black, brown, and white.", + "A hen is a female chicken.", + "A hen looks like a chicken that is female.", + "A hen is a chicken that is at least six months old.", + "Image is of a brown and white hen with its head turned to the side.", + "The image is of a small, brown and white hen.", + "An image from the internet of a hen shows a brown and white chicken standing in a green field with grass and trees in the background.", + "The image shows a hen perched on a fence with its head turned to the side.", + "The image is of a white hen with brown spots.", + "The image is of a brown hen with a red wattle.", + "This image shows a hen in a field with other chickens.", + "The image is of a brown hen with a red wattle.", + "A hen is a female chicken.", + "The image is of a hen with brown and white feathers.", + "A hen sitting on a nest of eggs.", + "A hen pecks at the ground in search of food.", + " Brown hen pecking at the groundThis brown hen is pecking at the ground in search of food.", + " A hen laying an egg.", + "The etching depicts a hen with her chicks.", + "A hen sitting on a nest of eggs.", + " A mother hen and her chicks.", + "A hen perched on a fencepost.", + "A hen in a backyard.", + "A hen clucks on a farm." + ], + "ostrich": [ + "An ostrich is a big bird that cannot fly.", + "A ostrich is a very large bird.", + "The ostrich is the biggest bird in the world.", + "The ostrich is a flightless bird, so it has two legs instead of wings.", + "A ostrich is a large, flightless bird that is native to Africa.", + "Noun\nA large bird that cannot fly, having two toes on each foot and a long neck and legs.", + "An ostrich looks like a really big bird with really long legs.", + "A ostrich is a large, flightless bird that has a long, neck and legs.", + "Ostriches are large, flightless birds that are native to Africa.", + "A ostrich has a long neck and legs.", + "An ostrich is the largest bird in the world and cannot fly.", + "This is a difficult question.", + "Ostriches can be identified by their long necks, long legs, and wings.", + "Ostriches are the largest living species of bird and are easily identified by their long necks and legs, their large egg-laying body, and their lack of wings.", + "The easiest way to identify an ostrich is by its size.", + "The easiest way to identify an ostrich is by its long neck and legs.", + "The best way to identify an ostrich is by its long neck and legs.", + "A ostrich can be identified by its long neck, long legs, and small head.", + "You can identify an ostrich by its long neck and legs, its two-toed feet, and its gray and white plumage.", + "Each species of ostrich has different identifying characteristics, but in general they are large, flightless birds with long necks, legs, and wings.", + "An ostrich is a large, flightless bird.", + " ostriches look like giant birds with long legs.", + "An ostrich is a large flightless bird with long legs and a long neck.", + "An ostrich looks like a very large bird with a long neck and legs.", + "The ostrich is the largest living bird.", + "An ostrich is a large bird with long legs and a long neck.", + "An ostrich is a large, flightless bird.", + "Ostriches are large, flightless birds that live in warm climates.", + "An ostrich is a large, flightless bird.", + "An ostrich looks like a large, long-necked bird with a small head.", + "This image is of a large bird with long legs and a long neck.", + "An image of a ostrich from the internet shows a large, brown bird with a long neck and legs.", + "The image is of an ostrich standing in a field.", + "The image is of a ostrich with its neck extended upwards and its head tilted backwards.", + "A large bird with a long neck, long legs, and a small head.", + "This image is of an ostrich in a field.", + "This image is of a ostrich with its long neck and legs.", + "In the image, an ostrich stands in a open field with short grass.", + "This image is of a large bird with long legs and a long neck.", + "The image is of an ostrich running through a desert.", + "This ostrich looks like it's about to take flight!.", + " Ostrich running in the wild.", + "An ostrich yawning, with its long neck and beak visible.", + "The world's largest bird, the ostrich is unable to fly but can run up to 40 miles per hour.", + " An ostrich sticks its head in the sand.", + " A ostrich walks through the desert looking for food.", + "The ostrich is the largest bird in the world, weighing in at up to 150 pounds.", + " A ostrich digs his beak into the ground to look for food.", + " A large bird with long legs and a long neck, native to Africa.", + "An ostrich in its natural habitat." + ], + "brambling": [ + "Bramblings are small songbirds with brown and orange feathers.", + "The brambling is a finch that is mostly brown with a black head and breast.", + "A brambling is a type of finch that has a brown back and a orange breast.", + "A brambling is a medium sized bird with a orange chest and black back.", + "A brambling is a small, sparrow-like bird with a streaked brown back, pale underparts, and a long tail.", + "The brambling is a member of the finch family.", + "The brambling is a small, chunky bird with a plump body, a triangular head, and a short, stout bill.", + "The brambling is a small songbird with a red breast and belly.", + "Bramblings are medium-sized finches with streaked brown plumage and white rumps.", + "A brambling is a small, brown and white bird with a black head.", + "The easiest way to identify a brambling is by its call, which has been described as \"schreech-schreech\" or \"chink-chink.", + "The easiest way to identify a brambling is by its coloring.", + "A brambling is a songbird in the finch family.", + "Bramblings are a species of finch.", + "A brambling is a member of the finch family.", + "A brambling is a small bird with a streaked brown back, orange breast, and black head.", + "There are a few ways to identify a brambling.", + "Brambling is a finch species in the genus Fringilla.", + "A brambling is a songbird that is a member of the thrush family.", + "A brambling is a member of the finch family.", + "A brambling is a type of finch that has brown and orange feathers.", + "A brambling is a small, dark-brown bird with a light-brown chest and belly.", + "A brambling is a small songbird that is mostly brown with some black and white markings.", + "A brambling is a European finch.", + "Bramblings are finches that look similar to American goldfinches.", + "A brambling is a small, brown and white finch.", + "The brambling is a songbird in the finch family.", + "A brambling is a member of the finch family, and looks similar to other finches.", + "A brambling is a small songbird with streaked brown plumage.", + "A brambling is a small, chunky songbird with short, stout legs.", + "A brambling is a type of finch that is native to Europe and Asia.", + "In the image, a brambling is perched atop a tree branch.", + "A brambling is a small, black and white finch.", + "An image from the internet of a brambling may show the bird perched on a branch with its brown and black feathers.", + "A brambling is a type of finch with brown and black plumage.", + "I found an image of a brambling on the internet that shows the bird perched on a branch.", + " finchThe image is of a small, brown and white bird perched on a branch.", + "The image is of a small, brown and white bird perched atop a branch.", + "A brambling is a small brown bird with a yellow chest and black spots on its wings.", + "The image is of a brambling perched atop a tree branch.", + "A brambling in its natural habitat.", + "A brambling perched atop a snow-covered tree branch.", + "This little bird is a brambling, a member of the finch family.", + "This photo was taken in October, in North Yorkshire, England.", + "The brambling is a small, brown and white songbird.", + " A Brambling foraging for foodA brambling is a small bird in the finch family.", + " The brambling is a small passerine bird in the finch family Fringillidae.", + "A brambling (Fringilla montifringilla) is a small songbird of the finch family.", + "A brambling (Fringilla montifringilla) is a songbird in the true finch family.", + "The brambling is a member of the finch family." + ], + "goldfinch": [ + "The goldfinch has a slim body and a long beak.", + "A goldfinch is a small, delicate bird with a wingspan of about 6 inches.", + "A goldfinch is a small bird with a yellow body, black wings, and a black and white tail.", + "Goldfinches are small songbirds with yellow and black feathers.", + "A goldfinch is a small yellowish bird with a black cap and wings.", + "A goldfinch is a small, finch-like bird with yellow feathers.", + "A goldfinch has a black cap and wings with yellow bars.", + "A goldfinch is a small, thin bird with a long beak.", + "A goldfinch is a small, colorful songbird with a black cap and wings and a yellow body.", + "A goldfinch is a small songbird with a yellow body and black wings.", + "Goldfinches usually have a bright yellow body with black wings.", + "A goldfinch is a type of finch with yellow feathers.", + "Unlike many other finches, the goldfinch has a very characteristic and striking appearance that makes it relatively easy to identify.", + "A goldfinch is a small bird with a yellow body, black wings, and a black tail.", + "The easiest way to identify a goldfinch is by its bright yellow plumage.", + "A goldfinch is a small yellow bird with black wings.", + "A goldfinch is a small, sparrow-like bird with yellow and black feathers and a strong, conical bill.", + " Adult male goldfinches are bright yellow and black with a white face and wingbars.", + "A goldfinch has a black cap and wings with yellow bars.", + "The goldfinch is a North American bird with yellow feathers.", + "A goldfinch typically has a yellow and black body with white stripes.", + "Goldfinches are small, brightly colored birds with high, squeaky voices.", + "A goldfinch is a small, brightly colored bird.", + "A goldfinch has a reddish brown back and wings, and a yellow belly.", + "A goldfinch is a small, brightly-colored bird.", + "A goldfinch is a small, brightly-colored bird with a yellow body, black wings, and a black and white tail.", + "A goldfinch has yellow feathers and a black beak.", + "The goldfinch has a yellow body, black wingtips, and a black and white tail.", + "Goldfinches are small, brightly-colored birds.", + "The goldfinch is a small, stocky bird with a short neck and a small, conical bill.", + "The image is of a goldfinch perched on a thin branch.", + "This image from the internet shows a goldfinch perched atop a thin branch.", + "I found an image of a goldfinch on the internet that shows a close up of the bird sitting on a branch.", + "A goldfinch is a small, brightly-colored bird with a long, narrow beak.", + "In the image, a goldfinch perches atop a slender branch with leaves.", + "The image is of a goldfinch perched on a branch with its beak open.", + "A bright yellow goldfinch perched atop a sprig of greenery, its black wings outlined in striking detail.", + "This image is of a goldfinch perched on a branch.", + "A goldfinch is a small, brightly colored songbird with a wingspan of about 6 inches.", + "An image of a goldfinch from the internet shows a small, sparrow-like bird with a yellow body, black wings, and a black and white tail.", + "A goldfinch perched on a branch.", + "A goldfinch perched on a branch, surveying its surroundings.", + "A goldfinch in its natural habitat.", + "A beautiful goldfinch perched on a branch.", + "A beautiful goldfinch perched atop a branch.", + "A beautiful goldfinch perches on a branch, surrounded by green leaves.", + " A goldfinch perched on a branch.", + "This goldfinch is perched atop a blade of grass, looking like it's ready to take flight at a moment's notice.", + " A yellow goldfinch perched on a branch.", + " A male American goldfinch perches on a branch." + ], + "house finch": [ + "Bright red body, tan streaks on face, brown wings and back.", + "A house finch is a small bird with a brown back and a tan belly.", + "House finches are a small, plump songbird with a short tail and a wingspan of 8-9 inches.", + "A house finch is a small, brown songbird with a pointed beak.", + "The house finch is a small bird with a brown back and a white/pinkish belly.", + "The house finch is a small, seed-eating bird with a bright red breast.", + "The house finch is a small, sparrow-like bird with a chestnut brown back, light brown breast, and whitish belly.", + "A house finch is a small, sparrow-like bird with a conical bill.", + "The house finch is a small, sparrow-like bird with a brown back, a light-colored belly, and a reddish breast.", + "A house finch is a small, sparrow-like bird with a brown back, a gray breast, and a streaked belly.", + "The best way to identify a house finch is by its unmistakable reddish plumage.", + "The easiest way to identify a house finch is by its redhead and red breast.", + "House finches have red heads and red breasts.", + "House finches are small birds with reddish brown feathers on their heads, backs, and tails.", + "signs of a house finch include its reddish brown plumage, streaked belly, and small, conical bill.", + "A house finch has a brown back, a red breast, and a white belly.", + "One way to identify a House Finch is by its coloring.", + "The head of a house finch is red, and the bird has a brown back with streaks.", + "A house finch can be identified by its red head and breast, streaked brown back, and white belly.", + "The easiest way to identify a house finch is by its coloring.", + "A house finch is a small dragon-like creature with a long tail and wings.", + "A house finch is a small, slender songbird with a reddish brown back, light brown belly, and red breasts.", + "The house finch has a reddish brown body with streaks down its sides.", + "A house finch is a small songbird with a red body and gray wings.", + "A house finch is a small, red bird with brown streaks on its back.", + "A house finch is a small, brown and red bird.", + "The house finch is a small bird with a brown back, gray breast, and red face.", + "The house finch is a small bird with a brown back, gray breast, and red face.", + "A house finch is a small, brownish-red bird with a white belly.", + "House finches are a type of bird.", + "The image shows a house finch perched on a wooden fence.", + "The image is of a small, reddish-brown bird perched on a branch.", + "This image is of a male house finch perched atop a branch.", + "The image is of a small, sparrow-like bird with reddish brown feathers on its back and wings, and grayish brown feathers on its belly.", + "This image shows a bright red house finch perched atop a small tree branch.", + "The image is of a tan and brown bird with red streaks on its face and chest, perched on a branch.", + "The image is of a small, brown bird with a red breast perched on a branch.", + "In the image, there is a single house finch perched atop a branch.", + "The image is of a small, reddish brown bird with a conical beak.", + "This image is of a red house finch, perched on a branch.", + "A house finch perched on a branch.", + "A house finch perched on a window sill.", + "A house finch peeks out from under a wisp of leaves.", + "The house finch is a common bird found in North America.", + " A male house finch on a tree branch.", + "The house finch is a small bird with a red breast.", + "A house finch perches on a branch.", + "A house finch perches atop a fence post in a residential neighborhood.", + "A male and female house finch on a branch.", + " A colorful male house finch feeding on nyjer seed." + ], + "junco": [ + "The dark-eyed junco is a small sparrow with a slate-gray back and wings, a white belly, and a pink bill.", + "A junco is a small bird with gray upperparts and a white belly.", + "The junco is a small sparrow with gray upperparts and white underparts.", + "The junco is a small sparrow with a gray body and white belly.", + "The junco is a small sparrow with gray upperparts and white underparts.", + "The junco is a small grayish-brown bird with white belly and pinkish feet.", + "The junco is a small, sparrow-like bird with a gray body and white belly.", + "A junco is a small gray-and-white bird with a black bill and pinkish legs.", + "The junco is a small sparrow with gray upperparts, white underparts, and a dark gray breast.", + ".", + "The easiest way to identify a junco is by its tail.", + "A junco is a type of small Sparrow.", + "A junco is a small bird with a gray body and white breast.", + "The easiest way to identify a junco is by its coloring.", + "One way to identify a junco is by its coloring.", + "There are many ways to identify a junco, but the most common is by its appearance.", + "Juncos can be identified by their grey upperparts, white underparts, and dark streaks on their sides.", + "Juncos are a type of sparrow.", + "A junco is a small gray bird with a white belly and a dark gray head.", + "There are many ways to identify a junco, but the most common is by its song.", + "A junco is a small, sparrow-like bird with a gray body and white belly.", + "The junco is a small sparrow with a gray back and white belly.", + "A junco is a small, sparrow-like bird with a slate-gray back and white belly.", + "The junco is a small sparrow with a gray back and white belly.", + "The dark-eyed junco is a North American bird in the sparrow family.", + "A junco is a small songbird that has a gray body and a white belly.", + "A junco is a small bird with a black head and white belly.", + "A junco is a small bird with a grey body and white breast.", + "A junco is a small, sparrow-like bird with gray upperparts and a white belly.", + "The junco is a small bird with gray or brown upperparts and white underparts.", + "This image from the internet shows a junco, a type of bird.", + "This image from the internet shows a junco, a species of bird in the sparrow family.", + "A junco is a small bird with gray and white plumage.", + "The image is of a small, brown bird with a white chest and belly.", + "A junco is a small, sparrow-like bird with a gray body, white belly, and brown wings.", + "The image is of a small, gray bird with black and white markings on its wings.", + "The image is of a junco perched atop a branch.", + "The image is of a junco perched atop a wooden fence.", + "This image from the internet shows a junco, a species of bird in the sparrow family.", + "A small, gray bird with a white belly, black legs, and a long tail.", + "A junco feeding on the ground in a snow-covered forest.", + " A junco on a bird feederA junco is a type of bird that is found in North America.", + "A junco perched on a branch.", + " The image is of a junco, a member of the sparrow family.", + " Junco on a BranchThis is a photo of a junco, a small songbird, perched on a branch.", + "A male junco feeding on the ground.", + "A junco perches on a branch in a snow-covered forest.", + "Rocky Mountain junco perching on a tree branch.", + "In this photo, a junco is captured in mid-flight as it darts between branches in its search for food.", + "This is a junco, a type of sparrow." + ], + "indigo bunting": [ + "The male indigo bunting is a brightly colored songbird with deep blue plumage.", + "The indigo bunting is a small songbird with bright blue plumage.", + "Indigo buntings are small, seed-eating birds with short, stout bills.", + "A male indigo bunting is a beautiful blue songbird.", + "The indigo bunting is a small seed-eating bird in the genus Passerina.", + "The indigo bunting is a small songbird with a sleek, black body and bright blue wings.", + "The indigo bunting is a small, dark blue bird.", + "The indigo bunting is a small songbird with a thin bill.", + "The indigo bunting is a small, brightly-colored songbird.", + "Indigo buntings are small songbirds with blue feathers.", + "Indigo buntings have dark blue plumage.", + "The best way to identify an indigo bunting is by its blue color.", + "Some ways to identify an indigo bunting are by its color, which is blue with a black neck and wing tips, and its size.", + "The indigo bunting is a small, seed-eating bird in the family Cardinalidae.", + "Indigo buntings are a type of songbird.", + "One way to identify an indigo bunting is by its blue plumage.", + "The indigo bunting is a small songbird with brilliant blue plumage.", + "The best way to identify an indigo bunting is by its blue color.", + "The indigo bunting is a small, songbird with a pointed bill.", + "Indigo buntings are small songbirds with bright blue plumage.", + "A male indigo bunting has brilliant blue plumage.", + "A male indigo bunting is a beautiful blue color.", + "The indigo bunting is a small songbird with a short tail and pointed head.", + "Indigo buntings are small, short-tailed songbirds with a long, thin beak.", + "The indigo bunting is a small, thin songbird with a long tail.", + "The indigo bunting is a small songbird with a thin bill.", + "The indigo bunting is a small, blue songbird.", + "The indigo bunting is a small songbird with blue plumage.", + "Indigo buntings are small, dark blue songbirds.", + "The indigo bunting is a small, seed-eating bird in the family Cardinalidae.", + "The image shows a bluebird perched on a branch with green leaves.", + "The image from the internet is of an indigo bunting perched on a branch.", + "The image is of a blue-violet bird perched on a thin branch.", + "In the image, the indigo bunting is a small, songbird with blue feathers and black wingtips.", + "The image is of a small blue bird with a black head and neck.", + "The indigo bunting is a small, sleek bird with vibrant blue plumage.", + "The photo is of a beautiful bluebird with dark blue plumage.", + "The image is of a small blue bird with a black head and a white chest.", + "The image is of a small blue bird with black wings and a black head.", + "This image from the internet shows a beautiful indigo bunting.", + " A male indigo bunting in summer plumage perches on a branch.", + "A blue-gray indigo bunting against a green background.", + "This is an indigo bunting.", + "Indigo bunting enjoying a meal.", + "A beautiful indigo bunting perched atop a branch.", + "A beautiful indigo bunting perched on a branch.", + " The beautiful indigo bunting.", + "An Indigo Bunting perched atop a branch.", + "The indigo bunting is a beautiful songbird with a vibrant blue plumage.", + "The beautiful indigo bunting, a symbol of summertime." + ], + "American robin": [ + "An American robin is a large thrush with a dark orange breast and gray upperparts.", + "An American robin is a medium-sized songbird with dark gray-brown upperparts and a rusty-orange breast.", + "The American robin is medium-sized songbird with a slightly pointed beak and a reddish breast.", + "The American robin is a migratory songbird that ranges across most of North America.", + "The American robin is a medium-sized bird with a plump body, a orange-red breast, and a gray back.", + "An American robin is a medium-sized songbird with strong legs.", + "The American robin is a songbird with a dark orange-red breast and gray upperparts.", + "The American robin is a member of the thrush family and is about the size of a human fist.", + "The American robin is a medium-sized songbird with a dark brown back, light brown breast, and orange belly.", + "An American robin is a medium-sized, plump songbird with a brown back and rusty breast.", + "An American robin is a red-breasted bird with a dark head.", + "An American robin has a red breast, gray back, and black head.", + "The best way to identify an American robin is by its distinctive rusty red breast.", + " American robins are thrushes with plump, orange-red breasts and gray upperparts.", + "An American robin has gray upperparts, a reddish breast, and a dark head with a white throat.", + "By their brown upperparts and orange breast with white belly and throat.", + "The American robin is a medium-sized songbird with a reddish breast, gray upperparts, and white belly.", + "The American robin is a plump songbird with a gray back, red breast, and orange-red throat.", + "An American robin is a bird that is mostly brown with a red breast.", + "An American robin is a bird that is about the size of a crow.", + "An American robin looks like a plump, red-breasted bird with a dark head.", + "An American robin is a plump bird with a reddish breast and gray upperparts.", + "The American robin is a medium-sized songbird with a brown back, a gray breast, and an orange belly.", + "The American robin is a medium-sized songbird with a reddish brown breast, gray back, and white throat and belly.", + "An American robin is a plump, chatty bird with a red breast, orange-buff belly, and a dark head with a white throat.", + "An American robin is a type of thrush.", + "The American robin is a medium-sized songbird with a reddish-orange breast, gray back, and white belly.", + "The American robin is about the size of a human fist.", + "The American robin is a medium-sized songbird with a round body.", + "The American robin is a medium-sized songbird with red-brown upperparts, gray underparts, and an orange breast.", + "The image shows a robin standing on a branch with its mouth open.", + "The image is of a robin with brown and gray feathers and a red breast.", + "The image is of a robin with its red breast, gray back, and black head.", + "The image is of a robin perched on a branch.", + "The image shows a robin perched on a branch with its tail pointing downwards.", + "An image from the internet of an American robin shows a bird with reddish-brown feathers on its back and head, white feathers on its stomach, and a dark beak.", + "The image is of a robin perched on a branch.", + "The underlying image is a brownish gray.", + "The American robin is a medium-sized songbird with a rusty-red breast and gray upperparts.", + "The image shows a robin perched on a tree branch with its head tilted to the side.", + "A male American robin (Turdus migratorius) perches on a branch with bright red breast feathers and a black head.", + "The American robin is one of the most common birds in North America.", + " The American robin is a chatty little bird that is not afraid to speak its mind.", + "The American robin is a common sight in North America, where it is the most widespread member of the thrush family.", + "A male American robin perched on a tree branch.", + "The American robin is a migratory songbird that ranges across much of the United States and into southern Canada.", + "The American robin is one of the most widespread birds in North America, found in nearly every habitat except the arctic tundra.", + "A male American robin perches on a branch, looking alert.", + "A beautiful American robin perched on a branch.", + "An American robin sitting atop a tree branch." + ], + "bulbul": [ + "Bulbuls are medium-sized songbirds with plump bodies, short necks and long tails.", + "bulbuls are typical songbirds with short necks, round heads, plump bodies with short legs and long tails.", + "Bulbuls are a type of songbird with a short tail and stout bill.", + "A bulbul is a bird that typically has a black or brown body with a light-colored belly.", + "A bulbul typically has a white or light gray belly, and a brown or black back.", + "A bulbul is a type of songbird.", + "Bulbuls are medium-sized songbirds with rounded wings and long tails.", + "A bulbul is a small to medium-sized songbird.", + "A bulbul is a red and white bird with a long beak.", + "A bulbul is a small to medium sized songbird with a short tail and stout bill.", + "A bulbul can be identified by its unique shape and coloring.", + "The best way to identify a bulbul is by its characteristic song, which is a series of notes that descend in pitch.", + "Some species of bulbul have a crest or tuft of feathers on their head.", + "A bulbul is a brightly colored songbird of the Old World.", + "The best way to identify a bulbul is by its call.", + "The easiest way to identify a bulbul is by its call.", + "The best way to identify a bulbul is by its call.", + "The easiest way to identify a bulbul is by its call.", + "Some ways to identify a bulbul are by its song, which is often a repetitive trill, and by its long tail.", + "A bulbul is a vocal, forest bird with a distinctive call.", + "Bulbuls are small to medium-sized songbirds.", + "The bulbul is a small to medium sized songbird.", + "A bulbul is a medium-sized songbird that typically has a plump body, short neck, and long tail.", + "Bulbuls are small, short-necked songbirds.", + "The plumage of the adult male is mostly burnt sienna to maroon brown, with a pale scaly pattern on the lower breast and belly.", + "A bulbul is a member of the songbird family that includes about 130 species.", + "The bulbul is a medium-sized songbird with a slender body and long tail.", + "A bulbul looks like a small to medium-sized songbird with a short tail and rounded wings.", + "A bulbul is a small to medium-sized songbird.", + "A bulbul is a variety of songbird with a round body and a long tail.", + "The image is of a bird with brown and white feathers.", + "The image is of a brown and white bird with a long beak.", + "An image of a bulbul from the internet might show the bird perched on a branch, with its bright plumage and long tail feathers.", + "An image of a bulbul from the internet is of a small, brown and white bird.", + "This image shows a bulbul sitting on a branch.", + "A bulbul is a medium-sized songbird with a cheerful warble, stout body, and often brightly colored plumage.", + "A bulbul is a type of songbird.", + "The image shows a brown and white bird with a long tail, sitting on a branch.", + "This image shows a brownish-red bulbul perched on a branch.", + "An image of a bulbul from the internet shows a small, plump bird with a short tail and a long, curved beak.", + "A portrait of a bulbul, a type of songbird found in Asia.", + "A bulbul sips nectar from a flower.", + "A bulbul perched on a twig, looking out over a lake.", + " A beautiful Asian songbird, the bulbul is known for its lovely singing.", + "This is a black-capped bulbul.", + "The bulbul is a songbird of the Old World tropics.", + "The bulbul is a strikingly beautiful bird with its long tail feathers, black body and white head.", + "A bulbul perched on a branch, looking out over the forest.", + "A bulbul perched atop a branch, surveying the scene below.", + "Bulbuls are a family of songbirds found in Asia, Africa and the Middle East." + ], + "jay": [ + "A jay is a blue bird with a white chest.", + "Jays are medium-sized songbirds with blue or gray feathers and a prominent crest on their head.", + "The jay is a medium-sized bird with a long tail and strong legs.", + "A jay is a small, songbird with blue or gray plumage.", + "A jay is a type of bird that is typically blue and has a long tail.", + "A jay has blue and white feathers and a long tail.", + "Most jays are predominantly blue, with a white chest and underparts, and a black or blue-grey crest.", + "A jay looks like a bluebird with a white chest and belly.", + "A jay is a medium-sized bird with blue or gray feathers and a long tail.", + "The blue jay is a mid-sized bird with a bright blue body and wings and a white chest.", + "The best way to identify a jay is by its blue or gray feathers.", + "Jays have blue or blue-grey plumage on their heads and backs, with white chests and stomachs.", + "The easiest way to identify a jay is by its calls.", + "The easiest way to identify a jay is by its call.", + "Jays have blue feathers and a crest on their head.", + "There are many ways to identify a jay.", + "There are a few ways to identify a jay.", + "A jay is a member of the crow family.", + "That's a tough question.", + "Jays are a type of bird.", + "A blue jay is a songbird with blue feathers and a white chest.", + "A blue jay has mostly blue plumage with a white chest and underparts.", + "The jay is a medium-sized bird with blue upperparts and a pale gray underparts.", + "The blue jay is a medium-sized songbird with a crest on its head, a blue body, and white chest and underparts.", + "A jay is a type of bird.", + "Some jays are blue, some are grey, and some are a combination of both colours.", + "The blue jay is a plump bird with a pronounced crest on its head, a blue body, white belly and throat, and black bars on its wings and tail.", + "Jays are colorful birds with blue, gray, or green plumage.", + "A jay is a bluebird with a white chest.", + "The blue jay is a medium-sized bird with a body length of 9-10 inches and a wingspan of 13-15 inches.", + "This image is of a jaybird perched on a branch.", + "The image is of a blue jay perched on a tree branch.", + "The image is of a blue jay sitting on a tree branch.", + "The image is of a beautiful blue and white bird with a long tail.", + "In the image, the jay is a blue bird with a white chest.", + "This image is of a blue jay perched on a branch.", + "An image from the internet of a jay might show the bird in its natural habitat, perching on a branch or flying through the air.", + "This image is of a jay perched atop a branch.", + "birdA jaybird is a small, colorful bird with a long tail.", + "A jay is a blue and white bird with a black stripe on its head.", + " A jay perching on a branch.", + "A jay rests on a branch.", + "A blue jay perches atop a tree branch.", + " A jay perches on a branch.", + "A jay perches atop a branch, its blue plumage bright against the green leaves.", + "A jay perches atop a tree branch, its blue feathers shining in the sun.", + " A jay sitting on a branch.", + "A jay is a type of bird that is known for its striking blue plumage.", + "A blue jay perches on a tree branch.", + "A blue jay perched on a tree branch." + ], + "magpie": [ + "A magpie may have iridescent black feathers, white feathers on its back and head, and yellow eyes.", + "A magpie has black and white feathers and a long tail.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a black and white bird that is about the size of a crow.", + "A magpie is a black and white bird with a long tail.", + "They are medium-sized birds with black and white feathers and long tails.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a black and white bird with a long tail.", + "A magpie has black and white feathers and a long tail.", + "Magpies have a black body with a white chest, neck and shoulders.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a black and white bird with a long tail.", + "The easiest way to identify a magpie is by its black and white coloring.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a black and white bird with a long tail.", + " Magpies are a type of bird.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a black and white bird with a long tail.", + "There are many ways to identify a magpie.", + "A magpie can be identified by its black and white plumage, as well as its long tail.", + "A magpie is a crow-like bird with black and white feathers.", + "A magpie is a black and white bird with a long tail.", + "The magpie is a medium-sized bird with black and white plumage.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a black and white bird with a long tail.", + "The magpie is a medium-sized black and white bird with a long tail.", + "A magpie has black and white feathers and a long tail.", + "A magpie is a black and white bird.", + "A magpie has black and white feathers, and a long tail.", + "A magpie has black and white feathers and a long tail.", + "A magpie is a black and white bird with a long tail.", + "Image may show a black-and-white magpie perched atop a thin tree branch.", + "A black and white image of a magpie perched atop a branch.", + "The image is of a black and white bird with a long tail.", + "The image is of a black and white bird with a long tail.", + "The image is of a magpie perched atop a tree branch.", + "The image is of a black and white bird with a long tail.", + "A black and white bird with a long tail perching on a branch.", + "A magpie is a black and white bird with a long tail.", + "A magpie is a bird with black and white feathers.", + " The magpie is a member of the crow family.", + "A magpie perched on a tree branch, looking alert and curious.", + " A magpie perched on a tree branch.", + "A magpie perched on a branch.", + "A magpie perched on a tree branch.", + "A magpie perched on a tree branch.", + "An Australian magpie (Cracticus tibicen) perched on a tree branch.", + "A magpie perched atop a fencepost.", + "A magpie perched on a branch in a tree.", + "A magpie perched atop a tree branch." + ], + "chickadee": [ + "A black-capped chickadee is a small, North Americansongbird.", + "A Chickadee is a small, plump bird with a black cap and white cheeks.", + "A chickadee has a black cap and bib with white sides to its face.", + "A chickadee has a black cap and bib with white sides to its face.", + "A chickadee is a small, plump brown and white bird.", + "Chickadees are small, round birds with pale gray upperparts and off-white underparts.", + "A chickadee is a small, plump bird with a black cap and bib,gray sides and white throat and belly.", + "A chickadee is a small bird with a black cap and white cheeks.", + "A chickadee is a small, plump songbird with a black cap and black bib.", + "A chickadee is a small, round bird with a black cap, a white face, and a gray body.", + "The best way to identify a chickadee is by its distinctive call.", + "Chickadees can be identified by their small size, black cap, and white cheeks.", + "The most identifying feature of a chickadee is its black cap and bib.", + "Chickadees are small, round birds with short tails.", + "Chickadees are small songbirds with black caps and black bibs.", + "The best way to identify a chickadee is by its call.", + "A chickadee can be identified by its black cap and black bib with white sides.", + "The black cap and white cheeks of a chickadee are distinctive.", + "The black cap and white cheeks of a chickadee are diagnostic.", + "A chickadee has a black cap and bib with a white face.", + "Chickadees are small, plump birds with round heads and short tails.", + "A chickadee has a black cap and bib with white sides to its face.", + "American Chickadees are small, round-headed birds with bright eyes.", + "A chickadee has a black cap and bib, white cheeks, gray back and wings, and a rusty-brown breast.", + "Chickadees are small, stocky birds with rounded heads and short, square tails.", + "A chickadee looks like a small, sprightly bird with a black cap and bib set off by white cheeks.", + "A chickadee is a small, plump songbird with a black cap and black bib with white sides on its face.", + "A chickadee has a black cap and bib, white cheeks, gray back and wings, and a rusty brown breast.", + "A chickadee is a small songbird with a black cap and black bib with white sides on its face.", + "Chickadees are small, plump birds with brown feathers on their backs and wings, and gray feathers on their chests.", + "I cannot answer this question.", + "A chickadee is a small, perky bird with a black cap and black bib.", + "An image from the internet of a chickadee might show a small, sprightly bird with a black cap and black wings, sitting on a branch.", + "The image is of a small, brown and white bird perched atop a branch.", + "An image of a chickadee from the internet shows a small, brown bird with a black cap and white cheeks.", + " eating a sunflower seedThe image is of a small, brown bird with a black cap perched on a sunflower seed.", + "This image shows a black-capped chickadee perched on a tree branch.", + "The image is of a small, round bird with a black cap and white cheeks.", + "In the image, a small, sprightly bird with a black cap and white cheeks perches atop a snow-covered branch.", + "A small, plump bird with a black cap and white cheeks perched on a tree branch, its head cocked to one side as it looks at the camera.", + " Perching on a branch, this black-capped chickadee surveys its surroundings.", + "A black-capped chickadee perches on a tree branch.", + " Chickadee on a branch.", + " A chickadee perched on a branch.", + "This picture is of a black-capped chickadee, a North American bird.", + "A black-capped chickadee looking for food in a snowy forest.", + "A black-capped chickadee perches on a tree branch.", + "A Hefty Helping - This black-capped chickadee seems to be weighed down by the large seed it is carrying back to its nest.", + "Mama bird feeds her hungry chickadee.", + " A black-capped chickadee perched on a branch." + ], + "American dipper": [ + "Most American dippers are dark grey on the back and wings, with a white underside.", + "An American dipper is a small bird with a gray body and white belly.", + "The American dipper is a plump, dark gray bird with a white chest and belly.", + "An American dipper is a small, dark bird with a white breast.", + "The American dipper is a small, dark songbird with a white breast.", + "An American dipper is a small, dark songbird with a glossy black head and neck, and a white breast.", + "An American dipper is a small bird with a gray body and a white belly.", + "The American dipper is a small dark bird with a white chest and belly.", + "An American dipper is small, dark gray bird with a white chest.", + "The American dipper is a small songbird with a plump body and short tail.", + "An American dipper is a small songbird known for its habit of \" dipping \" or swimming underwater in rivers to catch insects.", + "The American dipper is a plump, gray bird with a white breast and a black cap.", + "The American dipper is a small stout bird with a gray back and wings, a white breast, and a black cap.", + "The easiest way to identify an American dipper is by its unique behavior.", + "The American dipper can be identified by its small size, dark plumage, and white eyeline.", + "Many times, people mistake other types of birds for American dippers because they are small and have a similar plumage.", + "The best way to identify an American dipper is by its unique behavioral trait of \"walking\" on water.", + "American dippers can be identified by their blue-grey upperparts and white underparts.", + " American dippers are North American birds in the genus Cinclus that are proponents of the StichocatAdams family.", + "An American dipper is a small, dark bird that can be found near streams and rivers in North America.", + "An American dipper has a dark body with a white chest.", + "There are several subspecies of American dipper, but generally they are plump, small birds with dark gray feathers.", + "An American dipper is a small, dark gray bird with a white chest.", + "An American dipper is a small songbird that has a chocolate-brown back and wings, a white breast, and a gray belly.", + "The American dipper is a small, dark gray bird with a white breast.", + "The American dipper looks like a small, dark gray bird with a white chest.", + "The American dipper (Cinclus mexicanus) is a small perching bird found in North America.", + "The American dipper is a small songbird with a plump body and a long tail.", + "The American dipper is a small, dark-colored bird with a white chest and belly.", + "The American dipper is a small, dark gray bird with a white breast and belly.", + "This image from the internet shows an American dipper perched on a branch near a river.", + "The image is of a small, dark bird perched on a rock in a rushing river.", + "This image is of an American dipper perched on a tree branch near a river.", + "An image of an American dipper from the internet shows a small, dark gray bird with a white chest and underparts, standing on a rock near a rushing creek.", + "The image shows a small, dark bird with a white breast perched on a mossy rock in a fast-moving stream.", + "An American dipper is a small, dark-colored bird with a white breast.", + "The image is of an American dipper perched on a rock in a river.", + "In the image, an American dipper is perched on a branch near a stream.", + "The image is of an American dipper bird perched on a rock in a river.", + "The image is of a small, dark bird, with a white chest, perched on a rock in a river.", + "A beautiful American dipper in its natural habitat.", + " The American dipper is a small songbird that can be found near fast-running rivers and streams in North America.", + " A dipper perched on a rock in a riverThis bird is an American dipper, and it is often found near fast-moving water like this river.", + "A American dipper (Cinclus mexicanus) feeding on insects in a river in Rocky Mountain National Park, Colorado.", + "A close-up of an American dipper (Cinclus mexicanus) in its natural habitat near a river in Alaska.", + "The American dipper is a medium-sized songbird that is known for its unique feeding habits.", + "This humble bird is the American dipper, known for its fearless nature and ability to swim and dive underwater in fast-moving streams.", + " The American dipper is a small, dark-colored songbird found near cold, fast-moving rivers and streams in North America.", + "American dipper bathing in a river.", + " The American dipper is a small, dark greybird that is found near streams and rivers in North America." + ], + "kite (bird of prey)": [ + "Birds of prey are typically recognized by their sharp hooked beaks, powerful talons, and excellent eyesight.", + "Kites are builky birds with long, narrow wings and weak legs.", + "A kite (bird of prey) has bright colors, long wings, and a sharp beak.", + "A kite is a bird of prey with long, pointed wings and a long tail.", + "A kite typically has a long, narrow body with long wings and a short tail.", + "A kite has a long, narrow body and pointed wings.", + "A kite is small to medium-sized bird of prey with long wings and weak legs.", + "Kites have long, narrow wings and a forked tail.", + "Kites are birds of prey in the family Accipitridae.", + "A kite is a bird of prey that typically has a long tail, hawk-like beak, and pointed wings.", + "The kite is a medium-sized bird of prey.", + "Kites are a type of hawk, and can be identified by their long wings and weak legs.", + "When looking at a kite (bird of prey), you will notice that it has a very thin and long body, as well as long and pointy wings.", + "Some kites can be identified by their forked tails, while others have more elongated tails.", + "A kite (bird of prey) can be identified by its long, narrow wings and forked tail.", + "Male kites have dark upperparts, white underparts, and black-and-white wings.", + "A kite is a bird of prey because it has sharp claws and a beak that it uses to tear its food.", + "A kite is a bird of prey with long, narrow wings and a forked tail.", + "A kite is a bird of prey with long, pointed wings and a forked tail.", + "A kite is a bird of prey because it has a hooked beak and sharp talons.", + "A kite (bird of prey) typically has a long, pointed beak; sharp, powerful talons; and broad, rounded wings.", + "A kite is a bird of prey with long, pointed wings and a long tail.", + "The kite has a long, narrow body and pointed wings.", + "Kites are birds of prey with long, narrow wings and pointed beaks.", + "A kite is a small tomedium-sized bird of prey with long wings and weak feet.", + "A kite is a small to medium sized bird of prey with long wings and weak legs.", + "Kites are small to medium-sized birds of prey with long wings, weak legs and fairly long tails.", + "A kite (bird of prey) typically has a long, pointed beak; sharp, talon-like claws; and wings that are long, narrow, and curved.", + "A kite is a small, slim bird of prey with long wings and a long tail.", + "Kites have long, narrow wings and a forked tail.", + "A kite is a type of bird of prey with long, narrow wings and weak feet.", + "The image is of a small, brown and white kite perched on a branch.", + "This image shows a kite in flight, with its wings outstretched and its tail feathers spread wide.", + "This particular image is of a kite flying through the sky with a reddish hue to it.", + "This image is of a beautiful kite soaring through the sky.", + "The image is of a kite (bird of prey) in flight.", + "An image of a kite (bird of prey) from the internet would likely show a relatively large bird with sharp claws and beak, capable of flying at high speeds and catching prey in mid-air.", + "The image is of a kite (bird of prey) soaring high in the sky, with its wings outstretched.", + "A kite (bird of prey) is a large, predatory bird with a hooked beak and powerful talons.", + "The image is of a large bird with a wingspan stretched out flying through the air.", + "A kite (bird of prey) soars through the sky.", + "A kite (bird of prey) flying through the air.", + "A kite soars in the sky, its powerful wings outstretched.", + "A kite soars over a field on a breezy day.", + "Red kite in flight.", + "A kite flying high in the sky.", + "A kite (bird of prey) soaring in the sky.", + "A kite soaring through the sky.", + "A kite soars over a field on a windy day.", + " A red kite in flight." + ], + "bald eagle": [ + "A bald eagle is a large, predatory bird with a brown body, white head and tail, and yellow eyes.", + "The bald eagle is a large bird of prey with a dark brown body and a white head and tail.", + "Bald eagles are large birds of prey with brown feathers on their body and a white head and tail.", + "A bald eagle looks like a giant chicken with white feathers on its head.", + "A bald eagle typically has dark brown feathers on its body and a white head and tail.", + "A bald eagle is a large bird of prey that has a dark brown body and a white head.", + "A bald eagle is a large bird of prey with a white head and neck, and a dark brown body.", + "The bald eagle is a large bird with a white head and tail and a dark brown body.", + "A bald eagle has a white head and a dark brown body.", + "A bald eagle is a large bird of prey with a dark brown body and a white head and tail.", + "Bald eagles are large birds of prey with dark brown bodies and white heads and tails.", + "A bald eagle can be identified by its brown body and white head.", + "There are several ways to identify a bald eagle.", + "Bald eagles are a large bird of prey with a white head and tail.", + "\u0444The following are characteristics of the bald eagle: large size, powerful hooked beak, large feet with sharp talons, broad wings with a wingspan of up to 2.", + "The national bird of the United States of America is the bald eagle.", + "The bald eagle has a distinctive shape, with a large head and beak, compared to its body size.", + "Bald eagles are large birds of prey with a white head and tail.", + "The easiest way to identify a bald eagle is by its white head and tail.", + "Bald eagles are pretty easy to identify.", + "A bald eagle is a large, predatory bird with a dark brown body and a white head and tail.", + "The bald eagle is a large, predatory bird with a somewhat elongated body and long, pointy wings.", + "Adult bald eagles are dark brown all over, with a white head and tail.", + "A bald eagle is a large bird of prey with a white head and tail.", + "A bald eagle is a large, dark-colored eagle with a white head and tail.", + "A bald eagle is typically brown with a white head and tail.", + "A bald eagle looks like a large, dark brown bird with a white head and tail.", + "A bald eagle looks like a large, predatory bird with a white head and tail, and dark brown body.", + "Bald eagles are large birds of prey with brown body plumage and a white head and tail.", + "A bald eagle is a huge bird with a white head and tail, and dark brown body.", + "The image is of a bald eagle soaring over a snow-capped mountain.", + "I saw an image of a bald eagle on the internet.", + "In the image, the bald eagle is perched atop a tree, its majestic wings spread wide as it looks down at the camera.", + "The image shows a bald eagle with a white head and tail and dark brown body.", + "A bald eagle soars above a river in Yellowstone National Park, its wings spread wide and its white head gleaming in the sun.", + "In the image, the bald eagle is shown in profile with its signature white head and brown body.", + "The image is of a bald eagle perched atop a branch.", + "I found an image of a bald eagle on the internet.", + "The image is of a bald eagle perched on a branch with its wings spread out.", + "The image is of a bald eagle with a white head and tail, and dark brown body.", + "Bald eagle in Alaska.", + "The bald eagle is a powerful bird of prey that is found in North America.", + "A bald eagle perched atop a tree overlooking a lake.", + "Bald Eagle soar through the sky.", + "The national bird of the United States of America, the bald eagle is a large, powerful raptor with distinctive brown and white plumage.", + " A bald eagle perches on a tree branch, looking out over a river below.", + "A majestic bald eagle looks over its kingdom.", + "Bald eagle perched on a tree branch.", + "A bald eagle in flight with its wings outstretched.", + "A bald eagle flying over the water with a fish in its talons." + ], + "vulture": [ + "A vulture has a bare head, which is often reddish, and a long, broad wingspan.", + "A vulture is a member of the family Accipitridae, which also includes eagles, hawks, and kites.", + "A vulture is a large, scavenging bird with a bare head, wrinkled neck, and sharp beak.", + "A vulture is a large, scavenging bird with a bald head, long neck, and sharp claws.", + "A vulture is a large bird with a bald head, long neck, and sharp beak.", + "A vulture is alarge scavenging bird with a bare head and neck, hooked beak, and stout body.", + "A vulture is a large, scavenging bird with a bare head and neck.", + "A vulture has a hooked beak and is scavenger bird.", + "A vulture appears like a large, dark bird with a bare head.", + "A vulture has a bare head, a long neck, and a large, hooked beak.", + "The easiest way to identify a vulture is by its wing shape.", + "There are many ways to identify a vulture.", + "Vultures are large, scavenging birds.", + "For the most part, vultures can be distinguished from other large birds of prey by their naked heads.", + "A vulture is a large bird with a featherless head.", + "Vultures can be identified by their large size, long necks, and bald heads.", + "A vulture can be identified by its large, bald head and long neck.", + "A vulture has a long, bare neck and head.", + "A vulture has a very long neck and usually a bare head.", + "There are many ways to identify a vulture.", + "A vulture is a large, dark bird with a bald head.", + "A vulture is a large bird with a wingspan of up to 3.", + "A vulture is a large bird with a bald head, dark body feathers, and long wing feathers.", + "A vulture is a large, scavenging bird with a bare head, long neck, and sharp claws.", + "A vulture is a large, scavenging bird with a bald head, long neck, and sharp beak.", + "Vultures are large birds with bald heads and long necks.", + "A vulture is a large, scavenging bird with bald head and neck, hooked bill, and strong claws.", + "A vulture is a large, scavenging bird with a bare head, black body, and wingspan of up to three meters.", + "A vulture has a large body, a bald head, and a long neck.", + "A vulture is a large bird with long wings and a long neck.", + "I found an image of a vulture on the internet that shows the bird's large, bald head, long neck, and dark plumage.", + "This image from the internet is of a vulture.", + "An image of a vulture from the internet shows a large, dark bird with a long neck, bald head, and sharp beak.", + "This image shows a vulture perched on a tree branch.", + "I found an image of a vulture on the internet.", + "This image shows a vulture perched atop a dead tree.", + "The image is of a vulture perched on a tree branch.", + "The image is of a vulture perched on a tree branch.", + "I found an image of a vulture perched on a branch with its wings spread out.", + "This image from the internet shows a vulture perched on a rock in a desert landscape.", + "A vulture waits patiently for its next meal.", + "A vulture waits for its next meal.", + "A vulture waiting patiently for its next meal.", + " A vulture landed on the ground to feast on a carcass.", + "This vulture is waiting for its lunch to die.", + "\"A vulture swooping down to snatch its prey.", + "A vulture with its prey.", + "A vulture extends its wings, revealing its black and white plumage.", + "A vulture feeding on a carcass.", + "A vulture eating a carcass." + ], + "great grey owl": [ + "A great grey owl is a large bird with grey feathers and yellow eyes.", + "A great grey owl is a very large owl with silver-grey feathers and yellow eyes.", + "A great grey owl is a large owl with grey feathers and yellow eyes.", + "Spring and summer adult great grey owls are slate-grey with light-colored spotting on their backs.", + "The great grey owl is the largest owl in North America.", + "A great grey owl is a very large owl with striking grey, white and black plumage.", + "A great grey owl is a very large owl with striking grey, white, and black plumage.", + "A great grey owl is a large owl with a round head and no ear tufts.", + "A great grey owl has a large, round head, big yellow eyes, and a grey body with white spots.", + "A great grey owl is a large owl with a rounded head and no ear tufts.", + "Great grey owls are one of the largest owls in North America.", + "A great grey owl has a light grey body with darker grey and brown streaks.", + "There are a few ways to identify a great grey owl.", + "There are a few ways to identify a great grey owl.", + "The great grey owl is the largest owl in North America.", + "The great grey owl is a large owl with a round head and no ear tufts.", + "The scientific name for the great grey owl is Strix nebulosa.", + "The great grey owl is one of the largest owls in the world.", + "There are a few ways to identify a great grey owl.", + "Great grey owls are the largest owl species in North America.", + "A great grey owl is a large owl with a round head and big yellow eyes.", + "Great grey owls have light grey bodies with darker streaks.", + "A great grey owl is a large owl with a round head, no ear tufts, and a grey body with white spots.", + "Great grey owls are large sooty-grey birds with paler underparts, a round head with no ear tufts, and yellow eyes.", + "A great grey owl is a large bird with a round head and no ear tufts.", + "A great grey owl is a large owl with grey and white feathers.", + "The great grey owl is a very large owl with a round head, no ear tufts, and bright yellow eyes.", + "A great grey owl is a large owl with light grey plumage and a round head with no ear tufts.", + "Great grey owls are large, round-headed owls with very long tails.", + "A great grey owl is a large owl with a round head and big yellow eyes.", + "A great grey owl is a large owl with mottled grey and white plumage.", + "The image is of a great grey owl perched on a tree branch.", + "The image is of a great grey owl perched on a tree branch.", + "The image is of a great grey owl perched on a tree branch.", + "In this image, the great grey owl is perched on a tree branch, looking to the left with its bright yellow eyes.", + "I found an image of a great grey owl on the internet that I really liked.", + "The internet image shows a great grey owl perched atop a stump in a forest.", + "The image is of a great grey owl perched atop a tree branch with its wings outstretched.", + "The image is of a great grey owl perched on a tree branch.", + "I found an image of a great grey owl on the internet that I really liked.", + "A great grey owl flying through the air.", + "The Great Grey Owl is one of the largest owls in the world.", + "The great grey owl is a large owl of the true owl family.", + "The Great Grey Owl is one of the largest owls in North America.", + "A great grey owl surveys its snowy kingdom from a high perch.", + " Great Grey Owl in a field of yellow wildflowers.", + " \"Great grey owl looking out from a snowbank\".", + "A great grey owl perched in a tree, its bright yellow eyes staring intently ahead.", + "The Great Grey Owl is the largest owl in North America.", + "A beautiful great grey owl perched atop a tree." + ], + "fire salamander": [ + "A fire salamander is a bright orange or yellow amphibian with black spots.", + "A fire salamander typically has a black body with yellow spots, although the pattern and coloration can vary significantly between individuals.", + "A fire salamander has a black body with yellow spots.", + "A fire salamander is a salamander that is black with yellow spots.", + "A fire salamander is black with yellow spots.", + "A fire salamander is a bright orange or yellow salamander with black spots.", + "A fire salamander has a black body with yellow spots.", + "The fire salamander is a brightly colored salamander with black and yellow stripes running along its body.", + "A fire salamander is a dark, richly colored salamander with a yellow, orange, or red stripe running down its back.", + "They are typically a red, orange, or yellow color with black spots.", + "Fire salamanders can be identified by their distinctive coloration.", + "Fire salamanders can be identified by their orange and black striped pattern.", + "A fire salamander has a dark body with bright yellow spots.", + "A fire salamander has bright yellow and black stripes running along its body.", + "Fire salamanders are black with yellow spots.", + "A fire salamander can be identified by its bright colors, which can include red, yellow, orange, or black.", + "A fire salamander is black with yellow spots.", + "A fire salamander is a black and yellow salamander.", + "They are black with red or yellow spots along their back.", + "The fire salamander is a medium-sized salamander with a bright orange to red body.", + "Fire salamanders have bright yellow or orange markings on a glossy black background.", + "A fire salamander is a dark colored salamander with bright yellow spots.", + "A fire salamander is a brightly colored salamander that is typically black with yellow spots.", + "A fire salamander is a brightly colored salamander that is usually black with yellow spots.", + "Fire salamanders are typically a red, orange, or yellow color with black spots.", + "A fire salamander typically has a black body with yellow spots, although the pattern and number of spots can vary greatly.", + "A fire salamander typically has a black body with yellowish spots.", + "A fire salamander typically has a black body with yellow spots, though the amount of yellow can vary greatly.", + "The fire salamander is a bright orange or yellow salamander with black spots.", + "A fire salamander is a dark-colored salamander with yellow spots.", + "The image from the internet of a fire salamander is a photo of a salamander with red and black markings.", + "A bright orange and black fire salamander is perched atop a log in a forest.", + "The fire salamander is a black and orange salamander with a long body.", + "The image is of a fire salamander (Salamandra salamandra) on a log in a forest.", + "An image from the internet of a fire salamander shows a bright orange and black salamander with blue spots on its back.", + "I found an image of a fire salamander on the internet that shows a close up of the creature.", + "A fire salamander is typically a red, orange, or yellow amphibian with black spots.", + "This image is of a fire salamander on a log in a forest.", + "The image is of a fire salamander lying on a bed of moss in a forest.", + "The image from the internet shows a fire salamander crawling on a log.", + "This is a fire salamander (Salamandra salamandra).", + " A fire salamander basking in the sun.", + "A fire salamander at the Zoo.", + "A fire salamander in its natural habitat.", + "A fire salamander lurks in the underbrush, poised to strike at its prey.", + " A fire salamander in its natural habitat.", + " A fire salamander basks in the sun.", + "This is a fire salamander (Salamandra salamandra), a species of salamander found in Europe.", + "Fire salamander (Salamandra salamandra) sitting on a log in a forest.", + " It's beautiful, but deadlyA fire salamander sits atop a log, surrounded by leaves and moss." + ], + "smooth newt": [ + "A smooth newt has a rounded body with a flattened head and vertical pupils.", + "A smooth newt is a small amphibian that has a dark brown or green body with spots.", + "A smooth newt is a small, dark-colored salamander with a long tail.", + "A smooth newt is a small salamander with a stocky body, short legs, and a long tail.", + "\nThe smooth newt is a small amphibian that can grow up to six inches in length.", + "A smooth newt is a small, dark green or brown lizard-like creature with a long tail.", + "A smooth newt looks like a small lizard with a long tail.", + "The smooth newt is a small, dark-colored salamander with a long tail.", + "A smooth newt typically has a dark brown or black upper body with a yellow, orange, or red belly.", + "A smooth newt is a small, dark salamander with a long tail.", + "There are many ways to identify a smooth newt.", + "A smooth newt is a type of newt that has smooth, moist skin.", + "A smooth newt can be identified by its shiny, smooth skin.", + "The smooth newt has a warty skin and a long tail.", + "The best way to identify a smooth newt is by its bright orange belly with black spots.", + "The best way to identify a smooth newt is to look for its telltale orange belly.", + "A smooth newt is usually dark brown or olive green in color with a yellowish or orange belly.", + "Positive identification of a smooth newt can be difficult as there is considerable variation in appearance within and between populations.", + "You can identify a smooth newt by its yellow-brown coloration with orange spots on its back, and its lack of ridges on its skin.", + "A smooth newt is a small amphibian that is dark brown or black on top with a yellow or orange belly.", + "The smooth newt is a small amphibian that is typically dark brown or black in color with a bright yellow or orange belly.", + "A smooth newt has a rounded body with a pointed head.", + "The smooth newt is a medium-sized newt, with a length ranging from 2.", + "A smooth newt is a small, dark-colored newt with a long tail.", + "A smooth newt looks like a small black and green lizard.", + "A smooth newt is a small salamander that is black or dark brown with a slimy skin.", + "A smooth newt is a small, dark-colored newt with a smooth skin.", + "Smooth newts typically have a dark brown or olive-green upper body with a yellow or orange belly.", + "Smooth newts are small lizards with smooth, wet skin.", + "A smooth newt is a small salamander that is dark brown or olive green on top with a yellow or orange belly.", + "A smooth newt is a small, dark green or brown salamander with spots.", + "The image is of a smooth newt that is green in color with black spots.", + "The image is of a smooth newt swimming in water.", + "The image is of a smooth newt swimming in a small body of water.", + "This image is of a smooth newt (Lissotriton vulgaris) crawling on moss.", + "The image is of a smooth newt on a green leaf, with its head and tail curled up.", + "The image is of a smooth newt, a type of lizard, crawling on a log.", + "The image is of a smooth newt that is brownish in color with darker spots.", + "A smooth newt is a small amphibian that is dark brown or black on top, with a yellow or orange underside.", + "The image is of a smooth newt crawling on a forest floor.", + "\nA smooth newt in water.", + " A smooth newt in water.", + "A smooth newt (Lissotriton vulgaris) swimming in a pond.", + "A smooth newt, looking dapper in its new suit.", + " A northern smooth newt rests on a forest floor in spring.", + "This smooth newt has just emerged from its winter cocoon and is ready to mate.", + " A smooth newt suns itself on a lily pad.", + " The smooth newt has a sleek body and can be found in ponds and streams.", + "Smooth newt (Lissotriton vulgaris) on a mossy forest floor in spring.", + "The smooth newt is a common species of newt found throughout Europe." + ], + "newt": [ + "A newt is a small, Salamander-like creature with a long tail.", + "A newt is a small, salamander-like creature with a long tail.", + "a newt is a small orange Salamander with black spots.", + "A newt is a small, dark-colored lizard with a long tail.", + "A newt is a small, dark-colored salamander with a long tail.", + "A newt is a small, slippery creature that can be found near water.", + "A newt is a small, semi-aquatic lizard with a long tail.", + "A newt is a small amphibian that typically has a bright orange or red belly and a dark brown or black back.", + "A newt is a small, slimy, orange-brown creature with a long tail.", + "A newt is a small, salamander-like creature, typically with a bright orange belly.", + "There are many ways to identify a newt.", + "The external gills of a newt are the most identifying feature.", + "A newt is a small, salamander-like amphibian.", + "Newts are small, salamander-like amphibians that typically have short noses, round eyes, and long tails.", + "Newts are small, aquatic salamanders.", + "A newt is a small, salamander-like amphibian.", + "A newt is a small salamander with smooth, wet skin.", + "All newts have tails, and most have legs.", + "Newts are small, semiaquatic salamanders.", + "Newts have smooth, moist skin and tend to be brightly colored.", + "A newt is a small, salamander-like amphibian.", + "A newt is a small amphibian that looks like a lizard with a long tail.", + "A newt is a small salamander with a long tail.", + "A newt is a type of salamander that typically has a bright coloration.", + "A newt is small, typically between 2 and 6 inches in length, with a smooth, moist skin.", + "Newts are small, slippery amphibians that look somewhat like lizards.", + "A newt is a small, salamander-like creature that typically has a bright orange or red belly.", + "A newt most often has a dark brown or red body with spots.", + "Several species of newts are found in the U.", + "A newt is a small, usually dark-colored lizard with a long tail.", + "The image is of a newt that is orange with black spots.", + "The image is of a newt on a green leaf in a garden.", + "The image is of a orange newt with black spots.", + "A newt is a small amphibian with a long body and a tail.", + "The image is of a newt swimming in a clear pool of water.", + "In the image, a newt is curled up on a mossy rock with its eyes closed.", + "The image is of a newt that is orange with black spots.", + "I found an image of a newt on the internet that I really liked.", + "An image of a newt can show the animal in its natural habitat or in a laboratory setting.", + "This image is of a newt that is crawling on a rock in a river.", + "This is a newt.", + "A newt peeks out from under a rock.", + "A newt hangs out near a lake.", + "A newt crawling among the leaves.", + "A newt crawling on a branch.", + "An aquatic newt swims through clear water.", + " A newt swimming happily in its natural habitat.", + "A newt swimming in water.", + "A newt crawling on the forest floor.", + "A newt swimming in a pool of water." + ], + "spotted salamander": [ + "A spotted salamander is a dark colored salamander with yellow spots.", + "The Spotted Salamander is a large, stocky salamander with a broad head and long legs.", + "A spotted salamander has orange or yellow spots on a black or dark blue body.", + "A spotted salamander (Ambystoma maculatum) is a large, dark salamander with yellow spots.", + "A spotted salamander is a small, dark-colored salamander with bright yellow spots.", + "A spotted salamander is a reddish-brown to black salamander with large, irregular, yellow spots.", + "A spotted salamander typically has a dark body with two rows of yellow spots running down its back.", + "A spotted salamander is a dark grey or black salamander with yellow spots.", + "A spotted salamander is a dark colored salamander with yellow spots.", + "A spotted salamander is a black salamander with yellow spots.", + "A spotted salamander can be identified by its distinct black spots on a yellow or orange body.", + "The spotted salamander is dark brown or black with yellow spots.", + "A spotted salamander can be identified by its dark coloration with yellow spots, and its long tail.", + "Spotted salamanders have dark brown or black bodies with orange or yellow spots.", + "A spotted salamander has a smooth, slimy skin and is usually dark brown or black with yellow spots.", + "If you find a salamander that is black with white spots, it is a spotted salamander.", + "The spotted salamander is a dark-colored salamander with yellow, orange, or white spots.", + "A spotted salamander can be identified by its dark brown or black body with yellow spots.", + "The spotted salamander's back is dark with two rows of yellowish or orange spots.", + "When looking for a spotted salamander, one should look for a dark colored salamander with yellow spots.", + "The spotted salamander is a large, stocky amphibian with short limbs and a long tail.", + "The spotted salamander is a dark blue or black salamander with yellow or orange spots.", + "The spotted salamander is a large, stocky salamander with a distinctive, yellow spots.", + "A spotted salamander is a bright orange or yellow salamander with black spots.", + "A spotted salamander typically has a black body with yellow spots.", + "A spotted salamander has a reddish-brown or black body with yellow spots.", + "A spotted salamander is black with bright yellow spots all over its body.", + "A spotted salamander is a type of salamander that has spots on its body.", + "A spotted salamander is a dark blue or black salamander with small yellow spots.", + "Spotted salamanders are dark, glossy-black with two rows of yellow spots running down their backs.", + "The image is of a spotted salamander (Ambystoma maculatum) that is brown with yellow spots.", + "The image shows a spotted salamander that is dark brown with yellow spots.", + "This spotted salamander is a beautiful example of this species of amphibian.", + "A spotted salamander is an orange and black amphibian with spots all over its body.", + "This image is of a spotted salamander (Ambystoma maculatum) that was found in the wild.", + "The image is of a spotted salamander that is mostly black with white spots.", + "The image is of a small, dark-colored salamander with white spots on its back.", + "A spotted salamander is a small, dark salamander with yellow spots.", + "The image is of a salamander that is dark brown in color with light brown spots.", + "The image shows a spotted salamander that is black with yellow spots.", + " A spotted salamander (Ambystoma maculatum) photographed in Ontario, Canada.", + " \"The spotted salamander is a species of salamander found in North America.", + "A spotted salamander resting on a log.", + "This spotted salamander was found in a local forest.", + "A spotted salamander (Ambystoma maculatum) rests on a bed of moss.", + " A spotted salamander, with its black and yellow spots, blends in with the forest floor.", + "A spotted salamander enjoying a meal of worms.", + "A spotted salamander in its natural habitat.", + "A spotted salamander (Ambystoma maculatum) with its distinctive black spots on a yellowish-orange background.", + "A spotted salamander (Ambystoma maculatum) is a species of salamander in the family Ambystomatidae." + ], + "axolotl": [ + "A axolotl is a small, aquatic salamander with external gills and a wide, toothed head.", + "A typical axolotl is brownish-gray with light speckles on its back and sides and a whitish belly.", + "A axolotl looks like a predatory aquatic salamander with a brown, mottled body and a wide, flat head.", + "A typical axolotl measures about 12\u201318 inches (30\u201345 cm) in length from nose to tail, although some specimens grow to 24 inches (60 cm), with a body configuration reminiscent of a lizard.", + "\nThe axolotl is a strange and unique creature that many people find difficult to describe.", + "A axolotl is a small, reddish-brown aquatic salamander with dark spots.", + "A axolotl typically has a dusty brown and black mottled coloring.", + "The axolotl is a salamander that retains its larval form throughout its life.", + "An axolotl looks like a salamander that is permanently aquatic.", + "A axolotl typically has a dark brown or olive green body with spots.", + "Axolotls are neotenic salamanders related to the tiger salamander.", + "A axolotl is a water creature that has a long tail and webbed feet.", + "The easiest way to identify an axolotl is by its external gills, which are feathery and protrude from the sides of its head.", + "There are a few ways to identify an axolotl.", + "Can you see its gills?.", + "The easiest way to identify an axolotl is by its appearance.", + "A axolotl is a type of salamander that is found in Mexico.", + "A axolotl is a species of salamander.", + "The easiest way to identify an axolotl is by its appearance.", + "The easiest way to identify an axolotl is by its unique appearance.", + "The axolotl is a neotenic salamander, meaning it retains its larval form into adulthood.", + " Saxolotls are a species of salamander that look like a cross between a lizard and a fish.", + "A axolotl looks like a small salamander with large eyes and a long tail.", + "An axolotl is a type of salamander that typically has a dark brown or olive green body with black spots.", + "An axolotl has a long, thin body with four legs.", + "Axolotls are amphibians that look like a cross between a lizard and a fish.", + "A axolotl looks like a small, slimy lizard with a long tail.", + "An axolotl is a small, aquatic salamander.", + "Axolotls are threadlike, aquatic salamanders that can grow up to a foot long.", + " Axis axolotl look like Amphibians with long tails and brown patterned skin.", + "The image is of an orange axolotl with black spots on its sides.", + "This image shows an axolotl, a salamander-like creature, in a glass tank.", + "The image is of a small, brown and white axolotl with its mouth open.", + "An image of an axolotl from the internet shows a small, brown and white creature with large, protruding eyes.", + "The image is of a brown and white axolotl swimming in a blue tank.", + "In the image, a small, brown axolotl is swimming in a glass tank.", + "The image shows a close up of an axolotl's face, with its large eyes and protruding tongue.", + "In the image, an axolotl rests on some rocks in a tank of water.", + "The image is of a brown axolotl with black spots.", + "The image from the internet of an axolotl is a photo of a brown and white creature with large eyes and gills protruding from the side of its head.", + " A baby axolotl, with its characteristic gills, looking up at the camera.", + "A close-up of a axolotl, a permanently aquatic salamander.", + "A close up of an axolotl's head, revealing its large eyes and smiling mouth.", + "thisone-eyedaxolotlwascaughtinafreakaccidentinthesewer.", + "This is an axolotl, a permanently aquatic salamander.", + " A moments peace.", + "A close up of an axolotl, a species of salamander.", + "A close-up of an axolotl, a permanently aquatic salamander, with bright red gills on either side of its head.", + " \"An axolotl, or aMexican salamander, in its natural habitat.", + "A close-up of a yellow axolotl." + ], + "American bullfrog": [ + "An American bullfrog is large, typically 5.", + "The American bullfrog is a large frog, usually green in color with brown spots.", + "American bullfrogs are green with dark spots on their backs and sides and white bellies.", + "An American bullfrog is a large frog with a green body and brown spots.", + "An American bullfrog is a large frog with a dark green or brown back and light green sides.", + ".", + "An American bullfrog is a large frog ruled by its appetite.", + " American bullfrogs are large frogs.", + "The American Bullfrog has a large, somewhat barrel-shaped body with short legs and a large head.", + "An American bullfrog looks like a large green frog with brown spots.", + "The American bullfrog is the largest North American frog and can reach lengths of up to 8 inches.", + "The easiest way to identify an American bullfrog is by its size.", + "The easiest way to identify an American bullfrog is by its call, which is a deep \"Jug-o-rum.", + "The American bullfrog is a large frog.", + "The American bullfrog is a large frog with a green back, large eardrums, and a yellow underside.", + "The best way to identify an American bullfrog is by its size.", + "The easiest way to identify an American bullfrog is by its call, which is a deep, resonating \"jug-o-rum.", + "American bullfrogs can be identified by their large size, green coloration with dark spots, and the vocal sacs that males have on their throats.", + "The American bullfrog is a large frog with a rounded body and large head.", + "The American bullfrog is a large frog that can grow up to 8 inches long.", + "The head and body of an American bullfrog is dark green, but the sides may have a brownish cast.", + "The American bullfrog (Rana catesbeiana) is a large species of frog.", + "American bullfrogs are large frogs with green or brown skin and may have dark spots.", + "The American bullfrog is the largest member of the frog family in North America.", + "An American bullfrog is a large frog with green skin and dark spots.", + "An American bullfrog is a large frog with smooth, green skin.", + "The American bullfrog (Rana catesbeiana) is a large frog that can be found in the eastern and central United States.", + "The American bullfrog is the largest frog in North America.", + "The American bullfrog is the largest True Frog in North America.", + "The American bullfrog (Rana catesbeiana) is a large frog that is found throughout the eastern United States and Canada.", + "The image is of a large, green frog with brown spots on its back.", + "The image is of an American bullfrog sitting on a lily pad in a pond.", + "In this image, an American bullfrog perched atop a lily pad in a pond.", + "The image is of a large green frog with brown spots on its back.", + "The image is of a large green frog with large eyes and a wide mouth.", + "An American bullfrog is a large frog with green skin and brown spots.", + "The image shows a large, green American bullfrog sitting on a lily pad in a pond.", + "The American bullfrog is a large frog that is green with dark spots.", + "The image shows a large, green frog with dark markings on its back and sides.", + "In this image, an American bullfrog is sitting in a pond with its legs outstretched.", + "Image of an American bullfrog sitting on a lily pad.", + " A large American bullfrog propped up on its hind legs.", + "American bullfrogs are native to the eastern United States, but have been introduced to other parts of the country, as well as other countries.", + "The American bullfrog is the largest frog in North America.", + "The American bullfrog has an average lifespan of 8-10 years.", + " The American bullfrog is an aquatic frog found in North America.", + "An American bullfrog swimming in a pond.", + "The American bullfrog is a large frog that can grow up to 8 inches long.", + "The American bullfrog is a large frog known for its aggressive behavior and hearty appetite.", + "The American bullfrog is a large frog that is native to the United States." + ], + "tree frog": [ + "A tree frog has large eyes, webbed toes and a long sticky tongue.", + "A tree frog typically has long hind legs, enabling it to jump a long way.", + "A tree frog is a small frog that has large, adhesive toe pads that help it climb trees.", + "A tree frog is typically a small frog that has large adhesive toe pads that help it climb trees and other surfaces.", + "A tree frog is a small amphibian that typically has a green body with darker spots.", + "Most tree frogs have green skin, but some species can have brown, gray, or yellowish skin.", + "A tree frog is a small frog that has large toe pads that help it climb trees.", + "A tree frog is typically a small to medium-sized frog that has adhesive pads on its feet that allow it to climb up and cling to trees, shrubs, and other smooth surfaces.", + "A tree frog has a long body and long legs.", + "A tree frog has green skin and is small.", + "The easiest way to identify a tree frog is by its unique call.", + "The most distinguishing feature of a tree frog is its webbed toes, which help them climb.", + "A tree frog has large, moist eyes, and sticky pads on its toes that help it climb trees.", + "Tree frogs can be identified by their large toe pads, which help them climb, and their webbed feet, which help them swim.", + "A tree frog is a small frog that is usually green and can climb trees.", + "The best way to identify a tree frog is by its call.", + "There are over 700 species of tree frogs, so it is difficult to identify one without knowing its specific species.", + "One way to identify a tree frog is by its habitat.", + "The easiest way to identify a tree frog is by its call.", + "A tree frog can be distinguished from other kinds of frogs by its enlarged toe pads that help it climb, its narrow waist, and its smooth skin.", + "A tree frog is a small amphibian that has large toe pads, which help it to cling to trees and branches.", + "Tree frogs vary in appearance, but most have wide mouths, large eyes, and long hind legs that are adapted for jumping.", + "A tree frog looks like a small frog with large eyes.", + "A tree frog is a small, bright-colored frog that has large toe pads that help it climb trees.", + "A tree frog generally has a slim body, moist skin, and long hind legs for jumping.", + "A tree frog typically has green skin, large eyes, long legs, and webbed feet.", + "A tree frog typically has green skin, big eyes, and suction cups on its toes that help it cling to surfaces.", + "A tree frog typically has large, adhesive pads on its toes that enable it to stick to smooth surfaces like leaves and tree bark.", + "Tree frogs have long, sticky toes that help them climb trees and other surfaces.", + "Tree frogs tend to be small, nocturnal, and arboreal.", + "This image is of a orange and white tree frog clinging to a branch.", + "The image is of a small, green tree frog with large eyes, sitting on a leaf.", + "The image is of a tree frog with large, bulging eyes.", + "I found an image of a tree frog that looks like it is camouflaged in the leaves.", + "The image is of a small, brightly colored tree frog perched on a green leaf.", + "This image from the internet shows a tree frog perched atop a bright green leaf.", + "The image is of a tree frog perched on a leaf.", + "In the image, a tree frog is perched atop a branch, with its bright green body and large eyes visible.", + "The image is of a small, brown and green tree frog climb up the side of a tree.", + "In the image, a tree frog is sitting on a leaf with its eyes closed.", + "This frog is an expert tree climber.", + "A tree frog looking up at the camera.", + "A tree frog hangs from a branch, its green body camouflaged against the leaves.", + " The tree frog is a small amphibian that is found near trees and shrubs.", + "A tree frog perched on a green leaf.", + " A tree frog sitting on a tree branch.", + " A tree frog perched on a leaf.", + " A tree frog sits on a leaf, looking out at the viewer.", + " A tree frog perches on a leaf.", + " A tree frog on a green leafA tree frog is a small frog that typically lives in trees or other high places." + ], + "tailed frog": [ + "A tailed frog has a long tail and webbed hind feet.", + "The tailed frog is a small frog that is found in North America.", + "A tailed frog has a tail that is about as long as its body.", + "A tailed frog has a long tail and long hind legs.", + "A tailed frog is a small frog with a long tail.", + "A tailed frog has a long tail and webbed feet.", + "A tailed frog has a long tail and webbed feet.", + "Tailed frogs have long, skinny tails and small, round bodies.", + "A tailed frog has a long tail and webbed feet.", + "A tailed frog has a long body and a short tail.", + "A tailed frog can be identified by its long tail.", + "A tailed frog can be identified by its long hind legs and tail.", + "The most obvious way to identify a tailed frog is by its long, powerful tail.", + "A tailed frog can be identified by its long, muscular tail that is used for swimming.", + "One way to identify a tailed frog is by its long, muscular tail.", + "A tailed frog is a frog with a long tail.", + "By its long, taillike extension of the cloaca.", + "The easiest way to identify a tailed frog is by its distinctive tail.", + "A tailed frog can be identified by its long tail.", + "The tailed frog is a species of frog in the family Ascaphidae.", + "There are many different species of tailed frogs, so they can vary in appearance.", + "A tailed frog has a long, slender body with a long tail.", + "There are many species of tailed frogs, so they can vary somewhat in appearance.", + "A tailed frog is a small frog with a long tail.", + "A tailed frog looks like a frog with a tail.", + "A tailed frog is a amphibian that has a long tail.", + "There are many different kinds of tailed frogs, but they all have a long, thin tail.", + "A tailed frog has a long tail, like a monkey.", + "There is no tail on a frog.", + "There are many species of tailed frogs, so they can vary in appearance.", + "One image from the internet of a tailed frog shows a small, brown frog with a long tail.", + "The image is of a tailed frog perched on a green leaf with its long tail wrapped around the stem.", + "One image that comes up when you search for \"tailed frog\" is of a frog with a very long, thin tail.", + "The image is of a brightly colored frog with a long tail.", + "Image shows a small, green frog with large eyes and a long, thin tail.", + "The image is of a tailed frog that is green with black spots.", + "A tailed frog is a frog with a long tail.", + "The image is of a small, dark green frog with a long tail.", + "In the image, a tailed frog is perched on a log with its tail wrapped around it.", + "The image is of a bright green frog with a long, thin tail.", + "Tailed Frog (Ascaphus truei), female.", + "Tailed Frog in profile, showing its long, thin tail.", + " A tailed frog rests on a tree branch, its long tail wrapped around the branch for balance.", + " A tailed frog hangs on to a branch over a river.", + "The tailed frog is a species of frog found in North America.", + " A tailed frog perched on a stone in a fast-moving stream.", + "This image shows a tailed frog (Ascaphus truei), a species of frog found in Northwestern America.", + "A tailed frog in its natural habitat.", + "This tailed frog was caught in a tree in the Amazon rainforest.", + "A tailed frog perches on a leaf in a jungle." + ], + "loggerhead sea turtle": [ + "The loggerhead sea turtle is a large turtle with a reddish-brown shell.", + "A loggerhead sea turtle has an elongated heart-shaped shell that is reddish-brown in color.", + "The loggerhead sea turtle is a large turtle with a reddish-brown shell.", + "The loggerhead sea turtle is a large marine reptile that can grow up to 3 feet long and weigh up to 400 pounds.", + "A loggerhead sea turtle is a large ocean turtle with a reddish-brown carapace, or shell.", + "A loggerhead sea turtle is a large marine turtle that can grow up to two meters in length and weigh over 200 kilograms.", + "A loggerhead sea turtle is a large marine reptile that can grow to over two meters in length.", + "The loggerhead sea turtle is a large oceanic turtle with a hard shell.", + "The loggerhead sea turtle gets its name form its large head carapace.", + "A loggerhead sea turtle has a large, brownish-red shell and a head that is relatively large compared to its body.", + "The easiest way to identify a loggerhead sea turtle is by its large, block-like head.", + "There are three things that you can look for when trying to identify a loggerhead sea turtle.", + "There are a few ways to identify a loggerhead sea turtle.", + "Loggerhead sea turtles have a large head and heart-shaped shell.", + "Loggerhead sea turtles have a large, heavy head and a reddish-brown carapace.", + "A loggerhead sea turtle is a medium to large turtle that has a large, reddish-brown head and a long, thick shell.", + "A loggerhead sea turtle can be identified by its large head and reddish-brown shell.", + "The best way to identify a loggerhead sea turtle is by its large head and powerful jaws.", + "A loggerhead sea turtle can be identified by its large head, reddish-brown disc-shaped shell, and flippers with blunt ends.", + "A loggerhead sea turtle is a species of marine turtle.", + "A loggerhead sea turtle looks like a large turtle with a reddish-brown shell.", + "Loggerhead sea turtles have large heads, strong jaws, and a reddish-brown carapace.", + "A loggerhead sea turtle typically has a reddish-brown shell and a yellowish-brown underside.", + "Loggerhead sea turtles have a large, thick head with powerful jaws.", + "A loggerhead sea turtle has a large, reddish-brown head and a dark brown body.", + "A loggerhead sea turtle looks like a large turtle with a big head.", + "Loggerhead sea turtles are large turtles with a reddish-brown shell and a large, block-like head.", + "Loggerhead sea turtles have large, reddish-brown shells and can grow up to 3 feet long.", + "A loggerhead sea turtle is a large marine reptile that has a reddish-brown carapace, or shell, and a yellowish-brown plastron, or underside.", + "A loggerhead sea turtle is a large, brown turtle with a large head.", + "This image from the internet shows a loggerhead sea turtle on a beach.", + "The image is of a loggerhead sea turtle swimming through the ocean.", + "An image of a loggerhead sea turtle can be found at http://www.", + "The image is of a loggerhead sea turtle on a beach.", + "The loggerhead sea turtle is a large, oceanic turtle with a reddish-brown carapace and a yellowish-brown plastron.", + "The loggerhead sea turtle is a large turtles with a reddish-brown carapace and a yellow-brown plastron.", + "On the internet, there are many images of loggerhead sea turtles.", + "In the image, the loggerhead sea turtle is a large, brown reptile with a long neck and flippers.", + "The image is of a loggerhead sea turtle swimming in the ocean.", + "The loggerhead sea turtle is a brown turtle with a large head.", + "A loggerhead sea turtle in the wild.", + " A loggerhead sea turtle walks along the beachThis loggerhead sea turtle is walking along the beach, looking for a place to lay her eggs.", + "A loggerhead sea turtle on the beach.", + "Loggerhead sea turtle on the beach.", + "The loggerhead sea turtle is one of the most endangered sea turtles in the world.", + "Loggerhead sea turtles are one of the largest species of turtles in the world.", + "A loggerhead sea turtle swims through the water.", + "This is a loggerhead sea turtle, which is a species of turtle that is endangered.", + "A loggerhead sea turtle on the beach.", + "A close up of a loggerhead sea turtle." + ], + "leatherback sea turtle": [ + "Leatherback sea turtles are the largest of all the turtles, and can grow to be over six feet long.", + "A leatherback sea turtle is a large turtle that can grow up to 7 feet long and weigh over 2,000 pounds.", + "A leatherback sea turtle is a large marine reptile that can grow up to 7 feet long and weigh up to 2,000 pounds.", + "The leatherback sea turtle is a giant turtle.", + "A leatherback sea turtle is a large, dark turtle with a leathery shell.", + "Leatherback sea turtles are the largest turtles in the world, and can grow up to 7 feet long and 2,000 pounds.", + "A leatherback sea turtle has a leathery, rather than hard, shell.", + "A leatherback sea turtle is a large marine turtle that can grow up to 7 feet long and can weigh up to 2,000 pounds.", + "The leatherback sea turtle is the largest turtle, weighing up to 2,000 pounds.", + "Leatherback sea turtles are dark blue on top and white on the bottom.", + "The easiest way to identify a leatherback sea turtle is by its shell.", + "The best way to identify a leatherback sea turtle is by its carapace, or shell.", + "A leatherback sea turtle is a turtle with a soft, leathery shell.", + "The shell of a leatherback sea turtle is composed of a thin layer of keratin over a layer of cross-linked collagen fibers.", + "Juliana Brodd\u2014Leatherback sea turtles are the largest of all living turtles and are easily distinguished from other sea turtles by their lack of a hard shell.", + "A leatherback sea turtle is the largest of all the sea turtles and can grow to be up to seven feet long.", + "One way to identify a leatherback sea turtle is by its large size.", + "The leatherback sea turtle is the largest turtle and can grow up to 7 feet long.", + "The leatherback sea turtle is the largest of all turtles and is the only turtle that does not have a hard shell.", + "A leatherback sea turtle is easily identified by its smooth, leathery carapace (upper shell).", + "A leatherback sea turtle typically has a dark brown or black carapace (upper shell) and a whitish or pinkish plastron (lower shell).", + "Leatherback sea turtles have a dark brown or black carapace (shell) and a white or pinkish undershell.", + "Leatherback sea turtles have a soft, leather-like shell.", + "There are seven different species of sea turtles, and the leatherback is the largest.", + "A leatherback sea turtle typically has a dark brown or black carapace, or shell, with a whitish underside.", + "Leatherback sea turtles are the largest turtles on Earth and can weigh over 2,000 pounds.", + "The leatherback sea turtle is the largest sea turtle.", + "A leatherback sea turtle has a long, streamlined body with a large, rigid shell.", + "A leatherback sea turtle looks like a large, dark turtle with a hard shell.", + "A leatherback sea turtle is a type of sea turtle that has a soft, leathery shell.", + "This image from the internet shows a leatherback sea turtle swimming under water.", + "An image from the internet of a leatherback sea turtle might show the turtle swimming in the ocean or lying on a beach.", + "Image shows a large brown leatherback sea turtle with a light spots on its shell, swimming through blue waters.", + "In this image, a leatherback sea turtle is swimming through the ocean water.", + "In this image, a leatherback sea turtle is swimming through the water with its long flippers.", + "The leatherback sea turtle is a large, dark-colored turtle with a hard shell.", + "The image shows a large, dark turtle with a long, streamlined body and flippers.", + "The image is of a large, dark turtle with a smooth shell.", + "In the image, the leatherback sea turtle is swimming underwater.", + "In the image, the leatherback sea turtle is swimming underwater with its long flippers.", + "A leatherback sea turtle braves the waves in search of food.", + "A leatherback sea turtle swims through the water.", + "Leatherback sea turtles are the largest turtles in the world, measuring up to 9 feet long and weighing up to 2,000 pounds.", + "A leatherback sea turtle swimming in the ocean.", + "A leatherback sea turtle basks in the sun on a beautiful sandy beach.", + " The largest of all living turtles, leatherbacks can weigh up to 2,000 pounds.", + "This massive leatherback sea turtle was photographed swimming happily in the open ocean.", + "A leatherback sea turtle basking in the sun.", + " The leatherback is the largest sea turtle, and one of the largest living reptiles.", + " This leatherback sea turtle is venturing back into the open ocean after nesting on a beach." + ], + "mud turtle": [ + "Mud turtles are small turtles that can reach a maximum length of about 8 inches.", + "A mud turtle is a small, dark turtle that lives in muddy environments.", + "Mud turtles are small to medium-sized turtles.", + "Mud turtles are small turtles, typically measuring 4-6 inches long.", + "Mud turtles are small to medium-sized turtles with a soft, flexible shell.", + "Mud turtles have a dull brown or black shell.", + "A mud turtle is a small turtle that typically has a dark brown or black shell.", + "A mud turtle is a small, dark turtle with a light-colored underside.", + "Mud turtles have a dark brown or black shell with a light brown or yellow underside.", + "A mud turtle is a1976 American action film directed by Michael Miller.", + "A mud turtle has a domed shell and webbed feet.", + "Mud turtles can be identified by their long necks, saw-edged shells, and webbed feet.", + "Mud turtles can be identified by their minuscule size, their blunt snouts, and their webbed feet.", + "Mud turtles get their common name from their preferred habitat: muddy bottomlands near water.", + "Mud turtles can be identified by their soft, leathery shell and their webbed feet.", + "A mud turtle is a small turtle that is found in the southeastern United States.", + "There are many ways to identify a mud turtle.", + " sex.", + "There are many ways to identify a mud turtle.", + "A mud turtle can be identified by its small, dull-colored shell, which is often covered in algae.", + "There are many types of mud turtles, but they generally have a dark brown or black shell and skin.", + "Mud turtles are small turtles who live in wet habitats.", + "A mud turtle is a small, dark-colored turtle with webbed feet.", + "Mud turtles range in size from 3 to 6 inches in shell length.", + "Mud turtles are small turtles that have a dark brown or black upper shell and a light brown or yellow bottom shell.", + "A mud turtle is a small turtle with a streamlined shell.", + "A mud turtle looks like a small, dark-colored turtle with a yellow, orange, or red stripe running down the center of its back.", + "A mud turtle is a small turtle that lives in muddy areas.", + "A mud turtle is small, dark, and has a blunt head.", + "Mud turtles are small to medium-sized turtles with a smooth, streamlined carapace.", + "This mud turtle is basking in the sun on a fallen log near a river.", + "This particular mud turtle is brown and black with a smooth shell.", + "The mud turtle in this image is a brown, shelled turtle with a long neck.", + "The image is of a mud turtle swimming in a murky pond.", + "The image shows a mud turtle perched on a dry, mud-covered log.", + "This mud turtle is walking through the mud, with its long neck and small head poking out.", + "The image is of a mud turtle on a log in a swamp.", + "The image is of a mud turtle crawling through the mud.", + "The image is of a mud turtle crawling through mud and water.", + "This image shows a mud turtle crawling through mud and weeds.", + "A mud turtle in its natural habitat.", + "Mud Turtle enjoying a sunny day.", + "This mud turtle was found in a wetland habitat.", + " Mud turtles are a type of turtles who live in muddy environments.", + "A mud turtle peers out from its mud home.", + " The mud turtle is a species of turtle found in the southeastern United States.", + "A mud turtle pictured in its natural habitat.", + "A mud turtle suns itself on a log.", + "A mud turtle crawling through the mud.", + "Mud turtle in its natural habitat." + ], + "terrapin": [ + "A terrapin is a small, turtlesilver-gray shell with dark spots or streaks.", + "A terrapin looks like a turtle that spends most of its time in water.", + "A terrapin looks like a small turtle that lives in water.", + "Terrapins are small, hard-shelled turtles.", + "Terrapins are medium-sized turtles with a ridged shell.", + "A terrapin is a small turtle that typically has a dark upper shell and a light lower shell.", + "A terrapin is a small turtle, typically with a dark, greenish-brown shell.", + "A terrapin is small turtle that has a dark brown or black shell.", + "A terrapin is a small, turtles.", + "A terrapin is a small, land-dwelling turtle, typically with a dark-colored shell.", + "The best way to identify a terrapin is by its shell.", + "The most common way to identify a terrapin is by its shell.", + "A terrapin can be identified by its small size, webbed feet, and beak-like mouth.", + "Terrapins can be identified by their unique physical features, including their long tails, webbed feet, and sharp claws.", + "The bottom shell of a terrapin is convex, and the top shell is flatter.", + "The best way to identify a terrapin is by its physical characteristics.", + "Terrapins can be identified by their diamond-shaped shells, which are usually greenish-brown in color.", + "The best way to identify a terrapin is by its physical characteristics.", + "Terrapins can be identified by their high-domed shells, webbed feet, and beak-like mouths.", + "Terrapins are Turtles that live in brackish or salty water.", + "A terrapin is a small turtle, usually about 6-8 inches long.", + "Terrapins are small turtles that have a hard, bumpy shell.", + "A terrapin is a small turtle that has a flat, scaly shell and webbed feet.", + "A terrapin looks like a small turtle.", + "A terrapin is a small turtle.", + "A terrapin looks like a small turtle that is often found in fresh or brackish water.", + "A terrapin is a type of turtle that typically has a dark, domed shell and webbed feet.", + "A terrapin is a small, aquatic turtle.", + "A terrapin looks like a small Turtle.", + "There are many different species of terrapin, but they generally have a similar appearance.", + "I found an image of a terrapin on the internet that I really liked.", + "The image is of a terrapin swimming in a body of water with other fish.", + "The image is of a terrapin sunning itself on a dock.", + "A terrapin is a turtle that lives in water.", + "The image shows a terrapin swimming through some blue water.", + "The image is of a terrapin swimming under water.", + "A terrapin is a turtle that lives in fresh or brackish water.", + "The image shows a terrapin sunning itself on a dock.", + "I found an image on the internet of a terrapin that I really liked.", + "An image of a terrapin from the internet shows a small, brown turtle with a long neck and a shell that is striped with yellow lines.", + "A terrapin rests on a log in a swamp.", + "A terrapin basks in the sun on a hot summer day.", + "\nA terrapin basks in the sun on a hot day.", + " Two juvenile Diamondback Terrapins (Malaclemys terrapin) basking on a log in a swamp.", + " A terrapin basks in the sun at the edge of a pond.", + "A terrapin in its natural habitat.", + "The eastern box turtle is a slow moving reptile that is endemic to the eastern United States.", + " A juvenile common terrapin (Malaclemys terrapin) sunbathes on a log in a Maryland freshwater marsh.", + " Terrapin enjoying a meal of crayfish.", + "A diamondback terrapin pauses on a sunlit log." + ], + "box turtle": [ + "A box turtle has a brown or black upper shell and a yellow, red, or orange lower shell.", + "A box turtle is a land turtle with a hinged shell that allows it to be completely enclosed.", + "A box turtle has a high, domed shell and short, stumpy legs.", + "A box turtle is a small to medium-sized turtle with a high, domed shell.", + "A box turtle is a land turtle with a hinged shell that allows it to withdraw its head and limbs inside for protection from predators.", + "A box turtle has a high, domed shell and short, thick legs.", + "A box turtle has a brown, dome-shaped shell and a brown or black head and legs.", + "A box turtle has a hinged shell that protects its body.", + "Box turtles are small turtles with a hinged shell.", + "A box turtle has a flattened bottom shell which allows it to completely withdraw into its shell for protection.", + "The easiest way to identify a box turtle is by its appearance.", + "A box turtle can be identified by its unique hinged shell, which allows it to completely close up inside its shell for protection.", + "You can identify a box turtle based on its shell, which is high and dome-shaped, and its hinged plastron, which allows the turtle to close its shell tightly.", + "The best way to identify a box turtle is by its shell.", + "If you want to identify a box turtle, you can look for these turtles basking in the sun with their mouths open.", + "Box turtles can be identified by their high-domed shell that is hinged at the bottom, allowing them to completely close up inside.", + "The best way to identify a box turtle is by its shell.", + "The top of a box turtle's shell is hinged, allowing the turtle to close up tightly inside its shell for protection.", + "There are many ways to identify a box turtle.", + "The easiest way to identify a box turtle is by its hinged plastron, or bottom shell.", + "A box turtle is a four-legged reptile with a brown or black shell.", + "A box turtle is a type of land turtle that is characterized by its ability to retract its head and legs into its shell.", + "Box turtles have a domed shell that is hinged on the bottom so that they can close up completely inside.", + "A box turtle typically has a dark brown or black shell with yellow, orange, or red markings.", + "A box turtle has a hard, rectangular shell that covers its entire body.", + "A box turtle is a terrestrial turtle with a hard shell.", + "A box turtle has a brown or dark-olive shell and a yellow or orange plastron (lower shell).", + "A box turtle has a brown or black shell with yellow, red, or orange markings.", + "Box turtles have a high, domed shell and an opening on the bottom side of the shell.", + "A box turtle looks like a turtle with a box-like shell.", + "In the image, the box turtle is a dark brown color with light brown spots.", + "This box turtle is a common North American turtle that lives in woodlands.", + "This image shows a brown and yellow box turtle perched on a green log in a swampy area.", + "The image is of a brown and orange box turtle with a patterns on its shell.", + "A photo of a box turtle sitting on a log in a forest.", + "A box turtle is a land turtle with a high, domed shell.", + "An image from the internet of a box turtle is of a turtle with a hard, brown shell texture.", + "The image is of a typical box turtle with a brown shell and light colored spots.", + "This image is of a box turtle on a fallen tree in a forest.", + "In the image, there is a box turtle on a green and brown grassy field.", + "A common box turtle (Terrapene Carolina) basks in the sun on a log.", + "A box turtle on a bed of leaves.", + "A box turtle on a bed of leaves.", + "A box turtle poking its head out of its shell.", + "A box turtle sunning itself on a rock.", + " A Caleb's map turtle, one of the many species of turtles that can be found in North America.", + "This box turtle was found in the wild and is now being cared for by a local reptile rescue.", + "A box turtle crawling through the grass.", + "A close-up of a box turtle peeking out of its shell.", + "A box turtle looks out from its shell." + ], + "banded gecko": [ + "A banded gecko typically has a brown body with light bands running across it.", + "A banded gecko is a small, nocturnal lizard that is native to the deserts of Iran, Pakistan, and India.", + "A banded gecko has a long tail and a wide head.", + "Banded geckos have a light brown body with dark brown or black bands running across their backs.", + "Banded geckos are small to medium sized lizards that have a flattened body and a long tail.", + "A banded gecko is a small, terrestrial reptile with a flattened body and long tail.", + "A banded gecko is a small reptile with smooth, scaled skin.", + "A banded gecko is a small reptile with a long tail.", + "A banded gecko typically has a light brown body with dark brown or black bands running across its back and sides.", + "A banded gecko is a type of lizard that has bands of color across its body.", + " by its distinctive bands of coloration on the body.", + "A banded gecko has a light colored body with dark bands across it.", + "A banded gecko can be identified by the bands of color across its body.", + "The banded gecko can be identified by its narrow head, large eyes, and horizontal stripes that run the length of its body.", + "When looking at a banded gecko, you will notice that it has stripes running vertically down its body.", + "The easiest way to identify a banded gecko is by its characteristic bands or stripes.", + "A banded gecko has broad bands that run across its body.", + "Banded geckos have horizontal bands of color that run down their bodies.", + "There are several ways to identify a banded gecko.", + "Banded geckos have bands of color that run horizontally across their bodies.", + "A banded gecko is a reptile that has bands or stripes running across its body.", + "A banded gecko has alternating light and dark bands running the length of its body.", + "A banded gecko is a lizard with bands of color across its body.", + "The banded gecko has a light brown body with dark brown or black bands running across its back.", + "A banded gecko has stripes running down its back.", + "A banded gecko is a type of lizard that has bands of color across its body.", + "Banded geckos are small lizards with colored bands or spots running across their bodies.", + "A banded gecko is a small lizard that has bands of color across its body.", + "A banded gecko has a striped pattern on its body and a row of spines running down its back.", + "A banded gecko has stripes running down its back.", + "The image is of a banded gecko perched on a branch.", + "The image is of a banded gecko perched on a branch.", + "The image is of a small, brown and white gecko with black bands running down its back.", + "The image is of a banded gecko perched on a branch.", + "This image shows a banded gecko perched on a branch.", + "The image is of a banded gecko.", + "This is a photo of a banded gecko from the internet.", + "The image from the internet of a banded gecko shows a small, thin reptile with brown, black, and white bands running across its body.", + "The image is of a brown and white banded gecko crawling on a branch.", + "The image is of a banded gecko perched on a branch.", + "A banded gecko sunning itself on a rock.", + " A banded gecko cautiously exploring its new surroundings.", + "This is a banded gecko, a species of lizard found in arid regions of the southwestern United States and northwestern Mexico.", + "A banded gecko (genus Cyrtodactylus) basks on a branch in the sun.", + "A small banded gecko, of the genus Cyrtodactylus, resting on a tree branch.", + "A banded gecko perched on a rock, tongue out.", + " A banded gecko basks on a warm, sunny rock.", + "A banded gecko perched on a branch.", + "A close-up of a banded gecko, a type of lizard found in warm climates.", + "A banded gecko perched on a branch." + ], + "green iguana": [ + "A green iguana is a large, arboreal lizard that is native to Central and South America.", + "A green iguana typically has green coloring, although it can also be brown, yellow, or red.", + "A green iguana is a large lizard that can grow up to 2 meters in length.", + "A green iguana has green scales and a long tail.", + "A green iguana is a lizard that is typically green, although their color can range from green to brown.", + "A green iguana typically has green skin, although some may have a brown, gray, or orange tint.", + "A green iguana is a large lizard with green skin.", + "A green iguana has a long tail, green skin, and a long neck.", + "Green iguanas have green scales and a long tail.", + "A green iguana is a lizard that is typically green in color.", + "The best way to identify a green iguana is by its color.", + "The easiest way to identify a green iguana is by its color.", + "A green iguana is a lizard with green skin.", + "A green iguana can be identified by its green color, long tail, and sharp claws.", + "A green iguana can be identified by its long tail, green skin, and pointed snout.", + "A green iguana is a large, arboreal lizard with green skin and dark bands running down its body.", + "The easiest way to identify a green iguana is by its color.", + "The best way to identify a green iguana is by its color.", + "A green iguana can be identified by its large size, long tail, and green color.", + "A green iguana is a type of lizard that is typically green in color.", + "A green iguana has green skin, large claws, and a long tail.", + "A green iguana is a large lizard that can grow up to 6 feet (1.", + "A green iguana is usually a green or camouflaged color with a long tail.", + "A green iguana has green skin, long claws, and a long tail.", + "A green iguana looks like a large lizard with green skin.", + "A green iguana looks like a large lizard with green skin.", + "A green iguana looks like a large green lizard with a long tail.", + "A green iguana looks like a lizard with green skin.", + "A green iguana is a type of lizard that is bright green in color.", + "A green iguana is a large lizard that is typically green but can also be gray, brown, or yellow.", + "The image shows a large green iguana perched on a branch.", + "This image is of a green iguana perched atop a tree branch.", + "The iguana is green with a long tail.", + "The image is of a large, green iguana perched on a tree branch.", + "In this image, a green iguana is perched on a tree branch, looking off into the distance.", + "The image is of a green iguana against a white background.", + "The image is of a large, green iguana perched on a branch.", + "This image is of a green iguana perched atop a rock in a tropical environment.", + "This image shows a large green iguana perched atop a tree branch.", + "This image is of a green iguana perched on a branch.", + "A close-up of a green iguana, showing its scaly skin and long, pointy tail.", + "Green iguana basking in the sun.", + "This green iguana is basking in the sun on a rock.", + "One of the most popular pets in the world, the green iguana is known for its friendly disposition and easygoing nature.", + " A green iguana basking in the sun.", + "The green iguana is a large, arboreal lizard native to Central and South America.", + " A green iguana chasing a butterfly.", + "A green iguana sunning itself on a rock.", + "A green iguana basking in the sun on a tree branch.", + "The green iguana is a large, arboreal lizard native to Central and South America." + ], + "Carolina anole": [ + "A Carolina anole looks like a small brown lizard with a long tail.", + "A Carolina anole is a type of lizard that is native to the southeastern United States.", + "A Carolina anole is a small reptile that is green or brown in color.", + "A Carolina anole is a small, brown lizard with a long tail.", + "A Carolina anole is a type of lizard that is green with brown spots.", + "A Carolina anole is a small, brown lizard with a long tail.", + "A Carolina anole is a small, green lizard with a long tail.", + "A Carolina anole is a small, brown lizard with a long tail.", + "A Carolina anole is a small lizard with a green body and a brown stripe running down its back.", + "The Carolina anole is a small lizard with a long tail.", + "The Carolina anole is a small lizard with a green body and a long tail.", + "A Carolina anole is a very common small lizard in the southeastern United States.", + "Carolina anoles are small, brown lizards with a long tail.", + "The most common way to identify a Carolina anole is by its color.", + "One way to identify a Carolina anole is by its bright green color.", + "If you see a small, green lizard with a pinkish throat fan, it is most likely a Carolina anole.", + "The Carolina anole is a small, dark-green lizard with a bright-red throat.", + "The easiest way to identify a Carolina anole is by its bright green color.", + "There are many ways to identify a Carolina anole.", + "Carolina anoles can be identified by their long, thin bodies and green coloration.", + "A Carolina anole is a small lizard that is typically green with brown spots.", + "Anoles are small, arboreal (tree-dwelling) lizards with long tails.", + "A Carolina anole is bright green with light stripes running down its back.", + "A Carolina anole is a small green lizard with brown spots.", + "A Carolina anole is a small green lizard with a long tail.", + "A Carolina anole typically has a green body with brown spots, although its appearance can vary somewhat depending on its environment.", + "A Carolina anole is a small, green lizard with a long tail.", + "The Carolina anole is a small, greenish-brown lizard with a pinkish dewlap, or flap of skin, on its throat.", + "A Carolina anole is a green lizard with brown spots.", + "Carolina anoles are small, brown lizards with orange or red throats.", + "A Carolina anole is a small, green lizard with brown spots covering its body.", + "The image shows a Carolina anole perched on a branch.", + "An image of a Carolina anole from the internet shows a small, green lizard with brown spots on its back.", + "The image is of a small, green lizard with a long tail.", + "The image is of a small, green lizard with brown spots on its back.", + "A Carolina anole is a small lizard with a green body and a brown head.", + "I found an image of a Carolina anole on the internet that showed the lizard perched atop a tree branch.", + "The image is of a small, green lizard perched on a tree branch.", + "One image shows a Carolina anole climbing a plant.", + "The image is of a small, green lizard with a long tail.", + "A Carolina anole posing on a tree branch.", + " Green anole basking on a tree branch.", + "A Carolina anole lizard sunning itself on a tree branch.", + "A Carolina anole lizard peeks out from a hole in a tree.", + "A Carolina anole basking in the sun on a tree branch.", + "A Carolina anole basks in the sun on a tree branch.", + "A Carolina anole (Anolis carolinensis) basking in the sun on a branch.", + "A Carolina anole in mid-air.", + "A Carolina anole lizard basks in the sun on a tree branch.", + "A Carolina anole lizard basks in the sun on a tree branch." + ], + "desert grassland whiptail lizard": [ + "The desert grassland whiptail lizard is a small, slender lizard with a long tail.", + "A desert grassland whiptail lizard typically has a light brown body with dark brown spots, a long tail, and long hind legs.", + "The desert grassland whiptail lizard is a species of lizard that is found in the deserts of North America.", + "A desert grassland whiptail lizard is a small, slim lizard with a long tail.", + "A desert grassland whiptail lizard is a small lizard with a long tail.", + "The desert grassland whiptail lizard is a medium-sized lizard with a long, thin body.", + "The desert grassland whiptail lizard is a thin, quick lizard with long legs and a long, whiplike tail.", + "The desert grassland whiptail lizard is a small, fast-moving lizard with a long tail.", + "Desert grassland whiptail lizards\u2019 tails are long and whip-like, and they have smooth, shiny scales.", + "A desert grassland whiptail lizard has a long, slender body with a tail that is much longer than its body.", + "The desert grassland whiptail lizard is a common lizard found in the southwestern United States and northern Mexico.", + "A desert grassland whiptail lizard can be identified by its long, thin tail and brownish-gray coloration.", + "The desert grassland whiptail lizard is a small, dark-colored lizard with a long, thin tail.", + "Desert grassland whiptail lizards can be identified by their long tails, small size, and pale coloration.", + "The desert grassland whiptail lizard has a long tail, which it whips around when it is threatened.", + "A desert grassland whiptail lizard can be identified by its long, thin body and tail; its small, smooth scales; and its light brown or tan coloration with dark spots.", + "A desert grassland whiptail lizard has a long, thin body and a long tail.", + "Whiptail lizards have long tails and slender bodies.", + "A desert grassland whiptail lizard is a small brownish or grayish lizard with a long tail.", + "Desert grassland whiptail lizards can be identified by their long tails, small size, and brown or grey coloration.", + "A desert grassland whiptail lizard is a small lizard that is usually brown or tan in coloration.", + "A desert grassland whiptail lizard has a long, slim body and a long tail.", + "The desert grassland whiptail lizard is a small to medium sized lizard with a long tail.", + "The desert grassland whiptail lizard is brownish above and pale below, with a row of dark spots down its back, and a long tail that is often held erect.", + "A desert grassland whiptail lizard looks like a small, slender lizard with a long tail.", + "A desert grassland whiptail lizard is a medium-sized lizard with a long, thin body and a long tail.", + "A desert grassland whiptail lizard looks like a small, skinny lizard with long legs.", + "Desert grassland whiptail lizards look like small, long-tailed lizards with stripes running along their backs.", + "Desert grassland whiptail lizards look like small, dark-colored lizards with long tails.", + "A desert grassland whiptail lizard is typically light brown or gray in color, with dark stripes running down its back.", + "The image shows a desert grassland whiptail lizard lying on a rock in the sun.", + "This lizard is long and slender, with a tail that is much longer than its body.", + "The grassland whiptail lizard is a small, slender lizard with a long tail.", + "I couldn't find an image of a desert grassland whiptail lizard on the internet.", + " The image is of a small, dark-colored lizard with a long tail.", + "In the image, a desert grassland whiptail lizard is perched atop a small rock in a dry, sandy landscape.", + "The image is of a desert grassland whiptail lizard that is light brown in color with darker brown spots.", + "The image is of a desert grassland whiptail lizard that is light brown in color with dark spots.", + "In the image, the desert grassland whiptail lizard is a light brown color with dark brown spots.", + "One image from the internet of a desert grassland whiptail lizard shows a small, brown and white lizard with a long tail basking in the sun on a rock.", + "Desert grassland whiptail lizard basking in the sun.", + "Grassland whiptail lizards are common in arid and semi-arid regions of North and South America.", + "\"A desert grassland whiptail lizard basks in the morning sun.", + "Whip-tail Lizard in Desert Grassland.", + "A whiptail lizard in the desert grasslands.", + "The desert grassland whiptail lizard is a species of lizard that is native to desert regions of the southwestern United States and northwestern Mexico.", + "Whiptail lizards are common in desert grasslands and are well-adapted to their arid habitat.", + "This lizard is a desert grassland whiptail.", + "A desert grassland whiptail lizard dehydrated from a lack of water.", + "A whiptail lizard in the desert grasslands." + ], + "agama": [ + "Most agamas have brightly colored bodies and long tails.", + "A typical agama has a long body with a short tail and four legs.", + "Agama lizards are small to medium-sized lizards with long tails and bodies.", + "A agama is a lizard that is usually brightly colored.", + "A agama is a small to medium sized lizard with a long tail.", + "A agama is a small, green lizard with a long tail.", + "A agama is a small lizard with a long tail.", + "Most agamas are small to medium-sized lizards with flattened bodies and relatively short legs.", + "The agama is a medium-sized lizard with a long tail.", + "Agamas are a type of lizard that can be found in Africa, Asia, and Australia.", + "If you see a small lizard with a long tail and a triangular head, it is likely an agama.", + "If you see a lizard with a crest or \"horn\" on its head, it is likely an agama.", + "The most common ways to identify a particular species of agama are by its coloration, patterning, and habitat preferences.", + "There are many ways to identify an agama, but some of the most common include looking for its distinctive tail, its coloration, and its habitat.", + "Agamas are lizards in the genus Agama.", + "Agamas are a type of lizard that can be identified by their long tail, scaled back, and bright colors.", + "There are several ways to identify an agama.", + "There is no one definitive answer to this question, as there are many different species of agama lizards.", + "A agama is a type of lizard that is native to Africa.", + "There are many ways to identify a agama.", + "There are many different species of agama, so they can vary in appearance.", + "There are many different species of agama, so they can vary significantly in appearance.", + "There are over 360 species of agama, so they come in many different shapes and colors.", + "A agama looks like a lizard with a long tail.", + "A agama is a small lizard with a long tail.", + "A agama is a type of lizard that can be found in many different colors, including green, brown, and red.", + "There are many different species of agama, so they can vary quite a bit in appearance.", + "A small to medium sized lizard with a long tail.", + "Agama lizards have long, slender bodies with four legs and a long tail.", + "A common agama is a small to medium sized lizard with a long tail.", + " lizardThe image is of a small agama lizard perched on a branch.", + "This agama is a vibrant green color with black stripes running down its body.", + " lizardIn the image, the agama lizard is a bright green color with a yellow underbelly.", + "The image is of a medium-sized lizard with a long tail.", + " lizardThe agama lizard is a small, quick reptile that is often found near urban areas.", + "A photo of a blue agama lizard on a green leaf, with its long tongue out and its body curled up.", + " lizardThis image is of a small, spiny lizard with a long tail and a triangular head.", + "The image is of a red and blue agama lizard on a green leaf.", + " lizardThe image is of a small, spiny lizard with a long tail.", + " lizardIn this image, we can see a agama lizard perched atop a rock.", + "A close up of a small agama lizard perched on a green leaf.", + "A male striped bush viper (Atheris squamigera) in Kibale National Park, Uganda.", + " A Common Agama basks in the sun.", + " A boy feeds a pet agama lizard in Jakarta, Indonesia.", + "Image of a male Agronomic lizard sunning on a rock.", + " A small agama lizard basking on a rock in the sun.", + "A common agama basks in the sun on a warm day.", + "A female green-and-yellow agama lizard basks in the sun on a rock in her natural habitat.", + "\nA Agama lizard basking in the sun on a hot day.", + "A blue-bellied agama basks in the sun on a rocky outcropping." + ], + "frilled-necked lizard": [ + "A frilled-necked lizard has a long neck, a long tail, and long legs.", + "Frilled-necked lizards are often brightly colored, with patterns of green, brown, yellow, and black on their body and a frill of skin around their neck.", + "A frilled-neck lizard is a lizard with a frill around its neck.", + "A frilled-necked lizard is a type of lizard with a frill around its neck.", + "A frilled-neck lizard is a type of lizard that is characterized by the frill around its neck.", + "A frilled-necked lizard has a frill around its neck that stands up when the lizard is threatened.", + "A frilled-necked lizard is a brightly colored lizard with a long tail and a frill around its neck.", + "A frilled-necked lizard looks like a lizard with a frilled neck.", + "A frilled-necked lizard has a long neck, a long tail, and frills around its neck.", + "A frilled-necked lizard looks like a lizard with a frill around its neck.", + "A frilled-necked lizard has a long neck with frilly skin around it.", + "You can identify a frilled-necked lizard by its long neck, frilled gills, and scaly skin.", + "Some key features to look for when trying to identify a frilled-necked lizard are its long tail, frilled neck, and spotted body.", + "The frilled-necked lizard is a distinctive lizard with a frill around its neck that it can extend when it is threatened.", + "The frilled-necked lizard is an arboreal lizard found in tropical rainforests of Australia and New Guinea.", + "Frilled-necked lizards are identified by their frilled neck, which is used as a defense mechanism.", + "A frilled-necked lizard can be identified by its frill, which is a flap of skin that surrounds its neck and is used for communication and defense.", + "A frilled-necked lizard has a long neck and a frill around its head.", + "The frilled-neck lizard has a frill around its neck.", + "You can identify a frilled-necked lizard by its distinctive frill, which is a flap of skin that surrounds its neck.", + "A frilled-necked lizard looks like a small, brightly colored lizard with a frill around its neck.", + "A frilled-neck lizard looks like it has a frill around its neck.", + "A frilled-necked lizard has a long neck with frills on either side.", + "A frilled-neck lizard has a long body, a long tail, and a frill around its neck.", + "A frilled-necked lizard, also called a frilled dragon, looks like a cross between a snake and a chameleon.", + "A frilled-necked lizard looks like a lizard with frills around its neck.", + "A frilled-necked lizard is a lizard with a frill around its neck.", + "A frilled-necked lizard looks like a lizard with a frilled neck.", + "Frilled-necked lizards have a frill around their necks that they can open up when they are scared.", + "A frilled-necked lizard typically has a brown body with darker brown spots.", + "The image is of a bright green frilled-necked lizard with a long tail.", + "In the image, a frilled-necked lizard is shown in profile, looking to the left.", + "The frilled-necked lizard is a colorful reptile with a large frill around its neck.", + "A frilled-necked lizard is an iconic Australian reptile with a distinctive frill around its neck.", + "I found an image on the internet of a frilled-necked lizard that looks like it's about to attack.", + "The image from the internet of a frilled-necked lizard shows a close-up of the head and neck of the lizard, with its bright green body and orange frill around its neck.", + "In this image, a frilled-necked lizard is shown in profile, revealing the characteristic \"frill\" around its neck.", + "The image is of a frilled-necked lizard that is green and brown in color.", + "A frilled-necked lizard image from the internet typically shows a reptile with a colorful neck frill extended.", + "The frilled-necked lizard is a distinctive reptile found in Australia, Indonesia, and New Guinea.", + "A frilled-necked lizard in Australia.", + "\"A frilled-necked lizard displaying its frill\".", + "The frilled-necked lizard is a reptile that is found in Australia.", + "The frilled-neck lizard is an amazing creature! It has a long neck frill that it can use to intimidate predators, and it is also a skilled tree climber.", + "The frilled-neck lizard is an amazing creature that is found in Australia.", + "The frilled-necked lizard is a lizard with a frill around its neck.", + "A frilled-necked lizard, also known as a frilled lizard or frilled dragon, is a species of lizard in the family Agamidae.", + "A frilled-necked lizard with its characteristic frill.", + "The frilled-necked lizard is a type of agamid lizard that is known for its unique appearance.", + "This frilled-necked lizard is showing off its frills, which are used to intimidate predators and foes." + ], + "alligator lizard": [ + "A typical alligator lizard is dark green or brown with a light-colored belly.", + "The alligator lizard is a green lizard with a long tail.", + "Alligator lizards are long and slender with a tail that is twice the length of their body.", + "The alligator lizard is a medium-sized lizard with a long tail.", + "A alligator lizard looks like an alligator.", + "Alligator lizards have long, narrow bodies and tails, and small, narrow heads.", + "alligator lizards are large lizards with long tails and powerful jaws.", + "A alligator lizard is a large lizard that can grow up to 3 feet in length.", + "Alligator lizards are medium-sized lizards with long tails, short legs, and a flattened body shape.", + "A alligator lizard typically has a dark brown or olive green body with white or yellow spots.", + "Alligator lizards have long, skinny tails and sharp teeth.", + "A alligator lizard is a type of lizard that is native to the southeastern United States.", + "The easiest way to identify an alligator lizard is by its appearance.", + "A alligator lizard has a wide,flat head with small,round eyes.", + "Alligator lizards have large, powerful jaws and long, sharp claws.", + "One way to identify an alligator lizard is by its long tail and its webbed toes.", + "Alligator lizards can be identified by their stocky build, short legs, and long tail.", + "If you found a Lizard and you\u2019re not sure if it\u2019s an alligator lizard or not, here are some things you can look for: Alligator lizards have a long tail that is about as long as the.", + "They are a type of lizard with a long tail and a sleek body.", + "There are many ways to identify an alligator lizard.", + "Alligator lizards are shy, alert lizards that grow to between 4 and 6 inches long.", + "Other than their large size, alligator lizards look similar to other lizards.", + "A alligator lizard looks like a small alligator.", + "Alligator lizards have a long, narrow snout and a muscular, robust body.", + "An alligator lizard looks like a miniature alligator.", + "A Alligator lizard typically has a dark brown or olive green body with black spots or bars.", + "A rather large and ferocious looking creature, the alligator lizard has a long, snake-like body with sharp teeth and clawed feet.", + "A alligator lizard looks like a small alligator.", + "A alligator lizard looks like a small alligator.", + "Alligator lizards are relatively large lizards with long bodies and tails.", + "The image is of an alligator lizard perched atop a large rock.", + "The image is of an alligator lizard basking in the sun on a tree branch.", + "This image shows an alligator lizard (Abronia graminea) on a green leaf.", + "The image is of a alligator lizard sunning itself on a rock.", + "I found an image of an alligator lizard on the internet that looks like it is ready to attack.", + "This image from the internet is of an alligator lizard.", + "In the image, a large alligator lizard is shown sunning itself on a tree branch.", + "The image is of a alligator lizard perched atop a dead tree branch in a swamp.", + "In the image, a large alligator lizard is shown sunning itself on a rock.", + "In this image, an alligator lizard is perched on a log in a swampy area.", + "an alligator lizard suns itself on a log.", + "Alligator lizards are a type of lizard found in the southern United States.", + "A close-up of an alligator lizard sunning itself on a rock.", + "This is an alligator lizard.", + " Latin name: Elgaria multicarinata.", + "Alligator lizards are a type of lizard found in the southeastern United States.", + "This is an alligator lizard.", + "The alligator lizard is a lizard that is found in the southeastern United States.", + "Alligator lizards are a genus of lizards in the family Anguidae.", + " An alligator lizard suns itself on a rock." + ], + "Gila monster": [ + "A Gila monster is a species of venomous lizard native to the southwestern United States and northwestern Mexico.", + "A Gila monster is a large, scaly lizard with a bright, orange-red body.", + "A Gila monster looks like a lizard with a black, orange, and pink body.", + "Most gila monsters are a dull yellow, orange, or pinkish color with ruby-red spots.", + "Gila monsters are red, orange or yellow with black spots.", + "A Gila monster is a species of venomous lizard native to the southwestern United States and northwestern Mexico.", + "A Gila monster is a large, lizard-like creature that is found in the southwestern United States.", + "A Gila monster can be up to two feet long and is covered in orange and black scales.", + "A Gila monster is a large lizard that is native to the southwestern United States and northwestern Mexico.", + "Most Gila monsters have a vibrant mix of orange, yellow, and black scales on their backs and sides.", + "The easiest way to identify a Gila monster is by its bright coloration.", + "The Gila monster is a large, orange-colored lizard with black spots.", + "The Gila monster can be identified by its distinct color pattern.", + "A Gila monster can be identified by its bunched-up appearance, its beaded skin, and its orange and black coloration.", + "The Gila monster is a large lizard with a bright, orange-red body covered in black spots.", + "A Gila monster can be identified by its large size, its black and orange coloration, and its beaded appearance.", + "The Gila monster can be identified by its bright coloring, including orange, yellow, and black bands.", + "The only species in the genus Heloderma, the Gila monster is easily identified by its unique color pattern.", + "The Gila monster is a large, venomous lizard found in the southwest United States and northwest Mexico.", + "Gila monsters are large, heavy-bodied lizards with a bright, colourful patterns of orange, pink, yellow, and black.", + "The Gila monster looks like a lizard with a bright, orange body and black spots.", + "The Gila monster is a species of venomous lizard native to the southwestern United States and northwestern Mexico.", + "Wikipedia describes the Gila monster as follows: \"The Gila monster (Heloderma suspectum) is a species of venomous lizard in the family Helodermatidae, found in the southwestern United States and northwestern Mexico.", + "A Gila monster looks like a small, stocky lizard with a blunt tail.", + "Gila monsters look like lizards with bead-like scales.", + "A Gila monster is a large, venomous lizard with a body length of up to 24 inches.", + "A Gila monster looks like a lizard with black and orange scales.", + "A Gila monster looks like a small dragon with a long tail.", + "Gila monsters look like lizards with brown, orange, and black scales.", + "A Gila monster looks like a smallish, stocky lizard with a vaguely dinosaur-like head.", + "The Gila monster has a small, stout body with a large head, and is covered in bead-like scales.", + "An image of a Gila monster from the internet shows a close-up view of the reptile's scaly, orange body.", + "The image is of a Gila monster basking in the sun.", + "The Gila monster is a large, dangerous-looking lizard with a bright, orange body and black spots.", + "An image of a Gila monster from the internet shows a large, orange and black lizard with a forked tongue.", + "In the image, a Gila monster is coiled up on a branch with its long tongue hanging out.", + "In this image, a Gila monster is coiled up on a branch with its mouth open.", + "In the image, a Gila monster is coiled up on a rock in the sun.", + "In the image, a Gila monster is curled up in the sand, its body a mottled mix of orange, black, and pink.", + "The Gila monster is a large, orange-brown and black lizard with a beaded appearance.", + " The Gila monster, a venomous lizard, is found in the southwestern United States and northwestern Mexico.", + "The Gila monster is a venomous creature that can be found in the deserts of the American Southwest.", + "Gila Monster (Heloderma suspectum) in Sonora, Mexico.", + "A Gila monster (Heloderma suspectum) is a venomous lizard of the family Helodermatidae, native to the southwestern United States and northwestern Mexico.", + " Gila monsters are a species of venomous lizard native to the southwestern United States and northwestern Mexico.", + " A Gila monster found in the deserts of Arizona.", + "A Gila monster enjoying the warm sun.", + "The Gila monster is a native species to the southwestern United States and northern Mexico.", + " The Gila monster is a species of venomous lizard native to the southwestern United States and northwestern Mexican state of Sonora.", + "A Gila monster in its natural habitat." + ], + "European green lizard": [ + "The European green lizard is a medium-sized lizard that can grow up to 60 cm in length.", + "An European green lizard is a lizard that is green in color.", + "The European green lizard is a small to medium-sized lizard that is native to Europe.", + "The European green lizard is a small to medium sized lizard with a long tail.", + "An European green lizard is a type of lizard that is green in color.", + "An European green lizard is olive-green with a black collar and two rows of spots down its back.", + "The European green lizard is a small to medium sized lizard with a green body and a white or yellow underside.", + "The European green lizard is a medium-sized lizard that can grow up to 60 cm in length.", + "An European green lizard is a small to medium-sized lizard with a green back and sides.", + "Please provide a more specific question.", + "The best way to identify an European green lizard is by its green coloration.", + "The European green lizard is a small to medium sized lizard with a green back and sides.", + "European green lizards are easily identified by their bright green coloration.", + "The best way to identify an European green lizard is by its color.", + "The European green lizard is usually green with a white or pale underside.", + "There is no one definitive way to identify a European green lizard.", + "There is no definitive answer to this question as there is a great deal of variation in the appearance of European green lizards.", + "How can you identify an European green lizard?You can identify an European green lizard by its green color and long tail.", + "You can identify an European green lizard by its long tail, green body, and dark spots.", + "The European green lizard has a distinct green coloration with a black pattern on its back.", + "Green lizards are a common sight in Europe.", + "European green lizards are typically bright green, with males often having a blue throat.", + "A European green lizard has olive-green skin with black spots.", + "There is no one answer to this as there are many different species of European green lizard.", + "A European green lizard looks like a typical lizard, with a long tail, four legs, and a head with eyes on either side.", + "European green lizards have green upper bodies with white spots and bellies.", + "The European green lizard is a slim lizard with a long tail.", + "The European green lizard can reach up to 60 cm in length and is covered in green scales.", + " European green lizards are green with black spots.", + "I cannot find a good photo of an European green lizard, but here is a photo of a green lizard that is found in Europe: https://www.", + "The image is of a green lizard perched atop a rock in a grassy area.", + "This image shows a green lizard with black spots on its body.", + "The image is of a light green European lizard with black spots on its back and sides.", + "The image is of a green lizard with yellow spots on its back and tail.", + "The image shows a green lizard perched on a branch.", + "A European green lizard is a small to medium sized lizard with green skin and yellow spots.", + "In the image, the European green lizard is a bright green color with darker green spots.", + "In the image, a small green lizard is posed on a gray rock in a semi-arboreal stance, with its toes splayed out and its long tail hanging down.", + "The image is of a bright green lizard with yellow spots crawling on a tree branch.", + "In the image, a small, green European lizard is perched on a reed, its long tail hanging down.", + "European green lizards are known for their vibrant green coloration and their ability to change their color to match their surroundings.", + " \"A European green lizard sunning on a rock.", + "In this photo, we can see a European green lizard basking in the sun.", + "This photo shows a European green lizard basking in the sun on a rock.", + "A European green lizard basks in the sun.", + "The European green lizard is a common sight in many gardens and parks across Europe.", + "The European green lizard is a common sight in gardens and parks across Europe.", + " An European green lizard basks in the sun on a rock.", + "A European green lizard basks in the sun on a warm day.", + "The European green lizard is a common lizard found throughout Europe." + ], + "chameleon": [ + "A chameleon is a reptile that can change its color to match its surroundings.", + "Chameleons are lizards that can change the color of their skin to match their environment.", + "A chameleon is a small, slow-moving lizard with a long tongue.", + "A chameleon is a lizard with the ability to change its skin color to match its surroundings.", + "A chameleon is a reptile with a long tail, long neck, and small head.", + "A chameleon is a small, slender lizard with a long neck, a long tail, and long toes.", + "A chameleon is a lizard that has the ability to change the color of its skin.", + "Chameleons are lizards that can change colors.", + "Chameleons are lizards that are known for their ability to change the color of their skin.", + "A chameleon is a small, lizard-like creature that can change the color of its skin.", + "The easiest way to identify a chameleon is by its ability to change its color.", + "The best way to identify a chameleon is by its color.", + "There are several ways to identify a chameleon.", + "There are many ways to identify a chameleon.", + "One way to identify a chameleon is by its ability to change the color of its skin.", + "There are a few ways to identify a chameleon.", + "A chameleon is a small to medium-sized lizard found in warm habitats throughout the world.", + "Chameleons have long, sticky tongues that they use to catch insects.", + "The physical characteristics of a chameleon can vary depending on the species, but they are generally identified by their long tongues, protruding eyes, and ability to change the color of their skin.", + "by their ability to change the color of their skin.", + "Chameleons are reptiles that are known for their ability to change color.", + "A chameleon is a lizard with the ability to change the color of its skin.", + "A chameleon is a lizard with the ability to change its skin color to match its surroundings.", + "A chameleon typically has a brown, green, or gray body with blotches of color.", + "A chameleon looks like a small lizard with a long tail.", + "A chameleon is a small, slow-moving reptile that has the ability to change its colors.", + "The chameleon is a small to medium-sized lizard found in warm habitats.", + "A chameleon looks like a lizard with a long tail.", + "A chameleon is a lizard that has the ability to change the color of its skin.", + "A chameleon is a lizard with the ability to change its skin color.", + "one of a lizard with a long thin tongue, protruding eyes, and a prehensile tail, adapted to arboreal life and able to change its skin coloration for camouflage.", + "A chameleon is a lizard that is known for its ability to change its color to match its surroundings.", + "The image is of a chameleon perched on a branch.", + "The image is of a chameleon on a tree branch.", + "In this image, a chameleon is perched on a branch, its long tongue extended to catch an insect.", + "This image is of a rare breed of chameleon called the Jackson's Chameleon.", + "This image is of a chameleon on a branch.", + "The image is of a chameleon on a branch.", + "The image is of a chameleon perched on a branch.", + "This image is of a chameleon sleeping on a branch.", + "A chameleon perched on a branch, its long tongue extended.", + " A chameleon changes colors to blend in with its surroundings.", + " The chameleon is filled with color as it sits on a green leaf.", + "A close up of a chameleon's head, showing its tongue and eyes.", + "A chameleon camouflaged against its green surroundings.", + " A chameleon hides in the leaves, waiting to ambush its prey.", + "A chameleon measures up to one foot in length and has the ability to change the color of its skin to match its surroundings.", + " A chameleon on a tree branch, looking up.", + "The Amazing ChameleonThis incredible creature can change its color to blend in with its surroundings.", + "A chameleon changing colors." + ], + "Komodo dragon": [ + "Komodo dragons are the largest living species of lizard, growing to an average length of 2 to 3 meters (about 6.", + "The Komodo dragon is a reptiles that looks like a giant lizard.", + "A Komodo dragon is a large lizard that is found in Indonesia.", + "A Komodo dragon is a large lizard that can grow to be up to 10 feet long.", + "A Komodo dragon is the largest living lizard in the world.", + "A Komodo dragon typically has a dark brown coloration, with a yellowish tinge on its sides.", + "A Komodo dragon looks like a large, reptilian creature with a long, thick tail, a long, narrow snout, and small, sharp teeth.", + "A Komodo dragon is a large lizard that is found on the Indonesian island of Komodo and on a few nearby islands.", + "The Komodo dragon is a large reptile that can grow up to three metres in length.", + "A Komodo dragon is a reptile that is found on the island of Komodo, in Indonesia.", + "A Komodo dragon can be identified by its large size, its scaly skin, and its long tail.", + "The best way to identify a Komodo dragon is to look for its large size, its long tail, and its scaly skin.", + "You can identify a Komodo dragon by its long tail, small head, and big body.", + "By its physical characteristics, a Komodo dragon can be identified by its large size; large, greedy head; scaly skin; and long, thick tail.", + "One way to identify a Komodo dragon is by its large size.", + "The Komodo dragon is a lizard species that is only found on the Indonesian island of Komodo, as well as some other nearby islands.", + "A Komodo dragon can be identified by its large size, long tail, and scaly skin.", + "A Komodo dragon can be identified by its Scaly skin, long tail, and forked tongue.", + "The Komodo dragon can be identified by its large size, scaly skin, and long tail.", + "A Komodo dragon can be identified by its large size, its scaly skin, and its long tail.", + "A Komodo dragon is a large lizard that can grow up to 10 feet long.", + "A Komodo dragon is a lizard that can grow up to 10 feet long and weigh up to 150 pounds.", + "The body of a Komodo dragon is long and muscular, with a large head and a long, forked tongue.", + "A Komodo dragon looks like a large, green, Komodo dragon.", + "A Komodo dragon is a large lizard that can grow up to 10 feet long.", + "A Komodo dragon looks like a large, scaly lizard with strong legs, a long tail, and a large head with sharp teeth.", + "A Komodo dragon looks like a large, scaly reptile with a long tail and a long, snake-like neck.", + "A Komodo dragon looks like a giant lizard.", + "Komodo dragons are the largest living species of lizard.", + "A Komodo dragon is a large, monitor lizard that can grow to be up to 10 feet long.", + "The image from the internet of a Komodo dragon is of a large lizard with a long tail and a forked tongue.", + "An image of a Komodo dragon from the internet shows a large lizard with scaly skin and a long, forked tongue.", + "This image is of a Komodo dragon on a beach.", + "This image depicts a Komodo dragon stalking its prey.", + "I found an image of a Komodo dragon on the internet.", + "The image is of a Komodo dragon perched on a tree branch.", + "The image is of a Komodo dragon on a beach with trees in the background.", + "The image is of a Komodo dragon with its mouth open.", + "The image shows a Komodo dragon on a rocky ledge with its long forked tongue extended.", + "In the image, the Komodo dragon is a large, scaly lizard with a long tail and a long, forked tongue.", + "A Komodo dragon sits atop a rock in its natural habitat.", + " Komodo dragon, the largest living species of lizard.", + "Komodo dragons are the largest lizards in the world, and they're found on the Indonesian island of Komodo.", + "A Komodo dragon, the world's largest species of lizard, basking in the sun.", + "The world's largest lizard, the Komodo dragon, can grow to a length of 10 feet and weigh over 150 pounds.", + "A Komodo dragon, the world's largest lizard, on the Indonesian island of Komodo.", + "A Komodo dragon stalking its prey.", + "Komodo dragons are the largest living lizards in the world.", + "A Komodo dragon, the largest living species of lizard, on the Indonesian island of Komodo.", + " A Komodo dragon at the London Zoo." + ], + "Nile crocodile": [ + "A Nile crocodile is a large reptile with a long body, a short, sturdy tail, and four short, webbed legs.", + "A Nile crocodile is a large reptile that lives in Africa.", + "The Nile crocodile is an African crocodile that can grow to be over 20 feet long.", + "A Nile crocodile is a large, aggressive, aquatic reptile.", + "Nile crocodiles are typically dark greenish-brown in color with a lighter belly, although their skin color can sometimes range from nearly black to light tan.", + "The Nile crocodile is a large crocodilian native to freshwater habitats in Africa, where it is present in 26 countries.", + "Nile crocodiles are large reptiles that live in Africa.", + "A Nile crocodile is a large reptile that can grow to be over 20 feet long.", + "A Nile crocodile is a large reptile with a long, muscular body, a long tail, and a hard, scaly hide.", + "A Nile crocodile is a large crocodilian native to freshwater habitats in Africa, where it is present in 22 countries.", + "The Nile crocodile is the largest and most aggressive member of the crocodile family.", + "You can identify a Nile crocodile by its large size and long, narrow snout.", + "A Nile crocodile can be identified by its large size, its long, narrow snout, and its olive-brown color.", + "The best way to identify a Nile crocodile is by its size.", + "The Nile crocodile is a large reptile found in Africa.", + "There are a few ways to identify a Nile crocodile.", + "The Nile crocodile is one of the largest crocodiles and can grow up to 20 feet in length.", + "The Nile crocodile is the largest of the African crocodiles and can grow to be 20 feet long.", + "A Nile crocodile can be identified by its large size, broad snout, and ridged back.", + "Generally, Nile crocodiles are dark olive-green, brown, or almost black in coloration, with some exhibiting very light coloration around their belly areas.", + "A Nile crocodile has a long, narrow snout and is a grayish-brown color.", + "A Nile crocodile is a large reptile that can grow to be over 15 feet long.", + "A Nile crocodile is a large reptile that can grow up to 20 feet in length.", + "The Nile crocodile is an African crocodile that typically grows to between 16 and 23 feet in length, making it one of the largest crocodiles.", + "The Nile crocodile can grow to be around 20 feet long and can weigh up to 1500 pounds.", + "The Nile crocodile is one of the largest crocodiles.", + "A Nile crocodile has olive-brown skin with black spots.", + "A Nile crocodile is a large reptile that can grow to be over 20 feet long.", + "A Nile crocodile is a large, greenish-brown reptile with a long, muscular tail and a long, pointed snout.", + "A Nile crocodile is a large reptile with a long snout, armored skin, and a powerful tail.", + "The image is of a large crocodile lying on the edge of a riverbank with its mouth open.", + "In the image, the Nile crocodile is a large, scaly reptile with a long, powerful tail and a toothy snout.", + "The Nile crocodile is a large reptile that can be found in Africa.", + "The image is of a Nile crocodile up close.", + "This image shows a Nile crocodile with its mouth open.", + "The image is of a Nile crocodile sunning itself on a riverbank.", + "The image from the internet looks like a Nile crocodile in water.", + "The image is of a large crocodile with greenish-brown skin and a long snout.", + "The image is of a Nile crocodile lying on the ground with its mouth open.", + "An image of a Nile crocodile from the internet shows a large reptile sunning itself on the bank of a river.", + "A Nile crocodile in Africa.", + " Nile crocodile (Crocodylus niloticus) on the bank of the Mara River, Kenya.", + "A Nile crocodile (Crocodylus niloticus) suns itself on the riverbank in Kenya's Masai Mara National Reserve.", + "A Nile crocodile in its natural habitat.", + "The Nile crocodile is one of the most feared predators in Africa.", + "A Nile crocodile basking in the sun on the banks of the river.", + "This is a Nile crocodile, one of the largest extant reptiles.", + "This is a Nile crocodile, the largest freshwater crocodile in the world.", + "The Nile crocodile is one of the largest reptiles in the world.", + " The Nile crocodile is the largest extant reptile." + ], + "American alligator": [ + "An American alligator is a large reptile with a long, stout body, short legs, and a long tail.", + "An American alligator is a large reptile that can grow up to 20 feet long.", + "The American alligator has a dark olive-brown color with white or pale gray on its underbelly.", + "The American alligator is a large crocodilian with dark, heavily armored skin.", + "An American alligator is a large, black reptile with a long tail and sharp teeth.", + "An American alligator is a large reptile with a long, dark body and a wide, flat head.", + "An American alligator is a large reptile with greenish-brown skin, a long body, short legs, and a long tail.", + "The American alligator is a large reptile that can grow up to 20 feet in length.", + "The American alligator is a large reptile that can grow up to 20 feet in length.", + "An American alligator is a large, dark-colored reptile with a long body and tail.", + "The easiest way to identify an American alligator is by its size.", + "You can identify an American alligator by its broader snout and its darker color.", + "The easiest way to identify an American alligator is by its size.", + "The easiest way to identify an American alligator is by its snout.", + "The easiest way to identify an American alligator is by its size.", + "American alligators have a large, bulky body with a short tail and large head.", + "The best way to identify an American alligator is by its size.", + "The American alligator is a large crocodilian with an armored body, a long, powerful tail, and short legs.", + "There are a few ways to identify an American alligator.", + "The American alligator can be distinguished from other crocodilians by its broader snout.", + "American alligators are black with a white or yellowish underbelly.", + "An American alligator looks like a large lizard with a long tail.", + "American alligators look like large, dark green reptiles with long tails.", + "Alligators are large reptiles with a long, muscular tail, short legs, and a large, triangular head with sharp teeth.", + "on average, an American alligator is between 8 and 12 feet long.", + "The American alligator has a dark olive-brown color with black spots.", + "An American alligator is a large reptile with a long, muscular body and a long snout.", + "The American alligator is a large reptile that can grow to be up to 20 feet long.", + "An American alligator is a large reptile with a long, stout body, a short, broad head, and rounded snout.", + "An American alligator is a large reptile with a long, thick body and a short tail.", + "The image is of an American alligator basking in the sun on a log in a swamp.", + "The image is of an American alligator lying in a swamp with its mouth open.", + "The alligator is a large reptile that lives in swamps in the southeastern United States.", + "An American alligator is a large reptile that is native to the southeastern United States.", + "In the image, an American alligator is swimming through murky water towards the camera.", + "The image is of an American alligator sunning himself on a log in a swamp.", + "In the image, an American alligator is shown swimming in a swampy area with trees and plants in the background.", + "In the image, an American alligator is swimming in a murky green river.", + "The image is of an American alligator lying on a log in a swamp with its mouth open.", + "In the image, an American alligator is swimming in a body of water with its mouth open.", + "A large American alligator basks in the sun on a log in a swamp.", + "American alligator sunbathing on a log in the swamp.", + "An American alligator in its natural habitat.", + "American alligators are found in the southeast United States, where they live in freshwater swamps, rivers, and lakes.", + "An American alligator lies in the sun at the edge of a swamp in Louisiana.", + "American alligator sunbathing on a log in the swamp.", + "This is an American alligator.", + "American alligators are found in the southeastern United States, from North Carolina to the Everglades in Florida.", + "The American alligator is a large reptile that is found in the southeastern United States.", + "An American alligator suns itself on a bank in the Everglades." + ], + "triceratops": [ + "A Triceratops is a large, plant-eating dinosaur that had a bony frill around its head and three horns.", + "The triceratops is a large, plant-eating dinosaur that had three horns on its face.", + "A triceratops looks like a three-horned dinosaur with a large frill.", + "A triceratops has three horns on its head, and a big frill on the back of its head.", + "A triceratops has three horns, one on each side of its head and one on its nose.", + "A triceratops is a dinosaur that has three horns on its head, a large frill around its neck, and four legs.", + "Triceratops are large, four-legged, herbivorous dinosaurs with horns on their heads and a large plate in the middle of their backs.", + "A triceratops looks like a lizard with three horns on its head.", + "A triceratops is a large, plant-eating dinosaur that has three horns on its head, a thick neck, and a small frill on the back of its head.", + "A triceratops is a herbivorous quadruped with a large bony frill on its back and three horns on its face.", + "Some key features to look for when trying to identify a triceratops are its three horns, frill around its neck, and its large size.", + "You can identify a triceratops by its three horns, frill, and large size.", + "A triceratops can be identified by its three horns and the frill around its head.", + "The easiest way to identify a triceratops is by its three horns.", + "The three horns on its head are a dead giveaway.", + "A triceratops can be identified by its three horns and its large frill.", + "Clues that would help identify a triceratops are three horns on the head, a large frill or shield behind the head, and a large beak.", + "A triceratops has three horns on its head.", + "Triceratops can be identified by their three horns and large frill.", + "The triceratops can be identified by its three horns and its large frill.", + "The triceratops is a large, plant-eating dinosaur that lived during the late Cretaceous period, about 68\u201365.", + "A triceratops has a large head with three horns sticking out of it.", + "A triceratops looks like a dinosaur with two horns on its head and one horn on its nose.", + "Triceratops were large, plant-eating dinosaurs that had three horns on their face and a big, bony frill on the back of their head.", + "A triceratops looks like a dinosaur that has three horns on its head.", + "A triceratops looks like a dinosaur with three horns.", + "A triceratops looks like a large, four-legged dinosaur with a large head featuring three horns.", + "Triceratops look like large, dinosaur-like animals with three horns sticking out of their heads.", + "A triceratops is a Tyrannosaurus Rex-like dinosaur with three horns on its head.", + "A triceratops looks like a large dinosaur with three horns on its head.", + "The image from the internet of a Triceratops shows a large, herbivorous dinosaur with a long neck, small head, and large body.", + "A triceratops is a large, four-legged, herbivorous dinosaur with a large head that has three horns.", + "A triceratops is a three-horned, plant-eating dinosaur.", + "The image is of a large, green dinosaur with three horns on its head.", + ".", + "An image of a triceratops from the internet might show a large, green dinosaur with three horns on its head.", + "A triceratops is a large, plant-eating dinosaur that lived during the Cretaceous period.", + "The image is of a triceratops dinosaur with three horns on its head.", + "A triceratops is a dinosaur that has three horns on its head.", + "The image is of a triceratops skeleton.", + "A triceratops stands in a field, its head bowed low and its three horns shining in the sun.", + "A triceratops stands in a field of tall grass.", + "This is a triceratops, a three-horned dinosaur that lived during the late Cretaceous period.", + "A triceratops looks on as a herd of other dinosaurs walk by.", + "A triceratops grazing in a field of tall grasses.", + " A triceratops looking up at the sky with a wary expressionA caption of an image of a man programming: A man programming on a laptop with a intense look on his face.", + "A triceratops stares down its adversary, ready to defend its territory.", + "A triceratops, a large herbivorous dinosaur with three horns on its head, grazing in a field.", + " A triceratops browsing in a prehistoric forestA triceratops browsing in a prehistoric forest.", + " A triceratops stands in a field of tall grass, its head held high as it watches something in the distance." + ], + "worm snake": [ + "A worm snake is a very small, thin snake that looks like a worm.", + "A worm snake is a small, thin snake that is pink or red in color.", + "There are many different types of worm snakes, but most are small, thin, and brown or reddish in color.", + "A worm snake is a small, thin snake that burrows through the ground.", + "A worm snake typically has a long, slender body with small scales.", + "Worm snakes are small, thin snakes that resemble earthworms.", + "A worm snake is a very small, thin snake that looks like a worm.", + "A worm snake is a small, thin snake that looks like a worm.", + "A worm snake is a long thin snake that looks like a worm.", + "A worm snake is a slender, snake-like creature that is often found in moist areas.", + "Worm snakes are often mistaken for earthworms because of their slender, elongated bodies.", + "There are a few ways to identify a worm snake.", + "Worm snakes are very small, thin snakes that look like worms.", + " Worm snakes can be identified by their small size, slender bodies, and pointed tails.", + "A worm snake is a small, thin, burrowing snake that typically has a brown or reddish-brown body with a dark brown or black head.", + "There are several ways to identify a worm snake.", + "The best way to identify a worm snake is by its small, slender body and its lack of legs.", + "A worm snake is a very small snake, usually no more than 10 inches in length.", + "There are a few ways to identify a worm snake.", + "A worm snake is a type of blind snake that is found in North America.", + "A worm snake is a small, thin snake that looks like a worm.", + "There is not one answer to this question as there are many different species of worm snake, all of which can vary slightly in appearance.", + "Worm snakes are small and thin, with smooth scales.", + "I don't know.", + "A worm snake is pink or reddish in color, with a black head.", + "Worm snakes are very thin snakes that look like worms.", + "A worm snake is a small, slender snake that burrows through the ground in search of food.", + "Worm snakes have very small, pointed heads and smooth, glossy scales.", + "There is no one definitive answer to this question, as there are over 3,000 species of worm snakes, and they come in a wide variety of shapes, sizes, and colors.", + "Worm snakes are very small, thin snakes that look like worms.", + "Image shows a pinkish-brown worm snake coiled up on a green leaf.", + "The image is of a small, thin snake with a brown and white striped pattern.", + "This image is of a worm snake coiled up on some rocks.", + "This image shows a worm snake coiled up on some rocks.", + "In the image, there is a small, brown snake curled up on a patch of grass.", + "A worm snake is a small, thin snake that burrows through the ground.", + "A worm snake is a small, thin snake that looks like a worm.", + "The image is of a pink worm snake coiled up on some rocks.", + "A worm snake is a small, thin snake that looks like a worm.", + "In the image, a worm snake is curled up in a brown and white spiral.", + "A small, delicate-looking snake, the worm snake is an important player in the ecosystem.", + "This snake is called a worm snake because it looks like a worm.", + " A worm snake, also known as a blind snake.", + " \"Worm snake coiled on forest floor.", + "A worm snake is a small, secretive snake that is often found underground.", + " Worm Snake\nA worm snake is a member of the snake family who typically grows to be about 12 inches in length.", + "A burrowing snake that spends most of its time underground.", + "Worm SnakeThis small, harmless snake is often mistaken for a earthworm.", + "A worm snake coiled up on a branch.", + " A worm snake wrapped around a twig." + ], + "ring-necked snake": [ + "A ring-necked snake is a small, thin snake with a black body and a yellow or orange ring around its neck.", + "A ring-necked snake is a small- to medium-sized snake that typically has a brown or black body with a yellow or orange ring around its neck.", + "A ring-necked snake is a small, nonvenomous snake that is usually black with a yellow or orange ring around its neck.", + "A ring-necked snake has a brown body with a yellow ring around its neck.", + "A ring-necked snake is a small, thin snake with a black body and a yellow or orange ring around its neck.", + "A ring-necked snake is a small snake with a black body and a yellow or white ring around its neck.", + "A ring-necked snake's body is brown with yellow spots on its sides.", + "A ring-necked snake has a black body with a yellow ring around its neck.", + "A ring-necked snake has a light brown body with a dark brown ring around its neck.", + "A ring-necked snake is a small, thin snake with a black body and a yellow or orange ring around its neck.", + "A ring-necked snake can be identified by its thin body, small head, and the yellow or orange ring around its neck.", + "The head of a ring-necked snake is black and the body is a light yellow color with a black ring around the neck.", + "The most obvious way to identify a ring-necked snake is by the presence of a conspicuous ring of dark color around its neck.", + "Occasionally, a rogue black ring will be found on the neck of a ring-necked snake, but this is extremely rare.", + "A ring-necked snake can be identified by its light-colored body with a dark ring around its neck.", + "The best way to identify a ring-necked snake is by its unique color pattern.", + "A ring-necked snake can be identified by either its coloration or the presence of a light-colored ring around its neck.", + " Ring-necked snakes can be identified by their bright orange or yellow neck ring.", + "A ring-necked snake can be identified by looking for a dark band around its neck.", + "Look for a snake with a collar or ring around its neck.", + "Image of a ring-necked snake: https://www.", + ">)A ring-necked snake has a yellow- or orange-colored body with black stripes running down its back.", + "A ring-necked snake has a black or dark brown body with a yellow or light brown ring around its neck.", + "The ring-necked snake is a small to medium-sized snake that is usually 24 to 36 inches long.", + "A ring-necked snake can vary in color, but is typically yellow-brown with a dark ring around its neck.", + "A ring-necked snake is a small to medium-sized snake.", + "One of the most common snakes in the United States, the ring-necked snake has a light brown body with a darker brown ring around its neck.", + "A ring-necked snake is a small- to medium-sized snake with a black body and a yellow or orange ring around its neck.", + "A ring-necked snake is a small snake with a yellow or orange ring around its neck.", + "A ring-necked snake has a brown or reddish body with a yellow or whitish ring around its neck.", + "The picture is of a light brown snake with darker rings around its neck.", + "This image is of a ring-necked snake coiled up on a branch.", + "The image is of a small, thin snake with a light brown body and darker brown spots.", + "In this image, you can see a ring-necked snake coiled up on a branch.", + "The image is of a ring-necked snake coiled up on a branch.", + "In the image, the snake is curled up in a coil, with its head and upper body raised off the ground.", + "In this image, a ring-necked snake is coiled up in a dry, grassy area.", + "The image is of a ring-necked snake coiled up on a branch.", + "This image from the internet shows a ring-necked snake coiled up and ready to strike.", + "In the image, the snake is coiled up with its tail touching its head.", + "A ring-necked snake curled up in a coil.", + "A ring-necked snake coiled up on a tree branch.", + "A ring-necked snake coiled up on a branch.", + "A ring-necked snake coiled up in the grass.", + " The ring-necked snake is a common species of snake found in North America.", + "A ring-necked snake coiled up on a rock.", + "A ring-necked snake coiled around a branch.", + "A ring-necked snake, a common species of snake found in North America.", + "A ring-necked snake coiled up on a tree branch.", + "A ring-necked snake in the wild." + ], + "eastern hog-nosed snake": [ + "These snakes have a broad, flat head and a upturned snout, which is used for digging in the dirt and overturning rocks in search of toads and frogs.", + "That's a tough question! Eastern hog-nosed snakes can vary quite a bit in their appearance, depending on the subspecies.", + "A eastern hog-nosed snake is a tan or brown snake with a dark brown or black stripe running down its back.", + "A eastern hog-nosed snake is a nonvenomous snake that is native to the eastern United States.", + "The eastern hog-nosed snake is a relatively small snake, averaging 2-3 feet in length.", + "A eastern hog-nosed snake is a grey or brown snake with a black and white checkerboard pattern on its belly.", + "The eastern hog-nosed snake is a pale brown or grayish color with darker brown spots on its back.", + "A eastern hog-nosed snake is a brown or gray snake with a black and white checkerboard pattern on its belly.", + "The eastern hog-nosed snake is a large, stout-bodied snake with a flattened head.", + "The eastern hog-nosed snake has a thick body and a flattish head.", + "There are several ways to identify a eastern hog-nosed snake.", + "Some ways you can identify a eastern hog-nosed snake is by its color, pattern, and size.", + "The easiest way to identify a eastern hog-nosed snake is by its unique nose, which is shaped like a pig's snout.", + "There are several ways to identify a eastern hog-nosed snake.", + "A eastern hog-nosed snake is a medium-sized, heavy-bodied snake with a broad head and a distinct upturned snout.", + "There are several ways to identify a eastern hog-nosed snake.", + "Eastern hog-nosed snakes can be identified by their coloration, pattern, and size.", + "A eastern hog-nosed snake can be identified by its brown and tan coloration, and by the upturned scale on its nose.", + "A eastern hog-nosed snake can be identified by its brown and black pattern, and its upturned nose.", + "The eastern hog-nosed snake can be identified by its upturned snout.", + "A eastern hog-nosed snake is a small, thin snake with a flat, triangular head.", + "A eastern hog-nosed snake is brown or black with a light-colored belly.", + "A eastern hog-nosed snake is a brown or gray snake with a black and white pattern on its belly.", + "A eastern hog-nosed snake has a light brown body with darker brown spots.", + "A eastern hog-nosed snake has a pointy nose, upturned snout, and a black and white checkerboard pattern on its back.", + "A eastern hog-nosed snake has a dark brown or black back and a light brown or tan belly.", + "Eastern hog-nosed snakes look like thin, brown or green snakes with a light-colored belly.", + "The eastern hog-nosed snake is a nonvenomous snake that is found in North America.", + "The eastern hog-nosed snake is a species of hognose snake that is native to the eastern United States and Canada.", + "A eastern hog-nosed snake has a dark brown or black body with light brown blotches.", + "In this image, we can see a eastern hog-nosed snake coiled up and ready to strike.", + "In the image, the snake is coiled up with its head raised.", + "This snake has a brown and white body with black spots.", + "This image is of a snake with a distinctively upturned nose, similar to that of a hog.", + "The image shows a eastern hog-nosed snake coiled up on a brown and white patterned Surface.", + "The image is of a light brown snake with darker brown spots.", + "An image of a eastern hog-nosed snake from the internet shows a brown and white snake with a upturned nose.", + "The image is of a medium-sized brown and white snake with a upturned nose.", + "The image is of a snake with a upturned nose, dark brown and black bands running the length of its body.", + "The image is of a slender, light brown snake with a pointed nose and large, dark spots down its back.", + "\"An eastern hog-nosed snake enjoying the sun.", + "The eastern hog-nosed snake is a species of colubrid snake found in North America.", + " A close-up of an Eastern Hog-nosed snake's head, showing its upturned nose.", + " Hissss.", + "A picture of an eastern hog-nosed snake, a species of venomous snake found in the eastern United States.", + "A eastern hog-nosed snake, native to North America.", + " A venomous Eastern hog-nosed snake flares its neck and strikes at the camera.", + " The eastern hog-nosed snake is a species of colubrid snake found in the eastern United States and southeastern Canada.", + "A Close up of an Eastern Hog-nosed Snake.", + "The eastern hog-nosed snake is a non-venomous snake that is endemic to the eastern United States." + ], + "smooth green snake": [ + "A smooth green snake is a small, slender snake that is green with a white underside.", + "Most North American smooth green snakes have a green dorsum and a white venter.", + "Smooth green snakes are small to medium-sized snakes that range in color from bright green to dull olive.", + "A smooth green snake has a green body with black spots.", + "A smooth green snake is typically a bright green color with a yellow or white belly.", + "A smooth green snake is a type of snake that is green and has a smooth skin.", + "A smooth green snake will have a bright green body with a white or yellowish belly.", + "A smooth green snake has a bright green body with a white or yellow underside.", + "Smooth green snakes are green with black spots.", + "A smooth green snake has a long, thin body that is green in color.", + "There are many ways to identify a smooth green snake.", + "The smooth green snake is a small, slender snake that is brightly colored with a green back and white belly.", + "A smooth green snake can be identified by its green color and its smooth scales.", + "A smooth green snake is a small, thin snake that is green with white bellies.", + "Smooth green snakes have a characteristic light green coloration with a white or yellowish belly.", + "A smooth green snake is olive-green to gray-green with a smooth, shiny scales.", + "The easiest way to identify a smooth green snake is by its color.", + "If you see a snake that is green and shiny, it is most likely a smooth green snake.", + "The most distinguishing feature of a smooth green snake is its bright, solid green coloration.", + "A smooth green snake can typically be identified by its small size, bright green color, and smooth scales.", + "A smooth green snake is a small, thin snake with a bright green body.", + "A smooth green snake (Opheodrys vernalis) is a thin, green snake with a white or yellow belly.", + "Smooth green snakes are typically a bright green color with a white or yellow underside.", + "A smooth green snake is a green snake with a smooth scales.", + "A smooth green snake is usually green, with a white or yellow belly.", + "A smooth green snake is usually bright green with a white or yellow belly.", + "Smooth green snakes are small, secretive snakes that can be found in a variety of habitats.", + "A smooth green snake is a small, thin snake that is green with a white or yellow belly.", + "A smooth green snake typically has a green body with white spots near its belly.", + "A smooth green snake has a long, slender body and a smooth, greenish-yellowish skin.", + "The image is of a smooth, green snake that is coiled up in a tree.", + "The image is of a bright green snake with a smooth, shiny skin.", + "In the image, the snake is coiled up and its body is a bright green.", + "The image is of a dark green snake with a smooth, shiny skin.", + "The image is of a smooth, green snake with a long body and a thin tail.", + "The image is of a smooth, green snake with a long, slender body.", + "This image shows a smooth green snake wrapped around a stick.", + "The image is of a snake that is completely green and very smooth.", + "This image is of a smooth green snake coiled up on a tree branch.", + "This image from the internet depicts a smooth, green snake with a yellow belly.", + "A close-up of a green snake with a smooth, shiny skin.", + " A snake blend in with its environment.", + "A smooth green snake on a branch.", + "Scaly and long, this snake is both beautiful and dangerous.", + "The smooth green snake is a common snake found in North America.", + "A smooth green snake slithering through the grass.", + "A smooth green snake on a tree branch.", + "This is a smooth green snake.", + "Smooth green snake coiled up on a branch.", + "This is a smooth green snake." + ], + "kingsnake": [ + "Most kingsnakes have black, white, and yellow bands that go all the way around their body.", + "A kingsnake is a medium to large sized snake that typically has black, brown, or olive colored bands or patches running the length of its body.", + "A kingsnake is a medium to large sized snake that typically has black, brown, or white bands around its body.", + "A kingsnake is a medium to large sized snake that has black and white bands around its body.", + "A kingsnake is a medium to large sized snake.", + "A kingsnake is a thin, nonvenomous snake that typically has black, white, and yellow bands running the length of its body.", + "A kingsnake is a long, slender snake that is typically black with white bands.", + "A kingsnake is a typically nonvenomous colubrid snake.", + "A kingsnake is a type of nonvenomous snake that is found in the Americas.", + "A kingsnake has a black body with white bands.", + "The best way to identify a kingsnake is by looking at its pattern.", + "There are many ways to identify a kingsnake.", + "The best way to identify a kingsnake is by its pattern.", + "Some kingsnakes have patterns that resemble those of venomous snakes, but kingsnakes can be distinguished by several features, including round pupils, lack of heat-sensing pits, a divided anal scale, and 23-45 rows of.", + "King snakes can be identified by their pattern of black, white, and yellow stripes.", + "The best way to identify a kingsnake is by its pattern.", + "There are many different types of kingsnakes, so it is difficult to identify them all.", + "A kingsnake is a snake that typically has a black and white color scheme.", + "A kingsnake can be identified by its shiny, smooth scales and its pattern of black, white, and yellow rings.", + "There are many ways to identify a kingsnake.", + "A kingsnake usually has a black body with white or yellow stripes running down the length of it.", + "Kingsnake most often have black, brown, yellow, or white coloring with patterns of bands, stripes, or blotches.", + "A kingsnake is a long, thin snake with a pattern of black, white, and yellow rings.", + "A kingsnake is a snake that typically has dark bands on a light background.", + "A kingsnake is a snake that typically has black, white, and yellow stripes running the length of its body.", + "A kingsnake is a black snake with white stripes running down its back.", + "A kingsnake typically has black, white, or yellow stripes running the length of its body.", + "A kingsnake is a type of snake that can have a variety of different colors and patterns.", + "A kingsnake has a black body with white stripes running the length of it.", + "A Kingsnake has a black body with white stripes running down the length of its body.", + "A kingsnake is a large, non-venomous snake that is often kept as a pet.", + "The image is of a kingsnake coiled up on a white background.", + "A kingsnake is a long, thin snake with black and white bands running the length of its body.", + "The image is of a kingsnake coiled up on a branch with its head raised.", + "I found an image of a kingsnake on the internet that shows the snake coiled up on a branch.", + "The image is of a kingsnake coiled up on a branch.", + "I found an image of a kingsnake on the internet that I really liked.", + "The image is of a kingsnake coiled up on a branch.", + "A kingsnake is a large, non-venomous snake that is native to the Americas.", + "My image shows a king snake coiled up on some rocks in a desert.", + "A kingsnake interacting with its environment.", + "AKingsnake coiled up on a branch.", + "A California kingsnakeThis photo shows a kingsnake in the wild.", + " A kingsnake coiled up on a tree branch.", + " This Western kingsnake is happily enjoying a meal of three juvenilemouse shrews.", + "This is a picture of a kingsnake.", + " Kingsnakes are a type of colubrid snake that are native to the Americas.", + "A Kingsnake curled up on a fallen log in a forest.", + "View of a captive California kingsnake (Lampropeltis getula californiae) coiled on a stick.", + " The Oregon kingsnake is a subspecies of the common kingsnake and is found in the southwestern United States." + ], + "garter snake": [ + "Garter snakes are usually stripedLong and slenderWith a pointy head.", + "Garter snakes are usually between 1 and 3 feet long.", + "A garter snake looks like a long, thin snake with black spots along its back.", + "Garter snakes are typically small to medium in size, with most species measuring less than 1 meter in length.", + "A garter snake is a small snake with a striped pattern running the length of its body.", + "A garter snake is a small, slim snake that is often green or brown with stripes running along its body.", + "A garter snake is a slender snake that is usually black, brown, or olive green with a yellow or light gray stripe running down the length of its body.", + "A garter snake is a small snake that is usually black, green, or brown with stripes running down its body.", + "A garter snake looks like a small to medium-sized snake with a pattern of dark stripes running the length of its body.", + "A garter snake typically has a dark stripe down the center of its back and a checkered pattern on its sides.", + "A garter snake can be identified by its pattern, which is typically a stripe down the length of its body.", + "Garter snakes can be identified by their striped patterns and their long, slender bodies.", + "A garter snake is a snake that is found in the wild.", + "A garter snake can be identified by its striped pattern, which is typically green and brown.", + "Garter snakes are fairly small snakes, usually no more than 2-3 feet in length.", + "Garter snakes are easily identified by their pattern of yellow stripes on a black or dark brown background.", + "A garter snake is a species of snake that can be identified by its small size and its stripes, which are similar to those of a garter belt.", + "The easiest way to identify a garter snake is by its stripes.", + "Look for a snake with a checkerboard pattern of black and yellowish scales.", + "Garter snakes are typically small to medium-sized snakes.", + "Garter snakes are small to medium-sized snakes with stripes running the length of their body.", + "A garter snake is a thin, long snake that is usually green or brown with stripes running along its body.", + "A garter snake is a small to medium-sized snake found in North America.", + "Garter snakes can vary greatly in appearance, but they are typically thin with a small head.", + "Garter snakes look like long, thin snakes with stripes running along their length.", + "Garter snakes come in many different colors, but they all have stripes running down the length of their bodies.", + "A garter snake is a small to medium-sized snake with a striped pattern.", + "Garter snakes are small to medium-sized snakes that can grow to be 3 to 5 feet in length.", + "A garter snake typically has a striped pattern running the length of its body.", + "Garter snakes come in a variety of patterns and colors, but they all have a stripe running down the length of their body.", + "A garter snake is a thin, snake with black, brown, and white stripes running the length of its body.", + "Image shows a garter snake coiled up on a dirt ground with its head facing towards the left of the image.", + "The image is of a garter snake coiled up on a green leaf.", + "A garter snake is a long, thin snake that is often green or brown with yellow stripes running down its length.", + "The image is of a small, green and brown garter snake.", + "A garter snake is a thin, long snake that is often green or brown in color.", + "A garter snake is a small, thin snake that is often found in gardens and fields.", + "This image is of a Garter snake coiled up on some rocks.", + "In this image, a garter snake is coiled up on a dirt road.", + "The image is of a garter snake coiled up on a branch with its tongue sticking out.", + "A small garter snake curls up in the sun.", + "A garter snake slithers across the forest floor.", + "A garter snake is often found in gardens and other areas with dense vegetation.", + "A garter snake slithering through the grass.", + "A common garter snake coiled up and ready to strike.", + " Garter snakes are common snakes found in North America.", + "A garter snake sunning itself on a rock.", + "A garter snake twines its body around a blade of grass.", + "Garter snakes are a common type of snake found in North America.", + "Garter snake getting ready to strike." + ], + "water snake": [ + "A water snake usually has a long, slender body with smooth scales.", + "A water snake is typically a long and slender snake that is found near water.", + "A water snake is a type of snake that is typically found in or near water.", + "A water snake is a snake that lives in water.", + "A water snake is typically dark olive-brown or grey in color with a paler underside.", + "A water snake is a type of snake that is typically found near bodies of water, such as rivers, lakes, and ponds.", + "Water snakes are usually brown, green, or black and have patterns on their skin.", + "A water snake is typically dark-colored with patterns on its body.", + "A water snake may have a brown, green, or reddish body with light colored stripes or bands running the length of its body.", + "Water snakes are long and thin with smooth scales.", + "Water snakes are usually dark-colored with smooth scales.", + "Water snakes can be distinguished from land snakes by their longer necks, their diving and swimming abilities, and their rough scales.", + "Can't really answer that without a photo or more information.", + "You can identify a water snake by its long and slender body, its smooth scales, and its vertical pupils.", + "A water snake can be identified by its long, thin body, sharp teeth, and bright colors.", + "A water snake can have many different appearances, but some characteristics may be helpful in identifying one.", + "Some water snakes have conspicuous patterns, while others are more drab.", + "There are many ways to identify a water snake.", + "Water snakes tend to have long, slender bodies with smooth scales.", + "There are many ways to identify a water snake.", + "A water snake usually has a dark, greenish-brown color.", + "There are many different kinds of water snakes, so they can vary quite a bit in appearance.", + "A water snake is typically dark-colored with patterns on its body.", + "A water snake is a type of snake that is typically found near bodies of water.", + "There are many different types of water snakes, but they all share some common features.", + "A water snake is a long and thin snake that can be different colors, but is usually some shade of brown, green, or gray.", + "A water snake is a type of snake that lives in water.", + "A water snake typically has a long, slender body with smooth, shiny scales.", + "A water snake is a long, thin snake that lives in or near water.", + "A water snake usually has a dark color, like black or brown.", + "A water snake is a type of snake that lives in or near water.", + "I found an image of a water snake on the internet that islong and thin with a green and brown pattern.", + "A water snake is a type of snake that is adapted to living in water.", + "A water snake is a type of snake that is typically found in or near water.", + "The image is of a water snake swimming through a pond.", + "This image is of a water snake coiled up in the water.", + "A water snake, also called a Natrix, is a type of nonvenomous snake that is adapted to living in or near water.", + "The image is of a water snake coiled up in the water with its head raised.", + "I found an image of a water snake swimming in a lake.", + "This image is of a water snake in the water.", + "This is a water snake.", + " A water snake curled up on a piece of driftwood.", + "Local residents in Ponchatoula, Louisiana spotted this water snake swimming in a puddle left by Hurricane Zeta.", + "A water snake photographed in a river in the United States.", + "A water snake swims through a murky pond.", + "A water snake coil around a stick in the water.", + "A water snake slithers through the water, its tongue flicking out to taste the air.", + "A water snake on the hunt for its next meal.", + "A water snake coils itself around a stick in a river.", + " A water snake swimming in a river." + ], + "vine snake": [ + "A vine snake is a thin, green snake with yellow stripes running down its back.", + "A vine snake is a thin, long snake that looks like a vine.", + "Vine snakes are thin, long snakes that can grow up to 6 feet in length.", + "A vine snake is a thin, bright green snake with black markings that is found in tropical areas of South and Central America.", + "A vine snake is a long, thin snake with glossy scales.", + "Vine snakes are thin, brightly colored snakes that often look like vines.", + "A vine snake is a thin, long snake that often looks like a vine.", + "A vine snake is a long, thin snake that looks like a vine.", + "A vine snake is a thin, green snake that typically grows to be about 4 feet long.", + "Vine snakes are thin, brightly colored snakes that are often mistaken for venomous snakes.", + "A vine snake is a thin, colorful snake with sharp teeth.", + " Some vine snakes have bright colors and patterns, while others are more dull.", + "A vine snake is a thin, elongated, and highly venomous snake that is found in the tropical regions of Asia and Africa.", + "A vine snake can be identified by its long, slender body, which is usually green or brown in color.", + "A vine snake is a thin, green snake that is often found in trees or vine-like shrubs.", + "A vine snake has a slender, cylindrical body and can grow to be up to six feet in length.", + "Some identifying features of vine snakes are their slender build, their large eyes, and their long, grooved fangs.", + "There are many ways to identify a vine snake.", + "A vine snake is a long, slender snake that is often green or brown in color.", + "A vine snake can be identified by its slender body, pointed head, and long tail.", + "A vine snake is a type of reptile that is related to the cobra.", + "Vine snakes are medium-sized reptiles that can grow up to 3 feet in length.", + "Vine snakes are small, thin snakes that can grow up to 6 feet in length.", + "A vine snake looks like a snake that is crawling on a vine.", + "A vine snake is a long, thin snake that is often green or yellow in color.", + "A vine snake's colors can vary depending on the specific species, but they are typically brightly colored with patterns that help them blend in with their natural surroundings.", + "A vine snake looks like a slender, green snake with black markings.", + "Vine snakes appear to be slender, green snakes with leaves or other vegetation clinging to them.", + "Vine snakes are thin, brightly colored snakes that can be found in tropical areas of the Americas.", + "A vine snake is a long, thin snake that looks like a vine.", + "This image is of a vine snake coiled up in a tree.", + "A vine snake is a bright green snake with black spots.", + "I found an image of a vine snake on the internet that I really liked.", + "The image is of a brightly colored vine snake coiled up in a tree.", + "The image is of a bright green snake with black spots winding its way through some green leaves.", + "In the image, a vine snake is coiled up on a branch.", + "I found an image of a vine snake on the internet that looks like a green snake coiled up in a tree.", + "This image is of a yellow and green vine snake coiled around a tree branch.", + "The image shows a green vine snake coiled around a tree branch.", + "A vine snake is a thin, colorful snake that is often found in trees or vines.", + "A vine snake coiled around a tree branch.", + "A green vine snake against a green background.", + "A vine snake stretching up a tree.", + " A brightly colored vine snake hangs from a tree branch.", + " A vine snake eating a frogThis photo shows a vine snake in the rainforest of Costa Rica.", + " A vine snake from South America.", + " A reef-dwelling sea snake.", + "A vine snake in the Amazon rainforest.", + "A colorful vine snake curled up on a tree branch.", + "A vine snake blends in perfectly with its surroundings, making it hard for predators to spot it." + ], + "night snake": [ + "The night snake is small and slender, ranging from 18 to 24 inches in length.", + "A night snake can be brown, gray, or reddish in color with darker colored bands running the length of its body.", + "While night snakes vary in appearance, they are typically small snakes with dark brown or black crossbands on a cream-colored or tan body.", + "A night snake is a black, shiny snake with small, red spots running down its back.", + "A night snake is a small, slender snake that is black or dark brown in color.", + "A night snake is a small, thin snake that is black or dark brown in color.", + "Night snakes are small, thin snakes that can be a variety of colors, but are typically brown or black.", + "Night snakes are small, thin snakes that can be any color.", + "The night snake is a small, nocturnal snake.", + "A night snake is a snake that is black or dark brown in color.", + "They are very small, nocturnal snakes.", + "A night snake can be identified by its small size, its black or dark brown color, and its smooth scale pattern.", + "There is no definitive answer to this question as there is no one physical trait that all night snakes share.", + "A night snake can be identified by its brown or black coloration, and its red or orange eyes.", + "The best way to identify a night snake is by its small size and non-venomous features.", + "There are a few ways to identify a night snake.", + "There are a few ways to identify a night snake.", + "Night snakes are small and slender, with smooth, shiny scales.", + "A night snake can be identified by its brown and black mottled coloration, and by the fact that it is active at night.", + "The night snake is a small, non-venomous snake that only grows to be about a foot in length.", + "A night snake is a small, thin snake that is black or brown in color.", + "Night snakes are small, slim snakes that grow to be about 3 feet long.", + "Night snakes are small, thin snakes that are typically brown or black in color.", + "A night snake is a small, thin snake that is black or dark brown in color.", + "The night snake is a small, slender, nocturnal snake.", + "A night snake is black with white spots and has a light-colored belly.", + "A night snake is a small, black snake with a white or yellow underside.", + "Image result for night snake.", + "The night snake is a small, slender snake.", + "A night snake is a small snake with a black or brown body and a white or yellow belly.", + "A night snake is a small, thin snake that is black in color.", + "The image is of a black snake with yellow eyes coiled up in the grass.", + "In the image, a night snake is slithering through the grass at night.", + "In the image, a night snake is coiled up on a tree branch.", + "The image is of a snake coiled up in the grass with its head up.", + "An image of a night snake from the internet shows a small, dark-colored snake with a pointed head.", + "The image is of a small, thin snake with dark brown scales.", + "In the image, a dark brown snake is coiled up on a light brown rock in the shadow of a tree.", + "The image is of a black snake with a yellow stripe down its back, coiled up in the grass.", + "An image of a night snake from the internet shows a small, black snake with a white underbelly.", + "\"This is a photo of a night snake, a species of snake that is active at night.", + "A night snake slithering through the grass.", + "A night snake slithers through the darkness in search of prey.", + "The night snake is a species of snake found in the southwestern United States and northern Mexico.", + "\nThis slitherer is a night snake, a nocturnal creature that comes out to hunt after the sun sets.", + "The night snake is a species of snake found in the deserts of North America.", + " A night snake slithers through the darkness in search of prey.", + "This nocturnal serpent is aptly named for its love of the night.", + "A night snake slithers through the darkness in search of prey.", + "This is a night snake, one of the few snakes that is active at night." + ], + "boa constrictor": [ + "A boa constrictor is a muscular snake that ranges in size from 6 to 12 feet.", + "A boa constrictor is a large, heavy-bodied snake.", + "A boa constrictor is a type of snake that is typically brown or reddish in color.", + "A boa constrictor is a large, heavy-bodied snake.", + "A typical boa constrictor is brown, tan, or reddish in color, with large black spots or patches.", + "A boa constrictor is a large, thick snake with a brown, gray, or cream-colored pattern.", + "A boa constrictor is a large, non-venomous snake that can grow to be about 13 feet long.", + "A boa constrictor is a large, thick snake that typically has patterns of brown, black, white, and tan.", + "A boa constrictor is a large, long, heavy-bodied snake.", + "A boa constrictor is a large, thick snake that can grow up to 12 feet long.", + "Boa constrictors are large, heavy-bodied snakes that can grow up to 13 feet in length.", + "If you see a snake that is heavy bodied, has a triangular shaped head, and is non-venomous, it is likely a boa constrictor.", + "A boa constrictor can be identified by its large size, its reddish-brown color, and its black and white spots.", + "A boa constrictor can be identified by its large size, long body, and triangular head.", + "If you see a large snake that is heavy-bodied and has a heat-sensitive pit between its eye and nostril, you have probably found a boa constrictor.", + "If you see a snake that is tan or brown with large dark spots, it is most likely a boa constrictor.", + "A boa constrictor can be identified by its large size, its brown, black, or white coloration, and its pattern of large, round spots.", + "There are a few ways to identify a boa constrictor.", + "A boa constrictor is a large, non-venomous snake.", + "There are a few ways to identify a boa constrictor.", + "What do you mean by \"look like?\".", + "A boa constrictor is a large, heavy-bodied snake.", + "A boa constrictor is a large snake that can grow to be more than 13 feet long.", + "A boa constrictor is a large, heavy-bodied snake that can grow to be over 10 feet long.", + "Boa constrictors are large snakes that can grow up to 13 feet long.", + "They are long, thin snakes with smooth scales.", + "A boa constrictor is a large snake that looks like it has stripes running down its body.", + "A boa constrictor is a snake that has a brown, tan, or reddish-brown body with large black spots.", + "A boa constrictor typically has a brown, tan, or reddish brown color pattern.", + "A boa constrictor looks like a giant snake with thick scales.", + "There is an image of a boa constrictor coiled up and ready to strike.", + "The image shows a boa constrictor wrapped around a tree branch.", + "The image is of a boa constrictor wrapped around a tree branch.", + "The image is of a large, brown and white boa constrictor coiled around a tree branch.", + "The image is of a large, brown and white boa constrictor coiled around a tree branch.", + "The image is of a large, dark-colored boa constrictor coiled around a tree branch.", + "I found an image of a boa constrictor that is coiled up and ready to strike.", + "The image is of a large brown and white boa constrictor coiled around a tree branch.", + "The image is of a large boa constrictor wrapped around the trunk of a tree.", + "In the image, a large boa constrictor is coiled around a tree branch, with its head and upper body raised up off the ground.", + " A large boa constrictor coils around a tree trunk.", + "A boa constrictor coils around its prey, squeezing tighter and tighter until the victim can no longer breathe.", + "A boa constrictor wrapped around a tree.", + "A boa constrictor coils around its prey, slowly suffocating it.", + " A boa constrictor coils around a branch.", + " A boa constrictor coiled around a tree branchA boa constrictor agrily coils around a tree branch, its mouth open in a hiss.", + "The boa constrictor is a large, non-venomous snake found in tropical Central and South America.", + "A boa constrictor coiled around a tree branch.", + "A boa constrictor, a large, heavy-bodied snake found in tropical America.", + " A large boa constrictor wrapped around a tree branch." + ], + "African rock python": [ + "The African rock python is a large, heavy-bodied snake.", + "African rock pythons are one of the largest snake species in the world.", + "The African rock python is a large, thick snake with a pattern of brown, yellow, and black.", + "An African rock python is a cryptid snake purported to exist in the African Congo.", + "The African rock python is one of the largest snakes in the world, reaching lengths of up to 20 feet.", + "An African rock python is a large, heavy-bodied snake.", + "The African rock python is a gigantic snake that can grow to be over 20 feet long.", + "Africa rock pythons are black with brown spots.", + "An African rock python is a large, heavy-bodied snake.", + "An African rock python is a large, non-venomous snake found in sub-Saharan Africa.", + "African rock pythons can be identified by their brown and tan patches, which are arranged in a wide band pattern.", + "The African rock python is a large, nonvenomous snake.", + "African rock pythons are usually brownish-yellow with dark brown blotches.", + "An African rock python has black and brown markings, and can grow to be more than 20 feet long.", + "African rock pythons are typically dark-colored snakes with light-colored blotches.", + "There are several ways to identify an African rock python.", + "The African rock python is a large, nonvenomous snake found in Africa.", + "African rock pythons are the largest snakes in Africa.", + "The African rock python is one of the largest snakes in the world.", + "African rock pythons are the largest snakes in Africa.", + " rocky, scaly skin; large, triangular head; dark brown, olive, or tan color scheme with light brown or gold spots.", + "The African rock python is a large, non-venomous snake found in Africa.", + "There is no single answer to this question as African rock pythons can vary greatly in appearance.", + "An African rock python is a large snake that can grow up to 20 feet long.", + "The African rock python is a large snake that can grow up to 20 feet long.", + "African rock pythons are large, heavy-bodied snakes that can reach lengths of up to 18 feet (5.", + "An African rock python is typically dark brown or olive in color, with large black spots on its body.", + "The African rock python is a large snake that can grow up to 20 feet long.", + "The African rock python has a dark brown or olive-green body with large, dark brown blotches that are outlined with cream or gold.", + "African rock pythons look like large snakes with dark brown or tan patterns.", + "In the image, the African rock python is a large, brown and white snake coiled up on a tree branch.", + "The image from the internet of an African rock python is of a large snake coiled up in the grass.", + "The image is of an African rock python coiled up on a tree branch.", + "An image from the internet of an African rock python might show the snake coiled up in a tree or hiding in the grass.", + "I found an image of an African rock python coiled up in the grass.", + "Image shows an African rock python coiled up on the ground with its head raised.", + "The image is of a large, yellow and brown snake with black spots coiled up on a rock.", + "The image is of a large, coiled snake with a dark brown and tan coloring.", + "The image is of a large, coiled python with a dark brown and tan pattern.", + "The image is of a large snake coiled up on a rock in the sun.", + " An African rock python coils up in a tree.", + "Image of an African rock python coiled up in a tree.", + "A large African rock python coiled in a tree.", + "This snake is an African rock python, one of the largest snakes in the world.", + "This African rock python is one of the largest snakes in the world.", + "An African rock python in its natural habitat.", + "A close-up of an African rock python, with its distinct dark brown and light brown coloration.", + " Image of an African rock python coiled around a tree branch.", + "This is an African rock python.", + "An African rock python winding its way through the rocks." + ], + "Indian cobra": [ + "The Indian cobra is a large cobra found in South Asia.", + "The Indian cobra is a large species of cobra found in South Asia.", + "The Indian cobra is a species of cobra found in the Indian subcontinent.", + "The Indian cobra is a large, venomous snake that is native to India and Pakistan.", + "An Indian cobra is a large, venomous snake that can grow up to six feet long.", + "The Indian cobra is a large species of venomous snake that is native to the Indian subcontinent.", + "Cobras are one of the most recognizable snakes in the world.", + "The Indian cobra is a species of highly venomous snake that can be found in parts of the Indian subcontinent.", + "An Indian cobra is a cobra found in South Asia.", + "Cobras are one of the most venomous snakes in the world.", + "Some features that can help identify an Indian cobra are its hood, which is wider than it is long, and the pattern on its body, which is made up of bands that are lighter in color than the background.", + "The Indian cobra can be identified by its reddish-brown hood with white and black bands.", + "The Indian cobra has a broad, triangular head with a hood that can be displayed when it is threatened.", + "There are many ways to identify an Indian cobra.", + "The best way to identify an Indian cobra is by its distinctive hood.", + "You can identify an Indian cobra by its light brown to black color, its white chin, and its hood that has dark bands on it.", + "The Indian cobra is a species of cobra found in South Asia.", + "An Indian cobra can be identified by its hood, which is narrower than that of other cobra species and has dark spots on the inside.", + "The Indian cobra is a venomous snake that can be identified by its long, hooded head and dark, elliptical spots on its body.", + "There is no definitive answer to this question, as there is significant variation in the appearance of Indian cobras.", + "An Indian cobra is a type of venomous snake that is found in parts of South Asia.", + "An Indian cobra is a yellow-brown color with a black hood.", + "One type of Indian cobra, the common or spectacled cobra, has a light brown body with wide, dark brown bands.", + "Indian cobras are brown or yellowish brown, with a light brown or white belly.", + " Indian cobra's are yellowish-tan to black in color and have round pupils.", + "An Indian cobra is a small to medium-sized snake, typically green or brown in color.", + "An Indian cobra has a hood that is light brown or tan with dark brown or black spots.", + "The Indian cobra is a species of cobra found in South Asia.", + "The Indian cobra is a species of cobra found in India and Sri Lanka.", + "The Indian cobra is a sleek and slender snake that can grow to be about six feet long.", + "I found an image of an Indian cobra on Google.", + "A picture of an Indian cobra shows a large, brown and tan snake with black bands coiled up on a branch.", + "In the image, the Indian cobra is shown coiled up with its head raised.", + "The image from the internet is of an Indian cobra.", + "In the image, a large Indian cobra is coiled up on a dirt road.", + "In the image, an Indian cobra is shown coiled up on a branch with its hood expanded.", + "I cannot post images from the internet here, but an Indian cobra is a type of venomous snake that is found in India.", + "In the image, the Indian cobra is poised to strike, with its head raised and hood flared.", + "The image is of a brown and yellow Indian cobra coiled up on a dirt road.", + "In the image, the Indian cobra is coiled up on a branch with its head raised.", + "Indian cobras are one of the most venomous snakes in the world.", + "An Indian cobra, or Naja naja, is a highly venomous species of cobra found in the Indian subcontinent.", + "The Indian cobra is one of the most venomous snakes in the world.", + "An Indian cobra, also known as a spectacled cobra, photographed in its natural habitat.", + "A juvenile Indian cobra (Naja naja) ready to strike.", + " A deadly Indian cobra poised to strike.", + "An Indian cobra, also called a spectacled cobra, poised to strike.", + " An Indian cobra coils in the grass, ready to strike.", + "The Indian cobra (Naja naja) is a species of cobra found across the Indian subcontinent.", + " A king cobra from India." + ], + "green mamba": [ + "A green mamba is a long, thin snake with bright green scales.", + "A green mamba is a snake that is typically green in color with a yellow or white underside.", + "A green mamba is a small, front-fanged venomous snake.", + "A green mamba is a large, bright green snake with a narrow head.", + "A green mamba is a long, thin snake with green scales.", + "A green mamba is a long, slender green snake with yellowish-green underparts.", + "A green mamba is a brightly colored, venomous snake that is native to Africa.", + "A green mamba is a snake that is slender and typically green in color.", + "A green mamba is a snake that is typically green in color.", + "A green mamba is a venomous snake that is native to Africa.", + "The green mamba is a bright green snake with a yellow belly.", + "A green mamba is a long, thin snake with a bright green body and a yellow or white belly.", + "The best way to identify a green mamba is to look at its color.", + "Green mambas can be identified by their bright green color.", + "A green mamba is a species of venomous snake that is endemic to Sub-Saharan Africa.", + "A green mamba can be identified by its long, slender body and bright green coloration.", + "One way to identify a green mamba is by its color.", + "A green mamba can be identified by its long, slender body and its bright green coloration.", + "A green mamba is a brightly colored, venomous snake that is native to Africa.", + "A green mamba is a green snake with black bands around its body.", + "A green mamba looks like a long, thin, green snake.", + "A green mamba is a snake that is typically green in color.", + "A green mamba is a brightly colored, venomous snake that is found in Africa.", + "A green mamba typically has a bright green coloration with some lighter green or white patterns along the sides of its body.", + "A green mamba is a snake that is green in color.", + "The green mamba is olive green in color with a yellowish bell and a black tip on its tail.", + "A green mamba is a bright green snake that is native to Africa.", + "Green mambas are a type of venomous snake that is green in color.", + "A green mamba looks like a long, thin snake with greenish-brown skin.", + "A green mamba is a bright green venomous snake that can be found in sub-Saharan Africa.", + "The image is of a green mamba coiled up in a tree.", + "A green mamba is a very thin, bright green snake with black stripes.", + "A green mamba is a long, thin snake with bright green scales.", + "The image is of a green mamba coiled up in a branch.", + "The image is of a snake coiled up on a branch.", + "The image from the internet shows a green mamba coiled up and ready to strike.", + "The image is of a green mamba coiled up in a tree.", + "This green mamba image shows the snake in a green and yellow color.", + "The image is of a green mamba snake coiled up on a green leaf.", + "In the image, a green mamba is coiled up on a branch, with its head raised up and its mouth open slightly.", + " Green Mamba coiled and ready to strike.", + "A green mamba snake in its natural habitat.", + "Agreen mamba (Dendroaspis angusticeps) is a highly venomous snake endemic to Africa.", + "The green mamba is one of the deadliest snakes in Africa.", + " The green mamba is a highly venomous snake found in parts of Africa.", + "A green mamba snake coiled up in a tree.", + "This photo shows a green mamba, a venomous snake native to Africa.", + " A green mamba (Dendroaspis angusticeps) perched in a tree.", + "Green mamba laying in the sun.", + "A green mamba snake coiled up in a tree." + ], + "sea snake": [ + "Most sea snakes are dark brown or black, but some may be brightly colored.", + "A sea snake is a long, thin snake that is brown or green in color.", + "A sea snake is a long, thin snake that lives in the ocean.", + "A sea snake is a type of venomous snake that lives in the sea.", + "A sea snake is a long, slender snake found in warm ocean waters.", + "Sea snakes are usually yellow, green, or blue, and have black bands around their bodies.", + "A sea snake is a type of venomous snake that lives in the water.", + "A sea snake is a large, venomous snake that lives in the water.", + "There are many different types of sea snakes, but they all share some common features.", + "A sea snake is a type of snake that is adapted to living in the water.", + "Sea snakes are often brightly colored and have a pattern of stripes or bands.", + "A sea snake has a long, narrow body and a flattened tail.", + "The best way to identify a sea snake is by its long, thin body and its paddle-shaped tail.", + "There are many ways to identify a sea snake.", + "There are many ways to identify a sea snake.", + "A sea snake can be identified by its long, thin body; its small, triangular head; and its narrow, venomous fangs.", + "The easiest way to identify a sea snake is to look at its tail.", + "The easiest way to identify a sea snake is by its long, thin body and flattened head.", + "A sea snake is a snake that lives in the ocean.", + "A sea snake is a venomous snake that is found in the water.", + "Sea snakes are long, thin snakes that live in the ocean.", + "A sea snake is a type of reptile that lives in the water.", + "There are over 70 different species of sea snakes, so they come in a variety of shapes and sizes.", + "A sea snake is a type of snake that lives in the water.", + "A sea snake is a type of snake that is found in the sea.", + "A sea snake is typically a brightly colored snake with a long, slender body.", + "A sea snake looks like a snake that lives in the sea.", + "A sea snake is a yellow and black snake that looks like it is covered in scales.", + "A sea snake looks like a regular snake, but it has flippers instead of legs.", + "Skinny, scaly, and dangerous, sea snakes are some of the most venomous creatures in the world.", + "This image from the internet shows a large, coiled sea snake with a brown and white pattern.", + "This image shows a sea snake slithering through the water.", + "One image that comes up when you google \"sea snake\" is of a yellow and black snake with a stripe down its back, coiled up in the water.", + "This image from the internet shows a sea snake swimming in the ocean.", + "This image from the internet shows a snake coiled up in the sand next to the ocean.", + "This image from the internet is of a brightly colored sea snake coiled around some rocks in shallow water.", + "The image is of a large, green sea snake coiled up on a rocks in the ocean.", + "The image is of a light-colored sea snake with dark bands wrapped around its body.", + "In the image, a sea snake is draped over a branch in the water.", + "A sea snake is a long, thin snake that lives in the water.", + "A common sea snake found in tropical waters.", + "A sea snake swimming in the ocean.", + "A sea snake coil in the water.", + " A yellow-bellied sea snake, the most common kind of sea snake.", + "A yellow-bellied sea snake slithers through the water.", + "A sea snake floats in the water.", + " A sea snake with brown and white bands coiled around a branch.", + "A sea snake drifts through the water, its long, slender body undulating gracefully.", + "A sea snake slithering through the water.", + "A venomous sea snake of the genus Hydrophis, found in waters off Southeast Asia." + ], + "Saharan horned viper": [ + "The Saharan horned viper is a small to medium-sized snake that can grow to be about 3-4 feet long.", + "A Saharan horned viper is a small, venomous snake that is found in the Sahara Desert of Africa.", + "The Saharan horned viper is a small viper with a short, stocky body and a long tail.", + "The Saharan horned viper is a small, stocky snake with a wide head.", + "The Saharan horned viper is a venomous viper species found in the Sahara Desert of northern Africa.", + "A Saharan horned viper is a venomous snake that is found in the Sahara Desert.", + "A Saharan horned viper is a small to medium-sized snake, typically 50\u201380 cm (20\u201331 in) in length, but can grow to lengths of up to 1.", + "A Saharan horned viper has a slender body with a brown or tan color.", + "A Saharan horned viper is a small, stocky venomous snake with a wide head and a distinctive \"horn\" protruding from each nostril.", + "A Saharan horned viper is a venomous viper species endemic to the Sahara Desert.", + "The Saharan horned viper is a large, venomous snake.", + "I cannot answer this question.", + "The most obvious identifier of a Saharan horned viper is the presence of two large \"horns\" protruding from the top of its head.", + "The Saharan horned viper is a species of venomous snake in the family Viperidae.", + "One way to identify a Saharan horned viper is by its unique horns, which are Located above the eyes.", + "The easiest way to identify a Saharan horned viper is by its horns.", + "There are several ways to identify a Saharan horned viper.", + "There are a few ways to identify a Saharan horned viper.", + "The Saharan horned viper is a small to medium-sized viper with a wide, flattened head and a long, thick tail.", + "A Saharan horned viper can be identified by its small size, flat head, and triangular-shaped body.", + "The Saharan horned viper is a small species of viper that is found in the Sahara Desert.", + "A Saharan horned viper has a brown or reddish brown body with dark brown spots.", + "The Saharan horned viper is a small to medium-sized viper with a wide head and a long, thin body.", + "A Saharan horned viper looks like a regular viper with two horns on its head.", + "A Saharan horned viper has a horn or crest on its head, and is patterned in shades of brown, gray, and white.", + "Saharan horned vipers are small to medium-sized snakes that are brown or reddish-brown in color with dark, irregular crossbands.", + "The Saharan horned viper is a large and heavy-bodied snake.", + "The Saharan horned viper is a long, thin snake with a brown or red body and a yellow belly.", + "The Saharan horned viper is a small to medium-sized viper with a thick body and a short, blunt tail.", + "A Saharan horned viper is a small, venomous snake that is found in the Sahara Desert.", + "In the image, the viper is coiled up on a sand dune, with its head raised and its horns visible.", + "In the image, the Saharan horned viper is a brown and yellow snake with horns on its head.", + "The image is of a Saharan horned viper curled up on a rock in the desert.", + "The Saharan horned viper is a small, stocky snake with a relatively thick body.", + "The Saharan horned viper is a small, stocky snake with a wide head and triangular-shaped horns above its eyes.", + "The Saharan horned viper is a venomous snake that is found in the deserts of northern Africa.", + "In the image, the Saharan horned viper is coiled up on a rock in the desert.", + "In the image, the Saharan horned viper is coiled up on a sandy surface.", + "I found an image of a Saharan horned viper on Wikimedia Commons.", + "The Saharan horned viper is a small, stocky snake with a wide head and large horns above its eyes.", + "The Saharan horned viper is a venomous snake that is found in the Sahara Desert.", + "A deadly Saharan horned viper slithers through the sand, its venomous fangs at the ready to strike.", + " A close up of a Saharan horned viper's head, showing its horns and vertical pupils.", + " A venomous Saharan horned viper with orange and brown stripes coiled up and ready to strike.", + "The Saharan horned viper is a venomous snake found in the desert regions of North Africa.", + "The Saharan horned viper is a venomous snake found in the Sahara Desert.", + "A Saharan horned viper in its natural habitat.", + "A closeup of a Saharan horned viper, showing its bright red eyes and strikinghorned head.", + "This is a Saharan horned viper.", + "A Saharan horned viper in its natural habitat." + ], + "eastern diamondback rattlesnake": [ + "The eastern diamondback rattlesnake is the largest rattlesnake in America.", + "The eastern diamondback rattlesnake is the largest rattlesnake in North America.", + "The Eastern Diamondback Rattlesnake is the largest rattlesnake in North America and one of the heaviest snakes in the world.", + "A eastern diamondback rattlesnake typically has a light brown body with a darker brown diamond pattern running down its back.", + "A eastern diamondback rattlesnake is a snake with a diamond-shaped pattern on its back.", + "A eastern diamondback rattlesnake is black, brown, or olive green with a diamond-shaped pattern down its back.", + "A eastern diamondback rattlesnake is a large, heavy bodied snake.", + "The eastern diamondback rattlesnake is the largest rattlesnake in the world, and is found throughout the southeastern United States.", + "The eastern diamondback rattlesnake has a dark brown, gray, or olive body with large, diamond-shaped yellowish brown or reddish brown spots.", + "The eastern diamondback rattlesnake is a large, heavy-bodied snake with a diamond-shaped pattern down its back.", + "It is the largest of the rattlesnakes and has a distinctive rattle at the end of its tail.", + "The best way to identify a eastern diamondback rattlesnake is by its unique pattern of diamond-shaped markings that run the length of its body.", + "The eastern diamondback rattlesnake is the largest rattlesnake species in North America.", + "The eastern diamondback rattlesnake is the largest venomous snake in North America.", + "The venom of an eastern diamondback rattlesnake is very potent.", + "The eastern diamondback rattlesnake is the largest rattlesnake in North America and can grow up to 8 feet in length.", + "The easiest way to identify a Eastern Diamondback Rattlesnake is by its rattle.", + "There are a few ways to identify a eastern diamondback rattlesnake.", + "The best way to identify a eastern diamondback rattlesnake is by its rattle.", + "The easiest way to identify a eastern diamondback rattlesnake is by its rattle.", + "A diamondback rattlesnake is a large, heavy-bodied snake with a wide head.", + "A diamondback rattlesnake is a large, heavy-bodied snake with a brown, gray, or olive-colored back covered with dark brown or gray diamond-shaped markings.", + "The eastern diamondback rattlesnake is the largest venomous snake in the U.", + "A typical eastern diamondback rattlesnake has a brown, tan, or gray body with a diamond-shaped pattern.", + "A large, stocky rattlesnake with a diamond pattern down its back.", + "The eastern diamondback rattlesnake is a large, heavy-bodied snake with a diamond-shaped pattern on its back.", + "A diamondback rattlesnake has a triangular-shaped head, a brown or tan body with a row of dark diamonds down the back, and a rattle on the end of its tail.", + "They are brown with a diamond shaped pattern on their backs.", + "A eastern diamondback rattlesnake has a wide, triangular shaped head.", + "The eastern diamondback rattlesnake is the largest venomous snake in North America.", + "The image is of a coiled eastern diamondback rattlesnake with a brown and white diamond pattern.", + "The image is of a large, coiled diamondback with a brown and tan pattern and a long, triangular head.", + "The image is of a large, coiled rattlesnake with a diamond-shaped pattern running down its back.", + "The image shows a large, orange and brown eastern diamondback rattlesnake coiled up on the ground.", + "The image is of a large, brown and yellow snake coiled up on the ground.", + "The internet image shows a large eastern diamondback rattlesnake coiled up on the ground.", + "The image is of an eastern diamondback rattlesnake coiled up on the ground.", + "The image is of a eastern diamondback rattlesnake coiled up and ready to strike.", + "The image is of a large, coiled snake with a brown and white diamond pattern along its body.", + "The image shows a large, coiled snake with dark brown and tan diamond-shaped patterns running down its back.", + "The eastern diamondback rattlesnake is the largest of all rattlesnakes and one of the most venomous snakes in North America.", + " A large, dangerous eastern diamondback rattlesnake.", + "Easter diamondback rattlesnake coiled and ready to strike.", + "The eastern diamondback rattlesnake is the largest rattlesnake in the world.", + " \"The eastern diamondback rattlesnake is one of the largest and most dangerous snakes in North America.", + "This is an eastern diamondback rattlesnake, one of the most venomous snakes in North America.", + " Eastern diamondback rattlesnake, one of the largest and most dangerous snakes in North America.", + "A close-up of an eastern diamondback rattlesnake, showing its distinctive diamond patterns along its back.", + "An eastern diamondback rattlesnake poised to strike.", + "A deadly eastern diamondback rattlesnake coiled and ready to strike." + ], + "sidewinder rattlesnake": [ + "A sidewinder rattlesnake is a reptile with a venomous bite.", + "A sidewinder rattlesnake is a type of rattlesnake that has a unique method of locomotion.", + "A sidewinder rattlesnake is a rattlesnake that has a distinctive way of moving, called laterally undulatory locomotion.", + "A sidewinder rattlesnake is a large, venomous snake that is native to the deserts of North America.", + "A sidewinder rattlesnake is a species of rattlesnake that is characterized by its sideways locomotion and the way its scales are arranged.", + "A sidewinder rattlesnake is a desert-dwelling rattlesnake with a unique form of locomotion.", + "The sidewinder rattlesnake is a desert-dwelling snake that is distinguished by its lateral undulations, or side-winding, locomotion.", + "A sidewinder rattlesnake has light brown or tan markings against a dark brown or black background.", + "A sidewinder rattlesnake is a yellow and brown snake with a rattle on the end of its tail.", + "A sidewinder rattlesnake looks like a snake with a rattle on its tail.", + "A sidewinder rattlesnake is a type of rattlesnake that is found in the southwestern United States and northwestern Mexico.", + "A sidewinder rattlesnake can be identified by its unique form of locomotion.", + "The best way to identify a sidewinder rattlesnake is by its unique sideways-moving locomotion.", + "The sidewinder is a species of rattlesnake that is distinguished by its sideways method of locomotion across loose sand.", + "A sidewinder rattlesnake is a species of rattlesnake that is characterized by the way it moves across the sand.", + "One way to identify a sidewinder rattlesnake is by its distinctive sideways style of locomotion.", + "A sidewinder rattlesnake is a species of rattlesnake that is characterized by its lateral sideling motion, which is a form of Locomotion where an animal moves its body from side to side.", + "There are several ways to identify a sidewinder rattlesnake.", + "The easiest way to identify a sidewinder is by its distinctive style of locomotion.", + "Sidewinder rattlesnakes can be identified by their brown, tan, or reddish coloration with darker patches along their back.", + "A sidewinder rattlesnake looks like a snake that is coiled up on the ground with its head raised up off the ground.", + "A sidewinder is a type of rattlesnake.", + "A sidewinder rattlesnake has a body that is light brown in color with dark brown stripes running down the length of its back.", + "The Sidewinder rattlesnake is a desert dwelling snake that can be found in the southwestern United States and northwestern Mexico.", + "The eastern diamondback rattlesnake is the largest rattlesnake in North America.", + "A sidewinder rattlesnake is a venomous snake that has a rattle at the end of its tail.", + "A sidewinder rattlesnake has a long, narrow body and a large rattle at the end of its tail.", + "A sidewinder rattlesnake is a species of rattlesnake that is common in the southwestern United States.", + "A sidewinder rattlesnake looks like a typical rattlesnake, but with a few key differences.", + "A sidewinder rattlesnake typically has a light brown body with dark brown blotches.", + "The image is of a long, thin snake with light brown and white stripes running down its body.", + "The image is of a snake coiled up, with its body curved in a \"U\" shape.", + "In the image, the snake is coiled up with its head raised, and its rattle is clearly visible.", + "A sidewinder rattlesnake is a type of rattlesnake that can be found in the southwestern United States.", + "An image of a sidewinder rattlesnake from the internet shows the snake coiled and ready to strike.", + "The image is of a coiled rattlesnake with a light brown and white body.", + "The image is of a beige and brown snake with a dark brown stripe running down its back.", + "A sidewinder rattlesnake is a species of venomous snake that is native to the deserts of the southwestern United States and parts of northern Mexico.", + "In the image, the snake is coiled up with its body lying flat against the ground.", + "The image is of a beige and brown sidewinder rattlesnake coiled up on a sandy surface.", + "A close-up of a sidewinder rattlesnake (Crotalus cerastes), native to the deserts of the southwestern United States and northern Mexico.", + " A sidewinder rattlesnake (Crotalus cerastes) in the Mojave Desert of California.", + "This is a sidewinder rattlesnake, a venomous snake found in the deserts of North America.", + "Sidewinder Rattlesnake in Joshua Tree National Park.", + "Sidewinder Rattlesnake - Crotalus cerastesThis species of rattlesnake is found in the deserts of the southwestern United States and northern Mexico.", + "A sidewinder rattlesnake in its natural habitat.", + "A sidewinder rattlesnake in the desert.", + " A sidewinder rattlesnake in the desert.", + "The sidewinder rattlesnake is a species of venomous snake found in the deserts of the southwestern United States.", + "\"Sidewinder rattlesnake (Crotalus cerastes), Mojave Desert,__\"." + ], + "trilobite": [ + "A trilobite is a small, hard-shelled creature that lived in the ocean during the Paleozoic era.", + "Most trilobites were roach-like in shape and had a segmented body.", + "A trilobite is a primitive, extinct arthropod that had a flat, segmented body and a hard exoskeleton.", + "A trilobite is a small, hard-bodied creature that lived in the ocean during the Paleozoic era.", + "A trilobite is a prehistoric creature that had a hard, segmented shell.", + "A trilobite is a extinct type of arthropod that had a three-lobed body.", + "A trilobite is an extinct marine arthropod that resembled a modern-day pill bug or woodlouse.", + "A trilobite is a small, hard-shelled creature that lived in the ocean during the Paleozoic era.", + "Image result for trilobite\nA trilobite is a primitive, extinct, arthropod that had a hard exoskeleton and a segmented body.", + "Trilobite fossils are found in a wide range of sizes, from less than 1mm to over 70cm in length.", + "A trilobite is a kind of fossil.", + "The easiest way to identify a trilobite is by its three-lobed shape.", + "From its three-lobed shape.", + "A trilobite is a prehistoric, extinct marine arthropod that belongs to the class Trilobita.", + "The easiest way to identify a trilobite is by its distinctive three-lobed shape.", + "The easiest way to identify a trilobite is by its three lobes, which run along the length of its body.", + "The easiest way to identify a trilobite is by its distinctive three-lobed shape.", + "Trilobites can be identified by their three-lobed, segmented bodies.", + "A trilobite is a type of fossil, typically found in sedimentary rock.", + "A trilobite is a fossil of a prehistoric, marine arthropod that has a three-lobed, segmented body.", + "A trilobite looks like a three-lobed bug.", + "A trilobite is a small, hard-shelled, segmented creature that lived in the sea during the Paleozoic era.", + "The average trilobite was about three centimeters long, but some grew to over 70 centimeters.", + "Trilobites are ancient arthropods that have a three-lobed body.", + "A trilobite is a small, shrimp-like creature that lived in the oceans during the Paleozoic era.", + "A trilobite is a prehistoric creature that resembles a small crab.", + "A trilobite is a primitive arthropod that lived in the seas during the Palaeozoic era.", + "Trilobites are an extinct group of hard-shelled, segmented arthropods that lived in the world's oceans for over 270 million years.", + "A trilobite is a prehistoric animal that looked like a cross between a bug and a shrimp.", + "Most trilobites had a three-lobed, segmented body.", + "This image from the internet is of a trilobite fossil.", + "The image is of a fossilized trilobite that is encased in a block of stone.", + "This image is of a beautifully preserved specimen of the extinct marine arthropod, trilobite.", + "Image shows a fossil of a trilobite, an extinct marine arthropod.", + "An image of a trilobite from the internet would show an extinct species of arthropod that lived during the Paleozoic Era from 521-0 million years ago.", + "A picture of a trilobite from the internet would likely show a fossilized trilobite with its characteristic three lobed body shape.", + "A large, extinct arthropod that had a segmented body, a hard exoskeleton, and a rectangular head with large eyes.", + "A trilobite is an extinct animal that lived from the Cambrian period to the Permian period.", + "The image is of a trilobite fossil that has been preserved in rock.", + "A trilobite is an extinct marine arthropod that lived during the Palaeozoic era, which lasted from about 541 to 251 million years ago.", + "A trilobite is an extinct arthropod that lived during the Paleozoic era.", + "This is a trilobite, a extinct group of invertebrate animals.", + "A trilobite fossil found in the Precambrian strata of Morocco.", + "A trilobite is an extinct marine arthropod that lived during the Cambrian period, about 541 million years ago.", + "A trilobite is an extinct creature that lived during the Paleozoic Era.", + "This is a Trilobite, an extinct species of arthropod.", + "An extinct group of arthropods, trilobites were some of the first complex organisms to appear on Earth.", + "This is a photo of a fossilized trilobite.", + "Trilobites were some of the earliest known organisms and lived during the Cambrian period, around 540 million years ago.", + "Affected by poor eyesight and a blind spot in the center of their field of vision, trilobites relied on other means to detect food and avoid predators." + ], + "harvestman": [ + "A harvestman has a long, thin body with eight legs.", + "Harvestmen are also known as daddy long-legs.", + "A harvestman is small and spider-like, with a long body and legs.", + "A harvestman is a small, dark creature with a long body and thin legs.", + "A harvestman is an arachnid that has a long, thin body.", + "Harvestmen have long, thin legs and a small body.", + "A harvestman has a long, thin body with eight legs.", + "A harvestman (also called a daddy longlegs) is an arachnid, like a spider.", + "A harvestman is an arachnid, meaning it has eight legs.", + "The harvestman is a small, eight-legged creature that looks like a spider.", + "Harvestmen can be distinguished from other arachnids by their two-segmented body (other arachnids have four segments), lack of chewing mouthparts, and the fact that their legs are about the same length.", + "#TODO.", + "The best way to identify a harvestman is to look for its two main body parts: the abdomen and the cephalothorax.", + "A harvestman can be identified by its long legs and small body.", + "A harvestman has a small, round body and long, thin legs.", + "A harvestman can be identified by its long legs and rounded body.", + "A harvestman can be identified by its long legs and small, oval body.", + "A harvestman can be identified by its long legs and small body.", + "Harvestmen can be identified by their long, thin legs, and by the fact that their body and head are fused into one structure.", + "A harvestman is a type of arachnid that closely resembles a spider.", + "A harvestman is an arachnid that typically has a small, round body and long, thin legs.", + "A harvestman is an arachnid that looks like a spider.", + "A harvestman is a spider-like creature that has a small body and long legs.", + "A harvestman is an arachnid that looks like a small spider.", + "A harvestman is an arachnid that looks like a small spider.", + "A harvestman is a spider-like creature that does not have a segmented body.", + "A harvestman is an arachnid that looks like a spider, but only has two body segments instead of the spider's three.", + "A harvestman resembles a spider, but has a rounder body and shorter legs.", + "A harvestman is an arachnid that looks like a spider but only has one body segment and two eyes.", + "A harvestman looks like a small, dark spider with a long, thin body and legs.", + "This image shows a harvestman, also known as a daddy longlegs, crawling on a blade of grass.", + "A harvestman is an arachnid that has a long, thin body with eight legs.", + "I found an image of a harvestman on the internet that looks like a small, black spider.", + "The image is of a harvestman, also called a daddy longlegs, on a green leaf.", + "I found an image of a harvestman that looks like a cartoon.", + "A harvestman is a type of arachnid that typically has a small body and long legs.", + "The image is of a harvestman on a green leaf.", + "The image is of a harvestman with a brown and white body.", + "This image shows a harvestman, also known as a \"daddy longlegs\", hanging upside down from a leaf.", + "An image from the internet of a harvestman shows the creature clinging to a tree branch with its long legs.", + "A harvestman crawls along a leaf in search of food.", + "A harvestman spider enjoys a meal of fruit.", + " A harvestman in its natural habitat.", + "A harvestman spider with its long, spindly legs.", + " A harvestman creeps along a blade of grass.", + "A harvestman in its natural habitat.", + "A close up of a harvestman, also known as a daddy longlegs.", + "This is a harvestman, also called a daddy longlegs.", + " A harvestman crawls among fallen leaves.", + " A harvestman, or daddy longlegs, on a blade of grass." + ], + "scorpion": [ + "A scorpion looks like a small lobster or crab with a long, curved tail that ends in a stinger.", + "The majority of scorpions are dark brown, but coloration among species can range fromtan to almost black.", + "Slender body, 2\" to 3\" long.", + "A scorpion is a small, eight legged animal that has a long, segmented tail that ends in a poisonous stinger.", + "A scorpion is a small, dark creature with a long tail.", + "A scorpion is an eight-legged predator that hunts at night.", + "A scorpion is about 8 to 10 cm long and has a long, thin body.", + "A scorpion is a small arachnid with a long tail that is often curved over its back.", + "A scorpion is a small arachnid that has a long, segmented body and a long tail that ends in a stinger.", + "Scorpions are arachnids and have eight legs, two large pincers, and a long, segmented tail with a venomous stinger on the end.", + "The easiest way to identify a scorpion is by its long, curved tail that ends in a stinger.", + "There are many ways to identify a scorpion.", + "Scorpions are eight-legged carnivorous arachnids.", + "The easiest way to identify a scorpion is by its long, curved tail that ends in a stinger.", + "Scorpions are arachnids, so they have eight legs, two pincers (or chelicerae), and a long, segmented tail that is tipped with a venomous stinger.", + "There are a few ways to identify a scorpion.", + "A scorpion has a long, segmented body and a large stinger at the end of its tail.", + "There are a few ways to identify a scorpion.", + "Scorpions can be identified by their long, skinny tails and large claws.", + "Scorpions can be identified by their long tails and large pincers.", + "Most scorpions are dark-colored, but some are light-colored.", + "A scorpion looks like a small crab with a long, curved tail.", + "A scorpion is a small, eight-legged creature with a long tail that has a sting at its end.", + "Scorpions are arachnids, and look like small, dark-colored crabs.", + "The appearance of a scorpion can vary depending on the species, but they all have a long, segmented body and large claws.", + "Most scorpions are brown, but some are reddish or yellowish.", + "A scorpion is usually dark brown or black, and has a long, segmented body with a small head.", + "A scorpion is a predatory arachnid with a long tail that is tipped with a venomous stinger.", + "A scorpion is a small, predatory arachnid with a long tail that is tipped with a stinger.", + "A scorpion is a small arachnid with a long, segmented tail that is often curved over its back.", + "The image from the internet is of a scorpion on a white background.", + "The image is of a yellow scorpion on a dark background.", + "The image is of a large scorpion with a long, curved tail and large claws.", + "A scorpion is a small, predatory arachnid with a long tail that is tipped with a venomous stinger.", + "This scorpion image is from the internet.", + "In this image, a scorpion is shown in close up, allowing us to see its many details.", + "An image of a scorpion from the internet shows a large, brown scorpion with a long, curved tail and large claws.", + "The image is of a scorpion, with its large tail curving over its back, and its large claws in front of it.", + "This scorpion is a bright yellow color with brown spots.", + "The image is of a scorpion on a light background.", + "A scorpion on a black background.", + " Remove with care.", + "A close up of a scorpion's stinger.", + " A scorpion in the desert.", + "A close-up of a scorpion's body.", + "Close-up of a scorpion in the desert.", + "A scorpion sits atop a rock in the desert, its stinger poised and ready to strike.", + "A scorpion on a sandy beach.", + "A close up of a scorpion's head, showing its large pincers and beady eyes.", + "A scorpion looks menacing with its large claws and long tail." + ], + "yellow garden spider": [ + "The yellow garden spider is a medium to large spider with around 8-10 mm long.", + "The yellow garden spider is a yellow spider with black spots.", + "A yellow garden spider looks like a yellow spider with black spots on its back.", + "A yellow garden spider is a type of arachnid that is yellow and black in color.", + "Black and yellow garden spiders are about 3/8 to 5/8 of an inch in body length with legs that may span up to 2 inches.", + "The yellow garden spider is a type of spider that is yellow in color.", + "A yellow garden spider has a bright yellow body with black markings.", + "A yellow garden spider has a light yellow body and a dark brown abdomen.", + "The yellow garden spider is a long-legged spider with a round, yellow abdomen.", + "The yellow garden spider has a yellow and black body with long legs.", + "A yellow garden spider is usually found near gardens and is yellow and black in color.", + "Adult garden spiders are easily identified by their distinctive coloring.", + "There are a few ways to identify a yellow garden spider.", + "A yellow garden spider has a yellow and black striped abdomen and can be found in gardens and green areas.", + "The best way to identify a yellow garden spider is to look for the distinctive yellow and black markings on its abdomen.", + "The yellow garden spider is a large, brightly colored spider.", + "One way to identify a yellow garden spider is by its colour.", + "You can identify a yellow garden spider by its large, round abdomen and bright yellow and black markings.", + "A yellow garden spider has a yellow and black striped abdomen.", + "There are a few ways to identify a yellow garden spider.", + "A yellow garden spider is a type of spider that is yellow in color.", + "A yellow garden spider is a spider that is yellow in color.", + "A yellow garden spider is a yellow and black spider that is common in gardens.", + "A yellow garden spider is mostly yellow and black, and it has a very large abdomen.", + "The yellow garden spider looks like a yellow and black spider with a large abdomen.", + "The yellow garden spider is a type of araneomorph spider that is found in gardens throughout the United States.", + "A yellow garden spider is a type of arachnid that typically has a yellow and black striped abdomen, and eight long legs.", + "A yellow garden spider is a small, black spider with spots that range in color from yellow to white.", + "A yellow garden spider looks like a yellow spider with black markings on its back.", + "The yellow garden spider is a large, bright yellow spider with black spots on its abdomen.", + "The image is of a yellow garden spider suspended in its web.", + "A yellow garden spider is a spider that is yellow in color.", + "This image is of a yellow garden spider hanging from a web.", + "This photo shows a yellow garden spider perched atop a plant in a garden.", + "The image is of a yellow garden spider on a flower.", + "The image is of a yellow garden spider perched on a leaf with its web stretched out behind it.", + "A photo of a yellow garden spider sitting on a green leaf in a sunlit garden.", + "In the image, a yellow garden spider is perched on a green leaf in a garden, with a web spun out around it.", + "The image is of a yellow garden spider hanging from a web.", + "In the image, a large yellow spider is perched on a green leaf in a garden.", + " A yellow garden spider sits in its web.", + "A garden spider hanging out in a yellow flower.", + "A yellow garden spider hanging from its web.", + " It's a face only a mother could love.", + "The yellow garden spider is a common arachnid found in gardens across the United States.", + "A yellow garden spider (Argiope aurantia) rests on a web in a garden.", + "The yellow garden spider is a brightly colored spider that is common in gardens and other outdoor areas.", + "The yellow garden spider is a common spider found in gardens and forests.", + "A yellow garden spider (Argiope aurantia) hangs from its web.", + "A yellow garden spider on a web." + ], + "barn spider": [ + "A barn spider is a type of spider that is typically brown or black in color.", + "A barn spider is typically a brown or grey spider with long legs.", + "A barn spider has a brown body with a yellowish stripe going down its back.", + "A barn spider is a type of spider that is often found in barns.", + "A barn spider is a large spider with a round, purplish-brown abdomen and a mottled brown and gray cephalothorax.", + "Barn spiders are large, brown spiders that build webs in barns and other buildings.", + "A barn spider is a small, brown spider with long legs.", + "A barn spider has a reddish-brown body with light-colored spots and a dark, diamond-shaped mark on its back.", + "A barn spider usually has a brown and yellow striped abdomen, and a brown cephalothorax.", + "A barn spider is a small, brown spider with a large, round abdomen.", + "A barn spider is a type of cellar spider, and it can be identified by its long, thin legs and pale brown body.", + "The easiest way to identify a barn spider is to look for its web.", + "What distinguishes a barn spider from other spiders is the shape and color of its abdomen.", + "The easiest way to identify a barn spider is by its characteristic web.", + "A barn spider can be identified by its large, gray body and long, striped legs.", + "There is no sure way to identify a barn spider, as there are many types of spiders that live in barns.", + "Barn spiders are usually brown, black, or gray, and have a distinctive zigzag pattern on their abdomens.", + "They are large, brown spiders with white spots on their abdomen.", + "Other than their size, barn spiders can be identified by their coloration.", + "There are a few ways to identify a barn spider.", + "A barn spider looks like a small, brown spider with long legs.", + "Barn spiders are large, brown spiders with long legs.", + "The barn spider (Araneus cavaticus) is a member of the orb-weaver spider family.", + "Barn spiders are large and brown, with long legs.", + "The barn spider is a large, gray spider with long legs.", + "Perhaps the most easily recognizable of spiders, barn spiders (genus Araneus) are chunky, medium-sized arachnids with large, round abdomens.", + "A barn spider has a large, round abdomen and long, spindly legs.", + "A barn spider is a type of spider that is often found in barns.", + "A barn spider looks like a brown spider that spins webs.", + "The barn spider is a medium sized spider.", + "The image is of a barn spider perched on a web.", + "The image is of a barn spider perched on a windowsill.", + "The image is of a large, brown spider with a black and white striped abdomen.", + "The image is of a barn spider perched atop a web.", + "A barn spider is a type of spider that is commonly found in barns.", + "A barn spider is a spider that is typically found in barns.", + "The internet image is of a barn spider with a large, round, light brown body and long, thin, dark brown legs.", + "An image of a barn spider from the internet might show a spider in its web, or a close-up of the spider's face.", + "The image is of a large, brown spider with long, black legs.", + "A barn spider is a spider that commonly build their webs in barns.", + " a large brown spider with a white stripe down its back, spinning a webA barn spider spinning a web.", + " The barn spider is a species of araneomorph spider common in North America.", + "A barn spider hangs upside down from its web, waiting for prey.", + "This is a picture of a barn spider.", + " A majestic barn spider weaves her web.", + "A barn spider (Araneus cavaticus) hangs from its web in a barn.", + "A barn spider hangs from its web in a barn.", + "A barn spider resting on its web.", + "A barn spider hanging from its webThe barn spider is a common spider found in North America.", + " A barn spider spins a web to catch its prey." + ], + "European garden spider": [ + "European garden spiders are small to medium sized spiders.", + "The European garden spider is a small to medium-sized spider with a long, slender body.", + "An European garden spider is typically a light yellow color with brown markings and has a long body.", + "The European garden spider is a large brown spider with white markings on its abdomen.", + "An European garden spider has a black and yellow abdomen and a brown head and legs.", + "The European garden spider has a black and yellow abdomen with white markings.", + "An European garden spider typically has a brown body with yellow and black markings.", + "The European garden spider is a small black spider with white spots on its back.", + "An European garden spider is a yellow and black spider with long legs.", + "The European Garden spider has a reddish brown body with a dark brown or black abdomen.", + "The European garden spider is identifiable by its large, round body and bright yellow and black markings.", + "The European garden spider is a species of spider that is found in Europe.", + "The European garden spider is a large, black and yellow spider.", + "There is no definitive answer to this question, as there are many different types of European garden spiders.", + "European garden spiders are large spiders with long legs.", + "An European garden spider is typically black and yellow, with a black body and yellow stripes running along the sides.", + "The European garden spider is a brightly colored spider that is commonly seen in gardens.", + "An European garden spider is usually found in gardens, on vegetation, or near water.", + "There is no definitive answer to this question as there are many different types of European garden spiders.", + "The European garden spider is a common spider that is found in gardens and homes across Europe.", + "Most European garden spiders are yellow and black, with a brown or reddish brown thorax and abdomen.", + "There are many different species of European garden spiders, so they can vary in appearance.", + "Most European garden spiders are brown or black and have a white or yellow pattern on their abdomen.", + "pic.", + "An European garden spider has a black body with yellow stripes.", + "The European garden spider is a small to medium-sized spider with a long, slender body.", + "The European garden spider is a black and yellow spider with a large, round abdomen.", + "The European garden spider has a large, round abdomen with a black and yellow pattern.", + "The European garden spider is a common species of spider that can be found throughout Europe.", + "The European garden spider is a type of Araneus spider.", + "An image from the internet of a European garden spider shows a spider with a reddish brown body and long, thin legs.", + "In the image, a large European garden spider is perched atop a plant in a garden, surrounded by green leaves.", + "A large, spindly spider with a bulbous abdomen and long, striped legs.", + "The image shows a European garden spider hanging in its web.", + "The image is of a European garden spider on a plant.", + "In the image, a European garden spider is perched on a green leaf in a garden.", + "A European garden spider is a small spider with a black body and yellow spots.", + "This image shows a European garden spider (Araneus diadematus) on a green leaf.", + "The image is of a spider with a large, round abdomen and long, thin legs.", + "In the image, a European garden spider is resting on a green leaf in a garden.", + "An European garden spider hangs from its web.", + "A European garden spider hangs from its web in a garden in Europe.", + "This is an European garden spider (Araneus diadematus).", + "An European garden spider hangs from a web in a garden.", + "European Garden Spider.", + " The European garden spider is a species of spider that is commonly found in gardens throughout Europe.", + "An European garden spider enjoying the flowers in the garden.", + "An European garden spider (Araneus diadematus) in its web.", + "A European garden spider enjoying the sunny day in her web.", + "A European garden spider hangs from its web, waiting for prey." + ], + "southern black widow": [ + "The southern black widow is a small, shiny, black spider with a red mark on its abdomen.", + "A southern black widow is a medium-sized spider that is black with a red hourglass mark on its abdomen.", + "A southern black widow spider is a small, black spider with a red hourglass-shaped mark on its underside.", + "A southern black widow is a black spider with a red hourglass-shaped marking on its underside.", + "Southern black widows are small, shiny, black spiders with a red hourglass shape on their abdomens.", + "The southern black widow is a spider that is black with a red hourglass shaped mark on its belly.", + "The southern black widow is a small black spider with a red hourglass shape on its abdomen.", + "A southern black widow is a shiny black spider with a red mark on its belly.", + "A southern black widow is a small, shiny black spider with a red hourglass-shaped mark on its belly.", + "A southern black widow is a small, black spider with a red hourglass shape on its belly.", + "A southern black widow can be identified by its black, globular abdomen with a red hourglass shape on the underside.", + "A southern black widow is a spider that is black with a red hourglass shape on its stomach.", + "One way to identify a southern black widow is by looking for the red hourglass shape on its abdomen.", + "A southern black widow can be identified by its black coloration with a red hourglass shape on its abdomen.", + "A southern black widow spider can be identified by its black coloration and the red hourglass shape on its underside.", + "A southern black widow can be identified by the row of red spots on its black abdomen.", + "The easiest way to identify a southern black widow is by its distinctive red hourglass shape on the underside of its abdomen.", + "The southern black widow is black with a red hourglass shape on its abdomen.", + "Female southern black widows have a black body with a red hourglass shape on their abdomen.", + "The southern black widow is black with a red hourglass shape on its belly.", + "The southern black widow is black with a red hourglass marking on its abdomen.", + "The southern black widow is black with a red hourglass shape on its underside.", + "A southern black widow looks like a black spider with a red hourglass-shaped mark on its back.", + "A Southern black widow is a type of spider that is black with a red hourglass shape on its belly.", + "A southern black widow looks like a black spider with a red hourglass shape on its belly.", + "A southern black widow is a type of spider that is black with a red hourglass shape on its abdomen.", + "A southern black widow looks like a small, shiny black spider with a red hourglass shape on its abdomen.", + "A southern black widow looks like a small, black spider with a reddish hourglass shape on its abdomen.", + "Based on the same features that allow you to identify a black widow, a southern black widow typically has a reddish hourglass shape on its abdomen.", + "A southern black widow is about 1/2 an inch long, with a glossy black body and a distinct red hourglass shape on its abdomen.", + "An image of a southern black widow spider typically shows a black, shiny spider with a red hourglass shape on its abdomen.", + "A southern black widow is a spider that is black with a red hourglass shape on its abdomen.", + " spiderThe image is of a large, black spider with a red hourglass shape on its abdomen.", + "Image shows a large black spider with a distinct red hourglass shape on its abdomen.", + " spiderThe image is of a southern black widow spider on a white background.", + "The image is of a black spider with a red hourglass shape on its abdomen.", + "The image is of a black widow spider with a red hourglass shape on its back.", + " spiderThe image shows a large, black spider with a red hourglass shape on its abdomen.", + "The image is of a black widow spider with a red hourglass on its abdomen.", + "There's an image on the internet of a southern black widow that's really cool.", + "A southern black widow spider perched atop a web.", + "A southern black widow spider.", + "A dangerous southern black widow spider lurks in the darkness, waiting to pounce on its unsuspecting prey.", + "A southern black widow spider clinging to its web.", + "A southern black widow spider hangs from her web.", + "A southern black widow spider on a web.", + "Female southern black widow spiders are black with a characteristic red hourglass-shaped mark on their ventral abdomen.", + "A black widow spider hangs from its web.", + " A Southern Black Widow spider.", + "A southern black widow spider." + ], + "tarantula": [ + "Tarantulas are large spiders that can have a leg span of up to 10 inches.", + "A tarantula is a large, hairy spider with long legs.", + "A tarantula is a large, hairy spider.", + "Tarantulas are large, hairy spiders that can range in color from brown to black.", + "A tarantula is a large, hairy spider that can be up to 10 inches (25 centimeters) long.", + "The tarantula is a spider that has a large body and 8 legs.", + "A tarantula is typically a dark brown or black hair spider with a large, round body.", + "A tarantula looks like a large hairy spider with long legs.", + "A tarantula is a large, hairy spider that can measure up to four inches in length.", + "A tarantula is a large, hairy spider that can be up to four inches long.", + "The easiest way to identify a tarantula is by its size and appearance.", + "A tarantula is a large, hairy spider.", + "A tarantula has a large, round body and furry legs.", + "The easiest way to identify a tarantula is by its large size and hairy appearance.", + "The most noticeable feature of a tarantula is its large, hairy body.", + "A tarantula is a large, hairy spider.", + "Tarantulas are large, hairy spiders that can be up to 10 inches (25 centimeters) across.", + "Tarantulas are large, hairy spiders that can be different colors, including brown, black, gray, and tan.", + "One way to identify a tarantula is by its 8 legs.", + "There are a few ways to identify a tarantula.", + "Tarantulas generally have hairy bodies and legs.", + "A tarantula is a large, hairy spider with fangs.", + "A tarantula is a large, hairy spider.", + "A tarantula is a large spider with a dark brown body and long, hairy legs.", + "A tarantula is a large, hairy spider with long legs.", + "A tarantula is a large, hairy spider.", + "A tarantula is a shy, nocturnal spider that can measure up to four inches in diameter (not counting legs).", + "A tarantula may have a body length of up to 4 inches, with a long leg span of up to 8 inches.", + "A tarantula is a large spider with a dark brown or black body and legs.", + "A tarantula is a large, hairy spider.", + "The image is of a tarantula on a branch.", + "The image is of a tarantula on a person's hand.", + "The image shows a tarantula against a black background.", + "The image is of a large, hairy tarantula crawling on a tree branch.", + "A tarantula image from the internet shows a large, dark brown spider with long, thin legs.", + "The image is of a tarantula sitting on a log in a rainforest.", + "The image is of a brown and black tarantula on a white background.", + "The image is of a large, hairy tarantula.", + "The image is of a large, furry, dark-colored spider with long legs.", + "This tarantula image from the internet shows a large, brown spider with long legs and hairy body.", + "The tarantula is an 8-legged creepy crawly that can be found in warm climates.", + "Close-up of a tarantula on a branch.", + "A tarantula is a large, hairy spider that can be found in warm climates all over the world.", + "Tarantulas are large and hairy spiders that can be found in warm climates all over the world.", + "Tarantula.", + "This tarantula is called the Goliath birdeater, and is the largest spider in the world.", + "A tarantula on a branch.", + "A tarantula with its furry legs and large body is an intimidating sight, but these spiders are actually quite harmless to humans.", + " Despite their large and intimidating size, tarantulas are relatively harmless to humans.", + "A tarantula crawling on the ground." + ], + "wolf spider": [ + "Wolf spiders are typically brown or gray.", + "A wolf spider is a large brown and black spider with long legs.", + "A wolf spider is a large, dark brown spider that can grow up to 2 inches in length.", + "Wolf spiders have long legs and a large body.", + "A wolf spider can be distinguished from other spiders by its long legs and large size.", + "Most wolf spiders are brown or gray and have markings on their backs that resemble a wolf's face.", + "The wolf spider is a large, hairy spider with long legs.", + "A wolf spider has a large, round, dark body with light markings.", + "A wolf spider is a hairy, dark-colored spider that is usually between 1/2 and 2 inches in length.", + "A wolf spider is a small to medium-sized spider that can be found in many different habitats.", + "The easiest way to identify a wolf spider is to look for its large, distinctive eyes.", + "How can you identify a wolf spider? Look for these spiders in gardens, fields and woodlands.", + "The best way to identify a wolf spider is by its relatively large size and long legs.", + "There are many ways to identify a wolf spider.", + "A wolf spider can be identified by its long legs and large, round abdomen.", + "Most wolf spiders are brown or gray with darker markings.", + "You can identify a wolf spider by its large size and long legs.", + "The easiest way to identify a wolf spider is by its large size and brown color.", + "There are many ways to identify a wolf spider.", + "If you see a spider that is mostly brown or gray, has long legs, and seems to have a \"wolf-like\" face, then it is likely a wolf spider.", + "A wolf spider has a large, round body with long legs.", + "A wolf spider is a type of spider that is typically dark brown or black.", + "A wolf spider can vary in size and appearance, but they are typically dark brown or gray with light markings.", + "A wolf spider is large and hairy with long legs.", + "A wolf spider is a large, dark-colored spider that is common in North America.", + "A wolf spider is a brown spider that is usually between 1/2 and 1 inch long.", + "A wolf spider is a hunting spider that prefers to live outdoors.", + "A wolf spider is a type of arachnid.", + "A wolf spider is a type of spider that is usually dark brown or black.", + "A wolf spider has three rows of eyes.", + "The image is of a large, hairy wolf spider perched atop a log.", + "The image is of a wolf spider that is all black with a white stripe down its back.", + "The image is of a large, brown and black wolf spider perched on a green leaf.", + "In the image, the wolf spider is a light brown color with darker brown spots.", + "This image is of a wolf spider.", + "The image is of a wolf spider with its eight legs spread out, its two large eyes staring ahead, and its small body perched in the center.", + "The image is of a large, furry wolf spider with long legs and large eyes.", + "The image is of a large, brown and black spider with long legs.", + "This image is of a wolf spider perched on a log in a forest.", + "The image is of a large, brown and black spider with long legs.", + "A close-up of a wolf spider.", + "This wolf spider looks like it's about to pounce on its prey!.", + "A wolf spider hunting in the grass.", + "A wolf spider perched on a blade of grass.", + "Wolf spider crawling on the ground.", + "This is a wolf spider.", + "A wolf spider stalking its prey.", + "A wolf spider carrying her babies on her back.", + "A wolf spider drags its prey back to its burrow.", + "A wolf spider hunting in its natural habitat." + ], + "tick": [ + "\nA tick is a small, dark brown or black arachnid.", + "A tick is a small, dark, spider-like creature with six legs.", + "A tick has a small, dark body and six legs.", + "Ticks are tiny arachnids that are related to spiders and mites.", + "A tick is a small, dark, brown or reddish-brown arthropod.", + "A tick is a small, brownish-red, blood-sucking arthropod that is often found on the skin of animals, especially dogs and cats.", + "A tick is a small, dark, red-brown insect that sucks blood from animals and humans.", + "A tick is a small, dark, brownish-red arachnid that is typically found in wooded areas.", + "A tick is a small, brown, parasitic arachnid that attaches to the skin of mammals, birds, and sometimes reptiles and amphibians.", + "A tick is a small, dark brown or black arachnid that has a body that is somewhat flattened and four pairs of legs.", + "A tick is a small, dark black or brown (sometimes red) spot that appears on the skin.", + "A tick is a small, parasite that lives off of the blood of animals.", + "Ticks can be identified by their small, round bodies and long legs.", + "Ticks can be identified by their small, elongated bodies and their long legs.", + "A tick can typically be identified by its small, oval body and long legs.", + "Ticks can be identified by their small, round body and eight legs.", + "Ticks are small, dark brown or reddish-brown arachnids.", + "Ticks are small, arachnid-like creatures that feed on the blood of animals and humans.", + "A tick can be identified by its small, brown body and long legs.", + "Ticks can be difficult to spot because they are small, dark, and often attach to areas where hair provides camouflage.", + "A tick is a small, brown, arachnid that embeds itself in the skin of its host for a blood meal.", + "A tick is a small, parasitic arachnid that is typically reddish-brown in color.", + "Ticks are usually small, dark, and oval-shaped.", + "Ticks usually have a dark brown body with a light brown or white \"shield\" on their backs.", + "The tick's body is very small and flat.", + "Ticks are small, dark brown insects that live in wooded areas.", + "A tick is a small parasitic arachnid that feeds by piercing the skin of a host and sucking their blood.", + "A tick is a small, dark brown or black arachnid.", + "A tick is a small, brown bug that bites humans and animals to feed on their blood.", + "A tick is a small, brownish-red insect that lives in trees.", + "A tick is a small, dark brown arachnid that lives by feeding on the blood of mammals, birds, and sometimes reptiles.", + "This image is of a brown tick on a person's skin.", + "The image is of a brown and black tick on a white background.", + "The image is of a tick on a leaf.", + "This image is of a tick on a human skin.", + "An image of a tick from the internet shows a small, dark brown to black bug lying on its back.", + "This image is of a deer tick, which is a type of tick that can carry Lyme disease.", + "This image shows a brown tick against a white background.", + "The image is of a brown tick on a white background.", + "The image is of a small, brown bug on someone's skin.", + "A brown tick on a person's skin.", + "A close-up photo of a tick on a person's skin.", + "A tick latched onto a human host.", + "The black-legged tick, also known as the deer tick, is a common carrier of Lyme disease.", + "This little guy is a tick, and he's ready to feast on your blood!.", + "A close-up of a brown tick on a person's skin.", + "A close-up of a tick on human skin.", + "A close-up of a tick, its mouthparts buried in skin.", + "Tick on a human skin.", + "Tick on a leaf." + ], + "centipede": [ + "A centipede has a long, flat body with many legs.", + "A centipede is a small, carnivorous creature that has a long, segmented body.", + "A centipede has a long, segmented body with many legs.", + "Centipedes have long, narrow bodies that are composed of many segments.", + "A centipede has a long, segmented body with one pair of legs per segment.", + "A centipede is a long, thin creature with many legs.", + "A centipede is a small, dark brown creature with a long body that is made up of many small segments.", + "Most centipedes have a flattened body, with a pair of legs attached to each body segment.", + "Most centipedes are brownish, but some species can be brightly colored.", + "A centipede is a long, thin creature with many legs.", + "A centipede can be identified by its many legs.", + "Centipedes have long, narrow bodies with many legs.", + "The easiest way to identify a centipede is by its many legs.", + "A centipede is a small, segmented creature with many legs.", + "The easiest way to identify a centipede is by its long, segmented body.", + "A centipede can be identified by its many legs.", + "A centipede can be identified by its long, segmented body and many pairs of legs.", + "A centipede is identified by its long, thin body and its many legs.", + "The easiest way to identify a centipede is by its many legs.", + "A centipede has a segmented body with one pair of legs per segment.", + "A centipede is a small, slender creature with a long body.", + "A centipede is a small, narrow creature with many legs.", + "A centipede is a long, thin, segmented creature that has many legs.", + "A centipede is a small, segmented creature that has many legs.", + "Centipedes are segmented, ranging in length from a few millimeters to over 30 centimeters.", + "A centipede is a long, thin, segmented creature with many legs.", + "A centipede typically has a long, segmented body with many pairs of legs.", + "A centipede is a predatory animal that has a long, segmented body.", + "A centipede is an insect that has a long body with many legs.", + "A centipede is a creature with many legs that crawls along the ground.", + "One image from the internet of a centipede shows a brownish-red creature with a long, segmented body and many legs.", + "The image is of a centipede on a white background.", + "In the image, a centipede is crawling on top of a dirt pile.", + "The image is of a small, brown centipede crawling on the ground.", + "The image is of a centipede that is brown with yellow stripes.", + "The image is of a centipede in a tree.", + "I found an image of a centipede on the internet that looks like a brown and orange striped bug with a lot of legs.", + "This image is of a centipede that is reddish-brown in color.", + "A centipede is a small, elongated, segmented creature with a large number of legs.", + "This image shows a centipede with its many legs and long body.", + " A close-up of a centipede crawling across the ground.", + "A centipede has many legs.", + "A centipede has a lot of legs.", + "Centipede in the rainforest.", + "A centipede crawling on the ground.", + "This is a centipede.", + "mehmet karaca / Getty ImagesThis is a centipede.", + " This is a close-up of a centipede with its many legs.", + " A centipede is a multi-legged arthropod.", + "A centipede lurking in the shadows, waiting to strike its prey." + ], + "black grouse": [ + "A black grouse is a bird with black feathers and a long tail.", + "A black grouse is a bird in the grouse family.", + "The black grouse is a medium sized bird with black plumage and a red wattle.", + "A black grouse is a plump bird with a short neck and legs.", + "A black grouse is a bird that is about the size of a chicken.", + "The black grouse is a species of bird in the gamebird family.", + "The black grouse is a medium-sized bird of the grouse family.", + "A black grouse is a bird with black feathers and a red face.", + "Black grouse are slightly smaller than grey partridge, with males being 34\u201336 cm (13\u201314 in) in length and females slightly smaller at 31\u201333 cm (12\u201313 in).", + "A black grouse is about the size of a crow and has black plumage with a purple or blue sheen.", + "A black grouse is a bird that is mostly black in color.", + "The black grouse is a plump bird with a length of about 43 cm.", + "The black grouse is a medium-sized bird that is found in Europe and Asia.", + "There are a few ways to identify a black grouse.", + "The black grouse is a medium sized bird with a black body and grey wings.", + "The black grouse is a medium-sized bird with a black plumage and a prominent white rump.", + "The black grouse is a plump bird with black plumage, red legs, and a yellow eye-ring.", + "Male black grouses have black feathers and a white tail.", + "The black grouse is a medium-sized goose-like bird with a black body and grey wings.", + "The black grouse is a medium-sized bird of prey with black plumage, red legs, and yellow eyes.", + "The black grouse is a medium-sized bird of the grouse family.", + "A black grouse is a medium-sized bird of the grouse family.", + "The black grouse is a plump bird with black feathers, a grey breast and a red face with a white area around the eye.", + "The black grouse is a game bird in the grouse family.", + "A black grouse is a dark- plumaged bird with a light-colored breast.", + "A black grouse looks like a large bird with black feathers and a white breast.", + "A black grouse is a species of grouse that is native to Eurasia.", + "A black grouse is a large bird with black plumage, red legs, and a yellow eye.", + "The black grouse is a plump bird with a length of about 40 cm (16 in), a wingspan of 65\u201375 cm (26\u201330 in), and a body mass of 400\u2013700 g (0.", + "A black grouse is a bird that is black with a white tail.", + "The image is of a black grouse standing on a log in a snow-covered forest.", + "The black grouse is a large bird with black feathers and a red face.", + "The image is of a black grouse with its trademark black plumage and red wattle.", + "This image is of a black grouse in its natural habitat.", + "In the image, a black grouse is perched atop a branch in a snow-covered tree.", + "A black grouse is a bird that is found in Europe and Asia.", + "The image is of a black grouse perched on a tree branch.", + "The image is of a black grouse standing in a field with tall grass and a few trees in the background.", + "The image is of a black grouse perched on a tree branch.", + "The image is of a black grouse standing on a branch in a wooded area.", + " Black grouse (Tetrao tetrix) in winter plumage.", + "A male black grouse feeding on a willow in autumn.", + " A black grouse in its natural habitat.", + " A black grouse standing in a field of winter snow.", + " A Black Grouse Male in breeding plumage.", + "A black grouse in its natural habitat.", + "A black grouse perched in a snow-covered forest.", + " A Black Grouse in its natural habitat.", + " Aegiros Fasciatus, commonly known as Black Grouse, posing in a field in Norway.", + "A black grouse (Tetrao tetrix) in its natural habitat." + ], + "ptarmigan": [ + "A ptarmigan is a small bird with a plump body, short legs, and a short tail.", + "A ptarmigan is a chicken-like bird that lives in cold climates.", + "A ptarmigan is a medium sized bird with a white plumage.", + "The ptarmigan is a small, stocky chicken-like bird with feathers that change color with the seasons.", + "A ptarmigan is a small, brownish-gray bird with a white belly and chest.", + "A ptarmigan is a small bird with feathery legs and feet.", + "A ptarmigan is a small bird that is heavily camouflaged.", + "A ptarmigan is a small, plump game bird with a short bill, mottled brown plumage, and white wings and tail.", + "A ptarmigan is a chicken-like bird that has white feathers and can be found in cold, mountainous areas.", + "Ptarmigans are small birds with plump bodies, short necks, and small heads.", + "A ptarmigan can be identified by its white coloration in winter and its mottled brown feathers in summer.", + "Ptarmigans can be identified by their mottled plumage, which helps them blend in with the rocks and lichen of their mountain habitat, and by their red eyes and feet.", + "A ptarmigan is a bird in the grouse family that has mottled brown feathers and lives in Arctic and sub-Arctic regions.", + "A ptarmigan is a plump, gray bird with a white belly.", + "A ptarmigan is a Grouse-like bird with feathered toes.", + "The ptarmigan is a plump gamebird with a short tail and small bill.", + "Ptarmigan are chicken-sized birds with mottled brownish-gray plumage.", + "A ptarmigan is a plump, chicken-like bird with feathered feet and legs, a round body, and a short tail.", + "A ptarmigan can be identified by its mottled brown, gray, and white plumage.", + "A ptarmigan is a member of the grouse family.", + "Ptarmigans look like small grouse with plump bodies, short necks, and small heads.", + "A ptarmigan is a type of game bird that has white plumage and small, black eyes.", + "The ptarmigan is a small, stocky bird with round wings and a short tail.", + "A ptarmigan is a bird with gray or white feathers.", + "A ptarmigan is a plump, chicken-like bird with a short neck, small head, and round body.", + "A ptarmigan is a small bird that is mostly white in color.", + "A ptarmigan is a small white bird with black feathers around its eyes.", + "Ptarmigans are a type of bird that look similar to a chicken or a grouse.", + "Ptarmigans are plump, short-billed birds with mottled brown plumage.", + "A ptarmigan looks like a small chicken.", + "In the image, a ptarmigan is perched on a rock, looking directly at the camera.", + "An image of a ptarmigan from the internet shows a small, chunky bird with short legs, a short bill, and mottled brown plumage.", + "An image from the internet of a ptarmigan shows a bird with white feathers and black spots.", + "The image is of a small, gray bird with white feathers on its wings and tail.", + "In the image, a ptarmigan is standing on a patch of snow in a tundra landscape.", + "A ptarmigan is a small, plump bird with short legs, a short bill, and small wings.", + "I found an image of a ptarmigan on the internet.", + "The image is of a ptarmigan in its winter plumage.", + "I found an image of a ptarmigan on the internet.", + "A white ptarmigan perches on a rocky ledge, its wings spread wide as it basks in the sun.", + "A female ptarmigan in winter plumage, looking for food in the snow.", + "A ptarmigan in its white winter plumage.", + "Ptarmigan in the Arctic tundra.", + "A ptarmigan in its winter plumage, camouflage against the snow.", + "A ptarmigan in its winter plumage, ready to endure the cold months ahead.", + "A Ptarmigan in winter plumage.", + " A ptarmigan in its winter plumage.", + " A ptarmigan in its winter plumage.", + "Ptarmigan on the tundra.", + "Ptarmigan are a type of game bird that are well-adapted to living in cold, snowy environments." + ], + "ruffed grouse": [ + "A male ruffed grouse has a gray body with rusty-brown bars, a black tail with white stripes, and a prominent tuft of feathers (or \"ruff\") on each side of its neck.", + "The ruffed grouse is a medium-sized bird that is mottled brown and gray.", + "The ruffed grouse is a medium-sized bird with a black tail and a white band at the end.", + "Ruffed grouse are relatively small birds with plump bodies, rounded wings, and relatively long tails.", + "A ruffed grouse is a stocky bird with a big head and a long tail.", + "Ruffed grouse are medium sized birds with passionately colored plumage.", + "The ruffed grouse is a medium-sized bird with dark brown plumage on its back and wings, and lighter brown plumage on its belly.", + "The ruffed grouse is a medium-sized bird with a mottled brown and gray plumage.", + "A ruffed grouse looks like a chicken-like bird with ruffled feathers around its neck.", + "The ruffed grouse is a chicken-sized bird with a pointed tail and stocky body.", + "The best way to identify a ruffed grouse is by its distinctive fan-shaped tail.", + "Ruffed grouse are relatively small game birds with round, plump bodies.", + "The ruffed grouse is a medium-sized bird with a plump body, short wings, and a long, keeled tail.", + "Ruffed grouse are Easilyidentified by their ruffled feathers around the neck, which are used to intimidate predators and rivals.", + "The ruffed grouse is a medium-sized bird with a round body, feathered legs, and a long tail.", + "A ruffed grouse is a type of bird.", + "Ruffed grouse have a mottled brown plumage with a distinct crest on their heads.", + "Ruffed grouse are relatively large birds with mottled gray and brown plumage.", + "Ruffed grouse are plump, chicken-like birds with a mottled brown plumage.", + "Ruffed grouse are easily identifiable by their characteristic \"ruff\" of feathers around their necks.", + "Ruffed grouse are part of the grouse family and look like other grouse.", + "A ruffed grouse looks like a chicken-sized bird with a pointed tail.", + "A ruffed grouse is a bird with grayish-brown feathers and a black tail with white stripes.", + "A ruffed grouse is a medium-sized bird with mottled gray plumage.", + "Adult ruffed grouse are generally 22-27 cm long with a wingspan of 41-46 cm.", + "The ruffed grouse is a medium-sized bird with a body length of about 16 inches and a wingspan of about 24 inches.", + "A ruffed grouse is a medium-sized game bird that is grayish-brown in color with a dark collar around its neck.", + "The ruffed grouse is a chicken-sized bird with a mottled brown body and grayish-brown wings.", + "A ruffed grouse is a medium-sized bird that is gray-brown with a black tail.", + "The ruffed grouse is a medium-sized chicken-like bird with a round body, short tail, and small head.", + "The image shows a ruffed grouse in its natural habitat.", + "The image is of a ruffed grouse perched on a tree branch.", + "The image shows a ruffed grouse walking through a forest.", + "The image is of a ruffed grouse standing in a forest.", + "The image is of a ruffed grouse perched on a branch.", + "The image is of a ruffed grouse perched atop a tree branch.", + "In the image, a ruffed grouse is perched atop a fallen tree in a forest.", + "Image shows a large, stocky bird with brown and grey plumage.", + "In the image, a ruffed grouse is perched on a tree branch.", + "The image is of a brown and white bird with a long tail perched on a tree branch.", + "A ruffed grouse in the woods.", + "This grouse is ready to take on whatever the winter weather throws its way.", + " Ruffed grouse in flight.", + " fighting male ruffed grouseThis male ruffed grouse is getting ready to fight another grouse for dominance.", + " camouflaged ruffed grouse in the snow.", + "A young ruffed grouse in its natural habitat.", + "A ruffed grouse in its natural habitat.", + "A ruffed grouse in its natural habitat.", + "A ruffed grouse enjoying a meal in the forest.", + "\"A ruffed grouse finds a spot to rest in a field of clover." + ], + "prairie grouse": [ + "A prairie grouse is a small bird with a short neck and tail.", + "A prairie grouse is a type of chicken that is usually brown or gray with a light underside.", + "Prairie grouse are medium-sized birds with rounded wings and sturdy legs.", + "A prairie grouse is a plump chicken-like bird with a small head and a long tail.", + "Prairie grouse are small to medium-sized birds with plump bodies, short necks, and small heads.", + "Prairie grouse are chicken-like birds that range in size from 15 to 20 inches.", + "Prairie grouse are medium-sized birds with wide, rounded tails and short legs.", + "A prairie grouse is a medium-sized chicken-like bird with a short tail and stout legs.", + "Prairie grouse are plump chicken-like birds with short wings and tails.", + "Prairie grouse are chicken-like birds that range in size from 15-17 inches.", + "There are several ways to identify a prairie grouse.", + "Prairie grouse can be identified by their mottled brown and grey plumage, long tails, and relatively small size.", + "A prairie grouse can be identified by its brown plumage with white spots, its small head with a short beak, and its long legs.", + "A prairie grouse is a chicken-like bird that is found in North America.", + "You can identify a prairie grouse by its mottled brown plumage.", + "A number of ways: 1) They are chicken-like birds that live in North America.", + "There are multiple ways to identify a prairie grouse.", + "The best way to identify a prairie grouse is by its characteristic calls and behaviors.", + "Prairie grouse can be identified by their plump bodies, short necks, and round heads.", + "The best way to identify a prairie grouse is by its physical appearance.", + "In general, prairie grouse are plump, chicken-like birds with round bodies, short necks, and small heads.", + "Prairie grouse are usually brown with some black markings.", + "A prairie grouse is a chicken-sized bird with mottled brown plumage.", + "A prairie grouse is a plump chicken-like bird with a small head, pointed tail, and short legs.", + "Prairie grouses are mid-sized birds with stout bodies and short necks.", + "The prairie grouse is a medium-sized bird with a round body and small head.", + "A prairie grouse is a chicken-like bird with a brownish-gray body and long tail.", + "Prairie grouse have mottled brown feathers and a long, pointed tail.", + "Prairie grouse are medium-sized game birds with mottled brown plumage.", + "Prairie grouse are ground-dwelling birds that are heavily camouflaged.", + "A prairie grouse is a chicken-like bird that lives in North America.", + "One image of a prairie grouse from the Internet shows the bird perched on a log in a grassy field.", + "A prairie grouse stands on a grassy hill in a field.", + "An image of a prairie grouse from the internet shows a medium-sized, brown bird with a mottled chest and belly.", + "The image is of a brown prairie grouse with a white breast.", + "In the image, a prairie grouse is perched atop a dead log in a grassy field.", + "The image is of a mottled brown and white grouse with a long tail, standing on a dirt road in a grassy prairie.", + "An image from the internet of a prairie grouse shows a bird with brown and gray feathers.", + "The image is of a beautifully plumaged prairie grouse with its long tail feathers fanned out in a courtship display.", + "image: https://upload.", + "Prairie grouse just hanging out in the tall grass.", + "A prairie grouse struts through a field of tall grass.", + "Prairie grouse are a type of bird that is found in North America.", + "A prairie grouse perches on a branch in its natural habitat.", + "Prairie grouse are interesting birds that are found in many parts of North America.", + "Prairie grouse on the lookout for predators.", + "Prairie grouse in their natural habitat.", + "A prairie grouse standing on a grassy field.", + "Prairie grouse are a type of chicken-like bird that are found in North America.", + "A male prairie grouse struts his stuff on a spring morning, hoping to impress a mate." + ], + "peafowl": [ + "A peafowl is a brightly colored bird with long tail feathers.", + "A peafowl looks like a bird with a long tail that has feathers that are blue and green.", + "A peafowl is a large bird with extravagant tail feathers.", + "Male peafowl are called peacocks.", + "A peahen is a beautiful bird with blue-green plumage and a long tail.", + "A peafowl is a large bird that is native to Asia.", + "The easiest way to describe a peafowl is by saying that it looks like a really fancy chicken.", + "A peacock is a male peafowl, usually blue and green, with a long tail and an elaborate train of feathers.", + "A peafowl is a bird that is native to Asia.", + "A peafowl is a bird in the pheasant family.", + "A male peafowl is known as a peacock, a female peafowl is known as a peahen.", + "There are three species of peafowl: the Indian peafowl, the green peafowl, and the Congo peafowl.", + "The best way to identify a peafowl is by its colorful plumage.", + "A peafowl is a bird with brightly colored plumage.", + "Peafowl are a type of bird that is easily identified by their colorful feathers and long tails.", + "The easiest way to identify a peafowl is by their tail feathers.", + "The easiest way to identify a peafowl is by its long tail feathers.", + "The most well-known peafowl is the Indian peafowl, which has blue-green plumage.", + "Most peafowl are blue or green.", + "Peafowl are a type of bird in the genus Pavo.", + "A peafowl is a large bird that is most known for the male's extravagant tail feathers.", + "A peafowl is a bird with a long tail and brightly colored feathers.", + "A peafowl is a bird in the pheasant family.", + "The peacock is the male, the peahen is the female, and the baby is called a peachick.", + "A peafowl is a bird with a long tail that is colorful and has a lot of feathers.", + "A peafowl is a bird in the genus Pavo of the Phasianidae family, in the pheasant subfamily.", + "Peafowl are large, brightly colored birds.", + "A peafowl looks like a peacock with long tail feathers.", + "A peafowl is a bird in the genus Pavo of the Phasianidae family, the pheasants and their allies.", + "A peafowl looks like a large bird with long tail feathers.", + "An image of a peafowl from the internet shows a large, colorful bird with a long tail.", + "This image is of a blue peafowl.", + "The image is of a beautiful blue and green peacock with its tail feathers fanned out in a magnificent display.", + "A peafowl is a brightly colored bird with long tail feathers.", + "A peafowl is a brilliantly colored bird that is native to Asia.", + "I found an image of a peacock with its tail feathers fully extended.", + "The image shows a blue and white peacock with its tail feathers spread out in a large fan.", + "The image is of a brightly colored bird with long tail feathers.", + "This image shows a peafowl with its distinctive tail feathers fully extended.", + "The image shows a large blue and green bird with a long tail.", + "One of the most beautiful and recognizable birds in the world, the peacock is actually a member of the pheasant family.", + "A colorful peacock fanning its tail in the sun.", + "A blue peafowl, native to Asia, standing on a branch.", + "A blue peafowl in the wild.", + "A colourfully adorned male peafowl, strutting his stuff in all his feathery glory.", + "Peacock in all its glory.", + "A peacock struts its stuff, showing off its colorful tail feathers.", + "Two blue peafowl, the national bird of India, on a branch in front of a green background.", + " A peacock preens its feathersA captured image of a peacock preening its feathers.", + " A blue or Indian peafowl (Pavo cristatus) preening on a branch." + ], + "quail": [ + "A quail is a small game bird with a rounded body and a small head.", + "A quail is a small bird with a rounded body, short bill, and rather long tail.", + "A quail is a small, plump bird with a round body and a short tail.", + "A quail looks like a small, stocky bird with a round body and a short, square tail.", + "A quail is a small, round bird with a short beak and tail.", + "A quail is a small, plump bird that is about the size of a chicken.", + "A quail is a small, plump bird with a short tail and round body.", + "A quail is a small, plump bird with a short neck and a round body.", + "A quail is a small, chicken-like bird with a long tail.", + "Quails are small, stocky birds with short necks and legs.", + "A quail is a tiny, plump bird with a short neck, round body, and small head.", + "A quail is a small, plump game bird.", + "A quail is a small, sparrow-sized bird with a rounded body, short tail, and small head with a pointed bill.", + "A quail can be identified by its plump body, short legs, and small head with a pointed beak.", + "A quail can be identified by its small, rounded body and short tail.", + "A quail is a small, plump bird with a short neck, short bill, and round body.", + "A quail is a small, stocky bird with a round body, a small head, and a short tail.", + "There are several ways to identify a quail.", + "There are many ways to identify a quail.", + "Quails are small birds that are usually brown and white.", + "A quail is a small Messier game bird in the Pheasant family.", + "A quail looks like a small chicken.", + "A quail looks like a small, plump bird with a short neck and round head.", + "A quail is a small, crested game bird.", + "A quail is a small, round bird that is usually brown or gray in color.", + "A quail is a small, plump bird that is part of the gamebird family.", + "I cannot answer this question.", + "The body of a quail is plump and round, and the bird has a distinctive reddish-brown breast.", + "A quail is a small, plump bird with a short neck, round body, and small head.", + "A quail is a small, plump bird with a short tail and legs.", + "This image is of a quail in a natural setting.", + "This image shows a quail perched on a branch.", + "In the image, there is a brown and white quail perched on a branch.", + "The image is of a quail that is brown and white with a long tail.", + "The photo is of a brown and white quail who is perched atop a small rock.", + "I found an image of a quail on the internet that shows a quail sitting on a branch with green leaves.", + "In the image, there is a quail standing on some rocks in a desert landscape.", + "The image is of a Brown Quail resting on the ground in grass.", + "I found an image of a quail on the internet that I really like.", + "The image is of a small, plump bird with a short neck and round head.", + " qA quail is a small game bird.", + " A quail hiding in some foliage.", + "A quail crouches in the grass, its head cocked to one side as it regards the photographer.", + "A young quail pecks at the ground in search of food.", + " A quail resting on a branch.", + "A quail in a field of tall grass.", + " A gambel's quail perches atop a cactus in the American southwest.", + "This is a picture of a quail.", + "A quail in a field of tall grass.", + "A female quail in her natural habitat." + ], + "partridge": [ + "A partridge is a small, plump bird with a short neck and tail.", + "A partridge is a medium-sized bird with a plump body, short legs and a long neck.", + "A partridge is a medium-sized game bird with a pointed beak, short legs, and a plump body.", + "A partridge is a small, plump bird with a short neck.", + "A partridge is a small, plump bird with a short neck and round head.", + "A partridge is a small, plump bird with a short neck and round head.", + "A partridge is a small, plump bird with a short tail and rounded wings.", + "A partridge is a small, plump bird with brown, mottled feathers and a pale chest.", + "A partridge is a medium-sized bird with plump body, a short tail and stout bill.", + "A partridge is a plump bird with a short neck and round body.", + "A partridge is a plump, medium-sized bird with a short neck, small head, and long, pointed bill.", + "A partridge is a medium-sized gamebird with plump body, short legs and a long tail.", + "The easiest way to identify a partridge is by its unique call, which is a loud, clear \"chuck-chuck\" noise.", + "Partridges are small, plump, gamebirds with partridge-like bills.", + "A partridge has a red face and a grey body with white bars on its wings.", + "A partridge has a reddish-brown back and wings, a light chest and belly, and a dark brown stripe running down its side.", + "a partridge is a plump, medium-sized, stocky game bird with a short, rounded tail and a slightly pointed head.", + "There are many ways to identify a partridge.", + "A partridge is a small, plump game bird.", + "A partridge is a medium sized bird with a plump body, short tail and legs, and a pointed bill.", + "A partridge is a game bird in the pheasant family, typically 16 to 20 inches in length.", + "A partridge is a small, plump bird with a short tail and stout bill.", + "A partridge looks like a small, plump bird with a short neck and bill.", + "A partridge is a medium sized, plump bird with a short tail and legs.", + "A partridge is a relatively small bird with a plump body, short legs, and a long, pointed beak.", + "A partridge is a small, plump bird with a short neck and legs.", + "A partridge is a medium-sized bird that typically has red-brown plumage on its upperparts and grayish-brown or white plumage on its underparts.", + "A partridge is a small, plump game bird.", + "A partridge is a medium-sized bird with a plump body, a small head, and a long tail.", + "Partridges are small, chunky birds with short necks and rounded heads.", + "The image is of a partridge perched atop a branch.", + "The image shows a partridge sitting on a branch with its brown and white feathers ruffled.", + "The image is of a partridge perched on a branch.", + " in a pear treeThe image is of a partridge perched atop a pear tree.", + "In this image, we see a partridge sitting atop a fallen tree in a wooded area.", + "An image from the internet of a partridge shows a small, plump bird with brown and grey feathers.", + "An image from the internet of a partridge shows a small, sprightly bird with a reddish-brown body, gray breast, and black and white head.", + "A partridge is a small, plump bird that is usually brown and white.", + "The image is of a partridge perched on a branch.", + "A partridge is a small, plump bird with a short tail and stout bill.", + " A partridge perched in a tree.", + "A partridge rests on a branch in a winter forest.", + " Partridge in Snow.", + "A partridge in a pear tree.", + "A partridge perches on a branch.", + "In this image, we see a partridge perched atop a branch.", + "A partridge hangs from a tree by its feet, its wings outstretched.", + "A partridge perched on a branch in a snow-covered forest.", + "A partridge stands on a branch in a winter forest.", + "A male partridge perches atop a branch in a field." + ], + "african grey parrot": [ + "An African grey parrot is a medium-sized parrot with grey feathers and a red tail.", + "The African grey parrot is a medium-sized, gray bird with a red tail.", + "African grey parrots are a medium-sized parrot with light grey feathers.", + "A African grey parrot is about the size of a crow and is mostly grey with white on its belly and tips of its wings.", + "A African grey parrot is a medium-sized parrot with grey feathers and a black beak.", + "The African grey parrot is a medium-sized, intelligent grey bird with red tail feathers.", + "African grey parrots are medium-sized parrots with grey feathers and red tails.", + "An African grey parrot is a medium-sized parrot with mostly grey feathers and a black beak.", + "A African grey parrot is a medium-sized parrot with grey plumage.", + "African grey parrots are medium-sized parrots with dark grey feathers and a pale grey area on their face and chin.", + "There are many ways to identify an African grey parrot.", + "There are a few ways to identify an African grey parrot.", + "There are a few ways to identify an African grey parrot.", + "Given that there are numerous subspecies of African grey parrot, it is difficult to provide a definitive answer.", + "The African grey parrot is a medium-sized parrot with blackish-grey plumage.", + "a african grey parrot can be identified by its grey plumage and red tail.", + "The African grey parrot is a medium-sized parrot with black, grey, and white feathers.", + "There are a few ways to identify an African grey parrot.", + "By its grey feathers and red tail.", + "One way to identify an African grey parrot is by its distinctive grey feathers.", + "The African grey parrot is a medium-sized, grey and white bird.", + "The African Grey Parrot is a medium sized parrot with a small hooked beak.", + "The African grey parrot is a medium-sized, grey and white parrot with red tail feathers.", + "A African Grey parrot typically has grey feathers, with a white or pale grey chest.", + "A african grey parrot looks like a small to medium sized parrot with grey feathers and a white or grey face.", + "The African grey parrot is a medium-sized parrot with a striking visual appearance.", + "The African grey parrot is a medium-sized, predominantly grey plumaged parrot.", + "A African grey parrot typically has grey feathers, with a white or pale grey face.", + "The African Grey Parrot is a medium-sized, mostly grey, black and white bird.", + "A African grey parrot is a medium sized parrot with a grey body and red tail.", + "The image is of a african grey parrot perched on a branch.", + "This image shows a very tame and people-friendly African grey parrot sitting on a human's shoulder.", + "In the image, the African grey parrot is perched atop a wooden pole in what appears to be a natural setting.", + "The image is of an African grey parrot perched on a branch.", + "The image shows a close-up of a grey parrot's face, with its bright red tail feathers in the background.", + "This image is of a beautiful African grey parrot perched atop a branch.", + "The image is of a african grey parrot perched on a branch.", + "In the image, the african grey parrot is sitting on a perch in front of a window.", + "The image is of a beautiful african grey parrot perched on a branch.", + "I found an image of an African grey parrot sitting on a branch.", + "This is an African grey parrot, a type of parrot found in Africa.", + "An African grey parrot perched on a branch, looking at the camera.", + "This is a African grey parrot.", + "This is a picture of an African Grey Parrot.", + "A grey parrot sitting on a tree branch, looking to the side.", + "This is an African grey parrot.", + "A majestic African grey parrot soars through the air.", + "This is an African Grey parrot.", + "This is an African grey parrot, one of the most intelligent bird species in the world.", + "The African grey parrot is a popular pet due to its intelligence and ability to mimic human speech." + ], + "macaw": [ + "Macaws are large, colorful parrots with long tails.", + "Macaws are brightly colored birds with long tails.", + "Macaws are large, colorful parrots with long tails and curved beaks.", + "A macaw typically has a long, Ara, with a bare face and a strong curved beak.", + "A macaw is a colorful tropical bird with a long tail.", + "A macaw is a tropical bird with a very long tail.", + "Macaws are large, colorful parrots with long tails and curved beaks.", + "A macaw is a large, brightly-colored parrot with a long tail.", + "A macaw is a brightly colored, long-tailed bird.", + "Macaws are large, brightly coloured parrots.", + "The most distinguishing feature of a macaw is its long, pointed tail.", + "A macaw is a brightly colored parrot with a long tail.", + "The easiest way to identify a macaw is by its long, curved beak and the feathers on its head, which are often brightly colored.", + "The easiest way to identify a macaw is by its long, curved beak and colorful plumage.", + "A macaw is a type of large parrot with a long tail and brightly colored plumage.", + "Macaws can be identified by their large size, colorful plumage, and long tail feathers.", + "Macaws have a very distinct appearance that makes them easy to identify.", + "There are several ways to identify a macaw.", + "Macaws are long-tailed, brightly colored parrots.", + "A macaw is a large, colourful parrot with a long tail.", + "Macaws are large, brightly colored parrots.", + "A macaw is a large, brightly-colored parrot with a long tail.", + "Macaws are long-tailed, often colourful parrots.", + "A macaw looks like a large parrot with colorful plumage.", + "Macaws are large, colorful parrots with long tails.", + "A macaw is a type of large parrot with a long tail, brightly colored feathers, and a big beak.", + "A macaw is a brightly colored bird.", + "Macaws are large, colorful parrots with long tails and curved beaks.", + "A macaw is a brightly colored, long-tailed bird.", + "A macaw is a tropical bird with colorful feathers.", + "The image is of a blue and yellow macaw perched on a branch.", + "The image depicts a blue and yellow macaw perched atop a tree branch.", + "The image is of a large blue and yellow macaw perched on a tree branch.", + "A macaw is a brightly colored, large parrot with a long tail.", + "The image is of a large blue macaw perched on a branch.", + "A macaw is a brightly colored, talking bird that is native to the rainforests of Central and South America.", + "The image is of a blue and gold macaw perched on a tree branch.", + "A macaw is a brightly colored tropical bird with a long tail.", + "The image is of a blue and gold macaw perched on a branch.", + "In the image, a blue and yellow macaw is perched on a tree branch.", + "The blue and gold macaw is a beautiful bird that is native to South America.", + "A blue and gold macaw perches on a tree branch.", + " Red and Blue Macaw in the Rainforest.", + "The brightly colored macaw is a native bird of the tropical rainforests of Central and South America.", + "A Blue and Yellow Macaw in Central America.", + "A blue and gold macaw sitting on a perch.", + "The macaw is a brightly colored bird that is native to the rainforests of Central and South America.", + "The blue and gold macaw is a species of neotropical parrot native to Central and South America.", + "This magnificent macaw is a sight to behold!.", + "Macaw on a Branch." + ], + "sulphur-crested cockatoo": [ + "The sulphur-crested cockatoo is a large, white parrot with a sulphur-yellow crest.", + "The sulphur-crested cockatoo is a white bird with a yellow crest.", + "A sulphur-crested cockatoo is mostly white with a yellow crest on its head.", + "A sulphur-crested cockatoo has a white body with a yellow crest on top of its head.", + "The sulphur-crested cockatoo is a white bird with a yellow crest.", + "A sulphur-crested cockatoo has a pale yellow head with a bright orange-yellow crest.", + "The sulphur-crested cockatoo is a large, white bird with a yellow crest on its head.", + "A sulphur-crested cockatoo is a white bird with a yellow crest on its head.", + "A sulphur-crested cockatoo is white with a yellow crest on its head.", + "A sulphur-crested cockatoo is a white bird with a yellow crest.", + "The sulphur-crested cockatoo is a white bird with a yellow crest.", + "Sulphur-crested cockatoos are large white birds with a yellow crest.", + "The sulphur-crested cockatoo is a white bird with a distinctive yellow crest.", + "The sulphur-crested cockatoo has a white body with yellow sulphur-coloured crest.", + "One way to identify a sulphur-crested cockatoo is by its sulfur-yellow crest.", + "The most obvious identifying feature of the sulphur-crested cockatoo is the bright yellow or orange crest on its head.", + "The sulphur-crested cockatoo is a white bird with a yellow crest.", + "The easiest way to identify a sulphur-crested cockatoo is by its distinctive yellow crest.", + "The sulphur-crested cockatoo is a white bird with a yellow crest.", + "The sulphur-crested cockatoo has a yellow crest and is a large white bird.", + "A sulphur-crested cockatoo has a white body and a yellow crest.", + "Sulphur-crested cockatoos are a medium-sized white cockatoo with a distinctive yellow crest.", + "A sulphur-crested cockatoo has a crest of yellow feathers on its head.", + "A sulphur-crested cockatoo has a white body with a yellow crest on its head.", + "Most sulphur-crested cockatoos are white with a prominent sulphur-yellow crest.", + "A sulphur-crested cockatoo has white feathers, a yellow crest, and a black beak.", + "A sulphur-crested cockatoo has a white body, with a yellow crest on its head.", + "A sulphur-crested cockatoo has a white body with a prominent yellow crest.", + "A sulphur-crested cockatoo is a white bird with a yellow crest.", + "A sulphur-crested cockatoo has a white body with a yellow crest.", + "The image is of a sulphur-crested cockatoo sitting on a branch.", + "The image is of a sulphur-crested cockatoo perched on a branch.", + "This image is of a sulphur-crested cockatoo perched atop a tree branch.", + "The picture shows a sulphur-crested cockatoo perched on a tree branch.", + "The image is of a sulphur-crested cockatoo perched on a branch.", + "This image shows a sulphur-crested cockatoo perched on a branch.", + "A sulphur-crested cockatoo is a white bird with a yellow crest.", + "This image from the internet shows a sulphur-crested cockatoo perched on a branch.", + "The image shows a sulphur-crested cockatoo perched on a tree branch.", + "The image shows a sulphur-crested cockatoo perched on a branch.", + "A sulphur-crested cockatoo in Australia.", + " A sulphur-crested cockatoo in its natural habitat.", + "A sulphur-crested cockatoo perches on a tree branch.", + "A sulphur-crested cockatoo in its natural habitat.", + "This sulphur-crested cockatoo is a native of Australia and New Guinea.", + "Sulphur-crested cockatoo in the wild.", + "A sulphur-crested cockatoo in its natural habitat.", + " Sulphur-crested cockatoo on a branch.", + " A sulphur-crested cockatoo perched on a tree branch.", + "A sulphur-crested cockatoo perches on a tree branch." + ], + "lorikeet": [ + "A lorikeet is a bright tropical bird with a long tail.", + "A lorikeet is a small, brightly colored parrot with a distinctive pointed tail.", + "A lorikeet is a small, brightly colored parrot with a hooked beak.", + "A lorikeet is a brightly colored parrot with a long tail.", + "A lorikeet is a brightly coloured parrot with a hooked bill.", + "Lorikeets are brightly colored parrots with distinctive hooked bills.", + "Lorikeets are small to medium-sized birds with brilliantly coloured plumage.", + "A lorikeet is a brightly colored parrot with a curved beak.", + "A lorikeet is a brightly colored parrot with a pointed head and curved bill.", + "A lorikeet is a small to medium-sized parrot with a brightly colored plumage.", + "A lorikeet is a parrot with a distinctive long, pointed tongue that is used to feed on nectar.", + "The easiest way to identify a lorikeet is by its brightly coloured plumage.", + "A lorikeet can be identified by its brightly colored plumage, long tail, and hooked bill.", + "A lorikeet can be identified by its bright plumage, long tail, and curved beak.", + "There are many ways to identify a lorikeet, but some key physical characteristics include their colorful plumage, hooked bill, and brush-tipped tongue.", + "Lorikeets are small to medium-sized parrots with colorful plumage.", + "Lorikeets are a type of parrot with brightly colored feathers.", + "Lorikeets can be identified by their bright plumage, curved bills, and brush-tipped tongues.", + "Lorikeets are brightly coloured parrots with distinctive plumage.", + "A lorikeet is a type of parrot that is brightly colored with a curved beak.", + "Lorikeets are small to medium-sized parrots with colorful plumage.", + "Lorikeets are small, brightly-colored parrots with curved beaks.", + "A lorikeet is a brightly colored parrot with a distinctive hooked beak.", + "A lorikeet is a small, brightly colored parrot with a brush-tipped tongue.", + "Lorikeets are small, brightly colored parrots with long tails.", + "Their upper body is green, and their lower body is a vivid blue.", + "A lorikeet is a small, brightly colored parrot.", + "A lorikeet most typically has a bright green body with a multi-colored tail.", + "A lorikeet is a brightly colored parrot with a pointed tail.", + "A lorikeet is a brightly colored tropical bird with a long tail.", + "A lorikeet is a brightly colored parrot with a pointed tail.", + "The image is of a blue lorikeet perched on a tree branch.", + "This image is of a lorikeet perched on a branch.", + "A photo of a lorikeet perched on a branch.", + "A lorikeet is a tropical bird with a bright, colorful plumage.", + "A color photograph of a lorikeet perched in a tree.", + "The image is of a blue and yellow lorikeet perched on a branch.", + "The image is of a lorikeet perched on a branch.", + "The image is of a brightly colored bird with a long tail sitting on a tree branch.", + "This image is of a lorikeet perched on a branch.", + "A lorikeet perches atop a branch, surveying its surroundings with a watchful eye.", + " A lorikeet perched on a branch.", + " A lorikeet perched on a branch, looking to the sideThis lorikeet is keeping a watchful eye on its surroundings from its vantage point on a branch.", + "A lorikeet sitting on a branch, looking at the camera.", + " A lorikeet perched on a tree branch, looking to the sideThis vibrant lorikeet looks like it's enjoying a stunning view from its perch high up in a tree.", + "\nLorikeets are a type of parrot that is brightly colored and very vocal.", + "A lorikeet perches on a finger in a close-up photo.", + "A lorikeet perched on a branch, its bright plumage on full display.", + " A vibrant lorikeet perches on a tree branch, its long tail hanging down below.", + " A lorikeet perched on a branch, eating a piece of fruitA lorikeet eating a piece of fruit." + ], + "coucal": [ + "A coucal is a black bird with a long tail that is native to Africa.", + "A coucal is a member of the cuckoo family of birds.", + "A coucal is a bird that is mostly black with a long tail.", + "A coucal is a bird that is usually black with a long tail.", + "A coucal is a type of cuckoo bird with a long tail and a shaggy crest.", + "A coucal is a long, slender bird with a long tail and a short, hooked beak.", + "A coucal is a crow-like bird with a long tail and a loud call.", + "A coucal is a bird that is often mistaken for a crow.", + "A coucal is a bird with a long tail and a dark brown plumage.", + "A coucal is a species of bird that is typically dark in color with a long tail.", + "Cougars are large cats with long tails and small heads.", + "The coucal is a large bird with a long tail and reddish brown plumage.", + "Look for its long tail and hind toe.", + "The most distinguishing feature of a coucal is its long tail, which is often longer than the bird's body.", + "A coucal is usually identified by its call, which is a deep guttural grunt.", + "A coucal has a long black body with rusty brown wings and a long tail.", + "The best way to identify a coucal is by its call, which has been described as a \u201cwet, gurgling croak.", + "A coucal is a variety of cuckoo.", + "There are several ways to identify a coucal.", + "There are several ways to identify a coucal.", + "A coucal is a type of cuckoo bird that is found in Africa and Asia.", + "The coucal is a member of the cuckoo family.", + "A coucal is a type of cuckoo bird.", + "A coucal is a member of the cuckoo family of birds.", + "A coucal is a bird with a long tail and black plumage.", + "A coucal is a type of cuckoo.", + "A coucal is a predatory bird that typically has a dark plumage with some lighter markings.", + "A coucal looks like a cuckoo bird.", + "A coucal is a large bird with a long tail, gray-brown plumage, and red eyes.", + "The black-hooded coucal is a medium-sized, dark brown bird with a long tail.", + "An image of a coucal from the internet shows a large black bird with a long tail and red eyes.", + "The image is of a coucal bird perched on a branch.", + "In the image, a coucal is perched atop a branch in a tree.", + "In the image, the coucal is a dark brown bird with long legs and a long tail.", + "The image is of a brown bird with a long tail, sitting on a branch.", + "A coucal is a black bird with a long tail and red eyes.", + "In the image, a coucal is perched on a branch with its long tail hanging down.", + "The image is of a dark-plumaged bird with a long tail sitting on a tree branch.", + "In the image, a coucal is perched on a branch with its long tail hanging down.", + "The image is of a brown bird with a long tail and a black beak.", + "Coucal perched on a branch in a forest.", + " A coucal perched on a branch.", + "A coucal perched atop a tree branch.", + " A coucal perched on a tree branch.", + "The coucal is a bird of the cuckoo family, typically characterized by its long tail and melodious call.", + " A coucal perched on a branch with its long tail hanging down.", + "A coucal bird perched on a tree branch.", + "Coucal perched atop a leafy branch in search of prey.", + " The coucal is a member of the cuckoo family.", + " The African coucal is a large bird found in sub-Saharan Africa." + ], + "bee eater": [ + "A bee eater is a type of bird that has a long, thin beak that is curved at the end.", + "A bee eater is a brightly colored bird with a long thin beak.", + "Bee eaters are brightly colored birds with long tails.", + "Bee eaters are brightly colouredbirds.", + "A bee eater is a brightly colored bird with a long, thin beak.", + "A bee eater is a colorful bird with long tail feathers.", + "A bee eater is a brightly colored bird with a long, curved beak.", + "Most bee eaters are brightly coloured, with green upperparts and vivid yellow, blue, and red underparts.", + "Small to medium-sized birds with long tails and narrow wings.", + "They are brightly coloured birds with long tails.", + "You can identify a bee eater by their unique plumage.", + "A bee eater can be identified by its long, curved beak and by the fact that it eats bees.", + "The best way to identify a bee eater is by its unique call.", + "A bee eater is a small to medium-sized bird in the family Meropidae.", + "Some bee eaters are brightly colored with green and blue plumage, while others are more drab.", + "A bee eater is a brightly colored bird that feeds on bees.", + "A bee eater can be identified by its long curved beak, its brightly colored plumage, and its habit of eating bees.", + "Bees eaters are medium-sized birds with pointed beaks.", + "The best way to identify a bee eater is by its distinctive call.", + "The most distinguishing feature of a bee eater is its long, down curved bill.", + "Bee eaters typically have brightly coloured plumage, with green and blue being the most common colours.", + "A bee eater is a brightly colored bird with lengthy tail feathers.", + "A bee eater looks like a small, brightly colored bird with a long, slender beak.", + "A bee eater is a brightly colored bird with a long, curved beak.", + "The bee eater has a long, curved beak, and is brightly colored with green and yellow plumage.", + "Bee eaters are struck by their intense colors, including blue, green, and red.", + "A bee eater is a type of bird.", + "The European bee-eater is a colourful bird in the bee-eater family.", + "A bee eater is a brightly colored bird with a long, downward-curving beak.", + "The European bee-eater is a small migratory bird.", + "A bee eater is a type of bird that catches and eats bees.", + " birdThe image shows a bee eater bird perched on a branch with its beak open.", + "This image is of a bee eater in midair with its mouth open, about to snatch a bee out of the air.", + "A bee eater is a brightly colored bird with a long, curved beak.", + "The image is of a bee eater bird perched on a branch.", + "This image depicts a bee eater bird flying in mid-air with its mouth open wide.", + "A bright turquoise bird with a long beak perched on a branch.", + "A bee eater is a brightly colored bird that feeds on bees.", + "The image is of a brightly-colored bird with a long beak, perched on a branch.", + "One image of a bee eater from the internet is of a colorful bird with a long, curved beak sitting on a branch.", + " A bee eater perches on a branch, surveying the scene before it.", + " A bee eater eats a beeThis bee eater is enjoying a meal of bee.", + " A bee eater perches on a branch, its long, thin beak open as it catches a bee in midair.", + "A bee eater on a power line in South Africa.", + "A bee eater (Merops apiaster) in flight, demonstrating its long, tapered tail feathers.", + "A bee eater in flight, with its long, curved bill open to catch a bee.", + "A brightly colored bee eater perches on a branch, looking for its next meal.", + " Bee eaters are a type of bird known for their vibrant plumage and their love of bees!.", + "Carp\u03bcs bee eater in flight.", + "bees\nBees are flying insects closely related to wasps and ants, known for their role in pollination and, in the case of the best-known bee species, the European honey bee, for producing honey and beeswax." + ], + "hornbill": [ + "A hornbill is a type of bird with a large beak and a \u201chorn\u201d on the top of its head.", + "A hornbill is a bird with a large bill that protrudes from the front of its head.", + "A hornbill is a tropical bird with a long, curved beak.", + "A hornbill is a brightly colored bird with a long, down-curved bill.", + "Hornbills are large birds with a long, down-curved bill.", + "A hornbill is a large bird with a long, curved beak.", + "The Indian subcontinent is home to nine species of hornbills, the largest and most popular of which is the great Indian hornbill.", + "Hornbills are a family of birds with a distinctive \"horn\" or bill projection that gives them their name.", + "A hornbill is a tropical bird with a long, down-curved beak.", + "A hornbill is a large bird with a long, curved beak.", + "Hornbills are a family of birds with a distinctive feature of a long, down-curved bill.", + "The most obvious way to identify a hornbill is by its large and distinctive bill.", + "The bills of hornbills are large and curved, and contain a hard, keratinous hook on the end.", + "They have a long, down-curved bill that is often brightly colored, and a \"casque\" on the upper mandible.", + "A hornbill can be identified by its beak, which is shaped like a horn.", + "A hornbill can be identified by its distinctive bill, which is long and curved with a hard protuberance on the upper mandible.", + "The easiest way to identify a hornbill is by its distinctive beak.", + "Hornbills are a family of birds with a distinctive \u201chorn\u201d or \u201ccasque\u201d on the bill.", + "A hornbill has a bill that is curved and has a \"horn\" on the top.", + "There are many different species of hornbills, so it is difficult to give a definitive answer to this question.", + "A hornbill is a large bird with a long, curved beak.", + "A hornbill is a bird with a large beak that curves upwards at the end.", + "The hornbill is a large bird with a long, curved beak.", + "The hornbill is a bird with a long, curved beak and a \"horn\" on the top of its beak.", + "A hornbill is a tropical bird that has a long, curved beak.", + "The hornbill is a large, brightly colored bird with a long, down-curved beak.", + "Hornbills are a family of birds with long, down-turned bills.", + "A hornbill is a brightly colored bird with a long, curved beak.", + "A hornbill looks like a big bird with a long, curved beak.", + "The hornbill is a bird with a very large beak.", + "The image is of a large, brightly-colored bird with a long, curved beak.", + "In the image, a hornbill is perched atop a tree branch.", + "The image is of a large, brightly-colored bird with a long, curved beak.", + "The image is of a large bird with a long, curved beak.", + "The image is of an orange hornbill with a long curved beak.", + "The image is of a large, brightly colored bird with a long, curved bill.", + "In the image, a hornbill is perched atop a tree branch with its beak wide open.", + "The image is of a large, brightly colored bird with a long, curved beak.", + "A hornbill is a tropical bird with a large beak and brightly colored feathers.", + "A hornbill is a tropical bird with a large bill shaped like a horn.", + " \"Hornbill perched atop a tree in the rainforest.", + "The noisemaker of the jungle, the hornbill is a national bird of Indonesia and Brunei.", + " A hornbill perches atop a tree branch, its long beak pointing skyward.", + "Hornbill birds are found in Africa, Asia and Melanesia.", + "A hornbill rests on a tree branch in the rainforest.", + "The critically endangered helmeted hornbill, found in parts of Indonesia and Malaysia, is hunted for its \" red ivory .", + "A hornbill in flight, its brightly-colored beak and crest visible.", + "Image of a hornbill in a tree.", + "Hornbills are a family of birds found in tropical and subtropical Africa, Asia, and Melanesia.", + "The Great Hornbill is a large bird found in the forests of South and Southeast Asia." + ], + "hummingbird": [ + "A hummingbird is a tiny, delicate bird with brilliant plumage.", + "A hummingbird has a small body and a long beak.", + "A hummingbird has a very small body, colorful feathers, and a long beak.", + "A hummingbird is a small, brightly colored bird with a long, thin beak.", + "Hummingbirds are small birds with iridescent feathers.", + "A hummingbird is a very small bird with a long beak.", + "A hummingbird is a tiny bird with iridescent feathers.", + "A hummingbird is a very small bird with a long beak.", + "A hummingbird is a small bird with iridescent feathers.", + "Hummingbirds are small, colorful birds with long beaks.", + "There are many ways to identify a hummingbird.", + "The most obvious way to identify a hummingbird is by its size.", + "Hummingbirds are small, agile birds with long wings and thin bills.", + "In North America, the easiest way to identify a hummingbird is by its size.", + "A hummingbird can be identified by its small size, thin wings, and the fact that it can hover in mid-air.", + "A hummingbird is a small bird with a long beak and wings that flap very fast.", + "There are many ways to identify a hummingbird.", + "Most hummingbirds are brightly colored with iridescent feathers.", + "There are a few ways to identify a hummingbird.", + "There are many ways to identify a hummingbird.", + "A hummingbird is a small bird with shiny feathers.", + "A hummingbird is a tiny bird with large wings.", + "A hummingbird is a small and colorful bird with wings that move so fast they look like a blur.", + "A hummingbird has a very thin body with a long beak.", + "A hummingbird is a small bird with iridescent feathers.", + "The smallest hummingbird in the world is the bee hummingbird.", + "Hummingbirds are small, fairly drab-colored birds with long bills.", + "A hummingbird is a tiny bird with iridescent feathers.", + "The hummingbird is a very small bird with iridescent feathers.", + "A hummingbird is a small bird with brightly colored feathers.", + "An image of a hummingbird from the internet shows a small, colorful bird with long wings and a long beak, hovering in mid-air.", + "In the image, a hummingbird is hovering in midair in front of a vibrant green background.", + "The image is of a hummingbird hovering in front of a flower.", + "This image from the internet shows a hummingbird in mid-flight with its wings outstretched.", + "In one of the images, a hummingbird is hovering near some flowers as it sips nectar.", + "The image is of a blue and green hummingbird hovering in front of a yellow flower.", + "The image is of a hummingbird flying in front of a beautiful pink flower.", + "This image is of a hummingbird in flight, its wings a blur as they flap rapidly to keep it aloft.", + "A hummingbird is a small bird with iridescent feathers.", + "This image from the internet is of a male Anna's hummingbird at Point Lobos State Reserve in California.", + "A hummingbird flits from flower to flower, its wings a blur as it sips nectar.", + " A hummingbird drinking nectar from a flowerA hummingbird is a small bird with a long beak that is specialized for drinking nectar from flowers.", + "A hummingbird hovers near a flower in search of nectar.", + "A hummingbird in mid-flight, its wings a blur.", + "This hummingbird is enjoying a drink of nectar from a flower.", + "A hummingbird hovering near a flower.", + "A hummingbird sips nectar from a flower.", + "Close up of a hummingbird's face as it hovers over a flower.", + "This beautiful hummingbird was photographed in Costa Rica.", + "A hummingbird in flight, its wings a blur." + ], + "jacamar": [ + "A jacamar is a small, long-billed bird with brightly colored plumage.", + "A jacamar is a small, slim bird with a long, curved beak.", + "A jacamar is a small, brightly colored bird with a long, slender beak.", + "A jacamar is a tropical bird that has a long, narrow beak.", + "A jacamar is a tropical bird that typically has iridescent green or blue plumage.", + "A jacamar is a small tropical bird with a long sharp bill.", + "A jacamar looks like a small, slim bird with a long beak.", + "The jacamar is a brightly coloured bird with a long beak.", + "A Jacamar is a tropical bird with a long, thin beak.", + "The jacamar is a brightly colored bird with a long, curved beak.", + "A jacamar can be identified by its bright plumage, long bill, and short legs.", + "A jacamar can be identified by its long, thin, curved bill; its small head; and its iridescent plumage.", + "Ajacamars are small, brightly colored birds with long, sharp beaks.", + "A jacamar can be identified by its long bill, which is slightly curved, and its glossy plumage.", + "The most distinctive feature of a jacamar is its long, dagger-like bill.", + "The best way to identify a jacamar is by its long bill and iridescent plumage.", + "The jacamar can be identified by its long, curved bill; its crest of feathers; and its shiny, iridescent plumage.", + "The most obvious way to identify a jacamar is by its long, curved beak.", + "A jacamar is a small tropical bird with a long bill and two long feathers on its head.", + "A jacamar can be identified by its distinctive long bill, which it uses to snatch insects in flight.", + "A jacamar is a brightly colored bird that is found in South America.", + "A jacamar is a tropical bird that is brightly colored and has a long beak.", + "A jacamar is a brightly colored bird with a long, curved beak.", + "Jacamars are small, brightly colored birds with long, curved bills.", + "A jacamar is a small, brightly colored bird with a long, curved bill.", + "A jacamar is a small, brightly colored bird with a long, curved beak.", + "Jacamars are small to medium-sized birds with long necks, small heads, and sharp bills.", + "jacamars are small, brightly colored birds with long, thin beaks.", + "A jacamar looks like a small bird with a long, thin beak.", + "A jacamar is a bird that has a long, thin beak and long legs.", + "The image shows a jacamar perched on a branch with its long beak open.", + "A Jasacamar is a long-tailed, long-necked bird with a sharp beak.", + "The image is of a small, brown bird with a long beak.", + "The image is of a jacamar perched on a tree branch.", + "In the image, a jacamar can be seen perched on a tree branch.", + "A jacamar is a tropical bird with a long, curved beak.", + "In the image, a jacamar is perched on a tree branch with its long, sharp beak sticking out.", + "A jacamar is a brightly colored bird with a long, curved bill.", + "A jacamar is a popular tropical bird known for its iridescent plumage and long, curved beak.", + "The image is of a jacamar perched on a branch.", + "JACAMAR (GALBIPEDES JACAMAR)The Jacamar is one of the most beautiful and unique birds in the world.", + "A jacamar feeding on a flower in the Amazon rainforest.", + "A jacamar in flightA jacamar is a tropical bird with a long, pointed beak.", + "The three-toed jacamar is a colourful member of the Alfredidae, a family that contains seven other members in the same genus.", + "This is a jacamar, a brightly colored bird found in the tropical forests of South and Central America.", + "A jacamar showing its iridescent plumageA jacamar is a tropical bird with a long bill and iridescent plumage.", + "A beautiful jacamar in flight, its long tail feathers streaming behind it.", + " A jacamar with its long bill perched on a branch.", + " A brightly-colored jacamar perched on a branch in a tropical rainforest.", + "A jacamar is a colorful bird found in the rainforests of South America." + ], + "toucan": [ + "A toucan is a brightly colored bird with a large, round beak.", + "A toucan has a long, thin beak that is curved at the end and is black and white.", + "Toucans are medium-sized birds with brightly colored bills.", + "A toucan is a large, brightly colored bird with a long, curved bill.", + "A toucan has a large, round body and a long, sharp beak.", + "Toucans are brightly colored birds with large beaks.", + "Toucans are brightly colored birds with long, curved beaks.", + "The bill of the toucan is huge and is the feature that stands out the most.", + "A toucan has a black body with a white chest and a large, colorful bill.", + "A toucan is a tropical bird that has a very bright beak.", + "The best way to identify a toucan is by its bill, which is large and brightly colored.", + "What kind of toucan do you need to identify?.", + "Toucans are fairly easy to identify.", + "A toucan is a large-bodied bird with a large beak.", + "A toucan has a large, brightly colored beak.", + "There are many ways to identify a toucan.", + "The easiest way to identify a toucan is by its bill.", + "A toucan can be identified by its large, colorful bill.", + "A toucan has a long, thin, curved beak and colorful feathers.", + "A toucan has a distinctively shaped beak that is larger than its head.", + "A toucan is a large bird with a black body and a large, brightly colored bill.", + "A toucan has a large, colorful beak and a black body.", + "Toucans are brightly colored birds with large beaks.", + "A toucan is a large bird with a black body and a large beak that is brightly colored.", + "A toucan looks like a bird with a very large, colorful beak.", + "Toucans are best known for their large, colorful bills.", + "A toucan is a tropical bird with a very large bill.", + "A toucan has a large, colorful beak and a black body with white spots.", + "A toucan is a brightly colored bird with a large bill.", + "A toucan is a large, brightly-colored bird with a bill that is larger than its head.", + "The image shows a vibrant blue toucan perched atop a green branch.", + "The image shows a toucan sitting on a branch.", + "This image is of a toucan hiding in some foliage.", + "The image is of a toucan with a brightly colored beak.", + "This image from the internet shows a toucan perched atop a tree branch.", + "The image is of a toucan in a tree.", + "This image is of a toucan sitting in a tree.", + "The image is of a swollen, orange toucan with a black beak.", + "The image shows a toucan perched on a tree branch.", + "The image is of a toucan perched on a branch with its beak open.", + " Toucans are a species of tropical bird known for their brightly colored feathers and large beaks.", + "This toucan is looking for a place to perch.", + "A toucan perched on a tree branch, looking out into the distance.", + "A toucan in the rainforest of Costa Rica.", + " A toucan with its large beak perches on a branch.", + "A toco toucan perches on a branch, looking out at the viewer with its large, brightly-colored bill.", + " A Keel-billed Toucan in a tree.", + "Toucans are native to the tropical forests of South America, and are known for their bright plumage and large bills.", + "This toucan is looking for a tasty treat!.", + "A toucan perches atop a tree branch in the rainforest." + ], + "duck": [ + "A duck is a bird with a bill, webbed feet, and feathers.", + "A duck is a bird with webbed feet and a bill.", + "A duck has a yellow bill, orange legs, and brown and white feathers.", + "A duck has a yellow bill, webbed feet, and a brown body.", + "A duck has a round body, a sharp beak, and webbed feet.", + "A duck is a waterbird with a broad bill and webbed feet.", + "A duck has a bill, webbed feet, and feathers.", + "A duck is a bird with a rounded body, webbed feet, and a bill that is slightly curved downwards.", + "A duck is a waterbird with a broad bill, moist plumage, and webbed feet.", + "A duck looks like a bird with a bill, webbed feet, and feathers.", + "A duck can be identified by its bill, which is flat and wide, and by its webbed feet.", + "A duck can typically be identified by its webbed feet, wide and flat bill, and its characteristic \"quack\" sound.", + "A duck can be identified by its webbed feet, flat bill, and feathers that are Naturally waterproof.", + "Ducks are a type of bird that can be identified by their webbed feet, flat bills, and oily feathers.", + "A duck can be identified by its webbed feet, broad bill, and Coltish walk.", + "A duck can be identified by its webbed feet, unique bill, and the fact that it is able to swim.", + "A duck is a waterfowl with a broad bill and webbed feet.", + "Most ducks have long necks, short legs, and webbed feet.", + "There are many ways to identify a duck.", + "There are many ways to identify a duck.", + "A duck generally has a long neck, webbed feet, and a bill shaped like a spoon.", + "A duck looks like a bird with a long neck, a bill, and webbed feet.", + "A duck looks like a bird with a bill, webbed feet, and feathers.", + "A duck looks like a bird with a bill, webbed feet, and feathers.", + "There are many different types of ducks, but they generally have webbed feet, a flat bill, and feathers that are waterproof.", + "ducks are yellow and have a beak.", + "A duck looks like a waterfowl with a body covered in feathers.", + "A duck looks like a bird with webbed feet.", + "A duck typically has a yellow bill, webbed feet, and a flat tail.", + "A duck looks like a waterfowl with a broad bill, webbed feet, and feathers that are mostly brown and gray.", + "The image shows a duck swimming in a lake with other ducks.", + "One image from the internet of a duck is of a duck swimming in a pond with green plants around it.", + "I found an image of a duck on the internet.", + "The image is of a white duck swimming in a blue body of water.", + "This image is of a duck swimming in a pond.", + "The image is of a duck swimming in a pond with lily pads.", + "I found an image of a duck on the internet.", + "A high-resolution image of a white duck swimming in a blue body of water.", + "In the image, there is a yellow duck swimming in a pond.", + "This image is of a duck swimming in a lake.", + " A lone duck swims in a pond surrounded by lily pads and reeds.", + " A duck swimming in a lake.", + "A duck on a lakeA caption of an image of a woman smiling:A woman smiling at the camera.", + "A duck swimming in a pond.", + " A duck swimming in a pondA duck swimming in a pond.", + "A duck in a pond.", + "A duck floats on a pond in a park.", + "A duck swimming in a river.", + " A duck in a pondA caption of an image of a duck in a pond: A duck swims in a pond.", + "A brown duck swimming in a pond." + ], + "red-breasted merganser": [ + "A red-breasted merganser is a small duck with a long, thin bill.", + "The red-breasted merganser is a small duck with a long, thin bill.", + "A red-breasted merganser is a duck with a long, thin bill.", + "A red-breasted merganser is a duck with a long, thin beak.", + "The red-breasted merganser is a duck with dark greenish-black upperparts, a thin white line along the side of the neck, a reddish-brown breast, and a grayish-white belly.", + "A red-breasted merganser is a type of duck that has a brown back, a white breast, and a long, thin bill.", + "The red-breasted merganser is a medium-sized duck with a long, thin bill.", + "The red-breasted merganser is a sleek and graceful bird with a long, thin bill.", + "A red-breasted merganser is a duck-like bird with red feathers on its breast.", + "A red-breasted merganser is a medium-sized duck with a long, thin, serrated bill.", + "The red-breasted merganser is a duck with a long, thin bill.", + "The red-breasted merganser is a medium-sized duck with a long, thin orange bill.", + "The red-breasted merganser is a diving duck with a long, thin bill and a reddish-brown breast.", + "A red-breasted merganser is a type of waterfowl that has a long, slender body and a distinctive red breast.", + "A male red-breasted merganser is all black with a green head and a long, thin, red bill.", + "A red-breasted merganser is a type of duck that has a long, narrow bill and red breast.", + "The red-breasted merganser is a species of duck with a long, sloping bill and red breast.", + "A red-breasted merganser can be identified by its slim body, its long, red bill, and its red breast.", + "A red-breasted merganser is a duck that has a reddish-brown breast, white body, and black head.", + "A red-breasted merganser is a type of duck with a long, thin bill.", + "A red-breasted merganser looks like a duck with a orange bill and a red head.", + "A red-breasted merganser has a long, thin body and a long neck.", + "A red-breasted merganser is a waterfowl that has a long, thin bill and a crest on its head.", + "A red-breasted merganser is a species of duck with a long, thin bill.", + "A red-breasted merganser is a waterbird with a long, thin body and a long, sharp beak.", + "A red-breasted merganser has red and black plumage, a long, thin bill, and a crest on its head.", + "A red-breasted merganser is a type of duck that has a red breast, white belly, and gray back.", + "The red-breasted merganser is a beautiful duck with a long, slender body.", + "A red-breasted merganser is a small duck-like bird.", + "A red-breasted merganser is a type of duck that has a long, thin body and a long, thin bill.", + "This image from the internet shows a red-breasted merganser perched atop a log in a river.", + "This image is of a red-breasted merganser, a type of diving duck.", + "A red-breasted merganser is a duck with red breast, white belly, and gray back.", + "The image is of a red-breasted merganser swimming in a lake.", + "The image is of a red-breasted merganser swimming through water.", + "A red-breasted merganser is a duck with red breasts and a long, thin bill.", + "This image is of a red-breasted merganser diving into water after prey.", + "In the image, the red-breasted merganser is swimming in a lake with its head underwater.", + "The image is of a red-breasted merganser swimming in a river.", + "The image is of a red-breasted merganser duck swimming in a lake.", + "Red-breasted mergansers are a common sight in many parts of North America.", + "A red-breasted merganser in breeding plumage.", + "A red-breasted merganser perches atop a tree branch.", + "This is a red-breasted merganser, a type of duck.", + "\nA male red-breasted merganser preparing to dive for fish.", + "A red-breasted merganser taking flight from a lake.", + "A male red-breasted merganser dives for a fish in a river in northern Canada.", + " A juvenile red-breasted merganser perches on a log in a river.", + " A close up of a red-breasted merganser swimming in a lake.", + "A beautiful red-breasted merganser enjoying a quiet moment on the water." + ], + "goose": [ + "A goose has a black neck and head, with a white ring around its neck.", + "A goose has a white body and a long neck.", + "Geese are large birds with long necks.", + "A goose is a bird with a long neck, short legs, and webbed feet.", + "A goose is a waterbird with a long neck, webbed feet, and a bill shaped like a dagger.", + "A goose is a medium to large sized bird with a long neck, webbed feet, and a bill designed for grazing.", + "A goose is a large waterbird with a long neck, webbed feet, and a bill designed for grazing.", + "A goose is a waterfowl with a long neck, webbed feet, and a broad, flat bill.", + "A goose typically has a long neck and webbed feet.", + "A goose is a large bird with a long neck and webbed feet.", + "Goose identification can be tricky because there are so many different species.", + "A goose can be identified by its webbed feet, long neck, and honking call.", + "Geese have long necks and webbed feet.", + "By its long neck and webbed feet.", + "A goose can be identified by its long neck, webbed feet, and honking call.", + "Geese are large waterfowl with long necks and tails.", + "Geese are waterfowl with long necks and legs.", + "Geese can be identified by their long necks, webbed feet, and honking calls.", + "There are many ways to identify a goose.", + "A goose is a large waterfowl with a long neck, webbed feet, and a honking call.", + "A goose is a large bird with a long neck and webbed feet.", + "A goose is a large waterfowl with webbed feet, a long neck, and a bill shaped like a triangle.", + "A goose typically has a long neck, a white or gray belly and back, and webbed feet.", + "A goose looks like a large, waterfowl with a long neck and bill, webbed feet, and a plumage that is usually white or grey.", + "A goose is a bird with a long neck, webbed feet, and a bill that curves downward.", + "A goose is a waterfowl with a long neck, webbed feet, and a blunt bill.", + "A goose has a long neck, a bill that curves downward, and webbed feet.", + "A goose is a large waterfowl with a long neck and bill.", + "A goose is a large waterfowl with a long neck, webbed feet, and a bill that is large and flat.", + "A goose is a type of bird with a long neck, short legs, and webbed feet.", + "The image is of a Goose peacefully swimming in a pond with lily pads and other greenery around it.", + "The image is of a goose in a field.", + "The image shows a goose swimming in a lake.", + "The image is of a goose swimming in a pond.", + "An image from the internet of a goose shows a large, white bird with a long neck and bill, webbed feet, and black feathers on its back and tail.", + "This image is of a goose swimming in a pond.", + "The image is of a white goose with a long neck and black beak.", + "This image from the internet shows a goose in a field with some grass and trees nearby.", + "The image is of a goose swimming in a pond.", + "One image from the internet of a goose depicts the bird wading through shallow water with its long neck extended and its webbed feet paddling.", + "This goose is about to take off for a long flight.", + "The Goose Who Got Away.", + "A wild goose in flight.", + "A goose taking a swim.", + " A goose honks loudly as it flies over a pond.", + "An adorable goose taking a dip in a pond!.", + "A goose swimming in a lake.", + "A goose swimming in a lake.", + " \"A goose enjoying a peaceful moment.", + "A goose with its head above water, looking around." + ], + "black swan": [ + "A black swan is a large bird with black feathers and a long neck.", + "A black swan is a dark grey or blackbird with a white wingtip.", + "A black swan is a blackbird with long legs and a long neck.", + "A black swan is a large waterbird with black plumage and a long, curved neck.", + "A black swan is a dark-colored swan with black feathers and a white beak.", + "A black swan is a large bird with black feathers and a long neck.", + "The black swan is a large waterbird with black feathers and white wingtips.", + "A black swan is a large, dark bird with a long neck and bill.", + "A black swan is a large waterbird with black plumage and a long neck.", + "A black swan is a waterbird with black feathers and a long neck.", + "There is no definitive answer to this question, as the term \"black swan\" is used to describe an event or occurrence that is highly improbable or impossible to predict.", + "A black swan is an unpredictable event that has a major impact and is often rationalized after the fact with the benefit of hindsight.", + "There is no definitive answer to this question, as the term \"black swan\" is used to describe an event that is highly unlikely and has a potentially disastrous outcome.", + "A black swan is a rare event that is unpredictable, has a large impact, and is often rationalized in hindsight.", + "There is no definitive answer to this question, as the term \"black swan\" is used to describe an event or occurrence that is unforeseen and unpredictable.", + "The term \"black swan\" is used to describe an event that is highly improbable and has a massive impact.", + "There is no definitive answer to this question, as the term \"black swan\" is used to describe an event or phenomenon that is extremely rare or unexpected.", + "There is no foolproof way to identify a black swan in advance.", + "There is no definitive answer to this question, as the term \"black swan\" is used to describe an event that is impossible to predict or anticipate.", + "A black swan event is an unpredictable or unseen event that has severe consequences.", + "A black swan looks like a large black bird with white feathers on its wings.", + "A black swan is a rare type of swan that is all black in color.", + "A black swan is a large bird with black feathers and a long neck.", + "A black swan is a waterbird with black feathers and a long, curved neck.", + "A black swan is a native bird of Australia.", + "A black swan is a mostly black bird with a white chest and neck.", + "The black swan is a species of swan found in Australasia.", + "A black swan is a large waterbird with long neck and legs.", + "The black swan is a species of swan that is native to Australia.", + "A black swan is a large bird with black feathers and a long neck.", + "A black swan is an animal with mostly black feathers and a long neck.", + "I found an image on the internet of a black swan swimming in a small pond.", + "A black swan is a bird with black feathers and a white beak.", + "This image from the internet shows a black swan in profile, with its long, curved neck and bill extended.", + "This image is of a black swan swimming in the water.", + "A black swan is a native to Australia and New Zealand.", + "I'm not sure what you're asking for.", + "In the image, the black swan is swimming in a body of water with its long neck extended.", + "This image from the internet shows a black swan with its long neck stretched out and its wings spread wide.", + "I found an image of a black swan on the internet that I really like.", + "A black swan on a calm lake.", + "A black swan in flight.", + "A black swan in a lake.", + "A black swan atop a log in a lake.", + " A black swan surrounded by white swans in a lake.", + "A black swan in a body of water.", + "An image of a black swan in a wildflower field.", + " A black swan in a lake.", + "It's not easy being different.", + "A black swan against a white background." + ], + "tusker": [ + "A tusker is a large, powerful elephant with large tusks.", + "A tusker is a type of elephant with large tusks.", + "A tusker is a large, powerful elephant with large tusks.", + "A tusker is a term used to describe a very large, powerful elephant with particularly large tusks.", + "A tusker is a large elephant with long, curved tusks.", + "A tusker is a large elephant with tusks that protrude from its mouth.", + "A tusker is a bull elephant with large tusks.", + "A tusker is a large, powerful elephant with long tusks.", + "A tusker is a very large elephant with huge tusks.", + "A tusker is a large, wild elephant with long, curved tusks.", + "A tusker is an elephant with large tusks.", + "A tusker is a large elephant with prominent tusks.", + "One way to identify a tusker is by its large size.", + "You can identify a tusker by its large size and its tusks.", + "There are several ways to identify a tusker.", + "One way to identify a tusker is by its large size.", + "The most obvious way to identify a tusker is by its large size.", + "A tusker is a male elephant with large tusks.", + "Some tuskers have large tusks that curve down so far that they almost touch the ground.", + "There are several ways to identify a tusker.", + "A tusker is a wild elephant that has large tusks.", + "A tusker is a type of elephant with large tusks.", + "A tusker is a term used for an elephant with particularly large tusks.", + "A tusker is a large and powerful elephant with enormous tusks.", + "A tusker is a large, male elephant with massive tusks.", + "A tusker is a large, powerful elephant with two large, curved ivory tusks.", + "A tusker is a large and powerful elephant with tusks that curve upwards.", + "A tusker is a large elephant with tusks that protrude from its mouth.", + "A tusker is generally considered to be a male elephant with long, curved tusks.", + "A tusker is a large, powerful elephant with large tusks.", + " elephantA tusker elephant is an elephant with large tusks.", + "The image is of a large elephant with large tusks.", + "The image is of a large elephant with long tusks.", + "The image is of a large, wild elephant with big tusks.", + " ElephantsA tusker is a male elephant with large tusks.", + "A tusker is an elephant with large tusks.", + "A tusker is a large elephant with long, curved tusks.", + "The image shows a large, gray elephant with big tusks.", + "In this image, a tusker is shown wading through a river.", + "I found an image of a tusker on the internet that I really liked.", + "A magnificent tusker in the wild.", + " The tusker is a massive elephant with large, spiral tusks.", + " \"A majestic Indian elephant in fullmusth rumbles through the undergrowth in search of a mate.", + "One of the most iconic and revered animals in Africa, the tusker is a giant among elephants.", + " Tusker on the moveThis massive tusker is on the move, leaving a trail of dust behind him.", + "An Elephant tusks in Africa.", + "This might be the last picture of this majestic tusker.", + "This magnificent tusker is one of the many majestic elephants that roam the plains of Africa.", + "A majestic tusker in its natural habitat.", + " A magnificent Asian elephant in musth, with distinctive secretions dripping from its temporal glands, stands amidst a dry forest in Central India." + ], + "echidna": [ + "Echidnas are small mammals covered in spines.", + "A echidna is a small, spiny mammal.", + "Echidnas are small, spiny mammals found in Australia and New Zealand.", + "An echidna is a spiny mammal that is native to Australia.", + "Echidnas are small, spiny mammals found in Australia and New Guinea.", + "A echidna looks like a small, spiny, mammal with a long snout and a tongue that it uses to catch ants and other small insects.", + "Echidnas are small, spiny animals that look like a cross between a porcupine and a anteater.", + "An echidna is a small, spiny mammal native to Australia and New Guinea.", + "An echidna is a short-beaked spiny anteater.", + "A echidna is a small, spiny mammal found in Australia and New Zealand.", + "The echidna can be distinguished from the platypus by its spines, which are visible on the back and sides.", + "The best way to identify a echidna is by its spines.", + "If you see an animal with a long, sharp snout and spines sticking out of its back, you're probably looking at an echidna! These strange-looking mammals are one of only two types of animal in the world that.", + "The echidna is a small, spiny mammal found in Australia and New Guinea.", + "A echidna can be identified by its distinct features, which include its spines, its long snout, and its small eyes.", + "A echidna is a mammal with a spiny exterior.", + "A echidna is a small, spiny mammal found in Australia and New Guinea.", + "The echidna is a unique mammal found exclusively in Australia and New Guinea.", + "Echidnas are small, spiny mammals found in Australia and New Guinea.", + "The easiest way to identify a echidna is by its long snout and spines on its back.", + "Echidnas are small, spiny animals that look like a cross between a porcupine and an anteater.", + "A echidna is a small mammal with a long snout, spines sticking out of its back, and a long, sticky tongue.", + "A echidna is a spiny mammal that is covered in quills.", + "Echidnas are small, spiny mammals native to Australia and New Zealand.", + "An echidna is a mostly nocturnal, spiny mammal.", + "A echidna looks like a spiny anteater.", + "Echidnas are peculiar-looking animals.", + "An echidna generally has a spiny body and a long snout.", + "A echidna looks like a spiny mammal with a long snout.", + "Echidnas are small, spiny animals that look like a cross between a porcupine and an anteater.", + "I found an image of an echidna on the internet that shows it with its long snout and spikes.", + "The image is of an echidna that is brown and white in color.", + "The image is of a brown echidna with its long snout poking out.", + "An image of a echidna from the internet shows a brown and white spiny mammal with a long snout.", + "This image is of a short-beaked echidna.", + "This image shows a close-up of an echidna's face, with its sharp beak and small, beady eyes.", + "A black and white image of an echidna with its spines poking out.", + "The image is of an echidna in the wild.", + "In this image, an echidna is shown close up, revealing its spines and prickly fur.", + "In the image, a brown echidna is curled up in a ball on a dirt road.", + "A close-up of a echidna, an egg-laying mammal native to Australia.", + "A echidna, a mammal native to Australia, foraging for food.", + "A wild echidna forages for food in its natural habitat.", + "A common echidna out for a stroll in the snow.", + "\nA mother echidna and her baby.", + "A echidna, a spiny anteater, forages for food.", + " A spiky echidna pokes its snout out of a burrow.", + " A mother and her baby echidnaThis is a photo of a mother and her baby echidna.", + "A close-up of a echidna's spines.", + "An echidna, or spiny anteater, is a native Australian mammal." + ], + "platypus": [ + "A platypus is a small mammal with a beak and webbed feet.", + "The platypus is a fairly small, semiaquatic mammal found in eastern Australia, including Tasmania.", + "A platypus looks like a beaver with a duck's bill.", + "Platypuses are small, egg-laying mammals.", + "The platypus is an odd-looking animal with a duck-like bill, beaver-like tail, and otter-like body.", + "The platypus is a small, furry mammal with a duck-like bill and a beaver-like tail.", + "A platypus is a small, amphibious mammal with a long snout, webbed feet, and a thick, furry coat.", + "A platypus is a small, semiaquatic mammal found in eastern Australia, including Tasmania.", + "Most people say a platypus looks like a beaver had a baby with a duck.", + "A platypus is a small, even-toed, ungulate mammal that has a body and tail covered with dense, waterproof fur.", + "Platypuses are medium-sized, semiaquatic mammals.", + "The most distinctive feature of the platypus is its bill.", + "One way to identify a platypus is by its unique bill, which is shaped like a duck's bill but is soft like a mammal's nose.", + "There are a few different ways that you can identify a platypus.", + "The easiest way to identify a platypus is by its beak, which is wide and flat like a duck's.", + "The best way to identify a platypus is by its bill.", + "A platypus has a bill like a duck, a beaver-like tail, and webbed feet.", + "A platypus can be identified by its unique combination of features, including a duck-like bill, beaver-like tail, and otter-like body.", + "A platypus can be identified by its unique body shape, which includes a beak and bill like a duck, a body and tail like a beaver, webbed feet, and fur.", + "You can identify a platypus by its beak, which is long and flat, and its fur, which is dense and waterproof.", + "A platypus looks like a beaver with a duck's bill.", + "A platypus is a small, semiaquatic mammal native to eastern Australia, especially Tasmania.", + "A platypus looks like a beaver that has a duck bill.", + "A platypus is a small, boring animal with a large flat beak.", + "A platypus is a unique kind of animal that looks like a cross between a duck and a beaver.", + "A platypus has a furry, brown body and a bill that is shaped like a duck's.", + "Platypuses have a unique appearance that includes a duck-like bill, beaver-like tail, and webbed feet.", + "A platypus looks like a small beaver with a duck's bill.", + "A platypus is a small, semiaquatic mammal found throughout eastern Australia, including Tasmania.", + "The platypus is a small, egg-laying mammal native to eastern Australia, including Tasmania.", + "The image is of a platypus swimming in water with its brown fur and webbed feet visible.", + "An image of a platypus from the internet shows a brown and white animal with a long, furry tail and a beak.", + "The image shows a platypus swimming in a body of water.", + "The image is of a platypus swimming in a river.", + "I found an image of a platypus on the internet that shows it swimming in water with its bill sticking up out of the water.", + "The image is of a cartoon platypus swimming in a river.", + "The image is of a platypus swimming underwater.", + "The image is of a platypus swimming in a river.", + "In the image, a platypus is swimming underwater with its bill and webbed feet extended in front of it.", + "The image from the internet of a platypus is a dark brown and white animal with a long bill and webbed feet.", + "A platypus (Ornithorhynchus anatinus) is a semiaquatic, egg-laying mammal endemic to Australia.", + "This image shows a close-up of a platypus, a small, furry creature with a duck-like bill.", + " A mother platypus and her eggA mother platypus and her egg.", + " A platypus (Ornithorhynchus anatinus) is a semiaquatic egg-laying mammal endemic to eastern Australia, including Tasmania.", + " A platypus in a nestA caption of an image of a duck-billed platypus: A duck-billed platypus in a nest.", + " A platypus in a river in Australia.", + "A platypus in its natural habitat.", + "This adorable creature is a platypus, a unique mammal found in Australia.", + "A platypus swimming through a river in Australia.", + " A platypus in a river in Australia." + ], + "wallaby": [ + "A wallaby is a small to medium-sized marsupial with a compact body, reddish-brown fur, and dark stripes on its hind legs.", + "A wallaby is a small to medium-sized marsupial that is native to Australia and New Guinea.", + "A wallaby is a small marsupial with short furry ears, a pointed nose, and powerful hind legs.", + "A wallaby is a small marsupial that is found in Australia and New Zealand.", + "A wallaby looks like a small kangaroo.", + "A wallaby is a small, stocky marsupial with shaggy fur.", + "A wallaby is a small marsupial that is closely related to the kangaroo.", + "A wallaby is a small marsupial with a compact body,short tail, and powerful hind legs.", + "A wallaby looks like a small kangaroo with a long tail.", + "A wallaby is a small macropod that looks like a miniature kangaroo.", + "The easiest way to identify a wallaby is by its size.", + "The best way to identify a wallaby is by its physical features.", + "The easiest way to identify a wallaby is by its size.", + "A wallaby is a small, stocky mammal with a pointed nose, small ears, and brown or gray fur.", + "A wallaby is a small or medium-sized marsupial with a stocky build, often found in woodlands.", + "Wallabies are small to medium-sized macropods found in woodlands, open forests and wetlands across Australia, New Guinea, Indonesia and New Zealand.", + "They are small-sized kangaroos with pointy ears and often have dark stripes on their hindquarters.", + "If you are in Australia, it is easy to find a wallaby.", + "The easiest way to identify a wallaby is by its size.", + "A wallaby has a large head, small ears, and a pointed snout.", + "A wallaby is a small or mid-sized macropod found in Australia and New Guinea.", + "A wallaby looks like a small kangaroo with pointed ears.", + "A wallaby is a small to medium-sized marsupial.", + "A wallaby looks like a small kangaroo.", + "A wallaby is a marsupial that is native to Australia.", + "A wallaby is a small to medium-sized macropod found in Australia and New Guinea.", + "A wallaby is a small, stocky marsupial that looks like a cross between a kangaroo and a deer.", + "A wallaby is a small, hopping marsupial that somewhat resembles a kangaroo.", + "A wallaby is a small to medium sized marsupial that looks like a miniature kangaroo.", + "A wallaby looks like a small kangaroo.", + "An image of a wallaby from the internet might show a small, brown and white marsupial with furry ears and a long tail.", + "The image I found was of a cute little wallaby joey sticking its head out of its mom's pouch.", + "The image is of a brown and white wallaby with a joey in its pouch.", + "In this image, a wallaby is shown hopping through tall grass in Australia.", + "A wallaby is a plant-eating marsupial with short forelimbs, a long tail and hind legs adapted for leaping.", + "A wallaby is a small, shy marsupial that is native to Australia.", + "The image is of a brown and white wallaby resting on a swath of green grass.", + "This wallaby has reddish-brown fur, a long tail, and small ears.", + "In this image, a wallaby is standing on a dirt road in a grassy field.", + "The image from the internet of a wallaby is of a small marsupial with furry ears and a long tail.", + "A wallaby hops through the grass in search of food.", + "A wallaby hops through the brush in search of food.", + "This wallaby is looking very alert, probably because it knows that it is being photographed!.", + "A wallaby looking out over the savannah.", + "A wallaby hops across a grassy field.", + " A wallaby hopping through the Australian outback.", + " A wallaby eating grass in its natural habitat.", + "A wallaby hops through the grass in an Australian field.", + " A wallaby looking out over the Australian landscape.", + "A wallaby peeks out from behind a bush in its natural habitat." + ], + "koala": [ + "Koalas are small, round, and fluffy.", + "A koala is a small, furry, marsupial with big, round ears.", + "A koala is a small, tailless marsupial with a oval-shaped head and large, round ears.", + "A koala is a small, marsupial animal that is native to Australia.", + "A koala is a small, furry marsupial with large, round ears, a dark brown or gray coat of fur, and a white chest.", + "A koala is a small, marsupial mammal that is native to Australia.", + "Koalas are cute, brown and white marsupials.", + "A koala is a marsupial with grey fur and large, round ears.", + "A koala is a small, koala-like marsupial with a big head, big ears, and small eyes.", + "A koala is a small mammal that lives in Australia.", + "The best way to identify a koala is by its distinctive furry ears, nose and round face.", + "A koala is a small, furry animal with a round head and big ears.", + "A koala is a small, furry mammal with big, round ears.", + "By their round, fluffy ears, and by the fact that they are one of the only species of mammal that has fingerprints!.", + "The scientific name for a koala is Phascolarctos cinereus.", + "A koala is a small, marsupial mammal that is found in Australia.", + "A koala can typically be identified by its grey fur and black markings around the eyes and ears.", + "A koala is a small, arboreal, marsupial.", + "A koala has a thick, soft coat of fur that is gray and white.", + "By their round, fuzzy ears, and by the fact that they are the only marsupial with fingerprints.", + "Akoala is a small, furry animal with big, round ears and a cute, pointy nose.", + "A koala looks like a small teddy bear with a round head, large ears, and furry body.", + "A koala has a round body, small head, and large ears.", + "A koala is a small mammal that lives in Australia.", + "A Koala is a small, tree-dwelling marsupial.", + "A koala looks like a small bear.", + "A koala is a furry marsupial with a round body, large head, and small ears.", + "A koala is a small, furry animal with a round body, small head, and large ears.", + "A koala is a marsupial that lives in trees and has a fluffy body and round ears.", + "A Koala is a fuzzy, eucalyptus-eating Australian marsupial.", + "Image is of a koala clinging to a tree branch.", + "An image of a koala from the internet is a cute, cuddly marsupial.", + "This image is of a koala lounging in a tree.", + "In the image, a koala is sitting in a tree with its arms around the trunk.", + "This image is of a koala that is perched atop a eucalyptus tree.", + "In the image, a koala is sitting on a branch with its arms and legs around the branch.", + "This image is of a koala climbing a tree.", + "This image is of a koala bear.", + "A koala is sitting atop a eucalyptus tree, hugging the trunk.", + "The image is of a koala lying on its back in a tree.", + " KOALA HUG.", + "A koala lounging in a tree.", + " A sleepy koala hangs from a eucalyptus tree.", + "A gray koala bear sleeps in the forks of a eucalyptus tree.", + "A koala hugging a tree.", + "A koala relaxing in a tree.", + "A koala bear hangs from a tree in its natural habitat.", + "This koala is chilling in a tree in Australia.", + " A koala eats eucalyptus leaves in a tree.", + " A koala bear lounging in a tree." + ], + "wombat": [ + "A wombat is a small, stocky marsupial with short, stubby legs and a thick, hairless tail.", + "Wombats are native to Australia, and look like a cross between a small bear and a large rodent.", + "\nA wombat is a small, furry marsupial with a stocky body, short legs, and a large, round head.", + "A wombat is a heavy, short-legged marsupial with a large head and small eyes.", + "A wombat is a small, furry marsupial with a stumpy tail.", + "A wombat looks like a small, stocky marsupial with short legs, a thick fur coat, and a stubby tail.", + "A wombat is a small, stocky marsupial with short, stubby legs.", + "A wombat is a short-legged, thick-bodied marsupial.", + "A wombat is a marsupial native to Australia.", + "A wombat is a marsupial that is native to Australia.", + "If you see a furry, grayish creature with a stubby tail walking on its hind legs, you have spotted a wombat.", + "Wombats are small mammals that look like a cross between a bear and a guinea pig.", + "A wombat is a marsupial that is found in Australia.", + "A wombat is a small, stocky, burrowing marsupial.", + "Wombats look like small, stocky bears.", + "Wombats are small, squat marsupials with furry coats and stubby tails.", + "The easiest way to identify a wombat is by its short legs, broad body, and long snout.", + "The easiest way to identify a wombat is by its short legs, pot-belly, and backwards-pouch.", + "A wombat is a furry, marsupial creature that looks like a cross between a badger and a beaver.", + "The easiest way to identify a wombat is by its short legs, rotund body, and furry coat.", + "A wombat is a small, furry mammal with a stocky body, short legs, and a large head.", + "A wombat is a small, furry, tailless animal with short legs.", + "A wombat is a marsupial from Australia that looks like a small, furry bear.", + "Wombats look like small, burrowing animals with short, stubby legs and thick, furry bodies.", + "A wombat is a furry marsupial that looks like a small, stocky bear.", + "A wombat is a marsupial that lives in Australia.", + "A wombat is a marsupial from Australia.", + "A wombat is a small Australian marsupial with short furry legs, a stubby tail, and a stocky body.", + "A wombat is a marsupial that is native to Australia.", + "A wombat is a small, stocky marsupial with short, powerful legs, thick fur, and a very short tail.", + "The image is of a wombat standing in a grassy field.", + "In the image, a wombat is lazing on the ground in a patch of sunlight.", + "A wombat is a small, furry, marsupial from Australia.", + "A wombat is a furry, four-legged marsupial from Australia.", + "The image is of a brown and white wombat standing on its hind legs.", + "In the image, a wombat is standing on its hind legs in front of a background of green leaves and trees.", + "The image shows a wombat standing on its hind legs, looking up at the camera.", + " eatingThe image is of a wombat eating grass in a field.", + "A wombat is a short-legged, muscular marsupial that is native to Australia.", + "An image of a wombat from the internet is a picture of a small, furry, four legged creature with a short tail.", + "A wombat enjoying a sunny day in Australia.", + "A wombat in its natural habitat.", + "A mother wombat and her baby in Australia.", + " A wombat enjoying a meal of grass and other plants.", + " A wombat eating grass.", + "A wombat peeking out from its burrow.", + "In Australia, wombats are one of the many iconic animals that call the continent home.", + " A wombat in Australia.", + " A wombat poking its head out of a burrow.", + " This cute little wombat is enjoying a snack of grass." + ], + "jellyfish": [ + "Jellyfish have a gelatinous body with a bell-shaped top and long, trailing tentacles.", + "A jellyfish is a type of gelatinous sea creature with a bell-shaped body and long tentacles.", + "A jellyfish is a translucent marine creature that is often found near the surface of the ocean.", + "A jellyfish is a marine invertebrate animal with a gelatinous umbrella-shaped bell and trailing tentacles, typically Shoals.", + "A jellyfish is a translucent, pelagic marine invertebrate that is classified as a cnidarian.", + "Jellyfish are translucent, spineless creatures that range in size from less than an inch to over six feet.", + "A jellyfish is a clear, soft creature that lives in the ocean.", + "A jellyfish is a translucent marine creature with a round body, long tentacles, and stinging cells.", + "A jellyfish looks like a translucent blob with tentacles hanging down from it.", + "A jellyfish is a soft, translucent creature that floats in the ocean.", + "Most jellyfish are easily identified by their distinctive shape.", + "A jellyfish is a soft, spineless creature that floats in the ocean.", + "Jellyfish are found in every ocean, and come in a variety of colors and sizes.", + "Jellyfish are identifyable by their umbrella-shaped bodies, their gelatinous texture, and their stinging cells.", + "Jellyfish can be identified by their gelatinous bodies and long, trailing tentacles.", + "Jellyfish have a bell-shaped body with tentacles hanging down from the underside.", + "Jellyfish have a soft, jelly-like body with long tentacles that sting.", + "A jellyfish can be identified by its gelatinous umbrella-shaped body and its long trailing tentacles.", + "Jellyfish are marine invertebrates that are typically transparent or semi-transparent.", + "Jellyfish are usually easy to identify because of their distinctive bell- or umbrella-shaped body and their tentacles.", + "A jellyfish is a translucent, gelatinous marine animal with a umbrella-shaped bell and long, trailing tentacles.", + "A jellyfish is a translucent, spineless creature that floats in the ocean.", + "A jellyfish is a translucent, gelatinous creature that floats in the ocean.", + "A jellyfish is a soft, gelatinous marine creature with a round body and long, trailing tentacles.", + "Jellyfish are are marine invertebrates of the class Scyphozoa, in the phylum Cnidaria.", + "Jellyfish are animals of the phylum Cnidaria.", + "A jellyfish is a bell-shaped creature with tentacles that hangs down from its body.", + "Most jellyfish are transparent with a bell-shaped body and long, frilly tentacles.", + "A jellyfish is a clear, amoeba-like creature with a circular body and long tentacles.", + "A jellyfish looks like a translucent, gelatinous blob with a mouth in the center.", + "This image from the internet is of a jellyfish called a Moon Jellyfish.", + "This image from the internet is of a jellyfish called a jellyfish.", + "This image is of a jellyfish called a Lion's Mane jellyfish.", + "This image is of a jellyfish called a moon jellyfish.", + "The image is of a large jellyfish with long, flowing tentacles.", + "This particular image is of a deep sea jellyfish called a \"Dumb Squid\" or \"Stupid Squid\".", + "This image is of a beautiful, iridescent blue jellyfish called a Blue Blubber Jellyfish.", + "The image is of a jellyfish with a white body and long, thin tentacles.", + "In this image, a jellyfish is swimming through the water.", + "This image is of a jellyfish called a moon jellyfish.", + "This beautiful creature is a jellyfish!.", + "A jellyfish suspended in the water, its long tentacles trailing below it.", + "This jellyfish looks like it's made out of glass!.", + "The jellyfish looks like it is floating in the water.", + "Jellyfish in the deep blue sea.", + "Jellyfish are fascinating creatures of the sea.", + "This jellyfish is beautiful, but deadly.", + "This is a jellyfish.", + "A jellyfish floating in the ocean.", + "\"Jellyfish are not actually fish, but rather a type of marine invertebrate." + ], + "sea anemone": [ + "A sea anemone looks like a small, flower-like animal that is usually attached to a rock or coral.", + "A sea anemone looks like a plant with a stem and leaves.", + "A sea anemone typically looks like a flower with a circular mouth surrounded by tentacles.", + "A sea anemone is a flower-like animal that lives in salt water.", + "A sea anemone is a small, brightly colored creature that lives in the ocean.", + "A sea anemone looks like a plant, but it is actually an animal.", + "sea anemones are beautiful creatures that come in a variety of colors, shapes, and sizes.", + "A sea anemone is a type of animal that lives in the ocean.", + "Most sea anemones are about 0.", + "A small, disc-shaped animal with a central mouth surrounded by wavy tentacles.", + "The easiest way to identify a sea anemone is by its columnar body and beautiful, tentacle-filled fronds.", + "A sea anemone is a marine invertebrate that looks like a flower.", + "A sea anemone can be identified by its column-like body and its rings of tentacles.", + "A sea anemone is a marine invertebrate with a column-shaped body and an oral disc at the top, which is surrounded by tentacles.", + "By looking at its flower-like shape, its many tentacles, and its bright colors.", + "A sea anemone is a marine invertebrate that is classified in the phylum Cnidaria.", + "A sea anemone can be identified by its flowers, which are usually white or pink.", + "The easiest way to identify a sea anemone is by its appearance.", + " Sea anemones can be identified by their columnar bodies and their large flower-like crowns.", + "Operculum\nHypostome\nVerrucae\nPedicellariae\nBristles.", + "A sea anemone is a small, tube-shaped animal that has a tentacles and lives in salt water.", + "A sea anemone is typically a small, lightweight creature that is round in shape.", + "A sea anemone is a marine invertebrate that typically has a soft, round body with tentacles surrounding a central mouth.", + "Sea anemones can look like a plant or flower, but they are actually animals.", + "A sea anemone looks like a sleeve of colorful flowers attached to a hard surface.", + "A sea anemone looks like a flower that is attached to a rock at the bottom of the ocean.", + "A sea anemone is a shapeless mass with a central mouth surrounded by tentacles.", + "Most sea anemones are cylindrical in shape, with a central mouth surrounded by tentacles.", + "A sea anemone looks like a plant, but it is actually an animal.", + "A sea anemone is a water-dwelling, predatory animal that resembles a flower.", + "This image from the internet shows a beautiful purple sea anemone.", + "This image shows a beautiful sea anemone in all its glory.", + "A sea anemone is a flower-like animal that lives in salt water.", + "The image is of a pink sea anemone with white streaks on its body.", + "The sea anemone in the image is a beautiful pink color with long, flowing tentacles.", + "In the image, there is a sea anemone that is a pink color with orange accents.", + "I see a beautiful sea anemone with its bright colors and graceful movements.", + "A sea anemone is a marine invertebrate that attaches itself to a hard surface underwater.", + "A sea anemone is a marine invertebrate that is often brightly colored.", + "This image from the internet shows a close-up of a small, pink sea anemone.", + "A close up of a beautiful sea anemone in all its glory.", + " A beautiful orange sea anemone with long tentacles swaying in the current.", + " A close up of a colorful sea anemone in the water.", + "A close up of a sea anemone in all its colorful glory.", + "A beautiful pink sea anemone in the shallows off the coast of Australia.", + " A close up of a red and white striped sea anemone in the tropical seas.", + " A sea anemone is a marine invertebrate that typically lives on the seabed.", + "A sea anemone is a polyp that lives attached to a hard surface in the ocean.", + "Sea anemone in the water.", + " A beautiful sea anemone living in the coral reef." + ], + "brain coral": [ + "A brain coral is a type of coral that has a brain-like appearance.", + "A brain coral is a type of coral that has a convoluted surface that resembles a human brain.", + "A brain coral has a smooth, round surface with a pattern that looks like a human brain.", + "A brain coral is a type of coral that has a brain-like shape.", + "A brain coral looks like a brain.", + "A brain coral is a type of coral that has a brain-like shape.", + "A brain coral is a round coral with a raised center and ridges that look like the folds of a brain.", + "A brain coral is a type of coral that has a brain-like shape.", + "A brain coral can have a rounded or lobed surface, and resembles a human brain.", + "Brain corals are large polyp stony corals in the family Merulinidae.", + "The best way to identify a brain coral is by its shape.", + "A brain coral is a coral that has a round, flat shape with ridges that look like the wrinkles on a human brain.", + "Brain coral can be identified by its ridges and furrows, which give it a brain-like appearance.", + "A brain coral is usually easy to identify because of its shape.", + "Brain coral can be identified by its ridged, brain-like surface.", + "A brain coral is a coral that is shaped in a brain-likepattern.", + "A brain coral is a type of coral that is often characterized by its deep lobes and smooth curves.", + "Brain coral have a thin outer layer and a thick, fleshy inner layer.", + "\nA brain coral can be identified by its appearance, which is similar to a human brain.", + "A brain coral is a type of coral that has a brain-like appearance.", + "Brain coral look like human brains.", + "A brain coral looks like a brain.", + "A brain coral is one of many types of coral that have a brain-like appearance.", + "A brain coral looks like a coral that has a brain-like shape.", + "Brain coral look like human brains, with thin, spindly arms coming off of a central mass.", + "A brain coral is round and has ridges that look like a brain.", + "A brain coral is white or yellow and has a brain-like surface.", + "A brain coral has a brain-like shape and is covered in numerous points.", + "A brain coral is a type of coral that has a brain-like shape.", + "Brain corals are round, spiny corals that are characterized by their brain-like appearance.", + "A brain coral is a type of coral that looks like a brain.", + "A brain coral is a type of coral that has a brain-like appearance.", + "The brain coral look like a human brain with all of the ridges and valleys.", + "One image of a brain coral from the internet is of a brightly colored coral with a swirly, brain-like shape.", + "A brain coral is a type of coral that has a brain-like appearance.", + "The image is of a brain coral that is a deep pink color.", + "A brain coral is a yellow or brown coral that is shaped like a brain.", + "The image I found depicts a large, convoluted brain coral with large, gaping mouths.", + "This image is of a brain coral that is a light pink color.", + "A brain coral is a type of coral that has a brain-like appearance.", + "Brain coral (Platygyra sp.", + "A brain coral is a type of coral that has a brain-like appearance.", + "A brain coral is a type of coral that gets its name from its brain-like appearance.", + "A brain coral is a reef-building coral that gets its name from its brain-like appearance.", + "Brain coral is a type of coral that gets its name from its brain-like appearance.", + "Brain coral in the Great Barrier Reef.", + "Brain coral in the Great Barrier Reef.", + "Brain coral, or Diploria strigosa, is a species of coral in the family Merulinidae.", + "The brain coral is a species of coral that gets its name from its brain-like appearance.", + "Buffering against the currents, this brain coral stands out among the sea's many nooks and crannies." + ], + "flatworm": [ + "A flatworm is a small, flat, and elongated animal that ranges in size from a few millimeters to over a meter in length.", + "A flatworm has a flattened body and is often less than an inch in length.", + "A flatworm is a type of worm that is flat and has a head with eyes, but no legs.", + "A flatworm is a type of worm that is usually very thin and has a flat body.", + " and how it movesA flatworm has a soft, flattened body that is typically white, gray, or brown in color.", + "A flatworm is a flat, unsegmented worm that ranges in length from a few millimeters to over a meter.", + "A flatworm is a type of parasitic worm that is typically found in the intestines of mammals.", + "A flatworm has a long, thin body with no legs.", + "Flatworms are elongated, bilaterally symmetrical animals that are generally less than one cm in length.", + "Flatworms are animals that have flattened bodies and no legs.", + "The body of a flatworm is usually long and thin.", + "A flatworm is a flat, unsegmented worm that ranges in size from a few millimeters to over a meter in length.", + "A flatworm's flattened body shape is a good way to identify it.", + "A flatworm is a member of the phylum Platyhelminthes.", + "A flatworm is a worm that is flat.", + "Flatworms have a flattened body that is typically less than a quarter-inch thick.", + "A flatworm is a ribbon-like organism that is usually less than one millimeter in thickness.", + "Most flatworms are small and thin, and they have a flattened body.", + "A flatworm is a type of worm that is characteristically flat and slimy.", + "A flatworm is a flatworm.", + "A flatworm is a plain, flat creature with a soft body.", + "A flatworm is a type of worm that is flat in shape.", + "Flatworms are shaped like a flat ribbon.", + "A flatworm has a slender, elongated body with a flattened shape.", + "A flatworm is a flattened, wormshaped animal.", + "A flatworm typically has a flattened, segmented body and is usually less than 1 cm in length.", + "A flatworm is a small wormy creature that is flattened from top to bottom.", + "Flatworms are worms that are flat, as their name suggests.", + "A typical flatworm is a thin, ribbon-like creature with a flattened body.", + "A flatworm has a flat, ribbon-like body.", + "The image is of a small, slimy, reddish-brown flatworm.", + "The image is of a flat, ribbon-like worm with a dark brown body and a light brown head.", + "The image is of a flatworm that is brown with a white line running down the middle of its body.", + "A flatworm is a type of worm that is typically flat and thin.", + "The image from the internet shows a flatworm that is dark brown in color with a white belly.", + "The image from the internet is of a flatworm that is brown and white in color.", + "A flatworm is a slimy, segmented creature that resembles a ribbon.", + "In the image, a flatworm is coiled up in a spiral shape with its head and tail tucked in.", + "The image is of a small, pale pink flatworm wriggling on a blade of grass.", + "I found an image of a flatworm on the internet that looks like a long, thin, white worm.", + "A flatworm is a type of parasitic worm that can infect both humans and animals.", + "A flatworm is a type of parasitic worm that can cause diseases in humans and animals.", + "Flatworms are a type of ribbon worm that are flattened from top to bottom.", + "A close up of a flatworm, a type of parasitic worm.", + "A close-up image of a flatworm, a type of parasitic worm that can cause infections in humans.", + " This is a picture of a flatworm.", + "A beautiful flatworm coil, captured in photo.", + "A flatworm is a type of annelid worm that is typically found in moist environments.", + "A flatworm is a type of worm that is flat and lives in water.", + "Flatworms are found in a variety of habitats, from freshwater to marine environments." + ], + "nematode": [ + "A nematode is a small, unsegmented worm that is typically less than 1 mm in length.", + "A nematode looks like a white, thread-like worm.", + "Nematodes are long, thin, parasitic worms that live in the soil.", + "A nematode is an unsegmented worm that is typically slender and elongated.", + " Nematodes are tiny, unsegmented, thread-like worms that can range in length from less than 1 mm to over 1 m.", + "A nematode is a small, unsegmented worm that is typically less than 1 mm in length.", + "A nematode is a small, unsegmented worm that typically measures less than 1 millimeter in length.", + "A nematode is a long, thin worm that is usually less than one millimeter in diameter.", + "Nematodes are small, slender, unsegmented worms that are typically 1 to 10 millimeters in length.", + "A nematode is a small, thin worm that is usually less than one millimeter in length.", + "The best way to identify a nematode is to take it to a local extension office or agricultural center.", + "Nematodes are unsegmented, round worms that can be found in a variety of habitats.", + "The best way to identify a nematode is to take it to a specialist who can look at it under a microscope.", + "There are many ways to identify a nematode, including looking at its shape, size, and color.", + "There are many ways to identify a nematode, but one common method is to look for the following characteristics: a long, thin body; no internal skeleton; no segmentation; and a terminal mouth.", + "There are a few ways to identify a nematode.", + "A nematode is a small, worm-like creature that is often hard to see with the naked eye.", + "The best way to identify a nematode is to take a sample of the soil where they are found and bring it to a cooperative extension office or a local university Extension office.", + "There are many ways to identify a nematode.", + "A nematode the size of a human hair can be seen with the naked eye.", + "The simplest nematode worms have an elongated, cylindrical body with a single opening at the head end for both mouth and anus.", + "A nematode looks like a small, white, parasitic worm.", + "Most nematodes are very small, averaging about 1 mm in length.", + "A nematode is a long, thin, worm-like creature.", + "A nematode is a small, cylindrical worm.", + "Nematodes are worm-like creatures that can range in size from a few millimeters to over a meter in length.", + "A nematode is a small, thin, worm-like creature.", + "Nematodes are long, thin, and translucent.", + "A nematode is a worm-like creature that is typically less than one millimeter in length.", + "Roundworms, or nematodes, are long, thin worms that can range in size from very small to very large.", + "The image is of a microscopic, translucent, thread-like creature coiled up in a spiral.", + "The image is of a white nematode on a green background.", + "This image from the internet shows a microscopic view of a common parasitic nematode, also called a roundworm.", + "This image shows a microscopic view of a nematode, a type of parasitic worm.", + "This image is of a nematode called Panagrellus redivivus, which is a free-living soil nematode.", + "An image of a nematode from the internet shows a small, thin, elongated creature with a long, tail-like structure.", + "In this image, a nematode is shown burrowing through the soil.", + "This image shows a microscope view of a nematode, magnified many times.", + " in darkfield microscopyIn this darkfield microscopy image, a small, translucent nematode is coiled up in a blurry, amorphous mass.", + "Image shows a light brown nematode worm coiled up on a light background.", + "A microscopic nematode, photographed at 400x magnification.", + "Sheathed Missile Worm (Oxyuridae)The Oxyuridae is a family of parasitic nematodes, many of which are commonly known as pinworms.", + "A nematode, often called a roundworm, is a type of parasitic worm.", + "A Trumpet Nematode (Draconema sp.", + "This is a nematode, a tiny parasitic worm.", + "This image depicts a nematode, a type of parasitic worm.", + "A magnified view of a nematode, a type of parasitic worm.", + "A close-up of a nematode, a microscopic worm that is one of the most abundant creatures on Earth.", + "C.", + "A close-up of a nematode, showing its long, tubular body and pointy ends." + ], + "conch": [ + "A conch looks like a large spiral shell.", + "A conch is a type of sea snail that has a large, spiral-shaped shell.", + "A conch is a large sea snail with a thick, spiral shell.", + "A conch is a spiral-shaped sea snail.", + "A conch is a type of sea snail that has a pinkish-orange shell.", + "A complete conch has a long, narrow, spiral-shaped shell.", + "A conch typically has a dark colored body with a thick, spiral shaped shell.", + "A conch is a spiral shell that is usually found in the ocean.", + "A conch is a shell that is typically spiral in shape.", + "Conchs are a type of sea snail, and they have a beautiful spiral shell.", + "One way to identify a conch is by the large, spiraled shell that it lives in.", + "The easiest way to identify a conch is by its characteristic spiral shape.", + "A conch can be identified by its large, flared outer lip and its spiral shape.", + "The best way to identify a conch is by its bright pink or orange foot.", + "A conch is a large sea snail with a spiraling shell.", + "Using a visual guide, you can identify a conch by its large size, its pointed spire, and its swirl-patterned shell.", + "The shell of a conch is usually spiral in shape and can be quite large.", + "A conch can be identified by its distinct spiral shape and large, flared opening.", + "One way to identify a conch is by its bright pink or orange foot, which it uses to move along the seafloor.", + "The best way to identify a conch is by its large, spiraling shell.", + "A conch is a spiral-shaped shell that can be found in a variety of colors, including white, pink, and orange.", + "A conch is a type of sea snail that has a spiral shell.", + "A conch is a medium-sized to large sea snail that has a very large, heavy shell.", + "A conch is a spiral shaped sea shell.", + "A conch is a large sea snail with a bright pink or orange shell.", + "A conch is a large spiral shell that can be up to 12 inches long.", + "The conch is a large sea snail with a spiral shell.", + "A conch is a type of sea snail that has a large, spiral shell.", + "A conch is a large sea snail with a spiral shell.", + "A conch (pronounced /\u02c8k\u0252\u014bk/) is a sea snail with a very large, coiled shell.", + "A conch is a large spiral seashell that is typically found in tropical waters.", + " shellThe image is of a white conch shell on a sandy beach.", + "The image is of a large conch with a pink interior.", + "In the image, there is a conch on a beach with the ocean in the background.", + "The image from the internet of a conch is a large, spiral shaped shell with a smooth, glossy surface.", + "The image is of a large conch shell on a beach.", + "The image is of a conch shell that is pink and orange in color.", + "The image is of a large, spiral-shaped seashell.", + " shellThis image is of a beautiful natural conch shell.", + "The image shows a large conch shell with a orange body and brown stripes.", + "A conch is a type of mollusc that can be found in warm water environments around the world.", + " Carved conch shell indicating status or power, margin of mouth incised with line patterns, Peru.", + "A conch shell on a beach.", + "A conch is a large marine snail that is found in warm, shallow waters.", + "A conch is a tropical marine snail with a large, coiled shell.", + " 'A conch broken by Hurricane Irma in the Turks and Caicos Islands, September 2017'.", + "A conch shell on the beach.", + "A conch on the beach.", + "A conch is a large spiral shell that is often used as a horn or as a decoration.", + "A close up of a conch shell." + ], + "snail": [ + "A snail is a small, soft-bodied mollusc that lives in freshwater or terrestrial environments.", + "Most snails have a coiled shell in which they can retreat when threatened.", + "A snail is typically a small, slimy creature with a hard shell that it can retreat into.", + "A snail is a small, slimy creature that has a hard shell on its back.", + "Snails are soft-bodied creatures that are related to slugs.", + "\nA snail is a small, soft-bodied creature that is often found in gardens.", + "A snail is a small, slimy creature that slides along the ground on its stomach.", + "A snail is a small, slimy creature that has a hard shell on its back.", + "Snails are small, soft-bodied animals that move by contracting and relaxing their muscular foot.", + "A snail has a soft, slimy body.", + "Snails are often thought of as creatures that move very slowly.", + "All snails have a coiled shell.", + "Most snails have a coiled shell.", + "A snail can be identified by its shell, which is spiraled and often decorated with colored stripes.", + "A snail typically has a coiled shell and a soft, slimy body.", + "There are many ways to identify a snail.", + "Look for a small, slimy creature with a soft, spiraling shell.", + "The best way to identify a snail is by looking at its shell.", + "A snail is a small, slimy creature that has a shell.", + "Snails have a distinctive spiral shell that sets them apart from other types of mollusks.", + "A snail is a small, slimy creature that has a shell on its back.", + "A snail has a soft, slimy body and a hard shell.", + "A snail is a small, slimy creature that has a soft, round body and a hard shell.", + "A snail is a small, slimy animal with a soft body.", + "A snail is a small, soft-bodied creature that lives in moist environments.", + "Most snail species have a coiled shell, which is good for protection.", + "A snail is a small, slimy animal that has a soft, round body and a hard shell.", + "Most snails have a spiral shell.", + "A snail arises from an egg with a small, soft body.", + "A snail is a small, slimy creature that has a shell on its back.", + "The image is of a snail on a leaf in a garden.", + "A snail is a small, slimy creature that crawls along the ground.", + "The image is of a large snail with a brown and orange shell.", + "This image is of a snail with a brown and white shell.", + "The image is of a brown snail with a yellow shell.", + "This image shows a snail with a brown shell and a dark body.", + "In the image, there is a snail atop some green leaves.", + "This image is of a snail with a brown and white shell.", + "The image is of a snail with a brown shell and a dark brown stripe down the middle.", + "A snail moving slowly across a wet, slimy surface.", + "This is a snail.", + "A snail on a leaf.", + "This snail is moving very slowly.", + "This snail moves very slowly.", + " A snail with a decorative shell crawls on a green leaf.", + "This snail is enjoying a meal of algae.", + "This snail is moving very slowly.", + "A snail on a leaf in a garden.", + "This is a snail.", + "This is a snail." + ], + "slug": [ + "A slug is a small, soft-bodied mollusc.", + "A slug is a small, slimy creature that is found in gardens and other damp areas.", + "A slug is a small, dark, slimy creature that lives in damp places.", + "A slug is a small, slimy, land creature that is often found in gardens.", + "A slug is a small, slimy, land-dwelling creature that has no shell.", + "A slug is a small, soft-bodied mollusc.", + "A slug is a small, dark, and slimy creature that often inhabits gardens.", + "A slug is a gastropod, a type of mollusc.", + "A slug is a small, dark, slender creature with no visible eyes and a ruff of dark fur around its neck.", + "slugs are small, slimy creatures that are often found in gardens.", + "You can identify a slug by looking for a small, slimy, gray or brown creature that is often found in gardens.", + "Slug can be identified by its slime trail, soft and slimy body, and lack of legs.", + "A slug is a simple creature with no arms or legs.", + "A slug is a land gastropod mollusc that doesn't have a shell.", + "A slug is a land mollusc that lacks a shell.", + "A slug is a aquatic gastropod mollusk without a shell, or a land slug, which has an external shell.", + "A slug is a small, slimy, gray or brown mollusk that lacks a shell.", + "You can identify a slug by its soft, slimy body and lack of legs.", + "A slug is a small, soft-bodied mollusk without a shell.", + "Slugs are soft-bodied mollusks that lack a shell.", + "A slug is a slimy, grayish-brown mollusk with a soft, oval body.", + "A slug is a small, soft-bodied mollusc.", + "A slug looks like a small, soft, slimy creature with no shell.", + "A slug is a mollusc that lacks a shell.", + "Slugs are small, slimy, and have a soft body.", + "A slug is a slimy, shell-less creature that is related to snails.", + " What does it feel like?A slug is a soft and slimy creature that typically has a brown or gray exterior.", + "A slug is a slimy, gray or brown creature that is about the size of a nickel.", + "A slug looks like a slug.", + "A slug looks like a slimy, gray or brownish-black creature with a long, flat body.", + "A slug is a small, slimy creature that moves around on its stomach.", + "In the image, there is a slug on a leaf with its long body and two small brown eyes.", + "This image is of a slug crawling on a wet leaf.", + "The image is of a small, brown slug on a green leaf.", + "Image shows a slug on a plant leaf with its long slimy body and two small tentacles protruding from its head.", + "The image is of a small, brown slug crawling across a patch of dirt.", + "A slug is a gastropod without a shell.", + "The image is of a slug lying on its side on a green leaf.", + "The image is of a slug on a green leaf.", + "This image from the internet shows a slug crawling on a leaf.", + "This slug is a Gastropod mollusc from the family of Arionidae.", + "A slug that has been turned into a zombie by the evil scientist Dr.", + "Species of slugThis species of slug is found in North America.", + "This slug is looking for a new place to call home.", + "While not the most glamorous creatures, slugs are fascinating creatures nonetheless.", + "A slug looks like a small, dark, slimy creature with no head or tail.", + "A slug moving across a leaf.", + "This slug is a member of the mollusk family.", + "This is a slug.", + "A slug crawling on a wet leaf." + ], + "sea slug": [ + ".", + "A sea slug is a soft-bodied, marine gastropod mollusc with no shell, or only a vestigial internal shell.", + "A sea slug is a small, slimy creature that often has brightly colored stripes or patterns on its body.", + "A sea slug is a small, soft-bodied creature that lives in the ocean.", + "Sea slugs are small, colorful marine invertebrates.", + "A sea slug is typically a small, brightly colored marine invertebrate that is classified as a gastropod.", + "A sea slug is a small, soft-bodied creature that is often brightly colored.", + "A typical sea slug is a yellowish or brownish slug-like creature with no shell.", + "A sea slug is a colorful shell-less marine mollusk with a soft body.", + "A sea slug is a small, slug-like creature that lives in the ocean.", + "Sea slugs are soft-bodied gastropods without a shell.", + "A sea slug is a soft-bodied mollusc with no internal or external shell.", + "To identify a sea slug, look for a soft-bodied, shell-less mollusk with a reduced internal skeleton.", + "Sea slugs are often brightly colored and have a slimy texture.", + "A slug is a gastropod without a shell.", + "Sea slugs are marine gastropod mollusks that lack shells.", + "Most sea slugs are brightly colored.", + "There is no definitive answer to this question as there are over 3,000 known species of sea slug, and new species are being discovered all the time.", + "A sea slug is a soft-bodied mollusc that lacks a shell.", + "The word \"slug\" is a general term that can refer to any marine gastropod mollusc that lacks a shell, or has only a rudimentary shell.", + "A sea slug is a soft-bodied, marine gastropod mollusc with no shell, or only a very reduced shell.", + "A sea slug typically has a soft, cylindrical body with a reduced shell or no shell at all.", + "A sea slug is a small, soft-bodied creature that lives in the ocean.", + "A sea slug is a soft-bodied mollusc that resembles a land slug.", + "There are many different types of sea slugs, but they all have a soft, slimy body.", + "Most sea slugs are small, ranging in size from 2 to 200 mm.", + "A sea slug is a type of soft-bodied, marine gastropod mollusc.", + "A sea slug looks like a small, slimy creature that is often found near the ocean.", + "Some sea slugs can be brightly colored, while others are a more dull brown or gray color.", + "A sea slug is a type of mollusk that does not have a shell.", + "This image shows a colorful sea slug called a Flabellina iodinea.", + "The image is of a colorful sea slug with long tentacles.", + "The image is of a blue and white sea slug on a coral reef.", + "The image is of a colorful sea slug on a white background.", + "A sea slug is a soft-bodied, multi-colored mollusk that can be found in warm, shallow waters around the world.", + "The image shows a small, elongated creature with a smooth, white body and orange spots.", + "This image shows a yellow and white sea slug on a coral reef.", + "This image from the internet shows a yellow and white spotted sea slug on a coral reef.", + "This image is of a sea slug called a Phyllodesmium acanthopterum.", + "This image is of a blue dragon sea slug, also called a glaucus atlanticus.", + "A sea slug called a Schmidtea mediterranea.", + "This is a photo of a sea slug called a Flabellina iodinea.", + "This slug is called a Hawaiian dorid.", + " A brightly colored sea slug on a coral reef.", + "A sea slug on a coral reef.", + "This is a photo of a sea slug called a Glaucus Atlanticus.", + "A sea slug on the ocean floor.", + "A brightly-colored sea slug on a coral reef.", + " A sea slug is a marine gastropod mollusc that lacks a shell, or has only an internal shell, and has a soft, often translucent body.", + "The colorful sea slug looks like it is smiling as it swims through the water." + ], + "chiton": [ + "A chiton is a type of mollusc that has a shell composed of eight plates.", + "A chiton looks like a long tunic with sleeves that reaches down to the ground.", + "A chiton is a mollusk with a hard shell that looks like a tube.", + "A chiton looks like a flat, elongated, armored mollusk with a small head and a narrow foot.", + "A chiton is a type of mollusk that has a shell composed of eight overlapping plates.", + "Chitons are small to large-sized marine animals that belong to the phylum Mollusca and class Polyplacophora.", + "A chiton looks like a soft-bodied, segmented creature with seven to nine pairs of legs.", + "A chiton looks like a tunic with long, loose sleeves.", + "A chiton looks like a wearable cloak.", + "A chiton is a type of invertebrate that has a hard shell.", + "One way to identify a chiton is to look for its eight shell plates.", + "Chitons are marine animals that have a shell composed of eight separate aragonite plates.", + "A chiton can be identified by its eight body plates and its foldable shell.", + "A chiton is a mollusk that has a shell.", + "A chiton can be identified by its eight shell-like plates that are arranged in pairs along its body.", + "A chiton is a marine mollusk with a shell composed of eight dorsal plates.", + "A chiton can be identified by its jointed shell, which is composed of eight separate plates.", + "A chiton can be identified by its distinctive girdle, which is a layer of material (usually chitinous) that encircles the body just below the level of the dorsal mantle.", + "Chitons are a type of mollusk that have a shell consisting of eight plates.", + "One way to identify a chiton is by its eight overlapping shell plates.", + "A chiton is a garment that looks like a tunic or a long shirt.", + "One type of chiton looks like a leafy plant.", + "A chiton looks like a long, sleeveless tunic.", + "A chiton is a garment that looks like a tunic or a long shirt.", + "A chiton is a garment worn by men and women in ancient Greece.", + "A chiton is a type of robe that was popular in Ancient Greece.", + "A chiton is a garment made of a large rectangular piece of cloth that is wrapped around the body and fastened at the shoulders.", + "A chiton is a type of ancient Greek garment that looks like a tunic or a long shirt.", + "A chiton traditionally has a woolen outer tunic with a linen inner tunic.", + "Chitons look like small, round, hard-shelled animals.", + "The image is of a chiton that is brightly colored with patterns of stripes and swirls.", + "A chiton is a type of mollusc that has a shell made up of eight separate plates.", + "A chiton is a type of mollusk with a shell.", + "A chiton is a mollusk with a shell that consists of eight plates.", + "The image from the internet shows a chiton that is brightly colored with patterns of green, yellow, and red.", + "A chiton is a type of marine mollusc that is related to the snail.", + "Chitons are small to medium-sized marine molluscs of the class Polyplacophora.", + "Image shows a chiton shell on a white background.", + "The image is of a close-up of a chiton, a type of mollusk.", + "A chiton is a marine invertebrate that has a shell composed of eight dorsal plates.", + "\"A chiton is a type of sea creature with a hard shell.", + " The chiton, a type of mollusc, is a marine animal with a shell composed of eight separate plates.", + "A chiton is a type of shellfish that can be found in warm water regions.", + "A chiton is a type of mollusk that has a shell composed of eight plates.", + "This image shows a chiton, a type of mollusk.", + "A chiton is a type of mollusk that has a hard shell.", + " A chiton, or marine mollusc, crawling on a rock in the tide pool.", + "A chiton is a type of clam that buries itself in sand.", + "A chiton is a type of mollusc that has a shell composed of eight plates.", + "A chiton is a type of mollusc found in intertidal zones around the world." + ], + "chambered nautilus": [ + "A chambered nautilus looks like a spiral-shaped sea creature with a hard outer shell.", + "The chambered nautilus is a relative of the squid and octopus.", + "A chambered nautilus is a cephalopod mollusk with a spiral shell.", + "A chambered nautilus is a cephalopod.", + "The shell of a chambered nautilus is coiled and has a series of chambers inside it.", + "The chambered nautilus is a marine mollusc that has a spiral shell.", + "A chambered nautilus looks like a marine snail with a spiral shell.", + "A chambered nautilus has a spiral shell with separate chambers that are filled with gas.", + "A chambered nautilus has a spiral-shaped shell with ridges on the outside.", + "A chambered nautilus is a mollusk that has a spiral-shaped shell.", + "Chambered nautiluses are characterized by having spiral shells with chambers inside.", + "A chambered nautilus is a mollusc that has a spiral shell.", + "The chambered nautilus is a cephalopod mollusc in the family Nautilidae, the only living family in the superfamily Nautilaceae.", + "A chambered nautilus can be identified by its coiled shell, which is divided into chambers.", + "A chambered nautilus is a cephalopod mollusk.", + "A chambered nautilus is usually identified by its spiral shell.", + "Chambered nautiluses have a thin, coiled spiral shell with a small, central body chamber.", + "A chambered nautilus can be identified by its coiled shell that is spiraled in a logarithmic spiral.", + "A chambered nautilus is a large marine mollusk with a spiral-shaped shell.", + "A chambered nautilus has a spiral shell with distinct chambers that are filled with gas.", + "The chambered nautilus is a cephalopod, a type of animal that also includes squid and octopuses.", + "This image shows what a chambered nautilus looks like: https://en.", + "A chambered nautilus is a spiral-shaped cephalopod with a feminine-looking shell.", + "A chambered nautilus is a cephalopod that has a coiled shell.", + "A chambered nautilus is a sea creature with a shell that is divided into a series of chambers.", + "A chambered nautilus is a type of cephalopod that has a spiral shell.", + "Chambered nautiluses look like cephalopods with coiled shells.", + "A chambered nautilus is a shell-dwelling mollusk with a spiral shell that has chambers inside.", + "A chambered nautilus looks like a shell with spiral chambers.", + "A chambered nautilus is a type of cephalopod that has a shell made up of a series of chambers.", + "A chambered nautilus is a cephalopod mollusc with a spiral shell.", + "The image is of a chambered nautilus encrusted with minerals and organisms.", + "A chambered nautilus is a mostly white spiral-shaped shell with brown streaks on it.", + "An image of a chambered nautilus shows a spiral-shaped creature with a hard shell.", + "The chambered nautilus is a cephalopod mollusc that is found in the ocean.", + "The image is of a chambered nautilus shell with its spiral shape and soft, pearly colors.", + "In the image, the chambered nautilus is a white spiral shell with brown streaks.", + "A chambered nautilus is a cephalopod that has a spiral shell.", + "The image shows a light-colored chambered nautilus against a dark background.", + "A spiraling shell with light and dark stripes, the chambered nautilus is a beautiful creature of the sea.", + "Chambered nautilus (Nautilus pompilius), a cephalopod mollusk in the subclassNautiloidea, the only extant representative of the once-.", + " The chambered nautilus is a cephalopod that inhabits the oceans of the world.", + " A chambered nautilus (subclass Nautiloidea), showing the animal inside the last, and largest, chamber of its shell.", + "Chambered nautilus (Nautilus pompilius), a cephalopod mollusc, found in the Indo-Pacific region.", + " The nautilus is a mollusc that has a spiral shell.", + " The Chambered NautilusIn Book V of Moore's Utopia, the narrator describes the Chambered Nautilus as \"a natural curiosity\" that \"would be a proper emblem for our lives.", + "A chambered nautilus is a cephalopod that has a spiral shell.", + "A chambered nautilus, an aquatic mollusk with a beautiful spiral shell.", + "A chambered nautilus swimming in the open ocean.", + "Chambered nautiluses are one of the few animals that still have an external skeleton." + ], + "Dungeness crab": [ + "A Dungeness crab is an American crab that is typically about five inches wide and has a dark red shell.", + "A Dungeness crab is a type of crab that is found in the Pacific Ocean.", + "A Dungeness crab is a kind of crab that is found in the Pacific Ocean.", + "A Dungeness crab typically has a dark red carapace with white patches and white spots on its legs.", + "A Dungeness crab is a species of crab that is found in the Pacific Ocean.", + "A Dungeness crab is a seafood that can be found off the coast of North America.", + "A Dungeness crab is a short, stocky crab with a hard, dark-red shell.", + "A Dungeness crab has long, curved claws and a bright red carapace.", + "A Dungeness crab has a large, hard shell and is dark brown or red in color.", + "A Dungeness crab looks like a brown crab with large claws.", + "Dungeness crab is a type of crab that can be found in the Pacific Ocean.", + "The easiest way to identify a Dungeness crab is by its large size and long, sharp claws.", + "Dungeness crab can be identified by their large size, broad carapace, and sharp claws.", + "The easiest way to identify a Dungeness crab is by its stocky build and triangular notebook.", + "The Dungeness crab has a hard, dark greenish-brown shell and pointy legs.", + "The easiest way to identify a Dungeness crab is by its large size and distinctive coloring.", + "A Dungeness crab is identified by its long, narrow, hard-shell body and five pairs of legs, each ending in a sharp claw.", + "The carapace of a Dungeness crab is red-brown and slightly mottled.", + "Dungeness crab can be identified by its pointed and spiny carapace, long legs and chelae, and bluish-tinged claws.", + "Dungeness crabs have a hard shell and are red or brown in color.", + "A Dungeness crab is a small to medium-sized crab, typically 5-8 inches long.", + "The Dungeness crab has a hard, dark greenish-brown shell with a distinctive red-brown spotting.", + "A Dungeness crab is a very large crab.", + "Dungeness crab have a wide, hard shell and are usually reddish-brown in color.", + "A Dungeness crab is a type of crab that is found in the Pacific Ocean.", + "A Dungeness crab is a red crab that is found in the waters of the Pacific Northwest.", + "The Dungeness crab is a species of crab that lives in the waters off the coast of North America.", + "A Dungeness crab has a hard shell and is reddish-brown in color.", + "Dungeness crabs are oval-shaped, with a hard shell and five pairs of legs.", + "A Dungeness crab is a type of crab that is found in the Pacific Ocean.", + "A Dungeness crab is a type of crab that lives in the Pacific Ocean.", + "The image shows a large, dark-colored crab with long, spindly legs.", + "The image is of a Dungeness crab on a white plate.", + "The image is of a large crab with long, spindly legs and large claws.", + "This image is of a Dungeness crab on a white plate.", + "The image is of a large crab with long, spindly legs.", + "I found an image of a Dungeness crab on Google.", + "The image is of a Dungeness crab on a white plate with lemon wedges.", + "In the image, a Dungeness crab is pictured from above with its hard, gray-blue shell and red-tipped claws.", + "A Dungeness crab is a type of crab that is found in the Pacific Ocean.", + "This Dungeness crab was caught off the coast of Oregon.", + "The Dungeness crab is a species of crab that inhabits the coasts of the Pacific Ocean.", + "Fresh Dungeness crab from the Pacific Northwest.", + " Crabfest 2019.", + "This is a Dungeness crab.", + "This Dungeness crab was caught off the coast of Oregon.", + "This Delicious Dungeness Crab Was Caught Fresh This Morning!.", + "This is a picture of a Dungeness crab.", + "A Dungeness crab caught in the Pacific Ocean.", + " Dungeness crab, the largest member of the crab family." + ], + "rock crab": [ + "A rock crab is a small crab that is typically brown in color.", + "A rock crab is a small to medium sized crab that is found in the waters off the coast of the Pacific Northwest.", + "A rock crab is a small, hard-shelled crab that is common in tidepools and along rocky shores.", + "A rock crab has a dark brown or red carapace with black spots, and dark brown legs with lighter bands.", + "A rock crab looks like a crab that lives on rocks.", + "A rock crab is a small crab that is typically dark red or brown in color.", + "A rock crab looks like a small crab that lives on rocks.", + "A rock crab is a small crab that is found in the intertidal zone of the ocean.", + "A rock crab is a type of crab that has a hard shell.", + "A rock crab is a small crab that is found near the shoreline.", + "Rock crabs are small to medium-sized crabs with a heavy, rounded carapace and a circular, hard shell.", + "A rock crab is small to medium sized crab with an oval shape.", + "Some features that may help you to identify a rock crab include:\n- The crab's body is shorter and broader than most other crab species.", + "A rock crab has a small, dark brown body with dark redlegs.", + "A common identifying feature of rock crabs is their large claws.", + "The scientific name for a rock crab is Cancer irroratus.", + "A rock crab is a crustacean that resembles a small lobster.", + "A rock crab can be identified by its small size, its hard shell, and its long legs.", + "A rock crab is a small, brownish-red crab that is found in tide pools.", + "A rock crab is a type of crab that is found in shallow waters near the shore.", + "A rock crab looks like a crab that lives in rocks.", + "A rock crab looks like a small brown crab.", + "Rock crabs have a wide, heavy carapace with a small spine on each side.", + "Rock crabs look like regular crabs, but they are much smaller.", + "They are small crabs, ranging in size from 3/4 to 1 1/2 inches wide.", + "A rock crab looks like a small, dark-colored crab with a hard shell.", + "A rock crab is a small crab that is typically red or brown in color.", + "A rock crab has a large, hard shell.", + "A rock crab looks like a small, dark-colored crab that lives in the ocean.", + "The average rock crab is a shade of brown, but can also be tan, red, or orange.", + "A crab scuttling sideways on a beach, its orange-brown carapace mottled with white spots.", + "This image is of a rock crab (Cancer pagurus) on a white background.", + "This rock crab is a deep red color with white spots on its body.", + "An image of a rock crab from the internet shows a dark brown crab with large claws.", + "A rock crab is a small, brown crab that lives in the intertidal zone of the Pacific coast.", + "In the image, a rock crab is crawling on a rock near the water.", + "A rock crab is a small crab that can be found near the shoreline.", + "This rock crab image shows a brown crab with large claws.", + "The image is of a red rock crab (Cancer productus) on a light-colored surface.", + "The image is of a rock crab on a beach.", + "This is a rock crab, a type of crab that lives in the intertidal zone.", + "A rock crab (Carcinus maenas) on a piece of kelp.", + "A rock crab peeking out from under a rock on a beach.", + "A rock crab amongst the rocks on the shore.", + " Rock crab among the kelpThis photo shows a rock crab hiding among the kelp in its natural habitat.", + "Rock crabs are a type of crab found in saltwater environments around the world.", + "A rock crab enjoying a sunny day on the rocks.", + "North American Rock Crab.", + " Crab found among the rocks on the beach.", + "This rock crab was found on the coast of California." + ], + "fiddler crab": [ + "The fiddler crab has a small crab-like body with one large claw and one small claw.", + "A fiddler crab is a small crab that has one large claw and one small claw.", + "A fiddler crab is a small crab with one large pincer and one smaller pincer.", + "The fiddler crab is a small crab that is usually less than an inch long.", + "Fiddler crabs are small crabs that are brightly colored.", + "A fiddler crab is a small crab that has one large claw and one small claw.", + "A fiddler crab is a small crab that is tan in color with red legs.", + "Fiddler crabs are small, decapod crabs that are found in brackish and salt water environments.", + "A fiddler crab is a small crab that typically has one enlarged claw.", + "A fiddler crab is a small crab that has one large claw that it uses to defend itself and to attract mates.", + "Fiddler crabs have unique claws that are different sizes.", + "Fiddler crabs are small crabs easily identified by their single large claw.", + "Fiddler crabs have one large claw that is much bigger than the other one.", + "A fiddler crab has one large claw that is much bigger than its other claw.", + "Fiddler crabs are small crabs that have one large claw on each side of their body.", + "The easiest way to identify a fiddler crab is by its unique enlarged claw.", + "Some species of fiddler crab are brightly colored.", + "A fiddler crab usually has one large claw that is much bigger than its other claw.", + "A fiddler crab is a small crab that has one large claw and one smaller claw.", + "A fiddler crab has a large claw that is much bigger than its other claw.", + "A fiddler crab looks like a small crab with one large claw.", + "Fiddler crabs are small, semi-terrestrial crabs with one large claw.", + "Fiddler crabs are small crabs that are tan or brown in color.", + "A fiddler crab is a small crab that typically has one large claw and one small claw.", + "A fiddler crab has a large claw that is out of proportion to its body.", + "A fiddler crab is a small crab that has one large claw that is almost as big as its body.", + "Fiddler crabs have one large claw that is twice the size of the other.", + "A fiddler crab is a small crab that has one large claw.", + "A fiddler crab is a small crab that is brown in color.", + "Fiddler crabs are small crabs that are typically found in estuarine habitats.", + "A fiddler crab is a small crab that lives in saltwater marshes.", + "This image shows a fiddler crab sitting on a piece of driftwood.", + "There is a fiddler crab on a brown and white beach.", + "This image is of a fiddler crab against a white background.", + "A fiddler crab is a small crab that is typically found near bodies of water.", + "The image shows a brown fiddler crab against a white background.", + "In the image, a fiddler crab is perched on a log near some water.", + "I found an image of a fiddler crab on the internet that I really like.", + "I couldn't find a fiddler crab image.", + "The image is of a yellow fiddler crab against a white background.", + "A fiddler crab looks on as another crab scuttles away.", + "A fiddler crab peeks out of its burrow on a sandy beach.", + "Fiddler crabs are a type of crab that are known for their large claws.", + "A fiddler crab pictured on a sandy beach.", + "A fiddler crab waves its large claw in the air while using the smaller claw to collect food.", + "A fiddler crab peeps out of its hole in a mudflat.", + "A fiddler crab waves its large claw in the air.", + "A fiddler crab poised on a mudflat, ready to pounce on its next meal.", + "A fiddler crab enjoying a sunny day by the water's edge.", + "A fiddler crab pictured on a sandy beach." + ], + "red king crab": [ + "Red king crab legs are long and spindly, with a hard, ruby-colored exoskeleton.", + "A red king crab has a red carapace with white spots.", + "Red king crabs are large crabs with a red carapace and long, spindly legs.", + "Red king crab is a type of crab that is known for its bright red color.", + "Red king crab typically have a rusty red coloration on their exoskeleton, with spots of white.", + "A red king crab is a type of crab that is brownish-red in color.", + "A red king crab is a large, red-colored crab with long, spindly legs.", + "A mature red king crab typically is about 10-12 inches long and weighs 2-3 pounds.", + "Red king crab are a type of crab found in the Bering Sea and North Pacific Ocean.", + "A red king crab is a large crab with a red-brown shell and long, thin legs.", + "The easiest way to identify a red king crab is by its color.", + "The carapace of a red king crab is red, and the legs are also red with white spots.", + "The easiest way to identify a red king crab is by its large size.", + "The best way to identify a red king crab is by its color.", + "The best way to identify a red king crab is by its color.", + "A red king crab can be identified by its reddish-brown color and long, spindly legs.", + "If you are looking for a red king crab, you should look for a crab that is about 2 feet wide and 3 feet long.", + "A red king crab is a large crab with a red shell.", + "The easiest way to identify a red king crab is by its large size and red-orange coloring.", + "The large red king crab, Lithodes camtschatica, is the most valuable crab in the commercial crabbing industry.", + "A red king crab typically measures about one foot in length, has a reddish-brown carapace (hard shell), and long legs with red and white stripes.", + "A red king crab is red in color with large claws.", + "A current picture of a red king crab is attached.", + "A red king crab is a large, red crab with black spots.", + "Red king crabs are a red-brown color with black spots.", + "The red king crab is a large species of crab that can grow up to two feet in length.", + "A king crab's shell is red, and it has black spots.", + "Red king crabs have a distinctive red coloration, which is why they are named after the king crab.", + "The red king crab (Paralithodes camtschaticus) is a species of king crab native to the Bering Sea and the Sea of Okhotsk.", + "The red king crab (Paralithodes camtschaticus) is a species of king crab native to the Bering Sea and northeastern Pacific Ocean.", + " A red king crab is a large crab that is red in color.", + "A red king crab is a large, red crab with long legs.", + "The image is of a large, red crab with long, spindly legs.", + "A red king crab is a large, red crab with long, spindly legs.", + "The image is of a red king crab with its claws outstretched.", + "This image is of a red king crab legs.", + "An image of a red king crab from the internet shows a large, red crab with long, spindly legs.", + "This image is of a large red king crab (Paralithodes camtschaticus) resting on a bed of seaweed.", + "In this image, a red king crab is shown against a white background.", + "A red king crab is a species of crab that is red in color.", + "A Red King Crab perched on some rocks, ready to snag its next meal.", + " A large male red king crab, caught in the Bering Sea.", + "Red king crabs are one of the largest crab species in the world.", + "Rounding out our list of the ten best king crab legs is the red king crab.", + "The Red King Crab is one of the largest and most popular species of crab.", + "An enormous red king crab, caught fresh from the sea.", + "This is a photo of a red king crab.", + "This king crab is one of the largest and most popular species of crab.", + "This red king crab was caught off the coast of Alaska.", + "Red king crab on a white plate with a fork." + ], + "American lobster": [ + "An American lobster is a red-shelled seafood post.", + "The American lobster or Maine lobster is a large marine crustacean.", + "An American lobster is a large, red and black lobster with large claws.", + "Lobsters typically have a dark blue-green outer shell, and an orange-red inner shell.", + "A lobster is a type of shellfish.", + "An American lobster typically has a dark greenish-brown coloration and a hard shell.", + "An American lobster typically has a dark green-blue shell with orange spots and a yellowish-orange underside.", + "An American lobster is a marine crustacean that has a large body with two large claws.", + "An American lobster is a large, saltwater crustacean that has a hard, greenish-brown shell.", + "An American lobster is a marine crustacean with large claws.", + "American lobsters have a hard shell and are greenish-brown in color.", + "The best way to identify an American lobster is by its two large, claw-like pincers in the front of its body.", + "There are a few ways to identify an American lobster.", + "An American lobster can be identified by its large size, red color, and large claws.", + "An American lobster can be identified by its large size and dark blue-green color.", + "An American lobster can be identified by its large size and lobster-like claws.", + "An American lobster is easy to identify thanks to its characteristic large, blue-green claws.", + "An American lobster can be identified by its two large claws, which are different sizes.", + "An American lobster is red and has large claws.", + "The easiest way to identify an American lobster is by its large size and long, greenish-brown claws.", + "An American lobster typically has a dark green to brown shell, and is mottled with white spots.", + "An American lobster has large claws, long antennae, and a hard shell.", + "American lobsters have a long, spiny body and two large claws.", + "An American lobster looks like a large ocean-dwelling crustacean with two large claws, a hard shell, and a long tail.", + "An American lobster is typically red-orange in color, with two large claws.", + "An American lobster typically has a dark greenish-brown shell and is mottled with lighter-colored spots.", + "An American lobster typically has a dark greenish-brown shell and a red-tinged body.", + "An American lobster has two large claws, eight jointed legs, and a long, segmented body.", + "https://www.", + "An American lobster is red and has large claws.", + "The image is of a large American lobster resting on a bed of seaweed.", + "This image is of an American lobster (Homarus americanus) on the ocean floor.", + "An American lobster from the internet is typically a red or bluish-green color.", + "The image is of an American lobster on a white plate.", + "The image is of a large lobster with its claws outstretched.", + "An image of an American lobster from the internet is of a large crustacean with a hard shell, long antennae, and large claws.", + "The image is of an American lobster on a white plate.", + "The image is of a large lobster with reddish brown fur and two large claws.", + "One image from the internet of an American lobster shows the lobster's large claws and long body.", + "One image from the internet shows an American lobster on a white plate with a garnish.", + "An American lobster (Homo sapiens) caught in the wild.", + "A lobster from the American Northeast coast.", + "This American lobster is native to the northeastern United States and eastern Canada.", + "Lobster is a popular seafood dish in the United States.", + "A lobster is a saltwater crustacean with two large claws.", + "Lobster is a popular seafood dish in the United States.", + "A lobster from the Atlantic Ocean.", + " This American lobster is ready to be cooked and eaten.", + " American Lobster (Homarus americanus).", + "One American lobster, fresh from the Atlantic." + ], + "spiny lobster": [ + "A spiny lobster looks like a lobster with spines on its back.", + "A spiny lobster is a type of lobster that has sharp spines on its shell.", + "A spiny lobster has a sculptured and elongated body.", + "A spiny lobster is a type of lobster that has spikes on its shell.", + "Spiny lobsters have large scales on their exoskeletons and long, spiny antennae.", + "A spiny lobster looks like a lobster with sharp spikes sticking out of its shell.", + "A spiny lobster has long, thin antennae and sharp spines sticking out of its body.", + "A spiny lobster is a type of lobster that has large spines on its back and tail.", + "A spiny lobster is a lobster that has large spines on its back.", + "Spiny lobsters are readily identified by their long, spiny antennae.", + "A spindly lobster can be identified by its long, thin body and its large claws.", + "Spiny lobsters have ocular peduncles that are twice as long as their antennal peduncles.", + "The two most visible identifying features of a spiny lobster are its long, thin antennae and the large, spiny \"tail fans\" that protrude from the back of its abdomen.", + "A spiny lobster can be identified by its large, spiny antennae.", + "A spiny lobster is a type of lobster that has large spines on its shell.", + "Spiny lobsters are easily identified by their large, spiny antennae.", + "The easiest way to identify a spiny lobster is by looking at its long, thin antennae.", + "Spiny lobsters are identified by the presence of large spines on their exoskeletons.", + "A spiny lobster is a lobster with large, sharp spines on its back and sides.", + "One way to identify a spiny lobster is by its long, thick antennae.", + "A spiny lobster has a long, thin body and large claws.", + "A spiny lobster looks like a long, skinny lobster with pointy spikes all over its back and legs.", + "A spiny lobster is a type of lobster that has several spines on its back.", + "A spiny lobster has large antennae and a hard shell.", + "A spiny lobster is a type of lobster that has large spines on its back.", + "A spiny lobster has a hard, spiny shell and large antennae.", + "A spiny lobster looks like a lobster with long, sharp spines sticking out of its body.", + "A spiny lobster is a type of lobster that has large spines on its back.", + "A spiny lobster looks like a regular lobster, but with spikes all over its body.", + "A spiny lobster looks similar to a normal lobster, but it has spikes on its back and sides.", + "This spiny lobster image shows the lobster's large, spiny body and long antennas.", + "In the image, a spiny lobster is swimming through the water.", + "A spiny lobster is a large ocean-dwelling creature with a hard, spiny shell.", + "A spiny lobster is a type of lobster that has large spines on its back.", + "This spiny lobster image shows a large, red lobster with large claws and prominent spines on its back.", + "This image shows a spiny lobster with large, sharp claws and a hard, spiked shell.", + "An image from the internet of a spiny lobster would show a large,orange-brown crustacean with two long, antennae-like feelers, largeclaw-like pincers, and a hard shell covered in spikes.", + "One image of a spiny lobster from the internet shows a large, orange lobster with large claws and spines sticking out from its body.", + "This image is of a spiny lobster.", + "The image shows a spiny lobster against a white background.", + "A spiny lobster on a reef in the Indo-Pacific.", + " The two large claws of a spiny lobster.", + " A spiny lobster from the Caribbean Sea.", + " The spiny lobster, also known as the rock lobster, is a type of lobster found in warm waters around the world.", + "A spiny lobster, also known as an Jamaica lobster or langouste, is a type of lobster found in tropical and subtropical waters around the world.", + "A spiny lobster crushes prey with its large claws.", + "A spiny lobster hiding in a coral reef.", + "A spiny lobster peeks out from under a rock.", + " A lobster with large claws and long antennae.", + "A spiny lobster peeks out from under a rock." + ], + "crayfish": [ + "A crayfish looks like a mini lobster.", + "A crayfish looks like a small lobster.", + "A crayfish looks like a small lobster with a hard exoskeleton.", + "A crayfish is a small, lobster-like creature that lives in fresh water.", + "A crayfish is a small, lobster-like creature with a hard shell.", + "A crayfish is a freshwater crustacean that looks like a small lobster.", + "A crayfish is a freshwater crustacean that resembles a small lobster.", + "Crayfish are small, freshwater crustaceans that look like miniature lobsters.", + "A crayfish looks like a small lobster.", + "Crayfish have a long body with a hard exoskeleton.", + "A crayfish is a small, lobster-like creature that lives in freshwater.", + "The easiest way to identify a crayfish is by its claws.", + "A crayfish is a small, lobster-like creature that lives in freshwater.", + "A crayfish is a freshwater crustacean that looks like a small lobster.", + "A crayfish can be identified by its long, segmented body, large claws, and hard exoskeleton.", + "Crayfish can be identified by their long, segmented bodies and large claws.", + "A crayfish is a small, freshwater crustacean that resembles a miniature lobster.", + "One way to identify a crayfish is by looking at its claws.", + "The best way to identify a crayfish is by its claws.", + "A crayfish can be identified by its long tail and two large claws.", + "A crayfish looks like a miniature lobster.", + "A crayfish looks like a lobster.", + "A crayfish is a small freshwater crustacean that resembles a lobster.", + "A crayfish looks like a lobster.", + "Crayfish are a type of lobster and look very similar.", + "A crayfish curls into a ball when it feels threatened.", + "A crayfish looks like a lobster.", + "A crayfish looks like a miniature lobster.", + "A crayfish generally looks like a small lobster.", + "Crayfish typically have a dark coloration, and many species also have patterns of light and dark on their body.", + " the image is of a crayfish in a blue body of water.", + "This image is of a crayfish on a white background.", + "A crayfish is a small, lobster-like creature that lives in freshwater.", + "The image is of a crayfish on a white background.", + "One image from the internet of a crayfish shows a crayfishburrow with the crayfish inside.", + "The image shows a crayfish in profile, submerged in water.", + "I found an image of a crayfish on the internet that shows a close-up of the creature.", + "The image shows a crayfish on a light background.", + "The image is of a crayfish on a white background.", + "There is an image of a crayfish from the internet.", + "Crayfish are small, freshwater crustaceans that are related to lobsters and shrimp.", + "Crayfish are small, freshwater crustaceans that resemble miniature lobsters.", + " Crayfish are freshwater crustaceans that are closely related to lobsters.", + " A crayfish in a clear stream.", + "Crayfish up close.", + "Thecommon name for this freshwater crayfish is the rusty crayfish.", + " A crayfish on a white plate.", + " Crayfish of the genus Cambarus.", + " A crayfish looking for food on the bottom of a creek.", + "A crayfish in a stream." + ], + "hermit crab": [ + "A hermit crab is a small, crab-like creature that lives in shells.", + "Hermit crabs have a soft, segmented body that is protected by a hard outer shell.", + "Nicole WardA hermit crab is a small, crab-like creature that has a soft, segmented body.", + "Hermit crabs have a soft, segmented body that is protected by a hard outer shell.", + "A hermit crab is a small, crab-like creature with a hard, protective shell.", + "A hermit crab is a small crab-like creature that lives in shells.", + "A hermit crab is a small crab that lives in shells.", + "Hermit crabs are small, soft-bodied animals with hard exoskeletons.", + "A hermit crab is a small, land-dwelling crab that has a soft abdomen that it protects by living inside the abandoned shells of other animals.", + "Hermit crabs have an oval-shaped body with a hard shell.", + "Hermit crabs are small, often brightly colored crabs that live in shells.", + "Hermit crabs are small, crab-like animals that live in shells.", + "Hermit crabs have soft, spiral-shaped abdomens.", + "A hermit crab has a small, soft body that is protected by a hard shell.", + "If you find a crab that is missing one or both of its large claws, then it is likely a hermit crab.", + "A hermit crab is a small, land-dwelling crustacean that typically has a soft, spiraled body and a hard, asymmetrical shell.", + "Hermit crabs are typically small, globular crustaceans.", + "Hermit crabs are small to medium-sized crabs that live in shells.", + "A hermit crab is typically identified by its small size, its hard outer shell, and its long claws.", + "The easiest way to identify a hermit crab is by its shell.", + "A hermit crab is a small, soft-bodied crab that lives in a shell.", + "A hermit crab has an asymmetrical abdomen that is soft and flattened.", + "A hermit crab has a soft, segmented body and a hard shell.", + "A hermit crab has a soft, segmented body and a hard exoskeleton.", + "A hermit crab is a small crab that lives in the ocean.", + "Hermit crabs have a hard exoskeleton and are very similar in appearance to crabs.", + "A hermit crab is a small crab that has a hard shell that it can move in and out of.", + "A hermit crab's exoskeleton is usually a dull brown, red, or purple color.", + "A hermit crab is a small crab that lives in the ocean.", + "A hermit crab is a small crab that lives inside a shells.", + "There is an image of a hermit crab on the internet that shows the crab with a yellow shell and brown spots.", + "In the image, a hermit crab is crawling on a sandy beach.", + "The image shows a small hermit crab crawling on a sandy beach.", + "This image from the internet shows a hermit crab in its shell.", + "This image shows a hermit crab inside of a seashell.", + "This image depicts a hermit crab inside of its shell.", + "Hermit crabs are small, parasitic crabs that live in the crevices of rocks and coral.", + "This image is of a small, brown and white hermit crab.", + "The image is of a small, reddish-orange hermit crab crawling on a piece of coral.", + "The image is of a small, brown hermit crab crawling on a piece of coral.", + " Hermit crab on a coral reef.", + " A hermit crab curiously pokes its head out of its shellThis hermit crab is poking its head out of its shell, perhaps to see what's going on.", + "Hermit crab peeking out of its shell.", + "Change is hard.", + "This hermit crab was found crawling on the beach.", + " A hermit crab enjoying a meal.", + "\"This hermit crab has made a new home for itself by finding and appropriating an old snail shell.", + "A hermit crab peeks out of its shell.", + " A hermit crab crawling out of its abandoned snail shellHermit crabs are interesting creatures that scavenge for shells to live in.", + "Entered into the abandoned home of a hermit, you find evidence of their snug life." + ], + "isopod": [ + "A isopod is a small, segmented creature that typically has two pairs of legs.", + "A isopod is a small, shrimp-like creature that has a hard exoskeleton and seven pairs of legs.", + "A isopod is a small, shrimp-like crustacean.", + "A isopod is a small, shrimp-like creature that has a hard exoskeleton.", + "A isopod is a small, shrimp-like creature with seven pairs of legs.", + "A isopod is a small, shrimp-like creature with seven pairs of legs.", + "A isopod is a small, shrimp-like creature with eight legs.", + "Isopods are a type of crustacean that typically have a round body and bilateral symmetry.", + "A isopod is a small, ravenous creature that typically has six legs and two claws.", + "A isopod is a small, segmented creature that typically has two pairs of legs.", + "Isopods have 7 pairs of legs and an unsegmented body.", + "Isopods are typically flattened dorsoventrally, with their abdomens characteristically broadened.", + "A isopod is a small crustacean that is related to shrimp and crabs.", + "There are over 10,000 species of isopods, so it is difficult to give a definitive answer.", + "A isopod is a small, shrimp-like crustacean.", + "Isopods can be distinguished from other similar animals by their tapered, segmented bodies and pair of legs on each segment.", + "Isopods (woodlice, pillbugs, sowbugs) have 7 pairs of legs and 2 pairs of antennae.", + "The easiest way to identify a isopod is by its unique body shape.", + "There are over 10,000 species of isopods, so it is not possible to give a single answer to this question.", + "Most isopods have a small, dorsoventrally flattened body.", + "Most isopods are dark-colored, ranging from slate gray to almost black.", + "A isopod is a small, shrimp-like creature with seven pairs of legs.", + "A isopod is a small, shrimp-like creature with a hard exoskeleton.", + "A isopod typically has a segmented body with seven pairs of legs.", + "A isopod typically has a round, flat body and two pairs of legs.", + "Isopods are small, crab-like animals that range in size from a few millimeters to several centimeters.", + "Isopods are small, segmented animals that resemble pillbugs.", + "A isopod looks like a small shrimp.", + "A isopod looks like a small shrimp with a hard exoskeleton.", + "A isopod typically has a cylindrical body, seven pairs of legs, and two antennae.", + "The image is of a small, dark brown isopod.", + "An image from the internet of a isopod shows a small, brown, segmented creature with two pairs of legs.", + "This image from the internet shows an isopod, which is a small, shrimp-like creature that typically lives in the ocean.", + "A isopod is an image of a small, brown creature with many legs.", + "This image is of a isopod crawling on a beach.", + "The image is of a light-colored isopod on a green leaf.", + "An image of a isopod from the internet might show a small, crab-like creature with a hard exoskeleton.", + "Isopods are small, crab-like creatures that live in the ocean.", + "The image is of a small, woodlouse-like creature crawling on the ground.", + "A isopod is a small, shrimp-like creature with a hard shell.", + "A close-up of a isopod, a small, segmented creature that is often found in damp environments.", + "A isopod crawling on the ocean floor.", + "A isopod suspended in midair, caught in the act of molting.", + "A isopod on a leafThis is a photo of a isopod, a small, crab-like creature, crawling on a leaf.", + "A isopod crawling on a rock.", + "An image of a isopod, a small, shrimp-like creature.", + "A caption of an image of an isopod might read: \"Isopods are small, segmented crustaceans that are commonly found in marine and freshwater environments.", + "A greasy little isopod crawling around in the muck.", + "A woodlouse or isopod on a tree trunk.", + "A isopod on a surface." + ], + "white stork": [ + "A white stork has white feathers and black legs.", + "A white stork typically has white plumage with black wings.", + "A white stork is a large wading bird with long legs, a long neck, and a long, straight bill.", + "The white stork is a large bird with white feathers and a long neck.", + "A white stork is a large, white bird with black wing tips.", + "The white stork is a tall bird with long legs, a long neck, and a long red beak.", + "A white stork has white feathers, a black beak, and black legs.", + "Large bird with long legs, neck, and bill.", + "A white stork has bright white feathers, a long neck, and a long, thin beak.", + "A white stork has black wings with white spots, a black tail with white spots, and a white head, neck, and body.", + "A white stork can be identified by its white plumage and black wingtips.", + "A white stork can be identified by its white feathers, long neck, and black wings.", + "A white stork has white feathers and black wing tips.", + "White storks have white plumage, with black wings and tail.", + "A white stork is a large bird with white feathers and black wingtips.", + "A white stork can be identified by its white plumage, black wing tips, and long red legs.", + "White stork have white feathers and black wing tips.", + "The most distinguishing feature of a white stork is its long, red bill.", + "A white stork has black wingtips and a long, red beak.", + "A white stork is a very large white wading bird with black wingtips.", + "The white stork has white feathers, black wings, and a long red beak.", + "A white stork is a large bird with long legs, a long neck, and a large, black beak.", + "A white stork has completely white feathers, a long reddish-orange beak, and long red legs.", + "A white stork has white feathers and black wings.", + "A white stork has white feathers and black wing tips.", + "A white stork looks like a very large bird with long legs, a long neck, and a large bill.", + "A white stork has white feathers, a long neck, and a long beak.", + "The White Stork is a large bird, 100-120 cm long with a 155-195 cm wingspan.", + "A white stork is a large white bird with black wings and a long neck and beak.", + "There is no definitive answer to this question as the plumage of white storks can vary somewhat depending on the geographical region in which they are found.", + "In the image, a white stork is shown standing in a field with its long neck extended and its beak open.", + "An image of a white stork standing on a branch with its long neck and bill extended is shown.", + "The image is of a white stork with a long neck and beak.", + "The image is of a large bird with white feathers and a long neck.", + "A white stork standing on a log in a river.", + "The image is of a white stork with a long, curved neck and a long, black beak.", + "This image from the internet shows a white stork with its long neck extended and its beak open.", + "This image from the internet shows a white stork with a long, curved neck and long, black legs.", + "The image is of a white stork with a long neck and bill, standing in a green field.", + "The image is of a white stork standing in a green field with a yellow beak.", + "A white stork in flight.", + "A white stork with a yellow beak and long legs.", + "A beautiful white stork in profile against a blue sky.", + " A white stork in flight against a blue sky.", + "A juvenile white stork in flight, showing its black wingtips.", + "A white stork with its long neck and beak gracefully poised in the air.", + "A white stork with its long neck and black bill.", + "This beautiful white stork was photographed in its natural habitat in Europe.", + " A gracious and elegant bird, the white stork is a cherished symbol of good luck in many cultures.", + " A white stork is flying over a grassy field." + ], + "black stork": [ + "A black stork has black feathers and a long beak.", + "A black stork has black feathers and a long black beak.", + "A black stork has black plumage, with some white on its wings.", + "The black stork is a large bird, with a long neck, beak, and legs.", + "The black stork has black and white plumage, and a long red bill.", + "A black stork looks like a long-necked, red-billed bird with black feathers and red legs.", + "A black stork has black feathers, a long neck, and a long, pointed beak.", + "A black stork is a large bird with black feathers and a long beak.", + "A black stork is a large bird with black feathers and a long neck.", + "A black stork has black feathers and a long black beak.", + "The black stork is a large bird with black feathers and a long, red bill.", + "A black stork can be identified by its black feathers and red bill.", + "There are a few ways to identify a black stork.", + "The black stork is a medium-sized wading bird with long legs and a long, curved neck.", + "The black stork is a tall, slim bird with black feathers, red feet, and a long red bill.", + "A black stork can be identified by its black plumage and red legs.", + "The black stork is a large bird, with a long neck, legs, and bill.", + "Black storks have black feathers, red bills, and red legs.", + "The black stork is a large, dark-colored bird with a long neck and a long, thin beak.", + "The black stork has a black back, black wings, and a white belly.", + "The black stork has a black body with white spots on its wings.", + "The black stork is a large bird with black feathers and a long neck.", + "The black stork is a large bird with black feathers and a white chest.", + "A black stork has black feathers and a long, curved beak.", + "The black stork is a large bird, with a long neck, beak, and legs.", + "A black stork looks like a large, black bird with a long, pointed beak.", + "The black stork is a large bird with a long neck, black plumage, and red legs.", + "The black stork is a large bird, with a long neck and legs, and a black and white plumage.", + "A black stork is a large bird with black feathers and a long neck.", + "The black stork is a large bird, with a length of 100-115 cm (39-45 in) and a wingspan of 155-195 cm (61-77 in).", + "The image is of a black stork standing in a marsh with its long neck extended and its long beak open.", + "The image is of a black stork standing in a shallow body of water.", + "The image shows a black stork standing on a muddy bank with its long neck and beak stretched out towards the camera.", + "The image is of a black stork with its long neck extended and its beak open.", + "This image from the internet shows a black stork with its long, thin neck and beak.", + "I found an image of a black stork on the internet.", + "This image from the internet shows a black stork with its long neck and beak extended.", + "The image is of a black stork with its long neck extended and its beak open.", + "In the image, a black stork is perched atop a tree branch.", + "The image is of a black stork standing in a cloudy sky.", + "A black stork in the wild.", + " A black stork in flight.", + " A black stork in a swampy area, with its long beak poking into the water.", + "The black stork is a member of the stork family and is found in woodlands in Europe and Asia.", + "A Black Stork in Its Natural Habitat.", + "A black stork with long red legs wading in a shallow body of water.", + " A black stork in a nesting area.", + "A black stork in flight.", + " A black stork (Ciconia nigra) feeding her chicks.", + "A black stork in flight carrying a snake in its beak." + ], + "spoonbill": [ + "A spoonbill is a bill-shaped bird with a curved beak, usually pink or white in color.", + "A spoonbill is a long-legged wading bird with a long neck, flat bill, and voluminous plumage.", + "A spoonbill is a bird with a long neck, a long, spoon-shaped bill, and webbed feet.", + "A spoonbill is a large tall bird with a long neck, bill, and legs.", + "A spoonbill has a long, broad bill that is shaped like a spoon.", + "A spoonbill is a large waterbird with a long neck, bill, and legs.", + "The roseate spoonbill is a medium-sized wading bird.", + "A spoonbill is a bright white bird with a long, flat beak that curves down at the end.", + "A spoonbill is a white bird with a long neck, a long, spoon-shaped bill, and black legs.", + "A spoonbill is a long-legged wading bird with a long, thin bill that curves at the end like a spoon.", + "A spoonbill can be identified by its long, flat bill that is shaped like a spoon.", + "A spoonbill can be identified by its long, spoon-shaped bill.", + "A spoonbill is a wading bird with a long bill that is shaped like a spoon.", + "The easiest way to identify a spoonbill is by its long, flat bill, which is shaped like a spoon.", + "A spoonbill is a waterbird with a long, spoon-shaped bill.", + "The easiest way to identify a spoonbill is by its long, spoon-shaped bill.", + "The spoonbill is a unique looking bird with a long, thin bill that curves upward at the end.", + "Spoonbills have a long, flat, spoon-shaped bill and are wading birds.", + "A spoonbill is a bird with a spoon-shaped bill.", + "A spoonbill can be identified by its unique curved bill, which is shaped like a spoon.", + "A spoonbill has a large, flat, spoon-shaped bill.", + "A spoonbill has a large, flat, spoon-shaped bill.", + "A spoonbill has a long beak that is shaped like a spoon.", + "The spoonbill is a large wading bird with a long neck, bill, and legs.", + "A Northern Hemisphere spoonbill has a long, flat, spatulate bill and a yellowish head.", + "A spoonbill has a long bill that gradually widens towards the end, resembling a spoon.", + "A spoonbill has a long neck, a small head with a spoon-shaped bill, and long legs.", + "A spoonbill is a white bird with a long, orange beak that curves down at the end.", + "A spoonbill is a long-legged waterbird with a flattened bill that is shaped like a spoon.", + "A spoonbill is a large wading bird with a long neck and bill.", + "Image shows a spoonbill in flight, shades of pink and white feathers with a long bill.", + "A spoonbill is a large waterbird with a long, curved neck and bill.", + "A spoonbill is a long-legged wading bird with a long neck, bill and legs.", + "This image from the internet shows a spoonbill in mid-flight.", + "An image from the internet of a spoonbill shows a large, pink bird with a long, curved bill.", + "The image is of a spoonbill against a blue sky.", + " An image of a spoonbill from the internet shows a large white bird with a long neck and bill.", + "This image shows a spoonbill in its natural habitat, standing in shallow water with its long bill extended.", + "The image is of a white spoonbill with a long, curved beak.", + "This bird has a very long, thin beak that it uses to probe in the mud for food.", + "A spoonbill looks for food in the water.", + "A spoonbill feeding in a swamp.", + " The spoonbill is a beautiful bird with a long beak, perfect for scooping up food from the water.", + "A spoonbill balances on one leg while reaching for food in the water.", + "A roseate spoonbill in a tree.", + " A roseate spoonbill in flight.", + "A spoonbill in its natural habitat.", + "A roseate spoonbill in flight over the Florida Everglades.", + " A spoonbill in its natural habitat.", + "A roseate spoonbill feeding in the wetlands." + ], + "flamingo": [ + "A flamingo has pink feathers and a long neck.", + "A flamingo is a tall, pink bird with long legs and a long neck.", + "A flamingo is a tall, pink bird with long legs, a long neck, and a curved beak.", + "A flamingo is a tall, wading bird with long legs, webbed feet, and a long neck.", + "A flamingo is a tall, pink bird with long legs, a long neck, and a curved bill.", + "Flamingos are large, long-necked wading birds with long legs, webbed feet, and curved bills.", + "A flamingo has long legs and a long neck.", + "Flamingos are large, tall birds with long legs and necks.", + "A flamingo is a tall, wading bird with pink feathers, long legs, and a long neck.", + "Flamingos are tall, pink birds with long legs and necks.", + "Flamingos can be identified by their long, curved neck, long legs, and pink feathers.", + "Flamingos are a type of bird with long legs and a long neck.", + "The best way to identify a flamingo is by its characteristic pink feathers.", + "The easiest way to identify a flamingo is by its reddish-pink feathers.", + "A flamingo can be identified by its long, curved neck, long legs, and pink feathers.", + "Flamingos can be identified by their long legs, neck, and bill.", + "Flamingos are tall, wading birds with long neck, legs, and bill.", + "The easiest way to identify a flamingo is by its long neck, stilt-like legs, and pink feathers.", + "Flamingos are defined by their red and pink feathers, stilt-like legs, and long necks.", + "Flamingos are large birds with long necks, legs, and wings.", + "A flamingo looks like a pink bird with very long legs.", + "Flamingos have long necks, legs, and bills.", + "A flamingo is a tall, pink bird with long legs and a bent neck.", + "A flamingo typically has long legs and a long neck.", + "A flamingo is a tall, pink bird with long legs, a long neck, and a curved bill.", + "A flamingo typically has pink feathers, with some red, orange, or yellow on its head, neck, and back.", + "Flamingos are large birds with long necks and legs.", + "A flamingo looks like a bird with long legs, a long neck, and a long beak.", + "A flamingo typically has pink feathers and long legs.", + "Most flamingos are either white, pale pink, or bright pink.", + "This photo shows a flamingo with its long neck and legs extended, standing in shallow water.", + " and describe the backgroundIn the image, a flamingo is standing in a shallow pool of water surrounded by green vegetation.", + "A pink flamingo perched on one leg in a white sandy beach near some blue water.", + "This image shows a flamingo with its long neck and legs extended, standing in a shallow pool of water.", + "This image is of a flamingo in a bright pink color.", + "A flamingo is a tall, pink bird with long legs and a long neck.", + "A flamingo is a tall, wading bird with reddish-pink plumage.", + "The image is of a pink flamingo with its long neck and legs extended standing in a shallow body of water.", + "This image shows a flamingo with its long neck and legs extended, standing in shallow water.", + "This image from the internet shows a flamingo with its long neck extended and its brightly-colored feathers on full display.", + " A flamingo taking a drink of water.", + "The flamingo looks like it is on fire.", + " A flamingo on a lawn with green grass and trees in the background.", + "\"Flamingo in the wild\".", + "A flock of flamingos in the sunset.", + "Flamingos are beautiful creatures that have a very unique look.", + "Two flamingos standing in water with their long necks curved upwards.", + "Flamingos are well known for their pink feathers, but did you know that the pink color is actually caused by their diet? Flamingos eat shrimp and other pink-colored food, which turns their feathers pink!.", + "Flamingo in the wild.", + "A flamingo with its long neck and bright feathers stands in a shallow pool of water." + ], + "little blue heron": [ + "A little blue heron has dark blue plumage and a long neck.", + "The little blue heron is a small bird with blue-gray plumage.", + "A little blue heron is a medium-sized wading bird that is gray-blue overall with darker wings.", + "A little blue heron has blue-gray plumage and a long neck.", + "The little blue heron is a breed of heron that is mostly blue in color.", + "A little blue heron is about 2 feet tall with a wingspan of about 4 feet.", + "The little blue heron is a small wading bird with blue-gray plumage and red eyes.", + "A little blue heron is a small heron that is blue-gray in color.", + "A little blue heron has blue-gray plumage, a long neck, and a long, sharp beak.", + "The little blue heron is a small, slender heron with blue-gray plumage.", + "If you see a heron with blue-gray feathers and red legs, it is probably a little blue heron.", + "The little blue heron is a small, slim heron with blue-gray plumage.", + "A little blue heron is a small wading bird with blue-gray plumage.", + "A blue heron has a long neck and long legs.", + " Look for a small, dark blue heron with long legs.", + "A little blue heron is a small wading bird with blue-gray plumage.", + "Little blue herons are a species of heron that is mostly blue-gray in color.", + "The easiest way to identify a Little Blue Heron is by its size.", + "A little blue heron can be identified by its light blue plumage and its long neck and legs.", + "You can identify a little blue heron by its blue-gray plumage, long neck, and yellow bill.", + "A little blue heron looks like a small, blue bird.", + "A little blue heron has blue-gray plumage and a long, thin neck.", + "A little blue heron is a type of small wading bird.", + "The little blue heron is a small wading bird with blue-gray plumage.", + "A little blue heron has pale blue plumage and a white belly.", + "The little blue heron is a blue-gray bird with white on its underside.", + "A little blue heron has blue-gray plumage and a long neck.", + "Image result for blue heron pictures\nA blue heron is a large wading bird with a long neck, long legs, and a long, sharp beak.", + "A little blue heron is a small, blue bird.", + "A little blue heron is a small heron that is blue-gray in color with a white belly.", + "The image is of a blue heron with its long neck extended and its beak open.", + "The little blue heron is a small bird with blue plumage and a long neck.", + "This image shows a little blue heron perched atop a branch with its long, slender neck and bill extended.", + "The image is of a little blue heron standing in a shallow pool of water.", + "The image is of a blue heron perched atop a narrow tree branch.", + "It's a photo of a little blue heron perched on a dead tree branch in a swamp.", + "The image is of a little blue heron perched on a tree branch with its wings outstretched.", + "The image is of a little blue heron perched on a branch near some water.", + "In the image, the little blue heron is standing in shallow water with its long neck extended and its beak open.", + " fishingAn image from the internet of a little blue heron fishing shows the bird standing in shallow water with its long neck extended and its beak diped down into the water.", + "A beautiful little blue heron taking a rest in its natural habitat.", + " A blue heron in flightThis photo captures a blue heron in mid-flight, showing off the bird's long legs and wingspan.", + " A blue heron wades in the water, looking for a fish to eat.", + "A blue heron wades in a shallow pond, its long legs carefully picking their way through the water.", + " Great blue heron in flight.", + "A little blue heron wades in a shallow pool of water, looking for a fish to eat.", + "A blue heron wades in the shallows of a freshwater marsh, searching for fish.", + "A blue heron in its natural habitat.", + "A blue heron wades through the shallows in search of a meal.", + "A blue heron wading through the shallows in search of a meal." + ], + "great egret": [ + "A great egret is a tall white bird with a long yellow beak and long black legs.", + "A great egret is a medium to large sized white bird with a long neck, bill and legs.", + "The great egret is a large, elegant bird with a long neck, a long pointed bill, and long, lanky legs.", + "The great egret is a tall, slender bird with a long neck, bill, and legs.", + "Great egrets are large, long-legged, long-necked wading birds with long, sharp bills.", + "A great egret is a large, long-necked, white wading bird.", + "A great egret is a type of heron with all white feathers and a long, thin neck.", + "Great egrets are large, long-legged, long-necked wading birds with long bills.", + "A great egret is a large white heron with a long neck, legs, and yellow bill.", + "A great egret is a white bird with a long neck, legs, and bill.", + "Great egrets have long, thin necks and legs and sharp, dagger-like bills.", + "A great egret is a large white bird with a long neck and legs.", + "The great egret is a large white heron with a long neck and yellow beak.", + "Great egrets are all-white with a long, S-shaped neck and long, orange legs.", + "The great egret is a large white heron with a long neck, long legs, and long, sharp yellow bill.", + "Great egrets can be identified by their long necks, long legs, and yellow bill.", + "There are a few things you can look for when trying to identify a great egret.", + " Great egrets are large birds with long necks and legs.", + "Great egrets have white feathers and yellow beaks.", + "A great egret is a large white bird with a long neck, yellow bill, and long legs.", + "The great egret is a large white wading bird.", + "Great egrets are large, white, wading birds with long, pointed bills.", + "A great egret has a long neck and legs, and a long, curved bill.", + "A great egret is a large white bird with a long neck, legs, and bill.", + "Great egrets are large, white, heron-like birds with long necks, long, dagger-like bills, and long legs.", + "Great egrets are a type of heron with all-white plumage.", + "A great egret is a large, white wading bird with a long neck and legs.", + "The great egret is a large bird with a long, S-shaped neck, a long, stout bill, and long, sharp yellow legs.", + "A great egret looks like a large white bird with a long neck and legs.", + "The great egret is a large white bird with a long neck and legs.", + "A great egret is a large, white bird with yellow eyes.", + "The image is of a great egret in flight with its long neck and legs extended.", + "There is an image of a great egret on the internet.", + "An image from the internet of a great egret shows a large white bird with long legs and a long neck.", + "The image is of a beautiful white egret with long neck and legs standing in a marshy area with reeds and grasses.", + "The image is of a great egret in mid-flight with its long neck and legs extended.", + "In the image, the great egret is standing in shallow water with its long neck extended and its head turned to the side.", + " feedingIn the image, a great egret is shown standing in shallow water with its long neck extended downwards.", + "Theimage shows a great egret in its natural habitat, with its long neck and legs outstretched as it wades through the water in search of food.", + "In the image, the great egret is shown standing in water with its long neck extended.", + "A great egret hunts for fish in a marsh.", + "This great egret was photographed in the Everglades National Park in Florida.", + "A great egret stands in the water, its long neck and legs extended.", + "A Great Egret in its natural habitat.", + "A great egret stands in the water with its long neck and legs extended, looking for fish.", + "Great egret in flight.", + "Great Egret in Flight over Wetland.", + " Great Egret in Flight.", + " Great egrets are a type of heron found in warm climates.", + " Great Egret (Ardea alba) in breeding plumage." + ], + "bittern bird": [ + "The bittern bird is a small to medium-sized heron with a long neck, long legs, and a stout body.", + "A bittern bird is a small to medium sized heron.", + "The bittern bird is a medium sized bird with a long body and neck.", + "The bittern bird is a small, brown and white bird.", + "A bittern bird is a type of heron that is characterized by its brown and white striped feathers, long neck, and thin body.", + "The bittern bird is a small bird with a long neck.", + "The bittern bird is a large, heron-like bird with a long neck, bill, and legs.", + "The bittern bird is a medium-sized wading bird with a long neck, black and white striped plumage, and orange legs.", + "The bittern bird is a large, heron-like bird with a long neck, stilt-like legs, and a distinctive, booming call.", + "A bittern bird is a small heron with a long, thin neck that is slightly hunched over.", + "The best way to identify a bittern bird is by its call, which has been described as sounding like someone blowing into a bottle.", + "The bittern bird is long and thin, with a long neck and a beak that is designed for hunting fish.", + "The bittern bird can be identified by its dull brown feathers and its long neck.", + "Bittern birds are a type of heron.", + "Bitterns are a type of heron.", + "The bittern bird can be identified by its distinctive \"booming\" call.", + "One way to identify a bittern bird is by its long neck and beak.", + "A bittern bird is a long, thin, elusive bird with a distinctive booming call.", + "The bittern bird is a large wading bird with a long neck, beak, and legs.", + "A bittern bird can be identified by its unique, \u201c booming \u201d call, which is often described as sounding like someone blowing into a bottle.", + "A bittern bird is a heron with a large body and a long, straight bill.", + "A bittern bird is a type of heron.", + "Bitterns are a type of heron with yellowish-brown plumage and black markings.", + "A bittern bird has dark brown and black feathers, and a long neck.", + "Bitterns are a type of heron with brown and white striped feathers.", + "The bittern bird is a long, thin bird with a long neck, small head, and large, orange-yellow beak.", + "The bittern bird is a large, long-necked bird with a brown and black mottled body, yellow eyes, and a long, black beak.", + "The bittern bird is a small to medium-sized heron with a long, thick neck and legs.", + "The bittern bird has brown and black feathers, and a long beak.", + "A bittern bird looks like a small heron with a long, stout beak.", + "The image from the internet is of a bittern bird.", + "The image is of a bird with brown and white plumage.", + "The image is of a bird with brown and black feathers.", + "The image is of a brown and white bird with its long neck extended, standing in tall grass.", + "The image is of a brown and white bird with long legs and a long beak.", + "The image is of a brown and white bird with long legs standing in water.", + "This image is of a bittern bird in the water, with its long neck and bill sticking up out of the water.", + "The image is of a bittern bird perched on a log in a swamp.", + "The image is of a dark brown and white bird standing in tall grass.", + " The bittern is a large, dark brown and white bird with a long neck, beak, and legs.", + " The Bittern, a wading bird, has distinctive brown and black stripes and is known for its \"booming\" mating call.", + "A solitary bittern bird standing in tall grass, its long neck extended and beak pointed skyward.", + "A bittern bird in its natural habitat.", + "A bittern bird in its natural habitat.", + "Bitterns are members of the heron family and are most easily distinguished from other wading birds by their overall brownish color and their loud, booming calls, which are audible up to a mile away.", + "A European bittern in breeding plumage, with its characteristic brown and black stripes.", + "With its distinctive \"meep\" call, the bittern is one of the most easily recognizable wetland birds.", + " The hard-to-hear bits of the bittern.", + "A bittern bird perches atop a tree branch in its natural habitat.", + "A Great Bittern in its natural habitat." + ], + "crane bird": [ + "A crane bird is a large bird with a long neck, legs, and bill.", + "A crane bird is a large bird with a long neck and legs.", + "A crane bird is a tall, thin bird with a long neck, legs, and beak.", + "A crane bird is a large bird with long legs and a long neck.", + "The crane bird is a tall, long-necked bird with a crown of feathers on its head.", + "A crane bird is a large, red-faced bird with a long neck and legs.", + "A crane bird is very tall with a long neck, legs, and bill.", + "A crane bird is a large, tall bird with a long neck, legs, and bill.", + "A crane bird is tall and thin, with a long neck and legs.", + "The crane bird is a tall, thin bird with a long neck, legs, and beak.", + "The largest crane bird is the Sarus crane.", + "The easiest way to identify a crane bird is by its long neck, legs, and bill.", + "A crane bird has a long neck and legs.", + "A crane bird can be identified by its long neck, tall stature, and overall size.", + "The easiest way to identify a crane bird is by its long neck, legs, and bill.", + "Some ways you can identify a crane bird are by their long neck, legs, and bill.", + "The crane bird is a large wading bird with a long neck, legs, and bill.", + "The crane bird is a very tall, thin bird with a long neck and legs.", + "A crane bird can be identified by its long legs, long neck, and long bill.", + " Cranes are long-necked, large, wading birds with long legs and long toes.", + "There are around 15 species of crane in the world, and they vary in size and appearance.", + "A crane bird is a very tall, thin bird with a long neck, legs, and beak.", + "A crane bird is white with a long neck and legs.", + " Cranes are tall, long-necked wading birds with long legs and bills.", + "Crane birds are tall, thin birds with long necks, legs, and beaks.", + "Crane birds are very tall, with long legs, and a long neck.", + "A crane is a large, tall bird that lives in wetland areas.", + "Cranes are tall, gray birds with long necks, legs, and bills.", + "The crane bird looks like a tall, thin bird with a long neck and legs.", + "The crane bird is a large, tall bird with a long neck and legs.", + "A photograph of a crane bird standing in a marshy area surrounded by grasses and reeds.", + "The image is of a crane bird flying through the air with its wings spread out.", + "This image is of a crane bird in flight.", + "The image is of a crane bird standing in a field with its long neck extended and its beak open.", + "The image is of a crane bird perched atop a tree branch.", + "The image from the internet of a crane bird shows a large, tall bird with a long neck, legs, and bill.", + "The image is of a large bird with a long neck and beak.", + "One image that comes to mind is of a crane bird in flight, its long neck and legs extended as its wings flap powerfully to keep it aloft.", + "The image is of a crane bird flying through the air with its wings outstretched.", + "This image shows a crane bird in its natural habitat.", + "A crane bird in its natural habitat.", + " A crane bird in its natural habitat.", + "The crane bird is a beautiful creature that is often seen in nature documentaries.", + "The crane bird is a migratory bird that can travel long distances.", + "A crane bird in its natural habitat.", + "A crane bird in its natural habitat.", + "A majestic crane bird in flight, its long neck and legs outstretched.", + "A crane bird in flight.", + "A crane bird stands in a marshy area with its long neck extended upward.", + "A majestic crane bird calmly surveys its surroundings." + ], + "limpkin": [ + "The limpkin is a large wading bird that is closely related to the rail family.", + "A limpkin is a large wading bird with a long neck, bill, and legs.", + "A limpkin is a bird that is native to the wetlands of the Americas.", + "A limpkin is about the size of a large rail, but with a much longer, decurved bill.", + "Limpkins look like large waterfowl with long legs, necks, and beaks.", + "A limpkin is a large wading bird with long legs, a long neck, and a long bill.", + "Limpkins are large wading birds that look like a cross between a crane and a rail.", + "A limpkin is about the size of a small goose.", + "A limpkin is a large bird that looks like a cross between a crane and a rail.", + "A limpkin looks like a large, dark-colored wading bird with a long, down-curved bill.", + "Limpkins have a long, curved bill that they use to hunt for Apple snails.", + "Limpkins are long-legged wading birds with downward-curved bills.", + "A limpkin is a large wading bird with a long neck and legs.", + "It can be difficult to identify a limpkin because they are often found in wooded or forested areas where they blend in with their surroundings.", + "A limpkin is a wading bird that resembles a large rail.", + "The best way to identify a limpkin is by its Bill.", + "A limpkin is a large wading bird with a long neck, curved bill, and brown and white plumage.", + "Limpkins can be identified by their long, orange-yellow bill and loud, wailing call.", + "There are several ways to identify a limpkin.", + "Limpkins can be distinguished from other rail species by their orange bill and yellow legs.", + "The limpkin's overall coloring is brown and white.", + "A limpkin is a bird that is about the size of a chicken.", + "A limpkin looks like a large rail bird with a long, curved bill.", + "A limpkin is a bird that looks like a cross between a crane and a rail.", + "Limpkins have long legs and a long neck.", + "A limpkin is a long-legged wading bird with orange-brown plumage and a long, curved bill.", + "A limpkin looks like a large rail bird with a long, downward-curving bill.", + "A limpkin is a long-legged bird that looks like a cross between a crane and a rail.", + "A limpkin is a large bird that looks like a cross between a crane and a rail.", + "A limpkin looks like a cross between a crane and a rail\u2014it has a long neck and legs like a crane, and it is the size of a rail.", + "A limpkin is a bird that is often found near water.", + "A limpkin is a bird that is medium-sized with a long neck and legs.", + "The image is of a limpkin perched on a tree branch.", + "The image is of a brown bird with a long neck and bill.", + "In the image, a brown bird with white streaks down its back and wings stands in shallow water amongst green plants.", + "The image is of a bird called a limpkin.", + "I found an image of a limpkin on the internet that shows the bird standing in some water with its long, thin beak extended.", + "A limpkin is a large wading bird with reddish-brown plumage and long, orange legs.", + "A limpkin is a large bird that lives in wetlands.", + "The image is of a limpkin perched on a tree branch.", + "This is a limpkin, a bird that lives near freshwater marshes in the southeastern United States.", + "The limpkin is an unusual bird that is closely related to the crane.", + " The limpkin (Aramus guarauna) is a large wading bird that resembles a crane in appearance and is the only member of the genus Aramus.", + "This is a picture of a limpkin.", + " A limpkin with its large, slightly curved bill perches on a log in a marsh.", + " A limpin birdThis is a photo of a limpkin, a type of bird.", + " The limpkin is a large wading bird that is endemic to the Americas.", + " A limpkin perching on a log in a swamp.", + "Limpkins are wading birds with long, curved necks and orange-brown plumage.", + "The limpkin is a large wading bird that can be found in marshes and swamps across the Americas." + ], + "common gallinule": [ + "The common gallinule has a rounded body with a long neck and legs.", + "A common gallinule looks like a chicken with a long, slender body and a short tail.", + "A common gallinule is a wetland bird with a long toes, chicken-like body and a short tail.", + "Common gallinules are chicken-like birds with long toes that allow them to walk on top of lily pads and other aquatic vegetation.", + "A common gallinule is a chicken-like bird with a long, thin neck and legs.", + "A common gallinule has a reddish brown body, a black head, and a yellow bill.", + "A common gallinule is a bird that is similar to a chicken.", + "Common gallinules are chicken-like birds with long legs, chicken-like beaks, and greenish-gray feathers.", + "A common gallinule looks like a chicken with a long neck and legs.", + "A common gallinule is a chicken-like bird with a long, red, fleshy nose.", + "Common gallinules have greenish-gray plumage with a yellowish bill.", + "A common gallinule is a chicken-like bird with a long neck, red bill, and red and yellow feet.", + "One way to identify a common gallinule is by its orange-yellow bill with a red tip.", + "A common gallinule has a dark back, chestnut sides, and a white belly.", + "A common gallinule can be identified by its red frontal shield and yellowish bill.", + "There are a few ways to identify a common gallinule.", + "It is a chicken-like bird with a long neck, red face, and yellow bill.", + "A common gallinule can be identified by its red head and yellow bill.", + "The common gallinule is a chicken-like bird with a long, orange bill and yellow legs.", + "There are many ways to identify a common gallinule.", + "The common gallinule is a chicken-like bird with a long, red beak and yellow legs.", + "Our best guess is that you are asking about the Common Gallinule, also known as the Common Moorhen.", + "There are many different types of gallinules, but most are small waterbirds with chicken-like features.", + "A common gallinule has dark greenish-gray plumage, with a yellowish bill and red legs.", + "A common gallinule has a dark blue body with a yellow bill and yellow legs.", + "A common gallinule has a dark blue body with a yellow bill.", + "A common gallinule is a yellow-green bird with a red beak and red and blue legs.", + "A common gallinule has dark plumage with a greenish back, red eyes, and yellow feet.", + "A common gallinule has a reddish head and chest, greenish back and wings, and yellowish legs.", + "The common gallinule is a chicken-like bird with a long, red, chicken-like beak.", + "The image shows a common gallinule floating on water with its feet paddling.", + "I found an image of a common gallinule on the Audubon website.", + "A common gallinule is a small, chicken-like bird with a long, slender neck and legs.", + "The image is of a bird standing in shallow water with green and brown plumage.", + "The image is of a green and brown bird with a long neck and red feet.", + "A common gallinule is a small, chicken-like bird with a long, curved bill.", + "Image shows a blue-grey bird with orange legs and feet, standing in water with vegetation around it.", + "The image is of a bird with green and blue feathers and a red beak.", + "The image is of a orange-brown bird with a long yellow beak.", + "An image of a common gallinule may show a bird with greenish-gray plumage, red eyes, and long, red toes.", + "A common gallinule swimming through a marshy area.", + " A common gallinule perches on a log in a swamp.", + "A common gallinule sits on a log in a marsh.", + "A common gallinule wades through the water in search of food.", + " The common gallinule is a wetland bird that can be found near bodies of water throughout North and South America.", + " A photo of a common gallinule (Gallinula chloropus), a species of rail.", + "A common gallinule perched on a log in a swamp.", + "A common gallinule in its natural habitat.", + " A common gallinule perches atop a lilypad.", + "A common gallinule perched on a branch." + ], + "American coot": [ + "An American coot is a dark gray bird with a white bill and red eyes.", + "An American coot is a dark gray bird with a white bill and white face.", + "American coots have black feathers and white beaks.", + "The American coot looks like a chicken with a black body and a white bill.", + "The American coot (Fulica americana) is a member of the rail family, Rallidae.", + "An American coot is a small, gray bird with a white bill and red eyes.", + "An American coot is a small brown bird with a white bill.", + "An American coot is a bird that is black with a white bill.", + "Coots are small to medium-sized birds with chicken-like bills and stout, chicken-like bodies.", + ".", + "An American coot has a black body with a white beak.", + "An American coot has a black body with a white beak.", + "An American coot is a waterbird that looks like a duck but is actually more closely related to a crane.", + "An American coot is a chicken-like bird with a black body and white beak.", + "The American coot has a white bill with a black band near the tip, black body, and white undertail coverts.", + "The American coot has a white bill with a black band near the tip, and dark feathers on its body.", + "In North America, the American coot is distinguished from the Eurasian coot by its slightly larger size, longer, white bill with a faded yellow tip, and brighter white undertail.", + "An American coot can be identified by its black body, white bill, and red eyes.", + "The American coot is a chicken-like waterbird with a black body, white bill, and orange eyes.", + "An American coot is a species of bird that is found in North and South America.", + "An American coot is a species of bird in the family Rallidae.", + "The American coot (Fulica americana) is a member of the rail family, Rallidae.", + "The American coot (Fulica americana) is a member of the rail family, Fulicidae.", + "The American coot is a marsh bird that is about the size of a chicken.", + "American coots look like black ducks with white beaks.", + "An American coot is a dark-gray bird with a white beak and white feet.", + "The American coot is a waterbird with a black body and white beak.", + "An American coot looks like a small, dark-colored goose.", + "An American coot (Fulica americana) is a bird in the family Rallidae.", + "An American coot looks like a small, dark duck.", + "This image from the internet shows an American coot swimming in a marshy area with cattails in the background.", + "An American coot is a small, dark, chicken-like bird with a white bill and orange feet.", + "The image is of an American coot swimming in a lake.", + "There is an image of an American coot on the internet that shows the bird swimming in a lake with its dark body and white beak.", + "This image shows an American coot swimming in a lake.", + " The image is of a large, dark grey bird with a long, curved neck.", + "The image is of a coot swimming in a lake with its head and neck extended out of the water.", + "The image is of a coot swimming in a lake with its chicks.", + "In the image, the American coot is a chicken-like bird with a black body and white beak.", + "The image is of a brown bird with a white beak and feet, swimming in water.", + " An American coot on a lake.", + "This is an American coot, a small relative of the more familiar American crow.", + "The American coot is a species of bird that is found in North America.", + "The American coot (Fulica americana) is a member of the rail family, Rallidae.", + "A common American coot (Fulica americana) photographed in Maryland, USA.", + "The American coot (Fulica americana) is a member of the rail family, Fulicidae.", + "The American coot is a chicken-like waterbird with a small, chicken-like bill.", + "A flock of American coots (Fulica americana) swimming in a lake.", + "Coots are a type of waterbird that is found in many parts of the world.", + " An American coot ( Fulica americana) is a small, waterbird that is part of the rail family." + ], + "bustard": [ + "A bustard is a type of large land bird with a long neck and legs.", + "A bustard typically has brown plumage with some black markings.", + "Large, long-necked bird with a big body and small head.", + "Bustards are large, long-necked, terrestrial birds with heavy bodies and relatively short legs.", + "Bustards are large, terrestrial birds with long necks, heavy legs, and big feet.", + "Bustards are large, Old World birds with long necks and legs.", + "A bustard is a heavy, large bird with a long neck and legs.", + "Bustards are a family of bird found throughout the world.", + "A bustard is a large, heavy bird with a long neck, legs, and body.", + "Bustards are large, heavy-bodied terrestrial birds.", + "A bustard is a large, heavy bird with a long neck, legs, and body.", + "Bustards are a type of game bird with a heavy body and long legs.", + "There are many ways to identify a bustard.", + "Bustards are large, flightless birds with long necks and legs.", + "A bustard is a large, heavy, ground-dwelling bird with a long neck, legs, and bill.", + "Bustards are a type of bird.", + "A bustard is a large terrestrial bird with a long neck, long legs, and typically a brown plumage.", + "The best way to identify a bustard is by its large size, long legs, and long neck.", + "One way to identify a bustard is by its habitat; these birds generally live in dry, open country.", + "The easiest way to identify a bustard is by its long neck, which is often longer than its body.", + "A bustard is a bird with a long body and neck, small head, and long, powerful legs.", + "A bustard is a large, long-legged bird with a big body and a long neck.", + "A bustard looks like a large, tall bird with a long neck and legs.", + "The bustard is a large bird with a long neck, legs, and bill.", + "Bustards are a family of ground-feeding birds that include the largest flying land bird, the kori bustard.", + "A bustard is a large, terrestrial bird with long legs and a long neck.", + "Bustards are large, terrestrial birds with long necks and legs.", + "A bustard looks like a large, heavy bird with a long beak, long legs, and a short tail.", + "a terrestrial bird with a long neck, bill, and legs; often considered a primitive relative of the crane.", + "\nBustards have long necks and legs, and they are generally brown and white.", + "A photo of a bustard from the internet shows a large, dark bird with a long neck and legs.", + "The image is of a large, brown bird with a long neck and small head.", + "The image is of a large, brown bird with a long neck and small head.", + "A bustard is a large, ground-dwelling bird with a long neck, legs, and tail.", + "A large, bird with long legs, a long neck, and a large body.", + "A bustard is a large, heavy bird with a long neck and legs.", + "A plump, brown bird with a long neck and small head.", + "A photo of a bustard from the internet shows a large, dark brown bird with a long neck and small head.", + "An image of a bustard from the internet shows a large, stocky bird with a long neck and legs.", + "This image is of a bustard chick that has recently hatched.", + "The Great Indian Bustard, one of the world's heaviest flying birds.", + "The bustards are a family of large, terrestrial birds endemic to dry habitats in the Old World.", + "A bustard is a large, heavy bird with a long neck, beak, and legs.", + " Bustard (any bird of the family Otididae).", + " Bustard, a large bird of open country, typically having long legs, a long neck, and a distinctive upright stance.", + "The Great Indian Bustard, one of the heaviest flying birds in the world.", + "A bustard is a large bird with a long neck, legs, and body.", + "The Great Indian Bustard, one of the heaviest flying birds in the world.", + "The great Indian Bustard (Ardeotis nigriceps) is a bird found in India and Pakistan.", + " A bustard in profile." + ], + "ruddy turnstone": [ + "A ruddy turnstone is a small shorebird with rufous upperparts, black-and-white wings, and a white underbody.", + "A ruddy turnstone is a small wading bird.", + "A ruddy turnstone is a small wading bird with red-brown upperparts and black-and-white barred underparts.", + "A ruddy turnstone has rusty-red upperparts, white underparts, and orange-brown legs.", + "The ruddy turnstone is a small, stocky shorebird with a heavily mottled brown-and-white plumage.", + "A ruddy turnstone is a small wading bird.", + "A ruddy turnstone is a small bird with a black and white speckled breast and back.", + "A ruddy turnstone is a small wading bird with orange-brown upperparts and white underparts.", + "The ruddy turnstone is a small, stocky shorebird with a short, slightly upturned bill.", + "A ruddy turnstone is a small wading bird.", + "The ruddy turnstone can be identified by its rusty-red upperparts, black-and-white spotted underparts, and orange legs.", + "A ruddy turnstone can be identified by its orange-brown plumage, black-and-white spotted wings, and dark-colored legs and bill.", + "A ruddy turnstone is a small wading bird with orange-brown and black plumage.", + "Ruddy turnstones have rusty-red upperparts, white underparts, and black-and-white barred wings.", + "The ruddy turnstone is a small wading bird.", + "A ruddy turnstone can be identified by its rusty-red upperparts, white underparts, and black-and-white barred wings.", + "A ruddy turnstone can be identified by its red-brown coloring and its orange legs.", + "Ruddy turnstones are small, plump birds with orange-brown upperparts and white underparts.", + "The ruddy turnstone is a small wading bird with orange-brown and black plumage.", + "The ruddy turnstone is a small, stocky wading bird with black-and-white barred upperparts and a heavily marked head.", + "A ruddy turnstone is a small wading bird with orange-brown upperparts and white underparts.", + "The ruddy turnstone is a small wading bird with bright orange-brown upperparts and heavily streaked white underparts.", + "A ruddy turnstone is a small, stocky bird with a short neck, dark head, and square tail.", + "Ruddy turnstones are small, stocky birds with black-and-white speckled upperparts and orange-brown underparts.", + "The ruddy turnstone is a small sandpiper.", + "A ruddy turnstone is a small shorebird with black and white markings.", + "A ruddy turnstone is a small, sparrow-sized bird with orange legs and a dark back.", + "A ruddy turnstone is a small plover with reddish-brown upperparts and white underparts.", + "The ruddy turnstone is a small, short-legged bird with a small bill.", + "A ruddy turnstone is a small wading bird.", + "This image from the internet shows a ruddy turnstone.", + "An image from the internet of a ruddy turnstone shows a small, stocky bird with a short neck and bill.", + "The image is of a brown and white bird standing on a gray rock.", + "The image is of a small, sprightly bird with a reddish-brown back and wings, and a white belly.", + "The image is of a ruddy turnstone perched on a piece of driftwood.", + "The picture is of a bird called a ruddy turnstone.", + "A ruddy turnstone is a small, stocky bird with a black-and-white speckled back, a reddish-brown breast, and orange-yellow legs.", + "The image from the internet shows a ruddy turnstone perched atop a rock.", + "The image is of a ruddy turnstone on a beach.", + "An image of a ruddy turnstone from the internet shows a small, reddish-brown bird with a white belly.", + "The ruddy turnstone is a small wading bird that is closely related to the sandpiper.", + "A ruddy turnstone on a sandy beach.", + "A ruddy turnstone foraging for food on a beach.", + "One of nature's little marvels, the ruddy turnstone is a robin-sized shorebird with a markings that allow it to perfectly camouflage among the rocks on which it lives.", + " A ruddy turnstone feeding on small invertebrates.", + "A ruddy turnstone on the coast of Maine.", + "A ruddy turnstone on the beach.", + "A ruddy turnstone (Arenaria interpres) walking on a rocky beach.", + "A ruddy turnstone (Arenaria interpres) is a small wading bird.", + "A ruddy turnstone standing on a muddy shoreline." + ], + "dunlin": [ + "A dunlin is a small, stocky shorebird with a short bill and a black-and-white striped back.", + "A dunlin has red-brown upperparts, and white underparts.", + "The dunlin is a small shorebird with a red-brown back, white belly, and dark belly band.", + "A dunlin is a small shorebird with a black back and a white belly.", + "The dunlin is a small, wading bird that has a dark back, light underparts, and a long, black bill.", + "A dunlin is a small shorebird that has a dark back and a white belly.", + "A dunlin is a small wading bird that has a reddish-brown back, a white underbelly, and a long, thin bill.", + "Dunlins are small wading birds with dark brown upperparts and white underparts.", + "A dunlin is a plover, and like all plovers, it has a short beak, small head, long legs, and long, pointed wingtips.", + "A dunlin is a small shorebird that is brown above and white below.", + "A dunlin is a small shorebird with a black stripe along its back and belly.", + "The Dunlin is a small wader with a distinctly upturned bill.", + "There are a few ways to identify a dunlin.", + "A dunlin can be identified by its short, black bill and legs, and its brown back with black and white stripes.", + "A dunlin is a small wader with dark upperparts and a white underbelly.", + "The most obvious way to identify a dunlin is by its reddish brown breeding plumage.", + "Dunlins are small wading birds with dark brown upperparts and white underparts.", + "A dunlin can be identified by its black-and-white striped back, its white underparts, and its long, black bill.", + "A dunlin is a small, plump wading bird with a black belly and a white chest.", + "A dunlin is a small, delicate wading bird.", + "A dunlin is a small Shorebird.", + "The dunlin is a small, plump shorebird.", + "The dunlin is a small shorebird that is colored brown, black, and white.", + "A dunlin is a small, plover-like bird with a Dun-colored back, wing-bar, and rump.", + "A dunlin is a small wading bird that is gray and white in color.", + "A dunlin is a small, brown, sparrow-like bird.", + "A dunlin is a small wading bird that looks like a sandpiper.", + "A dunlin is a small wading bird with a reddish-brown back, a white belly, and a black breast.", + "Dunlin are small, plump shorebirds with orange-brown backs, white bellies and black markings on their face and wings.", + "A dunlin is a small, sparrow-sized wading bird with a long, slightly upturned bill.", + "The image is of a dunlin wading in water with its beak down, presumably looking for food.", + "A dunlin is a small, brown and white bird that is often seen near the shoreline.", + "A dunlin is a small, sparrow-sized wader with a reddish-brown back and a white belly.", + "The photo is of a dunlin taking off in flight.", + "An image of a dunlin from the internet might show the bird in its natural habitat near a body of water.", + "A dunlin is a small, wading bird with a long, slightly upturned bill.", + "A dunlin is a small wading bird with reddish-brown feathers and a black belly.", + "The image is of a dunlin wading in shallow water with its beak down, apparently looking for food.", + "A dunlin is a small wading bird with a reddish-brown back, white belly, and black stripes on its head and wings.", + "This image from the internet shows a dunlin, a small wading bird, perched on a branch.", + " The Dunlin is a small wader that breeds on coastal marshes and mudflats throughout the Northern Hemisphere.", + "A dunlin feeding on a beach.", + " A dunlin in winter plumage feeds on the shore.", + " A Dunlin pauses on its winter migration.", + "A dunlin in breeding plumage on a beach.", + "A dunlin wades in shallow water, looking for food.", + " Dunlin in breeding plumage feeding on a beach.", + " The Dunlin is a small wader with a brown back and white belly.", + "\nA dunlin in breeding plumage runs along a sandy beach.", + " A dunlin searches for food along the water's edge." + ], + "common redshank": [ + "Redshanks are a type of wading bird with long red legs and a reddish-brown body.", + "A common redshank is a medium-sized wading bird with long, orange-red legs and a long, straight, orange-red bill.", + "The Common redshank (Tringa totanus) is a wader in the large family Scolopacidae, the typical waders.", + "A common redshank is a wading bird with a long orange beak and long red legs.", + "A common redshank is a medium-sized shorebird with long red legs and a sharp, hooked bill.", + "The Redshank (Tringa totanus) is a wading bird in the large family Scolopacidae.", + "The common redshank (Tringa totanus) is a medium-sized wader.", + "A common redshank is a medium-sized wading bird with long, red legs and a distinctive upward-curving bill.", + "A common redshank is a species of large wading bird in the sandpiper family.", + "The redshank is a wading bird in the sandpiper family.", + "A common redshank is a wading bird with long, red legs and a black-and-white barred tail.", + "A common redshank is a small to medium sized shorebird with long legs and a long, slightly upturned bill.", + "A common redshank is a species of wading bird in the sandpiper family.", + "A common redshank can be identified by its long orange-red legs, its red bill with a black tip, and its greenish-grey upperparts.", + "A common redshank can be identified by its reddish brown legs and orange-brown beak with a black barb.", + "A common redshank is a wading bird with red legs and a long, straight, orange beak.", + "The common redshank can be identified by its long, red legs and bill.", + "A common redshank has long orange legs and a long black bill.", + "A common redshank has a long, red bill and long legs.", + "The easiest way to identify a common redshank is by its bright red legs.", + "A common redshank is a medium-sized wading bird with a long, straight bill.", + "The redshank (Tringa totanus) is a wading bird in the large family Scolopacidae.", + "A common redshank is a type of wading bird that has reddish legs and a long, slightly upturned bill.", + "A common redshank is a wading bird with red legs and a long, pointed bill.", + "The Common redshank (Tringa totanus) is a medium-sized wader.", + "A common redshank has reddish-brown feathers and long, red legs.", + "A common redshank is a wading bird with reddish-brown legs.", + "Common redshanks are a type of wading bird with long legs and a long, pointy bill.", + "A common redshank is a wading bird with long, red legs.", + "A common redshank is a medium-sized wading bird with long legs, a long, straight bill, and reddish-brown upperparts.", + "A common redshank is a wading bird with long red legs.", + "This bird is thin and long-necked with red legs and a long, black bill.", + "A common redshank is a type of bird that has red legs and a long, black beak.", + "A common redshank is a type of wading bird that is typically characterized by its long, red legs.", + "Image shows a redshank wading through water.", + "It is a photo of a bird called a redshank.", + "In the image, a common redshank is pictured standing on a wet, sandy shoreline.", + "This photograph shows a common redshank (Tringa totanus), a wading bird in the large family Scolopacidae.", + "A commonly redshank is a wading bird with long red legs and a long, curved bill.", + "A common redshank is a wading bird with red legs and a long, straight bill.", + " Common redshank resting on a beach.", + " The common redshank (Tringa totanus) is a wader in the large family Scolopacidae, the typical waders.", + " A common redshank feeding on a mudflatA caption of an image of a roseate spoonbill: A roseate spoonbill feeding on a mudflat.", + "A common redshank (Tringa totanus) is a bird in the sandpiper family.", + " A Common redshank in its natural habitat.", + " Common redshank in breeding plumage.", + "This photo shows a common redshank, a type of wading bird.", + " A common redshank looking for food in a estuary.", + " Common Redshank in breeding plumage, United Kingdom.", + " A Common Redshank (Tringa totanus) perches on a log at the edge of a pond." + ], + "dowitcher": [ + "A dowitcher is a long-legged, long-necked wading bird.", + "A dowitcher is a medium-sized shorebird with a long, stout bill.", + "A dowitcher is a type of bird that is typically found near water and marshes.", + "A dowitcher is a medium-sized, long-billed wader with red-brown upperparts and pale underparts.", + "A dowitcher is a medium-sized, long-billed wader.", + " Dowitchers are long-billed birds that look like they are always pumping their necks up and down as they wade through the water with their long bills pointed down.", + "A dowitcher is a medium sized shorebird with a long, straight bill.", + "The dowitcher is a medium-sized shorebird with a long, straight bill.", + "A dowitcher is a long-legged, long-necked bird with a bill that curves downward at the tip.", + "A dowitcher is a medium-sized shorebird with a long, pointed bill.", + "A dowitcher is a medium-sized shorebird with a long, thick bill.", + "A dowitcher is a type of wading bird with a long, straight bill.", + "A dowitcher is a type of wading bird.", + "Dowitchers can be identified by their long, flexible bills, which they use to probe the mud for food.", + "A dowitcher can be identified by its long bill, which is slightly curved and has a yellowish or orange hue.", + "Dowitchers are medium-sized shorebirds with long, slightly decurved bills.", + "A dowitcher is a type of wading bird with a long, slightly curved bill.", + "Dowitchers are medium-sized shorebirds with long, stout bills.", + "Dowitchers are long-billed shorebirds with reddish-brown upperparts and pale underparts.", + "Dowitchers are a type of wading bird.", + "Dowitchers are medium-sized shorebirds with long, stout bills.", + "I am not sure what you are asking.", + "Dowitchers are medium-sized shorebirds with long, stout bills.", + "Most dowitchers are 18 to 20 inches (46 to 51 cm) long.", + "A dowitcher looks like a chicken.", + "A dowitcher is a small, long-legged bird with a long, slightly down-curved bill.", + "A dowitcher is a medium-sized shorebird with a long, straight bill.", + "Dowitchers are long-necked, medium-sized shorebirds with dark upperparts, light chestnut wings, and a white belly.", + "Dowitchers are wading birds with medium-length necks, long, thin bills, and stout bodies.", + "Slim and long-necked, dowitchers are relatively large shorebirds with stout, slightly upturned bills.", + "A dowitcher is a type of long-necked wader.", + "A dowitcher is a type of long-necked wading bird.", + "I found an image on the internet of a dowitcher flying.", + "The image is of a dowitcher in breeding plumage with a dark back and wings, and a pale underside.", + "A dowitcher is a type of bird that has a long, pointed bill and long legs.", + "A Long-billed Dowitcher is a medium-sized shorebird with a long, bill.", + "This image from the internet shows a Hooded Dowitcher perched on some rocks by the water.", + "This image shows a dowitcher in profile, with its long, straight bill extended.", + "A dowitcher is a medium-sized, long-legged wading bird.", + "A dowitcher is a long-necked, short-billed wading bird.", + "\nA dowitcher searches for food in the mud using its long, sensitive bill.", + "A dowitcher in breeding plumage forages in shallow water, using its long, sensitive bill to probe for small aquatic invertebrates.", + " A dowitcher in breeding plumage feeding on a beach.", + " A female Long-billed Dowitcher in breeding plumage feeding on the shore of a fresh water lake.", + "A dowitcher is a type of long-billed wader that can often be found along the coastlines of North America.", + "\nA dowitcher searching for food in the mud.", + "American Dowitcher (Long-billed Dowitcher) in breeding plumage, standing in wetland.", + "A dowitcher wading in shallow water in search of food.", + " A dowitcher in breeding plumage forages in a wet meadow.", + "A Long-billed Dowitcher in breeding plumage feeding on a mudflat." + ], + "oystercatcher": [ + "The oystercatcher is a black and white bird with a long bill.", + "A oystercatcher is a black and white bird with a long orange beak.", + "A oystercatcher is a black and white bird with a long bill.", + "A oystercatcher has a black back and wings, and a white front.", + "A oystercatcher is a black and white bird with a long, sharp bill.", + "Oystercatchers are plump, long-necked wading birds with long, reddish legs.", + "A oystercatcher is a black and white bird with a long orange beak.", + "A oystercatcher has a black and white body with a long orange bill.", + "An oystercatcher is a medium-sized black and white bird.", + "A oystercatcher is a black and white bird with a long, orange beak.", + "Oystercatchers are a type of wading bird with a long, sharp bill.", + "One way to identify an oystercatcher is by its bill, which is long and stout with a slightly flattened end.", + "Oystercatchers can be identified by their long, orange-red bills, black heads, necks, and backs, and white breasts and bellies.", + "You can identify an oystercatcher by its black and white plumage, long orange-red bills, and its long pink legs.", + "Oystercatchers have black and white plumage, and a long, orange-red beak.", + "Oystercatchers are large, heavier bodied birds with long, thick, slightly upturned bills.", + "There are a few ways you can identify an oystercatcher.", + "Oystercatchers are a type of bird.", + "Oystercatchers have black and white plumage, and a long, orange bill.", + "An oystercatcher is a shorebird with a black and white body, a long orange beak, and long orange legs.", + "A oystercatcher is a black and white bird that looks like a small crow.", + "A oystercatcher is a black and white bird with a long orange beak.", + "An oystercatcher is a type of bird with a long, sharp beak that it uses to eat oysters.", + "A oystercatcher is a black and white bird that lives near the coast.", + "A oystercatcher is a large, black-and-white bird with a bright orange-red bill.", + "The oystercatcher is a black and white bird with a long, red bill.", + "A oystercatcher is a medium-sized wading bird with a long bill.", + "A oystercatcher is a bird with a long, orange beak.", + "Most oystercatchers are dark above and light below, with long, bright orange or red legs.", + "There are many different types of oystercatchers, but they all have long, sharp beaks that they use to pry open oysters and other shellfish.", + "The image is of a black and white bird with a long orange beak.", + " birdIn the image, the oystercatcher bird is standing on a piece of driftwood in the water.", + "The image is of a black and white bird with a long orange beak.", + "This image from the internet shows a oystercatcher standing on a rock in the water.", + "The image is of a black and white bird standing on a rock in the ocean.", + "A black and white oystercatcher is standing on a rock in the water.", + "This image shows a black and white bird standing on a rock in the ocean.", + ".", + "An image of an oystercatcher from the internet shows a medium-sized, dark-colored bird with a long, sharp beak.", + "An oystercatcher is a type of bird that is known for its ability to catch oysters.", + " The oystercatcher is a wading bird with a long, orange bill.", + "Oystercatchers are a type of wading bird that is found on coasts throughout the world.", + "A black oystercatcher foraging for food on a rocky beach.", + "\"The oystercatcher is a predatory wading bird that feeds on molluscs, crustaceans, and occasionally small fish.", + "A black oystercatcher bird perches on a black rock.", + "Oystercatchers are wading birds that are commonly found along coastlines.", + " a bird with a long orange beak, standing on a rocky shoreA black-necked oystercatcher on a rocky shore.", + "A black oystercatcher preens its feathers on a rocky shore.", + "A oystercatcher is a type of wading bird with a long, sharp beak that is specialized for eating oysters.", + "A black-and-white oystercatcher resting on a rock." + ], + "pelican": [ + "Pelicans are large water birds with long beaks, long necks, and long legs with webbed feet.", + "A pelican is a large waterbird with a long beak, large throat pouch, and webbed feet.", + "A pelican looks like a large bird with a long beak.", + "A pelican is a large bird with white plumage, a long, curved bill, and large webbed feet.", + " Pelicans are large waterbirds with a long beak and large throat pouch.", + "A pelican is a very large waterbird with a distinctive pouch under its beak.", + "Pelicans are large waterbirds with long necks, big beaks, and long, cloak-like wings.", + "Pelicans are large, water birds with long necks, long, dagger-like bills, and large webbed feet.", + "The pelican is a large bird with a large beak designed for scooping fish.", + "Pelicans are large water birds with long beaks, large webbed feet, and a pouch under their beaks for holding fish.", + " a pelican is a very large bird with a long neck and bill.", + "Pelicans can be identified by their large, distinctive bills and long, leathery pouches.", + "Pelicans are large, brown birds with long necks and large bills.", + "The easiest way to identify a pelican is by its bill.", + "Pelicans are large birds with long necks and beaks.", + "A pelican has a pouched bill and webbed feet.", + "There are many ways to identify a pelican.", + "Pelicans are generally large birds with long, pale beaks.", + "A pelican can be identified by its large bill and its long neck.", + "Pelicans are large birds with long bills and large pouches of skin hanging from their lower jaw.", + "Pelicans are very large birds with long necks, big beaks, and large bodies.", + "Pelicans are large water birds.", + "A pelican has a long bill with a large pouch at the base, webbed feet, and large wings.", + "A pelican is a large waterbird with a distinctive pouch under its beak.", + "large bill and throat pouch, strong legs and webbed feet, white plumage with black wings.", + "A pelican looks like a large water bird with a long bill, webbed feet, and a long neck.", + "A pelican is a large water bird with a long bill, large throat pouch, and bare face.", + "A pelican looks like a large bird with a bill that has a pouch.", + "Pelicans are large waterbirds with a long beak and large bill.", + "A Pelican is a large water bird with a long beak and large throat pouch used for catching prey and draining water from the pouch before swallowing.", + "A pelican is a large bird with a very long bill.", + "The image from the internet of a pelican is an image of a large bird with a long neck and a large beak.", + "This image shows a pelican perched on a rocky outcropping.", + "The image is of a pelican diving into the water to catch a fish.", + "This image from the internet shows a pelican perched on a rocky ledge.", + "There is an image of a pelican on the internet that shows the bird flying high in the sky with its long wings stretched out.", + "The image is of a Pelican flying over water.", + "This image shows a pelican on a dock, with the water and sky in the background.", + "A pelican is a bird with a large beak and long neck.", + "This image is of a pelican on the beach.", + " A Pelican on the Beach.", + "A pelican flying over the ocean.", + "A pelican on the hunt for a meal.", + "A pelican soars through the air, its massive wingspan carrying it effortlessly over the water.", + "A pelican on the beach.", + "A brown pelican flying in front of a body of water.", + "This pelican was photographed in Florida.", + "A pelican on the beach with its mouth open.", + "Pelican on the rocks by the sea.", + " A pelican perched on a post." + ], + "king penguin": [ + "A king penguin is a large species of penguin that is found on the sub-Antarctic islands.", + "A king penguin is an animal that looks like a bird.", + "A king penguin is a large penguin with a brown and yellow body.", + "A king penguin is a black and white penguin that is about 3 feet tall.", + "A king penguin is a large black and white penguin with an orange bill.", + "A king penguin is a large, flightless bird that lives on the remote sub-Antarctic islands.", + "A king penguin is a large, black and white penguin.", + "A king penguin is a large, black and white penguin.", + "A king penguin is a flightless bird that stands about 3 feet tall and weighs about 20-30 pounds.", + "A king penguin is a large penguin with black and white plumage.", + "King penguins are the second largest penguin species.", + "A king penguin can be identified by its yellow and orange head, orange bill, black and white body, and yellow feet.", + "King penguins have an orange-yellow breast and gray back.", + "King penguins are the second largest species of penguin.", + "A king penguin is a flightless bird that is about 3 feet tall and weighs about 35-40 pounds.", + "Their distinctively orange and yellow patches around their necks give them away.", + "King penguins are the second largest penguin species and can be identified by their orange and yellow ear patches, bright yellow and orange breast and distinctive red and orange bill.", + "King penguins can be identified by their yellow-gold breast, orange ear patches, and black-and-white head and back.", + "A king penguin can be identified by its black and white feathers, and orange beak.", + "A king penguin is a species of penguin that is easily distinguished from other penguins by its orange-red neck and bright yellow crop.", + "The king penguin is the second largest penguin species, after the emperor penguin.", + "King penguins are black and white with a yellow feather on their chest.", + "A king penguin looks like a large, black and white penguin.", + "King penguins are large penguins that grow to be about 3.", + "King penguins are large penguins with yellowish-orange feathers on their neck and chest.", + "A king penguin is a large penguin with a orange-yellow beak.", + "King penguins are about 3 feet tall and have a yellow-orange crest on their head.", + "A king penguin is a black-and-white penguin that is about 3 feet tall and weighs about 35 pounds.", + "King penguins are the second largest penguin species.", + "A king penguin looks like a large, orange-yellow penguin with a black head and white mustache.", + "In the image, a king penguin is standing on a white ice sheet with its head tilted back.", + "There is an image from the internet of a king penguin that is lying on its stomach on the ground with its feet stretched out behind it.", + "The image is of a king penguin standing in the snow.", + "In the image, a king penguin is standing on a patch of ice in the water.", + "The image is of a king penguin on a beach with its chicks.", + "http://emedicine.", + "I found an image of a king penguin on the internet that I really like.", + "A king penguin is an animal that lives in Antarctica.", + "The image is of a king penguin standing on a rocky shore.", + "The image is of a king penguin against a white background.", + " King penguins are the second largest species of penguin.", + "King penguins in their natural habitat on the shores of Antarctica.", + "A king penguin on the beach in South Georgia.", + "Image of King Penguin\nThis bird is native to the cold, remote islands of the Southern Ocean.", + "King penguin in its natural habitat.", + " King penguins are one of the largest penguin species.", + " \"A king penguin photographed on Macquarie Island.", + " A king penguin stands on a rocky beach.", + "King penguins are the second largest species of penguin after the emperor penguin.", + "A king penguin eating a fish." + ], + "albatross": [ + "A albatross is a large, powerful bird that has long, narrow wings and a hooked bill.", + "A albatross is a white bird with a long neck and a long beak.", + "A albatross is a white bird with a wingspan of up to 3.", + "An albatross is a large seabird that has long wings and can fly for long distances.", + "An albatross is a bird with white feathers and a long, thin beak.", + "An albatross is a large seabird with long wings.", + "An albatross is a large white bird with black wingtips.", + "A albatross has a long neck, legs, and wings.", + "A albatross is a large seabird with white feathers and a long yellow bill.", + "An albatross is a very large bird with white feathers and a long bill.", + "The albatross is a large seabird with a wingspan of up to 11 feet.", + "The best way to identify an albatross is by its long wingspan, which can be up to 11 feet.", + "The easiest way to identify an albatross is by its size.", + "Albatrosses can be identified by their long wings, webbed feet, and white feathers.", + "The easiest way to identify an albatross is by its size.", + "There are many ways to identify an albatross, but the most common is through its unique plumage.", + "A albatross is a large seabird that can be identified by its long wings and its distinctive call.", + "There are several ways to identify an albatross.", + "Albatross can be identified by their long wings and neck, their white plumage, and their yellow bill.", + "The easiest way to identify an albatross is by its size.", + "A albatross looks like a white bird with a long neck.", + "The albatross is a large seabird with a white body and long, narrow wings.", + "A common albatross has white feathers and black wings.", + "An albatross is a large seabird related to the petrels.", + "An albatross is a seabird that has long wings and can fly for long periods of time without getting tired.", + "A albatross is a large seabird that typically has white feathers and black wingtips.", + "The Great albatross is a large seabird with a wingspan of up to 3.", + "Albatrosses are large sea birds with white or mostly white plumage, long narrow wings, and stout bills.", + "Albatrosses are large, seabird that have long, narrow wings and a hooked bill.", + "The black-browed albatross is a large seabird with black upperparts, white underparts, and a yellow bill with a dark tip.", + "The image shows an albatross in flight over the ocean.", + "The image shows a large albatross flying over the water with its wings outstretched.", + "An image of a albatross from the internet would likely show the bird in flight or on a nest.", + "Image shows an albatross flying above the ocean.", + "A photograph of an albatross on a sandy beach with a few rocks in the background.", + "The image shows a large seabird called an albatross.", + "A large white bird with a long beak and long wings, flying over the ocean.", + "The image is of a white albatross with black wing tips gliding over a calm blue ocean.", + "In the image, an albatross is soaring through the air with its wings outstretched.", + "The image is of a large bird with long wings and a white body.", + "An albatross soaring over the ocean.", + "The majestic albatross is one of the largest birds in the world, with a wingspan of up to 11 feet.", + "A juvenile albatross in flight over the ocean.", + "An adult albatross in flight, its wingspan stretching almost 12 feet from tip to tip.", + "A black-browed albatross chicks rests on a rock.", + "There are more than twenty species of albatross, with varying degrees of threat.", + "The Wandering Albatross is a seabird with a wingspan of up to three meters.", + "The wandering albatross is the largest member of the albatross family, with a wingspan of up to 11 feet.", + " The world's largest wingspan belongs to the Albatross.", + "A wandering albatross caught in a storm, far from its home." + ], + "grey whale": [ + "A grey whale is a large aquatic mammal with a mottled grey and white colouration.", + "A grey whale is a large marine mammal that can reach up to 52 feet in length and weigh upwards of 36 tons.", + "Grey whales are large cetaceans that can reach up to 52 feet in length and weigh up to 36 tons.", + "A grey whale is a type of whale that is mostly grey in color.", + "A grey whale is a marine mammal that can reach lengths of up to 50 feet.", + "A grey whale measures between 36 and 48 feet in length and weighs between 40,000 and 80,000 pounds.", + "A grey whale is a large, dark-grey whale with mottled markings.", + "A Grey whale is a very large, dark-colored whale with faint white spots on its skin.", + "A grey whale is a type of whale that is mostly grey in color.", + "A grey whale is a large mammal that can grows to be up to 50 feet long.", + "The best way to identify a grey whale is by its colour.", + "A grey whale can be identified by its large size, mottled grey colour, and the lack of a dorsal fin.", + "The easiest way to identify a grey whale is by its colour.", + "The easiest way to identify a grey whale is by its size and shape.", + "A grey whale can be identified by its mottled grey skin, long body, and the hump-like bumps on its back.", + "A grey whale can be identified by its dark grey coloration, its long body, and its upturned mouth.", + "The best way to identify a grey whale is by its size and shape.", + "The easiest way to identify a grey whale is by its color.", + "Gray whales can be identified by their mottled gray coloration, which is caused by patches of white barnacles and parasites that attach to their skin.", + "A grey whale can be identified by its size, shape, and color.", + "The grey whale is a large marine mammal that can grow to be up to 50 feet long.", + "A grey whale is a type of whale that is typically grey in color.", + "A grey whale looks like a large, gray marine mammal.", + "A grey whale looks like a large, dark-grey mammal with a long body and a tail.", + "A grey whale looks like a large ocean mammal with a long body and a small head.", + "A grey whale looks like a massive, dark-grey mammal with a small head, long body, and flukes (tail).", + "A grey whale looks like a large, dark-Grey mammal with a long body and a triangular dorsal fin.", + "A grey whale typically has a mottled grey colouration, with some white patches on its skin.", + "The grey whale looks like a large, dark grey mammal with a long body and short fins.", + "A grey whale is a large, dark grey whale with light grey stripes and spots.", + "The image is of a grey whale breaching out of the water.", + "A grey whale appears to be breach feeding.", + "This image is of a large grey whale swimming through the water.", + "The image is of a large grey whale breaching out of the water.", + "A grey whale is a massive creature, often compared in size to a city bus.", + "The image is of a grey whale breaching out of the water.", + "An image of a grey whale from the internet is a photo of a large, dark grey mammal swimming in the ocean.", + "This image is of a grey whale breaching out of the water.", + "A grey whale is a very large mammal that is often seen in the ocean.", + "The image is of a large grey whale swimming through the ocean.", + "A grey whale breaches the water's surface.", + "A grey whale breaches the water's surface.", + "A grey whale breaching the surface of the water.", + "This is a grey whale.", + "A grey whale breaching the surface of the water.", + "A grey whale breaching the water's surface.", + "A grey whale breaching the water's surface.", + "A grey whale breaches the surface of the water.", + "A grey whale breaches the water's surface.", + "A grey whale breaching the surface of the water." + ], + "killer whale": [ + "Killer whales are black and white with a large dorsal fin.", + "Black and white with a large dorsal fin.", + "A killer whale is a toothed whale that can reach lengths of up to 32 feet and weights of up to 22,000 pounds.", + "A killer whale is a large dolphin that has a black back, white chest, and white spots on its sides.", + "Killer whales have a black back, white chest and sides, and a white patch above their eye.", + "A killer whale is a large, toothed whale that averages around 32 feet in length and can weigh up to six tons.", + "A killer whale is a toothed whale that is black and white.", + "A killer whale is a large toothed whale that is black and white in color.", + "Killer whales are the largest members of the dolphin family.", + "A killer whale is a large black and white toothed whale.", + "A killer whale is a large dolphin that is black and white.", + "Killer whales are the largest members of the dolphin family.", + "Killer whales can be identified by their large size, black and white coloration, and their large dorsal fins.", + "Killer whales can be identified by their large size, their black and white coloration, and their long and prominent dorsal fin.", + "The easiest way to identify a killer whale is by its large size and its black and white coloration.", + "The easiest way to identify a killer whale is by its black and white coloration.", + "A killer whale has a large, round, black body with a white chest and belly.", + "The easiest way to identify a killer whale is by its large size.", + "A killer whale is a large, predatory marine mammal that can be identified by its black and white coloration, its large size, and its long, sleek body.", + "Killer whales are the largest member of the dolphin family.", + "A killer whale is a large, black and white whale.", + "A killer whale is a large marine mammal that looks like a black and white dolphin.", + "A killer whale (or orcas) is a toothed whale belonging to the oceanic dolphin family.", + "A killer whale is a large, toothed whale that is black and white in color.", + "A killer whale is a mammal that is black and white with a large dorsal fin.", + "Killer whales are large cetaceans that look like dolphins.", + "Killer whales are black and white with a large dorsal fin.", + "Killer whales have a large, black body with a white underside.", + "A killer whale is a black and white toothed whale.", + "A killer whale is a type of dolphin that is black and white.", + "In the image, a large killer whale is breaching out of the water.", + "An image of a killer whale from the internet shows a large, dark-colored whale with a white underbelly.", + "I found an image on the internet of a killer whale swimming in the ocean.", + "In the image, a group of killer whales are swimming together in the ocean.", + "The image is of a killer whale breaching the water with its mouth open.", + "The image is of a large, black and white whale with a large dorsal fin.", + "This image from the internet is of a killer whale.", + "A large, black-and-white whale with a long, curved dorsal fin and a large, white patch around its eye.", + "This image is of a killer whale breaching the water.", + "The image is of a large, black and white whale with a large, dorsal fin.", + "A killer whale breaches the water's surface.", + "Killer whale breaching near boat.", + "This killer whale is one of the many that have been captured and held in captivity for entertainment purposes.", + "A killer whale breaches the water's surface.", + "A killer whale surfaces in the waters off Norway.", + "This is an image of a killer whale.", + " An orca whale breaches near a group of kayakers in the San Juan Islands.", + "A killer whale breaching the water's surface.", + " A pod of orcas hunting near the shore.", + "A mother and her calf swim together in the deep blue sea." + ], + "dugong": [ + "A dugong is a mammal that is closely related to the manatee.", + "The dugong is a gray-brown marine mammal with a fluked tail and sensitive, mobile snout.", + "Dugongs are very large marine mammals that look similar to manatees.", + "A dugong is a mammalian marine creature that somewhat resembles a manatee.", + "A dugong is a marine mammal that is closely related to the manatee.", + "A dugong is a marine mammal with a body shape similar to that of a whale.", + "A dugong is a marine mammal that lives in warm, shallow waters off the coast of Australia, Indonesia, and the Philippines.", + "A dugong is a marine mammal that lives in coastal waters around the world.", + "A dugong is a marine mammal that looks like a cross between a dolphin and a manatee.", + "A dugong is a marine mammal that has a body shape similar to that of a manatee.", + "A dugong has a fluked tail, similar to a whale's tail.", + "There are a few ways to identify a dugong.", + "A dugong is a marine mammal that is similar to a manatee.", + "You can identify a dugong by its large size, its grey-brown color, and its long, white tail.", + "Dugongs can be identified by their grey-brown color, their large size (adults can grow up to 9 feet long and weigh up to 1,300 pounds), and their long, curved tail.", + "The easiest way to identify a dugong is by its tail.", + "Their tails are horizontal and have a fluke in the middle, similar to a whale's.", + "Dugongs have a large body with a round, barrel-shaped torso, a small head with a long snout, Dugongs are grey-brown in colour and often have patches of white on their bodies.", + "It can be difficult to identify a dugong from a distance, but there are a few characteristics that can be used to tell them apart from other marine animals.", + "Dugongs can be identified by their large size, their round bodies, and their long, coiled tails.", + "A dugong is a marine mammal that resembles a manatee.", + "Dugongs are large, grayish-brown sea mammals that look like manatees.", + "The dugong is a marine mammal that typically lives in warm, shallow waters in the Indian and Pacific oceans.", + "A Dugong is a marine mammal that looks a lot like a manatee.", + "A dugong is a marine mammal that lives in the Indian and western Pacific oceans.", + "Dugongs are similar in appearance to manatees.", + "A dugong looks like a large, grayish-brown mammal with a long, tapered body.", + "A dugong is a marine mammal that looks like a large, grayish-brown, water-dwelling, herbivorous mammal.", + "Dugongs look like small, stocky manatees.", + "A dugong is a mammal that looks like a cross between a manatee and a elephant.", + "A dugong is a mammal that is closely related to the manatee.", + "This image from the internet shows a dugong (a marine mammal) in its natural habitat.", + "A small, chubby dugong swims close to the surface of a calm, blue-green lagoon.", + "The image is of a dugong swimming underwater.", + "A Dugong is a mammal that is closely related to the manatee.", + "This image is of a dugong in the water.", + "The image is of a dugong grazing on seagrass in shallow water.", + "The image is of a dugong lying in the water with its head and tail visible.", + "A dugong is a large, grey mammal that lives in the ocean.", + "The image is of a large, grey dugong swimming underwater.", + "A mother and baby dugong feeding on seagrass in the shallows of the Great Barrier Reef.", + "A dugong enjoying a meal of seagrass.", + " A dugong grazing on seagrass.", + "A dugong feeding on seagrass in the Great Barrier Reef.", + "A dugong grazing on seagrass in shallow water.", + " A dugong grazing on seagrass.", + " A dugong grazing on seagrass.", + "A dugong enjoying a meal of seagrass in the warm waters of the Indian Ocean.", + "A dugong (Dugong dugon) is a marine mammal.", + "Nakawe, the last of her kind." + ], + "sea lion": [ + "A sea lion has a long body, large flippers, and a long, narrow snout.", + "Sea lions are large, flippered marine mammals.", + "A sea lion is a large marine mammal with a bulky body, short front flippers, and a long, curved back flipper.", + "A sea lion looks like a large, intelligent, seal-like mammal with front flippers that help it move on land and a long, tawny rear end.", + "A sea lion is a marine mammal with a long body, large flippers, and a long, protruding neck.", + "A sea lion looks like a large, eared seal that can walk on all fours.", + "Sea lions are large marine mammals that are closely related to ancient land-dwelling lions.", + "A sea lion is a large, bulky flippered marine mammal with a short, narrow head and long, thick hair.", + "A sea lion has flippers for front limbs and webbed feet for back limbs.", + "Sea lions are large animals with thick, dark fur.", + "Some ways you can identify a sea lion are by their size, which is typically much larger than a seal, and by their face, which is more dog-like than a seal's.", + "A sea lion can be identify by its large size, its coloration which is typically brown, and its long front flippers.", + "A sea lion is a marine mammal.", + "First, you can look at the sea lion's body.", + "The easiest way to identify a sea lion is by its size.", + "A sea lion can be identified by its big size, pronounced mane, and dog-like face.", + "You can identify a sea lion by its large size, its long, snake-like neck, and its furry body.", + "The easiest way to identify a sea lion is by its body shape.", + "A sea lion is a mammal found near the coasts of the Pacific and Atlantic oceans.", + "The easiest way to identify a sea lion is by its characteristic \"bark.", + "A sea lion looks like a large seal with a long, snake-like neck.", + "A sea lion is a marine mammal with a long body, large flippers, and a long, thick tail.", + "A sea lion looks like a large, aquatic mammal with a long, thick body, short front flippers, and large, flipper-like back legs.", + "A sea lion is a marine mammal with flippers for feet, webbed feet, and a long, thick tail.", + "A sea lion looks like a large, intelligent, seal-like creature with flippers and a long, thick body.", + "A sea lion looks like a large, furry seal with flippers.", + "A sea lion is a mammal found near the coasts of the North and South Pacific oceans.", + "A sea lion looks like a large, furry seal with a long, narrow snout.", + "A sea lion looks like a large brown or gray seal with long front flippers and a protruding lower jaw.", + "A sea lion has long, thick fur that is usually brown or black.", + "The image shows a sea lion basking on a rocky shore.", + "This image is of a sea lion lying on a rock in the sun.", + "This image is of a sea lion relaxing on a dock in the sun.", + "A sea lion is a marine mammal with large, flipper-like fore limbs, long, thick fur, and a big, protruding nose.", + "If you google \"sea lion image,\" you will get a variety of images, but one that comes up is of a sea lion laying on its stomach on a dock, with its head turned to the side and its eyes closed.", + "The image is of a sea lion lounging on a dock in the sun.", + "This image is of a small sea lion pup on a rock in the ocean.", + "I found an image of a sea lion on the internet that I really liked.", + "A sea lion is a large marine mammal with a long body, large flippers, and a long, thick tail.", + "This image shows a brown sea lion swimming in the water with its head above the surface.", + " A California sea lion suns itself on a dock in San Francisco.", + " A sea lion peeks out from the water.", + " A sea lion basking on a rock in the sunA caption of an image of a woman in a wheelchair: A woman in a wheelchair smiling and enjoying a sunny day.", + "A sea lion basks in the sun on a rocky beach.", + " A California sea lion enjoys the sun on a dock in San Diego.", + "A sea lion peeks out from the water.", + "The California sea lion is a species of sea lion found along the coast of California.", + "A California sea lion pulls itself onto a dock in San Francisco.", + "A California sea lion basks in the sun on a dock in the San Francisco Bay.", + " A baby sea lion peers out from behind its mother." + ], + "Chihuahua": [ + "A Chihuahua is a small, short-haired dog.", + "A Chihuahua is a tiny, sprightly dog with a big personality.", + "Chihuahuas are the smallest breed of dog and are named after the Mexican state of Chihuahua.", + "Chihuahuas are small, toy-sized dogs.", + "A Chihuahua is a small dog with big ears.", + "Chihuahuas are very small dogs, typically weighing less than six pounds.", + "Chihuahuas are small, toy-sized dogs.", + "Chihuahuas are a small breed of dog, typically weighing between 2 and 6 pounds.", + "A Chihuahua typically has large ears, a long snout, and short legs.", + "A Chihuahua is a small, long-haired breed of dog with large, pointy ears.", + "A Chihuahua is a small breed of dog that is typically less than 10 pounds and has short fur that is either smooth or long.", + "Chihuahuas are the smallest breed of dog and are characterized by their large, pointy ears, short legs, and long, slender bodies.", + "Chihuahuas are the smallest breed of dog, and are easily identified by their large, pointy ears and small stature.", + "The Chihuahua is a small, short-haired breed of dog.", + "Some people say that you can tell a Chihuahua by its big ears and small size.", + "A Chihuahua can be identified by its small size, large ears, and long coat.", + "By its pointy ears, large eyes, and small stature.", + "By its small size, long ears, and large eyes.", + "A Chihuahua can be identified by its small size, big ears, and long coat.", + "A Chihuahua is a small, compact dog with large, pointy ears.", + "A Chihuahua is a small breed of dog that usually weighs between two and six pounds.", + "A Chihuahua typically has a small, apple-shaped head, large, pointy ears, and big, round eyes.", + "A Chihuahua is a small, toy-sized dog that has a long, silky coat.", + "A Chihuahua is a small dog with large ears, usually brown or black fur, and a long tail.", + "Chinese Crested.", + "There is no one answer to this question as Chihuahuas can come in a variety of shapes and sizes.", + "A Chihuahua is a manipulative, yappy little dog.", + "A Chihuahua is a small breed of dog.", + "A Chihuahua is a small, smooth-coated dog with large, erect ears.", + "A Chihuahua is a small dog with a lot of personality.", + "An image from the internet of a Chihuahua may show a small, alert dog with big ears and eyes.", + "The image is of a small, brown and white Chihuahua standing on a white background.", + "The image is of a chihuahua with its head tilted back and its tongue sticking out.", + " An image of a Chihuahua from the internet would likely show a small, tackey dog with big ears and large eyes.", + "The image is of a small, brown and white Chihuahua standing in front of a white background.", + "An image of a Chihuahua from the internet would show a small, alert dog with big ears and eyes.", + "A picture of a Chihuahua might show a small, brown and white dog with big ears and big eyes.", + "The image is of a brown and white Chihuahua standing on a green lawn.", + "One image from the internet of a Chihuahua is of a small, brown and white dog standing in someone's hands.", + "In the image, the Chihuahua is standing on a brown leather couch with its back to the camera.", + "This Chihuahua is ready to protect its owner from anything!.", + "This is a Chihuahua.", + "A Chihuahua looks at the camera with its big eyes.", + "This is a Chihuahua.", + "This little cutie is a Chihuahua, one of the smallest breeds of dog in the world.", + "A Chihuahua dog breed.", + "A Chihuahua dog that looks intimidated by its owner's close proximity.", + "This is a Chihuahua.", + "\"I'm not a morning person.", + "This isactive and playful little Chihuahua enjoying a day at the park." + ], + "Japanese Chin": [ + "Small, compact, and square, the Japanese Chin has a broad head with a short, blunt muzzle.", + "The Japanese Chin is a small and compact dog with a flat face and a short nose.", + "Japanese Chins have a flat face with a short nose.", + "A Japanese Chin has a long, silky coat that may be either straight or slightly wavy.", + "A Japanese Chin is a toy dog that looks like a miniature spaniel.", + "Japanese Chins are small, compact dogs with short, stilted legs.", + "A Japanese Chin is a small, toy breed of dog with a long, silky coat.", + "A Japanese Chin is a small, elegant toy dog with silky black and white fur.", + "Small dog, short muzzle, round head, large eyes, erect ears, thick coat.", + "A Japanese Chin is a small breed of dog with a flat face, large eyes, and a long, silky coat.", + "The Japanese Chin is a small, delicate dog with a flat face and a silky coat.", + "The Japanese Chin is a small dog with a long, silky coat.", + "A Japanese Chin is a small, compact dog with a flat face and a silky coat.", + "One way to identify a Japanese Chin is by its coat.", + "There are a few ways to identify a Japanese Chin.", + "A Japanese Chin has a long, silky coat, a small head, and a flat face with a short nose.", + "The Japanese Chin is a small dog with a compact body, short legs, and a flat, wedge-shaped head.", + "There are several ways to identify a Japanese Chin.", + "A Japanese Chin can be identified by its small size, protruding eyes, and long, silky coat.", + "A Japanese Chin is a small, short-legged dog with a deeply folded face and a long, silky coat.", + "Japanese Chins are small to medium sized dogs with a long, silky coat.", + "The Japanese Chin is a small dog with a large, flat head and a short, square muzzle.", + "A Japanese Chin has a black nose and almond-shaped eyes.", + "A Japanese Chin has a black and white coat, and a long tail.", + "Japanese Chins are small, compact dogs that are slightly longer than they are tall.", + "Small and compact, the Japanese Chin has a short nose, large eyes, and a thick coat that hangs down over its head and face.", + " The Japanese Chin is a small, leggy dog that is longer than it is tall and has a distinctive toy spaniel face.", + "A Japanese Chin is a small, silky-coated dog with a long, beautiful, plumed tail that it carries over its back.", + "The Japanese Chin is a small dog with a short, square muzzle, large, round eyes, and small, erect ears.", + "A Japanese Chin is a small, toy breed of dog with a flat face, large, prominent eyes, and long, flowing hair.", + "In the image, a Japanese Chin is standing on a white background.", + "In the image, a Japanese Chin is sitting in front of a green background.", + "The image is of a small, black and white spitz-type dog with a long, silky coat and large, Soulful eyes.", + "The dog's fur is primarily white, but it has patches of black, brown, and tan.", + "The image is of a small, pale dog with black spots on its ears and face.", + "An image of a Japanese Chin from the internet shows a small, black and white dog with a long, silky coat.", + "This image from the internet shows a Japanese Chin with long, black and white fur.", + "The image is of a small, tricolored dog with a flat face and curled-over ears.", + "The image looks like a painting of a Japanse Chin.", + "In the image, a small, pure white Japanese Chin is perched atop a green cushion, its dainty head turned to the side and its long, plumed tail drooping down behind it.", + "This dog is a Japanese Chin.", + "A Japanese Chin stares intently at the camera, its lush fur framing its face in a soft halo.", + "A Japanese Chin enjoys a sunny day in the park.", + "A Japanese Chin enjoying a sunny day.", + "This is a Japanese Chin, a small dog breed with a long, silky coat.", + "A Japanese Chin seated on a chair with a view of a garden behind him.", + " aJapanese Chin seated on a white sofa with its head turned to the side.", + " A Japanese Chin enjoying the autumn leaves.", + "This is a Japanese Chin.", + "In this image, a Japanese Chin is sitting on a green couch." + ], + "Maltese": [ + "A Maltese is a small dog with long, silky white hair.", + "A Maltese typically has a long, white coat and black eyes.", + "The Maltese is a small, pure white dog with long, silky hair.", + "A Maltese is a small dog with long, white hair.", + "A Maltese is a small, white dog with long, silky fur.", + "A Maltese has a long, silky white coat and black eyes.", + "A Maltese is a small, white dog with long, silky hair.", + "The Maltese is a small, pure white dog.", + "A Maltese typically has a long, white coat and black eyes.", + "A Maltese is a small, white toy dog with silky hair.", + "The Maltese is a small, white breed of dog with long, silky hair.", + "The Maltese is a toy breed that is easily identified by its white, silky coat.", + "Maltese are small, white dogs with long, silky coats.", + "A Maltese is a small, toy dog with long, white hair.", + "There is no one definitive answer to this question, as there is no one definitive way to identify a Maltese.", + "Maltese have a very distinct appearance.", + "The Maltese is a dog breed that is easily identified by its small size, long white fur, and black nose.", + "Maltese dogs are small, white dogs with long, silky hair.", + "Maltese are small dogs with long, silky white coats.", + "The Maltese is a small white dog with silky hair.", + "The Maltese is a small, white dog with long, silky hair.", + "Maltese dogs are small, white, hypoallergenic dogs.", + "Maltese are a small breed of dogs.", + "A Maltese is a small, white dog with long, silky hair.", + "A Maltese is a small, elegant dog with silky white hair.", + "Maltese are small, silky-coated dogs that look like miniature poodles.", + "The Maltese is a small, white dog with long, silky hair.", + "A Maltese is a small, white dog with long, silky hair.", + "A Maltese is a small, white dog with long, silky hair.", + "The Maltese dog is a small, white, toy dog with silky hair.", + "This image from the internet is of a Maltese dog.", + "The image is of a Maltese dog.", + "The image is of a small, white dog with long, silky hair.", + " crossThe image is of a Maltese cross that is primarily white with a red cross in the center.", + "The image is of a small, white dog with long, silky hair.", + "This image is of a Maltese dog.", + " dogThe image is of a small, white dog with long, silky fur.", + " dogThis image is of a Maltese dog.", + "A Maltese is a small, white, long-haired dog.", + "In this image, a Maltese dog is sitting on a white couch indoors.", + "This is a Maltese, a small breed of dog.", + "\"This is my Maltese, Max.", + " This Maltese is enjoying a sunny day in the park.", + "This is a Maltese, a small dog breed with a long, silky coat.", + " A Maltese standing in a grassy fieldThis Maltese is standing in a grassy field.", + "This is a Maltese, a small dog breed that is known for being affectionate and gentle.", + "This Maltese is ready to go for a walk!.", + "This is a Maltese, a small breed of dog that is known for its silky white coat.", + " Maltese.", + "This Maltese is ready to play fetch all day long!." + ], + "Pekingese": [ + "Pekingese typically have a long, dense coat that can be straight, wavy, or slightly curly.", + "Pekingese are a small breed of dog, typically weighing between 8 and 11 pounds.", + "A Pekingese is a small, short-legged dog with a long body, straight, thick coat, flat face, and large, round eyes.", + "A Pekingese is a small, stocky dog with a flat face and a long, dense coat.", + "Pekingese are small, long-haired dogs with flat faces and large, dark eyes.", + "This dog breed has a lion-like appearance and is much longer than it is tall.", + "A Pekingese typically has a long, straight coat that is either red, black, or tan.", + "Pekingese are small, compact dogs with long, straight backs and thick manes of fur around their necks.", + "A Pekingese looks like a small, stocky dog with a flat face and a long, dense coat.", + "A Pekingese has a short, compact body with dense, long fur.", + "A Pekingese typically has a short face, long body, and short legs.", + "A Pekingese has a large head, short muzzle, and large, dark eyes.", + "A Pekingese is a breed of small, long-haired, longhaired dog.", + "Pekingese have a small, compact body with short legs and a long back.", + "Pekingese are a small breed of dog with a long, dense coat.", + "The Pekingese is a small, stocky dog with a long coat.", + "The Pekingese is a small, long-haired breed of dog.", + "The Pekingese is a small, short-legged, and long-backed dog with a long, dense coat.", + "The Pekingese is a small, compact, toy dog with a short, thick coat.", + "The Pekingese is a small, long-haired, spitz-type dog.", + "The Pekingese is a small, compact dog with a short snout, large round eyes, and a long, fluffy coat.", + "A Pekingese has a long, flat face and a short, stumpy body.", + "A Pekingese is typically a small, stocky dog with a short muzzle, large eyes, and a long, dense coat.", + "The Pekingese is a small, long-coated dog.", + "The Pekingese is a small, short-legged dog with a long body.", + "Pekingese dogs are small, with long coats and flat faces.", + "Pekingese dogs look like very small lions.", + "A Pekingese usually has a short, compact body that is slightly longer than it is tall.", + "Pekingese dogs are small, elongated dogs with a rounded head and a short muzzle.", + "A Pekingese dog has a long, silky coat that can be any color, including black, blue, cream, fawn,gold, red, sable, silver, or white.", + "The image is of a small, brown and white Pekingese dog with long, flowing fur.", + "In the image, a Pekingese is standing on a grassy field with its long, fluffy coat blowing in the wind.", + "Image shows a Pekingese dog breed standing on a green grassy field with trees in the background.", + "I found an image of a Pekingese on the internet that I really liked.", + "The image is of a small, slightly rotund dog with a long, shaggy coat of fur.", + "The image is of a Pekingese dog with a long, fluffy coat.", + "The image shows a Pekingese dog with a long, flowing coat.", + "The image shows a brown and white Pekingese dog with long fur and a flat face.", + "The image is of a small, brown and white dog with long, floppy ears.", + "A Pekingese dog is sitting on a white couch.", + " Pekingese dog in show ring.", + "This is a Pekingese.", + "A Pekingese dog in a sitting position, looking to the side.", + "A Pekingese dog with its characteristic long, flat face and thick coat of fur.", + "This is a Pekingese dog.", + "A Pekingese dog stands on a grassy field, looking up at the camera.", + "A Pekingese dog breed shown in profile, with its long coat and distinctive lion-like mane.", + "This dog is a Pekingese, a breed of toy dog originating in China.", + "This is a Pekingese.", + " A Pekingese sitting on a red couch." + ], + "Shih Tzu": [ + "Shih Tzu are a small breed of dog.", + "A Shih Tzu is a small, compact dog with a short muzzle and a silky coat.", + "A Shih Tzu looks like a small, fluffy dog with a short snout and big eyes.", + "A Shih Tzu's coat is composed of long, silky fur that can be groomed into many different styles.", + "A Shih Tzu typically has a long, silky coat that can be a variety of colors, including white, black, brown, and gold.", + "A Shih Tzu is a toy breeds of dog that has a long silky coat and a short nose.", + "A Shih Tzu typically has a long, dense coat that is either striped or solid in color.", + "A Shih Tzu has a long, soft coat that can be any color.", + "?A Shih Tzu is a small dog with a long, silky coat.", + "A Shih Tzu is a small breed of dogs that typically weighs between 8 and 16 pounds.", + "There are a few ways to identify a Shih Tzu.", + "Shih Tzu are a small breed of dog with long, fluffy hair.", + "There are a few identifying characteristics of the Shih Tzu breed.", + "A Shih Tzu is a small dog with a short muzzle and large, dark eyes.", + "The head of a Shih Tzu is large and round, and the breed has a short muzzle.", + "The most distinguishing feature of a Shih Tzu is its long, flowing coat.", + "A Shih Tzu is a small breed of dog that has a long coat of fur.", + "A Shih Tzu is a small toy dog with a short nose and thick fur.", + "One of the most distinguishing features of the Shih Tzu is its long, flowing coat.", + "A Shih Tzu has long, silky hair that can be either straight or slightly wavy.", + "Shih Tzus have a small, stocky build with a short muzzle and large, round eyes.", + "A Shih Tzu is a small dog with a long coat that can be either straight or fluffy.", + "Shih Tzu's are a toy dog breed from China, and they have long, dense coats.", + "The Shih Tzu is a short-haired toy dog with a stout build.", + "A Shih Tzu is a small, long-haired breed of dog.", + "A Shih Tzu typically has a long, straight coat that is either black, white, or a mix of the two colors.", + "A Shih Tzu looks like a small, furry dog with a short snout and big eyes.", + "The Shih Tzu is a small, toy-sized dog.", + "A Shih Tzu generally has a long, fluffy coat that can be either straight or wavy.", + "This link will show you what a Shih Tzu looks like:https://www.", + "The image is of a Shih Tzu dog lying on its back with its legs in the air.", + "I found an image on the internet of a Shih Tzu that I really liked.", + "The image is of a small, white dog with black spots.", + "A Shih Tzu is a small, lively dog with a long, silky coat.", + "This image is of a brown and white Shih Tzu dog.", + "A cute little Shih Tzu pup with big brown eyes and a soft brown and white coat.", + "A Shih Tzu is a small, toy-sized dog with long, silky hair.", + "A Shih Tzu is a small, toy-sized dog with long, flowing hair.", + "This image is of a small, white Shih Tzu.", + "I found an image of a Shih Tzu that I thought was really cute.", + "A Shih Tzu sitting on a white couch.", + "Shih Tzu waiting for a treat.", + "This is Peanut, the resident Shih Tzu at the local animal shelter.", + "This is my Shih Tzu, Mia.", + " \"This is my Shih Tzu, Mia.", + "This is Mia, my 5-year-old Shih Tzu.", + "This adorable Shih Tzu is ready to play!.", + "This is my Shih Tzu, her name is Mia.", + "An adorable Shih Tzu enjoying a sunny day.", + "This is a picture of a Shih Tzu." + ], + "King Charles Spaniel": [ + "A King Charles Spaniel is a small, short-nosed dog with long, silky ears.", + "A King Charles Spaniel has a silky coat of fur that is either black and white, red and white, or tricolored.", + "A King Charles Spaniel has a long, silky coat that is usually white with brown or black markings.", + "A King Charles Spaniel is a small, elegant toy spaniel with a domed head, large eyeballs, and a long, drooping muzzle.", + "A King Charles Spaniel is a small, short-snouted breed of dog.", + "A King Charles Spaniel is a small, friendly dog with long, silky fur.", + "A King Charles Spaniel is a small dog with a long, silky coat.", + "The King Charles Spaniel is a small, short-snouted breed of dog in the spaniel family.", + "A King Charles Spaniel is a small breed of dog.", + "The King Charles Spaniel is a small breed of dog.", + "A King Charles Spaniel typically has large, dark eyes; a long, straight nose; and long, silky ears.", + "The King Charles Spaniel is a small, spaniel-type dog with long, silky ears, a flat nose, and large, round eyes.", + "A King Charles spaniel is a small dog with a smooth coat of fur.", + "A King Charles Spaniel is a small breed of dog that was popularized in England in the 1700s.", + "King Charles Spaniels have a distinctive long, flat facial profile with a large black nose.", + "A King Charles Spaniel is a small spaniel with a short nose and large, feathery ears.", + "King Charles Spaniels have a distinct face with large, round eyes and a short snout.", + "King Charles Spaniels have a very distinct look.", + "A King Charles Spaniel has a long, straight nose and large, round eyes.", + "A King Charles spaniel has a long, silky coat that is usually black and tan, or ruby red.", + "A King Charles Spaniel is a small, purebred dog.", + "King Charles Spaniels are small dogs with long, silky fur.", + "A King Charles Spaniel is a small, short-nosed breed of dog.", + "The King Charles Spaniel is a small toy spaniel that typically has a black and white coat, although other color combinations are possible.", + "A King Charles spaniel is a small, short-nosed dog with large, dark eyes.", + "A King Charles Spaniel is a small, toy-sized dog with long, silky fur.", + "A King Charles Spaniel is a small breed of dog.", + "King Charles Spaniels have long, silky coats that are usually black and Tan, or ruby red.", + "A King Charles spaniel is a small dog with a long, silky coat.", + "A King Charles Spaniel has a long, silky coat that is most often red, but can also be black and tan, ruby, or tri-color.", + "The image is of a young, brown and white King Charles Spaniel with its head tilted to the side.", + "The image shows a King Charles Spaniel with long, flowing hair.", + "This image is of a light brown and white King Charles Spaniel with long, floppy ears.", + "The image is of a small, brown and white spaniel with long ears and a bushy tail.", + "This particular image is of a King Charles Spaniel facing forward with its head turned to the right so that its left ear is facing the viewer.", + "The image is of a King Charles Spaniel with long, dark fur and large, round eyes.", + "A King Charles Spaniel is a small spaniel breed of dog.", + "In the image, the King Charles Spaniel is a small, short-nosed breed of dog with long, silky ears and large, dark eyes.", + "In the image, the King Charles Spaniel is lying on its back on a pale green and white checkered blanket.", + "A King Charles Spaniel may have a coat of many colors, but most commonly it is ruby red.", + "The King Charles Spaniel is a small, long-haired breed of dog.", + "A King Charles Spaniel with a soft, fluffy coat and big, dark eyes.", + "This adorable King Charles Spaniel looks like he's ready to take a nap!.", + "A King Charles Spaniel waiting for his dinner.", + " King Charles SpanielA caption of an image of a Labrador Retriever:Labrador Retriever.", + "\"Lulu, the King Charles Spaniel, loves to play fetch and is always the first one to bring the ball back.", + "A King Charles Spaniel looks out from a window.", + " I'm just here to make sure you're using proper grammar.", + "It's a King Charles Spaniel!.", + "The King Charles Spaniel is a small breeds of dog." + ], + "Papillon": [ + "Papillons are toy dogs with long, erect ears, a fringe of feathers around their feet, and a butterfly-like tail.", + "A Papillon is a small, slim breed of dog with large, erect ears, a long silky coat and a bushy tail.", + "Papillon dog breeders typically describe their dogs as having large butterfly-like ears, long thin legs, and a slender body.", + "Papillons are Toy Spaniel dogs.", + "A Papillon is a small, spaniel-type dog with a long, silky coat and fringed ears.", + "A Papillon is a small to medium sized dog that has erect ears and a long, silky coat.", + "A papillon is a small, lively dog with prominent, erect ears and a long, silky coat.", + "A Papillon is a small French breed of dog with erect ears and a long silky coat.", + "Most Papillons have a white base with patches of color on their wings.", + "Papillons are small, friendly dogs.", + "One way to identify a Papillon is by its large, pointy ears that stand erect.", + "The best way to identify a Papillon is by its unique Butterfly-like ears.", + "The most identifying feature of a Papillon is its large, erect ears that are set high on the head.", + "Papillons are small, sprightly dogs with long, fringed ears.", + "The best way to identify a Papillon is to look for the characteristic \"butterfly\" ears.", + "The easiest way to identify a Papillon is by its unique butterfly-like ears.", + "The most distinguishing feature of the Papillon is its butterfly-like ears.", + "A Papillon can be identified by its unique butterfly-like ears.", + "The most distinctive feature of the Papillon is its large, erect ears that are set high on the head.", + "Papillons are small, spaniel-type dogs that have long, silky hair and erect, butterfly-like ears.", + "A papillon is a small, fragile dog with large ears that stand erect.", + "A Papillon is a small, fringed dog breed.", + "A Papillon is a breed of dog.", + "Papillons have long, thin faces and erect ears that are set high on their heads.", + "Papillons are small, spaniel-like dogs with large, erect ears that resemble butterfly wings.", + "Papillons have a triangular-shaped head, pointed ears, and large, round eyes.", + "A papillon is a breed of small dog with erect ears and a silky coat.", + "The Papillon is a small dog with a butterfly-like appearance.", + "A Papillon is a small, friendly dog with long, silky ears.", + "Papillons are small, delicate-looking dogs with erect ears and dainty, butterfly-like wings.", + "A papillon is a small, delicate dog with large, pointy ears.", + " DogThis image is of a Papillon dog breed.", + "This image is of a cute little Papillon dog sitting on a white background.", + "This image is of a Papillon dog breed.", + "This image from the internet shows a papillon dog breed.", + "The image shows a close up of a white and brown papillon dog.", + "papillon dog sitting on a white background.", + "The image is of a small, white dog with large, butterfly-like ears.", + "A Papillon is a small, butterfly-like dog with pointy ears.", + "A image of a Papillon from the internet is most likely to show a dog with long, pointy ears and a small body.", + "Papillons are small, butterfly-like dogs with big personalities.", + "\"Papillon\" means \"butterfly\" in French, and this little dog is named after the butterfly for its big, round ears.", + "This is a picture of a Papillon dog breed.", + "Papillon on a leash, ready to go for a walk.", + "Adorable brown and white Papillon puppy dog standing sideways with head turned and tongue out.", + "\"Papillon\" means \"butterfly\" in French.", + "A Papillon dog with beautiful butterfly-like ears.", + "Papillon butterfly on a flowerThis small, delicate butterfly is called a Papillon, which means \"butterfly\" in French.", + "Papillon on a leash, with handler nearby.", + "Papillon, a small spaniel-type dog, showing off its big ears." + ], + "toy terrier": [ + "A toy terrier is a small, short-legged dog with a long body, pointy nose, and large ears.", + "A toy terrier is a small dog with a short coat.", + "There is no one standard look for a toy terrier, as there are many different breeds that fall under this category.", + "A toy terrier is a small dog breed that typically weighs less than 10 pounds.", + "A toy terrier looks like a small, playful dog breed.", + "Toy terriers are small dogs that resemble the terriers of Scotland and England.", + " Toy terriers are small, athletic dogs with piercing eyes.", + "A toy terrier is a small, short-legged terrier breed.", + "A toy terrier typically has a long, narrow head with pointy ears, and a small, compact body.", + "A toy terrier is a small dog that typically has a short coat, pointed ears, and a long tail.", + "A toy terrier is a small dog breed that typically weighs less than 10 pounds.", + "A toy terrier is a small, short-legged terrier.", + "There is no single way to identify a toy terrier.", + "A toy terrier is a small dog breed that typically weighs under 10 pounds.", + "Toy terriers are small dogs with long, wiry coats.", + "You can identify a toy terrier by looking for a compact, short-legged dog with a short muzzle.", + "A toy terrier is a small, lightweight breed of dog.", + "A toy terrier typically weighs less than seven pounds and has a long, silky coat.", + "A toy terrier may be small in size, but its big personality is what sets it apart from other breeds.", + "A toy terrier is a dog that is less than 12 inches tall and typically weighs less than 10 pounds.", + "Toy terriers are miniature versions of terriers, such as the Jack Russell Terrier.", + "A toy terrier is a very small dog that looks like a miniature version of a terrier.", + "A toy terrier looks like a small version of a terrier dog.", + "A toy terrier typically has a long coat that is either straight or wavy, and come in a variety of colors including black, white, brown, and gold.", + "A toy terrier looks similar to a regular terrier, but is much smaller in size.", + "A toy terrier is a small dog breed of the terrier type.", + "Toy terriers are small, compact dogs with short legs, a short muzzle, and large, erect ears.", + "Most toy terriers are small dogs with short hair.", + "A toy terrier is a small, short-legged dog with a long body.", + "A toy terrier looks like a very small version of a terrier.", + "The image is of a small, white, toy terrier.", + "The image is of a small, brown and white terrier toy.", + "The image is of a small, white toy terrier.", + "The image is of a toy terrier that is mostly white with brown spots.", + "The image is of a small white and brown toy terrier.", + "I found an image of a toy terrier on the internet that I think is really cute.", + "The image is of a small, brown toy terrier.", + "An image of a toy terrier from the internet would show a small, playful dog breed that is known for being friendly and loving.", + "A small, brown and white toy terrier is sitting on a beige couch, looking at the camera.", + "The image is of a small, brown and white toy terrier.", + " Cute little guy.", + "A toy terrier with brown and white fur.", + " A toy terrier looks out of a wicker basket.", + "This little Ball Terrier is just waiting for someone to take him home and give him lots of loving!.", + "A cute little toy terrier that looks like it's ready to play.", + "Cuteness overload! This little toy terrier is sure to bring a smile to your face.", + "This toy terrier is Loyal and Playful.", + "This is my toy terrier, Max.", + "A toy terrier breed of dog typically weighing 7 pounds or less.", + "This adorable little toy terrier is the perfect companion for any child." + ], + "Rhodesian Ridgeback": [ + "Rhodesian Ridgebacks are large, muscular dogs with a short, dense coat that is reddish-brown in color with black markings.", + "A Rhodesian Ridgeback is a large and muscular hound with a short, dense coat.", + "A Rhodesian Ridgeback should be a symmetrical, powerful dog with a Ridge of hair running along its back in the opposite direction to the rest of the coat.", + "The Rhodesian Ridgeback is a large, muscular dog with a short, thick coat.", + "Rhodesian ridgebacks are medium-sized dogs with long legs and a muscular build.", + "A Rhodesian Ridgeback is a large, muscular dog with a short, thick coat.", + "The Rhodesian Ridgeback is a large and muscular dog breed with a short, sleek coat.", + "The Rhodesian Ridgeback is a large, muscular dog with a short, shiny coat.", + "A Rhodesian Ridgeback is a medium to large sized dog.", + "A Rhodesian Ridgeback is a muscular dog with a short, sleek coat.", + "The Rhodesian Ridgeback is a dog breed that is easily identified by the ridge of hair running along its back in the opposite direction of the rest of its coat.", + "The best way to identify a Rhodesian Ridgeback is by looking for the ridge of hair running along its back.", + "Rhodesian Ridgebacks are easily identifiable by the ridge of hair that runs along their back in the opposite direction of the rest of their coat.", + "Rhodesian Ridgebacks can be distinguished by the ridge of hair running along their back in the opposite direction of the rest of their coat.", + "The Rhodesian Ridgeback is a large, muscular dog with a short, broad head.", + "Rhodesian Ridgebacks are medium to large dogs with a short, dense coat.", + "The Rhodesian Ridgeback is a dog breed that is easily identified by the ridge of hair running along its back in the opposite direction from the rest of its coat.", + "The Rhodesian Ridgeback is a large, muscular dog with a short, dense coat.", + "The Rhodesian Ridgeback is a dog breed developed in southern Africa, where it was originally used to hunt lions.", + "A Rhodesian Ridgeback has a ridge along its back that consists of hair growing in the opposite direction of the rest of its coat.", + "A Rhodesian Ridgeback is a large, muscular dog with a short, sleek coat.", + "A Rhodesian Ridgeback is a large dog with a short coat.", + "Rhodesian Ridgebacks are large, muscular dogs with short, dense coats.", + "A Rhodesian Ridgeback is a large, muscular dog with a short coat that is typically red, wheaten, brindle, or black.", + "Rhodesian Ridgebacks are large, muscular dogs with short, dense coats.", + "A Rhodesian Ridgeback is a large, muscular dog with a short, harsh coat.", + "A Rhodesian Ridgeback is a large, muscular dog with a short, smooth coat.", + "A Rhodesian Ridgeback is a muscular, medium-sized dog with a short coat.", + "The Rhodesian Ridgeback is a large, muscular dog with a short, dense coat.", + "A Rhodesian Ridgeback is a large, muscular dog with a short, sleek coat.", + "The image is of a large, muscular dog with a short, reddish-brown coat.", + "The image is of a black and brown Rhodesian Ridgeback lying on a cream-colored couch.", + "In the image, a Rhodesian Ridgeback is standing on a grassy field with its ears perked up and its tail wagging.", + "The image is of a large, muscular dog with a glossy coat of short, reddish-brown fur.", + "The image is of a reddish-brown Rhodesian Ridgeback standing in a grassy field.", + "The image is of a large, muscular dog with a short, brown coat and a ridge of hair running down its back.", + "A Rhodesian Ridgeback is a large, muscular dog with a unique feature: a ridge of hair running along its back in the opposite direction of the rest of its coat.", + "A Rhodesian Ridgeback is a large, muscular dog with a short, thick coat ranging in color from light wheaten to red wheaten.", + "A Rhodesian Ridgeback is a large, strong dog with a reputation for being very independent.", + "One image of a Rhodesian Ridgeback from the internet shows the dog standing in grass with its long, ridgeback running along its back.", + "This is Brutus, a Rhodesian Ridgeback.", + "Rhodesian Ridgebacks are a type of dog known for their hunting abilities and their unique ridge of hair running along their backs.", + "This is a Rhodesian Ridgeback, a breed of dog known for its loyalty and courage.", + "This is a Rhodesian Ridgeback, a breed of dog native to Africa.", + " Sarge, the best cuddler around.", + "This beautiful dog is a Rhodesian Ridgeback, a breed that is known for its intelligence and loyalty.", + "This dog is a Rhodesian Ridgeback, a breed of dog originating in Africa.", + "The Rhodesian Ridgeback is a Breed of Dog That is Known for Its Ability to Track and Detect Game.", + " Loyal and protective, the Rhodesian Ridgeback is an excellent family companion.", + " Rhodesian Ridgebacks are loyal and loving companions." + ], + "Afghan Hound": [ + "Afghan hounds are long, tall dogs with slender build and a curved tail.", + "An Afghan hound is a large, tall, slender dog with a long, shaggy coat.", + "Afghan Hounds are large, dignified dogs with a regal bearing.", + "An Afghan Hound is a large, elegant dog with a long, silky coat.", + "Afghan Hounds look like very large, shaggy dogs.", + "An Afghan Hound is a large, thin dog with a long snout, high-set ears, and a long, silky coat.", + "An Afghan Hound is a tall, slender dog with a long, silky coat.", + "The Afghan Hound is a large, proud, and regal-looking dog.", + "Afghan Hounds are large, shaggy dogs with long, narrow muzzles, pointy ears, and long, silky coats.", + "An Afghan Hound is a tall, slim dog with a long, silky coat.", + "An Afghan Hound is a large, athletic dog with a long, silky coat.", + "An Afghan Hound has a long, elegant head; a long, silky coat; and a distinctive ring curl at the end of its tail.", + "An Afghan Hound is a large, elegant dog with a long, silky coat.", + "The Afghan Hound is a hound breed characterized by its thick, fine, silky coat and its tail with a ring curl at the end.", + "One way to identify an Afghan Hound is by its coat.", + "The Afghan Hound is a elegant, long-haired hound.", + "An Afghan Hound's coat is long, silky, and flows over their body.", + "An Afghan Hound is a large, elegant dog that is easily recognizable by its long, flowing coat and unique head shape.", + "afghan hound.", + "An Afghan Hound can be identified by its large size, long, silky coat, and distinctive curved tail.", + "An Afghan Hound has a very long and silky coat, which is typically white, black, or tan.", + "Afghan Hounds are large, slender dogs with long legs, a long tail, and a silky, flowing coat.", + "Afghan Hounds have long, silky hair and a narrow, pointed muzzle.", + "The Afghan Hound has a long, fine, silky coat and a narrow tail that is carried high.", + "The Afghan Hound is a large, light-boned dog with a long, narrow head, deeply set eyes, and large ears.", + "The Afghan Hound is a large, tall, thin dog with long legs, a long body, and a long, thin tail.", + "The Afghan Hound is a hound breed noted for its thick coat and its unique appearance.", + "The Afghan Hound is a large and elegant dog, with a long silky coat and a tall, skinny build.", + "The Afghan Hound is a large, lean, and tall dog breed with a long, silky coat.", + "An Afghan Hound is a large, lean, and elegant dog with a long, thick coat.", + "The image is of a large, light-colored hound with long, silky hair.", + "The image is of an Afghan Hound standing in a field of tall grass.", + "% Afghan Hound image descriptionThe image features a brown and white Afghan Hound standing on a grassy hill.", + "The image is of an Afghan Hound with a long, silky coat.", + "In the image, an Afghan Hound is pictured standing on a grassy field with its long, silky tail curled around its haunches.", + "The image is of an Afghan Hound standing in a field with long grass.", + "An image of an Afghan Hound from the internet shows a large, shaggy dog with a long tail.", + "The image is of an Afghan Hound standing on a rocky outcropping.", + "The image is of an Afghan Hound standing in a grassy field.", + "The image is of an Afghan Hound standing on a rocky ledge.", + "This is an Afghan Hound.", + "This is an Afghan Hound, a very elegant and regal dog breed.", + "Epitome of beauty, Afghan hound.", + "This is an Afghan Hound.", + "This is an Afghan Hound.", + "An Afghan Hound is a large member of the hound family.", + "This is an Afghan Hound, a breed of dog that is known for its thick, silky coat and its regal appearance.", + "In Afghanistan, the hound is used to hunt game including gazelles, rabbits, and hares.", + "Image of an Afghan Hound in profile, standing on a rocky outcrop.", + "An Afghan Hound looks at the camera with its long, flowing coat." + ], + "Basset Hound": [ + "Basset Hounds are medium-sized, short-legged dogs with long, drooping ears and a long body.", + "Basset Hounds are medium-sized dogs with short legs, long ears, and droopy eyes.", + "Basset Hounds are short and stocky with long ears and short legs.", + "Basset Hounds have a short, dense coat that is usually tricolored.", + "Basset Hounds are short-legged dogs with long, droopy ears.", + "A Basset Hound is a short, stocky dog with long,pendulous ears.", + "Basset Hounds are short and stocky with long pendulous ears and a long body.", + "A Basset Hound has a short, muscular body with long, droopy ears.", + "Basset Hounds are short-legged dogs with long, droopy ears.", + "Basset Hounds are a short-legged breed of dog in the hound family.", + "A Basset Hound has long, floppy ears, a short coat, and a long, droopy body.", + "Basset Hounds have a stocky, short-legged build and droopy ears.", + "Some ways you can identify a Basset Hound are by its short, crooked legs, long, droopy ears, and its loose skin that forms folds around its face and body.", + "A Basset Hound is a short-legged breed of dog in the hound family.", + "The Basset Hound is a short-legged breed of dog of the hound family.", + "The Basset Hound is a short-legged breed of dog of the hound family.", + "The Basset Hound is an unmistakable dog Breed with its long, droopy ears and short legs.", + "A Basset Hound's face is long and droopy, and its body is long and low to the ground.", + "The Basset Hound is a low-slung, long-bodied dog with short legs, loose skin, and long, droopy ears.", + "Basset Hounds have a short, dense coat that is usually dark brown and white or black and white.", + "Basset Hounds are short, stocky dogs with long, droopy ears.", + "Basset Hounds are a noble, loyal, and friendly breed of dog.", + "A Basset Hound has a long, narrow face and droopy ears.", + "A Basset Hound is a short-legged, long-bodied hound with large droopy ears.", + "A Basset Hound is a short-legged breed of dog of the hound family, as well as one of the six recognized Basset breeds in France.", + "A Basset Hound looks like a short, stocky dog with long, droopy ears and a short, smooth coat.", + "Basset Hounds look like short, stocky dogs with long, floppy ears.", + "A Basset Hound is a short-legged, long-bodied hound dog.", + "A Basset Hound is a short-legged breed of dog in the hound family.", + "A Basset Hound is a short, stocky dog with a long body and short legs.", + "The image is of a brown and white Basset Hound.", + "I found an image on the internet of a Basset Hound dog.", + "The image is of a light brown Basset Hound with long ears and droopy eyes.", + "The image shows a close-up view of a Basset Hound's head and face.", + "The image is of a dog with long floppy ears and a short legs.", + "This image is of a Basset Hound dog.", + "I found an image on the internet of a Basset Hound that I really liked.", + "The image is of a Basset Hound with long, droopy ears and a short stature.", + "The image is of a brown and white Basset Hound.", + "A Basset Hound image from the internet shows a large, short-legged dog with a long, droopy face.", + "This is George, the Basset Hound.", + "Basset Hound sitting in a field.", + "This is a picture of a Basset Hound.", + "Our Basset Hound, Max, resting after a long day of playing fetch.", + "This is a Basset Hound.", + "This image depicts a Basset Hound.", + "This is a Basset Hound.", + "This is one of the most popular dog breeds in the United States.", + "Basset Hound chilling on the couch.", + "Adorable Basset Hound peeks out from behind a curtain." + ], + "Beagle": [ + "A beagle is a small to medium sized dog.", + "A Beagle is a small to medium-sized hound dog.", + "Most Beagles are between 13 and 16 inches tall, although some can be as small as 11 inches and some as tall as 18 inches.", + "A Beagle is a type of small hound dog that has short legs and a long body.", + "A Beagle is a small to medium-sized dog with a short, hard coat and a long, soft ears.", + "A Beagle is a small to medium-sized dog with a sleek, short coat.", + "A Beagle typically has a soft, short coat that is easy to care for.", + "Beagles are small to medium sized dogs with a short, hard coat and a long, soft drooping ears.", + "The Beagle is a small to medium-sized dog with a long snout and a short, dense coat.", + "A beagle has a small to medium build, tri-colored fur, and floppy ears.", + "Beagles are small-medium sized dogs with large, droopy ears.", + "Beagles have short, black and brown fur, and a long, droopy face.", + "Beagles have a black, tan, and white coat of fur.", + "A Beagle is a small to medium-sized dog with a short, dense coat.", + "The Beagle is a small to medium-sized hound, similar in appearance to the much larger foxhound.", + "A Beagle is a dog that is typically about 20-25 pounds and has short, smooth fur that is black, brown, and white.", + "Beagles are small hound dogs with a tricolored coat of black, tan, and white.", + "Beagles are typically identified by their short coat, which is usually black, tan, and white, and their small size.", + "A Beagle is a small to medium-sized hound-type dog breed.", + "Beagles have short, dense coats that are typically tri-colored: black, tan, and white.", + "A Beagle typically has a short, shiny coat of black, brown, or red, with white markings around the face, chest, and legs.", + "Beagles have short, compact bodies and smooth, glossy coats.", + "Beagles are medium-sized dogs with a square-shaped head, long ears, and a tri-colored coat.", + "A Beagle is a small-sized hound dog.", + "The Beagle is a small-sized hound, usually measuring no more than about 16 inches at the shoulder, and often considerably smaller.", + "Beagles have a distinct appearance with their long ears and short legs.", + "Beagles are small to medium-sized dogs with long ears, short legs, and a muscular build.", + "Beagles typically weigh 18-30 pounds and have a lifespan of 12-15 years.", + "A beagle typically has a tri-colored coat of black, tan, and white.", + "Beagles are small, short-legged hounds with a long, narrow head.", + "A Beagle is a small hunting hound, typically black, tan, and white.", + "The image shows a beagle standing in front of a white background.", + "A Beagle is a small to medium-sized Hound-type dog breed.", + "This image is of a Beagle dog sitting on a couch.", + "The image is of a small brown and white dog with long ears and a short coat.", + "This image is of a Beagle lying down on its side.", + "This image is of a small, brown and white Beagle.", + "In the image, a Beagle is sitting on a grassy lawn with its tongue hanging out.", + "The image is of a cute beagle pup playing with a toy.", + "I found an image of a beagle on the internet that I really liked.", + "A Beagle dog equalizes its own hearing by using its long, soft ears to funnel sound waves to its ear canals.", + "This is a beagle.", + " A beagle named Benji waiting at the front door.", + "This is one happy Beagle!.", + "Snoopy the Beagle relaxing on his doghouse.", + " Beagle waiting for a treat.", + "This is a picture of a Beagle dog.", + "A beagle lounges on the grass, ears flopped to the side, eyes closed in contentment.", + "This is a Beagle.", + "A Beagle is a small to medium-sized hound, similar in appearance to the much larger foxhound." + ], + "Bloodhound": [ + "A Bloodhound looks like any other hound dog breed.", + "A Bloodhound typically has a red, black, or tan coat.", + "A Bloodhound has a large, droopy head, long, hangs down over their face, and large, floppy ears.", + "A Bloodhound is a large, short-haired breed of dog with a long nose.", + "A Bloodhound is a large, scent hound breed of dog.", + "The Bloodhound is a large scent hound, with a deep-throated bark.", + "Bloodhounds have a loose, wrinkled skin on their face and body.", + "A Bloodhound looks like a large, lean, and very muscular dog.", + "A Bloodhound is a medium to large sized dog.", + "The Bloodhound is a large, powerful dog with a large head, loose skin, and droopy ears.", + "The best way to identify a Bloodhound is by its physical characteristics.", + "One way to identify a Bloodhound is by its unique coat.", + "Because of their unique wrinkled face, bloodhounds can be easily recognized.", + "Bloodhounds have a very distinct appearance.", + "A bloodhound has a large head, droopy ears, and a wrinkled face.", + "By its large, droopy ears and its wrinkled face.", + "Bloodhounds are very large, with a deep chest, a large head, droopy ears, and a long, wrinkled face.", + "You can identify a Bloodhound by its large head and wrinkled face.", + "Bloodhounds are large dogs with long, drooping ears.", + "There are several ways to identify a bloodhound.", + "A Bloodhound has a large head, floppy ears, and a very long nose.", + "A Bloodhound is a large, solidly built breed of dog with a long nose.", + "A Bloodhound is a large, powerful dog with a domed head, drop ears, and loose skin.", + "A typical Bloodhound is a large, short-haired dog with a droopy face.", + "A Bloodhound has a large, powerful body with a long, drooping face.", + "The Bloodhound is a large breed of dog, with a deep-set muzzle and loose skin around its face that gives the appearance of wrinkles.", + "A Bloodhound is a large, short-haired breed of dog.", + "A Bloodhound is a large breed of dog.", + "Bloodhounds are large dogs with a short coat that is typically a deep red, black, or tan color.", + "A Bloodhound has a large head and floppy ears.", + "This image is of a bloodhound lying down on a green lawn.", + "A bloodhound is a large, short-legged breed of dog with a long, narrow head and large drooping ears.", + "The image is of a Bloodhound standing on grass with its head turned to the side.", + "The bloodhound in the image is a large, short-haired breed of dog with a long, drooping face.", + "This image from the internet shows a Bloodhound dog breed.", + "A Bloodhound is a large, muscular dog with a wrinkled face and a long, drooping snout.", + "The image is of a Bloodhound dog.", + "A Bloodhound is a large, powerful dog with a long muzzle, floppy ears, and a droopy face.", + "The image is of a large, brown and black hound with floppy ears.", + "The image is of a brown and white Bloodhound.", + "This is a Bloodhound.", + " A bloodhound looks for a scent.", + " The Bloodhound is a large scent hound, originally bred for hunting deer and wild boar.", + " A Bloodhound named \"Buck\" keeps his head low to the ground as he tracks a scent.", + "Image of a Bloodhound dog with a long nose and floppy ears.", + "This is a Bloodhound, a dog known for its outstanding tracking ability.", + "This is a Bloodhound.", + " The Bloodhound is a large, muscular hound bred for hunting deer and boar.", + "This is a picture of a bloodhound.", + "This is a photo of a Bloodhound." + ], + "Bluetick Coonhound": [ + "A Bluetick Coonhound is a medium-sized breed of dog that is muscular and stocky.", + "The Bluetick Coonhound is a large-sized breed of dogs that was originally bred in the United States.", + "A Bluetick Coonhound is a large dog with a short, glossy coat that is blue-black in color with large spots of white.", + "A Bluetick Coonhound is a stocky, short-haired dog with a blue-black ticked coat.", + "A Bluetick Coonhound has short, dense fur that is blue-black in color, with a ticking or mottled pattern.", + "A Bluetick Coonhound is a large dog with a short, thick coat that is blue-black in color with large white spots.", + "A Bluetick Coonhound is a type of hunting dog that is typically used for tracking and treeing raccoons.", + "The Bluetick Coonhound is a large dog with a black coat that is covered in small blue-grey spots.", + "The Bluetick Coonhound is a large breed of dog that is known for its blue-colored coat.", + "A Bluetick Coonhound has a blue and white coat, and is a medium to large sized dog.", + "There are a few ways to identify a Bluetick Coonhound.", + "The Bluetick Coonhound is a hunting dog that is used to track down raccoons and other small animals.", + "There are a few ways to identify a Bluetick Coonhound.", + "The Bluetick Coonhound is a large, short-haired dog with a distinctively mottled coat.", + "One way to identify a Bluetick Coonhound is by its unique blue-black ticked coat.", + "Bluetick Coonhounds are known for their blue-black mottled coats and \"goby\" or \"ticked\" markings.", + "Bluetick Coonhounds are known for their brindle-colored coats with blue ticking.", + "The Bluetick Coonhound is a large gregarious hound with a sleek coat.", + "The Bluetick Coonhound is a large breed of dog with a short, stiff coat that is blue in color and ticked with black.", + "The Bluetick Coonhound is a large breed of dog with a short, slick coat that is predominately blue in color, with ticking (or small spots) of black and white.", + "The Bluetick Coonhound is a large dog with a short, glossy coat that is typically black and white in color.", + " Bluetick Coonhounds are large dogs with short, smooth coats that are black with white or bluish-gray ticking.", + "Bluetick Coonhounds are Wavy haired dogs.", + "A Bluetick Coonhound is a large breed of dog that is known for its bluish-black ticked coat and friendly temperament.", + "A Bluetick Coonhound has short, coarse hair that is black with large ticking (or spots) of blue.", + "The Bluetick Coonhound is a large, short-haired hound with a distinctively mottled coat.", + "The Bluetick Coonhound is a large and powerful dog, with a short coat that is mostly black with blue ticking.", + "A Bluetick Coonhound is a medium sized dog with a short, dense coat that is black with blue ticking.", + "A Bluetick Coonhound has a short, coarse, and glossy coat that is blue-black in color with large spots that are darker than the rest of the coat.", + "A Bluetick Coonhound typically has a blue-black coat with white spots on its chest, belly, and legs.", + "A Bluetick Coonhound is a medium-sized, short-haired dog with a mottled coat of black and blue.", + "The image is of a large, short-haired dog with a mottled coat of black, brown, and white fur.", + "The image is of a Bluetick Coonhound with short, stiff hairs that are mostly black and white in color.", + "In the image, the Bluetick Coonhound is standing in a grassy field with its head turned to the side.", + "The image is of a Bluetick Coonhound standing in a field with long grass.", + "The image is of a Bluetick Coonhound standing in a forest.", + "This image shows a Bluetick Coonhound resting on a bed.", + "A Bluetick Coonhound is a shy, but friendly dog.", + "The image shows a large, tan dog with black spots.", + "The image is of a medium-sized dog with short, short hair.", + "Bluetick Coonhound on the hunt.", + "\"This is my bluetick coonhound, Scout.", + "\"This is Blue.", + "A beautiful Bluetick Coonhound standing in a field of tall grass.", + " A Bluetick Coonhound on a leash, ready for a walk.", + "This is a Bluetick Coonhound.", + " Bluetick Coonhound on the hunt.", + "Bluetick Coonhound - a versatile hunting dog breed that is known for its intense tracking abilities and cheerful personality.", + " a Bluetick Coonhound standing on a dirt path in a forestImage of Bluetick Coonhound standing in a forest.", + "This is a Bluetick Coonhound." + ], + "Black and Tan Coonhound": [ + "A Black and Tan Coonhound has a short, black coat with tan markings on the face, chest, and legs.", + "A Black and Tan Coonhound is a breed of dog that is black with tan markings.", + "A black and tan coonhound typically has a black coat with tan markings on the face, chest, and legs.", + "The Black and Tan Coonhound is a large dog with a short, thick coat of black and tan fur.", + "The Black and Tan Coonhound is a large breed of dog, weighing anywhere from 50 to 75 pounds.", + "A Black and Tan Coonhound is a medium-sized dog with a short, dense coat.", + "A Black and Tan Coonhound has a short, smooth coat that is black with tan markings.", + "The Black and Tan Coonhound is a large, athletic dog with a black coat and tan markings.", + "A Black and Tan Coonhound has a short, coarse, black coat with tan markings on the face, chest, legs, and feet.", + "A Black and Tan Coonhound is a dog breed that is a cross between a Black and Tan Virginia Cur and a Leopard Coonhound.", + "A Black and Tan Coonhound can be identified by their short, glossy coat that is black with tan markings on their face, chest, and legs.", + "There are several ways to identify a Black and Tan Coonhound.", + "The most distinctive feature of the Black and Tan Coonhound is its coloring.", + "The Black and Tan Coonhound is a large, short-haired hound with a black saddle and tan markings on the head, ears, legs, and tail.", + "There are a few ways to identify a Black and Tan Coonhound.", + "The best way to identify a Black and Tan Coonhound is by its unique coat.", + "A Black and Tan Coonhound is a dog breed that is black with tan markings on the face, legs, and chest.", + "A Black and Tan Coonhound can typically be identified by its black and tan coat.", + "One way to identify a Black and Tan Coonhound is by its appearance.", + "There is no one definitive answer to this question since there is significant variation in the appearance of individual Black and Tan Coonhounds.", + "A Black and Tan Coonhound has a short, close-fitting coat that is black with tan markings on the face, chest, legs, and underside.", + "A Black and Tan Coonhound is a large, muscular dog with a short, smooth coat.", + "The Black and Tan Coonhound is a large, short-haired hunting dog.", + "A Black and Tan Coonhound has a short, glossy coat that is mostly black with tan markings on the face, chest, and legs.", + "A Black and Tan Coonhound has a black coat with tan markings on the head, legs, and chest.", + "The Black and Tan Coonhound is a large breed of dog with a slightly domed head.", + "A Black and Tan Coonhound is a large, muscular dog with a short, glossy coat.", + "A Black and Tan Coonhound is a medium to large sized breed of dog with a short, dense coat that is black with tan markings.", + "A Black and Tan Coonhound is a large and muscular dog with a long, thin snout.", + "A Black and Tan Coonhound is a large breed of dog, weighing between 50 and 75 pounds.", + "The image is of a black and tan coonhound standing in a field with tall grass.", + "This Black and Tan Coonhound has a black coat with tan markings on its face, legs, and chest.", + "A Black and Tan Coonhound is a medium-sized, short-haired dog breed with a black coat and tan markings.", + "An image of a Black and Tan Coonhound from the internet shows a large, muscular dog with short, black fur and tan markings on its face, chest, and legs.", + "In the image, the Black and Tan Coonhound is standing in a grassy field with its head turned to the side.", + "One image that comes to mind is of a Black and Tan Coonhound lying on its side in some tall grass.", + "In the image, the Black and Tan Coonhound is standing on a grassy field with its head held high.", + "The image is of a large, muscular dog with short, black fur and large, floppy ears.", + "In the image, the Black and Tan Coonhound is sitting on a grassy field with its head turned to the side.", + "One image of a Black and Tan Coonhound from the internet shows a medium-sized dog with a black coat and tan markings.", + "Image of a Black and Tan Coonhound lounging on a porch with the caption \"My dog, Oreo, enjoying the sunny day.", + " A coonhound stares intently off into the woods, ears perked and alert.", + "This Black and Tan Coonhound is ready to go on a hunt!.", + "This loyal and laid-back breed is the perfect addition to any family.", + "A Black and Tan Coonhound, a breed of American hunting dog.", + "The Black and Tan Coonhound is a friendly and intelligent dog breed that makes a great family pet.", + "This is a Black and Tan Coonhound.", + "The Black and Tan Coonhound is a versatile hunting dog, able to track and bay game on both land and water.", + "This is the Black and Tan Coonhound, a type of hunting dog used to track and tree predators like raccoons and opossums.", + "Black and Tan Coonhound." + ], + "Treeing Walker Coonhound": [ + "A Treeing Walker Coonhound has a short coat that is usually red, white, or a blue-ish gray.", + "A Treeing Walker Coonhound typically has a tricolored coat of black, tan, and white.", + "A Treeing Walker Coonhound is a medium-sized, short-haired dog with a strong build.", + "A Treeing Walker Coonhound is a type of dog that is used for hunting raccoons.", + "Treeing Walker Coonhounds have a lean, muscular build with long legs and a long, tapered head.", + "A Treeing Walker Coonhound is a large, athletic dog with a long, slender head.", + "Treeing Walker Coonhounds are medium-sized dogs with a smooth, short coat that is typically either black and white or red and white.", + "A Treeing Walker Coonhound is a lean, muscular dog with a long, narrow head.", + "Treeing Walker Coonhounds are large, tall dogs with long, slim legs.", + "A Treeing Walker Coonhound is a medium-sized dog that is muscular and broad.", + "A Treeing Walker Coonhound can be identified by its black and white coat, long ears, and tree-climbing ability.", + "There are a few physical traits that are unique to the Treeing Walker Coonhound.", + "There are a few ways to identify a Treeing Walker Coonhound.", + "The Treeing Walker Coonhound is a type of coonhound that is used for treeing or finding animals that climb up trees.", + "A Treeing Walker Coonhound has a sloped head with a long muzzle.", + "A Treeing Walker Coonhound can be identified by its long, Lean head; its large, pointed ears; and its long, narrow muzzle.", + "One way to identify a Treeing Walker Coonhound is by its coat.", + "Treeing Walker Coonhounds have a very distinctive appearance.", + "The Treeing Walker Coonhound is a tall, slender dog with a long, narrow head.", + "Treeing Walker Coonhounds have a very distinct appearance.", + "A Treeing Walker Coonhound is a medium-sized breed of dog with a short, smooth coat.", + "a Treeing Walker Coonhound is a dog that is used for hunting.", + "Treeing Walker Coonhounds have a short, glossy coat that is primarily black with white markings.", + "A Treeing Walker Coonhound has a short, sleek coat that is usually black and tan.", + "The Treeing Walker Coonhound is a medium-sized breed that is known for its hunting ability.", + "A Treeing Walker Coonhound has a short, sleek coat that is typically black with white markings.", + "A Treeing Walker Coonhound is a medium-sized, short-haired dog with a sleek coat.", + "The Treeing Walker Coonhound is a tall, slim dog with a long, tapered head.", + "Treeing Walker Coonhounds are a type of hound dog that is used for hunting.", + "The Treeing Walker Coonhound is a large breed of dog, standing 22-27 inches at the shoulder and weighing 40-70 pounds.", + "This Treeing Walker Coonhound has a short, smooth coat of black, brown, and white fur.", + "The image is of a brown-and-white Treeing Walker Coonhound.", + "A brown and white coonhound mix with long droopy ears lying in the grass.", + "This image is of a brown and white Treeing Walker Coonhound.", + "An image of a Treeing Walker Coonhound from the internet shows a brown and white dog with long ears standing in a field.", + "The image from the internet of a Treeing Walker Coonhound is a picture of a brown and white dog with long ears and a long tail.", + "The image is of a brown and white Treeing Walker Coonhound standing in a field.", + "The image shows a brown and white Treeing Walker Coonhound standing in a field.", + "The image is of a Treeing Walker Coonhound standing in a field.", + "This Treeing Walker Coonhound has a short, reddish-brown coat, and its long ears hang down close to its head.", + "A Treeing Walker Coonhound on a leash, looking up at the camera.", + " A Treeing Walker Coonhound looks up into a tree.", + "This is a Treeing Walker Coonhound.", + "This is a Treeing Walker Coonhound, a type of dog bred for hunting.", + "A Treeing Walker Coonhound on the hunt for prey.", + "A Treeing Walker Coonhound on the hunt.", + "A treeing Walker coonhound stares intently into the distance, sniffing the air for any sign of its prey.", + "This is a photo of a Treeing Walker Coonhound.", + "A beautiful treeing walker coonhound.", + "This is a photo of a Treeing Walker Coonhound." + ], + "English foxhound": [ + "The English foxhound is a large breed of dog, with a tall, lean body and long legs.", + "An English foxhound is a large, athletic dog with a strong, rectangular muzzle.", + " English foxhounds are sturdy, with a square head and long muzzle.", + "The English foxhound is a tall, lanky breed of dog with short fur that is typically white and brown.", + "A typical English foxhound is a large, athletic dog with a muscular build.", + "An English foxhound typically has a short, hard coat that is either black, tan, or white with ticking.", + "An English foxhound is a medium sized dog with a short, dense coat.", + "The English foxhound is a tall, slim breed of dog with a long snout and large ears.", + "An English foxhound has a short coat that is mostly white with some black, brown, or tan markings.", + "An English foxhound is a medium-sized breed of dog.", + "An English foxhound is a medium to large sized breed of dog.", + "An English foxhound is a type of dog that is used for hunting foxes.", + "An English foxhound is a type of hunting dog that is used to track and hunt foxes.", + "The English foxhound is a large breed of hound, similar in appearance to the American foxhound.", + "You can identify an English foxhound by its large size, short coat, and long muzzle.", + "An English foxhound is a dog that is used for fox hunting.", + "An English foxhound is a breed of hound, typically a large-sized type of foxhound.", + "The English foxhound is a breed of dog of the hound family.", + " An English foxhound is a tall, solidly built dog with a large head.", + "The English foxhound is a large breed of dog, similar in appearance to a coonhound.", + "An English foxhound has a short, hard coat that is usually black, tan, or a mix of the two colors.", + "An English foxhound is a medium to large sized dog that is athletic and has a lot of energy.", + "An English foxhound looks like a typical hound dog, with a thin, athletic build, long legs, and a large, floppy ears.", + "There is no definitive answer to this question as English foxhounds can come in a variety of shapes and sizes.", + "An English foxhound is a medium-sized dog with a strong build.", + "An English Foxhound is a medium-sized breed of dog.", + "An English foxhound is a large dog with a long head and muzzle.", + "An English foxhound is a large and powerful dog, bred for hunting.", + "The English foxhound is a large, powerful, and athletic breed of dog.", + "The English foxhound is a large and sturdy dog, standing at about 24 inches tall at the shoulder and weighing between 55 and 75 pounds.", + "This image shows an English foxhound standing in a field.", + "The image is of a foxhound lying down on a grassy field with its head resting on its paws.", + "This English foxhound is regal and proud, standing tall and looking off into the distance.", + "This image is of an English foxhound.", + "In the image, a foxhound is standing in a field of tall grass.", + "An English foxhound is a medium-sized, short-haired dog with a square head and a long snout.", + "I found an image of an English foxhound on the internet that looks like this:This image shows an English foxhound standing in a green field with a houndstooth collar around its neck.", + "In the image, an English foxhound is running through a field with tall grass.", + "An image of an English foxhound from the internet may show the dog with a long, narrow head, floppy ears, and a strong, muscular body.", + "In the image, an English foxhound is standing in a grassy field, his head turned to the side as he looks off into the distance.", + "This is an English foxhound.", + "This is an English foxhound, a breed of dog used for hunting.", + "Rowdy, rambunctious, and always up for a good time, the English foxhound is one of the most popular dog breeds in the world.", + "A Foxhound on the English countryside.", + "An English foxhound looking for a scent.", + "This is an English foxhound.", + " English foxhounds are a type of hunting hound that was originally bred in England for the sport of fox hunting.", + "This English foxhound looks like he's ready for a day of hunting.", + "This English foxhound is on the hunt for a fox!.", + "An English foxhound working a field." + ], + "Redbone Coonhound": [ + "A Redbone Coonhound is a large, muscular dog with a short, smooth coat.", + "Redbone Coonhounds are red and white, with a smooth coat and long, floppy ears.", + "A Redbone Coonhound is a reddish brown color with a black face and black spots on its body.", + "A Redbone Coonhound is a dog breed that is reddish brown in color.", + "Item specificsCoat: The Redbone Coonhound\u2019s short, dense coat is smooth, shiny and of a deep mahogany color, with no overcoat.", + "A redbone coonhound typically has a red or dark copper coat, with some white spotting on the chest and feet.", + "The Redbone Coonhound is a large dog with a muscular build.", + "Redbone Coonhounds have a short, dense coat that is mostly red, but can also be black, tan, or lemon.", + "A Redbone Coonhound typically has a short, sleek coat that is mostly red in color.", + "A Redbone Coonhound is a dog breed that is characterized by its red coat.", + "A Redbone Coonhound can be identified by its short, shiny red coat, long ears, and black facial mask.", + "A Redbone Coonhound has a short, red coat.", + "A Redbone Coonhound can be identified by its red coat, which is smooth and glossy.", + "A Redbone Coonhound has a red coat and is a type of hunting dog.", + "One way to identify a Redbone Coonhound is by its coat, which is typically red or red ticking.", + "A Redbone Coonhound can be identified by its red coat, which is why it is named \"Redbone.", + "There is no one definitive answer to this question, as there are a variety of ways to identify a Redbone Coonhound.", + "A Redbone Coonhound is a type of coonhound dog breed.", + "There are a few ways to identify a Redbone Coonhound.", + "There are several ways to identify a Redbone Coonhound.", + "A Redbone Coonhound has a short, dense coat that is typically red, but can also be black, tan, or freckled.", + "Redbone Coonhounds are lean and muscular with short, shiny coats that are red in color.", + "A Redbone Coonhound typically has a short, shiny coat that is a deep red color.", + "A Redbone Coonhound is a medium-sized dog with short, smooth red fur.", + "A Redbone Coonhound is a medium to large sized dog.", + "Redbone Coonhounds are medium-sized dogs with a short, dense coat.", + "A redbone coonhound is a red or reddish-brown dogs with a short, dense coat.", + "A Redbone Coonhound is a type of dog that is used for hunting purposes.", + "A Redbone Coonhound is a red-coated, smooth-coated, medium-sized dog breed.", + "Redbone Coonhounds are medium to large sized dogs with a muscular build.", + "The image is of a Redbone Coonhound.", + "The image is of a red and tan Redbone Coonhound.", + "The image is of a medium-sized, reddish-brown dog with a long snout and floppy ears.", + "The image is of a brown and white Redbone Coonhound.", + "This image is of a red-colored coonhound breed of dog.", + "In the image, the Redbone Coonhound is standing in a field with tall grass.", + "A Redbone Coonhound is a beautiful, medium-sized dog with a short, reddish-brown coat.", + "I found an image of a redbone coonhound on the internet.", + "One image of a Redbone Coonhound from the internet shows a medium-sized, lean dog with a reddish brown coat.", + "In the image, the Redbone Coonhound is standing in a field with long grass.", + "This is a Redbone Coonhound.", + " A Redbone Coonhound takes a break from hunting to enjoy a well-earned nap in the shade.", + "A Redbone Coonhound dog lay down on some grass with its tongue out.", + "This sweet girl is a Redbone Coonhound.", + " A Redbone Coonhound is a perfect hunting companion, as they are intelligent, trainable, and passionate about the sport.", + " A redbone coonhound is a breed of dog used for hunting raccoons.", + "A redbone coonhound in the woods, alert and ready to hunt.", + "This is a Redbone Coonhound.", + " A redbone coonhound in a forest.", + "This is one happy dog! This Redbone Coonhound is enjoying a well-deserved nap in the sun." + ], + "borzoi": [ + "Borzois are large, slender dogs with long, flowing coats.", + "Borzois are large, athletic dogs with long, silky coats.", + "A borzoi is a long, thin dog with a thick coat of fur.", + "A borzoi is a large, slender Russian hound.", + "Borzois are elegant, tall dogs with long, silky fur.", + "A borzoi is a long-haired dog that is similar in appearance to a wolf.", + "A borzoi is a large, wolf-like dog with a long, silky coat.", + "A borzoi dog is a large, skinny dog with floppy ears.", + "A borzoi is a large, long-haired Russian hound.", + "A borzoi is typically a large, elegant dog with a long, silky coat and a narrow, elongated head.", + "A borzoi is a type of Russian hound.", + "Borzois can be identified by their long, silky coats and slender build.", + "Borzois are large, slender dogs with long muzzles, pointed ears, and long, silky coats.", + "Borzoi generally have long, silky fur, and many have a noticeable \"ruff\" around their necks.", + "a borzoi is a type of Russian hunting hound.", + "A borzoi can be identified by its long, narrow head; its long, silky coat; and its slender, graceful body.", + "Borzois areRussian hounds characterized by their thick, long, and silky coats.", + "Some ways you can identify a borzoi are by its physical appearance and temperament.", + "There are several ways to identify a borzoi.", + "A borzoi is a dog that looks similar to a wolf.", + "A borzoi is a very large, tall, and slender dog with long, silky fur.", + "Borzois are tall, slender dogs with long, silky fur.", + "Borzois are large, Russian dogs that look similar to greyhounds.", + "The borzoi is a tall, slender, and aristocratic-looking dog, with a long muzzle, fine bones, and a coat of long, silky hair.", + "A borzoi looks like a large Russian wolfhound.", + "A borzoi is a type of Russian hound dog that was once used to hunt wolves.", + "A borzoi is a type of Russian hound.", + "There is no one answer to this question as borzois come in a variety of shapes and sizes.", + "A borzoi is a breed of Russian origin that was once used for hunting wolves.", + "A borzoi isGreyhound-like dog with a long, silky coat.", + "The image shows a close up of a borzoi's face.", + "In the image, a borzoi stands atop a hill, looking down at a city in the distance.", + "A borzoi is a large, lean, andGascony Blueborzoi.", + "A borzoi is a type of Russian wolfhound that was once used for hunting.", + "In the image, a borzoi is sitting in a field of tall grass.", + "The image is of a light colored borzoi with long, flowing hair.", + "The image is of a large, Russian wolfhound with long, wavy fur.", + "The image is of a very large, elegant dog with long flowing fur.", + "Image shows a borzoi with long, slender body and long, silky fur.", + "The image is of a tan and white borzoi standing in grass.", + "This regal borzoi was once the preferred breed of Russian nobility.", + "A borzoi standing in a grassy field.", + " A borzoi, also known as a Russian wolfhound, posing in a grassy field.", + "A borzoi dog standing in a grassy field.", + "This is a borzoi, a type of Russian hound.", + "This is a Borzoi, a Russian wolfhound.", + "\"This is my borzoi, named Fluffy.", + "A beautiful borzoiDogjan in nature.", + " A borzoi dog stands in a grassy field, looking off into the distance.", + "This is a borzoi, a type of Russian wolfhound." + ], + "Irish Wolfhound": [ + "An Irish Wolfhound is a very large, tall dog with a shaggy coat.", + "An Irish wolfhound is a large, muscular dog with a long head, a long neck, and long legs.", + "An Irish Wolfhound is a large, muscular dog with a shaggy coat.", + "An Irish Wolfhound is a breed of domestic dog, specifically a very large sighthound from Ireland.", + "An Irish Wolfhound is a large, shaggy dog with a short coat.", + "The Irish Wolfhound is a large, muscular dog with a long head, neck, and body.", + "An Irish Wolfhound is a large and powerful dog that was originally bred in Ireland to hunt wolves.", + "The Irish Wolfhound is a tall, shaggy, and muscular dog.", + "The coat of an Irish Wolfhound is rough and wiry, and can be a range of colors including gray, brindle, red, black, and pure white.", + "The Irish Wolfhound is a large, tall, lean dog with a long muzzle.", + "An Irish Wolfhound is a large breed of domestic dog.", + "The easiest way to identify an Irish Wolfhound is by its size.", + "Irish Wolfhounds are a tall breed of dog that can be identified by their large size and long necks.", + "The Irish Wolfhound is a large, rough-coated dog with a shaggy mane, a long head, and a powerful neck and chest.", + "The Irish Wolfhound is the world's tallest breed of dog.", + "The Irish Wolfhound is a large breed of dog that originated in Ireland.", + "Irish Wolfhounds can be identified by their large size, shaggy greycoat, and long head.", + "The Irish Wolfhound is a large, clumsy-looking hound, with a rough, shaggy coat and a long head.", + "An Irish Wolfhound has a very large and muscular body, thick fur, and a long snout.", + "An Irish Wolfhound is a large, short-backed, long-legged hound, of harsh voice, andlevretted appearance.", + "Irish Wolfhounds are very large dogs.", + "The Irish Wolfhound is a large, shaggy-coated, muscular dog.", + "An Irish Wolfhound is a large and shaggy-coated dog, usually gray, black, or brindle in color.", + "The largest of the hound breeds, Irish Wolfhounds are towering dogs that make a big impression.", + "Irish wolfhounds are large, muscular dogs with short coats.", + "The Irish Wolfhound is a large, shaggy-coated hound dog.", + "These dogs are tall, with a long head and neck.", + "The Irish Wolfhound is a large dog, with males standing between 32 and 36 inches tall, and females standing between 30 and 34 inches tall.", + "The Irish Wolfhound has a rough, shaggy coat that is typically gray, brindle, black, or red.", + "The Irish Wolfhound is a large and muscular breed of dog.", + "The photo is of a large, light-colored dog with a long snout.", + "The Irish Wolfhound is a large, shaggy-coated, quiet dog.", + "The image is of a large, stocky dog with a long, broad head.", + "The image is of a large, shaggy dog with a long snout.", + "The image is of an Irish Wolfhound standing in a grassy field.", + "I found an image of an Irish Wolfhound on the internet that I really liked.", + "The image shows an Irish Wolfhound sitting on a grassy field with its head turned to the side.", + "The image is of a large, muscular dog with shaggy, grey-black fur.", + "An Irish Wolfhound is a massive dog with a shaggy coat of gray fur.", + "The image is of a large, muscular dog with a shaggy coat of gray and white fur.", + " An Irish Wolfhound, the tallest of all dog breeds.", + "This big, beautiful dog is an Irish Wolfhound.", + "The Irish Wolfhound is a large breed of dogs that were originally bred in Ireland to hunt wolves.", + "This is an Irish Wolfhound.", + "The Irish Wolfhound is a large breed of domestic dog from Ireland.", + "The massive Irish Wolfhound is one of the tallest breeds in the world.", + " A portrait of an Irish Wolfhound, a large breed of dog known for its gentle disposition.", + "This is an Irish Wolfhound, a breed of dog originating in Ireland.", + " Although they may look intimidating, Irish Wolfhounds are gentle giants that are great with kids.", + "The Irish Wolfhound is one of the tallest dog breeds." + ], + "Italian Greyhound": [ + "An Italian Greyhound is a small sighthound.", + "The Italian Greyhound is one of the smallest breeds of dogs.", + "Italian Greyhounds are slim, small dogs that resemble a miniature Greyhound.", + "The Italian Greyhound is a delicate, graceful dog that is smaller in size than the Greyhound.", + "The Italian Greyhound is a small, slender breed of dog.", + "An Italian Greyhound is small and skinny, with long legs.", + "These slim, elegant dogs are the smallest member of the sight hound family.", + "Italian Greyhounds are a small breed of dog that closely resemble a miniature Greyhound.", + "The Italian Greyhound is a small, fine-boned breed of dog resembling a tiny Greyhound.", + "An Italian Greyhound typically weighs between 8 and 18 pounds and is between 13 and 15 inches tall at the shoulder.", + "There are several ways to identify an Italian Greyhound.", + "Italian Greyhounds might be small, but they\u2019re certainly not delicate dogs.", + "The best way to identify an Italian Greyhound is by its small and slender build.", + "Some ways you can identify an Italian Greyhound are by their small and slender body type, their long and slender legs, their small and pointy head, and their long and pointy ears.", + "Italian Greyhounds are distinguished by their small size, incredibly slender build, and short, fine coat.", + "There are a few ways to identify an Italian Greyhound.", + " Italian Greyhounds look like miniature greyhounds.", + "The Italian Greyhound is a very slender, elegant-looking dog.", + "Most Italian Greyhounds have a very slender and refined build, with long legs and a long, thin tail.", + "Italian greyhounds typically have slender, graceful builds and long legs.", + "Italian Greyhounds have long, slender legs and a slim, athletic body.", + "Italian Greyhounds look like miniature greyhounds.", + "Italian Greyhounds resemble a small version of a Greyhound.", + "Italain greyhounds are long and slender with long legs and a small, delicate head.", + "The Italian Greyhound is a small version of a Greyhound.", + "An Italian Greyhound is a small, slender dog with a long, narrow head and large eyes.", + "The Italian Greyhound is a small and slender dog that looks similar to a miniature Greyhound.", + "An Italian Greyhound looks like a miniature greyhound.", + "A medium-sized greyhound, the Italian Greyhound is thin and agile, with long legs and a slim body.", + "An Italian Greyhound is a breed of dog that is similar in appearance to a Greyhound, but much smaller.", + "I found an image of an Italian Greyhound on the internet that I really liked.", + "One image from the internet of an Italian Greyhound is a picture of a light grey dog with dark spots.", + "The image is of a small, thin dog with short fur that is predominantly white with some black spots.", + "The image is of a small, slim dog with short fur that is grey in color.", + "An Italian Greyhound is a small and slender breed of dog.", + "The image is of a small, thin, short-haired dog with long legs.", + "The Italian Greyhound in the image is a small, slender dog with short fur that is mostly white with black spots.", + "This image is of an Italian Greyhound.", + "In the image, an Italian Greyhound is leaning against a couch, with its head tilted to the side.", + "The image is of a small, thin dog with long legs and a pointy face.", + "This cute little Italian Greyhound is waiting patiently for a treat!.", + "Italian Greyhounds are the smallest member of the sighthound family.", + "This is our Italian Greyhound, Ollie.", + "This is an Italian Greyhound.", + "This little dog is an Italian Greyhound, a breed that is known for its gentle and loving nature.", + "This dapper little dog is an Italian Greyhound, a breed that dates back to the days of the Roman Empire.", + "An Italian Greyhound stands in a garden, looking up at the camera.", + "Italian Greyhound on the move.", + "My little greyhound, so full of energy and life.", + "This pup is a real Italian Greyhound!." + ], + "Whippet": [ + "A Whippet looks like a small, skinny dog with short fur.", + "A whippet is a medium-sized dog that is thin and has short fur.", + "A Whippet is a type of dog that is slender and has short fur.", + "The Whippet is a medium-sized sighthound breed that is similar in appearance to a small greyhound.", + "Whippets are sleek, medium-sized dogs that resemble a small greyhound.", + "A whippet is a type of dog that is thin and has short fur.", + "Whippets are slender dogs with long legs, a narrow chest, and a long, tapering tail.", + "Whippets are a medium-sized breed of dog.", + "A Whippet is a small to medium sized dog breed.", + "A Whippet is a medium-sized dog that looks like a slender Greyhound.", + "A Whippet is a type of dog.", + "There are various ways to identify a Whippet.", + "A Whippet is a type of dog that is thin and has short fur.", + "There are several ways to identify a Whippet.", + "A Whippet is a dog that looks like a small Greyhound.", + "The whippet is a medium-sized breed of dog.", + "The physical characteristics of a Whippet include a long, slender body; a pointed muzzle; and long, thin legs.", + "Whippets are a type of dog that is closely related to the Greyhound.", + "There are several ways to identify a whippet.", + "A Whippet is a small to medium sized dog with a slim build and long legs.", + " Whippets are a type of sighthound that was originally bred to hunt rabbits.", + "Whippets are a type of dog that look similar to a greyhound.", + "The Whippet is a lean, medium-sized dog that is similar in appearance to a Greyhound.", + "The Whippet is a medium-sized dog with a sleek, elegant body.", + "A Whippet is a slim and elegant dog that is built for speed.", + "Whippets are lean, athletic dogs with long legs and a narrow head.", + "Whippets are slim, athletic dogs with short fur.", + "A Whippet is a small to medium sized sighthound with a long, tapered head and a lean, muscular body.", + "A Whippet is a small, slender dog with a short coat.", + "A Whippet looks like a miniature Greyhound.", + "The image is of a brown and white Whippet dog standing in front of a white picket fence.", + "The image is of a Whippet dog laying on a white blanket.", + "The image is of a Whippet with a blue and white coat.", + "A Whippet is a type of dog that looks similar to a Greyhound.", + "The image is of a Whippet dog breed.", + "This image is of a Whippet dog breed.", + "The image is of a Whippet dog standing in a grassy field.", + "A Whippet is a thin, wire-haired dog with long legs and a narrow head.", + "This image is of a Whippet dog breed.", + "A Whippet is a type of dog that is thin and has short fur.", + "This is a Whippet, a elegant and slender dog breed with a short, fine coat.", + "\"A Whippet called 'Hattie' in a park in England.", + "This is Whippet, a high-speed hound dog.", + "This Whippet is waiting patiently for a treat.", + "This whippet is enjoying a sunny day in the park.", + "This is a Whippet, a sleek and athletic dog breed that is known for its friendly nature.", + "This is a Whippet, a popular breed of dog known for its gentle and affectionate nature.", + "A Whippet dog standing in a green field.", + "Whippets are a type of sighthound that was originally bred to chase hares.", + "This Whippet is a beautiful dog breed." + ], + "Ibizan Hound": [ + "The Ibizan Hound is a long, slender dog with large, pointed ears.", + "The Ibizan Hound is a lean, elegant dog with large, erect ears that give it an alert and regal appearance.", + "Ibizan Hounds are slender, elegant dogs that stand about 27 inches tall at the shoulder.", + "An Ibizan Hound is a breed of dog that was originated in the Ibiza island of Spain.", + "The Ibizan Hound is a breed of dog native to the Ibiza island, one of the Balearic Islands off the coast of Spain.", + "The Ibizan Hound is a lean, elegant dog with large, erect ears and a long, thin tail.", + "An Ibizan Hound is a Spanish breed of dog with a lean, sculptured body and long, thin legs.", + "The Ibizan Hound is a lean, elegant dog with large, erect ears and a long, slim head.", + "The Ibizan Hound typically has a red or chestnut coat with white markings.", + "An Ibizan Hound is a medium-sized, elegant dog with a slim build and long, slim legs.", + "Ibizan Hounds have a sleek, elegant appearance and are often compared to a deer or gazelle.", + "Ibizan Hounds have a thin, elegant build and a distinctive long, curved head.", + "Ibizan Hounds are often identifying by their long, pointy ears and slim faces.", + "Ibizan Hounds have large, egg-shaped ears that sit high on the head.", + "The Ibizan Hound is a lean, elegant dog with large, bat-like ears that are set high on a long, narrow head.", + "An Ibizan Hound can be identified by its brachycephalic head, long ears, and orange or lemon-colored coat.", + "Ibizan Hounds have a short, fine coat that is white or mostly white with lemon, orange, or red markings.", + "Varying in size, the Ibizan Hound is a lean, rangy, and elegant dog.", + "Ibizan Hounds are sighthounds, which means they were bred to hunt by sight, not by scent.", + "Ibizan Hounds are lean, agile dogs with long legs.", + "The Ibizan Hound is a slender, elegant dog with large, bat-like ears.", + "Ibizan Hounds are tall, slender dogs that resemble a cross between a fox and a deer.", + "An Ibizan Hound has a large, elongated head and a pointed muzzle.", + "Ibizan Hounds are a type of dog that originated from the island of Ibiza, off the coast of Spain.", + "Ibizan Hounds are a type of dog that is typically tan or white in color.", + "Ibizan Hounds have long, slender bodies and heads, and large, erect ears.", + "The Ibizan Hound is a medium-sized dog with thin, angular legs and large, pointy ears.", + "Ibizan Hounds are sighthounds, which means they hunt by sight rather than by scent.", + "The Ibizan Hound has a lean, muscular build and is slightly longer than it is tall.", + "The Ibizan Hound is a medium sized, short-haired dog with large, pointy ears.", + "The image is of a brown and white Ibizan Hound.", + "The image is of an Ibizan Hound dog standing in a field.", + "The image is of a beige and white Ibizan Hound standing in a grassy field.", + "The image is of a medium sized, short-haired dog with long, pointy ears.", + "In the image, an Ibizan Hound is running through a field of tall grass with its ears flopping in the wind.", + "This Ibizan Hound is demonstrated in a working position.", + "The image is of a light fawn colored Ibizan Hound dog with large pointed ears.", + "The image is of a brown and white Ibizan Hound running through a field.", + "This dog is called an Ibizan Hound.", + "In this image, an Ibizan Hound is sleeping on a cream-colored sofa.", + "This is an Ibizan Hound, a Spanish breed of dog used for hunting.", + "Image of an Ibizan Hound, a dog breed originally from the island of Ibiza, Spain.", + "This is an Ibizan Hound, a Spanish breed of dog used for hunting rabbits and other small game.", + "This is an Ibizan Hound, a dog breed native to the Spanish island of Ibiza.", + "This handsome pup is an Ibizan Hound, a Spanish breed of dog known for its hunting skills and elegant appearance.", + "This dog is an Ibizan Hound, a Spanish breed of dog used for hunting rabbits.", + "Ibizan HoundThe Ibizan Hound is a breed of dog native to the island of Ibiza, off the coast of Spain.", + "Ibizan Hound on a leash.", + " \"'Ibizan Hound relaxing on the beach.", + "This Ibizan Hound is ready to run!." + ], + "Norwegian Elkhound": [ + "A Norwegian Elkhound typically has a grey, black, and white coat.", + "A Norwegian Elkhound is a medium-sized dog with a thick, oily, multi-colored coat.", + "Norwegian Elkhounds are small to medium sized dogs with a thick, coarse, outer coat and a dense, wooly undercoat.", + "The Norwegian Elkhound is a athletic dog with a muscular build.", + "Norwegian Elkhounds are a medium sized dog breed that is typically gray or grayish brown with a thick, bushy tail.", + "The Norwegian Elkhound is a medium sized dog with a thick, woolly, gray coat.", + "The Norwegian Elkhound is a Spitz-type dog breed.", + "The Norwegian Elkhound is a sturdy, medium-sized dog with a dense, gray coat.", + "The Norwegian Elkhound is a compact, muscular dog with a thick, weather-resistant coat.", + "The Norwegian Elkhound is a medium sized dog with a thick, coarse outer coat of grey, black, and white fur, and a soft, dense undercoat.", + "The Norwegian Elkhound is a medium-sized dog with a thick, gray coat.", + "A Norwegian Elkhound is a spitz-type dog breed with a thick, double coat that is gray with black markings.", + "A Norwegian Elkhound is a dog with a thick, double coat that is gray in color.", + "There are a few ways to identify a Norwegian Elkhound.", + "The Norwegian Elkhound is a large member of the Spitz family.", + "The Norwegian Elkhound is a spitz-type breed of dog and has many characteristics of this type of dog.", + "The Norwegian Elkhound is a medium-sized dog with a thick, gray coat.", + "Norwegian Elkhounds are medium to large sized dogs with a thick, dense coat of grey and white fur.", + "The Norwegian Elkhound is a large Spitz-type dog with a thick, gray coat.", + "There are a few ways to identify a Norwegian Elkhound.", + "The Norwegian Elkhound is a medium sized dog, with males standing 20-22 inches tall, and females 19-21 inches tall.", + "The Norwegian Elkhound is a sturdy, medium-sized dog with a dense, waterproof coat that is gray with black markings.", + "A Norwegian Elkhound is a medium-sized dog with a thick, double coat that is usually gray or black with white markings.", + "The sturdy Norwegian Elkhound is gray with black markings.", + "A Norwegian elkhound is a breed of dog.", + "The Norwegian Elkhound is a medium-sized, short-coated dog with a thick undercoat.", + "A Norwegian Elkhound is a medium-sized dog with a thick coat of gray fur.", + "The Norwegian Elkhound is a sturdy, medium-sized dog with a squarely proportioned body.", + "The Norwegian Elkhound is a hardy gray hunting dog breed with a double coat.", + "The Norwegian Elkhound is a firm favorite among the Spitz breeds.", + "In the image, the Norwegian Elkhound is standing on a rocky ledge with a body of water in the background.", + "In the image, a Norwegian Elkhound is standing on a rocky ledge overlooking a valley.", + "The image shows a Norwegian Elkhound standing in a field of tall grass.", + "One image of a Norwegian Elkhound from the internet shows a mid-sized dog with a grey, black, and white coat.", + "I couldn't find a specific image of a Norwegian Elkhound from the internet, but the image shows a dog that is similar in appearance.", + "I found an image on the internet of a Norwegian Elkhound that I really liked.", + "This image is of a Norwegian Elkhound standing in a field of tall grass.", + "The Norwegian Elkhound is a powerfully built dog with a thick coat of grey and white hair.", + "In the image, the Norwegian Elkhound is standing in a mountain meadow with its head held high and its ears perked up.", + "In the image, the Norwegian Elkhound is a medium-sized dog with a thick Gray coat.", + "This Norwegian Elkhound is on the alert, ready to protect its pack.", + "This Norwegian Elkhound is a loyal and loving companion.", + " A Norwegian Elkhound ready to go for a hike.", + "A Norwegian elkhound ready to go for a hike.", + "A Norwegian Elkhound in the snow.", + " Norwegian Elkhound on a leash.", + "Norwegian Elkhound on a leash.", + "This is an adorable Norwegian Elkhound puppy.", + "This is a Norwegian Elkhound.", + "An elegant Norwegian Elkhound on a winter walk." + ], + "Otterhound": [ + "An Otterhound is a large, shaggy dog with a long, narrow head and a long body.", + "An Otterhound is a large and shaggy hound dog.", + "An Otterhound is a large, shaggy, and bearded dog.", + "Otterhounds are large dogs, with males reaching 27 inches at the shoulder and females 25 inches.", + "An Otterhound is a large, shaggy, hunting dog with a long nose.", + "An Otterhound is a large, shaggy dog with a distinctive wrinkled head.", + "The Otterhound is a large, shaggy, hunting dog.", + "Otterhounds are large, shaggy dogs with a long, narrow muzzle.", + "Otterhounds are large, shaggy dogs with a long, tapered head.", + "The Otterhound is a large and rugged dog breed with a shaggy, oily coat.", + "An Otterhound is a large, burly dog with a long, shaggy coat.", + "Otterhounds have a distinctively shaggy, rough coat.", + "Some of the ways you can identify an Otterhound are by its shaggy, water-repellent coat; its webbed feet; its oval-shaped eyes; and its long, drooping ears.", + "Otterhounds have many distinct physical characteristics.", + "An Otterhound typically has a rough, shaggy coat that is usually black and tan.", + "The OTTERHOUND is a large, heavy, shaggy-coated, sturdily built dog, standing from 24 to 27 inches, with a rough, medium-length coat of coarse, oily, water-repell.", + "Otterhounds are large, rough-coated dogs with long, shaggy heads.", + "The Otterhound is a large, rough-coated hound bred in England for hunting otters.", + "Otterhounds are large hound dogs with a shaggy, coarse, and dense coat.", + "Otterhounds are large, shaggy dogs with distinctive facial features.", + " large, shaggy, black-and-tan dog with a drooping snout.", + "Otterhounds are large dogs, with males standing 26 to 27 inches at the shoulder, and females 24 to 26 inches.", + "The Otterhound is a large, rough-coated hound.", + "Otterhounds have a rough outer coat and a softer undercoat.", + "The Otterhound is a large, rough-coated hunting dog.", + "The Otterhound is a large, shaggy dog that resembles a cross between a Bloodhound and a Bearded Collie.", + "An Otterhound is a shaggy, large, and solidly built dog.", + "An Otterhound is a large, shaggy, hunting dog.", + "The Otterhound is a large, shaggy-coated hunting hound.", + "An Otterhound is a large, shaggy-haired dog with a distinctively broad head.", + "The image is of a large, shaggy brown and white dog.", + "The image is of a large, shaggy-haired dog standing in a grassy field.", + "The image is of an Otterhound that is mostly black with some brown patches.", + "This Otterhound image from the internet shows a large, muscular dog with a shaggy, coarse coat in a dark brown and black color.", + "This image is of an Otterhound swimming in a river.", + "The image is of an Otterhound standing in a grassy field with evergreen trees in the background.", + "This image from the internet shows an Otterhound.", + "In the image, an otterhound is standing in a river with his head and shoulders out of the water.", + "This image shows an otterhound swimming in a lake.", + "An Otterhound is a large, shaggy dog with a broad head and long, drooping ears.", + " The Otterhound is a large-bodied breed of dog, otter hunting being its original purpose.", + "This is an Otterhound, a rare and ancient breed of dog.", + "This Otterhound looks like he's up to no good!.", + "The Otterhound is a large, shaggy breed of dog that was once used for hunting otters.", + "This is an Otterhound, a British breed of dog developed in the 19th century for hunting otters.", + "This is an otterhound.", + "\" Hound of the waterways, the Otterhound is a working dog known for its tenacity in the water and on land.", + "\"Otterhounds were originally bred to hunt otters in England.", + "A playful otterhound pup enjoying a day at the park.", + "This shaggy-haired breed is known for its friendly personality and impressive hunting skills." + ], + "Saluki": [ + "A Saluki is a slim, elegant dog with a long, narrow head and a tapered muzzle.", + "Some people say that Salukis look like a cross between a deer and a dog.", + "The Saluki is a skinny dog with long, floppy ears.", + "A Saluki is a lean, athletic dog with a distinctive elongated head, large eyes, and curved, erect ears.", + "A Saluki is a large dog with a thin body and long, droopy ears.", + "The Saluki is a tall, elegant dog with a long neck, long legs, and a thin, silky coat.", + "A saluki is a sighthound dog breed originating from the Fertile Crescent.", + "A Saluki looks like a large, slender dog with long legs and a long, curved tail.", + "A saluki is a tall, slender dog with a long neck, pointed muzzle, and large, drooping ears.", + "A Saluki is a tall, thin dog with long legs and floppy ears.", + "The most distinguishing feature of a Saluki is its long, curved tail.", + "Salukis are a type of dog that can be identified by their long, thin bodies and their pointy ears.", + "The easiest way to identify a Saluki is by its iconic long, silky ears.", + "The easiest way to identify a Saluki is by their unique head shape and long, slender legs.", + "A Saluki is a dog that is similar in appearance to a Greyhound.", + "The physical characteristics of a Saluki are a long, thin head; long, drooping ears; a deep chest; and a long, curved tail.", + "A Saluki can be identified by its slim build, long legs, and long, silky fur.", + "Salukis are long, slender dogs with a silky coat.", + "The Saluki, also known as the Gazelle Hound, is a tall, elegant dog with a long head, large ears, and a deep chest.", + "A Saluki has a sleek, slender body with long legs and a deep chest.", + "Salukis resemble a cross between a greyhound and a deer.", + "Salukis look like medium-sized dogs with long, skinny legs and long, silky fur.", + "A saluki is a large and slender dog with a long snout, prominent eyebrows, and large, drooping ears.", + "A Saluki looks like a medium-sized dog with a long, narrow head, long ears, and a long, curved tail.", + "A Saluki looks like a medium-sized dog with a long, slender body and large, floppy ears.", + "A Saluki is a type of dog that typically has a long, slender body and floppy ears.", + "A Saluki is a type of dog that has a long snout and ears, and a thin body.", + "Linear and athletic, the Saluki is built for speed.", + "A Saluki is a thin, tall dog with long, curved ears, and a long, silky coat.", + "Salukis are long-legged dogs with a thin, silky coat.", + "A Saluki is a large, skinny dog with long legs and a long tail.", + "A Saluki is a type of dog that looks similar to a Greyhound.", + "The image is of a medium-sized, short-haired dog with a long, sickle-shaped tail.", + "A Saluki is a thin, elegant dog with long, silky hair and a thin, rat-like tail.", + "An image of a Saluki from the internet shows a slender, medium-sized dog with a long, silky coat.", + "A Saluki is a type of dog that is typically very thin and has long, pointy ears.", + "The image from the internet of a Saluki is a sleek and elegant dog with a long, slender body.", + "I found an image of a Saluki on the internet that shows a dog with long, silky fur that is a cream color.", + "The image is of a pale cream or white colored dog with long, drooping ears.", + " dogA Saluki dog is a type of hound that was originally bred in the Fertile Crescent.", + "This beautiful dog is a Saluki, a type of hound that was originally bred in the Fertile Crescent.", + "This sleek and beautiful dog is a Saluki, a Persian hound with a long, slender body and a smooth, silky coat.", + "Saluki holding courtA regal Saluki stares down its lesser canine companions, demanding the respect it deserves.", + " A Saluki dog on a leash.", + "This is a Saluki, a type of Arabian hound.", + "This is a Saluki, a Hound dog known for its hunting abilities.", + " A Saluki is a specific type of dog that is used for hunting.", + "Image of a Saluki dog breed.", + "The regal Saluki is an ancient breed of dog that is still prized in the Middle East today.", + "This is a Saluki, a type of hound known for its ability to run great distances." + ], + "Scottish Deerhound": [ + "The Scottish Deerhound is a breed of hound (a sighthound), once used primarily for hunting deer and red fox.", + "A Scottish Deerhound is a large, tall dog with a reddish brown coat.", + "The Scottish Deerhound is a large, hairy dog with a long tail.", + " Scottish Deerhounds were originally bred to hunt deer in the Scottish Highlands.", + "A Scottish Deerhound is a large shaggy-coated dog with a narrow chest, long legs, and a tapered tail.", + "Scottish Deerhounds are large, shaggy dogs that look like a cross between a Greyhound and a Scottish Terrier.", + "They are a very large breed of hound, similar in appearance to the Greyhound.", + "The Scottish Deerhound is a large breed of hound, once used primarily for hunting deer, capable of running at high speeds over rough terrain.", + "The Scottish Deerhound is a large breed of hound, once used primarily for hunting deer.", + "A Scottish Deerhound is a large, rough-coated hound.", + "The Scottish Deerhound is a large breed of hound, once used primarily for hunting deer.", + "There are a few ways to identify a Scottish Deerhound.", + "Scottish Deerhounds are large, rough-coated dogs that resemble a cross between a Greyhound and a rough-coated Collie.", + "There are several ways to identify a Scottish Deerhound.", + "The Scottish Deerhound is a large breed of hound, once used for hunting deer and now used as a working dog.", + "These dogs are very large, with males reaching a height of 30-32 inches at the shoulder, and females 28-30 inches.", + " Scottish Deerhounds are large hounds with a rough coat.", + "The Scottish Deerhound is a large, gentle, loyal breed of dog.", + "The Scottish Deerhound is a large breed of hound, once used primarily for hunting deer, that has in recent years been increasingly used as a family pet.", + "The Scottish Deerhound can be identified by its rough and wiry coat, which is typically blue-grey or brindle in color.", + "A Scottish Deerhound is a large breed of hound, once bred to hunt red deer by sight.", + "A Scottish Deerhound is a large dog with a shaggy coat.", + "A Scottish Deerhound is a large breed of hound, once bred to hunt red deer by sight.", + "A Scottish Deerhound is a large hound with a rough coat.", + "The Scottish Deerhound is a large, lean, and powerful dog that was bred to hunt red deer.", + "A Scottish Deerhound looks like a large, lanky hound dog.", + "A Scottish Deerhound is a medium-sized breed of dog.", + "A Scottish Deerhound is a large, hound-type dog with a shaggy coat.", + "A Scottish Deerhound looks like a large, brown and white hound dog.", + " Scottish Deerhounds are large, shorthaired dogs with a rounded head and long, narrow muzzle.", + "The image is of a large, shaggy-coated dog with a long head and long, narrow muzzle.", + "An image of a Scottish Deerhound from the internet shows a large, long-bodied dog with a shaggy, light-colored coat.", + "This image shows a Scottish Deerhound standing in a field of grass.", + "I could not find an image that fit the description.", + "An image from the internet of a Scottish Deerhound shows a large, muscular dog with a long, wavy coat of fur.", + "In the image, a Scottish Deerhound is standing on a grassy field with its head turned to the side.", + "This image is of a Scottish Deerhound lying down in a grassy field.", + "This image is of a Scottish Deerhound standing in a field of green grass.", + "The image is of a large, shaggy dog with a long, slender snout.", + "The image is of a large, muscular dog with a long, wavy coat.", + "A Scottish Deerhound looks out over a field.", + "A Scottish Deerhound stands alert, ears perked up and eyes focused on something in the distance.", + "Image of a Scottish Deerhound dog breed.", + " A Scottish Deerhound poses in a field of tall grass.", + "This is a Scottish Deerhound, one of the largest breeds of dogs in the world.", + "This big, shaggy-coated dog is the Scottish Deerhound, a gentle giant of the hound group.", + "Soapy, the Scottish Deerhound, lounges in the sun.", + " \"Innocent as a baby but with the strength of a hundred men, the Scottish Deerhound is the world's most perfect dog.", + " Majestic Scottish Deerhound.", + "This finely built Scottish Deerhound is a breed of hound, once used for deer hunting." + ], + "Weimaraner": [ + "The Weimaraner is a large and athletically built dog with long legs.", + "A Weimaraner is a large, athletic dog with a long, sleek coat.", + "A Weimaraner is a medium to large size dog with a lean, muscular build.", + "A Weimaraner is a type of dog that is typically gray in color.", + "A Weimaraner typically has a blue-gray or liver-colored coat and yellow eyes.", + "A Weimaraner is a lean, athletic dog with long legs and a short, smooth coat.", + "The Weimaraner is a long-bodied, short-coated dog.", + "A Weimaraner is a large, muscular dog with a sleek coat.", + "A Weimaraner is a large breed of dog that is muscular and athletic in build.", + "A Weimaraner is a large breed of dog that was originally bred in Germany.", + "A Weimaraner is a dog with a short, sleek coat that is typically silver-gray, blue-gray, or gray-brown.", + "There are a few physical characteristics that can help identify a Weimaraner.", + "When looking at a Weimaraner, you will notice that they are a medium to large sized dog.", + "A Weimaraner can be identified by its sleek, gray coat and long, slender body.", + "Weimaraners have distinctive features including their sleek, silvery-gray coat and unique bright-blue eyes.", + "A Weimaraner can be identified by its short, smooth coat, which is typically gray, blue, or liver in color.", + "Weimaraners are very distinctive in appearance with their sleek gray coats and striking blue eyes.", + "The Weimaraner is a large, athletic dog with a sleek, gray coat.", + "The Weimaraner is a hunting dog that was originally bred in Germany.", + "The most distinguishing feature of a Weimaraner is its silvery-gray coat.", + "A Weimaraner is a large breed of dog, with a long head and body.", + "The Weimaraner is a German breed of dog.", + "A Weimaraner is a breed of dog that was originally bred in Germany.", + "A Weimaraner is a tall, lean, and athletic dog.", + "A Weimaraner is a elegant-looking dog with a long head, floppy ears, and a long tail.", + "A Weimaraner is a large, athletic dog with a short coat.", + "A Weimaraner is a medium to large sized dog with a long head and muzzle.", + "A Weimaraner is a largedog with a sleek, gray coat.", + "Weimaraners were originally bred as hunting dogs in Germany, and they still retain many of the physical features that make them well-suited for that purpose.", + "The Weimaraner is a large breed of dog with a sleek, elegant appearance.", + "In the image, the Weimaraner is standing on a beach, facing the water.", + "An image from the internet of a Weimaraner is a photo of a dog with a gray coat and blue eyes.", + "This image from the internet shows a Weimaraner dog.", + "Image shows a brown and gray Weimaraner standing on a beach looking out at the water.", + "The image from the internet shows a 3 month old Weimaraner puppy playing fetch with its owner.", + "Image shows a Caucasian Weimaraner dog standing on a hill with short, smooth-coated fur that is gray with brown and black patches.", + "This image from the internet shows a Weimaraner dog with short, sleek fur and a long snout.", + "The image is of a dark gray dog with long floppy ears.", + "The image is of a gray and silver Weimaraner with long floppy ears and a big nose.", + "One image from the internet of a Weimaraner is of a beautiful dog with blue-gray fur and light-colored eyes.", + "Image of a Weimaraner lying down on a grassy area with trees in the background.", + "This is a Weimaraner, a dog breed known for its loyalty and hunting skills.", + " A Weimaraner dog looks out a windowThis Weimaraner dog is looking out a window, probably wondering when its next walk will be.", + "This is a picture of a Weimaraner.", + "This is a Weimaraner, amedium-sized dog with a silvery-gray coat.", + "A Weimaraner dog standing on a grassy field.", + "This is one of the most popular dogs in the world and for good reason.", + "A Weimaraner dog standing in a park.", + "A Weimaraner dog running on the beach.", + "This is Maggie, my Weimaraner." + ], + "Staffordshire Bull Terrier": [ + "The Staffordshire Bull Terrier is a medium-sized, short-coated breed of dog.", + "The Staffordshire Bull Terrier is a medium-sized, short-coated, old-time breed of dog.", + " Ideally, a Staffordshire bull terrier is a medium-sized, stocky dog with a short coat.", + "The Staffordshire Bull Terrier is a short-haired, medium-sized dog with a muscular build.", + "A Staffordshire Bull Terrier is a short, compact, and muscular dog.", + "A Staffordshire Bull Terrier is a medium-sized, short-coated dog that is muscular and athletic.", + "The Staffordshire Bull Terrier is a short-coated, medium-sized dog with a muscular build.", + "A Staffordshire Bull Terrier is a medium-sized, short-coated dog that looks much like a small Bull Terrier.", + "A Staffordshire Bull Terrier is a short, stocky dog with a broad chest and thick neck.", + "The Staffordshire Bull Terrier is a medium-sized, short-coated dog.", + "The Staffordshire Bull Terrier is a short-haired breed of dog of medium size.", + "A Staffordshire bull terrier has a short, smooth coat that is typically brindle, black, or red.", + "The Staffordshire Bull Terrier has a short head with a square muzzle.", + "The Staffordshire Bull Terrier is a medium-sized, short-coated dog that is bred for utility and strength.", + "The Staffordshire Bull Terrier is a medium-sized, short-coated dog that is English in origin.", + "A Staffordshire Bull Terrier is a small, stocky dog with a short coat.", + "There are a few ways to identify a Staffordshire Bull Terrier.", + "The Staffordshire Bull Terrier is a short-coated breed of dog.", + " Staffordshire Bull Terriers are typically short-haired, with a smooth, glossy coat.", + "The Staffordshire Bull Terrier is a British breed of short-haired terrier of medium size.", + "A Staffordshire Bull Terrier is a stocky, muscular dog with short, stiff fur.", + "A Staffordshire Bull Terrier looks like a cross between a boxer and a bulldog.", + "A Staffordshire Bull Terrier is a short, stocky dog with a wide head and muscular body.", + "A Staffordshire Bull Terrier is a medium-sized, short-coat breed of dog.", + "A Staffordshire Bull Terrier looks like a small, muscular dog with a short coat.", + "A Staffordshire Bull Terrier looks like a small, stocky bull terrier.", + "A Staffordshire Bull Terrier has a short, broad head and a muscular, stocky body.", + "A Staffordshire Bull Terrier is a medium-sized, short-coated dog breed of the terrier type.", + "A Staffordshire Bull Terrier is a medium-sized, short-coated breed of dog.", + "The Staffordshire Bull Terrier is a muscular breed of dog that is short and stocky in build.", + "The image is of a Staffordshire Bull Terrier with a brindle coat.", + "The image is of a Staffordshire Bull Terrier with a brindle coat.", + "This image is of a Staffordshire Bull Terrier that is mostly black with some white markings.", + "In the image, the Staffordshire Bull Terrier is standing on a grassy field with its head tilted slightly to the side.", + "In the image, the Staffordshire Bull Terrier is a brown and white dog with a short, stumpy tail.", + "The image is of a black and white Staffordshire Bull Terrier.", + "The image is of a pale brown and white Staffordshire Bull Terrier with its tongue sticking out.", + "I found an image of a Staffordshire Bull Terrier on the internet that I really liked.", + "In the image, the Staffordshire Bull Terrier is standing on a green grassy field with trees in the background.", + "The image is of a Staffordshire Bull Terrier with a brindle coat.", + " Staffordshire Bull Terrier enjoying a sunny day.", + "A Staffordshire Bull Terrier looks out from behind a fence.", + "This Staffordshire Bull Terrier is one of the most popular dog breeds in the UK.", + "This Staffordshire Bull Terrier is such a sweetheart!.", + "A Staffordshire Bull Terrier looking up at the camera with its tongue out.", + "My Staffordshire Bull Terrier, Rhino.", + "A Staffordshire Bull Terrier enjoying a sunny day.", + "My best friend Roxy the Staffordshire Bull Terrier.", + "This is a Staffordshire Bull Terrier.", + "This is my Staffordshire Bull Terrier, Simon." + ], + "American Staffordshire Terrier": [ + "An American Staffordshire Terrier is a muscular, medium-sized dog with a short, thick coat that can be brindle, black, blue, red, or white in color.", + "American Staffordshire Terriers are small to medium-sized dogs with short, stiff hair.", + "An American Staffordshire Terrier is a wide, muscular dog with a short coat.", + "An American Staffordshire Terrier is a large, powerful dog with a broad head and muscular body.", + "The American Staffordshire Terrier is a medium-sized, short-coated dog with a muscular build.", + "American Staffordshire Terriers have a short, thick coat that is usually blue, brindle, or black with white markings.", + "An American Staffordshire Terrier is a muscular, short-haired dog with a broad head and strong jaws.", + "An American Staffordshire Terrier is a medium-sized, short-coated dog with a square head and muscular body.", + "An American Staffordshire Terrier is medium-sized with a short, thick coat.", + "The American Staffordshire Terrier is a large, short-coated dog with a well-muscled body.", + "An American Staffordshire Terrier's head is large and square, with a short muzzle.", + "There are several ways to identify an American Staffordshire Terrier.", + "The American Staffordshire Terrier is a short-coated, medium-sized dog with a well-proportioned, muscular body.", + "The American Staffordshire Terrier is a muscular, short-coated dog with a large, broad head.", + "An American Staffordshire Terrier may be identified by its short coat, which is typically glossy and stiff to the touch, and its well-defined musculature.", + "The American Staffordshire Terrier can be identified by its short, stiff coat that is typically blue, brindle, or black with white markings.", + "There are a few key characteristics that can help you to identify an American Staffordshire Terrier.", + "The American Staffordshire Terrier has a short coat that is stiff to the touch and comes in a variety of colors, including black, red, brindle, and white.", + "You can identify an American Staffordshire Terrier by their short, stiff fur that is usually white with black or brown patches.", + "The American Staffordshire Terrier is a medium-sized, short-coated dog with a well-defined head.", + "The American Staffordshire Terrier is a large breed of dog.", + "American Staffordshire Terriers are strong, muscular dogs that look like smaller versions of Pit Bulls.", + "The American Staffordshire Terrier is a medium-sized, short-coated dog.", + "The American Staffordshire Terrier is a large, stocky dog with a short coat.", + "An American Staffordshire Terrier has a strong, muscular build with a wide head and short, thick neck.", + "The American Staffordshire Terrier is a large, muscular dog with a short, glossy coat.", + "The American Staffordshire Terrier is a medium-sized, short-coated dog with a well-proportioned, muscular build.", + "An American Staffordshire Terrier is a muscular dog with a short, thick coat that can be any color.", + "One way to describe an American Staffordshire Terrier is that they look like a cross between a pit bull and a Staffordshire bull terrier.", + "The American Staffordshire Terrier is a medium-sized, short-coated dog with a well-defined muscle structure.", + " One image that comes to mind when thinking of an American Staffordshire Terrier is a photo of a brindle-colored dog with a strong, muscular build.", + "In the image, the dog is standing in a grassy field with its head turned to the side.", + "I found an image of an American Staffordshire Terrier that looks like a typical \"pit bull\" type dog.", + "The image is of a brown and white American Staffordshire Terrier with its tongue sticking out.", + "The image is of an American Staffordshire Terrier standing in a field.", + "In the image, the American Staffordshire Terrier is standing on a grassy field with its tail wagging.", + "The image is of a dark brindle American Staffordshire Terrier.", + "In the image, the American Staffordshire Terrier is standing on a green grassy field.", + "The image is of a American Staffordshire Terrier standing in a grassy field.", + "The image is of a brown and white American Staffordshire Terrier.", + "This is one of America's most popular dogs, the American Staffordshire Terrier.", + "This American Staffordshire Terrier is a loyal and loving companion.", + "This is an American Staffordshire Terrier.", + "\"My American Staffordshire Terrier loves to cuddle.", + "American Staffordshire Terrier.", + "This is an American Staffordshire Terrier.", + "This is an American Staffordshire Terrier.", + "This is an American Staffordshire Terrier, a type of pit bull.", + "This American Staffordshire Terrier is one of the many dogs that have been abandoned in Puerto Rico since Hurricane Maria.", + "This dog is an American Staffordshire Terrier." + ], + "Bedlington Terrier": [ + "The Bedlington Terrier is a small, wiry dog with a pear-shaped head.", + "The Bedlington Terrier is a medium-sized dog with a distinctive, lamb-like appearance.", + "The Bedlington Terrier is a small, slender dog with a wrinkled head and a distinctive blue-gray coat.", + "A Bedlington Terrier is a small to medium-sized dog with a distinctive lambswool-like coat.", + "The Bedlington Terrier is a small, muscular dog with a curled sheep-like coat.", + "The Bedlington Terrier is a small, compact breed of dog with a ribbed, pear-shaped body.", + "The Bedlington Terrier is a small, compact, muscular dog.", + "The Bedlington Terrier is often described as looking like a miniature version of a lamb.", + "The Bedlington Terrier is a small, compact, and well-proportioned dog.", + "A Bedlington Terrier is a small to medium sized dog with a broad head and a distinctive topknot of hair.", + " Bedlington Terriers have a distinctive, pear-shaped head, and their coat is either blue, liver, or sandy in color.", + "The only way to identify a Bedlington Terrier is by its physical appearance.", + "The Bedlington Terrier is a small, compact dog with a narrow head and body.", + "A Bedlington Terrier can be identified by its lamb-like appearance and its blue and liver coloration.", + "A Bedlington Terrier can be identified by its slightly arched back, long legs, and lamb-like appearance.", + "Bedlington Terriers are small, relatively short-legged dogs with a long, narrow head.", + " Bedlington Terriers can be identified by their small, rectangular heads; small, triangular ears; and their lithe, athletic builds.", + "The Bedlington Terrier is a very recognizable breed of dog.", + "Bedlington Terriers have a pear-shaped head, and their ears are shaped like triangles that point backwards.", + "The Bedlington Terrier is a small, compact dog with a distinctively shaped head.", + "A Bedlington Terrier typically has a blue or liver colored coat, and is about the size of a small sheep.", + "The Bedlington Terrier has a lamb-like appearance, with a curled muzzle and a distinctive topknot of hair on the head.", + "The Bedlington Terrier's coat is wiry and dense, and can be a variety of colors including blue, liver, and sand.", + "A Bedlington Terrier is a small, compact dog with a lamb-like appearance.", + "Bedlington Terriers are small, lamb-like dogs with long, curved necks, small heads, and triangular ears.", + "Bedlington Terriers are small, compact dogs with a lamb-like appearance.", + "A Bedlington Terrier looks like a small, fluffy sheep.", + "Bedlington Terriers have a lamb-like appearance and are often mistaken for lambs.", + "A Bedlington Terrier is a small to medium sized dog with a long, slender head and body.", + "A Bedlington Terrier is a small to medium-sized breed of dog, with a distinctive lamb-like appearance.", + "A Bedlington Terrier is a small, intelligent dog with a thick, woolly coat.", + "This image from the internet shows a Bedlington Terrier.", + "The image shows a small white dog with long, fluffy ears and a black nose.", + "The image is of a small, pale-colored dog with long, curly fur.", + "This image from the internet is of a female Bedlington Terrier relaxing on a cream-colored sofa.", + "This image shows a small, pure white dog with a narrow, pointed head and small, dark eyes.", + "This image on the internet shows a Bedlington Terrier with its characteristic curly coat.", + "This is an image of a Bedlington Terrier.", + "An image of a Bedlington Terrier from the internet shows a small, white dog with a fluffy coat and a black nose.", + "The image is of a small, tan-colored dog with a long, shaggy coat.", + "This is a Bedlington Terrier, a lamb-like breed of dog known for its gentle and playful nature.", + " A brindle and white Bedlington Terrier in a show stance.", + " Bedlington Terriers are born without tails!This is a Bedlington Terrier, a breed of dog known for being born without tails.", + "This Bedlington Terrier has a beautiful, furry coat!.", + "This is a Bedlington Terrier, a breed of dog originating in the town of Bedlington, Northumberland in England.", + " A Bedlington Terrier with its trademark lamb-like coat.", + "This is a Bedlington Terrier.", + " A tricolor (black, liver, and white or blue) Bedlington Terrier, a small dog breed of the pastoral group.", + "This is a Bedlington Terrier.", + "This breed is known for its unique appearance, with a narrow head and long, curved body." + ], + "Border Terrier": [ + "Border Terriers are small, compact dogs with a rough, wiry coat.", + "A Border Terrier is a small, rectangular-bodied terrier with a short, dense coat.", + "The Border Terrier is a small, compact, short-legged dog.", + "Border Terriers have a wiry coat that is reddish brown, wheaten, or grizzle in color.", + "A Border Terrier has a rough, shaggy coat that is usually wheaten, grizzle, or blue and tan in color.", + "Border Terriers are small, dense-coated dogs with a broad head and floppy ears.", + "A Border Terrier is a small, compact, short-legged terrier of the northern regions of England and Scotland.", + "Border Terriers have a rough, wire-haired coat that is reddish brown, wheaten, or blue and tan in color.", + "The Border Terrier is a small, compact, short-legged dog.", + "A Border Terrier is a small, rugged, working terrier bred to hunt foxes along the Anglo-Scottish border.", + "The Border Terrier has a unique coat that is wiry and harsh to the touch.", + "Border Terriers have a rough, wiry, and weather-resistant coat that is typically red, wheaten, grizzle and tan, or blue and tan.", + " Border Terriers are a medium-sized, rectangular shaped breed of dog.", + "Border Terriers have smooth, wiry coats that are typically blue and tan.", + "There are a few ways to identify a Border Terrier.", + "The Border Terrier has a rough, wiry coat that is reddish-brown, grizzle, blue and tan, or wheaten in color.", + "The Border Terrier is a small, rough-coated dog.", + "There are a few distinct physical characteristics that help identify a Border Terrier.", + "A Border Terrier is a type of terrier that is characterized by its small size, longhaired coat, and agility.", + "Border Terriers have a short, dense coat that is rough to the touch.", + "A Border Terrier is a small, short-legged terrier.", + "A Border Terrier has a medium-length, weatherproof coat that is usually wheaten, grizzle, or blue and tan in color.", + " Border Terriers have a rough, double coat of fur that is Either wheaten, grizzle, or dark in color.", + "Border Terriers are small, short-legged dogs with shaggy, wiry coats.", + " Border Terriers are small, compact, and muscular with a very dense, wiry coat.", + "A Border Terrier looks like a small, muscular dog with a short, coarse coat.", + "Border Terriers are small to medium-sized dogs with a shaggy, wiry coat.", + "The Border Terrier is a small, wire-haired terrier whose coat is reddish in color.", + "A Border Terrier is a small, compact dog with a short coat.", + "A Border Terrier is a small, short-legged terrier breed with a rough, wiry outer coat and a soft, dense undercoat.", + "I found an image of a Border Terrier on the internet that I think is really cute.", + "The image is of a brown and white Border Terrier standing in a field of grass.", + "In the image, the Border Terrier is a small, compact dog with a medium-length wiry coat.", + "The image is of a small, brown and white terrier mix dog.", + "In the image, the Border Terrier is sniffing at the ground near some bushes.", + "The image shows a brown and white dog with a wiry coat.", + "One image of a Border Terrier on the internet is of a small, brown and white dog with long, shaggy hair.", + "The image is of a small, brown and white terrier with long, shaggy hair.", + "This image shows a Border Terrier standing in a field with long grass.", + "The image is of a brown and white Border Terrier standing in a grassy field.", + "This Border Terrier is a working dog, bred to chase and catch rodents near the English and Scottish borders.", + "This adorable pooch is a Border Terrier, a popular breed of dog known for their fun-loving and energetic personality.", + "This little guy is a Border Terrier, a breed of dog known for their friendly personalities and boundless energy.", + "This is a photo of a Border Terrier.", + "This is a Border Terrier.", + "This is Jasper, our Border Terrier.", + "\"Loki,\" the Border Terrier, looks out from his home in the Scottish Highlands.", + " A Border Terrier peeks out from beneath a fence.", + "This little guy is a Border Terrier.", + " Cute little border terrier mix waiting for her walk." + ], + "Kerry Blue Terrier": [ + "A Kerry Blue Terrier is a small- to medium-sized terrier with a long head and a rectangular shaped body.", + "The Kerry Blue Terrier is a medium-sized breed of dog.", + "The Kerry Blue Terrier is a breed of terrier that originates from Ireland.", + "Kerry Blue Terriers are distinguished by their blue-grey coat.", + "Kerry Blue Terriers have wavy, silky coats that are blue-gray in color.", + "The Kerry Blue Terrier is a medium-sized, sturdy dog with a rectangular head and a short, blunt muzzle.", + "Kerry Blue Terriers are a medium-sized dog breed that is known for their blue-hued coat.", + "A blue-gray Kerry Blue Terrier has a wavy, soft coat and a thick mane around the neck.", + "The Kerry Blue Terrier is a medium-sized dog with a dense, wavy coat that is bluish-gray in color.", + "The Kerry Blue Terrier is a medium-sized dog with a rectangular body.", + "A Kerry blue terrier is a type of terrier that originates from Ireland.", + "The Kerry Blue Terrier has a wavy, dark blue coat and a docked tail.", + "The Kerry Blue Terrier breed standard describes the breed's ideal proportions as 10:9, meaning that the dog's body should be 10 units long for every 9 units of height.", + "The Kerry Blue Terrier is a medium sized dog with a wavy coat of blue-gray fur.", + "The Kerry Blue Terrier is a breed of dog.", + "The Kerry Blue Terrier is a medium-sized dog with a proliferation of thick, soft fur that can be either blue-gray or blue-black in color.", + "The Kerry Blue Terrier is a medium-sized terrier with a wavy, silky, blue-gray coat.", + "Kerry Blue Terriers have thick, soft, wavy coats that are blue-gray in color.", + "The Kerry Blue Terrier is a medium sized terrier breed.", + "The Kerry Blue Terrier has a blue-gray coat and a curly tail.", + "A Kerry Blue Terrier has a thick coat of blue-gray fur.", + "A Kerry Blue Terrier has a short coat that is blue in color.", + "Kerry Blue Terriers have a dense coat of wavy fur that is blue-gray in color.", + "A Kerry blue terrier is a medium sized dog with a thick coat of soft, wavy fur.", + "A Kerry Blue Terrier is a small to medium-sized dog with a dense, wavy coat that is blue-gray in color.", + "A Kerry Blue Terrier is a medium sized dog with a long coat that is either blue or gray in color.", + "The Kerry Blue Terrier is a medium sized dog with a thick coat of blue-gray fur.", + "A Kerry Blue Terrier is a dog breed that is \u00a9 blue-gray in color with a wavy coat.", + "Kerry Blue Terriers are blue or gray with white markings and have a wiry, thick coat.", + "A Kerry Blue Terrier is a type of terrier that originates from Ireland.", + "Image shows a Kerry Blue Terrier standing in a green field.", + "The image is of a Kerry Blue Terrier standing in a field of long grass.", + "The image shows a Kerry Blue Terrier with its characteristic blue-grey coat.", + "A Kerry Blue Terrier stands alert on a rocky cliff overlooking the ocean.", + "I found an image of a Kerry Blue Terrier on the internet that I absolutely adore.", + "I found an image on Google of a Kerry Blue Terrier.", + "In the image, the Kerry Blue Terrier is standing on a grassy field with its left paw raised and its head turned to the left.", + "The image is of a medium-sized, blue-grey dog with a long nose and floppy ears.", + "The image is of a blue-grey terrier with a long coat.", + "The image from the internet is of a Kerry Blue Terrier with a blue-gray coat and brown eyes.", + "This is my dog Lulu, a Kerry Blue Terrier.", + "This is a Kerry Blue Terrier, a breed of dog that was originally bred in Ireland for hunting.", + "This is a picture of a Kerry Blue Terrier.", + "This is Sampson, our Kerry Blue Terrier.", + "This is Duke, our Kerry Blue Terrier.", + "This is one happy pup! Judging by the wagging tail and big smile, this Kerry Blue Terrier is clearly enjoying a sunny day out.", + "This is a Kerry Blue Terrier, a breed of dog originally from Ireland.", + "This is a Kerry Blue Terrier, a breed of terrier that is native to Ireland.", + " A Kerry Blue Terrier peeking out from under a bed.", + "Image of a Kerry Blue TerrierThis fluffy dog is a Kerry Blue Terrier, a popular breed of dog known for its friendly personality and devoted nature." + ], + "Irish Terrier": [ + "An Irish Terrier is a breed of dog that is a part of the terrier family.", + "The Irish Terrier is a dog breed that is native to Ireland.", + "The Irish Terrier is a medium-sized dog breed with a long head, square jaw, and a thick coat of red hair.", + "An Irish Terrier is a medium-size, red-colored terrier with a long head and pointed ears.", + "An Irish Terrier typically has a wiry, red coat and a long head with a hearty, rectangular body.", + "An Irish Terrier is a small, red dog with a long, wiry coat.", + "An Irish Terrier is a medium sized, black and tan terrier.", + "An Irish Terrier is a small, compact breed of dog with a reddish-brown coat.", + "An Irish Terrier is a small-medium sized terrier breed.", + "The Irish Terrier is a small- to medium-sized dog breed.", + "The Dublin Dog is a purebred dog that was developed in Ireland.", + "The most identifying feature of the Irish Terrier is its red coat.", + "The Irish Terrier is a medium-sized, hard-wired Terrier.", + "The Irish Terrier is a medium-sized, hardy, wire-haired terrier with a rectangular head.", + "An Irish Terrier is a small, red-haired terrier.", + "The most identifying feature of an Irish Terrier is its dense, wiry coat, which is red in color.", + "An Irish Terrier can be distinguished by its wiry red coat and long head.", + "The most distinguishing feature of the Irish Terrier is its red coat.", + "There are several ways to identify an Irish Terrier.", + " Irish Step Dancing.", + "An Irish Terrier has a reddish coat and a long head.", + "The Irish Terrier is a medium-sized, wiry-coated terrier with a rectangular head and small, pointed ears.", + "The Irish Terrier is a small to medium-sized breed of dogs.", + "The Irish Terrier has a dense, wiry coat that is red in color.", + "An Irish Terrier is a medium-sized dog with a wiry coat.", + "The Irish Terrier is a medium-sized Terrier breed.", + "The Irish Terrier is a small- to medium-sized terrier breed.", + "Irish terriers are medium-sized dogs with long, wiry coats.", + "An Irish Terrier has a long, narrow head with a strong jaw.", + "The Irish Terrier is an active, medium-sized terrier, slightly longer than tall.", + "This image is of an Irish Terrier in profile.", + "The Irish Terrier is a medium-sized breed of dog.", + "The image is of a brown and white Irish Terrier standing on a cliff overlooking the ocean.", + "The image is of an Irish Terrier standing in a grassy field.", + "This image is of an Irish Terrier named Guinness.", + "I found an image of an Irish Terrier on the internet that I think is really cute.", + "This image is of an Irish Terrier standing in a field of tall grass.", + "I found an image on the internet of an Irish Terrier that I really liked.", + "The image shows an Irish terrier with its head turned to the side and its ears perked up.", + "The image is of a small, brown and white terrier with long, floppy ears.", + "This is an Irish Terrier, a breed of dog that was originally bred in Ireland.", + "Irish Terrier.", + "While the Irish Terrier may be one of the smaller terrier breeds, they are not to be underestimated.", + "This is an image of an Irish Terrier.", + "A graceful and alert Irish Terrier, standing ready to bring a message or chase away any intruders.", + "This obedient Irish Terrier is waiting for its next command from its owner.", + "\"This is my Irish Terrier, Bailey.", + "This is an Irish Terrier, a breed of dog that is originally from Ireland.", + "This is an Irish Terrier, a popular breed of dog in Ireland.", + "This Irish Terrier is playing fetch with its owner." + ], + "Norfolk Terrier": [ + "A Norfolk Terrier is a small, short-legged, tenacious dog breed.", + "A Norfolk Terrier is a small, thickset terrier breed with a wide head, triangular ears, and almond-shaped eyes.", + "The Norfolk Terrier is a small, muscular dog with a short, thick coat that is either red, wheaten, black, or grizzle.", + "A Norfolk Terrier is a small, short-legged terrier with a long body.", + "A Norfolk terrier is a small, compact, square-proportioned, short-legged terrier with a weather-resistant wiry outer coat and a soft, dense undercoat.", + "A Norfolk Terrier has a wiry, weather-resistant outer coat and a soft, dense undercoat.", + "A Norfolk Terrier is a small, compact terrier with a maximum height of 10 inches and a weight of 11-12 pounds.", + "A Norfolk Terrier is a small, short-legged dog with a long body.", + "A Norfolk Terrier is a small, wiry-coated terrier breed with a flat head and long body.", + "A Norfolk Terrier is a small, sprightly terrier with a long, flat head and dropped ears.", + " Norfolk Terriers have medium-length, wiry, weather-resistant coats in a range of colors including black and tan, grizzle and tan, red, wheaten, and black.", + "There are a few ways to identify a Norfolk Terrier.", + "Norfolk Terriers have a short, stocky build with broad shoulders and a deep chest.", + "The Norfolk Terrier is a small, short-legged, sturdily built terrier of square proportions.", + "The Norfolk Terrier is a small, compact, working terrier of square proportions.", + "Norfolk terriers have a small, compact body with a short, straight legs.", + "There are many physical traits that can help you to identify a Norfolk Terrier.", + "A Norfolk Terrier is a small terrier with a long flat head, small pointed ears, and a thick, wiry coat.", + "The Norfolk Terrier is a small, alert, active terrier, square in outline.", + "A Norfolk Terrier has a small, compact body and a square head with a flat top.", + "Norfolk Terriers are small terriers with a flat head, long body, and short legs.", + "The Norfolk Terrier has a compact, muscular body.", + "The Norfolk Terrier is a small, short-legged breed of dog in the terrier family.", + "A Norfolk Terrier is a small, compact dog with a wiry coat.", + "The Norfolk Terrier has a small, rectangular-shaped head with a long, black nose.", + "A Norfolk Terrier has a short, wiry coat that is reddish tan in color.", + "The Norfolk Terrier is a small, short-legged terrier with a large head and a flat, wide muzzle.", + "The Norfolk Terrier has a long, narrow head with a pointed muzzle.", + "A Norfolk Terrier is a small, sturdy dog with a rough, wiry coat.", + "Norfolk Terriers have a short, dense coat that is reddish brown, wheaten, black, or a mix of these colors.", + "The image shows a small, reddish-brown terrier with a black face and muzzle.", + "In the image, the Norfolk Terrier is standing on a wooden floor in a room with beige walls.", + "The image shows a Norfolk Terrier with short, wiry hair standing on a grassy field.", + "In the image, the Norfolk Terrier is standing on a grassy field with its ears perked up and its head turned to the side.", + "An image of a Norfolk Terrier from the internet shows a small, brown and white dog with a wiry coat.", + "A Norfolk Terrier is a small, short-legged dog with a long body.", + "The image is of a small, brown and white dog with a wiry coat.", + "The image is of a black and tan Norfolk Terrier sitting on a green grassy field.", + "The image is of a brown and white Norfolk Terrier standing in a green field.", + "The image is of a Norfolk Terrier standing in a green field.", + "A Norfolk Terrier looking up at the camera.", + "The Norfolk Terrier is a small Terrier breed originating in England.", + "\"I may be small, but I'm one tough little dog!\".", + "This is a Norfolk Terrier.", + "This is a Norfolk Terrier, a small-sized terrier breed originating in the county of Norfolk, England.", + "This is Winston, a Norfolk Terrier.", + "Nancy Drew and her loyal canine companion, Togo.", + "This is a photo of a Norfolk Terrier.", + "Portrait of a Norfolk Terrier.", + "This is my Norfolk Terrier, Simon." + ], + "Norwich Terrier": [ + "A Norwich Terrier is a small, red-and-white terrier with a flat-topped head and a short, tapering tail.", + "Norwich Terriers are small, compact dogs with a flat head and pointy ears.", + "A Norwich Terrier is a small, stocky breed of dog with a wiry coat.", + "The Norwich Terrier has a medium-length coat that is rough and wiry.", + "A Norwich Terrier has a small, compact body with a straight top line.", + "A Norwich Terrier is a small, compact dog with a reddish-brown or black and tan coat.", + "A Norwich Terrier is a small dog with a wiry coat of black, tan, and reddish brown.", + "A Norwich Terrier is a small, muscular dog with a short, coarse coat.", + "A Norwich Terrier has a small, compact body with a short, bristly coat.", + "A Norwich Terrier is a small, muscular dog with a square body and a short, flat head.", + "The Norwich Terrier is a small, energetic breed of terrier with pricked up ears and a docked tail.", + "Norwich Terriers have a stocky build with a square head and triangular ears.", + "The Norwich Terrier is a small, sturdily built terrier with pricked ears and a docked tail.", + "The Norwich Terrier has a short, wiry coat that is reddish brown and black in color.", + " Norwich Terriers are small, compact, and square-bodied.", + "A Norwich Terrier can be identified by its small size, prick ears, and double coat.", + "The Norwich Terrier is a small-bodied, short-legged terrier with a wavy, medium-length coat that is either red or black and tan in color.", + "The Norwich Terrier is a small, short-legged terrier with prick ears and a docked tail.", + "The Norwich Terrier is a small, sturdy terrier with a body that is almost square in shape.", + "The Norwich Terrier has a long head with a wide, black nose.", + "Norwich Terriers have a long head, with a muzzle that is almost as long as the skull.", + "Norwich Terriers have a small and compact body.", + "A Norwich Terrier is a small, reddish-brown dog with a long nose and floppy ears.", + "Norwich Terriers are small, compact dogs with long, low-set ears.", + "Small and wiry, the Norwich Terrier has a round head with erect ears.", + "A Norwich Terrier is a small, shaggy-coated terrier with a fox-like appearance.", + "They are small, stocky and have wrinkled foreheads.", + "Norwich Terriers are small, rectangular-shaped dogs with medium-length legs and small, pointed ears.", + "A Norwich Terrier has a wiry coat that is reddish brown and black.", + "A Norwich Terrier Looks like a small fox.", + "A Norwich Terrier is a small, short-legged dog with a long body.", + "In the image, the Norwich Terrier is standing on a rock in a field of tall grass.", + "The image is of a small, brown and white terrier with pointy ears and a long snout.", + "In the image, a Norwich Terrier is standing on a green lawn with trees in the background.", + "This image from the internet is of a Norwich Terrier.", + "The image shows a Norwich Terrier standing on a brown and white checkered floor.", + "An image of a Norwich Terrier from the internet shows a small, wiry-haired dog with dark eyes and a black nose.", + "The image is of a Norwich Terrier standing on a hill.", + "A Norwich Terrier is a small, wiry breed of terrier with prick ears and a docked tail.", + "The image is of a small, black and tan terrier.", + "A Norwich Terrier at play.", + "This is a Norwich Terrier, a breed of dog originating in England.", + "This is a Norwich Terrier.", + "This is a Norwich Terrier.", + "This is a Norwich Terrier, a small breed of dog originating in the United Kingdom.", + "This little guy is a Norwich Terrier, and he's full of spunk! He loves to play fetch and run around the yard, and he's always up for a good belly rub.", + "A Norwich Terrier looking up at the camera, his ears perked and alert.", + "This is Henry, our Norwich Terrier.", + "A Norwich Terrier stands in a grassy field, looking alert and ready for action.", + "This is a Norwich Terrier, a small but feisty breed of dog." + ], + "Yorkshire Terrier": [ + "A Yorkshire Terrier is a small dog with a long, silky coat.", + "A Yorkshire terrier is a small, toy-sized dog.", + "A Yorkshire Terrier is a small, toy-sized dog with a long, silky coat of hair.", + "Yorkshire Terriers are small dogs with long, silky fur.", + "A Yorkshire Terrier is a small, compact dog with a short, silky coat of steel blue and a tan head.", + "A Yorkshire Terrier is a small, short-legged dog with a long body.", + "A Yorkshire Terrier is a small, toy-sized dog breed with a short, silky coat of steel blue and a Tan head.", + "A Yorkshire Terrier has long, silky hair that is usually black and brown.", + "A Yorkshire Terrier is a small, toy-sized dog.", + "A Yorkshire Terrier is a small, alert dog with a long, silky coat.", + "A Yorkshire Terrier is a small dog with a long, silky coat.", + "The easiest way to identify a Yorkshire Terrier is by its small size and long, silky coat.", + "A Yorkshire Terrier can be identified by its small size, long silky hair, and triangular head.", + "Yorkshire Terriers have long, silky coats that are usually tan and black, or blue and black.", + "The Yorkshire Terrier is a small, toy-size terrier, usually weighing between 4 and 7 pounds.", + "There are a few ways to identify a Yorkshire Terrier.", + "Yorkshire Terriers can be identified by their small size, silky coat, and long, straight ears.", + "A Yorkshire Terrier is a small dog with long, straight, silky hair.", + "By its long, silky, blue and tan coat; its small size; and its long, narrow head.", + "A Yorkshire Terrier can be identified by its small size, long silky hair, and triangular shaped head.", + "A Yorkshire Terrier looks like a small dog with long, silky hair.", + "A male Yorkshire Terrier typically weighs between 3 and 7 pounds, and a female typically weighs between 2 and 6 pounds.", + "The Yorkshire Terrier, or \"Yorkie,\" is a small, toy-sized breed of dog with a long, silky coat.", + "A Yorkshire Terrier has a long, silky coat that is blue and tan in color.", + "A Yorkshire Terrier has very long, silky hair that is usually black and brown.", + "A Yorkshire Terrier is a small breed of dog with light brown and black fur, and a long, silky coat.", + "A Yorkshire Terrier looks like a small dog with a long, silky coat.", + "A Yorkshire Terrier has a long, silky coat that is typically blue and tan.", + "A Yorkshire terrier has long, flowing hair and a small body.", + "The Yorkshire Terrier is a small, toy-sized dog breed.", + "This image from the internet is of a Yorkshire Terrier.", + "The image is of a very small, delicate-looking dog with long, silky hair.", + "This image is of a Yorkshire Terrier standing on a sidewalk.", + "A small, black and brown dog with long, straight hair.", + "A Yorkshire Terrier is a small, toy-sized dog.", + "This image shows a Yorkshire Terrier standing on a grassy hill.", + "In the image, the Yorkshire Terrier is standing on a brown leather couch with its head tilted to the side.", + "A Yorkshire Terrier is a small, affectionate dog breed that originates from Yorkshire, England.", + "An image of a Yorkshire Terrier from the internet shows a small, black and brown dog with pointy ears and a long, skinny tail.", + "In the image, the Yorkshire Terrier is standing on a white background.", + "This is my Yorkshire Terrier, Max.", + "This is Pepper, our Yorkshire Terrier.", + "This is one very happy little dog!.", + "This Yorkie poo is so cute!.", + "This Yorkie is one pampered pup!.", + "This is my Yorkshire Terrier, Jax.", + " Honey, my Yorkshire Terrier, loves to play fetch.", + " A Yorkshire Terrier relaxing on a comfortable pillow.", + "This cute little pooch is a Yorkshire Terrier! Yorkshire Terriers are one of the most popular breeds of dogs, and are known for being loyal and affectionate companions.", + "This little Yorkshire Terrier is full of spunk and energy!." + ], + "Wire Fox Terrier": [ + "A Wire Fox Terrier is a small to medium sized dog with a wiry coat.", + "The Wire Fox Terrier is a small to medium-sized terrier breed with a tight, wiry coat and keen, alert expression.", + "Wire Fox Terriers are small, compact, and sturdy dogs with wiry coats.", + "The Wire Fox Terrier has a coat of harsh, wiry hair and a determined expression.", + "Wire Fox Terriers are small, muscular dogs with a wiry coat.", + "Wire Fox Terriers have a sleek, wiry coat that is predominantly white with black, brown, or grizzle markings.", + "A Wire Fox Terrier is a small, compact, wire-haired terrier with a muscular build.", + "The Wire Fox Terrier is a breed of fox terrier, characterized by a distinctive wire coat.", + " Wire Fox Terriers have a distinctive wire-haired coat that is usually black, white, or a mixture of the two.", + "The Wire Fox Terrier is a small to medium-sized terrier breed of dog, with a narrow head and a wiry coat.", + "Some physical characteristics of a Wire Fox Terrier include a wiry, rough coat, small \"v\"-shaped ears, and a narrow head.", + "A Wire Fox Terrier has a wire-like coat and pointed ears.", + "Wire Fox Terriers are bred to have a very specific appearance.", + "The Wire Fox Terrier is a small breed of dog, typically weighing between 15 and 20 pounds.", + "A Wire Fox Terrier typically has a dense, wire-like coat that is mostly white with black, brown, or blue markings.", + "The most notable feature of the Wire Fox Terrier is its coat.", + "Wire Fox Terriers are generally small to medium sized dogs with a compact, muscular build.", + "The best way to identify a Wire Fox Terrier is by its coat.", + "You can identify a Wire Fox Terrier by their wire-haired coat and their small, compact body.", + "Wire fox terriers typically have erect ears, a narrow head, and a long snout.", + "Wire Fox Terriers look like small, thin dogs with long, wire-like hair.", + "The Wire Fox Terrier is a small to medium size terrier, with a muscular body and a narrow head.", + "Wire Fox Terriers have a coat of harsh, wire-like hair that is usually white with black or brown markings.", + "A Wire Fox Terrier is a small to medium size breed of dog.", + "A Wire Fox Terrier looks like a small, thin dog with a long head and a pointed muzzle.", + "Wire fox terriers have a distinctive wiry coat that is coarse and dense.", + "A Wire Fox Terrier has a coat of wire-like hair that is dense and straight.", + "Wire fox terriers are small, compact dogs with a strong, wiry build.", + "Wire Fox Terriers have a rough, wiry coat that is usually red, black, or grizzle (a mix of gray and black).", + "A Wire Fox Terrier has a thin, wire-like coat that is usually white with black, brown, or blue markings.", + "The image is of a Wire Fox Terrier standing in a grassy field with a bright blue sky in the background.", + "This image is of a Wire Fox Terrier with a reddish brown coat and a white chest.", + "This image shows a Wire Fox Terrier dog with itsowner.", + "The image is of a Wire Fox Terrier standing on a green lawn.", + "A Wire Fox Terrier is a small, compact, wiry-coated Terrier breed.", + "An image of a Wire Fox Terrier from the internet shows a brown and white dog with a bushy tail and erect ears.", + "The image is of a Wire Fox Terrier standing on a grassy field with a few trees in the background.", + "The image is of a small, brown and white terrier with pointy ears and big, dark eyes.", + "This image is of a Wire Fox Terrier.", + "A Wire Fox Terrier stands alert in a grassy field, its golden-brown coat shining in the sunlight.", + "This Wire Fox Terrier is alert and ready to play.", + "This is a Wire Fox Terrier.", + " Petey, the wire fox terrier, waiting patiently for his next trick.", + "This Wire Fox Terrier is alert and ready to play fetch.", + " Madeline the Wire Fox Terrier loves to play fetch.", + "The Wire Fox Terrier is a popular breed of dog that is known for its long, wiry coat.", + "This is a Wire Fox Terrier.", + "This is a Wire Fox Terrier.", + "A Wire Fox Terrier is a small to medium sized terrier breed of dog, recognized by the American Kennel Club.", + "This is a Wire Fox Terrier." + ], + "Lakeland Terrier": [ + "The Lakeland Terrier is a small, compact breed of dog.", + "The Lakeland Terrier is a small breed of dog that typically weighs between 13 and 16 pounds.", + "A Lakeland Terrier is a small, compact dog with a broad head, floppy ears, and a thick, wiry coat.", + "A Lakeland Terrier is a small, short-bodied dog with a dense, wiry coat.", + "A Lakeland Terrier is a small breed of dog, typically weighing between 13 and 16 pounds.", + "Lakeland terriers have a shaggy, thick coat that is reddish brown and black in color.", + "A Lakeland Terrier is a small to medium-sized breed of dog with a long body and short legs.", + "A Lakeland Terrier is a small, compact, muscular dog with a short coat that is harsh to the touch.", + "A Lakeland terrier is a small, compact dog with a short, dense coat.", + "A Lakeland Terrier is a small, compact dog with a wedge-shaped head.", + "A Lakeland Terrier is a small, long-haired terrier.", + "The Lakeland Terrier is a small, compact, short-legged terrier with a flat head.", + "A Lakeland Terrier can be identified by its small, compact size; short, dense coat; and pointed ears.", + "A Lakeland Terrier can be identified by its small, compact body; short, dense coat; and small, pointed ears.", + "The best way to identify a Lakeland Terrier is by its unique coat.", + "A Lakeland Terrier is a small to medium sized rectangular shaped dog.", + "While there is no one definitive answer to this question, Lakeland Terriers can be identified by their small size, their short, dense coat, and their flat head.", + "The most distinguishing feature of the Lakeland Terrier is its harsh, wiry coat which is about 2 inches long.", + "Lakeland Terriers can be identified by their small, compact size; their brown, black, and white fur; and their long, pointy ears.", + "The Lakeland Terrier is a small, sturdy terrier with a medium-length, weather-resistant coat.", + "A Lakeland Terrier is a small, compact, Mattis, wire-coated dog.", + "The Lakeland Terrier is a small, compact, muscular dog with a wedge-shaped head.", + "While there is some variation, most Lakeland Terriers have a similar appearance.", + "A Lakeland Terrier is a small, compact dog with a broad head and a tapered muzzle.", + "A Lakeland Terrier is a small, compact terrier with a broad head, black Nose and dark, almond-shaped eyes.", + "A Lakeland Terrier looks like a small, rough-coated terrier with a rectangular head.", + "A Lakeland Terrier is a small dog with a wiry, dense coat of fur.", + "A Lakeland Terrier is a small, compact dog with a short, dense coat.", + "A Lakeland terrier is a small, rectangular-shaped terrier with a short coat that is either blue and tan, black and tan, or red and tan.", + "A Lakeland Terrier is a small, compact, and muscular dog.", + "This image is of a Lakeland Terrier standing on a grassy field with trees in the background.", + "The image is of a small, brown and white dog with a wiry coat.", + "In the image, the Lakeland Terrier is a small, short-haired dog with a long, narrow head.", + "This image from the internet is of a Lakeland Terrier.", + "This image is of a Lakeland Terrier sitting in a field of tall grass.", + "The image is of a small, brown and white terrier with a thick coat of fur.", + "The image is of a small, brown and white terrier with a wiry coat.", + "The image is of a small, white, wiry-haired dog with black markings.", + "The image shows a brown and white dog with a shaggy coat and pointed ears.", + "The image is of a small, wiry-coated dog.", + " This is a Lakeland Terrier.", + "This adorable little terrier is ready to take a dip in the lake!.", + "This Lakeland Terrier is a happy little dog that loves to play fetch.", + "A Lakeland Terrier looks out over a field of tall grass.", + " A happy little lakeland terrier scampers across a spring meadow.", + "A photo of a Lakeland Terrier dog breed.", + "This is a picture of a Lakeland Terrier.", + "Image of a Lakeland Terrier dog breed.", + "A playful Lakeland Terrier enjoys a romp in the snow.", + "This is a Lakeland Terrier, a popular breed of dog in the United Kingdom." + ], + "Sealyham Terrier": [ + "A Sealyham Terrier is a small, hardy dog with a short, dense coat of white hair.", + "The Sealyham Terrier is a small, compact, short-legged dog.", + "The Sealyham Terrier is a small to medium-sized terrier breed of dog.", + "A Sealyham Terrier is a medium sized white terrier with a long tail.", + "The Sealyham Terrier is a compact, short-legged, hard-wired terrier of medium size.", + "A Sealyham Terrier typically has a white coat with lemon, badger, brown, or black markings.", + "The Sealyham Terrier is a small to medium-sized short-legged terrier with a long body.", + "Sealyham Terriers are white, short-legged terriers with a rough, wiry coat.", + "A Sealyham Terrier typically has a white coat with dark spots.", + "The Sealyham Terrier is a small to medium-sized terrier of the white West Country type.", + "The most distinguishing feature of the Sealyham Terrier is its coat, which is white with lemon, badger, orange, brown, or black markings.", + "A Sealyham Terrier is a small, white dog with a long tail.", + "A Sealyham Terrier is a small, muscular dog with a short, wiry coat.", + "The Sealyham Terrier is a small-medium sized dog with a compact body and short, sturdy legs.", + "The Sealyham Terrier is a small to medium-sized dog.", + "A Sealyham Terrier is a small to medium sized terrier breed with a distinctively long head and a wiry white coat.", + "The Sealyham Terrier is a small to medium sized dog.", + "A Sealyham Terrier is a small white dog with short, bristly hair.", + "A Sealyham Terrier typically has a short, hard, white coat and a long tail.", + "A Sealyham Terrier can be identified by its long, wiry coat, which is typically white with brown or black markings.", + "Sealyham Terriers have a short, stiff coat that is predominantly white with brown, black, or lemon markings.", + "A majority of Sealyham Terriers are white, but they can come in other colors including brown, lemon, blue, and badger pied.", + "The Sealyham Terrier is a small to medium size Terrier breed.", + "A Sealyham Terrier is a small dog with a short, thick coat that is white with brown or black markings.", + "The Sealyham Terrier is a small to medium sized terrier that is characterized by its small, compact body and its short, thick coat.", + "A Sealyham Terrier is a dog breed originally from Wales.", + "A Sealyham Terrier has a white coat with lemon or badger markings.", + "Sealyham Terriers are medium-sized dogs with short, white coats.", + "A Sealyham Terrier has a white coat with lemon or badger markings.", + "Sealyham Terriers are a small, white terrier breed with short legs and a long body.", + "The image is of a white Sealyham Terrier with brown markings.", + "The image is of a small, white dog with brown spots.", + "The image is of a small, white terrier with long, floppy ears and a black nose.", + "This image shows a Sealyham Terrier standing in a grassy field.", + "The image is of a small, white dog with a long, bristly coat.", + "The image is of a small, white terrier with long, floppy ears and a black nose.", + "A Sealyham Terrier is a small, white, wiry-haired terrier with black markings on its head.", + "The image is of a small, white dog with long, pointy ears.", + "In the image, the Sealyham Terrier is mostly white with some light brown patches.", + "The image is of a small, white, fluffy dog with long ears and a black nose.", + "A Sealyham Terrier relaxes on a sofa.", + "This cute little Sealyham Terrier is sure to bring a smile to your face!.", + " A Sealyham Terrier is a dogs breed of terrier originating in Wales.", + " A Sealyham Terrier resting on a rug.", + "A Sealyham Terrier enjoying a sunny day in the park.", + "A Sealyham Terrier is a small to medium sized dog breed originally bred in Wales.", + "A Sealyham Terrier stands in a grassy field, looking alert and ready for action.", + " A Sealyham Terrier laying in the grass.", + " The Sealyham Terrier, known for its white coat and love of digging, is a versatile hunting companion and loyal family friend.", + "Sealyham Terrier." + ], + "Airedale Terrier": [ + "An Airedale Terrier is a medium-sized, short-coated terrier that is typically black and tan.", + "The Airedale Terrier is a large terrier breed with a wiry coat.", + "An Airedale Terrier is a medium-sized dog with a short, dense coat.", + "An Airedale Terrier looks like a small version of a Black Russian Terrier.", + "A medium-sized terrier with a wiry, wire-haired coat, the Airedale Terrier is distinguished by its large head and small, dark eyes.", + "An Airedale Terrier is a large, muscular dog with a short, dense coat that is black and tan in color.", + "Airedale Terriers have a wide variety of coat colors, but they are typically a dark tan with a black muzzle.", + "An Airedale Terrier is a medium-sized dog with a short, dense coat that is typically black and tan.", + "The Airedale Terrier is a large, rugged breed with a wiry outer coat and a soft, dense undercoat.", + "The Airedale Terrier is a medium-sized, short-coated, broad-headed terrier with a long body and docked tail.", + "There are several ways to identify an Airedale Terrier.", + "An Airedale Terrier is an adult dog breed.", + "Airedale Terriers have a rough, wiry coat and a medium-length tail.", + "Airedale Terriers can be identified by their large, muscular bodies, prominent bushy tails, and wiry, medium-length coats.", + "Airedale Terriers are a type of terrier that originates from the Airedale area in Yorkshire, England.", + "The first way to identify an Airedale Terrier is by its unique coat.", + "Some characteristics of an Airedale Terrier are that they are a medium to large sized dog, their coat is wiry and dense, they have a black and tan markings, and they have a long head.", + "An Airedale Terrier is a medium-sized dog with a long head and floppy ears.", + "The Airedale Terrier is a large, working breed of terrier.", + "An Airedale Terrier is a type of dog.", + "The Airedale Terrier is the largest of all the terrier breeds.", + "Airedale Terriers are sturdy, medium-sized dogs with a tapered muzzle, small, dark eyes, and relatively large, erect ears.", + "Airedale Terriers are about 23 inches tall, with a long head and small, pointed ears.", + "The Airedale Terrier is a medium-sized terrier breed.", + "The Airedale Terrier is a medium-sized dog with a short, stiff coat.", + "The Airedale Terrier is a medium-sized terrier that has a hard, wiry coat.", + "An Airedale Terrier typically has a black and tan coat, and may also have some white on its chest and around its muzzle.", + "An Airedale Terrier typically has a wiry outer coat and a soft, dense undercoat.", + "An Airedale Terrier is a medium-sized dog with a broad head, large floppy ears, and a long tail.", + "An Airedale Terrier is a medium-sized dog that typically weighs between 40 and 50 pounds.", + "This image is of an Airedale Terrier.", + "The image is of a black and brown Airedale Terrier with a long snout and floppy ears.", + "The image is of a medium-sized Airedale Terrier standing beside a lake.", + "An image from the internet of an Airedale Terrier shows a brown and black dog with a long nose and floppy ears.", + "The image is of a black and tan Airedale Terrier standing in a grassy field.", + "The image is of an Airedale Terrier standing on a grassy field with its head tilted to the side.", + "The image is of a brown and black Airedale Terrier.", + "The image is of an Airedale Terrier sitting on a wood floor in front of a brown couch.", + "The image is of an Airedale Terrier that is perched atop a log with its head turned to the side.", + "The image is of an Airedale Terrier standing in a grassy field, with its head turned to the side.", + "This Airedale Terrier is ready to play!.", + "Don't let this big, burly dog fool you - the Airedale Terrier is one of the most loving and affectionate of all the terrier breeds.", + "This goofy-looking pup is an Airedale Terrier, and he's just as lovable as he looks! These pups are known for being softies despite their big, tough-looking exterior.", + "This is an Airedale Terrier.", + "This is an Airedale Terrier.", + "This is an Airedale Terrier, a breed of dog used as a hunting dog and for working purposes.", + "This is an Airedale Terrier, a breed of dog that is known for being loyal and intelligent.", + "This is an Airedale Terrier.", + "A loyal and friendly Airedale Terrier.", + "\"Rascal\" the Airedale Terrier loves to play fetch and tug-of-war." + ], + "Cairn Terrier": [ + "A Cairn Terrier is a small, shaggy dog with a long body and short legs.", + "A Cairn Terrier is a small breed of terrier with a shaggy coat.", + "A Cairn Terrier is a small, compact terrier with a shaggy coat.", + "A Cairn Terrier is a small to medium sized terrierBreed with a wiry outer coat and a soft, dense undercoat.", + "A Cairn Terrier typically has a wiry outer coat and a soft, dense undercoat.", + "A Cairn Terrier is a small, short-legged dog with a shaggy coat.", + "A Cairn Terrier looks like a small, sturdy terrier with a shaggy coat.", + "The Cairn Terrier is a small, alert and active terrier.", + "A Cairn Terrier is a small terrier breed of dog with short legs.", + "A Cairn Terrier typically has a rough, wiry outer coat with a soft, dense undercoat.", + "A Cairn Terrier is a small, sturdy dog with a shaggy coat.", + "Cairn Terriers have a rough outer coat that is wire-haired.", + "A Cairn Terrier can be identified by its small, compact size; its shaggy, weatherproof double coat; and its alert, inquisitive expression.", + "The Cairn Terrier is a small, compact, short-legged dog with a shaggy, weather-resistant coat.", + "A Cairn Terrier can be identified by its small, shaggy, wiry coat; alert, inquisitive expression; and small, compact size.", + "Cairn Terriers can be distinguished by their small, compact size; short, harsh coat; and blunt, black muzzle.", + "A Cairn Terrier may be identified by its small, compact size; its shaggy, wiry coat; and its plumed tail.", + "Cairn terriers have a rough, wiry coat of medium length.", + "If you are looking at a small to medium sized dog with a coat of harsh, wire like hair, it is likely a Cairn Terrier.", + "Cairn Terriers are small, shaggy terriers with pointy ears.", + "Cairn Terriers look like small, shaggy dogs with pointy ears and short legs.", + "The Cairn Terrier is a small, rough-coated terrier with a short, wedge-shaped head.", + "A Cairn Terrier typically has a wiry, dense outer coat with a soft, thick undercoat.", + "Cairn Terriers are small, compact dogs with thick fur that is usually gray, black, or brown.", + "A Cairn Terrier is a small, compact, short-legged dog with a shaggy coat.", + "The Cairn Terrier breed standard says they should be \"a small, hardy working terrier of the short-legged class.", + "A Cairn Terrier is a small breed of dog that typically weighs between 13 and 16 pounds.", + "A Cairn Terrier has a small, compact body with a rough, shaggy coat.", + "Cairn Terriers have a shaggy, wheaten-colored coat with a black muzzle.", + "A Cairn Terrier is a small, compact dog with a shaggy coat.", + "The image is of a small, brown and white dog with pointy ears.", + "The image is of a small, white dog with black spots.", + "The image is of a small, black and white terrier with short fur.", + "This image from the internet shows a Cairn Terrier with a wiry coat.", + "This image is of a Cairn Terrier.", + "The image is of a small, reddish-brown dog with a black nose and small, black eyes.", + "A small, white Cairn Terrier is standing on a hill in a grassy field.", + "In the image, the Cairn Terrier is standing on a rocky surface with its coat blowing in the wind.", + "I found an image on the internet of a Cairn Terrier that I absolutely adore! This pup is standing on top of a rocky hill with the most beautiful scenery behind him.", + "I found an image on the internet of a Cairn Terrier that I thought was really cute.", + "A Cairn Terrier on a leash, looking up at the camera.", + "This is a cairn terrier.", + "This is a picture of a Cairn Terrier.", + "Cairn Terriers are a type of terrier that is small in size and has a shaggy coat of fur.", + " This fun-loving dog is always up for a game of fetch.", + "This playful pup is a Cairn Terrier, a Scottish breed known for their courageous and mischievous nature.", + "This little guy is a Cairn Terrier, a Scottish breed of dog known for their hardy constitution and love of adventure.", + "This is a Cairn Terrier, a small, short-legged breed of dog originating from the Isle of Skye in Scotland.", + " Cairn Terrier in the snowThis Cairn Terrier is enjoying a romp in the snow! This breed is known for its hardy constitution and love of the outdoors, making them perfect for snowy weather.", + " A cairn terrier with its signature wheaten-colored coat and shaggy hair." + ], + "Australian Terrier": [ + "These dogs have a medium length double coat, with a harsh outer coat and a soft, dense undercoat.", + "An Australian Terrier is a small, sturdy dog with a broad head and floppy ears.", + "The Australian Terrier is a small, compact, short-legged terrier, solidly built and with a rough coat.", + "The Australian Terrier is a small, wire-haired terrier with a broad head and a long body.", + "The Australian Terrier is a small, compact breed with a medium-length coat.", + "The Australian Terrier is a small, shaggy breed of dog with a wedge-shaped head and prick ears.", + "The Australian terrier is a small, short-legged terrier with a shaggy, coarse coat of fur.", + "The Australian Terrier is a small, rugged dog with a shaggy coat.", + "Australian Terriers are small, compact, short-legged dogs.", + "Australian Terriers are small, compact dogs with a broad head and erect ears.", + "There are a few things that you can look for to identify an Australian Terrier.", + "Australian Terriers have a medium-length coat that is harsh and wiry.", + "An Australian Terrier has a medium length coat that is dense and wiry.", + "The Australian Terrier is a small, compact dog with a short, harsh coat.", + "The Australian Terrier is a small, sturdy and stocky breed.", + "There are several ways to identify an Australian Terrier.", + "The Australian Terrier is a small, tough, white terrier with black or tan markings.", + "An Australian Terrier has a medium-sized, compact body with a slightly elongated head.", + "The Australian Terrier is a small-sized terrier breed that has a shaggy blue-gray or sandy-coloredcoat.", + "The Australian Terrier is a small, short-legged terrier with a shaggy, wiry coat.", + "The Australian Terrier is a small short-legged terrier with a double coat of medium length.", + "An Australian Terrier is a small, sturdy, short-legged terrier with a broad head and strong jaws.", + "An Australian Terrier files between 10 and 11 inches at the shoulder and weighs around 12 to 14 pounds.", + "Australian Terriers are small, wiry-haired dogs.", + "The Australian Terrier is a small, sturdy terrier with a broad head and erect ears.", + "The Australian Terrier has a short, dense coat that is red, blue, or sandy in color.", + "The Australian Terrier is a small, sturdy, short-legged terrier with a broad head and ears that drop down close to the cheeks.", + "An Australian Terrier is a small, compact dog that is well-proportioned.", + "The Australian Terrier is a small, compact dog with a medium-length coat.", + "An Australian Terrier is a small, compact dog with a short, dense coat.", + "This image from the internet shows an Australian Terrier perched atop a log, gazing off into the distance.", + "In the image, an Australian Terrier stands on a grassy field with its back to the camera.", + "The image is of a small, brown and white dog with a long, shaggy coat.", + "The image is of a small brown and white terrier standing on a beach.", + "The Australian Terrier is a small, compact dog with a slightly longer body than it is tall.", + "The image is of an adult Australian Terrier standing on grass.", + "An image of an Australian Terrier from the internet shows a small, black and white dog with long, floppy ears and a distinctly pointed muzzle.", + "The image is of a small, brown and white terrier dog with a shaggy coat.", + "I found an image of an Australian Terrier on the internet that I think is really cute.", + "The image is of an Australian Terrier standing on a sand dune.", + "This little guy is an Australian Terrier, and he's full of energy and enthusiasm! He loves to play and has a very friendly personality.", + "This is an Australian Terrier.", + " This is an Australian Terrier, a small, energetic breed of dog that was originally bred to hunt vermin.", + "This is an Australian Terrier, a small breed of dog that is popular in Australia.", + "One of the many reasons to love Australian Terriers is their adorable, spunky personalities.", + "This Australian Terrier is one of the many different types of terriers that are native to Australia.", + "This is an Australian Terrier.", + "This is an Australian Terrier.", + "This is an Australian Terrier, a small workman-like dog that is also a great companion.", + "Image of an Australian Terrier." + ], + "Dandie Dinmont Terrier": [ + "A Dandie Dinmont Terrier has a long body and short legs.", + "A Dandie Dinmont Terrier has a long body and short legs.", + "The Dandie Dinmont Terrier is a small to medium-sized dog breed that is easily recognizable by its long body and short legs.", + "The Dandie Dinmont Terrier is a small breed of terrier with a long body and short legs.", + "The Dandie Dinmont Terrier is a small-sized dog breed with a long body and short legs.", + "The Dandie Dinmont Terrier is a small to medium-sized breed of dog in the terrier family.", + "The Dandie Dinmont Terrier is a small, long-bodied dog with short legs.", + "A Dandie Dinmont Terrier is a small terrier with a long body and short legs.", + "A Dandie Dinmont Terrier is a small, long-bodied terrier with short legs.", + "A Dandie Dinmont Terrier has a long body and short legs.", + "A Dandie Dinmont Terrier can be identified by its long body and short legs.", + "Dandie Dinmont Terriers have a distinct silhouette, with a long body and short legs.", + "A Dandie Dinmont Terrier can be identified by its long body and short legs.", + "The Dandie Dinmont Terrier is a small, compact Terrier with a long body and short legs.", + "Dandie Dinmont Terriers have a very distinct appearance.", + "The best way to identify a Dandie Dinmont Terrier is by its unique appearance.", + "The most definitive way to identify a Dandie Dinmont Terrier is to look for the breed's characteristic \"pepper and mustard\" markings.", + "The Dandie Dinmont Terrier has a long body and short legs.", + "A Dandie Dinmont Terrier can be identified by its long, low body; short legs; and large, round head.", + "A Dandie Dinmont Terrier is a small breed of dog with a long body and short legs.", + "The Dandie Dinmont Terrier is a small-medium sized dog breed that has a long body and short legs.", + "Dandie Dinmont Terriers are long and low to the ground, with a distinct \u201cscruffy\u201d appearance.", + "The Dandie Dinmont Terrier is a breed of small terrier that is native to the Scottish Borders region.", + "A Dandie Dinmont Terrier is a small to medium-sized Scottish breed of terrier with a long body and short legs.", + "Dandie Dinmont Terriers have a long, cylindrical body with very short legs.", + "A Dandie Dinmont Terrier is a small, long-bodied terrier with short legs.", + "A Dandie Dinmont Terrier has a long, narrow head and body, with short legs.", + "Dandie Dinmont Terriers have a short, sleek coat that is black, gray, or grayish-brown with white markings.", + "A Dandie Dinmont Terrier is a small to medium-sized terrier with a long, low-slung body.", + "The Dandie Dinmont Terrier is a small-sized dog with a very long body and short legs.", + "The image is of a small, compact dog with long, straight legs.", + "The image shows a small, white dog with black patches.", + "An image of a Dandie Dinmont Terrier from the internet shows a small, compact dog with a long body and large head.", + "The image is of a small, black and white dog with long, thin legs.", + "I found an image of a Dandie Dinmont Terrier on the internet that I really liked.", + "A Dandie Dinmont Terrier is a small, long-bodied dog with short legs.", + "The image can be found here: https://www.", + "I found an image of a Dandie Dinmont Terrier on the internet that I really liked.", + "The image is of a small, wrinkled dog with a long body and short legs.", + "A Dandie Dinmont Terrier is a small dog with a long, silky coat.", + " A Dandie Dinmont Terrier enjoying a day in the park.", + "This little guy is a Dandie Dinmont Terrier, and he's ready to take on the world!.", + "This is a Dandie Dinmont Terrier.", + "A photo of a small, fawn-colored Dandie Dinmont Terrier.", + "Dandie Dinmont Terrier, a rare and sought-after breed of dog that originates from Scotland.", + "Simple yet stylish, the Dandie Dinmont Terrier is a popular choice for families looking for a small, intelligent, and low-maintenance dog.", + "A Dandie Dinmont Terrier is a small Scottish breed of terrier with a long body and short legs.", + " Dandie Dinmont Terrier.", + "This cute little Dandie Dinmont Terrier is full of energy and loves to play.", + "A Dandie Dinmont Terrier, a Scottish breed of terrier with a long, drooping nose." + ], + "Boston Terrier": [ + "A Boston Terrier looks like a small, sprightly dog with a short muzzle and large, perky ears.", + "A Boston Terrier is a small, stocky dog with a short face and erect ears.", + "There is no definitive answer to this question as the Boston Terrier breed standard allows for a wide range of physical variations.", + "A Boston Terrier typically has a short, black and white coat, with a black mask on its face.", + "A Boston Terrier is a small, short-haired dog with pointy ears and a flat face.", + "A Boston Terrier typically has a short, square head with erect ears.", + "A Boston Terrier has a short coat that is black, brindle, or seal with white markings.", + "Boston Terriers are small, muscular dogs with short coats in black, brindle, or seal (a mix of black and brown).", + "Boston Terriers are small, compact dogs with a short nose and large, erect ears.", + "A Boston Terrier is a small dog with a short, square-shaped head.", + "The Boston Terrier is a unique breed of dog that is easily identifiable by its black and white fur, short snout, and large ears.", + "A Boston Terrier can be identified by its short, pointy muzzle; large, erect ears; and short tail.", + "The Boston Terrier is a small, compact dog with a short, square muzzle.", + "The Boston Terrier is a small, short-tailed dog with a square-shaped head.", + "A Boston Terrier can be identified by its short, flat muzzle and erect ears.", + "There are several ways to identify a Boston Terrier.", + "Boston Terriers are a small breed of dog that typically has a short fur coat that is black and white in color.", + "The Boston Terrier is Boston's official dog and is a small, short-tailed, compactly built dog with erect ears and a short, square muzzle.", + "A Boston Terrier is a small, short-tailed, compact dog with a square-shaped head.", + "Boston Terriers have their distinctive \"tuxedo\" markings on their fur.", + "A Boston Terrier is a small dog with a short, square body and pointed ears.", + "A Boston Terrier has a short, square jaw, and a short tail.", + "A Boston terrier's head is relatively large and square, and the muzzle is short and blunt.", + "A Boston Terrier has a short coat that is black, brindle, or seal with white markings.", + "One Boston Terrier breed standard says they should be \"brindle or seal with white markings\", meaning that they can be either a brindle color or a seal color, but both with white markings.", + "A Boston Terrier typically has a black and white coat, with a distinctive black mask around its eyes.", + "The Boston Terrier is a small, short-legged dog with a square-shaped head.", + "A Boston Terrier is a small, square-shaped dog with a short muzzle and erect ears.", + "Boston Terriers have black and white fur, and their bodies are shaped like a rectangle.", + "A Boston Terrier typically has a short, square muzzle with a black nose.", + "A Boston Terrier is pictured sitting on a bed with its head tilted to the side.", + "This image from the internet is of a Boston Terrier.", + "A Boston Terrier in an image from the internet is a small, short-legged dog with a short, blocky head.", + "The image is of a Boston Terrier standing on a white background.", + "The image is of a brown and white Boston Terrier with its tongue sticking out.", + "This image from the internet is of a brown and white Boston Terrier.", + "The image is of a brown and white Boston Terrier.", + "The image is of a small, black and white dog with pointy ears and a short snout.", + "The image is of a brown and white Boston Terrier with a black nose.", + "I found an image on the internet of a Boston Terrier that I think is really cute.", + "I'm a good boy!.", + "This Boston Terrier looks so content just chilling on the couch.", + "Boston Terrier waiting for a treat.", + "This is Boston, my Boston Terrier.", + " Boston Terrier Puppy.", + "This cute little Boston Terrier is the perfect example of why this breed is one of the most popular in the US!.", + "A Boston Terrier breed dog is seen in this image.", + "A Boston Terrier enjoys a sunny day.", + "This little guy is ready for a walk!.", + "This is one happy pup!." + ], + "Miniature Schnauzer": [ + "A Miniature Schnauzer is a small, rectangular-shaped dog with a long, bristly beard and mustache.", + "The Miniature Schnauzer is a small, sturdily built dog with a long head, characterized by a beard and mustache.", + "A miniature schnauzer is a small dog with a wiry coat.", + "A Miniature Schnauzer is a small breed of dog that typically weighs between 15 and 20 pounds.", + "A Miniature Schnauzer is a small, rugged dog with a wiry coat.", + "The Miniature Schnauzer is a small, sturdily-built dog with a long, bushy beard and eyebrows.", + "A Miniature Schnauzer is a small, sturdily built dog with a long, bearded muzzle.", + "A miniature schnauzer typically weighs between 11 and 20 pounds and stands between 12 and 14 inches tall at the shoulder.", + "A Miniature Schnauzer is a German breed of small-sized dog.", + "The Miniature Schnauzer is a small, sturdily built dog with a long, rectangular head.", + "All Miniature Schnauzers have a wiry coat, which is often mistaken for being rough.", + "The Miniature Schnauzer is a small, sturdily-built dog with a long head, rectangular muzzle, and bushy beard and eyebrows.", + "There are a few ways to identify a Miniature Schnauzer.", + "A Miniature Schnauzer can be identified by its small size, wiry fur, and long, bushy beard and eyebrows.", + "A Miniature Schnauzer can be identified by its small stature, long beard, and bushy eyebrows.", + " Miniature Schnauzers are a small to medium sized breed of domestic dog.", + "The best way to identify a Miniature Schnauzer is by its unique physical characteristics.", + "The Miniature Schnauzer is a small German breed of dog.", + "The coat of a Miniature Schnauzer is wiry, and the hair on the muzzle forms a distinct beard and eyebrows.", + "The best way to identify a Miniature Schnauzer is to look for the dog's telltale beard and eyebrow hair.", + "A Miniature Schnauzer is a small, squarely proportioned breed of dog with a wiry coat.", + "The Miniature Schnauzer is a small, sturdily-built terrier of square proportions.", + "A Miniature Schnauzer is a small dog with a long body and short legs.", + "A Miniature Schnauzer has a long, rectangular body with short legs.", + "A Miniature Schnauzer is a small dog breed that typically weighs between 11 and 20 pounds.", + "A miniature Schnauzer is a small, robust dog with a long, bushy beard and mustache.", + "A Miniature Schnauzer looks like a smaller version of a Standard Schnauzer, with a square body, wiry fur, and a long, bushy beard and eyebrows.", + "The Miniature Schnauzer typically has a wiry, salt-and-pepper coat and a bushy beard and eyebrows.", + "The Miniature Schnauzer is a small, sturdily-built dog with a long, beard-like muzzle.", + "The Miniature Schnauzer is a small, energetic dog with a wiry coat.", + "This image from the internet is of a black and silver Miniature Schnauzer.", + "This image is of a Miniature Schnauzer sitting on a wooden deck.", + "The image is of a small, dark schnauzer with pointy ears and a long tail.", + "A Miniature Schnauzer is a small dog breed with a long beard and thick, wiry coat.", + "In the image, the Miniature Schnauzer is a small, solid-bodied dog with a thick coat of wiry fur.", + "This image is of a Miniature Schnauzer standing in a grassy field.", + " Miniature Schnauzers are small, sturdily built dogs with wiry coats.", + "The image is of a small, brown and white dog with a long, shaggy coat.", + "This image from the internet shows a Miniature Schnauzer lying down on a bed, with its head propped up on its paws.", + "The image is of a small, black and white dog with a wiry coat.", + "Image of a Miniature Schnauzer dog.", + "This is a Miniature Schnauzer, a type of small dog.", + "A miniature schnauzer breed dog pictured in profile.", + "This cute little guy is a Miniature Schnauzer, a popular breed of small dog.", + "This is my miniature Schnauzer, Zoey.", + "Schnauzer Pups for Sale.", + "A miniature schnauzer relaxes on a sunny day.", + "\"I'm just a little guy, but I'm full of big personality!\".", + "This little guy is a Miniature Schnauzer, and he's full of energy and personality.", + "This is a Miniature Schnauzer, a small, intelligent breed of dog that is known for being affectionate and loyal." + ], + "Giant Schnauzer": [ + "A Giant Schnauzer is a large, powerful dog that looks like a cross between a Standard Schnauzer and a Rottweiler.", + "A Giant Schnauzer is a large, powerfully built dog.", + "The Giant Schnauzer is a large, wire-haired breed of dog.", + "A Giant Schnauzer is a large, athletic-looking dog with a wiry coat.", + "The Giant Schnauzer is a large, stocky dog breed with a wiry coat.", + "Most Giant Schnauzers are black, although some may be pepper and salt (a mix of black and gray hairs).", + "A Giant Schnauzer is a large, muscular dog that is often black or salt-and-pepper in color.", + "A Giant Schnauzer is a large, black, Working-type dog.", + "The Giant Schnauzer is a large German working dog.", + "Schnauzers are very large dogs, with male giant schnauzers typically weighing around 95 pounds and females around 85 pounds.", + "The Giant Schnauzer is a large, working breed of dog.", + "Giant Schnauzers are large dogs with wiry, waterproof coats.", + "Three ways to identify a Giant Schnauzer are by its large size, thick coat, and long, bushy eyebrows and beard.", + "The best way to identify a Giant Schnauzer is by its physical appearance.", + "Giant Schnauzers are large, muscular dogs with square heads and wiry, pepper-and-salt coats.", + "A Giant Schnauzer is a large, working breed of dog.", + "Giant Schnauzers are a large breed of dog with a thick coat.", + "A Giant Schnauzer can be identified by its large size, thick coat, and beard.", + "giant schnauzers have a large, rectangular head, a long muzzle, and a double coat of coarse, wiry hair.", + "The Giant Schnauzer is a large and sturdily built dog.", + "Giant Schnauzers are large, powerfully built dogs.", + "A Giant Schnauzer's coat is thick, shaggy, and wiry.", + "A Giant Schnauzer is a large dog breed that typically weighs between 65 and 80 pounds.", + "A giant schnauzer looks like a large, muscular dog with a long, thick coat.", + "A Giant Schnauzer looks like a large, muscular dog with a wiry, salt-and-pepper coat.", + "The Giant Schnauzer is a large, muscular dog that is squarely built.", + "The Giant Schnauzer is a large, muscular dog that is rectangular in shape.", + "A Giant Schnauzer is a large, athletic looking dog with a thick coat of wiry fur.", + "The Giant Schnauzer is a large dog breed that is easily recognizable by their thick, wiry coats.", + "Giant Schnauzers are large, burly dogs with thick fur that can be either black or salt-and-pepper in color.", + "The image is of a Giant Schnauzer standing in a field.", + "The image is of a large, black dog with a bushy tail and a triangular head.", + "The image is of a Giant Schnauzer standing in a grassy field.", + "This image is of a Giant Schnauzer standing in a field.", + "This image is of a Giant Schnauzer standing in a grassy field.", + "I found an image of a Giant Schnauzer on the internet that I really like.", + "The image is of a Giant Schnauzer standing in a grassy field.", + "The image is of a black Giant Schnauzer with a long, thick coat.", + "This image is of a Giant Schnauzer named \"Bruno.", + "The image is of a large, black dog with a long, bushy tail.", + "This is a Giant Schnauzer, a breed of dog known for its large size and furry coat.", + " A beautiful Giant Schnauzer stands against a white background.", + " Giant Schnauzers were originally bred in Germany in the 1600s.", + "The Giant Schnauzer is a large, muscular dog breed originally from Germany.", + "Giant Schnauzer, a German breed of dog, standing in a meadow.", + "This is a Giant Schnauzer.", + " A dog is standing in a room with hardwood floors.", + "Giant Schnauzers are one of the largest breeds of dogs, and are known for their loyalty and protective nature.", + "There's nothing like a Giant Schnauzer to make you feel safe and protected.", + "This Giant Schnauzer looks like he means business!." + ], + "Standard Schnauzer": [ + "A Standard Schnauzer is a medium-sized dog with a wiry coat.", + "The Standard Schnauzer is a medium-sized dog with a rectangular body.", + "The Standard Schnauzer is a medium-sized, sturdily built dog with a wiry coat.", + "The Standard Schnauzer is a medium-sized, sturdily built dog.", + "A Standard Schnauzer is a medium-sized, strong dog breed with a universality to its appearance.", + "A Standard Schnauzer is a German dog breed that typically has a wiry coat and a square-shaped head.", + "The Standard Schnauzer is a large, robust dog with a major resemblance to the smaller Miniature Schnauzer.", + "A Standard Schnauzer is a medium-sized, sturdily built dog with a rectangular head, robust muzzle, and a closely cropped coat.", + "A Standard Schnauzer has a wiry coat that is salt and pepper in color.", + "A standard schnauzer is a medium-sized, robust dog with a square body.", + "One way to identify a Standard Schnauzer is by its wiry coat.", + "The Standard Schnauzer is a large breed of dog that can be identified by its wiry coat and beard.", + "The Standard Schnauzer is a thickly bearded, medium-sized, rectangular dog.", + "Standard Schnauzers have a distinctive appearance with a long, harsh coat and a beard.", + "The Standard Schnauzer is a medium-sized, sturdily built dog.", + "Standard Schnauzers are the largest variety of Schnauzer and were originally bred in Germany.", + "The Standard Schnauzer is a large breed of dog.", + "The Standard Schnauzer is a medium-sized, robust dog breed with a wiry coat.", + "standard schnauzers are distinguished by their bearded and bushy eyebrows, moustache and long whiskers, which give them a striking, yet humorous appearance.", + "The Standard Schnauzer is the largest of the three Schnauzer breeds.", + "A Standard Schnauzer is a medium-sized dog that is sturdily built.", + "The Standard Schnauzer is a large, solidly built dog with a harsh, wiry coat.", + "A Standard Schnauzer is a breed of dog that is medium to large in size.", + "Standard Schnauzers are a medium-sized breed of dog.", + "Most Standard Schnauzers have a beard and eyebrows.", + "The Standard Schnauzer is a strong, muscular dog with a wiry coat.", + "A Standard Schnauzer is a medium to large size dog with a long body and short legs.", + "A Standard Schnauzer has a rectangular body with a strong, muscular build.", + "The Standard Schnauzer is a medium-sized, sturdily built dog with a wiry coat.", + "The Standard Schnauzer is a medium-sized, sturdily built dogs with a wiry coat.", + "A Standard Schnauzer from the internet is a medium-sized, working dog breed with a long, harsh coat.", + "An image from the internet of a Standard Schnauzer shows a medium-sized, sturdily-built dog with a bearded, wiry coat of black and silver fur.", + "The image is of a Standard Schnauzer with a wiry, salt-and-pepper coat.", + "The image is of a Standard Schnauzer standing on a brown and white checkered floor.", + "The image is of a Standard Schnauzer standing in a park.", + "In the image, the Standard Schnauzer is standing on a green lawn with its head turned to the side.", + "This image from the internet shows a Standard Schnauzer dog in profile.", + "The image is of a Standard Schnauzer standing on a green lawn.", + "The image is of a medium-sized, muscular dog with a wiry coat of black and silver fur.", + "The image is of a Standard Schnauzer standing on a grassy field.", + "\"I'm a loyal and loving companion, and I make a great watchdog, too!\".", + "Standard Schnauzers are a loyal and protective breed, making them great companions.", + "\"Standard Schnauzer on a leash in a grassy field\".", + "A Standard Schnauzer looking alert and ready for anything.", + "A Standard Schnauzer standing in a grassy field.", + " Standard Schnauzer with pipe.", + "A Standard Schnauzer standing in a grassy field.", + "A Standard Schnauzer looks alert and ready for action.", + " A Standard Schnauzer with a salt and pepper coat.", + "A Standard Schnauzer is a medium to large Breed of dog." + ], + "Scottish Terrier": [ + "The Scottish Terrier, or Scottie, is a small terrier breed of dog.", + "The Scottish Terrier is small, short-legged dog with a long body.", + "A Scottish Terrier is a short-legged, sturdy dog with a broad head and a wiry coat.", + "A Scottish Terrier has a very distinct look.", + "A Scottish Terrier typically has a wiry, water-resistant outer coat and a soft, dense undercoat.", + "A Scottish Terrier has a long, narrow head and a short, compact body.", + "A Scottish terrier is a small, muscular dog with a short, thick coat of fur.", + "A Scottish Terrier is a small, compact dog with a shaggy coat.", + "A Scottish Terrier is a small, muscular dog with a stout body and short legs.", + "A Scottish Terrier is a small, short-legged dog that has a rough, wiry coat.", + "There are a few ways to identify a Scottish Terrier.", + "The main body color of a Scottish Terrier is black, with a white chest and small white patches on the face.", + "A Scottish Terrier has a long, rectangular head with a short, blunt muzzle.", + "A Scottish Terrier can be identified by their long, wiry coat, which is most often black, but can also be brindle, grizzle, or wheaten.", + "The Scottish Terrier is a small, compact, short-legged, sturdily-built dog of good bone and substance.", + "There are a few ways to identify a Scottish Terrier.", + "The Scottish Terrier is a small, compact, short-legged, sturdily-built dog of good bone and substance.", + "The Scottish Terrier has a short, sturdy body and legs.", + "A Scottish Terrier can be identified by its shaggy coat, short legs, and long body.", + "The Scottish Terrier is a small, compact, short-legged, sturdily-built dog of good bone and substance.", + "A Scottish Terrier is a small, compact, short-legged, sturdily-built dog of good bone and substance.", + "A Scottish Terrier is a small, short-legged breed of dog.", + "Image of a Scottish Terrier: https://en.", + "A Scottish Terrier is small and stocky, with a wiry coat.", + "A Scottish Terrier has a stout body, shaggy fur, and a long tail.", + "A Scottish Terrier has a medium length coat that is densely packed and wiry.", + "A Scottish Terrier looks like a small, compact dog with a short, stubby legs.", + "The Scottish Terrier is a small breed of dog.", + "The Scottish Terrier is a small, compact, short-legged, sturdily-built dog of good bone and substance.", + "A Scottish Terrier is a small, agile dog with a wiry coat.", + "The image is of a brown and white Scottish Terrier standing on a green lawn.", + "The image shows a Scottish Terrier with black and white fur standing in a grassy field.", + "The image is of a small, black dog with a wiry coat.", + "The image is of a small, dark-furred dog with a long, shaggy coat.", + "The Scottish Terrier is a small, compact, short-legged, sturdily-built dog of good bone and substance.", + "The image shows a Scottish Terrier dog standing on a green grassy field with trees in the background.", + "The image is of a small, dark-colored dog with a short, wiry coat.", + " An image of a Scottish Terrier from the internet shows a small, black dog with a fluffy coat and bright eyes.", + "An image of a Scottish Terrier from the internet shows a small, black dog with a bushy tail.", + "The Scottish Terrier is a small, compact, short-legged, sturdily built dog of good bone and substance.", + "This is a Scottish Terrier.", + "Sadie, the Scottish Terrier.", + "This is a Scottish Terrier, a popular breed of dog originating in Scotland.", + " A Scottie with his game face on.", + "The Scottish Terrier, also known as the Scottie, is a small, relatively rare dog breed that is known for its distinctive features and independent spirit.", + "This little Scottish Terrier is as feisty as they come! Even though he's small, he doesn't let that stop him from taking on anything that comes his way.", + "A Scottish Terrier in a plaid coat.", + "One of the most popular breeds of dogs in the world, the Scottish Terrier is known for its unique appearance and friendly personality.", + "This is a Scottish Terrier.", + "This is a Scottish Terrier, a small breed of dog." + ], + "Tibetan Terrier": [ + "A Tibetan Terrier is a small to medium sized breed of dog that has a thick coat of fur that is often white, black, or brown in color.", + "Tibetan Terriers have a shaggy, medium-length coat that is either black, white, brown, grey, or cream.", + "Tibetan Terriers have a long, double coat that is either shaggy or parted in the middle.", + "A Tibetan Terrier is a medium sized dog with a thick coat of fur.", + "A Tibetan Terrier is a small to medium sized dog with a shaggy coat.", + "Tibetan Terriers have a thick, double coat of wool that is long and shaggy.", + "Tibetan terriers are a small to medium sized breed of dog that have a long, double coat of fur.", + "Tibetan Terriers have a medium-length, double coat that is shaggy and may be either straight or slightly wavy.", + "The Tibetan Terrier is a medium-sized, long-haired, shaggy dog.", + "A Tibetan Terrier is a small to medium sized dog with a shaggy coat.", + "You can identify a Tibetan Terrier by their long, shaggy coat, which is usually white, grey, or black.", + "The Tibetan Terrier has a long and shaggy coat that is most often seen in white, but can also be black, brindle, or a mix of colors.", + "Tibetan Terriers have a thick, double coat that is shaggy and may be any color.", + "There is no definitive answer to this question since there is no one physical trait that all Tibetan Terriers share.", + "Tibetan Terriers have a thick, long coat that is often wavy or curly.", + "Tibetan Terriers have a thick coat of fur that is usually white, black, or brown in color.", + "A Tibetan Terrier can be identified by its long, shaggy coat.", + "The Tibetan Terrier is a medium-sized dog with a shaggy, double coat.", + "A Tibetan Terrier may be identified by its long, shaggy coat, which is typically grey, white, or black and white.", + "While there is no one definitive answer to this question, some things that may help in identifying a Tibetan Terrier include their overall appearance (such as their long, thick coat), as well as their typical character traits (such as being friendly and.", + "The Tibetan Terrier is a large, shaggy dog with a thick coat of fur.", + "A Tibetan Terrier is a medium-sized breed of dog that originated in Tibet.", + "Tibetan Terriers have a thick, double coat that is either wavy or straight.", + "A Tibetan Terrier is a small, shaggy dog with a rectangular body and a wedge-shaped head.", + "The Tibetan Terrier is a small to medium-sized breed of dog that shares many physical features with other members of the Terrier group.", + "A Tibetan Terrier typically has a long, shaggy coat that can be a variety of colors, including black, white, brown, gray, and more.", + "A Tibetan Terrier has a thick coat of fur that can be any solid color, including black, white, gray, brown, or blue.", + "The Tibetan Terrier is a small to medium sized dog with a thick, long coat.", + "The Tibetan Terrier is a small to medium sized dog with a soft, shaggy coat.", + "A Tibetan Terrier is a small to medium-sized dog with a thick coat.", + "An image of a Tibetan Terrier from the internet shows a small, medium-sized dog with a long, dense coat of fur.", + "This image is of a Tibetan terrier standing in a field of tall grass.", + "In the image, a Tibetan Terrier is standing on a road in front of a mountainside.", + "In the image, the Tibetan Terrier is standing on a grassy hill with a blue sky in the background.", + "The image is of a Tibetan Terrier standing on a rocky ledge with a mountainside and blue sky in the background.", + "The image is of a light brown and white Tibetan Terrier standing on a rock in a mountainous area.", + "In the image, the Tibetan Terrier is standing on a rock in a mountainous landscape.", + "The image is of a small, fluffy dog with pointy ears and a long tail.", + "I found an image of a Tibetan Terrier on Google Images.", + "The image is of a small, white dog with long, shaggy hair.", + "A Tibetan Terrier peers out from behind a snow-covered rock.", + "A Tibetan Terrier looks out over a snow-covered landscape.", + "This Tibetan Terrier is waiting patiently for his next adventure.", + "Tibetan Terriers are a loyal and friendly breed of dog that make great companion animals.", + " Tibetan Terrier standing in grassThis Tibetan Terrier is standing in a grassy field, ready to play or explore.", + "A Tibetan Terrier standing in front of a mountain range.", + " Tibetan Terriers are an ancient breed of dog originating in the Tibetan Plateau.", + "This is My Tibetan Terrier, SimonI got him when he was a pup and he's been my best friend ever since.", + "This is a Tibetan Terrier, a breed of dog that is native to Tibet.", + " An eager Tibetan Terrier pauses during a game of fetch, looking back at its owner with excitement in its big brown eyes." + ], + "Australian Silky Terrier": [ + "An Australian Silky Terrier is a small, elegant-looking terrier with long, flowing silky hair.", + "An Australian Silky Terrier is a small, silky-coated terrier breed.", + "The Australian Silky Terrier is a small, alert, restless, quick moving Terrier.", + "The Australian Silky Terrier is a small, compact dog with a long, glossy coat.", + "The Australian Silky Terrier is a small, compact, fine-boned dog.", + "silky, long-haired, Terrier-type dog with a V-shaped ears and a long, flat head.", + "An Australian Silky Terrier is a small, silky-coated terrier breed of dog.", + "The Australian Silky Terrier is a small, short-legged dog with a long, luxurious silky coat.", + "An Australian Silky Terrier is a small, silky-coated terrier with a long, tapered head and ears.", + "An Australian Silky Terrier has a long, straight, silky coat that is blue and white or black and white.", + "An Australian Silky Terrier can be identified by its small, compact size; its blue and white coat; and its long, straight silky hair.", + "The Australian Silky Terrier has a silky blue and white coat.", + "An Australian Silky Terrier can be distinguished by its long, straight, silky blue and tan coat; small, pointy ears; and long neck.", + "An Australian Silky Terrier typically has a blue or blue-grey coat, with a white chest andoften white markings on the toes.", + "Australian Silky Terriers have a long, straight, and silky coat that is blue and tan in color.", + " Australian Silky Terriers are small dogs with long, silky fur.", + "The Australian Silky Terrier has a blue and white coat.", + "An Australian Silky Terrier may be identified by its long, straight, and silky blue and white or black and tan coat; its small size; and its alert and active demeanor.", + "The Australian Silky Terrier has a long, fine, and lustrous coat that is blue and tan in color.", + "The Australian Silky Terrier is a small, silky-coated terrier.", + "An Australian Silky Terrier is a small, silky-coated terrier.", + "The Australian Silky Terrier is a small, compact, and elegant dog with a long, finely textured, and silky coat.", + "The Australian Silky Terrier is a small, elegant dog with a long, flat head, small, pointed ears, and large, dark eyes.", + "Australian Silky Terriers look like small, elegant dogs with long, soft, silky coats.", + "An Australian Silky Terrier is a small dog with long, silky hair.", + "The Australian Silky Terrier is a small, rectangular-shaped dog with a long, luxurious coat.", + "The Australian Silky Terrier is a small, proud dog with a long, lustrous, silky blue and white coat.", + "The Australian Silky Terrier is a small, fine-boned terrier with a long, straight, shiny, and lustrous blue and tan coat.", + "An Australian Silky Terrier has a long, straight, blue-and-tan coat.", + "An Australian silky terrier has a long, glossy, silky coat that is either blue or black and tan in color.", + "The image is of a small, white dog with long, silky fur.", + "The image is of a small, white dog with long, silky fur.", + "Image shows a Australian Silky Terrier with its long, straight, and silky coat.", + "The image is of an Australian Silky Terrier standing in a grassy field.", + "A photo of an Australian Silky Terrier from the internet shows a small, white dog with long, silky fur.", + "This image depicts an Australian Silky Terrier with a long, silky coat of blue and white fur.", + "The image is of a small, white dog with long, silky hair.", + "The image is of a small, light brown dog with long, silky hair.", + "In the image, the Australian Silky Terrier is a small, dark-colored dog with long, silky hair.", + "This image is of a small, silver-colored Australian Silky Terrier standing on a grassy hill.", + "This Australian Silky Terrier is wearing a blue and white collar with a bow tie.", + "A silky terrier basking in the sun.", + " A Silky Terrier peeks out from behind some grass.", + "This Australian Silky Terrier is a breed of small dog that was originally developed in Australia.", + "This is an Australian Silky Terrier, a small and playful breed of dog that originates from Australia.", + "This is an Australian Silky Terrier, a breed of small dog that was originally developed in Australia.", + "This Australian Silky Terrier is posed in front of a brick wall.", + "Image of an Australian Silky TerrierThe Australian Silky Terrier is a small, elegant breed of dog that is well-suited for city living.", + "Sleek and silver, the Australian Silky Terrier is a beautiful breed of dog.", + "This Australian Silky Terrier loves cuddles and belly rubs!." + ], + "Soft-coated Wheaten Terrier": [ + "A Soft-coated Wheaten Terrier has a medium-sized, rectangular body with a soft, dense, wheaten-colored coat.", + "A Soft-coated Wheaten Terrier looks like a small, shaggy dog with a soft, wheat-colored coat.", + "A Soft-coated Wheaten Terrier is a medium sized terrier with a soft coat.", + "The Soft-coated Wheaten Terrier is a medium sized dog with a strong, rectangle-shaped body.", + "The Soft-coated Wheaten Terrier is a medium-sized, shaggy dog breed.", + "A soft-coated wheaten terrier is a medium-sized, shaggy dog.", + "A Soft-coated Wheaten Terrier is a medium-sized, shaggy dog with a soft, wheat-colored coat.", + "A Soft-coated Wheaten Terrier is a medium sized dog with a soft, wheat-colored coat.", + "A Soft-coated Wheaten Terrier is a medium sized breed of dog.", + "The Soft-coated Wheaten Terrier is a medium-sized, shaggy dog breed.", + "You can identify a Soft-coated Wheaten Terrier by their unique coat.", + "A Soft-coated Wheaten Terrier is a medium-sized terrier with a soft coat.", + "A Soft-coated Wheaten Terrier is a medium sized terrier with a long, soft coat.", + "A Soft-coated Wheaten Terrier is a medium-sized, shaggy dog with a soft, silky coat.", + "A Soft-coated Wheaten Terrier typically has a golden brown or slightly reddish coat, and is medium in size.", + "A Soft-coated Wheaten Terrier has a soft, silky coat that is wheat-colored.", + "A Soft-coated Wheaten Terrier is a small to medium-sized dog with a rectangular body and floppy ears.", + "The most distinguishing feature of the Soft-coated Wheaten Terrier is its coat.", + "A soft-coated Wheaten Terrier has a soft, wavy coat that is any shade of wheaten.", + "A Soft-coated Wheaten Terrier can be identified by its description as a small to medium-sized, hardy, wiry-coated terrier of wheaten color.", + "The Soft-coated Wheaten Terrier is a medium sized Terrier breed.", + "A Soft-coated Wheaten Terrier is a medium sized dog with a soft, wavy coat.", + "A Soft-coated Wheaten Terrier's coat is a silky, soft wheaten color.", + "A Soft-coated Wheaten Terrier is a shaggy, medium-sized dog with a soft wheat-colored coat.", + "Soft-coated Wheaten Terriers are medium-sized dogs with a soft, silky coat.", + "Soft-coated Wheaten Terriers have a soft, wheaten-colored coat of fur that covers their entire body.", + "A soft-coated wheaten terrier is a terrier-type dog with a wheaten-colored coat.", + "A Soft-coated Wheaten Terrier is a medium-sized, hypoallergenic terrier breed.", + "The Soft-coated Wheaten Terrier is a medium-sized, rectangular dog with a soft, wheat-colored coat.", + "A Soft-coated Wheaten Terrier is a medium-sized, shaggy dog.", + "I found an image on Pinterest of a Soft-coated Wheaten Terrier.", + "The image is of a wheat-colored dog with a soft, wavy coat.", + "The image is of a light brown and white dog with a long curly coat.", + "This image from the internet is of a beautiful, shaggy dog with a coat that is soft and wheaten in color.", + "This image shows a Soft-coated Wheaten Terrier standing in a green field.", + "I found an image of a Soft-coated Wheaten Terrier on the internet of a dog sitting in grass.", + "I found an image of a Soft-coated Wheaten Terrier on the internet.", + "An image of a Soft-coated Wheaten Terrier from the internet shows a terrier with a soft, wheat-colored coat.", + "This image is of a soft-coated wheaten terrier lying on its back on a grassy lawn.", + "In the image, the Soft-coated Wheaten Terrier is standing on a white background.", + "Meet Jasper, the soft-coated Wheaten Terrier! Jasper is a sweet and gentle dog who loves nothing more than cuddling up with his family.", + "This soft-coated Wheaten Terrier is the perfect choice for anyone looking for a medium-sized hypoallergenic dog.", + "A soft-coated Wheaten Terrier is a medium-sized, hypoallergenic breed of terrier.", + "This is Sadie, a Soft-coated Wheaten Terrier.", + "\"This is my dog, Barney.", + "This Wheaten Terrier is waiting for a walk with his owner.", + "This playful pup is a Soft-coated Wheaten Terrier, a breed known for its friendly and gentle nature.", + "This is a soft-coated Wheaten Terrier, a breed of dog originating in Ireland.", + "This is my dog, Jack.", + " Tristan, the gentle giant." + ], + "West Highland White Terrier": [ + "A West Highland White Terrier has a white coat with a soft, dense undercoat.", + "A West Highland White Terrier is a small, compact, and sturdily-built terrier with a thick coat of off-white fur.", + "A West Highland White Terrier is a small, weighing between 13 and 20 pounds, Terrier with a dense, all-white coat.", + "West Highland White Terriers are small, compact dogs with a bushy white coat.", + "The West Highland White Terrier is a small breed of dog with a white coat and black points.", + "A West Highland White Terrier typically has a white coat of fur, small black eyes, and black nose.", + "A West Highland white terrier has a long, rectangular head with a striking black nose.", + "A West Highland White Terrier is a small, white dog with a pointed nose and erect ears.", + "A West Highland White Terrier has a white coat and is a small to medium sized dog.", + "West Highland White Terriers are small to medium sized dogs with a sturdy build.", + "West Highland White Terriers are small, sturdy dogs with white, wiry coats.", + "A West Highland White Terrier typically has a white coat of fur, black eyes, and a pointed nose.", + "The West Highland White Terrier is often referred to as the \"Westie.", + "A West Highland White Terrier is a small, white, Scottish terrier.", + "West Highland White Terriers look like small, white, fluffy dogs.", + "Most West Highland White Terriers have a coat that is white with a slight cream tinge.", + "West Highland White Terriers have a short, white coat and erect ears.", + "A West Highland White Terrier is a small, white, fluffy dog.", + "West Highland White Terriers can be identified by their small size, white fur, and pointy ears.", + "A West Highland White Terrier is a small to medium-sized dog with a white coat.", + "The West Highland White Terrier is a small, cheerful-looking terrier.", + "A West Highland White Terrier is a small, sturdy dog with a short, thick coat of white fur.", + "A West Highland white terrier is a small, white dog with a thick coat.", + "A West Highland White Terrier is a small square-proportioned dog with a thick coat of white fur.", + "The West Highland White Terrier is a small to medium-sized dog.", + "The West Highland White Terrier is a small to medium size breed of dog with a thick, fluffy coat of white fur.", + "A West Highland White Terrier has a thick, white coat and a short, stubby tail.", + "The West Highland White Terrier is a small, pure white dog with erect, pointed ears.", + "A West Highland White Terrier is a small, white dog with a wiry coat.", + "The West Highland White Terrier is a small, stocky terrier with a thick, soft, double coat.", + "The image is of a small, stocky white dog with a long, fluffy tail.", + "In the image, the West Highland White Terrier is standing on a green grassy field with its ears perked up and its tail wagging.", + "The image shows a West Highland White Terrier sitting on a green lawn.", + "An image of a West Highland White Terrier from the internet typically shows a small, white dog with a thick coat of fur.", + "In the image, the West Highland White Terrier is standing on a green lawn with its body facing the camera.", + "The image is of a small white dog with West Highland white markings on its face.", + "The image is of a small, white, fluffy dog with long ears.", + "When looking for an image of a West Highland White Terrier on the internet, one might come across a photo of a small, white dog with pointy ears and a bushy tail.", + "The image is of a small, white, fluffy dog with big ears and black eyes.", + "The image is of a small, white, fluffy dog with pointy ears and a long tail.", + "This little pooch is a West Highland White Terrier, a breed that is known for being loyal and playful.", + "This is a picture of a West Highland White Terrier.", + "This is a West Highland White Terrier, a breed of dog originating in Scotland.", + "This is my Westie, Fergus.", + "West Highland White Terrier - One of the most popular breeds of dogs in the world.", + "This is my dog, Rookie.", + "Coco the West Highland White Terrier enjoying a sunny day in the park.", + "This little Westie is all bundled up and ready to go for a walk in the snow!.", + "\"I'm not a Westie, I'm a Scottish Terrier!\".", + "This is my West Highland White Terrier, Molly." + ], + "Lhasa Apso": [ + "A Lhasa Apso has a long, dense coat that can be straight or slightly wavy.", + "A Lhasa Apso is a miniature Tibetan terrier with a thick, long, double coat that is often described as looking like a toy lion.", + "A Lhasa Apso is a small, shaggy dog with a long head and face.", + "The Lhasa Apso is a small, elegant dog with a long coat.", + "The Lhasa Apso is a small, shaggy-coated dog that originated in Tibet.", + "Lhasa Apsos are small dogs with long, dense coats.", + "The Lhasa Apso is a small, long-haired Tibetan dog.", + "A Lhasa Apso is a small, Tibetan dog breed with long, silky hair.", + "Lhasa Apsos are small, shaggy dogs with long hair.", + "A Lhasa Apso is a small, shaggy dog with a long, thick coat that can be black, white, gray, sand, or gold.", + "The most distinguishing feature of the Lhasa Apso is its long, dense coat, which can be any color.", + "The Lhasa Apso is a small dog that has a long, dense coat.", + "The Lhasa Apso is a small Tibetan dog breed with a long, dense coat.", + "A Lhasa Apso is a small, hardy dog with a thick coat of fur.", + "The Lhasa Apso is a small, long-haired Tibetan dog.", + "A Lhasa Apso can beidentified by its long, dense coat, which is often trimmed into a 'lion's mane' around the head.", + "The best way to identify a Lhasa Apso is by its thick, long coat.", + "A Lhasa Apso is a small and compact Tibetan dog that has a long, thick coat.", + "A Lhasa Apso can be identified by its long, dense hair, which covers its entire body, including its face.", + "The Lhasa Apso is a small, hardy dog with a long, dense coat.", + "A Lhasa Apso is a small dog with long, straight hair.", + "A Lhasa Apso has a shaggy coat that is either black, white, or a mix of black and white.", + "A Lhasa Apso is a small, shaggy dog that looks like a miniature sheepdog.", + "The Lhasa Apso is a small, sturdily-built dog with a triangular head and large, dark eyes.", + "The Lhasa Apso is a small, sturdy dog with a long coat.", + "A Lhasa Apso is a small, shaggy dog that is typically between 8 and 11 inches tall.", + "A Lhasa Apso is a small Tibetan breed of dog with a long, dense coat that is often black, white, or reddish brown.", + "Lhasa Apsos are small, dense-coated dogs with long, luxurious hair.", + "A Lhasa Apso is a small, shaggy-coated dog with a long, flowing coat.", + "A Lhasa Apso has a heavy coat that is either straight or wavy.", + "I found an image of a Lhasa Apso on the internet that shows the dog standing on a leash.", + "The image is of a small, shaggy dog with a light brown coat and dark brown markings.", + "I found an image on Google of a Lhasa Apso standing on a stone path in front of a green bush.", + "A Lhasa Apso is a small, shaggy-coated dog with a long body, short legs, and aDomestic short-haired cat face.", + "The image is of a light brown and white Lhasa Apso standing on a grassy field with trees in the background.", + "The image is of a Lhasa Apso standing on a carpet in a living room.", + "In the image, the Lhasa Apso is standing on a grassy field with its long, shaggy coat blowing in the wind.", + "The image is of a light brown and white Lhasa Apso dog with long, shaggy fur.", + "The image is of a small, pale brown and white dog with a long, fluffy coat.", + "The Lhasa Apso is a small, shaggy-coated dog with a wrinkled face and a plume of feathers on its tail.", + "A pair of Lhasa Apsos sitting happily together.", + "The Lhasa Apso is a breed of dog originating in Tibet.", + "This is a Lhasa Apso, a Tibetan breed of dog.", + "Lhasa Apso.", + " Lhasa Apso breeders in the United States often advertise the dogs as perfect for people with allergies, as they do not shed much.", + "A Lhasa Apso poses for a picture.", + "An intelligent and devoted dog, the Lhasa Apso is an excellent companion for active people who can provide him with plenty of exercise and companionship.", + "A Lhasa Apso sitting on a couch with a blanket over its lap.", + "A Lhasa Apso is a small, long-haired Tibetan dog breed.", + "\"Lhasa Apso, a breed of tibetan origin with a long history of being a companion to buddhist monks." + ], + "Flat-Coated Retriever": [ + "A Flat-Coated Retriever is a large, athletic dog with a long head and muzzle.", + "Flat-coated retrievers are medium to large dogs with a long head and muzzle.", + "The Flat-Coated Retriever is a medium-sized, well-proportioned dog with a long head, square muzzle, and wide nose.", + "A Flat-Coated Retriever is a medium-sized, gundog with a long, flat-coated, water-resistant coat.", + "A Flat-Coated Retriever is a medium to large sized dog with a long, flat coat that is either black or liver colored.", + "A Flat-Coated Retriever is a large, athletic dog with a long head and muzzle.", + "A Flat-Coated Retriever typically has a long, flat-coated head and body, with long legs.", + "A Flat-Coated Retriever is a type of gun dog with a long, thick coat of black, liver, or golden-brown fur.", + "They are a medium-sized breed of dog with a long, flat-coated coat.", + "A Flat-Coated Retriever is a large, athletic dog with a long, thick coat that is flat or only slightly wavy.", + "A Flat-Coated Retriever has a long, flat head, and a long, flat body.", + "Flat-Coated Retrievers are medium to large dogs with long, silky coats.", + "The Flat-Coated Retriever is a large, powerfully built dog.", + " Flat-Coated Retrievers are working dogs that were originally used for retrieving game birds.", + "The Flat-Coated Retriever is a large breed of dog, easily recognized by its long, flat-lying coat.", + "Indicators of a Flat-Coated Retriever include a large size, thick fur that is either black or liver-colored, and a long head.", + "The best way to identify a Flat-Coated Retriever is by its coat.", + "The Flat-Coated Retriever is best distinguished by its flat coat, which is medium in length and can be either wavy or straight.", + "A Flat-Coated Retriever is a large, athletic dog with a long head and muzzle.", + "The most distinguishing feature of a Flat-Coated Retriever is its coat, which is flat, dense, and of medium length.", + "Flat-Coated Retrievers are medium sized dogs that have a long, flat coat that is either black or liver in color.", + "The Flat-Coated Retriever is a medium to large sized dog with a long, flat coat that is either black or liver in color.", + "A Flat-Coated Retriever looks like a black labrador retriever, but with a longer, sleeker coat.", + "A flat-coated retriever is a type of gun dog that was originally bred in England.", + "A Flat-Coated Retriever looks like a large, black or liver-colored dog with a long, straight coat.", + "The coat of a Flat-Coated Retriever is flat, or straight, and is medium to long in length.", + "Flat-coated retrievers are large dogs with a strong, muscular build.", + "A Flat-Coated Retriever has a long, flat head, long nose, and long, flat ears.", + "A Flat-Coated Retriever is a large dog with a rectangular body and a flat, water-resistant coat.", + "A Flat-Coated Retriever is a long, lean, and athletic dog.", + "Image is of a brown, medium-sized dog with a long, thick coat of fur.", + "This image shows a Flat-Coated Retriever with a black coat and a happy expression on its face.", + "I found an image of a Flat-Coated Retriever on the internet that I really like.", + "There is an image of a Flat-Coated Retriever on the internet that is brown and black with a long coat.", + "The image is of a Flat-Coated Retriever standing in a field.", + "The image is of a Flat-Coated Retriever standing in a field of tall grass.", + "I found an image of a Flat-Coated Retriever on the internet that I really liked.", + "The image is of a brown and black Flat-Coated Retriever standing in a grassy field.", + "The image is of a Flat-Coated Retriever lying on its side on a grassy area.", + "The image is of a large, black and white dog with a long, double coat.", + " A Flat-Coated Retriever with a Frisbee in its Mouth.", + "This is an image of a Flat-Coated Retriever.", + "This adorable Flat-Coated Retriever is eager to please and loves to play fetch.", + "Flat-Coated RetrieverThis long-haired breed is known for its friendly, outgoing personality and its ability to excel in multiple sports, including agility, obedience, and retrieving.", + "This is a Flat-Coated Retriever, a breed of gun dog.", + " \"This is my flat-coated retriever, Simon.", + "A Flat-Coated Retriever posing in a field of tall grass.", + "This is Wrangler, my 8-year-old flat-coated retriever.", + "This is a Flat-Coated Retriever, a breed of gun dog.", + "\"Rascal\" the Flat-Coated Retriever playing fetch." + ], + "Curly-coated Retriever": [ + "The Curly-coated Retriever is a large, elegant dog with a short, tight, dense coat of small, crisp curls.", + "The Curly-coated Retriever has a distinctive curly, water-resistant coat.", + "A Curly-coated Retriever is a large, muscular dog with a long head and a distinctively curly, waterproof coat.", + "A Curly-coated Retriever is a large, powerfully built dog with a distinctive coat of small, tight, curls.", + "A Curly-coated Retriever is a large breed of dog, with a coat that is curly and thick.", + "A Curly-coated Retriever has a dense, curly, waterproof coat that can be either black or liver colored.", + "A Curly-coated Retriever is a large, muscular dog with a long, curly coat.", + "A Curly-coated Retriever has a dense, curly coat that is water-resistant.", + "The Curly-coated Retriever is a large, athletic breed with a distinctively curly coat.", + "Curly-coated Retrievers are large, athletic dogs with long, curly coats.", + "Curly-coated Retrievers are large, powerful dogs with a distinctive coat of small, tight curls.", + "There are a few ways to identify a Curly-coated Retriever.", + "A Curly-coated Retriever is a breed of dog that is easily identifiable by its coat of tight, small curls.", + "Other characteristics of the Curly-coated Retriever include a long, broad head; small, almond-shaped eyes; and a tapered muzzle.", + "The Curly-coated Retriever is a large, athletic breed with a unique coat of tightly curled, water-resistant hair.", + "The Curly-coated Retriever is a large-sized breed of dog.", + "The Curly-coated Retriever is a large and rangy dog with a distinctive coat of small, crisp, tight curls.", + "The Curly-coated Retriever has a coat of small, tight, water-resistant curls.", + "The Curly-coated Retriever is a large, solid-colored dog with a curly coat.", + "Size - A Curly-coated Retriever is a large breed of dog, with a height of 24-27 inches (61-69 cm) and a weight of 60-80 pounds (27-36 kg).", + "A Curly-coated Retriever has a hypoallergenic coat that is curly and waterproof.", + "A Curly-coated Retriever has a very distinctive appearance.", + "A Curly-coated Retriever is a large dog that is black, brown, or liver-colored.", + "A Curly-coated Retriever is a large, muscular dog with a long, curly coat.", + "A Curly-coated Retriever is a large, athletic dog with a long neck and a head that is proportional to its body.", + "The Curly-coated Retriever is a large and muscular dog, with a thick, curly coat that is either black or liver-colored.", + "buy generic doxycycline The Curly-coated Retriever is a large dog with a long, curly coat.", + "A curly-coated retriever is a large breed of dog.", + "The Curly-coated Retriever is a large, powerfully built dog.", + "A Curly-coated Retriever is a medium-sized dog with a thick, curly coat.", + "A Curly-coated Retriever is a type of dog that is often used for hunting.", + "The image is of a large, black dog with a curly coat.", + "A Curly-coated Retriever is a dog with a curled coat of fur.", + "The image is of a black and white Curly-coated Retriever standing in a grassy field.", + "The image is of a brown and white curly-coated retriever dog.", + "In the image, a medium-sized, dark-furred dog with a long, curly coat is standing on a dirt road in a rural area.", + "I found an image of a curly-coated Retriever on the internet that I think is really cool.", + "The image is of a large, shaggy black dog with a long, curly coat.", + "In this image, a Curly-coated Retriever is standing in a field of tall grass.", + "One image of a Curly-coated Retriever from the internet shows a dog with a curly, brown coat standing on a dock next to a lake.", + "A friendly Curly-coated Retriever greets a passerby.", + "A daring Curly-coated Retriever jumps into a rushing river to catch a fish.", + "This is a Curly-coated Retriever, a breed of gun dog.", + "This is a Curly-coated Retriever, a type of gun dog bred for retrieving game birds.", + "This Curly-coated Retriever is waiting patiently for its next fetching assignment.", + "Curly-coated Retriever looking alert while sitting on grass.", + "A beautiful brown and white Curly-coated Retriever plays fetch with a tennis ball on a sunny day.", + "A nine-week-old Curly-coated Retriever pup enjoying a sunny day.", + "A curly-coated retriever sits in a field, looking towards the camera.", + "A black Curly-coated Retriever standing in a field." + ], + "Golden Retriever": [ + "A Golden Retriever is a large, slightly wavy-haired dog with a golden coat.", + "A Golden Retriever is a large and muscular breed of dog with a thick, water-repellant coat that is typically either golden or cream in color.", + "The coat of a Golden Retriever is dense and waterproof, with a thick undercoat.", + "A Golden Retriever is a medium-sized, athletically built dog with a coat of dense, water-repellant outer hair and a softer undercoat.", + "A Golden Retriever is a type of dog that is usually golden in color.", + "A Golden Retriever is a domesticated dog that was originally bred in Scotland.", + "A Golden Retriever is a breed of dog typically characterized by a thick, long coat of gold or cream fur, a moderate tail, and a strong body.", + "A Golden Retriever is a medium-sized dog with a thick, water-repellant coat that is usually Golden-colored.", + "A Golden Retriever is a medium-sized, muscular dog with a dense, water-repellant outer coat and a soft, downy undercoat.", + "A Golden Retriever is a medium-sized dog with a large, square head, a wide muzzle, and a long, scissors bite.", + "A Golden Retriever is a type of dog that is usually golden in color.", + "The most common way to identify a Golden Retriever is by its coat color.", + "A Golden Retriever is a dog that is most commonly yellow or gold in color.", + "Golden Retrievers are easily recognizable by their long, shiny gold fur.", + "You can identify a Golden Retriever by its coat, which is thick and golden in color.", + "Typically, Golden Retrievers have a dense, water-repellant outer coat with a soft, thick undercoat.", + "A Golden Retriever has a long, water-resistant coat that is usually golden in color.", + "There are a few ways to identify a Golden Retriever.", + "Golden Retrievers have a long, thick coat that is typically gold in color.", + "A Golden Retriever has a long, thick coat that is usually golden in color.", + "A Golden Retriever has a long, thick, waterproof coat that is usually either light golden or dark golden in color.", + "A Golden Retriever is a medium- to large-sized breed of dog.", + "Golden Retrievers have a thick coat of blonde or golden fur.", + "A golden retriever is a breed of retriever-gun dog.", + "Golden Retrievers are large dogs with long, floppy ears, a long snout, and a thick, furry coat that is usually golden in color.", + "A Golden Retriever is a medium to large sized dog with a sturdy build.", + "A Golden Retriever typically has a long, thick coat that is gold in color.", + "A Golden Retriever typically has a thick, soft, water-resistant coat that is yellow or light gold in color, a moderate stop (point at which the muzzle meets the forehead), and a strong tail that tapers to a point.", + "A Golden Retriever looks like a large, friendly, shaggy dog with a long tail and big, floppy ears.", + "Golden Retrievers are large dogs with long, thick, golden fur.", + "A Golden Retriever is an image of a cute, bushy-haired dog with a friendly face.", + "In the image, the Golden Retriever is standing on a grassy field with its head turned to the side.", + "The image is of a Golden Retriever standing in a field of tall grass.", + "The image from the internet is of a golden retriever.", + "The image is of a golden retriever standing in a field of tall grass.", + "A Golden Retriever is a breed of dog that is typically characterized by its long, thick fur that is often golden in color.", + "A golden retriever lies on its back in tall grass, its head tilted back and tongue lolling out of its mouth.", + "In the image, the Golden Retriever is standing on a grassy hill with trees in the background.", + "An image of a Golden Retriever from the internet shows a dog with a long, soft, and golden-colored coat.", + "The image is of a golden retriever standing in a green field with the sun shining down on it.", + " A golden retriever stares intently at the camera, his tail wagging lazily from side to side.", + "A dog looks out the window.", + "Golden Retriever Puppy.", + "This is a picture of a Golden Retriever.", + "This is a golden Retriever.", + "This little cutie is a Golden Retriever, one of the most popular dog breeds in the United States.", + "This golden retriever is so cute!.", + "This golden retriever is so cute and cuddly!.", + "This is a beautiful golden retriever.", + "This is my dog Lulu." + ], + "Labrador Retriever": [ + "A Labrador Retriever is a medium-sized, well-muscled dog with a short, thick coat that can be black, yellow, or chocolate brown.", + "A Labrador Retriever is a medium-sized dog with a short, thick coat that is either black, yellow, or chocolate brown.", + "A Labrador Retriever is a medium-sized dog with a short, thick coat that is either black, brown, or yellow.", + "A Labrador Retriever is a medium to large sized dog with a strong build.", + "A Labrador Retriever is a type of dog that is typically medium to large in size.", + "Labrador Retrievers are one of the most popular breeds of dogs in the United States.", + "A Labrador Retriever is a medium-sized, well-built dog with a short, dense, water-resistant coat and a bright, friendly expression.", + "Labradors are one of the most popular dog breeds in the world and they are easily recognizable.", + "A Labrador Retriever typically has a short, thick coat that is yellow, black, or chocolate brown.", + "A Labrador Retriever is a type of dog that is typically golden-colored or black.", + "Labrador Retrievers can be identified by their short, dense, waterproof coats in colors of black, yellow, or chocolate; their webbed toes; and their otter-like tails.", + "There are a few physical traits that are common in Labrador Retrievers which can be used to identify them.", + " liver-colored or yellow coat, webbed feet, and a \" tail.", + "There are a few ways to identify a Labrador Retriever.", + "A Labrador Retriever may be identified by its short, thick coat which is often black, yellow, or chocolate brown; by its muscular build; by its \"otter tail\"; or by its keen, friendly expression.", + "Labrador Retrievers are a type of dog.", + "A Labrador Retriever is a type of dog.", + "There are a few ways to identify a Labrador Retriever.", + "Labradors are one of the most popular dog breeds and are easily recognized by their short, stocky build and thick tail.", + "Labrador Retrievers are usually black, brown, or yellow, and they have a short, dense coat.", + "Labrador Retrievers are medium-sized dogs with a short, dense coat that can be black, yellow, or chocolate brown.", + "A Labrador Retriever typically has a short, thick, black or chocolate-colored coat and a \"otter\" tail.", + "Labrador Retrievers are a medium to large sized breed of dog.", + "A black Labrador Retriever looks like a working dog breed.", + "A typical Labrador Retriever is a medium-sized breed that is solidly built with a short, thick coat that is usually black, chocolate, or yellow.", + "A typical Labrador Retriever is a medium to large sized dog with a muscular build.", + "A Labrador Retriever is a short-haired dog with a thick coat that is usually black, brown, or yellow.", + "A Labrador Retriever is a medium-sized dog with a strong build.", + "A typical Labrador Retriever is a medium-sized, muscular dog with a short, thick coat.", + "A Labrador Retriever has a short, thick coat that is either black, yellow, or chocolate brown.", + "The image is of a Labrador Retriever standing in a grassy field.", + "The image is of a black Labrador Retriever standing in front of a white picket fence.", + "The image is of a chocolate Labrador Retriever.", + "I found an image of a chocolate Labrador Retriever.", + "This image shows a black Labrador Retriever standing in a grassy field.", + "In the image, the Labrador Retriever is standing on a green lawn with trees in the background.", + "A black Labrador Retriever is running through a forest, with a stick in its mouth.", + "Cute golden retriever puppy laying on a white pillow with its head tilted to the side.", + "I found an image of a Labrador Retriever on the internet.", + "This image is of a chocolate Labrador Retriever.", + "This is a picture of a Labrador Retriever.", + "This is a Labrador Retriever.", + "This is my loyal companion, Max.", + "A black Labrador Retriever dog bounding through a field of tall grass.", + "Puppy dog eyes.", + "This is Jasper, my loyal Labrador Retriever.", + " \"A loyal friend always by your side.", + "This is a picture of a Labrador Retriever.", + "This is a Labrador Retriever.", + "This is a picture of a Labrador Retriever." + ], + "Chesapeake Bay Retriever": [ + "A Chesapeake Bay Retriever is a large, powerful dog with a thick, water-resistant coat.", + "A Chesapeake Bay Retriever is a type of dog that is used for retrieving ducks.", + "The Chesapeake Bay Retriever is a large, strong dog with a thick, water-repellent coat.", + "A Chesapeake Bay Retriever has a well-proportioned, muscular body with a broad head and slightly rounded skull.", + "The Chesapeake Bay Retriever is a sturdy, medium-sized dog with a short, thick, oily coat that is waterproof and helps protect the dog from the cold waters of the Chesapeake Bay.", + "Chesapeake Bay Retrievers are large, strongly built dogs with a thick coat of oily, wavy fur that repels both water and cold.", + "A Chesapeake Bay Retriever is a large dog that is often used for hunting.", + "A Chesapeake Bay Retriever is a large, muscular dog with a thick, water-resistant coat.", + "A Chesapeake Bay Retriever typically has a wavy coat of brown, sedge, or deadgrass color.", + "The Chesapeake Bay Retriever is a large breed of dog, weighing anywhere from 55 to 80 pounds.", + "The Chesapeake Bay Retriever is a typically large and powerfully built dog.", + "Chesapeake Bay Retrievers are large, strong dogs with a dense, wavy coat.", + "Chesapeake Bay Retrievers are large, strong dogs with a water-repellent coat.", + "A Chesapeake Bay Retriever typically has a wavy, thick coat that is brown, sedge, or deadgrass in color.", + "There are a few ways to identify a Chesapeake Bay Retriever, the most common being its coat.", + "There are a few physical traits that can help identify a Chesapeake Bay Retriever.", + "The Chesapeake Bay Retriever is a large, powerful dog with a water-resistant coat that is strong and thick.", + "A Chesapeake Bay Retriever is a large, muscular dog with a broad head and strong jaw.", + "To identify a Chesapeake Bay Retriever, look for a dog with a sturdy, athletic build; a large, broad head; and a thick, oily coat that is typically brown or tan in color.", + "There are a few characteristics that can help identify a Chesapeake Bay Retriever.", + "A Chesapeake Bay Retriever looks like a large, muscular dog with a soft, wavy coat.", + "Chesapeake Bay Retrievers have a thick and oily coat that is medium-length and can range in color from deadgrass to brown.", + "A Chesapeake Bay Retriever typically has a coat that is curly or wavy, and is often brown or sedge in color.", + "The Chesapeake Bay Retriever is a large, powerfully built dog.", + "Some notable physical characteristics of the Chesapeake Bay Retriever include a thick, water-resistant coat; a large, powerful head; and a broad chest.", + "Chesapeake Bay Retrievers are muscular dogs with a thick, oily coat that repels water.", + "A Chesapeake Bay Retriever is a large, muscular dog with a thick, oily coat that is typically brown or brown and white in color.", + "The Chesapeake Bay Retriever is a large and powerfully built dog, with a short, thick coat that is usually brown or deadgrass in color.", + "The Chesapeake Bay Retriever is a mid-sized breed of dog.", + "The Chesapeake Bay Retriever is a large, well-built dog that is distinguished by its short, thick coat.", + "An image of a Chesapeake Bay Retriever from the internet might show the dog breed's characteristic brown or sedge color coat.", + "The image is of a solid brown dog swimming through a body of water.", + "A Chesapeake Bay Retriever image from the internet is likely to show a dog with a thick, wavy coat, either in shades of brown or reddish brown.", + "This image shows a large, brown and black dog with a thick coat of fur.", + "This image from the internet is of a Chesapeake Bay Retriever.", + "The image is of a Chesapeake Bay Retriever standing in water with a green ball in its mouth.", + "The image is of an orange and white Chesapeake Bay Retriever.", + "A Chesapeake Bay Retriever stands on a dock, looking out at the water.", + "This image is of a Chesapeake Bay Retriever sitting on a dock.", + "In the image, the Chesapeake Bay Retriever is standing on a dock, with water rippling around it.", + "This loyal dog is always ready to play fetch.", + "This is a Chesapeake Bay Retriever, a type of American water dog.", + " a wounderful dogThis is a wonderful dog breed that is great for families.", + "My favorite dog breed, the Chesapeake Bay Retriever!.", + "A Chesapeake Bay Retriever retrieves a stick from the water.", + "A Chesapeake Bay Retriever looks out over the bay.", + " A Chesapeake Bay Retriever retrieving a duckA tail wagging retriever is always a welcome sight when out in the field hunting waterfowl.", + "A Chesapeake Bay Retriever on a beach.", + "A Chesapeake Bay Retriever is known for being an excellent hunting dog.", + "This is a Chesapeake Bay Retriever, a popular breed of dog in the United States." + ], + "German Shorthaired Pointer": [ + "The German Shorthaired Pointer is a medium to large sized dog with a strong, athletic build.", + "The German Shorthaired Pointer is a medium to large sized breed of dog.", + "A German Shorthaired Pointer is a breed of dog that is typically lean and athletic in build, with a short coat that is either liver-colored or black in color with white markings.", + "The German Shorthaired Pointer is a medium-sized, solidly built dog with a short, liver and white-patterned coat.", + "The German Shorthaired Pointer is a medium to large sized dog with a muscular and athletic build.", + "A German Shorthaired Pointer is a medium to large sized breed of dog.", + "A German Shorthaired Pointer is a medium to large sized dog with a slim, athletic build.", + "A German Shorthaired Pointer is a medium to large sized dog with a short, dense coat.", + "Most German Shorthaired Pointers are a tricolor dog, meaning they have three colors: black, white, and liver-colored brown.", + "A German Shorthaired Pointer is a medium-sized dog with a muscular, athletic build.", + "A German Shorthaired Pointer is a medium to large sized dog with a muscular body.", + "The German Shorthaired Pointer has a short and stiff coat that is usually liver and white or black and white in color.", + "The German Shorthaired Pointer has a short, dense coat that is predominantly liver and white in color.", + "The German Shorthaired Pointer is a dog breed that is easily identifiable by its short, sleek coat and its hunting skills.", + "The German Shorthaired Pointer is a medium to large sized dog with a muscular build.", + "Some key features to look for when trying to identify a German Shorthaired Pointer are their athletic build, short coat, and webbed feet.", + "The German Shorthaired Pointer is a medium to large sized dog with a muscular build.", + "The German Shorthaired Pointer is a medium to large sized dog with a distinctive short, smooth coat.", + "The German Shorthaired Pointer is a hunting dog with a short, sleek coat.", + "German Shorthaired Pointers are a solid-colored breed with a short, slick coat.", + "A German Shorthaired Pointer has a smooth, short coat that is typically liver and white in color.", + "A German Shorthaired Pointer is a type of hunting dog that is bred for its short, smooth coat.", + "A German Shorthaired Pointer has a short, smooth coat that is mostly brown or liver-colored with white spots.", + "A German Shorthaired Pointer is a medium to large sized dog with a muscular build.", + "A German Shorthaired Pointer is a hunting dog with a short, dense coat that is liver and white in color.", + "A German shorthaired pointer has a short, uniformly brown or black coat.", + "A German Shorthaired Pointer has a short, smooth coat that is usually liver and white in color.", + "The German Shorthaired Pointer is a versatile hunting dog that is medium to large in size.", + "German Shorthaired Pointers have a short, smooth coat that is usually liver-colored or black with white markings.", + "A German Shorthaired Pointer has a short, smooth coat that is typically liver and white in color.", + "The image is of a German Shorthaired Pointer standing in a field.", + "The image is of a brown and white German Shorthaired Pointer dog with its tongue hanging out.", + "Image shows a German Shorthaired Pointer standing in a field with long grass.", + "In the image, the German Shorthaired Pointer is a brown and white dog with its tongue hanging out.", + "An image of a German Shorthaired Pointer from the internet shows a dog with short, brown fur and pointed ears.", + "In the image, the German Shorthaired Pointer is alert and attentive, with its ears perked up and its head held high.", + "The image is of a German Shorthaired Pointer standing in a field.", + "The image is of a medium-sized brown and white dog with pointy ears.", + "The image is of a German Shorthaired Pointer standing in a field.", + "The image shows a German Shorthaired Pointer standing in a field with long grass.", + "\nThis dog is a German Shorthaired Pointer, a versatile hunting dog breed that is popular in Germany and the United States.", + " German Shorthaired Pointer playing fetch.", + " This German Shorthaired Pointer is ready to go on a hike!.", + "This is a German Shorthaired Pointer, a hunting dog bred for versatility and athleticism.", + "The German Shorthaired Pointer is a versatile hunting dog, bred for both energy and stamina.", + "This is a German Shorthaired Pointer.", + "A German Shorthaired Pointer stares off into the distance, looking alert and attentive.", + "This is a German Shorthaired Pointer, a versatile hunting dog breed that is often used for bird hunting.", + "The German Shorthaired Pointer is a versatile hunting dog, used for tracking, pointing, and retrieving game.", + "A German Shorthaired Pointer looks out over a field." + ], + "Vizsla": [ + "Vizslas are intelligent, trainable, and energetic dogs that make great companions.", + "A Vizsla is a dog breed that is medium in size, with a lean body and a short, smooth coat.", + "A Vizsla is typically a short-haired, brown-eyed breed of dog.", + "There is no one definitive answer to this question, as Vizslas can vary somewhat in appearance.", + "A Vizsla is a Hungarian gun dog.", + "A Vizsla is a breed of dog that is usually red, brown, or golden in color.", + "A Vizsla is a type of hunting dog that originates from Hungary.", + "A Vizsla is a breed of dog that is medium-sized with a lean, muscular build.", + "A Vizsla is a breed of dog that originates from Hungary.", + "The Vizsla is a medium size, short coat, sporting dog.", + "Vizslas are usually red or rust-colored with a lighter shade on their underbellies.", + "The Vizsla is a breed of dog that is easily identified by its short, reddish-gold coat and its slender, athletic build.", + "The most distinguishing feature of a Vizsla is their short, smooth coat which is Golden Rust in color.", + "A Vizsla is a Hungarian hunting dog.", + "There are a few ways to identify a Vizsla.", + "There are a few ways to identify a Vizsla.", + "A Vizsla is a red or golden brown Hungarian pointer dog.", + "A Vizsla is a Hungarian hunting dog that is usually red or golden in color.", + "A Vizsla is a red-brown Hungarian pointer dog.", + "One way to identify a Vizsla is by its sleek, reddish-brown coat.", + "Vizslas are closely related to Weimaraners and have a similar appearance.", + "A Vizsla is a Hungarian hunting dog that typically has a golden rust coat and a lean, muscular body.", + "A Vizsla is a short-haired, red-brown hunting dog.", + "The Vizsla is a medium-sized dog with a lean, muscular build.", + "Vizslas are elegant, medium sized dogs with a short, sleek coat.", + "A Vizsla is a medium-sized flood dog with a short, dense coat that can be red, golden brown, or yellow.", + "The Vizsla is a short-haired, solid-colored breed of dog.", + "A Vizsla is a dog breed that is medium sized with a slim build.", + "A Vizsla is a medium-sized, short-coated hunting dog with a distinctive golden rust color.", + "Vizslas are lean, muscular dogs with a short, smooth coat that is usually reddish-brown or golden in color.", + "Image 1: A Vizsla dog standing on a dock, looking at the camera with its head tilted to the sideImage 2: A close-up of a Vizsla dog's face, showing its big brown eyes and.", + "This image shows a Vizsla dog breed.", + "This image from the internet is of a Vizsla dog.", + "A Vizsla is a type of dog that is reddish brown in color and has a short, smooth coat.", + "An image from the internet of a Vizsla may show a dog with a reddish-brown coat, cropped ears, and a docked tail.", + "This image shows a Vizsla standing on a hill with long grass and trees in the background.", + "The image is of a Vizsla dog standing in a grassy field.", + "This image is of a Vizsla standing in a field with tall grass.", + "This image is of a Vizsla dog standing in a field of tall grass.", + "This is an image of a Vizsla from the internet.", + "This is a Vizsla, a Hungarian pointer known for being an excellent hunting dog.", + " Vizsla Puppy.", + "Our Vizsla, Mia, loves to play outside!.", + "This Vizsla is waiting for his owner to return.", + " Vizsla on the huntThis Vizsla is on the hunt for prey.", + " Vizsla Puppy Playing fetch.", + " \"Vizsla dog waiting for a treat.", + " Vizsla looking out windowThis Vizsla is looking out the window, possibly waiting for someone to come home.", + "This Vizsla is waiting patiently for a treat!.", + " Portrait of a Vizsla." + ], + "English Setter": [ + "An English Setter is a gundog bred primarily for game bird hunting.", + "An English setter is a medium sized dog with long, silky fur.", + "An English Setter looks like a large, muscular dog with a long, silky coat.", + "A typical English Setter is a medium to large sized dog with long, silky fur.", + "An English Setter is a dog breed characterized by its long silky coat.", + "An English Setter looks like a large dog with long, silky fur.", + "An English Setter is a dogs breed that is often used for hunting.", + "An English Setter is a large breed of dog with long, silky fur.", + "English setters are long-haired dogs with a silky coat that is white with large patches of black, liver, or blue.", + "An English setter has a long, silky coat that can be white with black or liver-colored spots, or all black or liver.", + "An English Setter has a long coat that is white with large black spots.", + "An English Setter is a dog that was bred in England for hunting birds.", + "An English Setter is a breed of dog.", + "An English setter is a breed of bird dogs.", + "An English Setter is a type of dog.", + "An English Setter is a medium-sized dog with a long coat.", + "An English Setter is a medium sized dog with a silky coat that is mostly white with large patches of black, brown, or blue.", + "An English Setters is a very specific breed of dog, and as such can be identified by its breed characteristics.", + "English setters are large dogs with long, silky fur.", + "The best way to identify an English Setter is by its typical hunting stance.", + "An English Setter looks like a dog.", + "The English Setter is a medium sized dog with a long, silky coat.", + "An English Setter is a medium sized dog with a long, silky coat.", + "The English Setter is a dog breed with a long, flat head, long ears, and a long, narrow body.", + "An English Setter is a medium to large sized bird dog with a long, narrow head and a dense, silky coat that is white with large black or liver spots.", + "An English Setter is a medium sized dog with long feathery fur.", + "An English Setter has a long, silky coat that is white with black or liver-colored spots.", + "An English Setter is a sheep dog that has a long, silky coat.", + "An English Setter looks like a large dog with long, silky fur.", + "An English Setter has a long, silky coat with feathers on the legs and tail.", + "The image is of a brown and white English Setter standing in a grassy field.", + "An English Setter is a medium to large sized dog with a long, silky coat.", + "The image is of a brown and white English Setter standing in a field with tall grass.", + "This image is of an English Setter standing in a field with long, wavy, golden brown fur.", + "This image is of an English Setter standing in a field.", + "An English Setter is a type of gun dog typically used for bird hunting.", + "The image shows an English Setter dog with brown, white, and black markings.", + "This image is of an English Setter standing in a forest.", + "An English Setter is a type of hunting dog with a long, silky coat.", + "The image is of a brown and white English Setter standing in a grassy field.", + "This is an English Setter.", + "This English Setter is waiting patiently for a bird to come into range.", + "This is an English Setter.", + "An English Setter in a field of tall grass, looking back at the camera.", + "An English Setter stands in a field, looking alert and ready to run.", + "This is an English Setter, a popular breed of gun dog.", + "This English Setter is ready to go for a walk!.", + " English Setter playing fetch.", + " English Setter waiting patiently for a bird to flush.", + " \"The English Setter is a beautiful breed of dog that is known for its distinctive coat." + ], + "Irish Setter": [ + "An Irish Setter is a medium-sized dog with a long, arched back and a tail that hangs down to the hock.", + "The Irish Setter is a medium-sized dog with long, wavy red fur.", + "An Irish Setter is a red, medium-sized dog.", + "An Irish Setter is a red and white breed of dog.", + "The Irish Setter is a impressively large dog, with a muscular build and long, powerful legs.", + "The Irish Setter is a medium to large sized dog with a thick, glossy coat that is typically red in color.", + "The Irish Setter is a red, medium-sized gun dog.", + "An Irish setter's coat is red and generally medium length.", + "An Irish Setter is a red-colored dog breed.", + "An Irish Setter is a red or golden-red dog with a long coat.", + "The Irish Setter is a breed of dog.", + "There are several ways to identify an Irish Setter.", + " Irish Setters can be identified by their red fur and long tails.", + "The most recognizable feature of the Irish Setter is its long, red coat.", + "An Irish Setter is a medium to large sized dog with a long red coat.", + "An Irish Setter is a red or auburn colored setter.", + "Generally, Irish Setters are red, though they may have some white markings.", + "An Irish Setter is a dog with a red fur coat.", + "The coat of an Irish Setter is a red color.", + "The Irish Setter is a dog breed with red fur.", + "An Irish Setter looks like a large, red dog with long ears and a bushy tail.", + "An Irish Setter is a large dog with a long, silky red coat.", + "Irish setters are dogs with long, red coats.", + "An Irish Setter is a large breed of dog with a long, narrow head and long, floppy ears.", + "The Irish Setter is a medium to large sized dog with a long, silky coat.", + "An Irish Setter is a large, red-haired gun dog.", + "The Irish Setter is a medium to large sized dog.", + "An Irish Setter is a medium to large size dog.", + "See the link below.", + " Irish Setters have a long coat of red hair and are considered one of the most beautiful dog breeds.", + "The image is of an Irish Setter standing in a field with long red hair and a black nose.", + "I found an image of an Irish Setter on the internet that is a beautiful red color.", + "In the image, an Irish Setter is standing in a field of tall grass.", + "A photo of an Irish Setter from the internet shows a medium-sized, red-coated dog with a long tail and floppy ears.", + "An image from the internet of an Irish Setter may show a red or golden colored dog with long, floppy ears and a silky coat.", + "This image is of an Irish Setter.", + "The image shows an Irish Setter dog with red fur.", + "An image of an Irish Setter from the internet shows a red-colored dog with long hair.", + "An image of an Irish Setter from the internet shows a large, red-haired dog with long ears and a long tail.", + "I cannot do that.", + "This is an Irish Setter.", + "\"I'm not a lapdog, but I'll still give you all the love you need.", + "This Irish Setter is waiting patiently for his next meal.", + "\"Best in Show\"This Irish Setter is a real head-turner with his striking red coat and regal bearing.", + "This handsome pup is an Irish Setter, a popular breed of dog known for its friendly and outgoing personality.", + "A beautiful Irish Setter stands in a field of tall grass, looking alert and ready to run.", + "\"This is my dog, named Jack.", + "Irish Setter relaxing in the grass.", + "Bloomington, Illinois 1956.", + "This dog is an Irish Setter." + ], + "Gordon Setter": [ + "A Gordon Setter is a medium sized breed of dog that is black with Mahogany markings.", + "A Gordon Setter is a type of hunting dog.", + "A Gordon Setter is a heavy-boned, large dog with a soft, silky black and tan coat.", + "A Gordon Setter has black fur with tan markings on their face, chest, and legs.", + "A Gordon Setter is a large, elegant-looking dog with long, sloping lines.", + "The Gordon Setter is a large, deep chested dog.", + "A Gordon Setter is a medium-sized, black and tan setter.", + "A Gordon Setter is a black and tan dog breed.", + "A Gordon Setter is a black and tan setter, similar in appearance to an English Setter.", + "A Gordon Setter is a large breed of dog, weighing in at 75-80 pounds on average.", + "Some characteristics of Gordon Setters include their solid black coat with a mahogany marking, expressive eyes, and ears that hang close to their head.", + "A Gordon Setter can be recognized by its long, black coat with tan markings on the face, chest, and legs.", + "The Gordon Setter is a large, robust dog with a long head and muzzle.", + "Gordon Setters are a breed of dog that can be identified by their long, silky coats.", + "A Gordon Setter is a black and tan setter.", + "One way to identify a Gordon Setter is by its coat color.", + "A Gordon Setter is a black and tan (red with black shadows) setter.", + "The Gordon Setter is a large breed of dog that was originally bred in Scotland.", + "A Gordon Setter is a large dog breed with a long, silky coat that is black and tan in color.", + " Gordon Setters have a long, silky coat that is black and tan in color.", + "A Gordon Setter's coat is black with small patches of tan on their eyebrows, cheeks, and legs.", + "A Gordon Setter is a large dog, typically weighing between 50 and 80 pounds.", + "The Gordon Setter is a large sized breed of dog.", + "A Gordon Setter is a large breed of dog, typically weighing between 50 and 80 pounds.", + "The Gordon Setter is a large sporting dog with a muscular build.", + "A Gordon Setter is a large, elegant dog with a black coat and distinctive tan markings on its head, chest, and legs.", + "Gordon Setters are large birds with black, brown, or red plumage.", + "A Gordon Setter is a large, black and tan bird dog.", + "The Gordon Setter is a large, black and tan dog with a thick, wavy coat.", + "A Gordon Setter is a large breed of dog.", + "In the image, a Gordon Setter is standing in a field of grass with its tail wagging.", + "This image is of a Gordon Setter standing in a field of tall grass.", + "In the image, a Gordon Setter is standing in a grassy field.", + "The image is of a Gordon Setter standing in a grassy field.", + "The image shows a brown and black Gordon Setter standing in a grassy field.", + "I found an image of a Gordon Setter on Google Images.", + "In the image, the Gordon Setter is a large, muscular dog with a long, thick coat that is black and tan in color.", + "A Gordon Setter is a large dog with a long black coat.", + "One image of a Gordon Setter from the internet shows a medium-sized, well-built dog with a long, silky coat of black and tan colors.", + "A Gordon Setter is a large, black and tan hunting dog.", + "Image of a Gordon Setter dog.", + "A Gordon Setter lying on the ground.", + "A Gordon Setter stands alert, looking into the distance.", + " A Gordon Setter laying down and looking at the camera.", + "This is a Gordon Setter, a breed of dog that was originally bred in Scotland for hunting purposes.", + "The Gordon Setter is a breed of dog originating in Scotland.", + "This is a Gordon Setter, a type of hunting dog.", + "This is a Gordon Setter, a breed of hunting dog known for its loyalty, trainability, and eagerness to please.", + "A Gordon Setter standing in a field of tall grass.", + "This is a Gordon Setter, a breed of Scottish hunting dogs." + ], + "Brittany dog": [ + "A Brittany dog looks like a small, slim dog with a long, tapered head.", + "A Brittany dog is a small, compact dog with erect ears and a long, straight tail.", + "A Brittany dog typically weighs between 30 and 40 pounds and is about 18 to 21 inches tall at the shoulder.", + "A Brittany dog is a small, stylish dog with a long tail that is often carried over the back.", + "A Brittany dog has a long, pointy nose and floppy ears.", + "A Brittany dog has a short, stocky build with long legs.", + "A Brittany dog is a small to medium sized dog with a short, dense coat.", + "A Brittany dog has a long, straight muzzle, and a square-shaped head.", + "A Brittany dog is a small, brown and white spaniel-type dog.", + "A Brittany dog is a small, compact breed of spaniel.", + "There are a few ways to identify a Brittany dog.", + "Breed standards for the Brittany dog vary depending on the kennel club, but most kennel clubs agree that the Brittany is a medium-sized dog with a square build.", + "The breed standard for a Brittany dog states that they should be 28-40 pounds and 18-21 inches tall at the shoulder.", + "There are several ways to identify a Brittany dog.", + "A Brittany dog is a medium-sized athleticism dog with a small, triangular head and a long tail.", + "A Brittany is a balanced dog standing 20 to 24 inches at the shoulder and weighing 30 to 40 pounds.", + "The easiest way to identify a Brittany dog is by its coat.", + "The Brittany dog is a small,yle=\"font-size: 16px;\"> energetic breed of dog that is known for its hunting abilities.", + "Some common physical characteristics that may help you identify a Brittany dog are their hunting instincts, high energy, and their love for exploring.", + "A Brittany dog can be identified by its small to medium size, short coat, and long ears.", + "A Brittany dog is a medium-sized, athletic breed of dog.", + "A Brittany dog is a small gundog that is used for hunting.", + "A Brittany dog is a small to medium sized breed of dog.", + "Image result for brittany dogA Brittany dog is a small to medium sized dog with a long head and floppy ears.", + "A Brittany dog is about 18 to 21 inches tall and 25 to 40 pounds.", + "The head of a Brittany dog is triangular in shape.", + "A Brittany dog looks like a small, brown, spaniel-type dog.", + "The Brittany is a compact dog with a long head, pointed ears, and almond-shaped eyes.", + "A Brittany dog is a type of spaniel that is medium-sized and has a short, fine coat.", + "Brittany dogs have pointed ears, long legs, and a long tail.", + "The image is of a dog with long, wavy hair that is mostly white with some orange patches.", + "The image is of a Brittany dog standing in a field of tall grass.", + "This image from the internet shows a Brittany dog with its head down and its ears flopped over.", + "A Brittany dog is a medium-sized, short-coated dog with a long head and neck.", + "This is an image of a Brittany dog from the internet.", + "The image is of a small, brown and white Brittany dog.", + "A Brittany dog is a medium sized dog with a long, straight nose.", + "The image is of a small, compact dog with a short, smooth coat.", + "A Brittany dog is a small, orange and white dog with pointy ears and a long tail.", + "The image shows a small, brown and white dog with pointy ears.", + "\"Boo\" the Brittany dog enjoying a sunny day in the park.", + "This is a Brittany dog.", + "This is a Brittany dog.", + "This dog is a Brittany dog, a type of French hunting dog.", + "A Brittany dog stands in a field of tall grass, looking towards the camera.", + "This is a picture of my Brittany dog, Scout.", + "\"This is my dog, Molly.", + "Brittany dogs are known for their high energy and loyalty.", + "This is a picture of a Brittany dog.", + "This is a picture of a Brittany dog." + ], + "Clumber Spaniel": [ + "A Clumber Spaniel is a domesticated dog of the spaniel breed.", + "A Clumber Spaniel is a large, thick-set dog with a domed head and a long, low-hanging tail.", + "A Clumber Spaniel is a large breed of dog, weighing anywhere from 55 to 85 pounds.", + "A Clumber Spaniel is a working breed of dog that was developed in England in the early 1800s.", + "Clumber spaniels are a large breed of dogs that can weigh anywhere from 55 to 85 pounds.", + "A Clumber Spaniel is a large, heavily built Spaniel with a long, low-set body, short thick legs, and a large head.", + "A Clumber Spaniel is typically a white dog with heavy, drooping earflaps and a long, low-hanging tail.", + "A Clumber Spaniel is a mid-sized Spaniel breeds that is heavy-boned with a long, smooth coat.", + "Clumber Spaniels are a type of spaniel that originated in France.", + "Clumber spaniels are heavy-boned, muscular dogs that are built for endurance.", + "The physical characteristics of a Clumber Spaniel are a broad head, a heavy jaw, drooping eyelids, and a low-set tail.", + "The Clumber Spaniel is a large, thick-set spaniel with a heavy head and a large nose.", + "Clumber Spaniels are large, short-legged dogs with a heavy head and a thick, dense coat.", + "The breed standard for the Clumber Spaniel describes them as being \"heavily built\", with a \"short, thick, impervious coat\", and \"thick skin\".", + "Clumber Spaniels are generally heavy-set with a thick coat, often having a dirty appearance.", + "A Clumber Spaniel is a medium sized breed of dog with a dense, silky coat and protruding eyes.", + "There are several ways to identify a Clumber Spaniel.", + "A Clumber Spaniel is a large breed of dog that is mostly white with liver or orange markings.", + "Clumber spaniels are large dogs with long, low-slung bodies.", + "The Clumber Spaniel is a large breed of dog that is easily recognizable by its hunting gear.", + "A Clumber Spaniel is a large dog that is heavy boned with a broad head.", + "Clumber Spaniels are large, heavy-boned dogs with a thick, flat coat.", + "A Clumber Spaniel is a medium-sized breed of dog with a thick, heavy coat and a large head.", + "A Clumber Spaniel looks like a large, stocky, white spaniel.", + "A Clumber Spaniel is a large, solid-colored spaniel with a white chest and belly.", + "A Clumber Spaniel is a large, heavy-boned dog with a broad head, large eyes, and drooping ears.", + "Clumber Spaniels are large, sturdy dogs with long, thick coats.", + "A Clumber Spaniel is a large breed of Spaniel.", + "A Clumber Spaniel is a large, heavy-boned dog with a white coat and large, drooping ears.", + "A Clumber Spaniel is a large, muscular dog with short, dense fur that is yellow or orange in color.", + "This is a photo of a Clumber Spaniel from the internet.", + "A Clumber Spaniel is a large spaniel breed with a heavy, silky coat.", + "A Clumber Spaniel is a large, heavy-boned breed of dog that is mostly white in color with a few lemon or orange markings.", + "In the image, the Clumber Spaniel is a medium-sized, white dog with a thick, lustrous coat.", + "The image is of a Clumber Spaniel standing in a field.", + "Image shows a Clumber Spaniel standing in a grassy field.", + "This is an image of a Clumber Spaniel from the internet.", + "An image from the internet of a Clumber Spaniel would show a large, white dog with a short coat.", + "I found an image of a Clumber Spaniel on Google Images.", + "I found an image of a Clumber Spaniel on the internet that shows a brown and white dog with floppy ears and a long nose.", + "A beautiful Clumber Spaniel in the snow!.", + "This dog breed is known for being gentle and loving.", + "This is a Clumber Spaniel.", + "A beautiful Clumber Spaniel posing for the camera.", + "This is a Clumber Spaniel, a breed of dog that is known for its friendly and laid-back temperament.", + "A Clumber Spaniel is a large, heavy-set spaniel with a short, thick coat.", + "A clumber spaniel is a popular type of spaniel that is known for its gentle and affectionate nature.", + "\",\"A clumber spaniel is a breed of dog of the spaniel type, developed in the United Kingdom.", + "This is a beautiful Clumber Spaniel.", + "This is a Clumber Spaniel, a breed of dog that was developed in the 19th century in the United Kingdom." + ], + "English Springer Spaniel": [ + "Some English Springer Spaniels have a white and black coat, while others have a brown and white coat.", + "An English Springer Spaniel is a medium to large sized breed of dog.", + "An English Springer Spaniel is a type of dog.", + "An English Springer Spaniel is a dog breed that typically has a sort of wavy, medium-length coat.", + "English Springer Spaniels have a long, silky coat that is either liver and white or black and white.", + "An English Springer Spaniel is a breed of dog that typically has a bi-color coat of black and white, liver and white, or wavy/liver and white.", + "English Springer Spaniels have a sturdy, medium-sized frame and a long, feathered coat.", + "An English Springer Spaniel has a coat that is medium length and is flat or wavy.", + "An English Springer Spaniel is a breed of gun dog typically bred for bird hunting.", + "An English Springer Spaniel is a medium-sized dog with a silky coat of black and white, liver and white, or tri-color.", + "The English Springer Spaniel is a medium-sized dog with a silky coat.", + "The English Springer Spaniel is a breed of dog.", + "One way to identify an English Springer Spaniel is by its coat.", + "An English Springer Spaniel can be identified by its long ears, wedge-shaped head, and its coat, which is typically black and white or liver and white.", + "Some ways you can identify an English Springer Spaniel are by their long ears, friendly face, and lush coat.", + "You can identify an English Springer Spaniel by its long ears, short coat, and friendly demeanor.", + "The most common way to identify an English Springer Spaniel is by its coat.", + "An English Springer Spaniel has a long nose and ears, and a wavy coat.", + "The English Springer Spaniel has long floppy ears and a thick wavy coat.", + "There are a few ways to identify an English Springer Spaniel.", + "An English Springer Spaniel is a medium-sized dog with a sleek, muscular build.", + "An English Springer Spaniel is a type of hunting dog that typically has a short, compact body and a long head.", + "An English Springer Spaniel is a breed of gun dog in the Spaniel family traditionally used for flushing and retrieving game birds.", + "English Springer Spaniels are medium-sized dogs that have a short, thick coat.", + "An English Springer Spaniel has a long, flat head with a square muzzle.", + "The English Springer Spaniel closely resembles the Welsh Springer Spaniel, although it is slightly larger in size.", + "An English Springer Spaniel is a medium-sized breed of dog.", + "An English Springer Spaniel is a medium sized dog with a long nose and floppy ears.", + " An English Springer Spaniel is a type of dog.", + "An English Springer Spaniel has a long head with a moderate stop, a long nose, and long, low-hanging ears.", + "The image is of a black and white English Springer Spaniel.", + "This image is of a black and white English Springer Spaniel.", + "The image is of a light brown and white English Springer Spaniel with its tongue hanging out.", + "The image is of a black and white English Springer Spaniel with its head and ears perked up.", + "I found an image on the internet of an English Springer Spaniel that I thought was really cute.", + "The image is of a brown and white English Springer Spaniel standing in a field of tall grass.", + "The English Springer Spaniel is a medium-sized dog with a sturdy, compact body.", + "In the image, an English Springer Spaniel is sitting on a wooden deck, looking at the camera with its head tilted to the side.", + "The image is of an English Springer Spaniel standing in a field of tall grass.", + "This image from the internet is of an English Springer Spaniel.", + "This is an English Springer Spaniel.", + "This is an English Springer Spaniel.", + "This sweet pup is an English Springer Spaniel.", + "This English Springer Spaniel is ready to play fetch!.", + "This is an English Springer Spaniel.", + " \"An English Springer Spaniel on a leash.", + "An English Springer Spaniel puppy playing with a toy.", + "This is an English Springer Spaniel.", + "This is Ollie, my English Springer Spaniel.", + "This is an English Springer Spaniel." + ], + "Welsh Springer Spaniel": [ + "The Welsh Springer Spaniel is a large breed of dog, weighing anywhere from 30 to 50 pounds.", + "A Welsh Springer Spaniel is a medium-sized, muscular dog with a thick, silky coat of reddish-brown and white fur.", + "Welsh Springer Spaniels are a medium sized breed of dog.", + "The Welsh Springer Spaniel is a member of the spaniel family.", + "The Welsh Springer Spaniel is a sturdily built dog with a short back and long, floppy ears.", + "A Welsh Springer Spaniel is a medium sized breed of dog.", + "A welsh springer spaniel has a compact body and a thick, moderately long coat.", + "A Welsh Springer Spaniel is a large, gentle breed of dog.", + "A Welsh Springer Spaniel has a short, silky coat that is red and white in color.", + "A Welsh Springer Spaniel has a medium-length coat that is reddish-brown and white in color.", + "The Welsh Springer Spaniel is a breed of dog and one of the oldest breeds of spaniel.", + "There are a few ways to identify a Welsh Springer Spaniel.", + "There are a few ways to identify a Welsh Springer Spaniel.", + "A Welsh Springer Spaniel can be identified by its long, silky ears; its dense, wavy coat; and its docked tail.", + "The Welsh Springer Spaniel is a medium-sized, sturdily built Spaniel with a rather flat head, a docked tail, and a coat that is red and white in color.", + "A Welsh Springer Spaniel can be identified by its medium-sized, compact body; its short, dense coat; and its distinctive head, which is characterized by long ears, a wide skull, and a square muzzle.", + "The Welsh Springer Spaniel is a large breed of dog.", + "The Welsh Springer Spaniel has a squarely built body with a broad head, floppy ears, and a silky coat that is most often red and white in color.", + "A Welsh Springer Spaniel has a red and white coat, and is a medium sized dog.", + "A Welsh Springer Spaniel has a short, compact body with a slightly domed head.", + "A Welsh Springer Spaniel looks like a medium-sized dog with a ropy build.", + "39\u201341 cm (15\u201316 in) at the withers, weigh 18\u201320 kg (40\u201344 lb), coat is red and white, or liver and white.", + "A Welsh Springer Spaniel looks like a medium sized dog with a tricolored coat.", + "The Welsh springer spaniel has a long, silky coat that is red and white in color.", + "Welsh Springer Spaniels are typically red and white in color, with a long, silky coat.", + "The Welsh Springer Spaniel looks like a medium sized, muscular dog with a long coat of reddish-brown and white fur.", + "A Welsh Springer Spaniel looks like a small to medium sized dog with a long coat.", + "Welsh Springer Spaniels are solidly built, medium-sized dogs.", + "A Welsh Springer Spaniel is a reddish-brown, short-coated dog.", + "A Welsh Springer Spaniel has a red and white coat, and a long tail.", + "In the image, the Welsh Springer Spaniel is standing in a field of tall grass.", + "According to Google Images, a Welsh Springer Spaniel is \"a breed of dog and one of the oldest of the spaniel family.", + "The image is of a brown and white Welsh Springer Spaniel with long ears and a short coat.", + "This Welsh Springer Spaniel is standing in front of a green background.", + "The image is of a golden-colored Welsh Springer Spaniel standing in a green field with flowers.", + "I found an image of a Welsh Springer Spaniel on the internet that I think is really cute.", + "The image is of a Welsh Springer Spaniel standing in a green field with a blue sky in the background.", + "An image from the internet of a Welsh Springer Spaniel may show the dog standing in a field with long grass, or running through a meadow.", + "In the image, the Welsh Springer Spaniel is standing on a green grassy hill with a big blue sky behind him.", + "This image is of a Welsh Springer Spaniel standing in a grassy field.", + "This is my Welsh Springer Spaniel, named Piper.", + "This is Lila, my Welsh Springer Spaniel.", + "This is a Welsh Springer Spaniel.", + "A Welsh Springer Spaniel playing fetch with a stick.", + "This Welsh Springer Spaniel is ready for a day of play!.", + "This is Jasper, my Welsh Springer Spaniel.", + "A Welsh Springer Spaniel retriever looks on as a duck swims by.", + "A cute Welsh Springer Spaniel puppy looking out the window.", + "Gus, the Welsh Springer Spaniel, loves a good game of fetch.", + "This is Owen, our Welsh Springer Spaniel." + ], + "Cocker Spaniel": [ + "A Cocker Spaniel typically has a long, silky coat that is either black, liver, red, or blond.", + "A Cocker Spaniel is a medium-sized dog with long, floppy ears and a silky coat.", + "Cocker spaniels have long, floppy ears and a long, silky coat.", + "Cocker spaniels are small to medium sized dogs with long, floppy ears and a silky coat.", + "A Cocker Spaniel is a medium-sized breed of dog.", + "A Cocker Spaniel is a small to medium sized dog.", + "Males of this breed typically weigh between 24 and 28 pounds, while females weigh between 20 and 26 pounds.", + "A Cocker Spaniel looks like a small dog with a long, silky coat.", + "Cocker spaniels are one of the smaller types of spaniels.", + "A Cocker Spaniel is a small, lovable dog breed that is great for families.", + "Cocker spaniels can be identified by their long, silky ears; large, expressive eyes; and compact, muscular bodies.", + "There are a few ways to identify a Cocker Spaniel.", + "A Cocker Spaniel can be identified by its wavy, silky fur; long, floppy ears; and round, dark eyes.", + "The Cocker Spaniel has a long floppy ears, a silky coat, and a bushy tail.", + "Cocker Spaniels have long ears that hang down, and a soft, silky coat.", + "The Cocker Spaniel is a breed of dog.", + "A Cocker Spaniel can be identified by its long, floppy ears, its silky fur, and its small size.", + "A cocker spaniel can be identified by its long, floppy ears, and its silky fur.", + "Cocker Spaniels are characterized by their long, silky ears, and compact bodies.", + "A Cocker Spaniel has a long, silky coat and distinctive \"feathering\" on the legs and underside.", + "A Cocker Spaniel has a long, silky coat that is usually either black, brown, or golden.", + "A Cocker Spaniel is a small to medium-sized dog.", + "A cocker spaniel is a small to medium sized dog.", + "A Cocker Spaniel is a small to medium sized dog with long, floppy ears, and a silky coat that is usually either brown or black.", + "A Cocker Spaniel is a medium sized dog with long, floppy ears, and a silky coat that is usually either brown or black.", + "A Cocker Spaniel is a small breed of dog that typically has a long, silky coat in a variety of colors and patterns.", + "Cocker Spaniels are small to medium sized dogs with long ears and round heads.", + "Cocker Spaniels have long, silky ears that hang down past their jawline.", + "The Cocker Spaniel has a long, flat head, with droopy ears that hang down to the side of its face.", + "A Cocker Spaniel has a long, black muzzle and big, brown eyes.", + "The image is of a Cocker Spaniel with short, brown fur and long, floppy ears.", + "The image is of a light brown and white Cocker Spaniel standing on a green grassy field with its head turned to the side.", + "An image of a Cocker Spaniel from the internet shows a small brown and white dog with long floppy ears.", + "A Cocker Spaniel is a type of hunting dog that is used to flush out and retrieves game birds.", + "The image is of a brown and white Cocker Spaniel with its head turned to the side.", + "I found an image of a Cocker Spaniel on the internet that I really liked.", + "The image from the internet is of a small, brown and white Cocker Spaniel puppy with its head tilted to the side.", + "This image is of a Cocker Spaniel with brown and white fur.", + "The image is of a small brown and white spaniel with big ears.", + "This image shows a Cocker Spaniel with long, floppy ears, a short snout, and a long, silky coat.", + "This dog looks like it's having the time of its life.", + "Cocker Spaniel dog at the park playing fetch.", + "While their long, floppy ears are undeniably cute, they are also the source of much anxiety for Cocker Spaniels.", + "This is a beautiful Cocker Spaniel.", + "A Cocker Spaniel enjoys a gentle scratching behind the ears.", + " A Cocker Spaniel with its head cocked to one side.", + "This is Simon, our cocker spaniel.", + "A Cocker Spaniel looks on as a cat drinks from a bowl of water.", + "This gorgeous Cocker Spaniel is ready to play fetch!.", + "This is my Cocker Spaniel, Max." + ], + "Sussex Spaniel": [ + "Some Sussex Spaniels have a liver-colored coat, while others have a black coat.", + "This dog breed is a small to medium sized spaniel, with long ears and a droopy face.", + "A Sussex Spaniel is a small, compact dog with a broad head, square muzzle, and large, drooping ears.", + "The Sussex spaniel is a small, compact, trainable gun dog.", + "A Sussex spaniel is a small, compact dog with a flat head and a long, drooping face.", + "A Sussex Spaniel is a breed of dog that is brown and liver colored.", + "The Sussex spaniel is a breed of dog.", + "The Sussex Spaniel is a small, sturdy bird dog with a Golden-Copper coat and large, pendulous ears.", + "The Sussex Spaniel is a small, compact spaniel with a square build.", + "The Sussex Spaniel is a small, stocky dog with large ears that hangs down close to its head.", + " Sussex spaniels are easily identified by their long, low-set ears, deep chests, and droopy lips.", + "The Sussex Spaniel is recognized by its large, brown eyes; thick, reddish-brown coat; andears that hang close to its head.", + "The Sussex spaniel is a small spaniel that is typically liver-colored or brown.", + "A Sussex spaniel has a face that is similar to a hunting dog with a long nose and floppy ears.", + "The most distinguishing feature of the Sussex Spaniel is its \"drops ears,\" which are long and set low on the head.", + "There are a few ways to identify a Sussex spaniel.", + "The most notable feature of the Sussex Spaniel is their long, droopy ears.", + "There is no definitive answer to this question, as each Sussex Spaniel may look slightly different.", + " Sussex Spaniels can be identified by their long, low-set bodies, and by their ears, which are set very low on their heads.", + "The Sussex Spaniel is a small spaniel breed.", + "A Sussex Spaniel is a small, stocky dog with a thick, soft coat.", + "Sussex spaniels have a sturdy, compact build and a long, silky coat that is chestnut in color with a dark brown or black muzzle.", + "A Sussex spaniel is a small, compact, short-legged dog.", + "A Sussex Spaniel is a small, liver-colored spaniel with short, pendulous ears.", + "A Sussex Spaniel is a small- to medium-sized spaniel-type dog.", + "The Sussex Spaniel is a small, compact dog with short legs.", + "The Sussex Spaniel is a small, compact, short-legged dog with a small, broad head.", + "A Sussex spaniel is a small, compact dog with a flat face, large ears, and a coat that is liver-colored or brown with black markings.", + "The Sussex Spaniel is a breed of dog originating in Sussex in southern England.", + "The Sussex Spaniel is a small, sturdy, short-legged dog.", + "One image of a Sussex Spaniel from the internet shows the dog breed with long, floppy ears, a liver-colored coat, and a long, slender nose.", + "The Sussex Spaniel is a small, compact dog with short, thick legs and a long, low body.", + "The image is of a small, brown and white spaniel with long, floppy ears.", + "The image is of a brown and black Sussex Spaniel with floppy ears and a long nose.", + "The Sussex Spaniel is a small, thick-set dog with short legs, a long body and a long head.", + "This image shows a Sussex Spaniel with its head turned to the side.", + "An image of a Sussex Spaniel from the internet shows a medium-sized, short-legged dog with long, floppy ears.", + "The image is of a small, brown and white spaniel with floppy ears.", + "One image of a Sussex Spaniel from the internet shows the dog breed standing in front of a green pasture with a large tree nearby.", + "The image is of a brown and black Sussex Spaniel with long ears and a long snout.", + "A Sussex Spaniel looks out from under a tree.", + "This is a Sussex Spaniel, one of the oldest breeds of dogs in the world.", + "A Sussex Spaniel taking a break in a sunny meadow.", + "The Sussex Spaniel is a small, sturdy dog with a silky, dark golden coat.", + "This beautiful Sussex Spaniel is enjoying a lovely day in the park!.", + "This handsome Sussex Spaniel is looking for his forever home!.", + "Text reads, \"This is my Sussex Spaniel, Tabitha.", + "This sweet Sussex Spaniel is waiting patiently for a walk.", + " A Sussex Spaniel calmly laying in the grass.", + "This is a Sussex Spaniel." + ], + "Irish Water Spaniel": [ + "Irish water spaniels are brown, with a waterproof coat that keeps them dry in the water.", + "The Irish Water Spaniel is a large, shaggy, brown dog.", + "An Irish Water Spaniel is a large, rugged dog with a coat of dark brown curls.", + "An Irish Water Spaniel is a medium-sized, reddish-brown dog with a long, curly coat.", + "The Irish Water Spaniel is a medium-sized, well-proportioned dog with a rectangular head, long face, and large, rounded eyes.", + "The Irish Water Spaniel is a medium-sized dog with a wavy, liver-colored coat.", + "An Irish Water Spaniel looks like a brown, curly-haired dog with a long snout.", + "The Irish Water Spaniel is a rust-colored, medium sized dog with a curly coat.", + "The Irish Water Spaniel is a medium sized dog with a flat, water-repellant coat.", + "An Irish Water Spaniel is a jet black, curly-coated hunting dog.", + "The FCI breed standard describes the Irish Water Spaniel as follows: \"A very sturdy, well-balanced dog, slightly longer than it is tall, with a dense, crisp curl.", + "This breed is easily recognizable by its distinctive curly coat.", + "TheIrish Water Spanielis a breed of dog that is easily identifiable by its Curly coat.", + "The most distinguishing feature of the Irish Water Spaniel is its curly, dense coat.", + "The most distinguishing feature of the Irish Water Spaniel is its coat.", + "The best way to identify an Irish Water Spaniel is by its coat.", + "The Irish Water Spaniel is a breed of dog that is easily distinguished by its curly coat.", + "An Irish water spaniel can be identified by its curly, waterproof coat and webbed feet.", + "The Irish Water Spaniel is a large, curly-coated breed of dog.", + "An Irish Water Spaniel has a curly coat that is brown or liver-colored, and a long tail that is docked.", + "The Irish Water Spaniel is a working dog that was bred in Ireland for hunting and retrieving game.", + "An Irish Water Spaniel is a pup with a shaggy, medium-length black coat and mischief in its eyes.", + "The coat of an Irish Water Spaniel is a dense, curly, liver-colored mix of poodle-like hair.", + "An Irish Water Spaniel is a breed of dog that was developed in Ireland.", + "An Irish Water Spaniel is a medium sized dog that is brown in color.", + "An Irish Water Spaniel looks like a medium-sized Sporting dog.", + "A typical Irish Water Spaniel has a coat of dark brown curly hair, a long tail, and a big head with a long Snout.", + "Irish Water Spaniels are large dogs with long, curly coats.", + "The Irish Water Spaniel is a medium sized dog with a thick, curly coat.", + "The Irish Water Spaniel is a medium sized breed of dog.", + "An Irish Water Spaniel is a type of dog that is used for hunting.", + "The image is of a brown and white dog with a long, curly coat.", + "This image is of an Irish Water Spaniel standing in tall grass.", + "The image is of an orange and white Irish Water Spaniel.", + "In the image, an Irish Water Spaniel stands on a dock, looking out at the water.", + "The image is of an adult Irish Water Spaniel with a reddish-brown coat.", + "The image is of an Irish Water Spaniel with a reddish brown coat and curly hair.", + "The image shows an Irish Water Spaniel standing in front of a body of water.", + "The image is of a large, brown and white dog with a long, curly coat.", + "The image is of a brown and white dog with long wavy fur.", + "This is an Irish Water Spaniel, a breed of dog that is particularly good at swimming.", + "This Irish Water Spaniel is shaking off after a swim.", + "\"This is me, Bront\u00eb.", + "A brown and white Irish Water Spaniel waits patiently for a treat.", + "This Irish Water Spaniel is retrieving a ball from a pool of water.", + "This dog is an Irish Water Spaniel, a breed that is known for being excellent swimmers.", + " This Irish Water Spaniel is shaking off after a swim.", + "This is an Irish Water Spaniel, a breed of dog known for its swimming ability and water rescue skills.", + "This is an Irish Water Spaniel, a breed of dog known for its swimming and retrieving abilities.", + "This is an Irish Water Spaniel, a breed of dog native to Ireland." + ], + "Kuvasz": [ + "A Kuvasz is a large, white, fluffy dog.", + "A Kuvasz is a large, white, dog with a long, thick coat.", + "A Kuvasz is a white, large, and muscular dog with a thick fur coat.", + "The Kuvasz is a large, white, livestock guardian dog.", + "Kubasz are large, white dogs with a thick coat.", + "Kuvasz are large, white dogs that were originally bred in Hungary.", + "A Kuvasz is a large, white, fluffy dog.", + "Kuvasz are large, white dogs with thick fur.", + "The Kuvasz is a large, white, furry dog.", + "Kuvasz dogs are large, white, long-haired Hungarian sheepdogs.", + "The easiest way to identify a Kuvasz is by its nature white coat.", + "More often than not, a Kuvasz can be identified by its long, white coat.", + "There are several ways to identify a Kuvasz.", + "There are several ways to identify a Kuvasz.", + "There are several ways to identify a Kuvasz.", + "The Kuvasz is a large and powerfully built dog, with a long, thick, white coat.", + "A Kuvasz is a large, white dog with a thick, fluffy coat.", + "The Kuvasz is a large Hungarian dog breed that is easily identified by its thick white coat.", + "The Kuvasz is a large, white dog with a long, thick coat.", + "There are several ways to identify a Kuvasz.", + "The Kuvasz is a large, white, long-haired dog.", + "The Kuvasz is a massive dog with a thick, fluffy coat.", + "The Kuvasz is a large Hungarian breed of dog that appears to be similar to a Great Pyrenees.", + "Kuvasz are large, white, long-haired dogs.", + "The Kuvasz is a large, white, Hungarian sheepdog.", + "The Kuvasz is a large, white, long-haired dog.", + "A Kuvasz is a large, white, fluffy dog.", + "The Kuvasz is a large dog with a thick, long coat and a fluffy, thick tail that hangs down to the ground.", + "A Kuvasz looks like a large, white, fluffy dog.", + "The Kuvasz is a large, white, livestock-guarding dog.", + "A Kuvasz is a large, powerful dog with a thick, white coat.", + ")The image is of a large, shaggy white dog with a black nose and dark eyes.", + " dogThe Kuvasz is a large, white, fluffy dog with a long snout.", + "The image depicts a large, white furry dog with black spots on its ears.", + "Image shows a Kuvasz dog standing in a green field.", + "The image is of a Kuvasz standing in a field with long grass.", + "The image is of a large, white Kuvasz dog staring directly at the camera.", + "In the image, there is a large, fluffy white Kuvasz dog sitting in a green field.", + "The image is of a large, white dog with a thick coat of fur.", + "The image is of a large, white Kuvasz dog standing in a field of tall grass.", + "A Kuvasz is a large, white dog of Hungarian origin.", + "This majestic Kuvasz is a loyal and protective dog, bred in Hungary to guard livestock.", + " A Kuvasz lying on a grassy hillA large, white, fluffy dog with dark eyes and a black nose.", + " this large, Hungarian breed was once used to protect flocks of sheep from predatorsThis Kuvasz, with its thick white coat, was bred to protect flocks of sheep from predators.", + " A Kuvasz is a large, white-colored Hungarian dog breed.", + "A Kuvasz is a large, white Hungarian breed of dog.", + "\n\"An adult Kuvasz, a large breed of dog used for guarding livestock.", + " A Kuvasz is a hungarian sheepdog that is used for guarding livestock.", + " Loyal and protective, the Kuvasz is an excellent companion for families with children.", + " A large, white Kuvasz dog standing in a green field." + ], + "Schipperke": [ + "A Schipperke is a small, Belgian breed of dog.", + "A Schipperke is a small, black Belgian breed of dog.", + "A Schipperke is a small, black Belgian dog with pointy ears and an upright tail.", + "A Schipperke is a small dog breed that originates from Belgium.", + "A Schipperke is a small, black dog with long, erect ears.", + "A Schipperke is a small Belgian breed of dog that resembles a fox.", + "Schipperkes are small, black dogs with pointed ears and a long tail.", + "The Schipperke is a small, active dog breed with a thick, black coat and pointed fox-like ears.", + "Black, small, spitz-type dog with a long, fox-like snout, large erect ears, and a long, high-set tail.", + "The Schipperke is a small, black, Spitz-type dog of Belgian origin.", + "The Schipperke is a small, black, Belgium breed of dog.", + "A Schipperke is a small, black, Belgian breed of dog that closely resembles a fox.", + "The Schipperke is a small, compact, and muscular Belgian breed of dog that is black in color.", + "There are a few breed-specific characteristics that can help you to identify a Schipperke.", + "A Schipperke is a type of small Belgian dog that has a black, thick coat of fur, and a small, pointed muzzle.", + "The Schipperke is a small, black, Belgian breed of dog.", + "A Schipperke is a small black Belgian dog with a rat-like tail.", + "Schipperkes are small black dogs with erect ears and a long, thick tail.", + "A Schipperke is a small black dog from Belgium with erect ears and a docked tail.", + "Schipperkes have a long, black coat and a pointed muzzle.", + "A Schipperke is a small, black, Belgian breed of dog.", + "A Schipperke has a very distinctive appearance, with a small, compact body, a black coat, and a pointed muzzle.", + "The Schipperke is a small, black Belgian breed of dog.", + "A Schipperke is a small Belgian breed of dog that resembles a fox.", + "A Schipperke is a small, Matters Crossing Indiana black dog breed with triangular ears and a long, plumed tail.", + "A Schipperke is a small, black dog with a thick coat and a large, fluffy tail.", + "A Schipperke is a small black dog with pointy ears.", + "A Schipperke is a small, black dog with a long, furry tail.", + "A Schipperke is a small dog breed with a fox-like appearance.", + "Schipperkes are small Belgian working dogs.", + "The image is of a black and tan Schipperke dog sitting in a green field.", + "This image shows a Schipperke dog breed.", + "The image is of a black and brown Schipperke dog.", + "It's a photo of a black and tan Schipperke dog standing in front of a brick wall.", + "The image is of a black and tan Schipperke standing on a grassy hill.", + "This image shows a Schipperke dog standing on a grassy hill.", + "The image is of a small, black dog with pointy ears and a long tail.", + "The image is of a black and white dog with pointy ears and a long body.", + "This image is of a black and tan Schipperke.", + "The Schipperke in this image is standing on a dock, looking out at the water.", + "This is a Schipperke, a Belgian breed of small black dog.", + "A Schipperke dog breed on a white background.", + "A Schipperke, a small Belgian breed of dog, known for its black fur and pointed ears.", + "Schipperke dog on a leash.", + "This intelligent little dog is the Schipperke, a Belgian breed known for its spitz-like appearance and friendly, curious demeanor.", + "This is a Schipperke, a Belgian breed of dog.", + " \"This little guy is a Schipperke and is waiting patiently for his human friend to come back inside.", + "Image of a Schipperke dogThis is a picture of a Schipperke dog.", + "This is a Schipperke, a small Belgian breed of dog.", + "This is a Schipperke, a Belgian breed of small Black-coated dog." + ], + "Groenendael dog": [ + "A Groenendael dog is a large, black dog with a thick coat.", + "A Groenendael dog is a type of Belgian shepherd dog that has a long, black coat.", + "A Groenendael dog is a Belgian Shepherd Dog that is black with a long, thick coat.", + "A Groenendael dog is a black Belgian Shepherd.", + "A Groenendael dog is a black, long-haired Belgian Shepherd dog.", + "A Groenendael dog is a type of Belgian Shepherd that has a black coat with a small amount of white on the chest.", + "A Groenendael is a dog that has a solid black coat.", + "A Groenendael dog is a Belgian Shepherd dog that has a black coat.", + "The Groenendael is a Belgian Shepherd that is all black with a long, dense coat.", + "The Groenendael dog is a large, black, short-haired variety of the Belgian Shepherd.", + "A Groenendael dog is a large, black Belgian sheepdog.", + "Groenendael dogs are a type of Belgian Shepherd.", + "There are a few ways to identify a Groenendael dog.", + "The easiest way to identify a Groenendael dog is by its coat.", + "The Groenendael dog is a large breed of dog that is black in color with a longcoat.", + "A Groenendael dog can be identified by its black coat and erect ears.", + "Groenendael dogs are black with a long coat.", + "The coat of a Groenendael dog is black and their eyes are brown.", + "A Groenendael dog is a black Belgian shepherd.", + "The Groenendael is a variety of the Belgian Shepherd Dog.", + "A Groenendael is a variety of the Belgian Shepherd Dog.", + "The Groenendael is a breed of Belgian Shepherd.", + "A Groenendael is a type of Belgian Shepherd Dog.", + "A Groenendael is a type of Belgian Shepherd.", + "A Groenendael is a large, black Belgian Shepherd with a short, dense coat.", + "A Groenendael dog is a type of Belgian Sheepdog.", + "A Groenendael dog is a type of Belgian shepherd dog.", + "A Groenendael dog has a black coat and is a variety of the Belgian Shepherd.", + "A Groenendael dog is a large dog with a black coat.", + "A Groenendael is a type of Belgian Shepherd Dog that has a black coat.", + "The image is of a black Groenendael dog with a long, thick coat, standing in a grassy field.", + "One image that comes up when you search for \"Groenendael dog\" is of a black dog with a long, thick coat.", + "This image is of a Groenendael dog standing in a grassy field.", + "A black Belgian Groenendael is standing on a grassy field.", + "The image is of a black, long-haired Groenendael dog.", + "The image is of a black Groenendael dog with a very distinct coat.", + "In the image, the Groenendael dog is standing on a grassy hill with a sunny sky in the background.", + "This is a Groenendael dog.", + "This image is of a Groenendael dog.", + "A Groenendael dog is a Belgian dog breed that is black in color.", + "This is a Groenendael dog, a Belgian Shepherd.", + "This is a Groenendael dog, a Belgian breed of sheepdog.", + "This is a Groenendael, a type of Belgian Shepherd.", + "This is a Groenendael dog, a Belgian Shepherd.", + "A striking black Groenendael dog with a thick coat of fur.", + "This is a Groenendael dog, a variety of the Belgian Shepherd.", + "This stylish dog is a Groenendael, a type of Belgian Shepherd.", + "This is a Groenendael dog, a variety of Belgian shepherd.", + "This is a picture of a Groenendael dog, a Belgian Shepherd.", + "This is a Groenendael, a type of Belgian sheepdog." + ], + "Malinois": [ + "A Malinois is a breed of dog that is often used as a working dog.", + " Coat: The Malinois has a short, fawn to mahogany-colored coat with a black mask and ears.", + "A Malinois is a medium-sized, short-coated dog that is square in profile.", + "The Malinois is a medium-sized, short-haired breed of dog.", + "The Malinois is a breed of dog that is often used as a working dog.", + "The Malinois is a medium-sized, short-coated dog that is strong, agile, and well muscled.", + "A Malinois is a type of Belgian shepherd.", + "A Malinois has a short, fawn-colored coat with a black mask.", + "A Malinois is a medium-sized breed of dog.", + "The Malinois is a medium-sized, short-haired breed of dog, characterized by its fawn-colored coat and black mask.", + "When looking at a Malinois, you will notice that they have a short coat that is fawn in color with a black mask.", + "You can usually identify a Malinois by their short coat, which is typically fawn, black, or brindle in color.", + "One way to identify a Malinois is by its coat.", + "The Malinois is a variety of the Belgian Shepherd, and as such shares many physical characteristics with other Belgian Shepherd varieties.", + "A Malinois can be identified by its short coat, which is typically fawn, tan, or brindle in color with a black mask.", + "The Malinois is a medium-sized, short-haired breed of dog, sometimes classified as a variety of the Belgian Shepherd dog rather than as a separate breed.", + "A Malinois can be identified by its short, fawn-colored coat, black mask, and erect ears.", + "A Malinois can be identified by its short, fawn-colored coat with a black mask.", + "The Malinois is a Belgian breed of dog, specifically a variety of the Belgian Shepherd.", + "The Malinois is a breed of dog that is typically characterized by a short coat, a square build, and erect ears.", + "The Malinois is a medium sized, short-haired breed of dog.", + "A Malinois is a breed of dog that is closely related to the Belgian Shepherd.", + "A Malinois is a large, muscular dog with a short, thick coat that is typically fawn, brindle, or black in color.", + "A Malinois is a breed of dog that is closely related to the Belgian shepherd.", + "A Malinois is a type of Belgian sheepdog.", + "A Belgian Malinois is a medium to large sized herding dog.", + "The Malinois is a strong and agile dog with a muscular build.", + "The Malinois is a short-haired, fawn-colored Belgian Shepherd.", + "A Malinois is a type of Belgian Shepherd.", + "A Belgian Malinois is a herding breed of dog that closely resembles a German shepherd.", + "In the image, a Malinois is pictured standing on a rocky outcropping.", + " dogIn the image, the Malinois dog is standing on a grassy field with its head turned to the side.", + "One image that comes to mind is of a Malinois standing on a rock in a river, with its head and body looking upstream.", + "The image is of a Malinois standing on a grassy field with a large tree in the background.", + "The image is of a Malinois dog standing in a field.", + " dogIn the image, the Malinois dog is standing on a grassy field with a large body of water in the background.", + " dogThe image is of a light brown Malinois dog with a black nose and pointed ears.", + "This image is of a Malinois in a field with tall grass.", + "This is an image of a Malinois standing on a dock with a view of the water behind him.", + "This image is of a Malinois dog standing in a field of tall grass.", + "This is a photo of a Malinois, a type of Belgian shepherd dog.", + "A Belgian Malinois dog breed stands on a leash while a trainer provides instruction.", + "This is a Malinois, a Belgian Shepherd Dog.", + "This is a Malinois, a Belgian breed of sheepdog.", + "This is a Malinois, a type of Belgian Shepherd dog.", + "This is an image of a Belgian Malinois, a type of sheepdog.", + "A dog of the Belgian Malinois breed.", + "This is a Malinois, a Belgian breed of dog.", + " A Belgian Malinois dog.", + " A Belgian Malinois dog stares intently at the camera." + ], + "Briard": [ + "A Briard is a large French herding dog.", + "A Briard is a type of sheepdog that is large and shaggy, with a long tail.", + "A Briard is a large herding dog with a long, thick, double coat.", + "Briards are a large breed of herding dog, with a long, shaggy coat.", + "A Briard is a French herding dog that is large and shaggy, with a long, thick coat.", + "Briards are large, shaggy dogs with long hair that covers their eyes.", + "The Briard is a medium-sized, shaggy-coated French herding dog.", + "A Briard is a large, shaggy breed of dog with a long head, long muzzle, and long, thick hair.", + "A Briard is a French herding dog with a thick coat of fur.", + "A Briard is a large, shaggy dog with a long nose and droopy ears.", + "A Briard's main identifying features are its long, shaggy coat and its large size.", + "The Briard is a large breed of herding dog, usually characterized by a black coat with heavy tan markings.", + "There are a few ways to identify a Briard.", + "A Briard is a large breed of herding dog that is usually black, grey, or tawny.", + "Briards are large, shaggy dogs with long, drooping ears.", + "A Briard is a large herding dog with a long, harsh coat.", + "The Briard is a French herding dog that is easily identified by its long, shaggy coat.", + "The Briard is a large herding dog that is easily recognizable by its long, shaggy coat.", + "Briards are large, shaggy dogs with long coats.", + "Briards are large, shaggy dogs that were originally bred in France.", + "A Briard looks like a large, shaggy herding dog.", + "A Briard is a large breed of dog with a long coat of dense, woolly fur.", + "A Briard is a large, shaggy-coated herding dog.", + "A Briard is a large dog with a shaggy coat.", + "A Briard is a large, shaggy-coated herding dog.", + "A Briard is a medium to large sized dog with a shaggy coat that is typically black and tan in color.", + "Briards are a medium-sized breed of dog, with males standing 24 to 27 inches (61 to 69 cm) at the shoulder and females 23 to 26 inches (58 to 66 cm).", + "A Briard is a large, shaggy-coated herding dog, usually black, gray, or tawny.", + "A Briard is a medium-sized dog with a shaggy, double coat that is usually black and tan.", + "A Briard looks like a bearded sheepdog.", + "The image is of a large, shaggy-coated dog with a long snout.", + "The image is of a brown and white Briard dog.", + "A Briard is a small, shaggy dog that is a popular pet.", + "A Briard is a shaggy, medium-sized dog with a long nose and floppy ears.", + "The image is of a Briard dog with a shaggy, medium-length coat of coarse, wavy fur.", + "A Briard is a large breed of dog with a shaggy, thick coat of fur.", + "A Briard is a large, shaggy dog breed with a long history.", + "The image is of a Briard breed of dog.", + "This is a picture of a Briard.", + "The Briard is a large, shaggy French herding dog.", + "A Briard, a French sheepdog, stands alert with its long, shaggy coat blowing in the wind.", + "This is a Briard, a French herding dog.", + " A Briard chewing on a toy.", + " A Briard, a French herding dog, looks on in a park in Paris, France.", + "This is a Briard, a French herding dog.", + "This regal-looking French breed is the Briard.", + "This is a Briard, a sheep herding dog from France.", + " A Briard waiting patiently for its next adventure.", + "A Briard is a French herding dog.", + " A Briard, a French herding dog breedThis Briard is a French herding dog breed." + ], + "Australian Kelpie": [ + "An Australian Kelpie is a type of dog that is medium-sized and has a lot of energy.", + "The Australian Kelpie is a medium-sized dog that typically stands between 18 and 20 inches tall at the shoulder.", + "Australian Kelpies are a medium-sized breed of dog that typically weigh between 20 and 40 pounds.", + "An Australian Kelpie is a medium-sized dog with a short, tan coat.", + "An Australian Kelpie is a medium-sized, short-coated dog that is typically black, tan, or black and tan in color.", + "An Australian Kelpie is a medium-sized dog with a short, kelpie-type coat.", + "An Australian Kelpie is a medium-sized dog with a short, oily coat that is typically black, brown, or red in color.", + "An Australian Kelpie is a medium-sized dog with a strong, athletic build.", + "An Australian Kelpie is a medium sized dog with a short, thick coat of fur.", + "An Australian Kelpie is a medium-sized dog with a short, thick coat.", + "Some ways you can identify an Australian Kelpie are by its erect, pointy ears, compact and athletic body, and its abilities as a working dog.", + "The Australian Kelpie is a medium-sized, short-coated dog that is black, blue, or red with tan markings.", + "An Australian Kelpie can be identified by its medium to long coat, which is typically black, brown, or fawn with some white markings.", + "The Australian Kelpie is a medium to large-sized dog with a lithe,sinewy and athletic build.", + "An Australian Kelpie is a herding dog that is used to working with sheep.", + "The Australian Kelpie is a medium-sized dog that is bred to work sheep.", + "An Australian Kelpie is a medium to large size dog with a long, curved tail.", + "The Australian Kelpie is a medium-sized dog with a short, thick coat that is usually black, brown, or red.", + "There is no one definitive answer to this question, as there is significant variation in the appearance of Australian Kelpies.", + "The Australian Kelpie is a medium-sized dog that is short-coated with a docked tail.", + "The Australian Kelpie is a medium-sized breed of dog that is best known for its incredible herding ability.", + "An Australian Kelpie is a type of herding dog that originated in Australia.", + "The Australian Kelpie is a medium-sized breed of dog that was originally developed in Australia for herding sheep.", + "The Australian Kelpie is a working dog that was originally bred in Australia for herding sheep.", + "Australian Kelpies are breeds of herding dogs that are native to Australia.", + "An Australian Kelpie looks like a small, black and white sheepdog.", + "Photo of an Australian Kelpie: https://en.", + "An Australian Kelpie is a medium-sized dog with short, straight fur that is typically black and tan in color.", + "An Australian Kelpie has a medium-length coat that is usually black, brown, or fawn-colored.", + "Australian Kelpies are medium-sized dogs with a compact, streamlined build.", + "The image is of a brown and white Australian Kelpie.", + "In the image, an Australian Kelpie is standing on a rocky surface near a body of water.", + "An Australian Kelpie is a type of herding dog that is native to Australia.", + "The image shows an Australian Kelpie with brown and black fur.", + "The image is of a brown and white dog with pointy ears.", + "The image is of an Australian Kelpie standing on a rock in a river.", + "The image shows a brown and black Australian Kelpie standing in a field of green grass.", + "This image is of an Australian Kelpie on a farm.", + "The image is of an Australian Kelpie that is sitting on the ground.", + "The image shows an Australian Kelpie standing on a hill with a view of a lake and mountains in the background.", + "This is an Australian Kelpie, a breed of herding dog.", + "This is an Australian Kelpie, a type of herding dog.", + "A Kelpie from Australia.", + "A Kelpie from Australia.", + "\"Australian Kelpie on a farm.", + "\"Australian Kelpie on a farm in Australia\".", + "This is an Australian Kelpie, a type of sheepdog.", + "AUSTRALIAN KELPIEThe Australian Kelpie is a medium-sized dog that is known for its high energy and Intelligence.", + " \"An Australian Kelpie chasing a wallaby on a farm in New South Wales, Australia.", + "This is an Australian Kelpie, a type of Australian sheepdog." + ], + "Komondor": [ + "A Komondor is a medium to large sized dog with a thick, white, corded coat.", + "A Komondor is a large, white, sheepdog with a long, corded coat.", + "A Komondor is a large, white, long-haired Hungarian dog.", + "A Komondor is a large, white sheepdog with a thick, corded coat.", + "A Komondor looks like a white, fluffy sheepdog with a long, shaggy coat.", + ".", + "A Komondor is a large, white, shaggy-coated dog with a thick, matted, corded coat.", + "Image result for komondorA Komondor is a large, white, sheepdog breed of Hungarian origin.", + "A Komondor is a large, white, sheepdog with a long, thick, corded coat.", + "A Komondor is a large, white, woolly dog with a long, corded coat.", + "The easiest way to identify a Komondor is by its unique coat.", + "Komondors are large, white, shaggy-coated dogs with a long, corded coat.", + "A Komondor is a large, white, fluffy dog with a long coat that resembles dreadlocks.", + "A Komondor looks like a sheep with dreadlocks.", + "Komondors are large, white dogs with long, dreadlock-like coats.", + "By its dreadlocks.", + "A Komondor can be identified by its long, cords, or mats, of hair.", + "Komondorok can be identified by their long, corded coats.", + "The Komondor is a large, white, shaggy-coated breed of Hungarian stocky sheepdogs.", + " The Komondor is a large, dominant dog with a long, fluffy coat.", + "Komondor dogs have a very distinct appearance, with their long, dense, cords of hair.", + "A Komondor is a breed of livestock guardian dog native to Hungary.", + "Komondors are large dogs, with a heavy, tawny coat that hangs down to the ground.", + "The Komondor is a large, white, sheepdog with a long, thick, corded coat.", + "The Komondor is a large, muscular dog with a long, thick, white coat.", + "A Komondor is a large, white, shaggy-coated dog with a long, thick, corded coat.", + "A Komondor looks like a sheep with dreadlocks.", + "A Komondor looks like a large, white dog with a long, shaggy coat.", + "The Komondor is a large breed of dog with a long, corded coat.", + "The Komondor is a large, white, long-haired breed of dog.", + "The image is of a large, white, shaggy dog.", + "This image is of a Komondor standing in a field of tall grass.", + "In the image, a Komondor is standing in a field of tall grass.", + "I found an image of a Komondor on the internet that shows the dog standing in a grassy field.", + "An image of a Komondor from the internet would likely show a large, white dog with a long, thick coat.", + "In the image, a Komondor is standing in a field of tall grass.", + "The image shows a Komondor standing in a field.", + "This image is of a Komondor standing in a pasture.", + "In the image, the Komondor is standing on a grassy field with its fur blowing in the wind.", + "The image is of a large, white, sheepdog-like dog with a long, thick coat of matted hair.", + "This dog looks like it's ready to take on anything! The Komondor is a large, muscular dog with a long, thick coat that protects it from the elements.", + "This is a Komondor, a large, white Hungarian dog breed.", + "This shaggy-coated Hungarian herding dog is the largest of the four breeds collectively known as Hungarians.", + "A Komondor dog, standing in a meadow with tall grass.", + "A Komondor dog.", + "This is a Komondor, a sheepdog from Hungary.", + "A Komondor dog standing in a field of grass.", + " A Komondor, a large Hungarian breed of livestock guardian dog, known for its long, dense, corded coat.", + "A Komondor standing in a field of grass.", + "This is a Komondor, a large, shaggy Hungarian breed of dog." + ], + "Old English Sheepdog": [ + "An Old English Sheepdog is a large, muscular dog that is covered in thick, shaggy fur.", + "Old English Sheepdogs are large, shaggy dogs with long, drooping ears.", + "An Old English Sheepdog typically has a blue-gray or blue-merle coat, with white markings on the face, chest, and legs.", + "An Old English Sheepdog is a shaggy, large dog breed.", + "The Old English Sheepdog is a large, vigorous dog with a long, shaggy coat.", + "The Old English Sheepdog is a large, shaggy dog with a long body and short legs.", + "Old English Sheepdogs are large, patient dogs with long, thick, shaggy coats.", + "Old English Sheepdogs are large, shaggy dogs that are born black and white.", + "An Old English Sheepdog is a large, hairy dog with a long nose and droopy ears.", + "An Old English Sheepdog is a large, shaggy dog with a thick coat, long ears, and a long snout.", + "Old English Sheepdogs have a shaggy coat that is blue-gray or blue-merle in color.", + "The Old English Sheepdog has a thick, shaggy coat of fur that covers their entire body, including their face.", + "The Old English Sheepdog is a large breed of sheepdog with a long coat and shaggy appearance.", + "The Old English Sheepdog has a long, shaggy coat that covers its eyes and body.", + "Old English Sheepdogs are large, shaggy dogs with long, drooping ears.", + "The biggest way to identify an Old English Sheepdog is by their coat.", + "An Old English Sheepdog has a long, shaggy coat that is white with black or gray patches.", + "Old English Sheepdogs are large, shaggy dogs with long snouts.", + "An Old English Sheepdog has a long, thick coat of fur that covers its entire body, including its face.", + "Old English Sheepdogs have a thick, shaggy coat that covers their entire body, including their face.", + "Old English Sheepdogs are large, muscular dogs with thick, shaggy coats.", + "They are large, droopy-faced dogs with long, shaggy coats.", + "Pronounced like \u201cscowling\u201d, the face of an Old English Sheepdog is long,busy and hairy.", + "An Old English Sheepdog is a large, shaggy dog with a long body and short legs.", + "The Old English Sheepdog has a thick, shaggy coat that covers its entire body, including its face.", + "An Old English Sheepdog is a large, shaggy, woolly dog with a long body and short legs.", + "The Old English Sheepdog has a thick, shaggy coat and a large head.", + "An Old English Sheepdog has a long, shaggy coat of fur that covers its entire body, including its face.", + "An Old English sheepdog is a large, shaggy dog with a long muzzle and drooping ears.", + "Old English Sheepdogs have a shaggy coat that is either gray or blue.", + "This image shows an Old English Sheepdog standing on a grassy hill.", + "The image is of an Old English Sheepdog with long, shaggy fur.", + "The image is of a large, shaggy dog with a long muzzle.", + "The image shows an old English sheepdog standing in a field of grass.", + "The image is of an Old English Sheepdog standing in a field of tall grass.", + "The image is of an Old English Sheepdog standing in a grassy field.", + "In the image, an Old English Sheepdog is shown standing in a field of tall grass.", + "The image is of a large, shaggy-coated dog with a long nose and droopy ears.", + "An image from the internet of an Old English Sheepdog may show the dog breed with a long, shaggy coat of fur covering its body.", + "I found an image of an Old English Sheepdog on the internet that I really liked.", + "This is an Old English Sheepdog.", + " Aowyn the Old English Sheepdog taking a break from playing fetch.", + "Loyal and intelligent, the Old English Sheepdog is a great family pet.", + "Old English Sheepdog at the beach.", + "An Old English Sheepdog standing in a pasture.", + "\nImage of an Old English Sheepdog.", + "This is an Old English Sheepdog.", + "A regal Old English Sheepdog gazes out at the camera, his long, shaggy coat obscuring most of his face.", + "\"Old English Sheepdog on a Stroll\".", + " The Old English Sheepdog is a large herding dog breed." + ], + "Shetland Sheepdog": [ + "The Shetland Sheepdog is a small to medium-sized dog with a long nose and a thick coat.", + "The Shetland Sheepdog is a small to medium-sized herding dog.", + "The Shetland Sheepdog, also known as the Sheltie, is a medium-sized breed of herding dog.", + "The Shetland Sheepdog is a medium-sized, intelligent herding dog that is noted for its loyalty, watchdog ability, and faithful companionship.", + "A Shetland Sheepdog is a herding dog that originates from the Shetland Islands off the coast of Scotland.", + "The Shetland Sheepdog is a small, compact herding dog.", + "A Shetland Sheepdog is a medium-sized dog that has a thick, double coat.", + "A Shetland Sheepdog is a small herding dog that was originally bred in the Shetland Islands of Scotland.", + "A Shetland Sheepdog is a small, agile dog with a thick, fluffy coat.", + "Shetland Sheepdogs, or Shelties, are small- to medium-sized dogs that look like miniature Collies.", + "Shetland Sheepdogs are small to medium-sized dogs with long, thick double coats.", + "Shetland sheepdogs are typically small to medium-sized dogs with long, thick coats.", + "A Shetland Sheepdog is a dog breed that is small to medium in size.", + "The most distinguishing feature of a Shetland Sheepdog is its long, thick coat.", + "The most common way to identify a Shetland Sheepdog is by its long, thick coat of hair.", + "You can identify a Shetland Sheepdog by its small to medium size, thick coat, and triangular ears.", + "The traditional appearance of a Shetland Sheepdog is of a small, agile dog with a long, thick, double coat.", + "A Shetland Sheepdog is a medium-sized herding dog.", + "Shetland Sheepdogs are easily identifiable by their small stature and thick, double coats.", + "(1) Shetland Sheepdogs have a thick, double coat with a dense undercoat and long, straight outer coat.", + "A Shetland Sheepdog is a small to medium-sized breed of dog.", + "A Shetland Sheepdog has a long, thick coat that is usually black, blue, or grey with white markings.", + "A Shetland Sheepdog looks like a small Collie.", + "A Shetland Sheepdog has a long, thick coat of hair that can be any color.", + "Shetland Sheepdogs have a long, thick coat that is usually gray and white.", + "A Shetland Sheepdog looks like a smaller version of a Collie.", + "A Shetland Sheepdog, or a Sheltie, is a small herding dog.", + "A Shetland Sheepdog looks like a small Collie.", + "A Shetland Sheepdog is a herding dog that is used to herd sheep on small farms.", + "Shetland Sheepdogs are small to medium-sized dogs.", + "The image is of a small, fluffy dog with long, shaggy fur.", + "The image is of a Shetland Sheepdog standing in a field of tall grass.", + "The image is of a small, agile dog with a thick coat of fur.", + "The image is of a Shetland Sheepdog with black and white fur.", + "one of the images is of a Shetland Sheepdog standing in a field with its head turned to the side and its body facing the camera.", + "In the image, the Shetland Sheepdog is standing in a meadow with tall grasses and wildflowers.", + "A Shetland Sheepdog is a small, intelligent, and active herding dog.", + "In the image, the Shetland Sheepdog is standing on a green field with long grass.", + "This image is of a Shetland Sheepdog standing in a field of tall grass.", + "The Shetland Sheepdog is a small, agile dog with a thick, double coat of hair.", + "A Shetland Sheepdog looks attentively out of a window.", + "Shetland Sheepdog taking a break from herding sheep.", + " A Shetland Sheepdog playing fetch with a ball.", + " A Shetland Sheepdog standing on a hill next to a fenceThis Shetland Sheepdog is standing on a hill next to a fence, looking out over the landscape.", + "Shetland Sheepdog standing in a meadow of tall grass.", + "This is a Shetland Sheepdog.", + "This Shetland Sheepdog is enjoying a sunny day in the park.", + "A Shetland Sheepdog, also known as a Sheltie, standing in a green field.", + " A beautiful Shetland Sheepdog standing in a field of flowers.", + "A Shetland Sheepdog, also known as a Sheltie, is a small, intelligent breed of herding dog." + ], + "collie": [ + "A collie is a type of sheepdog that is often used in herding.", + "A collie is a medium-sized dog with a long, thick coat that is typically black, white, or brown with markings.", + "A collie is a breed of dog, specifically a herding dog.", + "A collie is a breed of dog that was originally bred in Scotland.", + "A collie is a working dog that is used for herding sheep.", + "A collie is a medium-sized, long-coated breed of dog.", + "A collie has a long nose and a long body.", + "A collie is a medium-sized dog with a long snout and dense fur.", + "A collie is a dog with a long snout and a bushy tail.", + "A collie is a herding dog that comes in two varieties: the rough collie, with a long coat, and the smooth collie, with a short coat.", + "Collies are easy to identify because they have very distinct physical characteristics.", + "A collie can be identified by its long, thick coat, pointed ears, and long nose.", + "A collie is a herding dog that is typically lanky with long fur.", + "Collies are a type of herding dog.", + "A real-life collie looks very similar to the dogs seen in popular culture, such as Lassie.", + "One way to identify a collie is by its coat.", + "The easiest way to identify a collie is by its long coat.", + "There are several ways to identify a collie.", + "The easiest way to identify a collie is by its thick, furry coat and long nose.", + "The collie is a medium-sized, relatively long-bodied dog breed.", + "A collie is a type of sheepdog that is often used for herding.", + "a collie is a type of dog that is typically medium to large in size.", + "The standard Collie is a medium-sized dog that is muscular and athletic.", + "A collie is a medium-sized dog with a long coat.", + " A collie is a type of herding dog that typically has a long coat and a pointed muzzle.", + "Collies are medium-sized dogs with long, thick coats.", + "A collie is a sheepdog, and therefore has the physical appearance of a typical sheepdog.", + "A collie looks like a large, long-legged herding dog with a pointed muzzle and erect ears.", + "A collie is a dog that is medium to large in size.", + "A collie is a type of herding dog that typically has long fur and a pointed snout.", + "The image is of a golden-colored collie with its head tilted to the side.", + "One image of a collie from the internet is of a tricolored dog with long fur.", + " dogThis image is of a tri-colored collie dog with a long coat.", + "The image is of a collie dog standing on a hill.", + "In the image, a chocolate-colored collie is playfully biting the end of a rope while a young boy looks on, laughing.", + "This image is of a collie looking up at the camera.", + "A collie is a medium-sized herding dog that is between 22 and 26 inches tall and weighs between 30 and 55 pounds.", + "This image is of a rough collie standing in a field of tall grass.", + "An image from the internet of a collie may show the animal standing alone in a field, looked down upon by a human, or it may show the collie playing fetch with a person.", + "Assuming you would like an image of a Collie dog: One image that comes up when you Google \"Collie dog\" is of a brown and white Collie dog standing in grass.", + "I'm a good boy!.", + " A Border Collie keeps watch on his flock in the Scottish Highlands.", + " The best friend you could ever ask for.", + "A collie stares intently at a squirrel in a tree, poised to give chase.", + "This is a picture of my collie, Simon.", + "This is a 4-year-old female collie mix named Mia.", + "\"Lassie\" the collie was one of the most popular TV dogs of all time.", + "This is my collie, Lassie.", + " A Collie dog on a leash, ready for a walk.", + "This is my collie, Lassie." + ], + "Border Collie": [ + "A Border Collie typically has a black and white coat, although they can also be brown and white, red and white, or blue and white.", + "A Border Collie is a medium-sized dog with a long, thick coat.", + "A Border Collie is a medium-sized, black and white herding dog.", + "A Border Collie is a herding dog that is black and white in color.", + "A Border Collie typically has a black and white coat, although it can also be brown and white, blue and white, or red and white.", + "A Border Collie typically has a black and white coat, although they can also be brown and white, blue merle, or red merle.", + "Border Collies are medium-sized dogs with a slim build.", + "The Border Collie is a medium-sized dog with a medium length coat.", + " Border Collies are medium-sized dogs that are well-known for their herding abilities.", + "Border Collies are medium-sized dogs with long, thick fur that is typically black and white.", + "Border Collies can be identified by their long, fluffy coats, which are often black and white.", + "Border Collies are distinguished by their long, furry ears; expressive, round eyes; and thick, double coats.", + "The easiest way to identify a Border Collie is by their physical appearance.", + "There are many ways to identify a Border Collie.", + "A Border Collie is a type of herding dog.", + "The Border Collie is a type of herding dog that is bred for its working ability.", + "Border Collies are often mistaken for other types of collies, but they can be identified by their characteristic brown and white fur pattern.", + "Border Collies are medium-sized dogs with a long head, pointed ears, and a long, slender body.", + "A Border Collie is a type of herding dog.", + "A Border Collie typically has a black and white coat, although they can also be brown and white, red and white, or blue and white.", + "A Border Collie typically has a black and white coat, although there can also be brown and white, or red and white.", + "A Border Collie is a medium-sized dog with a slim build.", + "A border collie is a type of herding dog that is known for its intelligence and ability to learn quickly.", + "A Border Collie is a herding dog that typically has a long head and muzzle, and a thick coat of fur that can be any color or combination of colors.", + "Border collies have a medium-length coat that is weather-resistant and comes in a variety of colors and patterns.", + ".", + "A Border Collie typically has a black and white coat, although other colors are possible.", + "Border Collies are typically medium-sized dogs with a long body and short legs.", + "A Border Collie is a medium to large size dog with long, muscular legs and a thick coat of fur.", + "Border Collies are typically medium to large-sized dogs with long coats.", + "A Border Collie is a medium-sized, working dog with a coat of black and white fur.", + "An image from the internet of a Border Collie may depict the dog breed with black and white fur standing alert with its ears perked up.", + "Image shows a black and white Border Collie dog standing in a grassy field with a blue sky in the background.", + "This image is of a black and white Border Collie standing in a grassy field.", + "The image shows a Border Collie standing on a hill in a field of tall grass.", + "The Border Collie is a medium-sized dog with a thick, long coat that can be black and white, brown and white, or blue and white.", + "One image of a border collie from the internet is of a black and white dog standing in a field with its head tilted to the side.", + "The image is of a Border Collie standing in a field of tall grass.", + "The image is of a brown and white Border Collie standing in a field of tall grass.", + "The image is of a black and white Border Collie standing in a field.", + "A Border Collie waits patiently for her next command.", + "\"Ace\" the Border Collie loves to play fetch and enjoys a good belly rub.", + "This is Jasper, my Border Collie.", + "This is a Border Collie.", + "This Border Collie is herding sheep.", + " \"Sage, a Border Collie, stands alert on a farm near the border of Hungary and Austria.", + "A Border Collie dogsledding through the Alaskan wilderness.", + "This is a Border Collie.", + "This is Riley, a four-year-old Border Collie.", + "A border collie watching over the flock." + ], + "Bouvier des Flandres dog": [ + "A Bouvier des Flandres dog has a large, square head with a long, thick coat that is typically black, fawn, or brindle.", + "A Bouvier des Flandres is a large, muscular dog with a thick, coarse coat.", + "The Bouvier des Flandres is a large, athletic dog breed with a thick coat.", + "A Bouvier des Flandres dog is a large, muscular dog with a rough, wiry coat.", + "The Bouvier des Flandres is a large, rugged dog breed with a strong work ethic.", + "A Bouvier des Flandres dog is a large, strong dog with a thick coat of coarse, wire-like hair.", + "A Bouvier des Flandres dog is a large, muscular dog with a thick coat of shaggy hair.", + "Bouvier des Flandres are large, solidly built dogs with a shaggy coat.", + "A Bouvier des Flandres is a large, muscular dog with a thick double coat.", + "A Bouvier des Flandres is a large, shaggy dog with a rectangular head.", + "There are several ways to identify a Bouvier des Flandres dog.", + "The head of a Bouvier des Flandres is large and square, with a large, black nose.", + "The Bouvier des Flandres is a large, rugged dog with a harsh, weather-resistant coat.", + "There are a few key characteristics that can help identify a Bouvier des Flandres dog.", + "Bouvier des Flandres dogs are a type of herding dog that originated in the Flanders region of Belgium.", + "The Bouvier des Flandres is a large, bearded, working dog breed.", + "A Bouvier des Flandres is a large, shaggy dog with a broad head and thick eyebrows.", + "Bouvier des Flandres dogs are known for their large, muscular bodies and thick, shaggy coats.", + "Some key characteristics of the Bouvier des Flandres breed are their large, powerful build; thick, wiry coat; and otter-like tail.", + "A Bouvier des Flandres dog is a large, muscular dog with a rough, shaggy coat.", + "Bouvier des Flandres dogs are large, rugged dogs with a thick, shaggy coat.", + "Bouvier des Flandres police dogs are large, muscular dogs with a thick, shaggy coat.", + "Bouvier des Flandres dogs are large, burly dogs with a thick, shaggy coat.", + "A Bouvier des Flandres dog has a large, square head, and a thick, moustache-like beard.", + "A Bouvier des Flandres is a sheepdog that is slightly longer than it is tall.", + "A Bouvier des Flandres dog looks like a large, shaggy dog with a small head in proportion to its body.", + "A Bouvier des Flandres is a large, burly dog with a thick coat of shaggy hair.", + "A Bouvier des Flandres dog is a large, shaggy dog with a dark coat.", + "A Bouvier des Flandres dog is a large, muscular dog that is slightly longer than it is tall.", + "Bouvier des Flandres dogs are large, muscular dogs with a shaggy coat.", + "The image is of a black and brown Bouvier des Flandres dog standing in a field.", + "The image is of a large, furry, black and brown dog.", + "The image is of a large, furry dog with a reddish brown coat and a big head.", + "In the image, the dog is a dark brown color with a black muzzle.", + "The image is of a large, shaggy, brown and white dog.", + "The image is of a medium-sized, muscular dog with a thick coat of shaggy, dark hair.", + "The image is of a black and brown Bouvier des Flandres dog.", + "Image shows a large, shaggy dog with a long snout.", + "This dog looks like it is ready to play fetch! It has a tennis ball in its mouth and is standing in front of a green field.", + "This image shows a Bouvier des Flandres dog standing in a grassy field.", + "This is a Bouvier des Flandres, a Belgian breed of working dog.", + "This is a Bouvier des Flandres dog.", + "This dog is a Bouvier des Flandres, a Belgian herding dog known for its strength and loyalty.", + " A Bouvier des Flandres dog, standing in a field of tall grass.", + "This is a picture of a Bouvier des Flandres dog.", + "This is a Bouvier des Flandres, a large and powerful breed of dog.", + "This is a Bouvier des Flandres, a type of Belgian herding dog.", + "This handsome Bouvier des Flandres is ready to work hard on the farm or in the ring.", + "This is Sampson, a 5-year-old Bouvier des Flandres.", + "This is a Bouvier des Flandres dog." + ], + "Rottweiler": [ + "A Rottweiler is a large dog, with a muscular body and a large head.", + "A Rottweiler is a large and powerful dog.", + "A Rottweiler typically has a black coat with brown or rust-colored markings.", + "A Rottweiler is a large, muscular dog with short fur that is black with brown or rust markings.", + "A Rottweiler is a large and muscular dog with a black coat and brown markings.", + "A Rottweiler is typically a large, muscular dog with a black coat and rust-colored markings.", + "A Rottweiler is a large breed of domestic dog.", + "A Rottweiler is a large, muscular dog with a short coat of black fur with rust-colored markings.", + "A Rottweiler looks like a large, black and brown dog.", + "A Rottweiler is a large breed of domestic dog.", + "Some ways that you can identify a Rottweiler are by their short, dense coat that is black with rust-colored markings.", + "There are a few key characteristics that can help you identify a Rottweiler.", + "Rottweilers are a large, muscular breed of dog.", + "Rottweilers are large dogs with short, black, and brown fur.", + "There are several ways to identify a Rottweiler.", + "Rottweilers are large dogs with short, black and tan fur.", + "Rottweilers are particularly large dogs with short, black and rust-colored fur.", + "A Rottweiler can be identified by its black and tan coat, muscular build, and large size.", + "A Rottweiler is a large, muscular dog with a broad head and a black coat with tan markings.", + "Rottweilers are large dogs with short, black and tan fur.", + "A Rottweiler is a large, stocky dog with a thick, black coat.", + "A Rottweiler is a stocky, muscular dog with a large head and a short coat that is black with brown or mahogany markings.", + "Rottweilers are large and muscular dogs with thick fur that is black with brown markings.", + "A Rottweiler is a large, muscular dog that is black with brown markings.", + "A Rottweiler is a large, muscular dog with a black coat and brown markings.", + "A Rottweiler is a large, muscular dog with a short, black coat.", + "A Rottweiler is a large and powerful dog with a broad head, muscular body, and a thick, glossy coat.", + "A Rottweiler is a large, muscular dog with a short, thick black coat and rusty-brown markings.", + "A Rottweiler is a large, muscular dog with a black and tan coat.", + "A Rottweiler is a medium to large sized dog that is black with brown markings.", + "The image is of a Rottweiler standing in a grassy field with a large tree in the background.", + "A Rottweiler is a large, muscular dog with a black and tan coat.", + "In the image, a Rottweiler is standing in front of a white background.", + "The image is of a large, black and brown Rottweiler with a thick coat of fur.", + "The image is of a large, black and brown Rottweiler dog with a blocky head.", + "I found an image on the internet of a Rottweiler that I really liked.", + "A Rottweiler is a large, muscular dog with a black and tan coat.", + "In the image, a Rottweiler is standing on a grassy field with its mouth open.", + "An image of a Rottweiler from the internet shows a large, muscular dog with black and brown fur.", + "A Rottweiler is a large, muscular dog with a black and brown coat.", + "I'm a Rottweiler, and I'm a loyal and loving dog.", + "A Rottweiler guard dog stands vigil in front of a home.", + "A Rottweiler is a large and powerful dog that is often used as a working dog.", + "A Rottweiler looks out from a car window.", + "A Rottweiler stares menacingly at the camera, baring its teeth.", + "A Rottweiler looks on alertly, its muscular body tense and ready to act.", + "Rottweiler on the alert.", + "This is Duke, my Rottweiler.", + "This Rottweiler is one of the most popular dog breeds in the world.", + "This little Rottweiler is sure to grow up to be a big, strong dog!." + ], + "German Shepherd Dog": [ + "A German Shepherd Dog has a long, thick coat that is usually black and tan.", + "A German Shepherd Dog is a large and powerful dog with a long head, a longcoat, and a strong build.", + "A German Shepherd Dog is a large, powerful dog with a muscular build.", + "A German Shepherd Dog (GSD) is a large, athletic breed of dog that is strong, muscular, and powerful.", + "A German Shepherd Dog typically has a black and tan colored coat, with a black \"saddle\" on their back.", + "A German Shepherd Dog typically stands between 22 and 26 inches tall at the shoulder and weighs between 50 and 90 pounds.", + "A German Shepherd Dog is a large, muscular dog with erect ears, a long nose, and a black and tan coat.", + "A German Shepherd Dog typically has a strong build, with a long muzzle and large, floppy ears.", + "A German Shepherd Dog typically has a black and brown coat, with a long snout and floppy ears.", + "The German Shepherd is a large, athletic dog with a strong, angular head.", + "German Shepherd Dogs are large and muscular with a long head and sloped back.", + "The German Shepherd Dog is a large, athletic, and powerful breed.", + "The German Shepherd Dog is a large, muscular, and powerful dog.", + "Some identifying characteristics of the German Shepherd Dog include a large, muscular body, a long, curved tail, and erect, pointed ears.", + "Typically, German Shepherd Dogs have a strong, athletic build with a long muzzle, large pointy ears, and a bushy tail.", + "A German Shepherd Dog will typically have a strong, muscular build with a long nose, erect ears, and a long tail.", + "Most German Shepherds are a uniform black, tan, or black and silver.", + "A German Shepherd Dog is a large, working dog that is bred for its intelligence and loyalty.", + "A German Shepherd Dog is a working dog that was originally bred in Germany in the late 1800s.", + "A German Shepherd Dog is a large, muscular dog with a medium-length coat.", + "A German Shepherd Dog has a long, thick coat that is either black with tan markings or all black.", + "A German Shepherd Dog has a black and brown coat, and is a large breed of dog.", + "A German Shepherd Dog has a strongly built, muscular body with a symmetrical, angular outline.", + "The German Shepherd is a large breed of dog with a muscular build, a wedge-shaped head, and erect ears.", + "A German Shepherd Dog looks like a large, muscular dog with a long muzzle and a thick, fluffy coat.", + "A German Shepherd Dog has a long, thick coat that is usually tan and black.", + "A German Shepherd Dog (GSD) is a large, muscular dog with a thick coat of fur.", + "A German Shepherd Dog has a sleek, muscular body with a large head and pointy ears.", + "The German Shepherd Dog is a large, majestic breed with a noble bearing.", + " Lean, athletic, and well-muscled, the German Shepherd is a dog of medium size with a noble, handsome head.", + "The image is of a German Shepherd Dog that is all black with a brown nose.", + "The image is of a German Shepherd Dog standing in a grassy field with its head turned to the side.", + "This image shows a German Shepherd Dog standing in a grassy field.", + "This image is of a German Shepherd Dog standing in a field.", + "The image is of a German Shepherd Dog with its head and front paws resting on a wooden fence.", + "In this image, we see a German Shepherd Dog standing in a grassy field.", + "The image is of a large, brown and black German Shepherd Dog.", + "This image is of a German Shepherd Dog who looks to be very well taken care of.", + "This image shows a German Shepherd Dog standing in a field with long, lush grass.", + "The image is of a large German Shepherd Dog with a black and brown coat.", + " Growing up with a German Shepherd DogThis image shows a German Shepherd Dog as a puppy, playing with a ball.", + "This loyal German Shepherd is always by its owner's side.", + "This is a German Shepherd Dog.", + "A German Shepherd Dog stands alert, ready to take action.", + "This is a German Shepherd Dog.", + "This picture is of a German Shepherd dog.", + "S age is a 9-month-old German Shepherd Dog who loves to play fetch and go for walks.", + "This dog is a German Shepherd Dog.", + "This is a German Shepherd Dog.", + "This is my German Shepherd, Alfie." + ], + "Dobermann": [ + "The Dobermann breed is medium sized with a sleek, smooth coat.", + "A Dobermann has a long, sleek body with pointy ears and a long tail.", + "A Dobermann has a long, thin muzzle and erect ears.", + "The Dobermann is a medium to large sized breed of domestic dog.", + "A Dobermann is a large, muscular dog with a sleek coat of black fur.", + "A Dobermann is a large, muscular dog with a short, thick coat.", + "This dog breed is medium-sized and has a sleek and muscular build.", + "Dobermanns usually have short, dark brown to black fur, with rust-colored markings on their chest, face, and legs.", + "A Dobermann has a short, smooth coat that is black, red, fawn, or blue.", + "A Dobermann has a short, sleek coat that is black, red, brown, or blue, with rust-colored markings on the face, chest, and legs.", + "Doberman Pinschers are usually among the largest of the working breeds, and they are well-known for their athletic build and their loyal, fearless nature.", + "Dobermanns are medium to large sized dogs with long legs, a long head, and a sleek coat.", + "There are a few ways to identify a Dobermann.", + "Dobermanns are a medium to large sized breed of domestic dog.", + "Size - Dobermanns are large dogs.", + "Signs that a dog is a Doberman include a sleek, muscular body; long, pointy ears; and a long, tapered snout.", + "Dobermanns are known for their loyalty, protectiveness, and obedience.", + "Dobermanns are large, powerful dogs with long, smooth coats.", + "Dobermanns are medium to large sized dogs with a long, muscular body.", + "A Dobermann can be identified by its sleek, muscular body; its long, pointy ears; and its short, black coat.", + "A Dobermann typically has a black and brown coat, although some may have a brown and tan coat.", + "A Dobermann is a medium-sized, short-coated dog with a long, thin head.", + "A Dobermann has a long, muscular body and a large, square head.", + "A Dobermann is a large dog with a long, narrow head.", + "A Dobermann is a muscular, medium-sized dog with floppy ears and a short coat.", + "A Dobermann is a large, muscular dog with a short, black coat.", + "A Dobermann is a medium to large sized dog with a muscular build.", + "Dobermanns are large, athletic dogs with short coats.", + "A Dobermann is a medium to large dog with a muscular build.", + "A Dobermann has a black and brown coat, and is a medium-sized dog.", + "This image depicts a black and tan Dobermann standing alert, with its ears perked up and its mouth open.", + "A Dobermann is a type of dog that is black and brown in color.", + "In the image, the Dobermann is standing on a grassy field with its head turned to the side.", + " pinscherThis image is of a Dobermann pinscher.", + "Image shows a large, muscular dog with short, black fur.", + "The image is of a black and tan Dobermann standing in a grassy field.", + "This image depicts a Dobermann pinscher.", + "The image is of a large, muscular dog with short black fur.", + "The image is of a black and brown Dobermann standing in a grassy field.", + "In the image, a large black and brown Dobermann is standing on a green grassy field.", + "This Dobermann is looking very elegant in its formal wear.", + " A Dobermann pinscher dog breed.", + "This is a picture of a Dobermann, a type of dog.", + " A Dobermann pinscher stands on a grassy field, looking alert and ready to run.", + " A Dobermann pinscher on alert, looking out a windowThis Dobermann is on high alert, keeping watch over its home.", + "This is a photo of a Dobermann, a breed of dog known for its loyalty and protective nature.", + "A Dobermann Pinscher stands alert, looking to the side with its ears perked up.", + "A Dobermann is a loyal and protective dog that makes a great family companion.", + "A Dobermann is a high-energy, strong-willed dog breed that requires firm and consistent training.", + "A Dobermann pinscher stands alert, ready to protect its family." + ], + "Miniature Pinscher": [ + "A Miniature Pinscher is a small, slim breed of dog.", + "A Miniature Pinscher is a small breed of dog, typically between 10 and 12 inches tall and weighing between 8 and 10 pounds.", + "Miniature Pinschers are small, slender dogs with short legs.", + "An adult Miniature Pinscher typically stands between 10 and 12.", + "A Miniature Pinscher is a small, sturdily built dog with a short, flat coat.", + "A Miniature Pinscher is a small, compact breed of dog.", + "A Miniature Pinscher is a small, compact dog with a sleek coat.", + "A miniature pinscher is a small, compact dog with a short coat.", + "A Miniature Pinscher is a small, stocky dog with a short coat.", + "A Miniature Pinscher is a small breed of dog with smooth, short hair.", + "A Miniature Pinscher is a small dog with a smooth coat, generally black, brown, or red in color.", + "By its small size, short coat, and erect ears.", + "Size is the best way to identify a Miniature Pinscher.", + "A Miniature Pinscher has a short, sleek coat that is usually red, black, or chocolate brown.", + "A Miniature Pinscher has a short coat that is reddish brown, black, or chocolate in color.", + "The best way to identify a Miniature Pinscher is by its small size, short coat, and erect ears.", + "The Miniature Pinscher is also called the Reh Pinscher and Zwergpinscher.", + "Clean-cut,anos and Compact.", + "One way to identify a Miniature Pinscher is by its small size.", + "A Miniature Pinscher is a small dog with short legs.", + "A Miniature Pinscher is a small, short-haired dog with a long body and legs.", + "The Miniature Pinscher is a small, compact dog that typically weighs between 8 and 10 pounds.", + "The Miniature Pinscher is a small, stocky dog with a short coat.", + "Miniature Pinschers are small, compact dogs that have smooth, short coats.", + "A Miniature Pinscher is a small, thin dog with short fur.", + "The Miniature Pinscher is a small breed of dog.", + "The Miniature Pinscher is a small, muscular dog with a short coat of smooth, shiny hair.", + "A Miniature Pinscher looks like a small version of a Doberman Pinscher.", + "A Miniature Pinscher looks like a small Doberman Pinscher.", + "A miniature pinscher typically has a short coat that is reddish brown, black, or a mix of the two colors.", + "The image is of a black and tan Miniature Pinscher standing on a wooden deck.", + "In the image, the Miniature Pinscher is light brown with black stripes.", + "The image is of a small, black and tan dog with a long, slender snout and erect ears.", + "The image is of a small, brown and tan dog with erect ears and a long snout.", + "The image is of a small, slender dog with short fur that is either reddish brown or black and brown in color.", + "The image is of a small, brown and black dog with pointy ears.", + "I found an image of a Miniature Pinscher on the internet that I really like.", + "In the image, the Miniature Pinscher is standing on a white background.", + "This image from the internet shows a black and tan miniature pinscher standing on a white background.", + "The image is of a small, brown and black dog with pointy ears and a long snout.", + "This Miniature Pinscher is alert and ready to play.", + "Image of a miniature pinscher.", + "This is a Miniature Pinscher.", + " A Miniature Pinscher, looking up with big brown eyes.", + "This is a Miniature Pinscher, a breed of small dog that is known for its energetic and spunky personality.", + "This little cutie is a Miniature Pinscher, also called a Min Pin.", + " \"A dog looks out of a car window.", + "A cute little Miniature Pinscher pup playfully chewing on a toy.", + "This is a Miniature Pinscher, a small breed of dog.", + "This is a Miniature Pinscher." + ], + "Greater Swiss Mountain Dog": [ + "The Greater Swiss Mountain Dog is a large, muscular dog breed with a thick, tricolored coat.", + "The Greater Swiss Mountain Dog is a large, muscular dog that is built for endurance and strength.", + "A Greater Swiss Mountain Dog is a large-sized breed of dog that was developed in the Swiss Alps.", + "The Greater Swiss Mountain Dog is a large, muscular dog with a thick, tricolored coat.", + "The Greater Swiss Mountain Dog is a large, muscular dog breed with a thick coat.", + "Adult Greater Swiss Mountain Dogs are 25 to 28 inches tall at the shoulder and weigh 100 to 130 pounds.", + "A Greater Swiss Mountain Dog is a large, shaggy dog with a thick, white coat.", + "Greater Swiss Mountain Dogs are large, muscular dogs with triangular heads, long muzzles, and black, brown, or rust-colored coats.", + "The Greater Swiss Mountain Dog is a large, sturdy breed with a thick coat of black, red, or white fur.", + "Great Swiss Mountain Dogs are large, muscular dogs with thick tri-colored coats.", + "A Greater Swiss Mountain Dog is a large work dog developed in the Swiss Alps.", + "The Greater Swiss Mountain Dog is a large, muscular dog with a black coat and white markings on the chest, muzzle, and under the tail.", + "The Greater Swiss Mountain Dog is a muscular, heavy-boned working dog.", + "There are a few ways to identify a Greater Swiss Mountain Dog.", + "The Greater Swiss Mountain Dog has a large, powerful body with a thick coat of short, dense hair.", + "Greater Swiss Mountain Dogs are large, muscular dogs with thick, tri-colored coats.", + "The Greater Swiss Mountain Dog is a large, powerful dog with a sturdy, rectangular body.", + "Greater Swiss Mountain Dogs are large dogs with sturdy bodies.", + "The Greater Swiss Mountain Dog is a large and sturdily built dog.", + "The Greater Swiss Mountain Dog is a large, powerful dog with a deep chest and well-developed muscle structure.", + "A Greater Swiss Mountain Dog is a large, muscular dog.", + "Greater Swiss Mountain Dogs are large, muscular dogs with a thick, tricolored coat.", + "A Greater Swiss Mountain Dog is a large, muscular breed of dog with a thick, black coat.", + "The Greater Swiss Mountain Dog is a large and muscular breed.", + "The Greater Swiss Mountain Dog is a large, muscular dog with a thick coat of hair.", + "Greater Swiss Mountain Dogs are large, muscular dogs with short, dense coats.", + "The Greater Swiss Mountain Dog is a large and muscular dog.", + "Greater Swiss Mountain Dogs are large, strong, and sturdy dogs.", + "Greater Swiss Mountain Dogs have a strong, muscular build and are considered to be one of the most versatile working dogs.", + "Greater Swiss Mountain Dogs have a thick, ruffled coat that is most often black with white markings.", + "A Greater Swiss Mountain Dog is a large, muscular dog breed that is black with white markings.", + "In the image, a Greater Swiss Mountain Dog stands in a grassy field, looking towards the camera.", + "The image is of a large, furry, four-legged dog with a long tail.", + "An image from the internet of a Greater Swiss Mountain Dog shows a large, furry dog with a long tail.", + "The image is of a large, furry dog with brown and white fur.", + "An image of a Greater Swiss Mountain Dog from the internet shows a large, muscular dog with black, brown, and white fur.", + "This is an image of a Greater Swiss Mountain Dog.", + "In the image, the Greater Swiss Mountain Dog is a large, muscular breed of dog standing on a green hill.", + "The image is of a Greater Swiss Mountain Dog standing on a grassy hill with mountains in the background.", + "The image is of a large, powerful-looking dog with a thick, tri-colored coat.", + "Great Swiss Mountain Dogs are known for their large size, gentle demeanor, and exceptional loyalty.", + " The Greater Swiss Mountain Dog is a large, muscular dog breed that is known for its distinct tri-colored coat.", + "This is a Greater Swiss Mountain Dog.", + " A Greater Swiss Mountain Dog taking a nap.", + "A Greater Swiss Mountain Dog lying on its back in the grass.", + "This is a picture of a Greater Swiss Mountain Dog.", + "This is a Greater Swiss Mountain Dog, a large dog breed from the mountains of Switzerland.", + "Image shows a large, furry, black and white dog.", + "The Greater Swiss Mountain Dog is a large, working breed of dog.", + " A Greater Swiss Mountain Dog standing in a field with mountains in the background." + ], + "Bernese Mountain Dog": [ + "A Bernese Mountain Dog is a large breed of dog that is muscular and heavy-boned.", + "The Bernese Mountain Dog is a large-sized breed of dog, one of the four breeds of Sennenhund-type dogs from the Swiss Alps.", + "Bernese mountain dogs are large, muscular dogs with a thick, fluffy coat.", + "Bernese Mountain Dogs are large, muscular dogs with thick fur.", + "A Bernese Mountain Dog is a large dog with a thick, long coat.", + "A Bernese Mountain Dog is a large, muscular dog breed with a thick, luxurious coat of black, white, and brown fur.", + "A Bernese Mountain Dog has a tri-colored coat of black, red, and white.", + "Large, curly-coated, Mastiff-type dog with a long, triangular head and a black, brown, and white coat.", + "The Bernese Mountain Dog is a large, muscular dog with a thick, soft coat.", + "The Bernese mountain dog is a large breed of dog that originates from the Swiss Alps.", + "A Bernese mountain dog has a long coat that is black with white and rust markings.", + "The Bernese Mountain Dog is a large, working dog breed.", + "The Bernese Mountain Dog is a large, muscular dog with a thick, long coat.", + "The Bernese Mountain Dog is a large, muscular dog with a thick, silky coat of black, white, and rust.", + "There are a few ways to identify a Bernese Mountain Dog.", + "The Bernese Mountain Dog is a large, muscular dog with a black coat and distinctive white markings on the chest and legs.", + "There are a few ways to identify a Bernese Mountain Dog.", + "The Bernese Mountain Dog is a large, sturdy working dog.", + "The Bernese Mountain Dog is a large, muscular dog breed with a thick, soft, shiny coat.", + "The Bernese Mountain Dog is a large, muscular dog with a thick, long coat.", + "Bernese Mountain Dogs are large, powerful dogs with thick, silky fur.", + "A Bernese mountain dog generally has a black coat with white and rust markings.", + "A Bernese Mountain Dog is a large and muscular dog with a thick coat of fur.", + "The Bernese Mountain Dog is a large, muscular dog with a thick coat of black, brown, and white fur.", + "The Bernese Mountain Dog is a large, muscular dog with a thick, silky coat.", + "Many people say that the Bernese Mountain Dog looks like a teddy bear.", + "The Bernese Mountain Dog is a large, computer-generated image of a black and white dog.", + "The Bernese Mountain Dog is a muscular and powerful breed.", + "A Bernese Mountain Dog is a large, black and white dog breed with a long, silky coat.", + "A Bernese Mountain Dog is a large, shaggy-coated dog with a black, brown, and white coloring.", + "A Bernese Mountain Dog is a large, muscular dog with a thick coat of black, brown, and white fur.", + "The image is of a Bernese Mountain Dog standing in a field of tall grass.", + "This image shows a Bernese Mountain Dog strapped into a harness, with a leash attached.", + "The image shows a Bernese Mountain Dog standing in front of a lake.", + "In the image, a large Bernese Mountain Dog is standing in a meadow of tall grasses and wildflowers.", + "Image shows a Bernese Mountain Dog standing on grass in a backyard.", + "The image is of a Bernese Mountain Dog standing in a meadow.", + "A Bernese Mountain Dog is a large, furry, four-legged animal with a long tail.", + "The image is of a large, furry dog with dark brown and white fur.", + "The image is of a Bernese Mountain Dog standing on a mountain path.", + "This Bernese Mountain Dog is ready to take on the day!.", + "This is a Bernese Mountain Dog.", + "a bernese mountain dog happily trots through a field.", + "This is one of the most gentle, loving, and loyal dogs you will ever meet.", + "This is Lulu, a Bernese Mountain Dog.", + "This image is of a Bernese Mountain Dog.", + "This is a Bernese Mountain Dog, a large Swiss breed known for its gentle demeanor and black, brown, and white tri-colored coat.", + "This is a Bernese Mountain Dog.", + "This is Bernie, my Bernese Mountain Dog.", + "This is our Bernese Mountain Dog, named Yogi." + ], + "Appenzeller Sennenhund": [ + "An Appenzeller Sennenhund is a large, powerful Swiss herding dog.", + "An Appenzeller Sennenhund is a medium sized breed of dog that is part of the Swiss Mountain Dog family.", + "An Appenzeller Sennenhund is a medium-sized, short-coated Swiss Mountain Dog.", + "An Appenzeller Sennenhund is a medium sized, short-coated breed of dog.", + "The Appenzeller Sennenhund is a medium-sized breed of dog originating in the canton of Appenzell in Switzerland.", + "The Appenzeller Sennenhund is a medium-sized dog that is slightly longer than it is tall.", + "An Appenzeller Sennenhund is a medium sized dog with a thick coat of black, brown, and white fur.", + "Appenzeller Sennenhunds are large, muscular dogs with long legs and a thick, smooth coat.", + "The Appenzeller Sennenhund is a medium sized dog with a thick, rust colored coat.", + "The Appenzeller Sennenhund is a Swiss breed of dog of the medium-to-large size.", + "The Appenzeller Sennenhund is a large, muscular dog with a thick, medium-length coat.", + "The Appenzeller Sennenhund is a large, muscular dog with a thick, medium-length coat that is black with tan markings on the face, chest, and legs.", + "The Appenzeller Sennenhund is a large, alert, sturdily built dog with a distinctive tricolor coat.", + "The Appenzeller Sennenhund is a Swiss mountain dog that is medium to large in size.", + "The Appenzeller Sennenhund is a medium-sized, short-coated dog with a tricolored coat.", + "An Appenzeller Sennenhund is likely to have a long, thick coat that is either black, black and white, or brown and white.", + "One way to identify an Appenzeller Sennenhund is by its tri-colored coat, which is typically black, tan, and white.", + "An Appenzeller Sennenhund can be identified by its unique tri-colored coat, which is black, brown, and white.", + "An Appenzeller Sennenhund is a large, shaggy-coated breed of dog native to the Appenzell region of Switzerland.", + "An Appenzeller Sennenhund is a type of Swiss Mountain Dog.", + "The Appenzeller Sennenhund is a dog that typically has a tricolor coat.", + "The Appenzeller Sennenhund is a large, muscular dog with a thick coat.", + "Modern Appenzeller Sennenhunds are large, tricolored dogs.", + "The Appenzeller Sennenhund is a medium sized dog with a muscular build.", + "An Appenzeller Sennenhund is a medium-sized breed of dog that originated in Switzerland.", + "The Appenzeller Sennenhund is a large, solidly built dog with a long head and silky, medium-length coat.", + "The Appenzeller Sennenhund is a muscular, medium-sized breed of dog.", + "A typical Appenzeller Sennenhund has a rectangular body shape with a long, thick coat.", + "The Appenzeller Sennenhund is a medium-sized, muscular dog with a tri-colored coat.", + "Appenzeller Sennenhunds are medium-sized swiss mountain dogs that weigh between 35-70 pounds.", + "Appenzeller Sennenhund are working dogs from the Appenzeller region of Switzerland.", + "The image is of a brown and white Appenzeller Sennenhund dog with short fur.", + "This image from the internet shows a beautiful Appenzeller Sennenhund with a long, thick coat of fur.", + "The image is of a small, brown and white dog standing on a grassy hill.", + "The image is of a medium-sized, tricolored dog with a long, dense coat.", + "I found an image of an Appenzeller Sennenhund on the internet that I really like.", + "The Appenzeller Sennenhund is a medium to large-sized breed of dog originating in the Appenzell region of Switzerland.", + "The image is of a Appenzeller Sennenhund dog breed.", + "In the image, the Appenzeller Sennenhund is a medium-sized, short-haired black and white dog with a long tail.", + "The image is of a small, brown and white dog with long fur.", + "This is an Appenzeller Sennenhund, a breed of dog originating in the Alps of Switzerland.", + "This is an Appenzeller Sennenhund, a versatile herding dog breed from Switzerland.", + "This Appenzeller Sennenhund is a loyal and friendly breed of dog that is perfect for families.", + "A Swiss mountain dog breed, the Appenzeller Sennenhund is known for its loyalty, athleticism, and courage.", + "This is an Appenzeller Sennenhund, a breed of dog from Switzerland.", + " A smiling Appenzeller Sennenhund with a black and white coat.", + "Appenzeller Sennenhunds are a versatile breed of dog, used for herding, guarding, and carting.", + "This is an Appenzeller Sennenhund, a breed of dog from Switzerland.", + "This is a picture of an Appenzeller Sennenhund, a type of Swiss mountain dog.", + "An Appenzeller Sennenhund is a dog breed from the Swiss Alps." + ], + "Entlebucher Sennenhund": [ + "An Entlebucher Sennenhund is a small shepherd dog with a short coat that is black, tan, and white in color.", + "The Entlebucher Sennenhund is a small to medium-sized, short-coated dog.", + "An Entlebucher Sennenhund is a medium-sized, black and tan Swiss herding dog.", + "An Entlebucher Sennenhund is a Swiss Mountain Dog with a light brown coat and black mask.", + "The Entlebucher Sennenhund is a medium-sized breed of dog that looks like a small cow.", + "An Entlebucher Sennenhund is a medium-sized, short-haired dog with a broad head and chest.", + "The Entlebucher Sennenhund is a short-haired, medium-sized dog with a square build.", + "An Entlebucher Sennenhund is a small to medium sized herding dog.", + "The Entlebucher Sennenhund is a compact, muscular dog with a short, dense coat.", + "An Entlebucher Sennenhund is a medium sized herding dog with a black, tan, and white coat.", + "An Entlebucher Sennenhund can be identified by its short, stumpy legs, its small size, and its black, tan, and white coat.", + "Entlebucher Sennenhunds are easily identified by their black and white markings.", + "The Entlebucher Sennenhund is a medium-sized, short-coated dog breed.", + "The Entlebucher Sennenhund is a tricolored, short-haired dog of medium size.", + "An Entlebucher Sennenhund is a herding dog from Switzerland.", + "An Entlebucher Sennenhund is a medium-sized dog with a sturdy body.", + "The Entlebucher Sennenhund is a small to medium-sized dog breed that is easily distinguished by its tricolor coat.", + "An Entlebucher Sennenhund is a herding and working dog breed that originates from the Entlebuch Valley in Switzerland.", + "The Entlebucher Sennenhund is a Swiss-German mountain dog breed.", + "The Entlebucher Sennenhund is a medium-sized dog with a short, dense coat.", + "An Entlebucher Sennenhund is a small, compact, athletic dog with a short, dense coat that is black with white markings.", + "An Entlebucher Sennenhund is a small, compact dog with a short, dense coat.", + "The Entlebucher Sennenhund is a medium-sized dog breed with a short, dense coat that is black with white markings.", + "The Entlebucher Sennenhund is a small- to medium-sized herding dog, standing 18 to 20 inches at the shoulder and weighing 33 to 66 pounds.", + "An Entlebucher Sennenhund is a small to medium-sized mountain dog.", + "An Entlebucher Sennenhund is a small, muscular dog with a short, dense coat.", + "This breed is a medium-sized, short-coated dog.", + "The Entlebucher Sennenhund is a medium-sized, short-coated dog with a muscular build.", + "The Entlebucher Sennenhund is a small to medium-sized herd dog with a short, dense coat.", + "The Entlebucher Sennenhund, also known as the Entel, is a medium sized, short-haired breed of dog that originated in the mountains of central Switzerland.", + "The internet image shows a black, tan, and white Entlebucher Sennenhund herding a flock of sheep.", + "I found an image of an Entlebucher Sennenhund on Google Images.", + "The image shows a brown and white short-haired dog with pointy ears and a long tail.", + "The Entlebucher Sennenhund is a medium-sized herding dog with a short, dense coat of black, tan, and white.", + "The image is of a brown and white dog standing on a grassy hill.", + "An image of an Entlebucher Sennenhund from the internet shows a medium-sized, short-coated dog with a black, brown, and white markings.", + "This image is of an Entlebucher Sennenhund dog breed.", + "The Entlebucher Sennenhund is a large, muscular dog with a thick, shaggy coat.", + "The image shows a brown and white Entlebucher Sennenhund standing in a grassy field.", + "This image shows an Entlebucher Sennenhund standing in a field of tall grass.", + "This is an Entlebucher Sennenhund, a working dog breed from the Swiss Alps.", + " A watchdog with a heart of goldThis watchdog may be small, but he has a heart of gold.", + " A close up of a black, brown, and white Entlebucher Sennenhund dog outdoors.", + "This image shows an Entlebucher Sennenhund, a herding and working dog breed from the Swiss Alps.", + "This is an Entlebucher Sennenhund, a breed of dog native to the Swiss Alps.", + "The Entlebucher Sennenhund is a small, agile Swiss mountain dog.", + "The Entlebucher Sennenhund is a loyal and protective breed of dog, making it the perfect companion for families.", + "This is an Entlebucher Sennenhund, a breed of dog originating in the Swiss Alps.", + " A happy Entlebucher Sennenhund dog sitting in a meadow.", + "This is an Entlebucher Sennenhund, a rare breed of dog native to the Swiss Alps." + ], + "Boxer": [ + "A boxer typically has a short coat that is fawn, brindled, or black with white markings.", + "A Boxer looks like a short-haired, large-boned dog with a square head.", + "A Boxer is a medium to large sized dog with a compact, muscular build.", + "A Boxer is a stocky, muscular dog with a short coat.", + "Boxers are muscular, stocky dogs with short, square skulls and broad jaws.", + "Boxers are a medium-sized, short-haired breed of dog, with a smooth coat, developed in Germany.", + "A Boxer is a large, muscular breed of dog with short fur that is typically fawn or brindled in color, with white markings on the face, chest, and paws.", + "A boxer is a large, muscular dog with a short coat.", + "A boxer is a medium-sized, short-haired breed of dog, developed in Germany.", + "Boxers are a type of dog that are typically medium to large in size.", + "Generally, a Boxer has a short coat that is fawn or brindle colored, with a white chest and feet.", + "A boxer is a type of dog with a short, square muzzle and a wide jaw.", + "The Boxer is a recognizable breed of dog with its short coat, muscular body, and square head.", + "Boxers typically have short coats that are fawn, brindled, or white.", + "Tag.", + "There are a few ways to identify a boxer.", + "The Boxer is a medium to large, short-haired breed of dog, developed in Germany.", + "The Boxer is a medium-sized, short-haired breed of dog, developed in Germany.", + "A boxer is a breed of stocky, medium-sized, short-haired dog with a smooth coat, muscular build, square jaw, and short muzzle.", + "A boxer is a short-haired breed of domestic cat with a square build and short legs.", + "The Boxer is a medium to large sized, short-haired breed of dog, with a smooth coat.", + "Most Boxers have a short, smooth coat that is fawn, brindled, or black and white.", + "A Boxer is a large and powerful dog with a short coat.", + "A Boxer typically has a short coat that is fawn or brindled with a white chest and muzzle.", + "A great boxer has a short, close coat that is fawn or brindled with a black mask.", + "A Boxer typically has a short, sleek coat that is fawn, brindle, or black and white in color.", + "Boxers have short, smooth hair and have very strong, muscular bodies.", + "A boxer typically has a short coat that is smooth to the touch.", + "A Boxer typically has a short coat that is fawn or brindled with a white chest and belly.", + "A boxer typically has a short coat that is smooth and shiny.", + "In the image, the boxer is a light brown color with white markings.", + " dogThis dog is large and muscular, with a short coat of fur that is either black, brown, or white.", + "A boxer is a breed of dog, and the image shows a brown and white dog with short fur.", + "The image is of a black boxer standing in a fighting stance, with his fists up and his head down.", + "There is an image of a boxer on the internet that is very muscular and has a mean look on its face.", + "In the image, the boxer is a light brown color with a black mask.", + "The image is of a light brown boxer with a white chest and muzzle.", + "I found an image of a boxer on the internet that I really liked.", + " dogAn image of a boxer dog from the internet might show a Brown and white boxer dog standing in a grassy field.", + ", describe the imageIn the image, a Boxer is standing in a grassy field, with a white picket fence in the background.", + "I'm a boxer, not a fighter.", + "A boxer looks in the mirror before a fight.", + "A boxer taking a break from trainingBoxers are known for their intense training regimes and their dedication to their sport.", + "\"My favorite thing to do is lay in the sun and dream about chasing rabbits.", + "Boxers are a popular breed of dog known for their loyalty, intelligence, and playful nature.", + "A boxer stands in the ring, fists raised, ready to fight.", + "A boxer stands in the ring, ready to fight.", + "playful boxer.", + " A boxer dog stands in a boxing ring with one paw up.", + "MyBoxerIsTheBest." + ], + "Bullmastiff": [ + "The Bullmastiff is a large and powerful breed of domestic dog, with a short, stiff coat in red, fawn, brindle or black, and a large, square head.", + "A bullmastiff is a large, powerful dog with a short, square muzzle.", + "A Bullmastiff is a large, short-haired dog with a wide head, big eyes, and a short muzzle.", + "A Bullmastiff is a large, powerful dog with a short, dense coat.", + "A Bullmastiff is a large, short-haired dog with a massive head and a muscular body.", + "The Bullmastiff is a large breed of domestic dog.", + "A Bullmastiff looks like a large, muscular, short-haired dog with a black, brindle, or red coat.", + "The Bullmastiff breed is large and powerful, with a short muzzle and an loyal, alert expression.", + "_The Bullmastiff is a large, short-coated dog breed.", + "A Bullmastiff is a large, solidly built dog with a short, Smooth coat.", + "The Bullmastiff is a large, short-faced breed of domestic dog with a solid build.", + "Bullmastiff's are a large, short-coated dog with a solid build.", + "The easiest way to identify a Bullmastiff is by its large size and short coat.", + "Bullmastiffs are large, muscular dogs with short, dense coats.", + "The Bullmastiff is a large and very powerful dog that has a short, thick coat that is typically fawn, brindle, or red in color.", + "Bullmastiffs have short, dense coats that are usually fawn, red, or brindle.", + "Some physical characteristics of a Bullmastiff include a large and powerful build, a short and stiff coat, and a large head.", + "Bullmastiffs are large, powerful dogs with short muzzles and broad heads.", + "The Bullmastiff is a large, short-haired, muscular dog with a wrinkled face.", + "A Bullmastiff is a large, powerful dog with a short coat.", + "A bullmastiff is a large, muscular dog with a short coat.", + "A typical Bullmastiff is a large, muscular dog with a short coat.", + "A Bullmastiff is a large, short-haired dog with a stocky build.", + "A Bullmastiff is a large breed of domestic dog.", + "A Bullmastiff looks like a large, muscular dog with a short, thick coat.", + "A Bullmastiff is a large dog with a short, thick coat.", + "A Bullmastiff is large, muscular, and powerful.", + "A Bullmastiff looks like a large, muscular dog with a short coat.", + "A Bullmastiff typically weighs between 100 and 130 pounds and measures between 24 and 27 inches tall at the shoulder.", + "A Bullmastiff is a large breed of domestic dog.", + "The image is of a large, stocky dog with a short, brindle coat.", + "The image is of a large, powerful dog with short, fur that is mostly brown with some black markings.", + "A image of a Bullmastiff from the internet shows a large, muscular dog with short, brown fur.", + "The image shows a light brown Bullmastiff with a short coat.", + "This image is of a Bullmastiff.", + "An image from the internet of a Bullmastiff shows a large, stocky dog with a short, dark coat.", + "The image is of a large, muscular dog with short, coarse fur that is brown and black in color.", + "The image is of a large, muscular dog with short, brown fur.", + "There is an image of a Bullmastiff on the internet that looks like a very large, muscular dog.", + "The image is of a large, stocky dog with a short, smooth coat.", + "This is a Bullmastiff, a loyal and protective dog breed.", + "The Bullmastiff is a large dog that was bred to protect property from poachers.", + "A Bullmastiff looks like a large, powerful dog, and it is.", + "This vicious-looking Bullmastiff is actually quite gentle and loving.", + "This is a Bullmastiff, a large and powerful dog breed.", + " A Bullmastiff dog standing in a grassy field.", + "This is a Bullmastiff, a large and powerful dog breed.", + "A Bullmastiff dog looming large and in charge.", + "A Bullmastiff lying on its side on a grassy field.", + "This Bullmastiff is an excellent example of the breed." + ], + "Tibetan Mastiff": [ + "A Tibetan Mastiff is a large, powerful dog with a thick coat.", + "A Tibetan Mastiff will have a thick coat that is usually black, brown, or tan in color.", + "A Tibetan Mastiff is a large, muscular dog with a thick, Tangut coat.", + "A Tibetan Mastiff is a large, furry dog with a big head and a fluffy tail.", + "A Tibetan mastiff is a large, muscular dog with a thick coat of fur.", + "A Tibetan Mastiff is a large, furry dog with a long snout and droopy ears.", + "The Tibetan Mastiff is a large, muscular dog with a thick coat.", + "A Tibetan Mastiff is a large, furry dog with a thick coat that can be either black, brown, or gray.", + "The Tibetan Mastiff is a massive and muscular dog with a thick coat.", + "A Tibetan Mastiff is a giant breed of dog that can weigh up to 200 pounds.", + "The best way to identify a Tibetan Mastiff is by its thick fur, which can be either black, brown, or cream colored.", + "The Tibetan Mastiff is a large, powerfully built dog with a reputation for being fiercely loyal to its family.", + "Tibetan Mastiffs are large dogs with a thick coat of fur.", + "The Tibetan Mastiff is a large and powerful dog with a thick coat.", + "A Tibetan Mastiff is a large, long-coated dog that looks like a cross between a lion and a bear.", + "Tibetan Mastiffs are a large breed of dog with a thick coat.", + "There are a few ways to identify a Tibetan Mastiff.", + "\"The Tibetan Mastiff is a massive dog with a broad head, large bones, and a double coat.", + "The Tibetan Mastiff is a large, fluffy dog with a thick coat.", + "There are several ways to identify a Tibetan Mastiff.", + "A Tibetan Mastiff is a large, shaggy dog with a thick coat that can be any color.", + "A Tibetan Mastiff typically has a large, muscular body with a thick coat of fur.", + "A Tibetan Mastiff is a large dog with a thick coat of fur.", + "The Tibetan Mastiff is a large, shaggy dog.", + "A Tibetan Mastiff is a large, muscular dog with a thick coat of fur.", + "Generally, a Tibetan Mastiff is large and powerfully built, with a wide head, rounded ears, and a long, thick coat.", + "A Tibetan Mastiff is a large dog with a thick coat.", + "Most Tibetan Mastiffs are brown, black, or a combination of the two colors.", + "Tibetan Mastiffs are very large dogs, with males standing up to 30 inches tall at the shoulder.", + "A Tibetan Mastiff typically has a heavy, thick coat that is black, brown, or gray.", + "The image is of a large, brown and black dog with a thick coat of fur.", + "The image is of a large, fluffy, tan dog with black markings.", + "The image is of a large, imposing dog with a thick coat of fur.", + "A Tibetan Mastiff stands in a grassy field, looking off into the distance.", + "A Tibetan Mastiff is a large, furry dog with a long, thick coat of fur.", + "This image is of a Tibetan Mastiff standing in a field of tall grass.", + "The image is of a large, brown and black Tibetan Mastiff dog with a thick coat of fur.", + "The image is of a large, stocky dog with a thick, off-white coat.", + "The image shows a Tibetan Mastiff dog standing on a mountainside.", + "The image is of a large, light brown Tibetan Mastiff with a black mask around its eyes.", + "This Tibetan Mastiff is a loyal and protective dog breed.", + "Tibetan Mastiff lounging in the sun.", + "Tibetan Mastiffs are known for their loyal and protective nature.", + " A large, fluffy Tibetan Mastiff dogTibetan Mastiffs are a large, fluffy breed of dog native to Tibet.", + "This is a Tibetan Mastiff, one of the largest and most ancient dog breeds in the world.", + "This magnificent creature is a Tibetan Mastiff, one of the world's largest and most ancient dog breeds.", + "This is a Tibetan Mastiff, a large and loyal dog breed that hails from the mountains of Tibet.", + " A Tibetan Mastiff looking regal on a mountainside.", + "The Tibetan Mastiff is a large, powerful dog native to the Tibetan Plateau in Asia.", + "This is a Tibetan Mastiff, one of the most ancient and largest breeds of dogs in the world." + ], + "French Bulldog": [ + "Most French Bulldogs have a short, smooth coat that is easy to care for.", + "There are many different types of French Bulldogs, but most have short, compact bodies and heads, with round, dark eyes.", + "A French Bulldog typically has a short, stocky build with a large head and bat-like ears.", + "A French Bulldog has a short head and muzzle with a square, flat forehead.", + "a French Bulldog typically has a large head, short snout, and round, erect ears.", + "A French Bulldog has a short, stout body with a large, square head.", + "A French Bulldog has a short, square muzzle and large, round eyes that are set far apart.", + "A French Bulldog typically has a short, stocky build with a large head and bat-like ears.", + "French Bulldogs are small, stocky dogs with large, square heads.", + "A French Bulldog typically has a short, wrinkled snout, and large, erect ears.", + "One way to identify a French Bulldog is by its small size and large, pointy ears.", + "Signs that a dog may be a French Bulldog include its small size, large ears, short muzzle, and stocky build.", + "A French Bulldog can be identified by its short, stocky build; large, round head; and small, pointy ears.", + "A French Bulldog can be identified by its small, stocky build; large, bat-like ears; and short, snub nose.", + "Their short muzzles, large ears, and muscular bodies are distinctive.", + "There are a few key features that French Bulldogs have that help to distinguish them from other dog breeds.", + "French Bulldogs have a short, stocky build with a large head and bat-like ears.", + "By its signature \"bat ears,\" compact build, and muscular frame.", + "French Bulldogs have a characteristic bat-like appearance, with large, round ears, a flat face, and a short snout.", + "A French Bulldog has a short-snout, bat-like ears, and a muscular build.", + "French Bulldogs are small, bat-eared dogs with short muzzles.", + "A French Bulldog has a round head, small, upright ears, a square jaw, and a short, stocky body.", + "French Bulldogs have a distinctive appearance.", + "A French Bulldog has a broad, square head and a short snout.", + "The French Bulldog has a short, stocky build and a large, square head.", + "A French Bulldog has a large, square head with erect ears and a short, stout muzzle.", + "A French Bulldog has a large, square head and a short, snub nose.", + "French Bulldogs have a brachycephalic (squished-face) appearance and tend to be smaller than other types of Bulldogs.", + "A French Bulldog has a large head, bat ears, a wide mouth, and a stocky body.", + "There are many different types of French Bulldogs, but they all share some common features.", + "This image is of a small, stocky dog with a large head.", + "This image is of a French Bulldog with its tongue sticking out.", + "In the image, a French Bulldog is lying on a white bed with its head tilted to the side.", + "This image is of a French Bulldog with brown and white fur.", + "This image is of a French Bulldog lying down on a white couch.", + "The breed is small and muscular with heavy bone structure, a smooth coat, a short face and trademark \"bat\" ears.", + "There is an image on the internet of a French Bulldog that is brown and white.", + "I found an image of a French Bulldog on the internet that I thought was really cute.", + "This image is of a small, brown and white French Bulldog.", + "There is an image on the internet of a French Bulldog that is lying down on its back with its legs in the air.", + "This is one of the most popular dog breeds in the world.", + "This is a picture of a French Bulldog.", + "This French Bulldog is so cute!.", + "This is a French Bulldog.", + "This is one happy pup!.", + "This is a French Bulldog.", + "This is a French Bulldog.", + "A French Bulldog stares lovingly at the camera, its short, wrinkled snout and large, pointed ears perched atop its small, round head.", + "This is a picture of a French Bulldog.", + "I'm a French Bulldog, and I'm as cute as can be!." + ], + "Great Dane": [ + "A Great Dane is a large, muscular dog with a short, glossy coat.", + "Great Danes are large, muscular dogs with long legs and short, smooth coats.", + "Great Danes are large, short-haired dogs with long, tapered muzzles.", + "A Great Dane has a large, muscular body with a long snout.", + "A Great Dane is a large, muscular dog that is typically between 28 and 34 inches tall and weighs between 110 and 175 pounds.", + "Great Danes are large, short-haired dogs with long faces.", + "Great Danes are large, athletic dogs with short coats.", + "Great Danes are large, short-haired dogs with long necks, square jaws, and large, erect ears.", + "A Great Dane typically looks like a large, muscular dog with a long snout, floppy ears, and a short coat.", + "A Great Dane looks like a large, muscular dog with a short coat.", + "The Great Dane is a large, short-haired breed of domestic dog with a strong build and large, elegant head.", + "The most distinguishing feature of a Great Dane is its large size.", + "A Great Dane is a large, short-haired breed of dog.", + "Great Danes are a large, short-haired breed of dog.", + "Great Danes are very large dogs.", + "A Great Dane has a short coat that is yellow, black, brindle, or blue with white markings.", + "A Great Dane can be identified by its large size, short coat, and long head.", + "Great Danes are distinguished by their large size.", + "Great Danes are a large breed of dog that are often used as working dogs.", + "Great Danes are large, short-haired dogs with tapered muzzles, pointy ears, and long legs.", + "A Great Dane is a large, muscular dog with a long nose, square jaw, and large, pointed ears.", + "Great Danes have short, thick, and shiny coats.", + "A Great Dane looks like a large-sized German Mastiff.", + "A Great Dane looks like a large, muscular dog with a long nose and short fur.", + "A Great Dane typically has a short, thick coat that is either fawn, brindled, black, or blue.", + "Great Danes are large, athletic dogs with short, smooth coats.", + "A Great Dane looks like a large, powerful dog with a strong body, a large square head, and short ears.", + "A Great Dane typically has a short, coarse coat that is black with tan markings.", + "Great Danes are large, short-haired dogs with long bodies and short legs.", + "Great Danes are very large, muscular dogs.", + "This image is of a Great Dane standing in a grassy field.", + "A Great Dane is a large, short-haired dog with a long face, large ears, and a black, brown, blue, or fawn coat.", + "The image is of a large dog with short, dark fur.", + "The image shows a Great Dane with a large head, long legs, and a short coat.", + "This image depicts a large, muscular Great Dane with short, light-colored fur.", + "A large dog with a short coat of fur that is black and white in color.", + "The image is of a large, light-colored Great Dane dog with short fur.", + "A Great Dane is a large breed of dog that typically stands over 30 inches tall at the shoulder.", + "An image of a Great Dane from the internet might show a large, muscular dog with short fur that is either black, blue, brindle, fawn, or harlequin in color.", + "The image is of a large, black Great Dane.", + "A Great Dane looks out over a field.", + "This dog is a Great Dane.", + "This is a Great Dane.", + "At nearly three feet tall at the shoulder and weighing up to 200 pounds, the Great Dane is one of the world\u2019s tallest dog breeds.", + "A Great Dane stands on a grassy field, looking at the camera with an alert expression.", + "This Great Dane looks pretty grumpy!.", + "The Great Dane is a large and powerful dog that was originally bred for hunting.", + "A Great Dane standing in a grassy field.", + "A Great Dane stares out a window with a melancholy expression.", + "\"No, I won't fit in your purse." + ], + "St. Bernard": [ + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "There are several ways to identify a St.", + "A St.", + "A St.", + "One way to identify a St.", + "A St.", + "A St.", + "One way to identify a St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + " Saint Bernards are large, drooling dogs with long coats.", + "A St.", + "A St.", + "A St.", + "A St.", + "A St.", + "An image of a St.", + "This image is of a St.", + "In the image, a St.", + "The image is of a large, brown and white Saint Bernard dog standing on a dirt road in front of a large, dark mountain.", + "In the image, a large St.", + " dogThe image is of a large, furry St.", + "In the image, a St.", + "In the image, the St.", + "An image of a St.", + "In the image, a St.", + " Saint Bernards were originally bred for rescue purposes in the Swiss Alps.", + "\";A St.", + "\"A St.", + "This is a St.", + "This is a St.", + "This is a St.", + "The St.", + "This St.", + " St.", + "St." + ], + "husky": [ + "Siberian Huskies are easily recognizable by their thick fur, which is often white or light-colored with brown, gray, or black markings.", + "A husky is a type of dog that is usually used for sledding.", + "A husky is a type of dog that typically has thick fur, a pointed muzzle, and erect ears.", + "Huskies are a type of dog that typically have pointy ears, thick fur, and blue eyes.", + "A husky is a type of dog that typically has a thick coat of fur, often white or gray in color.", + "A husky is a type of dog that typically has a thick coat of fur, erect ears, and a pointed muzzle.", + "A husky is a type of dog that is usually medium to large in size.", + "A husky is a wolf-like dog with a thick coat of fur.", + "A husky is a type of dog that typically has a thick coat of fur, which can be either white, black, brown, or a mix of these colors.", + "A husky is a medium to large sized dog with a thick coat of fur.", + "Huskies are easy to identify because of their thick coats, which can be either white, black, gray, or a mix of these colors.", + "A husky is a type of dog that typically has a thick coat of fur, erect ears, and a pointed muzzle.", + "A husky is a dog that is used for sledding.", + "Huskies are easily identified by their thick fur, pointed ears, and blue or green eyes.", + "A husky is a type of dog that is used for sledding.", + "The best way to identify a husky is by its thick coat of fur, which is usually white, gray, or black and may have brown or red markings.", + "Some ways that you can identify a husky are by their thick fur, their pointy ears, and their bushy tail.", + "Huskies are a type of dog that is typically identified by their thick fur, pointy ears, and blue eyes.", + "Husky dog breeds are easily identifiable by their thick fur coats, bushy tails, and tall stature.", + "Huskies are typically identified by their thick fur coats, which can be either black and white, red and white, gray and white, or pure white.", + "There is no single answer to this question since there is considerable variation within the breed.", + "A husky is a member of the Spitz family of dogs.", + "Huskies are a type of dog that typically has a thick coat of fur, pointed ears, and a bushy tail.", + "A husky is a type of dog that has a thick fur coat and typically weighs between 35 and 60 pounds.", + "A husky is a type of dog that typically has a thick coat of fur, pointy ears, and blue or brown eyes.", + "A husky is a type of dog with thick fur that is often white and brown.", + "A husky is a type of dog that typically has a thick coat of fur, pointed ears, and a bushy tail.", + "Ahusky is a type of dog that is used for sledding.", + "A husky is a type of dog with a thick fur coat.", + "A husky is a type of dog with a thick coat of fur.", + " puppyThe image is of an adorable husky puppy with blue eyes.", + "This husky has pale blue eyes and a thick coat of white fur.", + "The image is of a husky with blue eyes and a white coat.", + "The image is of a husky with blue eyes.", + "A husky is a type of dog that is commonly used as a sled dog.", + "A husky is a type of dog that is used for sledding.", + "An image from the internet of a husky is a picture of a large, furry dog with blue eyes.", + "This image from the internet shows a husky dog with blue eyes and thick fur.", + "The image is of a light brown and white husky with blue eyes.", + "This image from the internet shows a husky dog standing in the snow.", + "This is a husky.", + "This husky is playing fetch with its owner.", + "This is a photo of a husky dog.", + " \"Siberian Husky playing in the snow.", + "This is a picture of a husky.", + "This is a husky dog.", + "A Siberian husky looking up at the camera with its tongue out.", + "A Husky dog with blue eyes looking to the side.", + "A whitehusky dog with blue eyes and a black nose.", + "This is a picture of a husky." + ], + "Alaskan Malamute": [ + "An Alaskan Malamute is a large, athletic dog with a thick coat of fur.", + "\nThe Alaskan Malamute is a large, powerful dog with a thick coat of fur that protects it from the cold weather.", + "An Alaskan Malamute typically has a thick, double-coat that is gray and white, or brown and white.", + "The Alaskan Malamute is a large, powerfully built dog with a thick coat of fur.", + "An Alaskan Malamute is a large, wolf-like dog with a thick coat of fur.", + "An Alaskan Malamute is a large, powerful dog with a thick coat of fur.", + "Alaskan malamutes are large, powerfully built dogs with thick fur coats.", + "Alaskan Malamutes are medium to large sized dogs with a thick, fluffy coat.", + "An Alaskan Malamute is a large, powerful dog with a thick coat of fur.", + "The Alaskan Malamute is a large, wolf-like dog.", + "The Alaskan Malamute is a large, wolf-like dog with a thick coat of fur.", + "An Alaskan Malamute is a stocky, thick-coated dog with a wedge-shaped head.", + "The Alaskan Malamute is a large breed of dog with a thick coat of fur.", + "You can identify an Alaskan Malamute by its thick, double coat of fur, which is usually white, grey, or brown.", + "An Alaskan Malamute is a large, thick-coated dog with a bushy tail that is often held over the back.", + "Some ways you can identify an Alaskan Malamute is by their size, they are one of the largest dog breeds.", + "Alaskan Malamutes are a large, powerful breed of dog with a thick coat of fur.", + "An Alaskan malamute is a large breed of domestic dog originally bred for hauling heavy freight as a sled dog.", + "An Alaskan Malamute can be distinguished from other dog breeds by its large size, thick fur, and pointy ears.", + "Alaskan Malamutes are large dogs with thick, fluffy coats.", + "An Alaskan Malamute has a thick, double coat that is usually gray and white.", + "Alaskan malamutes have a thick, fluffy coat and a pointed snout.", + "Image of an Alaskan Malamute: \nhttp://www.", + "An Alaskan Malamute is a large, powerful dog with a thick coat of fur.", + "The Alaskan Malamute has a thick coat of fur that helps protect it from the cold weather.", + "An Alaskan Malamute is a type of dog that is used for sledding.", + "The Alaskan Malamute is a large, burly dog with a thick coat of fur.", + "Alaskan malamutes have a thick coat of fur that helps protect them from the cold weather.", + "The Alaskan Malamute is a large, powerful, and thick-coated dog.", + "An Alaskan Malamute is a large dog with a thick coat of fur.", + "This image is of an Alaskan Malamute dog lying down on a grassy field with its tongue hanging out.", + "The image is of a large, brown and white furry dog with thick fur and a bushy tail.", + "The Alaskan Malamute is a large cat-like creature with pointy ears and a long bushy tail.", + "An Alaskan Malamute is a large, wolf-like dog with a thick coat of fur.", + "The image is of a large, fluffy white dog with brown markings on its face.", + "An image of an Alaskan Malamute from the internet shows a large, furry dog with a thick coat of fur.", + "The image is of a large, fluffy white dog with brown markings on its face.", + "The image is of a medium-sized dog with thick, white fur.", + " The image is of an Alaskan Malamute dog standing in snow with its head turned to the side.", + "The image is of a large, hairy dog with a thick coat of fur.", + "This is an Alaskan Malamute, a type of dog that was originally bred for sledding.", + "Alaskan Malamute looking out over the snowy landscape.", + "A beautiful Alaskan Malamute in the snow.", + "An Alaskan Malamute looks on as a group of mushers prepare for the Iditarod Trail Sled Dog Race.", + "The Alaskan Malamute is a type of arctic dog that is used for sledding.", + "Alaskan Malamute dog in a winter landscape.", + "An Alaskan Malamute looks out over the snow-covered landscape.", + " A majestic Alaskan Malamute in the snow.", + "This is an Alaskan Malamute, a type of arctic dog.", + "This is an Alaskan Malamute, a large and powerful dog breed that was originally bred for sledding." + ], + "Siberian Husky": [ + "A Siberian Husky typically has a thick coat of fur that can be white, black, gray, or a combination of those colors.", + "A Siberian Husky is a dog that has a thick coat of fur that is typically white, black, or gray.", + "Siberian Huskies are relatively small dogs with wolf-like features.", + "A Siberian Husky is a medium-sized, working dog breed that originated in northeast Asia.", + "A Siberian Husky is a medium-sized dog with a coat of thick, fluffy fur.", + "Most Siberian Huskies have a thick coat of fur that is mostly white with black and grey markings.", + "Siberian Huskies are medium sized dogs with thick fur coats.", + "A Siberian Husky typically has a thick fur coat that is gray and white, black and white, or red and white.", + "A Siberian Husky is a medium-sized dog with a thick coat of fur.", + "A Siberian Husky is a medium sized dog with a thick coat of fur.", + "Siberian Huskies are bred to look like wolves, and they have many of the same physical characteristics.", + "The AKC describes the Siberian Husky's appearance as \"bred for function rather than form,\" meaning that their strengths and abilities are more important than their looks.", + "Some physical characteristics that may help you to identify a Siberian Husky are their erect ears, thick fur coats, and plumed tails.", + "Siberian Huskies have a thick double coat of fur that can be any combination of white, black, gray, and copper.", + "A Siberian husky typically has a thick coat of fur that is black and white, though it can also be gray or red.", + "A Siberian Husky is a medium-sized dog with a thick coat of fur.", + "Some physical characteristics of a Siberian Husky are that they have a thick coat of fur, erect ears, and almond shaped eyes.", + "When looking at a Siberian Husky, you should look for certain physical characteristics.", + "There are many ways to identify a Siberian Husky.", + "The Siberian Husky is a medium-sized, dense-coated working dog breed.", + "A Siberian Husky is a type of dog that has a thick coat of fur.", + "A Siberian husky is a medium-sized working dog breed.", + "Siberian Huskies are often described as \"wolf-like\" in appearance, but they are not related to wolves.", + "The Siberian Husky is a medium-sized, dense-coat working dog breed that originated in Northeast Asia.", + "A Siberian Husky is a working dog breed that originated in Siberia.", + "A Siberian Husky is a type of dog that typically has a thick fur coat, pointed ears, and blue eyes.", + "A Siberian Husky has a thick coat of fur that is typically white, gray, or black and white.", + "A Siberian Husky is a medium-sized almond-shaped dog with pointy ears and a bushy tail.", + "Siberian Huskies have a thick coat of fur that is usually white, black, and gray.", + "Siberian Huskies are medium-sized dogs with pointy ears and a dense, fluffy coat.", + "This image is of a Siberian Husky with blue eyes.", + "The image is of a Siberian Husky with blue eyes.", + "An image of a Siberian Husky from the Internet shows a large, fluffy dog with a thick coat of fur.", + "The image is of a Siberian Husky with blue eyes.", + "This image is of a beautiful Siberian Husky with bright blue eyes.", + "This image is of a beautiful Siberian Husky with blue eyes.", + "In the image, the Siberian Husky is standing on a table in front of a window.", + "The image is of a brown and white Siberian Husky dog with blue eyes.", + "I am looking at an image of a Siberian Husky on the internet.", + "This Siberian Husky has piercing blue eyes and is standing in the snow.", + "This is a Siberian Husky, a popular breed of dog used for sledding.", + "This beautiful Siberian Husky is enjoying the snow!.", + "This is a Siberian Husky, a breed of dog used for sledding in colder climates.", + "This is a Siberian Husky, a type of dog that is used for sledding.", + "A beautiful Siberian Husky dog with blue eyes and a thick coat of fur.", + "One of the most popular dog breeds, the Siberian Husky is known for its thick fur coat and friendly personality.", + "Siberian Husky in a winter landscape.", + "This beautiful husky is a great example of the Siberian Husky breed.", + "One of the most popular dog breeds, the Siberian Husky is known for its thick fur coat, which helps protect it from the cold weather.", + "This is a Siberian Husky, a popular breed of dog known for its thick fur coat and eagerness to please." + ], + "Dalmatian": [ + "A Dalmatian is a medium-sized dog with short, stiff, and dense fur.", + "A Dalmatian is a medium sized dog with a short coat of black and white spots.", + "Dalmatians are a medium-sized breed of dog with short hair and black spots on a white coat.", + "A Dalmatian is a medium-sized, short-haired multi-purpose dog that was originally bred in Dalmatia, Croatia.", + "A Dalmatian is a medium-sized, short-coated dog with distinctive black or liver-colored spots on a white background.", + "A Dalmatian is a medium-sized, short-coated dog with a distinctive spotted coat.", + "A Dalmatian is a large, long-bodied, short-coated dog with black or liver spots on a white background.", + "A Dalmatian is a large, black and white spotted dog.", + "Dalmatians are large, muscular dogs with short, stiff hair that is usually white with large black spots.", + "A Dalmatian is a dog that is mostly white with large black spots.", + "Dalmatians are large, athletic dogs with short, stiff hair that is almost exclusively black and white in color.", + "The easiest way to identify a Dalmatian is by their unique spotted coat.", + "A Dalmatian is a white dog with black spots.", + "A Dalmatian is a spotted dog.", + "Dalmatians are born with all-white coats and develop their spots as they age.", + "Dalmatians are large, muscular dogs with short coats that are either primarily white with large black spots, or primarily black with large white spots.", + "Dalmatians are large dogs with short, stiff hair.", + "Dalmatians have short, stiff hair that is mostly white with black or liver-colored spots.", + "Dalmatians are best known for their unique spotted coats.", + "Dalmatians are large dogs with short, stiff, black-and-white hair.", + "A Dalmatian is a black-and-white spotted dog.", + "A Dalmatian is a spotted breed of dog that is typically white with black spots.", + "A Dalmatian is a large dog with a short, stiff coat of black spots on a white background.", + "A Dalmatian is a black-and-white spotted dog.", + "A Dalmatian is a large dog with a short, stiff coat of white fur with black or liver spots.", + "A Dalmatian is a short-haired breed of dog with a spotted coat.", + "A Dalmatian looks like a dog with black spots on a white coat.", + "A Dalmatian is a large dog with short fur that is either black with white spots or liver-colored with black spots.", + "A Dalmatian is a black-and-white spotted dog.", + "A Dalmatian has a white coat with black spots.", + "A black and white spotted dog with a long snout and floppy ears.", + "The image is of a medium-sized, short-coated dog.", + "This image is of a Dalmatian dog standing in a green field.", + "The image is of a white Dalmatian with black spots.", + "A Dalmatian is a large, spotted breed of dog.", + "The image is of a cute Dalmatian puppy with black and white spots.", + "The image is of a Dalmatian laying on a grassy field with its head resting on its paw.", + "In the image, a Dalmatian is running through a park, tongue lolling out of its mouth.", + "This image is of a black and white spotted Dalmatian dog.", + "An image of a Dalmatian from the internet shows a medium-sized, short-haired dog with a white coat and black spots.", + "This spotted breed is popular in movies and TV, but tough to train in real life.", + "A black and white Dalmatian dog lying on its back in the grass.", + "Do not fire until you see the black and white of their spots.", + "Pair of Dalmatian dogs laying on the grass.", + "This cute Dalmatian is waiting for a new home!.", + "Dalmatian, a breed of medium-sized dog with short, stiff, spotted fur.", + "A cute Dalmatian pup enjoying a sunny day.", + "Image of a black and white Dalmatian dog with large spots.", + "A Dalmatian in a field of flowers.", + " A Dalmatian pup sitting on a white background." + ], + "Affenpinscher": [ + "The Affenpinscher is a small, wiry-haired terrier-like dog.", + "An Affenpinscher typically has a wiry, rough coat that is black, gray, or silver.", + "The Affenpinscher is a small, wiry-haired terrier-like dog.", + "The Affenpinscher is a small, terrier-like dog with a rough coat.", + "The Affenpinscher is a small, wiry-haired terrier-like dog.", + "The Affenpinscher is a small-sized dog breed with a unique appearance.", + "The Affenpinscher is a small, wiry-haired terrier-like toy dog.", + "The Affenpinscher is a small, wiry-haired terrier-like toy dog.", + "An Affenpinscher is a small, terrier-like dog.", + "The Affenpinscher is a toy breed of dog.", + "An Affenpinscher is a small, terrier-like dog with a Rough, wiry coat.", + "The Affenpinscher is a small, wiry-coated terrier-like toy dog breed with a flat face and protruding lower jaw.", + "Size: 9-11 inchesWeight: 7-13 poundsCoat: wiry and harshColor: black, gray, silver, or brownEars: small and erectTail:.", + "An Affenpinscher is a small, terrier-like dog with a shaggy coat.", + "The Affenpinscher is a small dog breed with a terrier-like appearance.", + "The Affenpinscher is a small, wiry-coated terrier-like breed of dog.", + "The best way to identify an Affenpinscher is by its distinct features.", + "The Affenpinscher is a small toy Terrier with a rough, wire-like coat.", + "The Affenpinscher is a small breed of dog that is characterized by its monkey-like appearance.", + "An Affenpinscher is a small, wiry-haired terrier-like dog.", + "The Affenpinscher is a small dog breed with a terrier-like appearance.", + "An Affenpinscher is a small, terrier-like dog with a wiry coat.", + "The Affenpinscher is a small, wiry-haired terrier-like toy dog.", + "An Affenpinscher is a small dog breed that has a coat of rough, wiry hair.", + "The Affenpinscher is a small, terrier-like breed of dog.", + "The Affenpinscher is a small German breed of dog.", + "The Affenpinscher is a small, terrier-like breed of dog.", + "An Affenpinscher is a small, stocky dog with a rough, wiry coat.", + "The Affenpinscher is a small, compact dog with a rough, shaggy coat.", + "The Affenpinscher is a small, terrier-like dog.", + "I found an image of an Affenpinscher on Google Images.", + "A small, cheerful-looking dog with a black, brown, or gray coat and mustache-like facial hair.", + "The image is of an Affenpinscher standing on a green lawn.", + "The image is of a small, brown and black Affenpinscher dog standing on a green lawn.", + "There is an image of an Affenpinscher on the internet that shows the dog sitting on a white couch.", + "The image is of a small, black and brown dog with a long snout and large ears.", + "The image is of a small, black and brown Affenpinscher dog.", + "The image from the internet is of an Affenpinscher that is black and brown in color.", + "The image is of a black Affenpinscher with bugged out eyes and a large grin.", + "In the image, an Affenpinscher is sitting on a green grassy field with a large tree in the background.", + "An Affenpinscher looking up at the camera with a curious expression.", + "This little lady is an Affenpinscher, a breed of dogs known for their spunky personalities and monkey-like faces.", + "A small, black Affenpinscher dog with a big personality.", + "A close-up of an Affenpinscher dog.", + "This little guy is an Affenpinscher, and he's full of personality! Affenpinschers are known for being playful, curious, and charming, and this one is no exception.", + "This is an Affenpinscher, a German breed of dog known for its monkey-like face.", + "This little guy is an Affenpinscher, a small but feisty breed of dog originally from Germany.", + "This little dog looks like he is up to no good.", + "A sweet little Affenpinscher waiting for a treat.", + "This is an image of an Affenpinscher, a small dog breed with a monkey-like face." + ], + "Basenji": [ + "Basenjis are small, short-haired dogs with erect ears, a wedge-shaped head, and a tail that curls over their back.", + "Basenjis are small, short-haired dogs with erect ears and a curled tail.", + "A Basenji is a small to medium sized dog with a short coat.", + "A Basenji is a small to medium sized dog with a short coat.", + "Basenjis are small, short-haired dogs with brown or black coats and white chests.", + "A Basenji is a small, short-haired hunting dog from Africa.", + "Basenjis are small, short-haired dogs with pointed ears and a wrinkled forehead.", + "Basenjis are a small to medium sized dog with short legs and a long body.", + "A Basenji is a small, short-haired dog with a pointed muzzle and erect ears.", + "Basenjis are small, short-haired dogs with pointed ears, a wrinkled forehead, and a long, sleek tail.", + "A Basenji is a small to medium sized dog with a short, glossy coat.", + "The best way to identify a Basenji is by its physical appearance.", + "Basenjis are intelligent, independent, and playful dogs that are loyal to their family.", + "Basenjis are identify by their small, compact size; short, smooth coats; and their distinctive, crow-like barks.", + "Basenjis are small to medium sized dogs with short to medium coats.", + "Basenjis are small, short-haired dogs with pointed ears and a wrinkled brow.", + "Basenjis are small to medium sized, short-haired hunting dogs from Africa.", + "A Basenji is a small, short-haired dog with large, pointed ears.", + "A Basenji is a small to medium-sized, short-haired hunting dog from central Africa.", + "Basenjis are dogs of medium size and short coat.", + "A basenji is a small, short-haired hunting dog from Africa.", + "A Basenji is a small, short-haired hunting dog from Africa.", + "A Basenji is a small to medium sized African dog that is short-haired with a long, skinny tail.", + "Basenjis are small, short-haired dogs with pointed ears and a wrinkled forehead.", + "Basenjis are small, short-haired dogs with erect ears and a wrinkled forehead.", + "Basenjis are small, compact dogs with short legs and a long, slender body.", + "Basenjis are small, short-haired dogs with erect ears, a narrow muzzle, and a long, curving tail.", + "The basenji is a small to medium-sized, short-haired hunting dog from central Africa.", + "A basenji is a small, short-haired dog that looks similar to a jackal or a fox.", + "The Basenji is a small, short-haired hunting dog from central Africa.", + "The image is of a reddish-brown and white Basenji dog standing on a green lawn.", + " dogThis image is of a Basenji dog standing in a grassy field.", + "A Basenji is a small, short-haired dog with pointed ears and a long, slender snout.", + "An image of a Basenji from the internet shows a brown and white dog with pointy ears and a long, skinny tail.", + "The image is of a small, short-haired dog with pointy ears and a long tail.", + " Basenjis are a breed of dog that was originally from Africa.", + "The image is of a light brown Basenji with floppy ears and a short tail.", + "The image is of a small, short-haired dog with pointed ears and a long, skinny tail.", + "The image is of a Basenji dog standing in grass with its head tilted back and its tongue hanging out.", + " dogThe image is of a small, reddish-brown dog with short fur and pointed ears.", + " A basenji dog sunbathing on a green lawn.", + "Basenji dog lying on the ground.", + "BasenjiA Basenji is a type of dog that is native to Central Africa.", + "A Basenji dog walking on a grassy field.", + "Basenji dog breed.", + "Advance guard of the Kongo people, the Basenji is an ancient African breed of dog.", + "This is a Basenji, a native African breed of dog.", + "This is a Basenji, a type of hunting dog.", + "A curious Basenji dog cocks its head to the side while looking at the camera.", + "A beautiful Basenji dog." + ], + "pug": [ + "A pug is a small, stocky dog with a wrinkled face and a short muzzle.", + "A pug is a small, stocky dog with a wrinkled face and a flat nose.", + "A pug looks like a small, stocky dog with a wrinkled face and a curly tail.", + "Pugs have a short muzzled face and a smooth, coats.", + "Pugs have a short, wrinkled muzzle with a black mask, large, round eyes, and ears that are black on the back and tan on the inside.", + "Pugs have a wrinkled forehead, a short muzzle, and large, dark eyes.", + "A pug is a type of dog that has a wrinkled face and a short muzzle.", + "A pug is a breeds of dog with a flat face and a wrinkled body.", + "Pugs are small dogs with wrinkled faces, short muzzles, and curled tails.", + "Pugs have a round, short-muzzled head, large, deep-set eyes, a black mask on their face, and medium-sized ears.", + "Pugs have a very distinct appearance with their wrinkled faces and round bodies.", + "A pug has a unique appearance with a flat face, large, round eyes, and a wrinkled forehead.", + "Pugs are easily identifiable by their distinct facial features, including large, round eyes; a short muzzle with wrinkles around the nose; and large, floppy ears.", + "Pugs have a wrinkled face and a short coat.", + "A pug is a breed of dog with a wrinkly, short-muzzled face and curled tail.", + "The most identifying feature of a pug is its short, wrinkled snout.", + "A pug has distinct features that make it easy to identify.", + "A pug is a small, stocky dog with a short muzzle and wrinkled face.", + "The easiest way to identify a pug is by its small, wrinkled face.", + "Pugs have a distinctive face with large, dark eyes and a wrinkled muzzle.", + "Pugs are a small, stocky breed of dog with a wrinkled face and a short, curled tail.", + "A pug is a small, sturdily built, short-muzzled dog with large, dark, round eyes, and wrinkly, often-fawn face and coat.", + "A pug is a small, minimum-shedding, short-muzzled dog.", + "A pug is a small dog with a short snout, a flat face, and big, round eyes.", + "A Pug is a small, stocky dog with big, dark eyes, a short muzzle, and wrinkled skin.", + "A pug is a small, stocky dog with a wide, flat head and a wrinkled face.", + "Pugs are short, stocky, and have a wrinkled face.", + "A pug is a small, stocky, square-faced dog with wrinkled skin.", + "A pug is a small, stocky dog with a short, snub nose, large, round eyes, and wrinkled skin.", + "A pug is a small breed of dog with a flattened face and a short, stubby muzzle.", + "A pug is squat, brown and black dog with a wrinkled face.", + "In the image, a pug is sitting on a white couch with its head tilted to the side.", + "An image of a pug from the internet would likely show a small, furry dog with a short snout.", + "This image is of a pug dog at a park.", + "The image is of a pug dog with its head tilted to the side and its tongue sticking out.", + "This image is of a pug dog with black fur and big, dark eyes.", + "A small, short-muzzled dog with a wrinkled face, a short, stocky body, and a curly tail.", + "A pug is a small, stocky, short-muzzled dog with large, deep-set eyes and a flat round face.", + "The image is of a pug lying on its back with its legs in the air.", + "A pug home alone on his bed looking sad and depressed with his head down and ears back.", + " A Pug wearing a sweater.", + "This is a pug.", + "This pug looks so content just lounging around with its favorite toy!.", + "This little pug looks like he's up to no good.", + "Pug staring intently.", + "Aww, look at that pug's cute little face!.", + "A pug looking up at the camera with its tongue out.", + "This pug is so lazy that it won't even move for a treat.", + "This is my pug, Kobe.", + " A pug with a sarcastic expression, as if it is judging you." + ], + "Leonberger": [ + "A Leonberger is a large dog with a long, thick coat of fur.", + "A Leonberger looks like a large, muscular dog with a black nose, long hair, and a thick, bushy tail.", + "A Leonberger is a medium to large sized dog with a long, thick coat.", + "A Leonberger is a large German breed of domestic dog.", + "A Leonberger is a large, lion-like dog with a shaggy coat.", + "A Leonberger is a large, muscular dog with a thick, silky coat.", + "A Leonberger is a large, muscular dog with a shaggy coat.", + "A Leonberger is a large, muscular dog with a long, thick coat.", + "A Leonberger is a large, muscular dog with a reddish-brown coat.", + "A Leonberger is a large, muscular dog with a thick coat of fur.", + "A Leonberger is a large, muscular dog with a thick, furry coat.", + "A Leonberger's coat is generally red or reddish-brown, with a black mask and mane.", + "The Leonberger is a large breed of dog.", + "A Leonberger can be identified by its large size, its black and tan coat, and its Lion-like appearance.", + "One way to identify a Leonberger is by its size.", + "A Leonberger is a large, muscular dog with a lion-like mane.", + "There are a few ways to identify a Leonberger.", + "A Leonberger is a dog breed that is easily recognizable by its large size, black and tan coat, and Leo-shaped head.", + "There are several ways to identify a Leonberger.", + "A Leonberger is a large dog with a black mask, black tips on its ears, and a large, black nose.", + "A Leonberger is a large, muscular dog breeds with a silky coat.", + "A Leonberger is a large, muscular dog with a thick coat.", + "The Leonberger is a large, muscular dog that is slightly longer than it is tall.", + "The Leonberger is a large, muscular dog with a majestic appearance.", + "The Leonberger is a large, robust dog with a muscular body, a black mask, and a long, thick coat.", + "A Leonberger is a large, muscular dog with a black nose and a thick coat that is usually black, brown, or red.", + "The Leonberger is a large breed of dog.", + "A Leonberger is a large breed of dog that has a thick coat of fur.", + "A Leonberger is a large, muscular dog with a thick coat of fur.", + "A Leonberger is a large, muscular dog with a black, tan, and red coat.", + "A Leonberger is a large, domestic dog.", + "This image is of a Leonberger dog breed.", + "The image is of a large, muscular dog with a thick, red coat.", + "The image is of a large, shaggy-coated dog with a black mask surrounding its brown eyes.", + "A Leonberger is a giant, shaggy-coated dog breed originally bred in Germany in the late 1800s.", + "A Leonberger is a large, shaggy dog breed.", + "A Leonberger is a large, muscular dog breed with a lion-like mane of fur around its neck.", + "The image is of a large, dark brown dog.", + "The internet image is of a large, muscular dog with a long, thick coat of reddish-brown fur.", + "The image is of a large, muscular dog with a reddish-brown coat.", + " A black, brown, and white Leonberger dog standing on a beach.", + "This is a Leonberger, a giant dog breed that can weigh up to 170 pounds.", + "A large, muscular Leonberger dog breed staring intently.", + " A majestic Leonberger stares off into the distance.", + "This Leonberger is a giant breed of dog that can weigh up to 200 pounds.", + "A Leonberger dog lounges in the grass.", + "This is a Leonberger, a giant dog breed that is a cross between a Newfie, a Saint Bernard, and a Pyrenean Mountain Dog.", + "This is a Leonberger, a giant breed of dog that can weigh up to 200 pounds.", + "A black, brown, and tan Leonberger laying down in grass.", + " A joyous lion-dog relaxes after a play session." + ], + "Newfoundland dog": [ + "Newfoundland dogs have a thick, waterproof coat that is dark brown, black, or grey.", + "A Newfoundland dog is a large, black, furry dog.", + "A Newfoundland dog is a large, working dog with a thick, waterproof coat.", + "A Newfoundland dog has a large, square head with a wide muzzle and drooping lips.", + "The Newfoundland is a large, heavily coated, strong dog bred for working in the water.", + "A Newfoundland dog is a large, black dog with a thick coat.", + "A Newfoundland dog is a large, shaggy dog with a black or brown coat.", + "Newfoundland dogs are large, muscular dogs with thick, waterproof coats.", + "The Newfoundland is a large working dog.", + "The Newfoundland is a large, shaggy, black dog.", + "A Newfoundland dog is a large, strong dog breed with a thick coat.", + "Newfoundland dogs are large working dogs.", + "The best way to identify a Newfoundland is by its large size and thick, dark coat.", + "Some ways you can identify a Newfoundland dog are by their large size, thick fur, and webbed feet.", + "A Newfoundland dog is a large working dog.", + "The Newfoundland is a large, strong dog with a shaggy, water-resistant coat.", + "Newfoundland dogs are large, strong, and heavy-boned.", + "Newfoundland dogs are large, working dogs with a thick, water-resistant double coat.", + "The coat of the Newfoundland is thick, oily, and crisp.", + "The easiest way to identify a Newfoundland dog is by its size.", + "Newfoundland dogs have a thick, waterproof coat, webbed feet, and a large, muscular body.", + "Newfoundland dogs are large, shaggy-coated working dogs.", + "A Newfoundland dog is a large working dog with a thick, waterproof coat.", + "A Newfoundland dog is black, with a large head, and a thick coat.", + "A Newfoundland Dog is a large, working dog breed.", + "The Newfoundland is a large, muscular, workaday dog breed with a thick, water-resistant coat.", + "A Newfoundland dog is a large, black dog with a thick coat and a flat head.", + "The Newfoundland dog is a large, working breed.", + "Newfoundland dogs are large, working dogs.", + "A Newfoundland dog is a large, working breed of dog from the island of Newfoundland.", + "The image is of a large black and white dog standing on a rocky beach.", + "In the image, the Newfoundland dog is standing on a rocky ledge overlooking a body of water.", + "The image is of a large black dog with a thick coat of fur.", + "I found an image of a Newfoundland dog on the internet that I really liked.", + "This image is of a large black Newfoundland dog standing next to a river.", + "This image shows a large, black Newfoundland dog standing on a rock in the ocean.", + "The image is of a large black and white dog standing on a rocky beach.", + "This image is of a large, black Newfoundland dog standing on a rocky outcrop by the ocean.", + "The image I found was of a large, furry dog with big brown eyes.", + "The image is of a large, black and white dog with a long, thick coat.", + "This Newfoundland is a gentle giant, often used as a working dog for tasks such as rescue and carting.", + " A Newfoundland dog standing on a dock, looking out at the water.", + "A Newfoundland dog at the beach.", + "This is Nina, a Newfoundland dog who loves to swim and play fetch.", + " Loyalty knows no bounds.", + "A Newfoundland dog, known for their large size and gentle disposition.", + " A Newfoundland dog appearing to smile while sitting on a grassy field.", + "This is a picture of a Newfoundland dog.", + "A Newfoundland dog looks out to sea from a dock.", + "This shop offers a variety of Newfoundland dogs." + ], + "Great Pyrenees dog": [ + "A Great Pyrenees dog is a large, fluffy, white dog with a thick coat of fur.", + "The Great Pyrenees is a large, white, fluffy dog.", + "A Great Pyrenees dog is a large, white, fluffy dog with a black nose and black eyes.", + "A Great Pyrenees dog is a large, white, fluffy dog.", + "Great Pyrenees dogs are large, white, fluffy dogs.", + "The Great Pyrenees is a large, white, fluffy dog.", + "A Great Pyrenees dog is a large, white, fluffy dog.", + "The Great Pyrenees is a large, white dog with a thick coat of fur.", + "Great Pyrenees dog is a large, white, fluffy dog.", + "The Great Pyrenees is a large, white dog with a thick coat of hair.", + "Great Pyrenees are large, white dogs with thick, long fur.", + "Great Pyrenees dogs are large, white, Woolly dogs with long hair.", + "A Great Pyrenees dog has a thick, white coat of fur.", + "Great Pyrenees dogs are large, fluffy dogs with a thick coat.", + "Great Pyrenees dogs have a very thick, long coat that is usually all-white or predominantly white with some patches of gray, brown, or black.", + "The Great Pyrenees is a large, white, fluffy dog with a big head.", + "Great Pyrenees dogs are large, white dogs with thick, fluffy coats.", + "The Great Pyrenees is a large, white, fluffy dog with a thick coat.", + "Great Pyrenees dogs have a thick, long coat of white fur.", + "The Great Pyrenees is a large, white, fluffy dog with a thick coat.", + "The Great Pyrenees is a large, white, fluffy dog with a thick coat of fur.", + "A Great Pyrenees dog is a large, white, fluffy dog.", + "The Great Pyrenees is a large, white, fluffy dog.", + "Photo of a Great Pyrenees dog: https://en.", + "A Great Pyrenees dog is a large, white, furry, and gentle dog breed.", + "A Great Pyrenees dog is a large, fluffy white dog with a thick coat of fur.", + "The Great Pyrenees is a large, white, fluffy dog.", + "Great Pyrenees dogs have thick, long, white coats and big, fluffy tails.", + "A Great Pyrenees dog is a large, stocky breed with a thick coat of white fur.", + "Great Pyrenees dogs are very large and have thick white fur.", + "The image shows a Great Pyrenees dog standing in a field of tall grass.", + "The image is of a large, all-white dog with a thick coat of fur.", + "The image shows a large, white, fluffy dog standing in a field.", + "The image is of a large, white dog with a thick coat of fur.", + "In the image, the Great Pyrenees dog is standing on a cliff overlooking a valley.", + "The image is of a large, fluffy white dog with a black patch around its left eye.", + "In the image, the Great Pyrenees dog is standing in a field of tall grass.", + "This image is of a Great Pyrenees dog inmassive size with thick, long, all-white coat.", + "The image is of a large, fluffy white dog with a thick coat of fur.", + "This is an image of a Great Pyrenees dog standing in a field of snow.", + "A Great Pyrenees dog is a large, friendly breed of dog.", + "This is a picture of a Great Pyrenees dog.", + " This is a Great Pyrenees dog.", + "A Great Pyrenees dog standing on a cliff with a view of the ocean behind him.", + "This is a Great Pyrenees dog.", + "This image shows a Great Pyrenees dog, a large breed of dog known for its thick white fur and gentle disposition.", + "This is a Great Pyrenees dog.", + "This is a Great Pyrenees dog.", + "A Great Pyrenees dog sits on a grassy hill, looking out at the view.", + "This is a Great Pyrenees dog." + ], + "Samoyed": [ + "A Samoyed has a thick, white coat of fur that covers its entire body, including its face.", + "The Samoyed is a medium-sized, white-coated dog with a thick fur collar and erect ears.", + "Medium-sized and muscular, the Samoyed is a Spitz-type dog with a thick, all-white coat.", + "A Samoyed is a strong, medium-sized dog with a thick white coat.", + "A Samoyed is a medium-sized, white dog with a thick coat of fur.", + "The Samoyed is a strong, compact, and well-proportioned dog.", + "A Samoyed is a type of dog that is white with a thick coat of fur.", + "The Samoyed is a medium-sized dog with a thick, all-white coat.", + "A Samoyed looks like a white fluffy dog.", + "The Samoyed is a medium-sized breed of spitz-type dog, with a thick, white, double-layer coat.", + "Samoyeds are a type of dog that can be identified by their thick white fur.", + "The Samoyed is a large, spitz-type dog.", + "Size: The Samoyed is a large dog, measuring anywhere from 19 to 23.", + "A Samoyed is a white, fluffy dog with a bushy tail.", + "A Samoyed is a white, fluffy dog with a thick coat.", + "A Samoyed is a dog that has a thick, white coat.", + "A Samoyed can be identified by its thick white fur, wedge-shaped head, and dark eyes.", + "The Samoyed is a spitz-type dog with a thick, all-white, double coat.", + "A Samoyed is a dog that looks like a white cloud.", + "A Samoyed is a type of dog that was originally bred in Siberia.", + "A Samoyed is a white spitz-type dog with a thick, double coat.", + "A Samoyed is a white dog with a thick, dense coat of fur.", + "The Samoyed is a large, white spitz-type dog.", + "A Samoyed is a large, white, spitz-type dog with a thick coat of fur.", + "Samoyeds are white, fluffy dogs with a thick, double coat.", + "A Samoyed is a white, fluffy dog with a thick, dense coat of fur.", + "A Samoyed is a large, white, spitz-type dog with a thick, double-layer coat.", + "Samoyeds are large, furry dogs with white or cream-colored coats.", + "A Samoyed is a dog with a thick, white coat and a snarling face.", + "A Samoyed is a large, white, spitz-type dog.", + "In the image, a Samoyed dog is sitting on a wood floor in front of a white door.", + "This image from the internet shows a Samoyed dog standing in front of a Christmas tree.", + "An image of a Samoyed from the internet shows a dog with thick, white fur, black eyes, and a black nose.", + "The image depicts a Samoyed dog in a field of snow.", + "A white Samoyed dog is pictured standing in a grassy field with a blue sky in the background.", + "The image is of a large white Samoyed dog with a thick coat of fur.", + "The image shows a Samoyed dog with white and cream fur.", + "A Samoyed is a muscular, thick-coated dog that typically have white, cream, or biscuit-colored fur.", + "In the image, a Samoyed is standing in front of a window, looking out.", + "The image is of a brown and white Samoyed dog with its tongue hanging out.", + "This is a Samoyed, a type of dog that was originally bred in Siberia to help hunters and fishermen.", + "A portrait of a beautiful Samoyed dog with a thick, white coat of fur.", + "This is a Samoyed, a type of dog that was originally bred in Siberia.", + " Two white Samoyed dogs on a blue background.", + "Sleeping Samoyed\nThis Samoyed is clearly exhausted from a day of play and is happily snoozing away.", + " Adorable Samoyed puppy playing fetch.", + "A beautiful Samoyed dog looking out at the snow.", + "This is Blanche, a 6-month-old Samoyed.", + " A Samoyed dog stares calmly while seated on a carpet.", + "A sweet-faced Samoyed dog looks straight at the camera with its blue eyes." + ], + "Pomeranian": [ + "Pomeranians are small, fluffy dogs with pointed ears and short legs.", + "Pomeranians are small dogs that typically have a long, fluffy coat.", + "A Pomeranian is a small breed of dogs that have a double coats.", + "A Pomeranian looks like a small fox with a thick coat of fur.", + "A Pomeranian is a small dog, typically under 10 pounds.", + "A Pomeranian is a small, short-legged dog.", + "Small, fluffy dog with a fox-like face.", + "Pomeranians are small, yappy dogs.", + "Pomeranians are small, spherical dogs with thick fur, small ears, and short legs.", + "Pomeranians are small dogs that typically weigh between 3 and 7 pounds.", + "A Pomeranian is a small, fox-like dog with a thick coat of fur.", + "A Pomeranian is a small, fluffy, Spitz-type dog.", + "There are several ways to identify a Pomeranian.", + "Pomeranians are small dogs with thick fur.", + "Pomeranians are small dogs with thick, fluffy coats.", + "The Pomeranian is a small spitz-type dog.", + "Pomeranians have a thick, double coat that is usually clipped short.", + "Pomeranians are small, pointed dogs with thick, fluffy coats.", + "Pomeranians are small dogs with thick, fluffy coats.", + "A Pomeranian is a small, spitz-type dog that is typically less than 7 pounds.", + "A Pomeranian is a small breed of dog that is typically white, black, or brown in color.", + "Pomeranians are small dogs with fluffy, thick fur.", + "Pomeranians are small, fluffy dogs.", + "Pomeranians are small, toy-sized dogs with thick, fluffy coats.", + "Going by the American Kennel Club's breed standards, a Pomeranian should be a small, compact dog with a short, dense coat.", + "A Pomeranian is a small spitz-type dog.", + "A Pomeranian is a small, compact dog with a thick, double coat.", + "A Pomeranian looks like a small, fluffy, square-shaped dog.", + "A Pomeranian is a small, compact dog with a thick, fluffy coat.", + "Pomeranians are small dogs with thick, soft fur.", + "This image is of a Pomeranian dog.", + "Assuming you would like an image of a Pomeranian from the internet: This image is of a Pomeranian dog breed.", + "An image of a Pomeranian from the internet shows a small, fluffy dog with a triangular face and big, pointy ears.", + "The image is of a Pomeranian dog standing on a green lawn.", + "The image is of a small, white Pomeranian dog with pointy ears and a fluffy coat.", + "In the image, there is a Pomeranian dog sitting on a white fluffy blanket.", + "In the image, a small, tan and white Pomeranian is standing in front of a white background.", + "This image is of a Pomeranian dog.", + "I found an image of a Pomeranian on the internet that I really like.", + "This image from the internet is of a Pomeranian dog.", + "This is my cute little Pomeranian, she loves to play fetch and is always excited to see me when I come home from work.", + "This Pomeranian is so fluffy and cute!.", + " Happy PomeranianThis Pomeranian looks very happy and content! It's probably because it's surrounded by all of its favorite things - its food, toys, and humans!.", + "A Pomeranian dog looks out of a window.", + "This is Suki, a 5-year-old Pomeranian.", + "This is an image of a Pomeranian.", + "This is one very happy Pomeranian!.", + "This is one of the smallest dog breeds in the world.", + "This Pomeranian looks like it's about to take a nap!.", + "A Pomeranian dog with a thick, fluffy coat of fur." + ], + "Chow Chow": [ + "The Chow Chow is a large, sturdily built dog with a broad head and muzzle.", + "A Chow Chow is a medium-sized dog with a thick coat of fur.", + "A Chow Chow is a breed of dog that is Chow-Chow-like in appearance.", + "A Chow Chow is a large breed of dog that has a very thick coat of fur.", + "Chow Chow's are a medium sized dog breed that have a fluffy coat that can be either black, blue, cinnamon, or cream.", + "A Chow Chow has a blue-black tongue, and a dense, slightly wavy coat that is either red, black, blue, cream, or cinnamon.", + "Chow Chow dogs tend to have a very thick, dense coat that is either red, black, blue, cream, or cinnamon.", + "A Chow Chow is a medium sized dog with a thick, dense coat of fur.", + "The Chow Chow is a large, sturdily built dog with a broad head, deep-set eyes, and a slightly round muzzle.", + "A Chow Chow has a large, square head with a broad muzzle and small, triangular ears.", + "Chow Chows can be identified by their blue-black tongue, which is unique among canines.", + "The most distinguishing feature of a Chow Chow is its blue-black tongue.", + "A Chow Chow has a distinctive blue-black tongue.", + "The easiest way to identify a Chow Chow is by its blue-black tongue.", + "A Chow Chow is a dog breed that is easily recognizable by its lion-like mane of fur around its head and its blue-black tongue.", + "A Chow Chow can be identified by its unique blue-black tongue, which is a distinguishing feature among canines.", + "A Chow Chow has a thick coat of fur that is usually either red, black, or blue.", + "Possible ways to identify a Chow Chow include looking for physical characteristics such as a blue-black tongue, a thick coat of fur, and a broad head.", + "There are several ways to identify a Chow Chow.", + "There are a few ways to identify a Chow Chow.", + "A Chow Chow is a small, compact dog with a thick, luxurious coat.", + "A Chow Chow is a type of dog that has a thick coat of fur.", + "A Chow Chow is a medium-sized dog that has a thick, dense coat of fur.", + "A Chow Chow is a type of dog that has a large head, a thick coat of fur, and a very stubby tail.", + "Chow Chows are a breed of dog that originated in China.", + "A Chow Chow typically looks like a large teddy bear.", + "Chow Chows are a Chinese dog breed and look like a lion.", + "Chow Chows are a breed of dog that typically have a thick, furry coat, a broad head, and a stumpy tail.", + "Chow Chows are a medium-sized, sturdily-built dog breed with a broad skull, deep-set almond-shaped eyes, and a black mouth.", + "A Chow Chow is a dog with a thick coat of fur that is either red, black, or blue.", + "The image is of a Chow Chow dog with a reddish brown coat and a black tongue sticking out.", + "The image depicts a Chow Chow dog lying on a bed with its head propped up by its paw.", + "This image is of a Chow Chow that is mostly black in color with some brownish highlights.", + "This image from the internet is of a chow chow breed of dog.", + "The image is of a light brown Chow Chow with a thick coat of fur.", + "The image is of a Chow Chow dog.", + "An image from the internet of a Chow Chow may show a breed of dog that is medium to large in size with a thick coat of fur that is usually either red, black, blue, cream, or brown in color.", + "The image is of a brown Chow Chow with a black nose and tongue.", + "The image from the internet of a Chow Chow is a brown and white dog with a black nose and almond-shaped eyes.", + "Image is of a Chow Chow standing in the snow.", + "A Chow Chow dog with a blue tongue.", + " A Chow Chow dog looks up at the camera with its tongue outA Chow Chow dog looks up at the camera with its tongue out.", + " Chow Chow looking at the camera.", + "This is a Chow Chow, a type of dog that is native to China.", + "A portrait of a Chow Chow dog looking into the camera with a serious expression.", + " Chow Chow guarding a temple in ChinaThis Chow Chow is guarding a temple in China.", + "This is a chow chow, a type of dog that is native to China.", + " A Chow Chow stares intently at the camera, its tongue hanging out of its mouth.", + "\"A very good boy.", + " Chow Chow in front of a red door." + ], + "Keeshond": [ + "A Keeshond is a medium-sized dog with a thick, waterproof coat.", + "A Keeshond is a medium-sized spitz-type dog that typically weighs between 35 and 45 pounds.", + "A Keeshond has a thick, double coat of silver-gray hair with a black ruff and black tips on the ears.", + "A Keeshond has a thick, double coat that is black and silver in color.", + "A Keeshond is a spitz-type dog that originated in the Netherlands.", + "A Keeshond is a small dog breed that is also known as a Dutch Barge Dog or a Dutch Barge Hound.", + "Keeshonds have a thick, medium-length coat that is usually silver-and-black or gray-and-black in color.", + "A Keeshond has a thick, double coat that is usually gray and black with a cream-colored ruff.", + "A Keeshond is a medium-sized dog with a thick, double coat.", + "A Keeshond has a thick, double coat that is silver-gray and black.", + "A Keeshond is a medium-sized spitz-type dog with a thick, silver-and-black coat, pointed ears, and a plumed tail.", + "Keeshonden are easily recognizable by their thick, luxurious coat of silver and black fur, and their long, plumed tail that is carried over their back.", + "There are a few things that can help you identify a Keeshond.", + "A Keeshond can be identified by its thick, silver-gray fur, black \"mask\" around the eyes, and a thick ruff of fur around the neck.", + "A Keeshond has a medium-size build with a thick, double coat.", + "A Keeshond has a double coat of thick, soft hair.", + "Keeshonds can be identified by their thick, gray and black fur, as well as their bushy tails.", + "A Keeshond is a medium sized dog with a thick, bushy coat.", + "A Keeshond is a spitz-type dog that originated in the Netherlands.", + "The Keeshond has a thick coat that is usually gray and black with some cream.", + "A Keeshond is a medium-sized, Spitz-type dog.", + "The Keeshond is a medium sized dog with a thick, plush coat.", + "Keeshonds are thick-coated, spitz-type dogs that are medium in size.", + "A Keeshond is a small to medium sized spitz type dog with a thick coat.", + "A Keeshond has a thick, medium-length coat that is silvery-gray and black.", + "A Keeshond is a medium sized dog with a thick coat of silver and black fur.", + "A Keeshond is a medium-sized dog with a thick, double coat of silver-grey and black fur.", + "A Keeshond looks like a small German Shepherd.", + "Keeshonden are medium-sized dogs with a thick, furry coat that is usually silver and black in color.", + "Keeshonden are medium-sized dogs with a thick, two-layer coat.", + "The image is of a brown, white, and black Keeshond standing in a grassy field.", + "In the image, the Keeshond is standing on a white background with its head turned to the side.", + "This Keeshond is standing in front of a brown fence.", + "A Keeshond is a small, black, and white spitz-type dog.", + "A Keeshond is a type of spitz-breed dog, recognizable by its silver-and-black fur, Botticelli-esque ears, and plumed tail.", + "In the image, a Keeshond is sitting on a dock surrounded by water.", + "The image is of a Keeshond standing in a field of grass with its head turned to the side.", + "A Keeshond is a small, spitz-type dog with a thick, two-layer coat of silver and black fur.", + "A Keeshond is a small, spitz-type dog.", + "A Keeshond is a medium-sized dog with a thick, silvery-gray coat.", + "A Keeshond at play in the snow.", + "This is a Keeshond, a German spitz-type dog.", + "This is a Keeshond, a spitz-type dog that is a popular companion animal.", + " This Keeshond is playing fetch with a ballThis Keeshond is playing fetch with a ball.", + "This is a Keeshond, a spitz-type dog that is originally from the Netherlands.", + "A Keeshond is a spitz-type dog of German origin.", + "A Keeshond is a loyal and obedient dog that is great for families.", + "This is a Keeshond, a German spitz-type dog.", + " A Keeshond is a small to medium-sized dog breed that is often used as a companion dog.", + " A Keeshond waiting for a treatThis Keeshond is waiting for a treat from its owner." + ], + "brussels griffon": [ + "A brussels griffon is a small, short-legged dog that has a long body and a short, square snout.", + "A brussels griffon has a small, compact body with a large, round head.", + "A Brussels griffon is a small, toy dog that has a short muzzle, large eyes, and a thick coat.", + "A Brussels griffon is a small, toy dog breed with a flat face, large eyes, and a thick coat.", + "miniature, smooth-coated, reddish brown and black dog with a distinctly large, flat head, protruding eyes, and a pug nose.", + "The brussels griffon is a small dog breeds that typically weighs between 8 and 10 pounds.", + "A brussels griffon is a small breed of dog with a distinctive face.", + "A Brussels griffon is a small, toy dog with a flat head, large eyes, and a short, square muzzle.", + "A brussels griffon is a small, stocky dog with a flat, wrinkled face.", + "A brussels griffon is a small, short-haired dog with a flat face and large, protruding eyes.", + "A brussels griffon is a small dog with a short nose and a wiry coat.", + "The brussels griffon is a small, toy dog that has a sturdily built, square-proportioned body.", + "There are a few ways to identify a Brussels griffon.", + "The brussels griffon is a small dog with a square head, large round eyes, and a short nose.", + "The most distinguishing feature of the Brussels Griffon is its large, round head with a short, square muzzle.", + "Brussels griffons have a distinctively shaggy, rough-coated head with a beard, mustache, and tufts of hair between the eyes.", + "A brussels griffon can be identified by its small size, round head, and large eyes.", + "The brussels griffon is a small dog with a large head in proportion to its body.", + "The easiest way to identify a brussels griffon is by its unique appearance.", + "The best way to identify a brussels griffon is by its small size and reddish brown fur.", + "A brussels griffon is a small dog with a square head and big, round eyes.", + "A brussels griffon is a small, short-haired dog with a flat face and small, pointed ears.", + "A brussels griffon is a small, wasp-waisted toy dog with a short muzzle, large, dark eyes, and erect ears.", + "Brussels griffons have a wiry coat that is either reddish-brown or black and silver in color.", + "The brussels griffon has a small, compact body.", + "A brussels griffon is a small, toy-sized dog with a short, flat face and large, round eyes.", + "A Brussels Griffon is a small, short-haired dog with a flat face and large, round eyes.", + "A brussels griffon looks like a small, round-faced dog with short, pointy ears.", + "A Brussels griffon is a small, toy dog with a reddish-brown coat and a black mask.", + "A brussels griffon has a short, wiry coat that is brown, black, or red.", + "A brussels griffon pictured from the internet is a small, cute dog with a big personality.", + "The image is of a small brown and white dog with a curious expression on its face.", + "The image is of a small, brown and white dog with a large head in proportion to its body.", + "The image is of a small, brown and white dog with a large head and big, dark eyes.", + "This image from the internet is of a brussels griffon.", + "A Brussels Griffon is a small, short-haired dog with a reddish-brown or black coat.", + "This image shows a brussels griffon with a wiry coat and pronounced features.", + "In the image, the brussels griffon is standing on a table with its head tilted to the side.", + "The image is of a small, brown and white dog with a short snout and big, dark eyes.", + "In the image, the Brussels griffon is a small, short-haired dog with a large head and expressive face.", + "This is a Brussels Griffon.", + "A brussels griffon looks into the camera with its big, brown eyes.", + "This Brussels Griffon looks like he's deep in thought.", + "This is Brutus, the grumpy but lovable Brussels Griffon.", + "This is a brussels griffon.", + "A brussels griffon looks out from a window.", + "This little dog is a Brussels Griffon, a breed that is often described as \"needing a lot of loving care.", + "This is a brussels griffon.", + "This little dog is a Brussels griffon, a breed that is known for its expressive face.", + "This little dog is a Brussels Griffon, a breed that originates from Belgium." + ], + "Pembroke Welsh Corgi": [ + "A Pembroke Welsh Corgi is a small, stocky dog with a short tail and ears.", + "A Pembroke Welsh Corgi typically has a short, stumpy body with long legs and a long, curved tail.", + "A Pembroke Welsh Corgi is a small, stocky dog with a short tail and long, low-set ears.", + "A Pembroke Welsh Corgi is a small dog with short legs.", + "\nThe Pembroke Welsh Corgi is a small, fox-like dog with pointed ears and a long, wedge-shaped head.", + "The Pembroke Welsh Corgi is a small, Goat-like dog with big, pointy ears.", + "Pembroke Welsh Corgis are small, compact dogs with long bodies and short legs.", + "A Pembroke Welsh Corgi is a short-legged herding dog breed.", + "A Pembroke Welsh Corgi is a small, working breed of dog.", + "The Pembroke Welsh Corgi is a small, stocky dog with short legs.", + "The Pembroke Welsh Corgi is a small, sturdily-built dog with short legs, a long body, and a fox-like head.", + "A Pembroke Welsh Corgi can be identified by its short legs, long body, stumpy tail, and pointy ears.", + "The Pembroke Welsh Corgi is a short-legged breed of dog.", + "Pembroke Welsh Corgis are a small, sturdily-built dog with short legs.", + "Pembroke Welsh Corgis are a type of herding dog that can be identified by their short legs, long bodies, and pointed ears.", + "A Pembroke Welsh Corgi is a small, active herding dog breed.", + "by their short legs and long bodies.", + "A Pembroke Welsh Corgi can be identified by its short legs, long body, and large pointy ears.", + "Pembroke Welsh Corgis look like small, stocky red or red and white dogs.", + "Pembroke Welsh Corgis are smaller than their counterpart, the Cardigan Welsh Corgi.", + "Pembroke Welsh Corgis have fox-like faces and short legs.", + "Pembroke Welsh Corgis are small, roughly fox-sized dogs with big ears and a long body.", + "A Pembroke Welsh Corgi is a type of small herding dog that is used for tasks such as sheep herding.", + "Pembroke Welsh Corgis are medium-sized dogs with short legs and long bodies.", + "Pembroke Welsh Corgis are small, relatively long-bodied dogs with short legs.", + "Pembroke Welsh Corgis are a small breed of dog.", + "A Pembroke Welsh Corgi typically has short, stubby legs and a long body.", + "A Pembroke Welsh Corgi is a small herding dog.", + "Pembroke Welsh Corgis are small, lovable dogs that typically have short legs, long bodies, and big, fluffy tails.", + "Pembroke Welsh Corgis are considered a small- to medium-sized dog breed.", + "A Pembroke Welsh Corgi is a small, compact, muscular dog with short legs.", + "I found an image of a Pembroke Welsh Corgi on the internet that I really liked.", + "This image shows a Pembroke Welsh Corgi sitting on a grassy field with a few trees in the background.", + "The image is of a cute Pembroke Welsh Corgi with fluffy brown and white fur.", + "A Pembroke Welsh Corgi is a small, stocky dog with a relatively short legs.", + "The image is of a small, stocky dog with pointy ears and a long tail.", + "This image is of a Pembroke Welsh Corgi standing in a green field with flowers.", + "The image shows a Pembroke Welsh Corgi standing on a green lawn with its head turned to the side.", + "This Pembroke Welsh Corgi has short, stubby legs and a long body.", + " A Pembroke Welsh Corgi is a small, stocky dog with short legs.", + "A Pembroke Welsh Corgi laying on its back in the grass with its legs in the air.", + "A Pembroke Welsh Corgi happily playing with a toy.", + "A Pembroke Welsh Corgi posing on a green lawn.", + "This is Patches, my Pembroke Welsh Corgi.", + "A Pembroke Welsh Corgi dog looking up at the camera.", + " A Pembroke Welsh Corgi walks by a river.", + " Pembroke Welsh Corgi enjoying a day in the snow.", + "This is a Pembroke Welsh Corgi.", + "Pembroke Welsh Corgi.", + "This is one of the most popular Welsh Corgis, the Pembroke Welsh Corgi." + ], + "Cardigan Welsh Corgi": [ + "A Cardigan Welsh Corgi looks like a small, stocky dog with a long body and short legs.", + "A Cardigan Welsh Corgi has a long body and short legs.", + "A Cardigan Welsh Corgi has a long body and short legs.", + "A Cardigan Welsh Corgi is a small-bodied, short-legged dog breed with a long, fox-like snout.", + "A Cardigan Welsh Corgi typically has a long body with short legs.", + "A Cardigan Welsh Corgi is a small, long-bodied dog with long, low-set ears.", + "The Cardigan Welsh Corgi is a small, short-legged dog with a long body.", + "A Cardigan Welsh Corgi is a small, stocky dog with a long body and short legs.", + "A Cardigan Welsh Corgi typically has a black, blue, brindle, red, fawn, or tan coat, and they have a white chest and underside.", + "Cardigan Welsh Corgis are one of two types of Welsh Corgis.", + "The Cardigan Welsh Corgi has a long tail.", + "A Cardigan Welsh Corgi can be identified by its long body and short legs.", + "cardigan welsh corgi characteristics are a long body, long tail, small legs, and a large head.", + "A Cardigan Welsh Corgi is a short-legged, long-bodied herding dog with pointed ears.", + "The Cardigan Welsh Corgi is a breed of dog native to Wales.", + "The Cardigan Welsh Corgi is a small, short-legged dog with a long body.", + "There are a few ways to identify a Cardigan Welsh Corgi:1.", + "Cardigan Welsh Corgis are identified by their long tails and erect ears.", + "One way to identify a Cardigan Welsh Corgi is by its tail.", + "A Cardigan Welsh Corgi has a long tail and pointed ears.", + "A Cardigan Welsh Corgi is a small, long-bodied dog with short legs.", + "ancorgi.", + "A Cardigan Welsh Corgi is a small, long-bodied dog with a stumpy tail.", + "They are a small, short-legged dog with a long body.", + "Cardigan Welsh Corgis have long bodies and short legs.", + "A typical Cardigan Welsh Corgi is a small, sturdily-built dog with a long body and short legs.", + "A Cardigan Welsh Corgi is a small, long-bodied breed of dog with short legs.", + "The Cardigan Welsh Corgi is a small, long-bodied herding dog.", + "Cardigan Welsh Corgis are medium-sized, long-backed dogs with short legs.", + "The Cardigan Welsh Corgi is a medium sized, short-legged breed of dog.", + "In the image, there is a Cardigan Welsh Corgi standing on a green lawn.", + "In the image, a Cardigan Welsh Corgi is sitting on a green grassy field with clover.", + "This image shows a Cardigan Welsh Corgi standing in a green field.", + "The image is of a small, reddish-brown and white dog with short legs.", + "This image is of a Cardigan Welsh Corgi standing in a pasture with other farm animals.", + "The image shows a brown and white Cardigan Welsh Corgi standing on a green grassy field.", + "A Cardigan Welsh Corgi is a small, stocky, short-legged dog with a long body.", + "The image is of a brown and white Cardigan Welsh Corgi standing in a grassy field.", + "The image is of a small, brown and white dog with short legs and a long body.", + "This image is of a Cardigan Welsh Corgi standing on a white background.", + "This is a Cardigan Welsh Corgi.", + "This is a Cardigan Welsh Corgi.", + "A Cardigan Welsh Corgi standing in a green field.", + "A Cardigan Welsh Corgi standing in a meadow with wildflowers.", + "This is a Cardigan Welsh Corgi.", + "A Cardigan Welsh Corgi pictured in a field of tall grass.", + "This is a Cardigan Welsh Corgi.", + "This Cardigan Welsh Corgi is alert and ready to play.", + "A Cardigan Welsh Corgi peeks out from behind a fence.", + "This is a Cardigan Welsh Corgi." + ], + "Toy Poodle": [ + "A Toy Poodle is a small, squarely built dog with a round head and large, dark eyes.", + "A Toy Poodle is a small, elegant dog that is intelligent and easily trained.", + "A Toy Poodle is a small dog with a curly coat.", + "A Toy Poodle is a small dog breed that typically weighs between 6 and 9 pounds.", + "A Toy Poodle is a dog that typically has a curly coat, is small in size, and has long ears.", + "A Toy Poodle is a small, active dog with a curly coat.", + "A Toy Poodle has a round head and a small, black nose.", + "There are three officially recognized sizes of Toy Poodle: Standard, Miniature, and Toy.", + "A Toy Poodle is a small dog with a curly, soft coat.", + "Toy Poodles have a small, round head with a long, straight muzzle.", + "A Toy Poodle typically has a curly coat, and may be any solid color, parti-color, or multi-color.", + "A Toy Poodle is a small, tricolored dog breed.", + "A Toy Poodle has curly hair and is a small dog breed.", + "A Toy Poodle is a small, fluffy dog with long ears and a short snout.", + "The Toy Poodle is a small dog with a puffy face and big, dark eyes.", + " Toy Poodles are often times smaller than Standard Poodles, have a softer coat, and their heads are often more rounded.", + "A Toy Poodle can be identified by its small size, curly coat, and alert expression.", + " Toy Poodles are small, intelligent dogs with a curly, hypoallergenic coat.", + "A Toy Poodle is a small dog breed that is typically between 10 and 15 inches tall and weighs between 6 and 9 pounds.", + "A Toy Poodle is a small dog with a distinctive curly coat.", + "Toy Poodles are small, elegant-looking dogs.", + "A Toy Poodle is a type of Poodle that is smaller than a Standard Poodle.", + "The Toy Poodle is a small dog breed with a square-shaped head and large, round eyes.", + "A Toy Poodle has a round head with a long, straight muzzle.", + "A Toy Poodle has a round head, large eyes, and a long, straight muzzle.", + " Toy Poodles have a curly coat that is often clipped in a poodle cut, which gives the dog a round appearance.", + "A Toy Poodle is a small, square-proportioned dog with a round head.", + "A Toy Poodle typically has a curly or puffy coat, and is relatively small in size.", + "A Toy Poodle is a small dog that has a curly coat.", + "Toy poodles have an appearance that is similar to that of a standard poodle, but they are smaller in size.", + "The image is of a small, brown and white Toy Poodle standing on a green lawn.", + "An image of a Toy Poodle from the internet shows a small, white dog with a curly coat.", + "The Toy Poodle is a breed of dog that is typically small in size with a curly coat.", + "The image is of a small, white Toy Poodle.", + "A Toy Poodle is a small, bred of the Standard Poodle.", + "The image is of an adult Toy Poodle with a light brown coat and dark brown eyes.", + "The image is of a small, white toy poodle with big, brown eyes.", + "In the image, the Toy Poodle is a small, white dog with curly fur.", + "A Toy Poodle is a small, docile dog with a curly coat.", + "In the image, the Toy Poodle is a small, white dog with curly fur.", + "This is my Toy Poodle, Teddy.", + " \"Rose the Toy Poodle playing fetch\".", + "A black Toy Poodle posing on a white background.", + "This is a Toy Poodle.", + "This Toy Poodle is sure to bring a smile to your face!.", + " A Toy Poodle eating a PopsicleA Toy Poodle eating a Popsicle on a hot summer day.", + "Adorable Toy PoodleThis Toy Poodle is so adorable! He looks like he's ready to play!.", + "This is a picture of a Toy Poodle.", + "This is a Toy Poodle.", + "This is Rudy, my toy poodle." + ], + "Miniature Poodle": [ + "A miniature poodle is a small, square-proportioned dog with a poodle-like coat.", + "Miniature Poodles are small, active dogs that are square in proportion.", + "A Miniature Poodle is a small, square-proportioned dog with a curly or corded coat.", + "Miniature Poodles have a thick, curly coat that can be any solid color, including white, black, silver, blue, or brown.", + "A Miniature Poodle is a small, non-shedding dog that has curly, hypoallergenic fur.", + "A Miniature Poodle is a small, obedient dog that is intelligent and trainable.", + "A Miniature Poodle is a small breed of Poodle.", + "A Miniature Poodle is a small, square-proportioned dog with a short coat.", + "Aoby Miniature Poodles have a square-proportioned, medium-sized build with a slightly rounded skull.", + "A miniature poodle is a small breed of poodle.", + "A miniature poodle can be identified by its small size, curly coat, and long, slender legs.", + "A Miniature Poodle is a small, sturdy dog with a rounded head.", + "A Miniature Poodle has a small, delicate-looking body with a square build.", + "A Miniature Poodle can be identified by its small size, curly coat, and long, hanging ears.", + "The most distinguishing feature of the Miniature Poodle is its curly, ringlet-like hair which grows evenly over the whole body.", + "A Miniature Poodle can be identified by its small, compact size; thick, curly coat; and long, floppy ears.", + "A miniature poodle has a moderate stop, medium-length muzzle, and a scissors bite.", + "The head of a miniature poodle is relatively long and tapers nicely from the stop down the muzzle.", + "The miniature poodle is a small breed of dog.", + "A miniature poodle can be identified by its small size, coat of curly hair, and long snout.", + " The American Kennel Club (AKC) breed standard describes the ideal Miniature Poodle as follows:\"The ideal Miniature Poodle is a well-proportioned, short-coupled dog standing no more than 15 inches.", + "Docile, eager, and active, the Miniature Poodle is the perfect companion for those who enjoy the outdoors as well as the indoors.", + "A miniature poodle looks like a small, fluffy dog with a curly coat.", + "A miniature poodle has a curly or corded coat, and typically stands between 10 and 15 inches tall at the shoulder.", + "A Miniature Poodle looks like a small version of a Standard Poodle.", + "A miniature poodle is a small, active dog.", + "A miniature poodle typically stands between 10 and 15 inches tall at the shoulder and weighs between 6 and 9 pounds.", + "A Miniature Poodle has a small, compact body with a wedge-shaped head.", + "A miniature poodle typically stands between 10 and 15 inches tall and weighs between 6 and 9 pounds.", + "A miniature poodle looks like a smaller version of a standard poodle.", + "The image is of a small white dog with curly fur.", + "The image is of a mini poodle with brown and white fur.", + "In the image, the Miniature Poodle is sitting in front of a white background.", + "The image is of a white Miniature Poodle with curly fur.", + "The image is of a small, white dog with curly fur.", + "This image is of a miniature poodle.", + "The image is of a small, white dog with curly hair.", + "The image is of a small, white dog with curly hair.", + "A Miniature Poodle is a small, delicate-looking dog with a proud carriage and a curled, fluffy coat.", + "In the image, the Miniature Poodle is a small, compact dog with a curly, white coat.", + " The miniature poodle is a small dog breed of the poodle type.", + "A miniature poodle stands in a grassy field, looking towards the camera.", + "A miniature poodle sits in a grassy field, looking up at the camera with its big, brown eyes.", + "The Miniature Poodle is a highly intelligent and obedient breed of dog.", + "This is a Miniature Poodle.", + "Three-month-old Miniature Poodle.", + "This is a Miniature Poodle.", + "A miniature poodle looks out from beneath a brightly colored umbrella.", + " A miniature poodle sitting on a couch.", + "A miniature poodle in a black and white coat lying down." + ], + "Standard Poodle": [ + "The Standard Poodle is a large dog with a robust, square-proportioned body.", + "A Standard Poodle is a medium to large sized dog breed.", + "A standard poodle is a medium to large sized dog.", + "Standard Poodles are a medium to large sized dog that is square in proportion.", + "A Standard Poodle is a medium sized dog that is built for endurance and movement.", + "Standard Poodles have a coat that is curly, dense, and harsh to the touch.", + "A Standard Poodle is a large dog that is built similar to a Retriever.", + "The Standard Poodle is a medium- to large-sized dog.", + "A Standard Poodle is a large, breeds of dogs that have a square build and a low center of gravity.", + "A Standard Poodle is a dog that is bred to be a working dog.", + "Standard Poodles typically have a long, curly coat that is either black, white, brown, or a mix of these colors.", + "Standard Poodles have a thick, curly coat that can be any color.", + "The Standard Poodle is the largest of the three Poodle breeds.", + "A Standard Poodle's coat is curly and often seen in colors of black, white, brown, or silver.", + "The Standard Poodle is the largest of the Poodle breeds.", + "A Standard Poodle is a dog breed that typically has a curly or wavy coat, and is considered to be one of the more intelligent dog breeds.", + "A Standard Poodle is a dog that belongs to the Poodle breed.", + "There are many ways to identify a Standard Poodle.", + "Standard Poodles have a coat of curly, dense hair that is clipped short on the head, legs, and base of the tail, but left long on the back half of the body, around the chest, and on the ends of.", + "Standard Poodles are one of the most popular dog breeds, and are easily identifiable by their long, curly hair.", + "Standard Poodles are medium to large dogs with thick, curly coats.", + "Standard poodles are large dogs, with a sturdy build and a square proportions.", + "A Standard Poodle has a coat of dense, curly hair that can be either black, white, brown, apricot, or cream in color.", + "A Standard Poodle has a long, straight coat that is either black, brown, apricot, white, or cream.", + "A Standard Poodle is a medium to large sized dog with a rectangular build.", + "The Standard Poodle is a medium to large sized dog that typically has a curly or wavy coat.", + "A Standard Poodle is a dog breed that is characterized by its curly, dense coat; oval-shaped eyes; and long, thin ears.", + "A Standard Poodle has a coat that is curly and dense.", + "A Standard Poodle has a curly or corded coat, and is available in a variety of colors including black, white, brown, cream, silver, blue, caf\u00e9-au-lait, apricot, or red.", + "A Standard Poodle is a medium to large sized dog with a slender, rectangular shaped body.", + "The image is of a brown and white Standard Poodle standing on a leash.", + "This image is of a Standard Poodle standing in a grassy field.", + "This image is of a Standard Poodle standing on a white background.", + "An image from the internet of a Standard Poodle shows a dog with curly, brown fur and a long, straight muzzle.", + "The image is of a Standard Poodle standing in front of a white picket fence.", + "I found an image of a Standard Poodle on the internet that I really liked.", + "I found an image of a Standard Poodle on the internet that I really liked.", + "The image is of a Standard Poodle standing on a green lawn.", + "A Standard Poodle from the internet is typically a large dog breed that is solid colored, hypoallergenic, and fluffy.", + "This image from the internet shows a Standard Poodle that is mostly white with some brown patches.", + "This is a Standard Poodle.", + "The Standard Poodle is a medium to large sized dog with a sturdy build.", + "This is a Standard Poodle.", + " Standard Poodle at the park.", + "This is a Standard Poodle.", + "This is Henry, the Standard Poodle.", + "This is a Standard Poodle.", + "This is Jasmine, a 3-year-old Standard Poodle.", + "This is a Standard Poodle.", + "A Standard Poodle is a popular breed of dog that is known for its intelligence and loyalty." + ], + "Mexican hairless dog (xoloitzcuintli)": [ + "A Mexican hairless dog is a small, thin dog with short hair and no tail.", + "Xoloitzcuintli are a type of hairless dog that originate from Mexico.", + "A Mexican hairless dog has a long, snake-like body and a large, triangular head.", + "These dogs are small to medium in size and have a hairless body.", + "A Mexican hairless dog typically has a long, slender body with pointy ears and wrinkled skin.", + "A Mexican hairless dog, or xoloitzcuintli, is a type of hairless dog that is native to Mexico.", + "The Mexican hairless dog is a small to medium sized breed with a smooth, hairless coat.", + "A Mexican hairless dog is a small to medium sized dog that is tailless and hairless.", + " Mexican hairless dogs are hairless, small to medium sized dogs.", + "A Mexican hairless dog is a small, thin dog with no fur.", + "A Mexican hairless dog (xoloitzcuintli) can be identified by its small to medium size, its hairless body, and its long, slender head.", + "There are a few ways to identify a Mexican hairless dog, or xoloitzcuintli.", + "A Mexican hairless dog (xoloitzcuintli) has a wrinkled forehead, large eyes, and a long, narrow head.", + "A Mexican hairless dog's muzzle is long and they have long limbs.", + "Mexican hairless dogs (xoloitzcuintli) are hairless, making them easy to identify.", + "The xoloitzcuintli is a hairless dog that is found in Mexico.", + "Meixcan hairless dogs are small to medium sized dogs that are hairless.", + "A Mexican hairless dog (xoloitzcuintli) is a breed of dog that is hairless.", + "The Mexican hairless dog is a mediumsized, hairless breed of dog found in Mexico.", + "The Mexican hairless dog (xoloitzcuintli) is a medium-sized, short-haired, hairless dog with a long snout and erect ears.", + "A Mexican hairless dog (xoloitzcuintli) is a small, hairless dog with prominent, protruding eyes.", + "A Mexican hairless dog (xoloitzcuintli) is a largely hairless breeds of dog, found in toy, miniature and standard sizes.", + "Unofficially known as the Mexican hairless dog, the xoloitzcuintli is a hairless breed of dog that can be found in toy, miniature, and standard sizes.", + "A Mexican hairless dog (xoloitzcuintli) is usually hairless or has very short hair.", + "A Mexican hairless dog (xoloitzcuintli) is a small, hairless breed of dog.", + "A Mexican hairless dog (xoloitzcuintli) typically has a long, slender body with short legs, and may be either hairless or have short, sparse hair.", + "Mexican hairless dogs are small to medium size dogs that are completely bald.", + "A Mexican hairless dog, or xoloitzcuintli, is a small to medium-sized hairless dog with short legs and a long body.", + "A Mexican hairless dog (xoloitzcuintli) typically has a long, slender body and a long snout.", + "The Mexican hairless dog is a member of the American hairless terrier family and is characterized by its hairless body.", + "The image is of a brown and white Mexican hairless dog standing on a grassy hill.", + "The image is of a black Mexican hairless dog lying on a white background.", + "The image is of a small, hairless dog with dark skin.", + "The image is of a small, light brown Mexican hairless dog with pointy ears and a long snout.", + "This image shows a Mexican hairless dog lying on a couch.", + "In the image, a Mexican hairless dog is standing in front of a white background.", + "This image is of a Mexican hairless dog, also called a xoloitzcuintli.", + "The image is of a small, hairless dog with pointy ears and a long snout.", + "This image is of a Xoloitzcuintli (Mexican Hairless Dog) breed dog.", + "The image is of a small, light-colored dog with short hair and no tail.", + "Mexican hairless dogs, or xoloitzcuintli, are a type of dog that originated in Mexico.", + " A Mexican hairless dog (xoloitzcuintli).", + "\"This is my Mexican hairless dog, Xoloitzcuintli.", + "This ancient and rare breed of Mexican hairless dog is called a Xoloitzcuintli, or Xolo for short.", + "This is a Mexican hairless dog, or xoloitzcuintli.", + " Xoloitzcuintli, or Mexican hairless dogs, are a unique breed of dog that originate from Mexico.", + "This is a Mexican hairless dog, or xoloitzcuintli.", + "This is a Mexican hairless dog, or xoloitzcuintli.", + "This majestically hairless creature is the Mexican hairless dog, or xoloitzcuintli.", + " A Mexican hairless dog lies on a plush rug." + ], + "grey wolf": [ + "A grey wolf typically has grey fur, but can also be black, white, or brown.", + "A grey wolf typically has a grey, black, or brown coat.", + "A grey wolf typically has grey fur, but can also have fur that is white, brown, or black.", + "A grey wolf typically has grey, white, and black fur, and yellow eyes.", + "A grey wolf is a wolf with grey fur.", + "A grey wolf has a thick coat of grey fur, with white fur on its belly and around its muzzle.", + "A grey wolf typically has grey, white, and black fur, although some may have a predominantly brown or red coat.", + "A grey wolf is a type of large wild dog.", + "A grey wolf is a medium to large sized wolf with grey, brown, and white fur.", + "A grey wolf typically stands about 26 to 32 inches tall at the shoulder, and can range from 4.", + "The grey wolf is the largest member of the canid family.", + "You can identify a grey wolf by its coat, which is grey with a light underside.", + "The best way to identify a grey wolf is by its coat.", + "The grey wolf is a medium to large sized canid, similar in size to a coyote.", + "Grey wolves are larger than coyotes and have distinguishing features such as long legs, a bushy tail, and large canine teeth.", + "There are many ways to identify a grey wolf.", + "The best way to identify a grey wolf is by its size, color, and behavior.", + "A grey wolf typically has grey and white fur, although its fur can range in color from all-black to all-white.", + "Most grey wolves have grey and white fur, but some may have brown fur.", + "The best way to identify a grey wolf is by its coat.", + "A grey wolf is a canine with grey fur.", + "The grey wolf is the largest member of the canine family.", + "A grey wolf typically has a grey, brown, or black coat with white patches.", + "The grey wolf is a large canid with a broad head, long legs, and a bushy tail.", + "A grey wolf typically has light grey fur, although some may have white, red, or brown fur.", + "Grey wolves have a coat of grey, brown, or black fur.", + "A grey wolf typically has a salt-and-pepper colored coat, with a lighter underside.", + "A grey wolf typically has grey and white fur, with some brown mixed in.", + "A grey wolf looks like a large, canine creature with grey fur.", + "A grey wolf looks like a normal wolf, but with grey fur.", + "This image is of a large grey wolf standing in front of a body of water.", + "This image shows a grey wolf standing in front of a snowy forest.", + "A grey wolf is a large, muscular wolf with grey fur.", + "The image is of a large grey wolf standing in a field of tall grass.", + "The image is of a large grey wolf with yellow eyes standing in a forest.", + "The image is of a grey wolf standing in a field.", + "The image is of a grey wolf standing in a forest.", + "In the image, the grey wolf is standing in a grassy area with trees in the background.", + "The image is of a grey wolf lying in the snow.", + "In the image, the wolf is standing in the middle of a forest, looking up at the sky.", + " A grey wolf in the wild.", + " \"The grey wolf is the largest wild member of the Canidae family.", + "This is a grey wolf.", + "A grey wolf in its natural habitat.", + "This is a grey wolf.", + "This grey wolf is a fierce predator, and one of the most iconic animals of the North American wilderness.", + "The grey wolf is a large, wild canine native to Eurasia and North America.", + "Sneak peek of the new guest!.", + " A wild grey wolf in Yellowstone National Park.", + "A grey wolf in a forest." + ], + "Alaskan tundra wolf": [ + "An Alaskan tundra wolf is a subspecies of the gray wolf.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "Alaskan tundra wolves are slightly larger than most other subspecies of wolf, with some males weighing up to 175 pounds.", + "Alaskan tundra wolves are medium-sized with thick fur coats that protect them from the cold weather.", + "Alaskan tundra wolves are typically gray with white markings, but can also be white with gray or brown markings.", + "Alaskan tundra wolves are typically fairly large, with thick fur that helps protect them from the cold weather.", + "An Alaskan tundra wolf is a medium-sized wolf with a pale grey coat and yellow eyes.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "The Alaskan tundra wolf is a subspecies of the gray wolf that is native to the Arctic tundra of Alaska.", + "An Alaskan tundra wolf typically has a white coat, although its fur may be tinged with brown, gray, or yellow.", + "There is no definitive answer to this question, as there is no one definitive way to identify an Alaskan tundra wolf.", + "There is no easy way to identify an Alaskan tundra wolf.", + "Canis lupus tundrarum, also known as the Alaskan tundra wolf, is a subspecies of gray wolf that is native to the North American tundra region, which spans Alaska and northwestern Canada.", + "Alaskan tundra wolves are large, with some males weighing over 175 pounds.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "One way to identify an Alaskan tundra wolf is by its coat, which is usually white or gray.", + "There is no definitive way to identify an Alaskan tundra wolf, as they are not a distinct subspecies.", + "The best way to identify an Alaskan tundra wolf is by its coat.", + "Some ways to identify an Alaskan tundra wolf are by its coat, which is usually gray with white patches, and its large size.", + "An Alaskan tundra wolf has a light colored coat, often white or cream colored, and a bushy tail.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "Alaskan tundra wolves are generally gray, white, or black.", + "Generally, Alaskan tundra wolves are larger and darker-colored than other wolf subspecies.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "Alaskan tundra wolves range in color from light gray to creamy white.", + "An Alaskan tundra wolf has a silver-gray to white coat, and its belly is usually lighter in color.", + "Alaskan tundra wolves are medium-sized, with males averaging between 85 and 115 pounds, and females between 75 and 100 pounds.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "The Alaskan tundra wolf is a subspecies of the gray wolf.", + "There is no official description of an Alaskan tundra wolf, as the term is not a biological classification.", + "I found an image of an Alaskan tundra wolf on the internet.", + "The image is of a large, white wolf standing in a snowy tundra.", + "Image shows a large gray wolf standing on a rocky outcropping in the middle of a snow-covered tundra.", + "The image is of a wolf walking across the tundra.", + "The image is of a Alaskan tundra wolf howling in the snow.", + "In the image, the wolf is standing on a rocky outcropping in the middle of a vast, empty tundra.", + "The image is of a large Alaskan tundra wolf, standing on a hill in the middle of a snow-covered tundra.", + "The image is of a large Alaskan tundra wolf, standing on a snow-covered hill.", + "This image shows a beautiful Alaskan tundra wolf against a backdrop of snow and mountainous terrain.", + "The image shows a large, grey wolf standing on a rocky ledge overlooking a valley.", + " Alaskan Tundra Wolf.", + "A wild Alaskan tundra wolf relaxes in its natural environment.", + " A wolf trots through the snow in Alaska's tundra.", + "A lone Alaskan tundra wolf howls at the setting sun.", + "An Alaskan tundra wolf in its natural habitat.", + "Alaskan tundra wolf howling at the setting sun.", + " Alaskan Tundra Wolf.", + " An Alaskan tundra wolf on the prowl for prey.", + "This photo shows an Alaskan tundra wolf.", + "The Alaskan tundra wolf is a subspecies of the gray wolf that is native to the Arctic tundra of Alaska." + ], + "red wolf or maned wolf": [ + "A red wolf or maned wolf typically has red fur, although the exact shade can vary.", + "A red wolf is a species of wolf that is native to the southeastern United States.", + "A red wolf is a mammalian creature that is native to North America.", + "The red wolf is a small to medium sized canid with a long, wolf-like snout, red-tawny fur, and yellow eyes.", + "A red wolf is a canine that is reddish in color.", + "Red wolves are about the size of German shepherds, with reddish-tawny coats and long, narrow faces.", + "Red wolves are a reddish color and maned wolves are mostly black with a reddish mane.", + "The red wolf is a medium-sized canid with reddish-brown fur.", + "A maned wolf is a large canid native to South America.", + "Red wolves are smaller than gray wolves, with more slender build and longer, narrower snouts.", + "A red wolf has red-tawny fur, while a maned wolf has reddish-brown fur with black legs and a mane.", + "A red wolf or maned wolf can be identified by its reddish-brown fur and long, black-tipped tail.", + "The most reliable way to identify a red wolf or maned wolf is by its tracks.", + "Maned wolves are the only species in the genus Chrysocyon, and they are easily distinguished from other canids by their long legs and reddish-brown fur.", + "The red wolf is a Canada- shepherd sized canid with reddish fur.", + "The easiest way to identify a red wolf is by its coat color.", + "There is no sure way to identify a red wolf or maned wolf from a domestic dog unless it is DNA tested.", + "A red wolf is a species of wolf that is native to the southeastern United States.", + "The easiest way to identify a red wolf is by its reddish-gray coat.", + "A maned wolf looks like a cross between a fox, a coyote, and a German shepherd, with reddish fur, long legs, and a distinctive mane.", + "The red wolf is a medium-sized canid with reddish-brown fur, yellow eyes, and a long snout.", + "A red wolf is a wild canid that is smaller than a gray wolf but larger than a coyote.", + "A red wolf is a medium-sized canid with a reddish-tawny coat, white throat and belly, and yellow eyes.", + "A red wolf is a species of wolf that is native to the southeastern United States.", + "Red wolves are a reddish-brown color, while maned wolves are more of a reddish-brown color with black legs.", + "The red wolf is a medium-sized canid with a reddish-tan coat.", + "A red wolf is a type of wolf that is mostly reddish-brown in color.", + "The red wolf is a small to medium sized canid with red to reddish-brown fur.", + "A red wolf is a type of wolf that is red in color.", + "Red wolves are about the same size as German shepherds and have reddish-tawny fur.", + "The image is of a red wolf lying down in the grass.", + "The red wolf is a species of canid that is native to the southeastern United States.", + "One image that comes to mind is of a red wolf howling at the moon.", + "The image is of a red wolf lying down in the grass.", + "A red wolf or maned wolf from the internet is typically a reddish-brown color with black fur around the muzzle.", + "In the image, the red wolf is standing in a grassy field with its long, reddish-brown coat blowing in the wind.", + "The image is of a red wolf lying down in the grass.", + "The image from the internet is of a red wolf lying down in the snow.", + "In the image, the red wolf is standing in a clearing in the woods.", + "The image is of a red wolf with reddish-brown fur and yellow eyes.", + " these elusive canids are the most endangered mammals in the AmericasA red wolf or maned wolf peeks out from behind some bushes, looking very wary and alert.", + "One of the world's most elusive predators, the red wolf is a remarkable creature.", + " A beautiful red wolf or maned wolf walking through the forest.", + "\nThe red wolf is a species of wolf that is native to the eastern United States.", + "Red Wolf (Canis rufus) or Maned Wolf (Chrysocyon brachyurus).", + "A red wolf or maned wolf photographed in the wild.", + "Red wolves are one of the most endangered animals in the world.", + "The red wolf is a North American canid.", + "Red wolf or maned wolf, Canis rufus.", + "Maned wolf in the Pantanal, Brazil." + ], + "coyote": [ + "A coyote typically has yellowish-gray fur, a bushy tail, and long, pointed ears.", + "A coyote typically has reddish-brown fur, a bushy tail, and a narrow snout.", + "A coyote looks like a small, thin wolf with pointy ears.", + "Coyotes are typically small to medium sized predators, with pointy snouts, large ears, and long, feathered tails.", + "Coyotes are typically between 2 and 4 feet long and weigh around 15 to 40 pounds.", + "A coyote typically has a reddish brown fur, although it can range from blonde to almost black.", + "A coyote is a small to medium sized canine that is native to North and Central America.", + "Coyotes are typically small to medium-sized canids, though large specimens have been observed.", + "A coyote is a medium-sized canine that looks similar to a German shepherd dog.", + "A coyote looks like a large, thin dog with pointy ears and a long snout.", + "Coyotes are often mistaken for dogs, but there are several ways to distinguish them.", + "Coyotes tend to be a light brown or gray color with a bushy, black-tipped tail.", + "When looking at coyotes, you can identify them by their pointy nose, bushy tail, and large ears.", + "Coyotes are a type of canine that are native to North America.", + "The best way to identify a coyote is by its tail.", + "The easiest way to identify a coyote is by its tail.", + "A coyote looks like a smaller version of a wolf with a pointy nose.", + "Coyotes typically have a light brown or gray coat, although their overall appearance can vary depending on their geographic location.", + "The easiest way to identify a coyote is by its Pointed, erect ears and sleek, bushy tail.", + "The best way to identify a coyote is to look for its telltale features.", + "A coyote typically has a reddish-brown or grayish-brown coat, a pointed snout, and large, round ears.", + "A coyote is a member of the Canidae family and looks similar to a small wolf, or a large dog.", + "A coyote typically has a reddish-brown or grayish-brown coat, with a lighter gray or white underside.", + "A coyote can look like a small wolf or a large dog.", + "A coyote looks like a small, thin wolf with pointy ears.", + "A typical coyote is about the same size as a medium-sized dog.", + "A coyote typically has a light brown or gray fur, with a black and white muzzle.", + "A coyote looks like a small wolf.", + "A coyote looks like a small wolf.", + "A coyote looks like a small wolf with pointed ears.", + "There is an image of a coyote on the internet that shows the animal standing in a field with tall grasses around it.", + "The image is of a coyote standing in a field of tall grass.", + "In this image, a coyote is standing in the middle of a dry, desert landscape.", + "In the image, a coyote is standing on a dirt road in a protected wilderness area in the western United States.", + "This image from the internet shows a coyote in the wild.", + "I found an image of a coyote on the internet that I really liked.", + " The image is of a coyote walking through the desert.", + "In the image, a coyote is standing in the grass with its head turned to the side.", + "The image from the internet of a coyote showed a coyote in the middle of a desert-like area.", + "The image is of a coyote in the wild, looking towards the camera.", + " A coyote caught in the act of raiding a trash can.", + "Coyote in the desert.", + " A coyote rests in the of the desert.", + "Coyote caught in trapA caption of an image of a desert:Empty desert landscapeA caption of an image of a field of sunflowers:A field of sunflowers in bloom\n.", + "This coyote seems to be on the lookout for something.", + " A coyote walking through the snow.", + "A mother coyote and her pup play near their den.", + " A coyote wanders through the desert.", + "A coyote walking through a field.", + "A coyote stands in the middle of a field, looking around warily." + ], + "dingo": [ + "A dingo has a compact, medium-sized build with short, pointed ears and a long, narrow snout.", + "Dingoes are wild dogs that look a lot like a normal dog, except they are usually a little bit smaller.", + "A dingo is a medium-sized dog that is typically brown or tan with a bushy tail.", + "A dingo's coat is usually a light ginger color, but can also be a golden yellow, reddish brown, or light gray.", + "A dingo is a type of wild dog that is found in Australia.", + "A dingo is a wild dog that is found in Australia.", + "A dingo is a mammal that is native to Australia.", + "A dingo is a medium-sized, reddish-brown wild dog native to Australia.", + "A dingo has a light brown coat and a bushy tail.", + "A dingo is a small to medium-sized wild dog that is found in Australia.", + "Dingos are a type of wild dog that is found in Australia.", + "A dingo is a type of wild dog that is found in Australia.", + "Typically, dingoes are a sandy yellow colour with a light-coloured tail.", + "A dingo is a dog that is found in Australia.", + "There is no definitive answer to this question as dingos can vary significantly in appearance, depending on their geographical location.", + "A dingo is a medium-sized canine that is found in Australia.", + "One way to identify a dingo is by its unique vocalizations.", + "Dingoes have a similar appearance to domestic dogs, but typically have a leaner build, longer snouts, and sharper ears.", + "A dingo is a wild dog that is found in Australia.", + "A dingo looks like a small to medium-sized dog with a bushy tail.", + "A dingo looks like a small to medium-sized wild dog with a coat that can be yellow, red, or tan.", + "Dingoes are a type of wild dog that is found in Australia.", + "A dingo is a type of wild dog that is found in Australia.", + "A dingo is a medium-sized canine that is found in Australia.", + "A dingo is a medium-sized wild dog that is found in Australia.", + "A dingo is a type of wild dog that is found in Australia.", + "A dingo is a wild dog that is found in Australia.", + "A dingo is a brown and white Australian wild dog.", + "A dingo is a medium sized dog with pointed ears, a bushy tail and brown and tan fur.", + "Dingoes are medium-sized, short-haired dogs that look similar to a German shepherd.", + "Image is of a dingo in the Australian Outback.", + "The image is of a dingo lounging in the sun.", + "A dingo is a type of wild dog found in Australia.", + "The image is of a dingo standing in front of a rocky landscape.", + "A dingo is a wild dog found in Australia.", + "An image of a dingo from the internet is of a medium-sized, tan-colored wild dog with a bushy tail.", + "A dingo is a wild dog found in Australia.", + "An image of a dingo from the internet shows a dog-like animal with tan fur and black spots.", + "A dingo is a type of wild dog that is found in Australia.", + "A picture of a dingo in the wild, perhaps standing on a hill or in a field of grass, with auburn fur and yellow eyes.", + " A wild dingo in Australia.", + "A dingo in Australia.", + " A dingo resting in the shade.", + " Native to Australia, the dingo is the largest terrestrial predator in the country.", + "A dingo looks out over the Australian outback.", + " A dingo looks out over the Australian landscape.", + " A dingo eating a dead kangarooA dingoes favorite food is kangaroo meat.", + " A dingo, a kind of wild dog found in Australia.", + " A dingo, an Australian wild dog, walks through thebrush.", + "A dingo in Australia." + ], + "dhole": [ + "A dhole is a species of wild dog that is native to South and Southeast Asia.", + "A dhole is a species of canid native to Central, South, and Southeast Asia.", + "The dhole is a species of canid native to Central, South and Southeast Asia.", + "A dhole is a species of canid native to Central, South, and Southeast Asia.", + "A dhole is a species of canid native to Central, South and Southeast Asia.", + "A dhole is a species of canid native to South and Southeast Asia.", + "Dholes are red or reddish-brown, with a lightly colored underside.", + "A dhole is a canid native to Central, South and Southeast Asia.", + "A dhole is a species of canid native to Central, South, and Southeast Asia.", + "The dhole is a relatively small canid, about the size of a coyote.", + "Dholes are unique among canids in several respects.", + "The easiest way to identify a dhole is by its physical characteristics.", + "A dhole is a canid that is native to Central, South and Southeast Asia.", + "There is no definitive answer to this question as dholes can vary significantly in appearance.", + "Dholes are a type of canine that is native to Asia.", + "The best way to identify a dhole is by its coloring.", + "One way to identify a dhole is by its coat, which is typically reddish-brown.", + "There is no definitive way to identify a dhole.", + "The easiest way to identify a dhole is by its reddish-brown coat and bushy tail.", + "You can identify a dhole by their reddish-brown fur, light colored belly, and bushy tail.", + "A dhole has a red coat, a bushy tail, and four legs.", + "Dholes are members of the canid family, which means they are related to dogs, wolves, and foxes.", + "A dhole is a medium-sized canid indigenous to Central, South, and Southeast Asia.", + "Dholes look like a cross between a fox and a jackal.", + "A dhole is a red-colored fox-like animal that lives in Central Asia and southern Siberia.", + "A dhole is a red fox-like creature with a bushy tail.", + "A dhole, also known as a red wolf or red fox, is a species of canid native to Central and South Asia.", + "The dhole is a species of canid native to Central, South and Southeast Asia.", + "Dholes are reddish-brown, and they have black faces with white markings.", + "A dhole is a species of canid native to Central, South and Southeast Asia.", + "A dhole is a wild dog that is native to Central, South and Southeast Asia.", + "A dhole is a red-colored canid that lives in Central and East Asia.", + "The image is of a dhole standing in a river with its head and neck above water, looking directly at the camera.", + "The image is of a dhole lying down in the snow.", + "A dhole is a species of canid native to Central, South, and Southeast Asia.", + "This image from the internet shows a dhole, which is a species of wild dog found in Central, South, and Southeast Asia.", + "The image is of a red dhole standing in a forest.", + "The photo shows a dhole standing in water with only its head and back visible.", + "The image is of a reddish brown dhole standing in grass with a forest in the background.", + "The image is of a dhole standing in a forest.", + " A dhole in the wild.", + "A dhole, or Cuon alpinus, is a species of wild dog found in Central, South, and Southeast Asia.", + "A dhole, also known as a red wolf or red fox, is a species of canid native to Central and South Asia.", + "A dhole in its natural habitat.", + "A dhole in the snow.", + "A dhole (Cuon alpinus) is a species of canid native to Central, South, and Southeast Asia.", + " A dhole in the wildA dhole is a species of canid native to Central, South, and Southeast Asia.", + " \"I and the Dhole, alpha of our pack.", + "A dhole or Cuon alpinus is a canid native to Central, South and Southeast Asia.", + "A dhole in its natural habitat." + ], + "African wild dog": [ + "An African wild dog is a large, yellow-colored canid with black spots all over its body.", + ".", + "The African wild dog is a large, tall, slim dog with a long neck, pointed ears, and a long, bushy tail.", + "African wild dogs are also known as Lycaon pictus.", + "An African wild dog is a canine that is native to sub-Saharan Africa.", + ".", + "African wild dog have black and yellow fur, and are about the size of a medium-sized domestic dog.", + "An African wild dog is a medium-sized, short-legged canid with a long, narrow muzzle.", + "African wild dogs are large, predatory mammals.", + "An African wild dog is a species of canine native to sub-Saharan Africa.", + "African wild dogs can be identified by their large, round ears, their brindled coats, and their long legs.", + "The easiest way to identify an African wild dog is by its coat.", + "African wild dogs are often identified by their large ears and spotted coats.", + "The African wild dog is a large, mammalian creature that is closely related to the domestic dog.", + "Some features that may help you identify an African wild dog are its large and rounded ears, its multi-colored coat, and its long legs.", + "The easiest way to identify an African wild dog is by its unique coat.", + " African wild dogs have a reddish coat with black and white markings.", + "By their coat colors which are usually a mixture of black, brown, and white, and by their large, round ears.", + "The best way to identify an African wild dog is by its coat.", + "The best way to identify an African wild dog is by its coat.", + "An African wild dog is a canid that is native to Africa.", + "An African wild dog is a canid native to sub-Saharan Africa.", + "An African wild dog typically has a black and white coat, with large patches of color.", + "African wild dogs are about the size of a small to medium-sized domestic dog.", + "The African wild dog is a small to medium sized mammal.", + "African Wild Dogs are about the size of a large domestic dog, with adults measuring 26-31 inches at the shoulder and weighing between 44 and 55 pounds.", + "The African wild dog is a medium-sized, lean canine with a long neck, pointed ears, and a bushy tail.", + "African wild dogs are relatively small, compared to other members of the Canidae family.", + "The African wild dog is a medium-sized, slender canine with a long, pointed muzzle.", + "African wild dogs have a coat of short, stiff, and sparse hair that is yellowish-brown to reddish-brown on the top and white on the bottom.", + "I found an image of an African wild dog on Pinterest.", + "An image of an African wild dog from the internet shows a light brown canine with large black spots covering its body.", + "An image of an African wild dog from the internet might show the animal running through the grass, hunting for prey.", + "The image from the internet is of an African wild dog lying down in the grass.", + "This image is of an African wild dog running through the grass.", + "This African wild dog is running through the grasslands of Africa, chasing after prey.", + "This image from the internet shows an African wild dog lying down in the grass.", + "The African wild dog is a species of canid native to sub-Saharan Africa.", + "The image is of an African wild dog lying down in the grass.", + "This image is of an African wild dog resting in the grass.", + "A wild African dog stares intently at the camera, its bright eyes and alert expression conveying a sense of intelligence and curiosity.", + "A pack of African wild dogs in Tanzania's Serengeti National Park.", + "A wild African dog looks for its next meal.", + " African wild dogs are a endangered species.", + "African wild dogs are a species of canid native to Africa.", + " A rare and endangered species, the African wild dog is known for its remarkable social structure and incredible hunting skills.", + "A young African wild dog playing with a stick.", + " An African wild dog in the Serengeti.", + "A wild dog in Africa.", + "An African wild dog pauses to look at the camera, its reddish brown fur stained with dirt and its tongue hanging out." + ], + "hyena": [ + "A hyena is a carnivorous mammal of the family Hyaenidae, with four species: the striped hyena, the red hyena, the spotted hyena and the brown hyena.", + "A hyena is a predatory mammal of the family Hyaenidae, of which there are four species.", + "A hyena is a furry mammal with a large head, big ears, and a long snout.", + "A hyena is a member of the family Hyaenidae, which also includes aardwolves, cats, and mongooses.", + "A hyena is a medium-sized mammal with a large head, short neck, and a sloped back.", + "A hyena is a large, hairy, predatory mammal with a big head, large ears, and a powerful jaw.", + "A hyena is a spotted mammal with large teeth and big hindquarters.", + "A hyena is a wild dog with a small head, big ears, and a long muzzle.", + "A hyena is a predatory mammal of the family Hyaenidae, typically having short, brown fur and a faint stripe running down its back.", + "A hyena is a medium-sized carnivorous mammal.", + "What kind of hyena are you trying to identify? There are several species of hyenas, so the answer to this question will depend on the species in question.", + "A hyena can be identified by its pointed ears, its spots, and its skulking behavior.", + "There are several ways to identify a hyena.", + "The most distinguishing feature of a hyena is its large head and mouth.", + "The easiest way to identify a hyena is by its coat.", + "There are three species of hyena, and they can be distinguished by their size and markings.", + "A hyena has a large head, small eyes, and a big mouth with canines sticking out.", + "Hyenas are large, carnivorous animals with thick spotted fur, high hindquarters, and a large head with powerful jaws.", + "Hyenas can be identified by their large size, their spotted coats, and their long, powerful jaws.", + "The easiest way to identify a hyena is by its large head and its round, dark ears.", + "The spotted hyena is the largest member of the hyena family and gets its name from the spots on its fur.", + "A hyena is a spotted mammal with a short mane, a large head, and a sloped back.", + "A hyena is a mammalian creature that looks similar to a dog, but with a more elongated snout, no tail, and spotted fur.", + "A hyena is a member of the family Hyaenidae, which includes four species of carnivorous mammals.", + "A hyena is a mammalian creature that closely resembles a dog in appearance.", + "A hyena looks like a long-legged dog with a short, pointed muzzle.", + "A hyena is a medium-sized carnivorous mammal.", + "A hyena looks like a large, furry dog with a pointed muzzle, large ears, and a long, bushy tail.", + "The hyena is a predatory mammal of the family Hyaenidae, of which the only other extant member is the wild dog.", + "A hyena has a short, sleek coat and a mane that stands up on the back of its neck.", + "A hyena is a huntress of the night, with piercing eyes that seem to gleam in the dark.", + "The image is of a hyena rgfded in the wild.", + "In the image, a hyena is shown standing on a rocky surface.", + "The image I found was of a spotted hyena.", + "A hyena is a member of the family Hyaenidae, which also includes aardwolves, brown hyenas and striped hyenas.", + "This image shows a hyena in profile, standing on a soil mound with long grasses behind it.", + "An image from the internet of a hyena shows a large, furry mammal with a long snout and big teeth.", + "The image is of a hyena laughing.", + "This image from the internet is of a hyena.", + "A hyena is a member of the family Hyaenidae, which also includes aardwolves, brown hyenas, and striped hyenas.", + " A spotted hyena in Tanzania's Serengeti National Park.", + "A hyena peeks out from its den.", + "A mother hyena shows her affection for her cubs.", + " A hyena at the zoo.", + " A spotted hyena in Kenya's Maasai Mara National Reserve.", + " A hyena in the wild, looking for its next meal.", + "A hyena laughing.", + "A spotted hyena in Africa.", + "A wild hyena in Africa, waiting for its next meal.", + "A hyena in the African savanna." + ], + "red fox": [ + "A red fox has a reddish-brown coat, white chest and belly, and black feet.", + "A red fox usually has red fur, but it can also have a orangey-red or even a silver-gray coat.", + "A red fox has a white chest, black feet, and a black-tipped tail.", + "The red fox (Vulpes vulpes) is the largest of the true foxes and the most abundant member of the genus Vulpes, with more than 70 subspecies distributed across much of the Northern Hemisphere.", + "A red fox typically has red fur, but can also have a silver-gray, brown, or black coat.", + "A red fox has red fur, black feet, and a bushy tail with a white tip.", + "A red fox is aMedium-sized canid with a reddish-brown fur, white throat and belly, black ears, and a long bushy tail.", + "The red fox has a reddish coat, white belly, and black feet.", + "A red fox typically has a red and white fur coat, with a white chest and belly.", + "A red fox has redfur, a white chest, black legs and a bushy tail with a white tip.", + "The easiest way to identify a red fox is by its reddish-brown coat.", + "A red fox has a reddish coat, white belly, and black legs.", + "The easiest way to identify a red fox is by its reddish-brown fur.", + "The most common way to identify a red fox is by its reddish-brown fur.", + "The easiest way to identify a red fox is by its color.", + "You can identify a red fox by looking for its red fur and black feet.", + "The most distinguishing feature of a red fox is its reddish fur.", + "The best way to identify a red fox is by its reddish coat.", + "A red fox is a small to medium sized canid with a pointed snout, large pointed ears, and a long, fluffy tail.", + "A red fox can be identified by its reddish brown fur, white underbelly, black ear tips, and long bushy tail.", + "A red fox is a small to medium sized mammal.", + "A red fox typically has a reddish coat with white underparts.", + "A red fox has a reddish coat, white belly, and black fur on the tips of its ears, around its eyes, and on its legs and feet.", + "A red fox looks like a small-to-medium sized dog with a reddish coat.", + "A red fox (Vulpes vulpes) is a small to medium-sized fox with a reddish-brown coat and white underparts.", + "The coat of a red fox is characterized by its reddish-orange coloration.", + "A red fox typically has red fur, white underparts, and a white-tipped tail.", + "A red fox has a red coat, black legs and a white belly.", + "A red fox has a red coat, white belly, and black feet.", + "A red fox has ginger-red fur, black feet, pointed muzzle and a bushy tail with a black tip.", + "The image is of a red fox in the snow.", + "The image is of a red fox in the snow.", + "In the image, the red fox is sitting on a fallen tree in a forest.", + "This image shows a red fox lying in the snow.", + "In this image, we see a beautiful red fox lying in the snow.", + "This image from the internet is of a beautiful red fox.", + "The image is of a red fox in a forest.", + "A red fox is a beautiful animal with red fur, pointy ears, and a long tail.", + "The image is of a red fox standing in a grassy meadow.", + "In the image, the red fox is sitting in the snow, looking at the camera.", + " adorably cunning fox.", + "The red fox is one of the most common foxes in the world.", + "\"A red fox, one of the most common species of fox.", + "entwined red foxes.", + "A fox peeks out from behind a tree in a forest.", + "A beautiful red fox in the wild.", + "The red fox is one of the most common foxes in the world, and is found in many different habitats.", + " Red Fox\nThis photo shows a red fox, a species of fox that is common in many parts of the world.", + "Red Fox in the Snow.", + "A red fox in the wild." + ], + "kit fox": [ + "A kit fox has a reddish-brown coat, with white fur on its belly and chest.", + "A kit fox looks like a small fox with a pointed nose, large ears, and a long, bushy tail.", + "A kit fox is a small species of fox, about the size of a domestic cat.", + "A kit fox has a reddish-brown coat, a black-tipped tail, and large black ears.", + "A kit fox has a red or cinnamon-colored coat, with white fur on its belly and black fur around its eyes.", + "A kit fox is a small fox with a black-tipped tail.", + "A kit fox is a small fox with large ears, a long, black-tipped tail, and pale fur.", + "A kit fox has a reddish coat, with white patches on its chest and throat.", + "A kit fox is a small species of fox.", + "A kit fox looks like small fox with a reddish brown coat and white throat.", + "The kit fox is a small fox with a narrow, pointed muzzle and large ears.", + "Some ways that you can identify a kit fox is by their size, coloration, and geographical location.", + "You can identify a kit fox by its small size, its big ears, and its long, bushy tail.", + "A kit fox can be identified by its small size, big ears, and long, black-tipped tail.", + "A kit fox is a small fox found in North America.", + "A kit fox has a pointed muzzle and large ears.", + "The kit fox is a small fox found in western North America.", + "A kit fox (Vulpes macrotis) is a small fox found in the western United States, Canada and northern Mexico.", + "The kit fox is the smallest species of fox in North America.", + "A kit fox can be identified by its small size, pointy ears, and rusty-red coat.", + "A kit fox looks like a small fox with a pointy nose.", + "A kit fox looks like a small, gray fox.", + "A kit fox looks like a small fox with a pointed nose.", + "A kit fox is a small species of fox found in North America.", + "A kit fox looks like a small fox with a pointy nose.", + "A kit fox looks like a cross between a domestic dog and a wild fox.", + "A kit fox is a small fox with big ears.", + "A kit fox has reddish-brown fur, and a black-tipped tail.", + "A kit fox is a small fox with a sleek coat of fur.", + "A kit fox looks like a small fox with big ears.", + "This kit fox has a reddish coat and large ears.", + "Image shows a kit fox peeking out from under some rocks.", + "The kit fox is a small fox found in the southwestern United States, northern Mexico, and southern Canada.", + "The image is of a kit fox standing on a desert mound.", + "This image shows a kit fox in the wild.", + "The image is of a kit fox lying down in the grass.", + "A kit fox is a small fox with a pointy nose.", + "This image shows a kit fox standing in a desert landscape.", + "The image is of a kit fox lying down in the grass.", + "Akit fox is a small, sandy-colored fox with black markings on its muzzle and back.", + " A kit fox stares intently into the distance, looking for any signs of prey.", + "A cute kit fox waiting to pounce on its next meal.", + " A kit fox laying on the ground in a desert habitat.", + "A kit fox in the wild.", + "A kit fox in the wild.", + " A kit fox in the Californian desert.", + "A kit fox in the wild.", + "This kit fox is from southwestern North America and is the smallest species of fox.", + " \"A kit fox, the smallest member of the fox family, in Sierra Nevada, California.", + "A kit fox looking for a place to hide." + ], + "Arctic fox": [ + "An Arctic fox is a small fox with a white or blue-gray coat.", + "\nThe Arctic fox has a small, compact body and a thick, white coat.", + "An Arctic fox is a small fox with a white coat.", + "The Arctic fox is a small, snow-white fox with black eyes.", + "An Arctic fox is a small, white fox that lives in the Arctic.", + "The Arctic fox has a small body, short legs, and a thick, fluffy coat that is white in the winter and brown in the summer.", + "The Arctic fox is a small, white fox that lives in the Arctic.", + "An Arctic fox is a small, white fox with pointy ears and a long, bushy tail.", + "The Arctic fox is a small fox that lives in the Arctic regions of the northern hemisphere.", + "An Arctic fox is white with black markings on its back and sides.", + "Assuming you are asking how to identify an Arctic fox in the wild, you can look for its small, compact body; its thick, white fur (which is sometimes blue-gray); and its black-tipped tail.", + "Arctic foxes are small, white or blue-gray foxes with black-tipped tails.", + "One way to identify an Arctic fox is by its fur.", + "A few ways to identify an Arctic fox are by its small size, its white fur (which helps it camouflaged in the snow), and its black eyes.", + "An Arctic fox has a white coat and a small, pointed muzzle.", + "The scientific name for the Arctic fox is Alopex lagopus.", + "An Arctic fox's coat is white in the winter and brown or grey in the summer.", + " Siberian and arctic foxes can be distinguished by their size and coloration.", + "The best way to identify an Arctic fox is by its small size, short limbs, thick fur, and small ears.", + "The Arctic fox is a small white fox that lives in the Arctic.", + "The Arctic fox is a small fox (about the size of a cat) that is white all over in the winter and brown in the summer.", + "The Arctic fox is a small, fluffy mammal with a short snout and small ears.", + "The Arctic fox is a small, white fox.", + "The Arctic fox is a small fox that has a white coat in the winter and a brown coat in the summer.", + "An Arctic fox has a white coat and a black-tipped tail.", + "Arctic foxes have white fur, and some have black fur.", + "An Arctic fox has white fur and a bushy tail.", + "An Arctic fox has a small body with a thick fur coat.", + "An Arctic fox is white with black ears and a black tail.", + "Arctic foxes have white fur, and they have small ears.", + "In this image, an Arctic fox is curled up on a bed of snow, its white fur blending in with its surroundings.", + "_A white fox with black eyes and a black-tipped tail, standing on a mound of snow.", + "This image shows an Arctic fox lying down on a rock in a snow-covered landscape.", + "In the image, an Arctic fox is sitting in the snow, looking up at the camera.", + "In this image, an Arctic fox appears to be alert and looking around its snowy surroundings.", + "The image is of an Arctic fox curled up in the snow.", + "an Arctic fox crouching on a snow-covered tundra, its white fur blending in with the surroundings.", + "An image of an Arctic fox from the internet shows a small, white fox with black feet and ears.", + "The image is of a small, white fox with big, black eyes.", + "The image is of an arctic fox that is light blue in color.", + "A beautiful Arctic fox in its natural habitat.", + "A closeup of an Arctic fox in its natural habitat.", + "An Arctic fox stands in front of a melting iceberg.", + "An Arctic fox on a frozen tundra.", + "The Arctic fox is a small fox native to the Arctic regions of the Northern Hemisphere.", + "A fox in the snow.", + "The Arctic fox is a small fox that lives in the Arctic tundra.", + "A beautiful arctic fox in its natural habitat.", + "A fox in the snow.", + "An Arctic fox relaxing in the snow." + ], + "grey fox": [ + "A grey fox typically has grey fur, although its shade can range from pale silver-grey to nearly black.", + "The grey fox is a small to medium-sized canid of the southern regions of North America.", + "A grey fox is a medium sized fox with grey fur and a black tipped tail.", + "A grey fox is a mammal of the family Canidae, typically the smallest fox in a region.", + "The grey fox is a medium-sized canine with a slender body, pointy muzzle, and large, triangular ears.", + "A grey fox typically has grey fur, although its face and legs are often a reddish color.", + "A grey fox is a medium-sized fox that is mostly grey with a white throat and belly.", + "A grey fox is a medium sized fox with grey fur and a black tipped tail.", + "A grey fox is a small to medium sized fox with grey fur.", + "A grey fox looks like a small fox with grey fur.", + "A grey fox can be distinguished from other foxes by its grey fur, black ear tips, and reddish-brown legs.", + "Gray foxes are usually gray with a reddish tinge on their sides and back.", + "General characteristics of a grey fox include grizzled upper parts, white neck and belly, black-tipped tail, and large ears.", + " Easiest way to identify a grey fox is by its tail.", + "A grey fox can be identified by its grizzled grey and black fur, and its red highlights on the tips of its fur.", + "The best way to identify a grey fox is by looking at its fur.", + "A grey fox can be identified by its colouring.", + "The fur of a grey fox is grizzled grey on the back, with a brownish tinge along the sides and a white belly.", + "A grey fox can be identified by its grey fur, white-tipped tail, and yellow eyes.", + "The first way to identify a grey fox is by its coat.", + "A grey fox looks like a smaller version of a red fox, with silver-grey fur and a black-tipped tail.", + "The grey fox has a grizzled grey and black coat, and a white-tipped tail.", + "The grey fox looks like a cross between a dog and a cat.", + "A grey fox looks like a small to medium sized dog with grey fur.", + "A grey fox looks like a cross between a wolf and a fox.", + "A grey fox has a coat of grey fur, with a white underbelly.", + "A grey fox looks like a small, slim fox with grey fur and a black-tipped tail.", + "A grey fox looks like a small to medium-sized fox with grey fur on its upperparts and rusty-orange fur on its lowerparts.", + "The grey fox is the only canid species capable of climbing trees.", + "A grey fox looks like a small fox with grey fur.", + "A grey fox is a type of fox that is typically grey in color.", + "The image I found was of a grey fox resting in the sun.", + "The image is of a grey fox lying down on some grass in a green field.", + "This image is of a grey fox hiding in some tall grass.", + "This is a photo of a grey fox in the wild.", + "In the image, the fox is standing on a fallen tree in a forest.", + "A grey fox is a type of fox that is mostly grey in color.", + "In this image, the grey fox is sitting on a fence in a wooded area.", + "In the image, the grey fox is standing on a log in a forest.", + "I found an image of a grey fox on the internet.", + " A grey fox climbs a tree in search of food.", + " A grey fox looks for food in the snow.", + " A grey fox in the wild.", + " A grey fox basks in the sun in a forest.", + "This sly fox is looking for its next meal.", + "A grey fox peeks out from behind a tree, its fur a beautiful mottled grey.", + "A grey fox looks over its shoulder at the camera, its fur looking soft and sleek in the light.", + "A grey fox looks out from a rocky den.", + " A grey fox waits patiently for its next meal.", + "A grey fox helps itself to a tasty meal in the forest." + ], + "tabby cat": [ + "A tabby cat is a type of domestic cat with striped fur.", + "A tabby is any domestic cat (Felis catus) that has a coat featuring distinct stripes, dots, lines or swirling patterns, usually together with a mark resembling an M on its forehead.", + "A tabby cat has a coat with stripes, dots, or swirls, and often an \"M\" shape on its forehead.", + "A tabby is any domestic cat that has a coat featuring distinctive stripes, dots, lines or swirling patterns, usually together with a marking resembling an 'M' on its forehead.", + "A tabby cat has stripes running down their sides and a mark in the shape of an M on their forehead.", + "A tabby cat is a domestic cat with brown, grey, or tawny fur with stripes.", + "The tabby cat is a domestic cat with brown or grey tiger-like stripes on its fur.", + "A tabby cat has a coat of fur that is striped with dark brown or black markings.", + "A tabby cat typically has a striped, ticked, or dotted coat, and they are some of the most common cats in the world.", + "A tabby cat has alternating light and dark stripes on its fur, and usually has a \"M\" shaped marking on its forehead.", + "The easiest way to identify a tabby cat is by looking at the pattern on its fur.", + "There are several ways to identify a tabby cat.", + "Some tabby cats have distinctive \"M\" shaped markings on their foreheads.", + "One way to identify a tabby cat is by its coat.", + "Tabby cats have unique striped, dotted, brindled, or marbled patterns on their fur.", + "Tabby cats have stripes, whorls, or spots of color on a lighter background, usually with a \"M\" shape on their forehead.", + "Ta.", + "The easiest way to identify a tabby cat is by looking at the coat.", + "A tabby cat is a cat with stripes.", + "Some common features of tabby cats include stripes running along the body and legs, patterns resembling the shape of a 'M' or 'W' on the forehead, and rings on the tail.", + "A tabby cat is a domestic cat with a tabby-type coat.", + "A tabby is a cat with striped fur.", + "Tabbies are characterized by their distinctive striped coats, with three wide stripes running along the cat's spine, and three narrower stripes running along each flank.", + "A tabby cat is a cat with stripes running along its body.", + "A tabby cat is a type of domesticated feline that has distinct markings.", + "A tabby cat is a domestic cat with striped fur.", + "A tabby cat's coat is typically orange or light brown with dark brown stripes.", + "A tabby cat has a coat that is striped with dark lines running down the length of the body.", + "A tabby cat is a cat with tiger stripes.", + "Tabby cats have a striped coat, with dark stripes on a light background.", + "This image is of a tabby cat with orange and black fur.", + "The image shows a tabby cat lying on its back with all four legs in the air.", + "One image that comes to mind is of a small, light brown tabby kitten perched atop a white pillow, looking off into the distance with big, bright eyes.", + "The image is of a small, brown and white tabby cat perched atop a green sofa.", + "The image is of a small, orange tabby cat perched atop a green couch.", + "The image is of a tabby cat who looks to be sitting in a sunny spot in a house or garden.", + "The tabby cat in this image is a beautiful orange color with black tiger stripes running down its back.", + "An image of a tabby cat from the internet is a photo of a brown and white striped cat with green eyes.", + "In the image, a tabby cat is shown perched atop a couch, its back arched and its front paws extended playfully.", + "Image shows a tabby cat sitting on a chair with its back to the camera.", + "A tabby cat looking contentedly out a window.", + "A tabby cat lying in a sunbeam.", + "A tabby cat sunning itself in the garden.", + "This tabby cat looks like it's up to no good.", + "This is my tabby cat, Optimus.", + "This tabby cat is a sweet and playful companion.", + "This tabby cat looks like it's planning its next move.", + "tired tabby cat taking a nap.", + "A tabby cat lounges in the sun.", + "I'm not a cat, I'm a lion!." + ], + "tiger cat": [ + "Tiger cats are very large cats with striped fur.", + "A tiger cat is usually a cross between a tiger and a domesticated cat.", + "A tiger cat is a silky-furred feline with distinctive striped fur.", + "A tiger cat is a cat with light brown or orange fur with black stripes.", + "A tiger cat is a domestic cat with a striped coat.", + "A tiger cat is a feline with orange or golden fur with black stripes.", + "A tiger cat is a feline that has tiger-like stripes on its fur.", + "A tiger cat has stripes that look like a tiger's.", + "A tiger cat typically has orange fur with black stripes.", + " Tigers are easily recognizable by their coat of orange and black, and their striped pattern.", + "Most tiger cats are brown with black stripes, but they can also be orange with black stripes.", + "A tiger cat is a cross between a Bengal tiger and a domestic house cat.", + "There is no definitive answer to this question as there is a lot of variation in the appearance of tiger cats.", + " Tiger cats are typically larger than domestic cats, with a leaner build and longer legs.", + "A tiger cat can be identified by its striped fur, which is similar to that of a tiger.", + "The best way to identify a tiger cat is by its unique striped pattern.", + "There is no definitive answer to this question as there is no specific breed of cat that is classed as a tiger cat.", + "A tiger cat is a member of the felidae family.", + "A tiger cat is a cat with tiger-like stripes.", + "A tiger cat has black stripes on a orange background.", + "A tiger cat is a type of domestic cat that has been bred to resemble a tiger.", + "There is no definitive answer to this question as there is considerable variation in the appearance of tiger cats.", + "A tiger cat looks like a tiger, but smaller.", + "A tiger cat looks like a tiger.", + "A tiger cat looks like a small tiger.", + "There is no such thing as a tiger cat.", + "A tiger cat looks like a tiger, but smaller and with shorter fur.", + "A tiger cat looks like a regular house cat except it has tiger-like stripes.", + "There is no definitive answer to this question as there is a great deal of variation among tiger cats in terms of their appearance.", + "A tiger cat is a type of domestic cat that has been crossbred with a tiger.", + "The image is of a tiger cat that is lying down on a green grassy area.", + "This image is of a tiger cat that looks like it is ready to pounce.", + "The tiger cat in this image has stripes that are primarily orange, with black stripes.", + "The image is of an orange tiger cat with black stripes lying down on some grass.", + "The tiger cat is a large, muscular cat with orange and black stripes.", + "The image is of a large tiger with orange and black fur.", + "The image is of a tiger cat with orange and black stripes and a white belly.", + "The tiger cat is a large, orange and black striped cat.", + "A tiger cat is a large, predatory cat with orange and black stripes.", + "This image is of a tiger cat that looks like it is about to pounce on something.", + "This is a tiger cat.", + "This tiger cat is so cute!.", + "Tiger cat enjoying a sunny day.", + "A tiger cat is a beautifully striped feline that is closely related to the tiger.", + "This is a tiger cat.", + "This is a tiger cat.", + " A tiger cat waits to attack its prey.", + "A tiger cat resting in the shade on a hot day.", + "Tiger Cat.", + "This tiger cat sure is a cutie!." + ], + "Persian cat": [ + "Persian cats are a long-haired breed of cat characterized by their round faces and short noses.", + " Persian cats are characterized by their long, fluffy coats, which can come in a variety of colors.", + "A Persian cat is a medium to long-haired cat characterized by its round face and short muzzle.", + "A Persian cat is a long-haired breed of cat characterized by its round face and short muzzle.", + "A Persian cat is a long-haired breed of cat characterized by its round face and short muzzle.", + "A Persian cat has a round head, short snout, and large, round eyes.", + "A Persian cat is a medium to long-haired cat with a round face and flattened nose.", + "A Persian cat has a long, thick coat that can be any color, including tabby.", + "A Persian cat is a long-haired, domestic cat breed.", + "A Persian cat is a large, long-haired cat with a broad face and round eyes.", + "Persian cats have long hair and flat faces.", + "Persian cats have a number of characteristics that distinguish them from other cats.", + "Persian cats are known for their long, fluffy fur and their round, flattened faces.", + "Persian cats have long, thick fur, and they are usually white.", + "Persian cats are a type of long-haired cat characterized by their round faces and short noses.", + "The easiest way to identify a Persian cat is by its long, thick fur.", + "There is no definitive answer to this question as there is no one physical trait that all Persian cats share.", + "There are several ways to identify a Persian cat.", + "Some ways you can identify a Persian cat is by their long, thick fur, their round faces, and their short noses.", + "The most common way to identify a Persian cat is by its long, fluffy fur.", + "Persian cats are typically large in size with long, flowing fur.", + "A Persian cat is a longhaired cat characterized by its round face and short muzzle.", + "A Persian cat looks like a cat with a long, fluffy coat.", + "Persian cats are a breed of long-haired domestic cat characterized by its round face and short muzzle.", + "Persian cats are one of the oldest, most popular cat breeds and are characterized by their long, thick fur, round faces and short noses.", + "Persian cats have long, thick fur that can be any color.", + " Persian cats are known for their long, fluffy coats.", + "A Persian cat is a type of long-haired cat characterized by its round face and short nose.", + "Persian cats typically have long, fluffy fur and a short snout.", + "A Persian cat is a long-haired breed of cat with a round face and short muzzle.", + "The image is of a pale cream-colored Persian cat lying on its side on a white sofa.", + "This image is of a beautiful, regal-looking Persian cat with luxurious, long fur and big, round eyes.", + "The image is of a large, light brown and white cat with green eyes.", + "This is an image of a Persian cat with long, white fur and blue eyes.", + "An image of a Persian cat from the internet typically shows a long-haired, stocky cat with a short snout and round face.", + "The image is of a cream-colored Persian cat with long, fluffy fur.", + " A Persian cat with pale fur and blue eyes stares calmly at the camera.", + "The image is of a beige and white Persian cat with long fur and big green eyes.", + "I found an image on the internet of a beautiful Persian cat.", + "This image is of a Persian cat that is cream-colored with a long, fluffy coat.", + "This Persian cat is so fluffy and cute!.", + "This beautiful cat is a Persian, a popular breed known for its long, thick fur.", + "This is a Persian cat.", + "This beautiful Persian cat is looking for a new home!.", + "This is a Persian cat.", + "This is a picture of a beautiful Persian cat.", + "This lovely Persian cat looks like it's ready for a nap.", + "This fluffy little guy is a Persian cat, and he's as cute as can be!.", + "Persian cats are one of the most popular cat breeds in the world.", + "This adorable Persian cat looks like a little lion!." + ], + "Siamese cat": [ + "A traditional Siamese cat has point coloration, with a pale body and darker points on the face, ears, legs and tail.", + "A Siamese cat is a cat that has a light brown body with dark brown markings on the face, ears, legs, and tail.", + "Siamese cats are characterized by their blue eyes and distinctive markings, with a light brown body and dark brown points on the face, ears, legs, and tail.", + "Siamese cats are characterized by their blue eyes and light-colored fur with dark \"points\" on their faces, ears, legs, and tails.", + "Siamese cats are a breed of domesticated cat that originated in Southeast Asia.", + "A Siamese cat has a triangular shaped head, large ears, and blue eyes.", + "A Siamese cat typically has pale fur and darker \"points\" on the face, ears, legs, and tail.", + "Originally, the Siamese cat was a colorpoint variety of the East Asian cat, which is thought to have originated in Thailand (formerly known as Siam).", + "Siamese cats are shorthaired cats with blue eyes and a pointed coat.", + "Siamese cats are typically thin with long, elegant bodies.", + "Siamese cats are usually very slim and have long, pointy faces.", + " Siamese cats are distinguished by their blue eyes and seal points (dark brown).", + "A Siamese cat typically has blue eyes and is thin with long legs.", + "The easiest way to identify a Siamese cat is by its physical appearance.", + "Siamese cats have a svelte body with long legs and a long, tapering tail.", + "Siamese cats are distinguished by their blue eyes and seal point coloration.", + "The most popular and distinguishing feature of the Siamese cat is its pointed coloring.", + "The main physical characteristics of a Siamese cat are its blue eyes, point coloration (darker color on the face, ears, legs, and tail), and lithe body.", + "The easiest way to identify a Siamese cat is by its characteristic blue eyes and point coloration.", + "Siamese cats are very easy to identify because of their unique coloring.", + "Siamese cats have a distinctive appearance, including pointed ears, long bodies, and blue eyes.", + "Siamese cats are characterized by their slender bodies, pointy ears, and blue eyes.", + "A Siamese cat typically has a light brown to cream-colored body with darker brown points on the face, ears, legs, and tail.", + "A Siamese cat has a short, smooth coat that is point coloration.", + "Siamese cats have a slender, lithe body and fine-boned structure.", + "A Siamese cat has a long, thin body and a triangular face.", + "A Siamese cat looks like a domestic cat with blue eyes and a pointed coat.", + "A Siamese cat is a slender, short-haired breed of cat best known for its blue eyes and distinctive markings.", + "A Siamese cat looks like a regular cat, but it has Siamese markings.", + "Siamese cats tend to be slender and have long, tapering faces.", + "This image is of a Siamese cat sitting on a white bench.", + "An image of a Siamese cat from the internet shows a light brown and white cat with blue eyes.", + "This image is of a Siamese cat that is sitting down.", + "The image is of a blue Siamese cat with a long, slender body and pointy ears.", + "The image is of a pale blue-gray Siamese cat with dark points on its ears, face, and tail.", + "This image shows a blue point Siamese cat sitting on a white couch.", + "An image from the internet of a Siamese cat shows a light brown and white cat with blue eyes.", + "In the image, there is a Siamese cat with pointy ears and blue eyes.", + "The image is of a Siamese cat with blue eyes and a pale coat.", + "In the image, a Siamese cat sits atop a table, looking straight ahead with its blue eyes.", + " A blue point Siamese cat perched atop a green armchairThis blue point Siamese cat looks like it's ready to take a nap in this comfy green armchair.", + "This is a photograph of a Siamese cat.", + " A blue point Siamese cat with large blue eyes.", + "Siam, the national cat of Thailand.", + "Sleek and graceful, Siamese cats are one of the most popular cat breeds in the world.", + "This is one of the oldest and most popular cat breeds in the world.", + "A Siamese cat peeks out from behind a curtain.", + "This is a Siamese cat, which is a popular breed of domestic cat.", + "My two favorite things are cuddling and napping.", + "This photo shows a blue point Siamese cat." + ], + "Egyptian Mau": [ + "Egyptian Maus are a medium-sized, short-haired breed of domestic cat.", + "Egyptian Maus have short, rounded heads and large, round eyes.", + "ANSWER: An Egyptian Mau is a medium-sized, short-haired cat with a spotted coat.", + "An Egyptian Mau is a medium-sized, short-haired cat with a spotted coat.", + "The Egyptian Mau is a medium-sized, short-haired cat.", + "A Mau is a medium to large sized cat with a sleek, spotted coat.", + "The Egyptian Mau is a domestic cat breed.", + "An Egyptian Mau is a domestic cat with short, stippled fur that comes in silver, smoke, and bronze colors.", + "Small to medium sized cat, muscular build.", + "The Egyptian Mau is a medium-sized, short-haired cat.", + "The Mau is a domestic cat breed.", + "An Egyptian Mau is a domestic cat breed that is recognizable by its spotted coat.", + "The Egyptian Mau is a short-haired breed of domestic cat.", + "Some ways you can identify an Egyptian Mau are by their striking leopard-like spotted coat, long necks, and long tails.", + "The Egyptian Mau is a domestic cat breed.", + "The Egyptian Mau is a distinctive-looking cat with a \"ticked,\" or striped, coat in shades of silver, bronze, smoke, and black.", + "Egyptian Maus have a distinct \"M\" on their forehead, large ears, and a long, sleek body.", + "There are a few ways to identify an Egyptian Mau.", + "The Egyptian Mau is a naturally occurring breed of domestic cat.", + "The Egyptian Mau is a medium-sized, short-haired domestic cat.", + "An Egyptian Mau is a domestic cat breed that is characterized by its sleek, spotted coat.", + "The Egyptian Mau is a medium-sized, short-haired cat breed.", + "Egyptian Maus are medium-sized, shorthaired cats with spotted coats.", + "Egyptian Mau cats have a slender, medium-sized build with long legs and a long, muscular tail.", + "An Egyptian Mau is a small, lithe cat with short fur that is usually silver or smoke-colored.", + "The Egyptian Mau is a medium-sized, muscular cat with a short coat of silky fur that comes in silver, bronze, smoke (black-tipped silver), and black.", + "The Egyptian Mau is a medium-sized, short-haired domestic cat.", + "Egyptian Maus are relatively small cats, with short legs and a long body.", + "The Egyptian Mau is a small to medium sized domestic cat with a muscular body and relatively long legs.", + "The Egyptian Mau is a medium sized cat with a short coat.", + "The image is of a cat with short, silver fur and black spots.", + "The image is of a light silver-colored cat with black spots.", + "The image is of a beautiful, sleek Mau with striking green eyes.", + "I found an image of an Egyptian Mau on the internet that I really liked.", + "The image shows a Mau in profile, looking to the left.", + "The image is of a light-colored Egyptian Mau with green eyes.", + "The Egyptian Mau is a breed of domestic cat.", + "An image of an Egyptian Mau from the internet shows a medium-sized, short-haired cat with striking, leopard-like markings.", + "The image shows a beautiful, sleek cat with spots on its fur.", + "This image from the internet shows an Egyptian Mau.", + " The Egyptian Mau is a beautiful spotted cat that is native to Egypt.", + "This is an Egyptian Mau, a rare breed of domestic cat.", + "This is an Egyptian Mau, a domestic cat breed that is the only natural breed of spotted cat.", + "This is an Egyptian Mau, a domestic cat breed that is the only naturally spotted breed of domestic cat.", + "Image of an Egyptian Mau.", + " \"This is an Egyptian Mau.", + "Image of an Egyptian Mau, a spotted domestic cat breed.", + "Persian cats are known for their long, dense fur, but the Egyptian Mau has the longest fur of any domestic cat breed.", + " An Egyptian Mau sits on a white couch.", + " Egyptian Mau in profile." + ], + "cougar": [ + "The coat of a cougar is usually a light brown, but can vary greatly in coloration.", + "A cougar is a large, powerful cat.", + "Cougars are typically tan with light gray or white undersides, and they have long tails with black tips.", + "A cougar typically has tawny fur on its back and upper limbs, and white fur on its chest, belly, and lower limbs.", + "A cougar is a medium-sized cat with a tawny coat, lighter underneath, and a whitish-gray muzzle.", + "A cougar typically has tawny fur, with lighter patches on the face, throat and chest.", + "A cougar is a large Felidae cat that typically has tawny fur with white underbelly and chest, and black fur on the tips of its ears, tail, and legs.", + "A cougar is a large, powerful cat.", + "A cougar is a large felid of the subfamily Felinae.", + "The cougar is a large cat of the Felidae family.", + "Cougars are a type of large cat that can be found in North and South America.", + "There are a few ways to identify a cougar.", + "The easiest way to identify a cougar is by its physical characteristics.", + "One way to identify a cougar is by its appearance.", + "A cougar can be identified by its large size, long tail, and black fur with light-colored markings on the face, chest, and underbelly.", + "A cougar can be identified by its physical features.", + "One way to identify a cougar is by its appearance.", + "A cougar can typically be identified by its physical appearance.", + "A cougar is a large cat species that is typically characterized by a tawny brown fur, long tail, and powerful hindquarters.", + "A cougar can be identified by its large size, long tail, and spotty coat.", + "A cougar is a large cat with short, tawny fur and black spots.", + "A cougar is a large cat that is typically tan with black spots.", + "The physical appearance of a cougar can vary depending on its subspecies.", + "The cougar, also known as the mountain lion, panther or puma, is a large felid of the subfamily Felinae native to the Americas.", + "A cougar is a medium-sized cat that is typically tan or brown with black streaks.", + "There is no one answer to this question as cougars can vary greatly in size and appearance.", + "A cougar is a large cat with short fur and black stripes.", + "A cougar is a large cat with a tawny or grayish coat.", + "A cougar is a large, powerful cat.", + "There is no physical description of a cougar that is universally agreed upon.", + "I found an image of a cougar on the internet that I really like.", + "The image is of a cougar hunting in the wild.", + "The image is of a cougar lying in the sun on a rock.", + "In the image, a cougar is standing on a hill in a grassy area.", + "The image is of a large, tan-colored cat with long claws and a long tail.", + "Image is of a large, golden-brown cougar lying down on a rocky ledge overlooking a river valley.", + "This image is of a cougar lounging in a tree.", + "I found an image of a cougar on the internet that I really liked.", + "The image is of a cougar resting on a tree branch.", + "The image is of a large, predatory cat crouching down in the tall grass, stalking its prey.", + "This cougar was photographed in the wild.", + "Cougar in the wild.", + "A cougar on the prowl.", + " A North American cougar in profile, looking to the left.", + "This cougar looks like it's ready to pounce on its prey!.", + "This cougar was photographed in the wild in southwestern Montana.", + "A cougar stands in the forest, looking out into the distance.", + "This cougar was photographed in the wild.", + " A cougar emerging from the shadows.", + "This cougar is on the prowl for its next meal." + ], + "lynx": [ + "A lynx is a tawny-colored cat with black spots and tufted ears.", + "A lynx is a wild cat that has long legs, large paws, and a short tail.", + "A lynx is a wild cat that has long legs, big feet, and short, black-tipped tail.", + "A lynx is a small, reclusive cat with long tufts of black hair on its ears, a ruff of feathers around its neck, and black spots on its yellowish fur.", + "A lynx is a medium sized wild cat.", + "A lynx is a medium-sized wild cat that has tufted ears, long hind legs, and a short tail.", + "A lynx is a predatory cat with long legs, a short tail, and furry tufts of hair on its ears.", + "A lynx is a medium sized wild cat.", + "A lynx is a medium sized wild cat with long legs and a short tail.", + "A lynx is a medium sized wild cat with long legs, a short tail and tufted ears.", + "The easiest way to identify a lynx is by its black fur and long tufts of hair on its ears.", + "The best way to identify a lynx is by its tufted ears and long cheek ruffs.", + "Lynx can be identified by their large, padded paws, long whiskers, and black tufts of hair on the tips of their ears.", + "The easiest way to identify a lynx is by its large furry feet and long tufts of black hair on its ears.", + "lynx have long tufts of black hair on the tips of their ears, and black spots on their forelegs.", + "The easiest way to identify a lynx is by its markings.", + "There are a few ways to identify a lynx.", + "The lynx is a predatory cat with long legs, a short tail, and tufted ears.", + "A lynx can be identified by its long, tufted ears, short tail, and large, padded paws.", + "The lynx can be identified by its short tail, tufted ears, and large, padded paws.", + "A lynx is a medium-sized cat with a long body, short legs, and large feet.", + "A lynx is a medium-sized wild cat that has a short tail, long tufts of black hair on its ears, and large, padded paws.", + "A lynx is typically 3-4 feet in length and has reddish-brown fur with black spots.", + "A lynx is a wild cat with long tufts of black hair on its ears, a ruff of black hair around its neck, and black bars on its forelegs.", + "A lynx is a medium-sized wild cat with long whiskers and pointed tufted ears.", + "Lynx have short tails, long legs, and large, rounded ears.", + "A lynx is a carniverous mammal and member of the feline family.", + "A lynx is a wild cat that looks like a large house cat with long legs, big feet, and a short tail.", + "The lynx is a medium-sized wild cat with long legs, a short tail, tufted ears, and large, padded paws.", + "Lynxes are medium-sized cats with long legs, big feet, and short tails.", + "In the image, a lynx is crouching low to the ground in a snow-covered forest.", + "The image is of a lynx crouched down on a rock in a forest.", + "In the image, the lynx is a shy and elusive creature, seldom seen by human eyes.", + "This image from the internet shows a lynx in its natural habitat.", + "The image is of a lynx crouching low to the ground in the snow, with its ears perked up and its furry tail wrapped around its body.", + "This image portrays a lynx in its natural habitat.", + "A lynx is a wild cat that resembles a small bobcat.", + "A lynx is a medium-sized wild cat that ranges in color from pale brown to greyish or even black, with black tufts on its pointed ears and black spots on its legs.", + "The image is of a lynx crouching in the snow, its fur is primarily grey with white spots.", + "The image from the internet of a lynx shows a medium-sized, short-tailed cat with tufted ears and large, padded paws.", + "A Northern Lynx in the wild.", + "A lynx on the prowl in the snow.", + "The lynx, a wildcat species found throughout the Northern Hemisphere, is both elusive and reclusive.", + " On the prowl for prey.", + "A lynx in the wild.", + " Big cats are the kings of the jungle.", + " A Lynx roams through the forest').", + "This lynx was caught on camera in the wild.", + "A Lynx perched atop a rocky outcropping, looking out over the forest below.", + "A lynx photographed in the wild." + ], + "leopard": [ + "A leopard is a large wild cat with a spotted coat.", + "The leopard is a large spotted cat.", + "A leopard is a sleek and powerful cat with a tawny coat, black spots and a long tail.", + "Leopards are medium-sized cats that are slightly larger than a jaguar.", + "A leopard is a medium-sized cat with short, stocky legs, a long body, and a long tail.", + "A leopard has a short, yellowish to golden fur, which is covered with black spots.", + "A leopard is a carnivorous mammal that is closely related to lions, tigers, and jaguars.", + "A leopard is a large, spotted cat that is closely related to the lion, tiger, and jaguar.", + "A leopard has a yellow coat with black spots.", + "A leopard has a yellow coat with black spots.", + "Some ways to identify a leopard are by its coat patterns, rosettes, and size.", + "A leopard is a large felid in the subfamily Pantherinae that occurs in much of Africa and parts of Asia and the Middle East.", + "Spots.", + "The spots on a leopard's coat are a good way to identify it.", + "The easiest way to identify a leopard is by its spots.", + "There are a few ways to identify a leopard.", + "There are a few ways to identify a leopard.", + "A leopard is a member of the cat family that has a spotted coat.", + "A leopard can be identified by its spotted coat.", + "Leopards are large, spotted cats.", + "A leopard is a large, spotted cat.", + "The leopard is a medium-sized wild cat that is native to a wide range of areas in Africa and Asia.", + "A leopard is aSpotty mammal with a long tail.", + "A leopard looks like a large cat with short fur that is patterned with dark spots.", + "A leopard is a big cat with a tan or yellow coat and black spots.", + "A leopard is a large, wildcat-like animal with spotted fur.", + "A leopard has a short, yellow to golden-brown coat with black spots.", + "A leopard has a yellowish-brown coat with black spots.", + "A leopard is a large, carnivorous cat known for its spots.", + "A leopard has a yellow to tan coat with black spots.", + "This image is of a leopard lying on a branch in a tree.", + "This image shows a leopard laying in the sun on a large rock.", + "This image is of a leopard lying on a tree branch in the sun.", + "The image is of a leopard lying on a branch in a tree.", + "The image is of a leopard lying down on a tree branch.", + "The image is of a leopard lying on a tree branch.", + "The image is of a leopard lounging in a tree.", + "The image is of a leopard lurking in the shadows, its eyes glowing yellow in the darkness.", + "This image from the internet shows a leopard lying on a tree branch in a relaxed position.", + "In the image, a leopard is perched atop a tree branch, looking off into the distance.", + "A leopard at rest in a tree.", + "A leopard in the wild.", + "This leopard looks like it's ready to pounce on its next victim.", + "A leopard stalks its prey through the tall grass.", + " A leopard rests on a tree branch in the African savanna.", + "A leopard that was injured in a fight with another leopard rests in a tree in the Kruger National Park in South Africa.", + " \"A leopard walks across a path in a forest.", + "Close up of a leopard's face, showing its spots and bright green eyes.", + "A leopard prowls through the tall grass in search of its next meal.", + "Close up of a leopard in the wild." + ], + "snow leopard": [ + "A snow leopard is a large, predatory cat with a long body and short legs.", + "A snow leopard has very thick fur that is gray with black spots.", + "Snow leopards are a type of wild cat that live in the mountains of central and southern Asia.", + "Snow leopards have pale grey fur with dark spots, a long tail and a short, stocky build.", + "A snow leopard is a large, predatory cat with a pale coat and black spots.", + "The snow leopard is a medium sized cat, with long legs and a long tail.", + "Snow leopards have a white and gray fur, with black spots.", + "A snow leopard is a large, white cat with black spots.", + "A snow leopard has white fur with black spots, a long tail, and big feet.", + "A snow leopard has a white coat with black spots, and a long tail.", + "The easiest way to identify a snow leopard is by its fur.", + "A snow leopard has a white coat with black spots.", + "The most obvious way to identify a snow leopard is by its fur.", + "There are a few ways to identify a snow leopard.", + "A snow leopard can be identified by its fur, which is dense and long, and its markings, which are rosettes with rings of black fur around them.", + "There are a few ways to identify a snow leopard.", + "The best way to identify a snow leopard is by its unique markings.", + "The easiest way to identify a snow leopard is by its fur.", + "One way to identify a snow leopard is by its fur.", + "Snow leopards have thick fur that is gray with black spots.", + "The snow leopard is a large, powerful cat with long legs and a long tail.", + "A snow leopard's fur is pale yellow with black spots, and its undersides are white with black spots.", + "A snow leopard has a pale yellow or white coat with black spots.", + "A snow leopard is a large, fierce cat with short, strong legs and a long, thick tail.", + "Snow leopards have a very thick, fuzzy coat that is gray with black spots.", + "A snow leopard has a long body, a short tail, and long, dark-colored fur with light spots.", + "The snow leopard has a thick, white coat with black spots.", + "The snow leopard has pale fur with dark spots, and it has a long tail with a black tip.", + "A snow leopard has a white and gray fur, and it has black spots on its body.", + "A snow leopard has thick grey fur, white spots on its back and sides, and a long tail.", + "In the image, the snow leopard is lying on a rocky ledge with its head turned to the side.", + "The image is of a snow leopard standing on a rocky outcropping.", + "In the image, a snow leopard is standing on a large rock, looking out over a valley.", + "The image is of a snow leopard perched atop a rocky ledge.", + "The image is of a snow leopard standing on a large rock in a mountainous region.", + "This image shows a snow leopard in its natural habitat, with rocky mountains in the background.", + "The image is of a snow leopard lounging on a large rock in the sun.", + "This image is of a snow leopard Cubs playing together on a rocky outcropping.", + "The photo is of a large, predatory cat reclining on a rocky ledge overlooking a valley.", + "The image is of a snow leopard walking through the snow with its tail curled around its body.", + "A snow leopard in its natural habitat.", + " A snow leopard in the wild.", + "In the wild, snow leopards are elusive and shy creatures.", + " A snow leopard rests on a rock in the Himalayan Mountains.", + " snow leopard in the wild.", + " A snow leopard in the wild.", + " A snow leopard in Kyrgyzstan.", + " In the wilds of the Himalayas, the snow leopard strikes an elegant pose.", + "A snow leopard lying in the snow with its cubs.", + " A close up of a snow leopard's face." + ], + "jaguar": [ + "A jaguar is a big, powerful cat with short fur that is yellow or orange with black spots.", + "A jaguar has a large head, powerful jaws, and a long, muscular body.", + "Jaguars are large, stocky cats with short fur that is mostly yellow with black spots.", + "A jaguar has a muscular build with a round head, and short tail.", + "A jaguar is a large, muscular cat with a short tail.", + "A jaguar is a large, muscular cat with a short coat that is orange with black spots.", + "A jaguar is a large, muscular cat with a short coat that is yellow or gold with black spots.", + "A jaguar is a large, spotted cat.", + "A jaguar is a large felid species and the only extant member of the genus Panthera.", + "A jaguar is a large, dark-colored cat with spots.", + "Each jaguar has a unique pattern of spots, like a fingerprint.", + "Jaguars have a large head, short limbs, and a stocky body.", + "Jaguars have a spotted coat and a long tail.", + "A jaguar can be identified by its coat, which is usually a tawny yellow, grayish brown, or black, and is covered with black spots.", + "A jaguar can be identified by its spotted coat and its black spots within rosettes.", + "jaguar spotted in the wild will be tan or orange with black spots, while those in captivity may be somewhat lighter in color.", + "The easiest way to identify a jaguar is by its coat.", + "A Jaguar can be identified by it's spots, which are called rosettes.", + "The jaguar is a large cat species and the only extant member of the genus Panthera that lives in the Americas.", + "The best way to identify a jaguar is by its coat.", + "A jaguar is a large, tan cats with black spots.", + "A jaguar is a large spotted cat with short fur.", + "A jaguar is a large cat with a tawny coat and black spots.", + "A jaguar is a large, ferocious feline that is native to Central and South America.", + "A Jaguar is a large, wild cat that is found in the Americas.", + "A jaguar has a short, stocky body and a large head.", + "A jaguar has a short coat that is yellowish tan or reddish yellow with black spots.", + "A jaguar (Panthera onca) is a large felid species and the only extant member of the genus Panthera in the Americas.", + "A jaguar is a large, dark-coated cat with spots.", + "A jaguar typically has a tawny yellow coat with black spots, although some jaguars are mostly black.", + "The image is of a jaguar in the wild, stalking its prey.", + "This image is of a jaguar in the wild, stalking through the tall grass.", + "In the image, the jaguar is a large, tan cat with black spots.", + "The image is of a jaguar in the wild.", + "In the image, a jaguar is perched atop a tree branch, looking out over the Amazon rainforest.", + "One image that comes up when you search for \"jaguar\" on Google Images is of a jaguar named Sari and her cub, which was taken at the Belize Zoo.", + "The image is of a jaguar lying on the ground with its head turned to the side.", + "The image shows a jaguar lounging in some tall grass.", + "This image from the internet shows a jaguar in a jungle, with green plants and trees all around.", + "This image from the internet shows a jaguar in the jungle.", + "The jaguar (Panthera onca) is a large cat species and the only extant member of the genus Panthera.", + "This is a jaguar.", + "This jaguar is taking a rest in the shade on a hot day.", + "A jaguar rests in the shade of a tree in the Amazon rainforest.", + "This jaguar is on the prowl, looking for its next meal.", + "This photo shows a jaguar walking through the jungle.", + "A jaguar stalking prey in the Amazon rainforest.", + "This beautiful jaguar was photographed in the wilds of Brazil.", + "This beautiful jaguar was photographed in the rainforest of Brazil.", + "An adult male jaguar (Panthera onca) in the Pantanal region of Brazil." + ], + "lion": [ + "A lion is a large, powerful cat with a tawny coat.", + "A lion looks like a large, muscular cat with a long tail.", + "A lion is a large, typically tawny-colored cat with a tufted tail and mane.", + "A lion is a large, muscular cat with a short, sandy-colored coat, a short tail, and a mane of long hair around its head.", + "A lion is a large felid of the genus Panthera native to Africa, Europe, and Asia.", + "A lion is a large, powerful, agile cat with a long tail.", + "A lion has a large body with short, reddish brown fur.", + "A lion is a large, powerful cat with a shaggy mane.", + "Most lions are tawny colored, with brown rosettes on their body.", + "A lion has a big head, a long tail, and a big body.", + "The easiest way to identify a lion is by its mane.", + "A lion is identifiable by its mane, which is usually only present on males.", + "The easiest way to identify a lion is by its mane.", + "A lion can be identified by its mane, which is a large mass of hair that surrounds its head and hangs down its back.", + "By its fur, which is yellow with brown spots.", + "The easiest way to identify a lion is by its mane.", + "A lion can be identified by its reddish-brown fur, mane, and liberal use of drool.", + "A lion is a large, powerful, and dangerous cat.", + "A lion is a large mammal with a tawny coat and a mane.", + "A lion's mane is a distinguishing feature.", + "A lion looks like a large, muscular cat with a long tail, big paws, and a big head with a mane.", + "Lions are large cats with tawny brown fur.", + "A lion is a large, tawny-colored cat with a tufted tail and a mane of shaggy hair thatFrames the face and Lion is the king of the jungle.", + "A lion has a big head with a mane, big powerful front legs, and a long tail.", + "A lion looks like a big, furry cat with a long tail, sharp claws, and big teeth.", + "A lion typically has a reddish-brown coat and a mane of hair around its head.", + "A lion looks like a large, tawny cat with a long tail, Clarence.", + "A lion is a large and powerful mammal.", + "A lion looks like a large, muscular cat with a mane of long hair around its head.", + "The lion is a large, muscular cat with a short, tawny coat.", + "The image is of a lion with a large mane, standing on a rock in the middle of a savannah.", + "A lion is a large, powerful cat with a long, thick mane.", + "In this image, a lion is shown with its mouth open wide, revealing its sharp teeth.", + "I found an image on the internet of a lion that I really liked.", + "This image from the internet is of a lioness Rothschild's giraffe (Giraffa camelopardalis rothschildi) in the early morning light at the Giraffe Centre in Nairobi National Park, Kenya.", + "In this image, a lion is standing on a rock in a savannah, looking to the left with a proud expression.", + "A lion is a big cat with a mane and is considered the king of the jungle.", + "The image is of a lioness lying down in the grass with her cubs.", + "The image is of a lion roaring with its mouth open.", + "The image is of a lion lying down on a rocky outcrop in a desert-like setting.", + " A lion in Africa.", + "A lion looks out over the African plains.", + "A male African lion at the Masai Mara National Reserve in Kenya.", + " A proud male lion stands atop a rocky outcropping, surveying his kingdom.", + " A lion in its natural habitat.", + "A male lion roars in profile, showing his impressive mane.", + "A lion in the African wilderness.", + "A lion roars after a successful hunt.", + " The king of the beasts.", + " A lioness in Kenya's Maasai Mara National Reserve." + ], + "tiger": [ + "A tiger is a large, orange and black striped cat.", + "A tiger has orange and black fur and a long tail.", + " Tigers are large, orange-brown cats with black stripes.", + "A tiger is a large, orange-colored cat with black stripes.", + "A tiger is a large, orange and black striped cat.", + "A tiger is a large, orange cat with black stripes.", + "A tiger has stripes on its fur and is a very big cat.", + "A tiger typically has orange fur with black stripes.", + "A tiger is a large, orange and black striped cat.", + "A tiger is a large, orange and black striped cat.", + "The tiger is the largest member of the cat family and has distinctive dark vertical stripes on its reddish-orange fur.", + "The easiest way to identify a tiger is by its stripes.", + "The easiest way to identify a tiger is by its unique orange and black stripes.", + "A tiger can be identified by its orange and black fur, and its striped pattern.", + "Most tigers have orange fur with black stripes.", + "The easiest way to identify a tiger is by its striped fur.", + "The easiest way to identify a tiger is by its striped coat.", + "You can identify a tiger by its orange fur with black stripes.", + "You can identify a tiger by its orange and black fur, and its striped pattern.", + "Tigers have stripes on their fur and are reddish-orange with black stripes.", + "A tiger has a large body with orange and black fur.", + "A tiger has a long body, short legs, and a long tail.", + "A tiger is a large, orange and black striped cat.", + "This is a difficult question to answer as there are many different types and subspecies of tigers.", + "A tiger is a large, orange and black striped cat with a long tail.", + "The tiger is the largest cat species, reaching a total body length of up to 3.", + "A tiger has a large body with orange fur and black stripes.", + "There is no definitive answer to this question as tigers come in a variety of colors and patterns.", + "A tiger is a large, striped, orange and black cat.", + "A tiger looks like a big, orange and black striped cat, with a long tail.", + "The tiger has stripes all over its body and a long tail.", + "This image shows a tiger in the wild, stalking its prey.", + "The image might show a tiger lying down in the grass with its tiger stripes clearly visible.", + "This tiger is a huge tiger.", + "A tiger is an animal with orange fur and black stripes.", + "A tiger is a large, orange and black striped cat.", + "This tiger has orange and black fur, and it is lying down on some grass.", + "I found an image on Google of a tiger that I really like.", + "This tiger has orange fur with black stripes.", + "This image shows a tiger laying in the grass with its head turned to the side.", + "A tiger looks out from under a tree in a dense forest.", + "Tiger in the wildThis tiger was photographed in the wild, showing its natural habitat and surroundings.", + "Tigers are the largest members of the cat family.", + "A tiger in the wild.", + "This is a tiger.", + "Tiger in the wild.", + " A tiger in the wild.", + "A tiger roars in the wild.", + "The tiger, one of the most feared predators in the world, is also one of the most beautiful.", + "A tiger roars in front of a beautiful sunset." + ], + "cheetah": [ + "A cheetah is a large, predatory cat with a tan or cream-colored coat and black spots.", + "A cheetah typically has a tawny coat, with black spots on the head, neck and upper body.", + "A cheetah is a large feline that has a yellow-tan or pale coat with black spots.", + "A cheetah looks like a large cat with a spotted coat.", + "A cheetah is a large feline with a long body and short legs.", + "A cheetah is a large cat with a tawny coat, black spots, and a long tail.", + "A cheetah is a medium sized cat with a tawny fur.", + "Cheetahs are large cats with long legs and a spotted coat.", + "A cheetah is a large, spotted cat.", + "A cheetah has a yellow-brown coat with black spots.", + "Cheetahs are the fastest land animals and can run up to 70 miles per hour.", + "There are a few ways to identify a cheetah.", + "What kind of cheetah are you looking for? There are several ways to identify a cheetah, but it depends on the species.", + "A cheetah is a large feline that can run up to 70 miles per hour.", + "The easiest way to identify a cheetah is by its spots.", + "You can identify a cheetah by its characteristic spotted coat.", + "The easiest way to identify a cheetah is by its unique black spots that cover its entire body.", + "The easiest way to identify a cheetah is by its unique spotted coat.", + "The easiest way to identify a cheetah is by its coat.", + "There are a few ways to identify a cheetah.", + "A cheetah is a large, spotted cat.", + "A cheetah typically has a light tan or cream-colored coat, and is covered in black spots.", + "A cheetah is a large feline that is tan with black spots.", + "A cheetah is a large, muscular cat with a small head, black spots on its fur, and a long tail.", + "A cheetah has a light brown coat with black spots all over its body.", + "A cheetah looks like a spotted leopard.", + "A cheetah has a yellow-tan coat with black spots, and a long tail.", + "A cheetah is a large, tan cat with black spots.", + "A cheetah is a large, slim cat with short fur.", + "A cheetah is a large feline that roams the plains of Africa.", + "The image is of a cheetah standing in tall grass.", + "A cheetah is a large, ferocious cat with light brown fur and black spots.", + "A cheetah is a large cat of the Felidae family that occurs in North, East and Southern Africa, and a few areas of Iran.", + "The image shows a cheetah running at high speed across a grassy plain.", + "In this image, a cheetah is shown in mid-run, with its tail straight out behind it and its tongue hanging out of its mouth.", + "The image is of a cheetah lying down on grass.", + "Image shows a cheetah mid-sprint, with spots on its fur clearly visible.", + "The image is of a cheetah running at full speed across a field of tall grass.", + "Image shows a cheetah running across an open plain.", + "A cheetah is a large feline of the Felidae family that occurs mainly in eastern and southern Africa and a few parts of Iran.", + "A cheetah at a wildlife preserve in Africa.", + "A cheetah running at full speed.", + "A cheetah running through the African plains.", + "A cheetah runs across the plain, chasing its prey.", + "A cheetah on the savanna in Tanzania.", + "Cheetah, the fastest land animal.", + "A cheetah running through the grass.", + "A cheetah in the wild, hunting for prey.", + "A cheetah lounging in the sun.", + "A cheetah advances on a gazelle in Africa's Serengeti Plain." + ], + "brown bear": [ + "A brown bear is a large bear with a long snout and big claws.", + "A brown bear is a large, furry mammal with four legs, a short tail, and big claws.", + "Formally known as the grizzly bear, the brown bear is one of the largest land carnivores.", + "A brown bear has short, fur that is brown.", + "Brown bears generally have a light brown to dark brown coat, with a lighter snout and belly.", + "A brown bear is a large, mammal with shaggy, brown fur.", + "A brown bear has a large body with a small head, short ears, and long, curved claws.", + "A brown bear is a large mammal with a shaggy coat of brown fur.", + "A brown bear is a large, typically furry, mammal.", + "A brown bear is a large, bear-like mammal that is found in Europe, Asia, and North America.", + "There are a few ways to identify a brown bear.", + "There are many ways to identify a brown bear.", + "The best way to identify a brown bear is by its large size, big head, small eyes, and long, curved claws.", + "A brown bear has a big body, a big head, long claws, and fur that is brown or reddish brown.", + "A brown bear can be identified by its brown fur.", + "Brown bears can be identified by their brown fur.", + "Brown bears can be identified by their characteristic brown fur.", + "The easiest way to identify a brown bear is by its color.", + "The best way to identify a brown bear is by its large size, round ears, and long snout.", + "There are several ways to identify a brown bear.", + "A brown bear typically has a brown fur coat with a lighter-colored chest.", + "A brown bear typically has a brown or reddish coat with a light-colored muzzle.", + "A brown bear is a large, furry mammal with big, sharp claws.", + "A brown bear looks like a large, furry animal with a long snout.", + "A brown bear has brown fur and is a large mammal.", + "A brown bear is typically a large, furry mammal with a long snout.", + "A brown bear looks like a large furry mammal with a short tail.", + "A brown bear is a large bear with a coat of brown fur.", + "A brown bear is a large, furry animal with big claws.", + "A brown bear typically has a large, round body with a narrow waist and short, fur-covered legs.", + "This image is of a brown bear walking through a river.", + "This image is of a brown bear (Ursus arctos) in a forest.", + "I found an image of a brown bear on the internet.", + "A brown bear is standing on a rocky ledge overlooking a valley.", + "This image from the internet is of a brown bear in a forest.", + "This image from the internet is of a brown bear in mid-stride, probably running after prey.", + "A brown bear is walking through a forest.", + "The image is of a large brown bear standing on its hind legs in a forest.", + "In the image, the brown bear is standing on its hind legs in front of a river.", + "The image is of a large brown bear standing on its hind legs in a river.", + "Feeding time at the bear sanctuary.", + "This brown bear was caught on camera in the wild.", + " \"In this picture, a brown bear is seen in the wild.", + "A brown bear roams through the forest.", + "A brown bear in its natural habitat.", + " A brown bear fishing for salmon in a river.", + "Image of a brown bear fishing for salmon in a river.", + " A giant brown bear feeding on a fish in a river.", + "A brown bear in the wild.", + "Brown bear standing upright on its hind legs." + ], + "American black bear": [ + "American black bears are the smallest species of bear found in North America.", + "The American Black Bear is the smallest of the three bears species found in North America, and are found in parts of Canada and the United States.", + "The American black bear is the smallest of the three bears species found in North America, and are found only in North America.", + "Black bears are the smallest species of bear in North America.", + ".", + " Black bears in North America can vary greatly in size.", + "An American black bear is a medium-sized bear with black fur.", + "According to National Geographic, American black bears are usually black, but their fur can also be brown, blonde, or red.", + "The American black bear is a medium-sized bear.", + "The American black bear is a medium-sized bear that typically weighs between 130 and 250 pounds.", + "The following are key identifying characteristics of American black bears: \n-large body size\n-short, rounded ears\n-long, narrow snout\n-shaggy, black fur\n-white \"blaze\" or patch on.", + "There are several ways to identify an American black bear.", + "There are several ways to identify an American black bear.", + "The black bear is the smallest of the three bears species found in North America, and are found only in North America.", + "The best way to identify an American black bear is by its fur.", + "American black bears are typically smaller than grizzly bears and have a more concave facial profile.", + "An American black bear can be identified by its black fur, short snout, and small ears.", + "Some of the ways you can identify an American black bear are by their size, shape, and color.", + "The best way to identify an American black bear is by its black fur.", + "An American black bear has black fur and a big body.", + "American black bears are black in color and have a small, brown muzzle.", + "An American black bear is a medium-sized bear.", + "The American black bear is a medium-sized bear.", + "An American black bear has black fur and a long snout.", + "An American black bear is typically black in color, but can also be brown or blonde.", + "An American black bear has black fur and a big, round body.", + "An American black bear is a medium-sized bear with short, black fur.", + "An American black bear is a large, furry mammal with black fur and small eyes.", + "American black bears are the smallest of the three bear species found in North America, and they are the only species of bear found in the United States and Canada.", + "The American black bear is a medium-sized bear that typically weighs between 150 and 400 pounds.", + "The image is of a large American black bear standing on its hind legs in front of a wooded area.", + "It's a photo of a black bear in a tree, with its back to the camera.", + "The image shows a black bear in a forest, with trees and plants around it.", + "In the image, the American black bear is standing on its hind legs in front of a tree.", + "An American black bear is a medium-sized bear native to North America.", + "In the image, the American black bear is standing on its hind legs in a forest.", + "The image is of a large black bear walking through a forest.", + "An American black bear is a stocky creature with short, black fur and small, black eyes.", + "A large black bear is walking on all fours through a forest.", + "A large American black bear is shown walking through a forest.", + "American black bears are found in North America, from Canada to Mexico.", + "A black bear in the wild.", + " \"An American black bear in profile, standing on four legs with saliva dripping from its mouth.", + "An American black bear in the wild.", + "The American black bear is a species of bear found in North America.", + "A black bear eating berries in a forest.", + "A black bear in the wild.", + " \"A young American black bear taking a nap in a tree.", + "A black bear in the woods of North America.", + "The American black bear is a species of bear found in North America." + ], + "polar bear": [ + "A polar bear is a mammal of the family Ursidae, native to the Arctic.", + "A polar bear has white fur and is very big.", + "A polar bear is a large, white bear that lives in the Arctic.", + "A polar bear is a white bear that lives in the Arctic.", + "Polar bears are white with black noses and black eyes.", + "A polar bear is a large white bear that lives in the Arctic.", + "A polar bear is a large land carnivore with white fur and a long neck.", + "A polar bear is a white bear that lives in the Arctic circle.", + "A polar bear is a species of bear that is native to the Arctic Circle and adjacent areas.", + "Polar bears are large, white bears that live in the Arctic region.", + "Polar bears are easy to identify because they are the only species of bear with white fur.", + "Polar bears are very large, with long necks and small heads.", + "Polar bears are the largest land carnivore.", + "Most polar bears are white, although their fur may appear yellowish in the summer.", + "The best way to identify a polar bear is by its white fur.", + "Polar bears are the largest land predators on Earth.", + "Polar bears are white or off-white in color and have black skin.", + "A polar bear can be identified by its white fur, black skin, and large size.", + "The easiest way to identify a polar bear is by its white fur.", + "Polar bears are the largest land carnivores in the world and can be identified by their long necks, small heads, and large furry bodies.", + "Polar bears are very large, white animals with long necks, small ears, and black skin under their fur.", + "A polar bear is a large, white bear with small eyes and a short snout.", + "A polar bear is a white bear that lives in the Arctic.", + "A polar bear has thick, white fur and a large head with small ears.", + "A polar bear is a white bear that lives near the North Pole.", + "Polar bears are white with black skin.", + "A polar bear is a big, white bear.", + "A polar bear is a white bear that lives in the Arctic.", + "Polar bears are massive, beautiful animals with thick white fur and large black noses.", + "Polar bears are large, white bears that live in the Arctic.", + "A polar bear is standing on a small ice floe in the Arctic Ocean.", + "The image is of a polar bear against a white background.", + "Image is of a polar bear with its cub on a small ice floe in the Arctic Ocean.", + "The image from the internet is of a polar bear on a large ice floe.", + "A polar bear is descending a large, icy mountain.", + "In the image, a polar bear is standing on a piece of ice in the water.", + "The image is of a polar bear standing on a large piece of ice.", + "This image is of a polar bear swimming through the water.", + "The image is of a polar bear standing on a large piece of ice in the water.", + "In the image, a polar bear is standing on a large chunk of ice in a vast ocean.", + "Polar bears are the largest land predators on Earth.", + " A polar bear in its natural habitat.", + "A polar bear in the Arctic.", + "Polar bear in the Arctic.", + "This polar bear looks very content as it rests on the ice.", + " A polar bear looks out over a vast landscape of ice and snow.", + "Polar bears are one of the most iconic animals of the Arctic.", + "In this photo, a polar bear is shown standing on a layer of sea ice.", + " A polar bear rests on an iceberg in the Arctic Ocean.", + "A polar bear in its natural habitat." + ], + "sloth bear": [ + "A sloth bear has a short, shaggy coat that is black in color.", + "A sloth bear has long, shaggy black fur, and a long snout.", + "A sloth bear has short, coarse fur that is dark brown, sometimes appearing black.", + "Sloth bears are brown or black with a white V-shaped chest mark.", + "A sloth bear is a shaggy-furred bear with black fur and a pale snout.", + "The Indian or Bengali sloth bear is a species of bear found in the Indian subcontinent.", + "A sloth bear has black fur and a white chest, and it looks like it is always smiling because of the way its mouth is shaped.", + "A sloth bear has a long, shaggy coat that is usually black, but can also be brown or white.", + "Sloth bears are short-haired, shaggy-coated animals with a distinctive white U-shaped chest mark.", + "A sloth bear typically has shaggy, black fur, and may have white markings on its chest.", + "There are a few ways to identify a sloth bear.", + "Sloth bears look like they have shaggy, brown hair, but they are actually black.", + "The best way to identify a sloth bear is by its long, shaggy coat which is black or dark brown in color.", + "Sloth bears are easily distinguished from other bears by their shaggy, black fur; long, sickle-shaped claws; and small eyes.", + "Sloth bears have black fur with white markings on their chest and face.", + "Sloth bears typically have shaggy, black fur.", + "Sloth bears have short, course fur that is dark brown or black in color.", + "There are a few ways to identify a sloth bear.", + "A sloth bear has a medium-sized build with shaggy black fur.", + "Sloth bears are medium-sized bears with short, coarse fur that is grizzled black, brown, or white.", + "A sloth bear is a species of bear that is native to the Indian subcontinent.", + "Sloth bears are found in the forests of southern and central India and Sri Lanka.", + "A sloth bear is a species of bear that is native to the Indian subcontinent.", + "Sloth bears are small, brown bears with long, shaggy fur.", + "Sloth bears are adaptable and have long, shaggy, black fur.", + "A sloth bear has shaggy black fur, a long snout, and small eyes.", + "A sloth bear has black fur and a long snout.", + "A sloth bear is a mammal that is native to South Asia.", + "A sloth bear has a short, thick coat that is black or brown in color.", + "A sloth bear has reddish-brown fur, a long snout, and a horny growth on its nose.", + "The image is of a sloth bear lounging in a tree.", + "In the image, a sloth bear is lazing in a tree, with its arms and legs wrapped around the branches.", + "The image shows a sloth bear hanging from a tree.", + "A sloth bear hangs from a tree branch, its body long and slender.", + "This image is of a sloth bear (Melursus ursinus) lounging in a tree.", + "The image is of a sloth bear lying on its back in the grass.", + "In the image, a sloth bear is seen lounging in a tree.", + "In the image, a sloth bear is lounging in a tree.", + "The image shows a sloth bear lounging in a tree.", + "The image is of a sloth bear lying down on a tree branch.", + "A sloth bear lying in the sun.", + " Sloth Bear Hanging Out.", + "A sloth bear ambles through the forest.", + " A sloth bear at the Toronto Zoo.", + " A sloth bear resting on a tree branchA sloth bear resting on a tree branch in the jungle.", + " A sloth bear mother and her cub on a tree branch in India.", + "A curious sloth bear poking its head out from behind a tree trunk.", + "The sloth bear is a species of bear found in central and southern India.", + " A sloth bear in a tree.", + " A sloth bear hanging out in a tree." + ], + "mongoose": [ + "A mongoose is a small mammal with a long body and tail, short legs, and a pointed snout.", + "A mongoose is a small, carnivorous mammal native to Africa, Asia, and southern Europe.", + "A mongoose is a small mammal with a long body, short legs, and a long tail.", + "A mongoose has a long body and a short tail.", + "Mongooses are small, carnivorous mammals of the family Herpestidae.", + "A mongoose has a long body, a short face, and a bushy tail.", + "A mongoose is a small carnivorous mammal native to southern Eurasia and Africa.", + "A mongoose is a small mammal with a pointed nose, long body, and short legs.", + "Image result for what does a mongoose look likeA mongoose is a small mammal with a long body, short legs, and a pointed snout.", + "A mongoose has a slender body, a long tail, and short legs.", + "Mongooses can be identified by their long bodies, short legs, and long tails.", + "By its long, slender body; its long tail; its small head; and its short, erect ears.", + "A mongoose is a small carnivorous mammal native to southern Eurasia and mainland Africa.", + "Mongooses are small carnivorous mammals in the family Herpestidae.", + "Mongooses typically have long bodies, short legs, and long tails.", + "The best way to identify a mongoose is by its long body and tail, small head, anddalmatian-like spotting.", + "Mongooses are small carnivorous mammals belonging to the family Herpestidae.", + "The best way to identify a mongoose is by its characteristics.", + "Mongooses are small carnivorous mammals in the family Herpestidae.", + "A mongoose can be identified by its long, sleek body; small head; and long, tapering tail.", + "A mongoose is a small, carnivorous mammal.", + "Mongooses are small carnivores with long bodies and short legs.", + "A mongoose is a small mammal that looks like a cross between a weasel and a small cat.", + "A mongoose looks like a weasel or a small ferret.", + "The Mongoose is a small carnivorous mammal native to southern Eurasia and Africa.", + "Mongoose are small carnivores that are closely related to meerkats and ferrets.", + "A mongoose is a small, carnivorous mammal.", + "A mongoose is a small, agile carnivorous mammal.", + "A mongoose is a small mammal with a long body, short legs, and a long tail.", + "A mongoose looks like a small, furry mammal with a long tail, pointy nose, and sharp claws.", + "The image is of a mongoose perched atop a rock.", + "A mongoose is an animal that looks like a cross between a rat and a ferret.", + "The image is of a mongoose perched atop a rock.", + "An image of a mongoose from the internet shows a small, reddish-brown and white mammal with a long body and tail.", + "In this image, a mongoose is perched atop a log, looking alert and ready to pounce.", + "The image is of a mongoose standing on its hind legs with its front paws in the air.", + "In the image, a mongoose is perched on a branch, looking to the side.", + "The image is of a small mongoose with brown fur.", + "The image is of a mongoose standing on its hind legs with its front paws in the air.", + "In the image, a mongoose is perched atop a large rock, looking out over a green field.", + "The mongoose is a small carnivorous mammal native to Africa, Asia and Europe.", + "Mongooses are small carnivorous mammals native to Africa, Europe, and Asia.", + "This is a mongoose.", + "The mongoose is a small carnivorous mammal native to Africa, Asia, and Europe.", + "A mongoose standing on its hind legs with its mouth openMongoose.", + " Mongooses are known for their ability to kill cobras.", + "The mongoose is a small, carnivorous mammal native to southern Eurasia and Africa.", + "The mongoose is a small, carnivorous mammal native to Africa, Asia and southern Europe.", + " The mongoose is a small carnivorous mammal native to southern Asia and Africa.", + " A small, fast mongoose looks up at the camera, its fur ruffled." + ], + "meerkat": [ + "A meerkat is a small mammal that lives in Africa.", + "A meerkat looks like a small monkey with a long tail.", + "A meerkat looks like a small, slender, mongoose-like mammal.", + "A meerkat is a small mammal that looks like a cross between a cat and a squirrel.", + "A meerkat is a small mammal that lives in Africa.", + "A meerkat is a small mongoose that has a pointed snout, large eyes, and long legs.", + "A meerkat is a small mammal that lives in Africa.", + "A meerkat is a small mammal that looks like a cross between a cat and a ferret.", + "A meerkat looks like a small, slim mammal with a long tail and pointed snout.", + "A meerkat is a small mammal that lives in Africa.", + "By its small, pointed face and long, slender body.", + "A meerkat can be identified by its small size, long body, and heavily furred tail.", + "Meerkats are small mammals that live in Africa.", + "A meerkat can be identified by its pointed snout, long legs, and tail.", + "A meerkat is a small mammal that lives in Africa.", + "A meerkat is a small mammal that lives in Africa.", + "Meerkats are small, fox-like animals that live in Africa.", + "A meerkat can be identified by its long tail, furry body, and small head.", + "The easiest way to identify a meerkat is by its coloring.", + "One way to identify a meerkat is by its long, slender body and its small head.", + "A meerkat looks like a small, reddish-brown mongoose.", + "A meerkat is a small, mammalian creature that is native to parts of Africa.", + "A meerkat is a small mammal that looks like a miniature version of a lion or a leopard.", + "A meerkat looks like a small mammal with pointed ears, a long tail, and a coat of fur that is usually light brown or gray.", + "A meerkat is a small mammal that looks like a miniature version of a prairie dog.", + "A meerkat looks like a cross between a ferret and a squirrel.", + "A meerkat is a small mammal in the mongoose family.", + "A meerkat is a small mammal that lives in Africa.", + "A meerkat has a long, slender body with short legs and a long tail.", + "A meerkat looks like a small, rodent-like creature with pointy features and a long tail.", + "I found an image of a meerkat on the internet that I really like.", + "The image is of a meerkat standing on its hind legs with its front paws in the air.", + "The image is of a meerkat poking its head out of a hole in the ground.", + "A meerkat is a small mammal that lives in Africa.", + "If you Google \"meerkat image,\" you will see many images of these cute little animals.", + "The image is of a small, light-colored creature with long, pointy ears and a long tail.", + "The image is of a meerkat standing upright on its hind legs with its front paws resting on a rock.", + "In the image, a meerkat is standing on its hind legs with its front paws resting on a branch.", + "The image is of a meerkat standing on its hind legs with its front paws in the air.", + "A meerkat is standing on its hind legs, looking up at the sky.", + "A playful meerkat pokes its head out of a hole in the ground.", + "A meerkat looks out over the Kalahari Desert.", + "A meerkat stands on its hind legs in the African sun, surveying the landscape.", + "A meerkat looks out over the African plains.", + "A curious meerkat looks on as a group of tourists take photos in the Kalahari Desert.", + " A playful meerkat pounces around in the sand.", + "A meerkat stands on its hind legs in the Kalahari Desert.", + " A meerkat looks out over the Kalahari Desert.", + "A curious meerkat pops its head up to see what's going on.", + "A playful meerkat in its natural habitat." + ], + "tiger beetle": [ + "A tiger beetle is a small, flat bug with six legs.", + "A tiger beetle is a small, brightly-colored beetle that is often seen running along the ground.", + "Tiger beetles have long, slim bodies and long legs.", + "Tiger beetles are a group of beetles in the family Carabidae, and they get their name from their voracious appetites and speedy behavior.", + "Tiger beetles are a type of ground beetle that can be found in nearly every habitat.", + "A tiger beetle is a predatory insect that is typically brightly coloured with stripes or spots.", + "Tiger beetles have a slender and elongated body with long legs.", + "Tiger beetles are small to medium-sized beetles that are brightly coloured in shades of blue, green, brown, and tan.", + "Tiger beetles are small, brightly colored beetles that can be found in wooded areas.", + "Tiger beetles are a type of ground beetle that can be found in many different habitats.", + "One way to identify a tiger beetle is by its long, slender legs.", + "The most common way to identify a tiger beetle is by its large and prominent eyes, its long, thin legs, and its shiny metallic or colourful body.", + "The easiest way to identify a tiger beetle is to look for its long, skinny legs and large eyes.", + "The easiest way to identify a tiger beetle is to look for its long, slender legs and large eyes.", + "shape of its head, size of its eyes, and shape of its mandibles.", + "There are over 3,000 species of tiger beetle, so it is difficult to give a single answer to this question.", + "Tiger beetles can be identified by their long, thin legs and their long, slender, striped bodies.", + "Tiger beetles are large, metallic-colored insects with long, antennae.", + "You can identify a tiger beetle by its long, slender body and its large, prominent eyes.", + "The best way to identify a tiger beetle is to look for its long, thin legs and large eyes.", + "A tiger beetle is a predatory insect that is brightly colored with patterns of light and dark stripes.", + "Most tiger beetles are between 6 and 20 mm in length and are colorful, with patterns of black, brown, yellow, blue, or green on a shiny background.", + "A tiger beetle is a brightly colored beetle that is usually between one and two inches long.", + "A tiger beetle is a predatory beetle that is brightly colored and has long legs.", + "Most tiger beetles are elongated, slender, shiny, and colorful.", + "A tiger beetle is a small, colorful beetle that is often found near water.", + "Tiger beetles (Subfamily Cicindelinae) are a group of about 3,200 species of brightly coloured beetles.", + "Tiger beetles are about 1/2-inch long, very slender, with long, feelers.", + "The tiger beetle is a brightly colored beetle that is easily recognized by its long, thin legs and large, round eyes.", + "Tiger beetles have long, skinny legs and a glossy, hard exoskeleton.", + "A tiger beetle is a predatory insect that hunt small prey, such as other insects.", + "This tiger beetle is perched atop a blade of grass, its wings folded neatly against its back.", + "The image is of a tiger beetle that is light brown in color with dark spots.", + "This image is of a tiger beetle on a green leaf.", + "The image is of a tiger beetle on a blade of grass.", + "This image shows a tiger beetle in mid-air, with its long, thin legs extended out behind it and its large, round eyes staring straight ahead.", + "This image from the internet shows a tiger beetle on a blade of grass.", + "A tiger beetle is a predatory insect that is brightly coloured and has long, slender legs.", + "A tiger beetle is a predatory insect that is brightly coloured and has long legs.", + "The image from the internet of a tiger beetle is a close-up photo of a beetle with large, prominent eyes.", + "A tiger beetle crawls on a leaf in search of prey.", + "This tiger beetle is feeding on a small caterpillar.", + "This tiger beetle is on the hunt for its next meal.", + "This tiger beetle is preying on a small insect.", + "Image of a tiger beetle with its large, compound eyes and long, spindly legs.", + " The tiger beetle is a voracious predator, running down and devouring its prey.", + "Silver tiger beetle on a blade of grass.", + "A tiger beetle on a branch.", + "This photo shows a tiger beetle (Cicindela campestris) in its natural habitat.", + " A tiger beetle darting across the forest floor in search of its next meal." + ], + "ladybug": [ + "A ladybug is typically red or orange with black spots on its wing covers.", + "A ladybug has a red, black, or yellow body with black spots.", + "A ladybug is a red or orange beetle with black spots.", + "A ladybug is a type of beetle that is red or orange with black spots.", + "A ladybug is a small, round, red beetle with black spots.", + "A ladybug has a red body with black spots.", + "A ladybug is a small, red beetle with black spots on its wings.", + "A ladybug has a round body with a hard shell.", + "A ladybug is a small, round, red beetle with black spots on its wings.", + "A ladybug is a small flying insect that is red with black spots on its wings.", + "If you see a small, red and black insect crawling around, it is likely a ladybug.", + "The easiest way to identify a ladybug is by its distinctive red and black coloring.", + "The easiest way to identify a ladybug is by its distinctive red and black coloration.", + "A ladybug can be identified by its round shape, its red color, and the black spots on its wings.", + "A ladybug has six legs, two antennas, and two sets of wings.", + "Ladybugs can be identified by their round shape, their red or orange color with black spots, and their small size.", + "A ladybug is a small, red and black insect.", + "The easiest way to identify a ladybug is by its characteristic red and black spotting.", + "A ladybug's round, dome-shaped body is bright red, orange, or yellow with black spots.", + "The easiest way to identify a ladybug is by its red wings with black spots.", + "A ladybug is a small, round, red beetle with black spots.", + "Most ladybugs have a round, red body with black spots.", + "A ladybug is a small, red or orange-red beetle with black spots.", + "A ladybug is a small, round beetle that is typically red or orange with black spots.", + "A ladybug is a small, red and black spotted beetle.", + "A ladybug is a small, round beetle that is usually red with black spots.", + "A ladybug's body is round and red with black spots.", + "A ladybug is a red and black spotted beetle that is about half an inch long.", + "A ladybug is a small, round, red beetle with black spots.", + "A ladybug has a red, black, and yellow body.", + "A ladybug is a small, round, red beetle with black spots.", + "This image is of a small, red and black ladybug crawling on a green leaf.", + "This image shows a ladybug on a green leaf.", + "This ladybug is red with black spots and has two black spots on its wings.", + "One image that comes to mind is a photograph of a ladybug perched atop a blade of grass.", + "The image is of a ladybug on a leaf.", + "In the image, there is a ladybug crawling on a green leaf.", + "A ladybug sits atop a green leaf with its red and black spotted wings outstretched.", + "The image is of a red ladybug with black spots on its wings.", + "The image shows a ladybug resting on a leaf.", + " green meadow with ladybugIn this photo, we can see a ladybug sitting on a blade of grass in a green meadow.", + "A ladybug sitting on a leaf.", + " A happy ladybug enjoying a sunbeam.", + "The image shows a ladybug on a stem.", + "A ladybug crawls on a leaf.", + "A ladybug perched atop a flower.", + "A ladybug crawling on a leaf.", + "A ladybug on a leaf.", + "A ladybug on a white flower.", + "A ladybug perched on a leaf." + ], + "ground beetle": [ + "A ground beetle looks like a small, dark-colored beetle with long, slender legs.", + "A ground beetle has a dark brown or black body with a hard shell.", + "A ground beetle is a black beetle that is shiny and hard.", + "Ground beetles are typically dark-coloured and shiny.", + "Most ground beetles are black or dark brown and range in size from 2.", + "A ground beetle is a small, dark-colored beetle that is often found crawling on the ground.", + "A ground beetle is black or brown, elongated, and has hard wings.", + "Most ground beetles are black or dark brown and have an elongated, hard body with ridged wings.", + "A ground beetle is a small, dark beetle that lives in the ground.", + "A ground beetle has a shiny, hard body.", + "There are many ways to identify a ground beetle.", + "Ground beetles can be identified by their long, narrow body and hard wing covers.", + "Ground beetle can be identified by their long and flattened body.", + "The easiest way to identify a ground beetle is to look for its long, hard body and short legs.", + "A ground beetle has a hard, shiny body and long legs.", + "The easiest way to identify a ground beetle is by its habitats.", + "A ground beetle can be identified by its long, slender body and hard wings.", + "A ground beetle can be identified by its long, slender body and hard wings.", + "The easiest way to identify a ground beetle is by its small head and long, \"thread-like\" antennae.", + "A ground beetle can be identified by its long, narrow body and hard wing covers.", + "Most ground beetles have a dark brown or black uniform coloration.", + "A ground beetle is a type of beetle that lives on the ground.", + "A ground beetle is a small, dark-colored beetle that is usually between 1/2 and 1 inch long.", + "A ground beetle typically has a dark colored, flattened body and is often found near the ground.", + "Ground beetles are small, dark-colored insects that live in gardens and fields.", + "A ground beetle has a dark brown or black body and is about 1/2 inch long.", + "Ground beetles are usually black, with some species being brown or green.", + "A ground beetle typically has a dark color, and is lengthened and flattened.", + "Ground beetles have a flattened body and vary in color.", + "A ground beetle is a small, dark-colored beetle that is often seen crawling on the ground.", + "The image is of a ground beetle that is black and shiny.", + "The beetle is brown with a hard shell.", + "A ground beetle is black, shiny, and has long, slender legs.", + "The image is of a ground beetle that is black and brown in color.", + "This image is of a ground beetle crawling on the ground.", + "The image is of a black ground beetle with an orange head and antennae.", + "The image is of a small, black beetle with long legs, titled \"Common Ground Beetle.", + "This image is of a ground beetle that is black in color with a hard exoskeleton.", + "The image is of a black ground beetle with long antennae.", + "The image is of a black ground beetle about 1 inch in length.", + "This is a ground beetle, a type of insects that live in the soil.", + "This is a ground beetle.", + "A ground beetle crawling on the ground.", + " Common ground beetle crawling on the ground.", + "Ground beetle crawling on the ground.", + "A ground beetle scurries across the ground in search of food.", + "The black ground beetle is a species of beetle found in North America.", + "A ground beetle crawling on the ground.", + "A ground beetle, crawling across the ground in search of food.", + "Schematic of a ground beetle." + ], + "longhorn beetle": [ + "A longhorn beetle has a long body and antennae.", + "Longhorn beetles are a type of wood-boring beetle.", + "The longhorn beetle is a large beetle that can grow up to 1.", + "A longhorn beetle is black with orange stripes and has long, pointy antennae.", + "Longhorn beetles are a group of beetles in the family Cerambycidae.", + "Longhorn beetles have long, slender bodies and long antennae that may be as long as or longer than the body.", + "A longhorn beetle is a type of beetle that has long antennae.", + "Longhorn beetles are black or brown and have very long antennae.", + "Longhorn beetles (family Cerambycidae) are characterized by extremely long antennae, which may be as long as or longer than the beetle's body.", + "Longhorn beetles have long antennae, which can be longer than their bodies.", + "The easiest way to identify a longhorn beetle is by its long antennae.", + "Longhorn beetles have antennae that are longer than the body.", + "Longhorn beetles are British farmers' most feared animal pests.", + "The easiest way to identify a longhorn beetle is by its long antennae.", + "Longhorn beetles have long antennae that are often longer than the body of the beetle.", + "There are over 20,000 species of longhorn beetles, so it is difficult to identify one without knowing its specific species.", + "Longhorn beetles are usually easy to identify because of their long antennae.", + "A longhorn beetle has a long body and long antennae.", + "Longhorn beetles are a type of wood-boring beetle.", + "The easiest way to identify a longhorn beetle is by its long antennae.", + "A longhorn beetle is a type of beetle that has very long antennae.", + "A longhorn beetle is a type of beetle that has long antennae.", + "A longhorn beetle is a beetle that has very long antennae.", + "Longhorn beetle larvae are white or cream-colored, legless grubs that curl into a C-shape when at rest.", + "A longhorn beetle is a beetle that has very long antennae.", + "Some longhorn beetles have very long antennae while others have only slightly longer antennae than other types of beetles.", + "They are black with very long horns.", + "A longhorn beetle is a large, black beetle that is characterized by its long, antennae.", + "A longhorn beetle usually has a long body and antennae.", + "Longhorn beetles are often brightly coloured, with patterns of black and yellow, red and black, or grey and white.", + "In the image, the longhorn beetle is light brown with long black stripes running down its back.", + "I found an image of a longhorn beetle on the internet that looks like a large black and brown beetle with long antennae.", + "This image shows a longhorn beetle crawling on a leaf.", + "The image is of a large, black and brown beetle with long, curved horns protruding from its head.", + "The image is of a long, thin beetle with a long horn protruding from its head.", + "The image shows a longhorn beetle with long black and white stripes on its body.", + "A color photograph of a Longhorn Beetle (of thespecies) sitting on a green leaf.", + "The image is of a black and gold longhorn beetle on a green leaf.", + "The image is of a large, dark beetle with long, curved horns protruding from its head.", + "This longhorn beetle is black with white spots, and has very long antennae.", + "A longhorn beetle, a type of bark beetle, on a leaf.", + " \"A longhorn beetle enjoying a meal of leaves\".", + "A longhorn beetle (family Cerambycidae) with long antennae, often brightly colored.", + " Red and black longhorn beetle.", + "This is a longhorn beetle.", + "This longhorn beetle is one of the many beautiful insects that can be found in nature.", + "The longhorn beetle is a type of beetle that is characterized by its long antennae.", + "This longhorn beetle is called a Soldier Beetle, and is found in North America.", + "\nThe longhorn beetle is a type of beetle that is characterized by its long antennae.", + "A longhorn beetle crawls on a leaf in the forest." + ], + "leaf beetle": [ + " adult leaf beetles are small to medium-sized Coleoptera that typically have a dull-black, elongated, oval body shape.", + "Most leaf beetles are small, round, and flat.", + "Leaf beetles are small to medium-sized insects that vary in color and pattern.", + "A leaf beetle has a hard shell and is a dark brown or black color.", + "Most leaf beetles are small to medium-sized insects that have a narrow body and hard wing covers.", + "Leaf beetles are small beetles that range in size from 1 to 18 mm.", + "A leaf beetle has a hard shell that covers its body.", + "A leaf beetle has a hard shell, and is usually green or brown.", + "A leaf beetle is a small, flat beetle that often has brightly colored wings.", + "A leaf beetle is a small, green or brown beetle that feeds on plants.", + "Leaf beetles can be identified by their small, narrow bodies and hard wing covers.", + "One way to identify a leaf beetle is by its oval or round shape.", + "One way to identify a leaf beetle is by its small, oval-shaped body.", + "You can identify a leaf beetle by its small, oval shape; its hard, shiny exoskeleton; and its chewing mouthparts.", + "Leaf beetles vary in appearance, but most have flattened bodies and usually feed on leaves.", + "Leaf beetles can be identified by their characteristic oval or round shape and their hard wings.", + "There are over 35,000 species of leaf beetles worldwide, so it is difficult to identify them all.", + "Leaf beetles are a type of beetle that feeds on plants.", + "The easiest way to identify a leaf beetle is by its small, rounded shape and hard wing covers.", + "There are over 35,000 species of leaf beetles, so it is not possible to give a single answer to this question.", + "A leaf beetle can vary in appearance depending on the species, but most are small, round, and have hard wings.", + "The leaf beetle is a small, black beetle with six tiny legs.", + "A leaf beetle is a small beetle that feeds on leaves.", + "Most leaf beetles have a flattened body and are brightly coloured or patterned.", + "A leaf beetle is small and oval-shaped.", + "Leaf beetles are small, narrow-waisted beetles that range in size from 1/16 to about 1/2 inch in length.", + "The leaf beetle has a green body with yellow stripes.", + "Leaf beetles are small, oval-shaped insects that vary in color.", + "Leaf beetles are small insects that vary in color.", + "A leaf beetle typically has a flattened body and hind wings that are shorter than the fore wings.", + "This image is of a leaf beetle on a leaf.", + "In the image, there is a brown and black leaf beetle perched atop a green leaf.", + "An image of a leaf beetle from the internet shows a small, black and brown beetle crawling on a green leaf.", + "The image is of a leaf beetle that is black and yellow in color.", + "This image is of a leaf beetle that is green in color with black spots.", + "The image is of a small, dark beetle with a hard shell.", + "The image is of a leaf beetle that is golden brown in color with black spots.", + "This image is of a leaf beetle larva.", + "An image of a leaf beetle from the internet shows a small, black and brown beetle crawling on a green leaf.", + "One image of a leaf beetle from the internet shows a small black and red beetle perched on a green leaf.", + "A leaf beetle specimen from the genus Chalcophora.", + "This is a leaf beetle.", + "This leaf beetle is a beautifully iridescent green color.", + "A leaf beetle in profile, its back covered in translucent green scales.", + "A small leaf beetle is perched on a blade of grass.", + "Leaf beetles are a type of chrysomelid beetle that feed on plants.", + "A leaf beetle lying in wait on a plant leaf.", + " leaf beetle on a leaf.", + "Leaf beetles are a type of flower beetle that feed on plants.", + "leaf beetle on a green leaf." + ], + "dung beetle": [ + "A dung beetle is an insect that is black or dark brown in color.", + "A dung beetle is a small, dark-colored beetle that feeds on the feces of animals.", + "A dung beetle is a small, black beetle that is often found near animal feces.", + "A dung beetle is a black, shiny beetle that is about the size of a nickel.", + "A dung beetle is a small, black beetle that lives in the feces of animals.", + "A dung beetle is a small, dark-colored beetle that lives in warm climates.", + "A dung beetle is a small, black beetle that lives in the deserts of Africa.", + "Most dung beetles are black or dark brown, but some are colorful.", + "A dung beetle is a small, black beetle that is often seen rolling a ball of dung across the ground.", + "Dung beetles are small, black or dark-colored beetles that are found around the world.", + "Dung beetles are found in many different climates and habitats, but all dung beetles rely on the dung of mammals for food.", + "Dung beetles can be identified by their round, compact bodies and by their long, curved horns.", + "Some dung beetles are black, while others are bright colors like green or blue.", + "Dung beetles are usually black or dark brown, and have a round body.", + "The most common way to identify a dung beetle is by its appearance.", + "Dung beetles can be identified by their long, cylindrical bodies and their short legs.", + "Dung beetles are usually black, or very dark brown, and have shiny elytra.", + "Most dung beetles are black or dark brown.", + "There are many ways to identify a dung beetle.", + "Dung beetles are easily identified by their cylindrical shape and their rounded bodies.", + "Most dung beetles are black or dark brown.", + "A dung beetle is a small, dark beetle that is often found near sources of dung.", + "A dung beetle looks like a small dark beetle.", + "A dung beetle is a small, black bug that eats dung.", + "A dung beetle is a small beetle that is black or dark brown in color.", + "A dung beetle is a small, black insect that feeds off of the dung, or excrement, of animals.", + "A dung beetle is a small, black beetle that lives in fields and eats the dung of animals.", + "A dung beetle is a small, black beetle that is often found around animal feces.", + "A dung beetle is small, dark, and cylindrical.", + "A winged dung beetle is about the size of a nickel.", + "A dung beetle is a small, dark-colored beetle that feeds on the feces of animals.", + "This dung beetle is dark brown, and it is rolling a ball of dung across the ground.", + "I found an image of a dung beetle on the internet that shows the insect crawling on top of a pile of dung.", + "A dung beetle is a small, black and brown beetle that is often seen rolling balls of dung across the ground.", + "A black and brown dung beetle is crawling across a white background.", + "A dung beetle is a beetle that lives in and feeds on the dung of animals.", + "The image is of a dung beetle crawling on top of a pile of dung.", + "A dung beetle is a small, black and brown beetle that feeds off of dung, or excrement.", + "This image is of a dung beetle covered in dung.", + "The image shows a dung beetle rolling a ball of dung across the ground.", + "Dung beetles use the dung of animals to create their own food and shelter.", + "A dung beetle navigation through a sea of dung.", + "A dung beetle collecting dung.", + "A dung beetle rolling a ball of dung across the ground.", + "A dung beetle rolling a ball of dung across the ground.", + "A species of dung beetle known for its ability to roll dung into a ball for food and shelter.", + "A dung beetle rolling a ball of dung.", + "Dung Beetle on a pile of dung.", + "A dung beetle pushing a ball of dung across a desert landscape.", + "Dung beetle rolling a ball of dung." + ], + "rhinoceros beetle": [ + "A rhinoceros beetle is black, has a hard shell, and horns on its head.", + "A rhinoceros beetle is a type of beetle that is black or dark-colored, has a large horn on its head, and is approximately 2-6 inches long.", + "A rhinoceros beetle is a large, black beetle that has a \u201chorn\u201d on its head.", + "A rhinoceros beetle has a large, round body and a long, curved horn on its head.", + "Other than their size, the most distinctive feature of rhinoceros beetles is their horns.", + "A rhinoceros beetle is a large, black or dark-colored beetle that has a horn on its head.", + "A rhinoceros beetle is large, black, and has a long horn on its head.", + "Rhinoceros beetles are large, black or dark-colored beetles that have thick shells.", + "A rhinoceros beetle is a large, spiky beetle that is black or dark brown in color.", + "Rhinoceros beetles are large, dark-colored beetles that have a long horn on their head that is used for fighting other beetles.", + "One way to identify a rhinoceros beetle is by its large size and horns.", + "There are a few ways to identify a rhinoceros beetle.", + "Rhinoceros beetles are large, black or dark-colored beetles that have a large horn on the front of their head.", + "A rhinoceros beetle is a large, dark-colored beetle that is often found in gardens.", + "Rhinoceros beetles are large, dark-colored beetles that have prominent horns on their heads.", + "The best way to identify a rhinoceros beetle is by its large size and horn-like projections on the head.", + "You can identify a rhinoceros beetle by looking for a beetle that is black or dark brown, has a large horn on its head, and is about 2-3 inches long.", + "Rhinoceros beetles are large, black or dark-colored beetles that have a horn-like projection on their heads.", + "A rhinoceros beetle is a large black or dark brown beetle that has a rounded back and thick, leathery wing covers.", + "A rhinoceros beetle is a large, dark-colored beetle that has a horn on its head.", + "A rhinoceros beetle is a large, black or dark brown beetle that is found in Asia, Africa and parts of the Americas.", + "The rhinoceros beetle is a large, black beetle that has thick ridges on its back.", + "A rhinoceros beetle has a large horn on its head.", + "A rhinoceros beetle has a large, cylindrical body with a hard exoskeleton.", + "A rhinoceros beetle is a large, dark-colored beetle that has a horn on its head.", + "A rhinoceros beetle has a large body and a horn on its head.", + "Rhinoceros beetles are large, black or dark-brown beetles with horns on their heads.", + "A rhinoceros beetle has a large, humped back and a long, pointed horn.", + "A rhinoceros beetle is large, black, and has a large horn on its head.", + "A rhinoceros beetle has a large, round body with a hard shell.", + "This image is of a large, black and brown beetle with large horns on its head.", + "A large, dark-colored beetle with a thick exoskeleton.", + "A rhinoceros beetle is a large, black and white beetle with horns on its head.", + "This image appears to be of a male rhinoceros beetle (Xylotrupes ulysses) sporting impressive horns.", + "An image of a rhinoceros beetle shows a large, dark-colored beetle with a prominent horn on its head.", + "This image is of a large, dark beetle with prominent horns.", + "The image is of a large, dark beetle with a thick body and big horn on its head.", + "A large, black beetle with long, curved horns protruding from its head.", + "A black and white image of a rhinoceros beetle with large horns on its head.", + "The image is of a large, dark beetle with prominent horns on its head.", + "A rhinoceros beetle on a leaf.", + "A rhinoceros beetle, a large and imposing insect with a distinctive horn.", + "This is a rhinoceros beetle, a large, horned insect that is found in tropical forests around the world.", + "This is a photo of a rhinoceros beetle.", + "Rhinoceros Beetle.", + " A large, dark-colored beetle with a long horn on its head, crawling on a tree branch.", + "Rhinoceros beetles are one of the largest species of beetles in the world, and can be found in tropical and subtropical regions.", + "A large and hairy rhinoceros beetle.", + "This is a photo of a rhinoceros beetle.", + " A large rhinoceros beetle, with its impressive horns, making its way through a jungle." + ], + "weevil": [ + "A weevil is a small, dark beetle that may have wavy lines on its back.", + "A weevil looks like a small, dark brown beetle that is often found in stored grains.", + "A weevil is a small beetle that is less than 1/8 of an inch long.", + "A weevil is a small, brown beetle with a long snout.", + "A weevil is a small brown beetle that is often found in flour.", + "A weevil is a small, brown beetle that has a long snout.", + "A weevil is a type of beetle that has a long snout.", + "A weevil is a small beetle that has a long snout.", + "A weevil is a small beetle that is reddish-brown in color and has a long snout.", + "A weevil is a small beetle that has a long snout.", + "A weevil is a small, dark beetle.", + "A weevil is a small, dark beetle.", + "A weevil is a small, insect-like creature with a long, thin snout.", + "The easiest way to identify a weevil is to look for the telltale signs of damage that they leave behind.", + "The easiest way to identify a weevil is by its long snout.", + "A weevil is a small beetle that has a long snout.", + "One way to identify a weevil is by its elongated snout.", + "Weevils are small, dark-colored beetles with a long snout.", + "A weevil is a black beetle that is about one eighth of an inch long.", + "Weevils have a long snout, and the front of their heads is larger than the back.", + "A weevil is a small, brown beetle with a long, snout-like mouth.", + "A weevil looks like a small beetle with a long snout.", + "A weevil is a type of beetle that has a long snout.", + "A weevil is a narrow, elongated beetle with a protruding snout.", + "A weevil is a small, brown beetle.", + "A weevil is usually a small, dark-colored beetle.", + "A weevil is small, beetles that have a long snout.", + "A weevil looks like a small beetle with a long snout.", + "Weevils are small, brown, beetle-like insects with long, snout-like mouths.", + "A weevil is a small beetle that is usually less than 6 mm in length.", + "This image shows a weevil crawling on a blade of grass.", + "This image from the internet shows a weevil crawling on a leaf.", + "The image is of a small, dark-colored beetle with a long snout.", + "A weevil is a small, brown bug that is often found in flour.", + "This image shows a weevil on a flower.", + "This image shows a weevil crawling on a plant leaf.", + "The image shows a weevil crawling on a plant.", + "Image shows a brown weevil with a long snout.", + "This image is of a weevil called the Coleoptera.", + "This image shows a weevil crawling on a leaf.", + " Introducing the weevil, a bug that can ruin your pantry.", + "A weevil perched on a leaf.", + " Curculio elephas, the elephant weevil.", + "\nA weevil on a leaf\nA weevil is a small beetle that can be found on many different types of plants.", + "A weevil on a flower.", + " A weevil is a small, brown beetle that is often found in flour or rice.", + "A weevil is a type of beetle that can be a nuisance to farmers as they feed on crops.", + "A weevil is a small, brown beetle that often infests grains and cereals.", + " A weevil is a small, wingless beetle that is often found in grain storage facilities.", + " Black headed strawberry root weevil on the underside of a strawberry leaf." + ], + "fly": [ + "A fly has a small, thin body with two pairs of wings.", + "A fly is a small flying insect.", + "A fly typically has two wings, compound eyes, and long legs.", + "A fly has a small body with a dull color.", + "A fly is a small, winged creature with six legs.", + "A fly is a small, winged insect that has a skinny body and a large head.", + "A fly has a small head with two large compound eyes.", + "A fly is a small, winged insect that has a thin body and short legs.", + "A fly is a small, parasitic insects with two wings.", + "A housefly is a small, winged insect that is commonly found in homes.", + "The easiest way to identify a fly is to look at its wings.", + "A fly is a small, agile, insect that has two functional wings and two small halteres.", + "A fly has six legs, two wings, and compound eyes.", + "A fly can be identified by its two wings, its hairy body, and its small, compound eyes.", + "A fly is a small, winged insect.", + "Flies are small flying insects that have a pair of wings and are true flies because they belong to the order Diptera.", + "A fly can be identified by its wings, which are attached to the thorax, and its two compound eyes.", + "A fly can be identified by its wings, which are attached to the second and third thoracic segments.", + "The most common way to identify a fly is by its wings.", + "A fly can be identified by its two wings, its antennae, and its compound eyes.", + "Most flies have two wings.", + "A fly has a small, thin body with two wings.", + "A fly has a small body with a large head.", + "A housefly typically has a gray or brown body with four dark stripes running down its back.", + "A housefly is a small, flying insect that is common in homes.", + "A fly looks like a small, winged insect.", + "A fly typically has two wings, a pair of compound eyes, and mouthparts designed for piercing and sucking.", + "A fly has two wings and six legs.", + "A fly is a small, winged insect.", + "A fly generally has two wings, although some species are wingless.", + "The image depicts a fly in mid-flight.", + "I saw an image of a fly on the internet.", + "There is an image of a fly on the internet.", + "A fly is a small, winged insect that is often considered a nuisance pest.", + "The image is of a fly on a green background.", + "The image could show a fly on a windowsill, with its wings outstretched.", + "An image from the internet of a fly would show a small, brown or black insect with two wings and two antennae.", + "The image is of a fly on a green leaf.", + "This image is of a fly on a green leaf.", + "The image is of a fly on a green leaf.", + " A fly on a rock.", + "a fly on a wall.", + "A fly on a windowsill.", + "Instance of Musca domestica on a human finger.", + "A fly on a wall.", + "A tiny fly enjoying a warm summer day.", + "A fly on a white background.", + "A close-up of a fly on a windowsill.", + "A fly on a white background.", + "\"A fly on a window sill." + ], + "bee": [ + "A bee is a small, flying insect that is covered in hair.", + "A bee is mostly black with yellow stripes.", + "Bees are small flying insects that are covered in hair.", + "A bee is approximately 15 millimeters long and has a black and yellow striped body.", + "A bee has six legs, two antennae, three body parts (the head, thorax, and abdomen), and two pairs of wings.", + "A bee is a small, flying insect that is covered in hair.", + "Bees are small, flying insects that are covered in hair.", + "Bees have six legs, two compound eyes, and three body parts: the head, thorax, and abdomen.", + "Bees have six legs, two compound eyes, and three body parts: the head, the thorax, and the abdomen.", + "Bees are small, flying insects that have a body covered in hairy fuzz.", + "The easiest way to identify a bee is by its furry body and narrow waist.", + "Bees are flying insects with narrow bodies.", + "Bees have furry bodies and two pairs of wings.", + "The vast majority of bees are black and yellow.", + "Bees can be identified by their striped bodies and wings, and by their tendency to buzz when they fly.", + "Bees are flying insects that are closely related to wasps and ants.", + "Bees have compound eyes, meaning that their eyes are made of many small hexagonal lenses.", + "The best way to identify a bee is to look at its body.", + "Bees have a slender body with three segments: the head, the thorax, and the abdomen.", + "Bees are flying insects that are closely related to wasps and ants.", + "An adult bee has two pairs of wings, three pairs of legs, a pair of antennae, and compound eyes.", + "Bees are small insects that are often seen flying around flowers.", + "A bee is a small, flying insect that has a yellow and black striped body.", + "A bee is a small, black and yellow flying insect.", + "Bees are small flying insects that have a body covered in hairy fur.", + "Bees have six legs, two antennae, and three body sections (head, thorax, and abdomen).", + "Bees are small, flying insects with a pencil-thin waist.", + "Bees are small, flying insects that are covered in hair.", + "A bee is a small, flying insect that is covered in fur.", + "A bee has two pairs of wings, three body segments, six legs, and compound eyes.", + "'s nestThe image shows a bee's nest made up of a large number of hexagonal cells.", + "The image is of a bee flying through the air with its wings outstretched.", + "This image is of a honey bee on a flower.", + "The image is of a bee sitting on a flower.", + "One image from the internet of a bee is a bee flying near some flowers.", + "The image is of a bee flying through the air with its yellow and black stripes visible.", + "A bee is a flying insect that is covered in fur.", + "The image is of a bee flying next to a flower.", + "The image is of a bee on a flower.", + "This image is of a bee on a flower.", + " A bee collecting pollen from a flower.", + "A bee collects pollen from a flower.", + "A bee collects pollen from a flower.", + "This is a bee.", + "A bee collects pollen from a flower.", + "The bee is a fuzzy little creature that is often seen flying around flowers.", + "Bees are important pollinators of many plants and crops.", + "A bee collecting pollen from a flower.", + "This bee is busy collecting pollen from a flower.", + "A close-up of a bee collecting pollen from a flower." + ], + "ant": [ + "A ant has a reddish brown body with a black abdomen.", + "A typical ant is small, has a segmented body, and is reddish-brown or black in color.", + "A ant is a small, black bug that crawling around.", + "A small, hard-bodied creature with an segmented abdomen, six legs, and a pair of antennae protruding from its head.", + "An ant is a small black or brown insect.", + "A ant is a black or brown Insect that lives in the underbrush.", + "A ant is a small, dark-colored insect that lives in the underbrush.", + "A ant is a small, black or brown insect that lives in the underbrush.", + "A ant is a small, hard-bodied creature with a narrow waist.", + "A ant is a small, dirty creature with six legs.", + "One way to identify an ant is by its appearance.", + "A ant can be identified by its small, hard body; its long, narrow waist; and its long, thin legs.", + "Ants have a segmented body with a narrow waist.", + "The easiest way to identify an ant is to look at its body.", + "The easiest way to identify an ant is by its distinctive features.", + "There are many ways to identify an ant.", + "+There are many ways to identify an ant.", + "A ant can be identified by its long, spindly legs and narrow waist.", + "A ant can be identified by its small size, black or brown color, and long antennae.", + "Most ants are small and dark-colored.", + "A ant is a small, wingless creature that marches around in a line.", + "A common ant is small, has a dark body, and six legs.", + "A ant typically has six legs, a small body, and a head with large eyes.", + "A ant is a small, hard-bodied creature with six legs.", + "A ant looks like a tiny, six-legged creature with a dark body.", + "A ant looks like an insect.", + "A small, hard-bodied creature with six legs.", + "A black and red ant.", + "A ant looks like a small black or red insect with six legs.", + "A planar body with a narrow \"waist\" and a segmented body with a hard exoskeleton.", + "The image is of an ant crawling on the ground.", + "The image shows a brown ant crawling on a blade of grass.", + "The image is of an ant crawling on the ground.", + "The image is of an ant crawling up a blade of grass.", + "One image that represents ants from the internet is a drawing of an ant colony.", + "This is an image of an ant carrying a large green leaves.", + "The image is of a small black ant crawling on a blade of green grass.", + "This image is of a small, black ant crawling along a blade of grass.", + "The image is of an ant crawling up a blade of grass.", + "This image is of a red ant crawling on a blade of grass.", + " A small black ant crawling on the ground.", + "A close up of an ant walking on the ground.", + "A common ant on the ground.", + " FormicidaeThis is a family of ants, which includes many species of ants.", + "An ant crawling on the ground.", + "A close-up of an ant walking on the ground.", + "A close-up of an ant crawling on the ground.", + " A small black ant on a pavement.", + "A small brown ant crawling on the ground.", + "An ant crawling across the ground." + ], + "grasshopper": [ + "A grasshopper is a small, brownish-green insect.", + "Grasshoppers have six legs, two antennae, and wings.", + "A grasshopper typically has six legs, two antennae, and wings.", + "A grasshopper is a small, green insect with long legs.", + "A grasshopper is a small, green insect with six legs.", + "A grasshopper is a small, green insect with long legs that helps it jump long distances.", + "A grasshopper is a small, green insect that has six legs and long antennae.", + "A grasshopper has a very small head with two big multi-faceted eyes and long thin antennae.", + "A grasshopper has a green or brown body.", + "A grasshopper is a small, green insect with six legs.", + "A grasshopper has long hind legs that it uses for jumping.", + "You can identify a grasshopper by its long hind legs, which it uses for jumping, and its short wings, which it uses for flying.", + "A grasshopper can be identified by its long hind legs which are used for jumping, its short antennae, and its wing structure.", + "A grasshopper has six legs, two antennae, and wings.", + "The easiest way to identify a grasshopper is by its long hind legs that are used for jumping.", + "Grasshoppers are usually green or brown and have long hind legs that they use for jumping.", + "A grasshopper is a type of insect that has four legs, two wings, and a long body.", + "A grasshopper can be identified by its long hind legs that are used for jumping, its short antennae, and its large eyes.", + "By its long hind legs, which it uses for jumping.", + "Signs of a grasshopper infestation include seeing the insects themselves, as well as damaged vegetation.", + "A grasshopper has a long, segmented body and long hind legs that it uses for jumping.", + "A grasshopper has a long, thin body and long legs.", + "A grasshopper typically has a green or brown body and long legs.", + "A grasshopper is a green insect that has long legs and jumps around.", + "A grasshopper has six legs and two wings.", + "A grasshopper is typically green or brown and has six legs.", + "Most grasshoppers have bodies that are about 2 to 3 inches in length.", + "A grasshopper looks like a small, green insect with six legs.", + "A grasshopper is a small, agile insect with long hind legs for jumping.", + "A grasshopper is small to medium-sized insect that has long legs and antennae.", + "This image shows a grasshopper on a blade of grass.", + "This image from the internet shows a grasshopper on a green leaf.", + "This image from the internet shows a grasshopper sitting on a green leaf.", + "The image is of a grasshopper on a blade of grass.", + "The image is of a grasshopper on a green leaf.", + "A grasshopper is a small, green insect with long legs.", + "The image shows a grasshopper with its long legs and antennae.", + "This image is of a grasshopper on a blade of grass with its legs extended.", + "The image is of a grasshopper on a blade of grass with its legs extended.", + "This image shows a grasshopper perched on a blade of grass.", + "A grasshopper clinging to a blade of grass.", + "A grasshopper sits on a blade of grass.", + " Green grasshopper on a blade of grass.", + " A grasshopper on a tree branch.", + "A grasshopper on a blade of grass.", + " A grasshopper on a blade of grass.", + "A grasshopper looking up at the sky.", + " The locust or grasshopper is a species of short-horned grasshopper in the family Acrididae.", + " A grasshopper jumps among the grass.", + "A grasshopper in a field of tall grass." + ], + "cricket insect": [ + "A cricket insect is a small, brown insect that typically has long antennae and legs.", + "Crickets are small, brown insects that have long legs and antennas.", + "A cricket insect is small, brown, and has long antennae.", + "The cricket insect is black and white in color.", + "A cricket is a small, narrow-waisted insect that has a flattened head and long antennae.", + "A cricket insect is black and has long antennae.", + "The cricket insect is a small, winged creature that has six legs.", + "The cricket insect is a small, dark-colored creature with long legs and antennas.", + "A cricket is a small, dark-colored insect that has long hind legs that it uses for jumping.", + "Crickets are insects that have six legs and long antennae.", + "The best way to identify a cricket insect is by its physical features.", + "Cricket insects can be identified by their long antennae and theirshort, stout bodies.", + "There are many ways to identify a cricket insect.", + "Crickets are typically black or brown, and have long antennae.", + "You can identify a cricket insect by its long antennae and its hind legs, which are larger than its other legs and are used for jumping.", + "Crickets are recognizable by their long antennae and their \"singing\" sound, which is made by rubbing their front wings together.", + "A cricket insect can be identified by its long antennae, its jumpy movements, and the chirping sound it makes.", + "One way to identify a cricket insect is by its physical characteristics.", + "A cricket is an insect with long legs that makes a high-pitched sound by rubbing its wings together.", + "The easiest way to identify a cricket is by its sound.", + "A cricket insect looks like a small insect with long antennae.", + "A cricket insect has 6 legs, 2 antennae, and an oval-shaped body.", + "A cricket insect has six legs, two antennae, and a hard exoskeleton.", + "Crickets are relatively small insects, measuring about 1 to 2 inches in length.", + "A cricket insect can vary in size and appearance, but is typically brown or black in color.", + "Cricket insects have six legs, two antennae, and wings.", + "The cricket insect has an elongated body with six legs.", + "The adult cricket is usually dark brown and between 1/2 and 1 inch long.", + "The cricket insect looks like a small, dark brown or black insect with long antennae.", + "A cricket insect is a small, winged creature that has two antennae sticking out of its head.", + "This image is of a cricket insect that is brown in color with long antennae.", + "The image is of a small, brown cricket insect.", + "This image is of a cricket insect.", + "A cricket insect is typically green or brown in color and has long antennae.", + "In the image, the cricket insect is brown with long antennae.", + "The cricket insect in this picture is brown and black, and it is crawling on a green leaf.", + "The image is of a cricket on a plant.", + "The image is of a cricket insect that is dark brown in color with long antennas.", + "The image is of a brown cricket insect with long antennae and hind legs.", + "This image is of a cricket insect found on the internet.", + " A cricket rests on a blade of grass.", + " A cricket insect on a leaf.", + "The cricket is a small, brown insect that is closely related to the grasshopper.", + "Crickets are one of the most common and popular insects in the world.", + "A cricket insect perched on a blade of grass.", + "Crickets are a type of winged insect that are related to grasshoppers.", + "A cricket insect on a blade of grass.", + "A cricket insect is sitting on a brown leaf.", + "Close-up of a cricket insect on a plant.", + "This is an insect known as a cricket." + ], + "stick insect": [ + "Stick insects are long and thin, and they look a lot like sticks.", + "A stick insect typically has a long, cylindrical body that is brown or green in color.", + "A stick insect has a long, antennae, and six legs.", + "Most stick insects are long and thin, with cylindrical bodies.", + "A stick insect looks like a walking stick.", + "Most stick insects are long and thin, like a twig.", + "A stick insect has a long, thin body that looks like a stick.", + "A stick insect has a long, slender body that looks like a twig.", + "Stick insects are thin and long, with elongated bodies that resemble sticks or leaves.", + "A stick insect looks like a twig.", + "A stick insect can be identified by its long and slender body that resembles a twig or a piece of bark.", + "A stick insect is a insect that looks like a stick.", + "Size: Most stick insects are between 4 and 8 centimeters long.", + "You can identify a stick insect by its long, thin body and its long legs.", + "The easiest way to identify a stick insect is by its long, slender body that resembles a stick or twig.", + "Stick insects are usually easy to identify because they look like sticks! Some species of stick insects can grow to be over a foot long, but most are much smaller.", + "A stick insect can be identified by its long, thin body that resembles a twig or a stick.", + "A stick insect is a long, thin insect that looks like a stick.", + "There are many ways to identify a stick insect.", + "A stick insect is a thin, long-legged insect that resembles a stick.", + "Some stick insects look like sticks, while others look like leaves.", + "A stick insect looks like a twig.", + "A stick insect looks like a walking stick.", + "A stick insect has a long, thin body that looks like a twig.", + "A stick insect looks like a twig with legs.", + "A stick insect looks like a normal insect, but it is much thinner and has a long body.", + "A stick insect looks like a small twig.", + "A stick insect generally has a long, slender body that resembles a twig or a stick.", + "A stick insect looks like a walking stick.", + "A stick insect looks like a long, thin stick.", + "The image is of a stick insect on a leaf.", + "This is an image of a stick insect from the internet.", + "The image is of a long, thin, brown-and-green insect with long legs and antennae.", + "A stick insect is a long, thin insect that looks like a stick.", + "This image is of a stick insect on a branch.", + "This image is of a stick insect on a green leaf.", + "A stick insect in an image from the internet is a small, green insect with long legs and antennae.", + "A stick insect in the rainforest.", + "This image is of a stick insect crawling up a blade of grass.", + "A stick insect is an insect that looks like a stick.", + " A common stick insectThis is a photo of a common stick insect.", + "This stick insect is camouflaged to look like a twig.", + "\"Stick insects are often called walking sticks or stick-bugs.", + "A stick insect camouflage themselves by looking like a twig or branch.", + " \"What in the world is that?!\"Image Caption: A stick insect camouflaged on a tree branch.", + "A stick insect in a tree.", + "A stick insect camouflageing in its natural habitat.", + "A stick insect blends in with its surroundings to avoid being eaten by predators.", + "A stick insect called Timon pater.", + " Stick insects are masters of camouflage." + ], + "cockroach": [ + "A cockroach is an insect that has a flattened body, long antennae, and hates the light.", + "A cockroach is a small, dark, winged insect that is often seen in homes.", + "A cockroach is a small insect with a long, segmented body.", + "A cockroach is about the size of a quarter and is dark brown or black in color.", + "A cockroach is an insect that has a long, flat body.", + "A cockroach is a small, winged insect that is brown or black in color.", + "A cockroach is a small, dark brown insect that has a flat body and long, thin legs.", + "A cockroach is a brown or black insect that is about 1-2 inches long.", + "Cockroaches are typically dark brown or black, and have long, segmented bodies.", + "A cockroach is a small, dark-colored insect that has a flat body and long, slender legs.", + "Cockroaches are generally dark brown or black in color and have long, flat bodies.", + "Cockroaches are dark brown or black and have long antennae.", + "The most common species of cockroach in the United States is the German cockroach.", + "Cockroaches are easily identifiable by their long, slender bodies and their two pairs of wings.", + "Cockroaches are long, flattened insects with long, slender legs.", + "They are dark brown or black, have long antennae, and are about the size of a playing card.", + " Cockroaches are most commonly identified by their brown or dark color, and their long, flattened bodies.", + "The easiest way to identify a cockroach is by its long, slender body and long, segmented antennae.", + "Cockroaches are small to medium-sized insects with flattened bodies.", + "The easiest way to identify a cockroach is by its long, flattened body and its spiny legs.", + "Cockroaches have flattened bodies and long, jointed legs.", + "A cockroach is a small, dark, winged insect that is about the size of a dime.", + "Cockroaches are insects of the order Blattaria, which also includes termites.", + "A cockroach is a small, dark brown or black insect.", + "Cockroaches vary in size and shape, but most are between one and two inches long.", + "A cockroach is a small, brown beetle-like insect.", + "The majority of cockroaches are brown, black, or reddish-brown.", + "A cockroach is a small, dark, winged insect that is commonly found in homes.", + "Cockroaches are flattish insects with long, segmented bodies.", + "Cockroaches are flattened insects with long, segmented antennae.", + "This image is of a cockroach on a white background.", + "The cockroach is a small, dark brown insect with a flat, oval-shaped body.", + "I'm not sure what you mean.", + "This image is of a cockroach on a white background.", + "This image is of a cockroach on its back with its legs in the air.", + "The image is of a cockroach on its back with its legs in the air.", + "The image is of a cockroach on a white background.", + "I couldn't find an image of a cockroach on the internet.", + "The image is of a cockroach on its back with its legs in the air.", + "An image from the internet of a cockroach might show a small, dark brown or black insect with long, slender legs.", + "A cockroach captured in a New York City apartment.", + "Cockroaches are one of the most resilient pests, able to survive in a variety of harsh environments.", + "This cockroach is not happy.", + "A cockroach crawling on a surface.", + "Cockroaches are one of the most resilient pests, capable of surviving even the harshest conditions.", + "One of nature's most resilient creatures, the cockroach can live for weeks without food or water and is capable of surviving extremes of temperature.", + " A cockroach crawling on a cement floor.", + "A cockroach on a white background.", + "This is a cockroach.", + "This is a cockroach." + ], + "praying mantis": [ + "A praying mantis is a green or brown insect that looks like it is kneeling in prayer.", + "Praying mantids have elongated bodies with triangular heads.", + "A praying mantis is a green or brown insect that has long front legs that it uses to catch prey.", + "A praying mantis is a Green or brown insect.", + "Praying mantises are long, thin insects that have large, triangular heads and long legs.", + "Praying mantises are long, thin insects with large front legs that they use to capture prey.", + "A praying mantis has a long, thin body with long legs.", + "A praying mantis is a long, thin insect with six legs.", + "The praying mantis is a long, slender insect with a triangular head and large eyes.", + "The praying mantis is a long, thin insect with a triangular head and large eyes.", + "The easiest way to identify a praying mantis is by its long, praying forearms.", + "The most distinguishing feature of a praying mantis is its long, segmented front legs that are held clasped together in an upright position.", + "The biggest way to identify a praying mantis is by their raptorial front legs.", + "There are about 2,200 species of praying mantises in the world.", + "By its long, narrow front legs, which it uses to snatch prey.", + "Praying mantises are easily identified by their long bodies and legs, and their triangular heads.", + "Praying mantids have large, triangular heads with bulging eyes located on the sides of their heads.", + "The easiest way to identify a praying mantis is by its long, slender body and very large, defined front legs that look like they're folded in prayer.", + "A praying mantis is a green or brown insect that is usually found on plants.", + "The praying mantis is a long, thin insect with a triangular head and large eyes.", + "Praying mantis look like they are praying with their long fronts legs.", + "A praying mantis is a long, thin insect with large front legs that it uses to grab prey.", + "A praying mantis is a type of insect that has a triangular head, large eyes, and long legs.", + "A praying mantis is a long, thin insect with a triangular head.", + "A praying mantis has a large, oval-shaped head with two large compound eyes.", + "A praying mantis is a long, thin insect with two front legs that are bent, making it look like it is praying.", + "Praying mantises have triangular heads with long, segmented necks.", + "A praying mantis is a type of Insect that is green and has long legs.", + "A praying mantis has a long body and thin legs.", + "A praying mantis is a long, thin insect with two large front legs that it uses to grab prey.", + "The image is of a green praying mantis on a leaf.", + "The image is of a praying mantis perched atop a green leaf.", + "The image is of a small, brown and green praying mantis perched on a branch.", + "A picture of a praying mantis on the internet most likely shows a green insect with long legs bent in a praying position.", + "In the image, a praying mantis is perched on a branch with its long, thin legs folded underneath its body.", + "The image is of a small, green praying mantis perched on a leaf.", + "This image is of a praying mantis on a green leaf.", + "This image is of a praying mantis perched on a human finger.", + "In the image, a praying mantis is shown perched on a branch with its front legs bent in a praying position.", + "In this image, a praying mantis is clinging to a branch with its long, slender front legs folded in prayer-like fashion.", + "A praying mantis keeps watch over her garden.", + "A praying mantis on a leaf, looking upPraying mantises are carnivorous insects that are known for their unique appearance and predatory behavior.", + "A mantis in prayer position.", + "I pray for good luck, prosperity, and a long life.", + " A juvenile Allomantis sp.", + " Praying Mantis in the Grass.", + "A praying mantis on a leaf, looking up.", + "A praying mantis looks like it is praying when it holds its front legs together in front of its body.", + "A praying mantis, captured in mid-prayer.", + "A close up of a praying mantis in profile, looking to the side with its long antennae and big compound eyes." + ], + "cicada": [ + "A cicada is a flying insect about 2 to 5 cm long.", + "A cicada is a large, winged insect that has a long body and large eyes.", + "Cicadas are relatively large insects, with some species reaching up to 5.", + "A cicada is a winged insect that has a hard exoskeleton and large compound eyes.", + "A cicada is a stout-bodied insect with large eyes, clear wings, and long antennae.", + "A cicada is a large, winged insect that has a hard shell.", + "A cicada looks like a large, black and red insect with big eyes and clear wings.", + "A cicada looks like a large flying insect with big wings.", + "A cicada is a small to medium-sized black or brown insect with large transparent wings.", + "A cicada looks like a small, brown, flying insect with two large wings.", + "Cicadas can be identified by their large size, their red eyes, and their wings.", + "Cicadas can be identified by their long and narrow abdomens, their two pairs of transparent wings, and their large eyes.", + "cicada are large insects with clear wings.", + "The easiest way to identify a cicada is by its size and coloring.", + "By their large size and distinctive appearance.", + "The easiest way to identify a cicada is by its characteristic 'song', which is made only by the males.", + "Cicadas have large eyes on the sides of their heads and transparent, veined wings.", + "Cicadas can be identified by their large size, their wings, and their distinctive sound.", + "Cicadas can be identified by their large size, their wings, and their antennae.", + "The easiest way to identify a cicada is by its unique sound.", + "There are over 1,300 species of cicadas, so they come in a variety of shapes and sizes.", + "A cicada is a small, dark-colored insect with large eyes.", + "Cicadas are fairly large insects, with adults measuring 2-5 cm in length.", + "A cicada is a large insect that has a hard shell.", + "A cicada has a large head with big eyes, long antennae, and a small body with two pairs of wings.", + "Cicadas have long, narrow bodies with clear wings.", + "Cicadas are winged insects.", + "A cicada is a small, flying insect.", + "A cicada looks like a small, dark-colored insect with large wings.", + "A cicada is a large, winged insect.", + "This image is of a cicada on a tree branch.", + "The image is of a large tan and black insect with long wings.", + "The pictures is of a large cicada on a tree branch.", + "A cicada on the internet is most likely an image of a Cicada Insect.", + "This image is of a cicada on a plant.", + "The image from the internet of a cicada is a photo of a brownish-black insect with large wings.", + "The image is of a large, black and red cicada with long, translucent wings.", + "The image is of a large, dark brown cicada with long antennae.", + "This image is of a large, red-eyed cicada.", + "The image is of a large, reddish-brown cicada with long, transparent wings.", + " A cicada drying its wingsA close-up of a cicada shows it in the process of drying its wings.", + "A cicada above grass with its wings outstretched.", + "A cicada on a tree branch.", + "Cicada on a tree branch.", + "A cicada on a tree branch.", + "A cicada spending its final moments on a tree branch.", + " A close up of a cicada.", + "This little cicada is getting ready to hatch from its shell!.", + "A cicada on a plant.", + "Cicadas are flying insects that are related to aphids and other plant-sucking pests." + ], + "leafhopper": [ + "Leafhoppers are small, green insects that jump when they are disturbed.", + "A leafhopper is a small insect that can jump.", + "A leafhopper is a small insect that usually has a green or brown body.", + "Leafhoppers are small, sap-sucking insects.", + "A leafhopper is a small, green or brown insect that jumps when it moves.", + "Most leafhoppers are small, less than 10 mm (0.", + "Leafhoppers are small, agile insects that move rapidly by jumping.", + "A leafhopper is a small insect that is green or brown in color.", + "The leafhopper is a small, green insect that feeds on the sap of plants.", + "Leafhoppers are small, thin insects that have long antennae.", + "A leafhopper is a small insect that feeds on plants.", + "Leafhoppers are small, agile insects that are able to jump long distances.", + "A leafhopper can be identified by its small, slender body and long hind legs that enable it to jump high and far.", + "The easiest way to identify a leafhopper is by its small, compact body and its long hind legs, which allows it to jump long distances.", + "A leafhopper can be identified by its small, cylindrical body and long hind legs that are used for leaping.", + " a.", + "-\tLeafhoppers are small, lightweight insects that are good jumpers.", + "A leafhopper is a small, sap-sucking insect in the order Hemiptera.", + "Leafhoppers are small, thin, sap-sucking insects.", + "Leafhoppers are small, brightly colored insects that jump when they are disturbed.", + "The leafhopper is a small insect that sucks the juice from plants.", + "Leafhoppers are small, thin insects that have long hind legs designed for jumping.", + "A leafhopper is a small insect that feeds on the sap of plants.", + "A leafhopper is a small insect that can be a variety of colors, including green, brown, and yellow.", + "A leafhopper is a small insect that is green or brown in color.", + "A leafhopper is a small winged insect that feeds on the sap of plants.", + "A leafhopper is a small insect that usually has a green or brown body.", + "Leafhoppers vary greatly in size, shape, and color.", + "Discolored, blotchy, or mottled wings\nWhitish or yellowish-green body\n compact and bullet-shaped\nLong legs\nrapid movement.", + "A leafhopper is a small insect that typically has a brightly colored body.", + "A leafhopper is a small, green insect that jumps from leaf to leaf.", + "An image of a leafhopper from the internet shows a small, green insect perched on a leaf.", + "A tiny green leafhopper rests on a blade of grass.", + "I found an image of a leafhopper on the internet that I really liked.", + "The image is of a small, brown and white insect perched on a green leaf.", + "This image is of a leafhopper on a stem.", + "The image shows a leafhopper sitting on the leaf of a plant.", + "This image is of a leafhopper nymph crawling on a plant.", + "The image is of a small, green insect with large eyes.", + "This leafhopper image from the internet is of a small, green insect with long antennae.", + "A leafhopper feeding on a leaf.", + "The leafhopper is a small, agile insect that is able to jump long distances.", + "A leafhopper feeding on a plant.", + "This leafhopper is a common garden pests.", + "A tiny leafhopper enjoying a meal on a blade of grass.", + "A small green leafhopper on a blade of grass.", + "A leafhopper on a leaf.", + "The leafhopper is a small insect that eats the leaves of plants.", + "A leafhopper on a plant leaf.", + "A leafhopper on a leaf." + ], + "lacewing": [ + "A lacewing is a slender, delicate-looking insect with wings that have a network of veins and a small body.", + "A lacewing is a small, delicate-looking insect with large, veined wings.", + "A lacewing is a small, delicate-looking insect with a wingspan of around 2.", + "Lacewings have long, slender bodies with two pairs of wings.", + "Adult lacewings are delicate-looking insects with four wide, veined wings.", + "A lacewing is a greenish-brown insect with four wings that are covered in a delicate, vein-like network of lines.", + "A lacewing is a small, delicate-looking fly with large, multi-faceted eyes.", + "Lacewings are a type of small, delicate-looking winged insect.", + "A lacewing is a small, delicate-looking insect with long, narrow wings fringed with hairs.", + "Lacewings are a type of winged insect.", + "A lacewing can be identified by its distinctive wings, which are covered in a network of veins and have a delicate, lacey appearance.", + "Lacewings generally have delicate, mesh-like wings and are attracted to light.", + "Lacewings have thin, delicate wings with a network of veins.", + "Lacewings have multi-faceted eyes and two pairs of wings.", + "One way to identify a lacewing is by its large, compound eyes.", + "Lacewings have four wings that are all the same size.", + "Lacewings are small to medium-sized insects with delicate bodies and large, clear wings.", + "Lacewings have wings that look like they are made of lace.", + "Adult lacewings can be identified by their delicate wings, which are covered in a network of veins.", + "Lacewings have four winged, gauzy wings that are fringed with long hairs.", + "Lacewings are delicate-looking insects with wings that have a prominent network of veins.", + "A lacewing has two pairs of transparent wings.", + "A lacewing is a small, delicate-looking insect with large, multi-faceted eyes.", + "A lacewing has delicate wings with a network of veins that give them a lacy appearance.", + "A lacewing has two pairs of wings.", + "Lacewings are small, delicate-looking insects with large, veined wings.", + "A lacewing is a small, delicate insect with large, veined wings.", + "A lacewing is a small, delicate-looking insect with wings that are covered in a network of veins.", + "The lacewing has a slender body with wings that have a delicate, lacey appearance.", + "Lacewings have delicate, filmy wings and a golden head, with a narrow body.", + "This image shows a lacewing sitting on a leaf.", + "One image of a lacewing from the internet shows a green lacewing butterfly perched on a plant.", + "This image from the internet shows a lacewing in mid-flight.", + "The image is of a delicate, light greenish-brown insect with large, veined wings.", + "The image is of a light green lacewing with large, delicate wings.", + "This photo shows a lacewing larva suspended in midair, surrounded by a web of silk threads.", + "A lacewing is a small, delicate-looking insect with powdery wings.", + "This image from the internet shows a lacewing insect perched on a branch.", + "The image is of a small, delicate-looking green insect with large, transparent wings.", + "A lacewing is a small, flying insect with delicate, lacy wings.", + "A beautiful lacewing flutters its delicate wings.", + "The green lacewing is a delicate insect with beautiful, translucent wings.", + "A delicate green lacewing sits on a blade of grass, its spotted wings outstretched.", + "A beautiful green lacewing on a flower.", + "A lacewing sits on a flower in a garden.", + "A lacewing is an insect in the order Neuroptera.", + "The lacewing is a beautiful, delicate creature with intricate lacy wings.", + "This delicate creature is a lacewing, a type of insect known for its beautiful wings.", + "This delicate creature is a lacewing, a type of insect known for their lacy, transparent wings.", + "The lacewing rests upon a leaf, its delicate wings fluttering in the breeze." + ], + "dragonfly": [ + "Dragonflies are flying insects that are related to damselflies.", + "A dragonfly has a large head with two big eyes that touch in the middle, and a long, thin body.", + "A dragonfly is a colorful insect with big eyes.", + "A dragonfly is a type of insect that typically has a long and thin body with two pairs of wings that are transparent.", + "A dragonfly is a predatory insect with large, multifaceted eyes and long, thin, transparent wings.", + "A dragonfly is a small, slim insect with two large wings.", + "A dragonfly has a long slender body with two pairs of large clear wings.", + "A dragonfly is a flying insect that has two large wings that are thin and transparent.", + "A dragonfly is an insect with two pairs of large, veined wings that are transparent.", + "A dragonfly has a long, slender body with two sets of wings that are thin and transparent.", + "The easiest way to identify a dragonfly is by its large eyes, which take up most of its head, and its long tail.", + "A dragonfly can be identified by its large eyes, long wings, and thin body.", + "There are a few ways to identify a dragonfly.", + "The best way to identify a dragonfly is to look at its wings.", + "A dragonfly has two large compound eyes that cover most of its head, a long slender body, and two pairs of wings that are transparent with colorful veins.", + "Dragonflies typically have long, slender bodies with two pairs of wings that are elongated and membranous.", + "There are many ways to identify a dragonfly.", + "The easiest way to identify a dragonfly is to look at its eyes.", + "The easiest way to identify a dragonfly is to look at its eyes.", + "The easiest way to identify a dragonfly is by its large eyes, which are almost as big as its head, and its long, thin body.", + "Many dragonflies have large, compound eyes that can take in a wide range of light.", + "A dragonfly is a flying insect that has a long thin body with two pairs of very large transparent wings.", + "A dragonfly typically has a long, thin body with two pairs of large, transparent wings.", + "A dragonfly looks like a winged insect with large compound eyes.", + "A dragonfly looks like a small, colorful flying insect with large wings.", + "A dragonfly is a flying insect that has a long body and thin wings.", + "A dragonfly is a predatory insect that is related to the damselfly.", + "A dragonfly has two pairs of wings, extended abdominal segments, and large compound eyes.", + "A dragonfly is a flying insect that has a long, thin body and four wings that are all the same size.", + "A dragonfly has a long, thin body with six legs.", + "The image is of a blue and yellow dragonfly with its wings outstretched.", + "This particular image is of a green dragonfly with large compound eyes.", + "The image is of a brightly colored dragonfly with its long, thin body and large wings.", + "I found an image of a dragonfly on the internet that I really like.", + "The dragonfly in the image is a blue and green color.", + "The image is of a dragonfly with a blue body and transparent wings.", + "This image is of a dragonfly with its wings spread out.", + "The image is of a blue dragonfly in mid-flight.", + "The image is of a blue dragonfly perched on a blade of grass.", + "An image from the internet of a dragonfly shows a brightly colored insect with large wings flying through the air.", + "This iridescent dragonfly is enjoying a sunny day in the garden.", + "A dragonfly with its wings spread open, revealing the intricate pattern on their wings.", + "A dragonfly in flight.", + "A dragonfly in flight.", + "A dragonfly in flight, its large wings outstretched.", + "This is a dragonfly.", + "A dragonfly in flight.", + "A blue dragonfly with large wings and a long body.", + " A closeup of a dragonfly's wing, showing the intricate patterns of color.", + "A dragonfly in flight." + ], + "damselfly": [ + "A damselfly looks like a small dragonfly with long, thin wings.", + "A damselfly is a small, delicate-looking insect that is related to the dragonfly.", + "Most damselflies have slender bodies with a set of wings that are similar in size and shape.", + "A damselfly is a small, delicate flying insect that is similar to a dragonfly.", + "A damselfly has a long, skinny body and long, thin wings.", + "Most damselflies are delicate-looking insects with long, slender abdomens and 2 pairs of long, thin wings that are usually held together above the body at rest.", + "A damselfly is a small, slender insect with large, delicate wings.", + "A damselfly is a small, delicate-looking insect with long, thin wings.", + "A damselfly is a small flying insect that typically has brightly colored wings.", + "A damselfly looks like a dragonfly, but is smaller and has slimmer bodies.", + " damselflies can be distinguished from true flies by their long, slender abdomens and wings that are set at an angle to the body when at rest.", + "A damselfly is an insect that is in the same family as a dragonfly.", + "One way to identify a damselfly is by its eyes, which are very large and touch at the top of the head.", + "A damselfly can be identified by its long, thin abdomen and its two pairs of wings, which are the same size and shape.", + "A damselfly can be identified by its long, thin body and narrow wings.", + "The easiest way to identify a damselfly is by its long, thin body and large eyes that are set far apart on its head.", + "The easiest way to identify a damselfly is by its long, thin body and two pairs of wings that are the same size.", + "The best way to identify a damselfly is by its long, slender body and its two pairs of equally-sized wings, which are held together at rest.", + "A damselfly can be identified by its long, slender body and wings.", + "Damselflies have three long, thin, filamentous tails, while dragonflies have two broad, triangular tails.", + "A damselfly is a small, predatory insect that is related to the dragonfly.", + "A damselfly is a small, insect-like creature with two sets of wings.", + "A damselfly is a small, delicate-looking insect with large, compound eyes.", + "A damselfly is a type of predatory insect that is closely related to dragonflies.", + "A damselfly looks like a thinner, more delicate version of a dragonfly.", + " Broad, delicate wings.", + "A damselfly has a thin body, long wings, and short antennae.", + "A damselfly looks like a small dragonfly.", + "A damselfly is a flying insect that typically has long, slender bodies and wings.", + "A damselfly is a small, delicate-looking insect that is closely related to dragonflies.", + "In this image, a damselfly is perched on a blade of grass with its wings extended.", + "The image is of a damselfly perched on a blade of grass with its iridescent blue body and long, thin wings.", + "This image is of a blue damselfly on a green leaf.", + "A damselfly is a small, narrow-bodied insect with two pairs of large, transparent wings.", + "The image is of a damselfly perched on a green leaf.", + "A damselfly is a kind of small, slender dragonfly.", + "The image is of a blue damselfly perched on a plant stem near some water.", + "One image of a damselfly from the internet shows a small, thin insect with large wings.", + " caught in a spider webIn the image, a damselfly is caught in a spider web.", + "I found an image of a damselfly on Wikimedia Commons.", + "A Damselfly on a plant by a river.", + "A damselfly enjoying a sunny day near a river.", + "A damselfly perches on a plant next to a lake.", + "A damselfly enjoying a summer day near a lake or pond.", + "This photo shows aDamselfly perched on a twig.", + " The dragonfly has a slender, cylindrical body with large compound eyes and two pairs of equally-sized wings.", + " A damselfly with its elegant, long body and delicate wings.", + "A damselfly rests on a lily pad in a tranquil pond.", + "A damselfly rests on a leaf in a garden.", + "This image shows a damselfly perched atop a blade of grass." + ], + "red admiral butterfly": [ + "The red admiral butterfly has black wings with red, white, and orange stripes.", + "A red admiral butterfly is black with orange wings.", + "The red admiral butterfly has a black body with red and orange stripes on its wings.", + "The red admiral butterfly is a black butterfly with red stripes on its wings.", + "The red admiral butterfly is a black butterfly with red and white stripes on its wings.", + "Red admiral butterflies are characterized by their deep black wing coloration with striking red markings.", + "Red admiral butterflies have dark brown wings with orange-red bands and white spots.", + "A red admiral butterfly is black with red and white stripes on its wings.", + "Broad, dark wings with distinctive red and white bands and spots.", + "The red admiral butterfly has a black body with red and orange wings.", + "You can identify a red admiral butterfly by its black wings with red and white bands.", + "The red admiral butterfly is a brightly colored butterfly that is orange and black with white stripes.", + "Red admiral butterflies are usually red, brown, or black, with orange wing bars and white spots.", + "The red admiral butterfly is a black butterfly with red stripes.", + "The red admiral butterfly is one of the most recognizable butterflies in North America.", + "You can identify a red admiral butterfly by its red and black wings.", + "Red admiral butterflies can be identified by their black wings with red stripes.", + "The red admiral butterfly is a black and red butterfly with white spots.", + "When looking at a red admiral butterfly you can see that the base color of its wings is black.", + "The red admiral is a brightly colored butterfly with a wingspan of about 38\u201352 mm.", + "Red admiral butterflies are black with orange-red wings that have white bars.", + "A red admiral butterfly is typically dark brown with orange bands across its wings.", + "This butterfly has red and black wings, with a white band running across them.", + "A red admiral butterfly has black wings with orange bars and a red band.", + "A red admiral butterfly has black wings with red stripes.", + "A red admiral butterfly has black wings with red and orange markings.", + "The red admiral butterfly is a striking black butterfly with red bands and white spots on its wings.", + "A red admiral butterfly is black with red bands and white spots on its wings.", + "Red admiral butterflies are black with orange-red wings that have white bars.", + "Red admiral butterflies are dark brown on top with an orange-red band across the bottom of their wings.", + "I found an image of a red admiral butterfly on the internet that shows the butterfly perched on a branch with its wings open.", + "An image of a red admiral butterfly from the internet shows a beautiful orange and black butterfly with white spots on its wings.", + "This image is of a red admiral butterfly on a flower.", + "This image is of a red admiral butterfly on a flower.", + "This is an image of a red admiral butterfly.", + "This red admiral butterfly has landed on a flower, spreading its wings to reveal their striking red, black, and white coloration.", + "The image is of a beautiful, red admiral butterfly perched atop a green leaf.", + "The image shows a red admiral butterfly perched on a plant.", + "The image is of a red admiral butterfly perched on a branch.", + "This image is of a red admiral butterfly perched on a branch.", + "A beautiful red admiral butterfly enjoying the summer sun.", + "A red admiral butterfly perched on a flower.", + "Red admiral butterflies are beautiful creatures that are often seen flitting around gardens and parks.", + " A beautiful red admiral butterfly on a flower.", + "A red admiral butterfly feeds on the nectar of a yellow flower.", + "A red admiral butterfly feasts on nectar from a flower.", + "A beautiful red admiral butterfly flits among the flowers.", + "The red admiral butterfly is found in North America, Europe, and Asia.", + "Red Admiral Butterfly.", + "A beautiful red admiral butterfly enjoying the spring flowers." + ], + "ringlet butterfly": [ + "A ringlet butterfly has a black body with a wide, orange-brown band running across its wings.", + "A ringlet butterfly is a small, dark brown butterfly with a wingspan of about 1.", + "The ringlet butterfly has orange-brown wings with white spots.", + "A ringlet butterfly typically has orange or brown wings with black spots.", + "A ringlet butterfly is a small butterfly with black and white markings.", + "A ringlet butterfly is a small, dark-colored butterfly with a white or pale ring around the edge of each of its wings.", + "A ringlet butterfly has a round, black body with an orange ring around its middle.", + "A ringlet butterfly is a small, dark brown or black butterfly with a white or yellow ring around its body.", + "A ringlet butterfly is a small, dark butterfly with a wingspan of about 1 to 1.", + "A ringlet butterfly is a small, dark brown butterfly with a wingspan of less than 2 inches.", + "The small size, orange and black coloration, and black spots on the wings of the ringlet butterfly are all identifying characteristics.", + "The ringlet butterfly has a wingspan of between 1.", + "A ringlet butterfly can be identified by its black and brown wings, with a white or cream-colored band around the edge of each wing.", + "The best way to identify a ringlet butterfly is to look for the distinctive black and cream rings that encircle its wings.", + "A ringlet butterfly can be identified by its black and brownish-red wings, which have a row of white spots along the edges.", + "The forewing of a ringlet butterfly has a distinctive dark band which goes all the way around the wing.", + "The ringlet butterfly can be identified by its dark brown wings that are each marked with a row of orange or yellowish rings.", + "The ringlet butterfly has a brown and white checkered pattern on its wings.", + "A ringlet butterfly can be identified by its small size, dark brown wings, and distinctive white ring around the edge of its wing.", + "The ringlet butterfly can be identified by its wings, which are brown with white rings.", + "A ringlet butterfly has a dark brown body with a wingspan of about 1.", + "The ringlet butterfly is a small to medium sized butterfly.", + "A ringlet butterfly has a brown or black body with yellow or white markings.", + "A ringlet butterfly has a dark brown upper body with a broad cream-colored band across the center.", + "The ringlet butterfly (Aphantopus hyperantus) is a small to medium-sized brown butterfly with a wingspan of 30\u201335 mm.", + "I cannot find a picture of a butterfly called a ringlet.", + "A ringlet butterfly is a small, dark butterfly with a wingspan of about 1.", + "A ringlet butterfly has black wings with white spots and a yellow body.", + "A ringlet butterfly has dark brown wings with a ring of pale yellow around the edge.", + "A ringlet butterfly has a brown and orange striped body with black spots.", + "The image is of a butterfly with long, thin, spiraling antennae and black and white markings on its wings.", + "The ringlet butterfly is a small to medium-sized butterfly with brown wings and a white bands on its wings.", + "This ringlet butterfly has striking black and white markings on its wings, with a row of small, round spots near the edge.", + "This photo shows a beautiful ringlet butterfly with its wings spread wide.", + "The image is of a small, delicate butterfly with dark brown and orange wings.", + "The ringlet butterfly has a black body with a thin yellow line running along the edge of its wings.", + "The image is of a small, brown and white butterfly with delicate looking wings.", + "The image could show a close up of a ringlet butterfly's wing, with the intricate patterns and colors clearly visible.", + "The image is of a ringlet butterfly on a flower.", + "This image is of a ringlet butterfly on a flower.", + "A ringlet butterfly on a flower.", + "A ringlet butterfly (Aphantopus hyperantus) on a flower in a meadow.", + "\"The ringlet butterfly is a small, delicate creature with beautiful markings.", + "A ringlet butterfly perched on a flower.", + "A ringlet butterfly (Aphantopus hyperantus) in flight, its wings flapping in a blur.", + "This beautiful ringlet butterfly is native to Europe and Asia.", + "A ringlet butterfly perched on a flower.", + "The ringlet butterfly is a beautiful creature that is found in many parts of the world.", + "The Ringlet Butterfly is a species of butterfly found in Asia and Europe.", + "A ringlet butterfly feeding on a flower." + ], + "monarch butterfly": [ + "Monarch butterflies are orange and black with white dots on their wings.", + "A monarch butterfly has orange wings with black and white stripes.", + "The Monarch Butterfly is a bright orange butterfly with black stripes.", + "Monarch butterflies have a wingspan of 3.", + "A monarch butterfly has orange wings with black veins and a black border.", + "A monarch butterfly has a wingspan of 3.", + "The monarch butterfly has black, orange, and white markings on its wings.", + "Monarch butterflies have a wingspan of 3.", + "Monarch butterflies are large, brightly-colored butterflies.", + "The monarch butterfly has a wingspan of 3.", + "You could identify a monarch butterfly by its distinct orange and black wings.", + "The monarch butterfly is orange and black with white spots.", + "By its bright orange and black wings.", + "The wingspan of a monarch butterfly is 3.", + " Monarch butterflies are orange and black with white spots.", + "Monarch butterflies can be identified by their characteristic orange and black wings.", + "A monarch butterfly can be identified by its black and orange wings with white spots.", + "Monarch butterflies are orange and black with white spots.", + "The wings of monarch butterflies have a black background with orange and white spots.", + "A monarch butterfly is a type of butterfly that can be identified by its orange and black wings.", + "A monarch butterfly has orange wings with black veins.", + "The monarch butterfly is a beautiful orange and black butterfly with white spots.", + "Monarch butterflies have black, orange, and white markings on their wings.", + "A monarch butterfly has black and orange wings with white spots.", + "The monarch butterfly is orange with black stripes and has a wingspan of 3.", + "Monarch butterflies are orange and black with white spots on their wings.", + "Monarch butterflies have a wingspan of 8-10 cm (3-4 in) and are bright orange with black wing margins and white spots.", + "A monarch butterfly has a wingspan of about four inches, and its wings are orange with black and white markings.", + "Monarch butterflies are large and beautiful butterflies with orange and black wings.", + "The monarch butterfly has black and orange stripes on its wings.", + "A monarch butterfly is flitting among beautiful flowers in a garden.", + "In the image, a monarch butterfly is perched atop a flower, with its wings spread open.", + "This image is of a monarch butterfly perched on a green leaf.", + "This image shows a monarch butterfly perched on a flower.", + "This image is of a monarch butterfly perched atop a flower.", + "This image from the internet depicts a monarch butterfly perched atop a vibrant yellow flower.", + "The image is of a monarch butterfly on a flower, with a green background.", + "This image is of a monarch butterfly perched on a branch.", + "The monarch butterfly is a beautiful insect with orange and black wings.", + "This image is of a monarch butterfly on a blue flower.", + " Monarch butterflies are one of the most beautiful and well-known butterfly species.", + "A monarch butterfly flits from flower to flower in a meadow.", + "A monarch butterfly perched on top of a flower.", + "A monarch butterfly rests on a flower.", + "A monarch butterfly in flight.", + " \"As monarch populations have declined by as much as 90% since the 1990s, their fascinating annual migration has become a symbol of the fragility of our ecosystems.", + "A monarch butterfly on a flower.", + "A monarch butterfly rests on a flower in a meadow.", + "A monarch butterfly in flight.", + "A monarch butterfly in flight." + ], + "small white butterfly": [ + "A small white butterfly looks like a small white butterfly.", + "The small white butterfly is a small, delicate butterfly with white wings.", + "A small white butterfly has white wings and a white body.", + "A small white butterfly looks like a small white butterfly.", + "A small white butterfly is a small butterfly with white wings.", + "A small white butterfly is a delicate creature with wings that are pale in color with dark markings.", + "A small white butterfly typically has white wings with black spots.", + "Small white butterflies are small and have white wings.", + "A small white butterfly has delicate white wings with black markings.", + "Small white butterflies are usually about an inch or two in size and have white wings with black spots.", + "There are many types of small white butterflies, so it is difficult to give a definitive answer.", + "There are a few small white butterflies, but some of the more common ones are the Cabbage White (Pieris rapae) and the Small White (Pieris napi).", + "One way to identify a small white butterfly is by its size.", + "There is no definitive answer to this question as there are a great many small white butterflies with varying patterns and markings.", + "There are many small white butterflies, so it is difficult to give a definitive answer.", + "There are many small white butterflies, so it is difficult to give a single answer to this question.", + "Some small white butterflies are hard to identify without looking at their wing patterns.", + "A small white butterfly might be a member of the Pieridae family, which includes the cabbage white and the orange-tip butterflies.", + "There are many small white butterflies, but some of the more common ones include the Cabbage White and the Orange-tip Butterfly.", + "There are many small white butterflies, so it is difficult to identify them without more information.", + "There are countless types of small white butterflies, but they are generally white with black spots on their wings.", + "A small white butterfly is about the size of a nickel.", + "A small white butterfly looks like a small white butterfly.", + "A small white butterfly is typically white with some black markings.", + "The small white butterfly is a small to medium-sized butterfly that is mostly white in color.", + "A small white butterfly typically has white wings with black spots.", + "There are many different types of small white butterflies, so it is difficult to give a single description that would cover them all.", + "A small white butterfly typically has white wings with black spots.", + "A small white butterfly may look like a monarch butterfly.", + "There are many small white butterfly species, so it is hard to give a single description that would apply to all of them.", + "In the image, a small white butterfly is perched atop a green leaf.", + "The image is of a small white butterfly perched on a yellow flower.", + "The image is of a small, delicate butterfly with white wings.", + "The image is of a small white butterfly with black spots on its wings.", + "The image is of a small white butterfly with black spots on its wings, sitting on a yellow flower.", + "I couldn't find an image of a small white butterfly on the internet, so I found an image of a small white moth instead.", + "This image shows a small, white butterfly with black markings on its wings.", + "This is a small white butterfly.", + "The image is of a white butterfly with black spots on its wings.", + "The image is of a small white butterfly perched on a blade of grass.", + "One of nature's delicate beauties, this small white butterfly is a welcome sight in any garden.", + "\tThis beautiful little butterfly is called a Pieris rapae, and is commonly known as the small white.", + "The white butterfly is a beautiful creature that flutters around in the summertime.", + "A small white butterfly flits from flower to flower in search of nectar.", + "This small white butterfly is in the process of pollinating a flower.", + " Small white butterfly on a yellow flower.", + "A small white butterfly rests on a purple flower.", + "A small white butterfly with black spots on its wings.", + "Small white butterfly on a flower.", + "White butterfly on a flower." + ], + "sulphur butterfly": [ + "A sulphur butterfly is a yellow butterfly with black markings on its wings.", + "A sulphur butterfly has wings that are yellow with black spots.", + "A sulphur butterfly is a yellow butterfly.", + "A sulphur butterfly is yellow with black markings on its wings.", + "Most sulphur butterflies are yellow, orange, or white, with black markings on their wings.", + "A sulphur butterfly is a yellow butterfly.", + "The sulphur butterfly is a small, yellow butterfly with black spots on its wings.", + "Sulphur butterflies are generally yellow or orange, with black markings on their wings.", + "A sulphur butterfly is a yellow butterfly with black spots on its wings.", + "A sulphur butterfly is a type of butterfly that is yellow in color.", + "A sulphur butterfly is a yellow butterfly.", + "A sulphur butterfly can be identified by its yellow wings.", + "There are many species of sulphur butterfly, so it is difficult to give a definitive answer.", + "The sulphur butterfly can be identified by its yellow wings with black spots.", + "A sulphur butterfly can be identified by its yellow wings with black margins and black spots.", + "The sulphur butterfly is a common butterfly that can be found in North America.", + "Sulphur butterflies can be identified by their yellow and black wing markings.", + "These butterflies are usually yellow or orange, with black spots on their wings.", + "There are many ways to identify a sulphur butterfly.", + "the colour of the wings is brown and the pattern on them is yellow.", + "A sulphur butterfly typically has yellow wings with black spots.", + "The sulphur butterfly is a bright yellow butterfly with black spots on its wings.", + "A sulphur butterfly has pale yellow wings with black spots.", + "The sulphur butterfly is a small yellow butterfly with black markings on its wings.", + "Sulphur butterflies are a bright yellow color with black spots on their wings.", + "A sulphur butterfly is a yellow butterfly.", + "A sulphur butterfly is primarily yellow with black markings on its wings.", + "There are over 500 species of sulphur butterflies, so they come in many colors and patterns.", + "There is no such thing as a sulphur butterfly.", + "The sulphur butterfly is yellow with black markings.", + "This image shows a sulphur butterfly with yellow wings and black markings.", + "The image is of a yellow and black butterfly with delicate wings.", + "A sulphur butterfly is a small, yellow butterfly with black markings on its wings.", + "A sulphur butterfly is a brightly colored butterfly with yellow wings.", + "A sulphur butterfly is a yellow butterfly with black spots on its wings.", + "A sulphur butterfly is a brightly coloured yellow butterfly.", + "The image is of a yellow and black sulphur butterfly on a flower.", + "The image is of a yellow and black butterfly with red spots on its wings.", + "This image from the internet shows a sulphur butterfly with striking yellow wings.", + "This image is of a blue and yellow sulphur butterfly perched on a yellow flower.", + "Sulphur Butterfly on a flower.", + "Sulfur Butterfly on a FlowerThis beautiful sulfur butterfly is enjoying a moment on a flower in the sun.", + "Sulphur Butterfly (Euripus nyctelius) on a flower in Meghalaya, India.", + " A sulphur butterfly enjoying a sunny day.", + "A sulphur butterfly flying in a field of flowers.", + "Sulphur butterflies are found in many different parts of the world.", + "Sulfur Butterflies are found in North and South America and are known for their vibrant yellow coloration.", + "A butterfly with yellow wings and black spots.", + "One of over 60 species of sulphur butterflies, this yellow and black butterfly is found in North and South America.", + "Sulphur butterfly on a flower." + ], + "gossamer-winged butterfly": [ + "Gossamer-winged butterflies have narrow, delicate wings with a span of 1 to 2 inches.", + "Gossamer-winged butterflies are small to medium-sized butterflies with delicate, narrow wings.", + "A gossamer-winged butterfly has thin, delicate wings with a network of veins.", + "A gossamer-winged butterfly has large, frail wings with a span of 1-1.", + "A gossamer-winged butterfly is a small, delicate butterfly with fragile, see-through wings.", + "The gossamer-winged butterfly is a small, delicate butterfly with iridescent wings.", + "A gossamer-winged butterfly looks like a small, delicate butterfly with iridescent wings.", + "A gossamer-winged butterfly is a small, fragile butterfly with delicate, translucent wings.", + "Gossamer-winged butterflies are small to medium-sized butterflies with long, narrow wings that are typically brightly colored.", + "A gossamer-winged butterfly has large, delicate wings.", + "A gossamer-winged butterfly is a type of butterfly that has translucent wings with a delicate, lacy appearance.", + "One way to identify a gossamer-winged butterfly is by its small size and delicate, transparent wings.", + "Gossamer-winged butterflies are usually smaller than average, with long, slender wings.", + "A gossamer-winged butterfly is a type of butterfly that has very thin, delicate wings.", + "You can identify a gossamer-winged butterfly by its small size, delicate wings, and bright colors.", + "Gossamer-winged butterflies are small, delicate-looking insects.", + "Gossamer-winged butterflies are delicate looking with small, slender bodies.", + "Gossamer-winged butterflies are medium-sized butterflies with narrow, pointy wings.", + "The gossamer-winged butterfly is a small to medium-sized butterfly with a wingspan of 5/8 to 3/4 inch.", + "The gossamer-winged butterfly is a small to medium-sized butterfly with delicate, translucent wings.", + "Gossamer-winged butterflies are small to medium-sized butterflies with thinly scaled wings.", + "The gossamer-winged butterfly is a delicate creature with wings that shimmer in the sunlight.", + "Gossamer-winged butterflies are small to medium-sized butterflies with delicate, thin wings.", + "The gossamer-winged butterfly has long, thin wings with a wingspan of 1.", + "A gossamer-winged butterfly has large, fragile wings with a pattern of small eyespots.", + "Gossamer-winged butterflies are small to medium-sized butterflies with thin, frail wings.", + "A gossamer-winged butterfly looks like a small, delicate butterfly with light-colored wings.", + "Gossamer-winged butterflies are small, delicate-looking insects.", + "The gossamer-winged butterfly is a delicate creature with iridescent wings.", + "Gossamer-winged butterflies are small and delicate, with wings that are covered in a thin layer of \"gossamer\" (or hair).", + "This image from the internet features a gossamer-winged butterfly perched atop a blade of grass.", + "The image is of a brightly-colored butterfly with very thin, delicate wings.", + "The image is of a gossamer-winged butterfly perched on a leaf.", + "This photo shows a gossamer-winged butterfly in extraordinary detail.", + "The image is of a gossamer-winged butterfly with its wings spread out.", + "The image is of a gossamer-winged butterfly on a white background.", + "The image is of a small, delicate butterfly with pale blue wings.", + "This image is of a gossamer-winged butterfly.", + "In the image, a gossamer-winged butterfly rests atop a green leaf.", + "This image from the internet shows a gossamer-winged butterfly with its wings spread open.", + "Gossamer-winged Butterfly on a FlowerThis beautiful butterfly is a gossamer-winged butterfly, and it is sitting on a flower.", + "A gossamer-winged butterfly rests on a flower in a field.", + "This beautiful butterfly is a gossamer-winged butterfly, native to North America.", + "A gossamer-winged butterfly feeding on nectar from a flower.", + "Gossamer-winged butterfly enjoying a summer day.", + "This gossamer-winged butterfly is captured mid-flight, showing off the delicate beauty of its wings.", + "This is a gossamer-winged butterfly, characterized by its delicate, filmy wings.", + "Gossamer-winged butterfly on a flower.", + "Gossamer-winged butterfly, family Lycaenidae.", + "Gossamer-winged butterflies are some of the most beautiful and delicate creatures in the world." + ], + "starfish": [ + "A starfish has a round body with five arms that come out from the center.", + "A starfish typically has five arms, although some species can have up to 40.", + "A starfish is a type of sea creature that has a star-shaped body.", + "A starfish usually has five arms, although some species have more.", + "A starfish is a small, hard-bodied creature that lives in the ocean.", + "A starfish is a.", + "Most starfish have five arms that extend from a central point, but some species have as many as 40 arms.", + "A starfish is a five-pointed sea creature with a hard shell.", + "A starfish is a marine invertebrate with a central disc and five arms, each lined with rows of tube feet.", + "A starfish is a marine animal that has a body that is shaped like a star.", + "A starfish can be identified by its arms, which are usually five in number.", + "A simple way to identify a starfish is by the number of arms it has.", + "A starfish can be identified by its five arms which radiate from a central point.", + "A starfish can be identified by its unique shape.", + "A starfish can be identified by its five arms, or rays, which extend from a central disk.", + "The easiest way to identify a starfish is by the number of arms it has.", + "A starfish has five arms and is usually red, orange, or yellow.", + "The best way to identify a starfish is by itsFive arms radiating from a central disk --OR--A star-shaped echinoderm with five or more arms radiating from a central disk.", + "The best way to identify a starfish is by its five-pointed shape.", + "A starfish is a echinoderm that has a central disk and five or more arms radiating from the disk.", + "A starfish is a sea creature that has a star-shaped body with five arms.", + "A starfish is a sea creature that has a star-shaped body with five arms.", + "A starfish is a marine invertebrate animal with the appearance of a star.", + "A starfish typically has five arms and is a light brown color.", + "A starfish is a pentaradial symmetrical echinoderm with tube feet.", + "A starfish looks like a star.", + "A starfish typically has five arms, although some species can have more.", + "A starfish typically has five arms, although some species can have more or fewer.", + "Most starfish look like they have five arms coming out of a central point, but some species can have anywhere from four to over ten arms.", + "A starfish is a type of sea creature that typically has a round body with five arms that come off of the central body.", + "One image from the internet of a starfish shows a large orange starfish on a coral reef.", + "This image from the internet is of a sea star, or starfish.", + "In the image, a starfish is pictured against a light blue background.", + "The image from the internet of a starfish shows a starfish with a textured body and five arms.", + "The image is of a orange starfish on a coral reef.", + "The image is of a starfish on a white background.", + "the image is of a starfish on a white background.", + "A starfish is a marine animal with a radial symmetry.", + "I found an image of a starfish on the internet that shows a close up of the animal.", + "The image shows a close up of a starfish on a sandy beach.", + " Orange starfish on a coral reefA caption of an image of a butterfly:A brightly colored butterfly flits among the flowers in a lush garden.", + "A starfish rests on a bed of kelp.", + " A starfish or sea star is a echinoderm with pentaradial symmetryThis beautiful starfish is a great example of the pentaradial symmetry found in sea stars!.", + "A starfish or sea star is a echinoderm of the class Asteroidea.", + "The five-armed starfish is a common sight on the West Coast of North America.", + " A starfish or sea star is a echinoderm of the class Asteroidea.", + "This is a starfish.", + " A starfish, or sea star, is a echinoderm with five or more \"arms\" that lives on the sea floor.", + "A starfish on a coral reefA starfish is a type of sea creature that has a star-shaped body.", + "A blue starfish on a white background." + ], + "sea urchin": [ + "A sea urchin looks like a round, spiny ball.", + "A sea urchin is a small, spiny creature that lives in the ocean.", + "A sea urchin is a small, spiny creature that lives in the ocean.", + "A sea urchin is a small, spiny creature that lives in the ocean.", + "A sea urchin looks like a spiny, globular creature.", + "A sea urchin is a small, spiny, globular creature that lives in the ocean.", + "A sea urchin is a small, spiny animal that lives in the ocean.", + "Sea urchins are small, spiny, globe-shaped animals that live in the ocean.", + "A sea urchin is a small, spiny, globular creature that lives in the ocean.", + "A sea urchin is small, spherical creature with a hard shell covered in thin, sharp spines.", + "The skeleton of a sea urchin is spherical in shape and made up of many small plates that are arranged in a pattern of five double rows.", + "Each sea urchin has five rows of tiny sharp spines coming out of its body.", + "Sea urchins are small, spiny creatures that live on the bottom of the ocean.", + "A sea urchin is a small, spiny, globular animal that is found in the shallow waters of the ocean.", + "A sea urchin has a hard shell that is covered in spikes.", + "The easiest way to identify a sea urchin is by its spines.", + "A sea urchin is a small, spiny creature that often lives in the ocean.", + "A sea urchin is a small, spiny creature that lives in the ocean.", + "A sea urchin is small, spiky, and round.", + "Sea urchins are small, spiny, globular animals that are commonly found in shallow waters.", + "A sea urchin is a small, spiky creature that lives in the ocean.", + "A sea urchin is a small, spiny, egg-shaped animal that lives in the ocean.", + "A sea urchin looks like a small, spiny ball.", + "A sea urchin is a small, spiny, globe-shaped marine invertebrate that is covered with sharp, needle-like spines.", + "A sea urchin looks like a small, spiky creature.", + "A sea urchin looks like a small, spiny sphere.", + "A sea urchin is a small, round creature that is covered in spikes.", + "A sea urchin is a small, spiny, globular animal that is found in the ocean.", + "A sea urchin is a small, spiny animal that lives in the ocean.", + "A sea urchin looks like a sphere with short, spiky projections sticking out of it.", + " underwater, close up of a purple and green sea urchin with spines.", + "The image from the internet of a sea urchin shows a small, spiny creature with a black and white body.", + "This image from the internet shows a sea urchin against a black background.", + "In this image, a sea urchin is sitting on a bed of kelp.", + "In this image, a sea urchin is sitting on a bed of sand in shallow water.", + "The image is of a deep purple sea urchin with long, spindly legs.", + "The image is of a sea urchin on a white background.", + "The image is of a purple sea urchin on a coral reef.", + "In the image, a sea urchin is sitting on a piece of coral in a shallow pool of water.", + "The image is of a small, spiky, brown creature with its mouth in the center of its body.", + "A sea urchin on the coast of California.", + "A close-up of a spiny sea urchin, showing its purple and green coloration.", + "\nA close up of a sea urchin, revealing its spines and intricate pink patterning.", + "A sea urchin sitting on the ocean floor.", + "A sea urchin with its spines out.", + "A close-up of a sea urchin, with its spines and mouth clearly visible.", + "A sea urchin, also known as a sea hedgehog, is a small, spiny creature that lives in the ocean.", + "A sea urchin is a spiny, spherical creature that lives in the ocean.", + "A closeup of a sea urchin, showing its spines.", + "A sea urchin, an echinoderm with a spiny outer shell." + ], + "sea cucumber": [ + "A sea cucumber is reddish-brown, elongated, and has a leathery skin.", + "A sea cucumber is a long, tube-shaped animal that lives in the ocean.", + "A sea cucumber is a soft-bodied, torpedo-shaped animal that is found in the world's oceans.", + "A sea cucumber is a soft-bodied, marine invertebrate that looks like a cucumber.", + "A sea cucumber is a type of marine animal that resembles a cucumber.", + "A sea cucumber looks like an elongated, cucumber-shaped marine creature.", + "Sea cucumbers are echinoderms from the class Holothuroidea.", + "A sea cucumber is a flattened, elongated, sausage-shaped marine animal that is part of the Holothuroidea class.", + "A sea cucumber is a type of marine animal that resembles a cucumber.", + "A sea cucumber looks like a long, dark, and thin creature.", + "By its long, tubular shape and its many, small, feet-like projections.", + "A sea cucumber is a marine invertebrate that has a soft body and is shaped like a cucumber.", + "If you find a long, tube-like creature with a soft body and no visible skeleton, chances are you have found a sea cucumber.", + "They are long, thin, and have the appearance of a cucumber.", + "One way to identify a sea cucumber is by its long, tubular shape.", + "By its cucumber-like shape.", + "A sea cucumber can be identified by its elongated shape and leathery skin.", + "Sea cucumbers are soft, cylindrical animals that look like cucumbers.", + "A sea cucumber is a small, soft-bodied creature that lives in salt water.", + "A sea cucumber can be identified by its elongated, cylindrical body and its leathery skin.", + "The vast majority of sea cucumbers have a soft, cylindrical body with leathery skin and an elongated, nozzle-like oral opening at one end.", + "A sea cucumber looks like a long, dark, slimy, cucumber-shaped creature.", + "a sea cucumber is long and thin, and often resembles a cucumber or a worm.", + "Sea cucumbers are long, cylindrical animals that are related to sea stars and sea urchins.", + "A sea cucumber looks like a tubular, segmented creature with a leathery skin.", + "Sea cucumbers are long and thin, with a leathery skin.", + "A sea cucumber looks like a long, tubular shape with wrinkled skin.", + "A sea cucumber is a marine invertebrate that has a sausage-like shape and a leathery skin.", + "A sea cucumber can look like a long, thin, brown, cucumber-shaped creature with a leathery skin.", + "A sea cucumber is a marine invertebrate that is oval in shape and has a leathery skin.", + "This image is of a sea cucumber on the ocean floor.", + "A sea cucumber is a long, tubular creature with a leathery skin.", + "This image depicts a sea cucumber on a white background.", + "The image is of a brown and white sea cucumber on a light blue background.", + "A sea cucumber is a marine animal with a cucumber-like body.", + "An image of a sea cucumber from the internet shows a long, thin, brown creature with small, dark spots.", + "In this image, a sea cucumber is shown in all its glory, floating serenely in the water.", + "In the image, a sea cucumber is shown in close-up, with its long, thin body and small, brownish-black spots.", + "This image is of a sea cucumber called a \"sand dollar\" or \"sea biscuit\".", + "The image is of a long, thin, brown sea cucumber with small, black eyes.", + "A sea cucumber, or Holothuroidea, is a marine invertebrate that is related to starfish and sea urchins.", + "This is a picture of a sea cucumber.", + "A sea cucumber, or holothurian, is a marine invertebrate that has a long, cucumber-like body.", + " A sea cucumber in the deep blue ocean.", + "A sea cucumber floating in the water.", + "Sea cucumbers are a type of marine invertebrate that are closely related to sea urchins and sand dollars.", + "A sea cucumber floats in the water, its long, tubular body rippling in the current.", + "A sea cucumber feeding on algae.", + "A common sea cucumber found in the waters off the coast of California.", + "A sea cucumber lounge in the Caribbean Sea." + ], + "cottontail rabbit": [ + "A cottontail rabbit has a white tail that is fluffy and looks like a cotton ball.", + "A cottontail rabbit has a fluffy white tail and brown fur.", + "Cottontail rabbits have brown fur on their top half and white fur on their bottom half.", + "A cottontail rabbit is a small, brown rabbit with a white tail.", + "A cottontail rabbit is a small, brown rabbit with a white tail that looks like a cotton ball.", + "A cottontail rabbit is a small, brown rabbit that has a fluffy, white tail.", + "Cottontail rabbits are brown or gray on top, with a white belly.", + "A cottontail rabbit is a small mammalian creature that has a brown and white fur coat.", + "A cottontail rabbit is a smaller rabbit with brown fur and a white tail.", + "A cottontail rabbit is a small rabbit with a short, fluffy tail that looks like a cotton ball.", + "The easiest way to identify a cottontail rabbit is by its large, fluffy tail that is triangle-shaped and has a white underside.", + "Cottontail rabbits are relatively small animals with brown fur on their backs and white fur on their bellies.", + "Cottontail rabbits haverounded tails that are covered in white fur.", + "The easiest way to identify a cottontail rabbit is by its tail.", + "Cottontail rabbits have long ears, short legs, and a fluffy white tail.", + "The coat of a cottontail rabbit is reddish brown on the upper body and white on the underside.", + "There are several ways to identify a cottontail rabbit.", + "A cottontail rabbit can be identified by its brown fur, long hind legs, and large ears.", + "The easiest way to identify a cottontail rabbit is by its tail.", + "The cottontail rabbit is a medium-sized rabbit with distinctive long ears, and a short, fluffy tail with a white underside.", + "A cottontail rabbit has a brown body with a white underside and a brown and white tail.", + "A cottontail rabbit has a brownish coat with a white underside and a fluffy white tail.", + "A cottontail rabbit is a small mammal with short ears, big hind legs, and a fluffy white tail.", + "A cottontail rabbit has a brown or gray body with a white underbelly and tail.", + "A cottontail rabbit is a small, dark-colored rabbit with a fluffy tail that resembles a cotton ball.", + "Cottontail rabbits have long, white tails that are about the same length as their bodies.", + "A cottontail rabbit typically has brown fur, with a white \"cotton ball\" tail.", + "A cottontail rabbit is a small, gray-brown rabbit with a white fuzzy tail.", + "A cottontail rabbit has long ears, a short tail, and long legs.", + "A cottontail rabbit has a coat of reddish-brown fur on its back and white fur on its belly.", + "The image is of a cute, brown and white cottontail rabbit.", + "The image is of a brown and white rabbit sitting in a green field.", + "In the image, the cottontail rabbit is sitting on its hind legs in a field of tall grass.", + "The image is of a brown cottontail rabbit crouching in a field of tall grass.", + "In the image, the cottontail rabbit is brown and white with long ears and a short tail.", + "In the image, the cottontail rabbit is brown and white with long ears.", + "In the image, the cottontail rabbit is sitting on the ground in a grassy field.", + "A cottontail rabbit is a small mammal with long ears and a short tail.", + "The image is of a brown and white cottontail rabbit.", + "The image is of a cute little cottontail rabbit sitting in a garden.", + "A cottontail rabbit in the Spring.", + "A cottontail rabbit in its natural habitat.", + "A cottontail rabbit in its natural habitat.", + "A cottontail rabbit hops through a field of tall grass.", + "The cottontail rabbit is a species of rabbit that is found in North and South America.", + "This cute cottontail rabbit is foraging for food in its natural habitat.", + "A cottontail rabbit hops through a field of tall grass.", + "A cottontail rabbit nibbling on some greens.", + "A cottontail rabbit hops through a field of tall grass.", + "Cottontail rabbit announces the arrival of Spring." + ], + "hare": [ + "A hare looks like a furry creature with long ears.", + "Hares have long ears, long hind legs, and brown fur.", + "Hares have longer hind legs than other rabbits, allowing them to run quickly.", + "A hare is a long-eared mammal that can reach up to 2 feet in length.", + "A hare is a mammal with long ears, long legs, and brown fur.", + "A hare is a type of mammal that has long ears, long hind legs, and brown fur.", + "Larger than a rabbit with longer legs, a hare is a timid creature that can be found in North America, Asia, and Europe.", + "A hare is a long-eared mammal with powerful hind legs.", + "A hare is a brown or white mammal with long ears and legs.", + "Hares are typically larger and have longer ears than rabbits.", + "Hares are generally larger than rabbits, with longer hind legs and wider nostrils.", + "A hare is a terrestrial mammal that belongs to the family Leporidae.", + "A hare is a mammal with long hind legs that enable it to run quickly.", + "Hares are generally larger than rabbits and have longer hind legs.", + "A hare is a mammal that belongs to the family Leporidae.", + "A hare can be identified by it's long ears, hind legs, and soft fur.", + "Hares are members of the family Leporidae and are similar to rabbits.", + "Hares can be distinguished from rabbits by their larger size, longer ears, and longer hind legs.", + "Hares are generally larger and have longer hind legs than rabbits.", + "Hares are larger than rabbits, and they have longer hind legs.", + "A hare is a rabbit-like mammal with long hind legs that helps it run fast.", + "A hare is a mammal with long ears and long hind legs.", + "A hare is a mammal with long ears and powerful hind legs.", + " A hare looks like a rabbit, but is usually larger and has longer ears.", + "A hare is similar to a rabbit, but it is larger and has longer legs.", + "The hare is a long-legged mammal with big ears.", + "A hare is a mammal with long ears, long hind legs, and a short tail.", + "A hare is a mammal with long hind legs that allow it to run quickly.", + "Hares are typically brown or gray with long ears and short legs.", + "A hare potential looks like a large rabbit with longer legs and ears.", + "The image is of a hare in a field, with long ears and a brown coat.", + "This image is of a hare in a field.", + "In the image, a hare is pictured from above, looking down.", + "In this image, a hare is pictured in a grassy field with low brush.", + "It's an image of a hare running through a field of tall grass.", + "The image is of a hare in a field.", + "This image is of a hare in a field.", + "A hare is a Doppelganger.", + "In the image, the hare is running through a field of tall grass.", + "In the image, a hare is standing in a field of tall grass.", + "A wild hare in its natural habitat.", + "A hare in motion, caught in mid-leap.", + "The hare is an important symbol in many cultures and has been associated with speed, cleverness, and luck.", + "This is a hare.", + " A hare looking over its shoulder.", + "The hare is a popular symbol of fertility, due to its high reproductive rate.", + "Hare in a field of flowers.", + "A hare taking a nap in the sun.", + "A hare in a field of tall grass.", + "A hare pictured in a field." + ], + "Angora rabbit": [ + "An Angora rabbit is a breed of rabbit that was originally bred in the Ottoman Empire.", + "An Angora rabbit is a small, delicate-boned rabbit with a long, fluffy coat.", + "An Angora rabbit looks like a fluffy white rabbit.", + "An Angora rabbit is a type of domestic rabbit that is bred for its long, soft wool.", + "An Angora rabbit is a small, delicate-boned rabbit with straight ears and a long, fluffy coat.", + "An Angora rabbit is a breed of domestic rabbit that is characterized by its long, fluffy fur.", + "The Angora rabbit is a type of domestic rabbit that is bred for its long, fluffy fur.", + "An Angora rabbit has long, soft fur and is often white.", + "An Angora rabbit is a white rabbit with extremely long fur.", + "Angora rabbits are a breed of rabbit that are bred for their long, soft fur.", + "The Angora rabbit is a domesticated rabbit that is bred for its thick, lustrous fur.", + "An Angora rabbit has a long, soft coat that is often used to make sweaters and other garments.", + "The Angora rabbit has long, soft fur that is often used to make sweaters and other clothing.", + "An Angora rabbit can be identified by its thick, soft fur.", + "Angora rabbits can be identified by their distinctive long, fluffy fur.", + "Angora rabbits are characterized by their extremely long, soft fur.", + "An Angora rabbit has very long, soft fur.", + "An Angora rabbit has long, soft fur.", + "An Angora rabbit can be identified by its long, silky fur, which is often used to make wool.", + "An Angora rabbit has long, fine fur that is soft to the touch.", + "Angora rabbits are small, gentle rabbits with long, dense fur.", + "An Angora rabbit is a type of domestic rabbit that is bred for its long, soft fur.", + "An Angora rabbit has soft, long, white fur.", + "Angora rabbits are small, delicate-boned animals that have a coat of fibers that are several inches long.", + "angora rabbits are cute, fluffy creatures that look like a cross between a teddy bear and a bunny rabbit.", + "This is a difficult question because there are so many different types of Angora rabbits.", + "Angora rabbits are recognizeable by their extremely long, soft fur.", + "Angora rabbits are white and have long, soft fur.", + "An Angora rabbit is a small, fluffy rabbit with long, soft fur.", + "An Angora rabbit has very long, soft fur that covers its entire body, including its face and ears.", + "The image is of a small, white rabbit with long, fluffy ears.", + "The image is of an Angora rabbit with white fur.", + "The image from the internet is of an Angora rabbit with long, fluffy fur.", + "The image shows a close-up of an Angora rabbit with long, fluffy fur.", + "The image is of an Angora rabbit with long, soft, white fur.", + "An Angora rabbit is a type of rabbit that has very long, soft fur.", + "The image shows a white Angora rabbit with long, fluffy fur.", + "The image shows an Angora rabbit with long, white fur.", + "The image is of an Angora rabbit with long, white fur.", + "The image is of an Angora rabbit with long, white fur.", + "This is an Angora rabbit.", + "This is an Angora rabbit.", + "Angora rabbits are a popular pet due to their docile and affectionate nature.", + "Photo of an Angora rabbit.", + "This angora rabbit has very long, soft fur.", + "Angora rabbits are a popular breed of pet rabbits known for their long, soft fur.", + "An Angora rabbit peeking out from beneath a pile of hay.", + "This is an Angora rabbit.", + " An Angora rabbit groomer brushes the fur of a white Angora rabbit.", + "This is an Angora rabbit." + ], + "hamster": [ + "A hamster is a small rodent with a short tail, hairy ears, and stubbly fur.", + "A hamster is a small, furry mammal with a short tail, small ears, and large, cheek pouches.", + "A hamster is a small, fur-covered rodent with a short tail.", + "A hamster is a small, rodent-like animal that has a furry body, a short tail, and small, triangular ears.", + "Hamsters range in size from approximately 2 to 14 inches long, depending on the species, and have thick, furry coats.", + "A hamster is a small rodent with a short tail, thick fur, and small ears.", + "A hamster is a small, rodent-like animal with a short tail, furry body, and small, whiskers.", + "A hamster is a small, rodent-like animal with a furry body, short legs, and a long tail.", + "A hamster is a small, cute, furry animal that typically has a brown and white fur coat.", + "A hamster has a small body, short legs, and a short tail.", + "Hamsters are small, rodent-like animals with furry bodies, stubby tails, and large, pouched cheeks.", + "A hamster's coat is typically soft and has a dense undercoat.", + "Hamsters have a furry body, small ears, and a short tail.", + "Hamsters can be identified by their small size, furry coats, and short tails.", + "Hamsters are typically identified by their small size, furry coats, and shorter tails in comparison to other rodents.", + "The best way to identify a hamster is by its small, round body and short legs.", + "The best way to identify a hamster is by its small, round body and short legs.", + "You can identify a hamster by their small size, cute features, and by the way they move.", + "A hamster is a furry, small, rodent-like animal.", + "A hamster can be identified by its small size, furry body, and short tail.", + "A hamster is a small, furry rodent.", + "A hamster is a small, fur-covered mammal with a short tail.", + "A hamster is a small, furry creature with a short tail.", + "A hamster has a short body, small head, and short legs.", + "A hamster looks like a small, plump rodent with a short tail, small ears, and large, furry feet.", + "A hamster is a small, furry mammal with a short tail.", + "A hamster is a small rodent with a short nose, furry ears, and a short tail.", + "A hamster is a small, rodent-like animal.", + "A hamster is a small, furry rodent that has a short tail, small ears, and chubby cheeks.", + "Small, round body\nLong, hairy tail\nFour short legs\nTwo large, front teeth.", + "This image is of a hamster in a cage.", + "In the image, there is a hamster in a wire cage.", + "The image is of a brown and white hamster running on a wheel.", + "The image is of a small, brown and white hamster sitting in the palm of a human hand.", + "The hamster is small and brown with black stripes.", + "The image is of a small brown and white hamster eating a piece of food from a human hand.", + "A hamster is a small, furry rodent that is often kept as a pet.", + "The image is of a small hamster sitting upright on its hind legs.", + "The image is of a hamster looking directly into the camera.", + "The image is of a hamster in a wire cage.", + "Image of a hamster eating a carrot.", + "This hamster is so cute and cuddly!.", + "The cutest hamster I've ever seen!.", + "This hamster is eating a delicious carrot!.", + " A cute hamster eating a piece of apple.", + "Sassy the hamster enjoying her new wheel.", + "Cute hamster eating a carrot.", + " A hamster on a wheelA hamster on a wheel is a common image of a hamster.", + "A break from hamster wheel life.", + "Image of a hamster with a caption that reads \"A cute little hamster." + ], + "porcupine": [ + "A porcupine is a rodent with a coat of sharp spines, or quills, that protect it from predators.", + "A porcupine is a small, spiny mammal with sharp quills on its back.", + "A porcupine is a rodent with a coat of sharp spines, or quills, covering its back, sides, and tail.", + "A porcupine is a rodent with a coat of sharp spines, or quills, on its back.", + "A porcupine is a rodent with black and white fur.", + "A porcupine is a large rodent with a brown, black, or white coat.", + "A porcupine is a mammal with a coat of sharp spines, or quills, on its back.", + "A porcupine is a small, rodent-like animal covered in quills.", + "A porcupine is a rodent with two main features: quills and prehensile tails.", + "A porcupine is a rodent with a coat of sharp quills.", + "A porcupine is an animal that has quills on its back.", + "The best way to identify a porcupine is by its quills.", + "A porcupine is a rodent with a coat of sharp quills.", + " Porcupines are rodent animals with quills all over their back, sides, and tail.", + "Porcupines are rodents with long, sharp quills.", + "Porcupines are medium-sized rodents with a coat of sharp quills.", + "Porcupines are easily recognizable by their quills, which are actually modified hairs.", + "Porcupines are large rodents with black and white quills all over their body.", + "The easiest way to identify a porcupine is by its quills.", + "Look for an animal with a stout body, short legs, and a long, rat-like tail.", + "Porcupines typically have dark brown or black fur, and they have sharp quills sticking out of their back.", + "Porcupines have a coat of sharp quills that cover their back, sides, and tail.", + "A porcupine is a rodent with a coat of sharp spines.", + "A porcupine is a spiny mammal with a stocky body.", + "A porcupine looks like a mammal with a coat of sharp quills.", + "Porcupines are rodents with short legs and sharp quills covering their backs and sides.", + "A porcupine is a rodent with a coat of sharp quills.", + "A porcupine looks like a small rodent with a coat of sharp quills.", + "A porcupine is a rodent with a coat of sharp spines.", + "A porcupine has a round body and short legs.", + "In the image, a porcupine is perched atop a tree branch.", + "In the image, a porcupine is sitting on a tree branch.", + "The picture is of a porcupine walking on a fallen tree in a forest.", + "An image of a porcupine from the internet shows a small, brown and white creature with a long, sharp nose.", + "A porcupine is a rodent with a coat of sharp quills.", + "The image is of a small, brown and white porcupine sitting on a log.", + "The image is of a porcupine sitting on a tree branch.", + "In this image, a porcupine is sitting on a tree branch.", + "In the image, a porcupine is standing on its hind legs in front of a brown background.", + "A porcupine is an animal with a coat of quills.", + "Porcupine on a tree branch.", + " A porcupine eating a carrot.", + " \"A North American porcupine enjoying a meal of bark.", + "A close up of a porcupine.", + " A close up of a porcupine in the wild.", + " A North American porcupine, characterized by its sharp quills, climbs a tree.", + "A North American porcupine (Erethizon dorsatum) in its natural habitat.", + "A porcupine is a rodent with a coat of sharp spines.", + " A North American porcupine (Erethizon dorsatum) eating a branch.", + " A close-up of a porcupine's face, its quills sharp and bristling." + ], + "fox squirrel": [ + "A fox squirrel is a large squirrel with reddish-brown fur and a long, bushy tail.", + "The fox squirrel is a large tree squirrel with reddish-brown back, pale sides, and a long, fluffy tail.", + "A fox squirrel is a medium sized squirrel with reddish brown fur on its back and a white or cream colored belly.", + "A fox squirrel has rusty brown fur on its back and sides, with a paler underside.", + "A fox squirrel is a species of squirrel that is native to North America.", + "The fox squirrel is the largest species of squirrel in North America.", + "Fox squirrels are usually red-brown or orange-brown on the back and sides, with a paler belly.", + "A fox squirrel is a large, reddish-gray squirrel with a bushy tail.", + "A fox squirrel is typically reddish-gray above and whitish below, with a long, bushy tail.", + "Fox squirrels are a reddish brown color on their back and sides with a white or grey belly.", + " Fox squirrels are relatively easy to identify.", + "Fox squirrels are the largest tree squirrel.", + "A fox squirrel is a red or orange-colored squirrel with a long, fluffy tail.", + "Fox squirrels are a little larger than your average squirrel.", + "The easiest way to identify a fox squirrel is by its size.", + "Fox squirrels are one of the largest species of squirrels in North America.", + "A fox squirrel typically has orange-brown fur on its back and sides, with a light-colored belly.", + "Fox squirrels are reddish brown above and yellowish white below, with a white line running down the center of the back.", + "The easiest way to identify a fox squirrel is by its large size; an adult fox squirrel can be twice the size of a gray squirrel.", + "Some specific characteristics that can help identify a fox squirrel are its overall size (larger than a chipmunk but smaller than a gray squirrel), reddish brown fur on its back with a white or grayish belly, large bushy tail.", + "A fox squirrel is a species of squirrel that is native to North America.", + "A fox squirrel is a type of squirrel that is usually red or reddish brown.", + "The fox squirrel, also known as the St.", + "A fox squirrel is a type of squirrel with red fur.", + "Fox squirrels are a reddish brown color on their back and head, with a grayish white belly.", + "Textbook fox squirrels are red-brown above and white below, with a long, fluffy tail.", + "A fox squirrel is a type of squirrel that is common in North America.", + "The fox squirrel has red-brown fur on its upper body and white fur on its belly.", + "The fox squirrel is the largest species of tree squirrel in North America.", + "A fox squirrel is a squirrel with reddish brown fur and a long, bushy tail.", + "Theimage is of a fox squirrel on a tree branch.", + "A fox squirrel is a largish, reddish-brown squirrel with a long tail and big, pointy ears.", + "In the image, a fox squirrel is perched atop a stump in a forest.", + "The image is of a large, reddish-brown squirrel with a long, bushy tail.", + "The image is of a fox squirrel perched on a tree branch.", + "In the image, a fox squirrel is perched atop a tree branch, looking out towards the viewer.", + "This image is of a fox squirrel perched atop a tree branch.", + "In the image, a fox squirrel is perched atop a tree branch, looking towards the viewer.", + "The image is of a reddish brown fox squirrel perched atop a tree branch.", + "In the image, a fox squirrel is perched atop a branch, looking to the left of the frame.", + "\"A fox squirrel forages for nuts.", + " The fox squirrel (Sciurus niger) is the largest member of the squirrel family, typically weighing between 250 and 600 grams.", + "A fox squirrel enjoying a nut.", + "If you're lucky enough to spot a fox squirrel, you'll be able to tell it apart from other squirrels by its rusty-red body and bushy tail.", + " A fox squirrel cautiously peers over a log, looking for any sign of danger.", + "Fox squirrels are the largest species of tree squirrel in North America.", + " The fox squirrel is the largest member of the squirrel family.", + " The fox squirrel is the largest species of tree squirrel native to North America.", + " A fox squirrel in a suburban backyard, looking for food in the snow.", + "A fox squirrel seen in North America." + ], + "marmot": [ + "A marmot is a squirrel-like animal with a protruding belly.", + "Marmots are plump, ground squirrel-like rodents with short legs and stout bodies.", + "Marmots are large rodents, typically weighing between 6 and 9 kg (13 and 20 lb).", + "There are many types of marmots, but they generally have thick fur, short legs, and rounded ears.", + "A marmot is a large, burrowing squirrel with a bushy tail.", + "A marmot popularly refers to any member of the squirrel family including groundhogs, chipmunks, and woodchucks.", + "Marmots are large squirrels with short legs and a bushy tail.", + "Marmots are large rodents with short legs, rounded heads and small ears.", + "Marmots are small to medium-sized ground squirrels.", + "A marmot is a heavy-bodied ground squirrel with a stout tail.", + "Marmots are large ground squirrels that can be distinguished by their short legs, plump body, and long, furry tail.", + "Marmots are large, ground squirrels in the genus Marmota, with 14 extant species.", + "Marmots are relatively large ground squirrels.", + "The best way to identify a marmot is by its burrow.", + "The easiest way to identify a marmot is by its whistle.", + "Marmots aremembers of the squirrel family, and look like overgrown groundhogs.", + "Marmots are stocky rodents with small ears, short legs, and chubby bodies.", + "The easiest way to identify a marmot is by its large size and bushy tail.", + "Marmots are large squirrel-like animals with short legs and bushy tails.", + "The easiest way to identify a marmot is by its call, which sounds like a sharp whistle.", + "A marmot is a type of ground squirrel.", + "A golden-mantled ground squirrel, or \"marmot,\" looks like a plump, fuzzy-furred ground squirrel with a broad, dark stripe running down its back and a light-colored stripe on each side.", + "A marmot is a small, chubby rodent with a short tail, small ears, and dark brown fur.", + "A marmot is a large squirrel-like animal with short legs, a short tail, and furry ears.", + "A typical marmot has a stout body, short legs, and large head with round ears.", + "A marmot is a small mammal that looks like a cross between a squirrel and a guinea pig.", + "Marmots are large ground squirrels with heavy bodies and short, furry tails.", + "Marmots are large, heavy-bodied squirrels with short legs and small ears.", + "Marmots are small, chubby rodents with short legs, small ears, and round bodies.", + "Marmots are members of the squirrel family, and they look like large, heavy-set squirrels.", + "A marmot is a large, furry rodent with small ears and a short tail.", + "There is a image on the internet of a marmot that is brown and white.", + "The image is of a marmot on a rock in a mountain range.", + "The image is of a small, brown and white marmot with a long body and short legs, perched atop a large rock.", + "This image shows a marmot standing on a rocky outcropping.", + "The image is of a marmot sitting on a rock in a mountain range.", + "A marmot is a rodents typically found in mountainous regions.", + "The image is of a marmot on a large rock in a mountainous area.", + "This image is of a marmot perched on a rock in what looks to be a mountainous region.", + "The image is of a marmot with its head poking out of a hole in a mountainside.", + "A marmot sunbathes on a rock in the Sierra Nevada mountains.", + "A marmot perched on a rock, looking out over a valley.", + " A marmot eating a flower.", + " look at this chubby little guy!He's so cute and chubby!.", + "Amar, the marmot, enjoying the sunny day.", + "A close up of a marmot's face.", + "A marmot peeks its head out from under a rock.", + "A marmot sunbathes on a rock in the alpine meadow.", + "Marmot in the wild.", + "A marmot sits in a meadow near a mountain stream, basking in the warm summer sun." + ], + "beaver": [ + "A beaver is a large, semiaquatic rodent.", + "A beaver is a large, semi-aquatic rodent.", + "A beaver is a large, brown-furred rodent with a long tail.", + "Beavers are a type of rodent with large teeth.", + "A beaver is a furry, brown rodent.", + "A beaver has a large, flat tail and webbed hind feet.", + "A beaver is a large rodent with dark brown fur.", + "A beaver has a large, flat tail, small ears, and small eyes.", + "Beavers have big, flat tails and webbed, clawed feet.", + "Beavers are large, dark brown rodents with small eyes and wide, large bodies.", + "A beaver is a large, semi-aquatic rodent with a large, flat tail and webbed hind feet.", + "A beaver is a rodent with a large, flat tail and large incisors.", + "Beavers have a dark brown fur, a large flat tail, and webbed hind feet.", + "A beaver's tail is flat and scaly.", + "The best way to identify a beaver is by its tail.", + "The easiest way to identify a beaver is by its tail.", + "Beavers can be identified by their large, flat tails, large incisors, and webbed hind feet.", + "You can identify a beaver by its large, flat tail and its webbed hind feet.", + "A beaver is a large, flat-tailed, nocturnal rodent that builds dams and lodges in streams.", + "Beavers are the largest rodent in North America and can be identified by their round, flat tails and webbed hind feet.", + "A beaver looks like a brown rodent with a long flat tail.", + "A beaver is an aquatic rodent with a large, flat tail and large incisors that grow continuously.", + "A beaver is a large rodent with a flat tail.", + "A beaver is a large, brown, semiaquatic rodent.", + "Beavers vary in size, but typically they are about 2 to 3 feet long and weigh around 20 to 30 pounds.", + "A beaver looks like a beaver.", + "Beavers are rat-like animals with long tails and brown fur.", + "A Canadian beaver has thick, dark brown fur, and a wide, flat, scaly tail.", + "A beaver is a furry, brown mammal that is about the size of a small dog.", + "A beaver is actually a rodent, the second-largest in the world.", + "This image is of a beaver swimming in a pond.", + "There is an image from the internet of a beaver that is standing on its hind legs.", + "This image is of a beaver swimming in a river with its large, flat tail sticking out behind it.", + "This beaver is swimming in a river with its long, flat tail trailing behind it.", + "An image of a beaver from the internet is a large, brown, rodent-like creature with a flat tail.", + "I found an image of a beaver swimming in a river.", + "The image is of a beaver swimming in a river with its tail visible above the water.", + "A beaver is a large, rodent-like animal with a flat tail and brown fur.", + "A beaver is a large, brown, aquatic rodent with a flat, scaly tail.", + "The beaver is a large rodent with reddish-brown fur.", + "A beaver chewing on a stick.", + "A beaver gnaws on a tree in a river.", + "This beaver is gnawing on a tree.", + " A beaver in its natural habitat.", + "A beaver is a large, rodent-like animal with a brown fur and a large, flat tail.", + " A beaver gnawing on a fallen treeThis beaver is busy at work gnawing on a fallen tree.", + " a beaver caught in a trapA beaver caught in a trap.", + " A beaver chewing on a tree.", + "This is a beaver.", + "A beaver chewing on a tree branch." + ], + "guinea pig": [ + "A guinea pig is a small mammal that has a round body, short legs, and no tail.", + "A guinea pig is a small mammal that has a rounded body, short legs, and no tail.", + "Guinea pigs have short fur that is usually brown and white.", + "Guinea pigs have short, stocky bodies with plump fur.", + "A guinea pig is a small rodent with a short body, small head, long legs, and no tail.", + "A guinea pig is a small rodent that has a hairy coat and short legs.", + "A guinea pig has a short barrel-shaped body, small head with large eyes, and small ears.", + "A guinea pig is a small rodent with a round body, short legs, and no tail.", + "A guinea pig is a small rodent with a short body, round head, and short legs.", + "Guinea pigs have stout bodies with short legs.", + "A guinea pig can be identified by its short, round body; small, squished face; and large, round ears.", + "The best way to identify a guinea pig is by its size.", + "The best way to identify a guinea pig is by its size and shape.", + "There are several ways to identify a guinea pig.", + "There are several ways to identify a guinea pig.", + "A guinea pig has short hair that is usually light brown, red, or black.", + "A guinea pig is a small mammal with a short body, large head, and round ears.", + "A guinea pig is a small rodent with a short snout and legs.", + "The easiest way to identify a guinea pig is by its physical characteristics.", + "The best way to identify a guinea pig is by its size, color, and coat type.", + "A guinea pig looks like a small furry rodent with a short tail.", + "A guinea pig looks like a small, furry rodent with a short tail.", + "A guinea pig has a short body, rounded head, and large eyes.", + "Guinea pigs are small, round rodents with soft fur.", + "Which breed of guinea pig are you asking about? There are many different breeds of guinea pigs, and they can vary greatly in size, shape, and color.", + "A guinea pig is a small, furry rodent that has a short body and legs.", + "A guinea pig has short, smooth fur that can be a variety of colors.", + "A guinea pig is a small rodent with a short, stocky body.", + "A guinea pig is a small rodent that has a short body, round head, and large ears.", + "A guinea pig is a small rodent with a short body, large head, and round, furry ears.", + "The image is of a small, brown and white guinea pig with large, dark eyes.", + "The image is of a guinea pig on its back with its legs in the air.", + "This image is of a guinea pig that is mostly brown in color with some white patches.", + "The image is of a brown guinea pig with black spots.", + "A guinea pig looks like a cross between a rat and a bunny rabbit.", + "The image is of a small, brown and white guinea pig sitting in a green meadow.", + "In the image, there is a guinea pig that is brown and white.", + "A guinea pig image from the internet is of a small, brown and white furry rodent with long whiskers and cute, pointy ears.", + "This image from the internet is of a small, brown and white guinea pig lying on its back.", + "The image is of a guinea pig that is brown and white in color.", + " Looking cute and content, this little guinea pig is the picture of relaxation.", + "A guinea pig eating a carrot.", + "This is a guinea pig.", + "Cicero the guinea pig enjoying a sunny day in the garden.", + "My cute guinea pig!.", + "This guinea pig is eating a carrot.", + "Aguila the guinea pig enjoying a sunflower seed.", + "This is my guinea pig, Pippin.", + "This guinea pig is so cute!.", + " A guinea pig eating a carrot." + ], + "common sorrel horse": [ + "A common sorrel horse has a reddish-brown coat and a white mane and tail.", + "There is no one \"type\" of sorrel horse, as this is simply a color.", + "A common sorrel horse typically has a reddish-brown coat and mane.", + "A common sorrel horse is a horse with a reddish-brown coat.", + "A common sorrel horse typically has a reddish brown coat.", + "A sorrel horse is a horse with a brownish-red coat.", + "A common sorrel horse usually has a reddish-brown coat.", + "A common sorrel horse has a reddish brown coat and mane, and a light yellowish tail.", + "A common sorrel horse typically has a reddish-brown coat and mane.", + "There is no one \"look\" for a sorrel horse, as the term simply refers to a horse with a reddish-brown coat.", + "There is no definitive answer to this question, as there is no one physical trait that all common sorrel horses share.", + "Most common sorrel horses will have a coat that is a shade of red or reddish brown, with a mane and tail that is a slightly lighter color.", + "A common sorrel horse is a horse with a coat that is predominantly red or chestnut in color.", + "The coat of a common sorrel horse is typically a light copper color.", + "A sorrel horse is typically distinguished by its reddish brown coat.", + "Although there is no one definitive answer to this question, some common characteristics of sorrel horses may include a reddish brown body color, a light mane and tail, and a generally calm and gentle disposition.", + "A common sorrel horse can be identified by its reddish brown coat.", + "There is no definitive answer to this question as every sorrel horse is unique in its own way.", + "There is no definitive answer to this question, as each sorrel horse is unique in its own way.", + "A common sorrel horse typically has a reddish-brown coat.", + "A common sorrel horse typically has a reddish-brown coat and mane.", + "There is no definitive answer to this question as sorrel is simply a color that can occur in many different horse breeds.", + "There is not a set \"look\" for a sorrel horse, as sorrel is simply a coat color.", + "A common sorrel horse has a reddish-brown coat.", + "A common sorrel horse may have a reddish or copper coat with a flaxen or pale mane and tail.", + "A common sorrel horse typically has a reddish-brown coat with a pale mane and tail.", + "There is no definitive answer to this question as sorrel is simply a coat color and not a specific horse breed.", + "A common sorrel horse typically has a reddish-brown coat.", + "A common sorrel horse typically has a reddish-brown coat with a white mane and tail.", + "A common sorrel horse usually has a reddish brown coat.", + "The sorrel horse in the image is a chestnut color with a black mane and tail.", + "The image is of a brown horse with a white blaze down its face and a white sock on its front left leg.", + "The image depicts a chestnut sorrel horse grazing in a pasture.", + "A common sorrel horse has a reddish brown coat and a white mane and tail.", + "A piebald sorrel horse grazes in a meadow.", + "A sorrel horse is a horse with red, copper, or chestnut-colored hair.", + "A sorrel horse is a horse with red or reddish-brown coat color.", + "The image is of a brown horse with a white face and black mane and tail.", + "This sorrel horse has a common body type with a lean head and long legs.", + "In the image, the horse is a chestnut sorrel color with white markings.", + " This is a picture of a sorrel horse.", + " A chestnut horse with a white blaze and four white socks.", + "This is a common sorrel horse.", + " A horse of the Sorrelbreed, a light bay color with a golden sheen.", + "A common sorrel horse in a field.", + " A Sorrel horse is a horse with reddish brown fur.", + " Common Sorrel Horse.", + "Sorrel Horse.", + "A chestnut sorrel Quarter Horse gelding nibbles on some grass in a pasture.", + " \"This is a horse." + ], + "zebra": [ + "A zebra is a black and white horse-like animal with stripes.", + "A zebra is an equid with black and white stripes.", + "A zebra is an animal that has black and white stripes.", + "Zebras are black animals with white stripes.", + "The zebra is an African mammal with black and white stripes.", + "A zebra is a horse-like creature with black and white stripes.", + "A zebra has black and white stripes that cover its entire body.", + "A zebra is a black and white striped horse.", + "A zebra is a black and white striped horse.", + "A zebra is a black and white horse-like animal with stripes.", + "Zebra can be identified by their characteristic black and white stripes.", + "The best way to identify a zebra is by its stripes.", + "A zebra can be identified by its black and white striped coat.", + "The easiest way to identify a zebra is by its stripes.", + "The easiest way to identify a zebra is by its unique stripes.", + "A zebra is a black and white striped horse.", + "A zebra is a mammal of the family Equidae.", + "A zebra is a black and white striped horse.", + "A zebra has black and white stripes.", + "The easiest way to identify a zebra is by its stripes.", + "A zebra is a black and white striped horse.", + "A zebra looks like a black and white horse.", + "A zebra is a mammal of the family Equidae.", + "A zebra is a mammal with black and white stripes.", + "A zebra is a black and white striped animal.", + "A zebra is a black and white striped horse.", + "A zebra looks like a horse with black and white stripes.", + "A zebra is a black and white striped animal that looks like a horse.", + "A zebra is a black and white striped mammal.", + "A zebra looks like a horse with black and white stripes.", + "There is a zebra standing in a grassy field.", + "The image is of a zebra standing in a field of tall grass.", + "I found an image of a zebra on the internet that I really like.", + "Image shows a zebra in profile, looking to the left.", + "This zebra image is from an internet meme and shows a zebra with a human-like face.", + "A zebra is a black and white striped horse.", + "The image is a close up of a zebra's face.", + "This image is of a zebra that is grazing in a grassy field.", + "The image shows a zebra in profile, with its black and white striped coat and long mane.", + "This image from the internet is of a zebra running in its natural habitat.", + "A zebra standing in a grassy field.", + "A zebra in the wild.", + "A zebra in its natural habitat.", + " Zebra Standing in Field.", + "A zebra in Africa.", + " A zebra crossing a dirt road in Kenya.", + "A zebra walks through tall grass in an open plain.", + "A zebra in its natural habitat.", + "A zebra stands in the grass, its striped coat blending in with the tall blades.", + "zebras are striped animals that are related to horses." + ], + "pig": [ + "A pig is a four-legged animal with a short snout and a long tail.", + "A pig is a four-legged farm animal with pink skin and a snout.", + "A pig is a short, stocky mammal with a snout for a nose, small eyes, and a big head relative to its body.", + "A pig is a four-legged mammal with a snout.", + "A pig typically has a pink or black body with a long snout.", + "A pig is a four-legged, pink farm animal that has a snout for a nose, small eyes, and a small tail.", + "A pig is a four-legged farm animal with pink or gray skin.", + "A pig is a short, stocky mammal with a snout for a nose, small eyes, and a large head relative to its body.", + "A pig is a pink, chubby farm animal with a snout.", + "A pig is a pink farm animal that has a snout for a nose, four hooves, and a curly tail.", + "Pigs have a burrowing behavior and are omnivores, eating both plants and animals.", + "Pigs have a snout, four legs, and a tail.", + "The easiest way to identify a pig is by its snout.", + "Pigs are large, four-legged animals with short, bristly hair.", + "A pig is a mammal with cloven hooves and bristles on its skin.", + "The easiest way to identify a pig is by its snout.", + "A pig is a mammal with two pairs of successive tusks that protrude from the lower jaw.", + "A pig can be identified by its pink skin, snout, and four hooves.", + "A pig can be identified by its short legs, big head, and short snout.", + "You can identify a pig by its short, round snout; small, round ears; and chubby body.", + "A pig looks like a short, stocky, pinkish-brown mammal with a snout for rooting in the ground and fairly long tail.", + "Pigs are typically pink with brown spots.", + "A pig is a four-legged,Pink or Black, farm animal with a snout for rooting and a tail that curls over its back.", + "A pig typically has a pinkish complexion, a long snout, and large ears.", + "A pig looks like it has a snout and hooves like any other mammal.", + "A pig is a pink, plump animal with a snout.", + "Pigs are stout-bodied, short-legged, omnivorous mammals with long snouts.", + "A pig is a short-legged, cloven-hoofed mammal with a snout for rooting in the ground and wrinkled skin.", + "A pig typically has a pink or black body with a rounded snout for digging.", + "Pigs are pink with curly tails.", + "The image is of a cute, chubby little piglet with pale pink skin and black spots.", + "This image shows a pig on a farm.", + "This image shows a pig in a pasture.", + "The image is of a cartoon pig.", + "This image from the internet shows a pig in a pen.", + "This image is of a small, pink pig.", + "The image is of a pig that is pink in color with a snout.", + "One image from the internet of a pig is a photo of a pig eating from a trough.", + "This image is of a cute, brown and white pig.", + "The image is of a pig lying on its side in a pen.", + "A pig lying on its side in a field.", + "A pig rooting in the mud.", + "This is a picture of a pig.", + "This pig is enjoying a mud bath.", + "This is a picture of a pig.", + "Pig on a farm.", + "This pig is very happy!.", + "This pig is very cute and seems to be very friendly.", + " This pig is happily enjoying a mud bath.", + "This pig is absolutely adorable!." + ], + "wild boar": [ + "A wild boar is a dark brown or black pig-like mammal with short, bristly hair.", + "A wild boar is a large, hairy pigs with tusks.", + "A wild boar is a large, hairy pig with tusks.", + "A wild boar is a large, hairy, pig-like creature with tusks.", + "A wild boar typically has brown or black fur, and is characterized by its large head, tusks, and thick body.", + "The wild boar is a member of the pig family.", + "Wild boars are large, hairy pigs with long tusks.", + "A wild boar is a pig that has not been domesticate.", + "Long bristly hair, often black or brown; a mane runs along its back.", + "Wild boars are large, terrestrial animals with short, bristly hair.", + "There are many ways to identify a wild boar.", + "A wild boar is a pig that is not domesticated.", + "The best way to identify a wild boar is to look for its tusks.", + "There are several ways to identify a wild boar.", + "The easiest way to identify a wild boar is by its coarse hair and large head.", + "You can identify a wild boar by looking for certain physical characteristics, such as their large size, tusks, and coarse hair.", + "Wild boar can be identified by their short, coarse hair which is usually black, brown, or grey; however, their hair can also be red, blond, or white.", + "The easiest way to identify a wild boar is by its physical features.", + "Some characteristics of wild boars include their large head, long snout, tusks, and mane.", + "There are many ways to identify a wild boar.", + "A wild boar is a hairy, tusked pig that can grow to be over six feet long and weigh up to 660 pounds.", + "A wild boar is a hairy, pig-like animal with short legs and tusks.", + "A wild boar looks like a large, bristly pig.", + "A wild boar is a pig that is not domesticated.", + "Wild boars are pigs that have not been domesticated.", + "Wild boars are dark brown or black, with course, bristly hair.", + "A wild boar is a mammal of the family Suidae, appearing in Europe, Asia and Africa.", + "A wild boar looks like a large, dark brown or black pig.", + "A wild boar is a medium sized mammal with brown fur and a long snout.", + "A wild boar can vary in color, but is typically dark grey or black.", + "I found an image of a wild boar on the internet that shows a large, brown and black animal with tusks protruding from its mouth.", + "The image from the internet is of a wild boar that is running through the forest.", + "The image is of a large, dark-colored boar with tusks protruding from its mouth.", + "This image from the internet shows a wild boar in its natural habitat.", + "A wild boar is a large, hairy, pig-like creature with tusks.", + "Image shows a large, dark brown wild boar with small tusks protruding from its lower jaw.", + "The image is of a large, dark brown wild boar rooting around in the mud with its snout.", + "The image is of a wild boar standing in a wooded area.", + "The image is of a large wild boar with tusks.", + "This image from the internet shows a wild boar running through a grassy field.", + " A wild boar rooting through a trash can in search of food.", + " A wild boar eating vegetation on the forest floor.", + " A wild boar rooting in the forest.", + " \"A wild boar in the forest.", + "A wild boar roaming through the forest.", + "There's a wild boar on the loose!.", + "A wild boar roaming through a forest.", + " A wild boar rooting through the undergrowth.", + " A suivant, European wild boar rooting around in the forest.", + "This wild boar was caught on camera in the forest of Dean, UK." + ], + "warthog": [ + "A warthog is a ugly, aggressive wild pig that has tusks, a hump on its back, and warty skin.", + "A warthog is a medium-sized mammal found in Africa.", + "A warthog is a pig-like animal with a large head, short legs, and a bristly coat.", + "A warthog is a medium-sized mammal found in Africa.", + "A warthog is an African mammal.", + "A warthog is a wild pig that lives in Africa.", + "Warthogs are a type of wild pig that is native to Africa.", + "A warthog is a medium-sized mammal found in Africa.", + "A warthog is a large pig-like mammal with short legs, tusks, and a wart-covered face.", + "A warthog is a medium-sized, dark-coated pig with two pairs of tusks protruding from its mouth, a mane of short, bristly hair running down its spine, and wart-like growths.", + "A warthog is a type of pig that lives in Africa.", + "The main identifying characteristics of a warthog are its tusks, which protrude from the sides of its mouth, and its wart-like protuberances on the face.", + "A warthog is a species of pig.", + "A warthog is a member of the pig family.", + "The African warthog is a medium-sized mammal found in sub-Saharan Africa.", + "The tusks of a warthog are very long and curve upwards.", + "There are several ways to identify a warthog.", + "The scientific name of a warthog is Phacochoerus africanus.", + "The warthog is a stocky, hairy pig-like animal with two pairs of tusks protruding from the mouth, and warty growths on the face and jaws.", + "A warthog is a wild pig that is found in Africa.", + "A warthog is a member of the pig family with two large tusks protruding from its lower jaw.", + "A warthog is a wild hog that has two large tusks protruding from its lower jaw.", + "A warthog is a wild pig that lives in Africa.", + "Some warthogs have dark brown or black fur, but most are covered in short, bristly, light brown hair.", + "A warthog is a type of pig that has tusks, a short neck, and a large head.", + "A warthog is a black and white creature that lives in Africa.", + "A warthog is a four legged mammal that lives in Africa.", + "A warthog looks like an ugly pig with warts on its face.", + "Warthogs are ugly looking animals.", + "A warthog is a pig-like animal with short legs, a large head, and tusks.", + "This image from the internet shows a warthog in a field.", + "The image from the internet is of a warthog with its tusks protruding from its mouth.", + "The image is of a warthog with its tusks protruding from its mouth.", + "The image is of a warthog running through the grass.", + "This image is of a warthog in Africa.", + "An image of a warthog from the internet shows a large, stocky wild pig with short, bristly hair.", + "A warthog is an ugly, but interesting looking animal.", + "In the picture, there is a warthog lying on the ground.", + "The image shows a warthog lying on the ground with its tusks protruding.", + "The image is of a warthog in mid-run.", + "A warthog in Africa.", + "This is a warthog.", + " This is a picture of a warthog.", + "A warthog rooting for food in the savanna.", + " A wart hog in the African Savannah.", + "A warthog (Phacochoerus africanus) is a wild members of the pig family found in sub-Saharan Africa.", + " A warthog in profile, with its characteristic tusks, short legs, and bristly skin.", + " A warthog in Tanzania.", + "A warthog in the African savanna.", + " A warthog rooting for food." + ], + "hippopotamus": [ + "A hippopotamus looks like a large, stocky animal with a short neck and legs.", + "A hippopotamus is a large, four-legged mammal with short, stubby legs.", + "Very large, four-legged mammal with short, stubby legs.", + "The hippopotamus is a large, plant-eating mammal that lives in Africa.", + "A hippopotamus is a large, barrel-shaped mammal with short legs, a big head, and a wide mouth.", + "A hippopotamus is a large, land mammal that typically weighs between 1,500 and 2,000 pounds.", + "A hippopotamus is a large, rotund animal with a thick hide.", + "A hippopotamus is a large, four-legged mammal with a short tail.", + "A hippopotamus is a huge, grayish-brown mammal that weighs around two to three tons.", + "A hippopotamus is a large, grayish-brown mammal with short legs, a hairless body, and a large head with a wide mouth.", + "Hippopotamus can be identified by their large size, short legs, and wide open mouths.", + "There are a few ways to identify a hippopotamus.", + "A hippopotamus can be identified by its large size, short legs, blue-gray or muddy-brown skin, and wide-opening mouth.", + "Hippopotamus can be distinguished from other large, plant-eating mammals by their barrel-shaped torsos, wide-opening mouths, and nostrils and eyes that are placed near the top of their head.", + "Hippopotamus can be identified by their large size, short legs, and large heads with wide mouths.", + "Hippopotamus can be identified by their large size, barrel-shaped body, short legs, and wide open mouth.", + "There are many ways to identify a hippopotamus.", + "Hippopotamus can be identified by their large size, short legs, stubby tail, and wide-opening mouth.", + "Hippopotamus can be identified by their large size, short legs, and big mouths.", + "Hippopotamuses have barrel-shaped bodies, short legs, and large heads with thick lips.", + "A hippopotamus is a large, four-legged mammal with short, stubby legs.", + "A hippopotamus looks like a large, round, furry animal with a short neck and legs.", + "Hippopotamuses are large, four-legged mammals with thick, dark brown skin.", + "A hippopotamus is a large, grayish-brown mammal that is found in Africa.", + "A hippopotamus looks like a large, gray, wrinkled mammal with a wide mouth and short legs.", + "A hippopotamus is a huge, gray mammal that lives in rivers in Africa.", + "Hippopotamus are large, plant-eating mammals that live in Africa.", + "A hippopotamus is a large, round mammal with short legs.", + "A hippopotamus looks like a large, gray-brown, roughly spherical mammal.", + "Hippopotamuses are large, four-legged, herbivorous mammals.", + "This image is of a hippopotamus swimming in a river.", + "A hippopotamus at a river's edge, its body submerged except for its large head and mouth.", + "A large, bulky creature with a short, stubby legs and a huge, round head.", + "In the image, a hippopotamus is swimming underwater with its mouth open.", + "The image is of a hippopotamus standing in a river with its mouth open.", + "An image of a hippopotamus from the internet is a large, round animal with a short, stubby nose.", + "This image from the internet is of a hippopotamus.", + "The image is of a large brown hippopotamus submerged in water with only its nostrils and eyes visible.", + "The image shows a hippopotamus in a river with its mouth open.", + "The image that I found shows a hippopotamus lying in the water with its mouth open.", + "A hippopotamus enjoying a mud bath.", + "A hippopotamus taking a dip in a river.", + "Hippopotamus eating grass.", + "A hippopotamus in its natural habitat.", + "The hippopotamus is one of the most dangerous animals in Africa.", + "A close up of a hippopotamus in water.", + "A hippopotamus in a river in Africa.", + " A hippopotamus rests in a pool of water.", + "A hippopotamus enjoying a mud bath.", + "A large hippopotamus standing in a river." + ], + "ox": [ + "A ox is a mammal that has four legs, a tail, and two horns.", + "A ox is a large, four-legged mammal with a short head, a long body, and short fur.", + "An ox is a large bovine animal, typically with horns and hooves, used for draught work or for meat.", + "An ox is a bovine that has been trained and is used for agricultural purposes.", + "A ox is a four-legged animal that is used for labor.", + "A ox is a large, four legged animal with a long body and a short neck.", + "A ox is a large, four-legged farm animal with a long, thick tail.", + "A ox has four legs, a tail, and a head with two horns.", + "A ox is a large, four-legged farm animal with hooves.", + "A ox is a large, horned animal that is used for labor.", + "An ox is a domesticated bovine animal that is used for food and work.", + "An ox can be identified by its long horns and large head.", + "A ox is a large, four-legged animal used for labor.", + "There is no definitive answer to this question since there are many different breeds of oxen.", + "An ox is a bovine trained as a draught animal or for riding.", + "An ox is a bovine trained as a draft animal.", + "A ox is a bovine animal that is used for labor.", + "By its horns.", + "The easiest way to identify an ox is by its horns.", + "An ox is a bovine that has been trained to work.", + "A typical ox is a large, muscled farm animal with a long head, short legs, and large, curved horns.", + "An ox looks like a large, four-legged mammal with horns on its head.", + "A ox is a domesticated bovine animal.", + "An ox looks like a large, horned mammal with four legs.", + "A large, bovine animal with horns and a thick coat of fur.", + "An ox is a domesticated bovine animal that is used for agricultural purposes.", + "A bull.", + "A ox is a large, four-legged, domesticated animal that is typically used for dairy production or meat.", + "A ox is a four-legged mammalian animal that is typically used for labor purposes, such as plowing fields or hauling goods.", + "The typical ox is a large, four-legged mammal with a long tail, cloven hooves, and large horns.", + "This image is of a black and white ox.", + "A large, red and white ox with large horns on its head.", + "A large, red and orange ox with large horns on its head, standing in a green field.", + "The image is of a large, brown ox with big horns.", + "This image shows a close-up of a large, red ox with big, curved horns.", + "This image from the internet shows a brown and white ox with large horns.", + "This image is of a brown and white ox.", + "This image is of a large yellow and red ox.", + "There is an image of a ox on the internet.", + "The image is of a brown and white ox with large horns.", + " A small herd of oxen graze in a green pasture.", + "An ox in a pen.", + " An ox being led to slaughter.", + "A scene of a peasant farmer harvesting crops with a team of oxen.", + "An ox, a member of the bovine family, graze in a meadow.", + " This is an Ox, a domesticated bovine kept as livestock.", + "A man and his oxen enjoy a break from plowing the fields.", + " An ox, a bovine accustomed to working in fields.", + "A brahmana bull, the highest caste of oxen in India.", + " A massive, horned ox, with shaggy brown fur, stares ahead with a gentle but imposing gaze." + ], + "water buffalo": [ + "The water buffalo is a large bovid originating in the Indian subcontinent, Southeast Asia, and China.", + "A water buffalo has a large body, short legs, and a long head with horns.", + "A water buffalo is a large, stocky mammal with short, stiff hair.", + "A water buffalo is a large, shaggy-haired animal with horns that curve inward at the tips.", + "A water buffalo looks like a large, dark-colored bison.", + "A water buffalo is a large, dark-colored bovine with either short or no horns.", + "Water buffalo are large, heavy animals with dark brown or black skin.", + "A typically water buffalo is dark grey or black, but some may have darker or lighter coloration.", + "A water buffalo is a big, grayish-brown mammal with long, curved horns.", + "A water buffalo is a large, horned mammal found in Asia and Africa.", + "A water buffalo can be identified by its large size, humped back, and long, curved horns.", + "One way to identify a water buffalo is by its size.", + "There are a few ways to identify a water buffalo.", + "A water buffalo is a large, stocky mammal with a curved horn on its forehead.", + "The best way to identify a water buffalo is by its size.", + "A water buffalo is a large, horned mammal that is often used as a working animal in Asia.", + "There are several ways to identify a water buffalo.", + "A water buffalo can be identified by its dark, shaggy fur, long horns, and humped back.", + "Water buffalo are commonly found in Asia and can be distinguished from other buffalo species by their large size and the hump on their backs.", + "A water buffalo can be identified by its stocky build, short legs, and large head with horns.", + "A water buffalo is a large, horned mammal that is related to the cow.", + "A water buffalo is a large, hoofed mammal that is closely related to the cow.", + "A water buffalo is a large, dark-colored bison that is native to Asia.", + "A water buffalo is a large, four-legged mammal with short, dark fur.", + "A water buffalo is a shaggy-haired Asian bovine.", + "A water buffalo is a large mammal that is native to South Asia.", + "A water buffalo is a large, powerful mammal.", + "A water buffalo is a large mammal with shaggy brown fur.", + "A water buffalo looks like a big, shaggy cow.", + "A water buffalo is a bovine animal that is native to Asia.", + "In this image, a water buffalo is seen wading through a shallow river.", + "This water buffalo is standing in a marshy area with grass and reeds around it.", + "The image is of a large brown and white water buffalo.", + "The image is of a large, dark brown water buffalo with short, dark fur.", + "The image is of a water buffalo lying in a muddy wallow.", + "This image from the internet shows a water buffalo standing in a field of tall grass.", + "In this image, a water buffalo is standing in a river with its head and body submerged in the water.", + "The image shows a water buffalo lying down in a field with its head resting on the ground.", + "The image is of a water buffalo that is dark brown in color.", + "I found an image of a water buffalo on the internet.", + "A water buffalo in a river in Thailand.", + " A water buffalo in a field in Thailand.", + "Water buffalo are a domesticated species of bovine native to South Asia.", + "A water buffalo called a carabao in the Philippines.", + " A water buffalo in profile, with its sturdy body, short legs, and long, curved horns.", + "A water buffalo in a field of tall grass.", + "Water Buffalo on a farm in Thailand.", + " \"Bison bison swimming in water with wet fur\".", + "A water buffalo in a field in Thailand.", + "This water buffalo is from the Bali Zoo in Indonesia." + ], + "bison": [ + "A bison is a large, shaggy-haired mammal with a long head, short forequarters, and long hindquarters.", + "A bison is a large, shaggy-haired mammal with a long head and humped back.", + "A bison looks like a large, shaggy, horned mammal with two humps on its back.", + "A bison is a large, heavyset animal with short legs, a long, shaggy coat, and a long head with small eyes and short horns.", + "A bison looks like a large, shaggy-haired mammal with short, curved horns.", + "Bison are large, even-toed ungulates in the genus Bison within the subfamily Bovinae.", + "A bison is a large, cow-like mammal with shaggy brown fur.", + "A bison is a large, hoofed mammal with short, brown fur.", + "The bison is a large mammal with a shaggy coat of brown fur.", + "Bison are large, forest-dwelling animals with shaggy, dark brown fur.", + "You can identify a bison by its shaggy, dark brown fur; its long, curved horns; and its short, humped back.", + "Bison are Mammals characterized by a shaggy, dark brown coat; a stocky build with short, compact legs; and a large head with short, curved horns.", + "Bison are the largest land animals in North America.", + "Bison have a large, muscular body with short, thick legs and a short tail.", + "A bison is a large, slow-moving mammal with shaggy brown fur, a hump on its back, and a long tail.", + "The easiest way to identify a bison is by its size.", + "The bison is the largest land mammal in North America.", + "You can identify a bison by looking for its characteristic hump, long beard, and short tail.", + "The easiest way to identify a bison is by its shaggy brown fur, its large size, and its horns.", + "A bison can be identified by it's large size, it's shaggy brown fur, it's long horns, and it's humped back.", + "A bison is a large, hoofed mammal with shaggy hair.", + "A bison has a large, round body with short legs.", + "A bison looks like a large, furry, four-legged creature with horns.", + "A bison is a large mammal with brown fur.", + "Bison are large, even-toed ungulates in the genus Bos.", + "bison are large, even-toed ungulates in the genus Bison within the subfamily Bovinae.", + "A bison has a large, stocky body with shaggy brown fur.", + "Bison are the largest land animals in North America.", + "A bison is a large, horned mammal that resembles a buffalo.", + "A bison is a large mammal with a shaggy brown coat.", + "In the image, a bison is standing on a hill in a field.", + "The image is of a brown bison with its horns sticking out.", + "Image shows a large, shaggy-haired bison with a curly tail and humped back, standing in a field of green grass.", + "The image from the internet of a bison is a large, horned mammal with shaggy fur.", + "The image is of a large, brown and white bison.", + "A bison is a large, shaggy mammal with a short tail and horns.", + "Image is of a large, brown and white spotted bison lying down on the ground in a grassy area.", + "This image is of a bison in a field.", + "This image from the internet is of a bison in a field.", + "A bison is a large, heavy mammal with thick fur.", + "A bison walks through a field in Yellowstone National Park.", + "Bison roam freely in Yellowstone National Park.", + "Bison are the largest land mammal in North America.", + "Bison roaming in Yellowstone National Park.", + "American Bison in Yellowstone National Park.", + "Standing at the edge of the Yellowstone River, this massive bison seems unmoved by the scenic beauty around him.", + "An American bison in its natural habitat.", + "A bison enjoys a peaceful moment in a grassy field.", + "A bison in Yellowstone National Park.", + "Bison wandering through a field." + ], + "ram (adult male sheep)": [ + "A ram typically has horns on its head and is covered in wool.", + "A ram is an adult male sheep that has large horns on its head.", + "A ram is an adult male sheep that usually has horns on its head.", + "A ram is a male sheep that is usually used for breeding.", + "A ram is a male sheep with large horns.", + "A ram has a thick, woolly coat that is usually black, brown, or white.", + "A ram is a male sheep that is usually used for breeding.", + "A ram is a horned male sheep.", + "A ram is an adult male sheep that has horns on its head.", + "A ram is an adult male sheep with thick, curly hair.", + "Adult male sheep are called rams.", + "A ram is an adult male sheep.", + "A ram is an adult male sheep.", + " Rams have large horns that curve out from the sides of their head.", + "A ram has a thick neck and large body.", + "Rams have large, curved horns that they use to butt heads with other rams.", + "A ram has curved horns and is significantly larger than a ewe (female sheep).", + "By its horns.", + "The easiest way to identify a ram is by looking at the horns.", + "The easiest way to identify a ram is by its horns.", + "A ram is an adult male sheep.", + "A ram is a male sheep with thick, curved horns.", + "A ram is an adult male sheep that has large horns on its head.", + "A ram is a male sheep with horns.", + "A ram is an adult male sheep.", + "A ram is a male sheep that has not been castrated.", + "A ram is a male sheep that is usually used for breeding.", + "An adult male sheep is called a ram.", + "A ram is a male sheep that has not been castrated.", + "A ram is a male sheep with horns.", + "One image from the internet of a ram (adult male sheep) shows the animal standing in a rocky, mountainous area.", + "This image shows a ram with a large set of horns.", + "This image shows a ram with a large set of horns.", + "The image is of a large, brown and white sheep with curved horns.", + "The image is of a large, brown and white sheep with thick fur.", + "The image is of a large, brown and white ram with a large set of horns.", + "The image is of a brown and white ram with large curved horns.", + "In the image, the ram is standing on a hill in a meadow.", + "This image shows a large, brown and white sheep with thick, curled horns.", + "The image is of a large, brown and white ram with thick horns.", + "This is a ram.", + "A ram grazing in a pasture.", + " A ram grazing in a field.", + "A Male Sheep or Ram.", + "A ram grazing in a meadow.", + "A ram with thick, curly horns and a thick coat of wool.", + "I'm not a lamb anymore!.", + " A Suffolk ram in a pasture.", + "A male sheep with large horns.", + "A Ram, a male sheep with horns." + ], + "bighorn sheep": [ + "Bighorn sheep are a medium sized North American mammal.", + "The bighorn sheep is a medium sized sheep with horns that can grow up to 30 inches in length.", + ".", + "A bighorn sheep has a thick, woolly coat that is usually brown or gray.", + "Bighorn sheep are medium to large animals with males being up to twice the size of females.", + "A bighorn sheep is a mammal that has a brown coat and big horns.", + "Bighorn sheep are a species of sheep that are found in North America.", + "A bighorn sheep is a medium sized mammal with hooves.", + "A bighorn sheep is a mammal that lives in North America.", + "A bighorn sheep is a large mammal that is covered in thick, course wool.", + "A bighorn sheep has curled horns, a short tail, and a woolly coat.", + "A bighorn sheep has a large horn on its head.", + "Bighorn sheep are identified by their brown fur, long curved horns, and short tail.", + "Bighorn sheep have very large horns that curl back from their head.", + "Male bighorn sheep have large horns that curve outwards and backwards from the head.", + "A bighorn sheep can be identified by its large horns and woolly coat.", + "Bighorn sheep have large horns with a spiral shape.", + "The scientific name for a bighorn sheep is Ovis canadensis.", + "Bighorn sheep are a species of wild sheep that are native to North America.", + "Bighorn sheep have curved horns that grow out of their skulls, rather than branches.", + "Bighorn sheep are a type of mountain sheep with large horns.", + "Bighorn sheep are a type of wild sheep that live in North America.", + "A bighorn sheep is a large mammal that is found in North America.", + "A bighorn sheep is a species of sheep that is native to western North America.", + "Bighorn sheep are a type of mammal that lives in North America.", + "Bighorn sheep are large animals with furry, tan-colored coats.", + "A bighorn sheep is a species of sheep that is native to North America.", + "A bighorn sheep is a species of sheep that is typically characterized by its brown fur and large horns.", + "A bighorn sheep has a large head with short, curved horns.", + "A bighorn sheep has a brown body with a white belly.", + "A picture of a bighorn sheep from the internet likely shows a brown and white sheep with large horns on its head.", + "The image is of a large, brown and white sheep with long, curved horns.", + "The image is of a bighorn sheep standing on a rocky outcrop.", + "A bighorn sheep is an animal that is native to North America.", + "A bighorn sheep is a mammal of the family Bovidae and is native to North America.", + "A bighorn sheep is a large mammal with horns that curve upward.", + "An image from the internet of a bighorn sheep shows a sheep with large horns on its head.", + "The image shows a brown bighorn sheep with large horns in a rocky setting.", + "A bighorn sheep is a large, hoofed mammal with curved horns.", + "an image of a bighorn sheep shows the animal standing on a rocky outcrop.", + " A bighorn sheep in the mountains.", + "A bighorn sheep climbs a rocky slope in Yellowstone National Park.", + "Bighorn sheep are found in North America, with their largest populations in the Rocky Mountains.", + " A bighorn sheep stands in a field of tall grass.", + "A bighorn sheep perched atop a rocky outcropping in Yosemite National Park, California.", + "A bighorn sheep eating grass in a meadow.", + "The mighty bighorn sheep is one of North America's most iconic animals.", + "A bighorn sheep in Banff National Park, Alberta, Canada.", + "Bighorn Sheep in their Natural Habitat.", + "A bighorn sheep peacefully grazing in a meadow." + ], + "Alpine ibex": [ + "Alpine ibex are large, powerful mountain goats, with long, curved horns.", + "An Alpine ibex is a species of wild goat that lives in the mountains of central Europe.", + "The Alpine ibex is a large, feral goat that has adapted to living in mountainous environments.", + "The Alpine ibex is a medium-sized antelope with a stocky body, long neck, and short horns.", + "An Alpine ibex is a type of goat that lives in the mountains.", + "An Alpine ibex is a species of wild goat that lives in the mountains of the European Alps.", + "Some physical features of the Alpine ibex are that it has a dark brown to black coat, long black horns, and its hooves are split to enable it to climb steep mountainsides.", + "Alpine ibex are a species of wild goat that are native to the European Alps.", + "Male alpine ibex are much larger than females and can reach up to 140 cm (55 in) at the shoulder, a length of up to 180 cm (71 in), and a weight of up to 140 kg (310 lb).", + "The Alpine ibex is a noticeably large member of the Capra genus, with males measuring up to 200 cm long from head to tail, and females around 170 cm.", + "The Alpine ibex has a pale gray to dark gray coat, and its head and neck are darker than its body.", + "Alpine ibex have large, curved horns and a long beard.", + "Alpine ibex are a type of goat.", + "An Alpine ibex is a species of wild goat that lives in the Alps.", + "an Alpine ibex is a species of wild goat that lives in the mountains of the European Alps.", + "There are several ways to identify an Alpine ibex.", + "An Alpine ibex is a species of wild goat that lives in the mountains of Europe.", + "There are a few ways to identify an Alpine ibex.", + "One way to identify an Alpine ibex is by its large, curved horns.", + "The best way to identify an Alpine ibex is by its large, curved horns.", + "An Alpine ibex is a species of wild goat that lives in the mountains of Europe.", + "The Alpine ibex is a species of wild goat that lives in the mountains of Europe.", + "An Alpine ibex is a species of ibex that lives in the European Alps.", + "Alpine ibex are a species of wild goat that are native to the European Alps.", + "An Alpine ibex is a species of wild goat.", + "An Alpine ibex is a large mammal in the genus Capra that is native to the Alps.", + "The Alpine ibex is a species of wild goat that lives in the mountains of the European Alps.", + "Alpine ibex are a species of mountain goat.", + "Alpine ibexes are a type of wild goat.", + "An Alpine ibex is a species of wild goat that lives in the mountains of Europe.", + " that you foundan image of an Alpine ibex on a rocky mountain slope with patches of snow.", + "The image shows an Alpine ibex grazing on a mountainside.", + "In the image, an Alpine ibex is standing on a rock in the middle of a stream.", + "An Alpine ibex is a species of wild goat that lives in the mountains of Europe.", + "In the image, an Alpine ibex (Capra ibex) is standing on a rocky mountain ledge with a sheer drop behind it.", + "In the image, an Alpine ibex is shown perched atop a rocky cliff in its mountain habitat.", + "The image is of a large, brown and white goat standing on a ledge.", + "An image from the internet of an Alpine ibex shows a large, stocky mammal with brown fur and large, curved horns.", + "The image is of a large, muscular goat with long, curved horns.", + "The image shows an Alpine ibex standing on a rocky outcrop in a mountainous area.", + " Alpine ibex climbing a steep mountain face in the Alps.", + "A male Alpine ibex (Capra ibex) walking on a rocky ledge in the Swiss Alps.", + "A juvenile Alpine ibex in its natural habitat.", + "Alpine ibex (Capra ibex) on a rocky slope in the European Alps.", + "An Alpine ibex browses for vegetation on a rocky slope in the Alps.", + "Alpine ibexes are a type of mountain goat that is native to the Alps.", + "A male Alpine ibex (Capra ibex) stands on a rocky outcrop in the Italian Alps.", + "Alpine ibex (Capra ibex) are a type of wild goat that lives in the mountains of Europe.", + "An Alpine ibex taking a drink from a mountain stream.", + " A wild Alpine ibex grazing on the mountain side." + ], + "hartebeest": [ + "The hartebeest is a large, non-stealthy ungulate.", + "A hartebeest is a large, horned mammal that resembles an antelope.", + "A hartebeest is a large, red antelope with long, curved horns.", + "The hartebeest is a large mammal that can weigh up to 300 kilograms.", + "A hartebeest is a large, African antelope with a curved horns.", + "A hartebeest is a large, red deer-like antelope with long, curved horns.", + "A hartebeest is a large, antelope-like mammal with a long face, narrow neck, and a sloped back.", + "The hartebeest is a large antelope with a long neck, sloping back, and long legs.", + "A hartebeest is a large, powerfully built antelope with a long neck, narrow chest, and long legs.", + "The hartebeest is a large, red antelope with long, vertical horns.", + "A hartebeest is a large, African antelope with a long face, long legs, and a light-colored coat.", + "A hartebeest is a large, reddish-brown antelope with a horselike face and long, thick legs.", + "Hartebeest are large, antelope-like animals with long, slender necks, high hindquarters, and sloping backs.", + "A hartebeest can be identified by its long face, high hump on the shoulders, and long, narrow tail.", + "A hartebeest can be identified by its long face, neck, and legs; its humped back; and its stumpy, slanted horns.", + "Hartebeests are large, Africa antelopes with long necks, sloping backs, and long, narrow faces.", + "The best way to identify a hartebeest is by its long, narrow face and long, pointed horns.", + "A hartebeest is a large antelope with a long face, long legs, and a sloping back.", + "There are many ways to identify a hartebeest.", + "Some things that may help you identify a hartebeest are its long face, long legs, and lyre-shaped horns.", + "A hartebeest looks like a large antelope with a wide, triangular head.", + "A hartebeest is a large, tall antelope with a round belly and wide horns.", + "A hartebeest is a digitalis species native to Africa.", + "A hartebeest is a large, red antelope with long, curved horns.", + "hartebeest are large, hoofed mammals that look somewhat like deer.", + "A hartebeest is a large, horned antelope with a long face and neck, and a sloping back.", + "A hartebeest is a large mammal that resembles a deer or an antelope.", + "A hartebeest is a large, African antelope with a long face and neck, and a sloping back.", + "A hartebeest is a large African antelope with a long face, long legs, and a narrow, upright body.", + "A hartebeest is a large, red-brown African antelope with a long, face, and horselike muzzle.", + "A hartebeest is an antelope that is native to Africa.", + "A hartebeest is an African antelope with a long neck, lyre-shaped horns, and a reddish-brown coat.", + "The image is of a hartebeest lying down in the grass.", + "One image that comes up when you search for \"hartebeest\" on Google Images shows a large, tan-colored antelope with long, curved horns.", + "A hartebeest is a large, African antelope.", + "The image is of a hartebeest walking through tall grass.", + "In the image, a hartebeest is running through a field of tall grass.", + "This image from the internet shows a typical hartebeest, with its characteristic long, ringed horns.", + "I found an image of a hartebeest on the internet that shows the animal standing in tall grass with its long neck and legs.", + "A hartebeest is an African antelope with a long, narrow face and a reddish brown coat.", + "A hartebeest grazing in a grassy savanna.", + " A common hartebeest, Alcelaphus buselaphus, in the Masai Mara National Reserve, Kenya.", + " An adult hartebeest in the Serengeti.", + " Male hartebeest with characteristic wide, square horns.", + "A hartebeest enjoys a meal of grass in the African savanna.", + "The hartebeest is a large, hoofed mammal found in Africa.", + " A hartebeest grazing on the savanna.", + "A hartebeest charges through the grasslands of Africa.", + "In this image, a hartebeest is grazing on grass in a savanna.", + "A hartebeest on the savannah in Kenya." + ], + "impala (antelope)": [ + "The impala is a medium-sized African antelope with reddish-brown coat.", + "A Male impala stands about 3.", + "A impala is a reddish-brown antelope with long, curved horns.", + "A impala is a antelope with reddish-brown fur and black stripes on its hindquarters.", + "A impala is a narrow and lightly built antelope with long legs and a reddish brown coat.", + "A impala is a typical antelope- it has a light brown coat, a slender body, and long legs.", + "A impala is a medium sized antelope with a reddish brown coat and white underside.", + "The impala is an antelope that is reddish-brown in color with white fur on the belly.", + "A impala is a medium-sized antelope with reddish brown fur and white underparts.", + "A impala is a medium sized antelope with a reddish brown coat.", + "The most distinguishing feature of the impala is its elongated black tuft, which hangs down from the middle of its back.", + "The coats of impala are brindled with black on a buff background.", + "Impala are a type of antelope found in Africa.", + "The impala is an antelope of the genus Aepyceros and family Bovidae.", + "The best way to identify an impala is by its distinctive black markings and long, curved horns.", + "The impala is a medium-sized antelope found in eastern and southern Africa.", + "Imapalas have dark brown to reddish brown fur, and their tails are black with a white tuft at the end.", + "An impala is a medium-sized antelope found in woodlands in southern Africa.", + "It is reddish-brown with white on the underside, while the face, neck and legs are lighter in color.", + "Impalas are medium-sized antelopes.", + "The impala (Aepyceros melampus) is a medium-sized antelope found in eastern and southern Africa.", + "A impala has a reddish-brown coat, and white underbelly.", + "A male impala has dark brown fur with a light brown undercoat.", + "A male impala has glossy, dark brown fur on its upper body, while its lower body and legs are lighter in color.", + "A impala is a medium sized antelope that is reddish brown in color with white on its belly.", + "A impala is a light brown or reddish-brown antelope with white belly, hindquarters, and buttocks.", + "Impala are a species of antelope found in southern Africa.", + "The impala is a medium-sized antelope with a reddish brown to golden brown coat.", + "A male impala has lyre-shaped horns and a lustrous, reddish-brown coat.", + "A male impala has striking red-brown coat, measuring about two and a half feet at the shoulder, with a graceful, lyre-shaped horns.", + "The image is of a beautiful, golden brown impala with long, slim legs and a graceful neck.", + "A beautiful image of an impala (antelope) in profile, with its coat shining in the sun.", + "An image of a impala shows a reddish brown coat with white on the underside, along with black on the rear and tail.", + "This image is of a brown impala with large horns.", + "An image from the internet of an impala (antelope) is a picture of a light brown and white spotted antelope with large ears and long legs.", + "The image is of a golden-brown impala with black spots on its coat.", + "The image is of a light brown impala with a white underbelly.", + "The image from the internet is of an impala standing on a rocky outcrop.", + "The image is of a light brown impala with white accents running through a savanna.", + "This image shows an impala (antelope) in its natural habitat.", + "This is an impala, a type of antelope found in Africa.", + " A mothers love knows no bounds.", + "A family of impala in South Africa.", + "An impala in the grasslands of Africa.", + "Impala (Aepyceros melampus) is a medium-sized antelope found in eastern and southern Africa.", + " A male impala in mid-jump.", + " A mother impala and her calf graze in the Serengeti.", + "An impala grazing on the savanna.", + "The impala is a medium-sized African antelope.", + "A group of impala (Aepyceros melampus) in the Ngorongoro Crater, Tanzania." + ], + "gazelle": [ + "A gazelle is a mammal that belongs to the antelope family.", + "A gazelle is a type of antelope that lives in Africa.", + "A gazelle is a mammal in the antelope family.", + "A gazelle is a small, antelope-like mammal.", + "A gazelle is a slender, graceful antelope with long, curved horns.", + "A gazelle is a small and graceful antelope.", + "A gazelle is a slender and graceful antelope of African and Asian deserts.", + "A gazelle is a sleek, slender creature with long hind legs and a short tail.", + "A gazelle is a mammal of the antelope family and is characteristic for having a slender build, long neck and legs, and large horns that curve backwards.", + "A gazelle is a mammal of the antelope family.", + "There are many ways to identify a gazelle.", + "Gazelles are identify by their small size, long legs, and long necks.", + "The easiest way to identify a gazelle is by its horns.", + "Gazelles are medium-sized antelopes with slender, long legs, and a long neck.", + "The easiest way to identify a gazelle is by its horns.", + "A gazelle is a mammal of the family Bovidae, subfamily Antilopinae.", + "The easiest way to identify a gazelle is by its long and slender neck, its small head, and its long legs.", + "Gazelles are medium-sized antelope and are well known for their graceful leaps.", + "There is no definitive answer to this question, as there is no one characteristic that all gazelles share.", + "A gazelle is a small to medium-sized antelope.", + "A gazelle is a medium-sized antelope-like mammal.", + "A gazelle is a Mammal that has Hooves and Horns.", + "A gazelle is a small antelope with big brown eyes and long eyelashes.", + "A gazelle is a small antelope with slender legs and a small head.", + "A gazelle is a mammal of the family Bovidae.", + "A gazelle is a mammal in the genus Gazella.", + "Gazelles are slender, medium-sized antelopes.", + "A gazelle is a medium sized antelope with long legs, a slender build, and horns.", + "A gazelle is a small antelope with a sleek coat and long, slender legs.", + "There are many types of gazelles, but they are all generally slim, have long legs, and horns, and can reach speeds of up to 60 miles per hour.", + "The image is of a Gazelle running through a Savannah.", + "This image is of a gazelle running across a field.", + "An image of a gazelle from the internet shows a graceful and elegant creature with long, slender legs and a slender neck.", + "I found an image of a gazelle on the internet.", + "The image shows a gazelle in its natural habitat, running and grazing on the plains.", + "The image shows a gazelle in its natural habitat, grazing on grass.", + "This image on the internet shows a gazelle running in the grass.", + "Image shows a gazelle looking to the left while standing in short yellow grass.", + "This image shows a gazelle running across a field.", + "This image is of a gazelle running through a field.", + "The grace of a gazelle is undeniable.", + " The gazelle bounds away from the lioness, its powerful hind legs propelling it away from certain death.", + " Gazelle in the wild.", + "A gazelle in the African savanna.", + "A gazelle looks on as the sun sets in the African savannah.", + "The gazelle bounds across the savannah, its sleek form a blur against the golden grasses.", + "A gazelle grazing in the savannah.", + "A gazelle in the African savanna.", + " A gazelle grazing in the savanna.", + " A gazelle in mid-flight." + ], + "arabian camel": [ + "A camel typically stands 6 feet (1.", + "A typical Arabian camel is dark brown or black in color.", + "A dromedary camel has one hump on its back, while a bactrian camel has two.", + "Arabian camels are brown or light brown.", + "A camel is a large, even-toed ungulate with a distinctive hump or humps on its back.", + "A camel is a desert mammal with long legs, a big body and hump, and a long neck.", + "They are typically a light brown color with either one or two humps on their back.", + "A camel's coat is usually one solid color, but can be partially striped or spotted.", + "A camel is a mammal with long legs, a big body, and a hump on its back.", + "A camel's coat is generally a light brown, but can range from white to reddish-brown.", + "The hump on the back is a telltale sign of a camel, and the Arab camel, or dromedary, has only one hump.", + "The Arabain camel has a narrow neck and head compared to its body, and a single hump on its back.", + "By its hump.", + "There are several ways to identify an Arabian camel.", + "There are several ways to identify an Arabian camel.", + "The humps on the back of an Arabian camel are smaller than those of other camelid species.", + "The hump on the back is a distinguishing feature of a camel.", + "a) By its hump.", + "The Arabian camel is a species of camel that primarily lives in the Arabian Peninsula.", + "There are a few ways to identify an Arabian camel.", + "Arabian camels have long, curved necks and long legs.", + "A typical Arabian camel is a light brown color.", + "Most Arabians have one hump; some, however, may have two.", + "Arabian camels are brown, tan, or light gray.", + "The Arabian camel, also known as the dromedary, is a large mammal that is indigenous to the Middle East and the Horn of Africa.", + "A camel's head is long and narrow with two humps on its back.", + "The average Arabian camel stands about 6.", + "A typical Arabian camel has a dark brown coat.", + "A typical Arabian camel has a brown or black coat.", + "A typical Arabian camel has a slim build and long legs.", + "The image is of a light brown camel with two humps on its back, standing in a desert with sand dunes in the background.", + "This image is of a camel in the desert.", + "The image is of a camel standing in a desert with its long neck and hump visible.", + "OneimageofaArabiancamelwouldshowthecamelwithitslong,curvedneckandhUMPback.", + "In the image, an Arabian camel is lying on the sand in a desert.", + "The image is of a camel in the desert.", + "This image is of a camel in the Arabian desert.", + "The image is of a large camel with long, shaggy fur.", + "In the image, an Arabian camel is shown standing in a desert landscape.", + "In the image, an Arabian camel is shown from the side, with its long neck and hump visible.", + "A camel walks through the sand dunes of the Arabian desert.", + "A camel in the Arabian desert.", + "An Arabian camel in the desert.", + "A camel in the Arabian Desert.", + "A camel in the Arabian desert.", + " A camel in its natural habitat.", + " A camel in the desert with mountains in the background.", + "A camel in the Arabian desert.", + "A camel on the outskirts of Dubai, United Arab Emirates.", + "A camel walks through the desert in Arabia." + ], + "llama": [ + "A llama is a four-legged, camel-like mammal with long hair on its body and a short tail.", + "A llama is a South American camelid that, according to the International Union for Conservation of Nature, is a species in danger of extinction.", + "A llama is a long-necked, camel-like animal with thick fur and four legs.", + "A llama typically has a long neck, tilted head, and long legs.", + "A llama is a South American mammal that looks like a cross between a camel and a sheep.", + "Llamas are quadrupeds with short tails.", + "A llama is a long-necked, camel-like animal with upright ears and thick, woolly fur.", + "A llama is a four-legged mammal with a long neck and cloven hooves.", + "Llamas are medium-sized animals with long necks and legs.", + "Llamas are four-legged, camel-like creatures with long necks and furry coats.", + "There are several ways to identify a llama.", + "Llamas are usually white, brown, or black and have long necks and short tails.", + "A llama can be identified by its furry, long neck and legs, and by its much shorter tail.", + "Llamas have long necks and legs and often spit when they are angry.", + "A llama typically has a long neck, short tail, and humped back.", + "A llama can be identified by its characteristic long neck and legs, and short tail.", + "Llamas are often mistaken for camels.", + "Llamas typically have long necks and legs, and they are covered in fur.", + "Llamas are a member of the camelid family and look very similar to alpacas.", + "A llama can be identified by its long neck, short tail, and round, erect ears.", + "A llama is a mammal that is native to South America.", + "A llama is a four-legged mammal with a long neck and long legs.", + "Llamas are long-necked, woolly creatures that look like a cross between a camel and a sheep.", + "A llama typically has a white, brown, or black coat with light-colored patches on the face, legs, and underbelly.", + "A llama looks like a four-legged furry mammal with a long neck and head.", + "Llamas are animals that look like a cross between a camel and a sheep.", + "A llama is a four-legged mammal that is native to South America.", + "A llama looks like a camel with long legs and a long neck.", + "A llama typically has a long neck, round ears, and short legs.", + "A llama is a mammal that looks like a camel but is smaller with shorter legs.", + "The image is of a llama with brown and white fur.", + "The image is of a llama with brown fur and a white face.", + "In the image, there is a llama standing in a field.", + "The llama in this image is standing in a field of green grass.", + "In the image, there is a llama standing in front of a mountainside.", + "A llama is a long-necked, camel-like animal that is native to South America.", + "In the image, there is a llama calmly standing on a grassy hill.", + "The image is of a llama walking through a field of tall grass.", + "In the image, there is a llama standing on a hill.", + "This is an image of a llama from the internet.", + "A llama in the mountains of Peru.", + "A llama in a field.", + "A llama grazing in a field of tall grass.", + " \"Llama in the Andes, Peru\".", + "A llama in a field.", + " A llama on a farmThis llama seems to be enjoying its time on the farm! Although they are often used as pack animals, llamas are also frequently kept as pets or simply for their fiber.", + "This is a llama.", + "A llama on a mountainside in Peru.", + "This llama looks like he's having a great time!.", + "A llama on a mountainside." + ], + "weasel": [ + "A weasel is a small mammal of the family Mustelidae, which also includes otters, ferrets, badgers, and wolverines.", + "A weasel has a long body and short legs.", + "A weasel is a small mammal with a long, slender body and a bushy tail.", + "A weasel is a furry creature with a long slender body, pointy nose and small ears.", + "A weasel is a small, long-bodied, carnivorous mammal of the family Mustelidae.", + "A weasel has a long, slim body and a reddish brown coat.", + "A weasel is a small mammal with a long body and a long neck.", + "A weasel is a small rodent with a long, slim body, pointy nose, and sharp teeth.", + "A weasel has a long, slim body with short legs.", + "A weasel is a small carnivorous mammal of the family Mustelidae, usually measuring less than 30 centimeters in length.", + "The weasel /\u02c8wi\u02d0z\u0259l/ is a small mammal of the genus Mustela, belonging to the family Mustelidae.", + "The most distinguishing feature of a weasel is its long, slim body.", + "The most distinguishing feature of a weasel is its long, slim body.", + "A weasel can be identified by its slim body, long neck, and small head.", + "A weasel is a predatory mammal in the family Mustelidae.", + "Weasels are small, slim mammals with long necks, short legs, and round ears.", + "The easiest way to identify a weasel is by its long, slim body and short legs.", + "Weasels are small carnivorous mammals of the genus Mustela of the family Mustelidae.", + "A weasel is a small, long-bodied mammal with a flattened head.", + "The easiest way to identify a weasel is by its long, slim body and short legs.", + "A weasel is a furry mammal with a long, thin body and a short tail.", + "A weasel is a small mammal with a long body, short legs, and a pointy nose.", + "A weasel is a small slender mammal with a long body, short legs, and a pointed snout.", + "A weasel is small and slender with short legs, a long body, and a long neck.", + "Small, slim and elongated, weasels have short legs, rounded ears and long, slim bodies.", + "The weasel is a small, slim mammal with short legs, a long body and a long tail.", + "A weasel has a long, thin body and short legs.", + "A weasel is a small mammal with a long body, short legs, and a long neck.", + "A weasel is a small, thin mammal with a long body, short legs, and a pointy nose.", + "A weasel is a small, slender mammal with a long, thin body and neck.", + "In the image, the weasel is a reddish brown color and it is standing on its hind legs.", + "Image shows a weasel in the snow.", + "In the image, a weasel is standing on its hind legs in the snow with its body turned slightly to the left.", + "The weasel is a mammal of the family Mustelidae, which also includes stoats, ferrets and mink.", + "The image is of a small, brown and white weasel-like animal curled up on a tree branch.", + "The image depicts a small, brown and white mammal with a long, slender body.", + "The image shows a weasel with dark brown fur and a long, slender body.", + "The image is of a weasel family playing together in a field.", + "An image of a weasel on the internet shows a small, brown, furry mammal with a long, slender body and a pointed face.", + "I found an image of a weasel on the internet that looks like it is running through the snow.", + "A weasel on the prowl.", + "A weasel peeks out from behind a log.", + "A weasel peeking out from behind a tree.", + "A weasel peeking out from behind a tree.", + "\nThe weasel is hunting for a mouse.", + "This is a weasel.", + "A weasel peeks out from under a log.", + "A weasel looks for food in the snow.", + "A weasel peers out from under a log, its small eyes alert for predators or prey.", + "A weasel looking up at the camera." + ], + "mink": [ + "Minks are small, agile mammals with long, thick fur.", + "Minks are small animals that have dark brown fur.", + "Minks are small, dark-colored animals with long, soft fur.", + "A mink is a small, dark, long-bodied weasel with dense fur.", + "A mink is a furry animal with a long, slender body.", + "A mink is a small, furry mammal with long, slender legs.", + "Minks are small, agile mammals with long, slender bodies.", + "A mink is a small, dark-colored animal with a long body and a bushy tail.", + "Minks are small, dark-colored members of the weasel family.", + "A mink is a mammal in the mustelid family.", + "Minks are small, semi-aquatic carnivores with dark brown fur.", + "Minks are a type of animal.", + "A mink can be identified by its long, slender body; its short legs; its long, bushy tail; and its soft, thick fur.", + "The easiest way to identify a mink is by its size.", + "Minks are usually black, brown, or white.", + "A mink has a long, slender body and a round head.", + "Minks are small carnivores in the Mustelidae family.", + "The easiest way to identify a mink is by its fur.", + "The easiest way to identify a mink is by its fur.", + "You can identify a mink by its small size, thick fur, and long, slim body.", + "Minks are small, agile members of the weasel family with thick, soft fur.", + "A mink looks like a small, dark brown or black furry animal with a long body and a bushy tail.", + "A mink is a small, dark brown or black furry animal.", + "A mink is a small, dark brown or black member of the Mustelidae family.", + "Minks are small, slim animals with long bodies, short legs and round feet.", + "A mink is a small carnivorous mammal that resembles a weasel.", + "Minks are small, furry animals that look like a cross between a weasel and a ferret.", + "A mink looks like a small, dark-colored weasel with a long body, short legs, and a thick, dense coat of fur.", + "A mink is a small, semi-aquatic carnivorous mammal of the mustelid family.", + "A mink is a small furry animal with a long body and a bushy tail.", + "An image of a mink from the internet shows a small, dark brown mammal with a long, streamlined body.", + "The image is of a mink lying on its back in the snow.", + "This image is of a mink eating a fish.", + "One image of a mink from the internet shows a small, dark brown animal with a long, slim body and a bushy tail.", + "The image is of a mink on a white background.", + "This image is of a mink lying on its back in the grass.", + "This image is of a mink laying on a log in a forest.", + "A mink is a small, dark-furred carnivorous mammal.", + "This image is of a mink resting atop a log in a body of water.", + "A mink is a small, agile, semiaquatic, carnivorous mammal of the family Mustelidae, typically 5 to 7 kg (10 to 15 lb) in weight and 60 to 75 cm (24 to 30 in).", + "A luxurious mink fur coat.", + "Mink furs are often used in high-end fashion garments.", + "This mink looks like it's ready to pounce on its next meal!.", + "Aminal rights activists have long protested the use of furs, and the mink is one of the most popular targets.", + "A wild mink peeks out from its den.", + " Mink on the forest Floor.", + "This beautiful mink was caught in a trap and freed by a kind soul.", + "A mink lies in the grass, its fur ruffled by the wind.", + "A wild mink stares into the camera, its fur a luxurious prize.", + "Mink in the wild." + ], + "European polecat": [ + "An European polecat looks like a ferret with a black tip on its tail.", + "European polecats are small carnivores in the weasel family with a black fur and light-colored markings on their faces.", + "The European polecat is a medium sized mammal with a brown and white fur coat.", + "The European polecat is a small, slim mammal with a pointed face and long, furry ears.", + "An European polecat is a small, brown and white mammal with a long body and a short tail.", + "An European polecat is a small mammal with a brown and white fur.", + "The European polecat has a reddish brown coat, with a paler stripe running down its back.", + "Small, brown and white furry mammal with black spots.", + "A European polecat is a small, weasel-like creature with a dark brown or black fur.", + "The European polecat has dark fur with a light-colored streak running from its forehead to its nose.", + "The easiest way to identify an European polecat is by its fur.", + "European polecats have a brown and white fur and a black stripe running down their back.", + "The European polecat is a member of the weasel family.", + "If you see a polecat in Europe, it is likely an European polecat.", + "The easiest way to identify an European polecat is by its fur.", + "There are several ways to identify an European polecat.", + "The easiest way to identify an European polecat is by its fur.", + "The coat of a European polecat is usually brown or brownish-grey with black spots.", + "There is no one definitive answer to this question, as there is no one definitive way to identify any animal, let alone a specific species.", + "Some ways you can identify an European polecat are by its size, color, and habitat.", + "The European polecat has a slim body, long neck, and a relatively small head.", + "An European polecat has a white fur with black spots.", + "Credit: Oleksiy Mark / Shutterstock.", + "https://www.", + "An European polecat is a small mammal in the weasel family.", + "The European polecat is a medium-sized mammal with a long body and short legs.", + "The European polecat is a species of mustelid native to Europe and the Caucasus.", + "An European polecat looks like a cross between a weasel and a skunk.", + "The European polecat is a small, sinuous creature with a long body and short legs.", + "The European polecat is a small, slim mammal with black fur and white patches on its face and chest.", + "The European polecat is a member of the weasel family.", + "In the image, the European polecat is standing on its hind legs with its front paws extended in the air.", + "The image is of a small, brown and white furry mammal with a long tail.", + "In this image, we can see a European polecat (Mustela putorius) in a relaxed pose.", + "The image is of a European polecat crouched down in the grass.", + "In the image, the European polecat is a slender, medium-sized mammal with a long, black-tipped tail.", + "The European polecat is a small, agile carnivore with long legs and furry body.", + "On the image there is a European polecat leaning forwards on a tree branch.", + "The image is of a reddish-brown European polecat crouched down low to the ground.", + "In the image, the European polecat is a brown and white furry animal with pointy ears.", + " European polecat musteline in the snow.", + "A European polecat (Mustela putorius) in a field of grass.", + "European polecat in winter coat.", + "European polecat (Mustela putorius)The European polecat is a small carnivorous mammal native to Europe.", + "\nA European polecat in the wild.", + "\"European polecat caught in a trap.", + " European Polecat in a tree.", + "A European polecat perched atop a tree branch.", + " European polecat in winter coat.", + " European polecat in the wild." + ], + "black-footed ferret": [ + "A black-footed ferret has two colors on its body: black and yellowish brown.", + "A black-footed ferret is a small, mammal that is closely related to the weasel.", + "The black-footed ferret has a black mask around its eyes and a black-tipped tail.", + "A black-footed ferret is a small mammal with a long, slender body.", + "The black-footed ferret is a small, slender mammal with a black mask around its eyes.", + "A black-footed ferret is a small mammalian carnivore that is indigenous to North America.", + "A black-footed ferret is a small mammal that is native to North America.", + "A black-footed ferret is a small, endangered mammal that is similar in appearance to a domestic ferret.", + "A black-footed ferret is a small carnivorous mammal of the family Mustelidae, native to central North America.", + "A black-footed ferret is a small weasel-like mammal with a long body, short legs, and a black mask around its eyes.", + "Black-footed ferrets have a black band that goes across their eyes and down their nose.", + "The black-footed ferret is a small, slender-bodied creature with a pointy face.", + "The black-footed ferret is the only species of ferret in North America.", + "A black-footed ferret has a long, weasel-like body, short legs, and a black mask around its eyes.", + "Some ways to identify a black-footed ferret are by their long, slender body, their short legs, and their long neck.", + "A black-footed ferret has a black tail, black feet, and a black mask around its eyes.", + "You can identify a black-footed ferret by its brownish-black fur, which covers most of its body except for its face, feet, and belly.", + "The black-footed ferret is a small nocturnal mammal of the Mustelidae family, native to central North America.", + "Black-footed ferrets are a species of mustelid, and they are the only species of mustelid native to North America.", + "There are a few ways to identify a black-footed ferret.", + "Black-footed ferrets are small, lithe members of the mustelid family, which also includes weasels, mink, and otters.", + "A black-footed ferret is a small mammal in the weasel family.", + "A black-footed ferret is a small, weasel-like mammal with a long body, short legs, and a black mask around its eyes.", + "A black-footed ferret is a small, nocturnal mammal.", + "A black-footed ferret is a small mammal that looks like a weasel with black feet.", + "A black-footed ferret has a long, slim body and a short, black-tipped tail.", + "The black-footed ferret is a small mammal that is related to the weasel.", + "A black-footed ferret looks like a small, wild dog.", + "A black-footed ferret has a long, slender body with short legs.", + "A black-footed ferret has a black nose and eyes, and its fur is black on its feet, tail, and around its mouth.", + "The image is of a black-footed ferret standing on its hind legs.", + "The image is of a black-footed ferret lying on the ground.", + "The image is of a black-footed ferret in profile, looking to the left.", + "The image is of a small, brownish-yellow ferret with black feet.", + "The image is of a black-footed ferret in a cage.", + "In the image, a black-footed ferret is standing on a grassy field with tall grasses waving in the background.", + "In the image, a black-footed ferret is perched atop a fence post, looking off into the distance.", + "In the image, a black-footed ferret is standing on its hind legs with its front paws extended in the air.", + "In the image, a black-footed ferret is peeking out from a wooden box.", + "The image is of a black-footed ferret standing on a piece of grass.", + "A black-footed ferret with its prey.", + "A black-footed ferret peeking out from its burrow.", + " A black-footed ferret looks for a meal.", + "happy black-footed ferret!.", + "A black-footed ferret searching for food.", + "Black-footed ferrets are one of the most endangered species in North America.", + "The black-footed ferret is a species of mustelid native to North America.", + "A black-footed ferret perches atop a rock, looking out at the camera.", + " A black-footed ferret looking adorable while peeking out from its burrow.", + " Black-footed ferret waiting to ambush a prairie dog." + ], + "otter": [ + "A otter is a small, aquatic mammal with dense, fur that helps protect it from the cold waters it inhabits.", + "A otter is a small mammal with a long, slender body and short legs.", + "A otter has a long, slim body and a tail that is almost as long as its body.", + "A typical otter (of the subfamily Lutrinae) has a long, slim body, short legs, long webbed toes and a round head with small ears.", + "A otter is a small, furry mammal with a long, tapered body, short legs, and a long, flat tail.", + "A otter is a water creature that looks like a cross between a beaver and a raccoon.", + "A typical otter is a stout-bodied, long-haired animal with a relatively long neck, small head, round ears, and a tapered tail.", + "A otter is a small, furry mammal with a long tail.", + "A otter has a long, slim body and a tapered tail.", + "A otter has a long, slender body with short legs, a long tapered tail, and webbed feet with sharp claws.", + "Otters have a long, slim body and a thick, tapered tail.", + "Otters are semi-aquatic mammals, so they have certain physical characteristics that allow them to live in the water.", + "Otters have a long, oval-shaped body with short legs, and a long tail.", + "Otters have a distinctive long, slender body with short legs, a long neck and a round head.", + "Otters have long bodies and tails, short legs, and webbing between their toes.", + "Otters have long cylindrical bodies with short, stocky legs.", + "Otters typically have long, slim bodies with short legs, large webbed feet, and dense fur.", + ".", + "Otters have hallux claws - or toe claws - which are longer and more prominent on their hind feet than their front feet.", + "Otters have long, slender bodies with short legs, and they are covered in thick, waterproof fur.", + "A otter looks like a small mammal with a furry body, long tail, and webbed feet.", + "A otter is a small, furry mammal with a long body and a tail.", + "Otters are small, slim mammals with long, shiny fur.", + "Otters have long, slim bodies with short legs, webbed feet, and a long, rudder-like tail.", + "A otter is a small mammal that lives in streams and rivers.", + "Most otters have sleek, fur that is cream colored, gray, or brown with dark brown or black markings on the face and feet.", + "An otter is a mammal in the subfamily Lutrinae.", + "An otter typically has a long, slim body with short legs, webbed feet, and a long tail.", + "A otter has a long, slim body with short legs and a long tail.", + "A otter has a long, streamlined body with short legs, a long neck, and a round head.", + "One image of an otter from the internet is of a small otter swimming in a clear pool of water.", + "The image is of a otter that is swimming in a river.", + "A otter is a semi-aquatic mammal with a long, slim body and short legs.", + "A otter is a small, carnivorous mammal of the mustelid family, native to Eurasia and North America.", + "This image shows a playful otter swimming near the shore.", + "This image from the internet is of a otter swimming on its back in a river.", + "In the image, a brown-furred otter floats on its back in a body of water, its head and body just above the surface.", + "An image of a otter from the internet shows a small, furry animal with webbed feet and a long, tapered tail.", + "The image depicts a small, brown and white otter swimming in a river with green vegetation around it.", + "The image is of a cute, brown and white otter swimming in a pool of blue water.", + "A otter eating a fish.", + "This playful otter is enjoying a nice day out in the water.", + "A happy otter enjoying a swim.", + "A playful otter frolicking in the water.", + " A female otter eating a small fish.", + "A river otter (Lontra canadensis), also known as a Canadian otter, was photographed here in Washington state.", + " A sea otter floating on its back in the water, eating a crabA sea otter floating on its back in the water, eating a crab that it has pulled out of its shell.", + "This otter is having a great time!.", + " A river otter playing in the waterThis playful river otter is enjoying a refreshing swim in the water.", + "A playful otter swims among the rocks in a river." + ], + "skunk": [ + "A skunk is a small to medium-sized mammal.", + "A skunk is a small, black and white mammal.", + "A skunk is a small, black and white mammal.", + "A skunk is a black and white mammal that sprays a foul smelling liquid to ward off predators.", + "Skunks are black and white striped mammals that are about the size of a cat.", + "A skunk has black fur with a white stripe running down its back.", + "Skunks are black and white striped animals that have a long body and a bushy tail.", + "A skunk is a small black and white mammal.", + "Skunks are black and white animals that look like a cross between a cat and a squirrel.", + "A skunk is a small mammal with black fur and a white stripe running down its back.", + "There are many ways to identify a skunk.", + "The most common way to identify a skunk is by its unique odor.", + "Skunks are capable of spraying a mixture of sulfur-containing chemicals as a form of self-defense.", + "The easiest way to identify a skunk is by its characteristic black and white fur.", + "The most common way to identify a skunk is by its appearance.", + "The best way to identify a skunk is by its unique coloring.", + "Skunks have very unique coloring.", + "A skunk has a black and white fur and a long tail.", + "Skunks are small black-and-white striped animals with a long body and short legs.", + "You can identify a skunk by its black and white fur, its long tail, and its distinctive smell.", + "A skunk typically looks like a small, black-and-white cat.", + "Skunks are small, furry animals.", + "The typical skunk is a small, stocky mammal with short legs, black fur, and a long, bushy white-striped tail.", + "Skunks are relatively small animals with long, thick fur.", + "Skunks have black fur with white stripes running down their back.", + "Skunks vary in size and appearance, but they all have the same basic body shape.", + "Skunks are medium-sized animals with furry, black-and-white bodies.", + "A skunk is a small, furry mammal with short legs and a long, black-and-white-striped body.", + "A skunk is a small, black and white mammal with a stripe running down its back.", + "A skunk is a small mammal with black fur and a white stripe down its back.", + "The image is of a skunk with its hind legs up in the air and its tail down.", + "An image of a skunk from the internet shows a small, black-and-white furry creature with a long tail.", + "A black and white skunk with its tail up, standing on green grass.", + "The image is of a black and white skunk with its tail up in the air.", + "I found an image of a skunk on the internet that shows a skunk standing in some tall grass.", + "A skunk with its black and white fur and long tail is sitting in a green field.", + "I found an image of a skunk on Google Images.", + " The image shows a skunk with its black and white fur, its long tail, and its cute little face.", + "A skunk is a small, black-and-white mammal with a long, striped tail.", + "The image is of a black and white skunk with its tail raised in the air.", + " A skunk paces back and forth in its enclosure at the zoo.", + "A skunk in the wild.", + "This skunk looks like it's getting ready to spray!.", + " A skunk looks up at the camera, its black and white fur stark against the green grass.", + " A skunk out for a walk on a lovely spring day.", + "A skunk spraying its potent mixture of chemicals to ward off predators.", + "This is a skunk.", + " A skunk in nature.", + "A skunk walking through the forest.", + " A skunk spraying its scent." + ], + "badger": [ + "Badgers are small, round animals with short legs.", + "Badgers are short-legged omnivores in the family Mustelidae, which also includes the otters, polecats, weasels, and wolverines.", + "A badger is a medium-sized mammal with short, legs and a long body.", + "A badger is a short-legged omnivorous mammal with a stocky body, a small head, and black and white fur.", + "The American badger is a medium-sized, short-legged omnivore of the family Mustelidae, which also includes otters, polecats, weasels, and wolverines.", + "A badger is a mammal with a stout body, short legs, and a long, narrow head.", + "A badger is a short-legged omnivore of the family Mustelidae, which also includes the otters, polecats, weasels, and wolverines.", + "A badger is a stocky, short-legged omnivore with a long, broad head, Wilkinson said.", + "A badger is a nocturnal mammal of the family Mustelidae, which also includes the otters, polecats, weasels, and wolverines.", + "A badger has a stout body, short legs, and a long, snout.", + "Badgers are easily recognizable by their short legs, stocky bodies, and long, black-tipped tails.", + "Badgers are medium-sized creatures with short legs, a long, thick body, and a short tail.", + "Badgers are easily identified by their black-and-white striped faces.", + "Badgers are medium-sized, burrowing mammals with short legs, heavy bodies, and long, sharp claws.", + "Badgers are medium-sized animals with stocky legs, short tails and large bodies with black-and-white striped fur.", + "Badgers are easily identified by their black-and-white striped faces.", + "Badgers are short-legged omnivores in the family Mustelidae, which also include otters, polecats, weasels and wolverines.", + "The best way to identify a badger is by its unique markings.", + "Badgers are relatively easy to identify.", + "Badgers are small to medium-sized mammals with short legs, a stocky body, and a long, broad head.", + "A badger is a mustelid with a long, broad body and short legs.", + "A badger is a short-legged omnivorous mammal with a long, broad body and a short tail.", + "Badgers have short, stout legs and a muscular body.", + "A badger is a nocturnal mammal with short, thick legs and a long body.", + "A badger is a member of the weasel family.", + "Badgers are short-legged omnivores in the family Mustelidae, which also includes the otters, polecats, weasels and wolverines.", + "A badger is a short-legged omnivore in the weasel family, which also includes the otter, mink, polecat, and wolverine.", + "Badgers are short-legged omnivores in the family Mustelidae, which also includes polecats, weasels, otters, and wolverines.", + "A badger is a short-legged omnivore of the weasel family, with a stocky body, a broad head, small eyes, and short tail.", + "A badger is a small mammal with a white and black striped face.", + "An image from the internet of a badger could show a badger that is injured, or a badger that is about to be attacked by a predator.", + "The image portrays a badger that is scruffy and looks like it has not been well taken care of.", + "This image is of a badger that looks very sick and emaciated.", + "One image of a badger from the internet is of a badger with its head stuck in a metal bucket.", + "An image from the internet of a badger shows an animal that is dark brown in color with a white stripe down its back.", + "The image is of a brown and white badger with a black mask on its face.", + "This image shows a badger that appears to be sick or injured.", + "The image is of a badger with its mouth open and its tongue hanging out.", + "The image is of a brown and white badger with a black stripe down its back.", + "In the image, a badger is crouching in the grass, looking towards the camera with its head tilted to the side.", + "A badger looks for food in a field.", + " A badger eating a carrot.", + " \"European Badger (Meles meles)\".", + "BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER BADGER.", + "A badger enjoying a meal.", + " Badger in a forest.", + "This badger looks like it's ready to pounce!.", + " A European badger on the move.", + "A badger on the prowl for a meal.", + " A badger scavenges for food in a forest." + ], + "armadillo": [ + "A armadillo is a small, rodent-like mammal with a hard shell.", + "The armadillo has a bony shell that covers the top of its body.", + "An armadillo typically has a body length of about 75 cm (30 in), and a tail length of about 45 cm (18 in).", + "An armadillo is a small to medium-sized mammal with a leathery shell.", + "A armadillo is a small mammal with a hard shell that covers its body.", + "A armadillo is aArmor-clad mammal with a bony shell encasing the head, body, and tail.", + "A armadillo is a small mammal that is covered in a hard shell.", + "A armadillo is a animal that has a shell on its back.", + "A armadillo is an animal that has a hard shell on its back.", + "A armadillo is a small animal with a hard shell.", + "Armadillos have a leathery shell that covers their backs and sides.", + "The easiest way to identify an armadillo is by its unique armored shell.", + "One way to identify an armadillo is by its armor-like shell.", + "The armadillo has a leathery shell that covers the back, sides, and head.", + "By their armor-like shell.", + "The easiest way to identify an armadillo is by its armor.", + "The easiest way to identify an armadillo is by its unique shell.", + "Armadillos are small to medium-sized mammals with a leathery, protective shell.", + "By its hard, leathery shell.", + "They are a small mammal with a hard shell on their back.", + "A armadillo is a small, rodent-like animal with a hard shell.", + "A armadillo is a small, burrowing mammal with a leathery shell.", + "A baby armadillo looks like a small, furry pig.", + "A nine-banded armadillo looks like a small, armored mammal with a very hard shell.", + "An armadillo is a small, rodent-like mammal that is covered in hard, protective plates.", + "A armadillo has a hard, leathery shell that covers its body.", + "An armadillo is a small, mammal that is covered in hard, protective plates.", + "A armadillo looks like a small mammal with a hard shell around its body.", + "The nine-banded armadillo looks like a small, dark armored vehicle with a blunt nose.", + "A small, gray or brown mammal with a shell on its back.", + "The image is of a tan armadillo with a pointy snout and dark brown stripes running down its back.", + "The image is of a brown armadillo with a white belly.", + "The image is of a small armadillo curled up in a ball.", + "It's a photo of an armadillo on a green lawn.", + "This image from the internet shows a close-up of an armadillo.", + "An image of an armadillo from the internet is typically a close up photo of the animal with its hard, armor-like shell clearly visible.", + "This image is of an armadillo that is brown and white in color.", + "The image is of a camouflaged armadillo in the grass.", + "There is an image of an armadillo on the internet which is a small, dark-colored mammal.", + "An image of an armadillo on the internet might show the animal's brown, scaly body and its short legs.", + "An armadillo sunning itself in the grass.", + "A nine-banded armadillo in Texas.", + "An armadillo hard at work carrying its babies.", + "A curious armadillo investigates a camera lens.", + "The armadillo's armor protects it from predators and harsh climates.", + "The armadillo's armored shell protects it from predators and harsh environments.", + "An armadillo peeks out from underneath a log.", + "A three-banded armadillo (Tolypeutes tricinctus) in its natural habitat.", + "The armadillo is a curious creature, native to the Americas.", + " Armadillos are a family of New World placental mammals in the order Cingulata." + ], + "three-toed sloth": [ + "A three-toed sloth is a medium-sized mammal with reddish-brown fur and a long, shaggy tail.", + "A three-toed sloth has a brown fur coat and is about the size of a house cat.", + "A three-toed sloth is an arboreal mammal that is native to the Neotropics.", + "A three-toed sloth has brown fur and a white underbelly.", + "A three-toed sloth is a small mammal with furry brown skin and three long claws on each front foot.", + "A sloth is a mammal with long hair and curved, sharp claws that hangs upside down from trees.", + "The three-toed sloth has a medium brown fur coat with white patches around the eyes and mouth.", + "A three-toed sloth has a brown fur coat, long nails on its front paws, and three toes on its hind feet.", + "A three-toed sloth is a small, brownish-gray mammal with furry, hair-like fur.", + "A three-toed sloth is a small mammal with furry brown fur.", + " usually by their fur patterning which is unique to each individual, but also by the size and shape of their claws.", + "The easiest way to identify a three-toed sloth is by its three toes on each foot.", + "A three-toed sloth can be identified by its three toes on each front foot and each back foot.", + "A three-toed sloth is a mammal that lives in the trees of the tropical rainforest.", + "You can identify a three-toed sloth by their unique physical characteristics including their long, coarse hair; stubby tail; and of course, their three toes.", + "The easiest way to identify a three-toed sloth is by looking at the number of toes on its front feet.", + "A three-toed sloth has three toes.", + "By their unique physical appearance which includes their long, shaggy coat and three toes on each foot.", + "You can identify a three-toed sloth by looking for an animal with three toes on each front foot and each back foot.", + "The easiest way to identify a three-toed sloth is by looking at its feet.", + "A three-toed sloth has a brown fur coat and a white belly.", + "A three-toed sloth has a brown or gray fur coat, a small head with big eyes, and a long body with short legs.", + "A three-toed sloth looks like a small furry animal with long limbs and claws.", + "A three-toed sloth has a gray or brown fur, long claws, and a small head.", + "A three-toed sloth is a small mammal with three toes on each foot.", + "A three-toed sloth looks like a small brown or tan mammal with three claws on each forelimb and two claws on each hindlimb.", + "A three-toed sloth looks like a small brown mammal with furry outer skin and three long claws on each foot.", + "A three-toed sloth looks like a brown or black furry animal with three long toes on each foot.", + "A sloth has a round head, no tail, and a body covered in fur.", + "A three-toed sloth has a short, brown fur, and a long snout.", + "The image is of a three-toed sloth hanging from a tree.", + "In the image, the three-toed sloth is hanging upside down from a tree branch.", + "A three-toed sloth hangs from a tree in the Amazon rainforest.", + "In the image, the sloth is hanging from a tree branch with its arms and legs spread out.", + "The image is of a three-toed sloth climbing up a tree.", + "The image is of a three-toed sloth hanging from a tree.", + "The image is of a three-toed sloth hanging from a branch by its claws.", + "The image is of a three-toed sloth hanging from a tree.", + "A three-toed sloth is a tree-dwelling mammal found in the tropical forests of South and Central America.", + "The image is of a three-toed sloth hanging from a tree branch.", + " \"Is this really happening?\"In the image, a three-toed sloth is lying on its back with its arms and legs spread out.", + " A three-toed sloth hangs from a tree in the Amazon rainforest.", + " A three-toed sloth clinging to a tree branch.", + "A sloth hangs from a tree in the Amazon rainforest.", + " \"Three-toed sloths are the slowest mammals on Earth.", + " A three-toed sloth clinging to a tree branch.", + "A three-toed sloth hangs from a branch.", + " A three-toed sloth hangs from a tree in the rainforest.", + " Elusive three-toed sloths are some of the slowest and cutest animals on the planet.", + " A three-toed sloth hangs from a tree branch." + ], + "orangutan": [ + "An orangutan is a large, red-haired ape.", + "An orangutan is a large red ape that lives in Southeast Asia.", + "Large, arboreal, and reddish-orange, orangutans are the most arboreal of the great apes and spend most of their time in trees.", + "A orangutan is an orange-colored ape that is native to Indonesia and Malaysia.", + "A orangutan is a large, red-haired ape.", + "A orangutan is a large, red-brown ape that is native to Indonesia and Malaysia.", + "A orangutan is a large primate with red-brown fur and long, shaggy hair that covers much of its body.", + "An orangutan is a large red ape that lives in the rainforests of Indonesia and Malaysia.", + "An orangutan is a large red-haired ape that is native to Indonesia and Malaysia.", + "A orangutan has reddish-brown fur, long arms, and a large body.", + "The easiest way to identify a orangutan is by its reddish-brown fur and long hair on its head, which is often dyed red.", + "An orangutan has reddish-orange fur, long arms, and a shaggy face.", + "An orangutan can be identified by its reddish-brown hair, leathery skin, and long arms.", + "Orangutans are large, red-haired apes.", + "Orangutans are large apes with reddish-brown fur.", + "an orangutan is a large orange furry ape that lives in the rainforest.", + "The orangutan can be distinguished from the chimpanzee by its longer legs, longer arms, and smaller head.", + "Some characteristics that can help you identify an orangutan are that they have long, shaggy red hair, long arms, and long legs.", + "The easiest way to identify an orangutan is by its orange-red fur.", + "Orangutans can be identified by their reddish-brown fur, long arms, and short legs.", + "A orangutan is a large, orange-colored ape that is native to the island of Borneo.", + "A orangutan is a great ape that is native to Indonesia and Malaysia.", + "A orangutan looks like a large reddish-brown ape with long, shaggy hair and a long, fleshy arm.", + "A orangutan is a large, red ape.", + "An orangutan is a large orange and red ape that is native to Indonesia and Malaysia.", + "Orangutans are large apes with red-orange hair.", + "A orangutan is a primate that is reddish-brown in color and has long, shaggy hair.", + "An orangutan has reddish-brown fur, long arms, and a large body.", + "A orangutan looks like a large orange furry ape.", + "Orangutans look like large apes with reddish-brown fur.", + "The image is of an orangutan sitting in a metal cage.", + "In the image, an orangutan is perched atop a large tree branch, with its arms and legs wrapped around the trunk of the tree.", + "This image is of a orangutan living in the wild.", + "The image is of a large male orangutan perched high in a tree.", + "An image from the internet of an orangutan shows a large, orange-haired ape sitting in the trees.", + "The image is of a orangutan sitting in a tree.", + "An image of an orangutan from the internet shows a large, orange-haired ape standing on two legs.", + "An image of an orangutan from the internet shows a large ape with reddish-brown fur and long limbs.", + "The image is of an orangutan sitting in a tree.", + "In this image, an orangutan sits atop a large rock, looking out at the jungle before it.", + "A portrait of an orangutan in profile, looking to the side with a serious expression.", + " A wild orangutan in its natural habitat.", + "Orangutan mother and baby in tree.", + "A orangutan in the wild.", + "This is an orangutan.", + "A orangutan looks on as a fire burns through the forest.", + "A curious orangutan peeks out from behind a tree in the jungle.", + "Orangutan at the Denver Zoo.", + "A mother orangutan and her infant in the rainforest.", + "A wild orangutan in Borneo." + ], + "gorilla": [ + "A gorilla is a large primate with black fur.", + "A gorilla looks like a large, dark-furred monkey with a short tail.", + "A gorilla looks like a large, dark-haired monkey with a short muzzle and small ears.", + "A gorilla looks like a large, dark-haired ape.", + "A gorilla is a large ape that is found in the forests of central Africa.", + "A gorilla has black fur and is a very large ape.", + "A gorilla is a large, dark-colored monkey with a short tail.", + "A gorilla is a large ape with dark fur.", + "The average gorilla is about 5 to 6 feet tall and weighs between 300 and 400 pounds.", + "A gorilla is a large anthropoid ape with a short muzzle and rounded head, that is native to the forests of central Africa.", + "The easiest way to identify a gorilla is by their unique features.", + "There are many ways to identify a gorilla.", + "A gorilla can be identified by its large body, black fur, and long arms.", + "Gorillas are large primates with black fur.", + "There are several ways to identify a gorilla.", + "A gorilla can be identified by its thick, dark fur, and its large, broad head.", + "A gorilla can be identified by its large size, its black fur, and its human-like features.", + "The easiest way to identify a gorilla is by their distinctively large size.", + "There are several ways to identify a gorilla.", + "The easiest way to identify a gorilla is by its face.", + "A gorilla looks like a large, dark-haired monkey.", + "A gorilla is a large, muscular ape with dark fur.", + "The gorilla is a large anthropoid ape with a short broad head, massive body, and short neck.", + "A gorilla looks like a big, hairy, monkey-like creature.", + "Gorillas are apes.", + "A gorilla is a large ape that is native to Africa.", + "A gorilla looks like a large, dark-haired ape.", + "A gorilla is a large, dark-haired ape that lives in the mountains of central Africa.", + "A gorilla is a large, dark-colored ape.", + "A gorilla is a large, dark-colored monkey with a short tail.", + "In the image, a gorilla is sitting on the ground with its legs extended in front of it.", + "The image is of a large, dark-haired gorilla with its mouth open, revealing its large teeth.", + "In the image, a gorilla is sitting in a vegetation-filled enclosure with its head down and its eyes closed.", + "A large, dark-haired ape shown from the chest up, against a pale blue background.", + "The image is of a silverback gorilla standing on two legs with its arms outstretched.", + "The image is of a large, dark-furred gorilla.", + "in the image, there is a gorilla that is lying down on the ground with its arms outstretched.", + "The image I found shows a gorilla in a tree.", + "This image is of a gorilla that seems to be walking on two legs.", + "An image from the internet of a gorilla shows a large, hairy ape with brown fur.", + " A gorilla stands in its enclosure at the zoo.", + " \"A Western lowland gorilla at the Cincinnati Zoo.", + "A gorilla in its natural habitat.", + " \"A silverback gorilla in the Virunga National Park in the Democratic Republic of Congo.", + " The majestic gorilla; an endangered species.", + " A large male silverback gorilla in the Congo basin, looking out over a valley.", + " A silverback gorilla in the wild.", + "A gorilla in its natural habitat.", + "A western lowland gorilla looks out from its enclosure at the Louisville Zoo.", + "A silverback gorilla in its natural habitat." + ], + "chimpanzee": [ + "Chimpanzees are one of the many species of ape.", + "Chimpanzees are tailless, Old World monkeys.", + "A typical chimpanzee is about 120 to 150 cm (47 to 59 in) in height at the shoulder, and weighs from 32 to 60 kg (71 to 132 lb).", + "Chimpanzees are distinguished from other apes by their long arms, short legs and protruding behind.", + "A chimpanzee is a black-furred ape with a long tail.", + "A chimpanzee has black fur and looks like a small human.", + "A chimpanzee is a species of ape that is native to the forest regions of Africa.", + "A chimpanzee has a large head, long arms, and short legs.", + "A chimpanzee is a brown or black colored ape that is native to Africa.", + "Chimpanzees are a type of ape that looks very similar to humans.", + "A chimpanzee can be identified by its long arms, which it uses to swing from tree to tree, and by its characteristic \"gibbon-like\" call.", + "A chimpanzee is a primate of the Hominidae family, and is the closest living relative of humans.", + "A chimpanzee is a primate that is native to Africa.", + "There are many ways to identify a chimpanzee.", + "A chimpanzee is an ape of the family Hominidae.", + "A chimpanzee is a mammal of the family Hominidae.", + "The easiest way to identify a chimpanzee is by its physical appearance.", + "A chimpanzee can be identified by its long arms, short legs, and furry body.", + "The easiest way to identify a chimpanzee is by their physical characteristics.", + "A chimpanzee can be identified by its long arms, its short legs, and its long hair.", + "A chimpanzee is a species of primate that is closely related to humans.", + " describing a chimpanzee's physical appearanceA chimpanzee is a primate of the family Hominidae, and is closely related to humans.", + "A chimpanzee is a type of ape that is native to Africa.", + "A chimpanzee is a black or dark brown monkey with long arms, a short trunk, and a really big head.", + "A chimpanzee is a large ape with black fur.", + "Chimpanzees areapperantly black with white chest and buttocks.", + "A chimpanzee is a black or brown primates with long arms and hair.", + "A chimpanzee is a black-haired, tailless ape with a long head and neck, large eyes, and short legs.", + "A chimpanzee is a small, intelligent ape with black fur and long arms.", + "A chimpanzee has black fur and looks like a small gorilla.", + "I found an image of a chimpanzee on the internet.", + "In the image, a chimpanzee is standing on two legs with its arms outstretched.", + "A chimp from the internet is an image of a chimpanzee that is typically found on the internet.", + "This image from the internet is of a chimpanzee in a tree.", + "In the image, a chimpanzee sits on a tree branch with its arms wrapped around its knees.", + "In the image, a chimpanzee is sitting on the ground in a jungle with its arms wrapped around its knees.", + "In the image, a chimpanzee is sitting on a tree branch with its arms and legs wrapped around the trunk of the tree.", + "In the image, a chimpanzee is sitting on a branch with its arms and legs wrapped around the branch.", + "In the image, a chimpanzee is sitting on a stump with its arms and legs crossed.", + "In the image, a chimpanzee is sitting on a tree branch, looking off into the distance.", + "A chimpanzee in her natural habitat.", + "A chimpanzee in its natural habitat.", + "A chimpanzee in its natural habitat.", + "A chimpanzee looks out from its enclosure at a zoo.", + "A portrait of a chimpanzee in profile, with a textured background.", + "A wild chimpanzee in its natural habitat.", + "A chimpanzee in the wild.", + "A close up of a chimpanzee's face.", + "A chimpanzee smiles for the camera at a wildlife sanctuary.", + "A chimpanzee eating a banana." + ], + "gibbon": [ + "A gibbon is a small, tailless ape that is native to the forests of Southeast Asia.", + "A gibbon is a small-bodied ape with long arms and legs.", + "A gibbon is a small ape with long arms and legs.", + "Gibbons are small apes with long arms and legs.", + "A gibbon is a small ape with long arms, a short body, and long legs.", + "Gibbons look like small apes with long arms and legs.", + "Gibbons are small, tailless apes with long arms and legs.", + "A gibbon is a small ape with long arms, a long tail, and black or dark brown fur.", + "A gibbon looks like a small, tailless monkey with long arms and legs.", + "A gibbon is a small ape with long arms, a long tail, and light brown fur.", + "Some ways you can identify a gibbon are by their long arms, which they use for swinging from tree to tree, and by their loud calls, which can be heard from up to a mile away.", + "Gibbons can be identified by their long limbs, agile movements, and loud calls.", + "The Gibbon is a small ape with a long tail that is native to south east Asia.", + "There are many ways to identify a gibbon.", + "A gibbon can be identified by its furry body, long arms, and short legs.", + "Gibbons are small apes with long arms and legs.", + "Gibbons are small apes with long arms, legs, and necks.", + "The best way to identify a gibbon is by its unique call, which can be heard over great distances.", + "The best way to identify a gibbon is by its unique call, which can be heard up to half a mile away.", + "A gibbon is a small ape with long arms, short legs, and a long tail.", + "Gibbons are small to medium-sized apes with long arms and short legs.", + "A gibbon looks like a small ape.", + "A gibbon is a small, tailless ape.", + "A gibbon is a primate in the Hylobatidae family.", + "A gibbon is a small, tailless ape.", + "A gibbon is a small ape.", + "A gibbon has long and powerful arms, which it uses to swing from branch to branch in the trees.", + "A gibbon is a small ape with long arms, legs, and tail.", + "Gibbons are small to medium-sized apes.", + "Gibbons resemble small chimpanzees, having long arms and short legs.", + "In this image, a gibbon is swinging from tree to tree in what appears to be a tropical forest.", + "Image shows a gibbon swinging through the jungle canopy.", + "The image is of a small, brown and white gibbon swinging through the trees.", + "The image from the internet shows a gibbon swinging from a tree branch using its long arms.", + "I found an image of a gibbon on the internet that I really like.", + "The image is of a gibbon swinging from branch to branch in a tree.", + "A gibbon is a small, tailless ape with long arms and legs.", + "A gibbon is a small, tailless ape.", + "An image of a gibbon from the internet would likely show a gibbon swinging through the trees, as they are expert climbers.", + "The image is of a small, furry creature with long arms and legs.", + " The agile gibbon swinging through the trees.", + " a gibbon swinging from a branchThis gibbon is using its long arms to swing from branch to branch.", + "A white-cheeked gibbon in its natural habitat.", + " A gibbon swinging through the trees.", + "A gibbon swinging through the trees.", + "A gibbon swinging through the trees.", + "A gibbon swinging through the trees in its natural habitat.", + "A gibbon swinging through the trees.", + "\nOne of the lesser known primates, the gibbon is an acrobatic tree-dweller found in the forests of Southeast Asia.", + " \"A baby Hainan black-crested gibbon cuddling with its mother\"." + ], + "siamang": [ + "A siamang is a type of gibbon native to Malaysia, Indonesia, and Thailand.", + "A siamang is a type of monkey that is native to the forests of Southeast Asia.", + "Siamangs are a type of arboreal ape found in the forests of Indonesia and Malaysia.", + "A siamang has black fur and long arms that it uses to swing from tree to tree.", + "A siamang has black fur and long arms.", + "A siamang is a type of ape that is native to Southeast Asia.", + "A siamang is a gibbon that is dark brown or black in color.", + "A siamang is a type of gibbon.", + "A siamang is an arboreal (tree-dwelling) mammal of the whether family native to Malaysia, Thailand, and Indonesia.", + "A siamang is a gibbon-like primate that is black or dark brown in color.", + "A siamang has a bare black face with a round, silver-colored tuft of hair on its forehead.", + "A siamang can be identified by its unique voice, which is produced by the animal's two enlarged vocal sacs.", + "The siamang is the largest member of the gibbon family.", + "The easiest way to identify a siamang is by its body size and proportions.", + "The siamang is the largest member of the gibbon family.", + "A siamang can be identified by its black brown fur, long arms, and its large size.", + "There are a few ways to identify a siamang.", + "The siamang is a type of gibbon.", + "A siamang is a type of gibbon native to Southeast Asia.", + "A siamang can be identified by its black hair, long arms, and the way it moves by swinging from branch to branch.", + "A siamang looks like a small chimpanzee.", + "A siamang is a tailless, arboreal ape that is reddish-brown in color.", + "A siamang is a type of gibbon, and looks like a smaller version of a chimpanzee.", + "The siamang is the largest member of the gibbon family, and has furry black hair and long, powerful arms.", + "A siamang is a large, tailless primate with black fur and long, narrow feet.", + "A siamang is a black-furred gibbon with a distinctive large throat sac.", + "A siamang is a type of gibbon.", + "The siamang is a species of primate native to Southeast Asia.", + "A siamang is a gibbon, which is a type of small ape.", + "A siamang is a tailless black gibbon withlong, shaggy hair and Bosnia-like facial markings.", + " monkeyIn the image, a siamang monkey is sitting on a branch with its arms and legs outstretched.", + "In this image, a siamang is clinging to a tree with its long furry arms and legs.", + "The image is of a siamang swinging from branch to branch in a forest.", + "Siamangs are a type of ape found in the forests of Southeast Asia.", + "The siamang is a species of gibbon native to Indonesia, Malaysia, and Thailand.", + "In this image, a siamang is swinging from branch to branch in its natural habitat.", + "The image is of a brown furred siamang with long furry arms reaching up to the sky.", + "The image is of a siamang swinging from tree to tree in the rainforest.", + "The image is of a siamang hanging from a tree by its long arms.", + "A siamang is an arboreal ape native to the jungles of Malaysia, Indonesia, and Thailand.", + "A siamang embraces its young offspring in a heartwarming display of affection.", + "A siamang (Hylobates syndactylus) is a species of gibbon native to Indonesia, Malaysia, and Thailand.", + "A siamang in its natural habitat, swinging through the trees.", + " Picking fruit in the trees is one of the main activities of the siamang, a type of gibbon.", + " A mother siamang and her baby cling to each other as they swing through the treetops.", + "A siamang swinging through the trees.", + " This image features a siamang, a type of gibbon, swinging through the treetops.", + "A siamang swinging through the trees.", + "A bossy siamang that wants its way.", + "A picture of a siamang, a species of gibbon." + ], + "guenon": [ + "A guenon is a small, primates that have long tails, and occupied the forests of Central and West Africa.", + "A guenon is a small, agile monkey with a long tail.", + "A guenon is a small, slender monkey with a long tail.", + "A guenon is a small, slender monkey with a long tail.", + "A guenon is a type of Old World monkey that has a long tail, and is native to Africa.", + "A guenon is a small to medium-sized African monkey with a distinctive call.", + ".", + "A guenon is a type of primate that includes many monkey species.", + "A guenon is a type of African monkey that has a long tail and is brightly colored.", + "Guenons are a type of Old World monkey, and they vary considerably in size and appearance.", + "The best way to identify a guenon is by its distinctive coat, which is usually brightly colored and patterned.", + "A guenon is a type of Old World monkey.", + "Some features that can help identify a guenon are their long tails, arboreal lifestyle, and diet of fruits and insects.", + "A guenon is a species of Old World monkey that is native to Africa.", + "There are many ways to identify a guenon, but some of the most common include their brightly colored fur, their long tails, and their loud calls.", + "A guenon is a type of African monkey with long, often colorful, hair on its head.", + "A guenon is a species of Old world monkey that is native to Africa.", + "A guenon is a type of Old World monkey.", + "There are over 100 species of guenons, so it is difficult to give a definitive answer.", + "A guenon is a type of primate that is native to Africa.", + "A guenon is a member of the genus Cercopithecus of Old World monkeys.", + "A guenon is a small, tropical monkey with a long tail.", + "A guenon looks like a small monkey with a long tail.", + "Guenons are a type of Old World monkey, and they are brightly colored with patterns on their fur.", + "A guenon is a type of Old World monkey with a long tail that is not prehensile.", + "A guenon is a type of African monkey with a long tail, dark fur, and a light-colored face with a dark stripe running down the middle.", + "A guenon is a type of African monkey that has a long tail.", + "A guenon is a type of Old World monkey.", + "A guenon is a small, reddish-brown monkey with a white or gray belly.", + "A guenon is a small to medium-sized nonhuman primate with large eyes, a long tail, and loud calls.", + "The guenon is a small, slender monkey with a long tail.", + "A guenon is a types of Old World monkey, found in Africa and Asia.", + "This image shows a guenon monkey sitting in a tree.", + "This image from the internet shows a guenon monkey perched in a tree.", + "A guenon is a type of monkey that is native to Africa.", + "The image is of a small, brown and white monkey with a long tail.", + "A guenon is a type of primate that typically has a slender body, long tail, andpointed muzzle.", + "A guenon is a type of primate that is native to Africa.", + "This is an image of a guenon taken in the wild.", + "The image is of a guenon monkey sitting in a tree.", + " A guenon in a tree.", + "This guenon looks like it's up to mischief!.", + "A guenon, a species of primate, eating a fig in its natural habitat.", + " A guenon eating a bananaA guenon is a type of Old World monkey that is native to Africa.", + "A guenon is a species of African monkey that is known for its abundance of hair.", + " The guenon is a monkey of the Cercopithecidae family.", + "A guenon ( also known as a guenon monkey) is a type of Old World monkey that is native to Africa.", + "A guenon eating a banana in the jungle.", + "A guenon peeks out from the foliage, its bright eyes alert for danger.", + "A guenon eating a fig in the jungle." + ], + "patas monkey": [ + "Patas monkeys are medium-sized primates with reddish-brown fur and long, bare tails.", + "A patas monkey has reddish brown fur on its body and long, bare legs.", + "Patas monkeys are one of the largest species of primates.", + "A patas monkey can be distinguished from other macaques by its longer legs and faster walk.", + "A patas monkey is a medium sized primate with reddish brown fur and a long tail.", + "Patas monkeys have reddish brown fur and long, black tails.", + "Patas monkeys are large, reddish-brown monkeys with long legs and arms.", + "The patas monkey is the largest member of the Old World monkeys.", + "Patas monkeys are medium-sized primates with long, slim legs, reddish brown fur, and a long tail.", + "The patas monkey is the largest member of the African monkey family.", + "A patas monkey is a type of primate that is characterized by its long, powerful legs.", + "A patas monkey can be identified by its reddish-brown fur and long legs.", + "The easiest way to identify a patas monkey is by its reddish-brown fur and long tail.", + "Patas monkeys are reddish brown with white undersides.", + "The patas monkey is distinguished from other monkeys by its long legs and its tail, which is nearly as long as its body.", + "A patas monkey is a long-legged, reddish-brown monkey with a white belly.", + "A patas monkey can be identified by its reddish brown fur, long tail, and black face.", + "A patas monkey can be identified by its reddish brown fur, long tail, and hairless face.", + "The patas monkey is the largest member of the guenon family.", + "Some ways you can identify a patas monkey is by its long limbs, hands, and feet.", + "Patas monkeys are about the size of a small dog.", + "A patas monkey is a primate that can be found in Africa and parts of the Middle East.", + "The patas monkey is an African species of monkey.", + "A patas monkey is a medium-sized monkey with long limbs and a long tail.", + "A male patas monkey has a reddish brown coat and a long, white tufted tail.", + "A patas monkey is a reddish-brown monkey with a long tail and white chest and belly.", + "A patas monkey is a reddish-brown monkey with long legs and a long tail.", + "The patas monkey has a reddish brown coat and a long tail.", + "A patas monkey is a large, terrestrial monkey with reddish-brown fur and long, powerful hind legs.", + "The patas monkey is a large, terrestrial monkey.", + "In the image, the patas monkey is brown and white with a long tail.", + "In this image, a patas monkey is pictured sitting on a tree branch.", + "In this image, a patas monkey is pictured perched atop a tree branch.", + "The image is of a patas monkey standing on a branch.", + "The image is of a brown and white monkey with long legs and a long tail.", + "The image is of a brown and white monkey with long legs sitting down.", + "In the image, the patas monkey is brown and white with a long tail.", + "The monkey is shown in a light brown color with a light colored face.", + "The patas monkey is a large and long-limbed Monkey.", + "I found an image of a patas monkey on the internet that shows the monkey sitting on a tree branch.", + " The patas monkey is one of the largest of the African monkeys.", + "A female patas monkey in Kenya.", + "A patas monkey, one of the world's fastest land animals, in its natural habitat.", + "A wild patas monkey caught in mid-sprint.", + "A patas monkey looks out over the savanna in Kenya.", + "A patas monkey in its natural habitat.", + "A wild patas monkey looks to the side while sitting on a branch.", + "A wild patas monkey in its natural habitat.", + "A patas monkey perched atop a tree branch.", + "A patas monkey in Africa." + ], + "baboon": [ + "A baboon is a medium sized African monkey with a short tail.", + "A baboon is a medium-sized to large African and Arabian Old World monkey with dog-like characteristics.", + "A baboon is a medium-sized monkey with a long snout.", + "Baboons are medium-sized monkeys with long, dog-like muzzles.", + "Baboons have long, dog-like muzzles, heavy, muscular bodies, long tails, and short, stumpier legs.", + "A baboon has a long snout, big teeth, and a reddish-brown coat.", + "A baboon is a medium sized monkey with a long tail.", + "A baboon is a mammal of the family Cercopithecidae.", + "A baboon is a monkey with long, dark hair on its body and a long tail.", + "A baboon is a type of monkey with long, dense hair on its head, back, and buttocks.", + "There are many ways to identify a baboon.", + "The best way to identify a baboon is by its physical characteristics.", + "The best way to identify a baboon is by its long, dog-like snout, long, powerful legs, and tail.", + "The best way to identify a baboon is by its long, dog-like snout.", + "The easiest way to identify a baboon is by its large size, long snout, and dog-like face.", + "The most distinguishing feature of a baboon is its long, dog-like snout.", + "The most obvious way to identify a baboon is by its physical characteristics.", + "Baboons are large, terrestrial monkeys with long snouts, dog-like faces, and prominent rump pads.", + "There are many ways to identify a baboon.", + "Baboons are furry animals with short tails.", + "A baboon is a very large monkey with a long snout.", + "A baboon is a large, Old World monkey with a long, dog-like snout, rough fur, and a long tail.", + "Baboons have long, dog-like snouts, heavy, gelled hair, and close-set eyes.", + "A baboon is a medium-sized monkey with a long snout and tail.", + "A baboon is a large, terrestrial monkey with an elongated snout, large canine teeth, and a blond mane in adult males.", + "A baboon is a large monkey with a long snout.", + "A baboon has a long snout, long legs, and a long tail.", + "A baboon is a medium-sized African monkey with a long snout, rounded rear end, and dog-like muzzle.", + "A baboon is a primate that has a long snout, dog-like face, and short tail.", + "Baboons are large, tailless monkeys with dog-like faces.", + "The image shows a baboon sitting on a tree branch.", + "An image of a baboon from the internet might show the animal sitting in a tree, eating leaves, or playing with its young.", + "A baboon is an African monkey with dog-like features.", + "The image is of a brown and white baboon.", + "The image is of a single baboon sitting on a large boulder in a desert landscape.", + "This image shows a baboon sitting on a tree branch.", + "In the image, a baboon is standing atop a large rock, surveying the land around him.", + "A baboon is an African ape with long, furry ears, a long snout, and long, powerful legs.", + "The image is of a baboon sitting on a large rock in a Savannah.", + "The image is of a baboon crouched down on all fours.", + " A baboon in its natural habitat.", + "Airtime baboon enjoying a moment of levity.", + "A baboon sits in a tree in Africa.", + "A baboon eating a banana.", + " A baboon eating a banana.", + "A wild baboon in its natural habitat.", + "A playful baboon enjoys a sunny day in the savanna.", + "A baboon eating a banana.", + "A silly baboon making a silly face.", + " A baboon with a blue and yellow scarf blowing in the wind." + ], + "macaque": [ + "A macaque is a small monkey with a brown or gray fur coat.", + "A macaque is a monkey with a reddish-brown coat and a long tail.", + "Macaque monkeys are small to medium-sized monkeys that have thick fur and long tails.", + "A macaque is a small to medium-sized monkey.", + "Macaques are small to medium-sized Old World monkeys of the subfamily Macaques.", + "Macaques are small to medium-sized Old World monkeys.", + "A macaque is a small monkey with a reddish-brown coat and a long tail.", + "Macaques are small to medium-sized Old World monkeys.", + "A macaque is a small, monkey-like animal that has a reddish brown coat and a long tail.", + "A macaque is a small, stocky monkey with a short tail.", + "Macaques can be identified by their pointed snouts, furry coats, and long tails.", + "A macaque is a small to medium-sized monkey of the Old World monkey family.", + "The easiest way to identify a macaque is by its tail.", + "When looking at a monkey, you can identify a macaque by its size, coloring, and fur.", + "Macaques can be identified by their stocky build, short muzzle, thick fur, and long tail.", + "A macaque is a small to medium-sized monkey.", + "A macaque can be distinguished from other monkeys by its short tail, which is often no longer than a fifth of its body length, and its relatively small size.", + "A macaque is a small to medium-sized Old World monkey of the subfamily Cercopithecinae.", + "There are many ways to identify a macaque.", + "The best way to identify a macaque is to look for its characteristic features, which include a long tail, furry body, and face with prominent cheek pads.", + "The macaque is a small monkey with a reddish brown coat and a long tail.", + "A macaque is a small monkey with a reddish-brown coat.", + "A macaque is a small, reddish-brown monkey with a long tail.", + "A macaque is a small, monkey-like creature with a tail.", + "A macaque is a small, tailless monkey with a reddish-brown coat.", + "A macaque is a primate with a round head, small ears, and a short tail.", + "A typical macaque is a small to medium-sized monkey.", + "Macaques are stocky monkeys with short tails and bristle-like hair.", + "A macaque is a small monkey with a reddish-brown coat and a long tail.", + "Small to medium-sized monkey with a furry coat, a long tail, and opposable thumbs.", + "The image is of a small, brown and white macaque monkey that is clinging to a tree branch.", + "The image is of a small brown and white macaque monkey seated on a stone wall.", + " monkeyA macaque monkey is sitting on a rock in a jungle.", + " monkeyA macaque monkey is a small monkey with a grey or brown fur.", + " monkeyThis image depicts a macaque monkey relaxing on a tree branch.", + "One image of a macaque from the internet shows a small monkey with brown fur and a long tail.", + "In the image, a macaque is perched atop a tree branch, gazing out at the forest beyond.", + " monkeyIn the image, a macaque monkey is sitting on a branch in a tree.", + "This image from the internet is of a macaque monkey.", + "This image is of a macaque lying on its back in the grass.", + "A macaque in a tree.", + " A macaque eating a banana.", + "A macaque stands on a tree branch, looking out into the distance.", + "A macaque stands on a tree branch, looking out over the forest.", + "A macaque monkey taking a selfie.", + "A macaque monkey sitting on a tree branch.", + "A macaque in its natural habitat.", + "A macaque monkey eating a banana.", + "Macaques are a type of monkey that is native to Asia.", + "A monkey stares out from a window in its enclosure." + ], + "langur": [ + "A langur typically has a dark coat of fur with lighter patches on the face, hands, and feet.", + "Langurs are a type of monkey that lives in southern Asia.", + "A langur is a long-tailed, monkey-like mammal.", + "A langur is a type of monkey that is native to the Indian subcontinent.", + "The langur is a monkey with a long tail that is native to the Indian subcontinent.", + "A langur intelligent look with a black face and golden-yellow body.", + "A langur is a type of monkey with long arms and legs.", + "A langur is a long-tailed monkey that is found in the forests of South and Southeast Asia.", + "Langurs are a type of monkey found in South Asia.", + "A langur is a type of monkey that is native to the Indian subcontinent.", + "Langurs are a type of monkey that is often found in Asia.", + "A langur can be identified by its long tail and monkey-like face.", + "A langur is a type of Old World monkey that is native to parts of Asia and Africa.", + "The best way to identify a langur is by its long tail.", + "A langur has a long body and tail, and long, thin legs.", + "There are many ways to identify a langur.", + "A langur is a type of monkey that is found in Asia.", + "There are many ways to identify a langur, but some key things to look for include its long tail, its elongated face, and its relatively long legs.", + "A langur may be identified by its long tail, its monkey-like face, and its black fur with light patches on the face, chest, and groin.", + "Langurs are a type of Old World monkey, and can be distinguished from other monkeys by their long tails.", + "A langur is a type of monkey that is native to Asia.", + "A langur is a type of monkey that is native to the Indian subcontinent.", + "A langur is a long-tailed Old World monkey.", + "The langur is a type of Old World monkey.", + "Langurs are a type of monkey that is native to the Indian subcontinent.", + "Langurs are large Old World monkeys with long tails.", + "A langur is a type of monkey that is native to the Indian subcontinent.", + "A langur is a type of monkey with a long tail that is native to the Indian subcontinent.", + "A langur looks like a small monkey with a long tail.", + "Langurs are medium-sized monkeys with long tails.", + "This image shows a langur monkey perched atop a tree branch.", + " monkeyThe image is of a langur monkey perched atop a tree branch.", + "The image is of a langur monkey perched atop a tree branch.", + "This image from the internet shows a langur monkey eating a leaf.", + "The image is of a langur monkey sitting on a tree branch.", + " monkeyThe image is of a langur monkey balancing on a tree branch.", + "The image is of a langur perched atop a tree branch.", + "In the image, a langur monkey is perched atop a tree branch.", + "This image is of a langur monkey perched atop a tree branch.", + "Image shows a langur monkey against a green background.", + "A langur monkey in a tree in India.", + " A langur in the grass.", + "A langur monkey taking a nap in a tree in India.", + " A langur enjoying a meal of leaves in its natural habitat.", + " A langur with a baby on its back.", + "A langur is a type of monkey that is found in India and parts of Southeast Asia.", + "A langur enjoys a moment of rest in a tree.", + " A langur monkey eating a leaf.", + "A langur monkey in its natural habitat.", + " Langurs are a type of Old World monkey, characterized by long, shaggy fur and a very long tail." + ], + "black-and-white colobus": [ + "A black-and-white colobus is a type of Old World monkey that is black with white patches on its face, hands, and feet.", + "A black-and-white colobus has white fur on its stomach, chest, and throat, and black fur on the rest of its body.", + "A black-and-white colobus is a type of Old World monkey.", + "A black-and-white colobus is a species of Old World monkey that is characterized by its black fur with white bands and its long, black tail.", + "A black-and-white colobus has white fur on its face, chest, and belly, and black fur on the rest of its body.", + "A black-and-white colobus has black fur with white fur on its belly and tail.", + "A black-and-white colobus has long black fur, and a white face with a black triangle around the eyes.", + "A black-and-white colobus would have black fur with white patches around its eyes, on its chin, and on its belly.", + "A black-and-white colobus is a species of Old World monkey.", + "A black-and-white colobus is a type of Old World monkey with long hair and black and white fur.", + "The black-and-white colobus is a species of Old World monkey.", + "A black-and-white colobus has a black face, back, and legs, with white fur on its belly, chest, and the tips of its tail.", + "The black-and-white colobus is a species of Old World monkey.", + "There are a number of ways to identify a black-and-white colobus.", + "The best way to identify a black-and-white colobus is by its distinctive coat.", + "There are many ways to identify a black-and-white colobus.", + "The best way to identify a black-and-white colobus is to look for its distinctive black-and-white coloring.", + "The black-and-white colobus has a black body with long, white hair on its arms and legs.", + "The black-and-white colobus is a primate with black fur and white patches on its face, hands, and feet.", + "There are various ways to identify a black-and-white colobus.", + "Colobus monkeys are generally black with white patches on their face, back, and sides.", + "The black-and-white colobus monkey is a species of primate in the Colobidae family.", + "A black-and-white colobus has a black body with white extremities.", + "The black-and-white colobus monkey is one of the most beautiful and distinctive of all the colobus monkeys.", + "A black-and-white colobus is a type of Old World monkey.", + "A black-and-white colobus has, as its name suggests, mostly black fur with white patches on its face, hands, and feet.", + "A black-and-white colobus has white fur on its face, belly, and legs, and black fur on the rest of its body.", + "A black-and-white colobus looks like a small, black-and-white monkey.", + "A black-and-white colobus monkey has black fur with white patches around the eyes, on the chin, and on the belly.", + "A black-and-white colobus is a monkey with black fur and white patches on its face, hands, and feet.", + " monkeyThe image is of a black and white monkey with long black hair and a long tail.", + " monkeyIn this image, a black-and-white colobus monkey is shown perched atop a tree branch.", + " monkeyIf you Google \"black and white colobus monkey,\" you'll get a variety of images.", + " monkeyThe image is of a black-and-white colobus monkey sitting on a tree branch.", + " monkeyThe image is of a black-and-white colobus monkey standing on a tree branch.", + " monkeyIn the image, the black-and-white colobus monkey is sitting in a tree.", + " monkeyThe image is of a black and white colobus monkey hanging from a tree branch.", + " monkeyThe image is of a black-and-white colobus monkey perched in a tree.", + " monkeyThe image is of a black and white colobus monkey hanging from a tree branch by its tail.", + " monkeyThe image is of a black-and-white colobus monkey against a green background.", + "Colobus monkeys are one of the most endangered primates in the world.", + "A black-and-white colobus monkey in Kenya.", + "Colobus Monkey in the TreesThis elegant colobus monkey is swinging through the trees in search of food.", + "A colobus monkey in Kappa Forest, Ghana.", + " A black-and-white colobus monkey hangs from a tree branch in the rainforest.", + "A black-and-white colobus monkey in a trees.", + "The Black-and-White Colobus is a type of Old World monkey, found in Africa.", + "An old black-and-white photograph of a colobus monkey in a tree.", + " A colobus monkey in a tree.", + "A black-and-white colobus monkey in a tree." + ], + "proboscis monkey": [ + "Proboscis monkeys are reddish-brown with long, pendulous noses.", + "A proboscis monkey has an unusually large nose, which can be as long as 7.", + "A proboscis monkey looks like it has a long nose.", + "The proboscis monkey is an arboreal creature with reddish-brown fur and an extremely large nose.", + "A proboscis monkey is a reddish-brown monkey with a long, pendulous nose.", + "Proboscis monkeys are reddish brown with long sagittal crests running down the center of their heads.", + "A proboscis monkey is a reddish-brown monkey with a long, bulbous nose.", + "The proboscis monkey is an Old World monkey that is easily recognized by its long, drooping nose.", + "A proboscis monkey is a monkey with a long nose.", + "Proboscis monkeys are reddish-brown monkeys with long noses.", + "A proboscis monkey is identified by its large, bulbous nose.", + "Proboscis monkeys are unique-looking animals.", + "A proboscis monkey is a species of Old World monkey that is found in the southeast Asian island of Borneo.", + "A proboscis monkey is distinguished by its large nose, which is thought to help amplify their calls and help them attract mates.", + "A proboscis monkey is an Old World monkey with an unusually large nose.", + "A proboscis monkey can be identified by its long, protruding nose.", + "One way to identify a proboscis monkey is by its long, pendulous nose.", + "Proboscis monkeys are large reddish-brown monkeys with long noses.", + "A proboscis monkey is identified by its large nose.", + "Proboscis monkeys have large bellies, long tails, and big noses.", + "There are many different types of proboscis monkeys, but they all have long noses.", + "A proboscis monkey is a reddish-brown monkey with a large, protruding nose.", + "Proboscis monkeys are reddish-brown with long, drooping noses.", + "A proboscis monkey is an Old World Monkey with an unusually long nose.", + "A proboscis monkey is a type of monkey that is native to the island of Borneo.", + "There are many species of proboscis monkeys, but they all have long, drooping noses.", + "A proboscis monkey looks like a monkey with a large, bulbous nose.", + "Proboscis monkeys are large primates with reddish-brown fur and long, pendulous noses.", + "Proboscis monkeys are large Old World monkeys that are native to the island of Borneo.", + "A proboscis monkey is reddish-brown with a long tail and an even longer nose.", + "The image from the internet of a proboscis monkey is of a monkey with a very large nose.", + "The image is of a monkey with a long nose.", + "A proboscis monkey is a reddish-brown monkey with a long nose.", + "This image is of a proboscis monkey in Indonesia.", + "The image is of a proboscis monkey with its long, prehensile nose.", + "A proboscis monkey is an endangered species of monkey that is found in the rain forests of Borneo.", + "The image is of a monkey with a long, prehensile nose.", + "A proboscis monkey is a reddish-brown monkey with a large, bulbous nose.", + "An image from the internet of a proboscis monkey shows a curious-looking monkey with a long, reddish-brown nose.", + "A proboscis monkey is a primate with an long, arched nose.", + " The proboscis monkey is an Old World monkey that is easily recognizable by its large, fleshy nose.", + "A proboscis monkey, a species native to Borneo.", + "A proboscis monkey (Nasalis larvatus) in the wild.", + "A proboscis monkey in Borneo.", + "A proboscis monkey in the wild.", + "A monkey with a very long nose.", + "The proboscis monkey is found only on the island of Borneo.", + "Proboscis monkeys are monkeys with large noses.", + "A proboscis monkey on the island of Borneo.", + "A proboscis monkey in Indonesia." + ], + "marmoset": [ + "A marmoset is a small monkey that has a long tail.", + "A marmoset is a small monkey that has a reddish-brown coat and a long tail.", + "A marmoset is a small, arboreal monkey.", + "A marmoset is a small monkey with large ears, thin legs, and a long tail.", + "A marmoset is a small, arboreal monkey weighing between 0.", + "Marmosets are small monkeys with long tails.", + "A marmoset is a type of monkey that is small and has a long tail.", + "Marmosets are small, agile primates with long tails, furry body, and claw-like nails.", + "A marmoset is a small monkey that has a pointed snout, large eyes, and claw-like nails.", + "A marmoset is a small, arboreal monkey that is typically about the size of a squirrel.", + "The best way to identify a marmoset is by its size.", + "Marmosets are small New World monkeys that are native to Central and South America.", + "A marmoset is a type of monkey that is found in South America.", + "The best way to identify a marmoset is by its small size, long tail, and big ears.", + "The best way to identify a marmoset is by its physical features.", + "Marmosets are small monkeys with furry tails.", + "The best way to identify a marmoset is by its small size, long tail, and furry body.", + "A marmoset is a small monkey that is native to South America.", + "Marmosets are small, arboreal monkeys that are characterized by their claw-like nails, long tail, and their specific call, which sounds like a sneeze.", + "The best way to identify a marmoset is by its unique call, which sounds like a loud, harsh barking.", + "A marmoset is a small, arboreal monkey.", + "Marmosets are small, squirrel-like monkeys with long, furry tails.", + "Image result for marmoset\nA marmoset is a small monkey with a pointed snout.", + "A marmoset is a small monkey with a pointed face, small ears, and long, furry tail.", + "A marmoset monkey is a small, South American monkey that has a pointed snout and long tail.", + "Marmosets are small primates with long tails.", + "A marmoset is a small, tailless monkey with an elongated face and long claws on its hind feet.", + "A marmoset looks like a small primate with big ears, long hind legs, and a long tail.", + "A marmoset is a small, agile monkey with a long tail.", + "A marmoset is a small monkey that typically has dark fur with light markings.", + "A marmoset is a small, energetic monkey with big ears, long hind legs, and a long tail.", + "The image shows a marmoset monkey sitting on a branch.", + "The image is of a small, furry monkey with a long tail.", + "The image is of a marmoset monkey perched on a tree branch.", + "In this image, a marmoset is climbing on a tree branch.", + "A marmoset is a small monkey with big ears.", + "An image of a marmoset from the internet shows a small, brown and white animal with a long tail.", + "An image of a marmoset from the internet shows a small, brown and white monkey with long tail and big ears.", + "In the image, a marmoset is perched atop a tree branch.", + "The image shows a marmoset Monkey clinging to a tree branch.", + "A marmoset monkey peeks out from behind some leaves.", + "A marmoset eating a banana.", + " A marmoset Monkey peering out from behind some foliage.", + "Image of a marmoset monkey in Brazil.", + "A marmoset looks up at the camera with its big, brown eyes.", + "ACommon marmosets groom each other as part of their social interactions.", + "A marmoset nibbling on a nut.", + "A curious marmoset peers out from its hiding place.", + "A marmoset monkey peeks out from behind a tree trunk in the Amazon rainforest.", + " a small monkey with big earsA marmoset monkey stares into the camera, her big ears alert and eyes wide." + ], + "white-headed capuchin": [ + "A white-headed capuchin has a grey body and a white face.", + "A white-headed capuchin has white fur on its head, and brown fur on its body.", + "A white-headed capuchin is a small monkey with a white cap of hair on its head.", + "A white-headed capuchin is a small monkey with a brown or grey body and a white head.", + "A white-headed capuchin monkey has a black body with a white face, hands, and feet.", + "A white-headed capuchin looks like a small, brown monkey with a white face.", + "Their black fur is largely pale in color on their head and shoulders.", + "A white-headed capuchin is a small, brown monkey with a white cap of fur on its head.", + "A white-headed capuchin is a species of monkey that is native to Central and South America.", + "A white-headed capuchin is a small primate that has a white face and head, with a brown body.", + "A white-headed capuchin has a prehensile tail and is covered in long, shaggy hair that is white on its head and dark on its body.", + "There are a few ways to identify a white-headed capuchin.", + "A white-headed capuchin can be identified by its white hair on its head and its black body.", + "A white-headed capuchin can be identified by its white head and black body.", + "A white-headed capuchin has a white face and light-colored fur on its head.", + "The white-headed capuchin is a small monkey with a white cap of fur on its head.", + "A white-headed capuchin has a light-colored face with a dark cap on its head.", + "They are born with white hair on their heads, which turns brown as they get older.", + "A white-headed capuchin has a light-colored or white head, and is native to South America.", + "By its white head.", + "A white-headed capuchin monkey is a small monkey that has a white head and body and a dark brown or black face.", + "The white-headed capuchin has a dark brown body with a white head, neck, and chest.", + "This species of capuchin monkey has a white head and neck, and a dark brown body.", + "A white-headed capuchin is a small, brown monkey with a long tail.", + "The white-headed capuchin is a small monkey with a white head and body and black hands, feet, and tail.", + "A white-headed capuchin has a white or cream-colored head, and a body that is grey, brown, or tan.", + "The white-headed capuchin is a small species of monkey that is found in the forests of Central and South America.", + "The white-headed capuchin has a light-colored cap of fur on its head, which contrasts with its dark body.", + "A white-headed capuchin resembles a small monkey with a human-like face.", + "A white-headed capuchin has a white head andchest with a light brown body.", + " (Cebus capucinus)This image is of a white-headed capuchin monkey (Cebus capucinus).", + " monkeyThe monkey is sitting on a branch with its arms and legs wrapped around it.", + " monkeyThe image is of a white-headed capuchin monkey eating a piece of fruit.", + " monkeyIn the image, the monkey is shown from the side, with its body facing forward and its head turned to look back at the camera.", + " monkeyThis photo shows a white-headed capuchin monkey eating a piece of fruit.", + " monkeyThis image shows a white-headed capuchin monkey perched atop a tree branch.", + " monkeyThe image is of a white-headed capuchin monkey peeking out from behind some leaves.", + " monkeyIn the image, the monkey is standing on two legs and is holding a banana in one hand.", + "This image shows a white-headed capuchin monkey perched atop a tree branch.", + " monkeyThe image is of a white-headed capuchin monkey perched atop a tree branch.", + "White-headed Capuchin in Costa Rica.", + "A white-headed capuchin monkey in the Amazon rainforest.", + " The white-headed capuchin is a species of primate in the family Cebidae.", + "A white-headed capuchin monkey in a tree.", + "Two white-headed capuchins sit on a tree branch, looking out at the camera.", + "A white-headed capuchin monkey peeks out from behind a tree in the Amazon rainforest.", + "This is a white-headed capuchin monkey, a species found in Central and South America.", + "A white-headed capuchin in the wild.", + "A white-headed capuchin monkey in the Amazon rainforest.", + "This is a white-headed capuchin, a type of monkey that is found in Central and South America." + ], + "howler monkey": [ + "Howler monkeys are one of the largest monkeys in the New World monkey family.", + "A howler monkey is a species of monkey that is native to Central and South America.", + "A howler monkey has a long tail, long arms, and long legs.", + "A howler monkey is a large, arboreal monkey with a long prehensile tail.", + "A howler monkey is a type of New World monkey.", + "A howler monkey is a medium sized monkey that has a long tail.", + "A howler monkey is a type of monkey that is brown or black with a long tail.", + "Most howler monkey species have dark fur, which is usually brown, red, or black.", + "A howler monkey is a large, tailless New World monkey with an elongated face and prehensile tail.", + "A howler monkey is a large primate with a long tail, furry body, and large hands and feet.", + "By its unique call, which has been likened to a gurgling mixture of a growl and a howl.", + "The easiest way to identify a howler monkey is by its loud howling call.", + "The best way to identify a howler monkey is by its characteristic howl.", + "Howler monkeys are the largest of the New World monkeys.", + "The easiest way to identify a howler monkey is by its loud, guttural call which can be heard up to 3 miles away.", + "A howler monkey has a prehensile tail, which means it can grip things, like branches.", + "A howler monkey can be identified by its loud howling noise.", + "By its loud, guttural calls.", + "By its howl, which is said to be one of the loudest noises made by any land animal.", + "A howler monkey can be identified by its long tail, its loud howling call, and its black or dark brown fur.", + "A howler monkey is a large primate that can be found in the forests of Central and South America.", + "Male howler monkeys have an average weight of 7.", + "A howler monkey is a species of monkey that is found in Central and South America.", + "A howler monkey is a type of New World monkey that is found in Central and South America.", + "A howler monkey is a type of New World monkey that is native to Central and South America.", + "A howler monkey is a large monkey with a long tail.", + "A howler monkey has a long tail and furry body.", + "A howler monkey is a type of New World monkey.", + "A howler monkey is a species of monkey that is native to South and Central America.", + "A howler monkey is a primate with long hair and a long tail.", + "The image is of a howler monkey perched atop a tree branch.", + "The image is of a howler monkey leaning back against a tree trunk with its mouth open, revealing its long sharp teeth.", + "The image depicts a large monkey with a long tail sitting in a tree.", + "The image is of a howler monkey hanging from a tree.", + "An image of a howler monkey from the internet shows a large, furry monkey with long claws and a long tail.", + "The image is of a howler monkey perched in a tree.", + "The image is of a brown and white howler monkey perched on a tree branch.", + "Image shows a large howler monkey with black fur sitting in a tree.", + "An image of a howler monkey from the internet might show the monkey in its natural habitat, swinging from trees or eating leaves.", + "In this image, a howler monkey is suspended in midair as it swings from a tree branch.", + "Howler monkeys are the loudest and largest of all the New World monkeys.", + "A howler monkey (Alouatta palliata) hanging from a branch in a tropical forest.", + "Howler monkeys are the loudest land animals in the world.", + "The howler monkey is one of the largest members of the monkey family.", + "A mono con gripe (Alouatta palliata), also known as a howler monkey, hangs from a tree in the tropical rainforest of Costa Rica.", + "A howler monkey hangs from a tree in the jungle.", + "A howler monkey hangs from a tree in the tropical rainforest.", + " A howler monkey roaringA howler monkey photographed while roaring.", + "A wild howler monkey rests in a tree in Costa Rica.", + "A howler monkey perched in a tree, looking out at the rainforest around it." + ], + "titi monkey": [ + "There is no definitive answer to this question as there are dozens of different subspecies of titi monkey, each with their own unique physical characteristics.", + "Titi monkeys are a type of small monkey that is found in South America.", + "Titi monkeys are small primates that have reddish-brown fur and long tails.", + "The titi monkey is a medium sized primate with long black and white fur.", + "A titi monkey is a small monkey with reddish-brown fur and a long tail.", + "Titi monkeys are small primates that have long tails and are covered in fur that is typically gray, black, or brown in color.", + "A titi monkey has a reddish brown coat and long white tufts of hair on its cheeks.", + "epend on the species, but titi monkeys are generally small to medium-sized primates with long tails, tufted ears, and soft fur.", + "Titi monkeys are small monkeys that have reddish-brown fur and long tails.", + "The South American titi monkey is a small New World monkey.", + "The titi monkey is a small, tailless monkey with long, silky fur.", + "The best way to identify a titi monkey is to look for its long tail.", + "There is no easy way to identify a titi monkey.", + "The titi monkey has a long tail and reddish-brown fur.", + "There is no one definitive answer to this question, as there is significant variation among titi monkey populations in terms of physical appearance.", + "There are several ways to identify a titi monkey.", + "The easiest way to identify a titi monkey is by its long tail.", + "There are several ways to identify a titi monkey.", + "There is no definitive answer to this question as there is no one specific physical trait that all titi monkeys share.", + "A titi monkey has a long tail, long legs, and long arms.", + "A titi monkey is a small monkey with reddish-brown fur and black facial markings.", + "A titi monkey has a reddish brown coat and a long tail.", + "A titi monkey is a small, reddish-brown monkey with white patches on its face and chest.", + "There are more than 40 species of titi monkey, so they vary somewhat in appearance.", + "A titi monkey is a small, reddish-brown monkey with a long tail.", + "Titi monkeys are small monkeys with long tails.", + "Titi monkeys are small,New World monkeys of the genus Callicebus.", + "Titi monkeys are small monkeys with long tails.", + "A titi monkey looks like a small monkey with long, soft fur.", + "There are over 40 species of titi monkey, so they come in many different shapes and sizes.", + "In the image, a titi monkey is clinging to a tree branch with its long tail wrapped around the tree.", + "A titi monkey is a small, reddish-brown monkey with long, white whiskers.", + "In the image, a titi monkey is shown hanging upside down from a tree branch.", + "In an image from the internet, a titi monkey is pictured in a tree.", + "The image is of a titi monkey sitting on a branch.", + "In the image, a small titi monkey is perched atop a tree branch.", + "A titi monkey on the internet is an image of a small monkey with reddish-brown fur and a long tail.", + "A titi monkey is a small, light-colored monkey with long hair and a furry tail.", + "A titi monkey is a small monkey with reddish-brown fur and long tail.", + "In this image, a titi monkey is climbing up a tree using its long tail for balance.", + "\"Titi monkeys are one of the most social of all primates, living in groups of up to 20 individuals.", + "A titi monkey moving through the dense forest canopy.", + "Titi monkey enjoying a meal in the rainforest.", + "A brown titi monkey in a tree in Brazil.", + "Titi monkey (Callicebus sp.", + "One of the many Titi monkeys living in the Amazon rainforest.", + "A titi monkey in the Amazon rainforest.", + "A titi monkey in the wild.", + " A titi monkey in the Amazon rainforest.", + "A titi monkey looks on as another monkey eats a piece of fruit." + ], + "Geoffroy's spider monkey": [ + "Geoffroy's spider monkeys are one of the smallest species of spider monkey, with an average body length of about 1 metre (3.", + "A Geoffroy's spider monkey has a black face with white markings around the eyes.", + "The Geoffroy's spider monkey is a small to medium-sized monkey.", + "Geoffroy's spider monkey is a small species of monkey that is found in the rainforests of Central and South America.", + "Geoffroy's spider monkey is a small monkey with dark fur and a long tail.", + "A Geoffroy's spider monkey has long, thin limbs and a long tail.", + "Geoffroy's spider monkeys are small to medium-sized primates that have long, prehensile tails and limbs.", + "A Geoffroy's spider monkey is a small to medium sized monkey with long, thin limbs and a long tail.", + "Geoffroy's spider monkey is a small to medium-sized monkey with a long tail.", + " Geoffroy's spider monkey is a small to medium-sized monkey with long limbs and a prehensile tail.", + "Geoffroy's spider monkeys are distinguished by their long, prehensile tails and long limbs.", + "Geoffroy's spider monkey can be identified by its long legs and arms, prehensile tail, and small body.", + "Geoffroy's spider monkeys are shy and elusive, so they are difficult to spot in the wild.", + "There are a few ways to identify a Geoffroy's spider monkey.", + "There are several ways to identify a Geoffroy's spider monkey.", + "One way to identify a Geoffroy's spider monkey is by its prehensile tail.", + "Geoffroy's spider monkeys are usually brown or reddish-brown with a light-colored belly.", + "There are several ways to identify a Geoffroy's spider monkey.", + "Geoffroy's spider monkeys are fairly small monkeys, with long legs and tails.", + "Geoffroy's spider monkeys are Monkey species that are found in Central and South America.", + "Geoffroy's spider monkeys are small to medium-sized monkeys with long, slim limbs and prehensile tails.", + "There is no one answer to this question as Geoffroy's spider monkey can come in a variety of different colors including brown, black, and tan.", + "Julien Geoffroy's spider monkey is a species of monkey that is found in Central and South America.", + "A Geoffroy's spider monkey looks like a small, brown monkey with a long tail.", + "A Geoffroy's spider monkey is a small, slim monkey with long limbs and a prehensile tail.", + "A Geoffroy's spider monkey is a small monkey with long limbs.", + "Geoffroy's spider monkeys are small to medium-sized monkeys with long legs and arms.", + "A Geoffroy's spider monkey has a long, prehensile tail, and long, gangly limbs.", + "Geoffroy's spider monkeys are small monkeys with long furry tails.", + "Geoffroy's spider monkey is a small, dark monkey with long, thin limbs and a long, prehensile tail.", + "A Geoffroy's spider monkey hangs from a tree by its long tail.", + "Image shows a Geoffroy's spider monkey (Ateles geoffroyi) in a tree.", + "Geoffroy's spider monkeys are small, arboreal monkeys that live in the rainforests of Central and South America.", + "In this image, a Geoffroy's spider monkey hangs from a tree branch using its long, prehensile tail.", + "In the image, a Geoffroy's spider monkey is perched atop a tree branch.", + "In the image, a Geoffroy's spider monkey hangs from a tree branch by its tail.", + "In an image from the internet, a Geoffroy's spider monkey is hanging from a tree by its tail.", + "The image is of a Geoffroy's spider monkey swinging through the trees.", + "Image shows a Geoffroy's spider monkey (Ateles geoffroyi) swinging through the rainforest canopy.", + "The image is of a Geoffroy's spider monkey perched in a tree.", + "\nA Geoffroy's spider monkey hanging from a tree in its natural habitat.", + " Geoffroy's spider monkey swinging through the trees in the Amazon rainforest.", + "Geoffroy's spider monkeys are a critically endangered species of monkey found in Central and South America.", + " A Geoffroy's spider monkey eating a fig.", + "A Geoffroy's spider monkey hanging upside down from a tree branch.", + " From an overhead view, a Geoffroy's spider monkey hangs upside down from a branchThis Geoffroy's spider monkey is hanging upside down from a branch, enjoying the view from above.", + "A Geoffroy's spider monkey hangs from a tree in the Amazon rainforest.", + "Geoffroy's spider monkeys are New World monkeys that live in the tropical forests of Central and South America.", + "This Geoffroy's spider monkey is looking for a place to swing from.", + "A Geoffroy's spider monkey hangs from a tree in the Amazon rainforest." + ], + "common squirrel monkey": [ + "A common squirrel monkey is small and has a reddish brown back, a white belly, and a long tail.", + "A squirrel monkey is a small species of monkey that is found in the tropical climates of Central and South America.", + "A common squirrel monkey has a reddish-brown back, a light gray belly, and a black face with white patches around the eyes.", + "The common squirrel monkey is a small monkey with a long tail.", + "A common squirrel monkey is a small monkey with a reddish brown back and a white belly.", + "A common squirrel monkey has brown fur, a white belly, and a black face with white patches around the eyes.", + "A common squirrel monkey has brown fur and a white belly.", + "A common squirrel monkey refers to the species of New World monkey that is typically found in the tropical forests of South America.", + "Small body; long tail; reddish-brown fur on body; black face; white fur around eyes.", + "A common squirrel monkey is a small, thickset monkey with a bushy tail.", + "There are a few ways to identify a common squirrel monkey.", + "There are many ways to identify a common squirrel monkey.", + "A common squirrel monkey has a long tail, and is small and agile.", + "A common squirrel monkey has a reddish-brown back and a creamy-white belly.", + "The easiest way to identify a common squirrel monkey is by its small size and reddish-brown fur.", + "The most distinguishing feature of the Common Squirrel Monkey is their long tail.", + "Common squirrel monkeys are small monkeys with long tails.", + "A common squirrel monkey is a small, arboreal monkey found in the tropical forests of Central and South America.", + "A common squirrel monkey can be identified by its small size, its omnivorous diet, and its reddish-brown fur.", + "The most distinguishing feature of the common squirrel monkey is its long, bushy tail.", + "A common squirrel monkey has a reddish-brown back, a light gray or white belly, and a black stripe down its back.", + "Common squirrel monkeys have reddish-brown or gray fur, and a white or gray face.", + "A common squirrel monkey is small and has a reddish-brown back and a grayish belly.", + "Common squirrel monkeys grow to be about 1 pound and have a body that is about 10 inches long.", + "A common squirrel monkey has a long, slender body and a tail that is almost as long as its body.", + "A Squirrel Monkey generally has a reddish brown back and a light gray belly.", + "A common squirrel monkey has a reddish brown back, and a creamy white or yellow belly.", + "A common squirrel monkey has a reddish-brown back, a cream-colored belly, and a black face with white stripes.", + "A squirrel monkey has a reddish-brown back, a pale grayish belly, and white markings around the eyes.", + "A common squirrel monkey has a reddish-brown back and a white belly.", + "A common squirrel monkey has reddish-brown fur on its back, with a lighter cream color on its stomach.", + "In the image, a common squirrel monkey is perched on a branch with its tail wrapped around the branch.", + "The image is of a small brown and white monkey perched on a tree branch.", + "The image is of a small, brown and white monkey with a long tail, sitting in a tree.", + "A common squirrel monkey is a small, agile monkey with a long tail.", + "A common squirrel monkey is small, with a reddish-brown back and a light-colored belly.", + "The image is of a small, brown monkey with a long tail.", + "A common squirrel monkey is a small, diurnal monkey with a long tail.", + "This image shows a common squirrel monkey (Saimiri sciureus) perched atop a tree branch.", + "This image from the internet shows a common squirrel monkey perched atop a tree branch.", + "A common squirrel monkey, native to Central and South America.", + "Image of a common squirrel monkey (Saimiri sciureus) in a tree in the Amazon rainforest.", + "A common squirrel monkey (Saimiri sciureus) eating a mango.", + " This is a squirrel monkey, a species of New World monkey that is native to the tropical forests of South America.", + "A common squirrel monkey leaps through the rainforest canopy in search of food.", + "A common squirrel monkey eats a piece of fruit.", + "This is a common squirrel monkey (Saimiri boliviensis) from the Santa Cruz Zoo in California.", + "This is a common squirrel monkey (Saimiri sciureus).", + "A common squirrel monkey living in the wild.", + " A common squirrel monkey perched atop a tree branch." + ], + "ring-tailed lemur": [ + "The ring-tailed lemur is a primate with reddish-brown fur, a long black-and-white striped tail, and large eyes.", + "A ring-tailed lemur has a reddish-brown coat, with a light-colored stomach.", + "A ring-tailed lemur looks like a small monkey with a long, furry tail that has black and white stripes.", + "A ring-tailed lemur looks like a small chimpanzee with a long, black-and-white striped tail.", + "A ring-tailed lemur has a long, black and white striped tail that it uses for balance and communication.", + "A ring-tailed lemur is reddish brown with a long black and white striped tail.", + "A ring-tailed lemur is a small, long-tailed primate that is native to Madagascar.", + "A ring-tailed lemur has a long, black-and-white striped tail and light-colored fur.", + "A ring-tailed lemur is a small, tree-dwelling mammal native to Madagascar.", + "A ring-tailed lemur is a small, short-legged primates with reddish-brown fur and a long tail with black and white stripes.", + "The best way to identify a ring-tailed lemur is by its distinctive tail.", + "There are a few ways to identify a ring-tailed lemur.", + "A ring-tailed lemur has a long, black and white striped tail that it holds up in the air when it walks.", + "The best way to identify a ring-tailed lemur is by its distinctive tail.", + "The best way to identify a ring-tailed lemur is by its tail.", + "Ring-tailed lemurs are easily identified by their long, distinctive tails.", + "The easiest way to identify a ring-tailed lemur is by its long, distinctive tail that is marked with alternating black and white bands.", + "One way to identify a ring-tailed lemur is by its long, black-and-white ringed tail.", + "Ring-tailed lemurs are medium-sized primates with black and white striped tails.", + "The easiest way to identify a ring-tailed lemur is by its distinctive tail.", + "A ring-tailed lemur has a long, slender body and a long tail with 14 to 18 black and white rings.", + "A ring-tailed lemur is a medium sized lemur with a long, bushy tail that has 13 to 16 black rings.", + "A ring-tailed lemur has a long, black-and-white striped tail, and it is one of the largest lemurs.", + "Ring-tailed lemurs have long, black and white striped tails that they use for balance and communication.", + "The ring-tailed lemur looks like a small monkey with long, black and white striped tail.", + "A ring-tailed lemur looks like a small, furry monkey with a long tail.", + "A ring-tailed lemur has a long, black-and-white-striped tail and is about the size of a house cat.", + "A ring-tailed lemur looks like a small monkey with a long tail.", + "The ring-tailed lemur is a large primate with a long, black-and-white-striped tail.", + "Ring-tailed lemurs are primates that have long, black-and-white striped tails.", + "The image shows a ring-tailed lemur hanging from a tree branch by its tail.", + "In this image, a ring-tailed lemur is sitting on a tree branch with its long tail wrapped around the branch.", + "The image shows a ring-tailed lemur with its long tail wrapped around its body.", + "The image is of a ring-tailed lemur perched on a tree branch.", + "In the image, the ring-tailed lemur is hanging upside down from a tree branch, with its long, furry tail wrapped around the tree.", + "In this image, a ring-tailed lemur is sitting on a branch with its long tail wrapped around the branch.", + "In the image, the lemur is perched on a tree branch with its long tail wrapped around the tree trunk.", + "In the image, the ring-tailed lemur is sitting on a tree branch with its long tail curled around its body.", + "The image is of a ring-tailed lemur perched on a branch.", + "The image from the internet is of a ring-tailed lemur eating a leaf.", + "A ring-tailed lemur in the wild.", + "A ring-tailed lemur sleeps in a tree in Madagascar.", + " Ring-tailed lemurs are a type of primate that is native to Madagascar.", + "A ring-tailed lemur in the wild.", + " furry ring-tailed lemur swinging from a rope.", + "A ring-tailed lemur in its natural habitat.", + " ring-tailed lemurs are the most social of all the lemur species.", + "A ring-tailed lemur looks out from its perch in the trees.", + " Ringtailed lemurs are one of the most popular lemurs among zoos and wildlife enthusiasts.", + "A ring-tailed lemur looks up at the camera while perched on a tree branch." + ], + "indri": [ + "A baby indri looks like a small, furry monkey.", + "An indri is a lemur-like creature that is native to Madagascar.", + "Indri are large lemurs that have black and white fur.", + "Indri are large primates with black fur and white stripes.", + "A indri has black and white fur, and looks like a cross between a monkey and a lemur.", + "A indri is a lemur-like creature that is native to the island of Madagascar.", + "Indri are large lemurs with black and white fur.", + "Indri are large primates that look like a cross between a monkey and a lemur.", + "Indri are tailless lemurs that have long hind legs, short forelegs, and black and white fur.", + "The indri is a large lemur with characteristic black-and-white fur.", + "Indri are the largest living lemurs.", + "Indri are the largest living lemurs.", + "The best way to identify an indri is by its distinctive call, which has been described as sounding like a donkey braying.", + "Indris are the largest living lemurs.", + "The easiest way to identify an indri is by its appearance.", + "Indris are large, brown and white, tailless lemurs.", + "The indri is a large lemur that is black and white in color.", + "A indri can be identified by its long, black and white fur, and its large eyes.", + "A indri is a type of lemur.", + "TheIndri(Indri indri)or babakotois one of the two largest living lemurs, the other being the Diadem sifaka.", + "A indri looks like a cross between a lemur and a monkey.", + "Indri are the largest living lemurs.", + "Indri have dark, woolly fur and long limbs.", + "The indri is a large, black-and-white lemur with a long body and short legs.", + "A indri looks like a cross between a monkey and a lemur.", + "The indri is the largest member of the lemur family, and is endemic to Madagascar.", + "A indri looks like a monkey.", + "The indri is a large frog-like creature found in the forests of Madagascar.", + "Indri are large lemurs that are black and white in color.", + "Indris are the largest living lemurs.", + "This image shows an Indri, the largest living lemur, suspended high in a tree.", + " lemurThe image is of an adorable, large-eyed indri lemur perched atop a tree branch.", + "This image shows an Indri, a type of lemur, sitting in a tree.", + "An image of an Indri from the internet would likely show this lemur species' black and white fur, long legs, and large head.", + "I found an image of an indri on the internet that shows the animal standing upright on a branch.", + "The image is of a small, furry creature with large ears and big, dark eyes.", + "This photograph shows a fuzzy, brown and white indri lemur perched atop a tree branch.", + "The image is of a small, brown and white lemur-like creature perched atop a tree branch.", + "The image is of a cute, fuzzy indri monkey perched atop a tree branch.", + "This image shows an Indri, which is a type of lemur, native to Madagascar.", + "Indri (Indri indri) is a large lemur of the family Indriidae.", + " A family of indri lemurs in the rainforest of Madagascar.", + " The Indri is a type of lemur found only on the island of Madagascar.", + "An Indri, one of the world's largest lemurs, showing off its impressive furry tail.", + "Indri relaxing in a tree.", + "A close-up of an indri, a type of lemur found only on the island of Madagascar.", + "Indri (indri indri) on a tree branch in Madagascar.", + "The indri is a lemur that is found only on the island of Madagascar.", + "A closeup of an indri, an endangered species of lemur found only on the island of Madagascar.", + " Indri, the largest living lemur, in the rain forest of Madagascar." + ], + "Asian elephant": [ + "Asian elephants are the largest land animals in Asia.", + "The Asian elephant is the largest living land animal in Asia.", + "Asian elephants are the largest land animals in Asia.", + "The Asian elephant is the largest living land animal in Asia.", + "The Asian elephant is the largest land animal in Asia.", + "Asian elephants are the largest land animals on the Asian continent.", + "An Asian elephant is gray with large ears, a long trunk, and short legs.", + "Asian elephants are the largest land animals in Asia.", + "The Asian elephant is the largest living land animal in Asia.", + "An Asian elephant is the largest land animal in Asia.", + "There are several ways to identify an Asian elephant.", + "The easiest way to identify an Asian elephant is by its smaller size when compared to an African elephant.", + "The best way to identify an Asian elephant is by its smaller size and darker coloration when compared to an African elephant.", + "Asian elephants can be identified by their smaller size, rounder ears, and longer tails.", + "Asian elephants can be distinguished from African elephants by their smaller size, more rounded ears, and tufted tails.", + "Asian elephants have many physical features that distinguish them from other elephants.", + "The head of an Asian elephant is much larger in comparison to its body than that of an African elephant.", + "Asian elephants can be identified by their small size, their large ears, and their long trunks.", + "Asian elephants are the largest land animals in Asia.", + "You can identify an Asian elephant by its large and round ears, which are much larger than those of an African elephant.", + "The Asian elephant is a huge mammal with a wrinkled gray skin.", + "Asian elephants are gray with small, round ears.", + "The Asian elephant is the largest living land animal in Asia.", + "One way to describe an Asian elephant is to say that it looks like a smaller version of an African elephant.", + " Asian elephants are the largest land mammals in Asia.", + "The Asian Elephant is smaller than the African Elephant and has smaller, rounded ears.", + "Asian elephants have many physical features that distinguishes them from other elephants.", + "An Asian elephant is the largest land animal in Asia.", + "Asian elephants have gray or tan skin, and large ears that are shaped like the continents of Asia and Africa.", + "An Asian elephant is similar in appearance to an African elephant, although it is slightly smaller.", + "The image is of an Asian elephant standing in a river with its trunk outstretched.", + "This image shows an Asian elephant standing in a grassy field with its trunk extended.", + "This image from the internet is of an Asian elephant.", + "The image is of an Asian elephant in a forest.", + "In this image, an Asian elephant is seen standing in a forest.", + "an Asian elephant is a large gray mammal with wrinkled skin.", + "The Asian elephant is the largest living land animal in Asia.", + "This image is of an Asian elephant walking through water.", + "This image from the internet shows an Asian elephant bathing in a river.", + "In the image, an Asian elephant is shown Sachs masquerading as the dragon in traditional Chinese New Year celebrations.", + "The Asian elephant is the largest land mammal in Asia.", + "An Asian elephant (Elephas maximus) in the wild.", + "Elephant family in Thailand.", + "An Asian elephant eating bamboo leaves.", + "This is an Asian elephant.", + "This is an Asian elephant.", + "This elephant is from Asia.", + "Asian elephant in a forest.", + "The Asian elephant is the largest terrestrial animal in Asia.", + " Asian elephants are the largest land animals in Asia." + ], + "African bush elephant": [ + "An African bush elephant is the largest living terrestrial animal.", + "An African bush elephant is a large mammal that lives in Africa.", + "The African bush elephant is the world's largest land animal.", + "African bush elephants are the largest living land animals.", + "An African bush elephant is a huge animal.", + "The African bush elephant is the largest living terrestrial animal.", + "Large, gray elephant with big ears and a trunk.", + "The African bush elephant is the largest living terrestrial animal.", + "The African bush elephant is the larger of the two types of African elephants.", + "The African bush elephant is the largest living terrestrial animal.", + "The African bush elephant is the largest living terrestrial animal.", + "The bushy appearance of their tails, which can grow up to 2.", + "The African bush elephant can be identified by its large size, its large ears, and its long trunk.", + "Some ways that you can identify an African bush elephant are by their large size, their grey color, their long trunk, their big ears, and the fact that they have tusks.", + " African bush elephants can be distinguished from other elephants by their larger size and their more extensive skin wrinkling.", + "The African bush elephant can be identified by its large size and its long trunk.", + "The easiest way to identify an African bush elephant is by its large size.", + "An African bush elephant has large, curved tusks and large, flapping ears.", + "There are a few ways to identify an African bush elephant.", + "An African bush elephant has large ears and tusks.", + "An African bush elephant is the largest living terrestrial animal.", + "The African bush elephant is the largest and most widespread of the three subspecies of elephant.", + "The African bush elephant is the largest land animal on the planet.", + "The African bush elephant is a large, intelligent mammal.", + "African bush elephants are the largest living land animals.", + " African bush elephants are the largest of all the land animals.", + "A bush elephant is the largest living land animal.", + "The African bush elephant is the largest living terrestrial animal.", + "A bush elephant is a large African land mammal.", + "The African bush elephant is the largest living terrestrial animal.", + "This image shows an African bush elephant in its natural habitat.", + "This image from the internet is of an African bush elephant.", + "This image is of an African bush elephant walking through tall grass.", + "An African bush elephant is a large, grey elephant with big ears, a trunk, and two ivory tusks.", + "An image of an African bush elephant from the internet shows a large, gray elephant walking through a green field.", + "In the image, an African bush elephant is shown walking through tall grass.", + "The African bush elephant is the largest terrestrial animal on the planet.", + "The image is of an African bush elephant walking through a dry and barren landscape.", + "The image is of an African bush elephant standing in tall grass.", + "The image shows an African bush elephant walking through tall grass.", + "A majestic African bush elephant captured in its natural habitat.", + "A giant African bush elephant crossing a river.", + "A majestic African bush elephant walks through the tall grasses of the savanna.", + "An African bush elephant walking through the tall grasses of the savanna.", + "A large male African bush elephant walks through the tall grasses of the savanna.", + "The African bush elephant is the largest living terrestrial animal.", + "A large African bush elephant walks through tall grasses in search of food.", + "African bush elephants are the largest land animals on Earth.", + "A beautiful African bush elephant in its natural habitat.", + "\nA bull African bush elephant walks through the grasslands of the Serengeti." + ], + "red panda": [ + "A red panda (Ailurus fulgens) is a small mammal that looks like a cross between a cat, a raccoon, and a bear.", + "A red panda has reddish-brown fur, a long, shaggy tail, and a waddling gait due to its short legs.", + "A red panda is a small mammal with reddish-brown fur and a long tail.", + "Red pandas are about the size of a house cat, with reddish-brown fur, black legs, and a long, bushy tail.", + "A red panda is a small mammal that is native to the eastern Himalayas and southwestern China.", + "A red panda is a small mammal with reddish-brown fur, a long, fluffy tail, and a face shaped like a cat's.", + "A red panda has reddish-brown fur, a long, shaggy tail, and a waddling walk.", + "A red panda is a small, carnivorous mammal native to the eastern Himalayas and southwestern China.", + "A red panda has red fur and a long, bushy tail.", + "A red panda is a mammal native to the eastern Himalayas and southwestern China.", + "Red pandas have reddish-brown fur on their upperparts, blackish fur on their lowerparts, and a light-colored \"mask\" around their eyes.", + "A red panda is a small mammal with reddish-brown fur, a long, bushy tail, and a striped face.", + "The easiest way to identify a red panda is by its reddish-brown fur, which is unique among animals.", + "A red panda can be identified by its reddish-brown fur, round body, long, shaggy tail, and black ear tufts.", + "A red panda has a long, shaggy coat that is reddish-brown in color.", + "Red pandas are reddish-brown and white.", + "The best way to identify a red panda is by its coloring.", + "There are several ways to identify a red panda.", + "A red panda is slightly larger than a domestic cat, with a long, shaggy coat of reddish-brown fur.", + "A red panda is a small mammal with reddish-brown fur, a long, bushy tail, and a light underside.", + "A red panda is a small mammal with reddish-brown fur, a long tail, and a white face with black markings.", + "A red panda typically has reddish-brown fur, a long, shaggy tail, and a light underside.", + "A red panda is a mammal of the bear family.", + "Red pandas are small animals with reddish-brown fur and a long, bushy tail.", + "A red panda is small and reddish brown.", + "The red panda has reddish-brown fur, a long, shaggy tail, and a waddling walk.", + "A red panda is a small mammal with reddish-brown fur, a long, bushy tail, and a distinctive marked face.", + "A red panda has reddish-brown fur, a long, shaggy tail, and a waddling gait due to its shorter front legs.", + "A red panda is a small, red and white mammal that is native to the eastern Himalayas and south-western China.", + "A red panda is an adorable small mammal that looks like a cross between a raccoon, a fox, and a bear.", + "It's a picture of a red panda sitting in a tree.", + "I found an image of a red panda on the internet that I really like.", + "In the image, a red panda is sitting in a tree with its tail wrapped around the tree trunk.", + "The image is of a cute red panda staring directly at the camera.", + "The image is of a red panda perched in a tree.", + "I found an image of a red panda that I really liked.", + "A red panda is a small arboreal mammal native to the eastern Himalayas and southwestern China.", + "This image is of a red panda lying on a branch.", + "A red panda is a mammal native to the eastern Himalayas and southwestern China.", + "In the image, a red panda is perched atop a tree branch, looking off into the distance.", + " A red panda eating a piece of bamboo.", + "A adorable red panda enjoys a meal of bamboo.", + "In this photo, a red panda climbs a tree in its natural habitat.", + " Cute little red panda eating bambooA caption of an image of a sloth:This sloth is just hanging out, enjoying life in the slow lane.", + " A red panda in a tree, looking up at the camera.", + " A red panda hanging out in a tree.", + "This is a red panda, a mammal native to the eastern Himalayas and southwestern China.", + "A red panda hangs from a tree branch in its natural habitat.", + "A cute red panda sits in a tree, looking out at the camera.", + "This playful red panda is enjoying a game of tag with a friend." + ], + "giant panda": [ + "A giant panda is a black and white bear.", + "A giant panda is roughly the size of an American black bear and has a black-and-white coat.", + "A giant panda looks like a black and white bear.", + "A giant panda has a large head and neck, small black eyes, large black ears, and a big round body.", + "The giant panda is a large, bear-like mammal native to central China.", + "A giant panda is a black and white bear.", + "A giant panda is about the size of a American black bear and has black fur on its ears, eye patches, muzzle, legs, and arms with white fur on its chest and belly.", + "Giant pandas are large, bear-like animals with black and white fur.", + "A giant panda is a large, black-and-white bear-like mammal with a short tail.", + "A giant panda has a black and white coat, a big head, and a long tail.", + "The giant panda can be distinguished from other bears by its large, distinctive black patches around its eyes, over its ears, and across its round body.", + "The best way to identify a giant panda is by its large, distinctive black and white markings.", + "Giant pandas have unique markings on their fur that make them look like they are wearing a helmet.", + "The best way to identify a giant panda is by its unique black and white fur.", + "The easiest way to identify a giant panda is by its black and white fur.", + "Giant pandas have black and white fur and are about the size of a large dog.", + "The giant panda is a large mammal with a thick coat of black-and-white fur.", + "A giant panda is a large, furry mammal with black and white fur.", + "The giant panda has a black-and-white coat and a large, round head.", + "The easiest way to identify a giant panda is by its black and white fur.", + "Giant pandas are one of the most easily recognizable animals in the world because of their large size and their distinctive black and white coloring.", + "The giant panda has black fur on its ears, eye patches, muzzle, legs, and arms.", + "A giant panda has black and white fur, and it looks like a bear.", + "A giant panda is a large, furry mammal with black and white fur.", + "Giant pandas have black and white fur, and they are related to bears.", + "A giant panda is a large, furry, black and white bear.", + "A giant panda looks like a black and white bear.", + "The giant panda is a large bear-like animal with black fur and white markings.", + "A giant panda has a large head, small eyes, and a round body.", + "The giant panda is a large, bear-like mammal with thick black and white fur.", + "In the image, a giant panda is eating bamboo while sitting in a tree.", + "The image is of a giant panda laying down on a bed of leaves.", + "The image is of a giant panda lying on its back in a bamboo forest.", + "The image is of a giant panda lying on its back in the grass.", + "The image is of a giant panda sitting in a tree.", + "In the image, a giant panda is reclining on a tree branch, with its lush fur coat and distinctive black-and-white markings on full display.", + "This image is of a giant panda named Xiang Xiang.", + "The image shows a giant panda lying on its back in the snow.", + "The image shows a giant panda lying on its back in a bamboo forest.", + "In the image, a giant panda is sitting on a tree branch.", + " A giant panda eating bamboo in its natural habitat.", + " A giant panda eating bambooA bamboo forest in China.", + " \"The world's cutest animal.", + "A giant panda eating bamboo in China.", + "A giant panda eating bamboo in its natural habitat.", + "A giant panda eating bamboo in the wild.", + " A giant panda walking through a bamboo forest.", + " A giant panda enjoying a meal of bamboo shoots.", + " A giant panda cub explores its habitat at a zoo.", + " A giant panda eating bamboo." + ], + "snoek fish": [ + "A snoek (Thyrsites atun) is a long, thin, and predatory fish that is found in the southern oceans.", + "Snoek fish are a type of predatory fish that can grow up to 125 cm in length.", + "A snoek fish is a type of long and thin fish with very sharp teeth.", + "A snoek fish is a long, thin fish with silver scales.", + "Snoek fish are a long and slender species of fish that are silver in color with a blue tinge.", + "The snoek fish is a saltwater fish that can grow up to three feet long.", + "A snoek fish looks like a slender, dark-colored fish with large eyes.", + "A snoek fish is a long, thin fish with a pointed nose.", + "A snoek fish is a type of fish that has a long body and a large head.", + "A snoek fish is a torpedo-shaped fish with a long, tapering snout.", + "If you were in South Africa, you would look for a fish with a long, thin body and a dark stripe running along its side.", + "The biggest way to identify a snoek fish is by its long and slender body.", + "A snoek fish is typically long and thin, with a greenish-brown back and silver sides.", + "A snoek fish can be identified by its long, narrow body and its forked tail.", + "The easiest way to identify a snoek fish is by its long, slim body and distinctive forked tail.", + "The scientific name for a snoek fish is Thyrsites atun.", + "One way to identify a snoek fish is by its long and slender body.", + "The snoek fish is a species of fish in the greenfish family.", + "They have long, slender bodies with greenish-brown backs and silvery sides.", + "The easiest way to identify a snoek fish is by its long, slender body and forked tail.", + "A snoek fish is a long, thin fish with a greenish-blue back and silver sides.", + "A snoek fish is a long, thin fish with a pointed mouth.", + "A snoek fish looks like a long, thin eel with a pointy nose.", + "Snoek fish have long, slender bodies with brownish-green tops and sides, and a white or cream-colored belly.", + "A snoek is a long, thin fish with a silver-colored body and a greenish-brown head.", + "A snoek fish is blue-green with a silver-white belly.", + "A snoek fish looks like a long, dark fish with a large head.", + "A snoek fish looks like a long, thin snake with a forked tail.", + "The snoek fish is a species of fish in the family Cyprinidae.", + "A snoek fish has a long, slender body with a large head.", + "This image is of a snoek fish swimming in the water.", + "The image is of a large, silver fish with a long body and a wide mouth.", + "The image is of a silver-gray fish with a long, slender body and a large mouth.", + "The image is of a dark-colored fish with a long, slender body and a pointed nose.", + "The image is of a large silver fish with a long pointy nose.", + "The image is of a long, thin fish with a dark green back and silver sides.", + "A snoek fish is a long, thin fish with a pointed nose.", + "This image shows a snoek fish on a white background.", + "An image of a snoek fish from the internet shows a brown and silver fish with large scales.", + "The image is of a fish with a long, slender body and a large mouth.", + " A snoek fish, with its long, thin body and large mouth, is a popular sport fish in South Africa.", + "A snoek fish, native to the southern African coast.", + "\"This is a snoek fish.", + "Snoek fish are typically found in the waters off of southern Africa.", + "This is a picture of a snoek fish.", + "A snoek fish, caught off the coast of South Africa.", + " \"Snoek (Thyrsites atun) is a long, thin fish with an oily body and a forked tail.", + " A snoek fish swims under the water.", + "A snoek fish, native to the southern oceans near Africa.", + " A common South African fish, the snoek is an excellent swimmer and can often be seen following boats." + ], + "eel": [ + "Most eels are elongated and snakelike, with starting at the head and running the length of the body to the tail.", + "A eel is a long, thin, snakelike fish.", + "A eel typically has a long, snake-like body with small fins.", + "A eel typically has a long, snake-like body with a small head.", + "A eel is a long, thin fish that can range in color from brown to greenish-blue.", + "A eel is a slippery, long, and thin fish that can range in color from brown to green.", + "A eel typically has a snake-like body with a long dorsal fin running along the length of its back.", + "A eel is a long, skinny fish.", + "A eel is a snake-like fish with a long, thin body and no scales.", + "A eel is a long, snake-like fish.", + "A eel is a long, thin fish with no scales.", + "Eels can be identified by their unique body shape.", + "Some common features used to identify eels include their snake-like bodies, lack of pelvic fins, and small paired pectoral fins.", + "Eels are long and snake-like, with tiny backward-pointing fin rays.", + "A good way to identify a eel is to look at its long, snake-like body.", + "A eel is a long, snake-like fish.", + "A eel is a long, thin, snake-like fish.", + "A eel is a slippery, snake-like fish with no scales.", + "A eel is a snakelike fish with a small mouth and no scales.", + "Eels can be identified by their snake-like body, their small fins, and their lack of scales.", + "A eel is a long and thin fish.", + "A eel typically has a long, snake-like body with small, sharp teeth.", + "Eels are slender, elongated fish with small, fused fins.", + "An eel is a long, thin fish with a smooth skin.", + "A eel generally has a long, snake-like body with a small head.", + "A eel is a long, slender, snake-like fish.", + "A eel looks like a snake.", + "A European eel is a snake-like fish with a long, thin body and no scales.", + "Eels can vary greatly in appearance, but they are generally long and snake-like, with a slimy, wet body.", + "A eel is a snake-like fish with no scales.", + "This image is of a long, thin eel-like creature with smooth, shiny skin.", + "I found an image of a eel on the internet that shows the eel swimming in water.", + "In the image, there is a brown eel coiled up on a white plate.", + "This image is of a eel under water.", + "The image is of a long, thin, snake-like fish with brown and white spots.", + "In the image, there is a large eel coiled around a smaller eel.", + "The photo is of a common Moray eel.", + "I found an image of a green eel on the internet.", + "The image is of a snake-like creature with a long, thin body and small, sharp teeth.", + "The image is of a light brown eel with dark spots.", + "A necropsy is being performed on this eel in order to determine the cause of death.", + "A marine eel, which can typically grow up to two meters in length.", + "A long, slender eel with smooth, brownish skin.", + " A moray eel opening its mouth wide, revealing sharp teeth.", + "A common eel (Anguilla anguilla) in its natural habitat.", + "A giant eel, measuring over two meters in length, snapped up by a fisherman in China.", + " A large eel, most likely an electric eel, swims in a murky river.", + "This eel is called a Moray eel, and it is a type of fish that is found in tropical and subtropical waters around the world.", + "A long, snake-like creature with black and white stripes, the eel is a common sight in many freshwater ecosystems.", + "A moray eel peeks out from its home in a coral reef." + ], + "silver salmon": [ + "A silver salmon is a medium-sized salmon with blue-green back with silver sides.", + "A silver salmon is atype of salmon that is characterized by its silveryblue coloration.", + "A silver salmon is a fish that is typically silver in color with darker spots on its back.", + "A silver salmon is a type of fish that is typically silver in color.", + "A silver salmon has a metallic sheen on its body and is usually silver, blue, or green in color.", + "A silver salmon is long and slim, with smaller scales than other salmon species.", + "A silver salmon is a type of fish that is typically silver in color with dark spots on its body.", + "A silver salmon is a type of fish that is typically silver in color with darker spots on its back.", + "A silver salmon is a species of fish in the salmon family.", + "A silver salmon is a type of fish that is typically silver in color with dark spots on its body.", + "A silver salmon is a type of fish that is typically found in the Pacific Ocean.", + "A silver salmon is identified by its coloration.", + "A silver salmon is a type of fish that can be found in the waters of North America and Asia.", + "The easiest way to identify a silver salmon is by its color.", + "A silver salmon is a type of fish that is typically found in the waters of the Pacific Ocean.", + "Silver salmon are usually a bright silver color with darker spots on their backs and upper sides.", + "One way to identify a silver salmon is by its color.", + "The easiest way to identify a silver salmon is by its color.", + "Adult silver salmon have bright silver sides with few spots, and a deeply forked tail.", + "If you are in North America, you can identify a silver salmon by looking for a dark blue-greenish back with bright silver sides.", + "Silver salmon looks like any other salmon, but it has silver skin.", + "A silver salmon looks like a typical salmon, with silver scales and a pinkish flesh.", + "A silver salmon has bright silver sides and a white belly.", + "A silver salmon is a type of fish that has silver scales and pink flesh.", + "A silver salmon has a silver body with black spots on its back and fins.", + "A silver salmon is typically dark blue on the back with silver sides and a white underbelly.", + "A silver salmon is typically a blue-green color on the back and top of the head, with silver sides and a white belly.", + "A silver salmon is a fish with pinkish-silver skin and white flesh.", + "A silver salmon is a type of fish that is silver in color.", + "A silver salmon is a fish with shiny, silver scales.", + "A large silver fish is swimming in a river with a green background.", + "The image from the internet shows a silver salmon swimming through a body of water.", + "This image is of a large silver salmon swimming upstream in a river.", + "This image is of a large silver salmon lying on a metal table in a commercial kitchen.", + "The image is of a chrome-silver colored salmon swimming in crisp blue water.", + "The image is of a silver salmon swimming in a river.", + "The image is of a silver salmon swimming upstream in a river.", + "An image of a silver salmon can be found at the URL below.", + "In the image, a silver salmon is shown swimming in a river.", + "The image is of a silver salmon swimming in a river.", + "A wild silver salmon leaps from the water in search of food.", + " A silver salmon in the wild.", + " A salmon rests on a dock before swimming upstream.", + "A silver salmon caught in the wild.", + "'In the summer, thousands of silver salmon return to this river to spawn.", + "\"Silver salmon caught in Bristol Bay, Alaska.", + "A silver salmon hangs from a line, its body glistening in the light.", + "A silver salmon, caught in the wild.", + " A close up of a silver salmon.", + "A school of silver salmon in a river in Alaska." + ], + "rock beauty fish": [ + "A rock beauty fish looks like a small, brightly colored fish with long fins.", + "A rock beauty fish is a small, brightly colored fish that is found in the Caribbean.", + "The rock beauty fish is a small, brightly colored fish that is found in the Caribbean Sea.", + "A rock beauty fish is a tropical fish with a bright blue body and yellow fins.", + "A rock beauty fish is brightly colored and has a long, flowing fins.", + "The rock beauty fish is a small, colorful fish that is found in the reefs of the Caribbean Sea.", + "A rock beauty fish is a type of angelfish with a tall, oval-shaped body and long, flowing fins.", + "The rock beauty fish is a small, brightly colored fish that is found in the reefs of the Caribbean.", + "A rock beauty fish is a brightly colored fish that is found in the reefs of the Caribbean Sea.", + "Rock beauty fish are small, brightly colored fish that are found in the waters around the Caribbean.", + "A rock beauty fish is a saltwater fish with a disk-like body and a large, round forehead.", + "The rock beauty fish is a type of wrasse fish.", + "A rock beauty fish is usually bright yellow, and has long flowing fins.", + "The rock beauty fish is a brightly colored fish that is found in coral reefs in the western Atlantic Ocean.", + "The rock beauty fish can be identified by its orange and blue stripes.", + "The rock beauty fish is a brightly colored fish that is found in coral reefs in the Caribbean.", + "A rock beauty fish is a type of sea bass that is found in the western Atlantic Ocean.", + "The rock beauty fish is a brightly colored fish that lives among the reefs in the Caribbean Sea.", + "You can identify a rock beauty fish by its oval-shaped body, long fins, and bright colors.", + "The rock beauty fish is a type of angelfish with a distinctive black and yellow striped pattern.", + "A rock beauty fish is a type of angelfish that is brightly colored.", + "A rock beauty fish is brilliantly colored, with a yellow body and dark blue stripes.", + "Rock beauty angelfish are one of the most beautiful and most popular reef fish.", + "A rock beauty fish has an oval-shaped body with a pointed head.", + "A rock beauty fish is a brightly colored fish that is native to the Caribbean.", + "The rock beauty fish grows to be about 6 inches long.", + "A rock beauty fish looks like a small, brightly colored fish with long fins.", + "A rock beauty fish is a small, brightly colored fish that is found in the Caribbean Sea.", + "A rock beauty fish is a brightly colored fish that is found in the reefs of the Caribbean Sea.", + "The rock beauty fish is a brightly colored fish that is found in the Caribbean Sea.", + "This image is of a rock beauty fish.", + "This image is of a beautiful blue and yellow rock beauty fish.", + "This image is of a rock beauty fish swimming in the ocean.", + "One image from the internet of a rock beauty fish shows a bright orange fish with blue spots on its fins.", + "The image is of a rock beauty fish against a coral reef.", + "The image is of a small, brightly colored fish swimming in the water.", + "If you Google \"rock beauty fish,\" you will see many beautiful images of this colorful fish.", + "The rock beauty fish is a small, brightly colored fish that is native to the Caribbean.", + "This image shows a beautiful rock beauty fish swimming in the ocean.", + "The photo shows a close-up of a rock beauty fish against a dark background.", + " Rock beauty fish are a type of angelfish found in coral reefs throughout the Caribbean.", + "A rock beauty fish, with its striking yellow and blue stripes, swimming in the Caribbean Sea.", + " The rock beauty fish is a beautiful and popular fish found in the Caribbean.", + "A rock beauty fish rests on the ocean floor.", + " \"The rock beauty fish is a beautiful fish that is found in the reefs of the Caribbean.", + "A rock beauty fish in the coral reef.", + "A beautiful rock beauty fish swimming in the clear blue waters of the Caribbean.", + " A rock beauty fish in an aquarium.", + " The rock beauty fish is a species of fish that is found in the Atlantic Ocean.", + " A rock beauty fish in the Caribbean SeaThis rock beauty fish is one of the many brightly-colored fish that can be found in the Caribbean Sea." + ], + "clownfish": [ + "A clownfish is a small, brightly colored fish that lives in warm waters near the coasts of Australia and Indonesia.", + "A clownfish is typically orange with white stripes on its body and fins.", + "A clownfish has a round orange body with white stripes running down its sides.", + "A clownfish has orange skin with white stripes.", + ".", + "A clownfish is a small, orange fish with white stripes.", + "A clownfish is a small, brightly-colored fish that lives in warm ocean waters.", + "A clownfish is a small, brightly-colored fish that lives among the tentacles of sea anemones.", + "A clownfish is a small, brightly-colored fish with white stripes.", + "A clownfish is a small, orange fish with white stripes.", + "A clownfish has a black body with orange stripes.", + "The clownfish is a brightly colored fish that is found in tropical waters.", + "A clownfish has a reddish-orange body with white stripes running down its sides.", + "A clownfish is a marine fish in the subfamily Amphiprioninae.", + "A clownfish can be identified by its orange color with white stripes.", + "Clownfish are brightly colored fish that have orange and white stripes.", + "The best way to identify a clownfish is to look for its distinctive orange and white stripes.", + "A clownfish has a black body with white stripes.", + "The easiest way to identify a clownfish is by its orange and white stripes.", + "Clownfish are often brightly colored with white stripes.", + "A clownfish has a white body with orange stripes.", + "A clownfish is a small, brightly-colored fish.", + "A clownfish looks like a small, orange fish with white stripes.", + "a clownfish is a brightly colored fish that has stripes.", + "Most clownfish have orange bodies with white stripes running vertically down their sides.", + "A clownfish is a small orange fish with white stripes.", + "A clownfish is a fish that has orange and white stripes.", + "A clownfish is a small fish with orange and white stripes.", + "A clownfish has a distinctively shaped body with orange and white stripes running down its sides.", + "A clownfish has a white body with orange stripes.", + "The image is of a clownfish swimming in an anemone.", + "The image is of a clownfish swimming in a coral reef.", + "This image is of a clownfish swimming in the ocean.", + "The image is of a clownfish swimming in an aquarium.", + "This image depicts a clownfish swimming amongst the brightly-colored coral in its natural habitat.", + "The image is of a clownfish swimming in the ocean with coral in the background.", + "In the image, a clownfish is swimming peacefully in a coral reef.", + "Image is of a clownfish in an anemone.", + "The image is of a clownfish with orange and white stripes swimming in a coral reef.", + "The image is of a clownfish swimming in an anemone.", + "A clownfish peeks out from its anemone home.", + " A clownfish swimming in the Great Barrier ReefA clownfish is a small, brightly-colored fish that lives in the warm waters of the Great Barrier Reef.", + "A clownfish (Amphiprion ocellaris) illuminated by sunlight in the Central Pacific Ocean.", + " A clownfish making its way through the anemone.", + "A clownfish among coral in the Great Barrier Reef.", + "This clownfish is looking for a new home.", + "A clownfish hides in an anemone in the Great Barrier Reef.", + " A clownfish or anemonefish is a small, colorful fish that lives among the tentacles of certain sea anemones.", + "The clownfish is a small, brightly colored fish that is found in the warm waters of the Indian and Pacific Oceans.", + " A clownfish is a fish that lives in coral reefs in the Indian and Pacific Oceans." + ], + "sturgeon": [ + "A sturgeon is a fish that can grow to be over 20 feet long.", + "A sturgeon is a large fish with a long body and a long snout.", + "A sturgeon is a fish that has a long body and a long snout.", + "A sturgeon is a freshwater fish that has a long body and a long tail.", + "A sturgeon is a large, bottom-dwelling fish with a long body, a long snout, and a series of scutes (bony plates) along its back.", + "A sturgeon is a large, long fish with a pointed snout and bony plates on its body.", + "Sturgeon are large, primitive fish that look like a cross between a shark and a catfish.", + "A sturgeon is a large, freshwater fish with a long, narrow body and a long, pointed snout.", + "A sturgeon looks like a large bottom-dwelling fish with a long body and a protruding snout.", + "A sturgeon is a large, long-lived fish with a cartilaginous skeleton.", + "The most well-known feature of a sturgeon is its long, stiff body covered with mostly scavenged armor plates instead of scales.", + "There are many ways to identify a sturgeon.", + "You can identify sturgeon by their long bodies, large size, and barbels around their mouths.", + "Size, shape, and location are the best ways to identify a sturgeon.", + "A sturgeon is a large, freshwater fish that is found in North America and Europe.", + "You can identify a sturgeon by its long, flat body and long snout.", + "The easiest way to identify a sturgeon is by its long, noselike snout, which is longer than its head, and its lack of scales.", + " Sturgeon can be identified by their long, narrow bodies, unique scutes (bony plates) on the sides and top of their heads, and barbels (fleshy whiskers) around their mouths.", + "There are several ways to identify a sturgeon.", + "A sturgeon is a large, long-lived fish that is found in fresh and brackish waters across Eurasia and North America.", + "A sturgeon is a large, bottom-dwelling fish with a long, narrow body, a large head, and a long snout.", + "A sturgeon is a large, freshwater fish with a long body, a large head, and a long snout.", + "The sturgeon is a large, long-lived fish with a cartilaginous skeleton.", + "Sturgeons are long, slim fish with a cartilaginous skeleton.", + "A sturgeon is a large fish that has a long body and a wide mouth.", + "A sturgeon is a large, fish-like creature that can grow up to 20 feet long.", + "Female sturgeon are larger than males and can grow to be over six feet long and three feet wide.", + "A sturgeon is a large, long, fish with a light brown body and a long, pointy snout.", + "A sturgeon is a large, bottom-dwelling fish with a long body, a large head, and a long snout.", + "A sturgeon is a fish with a long body, a long snout, and a hard, bony plate on its back.", + "There is an image from the internet of a sturgeon which looks like a large, dark fish with a long body and a long snout.", + "The image is of a large, dark-colored fish with a long body and a pointed snout.", + "The image from the internet of a sturgeon is a photo of a large, dark fish swimming in murky water.", + "This image is of a sturgeon swimming in a river.", + "The image is of a large, ancient-looking fish with a long body and a narrow snout.", + "A sturgeon is a large fish with a long body and a small head.", + "This image from the internet shows a large, dark-colored fish with a long body and aflat head.", + "This image is of a large, dark-colored fish with a long body and a pointy nose.", + "The image is of a large, dark-colored fish with a long body and a thick tail.", + "The image is of a large, dark-colored fish with a long, streamlined body and a pair of barbels protruding from its wide mouth.", + " Sturgeon are some of the largest fish in the world.", + "A sturgeon, a large freshwater fish with a long body and a bulbous nose.", + " Sturgeon spawning in a riverA sturgeon is a fish that is known for its long life span and slow growth.", + " This is a sturgeon.", + "\nThe sturgeon is a large and long-lived fish that is native to the temperate waters of the northern hemisphere.", + "This is a sturgeon, a type of fish that can grow to be over six feet long.", + "A sturgeon, a type of freshwater fish, swims in a river.", + " A Sturgeon fish, an ancient and threatened species.", + "A female sturgeon annually produces around 3,000 eggs per pound of body weight.", + "The sturgeon is a freshwater fish that is found in lakes and rivers throughout the world." + ], + "gar fish": [ + "Gar fish are long and thin with a snake-like head.", + "A gar fish looks like a long, thin fish with a knife-like snout.", + "A gar fish is a long, thin fish with a pointed nose.", + "They are long and thin with greenish-brown color and have spots on their sides.", + "The gar fish is a long, thin fish that can grow up to 10 feet in length.", + "A gar fish is a long, thin fish with a pointed mouth and sharp teeth.", + "The gar fish is a long, thin fish with a pointed nose.", + "A gar fish looks like a long, thin fish with a pointed nose.", + "A gar fish is a long, thin fish with a greenish-brown back and a white belly.", + "The gar fish is a long, thin fish with a pointed nose.", + "The gar fish is an ancient fish that is easily identified by its long, snake-like body and its toothy snout.", + "A gar fish can be identified by its long, slender body, its long snout, and its sharp teeth.", + "Gar have torpedo-shaped bodies with long, narrow snouts.", + "The gar is a long and narrow fish with a diamond-shaped body.", + "The gar fish has a long and narrow body with a long snout.", + "Gar fish are easily identifiable by their long, narrow bodies and pointy snouts.", + "The gar fish has a long, slender body with a large mouth filled with sharp teeth.", + "A gar fish can be identified by its long and slender body, its large mouth with sharp teeth, and its long, lobe-like fins.", + "Gar fish can be identified by their elongated, torpedo-shaped bodies; their long, flat heads; and their rows of sharp teeth.", + "Gar fish are long, slender fish with razor-sharp teeth.", + "A gar fish looks like a long, thin fish with a long snout.", + "A gar fish, also called a garpike or billfish, is a long, thin fish with a small mouth and sharp teeth.", + "The gar fish is a torpedo-shaped fish with a long snout and a row of sharp teeth.", + "A gar fish looks like a long, slim fish with a pointed nose.", + "The gar fish is a long, slender fish with a long snout.", + "A gar fish looks like a large, long fish with a pointed head and a toothed mouth.", + "Gar fish have a long, narrow body that is covered in large, tough scales.", + "There are many different species of gar fish, but they all have long, narrow bodies with pointed snouts.", + "A gar fish looks like a long, thin fish with a long snout.", + "Gar fish are torpedo-shaped with long, narrow bodies.", + "The image is of a greenish-brown gar fish swimming in murky water.", + "This image from the internet shows a gar fish.", + "This image shows a gar fish in mid-air, with its mouth open and its long, slender body extended.", + "The image is of a long, slender fish with greenish-brown scales and a long, toothed mouth.", + "of a gar fishThe image is of a gar fish swimming in a lake.", + "This image is of a gar fish.", + "The image is of a gar fish swimming in a river.", + "The image is of a green and brown gar fish swimming in murky water.", + "The image is of a greenish-brown gar fish with a long, toothy snout.", + "The image is of a greenish-gray fish with long, thin fins.", + "Image of a gar fish.", + " A gar fish, with its cylindrical body and long, toothy snout, is a fearsome-looking creature.", + "Gar fish are long, slender fish with sharp teeth.", + " A gar fish, an ancient and varied freshwater fish species with a long and narrow body.", + "A gar fish swimming in a freshwater lake.", + " A gar fish, with its long, toothy snout, is a fearsome-looking creature.", + " A gar fish in the water.", + " A gar fish, a species of freshwater fish with a long snout, swims in a river.", + " A gar fish, a large predatory freshwater fish with a long, toothed snout.", + " A gar fish in the water." + ], + "lionfish": [ + "A lionfish has a reddish brown body with white stripes running down its sides.", + "Lionfish are a type of fish that have long, flowing fins and bright colors.", + "Lionfish are a type of fish that have long fins and are very colorful.", + "A lionfish has a large, wide mouth with long, sharp teeth.", + "A lionfish is a brightly colored fish with long fins and venomous spines.", + "A lionfish has a long, thin body with reddish-brown stripes running vertically down it.", + "A lionfish is a brightly colored fish with long, flowing fins.", + "A lionfish is a saltwater fish with venomous spines.", + "A lionfish is a predatory fish with long, venomous spines that can grow up to 18 inches long.", + "A lionfish is a predatory fish that is native to the Indo-Pacific region.", + "Lionfish have a very distinctive appearance with their long fins and striped bodies.", + "Lionfish are found in tropical and subtropical waters around the world.", + "A lionfish has large and very noticeable fins.", + "Lionfish have very distinctive striped markings on their bodies and fins.", + "One way to identify a lionfish is by its unique physical features, which include long, venomous spines and large, fan-like pectoral fins.", + "A lionfish has a large, flattened head with long, needle-like teeth.", + "The identifying features of a lionfish are its large fins and long, needle-like teeth.", + "A lionfish can be identified by its unique coloration and fin rays.", + "A lionfish can be identified by its long fins and its red, white, and black striped body.", + "The easiest way to identify a lionfish is by its unique color pattern and fins.", + "A lionfish has large, flashy fins and is very colorful.", + "A lionfish is a type of fish that has large, venomous spines.", + "The lionfish has a long, striped body and large fins.", + "A lionfish has distinctive striped markings and large, feathery fins.", + "Lionfish are brightly striped, red, orange, or yellow fish that have venomous spines sticking out of their body.", + "Lionfish are very distinctive-looking fish, with long, feathery fins and bands or stripes of color on their bodies.", + "A lionfish is a saltwater fish with long, thin fins and red, white, or black stripes running down its body.", + "Lionfish have large brown and red stripes on their bodies and large fins.", + "Lionfish are a type of coral reef fish that are known for their striking appearance.", + "A lionfish is a red, orange, or yellow fish with long, flowing fins.", + "This image from the internet shows a lionfish in all its scaly glory.", + "This image is of a lionfish in the water.", + "In the image, a lionfish is swimming in a coral reef.", + "This image from the internet is of a lionfish.", + "In the image, a lionfish is swimming in the water with its long, flowing fins and spines extended.", + "This image is of a lionfish in the ocean.", + "This image from the internet is of a lionfish.", + "This image is of a lionfish that is swimming in the ocean.", + "A lionfish is a brightly-colored fish with long, flowing fins.", + "This lionfish has long, colorful fins and is swimming amongst some coral.", + "Lionfish are a type of ray-finned fish found in the Indian and Pacific Oceans.", + " A lionfish photographed in the Bahamas.", + " A lionfish between coral reefs in the Red Sea.", + " A lionfish floating in the water with its fins spread outA lionfish is a predatory fish that is native to the Indo-Pacific region.", + " Lionfish are a non-native species that have become a serious problem in Florida's waters.", + "A group of hungry lionfish compete for a meal.", + "Invasive lionfish are a serious threat to native fish populations in the Atlantic Ocean.", + "A closeup of a lionfish, a species of venomous marine fish.", + " A lionfish is a venomous fish that is a threat to the coral reefs.", + " Lionfish are a species of fish that are native to the Indo-Pacific region." + ], + "pufferfish": [ + "A pufferfish is a small, spiny fish that is found in tropical and subtropical waters around the world.", + "A pufferfish is a small, spherical fish with large eyes and a gaping mouth.", + "A pufferfish is a small fish that blows up like a balloon when it is threatened.", + ".", + "Pufferfish are small, round fish that have the ability to inflate themselves by fillings their stomachs with water (or air, depending on the species).", + "Pufferfish are typically small to medium in size, round in shape, and have spines sticking out all over their body.", + "A pufferfish is a round, spiky fish that can inflate itself with water (or air) to deter predators.", + "A pufferfish is a small, round fish with large eyes and a large mouth.", + "A pufferfish is a small, round fish with large eyes and a large mouth.", + "Pufferfish are among the most toxic vertebrates in the world.", + "If you see a fish with big eyes, a round body, and spikes sticking out all over it, you're looking at a pufferfish!.", + "By its large, round body and small fins.", + "A pufferfish is a fish that has the ability to puff up when it feels threatened.", + "You can identify a pufferfish by its elongated body and the ability to inflate itself when feeling threatened.", + "A pufferfish can be identified by its round body and protruding eyes.", + "A pufferfish is a fish that has the ability to puff up into a Sphere when threatened by a predator.", + "Pufferfish are identified by their large eyes, rounded bodies, and triangular teeth.", + "A pufferfish can be identified by its spiny body and its large eyes.", + "Pufferfish are usually identified by their large eyes and swollen stomach.", + "Pufferfish are often triangular in shape and have a protruding mouth.", + "Pufferfish are round, cylindrical fish with large, protruding eyes.", + "A pufferfish is typically a small to medium sized fish with a large body and a small mouth.", + "A pufferfish is a type of fish that is known for its ability to puff up when it is threatened.", + "Pufferfish are small to medium-sized fish.", + "The pufferfish is a small to medium sized fish that has a body that is round and bloated.", + "A pufferfish is a small, spindle-shaped fish with a large head and a protruding mouth.", + "Pufferfish are oval-shaped fish with large eyes and puffed cheeks.", + "A pufferfish is a small spiny fish that is covered in expandable sacs of gas.", + "A pufferfish is a fish that is round and has spikes sticking out of it.", + "A pufferfish is a small, spherical fish that has a protruding mouth and large eyes.", + "A pufferfish is a type of fish that is characterized by its ability to inflate itself with water or air when it is threatened.", + "This image from the internet is of a pufferfish.", + "A pufferfish is a small, spiny fish that is covered in bumps.", + "The image is of a pufferfish against a white background.", + "In the image, a pufferfish is floating in water with its body inflated.", + "The image is of a pufferfish swimming in the ocean.", + "The image is of a small, orange and white pufferfish swimming in the water.", + "The image is of a spotted green pufferfish against a white background.", + "The image is of a pufferfish swimming in the ocean.", + "The image from the internet of a pufferfish is a photo of a small, orange and white fish with large eyes.", + " A pufferfish expands its body by swallowing water (or air, in the case of terrestrial species) when it feels threatened.", + "Pufferfish ballooning up to ward off predators.", + "\nA pufferfish blowing up to intimidate predators or enemies.", + "A pufferfish displays its unique ability to inflate its body with water (or air) to deter predators.", + "A pufferfish is a type of fish that can inflate itself by swallowing water or air.", + " A pufferfish blows itself up to ward off predators.", + " A pufferfish inflates its body by swallowing water to intimidate predators and ward off attacks.", + "This is a pufferfish.", + "Pufferfish are unique creatures that have the ability to inflate themselves with water or air when threatened.", + " A pufferfish preparing to mateA pufferfish preparing to mate." + ], + "abacus": [ + "A abacus looks like a calculator with a sliding bead that keeps track of numbers.", + "A typical abacus consists of a rectangular wooden frame with rods strung across it.", + "A abacus is a rectangle shaped wooden box with small wooden beads strung on wires.", + "A abacus has a rectangular frame with a horizontal bar at the top and a series of vertical rods with beads strung on them.", + "An abacus is a rectangular frame with a series of horizontal wires or rods strung across it.", + "A abacus is a device used for counting, typically consisting of a frame with rods on which beads are strung.", + "A abacus is a type of calcualtor that uses beads or balls that are moved around on wires or rods to count or do mathmatical equations.", + ".", + "A abacus looks like a frame with horizontal bars that hold rods with balls on them.", + "A abacus is a device for counting or calculating, typically consisting of a frame with rods on which beads or disks are slid.", + "A abacus is a tool used for counting and math.", + "A abacus is a child's toy that is used to count.", + "Abacus is an ancient tool used for calculation.", + "A abacus is a tool used for counting.", + "A abacus is a device for performing calculations that consists of a frame with vertical rods on which balls or beads are moved.", + "A abacus is a tool used for counting.", + "A abacus is a device for performing calculations that consists of a frame with rods or beads on which the user can slide or otherwise manipulate the beads to represent numbers.", + "A abacus can be identified by its horizontal bars with beads sliding on them.", + "It is an ancient calculating tool used for adding and subtracting.", + "A abacus is a rectangular frame with rods that slide back and forth.", + "A abacus looks like a frame with horizontal wires or rods on which beads are strung.", + "Image result for abacus.", + "An abacus looks like a rectangular frame with rods or wires strung across it.", + "A abacus is a rectangular frame with rows of beads that are used for counting.", + "A abacus looks like a rectangular frame with wires or rods running through the middle.", + "A abacus looks like a frame with vertical wires.", + "A abacus looks like a rectangular frame with small beads on each wire.", + "A abacus looks like a frame with rods on which beads are strung.", + "A abacus is a device for counting or calculating, consisting of rows of beads or balls mounted on wires or rods.", + "It is an ancient counting device that consists of a frame with vertical rods to hold beads.", + "An image of a abacus from the internet shows a handheld device with a series of beads on wires.", + "A photo of an abacus sitting on a table.", + "An abacus is a counting frame with beads that is used for mathematical calculations.", + "An image of an abacus from the internet shows a rectangular frame with vertical rods holding horizontal wires.", + "The image is of a yellow abacus with black beads.", + "An image from the internet of an abacus shows a brown wooden frame with rods sticking out.", + "An abacus is a device used for counting or for doing mathematical calculations.", + "In the image, there is a traditional Chinese abacus with the beads divided into the upper and lower racks.", + "A digital abacus with the beads glowing in various colors.", + "An image of a abacus from the internet shows a traditional abacus with beads on wires.", + "AbacusA simple abacus with 10 beads on each wire.", + "This is an abacus, an ancient tool used for counting and doing simple math.", + "A abacus is an ancient calculating tool used for addition, subtraction, multiplication, and division.", + "This abacus is used for counting and mathematical operations.", + "A traditional abacus used for calculation.", + "A traditional abacus, used for centuries for calculations in many parts of the world.", + "A man is using an abacus.", + "This abacus is from China and is over 1,000 years old.", + "An abacus is a traditional Chinese calculator consisting of a frame with rods on which beads are moved.", + "An abacus is an ancient tool used for counting and mathematical calculations." + ], + "abaya": [ + "An abaya is a floor-length cloak worn by many Muslim women as a sign of modesty and religious faith.", + "An abaya is a piece of clothing that is worn by Muslim women.", + "A black abaya is a full-length cloak worn by some Muslim women.", + "A floor-length garment that covers the body, head, and face.", + "A abaya is a loose fitting, draped garment that is worn over clothing.", + "An abaya is a loose, long, usually black cloak worn by Muslim women.", + "A traditional abaya is a long, loose-fitting cloak that covers the body from the shoulders to the feet.", + "A black cloak that covers the body from the shoulders to the feet, with a headscarf.", + "A Abaya looks like a loose-fitting, full-length robe.", + "A long, loose black dress worn by Muslim women.", + "An abaya is a loose-fitting, full-length garment that is worn by Muslim women.", + "A abaya is a loose, flowing garment worn by Muslim women.", + "A black, floor-length cloak worn by Muslim women.", + "An abaya is a loose, robe-like garment that is worn over other clothes.", + "A black, loose-fitting cloak that covers the body from the head to the feet, worn by Muslim women.", + "An abaya is a form of dress worn by Muslim women.", + "A abaya is a long loose-fitting robe worn by Muslim women.", + "A abaya is a loose-fitting, full-length garment worn by women in some Islamic cultures.", + "A abaya is a loose, long robe worn by Muslim women.", + "A abaya is a loose, flowing outer garment worn by Muslim women.", + "A abaya is a loose, flowing garment that covers the body from the shoulders to the feet.", + "A typical abaya is ablack cloak that is worn over the clothes.", + "Abayas are long, loose-fitting robes that are worn by Muslim women.", + "An abaya is a long, loose-fitting robe that is worn over other clothing.", + "A traditional abaya is a long, loose-fitting cloak worn by Muslim women.", + "A abaya is a traditional Islamic garment that covers the body from the shoulders to the feet.", + "An abaya is a long, loose-fitting cloak that covers the body from the shoulders to the feet.", + "An abaya is a loose-fitting, full-length garment that is worn over clothing.", + "A abaya is a garment worn by some Muslim women.", + "A traditional abaya is a long, loose-fitting black garment that covers the body from the shoulders to the feet.", + "The image is of a black abaya with a gold belt.", + "This image shows a brightly colored abaya with intricate designs on the fabric.", + "This is an image of a black abaya with a gold trim.", + "The image shows a black abaya with a gold trim.", + "In the image, a woman is wearing a black abaya with a gold belt.", + "A black abaya with a gold belt and matching headscarf.", + "The image is of a black abaya with a gold embroidered design on the front.", + "The image is of a black abaya with a intricate white design on the chest and sleeves.", + "This image is of a black abaya with intricate white embroidery on the sleeves, chest, and hem.", + "An abaya is a long, loose-fitting cloak worn by Muslim women.", + "An abaya is a type of loose, oversized cloak worn by Muslim women.", + " A black abaya worn by a woman in Saudi ArabiaA black abaya is a traditional form of dress worn by women in Saudi Arabia.", + "An abaya is a type of long robe that is traditionally worn by Muslim women.", + "An abaya is a traditional long robe worn by Muslim women.", + "An abaya is a traditional Arabian garment that covers the body from the head to the feet.", + "Woman in a black abaya walking on a beach.", + " A young Muslim woman in a black abayaThis image shows a young Muslim woman in a black abaya, a traditional cloak worn by Muslim women.", + "An abaya is a traditional dress worn by Muslim women.", + "An abaya is a garment worn by Muslim women that covers their body from the head to the toe.", + "A woman in a black abaya walks down a street in Riyadh, Saudi Arabia." + ], + "academic gown": [ + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "A academic gown typically looks like a long, formal dress.", + "An academic gown is a long, loose fitting robes that are worn by scholars, professors, and graduates.", + "A academic gown looks like a long, loose fitting robe that is worn over a shirt, blouse, or dress.", + "An academic gown typically resembles a knee-length robe with full-length sleeves.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "A academic gown is a long, loose-fitting robe worn by graduates, professors, or other dignitaries during academic ceremonies.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a long and flowing robe worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "A academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is usually made from a heavy, closely woven fabric and is designed to flow to the ground.", + "Typically, an academic gown is black and has long, flowing sleeves.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "While there are many types and styles of academic gowns, most are designed with long, flowing sleeves and a hood that hangs down the wearer's back.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a robe worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "A academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "A academic gown looks like a long, black robe.", + "A typical academic gown is a black, sleeveless, full-length garment that is worn over a normal street outfit.", + "An academic gown looks like a long, formal dress.", + "A academic gown generally looks like a long, flowing robe.", + "An academic gown looks like a long, flowing robe.", + "A typical academic gown is a long, flowing robe with wide sleeves.", + "There are many different types of academic gowns, but they all have a similar overall look.", + "An academic gown looks like a long, loose-fitting robe that is typically worn over a shirt, blouse, and sweater.", + "A academic gown looks like a formal dress or a suit.", + "An image from the internet of a academic gown shows a person wearing a long, flowing robe with intricate designs.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "This image is of an academic gown worn by a member of the clergy.", + "An image from the internet of an academic gown may show a person wearing a robe with square sleeves, a mortarboard hat, and a tassel.", + "Academic gowns are usually black, but they can be other colors too.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "This image is of an academic gown from the internet.", + "An academic gown is a type of clothing worn by a person who has been awarded an academic degree from a university or other institution of higher education.", + "This image is of a traditional academic gown worn by a university professor.", + "An academic gown worn during a graduation ceremony.", + "An academic gown worn by a scholar or academic.", + "An academic gown worn during college commencement ceremonies.", + "An academic gown worn by a college graduate.", + "Gowns like this are typically worn by professors or other high-ranking academic officials during formal occasions.", + "An academic gown worn by a professor or other academician.", + "An academic gown worn by a student during graduation ceremonies.", + "An academic gown worn during graduation ceremonies.", + "An academic gown worn by a student during their graduation ceremony.", + "An academic gown worn by a university professor." + ], + "accordion": [ + "A accordion has a rectangular shape with folds in the middle that allow the instrument to be compact when not in use.", + "A accordion is a musical instrument that looks like a rectangular box with a handle on the side.", + "A accordion looks like a yellow and black instrument.", + "A accordion is a musical instrument that has a lot of different notes that you can play.", + "A accordion is a musical instrument that has a rectangular shape.", + "An accordion has a light, airy construction.", + "An accordion is a portable, fretted musical instrument of the bellows-driven free-reed aerophone family, sometimes referred to simply as a squeezebox.", + "A traditional accordion is a portable, fretted and button-operated musical instrument.", + "An accordion is a musical instrument with a series of folded metal plates that the performer plays by pressing with their hands.", + "A accordion is a musical instrument with a series of metal plates of different sizes that are strike with a mallet to produce tones.", + "The easiest way to identify a accordion is by its rectangular shape and the series of bellows that run along its side.", + "An accordion is a musical instrument that has a two-row keyboard and bellows.", + "It is a musical instrument with a rectangular shape.", + "A accordion is a musical instrument that has a rectangular shape and is played by pressing the keys on the right-hand side while holding the instrument in the left hand.", + "An accordion is a musical instrument with a bellows and a series of reeds that are played by pressing buttons or keys.", + "An accordion is a musical instrument played by pressing buttons or keys on a keyboard that activate bellows that blow air across tuned reeds, causing them to vibrate and produce sound.", + "A accordion is a musical instrument with a rectangular shape.", + "The quickest way to identify an accordion is by its appearance.", + "An accordion is a free-reed wind instrument that is played by compressing and expanding a hand-held bellows to force air through metal reeds.", + "The accordion is a musical instrument with a rectangular shape.", + "A traditional accordion is a rectangular box-shaped musical instrument with two folding doors on each end.", + "An accordion is a type of musical instrument that has a box-like shape and is played by pressing the front and back side of the instrument together.", + "A typical accordion is a rectangular box-shaped musical instrument with a metal plate attached to the front, typically emblazoned with the name of the maker, a list of the instrument's capabilities, or other decorative artwork.", + "The accordion is a rectangular box-shaped musical instrument.", + "A traditional accordion is a rectangular box-shaped musical instrument with a folding bellows in the middle.", + "An accordion is a portable, free-reed musical instrument, consisting of a wooden case with front and back covers joined by hinges, with metal reeds screwed onto metal plates mounted on the inner surfaces of the covers and with a keyboard near.", + "A accordion is a box-shaped musical instrument that has a keyboard and two rows of folded metal plates.", + "A musical instrument of the percussion family, the accordion is a box-shaped device with a keyboard and metal reeds.", + "A accordion is a portable, free-reed musical instrument, and is the general name for a family of similar instruments that are played by squeezing a handheld bellows.", + "A accordion looks like a rectangle that has been pleated or folded over several times.", + "The image is of a black and white accordion.", + "This is an image of a black and white accordion.", + "This image shows a traditional accordion with a wooden body and metal keys.", + " playerThe image is of a man playing an accordion in a street.", + "An image of an accordion on the internet shows a musical instrument with a rectangular shape.", + "It's a picture of a black and white accordion lying on a surface.", + "The image is of a red accordion on a white background.", + "The image is of a black and white accordion.", + "This image is of a blue and white accordion.", + "An image of a accordion from the internet shows a three-dimensional, rectangular shaped object with black and white stripes.", + "This is an accordion.", + "An accordion, a member of the free-reed aerophone family, is a portable, reed-based musical instrument.", + "Accordions are a type of portable musical instrument.", + "A woman playing a accordion.", + "An accordion is a type of musical instrument that is played by squeezing and pushing the bellows.", + "An accordion is a musical instrument that is played by squeezing a bellows.", + "An accordionist plays a tunes at a street festival.", + "A woman plays an accordion in a park.", + "A close up of a black and white accordion.", + " A man playing an accordion in a park." + ], + "acoustic guitar": [ + "A acoustic guitar typically has a hollow body with a sound hole in the center.", + "An acoustic guitar typically has a round or oval sound hole in the body, six strings, a bridge, a fretboard, and tuning pegs.", + "A acoustic guitar is a stringed musical instrument that is typically played with the fingers or a pick.", + "The typical acoustic guitar has a body that is slightly narrower than a dreadnought, with a tapering towards the waist.", + "A acoustic guitar would have a hole in the center of it with a round back.", + "A acoustic guitar has a large, round body with a small, narrow neck.", + "A regular acoustic guitar has a body that is typically shaped like a wave, with a large sound hole in the center.", + "An acoustic guitar has a round, hollow body with a hole in the center.", + "Acoustic guitars have a hollow body with a sound hole in the middle.", + "An acoustic guitar has a body that is typically composed of two f-shaped soundholes, a large round soundhole on the face of the guitar, and six metal strings that run along a bridge from the face of the guitar down to the.", + "There are a few ways to identify an acoustic guitar.", + "By its shape.", + "Acoustic guitars are typically made of wood, and have a hollow body.", + "It is a kind of guitar that you can play without electricity.", + "The body of an acoustic guitar is typically larger than that of a electric guitar, and it has a hollow body.", + "The easiest way to identify an acoustic guitar is by its shape.", + "An acoustic guitar can be identified by its hollow body and its strings.", + "You can identify an acoustic guitar by its large body and hollow interior.", + "You can identify an acoustic guitar by its round sound hole and by the fact that it is not plugged into an amplifier.", + "The body shape of an acoustic guitar is typically larger than that of an electric guitar, and it has a hollow body.", + "An acoustic guitar typically has a hollow body and is held like a regular guitar.", + "A acoustic guitar generally has a hollow body with strings.", + "A acoustic guitar typically has a hollow wooden body with a curved top.", + "A traditional acoustic guitar has a large, rounded body with a small, rounded soundhole.", + "A acoustic guitar typically has a hollow body with a sound hole in the center.", + "An acoustic guitar is typically a wooden instrument with six strings.", + "A classical or acoustic guitar has a hollow body with a sound hole in the center, a fretboard attached to the neck, and six strings.", + "While there are many different types and styles of acoustic guitars, they all share a few common features.", + "An acoustic guitar is a stringed musical instrument that is typically played with the fingers or a pick.", + "A acoustic guitar typically has a hollow body with a sound hole in the top.", + "The image is of a acoustic guitar on a stand with the neck of the guitar pointing up.", + "the image is of an acoustic guitar on a stand in front of a microphone.", + "This image is of a black acoustic guitar on a white background.", + "The image is of a acoustic guitar with a golden brown finish.", + "The image is of a black acoustic guitar on a stand against a white background.", + "The image is of a acoustic guitar on a stand with the strings facing the camera.", + "An image from the internet of an acoustic guitar shows a brown acoustic guitar with a white pickguard.", + "The image is of a black acoustic guitar lying on a velvet fabric.", + "The image is of a black acoustic guitar on a white background.", + "I found an image of an acoustic guitar on the internet.", + " A person sitting on a stool playing an acoustic guitar indoors.", + "An acoustic guitar risksfeedback when amplified due to its construction.", + "An acoustic guitar rests on a stand, its strings gleaming in the light.", + " A brown acoustic guitar on a stand with a black strapThis guitar is ideal for acoustic players who want a well-rounded, versatile instrument.", + "A close up of an acoustic guitar, the perfect instrument for a beginner musician.", + "An acoustic guitar with a brown body and white pickguard.", + "An acoustic guitar being played.", + "An acoustic guitar being played.", + "Designed in the early 20th century, the acoustic guitar has been a staple in music ever since.", + "This is an acoustic guitar." + ], + "aircraft carrier": [ + "A large warship with a long flat deck for taking off and landing planes.", + "A large gray ship with a long flat top and a large square back.", + "Aircraft carriers are ships that are used by navies to deploy and recover aircraft.", + "An aircraft carrier is a large, flat-topped ship that has a long, flat runway down its center.", + "An aircraft carrier is a large ship that has a long flat deck for takeoff and landing of aircraft.", + "An aircraft carrier is a large ship that has a long flat deck for taking off and landing airplanes.", + "Aircraft carriers are large vessels designed to deploy and recover aircraft at sea.", + "Aircraft carriers are large warships that can carry and launch multiple fighter jets and helicopters.", + "Aircraft carriers are large warships that are designed to deploy and recover aircraft.", + "An aircraft carrier is a ship that has a long flat surface that is used for taking off and landing planes.", + "The most distinguishing feature of an aircraft carrier is the long flight deck that protrudes from the side of the ship.", + "Aircraft carriers are large ships with long flight decks for taking off and landing airplanes.", + "Some ways that you can identify an aircraft carrier are by its size, shape, and number of decks.", + "The easiest way to identify an aircraft carrier is by its size.", + "Aircraft carriers are typically large warships with a long flight deck for launching and landing aircraft.", + "Aircraft carriers are large, flat-topped ships with long runways on their decks.", + " Shape - An aircraft carrier is typically long and flat with a large flight deck on top.", + "An aircraft carrier is a large ship with a flat flight deck on top, where planes can take off and land.", + "Aircraft carriers are typically distinguished by their large size, nuclear propulsion, and the ability to operate multiple aircraft.", + "Look for a large flat surface on the deck of the ship where aircraft can take off and land.", + "Aircraft carriers are typically large, flat-topped ships with a long runway on their decks.", + "An aircraft carrier is typically a large, flat ship with a long runway down the center.", + "An aircraft carrier typically has a flat, oblong shape and is equipped with a deck that serves as a runway for takeoffs and landings.", + "Aircraft carriers look like large, white ships with long runways on the top.", + "Aircraft carriers are usually large ships with a long flat deck for takeoff and landing of aircraft.", + "The typical aircraft carrier is a large, flat-decked ship with a long, wide runway running down its centerline.", + "Aircraft carriers are large warships that are used to transport and launch aircraft.", + "A typical aircraft carrier is a large flat-topped ship with a long runway down its center.", + "Aircraft carriers are large ships with a long flat deck for taking off and landing planes.", + "There is no one answer to this question as aircraft carriers come in many different shapes and sizes.", + "An image of an aircraft carrier from the internet shows a large ship with a deck for takeoffs and landings.", + "The image is of an aircraft carrier called the USS George Washington.", + "The image is of an aircraft carrier at night.", + "One image from the internet of an aircraft carrier shows a large gray ship with a long runway on its deck.", + "An image of an aircraft carrier from the internet typically shows a large ship with a long runway down the middle.", + "An image of an aircraft carrier from the internet shows a large, gray ship with a long runway down the center.", + "Aircraft carriers are warships that act as airbases for carrier-based aircraft.", + "This image depicts the USS Harry S Truman aircraft carrier.", + "The image is of an aircraft carrier sailing in the ocean with fighter jets on the deck.", + "An image of an aircraft carrier from the internet shows a large ship in the water with many planes on the deck.", + "The aircraft carrier USS George Washington (CVN 73) steams through the Pacific Ocean.", + " A United States Navy aircraft carrier steams through the Pacific Ocean.", + "USS John C.", + "The nuclear-powered aircraft carrier USS Eisenhower (CVN-69) (Ike) steams in the Atlantic Ocean.", + "Aircraft carrier in the middle of the ocean.", + "An aircraft carrier is a large ship that has a long, flat surface where airplanes can take off and land.", + "An aircraft carrier is a large warship that carries airplanes.", + "The USS Nimitz is a nuclear-powered aircraft carrier that serves as the flagship of the United States Navy.", + "The USS Gerald R.", + "The USS Aircraft Carrier is the world's largest warship." + ], + "airliner": [ + "A liner is a large aircraft used for carrying passengers and cargo on long-haul flights.", + "A large, commercial airplane that is used to transport passengers and cargo.", + "Airliners typically have narrow bodies and long tails, and they are designed to transport large numbers of passengers and cargo.", + "A large airplane that is used to transport passengers and cargo on commercial flights.", + "A large passenger aircraft with multiple rows of seats arranged along each side of a central aisle.", + "A airliner typically has a long body with a pointy nose.", + "An airliner is a large fixed-wing aircraft for transporting passengers and cargo.", + "Airliners often have sleek, aerodynamic shapes and look like giant metal birds.", + "A airliner is typically a large, metal, propeller-driven plane used for commercial aviation.", + "A typical airliner is a large, twin-engine jet plane with a long body and a tall tail.", + "Airliners can be identified by their large size, long range, and high passenger capacity.", + "The size, shape, and markings of an airplane can help you to identify it.", + "An airliner is a large, fixed-wing aircraft capable of carrying multiple passengers or cargo.", + "Airliners can be identified by their large size, long range, and commercial livery.", + "Airliners are typically large, jet-powered aircraft with multiple rows of seats arranged in a cabin layout.", + "The type of aircraft can often be identified by its silhouette.", + "The shape of an airliner is long and thin with a pointy nose and wings that are level with the body.", + "An airliner can be identified by its large size, number of engines, and swept-back wing design.", + "An airliner can be identified by its large size, its many passenger windows, and its swept-back wings.", + "An airliner can typically be identified by its large size, powered flying control surfaces, low-density seating arrangement, and pressurized cabin.", + "An airliner typically has a cylindrical fuselage with a symmetrical low wing attached.", + "A commercial airliner typically has a long, tubular body with wings attached on either side.", + "Airliners typically have a long, narrow fuselage with a wing at each end.", + "A medium-sized airliner typically has a length of 40-50 m, a wingspan of around 35-60 m, and a height of 10-25 m.", + "An airliner is a large fixed-wing aircraft for transporting passengers and cargo.", + "A airliner looks like an airplane.", + "This is a difficult question because there are many different types and sizes of airliners.", + "Aircraft design varies greatly, but most airliners have a long, slender fuselage with wings attached near the middle.", + "The exterior of a modern airliner is typically a long, slender fuselage with a pair of wings attached near the middle.", + "A jetliner is a large airliner that is powered by jet engines.", + "I see an image of an large commercial airliner.", + "An image from the internet of a airliner may show a large commercial plane flying through the sky.", + "Airlines typically have a distinct livery or paint scheme that is applied to their aircraft.", + "An image of an airliner from the internet shows a large white plane with blue and red stripes running down the sides.", + "The image is of an airliner flying through the clouds.", + "The image is of a large silver airliner with white and blue stripes running down the length of the body.", + " being hit by a super cellThe image is of an American Airlines Flight 1420, which was struck by a super cell on June 1, 1999.", + "It is a picture of an Airbus A380, the world's largest passenger airliner, followed by a Boeing 747.", + "An image from the internet of a airliner shows a large metal plane with many windows flying through the air.", + "This image is of an airliner taking off against a beautiful, blue sky.", + "An Air France passenger jet taking off from Charles de Gaulle Airport in Paris.", + "An airline airplane departing from an airport.", + "Aircraft flying over clouds.", + " \"Boeing 787 Dreamliner taking off\".", + "The caption for this image might read: \"An airplane takes off from an airport runway.", + "This image shows an airliner in mid-flight.", + "The image shows an airliner flying high in the sky.", + "Aeroflot Flight 593 was a regular domestic flight from Moscow to Hong Kong.", + "Airliner in flight.", + "This is an image of an airliner." + ], + "airship": [ + "An airship is a large, lighter-than-air craft that is propelled and steered by propellers or jets.", + "A airship is a large balloon that is filled with helium or hot air.", + "An airship is a large, powered balloon that carries people or cargo.", + "A large, cigar-shaped object with a large balloon on top.", + "A typical airship is a cigar-shaped balloon, filled with a lighter-than-air gas.", + "An airship is a large, powered aircraft that is propelled by one or more engines and carries passengers or cargo in a large, buoyant envelope.", + "An airship is a large, engine-driven balloon that can be navigated through the air.", + "A large, usually cigar-shaped, balloon that is propelled through the air by engines and has a cabin or gondola suspended below it.", + "An airship is typically a large helium-filled balloon with a gondola or other type of carriage suspended beneath it.", + "A large, usually cigar-shaped balloon filled with a lighter-than-air gas, such as helium or hydrogen, used to lift a heavier-than-air craft, as a dirigible, blimp, or rigid airship,.", + "An airship is lighter than air and rises into the air because it is filled with a gas that is lighter than the surrounding air.", + "Aairships are large, lighter-than-air craft that are propelled and steered through the air by a variety of means.", + "Most airships can be identified by their elongated cigar-like shape.", + "You can identify an airship by its shape.", + "A airship is a large, powered aircraft that is kept aloft by a system of helium-filled balloons.", + "According to the Federal Aviation Administration, an airship is a \"powered, lighter-than-air aircraft with either a non-rigid or rigid structure that uses buoyancy for lift and propulsion.", + "Most airships can be identified by their shape.", + "There are a few ways to identify an airship.", + "An airship is a large, usually motorized balloon that is guided through the air by onboard control systems.", + "A airship can be identified by its large size, its lighter-than-air molecules, and its ability to fly.", + "A typical airship has a long, narrow body with a large envelope of gas-filled bag.", + "Most airships have a long, cigar-shaped body with a large balloon filled with helium gas above it.", + "There is no one definitive answer to this question as there are many different types and designs of airships.", + "It is a large, lighter-than-air craft that can be propelled and steered through the air.", + "A large, cigar-shaped object with a basket-like structure beneath it, typically filled with helium or hot air, used for lifting passengers or goods.", + "There is no one definitive answer to this question as airships can come in a variety of shapes and sizes.", + "There is no definitive answer to this question, as airships can come in a variety of shapes and sizes.", + "Airships are distinct from aeroplanes in that they are equipped with gasbags or balloons to provide them with buoyancy in the sky, as well as one or more engines for propulsion.", + "A typical airship has a cigar-shaped body with a cylindrical framework supporting a network of crosswise hoops.", + "An airship is a large balloon with a cabin suspended beneath it.", + "I cannot provide an image because I do not have internet at the moment.", + "The image is of a large airship, floating in the sky.", + "An image of an airship from the internet is a large, floating vehicle that is typically used for travel or transport.", + "The image is of a large airship with a bulbous front end and a long tailfin.", + "On the internet, there is an image of an airship that is sleek and silver, with a long nose and two large propellers.", + "The image is of a large airship with a long body and large wings.", + "A large, helium-filled dirigible floating in the sky, with a small cabin attached to the bottom.", + "The image is of a large, dirigible-style airship floating in the sky.", + "One image of an airship from the internet is a large, bulbous-shaped craft with a long, thin tail.", + "airship: a large, motorized dirigible designed to carry passengers and cargo.", + "The zeppelin airship LZ 129 Hindenburg approaches Lakehurst Naval Air Station in New Jersey, USA, on 6 May 1937.", + "The world's biggest airship, the Hindenburg, approaching the mooring mast at Lakehurst, New Jersey, in May 1937.", + " The Hindenburg airship bursts into flames as it attempts to dock at Lakehurst, New Jersey.", + "The Hindenburg airship catches fire and begins to crash, 1937.", + "The Hindenburg, the largest dirigible ever built, catches fire and crashes while attempting to land in New Jersey in 1937.", + " The Hindenburg disaster, one of the largest airship disasters in history.", + " A large airship floats through the sky, its passengers visible in the windowsThe Hindenburg passes over New York City, 1937.", + "The Hindenburg over Lakehurst, New Jersey.", + "The Hindenburg, the world's largest airship, about to land in Lakehurst, New Jersey, 1936.", + " A large airship floats in the sky, with a smaller one tethered to it." + ], + "altar": [ + "Most altars have a cross in the middle with two tall candles on each side.", + "An altar is a raised platform or table used to hold ceremonial objects during religious rituals.", + "An altar is a raised platform or table that is used for religious ceremonies.", + "An altar is a raised platform or surface that is used to hold religious artifacts or to perform religious ceremonies.", + "In many religions, an altar is a structure upon which offerings such as sacrifices are made for religious purposes.", + "A altar is a place of worship.", + "A altar typically has a smooth, flat surface where offerings or sacrifices can be placed.", + "A altar is a type of platform with a raised surface that is used as a sacred space for religious rituals.", + "An altar is a temporary or permanent structure used to hold objects or offer sacrifices in religious ceremonies.", + "An altar is typically a raised platform with a flat top that is used for religious ceremonies.", + "look for a raised platform or room with a lot of religious imagery and candles.", + "A altar is a raised platform where religious rituals are performed.", + "An altar is a raised platform or table used for worship.", + "Different cultures have different altars, but they often have some common features.", + "An altar may be identified by its having a raised surface or by its being placed on a dais or platform.", + "A altar can be identified by its raised platform, typically with one or more steps leading up to it.", + "An altar is a raised platform or stone that is used for religious ceremonies.", + "On an altar, you can usually find a cross, Bible, and candles.", + "A altar is a Christian holy table, typically with a cross on top, used for celebrating the Eucharist, for prayer, and for other religious ceremonies.", + "An altar is a raised platform or structure that is used to support offerings, sacrifices, or religious rituals.", + "A altar looks like a table with a cross on top of it.", + "Most altars are small tables or shelves on which candles, flowers, and other offerings are placed.", + "An altar is any flat surface that is raised above the level of the ground.", + "An altar can be any type of surface that is used to hold objects associated with worship or spiritual practice.", + "An altar is a raised platform or table used for religious ceremonies.", + "A altar can look like a table with a cross on it.", + "There is no one answer to this question as altars can take on many different forms.", + "A altar is typically a table or a platform with a religious statue or picture on it.", + "There is no one answer to this question as altars can take on many different forms.", + "a) A stageb) A place to put flowersc) A large stone or wooden tabled) A big crosse) A place to offer sacrificesf) A small shrine\n.", + "An image of an altar from the internet shows a large, ornate table with a crucifix on top.", + "The image is of a large, ornate altar with several candles burning on it.", + "This altar is situated in the home of a Himalayan Buddhist.", + "In the image, there is a small, eye-level altar with a green cloth draped over it.", + "An image of an altar from the internet shows a structure made of stone or wood, with a flat surface and a few steps leading up to it.", + "This is an image of a Tibetan Buddhist altar.", + "An image from the internet of an altar shows a large, ornate table with a green cloth draped over it.", + " for the Day of the DeadThis image is of an altar for the Day of the Dead, with colorful decorations and a large photo of a smiling woman in the center.", + "This is an image of an altar that has been decorated with flowers, candles, and other items.", + "An image of an altar from the internet shows a large, ornate table with a crucifix and other religious objects on it.", + "The statue of a deity is placed on an altar in a religious ceremony.", + "A traditional Mexican altar honoring ancestors and loved ones who have passed away.", + "\"The altar at the church of Santa Catalina in Arequipa, Peru.", + "This is a traditional altar used in Mexican Catholic homes.", + "An altar is a sacred space where offerings are made to the gods.", + "The altar is a sacred place where we can go to connect with the divine.", + "This beautiful altar was built to honor the goddess Isis.", + "A traditional altar in a Chinese home during the Lunar New Year celebration.", + "The altar at Saint Mary's Church, built in the 12th century, is one of the most beautiful in all of England.", + "A traditional Guatemalan altar, used for Day of the Dead celebrations." + ], + "ambulance": [ + "A ambulance typically looks like a large van with a large red cross on the side.", + "A ambulance is a large, white van with a red cross on the side.", + "A ambulance is a vehicle which is used to transport sick or injured people to a hospital.", + "A typical ambulance is large and boxy, with a large red cross or other emergency symbol on the side.", + "A ambulance is a large van with a siren and a red light.", + "The word ambulance is used to describe a vehicle specifically designed to transport sick or injured people.", + "A ambulance is a car with a siren that is used to take people to the hospital.", + "An ambulance is a large van with flashing red and blue lights on the top.", + "A ambulance usually has a large red cross on the side and says \"ambulance\" in big letters.", + "An ambulance is a vehicle that is used to transport people who are sick or injured to a hospital.", + "The best way to identify an ambulance is by its bright red and white colors, and the large red crosses on the side and back.", + "An ambulance is a vehicle for transporting people who are sick or injured.", + "An ambulance can typically be identified by its red and white color scheme, and the fact that it is usually equipped with a lightbar on the roof.", + "The most common way to identify an ambulance is by its red and white color scheme and the word \"AMBULANCE\" printed on the side and back.", + "An ambulance is a vehicle designed to transport sick or injured people.", + "In the United States, an ambulance is typically a van with red and white stripes running along the sides.", + "Most ambulances are brightly colored with large red or blue crosses on the sides and back.", + "In the United States, ambulances are typically identified by a combination of a red, white, and blue light on the roof and the words \"AMBULANCE\" or \"EMS\" on the side.", + "An ambulance is a vehicle that is used to transport sick or injured people to a hospital or other medical facility.", + "Most ambulances are white with red stripes.", + "A traditional ambulance is a van with large red cross on the side.", + "A ambulance is a large van with a red cross on the side.", + "A typical ambulance is a van with blood and medical supplies.", + "Ambulances can come in many different shapes and sizes, but they all have certain features in common.", + "Most ambulances are large vans with a visible red or orange light on top.", + "Most ambulances are between 20 and 30 feet long, and they are all white.", + "A traditional ambulance is a van with a red light on top.", + "Most ambulances are white or red, with a large red cross or star of life on the side.", + "Most ambulances in the United States are brightly colored with red, white, and/or blue stripes and are equipped with flashing lights and sirens.", + "An ambulance is a vehicle that is used to transport sick or injured people to a hospital.", + "In the image, an ambulance is speeding down a road with its lights flashing and its siren blaring.", + "The image shows an ambulance with its lights on and siren blaring.", + "An image of an ambulance from the internet would likely show a vehicle with a large red cross on the side, as well as the words \"ambulance\" or \"EMS.", + "An image of an ambulance from the internet would show a large, white vehicle with large, red lights on the top.", + "It is a picture of an ambulance with its lights on and siren blaring.", + "An image from the internet of an ambulance shows a vehicle with its lights on and sirens blaring.", + "The image is of an ambulance with its lights flashing and parked in front of a hospital.", + "An image from the internet of an ambulance shows a large, red vehicle with flashing lights and the words \"AMBULANCE\" written in large, white letters on the side.", + "This image is of an ambulance parked in front of a hospital.", + "An image from the internet of a ambulance shows a large, white vehicle with red and blue flashing lights on the top.", + "An ambulance is a medical vehicle designed to transport sick or injured people to a hospital or other medical facility.", + "An ambulance speeding down a road with its sirens on.", + "An ambulance arrives to transport a patient to the hospital.", + "Paramedics carry a patient into an ambulance.", + "A woman being helped into an ambulance by two paramedics.", + "\"I was in an ambulance on my way to the hospital.", + "An ambulance drives through a busy city street.", + "An ambulance rush to the scene of an accident.", + "An ambulance arrives at the scene of an accident.", + "An ambulance drives down a busy street." + ], + "amphibious vehicle": [ + "A amphibious vehicle is a land and water vehicle that is designed to move on both land and water.", + "A amphibious vehicle is a vehicle that can travel on both land and water.", + "A amphibious vehicle is a vehicle that can travel on both land and water.", + "An amphibious vehicle looks like a car or truck with large wheels that can drive on land and float on water.", + "A amphibious vehicle is a land and water vehicle.", + "An amphibious vehicle is a land and water vehicle that is designed to move on both land and water.", + "A amphibious vehicle is a vehicle that can be driven both on land and in water.", + "In general, an amphibious vehicle is a vehicle that is designed to travel on both land and water.", + " Amphibious vehicles are usually designed with a flat bottom and large wheels that can be used for travel on both land and water.", + "A vehicle that can travel on both land and water.", + "Some amphibious vehicles have a set of wheels on the front and back, and some have treads.", + "Amphibious vehicles often have large tires and a tall, boxy body.", + "A amphibious vehicle is a land and water vehicle.", + "a vehicle that is capable of travel on both land and water.", + "An amphibious vehicle is a vehicle that can travel on both land and water.", + "An amphibious vehicle has the ability to travel on both land and water.", + "An amphibious vehicle is a vehicle that is able to travel on both land and water.", + "There are a few ways to identify a amphibious vehicle.", + "A amphibious vehicle is a vehicle that can drive on both land and water.", + "An amphibious vehicle has a way to travel on both land and water.", + "A amphibious vehicle typically has a hull for water travel and wheels or treads for land travel.", + "There is no definitive answer to this question as there are many different types and designs of amphibious vehicles.", + "There are many different types of amphibious vehicles, but they all have a few things in common.", + "A amphibious vehicle is a car that can drive on land and in water.", + "Most amphibious vehicles are designed to look like a regular car or truck on the road, but with some extra features to help it transition to water.", + "A amphibious vehicle typically looks like a regular vehicle, such as a car, truck, or bus, with the addition of a propeller and rudder.", + "A common amphibious vehicle is a tank that has been equipped with a flotation system so that it can travel through water.", + "A amphibious vehicle could look like a regular car, but it would have wheels that could transform into propellers.", + "Amphibious vehicles come in many different shapes and sizes, but they all have one common feature: they are designed to travel on both land and water.", + "There are many different types of amphibious vehicles, but most have a boat-like hull for cruising in water and some type of tracks or large wheels for travel on land.", + "\nImage shows an amphibious vehicle called a \"duck boat\" in Boston, Massachusetts.", + "An image of an amphibious vehicle from the internet shows a large, green truck with a wide, flat body.", + "A vehicle that can be driven on both land and water.", + "This image shows an amphibious vehicle driving through water.", + "The image is of an amphibious vehicle that appears to be able to drive on both land and water.", + "This image shows an amphibious vehicle driving through water.", + "The image is of an amphibious vehicle driving through water.", + "This image is of an amphibious vehicle driving through water.", + "This image is of an amphibious vehicle designed to travel on both land and water.", + "The image shows an amphibious vehicle driving through water with people in the back.", + "This is an amphibious vehicle that can travel on both land and water.", + "Anamphibious vehicle is a vehicle that is able to travel on both land and water.", + " This is an amphibious vehicle.", + "An amphibious vehicle is a vehicle that is able to travel on both land and water.", + "The amphibious vehicle is designed to travel over both land and water.", + " Amphibious all-terrain vehicle}A caption of an image of an all terrain vehicle: All-terrain vehicle.", + "It's an amphibious vehicle!.", + "An amphibious vehicle designed to travel on both land and water.", + "The caption for this image might read something like, \"An amphibious vehicle in action, crossing a body of water.", + "The U." + ], + "analog clock": [ + "A analog clock is a clock with a round face and hands that point to the hours, minutes, and seconds.", + "A analog clock typically has a round face with hour and minute markings.", + "A standard analog clock has a circular face with hours marked from one to twelve, usually in the middle, and minutes marked in intervals around the outside.", + "A analog clock is a clock that has hour, minute, and second hands that move around a fixed face.", + "A non-digital clock that uses a mechanical movement to measure time.", + "A analog clock is a clock that has hour, minute, and second hands that rotate around a fixed point.", + "A analog clock slides with two hands, one for the minutes and one for the hour.", + "A analog clock has a round face with a numbered dial.", + "A analog clock is a clock that has a face with hours, minutes, and sometimes seconds marked on it.", + "A analog clock typically has a face with 12 numbers representing hours, and two hands representing minutes and hours.", + "Analog clocks have hour, minute, and second hands that point to numbers on a dial.", + "A analog clock is a clock with a face that has hour, minute, and second markings on it.", + "Analog clocks have a face with numbers around the outside and hands that point to the numbers.", + "The best way to identify an analog clock is to look for the following features: a clock face with hour, minute, and second hands; a way to set the time; and often, a ticking sound.", + "A analog clock has a face with numbers around the edge, and two hands that point to the numbers.", + "A analog clock typically has numbers around the edge of the clock face and two hands, one pointing at the hour and one pointing at the minute.", + "The easiest way to identify an analog clock is by its physical appearance.", + "The best way to identify an analog clock is to look for the tell-tale hands that point to the current time.", + "Analog clocks have a face with hour and minute markings, and a hand or hands that point to the current time.", + "A clock with moving hands that indicate the time is an analog clock.", + "A analog clock has a circular dial with numbers around the edge, and two hands that point to the numbers to show the time.", + "A analog clock typically has a circular face with numerals 1-12 around the edge, and two hands pointing to the current time.", + "A analog clock is round and has two hands.", + "A analog clock looks like a traditional clock with numbers around the edge and hands that point to the current time.", + "An analog clock typically has a circular face with hour, minute, and second hands.", + "A analog clock is a clock that has a face with hour and minute markers, and hands that point to the current time.", + "A analog clock looks like a clock that tells time with numbers and hands.", + "A analog clock typically has a clock face with hour and minute markings, and a separate hand for each.", + "A traditional analog clock has a round face with 12 numbers representing hours.", + "A analog clock is a clock that has a face with hour and minute markings, and hands that point to the current time.", + "The image shows an analog clock with a red background.", + "This image is of a traditional analog clock with a white face and black hands and numbers.", + "In the image, there is a black and white analog clock with large numbers.", + "The image is of a large, antique-looking clock.", + "A digital clock with the time 11:59pm.", + "An image of a analog clock would show a clock with hour, minute, and second hands that are operated by gears and springs.", + " with Roman numeralsThe image is of a brass analog clock with Roman numeral hour markers.", + "It is a round clock with roman numerals on the face and two black hands pointing to the time.", + "Analog clocks are commonly round with a face displaying hours and minutes.", + "This image is of a black analog clock with white hands and numbers.", + "A close-up of an analog clock with both hands pointing to the number twelve.", + "It's time to wake up!.", + "The time is 12:15.", + "It's time to wake up!.", + "It's always time for a fresh start.", + "3:15.", + "It's nearly 2:00!.", + "It's time to wake up!.", + "The time is 4:20.", + "The clock reads 8:15." + ], + "apiary": [ + "A apiary is a place where bees are kept.", + "A apiary is a large structure housing many beehives.", + "A apiary typically consists of a series of beehives arranged in a apiary, as well as ancillary equipment used in the keeping of bees.", + "A apiary typically consists of a series of bee hives that are arranged in a row.", + "An apiary is an enclosure for keeping bees.", + "An apiary can look like many things, but typically it is a collection of man-made hives where bees are kept for the production of honey, wax, and other bee products.", + "an apiary is a place where beehives are kept.", + "A apiary is a collection of beehives where honeybees are kept.", + "An apiary typically consists of a number of beehives, as well as an area where the beekeeper can work with the bees.", + "A apiary typically consists of a number of beehives, each of which is home to a colony of bees.", + "A apiary is often a large shed or building that houses bees and equipment for beekeeping.", + "A apiary is a location where bees are kept.", + "A apiary is a place where bees are kept.", + "An apiary is a location where beekeeping takes place.", + "The best way to identify an apiary is to look for beehives.", + "There is no definitive answer to this question, as the appearance of an apiary can vary depending on the region in which it is located and the specific practices of the beekeepers who operate it.", + "A apiary is a location where bees are kept.", + "An apiary is a place where bees are kept.", + "A apiary is an area where bees are kept.", + "A apiary is a collection of beehives.", + "A apiary can look like a box or a hut where bees are kept.", + "An apiary is a collection of beehives.", + "An apiary is a place where bees are kept.", + "A apiary is a collection of beehives that are kept by a beekeeper.", + "An apiary is a place where bees are kept.", + "A Yard full of Bee Hives.", + "An apiary typically consists of a number of beehives, as well as an area for processing honey and storing equipment.", + "A apiary is typically a small, fenced in area where beekeepers keep their bee hives.", + "A apiary is a place where bees are kept.", + "An apiary is a collection of beehives where bees are kept for the purpose of honey production.", + "In an apiary, there are many beehives side by side.", + "An image of a apiary from the internet shows a large number of bee hives in a fenced in area.", + "An image from the internet of a apiary shows a beekeeper opening a hive to check on the bees.", + "An image from the internet of an apiary shows a large number of beehives in a honey farm.", + "A apiary is a place where bees are kept.", + "An image of an apiary from the internet shows a beekeeper in a bee suit surrounded by beehives.", + "one beehive with bees coming and going.", + "An image of an apiary from the internet shows a cluster of bee hives with bees flying in and out.", + "An apiary is a collection of beehives where honeybees are kept.", + "An image from the internet of a apiary shows a close up of a bee flying next to a honeycomb.", + "Abeezy Beekeeping - Honey on Tap!Our apiary provides delicious honey straight from the hive.", + "A stack of boxes used for housing bees in an apiary.", + " A view of an apiary with beehives and bees flying around.", + "Busy bees! These bees are hard at work in their apiary, collecting pollen and nectar to make honey.", + " A typical Langstroth beehive with 10 frames.", + "An apiary full of healthy honeybees.", + "An apiary is a collection of beehives, where bees are kept for the purpose of honey production.", + " A close up of a beehive with a bee flying in and outThe bees are busy at work in this apiary!.", + "This image shows an apiary, which is a collection of beehives where honeybees are kept.", + "A close-up of an apiary, with dozens of beehives arranged in neat rows." + ], + "apron": [ + "A apron is a garment that is worn over other clothing and covers the front of the body.", + "An apron typically has a bib that covers the chest, and two long ties that wrap around the waist and tie in the back.", + "A apron is a piece of clothing that is worn over other clothes to protect them from getting dirty.", + "A apron is a garment that is worn over other clothing and covers the front of the body.", + "An apron is a piece of clothing that is worn over other clothes.", + "A traditional apron is a rectangle of fabric with a tie at the neck and ties at the waist.", + "An apron is a piece of clothing that is worn over other clothing and covers the front of the body.", + "A typical apron is a rectangle of fabric with ties that go around the back of the neck and waist.", + "A typical apron is composed of a main body of fabric with a large bib in the front, and often has several large pockets on the front.", + "An apron is a garment worn over the front of the body for protection from spills and stains.", + "An apron is a protective garment that is worn over other clothing and covers the front of the body.", + "An apron is a garment that ties around the waist and is worn over other clothing.", + "An apron is a piece of clothing that is worn over other clothing and covers at least the front of the body.", + "An apron is a garment that is worn over other clothing and typically has a large bib in the front that covers the chest and waist.", + "You can identify a apron by looking for a garment that covers the front of the body and ties in the back.", + "An apron is a piece of clothing that covers the front of your body.", + "check the neckline- if it ties around the neck, it's an apron.", + "An apron is a garment that is worn over other clothing and covers at least the front of the body.", + "Which kind of apron are you trying to identify?.", + "A apron is a piece of clothing that is worn over other clothing and covers the front of the body.", + "A kitchen apron is a garment that is worn over other clothes to protect them from spills and splatters.", + "An apron is a piece of clothing that is worn over other clothes and protects them from getting dirty.", + "A apron is a garment that is worn over other clothing to protect them from dirt or stains.", + "An apron looks like a piece of clothing that you wear over your clothes to keep them clean.", + "An apron is a garment that is worn over other clothing and covers at least the front of the body.", + "A basic apron is a rectangular shape with a strap around the neck and two straps around the waist.", + "An apron looks like a garment that is worn over other clothes and is used to protect them from getting dirty.", + "An apron is a protective garment that covers the front of the body and is often worn in the kitchen to keep clothes clean.", + "An apron is a garment that covers the front of your body and is tied around your waist.", + "An apron is a garment worn over the front of the body to protect clothing from spills and stains.", + "This apron has a white background with a blue and white checked pattern.", + "The image is of a woman wearing a blue apron with a white trim.", + "The image is of a green and white gingham checked apron.", + "This image is of a white apron with a black strap around the neck.", + "This apron is covered in a paisley print in shades of red, orange, and yellow.", + "An image from the internet of an apron may show a person wearing an apron while cooking, or it may show an apron hanging up or being used for some other purpose.", + "The image is of a apron that is white with black polka dots.", + "The image is of a woman wearing a black apron with a white polka dot pattern.", + "This image shows a simple white apron with a heart-shaped pocket in the center.", + "This image is of a white apron with a blue trim.", + " 'Kiss The Cook'This apron is perfect for the chef in your life! The \"Kiss the Cook\" apron is sure to please, with its fun and festive design.", + "This apron is perfect for cooking up a storm in the kitchen!.", + "An apron with the phrase \"Kiss the Cook\" written across the front in white letters.", + " A pair of blue jeans lay on the ground, next to a white apron with the text \"Kiss the Cook\" written in black lettering.", + "\"Be Clean, Be Safe, Be Prepared\".", + "Cooking can be a messy business, but with this apron you can keep your clothes clean while you cook up a storm!.", + "An apron with the words \"Kiss the Cook\" written across the front.", + "This apron is perfect for any baker! It's lightweight and has a large front pocket, perfect for holding all your baking supplies.", + "My Favorite Apron.", + "To keep your clothes clean while you cook." + ], + "trash can": [ + "A trash can is a cylindrical container with a lid that is used to dispose of waste.", + "A trash can is typically a cylindrical container with a lid on top.", + "A trash can is a cylindrical container with a lid on top.", + "A trash can is usually a round or rectangular metal container with a lid that opens at the top.", + "A trash can is a cylindrical container with a lid that is used to hold garbage.", + "A trash can is usually a cylindrical container with a lid.", + "A trash can is a cylindrical container with a lid that is used to dispose of waste.", + "A trash can is a cylindrical container with a lid that is used to hold refuse.", + "A trash can is a cylindrical container with a lid that is used to store garbage.", + "A trash can is usually a cylinder shape with a lid.", + "A trash can is a receptacle for garbage.", + "A trash can is an object that is typically made out of metal or plastic and is used to store garbage.", + "A trash can is a container for garbage.", + "A trash can is usually a large, cylindrical container with a lid.", + "There is no single way to identify a trash can.", + "You can identify a trash can by its shape and size.", + "A trash can is a cylindrical container with a lid that is used to dispose of waste.", + "A trash can is a garbage bin.", + "There is no one definitive answer to this question.", + "Look for a \"trash\" or \"litter\" sign, or a symbol of a garbage can.", + "A trash can is a cylindrical container with a lid at the top.", + "A trash can typically looks like a cylindrical container with a lid on top.", + "A trash can is a cylindrical container with a lid on top.", + "A trash can is a cylindrical container with a lid that is used to hold garbage.", + "A trash can is a container for garbage.", + "A trash can can look like many things, but a common design is a cylindrical can with a foot-operated pedal near the bottom that opens the lid.", + "A trash can is a cylindrical container with a lid that is used to hold garbage.", + "A trash can typically looks like a metal cylinder with a lid.", + "A trash can generally looks like a metal or plastic cylinder with a lid.", + "A trash can be either a small, portable container or a large, fixed receptacle.", + " in an alleyThe image shows a metal trash can in an alley.", + "A photograph of a black plastic trash can with a gold rimmed lid.", + "A trash can is typically a cylindrical container with a lid that is used to store garbage.", + "The image is of a small, blue plastic trash can.", + "The image from the internet of a trash can shows a can that is overflowing with garbage.", + "The image shows a blue plastic trash can with a lid.", + "The trash can is overflowing with garbage and there is a foul smell coming from it.", + "The image is of a trash can that is overflowing with garbage.", + "The image is of a trash can that is blue in color.", + "A blue plastic trash can with a yellow lid.", + "A trash can overflowing with garbage.", + "The trash can is full and overflowing.", + "This trash can is full.", + "While trash cans are essential for keeping our environment clean, they can also be a source of pollution if not properly maintained.", + "This is a trash can.", + "Trash can outside of a store.", + "The trash can sits in the corner, waiting to be used.", + "A dirty trash can containing various types of garbage.", + "A trash can full of garbage.", + "This trash can is full of garbage." + ], + "assault rifle": [ + "An assault rifle typically has a detachable magazine and a selective-fire capability, meaning the shooter can choose between fully automatic fire, three-round burst fire, or semiautomatic fire.", + "A assault rifle is usually a small to medium sized rifle that is fully automatic, meaning that it can fire multiple rounds per second.", + "A typical assault rifle comes with a detachable magazine and has the ability to switch between semi-automatic and fully automatic firing modes.", + "An assault rifle typically has a detachable magazine and a pistol grip.", + "An assault rifle typically has a detachable magazine, and a selector switch that allows the operator to choose between fully-automatic, semi-automatic, or burst-fire mode.", + "A assault rifle has a detachable magazine and a integral carry handle.", + "An assault rifle is a type of firearm that is designed to be fired in fully automatic or semi-automatic mode.", + "A rifle that uses an intermediate cartridge and a detachable magazine.", + ".", + "An assault rifle typically has a detachable magazine and a telescoping stock.", + "The most common type of assault rifle is the AR-15.", + "There is no definitive answer to this question, as assault rifles can vary greatly in size, shape, and feature set.", + "There is no definitive answer to this question, as the definition of an \"assault rifle\" can vary depending on who you ask.", + " Assault rifles are typically designed with military applications in mind and are characterized by their high-capacity magazines, selective fire capability, and overall modularity.", + "The main identifying feature of an assault rifle is that it has a detachable magazine.", + "An assault rifle typically has a detachable magazine, a pistol grip, and a selective fire option.", + "The most common assault rifle is the AR-15.", + "Assault rifles are typically characterized by their high rate of fire and intermediate cartridges.", + "Some common characteristics of assault rifles are detachable magazines, pistol grips, and selective fire options.", + "There is no definitive answer, as there is no set definition for \"assault rifle.", + "A assault rifle typically has a large magazine capacity and is capable of fully automatic or burst fire.", + "An assault rifle is a type of rifle that is fully automatic and has a high rate of fire.", + "A assault rifle is a type of rifle that is fully automatic and typically has a high rate of fire.", + "A modern assault rifle typically has a detachable magazine, a folded stock, and selective fire options.", + "The M16 assault rifle is a gas-operated,7.", + "Photos of assault rifles vary, but they typically have large magazines, adjustable stocks, and handguards.", + "There is no definitive answer to this question as there are many different types and models of assault rifles.", + "There is no single answer to this question as assault rifles come in a wide variety of shapes and sizes.", + "A modern assault rifle typically has a detachable magazine, and a selective fire capability (i.", + "A standard assault rifle has a detachable magazine, a rifle scope, and a barrel length of 20 inches or more.", + "cqb assault rifle with a red dot sight, muzzle brake, and extended magazine.", + "The image is of an AK-47 assault rifle.", + "An image from the internet of a assault rifle shows a black rifle with a scope and a magazine.", + "An image of an assault rifle from the internet shows a large, powerful weapon with a long barrel and a large magazine.", + "In the image, there is a man holding an assault rifle.", + "In the image, there is a person holding an assault rifle.", + "This image from the internet is of an assault rifle.", + "An image from the internet of a assault rifle may show the weapon being held by a soldier or law enforcement officer, or it may be lying on the ground.", + "The image is of an assault rifle that is broken down into its individual parts.", + "The image is of an assault rifle on a black background.", + "An assault rifle, ready for use.", + "This is an AK-47 assault rifle.", + "Assault Rifle.", + " Assault Rifle.", + "An AR-15 assault rifle.", + "An assault rifle is a military-style rifle designed for offensive operations.", + "AR-15 assault rifle.", + " an AR-15 style rifleAn AR-15 style rifle.", + "The AR-15 is a semi-automatic assault rifle that is a popular choice for home defense and hunting.", + "This is an assault rifle." + ], + "backpack": [ + "A backpack is a person's favorite way to carry their belongings around! It is a large bag with two straps that goes over the person's shoulders.", + "A backpack typically has two straps that go over the shoulders, and a large compartment that opens from the top.", + "A backpack is a common type of bag that is worn over both shoulders, with the straps crossing over the chest.", + "A backpack is a bag that is worn on the back and has straps that go over the shoulders.", + "A backpack is a type of bag that is worn over the shoulder and has compartments for carrying belongings.", + "A backpack usually has one or two straps that go over the shoulders, and a large pouch in the back that can be zipped or snapped shut.", + "A backpack is a type of bag that is worn over the shoulders and carries items in a large pouch on the back.", + "A backpack is typically a bag with two straps that goes over the shoulders and rests on the back.", + "A backpack is a type of bag that is worn on the back, typically with two straps that go over the shoulders.", + "A backpack is a small bag with two straps that goes over the shoulders.", + "A backpack is a type of bag that is worn on the back and typically has a lot of compartments for carrying items.", + "A backpack is a type of bag that is typically worn with both straps over the shoulders.", + "Look at the straps, they should go over your shoulders.", + "Typically, a backpack can be identified by its design, which includes a strap that goes over each shoulder.", + "One way to identify a backpack is by its straps.", + "A backpack can typically be identified by its design, which includes a large compartment that is meant to be worn on the back, with straps that go over the shoulders.", + "Most backpacks have a sewn-in label with the manufacturer's name or logo on it.", + "One way to identify a backpack is by its straps.", + "A backpack is a type of bag that is typically worn by students and hikers.", + "A backpack is an article of clothing worn on the back that is used to carry items.", + "A backpack is a bag with two straps that goes over the shoulders.", + "A backpack typically has one or two straps that go over the shoulders, and a large compartment that opens from the top or side.", + "A backpack is a cloth bag that is worn on the back and has straps that go over the shoulders.", + "A backpack typically has one or two straps that go over the shoulders, and a large compartment that opens from the top.", + "A backpack typically has one or two straps that go over the shoulders, and a pouch in the back that can be opened and closed with a zipper.", + "A backpack typically has two straps and is designed to be worn on a person's back.", + "A backpack typically has one or two straps that go over the shoulders, and a large compartment for storing items.", + "A backpack typically has one or two straps that go over the shoulders, and a large compartment for carrying items.", + "A backpack typically has one or two straps that go over the shoulders, and it has a bag-like section that opens at the top and holds items.", + "A backpack looks like a small, portable bag with straps that is worn on the back.", + "This image is of a blue backpack with a white spiral design.", + "The image shows a woman wearing a backpack while hiking.", + "An image of a backpack from the internet shows a black, nylon backpack with a large, zippered compartment and two smaller pockets on the sides.", + "I found an image of a backpack on the internet that I really liked.", + "The image is of a black backpack with a silver zipper.", + "The image is of a blue backpack with several compartments.", + "An image of a backpack from the internet features a small, black bag with a zipper closure.", + "The image is of a plain black backpack with a zipper closure.", + "This image shows a person wearing a backpack while hiking through a forest.", + "I found an image of a backpack on the internet that is black and has a lot of compartments.", + "']Backpack with school supplies.", + "This backpack is perfect for carrying all of your essentials when you're on the go.", + "Backpack with school suppliesA caption of an image of a graduation cap:Person in graduation gown throwing cap in the air.", + " Good choice for a day hikeThis backpack is a good choice for a day hike.", + "Gap's Newest Backpack Collection.", + " A blue backpack with a small pocket in the front.", + "This backpack is perfect for carrying all of your school supplies!.", + "Backpack with straps and bucklesA backpack with straps and buckles, ideal for carrying all of your essentials with you on-the-go.", + "A pink backpack with a black polka dot design.", + " A black backpack with a gold zipperBackpack with gold zipper." + ], + "bakery": [ + "Bakeries are often warm and inviting, with the smell of fresh baked goods in the air.", + "A bakery looks like a small shop with a window display of cakes, cookies, and other desserts.", + "A bakery is a shop where bread and other baked goods are made and sold.", + "A bakery typically has large windows so that customers can see the cakes, pies, and breads that are on display.", + "A bakery is a shop where baked goods and desserts are made and sold.", + "\nA bakery is a shop where bread and other baked goods are sold.", + "A bakery typically has large windows so customers can see the variety of baked goods available.", + "A bakery is a store that sells baked goods like bread, pies, and cookies.", + "A bakery is usually a small shop with a counter where customers can order and pay for baked goods.", + "A bakery is typically a small shop with large windows.", + "One way to identify a bakery is by the type of food they sell.", + "A bakery is usually a shop that sells bread and cakes.", + "Bakeries can typically be identified by the sweet smell of baked goods coming from the building.", + "The bakery will likely have a large oven and a strong smell of bread or pastries.", + "Bakeries are usually easy to identify because they will have a large display case full of various types of breads, cakes, pastries, and other desserts.", + "The most common ways to identify a bakery are by its name and appearance.", + "Bakeries are often identified by their storefronts, which typically feature large windows that display the baked goods for sale inside.", + "The simplest way to identify a bakery is to look for a store that specializes in selling fresh baked goods.", + "A bakery is typically identified by its storefront, which usually features a display case of baked goods.", + "Some common features of a bakery may include the smell of fresh baked goods, baked goods in the window display, and a sign that says \"bakery.", + "Bakeries vary in appearance, but most have large glass windows that allow customers to see the cakes, cookies, and breads inside.", + "A bakery typically looks like a small shop with large windows.", + "A bakery can look like many things, but often includes a display case for cakes and pastries, a seating area for customers, and an exposed kitchen where customers can see the bakers at work.", + "A bakery typically has large windows so that customers can see the delicious treats inside.", + "A typical bakery may have a display case containing doughnuts, pies, pastries, and other baked goods.", + "A bakery usually has large windows so that people walking or driving by can see the pies, cakes, and other pastries inside.", + "Bakeries can come in all shapes and sizes, but most have a few key features.", + "A bakery may have shelves of bread and pastries, a display case of cakes, and a counter where customers can order.", + "A bakery typically has large windows so that customers can see the baked goods inside.", + "A bakery can take on many different looks, but most often they are small shops with a display case full of baked goods.", + "This image is of a quaint bakery with large windows and an outdoor seating area.", + "This image is of a small, independent bakery.", + "The image is of a small, homey bakery with a counter and display cases full of various baked goods.", + "This image from the internet shows a local bakery with a display of fresh baked pastries.", + "The image is of a small, quaint bakery with a display case full of fresh pastries.", + "The image from the internet of a bakery shows a small, quaint shop with a lace curtain in the window.", + "In the image, there is a small bakery with a green and white exterior.", + "This image is of a small bakery with a counter and a display case full of sweet treats.", + "The image is of a small, quaint bakery.", + "This image from the internet shows a small, independent bakery.", + " Freshly Baked.", + "\nThe Cake Hub\nOwner: Corey JohannesThe Cake Hub is a unique bakery in Cape Town, South Africa, owned and operated by Corey Johannes.", + "The BakeryA small, local bakery that specializes in fresh, made-to-order baked goods.", + "This is a small, independent bakery.", + " A mother and her young daughter look at the selection of pies in a bakery.", + " A yummy looking chocolate cake with white and pink frosting in a chocolate lined baking pan.", + "\"Bread is Life\"A small, independent bakery in Brooklyn, New York.", + "This image is of a small bakery.", + "A A French bakery.", + "The interior of a small bakery with a counter and display case full of fresh pastries." + ], + "balance beam": [ + "A balance beam is a long, narrow beam that is elevated off the ground.", + "A balance beam is a thin piece of equipment used by gymnasts during their routines.", + "A balance beam is a long, narrow beam made of wood, metal, or fiberglass that is supported in the air on two supports.", + "It is a long, narrow beam that is raised off the ground.", + "A balance beam is an elevated beam that is used by gymnasts to perform various exercises.", + "A balance beam is a long, narrow board that is elevated off the ground.", + "A balance beam is a long, thin piece of wood or metal that is elevated off the ground.", + "A balance beam is a long, narrow, horizontal beam that is supported at each end.", + "A balance beam is a long, narrow board that is raised off the ground.", + "A balance beam looks like a narrow beam that is raised off the ground.", + "A balance beam is a long, narrow board that is elevated off the ground.", + "A balance beam typically has a rectangular shape and is made of a smooth material such as wood.", + "A balance beam is a thin, narrow beam of wood or metal that is used in gymnastics.", + "A balance beam is a horizontal bar that is raised off the ground.", + "A balance beam is a narrow beam that is used in gymnastics.", + "A balance beam can be identified by its long, narrow shape and its smooth, polished surface.", + "A balance beam is a long, thin piece of wood or metal that is placed horizontally on two supports.", + "A balance beam can typically be identified by its long, narrow shape and smooth, slick surface.", + "A balance beam is long and narrow, and it is usually elevated off the ground.", + "A balance beam is a long, narrow piece of equipment used by gymnasts to practice their beam routine.", + "A balance beam is a long and narrow piece of equipment that is raised off the ground.", + "A balance beam is typically a long, thin piece of wood or metal, placed horizontally and supported at each end.", + "A balance beam is a straight, narrow beam that is raised off the ground.", + "A balance beam is a long, narrow board that is typically used in gymnastics.", + "The balance beam is an Olympic gymnastics apparatus that is only used by female gymnasts.", + "A balance beam is a long and thin piece of equipment that is typically used in gymnastics.", + "A balance beam is an apparatus used in gymnastics.", + "A balance beam is a long, narrow beam that is elevated off the ground.", + "A balance beam is a long, thin piece of wood or metal that is used in gymnastics.", + "A balance beam is a beam that is used to help people balance.", + "In the image, there is a young girl standing on a balance beam in a gymnastics gym.", + "The image is of a balance beam in a gymnastics gym.", + "It is a photo of a girl in a leotard flipping on a balance beam in a gym.", + "The image is of a gymnast performing a manoeuvre on a balance beam.", + "The image from the internet of a balance beam is of a girl standing on a beam with her arms outstretched.", + "The image is of a balance beam that is on a gymnastics floor.", + "The image is of a balance beam suspended over a pool of water.", + "The image shows a girl in a leotard flipping backwards on a balance beam in a gymnastics competition.", + "The image is of a gymnast standing on a balance beam.", + "In the image, a young girl is standing on a balance beam in a gymnasium.", + "A gymnast balances on a beam during a competition.", + "A girl is competing in a gymnastics meet on the balance beam.", + "A woman practices her balance on a beam in a gym.", + "A balance beam at an indoor gymnastics facility.", + "A young girl is precariously balanced on a beam, her arms outstretched for balance.", + "A balance beam used in gymnastics.", + "An acrobat walks on a balance beam during a circus performance.", + "A wooden balance beam on a concrete floor.", + "A gymnast training on a balance beam.", + "I'm up on the balance beam, and I'm not afraid to show it!." + ], + "balloon": [ + ".", + " during an MRIA balloon during an MRI would look like a black circle.", + "A balloon is typically a large, thin sphere of rubber or other materials that can be inflated with air or other gases.", + "A balloon is typically a globular shape made of thin, flexible rubber or latex that can be inflated with air or gas.", + "A balloon is a round, often brightly colored object that is inflated with air or gas.", + "A balloon looks like a round, inflated piece of rubber or plastic.", + " before it has been blown upA balloon is a thin piece of rubber or latex that can be inflated with air or gas.", + "A balloon is a bag made of an elastic material that can be inflated with air or gas.", + "A balloon is a thin, flexible, often brightly colored bag made of rubber or other light material.", + "A balloon is a flexible bag that can be inflated with air or gas.", + "A balloon is a round, flexible bag that can be filled with air, gas, or liquid.", + "A balloon is a bright, colorful, and round object that is often filled with air or helium.", + "A balloon can be identified by its round shape, bright colors, and the fact that it is usually filled with air or gas.", + "A balloon is a thin, airtight, elastic container made of latex, rubber, or other material that can be inflated with air or other gases.", + "You can identify a balloon by its round shape and bright colors.", + "A balloon is a spherical object that is typically filled with air or gas.", + "A balloon is a device that is inflated with air or gas, and it is often used as a decoration or as a toy.", + "A balloon is a thin, stretchy bag made of rubber or plastic.", + "The party store should have them labeled.", + "A balloon is a thin, flexible container made of rubber or plastic that can be inflated with air or gas.", + "A balloon is typically a round, inflated object that is made of latex rubber or mylar.", + "A balloon is a round object that is filled with air or gas.", + "A balloon is typically a round, spherical object that is inflated with air or gas.", + "A balloon labeled \"helium\" is typically a small, round, shiny balloon filled with helium gas.", + "A balloon is a round, flexible bag made of rubber or another elastic material that can be inflated with air or other gases.", + "A balloon is typically round and colorful.", + "A balloon looks like a circle.", + "A balloon is a spherical object that is typically filled with air or gas.", + "A balloon is typically a round, inflated balloon made of latex, rubber, or nylon material.", + "A balloon is a thin, often flexible container made of rubber or other material that can be inflated with air or other gases.", + " festivalAt a balloon festival, there are many different colors of balloons.", + "The image is of a red balloon with a yellow smiley face on it.", + "I found an image of a heart-shaped balloon on the internet.", + "This image is of a large, red balloon.", + "This image is of a purple and white balloon tied to a string.", + "This image is of a round, yellow balloon with a green string attached to it.", + "The image is of a red, heart-shaped balloon.", + "A balloon is a sphere of thin, flexible rubber or other material inflated with air or gas, used as a children's toy or decoration.", + "This image shows a large, white balloon floating in the air, tethered to a small girl's hand.", + "I found an image of a hot air balloon on the internet.", + "A balloon floating in the air.", + "A colorful hot air balloon floating in the sky.", + "A red helium-filled balloon tethered to a weight on the ground.", + "A child grasps a red balloon at a birthday party.", + "A large yellow balloon tethered to the ground.", + "A balloon floating through the sky.", + "A large, round balloon floating in the air.", + "The balloon is red and has a white string attached to it.", + " A hot air balloon in the sky.", + "The balloon is red and has a white string attached to it." + ], + "ballpoint pen": [ + "A ballpoint pen typically has a cylindrical body made of metal, plastic, or a combination of the two.", + "A ballpoint pen is a cylindrical pen that has a small metal ball at the tip.", + "A ballpoint pen typically has a cylindrical metal body and a plastic or rubber grip.", + "A ballpoint pen has a metal or plastic body with a point at one end and a small metal ball at the other end.", + "A ballpoint pen is a pen that has a small metal ball in the end of the pen that is used to write with.", + "A ballpoint pen has a small metal ball at the tip that rotates as you write.", + "A ballpoint pen is a pen that has a small metal ball at the end of the tip that rolls as you write, and the ink is transferred to the paper.", + "A ballpoint pen typically has a cylindrical body with a pointed end that houses the ballpoint tip, and a cap that screws on or snaps onto the opposite end.", + "A ballpoint pen generally has a cylindrical barrel and a cap that can be screwed on or pushed on to the back end of the barrel.", + "A ballpoint pen has a long, thin barrel with a small metal ball at the tip.", + "A ballpoint pen can be identified by its ink cartridges.", + "A ballpoint pen has a small metal ball at the tip that transfers ink to the paper.", + "A ballpoint pen is a pen that uses a small metal ball to apply ink to paper.", + "The ink in a ballpoint pen is thick and oily.", + "The ink in a ballpoint pen is oil-based and will not dissolve in water.", + "A ballpoint pen has a small metal ball in the tip that rotates as you write.", + "Check if the pen leaves a smooth and consistent line.", + "The ink in a ballpoint pen is oil-based, and the ball at the end of the pen is usually made of metal.", + "Ballpoint pens have a cylindrical tip that contains a small ball that rolls as you write, dispensing ink onto the paper.", + "A ballpoint pen can be identified by its metal point and by the small metal ball inside the pen that rolls when the pen is used.", + "The ink inside a ballpoint pen is held in a small metal tube.", + "A ballpoint pen is a pen that has a small metal ball at the tip that is used to create ink on paper.", + "A ballpoint pen is a pen with a cylindrical tip that contains a small ball.", + "A ballpoint pen is a pen that has a small metal ball at the tip of the pen.", + "A ballpoint pen is typically cylindrical in shape and has a cap that screws on or snaps on to the back end.", + "A ballpoint pen has a cylindrical body that tapers to a point at one end.", + "A ballpoint pen is a pen with a small metal ball in its tip that rolls as you write, dispensing ink on the paper.", + "A typical ballpoint pen has a cylindrical body with a small rounded tip that unscrews to reveal the pen's refill.", + "A ballpoint pen has a cylindrical case with a small metal ball at the end.", + "Ballpoint pens usually have a cylindrical shape and are made of plastic.", + "This ballpoint pen is black and has a silver tip.", + "A blue ballpoint pen is pictured in close-up, with the tip touching a sheet of white paper.", + "The image depicts a blue ballpoint pen with a black cap.", + "This image is of a ballpoint pen on a white background.", + "This image is of a black ballpoint pen with a silver clip.", + "The image is of a black ballpoint pen with a silver clip.", + "An image of a ballpoint pen from the internet shows a white pen with a black clip and silver tip.", + "The image is of a blue ballpoint pen.", + "A ballpoint pen is a small, cylindrical device used to write.", + "The image is of a blue ballpoint pen with a black grip.", + "This pen was found in an office supply store.", + "Blue ballpoint pen isolated on white background.", + "A ballpoint pen laying on a desk.", + "This is a ballpoint pen.", + " 'Pilot G2 Retractable Gel Ink Pens, Fine Point, Assorted Colors, 10 Pack, Beloved by One and All'This pen is beloved by one and all for its fine point and assorted colors.", + "Blue ballpoint pen on white paper.", + "Pilot Dr.", + "A ballpoint pen laying on a white surface.", + "Black ballpoint pen on white surface.", + "A black ballpoint pen isolated on a white background." + ], + "Band-Aid": [ + "A Band-Aid is a small strip of gauze that is adhesive on one side.", + "A Band-Aid is a small adhesive bandage.", + "A Band-Aid is a small, thin adhesive bandage.", + "A Band-Aid is a small, thin, rectangular piece of sterile adhesive bandage.", + "A strip of adhesive material with a gauze pad in the center, covered by a plastic backing, used to protect a cut or wound.", + "Band-aids are small, thin strips of adhesive material that are used to cover small cuts and scrapes.", + "A Band-Aid is a small adhesive bandage.", + "A Band-Aid is a small, adhesive strip used to protect a wound.", + "A Band-Aid is a small piece of adhesive bandage used to protect a wound.", + "A Band-Aid is a thin adhesive bandage.", + "The Band-Aid brand is owned by Johnson & Johnson.", + "A Band-Aid has a foam pad that is covered with plastic.", + "A Band-Aid is a small, thin, adhesive strip used to protect a cut or wound.", + "Band-Aids have a white background with a red cross in the center.", + "A Band-Aid is a piece of adhesive tape that is used to cover a cut or wound.", + "A Band-Aid is a small adhesive bandage used to protect a wound.", + "A band-aid has a sticky side that attaches to your skin and a fluffy side that faces out.", + "A Band-Aid can be identified by its shape, which is a strip, and its color, which is usually white.", + "The Band-Aid is a small, adhesive bandage.", + "The Band-Aid brand is owned by Johnson & Johnson.", + "A Band-Aid is a small adhesive bandage.", + "A band-aid looks like a small adhesive strip used to cover a cut or wound.", + "A bandage that is used to cover a cut or a scrape on the skin.", + "A band-aid is a small, thin piece of adhesive material that is placed over a cut or wound to protect it and keep it clean.", + "A Band-Aid is a small adhesive bandage that is placed over a wound.", + "A Band-Aid is a small adhesive bandage.", + "A Band-Aid is a rectangular or oval-shaped adhesive bandage, typically 3 to 4 inches in length.", + "A rectangular, thin piece of fabric with an adhesive on one side that is used to cover cuts or scrapes on the skin.", + "A Band-Aid is a small, thin, usually adhesive strip used to cover a small wound or blister.", + "Band-Aid is a brand of adhesive bandages owned by Johnson & Johnson.", + "A white Band-Aid with a red cross in the center.", + "The image is of a beige Band-Aid with a blue \"T\" in the center.", + "A band-aid is a small, adhesive strip used to protect a wound.", + "This image is of a Band-Aid box.", + "The image from the internet is of a Band-Aid on a finger.", + "The image from the internet is of a Band-Aid on a finger.", + "This is an image of a white Band-Aid with a blue stripe in the middle.", + "In the image, there is a close-up of a Band-Aid on someone's skin.", + "The image is of a Band-Aid with the words \"I'm Sorry\" written in black sharpie.", + "The image consists of a close-up of a Band-Aid on a person's skin.", + "This Band-Aid is for a small cut on your finger.", + "You can't Band-Aid a broken heart.", + "Band-Aid: For when you need a little help getting through the day.", + "\"This Band-Aid is for when you need a little help.", + "A Band-Aid taped onto a person's skin.", + "This Band-Aid is here to help you heal your boo-boos!.", + "\"I'm not a doctor, but I play one on TV.", + "band aid.", + "this Band-Aid is for a cut on my finger.", + "Band-Aid Brand Adhesive Bandages." + ], + "banjo": [ + "\nA banjo typically has a round, open-backed body with a skin head, and a long neck with metal strings.", + "A banjo has a long neck and a round body.", + "A banjo typically has a cylindrical body with a drum-like head that is tautly stretched over it.", + "A banjo is typically a four- or five-stringed instrument with a thin membrane stretched over a frame or cavity as a resonator.", + "A banjo typically has a cylindrical body with a drum-like membrane stretched over one end.", + "A banjo typically has a circular body with a metal hoop at the bottom, a long neck with tuning pegs at the top, and a cord attached to the hoop.", + "A banjo is a four-stringed musical instrument with a drum-like body and a neck with frets.", + "A banjo typically has a circular body with a metal hoop at the top and a leather skin stretched over the hoop.", + "A banjo typically has a circular body with a priest at the bottom and 4 or 5 strings coming from the top.", + "A banjo is a stringed instrument with a neck and a round body.", + "The banjo has a distinctive down-stroked plucking sound.", + "Look for a five-stringed instrument with a circular body.", + "A banjo has a thin neck and a round body with a drum-like resonance chamber.", + "The stringed instrument banjo is typically characterized by a circular body with a drum-like resonator attached to the lower end, a smallish conical-shaped open-backed head, and four to nine metal strings.", + "Some ways you can identify a banjo are by its five strings, the circular body, and the drum-like head.", + "The banjo typically has four or five strings and is played with the fingers or a pick.", + "The easiest way to identify a banjo is by its characteristic tambourine-like jingle.", + "There are several ways to identify a banjo.", + "A banjo typically has a round body with a resonator, or sound chamber, and a neck with four or five strings.", + "The banjo can be identified by its distinctive shape and by the strings that it is played with.", + "A banjo has a large, round body with a neck attached.", + "A banjo typically has a round body with a wooden or metal frame.", + "A banjo has a round, wooden body with a small, drum-like head.", + "A banjo typically has a cylindrical body with a drum-like head at one end.", + "A banjo typically has a long neck and a round body.", + "A banjo typically has a cylindrical body with a drum-like soundboard.", + "A banjo typically has a cylindrical body with a drum-like head at one end.", + "A banjo is traditionally a four-stringed instrument with a circular body and a neck that is attached to the body.", + "A banjo typically has a wooden body with a thin metal skin stretched over the top.", + "A banjo typically has a cylindrical body with a skin stretched over the open end, a long neck, and four or five strings.", + "The image is of a banjo on a stand.", + "The image is of a banjo player sitting on a stool in front of a microphone.", + "The image is of a banjo with a brown wooden body and a curved neck.", + "This image from the internet shows a banjo player sitting on a stool with a bluegrass banjo in his lap.", + "The image is of a wooden banjo with metal strings.", + "A banjo is a four- or five-stringed instrument with a thin membrane stretched over a frame or cavity as a resonator, called the head.", + "When I think of a banjo, I think of a happy, folksy image.", + "This image is of a Banjo is from Wikimedia Commons and is a Banjo donated by Joel Walker Sweeney to the Smithsonian Institution in 1883.", + "A banjo is a stringed instrument with a neck and a resonator.", + "The image is of a brown and gold banjo sitting on a wooden floor in front of a window.", + "A close-up of a banjo, with its strings and frets visible.", + "\"The banjo is a four-, five- or six-stringed instrument with a thin membrane stretched over a frame or cavity as a resonator.", + "The banjo is a five-stringed musical instrument with a typically circular body.", + "A banjo being played\nA banjo is a stringed instrument with a wooden body and a neck with frets.", + "This banjo was made by Gibson in the early 1900s.", + "A banjo is a stringed instrument with a long neck and a round body.", + "The banjo is a musical instrument that originated in Africa and was brought to the Americas by enslaved people.", + "A banjo is a stringed instrument with a resonator and a long neck.", + "

This image shows a banjo, a commonly used instrument in American folk music.", + "A banjo with a brown wood body and a white calfskin head." + ], + "baluster / handrail": [ + "A baluster is a vertical member of a rail, used to fill the space between the rail and the handrail.", + "A baluster is a vertical molding that serves as a spindle in a handrail.", + "A baluster is a column, post, or pier that supports a handrail.", + "A baluster is a vertical member supporting a handrail.", + "A baluster is a vertical posts or slats that support a handrail or hedge treen.", + "A baluster is a vertical member in a balustrade that supports the handrail.", + "A baluster is a vertical member that supports a handrail.", + "A balustrade is a railing supported by balusters, especially one forming an ornamental parapet to a balcony, bridge, or terrace.", + "A baluster / handrail is a narrow, vertical bar that is used to support a handrail.", + "A baluster or handrail is a vertical member that supports the handrail of a staircase.", + "A baluster / handrail is a vertical element that is used to support a handrail.", + "A baluster / handrail is typically a vertical support that connects the handrail to the stair treads.", + "A baluster is a vertical member in a balustrade that supports the handrail.", + "A baluster is a short, vertical post that is used to support a handrail or banister.", + "A baluster or handrail is a support for a stairs or balcony.", + "The posts that support a handrail are typically called balusters.", + "A baluster is a vertical member that serves as a support for a handrail.", + "A baluster / handrail is a vertical element that acts as a support for a horizontal element such as a handrail.", + "A baluster is a vertical post that supports a handrail.", + "A baluster is a short, vertical column used to support a handrail.", + "A baluster or handrail is a vertical member that supports the handrail of a staircase.", + "A baluster is a vertical post that helps support a handrail.", + "A baluster is a vertical support for a handrail.", + "A baluster is a vertical member that supports a handrail.", + "A baluster / handrail is a smooth, cylindrical piece of wood or metal that is used to support a handrail.", + "A baluster / handrail is typically a long, vertical rod that is used to support a handrail.", + "name: BalusterA baluster is a vertical member of a handrail, often shaped like a slender column, which serves as support.", + "A baluster is a vertical member that supports the handrail of a staircase.", + "A baluster is a vertical post that supports a handrail.", + "A baluster / handrail can look like a vertical or diagonal pole that supports a handrail.", + "A white, metal baluster with a curved, scroll-like top.", + "The image is of a white baluster with a traditional design.", + "An image of a baluster from the internet shows a railing with vertical posts supporting a handrail.", + "This image is of a wrought iron baluster.", + "The image is of a baluster that is made of wood.", + "I found an image on Pinterest of a beautiful, modern home with a sleek, black baluster / handrail.", + "This image is of a wrought iron baluster with a scroll design.", + "This image is of a wrought iron baluster with a scrolling design.", + "There is an image of a white baluster with a scroll-like design at the top.", + "This image is of a wrought iron baluster.", + "This is a handrail made of balusters.", + " This is a handrail made of balusters.", + "A close up of a wrought iron baluster with a scroll design.", + "A close up of a wooden baluster on a handrail.", + "A baluster is a handrail that is supported by posts or by other balusters.", + "A close up of an ornate baluster / handrail.", + "A close up of a handrail on a balcony.", + "A close-up of a beautifully carved wooden baluster with an intricate design.", + "A metal baluster with a scrolling design atop a stone handrail.", + "A close up of a wooden baluster on a staircase." + ], + "barbell": [ + "A barbell is a piece of workout equipment that consists of a long steel rod with weight plates attached to the ends.", + "A barbell consists of a long metal rod with weight disks on each end.", + "A barbell is a long metal bar with thick weights at each end.", + "A barbell is a metal rod with twoWeight plates attached at each end.", + "A barbell is a long metal bar with weights on each end.", + "A barbell consists of a steel bar with weight plates of various sizes attached to each end.", + "A barbell is a long metal rod with weighted plates at each end that is used for lifting.", + "A barbell is a long metal rod with heavy weights attached to the ends.", + "A barbell is a long metal bar with weights at each end.", + "A barbell is a metal rod that is typically six feet long and one inch in diameter.", + "A barbell is a piece of exercise equipment that consists of a long metal rod with weighted disks on each end.", + "The end of a barbell is usually wider than the middle.", + "A barbell is a piece of gym equipment typically used for weight training.", + "A barbell is a weightlifting bar that is typically six feet long and has weights attached to each end.", + "A barbell is a weight lifting bar that is often used in gyms.", + "The barbell is the long metal bar that the weight plates are attached to.", + "A barbell is a piece of weightlifting equipment consisting of a metal bar with weights attached at each end.", + "A barbell is a long metal bar that is typically used in weightlifting.", + "A barbell can be identified by its long, cylindrical shape and the weight plates that are attached to each end.", + "A barbell is a type of weightlifting equipment used to perform various exercises.", + "A barbell typically consists of a long rod with weight plates attached at each end.", + "A barbell is typically an iron or steel rod that is about five feet long.", + "A barbell is a type of weightlifting equipment used to perform various exercises.", + "A barbell is a long metal rod with weight plates on each end.", + "A barbell looks like a long metal rod with weights at either end.", + "A barbell looks like a long metal rod with weights on either end.", + "A barbell is a long, cylindrical piece of metal with weights at each end.", + "Image result for barbell.", + "A barbell is typically a long metal bar with weights on either end.", + "A barbell typically consists of a long metal rod with weight plates of various sizes attached at each end.", + "A barbell is a piece of exercise equipment used to lift weights.", + " hip thrustThe image is of a woman doing a barbell hip thrust.", + "The image is of a barbell with weights on either end.", + "The image is of a black barbell with white lettering.", + "Image is of a barbell with two black plates on either side.", + "The image from the internet shows a barbell with two weights on each side.", + "The image is of a barbell with weights on each end.", + "This image from the internet shows a barbell with black and red plates on either side.", + "This image is of a barbell with red and black weight plates on either end.", + "A barbell is a type of weightlifting equipment that consists of a long bar with weights attached at each end.", + "One-hundred-pound barbell.", + "Two barbells lying on a weightlifting mat.", + "A person lifting a barbell.", + "This barbell is perfect for lifting weights and getting ripped!.", + "Weightlifting.", + "A barbell is a piece of equipment used in weightlifting, bodybuilding, and other strength training exercises.", + "Maximuscle Promax Bars - Toffee.", + "A barbell is a type of weightlifting equipment used to lift weights.", + "A barbell is a weightlifting barbell consisting of a long metal rod with weight plates attached at either end.", + "A barbell being held by a person in a gym." + ], + "barber chair": [ + "A barber chair is a hydraulic or electric chair that a person sits in to get their hair cut.", + "A barber shop chair is usually a big, black, comfy chair.", + "A barber chair is typically a large, padded chair with a headrest, armrests, and a footrest.", + "It is a special chair that a barber uses to cut hair.", + "A barber chair typically has a large, padded seat and back, arm rests, and a foot rest.", + "A barber chair is a large, padded chair that reclines.", + "Barber chairs are often large, bulky, and made of leather.", + "A barber chair typically has long arms that extend out from either side of the chair, a padded seat and back, and a footrest.", + "A barber chair is a chair specially designed for barbering.", + "A barber chair is typically a tall, heavy chair with a large, padded back and seat.", + "A barber chair typically has a large, cushioned seat and a footrest.", + "A barber chair is made of thick, durable vinyl upholstery and has a large, comfortable seat.", + "A barber chair is a type of chair that is specifically designed for use in a barbershop.", + "One way you can identify a barber chair is by looking for the hydraulic pump.", + "A barber chair typically has a large, reclining backrest, arm rests, and a footrest.", + "A barber chair is a type of chair that is used by barbers to cut hair.", + "The most identifying feature of a barber chair is the large, rounded headrest.", + "A typical barber chair has a large, padded seat and back, Arm rests, and a footrest.", + "A barber chair is a type of chair that is designed specifically for use in barber shops.", + "The three most identifying features of a barber chair are the tall backrest, the headrest, and the footrest.", + "A barber chair is typically a large, heavy, and padded chair with a headrest, armrests, and leg rests.", + "A barber chair typically looks like an old-fashioned, vintage chair.", + "In its simplest form, a barber chair is a large, comfortable chair with a footrest that is used for cutting hair.", + "A barber chair typically has a large, padded seat and back, arm rests, and a foot rest.", + "A barber's chair is a large professional chair with a high backrest, armrests, and a footrest.", + "The most common type of barber chair has a large, comfortable seat, a footrest, and armrests.", + "A barber chair is a large, comfortable chair with a headrest.", + "A barber's chair typically has a tall, adjustable backrest, an adjustable footrest, and padded arm rests.", + "A barber chair typically has a large, comfortable seat and backrest, adjustable headrest, armrests, and footrest, and a hydraulic or pneumatic lever for height adjustment.", + "A barber chair typically has a large, comfortable seat with a padded headrest.", + "It is an image of an old-fashioned barber chair with red upholstery.", + "The image is of a classic barber chair in a rich wood tone.", + "This is an image of a very old-fashioned looking barber chair.", + "The image is of an old-fashioned barber chair in a glossy black finish.", + "The image is of a black barber chair with a plush, red seat.", + "A barber chair is typically a large, heavy, comfortable chair with a footrest, armrests, and a headrest.", + "The image is of a brown barber chair with a cream-colored seat and back.", + "This image is of an old-fashioned barber chair in a shop.", + "This image shows a barber chair with a green and white seat.", + "This image is of a barber chair that is upholstered in black leather.", + "\nA barber chair in a barbershop.", + "A barber chair in a barbershop.", + "A barber chair in a barbershop.", + "A barber chair in a typical barbershop.", + "A barber's chair in an old-fashioned barbershop.", + " A barber chair in a barber shop.", + "A barber chair in a barbershop.", + "This is a barber chair from the early 1900s.", + "The Barber Chair: A Symbol of American History.", + "Sit back and relax while our skilled barbers give you the perfect cut." + ], + "barbershop": [ + "This is a difficult question.", + "A barbershop usually has a few chairs for customers to sit in, a few mirrors, and a lot of haircutting tools.", + "A barbershop is a small, usually independently owned business, specializing in hair care for men.", + "A barbershop typically has a waiting area for customers, and a work area for the barber with a mirror, sink, and chairs.", + "A barbershop typically has a waiting area with chairs or couches for customers to wait in, as well as a counter where thebarber or receptionist sits.", + "A barbershop generally has several comfortable chairs for customers to sit in, large mirrors on the walls, and photographs or posters of famous people with hairstyles that are currently in style.", + "A barbershop typically has several chairs for customers to sit in, a counter or reception area, and a waiting area.", + "A barbershop traditionally looks like a small, cramped shop with a few chairs and a long mirror.", + "A barbershop typically has several chairs for customers to sit in, a counter or some type of area for the barber to work, and shelves or cabinets for holding supplies.", + "A barbershop typically has a large mirror, a barber's chair, and several other chairs for waiting customers.", + "Most barbershops have a large pole with a red, white, and blue stripe running down the length of it.", + "A barbershop is a place where you can go to get your hair cut and styled.", + "The most common way to identify a barbershop is by its red, white, and blue striped pole.", + "There are several ways to identify a barbershop.", + "The barbershop is usually identified by the presence of a barber's pole.", + "A barbershop is a place where people go to get their hair cut by a professional hair stylist.", + "The barbershop will have a pole in the front of the shop.", + "One way to identify a barbershop is by looking for the traditional red and white pole.", + "There are several ways you can identify a barbershop.", + "The typical identification for a barbershop is a red, white, and blue pole outside the shop.", + "Barbershops are usually very masculine places with dark colors and lots of wood.", + "A barbershop generally contains a waiting area, a merchandise area, and a cutting area.", + "A barbershop generally looks like a small hair salon, with a few chairs and mirrors.", + "A barbershop looks like a small hair salon with chairs for customers to sit in while their hair is being cut.", + "The inside of a barbershop can vary, but usually there are several chairs for customers to sit in, shelves or cabinets for supplies, and large mirrors on the walls.", + "A barbershop typically has several chairs for customers to sit in, a counter or desk for the barber to work at, and shelves or cabinets for storing supplies.", + "A barbershop looks like a salon, but with barbering equipment.", + "Barbershops typically have a large mirror on one wall and several chairs around the perimeter of the room.", + "Barbershops typically have a few chairs for customers to sit in, a counter or desk for the barber to work at, and shelves or cabinets for holding supplies.", + "A typical barbershop includes several chairs for customers to sit in, a counter or set of shelves for holding supplies and products, a sink for washing hair, and a large mirror.", + "This image is of a small, independent barbershop.", + "This image is of a barbershop called \"The Cuttery\".", + "The image is of a traditional barbershop with a red, white, and blue striped barber pole in the front.", + "In the image, there is a barbershop with several customers getting their hair cut.", + "An image of a barbershop from the internet shows a group of men getting their hair cut by a barber.", + "This image from the internet shows a typical barbershop, with a line of customers waiting to get their haircut.", + "This image is of a small, independent barbershop.", + "This image is of a small, independent barbershop in the UK.", + "This image from the internet shows a traditional barbershop with several customers seated in chairs getting their hair cut.", + "In the image, there is a barbershop with two barbers.", + "This barbershop has been in business for over 50 years.", + "A barbershop in the United States circa 1900.", + "A barbershop in the United States.", + "Pollock's Barbershop, circa 1940s.", + "This is a barbershop in the United States.", + "This is a barbershop.", + "A barbershop in the United States.", + "The barbershop is a place where people can get their hair cut and styled.", + "This barbershop has been in business for over 50 years.", + "Barbershop in New York City." + ], + "barn": [ + "A barn typically looks like a large, rectangular shaped building with a pitched roof.", + "A barn is a large, typically red, building that is used to store hay, grain, and farm equipment.", + "A barn is a building on a farm that stores hay, grain, and farm equipment.", + "A barn typically has a rectangular shape and is made of wood.", + "A barn is typically a red, wooden building with mansard roofs.", + "A barn is a large, usually rectangular building with a gabled roof.", + "A barn is typically a large, red structure with a hayloft and a large door for animals.", + "A barn is a large farm building used for storing hay, grain, and equipment.", + "A barn is a typical American farm building.", + "A barn is a large, usually red, building where farmers keep animals and store equipment.", + "A barn has a large, open space for storing hay, grain, and other agricultural products.", + "A barn is a building that is typically used to house animals, or to store hay and other farm equipment.", + "A barn can typically be identified by its large size and red color.", + "A barn is a large agricultural building typically used for storing hay and grain.", + "A barn is typically a large, rectangular structure with a pitched roof and large doors on the front.", + "A barn is a building that is used to house animals, hay, and farm equipment.", + "A barn is a farm building typically used to house livestock, such as cows or pigs, and storing hay, straw, and equipment for farming.", + "The identify a barn, it is typically large and made of wood.", + "A barn is a large farm building used for storing hay, grain, and equipment.", + "A barn is generally a large farm building used for storing hay, grain, and equipment.", + "A barn is a large agricultural building used to store equipment and animals.", + "A barn is typically a large, red, wooden building with a pitched roof.", + "A barn can have many different appearances, but most barns have a large, open space for storing hay or other materials, and often have a loft area for more storage.", + "A barn typically looks like a large, rectangular building with a pitched roof.", + "A barn typically has a metal or wooden frame and exterior walls made of wood, metal, or a combination of the two.", + "A barn typically has a rectangular shape with a pitched roof and large doors on the front.", + "A barn often has a doorway and one or more windows on one or both sides.", + "A barn is usually a red building with a hay loft.", + "A barn is a large, usually rectangular building with a pitched roof and doors at one or both ends.", + "A barn looks like a large wooden building with a hayloft and a sliding door.", + "The image is of an old, red barn.", + "A barn is a large, usually rectangular building with a roof and either side walls or open framework, used for storing hay, grain, livestock, or equipment.", + "This image is of a barn that is located on a farm.", + "The image is of a barn that is red with a white door.", + "A barn is a large agricultural building typically used for housing livestock, such as cows, pigs, and horses, and storing hay, grain, and equipment.", + "The image is of an old, wooden barn.", + "An image of a barn from the internet is likely to show a large red or white building with a pointed roof.", + "In the image, there is a barn that is off-white in color with brown trim.", + "This image shows a barn that is made of red wood boards.", + "The image is of a barn that is surrounded by a fence.", + " A large, red barn in a green field.", + "This is a barn.", + " barn in a forest.", + "An old, weathered barn surrounded by tall, dry grass.", + "A beautiful barn in the middle of a field.", + "A big, red barn.", + "A lone barn stands in a field of tall grass, its weathered wood showing the wear of many years in the elements.", + " A barn in the countryside.", + "This is a barn that is on a farm.", + "A typical American barn, with a red finish and white trim." + ], + "barometer": [ + "A barometer is a scientific instrument that is used to measure air pressure.", + "Most barometers consist of a mercury-filled glass tube closed at one end and placed in a container of mercury.", + "A barometer typically looks like a tall glass or metal tube with a marking scale on the side.", + "A barometer is typically a long, thin tube, sealed at one end and open at the other.", + "A barometer is usually a long, thin tube with a bulb on one end containing mercury.", + "A barometer is a scientific instrument that is used to measure air pressure.", + "A barometer is a weather instrument that is used to measure air pressure.", + "Most barometers have a long, thin glass tube that is sealed at the top and open at the bottom.", + "A barometer is a glass tube that has a bulb of mercury at the bottom.", + "Traditionally, barometers have been made with a long glass tube, partially filled with mercury.", + "A barometer is an instrument that is used to measure the pressure of the atmosphere.", + "A barometer typically has a long, thin tube filled with mercury, with a scale along the side of the tube.", + "The barometer is the mercury-filled tube with the attached needle.", + "A barometer typically has a long, thin tube with a mercury-filled reservoir at the base.", + "A barometer is an instrument that measures air pressure.", + "A barometer is a tools that measures air pressure.", + "A barometer typically has a long, thin tube that is sealed at one end and has a mercury-filled bulb at the other end.", + "A barometer is a scientific instrument that measures atmospheric pressure.", + "A barometer typically consists of a glass tube filled with mercury, with a scale to measure atmospheric pressure.", + "A barometer can be identified by its function, which is to measure atmospheric pressure.", + "It is a scientific instrument that is used to measure air pressure.", + "A barometer is a scientific instrument used to measure air pressure.", + "Most barometers look like a small, hand held weather instrument.", + "Most barometers have a cylindrical tube of mercury with a scale measuring in inches or millimeters of mercury.", + "A barometer is a scientific instrument that is used to measure air pressure.", + "A barometer is a scientific instrument that is used to measure air pressure.", + "A barometer is a scientific instrument that is used to measure air pressure.", + "A barometer compares the air pressure using a column of mercury in a glass tube.", + "A barometer typically looks like a glass tube with a piece of metal inside of it that is attached to a hand.", + "A barometer is a scientific instrument that is used to measure air pressure.", + "In the image, there is a barometer with a mercury level that is rising.", + "This image is of a barometer with a mercury column in a glass tube.", + "I couldn't find a specific image from the internet of a barometer, so I found a picture of a barometer from Google Images.", + "A barometer is a device used to measure atmospheric pressure.", + "A barometer is a scientific instrument used in meteorology to measure atmospheric pressure.", + "In this image, a barometer is shown with a column of mercury in a glass tube.", + "A barometer is a device that measures atmospheric pressure.", + "An image of a barometer from the internet would show a glass or metal tube, with a graduated scale inside, sealed at one end and open at the other.", + "An image from the internet of a barometer may show a scientific instrument used to measure air pressure.", + "an image of a barometer can be found at: https://www.", + "A barometer is an instrument that measures air pressure.", + " barometer.", + " A barometer is an instrument that measures air pressure.", + "A barometer is a scientific instrument used in meteorology to measure atmospheric pressure.", + "A barometer measures air pressure to help predict weather changes.", + "A barometer is a scientific instrument used to measure atmospheric pressure.", + "A barometer is a scientific instrument used to measure air pressure.", + "A barometer is a scientific instrument used to measure air pressure.", + "This is a barometer.", + "This barometer shows the current air pressure." + ], + "barrel": [ + "A barrel is a large, rigid container with a circular cross-section and smooth sides.", + "A barrel is a cylindrical container, usually made of wood or metal, with a flat top and bottom.", + "\nA barrel is a large, hollow cylinder used to hold liquid or dry materials.", + "A barrel typically has a round, cylindrical shape and is often made of wood or metal.", + "A barrel is a large cylindrical container used to hold liquids or store dry goods.", + "A barrel is a round, hollow container used to store and transport liquids and granular materials.", + "A barrel typically has a circular or oval shape and is made of metal, plastic, or wood.", + "A typical 55 gallon / 208 liter oil drum is made of thin steel sheet of about 0.", + "A barrel is a large, cylindrical container used to hold liquids, such as oil or beer.", + "Most barrels are made of steel, have a cylindrical shape, and have a flat top and bottom.", + "A barrel can be identified by its size, shape, and/or markings.", + "A barrel has a circular or oval shape and is taller than it is wide.", + "A barrel is a large, cylindrical container that is used to store liquids or dry goods.", + "A beer barrel is a large container that is used to store and transport beer.", + " barrels are often cylindrical in shape and have a smooth, curved surface.", + "A barrel is a large, cylindrical container with a curved top and bottom.", + "The most common way to identify a barrel is by its size and shape.", + "The easiest way to identify a barrel is by its size and shape.", + "A barrel is a large, cylindrical container that is usually made of wood or metal.", + "A barrel is a large, cylindrical container that is used to store liquids, such as oil, beer, and wine.", + "A barrel is a round storage container with a curved top and bottom.", + "There is no definitive answer to this question as there are many types and shapes of barrels.", + "A barrel is a cylindrical container with a flat top and bottom.", + "A barrel is a large round container with a curved top and bottom.", + "A barrel is a large, cylindrical container that is used to store and transport liquids and other substances.", + "A barrel is a cylindrical container with a flat top and bottom.", + "A barrel is often shaped like a cylinder with a flat top and bottom.", + "A barrel is a large, cylindrical container made of wood, metal, or plastic.", + "A barrel is a cylindrical container with a rounded bottom and a short, narrow neck.", + "A barrel looks like a large round container that is often used to store liquids or other substances.", + "An image from the internet of a barrel shows a brown barrel with a metal top and bottom.", + "An image from the internet of a barrel shows a large, round container made of wood or metal, with a curved top and bottom.", + "This image is of a brown wooden barrel with a metal hoop around the middle.", + "A wooden barrel lying on its side.", + "There is a image of a large, metal barrel.", + "The image is of a brown barrel with a small head.", + "This image is of a blue steel drum with a yellow label that reads \"Danger\" in black lettering.", + " rollingThe image is of a cartoon barrel rolling down a hill.", + "The image is of a large, rusty steel barrel.", + "A black and white image of a large wooden barrel.", + "This is a barrel.", + " A barrel of oilA barrel of oil is a unit of measurement for crude oil and other petroleum products.", + " Casks of bourbon aging in a Kentucky whiskey distillery.", + "A large barrel filled with what looks like water.", + "A barrel of crude oil.", + "BARREL OF OILA barrel of oil is a type of container used to hold oil.", + "A layer of oil floats atop water in a barrel.", + " A large barrel that is half-full of water.", + "This is a barrel.", + "A large, metal barrel." + ], + "wheelbarrow": [ + "A wheelbarrow generally consists of two wheels at the front and a single wheel at the back, with a platform in between.", + "A wheelbarrow typically has a single, flatbed made of either metal or plastic.", + "A wheelbarrow is a small, hand-propelled vehicle consisting of a single wheel at the front, and two legs at the back, for support.", + "A wheelbarrow is a small hand-drawn vehicle with a single wheel that is used to carry small loads.", + "A wheelbarrow is a small cart with one wheel in the front and two legs in the back.", + "A wheelbarrow is a small hand-propelled vehicle with only one wheel that is used for carrying light loads.", + "A wheelbarrow looks like a small, rectangular platform on two wheels with a long handle attached to one end.", + "A wheelbarrow looks like a small, two-wheeled cart.", + "A wheelbarrow is a small vehicle with a single wheel that is used to carry small loads.", + "A wheelbarrow is a small, hand-powered trolley with a single wheel at the front, two handles at the back, and a tray or bucket in the middle.", + "A wheelbarrow has a set of wheels at one end and a yoke with handles at the other.", + "A wheelbarrow is a two-wheeled vehicle, typically with a handles at the front and two legs at the back, used for carrying goods.", + "A wheelbarrow is a hand-powered vehicle with a single wheel at the front and two wheels at the back.", + "The most distinguishing feature of a wheelbarrow is its single wheel.", + "One way to identify a wheelbarrow is by its two handles and one wheel.", + "A wheelbarrow is a small, hand-pushed cart with a single wheel at the front and two legs at the back.", + "A wheelbarrow is a small hand-pushed vehicle with a single wheel at the front and two legs at the back.", + "A wheelbarrow is a small hand-propelled vehicle with a single wheel that is used to carry light loads.", + "A wheelbarrow has a large, single wheel in the front and two handles in the back.", + "When looking at a wheelbarrow you can identify it by its two wheels in the front and one wheel in the back.", + "A wheelbarrow typically has a single wheel in the center and two handles on the sides.", + "A wheelbarrow is a small cart that is pushed by hand.", + "A wheelbarrow has a single wheel at the front and two legs at the back.", + "A wheelbarrow typically has a long handles at the top and one wheel in the front.", + "A wheelbarrow is a small handcart with a single wheel, designed to be pushed and steered with one hand while the other hand is used to hold the load.", + "A wheelbarrow is a small, hand-pushed cart with a single wheel.", + "A wheelbarrow is a small hand-drawn cart with one wheel in the front.", + "A wheelbarrow is a small vehicle with one wheel, traditionally used for carrying light loads.", + "A wheelbarrow is a small, hand-powered vehicle with one wheel that is used for carrying small loads.", + "A wheelbarrow is a small hand-propelled vehicle with a single wheel at the front and two handles at the back.", + "A wheelbarrow is a small hand-pushed vehicle with one wheel that is used for carrying various objects.", + "The image is of a wheelbarrow that is red and has a green wheel.", + "A wheelbarrow is a small hand-powered vehicle with a single wheel at the front and two legs at the back.", + "The image is of a wheelbarrow that is red with a black handle.", + "The image is of a wheelbarrow that is blue in color.", + "The image is of a metal wheelbarrow with a green plastic bucket.", + "An image from the internet of a wheelbarrow shows a wheelbarrow with a metal frame and two wheels.", + "This image is of a wheelbarrow that is red and has a green wheel.", + "The image on the internet is of a wheelbarrow that is close to tipping over.", + "The image is of a wheelbarrow that is red and has a green wheel.", + "A wheelbarrow filled with flowers.", + " A wheelbarrow full of flowersA wheelbarrow full of flowers is a great way to add some color to your garden.", + "A wheelbarrow is a small vehicle, usually with only one wheel, designed to be pushed and pulled by a person, used for carrying goods.", + "A wheelbarrow is a common tool used for moving heavy objects.", + "A wheelbarrow full of dirt and rocks.", + "An old wheelbarrow abandoned in a field.", + "Barclay Wheelbarrow in Wagon Wheel Pattern.", + "A wheelbarrow is a vehicle consisting of a single wheel, a tray or platform with handles at the front and back, used for carrying small loads, either by one person or by two people, one at each end.", + "A wheelbarrow full of dirt and rocksA wheelbarrow is a handy tool for gardeners, allowing them to move large amounts of dirt and rocks easily.", + "A wheelbarrow full of dirt and rocks\nA young man is pushing a wheelbarrow full of dirt and rocks." + ], + "baseball": [ + "A baseball is a round, white ball with red stitches.", + "A baseball is a round, white object with black stitching.", + "A baseball is a white sphere with red stitching.", + "A baseball is round and has a smooth exterior.", + "A baseball is a round, white object with red stitching.", + "A baseball is a round, small, hard ball about the size of a person's fist.", + "A baseball is a round, white ball with red stitching.", + "A baseball is a round, white object with red stitching.", + "A baseball is a white round object with red stitching.", + "A baseball is a round object that is typically made of white leather.", + "Baseballs are round and have stitches.", + "A baseball can be identified by its round shape, smooth exterior, and stitched seam.", + "The seams on a baseball are higher than on a softball.", + "A baseball is a black-and-white sphere with red stitching.", + "A baseball can be identified by its round shape, smooth white exterior, and red stitching.", + "A baseball is a round, white ball with red stitches.", + "A baseball is a round, white ball with red stitching.", + "One way to identify a baseball is by its size.", + "A baseball can be identified by its round shape, its leather cover, and the stitching that goes around the circumference of the ball.", + "The most common ways to identify a baseball are by its size, color, and seam pattern.", + "A baseball looks like a round, white object with red stitching.", + "A baseball looks like a white sphere with red stitches.", + "A baseball looks like a white sphere with red stitching.", + "A baseball is traditionally white with red stitching.", + "Baseballs have a lot of different designs, but they are all generally round and have red stitching.", + "A baseball is a round, white object with red stitching.", + "A baseball typically looks like a white sphere with red stitching.", + "A baseball typically looks like a white sphere with red stitches.", + "A baseball typically has a white leather outer shell and a red stitching.", + "A baseball is a round, white ball with red stitching.", + " playerThis image from the internet is of a professional baseball player pitching a ball.", + " playerThe image is of a young baseball player throwing a pitch.", + "The image is of a baseball on a white background.", + "A baseball is a white sphere with red stitching.", + " playerThe image is of a young African American man in a white baseball uniform.", + " gameThe image is of a baseball game being played at night.", + " fieldThis image is of a baseball field at Fenway Park in Boston, Massachusetts.", + "The image is of a baseball field with a game in progress.", + " (or softball) playerIn the image, a young girl is pictured standing on a baseball diamond with a bat in her hand.", + " fieldI found an image on the internet of a baseball field that I really liked.", + "The baseball sits on the grass with the stitches showing.", + " A baseball player slides into home plate.", + "A batter up at home plate ready to swing at the next pitch.", + " A ball hit for a home run.", + "Baseball on a grass field.", + "The ball is coming right at me!.", + "The baseball is rounding the bases.", + "Player sliding into second base.", + "This baseball was hit by Babe Ruth.", + "A baseball on a white background." + ], + "basketball": [ + "A basketball is a round, inflated ball made of synthetic rubber with a raised, indiscernible seam.", + "A basketball is a round, inflated ball made of rubber and synthetic leather.", + "A basketball is a round, inflated ball made of synthetic rubber with a pebbled surface.", + "A basketball is a orange, round object that is used in the game of basketball.", + "A basketball is a round, orange ball.", + "A basketball is a large round ball that is used in the sport of basketball.", + "A basketball typically has a rough surface, and is made of an inflated rubber bladder encased in a carcass of synthetic material.", + "A basketball is a large, round, inflated ball.", + "A basketball is a large, round, inflated ball made of synthetic rubber.", + "A basketball is a large, round, inflated ball that is used to play basketball.", + "A basketball is a large, inflated sphere with a smooth surface.", + "How big is it?.", + "A basketball can be identified by its round shape, orange color, and black seams.", + "Some common identifiable features of a basketball are its round shape, orange color, and stitched surface.", + "Basketballs typically have a circumference of 29.", + "A basketball can be identified by its size and shape.", + "Basketballs typically have a smooth, leather-like surface and are spherical in shape.", + "A basketball is a round, inflated ball used in the sport of basketball.", + "A basketball is usually a round, brown or orange object.", + "There are a few ways that you can identify a basketball.", + "A basketball looks like a large, round, orange object.", + "A regulation-size basketball is 9.", + "A basketball looks like a large, round, inflated ball.", + "A basketball is round and has a diameter of about 9.", + "A basketball looks like an orange with black stripes.", + "A basketball looks like a large, synthetic rubber ball that is inflated with air and has a circumference of about 28.", + "Basketballs typically have an orange exterior and black lines crisscrossing the surface.", + "A basketball is a round object that is full of air.", + "A basketball is a large, round, inflated ball that is used to play the sport of basketball.", + "A basketball is a round, orange ball with a black webbing pattern.", + " gameThe image from the internet is of a young boy playing basketball in his driveway.", + " playerThe image is of a young African American man shooting a basketball in a gym.", + " playerIn the image, a basketball player is driving to the basket, surrounded by defenders.", + "The image from the internet is of a basketball player shooting a free throw.", + " playerImage shows a black and white photo of a man in a basketball uniform, dribbling a basketball on a court.", + "An image of a basketball from the internet shows a brown basketball with a black and white checkerboard pattern.", + "An image from the internet of a basketball is a round, inflated ball used to play basketball.", + " playerThe image is of a male basketball player dribbling a ball.", + "The image is of a basketball on a court with the backboard and hoop in the background.", + "The image is of a basketball on a black background.", + "A basketball on a court.", + "\nAn old basketball lying on the ground.", + " A standard basketballA caption of an image of a man playing basketball: Michael Jordan dribbling the ball.", + "A young man dribbles a basketball on a hot summer day.", + "\"Basketball\".", + "Kobe Bryant of the Los Angeles Lakers flying through the air during a game against the Boston Celtics.", + " \"Basketball\".", + "Basketball.", + " A forward for the Chicago Bulls leaps to make a layupThis image shows a basketball player from the Chicago Bulls jumping up to make a layup.", + "\nBasketball players dribbling on a court." + ], + "bassinet": [ + "A bassinet is a type of bed that is smaller than a standard crib.", + "A bassinet is a small, portable bed for an infant.", + "A bassinet is a small, portable bed for an infant.", + "A bassinet is a small, portable bed for an infant.", + "A bassinet is a bed specially made for infants that is often portable so it can be moved from room to room.", + "A bassinet typically looks like a smaller version of a traditional baby crib, with short sides and a flat bottom.", + "A bassinet usually looks like a small bed or cradle for a baby.", + "A bassinet is a small, portable bed for a baby.", + "A bassinet is a small bed for infants that is often portable.", + "A bassinet is a small, round bed for a baby.", + "A bassinet is a small bed designed for infants.", + "A bassinet is a small, portable bed for babies.", + "The best way to identify a bassinet is to look for the manufacturer's label or tag.", + "A bassinet is a small bed that is meant for an infant.", + "It is typically a basket or cradle that is suspended from a stand or bracket and is used as a bed for infants.", + "A bassinet is a type of infant bed that is designed to look like a small bed or cradle.", + "A bassinet is a small, portable bed for an infant.", + "A bassinet is a small bed or cradle for a baby, often with a canopy or hood.", + "A bassinet is a small, portable cradle for a baby.", + "A bassinet is a small bed that is meant for a baby.", + "A bassinet is a small bed for an infant, often shaped like a basket.", + "A bassinet looks like a small crib or sleep bassinet for a baby.", + "A bassinet is a small bed that is used for babies.", + "A bassinet can look like a small cradle or a basket.", + "A bassinet is typically a smaller bed, often on legs, for young babies.", + "A bassinet looks like a small bed or cradle for a newborn baby.", + "Most bassinets are oval-shaped and sit on four legs.", + "A bassinet looks like a small bed that is meant for a baby.", + "A bassinet is a small bed, often on legs, for a baby.", + "A bassinet is a small bed or cradle for a baby.", + "There is an image from the internet of a bassinet that is made out of wood.", + "This is an image of a bassinet with a white hood and a floral-patterned liner.", + "The image from the internet is of a bassinet with a baby inside.", + "This image is of a bassinet that is designed to look like a Moses basket.", + "The image from the internet is of a white bassinet with a pink blanket inside.", + "The image is of a white bassinet with a gray and white polka dot canopy.", + "Image shows a white bassinet with a yellow and white chevron blanket inside.", + "The image is of a white bassinet with a pink and white polka dot bedding set.", + "A bassinet is a small, portable bed for an infant.", + "I found an image on the internet of a bassinet that looks like it would be perfect for a newborn baby.", + "A bassinet is a small bed that is specifically designed for infants.", + " A baby's bassinet, perfect for napping or sleeping in overnight.", + " A bassinet for a newborn baby.", + "Newborn baby in bassinetA newborn baby peacefully sleeps in a bassinet, surrounded by soft blankets and stuffed animals.", + " \"This poang chair from IKEA makes a great and inexpensive bassinet for a newborn.", + " A baby sleeps soundly in their bassinet, surrounded by plush toys.", + " Baby's first bassinet!.", + "A white bassinet with a light blue blanket inside.", + "A bassinet is a smaller bed, often on wheels, for an infant.", + " A bassinet for a newborn baby." + ], + "bassoon": [ + "The bassoon is a double reed woodwind instrument.", + "Bassoons are large woodwind instruments that look like a cross between a flute and a oboe.", + "A bassoon is a large woodwind instrument that looks like a long, curved tube.", + "A bassoon is a long, thin woodwind instrument that looks like a giant metal straw.", + "The bassoon is a long, thin instrument that looks a bit like a large clarinet.", + "Bassoons are woodwind instruments that look like a long tube with a curved end.", + "The bassoon is a wooden instrument with a long, thin body and a double reed.", + "The bassoon looks somewhat like a large oboe, with a similar double-reed mechanism, but is much larger in size.", + "The bassoon is a long, thin musical instrument that looks a bit like a gardening hose.", + "A bassoon is a woodwind instrument that typically has a dark, woody sound.", + "The bassoon is a large woodwind instrument with a long, thin body and a double reed.", + "The bassoon is a large, wooden wind instrument.", + "The bassoon is easily identified by its curved body and double-reed mouthpiece.", + "The bassoon is a large woodwind instrument that produces a deep, rich sound.", + "The bassoon is a large woodwind instrument with a distinctive double-reed mouthpiece.", + "The bassoon is a double reed instrument in the woodwind family.", + "The bassoon is a large, conical woodwind instrument that is usually held horizontally while being played.", + "The bassoon is a large woodwind instrument with a long, narrow body and a double reed.", + "The bassoon is a large woodwind instrument with a distinctive double reed.", + "One way to identify a bassoon is by its size.", + "A bassoon looks like a long, curved instrument with a reed at the end.", + "A bassoon is a long, thin, woodwind instrument that resembles a large clarinet.", + "A bassoon looks like a wooden tube that curves up and then back down.", + "Image result for bassoon drawing\nThe bassoon is a long, thin, reed instrument that makes a low, deep sound.", + "A bassoon looks like a very long, thin tube with many bends and twists.", + "The bassoon is a woodwind instrument that looks like a long, narrow tube with a curved end.", + "The bassoon is a double reed woodwind instrument that looks like a long tube with a bent end.", + "A bassoon is a wooden instrument that is about 4 feet long.", + "A bassoon looks like a long, curved instrument with a small bell at the end.", + "The bassoon is a long, curved woodwind instrument that is similar in appearance to a large clarinet.", + "The image is of a bassoon player seated with the bassoon in their lap.", + "The image is of a woman playing a bassoon.", + "I found an image on the internet of a stop-motion animation of a clay bassoon.", + "This is an image of a bassoon from the internet.", + "An image of a bassoon from the internet shows a long, brown woodwind instrument with a curved body and bell.", + "The image is of a bassoon with a brown body and silver-colored keys.", + "The image is of a bassoon on a stand.", + "The bassoon is a long, thin, reed instrument with a deep, rich tone.", + "In the image, a bassoon is lying on a table in front of a window.", + "A bassoon is a long, thin woodwind instrument with a conical bore.", + "BassoonThe bassoon is a woodwind instrument that plays in the lower registers.", + "A bassoonist adjusts the reed on her instrument.", + "Bassoon with reed, viewed from above.", + "The bassoon is a wind instrument with a long, narrow tube.", + "Bassoonist Rachel Caswell performing with the Baltimore Symphony Orchestra.", + "This bassoon is a beautiful example of the instrument's craftsmanship.", + "A bassoon is a woodwind instrument that sounds similar to a bass clarinet.", + "The bassoon is a woodwind instrument with a long, narrow body and a deep, rich tone.", + "The bassoon is a woodwind instrument that typically plays in the lower register.", + "Bassoonist Jacob Roderick playing at the 2016 Seattle Symphony Orchestra Concert." + ], + "swimming cap": [ + "It is a fitted rubber or latex cap that helps to keep a swimmer's hair from becoming wet.", + "Swimming caps come in a variety of colors and styles, but most have a tight fit and are made of silicone or latex.", + "A swimming cap is a tight-fitting, often brightly colored silicone cap that covers a swimmer's hair.", + "A swimming cap is a piece of headwear that people wear while swimming.", + "A swimming cap is a soft, pliable cap made of latex, silicone, Lycra, or other synthetic rubber.", + "A swimming cap is a piece of elasticized fabric that covers the hair and keeps it dry while swimming.", + "A swimming cap is a tight-fitting cap made of elastic material that covers the hair and keeps it dry.", + "A swimming cap is a close-fitting rubber or latex hat that is worn while swimming.", + "Swimming caps are usually made of silicone and cover the top, back, and sides of the head.", + "A swimming cap looks like a tight-fitting hat that covers the entire head, including the ears.", + "The best way to identify a swimming cap is to look for the manufacturer's logo.", + "By its shape, a swimming cap is typically teardrop-shaped or mushroom-shaped, and made from latex, rubber, polyurethane, or lycra.", + "A cap that covers the hair and ears while swimming.", + "The most common type of swimming cap is made from latex rubber or silicone and is tight-fitting.", + "A swimming cap can be identified by its smooth, tight fit over the head and its brightly colored fabric.", + "There are many ways to identify a swimming cap.", + "A swimming cap is typically made of latex, silicone, or lycra/spandex.", + "A swimming cap typically has a tight fit and is made of silicone or latex.", + "A swimming cap is typically made of silicone and covers the top, back, and sides of the head.", + "A swimming cap is typically made of latex or silicone and is designed to cover a person's hair while swimming.", + "A swimming cap is often made from silicone and covers the entirety of a swimmer's head.", + "A swimming cap is a tight-fitting, often brightly colored cap that covers a swimmer's head.", + "A swim cap is usually made from silicone rubber, Lycra, or latex, and covers the entire head, except for the face, ears, and neck.", + "A swimming cap typically looks like a rubber or silicone cap that covers the entire head.", + "A swimming cap is a piece of silicone or latex that covers a swimmer's head.", + "A swimming cap is typically a tight-fitting, silicone cap that covers the entire head and hair.", + "There are many different types and styles of swimming caps, but most feature a tight-fitting silicone or latex material that covers the entire head and hair.", + "A swimming cap typically looks like a tight-fitting latex or silicone cap that covers the entire head.", + "Swimming caps vary in style and design, but they all share a few common features.", + "A swimming cap is a close-fitting swimming hat that is designed to cover a person's hair when they are swimming.", + "The image from the internet is of a swimming cap that is brightly colored and has a fun pattern.", + "This image depicts a swimming cap with a vibrant and colorful abstract design.", + "The image is of a yellow swimming cap with a green strap.", + "A swimming cap is a cap that is worn while swimming.", + "The image depicts a black swimming cap with a white line running across the center.", + "The image looks like a blue and white swimming cap with the adidas logo on it.", + "The image is of a black and white swimming cap with a white \"X\" on the front.", + "The image from the internet is of a yellow swimming cap with a green frog on it.", + "A swimming cap is a piece of headwear that is worn while swimming.", + "An image from the internet of a swim cap shows a brightly-colored piece of silicone or latex that covers the entirety of a swimmer's head.", + "Swimming cap, keeping the hair out of the way while swimming.", + "A woman in a swimming cap.", + "Swimming cap keeping hair dry while swimming.", + "This swimming cap helps keep your hair dry while you swim.", + "Swimming cap to keep hair dry and protected while swimming.", + "A blue swimming cap with a white \"S\" on the front.", + "Swimming cap keeping hair dry.", + "A woman wears a swimming cap while swimming.", + "\"I'm ready to take on the world!\".", + "Why wear a swimming cap?There are many reasons to wear a swimming cap while swimming." + ], + "bath towel": [ + "A bath towel typically has a loops on one side and a smooth surface on the other.", + "A bath towel is usually a rectangular piece of absorbent fabric, like terrycloth, that is used to dry oneself after a bath.", + "A bath towel is a type of towel used for drying the body after a bath or shower.", + "Bath towels are usually made of cotton or a cotton blend.", + "A bath towel usually looks like a large, rectangular piece of cotton or other absorbent fabric.", + "A bath towel is a towel that is typically used after a person has taken a bath.", + "Most bath towels are rectangular in shape and are made from a cotton or cotton blend fabric.", + "Typically, a bath towel is a rectangular piece of absorbent fabric that is used to dry oneself after a bath or shower.", + "Bath towels are typically rectangular and made of absorbent fabric, such as cotton.", + "A bath towel is a type of towel used for drying the body after a bath or shower.", + "A bath towel is a type of towel used for drying the body after a bath or shower.", + "Bath towels can be identified by their size, which is typically larger than a hand towel.", + "Bath towels usually have a loop or tag on one end that allow them to be hung from a towel rack or hook.", + "Bath towels are usually larger than hand towels and have a loop or sewn-in tag to hang them up.", + "A bath towel can be identified by its size, which is usually larger than a hand towel, and by its absorbency.", + "Bath towels typically have a tag that says \"bath towel.", + "The easiest way to identify a bath towel is by its size.", + "The best way to identify a bath towel is by its size.", + "A bath towel can be identified by its size.", + "You can identify a bath towel by its size and absorbency.", + "Bath towels are typically rectangular, and made of cotton or other absorbent fabric.", + "A bath towel is usually a rectangle shape and is used to dry off after a shower or bath.", + "Bath towels are typically large, thick, and absorbent.", + "A bath towel is a rectangular piece of fabric, usually Cotton, that is used to dry oneself after a bath or shower.", + "Bath towels typically have a loop or sewn-in hanging tag at one end, and are square or rectangular in shape.", + "A bath towel is a Towel that is used for drying the body after bathing.", + "A bath towel typically looks like a large, rectangular piece of fabric with fringe on the ends.", + "A bath towel is a large, absorbent towel that is used to dry the body after bathing.", + "A bath towel typically looks like a large, rectangular piece of fabric with a loop or sewn-in hole for hanging.", + "A bath towel typically looks like a large, rectangular piece of fabric.", + "The image is of a white bath towel with a blue stripe across the middle.", + "The image is of a white bath towel with a blue stripe across the top.", + "This image shows a bath towel hanging on a hook.", + "A bath towel from the internet is most likely white, fluffy, and absorbent.", + "The image is of a white bath towel with a blue and green stripes.", + "The image is of a bath towel that is white with a blue stripe near the top.", + "the image is of a blue and white bath towel.", + "The image is of a white bath towel with a green and blue striped pattern.", + "The image is of a yellow and white bath towel with a circle pattern.", + "The image is a close-up of a white bath towel.", + "Bath towel with blue and white stripes.", + "Bath towels are an essential part of any bathroom.", + "This towel is perfect for lounging around the pool on a hot summer day.", + "Update your bathroom with this modern bath towel.", + " A fluffy white bath towel draped over a towel rack.", + "Wrap yourself in luxury with our line of Egyptian cotton towels.", + "Towels are an important part of any bathroom.", + "Grey and white bath towel on a tiled floor.", + "New bath towel.", + "A clean bath towel is essential for a fresh and relaxing shower." + ], + "bathtub": [ + "A bathtub is a type of container that is used to hold water in order to take a bath.", + "A bathtub is a large basin that is used for bathing.", + "A bathtub typically looks like a large, white porcelain rectangle that is placed in a bathroom.", + "A bathtub typically has four walls and a base.", + "A bathtub is usually a porcelain or enameled cast-iron rectangular tub, with smooth sides, a curved bottom, and one end deeper than the other.", + "A bathtub is a large tub that is used for bathing.", + "A bathtub is a vessel that is used for bathing.", + "A bathtub typically has four sides, a sloped backrest, and a draining plug in the bottom.", + "A bathtub is long, white, and has a smooth, glossy surface.", + "A bathtub looks like a large white tub that people use to take baths in.", + "A bathtub is usually made of enameled cast-iron, porcelain-enameled steel, fiberglass-reinforced polyester, or acrylic.", + "Bathtubs come in a variety of shapes and sizes, but all have a smooth, finished interior and exterior and usually contain faucets and drains.", + "A bathtub can be identified by its size and shape.", + "A bathtub is usually found in a bathroom and is used for bathing.", + "A bathtub is a large container for bathing.", + "A bathtub is typically made of porcelain-enameled cast iron, porcelain-enameled steel, fiberglass-reinforced polyester, or acrylic.", + "The best way to identify a bathtub is to look for a large, deep, and typically oval-shaped tub that is used for bathing.", + "A bathtub is a large, usually round, tub used for bathing.", + " You can identify bathtub by its smooth, glossy surface which is easy to clean.", + "The bathtub is the big white thing that you take a bath in.", + "A bathtub generally has four sides and a drain.", + "This is a difficult question.", + "A bathtub is typically a white rectangle shape with a smooth surface.", + "A bathtub generally has high sides and a large central drain.", + "A bathtub is an enclosed, usually rounded container for holding water in which a person may wash.", + "A bathtub is an enclosure for bathing.", + "A bathtub typically has four sides and a curved bottom.", + "A bathtub typically has four sides and a drain in the center.", + "A bathtub is a large, deep tub used for bathing.", + "A bathtub is a large container for bathing.", + "The image shows a bathtub with a person in it.", + "This image shows a bathtub that is surrounded by tiled walls and a shower curtain.", + "This image from the internet is of a large, deep bathtub with curved sides.", + "The image is of a bathtub with a showerhead above it.", + "This image is of a white bathtub with blue tiles around it.", + "It is a photo of a white bathtub with a shower head above it.", + "A bathtub is a long, usually white, fixture that is used for bathing.", + "This photo is of an oval-shaped bathtub with beige-colored walls and a small window above it.", + "I found an image of a bathtub on the internet that looks like a normal bathtub you would see in someone's home.", + "The image is of a large, deep bathtub filled with slightly bubbly water.", + "This is a bathtub.", + "Bathtub with running water.", + "This is a bathtub.", + " A adult enjoys a nice bath in a clean tub.", + "A woman with long hair relaxes in a bathtub filled with bubbles.", + "This is a bathtub.", + "A bathtub full of soapy water and bubbles.", + " A woman relaxes in a bathtub full of bubblesA woman relaxes in a bathtub full of bubbles, her eyes closed and her head resting on the rim of the tub.", + "This is my bathtub.", + "A relaxing bath at the end of a long day." + ], + "station wagon": [ + "A station wagon is a vehicle with four doors and a large cargo area.", + "A station wagon is a type of vehicle that has a long roof, four doors, and a large amount of space in the back.", + "A station wagon is a car with a long roof and a raised area in the back for carrying cargo.", + "A station wagon is a type of car that has a long roof and an extra set of doors at the back.", + "A station wagon is a type of car that is larger than a sedan but smaller than a SUV.", + "A station wagon is a car with a long body and two pairs of doors, typically used for carrying cargo or passengers.", + "A station wagon looks like a regular car, but it has a lot of space in the back for storage.", + "A station wagon is a type of car that is typically long and has a lot of space in the back for storing things.", + "A station wagon is a vehicle with a long roof that extends over the back seats, making it larger than a sedan and allowing for more cargo space.", + "A station wagon typically has four doors and a large cargo area.", + "The easiest way to identify a station wagon is by its long roofline and sloped rear window.", + "Station wagons can be identified by their long roof and rear cargo area.", + "A station wagon is a vehicle that has a long roof, a station wagon typically has two rows of seats and a luggage area.", + "A station wagon is a type of passenger vehicle that has a longer roof and rear cargo area.", + "Station wagons can be identified by their long wheelbase, extended rear cargo area, and optional wood paneling on the sides.", + "A station wagon is a type of automobile with a long roof and rear cargo area.", + "A station wagon is a vehicle that is larger than a sedan but smaller than a SUV.", + "A station wagon is a vehicle with two rows of seating and a cargo area that is accessible from the rear of the vehicle.", + "A station wagon is a vehicle productions since the early 1950s.", + "A station wagon is a car that has extra seating and storage space in the back.", + "There is no definitive answer to this question, as station wagons can come in a wide variety of shapes and sizes.", + "A station wagon is a vehicle with a long roof and four doors.", + "A station wagon is a type of automobile with a long roof and rear cargo area.", + "A station wagon is a vehicle with two rows of seats and a large cargo area.", + "A station wagon is a type of automobile that has a long, boxy body style and a rear door that opens to the side instead of up.", + "A station wagon, also called an estate car, is a four-door car with a large cargo area.", + "A station wagon is a car with four doors and a lot of room in the back for carrying things.", + "A station wagon is a larger vehicle that is similar to a sedan, but has a longer trunk area and sometimes a third row of seating.", + "A station wagon looks like a car with a lot of space in the back for cargo.", + "A station wagon is a vehicle that is typically larger than a sedan, but smaller than a SUV.", + "The image is of a red station wagon with a luggage rack on the top.", + "This image is of a blue station wagon with wood paneling on the sides.", + "A station wagon is a type of automobile that has a long roof and rear cargo area.", + "The image is of a blue station wagon with a white roof.", + "I found an image of a station wagon on the internet that looks like it's from the 1970s.", + "The image is of a blue station wagon with a silver roof rack.", + "A station wagon is a type of car that is larger than a sedan but smaller than an SUV.", + "The image is of a station wagon parked in a driveway.", + "The image is of a blue station wagon with wood paneling on the sides.", + "The image shows a faded blue station wagon from the 1970s.", + " new or usedThis station wagon is new.", + "This station wagon is from the 1970s.", + "This station wagon is from the 1960s.", + "A family of four loads their belongings into their station wagon for a cross-country road trip.", + "A station wagon parked in a driveway.", + "The station wagon is a car that was popular in the United States in the 1950s and 1960s.", + "This is a station wagon.", + "This station wagon is from the 1970s and is in excellent condition.", + "Family on vacation in the station wagon.", + "A station wagon parked in a driveway." + ], + "lighthouse": [ + "A lighthouse is a tall, cylindrical building with a light at the top that is used to guide ships at night.", + "A lighthouse is a tall, cylindrical structure with a light at the top that is used to warn ships of potential dangers.", + "A lighthouse is a tall, cylindrical structure with a light at the top that is used to warn ships of land.", + "A lighthouse is a tall, cylindrical structure with a light on top that is used to warn ships of danger.", + "A lighthouse is a tall, cylindrical structure with a light at the top.", + "A lighthouse is a tall, cylindrical structure with a light at the top that is used to guide ships at sea.", + "Lighthouses are tall towers with a light at the top that helps ships navigate at night.", + "A lighthouse is a tall, vertical structure with a light at the top that is used to warn ships at sea of nearby land.", + "A lighthouse is a tall, narrow building with a light at the top that shines out to sea.", + "A lighthouse stands tall and looks out over the water.", + "There are many ways to identify a lighthouse.", + "A lighthouse is a tall structure with a light on top that is used to help ships and boats safely navigate through bodies of water.", + "Most lighthouses have a distinct shape that makes them easy to identify.", + "A lighthouse is a tall, narrow building with a light at the top that is used to warn ships at night of dangerous areas near the shore.", + "Lighthouses can be identified by their unique shape.", + "A lighthouse is a tall building with a light on top.", + "Lighthouses can be identified by their characteristic shape and by their location on a body of water.", + "Generally, a lighthouse is a tall building with a light on top that is used to warn ships offshore of dangers near the shore.", + "Lighthouses are tall buildings with a light at the top that helps ships navigate.", + "It's a building with a light on top.", + "A traditional lighthouse is a tall, cylindrical structure with a light at the top.", + "Most lighthouses are white with a red roof.", + "Most lighthouses have a cylindrical or conical shape with a central lantern.", + "A lighthouse has a tall, round tower with a light at the top.", + "A lighthouse is typically a tall, cylindrical structure with a light at the top that is used to warn ships of nearby land.", + "A lighthouse is typically a cylindrical or conical structure that is white and has a light at the top.", + "Lighthouses are large, tall buildings with a light at the top that shines out over the water.", + "A lighthouse typically has a large, central cylindrical tower with a lantern on top.", + "A lighthouse is tall and white with a red light on top.", + "A lighthouse is most commonly a tall, cylindrical building with a light at the top that is used to warn ships of nearby land.", + "The image is of a lighthouse on a rocky coastline.", + "This lighthouse is situated on the southern tip of a small island off the coast of Maine.", + "The photo is of a lighthouse at sunset.", + "The image is of a lighthouse on a rocky cliff by the ocean.", + "The image is of a lighthouse on a rocky cliff by the ocean.", + "The image is of a lighthouse on a cliff by the ocean.", + "Image shows a lighthouse on a rocky cliff by the ocean.", + "The image is of a lighthouse with a light at the top.", + "An image of a lighthouse from the internet might include a light shining from the top of the lighthouse, often surrounded by darkness.", + "The image is of a lighthouse on a rocky cliff by the ocean.", + "The lighthouse is a symbol of hope and safety for sailors.", + "The Priceville Lighthouse stands as a beacon of strength and resilience on the rocky cliffs of Maine.", + "The light from this lighthouse guides ships through the fog and into the safety of the harbor.", + "This is a picture of the St.", + "The light from this lighthouse guides ships through the treacherous waters off the coast.", + "The Heceta Head Lighthouse is a lightstation located in Oregon, United States.", + " A light in the storm.", + "The Cape Hatteras Lighthouse stands over the remains of pirate Blackbeard's ship, the Queen Anne's Revenge.", + "The Saugus Iron Works in Saugus, Massachusetts, is the site of the first integrated ironworks in North America.", + " A light in the storm." + ], + "beaker": [ + "A beaker is a glass container with a flat bottom and a flared lip.", + "A beaker is a container used to hold liquids.", + "A beaker is a cylindrical container with a flat bottom and a pour spout.", + "A beaker is a container with a spout and a handle, typically used for holding liquids.", + "A beaker is a container with a flat bottom and a flared lip, used for holding liquids.", + "A beaker is a cylindrical container with a flat bottom and a flared lip.", + "A beaker is a small container with a spout that is used to measure and pour liquids.", + "A beaker is typically a glass container with a spout that is used to measure and pour liquids.", + "A beaker is a cylindrical glass container with a flat base and a pouring spout.", + "A beaker is a cylindrical container with a flat bottom and a flared lip.", + "A beaker is a glass container with a flat bottom and a flared lip.", + "A beaker is a glass container with a cylindrical shape and a flat bottom.", + "You can identify a beaker by looking for a wide-mouthed glass container with a marked measurement line.", + "A beaker is a type of container that is used to hold and measure liquids.", + "A beaker is a simple container for measuring, mixing, and heating liquids.", + "A beaker is a cylindrical container with a flat bottom and a lip for pouring.", + "A beaker is a glass container with a wide mouth and a small base.", + "A beaker is a glass container with a flat bottom and a spout.", + "A beaker is a glass or plastic container with a wide mouth and a flat bottom.", + "A beaker is a type of container used to hold and measure liquids.", + "A beaker is a type of container that is often used in a laboratory.", + "A beaker is a simple container for measuring, mixing, and heating liquids.", + "A beaker is a glass or plastic container with a narrow neck and flared sides that is used to hold liquids.", + "A beaker is a container with a wide opening and a flat bottom.", + "A beaker is typically a cylindrical glass container with a flat bottom and a pouring spout.", + "A beaker is a glass or plastic container with a flat bottom and a cylindrical body.", + "A beaker is a glass container with a flat bottom and a cylindrical body.", + "A beaker is a type of container often used in a laboratory.", + "A beaker typically has a flat bottom and a cylindrical body.", + "A beaker is a cup-shaped container with a flat base and a pour spout.", + "A beaker is a laboratory container used to hold liquids.", + "This is an image of a beaker from the internet.", + "The image is of a glass beaker with a spout.", + "A beaker is a tall, narrow container used to hold liquids.", + "A beaker is a container typically used to hold liquids.", + "The image is of a beaker with a green liquid inside.", + "A beaker is a container with a spout and a handle, used for measuring, mixing, and pouring liquids.", + "A beaker is a container with a spout and a handle, used for measuring, mixing, and pouring liquids.", + "The image is of a beaker with a conical shape and a handle.", + "The image is of a glass beaker with a pour spout.", + "A beaker with a pink liquid inside.", + "A beaker of hot coffee on a table.", + "A beaker filled with a green liquid.", + "A beaker of hot water.", + "A beaker of waterThis beaker of water looks like it was just pulled from a fresh stream.", + "This is a beaker.", + "A beaker of unknown liquid.", + "A beaker filled with a green liquid.", + "This beaker is made of borosilicate glass and can hold up to 250 mL of liquid.", + "This beaker is made of porcelain and was produced in China during the Qing dynasty." + ], + "military hat (bearskin or shako)": [ + "A military hat is usually a cylindrical shaped hat that is adorned with a feather or plume.", + "A military hat, or bearskin, is a tall, cylindrical hat worn by soldiers.", + "A military hat is generally a cylindrical shaped hat, often with a visor, and usually has a feather or other decoration on the top.", + "A military hat is typically a high, round, brimless hat.", + "A military hat is a hat that is worn by soldiers.", + "A military hat is a type of headgear worn by soldiers, and generally has a brim, a band of cloth around the crown, and a badge or feather plume on the front.", + "A military hat is usually a tall, cylindrical hat with a brim that is worn by soldiers.", + "A military hat is a hat that is worn by soldiers and other members of the armed forces.", + "A military hat is usually a tall, cylindrical hat with a brim that sometimes flares out.", + "A military hat is generally a tall, cylindrical hat with a flat top and a brim around the edge.", + "The military hats (bearskin or shako) have a brim and a plume.", + "A military hat is a hat that is worn by members of the armed forces.", + "The most identifiable feature of a military hat is a plume.", + "Some military hats have a plume or feather on them.", + "Bearskin hats have a tall, cylindrical shape and are made of fur.", + "A military hat can be identified by its rounds shape and the plume that sticks up in the air.", + "Bearskin hats have a large, round, brimless cap with a small tuft (a lock of hair) in the center.", + "A military hat is typically made of stiff felt or leather, and has a brim that curves up and down around the sides.", + "A military hat is generally made of a stiff material and has a brim that goes all the way around.", + "A military hat is typically identified by its unique shape and the brim that encircles the hat.", + "A military hat is typically a brimmed hat that is worn as part of a uniform.", + "A military hat typically has a brim that is turned up on the sides, and a plume or feather on the top.", + "A military hat (bearskin or shako) is a tall, cylindrical hat worn by soldiers.", + "A military hat, such as a bearskin or shako, can vary greatly in appearance depending on the specific regiment or branch of military that it is associated with.", + "A military hat is traditionally a tall, cylindrical hat with a brim at the bottom.", + "A military hat is either a bearskin or a shako.", + "Bearskin: A bearskin is a tall, shako-style hat worn by some guards regiments in the British and Canadian armies.", + "A military hat, such as a bearskin or shako, is typically a tall, cylindrical hat with a brim.", + "A military hat is a hat that is worn by soldiers.", + "A military hat (bearskin or shako) is a conical or cylindrical headgear, usually with a visor, worn by some soldiers.", + "This image is of a British bearskin hat.", + "An image of a military hat from the internet shows a tall, cylindrical hat with a wide brim.", + "This image from the internet is of a bearskin hat, a type of military hat.", + "This image is of a French military hat called a shako.", + "The image is of a soldier wearing a traditional military hat.", + "The image is of a military hat that is tall and cylindrical in shape with a wide brim.", + "This image is of a French military hat called a shako.", + "The image is of a man in a bearskin hat.", + "One image from the internet of a military hat is of a shako hat.", + "I found an image on the internet of a bearskin hat.", + "A military hat, typically a bearskin or shako.", + "A British Foot Guardsman wearing a bearskin cap.", + "A British Army Bearskin cap.", + "An officer of the French Imperial Guard wears a bearskin hat.", + "\"A British soldier wearing a bearskin cap and red coat stands guard at Buckingham Palace.", + " A soldiers hat bearing the insignia of their country.", + "A British Grenadier Guardsman wearing a bearskin hat.", + "A bearskin hat worn by a member of the military.", + "A British soldier wearing a bearskin hat and red uniform stands guard at Buckingham Palace.", + "A French Napoleonic Era Bearskin Cap." + ], + "beer bottle": [ + "A beer bottle parents many different designs depending on the brand.", + "Beer bottles are typically brown or green and are made of glass.", + "A beer bottle is typically brown in color and has a long neck.", + "A glass beer bottle is typically cylinder shaped with a short neck.", + "A beer bottle is a glass or plastic container that is used to hold beer.", + "A beer bottle typically has a long neck and a round body.", + "a beer bottle is typically a brown or green glass bottle with a long neck.", + "A beer bottle is a container for beer.", + "A beer bottle is a glass or plastic container with a neck that is narrower than the body and a flared lip.", + "A beer bottle is an amber-colored glass bottle with a neck that is narrower than the body of the bottle.", + "A beer bottle is typically straight-sided with a slight taper towards the base and a long neck.", + "The label on the beer bottle will have the name of the beer and the brewery.", + "A beer bottle is a glass or plastic container that is used to hold beer.", + "A common type of beer bottle is the long-neck bottles.", + "Every beer bottle has a label that indicates the brand of beer.", + "The most common type of beer bottle is the longneck bottle.", + "Start by examining the bottle for a label.", + "The easiest way to identify a beer bottle is by looking for the word \"beer\" on the label.", + "Beer bottles are identified by their labels.", + "Each beer has a different shaped bottle.", + "A beer bottle is a cylindrical, glass container with a narrow neck.", + "a beer bottle looks like a brown glass bottle with a small neck and a metal cap.", + "A beer bottle typically has a long neck and a round body.", + "A beer bottle is typically long and slender with a rounded bottom.", + "The bottom of a beer bottle is round with a small hole in the center.", + "A beer bottle typically has a long neck and rounded body.", + "A beer bottle is typically clear or green glass and has a long neck.", + "A beer bottle typically has a long neck and round body.", + "A beer bottle is typically made of green or brown glass and has a long neck.", + "A beer bottle is typically tall and narrow with a long neck.", + "The image is of a brown beer bottle with a white label.", + "A beer bottle with a blue and white label.", + "The image is of a lonely beer bottle sitting on a table with a half-eaten sandwich next to it.", + "This image is of a brown glass beer bottle with a golden liquid inside.", + "The image is of a brown glass beer bottle with a white label.", + "The image is of a brown beer bottle with a metal cap.", + "The image is of a brown beer bottle with a yellow label.", + "There is an image of a beer bottle on the internet.", + "This image is of a brown glass beer bottle with a white label.", + "The image is of a brown beer bottle with a white label.", + " A beer bottle on a table.", + "\"Not tonight, I have to work in the morning.", + "\"Delicious beer! I love it!\".", + "A bottle of beer on a table.", + "A bottle of beer.", + "\"A Half-Full Bottle of Beer\"A half-full bottle of beer is all that's left of a party.", + "A bottle of cold beer on a hot day.", + " A frosty bottle of beer on a hot day.", + "A bottle of beer on a table.", + "A beer bottle on a table." + ], + "beer glass": [ + "A beer glass is typically a tall, slender glass with a slightly flared top.", + "A beer glass is a type of glass that is used to drink beer.", + "A beer glass usually has a long stem with a round cup at the top.", + "A beer glass is a tall, narrow glass with a flared top.", + "A beer glass is a type of glass that is used to drink beer.", + "A beer glass is typically a tall, narrow glass with a curved top.", + "A beer glass has a wide, round bowl and a long stem.", + "A beer glass is usually a tall, slender glass with a bulging middle.", + "A beer glass is typically a glass cylinder with a tapered top.", + "A beer glass is a glass with a handle that is used to drink beer.", + "A beer glass can be identified by its shape, which is designed to enhance the flavor and aroma of the beer.", + "By its shape.", + "A beer glass is typically a tall, narrow glass with a round opening.", + "Beer glasses vary in shape and size depending on the type of beer being served.", + "A beer glass is typically taller and narrower than a regular drinking glass.", + "By shape, size, and capacity.", + "There are many different types of beer glasses, but the most common is the pint glass.", + "Each type of beer has a specific glass that is designed to enhance the flavor and aroma of the beer.", + "By the shape of the glass one can identify a beer glass.", + "The most common type of beer glass is a pint glass.", + "There are many different types of beer glasses, but the most common is the pint glass.", + "A beer glass typically has a flared top and a stem.", + "A beer glass is typically a clear, tall, and thin glass.", + "A beer glass typically has a wide bottom and a narrow top.", + "A beer glass typically has a wide base and a narrow top.", + "A beer glass typically has a cylindrical shape and a slightly flared top.", + "A beer glass is tall and slender with a wide opening.", + "A beer glass often has a wide, bulbous bottom that tapers up to a narrower top.", + "A beer glass is typically a tall, narrow glass with a conical shape.", + "A beer glass generally has a wide base and a tapered opening.", + "The image is of a clear beer glass with a foamy head of beer.", + " overflowingA beer glass is overflowing with amber liquid and foam.", + "This beer glass is a standard pint glass with a slight taper towards the top.", + "An image from the internet of a beer glass may show a traditional glass beer mug with a handle, or it may show a glass pint with ridges near the top.", + "The image is of a clear beer glass with a small head of foam.", + "A beer glass on the internet is an image of a clear glass with a handle, filled with amber-colored liquid and foam.", + "A beer glass is a type of glassware typically used to drink beer.", + "The image is of a clear beer glass with a foamy head of beer.", + "A beer glass with a frosty, golden liquid inside and a thick, white head of foam on top.", + "The image is of a clear beer glass with a handle.", + " A perfect pint of beerThis beer glass is the perfect size for a pint of beer.", + " \"A beer glass with a light beer inside\".", + "A beer glass half full of amber liquid with a small amount of foam on top.", + "Enjoying a cold beer on a hot day.", + "A beer glass with a foamy head on top.", + " A beer glass with a small head of foam.", + "A beer glass on a table with a view of the ocean in the background.", + "A full glass of beer with a head on it, sitting on a tableA cool, refreshing beer on a hot day.", + "A fresh beer on a hot day.", + " A beer glass with a foamy head on top." + ], + "bell tower": [ + "A bell tower is a tall structure that has one or more bells within it.", + "A bell tower is typically a tall, freestanding structure with a staircase inside leading up to a platform on which the bells are housed.", + "A bell tower is a structure that houses one or more bells.", + "A bell tower is a tall structure that contains one or more bells.", + "A bell tower is a tall structure that usually has a belfry, or a room at the top of the structure where the bells are housed.", + "A bell tower typically has a stairwell that leads up to a platform where the bells are hung.", + "A bell tower is a structure that holds a bell or bells, which are rung as a signal or warning.", + "A bell tower is a tall structure that has a room or platform at the top for bells.", + "A bell tower is a tall, free-standing structure, usually attached to a church or other building, that supports one or more bells.", + "A bell tower is a free-standing structure or building, often part of a church or other religious building, that contains one or more bells.", + "A bell tower is a tall structure that has one or more bells.", + "A bell tower is a structure that houses one or more bells to be rung as part of a religious service or as a public announcement.", + "One way to identify a bell tower is by its shape.", + "The most common type of bell tower is simply a free-standing structure that houses one or more bells.", + "A bell tower is typically a tall, freestanding structure with one or more bells.", + "A bell tower is a structure that contains one or more bells, which are rung to make a sound.", + "A bell tower is a tall structure that houses a bell or bells.", + "A bell tower is often the highest point in a church or other building and has a bell or bells hung inside it.", + "Look for a tall structure that houses bells.", + "The most obvious way to identify a bell tower is by its shape.", + "A bell tower is a tall, freestanding structure with a belfry, or room in which bells are hung.", + "A bell tower is a tall structure that contains a set of bells.", + "A bell tower is a tall structure that houses a set of bells.", + "A bell tower typically has a rectangular base and a pyramid- or cone-shaped roof.", + "Most bell towers are very tall and skinny.", + "A typical bell tower is a freestanding structure that contains one or more bells.", + "A bell tower is a structure, usually part of a church or other building, that contains one or more bells.", + "A bell tower commonly has a square or rectangular base, one or more sets of stairs leading to a belfry where the bells are housed, and a pyramidal roof.", + "A typical bell tower is a free-standing structure that is taller than it is wide and has open sides with a belfry at the top.", + "A bell tower is typically a free-standing structure that is taller than it is wide and has one or more bells used to produce sound.", + "The image shows a large, white bell tower with a pointed roof.", + "I couldn't find an image of a bell tower on the internet.", + "The image is of a large bell tower with a pointed roof.", + "The image is of a large bell tower with a single, large bell at the top.", + "The image shows a bell tower with a pointed roof.", + "The image is of a bell tower with a pointed roof.", + "This image is of a bell tower called \"The Little White Church.", + "An image of a bell tower from the internet would likely show a tall, narrow structure with a spire at the top.", + "A image of a bell tower from the internet is a large, tall structure with a pointed top.", + "I found an image of a bell tower from the internet.", + "The bell tower of the church of San Domenico Maggiore, Naples, Italy.", + " The bell tower of the church of St.", + "Bells of Notre Dame.", + "The belltower of the Santa Maria Assunta cathedral in Siena, Italy.", + "The bell tower at the University of Washington in Seattle, WA.", + "The Church of the Immaculate Conception in New York City.", + "The bell tower of Notre Dame de Paris.", + "The bell tower on the campus of the University of Notre Dame.", + "Towering over the city, the bell tower is a symbol of the town's history.", + "The bell tower of the church of Santa Maria in Aracoeli, Rome, Italy." + ], + "baby bib": [ + "Most baby bibs are soft and absorbent, making them ideal for mealtime.", + "A baby bib is typically a triangular piece of fabric that is tied around a baby's neck.", + "A baby bib is a small piece of cloth that is worn around the neck to protect clothing from spills.", + "A baby's bib is a triangle of fabric that is attached at the neck with a Velcro strip, snaps, or a tie.", + "A baby bib is typically a piece of soft fabric worn around a baby's neck to keep their clothes clean while they eat.", + "A baby bib is a triangular piece of fabric that is worn around a baby's neck to protect their clothes from drool and spills.", + "A baby bib covers the front of a baby's clothes to protect them from food stains.", + "A baby bib looks like a triangular piece of cloth that is tied around a baby's neck.", + "A baby bib looks like a small piece of cloth that is tied around a baby's neck.", + "A baby bib typically has a Velcro closure at the back of the neck and is made from a soft, absorbent fabric.", + "A baby bib is a small piece of fabric that is worn around the neck to protect clothing from spills and messes.", + "A baby bib typically has a Velcro closure in the back and is made of a soft, absorbent material.", + "A baby bib is a fabric triangle that is fastened around a baby's neck to protect their clothes while they are eating.", + "A baby bib is a small piece of cloth that is tied around a baby's neck to catch drool and food.", + "A baby bib typically has a Velcro or snap closure at the back of the neck, and is made of a soft, absorbent material.", + "A baby bib is a neckwear for infants, and is characterized by its large size and much higher absorbency than an adult bib.", + "A baby bib typically has a Velcro or snap closure at the neck and is made of a soft absorbent material.", + "A baby bib is usually a triangular piece of fabric that is worn around the neck to protect clothing from spills.", + "A baby bib is a small piece of fabric that is worn around the neck to protect clothing from spills.", + "One way to identify a baby bib is by its function.", + "A baby bib is a small, typically triangular piece of fabric that attaches around a baby's neck and protects their clothes from drool and spills.", + "A baby bib is a small triangle of cloth that is worn around a baby's neck to catch drool and food.", + "A baby bib looks like a small piece of cloth that is worn around the neck to protect clothing from spills.", + "A baby bib will have a large, absorbent area in the front to catch spills, and an adjustable neck strap to fasten it around the baby's neck.", + "A baby bib typically has a Velcro or snap closure at the neck and is made of a soft absorbent material, such as terrycloth, to protect the child's clothing from spills.", + "A baby bib is usually a triangle shaped piece of fabric that is tied around a baby's neck.", + "A baby bib is a small, triangular piece of cloth that is worn around a baby's neck to protect their clothes from drool or food.", + "A baby bib usually looks like a triangular piece of fabric with a Velcro closure at the neck.", + "A baby bib is a triangular piece of fabric that hooks around the baby's neck and ties in the back.", + "A baby bib is a small piece of cloth that is worn around the neck to keep clothes clean.", + "A bib is an article of clothing that is worn over the front of the body.", + "This image is of a white baby bib with a blue trim.", + "The image is of a white baby bib with a cartoon dinosaur on the front.", + "The image is of a white baby bib with a blue trim.", + "The image is of a white baby bib with a blue trim.", + "The image is of a white baby bib with a yellow duck on the front.", + "This image shows a baby bib that is made out of soft white fabric.", + "A baby bib is a triangular piece of fabric that is worn around a baby's neck to keep their clothes clean while they are eating.", + "The image shows a white baby bib with a green trim.", + "The image from the internet is of a light blue baby bib with a cartoon bear on the front.", + " \"The cutest little bib you ever did see!\".", + "A baby bib with a cartoon duck on the front.", + "Cute baby bib with a funny saying.", + "A baby bib with a cartoon turtle on it.", + "My little one always makes a mess at meal times!.", + " \"a bib to keep your baby's clothes clean\".", + "\"I'm not a drooly baby, I'm an artist.", + "The cutest little bib to keep your baby's clothes clean!.", + "Bibs are a must-have for every messy eater!.", + " \"A baby bib with an image of a cartoon chicken." + ], + "tandem bicycle": [ + "A tandem bicycle has two seats side by side, one behind the other.", + "A tandem bicycle is one where two people ride side-by-side on separate seats, usually with the pedals connecting them together.", + "A tandem bicycle is a bicycle built for two people.", + "A tandem bicycle is a bicycle designed for two people to ride together.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle has two sets of pedals, two seats, and two handlebars.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle has two seats and two sets of pedals.", + "The tandem bicycle can be identified by its two seats and two sets of pedals.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "You can identify a tandem bicycle by its two seats and two sets of pedals.", + "A tandem bicycle is a bike designed for two people to ride at the same time, with one person sitting in front of the other.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed to be ridden by more than one person.", + "A tandem bicycle is a bicycle on which two people can ride together.", + "There are a few ways to identify a tandem bicycle.", + "A tandem bicycle is a bicycle with two seats and two sets of pedals, designed to be ridden by two people.", + "A tandem bicycle looks like a regular bicycle, except that it has two seats and two sets of pedals.", + "A tandem bicycle looks like a ordinary bicycle except that it has two seats and sets of pedals for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed for two people to ride at the same time.", + "A tandem bicycle is a bicycle designed for two people to ride together.", + "A tandem bicycle has two seats, two sets of pedals, and two wheels.", + "A tandem bicycle is a bicycle built for two people.", + "A tandem bicycle is a bicycle designed for two people who ride together.", + "A tandem bicycle is a bicycle built for two.", + "A tandem bicycle is a bicycle built for two people to ride together.", + "Two people are sitting on a tandem bicycle.", + "The image shows a blue tandem bicycle with two people sitting on it.", + "The image from the internet is of a tandem bicycle.", + "This image is of a tandem bicycle.", + "In the image, a man and a woman are riding a tandem bicycle down a street.", + "In the image, a man and a woman are riding a tandem bicycle together.", + "In the image, a man and woman are riding a tandem bicycle together.", + "A tandem bicycle is a type of bicycle designed to be ridden by two people.", + "The image on the internet shows a tandem bicycle with two people on it.", + "The image is of a tandem bicycle with two people on it.", + "Two people, one loveA caption of an image of a dog and a cat sleeping together:Best friends forever.", + "A happy couple enjoying a ride on their tandem bicycle.", + "Two cyclists ride a tandem bicycle.", + "Two people, one bike: the perfect way to travel together.", + "This tandem bicycle was built for two people to ride together.", + " A couple spends time together on a tandem bicycle.", + "Two cyclists ride a tandem bicycle to get where they're going twice as fast.", + "Two people riding a tandem bicycle.", + "Two is better than one!.", + "Two people sharing the load on a tandem bicycle." + ], + "bikini": [ + "A bikini is a two-piece swimsuit that typically consists of a triangular-shaped top with cups and strings that tie around the neck and back, and a pair of low-rise bottoms that tie at the sides.", + "A bikini is usually a two-piece swimsuit that consists of a bra-like top and a bottom that covers the pelvic area.", + "A bikini is a two-piece swimsuit that covers the body from the chest down to the waist.", + "A bikini looks like a two-piece bathing suit.", + "A bikini looks like a two-piece swimsuit that is typically worn by women.", + "A bikini is a two-piece swimsuit.", + "A bikini is a women's two-piece swimsuit with a bra top and briefs that cover the groin area.", + "A bikini is a two-piece swimsuit.", + "A bikini typically consists of two triangular-shaped pieces of fabric, which are pulled down over the chest and hips.", + "A bikinis is a two-piece swimsuit.", + "A bikini is a type of women's swimsuit consisting of two separate parts, one covering the breasts, and the other the groin and buttocks, leaving an uncovered area between the two, usually with a tightly knit garment around the waist.", + "The best way to identify a bikini is by the two-piece design.", + "A bikini is a two-piece swimsuit featuring two triangles of fabric on top, similar to a bra, and two triangles of fabric on the bottom, the front covering the pelvis but exposing the navel, and the back covering the.", + "Bikinis typically have two parts: the bottom, which covers the groin and buttocks, and the top, which covers the breasts.", + "A bikini is a two-piece swimsuit.", + "A bikini is typically a women's two-piece swimsuit with a bra top and underwear bottom.", + "A bikini is a two-piece swimsuit that is typically composed of a bandeau-style top and a pair of briefs.", + "Bikinis are usually two-piece swimsuits that provide less coverage than a one-piece bathing suit.", + "Most bikinis have two parts: the top part, which covers the breasts, and the bottom part, which covers the groin, buttocks, and sometimes the stomach.", + "A bikini is a type of women's swimwear that typically consists of two separate pieces: the top, which covers the breasts, and the bottom, which covers the groin and buttocks.", + "A bikini is a women's two-piece swimsuit with a bra top and panties bottom.", + "A bikini is two pieces of women's swimwear.", + "A bikini is usually a two-piece swimsuit that consists of a bra top and bottom that barely cover the buttocks and the woman's breasts.", + "A bikini typically consists of two triangular-shaped pieces of fabric, which are held together by strings.", + "A bikini is a two-piece swimsuit that typically consists of a bra top and panties.", + "A bikini is a two-piece bathing suit that typically consists of a bandeau top and a pair of triangle-shaped bottoms.", + "A bikini is a two-piece swimsuit that typically consists of a triangle-shaped top and a pair of low-rise bottoms.", + "A bikini is typically a two-piece swimsuit consisting of a bra top and separate bottom.", + "Sets of women's swimwear that consists of two parts: a bra top and a brief bottom.", + "There are many types and styles of bikinis, but they all typically consist of two separate pieces that cover the woman's breasts and her genitals.", + "An image from the internet of a bikini shows a woman in a skimpy two-piece bathing suit.", + "A revealing, close-fitting garment worn by women, typically consisting of two triangular shaped pieces of fabric joined at the groin, leaving the breasts and lower back uncovered.", + "This image is of a bikini-clad woman with long, blonde hair.", + "A woman in a white bikini standing in front of a body of water.", + "A bikini is a two-piece swimsuit designed to be worn by women during the summer months.", + "The image is of a woman in a bikini standing in front of a tropical beach.", + " beachThis image is of a beautiful sandy beach with crystal clear water.", + "Image is of a woman in a white bikini walking on a beach.", + "A woman in a white bikini with gold accents standing in the ocean with her back to the camera.", + "In the image, a woman is standing on a rocks by the water.", + "\"I'm ready for summer!\".", + "Summertime fun!.", + "Bikini weather is the best weather.", + "This bikini is perfect for a day at the beach! The bright colors and fun print make it perfect for summertime.", + "Bikini.", + "The bikini is a two-piece swimsuit.", + "Bikini season is here!.", + "She's got the whole world in her hands.", + "A woman in a bikini sitting on a beach chair.", + "Sexy woman in a bikini on the beach." + ], + "ring binder": [ + "A ring binder is a three-ring binder that has ring binders on the side that open and close.", + "A ring binder is a type of folder that has a ring mechanism on the spine that allows pages to be added or removed.", + "A ring binder is a type of loose leaf binder that uses a ring mechanism to hold punched pages together.", + "A ring binder is a type of three-ring binders that has a ring on each side of the spine that hold the papers in place.", + "A ring binder is a type of binder that holds papers together using a ring mechanism.", + "A ring binder is a type of folder that has two metal or plastic rings attached to the spine.", + "A ring binder is usually a plastic or metal binder that has three rings on the inside where pages can be inserted.", + "A ring binder is a type of binder that has a ring mechanism for holding loose sheets of paper together.", + "A ring binder is a type of loose-leaf binder that has a ring mechanism allowing pages to rotate freely on the rings like a notebook.", + "A ring binder is a type of binder that has rings embedded in the spine that allow pages to be inserted.", + "A ring binder often has a metal or plastic ring mechanism on the spine that allows pages to be added or removed.", + "A ring binder is a type of folders with a ring binding mechanism that allows pages to be added or removed.", + "A ring binder has a hole punch along the spine where rings can be inserted.", + "A ring binder has a number of round metal or plastic rings that are attached to the spine of the binder.", + "A ring binder is a type of binder that has a ring mechanism attached to the spine, which allows pages to be added or removed.", + "A ring binder is a type of binder that has a ring mechanism to hold paper sheets together.", + "A ring binder is a type of binder that holds pages together with metal rings.", + "A ring binder is a type of binder that has a ring mechanism to hold paper inserts.", + "A ring binder is a type of binder that has rings on the inside where pages can be inserted.", + "It has a round ring on the inside that holds the pages in place.", + "A ring binder is a three-ring binder that has a round ring on each side.", + "A ring binder is a type of binder that has a ring mechanism on the spine that allows pages to be added or removed.", + "A ring binder is a type of binder that has a ring mechanism to hold pages together.", + "A ring binder is a type of binder that has rings embedded in the spine that allow pages to be added or removed.", + "A ring binder is a type of loose-leaf binder that has a ring mechanism to hold pages together.", + "A ring binder looks like a loose-leaf notebook with large metal rings on the spine.", + "A ring binder is a device that holds papers together by piercing them with metal rings.", + "A ring binder looks like a book with a removable spine.", + "A ring binder looks like a 3-ring binder that holds loose-leaf paper.", + "A ring binder is a type of binder that has a ring mechanism for holding pages together.", + "The ring binder is a maroon color with a label on the front that reads \"D\" in white lettering.", + "The image is of a black ring binder with a white label on the front.", + "A ring binder is a type of binder that has a ring mechanism to allow pages to be added or removed.", + "The image is of a black ring binder with metal rings.", + "The image appears to be of a black, standard three-ring binder.", + "A ring binder is a type of folder that holds loose papers together.", + "A ring binder is a type of binder that has a ring mechanism to hold pages together.", + "This image is of a black ring binder with a silver metal ring mechanism.", + "This image is of a black ring binder with a gold spine.", + "This image is of a black ring binder with the word \"Projects\" written in white text on the front.", + "meeting notes.", + "\"My trusty old ring binder has seen me through thick and thin.", + "Inventory Binder.", + "This is a spines of a ring binder.", + "This is a picture of a ring binder.", + "A ring binder with a label that reads \"To Do List.", + "This ring binder is perfect for organizing paperwork, school projects, and more.", + " A standard three-ring binderA three-ring binder is a type of loose-leaf book binder that is often used to store and organize paperwork, schoolwork, and other documents.", + "A stack of empty white ring binders on a blue background.", + "In case of emergency, break glass." + ], + "binoculars": [ + "A binoculars is a two-lens optical instrument for viewing distant objects by tube.", + "Binoculars are two small telescopes that are Joined together.", + "A binoculars is a two-lensed Telescope that enlarges objects by magnifying them.", + "A binoculars is an instrument for seeing objects at a distance, consisting of two telescopes mounted side by side and having a single eyepiece.", + "Binoculars typically have two cylindrical tubes connected to a central body.", + "A binoculars consists of two telescopes that are side-by-side and mounted on a frame.", + "Binoculars are typically two cylindrical tubes that are attached to each other.", + "A binocular is an optical instrument that employs two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes when viewing distant objects.", + "Binoculars are two telescopes that are mounted side-by-side and aligned to point in the same direction.", + "A binoculars is an instrument used to see objects at a distance.", + "A binoculars can be identified by its two eyepieces and its ability to magnify an image.", + "By looking through both lenses at the same time.", + "The following are features that can help you identify binoculars:\n-Binoculars typically have two large lenses (objective lenses), set close together, that are used for magnifying distant objects.", + "A binoculars is an instrument composed of two telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes when viewing distant objects.", + "The easiest way to identify a binoculars is by its two eyepieces.", + "By looking through the eyepieces, you should see a single circular or rectangular image.", + "The easiest way to identify binoculars is by their shape.", + "A binoculars is an optical instrument used for viewing objects at a distance.", + "A binoculars is a hand-held, portable instrument for viewing objects at a distance.", + "The eyepieces of a binoculars are located close together so that each eye looks through a separate eyepiece.", + "Binoculars are two small telescopes that are mounted side-by-side and allow the viewer to see objects that are far away.", + "A binoculars looks like a telescope with two eyepieces.", + "A pair of binoculars consists of two small telescopes that are mounted side-by-side and aligned so that the viewer can see a single object through both telescopes at the same time.", + "Binoculars are two telescopes that are mounted side-by-side and held in place by a single frame.", + "A binoculars is a very common type of telescope.", + "Binoculars are two telescopes that are mounted side-by-side and are used for viewing distant objects.", + "A binoculars typically looks like a small telescope.", + "Binoculars typically look like two small telescopes that are connected together.", + "Binoculars are two telescopes that are side-by-side and are made to look like one telescope.", + "A binoculars is an optical instrument that usually has two separate barrels, each containing an objective lens and an eyepiece lens.", + "The image from the internet is of a black and silver pair of binoculars on a tripod.", + "An image of a binoculars from the internet would likely show a person holding the binoculars up to their eyes, looking through them at a distant object.", + "The image shows a pair of black binoculars on a white background.", + "This image is of a pair of black binoculars on a white background.", + "The image is of a pair of black binoculars on a black background.", + "In the image, there is a pair of binoculars placed on a rocky surface.", + "I found an image of a pair of black binoculars on a white background.", + "A binoculars is a device that contains two convex lenses that are used to magnify objects that are far away.", + "This image is of a pair of black binoculars on a wooden table.", + "The image is of a pair of black binoculars on a white background.", + "Jim's BinocularsMore specifically: Jim's Eagle Optics Shrike 8x42 Binoculars, which he uses for birdwatching.", + "Binoculars are a tool that allows you to see things that are far away.", + "Binoculars are a very useful tool for birdwatching.", + "Binoculars are a device for magnifying distant objects.", + "Binoculars are a type of optical instrument that are used to magnify objects that are far away.", + " A pair of binoculars on a tripod pointed towards the sky.", + " binoculars.", + "Binoculars are a great way to see things up close!.", + "Binoculars are a type of optical telescope that are used for observing distant objects.", + "Binoculars are a great way to get a closer look at things." + ], + "birdhouse": [ + "A birdhouse is a small structure that is made to look like a house, and is used to attract birds.", + "A birdhouse is a small house-shaped structure that is made to attract birds so that they will build their nests inside of it.", + "A birdhouse is typically a small wooden structure with a hole in the front for birds to enter.", + "A birdhouse is a small house designed for birds to live in.", + "A birdhouse is a small structure designed to attract birds so that they will nest in it.", + "A birdhouse is a small house designed for birds to live in.", + "A birdhouse is a small house for birds.", + "A typical birdhouse is a small wooden house with a hole in the front and a perch.", + "A birdhouse is a small structure designed to attract birds so that they will nest there.", + ".", + "A birdhouse has a hole in the front for a bird to enter, and it is usually made of wood.", + "A birdhouse is a small, wooden house that is designed to attract birds.", + "A birdhouse is a small house or box made for birds to live in.", + "Most birdhouses are made out of wood and have a hole in the front for the bird to enter.", + "One way to identify a birdhouse is by its opening.", + "Birdhouses have an entrance hole for the bird to enter, and often have a perch for the bird to sit on.", + "The easiest way to identify a birdhouse is by its shape.", + "A birdhouse is traditionally a small wooden house for birds.", + "There are many different types of birdhouses, so it is difficult to identify one without knowing more about the specific birdhouse.", + "A birdhouse is small structure that is made to look like a house and is intended to attract birds so that they will nest in it.", + "A birdhouse typically has a hole in the front for the bird to enter, a perch inside for the bird to sit on, and a roof.", + "A birdhouse is a small house created for birds to live in.", + "A birdhouse is often a small wooden box with a hole in the front for a bird to enter.", + "A birdhouse is a small wooden house with a hole in the front for birds to enter.", + "A birdhouse is like a small house for birds.", + "A birdhouse is a small house designed to attract birds so they will nest there.", + "A birdhouse typically looks like a small wooden house with a hole in the front for the bird to enter.", + "A birdhouse is typically a small wooden house with a hole in the front for a bird to enter.", + "A birdhouse usually has a small, rectangular shape with a pointy roof.", + "A birdhouse is typically a small structure in the shape of a house that is designed to attract birds so that they will nest there.", + "The image from the internet is of a bluebird house.", + "This image shows a colorful birdhouse hanging from a tree.", + "A birdhouse is a small house or nesting box made for birds to live in.", + "This image is of a colorful birdhouse set against a nature background.", + "This image is of a white birdhouse with a green roof.", + "I found an image of a birdhouse on the internet that I really liked.", + "This image is of a traditional wooden birdhouse with a slanted roof.", + "The image is of a white birdhouse with a red roof.", + "This image is of a wooden birdhouse that has been painted white.", + "This image is of a blue and white birdhouse with a yellow bird perched on top.", + "This birdhouse was made by a local artist.", + "In this birdhouse, the roof has a distinct peak in the center, and the entrance hole is located off to one side.", + "This birdhouse was made by hand from sturdy pine.", + "This birdhouse is made out of an old, reclaimed wood.", + "A cute birdhouse made out of a old shoe!.", + "This birdhouse was made by a local artist.", + "A birdhouse in a backyard.", + "Backyard birdhouse on a tree.", + "This birdhouse was handmade from reclaimed wood and recycled materials.", + "Backyard birdhouse on a tree branch." + ], + "boathouse": [ + "A boathouse is a building where boats are stored.", + "A boathouse is a building designed to house boats.", + "A boathouse looks like a small house or cabin on the edge of a lake or river.", + "Image result for boathouse design\nA boathouse is a building especially designed for the storage and maintenance of boats.", + "A boathouse typically is a single-story, gable-roofed structure with a door at one end and one or more bays for storing boats.", + "A boathouse is a building on the shore of a lake or river where boats are stored.", + "A boathouse may be a building specially designed for the storage of boats, but in practice, most arehousing for rowing clubs and provide storage, changing rooms, and often a club room for other activities.", + "A boathouse is a small building near a lake or river.", + "A boathouse is traditionally a building on the banks of a river or lake where boats are kept.", + "A boathouse is a building where boats are stored.", + "The most distinguishing feature of a boathouse is that it is built over water, either floating or fixed to the shore.", + "A boathouse is a building designed to store boats.", + "The following are some characteristics that can help you identify a boathouse:-Boathouses are usually located near water.", + "One way to identify a boathouse is by its roof, which is often sloped or curved to shed water.", + "The easiest way to identify a boathouse is by its roof.", + "A boathouse can be identified by its dock and by the boats that are stored inside it.", + "A boathouse can be identified by its dock, which is typically used to launch and store boats.", + "A boathouse is typically a small, simple structure located near water, used for storing boats.", + "Signs that you have found a boathouse may include the presence of docks, piers, or slips and/or the presence of boating equipment such as oars, rowboats, and life jackets.", + "It is typically a building designed for storing boats, either privately or as part of a marina.", + "While the appearance of a boathouse can vary depending on its location and purpose, they typically have a few features in common.", + "A boathouse is a building for storing boats.", + "There is no one answer to this question as the design of a boathouse can vary greatly depending on its location and purpose.", + "A boathouse is a shed for storing boats.", + "While the specific details of a boathouse can vary, they are typically large structures built near a body of water.", + "There is no single answer to this question as the designs of boathouses can vary greatly.", + "A boathouse is a building where boats are stored.", + "A boathouse is a building designed for the storage and maintenance of boats.", + "A boathouse generally looks like a shed or small garage that is built on or near the shore of a body of water.", + "A boathouse can take many different forms, but all boathouses share a common purpose: to house boats and provide storage for boating equipment.", + "The image is of a small, rustic boathouse with a thatched roof set on the edge of a lake.", + "In the image, there is a boathouse on the shore of a lake or river.", + "The image is of a small, wooden boathouse sitting on a dock.", + "In the image, there is a large, white boathouse with several boats inside.", + "The image is of a boathouse situated on a body of water.", + "The image is of a boathouse on a lake with a dock leading up to it.", + "The boathouse is a two-story building with a dock extending from it.", + "This boathouse is located on a lake in the woods.", + "An image from the internet of a boathouse shows a large, two-story building with a sloped roof.", + "A boathouse is typically a building located near a body of water where boats are kept.", + "Boathouse on the RiverThis boathouse is situated on the river, providing a perfect spot for boaters to rest and refuel.", + "The boathouse on the lake is a popular spot for fishing and swimming.", + "The boathouse on the lake is a popular spot for picnics and fishing.", + " A boathouse on a lake.", + "The boathouse is a building on the shore of a lake or river where boats are kept.", + "The Boathouse - a historic landmark in the heart of the city.", + "The boathouse on the lake is a beautiful sight.", + "The boathouse is a historic structure located on the banks of the river.", + "This is a boathouse on a lake.", + "The boathouse on the lake is a beautiful spot to relax and enjoy the views." + ], + "bobsleigh": [ + "A bobsleigh is a two- or four-person sled used for racing down an icy track.", + "A bobsleigh is a vehicle that consists of a sled with a platform on top that is used to slide down a snow or ice-covered track.", + "A bobsleigh is a vehicle with two or more people that slides down an icy track.", + "A bobsleigh is a sled-like vehicle used for racing down an ice track.", + "A bobsleigh is a vehicle that is used in the winter sport of bobsleighing.", + "A bobsleigh is a sled that is used for transporting people or goods over snow or ice.", + "A bobsleigh is a sled that is used for racing down an icy track.", + "A bobsleigh is a sled that is used in the winter sport of bobsleighing.", + "A bobsleigh is a large sled that can seat up to four people.", + "A bobsleigh is a sled used for racing down an ice track.", + "A bobsleigh is a sled that is used for racing down an ice track.", + "A bobsleigh is a wheeled sled used for downhill racing.", + "Bobsleighs are generally large and long, with two large blades at the front.", + "Bobsleighs are sleds that are used for competitive sliding on snow or ice.", + "A bobsleigh is a sled used for racing down a bobsleigh track.", + "Bobsleighs are wheeled carts that are used to transport goods or people over snow-covered terrain.", + "Bobsleighs are long, thin sleds that are used for sledding down hills.", + "Bobsleighs are long, narrow sleds that are used in the winter sport of bobsleighing.", + "A bobsleigh is a vehicle that is used for sledding down a slope in the snow.", + "A bobsleigh is a large sled that can seat up to four people.", + "A bobsleigh is a small, sled-like vehicle that is used for racing down a hill or ice track.", + "A bobsleigh closely resembles a toboggan and is typically driven by two or four people.", + "A bobsleigh is a sled used in the sport of bobsleighing.", + "A bobsleigh is a sled used in the winter Olympic sport of bobsleighing.", + "A bobsleigh is a sled on rails that is used for racing.", + "From the outside, a bobsleigh looks like a small, open-topped car with curved sides.", + "A bobsleigh is a sled that is used in the winter sport of bobsleighing.", + "A bobsleigh is a vehicle that is used for sledding down a hill or track.", + "A bobsleigh is a vehicle that is used to slide down a snow-covered or ice-covered track.", + "A bobsleigh is a sled that is used for racing.", + "A bobsleigh is a vehicle used for sliding down a bobsleigh track.", + " teamThe image is of a bobsleigh team zooming down an ice track.", + "Image shows a bobsleigh on a track with two people inside.", + "A bobsleigh speeding down an icy track with two athletes in it.", + " teamThe image is of a bobsleigh team racing down an icy track.", + "The image is of a bobsleigh racing down an icy track.", + "A bobsleigh is a sled used for transporting passengers down a hill or other snowy surface.", + "The image is of a bobsleigh on a track.", + " teamThe image is of a team of 4 people in a bobsleigh hurtling down an icy track.", + " teamThis image shows a bobsleigh team getting ready to race.", + "Bobsleigh athletes competing in the Winter Olympics.", + "Two men in a bobsleigh speeding down an icy track.", + "Four men in a bobsleigh preparing to race down an icy slope.", + "Bobsleigh team competing in the Winter Olympics.", + "A bobsleigh speeding down an icy track.", + "A bobsleigh team racing down an icy track.", + " A two-man bobsleigh team competes in the Winter Olympics}.", + "A professional bobsleigh team races down an icy track.", + "A bobsleigh speeding down an icy track.", + "Four athletes pilot a bobsleigh down an icy track at high speed." + ], + "bolo tie": [ + "A bolo tie is often made with a thin cord or braided leather, with decorative metal tips.", + "A bolo tie is a pronouced cord or thong, with decorative metal tips, worn around the neck, and fastened at the front of the neck, that derives from the Southwestern United States.", + "A bolo tie consists of a piece of cord or leather with a decorative metal tip, slid through a narrow slit in a metal disk, which is then fastened around the neck by clasping the disk to the tie.", + "A bolo tie is a decorative cord that is worn around the neck and typically has an ornamental clasp in the front.", + "A bolo tie is a string tie with two metal (usually silver) tips.", + "A bolo tie is a necktie that consists of a piece of cord or braided leather with a decorative metal tip, fastened with a sliding knot.", + "A bolo tie is a necktie consisting of a piece of cord or braided leather with decorative metal tips \u2013 called aglets \u2013 secured with a clasp or slide.", + "A bolo tie is a necktie consisting of a piece of cord or leather with a decorative clasp at the front.", + "A bolo tie is a cord or string worn around the neck, with the two ends held together by a decorative clasp.", + "A bolo tie is a necktie with a narrow leather band and a metal clasp.", + "A bolo tie typically has a cord or braided leather band, and a decorative metal clasp or slider.", + "A bolo tie is generally made with a long, thin cord or braided leather band, and has a decorative centerpiece mounted on the cord.", + "A bolo tie typically consists of a cord or string around the neck.", + "A bolo tie typically has a thin cord made of leather or braided metal, with decorative metal ornaments at either end.", + "You can identify a bolo tie by its V-shaped metal clasp that fastens the two ends of the leather cord or metal band.", + "Bolo ties are typically made with a long, thin cord or leather strap.", + "Bolo ties are typically made with a cord or leather strap, and they have an ornamental clasp at the front.", + "A bolo tie has a cord that goes around the neck, with two ends that hang down the front.", + "A bolo tie typically has a decorative clasp made of metal or another material.", + "A bolo tie is a necktie composed of a piece of cord or leather with decorative metal tips.", + "A bolo tie is a type of necktie that consists of a piece of cord or leather with a decorative metal or stone clasp.", + "A bolo tie is a type of necktie that consists of a long cord with a decorative metal tip that is worn around the neck and tied at the chest.", + "A bolo tie looks like a long, thin cord with a metal clasp at the end.", + "Bolo ties are generally composed of a cord or braided leather lanyard, holding a decorative metal tip, slid through a slipknot, with the excess cord wrapped around the back of the neck.", + "A bolo tie is a type of necktie that consists of a cord or braided leather lariat with a decorative metal or stone clasp at the front.", + "A bolo tie is a simple, yet elegant necktie that is often worn by cowboys and other westerners.", + "A bolo tie consists of a cord or braided leather band, typically 2\u20133 cm wide, with a decorative metal tip\u2014the slide\u2014and clasp, attached to each end.", + "A bolo tie typically consists of a cord or braided leather band, with a decorative metal slide or wafer, and tipped by two metal aglets (tips).", + "A bolo tie is a type of necktie that is typically worn with Western-style clothing.", + "A bolo tie is a type of necktie that consists of a wide piece of leather or cord that is wrapped around the neck and fastened in the front with a decorative metal clasp.", + "A bolo tie is a necktie consisting of a piece of cord or string with decorative metal tips, worn around the neck and tied at the front.", + "A bolo tie is a necktie with a decorative clasp at the neck.", + "The image is of a silver bolo tie with a turquoise stone in the center.", + "A bolo tie is a type of necktie that consists of a cord or string of leather with a decorative metal tip.", + "This bolo tie has a long, thin strip of leather with a metal tip.", + "One image of a bolo tie from the internet is of a Western-style bolo tie with a braided leather cord and a silver-tone metal tip.", + "A bolo tie is a type of necktie consisting of a cord or string around the neck with a decorative metal tip attached.", + "An image of a bolo tie from the internet shows a silver bolo tie with a turquoise stone in the center.", + "The image is of a bolo tie with a black cord and a silver clasp in the shape of a horse's head.", + "In the image, a bolo tie is brown with a turquoise stone in the center.", + "Bolo Tie from the collection of the Museum of the American West.", + "Bolo tie with image of cowboy.", + "Bolo tie with turquoise stone.", + "A bolo tie is a kind of necktie that is usually made from a cord or a band of leather with metal tips.", + "A bolo tie is a type of necktie consisting of a cord or braided leather lariat with decorative metal tips.", + "\"Bolo tie\".", + "Inventor and rancher Victor Cedarstaff wearing his namesake creation, the bolo tie.", + "This bolo tie features a turquoise stone in the center, surrounded by a silver band.", + "A bolo tie is a type of necktie consisting of a cord or string with a decorative metal tip, worn around the neck.", + "A bolo tie is a type of necktie consisting of a cord or string tie with decorative metal tips." + ], + "poke bonnet": [ + "A poke bonnet is a small bonnet that covers the head and neck, typically worn by women in the early 1800s.", + "A poke bonnet is a women's bonnet that is designed to sit close to the head, often covering the ears, and usually has a small brim.", + "A poke bonnet is a bonnet that is worn poking out at the front, instead of being pulled down over the face.", + "A poke bonnet is a style of bonnet worn in the early 1800s.", + "A poke bonnet is a bonnet that has a large brim that extends all the way around the head.", + "A poke bonnet is a type of bonnet that was popular in the early 19th century.", + "A poke bonnet is a type of bonnet that was popular in the early-mid 1800s.", + "A poke bonnet is a type of bonnet that was popular in the early 19th century.", + "A poke bonnet is a type of bonnet that was popular in the early 19th century.", + "A poke bonnet is a bonnet with a high crown and a wide brim.", + "A poke bonnet is a type of women's headwear that was popular in the early 19th century.", + "A poke bonnet is a type of bonnet that was popular in the early 19th century.", + "A poke bonnet is a small, round hat that is worn by women.", + "A poke bonnet is a type of bonnet worn by women in the early 19th century.", + "There is no definitive answer to this question, as poke bonnets come in a variety of shapes, sizes, and colors.", + "Poke bonnets were popular during the 19th century and are typically characterized by their large size, round shape, and frilled edges.", + "A poke bonnet is a kind of bonnet or hat that was popular in the early 19th century.", + "A poke bonnet is a type of bonnet worn by women in the early 1800s.", + "A poke bonnet is a bonnet with a wide brim that is often used to protect a woman's face from the sun.", + "A poke bonnet is usually identified by its large brim, which is often lined with wire or whalebone to help it keep its shape.", + "A poke bonnet is a type of bonnet worn by women in the 19th century.", + "A poke bonnet is a small bonnet that covers the face and is often worn with a veil.", + "A poke bonnet is a small, round hat that sits close to the head and is often trimmed with lace or other decorations.", + "A poke bonnet is a small, brimless bonnet with a high crown.", + "A poke bonnet is a type of bonnet that was popular in the early 1800s.", + "A bonnet is a type of headwear that is typically worn by women.", + "A poke bonnet is a small, frilly bonnet worn by women in the early 1800s.", + "A poke bonnet is a type of bonnet with a tall crown and a large brim.", + " poke bonnets were popular in the Victorian era and were usually made of lace or light fabric.", + "A poke bonnet is a bonnet with a pointed end, or \"poke.", + "A poke bonnet is a type of bonnet worn by women in the 18th and 19th centuries.", + "A poke bonnet is a type of bonnet worn by women in the 19th century.", + "A poke bonnet is a type of bonnet worn by women in the 18th and early 19th centuries.", + "The image is of a pink poke bonnet with white frill detailing.", + "A poke bonnet is a type of hat that was popular in the 1800s.", + "A poke bonnet is a type of bonnet worn by women in the early 19th century.", + "A poke bonnet is a type of bonnet worn by women in the 18th and 19th centuries.", + "There is an image on the internet of a poke bonnet which is a type of hat that was popular in the 18th and 19th centuries.", + "A poke bonnet is a type of bonnet worn by women in the late 18th and early 19th centuries.", + "The poke bonnet is a classic British hat that is worn by both men and women.", + " \"A Poke Bonnet, or 'bonnet \u00e0 la Pok\u00e9 Ball,' was a fashionable hat in the early 1800s.", + "Portrait of a young woman in a poke bonnet.", + " Ladies poke bonnets from the early 1800s.", + "A poke bonnet is a type of women's headwear that was popular in the early 19th century.", + " The perfect summer accessory for a day at the races.", + " Poke bonnets were everywhere in the 1800s.", + "A poke bonnet from the Victorian era.", + " A woman wearing a poke bonnet in 1820A poke bonnet was a type of women's bonnet popular in the early 19th century.", + "A poke bonnet is a type of bonnet worn by women in the 18th and early 19th centuries.", + " A poke bonnet, worn primarily in the American South during the 19th century." + ], + "bookcase": [ + "A bookcase is a piece of furniture with shelves that are used to store books.", + "A bookcase typically consists of a series of shelves that are enclosed by either doors or a back panel.", + "A bookcase is a piece of furniture that typically has shelves to store books on.", + "A bookcase is a piece of furniture with shelves that are used to store books.", + "A bookcase looks like a piece of furniture with shelves that are used to store books.", + "A bookcase is typically a rectangular piece of furniture with shelves that are used to store books.", + "A bookcase is a piece of furniture with shelves that are used to store books.", + "A bookcase typically contains shelves that are horizontal and vertically arranged to hold books.", + "A bookcase is typically a tall, rectangular piece of furniture with shelves that are used to store books.", + "A bookcase is a piece of furniture that has shelves to store books.", + "A bookcase is a piece of furniture that has shelves on which to place books.", + "Bookcases are usually made of wood or metal and have shelves for storing books.", + "There are many ways to identify a bookcase.", + "Bookcases can be identified by their shelves, which are used to store books.", + "A bookcase can be identified by its shelves, which are typically made of wood, metal, or plastic, and its vertical structure, which is designed to hold books.", + "Bookcases are traditionally made of wood and have shelves for holding books.", + "A bookcase is a furniture piece that typically has shelves to store books.", + "A bookcase is defined as \"a piece of furniture with shelves, typically tall and with a door or doors, for storing books.", + "A bookcase is a piece of furniture with horizontal shelves that are used to store books.", + "Bookcases are often made of wood or metal and have several shelves that are used to store books.", + "A bookcase is a type of furniture that is used to store books.", + "A bookcase is a piece of furniture with shelves that are used to store books.", + "A bookcase usually looks like a tall, rectangular piece of furniture with shelves that are used to store books.", + "A bookcase looks like a piece of furniture with shelves that are used to store books.", + "A typical bookcase is a rectangular piece of furniture with shelves that are used to store books.", + "A bookcase usually has shelves that are evenly spaced apart and it is deep enough to accommodate standard sized books.", + "A bookcase is a piece of furniture with horizontal shelves that are used to store books.", + "A bookcase is a piece of furniture with shelves that are used to store books.", + "A bookcase is shelves for storing books.", + "A bookcase typically contains several shelves that are used to store books and other materials.", + "This image depicts a large, freestanding bookcase made of dark wood.", + "In this image, there is a bookcase that is made of wood.", + "This image shows a bookcase that is made up of several shelves of different sizes.", + "The image is of a bookcase that is made out of wood.", + "The image is of a small, square bookcase with four shelves.", + "This image features a simple, yet elegant bookcase made of wood.", + "The image is of a large, intricately carved wooden bookcase.", + "This image is of a tall, wooden bookcase with six shelves.", + "This image shows a tall, wooden bookcase with six shelves.", + "The image shows a tall bookcase with many shelves.", + "A well-organized bookcase full of many different types of books.", + "This is a bookcase filled with books.", + "A digital image of a bookcase with a variety of books.", + " A neatly organized bookcase with various sized books and a small plant.", + "Library at Night.", + "Shelf Life: A Collection of Books.", + "Books line the shelves of this bookcase, arranged by color.", + "Library shelves with a variety of books.", + "A wood and metal bookcase with five shelves.", + "Bookshelf with various books." + ], + "bookstore": [ + "A bookstore typically contains a retail area where books are displayed and sold, and a storage area where extra books are kept.", + "The front of a bookstore typically has large windows and a door.", + "A bookstore looks like a place where people go to buy books.", + "A bookstore typically has shelves of books, a front desk where customers can buy books, and a back room where extra inventory is stored.", + "The exterior of a bookstore is typically a sign with the store's name, large windows, and a door.", + "A bookstore typically looks like a large retail space with shelves full of books.", + "Most bookstores have shelves full of books and magazines, along with a counter where people can pay for their purchases.", + "A bookstore is a small shop that sells books.", + "A bookstore typically contains shelves of books, organized by genre or category.", + "A bookstore is a store that sells books.", + "Typically, a bookstore can be identified by its large selection of books.", + "If you are looking for a bookstore, a good way to find one is to look for a sign that says \"books\" or to look for a building with a lot of shelves inside.", + "Bookstores are usually easy to identify because they will have a large selection of books for sale.", + "The easiest way to identify a bookstore is by the large number of books that are on display.", + "A bookstore is a store that sells books.", + "One way to identify a bookstore is by looking for a sign that says \"Bookstore.", + "There are a few ways you can identify a bookstore.", + "Most bookstores have a large sign with the word \"BOOKS\" or a picture of a stack of books.", + "At the front of the store, there is usually a sign that says \"books\" or \"bookstore.", + "One way to identify a bookstore is by looking for a sign that says \"Bookstore\" or something similar.", + "There is no one answer to this question as bookstores can come in many different shapes and sizes.", + "A bookstore usually has shelves full of books, a counter where you can pay, and a section for children's books.", + "A bookstore can look like a small shop with shelves of books lining the walls and a cash register near the door, or it can be a large warehouse with rows and rows of bookshelves.", + "Bookstores can vary greatly in appearance, but they usually have shelves upon shelves of books, as well as a counter where you can pay for your selections.", + "Bookstores come in all different shapes and sizes.", + "A bookstore generally has shelves full of books, a counter where you can purchase the books, and a section for any events the bookstore is hosting.", + "A good bookstore should have a wide variety of books, a comfortable place to sit and read, and helpful and knowledgeable staff.", + "A bookstore typically has shelves full of books, organized by genre or category.", + "A bookstore typically looks like a large space with shelves of books and a cash register.", + "A bookstore typically has shelves upon shelves of books, organized by genre, author, or title.", + "This image shows the exterior of a large, two-story bookstore.", + "In the image, there is a large, two-story bookstore with a wide variety of books lining the shelves.", + "In the image, there is a large, two-story bookstore with a curved staircase leading up to the second level.", + "There is a large, rectangular building with pale-colored walls and large windows.", + "In the image, there is a small bookstore with dark wood shelves.", + "The image shows a small, independent bookstore with a large front window.", + "In this image, we see a bookstore with large windows and a green awning.", + "The image is of a small, independent bookstore.", + "This image from the internet shows a bookstore called Seminary Co-op in Chicago.", + "In the image, there is a bookstore with large windows and shelves full of books.", + "A bookstore in London, England.", + "\"The Best Place to Be\"If you love books, then the bookstore is the best place to be.", + " A bookstore with a wide variety of booksThis bookstore has a wide variety of books, perfect for finding your new favorite novel or non-fiction book!.", + "The exterior of a bookstore in a small town.", + "A bookstore in downtown Boston.", + "The exterior of Milan's finest bookstore, which has been in operation for over 300 years.", + " \"Local independent bookstore\".", + "The exterior of a small bookstore in a small town.", + "The bookstore is full of people looking for their next great read.", + " A woman walks through aisles of books in a bookstoreA woman walks through aisles of books in a bookstore, looking for her next read." + ], + "bottle cap": [ + "Most bottle caps are round and have a flat surface.", + "A bottle cap is a small, circular piece of metal that is placed on top of a glass or plastic bottle.", + "A bottle cap is a round, plastic or metal lid that is placed on top of a bottle to seal it.", + "A bottle cap looks like a small, circular piece of metal that is placed on top of a bottle to seal it.", + "Most bottle caps are made of metal and have a raised portion in the center that needs to be pushed down in order to open the bottle.", + "A bottle cap is a small, round, removable piece of metal or plastic that is used to seal the opening of a bottle.", + "Most bottle caps are metal and round with a smooth top.", + "A bottle cap tends to be round and flat, with a small lip that secures it to the mouth of a bottle.", + "A bottle cap is typically small, made of metal, and has a lip that curls over the top of a bottle.", + "A bottle cap is a small, round, metal disc that is placed on top of a bottle to seal it.", + "On the rim of the bottle there is a small lip that sticks out and a small hole in the middle.", + "Bottle caps have a small nub on one side that is used to open the bottle.", + "A bottle cap can be identified by its circular shape and small size.", + "A bottle cap is a small, circular piece of metal or plastic that is placed over the mouth of a bottle to seal it.", + "The bottle cap is the removable top of a bottle.", + "A bottle cap is typically made of metal and has a circular shape that fits snugly on the top of a bottle.", + "The most common type of bottle cap is a screw cap.", + "A bottle cap is a small, round, metal lid that screws onto the top of a bottle.", + "A bottle cap is a small, round, metal disc that is placed over the mouth of a bottle to seal it.", + "One way to identify a bottle cap is by its size.", + "It is circular, and it has a raised ridge in the center that can be pressed down to open the bottle.", + "A bottle cap is a small, circular piece of metal that is placed on top of a bottle to seal it.", + "A bottle cap looks like a small, circular piece of metal with a raised center that can be pressed down to seal a bottle.", + "A bottle cap looks like a small, circular piece of metal that fits snugly over the top of a bottle.", + "A bottle cap is a small, disk-shaped piece of metal that is placed on top of a bottle to seal it.", + "A bottle cap is generally a round, disk-shaped lid that screw on or snaps onto the mouth of a bottle.", + "A bottle cap is a small, often circular piece of metal or plastic that is placed over the mouth of a bottle.", + "A bottle cap is a small, round, often metal or plastic disc that is placed on top of a bottle to close it.", + "A bottle cap typically looks like a small, circular piece of metal that fits snugly over the top of a bottle.", + "A bottle cap typically has a curved surface on top that mates with a correspondingly curved surface on the bottom of the bottle.", + "The image is of a yellow bottle cap with the words \"Sparling & Co.", + "The image is of a round, metal bottle cap with a slightly raised edge.", + "The image is of a red bottle cap with the word \"Coca-Cola\" written in white.", + "Image shows a green bottle cap with a white label.", + "This image from the internet is of a blue bottle cap with a white \"S\" in the middle.", + "A blue plastic bottle cap with a metal ring around the edge.", + "This image is of a blue bottle cap with the word \"NIKE\" written in white letters.", + "The image from the internet is of a red bottle cap with the letters \"RC\" in white.", + "The image is of a blue bottle cap with the words \"Coca-Cola\" printed on it in white lettering.", + "The image shows a silver bottle cap with the letters \"BUD\" embossed on the top.", + "A bottle cap lying on the ground.", + "\"This is a bottle cap.", + "The bottle cap says \"Dr.", + " A blue and white bottle cap with the word \"Coca-Cola\" printed on it.", + "A bottle cap with the phrase \"POP!\" printed on it.", + "A close up of a red and white bottle cap with the words \"Pabst Blue Ribbon\" printed on it.", + "This is a bottle cap.", + "Stainless steel bottle cap with BPA-free liner.", + "This is a bottle cap.", + "Kroger brand water." + ], + "hunting bow": [ + "A hunting bow typically has a shorter length and higher draw weight than a target bow, making it more powerful for taking down larger game.", + "A hunting bow is a type of bow that is used for hunting animals.", + "A hunting bow is a bow that is used for hunting.", + "There is no one definitive answer to this question as there are many types and styles of hunting bows.", + "A hunting bow is a type of bow that is used for hunting.", + "A hunting bow is a type of bow that is used for hunting animals.", + "A hunting bow is a bow that is used for hunting.", + "Hunting bows are typically recurve or compound bows, which means they have a curved limb.", + "A hunting bow is a type of bow that is used for hunting.", + "A hunting bow typically has a shorter length and higher draw weight than a bow used for recreational Archery.", + "What are the parts of a hunting bow?A hunting bow typically has a shorter length and higher draw weight than a target bow, making it more suitable for hunting purposes.", + "A hunting bow can be identified by its long, slim shape and by the fact that it is designed to be used with one hand.", + "A hunting bow can be identified by its shorter length and more powerful draw weight when compared to a target bow.", + "The string on a hunting bow is usually red or orange.", + "The best way to identify a hunting bow is to look for one that is specifically designed for hunting.", + "Hunting bows are typically designed to be more compact and lightweight than target bows, and they usually have a shorter draw length.", + "The most identifying characteristic of a hunting bow is the presence of a sight.", + "There are a few ways to identify a hunting bow.", + "A hunting bow can be identified by its shorter length, heavier weight, and higher draw weight than a target bow.", + "The best way to identify a hunting bow is by the type ofbow.", + "A hunting bow looks like a traditional bow with a few modifications.", + "Most hunting bows are designed to look like traditional bows, with a curved shaft and arrow.", + "Most hunting bows have a simple, unadorned design.", + "A hunting bow typically consists of a long, slightly curved wooden or composite shaft with a string attached to either end.", + "A hunting bow typically has a longer draw length and higher draw weight than a target bow.", + "A hunting bow typically has a shorter length and draw weight than a target bow.", + "The bow is roughly 1.", + "A hunting bow looks like a traditional bow with a few modifications.", + "A hunting bow is a bow that is used for hunting.", + "A hunting bow is a type of bow that is used for hunting.", + "The image is of a hunting bow on a table with arrows.", + "This image is of a traditional hunting bow.", + "The image is of a hunting bow on a light background.", + "This image is of a hunting bow called the \"Buck Commander Invasion.", + "In the image, a hunting bow is displayed in all its glory.", + "This image is of a hunting bow.", + "There is an image of a hunting bow on the internet that has a brown wooden body with a string attached to the ends.", + "The image is of a hunting bow with arrows.", + "This image is of a hunting bow.", + "The image shows a hunting bow on a stand.", + "This is a hunting bow.", + "A bow used for hunting.", + "A hunting bow ready for action.", + "A hunting bow, used for hunting prey.", + "Browning compound bow, used for hunting deer and other game.", + "A hunter uses a bow to hunt for game.", + "A typical hunting bow, used for taking down large game.", + "This bow is perfect for hunting small game.", + "\"I'm a master hunter.", + "A well-made hunting bow is a powerful and precise weapon." + ], + "bow tie": [ + "A bow tie is a narrow strip of fabric that is worn around the neck and tied in a bow.", + "A bow tie is a narrow strip of fabric that is worn around the neck and tied in a bow.", + "A bow tie is a piece of clothing worn around the neck and consists of a strip of material tied around the neck in a bow.", + "A bow tie consists of a strip of fabric, usually silk, worn around the neck and tied in a bow in the front.", + "A bow tie looks like a small strip of fabric that is tied around the neck in a bow shape.", + "A bow tie is a necktie that is tied in a bow.", + "A bow tie is a small, decorative piece of fabric that is worn around the neck and tied in a bow.", + "A bow tie is a type of necktie that is tied around the neck in a bow-like fashion.", + "A bow tie may be either a separate piece of fabric that is tied around the neck, or a ready-tied band of fabric with an adjustable strap that fastens around the neck.", + "A bow tie is a decorative item of clothing worn around the neck and tied at the front in a bow.", + "A bow tie has two loops of fabric that hang down from the neck, with a knot in the center.", + "A bow tie is a type of necktie with two loops of fabric that are tied together at the center of the neck.", + "A bow tie has two ends of fabric that extend from the center of the tie and are tied together in a small bow.", + "A bow tie is a type of necktie with two loops of fabric that are tied together at the middle of the neck.", + "A bow tie is a ribbon of fabric worn around the neck and tied in a bow.", + "A bow tie is a type of necktie that is tied in a bow.", + "A bow tie is a type of necktie that is tied in a bow shape.", + "A bow tie can be identified by its shape, which is typically a wide band of fabric that wraps around the neck and ties in the front.", + "A bow tie has two pieces of fabric that are tied together in a bow shape.", + "A bow tie has two loops of fabric that are attached at the center and tied around the neck.", + "A bow tie is a type of necktie with two loops of fabric that are tied together in the middle with a knot.", + "A bow tie is a ribbon of fabric that is tied around the neck in a bow.", + "A bow tie is a strip of fabric, typically about 2 inches wide and 4 inches long, that is tied around the collar of a shirt in a bow.", + "A bow tie is a type of necktie that is worn by men.", + "A bow tie is a necktie with the ends tied together in a bow.", + "A bow tie looks like a tie that is tied in a bow.", + "A bow tie is a type of necktie that is tied in a bow around the neck.", + "A bow tie is a type of necktie that is tied in a bow.", + "A bow tie is a band of fabric worn around the neck and tied in a knot at the front.", + "A bow tie is a type of necktie with two loops of fabric that are tied together in the middle.", + "A bow tie is a type of necktie that is tied in a bow around the neck.", + "The image is of a black bow tie with white dots.", + "This image is of a bow tie that is made out of a blue and white striped fabric.", + "Pictured is a bow tie with a white background.", + "The image shows a bow tie that is made out of a material that looks like silk.", + "The image is of a light blue bow tie with white polka dots.", + "A black and white bow tie with a checkered print.", + "A bow tie is a small strip of fabric that is tied around the neck in a loop.", + "The image is of a blue bow tie with white polka dots.", + "The image is of a dark blue bow tie with white spots.", + "How to tie a bow tie.", + "A bow tie is a type of necktie that is tied using a simple looping method.", + "How to Tie a Bow Tie.", + "A close-up of a black and white polka-dotted bow tie.", + "This bow tie is perfect for any formal occasion!.", + "A blue bow tie on a white shirt.", + "A bow tie is a necktie with two loops that are tied together at the front of the neck.", + "A bow tie is a type of necktie that is tied using a looped piece of fabric that resembles a bow.", + "A black bow tie on a white collared shirt.", + "Gentleman's fashion accessory." + ], + "brass memorial plaque": [ + "A brass memorial plaque is a polished, engraved plaque mounted on a wall or other surface in memory of a person or event.", + "A brass memorial plaque looks like a plaque that is made out of brass.", + "A brass memorial plaque is a flat piece of brass with text engraved on it.", + "A brass memorial plaque is a small, thin plaque made of brass.", + "A brass memorial plaque is a small, thin plaque made of brass.", + "A brass memorial plaque is a polished brass plate with engravings.", + "A brass memorial plaque is a small, metal plate that is inscribed with the name of a person who has died.", + "A brass memorial plaque is typically a circular or rectangular piece of metal with words or symbols inscribed on it.", + "A brass memorial plaque looks like a small, rectangular piece of brass with text engraved on it.", + "A brass memorial plaque usually has a glossy finish and is engraved with lettering.", + "There are a few ways to identify a brass memorial plaque.", + "Some ways you can identify a brass memorial plaque is by its color, as brass is a yellow-colored metal.", + "Brass memorial plaques are usually made of polished brass and have a smooth surface.", + " Typically, brass memorial plaques will have a textured or polished finish and feature engraved lettering.", + "The easiest way to identify a brass memorial plaque is by its color.", + "A brass memorial plaque can be identified by its brass color and smooth surface.", + "A brass memorial plaque is often made of polished brass, which has a bright gold color.", + "Some brass memorial plaques have a clear lacquer coating that can yellow or discolor over time.", + "There are a few ways to identify a brass memorial plaque.", + "A brass memorial plaque is a plaque that is made of brass.", + "There is no one definitive answer to this question.", + "A brass memorial plaque generally has a matte or polished finish, and can be either round or rectangular in shape.", + "A brass memorial plaque is typically a metal plate with an inscription on it.", + "A brass memorial plaque looks like a plaque that is made of brass.", + "There is no one definitive answer to this question, but brass memorial plates or plaques are often fairly small, and usually display some sort of inscription or design.", + "A brass memorial plaque looks like a polished brass plate with engravings on it.", + "A brass memorial plaque generally has a matte or brushed finish, and may be engraved with text and/or images.", + "A brass memorial plaque can be any size or shape, but is typically a rectangle or oval.", + "A typical brass memorial plaque looks like a polished brass rectangle with beveled edges.", + "A brass memorial plaque typically has a gold or yellowish color and is engraved with the name of the person being remembered, the dates of their birth and death, and perhaps a brief message or quotation.", + "This image is of a circular brass memorial plaque.", + "This is a brass memorial plaque that is dedicated to the victims of the September 11th terrorist attacks.", + "The plaque is made of brass and is in the shape of a rectangle.", + "This image is of a small, brass plaque that has been placed on a wall.", + "This image is of a brass memorial plaque that has been placed on a wall.", + "This image is of a polished brass memorial plaque.", + "A brass memorial plaque is a flat, polished piece of brass with an inscription on it.", + "This brass memorial plaque is in memory of the victims of the September 11th attacks.", + "The brass memorial plaque is round with a border of laurel leaves.", + "A brass memorial plaque is an image of aplate with textured letters carved into it.", + " in memory ofThis brass memorial plaque is in memory of those who lost their lives in the battle of Gettysburg.", + "In Loving MemoryofJohn Smith1923-2001.", + "World War IIn memory of the brave men ofOur Lady of Victory ParishWho gave their lives for their country.", + "In memory ofJohn Doe1924-2013.", + "In memory of those who lost their lives in the line of dutyThis plaque is dedicated to the brave men and women who have lost their lives while serving in the line of duty.", + "In Memory ofThose Who Lost Their Livesin theSeptember 11, 2001Terrorist Attacks.", + "In memory ofSgt.", + "In MemoriamLt.", + "In Loving MemoryofOur Beloved ParentsJohn and Jane Doe.", + "\"In loving memory of our parents, grandparents, and great-grandparents who have passed away\"." + ], + "bra": [ + "A brassiere, or bra, is an undergarment designed to support a woman's breasts.", + "A bra is typically a woman's undergarment that is designed to support her breasts.", + "A bra looks like an article of clothing that is meant to support a woman's breasts.", + "A bra typically has two cups that cover the breasts and straps that go over the shoulders and around the back.", + "A bra is a garment that covers the breasts and supports them.", + "A bra is typically a two-piece garment consisting of a brassiere and matching panties.", + "A bra typically has two cups that cover the breasts and fasten in the back.", + "A bra is a garment that covers the breasts and supports them.", + "A bra is a typically feminine undergarment that is designed to support a woman's breasts.", + "A bra is an undergarment that covers a woman's breasts.", + "There are a few ways to identify a bra.", + "The most common ways to identify a bra are by the straps, cup size, and band size.", + "There are many ways to identify a bra.", + "A bra is identified by its size, which is typically indicated by a number and a letter.", + "A bra is typically identified by its cup size and band size.", + "Bras typically have cups that support and cover the breasts, straps that go over the shoulders, and a back band that fastens around the body.", + "A bra is typically composed of two cups, straps, and a band.", + "A bra can typically be identified by its cups, straps, and band.", + "There are a few ways to identify a bra.", + "A bra typically has two cups for the breasts, straps that go over the shoulders, and a band that goes under the breasts and around the back.", + "A bra is typically a piece of clothing that is worn by women in order to support their breasts.", + "A bra typically has two cups that cover the breasts and straps that go over the shoulders.", + "A bra typically has two cups that cover the breasts and straps that go over the shoulders and around the back.", + "A bra is usually a two-piece garment that consists of a cup to support the breast and a band that goes around the body.", + "A bra typically consists of two cups for the breasts, a band that goes under the breasts, and straps that go over the shoulders.", + "There is no definitive answer to this question as there are many different types and styles of bras available on the market.", + "A bra looks like a garment that is worn by a woman.", + "A bra typically has two cups that cover the breasts and straps that go over the shoulders and fasten in the back.", + "A bra is a garment that is worn by women to support their breasts.", + "A bra is a two-piece garment that covers a woman's breasts and supports them.", + "ided hairstyleAn image from the internet of a braided hairstyle shows a person with long, flowing hair that has been intricately braided.", + "The image is of a white bra with a lace trim.", + "A bra is a undergarment that is worn by women to support their breasts.", + "This image is of a black bra with straps that cross in the back.", + "The image is of a black bra with lacy straps.", + "This image shows a close-up of a black bra with lace trim.", + "A black and white image of a woman in a lacy black bra.", + "ided hairstyleImage is of a black woman with shoulder length hair in a braided hairstyle.", + "An image of a bra from the internet is typically a photograph or digital image of a woman wearing a bra.", + "The image is of a white bra with laces on the cups.", + "Lace balconette bra with underwire.", + "A woman's white bra.", + "A black bra with lace detailing.", + " Beautiful white lacy bra.", + " A purple bra lying on a white bedspread.", + " This black lace bra has a underwire to support the breasts and adjustable straps.", + "This is a white bra.", + "Just because you wear a bra, doesn't mean you're a lady.", + " A woman's strapless bra.", + "This is a black bra." + ], + "breakwater": [ + "A breakwater is a wall built out into the water to protect a harbour or beach from the waves.", + "A breakwater is a structure built to protect a shoreline, harbor, or anchorage from waves.", + "A breakwater is a structure built out from the shoreline to protect a harbor or anchorage from the force of waves.", + "A breakwater is a barrier that preserves a water body from waves.", + "A breakwater is a wall built out into the water to protect a harbor or shoreline from waves.", + "A breakwater is typically a man-made structure that is built out into a body of water in order to protect the shoreline from the effects of waves and storms.", + "A breakwater is a structure built out into a body of water to protect an anchorage or marina from waves.", + "A breakwater is a wall built out into the water to protect against waves.", + "A breakwater is typically a long, narrow structure built out from the shore to protect a harbor, anchorage, or marina from the effects of waves and currents.", + "A breakwater is usually a long, raised bank of stone or concrete that is built out into the water to protect a harbor, beach, or other shore area from waves.", + "A breakwater is a low, tapered wall that is built to protect a shoreline or harbor from the effects of waves.", + "A breakwater is a man-made structure built to protect a harbor, coastline, or riverbank from the effects of waves.", + " breakwater is a slope built to protect a harbor or coastal area from waves.", + "A breakwater is a structure placed near the shoreline to protect against the waves and the currents.", + "You can identify a breakwater by its V-shaped structure.", + "A breakwater is narrow and low, and is built out into the sea to protect the coastline from waves.", + "A breakwater is a structure built to protect a harbor, coastline, or riverbank from the effects of waves.", + "A breakwater is a structure placed on a shoreline to protect the area behind it from waves.", + "A breakwater is a concrete, stone, or rubble wall built to protect a shoreline, harbor, or anchorage from the effects of waves.", + "A breakwater is a sloped structure that extends into a body of water and protects a coastline from the force of waves.", + "A breakwater is typically a long, narrow structure made of stone or concrete that extends out into the water from the shore.", + "A breakwater is a wall that is built out into the water to protect against waves.", + "A breakwater looks like a barrier between the land and the water.", + "A breakwater is a structure built on coasts to protect against waves.", + "A breakwater typically consists of a pile or wall of stone, made from natural materials or concrete, placed perpendicular to the shoreline.", + "A breakwater is a wall built to protect a coastline from the waves.", + "A breakwater is a wall built to protect a shoreline, harbor, or anchorage from the effects of waves.", + "A breakwater looks like a long, low dam that is built out into the water.", + "A breakwater is a wall or other structure that is built to protect the shore from the waves.", + "A breakwater is a structure designed to protect a harbor, anchorage, or basin from the effects of waves.", + "A breakwater is a barrier built to protect a shoreline, harbor, or anchorage from waves or storm surge.", + "A breakwater is a wall or other structure built to protect a coastline, harbor, or anchorage from the effects of waves.", + "A breakwater is a structure built to protect a coastline from the waves.", + "A breakwater is a structure built on the coast to protect against the waves.", + "The frame of the breakwater is made of steel piles that are driven into the bottom of the harbor.", + "A breakwater is a structure built to protect a shoreline from the effects of waves.", + "An image of a breakwater from the internet shows a large, man-made structure made of concrete, rocks, and other materials, placed in the water to protect a coastline from erosion and wave damage.", + "A breakwater is a structure built on an offshore reef or along a shoreline to protect a harbor, anchorage, or marina from the effects of waves and wind.", + "The image is of a breakwater with a light on it.", + "I found an image of a breakwater on Google Images.", + "Breakwater in the mist.", + "The breakwater extends into the distance, protecting the shore from the waves.", + "A breakwater keeps the waves from crashing into the shore.", + "A breakwater is a structure built to protect a harbor, coastline, or anchorage from the effects of waves.", + "This breakwater protects the shore from the strong waves of the ocean.", + "A breakwater is a wall built to protect a coastline from the waves.", + "A breakwater is a structure built to protect a shoreline, harbor, or anchorage from the effects of waves.", + "This breakwater protects the harbor from high waves.", + "A breakwater is a type of coastal defense structure that is constructed to protect against the effects of waves.", + "\nThis is a breakwater, which is a structures built to protect against waves." + ], + "breastplate": [ + "A breastplate is a large metal plate that covers the chest.", + "A breastplate is a large, stiff piece of armor that covers the chest and back.", + "A breastplate covers the chest and stomach and is usually made of metal or leather.", + "A breastplate is a piece of armor that covers the chest and part of the abdomen.", + "A breastplate is a type of armor that covers the chest and torso.", + "A breastplate is a piece of armor that protects the chest.", + "A breastplate is a plate of armor that covers the chest.", + "A breastplate is a piece of armor that covers the chest and often the stomach.", + "A breastplate is a piece of armor that covers the chest and protects the wearer from attacks.", + "A breastplate is a armor that covers the chest and protects the wearer from arrows and other weapons.", + "A breastplate is a large, thick piece of armor that covers the chest.", + "It is typically made of leather or metal and covers the chest.", + "A breastplate is a garment that covers the chest.", + "The breastplate is a leather or metal plate that covers the chest and is held in place by straps over the shoulders.", + "A breastplate is a piece of armor that was worn by knights and soldiers to protect their chest and stomach.", + "There is no definitive answer to this question, as there is no one specific type or style of breastplate that is universally recognized as such.", + "By its shape, a breastplate is typically narrow at the bottom and flared at the top.", + "A breastplate is typically a piece of armor that covers the chest.", + "A breastplate can typically be identified by its large size and concave shape, which is designed to protect the chest.", + "A breastplate is a large piece of armor that covers the chest.", + "A breastplate is a protective armor that covers the chest.", + "A breastplate is a piece of armor that covers the chest and torso.", + "A breastplate is a piece of armor worn over the chest.", + "A breastplate is a piece of armor that covers the chest and stomach.", + "The breastplate was a large, rectangular piece of armor that covered the chest and stomach.", + "A breastplate is a piece of armor that covers the chest.", + "A breastplate is a piece of armor that covers the chest.", + "A breastplate looks like a large, flat piece of metal that covers the chest.", + "In ancient armor, a breastplate was a distinctive piece of armor worn over the chest.", + "A breastplate is a piece of armor worn over the chest to protect the wearer.", + "The image is a breastplate made of metal, with a design of a lion in the center.", + "A breastplate is a piece of armor that covers the chest.", + "The breastplate is a piece of armor that covers the chest and is often combined with a backplate to complete the set.", + "The image is of a gray metal breastplate with a large green gem in the center.", + "A breastplate is a piece of armor that covers the chest.", + "This breastplate is made of black leather with intricate silver designs.", + "An image of a breastplate from the Internet shows a metal plate that covers the chest and is held in place by straps over the shoulders.", + "This breastplate is made of metal and has a raised, ridged design.", + "The image is of a breastplate that is made of metal and has a design of a phoenix on the front.", + "A breastplate is a type of armor that covers the torso.", + "Close up of an ancient Roman breastplate with intricate engravings on the metal surface.", + "A bronze breastplate from ancient Greece.", + "\"A fantasy breastplate, combining elements of several different cultures.", + "A breastplate is a plate of armor that covers the chest.", + "A breastplate is a piece of armor that covers the chest and is often used in conjunction with a helmet.", + "An ancient breastplate made of solid gold.", + "A breastplate is a piece of armor that covers the chest.", + "This is a breastplate that was used by a soldier in ancient Greece.", + "A metal breastplate with intricate designs.", + " A ceremonial breastplate with intricate beading, shells, and feathers." + ], + "broom": [ + "A broom is a long-handled tool with a brush at one end, used for sweeping floors and cleaning surfaces.", + "A broom has a long, straight handle with a bristly head attached to one end.", + "A broom is a tool that is used to sweep up dirt, dust, and debris.", + "A broom is a hand-held tool that is used to sweep floors.", + "A broom is a cleaning tool that consists of a long handle with bristles at the end.", + "A broom is a tool for sweeping floors.", + "A broom typically has a long handle made of wood or plastic, with a brush head made of stiff bristles.", + "A broom typically has a long handle with a brush at one end.", + "A broom is a household tool used for sweeping.", + "A broom typically has a long handle made of wood or plastic, with stiff bristles attached to the end.", + "A broom can be identified by its long handle and bristles.", + "Brooms are commonly made out of straw or twigs.", + "A broom is a household cleaning tool consisting of stiff bristles attached to a long handle.", + "The most common type of broom has a long handle with a round head.", + "A broom is a household tool with a long handle and bristles at one end.", + "A broom can typically be identified by its long handle and bristles.", + "A broom has stiff bristles that are attached to a long handle.", + "By looking at it.", + "A broom is a household tool consisting of stiff bristles attached to a long handle.", + "A broom can be identified by its long handle and bristles.", + "A broom is a household tool consisting of a handle attached to a bundle of stiff straws or bristles.", + "A broom is a household cleaning tool that consists of a long handle with bristles at one end.", + "A broom typically has a long handle and is bristled on one end.", + "A broom typically has a long handle and is made of straw or bristles.", + "A broom typically has a long handle with bristles attached to the end.", + "A broom typically has a long handle and a brush head made of stiff bristles.", + "A broom consists of a handle connected to a brush.", + "A broom generally has a long handle with a brush attached to one end.", + "A broom is a household tool consisting of stiff bristles attached to a long handle.", + "A broom is a long-handled tool with bristles or a brush at the end, used for sweeping floors or surfaces.", + "The image is of a traditional straw broom.", + "An image of a broom from the internet would likely show a traditional straw or bristled broom, often used for sweeping floors.", + "An image from the internet of a broom may show a traditional straw broom with a wooden handle, or it may show a modern broom made of synthetic materials.", + "This image is of a traditional straw broom.", + "The image is of a traditional straw broom with a long handle.", + "The image is of a brownish broom with straw poking out from the bristles.", + "A standard wooden broom with bristles sticking out at the end.", + "The handle of the broom is made of wood, and the bristles are made of straw.", + "An image of a broom from the internet is a picture of a household cleaning tool.", + "A broom is a tool used for sweeping floors.", + "A broom and dustpan lie on a tiled floor next to a pile of dirt.", + "A broom that is used for sweeping.", + "A woman holds a broom in her hand as she looks at the camera.", + "A broom hanging on a wall.", + "Broom Stick.", + "Broom.", + " A broom and dustpan for sweeping up around the house.", + "Broom.", + "BroomA broom is a tool consisting of stiff bristles attached to a handle, used for sweeping floors.", + "A broom resting against a wall." + ], + "bucket": [ + "A bucket can be any container, but is often a cylindrical shaped container with a handle.", + "A wooden bucket has a round shape and is usually used to carry water or milk.", + "A bucket is a container with a round or oval bottom and a handle.", + "A bucket is typically a round, cylindrical container with a handle.", + "A bucket is usually a cylindrical container with a handle that is used for carrying water or other liquids.", + "A bucket is a container with a handle that is used for carrying water or other liquids.", + "A bucket is a container with a handle.", + "A bucket is a cylindrical container with a handle, typically made of metal, plastic, or wood, for carrying liquids or other objects.", + "A bucket is a cylindrical container with a handle.", + "There is no definitive answer to this question as buckets come in many different shapes and sizes.", + "It is a container with a flat bottom and a cylindrical shape.", + "A bucket is a container with a handle that is used to hold and carry things.", + "Buckets can be identified by their round shape and handle.", + "A bucket is often made with a handle attached to the side, and is used for carrying water or other liquids.", + "The simplest way to identify a bucket is by its round and deep shape.", + "A bucket is often made of plastic, metal or wood.", + "A bucket has a handle and a spout.", + "A bucket can be identified by its handle.", + "A bucket is a container with a handle that is used to hold and carry liquids or other things.", + "A bucket can be identified by its shape, which is typically round or oval, and by its handle.", + "From Google Images: A bucket is a container with a handle and a spout.", + "A bucket typically has a round or oval shape and is made of metal, plastic, or wood.", + "A bucket is typically a rounded, cylindrical container with a handle attached to the side.", + "A bucket appears as a cylindrical container with a handle attached to the top.", + "A bucket is typically a round or oval container with a handle.", + "A bucket typically is a cylindrical container with a handle attached to the side.", + "A bucket is a container with a handle and a spout for pouring.", + "A bucket typically has a round or oval shape and is made of plastic, metal, or wood.", + "A bucket typically has a round or oval shape and is made of metal, plastic, or wood.", + "A bucket is a container with a handle and an open top.", + " full of waterThere is a clear plastic bucket on a green and brown striped towel.", + "A bucket is typically a cylindrical container with a handle that is used for carrying water or other liquids.", + " of waterThe image is of a blue plastic bucket filled to the brim with water.", + "I saw an image of a rusty old bucket that was half-full of water.", + " list itemOne image from the internet of a bucket list item is of a person skydiving.", + "The image from the internet is of a white plastic bucket.", + " of colorful crayonsThe image is of a rectangular metal bucket filled with an array of colorful crayons.", + "The image is of a yellow bucket with a green handle.", + " An image from the internet of a bucket shows a metal bucket with a handle.", + " of ice creamThe image is of a red bucket with a white handle and lid.", + " \"A bucket of water\".", + "A blue bucket with a handle.", + "A bucket full of dirty water.", + "A bucket full of water.", + "Bucket of water.", + "A bucket.", + "A bucket that is half-filled with water.", + " A bucket full of water.", + " A bucket filled with water.", + "A bucket full of water." + ], + "buckle": [ + "A buckle looks like a clasp or a fastener.", + "A buckle is a fastener for a belt or strap.", + "Most buckles are round or oval and have a prong in the center that goes through a hole in the strap to hold it in place.", + "A buckle looks like a metal ring with a prong on one side and a notch on the other.", + "A buckle looks like a metal or plastic clasp that is used to fasten a belt or strap.", + "A buckle is a fastener for a belt or strap, typically made of metal, with a clasp or other attachment on one end and a hole or pin on the other, generally kept closed by a lever, pushpin, or other mechanism.", + "A buckle is a decorative fastener for a belt or strap, often made of metal or plastic.", + "A typical buckle consists of two loops attached to a frame.", + "A buckle is a device used to fasten two ends, of a belt or a strap, together.", + "A buckle is a fastener for a belt or strap.", + "A buckle is often a rectangular or oval shape with a prong on one end.", + "A buckle is a metal or plastic fastener used to join the ends of a belt or strap.", + "Frequently, a buckle consists of a frame, within which is a ratchet, to which a prong is attached.", + "If you need to identify a buckle, look for any distinguishing features that may help you identify the buckle.", + "You can identify a buckle by its shape.", + "Most buckles have a raised rectangular or oval center piece with a prong on each end.", + "A buckle is a fastening device for holding loose ends together.", + "A buckle is usually a metal or plastic ring that holds two ends of a belt together.", + "A buckle has a rectangular or oval shape and is made of metal or plastic.", + "A buckle is a fastener for a belt or strap.", + "A buckle is a device used to fasten two pieces of material together.", + "A buckle is a fastener, typically made of metal, that holds two pieces of fabric together.", + "A buckle is a piece of hardware typically used to fasten two ends of a strap or belt.", + "A belt buckle is a fastening device for belts, robes, and other items of clothing.", + "A buckle looks like a clamp that is used to fasten two things together.", + "Buckles look like metal or plastic pieces that attach to a belt or strap.", + "A buckle is a circular or oval metal frame with a prong or hook on one end.", + "A buckle can be a metal or plastic frame with a prong or hook on one end and a bar on the other end.", + "A buckleis a fastener for a belt or strap, typically made of metal with a toothed rim, or a combination of metal and leather, and used either for holding together the ends of a belt or strap, or for joining.", + "At its simplest, a buckle is a clasp for fastening two ends, either of a belt or a strap.", + "The image is of a golden buckle with a jewelled centrepiece.", + "This image is of a metal buckle with a design etched into it.", + "This image is of a brown leather belt with a rectangular silver buckle.", + "A brown leather belt with a rectangular silver buckle.", + "This image shows a black metal buckle with a filigree design.", + "The image is of a black and silver belt buckle.", + "This image is of a silver buckle with a floral design.", + "The image is of a brown leather belt with a silver buckle.", + "The image is of a silver buckle with a intricate design.", + "This image is of a black belt with a silver buckle.", + "Silver buckle with Celtic design.", + "This buckle was made in the early 1800s.", + " The Late Roman belt buckle from the Vindonissa Museum in Windisch, Switzerland.", + "BRASS BUCKLE, AMERICAN, 18TH CENTURY.", + "Black leather belt with silver buckle.", + " Antique Brass Belt Buckle.", + "A silver buckle with a dragon motif.", + "Vintage Western Belt Buckle.", + "Gold buckle with pearl accents.", + "Silver and turquoise buckle, Navajo, c." + ], + "bulletproof vest": [ + "A bulletproof vest is typically a piece of personal body armor that is worn on the torso.", + "A bulletproof vest typically consists of a panel made of a strong yet flexible material such as kevlar.", + "A bulletproof vest is a piece of protective clothing that covers the torso and sometimes the arms or legs.", + "A bulletproof vest typically looks like a vest made of Kevlar or other bullet-resistant material that is worn over the torso.", + "A bulletproof vest looks like a Kevlar vest.", + "A bulletproof vest is a garment that is worn over the torso to protect the body from bullets.", + "A bulletproof vest looks like a piece of clothing that a person can wear over their regular clothes.", + "A bulletproof vest typically consists of a heavy-duty outer shell made from Kevlar or a similar material, and a protective inner lining.", + "A bulletproof vest is a garment that is worn over the torso to protect the body from small arms fire.", + "A bulletproof vest typically looks like a leather or Kevlar vest that covers the torso.", + "A bulletproof vest is a vest made of Kevlar or other bullet-resistant material that is worn to protect the body from bullets.", + "A bulletproof vest is usually made of a strong, stretched fabric such as Kevlar.", + "rare metal fibers.", + "A bulletproof vest is typically a heavy piece of clothing that covers the torso and has straps that go over the shoulders.", + "As of 2014, there is no such thing as a \"bulletproof\" vest.", + "A bulletproof vest may have a label that says \"bulletproof\" or \"body armor.", + "A bulletproof vest is typically made from a strong, flexible material such as Kevlar or Spectra.", + "A bulletproof vest is a type of body armor that provides protection against bullets and other projectiles.", + "The best way to identify a bulletproof vest is to look for the National Institute of Justice (NIJ) certification label.", + "A bulletproof vest is usually made of Kevlar or other ballistic fibers and can usually be identified by its heavy, bulky construction.", + "There are many types of bulletproof vests, but most look like a regular shirt or vest.", + "A bulletproof vest looks like a vest made of Kevlar or other strong material that is designed to stop bullets from penetrating it.", + "A bulletproof vest typically looks like a Kevlar vest.", + "A bulletproof vest looks like a normal vest that has been made out of Kevlar or another type of bulletproof material.", + "A bulletproof vest looks like a shirt or a vest that has been lined with Kevlar or another type of bulletproof material.", + "A bulletproof vest looks like a regular vest, except it is made of kevlar or another type of bullet-resistant material.", + "A bulletproof vest consists of two parts: the inner layer, which is typically made of Kevlar, and the outer layer, which is typically made of ballistic nylon.", + "There is no one \"look\" for a bulletproof vest.", + "A bulletproof vest is a garment that is worn over the torso that is designed to protect the wearer from bullets.", + "A bulletproof vest is a piece of body armor that is designed to protect the wearer from being shot by a gun.", + "The image is of a black bulletproof vest with a silver zipper down the front.", + "One image from the internet of a bulletproof vest features a black vest with a large silver badge in the center.", + "A bulletproof vest is typically a piece of body armor that covers the torso and is intended to protect the wearer from bullets.", + "The image is of a black bulletproof vest with a silver zipper down the middle.", + "This image is of a black bulletproof vest with a white symbol in the center.", + "The image is of a black bulletproof vest lying on a concrete floor.", + "The image is of a bulletproof vest.", + "In the image, a person is wearing a black bulletproof vest over a long-sleeved shirt.", + "The image is of a black bulletproof vest with a silver emblem on the left side.", + "An image of a bulletproof vest from the internet shows a black vest with a silver plate in the center.", + "A bulletproof vest helps to protect the wearer from being shot by bullets.", + "A bulletproof vest is a personal protective garment that is designed to absorb and deflect bullets.", + " Wearing a bulletproof vest can help to protect the body from being hit by bullets.", + "The vest consists of a panel made of strong fibers that helps to absorb and distribute the impact of bullets.", + "This bulletproof vest is made of Kevlar and can stop a 9mm bullet.", + "This is a bulletproof vest.", + "Personal Body Armor.", + "A bulletproof vest protects the wearer's torso from being hit by bullets.", + "A bulletproof vest protects the wearer's torso from gunshots.", + "A bulletproof vest helps protect the wearer's body from being shot by a gun." + ], + "high-speed train": [ + "A high-speed train is a train that runs at speeds of 250 kilometers per hour (155 miles per hour) or higher.", + "A high-speed train looks like a regular train, but it is much faster.", + "A high-speed train is a sleek, modern looking train that can travel at very high speeds.", + "A high speed train looks like a large, sleek, modern train that can travel at very high speeds.", + "A high-speed train is a train that is designed to travel at high speeds on dedicated tracks.", + "A high-speed train is a train that is designed to travel at high speeds on rails.", + "A high-speed train is a train that can travel at very high speeds, usually over 200 km/h (120 mph).", + "A high-speed train looks like a regular train, but it is much faster.", + "A high-speed train looks like a large, comfortable passenger train that can travel very fast.", + "A high-speed train typically has a sleek, aerodynamic design and can reach top speeds of 300 kilometers per hour (186 miles per hour) or more.", + "A high-speed train can be identified by its sleek design, aerodynamic shape, and large wheels.", + "A high-speed train typically has a greater number of cars than a regular train and travels at a higher speed.", + "By its speed.", + "A high-speed train can be identified by its sleek design and its large windows.", + "A high-speed train can be identified by its sleek design and large windows.", + "A high-speed train can be identified by its sleek design, wide windows, and large wheels.", + "A high-speed train can be identified by its sleek design and aerodynamic shape.", + "High-speed trains often have special names, such as the Acela Express or the bullet train.", + "A high-speed train can be identified by its sleek design and aerodynamic shape.", + "The easiest way to identify a high-speed train is by its characteristics, such as its speed, efficiency, and comfort.", + "A high-speed train looks like a regular train, but it is much faster.", + "A high-speed train looks like a significantly larger and sleeker version of a regular train.", + "The appearance of high-speed trains can vary, but they are typically sleek and aerodynamic, with a pointed nose.", + "A high-speed train usually has a sleek, aerodynamic design.", + "There is not one specific look to a high-speed train, as they come in many different shapes and sizes.", + "A high-speed train generally looks like a traditional train, except that it is sleeker and more aerodynamic.", + "This is a high-speed train: This particular train is the French TGV (Train \u00e0 Grande Vitesse).", + "This is a high-speed train: High-speed trains typically have a sleek, aerodynamic design and can reach speeds of over 200 miles per hour.", + "The most obvious difference between a high-speed train and a regular train is the tracks.", + "A high-speed train is typically a sleek, aerodynamic train designed for speed.", + "A high-speed train is a train that is capable of travelling at high speeds.", + "The image is of a high-speed train travelling at high speed along a railway track.", + "This image is of a high-speed train travelling through a countryside.", + "The image is of a high-speed train speeding down a track.", + "This image is of a high-speed train moving at a very fast speed.", + "A high-speed train racing down a track, wind whipping through its windows.", + "The image is of a high-speed train speeding through a tunnel.", + "An image of a high-speed train would show the train speeding down the tracks, with the blur of the scenery around it.", + "A high-speed train roaring down a track, the engine a bright blur as it leaves the station.", + "A high-speed train moving quickly down a track with a blur of brown and green in the background.", + " The future of travelWith high-speed trains becoming increasingly popular, they are likely to become the future of travel.", + "The high-speed train is traveling at 300 kilometers per hour.", + "This is a high-speed train that can travel up to 300 kilometers per hour.", + "The high-speed train leaves the station.", + "A high-speed train passes through the countryside.", + "High-speed rail is a new technology that promises to revolutionize travel by providing faster, more efficient, and more comfortable service than traditional trains.", + "This is a high-speed train that can travel up to 300 kilometers per hour.", + "The high-speed train streaks through the countryside, its sleek design a stark contrast to the rustic surroundings.", + "This is a high-speed train that can reach speeds of up to 300 kilometers per hour.", + "This trains reaches top speeds of up to 400 kilometers per hour!." + ], + "butcher shop": [ + "An old-fashioned butcher shop has sawdust on the floor, white-aproned butchers behind a long display case, and strings of sausages and ham hanging from the ceiling.", + "A butcher shop looks like a small grocery store with a counter in the back where the butcher cuts and wraps the meat.", + "A butcher shop is usually a small, cramped, and smelly place.", + "A butcher shop is typically a small, family-owned business.", + "Inside a typical butcher shop, there is a counter where customers can place orders and pay for meat.", + "A butcher shop usually has a glass counter where the meat is displayed.", + " Butcher shops typically have a glass display case that showcases various meats that are available for purchase.", + "A butcher shop is a store where meat is sold.", + "A butcher shop typically has display cases full of raw meat, a counter where customers can order, and a back area where the meat is prepared.", + "A butcher shop is typically a small shop that sells meat.", + "Most butcher shops have a sign with a picture of a cow or a pig.", + "A butcher shop can usually be identified by its name, which often includes the word \"butcher.", + "If you are in a grocery store, the butcher shop is usually in the back of the store.", + "Butcher shops are often identified by the large windows in the front of the store that display the meat.", + "Usually there will be a sign with a picture of a cow or a pig.", + "You can usually identify a butcher shop by its sign.", + "One way to identify a butcher shop is to look for a hanging sign with a picture of a cow or pig.", + "The best way to identify a butcher shop is by the type of meat they sell.", + "A butcher shop typically has a large display case filled with raw meat products.", + "Butcher shops typically have large windows that display meat products.", + "A typical butcher shop has a counter where the customer places orders.", + "A butcher shop looks like a grocery store with a meat department.", + "The exterior of a typical butcher shop would likely feature a sign with the business's name, as well as a display case or counter where customers can order meat.", + "A butcher shop typically has large windows and bright lights.", + "A butcher shop looks like a store where meat is sold.", + "The exterior of a typical butcher shop is often unassuming, and the interior is usually clean and well-lit.", + "A butcher shop typically contains a counter where customers can purchase meats, and may also have a section for slaughtering and preparing meat.", + "The interior of a butcher shop typically contains a large display case filled with raw meat products.", + "In the United States, a butcher shop is typically a small, independent store that sells meat.", + "A butcher shop typically has a counter where the meat is displayed and a meat case or cooler where the meat is stored.", + "This image is of a traditional butcher shop, with large windows and a white tiled front.", + "The image is of a small, cramped, and dirty butcher shop.", + "The image is of a small, cramped butcher shop.", + "The image is of a small, independent butcher shop.", + "This image from the internet shows a traditional butcher shop, with a counter and glass display case full of different cuts of meat.", + "The image is of a small, family-run butcher shop.", + "One image of a butcher shop shows the interior of a small, old-fashioned butcher shop with a counter and several shelves of meat.", + "The image is of a small, family-run butcher shop.", + "An image from the internet of a butcher shop would show a clean, well-lit store with a counter and display case filled with various cuts of meat.", + "In the image, there is a meat counter with various cuts of meat on display.", + "Browsing the selection at the butcher shop.", + "In the old days, the butcher shop was the center of the community.", + "The old butcher shop on the corner of Main and Elm was a fixture in the small town.", + "A butcher shop in small-town America.", + "The local butcher shop is a great place to get fresh, local meat.", + "You can't beat fresh, local meats!.", + "Freshly cut meats on display at the butcher shop.", + "butcher shop.", + "This image shows the exterior of a butcher shop.", + "This butcher shop is located in the heart of the historic district of Newtown, Connecticut." + ], + "taxicab": [ + "A typical taxi cab is a sedan with a yellow paint job and a taxi light on the roof.", + "A taxicab is typically a four-door sedan with a partition between the front and back seats.", + "A taxicab is a four-door car with a taxi meter in the front.", + "A taxicab is a car that has been modified to be used as a taxi.", + "Ataxicab typically has four doors, two on each side, and a partition between the front and back seats.", + "A taxicab is typically a four-door sedan with room for four passengers.", + "A taxicab generally has four doors, seat five passengers excluding the driver, and has a luggage compartment.", + "A taxicab is generally a four-door sedan with a partition between the front and back seats.", + "A taxicab typically looks like a four-door sedan, although some taxicabs are vans or SUVs.", + ".", + "Most taxicabs are brightly colored, and have a sign on top of the car that indicates that it is a taxicab.", + "A taxicab can typically be identified by its roof-mounted taxi light, which indicates that the vehicle is available for hire.", + "Most taxicabs are painted yellow and have a sign on the roof that says \"Taxi.", + "In the United States, a taxicab is a vehicle for hire with a driver, used by a single passenger or small group of passengers, often for a non-shared ride.", + "A taxicab is typically a vehicle that is marked with a company's logo and can be hailed on the street or ordered by phone.", + "A taxicab is a car with a yellow or green license plate that has a taxi sign on top.", + "Visual cues that may help identify a taxicab include: a roof-mounted fare meter, a lighted taxi sign, and distinctive painted markings.", + "A taxi cab can be identified by its company markings and by its medallion, which is a plate that identifies the taxi cab and is unique to that particular cab.", + "A taxicab is a vehicle that is licensed to transport people to their desired destination for a fee.", + "Typically, taxicabs are yellow or black.", + "A taxicab typically has a sign on the roof that lights up to indicate that it is available for hire.", + "A typical taxicab is a sedan or SUV with a yellow paint job and a taxi light on top.", + "A taxicab is a car that is used to give people rides for a fee.", + "A taxicab typically has a meter on the dashboard that displays the fare, as well as advertisements.", + "A taxicab is typically a four-door sedan with a partition between the front and back seats.", + "Taxicabs vary in appearance around the world, but they usually have a light on top of the car that indicates when they are available to pick up passengers.", + "A typical taxicab is a four-door sedan with a trunk.", + "A taxicab typically looks like a standard four-door sedan with the word \"TAXI\" written on the top.", + "In the United States, a taxicab typically looks like a four-door sedan with a partition between the front and back seats.", + "Taxicabs are usually red or yellow, and have a light on top that indicates whether or not they are available.", + "The image is of a yellow taxi cab driving on a city street.", + "The image is of a yellow taxicab driving down a busy street.", + "An image of a yellow taxicab driving down a busy street in New York City.", + "An image of a taxicab shows a yellow car with a black roof and a taxi sign on top.", + "This image is of a yellow taxicab driving down a city street.", + "It's a picture of a yellow taxicab driving down a city street.", + "This image is of a yellow taxicab driving down a city street.", + "The image is of a yellow taxi cab driving down a busy city street.", + "The image is of a yellow taxicab driving down a city street.", + "The image is of a yellow taxicab on a city street.", + "taxicab in the streets of New York City.", + "A taxi cab in New York City on a rainy day.", + " A yellow taxicab driving in New York City.", + "A taxi in New York City.", + "A taxicab in New York City.", + "Taxi in New York City.", + "A taxi cab in New York City.", + "A yellow taxicab parked in front of a building.", + "\nThe licensed operator of this vehicle is hereby authorized to transport passengers for hire within the five boroughs of the City of New York.", + "The yellow taxicab is one of the most recognizable symbols of New York City." + ], + "cauldron": [ + "A cauldron is a large metal pot that is used to cook food over an open fire.", + "A cauldron is a large pot that is usually made of metal and is used for brewing potions and other magical concoctions.", + "A cauldron is a large metal pot that is used for cooking or brewing.", + "A cauldron is a pot that is used for brewing or simmering.", + "A cauldron is a large metal pot that is used for cooking or brewing.", + "A cauldron is a witches brewing pot.", + "A cauldron is a metal pot that is used for cooking over an open fire.", + "A cauldron is a large metal pot that is used for cooking or brewing.", + "A cauldron is a large pot that is used for cooking or brewing.", + "A cauldron is a large metal pot that is used for boiling liquids.", + "A cauldron is a large pot that is used for boiling water or other liquids.", + "A cauldron is a large pot that is used for cooking or brewing.", + "The easiest way to identify a cauldron is to look for the three legs that it rests on.", + "A cauldron is a large pot with a handle that is used for cooking or boiling liquids.", + "Stirring a cauldron with a wooden spoon is a common way to identify one.", + "What do you mean by \"identify a cauldron\"?.", + "A cauldron can be identified by its three legs and round shape.", + "A cauldron is a three-legged iron pot that is used for boiling water or other liquids.", + "A cauldron can be identified by its three legs and round shape.", + "A cauldron is a circular metal pot that is used for boiling liquids.", + "A cauldron is a large pot that is used for cooking.", + "A cauldron is a large pot that is often used for cooking or brewing.", + "Most cauldrons have a round body with a domed top and three short legs.", + "A cauldron is a black, cast-iron pot that is often used in witchcraft.", + "A cauldron is a large pot with a curved bottom that is used for brewing.", + "A cauldron traditionally looks like a large metal pot that is hung over a fire.", + "A cauldron is a large pot that is used for boiling liquids.", + "A cauldron is a large metal pot that is used for boiling water or other liquids.", + "A cauldron is typically a large, metal pot that is used for boiling liquids.", + "The most common image of a cauldron is a large metal pot with a handle, often with a heavy lid, used for boiling.", + "The image is of a black cauldron with green flames coming out of it.", + "The image is of a black cauldron with green flames coming out of it.", + "The image is of a black cauldron with a green liquid inside.", + "There is an image of a cauldron on the internet that is bubbling and boiling.", + "The photo shows a black cauldron with orange flames leaping out of it.", + "The image is of a black cauldron with green flames coming out of it.", + "In the image, there is a black cauldron with green flames coming out of it.", + "This image is of a black cauldron with orange flames coming out of it.", + "The image from the internet is of a black cauldron with a green flame coming out of it.", + "This image shows a black cauldron with bright green flames coming out of it.", + "The cauldron is on the stove, waiting to be used.", + "Good Witch's Cauldron.", + "Cauldron of bubbling potion.", + "Two Hands Stirring a Cauldron of Magicka.", + "A witch's cauldron, stirred with a long wooden spoon.", + "A cauldron of boiling water on a wood stove.", + "A cauldron of hot water, perfect for making a nice cup of tea.", + "Inside this cauldron, a witches' brew is bubbling and foaming.", + "A cauldron of fresh green herbs waits to be used in a potion.", + "A cauldron of black liquid boils over an open fire, filling the air with an acrid smell." + ], + "candle": [ + "A candle is a thin rod of wax with a wick running through its center.", + "A candle is long and thin with a wick in the middle.", + "A candle is a small stick of wax with a wick in the center.", + "A candle is a Stick with a hard casing around it.", + "A candle is a thin rod of wax with a wick running through the center.", + "A candle is a cylindrical object that is typically made of wax.", + "A candle typically has a cylindrical shape with a wick sticking out of the top.", + "Most candles are cylindrical, and come in many different colors and sizes.", + "The typical Western candle is a cylinder of solid wax with an embedded wick.", + "A candle is a thin, cylindrical piece of wax with a wick in the center.", + "The easiest way to identify a candle is to look at the wick.", + "A candle is a thin piece of wax with a wick in the center.", + "There are a few ways to identify a candle.", + "A candle is typically identified by its flame, which is composed of a thin outer layer of glowing gas supported by a thicker inner layer of liquid wax.", + "A candle is a thin cylinder of wax with a wick sticking out of the top.", + "A candle is usually a thin cylinder of wax with a wick in the center.", + "The best way to identify a candle is by its scent.", + "A candle is an object that has a wick and is used to produce light.", + "You can identify a candle by its flame.", + "A candle is a thin shaft of wax with a wick running through the center.", + "A candle is often cylindrical and tapers to a point at the top, where the wick is located.", + "A candle is a slender, cylindrical block of wax with a wick in the center.", + "A candle is a stick of wax with a wick in the middle.", + "Most candles are cylindrical, with a flat top or a rounded top.", + "A candle is a thin, cylindrical piece of wax with a wick in the center.", + "A candle is a cylindrical object that is typically made of wax.", + "A candle typically has a wick that sticks up out of a pool of wax.", + "A candle looks like a stick with a wick sticking out of the top.", + "A candle is generally a cylindrical shaped object that is solid at the bottom and has a wick sticking out of the top.", + "Most candles are cylindrical, meaning they are circular in cross-section with a flat top and bottom.", + "An image from the internet of a candle might feature a single candle burning in the dark.", + "This is a picture of a white candle in a glass holder.", + "The image is of a large, white pillar candle.", + "This image is of a white candle with a gold holder.", + "A candle flickering in the darkness, casting a warm and inviting glow.", + "A candle is a cylinder of wax with a wick in the center.", + "An image of a candle on the internet shows a white candle with a black wick.", + "The image from the internet of a candle is of a white candle with a long wick.", + "The image shows a close-up of a white candle with a small flame burning at the wick.", + "The image is of a white candle in a glass holder.", + "A candle burning brightly on a dark night.", + "A candle surrounded by a few burned out matches, sitting on a windowsill.", + "A candle on a brown wooden table with a dark background.", + "\"The Candle of Hope\".", + "This candle is in memory of those who have passed away.", + "\"Even in the darkest of times, we must remember that there is always light.", + "a lit candle on a windowsill.", + " A bright future aheadThis candle is a reminder that there is always hope for a bright future ahead, no matter how dark things may seem in the present.", + "This is a picture of a candle.", + "A candle emits light and heat when burned." + ], + "cannon": [ + "A cannon is usually a big, metal tube that rests on a big wooden platform.", + "A cannon is a large, heavy gun mounted on a carriage.", + "A cannon is a large artillery piece that is mounted on a carriage and has a large bore.", + "The traditional cannon is a large metal tube that is pointed at one end and has a large, flared opening at the other end.", + "A cannon is a large, heavy gun that is mounted on a carriage.", + "A cannon is a large, powerful firearm that is usually mounted on a tripod or wheels.", + "A cannon is a large, cylindrical gun that fires heavy, metal balls.", + "A cannon is a long barrel, typically made of metal, that is attached to a carriage.", + "A cannon is a long metal tube that sits on a platform or wheels.", + "A cannon is a large, powerful gun that is usually mounted on a platform.", + "The weight of the cannonballs that it fired was its identifying characteristic.", + "The most distinctive feature of a cannon is its large bore, or diameter.", + "Cannons are large guns that often sit on wheels.", + "A cannon is a large, muzzle-loaded firearm that is fired from a stationary position.", + "Cannons are usually large, heavy, and have a long barrel.", + "There are a few ways to identify a cannon.", + "The best way to identify a cannon is by its shape.", + "The best way to identify a cannon is by its barrel.", + "There are a few ways to identify a cannon.", + "Cannons can be identified by their large size, their long barrel, and the fact that they are mounted on a carriage.", + "A cannon is a large, rectangular gun with a long barrel.", + "A cannon is a large, heavy gun that is mounted on a carriage.", + "Cannons vary in size and shape, but most are large, cylindrical metal tubes with a flat end.", + "A cannon is a large gun with a long barrel that is mounted on a carriage.", + "There is no one answer to this question as cannons come in many different shapes and sizes.", + "A cannon is a large, cylindrical gun that fires heavy projectiles.", + "A cannon is a large, often decorative gun that was used in the past to fire large projectiles.", + "A cannon typically has a long barrel and is mounted on a carriage.", + "A cannon is a large, tube-shaped gun with a large, round muzzle.", + "A cannon looks like a large metal tube that is mounted on a wheeled carriage.", + "The image is of a gray cannon on a stone platform.", + "A cannon is a large device that is used to shoot a projectile through the air.", + "The image is of a large, ancient-looking cannon.", + "A cannon is a large, heavy piece of artillery that is usually mounted on a fixed location, such as a fort or ship.", + "An image from the internet of a cannon shows a large, cylindrical weapon mounted on a platform or carriage.", + "This image shows a large, antique cannon.", + "Cannons are large, heavy guns that were used in wars in the past.", + "An image of a cannon from the internet depicts a large, metal object with a long barrel.", + "A cannon is a large, heavy gun that fires projectiles, typically cannons.", + "I found an image of a cannon on Pinterest.", + "This cannon was used in the Battle of Gettysburg during the American Civil War.", + "A cannon that was used in the American Civil War.", + "A cannon mounted on a stone wall.", + " A canon from the American Revolutionary War.", + "A cannonball rests in the muzzle of a cannon.", + " A cannon on a battlefield.", + "A replica of a 18th century British cannon.", + "Cannon at Fort Ticonderoga.", + "Cannon on a ship.", + " A large cannon on a battlefield." + ], + "canoe": [ + "A canoe is a long, narrow boat that is paddled by one or more people.", + "A canoe is typically a narrow boat with pointed ends that is propelled with a paddle.", + "A canoe is typically a small, light boat that is paddled with a double-bladed paddle.", + "A canoe is a narrow, open vessel propelled with a paddle or pole.", + "A canoe is a long, narrow, open boat with pointed ends, typically propelled by paddles.", + "A canoe is a small, narrow boat with pointed ends.", + "A canoe is a long, narrow boat that is pointed at both ends and designed to be paddled.", + "A typical canoe is a slender vessel, pointed at both ends and open on top, propelled with a paddle.", + "A canoe is a small, thin boat that is pointed at both ends and is propelled with a paddle.", + "A canoe is a narrow boat with pointed ends that is traditionally paddled with a single-bladed paddle.", + "A canoe is a narrow, open boat with pointed ends, propelled by paddles.", + "A canoe is typically a narrow, lightweight boat designed for use in calm waters.", + "A canoe is typically a narrow, lightweight boat designed for one or two people.", + "A canoe is a boat that is usually pointed at both ends and is narrow and lightweight, so it can be easily carried over land.", + "Canoes are long and narrow boats that are pointed at both ends.", + "A canoe is a small, narrow boat that is much longer than it is wide.", + "One way to identify a canoe is by its long and narrow shape.", + "A canoe is a small, narrow boat that is pointed at both ends and is paddled with a paddle.", + "A canoe is a narrow boat that is pointed at both the front and the back.", + "A canoe is a narrow boat with a pointed end that is typically propelled with a paddle.", + "A canoe is typically a long, narrow vessel with pointed ends.", + "A canoe is a long, narrow boat with pointed ends that is propelled by paddles.", + "A canoe is a long, narrow boat with pointed ends that is typically propelled by paddling.", + "A canoe is typically a long and narrow boat with high sides and a pointed front and back.", + "A canoe is a lightweight boat with sharp ends, typically pointed at the bow and stern, and usually open on top.", + "A canoe looks like a small boat with two parallel benches that people sit on to paddle.", + "A canoe is a long, narrow boat with a pointed bow and stern.", + "A canoe is a slim, long boat with two or more paddlers.", + "A canoe is a small, narrow boat with sharp ends.", + "Canoes can come in many different shapes and sizes, but they are typically long and narrow with pointed ends.", + "The image is of a canoe on a river.", + "The canoe is long and narrow with a pointed end.", + "Canoes are often made from wood, and are long and thin.", + "An image from the internet of a canoe shows a small, narrow boat with pointed ends.", + "There's an image of a canoe on a river with mountains in the background.", + " in waterAn image of a canoe in water would show a small, narrow boat designed for one or two people to paddle.", + "A canoe is a light, narrow boat with pointed ends, typically propelled by paddles.", + " A canoe is a small, narrow boat with a pointed bow and stern, designed to be paddled solo or by two people sitting side by side.", + "The image is of a canoe on a lake with mountains in the background.", + "This image is of a canoe on a lake with mountains in the background.", + "A canoe on a lake in the middle of a forest.", + "Canoe on a riverA canoe is a narrow boat, typically pointed at both ends and open on top, propelled by paddles or push poles.", + "Canoe on a lake in the woods.", + "A canoe on a lake in the middle of a forest.", + "Two people sit in a canoe on a lake surrounded by mountains.", + "Two people in a canoe on a lake.", + "Canoeing on the river.", + "A canoe floating in a river with mountains in the background.", + " A canoe on a lake in the mountainsA caption of an image of a canoe could describe the peacefulness of the scenery, the tranquility of being on the water, or the serenity of the wilderness.", + "A canoe on a calm lake at sunset." + ], + "can opener": [ + "A can opener is a device that is used to open metal cans.", + "A can opener is a small, handheld device with a blade that is used to open metal cans.", + "A can opener looks like a small hand-held device with a sharp blade that is used to open metal cans.", + "A typical can opener is a handheld tool that consists of a small, sharp blade attached to a hinge.", + "legs sticking out of a cylindrical body with serrated teeth on one end and a gear on the other end.", + "A can opener typically has a cylindrical shape with a sharp cutting wheel at one end.", + "A can opener is a device used to open metal cans by cutting through the can's lid.", + "A can opener is a metal device used to open metal cans.", + "A can opener is a device used to open metal cans.", + "A can opener is a handheld tool that is used to open metal cans.", + "The blade on a can opener is serrated and forms a small hole in the lid of the can.", + "A can opener typically has a sharp blade that punctures the top of a can open, and a lever or handle to turn the blade.", + "A can opener is a tool used to open metal cans by cutting through the can's seam.", + "A can opener can often be found in the kitchen drawer, near where the knives are kept.", + "The most common type of can opener is a hand-held opener that has a sharp cutting wheel that punctures the can lid and a serrated wheel that holds the can lid while the cutting wheel moves around the lid.", + "The most common can opener is a handheld device with a small wheel that punctures the can lid.", + "There are several ways to identify a can opener.", + "A can opener typically has a cylindrical blade that punctures the top of a can and a lever that is used to rotate the blade around the lid.", + "A can opener can be identified by its cylindrical shape, its handle, and its sharp cutting wheel.", + "A can opener is a tool used to open metal cans by cutting through the can's top lid.", + "A can opener is a tool used to open metal cans.", + "A can opener is a handheld device that is used to open metal cans.", + "A can opener is a kitchen gadget that is used to open cans of food.", + "A can opener is a handheld tool that is used to open metal cans.", + "A can opener is a handheld device that is used to open metal cans.", + "A can opener is a tool that is used to open canned food.", + "There are many different types of can openers, but most have a sharp blade that is inserted into the top of the can.", + "A can opener is a device that is used to open metal cans.", + "A can opener looks like a small handheld tool with a sharp metal gear wheel that is used to cut open metal cans.", + "A can opener is a small handheld tool that is used to open metal cans.", + "This image is of a can opener.", + "The image is of a red can opener that is open.", + "A can opener is a device used to open metal cans.", + "A can opener is a device used to open metal cans.", + "The image is of a handheld can opener.", + "A can opener is a tool used to open metal cans.", + "The image is of a small, handheld can opener.", + "The image shows a gray metal can opener with a metal handle.", + "The image is of a traditional can opener with a handle.", + "A can opener is a device used to open metal cans.", + "Can opener.", + "This can opener is made of durable metal and has a comfortable grip.", + "\nThis can opener is made of stainless steel and has a plastic grip for comfort.", + "A can opener is a device used to open metal cans.", + "A can opener is a tool used to open cans of food.", + "A can opener is a device used to open cans.", + "A can opener is a device used to open metal cans.", + "This is a can opener.", + "A can opener is a tool used to open metal cans.", + "A can opener is a device used to open metal cans." + ], + "cardigan": [ + "A cardigan is a knit sweater that has a long line and usually buttons down the front.", + "A cardigan typically looks like a sweater that has a zipper or buttons down the front.", + "A cardigan typically looks like a sweater that has a buttons or a zipper down the front.", + "A cardigan is a type of sweater that has a front opening and typically buttons or a zipper.", + "A cardigan is a type of sweater that has a lot of buttons down the front.", + "A cardigan is a type of sweater that has a button-up front.", + "A cardigan is a type of sweater that has a button-down front.", + "A cardigan is a sweater that usually has from two to seven buttons in the front.", + "A cardigan is a garment that is typically worn over a shirt or blouse.", + "A cardigan is a type of sweater that has a front opening and is typically worn buttoned.", + "A cardigan is a type of sweater that has a front-facing zipper or buttons.", + "Cardigans are often made with knit fabrics and have a front opening that is fastened with buttons, a zipper, or a snap.", + "A cardigan typically has buttons down the front, and shallow pockets on the sides near the waist.", + "A cardigan is a type of sweater that has a front opening and is usually worn over a shirt or blouse.", + "A cardigan is a type of sweater that has an open front and is typically buttoned or zipped.", + "A cardigan typically has buttons or a zipper down the front, and they are usually knit sweaters.", + "A cardigan is a type of sweater that has an open front and is usually fastened with buttons or a zipper.", + "A cardigan can typically be identified by its buttons down the front and/or its pockets.", + "One way to identify a cardigan is by its buttons.", + "A cardigan is a sweater that has a front-opening with buttons or a zipper.", + "A cardigan is a type of sweater that has a front-facing zipper or buttons and is typically knit from a woolen or cotton-based yarn.", + "A cardigan is a kind of sweater that has a zipper or buttons down the front.", + "A cardigan is a type of sweater that has a front-facing zipper or buttons.", + "A cardigan can look like a lot of different things, but generally it is a sweater that has a button-up front.", + "A cardigan looks like a sweater that has an opening in the front and can be buttoned or zipped up.", + "A cardigan is a type of sweater that has a front zipper or button closure.", + "A cardigan is a type of sweater that has a front-facing zipper or button closure.", + "A cardigan is a mid-length sweater that has an open front and long sleeves.", + "A cardigan is a type of sweater that has a front opening and is typically buttoned or zipped.", + "A cardigan is a type of sweater that has a button-up front.", + "This image is of a cardigan that is blue and white.", + "One image from the internet of a cardigan is of a beige V-neck cardigan with long sleeves.", + "The image is of a beige cardigan with wooden buttons down the front.", + "In the image, there is a woman wearing a black cardigan.", + "The image is of a beige cardigan with a button-down front.", + "The image from the internet is of a light blue cardigan with a V-neck and long sleeves.", + "The image is of a brown cardigan with wooden buttons.", + "This image is of a cardigan with a V-neckline, long sleeves, and a button-up closure.", + "This image shows a person wearing acardigan.", + "The image is of a beige cardigan with three gold buttons down the front.", + "A cozy cardigan perfect for chilly days.", + "This cardigan is perfect for cooler weather.", + "This cozy cardigan is perfect for chilly days! It's made with a soft, fuzzy fabric that will keep you warm all day long.", + "A cardigan sweater with buttons down the front.", + "This cardigan is perfect for chilly weather! It's so cozy and warm, plus the cute buttons add a touch of style.", + "This cardigan is so cozy and perfect for fall!.", + "A comfortable and stylish cardigan perfect for any season.", + "This cardigan is perfect for chilly weather! It's made with a soft, fuzzy material that will keep you warm and comfortable all day long.", + "Soft and cozy cardigan perfect for chilly days!.", + "This olive green cardigan is the perfect addition to your fall wardrobe! It's perfect for layering over a long sleeve tee or blouse and will keep you warm all season long." + ], + "car mirror": [ + "A car mirror looks like a smoothe, reflective surface that is convex, or curved outward.", + "A car mirror typically consists of two parts - the main body of the mirror, which is attached to the car, and the mirror itself, which is attached to the main body of the mirror.", + "A car mirror is a reflector that is attached to the outside of a car.", + "A car mirror is a reflective surface that is attached to the side or back of a car.", + "A car mirror is a reflective surface that is placed on the side or rear of a car.", + "A car mirror is affixed to the outside of a car and allows the driver to see behind them.", + "A car mirror is a flat, reflective surface that is attached to the side or back of a car.", + "A car mirror usually looks like a small, rectangular mirror that is placed on the outside of a car.", + "A car mirror is a small, typically convex mirror that is affixed to the outside of a car.", + "A car mirror is a glass mirror mounted on the side of a car.", + "A car mirror is usually attached to the car door.", + "One way to identify a car mirror is by its shape.", + "They are typically mounted on the side of the car.", + "A car mirror can be identified by its reflective surface.", + "A car mirror is a reflective surface that is attached to the outside of a car and used to see what is behind the car.", + "A car mirror is usually a flat, reflective surface mounted on the outside of a car.", + "Car mirrors can be identified by their reflective surface.", + "Cars usually have two mirrors, one on the driver's side and one on the passenger's side.", + "By looking at it.", + "A car mirror is typically oval or rectangular and is attached to the car door.", + "A car mirror is a reflective surface on the side of a car that allows drivers to see what is behind them.", + "A car mirror typically has a flat surface and a convex surface.", + "The car mirror is a large, convex mirror that is mounted on the front and rear of the car.", + "The side view mirror on a car is typically a rectangular mirror that is mounted on the side of the car.", + "A car mirror is a small, convex mirror that is attached to the inside of a car's windshield.", + "A car mirror typically has a flat surface and a convex surface.", + "Most car mirrors are rectangular and have a convex surface.", + "A standard car mirror is typically a flat, rectangular piece of glass with a metal backing.", + "A car mirror is typically a convex mirror, which means it is curved outward.", + "A car mirror is a reflective surface that is mounted on the outside of a car.", + "In the image, there is a car mirror with a reflective surface.", + "The image from the internet of a car mirror is of a rectangular mirror attached to the side of a car.", + "In this image, we can see a car mirror with a clear view of the reflections in it.", + "An image from the internet of a car mirror may show a person driving a car with a clear view of the road behind them.", + "The image is of a car mirror with the words \"Objects in mirror are closer than they appear\" printed on it.", + "The image is of a car mirror with the reflection of a cityscape in it.", + " that is crackedThis image is of a car mirror that is cracked.", + "In the image, there is a car mirror with a blue sky and white clouds reflected in it.", + "The image shows a car mirror with the words \"Objects in mirror are closer than they appear\" written on it.", + "This is a image of a car mirror.", + " A close-up of a car's rear-view mirror, with a few raindrops on the glass.", + "A car mirror reflecting a blue sky.", + "A view of the world through a car mirror.", + " the driver's viewThe driver's view of the road behind them, as seen in their car mirror.", + "A car's mirror reflects the world around it.", + "A mirror on a car.", + "A woman driving a car looks at her reflection in the rearview mirror.", + "A car mirror reflecting the road behind the car.", + "In the car mirror, you can see the reflection of the rear of the car.", + "A car's mirror reflects the road behind the car." + ], + "carousel": [ + "A carousel is a rotating platform with seats or benches for riders.", + "A carousel is typically a circular platform that rotates around an axis.", + "A carousel is a rotating set of images or videos, sometimes with text, that users can cycle through.", + "A carousel is a circular platform with seats or benches for riders, typically mounted on a central support, that is turned by a motor or by horses.", + "A carousel looks like a large, circular platform with wooden horses or other animals attached to it.", + "A carousel is a rotating platform with seats or standing room for passengers, usually in the form of animals or vehicles.", + "A carousel looks like a large Ferris wheel, with seats or platforms attached to the outside.", + "A carousel is a type of amusement ride consisting of a rotating circular platform with seats for riders.", + "A carousel is a rotating structure that has seats or benches for people to ride on.", + "A carousel is a merry-go-round type of ride that is found at carnivals and fairgrounds.", + "A carousel is a merry-go-round type of amusement ride that is typically found at fairgrounds and carnivals.", + "A carousel is a rotating platform with seats for passengers, often in the form of animals, that is typically found in amusement parks.", + "A carousel is a circular platform with seats or benches for riders, typically powered by horses, that is rotated by a motor or hand crank.", + "A carousel is a rotating platform with seats or animals that people can ride on.", + "A carousel is a type of amusement ride that has seats that face outward in a circle and are often attached to a central rotating platform.", + "It is a type of amusement ride consisting of a rotating circular platform with seats for riders.", + "A carousel is a rotating platform with seats for passengers, typically in the form of animals such as horses, that goes up and down.", + "A carousel is a rotating platform with seats or standing Room for riders.", + "The easiest way to identify a carousel is by its round shape and the presence of horses or other creatures mounted on poles.", + "A carousel typically has a circular plate that rotates.", + "A carousel is a circular rotating platform with seats for riders.", + "A carousel is a spinning circular platform with seats for riders.", + "A carousel is a rotating platform with seats for riders.", + "A carousel is a circular platform that rotates and has seats or animals mounted on it.", + "Some carousels are very ornate, while others are more simple.", + "A carousel looks like a rotating platform with seats or benches for riders.", + "A carousel is a rotating platform with seats for passengers, typically in the form of either a wooden horse or a stylized animal.", + "A carousel is a rotating platform with seats or benches for passengers, typically in the form of horses or other animals, to ride on.", + "A carousel is a type of rotating platform with seats or benches for riders.", + "A carousel is a rotating platform with seats for passengers, typically in the form of animals such as horses, that goes up and down.", + "an image of a colorful carousel with people riding on it while it spins.", + "This image from the internet shows a traditional carousel with horses.", + "An image from the internet of a carousel shows a large, colorful, spinning wheel with people riding on it.", + "A carousel is a rotating set of images, usually with captions, that are displayed on a web page.", + "This image shows a carousel with brightly-colored horses.", + "The image is of a large, brightly-colored carousel with horses and other animals.", + "This image is of a colorful carousel with wooden horses.", + "This image is of a large, old-fashioned carousel.", + "In the image, there is a large carousel with many colorful horses and people riding on it.", + "A carousel is a rotating platform with seats for passengers, typically in the form of a horse or other animal.", + "A carousel is a traditional amusement park ride consisting of a rotating platform with seats for riders.", + " The CarouselA caption of an image of a roller coaster: The Roller Coaster.", + "The Carousel at night.", + " A vintage carousel in an old-fashioned amusement park.", + "A brightly lit carousel in an empty park.", + "This is a carousel.", + "A brightly colored carousel in an amusement park.", + "A view of a carousel from the ground.", + "This is a picture of a carousel.", + "A carousel at an amusement park." + ], + "tool kit": [ + "A tool kit is a box or bag that contains all of the necessary tools for a particular activity.", + "A tool kit usually contains a variety of hand tools that are used for various purposes.", + "A tool kit is a collection of tools that are used to fix things around the house.", + "A tool kit may vary in size and contents depending on its purpose, but usually contains a selection of hand tools and materials needed for a specific task.", + "A tool kit is a collection of tools that are used to perform a particular task or tasks.", + "A tool kit typically contains a variety of tools, such as a hammer, screwdriver, and wrench, that are used for various purposes.", + "The tool kit contains a variety of tools that are organized in a box or case.", + "A tool kit may include a claw hammer, a screwdriver set, a set of wrenches, a set of pliers, a tape measure, and a level.", + "A tool kit is a box or case that contains all of the necessary tools for a particular job.", + "A tool kit typically contains a variety of hand tools, such as a hammer, saw, screwdriver, and measuring tape.", + "A tool kit is a collection of tools that are used to perform a task.", + "A tool kit is a set of tools used for a specific purpose.", + "A tool kit is a collection of tools used to perform a task.", + "A tool kit generally contains a variety of tools that can be used for different purposes.", + "One way to identify a tool kit is by the tools that it includes.", + "A tool kit typically contains a variety of tools that can be used for a variety of purposes.", + "A tool kit is a set of tools in a case.", + "If you need to identify a tool kit, you should look for a toolshed or a place where tools are typically kept.", + "A tool kit is typically a small, portable case that contains a variety of tools, such as a hammer, screwdriver, wrenches, and so on.", + "The tool kit consists of a screwdriver, a hammer, a chisel, and a saw.", + "A tool kit might contain a hammer, screwdriver, and various other hand tools.", + "A tool kit is a collection of tools that are used to fix things.", + "A tool kit includes all of the basic tools necessary to complete a task.", + "A tool kit is generally a small, portable box that contains a variety of tools, such as screwdrivers, wrenches, and pliers.", + "A tool kit is a collection of tools that are used to repair or maintain a vehicle.", + "A tool kit may contain a variety of hand tools, power tools and other items such as measuring tape, screwdrivers, levels, pliers, hammers, wrenches, saws, axes, drill bits, sandpaper, and screws.", + "A tool kit may contain a variety of hand tools such as hammers, screwdrivers, and wrenches.", + "The tools in a basic tool kit usually include a hammer, screwdrivers, a wrench, and pliers.", + "A tool kit is typically a small box or pouch containing a few basic hand tools, such as a hammer, screwdriver, and pliers.", + "A tool kit is usually a case or box that contains a variety of tools, such as screwdrivers, wrenches, and hammers.", + "A tool kit is a set of tools used for a particular purpose, such as a repair kit for a car.", + "In the image, there is a black tool box with a silver handle on the top.", + " An image of a tool kit from the internet shows a variety of tools in a case.", + "The image is of a tool kit that includes a hammer, screwdriver, and wrench.", + "The image is of a tool kit that contains all the essentials for basic car maintenance.", + "In the image, there is a red toolbox with a handle on top.", + "I found an image of a toolkit that includes a hammer, a screwdriver, a measuring tape, and a level.", + "In the image, there is a black toolbox with a handle on the top.", + "The image is of a silver tool kit on a white background.", + "The image is of a tool kit that contains a variety of different tools.", + "TOOLKIT: A set of tools, usually contained in a box or case, used by workers, hobbyists, or DIYers.", + "android app development kit.", + "A toolkit for fixing things around the house.", + "A caption of an image of a tool kit: A set of tools that can be used for various purposes.", + "This is a toolkit that I use for my work.", + "A well-stocked tool kit is essential for any home improvement project.", + "A tool kit can help you fix things around the house.", + "A caption of an image of a tool kit:A tool kit containing various tools, including a hammer, screwdriver, and pliers.", + "A small, basic tool kit for everyday repairs and maintenance.", + "This tool kit includes everything you need to get started on your next project." + ], + "cardboard box / carton": [ + "A cardboard box / carton looks like a rectangular box made of cardboard.", + "A carton or cardboard box is a box made of paperboard, corrugated fiberboard or chipboard.", + "A cardboard box is a rectangular box made of cardboard.", + "A cardboard box is a type of container made of thin cardboard material.", + "A cardboard box / carton is a box made of cardboard.", + "A cardboard box or carton is normally a rectangular shape with six faces.", + "A cardboard box or carton is a rectangular container made of corrugated paperboard.", + ".", + "A cardboard box / carton is a square or rectangular shaped box made out of thin cardboard.", + "A cardboard box is a rectangular container made of stiff paperboard.", + "A cardboard box / carton can typically be identified by its brown / tan color, and its rectangular / cube shape.", + "A cardboard box / carton is a square or rectangular shaped box made out of stiff paperboard.", + "A cardboard box / carton is usually a brown or tan color.", + "The most common type of cardboard box is made from corrugated fiberboard.", + "A cardboard box or carton is generally brown in color and is made of a thick paper or cardboard.", + "There are many ways to identify a cardboard box or carton.", + "The box / carton is brown in color, has a smooth surface, and is made of corrugated paper.", + "Cardboard boxes / cartons are typically made from brown Kraft paper and have a corrugated cardboard liner.", + "A cardboard box or carton is usually made of paperboard, which is a layer of paper pulp sandwiched between two layers of paper.", + "Cardboard boxes and cartons are usually brown and made of corrugated cardboard.", + "A cardboard box looks like a rectangular box made of cardboard.", + "A cardboard box / carton typically has six sides: top, bottom, left, right, front, and back.", + "Most cardboard boxes / cartons are rectangular in shape and have a brown kraft paper exterior.", + "A cardboard box or carton is a rectangular container made from thin cardboard.", + "A cardboard box looks like a rectangular box made of cardboard.", + "A cardboard box / carton is usually a rectangular prism shape with a lid.", + "A cardboard box / carton is usually a rectangular box made of cardboard.", + "A cardboard box / carton is a type of container made of cardboard and paper for storing products.", + "A cardboard box is a rectangular container made of cardboard, which is a type of paper.", + "A cardboard box or carton is typically a rectangular prism shape with a lid.", + "A cardboard box is a box made of cardboard.", + "A stack of cardboard boxes sitting on a pallet in a warehouse.", + "The image is of a large cardboard box that is open at the top.", + "An image from the internet of a cardboard box / carton may show various sides of the box, including the front, back, and sides.", + "There is an image of a cardboard box on the internet.", + "A cardboard box is a box made of cardboard.", + "The image is of a brown cardboard box with a white label on the front.", + "The image is of a large, square cardboard box with a green print on the front.", + "The image is of a plain, brown cardboard box.", + "If you search \"cardboard box\" on Google Images, you will get a wide range of results.", + "A blank white cardboard box / carton.", + "A large cardboard box, filled with smaller boxes.", + "A box of cereal.", + "A box of cerealA box of cereal is a type of food packaging that is made of cardboard and is used to hold cereal.", + "A box of cereal.", + "A box of television parts.", + "A cardboard box or carton is a rectangleshaped container made of corrugated fiberboard, which is used for packaging goods.", + "Cardboard box / carton.", + "\"Just another day at the office.", + "A cardboard box / carton that is meant for storage or shipping." + ], + "car wheel": [ + "A car wheel is a metal disc with a tire around it.", + "A car wheel has typically four spokes that extend from the hub out to the rim.", + "A car wheel typically has a metal rim and a inflated rubber tire.", + "A car wheel typically has a black or silver metal rim and a black rubber tire.", + "A typical car wheel is round and has a diameter of about 15 to 18 inches.", + "A car wheel is a cylindrical shaped object that is attached to a car's axle.", + "A car wheel has a round, metal frame with a rubber tire attached to the outside.", + "A car wheel is a round, cylindrical object that is attached to a car's axle.", + "A car wheel typically contains a metal Rim, and a hub in the center.", + "A car wheel is a round, black object that typically has a metal rim and is attached to a vehicle's axle.", + "If you are looking at a car from the front or the back, the wheels will be the two round, circular objects on each side of the car.", + "The easiest way to identify a car wheel is by the size.", + "Most car wheels have a metal rim that goes around the outside of the tire.", + "A car wheel is usually round and made of metal.", + "A car wheel is typically circular in shape and has a hub in the center where the axle attaches.", + "There are a few ways to identify a car wheel.", + "There are a few ways to identify a car wheel.", + "A car wheel is usually round, has a hole in the middle, and is attached to a car.", + "One way to identify a car wheel is by its size.", + "There are a few ways to identify a car wheel.", + "A typical car wheel is composed of an inner metal ring called the \"hub,\" a rubber \"tire\" that encircles the hub, and an outer metal ring called the \"rim\" that holds the tire in place.", + "A car wheel typically has a metal rim and a tire.", + "A car wheel typically has a circular metal rim and a central hub.", + "A car wheel typically has five parts: the hub, where the wheel attaches to the car; the spokes, which connect the hub to the rim; the rim, which holds the tire; the tire, which is made of rubber and attaches.", + "A car wheel is a circular object that typically has a metal rim and a rubber tire.", + "A car wheel typically looks like a metal ring with spokes coming out from the center.", + "Many car wheels have a simple, cylindrical design.", + "A car wheel typically has a circular shape and is made of metal.", + "A car wheel is a round, metal object that is attached to the car's axle.", + "A car wheel typically has a metal rim and a black rubber tire.", + "I found an image on the internet of a car wheel that I really like.", + "This image is of a car wheel that is made out of metal.", + "This image is of a car wheel with a tire on it.", + "In the image, the car wheel is a deep shade of blue.", + "A car wheel is a round, black object that is made of metal and plastic.", + "This image is of a car wheel covered in mud.", + "A photograph of a black car wheel with a chrome rim.", + "In the image, there is a car wheel on a white background.", + "This image is of a car wheel with a blue background.", + "A car wheel is a circular object that helps a car move forward.", + " The new high-tech cars have computer-operated wheels that adjust to the changing road conditions.", + "The tire is mounted on the wheel.", + "This wheel belongs to a car.", + "A blue car wheel with a chrome rim.", + "A wheel from a car.", + "A car wheel with a metal rim and a rubber tire.", + "This car wheel is ready to hit the road!.", + " The wheel of a carA caption of an image of a large sailboat: A large sailboat on the water.", + "This is a picture of a car wheel.", + " Car wheel on a white background." + ], + "automated teller machine": [ + "A Automated Teller Machine, or ATM, is a machine that allows customers of a financial institution to perform basic banking transactions without the need of a human teller.", + "A automated teller machine, or ATM, is a machine that allows customers of a financial institution to perform transactions without the need for a human teller.", + "A automated teller machine is a machine that provides services such as withdrawing cash, depositing money, and checking account balances.", + "An automated teller machine typically consists of a keypad for entering your PIN, a touch screen for selecting your options, a slot for inserting your bank card, and a slot for dispensing cash.", + "A automated teller machine is a machines that dispense money or allow bank customers to complete basic transactions without the assistance of a human teller.", + "A automated teller machine is a computerized machine that provides customers with banking services 24 hours a day.", + "A automated teller machine typically has a slot to insert your bank card and a keypad to enter your PIN number.", + "An ATM typically looks like a small, stand-alone kiosk, often located near the entrance of a bank or in a highly visible location in a public space.", + "An automated teller machine, or ATM, is a computerized machine that performs basic banking functions.", + "A typical ATM is a rectangular box with a screen and keypad on the front.", + "The automated teller machine, or ATM, is a kiosk that dispenses money and accepts deposits.", + "It will generally say \"ATM\" on the front of the machine.", + "An altercation machine, also known as an ATM, can typically be identified by a signage that includes the name of the bank that owns the machine, as well as the bank's logo.", + "An automated teller machine (ATM) is a machine that dispenses cash and performs other basic banking tasks.", + "The machines are usually marked with the bank's logo and have a slot for Inserting cards and a keypad for entering PINs.", + "A automated teller machine can typically be identified by a sign on the outside of the bank that says \"ATM\" or \"24 Hour Deposits and Withdrawals.", + "An automated teller machine (ATM) is a self-service banking machine that lets customers do their banking transactions quickly and easily without having to see a teller.", + "Some automated teller machines have a special symbol that identifies them as ATMs.", + "An automated teller machine (ATM) is a computerized telecommunications device that provides the clients of a financial institution with access to financial transactions in a secure and private environment.", + "Most automated teller machines (ATMs) are identified by signs that include the branding of the financial institution that owns the ATM, and either the Interac\u00ae, Visa\u00ae, or Mastercard\u00ae symbols.", + "The following is a link to a picture of an automated teller machine:https://en.", + "The physical appearance of an automated teller machine (ATM) may vary, but most machines have a slot for depositing money, a keypad for entering your PIN, and a screen for viewing your account information.", + "An automated teller machine (ATM) is a computerized telecommunications device that provides customers of financial institutions with access to financial transactions in a public space without the need for a human clerk or bank teller.", + "A typical automated teller machine (ATM) looks like a small rectangular box with a keypad and a screen.", + "An automated teller machine, or ATM, is a machine that allows customers of banks to withdraw cash from their accounts without having to speak to a teller.", + "An ATM is typically a small, stand-alone machine located inside or outside of a bank branch that customers can use to perform basic banking transactions without the assistance of a teller.", + "ATMs typically have a small, touch screen display where users can select various options, a keypad for users to input their PIN, a slot for depositing cash, and a slot for inserting and withdrawing bank cards.", + "A typical automated teller machine (ATM) is a rectangular box with a touch screen panel and a slot for inserting and retrieving your bank card.", + "An automated teller machine (ATM) is typically a computer screen attached to a stand-alone keypad or keyboard and a receipt printer.", + "Some automated teller machines (ATMs) have a slot to insert your bank card.", + "\u4eba stands in front of an ATM machine, inputting their bank card and PIN number.", + "This image shows a blue and silver ATM machine with a screen that says \"insert card.", + "A machine that people can use to get money from their bank accounts without having to go into a bank.", + "An image of an automated teller machine, or ATM, shows a machine with a keypad and a screen.", + "The image is of a blue automated teller machine with a yellow and green sign that says \"ATM.", + "The image from the internet is of a automated teller machine that is located inside of a bank.", + "The image is of a automated teller machine with a bright blue screen.", + "In the image, there is a blue automated teller machine with a yellow touch screen.", + "In the image, there is a brightly lit ATM machine against a dark background.", + "\nThe image is of an automated teller machine, or ATM.", + "A customer using an automated teller machine.", + "An automated teller machine (ATM) is a computerized telecommunications device that provides financial institution customers with access to financial transactions in a public space without the need for a human clerk or bank teller.", + " ATM at BanklocationA caption of an image of a automated teller machine:This is an ATM at a bank location.", + "ATM machine in a bank lobby.", + "You can't always bank on human tellers.", + "An automated teller machine, or ATM, is a machine that dispenses money and accepts deposits.", + "A person is using an automated teller machine.", + "')ATM machine in a bank lobby.", + "A woman is using an automated teller machine.", + "ATM Machine." + ], + "cassette": [ + "A cassette is a small plastic case that holds a spool of magnetic tape.", + "A cassette is a small plastic case that holds a spool of magnetic tape.", + "A cassette is a plastic case that holds a spool of tape.", + "A cassette is a small, plastic case that holds a magnetic tape used for storing audio or video recordings.", + "A cassette is a small, rectangular plastic case that holds a spool of magnetic tape.", + "A cassette is a plastic or metal case that contains a magnetic tape.", + "A cassette tape is a slightly rectangular plastic case that contains a spool of thin magnetic tape.", + "A cassette looks like a small plastic case with a metal spool inside.", + "A cassette tape is a plastic case that holds a spool of magnetic tape.", + "A cassette looks like a small, rectangular box with rounded corners.", + "A cassette can be identified by its rectangular shape and size.", + "A cassette is a small plastic or metal case that holds a videotape, audio tape, or other type of data storage.", + "A cassette is a small plastic case that holds a spool of tape.", + "Most cassettes are upward of 90 minutes in length and can be easily recognized by their rectangular shape.", + "A cassette is a musical format that consists of a spool of magnetic tape inside a protective shell.", + "The distinguishing feature of a cassette tape is that it is held inside a cassette, which is a plastic case that protects the tape.", + "A cassette is a small case, typically made of plastic, that holds a reel of magnetic tape used for storing audio or video recordings.", + "A cassette is a small plastic or metal case containing a reel of magnetic tape used for recording and/or playback.", + "Cassettes can be identified by their rectangular shape and by the spindles on either side that they wind around.", + "A cassette can typically be identified by its size, as they are much smaller than CDs and DVDs.", + "A cassette looks like a small, rectangular box with two spools of tape inside.", + "A cassette is a type of magnetic tape used for storing audio, video, and computer data.", + "If you are referring to a cassette tape, it is a spool of magnetic tape enclosed in a hard plastic case.", + "A cassette is a small plastic case that holds a spool of magnetic tape.", + "A cassette tape is a narrow strip of plastic that is coated with magnetized iron oxide or chromium dioxide.", + "A cassette is a small plastic case that holds a cassette tape.", + "A cassette is a small, plastic rectangle with two rotating reels inside.", + "A cassette looks like a small, rectangular box with two spools of tape inside.", + "A cassette tape looks like a small, rectangular box.", + "A cassette is a type of data storage device that looks like a small, rectangular box.", + " tapeIn the image, there is a cassette tape sitting on a black surface.", + " tapeThe image shows a close up of a cassette tape.", + " playerThe image is of an old-school cassette player.", + " playerThe image is of a large, silver cassette player.", + " tapeThis image is of an old, cassette tape.", + " tapeThe image is of a yellow cassette tape with the word \"Demo\" written on it in black sharpie.", + " tapeThe image is of a cassette tape with the words \"Home Taping Is Killing Music\" printed on it in large, capital letters.", + " tapeThis image is of a black cassette tape with the words \"The Beatles - Abbey Road\" written in white.", + "The image is of a rusty old cassette tape.", + " tapeIn the image, there is a brown cassette tape with the word \"TAPE\" written in white.", + "A cassette tape labeled \"The Beatles - Abbey Road.", + "A cassette tape.", + " A cassette of a band that was popular in the 80'sThis is a cassette of the band Duran Duran.", + "A vintage cassette tape.", + "A cassette tape.", + "This is a cassette.", + " A cassette tape from the 1980sThis cassette tape is from the 1980s and is likely to be from that decade.", + " A cassette tapeThis is a cassette tape.", + "An old cassette tape.", + "This cassette is from the mix tape that I made for my best friend in high school." + ], + "cassette player": [ + "A cassette player is a small, portable device that plays cassette tapes.", + "A cassette player can come in many different shapes and sizes, but they all have a few basic components.", + "A cassette player is a small, portable device that plays audio cassettes.", + "A cassette player is a rectangular device with a lid that opens to reveal a circular opening.", + "A cassette player is a small, portable device that has two spindles on either side.", + "A cassette player is a small, portable device that plays audio cassettes.", + "A cassette player is a box-shaped device with a cassette door on the front, control buttons on the top, and speakers on the sides.", + "A \u200bcassette player is a machine that plays audio cassettes.", + "A cassette player classically consists of two small spools between which a magnetically coated, polyester-type plastic tape is passed and wound.", + "A cassette player is a small, portable device that plays audio cassettes.", + "Cassette players are often distinguishable by their rectangular shape.", + "There are several ways that you can identify a cassette player.", + "A cassette player is typically small and portable with a sealing door that protects the cassette tape inside.", + "Cassette players can be identified by their rectangular shape and by the insertion slot for cassettes on the top or front of the player.", + "There are a few ways to identify a cassette player.", + "There are a few ways to identify a cassette player.", + "A cassette player typically has a microphone jack, a headphone jack, a play button, a stop button, a fast-forward button, and a rewind button.", + "A cassette player is a device that plays a cassette tape.", + "A cassette player can be identified by its playback head, erase head, and record/playback switch.", + "The best way to identify a cassette player is by its square shape.", + "A cassette player is typically a portable, compact, and handheld electronic device that has a cassette deck to play cassettes.", + "A cassette player is a small, portable electronic device that plays cassette tapes.", + "A cassette player looks like a small, rectangular box with a door that opens to reveal the cassette tape player.", + "A cassette player is a portable audio player that uses cassettes to play music.", + "A typical cassette player includes a cassette deck, speakers, and control buttons.", + "A cassette player is a small portable electronics device that plays audio cassettes.", + "A cassette player is circular with a tiny hole in the center.", + "A cassette player looks like a small, rectangular box with a cassette tape inserted into the top.", + "A cassette player is a small electronic device that is used to play cassette tapes.", + "A cassette player usually has a cassette deck on which a cassette tape is placed.", + "I found an image of a Sony cassette player from the 1980s.", + "A small, rectangular device with a spool of cassette tape inside and playbackheads on either side.", + "The image is of a black cassette player.", + "This image is of a blue cassette player.", + "The image is of a black cassette player with the words \"Sony Walkman\" in white.", + "A cassette player is a small, portable electronic device that plays audio cassettes.", + "The image is of an old-style cassette player.", + "The image is of a silver cassette player with black buttons.", + "The image is of a cassette player with a cassette inserted.", + "A cassette player is a small, portable device that plays audio cassettes.", + "A cassette player with headphones.", + "A cassette player with a cassette tape inserted.", + "A cassette player with a cassette tape inside.", + " This is a cassette player.", + "This is a cassette player.", + "This is a cassette player.", + "Cassette Player.", + "This is a cassette player.", + "In an age of digital music, this cassette player is a blast from the past!.", + "A cassette player from the 1980sThis cassette player is from the 1980s." + ], + "castle": [ + "A castle is a large, fortified structure with thick walls, towers, and a drawbridge.", + "A castle looks like a big, gray, stone building with high walls, a drawbridge, and a moat.", + "A castle typically has high, thick walls; a moat; towers; and a drawbridge.", + "A castle is a large, fortified building or group of buildings.", + "A castle is typically a large, fortified structure with walls and towers, built in a strategic location such as on a hilltop or beside a river.", + "A castle is a large building that has thick walls and a lot of rooms.", + "A castle needs thick walls to protect the people inside.", + "A castle is a large, fortified building or set of buildings with thick walls, battlements, towers, and typically a moat or other water defences.", + "A castle is a large, fortified structure with high walls and towers.", + "A castle is a large and fortified building or set of buildings with thick walls, towers, and a drawbridge.", + "Some features that may help identify a castle are: a keep, drawbridge, portcullis, moat, crenellations, and battlements.", + " Castles are large, fortified residences built in Europe during the Middle Ages by nobility.", + "The easiest way to identify a castle is by its towers and turrets.", + "A castle is a large, fortified building or group of buildings with thick walls, usually surrounded by a moat.", + "Castles have high stone walls, towers, and a drawbridge.", + "The word \"castle\" comes from a Latin word meaning \"fortified place.", + "A castle is a large, fortified building or group of buildings with thick walls, often built on top of a hill, designed to protect the people inside from enemy attacks.", + " castles typically have large fortifications, high walls, and towers.", + "A castle is usually made of stone or bricks and has high, thick walls.", + "The most obvious identifying feature of a castle is its walls.", + "A castle is a large, fortified building or group of buildings.", + "Most castles look like large stone buildings with towers.", + "A castle is typically a large, fortified building or group of buildings.", + "A castle generally has high walls and a large gate.", + "A castle is a large, fortified building or group of buildings.", + "There is no one answer to this question, as castles can come in a wide variety of shapes and sizes.", + "Most castles look like a large stone fort.", + "A castle looks like a large stone fortification with high walls, turrets, and a moat.", + "A castle typically has high walls and towers, and is surrounded by a moat.", + "There are many different types of castles, but they often include high walls, towers, and a drawbridge.", + "The image is of a large, imposing stone castle set atop a hill.", + "This image is of a castle in Germany.", + "This image shows a large, imposing castle set atop a hill.", + "This castle is called Bodiam Castle and is located in East Sussex, England.", + "The image is of a castle located in France.", + "An image of a castle from the internet is of a large, stately building surrounded by a moat.", + "I found an image on Pinterest of a castle in Germany called Neuschwanstein Castle.", + "This image from the internet is of the Tower of London.", + "This image is of Castle Neuschwanstein in Bavaria, Germany.", + "This castle is called Windsor Castle and is located in England.", + "The castle in the distance is a symbol of strength and power.", + " A medieval castle in Europe.", + "A fairytale castle in Germany.", + "A view of a castle from the outside.", + "The roof of the castle is covered in snow.", + " A medieval castle in Europe.", + "The castle is located in Germany.", + "A fourteenth century castle in Germany.", + "\"This is a photo of a castle in Germany.", + " The Neuschwanstein Castle, a 19th-century Romanesque Revival palace on a hill above the village of Hohenschwangau near F\u00fcssen in southwest Bavaria, Germany." + ], + "catamaran": [ + "A catamaran is a type of boat that has two parallel hulls of equal size.", + "A catamaran looks like two parallel hulls connected by a platform.", + "A catamaran is a type of sailboat that is characterized by having two parallel hulls of equal size.", + "A catamaran is a type of sailboat that has two parallel hulls of equal size.", + "A catamaran is a sailing vessel consisting of two parallel hulls of equal size.", + "A catamaran is a multi-hulled vessel with two parallel hulls of equal size.", + "A catamaran is a sailboat that has two hulls, or wide bodies, that are connected by beams.", + "A catamaran is a sailboat with two parallel hulls of equal size.", + "A catamaran is a type of boat that has two parallel hulls.", + "A catamaran is a lightweight, high-performance sailing vessel.", + "You can identify a catamaran by its two parallel hulls.", + "A catamaran is a multi-hulled vessel with two parallel hulls of equal size.", + "Catamarans can be identified by their two parallel hulls.", + "Catamarans are long, thin boats with two hulls side by side.", + "Catamarans have two parallel hulls of equal size.", + "A catamaran is a sailboat with two hulls of equal size.", + "The easiest way to identify a catamaran is by its two hulls.", + "The most distinguishing feature of a catamaran is its twin hulls.", + "A catamaran is a boat that is typically characterized by two parallel hulls of equal size.", + "A catamaran is a boat with two parallel hulls of equal size.", + "A catamaran is a type of boat that has two hulls, or platforms, that are parallel to each other.", + "A catamaran is a twin-hulled vessel with the hulls side by side.", + "A catamaran is a type ofboat with two parallel hulls of equal size.", + "A catamaran is a type of boat that has two hulls, or large float-like structures, that are parallel to each other.", + "A catamaran is a type of sailing vessel that consists of two hulls, or platforms, that are connected by crossbeams.", + "A catamaran is a type of boat that has two parallel hulls of equal size.", + "A catamaran is a twin-hulled vessel with the hulls side by side.", + "A catamaran is a type of boat that has two parallel hulls.", + "A catamaran is a multi-hulled vessel with two parallel hulls of equal size.", + "A catamaran is a type of boat that typically has two hulls, or large floats, that are connected by a smaller platform.", + "I found an image of a catamaran on the internet that I really liked.", + "The image is of a white catamaran with blue trim.", + "A image of a catamaran from the internet shows a large, two-hulled vessel with plenty of deck space.", + "In the image, a large catamaran sailing vessel is docked in a harbor.", + "A catamaran is a twin-hulled sailing vessel that is propelled by wind.", + "The image is of a yellow catamaran with white trim, sitting in calm water.", + "A catamaran is a type of sailing vessel that consists of two parallel hulls of equal size.", + "An image from the internet of a catamaran shows a large, multi-hulled sailing vessel with two parallel hulls of equal size.", + "A large, two-hulled sailing vessel with a narrow beam, designed for speed.", + "A catamaran is a twin-hulled vessel with two parallel hulls of equal size.", + "The Catamaran is a sailing vessel with two parallel hulls of equal size.", + "This is a picture of a catamaran, a type of sailboat.", + "This is a picture of a catamaran sailing on the open sea.", + "The Catamaran is a fast and stable sailing vessel that is perfect for sailing in shallow waters.", + "My dream boat! A sleek catamaran that can zip through the waves.", + "A group of people enjoying a day out on a catamaran.", + "This catamaran is called the \"Ad Astra.", + "A catamaran is a type of boat that has two parallel hulls and is powered by sails or engines.", + "This is a picture of a catamaran, which is a type of sailboat.", + " Catamaran on the water." + ], + "CD player": [ + "A CD player is a machine that plays CDs.", + "A CD player typically has a large rectangular body with a smaller rectangular face.", + "A CD player looks like a small, rectangular box with a CD insert on the front.", + "A CD player is a machine that plays Compact Discs.", + "A CD player is a small, portable box with a disk tray that holds CDs.", + "A CD player is a devices that plays CDs.", + "A CD player is a device that reads CDs and plays the audio signal on the CD.", + "A CD player is a device that plays Compact Discs.", + "A CD player looks like a small, rectangular box.", + "A CD player is a device that plays CDs, which are digital optical discs that contain audio data.", + " CD players typically have a disc tray that a CD can be inserted into.", + "CD players generally have a large circular disc tray that the CD is placed on.", + "By looking at the front of the player, you should see a CD symbol.", + " appearance: may be a rectangular box with controls on the front; may be integrated into a stereo system function: plays audio CDs.", + "Most CD players have a CD symbol on the front of the device.", + "There are several ways that you can identify a CD player.", + "There are a few ways to identify a CD player.", + "CD players are usually slim and rectangular in shape.", + "A CD player has a disc drive that reads CDs and a control panel with buttons to control playback.", + "A CD player can be identified by its compact disc tray, which is used to insert and eject compact discs.", + "A CD player looks like a small, rectangular box with a disc slot on the top.", + "A CD player is a small, rectangular box with a screen on the front.", + "A CD player usually has a large circular disk in the center that spins.", + "CD players look like small, rectangular boxes with a CD slot on the front.", + "A CD player is a small, rectangular box with a disc tray on the top.", + "A CD player is a small rectangular box with a CD tray on the front.", + "A CD player is a small, portable device that typically has a display screen and buttons on the front, and a CD slot on the top.", + "A CD player is a small, rectangular device that has a disc slot on the top and speakers on the sides.", + "A CD player looks like a small, rectangular device with a disc slot on the top.", + "A CD player looks like a small, rectangular device with a CD slot on the top.", + "The image is of a black CD player.", + "This image shows a CD player with a digital display.", + "The image from the internet shows a silver CD player with a digital display.", + "The image is of a CD player with a disc inserted.", + "The image from the internet is of a CD player with a black and silver finish.", + "The image is of a CD player on a table.", + "The image is of a black CD player with a silver screen.", + "This image is of a black CD player on a white background.", + "It's a close-up image of a black CD player with a round disc inside.", + "A CD player is a device that reads and plays optical discs such as CDs, CD-ROMs, and CD-Rs.", + "This is a CD player.", + "A close-up of a blue CD player with a silver disc inside.", + "A CD player is a device that plays audio CDs.", + "This is a CD player.", + "A CD player with a disc inserted.", + "Sylvania CD Player.", + "A portable CD player.", + "This is a CD player.", + "A CD player with a disc inserted.", + "This is a CD player." + ], + "cello": [ + "A cello is a large, bowed string instrument that is played horizontally.", + "A cello typically has four strings that are played with a bow.", + "A cello typically has four strings which are stretched over a resonating chamber.", + "A cello is a string instrument with a long neck and a deep, resonant sound.", + "A cello typically has four strings, which are tuned in perfect fifths.", + "A cello is a string instrument with a body that is typically oval in shape.", + "Cello is a four-stringed, bowed musical instrument of the violin family.", + "A cello is a string instrument that is held vertically between the legs.", + "A cello typically has four strings and is held vertically between the legs.", + "A cello typically has four strings that are tuned in perfect fifths.", + "A cello is a musical instrument that is played by bowing or plucking the strings.", + "A cello is typically about four feet long and has four strings.", + "The cello is a large string instrument of the violin family.", + "A cello can be identified by its long neck, and large, curved body.", + "In addition to its large size, a cello can be identified by its thin neck and bowed shape.", + "The cello is the largest and lowest-pitched bowed string instrument in the modern symphony orchestra.", + "A cello is a musical instrument from the string family.", + "A cello looks like a large violin.", + "The shape of a cello is similar to that of a viola or violin, but it is much larger.", + "The cello is a large string instrument that is played with a bow.", + "A cello is a long, thin musical instrument with four strings.", + "A cello is a large string instrument that is held between the knees.", + "A cello looks like a four-stringed musical instrument with a neck, body, and bow.", + "A cello looks like a large, dark-colored violin.", + "A cello is a large stringed instrument with a bowed neck.", + "A cello is a bowed string instrument with four strings tuned in perfect fifths.", + "All cellos look similar.", + "A cello is a stringed instrument with four strings.", + "A cello looks like a large violin.", + "A cello has a long, narrow body with four strings.", + "It's an image of a cello resting on a stand in a dimly lit room.", + "The image is of a cello lying on its side on a stage.", + "I found an image of a cello on the internet that looks like it's made out of wood.", + "The cello in the image is a dark brown color with a glossy finish.", + "The image is of a cello on a stand.", + "The cello in the image is a dark wood color with a shining varnish.", + "The cello in the image is a rich brown color with a high gloss finish.", + "In the image, a cello rests on a hardwood floor in front of a window.", + "In the image, a cello rests on its side on a stage.", + "In the image, a cello is lying on its back on a stage.", + "The cello, a member of the string family of musical instruments, is played upright between the knees of the seated musician.", + "A cello in a music room.", + "A close-up of a cello, with its intricate woodwork and strings.", + "She played the cello like it was her only escape from the world.", + "A cello is a bowed string musical instrument of the viol family.", + "A cello is a stringed instrument in the bowed string family.", + "This is a cello.", + "A cello is a bowed string instrument with four strings tuned in perfect fifths.", + "An image of a cello with its strings.", + "A cello resting on a music stand." + ], + "mobile phone": [ + "A mobile phone is a small portable device with a screen and buttons.", + "A mobile phone is typically a rectangular device with a touch screen display.", + "A mobile phone typically has a display screen, keyboard, and buttons on the front.", + "A mobile phone is a small handheld device that has a screen, a keyboard, and a few other buttons.", + "A mobile phone typically has a display screen, keypad or touch screen, speakers, microphone, and camera.", + "A mobile phone is a small handheld device that has a touch screen, a camera, and many apps.", + "A mobile phone usually has a color screen, a numeric keypad or touchscreen, and buttons.", + "A mobile phone often has a touch screen interface and a variety of apps available to download.", + "A mobile phone is an electronic device that allows people to make and receive calls and texts.", + "A mobile phone is a handheld device that allows people to call and text each other.", + "Mobile phones can be identified by their unique serial numbers.", + "A mobile phone is a portable device that can make and receive phone calls over a radio link while moving around a wide geographic area.", + "You can identify a mobile phone by its long, rectangular shape and smooth, glossy surface.", + "A mobile phone can be identified by its serial number, which is typically located underneath the battery.", + "You can identify a mobile phone by its long, rectangular shape and smooth, glossy surface.", + "you can identify a mobile phone by its rectangular shape, touch screen, and the camera on the back.", + "A mobile phone is a handheld device that has many of the same capabilities as a computer.", + "Not all mobile phones have external identifiers.", + "The best way to identify a mobile phone is by the brand name.", + "There are many ways to identify a mobile phone.", + "A mobile phone typically looks like a small hand-held device with a screen, a keypad, and buttons.", + "A mobile phone typically has a metal or plastic casing, a display screen, a keypad or touchscreen, a speaker, a microphone, a camera, a battery, and a port for charging the battery or connecting the phone to another device,.", + "There is no one answer to this question as there are countless mobile phone manufacturers and models.", + "Most mobile phones have a rectangular shape with a color screen and a physical keypad or touchscreen.", + "A mobile phone typically has a rectangular shape with a touchscreen display, physical buttons, and a speaker.", + "A mobile phone typically has a case, a display screen, buttons or a touchscreen, and a Speakerphone.", + "Images of mobile phones can be found online.", + "A mobile phone is a small, portable device that has a screen, a keyboard, and buttons.", + "A mobile phone typically has a case or housing that encloses the electronic components of the phone.", + "A mobile phone typically has a touch screen, camera, text messaging, and phone call capabilities.", + "The image is of a mobile phone with a black screen.", + "The image is of a rose gold mobile phone with a diamond-patterned case.", + "The image is of a white mobile phone with a green screen.", + "The image might show a mobile phone with a brightly lit screen.", + "Image shows a glossy, rose gold mobile phone with a touchscreen display.", + "The image shows a woman using a mobile phone.", + "In the image, a mobile phone is seen lying on a flat surface with its screen lit up.", + "There is an image of a mobile phone on the internet.", + "The image is of a mobile phone with a blue case.", + "An image from the internet of a mobile phone shows a device with a large screen, a small bezel, and a physical Home button.", + "A picture of a Smartphone with various applications open.", + "A mobile phone with a blue case and screen.", + "A woman texting on her phone.", + "Unlocked black mobile phone on a table.", + "A new mobile phone that is being released soon.", + "A mobile phone with a blue case.", + "The latest iPhone from Apple.", + "A close-up of a woman's hand holding a rose-gold iPhone 8The photo caption might read:A close-up of a woman's hand holding a rose-gold iPhone 8.", + "A mobile phoneA mobile phone is a type of communication device that is small, portable, and easy to use.", + "The newest iPhone from Apple." + ], + "chain": [ + " Chain is a sequence of connected links.", + "The links in a chain are connected to each other and form a loop.", + "A chain is a series of connected links that are typically made of metal.", + "A chain is usually made up of a series of connected metal links.", + "A chain looks like a series of metal links that are connected together.", + "If you were to look at a chain under a microscope, you would see that it is made up of a series of small, circular links.", + "A chain can look like a lot of things, but typically it is a series of metal links that are connected together.", + "A chain is a series of connected links that are typically made of metal.", + " in PythonA chain in Python is a data structure that holds a sequence of elements.", + "A chain is a series of connected links that are used to pull or hold something.", + "A chain can be identified by its length, as well as the thickness of its links.", + "A chain can be identified by its links.", + "A chain is a string of connected links that are typically made of metal.", + "The most common way to identify a chain is by its pitch, which is the distance between three consecutive rivets divided by two.", + "A chain can be identified by its links.", + "A chain is a series of connected rings or links.", + "A chain has links that are connected to form a loop.", + "A chain can be identified by its links, which are usually metal, and by its connectors, which are usually metal or plastic.", + "A chain has a series of links that are connected together.", + "A chain is a sequence of connected links.", + "A chain looks like a series of connected metal links.", + "A chain looks like a series of connected metal rings.", + "A chain looks like a series of links that are connected together.", + "A chain looks like a series of connected loops.", + "It looks like a chain! It has tons of little metal rings all hooked together.", + "A chain looks like a line of connected metal loops.", + "A chain looks like a metal loop with round or oval-shaped links.", + "A chain is a series of connected links that are typically made of metal.", + "The chain is a continuous series of metal rings that are connected to each other.", + "A chain typically comprises a series of connected links.", + "A chain is a series of links that are connected together.", + "A chain is a link of metal that is used to fasten or secure things together.", + "A chain is a sequence of links that are connected together.", + "The image is of a chain with a large padlock.", + "An image of a chain from the internet shows a metal chain with large, round links.", + "One image that comes to mind is of a large, rusty chain encircling the hull of an old ship.", + "mail armorThis is an image of a chainmail armor that is being worn by a person.", + " sawThe image is of a large, gas-powered chain saw.", + " in the windA long, silver chain is blowing in the wind.", + "A chain can be seen as a symbol of strength and security.", + "Close-up of a gold chain with intricate detailing.", + "A broken chain.", + " A broken chain.", + "This is a close-up of a chain.", + "The largest chain in the world.", + "The Strongest Chain.", + "Gold chain with heart pendant.", + "The chain is broken.", + "A chain link fence.", + "A chain is a series of connected things or events." + ], + "chain-link fence": [ + "Chain-link fence typically consists of posts and rails held together by wire mesh.", + "A chain-link fence is made up of metal posts and vertical metal rods that are interconnected to form a diamond shape.", + "A chain-link fence is a type of fence made from metal wire that is woven together in a diamond pattern.", + "A chain-link fence is a type of fencing made from woven wire that is coated with a layer of zinc.", + "A chain-link fence has a series of vertical wires that are interconnected with horizontal wires.", + "A chain-link fence consists of metal posts and metal wires that are interwoven to create a diamond-shaped pattern.", + "A chain-link fence is a type of woven fence usually made from galvanized or LLDPE-coated steel wire.", + "A chain-link fence is made of metal and has a series of interconnected diamond-shaped wire mesh panels.", + "A chain-link fence is made up of metal posts and metal wires that are interwoven to form a diamond pattern.", + "A chain-link fence has metal posts and metal rods that are connected together with metal wire.", + "Chain-link fences are made up of metal wires that are woven together to form a mesh.", + "A chain-link fence has a mesh made of interwoven wires.", + "The best way to identify a chain-link fence is by its characteristic diamond-shaped pattern.", + "The most obvious way to identify a chain-link fence is by its appearance.", + "You can identify a chain-link fence by its diamond-shaped pattern.", + "The most common way to identify a chain-link fence is by its diamond-shaped pattern.", + "A chain-link fence can be identified by its diamond-shaped pattern.", + "A chain-link fence has diamond-shaped gaps between the vertical and horizontal wires.", + "A chain-link fence has a series of vertical metal posts that are connected by horizontal metal bars.", + "The best way to identify a chain-link fence is by its construction.", + "A chain-link fence is typically made of galvanized steel and consists of interwoven wires that form a diamond pattern.", + "A chain-link fence typically has a galvanized steel finish and consists of interwoven metal wires that form a diamond pattern.", + "A chain-link fence looks like a series of metal posts and metal wires that are woven together to form a fence.", + "A chain-link fence is a type of fencing that is made up of a series of metal posts that are connected together by metal wires.", + "Chain-link fences have a series of metal wires running vertically and horizontal that are woven together to create a diamond-shaped opening.", + "A chain-link fence is a type of fencing that consists of a series of metal posts and metal loops.", + "A chain-link fence is a type of fence made from interconnected metal wires.", + "A chain-link fence consists of interwoven wires that form a diamond-shaped pattern.", + "A chain-link fence is made of metal wires that are woven together to create a diamond pattern.", + "A chain-link fence has narrow metal posts spaced evenly along a metal framework.", + "The image is of a chain-link fence with a blue sky in the background.", + "The image is of a chain-link fence with a metal post in the middle.", + "A chain-link fence is a type of fencing made from interconnected metal wires.", + "The image is of a chain-link fence with a metal frame.", + "The image is of a chain-link fence with a green background.", + "I found an image of a chain-link fence that looks like it is surrounding a playground.", + "In the image, there is a chain-link fence that appears to be surrounding a school playground.", + "A chain-link fence is a type of fence made from interlocking metal wires.", + "The image could show a chain-link fence in a variety of contexts.", + "The image is of a chain-link fence that has been cut open.", + " A chain-link fence keeps people and animals in or out of an area.", + "A chain-link fence is a type of fence made from interwoven metal wires.", + " A chain-link fence topped with barbed wire.", + "A chain-link fence.", + "A chain-link fence surrounds a green field.", + "A chain-link fence is a type of fencing made from interconnected metal wire.", + "A chain-link fence separates a green field from a parking lot.", + " A fence made of metal wires joined together by metal or plastic rings.", + "A chain-link fence is a type of fencing made from woven wire that is wrapped around metal posts.", + " A symbol of division and theft)A chain-link fence is a symbol of division and theft." + ], + "chain mail": [ + "Chain mail looks like a shirt made out of small metal circles that are connected together with smaller metal rings.", + "Chain mail is a type of armor that was used in the past.", + "A chainmail looks like a piece of armor made up of small metal rings that are interlinked together.", + "A chain mail looks like a mesh of metal rings that are interlocked together.", + "A chain mail typically looks like a shirt made out of small metal rings that are linked together.", + "Chain mail is a type of armor that consists of small metal rings that are linked together to form a mesh.", + "A chain mail is usually composed of small metal rings linked together in a pattern to form a mesh.", + "A chain mail is a shirt made of small metal rings that are connected together.", + "A chain mail looks like a piece of armor that covers the body, made of interlocking metal rings.", + "A chain mail looks like a piece of armor made of small metal rings interconnected with each other.", + "Look for a series of connected metal rings.", + "There are a few ways to identify chain mail.", + "Chain mail is a type of armor that was traditionally made of interlocking metal rings.", + "Chain mail is traditionally made from interlocking rings of metal.", + "The best way to identify a chain mail is to look for the small rings that are interconnected to create the mesh.", + "There are several ways to identify a chain mail.", + "Chain mail is a type of armour that was used in medieval times.", + "Chain mail is a type of armor that is made up of small metal rings that are connected together.", + "Chain mail is a type of armor that was made from interlocking metal rings.", + "A chain mail is a piece of armor that consists of small metal rings connected together in a pattern.", + "Chain mail looks like a suit of armor made up of small metal rings connected together.", + "Chain mail consists of rings of metal interconnected with each other.", + "Chain mail looks like a shirt made out of small metal rings.", + "Chain mail consists of small metal rings that are connected together to form a mesh-like fabric.", + "A chain mail shirt looks like a tunic made out of small metal rings.", + "A chain mail is a piece of armor that is made from small metal rings that are connected together.", + "A chain mail looks like a shirt made out of small metal rings.", + "This is a difficult question.", + "A chain mail is a piece of armor that consists of small metal rings that are linked together to form a mesh.", + "A chain mail looks like a shirt made of small metal rings.", + " shirtThis image is of a chain mail shirt.", + " gloveThe image from the internet is of a chain mail glove that is made from interlocking metal rings.", + " shirtThis image is of a traditional chain mail shirt.", + " shirtA chain mail shirt is made from interlocking metal rings and typically covers the torso and arms.", + " shirtThis image is of a chain mail shirt that is most likely from the medieval era.", + " shirtThe image shows a shirt made of small metal rings connected together.", + " shirtThe image from the internet is of a chain mail shirt that is made from interlocking metal rings.", + " armorAn image of chain mail armor from the internet would most likely depict a suit of armor made from interlocking metal rings.", + " shirtImage is of a chain mail shirt.", + " shirtThis image is of a chain mail shirt that looks like it is made of interlocking metal rings.", + "An image of a chain mail, a type of armor made from interlocking metal rings.", + " A close up of a chain mail shirt.", + "A close up of a section of chain mail armor.", + "A close up of a knights chain mail, showing the intricate weaving of the metal rings.", + "Chain mail, an ancient form of armor made from interlocking metal rings, was once used by knights and warriors to protect themselves in battle.", + "Chain mail is a type of armor that was historically used to protect knights and soldiers from being wounded in battle.", + "Chain mail being made.", + "\"Detail of a chain mail shirt.", + "an image of a chain mail close up.", + "A." + ], + "chainsaw": [ + "Typically, a chainsaw is a handheld, mechanical saw that has a long, sharp blade with teeth that is driven by a chain.", + "A chainsaw is a portable, mechanical saw which cuts with a set of teeth attached to a rotating chain that runs along a guide bar.", + "Chainsaws are typically long and cylindrical with a sharp blade at the front.", + "A chainsaw is a portable, mechanical saw which cuts with a set of teeth attached to a rotating chain that runs along a guide bar.", + "A chainsaw generally has a long bar with a sharp blade at the end, and is powered by a gas engine.", + "A chainsaw has a long, sharp blade that is attached to a handle.", + "A chainsaw is a mechanical saw that has a long, sharp blade that is attached to a rotating chain.", + "Chainsaws are handheld power tools that look like a large saw with a long, sharp blade attached.", + "Chainsaws are long and thin with a blade on one end and a handle on the other.", + "A chainsaw is a portable, mechanical saw which cuts with a set of teeth attached to a rotating chain that runs along a guide bar.", + "A chainsaw is a portable, mechanical saw which cuts with a set of teeth attached to a rotating chain that runs along a guide bar.", + "A chainsaw is an handheld saw with a long blade that is used for cutting through tree trunks and branches.", + "The easiest way to identify a chainsaw is by the long bar that protrudes from the front of the saw.", + "You can identify a chainsaw by its long bar and chain that go around the end of the bar.", + "The easiest way to identify a chainsaw is by the long, sharp blade at the front.", + "The most obvious way to identify a chainsaw is by its long, sharp blade.", + "A chainsaw is a power tool that has a long, sharp blade that can be used to cut through wood.", + "Chainsaws are usually very loud and have a large blade on the end.", + "Can vary, but most have a large cutting blade at the front of the saw, and a smaller guide blade at the back.", + "Ideally, you should identify a chainsaw by its manufacturer, model, and serial number.", + "A chainsaw is a hand-held power tool with a long, sharp metal blade.", + "Chainsaws are usually long and have a handle.", + "A chainsaw typically has a long bar with a chain that wraps around it.", + "A chainsaw is a handheld tool that has a long, sharp blade with teeth that is used for cutting wood.", + "Most chainsaws have a long metal bar with teeth along one edge that protrude from the body of the saw.", + "A chainsaw consists of a small, handheld engine with a large, rotating chain.", + "A chainsaw looks like a large saw with a long blade attached to a chain that runs along a guide bar.", + "This is a chainsaw.", + "A chainsaw typically has a long bar with a chain that wraps around it.", + "A chainsaw looks like a large, handheld saw with a long, sharp blade.", + "The image is of a red and black chainsaw on a white background.", + "An image of a chainsaw from the internet might depict a person holding the chainsaw and cutting a piece of wood.", + "The image from the internet of a chainsaw is a close-up picture of a blue and silver chainsaw.", + "The image is of a black and orange chainsaw with a long blade.", + "The image is of a black and silver chainsaw resting on a green and brown leafy surface.", + "A chainsaw is a tool for cutting wood.", + "The image is of a chainsaw cutting through a tree trunk.", + "In the image, a man is holding a large, powerful-looking chainsaw.", + "The image is of a black and red chainsaw with a sharp blade.", + "The image shows a black and yellow chainsaw with a long blade.", + "A chainsaw being used to cut through a tree trunk.", + "Chainsaw.", + "Chainsaw isolated on a white background.", + "This chainsaw is perfect for cutting through thick tree branches.", + "A chainsaw being used to cut down a tree.", + "A worker uses a chainsaw to cut down a tree.", + "Chainsaw.", + "This is a chainsaw.", + "This is a chainsaw.", + "The best way to quickly and easily cut through thick tree branches is with a chainsaw." + ], + "storage chest": [ + "A storage chest typically looks like a box with a lid.", + "A storage chest is a large, rectangular box that is used to store items.", + "A storage chest is typically a large, rectangular box with a lid.", + "A storage chest is a large, box-shaped piece of furniture that is used to store items.", + "A storage chest is a box used for storing items.", + "A storage chest is typically a box-shaped piece of furniture with a lid that can be opened and closed.", + "A storage chest is generally a rectangular box with a lid.", + "A storage chest is a rectangular box with a lid.", + "Most storage chests are rectangular and made of wood.", + "A storage chest is a rectangular box with a lid.", + "There is no definitive answer to this question, as there are a variety of chests that can be used for storage purposes.", + "A storage chest is a piece of furniture that is used to store items.", + "A storage chest is a box that is used to store items.", + "A storage chest can typically be identified by its size and shape.", + "A storage chest is a type of furniture that is used for storing items.", + "There is no definitive answer to this question, as the features that identify a storage chest can vary depending on the specific piece of furniture.", + "One way to identify a storage chest is by its rectangular shape and flat top.", + "A storage chest may be identified by its rectangular shape and its Aragonese-style iron handles and locks.", + "Most storage chests are made of wood or plastic and have a lid that opens for storage.", + "A storage chest is a type of furniture that is used to store items.", + "A storage chest is a box or bin that is used to store items.", + "A storage chest is a type of furniture that is used to store items.", + "Storage chests come in all shapes and sizes.", + "A storage chest typically looks like a box with a lid.", + "A storage chest is a large box designed for storing items.", + "A storage chest is a container with a lid and a handle.", + "A storage chest is a type of box that is used for storing items.", + "A storage chest is a box like piece of furniture that is used to store items.", + "A storage chest is a large container with a lid on it that is used to store things.", + "There are many different types and styles of storage chests, so it is difficult to provide a single answer to this question.", + "The image is of a storage chest that is made out of wood.", + "The image is of a large, metal storage chest with a hinged lid.", + "The image is of a large, brown storage chest.", + "This storage chest is made of wood and has a natural finish.", + "This image is of a storage chest that is made out of wood.", + "This is a photo of an old, wooden storage chest.", + "The image is of a wooden storage chest with a lid.", + "A storage chest is a large, often decorative box with a hinged lid, used for storing things.", + "The image is of a large, ornate storage chest.", + "A storage chest is a box, usually made of wood, with a lid that opens to reveal a space for storing things.", + "A small, dark wood storage chest with a simple brass latch.", + "Keep your belongings safe with this sturdy storage chest.", + " \"A locked storage chest in a dungeon.", + " Lane Cedar Chest for storing blankets and other household items.", + "A storage chest full of clothes, textbooks, and other items.", + "A storage chest made of wood and metal, with a metal latch.", + "An old, wooden storage chest filled with various items.", + "A storage chest filled with books, clothes, and other things.", + " A Western-style storage chest made of dark wood with a simple designThis storage chest is a great way to keep your belongings organized and tidy.", + " An old storage chest made of wood and metalThis storage chest is made of wood and metal, and looks like it's seen better days." + ], + "chiffonier": [ + "A chiffonier is a tall, narrow, chest of drawers.", + "A chiffonier is a tall wardrobe with usually five or six drawers stacked one above the other.", + "A chiffonier looks like a tall dresser with a mirror attached.", + "A chiffonier generally refers to a tall, narrow dresser with deep drawers, sometimes featuring a mirror attached.", + "A chiffonier is a tall, free-standing cabinet used for storing clothes and other items.", + "Chiffoniers are tall, thin pieces of furniture with multiple drawers.", + "A chiffonier is a tall, ornate chest of drawers.", + "A chiffonier is a tall, slender cabinet, typically with six or seven drawers, and is used for storing clothes.", + "A chiffonier is a tall, free-standing piece of furniture with shelves, drawers, or cupboards, used for storing clothes or other household items.", + "A chiffonier is a tall, narrow cabinet with drawers, typically used for storing clothes.", + "A chiffonier is a large and tall dresser with a lot of storage space that is typically used in a bedroom.", + "A chiffonier is a type of cabinet or dresser that is typically tall and thin, with multiple drawers.", + "There are a few ways to identify a chiffonier.", + "A chiffonier often has a large mirror affixed to the back, and typically has very ornate details.", + "In furniture, a chiffonier is a type of cabinet, often with glass doors, which is used for storing clothes or other linens.", + "A chiffonier is a type of tall, free-standing cabinet that is typically used for storing clothing and linens.", + "A chiffonier is a tall, slender cabinet used for storing clothes or other items.", + "A chiffonier is an upright cabinet that is used for storing clothes and other items.", + "A chiffonier is a type of chest of drawers, typically taller and narrower than a dresser.", + "A chiffonier is a tall, narrow chest of drawers that is typically used in a bedroom to store clothing.", + "A chiffonier is a tall piece of furniture with several drawers for storing clothes or other items.", + "A chiffonier is a type of chest of drawers or cabinet, often tall and narrow, used for storing clothes.", + "A chiffonier is a type of tall, thin wardrobe that is typically used to store clothing.", + "A chiffonier is a type of tall, thin cabinet that is typically used for storing clothes.", + "A chiffonier typically has a tall, narrow frame with six to seven small drawers near the top and one large drawer at the bottom.", + "A chiffonier often looks like a tall, slender dresser with drawers.", + "A chiffonier is a tall, narrow chest of drawers.", + "A chiffonier is a tall, narrow chest of drawers, typically with ornate hardware.", + "A chiffonier is a tall, narrow chest of drawers, typically with ornate details.", + "A chiffonier has a long, rectangular body with several drawers of varying sizes.", + "This image is of a chiffonier with three drawers and two doors.", + "The image is of a piece of furniture that looks like an elegant cabinet.", + "In this image, a chiffonier is a tall, free-standing wardrobe or dresser with several drawers, typically used for storing clothes.", + "The image is of a white chiffonier with gold trim.", + "The image is of a white chiffonier with three drawers.", + "This image is of a chiffonier with six drawers.", + "A chiffonier is a tall, narrow piece of furniture with shelves or drawers, used for storing clothes or other household items.", + "An image of a chiffonier from the internet shows a tall, narrow cabinet with multiple shelves and drawers.", + "The image is of a white chiffonier with three drawers.", + "This image shows a chiffonier with six drawers.", + "A beautiful mahogany chiffonier with intricate carving and a mirror.", + "An intricately carved mahogany chiffonier, circa 1800.", + "A beautiful antique chiffonier with intricate carving and a delicate finish.", + "A closeup of a chiffonier, with its drawers and knobs.", + "Chiffonier, Late 18th Century\n French\n Cherrywood, mahogany veneer, and marquetry\n H: 221.", + "A beautiful antique mahogany chiffonier, perfect for any bedroom.", + "An intricately carved mahogany chiffonier, circa 1800.", + "This chiffonier was likely made in the 18th century.", + "This chiffonier was made in France in the early 1800s.", + "A chiffonier is a type of cabinet often used to store clothing or linen." + ], + "bell or wind chime": [ + "A bell is a percussive instrument made of metal or another sonorous material that produces a sound when struck, either with a clapper inside of it, or by being struck on the outside by another object.", + "A bell is a hollow metal object that has a clapper inside.", + "A bell or wind chime is a decorative object that hung outdoors.", + "A bell or wind chime is a decorative object that hangs in the air and makes a sound when the wind blows.", + "A bell or windchime typically consists of a series of metal tubes or rods suspended from a central structure.", + "A bell or wind chime typically consists of a metal or wooden frame with a series of hung tubes, plates, or shells of different sizes.", + "A bell or wind chime typically consists of a series of metal or glass rods that are suspended from a frame.", + "A bell or wind chime is typically a metal or glass object that hangs from a string or rod.", + "A bell (or wind chime) is typically a metal or glass object that is hung from a string or rod.", + "A bell or wind chime is a object that has a clapper inside of it and when the wind blows it hits the clapper and makes a noise.", + "The sound of a bell or wind chime is typically a high, clear tone.", + "A bell or wind chime can be identified by its sound.", + "A bell or wind chime has a distinct sound that is usually high-pitched and tinkling.", + "One way to identify a bell or wind chime is to look for a clapper inside the bell.", + "The sound of a bell or wind chime is distinctive and hard to miss.", + " bells are usually made of metal and have a clapper inside that makes a ringing sound when the bell is struck.", + "A bell or wind chime can be identified by its distinctive sound.", + "The sound of a bell or wind chime is unique and immediately recognizable.", + "The sound of a bell or wind chime is unique and can be recognized easily.", + "A bell or wind chime can be identified by the sound it makes when it is rung or when the wind blows through it.", + "A bell is a hollow metal object that has a clapper inside.", + "A bell is a metal object that makes a ringing sound when it is hit.", + "A bell is a metal object that has a clapper inside of it.", + "A bell is a metal object that makes a ringing sound when it is hit.", + "Some bells and wind chimes are very simple and only consist of a few metal rods.", + "A bell or wind chime looks like a metal or wooden frame with metal or wooden rods of different lengths hanging from it.", + "A bell or wind chime is a decoration that hangs from a window or door.", + "A bell or wind chime typically consists of a metal or wood frame with one or more metal rods or tubes of different lengths.", + "A bell is a shape that comes to a point at the bottom and is round at the top.", + "A bell or wind chime typically consists of a series of metal or wooden rods of graduating length, suspended from a metal or wooden frame.", + "This image is of a blue and white bell wind chime hanging from a tree.", + "The image is of a bell hanging from a wrought iron hook.", + "This image is of a small, metal bell suspended from a string.", + "The image shows a silver bell with a green ribbon attached.", + "The image shows a brown and gold bell with a green chime hanging from a tree.", + "This image is of a bluebell wind chime.", + "The image shows a wind chime composed of five metal tubes of different lengths.", + "This image is of a bell wind chime.", + "This image shows a bell or wind chime that is made of metal and has a design of a bird on it.", + "One image from the internet of a bell or wind chime depicts a large, ornate bronze bell suspended from a wooden frame.", + "The wind chimes hang in the garden and tinkle in the breeze.", + "The tinkling of the bell in the wind is a soothing sound.", + "Soothing chimes in the wind.", + "The wind chime hangs from the eaves of the house, sending a gentle tinkling sound through the air.", + "In many cultures, bells and wind chimes are thought to bring good luck and ward off evil spirits.", + "The gentle tinkle of this bell wind chime is a soothing sound that brings peace to any backyard or patio.", + "Each clapper on this wind chime is inscribed with a different wish.", + "The sound of the wind chime is soothing.", + "The soothing sound of the wind chime is a welcome addition to any home.", + "The soft tinkle of the bell is a gentle reminder that the wind is always blowing." + ], + "china cabinet": [ + "A china cabinet is a cabinet that is used to store and display china.", + "A china cabinet is a piece of furniture that typically has glass doors and shelves.", + "A china cabinet usually has two parts: a base and a hutch.", + "A typical china cabinet is a tall, slender cabinet with glass doors on the front and shelves inside for storing anddisplaying china dishes and other items.", + "A china cabinet is a type of cupboard or cabinet used to display china dishes, glassware, or other collectibles.", + "A china cabinet is a piece of furniture with shelves and doors that is used to display and store dishes and other Chinaware.", + "A china cabinet is a large, standing cabinet that is used to store and display china, glassware, or other collectibles.", + "A china cabinet is a wooden cabinet typically used to display and store fine China dishes and other collectibles.", + "A china cabinet is a type of cabinet that is used to store and display china, or other types of dishware.", + "A china cabinet is a tall, wood cabinet that is used to display China plates and other decorative items.", + "A china cabinet is a type of cabinet that is used to display china dishes and other items.", + "by looking for one in a china shop.", + "A china cabinet is usually a wooden cabinet with glass sides and doors, used for displaying china plates and cups.", + "A china cabinet is a piece of furniture that is used to display and store china or other items.", + "The best way to identify a china cabinet is to look for a label or stamp that says \"china cabinet.", + "A china cabinet is a type of cabinet that is used to display and store china dishes.", + "A china cabinet is a piece of furniture that is used to store and display items such as china plates, cups, and saucers.", + "A china cabinet is usually made of wood and is used to display and store china.", + "A china cabinet is typically a tall, elegant cabinet that is used to display china dinnerware.", + "A china cabinet is typically a freestanding storage unit with shelves and doors that is used to display and store china and other delicate items.", + "A china cabinet is a piece of furniture that is used to display and store china.", + "A china cabinet typically has a glass front and sides, and may or may not have a wooden frame.", + "A china cabinet typically has a glass front and sides, and may have a wooden or metal frame.", + "A china cabinet is a small cabinet with shelves or drawers that is used to store or display china or other fine porcelain dinnerware.", + "A china cabinet is a piece of furniture that is used to store and display dishes, often made of china.", + "A china cabinet is a piece of furniture with shelves and often glass doors that is used to display china dishes and other collectibles.", + "A china cabinet looks like a traditional cabinet with shelves and doors.", + "Traditional china cabinets are made of wood and glass, and feature shelves and drawers for storing and displaying china and other items.", + "A china cabinet is a tall, narrow cabinet that is used for storing and displaying china and other fine dishes.", + "A china cabinet is a piece of furniture that is used to display and store plates, bowls, cups, and other dishware.", + "The image is of a white china cabinet with two doors and two drawers.", + "A china cabinet is a tall, slim cabinet that is used to store or display dishes, cups, and other dining items.", + "This image is of a modern china cabinet.", + "A china cabinet is a tall, narrow cabinet that is used to store and display china dishes and other fragile items.", + "This image is of a china cabinet that is made out of dark wood.", + "The image is of an ornate china cabinet with a glass front.", + "This china cabinet is made of wood with a dark finish.", + "A china cabinet is a cabinet that is used to store and display china dishes.", + "A china cabinet is a cabinet used to store or display china, typically in a dining room.", + " An image of a china cabinet might show a tall, wooden piece of furniture with glass doors and shelves inside for displaying plates and other dishes.", + "A China Cabinet in a Living Room.", + "Beautiful blue and white china cabinet.", + "This beautifully crafted china cabinet is the perfect way to display your treasured china and other collectibles.", + "This beautiful china cabinet was made in the early 1900s.", + "A beautiful china cabinet with intricate details.", + "This china cabinet was made in the Early American style.", + "A china cabinet with glass doors and shelves.", + "A china cabinet is a type of cabinet that is used to store and display china dishes.", + "Beautiful antique china cabinet.", + "This is a china cabinet that is in my dining room." + ], + "Christmas stocking": [ + "A Christmas stocking is an empty sock or sock-shaped bag that is hung on Christmas Eve to be filled with small toys, candy, fruit, coins or other small gifts.", + "A Christmas stocking is a small bag made of cloth, felt, or other materials.", + "A Christmas stocking is a sock or sock-shaped bag that is filled with small gifts, candy, and other treats on Christmas Eve.", + "A Christmas stocking is a bag made of cloth, often red or white, that is hung from a mantel or fireplace on Christmas Eve.", + "A Christmas stocking is often red or green, and is hung by the fireplace on Christmas Eve.", + "A Christmas stocking is a red or green woolen sock with a white cuff.", + "A Christmas stocking is a stocking that is hung on a fireplace on Christmas Eve.", + "A Christmas stocking typically is a red or green stocking that is hung by the fireplace on Christmas Eve.", + "A Christmas stocking is a red or green sock with decorations on it.", + "A Christmas stocking is a hanging sock or sock-shaped bag that is typically filled with small toys, candy, fruit, coins or other small gifts.", + "A Christmas stocking is a long, funnel-shaped bag that is usually hung by the fireplace on Christmas Eve.", + "One way to identify a Christmas stocking is by its shape.", + "One clue that a stocking is meant for Christmas is if it is red and white.", + "A Christmas stocking typically has a red or green base, with a white cuff at the top.", + "A Christmas stocking may be identify by its colorful design, its size, and its shape.", + "A Christmas stocking is usually red or green and has a white fur trim.", + "A typical Christmas stocking is red or green with a white cuff at the top.", + "Some features of a Christmas stocking that can be used to identify it are that it is typically red or green, has a white cuff at the top, and is decorated with holiday images such as Santa Claus, reindeer, or elves.", + "A Christmas stocking usually has a red and white color scheme, and is often decorated with snowflakes, reindeer, or Santa Claus.", + "Some ways that you can identify a Christmas stocking are by its shape, color, and size.", + "A Christmas stocking is a sock-shaped bag that is traditionally filled with small gifts, candy, and other goodies on Christmas Eve.", + "A Christmas stocking is often red or green, decorated with fur, and has a cuff at the top.", + "A Christmas stocking is usually a cone-shaped stocking that is hung by the fireplace.", + "A Christmas stocking is typically shaped like a sock and is decorated with holiday themes.", + "A Christmas stocking is generally red or green, has a pointed toe, and is decorated with a white cuff.", + "The traditional Christmas stocking is red and white, and is hung from the mantel.", + "Christmas stockings are often red and white, and are hung by the fireplace.", + "A Christmas stocking typically is red or green, has a white cuff at the top, and is filled with small toys, candies, and other gifts.", + "A Christmas stocking typically has a red and white or green and white stripe pattern.", + "A Christmas stocking looks like a red or green sock with white fur around the top.", + "The image is of a red and white Christmas stocking with a green cuff.", + "This image is of a traditional red Christmas stocking with white fur trim.", + "Image is of a red and white stocking with a snowflake design.", + "The image from the internet of a Christmas stocking is of a traditional red and white stocking with candy canes and presents inside.", + "It's a photograph of a red and white Christmas stocking hanging on a fireplace mantel.", + "A Christmas stocking is typically red or green, and is filled with small presents and candy.", + "This image is of a brightly-colored Christmas stocking.", + "This image shows a traditional red Christmas stocking with a white cuff.", + "I found an image on the internet of a Christmas stocking that is red and white with a green cuff.", + "This image is of a traditional red Christmas stocking with a white cuff.", + "A Christmas stocking complete with candy canes, gingerbread cookies, and a festive snowman mug.", + " Santa's Little HelperThis little dog is eagerly awaiting Santa's arrival on Christmas Eve!.", + "A Christmas stocking filled with candy and small toys.", + "Christmas Stocking.", + " A child's Christmas stocking hanging from a fireplace MantelThis image is of a child's Christmas stocking hanging from a fireplace mantel.", + "A Christmas stocking overflowing with presents.", + "A knit Christmas stocking filled with presents and hung by the fireplace.", + "Merry Christmas!.", + "My Christmas Stocking!.", + "A big, red Christmas stocking full of presents." + ], + "church": [ + "A church is a building used for public Christian worship.", + "A church is a house of worship for Christians.", + "A church looks like a large building with a steeple on top.", + "A church looks like a place where people go to worship.", + "A church is a building where people go to worship.", + "A church can have many different looks, but often includes a steeple, a cross, and large doors.", + "There are a variety of church designs and styles, but most churches have a few common features.", + "A church typically has a long, rectangular shape with a tall ceiling.", + "A church typically has a rectangular or cross-shaped floor plan, with aisles running along the walls and a raised platform at the far end.", + "A church typically has a tall steeple in the front, and is a large building.", + "a church can be identified by its features which include a pulpit, an altar, stained glass windows, and a bell tower.", + "There are a few ways that you can identify a church.", + "There are a few ways to identify a church.", + "A church is a building used for religious worship.", + "One way to identify a church is by its physical characteristics.", + "A church is typically a Christian place of worship.", + "There are a few ways to identify a church:-The building: Churches are typically designed with a cross on the front of the building, stained glass windows, and a bell tower.", + "There are many ways to identify a church.", + "There is no definitive answer to this question, as there are a wide variety of churches that exist across the world.", + "The sign out front usually says \"church.", + "There is no definitive answer to this question as different churches can have different architectural styles.", + "There is no one answer to this question as there are many different types of churches.", + "A church is typically a building with a steeple and a place for worship.", + "There is no one answer to this question since there are so many different types of churches.", + "A church can look like a variety of things depending on the denomination, culture, and geographical location.", + "There is no one answer to this question, as churches can come in a wide variety of shapes and sizes.", + "There is no one answer to this question as churches can take on many different forms and appearances.", + "A church looks like a building where people go to worship god.", + "A church has a pulpit for the preacher, usually at the front of the room.", + "Architecturally, churches can come in all shapes and sizes, from the simple and traditional to the grand and ornate.", + "The image is of a large, Gothic church.", + "The image is of a large, white church with a tall spire.", + "The image is of a large, Gothic church.", + "This image is of a large, Gothic church.", + "I found an image of a church on the internet that I really like.", + "The image is of a large, formal-looking church with tall spires.", + "The image from the internet of a church shows a large, white building with a tall, pointed roof.", + "The image is of a large, traditional church with a long aisle and many pews.", + "This is an image of a church in Budapest, Hungary.", + "The church is a white building with a pointy roof.", + "The Church of the Nativity, in Bethlehem, is a church within the Palestinian Territories.", + "The Cathedral of Our Lady of the Angels, the principal church of the Diocese of Los Angeles.", + "The first African Methodist Episcopal Zion Church, built in 1801.", + "St.", + "The exterior of St.", + " A Gothic-style church with intricate designs on the exterior.", + "The exterior of a church with a tall spire and stained glass windows.", + "A church in the small town of Colonia Juarez, Mexico.", + "Looking up at the soaring spires of the Gothic cathedral, it's easy to feel awed by the religious architecture.", + "The Holy Trinity Church in my town." + ], + "movie theater": [ + "A movie theater is usually a large room with a big screen at the front.", + "There are usually a lot of people in a movie theater.", + "A movie theater looks like a large room with rows of chairs facing a screen.", + "Some movie theaters have a large lobby with a concessions stand.", + "A movie theater is a large room with a raised platform at one end for a screen.", + "Most movie theaters have rows of Elevated Seats that face a Large Screen at the Front of the theater.", + "A movie theater is a large room with a big screen at one end and many rows of chairs facing the screen.", + "A movie theater is a building where movies are shown on a large screen.", + "A movie theater usually has a large screen at the front of the theater, with rows of seats facing the screen.", + "A movie theater is a large room with rows of chairs facing a screen.", + "That is a difficult question.", + "The easiest way to identify a movie theater is by looking for a large building with a marquee that displays the names of the movies currently playing.", + "A movie theater usually has a sign with the name of the theater and the movie titles that are playing.", + "Some common features of movie theaters are large screens, surround sound, and comfortable seating.", + "A movie theater is a place where you can see movies.", + "There are a few ways you can identify a movie theater.", + "A movie theater is typically a large building with a sign that says \"Movie Theater\" or \"Cinema.", + "A movie theater typically has a large sign with the word \"theater\" on it.", + "The easiest way to identify a movie theater is by the marquee outside.", + "The easiest way to identify a movie theater is by its marquee, which is the large sign above the entrance that lists the movies currently playing.", + "A movie theater looks like a big room with a screen at the front and seats in rows.", + "A movie theater is typically a large room with a big screen at the front and rows of seats facing the screen.", + "A movie theater has a large screen at the front of the room and rows of seats facing the screen.", + "A movie theater has a large screen at the front of the room and rows of seats facing the screen.", + "A movie theater typically has a large screen at the front of the room, with rows of seats facing the screen.", + "A movie theater is a room with a large screen at one end.", + "A movie theater typically has a large projector screen at the front of the room and a raised area for the audience to sit.", + "A movie theater usually has a lot of seats, a big screen, and a projector.", + "A movie theater typically has a large screen at the front of the room, with rows of seats facing the screen.", + "A movie theater is a large room with a projection screen at the front and rows of chairs facing it.", + "One image that comes to mind is an image of the interior of a movie theater, with the large screen at the front, and the rows of seats leading back.", + "A movie theater is typically a large room with a screen at one end and rows of seats facing the screen.", + "This image depicts a movie theater with red curtains and a large screen.", + "The image is of a movie theater with a large screen.", + "A man and a woman sitting in a movie theater watching a film on the big screen.", + "A large, empty room with a single screen at the front.", + "It's a small, cozy theater with old-fashioned red velvet seats.", + "The image is of a grand movie theater with a large sign that reads \"Now Showing\".", + "A movie theater generally consists of a large screen at the front of the room, with rows of seats on either side.", + "In the image, there is a large movie theater with a concessions stand in the lobby.", + "Movie theater with empty seats.", + " Today's Feature: A Quiet Place.", + "A movie theater with large screens and comfortable seats.", + "A group of people stand in line to buy tickets to a movie at a theater.", + "Movie theater showing \"The Nightmare Before Christmas\".", + "Movie theater with large screen and comfortable chairs.", + "The theater is a place where people go to watch movies.", + "A movie theater is a place where people go to watch movies.", + "Movie Theatre.", + "Movie theater lobby with ticket counter." + ], + "cleaver": [ + "A cleaver is a large, heavy knife with a rectangular blade that is used for chopping meat.", + "A cleaver is a large, heavy kitchen knife with a rectangular blade that is often used for chopping meat.", + "A cleaver is a large, heavy knife that is used to chop meat and other tough food items.", + "A cleaver is a large knife that is typically used to cut through meat and bone.", + "A cleaver looks like a large kitchen knife with a wide, rectangular blade.", + "A cleaver is a large knife that is typically used to cut through thick pieces of meat.", + "A cleaver is a large, heavy knife with a sharp, rectangular blade that is used for chopping meat.", + "A cleaver is a large knife that is typically used to chop meat.", + "A cleaver looks like a large, heavy knife with a rectangular blade that tapers to a point.", + "A cleaver looks like a large knife with a thick blade.", + "A cleaver is a large, heavy knife that is used for chopping and mincing meats.", + "A cleaver is a kitchen knife with a heavy, broad blade that is often used to cut through bone.", + "A cleaver has a heavy, broad blade that tapers to a sharp point.", + "A cleaver typically has a large, square blade that tapers to a point.", + "If you are looking at a kitchen knife, you can identify a cleaver by its large size and rectangular blade.", + "At its most basic, a cleaver is a large, heavy knife that is designed for hacking through bone.", + "A cleaver is a large, heavy knife with a rectangular blade that is used for chopping.", + "One identifying feature of a cleaver is a heavy blade that tapers to a point.", + "A cleaver is a large, heavy knife that can be used to cut through bone.", + "A cleaver is a large, heavy knife that is usually used to cut meat.", + "A cleaver is a large, heavy knife that is used to chop meat.", + "A cleaver is a long, heavy knife with a rectangular blade that tapers to a blunt point.", + " Its a kitchen knife that is used for chopping through bone.", + "A cleaver is a type of knife that has a large, rectangular blade that is designed for chopping meats.", + "A cleaver looks like a thick, heavy knife with a wide, rectangular blade.", + "A cleaver is a thick, heavy knife with a large, rectangular blade.", + "A cleaver is a knife with a large, heavy, rectangular blade that is used for splitting meat and bones.", + "A cleaver is a large, heavy knife that is used to cut through thick pieces of meat.", + "A cleaver is a kitchen knife that looks like a large, heavy chef's knife.", + "A cleaver is a large, heavy knife that has a blunt edge.", + "This image is of a cleaver with a long, sharp blade.", + "The image is of a black metal cleaver with a long, sharp blade.", + "A cleaver is a large knife that is used for chopping meat.", + "A cleaver is a knife with a heavy, broad blade that can be used to chop through bone.", + "A cleaver has a large blade that tapers to a point.", + "The image is of a silver cleaver with a wooden handle.", + "A cleaver is a large knife that is used for chopping meat.", + "The image from the internet shows a close-up of a cleaver with a sharp blade.", + "A cleaver is a large knife that is typically used to cut through thick pieces of meat.", + "A cleaver is a large knife that is used to cut meat.", + "A butcher's cleaver, used for hacking through bone.", + "This is a cleaver, a type of kitchen knife.", + "A close-up of a cleaver, a type of large knife often used in cooking.", + " \"A dangerous weapon.", + "A close-up of a cleaver, a type of kitchen knife with a broad, heavy blade.", + "A cleaver is a large knife that is often used to chop meat.", + "The mighty cleaver, feared by all who cross its path.", + " An image of a Chinese meat cleaver on a cutting boardThis Chinese meat cleaver is great for chopping through tough meats.", + "A large kitchen knife with a broad, heavy blade.", + "A chef's knife, also known as a French knife or a cook's knife, is a type of large, versatile kitchen knife." + ], + "cliff dwelling": [ + "A cliff dwelling is a type of living space that was created by people in the past.", + "A cliff dwelling looks like a house that has been built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a structure that has been built into the side of a cliff.", + "A cliff dwelling looks like a house that has been built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a house or a group of houses that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "There are several ways to identify a cliff dwelling.", + "One way to identify a cliff dwelling is by looking for a large dwelling built into the side of a cliff.", + "A cliff dwelling is a type of house built by some Native Americans in the southwestern United States.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a type of dwelling or house that was built into the side of a cliff.", + "The most common type of cliff dwelling is the pueblo, which is a multi-story stone house that was built into the side of a cliff.", + "A cliff dwelling is a building that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a structure that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a structure that is built into the side of a cliff.", + "A cliff dwelling is a house that is built into the side of a cliff.", + "Most cliff dwellings were built within caves and under rock overhangs along cliffs.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "Cliff dwellings are usually built into the sides of cliffs or mountains.", + "Cliff dwellings typically look like a small village built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "A cliff dwelling is a type of house that is built into the side of a cliff.", + "This cliff dwelling is called Montezuma Castle and is located in Arizona.", + "The image is of a cliff dwelling in the American Southwest.", + "In the image, there is a cliff dwelling perched atop a tall, rocky cliff.", + "The image is of a cliff dwelling called Montezuma Castle.", + "In the image, there is a cliff dwelling amongst tall, green trees.", + "In the image, there is a cliff dwelling that appears to have been built into the side of a rocky outcropping.", + "An image of a cliff dwelling shows a large home that has been built into the side of a cliff.", + "The image shows a cliff dwelling in the American Southwest.", + "The image is of a cliff dwelling called Monte Alban.", + "This image from the internet shows a cliff dwelling in Canyonlands National Park in Utah.", + "Cliff dwelling in Mesa Verde National Park, Colorado.", + "Cliff Dwelling, Mesa Verde National Park, Colorado.", + "Cliff dwelling in Mesa Verde National Park, Colorado.", + "This is a cliff dwelling in the American Southwest.", + "A cliff dwelling in the American Southwest.", + " Mesa Verde Cliff Dwellings.", + "A photo of a cliff dwelling in Canyon de Chelly National Monument, Arizona.", + "A cliff dwelling is a type of house or shelter built into a cliff.", + "The cliff dwelling was built by the ancient Pueblo people.", + "Mesa Verde Cliff DwellingThis photo shows a cliff dwelling at Mesa Verde National Park in Colorado." + ], + "cloak": [ + "A cloak is a type of loose garment that is worn over other clothes.", + "A cloak is typically a long, loose-fitting outer garment with wide sleeves.", + "A cloak is a type of clothing that is worn over the top of other clothes and consists of a large piece of fabric that is draped over the body.", + "A cloak is a long, usually black, piece of clothing that is worn over other clothes.", + "A cloak is a type of clothing that is worn over the upper body and arms.", + "A cloak is a long, loose garment with a hood that is typically worn over other clothes.", + "A cloak is a type of loose garment that is worn over other clothes and has a hood.", + "A cloak is a tall, flowing piece of clothing that hangs down from the shoulders.", + "A cloak is a long, loose piece of clothing that is worn over other clothes.", + "A cloak is a piece of outerwear with a hood that is typically fastened at the neck.", + "The cloak is a long, loose garment with a hood.", + "A cloak is a long, loose outer garment with sleeves.", + "A cloak is a long, loose garment that is worn over other clothes.", + "A cloak is a type of loose, outer garment that is typically worn over other clothes.", + "A cloak is a type of loose garment that is worn over other clothes and typically has a hood.", + "A cloak is a type of loose garment that is worn over other clothes.", + "There is no definitive answer to this question, as cloaks can vary greatly in appearance.", + "By its shape.", + "A cloak is a type of garment that is worn over other clothing and typically has a hood.", + "The best way to identify a cloak is by its shape.", + "A cloak is a long, loose garment that is worn over other clothes.", + "A cloak is a long, hooded garment.", + "A cloak is a garment that is worn over other clothes and has a hood.", + "A cloak generally has a hood and is voluminous enough to completely cover the body.", + "A cloak typically looks like a long, loose garment that is worn over other clothing.", + "A cloak is a type of garment that is worn over other clothes.", + "A cloak is often a long, flowing piece of clothing that is worn over other clothes.", + "A cloak is a piece of clothing that is worn over the shoulders.", + "A cloak is a type of loose garment that is worn over other clothes.", + "A cloak is a long, flowing piece of clothing that covers the body.", + "A cloak is a type of garment that is worn over the shoulders and hangs down to the ground.", + "The image is of a long, dark cloak with a hood.", + "A cloak is a piece of clothing that is worn over the body and often has a hood.", + "This image is of a black cloak with a hood.", + "An image of a cloak from the internet shows a long, flowing garment with a hood.", + "It's a black cloak with a hood.", + "There is a black cloak with a hood.", + "An image of a cloak from the internet shows a long, flowing garment made of a dark fabric.", + "An image of a cloak from the internet shows a long, dark piece of clothing with a hood.", + "This cloak is billowing in the wind, and is a deep, rich black.", + "An intricately designed cloak made of thick wool, lined with fur.", + "This torn and tattered cloak once belonged to a great hero.", + "A woman is wearing a beautiful, Floor-length cloak.", + "Mage's CloakThis cloak is said to be imbued with the power of magic, and is worn by many mages in order to help them focus their spells.", + "A cloak is a type of clothing that is worn over other clothes for warmth or for ceremonial purposes.", + "This cloak is made of 100% wool and is very warm.", + "This cloak is made of thick, warm wool and has a hood to protect against the cold.", + "The Death of Socrates, by Jacques-Louis David.", + "This cloak was made for the king's daughter.", + "A cloak of invisibility." + ], + "clogs": [ + "A clog is a type of footwear typically made from wood or rubber.", + "A clog is a type of footwear that is typically made of wood or rubber.", + "A clog is a dark spot on the surface of the Sun.", + "A clog is a type of footwear that is usually made of wood or rubber.", + "Clogs are shoes with a very thick sole, often made of wood.", + "Clogs are shoes with a wooden sole and leather uppers.", + "A clog is a build up of materials that block a pipe or drain.", + "A clogs is a type of shoe that has a thick wooden sole.", + "A clog is a type of footwear typically worn in the Dutch countryside.", + "A clog is a type of footwear typically made of wood or rubber.", + "Clogs can be identified by looking for slow or stopped water drainage, gurgling sounds coming from drains, or foul odors coming from drains or appliances.", + "There are several ways to identify a clog.", + "Clogs can be identified by their build-up of material, which can include hair, food particles, and soap scum.", + "There are a few ways that you can identify a clog.", + "Clogs can be identified by their symptoms, which include slow draining, gurgling sounds, and bad odors coming from the drains.", + "There are a few ways to identify a clog.", + "There are a few ways to identify a clog.", + "The most common symptom of a clog is a slow or complete stoppage of water drainage.", + "The best way to identify a clog is to contact a professional plumber.", + "There are several ways to identify a clogs.", + "A clog is a type of footwear typically worn in the Netherlands.", + "A clog is a type of footwear that is typically made of wood or rubber.", + "Clogs are usually sandals with a wooden sole.", + "A clog is a type of footwear that is typically worn in indoor environments.", + "A clog is a blockage of any kind.", + "Clogs are often wooden shoes with a small heel.", + "A clog generally looks like a mass of hair or other material that is blocking a drain.", + "Clogs are typically shoes with a wooden sole that are fastened with a strap across the foot.", + "Clogs look like shoes with a wooden sole.", + "A clog is a type of footwear typically worn in the Netherlands.", + "The image is of a pair of wooden clogs.", + " shoeThis is a picture of a clogs shoe.", + "Clogs are a type of shoe that have a thick wooden sole.", + "The image is of a traditional wooden clog from the Netherlands.", + "This image is of a pair of brown clogs with straps over the top.", + "A clog is a type of footwear typically made of wood or rubber.", + "This is an image of clogs from the internet.", + " factoryThe image is of a large room with high ceilings.", + "In the image, there is a pair of clogs on a hardwood floor.", + "This image is of a pair of clogs on a wooden floor.", + "A pair of clogs on a wooden floor.", + " A pair of traditional Dutch wooden clogs\nA pair of traditional Dutch wooden clogs, worn for work or leisure.", + "A pair of clogs made out of wood.", + " A traditional Swedish clog.", + "Danish clogs.", + " Dutch wooden clogs.", + "Wooden clogs from the Netherlands.", + "No matter what your day holds, these trusty clogs will keep you comfortable all day long!.", + "The clogs are a type of footwear that is popular in the Netherlands.", + "Traditional Dutch clogs." + ], + "cocktail shaker": [ + "It is a stainless steel container with a lid that has a strainer on top.", + ".", + "A cocktail shaker is typically a tall, tapered cylindrical container with a tight-fitting lid.", + "A cocktail shaker has a metal or glass cup with a tight-fitting lid.", + "A cocktail shaker is a metal or plastic container with a tight-fitting lid.", + "A cocktail shaker is typically a tall, cylindrical container with a lid.", + "A cocktail shaker is a metal or plastic container with a tight-fitting lid.", + "Most cocktail shakers are made of metal and have three parts: a cup, a lid, and a strainer.", + "A cocktail shaker is typically a tall, skinny cylinder with a tight-fitting lid.", + "A cocktail shaker is a bar tool used to mix beverages by shaking.", + "A cocktail shaker is a metal or plastic container with a tight-fitting lid.", + "A cocktail shaker is a tool used to mix drinks by shaking.", + "A cocktail shaker is a metal or glass container with a tight-fitting lid that is used to mix cocktails.", + "A cocktail shaker typically has a long metal handle and a smaller metal cup that attaches to the top.", + "A cocktail shaker is a metal or plastic container with a tight-fitting lid.", + "A cocktail shaker will have a tight fitting lid and a strainer.", + "A cocktail shaker is a tool used to mix beverages (usually alcoholic) by shaking.", + "A traditional cocktail shaker has three parts: the cup, the cap, and the strainer.", + "Cocktail shakers are traditionally metal and have a tight-fitting lid with a strainer.", + "A cocktail shaker can usually be identified by its hourglass shape and by the fact that it has a strainer attached to the top.", + "A cocktail shaker looks like a small metal container with a tight-fitting lid.", + "A cocktail shaker is typically a tall, cylindrical container with a wide, flared opening at the top and a tight-fitting lid.", + "A cocktail shaker typically has a 23-ounce capacity and is tapered so that it can fit snugly into another shaker to strain the drink.", + "A cocktail shaker is a metal or plastic container with a tight-fitting lid.", + "There are many different types of cocktail shakers, but they all have a few things in common.", + "A cocktail shaker typically has a metal or glass cup with a tight-fitting metal or plastic lid.", + "A cocktail shaker looks like a metal tin with a lid that has a strainer on it.", + "A cocktail shaker is a drinking vessel with a built-in strainer that is used to mix cocktails.", + "A cocktail shaker is a metal or plastic cup with a tight-fitting lid.", + "A cocktail shaker is typically a tall cylindrical or tapered container with a lid.", + "A classic cocktail shaker is depicted in this image from the internet.", + "This image shows a cocktail shaker with a long, metal body and a wide, circular base.", + "This image is of a cocktail shaker with a metal body and a glass bottom.", + "A metal cocktail shaker with a metal lid and a metal strainer.", + "An image of a cocktail shaker from the internet depicts a silver shaker with a black top.", + "The image is of a classic cocktail shaker that is silver in color.", + "A cocktail shaker is an essential piece of equipment for any bartender.", + "A cocktail shaker is a handheld mixing device used to mix cocktails.", + "This image is of a cocktail shaker that is made out of stainless steel.", + "An image of a cocktail shaker from the internet might show a silver or stainless steel shaker with a tight-fitting lid.", + "A cocktail shaker, perfect for making any mixed drink.", + "The Perfect Cocktail Shaker for Making Delicious Drinks.", + "Cocktails anyone? This bartending essential is perfect for mixing up your favourite drinks.", + "Cocktail ShakerThis cocktail shaker is perfect for making all your favorite drinks! It's made of high quality stainless steel and has a built-in strainer, so you can easily make perfect cocktails every time.", + "How to make the perfect cocktail.", + "Ingredients for a tasty summertime cocktail.", + "The perfect cocktail is just a shake away.", + " A cocktail shaker filled with ice and a green liquid.", + "Use a cocktail shaker to mix drinks.", + "Cocktail Shaker: The Essential Bartending Tool." + ], + "coffee mug": [ + "A coffee mug is a drinking vessel that is typically cylindrical in shape with a handle.", + "A coffee mug is a ceramic cup with a handle that is used to drink coffee.", + "A coffee mug is usually made of ceramic or porcelain, and is cylindrical in shape with a handle.", + "A coffee mug is usually brown or white and is made out of ceramic.", + "Coffee mugs can come in many different shapes and sizes, but they are all typically cylindrical in shape and have a handle on one side.", + "A coffee mug looks like a cup with a handle.", + "A coffee mug typically has a cylindrical shape with a handle attached to the side.", + "A coffee mug is a cup that is typically made out of ceramic or porcelain.", + "A coffee mug is usually a cylindrical shape with a handle.", + "A coffee mug is often cylindrical with a handle and holds about 8 ounces of liquid.", + "A coffee mug is usually a slightly taller and wider cup than a regular cup, with a handle.", + "A coffee mug is typically a cylindrical-shaped drinking vessel with a handle.", + "A coffee mug is a type of cup that is typically used to drink coffee.", + "A coffee mug is typically a cylinder-shaped cup with a handle that is used to drink coffee.", + "Coffee mugs are often made out of ceramic materials and have a handle on them.", + "A coffee mug is typically small and has a handle.", + "A coffee mug is a cup that is used to drink coffee.", + "often coffee mugs will have a company logo on them or some kind of design.", + "A coffee mug can typically be identified by its handle and its large size.", + "You can identify a coffee mug by looking for a handle and a wide, circular opening.", + "A coffee mug is typically cylindrical in shape, with a handle attached to one side.", + "A coffee mug typically has a cylindrical shape with a handle, and is used for drinking hot beverages such as coffee.", + "A coffee mug looks like a cup that is typically made out of ceramic or porcelain.", + "A coffee mug typically has a cylindrical shape with a handle on one side.", + "A coffee mug typically has a cylindrical shape with a handle and a rim.", + "A coffee mug is typically cylindrical in shape, with a handle on one side.", + "A coffee mug is typically ceramic or porcelain, and is cylindrical in shape with a handle.", + "A coffee mug is typically a cylindrical shape with a handle.", + "A coffee mug is typically a cylindrical ceramic object with a handle that is used for drinking hot beverages.", + "Most coffee mugs are cylindrical with a large handle.", + "The image from the internet is of a coffee mug that is mostly white with a black and white spiral design around it.", + "The image is of a white coffee mug with a green and brown spiral design.", + "The image is of a white coffee mug with a black lid and a black and white striped straw poking out of the top.", + "A coffee mug from the internet is typically a white ceramic mug with a handle.", + "The image is of a white coffee mug with a green and white abstract design.", + "The image is of a white coffee mug with a black and white photograph of a young girl on it.", + "The image is of a white coffee mug with a green and white rim.", + "This image is of a white coffee mug with a green and white straw sticking out of the top.", + "This is a coffee mug with a green and white abstract design.", + "a coffee mug with a green and white design.", + "Stressed, blessed, and coffee obsessed.", + "A coffee mug with the words \" fuel your grind \" written on it.", + "Coffee MugThis coffee mug is perfect for your morning cup of coffee.", + "Coffee is the best part of waking up!.", + "A coffee mug with a green and white label that reads \"I'm not a morning person.", + "Coffee Mug with Steam Rising.", + "A steamy cup of coffee on a chilly morning.", + "Coffee mug with steam coming out of it.", + "Coffee mug with \"I heart coffee\" design.", + "This coffee mug features a unique design that is sure to please any coffee lover." + ], + "coffeemaker": [ + "A coffeemaker is typically a countertop appliance with a water reservoir, a heating element, and a coffee filter.", + "A coffeemaker is a small appliance that is used to brew coffee.", + "A coffee maker is a small appliance that is used to brew coffee.", + "A coffeemaker is a cooking appliance that brews coffee.", + "A coffee maker typically has a water reservoir, a filter, a carafe, and a warming plate.", + "A coffee maker is a machine that brews coffee.", + "A coffeemaker is a kitchen appliance that brews coffee.", + "A coffeemaker is a household appliance that brews coffee by heating water and then forcing it through a coffee filter.", + "A coffeemaker is typically a small appliance that is used to brew coffee.", + "A coffeemaker is a household appliance that brews coffee by passing hot water through ground coffee beans.", + "A coffeemaker is a household appliance that brews coffee.", + "A coffeemaker is a small machine that is used to brew coffee.", + "A coffeemaker can be identified by its ability to brew coffee.", + "A coffeemaker can be identified by its coffee filter and carafe.", + "The best way to identify a coffeemaker is to look for the following: a water reservoir, a coffee filter, a heating element, and a coffee pot.", + "The best way to identify a coffeemaker is to look for the pot.", + "A coffeemaker can be identified by its unique shape.", + "A coffeemaker can be identified by its carafe, which is usually clear glass or plastic, and itsfilter basket, which is usually removable.", + "One way to identify a coffeemaker is by its carafe.", + "A coffeemaker is an appliance that is used to brew coffee.", + "A conventional coffee maker typically looks like a miniature version of a commercial coffee maker, with a carafe, filter, and heating element.", + "A traditional coffeemaker consists of a pot with a spout, and a filter basket where the coffee grounds are placed.", + "The most common type of coffeemaker is an automatic drip coffeemaker.", + "When most people think of a coffeemaker, they picture a small machine with a water reservoir, a space to insert a coffee filter, and a carafe to catch the brewed coffee.", + "There are a variety of coffeemakers available on the market, but most coffeemakers consists of a carafe or pot, a heating element, and a filter.", + "A coffeemaker typically contains a water reservoir, a heating element, a filter basket, and a drip tray.", + "A coffeemaker typically consists of a carafe or pot, a filter, and a heating element.", + "A coffeemaker typically consists of a water reservoir, a heating element, a filter basket for holding coffee grounds, and a carafe or mug for holding the brewed coffee.", + "A coffeemaker typically has a water reservoir, a filter basket for holding grounds or a reusable filter, a carafe or mug for holding brewed coffee, and a warming plate to keep coffee hot.", + "A coffeemaker generally has a water reservoir, a heating element to boil the water, and a filter basket where the coffee grounds are placed.", + "This image is of a coffee maker on a kitchen counter.", + "This image shows a coffeemaker on a countertop.", + "This coffeemaker is a sleek and shiny silver color.", + "This image is of a coffee maker on a kitchen counter.", + "This image is of a Mr.", + "The image is of a traditional drip coffeemaker with a water reservoir and a coffee filter.", + "This image is of a black coffeemaker on a countertop.", + "The image shows a black coffeemaker on a countertop with a coffee mug next to it.", + "This image is of a coffeemaker on a kitchen counter.", + "This image is of a coffee maker on a kitchen counter.", + "A woman pours a cup of coffee from a coffeemaker.", + "This is a coffeepot.", + "The coffee machine is on and coffee is brewing.", + "Freshly brewed coffee waiting to be enjoyed.", + "Brewing a fresh pot of coffee.", + "This drip coffeemaker brews a fresh pot of coffee in minutes.", + "A close-up of a black coffeemaker on a countertop.", + "The coffeemaker is on the counter next to the sink.", + "This coffee maker is the best way to start your day.", + "Small but mighty, this coffee maker packs a punch!." + ], + "spiral or coil": [ + "A spiral is a curve in which each point is equidistant from a fixed point, called the center, and from a fixed line called the axis.", + "A spiral or coil is a circular or helical shape.", + "A spiral or coil looks like a corkscrew or a snail shell.", + "A spiral or coil looks like a series of connected loops.", + "When most people think of a spiral, they think of a symmetrical shape like a snail shell.", + "A spiral or coil looks like a series of interconnected loops.", + "A spiral or coil can look like a lot of different things.", + "A spiral or a coil is a shape that has a center point but gradually gets bigger or smaller as it goes around the center.", + "A spiral or coil is a series of circles or loops that gradually get larger or smaller.", + "A spiral or coil looks like a screw or a coil of rope.", + "There is not a definitive answer to this question as different people may have different ways of identifying a spiral or coil.", + "A spiral or coil can be identified by its shape.", + "Spirals and coils can often be identified by their winding, helical shape.", + "A spiral is a curve which winds around a point, while a coil is a series of connected spirals.", + "Spirals and coils can be identified by their shape.", + "A spiral or coil can be identified by its helical shape.", + "If an object has a spiral or coil shape, it will appear to be twisty and winding.", + "The most common way to identify a spiral or coil is by its shape.", + "A spiral or coil can be identified by its shape, which is typically a coil or spiral.", + "A spiral or coil can be identified by its shape.", + "A spiral or coil typically looks like a coil of rope or a spring.", + "A spiral or coil can look like a series of loops or a helix.", + "A spiral or coil is a shape that curves in on itself, like a snail shell.", + "Spirals and coils can take on many different forms.", + "A spiral or coil typically looks like a winding or twisting pattern.", + "A spiral is a shape that turns around a center point, like a coil of rope.", + "A spiral or coil looks like a circle that has been wrapped around itself multiple times.", + "A spiral or coil is a series of loops that turns in on itself.", + "A spiral coil typically looks like a spiral or corkscrew shape.", + "A spiral or coil typically looks like a tightly wound coil or spring.", + "This image is of a golden spiral.", + "This image shows a close-up of a small snail crawling on a green leaf.", + "A photograph of a spiral staircase in an old building.", + "In this image, a spiral of light appears against a black background.", + "One image from the internet of a spiral or coil is a photograph of a snails shell.", + "A spiral or coil can often be found in nature in things like shells, whirlpools, and tornadoes.", + "The image is of a small, delicate-looking spiral made of a thin material.", + "A spiral or coil can be described as a looped or twisted path.", + "An image of a spiral or coil might show a winding pathway or series of steps leading upwards in a tight, circular pattern.", + "The image is of a gold-colored spiral with small diamonds around the edge.", + "A spiral or coil can be used to store energy.", + "A spiral or coil is a curve in which each point is a certain distance from the center, called the radius.", + "The spiral shape of this coil allows it to store a large amount of energy in a small space.", + "A coiled spring.", + "This is a spiral coil.", + "Spiral or coil\nA spiral or coil is a series of connected loops that form a helix.", + "A spiral or coil is an object that curves around itself.", + "This is a picture of a spiral or coil.", + "A spiral or coil can be used to create a powerful magnetic field.", + "A spiral or coil is a shape that curves in on itself, creating a tight, whirling loop." + ], + "combination lock": [ + "A combination lock has three or more dials with numbers or symbols that you use to set the combination.", + "A combination lock consists of a dial with numbers on it that is attached to a locking mechanism.", + "A combination lock is a type of lock in which a sequence of numbers or symbols is used to open the lock.", + "A combination lock have a dial with numbers from 0-9 or letters of the alphabet.", + "A combination lock is a type of lock that uses a combination of numbers or symbols to open it.", + "A combination lock has a dial with numbers on it that you turn to the correct combination in order to open the lock.", + "It looks like a padlock with a rotating dial instead of a keyhole.", + "A combination lock has three or more dials with numbers or symbols on them that you use to set the combination.", + "A combination lock is a lock that uses a combination of numbers to unlock it.", + "A combination lock is a type of lock that uses a combination of numbers or symbols to open it.", + "A combination lock is a type of lock that uses a sequence of numbers or symbols to open it.", + "A combination lock is a physical lock that uses a combination of numbers, symbols, or a combination of both to open.", + "A combination lock is a type of lock that uses a combination of numbers or symbols instead of a key to open it.", + "There is no definitive answer to this question, as the design of combination locks can vary significantly.", + "A combination lock is a lock that uses a combination of numbers or symbols instead of a key to open it.", + "A combination lock is a type of locking device that uses a combination of numbers, letters, or symbols to open.", + "A combination lock has a dial with numbers on it that you turn to open the lock.", + "A combination lock is a type of lock in which a sequence of symbols must be correctly aligned in order to open it.", + "You can identify a combination lock by the fact that it has a dial with numbers on it, and you have to enter a specific sequence of numbers in order to open it.", + "A combination lock is a type of lock that uses a sequence of numbers or letters to open it.", + "A combination lock has a series of tumblers inside with notches that must be lined up in the correct order for the lock to open.", + "A combination lock can come in many different designs, but the most common design is a round dial with a knob in the middle that can be turned.", + "Some combination locks have a keyhole in the front, while others have a small knob that can be turned.", + "A combination lock typically has a dial that can be turned both left and right.", + "A combination lock is a type of padlock that uses a combination of numbers, symbols, or a key to open it.", + "A combination lock is a type of lock that uses a combination of numbers, letters, or symbols to open it.", + "A combination lock is a lock that uses a combination of numbers, letters, or symbols to open it.", + "Combination locks can come in a variety of shapes and sizes, but most of them have a keypad with numbers on it that you use to set the combination.", + "A combination lock looks like a tiny box with a small knob on the front.", + "A combination lock is a lock that is opened with a combination of numbers, rather than a key.", + "A combination lock is a type of locking device that uses a combination of numbers, letters, or symbols to open.", + "Image shows a black metal combination lock with a silver knob in the center.", + "This image shows a combination lock with the numbers 0-9 on the dial.", + "The image is of a silver combination lock with the numbers 0-9 around the dial.", + "This image is of a black combination lock with a white dial.", + "The image is of a combination lock with three dials.", + "The image is of a combination lock on a safe.", + "This image is of a standard combination lock.", + "The image is of a silver combination lock with the numbers 0-9 around the dial.", + "This image is of a combination lock with the numbers 0-9 around the dial.", + "This is a caption of an image of a combination lock.", + "A combination lock with the numbers 4, 8, 15, 16, 23, and 42.", + "This is a combination lock.", + "\"I forgot my locker combination\"\"I forgot my locker combination\".", + "\"To change the combination on this lock, first open it and remove the change key.", + "A combination lock with the dial set to 0-0-0.", + "A combination lock with the numbers 0-9 around the dial.", + "3-digit combination lock.", + "Caution: This lock is for use on gates and doors to homes only.", + "To open the lock, rotate the dial to the left until the pointer is aligned with thehashmark next to the number 9, then continue rotating to the right until thepointer is aligned with the hashmark next to the number 3." + ], + "computer keyboard": [ + "A computer keyboard has dozens of small keys that correspond to letters, numbers, and symbols.", + "A computer keyboard is a rectangular piece of hardware that has keys that correspond to letters, numbers, and symbols.", + "A computer keyboard is a rectangular device with black and white keys.", + "A computer keyboard is a keyset that connects to a computer.", + "A computer keyboard looks like a typical keyboard with the exception of a few extra keys.", + "A keyboard typically looks like a grid of rectangular keys.", + "A keyboard typically has 101 or 102 keys, depending on whether it has a numeric keypad on the right side.", + "A computer keyboard typically has between 80 and 110 keys.", + "A computer keyboard typically looks like a regular keyboard, except the keys may be labeled differently.", + "A keyboard is a device with black and white keys that you press to type words.", + "A keyboard is a device used to input data into a computer.", + "You can identify a computer keyboard by the keys that it has.", + "A computer keyboard can be identified by its rectangular shape, its keys, and its lack of a touchpad.", + "A keyboard is a peripheral, typically used to enter text, characters, and other commands into a computer or other devices.", + "The keys on a computer keyboard are usually labeled with letters, numbers, or symbols.", + "A keyboard is a peripheral device that connects to a computer.", + "A computer keyboard is a device that is used to input text, numbers, and other symbols into a computer.", + "A keyboard is a peripheral device that connects to a computer.", + "Generally, a computer keyboard has around 101-104 keys.", + "A keyboard can be identified by its key layout.", + "A computer keyboard usually has around 101-104 keys.", + "A computer keyboard looks like this.", + "A keyboard typically looks like a rectangle with many small keys that you press with your fingers.", + "A keyboard typically looks like a rectangular grid of keys.", + "A computer keyboard is a rectangular device with many small keys that a person presses when typing words or numbers.", + "A computer keyboard looks like a normal keyboard, with a few extra keys.", + "A computer keyboard typically looks like a regular keyboard, with letters, numbers, and symbols on the keys.", + "A traditional computer keyboard has around 104 keys.", + "A keyboard typically has between 80 and 110 keys.", + "The computer keyboard looks like a typewriter with extra keys.", + "This image is of a black computer keyboard with white keys.", + "A typical keyboard has about 101 keys.", + "A standard computer keyboard has a row of 101 keys.", + "The image is of a black computer keyboard with white keys.", + "The image from the internet of a computer keyboard shows a black keyboard with white keys.", + "A keyboard with the keys \"A\", \"S\", \"D\", \"F\", \"G\", \"H\", \"J\", \"K\", \"L\", \";\" and \"'\" highlighted in green.", + "A computer keyboard is a rectangular device with black and white keys that correspond to different letters, numbers, and symbols.", + "The photo shows a computer keyboard with the keys arranged in rows.", + "The keyboard is black with white letters.", + "The image from the internet is of a keyboard with all the keys labeled.", + "A keyboard with all the keys labeled.", + "A keyboard is a fundamental tool for computer use.", + "A keyboard with the keys \"W, A, S, D\" highlighted in red.", + "Wireless ergonomic keyboard.", + "This is a standard computer keyboard.", + "A keyboard with the keys \"F1\" through \"F12\" highlighted.", + "This is an image of a keyboard.", + "This is a keyboard.", + "A computer keyboard with the keys \"A,\" \"S,\" \"D,\" and \"F\" highlighted in green.", + "Logitech G13 Advanced Gameboard." + ], + "candy store": [ + "Assuming you are talking about an old-fashioned candy store:\nThe store would likely be small with large glass windows.", + "A candy store looks like a small shop with shelves full of colorful candy.", + "The walls are lined with glass cases filled with every type of candy imaginable.", + "A candy store looks like a store that is full of candy.", + "A candy store typically contains a wide variety of candy, ranging from chocolate to gummies to hard candy.", + "A candy store typically has a wide variety of brightly colored candies and sweets.", + "A candy store is a small shop that specializes in selling various kinds of candy and confectionery.", + "Most candy stores have large windows so that passersby can see all of the brightly colored sweets inside.", + "A candy store typically has a large variety of colorful candies and sweets lining the shelves.", + "A candy store looks like a store that sells candy.", + "A candy store is a store that sells mostly or only candy.", + "Candy stores are identified by their large displays of candy and sweet treat options.", + "The exterior of a candy store is usually brightly colored and has a large sign that says \"Candy Store.", + "The exterior of a candy store is usually very colorful and has a lot of signage.", + "The easiest way to identify a candy store is by the large selection of candy that is displayed in the store.", + "A candy store is typically a small shop that specializes in selling candy.", + "The most common type of candy store is a confectionery.", + "The easiest way to identify a candy store is by the large number of sugary treats in the windows.", + "The easiest way to identify a candy store is by the large selection of bulk candy that is typically displayed in the store.", + "A candy store is a store that specializes in selling candy.", + "Candy stores vary in their appearance, but they often have brightly colored walls and displays of candy.", + "A candy store may look like a small shop with brightly colored walls and shelves full of candy.", + "Most candy stores are small, colorful, and have a lot of candy displayed in cases or on the walls.", + "This is a difficult question because candy stores come in all shapes and sizes.", + "The outside of a candy store may be brightly colored and have a large sign that says \"Candy Store.", + "A candy store may have a number of different appearances, depending on the size and location of the store.", + "There is no one answer to this question as candy stores come in all different shapes and sizes.", + "A candy store typically looks like a small shop with brightly colored walls and shelves lined with different types of candy.", + "A candy store can look like many things.", + "A candy store typically has a large selection of colorful candy displayed in bins or on shelves.", + "This image shows shelves and shelves of candy in a store.", + "In the image, there is a large candy store with bright pink and yellow walls.", + "The image is of a candy store with bright colors.", + "This is an image of a candy store.", + "The image is of a small, standalone candy store.", + "I found an image of a candy store on the internet that looks like a small, old-fashioned shop.", + "The image from the internet of a candy store shows a large selection of different types of candy in a brightly lit store.", + "In the image, there are shelves of brightly colored candy lining the walls of the store.", + "An image from the internet of a candy store can show a variety of different things.", + "This image from the internet is of a vintage candy store.", + "A woman stands in front of a candy store, smiling and holding a bag of candy.", + "The Sweetest Place on Earth.", + " A variety of candies in a store.", + " A candy store with many colorful displays of candyA large candy store with many displays of different colored candy.", + " A man and a woman look at the candy in a storeA caption of an image of a group of people on a beach: A group of people relax on the beach.", + " A woman works behind the counter of a candy storeA female employee works behind the counter of a candy store, surrounded by colorful sweets and treats.", + "The Candy StoreA candy store is a place where you can buy sweets and candy.", + " \"Cotton candy is one of the most popular items in the store\".", + "In this candy store, every day is Halloween!.", + "This charming candy store is the perfect place to find sweet treats for any occasion! With a wide variety of delicious options to choose from, you're sure to find something to satisfy your sweet tooth!." + ], + "container ship": [ + "A container ship is a large ship designed to carry containers.", + "A container ship is a large vessel that is used to transport cargo around the world.", + "A container ship is a large vessel that can carry cargo in containers.", + "A container ship typically has a large rectangular deck area where containers can be moved around, and a tall superstructure where the bridge and otherShip officers' quarters are located.", + "A container ship is a large ship that is used to transport containers full of goods from one location to another.", + "A typical container ship has a rectangular hull with a superstructure (or \"house\") on the aft (rear) end, and a large crane mounted on the forward part of the superstructure.", + "A container ship is a ship specifically designed to transport containers, which are large, standardized shipping containers.", + "A container ship is a large ship that is used to transport shipping containers full of goods.", + "A container vessel, also called a container ship, is a cargo ship that carries all of its load in containers.", + "A container ship is a large ship that is used to transport containers of cargo around the world.", + "A large container ship will have a long, boxy hull with a flat top.", + "Container ships are a type of cargo ship that carry their load in containers.", + "A container ship is a type of ship that is used to transport large containers of goods.", + "Container ships are the largest ships regularly seen in harbors.", + "Its shadow on the water's surface will be in the shape of a long, thin rectangle.", + "Some common features that can help you identify a container ship are its large size, the many rows of containers on its deck, and the cranes used to load and unload the containers.", + "A container ship can be identified by its large size and the container stack on its deck.", + "Container ships are large, ocean-going vessels that are specially designed to carry cargo in standard ISO containers.", + "By its size, shape, and the large containers on its deck.", + "If you are looking at a large ship, and you can see rows of containers on the deck, it is probably a container ship.", + "A container ship is usually a large, furnished ship designed to transport containers holding cargo.", + "A container ship is a large, steel ship that is used to transport containers full of goods around the world.", + "A container ship typically has a long, low body with a large capacity for carrying cargo containers.", + "Container ships are large ships that are used to transport large containers full of goods.", + "A container ship looks like a large ship with stacks of containers on it.", + "The size and design of container ships can vary, but they typically have large, flat decks with columns of stacked containers.", + "A container ship is a large ship used to transport goods, including containers, around the world.", + "A container ship typically has a long, rectangular hull with a flat bottom and a sharp bow.", + "A container ship typically has a long, box-like hull and a large crane for loading and unloading containers.", + "Most container ships are large, steel-hulled vessels that can carry between 2,500 and 10,000 containers.", + "A container ship is a large vessel used for transporting containers full of goods and materials.", + "I found an image of a container ship that looks like it's about to dock.", + "The image from the internet is of a container ship that is docked in a harbor.", + "This image is of a container ship leaving the port of Shanghai, China.", + "This image is of a large container ship at sea.", + "I can't describe the image because I can't see it.", + "The image is of a large ship with containers stacked on its deck.", + "The image is of a large ship with containers stacked on its decks.", + "The image is of a large container ship sailing through rough waters.", + "This image shows a massive container ship sailing through rough waters.", + "A container ship loaded with cargo containers.", + " View of a large container ship with stacks of colorful containers on its deck, docked at a portA container ship docks at a port, its deck stacked with colorful containers.", + "The world's largest container ship, the CSCL Globe, docked in Hamburg, Germany.", + "The world's largest container ship, the CMA CGM Marco Polo, arrives in Southampton, England.", + "The MSC Zoe is one of the world's largest container ships, measuring in at 1,300 feet long.", + "The world's largest container ship, the CSCL Globe, docked in Hamburg, Germany.", + "The container ship MV CMA CGM Theodore Roosevelt arriving in Norfolk, Virginia, USA on April 8, 2020.", + "The container ship M/V Maersk Line Edinburgh makes its way under the Golden Gate Bridge as it enters San Francisco Bay, on Feb.", + " A container ship waits to be unloaded at a port.", + "A container ship at a port." + ], + "convertible": [ + "A convertible is a car with a retractable roof.", + "A convertible typically looks like a regular car except that it has a retractable roof.", + "A convertible is a vehicle with a folding or detachable roof.", + "A convertible is a type of car that has a roof that can be lowered or removed.", + "A convertible is a vehicle with a removable roof.", + "A convertible has a soft top that can be opened and closed, making it look like a regular car when the top is up, and like a convertible when the top is down.", + "A convertible is a type of car that has a roof that can be removed or opened.", + "A convertible is a vehicle with a retractable roof.", + "A convertible is a vehicle with a retractable roof.", + "A convertible is a vehicle with a removable or retractable roof.", + "A convertible is a vehicle with a removable top.", + "The easiest way to identify a convertible is to look for a car with a retractable roof.", + "On a convertible, the top can be retracted to allow for an open-air experience.", + "A convertible typically has a folding or removable roof.", + "The most common ways to identify a convertible are to look for a retractable or removable roof, or for a car with a very small back seat.", + "The most obvious way to identify a convertible is by its retractable roof.", + "Some characteristics of a convertible are that it has a soft or folding top, seats four or fewer people, and has a 2-door or 2+2 configuration.", + "A convertible is a vehicle with a removable or retractable top.", + "A convertible is a car with a roof that can be removed or folded down.", + "Convertibles can be identified by their slanted windshield, low profile, and extended length.", + "A convertible is a type of car that has a roof that can be retracted or removed, making it an open-air vehicle.", + "A convertible looks like a regular car, but with a retractable roof.", + "A convertible is a car with a roof that can be folded down or removed.", + "From the outside, a convertible looks like a regular car with a soft-top or folding metal roof.", + "A convertible looks like a normal car with a removable roof.", + "A convertible is a car with a removable or folding roof.", + "A convertible car has a roof that can be retracted or removed to convert the car from an enclosed to an open-air vehicle.", + "A convertible typically looks like a regular car with a removable or retractable roof.", + "A convertible may have either a soft top or a hardtop.", + "A convertible car has a soft top or retractable hardtop that can be opened to enjoy the outdoors while driving.", + "This image is of a blue convertible with the top down.", + "This image is of a convertible car.", + "The image is of a black convertible with the top down and the wind blowing through the driver's hair.", + "This image is of a convertible car with its top down.", + "A picture of a red convertible car parked on a city street with the top down.", + "A convertible is a vehicle with a retractable or folding roof.", + "The image depicts a blue convertible with the top down.", + "An image from the internet of a convertible would show a car with a folding or removable roof, typically with two or four seats, that is designed for relaxed, open-air driving.", + "Image is of a red convertible with the top down speeding down a road with mountains in the background.", + "This image is of a white convertible with a black top and chrome accents.", + " \"The top is down on this convertible, making it perfect for a sunny day.", + "This car is a convertible.", + "A woman driving a convertible with the top down on a sunny day.", + "A convertible driving down a road with the top down on a sunny day.", + "A convertible and the open road - the perfect summer combination!.", + "This convertible is sure to turn heads as you cruise down the street.", + "A woman driving a convertible with the top down on a sunny day.", + "This impressive convertible is sure to turn heads when driving down the street.", + "This slick convertible is perfect for a summer road trip.", + " A woman driving a convertible with the top down." + ], + "corkscrew": [ + "A corkscrew looks like a small, handheld spiral staircase.", + "A corkscrew is a device used to remove the cork from a wine bottle.", + "A corkscrew is a short, spiral staircase.", + "A corkscrew is an object used to remove the cork from a wine bottle.", + "A corkscrew is a metal spiral with a sharp point at the end.", + "A corkscrew is a spiral-shaped device used to remove the cork from a wine bottle.", + "A corkscrew is a metal spiral on a handle that is used to remove corks from wine bottles.", + "A corkscrew looks like a small metal spiral with a handle.", + "A corkscrew is a tool used to open wine bottles by slicing through the foil and inserting the screw into the cork.", + "A corkscrew is often a handheld tool with a small, sharp spiral blade on one end and a wooden or plastic handle on the other.", + "A corkscrew is a device that is used to remove the cork from a wine bottle.", + "A corkscrew is a spiral-shaped device used to remove the cork from a wine bottle.", + "A corkscrew is a spiral-shaped device used to remove the cork from a wine bottle.", + "A corkscrew is a spiral-shaped device used to extract corks from bottles.", + "A corkscrew is a tool that is used to open wine bottles.", + "A corkscrew is a spiral metal device that is used to open wine bottles by penetrates and removal the cork.", + "A corkscrew is a spiral-shaped tool that is used to remove wine corks from bottles.", + "Most corkscrews have a screw (or helix) that is used to push into and grip the cork.", + "A corkscrew typically has a spiral metal shaft and a grip for the hand.", + "Corkscrews typically have a sharp metal spiral that is used to pierce the cork, and a handle that is used to twist the spiral into the cork.", + "A corkscrew is a spiraling metal rod with a handle at one end.", + "A corkscrew is a small handheld tool that is used to remove wine corks from bottles.", + "A corkscrew is a spiral-shaped device that is used to remove the cork from a wine bottle.", + "A typical corkscrew consists of a metal spiral with a sharp point at the end.", + "A corkscrew is a metal spiral with a handle.", + "A corkscrew looks like a small, handheld spiral staircase.", + "A corkscrew is a small handheld tool that is used to open wine bottles.", + "A corkscrew is a relatively simple utensil that is used to remove corks from wine bottles.", + "A corkscrew is a small, handheld tool that is used to remove the cork from a wine bottle.", + "A corkscrew typically has a metal shaft with a spiraling tip (the \" worm\") and a forked end, with which to grip the cork.", + "A corkscrew is a spiral-shaped device used to remove the cork from a wine bottle.", + "The image is of a silver corkscrew with a long, thin handle.", + "A corkscrew is a device used to open wine bottles.", + "A corkscrew is a device used to remove the cork from a wine bottle.", + "The image is of a classic corkscrew with a long, thin spiral metal shaft and a wooden handle.", + "A corkscrew is a device used to remove the cork from a wine bottle.", + "A black and white image of a corkscrew.", + "A metal corkscrew is sitting on a dark wooden table.", + "A photo of a metal corkscrew with a long, thin handle and a serrated spiral blade.", + "The image is of a shiny, silver corkscrew.", + "Corkscrew.", + "A corkscrew is a device used to remove the cork from a bottle of wine.", + "This is a corkscrew.", + "\"The best way to open a bottle of wine\".", + "A corkscrew is a tool for removing the cork from wine bottles.", + "Corkscrew.", + "This is a corkscrew.", + "Corkscrew; an instrument used to draw corks from wine bottles.", + "This corkscrew is perfect for opening your wine bottles!.", + "\nA corkscrew is a device used for drawing wine from a cask or bottle." + ], + "cornet": [ + "A cornet is a small, conical brass instrument that looks like a trumpet.", + "A cornet is a small, cylindrical brass instrument with a flared bell.", + "A cornet is a brass instrument that is similar to a trumpet.", + "A cornet is a brass instrument that looks like a small trumpet.", + "A cornet looks like a small trumpet.", + "A cornet looks like a small trumpet.", + "A cornet looks like a trumpet, but it is smaller and has a conical bore.", + "The cornet is a conical brass instrument with a flared bell and a bright, penetrating sound.", + "A cornet is a small, cylindrical brass instrument with a flared bell and a bright, piercing tone.", + "A cornet is a brass instrument that resembles a small trumpet.", + "The best way to identify a cornet is by its conical shaped brass body and its flared bell.", + "The cornet is a brass instrument similar to the trumpet.", + "A cornet is a brass instrument which resembles a trumpet.", + "A cornet is a brass instrument similar to a trumpet but with a somewhat conical bore and a smaller, less powerful sound.", + "A cornet is a brass instrument that is similar to a trumpet.", + "The cornet is a brass instrument similar to the trumpet.", + "A cornet is a brass instrument that looks like a small trumpet.", + "The cornet is a brass wind instrument that looks like a small trumpet.", + "Thecoronet is a brass instrument with a conical bore, similar to thetrumpet, and a cup-shaped mouthpiece.", + "It can be difficult to identify a cornet if you are not familiar with brass instruments.", + "A cornet is a brass instrument that looks like a small trumpet.", + "A cornet looks like a small trumpet.", + "A cornet looks like a small trumpet.", + "A cornet looks like a small trumpet, but it has a conical bore ( meaning the tubing gradually gets wider as it goes from the mouthpiece to the bell).", + "A cornet is a small, conical brass instrument with a flared bell at the end.", + "A cornet looks like a small trumpet.", + "A cornet looks like a trumpet.", + "A cornet looks like a small trumpet.", + "A cornet is a brass musical instrument with a conical bore and a cupped mouthpiece.", + "A cornet looks like a small trumpet.", + "This image is of a yellow and silver cornet with a long, narrow nozzle.", + "The image from the internet of a cornet is of a small, brass horn-shaped musical instrument.", + "The image is of a light brown cornet with a bell shape at the top.", + "A cornet is a small, brass musical instrument similar to a trumpet.", + "A cornet is a brass instrument with a conical bore, which is similar to a trumpet.", + "A cornet is a brass musical instrument with a funnel-shaped mouthpiece and a cylindrical tubing wrapped around a conical bore.", + "The image is of a shiny silver cornet with intricate designs on it.", + "A cornet is a brass musical instrument with a conical bore and a flared bell.", + "In the image, a cornet is shown amidst a field of tall grass.", + "I found an image of a cornet on Google Images.", + "A student plays a cornet in a school band concert.", + "A cornet peeks out from behind a music stand, surrounded by a clutter of sheet music.", + " A cornet made of metal and brass.", + "The cornet is a brass instrument that is similar to the trumpet.", + "A cornet on a table in front of a window.", + "A cornet is a brass musical instrument with a conical bore and a flared bell.", + "A cornet is a brass musical instrument with a conical bore and a cup-shaped mouthpiece.", + "A cornet is a brass musical instrument with a conical bore and a flared bell.", + " A cornet being playedThis image shows a cornet being played by a musician.", + " A cornet, a brass musical instrument with a conical bore and a flared bellThis cornet is a brass musical instrument with a conical bore and a flared bell." + ], + "cowboy boot": [ + "A cowboy boot is a boot with a heel that is designed to be worn by people who ride horses.", + "A cowboy boot is a type of footwear that is typically worn by cowboys or other people who work with cattle.", + "A cowboy boot is a type of footwear that is typically worn by workers in the cowboy and rodeo industries.", + "A cowboy boot has a low heel, a rounded toe, and is often made of brown or black leather.", + "Cowboy boots are usually made of brown or black leather and have a high heel and a pointed toe.", + "A cowboy boot has a low heel and a rounded toe.", + "A cowboy boot is a type of footwear typically worn by cowboys or cowgirls.", + "A cowboy boot is a type of footwear that is typically worn by people who work with livestock or who participate in rodeos.", + "A cowboy boot is a boot with a high heel and a pointed toe.", + "A cowboy boot is a boot with a high heel and a pointy toe.", + "You can identify a cowboy boot by its pointed toe, low heel, and decorative stitching.", + "The most identifying feature of a cowboy boot is the wide, round toe.", + "A cowboy boot is typically a boot with a slightly pointed toe and a higher heel.", + "Cowboy boots are a type of riding boot.", + "A cowboy boot is a boot with a high heel and a pointed toe.", + "A cowboy boot has a high heel, a pointed toe, and often has decorative stitching.", + "A cowboy boot typically has a high heel, pointed toe, and decorative stitching.", + "A cowboy boot typically has a high heel, pointed toe, and tall shaft.", + "There are a few characteristics that can help you to identify a cowboy boot.", + "A cowboy boot is typically made of leather and has a heel that is at least one inch tall.", + " Cowboy boots are a type of riding boot.", + "The classic cowboy boot has a high heel, a rounded toe, and decorative stitching.", + "A cowboy boot typically has a high heel, a rounded toe, and decorative stitching on the shaft.", + "Cowboy boots look like they are made of leather and have a pointed toe.", + "A cowboy boot is a type of footwear that is designed to be worn by cowboys and other people who work with cows.", + "The cowboy boot is a footwear icon in the American West.", + "A cowboy boot looks like a traditional leather boot with a pointed toe and a low heel.", + "A cowboy boot is a type of riding boot.", + "A cowboy boot typically has a high heel, a rounded toe, and decorative stitching.", + "A cowboy boot typically has a high heel, a rounded to pointed toe, and decorative stitching.", + "The image is of a brown cowboy boot with a white stitching design.", + "This image is of a cowboy boot with a brown leather exterior and stitching detail.", + "The image is of a cowboy boot with a intricate design.", + "One image of a cowboy boot from the internet shows a boot with a black leather exterior and a brown leather interior.", + "This image is of a cowboy boot with a brown leather exterior and a white stitching detail.", + "The image is of a cowboy boot with a rustic brown leather exterior.", + "The image is of a brown cowboy boot with a white and blue pattern on the top.", + "The image is of a brown cowboy boot with a white stitching.", + "A cowboy boot is typically a boot with a higher heel and a rounded toe that is worn by cowboys.", + "The image shows a brown cowboy boot with a pointed toe.", + "A cowboy boot with a star on the side.", + " cowboy boots worn out from years of wear.", + "A cowboy boot with a worn and weathered look, as if it's seen many miles on the open range.", + "A cowboy boot with a spur.", + "A cowboy boot with a spur.", + "A cowboy boot against a background of blue sky.", + "This cowboy boot is made of high-quality, durable leather.", + "Cowboyboot.", + "A cowboy boot.", + "A cowboy boot is a type of footwear that is typically worn by cowboys or other people who work with cattle." + ], + "cowboy hat": [ + "A cowboy hat typically has a wide brim that helps protect the wearer from the sun.", + "A cowboy hat is a wide-brimmed, high-crowned hat with a soft, pliable brim that is typically made of felt or straw.", + "A cowboy hat is a type of wide-brimmed hat with a rounded crown.", + "A cowboy hat is a wide-brimmed, high-crowned hat with a narrow band around the base of the crown.", + "A cowboy hat typically has a wide brim and a low, rounded crown, with a narrow strip of leather or cloth called a hatband around the base of the crown.", + "A cowboy hat is a wide-brimmed, high-crowned hat with a soft fabric hatband.", + "A cowboy hat is typically a wide-brimmed, felt or straw hat with a soft, flexible crown.", + "A cowboy hat typically has a wide brim and a low, rounded crown.", + "A cowboy hat is a wide-brimmed, high-crowned hat with a soft, flat brim.", + "A cowboy hat is a wide-brimmed, high-crowned hat that is typically worn by cowboys and other ranchers in the American West.", + "The most common type of cowboy hat is the wide-brimmed, high-crowned, felt hat with a band of decorative stitching around the base of the crown.", + "A cowboy hat can be identified by its wide brim, high crown, and crease running down the center of the crown.", + "Cowboy hats come in a variety of shapes and sizes, but they all share some common features.", + "A cowboy hat is usually made of straw or felt and has a wide brim.", + "A cowboy hat is a type of wide-brimmed hat with a high crown that is typically worn by cowboys and other ranchers in the American West.", + "The most common western hat is the cowboy hat.", + "A cowboy hat is a wide-brimmed, high-crowned hat that is typically made of felt or straw.", + "A cowboy hat has a wide brim and a high, rounded crown.", + "A cowboy hat is typically made of straw or felt, has a wide brim, and a low, flat crown.", + "A cowboy hat has a wide brim and a low crown.", + "A cowboy hat traditionally has a high, round crown and a wide brim.", + "A cowboy hat is a wide-brimmed, high-crowned hat that is typically worn by cowboys and other ranchers in the American West.", + "A cowboy hat typically has a wide brim and a low crown.", + "A cowboy hat is a type of wide-brimmed hat with a high crown that is typically worn by cowboys and other people who work outdoors.", + "A cowboy hat typically has a wide brim and a low, rounded crown.", + "A cowboy hat is a wide-brimmed, high-crowned hat with a soft, flexible brim.", + "Cowboy hats are typically made of felt and have a wide brim.", + "A cowboy hat is a type of wide-brimmed hat with a high crown, typically made of felt or straw.", + "A cowboy hat usually has a wide brim and a low crown.", + "A cowboy hat is typically a wide-brimmed, felt hat with a pointed crown.", + "The image is of a cowboy hat that is brown in color.", + "This image shows a cowboy hat sitting on a fence post.", + "A cowboy hat is a wide-brimmed, tall-crowned hat worn by men in the American West.", + "A cowboy hat is a hat made of cowhide.", + "The image is of a cowboy hat with a wide brim and a tall crown.", + "The image is of a brown cowboy hat with a wide brim.", + "The image is of a tan cowboy hat with a wide brim.", + "A cowboy hat is a pointed hat with a wide brim that is typically worn by cowboys and other people in the American West.", + "An image of a cowboy hat from the internet shows a brown cowboy hat with a light brown band.", + "The image is of a brown cowboy hat with a wide brim.", + "A cowboy hat is essential for any cowboy or cowgirl.", + "A cowboy hat atop a pile of hay.", + "A cowboy hat is a wide-brimmed, high-crowned hat that is typically worn by cowboys and other people working in rodeos.", + " A cowboy hat on a shelf.", + "A cowboy hat is a type of hat that is typically worn by cowboys and cowgirls.", + "A cowboy hat atop a wooden fencepost.", + "A cowboy hat is a type of wide-brimmed, high-crowned hat best known for being worn by cowboys in the American West.", + "A cowboy hat is a type of hat that is typically worn by cowboys and cowgirls in the American West.", + "A cowboy hat is a classic symbol of the American West.", + "A cowboy hat perched atop a fence post, with a dusty road leading off into the distance." + ], + "cradle": [ + "A cradle is a small bed, often for a baby, that swings or rocks.", + "A cradle is a small bed for babies and young children, typically one that can be rocked or swung.", + "A cradle is a small bed with high sides that is used for a baby.", + "A cradle is a piece of furniture that is used to sleep a baby in.", + "A cradle is a bed for an infant, often having rounded corners and rocking or swinging capability.", + "A cradle is a small bed for an infant, often Cocoon-shaped with high sides and a rocking or swaying motion.", + "A cradle is a bed for a baby, usually with high sides to stop the baby from rolling out.", + "A cradle is a bed for a baby.", + "A cradle is a bed for an infant or young child, typically having low sides and a hood or canopy.", + "A cradle is a bed for an infant or young child that is often hung from a side of a parent's bed or placed in the parent's room.", + "A cradle is a small bed for an infant, often decorated with figures or carvings.", + "A cradle is a bed for a baby, often with rocking or swaying motions, in which the baby can sleep safely.", + "A cradle is a small bed for an infant, often shaped like a boat.", + "A cradle is a small bed for an infant, often shaped like a boat.", + "A cradle is a small bed, often on rockers, in which an infant is rocked to sleep.", + "A cradle is a bassinet that is used to hold a baby.", + "A cradle is an infant bed with sides that can be lowered to allow a parent to place a baby inside.", + "A cradle is a large box or frame in which babies are laid to sleep.", + "Cradles typically have round or oval-shaped heads and long, often curved necks.", + "A cradle is typically a small bed for an infant, used in the home.", + "A cradle is a bed for a baby, often with rocks or bars on the sides so the baby doesn't fall out.", + "A cradle is a small bed with high sides that is used for a baby.", + "A cradle is a bassinet that is used to peacefully rock and lull a baby to sleep.", + "A cradle can look like many different things, but typically it is a small bed for a baby that rocks or swings.", + "A cradle is a small bed, often on rockers, for an infant.", + "A cradle is a bed for a baby.", + "A cradle is typically a wooden bed for an infant with high sides and a hood or canopy.", + "A cradle is a bed with high sides that is used for a baby.", + "A cradle can look like a small bed for a baby, with sides and a bottom, or it can be a device that holds a baby in a lying position, often suspended from an adult's shoulders by straps.", + "A cradle is a small bed with high sides that is used for a baby.", + "In the image, there is a cradle with a blue, polka-dotted blanket.", + "\"Cradle\" by Pablo Picasso, 1950 (left panel of \"Three Musicians\")The image shows a cradle with a baby inside.", + "An image from the internet of a cradle might show a baby sleeping peacefully in a small bed with high sides.", + "The image is of a white cradle with a green blanket inside.", + "The image is of a circular cradle with a white canopy.", + "A cradle is a small bed for a baby, often shaped like a boat or shell.", + ".", + "This is an image of a cradle that is often used for newborn babies.", + "I found an image of a cradle on the internet that I really liked.", + "The image is of a white cradle with a green and white checked pad.", + "This cradle was created by an indigenous artist in the Amazon.", + " A baby sleeps peacefully in a cradle.", + "Baby's first bed.", + "A baby's cradle.", + " A baby's cradle.", + "A mother's love is always near.", + "A newborn sleeping peacefully in their cradle.", + " Image of a cradle with a pink blanket and a teddy bear.", + "A baby's cradle.", + "A baby's cradle is a special place where they can feel safe and loved." + ], + "construction crane": [ + "A construction crane is typically a large, tall machine that has a long arm with a claw-like apparatus on the end.", + "A construction crane is a large machine that is used to move heavy objects by suspending them from a beam.", + "A construction crane is a large machine that is used to move heavy objects by suspending them from a beam.", + "The most popular type of construction crane is the tower crane.", + "A crane is a large, tall machine that has a long arm with a big bucket on the end of it.", + "A construction crane is a large machine that is used to move heavy objects by suspending them from a beam.", + "A construction crane typically has a large, horizontal beam at the base that is supported by truck-like frame.", + "A construction crane generally has a large metal frame and pulleys that are used to lift and move heavy objects.", + "A construction crane is a tall, tower-like machine that is used to move heavy objects from one place to another.", + "A construction crane looks like a large metal structure with a horizontal beam that can rotate.", + "Some ways you can identify a construction crane is by its long metal arm and hook, as well as its large size.", + "A construction crane is generally a large, tall machine that has a long arm with a heavy-duty claw or bucket on the end.", + "Construction cranes are large machines that are used to move heavy objects by suspending them from a beam.", + "A construction crane is a large machine that is used to move heavy objects by suspending them from a projecting arm or beam.", + "The main identifying feature of a construction crane is its long metal beam, which is attached to a large metal base with wheels.", + "A construction crane is a large, tall machine that has a long metal arm with a bucket or platform on the end of it.", + " crane = large machine used to move heavy objects by suspending them from a projecting arm or beam.", + "These are crane identification characteristics: \n-Operates on diesel, electric, or alternative fuel\n-Has a hoist rope, wire ropes, or chains\n-Has a hook or similar device that its operator uses to move loads\n.", + "Construction cranes can be identified by their long necks and vertical supports.", + "A construction crane is a large, tall machine that is used to move heavy objects from one place to another.", + "A construction crane typically has a large, horizontal boom and a vertical mast.", + "A construction crane is a tall, heavy machine used to move construction materials.", + "A construction crane is a large machine that is used to move heavy objects.", + "A construction crane is a tall machine that has a long arm with a claw on the end.", + "A construction crane typically has a large, vertical mast with a horizontal jib that can be adjusted in length.", + "A construction crane typically has a long horizontal beam extending from a central vertical column.", + "A construction crane is a large, tall machine that is used to move heavy objects from one place to another.", + "A construction crane is a large, tall machine that is used to move heavy objects.", + "A construction crane is a large machine that is used to move heavy objects by suspending them from a beam.", + "A construction crane is a tall machine that has a long arm with a hook on the end.", + "This image is of a construction crane towering over a cityscape.", + "An image from the internet of a construction crane shows a large metal machine with a long arm and large bucket on the end.", + "In the image, a construction crane is towering over a city skyline.", + "A crane is a type of machine, generally equipped with a hoist rope, wire ropes or chains, and sheaves, that is used both to lift and lower materials and to move them horizontally.", + "The image is of a large construction crane next to a tall building.", + "The image is of a large construction crane with its long metal neck and large metal body.", + "The image is of a large construction crane, with its long metal arm extended high into the air.", + "The image is of a crane in New York City.", + "Image is of a large metal construction crane in front of a building under construction.", + "The image is of a construction crane towering over a cityscape.", + "A crane is a large and tall machine that is used for construction purposes.", + "Construction crane at work.", + "Construction crane in downtown Los Angeles, CA.", + "The crane towers over the construction site, dwarfing the workers below.", + "A large construction crane towering over a cityscape.", + " A construction crane lifts heavy metal beams as it builds a new skyscraper.", + "A massive construction crane looms over a busy city street.", + "Construction crane in front of a newly built skyscraper.", + "Construction crane in downtown Seattle.", + "A giant construction crane looms over a city skyline." + ], + "crash helmet": [ + "A crash helmet is typically made of hard plastic or fiberglass and has a straps that go under the chin to secure it to the head.", + "A crash helmet is designed to protect a rider's head during a fall.", + "A crash helmet is a type of helmet designed specifically for protecting cyclists, skaters, or motorcycle riders from injuries in the event of a fall or collision.", + "A crash helmet is a type of helmet worn by motorcycle riders, racing drivers, sports car drivers, and passengers to protect their heads in the event of a crash.", + "A crash helmet is a type of helmet worn by motorcycle riders, racing drivers, sports car drivers, and cyclists.", + "A crash helmet is a type of helmet designed to protect the wearer's head during a motorcycle crash.", + "A crash helmet is a type of headgear designed to protect the wearer's head during a crash.", + "A crash helmet is a rigid helmet that is designed to protect the head of a rider in the event of a crash.", + "A crash helmet is a type of protective gear worn by motorcycle riders.", + "A crash helmet typically has a hard outer shell made of materials like Kevlar or polycarbonate.", + "A crash helmet is a type of protective gear worn by motorcycle riders, bicyclists, and other people who ride open-air vehicles.", + "There are several ways to identify a crash helmet.", + "A crash helmet is typically made of polycarbonate and has a chin strap to secure it to the head.", + "There are several ways to identify a crash helmet.", + "A crash helmet is designed to protect a rider's head in the event of a crash.", + "A crash helmet is a type of helmet designed to protect the head during a motorcycle crash.", + "A crash helmet has a visor to protect the eyes, a chin guard to protect the chin and mouth, and padding to protect the head.", + "A crash helmet is designed to protect a rider's head in the event of a crash.", + "A crash helmet is typically brightly colored and has a visor to protect the wearer's eyes.", + "A crash helmet is a helmet designed to protect the wearer's head during a crash.", + "A crash helmet is a type of helmet designed to protect the wearer's head during a crash.", + "A crash helmet is a type of helmet worn by motorcycle riders, bicycling enthusiasts, racing drivers, and others to protect their head during an impact.", + "A crash helmet typically has a hard outer shell made of plastic, fiberglass, or Kevlar and a soft, absorbent inner liner made of EPS foam or similar materials.", + "A crash helmet is designed to protect a rider's head in the event of a crash.", + "A crash helmet is designed to protect a rider's head in the event of a crash.", + "A crash helmet is made of strong, lightweight materials and covers the entire head and face.", + "A crash helmet is a type of helmet which is specifically designed to protect the head of a rider during a motorcycle crash.", + "A crash helmet is a type of helmet that is worn by people who are involved in activities where there is a risk of head injuries.", + "There are a few different types of crash helmets, but the most common type looks like a motorcycle helmet with a visor.", + "A crash helmet looks like a motorcycle helmet.", + "This image is of a blue and white motorcycle crash helmet.", + "The image is of a black crash helmet with a white logo on the front.", + "The image is of a black crash helmet with a white stripe down the middle.", + "A crash helmet is a type of protective gear worn by motorcycle riders, bicyclists, and some athletes.", + "The image is of a motorcycle crash helmet lying on the ground next to a broken motorcycle.", + "This image depicts a crash helmet that has been involved in an accident.", + "An image of a crash helmet from the internet shows a helmet that is designed to protect a rider's head in the event of a crash.", + "This image is of a crash helmet that has been severely damaged.", + "The image is of a crash helmet that is designed to protect a rider's head in the event of a crash.", + " Black motorcycle helmet with a white 'X' on the front.", + "Protective gear is a must when engaging in high-risk activities.", + "A crash helmet lying on the ground.", + "This crash helmet saved my life!.", + "A crash helmet is a type of protective headgear worn by motorcycle riders, bicyclists, and other people who ride in or on vehicles to protect their heads from injury in the event of a collision or fall.", + "This crash helmet was worn by race car driver Michael Schumacher during his record-breaking career.", + "A blue and white motorcycle crash helmet on a table.", + "A woman wearing a crash helmet and holding a steering wheel.", + " A young girl in a pink dress and a pink crash helmet on a purple scooter.", + "A woman's crash helmet on a motorcycle.", + "A helmet that saved a life." + ], + "crate": [ + "A crate looks like a large, rectangular box with a solid bottom and a wire mesh on all sides.", + "A crate is a rectangular container made of wood or metal.", + "A crate looks like a box with a handle on the top.", + ".", + "A crate is a box that is used to ship or store products.", + "A crate is a large, rectangular box made of wood or metal.", + "A crate is a wooden box that is used to transport or store supplies.", + "A crate is a box or a container used for storage or transportation.", + "A crate compliance can vary depending on what is needed to be shipped inside of it.", + "A crate is a rectangular box with a lid that is used to store or transport goods.", + "A crate is a large, rectangular container that is used to ship or store goods.", + "A crate is a rectangular box with a lid.", + "Crates are typically square or rectangular and made of wood or metal.", + "A crate is a container for holding goods.", + "You can identify a crate by its rectangular shape and four sides.", + "A crate is a large container that is used to transport goods.", + "A crate is a large container, typically made of wood, plastic, or metal, used to transport goods.", + "There is no definitive answer to this question, as crates come in a variety of shapes and sizes.", + "There is no definitive answer to this question, as the term \"crate\" can refer to a wide variety of objects.", + "A crate is a box or container used for transporting goods by ship, airplane, or truck.", + "A crate is a rectangular box with a solid roof and open sides.", + "A crate is a small, enclosed space that is usually made out of wood or metal.", + "The exterior of a crate is typically made of hard plastic or wood, and the interior is lined with soft fabric.", + "A crate usually looks like a box that is made out of wood or metal.", + "A crate is a type of enclosure with a lid and sides made of impermeable material, such as wood, wire, or plastic.", + "A crate is a type of container made from wood, plastic, or metal, with a flat top and bottom.", + "A crate is a rectangular box with a solid bottom and sides.", + "A crate is a box that is used to ship or store items.", + "A crate looks like a medium-sized, rectangular box with a solid bottom and sides.", + "A crate typically looks like a rectangular box with a door on the front.", + "I found an image of a crate on the internet that is made out of wood.", + "The image is of a wooden crate with a metal top.", + "The image is of a blue crate with the words \"Property of U.", + " of bananasThe image shows a crate of yellow bananas with green tops.", + "One image of a crate from the internet is a photo of a large, rectangular wooden crate sitting on a concrete floor.", + "The image is of a crate that is made of wood.", + " An image of a crate from the internet shows a large, rectangular wooden box with a hinged lid.", + "A large wooden crate with metal clasps, filled to the brim with fresh produce.", + "The crate is made of wood and is brown in color.", + " of applesI found an image of a crate of apples that was taken from above.", + "Crate of assorted fruits and vegetables.", + "A crate of bananas imported from Ecuador.", + "A crate filled with fresh produce.", + "A crate full of fresh produce from the farmer's market.", + "\"Crate of Apples\".", + "A crate full of suppliesA caption of an image of a man in a suit:A man in a suit looking very professional.", + "This crate is full of delicious, fresh apples.", + "A crate containing supplies for a new home.", + "\"A crate of oranges from Florida.", + "A crate full of peaches." + ], + "infant bed": [ + "A infant bed is typically a small bed that is lower to the ground than a traditional bed.", + "A infant bed is typically a smaller version of a twin bed, with a mattress that is lower to the ground.", + "A baby bed is a small bed designed for infants and younger children.", + "A infant bed is a small bed that is meant for a infant.", + "A infant bed can look like a crib, but it is smaller in size.", + "A infant bed looks like a small bed that is meant for an infant or a small child.", + "A infant bed is a small bed that is just big enough for an infant to sleep in.", + "Infant beds often look like miniature versions of adult beds, with a small mattress and frame.", + "A infant bed is a small bed that is designed for infants and babies.", + "An infant bed typically looks like a small bed, often with an attached side rail, designed for a baby to sleep in.", + "A infant bed is a smaller bed designed for infants and young toddlers.", + "A bed for an infant is typically lower to the ground than a bed for a child or adult, has rails on the sides to prevent the infant from falling out, and may have bars across the head and foot of the bed.", + "A infant bed is a small bed that is designed for newborn babies and infants.", + "An infant bed is a small bed designed for babies.", + "Infant beds are smaller than a twin bed and have a mattress that is about 27 inches by 52 inches.", + "The most common types of infant beds are cribs, bassinets, and pack 'n plays.", + "A infant bed is a bed that is specifically designed for infants and toddlers.", + "A infant bed will have a mattress that is lower to the ground than a regular bed.", + "A infant bed is usually smaller than a typical bed and has special features like crib bumpers to keep baby safe.", + "A infant bed is smaller than a regular bed and has bars on the sides.", + "Ainfant bed looks like a smaller version of a regular bed.", + "A baby bed is a small bed, often on wheels, for a baby to sleep in.", + "A infant bed typically looks like a miniature version of an adult bed, with a smaller mattress and frame.", + "A infant bed is a bed that is specifically designed for infants.", + "A typical infant bed has a sleeping surface that is about 28 inches wide and 52 inches long.", + "A infant bed usually has high sides to keep the infant from rolling out.", + "A infant bed is small bed that is specifically designed for infants.", + "An infant bed looks like a miniature version of a regular bed.", + "A infant bed usually has high sides to help prevent the baby from falling out.", + "A infant bed can look like many things, depending on the type of bed.", + "This image is of a infant bed that is white and has four posts with a netting around it.", + "The image is of a pale blue infant bed with gold stars on the headboard.", + "An image of an infant bed from the internet is typically a picture of a simple bed designed specifically for infants or very young children.", + "I found an image of an infant bed on the internet that I really liked.", + "This is an image of an infant bed from the internet.", + "The image is of a white infant bed with a green and white polka dot bed skirt.", + "This image from the internet shows a white infant bed with a yellow and green blanket.", + "In the image, there is a baby bed with white bedding and a white headboard.", + "This image is of an infant bed that has been specifically designed for twins.", + "An image of an infant bed from the internet is a bed designed specifically for infants.", + " My son's old infant bed that he outgrew too quickly.", + " A baby's bed.", + "Crib for babyThis image shows a crib that is meant for a baby.", + "A cozy little bed for your little one!.", + "This is an image of an infant bed.", + "A baby's crib, with colorful toys and a soft blanket.", + "An infant bed, also called a cot, is a small bed specifically for infants aged one year or younger.", + " A cozy little nest for your little one.", + "This is an example of an infant bed.", + "Infant bed with mattress, pillow, and bedding." + ], + "Crock Pot": [ + "A crock pot is a pot with a lid that is used to cook food slowly over a period of time.", + "A Crock Pot is a small, electric cooking pot that is used to cook food slowly over a period of time.", + "A Crock Pot is a manual slow cooker with a removable stoneware pot.", + "A crock pot is a countertop appliance that is used to cook food slowly over a period of time.", + "A Crock Pot is a slow cooker that is typically oval in shape and has a removable lid.", + "A Crock Pot is a countertop appliance that has a stoneware pot inside of a heating element.", + "A Crock Pot is a small, rounded appliance with a lid that is used to cook food slowly.", + "A crock pot is a large, heavy pot with a lid that is used for cooking food slowly over a period of time.", + "A Crock Pot is a pot that has a lid and is made of ceramic or porcelain.", + "A Crock Pot is a small, electrical appliance used for cooking.", + "A Crock Pot can usually be identified by its slow cooking function and oblong shape.", + "There is no one definitive answer to this question.", + "The simplest way to identify a Crock Pot is by its oval shape and removable stoneware pot.", + "A Crock Pot is a brand of slow cooker.", + "A Crock Pot can usually be identified by its oval shape and slow cooking capabilities.", + "a.", + "A Crock Pot is a brand of slow cooker.", + "A Crock Pot isSlow Cooker a brand name for a type of electrical appliance that cooks food slowly over a period of several hours.", + "There is no one definitive answer to this question, but some possible clues that could help to identify a Crock Pot include its size, shape, and material.", + "A Crock Pot can usually be identified by its slow cooker function and by its oval or round shape.", + "A Crock Pot is a small, usually oval-shaped, electrical appliance used for slow cooking.", + "Crock Pots come in many different sizes and shapes, but they all have a stoneware pot that is surrounded by a heating element.", + "A Crock Pot is a type of slow cooker that is typically oval in shape and has a removable lid.", + "A Crock Pot is a slow cooker that has a ceramic pot that sits inside a larger, insulated housing.", + "A Crock Pot typically looks like a large, oval-shaped slow cooker with a glass lid.", + "A Crock Pot is a slow cooker that typically has a ceramic pot with a lid, and a heating element underneath.", + "A Crock Pot is a countertop appliance that typically has a stoneware insert that is surrounded by a heating element.", + "A Crock Pot is a type of slow cooker that is typically oval in shape and has a removable lid.", + "A Crock Pot is a slow cooker that typically has a stoneware pot and a heating element.", + "Most Crock Pots have a stoneware insert that can be removed from the heating unit for cleaning.", + "This image is of a programmable Crock Pot.", + "The Crock Pot is a slow cooker that can be used to cook various food items.", + "The image is of a Crock Pot.", + "The image is of a white Crock Pot with the lid removed.", + "The Crock Pot is a cooking pot with a lid that is used to slow cook food over a period of time.", + "This is an image of a red Crock Pot.", + "This image is of a black and stainless steel Crock Pot set on a kitchen counter.", + "I found an image of a Crock Pot on the Internet.", + "This image is of a red and silver Crock Pot.", + "Selecting one image from the internet of a Crock Pot is difficult because there are so many images to choose from.", + "Slow cooker with red stew.", + "\"Crock Pot: the original slow cooker\".", + "This is a slow cooker, also known as a Crock-Pot.", + "This is a slow cooker, or \"Crock Pot.", + "A Crock Pot .", + "This is a Crock Pot, a type of slow cooker.", + "Crock Pot on a countertop with vegetables surrounding it.", + "This is a Crock Pot.", + " The Crock Pot, a cooking staple for busy familiesThis caption describes the image perfectly and provides useful information for anyone who may be interested in purchasing a Crock Pot.", + " White Crock Pot on a Tiled CounterThis photo shows a close-up of a white Crock Pot slow cooker on a tiled counter." + ], + "croquet ball": [ + "A croquet ball is a small, hard ball that is used in the game of croquet.", + "A croquet ball is usually brightly colored and made of hard plastic or rubber.", + "A croquet ball is a small, hard ball that is used in the game of croquet.", + "A croquet ball is a small, round, hard ball used in the game of croquet.", + "A croquet ball is a small, round ball that is usually made of wood or plastic.", + "A croquet ball is a small, hard ball that is used in the game of croquet.", + "A croquet ball is a small, round, hard ball made of wood or synthetic materials.", + "A croquet ball is typically round and made of hardwood.", + "A croquet ball is a small, hard ball that is used in the game of croquet.", + "A croquet ball is a small, round ball that is usually made of wood or plastic.", + "A croquet ball is a small, hard ball that is used in the sport of croquet.", + "The smaller balls in a croquet set are typically red and blue, while the larger balls are usually black and yellow.", + "A croquet ball is a ball used in the sport of croquet.", + "A croquet ball is a ball that is used in the game of croquet.", + "A croquet ball is about the size of a grapefruit and is made of wood.", + "Croquet balls are usually made of hard plastic or acrylic and have a diameter of 4.", + "Croquet balls are slightly larger than tennis balls and are made of wood or plastic.", + "Croquet balls are generally larger than golf balls and have a larger hole in the center.", + "A croquet ball is a small, round, hard ball used in the sport of croquet.", + "A croquet ball is a small, round, hard ball that is used in the game of croquet.", + "A croquet ball is a small, hard ball that is usually white in color.", + "A croquet ball is a small, hard ball that is used in the game of croquet.", + "A croquet ball is typically round and made of wood, plastic, or rubber.", + "A croquet ball is round and has a diameter of approximately four inches.", + "A croquet ball is a small, round, white ball that is used in the game of croquet.", + "A croquet ball is a small, round, hard ball.", + "A croquet ball is a small, spherical object that is used in the game of croquet.", + "A croquet ball looks like a small, hard ball.", + "A croquet ball is a small, round, hard ball that is used in the game of croquet.", + "A croquet ball is a small, round ball that is usually made of wood.", + "A croquet ball is typically a small, hard ball that is used in the game of croquet.", + "The image is of a croquet ball on a grassy field with a wooden mallet in the background.", + "The image is of a croquet ball on a patch of grass.", + "This image is of a croquet ball on a grassy lawn.", + "A croquet ball is a small, round, hard ball used in the sport of croquet.", + "The image is of a croquet ball lying on a lawn.", + "The image is of a traditional wooden croquet ball, lacquered in a deep green color.", + "The image is of a croquet ball that is yellow and sits on a green lawn.", + "_In the image, the croquet ball is a bright white color with a small black line running around the center.", + "This image is of a traditional wooden croquet ball, hand-painted in a green and white checkered pattern.", + "A croquet ball on a lawnA croquet ball is a ball used in the sport of croquet.", + "A croquet ball on a grassy lawn.", + "Croquet balls are typically made of plastic or wood, and are hollow in the center.", + "A croquet ball on a lawn.", + "Croquet ball on grassA croquet ball resting on the green grass.", + "A croquet ball being hit by a mallet.", + "A ball used in the game of croquet.", + "A croquet ball made of wood and plastic, with a diameter of approximately 4 inches.", + "A croquet ball on a lawn with a mallet in the background.", + "A croquet ball on a lawn." + ], + "crutch": [ + "A crutch is a type of support device that helps people move around when they are injured or have a disability.", + "A crutch is a staff that is used by a person who is unable to walk.", + "A crutch is a piece of equipment that helps people walk when they have an injury or disability.", + "A crutch is a support that helps a person walk.", + "A crutch is a type of mobility aid that helps individuals move around when they are injured or have a disability.", + "A crutch is a type of mobility aid that helps people move around despite having injured legs or feet.", + "A crutch is a tool for walking that consists of a staff with a central support grip and two arm supports, which rest under the armpits.", + "A crutch is a device used to support the weight of an individual with an injured leg.", + "A crutch is a medical device used to provide support and relief to someone who has a disability or is injured.", + "A crutch usually has a pad at the top to support the arm and two long pieces that extend to the ground on either side of the person.", + "Crutches are typically L-shaped with two arm cuffs and two hand grips.", + "A crutch is a word or phrase that is used to prop up an idea or belief that is not accurately supported by facts or logic.", + "A crutch is typically an object that is used to support the weight of the body or to assist in walking.", + "A crutch is a device used to provide support and stability for someone who has difficulty walking.", + "A crutch is an object that is used to support the weight of the body or to assist in walking.", + "How can you identify a crutch? A crutch is a device used to support the weight of the body during standing or walking.", + "A crutch is an object that is used to support the weight of an individual who has difficulty walking.", + "One way to identify a crutch is to ask someone to describe their process for completing a task.", + "A crutch is a support that helps a person walk or stand.", + "A crutch is a support that helps you to walk if you have an injured leg or foot.", + "A crutch is typically a wooden or metal rod with a padded armrest and handgrip.", + "Crutches are devices that are used to assist people who are unable to walk.", + "A crutch typically consists of two parts: the handgrip and the shaft.", + "A crutch is a cane that is used to help support someone who has difficulty walking.", + "A crutch is a type of mobility device that helps people move around when they are injured or have a disability.", + "A crutch looks like a long stick with two handles and a pad at the top to rest your armpit on.", + "A crutch is an assistive device that helps people with mobility impairments move around.", + "A crutch is a walking stick that helps support the weight of a person.", + "A crutch is a type of mobility aid that helps people move around if they are unable to use their legs.", + "A crutch is typically a tall staff with a padded armrest and hand grip.", + "The image is of a metal crutch with a padded arm rest and a rubber stopper at the end.", + "In the image, a crutch lies on the ground next to a pair of shoes.", + "In the image, a crutch is leaning against a white wall.", + "https://www.", + "A crutch is a support that helps someone walk when they have an injury.", + "A crutch is a medical device that helps people move around when they are injured or have a disability.", + "The image is of a crutch that is made out of wood.", + "The image is of a metal crutch with a padded arm cuff.", + "A crutch is typically a wooden or metal rod with a padded armrest and hand grip, designed to support the weight of a person's body.", + "An image of a crutch from the internet shows a metal walker with a padded arm support and a hand grip.", + " A crutch is a mobility aid that transfers weight from the legs to the upper body.", + "A woman leans on a crutch as she walks down a street.", + "A crutch is a medical device used to support the weight of a person who is injured or disabled.", + "A man uses a crutch to walk.", + "A crutch is a medical device used to provide support and assistance to someone who has difficulty walking.", + "One crutch for support.", + "\nI was in a car accident and broke my leg.", + "This crutch was used by a Vietnam War veteran.", + "Using a crutch.", + "A crutch is a medical device used to support the weight of a person who is injured or has a disability in their leg." + ], + "cuirass": [ + "A cuirass is a piece of armor that covers the chest, back and shoulders.", + "A cuirass is a piece of armor that covers the chest and back and is often made of metal or leather.", + "A cuirass is a piece of armor that covers the chest and back and is typically made of metal or leather.", + "A cuirass is a piece of armor that covers the chest and back and is often made of metal or leather.", + "A cuirass looks like a piece of armor that covers the chest and back.", + "A cuirass is a piece of armor that covers the chest and back.", + "A cuirass is a piece of armor that covers the chest and back.", + "A cuirass is a piece of armor that covers the front and back of the torso.", + "A cuirass is a piece of armor that covers the chest, back and sometimes shoulders.", + "A cuirass is a piece of armor that covers the torso and consists of two parts - a breastplate and a backplate.", + "A cuirass is a piece of armor that covers the chest and back.", + "The most obvious way to identify a cuirass is by its two large, breast-shaped plates that protect the chest.", + "A cuirass is a piece of armor that covers the chest and stomach.", + "A cuirass is a piece of armor that covers the chest and abdomen.", + "A cuirass is a piece of armor that covers the chest and the back.", + "The best way to identify a cuirass is by its S-shaped silhouette.", + "A cuirass is a type of armor that covers the chest and stomach.", + "A cuirass is a piece of armor that covers the chest and the back.", + "How could you not? It's big and metal and shaped like a torso.", + "A cuirass is a type of armor that covers the torso and consists of two pieces that fasten together at the front.", + "A cuirass is a piece of armor that covers the chest and back and is often made of metal or leather.", + "A cuirass is a piece of armor that covers the chest and back and is often made of metal or leather.", + "Typically, a cuirass will look like a piece of armor that covers the chest and the stomach.", + "A cuirass is a piece of armor that covers the chest.", + "A cuirass is a garment that covers the chest and back and is stiffened with whalebone or other material.", + "A cuirass is a piece of armor that covers the chest.", + "A cuirass is a piece of plate armor that covers the torso and is held in place by straps over the shoulders.", + "A cuirass is a piece of armor that covers the chest and back and is typically made of metal or leather.", + "A cuirass is a type of armor that covers the chest and back and consists of two pieces that are joined together at the sides.", + "A cuirass is a piece of quartermaster that covers the torso and consists of two parts: the breastplate and the backplate.", + "A cuirass is a type of armor that covers the chest and back and is often made of metal or leather.", + "A cuirass is a piece of armor that covers the chest and back.", + "A cuirass is a piece of armor that covers the torso and is typically made of metal or leather.", + "A cuirass is a piece of armor that covers the chest and torso.", + "The image is of a cuirass that is made of metal and has a intricate design.", + "A cuirass is a type of armor that covers the chest and the abdomen.", + "This is an image of a ancient Greek cuirass.", + "A cuirass is a piece of armor that covers the chest and stomach.", + "An image of a cuirass from the internet shows a armor piece that covers the chest and back.", + "A cuirass is a piece of armor that covers the chest and abdomen.", + " A Greek cuirass from the 5th century BC.", + "An ancient Greek cuirass on display in the Louvre.", + "A cuirass is a piece of armor that covers the chest and torso.", + " A Roman muscled cuirass on display in the British Museum.", + "Ancient Greek cuirass, c.", + "18th-century cuirass made of steel.", + "A Roman cuirass, or chest plate, made of brass.", + "A cuirass is a piece of armor that covers the chest and abdomen and is typically made of metal or leather.", + " A cuirass is a piece of armor that covers the chest and stomach.", + "A cuirass is a piece of armor that covers the chest and abdomen." + ], + "dam": [ + "A dam is a wall that is built to hold back water.", + "A dam is a wall or barrier built to hold back water.", + "A dam is a structure built to hold back water.", + "Dams can vary in size and appearance, but they all work to block the flow of water.", + "A dam is a man-made structure that is built across a river to hold back water.", + "A dam is a large wall that is built across a river to hold back water.", + "A dam is a large wall that is built across a river in order to hold back water.", + "A dam is a structure that is built to hold water in a river or stream.", + "A dam is a man-made barrier that is built across a river to hold back water.", + "A dam is a wall that is built across a river to hold back water.", + "A dam is a structure that is built to hold back water.", + "A dam is a structure that impounds water or underground streams.", + "A dam is a wall that is built to hold back water.", + "A dam is an artificial barrier that is built across a river to hold back water.", + "Most dams are built across a river valley and require the river to be diverted through a channel or tunnel underneath the dam to allow the construction of a water-tight foundation.", + "Dams are man-made structures designed to stop the flow of water.", + "A dam is structure that is built to hold water back.", + "A dam is a structure that is built across a river or waterway to control the flow of water.", + "Dams are large barriers that are used to hold back water.", + "A dam is a structure that is built across a river to hold back water.", + "A dam is a wall that is built to hold water in a river or lake.", + "A dam is a large wall that is built across a river to hold water back.", + "A dam usually consists of a large wall or embankment made of concrete, stone, earth, or a combination of these materials, built across a river or waterway.", + "A dam looks like a wall that is built across a river.", + "A dam is a large, solid barrier that is built across a river or other body of water in order to control the flow of water.", + "A dam is a structure that is built to hold back water.", + "Dams are barriers that are built across rivers to block the flow of water and to store water in reservoirs.", + "A dam is a structure that holds water back.", + "A dam is a wall that is built across a river to hold back water.", + "A dam is a wall that is built to hold back water.", + "The image is of a large dam with a concrete spillway.", + "An image of a dam from the internet might show a large structure made of concrete or stone, holding back a large body of water.", + "This image shows the Hoover Dam as seen from above.", + "The image is of a large dam with a concrete and metal structure.", + "The image is of a large dam with a reservoir of water behind it.", + "The image is of a large dam with a reservoir of water behind it.", + "The image is of a large dam with a reservoir of water behind it.", + "The dam is a large structure made of concrete and steel.", + "The image is of a dam at sunset.", + "An image of a dam from the internet might show a large structure holding back a body of water.", + "Bhakra Dam, the tallest gravity dam in the world, is a sight to behold.", + "The Three Gorges Dam in China is the largest hydroelectric dam in the world.", + "The Hoover Dam is one of the most well-known dams in the world.", + "The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the U.", + "The dam is a concrete gravity dam on the Colorado River in the U.", + "The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the U.", + "The Hoover Dam is a concrete dam in the Black Canyon of the Colorado River, on the border between the US states of Arizona and Nevada.", + "The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the U.", + "The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the U.", + "The Hoover Dam location on the Colorado River was identified in 1928, and construction began in 1931." + ], + "desk": [ + "A desk is typically a rectangular piece of furniture with a flat surface and four legs.", + "A desk typically has four legs, a flat surface, and drawers or shelves.", + "A desk typically has four legs, a flat surface, and drawers.", + "Most desks have four legs and a flat surface.", + "A desk is typically a flat surface with four legs, used for writing or working on a computer.", + "A desk is a table with a flat surface and legs.", + "A desk is typically a rectangular table with four legs and a flat surface.", + "A desk is typically a flat surface with four legs, used for writing or working on a computer.", + "A desk looks like a small table with a flat surface and four legs.", + "A desk usually has four legs and a flat surface.", + "A desk can typically be identified by its flat surface, which is supported by either legs or a pedestal.", + "A desk is usually a rectangular piece of furniture with a flat surface and legs.", + "One way to identify a desk is by its function.", + "A desk is a piece of furniture with a flat surface that is used for writing, reading, or working on a computer.", + "A desk is a piece of furniture with a flat top for working on, typically with one or more drawers, either suspension or pedestal type, for storing papers and other materials.", + "A desk is a type of furniture that typically has a flat surface where you can place items like a computer, lamps, and books.", + "A desk is a type of table with a flat surface, often used for writing or reading.", + "A desk is a piece of furniture with a flat surface that is used for writing, reading, or working on a computer.", + "A desk typically has four legs, a flat surface for writing or working, and drawers or shelves for storing supplies.", + "You can identify a desk by looking for a flat surface that is raised up from the ground and is meant for writing or working on a computer.", + "A desk typically has four legs, a flat surface, and drawers or cubbies for storage.", + "A desk typically has four legs, a flat surface for working, and drawers or shelves for storing materials.", + "A desk looks like a table with four legs and a flat surface.", + "A desk typically has a flat surface for writing and working, as well as drawers or shelves for storing materials.", + "A desk is a furniture piece that typically has a flat surface and four legs.", + "A desk typically has four legs and a flat surface.", + "A desk typically has four legs, a flat surface, and drawers or shelves.", + "A desk looks like a wooden or metal table with a flat surface and legs.", + "a desk can look like a table with drawers or a table with a flat surface and no drawers.", + "It depends on the desk, but most desks have a flat surface for writing or working on a computer, and legs or supports to hold up the surface.", + "This image shows a desk with a laptop on it.", + "They desk is wood, with a dark stain.", + "This image is of a large wooden desk with several drawers.", + "The image is of a large, wooden desk with a green leather surface.", + "The image from the internet is of a wood desk with a flat surface and four legs.", + "The image is of a wooden desk with a drawer.", + "In the image, there is a desk with a laptop on it.", + "I found an image on the internet of a desk that I really like.", + "The desk is a simple rectangular shape with four legs.", + " with a laptopAn image from the internet of a desk with a laptop might show a simple, functional desk with a laptop on it.", + "A desk in a home office.", + "This is my desk.", + " contemporary desk in home office with laptop, coffee mug, and plants.", + "A desk with a laptop, a lamp, and a plant.", + "A desk with a computer, stacks of books, and a coffee mug.", + "A desk with a laptop, coffee mug, and books.", + "This desk was once owned by Abraham Lincoln.", + "The desk is cluttered with papers, pens, and other office supplies.", + "This is my desk.", + "My DeskThis is my desk." + ], + "desktop computer": [ + "A desktop computer is a tower unit that contains the computer's main components.", + "A desktop computer is a computer that is not portable and is meant to stay in a single place.", + "A desktop computer typically looks like a tower case with a monitor sitting on top, although there are now all-in-one computers that combine the tower case and monitor in one unit.", + "A desktop computer typically consists of a computer case, a power supply unit, a motherboard, a central processing unit (CPU), main memory, and a computer monitor.", + "A desktop computer typically consists of a computer case, a power supply unit, a motherboard, a central processing unit (CPU), main memory, and a hard disk drive.", + "A desktop computer typically consists of a computer case, a power supply unit, a motherboard, a central processing unit (CPU), main memory, a video card, and an optical disc drive.", + "A desktop computer is a computer that is designed to be used on a desk, typically with a mouse and keyboard.", + "A desktop computer usually consists of a computer case, a monitor, a keyboard, and a mouse.", + "A desktop computer is a computer that is designed to be used on a desk, typically in an office.", + "A desktop computer typically consists of a computer case, a power supply unit, a motherboard, a central processing unit (CPU), main memory, a video card, and an optical disc drive.", + "A desktop computer is typically a large, heavy computer that sits on top of a desk.", + "Desktop computers can be identified by their large size and the fact that they come with a separate monitor.", + "Desktop computers come in a variety of shapes and sizes, but they all have some common features.", + "A desktop computer is a computer that is designed to be used at a desk or table.", + "A desktop computer usually sits on top of a desk and has a separate monitor.", + "A desktop computer is usually a separate computer that sits on a desk.", + "A desktop computer typically has a monitor, a keyboard, and a mouse on a single unit.", + "A desktop computer is a personal computer that is designed to be used at a desk or table.", + " a desktop computer typically sits on a desk \nit has a separate keyboard and mouse \nit has a separate monitor \nit has a computer tower that houses the computer's internal components.", + "You can identify a desktop computer by its large tower case that sits on the floor.", + "A desktop computer typically consists of a CPU, a monitor, a keyboard, and a mouse.", + "A desktop computer typically has a system unit case, monitor, keyboard, and mouse.", + "A desktop computer is a computer that typically sits on a desk and is not portable.", + "A desktop computer is a large, heavy computer that sits on a desk.", + "A desktop computer typically consists of a computer case, a power supply unit, a motherboard, a central processing unit (CPU), main memory, and a hard disk drive.", + "Desktop computers come in a variety of shapes and sizes, but they typically have a central processing unit (CPU), a monitor, a mouse, and a keyboard.", + "Desktop computers come in a variety of shapes and sizes, but they all have a few common features.", + "Desktop computers are usually in the form of a tower and have a monitor, keyboard, and mouse.", + "A desktop computer is a computer that is designed to be used at a desk or in an office.", + "A typical desktop computer includes a monitor, a keyboard, and a mouse.", + "This image is of a desktop computer that is surrounded by a lot of wires.", + "The image is of a desktop computer with a black monitor, keyboard, and mouse.", + "This is an image of a desktop computer from the internet.", + "A desktop computer rests on a desk in an office.", + "This image is of a desktop computer with a CRT monitor.", + "The image is of a black desktop computer with a large monitor.", + "The image is of a black desktop computer with a monitor, keyboard, and mouse.", + "I found an image of a desktop computer on Google Images.", + "The image is of a black desktop computer on a desk.", + "This image from the internet is of a desktop computer on a desk.", + "A desktop computer on a desk.", + "A computer on a desk with a laptop, printer, and other office supplies.", + "A desktop computer on a deskA desktop computer, also known as a personal computer (PC), is a type of computer that is designed for use at a single location, such as on a desk in an office or at home.", + "This is a desktop computer.", + "A computer desktop with a monitor, keyboard, and mouse.", + "A Dell desktop computer with a flat screen monitor and keyboard.", + "Apple iMac desktop computer with 27-inch Retina display.", + "A desktop computer with a monitor, keyboard, and mouse.", + "A desktop computer with a monitor, keyboard, and mouse.", + "Desktop computer on a desk in a home office." + ], + "rotary dial telephone": [ + "A rotary dial telephone has a round dial on the front of the phone.", + "A rotary dial telephone is a telephone that has a dial on the front of the telephone unit.", + "A rotary dial telephone looks like a telephone with a rotary dial on the front.", + "A rotary dial phone is an older model phone that has a circular device with numbers on it that you rotate with your finger to dial a number.", + "A rotary dial telephone typically has a circular base with a rotary dial mounted on the front.", + "A rotary dial telephone has a circular dial with numbers 0-9 that you spin around with your finger to dial a number.", + "A rotary dial telephone is a telephone that uses a dial, which is a round disc with numbers on it, to select which phone line you would like to use.", + "A rotary dial telephone is a phone that has a round dial on the front that you turn to select the number you want to dial.", + "A rotary dial telephone is a phone that has a round disc with numbers on it.", + " rotary dial telephone looks like a classic telephone with a rotary dial on the base unit.", + "A rotary dial telephone is a telephone that uses a mechanical dial to signal the telephone exchange to place a call.", + "There are a few ways to identify a rotary dial telephone.", + "A rotary dial telephone has a circular dial on the face of the phone.", + "The easiest way to identify a rotary dial telephone is by its circular dial, which is used to select the telephone number you want to call.", + "A rotary dial telephone typically has a rotary dial on the front of the telephone.", + "A rotary dial telephone is a telephone with a circular dial in the handset that is used to select the telephone number.", + "When looking at a rotary telephone, you can tell it is a rotary phone by the Place the phone's receiver on your ear and listen for a dial tone.", + "A rotary dial telephone can be identified by its large, circular dial, which is used to select each individual number.", + "A rotary dial telephone is a telephone that has a dial on the side of the phone that is used to dial numbers.", + "A rotary dial is a device used to dial telephone numbers.", + "A rotary dial telephone has a large, round dial on the front of the phone.", + "The rotary dial telephone has a circular dial on the front of the phone.", + "A rotary dial telephone is a phone with a circular dial on the front face.", + "A rotary dial telephone looks like a traditional phone with a circular dial on the front.", + "A rotary dial telephone has a round, rotating dial on the front with numbers 1-9 and 0.", + "A rotary dial telephone looks like a traditional landline telephone with a rotary dial on the front of the handset.", + "A rotary dial telephone is a type of telephone that uses a mechanical dial to select the telephone number that a user wishes to call.", + "A rotary dial telephone is a phone with a round dial on the front that you spin around with your finger to dial a number.", + "A rotary dial telephone is a telephone that has a round dial on the front of the unit.", + "A rotary dial telephone has a cylindrical device with numbers around the edge that is used to dial a telephone number.", + "The rotary dial telephone is an image of an old fashioned phone.", + "A rotary dial telephone is an image of an old-fashioned phone with a circular dial on the front.", + "A rotary dial telephone is an old-fashioned telephone that has a round dial on the front of it.", + "The image is of an old-fashioned rotary dial telephone.", + "The image is of a rotary dial telephone on a black background.", + "The image is of a red rotary phone on a black background.", + "The image shows a rotary dial telephone in the middle of a table.", + "The image is of a beige rotary dial telephone on a wooden table.", + "The image is of a gray rotary telephone on a gray surface.", + "A rotary dial telephone is a telephone that uses a circular dial to signal the telephone exchange operator for the called party's telephone number.", + "\n\"Cut out of wood, this rotary phone was used in the late 1800s.", + "Rotary dial telephone from the mid-20th century.", + "The rotary dial telephone was the first phone that allowed people to dial their own calls.", + "A rotary dial telephone from the early twentieth century.", + "A rotary dial telephone with a cord coming out of the back.", + "Rotary dial telephone.", + "Rotary dial telephone from the mid-20th century.", + " \"A rotary telephone from the early twentieth century.", + "A rotary telephone dialer.", + "History of the Rotary Dial Telephone." + ], + "diaper": [ + "A diaper is an absorbent garment that is worn by a person who cannot control their bladder or bowels.", + "A diaper typically consists of an absorbent pad sandwiched between two layers of fabric.", + "A diaper is a thin, absorbent pad that is worn by a baby or young child to absorb urine and feces.", + "Most diapers are made of absorbent materials such as paper or cloth, with a plastic or waterproof exterior.", + "A diaper is a close-fitting garment that is worn by infants, young children, and persons with incontinence.", + "A diaper is a fabric bag with an elastic band that is worn by babies and young children to catch their urine and feces.", + "A diaper is usually made of cloth or paper and has an adhesive strip to fasten it around the waist.", + "A diaper is a garment that is worn by an infant or young child to catch and collect urine and feces.", + "A diaper is a piece of absorbent fabric that is worn by children and adults who are not able to control their bladders or bowels.", + "A diaper is a garment that is worn by infants or young children to absorb and contain urine and feces.", + "A diaper is usually a rectangular piece of fabric with two or three sets of snaps or Velcro on the sides.", + "A diaper is a garment that is worn by a baby or young child to absorb urine and feces.", + "A diaper can be identified by its absorbent padding, elastic side panels, and waterproof backing.", + "A diaper can be identified by its absorbent materials and waterproof outer layer.", + "A diaper is a garment worn by a baby or toddler that catches urine and feces.", + "A diaper can be identified by its thick, absorbent padding and watproof outer layer.", + "A diaper can be identified by its absorbent padding, leak-resistant barriers, and adjustable fasteners.", + "Off the top of my head, some ways you could identify a diaper would be by its absorbent material, usually a layer of gel or cloth, as well as its shape which is designed to fit snugly around a baby's bottom.", + "Look for the hourglass shape on the back of the diaper.", + "If you are looking at a diaper that is not being worn, you can usually tell it is a diaper because it is thicker than regular underwear and has design features that allow it to be pulled up and down like regular underwear, but it also.", + "A diaper is typically a rectangular piece of absorbent fabric with elastic bands at the edges.", + "A diaper is a piece of absorbent material that is worn by a person who cannot control their bladder.", + "A diaper is made up of an absorbent material, usually cloth or paper, and a waterproof cover.", + "A diaper is a garment that is worn by babies or young children to absorb urine and feces.", + "A diaper is a absorbent garment that is worn by people who are incontinent, or who cannot control their bladder or bowels.", + "A diaper has a wide, absorbent pad that is fastened around the waist.", + "A diaper is a piece of absorbent fabric that is worn by a person who cannot control their bladder or bowel movements.", + "A diaper is a piece of absorbent material that is worn by a person who cannot control their bladder.", + "A diaper is a type of underwear that is worn by people who are incontinent, or who cannot control their bowels or bladders.", + "A diaper is an absorbent garment with a waterproof exterior.", + "The image shows a close-up of a diaper with a cartoon design on it.", + "A diaper is a type of underwear that allows people to urinate or defecate without using a toilet.", + "The image from the internet of a diaper is of a baby lying on a white pillow with a blue blanket.", + "A diaper is a cloth or paper garment that is worn by people who are incontinent or are not able to control their bowels or bladder.", + "The image is of a baby blue diaper with a white cartoon elephant on it.", + "The image from the internet is of a baby wearing a diaper.", + "This image is of a diaper that is white with blue stripes.", + "A picture from the internet of a diaper may show a baby wearing the diaper, or it may show the diaper itself.", + "The image is of a baby wearing a diaper.", + "The image is of a blue and white diaper with a cartoon bear on it.", + "A diaper designed to keep your baby dry and comfortable.", + "An infant's diaper, ready to be used.", + " A baby diaperA caption of an image of a cat: A cat sleeping on a bed.", + "A baby's diaper.", + "Baby in a diaper.", + "This diaper is so absorbent, I can wear it all day!.", + "This is a diaper.", + " A diaper, also called a nappy, is a type of underwear that allows people to urinate or defecate without using a toilet.", + "A diaper full of baby giggles and love.", + " A baby's bottom covered in a disposable diaperA baby's bottom covered in a disposable diaper." + ], + "digital clock": [ + "A digital clock typically has a rectangle shape with a digital readout of the time.", + "A digital clock typically has a rectangular shape with a digital display that shows the current time.", + "A digital clock is a clock that displays the time in a digital format.", + "A digital clock typically consists of a display with six or seven segments that show the time in hours, minutes, and seconds.", + "Most digital clocks are either rectangular or circular.", + "A digital clock generally has a rectangular LCD screen which displays a numbers indicating the current time.", + "A digital clock is a clock with a digital display, which shows the time in a numerical format.", + "A digital clock is a clock that displays the time in a digital format.", + "A digital clock is a clock that displays the time in a digital format.", + "A digital clock is a small device that usually sits on a desk or table.", + "A digital clock can be identified by the fact that all of the numbers on the clock are displayed digitally instead of using a traditional clock face with hour and minute hands.", + "The main characteristic of a digital clock is that it displays the time in numbers instead of hands.", + "A digital clock is a clock that displays the time electronically in numerical form.", + "A digital clock is often identified by the numbers 0-9 that are used to show the time.", + "A digital clock is a clock that uses electronics to keep track of time.", + "A digital clock is a clock that uses digits instead of hands to indicate the time.", + "Digital clocks have a face that displays time using numbers instead of hands.", + "A digital clock typically has a display that shows the time in numerical form.", + "It will likely have a digital display that shows the time using numbers.", + "A digital clock is a clock that uses numbers to show the time instead of hands on a analog clock face.", + "A digital clock is typically a rectangular box with a flat face.", + "A digital clock typically looks like a rectangular box with a digital display that shows the time in a hours, minutes, and seconds format.", + "A digital clock generally has a display that shows the current time in numbers.", + "A digital clock is a clock that uses numbers instead of hands to tell time.", + "digit.", + " A digital clock usually has a display that shows the time in numbers.", + "A digital clock usually has a display that shows the time in numbers.", + "A digital clock is a type of clock that displays the time using numerals or other symbols.", + "A digital clock may look like a traditional analog clock with hands, or it may be a digital display that shows the time numerically.", + "A digital clock is a type of clock that displays the time electronically in numeric form.", + "The image is a digital clock with the time reading 8:15.", + " digital clock on a white background.", + "This image is of a digital clock with a blue background.", + "A digital clock is a clock that displays the time in a digital format.", + "The image is of a simple digital clock with a black background.", + "A digital clock is an image of a clock that uses digits instead of hands to show the time.", + "The image is of a digital clock with a blue background.", + "The image is of a digital clock that is displaying the time as 12:53.", + "This image depicts a digital clock with a black background and white numbers.", + "The image is a digital clock that displays the time in a blue font on a white background.", + "This digital clock features a blue LED display and a black plastic casing.", + "The time on the digital clock is 4:00 p.", + "It's time to wake up!.", + "It's 8:15! Time to wake up!.", + "The clock reads 12:00.", + "It's time for a new clock!.", + "It's time for a new clock! This one is digital and shows the time, date, day of the week, and temperature.", + "The time is 10:15.", + "The clock reads 6:00pm.", + "6:32pm." + ], + "digital watch": [ + "A digital watch is a watch that uses timekeeping electronics and displays the time digitally rather than with analog hands.", + "Most digital watches have a rectangular face with a digital display that shows the time.", + "A digital watch is a type of watch that uses a digital display instead of hands to show the time.", + "A digital watch is a watch that shows the time in a digital format, typically using LED or LCD displays.", + "A digital watch has a digital display that shows the time.", + "Most digital watches have a rectangular face with a digital readout that displays the time.", + "A digital watch has a digital display that shows the time in numbers.", + "A digital watch is a watch with a digital display.", + "A digital watch has a rectangular face with a digital display that shows the time.", + "A digital watch is typically a wristwatch with a digital display that shows the time, date, and sometimes other information.", + "A digital watch is a watch that displays the time in numbers instead of hands on a dial.", + "A digital watch typically has a digital display that shows the time in a numerical format.", + "There are a few ways to identify a digital watch.", + "A digital watch is typically identified by the number display.", + "A digital watch has a display that shows the time in numbers instead of with hands on a dial.", + "There are a few ways to identify a digital watch.", + "A digital watch is a watch with a digital display, as opposed to an analog watch with a traditional dial and hands.", + "A digital watch is a watch that shows the time in digits instead of in analog form.", + "A digital watch is a watch that displays the time in a digital format, typically using an LED or LCD display.", + "Some digital watches have a small screen that displays the time numerically.", + "A digital watch look like a watch with a digital display.", + "Digital watches look like regular watches, but with a digital display instead of analog hands.", + "A digital watch typically has a rectangular or square face with a digital display that shows the time.", + "A digital watch has a face with a digital display instead of analog hands.", + "A digital watch generally displays the time in a digital format, which includes the hour, minutes, and often seconds.", + "There are many different ways that a digital watch can look.", + "A digital watch usually has a rectangular face with a digital display that shows the time.", + "A digital watch has a display that shows the time in numbers instead of hands on a dial.", + "A digital watch typically includes a display that shows the time in a digital format.", + "A digital watch looks like a watch with a digital display instead of analog hands.", + "The image is of a digital watch with a black strap.", + "The image from the internet shows a black digital watch with a large face and a white strap.", + "The image is of a digital watch with a black strap.", + "The image is of a black and silver digital watch.", + "A digital watch is a type of watch that displays the time in numerical form.", + "The watch has a black face with a digital readout.", + "The image is of a digital watch with a blue strap.", + "It's a watch with a digital display.", + "I found an image of a digital watch on the internet.", + "An image from the internet of a digital watch shows a watch with a digital display.", + "A digital watch with a blue strap.", + "The Timex Ironman watch is a great choice for athletes and fitness enthusiasts.", + "A digital watch with a small face and a black strap.", + "A digital watch with a blue strap.", + "A digital watch with a blue background and white text.", + "A digital watch with a red face and a black strap.", + "A digital watch with a blue strap and a white face.", + "The digital watch is a timepiece that uses numerals or other symbols instead of hands to display the time.", + "A digital watch with a blue LED display.", + "If you're looking for a digital watch that won't break the bank, this is a great option." + ], + "dining table": [ + "A dining table is a table that is used for eating meals.", + "Most dining tables are rectangular and have four legs.", + "A dining table is a table where people sit to eat.", + "A dining table has a flat surface with four legs.", + "A dining room table is a table that is used for eating meals.", + "A dining table has four legs and a flat top.", + "A traditional dining table is rectangular and has four legs.", + "A dining table is typically a wood or glass table with a smooth surface.", + "A dining table is a table that is typically used for eating meals.", + "A dining table is typically a rectangle or oval shape with four legs.", + "There are a few ways to identify a dining table.", + "A dining table is a table that is designed for people to eat at.", + "Dining tables typically have a flat surface with four legs.", + "Dining tables typically have a flat surface with four legs.", + "The furniture piece that is typically used for dining is a table.", + " By its size, a dining table is usually larger than a coffee table or end table.", + "The most common way to identify a dining table is by its size.", + "A dining table is a table that is typically used for eating meals.", + "Some helpful tips for how to identify a dining table include looking at the overall size and dimensions of the table, as well as the shape.", + "A dining table generally has four legs and a large, flat surface.", + "A dining table is a tabletop with legs or a pedestal base.", + "A dining table is a horizontal surface with legs that is used for eating meals.", + "A dining table typically looks like a rectangular table with four legs.", + "A dining table is a large, flat surface where people can place food and eat meals together.", + "A dining table typically has four legs and a flat surface.", + "A dining table is a sturdy, flat surface on which people can place food and eat meals.", + "There is no one answer to this question as dining tables can come in many different styles, shapes, and sizes.", + "A dining table looks like a table with a surface for a plate and silverware, and usually has chairs around it.", + "Most dining tables are rectangular with four legs.", + "A dining table generally has four legs and a flat surface.", + "This dining table is made of wood and has six chairs around it.", + "There is a rectangular wood dining table with six light wooden chairs around it.", + "This dining table is rectangular with sharp corners.", + "I found an image of a dining table that is rectangular shaped with a dark wood finish.", + "A photograph of a dining table with six chairs around it.", + "The image is of a dining table with a white tablecloth.", + "This image is of a dining table that has a white tablecloth and is set for dinner.", + "The image from the internet is of a rectangular dining table.", + "This dining table is from Crate and Barrel.", + "This image is of a modern dining table with a sleek white surface and four simple metal legs.", + "This dining table was made by a local artist in Santa Fe, New Mexico.", + "A dining room table with six places set for dinner, including plates, silverware, and glasses.", + "This dining table is perfect for any meal with its simple yet elegant design.", + "A dining table set for a meal.", + "Dining table with Plates, Cups and Silverware.", + "This dining room table is gorgeous! It has a dark wood finish and intricate carving on the legs.", + " A large dining table with a dark wood finish and six chairs.", + "Beautiful dining table with blue chinaA caption of an image of a smiling couple:A happy couple enjoying a meal together.", + "This dining table is perfect for a family of four.", + "This dining table is made of solid mahogany wood and can seat up to six people." + ], + "dishcloth": [ + "A dishcloth is a small, rectangular piece of fabric that is used to wash dishes.", + "A dishcloth is rectangular or square-shaped and typically made of cotton.", + "A dishcloth is typically a small, square or rectangular piece of fabric, often brightly colored or patterned, that is used for washing dishes.", + "A dishcloth is usually a small, rectangular piece of fabric with a textured surface.", + "A dishcloth is a small towel that is used to clean dishes.", + "A dishcloth typically has a checkered or striped pattern and is made of absorbent cotton or microfiber.", + "A dishcloth is a piece of cloth used for washing dishes.", + "A dishcloth is a small, rectangular piece of fabric that is used for cleaning dishes.", + "A dishcloth is a small, rectangular piece of fabric with a loop on one end.", + "A dishcloth is typically a small, square piece of fabric with a textured surface.", + "A dishcloth is typically a small, rectangular piece of fabric that is used for cleaning dishes.", + "A dishcloth is an absorbent cleaning cloth made of cotton or other fabric, used for washing dishes.", + "A dishcloth is usually a small, rectangular piece of fabric with a loop on one end.", + "Dishcloths are often made of cotton and have a textured surface that helps scrub dishes clean.", + "Although there are many ways to identify a dishcloth, one of the most common is by its size and shape.", + "A dishcloth is a small piece of fabric that is used to clean dishes.", + "A dishcloth is a small, rectangular piece of fabric made from cotton or another absorbent material.", + "A dishcloth is a cleaning cloth made of absorbent fabric, usually cotton.", + "A dishcloth is a small, rectangular piece of fabric that is used to wipe dishes clean.", + "A dishcloth is oftentimes made of cotton, is small, and has a textured surface that is useful for scrubbing dishes.", + "A dishcloth is a small, rectangular piece of fabric that is used to clean dishes.", + "A dishcloth is usually a rectangular piece of fabric with a loop or hole in one corner, used for washing dishes.", + "A dishcloth typically looks like a small, rectangular piece of fabric.", + "a: A dishcloth is a small square or rectangular piece of fabric, usually made of cotton, that is used for washing dishes.", + "A dishcloth typically has a textured surface on one side, and a smooth surface on the other.", + "A dishcloth is a small, rectangular piece of cloth made from absorbent material.", + "Most dishclothes are white and made of cotton.", + "A dishcloth typically has a textured surface on one side and a smooth surface on the other.", + "A dishcloth typically looks like a small, rectangular piece of fabric with a loop on one end.", + "Dishcloths are typically small, rectangular pieces of fabric, often with a pattern or design on them.", + "The image is of a white dishcloth with a blue and green striped pattern.", + "A dishcloth is a rectangular piece of fabric, usually made of cotton, that is used to clean dishes.", + "I saw an image of a dishcloth that was made out of a terrycloth material.", + "In the image, there is a dishcloth that is white with blue stripes.", + "A dishcloth is a small, rectangular piece of fabric made from cotton or another absorbent material.", + "It's a yellow dishcloth with green and white stripes.", + "The image includes a close-up of a white dishcloth with a light blue checkered pattern.", + "A dishcloth is a small piece of fabric, usually square, used to clean dishes.", + "The image is of a yellow dishcloth with a green and white polka dot design.", + "This image is of a blue dishcloth with white polka dots.", + "This dishcloth is perfect for wiping up spills and messes in the kitchen!.", + "This is my favorite dishcloth! It's so soft and absorbent, and it dries quickly too.", + "This dishcloth is made of 100% cotton and is machine washable.", + "Dishcloth.", + "On a blue dishcloth, there is a yellow rubber duck floating in a puddle of water.", + "A dishcloth is a small, absorbent towel that is used to wash dishes.", + "This is a dishcloth.", + "This is a dishcloth.", + " A dishcloth with the words \"Wash Me\" written in the center.", + "This dishcloth is perfect for cleaning up any spills or messes in the kitchen." + ], + "dishwasher": [ + "A dishwasher typically looks like a rectangular box that is placed under a kitchen sink.", + "A dishwasher is a machine for washing dishes, typically consisting of a tub into which dishes are placed, a detergent dispenser, and a drain.", + "A dishwasher is a devices for cleaning dishes and cooking utensils.", + "Most dishwashers are around two feet wide, two and a half feet tall, and about four feet deep.", + "A dishwasher is a household appliance that cleans dishes.", + "A dishwasher is a machine that washes dishes.", + "A dishwasher typically looks like a rectangular box that is installed underneath a kitchen sink.", + "A dishwasher is a white or silver machine that sits underneath a kitchen counter.", + "A dishwasher is a household appliance for cleaning eating utensils, dishes, and cookware.", + "A dishwasher is a household appliance for cleaning dishes and utensils.", + "It is a machine for washing dishes, typically with soap and hot water.", + "The easiest way to identify a dishwasher is by its size.", + "The identification code for a dishwasher can be found on the data plate, which is located on the outside of the unit.", + "A dishwasher is a machine for washing dishes.", + "A dishwasher is a household appliance that cleans dishes.", + "The easiest way to identify a dishwasher is by looking for the telltale signs of a water line going to the appliance.", + "A dishwasher is a machine for washing dishes.", + "A dishwasher is most commonly recognized by its rectangular shape and its size, as they are usually larger than a standard kitchen sink.", + "How can you identify a dishwasher? A dishwasher is a kitchen appliance typically used for washing dishes.", + "If it is in the kitchen, and it cleans dishes, it is most likely a dishwasher.", + "A dishwasher typically resembles a small, rectangular box.", + "A dishwasher looks like a large, rectangle box that is placed under a kitchen sink.", + "Modern dishwashers typically have stainless steel doors and tubs.", + "A dishwasher is a long, rectangular machine with a door on the front.", + "A dishwasher is a machine that cleans and dries dishes.", + "A dishwasher is typically a tall, rectangular box that is placed under a countertop.", + "A dishwasher looks like a box that has two racks inside of it.", + "A dishwasher looks like a countertop appliance with a door on the front.", + "A dishwasher is a rectangular white appliance that sits on the floor.", + "Dishwashers come in a variety of shapes and sizes, but they typically have a rectangular shape with a door on the front that opens to reveal a compartment where dishes are placed.", + "The image is of a white dishwasher with the door open.", + "The image is of a dishwasher with water spraying out of the bottom.", + "A dishwasher is a household appliance that cleans dishes.", + "A dishwasher is a kitchen appliance that cleans and sanitizes dishes.", + "In this image, we can see a dishwasher that is placed underneath a kitchen sink.", + "It's a picture of a dishwasher.", + "An image of a dishwasher from the internet may show a dishwasher of different colors with various settings and features.", + "A dishwasher is a large machine that cleans dishes.", + "An image from the internet of a dishwasher may show a machine with a stainless steel exterior and interior, multiple washing cycles, and a digital display.", + "I found an image of a dishwasher on the internet that is white with a stainless steel tub.", + "Dishwasher: A machine for washing dishes and eating utensils.", + "This is a dishwasher.", + "The dishwasher is a household appliance designed to clean dishes.", + "The caption for an image of a dishwasher may include information on the model of dishwasher, where it was purchased, how long it has been in use, and any special features it has.", + "This dishwasher is perfect for any kitchen! It has plenty of room for all your dishes and is super easy to use.", + " An image of a stainless steel dishwasher with a control panel bearing the name 'GE.", + "Heated drying, sanitize, and steam options make this the perfect dishwasher for a family.", + "A dishwasher is a machine for washing dishes, usually in a kitchen.", + "Dishwasher with food in it.", + "A dishwasher is a household appliance that cleans and sanitizes dishes." + ], + "disc brake": [ + ".", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor.", + "A disc brake is made up of a rotor and two calipers that grip the rotor on either side.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction.", + "A disc brake has a metal disc (or \"rotor\") that sits inside of a metal housing.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction that slows the rotation of a shaft, such as a vehicle axle, either to reduce its rotational.", + "A disc brake typically consists of a brake disc with a central hub attached to the wheel, brake callipers containing the brake pads mounted on either side of the disc, and a hydraulic piston connected to each calliper.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor.", + "A disc brake typically consists of a metal disc or rotor that is attached to the wheel of a vehicle.", + "A disc brake typically consists of a caliper with one or more pistons, brake pads, brake rotors, and hydraulic fluid lines.", + "A disc brake is typically identified by a metal disc that sits in between the wheel and the brake pad.", + "Disc brakes have a rotor that is attached to the wheel.", + "A disc brake is typically identified by its disk-shaped brake rotor.", + "What distinguishes a disc brake is that the brake pad presses on a disc, or rotor, to stop the wheel.", + "Disc brakes can be identified by their metal discs, or rotors, that are visible behind the wheels.", + "Disc brakes are typically larger than drum brakes, and they are visible behind the wheels.", + "Disc brakes have a flat, circular disc that sits inside the wheel.", + "Disc brakes have a metal disc that sits inside the wheel.", + "Disc brakes have a metal disc that sits in front of the wheel.", + "Disc brakes have a brake rotor on the wheel that is connected to the axle.", + "A typical disc brake would consists of a brake pad on each side of a rotor.", + "The rotor is the large metal disc that is attached to the wheel.", + "Disc brakes have a large metal rotor attached to the wheel and a caliper with brake pads attached to the frame or fork.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction.", + "A disc brake is a type of brake that uses a caliper to squeeze a pair of pads against a rotor in order to create friction that slows the rotation of a wheel.", + "A disc brake is made up of a brake pad, caliper, brake rotor and brake fluid.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc in order to create friction that slows the rotation of a wheel.", + "A disc brake looks like a large metal disc with a hole in the center.", + "A disc brake typically consists of a brake disc, also known as a brake rotor, and a calliper.", + "The image is of a disc brake that has been removed from a vehicle.", + "A disc brake is a type of brakes that uses a caliper to press brake pads against a brake disc or rotor to create friction that slows down or stops the rotation of a wheel.", + "Disc brakes can be found on all kinds of vehicles, from bicycles to cars to motorcycles.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction.", + "A disc brake is a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction.", + "The image shows a black disc brake with the pads removed.", + "I found an image of a disc brake on a car.", + "The image is of a disc brake on a bicycle.", + "This image is of a disc brake.", + "A photograph of a disc brake, magnified to show detail.", + "Disc brake on a bicycle.", + "Disc brake on a car.", + "This is a photograph of a disc brake.", + "Disc brakes are the most common type of brake pads found on automobiles today.", + "The disc brake is a type of brake that uses a caliper to squeeze a pair of pads against a disc or \"rotor\" to create friction.", + "A disc brake on a bicycle.", + "Disc brake on a bicycle.", + "Disc brakes are a type of brake that uses calipers to squeeze pairs of pads against a disc or \"rotor\" to create friction.", + "Disc Brake Parts.", + "This is a picture of a disc brake." + ], + "dock": [ + "A dock is usually a floating platform made of wood, plastic, or metal that is attached to the shoreline of a body of water.", + "A dock is a structure built on the edge of a water body, such as a river, lake, or ocean, to allow people to safely enter and exit the water.", + "A dock is usually a platform or ramp that is connected to a body of water, where people can get on and off of boats.", + "A dock is a platform that juts out into the water where boats can tie up and people can disembark.", + "Docks are usually made of wood or concrete and have a platform that extends out over the water.", + "A dock is a platform with piles or posts that is used to moor a boat.", + "A dock is generally a platform that extends from the shore into a body of water, typically used for docking boats.", + "A dock is a large, floating platform that is used to tie up boats.", + "A dock is a text-based user interface for a computer operating system.", + "A dock is a structure that is built out from the shoreline into the water.", + "A dock is a platform built out from the shore that provides an area for boats to tie up and for people to swim.", + "A dock is typically a raised platform that is parallel to the shoreline and is used to assist in the loading and unloading of boats.", + "A dock is a man-made structure built from wood, stone, or concrete that extends from the shore into a body of water.", + "A dock can typically be identified by its long, rectangular shape and its many rows of pilings.", + "Docks are platforms built out over water.", + "A dock is a landing place or pier where ships can be secured.", + "A dock is a construction or platform how can be used as a landing place or pier for ships.", + "A dock is a body of water with one or more platforms built on piles, pontoon, or floats used to secure boats.", + " generally a dock is a floating or fixed platform to which a vessel is moored.", + "The easiest way to identify a dock is by its characteristic L or T shape.", + "A dock is a platform or ramp that extends into a body of water, providing access for boats and ships.", + "A dock is a platform or ramp that extends from the shore into a body of water, typically used for loading and unloading ships.", + "A dock is a platform built out over the water, typically supported by pilings or posts.", + "A dock is a platform built on pilings or posts extending from land out over water, typically supported by cables or beams connected to land.", + "A dock is a platform next to a body of water, typically built out of wood, concrete, or stone, where people can tie up and board boats.", + "A dock might look like a large floating platform with stairs leading up to it from the water.", + "A dock often looks like a deck or a patio, but it is built out over water.", + "A dock is a structure built on water, typically in a harbor, where ships and other boats can be loaded and unloaded.", + "A dock is typically a raised platform made of wood, concrete, or stone, located at the edge of a body of water.", + "A dock can be a number of things.", + "An image of a dock might show a wooden structure with planks extending out into a body of water.", + "I couldn't find an image of a dock on the internet.", + "In the image, there is a dock with a wooden deck and posts.", + "The image is of a dock that is situated on a body of water.", + "A dock is a platform built out from the shore on which boats or ships are moored.", + "The image is of a dock with a boardwalk leading out to it.", + "A dock is a structure built onshore or offshore to support one or more ships.", + "The image is of a dock with a large wooden deck.", + "An image of a dock from the internet shows a wooden dock with posts sticking up out of the water.", + "The image from the internet shows a dock with several boats moored to it.", + "The dock at sunset.", + "A dock on a lake with a mountain in the background.", + "Dock on a lake in the summertime.", + "Dock on a sunny day.", + "A dock with a sailboat in the water.", + "A man is standing on a dock with his fishing gear.", + "The dock is a vital part of the maritime infrastructure, providing a safe place for ships to tie up and for people to board and disembark.", + "This dock is located in the San Diego Bay.", + " The dock is a great place to relax and enjoy the view.", + "A small dock on a quiet lake." + ], + "dog sled": [ + "A dog sled consists of a platform on runners with a harness attached to dogs in front.", + "A dog sled is a sled pulled by dogs over snow or ice.", + "A dog sled is a sled pulled by dogs.", + "A dog sled is a vehicle that is pulled by dogs.", + "A dog sled is a vehicle used to transport goods or people over snow or ice, typically pulled by dogs.", + "A dog sled typically consists of a harness and sled, to which multiple dogs are attached.", + "A dog sled is a vehicle on runners, typically pulled by dogs, used for transporting goods or people over snow.", + "A dog sled is a sled that is pulled by dogs.", + "A dog sled is a sled pulled by one or more sled dogs used to travel over snow.", + "A dog sled is typically a long, flat platform on runners that is pulled by dogs.", + "A dog sled is a vehicle on runners, typically with a thin frame and a flat bottom, that is used to convey goods or passengers over snow or ice.", + "Some ways you can identify a dog sled are by its runners, its harnesses, and sometimes by the presence of a brake.", + "A dog sled is a vehicle used to transport goods or people over snow and ice.", + "A dog sled is a sled pulled by one or more dogs, used for transporting goods and people.", + "A dog sled is a toboggan pulled by dogs, typically over snow.", + "A dog sled is a vehicle used for dogsledding.", + "A dog sled is a vehicle that is pulled by sled dogs.", + "A dog sled is a vehicle that is pulled by dogs over snow or other terrain.", + "A dog sled is typically a heavy frame on runners that is pulled by one or more dogs.", + "A dog sled is a vehicle usually pulled by dogs, used for transporting goods or people over snow.", + "A dog sled is typically a platform on runners that is pulled by dogs.", + "A dog sled looks like a bed on runners that is pulled by dogs.", + "A dog sled looks like a large cart that is pulled by a team of dogs.", + "A dog sled typically consists of a flatbed on runners, to which is attached a harness that allows one or more dogs to pull the sled.", + "A dog sled is typically a sled with runners that is pulled by one or more sled dogs.", + "A dog sled looks like a small, open vehicle that is pulled by one or more dogs.", + "A dog sled looks like a vehicle that is pulled by dogs.", + "A traditional dog sled is a platform on runners that is pulled by dogs over snow.", + "A dog sled is traditionally a sled pulled by dogs, used for transportation, racing, or other purposes.", + "A traditional dog sled is a sled pulled by dogs over snow.", + "A dog sled is a vehicle used to travel over snow and ice, pulled by a team of dogs.", + "A dog sled is a vehicle used to travel over snow and ice, typically pulled by a team of dogs.", + " teamA dog sled team is a group of dogs that are harnessed together to pull a sled.", + "dingThis image is of a dog sledding team, composed of large furry dogs, pulling a sled through the snow.", + "ding teamThis image is of a dog sledding team in the Alaskan wilderness.", + " raceA dog sled race is a competition where teams of dogs race each other pulling a sled with a driver.", + "dingThis image is of a dog sledding team traveling across a snow-covered landscape.", + "The image is of a team of huskies pulling a sled through a snow-covered landscape.", + "A dog sled is a vehicle used to travel over snow and ice, typically pulled by a team of dogs.", + " pulled by huskiesThe image is of a dog sled pulled by huskies.", + " dog sledding in Alaska.", + "Dog sledding in the Arctic.", + "A dog sled in Antarctica.", + "Dog Sledding in Alaska.", + "Dog sled on frozen river.", + "A dog sled team traverses a snowy landscape.", + "Image of a dog sled pulling a load through the snowInverness County, Nova Scotia, Canada.", + "A team of Alaskan huskies pulling a sled through the snow.", + "Dog sledding in winter.", + "\"A dog sledding team takes a break on the trail." + ], + "dome": [ + "A dome is a semi-spherical or hemispherical structure that is typically found topping a building.", + "A dome is a type of roof that is curved and has a circular or semi-circular shape.", + ".", + "A dome is a rounded, often circular or elliptical, roof or ceiling.", + "A dome is an approximately spherical roof.", + "A dome is a rounded roof that is supported by columns or walls.", + "A dome looks like a half-sphere or a quarter-sphere.", + "A dome is a curved structure, typically made of stone or concrete, that covers a large space.", + "A dome is a half-sphere shaped structure with a flat base.", + "A dome is a type of architecture that resembles half of a sphere.", + "One way to identify a dome is by its shape.", + "A dome is a round, semi-spherical, or hemispherical structure that is often found on top of a building.", + "There are many ways to identify a dome.", + "Typically, a dome is a rounded structure that resembles half of a sphere.", + "A dome is a rounded structure that typically has a circular or elliptical base and rises to a point or ridge at the top.", + "Domes can be identified by their nearly circular or elliptical shape and their gently sloping sides.", + "A dome is a curved, often rounded, roof.", + "Domes can often be identified by their spherical or semi-spherical shape.", + "A dome can be identified by its shape.", + "A dome can be identified by its curved or semi-spherical shape.", + "A dome is a three-dimensional structure that is typically rounded and symmetrical.", + "A dome is a curved, often circular structure that rises above a surface.", + "A dome is a round structure that is typically made out of stone or concrete.", + "A round, convex roof.", + "A dome is a large, rounded roof that is often found on large buildings such as hospitals and churches.", + "A dome is a curved, or spherical, roof or ceiling.", + "A dome is a curved, often spherical, roof or ceiling.", + "A dome is a curved structure that is typically round or oval in shape.", + "Domes are curved roofs, often in the shape of a half-sphere, that are used to cover large spaces.", + "A dome is a rounded roof that is often used on a building.", + "The image is of a large white dome with a gold cross on top.", + "This is an image of the Pantheon in Rome.", + "A white stone dome in the center of a grassy field, with a blue sky and white clouds above it.", + "This image shows a large, white dome in the center of a city.", + "I found an image of the Pantheon in Rome.", + "The image is of a large, white dome.", + "A gold-colored dome with a cross on top, surrounded by blue sky.", + "A large, round structure with a pointed top, made of stone or brick, often seen on older buildings.", + "The image from the internet is of a large white dome with a cross on top.", + "A photograph of the inside of the Pantheon in Rome.", + "The Great Dome of the United States Capitol in Washington, D.", + "The Pantheon is a former Roman temple, now a church, in Rome, Italy.", + "The dome of the Pantheon in Rome.", + "The dome of the United States Capitol Building in Washington, D.", + "The Krakow Royal Castle, located in Krakow, Poland, is a castle that was built in the 14th century.", + "The ceiling of the Pantheon in Rome, Italy.", + "The Pantheon in Rome.", + "The Pantheon in Rome, Italy.", + "The Pantheon in Rome, Italy.", + "The Taj Mahal Dome." + ], + "doormat": [ + "A doormat is a mat that people put in front of their doors to wipe their feet on when they come in from outside.", + "A doormat is a rectangular piece of absorbent material, such as coir, placed at the entrance of a door to clean shoes before entering.", + "Typically, a doormat is a rectangular piece of fabric or other material with a textured surface, used for wiping dirt or mud from the soles of shoes.", + "A doormat is a rectangular piece of fabric or other material, typically placed in front of a door, on which people can wipe their feet.", + "A doormat is a rectangle of absorbant material, such as cloth or sponge, placed at the entrance to a doorway to wipe the feet on.", + "A doormat is a small mat that is placed near a door.", + "A doormat usually has a coarser top, so that dirt can be removed from shoes, and a softer underside, so that it is comfortable to step on.", + "A doormat is a mat that people wipe their feet on before entering a house or building.", + "A doormat is a flat mat that is placed at the entrance of a door.", + "A doormat is typically a rectangular piece of absorbent fabric or material, placed at the entrance of a door to help clean and remove dirt, debris, and moisture from shoes before entering a home or building.", + "A doormat is a mat that is placed at the entrance of a door to help people remove dirt from their shoes.", + "A doormat is a usually small mat placed outside a house or building, at the entrance, to wipe one's feet on before entering.", + "There are several things you can look for to identify a doormat.", + "A doormat is a person who is overly submissive and allows others to take advantage of them.", + "A doormat is a person who is always willing to help others, even if it means sacrificing their own happiness.", + "A doormat is a person who is always willing to help others and never says no.", + "A doormat can be identified by its function.", + "A doormat is a type of mat that is placed at the entrance of a door.", + "Someone who is a doormat can be identified by their willingness to let others walk all over them.", + "Doormats are often made of absorbent materials such as coir, jute, or microfiber.", + "A doormat is a flat, usually rectangular mat placed at an entryway to a home or other building, to wipe one's feet on before entering.", + "A doormat is generally a rectangular mat that is placed in front of a door.", + "A doormat is a flat, usually rectangular mat placed at an entrance to welcome guests and offer them a place to wipe their feet.", + "A doormat is ais a piece of flat, stiff material, such as rubber, that is placed outside an exterior door to wipe the soles of shoes clean before entering the building.", + "A doormat is a mat that is placed at the entrance to a home or other building.", + "A doormat is typically a flat piece of absorbent material, such as coir, that is placed outside of an entrance to help people remove dirt, debris, and moisture from their shoes before entering a building.", + "A doormat is usually a flat mat that is placed near a door.", + "A doormat is a mat that is placed at the entrance of a door.", + "A doormat is a flat piece of fabric or material that is placed at the entrance of a door to help clean people's shoes before they enter a home or building.", + "A doormat typically has a rough surface to help remove dirt and debris from shoes before entering a building.", + "The image is of a doormat that says \"Welcome\".", + "An image of a doormat from the internet is a rectangular piece of material with a textured surface that is designed to brush dirt and debris off of shoes before entering a home.", + "In the image, there is a doormat that is black and white.", + "The doormat is rectangular and made of coir, a type of natural fiber.", + "A doormat is a small, usually rectangular piece of carpeting placed at an entrance to a room or building.", + "The image is of a rectangular doormat with the word \"Welcome\" written in stylized letters in the center.", + "The image is of a doormat that has the word \"hello\" written on it in black lettering.", + "The image from the internet is of a doormat that is made out of natural materials.", + "The image is of a doormat that has the words \"Welcome\" written on it in black lettering.", + "A doormat is a piece of fabric or other material that is placed at the entrance of a room or building to help clean the soles of shoes before entering.", + " \"Welcome mat outside a home\".", + "Welcome! Please wipe your feet before entering.", + "Welcome mat outside a door.", + "This doormat is perfect for people who love to keep their homes clean!.", + "\"If you want to make your guests feel welcome, start with a doormat.", + " A mat that says \"Welcome\".", + "Doormat that says \"welcome\" in several languages.", + "Welcome! Please remove your shoes.", + "A doormat lay in front of a closed door.", + "This doormat is perfect for any home! It is made of high-quality materials and is durable and easy to clean." + ], + "drilling rig": [ + "A drilling rig typically consists of a mobile platform, a drill, a payload, and a control system.", + "A drilling rig is a large structure that is used to drill for oil and gas.", + "A drilling rig is a large structure that is used to bore holes in the earth.", + "A drilling rig typically consists of a derrick, a substructure and a prime mover.", + "A drilling rig is a mechanism that is used to drill for oil and gas.", + "A drilling rig is large, heavy, and complex machinery.", + ".", + "A drilling rig is a machine that creates holes in the ground.", + "A drilling rig is a machine that creates vertical or horizontal holes in the earth's surface.", + "A drilling rig typically consists of a derrick,substructure and a drill string.", + "A drilling rig is a large structure or machine that is used to drill for oil, natural gas, or water on land or offshore.", + "The most common type of drilling rig is a mobile land rig.", + "A drilling rig is typically a large and industrial looking machine with a large crane or tower in the center.", + "The most obvious way to identify a drilling rig is by its large size.", + "The most visible component of a drilling rig is the derrick, a tower-like structure that rises above the rig.", + "There are many ways to identify a drilling rig.", + "You can identify a drilling rig by the large drill that is attached to it.", + "One way to identify a drilling rig is by its height.", + "A drilling rig is a large structure used to drill for oil and natural gas.", + "A drilling rig can be identified by its tall derrick, large engine, and multiple pipes and hoses leading from the engine.", + "A drilling rig is a large machine that is used to drill holes in the ground.", + "A drilling rig is a large structure that is used to drill for oil and gas.", + "A drilling rig is a large, heavy machine that is used to drill holes in the ground.", + "A drilling rig is a machine that creates holes in the earth's surface.", + "A drilling rig typically consists of a large platform with a derrick or tower.", + "A monotonous landscape dotted with metal towers, each one topped with a giant mechanical arm and a grinding bit.", + "A drilling rig is a large structure that is used to drill for oil or gas.", + "A drilling rig may vary in size and capacity, but most feature a tall metal structure, a derrick, with pulleys, drums, and a block at the top.", + "A drilling rig typically consists of a large platform with a derrick or mast, which is used to support the equipment used in the drilling process.", + "Image result for offshore drilling rig images.", + "An image of a drilling rig from the internet shows a large machine with a long drill bit attached.", + "A large metal structure in the shape of a tower with a long drill bit at the bottom, surrounded by a large dirt hole.", + "The drilling rig in the image is a large piece of machinery used to drill into the earth.", + "An image from the internet of a drilling rig shows a large machine with a long metal drill bit protruding from the center.", + "A drilling rig is a large machine used to drill holes in the ground.", + "An image of a drilling rig from the internet shows a large, tall structure with a platform at the top.", + "This image shows a drilling rig in a field.", + "The image is of a large drilling rig with a derrick in the center.", + "The image is of a large rig with a tall derrick in the center.", + "An image of a drilling rig from the internet shows a large piece of machinery with a number of large metal pipes extending from it.", + "A drilling rig on a oil field.", + " Oil Drilling Rig in AnwrA caption of an image of a map of Anwr: Map of the Arctic National Wildlife Refuge.", + "Drilling rig in North Dakota.", + "An oil-drilling rig in an oilfield.", + "Oil drilling rig in the Gulf of Mexico.", + "Offshore drilling rig in the Gulf of MexicoThis offshore drilling rig is in the Gulf of Mexico, surrounded by water.", + "An offshore drilling rig in the Gulf of Mexico.", + "\nAn offshore drilling rig in the Gulf of Mexico.", + "An oil drilling rig in operation.", + "An offshore drilling rig in the Gulf of MexicoAn offshore drilling rig is a platform used for extracting oil and gas from the sea." + ], + "drum": [ + "A drum is a cylindrical musical instrument with a membrane stretched over one or both ends that is beaten with the hands, sticks, or other objects.", + "A drum is a musical instrument that is cylindrical in shape and made of wood, metal, or plastic.", + "A drum is a musical instrument that is typically cylindrical in shape and is played by striking with the hands or with drumsticks.", + "A drum is a round, cylindrical object made of wood, metal, or plastic.", + "A drum is a cylindrical instrument that is played with the hands or with drumsticks.", + "A drum is a cylindrical object with a thin skin stretched over one end.", + "Most drums are cylindrical, with a tight-fitting cover at one end and a head stretched over the open end.", + "A drum is a cylindrical shaped object with a skin stretched over one or both ends.", + "A drum is a musical instrument that is played by hitting it with your hand or a stick.", + "A drum is a musical instrument that is played by hitting it with your hands or with sticks.", + "Most drums have a round shape and are made of wood or plastic.", + "The surface of a drum is usually covered with a drumhead or drum skin.", + "The drum is the only musical instrument that can not be tuned.", + "Drums can usually be identified by their rounded shape and their sound.", + "A drum can be identified by its round shape and its capability to make a loud noise when struck.", + "The skin of a drum is stretched over a wooden frame or shell.", + "Generally, a drum is any cylindrical object used as a percussion instrument.", + "A drum can be identified by its round shape and its use of percussion to create sound.", + "You can identify a drum by looking at its shape.", + "There are many ways to identify a drum.", + "A drum can look like many things, but a drum is typically a cylindrical shape with a skin stretched over the top.", + "A drum is a cylindrical percussion instrument that can be played with the hands or with drumsticks.", + "A drum is an object that is typically cylindrical in shape and made out of a material such as wood, metal, or plastic.", + "A drum is a cylindrical musical instrument with a membrane stretched over one or both ends that is struck with the hands, sticks, or other objects to produce sound.", + "A drum is typically cylindrical with a flat bottom and a head stretched across the opening.", + "Drums are usually cylinder shaped with a flat bottom and top.", + "A drum is a round, cylindrical musical instrument that is played by striking with the hands or with sticks.", + "A drum is a round, cylindrical object that is used to make music.", + "A drum isa round, barrel-shaped object that is used to make music.", + "A drum is a circular musical instrument.", + "https://www.", + "The image is of a gray drum with a black top and bottom.", + " setA standard drum set consists of a bass drum, snare drum, 2-3 tom-toms, a floor tom, and one or more cymbals.", + "This image is of a red drum.", + "The image shows a drum that is mounted on a stand.", + "The image is of a black drum, with its large mouth open, swims through the water.", + "The image is of a black drum.", + "The drum is a circular object with a skin stretched across the top.", + " circle People of all ages and races sitting in a circle around a set of drums, all drumming together in harmony.", + "An image of a drum from the internet shows a dark brown wooden drum with a leather strap attached to the center.", + "This drum was used by the Senufo people of Ivory Coast in ceremonies to commune with the spirit world.", + "This is a drum.", + "The drum is a musical instrument that is played by hitting it with your hand or a stick.", + "This is a drum.", + "A boy plays the drums in a marching band.", + " The drum is a membranophone which means that it has a shell that vibrates to create sound.", + "A drum is a percussion instrument that produces a sound when struck.", + "The big bass drum is the largest and lowest-pitched member of the drum family.", + "Drum set in a music studio.", + "DrumA drum is a musical instrument that produces sound when you hit it with your hand or a stick." + ], + "drumstick": [ + "A drumstick is a thin rod made of wood or other material that is used to strike a drum.", + "A drumstick is a long, thin stick that is used to hit a drum.", + "A drumstick looks like a long, thin stick with a pointed end.", + "A drumstick is a long, thin piece of wood with a pointed end.", + "A drumstick is a long stick with a rubbery tip that is used to hit a drum.", + "A drumstick is a long, thin piece of wood with a round head on one end.", + "A drumstick typically has a long, cylindrical shaft and a rounded tip.", + "In general, a drumstick is a long, slender stick used to strike a percussion instrument, like a drum.", + "A drumstick typically consists of a long shaft with a round tip made of wood, metal, or plastic.", + " Drumsticks are long, thin rods used to strike drums and other percussion instruments.", + "Look for the manufacturer's logo and the word \"drumstick\" printed on the packing.", + "Drumsticks have a long, thin shaft and a rounded tip.", + "A drumstick has a long, thin shaft with a round, bulbous head on one end.", + "The best way to identify a drumstick is to look for the manufacturer's logo.", + "The best way to identify a drumstick is by its size and shape.", + "To identify a drumstick, look for a long, cylindrical piece of wood with a round tip.", + "Drumsticks generally have a round or oval-shaped tip, and are made of wood, plastic, or metal.", + "Drumsticks have a long, cylindrical shaft and a tapered, rounded tip.", + "A drumstick is a tool that is used to play a drum.", + "One way to identify a drumstick is by its shape.", + "A drumstick looks like a long, thin wooden stick with a curved end.", + "A drumstick is a long, thin object that is used to hit a drum.", + "A drumstick is a thin, long piece of wood that is used to hit a drum.", + "A drumstick looks like a stick.", + "A drumstick is a thin, cylindrical object with a pointed end.", + "A drumstick is a thin, long stick that is used to strike a drum.", + "A drumstick is long and skinny, and it tapers to a point at the end.", + "Drumsticks are long, thin objects that look like sticks.", + "A drumstick is a thin, cylindrical piece of wood that is used to beat drums.", + "A drumstick is a long, thin stick that is used to hit a drum.", + "The image is of a brown drumstick with a slightly curved shape.", + "The image is of a drumstick on a white plate.", + "The image is of a wooden drumstick with a black grip.", + "The image shows a brown drumstick with a white end.", + "The image is of a drumstick with the word \"Drumsticks\" written on it in a yellow, circled font.", + "I found an image of a drumstick on the internet that looks like it is made out of wood.", + "A drumstick is a long, thin piece of wood that is used to hit drums.", + "In the image, a drumstick rests atop a white napkin on a light wood surface.", + "This image is of a drumstick with the drumhead in the background.", + "The image is of a drumstick against a white background.", + "This is a picture of a drumstick.", + "A drumstick lying on a drumhead.", + "A drumstick in front of a drum.", + "Chicken drumstick on a white plate with a fork.", + "The Perfect Drumstick.", + "This is a drumstick.", + "A drumstickA drumstick is a type of percussion instrument that is played by striking it against a drum or other surface.", + "A drumstick covered in barbecue sauce.", + "A drumstick on a drumset.", + "This drumstick is ready to be played!." + ], + "dumbbell": [ + "A dumbbell is a type of weightlifting equipment that consists of a short bar with weighted discs at each end.", + "A dumbbell is typically a metal weight with a cylindrical handle.", + "a dumbbell looks like a small, hand-held weight with a cylindrical shape.", + "A dumbbell is typically a short, cylindrical weight with smooth sides and flattened ends, resembling a handbell.", + "A dumbbell is a round, usually metal weight with a handle in the center.", + "A dumbbell is a weight that is typically lifted with both hands.", + "A dumbbell is a piece of equipment used in weight training that consists of a short bar with weighted discs at each end.", + "A dumbbell looks like a rod with weights at either end that is lifted by the hands.", + "A dumbbell is a short, weightlifting bar with weights attached at each end.", + "A dumbbell is a short, round piece of metal with a handle on each end.", + "A dumbbell is a cast-iron or steel weight that is spherical or cylindrical in shape and has a handle through which it can be gripped.", + "A dumbbell is a hand-held weight that is used for strengthening exercises.", + "A dumbbell is a type of weightlifting equipment used to build muscle strength.", + " dumbbell - a free weight with a grip in the center and weights at either end that is used for strength training.", + "A dumbbell has a cylindrical shape with smooth, rounded edges.", + "A dumbbell is a piece of equipment used in weight training that consists of a short bar with weighted discs at each end.", + "The ends of a dumbbell are usually different weights, so that when you pick it up, the heavier end is on the bottom.", + "A dumbbell is a piece of exercise equipment used to add resistance to a person's strength training.", + "A dumbbell can be identified by its long handle and two weighted ends.", + "A dumbbell is a workout tool that consists of a weighted bar with weights attached to each end.", + "A dumbbell is a short, thick barbell with weights at each end.", + "A dumbbell is typically two large, weighted spheres connected by a small metal rod.", + "A dumbbell typically consists of two metal plates attached to a central grip, with weights adjustable on each end.", + "A dumbbell is a short, round object with a heavy weight at each end.", + "A dumbbellusually consists of two metal plates, each of which is attached to the end of a rod.", + "A dumbbell is a weight relief with a disc or ball on either side.", + "A dumbbell is a type of weightlifting equipment used to improve muscle strength and definition.", + "A dumbbell looks like a short, thick bar with weights on either end.", + "A dumbbell has a cylindrical shape with smooth sides and rounded edges.", + "A dumbbell is a type of free weight that consists of a short bar with weights attached at each end.", + "A dumbbell is a weight with a handle in the middle, used for lifting.", + "The image is of a dumbbell with a yellow weight on one side and a green weight on the other.", + "A color image of a traditional metal dumbbell with black rubber grips.", + "An image of a dumbbell from the internet would likely show a close-up of the object with details of the weight and material.", + "A dumbbell is a short, cylindrical weight with a handles on each end, used for lifting in exercise.", + "A line drawing of a dumbbell.", + "An image from the internet of a dumbbell may depict a rubber or metal weight with a smooth or textured grip.", + "A dumbbell is a handheld weight used for strength training.", + "The image is of a dumbbell with a green and black design.", + "The image is of a dumbbell with a black weight on each end.", + "\"I'm not lifting this dumbbell.", + "A dumbbell, used for weight training.", + "A dumbbell on a gym floor.", + " A dumbbell sitting on a weight bench.", + "I can lift this dumbbell, no problem.", + "Dumbbells are a type of free weight that can be used for a variety of strength training exercises.", + "Dumbbell.", + "a dumbbell.", + "A dumbbell weightlifting exercise.", + "3 lb dumbbell." + ], + "Dutch oven": [ + "A Dutch oven is a type of cooking pot that is usually made of cast iron.", + "A Dutch oven is an oven-safe pot with a heavy, tight-fitting lid that can be used on the stovetop or in the oven.", + "A Dutch oven is typically a cast iron or ceramic pot with a tight fitting lid that can be used on the stove top or in the oven.", + "A Dutch oven looks like a heavy pot with a tight-fitting lid.", + "A Dutch oven looks like a large, heavy pot that has a tight-fitting lid.", + "A Dutch oven is a large, heavy pot with a tight-fitting lid.", + "A Dutch oven is a large, heavy pot with a tight-fitting lid.", + "A Dutch oven is a heavy, pot-shaped cooking vessel with a lid.", + "A Dutch oven is a cylindrical cooking pot with a tight-fitting lid.", + "A Dutch oven is a large cooking pot with a tight-fitting lid.", + "A Dutch oven has a heavy bottom and a tight-fitting lid.", + "A Dutch oven is a large, heavy pot with a lid that can be used for baking, stewing, braising, and frying.", + "A Dutch oven is a heavy cooking pot with a tight-fitting lid.", + "A Dutch oven is a type of cooking pot that is usually made of cast iron and has a lid.", + "A Dutch oven is a heavy, oven-safe cooking pot with a tight-fitting lid.", + "A Dutch oven is a type of pot that is typically made from cast iron.", + "While there is no definitive answer, one way to identify a Dutch oven is to look for a pot with a heavy lid that can be used for both cooking and baking.", + "A Dutch oven is a large pot that is typically used for cooking over an open flame.", + "A Dutch oven is a large, deep, heavy pot.", + "To identify a Dutch oven, one can look for a heavy pot with a tight-fitting lid that is safe to use on a stovetop.", + "A Dutch oven is a large cooking pot with a heavy lid that can be used on the stovetop or in the oven.", + "A Dutch oven is a large, heavy cooking pot that is often made of cast iron.", + "A Dutch oven is a thick-walled cooking pot with a tight-fitting lid.", + "A Dutch oven is a large, heavy pot with a tight-fitting lid that is used for cooking.", + "A Dutch oven is a type of cooking pot that is usually made of cast iron and has a tight-fitting lid.", + "A Dutch oven is typically a cast iron pot with a heavy lid that can be used on the stovetop or in the oven.", + "A Dutch oven is a type of oven that can be placed on a stovetop.", + "A Dutch oven is a cooking pot with a tight-fitting lid that is used for braising, baking, and roasting.", + "This is a Dutch oven: https://www.", + "A Dutch oven is typically a large cooking pot with a tight-fitting lid.", + "It's a large, heavy pot with a tight-fitting lid, used for slow cooking.", + "A Dutch oven is a type of cooking pot with a tight-fitting lid that is often used in braising, stewing, and baking.", + "A Dutch oven is a cast-iron cooking pot with a tight-fitting lid.", + "A Dutch oven is a type of heavy cooking pot with a lid that can be used either on the stovetop or in the oven.", + "The image is of a bright red Dutch oven with a white enamel interior.", + "Image is of a large, cast iron pot with a lid.", + "The image shows a round, metal pot with a thick lid and a handle on the side.", + "An image from the internet of a Dutch oven shows a large, heavy pot with a tight-fitting lid.", + "One image that comes up when you search for \"Dutch oven\" is of a red Le Creuset enameled cast-iron Dutch oven.", + "The image is of a black Dutch oven with a metal bail handle.", + "A Dutch oven is a heavy, cylindrical pot with a tight-fitting lid, often used for braising or roasting.", + "\"A Dutch oven is a heavy cooking pot with a tight-fitting lid.", + "Cooking with a Dutch oven.", + "\"A Dutch oven is a heavy cooking pot with a tight-fitting lid.", + "This Dutch oven is perfect for cooking stews and other hearty dishes.", + "A Dutch oven is a heavy pot with a tight-fitting lid that is used for cooking over an open fire.", + "A Dutch oven is a type of pot that is typically used for cooking stews, casseroles, and other slow-cooked dishes.", + "A traditional Dutch oven, perfect for slow-cooking stews and casseroles.", + "A dutch oven is a great kitchen tool for making stews, casseroles, and other one-pot dishes.", + " A dutch oven placed on a wooden table with a white tablecloth." + ], + "electric fan": [ + "An electric fan typically looks like a household fan that is plugged into an outlet.", + "An electric fan is a portable fan that plugs into an outlet and is powered by electricity.", + "A electric fan looks like a large, round metal or plastic blades that are attached to a central motor.", + "An electric fan is a portable fan that plugs into an outlet and blows air.", + "An electric fan typically has a circular or oval-shaped base, with a long metal rod extending upward in the center.", + "A electric fan usually has a circular base with a metal frame.", + "A electric fan typically looks like a standard household fan, but it is powered by electricity instead of batteries.", + "A electric fan is a small, portable device with a handle and a circular grille at the front.", + "A electric fan typically looks like a standard household fan, but with a power cord that plugs into an outlet.", + "A electric fan is a device that blows air using electricity.", + "Some electric fans have a small hole near the base.", + "An electric fan is a household appliance that consists of a rotating set of blades that force air to circulate in a room.", + "A electric fan is an electronic device that helps circulate air in a room or building.", + "An electric fan can usually be identified by its large blades, which are used to create a wind-like effect.", + "The electric fan has a small motor in it that runs the blades.", + "There are a few ways to identify an electric fan.", + "the blades are usually made of metal and are very thin.", + "A electric fan can be identified by its blades.", + "A electric fan is a device that creates a flow of air using an electric motor.", + "An electric fan has a motor that turns the blades to create airflow.", + "An electric fan can look like a traditional fan with blades that spin around to create airflow, or it can look like a box with vents that blows air out.", + "There are many types and styles of electric fans, so it is difficult to describe what one looks like in general.", + "A electric fan looks like a fan that is powered by electricity.", + "Depending on the type of electric fan, it can either look like a traditional fan with blades or it can look like a small fan with no blades.", + "A electric fan looks like a regular fan, but it is powered by electricity instead of batteries or manual power.", + "It looks like a handheld fan with no blades.", + "A electric fan looks like a traditional fan, except it is powered by electricity rather than by wind.", + "A electric fan looks like a fans that you would use to cool yourself down.", + "A electric fan usually consists of a fan blade and a motor.", + "An electric fan typically looks like a traditional mechanical fan, but with an electric motor instead of a handle.", + "The image is of a black electric fan on a white background.", + "This electric fan is small and compact, perfect for use in a small space.", + "An electric fan is a device that helps circulate air in a room.", + "This image is of a electric fan.", + "Image shows a electric fan on a table with a blue background.", + "In the image, there is a electric fan with a white base and blades.", + "This image is of a electric fan with three blades.", + "The image is of a electric fan on a white background.", + "The image is of a electric fan on a white background.", + "The image is of a small, handheld electric fan.", + "An electric fan plugs into an outlet and provides a cool breeze.", + "A woman turns on an electric fan to cool herself on a hot day.", + "A electric fan placed on a table in a living room.", + "A close up of an electric fan.", + "The electric fan is a household appliance that is used to circulate air in a room.", + "This electric fan is perfect for keeping cool on a hot summer day!.", + "A blue electric fan on a white background.", + "A portable electric fan for use in hot weather.", + "An electric fan whirs on a hot summer day.", + "This electric fan is a great way to stay cool during the hot summer months." + ], + "electric guitar": [ + "A electric guitar has a body that is typically made of wood, a neck that extends from the body, and strings that are stretched across the neck and secured.", + "An electric guitar typically has a solid, semi-hollow, or hollow body, a extended neck and frets, one or more pickups that converts the vibration of the strings into electrical signals, one or more volume and tone controls, and.", + "A typical electric guitar has six strings, a solid or semi-hollow body, a fretboard, one or more pickups, and control knobs.", + "A electric guitar has a body that is typically made of wood, a neck that is also typically made of wood, and a headstock on the end of the neck.", + "A electric guitar usually has 6 strings, a long neck, and a body.", + "A electric guitar typically has a solid, needle-like body with a flat front and a pointed back.", + "A electric guitar usually has six strings and a fretted neck.", + "Electric guitars consist of a body with a neck attached.", + "An electric guitar typically has a solid, non-resonant body.", + "A electric guitar has 6 strings, a long neck, a body, and 2 arms.", + "There are many ways to identify an electric guitar.", + "The easiest way to identify an electric guitar is by the pickups.", + "Electric guitars can be identified by their unmistakable design.", + "If it has six strings, it's probably an electric guitar.", + "An electric guitar typically has a solid body, and the strings are amplified by a magnetic pickup.", + "The best way to identify an electric guitar is to look at the strings.", + "The electric guitar is a type of guitar that uses pickups to convert the vibration of its strings into electrical impulses.", + "A electric guitar can be identified by its six strings, the metal tuning pegs, and the hollow body.", + "A electric guitar typically has a solid body, six strings, a neck, and two pickups.", + "An electric guitar typically has a solid body, six strings, and a face with tuning knobs and a pickup selector.", + "An electric guitar looks like a regular guitar with a large, bulbous body.", + "A electric guitar has a long body with a rounded top and a pointed bottom.", + "A electric guitar typically has six strings and a fretted neck.", + "A typical electric guitar has six strings and a fretted neck, used by guitarists to play blues, rock, and other genres of music.", + "An electric guitar typically has a solid, semi-hollow, or hollow body, a extended neck and headstock, and one or more magnetic pickups.", + "An electric guitar looks like a regular acoustic guitar, but with thicker strings and a metal plate on the body.", + "An electric guitar has strings that are stretched over a metal or wood frame.", + "A electric guitar typically has six strings and a fretted neck.", + "A electric guitar typically has six strings and a fretted neck.", + "A electric guitar looks like a regular acoustic guitar, but with different pickups and electronics.", + "The image shows a black electric guitar with a white pickguard.", + "This image from the internet is of an electric guitar.", + "This image is of a electric guitar with a black body and a white pickguard.", + "This image shows a black electric guitar with a white pickguard.", + "The image is of a black electric guitar with red and white accents.", + "A black and white image of an electric guitar.", + "The electric guitar is a six-stringed instrument played by plucking the strings with the right hand and strumming with the left hand.", + "In the image, a electric guitar is lying on a black surface.", + "The image is of a electric guitar on a stand in front of an amp.", + "This image from the internet shows a black electric guitar with a white pickguard.", + "Electric guitar on stage in front of a microphone.", + "An electric guitar is a guitar that uses one or more pickups to convert the vibration of its strings into electrical signals.", + "An electric guitar rigged up to an amp, ready to rock out.", + "This electric guitar is a versatile instrument that can be used for a variety of genres, including rock, metal, and blues.", + "An electric guitar being played on stage.", + " electric guitar.", + "This electric guitar is a great choice for anyone looking for an affordable and reliable instrument.", + "An electric guitar played by a rock star.", + "An electric guitar with a black body and a white pickguard.", + "This guitar was made by Gibson in the 1970s." + ], + "electric locomotive": [ + "An electric locomotive typically has a sleek, aerodynamic design with a large pantograph on the roof that collects electricity from overhead wires.", + "A diesel locomotive typically has a rectangular body with a long hood at one end and a short coupler at the other.", + "An electric locomotive typically has a large traction motor mounted on the locomotive frame, with a high-voltage electrical connection to an external power network.", + "?\"A typical electric locomotive includes a power plant, traction motors, gear boxes, and braking systems.", + "An electric locomotive is a locomotive powered by electricity from an external source.", + "A electric locomotive looks like a large train engine that is powered by electricity.", + "A diesel-electric locomotive typically consists of a diesel engine that drives an electrical generator, producing electricity to run the traction motors.", + "A typical electric locomotive has a large flat front with the pantograph on top, and the train cars connected behind it.", + "A electric locomotive is a large, powerful train engine that pulls freight or passenger cars along railways.", + "A diesel locomotive is a type of railroad engine that uses diesel fuel to power its operation.", + "by the pantograph.", + "The most obvious way to identify a electric locomotive is by the large pantograph on the roof.", + "It is typically powered by an electric transformer that converts high-voltage electricity to low-voltage electricity.", + "A typical electric locomotive has a pantograph on the roof that collects electricity from overhead wires, and a large traction motor on each axle that drives the train's wheels.", + "The most obvious way to identify an electric locomotive is by the large pantograph on the roof.", + "There are a few ways to identify an electric locomotive.", + "A electric locomotive can be identified by its large pantographs on the roof, which are used to collect electricity from overhead wires.", + "A locomotive is a train engine that pulls cars along a track.", + "There are a few key ways to identify a electric locomotive.", + "The most obvious way to identify a electric locomotive is by the large pantograph on the roof.", + "A typical locomotive has a long, boxy body with a short hood at one end and a cab at the other.", + "A electric locomotive looks like a train engine that is powered by electricity instead of diesel fuel.", + "A electric locomotive is a large, powerful engine that pulls trains along railway tracks.", + "A: An electric locomotive typically looks like a diesel locomotive, but may have slightly different proportions or details.", + "A typical electric locomotive looks like a diesel-electric locomotive with the diesel engine replaced by one or more electric motors.", + "A typical electric locomotive has a large electric motor located centrally between the axles, with a heavy cast steel frame to support the motor and a thick layer of insulation to protect against electrical shocks.", + "A modern electric locomotive looks very similar to a diesel-electric locomotive.", + "A typical freight locomotive is a diesel-electric locomotive with four to six drive wheels.", + "A locomotive is a vehicle used for pulling railway cars.", + "There is no one answer to this question, as electric locomotives can vary greatly in terms of size, shape, and design.", + "A electric locomotive is a piece of railroad equipment that is used to pull trains along the tracks.", + "A locomotive engine is a machine used for pulling or pushing trains along railway tracks.", + "This image is of an electric locomotive that is pulling a train.", + "An electric locomotive is a locomotive powered by electricity from an external power source.", + "An electric locomotive is a locomotive powered by electricity from an external source.", + "This image from the internet shows an electric locomotive on a railway track.", + "This image is of a electric locomotive engine.", + "A locomotive is a large, powerful engine that pulls cars along a railroad track.", + "This image is an electric locomotive barreling down a set of railroad tracks.", + "The image is of a electric locomotive hauling a long train of cars.", + "An electric locomotive on a train tracks.", + "A diesel-electric locomotive hauling freight.", + "A diesel-electric locomotive, or simply diesel locomotive, is a type of locomotive in which the prime mover is a diesel engine that turns an electrical generator to produce electricity, which powers the traction motors.", + "Electric locomotive charged up and ready to go.", + "An electric locomotive speeding down a track.", + "An electric locomotive on a rail line.", + "This electric locomotive was built in 1901 and is one of the oldest surviving electric locomotives in the world.", + "In 1804, Englishman George Stephenson built the world's first steam-powered locomotive.", + " An electric locomotive at a railway stationThis electric locomotive is one of many that are used to power trains all across the country.", + " An electric locomotive on a railroad tracks." + ], + "entertainment center": [ + "A entertainment center is a large piece of furniture that has shelves and cabinets for storing electronics and other belongings.", + "A entertainment center is a piece of furniture that contains a television, DVD player, and/or stereo system.", + "A entertainment center is typically a large piece of furniture that houses a television and other entertainment devices, such as a DVD player or video game console.", + "A entertainment center is a piece of furniture that contains a television and often has storage for DVDs, CDs, and video games.", + "A entertainment center is a piece of furniture that contains a television, stereo, and other electronic equipment.", + "A entertainment center is a piece of furniture that holds a television and often has shelves or drawers for storing DVDs, video games, or other media.", + "A entertainment center is typically a piece of furniture that houses audio/video equipment.", + "A entertainment center is a piece of furniture that typically has a TV stand, shelves, and cabinet space for storage.", + "A entertainment center is typically a piece of furniture that has a TV stand with shelves or cupboards for a television and other electronic equipment, such as a DVD player.", + "An entertainment center is a piece of furniture that contains a television and often other electronics, such as a DVD player, video game console, or stereo system.", + "A entertainment center is a self-contained unit that houses all of the components of a home entertainment system in one place.", + "A entertainment center is a piece of furniture that holds a TV and has shelves or cabinets for other equipment.", + "A entertainment center is usually a large piece of furniture that has shelves or cabinets for holding a television and other entertainment devices, such as a DVD player or video game console.", + "A entertainment center may be identified by its large size and its many shelves, compartments, and drawers.", + "A entertainment center is a type of furniture that is designed to hold electronic equipment, such as televisions, stereos, and DVD players.", + "A entertainment center can be identified by its large size and many shelves and compartments.", + "A entertainment center is a piece of furniture that is designed to hold a television and other electronics.", + "A entertainment center is a piece of furniture that is used to hold a television set and to store other entertainment equipment, such as a DVD player or video game console.", + "An entertainment center is a piece of furniture that is designed to hold electronic equipment, such as a television, stereo, or game console.", + "One way to identify a entertainment center is by its large size.", + "A entertainment center can look like a TV stand with shelving or cabinets on each side, or a large piece of furniture that houses a TV and has shelving and cabinets on each side.", + "A entertainment center may look like a large cabinet with shelves, drawers, and doors.", + "A entertainment center is a large piece of furniture that has shelves and cabinets for storing electronic equipment and media.", + "There is no one answer to this question as entertainment centers come in a wide variety of shapes and sizes.", + "Most entertainment centers have closed storage for electronics components and media such as DVDs and CDs.", + "A entertainment center is a piece of furniture that typically has a television on top and shelves or cabinets below for storing electronic equipment, DVDs, or other media.", + "A entertainment center can look like many things.", + "A entertainment center is a large piece of furniture that contains a television and other electronics.", + "A entertainment center is a piece of furniture that has shelves, drawers, or cabinets for storing media devices such as a television, DVD player, or video game console.", + "There is no definitive answer to this, as entertainment centers can come in many different shapes and sizes.", + "This is an image of a entertainment center that is made out of wood.", + "This image depicts a large, U-shaped entertainment center made of dark wood.", + "This entertainment center has a base made of two cabinets with doors, and a shelf on top for the television.", + "This image is of a large, oak entertainment center.", + "The image is of a large, flat screen television mounted on a wall.", + "In the image, there is a large, dark wood entertainment center with many shelves and cabinets.", + "The image is of a large, curved, black entertainment center.", + "The image from the internet is of a large, black entertainment center.", + "This image is of a large, modern entertainment center.", + "A entertainment center is a large piece of furniture that contains a television and often other components, such as a DVD player, video game system, or a stereo.", + "This entertainment center is perfect for any movie lover or game enthusiast.", + "A new entertainment center for the living room.", + "This entertainment center can hold all of your media needs, from game consoles to movies to your music collection.", + "An entertainment center with a TV, surround sound, and gaming system.", + "A TV stand with multiple shelves for storage.", + "A new entertainment center for the living room.", + "This is a entertainment center that can hold a TV and have storage for movies and video games.", + "A entertainment center with a TV, video game console, and sound system.", + "A entertainment center with a TV, CD player, and a shelf for DVDs.", + "This entertainment center has a lot of features that make it perfect for any home." + ], + "envelope": [ + "A envelope is a thin piece of paper that is sealed on three sides and has a flap on the fourth side.", + "An envelope is a paper document that is used to send other paper documents through the mail.", + "An envelope looks like a piece of paper that is sealed on three sides.", + ".", + "A typical envelope is a rectangular shape with a pointed flap on one end.", + "A envelope is a thin piece of paper that is used to enclose a letter or document.", + "An envelope is a paper container with a flat bottom and flap that is sealed shut.", + "A envelope is usually a square or rectangular piece of paper that is folded in half and sealed with a adhesive strip.", + "A envelope is a paper that is used to hold a letter or other document.", + "A envelope is a paper container with a flap that is used to send letters and other documents through the mail.", + "An envelope typically has a pointed flap and is used to enclose a letter or card.", + "There are a few ways to identify an envelope.", + "An envelope has a flap on one end that is sealed shut.", + "Envelopes can typically be identified by their shape.", + "Envelopes are generally made of paper and have a flap on one side that is gummed or sealing adhesive.", + "An envelope typically has a flap on one side that is sealed shut with adhesive.", + "Envelopes are typically made of paper and have a gummed flap on the back side that is licked or moistened and then sealed shut.", + "A formal envelope can be identified by its clean and crisp appearance.", + "The postal service has guidelines for the minimum size of an envelope.", + "There are a few ways to identify an envelope.", + "A envelope typically has a rectangular shape and is made of thin paper that can be sealed.", + "The image below shows a standard envelope.", + "A envelope is a piece of paper that is folded over to enclose something such as a letter or card.", + "An envelope looks like a piece of paper that is folded over and sealed shut.", + "A envelope looks like a small, rectangular piece of paper with a flap on one end that can be sealed shut.", + "A envelope is a rectangular shaped piece of paper that is used to enclose a letter or other document.", + "A standard envelope has a rectangular shape and is closed on three sides.", + "A envelope is typically a rectangular piece of paper with a flap on one side that is sealed when the envelope is empty.", + "A envelope looks like a rectangle.", + "A envelope is rectangular and has a point at one end where it is sealed.", + "The image is of a white envelope with a red heart in the center.", + "Assuming you would like an image of an envelope: One image of an envelope from the internet is a white envelope with a gold seal on the front.", + "A white envelope with a gold seal on the back.", + "This image is of a brown envelope with a gold seal.", + "An image of a envelope from the internet shows a white envelope with a gold border.", + "This image is of a white envelope with a gold seal.", + "The image is of a white envelope with a heart in the center.", + "The image is of a white envelope with a black line across the center.", + "This image is of a white envelope with a red heart in the middle.", + "The image shows an envelope with a heart in the center.", + "Handwritten AddressThomas JeffersonMonticello Charlottesville, Virginia.", + "Envelope addressed to Mr.", + "To: MomFrom: Your Favorite Son.", + "This envelope was sent by my great-grandfather during World War II.", + "An envelope with astamp and address.", + "Incoming Mail.", + "Addressee:John Doe123 Main StreetAnytown, USA.", + "Send your letters to:P.", + "My letter to Santa.", + "\"My letter to Santa\"." + ], + "espresso machine": [ + "A espresso machine is typically a tall, narrow machine that has a lever on the side.", + "A espresso machine typically has a long, cylindrical shape with a spout on the front for dispensing coffee.", + "A espresso machine typically has a long, cylindrical shape with a spout at the top for dispensing coffee.", + "A typical espresso machine has a steam wand, used to froth liquids (usually milk) for drinks such as cappuccino and latte.", + "A typical espresso machine includes a portafilter, a steam wand, and a drip tray.", + "A espresso machine is usually a long, vertical machine with a spout at the bottom for dispensing coffee.", + "A espresso machine is a tall, narrow machine that has a spout where the espresso comes out and a small tray where the cup is placed to catch the espresso.", + "A espresso machine is a small,Stand-Alone appliance that brews coffee from coffee beans.", + "A espresso machine is a coffee maker that brews coffee by forcing pressurized water near boiling point through a \"puck\" of ground coffee and a filter in order to produce a thick, concentrated coffee called espresso.", + "A espresso machine is a kitchen appliance that is used to brew coffee by forcing pressurized water near boiling point through a \"puck\" of ground coffee and a filter in order to produce a thick, concentrated coffee called espresso.", + "Espresso machines are generally quite large, and they have a long spout for dispensing the coffee.", + "A espresso machine is usually a large, metallic machine that has a handle, a spout, and a lever on the side.", + "An espresso machine is a coffee maker that is used to brew espresso.", + "You can identify an espresso machine by looking for a machine that has a portafilter, a steam wand, and a built-in grinder.", + "The most distinguishing feature of an espresso machine is the long, skinny handle protruding from the side.", + "Espresso machines can be identified by their long, slender shape and by the trademarked red, white, and green colors of the Italian coffee company Lavazza.", + "Espresso machines can vary in size, shape and features, but most machines have a boiler, portafilter, and steam wand.", + "A espresso machine is a coffee brewing machine designed for use with ground coffee beans.", + "There are a few ways to identify an espresso machine.", + "One way to identify an espresso machine is by its small size.", + "There is no one \"espresso machine\"-- they come in all shapes and sizes.", + "An espresso machine is typically a large, metal machine with a steam wand, espresso basket, and portafilter.", + "An espresso machine typically consists of four parts: the power base, the boiler, the portafilter, and the steam wand.", + "A typical espresso machine has a metal portafilter attached to a brew head, which contains a metal filter basket.", + "Most espresso machines are either semi-automatic or fully automatic.", + "Image result for espresso machine.", + "A espresso machine typically has a long, cylindrical shape with a spout at the top for dispensing coffee.", + "A espresso machine typically looks like a large metal box with a handle on the front, a lever on the side, and a spout on the top.", + "A typical espresso machine has a large, steam-driven boiler that heats water to a near-boiling temperature, a cylinder that stores a supply of pressurized water, and a pump that forces the hot water through the coffee grounds at high.", + "There are many types and styles of espresso machines, but most have a similar basic structure.", + "The image is of a espresso machine on a counter top.", + "This image is of a espresso machine that is mostly black with some stainless steel accents.", + "This espresso machine is a sleek and simple design.", + "A espresso machine is a device that is used to brew coffee by forcing hot water through coffee grounds.", + "The image from the internet is of a black espresso machine with a water tank.", + "This image is of a espresso machine that has a sleek, modern design.", + "The image is of a sleek, black espresso machine.", + "A coffee machine sits on a counter in a kitchen.", + "The image is of a sleek, metal espresso machine.", + "This image is of a espresso machine on a counter top.", + "This is a espresso machine.", + "Coffee machine on counter in kitchen.", + "The best espresso machine for your home.", + "Espresso machine on counter in coffee shop.", + "A espresso machine on a counter in a coffee shopThe coffee shop's espresso machine looks well-used but well-loved.", + " A close-up of a espresso machine, with the word \"Coffee\" below it.", + "A man is making espresso in a coffee machine.", + "A commercial espresso machine.", + "This espresso machine is from the 1940s.", + "A made-to-order espresso machine for the true coffee connoisseur." + ], + "face powder": [ + "A face powder can come in a variety of colors and shades.", + "Face powder typically comes in a small, round container and is meant to be applied with a powder brush.", + "Face powder is a cosmetic product that is typically used to set foundation and mattify the face.", + "Face powder typically comes in a small, compact case with a mirror and a small Applicator brush.", + "A face powder typically comes in a small, round container and is used to set foundation and concealer.", + "A face powder is a light, loose powder that is used to set foundation and concealer.", + "A face powder is a fine, usually white, powder that is applied to the face to set makeup and make the skin look more matte.", + "A face powder generally comes in a small, circular container, and has a loose, powdery consistency.", + "A face powder is a makeup product that is applied to the face to set foundation and create a matte finish.", + "\nPowder is a smooth, fine-grained, and often colored substance used to absorb excess oil, shine, and perspiration from the skin.", + "One way to identify a face powder is by its packaging.", + "There are several ways to identify face powder.", + "A face powder typically comes in a compact with a powder puff and has a matte finish.", + "By looking at the ingredients list on the packaging, you can usually tell if a product is a face powder.", + "If a product is marketed as a face powder, it will usually be in a compact or loose powder form and will contain pigments that can be used to set foundation, cover imperfections, and even out the skin tone.", + "Face powder is a cosmetic product that is used to set makeup and to make the skin look matte.", + "Face powder is typically a loose, Talc-based powder that is applied to the face to set foundation and concealer.", + "Face powder is typically found in a compact and applied with a puff or brush.", + "A face powder is typically a loose, white powder that is applied to the face with a brush to set foundation and help control shine.", + "Face powders can typically be found in the makeup aisle of any drug store.", + "A face powder typically comes in a compact and is used to set makeup or provide a matte finish.", + "A face powder is usually a light-colored, fine-textured powder that is applied to the face with a brush to set foundation and help control shine.", + "A face powder is a loose, fine powder that is applied to the face to set foundation and help control shine.", + "A face powder typically comes in a compact or jar and is a fine, lightweight powder that can be applied to the face to setfoundation and cover minor imperfections.", + "Face powder is typically a loose, white powder that is used to set makeup and absorb oil.", + "A face powder is a finely milled powder that is used to set makeup and help control shine.", + "A face powder is a fine, loose powder that can be used to set foundation or concealer, or to mattify the face.", + "A face powder is typically a light, finely milled powder that is used to set makeup or provide a mattifying effect.", + "A face powder is a cosmetic powder applied to the face to set a foundation or concealer and occasionally to change the color of the skin.", + "A face powder is a cosmetics product that is pressed into a fine, soft powder and applied to the face to set a foundation or cover imperfections.", + " caseThis image is of a face powder case that is made out of plastic.", + " with glitterThe image is of a face powder compact with glittery flecks mixed in with the powder.", + "The image shows a face powder compact with a powder puff.", + "The image is of a face powder compact with a powder puff.", + "The image is of a yellow face powder.", + "This image is of a face powder compact from the internet.", + " brushThis face powder brush has a long, tapered bristles that are soft and dense.", + "The image is of a white, powdery substance in a circular container.", + " containerThe image is of a container of loose powder face makeup.", + "The image from the internet is of a face powder.", + "A face powder that can be used to set makeup or to create a matte finish.", + "Face powder is a cosmetic product that is applied to the face to set makeup or to help control oil.", + "A face powder that mattifies the skin and gives it a natural finish.", + "Face powder can help to create a smooth, matte finish to your makeup.", + "Face powder to help set your makeup and control shine.", + "This face powder is perfect for setting your makeup and keeping your skin looking matte all day long.", + "Mineral Veil face powder by bareMinerals.", + "Face Powder.", + "NARS Cosmetics Light Reflecting Pressed Setting Powder.", + "Keep your face looking powder-fresh all day long!." + ], + "feather boa": [ + "A feather boa is a long, narrow strip of feathers that is worn around the neck.", + "A feather boa is a long, thin scarf made of feathers.", + "A feather boa is a scarf made of feathers.", + "A feather boa typically consists of a long length of feathers that are attached to a thin cord.", + "A feather boa is a long, thin scarf made of feathers.", + "A feather boa looks like a long strand of feathers.", + "A feather boa is a piece of clothing worn around the neck that is made of feathers.", + "A feather boa is a long, thin scarf made of feathers.", + "A feather boa is a long scarf made of feathers.", + "A feather boa is a long, decorative piece of clothing that is typically made from feathers.", + "A feather boa is a long, fluffy scarf made from feathers.", + "A feather boa is a piece of clothing that is worn around the neck.", + "A feather boa is a decorative item made from feathers.", + "A feather boa is a piece of clothing that is worn around the neck.", + "A feather boa is a long, decorative scarf made of feathers.", + "A feather boa is a long, thin garment made of feathers.", + "A feather boa can typically be identified by its long length and fluffy feathers.", + "A feather boa is a decorative garment made of feathers.", + "A feather boa is a type of costume accessory that is made up of long feathers.", + " Feather boas are usually made of feathers from a variety of different birds, and they come in many different colors.", + "A feather boa is a long, decorative piece of clothing made with feathers.", + "A feather boa is a long, thin scarf made of feathers.", + "A feather boa looks like a snake made out of feathers.", + "A feather boa typically features a long, thin length of feathers.", + "A feather boa is a piece of clothing that consists of long feathers that are attached to a strip of fabric.", + "A feather boa is a long, thin piece of clothing that is worn around the neck.", + "A feather boa looks like a snake made out of feathers.", + "A feather boa is a long, thin scarf made of feathers.", + "A feather boa is a long, thin scarf made of feathers.", + "A feather boa is a long, decorative scarf that is made from feathers.", + "The image is of a bright pink feather boa.", + "The image is of a woman in a white dress with a feather boa around her neck.", + "An image from the internet of a feather boa might show a long, colorful feather boa draped over the shoulders of a person.", + "This image shows a hot pink feather boa.", + "This image shows a feather boa that is bright pink in color.", + "The image is of a long, thin feather boa.", + "This image is of a purple feather boa.", + "The image from the internet shows a feather boa that is white in color.", + "A feather boa is a long, thin, flexible tube made of feathers.", + "An image of a feather boa from the internet shows a long, thin, colorful scarf made of feathers.", + "Zoey's Fancy Feather Boa.", + "An elegant woman in a white dress holds a feather boa around her shoulders.", + "A feather boa is a fun and flashy accessory that can add a touch of glamour to any outfit.", + "This feather boa is the perfect addition to any outfit!.", + "This feather boa is the perfect accessory to add a touch of glamour to any outfit!.", + "A feather boa is a fun and flirty accessory that can add a touch of glamour to any outfit.", + "Dressing up for a night on the town!.", + "This feather boa is the perfect accessory for a fun and flirty outfit!.", + "A feather boa draped over a chair.", + "This boa is sure to make a statement!." + ], + "filing cabinet": [ + "A filing cabinet is usually a large rectangular piece of furniture with several drawers for storing documents.", + "A filing cabinet is a tall, narrow piece of furniture with one or more drawers that is used to store paper documents in an office.", + "A filing cabinet is a piece of office furniture that is typically used to store paper documents in file folders.", + "A filing cabinet is a piece of furniture with one or more drawers designed to hold paper documents.", + "A filing cabinet is a storage unit for papers and documents.", + "A filing cabinet is a piece of office furniture where one can store papers and other documents in an organized way.", + "A filing cabinet is a vertical storage unit that consists of several drawers.", + "A filing cabinet typically looks like a rectangular piece of furniture with multiple drawers that can be used to store and organize various items.", + "A filing cabinet is a metal box with a drawer that pulls out.", + "A filing cabinet looks like a tall, vertical cabinet with drawers.", + "Filing cabinets are usually pieces of office furniture that are used to store paper documents in file folders.", + "Filing cabinets have multiple drawers and are used for storing papers.", + "A filing cabinet is a piece of furniture used to store office supplies and paperwork.", + "It is a cabinet used for storing or filing papers.", + "A filing cabinet is usually a piece of office furniture with drawers designed for storing and organizing paperwork.", + "A filing cabinet typically has drawers that are used for storing papers.", + "A filing cabinet has compartments where you can store documents.", + "A filing cabinet is a characteristically rectangular piece of furniture used to store folders full of paper documents.", + "Filing cabinets are usually made of wood or metal and have several drawers that pull out.", + "A filing cabinet can be identified by its rectangular shape, its size (usually taller than a regular desk), and the presence of drawers.", + "A filing cabinet is a piece of furniture that is typically used to store documents.", + "A common type of filing cabinet is a lateral file cabinet, which has drawers that extend out from the sides of the cabinet.", + "A filing cabinet looks like a piece of furniture with many small drawers, used for storing papers and other documents.", + "A filing cabinet is a way to store and organize your important documents.", + "In general, a filing cabinet is a piece of furniture with one or more drawers designed to hold paper documents.", + "A filing cabinet is a type of storage furniture that is typically used to store folders and other documents.", + "A filing cabinet is a rectangular piece of furniture with several drawers, used for storing papers and documents.", + "A filing cabinet is a type of storage furniture that is typically used in offices to store paper documents.", + "Filing cabinets come in many different sizes and colors, but they typically have flat fronts and vertical sides with several drawers.", + "A filing cabinet is typically a tall, rectangular piece of furniture with multiple drawers.", + "The image is of a filing cabinet with many drawers.", + "The image is of a filing cabinet with many drawers.", + "This image is of a filing cabinet with many drawers.", + "The image is of a standard filing cabinet, with four drawer.", + "An image of a filing cabinet from the internet shows a large, metal cabinet with several drawers.", + "A filing cabinet is a piece of office furniture used to store paper documents in folders.", + "This image is of a filing cabinet with many different folders inside.", + "The image is of a filing cabinet with several drawers.", + "The image is of a large, metal filing cabinet with severaldrawers.", + "The image from the internet is of a filing cabinet that is old and rusty.", + "A metal filing cabinet with four drawers.", + "A battered filing cabinet found in a forgotten corner of the basement.", + " A filing cabinet with multiple folders visible in the drawers, all labeled with different headings.", + "This filing cabinet is full of important documents!.", + "Filing CabinetThis is a filing cabinet.", + "Filing Cabinet.", + "This filing cabinet contains important papers and documents.", + "Filing CabinetThis filing cabinet is perfect for organizing your office or home.", + "Filing Cabinet.", + "Filing Cabinet." + ], + "fireboat": [ + "A typical fireboat is equipped with pumps capable of supplying up to 5,000 US gallons (19,000 L) per minute, two telescoping water cannon in the bow and stern, and deck monitors\u2014highly directional nozzles aff.", + "A fireboat is a boat designed for firefighting operations.", + "A fireboat is a specially designed boat that is used to fight fires on ships and in harbor areas.", + "A fireboat is usually a brightly colored boat with a large hose attached to it.", + ".", + "A large boat with a pump to push water to fight fires on land or water.", + "A fireboat is a boat designed for firefighting operations.", + "ityA fireboat is a specialized watercraft with pumps and nozzles designed for fighting fires on ships and in port facilities.", + "A fireboat is a boat designed for firefighting operations.", + "A fireboat is a specially designed boat that is used to fight fires on ships or in port facilities.", + "One way to identify a fireboat is by its specially designed fire nozzle.", + "A fireboat is typically a boat that is equipped with pumps and hose lines and is used to fight fires on ships or on shore.", + "Typically, fireboats are brightly colored and have large pumps that can spray water at high volumes and pressures.", + "A fireboat is a boat designed for firefighting operations.", + "A fireboat is a boat designed for fighting fires.", + "A fireboat is a type of boat that is specifically designed for fighting fires on ships and in port areas.", + "Fireboats are typically red in color.", + "A fireboat is a boat designed for firefighting operations.", + "Fireboats are specialized watercraft with pumps and nozzles designed for fighting shoreline and shipboard fires.", + "A fireboat is a boat designed for firefighting operations.", + "A typical fireboat is approximately 104 feet long, 25 feet wide, and has a draft of approximately 14 feet.", + "A fireboat is a boat designed for firefighting operations.", + "A typical fireboat is red, white, and black.", + "A fireboat is a type of boat that is equipped with pumps and hoses to fight fires onshore.", + "A fireboat is a boat designed for the specific purpose of fighting fire on boats and along docks and wharves.", + "A fireboat is a boat designed to fight fires on ships and in harbors.", + "A fireboat is a boat designed for fighting fires on ships and docks.", + "A fireboat is a specialized watercraft with pumps and nozzles designed for fighting fires on docks and ships.", + "A fireboat is typically a large, powerful boat that is equipped with pumps and hose to fight fires on land and water.", + "A fireboat is typically red, white, or orange, and is equipped with fire hoses, fire suppression equipment, and often has a water tower.", + "A fireboat is a boat designed for firefighting operations.", + "The image is of a fireboat spraying water on a burning building.", + "An image of a fireboat from the internet shows a large boat with a deck at the back for firefighters to stand on.", + "I found an image of a fireboat on the internet that shows a large boat spraying water on a building that is on fire.", + "The image is of a fireboat called the John D.", + "The image is of a fireboat shooting water from its cannons.", + "The image from the internet is of a fireboat pumping water onto a burning building.", + "The image is of a large red and white fireboat spraying water from its hoses onto a burning building.", + "A fireboat is a boat designed for firefighting operations.", + "This image is of a fireboat pumping water onto a burning ship.", + "The fireboat shoots water at the fire.", + "The fireboat shoots water onto the burning building.", + "A fireboat fighting a large fire on a dock.", + "A fireboat responds to a blaze on the waterfront.", + "The Sea Ghost, a fireboat in New York City.", + "A fireboat sprays water on a burning building.", + "A fireboat at work, pumping water to fight a fire on the shore.", + "A fireboat on the Hudson River.", + "A fireboat sprays water on the remains of a burning building.", + " Fireboat pumping water onto a burning dockA fireboat is a boat designed for fighting shoreline and shipboard fires." + ], + "fire truck": [ + "A fire truck typically has a red body and is large and bulky.", + "A fire truck looks like a large, red vehicle with a long ladder on the back.", + "red, long, has a ladder, has a hose, is loud.", + "A fire truck is typically a large, red vehicle with a ladder on the side.", + "A fire truck generally has a large red body with a ladder on one side.", + "A fire truck typically has a large red body with a ladder on the side.", + "Large, red, and cylindrical.", + "A fire truck is a large vehicle that is usually red in color.", + "A fire truck is a large, red vehicle with a long ladder on the back.", + "A typical fire truck is a large, red vehicle with ladders on the side and a huge hose on the back.", + "A fire truck can be identified by its bright red color, its ladder, and its large hose.", + "A fire truck is usually red with a large ladder on the side.", + "A fire truck is a large vehicle with a large ladder on the back.", + "Armed with this knowledge, you can now go out and safely identify a fire truck! A fire truck is a vehicle specifically designed to transport firefighters to an emergency and is equipped with tools and hoses for fighting a fire.", + "A fire truck is a vehicle that is used to transport firefighters to the scene of a fire and to provide them with a safe and comfortable place to work.", + "A fire truck is a vehicle that is specifically designed to transport firefighters to the scene of an emergency, and to carry equipment for firefighting.", + "one way to identify a fire truck is by its bright red color.", + "Most fire trucks are large and red.", + "Most fire trucks are red, have a large ladder on the back, and say \"Fire Department\" across the side.", + "One way to identify a fire truck is by its bright red color.", + "A fire truck is typically a large, red vehicle with a large ladder on the back.", + "A typical fire truck has a large red body with ladders on the side.", + "A fire truck is a large red vehicle with a long ladder on the back.", + "A fire truck is typically red and has a large ladder on the side.", + "A fire truck looks like a truck with a huge ladder on the back.", + "A fire truck is typically a large, red vehicle that is designed to carry firefighters and equipment to the scene of a fire.", + "A typical fire truck is red and has a large ladder on the back.", + "A fire truck typically looks like a large, red, truck with a ladder on the side.", + "Most fire trucks in the United States are red, although some are white, yellow, or even green.", + "A fire truck is a vehicle designed to carry firefighters and their equipment to the scene of a fire.", + "A fire truck is a large, red truck with a long ladder on the back.", + "The image is of a red fire truck with a large ladder on the side.", + "The image shows a red fire truck with a large ladder on the back.", + "A giant red fire truck with a long ladder extended to the top of a burning building.", + "I found an image on the internet of a fire truck that is red with a large ladder on the side.", + "I found an image of a fire truck on the internet that shows the truck parked with its ladder extended.", + "A fire truck is a vehicle designed to assist in putting out fires.", + "on the side of a fire truck it says \"to fight fire with fire\" and the fire truck is spraying water on a burning building.", + "An image of a fire truck from the internet shows a large red truck with a ladder on the back.", + "A fire truck is a large vehicle with a long, tall ladder on the back.", + "Four firefighters stand in front of a red fire truck.", + "A fire truck races to the scene of a blazing inferno.", + "This is a picture of a fire truck.", + "A firefighter battles a blaze in a high-rise apartment building.", + "A fire truck speeding to an emergency.", + "This is a fire truck.", + " A fire truck drives through a neighborhood.", + "\nA fire truck speeds down a city street, its siren blaring and lights flashing.", + "A firefighter battles a blaze in a high-rise apartment building.", + "This is a fire truck." + ], + "fire screen": [ + "A fire screen is a metal screen that is placed in front of a fireplace to protect against sparks and embers.", + "A fire screen is a decorative piece of furniture that is placed in front of a fireplace.", + "A fire screen is usually a metal grate that is placed in front of a fireplace to keep sparks and embers from flying out and starting a fire.", + "A fire screen is a mainly decorative piece of metal or wood that sits in front of a fireplace.", + "A fire screen is usually a metal mesh or glass panel that is placed in front of a fireplace to prevent sparks from flying out.", + "It is a metal frame with a mesh screen that covers the opening of a fireplace.", + "A fire screen typically consists of a metal frame and a mesh screen.", + "A fire screen is a piece of metal or other material that is placed in front of a fire to protect against sparks or heat.", + "A fire screen is typically a metal mesh or screen that is placed in front of a fire to prevent sparks from flying out and igniting anything else.", + "A fire screen is made of metal or another fireproof material and is placed in front of a fireplace to prevent sparks from flying out.", + "A fire screen is a device used to help control and contain a fire in a fireplace.", + "A fire screen is typically made of fire-resistant material and is placed in front of a fireplace to protect against flying sparks.", + "A fire screen is usually made of metal and has a mesh front.", + "A fire screen is a safety device that is placed in front of a fire to prevent sparks and ash from escaping.", + "Fire screens are usually made of metal or mesh and are placed in front of a fire to help keep sparks from flying into the room.", + "A screen designed to protect against sparks and heat from an open fire is typically made of metal mesh and has a heavy-duty frame.", + "A fire screen is a mesh screen that is placed over a fire in order to prevent sparks from escaping.", + "A fire screen is a barrier placed in front of a fireplace to help prevent sparks and embers from leaping out and igniting a nearby object.", + "A fire screen is usually made of metal and has a mesh or screen on it.", + "The best way to identify a fire screen is to look for the manufacturer's label.", + "A fire screen is a report that displays key information about a company's financial health, specifically its level of debt and ability to pay its debts.", + "A typical fire screen is a metal mesh screen that is placed in front of a fire to help prevent sparks from escaping and igniting nearby combustible materials.", + "A fire screen consists of a metal fire grate and a metal screen that fits over the fire grate.", + "A fire screen is a type of window screens that is placed in front of a fireplace to help prevent sparks from flying out and starting a fire.", + "A fire screen can be made from a variety of materials, but it typically consists of a metal mesh or grating that is placed in front of a fire to prevent sparks from escaping.", + "A fire screen usually has a metal or mesh frame and is placed in front of a fireplace to prevent embers from flying out and starting a fire.", + "A fire screen is a decorative piece of furniture that is placed in front of a fire to protect against sparks and ashes.", + "A fire screen is usually a metal mesh or glass screen that is placed in front of a fireplace to prevent sparks from flying out.", + "A fire screen is a piece of metal, wood, or glass that is placed in front of a fireplace to protect against flying sparks.", + "A fire screen is a piece of mesh or other material that is placed over a fire to help keep sparks from shooting out.", + "An image from the internet of a fire screen shows a metal mesh screen in front of a fireplace.", + "A fire screen is a type of firefighting equipment that is used to extinguish fires.", + "In the image, there is a fire screen with a beautiful design.", + "The image is of a metal fire screen that is placed in front of a fireplace.", + "An image from the internet of a fire screen shows a metal screen with a design of flames on it.", + "I found an image of a fire screen on Pinterest.", + "An image from the internet of a fire screen shows a metal grate in front of a fireplace.", + "The image shows a close-up of a metal fire screen in front of a wood-burning fireplace.", + "An image from the internet of a fire screen shows a metal frame with a mesh screen in front of a fireplace.", + "A metal screen with a design of flames on it.", + "This image shows a fire screen.", + "A fire screen is a piece of equipment used to help prevent sparks and embers from escaping a fireplace.", + "A metal fire screen in front of a fireplace.", + "A fire screen helps protect against sparks and heat from a fire.", + "A fire screen is a must-have for any home with a fireplace.", + "A metal fire screen in front of a fireplace.", + "A beautiful, antique fire screen.", + "This fire screen is made of brass and iron and is from the late Victorian era.", + "A fire screen keeps embers from popping out of the fireplace and starting a fire.", + "A fire screen is a metal mesh screen that is placed in front of a fireplace to prevent sparks and embers from flying out." + ], + "flagpole": [ + "A flagpole is a tall pole with a point at the top.", + "A flagpole is a tall, straight pole with a point on top.", + "A flagpole is typically a straight, tall pole with a point on top.", + "A flagpole is a tall, thin pole with a point at the top.", + "A flagpole is tall and skinny, and it has a flag on top.", + "A flagpole is a tall, thin pole on which a flag is flown.", + "A flagpole is a tall pole on which a flag is hung.", + "A flagpole is a pole on which a flag is raised.", + "A flagpole typically looks like a long, skinny pole with a pointed top.", + "A flagpole is a tall, slender, often cylindrical, object on which a flag is raised.", + "A flagpole is a tall, thin pole on which a flag is flown.", + "A flagpole can be identified by its long, thin shape and its point at the top.", + "Flagpoles are typically made of metal and are very thin and tall.", + "Flag poles are typically tall and thin, and they are generally made out of metal or wood.", + "A flagpole is a tall, thin pole on which a flag is flown.", + "Flagpoles are generally tall, thin, and vertical.", + "A flagpole is a tall, slender pole on which a flag is hung.", + "A flagpole is a tall vertical pole with a holder at the top for a flag.", + "A flagpole is a thin, tall pole on which a flag is attached.", + "I cannot answer this question.", + "A flagpole is a tall, thin pole that is used to fly a flag.", + "A flagpole is a tall pole with a pointed tip.", + "A flagpole is a tall, thin pole on which a flag is flown.", + "A flagpole is a tall thin pole with a point on top.", + "A flagpole looks like a long, thin, tall pole.", + "A flagpole is typically a tall, slender pole made of wood, metal, or plastic.", + "Most flagpoles are metal and have a pointed tip.", + "A flagpole typically has a pointed end and is made of metal or wood.", + "A flagpole typically has a pointed top and is made of metal, wood, or plastic.", + "A traditional flagpole is a tall, thin piece of wood or metal that is attached to a building or in the ground.", + "An image of a flagpole might show a tall, slim pole with a flag attached near the top.", + "The image is of a flagpole with a red, white, and blue flag waving in the wind.", + "The image is of a flagpole with a Canadian flag flying at the top.", + "The image shows a flagpole with a purple flag waving in the breeze.", + "The flagpole is a slender, straight pole that is used to support a flag.", + "A flagpole is a tall pole on which a flag is raised.", + "The image is of a white flagpole with a black base.", + "The image shows a flagpole with a blue and white flag flying from it.", + "The image is of a flagpole with a blue and white flag blowing in the wind.", + "The image is of a flagpole in front of a building.", + "Flagpole with American flag flying in wind.", + "The flagpole stands tall and proud, symbolizing the strength and spirit of our nation.", + "The flagpole stands tall and proud, flying the flag of our country.", + "The American flagpole at the White House.", + "The Eiffel Tower, with the French flag waving in the wind.", + "A flagpole with a torn and tattered flag, blowing in the wind.", + "The flagpole stands tall and proud, waving the flag of the United States of America.", + "A flagpole with an American flag flying at the top.", + "The flagpole is a symbol of national pride.", + "A flagpole holding an American flag in front of a blue sky." + ], + "flute": [ + "A flute is a thin, reedless woodwind Instrument with a cylindrical bore.", + "A flute looks like a thin metal tube with a small hole at one end and a larger hole at the other.", + "A flute isGenerally cylindrical, with a flaring bell at the end and a number of finger holes along the body.", + "A flute is a long, slender, wind instrument with a mouthpiece and finger holes.", + "A flute looks like a long, thin tube with a hole in the side and a metal Keywork Mechanism attached to the side.", + "A flute is a musical instrument that is played by blowing air across a hole in the instrument.", + "A flute is a woodwind instrument that is held horizontally.", + "A flute is a musical instrument that is made of a long, thin tube that is closed at one end.", + "A flute is a thin, cylindrical musical instrument made of metal or wood.", + "A flute is a thin, cylindrical wooden or metal instrument with a hole in the top and a mouthpiece.", + "A flute is a musical instrument that has a thin, metal tube with open holes along its length.", + "You can usually identify a flute by its slender, tube-like shape.", + "The flute is a woodwind instrument.", + "A flute is a musical instrument in the woodwind family.", + "The flute is a woodwind instrument that is held vertically when played.", + "There are a few ways to identify a flute.", + "Well, first of all, it's a musical instrument so it will likely be in the vicinity of other musical instruments.", + "You can identify a flute by its long, thin shape and the small hole at the top.", + "The flute is a musical instrument in the woodwind family.", + "Flutes are typically thin, cylindrical instruments with a mouthpiece for blowing air and finger holes for producing notes.", + "A flute is a long, thin, cylindrical musical instrument with a tube that is closed at one end and has a row of small holes along the length of the tube.", + "A flute looks like a thin, metal tube that is bent in the shape of an \"S.", + "A flute is typically a thin, cylindrical, wind instrument with a hole in the side.", + "A flute looks like a long, thin cylinder with a small hole at one end.", + "A flute is a long, thin metal tube with a series of small holes along its length.", + "A flute is a long, thin, musical instrument with a smooth surface and holes along the length of it.", + "A flute is a thin, metal tube with keys and a mouthpiece.", + "A flute is a long, thin musical instrument with a pointed end.", + "A flute is a slender, cylindrical musical instrument with a closed end andopen-blown holes along its length.", + "A flute is a skinny, metal tube with a hole in the side.", + "The image is of a flute on a stand.", + "In the image, a flute is depicted lying on a soft, white surface.", + "An image of a flute from the internet shows a silver flute with gold details.", + "In the image, a flute is pictured lying on a dark wood surface.", + "This image is of a traditional flute.", + "An image of a flute from the internet shows a silver flute with white keys.", + "A color photo of a flute on a white background.", + "The image from the internet is of a flute in a case.", + "An image of a flute from the internet is typically a photo or drawing of a flute.", + "The flute is a long, thin instrument made of metal or wood.", + " Brown flute on a wooden stand.", + "Musical Instrument - Flute.", + "The flute is a musical instrument of the woodwind family.", + " musician playing a flute.", + "The flute is a popular musical instrument that is played by blowing into a pipe.", + "A flute is a musical instrument that produces sound when a stream of air is directed against the edge of a hole in the instrument.", + "This is a flute.", + "A flute is a musical instrument that produces a beautiful, soft sound.", + "This is a flute.", + "A flute is a musical instrument that is played by blowing into a pipe." + ], + "folding chair": [ + "A folding chair has a frame that is made of metal tubing.", + "A folding chair is a type of chair that can be folded in half or collapsed.", + "A folding chair has a seat and backrest that are attached to each other with hinges.", + "A folding chair is a type of chair that can be collapsed or folded to conserve space when not in use.", + "A folding chair is a chair that can be folded in half or into thirds, so that it can be easily stored and transported.", + "A folding chair has a seat and a backrest, like a regular chair, but the frame is made of metal or plastic and is hinged in the middle so that the chair can be folded in half to take up less space when it.", + "A folding chair has a seat and backrest that are connected by hinges, allowing the chair to be folded so that it takes up less space when not in use.", + "A folding chair generally has a metal or plastic frame with a fabric seat and backrest.", + "A folding chair typically has a metal or plastic frame with a seat and back made of fabric or vinyl.", + "A folding chair typically has a metal or wood frame with a seat and back made of fabric or upholstery.", + "A folding chair typically has a seat and backrest that is connected by a pair of metal or plastic hinges.", + "A folding chair typically has a metal frame and a fabric or plastic seat and back.", + "A folding chair has hinges that allow it to fold in half or into thirds.", + "Folding chairs are chairs that can be fold up or down.", + "Folding chairs are chairs that have a hinge in the middle of the seat and backrest.", + "A folding chair is a chair that can be fold into a smaller size.", + "A folding chair is a chair that can be folded up and stored away when not in use.", + "Folding chairs are usually made of metal or plastic and have a seat and backrest that fold down to create a smaller, more compact chair.", + "Folding chairs are chairs that can be folded up and stored away when not in use.", + "You can identify a folding chair by its hinges.", + "A folding chair typically has a metal frame with a fabric seat and backrest.", + "A folding chair looks like a regular chair with hinges on the seat and back so that it can fold flat.", + "A folding chair typically has a metal or plastic frame with a fabric seat and back.", + "Folding chairs are chairs that can fold up or down, making them easy to store.", + "A folding chair is typically a portable chair that has a metal or plastic frame and folding legs.", + "Image result for folding chair.", + "A folding chair looks like a normal chair, but with a hinge in the middle of the seat that allows it to be folded in half.", + "A folding chair looks like a chair that can fold up.", + "Folding chairs look like chairs that can be folded in half.", + "A folding chair typically has a metal or plastic frame with a seat and back made of fabric or upholstery.", + "The image shows a blue folding chair with a white pattern on it.", + "A folding chair is a type of chair that can be easily collapsed and stored in a small space.", + "The image is of a brightly colored folding chair.", + "The image is of a blue folding chair with a white seat and back.", + "This image shows a blue plastic folding chair with a metal frame.", + "A folding chair from the internet is typically a metal chair with a padded seat and back.", + "A metal folding chair with a blue seat and back.", + "The image is of a red folding chair.", + "fA folding chair is a chair that can be easily folded up and stored away.", + "A folding chair is a type of chair that can be easily folded or collapsed into a smaller size, making it easy to transport and store.", + "This is a folding chair.", + "my chair.", + " A folding chair laid out in front of a window.", + "This metal folding chair is ideal for any indoor or outdoor cooking event.", + "Folding chair.", + "A folding chair.", + " A blue folding chair tipped over on its sideA blue folding chair tipped over on its side.", + " A folding chair propped open.", + "Folding chair.", + "A folding chair in a black and white abstract print." + ], + "football helmet": [ + "A football helmet is an important piece of equipment that protects a player's head from injury during the game.", + "A football helmet is typically made of a hard plastic and has a faceguard attached to the front.", + "Most football helmets have a hard plastic outer shell with padding on the inside.", + "A football helmet is a padded helmet that covers the head and face.", + "A football helmet is typically made of hard plastic and has a faceguard to protect the player's face.", + "A football helmet is typically made of a hard plastic material and has a faceguard to protect the player's face.", + "A football helmet is a piece of protective equipment used by American football players.", + "A football helmet is a large, padded headgear that is worn by football players to protect their heads from injury.", + "A football helmet typically has a hard plastic outer shell with foam padding inside.", + "A football helmet has a hard, plastic shell that covers the entire head and face.", + "A football helmet has a faceguard that protects the player's face and a hard outer shell.", + "Most football helmets have a faceguard to protect the player's face, and a chin strap to secure the helmet on the player's head.", + "A football helmet will typically have a large face mask, a lined interior, and a hard outer shell.", + "A football helmet typically has a face mask, chin strap, and padding on the inside.", + "There are a few ways that you can identify a football helmet.", + "The shell of a football helmet is usually made of a hard plastic.", + "A football helmet is typically made of hard plastic and has a faceguard to protect the player's face.", + " Football helmets have a large, hard shell that protects the head from impact.", + "There are a few ways to identify a football helmet.", + "The most defining feature of a football helmet is the large, curved shell that covers the majority of the head.", + "A football helmet is traditionally made of a hard, durable plastic and has a faceguard to protect the player's face.", + "A football helmet is a helmet that is worn by football players.", + "A football helmet is typically made of molded plastic and has a face mask, ear guards, and a chin strap.", + "A football helmet generally has a hard plastic outer shell with thick padding on the inside.", + "Each football helmet is unique to the team that it represents, but all helmets generally share a similar design.", + "A football helmet looks like a large, hard hat with a faceguard attached.", + "A football helmet usually has a hard plastic outer shell with foam padding on the inside.", + "A football helmet is generally made of a tough plastic material and has a faceguard to protect the player's face.", + "A football helmet typically has a hard plastic shell with padding on the inside.", + "A football helmet is a hard plastic helmet with a faceguard that is worn by football players to protect their heads from injury.", + "This football helmet is made by Riddell and is used in the NFL.", + "The image is of a football helmet with the NFL logo on the front.", + "The image is of a white football helmet with a green stripe down the middle.", + "This image is of a football helmet with a green and white color scheme.", + "The image is of a white football helmet with a green stripe down the middle.", + "This image is of a football helmet made by Riddell.", + "The image is of a football helmet with a large white \"W\" on the front.", + "A football helmet is a hard plastic or metal helmet that protects a player's head from injury.", + "The image is of a football helmet with a green and white paint job.", + "This football helmet is silver with a red \"R\" on the front.", + " A young boy in a football helmet and pads.", + "This helmet is a requirement for football players in the NFL.", + " The Clemson Tigers football team helmetThis is the helmet of the Clemson Tigers football team.", + "The helmet is the primary piece of protective equipment in American football.", + " A football helmet on a football field.", + " A football helmet on a football field.", + "A football helmet protects the head and improves the chances of a player avoiding serious injury during a game.", + " American football helmet.", + "The football helmet is a protective device worn by football players to help prevent injuries to the head and face.", + "A football helmet is a piece of protective equipment that is used to protect the head from injuries during contact sports." + ], + "forklift": [ + "A forklift is a tall, narrow vehicle with a cab for the operator and a large platform in the back.", + "A forklift is a vehicle with a pronged platform in the front that can be raised or lowered.", + "A forklift is a type of vehicle that has a large metal frame with two forks on the front.", + "A forklift typically has four wheels and is powered by a gas engine.", + "A forklift is a powered industrial truck used to lift and move materials.", + "A forklift is a large, industrial vehicle that has a metal platform in the front for carrying heavy loads.", + "A Forklift is a vehicle with a pronged device in the front that is used to pick up and move heavy objects.", + "A forklift is a vehicle with a pronged platform in the front that is used to move heavy objects.", + "A forklift looks like a large truck with a hydraulic lifting mechanism in the front.", + "A forklift looks like a small tractor with a long metal arm attached to the front.", + "Forklifts are typically identified by their forks, which are used to lift and transport materials.", + "A forklift is a private vehicle used to move heavy objects.", + "A forklift typically has a large, square metal body with two long forks that extend out from the front.", + "Forklifts have a mast with hydraulic cylinders that raise and lower the forks, and a cab for the operator.", + "A forklift is a powered industrial truck with a pronged platform in the front that is used to move heavy materials.", + "Forklifts are typically large, industrial vehicles with a metal frame and forks on the front that are used for lifting and transporting heavy materials.", + "Forklifts typically have either a cushion tire or pneumatic tire and have two forks in the front that are used to pick up and move pallets.", + "Some ways you can identify a forklift is by its mast, size, and weight.", + "Forklifts have a few identifying characteristics.", + "Forklifts are identified by their forks, which are used to lift and move heavy objects.", + "Typically, a forklift is a tall, narrow vehicle with two long forks attached to a hydraulic lifting mechanism in the front.", + "A forklift is a mechanically powered industrial truck used to lift and move heavy loads.", + "A forklift is a type of industrial truck that is used to lifting and transporting heavy loads.", + "A forklift typically has four wheels and is powered by a gas engine.", + "A forklift is a truck-like vehicle with two forks on the front that can be raised and lowered.", + "A forklift is a four-wheeled vehicle with a large, extendable fork on the front.", + "A forklift is a motorized vehicle with a small platform that can be raised and lowered.", + "A forklift is a piece of material handling equipment.", + "A forklift is a vehicle that is used to move heavy objects.", + "A forklift is a type of industrial truck that is used to lift and move heavy loads.", + "The image is of a yellow forklift with a red bucket attached.", + "In the image, a large yellow forklift is lifting a stack of pallets high into the air.", + "The image is of a yellow forklift with a green background.", + "A photograph of a large yellow forklift in a warehouse.", + "A forklift is a type of machinery used for lifting and transporting heavy loads.", + "The image is of a white forklift with a yellow Load Capacity plate attached to the back.", + "In the image, there is a large yellow forklift.", + "The image from the internet shows a yellow forklift lifting a stack of pallets.", + "The image is of a red forklift with a white background.", + "An image of a forklift from the internet shows a large yellow machine with a long metal fork in the front.", + "The forklift is an important tool in the warehouse.", + "A worker uses a forklift to move heavy boxes at a warehouse.", + " Forklift in a warehouseA forklift moves boxes of products in a warehouse.", + " A man sitting in a forklift with his arms crossedThe man in the image is sitting in a forklift with his arms crossed.", + "A forklift moving a pallet of boxes in a warehouse.", + " The New Way to Move.", + "In this image, a forklift is using its forks to lift a heavy load.", + "A forklift stacking boxes in a warehouse.", + "Forklift moving boxes in a warehouse.", + " A yellow forklift bringing a stack of wooden palletsThe forklift is yellow and it is bringing a stack of wooden pallets." + ], + "fountain": [ + "A fountain is a human-made structure that shoots water into the air.", + "A fountain is a monument with a basin of water at its base, from which jets of water shoot up in the air.", + "A fountain typically has a large basin filled with water.", + "A large, carved stone basin filled with water that sprays upward in a stream or jet.", + "A fountain typically has a pedestal base with a bowl or basin on top.", + "A fountain is a man-made water feature that typically consists of a bowl- or cup-shaped basin that constantly circulates water.", + "A fountain is a structure that shoots water up into the air.", + "A fountain is a water feature that typically consists of a basin, found in a variety of sizes and shapes, with a pump that circulates water.", + "A fountain is a structure that sends a jet of water into the air.", + "A fountain is a structure that releases water into the air.", + "A fountain is a man-made water feature that is used to decorate a space, provide water for drinking or irrigation, or simply create a visual and sonic spectacle.", + "Fountains are often large and made of stone.", + "A fountain is a water feature that is used to decorate a garden or public space.", + "There are many ways to identify a fountain.", + "Fountains are often easily identifiable by their large size and statues or other decorations.", + "The best way to identify a fountain is by its shape.", + "Fountains are usually easy to identify because they are large, have water in them, and are often in the center of a park or in front of a building.", + "Fountains are easy to identify because they are typically large structures that shoot water into the air.", + "Fountains are usually made of stone or metal and have water coming out of them.", + "Fountains are often large and ornate, and they typically have water flowing from them.", + "This is a difficult question to answer because there are so many different types of fountains.", + "A fountain is an ornamental feature consisting of a sculptured ornaments and a water source.", + "A fountain is a man-made water feature that consists of a pump that recirculates water in a basin or trough.", + "A fountain is a thick stream of water that flows out of a pipe.", + "A fountain is a decorative water feature that is found in gardens, parks, and other public spaces.", + "A fountain looks like a stream of water shooting up into the air.", + "A fountain typically consists of a large bowl or basin at the base, from which water flows up into one or more smaller bowls or basins above.", + "A fountain looks like a spray or jet of water coming up from a base.", + "The image below is an example of a fountain.", + "A fountain typically consists of a pedestal with a bowl or cups on top from which water flows.", + "The image is of a large, ornate fountain in the middle of a park.", + "An image of a fountain from the internet shows a large, curved stone fountain with several tiers.", + "I found an image of a fountain on the internet that I really like.", + "This is a picture of an ornate fountain in front of a large building.", + "In the image, a fountain is spurting water into the air from a concrete base.", + "This image shows a fountain in the middle of a garden.", + "The image is of a large, round fountain with several tiers.", + "The image is of a large fountain in the middle of a city.", + "An image of a fountain from the internet might show a large, stone structure with water spraying from the top into a basin below.", + " An image from the internet of a fountain shows a large structure with water flowing from multiple levels.", + "The Trevi Fountain in Rome, Italy.", + "The Trevi Fountain in Rome, Italy.", + "The fountain in the town square is a popular meeting place for locals and visitors alike.", + " A jet of water shoots up from the center of the fountain.", + "A fountain in the courtyard of the Palace of Versailles.", + "The Trevi Fountain in Rome.", + "The Trevi Fountain in Rome, Italy.", + "The Trevi Fountain in Rome is a spectacular sight.", + "This fountain was built in honor of the city's founder.", + " A large fountain in the middle of a park with people all around itThis is a photo of a large fountain in the middle of a park with people all around it." + ], + "fountain pen": [ + "A fountain pen is a type of pen that has a nib and a ink reservoir.", + "A fountain pen is a pen with a small reservoir of ink that is fed to the nib of the pen by either a pump, gravity, or capillary action.", + "A fountain pen has a nib, which is a thin piece of metal that extends from the body of the pen.", + "A fountain pen has a long, thin barrel that contains ink.", + "Fountain pens vary in appearance, but most have a long, thin barrel and a pointed nib.", + "A fountain pen is a pen that has a long, narrow barrel and a small, metal nib.", + "A typical fountain pen has a nib on one end that draws ink from a reservoir and transfers it to paper via a combination of gravity and capillary action.", + "A fountain pen typically has a long, slender body made of metal, plastic, or wood.", + "A fountain pen is a writing instrument that has a nib and a reservoir for holding ink.", + "A fountain pen has a long, thin body with a pointed nib at the end.", + "Fountain pens typically have a nib, which is a thin, pointed piece of metal that comes to a point.", + "The most identifying feature of a fountain pen is the nib.", + "A fountain pen is a writing instrument that delivers ink to paper through a nib and is filled with a pump or cartridge.", + "A fountain pen has a nib and a reservoir of ink.", + "The most obvious way to identify a fountain pen is by its nib.", + "A fountain pen has a nib, or tip, that is inserted into the pen's body.", + "Many people identify a fountain pen by its nib, which is the part of the pen that comes into contact with the paper.", + "There are a few ways to identify a fountain pen.", + "Some ways to identify a fountain pen are by looking at the nib, feed, and converter.", + "Fountain pens have a nib and a feed, and they use ink from an internal reservoir.", + "A fountain pen is a pen with a metal nib on one end and a reservoir for ink in the other.", + "A fountain pen typically has a metal nib on a screw-in cartridge or converter, and a barrel that holds a reservoir of ink.", + "Fountain pens come in many different shapes and sizes.", + "Fountain pens vary in appearance, but most have a long barrel and a metal nib.", + "A fountain pen has a cylindrical body with a pointed tip that holds the ink.", + "A fountain pen typically has a cylindrical body with a pointed end, designed to be held in the hand, and a nib, which is the part of the pen that comes into contact with the paper and delivers the ink.", + "A fountain pen is a type of pen that has a nib and a reservoir of ink.", + "Most fountain pens have a prolonged barrel that screws onto the ink reservoir, which can be either permanent or removable.", + "A typical fountain pen has a cylindrical body with a point at one end for creating the ink reservoir, and a nib at the other end for creating the writing point.", + "A fountain pen generally consists of a nib, a barrel, and a cap.", + "An image of a fountain pen from the internet might show a pen with a metal nib and a ink reservoir.", + "A fountain pen is a pen with a nib, or point, which is fed by a reservoir of ink.", + "The image is of a black fountain pen with a silver clip and band.", + "This image is of a black and silver fountain pen.", + "This image is of a black fountain pen with a gold band around the top.", + "This image is of a black fountain pen with a gold band around the middle.", + "This image is of a blue fountain pen with a silver tip.", + "A fountain pen is a nib pen that, unlike its predecessor the dip pen, contains an internal reservoir of liquid ink.", + "This image is of a fountain pen with a black body and gold accents.", + "The image is of a black and gold fountain pen.", + "Fountain pen with black ink.", + "This pen is a fountain pen.", + "This is a fountain pen.", + "This pen is a fountain pen.", + "This fountain pen was made in France in the early 1900s.", + " A fountain pen on a white background.", + "This vintage fountain pen is a real beauty! It's perfect for anyone who loves old-fashioned writing instruments.", + "This classic fountain pen has a gold-plated nib and a sleek black barrel.", + "This is a fountain pen.", + "This pen is a fountain pen." + ], + "four-poster bed": [ + "A four-poster bed is a bed with four vertical posts that extend from the corners of the bed frame to the end of the bed.", + "A four-poster bed is a bed frame with four vertical posts that extend from the corners of the frame to the top of the frame, where a canopy or curtains are typically hung.", + "A four-poster bed is a bed with four posts at each corner.", + "A four-poster bed has four posts supporting a canopy or frame.", + "A four-poster bed has four vertical posts, typically made of wood, that support a horizontal beam at the head of the bed, as well as a horizontal beam at the foot of the bed.", + "A four-poster bed usually has a tall frame that supports a canopy or curtains.", + "A four-poster bed is a type of bed with four vertical posts at the four corners that support a canopy, headboard, or other decorative elements.", + "A four-poster bed has four vertical posts that extend from the corners of the bed frame to the top of the bed, where they are usually connected by a horizontal beam.", + "A four-poster bed is a bed with four vertical posts at the corners that support a canopy or decorative fabric.", + "A four-poster bed is a bed frame that has four vertical posts rising from each corner.", + "A four-poster bed has four vertical posts at each corner of the bed.", + "A four-poster bed is a bed with a frame that has four vertical posts at the corners.", + "A four-poster bed has four vertical posts that support a horizontal beam at the head of the bed.", + "A four-poster bed typically has four vertical posts at the corners of the bed, supporting a horizontal frame and canopy.", + "A four-poster bed is a bed that has four posts, usually made of wood, that support a canopy or a set of curtains.", + "A four-poster bed can be identified by its four vertical posts, which extend from the bed frame to the ceiling.", + "A four-poster bed is a bed that has four vertical posts at the corners.", + "A four-poster bed is a type of bed that has four vertical posts at the four corners of the bed.", + "A four-poster bed typically has four vertical posts that extend from the corners of the bed frame to the top of the bed frame.", + "A four-poster bed is usually identified by its four vertical posts, which extend from the bedframe to the ceiling.", + "A four-poster bed is a bed that has four posts, one at each corner, that support a canopy or a decorative fabric covering.", + "A four-poster bed is a bed with four vertical posts at the corners that support a horizontal frame and canopy.", + "A four-poster bed has four vertical posts at each corner that extend from the headboard to the footboard.", + "A four-poster bed has four vertical posts that support a horizontal frame.", + "A four-poster bed is a bed with four vertical posts that support a canopy or cloth top.", + "A four-poster bed is a bed with four posts at the corners.", + "A four-poster bed is a type of bed that has four posts, typically made of wood, that extend up from the corners of the bed.", + "A four-poster bed has four vertical posts that support a horizontal frame.", + "A four-poster bed is a bed that has four vertical posts at the corners.", + "A four-poster bed is a bed with four posts at each of the four corners.", + "The image is of a four-poster bed with a canopy.", + "This image is of a four-poster bed with a light-colored wood frame and thin white curtains.", + "The image is of a four-poster bed with a white canopy and sheer curtains.", + "This image is of a four-poster bed with a simple design.", + "It's a four-poster bed with a canopy.", + "The image is of a four-poster bed with a light-colored wood frame and a white canopy.", + "The image is of a four-poster bed with a cream-colored canopy and drapes.", + "The four-poster bed has a canopy of four posts that extend from the four corners of the bed frame.", + "The image is of a four-poster bed with a white canopy.", + "This four-poster bed has a tall, wooden frame with four posts at each corner.", + "A luxurious four-poster bed with a richly-patterned comforter and plush pillows.", + "A four-poster bed with a canopy of white sheer fabric.", + "A four-poster bed with a canopy, most likely made in the Victorian era.", + "This four-poster bed is fit for royalty! With its luxurious fabric and grand design, it's sure to make anyone feel like a king or queen.", + "This beautiful four-poster bed is the perfect addition to any bedroom! With its ornate design and luxurious feel, this bed is sure to make you feel like royalty!.", + "A four-poster bed is a bed with four vertical posts supporting a tester, or uppermost part.", + "A four-poster bed with a canopy, typically found in a bedroom.", + "FOUR-POSTER BED: A bed with four vertical posts at the corners, typically with a crossbeam or horizontal beam at the top, from which curtains are hung.", + " A four-poster bed with a canopy of sheer curtains, perfect for a romantic getaway.", + "This four-poster bed is the perfect addition to any bedroom." + ], + "freight car": [ + "A freight car is a large car used to transport goods by train.", + "A freight car is a large, durable train car that is used to transport heavy loads of cargo.", + "A freight car has four wheels and is made of metal.", + "A freight car looks like a large metal box on wheels.", + "A freight car is a car designed to carry freight instead of passengers.", + "A freight car is a large, heavy train car that is used to transport freight, or goods, from one place to another.", + "A freight car is an enclosed railroad car that is used to transport goods.", + "A freight car is a railway vehicle that is used for carrying cargo.", + "A freight car looks like a large, rectangular box on wheels.", + "A freight car is a large vehicle that is used to transport goods by rail.", + "A freight car can be identified by its large size and lack of windows.", + "The easiest way to identify a freight car is by its large size and the large doors on either side.", + "The body of a freight car is lower than a passenger car and the roof is flat.", + "A freight car can be identified by its large size and heavy weight.", + "Different freight cars can be identified by their different shapes and sizes.", + "A freight car can be identified by its large size and lack of windows.", + "A freight car is identify by it's large size.", + "The cars that haul freight are called freight cars.", + "The identification of a freight car can vary depending on the era and region in which the car operated.", + "A freight car has a large door on one side that is used for loading and unloading cargo.", + "A freight car is a large car that is used to carry heavy goods.", + "A freight car looks like a large train car with large doors on the sides.", + "A freight car is a railroad car that is used to carry cargo.", + "A freight car looks like a large metal train car that is used to transport goods.", + "A freight car looks like a large car that is used to transport freight.", + "A freight car looks like a large, metal box on wheels.", + "A freight car is a large railway vehicle used to carry cargo.", + "A freight car is a railway vehicle that is used to carry cargo.", + "freight cars are large metal cars that are used to haul cargo on trains.", + "A freight car looks like a large railway car that is used to transport goods and materials.", + "This image is of a freight car that is being used to transport cargo.", + "The image is of a large, silver freight car with windows on the sides.", + "This image is of a large, gray freight car with several large, green containers on it.", + "This image from the internet is of a freight car that is hauling a load of lumber.", + "A freight car is a large, sturdy train car that is used to transport heavy goods and materials.", + "A typical freight car is a large, rectangular box car with two large doors on the sides.", + "This image is of a freight car on a set of railroad tracks.", + "The image is of a large, silver freight car with large green numbers on the side.", + "A freight car is a railway vehicle that is used to transport goods or materials over long distances.", + "This image from the internet shows a freight car carrying various containers.", + "A train car carrying freight.", + "Covered Hopper Freight Car.", + "Freight car on a railroad track.", + " A large, rusty freight car filled with coal.", + "This is a train car used for carrying freight.", + "An old, rusty freight car abandoned on a disused track.", + "A rusty old freight car abandoned in a field.", + "A train car loaded with freightA train car carrying a load of freight.", + " A freight car at a railway station.", + "The GDDG-5 freight car is a Soviet-designed freight car used primarily in the Soviet Union and Eastern Bloc countries." + ], + "French horn": [ + "The French horn is a brass instrument that is coiled in a circle.", + "A French horn has a wide, coiled metal tube with a flared bell at the end.", + "A French horn looks like a small, curved brass instrument.", + "A French horn is a coiled brass instrument with a flared bell and a large, circular hand-operated valve.", + ".", + "A French horn looks like a coiled up brass instrument.", + "A French horn is a brass instrument that has a coiled shape and a flared bell.", + "A French horn looks like a brass instrument with a coiled tubing.", + "A French horn is a brass instrument with a long, coiled tubing that wraps around into a spiral.", + "A French horn is a brass instrument that is wound in a loop with a conical bore.", + "The French horn looks like a long metal tube that is coiled into a spiral.", + "The French horn is a brass instrument and is one of the most easily identifiable brass instruments.", + "The French horn has a long, coiled body and a large bell.", + "A French horn has a wide, conical brass bore and coiled tubing wrapped into a compact shape.", + "The French horn is a brass wind instrument.", + "The French horn is a brass instrument that has a lot of tubing coiled around a central, conical shaped body.", + "The French horn has a wide, conical bell, and is coiled in a spiral.", + "The French horn is easily distinguished from other brass instruments by its distinctive shape.", + "The French horn is a brass instrument and is one of the easiest to identify.", + "The French horn is a brass instrument that has a distinctive shape.", + "A French horn looks like a large, coiled brass instrument.", + "A French horn looks like a conical brass instrument with a small, flared bell and a large, circular hand-held mouthpiece.", + "The French horn is a brass instrument that looks like a twisty version of a trumpet.", + "From afar, a French horn looks like a sideways cone.", + "A French horn generally looks like a trumpet that has been coiled up into a circle.", + "Image result for how does a french horn look like\nhttps://www.", + "A French horn is a very distinctive looking musical instrument.", + "A French horn looks like a twisty, coiled-up brass instrument.", + "The French horn is a musical instrument with a coiled metal tubing that is bent into a loop.", + "The French horn is a brass instrument and looks like a horn, hence the name.", + "An image from the internet of a French horn shows a musician playing the instrument.", + "The French horn is a musical instrument in the brass family.", + "The image is of a French horn on a stand.", + "A French horn is a coiled brass instrument with a flared bell at one end.", + "In the image, a French horn is playing in an orchestra.", + "In the image, a French horn is lying on a table with its long, curled tubing snaking around it.", + "I couldn't find a French horn on the internet.", + "The image is of a French horn player performing in a symphony orchestra.", + "The image shows a close-up of a French horn against a black background.", + "An image of a French horn from the internet is of a musical instrument with a long, coiled metal tube.", + "The French horn is a musical instrument that dates back to the 16th century.", + "A French horn on a stand.", + "French horns are one of the most popular instruments in the orchestra.", + "A French horn player warms up before a concert.", + "A French horn player uses vibrato to add expressiveness to their playing.", + "A French horn, also called simply a horn, is a brass instrument made of tubing wrapped into a coil with a flared bell.", + "\nA French horn, also called a hornaise, is a musical instrument in the brass family.", + "The French horn is a musical instrument that belongs to the family of brass instruments.", + "This French horn is a beautiful instrument that can be used to play a variety of music genres.", + "French horn on stage." + ], + "frying pan": [ + "A frying pan is a metal pan with a flat bottom and flared sides that is used for frying food.", + "A frying pan is a pan with a flat bottom and high sides that is used for frying food.", + "A frying pan typically has a long handle and flared sides to make it easier to toss food while cooking.", + "A frying pan is a flat-bottomed pan used for frying, saut\u00e9ing, and browning foods.", + "A stainless steel frying pan has a flat bottom and flared sides that make it easy to toss food.", + "A frying pan typically has a long handle and is flat with sloped sides.", + "A frying pan is a flat bottomed pan with low sides that is used for cooking food in oil or fat.", + "A frying pan is a circular pan with a handle that is used for cooking food on a stovetop.", + "A frying pan is a flat-bottomed pan used for frying, saut\u00e9ing, and browning foods.", + "A frying pan will typically have a long handle attached to a flat base.", + "A frying pan can be identified by its long handle and flat bottom.", + "A frying pan is characterized by its long handle and shallow sides.", + "A frying pan has a long handle and is usually used for cooking food in oil or fat.", + "The most common shape of frying pan is flat with sloping sides and a long handle.", + "Frying pans are identified by their long handles and shallow sides.", + "Frying pans are deep, wide pans with flared sides, and they have a long handle.", + "The easiest way to identify a frying pan is by its shape.", + "A frying pan usually has a short, flared sides and a long handle.", + "A frying pan has a smooth, flat bottom and low sides that flare out.", + "The easiest way to identify a frying pan is by its size and shape.", + "A frying pan is a pan that is used for frying food.", + "A kitchen frying pan is a flat-bottomed pan used for frying, saut\u00e9ing, or browning food.", + "A frying pan looks like a shallow pan with a handle.", + "A frying pan is a flat-bottomed pan that is used for frying food.", + "A frying pan is a flat-bottomed pan used for frying food.", + "A fry pan is a flat bottomed pan used for frying foods.", + "A frying pan has a flat bottom and sloped sides.", + "A frying pan is a flat-bottomed pan that is used for frying, saut\u00e9ing, and browning food.", + "A frying pan is a flat-bottomed pan that is used for frying food.", + "A frying pan is a flat-bottomed pan used for frying, saut\u00e9ing, and browning foods.", + "The image is of a black frying pan with a metal handle.", + "This image from the internet is of a black adequately sized frying pan with a well-rounded base and sloped sides.", + "A frying pan is a pan used for frying, typically with a long handle so that it can be held over a heat source.", + "This image is of a black frying pan with a white handle.", + "This image is of a black frying pan with a white handle.", + "In the image, there is a frying pan with oil in it.", + "A frying pan is a type of pan used for frying food in oil.", + "This image is of a teflon frying pan on a gas stove.", + "The image is of a frying pan on a stove.", + "The image is of a large frying pan with a metal handle.", + "A frying pan with oil bubbling in it.", + "A frying pan over a hot flame.", + "Frying pan with egg.", + "This is a frying pan.", + "A stainless steel frying pan with a red wooden handle, sitting on a gas stove.", + "Not even the sun can compare to the heat of this pan.", + "A frying pan with oil and eggs, ready to cook breakfast.", + "Frying pan with eggs.", + "A frying pan filled with hot oil, ready to cook some food.", + "Close up shot of a pan with oil being heated on a stove." + ], + "fur coat": [ + "A fur coat is made from the pelt of an animal, often a mammal such as a fox, mink, or rabbit.", + "A fur coat is a coat made with the fur of animals.", + "A fur coat looks like a coat that is made out of fur.", + "A fur coat is made out of the pelts of animals.", + "A fur coat can be made from a variety of different types of fur, but is typically associated with a coat made from the fur of a mammal.", + "A fur coat is a garment made from the skin of an animal with the fur intact.", + "A fur coat is a coat that is made out of animal fur.", + "A fur coat is a coat made from the fur of animals.", + "A fur coat is a coat made from the pelts of animals.", + "A fur coat typically has long, dense hair and looks like the animal it came from.", + "Typically, fur coats are made with the fur of animals like mink, fox, rabbit, or beaver.", + "Fur coats are usually made with the fur of animals such as minks, foxes, or rabbits.", + "A fur coat is made from the skin of an animal, with the fur on the outside.", + "Fur coats are made from the pelts of animals.", + "The best way to identify a fur coat is by the label.", + "Fur coats are garments made of real orfake fur.", + "A fur coat is typically made from the pelt of an animal, and will have the animal's hair still attached to the coat.", + "A fur coat can be identified by its soft, luxurious feel and its warm, comfortable embrace.", + "A fur coat is typically made of animal fur and has a very soft, plush texture.", + "A fur coat has animal fur on the outside and is typically lined with another fabric on the inside.", + "Fur coats are made from the fur of animals.", + "A fur coat is a garment made from the fur of an animal.", + "A fur coat looks like a coat that is made of fur.", + "A fur coat looks like a coat that is made out of fur.", + "A fur coat looks like it is made of animal fur.", + "A fur coat is typically made from the pelt of an animal, including mink, fox, rabbit, and chinchilla.", + "Fur coats typically have a fluffy or fuzzy exterior and are made from the fur of animals such as foxes, rabbits, or mink.", + "A fur coat looks like a coat that is made out of fur.", + "A fur coat typically has a luxurious, soft appearance with a dense coat of fur.", + "A fur coat looks like a coat that is made out of fur.", + "The image is of a luxurious fur coat.", + "A woman is wearing a brown fur coat.", + "The image is of a brown fur coat.", + "This image is of a woman wearing a long, fluffy white fur coat.", + "The image is of a beige fur coat.", + "This is an image of a woman wearing a long, brown fur coat.", + "An image of a fur coat from the internet shows a close-up of the coat with the fur coming out of the seams.", + "A fur coat is a coat made of fur.", + "This image is of a woman wearing a fur coat.", + "The image is of a brown fur coat with a collar.", + "A beautiful, luxurious fur coat.", + "Fur coat made from the pelts of twelve different animals.", + "Fur coat.", + "This coat is made of 100% real fur.", + "A woman stands in a room wearing a luxurious fur coat.", + "This luxurious fur coat is made from the finest quality materials and is sure to keep you warm and comfortable all winter long.", + "This coat is made from the fur of 100 chinchillas.", + " A woman wearing a brown fur coat looks at the camera with a smile.", + " A glamorous woman in a fur coat, walking down a city street.", + "Fur coats are made from the pelts of animals, typically mammals with long, dense fur." + ], + "garbage truck": [ + "A garbage truck typically has a large, rectangular body.", + "A garbage truck is a large vehicle that is used to collect trash from homes and businesses.", + "A garbage truck is a truck that is used to collect and haul away trash.", + "A garbage truck is a large truck designed to collect residential and commercial waste.", + "A typical garbage truck is a rear-loading vehicle with a large, hinged hopper in the rear.", + "A garbage truck is a truck specially designed to collect municipal solid waste and transport it to a solid waste treatment facility, such as a landfill or transfer station.", + "A garbage truck is a truck that is used to collect and haul away trash.", + "A garbage truck is a large truck with a large bin on the back.", + "A garbage truck is a large truck that is used to collect and transport trash.", + "A garbage truck is a truck specifically designed to collect municipal solid waste and transport it to a solid waste treatment facility, such as a landfill or transfer station.", + "They are large, have a raised chassis, and have a compactor in the back.", + "A garbage truck is a truck that is used to collect and haul away trash.", + "A garbage truck is a heavy-duty vehicle used to collect municipal solid waste and haul it to a landfill, transfer station, or recycling center.", + "A garbage truck is a truck that is used to collect and dispose of Municipal Solid Waste (MSW).", + "A garbage truck can be identified by its large size, brightly colored body, and capability to lift dumpsters and dump their contents into the bed of the truck.", + "A garbage truck is usually a large truck with a big, green dumpster in the back.", + "Garbage trucks can usually be identified by their large size and the fact that they say \"garbage\" or \"trash\" on the side.", + "A garbage truck is typically a large, heavy duty vehicle with a rear door that opens to dump trash into.", + "A garbage truck is a truck that is used to collect and haul away trash.", + "The garbage trucks in our town are big, green, and have a claw on the front that picks up garbage cans and dumps them into the back of the truck.", + "Most garbage trucks have a mechanical arm with a claw that is used to lift and dump garbage bags or bins into the truck.", + "A garbage truck is a large truck with a special container on the back.", + "A garbage truck is a large truck specially designed to collect municipal solid waste and transport it to a solid waste treatment facility, such as a landfill or transfer station.", + "A garbage truck generally has a large container on the back that tilts up to dump garbage into the truck.", + "A garbage truck looks like a large, rectangular truck with a either a hydraulically operated lift on the side or a claw-like device on the front to lift garbage cans into the truck.", + "A large truck with a large metal container on the back that is used to collect and haul trash and garbage.", + "Some garbage trucks have a small cab for the driver with an attached large box for holding garbage.", + "A garbage truck typically looks like a large box truck with the words \"garbage\" or \"trash\" written on the side.", + "A garbage truck looks like a large truck with a garbage can on the back.", + "A garbage truck looks like a large truck with a garbage can on the back.", + "This image is of a large garbage truck.", + "The image is of a garbage truck with a yellow body and a blue dumpster.", + "An image of a garbage truck from the internet would likely show a large truck with a receptacle for garbage at the back.", + "The image is of a large, green garbage truck.", + "The image is of a large, green garbage truck.", + "The image shows a large garbage truck driving down a city street.", + " Waste management vehicles are used to collect and dispose of municipal solid waste.", + "The image is of a large truck with a container on the back.", + "I found an image of a garbage truck on Google that I think is pretty cool.", + "One image of a garbage truck from the internet shows a large, blue truck with the words \"garbage truck\" written on the side.", + "A garbage truck collects trash from homes and businesses to keep our communities clean.", + "A garbage truck overflowing with trash.", + "A garbage truck drives down a street in a city.", + "A garbage truck picks up trash in a city.", + "A garbage truck empties its load into a landfill.", + "A garbage truck, collecting trash from the streets.", + "A garbage truck making its rounds through the city.", + "This is a picture of a garbage truck.", + "The City of Chicago's Garbage Truck.", + "A garbage truck is a truck specially designed to collect municipal solid waste and transport it to a landfill or other disposal facility." + ], + "gas mask or respirator": [ + "A gas mask is typically a full-face mask that covers the mouth and nose, while a respirator is a half-mask that covers the nose and mouth.", + ".", + "A gas mask or respirator is a mask that covers the mouth and nose to protect the wearer from inhaling dangerous chemicals or airborne particles.", + "A gas mask or respirator is a mask that covers the mouth and nose and is typically used to protect the wearer from harmful airborne particles, gases, or chemicals.", + "A gas mask or respirator is a device worn over the face to protect the wearer from inhaling harmful gases or particulate matter.", + "A gas mask or respirator is a mask worn over the face to protect the wearer from inhaling harmful gases or airborne particles.", + ":A gas mask is a mask that covers your nose and mouth and filters the air that you breathe.", + "A gas mask or respirator typically has a large, circular filter attached to the front, and a rubber or silicone mask that covers the mouth and nose.", + "A gas mask or respirator usually consists of a full-face mask that covers the eyes, nose, and mouth.", + "A gas mask or respirator is a mask that covers the mouth and nose and is typically used to protect the wearer from breathing in hazardous substances, such as chemical gas or fumes.", + "A gas mask is a mask that covers the mouth and nose to protect the wearer from inhaling harmful gases.", + "A gas mask or respirator will have a large filter attached to the front and a rubber or silicone mask that covers the face.", + "A gas mask or respirator is typically a full-face mask that covers the nose and mouth.", + "A gas mask is a device that covers the nose and mouth to protect the wearer from inhaling dangerous chemicals or toxic gases.", + "A gas mask or respirator typically has a large, round glass lens, and is black or green in color.", + "A gas mask or respirator is typically a mask that covers the mouth and nose to protect the wearer from inhaling harmful airborne particles or gases.", + "One way to identify a gas mask or respirator is by the presence of two canisters attached to the mask - one for the left side and one for the right side.", + "A gas mask or respirator is typically a full-face mask that covers the eyes, nose, and mouth.", + "Gas masks and respirators have a rubber or plastic face-piece that covers the nose and mouth, straps to secure the device to the head, and a canister that filters out contaminants from the air.", + "A gas mask typically has a large circular filter attached to the front, and a flexible hose leading to the user's mouth and nose.", + "A gas mask or respirator is usually a rubber or plastic mask that covers the nose and mouth.", + "A gas mask or respirator typically consists of a tight-fitting, flexible facepiece that covers the wearer's nose and mouth, and a canister or cartridge that contains a filter to remove contaminants from the air entering the wearer's mouth.", + "A gas mask or respirator can look like a lot of different things, depending on the specific product.", + "A gas mask or respirator consists of a mask that covers the mouth and nose, and a filtering device that is attached to the mask.", + "A gas mask or respirator is an air-purifying device that is worn over the mouth and nose to protect the wearer from breathing in harmful substances, such as poisonous gas or dust.", + "A gas mask or respirator is a mask that covers the mouth and nose to protect the wearer from inhaling harmful gases or airborne particles.", + "Some respirators resemble a paper or cloth mask that covers only the nose and mouth.", + "Gas masks and respirators look like large, bulky masks that cover the face and nose.", + "A gas mask is a mask that fits over the mouth and nose and has a canister of filters or cartridges that remove contaminants from the air.", + "The most common type of gas mask is a full face-piece respirator (FFR), which covers the entire face, including the eyes.", + "A black gas mask hangs from a metal hook on a white wall.", + "This image shows a person wearing a gas mask or respirator.", + "The image is of a dark grey gas mask with a long, cylindrical filter attached to the front.", + "The image is of a black gas mask with a large, silver filter attached to the front.", + "An image of a man wearing a gas mask and respirator.", + "The image shows a person wearing a gas mask with a clear plastic faceplate.", + "A gas mask or respirator is a device that covers the mouth and nose to protect the wearer from inhaling harmful gases or particulate matter.", + "The image is of a black gas mask with a long, cylindrical filter attached to the front.", + "A gas mask or respirator is a mask that covers the wearer's nose and mouth to protect them from inhaling harmful fumes or airborne particles.", + "The image from the internet is of a black gas mask spanning the entire face with two eye holes.", + "\",\"Respirator or gas mask to protect against harmful fumes or airborne particles.", + " A gas mask or respirator is a device designed to protect the wearer from inhaling harmful gases, vapors, or airborne particulates.", + "

Respiratory protection is essential when working with hazardous materials.", + "Get your gas mask or respirator now to protect yourself from the harmful effects of air pollution!.", + "If you find yourself in an area with poor air quality, it is important to protect yourself with a gas mask or respirator.", + "Proper use of a gas mask or respirator is critical for protecting yourself from airborn contaminants.", + "A gas mask or respirator is a device designed to protect the wearer from inhaling harmful air pollutants.", + "Use a Gas Mask or Respirator to Protect Yourself from Airborne toxins.", + "If you can't breathe, nothing else matters.", + "An industrial worker wearing a gas mask to protect against harmful fumes." + ], + "gas pump": [ + "A gas pump typically has a handle, a hose, and a pump.", + "A gas pump typically has a hose coming out of it, which is inserted into the gas tank of a car.", + "A gas pump typically has a cylindrical shape, is slightly larger than a human head, and has a nozzle attached to one end.", + "A gas pump typically consists of a handle, a spout, and a digital display showing the price per gallon.", + "Most gas pumps have a large, cylindrical metal body that contains the mechanism for dispensing the gasoline.", + "A gas pump is a long, slender machine with a digital display that is used to dispense gasoline into the tanks of cars.", + "A gas pump typically has a handle on the side, a nozzle on the front, and a digital display on the top.", + "A gas pump typically has a lever on the side, and a hose with a nozzle on the end.", + "A gas pump typically has a big, cylindrical metal body with a handle on one side and a nozzle on the other.", + "A gas pump typically has a screen that displays the price per gallon, a keypad to enter your payment information, and a handle to dispense the gas.", + "A gas pump is usually a long, slender machine that is used to pump gasoline into a car.", + "A gas pump is a device used to pump gasoline into a vehicle.", + "The identifying characteristic of a gas pump is the nozzle, which is used to insert into the gas tank.", + "There are a few ways to identify a gas pump.", + "Most gas pumps have a handle on the side and a hose with a trigger.", + "A gas pump is a machine at a service station that is used to pump gasoline into vehicles.", + "The gas pump is generally a large, tall machine located near the gas station's entrance.", + "A gas pump is typically a large, tall machine that dispenses gasoline into the tank of a vehicle.", + "You can identify a gas pump by looking for a handle and a hose.", + "The easiest way to identify a gas pump is by its shape.", + "A gas pump is a machine at a gas station that is used to pump gasoline into vehicles.", + "A gas pump looks like a tall, cylinder-shaped machine with a handle on the side.", + "A gas pump typically has a handle, a hose, and a nozzle.", + "A gas pump typically has a rectangular shape and is made of metal.", + " Gas pumps are typically long, cylindrical machines that are found at the side of a gas station.", + "A gas pump typically has a rectangular base, a curved handle, and a cylindrical pump.", + "A gas pump is a tall, cylindrical machine that dispenses gasoline into the tanks of cars.", + "A gas pump is a device used to pump gasoline, petrol, or other fuels into a vehicle.", + "A gas pump looks like a tall, vertical cylinder with a handle on the top and a hose coming out of the bottom.", + "A gas pump typically has a handle, a hose, and a digital or analog display that shows the amount of money owed.", + "A gas pump is a machine at a gas station that is used to pump gasoline into vehicles.", + "An image of a gas pump from the internet typically contains a pump with a handle and a digital or analog display showing the current price per gallon of gas.", + "The image is of a gas pump with a digital display.", + "An image of a gas pump from the internet would likely show a gas pump with a hose and a nozzle, as well as a digital display showing the price per gallon of gas.", + "A gas pump is a device used to pump gasoline, petrol, or other fuel oils into a vehicle.", + "The image from the internet is of a gas pump in front of a bright blue sky.", + "An image from the internet of a gas pump looks like a black and white photograph of a traditional gas pump with a large, digital display attached to the front.", + "An image from the internet of a gas pump show a traditional, standalone pump with a digital screen that displays the price per gallon.", + "The image is of a gas pump with a blue background.", + "The image is of a gas pump with a digital display showing the price per gallon.", + "A gas pump with a digital display.", + "This gas pump is from the 1950s.", + "This gas pump is out of service.", + "The caption reads: \"A customer fills up her car at a Shell gas station in Los Angeles, California.", + "Here is a gas pump.", + "'The high price of gas is putting a strain on many families' budgets.", + "$3.", + "This is a gas pump.", + "The price of gas is on the rise.", + "This is a gas pump." + ], + "goblet": [ + "A goblet is a drinking cup with a stem and a foot.", + "A goblet is a tall, stemless glass with a wide bowl.", + "A goblet is a drinking cup with a base and a stem.", + "A goblet typically has a tall stem with a round bowl at the top.", + "A goblet typically has a stem with a round bowl at the top.", + "A goblet is a type of cup that has a stem and a foot.", + "A goblet usually has a stem with a bowl on top.", + "A goblet is a type of drinking glass that is taller and has a stem below the bowl-shaped cup.", + "A goblet is a cup that is bowl-shaped with a stem.", + "A goblet is a drinking glass with a stem and a foot.", + "A goblet typically has a stem and a foot, with a bowl that is larger than a traditional wine glass.", + "A goblet is a type of drinking glass that is taller than it is wide, with a stem that elevates the bowl away from the surface on which it stands.", + "A goblet is a cup with a stem and a base that is used for drinking.", + "A goblet typically has a stem and a cup- or bowl-shaped top.", + "A goblet is a cup with a stem and a foot.", + "A goblet is a drinking cup with a stem and a foot.", + "A goblet is a drinking glass with a stem.", + "You can identify a goblet by its shape.", + "A goblet is typically taller and narrower than a regular drinking glass, and has a stem that extends down from the bowl of the glass.", + "A goblet is a drinking vessel often with a stem and a base.", + "A goblet has a stem with a round bowl on top.", + "A goblet is a drinking glass with a flat base and a stem.", + "A goblet is a type of drinking glass with a stem and a base.", + "A goblet is a type of drinking glass that has a stem and a foot.", + "A goblet is a type of drinking glass that is taller and has a wider opening than a standard drinking glass.", + "A goblet is a cup with a stem.", + "A goblet is a type of cup that has a wide bowl and a stem.", + "A goblet typically has a stem with a round bowl at the top.", + "A goblet is a drinking glass with a stem.", + "A goblet is a type of glass that is tall and has a stem.", + "I found an image of a goblet on the internet that is made out of clear glass.", + "This is a goblet from the internet.", + "A goblet is a type of drinking glass with a stem and a base.", + "This goblet has a long stem and a round base.", + "The image shows a goblet with a intricate design.", + "This image from the internet is of a goblet with a long stem and a large, round bowl.", + "A goblet is a type of drinking glass with a stem, typically used for wine.", + "The image is of a golden goblet with jewels encrusted around the rim.", + "An image of a goblet from the Internet shows a cup with a stem and a base.", + "The image is of a silver goblet with a stem and a base.", + "A goblet made of glass with a metal stem and base.", + "This is a goblet made out of glass.", + "This goblet is beautiful! It has a very intricate design and is very well made.", + "This goblet was handcrafted by a local artist.", + "This is a goblet.", + "Gold goblet on a tableA gold goblet sits on a table.", + " golden goblet on a white tablecloth.", + "The Goblet of FireA goblet fit for a king or queen, this fire-resistant glass vessel is perfect for serving hot drinks.", + "A gold goblet with a jewel-encrusted stem, sitting on a velvet cushion.", + "A golden goblet on a velvet cloth, with a wine glass next to it." + ], + "go-kart": [ + "A go-kart generally looks like a small, open-wheeled vehicle.", + "A go-kart is a small, light vehicle with a low-powered engine, typically used for racing.", + "A go-kart has four wheels, a seat, and a steering wheel.", + "A go-kart typically looks like a small, open-air car or buggy.", + "A go-kart is a small vehicle with either an electric or a gasoline engine.", + "A go-kart is a small vehicle with a low center of gravity and four wheels.", + "A go-kart is a small vehicle with four wheels, usually powered by a gasoline engine.", + "A go-kart is a small, open-wheeled vehicle used for racing.", + "A go-kart typically looks like a small, open-wheeled car.", + "A go-kart typically looks like a small car or buggy with a small engine in the back.", + "There are a few ways to identify a go-kart.", + "There are a few ways to identify a go-kart.", + "A go-kart is a small, lightweight vehicle with four wheels, typically powered by a gasoline engine.", + "Generally, go-karts are small, four-wheeled vehicles that are powered by engines.", + "A go-kart typically has four wheels, a small engine, and a frame with a seat for the driver.", + "One way to identify a go-kart is by its small size.", + "A go-kart can be identified by its small size, four wheels, and a steering wheel.", + "For the most part, go-karts do not have license plates or VIN numbers.", + "The go-kart can be identified by its small size and its low-slung seat.", + "The best way to identify a go-kart is by its size.", + "A go-kart is a small, lightweight vehicle with four wheels that is propelled by a small engine.", + "A go-kart is a small vehicle with four or three wheels, powered by either an electric motor or a gasoline engine.", + "A go-kart typically looks like a small vehicle with four wheels, a steering wheel, and a gas pedal.", + "A go-kart is a small, lightweight vehicle with four wheels and a simple, open frame.", + "A go-kart is a small, lightweight vehicle with four wheels and a steering wheel.", + "Most go-karts have a simple, tubular steel frame, a seat, four wheels, and an electric motor.", + "A go-kart is a small, lightweight vehicle with four wheels, a steering wheel, and a small gasoline engine.", + "A go-kart is a small vehicle with four wheels, a steering wheel, and a gas pedal.", + "A go-kart looks like a small car or buggy with four wheels.", + "Most go-karts have four wheels and seats that accommodate one or two people.", + "The image is of a blue and white go-kart racing down a track.", + "The image shows a pearl-white go-kart with a blue and yellow racing stripe down the center.", + "A go-kart is a small vehicle with a low center of gravity, open frame, and small wheels.", + " raceThe image is of a go-kart race with six karts racing around a track.", + "A go-kart is a small, racing car.", + "An image from the internet of a go-kart may show a small, open-wheeled vehicle that is designed to be driven on a racetrack.", + "The image shows a go-kart racing on a track.", + "This image is of a go-kart on a racetrack.", + "A go-kart is a small vehicle with either two or four wheels, and is typically ridden by one person.", + "A go-kart is a small vehicle with a steering wheel, pedals, and an engine.", + "Remote-control go-kart racing at the indoor track.", + "A go-kart races down a track.", + "Go-kart racing is a fun and exciting sport enjoyed by people of all ages.", + "Two young girls in go-karts race down a path in a park.", + "A young girl races her go-kart around a track.", + "Racing go-karts on an indoor track.", + "Two kids racing go-karts on a dirt track.", + "A go-kart racing around a track.", + "Go-kart racing is a popular sport around the world.", + "A go-kart on a trackThe go-kart is getting ready to race." + ], + "golf ball": [ + "A golf ball is round and white.", + "A golf ball is a small, round, white object that is hit with a golf club in the sport of golf.", + "A golf ball is a small, white ball with dimples on it.", + "A golf ball is round and has a smooth surface.", + "A golf ball is a small, dimpled, white balls used to play the game of golf.", + "Golf balls are small, round objects that are typically white in color with dimples on the surface.", + "A golf ball is a small, round, white object that is used in the game of golf.", + "A golf ball is typically a small, round, white sphere.", + "A golf ball is typically small, round, and white.", + "A golf ball is a small, white, spherical object that is used in the game of golf.", + "A golf ball is a small, hard ball used in the game of golf.", + "One way to identify a golf ball is by its size.", + "Most golf balls have a dimple pattern on them.", + "You can identify a golf ball by looking at the logo on the ball.", + "Most golf balls have the logo of the company that manufactured them somewhere on the surface.", + "Size, weight, color, dimples, pattern, and brand are all ways to identify a golf ball.", + "On a golf ball, there should be raised lettering that indicates the brand of the ball.", + "There are many ways to identify a golf ball.", + "Golf balls can be identified by their size, which is regulated by the Rules of Golf, and by their markings.", + "There are various ways that you can identify a golf ball.", + "A golf ball is a small, round, white sphere.", + "Basically, a golf ball is a small, white sphere.", + "A golf ball is a small, hard ball used in the game of golf.", + "A golf ball is a small, round, white object that is hit with a golf club in the sport of golf.", + "A golf ball is roughly spherical, with a diameter of 1.", + "Golf balls are small, round, white balls.", + "A traditional golf ball is white, spherical, and has dimples on its surface.", + "A golf ball usually has a dimpled surface and is white.", + "A golf ball is a small, round, white sphere.", + "A golf ball generally has a white color with dimples on the surface.", + "The image from the internet of a golf ball shows a white ball with dimples on it.", + "A golf ball is a small, hard ball used in the game of golf.", + "The image is of a golf ball on a golf course.", + "It's a golf ball on a tee with a golf club behind it ready to swing.", + "This image shows a golf ball on a white background.", + "This image is of a white golf ball on a green background.", + " on a teeThe image is of a golf ball sitting on a tee in a grassy field.", + "This image is of a golf ball sitting on a green.", + "This image is of a golf ball on a tee in a grassy field.", + "This image from the internet is of a golf ball on a tee.", + "An image of a golf ball on a golf course with the caption \"Hit the green in one!\".", + " Golf ball on tee.", + "Golf Ball on Green.", + "golf ball on a golf course.", + "A golf ball on a green with a flag in the background.", + "The golf ball is on the ground.", + "A golf ball on a course.", + "Rolling Hills Golf Club Logo Golf Ball.", + "This golf ball is Titleist Pro V1, a high-performance ball designed for serious golfers.", + "Golf Ball on Tee." + ], + "golf cart": [ + "A golf cart is a small, electrically-powered vehicle used to transport people around a golf course.", + "A golf cart is a small, four-wheeled car typically used for golfers to transport their golf clubs and equipment around the golf course.", + "A golf cart is a small, electric vehicle that is used for carrying golfers and their equipment around a golf course.", + "A golf cart is a small vehicle designed to carry golfers and their equipment around a golf course.", + "A golf cart typically looks like a small car or truck with four seats and large wheels.", + "A golf cart looks like a small car with four wheels.", + "A golf cart typically looks like a small car, but it may have a golf bag holder on the back.", + "A golf cart is a small vehicle designed to carry golfers and their equipment around a golf course.", + "A golf cart is a four-wheeled vehicle that is used to transport golfers and their equipment around a golf course.", + "A golf cart typically looks like a small car or truck, with either two or four seats and a small cargo area.", + "A golf cart is a small vehicle designed to carry golfers and their equipment around a golf course.", + "A golf cart is a small vehicle, usually with four wheels, that is designed to carry two golfers and their golf clubs.", + "You can usually identify a golf cart by its size.", + "The following are some ways to identify a golf cart:-Golf carts are typically smaller than regular vehicles.", + "A golf cart typically has four wheels, seats two or more people, and is powered by electricity.", + "There is no one definitive answer to this question.", + "Most golf carts have a golf bag holder on the back.", + "A golf cart is a small, low-speed vehicle designed to carry two golfers and their golf clubs.", + "The easiest way to identify a golf cart is by its size.", + "A golf cart is typically a small vehicle, similar in size to a buggy or a small car, that is designed for carrying golf clubs and golfers over the course of a golf course.", + "A golf cart is a small vehicle, usually with four wheels, that is designed for carrying golf clubs and golfers over the course of a golf game.", + "A golf cart looks like a small car or a large golf cart.", + "A golf cart looks like a miniature car.", + "A golf cart is a small vehicle that is usually used for carrying golf clubs and golfers around a golf course.", + "A golf cart is a small vehicle designed to carry golfers and their equipment around a golf course.", + "A golf cart typically looks like a small vehicle with four wheels, a steering wheel, and two seats.", + "Well, a golf cart typically looks like a miniature car.", + "Can you be more specific?.", + "A golf cart looks like a small car, usually with four seats and an open top.", + "A golf cart typically looks like a small car or SUV.", + "This image is of a golf cart that is blue and white in color.", + "The image is of a golf cart parked on a golf course with the flag in the background.", + "The image is of a golf cart parked on a green.", + "The image is of a golf cart parked on a golf course next to a golf bag and golf clubs.", + "The image is of a white golf cart parked on a green golf course.", + "The image is of a golf cart driving on a golf course.", + "The image from the internet of a golf cart shows a small, green vehicle with four wheels.", + "The image is of a golf cart that is green and white.", + "A golf cart is a vehicle designed for carrying golf clubs and golfers over the course of a golf course.", + "The image is of a yellow golf cart with a green flag sticking out of the top.", + "A golf cart speeds down a path between lush green fairways.", + "The golf cart is used to traverse the golf course.", + " A golf cart drives on a golf course.", + "Two men riding in a golf cart on a golf course.", + "A golf cart parked on a green lawn.", + "This golf cart was used by President Eisenhower during his retirement years.", + "This golf cart is being driven by an elderly man.", + " A golf cart driving on a green path.", + "This golf cart is battery-powered and eco-friendly!.", + "A golf cart on a golf course." + ], + "gondola": [ + "A gondola is a narrow, flat-bottomed boat with a tall, curved prow and stern.", + "A gondola is a long, narrow boat used for transportation in canals.", + "A gondola is a narrow, flat-bottomed boat that is traditionally used in Venetian canals.", + "A gondola is a flat-bottomed boat that is traditionally used in the Venetian Lagoon.", + "A gondola is a long, narrow boat used for transportation in canals.", + "A gondola is a flat-bottomed boat that is used to ferry people and goods in canals.", + "A gondola is a long, narrow boat used for transportation in canals or on rivers.", + "A gondola is a long, narrow boat that is used for transportation in canals.", + "A gondola is a long, narrow boat with a flat bottom, often used for carrying goods or passengers in canals or on Rivers.", + "A gondola is a narrow boat that is propelled with a long pole by a gondolier.", + "The easiest way to identify a gondola is by its long and narrow shape.", + "The gondola is a traditional, flat-bottomed Venetian rowing boat, well suited to the conditions of the Venetian lagoon.", + "The best way to identify a gondola is to look for the distinctive shape.", + "A gondola is a narrow, flat-bottomed boat that is propelled by a single oar over the stern.", + "The best way to identify a gondola is by its distinctive shape.", + "Gondolas are long, narrow flat-bottomed boats with a tall stern.", + "A gondola is a flat-bottomed boat that is used to transport people or goods in canals.", + "A gondola has a long, narrow hull and is propelled by a single oar.", + "A gondola is a flat-bottomed boat that is poled through the water.", + "One way to identify a gondola is by its long, narrow shape.", + "A gondola looks like a small boat with a flat bottom that is propelled with a long pole.", + "A gondola is a long, narrow watercraft with a rounded back, used for transportation in Venice, Italy.", + "A gondola is a flat-bottomed boat that is propelled through the water using a pole.", + "A gondola is a long, narrow boat with a pointed bow and stern, traditionally used for transportation in Venice, Italy.", + "A gondola is a flat-bottomed boat used for transportation in Venice, Italy.", + "A gondola is a narrow boat that is propelled by a single oar.", + "A gondola is a type of boat that is long, narrow, and pointed at both ends.", + "A gondola is a type of flat-bottomed boat used for transportation in canals or on lakes.", + "The traditional gondola of Venice is narrow and flat-bottomed, and is propelled with a rowing motion.", + "A gondola is a small, flat-bottomed boat that is pointed at both ends and is propelled with a long pole by a person standing at the stern.", + "I found an image of a gondola on a canal in Venice.", + "A gondola is a narrow, flat-bottomed boat used for carrying goods or passengers in canals or in sheltered waters such as the lagoon of Venice.", + "A gondola is a narrow, flat-bottomed boat used for transportation in canals or on lakes.", + "A gondola is a small, narrow boat used for transportation in canals.", + "The image from the internet of a gondola shows a large, flat-bottomed boat with tall sides.", + "A gondola is a narrow, flat-bottomed Venetian rowing boat, often used for tourist trips through canals.", + "This image is of a traditional Venetian gondola, with its distinctive long and slim shape.", + "A gondola is a narrow, flat-bottomed boat used for transporting passengers or goods in canals or on other waterways.", + "The image is of a traditional Venetian gondola, with its distinctive curved prow, being rowed down a narrow canal.", + "A gondola is a long, narrow boat that is propelled by a person using a pole.", + "Gondola on the Canal in Venice, Italy.", + " A gondola in Venice, Italy.", + "Gondola on the Grand Canal in Venice, Italy.", + " A woman in a brightly colored dress stands in a gondola in Venice, Italy.", + " A gondola on the canals of Venice, Italy.", + "Gondola on the thThis gondola is on the Grand Canal in Venice, Italy.", + " A gondola in Venice, Italy.", + "Gondolas on the Canal in Venice.", + "Gondolas in Venice, Italy.", + "A gondola in Venice, Italy." + ], + "gong": [ + "A gong is a flat, metal disc that is struck with a mallet to produce a loud, ringing sound.", + "A gong is a circular percussion instrument that consists of a flat, circular metal disc that is struck with a mallet.", + "A gong looks like a large metal disc with a raised center.", + "A gong is a circular metal plate with a raised center that is struck with a mallet to produce a resonant sound.", + "A gong is a circular percussion instrument with a flat surface that is struck with a mallet to produce a sound.", + "A gong is a metal disk with a raised center that is struck with a mallet to produce a ringing sound.", + "A gong is a musical instrument that is made of metal and has a flat surface.", + "A gong looks like a large metal disc with a raised center.", + "A gong is a modern day musical instrument that is of East Asian origin.", + "A gong is a circular metal disc with a raised rim.", + "There is no surefire way to identify a gong, as they come in many different shapes and sizes.", + "Gongs are traditionally made of bronze or brass.", + "The easiest way to identify a gong is by its shape.", + "The easiest way to identify a gong is by its shape.", + "A gong is a percussion instrument that is played by being struck with a mallet.", + "A gong is a percussion instrument that is usually made of metal or stone.", + "A gong is a percussion instrument that is played by being struck with a mallet.", + "A gong is a percussion instrument consisting of a circular metal plate that is struck with a mallet.", + "The easiest way to identify a gong is by its shape.", + " Generally, a gong is any large, flat, circular metal disc that makes a loud sound when it is struck.", + "A gong looks like a large, concave disk that is suspended vertically.", + "A gong is a circular metal plate with a raised rim.", + "A gong is usually a large, flat, round percussion instrument.", + "A gong can take on many different shapes, but is typically either circular or octagonal.", + "A gong is a circular percussion instrument with a flat surface that is struck with a mallet.", + "A gong is a circular, flat percussion instrument that is usually made of metal.", + "A gong looks like a metal circle with a raised center.", + "A gong is a circular metal disc with a raised rim.", + "A gong is typically a round, flat object that is struck with a mallet.", + "A gong is a round, flat metal percussion instrument that is suspended from a support.", + "This image is of a gong on a stand.", + "The image is of a large, round, metal gong suspended from a frame.", + "There is an image of a gong on the internet that is circular in shape with a raised center.", + "An image of a gong from the internet may depict a large, round metal instrument with a curved surface.", + "This is an image of a gong on the internet.", + "A gong is a percussion instrument that has a large metal bowl.", + "A gong is a percussion instrument that is played by hitting it with a mallet.", + "The image is of a golden gong on a black stand.", + "I found an image of a gong on the internet that looks like it is made out of metal and has a handle on the top.", + "One image of a gong from the internet is a circular metal instrument with a raised centre.", + "An ornate gong on a stand, with a mallet hanging nearby.", + "This is a gong.", + "Gong.", + "An ornate gong on a wooden stand.", + "The gong is a percussion instrument with a deep and resonant sound that is used in various ceremony and ritual contexts.", + "This grumpy-looking gong is actually quite friendly!.", + "The gong is a percussion instrument that originated in Asia.", + "This picture shows a gong that was used in a ceremonial event.", + "BAM! This gong is so seeeeeeexy.", + "Gong." + ], + "gown": [ + "A gown is a long piece of clothing typically worn by women.", + "The gown is a long, flowing dress worn by women.", + "A gown is a long piece of clothing that is worn by women.", + "A gown is a long, flowing dress.", + "A gown is a long piece of clothing worn by women.", + "A gown is a formal dress that is often worn to parties, balls, or other formal events.", + "A gown is a long, loose-fitting dress.", + "A gown is a piece of clothing that is worn by men or women and typically extends to the ground.", + "A gown is a sleeveless dress that is usually floor-length.", + "A gown is a long, formal dress.", + "You can identify a gown by its long, flowing silhouette.", + "The identification of a gown can be done by its physical appearance and the type of fabric it is made from.", + "A gown is a piece of clothing that is worn by women and is often used for special occasions.", + "A gown is a type of dress that is typically worn by women on formal or semi-formal occasions.", + "There are a few ways to identify a gown.", + "The easiest way to identify a gown is to look for a long dress.", + "A gown is a formal dress or robe worn by a man or woman.", + "There are many ways to identify a gown.", + "There are a few ways to identify a gown.", + "The best way to identify a gown is to look at the construction.", + "Gowns can vary in style, but most are long dresses that straps around the neck and drape down the body.", + "A gown is a loose-fitting, elegant dress.", + "There is no one answer to this question as the style of gowns can vary greatly.", + "A gown is a type of dress that is typically worn by women.", + "A gown is a formal dress that is often worn to special occasions.", + "A gown is a long, formal dress.", + "Gowns come in many different styles, but they are typically long dresses that are worn on formal occasions.", + "A gown is a type of dress that is often worn by women on formal occasions, such as weddings or balls.", + "A gown is a type of dress that is usually worn by women on formal or semi-formal occasions.", + "A gown is a type of dress that is often worn by women on formal occasions.", + " or dressThe image is of a long, sleeveless white gown with a V-neckline and a train.", + "In this image, the gown is a light blue color with a V-neckline and cap sleeves.", + "The image is of a wedding gown with a long train.", + "This image is of a simple, yet elegant white gown.", + "This image is of a long, plum-colored gown with a low neckline and a slit up the right side.", + "The image is of a sleeveless white gown with a V-neckline and a train.", + "This image is of a satin A-line gown with spaghetti straps and a sweetheart neckline.", + "This image is of a sleeveless ball gown with a sweetheart neckline.", + "This is an image of a ballgown with a sweetheart neckline and a tulle skirt.", + "This image is of a beautiful gown with intricate beading and a long train.", + "This beautiful gown was designed by _______.", + "Eva Longoria in a plunging gown at the Cannes Film Festival.", + "This is a ballgown worn by a woman in the 1800s.", + "This is a strapless ball gown with a sweetheart neckline.", + "This gown was designed by Charles James and is one of his most famous creations.", + "This is a beautiful gown.", + "This glamorous gown was worn by Hollywood star Audrey Hepburn in the 1957 film Funny Face.", + "This elegant gown was worn by an unnamed woman in the late 1800s.", + "This strapless ball gown features a sweetheart neckline and a full tulle skirt.", + "Veronica Beard Fall 2019 Ready-to-Wear Collection." + ], + "grand piano": [ + "A grand piano is a large piano that typically has a length of 9 feet.", + "A grand piano is a large piano that typically has a length of 9 feet.", + "A grand piano is a musical instrument that is played by pressing keys on a keyboard.", + "A grand piano is typically around 88 keys and is much larger than an upright piano.", + "A grand piano typically has a long body with a lid that can be opened or closed.", + "A grand piano is a large musical instrument that is played by pressing the keys on a keyboard.", + "A typical grand piano has a curved wooden outer casing.", + "A grand piano is typically around nine feet long and has three pedals.", + "A grand piano typically has a long body with a lid that can be raised to create more volume.", + "A grand piano typically has a longer body and a larger soundboard than a upright piano, which gives it a fuller, richer sound.", + "Types of grand pianos include the German Steinway grand piano, the Bosendorfer grand piano, and the Yamaha grand piano.", + "A grand piano is identifiable by its large size and heavy weight.", + "The grand piano is the largest and heaviest piano.", + "A grand piano is a piano that is played horizontally.", + "Grand pianos are usually much larger than upright pianos.", + "A grand piano is a piano that is much larger than a regular piano.", + "A grand piano is the largest and heaviest type of piano.", + "A grand piano has a much larger body than a regular piano and is typically around 9 feet long.", + "Grand pianos generally have a much longer frame and string length than upright pianos, giving them a much richer, fuller sound.", + "A grand piano is typically much larger than a regular piano and has a longer keyboard.", + "A grand piano typically has a polished wood exterior and a white or off-white key surface.", + "A grand piano looks like a traditional piano, but it is larger in size.", + "A grand piano has a horizontal cast iron frame.", + "A grand piano is a very large musical instrument.", + "A grand piano looks like a traditional piano, but is much larger.", + "A grand piano looks like a traditional piano, but it is much larger.", + "A grand piano is a large piano that typically has a length of 9 feet or more.", + "A grand piano is a large piano that is played by a pianist.", + "A grand piano is a large musical instrument that is played by pressing keys on a keyboard.", + "A grand piano is a large piano that typically has a length of nine feet.", + "This image is of a grand piano in a formal setting.", + "This photo shows a grand piano in a living room with hardwood floors.", + "The image is of a grand piano in a light-filled room.", + "This image is of a grand piano with its lid open.", + "The image is of a grand piano with the lid open.", + "This image is of a grand piano in a wood-paneled room.", + "The image is of a glossy black grand piano with intricate gold designs on the side.", + "An image of a grand piano from the internet shows a glossy black piano with intricate gold detailing.", + "The image is of a grand piano with a black and white finish.", + "The image is of a large, glossy black grand piano.", + "A grand piano in a luxurious living room.", + " A grand piano in a empty room.", + "A grand piano in a living room.", + "This grand piano is a Steinway Model D concert grand piano, one of the finest pianos in the world.", + "A grand piano in a concert hall.", + " A grand piano in a living room.", + " grand piano.", + " A grand piano in a room with green walls and a green rug.", + "This grand piano is a beautiful example of a classic instrument.", + "This grand piano was made by the Steinway company in 1864." + ], + "greenhouse": [ + "A greenhouse is a large structure made of glass or clear plastic, used for growing plants.", + "A greenhouse is a glass or plastic structure that is used to grow plants.", + "A greenhouse often looks like a glass or plastic shed.", + "A greenhouse typically has walls and a roof made of transparent or translucent material, such as glass, in which plants requiring regulated climatic conditions are grown.", + "A greenhouse looks like a large glass or plastic box.", + "A greenhouse is a building made of glass or plastic where plants are grown.", + "A greenhouse is generally a building made of glass, in which plants are grown.", + "A greenhouse is a building where plants are grown.", + "A greenhouse looks like a large, transparent roof under which plants are grown.", + "A greenhouse looks like a freestanding glass or plastic building.", + "A greenhouse can be identified by its tall glass walls and roof.", + "The identification of a greenhouse is usually done by its roof, which is typically made of glass.", + "Colored panes of glass or plastic set in a frame.", + "A greenhouse is a building with walls and a roof made mostly of transparent or translucent material, such as glass, in which plants are grown.", + "A greenhouse is a type of building in which crops are grown.", + "A greenhouse is typically a glass or plastic structure that is used to grow plants.", + "The best way to identify a greenhouse is by its clear walls and ceilings.", + "A greenhouse is typically a building made of glass or plastic where plants are grown.", + "A greenhouse is usually a rectangular building made of glass.", + "A greenhouse can typically be identified by its large glass windows.", + "A greenhouse typically has clear walls and a glass or plastic roof.", + "A greenhouse typically looks like a large glass or plastic structure.", + "A greenhouse looks like a large building made completely or mostly of glass.", + "A greenhouse looks like a rectangular glass or plastic building.", + "A greenhouse looks like a glass or plastic house.", + "A greenhouse is a building made of transparent material, such as glass or plastic, in which plants are grown.", + "A greenhouse looks like a squared building made of mostly glass.", + "A greenhouse is a building made of transparent material, such as glass, in which plants are grown.", + "A greenhouse looks like a glass or plastic house where plants are grown.", + "A greenhouse is usually a rectangular building with a glass or plastic roof and walls.", + "The image is of a large, glass greenhouse with a metal frame.", + "A greenhouse is a building made of glass or plastic in which plants are grown.", + "A greenhouse is a type of building in which crops are grown.", + "One image of a greenhouse from the internet shows a large, metal frame structure with a clear roof and walls.", + "The image is of a large, rectangular greenhouse with a slanted roof.", + "The internet image of a greenhouse shows a large, rectangular structure made of glass panels.", + "The image is of a large, domed greenhouse.", + "The image is of a large rectangular greenhouse with a metal frame.", + "The image is of a tall, rectangular greenhouse with a slanted, clear roof.", + "The image is of a large, metal frame greenhouse with glass panels.", + "A large greenhouse full of lush plants.", + " The interior of a greenhouse.", + "A greenhouse full of lush greenery and bright flowers.", + "View of a large greenhouse complex with rows of plants inside.", + "A large greenhouse with a metal frame and glass panes.", + "This greenhouse allows for year-round production of crops.", + " A large greenhouse with many different types of plants.", + " A greenhouse used to grow plants.", + "A greenhouse is a structure with walls and a roof made largely of transparent material, such as glass, in which plants are grown.", + "A greenhouse full of lush greenery and bright flowers." + ], + "radiator grille": [ + "A radiator grille is a metal guard that covers the opening at the front of an automobile engine to protect it from debris.", + "A radiator grille is a metal grill that is placed over a car's radiator to protect it from debris and keep the engine cool.", + "A radiator grille looks like a grid made of metal or plastic that is placed over the front of a car's radiator to protect it from debris.", + "A radiator grille is a metal grate that covers the front of a vehicle's radiator.", + "A radiator grille is the front opening of a vehicle's radiator, often located in the grille.", + "The radiator grille is the located at the front of the vehicle, below the hood.", + "A radiator grille is a metal grate that covers the front of a car's radiator.", + "A radiator grille typically contains a series of parallel vertical and horizontal slats that allow air to flow into the grille opening while preventing objects from being caught in the radiator fan.", + "A radiator grille is usually a metal screen that covers the front of a vehicle's radiator.", + "A radiator grille is a metal screen that covers the front of a vehicle's radiator.", + "A radiator grille is typically a metal grid that is placed over the front of a vehicle's radiator to protect it from debris.", + "A radiator grille is a metal screen that covers the front of a vehicle's radiator.", + "Radiator grilles can be identified by their horizontal or vertical slats, which allow air to flow through and cool the engine.", + "A radiator grille is a grill that covers the front of the radiator to protect it from debris.", + "Radiator grilles can be identified by their typically rectangular or V-shaped shape and their location at the front of a vehicle, near the headlights.", + "A radiator grille is typically a metal or plastic grill that is placed over a car's radiator to protect it from debris.", + "A radiator grille is a part of a car's front end that helps to protect the engine from debris and allows air to flow through to cool the engine.", + "The radiator grille is typically located at the front of the vehicle, and it is responsible for allowing air to flow into the engine compartment to keep the engine cool.", + "The radiator grille is located in front of the vehicle, behind the bumper.", + "A radiator grille is typically a metal or plastic grille that is placed in front of a vehicle's radiator.", + "A radiator grille typically looks like a metal grid or screen that is placed in front of the radiator to protect it from debris and allow air to flow through it.", + "A radiator grille is a type of grill that is used to cover and protect a radiator.", + "A radiator grille looks like a series of metal bars that are placed in front of a radiator to protect it and allow air to flow through it.", + "A radiator grille is the grill-like grating that is located in front of a car's radiator.", + "The Corvette radiator grille is a flat, rectangular grille with a Corvette emblem in the center.", + "A radiator grill looks like a series of metal bars that are placed close together.", + "A radiator grille is typically a metal screen that is mounted in front of a radiator to protect it from debris and to improve its airflow.", + "The radiator grille is a metal grille that helps to cool the engine by directing airflow through the radiator.", + "A radiator grille is often made of plastic or metal and has slats that allow air to flow through to the radiator to cool it.", + "A car's radiator grille is typically a rectangular or honeycomb-shaped grille located in front of the radiator.", + "The image is of a radiator grille on a car.", + "The image is of a black radiator grille with a chrome border.", + "The image is of a radiator grille with a black finish.", + "The image is of a black radiator grille with two horizontal bars.", + "The radiator grille in this image is made of metal and has a crosshatched pattern.", + "This image from the internet shows a radiator grille.", + "The image is of a radiator grille on a car.", + "The image is of a car's radiator grille.", + "The image is of a radiator grille with intricate metalwork and a glossy black finish.", + "The image is of a radiator grille that is made out of metal and is attached to the front of a car.", + "The grille on a radiator helps to protect the engine from debris and keeps the engine cool by allowing air to flow through.", + "This is the radiator grille of a car.", + "A view of the radiator grille on a car.", + "The radiator grille of a 1923 Ford Model T touring car.", + "Fiat Radiator Grille.", + "A radiator grille is a grill used to cool a car's engine by allowing air to flow through it.", + "The radiator grille on a car is designed to protect the engine from damage while allowing air to flow through to keep the engine cool.", + "A radiator grille is a grill that helps to cool the engine by allowing air to flow through it.", + "Radiator grille of a Bentley Bentayga.", + "This is a radiator grille." + ], + "grocery store": [ + "A grocery store typically has shelves of food lining the walls, with aisles in the middle of the store leading to the different sections.", + "A grocery store is a food retailer that typically sells meat, produce, and packaged food.", + "A grocery store typically has aisles with shelves on either side.", + "The grocery store is a large, rectangular building.", + "A grocery store typically contains aisles with shelves on either side where food items are stocked.", + "A grocery store typically has aisles with shelves stocked with food items, as well as a meat and produce section.", + "A grocery store typically contains aisles of shelves stocked with food items, as well as a deli, meat, and produce section.", + "A grocery store is usually a large, rectangular building with a parking lot in front.", + "A grocery store is typically a large, rectangular building with a parking lot in front.", + "The front of a grocery store typically has large windows and doors.", + "The exterior of a grocery store may have a large sign that says \"Grocery Store\" or a sign with the store's name, logo, and a list of the types of products they sell.", + "Grocery stores are typically large and have a lot of shelves with food on them.", + "The generally accepted identifying characteristics of a grocery store are that it is a retail establishment that sells food and household supplies.", + "There are many ways to identify a grocery store.", + "The biggest giveaway for identifying a grocery store is usually the name.", + "A grocery store is a type of retail store that sells food and household products.", + "A grocery store can be identified by looking for a building that has a large number of people coming and going, and that has a sign that says \"grocery store\" or something similar.", + "The most common way to identify a grocery store is by its sign.", + "There are many ways to identify a grocery store.", + "A grocery store is typically a large retailer that offers a wide variety of food items and household supplies.", + "A grocery store typically has shelves of food lining the walls, with aisles in the middle.", + "A grocery store typically has shelves of food along the walls and aisles in the middle.", + "The outside of a grocery store is typically a rectangular building with a glass front.", + "Your local grocery store likely has aisles of packaged food, a meat and seafood counter, a produce section, a deli, a Dairy section, and a bakery.", + "grocery store looks like a place where you can buy food.", + "A grocery store can have many different looks, but typically they are large stores with many aisles of food, household items, and personal care products.", + "What do you mean by \"look like\"?.", + "A grocery store is a store that sells food.", + "A grocery store typically includes aisles for meat, produce, dairy, baked goods, and canned goods, as well as a pharmacy and/or bank.", + "A grocery store may have brightly lit shelves with aisles for customers to walk down,- fresh produce, meat, dairy, and baked goods sections, check-out counters, and a customer service desk.", + "In this image, we see a grocery store that is well-stocked with food and other items.", + "An image from the internet of a grocery store may show customers shopping for food items, such as produce, meat, and dairy products.", + "A grocery store is a place where people can purchase food and other necessities.", + "In this image, we can see shelves full of food and other grocery items inside of a store.", + "In this image, we can see a grocery store with shelves full of food.", + "The image from the internet of a grocery store is a store that is brightly lit with shelves of food.", + "This image is of a grocery store with bright fluorescent lights.", + "This image from the internet shows a grocery store with produce at the front, followed by aisles of packaged food, and then a section for meat and dairy in the back.", + "The image is of a grocery store that is brightly lit with white walls and shelves.", + "The image is of a grocery store with shelves full of food.", + " A grocery store in the United States.", + "Grocery store in Los Angeles, California.", + "This grocery store is in the heart of the city, making it convenient for busy urbanites.", + "A grocery store that has been forced to close due to the pandemic.", + " A grocery store is a retail store that specializes in selling food.", + " A grocery store with various food items available for purchase.", + "A grocery store is a retail establishment that sells food.", + "Kroger, an American grocery store chain.", + "A grocery store full of people stocking up on supplies in preparation for a hurricane.", + "A man is buying groceries in a store." + ], + "guillotine": [ + "A guillotine is a device that is used for executions by beheading.", + "A guillotine is a device used for carrying out executions by decapitation.", + "A guillotine is a large, heavy blade on a frame that slides up and down.", + "A guillotine is a machine used for executions by decapitation.", + "A guillotine is a large, sharp blade that is mounted on a frame and used to execute people by decapitation.", + "A guillotine consists of a tall upright frame in which a weighted and angled blade is raised to the top and suspended.", + "A guillotine looks like a large frame with a heavy blade suspended by a rope or chain.", + "A guillotine is a device that is used to execute people by decapitation.", + "A guillotine consists of a tall upright frame in which a weighted and angled blade is suspended.", + "A guillotine is a large, heavy blade that is mounted on a frame and lowered with a rope or lever.", + "A guillotine is a large blade that is mounted on a frame and used to execute people by decapitation.", + "A guillotine has a large heavy blade that is raised to the top of a frame and lowered to decapitate a person who is placed underneath it.", + "One way to identify a guillotine is by its distinct blade, which is often triangular or V-shaped.", + "A guillotine is a large, heavy blade that is mounted on a frame and used to execute people by decapitation.", + "It has a large blade that sits on top of a frame and drops down to decapitate the person underneath it.", + "A guillotine is a machine with a large, sharp blade that is used to execute people.", + "A guillotine is a device that is used for cutting paper or for executing people.", + "A guillotine is a device that is used to execute people by decapitation.", + "A guillotine is a device used for cutting off a person's head.", + "A guillotine is a machine that is used to cut off people's heads.", + "A guillotine consists of a heavy blade that is suspended at the top of a frame by a rope or cord.", + "A guillotine is a device used for cutting off heads.", + "A guillotine is a machine that consists of a large frame in which a heavy blade is mounted.", + "A guillotine is a device that is used to decapitate a person.", + "A guillotine is a device used for executions by decapitation.", + "A guillotine is a large, sharp blade on a frame that is used to execute people by decapitation.", + "A guillotine is a device for cutting off a person's head.", + "A guillotine is a device used for beheading.", + "A guillotine is a device used for carrying out executions by decapitation.", + "A guillotine is a mechanical device used to decapitate a person.", + "A guillotine is a tall frame in which a heavy blade is suspended.", + "An image from the internet of a guillotine may depict a large, menacing-looking device with a sharp blade dangling above a wooden platform.", + "The image is of a large, old-fashioned guillotine.", + "An image of a guillotine from the internet is a picture of a large machine with a very sharp blade.", + "The image is of a large gray guillotine with a long blade.", + "The image depicts a guillotine with a wood frame and a metal blade.", + "The image is of a guillotine with a blade that is raised high above a person's neck.", + "The image is of a metal guillotine with a wooden block attached to the bottom.", + "One image that comes up when searching for \"guillotine\" on Google Images is of a large, metal guillotine with a large, sharp blade.", + "This image is of a traditional guillotine.", + "Guillotine, instrument for executing criminals by decapitation, introduced in France in 1792.", + "The guillotine was a widely used method of execution in France during the 18th and 19th centuries.", + "A guillotine is a device used for carrying out executions by decapitation.", + "A guillotine being used during the French Revolution.", + "The French invented the guillotine as a more humane way of execution than previous methods, which often resulted in a very slow and painful death.", + "A guillotine is a device used for carrying out executions by decapitation.", + "France, 1789.", + "A guillotine being used in France during the Revolution.", + "A guillotine being used during the French Revolution.", + "execute justice swiftly." + ], + "hair clip": [ + "A hair clip is a small metal or plastic device that is used to hold hair in place.", + "A hair clip is a small clamp that is used to hold hair in place.", + "A hair clip is a small device used to hold hair in place.", + "A hair clip is a small, usually metal device used to fasten hair.", + "A hair clip typically consists of a metal or plastic frame with a spring-loaded mechanism that opens and closes the jaws of the clip.", + "A hair clip is a small device that is used to hold hair in place.", + "A hair clip is a small, metal device with two parallel jaws that open and close.", + "A hair clip is a small device that is used to hold hair in place.", + "A hair clip looks like a small metal or plastic device used to hold hair in place.", + "A hair clip is usually a small, metal, claw-like device with a hinge that opens and closes.", + "A hair clip is a small metal or plastic device used to hold hair in place.", + "The metal teeth on a hair clip are usually serrated or have small ridges.", + "A hair clip can be identified by its curved shape and by the small teeth on one side that help to grip the hair.", + "A hair clip is a small device that is used to hold hair in place.", + "A hair clip can be identified by its small size and U-shaped spring.", + "You can identify a hair clip by its small size and its shape, which is typically either a U or a V.", + "A hair clip is a small device used to hold hair in place.", + "A hair clip is a small device that is used to clip hair together.", + "A hair clip is a small metal or plastic device that is used to fasten hair in place.", + "A hair clip is a device used to hold hair in place.", + "A hair clip is a small device that is used to hold hair in place.", + "A hair clip typically has two parts: a metal or plastic frame and a piece of fabric that covers the frame.", + "A hair clip is a small metal or plastic device used to hold hair in place.", + "A hair clip looks like a small clip that can be used to hold hair in place.", + "A hair clip is a small device used to hold hair in place.", + "A hair clip is a small metal or plastic device that is used to hold hair in place.", + "A hair clip is a metal or plastic device that is used to hold hair in place.", + "A hair clip is a small device used to hold hair in place.", + "A hair clip can look like a lot of different things.", + "A hair clip is a small metal or plastic device used to hold hair in place.", + "An image of a hair clip from the internet is a small, metal clip with a rounded top and a pointed bottom.", + "The image is of a hair clip in the shape of a bow.", + "I found an image of a hair clip on the internet that is made out of a metal material.", + "A hair clip is a small, thin piece of metal with a plastic or rubber coating that is used to hold hair in place.", + "This image is of a silver hair clip in the shape of a butterfly.", + "This is an image of a hair clip from the internet.", + "The image is of a silver hair clip with a flower design.", + "The image is of a hair clip that is silver in color with a intricate design.", + "The image is of a hair clip with a black and white checkered pattern.", + "The image is of a hair clip in the shape of a bow.", + "Hair clip with pink flowersThis hair clip is simple and elegant, with a touch of femininity from the pink flowers.", + "Hair clip with rhinestones.", + "This hair clip is made with a metal alloy that is lead and nickel free.", + " A pink hair clip with a bow on itThis hair clip is perfect for adding a touch of girly charm to any look!.", + " A pink hair clip with a white bowThis hair clip is perfect for adding a touch of femininity to any outfit.", + "This hair clip is perfect for keeping your hair out of your face while you work.", + "This hair clip is perfect for adding a touch of glamour to any hairstyle!.", + " A silver hair clip in the shape of a flowerThis hair clip is a beautiful and elegant way to keep your hair out of your face.", + "A hair clip with a delicate flower design.", + "A woman in a white shirt holding a hair clip." + ], + "hair spray": [ + "Hair spray is usually a aerosol can with a pump attached to the top.", + "A can of hair spray has a nozzle on top that releases a fine mist.", + "A hair spray is a product that is sprayed onto hair to help style it and keep it in place.", + "Aerogel.", + "A hair spray can is generally round or oval in shape and has a nozzle on the top that can be pressed to release the hair spray.", + "Aerosol hairspray is packaged in a can and typically has a pump or button actuator.", + "A hair spray is an aerosol can that is filled with a clear, alcohol-based liquid.", + "A hair spray is a dispenser that contains a aerosol can of aerosol hair spray.", + "A typical can of hair spray releases a fine mist that is dispersed evenly over the hair.", + "A hair spray is typically an aerosol can with a nozzle attached to the top.", + "A hair spray typically has a strong, chemically smell.", + "\nThe best way to identify hair spray is by the characteristic smell.", + "Hair spray is a product that is used to hold hair in place.", + "A hair spray can generally be identified by its canister, which is often shaped like an aerosol can.", + "Hair spray has a strong, fruity smell.", + "When you spray hair spray, it leaves a mist in the air.", + "A hair spray can be identified by its aerosol canister and nozzle.", + "A hair spray is a type of cosmetic product that is used to keep hair in place.", + "A hair spray is typically identified by its aerosistence, which is much thicker than that of hair gel, mousse, or pomade.", + "Hair spray is a aerosol product that is used to keep hair in place.", + "A hair spray is a product that is sprayed onto hair to give it extra hold or shine.", + "A hair spray generally comes in an aerosol can and has a nozzle attachment.", + "A hair spray can is typically silver or white, and about the same size and shape as a can of soup.", + "A hair spray typically comes in an aerosol can and is applied to hair to keep it in place.", + "A hair spray is typically a aerosol can with a pump mechanism that releases a fine mist of hair product.", + "A can of aerosol hair spray.", + "A hair spray is typically a clear, aerosolized liquid in an aerosol can.", + "A hair spray can is usually white or off-white, and has a pump-action top.", + "A hair spray can come in many different sizes, but most contain a clear or colored liquid in an aerosol can.", + "A hair spray looks like a can of aerosol with a nozzle attached to the top.", + "The image is of a white aerosol can with a green label.", + "An image of a hair spray can with a light blue label and a white nozzle.", + "A can of hairspray with a nozzle pointed at a strand of hair.", + " productIn the image, there is a can of hairspray held up in front of a mirror.", + " bottleThis image shows a hair spray bottle next to a can of hairspray.", + "A can of hair spray with a yellow and green label.", + "The image from the internet of a hair spray is of a can of hair spray with a woman's hand holding it.", + "This image from the internet is of a can of hairspray.", + " bottleThe image from the internet is of a white and silver hair spray bottle.", + "The image is of a can of hair spray.", + "Super Hold Hair Spray.", + "Keep your style in place all day with this hair spray.", + "Hair spray is a vital tool in the hair styling arsenal.", + "Hair spray is a product that is used to hold hair in place.", + "This is a can of hairspray.", + "Spray on hair for a sleek and shiny look.", + "\nHairspray is a common cosmetic product that is used to style hair.", + "Hair spray is a great way to keep your hair in place, but it can also be used to create unique hairstyles.", + "Amber's Hair Taming FormulaAmber's Hair Taming Formula is a special blend of natural oils and extracts that help control frizz and add shine.", + "Hair spray is a type of aerosol hair product that is sprayed onto hair to keep it styled." + ], + "half-track": [ + "A half-track looks like a cross between a car and a tank.", + "A half-track looks like a vehicle that has been outfitted with large metal tracks in the place of traditional wheels.", + "A half-track looks like a vehicle with wheels in the front and tracks in the back.", + "A half-track is a military vehicle that has regular wheels at the front and tracks at the back.", + "A half-track looks like a regular car, except that it has a set of tracks instead of wheels in the back.", + "A half-track is a vehicle with four or more wheels that is propelled by a gas or diesel engine, with the front wheels being steerable, and the back wheels being driven by a track.", + "A half-track is a vehicle with leading wheels or a skid for steering, and tracks at the back.", + "A half-track looks like a regular track vehicle, but with only two wheels on the front axle and two large wheels on a single axle in the back.", + "A half-track is a vehicle with wheels at the front and tracks at the back.", + "A half-track is a motor vehicle with four or more wheels that is designed to be used both on and off road.", + "A half-track has four large wheels in the front and a set of smaller wheels or tracks in the back.", + "A half-track is a vehicle with four wheels that is propelled by two tracks.", + "From the front, a half-track looks like a regular truck with a large plow attached.", + "A half-track has four large, off-road tires on the back and two regular tires on the front.", + "The term \"half-track\" refers to a vehicle that has both wheels and tracks.", + "One way to identify a half-track is by its wheels.", + "A half-track vehicle has four wheels, with the two rear wheels being power-driven.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with four or more wheels that is propelled by an internal combustion engine and has both a rigid frame and some means of steering.", + "A half-track is a vehicle with tracks on the back wheels and wheels on the front.", + "A half-track is a vehicle with wheels at the front and tracks at the back.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with wheels at the front and tracks at the back.", + "A half-track is a vehicle with both tractor and trailer units.", + "A half-track is a military vehicle with wheels at the front and tracks at the back.", + "A half-track is a vehicle with large wheels in the front for steering, and tracks in the back for propulsion.", + "A half-track is a vehicle with either two or four wheels at the front and tracks at the back.", + "A half-track is a vehicle with four or more wheels that is driven by a conventional engine and has wheels on the front and tracks on the back.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with both wheels and tracks.", + " carA half-track car is a vehicle with four wheels that is driven by a two-wheel drivetrain.", + "A half-track is a vehicle with four wheels on the ground and two or moretracks on the back.", + "An image of a half-track from the internet shows a vehicle that is half car and half tank.", + "A half-track is a type of vehicle with both wheels and tracks.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with both wheels and tracks.", + "A half-track is a vehicle with both wheels and tracks.", + "An image of a half-track from the internet would show a vehicle that is part car and parttank.", + "US Army Half-track in WWII.", + "Two American soldiers sit atop a half-track in France during World War II.", + "A U.", + "US Army soldiers of the 6th Armored Division in their M3 half-track during the Battle of the Bulge, December 1944.", + "A half-track vehicle in World War II.", + " American soldiers in a half-track on the streets of Paris during the liberation of the city in 1944.", + "A half-track military vehicle from the World War II era.", + "\nAn M3 half-track of the 2nd Armored Division passes through a small French village during World War II.", + " Soldiers of the Wehrmacht on a half-track during the invasion of Poland in 1939.", + "A half-track is a vehicle with both wheels and tracks." + ], + "hammer": [ + "A hammer is a tool that has a heavy head attached to a handle.", + "A hammer is a handheld tool that consists of a handle attached to a heavy head, usually made of metal.", + "A typical hammer consists of a metal head and a wooden handle.", + "A hammer is a tool that has a heavy head at one end and a handle at the other.", + "Most hammers have a handle and a head.", + "Most hammers have a heavy head and a long, thin handle.", + "A hammer is a hand tool that consists of a handle attached to a head, usually made of metal, with a flat or slightly curved surface.", + "A hammer is a tool with a heavy head and a long handle.", + "A hammer is a tool with a heavy head and a long handle.", + "A hammer is a tool that has a heavy head attached to a handle.", + "A hammer is a tool that has a heavy head at one end and a handle at the other.", + "A hammer typically has a wooden or metal handle, and a metal head.", + "Nearly all hammers are generally triangular in cross-section, and the head and handle are usually made of metal.", + "The head of a hammer is typically metal and flat, and the handle is typically made of wood or metal.", + "A hammer can be identified by its long handle and heavy head.", + "A hammer can be identified by its long handle and heavy head.", + "It has a handle and a head.", + "If you see something that is long and thin with a flat head, and a protrusion on the back end that is used for striking, then you have found a hammer.", + "The head of a hammer is typically metal, and the handle is typically made of wood.", + "The head of a hammer is typically metal and has a flat surface.", + "A hammer looks like a construction tool with a long handle and a heavy head.", + "A hammer is typically a handheld tool with a heavy, blunt head on one end, and a handle on the other.", + "A hammer looks like a heavy metal object with a long handle.", + "Most hammers have a metal head and a wooden handle.", + "A hammer is a tool that has a handle and a head.", + "A hammer is a hand tool that consists of a handle attached to a head.", + "A hammer is a tool that has a metal head and a wooden or metal handle.", + "A hammer is a tool with a heavy head and a handle.", + "A hammer looks like a tool that has a handle and a head.", + "A hammer is a hand tool that has a handle and a head.", + "This image is of a yellow hammer on a blue background.", + "The image is of a brown hammer on a white background.", + "This image is of a hammer.", + "An image from the internet of a hammer can show a tool with a handle and a head, which is usually made of metal.", + "The image is of a black and silver hammer on a white background.", + "This image from the internet shows a hammer.", + "The image is of a black and silver hammer on a white background.", + "The image is a of a hammer on a white background.", + "The image is of a black and silver hammer on a white background.", + "This image is of a black and silver hammer.", + "This is a standard claw hammer.", + "A hammer is a tool used for striking nails, breaking glass, and other purposes.", + "A hammer is a type of tool that is used to hit nails.", + "This is a hammer.", + "This hammer is really great for pounding nails!.", + "A hammer is a tool that is used to pounding nails or driving them into or out of something.", + "A hammer is a tool used for striking nails, breaking glass, and many other purposes.", + "This is a hammer.", + "A hammer is a tool that is used to pound nails into wood.", + "This is a hammer." + ], + "hamper": [ + "A hamper usually refers to a wicker basket that is used for picnics or for storing laundry.", + "A hamper is typically a large basket or container used for laundry or otherstorage.", + "A hamper is a lidded basket, often made of woven materials such as wicker, that is used for storing and transporting items.", + "A hamper is a large basket that is used to hold laundry or other items.", + "A hamper is a large basket with a lid.", + "A hamper usually looks like a big basket, and it is often used to hold laundry.", + "A hamper is a basket that is used to hold dirty laundry.", + "A hamper is typically a large basket or container, often lined with a cloth, that is used for storing or transporting items.", + "A hamper is a large, often rectangular basket, typically with a lid, used for storing laundry or other items.", + "A hamper is a type of basket that is used for storage.", + "A hamper can often be identified by its contents.", + "Most hampers have a lid and are tall and skinny.", + "A hamper can be identified by its large size and round shape.", + "A hamper is a large, usually round or oval, basket with a handle.", + "A hamper is typically a large wicker basket that is used to store laundry or other household items.", + "A hamper can be identified by its large size and the fact that it is usually made of wicker or other natural materials.", + "A hamper can be identified by its large size and flat bottom, which allows it to stand upright.", + "The most common way to identify a hamper is by its size and shape.", + "Most hampers are large baskets that can be used for laundry or storage.", + "A hamper is usually a large basket that is used for storing or transporting items.", + "A hamper is a large, often rectangular basket.", + "A hamper is a type of basket that is used for storing items.", + "Hamper is a noun meaning a large basket, usually with a lid, for laundry or other items.", + "A hamper is a type of basket that is often used for laundry or Picnics.", + "A hamper looks like a wicker basket with a lid.", + "There is no definitive answer to this question as the term \"hamper\" can refer to a wide variety of storage baskets or containers, many of which vary in size, shape, and appearance.", + "A hamper is a large basket, typically made of wicker, that is used for storing or transporting items.", + "A hamper is a basket, usually with a lid, that is used for storing laundry or food.", + "A hamper is a large basket that is used for storing and carrying things.", + "A hamper typically looks like a laundry basket, but can be any type of container used to store items.", + " with laundryA hamper with laundry is an image of a container, typically made of woven materials, with a lid or opening, used for holding dirty clothes or linens.", + "The image is of a wicker hamper filled with various items of clothing.", + "A hamper is a basket, usually lined with a cloth, that is used to store laundry or other items.", + "In the image, there is a hamper overflowing with clothes.", + "This image from the internet is of a hamper.", + "A hamper is a basket, usually with a handle, that is used for laundry or storage.", + "It's a rectangular wicker basket filled with laundry.", + "The image is of a wicker hamper filled with laundry.", + "The image is of a large, wicker hamper.", + "This image is of a hamper full of different kinds of cheese.", + "A holiday hamper filled with festive treats and goodies.", + "'I Can't Even' HamperA hamper full of self-care items for when you just can't even anymore.", + "A hamper filled with clothes and other items.", + "Fresh produce from our local farmers market, just in time for Easter!.", + " A wicker hamper filled with laundryA caption of an image of aN abandoned building: An abandoned building in Detroit, Michigan.", + "The best things in life are free, but the second best are hamper full of goodies.", + "\"We're all in this together\" hamper filled with food and supplies for those in need.", + "A holiday hamper full of festive treats!.", + "A hamper filled with fresh-baked goods, including a basket of muffins, a few loaves of bread, and some cookies.", + "A hamper full of fresh laundry." + ], + "hair dryer": [ + "A hair dryer is a household appliance that is used to blow hot air through wet hair to expedite the drying process.", + "A hair dryer is a small appliance that has a handle, a nozzle, and a cord.", + "A hair dryer is a handheld device with a long cord that plugs into an outlet.", + "A hair dryer generally has a long, cylindrical shape and is made of plastic.", + "A hair dryer is a small, hand-held appliance with a handle, a nozzle, and a cord.", + "A hair dryer has a long, cylindrical body with a nozzle on one end.", + "A hair dryer is a handheld device that has a cylindrical body with a handle.", + "A hair dryer is often white or pale pink, and it has a long, cylindrical shape.", + "A hair dryer looks like a small appliance with a handle and a long, cylindrical nozzle attached to a flexible hose.", + "A hair dryer looks like a handheld device with a nozzle attached to one end.", + "A hair dryer is a small household appliance that is used to blow dry hair.", + "A hair dryer is a small household appliance that is used to blow dry hair.", + "A hair dryer is a small household appliance that is used to blow dry hair.", + "A hair dryer is a small household appliance that is used to blow air onto wet hair to speed up the hair drying process.", + "A hair dryer has a long, cylindrical shape and a narrow nozzle at one end.", + "A hair dryer can typically be identified by its long tube-like shape and the small grille at the end through which air is blown.", + "A hair dryer is a small household appliance that can be used to dry and style hair.", + "A hair dryer is most commonly identified by its long, cylindrical shape and the nozzle attachment at one end.", + "The appliance has a long, narrow body with a handle at one end.", + "A hair dryer is a household appliance that is used to blow air onto wet hair in order to speed up the process of drying the hair.", + "A hair dryer looks like a small, handheld device with a nozzle on one end.", + "A hair dryer is a small, handheld appliance that has a nozzle on one end.", + "A hair dryer usually has a long, cylindrical shape and a nozzle on one end.", + "A hair dryer looks like a small, hand-held appliance with a nozzle on one end.", + "A hair dryer looks like a handheld device with a long nozzle.", + "A typical hair dryer is a hand-held device with a cylindrical body.", + "A hair dryer typically has a cylindrical shape, and it has a nozzle attached to one end.", + "A hair dryer is a small appliance that has a cylindrical body with a handle attached to one end.", + "A hair dryer looks like a handheld appliance with a nozzle attached.", + "A hair dryer may vary slightly in appearance depending on the model, but generally, it is a handheld device with a nozzle attached to one end.", + "The image is of a hair dryer lying on a white surface.", + "The image is of a black hair dryer with a ceramic nozzle.", + "This image is of a hair dryer on a white background.", + "The image is of a silver hair dryer.", + "This image is of a white and pink hair dryer.", + "This image depicts a yellow hair dryer with a long nozzle.", + "The image from the internet is of a hair dryer.", + "The image is of a woman with long, dark hair standing in front of a mirror, blow drying her hair.", + "The image is of a black and silver hair dryer.", + "This image is of a hair dryer.", + "Dry your hair anywhere with this portable hair dryer.", + "hair dryer on white background.", + "This is a hair dryer.", + " A woman holding a hair dryer up to her hair\n.", + "A hair dryer is a small appliance that uses hot air to dry and style hair.", + "A hair dryer is a small household appliance that is used to dry and style hair.", + "A woman is using a hair dryer to dry her hair.", + " A yellow hair dryer plugged into a wall outlet.", + "A hair dryer helps to quickly dry and style your hair.", + "A woman is using a hair dryer." + ], + "hand-held computer": [ + "A hand-held computer is a small, portable computer that can be held in the palm of the hand.", + "A hand-held computer is a small, portable computer that is designed to be held in the hand.", + "A hand-held computer is a portable device that allows the user to access information and perform tasks while on the go.", + "A hand-held computer can look like a smartphone, a tablet, or a PDA.", + "A hand-held computer is a small, portable computer that can be held in the hand.", + "A hand-held computer is a wearable computer that is designed to be worn on the body.", + "A hand-held computer typically looks like a small, portable device that can be easily carried and used without a desk or other surface.", + "A hand-held computer typically has a small screen, a keyboard, and a touchpad or trackball.", + "A hand-held computer typically looks like a smartphone, with a touchscreen display and a rectangular shape.", + "Most hand-held computers look like a cross between a cell phone and a Palm Pilot.", + "It is a computer that is designed to be held in the user's hands.", + "The most common hand-held computer is the smartphone.", + "A hand-held computer is a small computer that can be held in the hand.", + "A hand-held computer is any type of very small computer that can be held in the hand.", + "A hand-held computer is a portable computer that is small enough to be held in the hand.", + "A hand-held computer is typically a small, portable device that can be operated with one hand.", + "A hand-held computer is a small device that can be held in the hand.", + "Handheld computers are usually small and can be operated with one hand.", + "A hand-held computer is a small computer that can be held in the hand.", + "By its size, a hand-held computer is much smaller than a desktop computer.", + "A hand-held computer typically looks like a smartphone.", + "Most hand-held computers look like a small version of a laptop computer, with a keyboard and a small screen.", + "Handheld computers can come in a variety of shapes and sizes, but they typically look like a cross between a phone and a small tablet.", + "A hand-held computer looks like a smaller version of a laptop computer.", + "A hand-held computer typically looks like a cell phone or PDA.", + "A hand-held computer is a small, portable computer that can be held in the hand.", + "A hand-held computer typically has a small screen and a keyboard.", + "A handheld computer generally looks like a small, portable screen with a keyboard attached.", + "A hand-held computer usually looks like a small, portable device that can be held in the hand.", + "A hand-held computer can look like a cell phone, a music player, or a small tablet.", + "A hand-held computer is a portable device that typically contains a screen, a keyboard, and a trackpad.", + "The image is of a white hand-held computer with a black screen.", + "The image is of a white hand holding a black hand-held computer.", + "This image is of a black hand-held computer with a bright white screen.", + "The website cnet.", + "The image is of a small, rectangular device with a black screen.", + "The image is of a woman holding a small, rectangular device in her hand.", + "The image is of a black hand-held computer with a silver border.", + "A hand-held computer is a mobile device that is small enough to be held in the hand.", + "This image is of a hand-held computer called the Nintendo Switch.", + "A hand-held computer is a device that allows you to access information and perform tasks while you are on the go.", + "The new Palm Pre Plus is the latest in a line of hand-held computers that are becoming increasingly popular.", + "A hand-held computer can be used for many things, including playing games, sending email, and surfing the Internet.", + "A person holds a hand-held computer.", + "A hand-held computer with a stylus.", + " A person holds a small computer in their hand.", + "A hand-held computer is a mobile device that allows you to access the internet and perform other tasks on the go.", + "A hand-held computer or personal digital assistant (PDA) is a small, hand-held device that is capable of storing and retrieving data.", + "This is a hand-held computer, which is a type of portable computer.", + "A hand-held computer, also known as a personal digital assistant (PDA), is a device that combines the features of a cellphone and a computer." + ], + "handkerchief": [ + "A handkerchief is a small piece of cloth that is used to wipe away sweat or tears.", + "A handkerchief is a piece of cloth that is used to wipe away sweat or tears.", + "A handkerchief is a small, rectangular piece of fabric that can be used for a variety of purposes, including wiping the face, blowing the nose, and providing a small amount of protection from the sun.", + "A handkerchief is a small square of cloth that is used for blowing one's nose or wiping one's face.", + "A handkerchief is a small piece of cloth that is used to wipe away tears, sweat, or mucus.", + "A handkerchief is a small piece of cloth, usually square, that is used for wiping the face or nose.", + "A handkerchief is typically a small piece of square cloth, usually white, that can be carried in a pocket.", + "A handkerchief is a small piece of cloth used to wipe away sweat or tears.", + "A handkerchief is a piece of rectangular fabric with finished edges, often used for wiping one's nose or face.", + "A handkerchief is a small piece of cloth that is used to wipe away sweat or tears.", + "A handkerchief is a small piece of cloth that is used for wiping the nose and face.", + "A handkerchief is often made of a soft material like cotton or linen.", + "answersA handkerchief is a small, triangular piece of cloth that is used for wiping the nose and/or face.", + "A handkerchief is a small piece of cloth that can be carried in a pocket.", + "Handkerchiefs are small squares of fabric, often folded into a triangle, that are used for blowing noses, wiping away tears, and other purposes.", + "A handkerchief can typically be identified by its size and shape.", + "A handkerchief is a small piece of cloth that is used to wipe away sweat or tears.", + "The three most common ways to identify a handkerchief are by its size, shape, and fabric.", + "A handkerchief can typically be identified by its size, shape, and fabric.", + "A handkerchief is a small piece of cloth that is used for wiping the face or nose.", + "A handkerchief is generally a small, square piece of fabric.", + "A handkerchief typically looks like a small, square piece of fabric.", + "A handkerchief is a small piece of cloth that is typically square or rectangular in shape.", + "Traditionally, a handkerchief is a square piece of fabric, usually white, that is used to wipe away tears or snot.", + "A handkerchief may look like a small, square piece of cloth with a hemmed edge, or it may be a larger, rectangle-shaped piece of cloth with fringed edges.", + "A handkerchief looks like a triangle of fabric with with rounded edges.", + "A handkerchief is a small, typically square piece of fabric, used for wiping one's nose or face, or for blowing it into.", + "A handkerchief is a small piece of cloth that is used to wipe away moisture or to blow one's nose.", + "A handkerchief is a small piece of square cloth that is used for a variety of purposes, including blowing one's nose, wiping one's face, or waving as a sign of victory or greeting.", + "A handkerchief is typically a white or light-colored square of cloth.", + "In the image, a white handkerchief is laid out on a blue background.", + "I couldn't find an image of a handkerchief from the internet that I could describe, so I found an image of a bandana instead.", + "A white handkerchief with a blue border.", + "This image is of a white handkerchief with a blueBorder.", + "The image shows a handkerchief with a blue and white checkered pattern.", + "The image is of a crisp white handkerchief with a green shamrock in the center.", + "The image shows a plain white handkerchief with a folded corner.", + "This image is of a white handkerchief with a blue cross in the center.", + "This image from the internet shows a white handkerchief with a blue and white checked border.", + "A colored handkerchief with a paisley design.", + "A close-up of an old, white handkerchief.", + " A man's handkerchief, folded into a triangle.", + "A handkerchief with a sprig of holly on it, ready for Christmas.", + "A handkerchief stained with blood.", + " A black and white striped handkerchief.", + " A handkerchief to clean up your mess.", + "A handkerchief with a floral design.", + "My great-grandmother's handkerchief.", + "A white handkerchief with a blue trim.", + "A handkerchief is a small piece of cloth that can be used for various purposes, such as wiping away sweat or tears, blowing one's nose, or creating a makeshift bandage." + ], + "hard disk drive": [ + "A hard disk drive looks like a large metal platter with a raised center hub.", + "A hard disk drive is a small, metal box that contains a spinning disk and a read/write head.", + "A hard disk drive is a large, flat piece of metal with a shiny, reflective surface.", + "A hard disk drive (HDD) is a data storage device used for storing and retrieving digital information.", + "A hard disk drive looks like a metal or plastic box with a lot of wires coming out of it.", + "A hard disk drive looks like a spinning metal disc inside a protective casing.", + "A hard disk drive looks like a large, rectangular metal box.", + "A hard disk drive looks like a spinning metal platter with a read/write head on an arm that moves across the platter as it spins.", + "A hard disk drive looks like a large, metal platter with a spinning cylindrical base.", + "A hard disk drive looks like a metal platter with a hole in the center and a magnetic coating.", + "A hard disk drive can be identified by its size, shape, and connection type.", + "A hard disk drive can be identified by its rectangular shape and the numerous wires coming out of its casing.", + "Most hard disk drives have a serial number printed on them.", + " Hard disk drives are identified by their capacity, speed, and interface.", + "A hard disk drive is a storage device that uses spinning disks to store data.", + "A hard disk drive can be identified by its physical size and shape, as well as the type of connector it uses.", + "You can identify a hard disk drive by its spinning platters and read/write head.", + "A hard disk drive looks similar to a floppy disk drive, but is usually much larger.", + "A hard disk drive can be identified by its physical size, typically 3.", + "The basic hardware of a hard disk drive can be identified by its turntable platter to which data is written and read, a spindle motor on which the platters rotate, and read-and-write head arm assembly that access.", + "A hard disk drive typically looks like a large metal plate with a data cable coming out of one end.", + "Most hard disk drives resemble a large silver and black rectangle.", + "A hard disk drive looks like a small, silver rectangle with a data cable attached to one end.", + "The disk platters in a hard disk drive are spinning at high speeds, so you cannot see them.", + "A hard disk drive looks like a spinning platter with a read/write head on an arm that extends over it.", + "A typical hard disk drive has a spinning disk (or platter) inside of a sealed case.", + "A hard disk drive looks like a spinning metal platter with a read/write head on an arm that hovers above the platter.", + "A hard disk drive looks like a ceramic platter with a metal case.", + "A hard disk drive looks like a large, silver metal rectangle.", + "A hard disk drive looks like a metal plate with a hole in the center.", + "The image is of a white hard disk drive on a blue background.", + "The image is of a black hard disk drive with a silver band around the edge.", + "This image is of a hard disk drive.", + "This image shows a modern hard disk drive, with its casing removed to reveal the internal components.", + "The image is of a hard disk drive with a silver casing and a green circuit board.", + "This image is of a hard disk drive.", + "A hard disk drive is a device used to store and retrieve data.", + "This image is of a hard disk drive.", + "The image is of a rectangular silver object with many small circles on the top and bottom.", + "This image is of a hard disk drive.", + "This is a hard disk drive.", + "This is a Hard Disk Drive.", + "A hard disk drive (HDD), or simply hard drive, is a non-volatile computer storage device that stores digitally encoded data on rapidly rotating platters with magnetic surfaces.", + "This is a hard disk drive.", + "This is a hard disk drive.", + "This is an image of a hard disk drive.", + "A hard disk drive (HDD) is a data storage device that uses spinning disks to store data.", + "image: a close-up of the face of a hard disk drive\n caption: Seagate Barracuda 7200.", + "A hard disk drive (HDD) is a data storage device that uses magnetic storage to store and retrieve digital information.", + "This is a hard disk drive." + ], + "harmonica": [ + "A harmonica is a small, rectangular musical instrument with a metal reed plate attached to one end.", + "A harmonica is a small, rectangular musical instrument with a metal casing and a series of metal reeds of different lengths.", + "A harmonica is a small, rectangular musical instrument with a thin metal casing and metal reeds of different lengths that produce different tones when the instrument is played.", + "A harmonica is a small, rectangular musical instrument with a series of metal plates attached to a metal reed.", + "A harmonica is a small, hand-held musical instrument with a row of metal reeds of different lengths, which the player blows into.", + "A harmonica is a small, rectangular instrument with a metal casing and a row of holes on the top.", + "A harmonica is a small, rectangular musical instrument with a metal casing and a wooden base.", + "A harmonica is typically a small, rectangular-shaped instrument with a metal casing and a hole in the center.", + "A harmonica is a small, rectangular musical instrument with a metal plate on one end and a series of holes on the other.", + "A harmonica is a small, rectangular musical instrument with a series of holes of different sizes.", + "The harmonica is a small, rectangular musical instrument with a row of holes on one side and metal reeds on the other.", + "Harmonicas are small, portable instruments that consist of a row of holes that are covered by metal reeds.", + "Harmonicas generally have a metal casing and metal reeds.", + "Harmonicas are often small, rectangular instruments with metal reeds.", + "Harmonicas are small, handheld instruments with a row of metal reeds on one side and a hole for blowing into on the other.", + "A harmonica is a musical instrument that is played by blowing air into it or drawing air out of it, causing reeds to vibrate.", + "The easiest way to identify a harmonica is by its shape.", + "There are several ways to identify a harmonica.", + "Patiently.", + "Harmonicas are small, handheld instruments containing rows of metal reeds.", + "A harmonica looks like a small rectangular box with a series of metal reeds attached to it.", + "A harmonica is a musical instrument that has a rectangular shape with a series of holes along one side.", + "A harmonica is a small, rectangular musical instrument with a series of holes along one side and metal reeds attached to a metal cover.", + "A standard harmonica is a rectangular, metal-encased instrument with a hole in the middle.", + "A harmonica is a wind instrument that consists of a rectangular wooden box with a series of holes in the top.", + "A harmonica is a small, rectangular musical instrument with a series of holes along one side.", + "A harmonica is a small rectangular musical instrument with a series of holes along one side.", + "A harmonica is a small, rectangular musical instrument with a series of metal reeds of different lengths that are played by blowing into the instrument or drawing air out of it.", + "A harmonica is a small, rectangular, free-reed musical instrument that is played by holding the instrument in your hands and blowing into the holes.", + "A harmonica is a handheld musical instrument with a row of holes of different sizes.", + "An image of a man playing a harmonica on a street corner.", + "A harmonica is a small, rectangular musical instrument with a series of metal reeds of different lengths.", + "The image is of a blue harmonica lying on a white surface.", + "This image is of a blue harmonica on a light background.", + "The image is of a blue harmonica on a blue background.", + "In this image, we see a close-up of a harmonica against a white background.", + "The image is of a blue harmonica on a white background.", + "In this image, a harmonica lays on a black background.", + "In the image, a person is playing a harmonica in front of a microphone.", + "A color photograph of a harmonica on a black background.", + "Harmonica.", + "This is a harmonica, a musical instrument that is played by blowing into the holes.", + "Harmonica.", + "Harmonica player busking on a sidewalk.", + " A boy is playing a harmonica.", + "Man playing harmonica.", + "Harmonica playerThis image shows a person playing a harmonica.", + "A harmonica is a small, portable musical instrument that is played by blowing into one end and pressing down on the buttons with the other hand.", + "Harmonica -- one of the earliest and most popular musical instruments in the world.", + "A person playing a harmonica." + ], + "harp": [ + "A harp is a musical instrument that has a horizontal frame and strings of different lengths that you pluck with your fingers.", + "A harp is a vertical, stringed musical instrument that has a triangular frame.", + "A harp is a large string instrument that has a triangular frame and a long neck.", + "A harp looks like a mechanical device with a body and strings that are manipulated to create sound.", + "A harp resembles a triangular wooden frame with strings of varying lengths running vertically from the frame.", + "A harp is a string instrument that has a beautiful wooden frame and base.", + "The majority of harps have a triangular frame.", + "A harp looks like a large, horizontal stringed instrument with a triangular frame.", + "A harp is a large, typically triangular stringed instrument with a horizontal soundboard that has 47 or more strings.", + "A harp is a string instrument that typically has over 47 strings, and is played by plucking the strings with the fingers.", + "The harp is a stringed instrument which is played by plucking the strings with the fingers.", + "The harp can be identified by its unique shape.", + "A harp can be identified by the triangular shape of its body and by the large number of strings it has.", + "A harp has a large, triangular frame and many strings that are played with the hands.", + "A harp is typically a large, triangular instrument with strings of varying lengths that are played by plucking with the fingers.", + "A harp is a musical instrument that has a triangular frame and a row of strings.", + "The harp is a stringed instrument that has a triangular frame.", + "A harp can be identified by its unique shape.", + "Harp strings are horizontal, and the player sits with the instrument on their lap.", + "A harp typically has 47 strings, and is played with the fingers.", + "A harp is a large, vertical instrument with strings of graduated lengths.", + "Traditional harps vary in shape and size, but they all have a similar look.", + "A typical harp has a range of about five octaves and looks like a large triangular prism.", + "A harp has a long neck and a rectangular body.", + "The harp is a stringed instrument that has a triangular frame.", + "A harp typically has 47 strings and 7 pedals, and is about six feet tall.", + "A harp is a tall, vertical, stringed instrument that has a triangular frame.", + "A harp does not have a specific shape, but it is typically an instrument with a long vertical body and a triangular base.", + "The most common type of harp played today has a perpendicular frame with a straight column at one end and a curved arm at the other.", + "A harp typically has a triangular shape and stands about two meters high.", + "A harp is a stringed musical instrument that has a triangular frame and a graduated series of strings.", + "The image is of a harp on a stage with a spotlight shining on it.", + "The harp in the image is a traditional Celtic harp with a curved body and ornate carvings.", + "The image is of a small, wooden harp.", + "The image is of a harp that is gold in color with white strings.", + "This image shows a harp lying on a bed of green grass.", + "The image is of a harp that is a clear blue color with white strings.", + "This image is of a harp that is in a very ornate room.", + "The image is of a woman playing a harp.", + "This image is of a traditional Celtic harp.", + "A harp is a musical instrument that has a frame of curved ribs supporting a vaulted soundboard; the strings, which are horizontal and parallel to the soundboard, are plucked with the fingers.", + "Small harp on a stand, with its longest strings running vertically.", + "A harp is a musical instrument that has a frame with strings stretched across it.", + "A harp is a musical instrument in which the strings are plucked with the fingers.", + "This is a harp.", + " A woman is playing a harp.", + "A harp is a stringed musical instrument of great antiquity, having a triangular frame consisting of a soundboard, a resonator, and a pillar.", + "The harp is a stringed instrument that has been played for centuries.", + "A harp is a beautiful and serene instrument that has been used for centuries to create beautiful music.", + "An average harp has about 47 strings, and can range from 36 to 97 strings." + ], + "combine harvester": [ + "A combine harvester is a machine that cuts and threshes crops.", + "A combine harvester is a large machine that is used to harvest crops such as wheat and corn.", + "A combine harvester is a machine that is used to harvest crops such as wheat and barley.", + "A combine harvester looks like a large machine with a long conveyor belt coming out of the top.", + "Most combine harvesters have a large, round front end that resembles a wheelbarrow.", + "A combine harvester is a large agricultural machine with a cutter bar that is used to cut down crops, such as wheat, corn, and soybeans.", + "A combine harvester is a large machine that is used to harvest crops like wheat.", + "A combine harvester typically consists of a large, rotating blade in the front of the machine that cuts the plants, a threshing drum in the middle of the machine that separates the grain from the plant, and a series of belts.", + "A combine harvester is a large machine that is used to harvest crops such as wheat and corn.", + "A combine harvester typically includes a forage harvester and a grain harvester.", + "A combine harvester has a large cylindrical threshing drum in the front, and a smaller concave drum in the back.", + "A combine harvester is a moveable machine that is used to harvest and store grain crops.", + "The best way to identify a combine harvester is by its large size and distinctive shape.", + "A combine harvester is a piece of farm equipment that is used to harvest and thresh crops.", + "A combine harvester is a large agricultural machine that is used to harvest grains such as wheat, barley, and oats.", + "A combine harvester is a large farm machine that is used to harvest grain crops.", + "A combine harvester can be identified by its large size, its tractor-like wheels, and its long, horizontal cutting blade.", + "A combine harvester typically has a large, horizontal cutting blade in the front of the machine and a series of threshing and separating drums in the back.", + "There are a few ways you can identify a combine harvester.", + "The combine harvester can be identified by its large size, as well as the fact that it has a large rotor in the front that is used to cut the crops.", + "A combine harvester typically combines three crops into one machine - these are wheat, oats and barley.", + "A combine harvester typically has a large, round front end that houses the cutting blades, which are used to cut the crop.", + "A combine harvester is a large agricultural machine that is used to harvest grain crops.", + "A combine harvester is a large agricultural machine that is used to harvest crops.", + "A combine harvester is a large piece of machinery that is used to harvest grain.", + "A combine harvester typically consists of a header, feeder, thresher, and a straw walker.", + "A combine harvester typically consists of a feeder, a threshing system, and a separator.", + "Option A:Option B:.", + "A combine harvester has a large, rectangular body with a rotating blade attached to the front.", + "A combine harvester is a large, combines harvesters are usually red, green, or yellow.", + "A combine harvester is a large piece of agricultural machinery used for harvesting grain crops.", + "The image might show the combine harvester cutting through a field of tall wheat with the grain spilling into the hopper.", + "A combine harvester is a large farm machine that is used to cut and collect crops.", + "The image from the internet is of a large yellow and green combine harvester.", + "The image must include a combine harvester.", + "A combine harvester is a large farm machine that is used to harvest grain crops.", + "A combine harvester is a large farm machine that is used to harvest grain.", + "The image is of a large yellow machine with a large rotating blade in the front.", + "The image is of a large yellow combine harvester.", + "A combine harvester is a machine that is used to harvest crops.", + " Combine harvester in a field of wheat.", + " A combine harvester in a wheat field.", + "A combine harvester in a field of wheat.", + "A combine harvester on a farm in the Midwest.", + "\"This is a picture of a combine harvester.", + "A combine harvester in a field of wheat.", + "A combine harvester in a field of wheat.", + "A combine harvester in a field of wheat.", + "A combine harvester harvesting grain.", + "A combine harvester in a field of wheat." + ], + "hatchet": [ + "A hatchet is a tool with a curved blade attached to a handle.", + "A hatchet is a small, hand-held ax.", + "A hatchet has a sharp, pointed blade on one side, and a blunt, rounded edge on the other side.", + "A hatchet has a long, sharp blade attached to a wooden handle.", + "A hatchet is a small, single-handed ax used for chopping wood.", + "A hatchet is a small, lightweight axe.", + "A hatchet is a small, single-handed axe.", + "A hatchet typically has a hammerhead on one side and a blade on the other.", + "A hatchet is a small, single-handed ax used for chopping.", + "A hatchet has a long, metal handle that is used for chopping.", + "A hatchet is a small ax with a short handle.", + "A hatchet is a small, single-handed ax used for chopping wood.", + "The hatchet has a curved blade and a short handle.", + "The hatchet has a single-bit head, meaning that one side is sharpened while the other side is blunt.", + "A hatchet is a small hand tool that is used for chopping.", + "A hatchet is a small, single-handed ax used for chopping wood.", + "A hatchet has a short, rounded head with a sharp edge on one side, and a wooden or metal handle.", + "A hatchet is a small ax that is used for chopping wood.", + "A hatchet is a small, single-handed ax used as a tool.", + "A hatchet usually has a sharp blade on one side and a blunt edge on the other side.", + "A hatchet is a small, typically hand-held, ax used for chopping wood or other materials.", + "A hatchet is a small, handheld axe.", + "A hatchet is a small, single-handed axe with a short handle.", + "A hatchet is a small axe with a short, curved handle.", + "A hatchet typically has a long handle and a head with a sharp blade on one side and a blunt edge on the other.", + "A hatchet is a tool that is used for chopping.", + "A hatchet is a small, handheld ax.", + "A hatchet is a small hand axe.", + "A hatchet has a long, thin handle and a small, sharp head.", + "A hatchet looks like a small, light-weight axe.", + "In the image, a hatchet is lying on a bed of leaves with its blade pointing up.", + "The image from the internet is of a brown hatchet with a long, thin blade.", + "The image is of a hatchet with a wooden handle and a metal head.", + "The image is of a hatchet with a metal blade and a wooden handle.", + "The image is of a hatchet with a metal blade and a wooden handle.", + "The image is of a hatchet with a wooden handle and a metal head.", + "In the image, a hatchet is suspended in midair above a chopping block.", + "The image is of a metal hatchet with a wooden handle.", + "The image from the internet is of a hatchet with a long, sharp blade and a wooden handle.", + "One image from the internet of a hatchet is of a bloody hatchet on the ground with a handle sticking up.", + "Closeup of a hatchet head with a sharp metal blade, set against a light background.", + "An old-fashioned hatchet.", + "An axe or hatchet is a tool consisting of a weighted head and a handle, used for striking.", + "Hand axe from Grotte du Renne, Ch\u00e2telperronian, approximately 41-38 thousand years old.", + "A hatchet is a small, handheld axe that is used for chopping wood or splitting logs.", + "In this photo, a man is holding a hatchet.", + "A hatchet is a tool that can be used for chopping wood or slicing through thick vegetation.", + "A hatchet is a tool that is used for chopping wood.", + "A hatchet lays on a cutting board next to a knife.", + "This is a hatchet." + ], + "holster": [ + "A holster is a device worn by gun owners that holds the gun and allows easy access to it.", + "A holster is a type of container worn on the body, usually in a position where it will not interfere with the user's primary means of carrying or using the item it holds.", + "A holster is a device used to hold or restrict the movement of a handgun, most commonly used to ground guns when they are not being used.", + "A holster typically consists of a strip of leather or fabric that loop around the waist, with a pouch attached to hold the gun.", + "A holster is a type of container worn on the body, usually in a horizontal position, in which a firearm may be stored and readily retrieved.", + "A holster is aDevice worn outside the body,often attached to a belt,into which a handgun is placed to allow carrying and concealment.", + "A holster is a case or sheath, often made of leather or plastic, in which a handgun may be stored and carried.", + "A holster is a type of sheath designed to protect and carry a firearm.", + "A holster is a type of sheath designed to hold a handgun.", + "A holster is a device that is used to hold a firearm.", + "A holster can usually be identified by its shape and the type of closure it has.", + "Holsters are usually made of leather or nylon and have a strap or belt loop to attach it to the body.", + "There are a few ways to identify a holster.", + "There are many types of holsters, but most have a few things in common.", + "A holster is typically made of leather or nylon and is worn on the hip or inside the waistband.", + "A holster can often be identified by its elongated shape and by the fact that it is typically worn on the hip or thigh.", + "The most common way to identify a holster is by the type of firearm it is designed to carry.", + "There are many ways to identify a holster.", + "A holster can be identified by its shape and size.", + "There are many ways to identify a holster.", + "A holster is a type of garment that is worn to hold or carry a gun.", + "A holster is a case or sheath for carrying a handgun.", + "A holster is a type of sheath that is worn on the body and typically used to hold a firearm.", + "A holster is a small, flat, pouch-like case used to hold a handgun.", + "A holster is a device that holds a handgun in a position where it can be easily grabbed and used.", + "A holster is a type of belt that is worn around the waist.", + "A holster typically looks like a small pouch that is attached to a belt or another piece of clothing.", + "A holster for a handgun is a device used to hold or restrict the undesired movement of the weapon.", + "There are many types of holsters, but they all typically consist of a strap or case that is attached to the body in some way and holds a firearm.", + "There is no single answer to this question as holsters come in many different shapes and sizes.", + "An image of a holster from the internet shows a black leather holster with a silver gun inside.", + "This is an image of a black leather holster for a handgun.", + "An image of a gun holster can be found easily by searching 'gun holster' on Google Images.", + "This image is of a black leather holster for a handgun.", + "An image of a holster from the internet is a picture of a black leather holster with a silver gun in it.", + "A black leather holster for a handgun, with the gun in place.", + "The image is of a black leather holster with a metal clip.", + "This image is of a black leather holster with a silver gun inside.", + "An image of a holster from the internet shows a black leather holster with a silver metal buckle.", + "In the image, there is a black holster with a silver gun inside.", + " A black leather holster for a medium-sized handgun.", + "\nThis is a holster for a handgun.", + "A holster for a gun.", + "A black leather holster for a handgun.", + " A black leather holster for a handgun.", + "Police Holster with Gun.", + "This is a photograph of a Glock 26 Gen4 handgun in a black plastic retention holster.", + "This is a holster for a 9mm handgun.", + "A black leather holster for a 9mm handgun.", + "The holster is made of black leather and has a silver metal buckle." + ], + "home theater": [ + "A home theater is a room in a house that is designed to look and feel like a movie theater.", + "A home theater is typically a large room with comfortable seating, a projector or large television, and a sound system.", + "A home theater looks like a normal living room with a television, but it also has a sound system and comfortable chairs.", + "A home theater typically features a large screen, surround sound speakers, and comfortable seating.", + "A home theater looks like a regular theater, but it is located in someone's home.", + "A home theater typically has a large television or projector screen, comfortable seating, and surround sound speakers.", + "A home theater usually consists of a big screen TV, a surround sound system, and comfortable seating.", + "A home theater usually has a big screen television, a sound system, and comfortable seating.", + "A home theater looks like a miniature movie theater.", + "A home theater is a room in a house with comfortable chairs and a big screen television.", + "Some features that may help identify a home theater are:a television or projector screena surround sound systema Blu-Ray or DVD playera gaming console.", + "A home theater is a room that is designed to give the viewer a movie theater-like experience.", + "A home theater typically has a large screen and surround sound.", + "There are a few ways to identify a home theater.", + "A home theater is typically a room in a home that is dedicated to providing a cinematic experience, usually with a large screen and surround sound.", + "The easiest way to identify a home theater is by the presence of a large television or projector screen.", + "One way to identify a home theater is by looking for a TV that is much larger than a standard television.", + "A home theater is usually a room in a house or apartment that is used to watch movies or play video games.", + "A home theater is typically a room in a house that has been designed specifically for the purpose of watching movies or playing video games.", + "It can be difficult to identify a home theater because not all houses have them.", + "A home theater room typically has several rows of comfortable reclining chairs or sofas.", + "A home theater might look like a traditional movie theater, with rows of reclining chairs and a large screen at the front of the room.", + "A home theater typically includes a large television or projector screen, surround sound speakers, and comfortable seating.", + "A home theater usually has a large television or projector screen, comfortable chairs, and a sound system.", + "The look of a home theater can vary depending on the space and the budget.", + "A home theater typically includes a large screen television, surround sound speakers, and comfortable seating.", + "A home theater typically consists of a large screen television, surround sound, and comfortable seating.", + "A home theater is typically a separate room in a house with comfortable seating, a large screen, and a powerful sound system.", + "A home theater can look like many things.", + "A home theater typically consists of a television, surround sound system, and comfortable seating.", + "A home theater is a room in a house with a big screen and comfortable chairs for watching movies or TV.", + "This image is of a home theater set up in a living room.", + "A home theater is typically a room in a house designed specifically for the purpose of entertainment.", + "In the image, there is a large television in the center flanked by six smaller speakers.", + "This image is of a home theater located in a basement.", + "The image shows a large room with several comfortable-looking chairs facing a large television screen.", + "This image is of a home theater room with a large projection screen and comfortable chairs for viewing.", + "In the image, there is a large room with comfortable-looking chairs positioned in front of a large television screen.", + "A home theater is a room in a house with comfortable chairs and a large television.", + "This image is of a home theater setup in a living room.", + "Home theater set up in living room.", + "A home theater can be the perfect way to enjoy your favorite movies and shows.", + "A home theater is a room in a house designed to look like a movie theater.", + "This is a home theater.", + "This home theater features a large television and comfortable seats for a cozy movie night.", + "This state-of-the-art home theater was designed for the ultimate in movie viewing pleasure.", + "A home theater system with a large television, comfortable seating, and surround sound.", + "This is my home theater.", + " A home theater system with a projector and screen.", + "With this home theater setup, you'll be able to enjoy your favorite movies and shows like never before!." + ], + "honeycomb": [ + "A honeycomb is a structure made up of hexagonal cells, typically found in bees' nests.", + "A honeycomb looks like a stucture made up of hexagonal cells.", + "A honeycomb is a series of hexagonal cells made by bees out of wax.", + "A honeycomb is a structure made up of hexagonal cells that are used by bees to store honey and pollen.", + "A honeycomb is a frame of hexagonal wax cells used by bees to store honey and eggs.", + "A honeycomb is a wax comb made by bees to store honey and pollen.", + "A honeycomb is a structure made up of hexagonal cells that are used by bees to store honey.", + "A honeycomb is a network of hexagonal cells made by bees out of wax.", + "A honeycomb is a structure composed of hexagonal cells made by bees out of beeswax.", + "A honeycomb is a structure made of interwoven hexagonal cells, created by bees in their nests.", + "A honeycomb can be identified by its shape, which is a series of hexagonal cells.", + "The hexagonal shape of the wax cells in a honeycomb is a good way to identify it.", + "A honeycomb is a mass of hexagonal prismatic wax cells built by honey bees in their nests to contain their larvae and stores of honey and pollen.", + "You can identify a honeycomb by its characteristic hexagonal shape.", + "A honeycomb has six-sided cells that are all connected to each other.", + "The most common way to identify a honeycomb is by its hexagonal shape.", + "A honeycomb can be identified by its hexagonal shape.", + "Honeycomb is a type of natural beeswax which is produced by bees.", + "The most obvious way to identify a honeycomb is by its shape.", + "A honeycomb is a bee's hive that is made out of wax.", + "A honeycomb is a series of hexagonal cells made from wax that are used by bees to store honey and eggs.", + "A honeycomb is a series of hexagonal cells made from beeswax.", + "A honeycomb is a wax structure that bees build to store their honey.", + "A honeycomb is a series of hexagonal cells that are used by bees to store honey and pollen.", + "A honeycomb is a wax structure that bees build to store their honey.", + "A honeycomb is traditionally a hexagonal wax structure built by bees to store their honey.", + "A honeycomb is a Beeswax structure that holds hexagonal cells that bees use to store honey and pollen.", + "A honeycomb is a structure made by bees out of wax.", + "A honeycomb is a structure made up of hexagonal cells that are used by bees to store honey and pollen.", + "A honeycomb is a structure made up of small, hexagonal cells made from beeswax.", + "I found an image of a honeycomb on the internet that shows a close up of a honeycomb with bees crawling on it.", + "The image is of a hexagonal shaped honeycomb with individual cells that are also hexagonal in shape.", + "The image is of a honeycomb with six sides.", + "The image is of a honeycomb with yellow and brown honey dripping down the sides.", + "I found an image on the internet of a honeycomb that looks like a bee hive.", + "A honeycomb is a series of hexagonal cells made by bees out of wax.", + "A honeycomb is a bee's nest made out of wax.", + "The image is of a honeycomb with individual hexagonal cells.", + "The image is of a large honeycomb with dozens of bees crawling on it.", + "A honeycomb is an image of a beehive.", + "The hexagonally shaped cells of a honeycomb.", + "Honeycomb composed of hexagonal cells.", + "The hexagonal cells of a honeycomb are built by bees from wax produced by special glands on their abdomens.", + "Honeycomb structure.", + "Honeycomb, a type of bee bread made from regurgitated nectar and beeswax, is an important part of the diet of bees.", + "A close-up of a honeycomb, with the hexagonal cells of the comb and the honey within them clearly visible.", + "A honeycomb is a wax structure built by bees to store honey and eggs.", + "Honeycombs are the structures that bees use to store their honey.", + "A honeycomb is a structure made by bees out of wax and used to store honey and pollen.", + "HoneycombThis close-up photo of a honeycomb shows the hexagonal cells that bees use to store honey and pollen." + ], + "hook": [ + "A hook is a bent piece of metal with a sharp point at one end and a bar with a hole in it at the other.", + "A hook is a type of fishing lure that is designed to look like a fish, insect, or other type of prey.", + "A hook is a type of fishing tackle.", + "A hook is a tool with a curved, sharp point at one end and a eye or loop at the other, used for catching fish, fastening a rope, etc.", + "A hook is usually a short, attention-grabbing opening that leads into the rest of the paper.", + "A hook is usually a small, sharp piece of metal with a hole in it, used for catching fish.", + ".", + "A hook looks like a small, sharp, curved piece of metal with a hole in the middle of it.", + "A hook is a small piece of metal with a sharp point at one end and a curved hook at the other.", + " in codeThere is no definitive answer to this question as it depends on the programming language being used.", + "There are many ways to identify a hook.", + "The hook of a song is the part that is most memorable, catchy, and interesting.", + "Thesis statements will often contain a \"hook,\" which is a brief statement that helps to catch the reader's attention and gives an overview of the argument.", + "A hook is the part of a song that catches the attention of the listener and makes the song memorable.", + "A hook is a sentence or phrase that catches the reader's attention and makes them want to read more.", + "A hook can be identified by its position at the beginning of a song or piece of music, its purpose of capturing the listener's attention, and its unusual or catchy melody.", + "A hook is defined as a musical idea, often a short riff, passage, or phrase, that is used to make a composition interesting or distinctive.", + "A hook is typically a sentence or phrase that catches a reader's attention and inspires them to keep reading.", + "A hook is a novel opening that is designed to grab the reader's attention.", + "The hook is the most important part of the song, because it is the part that is repeated throughout the song and is usually the part that people remember and sing along to.", + "There is no one answer to this question since hooks can come in many different shapes and sizes.", + "A hook looks like a small curved object that can fit on the end of a fishing line.", + "A hook is a bent piece of wire that is used to catch fish.", + "A hook can take many different forms, but they all have one thing in common: they grab the reader's attention and don't let go.", + "A hook is a copper or plastic device that is inserted into the mouth of a fish and secures it to a line.", + "A hook looks like a bent piece of wire.", + "A hook is a curved or angled piece of metal or other hard material, used for catching, holding, or pulling.", + "A hook can take many different forms, but often it is a single sentence that \"hooks\" the reader by piquing their interest or offering a surprising fact.", + "A hook is typically a short, attention-grabbing sentence that is meant to draw the reader in and make them want to continue reading.", + "A hook looks like a bent piece of metal with a sharp point at the end.", + "The image is of a fishing hook.", + "A hook is a type of fastener, typically made of metal, used to catch and hold onto objects.", + "An image of a hook from the internet is a metal or plastic device with a sharp point or barbed end, used for catching fish, fastening something to a surface, or lifting something.", + "An image of a hook from the internet is of a metal hook with a curved end.", + "A hook is a wire or metal device with a curved end, for catching fish.", + "The image is of a fishing hook.", + "The image is of a hook on a door.", + "The image is of a silverfish-looking creature with a long, thin body and antennas.", + "A hook is a metal curves object that is used for catching fish.", + "A hook is a type of fastener, typically made of metal, used to catch and hold onto something.", + "The hook is baited with a minnow.", + "A metal hook with a small hole near the top.", + "This is a hook.", + "A hook suspended from a fishing line.", + "A blacksmith holds a hot iron on the anvil as he shapes it with a hammer.", + " It's just a hook.", + "This is a picture of a metal hooks.", + "This is a hook.", + "This is a hook.", + " A metal hook on a wallThis metal hook is perfect for hanging coats, scarves, or any other type of clothing!." + ], + "hoop skirt": [ + "A hoop skirt is a type of women's undergarment worn in the 19th and early 20th centuries to support the voluminous skirts of the period.", + "A hoop skirt is a circular skirt supported by a frame of metal or whalebone hoops.", + "A hoop skirt is a skirt with a large frame made of steel or whalebone that is worn underneath.", + "A hoop skirt is a large, circular skirt that is supported by hoops or petticoats.", + "A hoop skirt is a skirt that is supported by hoops.", + "A hoop skirt is a type of skirt that is supported by hoops or other materials.", + "A hoop skirt is a skirt that is supported by a hoop or a series of hoops.", + "A hoop skirt is a skirt with a large frame that is worn under the skirt to make it stiff and hold its shape.", + "A hoop skirt is a sleeve-less garment that is worn below the waist.", + "A hoop skirt is a type of garment that is worn by women.", + "A hoop skirt is usually made of a light-weight fabric and has several hoops attached to the underskirt.", + "A hoop skirt is a skirt that has a hoop or hoops under it to make it stand out.", + "The easiest way to identify a hoop skirt is by its large, circular shape.", + "A hoop skirt is a large circular skirt supported by hoops or petticoats that is often worn as part of a formal outfit.", + "A hoop skirt is a garment that is worn by women to create the illusion of a large, full skirt.", + "A hoop skirt is a skirt that is supported by hoops or petticoats.", + "The hoop skirt is a women's undergarment worn in the mid-19th century to hold out a woman's skirt.", + "A hoop skirt usually has a lot of fabric and is very full.", + "A hoop skirt is a round, cylindrical frame that women would wear under their skirts to create a large, bell-shaped silhouette.", + "The easiest way to identify a hoop skirt is by its large, circular silhouette.", + "A hoop skirt is a type of women's undergarment that was popular during the Victorian era.", + "A hoop skirt is a skirt that is supported by hoops or wires, so that it stands out from the body.", + "A hoop skirt is a type of skirt with a metal or plastic hoop in the hem.", + "A hoop skirt is a skirt with a frame of hoops that keep it from touching the ground.", + "A hoop skirt is a skirt with a metal hoop or hoops inside the fabric.", + "There are many different types of hoop skirts, but they all share a few common features.", + "A hoop skirt is a type of clothing that was popular during the Victorian era.", + "A hoop skirt is typically a wide skirt that is supported by a hoop or a series of hoops.", + "A hoop skirt is a large circular skirt that is held out by a metal or plastic hoop.", + "A hoop skirt looks like a skirt with a hoop or petticoat underneath to give it a full, round shape.", + "The image is of a Victorian-style hoop skirt.", + "The image is of a woman in a long, billowing skirt with a hoop around her waist.", + "A hoop skirt is a type of skirt with a circular frame to hold it out from the body.", + "This image is of a woman in a hoop skirt.", + "A hoop skirt is a type of clothing that was popular in the 1800s.", + "A hoop skirt is a type of clothing worn in the 19th century.", + "The image is of a light pink hoop skirt with ruffles.", + "This image is of a woman in a hoop skirt.", + "A hoop skirt consists of a large, circular frame worn under a skirt.", + "A hoop skirt is a type of garment that is worn by women.", + "The hoop skirt was a popular garment in the 19th century.", + "A woman's striped hoop skirt from the mid 1800s.", + " A hoop skirt is a type of undergarment worn by women during the Victorian era to support their dresses.", + "The hoop skirt was a popular women's fashion item in the 19th century.", + "A hoop skirt is a type of clothing worn in the 19th century that consisted of a metal or wooden frame that was worn around the waist.", + "A young woman in a hoop skirt stands in a field of tall grass.", + "A hoop skirt is an article of clothing worn by women in the 19th century.", + "A woman in a hoop skirt stands on a hill, surrounded by other women in similar clothing.", + "A close-up of a hoop skirt from the mid-1800s.", + "A young Victorian woman wearing a hoop skirt." + ], + "gymnastic horizontal bar": [ + "A gymnastic horizontal bar is a piece of gym equipment that is horizontal and has bars on it.", + "A gymnastic horizontal bar is a metal or fiberglass bar that is supported by two uprights and is used by gymnasts in their routines.", + "A gymnastic horizontal bar is a metal or wood bar that is suspended above the ground.", + "A horizontal bar in gymnastics is a metal or wood bar that is supported by two vertical uprights.", + "A gymnastics horizontal bar generally consists of a metal bar that is thick enough to grip easily and has two uprights on either end to support it.", + "A gymnastic horizontal bar is a piece of equipment used by gymnasts during their routines.", + "A gymnastic horizontal bar is a long, thin bar that is elevated above the ground.", + "A gymnastic horizontal bar is abar made of metal or wood that is horizontal and slightly higher than waist level.", + "A horizontal bar is a piece of gym equipment that is roughly six feet long and is suspended about three feet off the ground.", + "A horizontal bar is a thick metal bar that is approximately six feet in length and suspended several feet above the ground.", + "A gymnastic horizontal bar is a bar that is horizontal and is used for gymnastics.", + "It is a steel bar that is approximately 6 feet above the ground.", + "A gymnastic horizontal bar is a piece of gymnastic equipment that is used by gymnasts to perform various exercises and routines.", + "It is a metal bar that is horizontal and is used in gymnastics.", + "A Gymnastic horizontal bar is a bar that is horizontal and is used for gymnastics.", + "Typically, a gymnastic horizontal bar is a metal bar that is set up at a certain height off the ground.", + "A gymnastic horizontal bar is a piece of gymnastic equipment that is used by gymnasts during their routines.", + "The horizontal bar is a piece of gymnastic equipment used by both men and women.", + " A gymnastic horizontal bar is a piece of gymnastic equipment that consists of a long metal bar suspended from a frame.", + "A gymnastic horizontal bar is a bar that is horizontal.", + "A gymnastics horizontal bar looks like a metal or wood bar that is horizontal and slightly elevated off the ground.", + "A gymnastic horizontal bar is a long, thin bar that is held up by two supports.", + "A gymnastic horizontal bar typically has a gray or white powder-coated finish and is made of steel.", + "A gymnastic horizontal bar looks like a long, thin bar that is suspended in the air.", + "A gymnastic horizontal bar consists of a metal or wooden bar that is suspended horizontally by two uprights.", + "It is a horizontal bar made of metal or wood that is supported by two uprights.", + "A horizontal bar in gymnastics is a bar that is approximately parallel to the ground.", + "A horizontal bar used in gymnastics is a metal bar that is approximately 6 feet long and is supported by two uprights.", + "The horizontal bar is an apparatus used in men's artistic gymnastics.", + "A gymnastic horizontal bar looks like a metal or wooden bar that is horizontal and parallel to the ground.", + "The image is of a gymnast performing on a horizontal bar.", + "In the image, a gymnast is performing on a horizontal bar.", + "In the image, a gymnast is performing a skill on the horizontal bar.", + "In the image, a gymnast is performing a routine on the horizontal bar.", + "The image is of a gymnast performing on a horizontal bar.", + "This image is of a gymnast performing on the horizontal bar.", + "Image shows a gymnast performing a routine on the horizontal bar.", + "In the image, a gymnast is performing a routine on the horizontal bar.", + "An acrobatic gymnast is shown in mid-air, performing a twisting back flip.", + "The image is of a girl doing a gymnastics routine on the horizontal bar.", + "A gymnast competes on the horizontal bar at the 2020 Summer Olympics.", + "Gymnast performing a routine on the horizontal bar.", + "The gymnast is performing a release move on the horizontal bar.", + "A gymnast performs a routine on the horizontal bar.", + "Gymnast on horizontal bar.", + "Daria Klishina of Russia competes in the Women's Long Jump Final during the IAAF World Championships in Moscow, Russia.", + " \"A gymnast performs a simple routine on the horizontal bar.", + "A gymnast in midair, performing a release move on the horizontal bar.", + "A gymnast performs on the horizontal bar.", + "Two gymnasts compete on the horizontal bar." + ], + "horse-drawn vehicle": [ + "A horse-drawn vehicle typically consists of a horse or team of horses harnessed to a carriage, buggy, or other type of cart.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse or a team of horses.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse or a team of horses.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse or a team of horses.", + "A horse-drawn vehicle has a harness that attaches the horse to the vehicle.", + "A horse-drawn vehicle is pulled by a horse and has either two or four wheels.", + "Horse-drawn vehicles were replaced by horseless carriages in the early 20th century.", + "A horse-drawn vehicle typically consists of a horse harnessed to a carriage, buggy, or cart.", + "A horse-drawn vehicle is typically a carriage or a cart that is pulled by a horse.", + "A horse-drawn vehicle looks like a cart or carriage that is pulled by a horse.", + "Some ways you can identify a horse-drawn vehicle are by its size, shape, and the type of wheels it has.", + "Looking at the horse's harness is one way to identify a horse-drawn vehicle.", + "By looking at the horse's harness.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse or a team of horses.", + "A horse-drawn vehicle is typically pulled by a horse or a team of horses.", + "Often, a horse-drawn vehicle can be identified by its use of horseshoes and metal fittings.", + "Typical characteristics of a horse-drawn vehicle are that it is pulled by one or more horses and has four wheels.", + "Horse-drawn vehicles are usually pulled by a horse or a donkey.", + "Horse-drawn vehicles are pulled by horses.", + "A horse-drawn vehicle will have a place for the horse to be attached, typically in the form of a shaft.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse.", + "A horse-drawn vehicle typically has two large wheels, a seat for the driver, and a place to put the horse.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse.", + "A horse-drawn vehicle is typically a carriage or wagon that is pulled by a horse or other animal.", + "A horse-drawn vehicle is a vehicle pulled by a horse or horses.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse.", + "A horse-drawn vehicle is a vehicle pulled by a horse or a team of horses.", + "A horse-drawn vehicle is a vehicle that is pulled by a horse.", + "A horse-drawn vehicle looks like a regular vehicle but is instead pulled by a horse.", + "The image is of a horse-drawn vehicle on a rural road.", + "An image from the internet of a horse-drawn vehicle is a vehicle that is pulled by a horse or a team of horses.", + "The image is of a horse-drawn vehicle pulling a load of hay.", + "A horse-drawn vehicle is an image of a horse pulling a cart or carriage.", + "Image: A horse-drawn vehicle pulls a cart down a dirt road.", + "A horse-drawn vehicle is typically pulled by one or more horses.", + "A horse-drawn vehicle is an animal-powered vehicle pulled by one or more horses.", + "A horse-drawn vehicle is a vehicle that is pulled by one or more horses.", + "A horse-drawn vehicle is an image of a horse pulling a carriage or cart.", + "An image from the internet of a horse-drawn vehicle would show a horse or horses pulling a carriage or other vehicle.", + " Two men ride in a horse-drawn vehicle.", + " A horse-drawn vehicle in front of a brick building.", + "A horse-drawn vehicle pulls a cart laden with hay through a field.", + " A horse-drawn vehicle on a dirt road in the countryside.", + " buggy.", + "A horse-drawn vehicle in a field.", + " A horse-drawn vehicle in the snow.", + " A horse-drawn carriage on a cobblestone street in a European city.", + "A horse-drawn vehicle pulls a load of hay through a field.", + "A horse drawn vehicle passes along a snow-covered road." + ], + "hourglass": [ + "A traditional hourglass is a glass container with a narrow neck and two spherical reservoirs.", + "A hourglass is a cup-shaped object with a narrow neck connecting its two equal top and bottom halves.", + "Most hourglasses are shaped like an upright egg timer, with a rounded bulb at the top and a tapering base.", + "A hourglass has a narrow neck that connects two wide bases.", + "A hourglass is a cone-shaped object with a narrow neck connecting two large, round bulbous sections.", + "A hourglass is a small device used to measure time.", + "A hourglass is a device that is used to measure the passage of time.", + "A hourglass is a figure with a wide waist and small breasts, often with a large buttocks.", + "A hourglass has a narrow neck and two globes of equal size.", + "A hourglass is a device that is used to measure the passage of time.", + "An hourglass is a glass container with a small hole in the middle that is used to measure the passage of time.", + "While hourglasses can come in a variety of shapes and sizes, they are generally recognized by their bulbous middle and slim ends.", + "A hourglass is a type of clock that uses sand to measure the passage of time.", + "A hourglass is a device that is used to measure the passage of time.", + "It is typically an hourglass shape with a narrower waist and wide hips.", + "The best way to identify an hourglass is to look for the classic hourglass shape.", + "As an hourglass is traditionally used to time something, it is often shaped like an upside-down pear with a narrow waist.", + "The most common way to identify an hourglass is by its shape.", + "An hourglass is usually an egg timer.", + "An hourglass is identified by its shape, which is that of an \"8\".", + "A hourglass is a thin, glass container with two connected compartments at the top and bottom that are used to measure time.", + "An hourglass is typically shaped like an upside-down U, with a narrow waist in the middle.", + "A hourglass is typically shaped like an upside down U, with a narrow waist in the middle.", + "An hourglass is a device with two chambers connected by a thin neck.", + "An hourglass is a sand timer that is used to measure the passing of time.", + "An hourglass is a cylindrical container with a narrow neck and two open ends.", + "A hourglass is a device that is used to measure the amount of time that has passed.", + "A hourglass is typically shaped like an hourglass, with a narrow middle and two wider ends.", + "A hourglass is an object that is used to measure time.", + "A hourglass is a shape that is widest in the middle and narrowest at the top and bottom.", + "There is an image of an hourglass on the internet that shows the sand running through the middle of the hourglass.", + " An image from the internet of a hourglass would show a glass container with sand inside that is used to measure the passage of time.", + "The image is of an hourglass with sand running through it.", + "In the image, there is a clear hourglass with sand flowing from the top to the bottom.", + "This image from the internet is of an hourglass.", + "An image from the internet of a hourglass shows a glass container with sand pouring from the top to the bottom.", + "The image from the internet of a hourglass is a picture of an hourglass with sand in it.", + "The image is of an hourglass with sand falling through the middle.", + "The image is of a typical hourglass with a narrow neck connecting two bulbous sections.", + "An image from the internet of a hourglass shows a tall, skinny glass with sand inside.", + "Time is running out!.", + "Time runs out.", + "This hourglass shows how much time we have left.", + " Time is running out.", + "Time is running out.", + "Time is running out.", + "The sands of time are running out.", + "The ticking of the clock is a reminder that time is running out.", + " time is running out.", + "An hourglass Situated on a wooden table." + ], + "iPod": [ + "Most iPods look like a small, rectangular device with a touch screen.", + "A black or white rectangle with a small screen and a round home button at the bottom.", + "A iPod is a handheld digital media player that is small and portable.", + "A iPod is a type of portable media player that typically has a graphical user interface, a color display, and a click wheel that is used to navigate through menus.", + "A iPod is a portable digital media player with a touch screen interface.", + "Small, rectangular, portable media player with a touch screen and button controls.", + "A iPod is a small electronic device that is used to play music.", + "A iPod is a small, portable music player that typically has a small screen and a click wheel or touch screen for navigating through music menu options.", + "A iPod is a handheld music player that typically has a bright color screen and a click wheel on the front.", + "Slim and smooth, an iPod touch has a brilliant 4-inch Retina display, a 5-megapixel iSight camera, a FaceTime HD camera, an Apple-designed A5 chip, the latest iOS software, iCloud.", + "Some ways you can identify an iPod are by its size, shape, and color.", + "There are a few ways to identify an iPod.", + "There are several ways to identify an iPod.", + "iPod's can be identified by their sleek white design and their signature apple logo.", + "There are several ways to identify an iPod.", + "There are many ways to identify an iPod.", + "An iPod typically has a white or black front face with a click wheel or multi-touch display, and a silver or black metal back.", + "By looking at the control panel, which has a circular click wheel in the middle and buttons surrounding it.", + "There are several ways to identify an iPod.", + "The iPod has a white back and a either a silver or black front.", + "A iPod is a small, portable music player that can be used to store and play digital music files.", + "The iPod is a portable digital media player designed by Apple.", + "A iPod is a small, portable media player that has a color screen and a hard drive.", + "An iPod looks like a small, rectangular device with a color screen.", + "A iPod is a small hand-held device that is used to play music, videos, and other forms of media.", + "A iPod looks like a small, portable media player with a touch screen.", + "A typical iPod is a small, portable music player that has a color screen and a click wheel on the front.", + "An iPod is a small hand-held music player with a white front and a silver back.", + "iPods come in many shapes and sizes, but they all have a large screen and click wheel on the front, and buttons on the side.", + "A iPod is a portable digital music player.", + "I cannot answer this question.", + "This image is of a person hold a white iPod in their right hand.", + "The image is of a black iPod with a white apple on the back.", + "The image is of a white iPod with a black screen.", + "A white iPod with a colorful screen.", + "The image is of a white iPod on a white background.", + "The image is of a white iPod with a black screen.", + "The image is of a white iPod with a color screen.", + "The image is of a white iPod with a black screen.", + "https://www.", + "iPod Touch 6th GenerationThis is the 6th generation iPod Touch, released in 2015.", + "img src=\"https://www.", + "The new iPod touchWith the new A8 chip, 8 MP iSight camera, and 128 GB of storage, the new iPod touch is the perfect way to stay connected and entertained on the go.", + "The first iPod was released in 2001 and revolutionized the way we listen to music.", + "The new iPod touch with built-in camera and FaceTime HD.", + "This is an iPod.", + "This is an iPod, a portable music player made by Apple.", + "This is an iPod.", + "This is an iPod.", + "iPod nano 7th generation." + ], + "clothes iron": [ + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "The typical clothes iron is a small, hand-held appliance with a flat, triangular-shaped base.", + "A typical clothes iron is a small, handheld device with a smooth, flat metal base that gets hot when plugged into an electrical outlet.", + "A clothes iron is a small household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron is a small, hand-held appliance with a smooth, flat metal bottom that is heated and used to press clothes.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron is a device that is used to press clothes.", + "A clothes iron is a small, hand-held appliance with a smooth, flat metal bottom that is heated and used to press clothes.", + "Iron is a common home appliance.", + "A clothes iron is a small appliance that is used to press clothes and remove wrinkles or creases in the fabric.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron is a small appliance that is used to press clothes.", + "The most identifying feature of a clothes iron is the metal plate on the bottom that is heated and used to press clothes.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "The most basic way to identify a clothes iron is to look for a metal plate with a smooth surface.", + "A clothes iron typically has a smooth, flat base that is heated, and a handle.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "A clothes iron looks like a small, handheld appliance with a smooth, flat metal bottom that gets hot when plugged into an outlet.", + "A clothes iron looks like a flat iron that has a small handle on one side.", + "A clothes iron looks like a flat, rectangular object with a handle on one side and a heating element on the other.", + "A clothes iron is small and handheld with a smooth, flat surface on the bottom.", + "A typical clothes iron is a small, handheld appliance with a flat, metallic bottom that gets hot when plugged into an electrical outlet.", + "A clothes iron usually has a smooth, flat surface that is heated and used to press clothes.", + "A clothes iron looks like a small appliance with a smooth, flat surface that gets hot when plugged into an outlet.", + "A clothes iron is a household appliance that is used for pressing the wrinkles out of clothes.", + "Most clothes irons have a flat bottom and pointed tip.", + "A clothes iron is a level, rectangular piece of metal with a smooth, heating surface on one side and a handle on the other.", + "The image is of a small, handheld clothes iron.", + "A clothes iron is a small appliance that is used to press clothes and remove wrinkles.", + "The image is of a black and silver clothes iron.", + "The clothes iron is a household appliance that is used to press the wrinkles out of clothes.", + "I found an image of a clothes iron on Google.", + "An image of a clothes iron from the internet shows a metal appliance with a smooth, flat surface.", + "The image from the internet is of a clothes iron on a white background.", + "The image is of a clothes iron on a white background.", + "A clothes iron is a small, handheld appliance that is used to press clothes and remove wrinkles or creases in the fabric.", + "This image is of a black and silver clothes iron.", + "Clothes Iron.", + "A close-up of a clothes iron, with the steam coming out of the holes in the soleplate.", + "Ironing your clothes is a great way to get them looking their best.", + "This is a clothes iron.", + "A clothes iron being used to press a shirt.", + " A clothes iron heats up fabric to help remove wrinkles.", + "A close-up of a black clothes iron on a white background.", + "This is a clothes iron.", + "An iron for pressing clothes.", + "A woman is holding a clothes iron in her hand as she looks down at it." + ], + "carved pumpkin": [ + "A carved pumpkin is a pumpkin that has been cut into and had a design carved into it.", + "A carved pumpkin looks like a pumpkin with a face carved into it.", + "A carved pumpkin is a pumpkin that has been cut into a specific shape, usually a face.", + "A carved pumpkin is a pumpkin that has had some or all of its flesh removed so that a designs can be carved into the rind.", + "A carved pumpkin typically has a triangular shape with concave sides.", + "A carved pumpkin is a pumpkin that has been cut into a specific shape, usually with a face or other design, using a knife.", + "A carved pumpkin usually has a face carved into it and may also have other designs.", + "A carved pumpkin usually has a triangular cut-out for the eyes, a smaller oval cut-out for the nose, and a large grin cut out of the mouth.", + "A carved pumpkin is a pumpkin that has had something carved into it.", + "A carved pumpkin typically has a design carved into its surface, often a face.", + "A carved pumpkin is usually easy to identify because it will have a face or other design carved into it.", + "There are a few ways to identify a carved pumpkin.", + "You can identify a carved pumpkin by looking for a face or other design that has been cut into the pumpkin.", + "There are a few ways to identify a carved pumpkin.", + "Some people carve a face into a pumpkin and put a candle inside to make it look like a jack-o'-lantern.", + "You can identify a carved pumpkin by its unique design.", + "The most common way to identify a carved pumpkin is by the presence of a carved face on the front.", + "A carved pumpkin is typically scooped out on the inside, with a design carved into the outside.", + "Look for signs of carving, such as a face or other design, cut into the pumpkin's surface.", + "The simplest way to identify a carved pumpkin is to look for a carved face.", + "A carved pumpkin typically has a face carved into it, which is then illuminated from within by a candle.", + "A carved pumpkin looks like a pumpkin with a carving in it.", + "A carved pumpkin typically has a face carved into it, and may also have designs carved into the body of the pumpkin.", + "A carved pumpkin is a pumpkin that has been cut into a specific design.", + "A carved pumpkin usually has a face carved into the front, with the insides of the pumpkin scooped out.", + "A carved pumpkin looks like a pumpkin that has had a face or other design carved into it.", + "A carved pumpkin looks like a pumpkin that has had a design or pattern carved into it using a sharp knife.", + "A carved pumpkin usually has a face carved into it.", + "A carved pumpkin typically has a face carved into it, and may also have designs carved into the rest of the pumpkin.", + "A carved pumpkin can look like a variety of things.", + "A carved pumpkin is an image of a pumpkin that has been carved into a specific design.", + "This image is of a carved pumpkin that has been turned into a lantern.", + "An image from the internet of a carved pumpkin may show a pumpkin that has been carved into a scary or funny face.", + "The image is of a carved pumpkin that has been sculpted into the shape of a cat.", + "The image shows a carved pumpkin with a face on it.", + "This image is of a carved pumpkin that has been turned into a \"jack-o-lantern\".", + "A carved pumpkin is an image of a pumpkin that has been hollowed out and carved with a design.", + "A carved pumpkin from the internet is likely to be either a traditional jack-o-lantern, or a more creative design.", + "A carved pumpkin is an image of a pumpkin that has been carved into a desired shape.", + "The image is of a carved pumpkin with a face on it.", + "A carved pumpkin with a happy face on it, ready for Halloween.", + "A carved pumpkin with a smiley face.", + "A traditional jack-o'-lantern made from a pumpkin.", + " A carved pumpkin with a spooky face.", + "A carved pumpkin with a face on it.", + "A carving of a pumpkin with a happy face.", + "A carved pumpkin with a face.", + "A carved pumpkin with a happy face.", + "This is a carved pumpkin.", + "A carved pumpkin with a face on it." + ], + "jeans": [ + "A jeans is a type of pants that is typically made out of denim.", + "A jeans is a close-fitting pants made of denim or other sturdy cotton twill fabric, typically with metal rivets at the pockets.", + "A pair of jeans is a form of clothing typically worn by people in casual settings.", + "A pair of jeans is typically a blue denim pant with five pockets.", + "Most jeans are made of denim, a sturdy cotton twill fabric.", + "A jeans is a type of clothing typically made from denim or dungaree cloth.", + "A pair of jeans is typically a cotton twill pant with a zipper and button closure.", + "\nA jeans is a garment typically made from denim, or a similar sturdy cotton fabric.", + "A pair of jeans is a garment typically made from denim fabric, with a zipper fly and front snap closure.", + "A pair of jeans is a type of pants or trousers, typically made from denim or dungaree cloth.", + "There are a few ways to identify a pair of jeans.", + "The most common way to identify a pair of jeans is by their color.", + "A jeans can be identified by the following features:\n* a button fly;\n* a fitted waist;\n* large belt loops;\n* rivets at stress points; and\n* stitching that creates a \"V\" shape at.", + "The most common ways to identify jeans are by their rinse (or wash), their fit, and their style.", + "There are a few ways to identify a pair of jeans.", + "A jeans is a type of pants or trousers, typically made from denim or dungaree cloth.", + "The most common way to identify jeans is by their blue color.", + "There are a few ways to identify jeans.", + "One way to identify a pair of jeans is by the type of closure they have.", + "The most common way to identify a jeans is by its blue color.", + "A jeans looks like a piece of clothing that covers the legs and has a tight fit.", + "A jeans is a clothing item that typically has a blue color.", + "A jeans is a type of clothing typically worn by people.", + "A jeans is typically a blue, denim pant with five pockets.", + "A jeans is a type of clothing typically made from denim or a similar fabric.", + "A pair of jeans looks like a pair of pants made out of denim.", + "Jeans are a type of pants that are usually made from denim.", + "A pair of blue jeans typically consists of a blue-colored denim fabric, with a button fly and five-pocket styling.", + "AJeans typically look like a pair of pants made out of denim fabric.", + "A jeans is a type of pants that is typically made out of denim.", + "The image is of a pair of blue jeans.", + "The image is of a pair of light blue jeans with a frayed hem.", + "The image is of blue jeans with a light blue shirt.", + "In the image, there is a pair of jeans lying on a white surface.", + "A pair of Levi's jeans lying on a wooden table.", + "The image is of a pair of jeans with a ripped knee.", + "This image is of a pair of light blue jeans.", + "This image is of a pair of light wash jeans with rips at the knees.", + "One image from the internet of jeans is of a person wearing light blue jeans with a white and gray shirt.", + "Image shows a pair of light blue jeans with a distressed look.", + " Black skinny jeans with a ripped knee.", + "A pair of light blue jeans with a rip in the knee.", + "One Teaspoon Women's Bandit Low Waist Ankle Skinny Jeans.", + "A pair of light blue jeans with a distressed look.", + "Fashionable denim jeans.", + "Old faded blue jeans.", + "Casual and comfortable, jeans are a wardrobe staple for many people.", + "Two women in ripped jeans and converse sneakers sitting on a stoop.", + "A pair of jeans lying on the floor.", + "One of the most popular articles of clothing, jeans are a staple in most people's wardrobes." + ], + "jeep": [ + "A jeep typically has a boxy body shape with four doors and a removable roof.", + "A jeep usually has four doors and a cargo area.", + "A jeep is typically a four-wheel drive vehicle with a high ground clearance.", + "A jeep is a type of four-wheel drive vehicle typically used for off-road driving.", + "A jeep is a type of four-wheel drive vehicle that is lightweight and has a high ground clearance.", + "A jeep typically has a boxy shape and four wheel drive.", + "\nA jeep typically has four doors and a removable roof.", + "A jeep generally has four doors, although some models have two doors.", + "A jeep is a small, lightweight car with four-wheel drive.", + "A jeep is a four-wheeled vehicle with a cab, typically open, and usually four-wheel drive.", + "One way to identify a jeep is by its grill.", + "One way to identify a jeep is by its grille.", + "A jeep is typically a small, four-wheel drive vehicle with a tall grille and a short hood.", + "One way to identify a jeep is by its grille.", + "A jeep is a type of four-wheel drive vehicle that is designed for off-road driving.", + "One way to identify a jeep is by its appearance.", + "A jeep can generally be identified by its boxy shape and off-road capability.", + "A jeep is a vehicle that is built for off-road driving.", + "Some common ways to identify a jeep are by its seven-slot grille, round headlamps, and circular fender flares.", + "One way to identify a jeep is by its grille.", + "The jeep model has changed over the years, but they typically have a boxy shape with round headlights.", + "A Jeep typically has a boxy body style with four square headlights.", + "A jeep is a small vehicle with a body that sits on a frame with four wheels.", + "A jeep typically has four doors and a spacious interior.", + "A jeep is a type of vehicle that typically has four wheel drive and a high ground clearance.", + "A jeep typically has four doors and four wheel drive.", + "A jeep is a small, off-road vehicle.", + "A jeep looks like a small, off-road vehicle.", + "A jeep looks like a sport utility vehicle that is typically four-wheel drive.", + "A jeep is typically a small four-wheel drive vehicle with a unibody chassis and a boxy body.", + "One image of a jeep from the internet is of a red jeep parked in front of a lake.", + "The image is of a yellow jeep.", + "A Jeep is a four-wheeled vehicle with an open-air body and typically has four seats.", + "A jeep is a type of vehicle that is often used for off-road driving.", + "I found an image of a jeep that is red with a black roof.", + "The jeep is a green 4x4 vehicle with a large spoiler on the back.", + "This image is of a jeep driving through deep water.", + "This image is of a jeep driving through a muddy road.", + "The image is of a jeep parked in front of a house.", + "A jeep is a type of car that is designed for off-road driving.", + "Jeep in front of a mountain.", + "This jeep looks like it's ready for an off-road adventure.", + "A glossy red jeep with a black spare tire cover drives down a dirt road.", + "Image of a jeep driving down a dirt road with trees on either side.", + "A jeep on a road in a desert.", + "A jeep in the snow.", + " A convoy of jeeps travel down a dirt roadU.", + "A jeep on a dirt road in the mountains.", + "A jeep in the desert.", + "Three friends enjoying a road trip in their jeep." + ], + "T-shirt": [ + "A T-shirt is a shirt that covers the upper part of the body and has short sleeves.", + "A T-shirt is a shirt that is typically made of cotton and has short sleeves.", + "Most T-shirts are made of cotton and have short sleeves.", + "A typical T-shirt is a short-sleeved shirt with a round neckline.", + "A T-shirt is a shirt that has short sleeves and a round neckline.", + "A T-shirt is a garment that typically has short sleeves and a crew neckline.", + "A T-shirt is a shirt that covers the upper part of the body and has short sleeves.", + "A T-shirt is a loose fitting shirt with short sleeves.", + "A typical T-shirt is a cotton jersey knit fabric that has a round neckline and short sleeves.", + "Most T-shirts are made of cotton and have short sleeves.", + "A t-shirt is a garment that is typically worn on the upper body.", + "Some ways that you can identify a T-shirt are by its sleeves (short, long, or no sleeves), neckline (crew neck, V-neck, etc.", + "A t-shirt is a shirt that covers the upper part of the body and has short sleeves.", + "Most T-shirts are made of cotton and have short sleeves.", + "By its shape, a T-shirt is typically a tight-fitting garment with short sleeves and a round neckline, however variations exist.", + "A T-shirt is a light, stretchy, often has short sleeves, and covers the torso.", + "There are a few ways to identify a t-shirt.", + "A t-shirt is a shirt with short sleeves and no collar.", + "The simplest way to identify a T-shirt is by its shape.", + "There are a few ways that you can identify a T-shirt.", + "A T-shirt generally has short sleeves and a round neckline, known as a crew neck, which lacks a collar.", + "Most T-shirts are sleeveless, but some have short sleeves.", + "A T-shirt is a close-fitting, typically collarless, shirt with short sleeves.", + "A T-shirt typically has short sleeves and a round neckline, and is usually made of a light fabric such as cotton.", + "A T-shirt is a piece of clothing that is typically worn on the upper body.", + "A T-shirt is a piece of clothing that is typically worn on the upper body.", + "A T-shirt typically has short sleeves and a round neckline, and is usually made from a cotton blend.", + "A T-shirt looks like a shirt that has short sleeves and a crew neck.", + "A T-shirt is a piece of clothing that covers the upper part of the body and has sleeves.", + "A T-shirt typically has short sleeves and a round neckline, known as a crew neck.", + "The image is of a plain white T-shirt.", + "One image from the internet of a T-shirt has a light blue background with a white T-shirt in the center.", + "This image is of a white T-shirt with a large green and yellow logo on the front.", + "The image is of a white T-shirt with a black and white image of a cat on the front.", + "The image from the internet is of a white T-shirt with a black print.", + "The image is of a black T-shirt with a white print of a skull and crossbones.", + "The image is of a white T-shirt with a red rose design in the center.", + "The image is of a white T-shirt with a black and white image of a cat on it.", + "The image is of a black T-shirt with the words \"I'm with stupid\" written in white.", + " with a meme printed on itThe shirt is black with white text that says \"I'm not a feminist, but\" followed by a list of feminist ideals.", + "This T-shirt is perfect for summertime! The 100% cotton material is lightweight and breathable, making it ideal for warm weather.", + " \"Keep calm and carry on\"This T-shirt features the phrase \"Keep calm and carry on\" which is a popular saying that encourages others to remain calm and to persevere in difficult times.", + "Hilarious T-shirt that says \"I'm not short, I'm fun size!\".", + "This is a T-shirt with a picture of a lion on it.", + "This T-shirt is from the clothing company Supreme.", + "This T-shirt is perfect for showing your support for your favorite team!.", + " Black Lives MatterThis shirt is a powerful reminder that Black Lives Matter.", + "This is a rad T-shirt! It's super soft and comfortable, and the design is amazing.", + "T-shirt with black and white stripes and a large pocket on the front.", + "\"Wear this shirt and you'll be instantlyCool!\"." + ], + "jigsaw puzzle": [ + "A jigsaw puzzle is a puzzle in which pieces of a picture are cut into different shapes and then put together.", + "A jigsaw puzzle is a puzzle that is composed of a number of small pieces that fit together to form a larger picture.", + "A jigsaw puzzle is typically a rectangle, with hundreds of small pieces that fit together to create a picture.", + "A jigsaw puzzle looks like a picture that has been cut into many pieces.", + "A jigsaw puzzle is a puzzle that is made up of small, interlocking pieces.", + "A jigsaw puzzle consists of a picture cut into small pieces.", + "Most jigsaw puzzles are square or rectangular and have interlocking pieces that fit together to create a picture.", + "A jigsaw puzzle is a puzzle that is made up of small, interlocking pieces.", + "A jigsaw puzzle is a puzzle that is made up of small, interlocking pieces.", + "A jigsaw puzzle is a puzzle in which players must put together different pieces of a puzzle in order to create a complete image.", + "A jigsaw puzzle is a puzzle that is put together by interlocking pieces of different shapes together so that they fit perfectly into each other.", + "A jigsaw puzzle is a puzzle that is put together by interlocking pieces of different shapes and sizes.", + "There are several ways to identify a jigsaw puzzle.", + "A jigsaw puzzle is a puzzle that is made up of small pieces that fit together to form a larger picture.", + "A jigsaw puzzle has pieces that fit together like a puzzle.", + "The pieces of a jigsaw puzzle are interlocking and each piece has a unique shape.", + "The easiest way to identify a jigsaw puzzle is by the number of pieces it has.", + "A jigsaw puzzle is a puzzle that is made up of small, flat pieces that fit together to create a picture.", + "You can identify a jigsaw puzzle by the fact that it is a puzzle that is put together by fitting pieces together.", + "A jigsaw puzzle can usually be identified by its interlocking pieces.", + "Jigsaw puzzles typically have a picture printed on them.", + "Jigsaw puzzles are usually composed of a rectangular grid of squares, with each square containing a portion of the image.", + "A jigsaw puzzle looks like a picture that is cut into small pieces.", + "A jigsaw puzzle is a picture that is cut into small pieces.", + "A jigsaw puzzle is a puzzle that is made up of a number of small pieces that fit together to form a larger picture.", + "A jigsaw puzzle looks like a picture that has been cut up into a lot of small pieces.", + "A jigsaw puzzle looks like a picture that is cut into small pieces.", + "A jigsaw puzzle is a puzzle that is made up of small pieces that fit together to form a larger image.", + "A jigsaw puzzle is a small picture that has been cut into a lot of pieces.", + "A jigsaw puzzle looks like a picture that has been cut up into pieces.", + "This image is of a jigsaw puzzle that has been put together.", + "This is an image of a jigsaw puzzle that is in the shape of a heart.", + "One image that comes to mind is a photograph of a completed jigsaw puzzle with various shades of blue in the sky and water.", + "I found an image of a jigsaw puzzle on the internet that I really liked.", + "The image is of a brightly-colored jigsaw puzzle with pieces in various shapes and sizes.", + "There are numerous images of jigsaw puzzles on the internet.", + "An image of a jigsaw puzzle from the internet shows a close-up of a man's hand holding a piece of the puzzle.", + "The image I found was of a bunch of different jigsaw puzzles all put together to make one big picture.", + "Image of a blue jigsaw puzzle on a white background.", + "The image is of a jigsaw puzzle with several pieces already put together.", + " A zillion pieces and not one fits.", + " A jigsaw puzzle in progress, with many of the pieces already in place.", + " A man holds a completed jigsaw puzzleA man looks triumphant as he holds a completed jigsaw puzzle.", + "Jigsaw puzzle of the world.", + "A jigsaw puzzle of an image of the Grand Canyon.", + "This jigsaw puzzle is of a map of the world.", + "\"I love doing jigsaw puzzles.", + "This is a 300-piece jigsaw puzzle of the Mona Lisa.", + "\"Life is a puzzle.", + "

An unfinished jigsaw puzzle, with pieces still missing from the center." + ], + "rickshaw": [ + "A rickshaw is usually a two or three-wheeled vehicle, powered by a driver, that can seat one or two people.", + "A rickshaw is a small, two-wheeled carriage pulled by a person, typically used for carrying passengers for short distances.", + "A rickshaw is a vehicle that is pushed by a person and has two wheels.", + "A rickshaw is typically a three-wheeled pedicab with a seat for two people in the front and a seat for one person in the back.", + "A rickshaw is a light, two-wheeled carriage, usually pulled by a man, and used for carrying passengers.", + "A rickshaw is a vehicle that is pulled by a person.", + "A rickshaw is a cart that is pulled by a person.", + "A rickshaw is a carriage with three wheels that is pulled by a person.", + "A rickshaw is a two-wheeled, human-powered vehicle used for transporting people or goods.", + "A rickshaw is a light, two-wheeled vehicle that is pulled by a person.", + "A rickshaw is a three-wheeled vehicle that is pulled by a person.", + "Rickshaws are usually three-wheeled vehicles, pulled by a person.", + "A rickshaw is traditionally a hand-drawn cart that is used to transport passengers on a short journey.", + "A rickshaw is a two or three-wheeled passenger cart that is pulled by a human driver.", + "A rickshaw is a type of pedal-powered vehicle that is commonly used for transportation in Asian countries.", + "A rickshaw is a three-wheeled vehicle that is powered by a person pedaling.", + "A rickshaw typically has two wheels and is pedaled by a person.", + "A rickshaw is a human-powered vehicle typically used for transporting goods or passengers.", + "A rickshaw is a small vehicle, often human-powered, used for carrying goods or passengers.", + "Rickshaws are often brightly decorated and can be pulled by a person or an animal.", + "A rickshaw is a type of carriage that is pulled by a person.", + "A rickshaw is a small, personal vehicle that is typically pulled by a person.", + "A rickshaw is a type of carriage that is pulled by a person.", + "A rickshaw is a vehicle that consists of a platform with two wheels that is pulled by a person.", + "A rickshaw looks like a small carriage that is pulled by a person.", + "A typical rickshaw is a light two-wheeled vehicle, with a platform attached to the back, which is used to carry passengers.", + "A rickshaw typically has a wooden frame with two wheels, and is pulled by a person.", + "A rickshaw is a small, motorless vehicle that is used to transport people or goods.", + "A rickshaw is a small, lightweight vehicle with three wheels that is pulled by a person.", + "A rickshaw is a type of cart that is pulled by a person.", + "An image of a rickshaw from the internet shows a brightly colored, two-wheeled vehicle, pulled by a man, with a seat for up to two passengers.", + "There is an image of a yellow rickshaw with a blue canopy.", + "The image is of a traditional Chinese rickshaw, with a roof and two curtained sides.", + "A rickshaw is a bicycle with a seat on the back for a passenger, typically in Asia.", + "The image from the internet of a rickshaw shows a three-wheeled vehicle with a metal frame and a canvas cover.", + "A rickshaw is a vehicle consisting of a seat on three or four wheels, pedaled by a driver, and pulled by a rope or motor.", + "The image is of a rickshaw in Thailand.", + "The image is of a man pulling a rickshaw through a busy street.", + "This image is of a rickshaw driver in India.", + "A rickshaw is a vehicle designed to be pulled by a person, typically on a bicycle.", + "A man rides a rickshaw through a busy street in Kolkata, India.", + "A rickshaw in Bangladesh.", + "A rickshaw in Bangladesh.", + "A rickshaw in Chinese cities was once a common form of transportation.", + "A rickshaw in Bangladesh.", + "A rickshaw driver in Bangladesh.", + "A man drives a rickshaw through a busy street in Delhi, India.", + " Rickshaw drivers in Old Delhi waiting for customers.", + "A rickshaw in Bangladesh.", + "A rickshaw in Kolkata, India." + ], + "joystick": [ + "A joystick is a video game controller with a stick that can be moved in all directions.", + "A joystick is a device used for inputting instructions to a computer or other electronic device.", + "A joystick is a hand-held control device that consists of a stick that can be moved in all directions and a base with buttons on it.", + "A joystick is a type of game controller that is used to control video games.", + "A joystick is a controller that has a stick that can be moved in any direction.", + "A joystick is a type of game controller that is used to provide input to video games or computers.", + "A joystick typically consists of a base and a stick that protrudes from it.", + "A joystick is a handheld control device that is used to move an object on a screen.", + "A joystick typically consists of a base and a stick that can be moved in various directions.", + "A joystick typically consists of a plastic body that houses one or more analog sticks, buttons, and triggers.", + "A joystick is a device used for inputting instructions to a computer or video game.", + "A joystick is a device that is used to control a character or object in a computer game.", + "A joystick can be identified by its analogue stick and buttons.", + "A joystick is a type of game controller that is used to control video games.", + "Joysticks are typically made up of one or more analog sticks.", + "The best way to identify a joystick is by its shape.", + "Joysticks are usually easy to identify because they protrude out of the controller and have one or more buttons on them.", + "Look for a stick protruding from the center of a device.", + "By its shape, a joystick is generally recognized as a handheld device that has a vertical stem protruding from a round base.", + "A joystick is a controller that has a stick that can be moved in multiple directions.", + "A joystick is typically a stick that protrudes from the base of a controller.", + "A joystick looks like a small stick that can be moved in all directions.", + "A joystick typically has a large button in the center, and four to eight smaller buttons around the edge.", + "A joystick typically consists of a hand grip with one or more buttons that can be pressed to provide input, and a base to which the hand grip is attached.", + "A joystick is a hand-held device that is used to control the movement of an object on a screen.", + "A joystick is a handheld device used to control video games and computers.", + "Early joysticks were often large and unwieldy, consisting of a base and a stick that protruded from the top.", + "A joystick is a device that is used to control the movement of something on a screen, such as a cursor or a computer game character.", + "A joystick is a device that can be used to move an object on a screen.", + "A joystick is a gaming device that consists of a central stick that can be moved in various directions.", + "I found an image of a joystick on the internet that looks like it could be used for playing video games.", + "A joystick is a type of game controller that is used to control video games.", + "This image is of a joystick.", + "A joystick is a physical device that consists of a stick that can be tilted in various directions to control a virtual or real object.", + "A joystick is a type of game controller that is used to control movement in a video game.", + "The image is of a blue and silver joystick.", + "An image of a joystick from the internet would likely show a gaming device with a thumb-operated control stick and buttons on the front.", + "The image is of a black joystick with a silver base.", + "The image is of a large, round joystick with a yellow base.", + "This image is of a black and silver joystick.", + "A joystick is a hand-held device used to control video games.", + "Arcade Joystick.", + "The joystick is the primary input device for video games and many other types of electronic amusements.", + "A joystick is a common input device for video games.", + "A joystick is a type of game controller that is used to control video games.", + "A gaming joystick is a controller device used for playing video games.", + "Joystick.", + "An old-school video game joystick.", + "A joystick is a peripheral used for input on a video game console.", + "\"This is a joystick." + ], + "kimono": [ + "A kimono is a traditional Japanese garment.", + "A kimono is a traditional Japanese garment that is typically made from a light, breathable fabric.", + "A kimono is a Japanese robe that is worn as traditional clothing.", + "A kimono is a Japanese garment.", + "A kimono is a traditional Japanese garment that is worn by men, women, and children.", + "A kimono is a type of robe that is often worn in Japan.", + "A kimono is a traditional Japanese garment.", + "A kimono is a traditional Japanese garment.", + "A kimono is a traditional Japanese robe that is made from a single piece of fabric that is wrapped around the body and secured with a sash.", + "A kimono is a type of traditional Japanese clothing.", + "So one way to identify a kimono is its wide sleeves.", + "A kimono is a traditional Japanese garment.", + "A kimono is a traditional Japanese garment.", + "Kimonos are traditionally made of a single piece of fabric that is wrapped around the body and secured with a sash.", + "The kimono is a traditional Japanese garment.", + "The easiest way to identify a kimono is to look for the wide sleeves and long silhouette.", + "There are a few ways to identify a kimono.", + "Kimonos are loose fitting robes that are tied with a sash.", + "A kimono is a traditional Japanese garment.", + "Kimonos are long, loose robes with wide sleeves that are traditionally worn in Japan.", + "Significant variations exist in the style of a kimono depending on the gender of the person wearing it, the age, the season, and the occasion for which it is worn.", + "A kimono is a Japanse robe that is worn with an obi belt.", + "A kimono is a traditional Japanese garment that is worn by both men and women.", + "A kimono is a traditional Japanese robe that is worn on special occasions.", + "A kimono looks like a long, loose-fitting robe that is wrapped around the body.", + "A kimono is a type of traditional Japanese clothing.", + "A kimono is a traditional Japanese garment that is worn by both men and women.", + "A kimono is a traditional Japanese garment that is worn by men, women, and children.", + "A kimono is a Japanese robe.", + "A kimono typically has wide sleeves, a loose-fitting bodice, and a long skirt.", + "The image is of a traditional Japanese kimono.", + "The kimono in the image is red with a white and black floral pattern.", + "The image is of a traditional Japanese kimono.", + "This image is of a traditional Japanese kimono.", + "The image is of a traditional Japanese kimono.", + "The image is of a traditional Japanese kimono.", + "This image is of a traditional Japanese kimono.", + "This image is of a traditional kimono, with a floral pattern in shades of pink, purple, and green.", + "The image is of a traditional Japanese kimono, which is brightly colored and patterned.", + "This image shows a woman in a traditional Japanese kimono.", + "A traditional Japanese kimono.", + " Traditional Japanese kimono worn by a geisha.", + "An image of a traditional Japanese kimono.", + " A traditional Japanese kimono.", + "A traditional Japanese kimono.", + "A traditional Japanese kimono, typically worn by women on special occasions.", + "An intricate kimono with a floral pattern, worn by a geisha in Kyoto, Japan.", + "An elegant kimono with a vibrant floral design.", + "A Japanese kimono with a geometric pattern in shades of blue, green, and white.", + "Kimono - a traditional Japanese garment." + ], + "knee pad": [ + "A knee pad is typically a foam pad that is placed over the knee to protect it from impact.", + "A knee pad is a piece of foam or other material that is worn on the knee to protect it from injury.", + "A knee pad has a padded,Circular portion that wraps around the knee, and two adjustable straps that go around the thigh and calf to secure the pad in place.", + "A knee pad typically looks like a small, cushioned pad that fits over the knee.", + "A knee pad looks like a round, cushioned pad that is worn over the knee.", + "A knee pad is typically a foam pad that is enclosed in a fabric sleeve.", + "A knee pad typically consists of a thick pad of foam material affixed to a fabric sleeve that wraps around the leg just below the knee.", + "A knee pad is a small, padded cushion that is worn on the knee to protect it from injury.", + "A knee pad looks like a small pillow that you would put on your knee.", + "A knee pad is a small, typically horseshoe-shaped pad that is worn on the knee to protect it from impact.", + "A knee pad is typically a protective gear worn by workers, athletes, and military personnel to prevent injuries to the knees.", + "Knee pads typically have a hard, protective outer shell and a soft, cushioned inner liner.", + "A knee pad is typically a padded sleeve that fits over the knee.", + "A knee pad is used to protect the knee from injury.", + "A knee pad is a small, round pillow that is placed over the knee to protect it from injury.", + "A knee pad is typically a small, padded cushion that is worn on the knee to protect it from injury.", + "Knee pads are often made of foam and have a hard outer shell.", + "A knee pad is a small, padded, waterproof mat that is placed on the knee to protect it from pressure or injury.", + "Knee pads are often made of foam or gel and strapped to the knee with an adjustable strap.", + "A knee pad can be identified by its cushioning and protective properties.", + "Knee pads are often made of neoprene and have an adjustable strap that goes around the calf.", + "A knee pad usually consists of a thick foam padding that is covered with a tough fabric.", + "A knee pad typically consists of a large pad that covers the knee and a strap that goes around the leg to hold the pad in place.", + "Knee pads look like small, cushioned pads that can be strapped onto the knees.", + "A knee pad is an article of protective clothing that is worn on the knees.", + "A knee pad is a small, typically round pad that is worn on the knee to protect it from injury.", + "A knee pad is a small, round cushion that is worn over the knee to protect it from injury.", + "A knee pad is typically a small, padded cushion that is worn on the knee to help protect it from injury.", + "They are generally round or rectangular pads that strap onto your knee and have a soft, padded surface.", + "A knee pad typically consists of a padded cushion that covers the knee and is held in place by an elastic or velcro strap.", + "This image shows a black knee pad with a Velcro strap fastened around the top.", + "This image is of a knee pad with a black and white geometric design.", + "Image shows a person kneeling on the ground wearing knee pads.", + "The image is of a black knee pad with a white Nike swoosh logo.", + "A knee pad is a small, padded cushion that is worn on the knee to protect it from injury.", + "Image is of a black knee pad with a white Nike swoosh.", + "This image is of a black knee pad with a white Nike swoosh logo in the center.", + "This image is of a black knee pad with a white Nike swoosh logo in the center.", + "The image is of a black knee pad.", + "The image is of a yellow knee pad with black straps.", + "Knee pads are a must-have for any serious skateboarder.", + "Knee pads are vital for preventing injuries while playing sports.", + "A knee pad for protecting the knees when playing sports or engaging in other activities.", + "Knee pad designed to protect the knee from impact and abrasion.", + "\"Knee pads are an essential piece of safety gear for any cyclist.", + " Knee pads are important safety gear for many activities.", + "A knee pad designed to protect the wearer's knees from impact and injury.", + "Knee pads offer protection against impact and abrasion and are often used by skateboarders, rollerbladers, and other athletes.", + "A knee pad protects the knee from impact and helps prevent injuries.", + "A woman wearing a knee pad and looking at her phone." + ], + "knot": [ + "A knot is a tight, complex loops of rope or thread.", + "A knot appears as a twisted or entangled mass.", + "A rope knot is a fastening of the rope made by passing a rope end around the rope or another object and then passing it back through the loop thus formed.", + "A knot is a unit of measure in cordage.", + "A knot typically looks like a loop or a series of loops.", + "a knot is usually a small, hard, round lump of tissue that forms when two pieces of tissue rub together.", + "A knot is a loop of rope or string that is tied in the middle, typically using a special knot-tying technique.", + "A knot is a loop of rope or other material, formed by joining the two ends of the material together.", + "A knot is a phrase or word that is used to describe a tangled mess, usually of hair or string.", + "A knot is a loop made by interlacing the ends of two lengths of cord or rope.", + "Knots can be identified by their symmetry, the number of crossings, the way the strands are interwoven, and the number of ends.", + "One way to identify a knot is by its symmetry.", + "A knot is a tangled or twisted mass, especially of hair.", + "The best way to identify a knot is by its appearance.", + "There is no definitive answer to this question as there is no surefire way to tell if a particular knot is indeed a knot.", + "A knot is aname for a special kind of mathematical object that is studied in the area of mathematics known as topology.", + "Knots can be identified by their configurations of rope or cord, which form loops and twists.", + "The easiest way to identify a knot is by its name.", + "A knot is a complication in the structure of something.", + "One way to identify a knot is by its crossings.", + "A knot looks like an intertwining of two or more strands of rope or other material.", + "A knot is a tangle in a thread, string, cord, or rope.", + "A knot is a loop or a twist in a thread, rope, or string.", + "A knot is a small, compact, looped or twisted shape.", + "A knot is a curve in the space which is closed and does not cross itself.", + "A knot is a specialized type of stopper or fastener used to prevent the slipping or loosening of a rope or string.", + "A knot is a fastening made by interlacing the strands of a rope, string, or other flexible material.", + "A knot is a small, hard, tight lump.", + "A knot is a loop of rope or cord.", + "A knot looks like a loop in a piece of string.", + "The image is of a knot in a rope.", + "A photo of a knot from the internet shows a simple, yet intricate design.", + "The image shows a piece of rope with a knot in it.", + "This image is of a decorative knot called a Celtic knot.", + "The image is of a rope knot with the ends of the rope frayed.", + "I found an image on the internet of a red and black rope knot.", + "I found an image on Pinterest of a Celtic knot.", + "An image of a knot from the internet is a picture of a tied rope or string.", + "A picture of a rope knot tied around a wooden post.", + "This image is of a fisherman's knot.", + "\"The Ashley's stopper knot is a type of knot used for fishing.", + "A weaver's knot, or \"wendan knot\", used to tie thread to a shuttle when weaving on a loom.", + "\"I tied the knot!\".", + "A close-up of a rope knot.", + "The knot is tied.", + "A view of a ropebridge crossing a riverA rope bridge crossing a river.", + "The knot is tightened by pulling on both ends of the rope.", + "\"The Perfect Knot\".", + "A rope tied in a knot.", + "A rope knot\n." + ], + "lab coat": [ + "A lab coat is a long white coat that is worn over other clothes in a laboratory.", + "A lab coat is a piece of protective clothing that scientists and doctors wear over their clothes.", + "Most lab coats are white and come down to the knees.", + "A lab coat is a long white coat that is worn over clothes to protect them from spills and splashes.", + "Most lab coats are white and resemble a doctor's coat.", + "Lab coats are normally white and look like a normal coat that you would wear, except they are a little bit longer.", + "A lab coat is a knee-length white coat worn by scientists and medical professionals.", + "A lab coat is a long-sleeved white coat worn by scientists, doctors, and other professionals in laboratories and other clean environments.", + "A lab coat is usually a white coat that button down the front.", + "A lab coat is typically a white jacket that covers the body and reaches down to the knees.", + "A lab coat is usually white and has long sleeves.", + "Lab coats are usually white, have long sleeves, and buttons all the way down the front.", + "A lab coat is a type of protective clothing that scientists and researchers wear in laboratories.", + "Lab coats typically have long sleeves, a button-up front, and a collar.", + "A lab coat is a garment worn by scientists, researchers, and technicians in laboratories.", + "Most lab coats are white and have a collar.", + "You can identify a lab coat because it is a white coat that is worn in a laboratory.", + "It is a long white coat that is worn over other clothes in a laboratory.", + "A lab coat is a loose-fitting, knee-length white coat worn over clothing by scientists, engineers, and technicians in industry, medicine, and research.", + "A lab coat is a white coat that is worn by scientists and medical professionals.", + "Laboratory coats are white coats that are worn in scientific or medical settings.", + "A lab coat is typically a white coat that reaches the knees.", + "A lab coat is a type of protective clothing worn by scientists, researchers, and physicians.", + "Most lab coats are white and made of cotton or a cotton blend.", + "A lab coat is typically white and knee-length.", + "There is no one definitive answer to this question as laboratory coats come in many different styles, colors, and materials.", + "A laboratory coat (sometimes called a lab coat) is a knee-length overcoat/smock worn by scientists, physicians, engineers, and others engaged in work involving exposure to extreme cold, corrosive chemicals, or flying debris.", + "A lab coat is usually a white, knee-length coat worn over other clothes.", + "A lab coat is typically a white coat that reaches to the knees.", + "A lab coat looks like a long, white coat.", + "In the image, a woman is standing in front of a mirror, wearing a lab coat.", + "This image is of a white lab coat with blue trim.", + "One image from the internet of a lab coat is of a white coat with a logo on the left chest pocket.", + "A lab coat is a white, knee-length coat worn by scientists and other professionals working in laboratories.", + "One image from the internet of a lab coat shows a person wearing a white lab coat with a stethoscope around their neck.", + "The lab coat is white with a blue shirt underneath.", + "The image is of a basic white lab coat.", + "A lab coat is a protective piece of clothing that is worn in laboratories or other environments where there is a risk of exposure to hazardous materials.", + "The image is of a white lab coat with a name tag on the left side.", + "This image is of a white lab coat with a blue collar and button down closure.", + "A scientist wearing a laboratory coat and safety goggles.", + "A white lab coat with a stethoscope around the neck.", + "A scientist wearing a lab coat and holding a test tube\n.", + "A man in a lab coat holding a beaker of chemicals.", + " A young woman in a white lab coat smiles and looks into the camera.", + " A white lab coat with a stethoscope around the neck.", + "This lab coat is made of 100% Cotton.", + "A lab coat worn by a scientist.", + "\"I'm a scientist!\".", + "A lab coat is a type of protective clothing worn by scientists and other professionals working with dangerous chemicals and other hazardous materials." + ], + "ladle": [ + "A ladle is a type of spoon with a long handle that is used for serving soup, sauce, or other liquid food.", + "Ladles are typically long-handled spoon-like utensils with a bowl-shaped cup attached to the end.", + "A ladle is a tool used for spooning out liquid or semiliquid foods from a pot.", + "A ladle is a kitchen utensil used for serving soup, stew, or sauce.", + "A ladle is a utensil for transferring liquids from one container to another, with a long handle and a deep, bowl-shaped scoop.", + "A ladle is a bowl-shaped tool with a handle that is used to transfer liquid from one container to another.", + "A ladle is a kitchen utensil that is used to scoop liquid or semi-solid foods such as soup, stew, or sauce.", + "A ladle is a kitchen tool that is used to transfer liquids from one container to another.", + "A ladle is a long-handled spoon with a large, curved bowl that is used for serving soup and other liquids.", + "A ladle is a type of spoon with a long handle that is used for serving soup, sauces, and other liquids.", + "A ladle can be identified by its long handle and its large, deep bowl, which is designed for scooping and pouring liquids.", + "A ladle can have a long handle and a deep bowl.", + "A ladle is a spoon-like utensil with a long handle that is used for serving soup, stew, or other food from a pot.", + "A ladle can have a long or short handle, and a deep, spoon-like bowl.", + "A ladle is a kitchen tool that is used for transporting liquids from one container to another.", + "A ladle is a large spoon with a deep bowl that is used for serving soup and other liquids.", + "A ladle has a long handle and a deep, spoon-like bowl.", + "A ladle is a spoon with a long handle that is used for transferring liquids from one container to another.", + "A ladle is a type of spoon that is often used to transfer liquids from one container to another.", + "A ladle is a large spoon that is used for serving soup and other liquids.", + "A ladle is a spoon-like kitchen utensil with a long handle and a deep, round bowl.", + "A ladle typically has a long handle and a deep, cup-like bowl.", + "A ladle is aCooking Tool that is Used to Transfer Liquids from One Container to Another, it has a Deep Bowl with a Handle Attached to the Rim.", + "A ladle is a handheld kitchen utensil with a long handle and a deep, bowl-shaped cup.", + "A ladle is a kitchen utensil that is used for many tasks, including transferring liquids and semi-solid foods from one container to another, stirring, mixing, and serving.", + "A ladle is typically a long-handled spoon with a deep bowl.", + "A ladle is a type of spoon with a large bowl and a long handle.", + "A ladle is a kitchen utensil that is used to transfer liquids from one container to another.", + "A ladle is a kitchen utensil that is used for serving food.", + "A ladle is a tool that is used for scooping and transferring liquids.", + "A ladle is a kitchen utensil that is used to scoop up liquids and pour them into a pot or bowl.", + "A metal ladle with a long handle and deep bowl.", + "An image from the internet of a ladle is a picture of a spoon-like kitchen utensil with a long handle.", + "The image is of a long-handled spoon with a bowl-shaped cup.", + "This image shows a metal ladle with a long handle and a cup-shaped bowl.", + "This image shows a ladle with a long, curved handle and a deep, round bowl.", + "A ladle is a large spoon with a long handle, used for serving soup or other food from a pot.", + "The image is of a yellow plastic ladle with a long handle.", + "An image of a ladle from the internet shows a metal spoon with a long handle.", + "A ladle is a kitchen utensil that is used to scoop up and pour liquids or soft foods.", + "The ladle is a kitchen utensil that is used to scoop up liquid or semi-solid foods and transfer them to a bowl or plate.", + "Ladle.", + "The perfect tool for serving up your favorite soup or stew.", + "A ladle can be used for many things, including scooping soup or gravy.", + "A metal ladle on a white background.", + " A cooking implement consisting of a deep bowl with a handle, used for scooping up and transferring liquids.", + "Ladle.", + " A ladle full of soup.", + "A ladle is a cooking utensil that is used to scoop up and transfer liquids.", + " A ladle full of soup." + ], + "lampshade": [ + "A lampshade is a shade or cover made of cloth, paper, or metal that is used to diffuse the light from a light bulb.", + "A lampshade is a cone or cylinder-shaped piece of fabric that is placed over a light bulb to diffuse the light.", + "A lampshade is a thin, often conical or drum-shaped, Shade that attaches to a lamp to diffuse the light it emits.", + "A lampshade is a dome- or cone-shaped cover that is placed over a lamp to diffuse the light it emits.", + "A lampshade is a cone- or drum-shaped cover that is usually placed over a light bulb to diffuse the light.", + "A lampshade is a cover for a light bulb that diffuses the light.", + "A lampshade is a cone- or pyramid-shaped covering that is placed over a light bulb to diffuse the light.", + "A lampshade is a cone- or drum-shaped covering that attaches to the light bulb on a lamp to diffuse the light.", + "A lampshade is a cone- or drum-shaped covering that sits over a light bulb to diffuse the light.", + "A lampshade is a cone- or cylinder-shaped covering that is placed over a light bulb to diffuse the light.", + "If the lampshade is cylindrical in shape, it is called a drum lampshade.", + "Lampshades are usually cone-, drum-, or bell-shaped and are often made of fabric, paper, or metal.", + "Lampshades vary in many ways.", + "A lampshade is typically a cone or cylinder shape that is placed over a light bulb to diffuse the light.", + "A lampshade is typically a cone or cylindrical shape that is placed over a light bulb to diffract the light.", + "Lampshades are generally cylindrical or conical in shape and are covered with fabric or paper.", + "Lampshades typically have a metal frame with a fabric or paper covering.", + "A lampshade is a cover for a lamp, usually made of cloth, metal, glass, or paper.", + "The easiest way to identify a lampshade is to look at the shape.", + "There are a few ways to identify a lampshade.", + "A lampshade is typically a cylinder or cone shape that is placed over a light bulb to diffuse the light.", + "A lampshade is a cone- or pyramid-shaped covering that is placed over a light bulb to diffuse the light.", + "A lampshade can take on many different forms, but the most common shape is a cylinder with a flat top and bottom.", + "A lampshade is typically a cone or cylindrical shaped object that is placed over a light bulb to diffuse the light.", + "A lampshade is a cone- or pyramid-shaped cover that is placed over a light bulb to diffuse the light.", + "A lampshade is typically cone shaped and sits on top of a lamp to diffused the light.", + "A lampshade is a cone, cylinder, or other shape that sits on top of a lampbase and directs light upward and outward.", + "A lampshade is traditionally a cone or drum-shaped shade that covers the light bulb on a lamp.", + "A lampshade is a cover for a lamp, typically made of cloth, paper, or metal, that helps diffuse the light from the bulb and reduce glare.", + "A lampshade looks like a plain white or cream colored cone or cylinder.", + "The image is of a white lampshade with a gold trim.", + "This image is of a white lampshade with black detailing.", + "The image is of a white lampshade with gold detailing.", + "The image is of a white lampshade with a gold interior.", + "The image is of a white lampshade with a gold interior.", + "The image is of a lampshade that is made out of a light-colored fabric.", + "This is an image of a lampshade from the internet.", + "This image from the internet is of a lampshade that is made out of a metal wire frame and is covered with a white fabric.", + "The internet image of a lampshade is a round, white object with a metal rod coming out of the top.", + "The image is of a white lampshade with a gold inner lining.", + "This lampshade is made of linen and has a very simple design.", + "This lampshade casts a warm and inviting glow in any room.", + "This lampshade was inspired by the design of a traditional Japanese paper lantern.", + "An old fashioned lampshade with a floral design.", + "A close-up of a white lampshade with a textured surface.", + "A close-up of a white lampshade with gold stars on it.", + " A light brown lampshade with a textured surface.", + "This is a lampshade.", + "This lampshade casts a warm and inviting glow in any space.", + "This lampshade is handcrafted from sustainable materials." + ], + "laptop computer": [ + "A laptop computer is a small, portable computer that typically has a thin display and an attached keyboard.", + "A laptop computer usually has a built-in keyboard and a touchpad or trackpad for navigation.", + "A laptop computer typically has a screen that hinge that opens and closes to protect the keyboard.", + "Laptop computers often have a clamshell form factor, with a screen on one side and a keyboard on the other.", + "A laptop only has a screen and a keyboard, and usually a trackpad.", + "It is a small, portable computer typically with a \"clamshell\" form factor, an alphanumeric keyboard on the lower part of the \"clamshell\" and a thin screen on the upper part.", + "A laptop computer is a type of computer that is small and portable.", + "A laptop computer typically looks like a smaller version of a desktop computer, with a built-in keyboard and trackpad.", + "laptop computers usually look like a smaller version of a desktop computer, with a screen that folds down onto a keyboard.", + "A laptop is a small personal computer typically having a \"clamshell\" form factor, an alphanumeric keyboard on the lower part of the \"clamshell\" and a thin screen on the upper part.", + "Laptops are typically much smaller and more lightweight than desktop computers.", + "Laptop computers typically have a built-in keyboard and display screen.", + "You can identify a laptop computer by its small size and the fact that it has a built-in keyboard and mouse.", + "The best way to identify a laptop computer is to look for the following features: a small, portable design; a keyboard that is integrated into the main body of the device; a touchpad or trackpad instead of a mouse; and a.", + "The easiest way to identify a laptop computer is by its size and portability.", + "A laptop computer can be identified by its small size and portability.", + "Laptop computers are smaller and more portable than desktop computers.", + "Laptop computers are usually much smaller and more lightweight than desktop computers.", + "Laptop computers are typically much smaller than desktop computers and have a built-in keyboard and trackpad.", + "Laptop computers are often distinguished from other computers by their small size, portability, and ability to run on batteries.", + "It is a small computer that is used while portable.", + "A laptop computer is typically small and thin, and can be closed like a book.", + "Laptops vary in design, but they typically have a clamshell shape with a screen on one side and a keyboard on the other.", + "A laptop computer is a type of computer that is small and portable.", + "A laptop computer typically looks like a smaller version of a desktop computer, with a screen, keyboard, and touchpad all in one unit.", + "A laptop computer is typically a small, portable computer.", + "Most laptop computers are rectangular and have a screen on one side and a keyboard on the other.", + "A laptop computer is a small computer that can be carried around with you.", + "A laptop typically has a hinged screen that covers the keyboard and folds down to allow the device to be portable.", + "A laptop computer typically has a screen that hingeably connects to a keyboard and trackpad.", + "The image is of a black laptop computer with a green light on the front.", + "The image is of a black laptop on a white desk.", + "A laptop computer is a small, portable computer that can be used for a variety of purposes.", + "This image is of a laptop computer with a white screen and a keyboard in the foreground.", + "The image is of a white laptop computer with a blue background.", + "A laptop computer is a small, portable computer that typically has a thin screen.", + "A laptop computer is a small, portable computer that typically has a thin screen.", + "The image is of a black laptop computer on a white desk.", + "The photo is of a black laptop with a matte finish.", + "This image depicts a laptop computer with a yellow case.", + "This laptop is a great computer for students and professionals.", + "A laptop computer with a white screen.", + "A laptop computer on a desk.", + "Gadget of the week: MSI's GT75 Titan is a gaming beast.", + "Dell XPS 13 Laptop.", + "Laptop computer with wireless internet connection.", + "Dell Inspiron 15 3000 Series Laptop.", + "Laptop computer with charger.", + "A laptop computer resting on a desk.", + "A laptop computer sitting on a desk with a coffee cup next to it." + ], + "lawn mower": [ + "A lawn mower is a large, heavy-duty machine with large spinning blades that are used to cut grass.", + "Lawn mowers vary in size and design, but most are propelled by gasoline engines and have cutting blades that rotate vertically.", + "A lawn mower looks like a large machine with a spinning blade on the bottom.", + "A lawn mower typically has a cylindrical blade that rotates to cut grass.", + "A lawn mower is a cutting tool used to mow grass.", + "A lawn mower is a gardening tool that is used to cut grass.", + "A lawn mower is a machine that uses one or more revolving blades to cut grass to an even height.", + "Lawn mowers come in a variety of sizes and shapes, but most have four wheels and a cutting blade attached to a rotating shaft.", + "A standard lawn mower has a cylindrical blade that spins horizontally.", + "A lawn mower is a cuboid shaped machine with a spinning blade at the front.", + "Lawn mowers are identified by their cylindrical shape, their flat base, and their large cutting blades.", + "Lawn mowers are often green, have four wheels, and a blade in the front.", + "Lawn mowers are usually green and have four wheels.", + "Most lawn mowers have four wheels, a blade, and a motor.", + "The easiest way to identify a lawn mower is by its blades.", + "A lawn mower is a machine that uses one or more revolving blades to cut a grass surface to an even height.", + "A lawn mower is a gardening tool that is used to trim grass.", + "A lawn mower is a mechanical device that is used to cut grass.", + "Lawn mowers can be identified by their grass-cutting blades, which are usually located in the front of the machine.", + "A lawn mower is a machine that uses one or more revolving blades to cut a grass surface to an even height.", + "A lawn mower is a machine that uses one or more revolving blades to cut a grass surface to an even height.", + "A lawn mower is a power tool that is used to cut grass.", + "A typical lawn mower is a small, gasoline-powered engine on wheels, with a rotary blade at the front.", + "A lawn mower typically has a cylindrical shape with a handle on one end and blades on the other.", + "A lawn mower is a machine that cuts grass.", + " A lawn mower typically looks like a large, rectangular device with a handle and wheels.", + "A lawn mower is a self-powered, ground-effect machine designed primarily for cutting grass.", + "A lawn mower is a gardening tool that is used to cut grass.", + "A lawn mower is a tool used to cut grass.", + "A lawn mower typically has a cylindrical blade that rotates to cut grass.", + "The image is of a green and yellow lawn mower.", + "An image of a lawn mower from the internet may show a traditional gas-powered push mower, or it may show a more modern, electric model.", + "The image is of a black and green lawn mower.", + "The image is of a black and red lawn mower.", + "In the image, a lawn mower is seen from above, with its blades spinning rapidly.", + "The image is of a lawn mower with a green and yellow horizontal striped pattern.", + "This image is of a lawn mower that is self-propelled.", + "This image is of a green and black lawn mower.", + "In the image, there is a green and yellow lawn mower sitting on a neatly cut lawn.", + "This image is of a yellow lawn mower with a black handle.", + "This lawn mower is perfect for anyone who wants an easy way to keep their lawn looking neat and tidy.", + "Lawn Mower.", + " A lawn mower is a machine that is used to cut grass.", + "This is a lawn mower.", + "This lawn mower is ideal for small to medium sized yards.", + "A lawnmower is a machine that is used to trim grass.", + "A lawn mower being used to cut grass.", + "A lawn mower is a machine powered by gasoline, electricity, or battery that cuts grass.", + "This lawn mower is ready to take on any sized job!.", + "lawn mower." + ], + "lens cap": [ + "A lens cap looks like a round, flat piece of plastic or metal that fits over the end of a camera lens.", + "A lens cap is a small, dark-colored disk that covers the lens of a camera when the camera is not in use.", + "A lens cap is a small, typically plastic or metal, cap that snaps onto the front of a camera lens to protect it when the camera is not in use.", + "A lens cap is a small, flat, disk-shaped piece of plastic that snaps onto the front of a camera lens to protect it when the camera is not in use.", + "A lens cap is typically a circular piece of plastic that snaps onto the front of a camera lens to protect it when not in use.", + "A lens cap is a small, usually round cover that snaps onto the front of a camera lens to protect it when the camera is not in use.", + "A lens cap is a small, circular piece of plastic that covers the lens on a camera.", + "A lens cap looks like a small cap that covers the lens of a camera.", + "A lens cap is a disk-shaped piece of plastic that covers the front of a camera lens to protect it from fingerprints, scratches, and the elements.", + "A lens cap typically resembles a small, flat disk with a snap-fit center tab.", + "A lens cap is a small, often round cap that is placed over the lens of a camera to protect it when the camera is not in use.", + " Lens caps are typically made of plastic and have a snap-on design.", + "A lens cap is typically a round disk that fits over the end of a camera lens.", + "A lens cap is a small, typically round, hinged cover that is attached to the front of a camera lens.", + "A lens cap can be identified by its size and shape.", + "A lens cap is a small, usually round piece of plastic that covers the front of a camera lens.", + "A lens cap is aCover that fits over the front of a camera lens to protect it from dirt, scratches, and the elements.", + "Look for a small, typically round piece of plastic or metal that covers the front of the lens.", + "A lens cap is a small, often round, solid piece of plastic that is used to protect the front element of a camera lens.", + "A lens cap is generally a small, round, black piece of plastic that is placed over the lens of a camera to protect it when not in use.", + "A lens cap has a small hole in the center and is typically square or round.", + "A lens cap is a small, usually round cover that is placed over the lens of a camera to protect it when the camera is not in use.", + "A lens cap is a hollow, cylindrical cap that is placed over the lens of a camera to protect it.", + "A milk jug with a hole cut out of the bottom.", + "A lens cap is a small, round, hinged cap that covers the lens of a camera.", + "A lens cap typically looks like a small, round cap that fits snugly over the end of a camera lens.", + "A lens cap is a small, often round, piece of plastic or metal that is attached to the front or back of a camera lens.", + "A lens cap typically looks like a small, circular cap that snaps onto the front of a camera lens.", + "A lens cap is a round, flat piece of plastic that covers the front of a camera lens to protect it from scratches, fingerprints, and dirt.", + "A lens cap looks like a small, circular piece of plastic or metal that covers the lens of a camera.", + "The image is of a black lens cap with the word \"Nikon\" written in white lettering.", + "The image from the internet is of a black lens cap with the word \"Canon\" written in white letters in the center.", + "A lens cap is a small, round piece of plastic that snaps onto the front of a camera lens to protect it when the lens is not in use.", + "A lens cap is a small, circular piece of plastic that snaps onto the front of a camera lens to protect it from scratches, fingerprints, and dust.", + "The image is of a black lens cap with the word \"Canon\" written in white lettering on the front.", + "A black lens cap with the word \"Canon\" written in white letters in the center.", + "The image shows a black lens cap with the word \"Canon\" written in white.", + "A lens cap is a small, round, often translucent cap that is placed over the lens of a camera to protect it when the camera is not in use.", + "A black lens cap with the words \"Canon\" written in white in the center.", + "The image is of a black lens cap with the word \"Sony\" written in silver.", + "This is a lens cap.", + "A lens cap covers the lens of a camera to protect it from dirt, scratches, and other damage.", + "A black lens cap with a white textured interior.", + "A lens cap protects the lens of a camera from dirt, scratches, and fingerprints.", + "A lens cap protects the lens of a camera from scratches, dirt, and fingerprints.", + "Lens cap of a Canon 24-105mm f/4L IS II USM lens.", + "A black lens cap with the word \"Canon\" in white lettering.", + "A black lens cap with the word \"Canon\" written in white lettering.", + " A black lens cap on a white background.", + "A black lens cap on a white background." + ], + "letter opener": [ + "A letter opener is a small tool that is used to open letters.", + "A letter opener is a small, handheld tool that is used to slicing open letters and envelopes.", + "Some letter openers are shaped like a sword, with a long, thin blade and a handle.", + "A letter opener is a small, sharp blade mounted on a handle.", + "A letter opener is a handheld tool that is used to open letters.", + "A letter opener is a tool that people use to open letters.", + "A letter opener is a metal or plastic implement used to open letters.", + "A letter opener looks like a small knife.", + "A letter opener is a small, usually pointed blade fitted to a handle, used for convenient opening of letters or packages sealed with an adhesive.", + "A letter opener is a small, handheld tool that is used to slit open the envelopes that contain letters.", + "A letter opener is a small tool that is used to open envelopes.", + "A letter opener can be identified by its long, thin blade and its handles, which are usually curved or ornate.", + "A letter opener is a small tool that is used to open envelopes.", + "A letter opener can typically be identified by its long, thin shape and sharp blade.", + "A letter opener is a small tool that is used to open envelopes.", + "A letter opener is a tool used to open letters.", + "A letter opener is a small tool that is used to open letters.", + "A letter opener is a tool that is used to open envelopes that contain letters.", + "A letter opener is a small, sharp knife that is used to open letters.", + "A letter opener is a tool that is used to open envelopes that contain letters.", + "A letter opener typically has a long, thin blade with a sharp point on one end.", + "A letter opener is a small tool that is used to slice open envelopes.", + "Typically, a letter opener is a small, handheld tool that has a sharp, metal blade on one end.", + "A letter opener is a tool for opening envelopes, typically consisting of a sharp blade attached to a handle.", + "A typical letter opener is a small, handheld tool with a sharp, pointed blade on one end.", + "A letter opener is a small tool, often in the shape of a sword, used for slicing open the envelopes that contain letters.", + "A letter opener is a very thin metal piece with a sharp edge.", + "A letter opener is a device used to open envelopes.", + "A letter opener is a small knife, about the size of a pen, used for opening letters.", + "A letter opener can look like a small knife, with a sharp blade projecting from a handle, or it can look like a straight piece of metal with a sharpened end.", + "The image shows a silver-colored letter opener with a curved, pointed blade.", + "The image is of a black letter opener with a gold handle.", + "A simple letter opener can be found at most stores and consists of a thin, metal blade attached to a handle.", + "This image shows a simple letter opener with a metal blade and a plastic handle.", + "A letter opener is a small, sharp blade used to cut open envelopes.", + "This image is of a black metal letter opener with a curved blade.", + "In the image, there is a letter opener that is navy blue and gold in color.", + "This image is of a letter opener that is silver in color.", + "The image is of a black letter opener with a gold handle.", + "The image from the internet is of a brass letter opener with a curved blade.", + "silver letter opener with ornate handle.", + "A silver letter opener with a curved blade and a jeweled handle.", + "This is a letter opener.", + "letter opener.", + "An old-fashioned letter opener with a mother of pearl handle.", + "This is a letter opener.", + "An old-fashioned letter opener with a mother of pearl handle.", + "An antique letter opener.", + "An ornate letter opener, believed to date back to the early 1800s.", + " A metal letter opener with a wood handle." + ], + "library": [ + "\nLibraries vary in size and appearance, but they typically have aisles of shelves stacked with books, magazines, and other materials.", + "A library typically contains rows and rows of bookcases filled with books.", + "A library looks like a building with a lot of books in it.", + "A library usually has shelves of books, a circulation desk, and a librarian.", + "Library is a place for reading, studying, and borrowing books.", + "A library is a place where people can go to read books and use computers.", + "A library typically has shelves of books, a checkout desk, and a quiet reading area.", + "A library is a place where people go to read books.", + "Most libraries are large buildings with many shelves of books.", + "A library is typically a building with shelves full of books.", + "A library is typically a room or building that is dedicated to the storage and retrieval of information.", + "There are a few ways that you can identify a library.", + "The best way to identify a library is by its name.", + "You can identify a library by its shelves of books, its lending services, and its quiet atmosphere.", + "There are generally signs with the word \"library\" on the building.", + "There are a few ways to identify a library.", + "If you are looking for a library in your area, you can use the Library Locator on the Institute of Museum and Library Services website.", + "A library can typically be identified by its exterior appearance.", + "A library can be identified by its unique call number.", + "Library buildings can typically be identified by their grandiose architecture and large size.", + "A library looks like a room with many shelves of books.", + "There are many different types of libraries, but most libraries have bookshelves, computers, desks, and chairs.", + "Libraries can come in all shapes and sizes, but most Libraries have shelves of books, a desk for the staff, and chairs for the patrons.", + "A library looks like a building with many shelves of books.", + "A library looks like a room with shelves of books and a desk for the librarian.", + "A library is a building in which books and other resources are available for use.", + "A library typically looks like a large room with rows of shelves full of books.", + "A library looks like a room in a building with shelves of books.", + "A library looks like a building with shelves of books.", + "There is no definitive answer to this question as libraries can come in all shapes and sizes.", + "An image from the internet of a library shows a large room with high ceilings and rows of shelves filled with books.", + "The image is of a traditional, brick and mortar library.", + "Image shows exterior of brick building with large arched windows.", + "I found an image of a library on the internet that I really like.", + " The image is of a large room with high ceilings.", + "A library is a room or building where people can read, write, and do other activities such as research.", + "The image shows a large room with high ceilings and rows of shelves filled with books.", + "This image from the internet is of a library.", + "This image is of a library in Boston, MA.", + "An image from the internet of a library shows a large room with high ceilings and shelves upon shelves of books.", + " A library is a place where you can find books, magazines, and newspapers.", + " A large and ornate library with rows and rows of shelves filled with books\nA library is a place where people go to read and learn.", + " A library full of books and people studying.", + "The library is a place where people can go to read, study, and do research.", + "The Boston Public Library.", + "The Bodleian Library at Oxford University.", + "The library is a place where knowledge is preserved and shared.", + " A library filled with books waiting to be read.", + "The library is a place where people can go to read and learn.", + " A library is a place where one can go to escape the hustle and bustle of the outside world and enjoy some peace and quiet." + ], + "lifeboat": [ + "A lifeboat is a boat that is designed for rescue operations in the event of a shipwreck or other maritime emergency.", + "A lifeboat is a small, sturdy boat that is used to rescue people from a sinking ship.", + "A lifeboat looks like a small boat that is used to rescue people from a ship that is sinking.", + "A lifeboat is a small, sturdy boat that is used to rescue people from a sinking ship.", + "A lifeboat is a small, sturdy boat that is used to rescue people who are stranded at sea.", + "A lifeboat is a small, sturdy boat that is used to rescue people from a sinking or capsized ship.", + "A lifeboat is a small, rigid or inflatable boat carried for emergency evacuation in the event of a disaster aboard a ship.", + "A lifeboat is a small, specialized boat designed for rescuing people who have been stranded or are in danger at sea.", + "A lifeboat is a small, sturdy boat that is used to rescue people from a sinking ship.", + "A lifeboat is a small, rigid or inflatable boat carried for emergency rescue and often kept at sea, or aboard an aircraft or ship.", + "By its size and shape, a lifeboat is designed to carry a limited number of people and has a self-righting capability.", + "There are many different types and sizes of lifeboats, so it is difficult to give a single answer to this question.", + "Look for the bright orange color and the word \"lifeboat\" printed on the side.", + "A lifeboat is a small to medium-sized boat designed for transporting people in the event of a disaster at sea.", + "On a ship, a lifeboat is a small, rigid or inflatable boat kept at hand for emergency use, retained on davits on the ship's side, and lowered in the event of a disaster.", + "The safest way to identify a lifeboat is by looking for the words \"lifeboat\" or \"life raft\" on the side.", + "On a cruise ship, lifeboats are usually stored on the outside decks, and they are brightly colored so that they are easy to spot in an emergency.", + "Most lifeboats are brightly colored and have \"LIFEBOAT\" written on the side in large letters.", + "Most lifeboats are brightly colored and have the word \"lifeboat\" written on them in large letters.", + "A lifeboat is typically a small, rigid or inflatable boat carried for emergency evacuation in the event of a disaster aboard a ship.", + "A lifeboat is a boat designed for rescue operations.", + "A lifeboat is a small, sturdy boat that is used to rescue people from a sinking ship.", + "A lifeboat is a small, sturdy boat that is used to rescue people from a ship that has sunk or is burning.", + "A lifeboat is a small, rigid or inflatable boat carried for emergency evacuation in the event of a disaster aboard a ship.", + "A lifeboat is typically an inflatable boat that is used to rescue people from a sinking ship.", + "A lifeboat typically looks like a small boat that can seat several people.", + "A lifeboat is typically a small, rigid boat that is designed for rescue operations in situations where a ship has been wrecked or sunk.", + "A lifeboat looks like a small, rigid boat that is used to rescue people from a ship that is either sinking or has already sunk.", + "A lifeboat is typically a small, rigid or inflatable boat carried for emergency evacuation in the event of a disaster aboard a ship.", + "A lifeboat is a small, rigid boat that is used to carry people from a sinking ship.", + "A lifeboat is a small, sturdy boat designed to rescue people from a sinking ship.", + "A lifeboat is a small, rigid or inflatable boat carried for emergency evacuation in the event of a disaster aboard a ship.", + "The image is of a small lifeboat crammed with people, bobbing in the water.", + "A large, orange lifeboat is docked at a pier, with several people standing on the deck.", + "This image is of a lifeboat out at sea.", + "This image is of a lifeboat drifting in the ocean.", + "The image shows a lifeboat on a ship.", + "The image is of a small, orange lifeboat with \"USCG\" written on the side in white letters.", + "This image is of a lifeboat called the MB4 lifeboat.", + "The image is of a lifeboat on a calm ocean.", + "The lifeboat is the last resort for survivors of a shipwreck.", + "The lifeboat is the first line of defense against shipwrecks.", + "A lifeboat waits on the shore as people gather their belongings.", + "One of the lifeboats from the Titanic.", + "A lifeboat full of people rescued from a sinking ship.", + "The Titanic's lifeboat, which was later recovered by the RMS Carpathia.", + "The lifeboat was fully stocked with supplies and was ready to launch at a moment's notice.", + "Lifeboat in the water with people on it.", + "The lifeboat is the only hope for people in the water.", + "The Titanic sinking into the frigid North Atlantic Ocean." + ], + "lighter": [ + "A lighter is a small object that can create a flame.", + "A lighter is a small device used to create a flame.", + "A lighter is usually a small metal device with a trigger that, when pressed, produces a flame that can be used to light cigarettes, cigars, or pipes.", + "A lighter typically has a cylindrical body with a flat bottom, and a thumbwheel or trigger to ignite the flame.", + "A lighter is a small fire-starting device used to ignite a combustible material such as a cigarette or stove.", + "A lighter is a small handheld device used to create a flame.", + "A lighter is typically a small metal device with a flint wheel that, when struck, creates a spark that ignites a gas and creates a flame.", + "A lighter generally consists of a small metal or plastic container filled with a flammable liquid or compressed gas, a means of ignition, and some type of wick.", + "A lighter is a handheld device used to create a flame, and is often used to light cigarettes.", + "A lighter is a small object used to create a flame, typically in order to light a cigarette.", + "A lighter is a device that produces a flame, and is used to ignite a variety of items, such as cigars, cigarettes, and pipes.", + "Look for a device that has a spark wheel or piezoelectric crystal, and a fuel reservoir.", + "A lighter can typically be identified by its small size and flat shape.", + "The most common type of lighter is the disposable lighter.", + "Lighters can be identified by their flame, size, and shape.", + "A lighter can be identified by its small size, metal body, and switch on the side.", + "A lighter can be identified by its small size, cylindrical shape, and flint wheel on the side.", + "A lighter is a device that uses an open flame to ignite a combustible gas, typically butane or propane.", + "There are a few ways to identify a lighter.", + "A lighter can be identified by its flame, which is produced when the fuel in the lighter is ignited.", + "The most common type of lighter consists of a metal casing with a flint wheel and wick.", + "A lighter is a small, handheld device used to create a flame.", + "The most common type of lighter is a disposable lighter.", + "A lighter is most commonly a small, metal device with a flint wheel and a wick.", + "A lighter is a small handheld device used to create a flame.", + "A lighter typically looks like a small metal or plastic case with a handle.", + "A lighter is a small handheld device used to create a flame.", + "A lighter is a small device that creates a flame that is used to ignite cigarettes, cigars, or pipes.", + "A lighter is typically a small, metallic object with a trigger-like mechanism on one side and a flame emitter on the other.", + "A lighter is a small handheld device that is used to create a small flame.", + "An image from the internet of a lighter is a lighter that is used to light cigarettes.", + "The image is of a metal lighter with a black body and a red bottom.", + "The image is of a silver lighter with a white background.", + "An image of a lighter from the internet shows a small, metal object with a trigger.", + "The image is of a lighter on a yellow background.", + "The image is of a silver lighter with a black top.", + "A brass Zippo lighter with a unique design.", + "The image is of a standard Zippo lighter.", + "This image is of a silver lighter with a flame coming out of the top.", + "An image from the internet of a lighter may show a traditional lighter with a metal casing and a flint wheel, or it may show a newer, plastic lighter.", + "I don't smoke, but I still find this lighter pretty dope.", + "A black lighter with a green flame.", + "Zippo lighter with company logo.", + " A man holds a lighter up to a candle on a cakeThe caption reads \"Making a wish on my birthday.", + "A black metal lighter with a green flame.", + "A person holds a lighter up to the camera, the flame flickering in the darkness.", + "This lighter was used by my grandfather during World War II.", + "A lighter being held up to a lightbulbThe caption explains what is happening in the image, which is that the lighter is being held up to the lightbulb.", + " A silver lighter with a dragon engraved on the frontA lighter with a dragon engraved on the front.", + " \"A gold lighter on a black background." + ], + "limousine": [ + "A limousine typically has long, sleek lines and a spacious interior.", + "A limousine may look like a large, extended sedan with chrome details, tinted windows, and a uniformed driver.", + "A limousine is typically a long, black car with a partition between the driver and the passengers.", + "A limousine is typically a long, black car with dark-tinted windows.", + "A limousine is a long, luxury car that typically has comfortable seats, a television, and a bar.", + "Some limousines have a partition between the driver and the backseat passengers, while others do not.", + "The classic appearance of a limousine is a long, black car with a chauffeur.", + "Limousines are typically long, black, and luxurious cars.", + "A traditional limousine is a large, luxury vehicle with a long wheelbase.", + "A limousine is a large, luxury car that usually has a partition between the driver and the passenger area.", + "A limousine is a large, luxury car with a long chassis and a short wheelbase.", + "A limousine is a luxury vehicle that is usually either black or white.", + "A limousine is a large vehicle with a long wheelbase and expensive interior appointments.", + "A limousine is typically a long, luxury vehicle with a chauffeur.", + "A limousine is a large, luxury vehicle usually driven by a professional chauffeur.", + "The easiest way to identify a limousine is by its length.", + "A limousine is a long, luxury car that has plenty of leg room in the back and is often used for special occasions.", + "A limousine can typically be identified by its long length, Its stretched wheelbase, and sometimes by its roofline, which extends far back.", + "The best way to identify a limousine is by its long length and bulbous shape.", + "The easiest way to identify a limousine is by its size.", + "A limousine is a long, luxury car with plenty of space for passengers.", + "A traditional limousine is a long, black car with a chauffeur.", + "A limousine typically has a long body and is either black or white.", + "A limousine typically has a long body and a chauffeur that is separated from the passenger area by a partition.", + "A limousine looks like a long, black car.", + "A limousine is a large, long, black car that has a driver and is usually driven by someone who is wealthy or famous.", + "A limousine typically looks like a large, luxurious car.", + "A limousine is a length of car that typically seats eight or more passengers in the back.", + "A limousine typically looks like a long, black car.", + "A limousine typically has a long body and a stretched wheelbase.", + "This image is of a white limousine with chrome accents.", + "The image is of a black limousine with tinted windows.", + "The image from the internet shows a white limousine parked in front of a large building.", + "A limousine is a long, black car with a driver.", + "A large, luxurious car with a long wheelbase, a partition between the driver and the passenger compartment, and often a sunroof.", + "A black limousine with tinted windows is parked on a city street.", + "A black limousine with tinted windows is parked in front of a red carpet.", + "The image could be of a long, black car with tinted windows.", + "This image from the internet shows a black limousine with a chauffeur standing next to it.", + "A black limousine with tinted windows is parked on a city street.", + "This is a picture of a black limousine.", + "A long, black limousine with tinted windows waits at the curb.", + "A black limousine parked in front of a large mansion.", + " A black limousine with tinted windows.", + "A pink limousine parked outside a luxury hotel.", + "A limousine parked outside a large mansion.", + "A black limousine pulls up to a red carpet.", + "A black limousine with tinted windows.", + "A limousine parked outside a large mansion.", + "The exterior of a black limousine with tinted windows." + ], + "ocean liner": [ + "A ocean liner looks like a narrow ship with many decks.", + "A ocean liner is a large ship that is used to transport people and cargo across the ocean.", + "A huge boat with many floors and rooms.", + "An ocean liner is a large ship that is used to transport passengers and cargo across the ocean.", + "A ocean liner looks like a large luxury cruise ship.", + "A ocean liner looks like a large ship that has many levels and rooms.", + "An ocean liner is a large ship that plies the world's oceans and seas, carrying passengers and cargo.", + "A typical ocean liner is a large ship with several decks that is used to transport people and cargo across the ocean.", + "A ocean liner is a ship that transports people and cargo across oceans.", + "a ocean liner is a large ship that is used to carry passengers and cargo across the sea.", + "A ocean liner is a large ship that is used to carry passengers across oceans.", + "A ocean liner is a vessel that is used to transport large amounts of cargo or passengers over long distances on the ocean.", + "Usually, ocean liners are much larger than cruise ships.", + " size, look for a long smoke stack.", + "An ocean liner typically has a large size, multiple decks, and a lot of passenger cabins.", + "The size, the shape, and the color.", + "An ocean liner is a ship designed to transport people across the ocean.", + "The easiest way to identify an ocean liner is by its size.", + "A ocean liner is a ship designed to transport people across the ocean.", + "Some identifying characteristics of an ocean liner are that it is a large ship, it is powered by steam, and it has several decks.", + "An ocean liner is a vessel used for transport across the ocean.", + "Most ocean liners are very large cruise ships.", + "A ocean liner is a large cargo ship that is used to transport goods across the ocean.", + "A ocean liner is a large, luxurious ship that is used to transport people and cargo across the ocean.", + "A ocean liner typically looks like a large ship with many decks.", + "A ocean liner typically looks like a large ship with many decks and cabins.", + "An ocean liner is a ship that is used to carry passengers on longer voyages, such as from Europe to America.", + "A ocean liner looks like a large, ocean-going ship.", + "A large ocean liner typically has a long, sharp nose, several decks for passengers and crew, and a large engine room.", + "A ocean liner is a ship designed to transport people across the ocean.", + "The image is of a large white ocean liner with many decks.", + "White and blue ocean liner sailing on calm water with seagulls flying overhead.", + "The image is of an ocean liner sailing through blue waters.", + "This image from the internet shows an ocean liner travelling through calm waters.", + "The image is of an ocean liner sailing on the open ocean.", + "The image shows an ocean liner sailing on the open ocean.", + "The image from the internet of an ocean liner is a large ship with many decks and portholes.", + "The image is of an ocean liner with many decks.", + "In the image, an ocean liner can be seen sailing on the waves.", + "A large ship sails on calm blue waters.", + "The ocean liner is docked at the pier, ready to depart on its next voyage.", + "The S.", + "The ocean liner Queen Mary 2 sails through the English Channel.", + "The Cunard ocean liner \"Queen Elizabeth\" at dock in New York City.", + "\"The Queen Mary 2 is the largest ocean liner ever built.", + "The Queen Mary.", + "The RMS Queen Mary leaves New York Harbor bound for Southampton, England.", + " The TitanicThis image shows the Titanic, a massive ocean liner that tragically sank after hitting an iceberg in 1912.", + "The SS Normandie was the largest and fastest ocean liner of its time.", + " The RMS TitanicThe RMS Titanic was a British ocean liner that sank in the North Atlantic Ocean in 1912 after hitting an iceberg." + ], + "lipstick": [ + "Lipstick is a cosmetic product containing pigments, oils, waxes, and emollients that applies color, texture, and protection to the lips.", + "A lipstick is a cosmetic product that is applied to the lips to add color and hydration.", + "A lipstick is a small, cylindrical tube with a pointed tip.", + "Lipstick is a cosmetic product that is applied to the lips to add color and hydration.", + "A lipstick is a long, thin stick of colored wax.", + "A lipstick is a cosmetic product that is used to color and protect the lips.", + "A lipstick is a small, cylindrical tube of cosmetic product containing colored pigments or dyes.", + "A lipstick is a cosmetic that is applied to the lips to add color, hydration, and sometimes protection.", + "A lipstick is a small, cylindrical tube of cosmetic product.", + "A lipstick is a small, thin stick that is used to color the lips.", + "What brand is it? What is the color? What is the smell?.", + "You can identify a lipstick by its shape, which is typically a small tube, and by its color.", + "A lipstick can usually be identified by its long, cylindrical shape and pointed tip.", + "There are several ways to identify a lipstick.", + "Lipstick is typically sold in a cylindrical tube and can be applied with a brush, finger, or directly from the tube.", + "The best way to identify a lipstick is by the color.", + "If you look at the ingredients, most lipsticks will have some type of wax listed as an ingredient.", + "The lipstick is in a cylindrical case and has a pointed tip.", + "Lipstick can be identified by its color and finish.", + "Lipstick can be identified by its color, scent, and texture.", + "A typical lipstick has a bullet-shaped tip and is about 3 cm (1.", + "A lipstick typically looks like a small tube of color.", + "A lipstick is a small, tubular container of tinted lip balm, colored wax, or gel.", + "Lipsticks are small, cylindrical tubes that contain waxyes, pigments, and oils that give color and texture to the lips.", + "A lipstick is a cosmetic product that is used to color and protect the lips.", + "A lipstick is a small cylindrical stick of colored wax that is applied to the lips.", + "A lipstick typically has a cylindrical shape and is slightly pointed at one end.", + "A lipstick is a cylindrical makeup product that is used to apply color and gloss to the lips.", + "A lipstick is a cosmetic product that is used to color and protect the lips.", + "A lipstick is a cylindrical cosmetic product that ranges in color from light pink to dark brown.", + "An image from the internet of a lipstick shows a tube of pink lipstick with the word \"MAC\" written in white on the side.", + "This is an image of bright pink lipstick.", + "This image is of a lipstick on a white background.", + "This image is of a lipstick with a light pink matte color.", + "The image is of a lipstick with the color of the lipstick being a deep red.", + "The image is of a matte lipstick in a light pink color.", + "A vibrant red lipstick with a creamy texture.", + "The image is of a bright pink lipstick in a tube.", + "In the image, there is a woman standing in front of a white background.", + "A lipstick is a cosmetic product containing pigments, oils, waxes, and emollients that applies color and texture to the lips.", + "LipstickThis image shows a lipstick.", + " A woman applies pink lipstick.", + "This is a photo of a lipstick.", + "This lovely lipstick is perfect for a night out on the town!.", + "Close-up of a woman's lips with bright pink lipstickA close-up of a woman's lips with bright pink lipstick.", + "This long-lasting lipstick has a semi-matte finish and rich, vivid color.", + " A woman holding a pink lipstickA woman holds a pink lipstick up to her face, looking in the mirror.", + " A lady with bright pink lipsThis image is of a lady with bright pink lips.", + "This is aclose-up of a lipstick with a soft, pink hue.", + "This is my favorite lipstick! It's a great color for any occasion." + ], + "slip-on shoe": [ + "A slip-on shoe has a low heel and no laces.", + "A slip-on shoe is a type of shoe that does not have any laces or straps and can be easily slipped on and off the foot.", + "A slip-on shoe is a shoe that does not have laces.", + "A slip-on shoe is a type of footwear that does not have laces or any other type of closure.", + "A slip-on shoe is a shoe that does not have laces and can be slipped on and off the foot easily.", + "A slip-on shoe is one that does not have laces or other closures, and can simply be pulled on and off.", + "A slip-on shoe has no laces and slides on to the foot.", + "Slip-on shoes are shoes that do not have any laces or straps that need to be tied or fastened in order to be worn.", + "A slip-on shoe does not have laces.", + "A slip-on shoe does not have laces.", + "A slip-on shoe has no laces and is easy to put on and take off.", + "A slip-on shoe does not have straps, buckles, or laces.", + "A slip-on shoe does not have any laces.", + "Slip-on shoes generally have no laces, and can be worn without having to be tied.", + "A slip-on shoe is a shoe that does not have laces.", + "A slip-on shoe does not have any laces, straps, or fasteners.", + "A slip-on shoe is a type of shoe that does not have laces or other fasteners.", + "A slip-on shoe is a shoe that does not have any laces or any other type of fastening system.", + "Slip-on shoes do not have laces or straps.", + "A slip-on shoe is a shoe that does not have laces and can be slid on and off the foot easily.", + "A slip-on shoe looks like a shoe that does not have laces.", + "A slip-on shoe is a shoe that does not have laces and can be easily put on and taken off.", + "A slip-on shoe looks like a shoe that does not have laces and can be slipped on the foot.", + "A slip-on shoe looks like a shoe that does not have laces.", + "A slip-on shoe is a shoe that is easy to put on and take off.", + "Slip-on shoes are shoes that you do not have to tie or buckle.", + "Slip-on shoes typically have a low back and look like they would be easy to slip on and off.", + "A slip-on shoe usually has a low back and no laces.", + "A slip-on shoe is typically a low-cut shoe that does not have laces.", + "A slip-on shoe is a type of shoe that does not have any laces or straps to fasten it to the foot.", + "This image from the internet shows a black slip-on shoe with a white sole.", + "This image is of a slip-on shoe with a black and white design.", + "A slip-on shoe is a shoe that does not have laces and simply slips on the foot.", + "This image shows a slip-on shoe with a black upper and a white sole.", + "The image from the internet is of a black, slip-on shoe with a white sole.", + "The image is of a black slip-on shoe with a white sole.", + "This image is of a black slip-on shoe with a white sole.", + "This image is of a slip-on shoe.", + "A black slip-on shoe with a white sole.", + "This image is of a black slip-on shoe with a white sole.", + "These shoes are perfect for a casual look!.", + " Black leather slip-on shoes.", + " Black Vans Sk8-Hi Slip-On shoes.", + "Step into style with these chic slip-on shoes! With their sleek design and comfortable fit, they're perfect for any occasion.", + "Slip-on shoes are a type of shoe that can be easily put on and taken off.", + "A pair of black slip-on shoes.", + "blue slip-on shoe with white laces.", + "A pair of black slip-on shoes.", + " A pair of black Nike slides with a white band.", + "Shoes for when you just can't be bothered with laces." + ], + "lotion": [ + "A lotion is a liquid that is spread on the skin.", + "Lotion is a smooth, creamy liquid that is typically white or off-white in color.", + "A lotion is a smooth, creamy liquid that is typically applied to the skin to hydrate and moisturize.", + "A lotion is typically a thin, liquid cream that is applied to the skin.", + "Lotion can come in many different containers, but is typically a creamy liquid.", + "A lotion typically has a smooth, creamy consistency and is often white or off-white in color.", + "A lotion is a light, smooth cream that is easy to apply to the skin.", + "Lotion typically comes in a bottle or jar and is a creamy liquid.", + "A lotion typically comes in a squeezable container and is a smooth, creamy liquid.", + "A lotion is a smooth, creamy liquid that is typically white or pale in color.", + "A lotion is a type of moisturizer that is applied to the skin to help it retain moisture.", + "A lotion is a creamy, smooth, and slightly runny topical product that is applied to the skin.", + "The easiest way to identify a lotion is to look at the ingredients.", + "A lotion is a smooth, semi-solid emulsion of oil and water, which is often used to moisturize the skin.", + "Lotion is a type of moisturizer that is applied to the skin to help it become soft and smooth.", + "Lotions can be identified by their thick, creamy consistency and by their ability to moisturize and soften the skin.", + "A lotion is typically a liquid that is poured into a container.", + "A lotion is a type of cream that is applied to the skin to moisturize and soften it.", + "A lotion is typically a liquid or semi-liquid that is applied to the skin to moisturize or protect it.", + "There are many ways to identify a lotion.", + "A lotion is a smooth, creamy liquid that is often used to moisturize the skin.", + "A lotion typically comes in a small container and has a creamy consistency.", + "A lotion is a colored liquid that is used to moisturize dry skin.", + "A lotion is a smooth, creamy substance that is often used to moisturize the skin.", + "A lotion is a thin, smooth cream that is applied to the skin.", + "A lotion is a liquid that is often white or off-white in color.", + "A lotion can have many different appearances, depending on its purpose, ingredients, and form.", + "A lotion can come in many different colors, but is typically a creamy white color.", + "A lotion looks like a thick, creamy liquid that is applied to the skin.", + "A lotion is a smooth, creamy liquid that is typically used to moisturize the skin.", + "This image is of a lotion bottle with a label that reads \"Shea Butter Lotion.", + "The image is of a blue and white bottle of lotion with a pump.", + "This image is of a light pink lotion in a clear plastic bottle.", + "In the image, there is a white bottle of lotion with a green label.", + "This image is of a lotion called \"Aloe Vera\" by the brand \"Ultimate Aloe\".", + "This image is of a pink lotion in a white bottle with a pump.", + "An image of a lotion from the internet shows a white, creamy substance in a plastic bottle with a screw-on cap.", + " bottleThis image is of a lotion bottle that is white with a green label.", + " bottleThis is a light blue lotion bottle with a white pump.", + "This image is of a lotion called \"Gold Bond Ultimate Healing Skin Therapy Lotion.", + " Protect your skin with this moisture-rich lotion.", + "A close-up of a white lotion bottle with a green label.", + " Lotion for extreme drynessThis lotion is specifically designed for people with extreme dryness.", + " Nivea's Intensive Moisture Care LotionThis lotion is designed to give your skin intense moisture, leaving it feeling soft and smooth.", + "Soothing lotion for dry skin.", + " A bottle of Johnson's Baby Lotion.", + " A perfect gift for that special someone who needs a little relaxationThis lotion is the perfect gift for someone who needs a little relaxation.", + "A woman holds a bottle of lotion in her hands.", + "\"Shea Butter\" Organic Lotion.", + "\"This is the best lotion I've ever used!\"." + ], + "music speaker": [ + "Most music speakers are small, rectangular, and made of plastic.", + "A music speaker is a device that converts electrical energy into sound waves.", + "A music speaker is a cylindrical device that emits sound.", + "A music speaker is typically a small to medium sized rectangular box with a speaker grill on the front.", + "A music speaker is a device that converts electrical signals into sounds that we can hear.", + "A music speaker is a small, portable device that amplifies sound.", + "A music speaker is a device that produces sound from a digital signal.", + "A music speaker is a cone shaped object that is used to amplify sound.", + "A music speaker is a device that creates sound waves from an electrical signal.", + "A music speaker is a small, portable device that amplifies sound.", + "There is no one definitive answer to this question, as there are a variety of ways to identify a music speaker.", + "The easiest way to identify a music speaker is by the type of music it produces.", + "By looking at the speaker, you can usually tell if it is a music speaker.", + "Music speakers can be identified by their size, shape, and color.", + "Music speakers have different ways of being identified.", + "You can typically identify a music speaker by its size and shape.", + "The music speaker can be identified by its shape.", + "The brand, model, and size.", + "If you can't see the speaker, you can usually identify it by the sound it emits.", + "A music speaker can be identified by its shape and size.", + "A music speaker typically looks like a small box with a handle or strap.", + "Essentially, any speaker that is made to play music can be considered a music speaker.", + "Most music speakers are rectangular in shape with a series of small holes on the front or side that emit the sound.", + "A speaker is a device that converts electrical energy into sound.", + "There is no definitive answer to this question because speakers come in a wide variety of shapes and sizes.", + "A music speaker typically looks like a small, black box with a wire attached to it.", + "A music speaker typically has a cylindrical shape and is covered in a cloth or metal grille.", + "A music speaker is a rectangular box with a speaker attached to it.", + "A music speaker can look like a lot of different things.", + "A music speaker can look like a number of different things, but the most common type is a box with a woofer (a large driver that produces low frequencies) and a tweeter (a small driver that produces high frequencies).", + "This image is of a music speaker sitting on a wooden floor in front of a white wall.", + "In the image, there is a music speaker that is black with a silver grill.", + "The image is of a music speaker.", + "The image is of a music speaker that is on a stand.", + "The image is of a music speaker with sound waves coming out of it.", + "This image is of a music speaker with a blue light emanating from it.", + "This is an image of a black music speaker on a white background.", + "This image is of a large music speaker on a stand.", + "This image is of a music speaker on a table.", + "This image is of a music speaker.", + "The Best Music SpeakerThis speaker is the best way to enjoy your music.", + "This speaker is great for listening to music.", + "A music speaker on a table.", + "A music speaker that is playing music from a phone.", + "This music speaker is perfect for any party or event.", + "The speaker is turned on and playing music.", + " Speakers blasting music at a club.", + "This music speaker is perfect for any music lover.", + "This speaker gives you the best sound quality for your music.", + " The speaker is blasting music from her phone." + ], + "loupe magnifying glass": [ + "A loupe magnifying glass is a small handheld magnifying glass that is usually used by jewelers to examine diamonds and other gems.", + "A loupe is a small, handheld magnifying glass.", + "A loupe magnifying glass looks like a small handheld magnifying glass.", + "A loupe magnifying glass is a small handheld magnifying glass.", + "A loupe magnifying glass is a type of magnifying glass that is usually handheld and has a small lens that is used for magnification.", + "A loupe magnifying glass typically consists of a small, round lens that is held up to the eye in order to magnify objects.", + "A loupe magnifying glass is a handheld magnifying glass that is used to magnify objects.", + "A Loupe magnifying glass typically consists of a small circular lens that is attached to a handle.", + "A loupe magnifying glass is a small, handheld magnifying glass that is often used by jewelers to examine small details on jewelry.", + "A loupe magnifying glass is a small, handheld magnifying glass.", + "A loupe is a small, handheld magnifying glass.", + "A magnifying glass is a convex lens that is used to enlarge an image.", + "The simplest way to identify a loupe magnifying glass is by its size and shape.", + "A loupe magnifying glass is a small, handheld magnifying glass.", + "The best way to identify a loupe magnifying glass is to look for one that has a small, round lens and a handle.", + "A loupe magnifying glass is a handheld magnifying glass that is typically used by jewelers to examine small objects.", + "A magnifying glass is a convex lens that is used to enlarge an image.", + "You can identify a loupe magnifying glass by its circular shape and small size.", + "There is no definitive answer to this question, but some tips that may help include looking for a small, handheld magnifying glass with a rounded shape.", + "A loupe magnifying glass typically has a small, round lens that is held up to the eye.", + "A loupe magnifying glass typically looks like a small, hand-held magnifying glass.", + "The image below shows a jeweller's loupe, which is a type of magnifying glass.", + "A loupe magnifying glass is a small handheld magnifying glass.", + "Typically, a loupe magnifying glass is small and handheld, with a convex lens on one side for magnification and a flat surface on the other side for steady viewing.", + "A loupe magnifying glass looks like a small, handheld magnifying glass.", + "A loupe is a small, hand-held magnifying glass.", + "A loupe magnifying glass looks like a small hand held telescope.", + "A magnifying glass is a convex lens that is used to produce a magnified image of an object.", + "A loupe is a small handheld magnifying glass.", + "A loupe magnifying glass looks like a small, handheld magnifying glass.", + "The image from the internet is of a small handheld magnifying glass.", + "It's a small, hand-held magnifying glass with a convex lens.", + "This image is of a small, handheld magnifying glass.", + "A loupe magnifying glass is a small, handheld magnifying glass that is used to magnify small objects.", + "A magnifying glass is a convex lens that is used to magnify an object.", + "This image is of a loupe magnifying glass (or jeweler's loupe).", + "The image is of a small, handheld magnifying glass.", + "The image is of a small, circular magnifying glass on a silver chain.", + "This image is of a loupe magnifying glass.", + "This image is of a small, handheld loupe magnifying glass.", + "This is a loupe magnifying glass.", + " magnification loupe.", + "This loupe magnifier is great for inspecting small details!.", + "A magnifying glass is a convex lens that is used to produce a magnified image of an object.", + " This is a loupe, a small magnifying glass that is worn over the eye.", + "A loupe magnifying glass is a small, hand-held magnifying glass that is used to magnify small objects.", + "A loupe magnifying glass is used to examine small objects.", + "A loupe is a handheld magnifying glass used for inspecting objects up close.", + " a detailed view of a flowerThis image shows a close-up view of a flower magnified by a loupe, which is a small, handheld magnifying glass.", + " Jeweler's loupe magnifying glass." + ], + "sawmill": [ + "A sawmill is a large, industrial building where lumber is cut from logs.", + "A sawmill is a large, industrial building where wood is cut into lumber.", + "A sawmill has a large building that houses a long, horizontal table with a spinning blade in the middle.", + "A sawmill is typically a large, commercial building that is used to process logs into lumber.", + "A sawmill is a long, low building with a ragged roof.", + "A sawmill typically consists of a large shed with a roof, housing a number of saws of different sizes.", + "A sawmill is a large building that contains a lot of machinery.", + "A sawmill typically contains a saw pit, a mill house, log decks, a head saw, slabs, edging boards, and trim boards.", + "A sawmill typically consists of a large horizontal frame housing a heavy, rotating saw blade.", + "A sawmill is a large machine that is used to cut logs into lumber.", + "A sawmill is a large facility where logs are cut into lumber.", + "Look for a large building with a smokestack.", + "One way to identify a sawmill is by looking for a large shed with a slanted roof.", + "Each sawmill is different, but most sawmills have a large shed where the lumber is cut and stored.", + "The easiest way to identify a sawmill is by its characteristic waterwheel.", + "Most sawmills have a large building that houses the equipment used to cut the logs into lumber.", + "Most sawmills have a large shed where the logs are cut and processed.", + "The most common way to identify a sawmill is by its size and location.", + "A sawmill is a facility where logs are cut into lumber.", + "The most common way to identify a sawmill is by looking for a large waterwheel.", + "A sawmill is a large, industrial facility where lumber is cut from logs.", + "A sawmill typically looks like a large shed with a roof.", + "A sawmill is a large, commercial facility where felled logs are cut into lumber.", + "A sawmill is a large, industrial facility where wood is cut into lumber using large saws.", + "A sawmill is generally a large, industrial building where logs are cut into lumber.", + "A sawmill is a facility where logs are cut into lumber.", + "There is no one answer to this question as sawmills come in a variety of shapes and sizes.", + "A sawmill looks like a large shed with a loading dock and a chimney.", + "A sawmill looks like a large building with a lot of machinery inside.", + "A sawmill looks like a large building with a lot of machinery inside.", + "The image shows a large sawmill with multiple buildings and smokestacks.", + "Image shows a large, commercial sawmill.", + "I found an image of a sawmill on Google.", + "A sawmill is a wood cutting factory.", + "An image from the internet of a sawmill may show a large wood-processing facility where lumber is Cut to size.", + "A sawmill is a precut lumber mill where logs are cut into lumber.", + "The image is of a large sawmill with a tall stack of lumber next to it.", + "The image is of a large, industrial sawmill.", + "An image of a sawmill might show a large building with several smokestacks, surrounded by stacks of lumber.", + "A sawmill is a large commercial facility where lumber is processed.", + " The sawmill is a historic site that is now a museum.", + "A sawmill is a fascinating glimpse into the past.", + "Sawmill workers in Oregon, circa 1900.", + "A sawmill is a facility where logs are cut into lumber.", + "A sawmill is a facility where logs are cut into lumber.", + "This sawmill was built in the early 1800s and was in operation for over 100 years.", + "The Sawmill, circa 1885.", + "A sawmill is a place where logs are cut into lumber.", + "A sawmill is a facility where logs are cut into lumber.", + "A sawmill is a facility where logs are cut into lumber." + ], + "magnetic compass": [ + "A magnetic compass is a small, lightweight device that has a needle that points to the north.", + "A magnetic compass is a small, handheld device with a needle inside of it that always points north.", + "A magnetic compass typically consists of a magnetized needle or dial mounted on a card or needle point, which can rotate freely on a horizontal plane.", + "A magnetic compass typically consists of a magnetized needle or disk, often referred to as a \"magnet,\" suspended so it can rotate freely inside a liquid-filled housing.", + "A magnetic compass typically consists of a magnetized needle or dial mounted on a card or needle-shaped compass, which in turn is mounted on a circular base.", + "A Compass is a navigational instrument that shows directions in a frame of reference that is stationary relative to the surface of the earth.", + "Magnetic compasses are small, lightweight, and inexpensive.", + "A magnetic compass typically consists of a magnetized needle or disc suspended on a thread or pin inside a glass bottle.", + "A magnetic compass is a small, lightweight device that consists of a magnetized needle that is free to rotate on a pivot point, in order to align itself with the Earth's magnetic field.", + "A magnetic compass is typically a small, handheld device that has a needle that rotates on a dial.", + "A magnetic compass is a compass that detects Earth's magnetic field to show direction.", + "A magnetic compass contains a small, magnetized needle that aligns itself with the Earth's magnetic field.", + "A magnetic compass is a device that uses magnetism to show which direction is north.", + "Most compasses have a rusty needle that is attracted to the north pole.", + "The needle of a magnetic compass is attracted to the north pole of the Earth's magnetic field.", + "A magnetic compass is a small, handheld device that has a needle that points north.", + " Magnetic compasses have a needle that is allowed to rotate freely on a low-friction point.", + "A magnetic compass is a compass that uses a magnet to orient itself along the Earth's magnetic field.", + "A magnetic compass is a magnetic orienteering device that uses the Earth's magnetic field to determine the cardinal points.", + "A magnetic compass can be identified by its needle, which always points north.", + "A magnetic compass is a small, lightweight device that has a needle that points to the north.", + "A magnetic compass is a small, handheld device that has a needle that points north.", + "A magnetic compass looks like two needles on a piece of paper.", + "A magnetic compass is a small device that has a magnetized needle that points in the direction of the Earth's north magnetic pole.", + "A magnetic compass is a small, handheld device that has a needle that points to the north.", + "Most magnetic compasses consist of a small, lightweight magnet that is free to pivot on a central point.", + "A magnetic compass is a simple device that consists of a small, lightweight magnet that is free to rotate on a pivot point.", + "A magnetic compass is a small, handheld device that typically has a needle inside of it that always points north.", + "The most common type of magnetic compass is a liquid-filled compass.", + "Most magnetic compasses resemble a small, handheld flashlight.", + "The image is of a small, handheld compass with a needle that is pointing North.", + "An image of a magnetic compass from the internet is a round compass with a needle in the center that points to the north.", + "The image is of a small, handheld compass.", + "The image from the internet of a magnetic compass shows a compass with a needle pointing north.", + "The image is of a small, handheld compass.", + "The image is of a small, handheld compass with a needle that is magnetically attracted to the north-south poles of the Earth.", + "Image shows a compass with a needle pointing northwards.", + "The image is of a compass with a needle pointing north.", + "A magnetic compass is a compass that uses a magnet to align itself with the magnetic poles of the Earth.", + "The image is of a simple magnetic compass.", + "Magnetic Compass.", + "Magnetic compass.", + "Magnetic Compass.", + " \"A magnetic compass is a device that tells you which way is north\".", + "A magnetic compass is a device that uses the Earth's magnetic field to determine which direction is north.", + "A compass helps you find direction when you are lost.", + "A magnetic compass is a device that measures the direction of the Earth's magnetic field.", + "A compass is a magnetic tool used to find directions.", + "This is a picture of a magnetic compass.", + "A magnetic compass is a tool used to determine directions." + ], + "messenger bag": [ + "A messenger bag typically has a rectangular shape and a flap that covers the top of the bag and secures with a strap or snap.", + "A messenger bag is a type of bag that is worn over one shoulder and has a long strap that goes across the body.", + "A messenger bag is a type of bag that is worn over one shoulder and has a long strap that goes across the body.", + "A messenger bag is typically a shoulder bag that has a long strap that goes across the body.", + "A messenger bag is a type of bag that has a long strap that goes over one shoulder and across the body, allowing the bag to rest on the hip.", + "A messenger bag is a type of bag that is usually worn over one shoulder.", + "A messenger bag typically has a long, adjustable strap that can be worn across the body, and a rectangular shape.", + "A messenger bag is a type of bag that is worn over one shoulder and has a long strap that goes across the body.", + "A messenger bag is often a rectangular-shaped bag with a long strap that can be worn over the body.", + "A messenger bag is typically a shoulder bag with a large, flat, rectangular body and a long strap that goes over the shoulder and across the body.", + "A messenger bag has a long strap that goes over the shoulder, and the bag itself is rectangular and hangs down the side of the body.", + "A messenger bag has a long strap that goes over the shoulder and across the body.", + "A messenger bag is a bag that has a long strap that goes over the shoulder and across the chest.", + "A messenger bag is a bag with a strap that goes over the shoulder.", + "A messenger bag is a type of bag that is worn over the shoulder.", + "A messenger bag is often worn over one shoulder with the strap running across the chest.", + "A messenger bag is typically a rectangular bag with a long strap that can be worn across the body.", + "There are several ways to identify a messenger bag.", + "A messenger bag has a long strap that can be worn over the shoulder, and the bag itself is a rectangular shape.", + "A messenger bag typically has a flap closure and a long strap that can be worn over the shoulder.", + "A messenger bag is typically a rectangular bag with a long strap that can be worn across the body.", + "Messenger bags are available in a wide variety of designs, but most share a common structure.", + "A messenger bag is typically a sling bag that is worn over one shoulder.", + "A messenger bag is typically a rectangular bag with a long strap worn across the body.", + "A messenger bag is a type of bag that has a long strap that goes over the shoulder and across the body.", + "A messenger bag looks like a rectangular bag that is worn over one shoulder.", + "A messenger bag is a type of bag that is worn over one shoulder and has a long strap that goes across the body.", + "A messenger bag is a type of bag that is worn over one shoulder and has a long strap that goes across the body.", + "A messenger bag typically has a soft, rectangular body with a long strap that can be worn over the shoulder or across the body.", + "Messenger bags look like large, rectangular bags with a long strap that can be worn over the shoulder.", + "A messenger bag is a type of bag that is worn over one shoulder and across the body.", + "This image is of a messenger bag with a black and white geometric pattern.", + "This image from the internet features a messenger bag with a long strap that can be worn across the body.", + "The image is of a black messenger bag with a silver chain strap.", + "This image is of a black messenger bag with a silver chain strap.", + "The image is of a black messenger bag with a large silver ring in the center.", + "The image from the internet is of a black messenger bag with a silver chain strap.", + "The image is of a black messenger bag with a silver metal chain strap.", + "This messenger bag is made of black leather and has a silver chain strap.", + "This messenger bag is black and made of leather.", + " A black canvas messenger bag with a silver zipper and a strap.", + "Reversible Messenger BagThis is a messenger bag that can be worn two ways.", + "A brown messenger bag with a shoulder strap.", + " Messenger bag worn by a delivery person.", + "A well-organized messenger bag perfect for carrying documents, a laptop, and other essentials while on the go.", + "This bag is fit for a messenger, with plenty of space for a laptop and other essentials.", + "This messenger bag is perfect for carrying around all of your essentials! It has a spacious main compartment and multiple smaller pockets, so you can easily keep everything organized.", + "A black messenger bag with a silver chain strap.", + "I need this messenger bag to keep me organized on the go!.", + " The best messenger bag for bikingAssuming you would like a caption for the image: The best messenger bag for biking is the one that fits you best and has the features you need." + ], + "mailbox": [ + "Most mailboxes are rectangular and are made of metal or plastic.", + "A mailbox may be painted any color the owner chooses, but they are usually either red, green, silver, or gold.", + "A mailbox is generally a small, box-shaped container made of metal, plastic, or wood, designed to receive mail that is delivered by a mail carrier.", + "A mailbox typically consists of a enclosed box with a flag on the side or front that indicates whether or not there is mail inside.", + "A mailbox looks like a small box with a flag on the side.", + "A typical mailbox is a small, weatherproof box affixed to a post, wall, or other structure, designed to receive incoming mail.", + "A mailbox typically looks like a small, rectangular box with a hinged door.", + "A mailbox is often a brown or silver box with a flag on the side that raises to signal that there is mail to be collected.", + "A mailbox typically is a small, weatherproof box mounted on a post near the street in front of a house or business.", + "A mailbox is a small, often metal, box placed outside a home or business for the purpose of receiving mail.", + "There is no sure way to identify a mailbox, as they come in many different shapes and sizes.", + "A mailbox is usually made out of metal and has a flag on the side.", + "The mailbox is a rectangular structure with a flag on the side.", + "Mailboxes in the United States are typically six-sided blue or green boxes with a flag on the side.", + "There is no universal answer to this question, as the appearance of mailboxes can vary greatly from one place to another.", + "A mailbox is often made of metal or plastic and has a hinged lid.", + "If you are looking for a mailbox, they are often made out of metal and will have a flag on the side.", + "A mailbox can be identified by its unique address.", + "A mailbox is a small, usually metal, box affixed to the outside of a house or other building, for receiving mail delivered by the postal service.", + "The size and shape of a mailbox can vary, but most mailboxes are rectangular and have a hinged door on the front.", + "A mailbox may be made of metal or plastic and is generally rectangular in shape.", + "A mailbox is generally a small, metal, rectangular box affixed to the outside of a house or business.", + "These days, mailboxes come in many different shapes and sizes.", + "A mailbox in the United States looks like a small, metal box with a flag on the side.", + "A mailbox looks like a small box with a flag on the top.", + "A mailbox typically looks like a small, metal box with a flag on the top.", + "A mailbox is a small, lockable box mounted on the outside of a building.", + "A mailbox typically is a small, box-shaped container made of metal, plastic, or wood, designed to hold postal mail.", + "Most mailboxes in the United States are rectangular and are made of metal or plastic.", + "A mailbox may be a small, cabinet-like box, often made of metal or plastic, mounted along a road, near the entrance to a home or business, into which mail is delivered by a postal service.", + "A mailbox on the internet is most likely a digital image of a mailbox.", + "An image of a mailbox from the internet shows a traditional metal mailbox with a red flag.", + "A mailbox is a small, usually box-shaped receptacle for holding incoming and outgoing mail.", + "The image is of a red mailbox with the flag up, indicating that there is mail inside.", + "The image is a mailbox with the flag up.", + "The image is of a large, silver mailbox with the flag up.", + "A mailbox is a box, often made of metal or wood, for storing letters and packages that are to be sent by mail.", + "The image is of a traditional red mailbox.", + "A mailbox is a small, usually metal, box mounted on the outside of a building, used for receiving mail delivered by a mail carrier.", + "The image is of a blue mailbox with a flag on the side.", + "It's a mailbox!.", + "A blue mailbox on a white picket fence.", + " A blue mailbox in front of a house.", + "A blue mailbox on a wooden post with a American flag waving in the background.", + "A mailbox standing in front of a house.", + "A blue mailbox on a white picket fence.", + "Mailbox with U.", + "Image of mailbox with the caption \"Mailbox in the snow.", + "A mailbox outside a house.", + "This mailbox is for outgoing mail only." + ], + "tights": [ + "A pair of tights is a skin-tight garment made from a thicker material such as cotton, wool, silk, or Lycra.", + "A tights is a an article of clothing that covers the legs and feet.", + "A tights is a piece of clothing that is worn by both men and women.", + "Tights are typically made of a stretchy material such as Lycra, nylon, or spandex and they cover the legs and feet.", + "A tight is a piece of clothing that covers the legs and feet.", + "A tights is a tight-fitting piece of clothing that covers the legs and feet.", + "A tights typically looks like a tight, form-fitting piece of clothing that covers the legs and feet.", + "A tights is a type of clothing that is worn by both men and women.", + "This is a tough question.", + "A tights is a piece of clothing that covers the legs and feet.", + "A pair of tights is a type of clothing that is typically worn by women and girls.", + "Tights are typically made of a stretchy material like Lycra, nylon, or spandex and are worn from the waist to the toe.", + "A tights is a piece of clothing that covers the legs and feet.", + "A tights can be identified by its close fit and stretchy fabric.", + "A tights can usually be identified by its length.", + "Unfortunately, there is no foolproof way to identify a tights.", + "There are many ways to identify tights.", + "A tights is a kind of clothing that is worn by girls and women.", + "A tights can be identified by its stretchy fabric and close fit.", + "Tights are a type of close-fitting hosiery that covers the legs and feet.", + "A tights is a skin-tight garment that covers the whole body from the waist to the feet.", + "Tights are leggings that are made of thicker fabric and reach from the waist to the toes.", + "A tights usually looks like a skintight legging or something similar.", + "A tights look like a woman's undergarment that covers the legs and the area around the waist.", + "A tights is a kind of legwear, usually made from a stretchy material like Lycra, that covers the legs and feet.", + "A tights look like a skin-colored or black piece of clothing that covers a person's legs and goes up to their waist.", + "A tights typically looks like a close-fitting garment that covers the body from the waist to the toes.", + "A tights can look like a leggings, except it is usually made of a thinner material.", + "A tight is a type of clothing that covers the body from the waist to the toes.", + "A tights typically looks like a pair of leggings, except it is usually made of a thinner material.", + "The image is of a pair of tights in a light purple color.", + " factoryIn the image, there are several workers in a factory assembling tights on a conveyor belt.", + "In the image, a woman is standing in front of a mirror, holding a pair of tights up to her waist.", + "This image from the internet shows a close-up of a pair of colorful tights.", + "The image is of a pair of tights with a floral design.", + "-wearing modelThis image from the internet is of a tights-wearing model.", + "This image is of a black and white pair of tights.", + "The tights are black and lacey with a floral design.", + "In the image, a woman is standing in front of a mirror, modeling a pair of tights.", + "I couldn't find a image of tights on the internet that I felt comfortable describing.", + "TightsProduct of Italy.", + "A pair of black tights.", + "Tights on a clothesline.", + "Colorful tights on a clothesline.", + "Tights that give your legs a natural, flawless look.", + "A pair of tights.", + " A girl poses in a pair of printed tights.", + "Tights are a type of clothing that are typically worn by women.", + "Green tights with a gold polka dot design.", + "Tights are a type of clothing that are typically worn by women." + ], + "one-piece bathing suit": [ + "A one-piece bathing suit is a piece of clothing that covers the body from the chest to the groin and is typically worn by women when swimming.", + "A one-piece bathing suit is typically a skin-tight garment that covers the torso and the legs.", + "A one-piece bathing suit typically covers the torso and breasts, and may also cover the belly and buttocks.", + "A one-piece bathing suit is a garment that covers the body from the chest to the groin and is typically worn by women when swimming.", + "A one-piece bathing suit typically covers the entirety of the torso and the legs, though there are variations.", + "A one-piece bathing suit is a piece of clothing that covers the torso and the legs.", + "A one-piece bathing suit typically covers the entire body from the neck to the thighs, and may have a variety of different cuts and designs.", + "A one-piece bathing suit is a garment that is worn by women when they are swimming or sunbathing.", + "A one-piece bathing suit is a garment that covers the body from the chest to the groin and is typically worn by women when swimming.", + "A one-piece bathing suit usually has a top that covers the chest and a bottom that covers the waist and goes down to the upper thighs or mid-calf.", + "One-piece bathing suits are usually form-fitting and cover the torso and crotch area.", + "A one-piece bathing suit usually has a thinner strap that goes over the shoulder and ties in the back.", + "A one-piece bathing suit is typically a women's bathing suit that covers the torso and crotch area and leaves the legs uncovered.", + "A one-piece bathing suit typically covers the whole torso and has attached Garments below the waistline.", + "One-piece bathing suits have a single piece that covers the torso, and they do not have any gaps between the top and bottom of the suit.", + "A one-piece bathing suit is usually a woman's swimming costume that covers the body from the chest to the groin.", + "The easiest way to identify a one-piece bathing suit is by the lack of separate pieces.", + "One-piece bathing suits typically have less fabric and coverage than two-piece suits.", + "A one-piece bathing suit comes in one piece.", + "One-piece bathing suits can be identified by their overall coverage of the body.", + "One-piece bathing suits can look like a lot of different things.", + "A one-piece bathing suit is a swimsuit that covers the torso and has two straps that go over the shoulders.", + "A one-piece bathing suit typically covers the entire body, except for the arms and legs.", + "A one-piece bathing suit covers the torso and the legs.", + "A one-piece bathing suit looks like a swimsuit that only has one piece.", + "A one-piece bathing suit is a type of swimsuit that covers the body from the chest to the groin and is typically held up by straps that go over the shoulders.", + "A one-piece bathing suit looks like a one-piece swimsuit for women.", + "A one-piece bathing suit typically covers the torso and legs, and some styles also cover the arms.", + "A one-piece bathing suit is a garment that covers the body from the neck to the thighs, with straps that go over the shoulders.", + "A one-piece bathing suit is a piece of clothing that covers the entire body except for the arms, legs, and head.", + "This image is of a one-piece bathing suit.", + "The image is of a woman wearing a one-piece bathing suit.", + "An image of a one-piece bathing suit from the internet shows a woman in a black one-piece bathing suit with a white polka dot design.", + "The image shows a one-piece bathing suit that is green with a white floral print.", + "This image is of a one-piece bathing suit that is white with black stripes.", + "The image is of a woman in a one-piece bathing suit.", + "The image is of a white one-piece bathing suit with a high neckline and a low back.", + "The image is of a yellow one-piece bathing suit with a low neckline and a high cut leg.", + "The image shows a woman in a one-piece bathing suit.", + "The image is of a yellow one-piece bathing suit with a plunging neckline.", + "One-piece bathing suit with ruffle detail around neckline.", + "Svelte in a one-piece.", + "One-piece bathing suits are a classic silhouette that will never go out of style.", + "A woman in a one-piece bathing suit.", + "This one-piece bathing suit is perfect for a day by the pool or beach! The ruffle detail adds a touch of femininity, while the black and white stripes are chic and timeless.", + "One-piece bathing suit with black and white stripes.", + "One-piece bathing suits are making a comeback this summer!.", + "One-piece bathing suit with ruffledetail.", + "One-piece bathing suit with ruffled trim.", + "One-piece bathing suits are a great option for those who want more coverage than a bikini." + ], + "manhole cover": [ + "A manhole cover is typically a metal plate that is approximately 4 feet by 4 feet.", + "A manhole cover typically looks like a round or square metal plate that is used to cover an opening to a manhole.", + "A manhole cover is a circular piece of metal that covers the opening to a manhole.", + "A manhole cover is a severe weather-proof, circular metal plate that is used to cover an opening to a manhole.", + "A manhole cover is a circular or rectangular iron plate that covers a manhole\u2014a hole in the ground that provides access to a sewer, cable chamber, or utility vault.", + "A manhole cover is a metal or concrete disc that covers the opening of a manhole.", + "Round, metal, and says \"manhole\" on it.", + "A manhole cover is a large, typically circular plate that covers a hole in the ground.", + "A manhole cover is generally round and made of metal.", + "A manhole cover is a circular or rectangular metal plate that is used to cover a manhole.", + "Manhole covers are usually round or rectangular and have a heavy duty metal frame.", + "A manhole cover is typically a large, circular or rectangular metal plate that is used to cover an opening to a manhole.", + "Sources say that manhole covers are typically round and made of metal.", + "Manhole covers are typically made of metal and are round or rectangular.", + "There should be a raised part or a lip on the edge of the manhole cover.", + "A manhole cover can be identified by its circular shape and hole in the center.", + "A manhole cover is a circular or rectangular metal plate that covers an opening to a manhole.", + "The top of a manhole cover typically has a circular or square shape and is larger than the opening of the manhole.", + "The American Society for Testing and Materials (ASTM) A48 Standard for Gray Iron Castings for Machines and Structures designates a manhole cover as a \"cast iron, round, flat, bolted cover with a recessed rim,.", + "A manhole cover is a round or rectangular metal plate that covers a manhole.", + "A manhole cover is a circular or rectangular metal plate that covers the opening of a manhole.", + "A manhole cover is a circular or rectangular metal plate that covers an opening to a manhole.", + "A manhole cover is a round, metal plate that is placed over a manhole to keep people from falling in and to keep debris from falling into the manhole.", + "A manhole cover typically looks like a metal disk with a raised lip that is slightly bigger than the manhole opening.", + "A manhole cover is typically a circular or rectangular metal plate that is used to cover a manhole.", + "A manhole cover is a round or rectangular metal plate that covers the opening of a manhole.", + "A manhole cover typically looks like a large metal disk with a hole in the center.", + "A manhole cover is a circular or rectangular metal plate that is placed over the opening of a manhole.", + "A manhole cover is a circular or rectangular metal plate that covers the opening of a manhole.", + "A manhole cover is round and made of metal.", + "The image shows a metal manhole cover with a diamond-shapedpattern.", + "This image is of a manhole cover on a city street.", + "This image is of a manhole cover with a green background.", + "The image is of a manhole cover that is circular with a raised lip.", + "The image is of a rectangular manhole cover with a raised center and rounded corners.", + "This image is of a manhole cover with a spiral design.", + "The image from the internet of a manhole cover is a metal disc with a hole in the center.", + "The manhole cover is round and made of metal.", + "This image is of a rusty manhole cover with a green patina.", + "The image shows a grey metal manhole cover with a black rim.", + "Manhole covers are often made of cast iron and are used to cover manholes, or access points to sewers and other underground utility lines.", + "A rusty metal manhole cover with a circular design.", + "This is a manhole cover.", + "New York City street with manhole covers.", + "A manhole cover in Paris, France.", + "Manhole covers are often made of cast iron and are used to cover manholes, or access points to underground utility lines.", + "Manhole Cover in Paris, France.", + "This manhole cover is on a street in New York City.", + "A manhole cover with a circular design.", + "An old manhole cover in the street." + ], + "maraca": [ + "A maraca is a percussion instrument that consists of a gourd or seed pod that is filled with small objects such as beads or seeds, and has a handle.", + "A maraca is a musical instrument originating from South America.", + "A maraca is a percussion instrument that consists of a dried gourd filled with seeds or beads.", + "A maraca is a percussion instrument that is typically made from a gourd filled with small beads or seeds.", + "A maraca is a percussion instrument that consists of a dried gourd filled with seeds or beans.", + "A maraca is typically a dried gourd that has been hollowed out and filled with small rocks or beads.", + "A maraca is a handheld percussion instrument that is traditionally used in Latin American music.", + "A maraca is a musical instrument that is traditionally made from a dried gourd that has been filled with small objects such as beans or pebbles.", + "A maraca is a percussion instrument that consists of a gourd or coconut shell filled with beads or seeds.", + "Maracas are percussion instruments that are traditionally made from gourds.", + "Maracas are percussion instruments that originated in South America.", + "By looking at it.", + "The best way to identify a maraca is to look at its shape.", + "At first glance, a maraca may resemble a rattle.", + "A maraca is a musical instrument originating from South America that is traditionally made from a gourd filled with seeds or beans.", + "A maraca is a percussion instrument that consists of a dried gourd that is shaken with a seed or bean inside.", + "A maraca can be identified by its shape, which is typically a gourd, and by the material that it is made out of, which is usually wood.", + "A maraca is a Latin American percussion instrument consisting of a gourd with seeds or beads inside that is shaken.", + "A maraca is a type of percussion instrument that consists of a gourd that is filled with beads, seeds, or shells.", + "If you look at a maraca, you will see that it is a gourd with a handle.", + "A maraca is a percussion instrument from Latin America that consists of a dried gourd filled with seeds or beads.", + "A maraca typically looks like a small, gourd-shaped rattle with a handle.", + "A maraca is a percussion instrument that is traditionally made by filling a gourd with seeds or beads.", + "A maraca is a handheld percussion instrument that consists of a dried gourd or coconut shell filled with seeds or beads.", + "A maraca is a handheld instrument that is either empty or filled with small beads or seeds.", + "A maraca is an percussion instrument that originated in Latin America.", + "A maraca is a percussion instrument that typically consists of a gourd filled with small objects such as beads or seeds, with a handle attached.", + "The traditional maraca is a handheld percussion instrument made from a dried gourd with seeds or beads inside.", + "A maraca looks like a decorated gourd with beads or sequins.", + "A maraca is a percussion instrument that consists of a dried gourd filled with small seeds or pellets.", + "The image is of a maraca that is traditional to the Hispanic culture.", + "A maraca is a traditional percussion instrument from Latin America.", + "I couldn't find a picture of a maraca on the internet, so I found a picture of a rattle instead.", + "An image of a maraca from the internet would likely show a brightly colored, handheld musical instrument.", + "A photograph of a maraca against a white background.", + "The image is of a blue maraca with white dots.", + "The image shows a maraca that is yellow and green with blue stripes.", + "A maraca is a percussion instrument that consists of a gourd filled with small beads or seeds.", + "The image shows a maraca that is traditional to the Oaxaca region in Mexico.", + "A maraca is a percussion instrument from Latin America.", + "A traditional maraca from Mexico.", + "This is a picture of a maraca, a percussion instrument originating from Latin America.", + "A maraca being played.", + "A maraca is a musical instrument from South America that is played by shaking.", + "A maraca is a percussion instrument from South America.", + "\nA blue maraca on a white background.", + "A maraca being played.", + "A maraca is a type of percussion instrument that originates from South America.", + "A maraca is a percussion instrument traditionally used in Latin American music.", + "A traditional maraca from Mexico." + ], + "marimba": [ + "A marimba typically looks like a large wooden xylophone.", + "A marimba looks like a large wooden xylophone.", + "A marimba is a musical instrument that looks like a xylophone.", + "A marimba is a percussion instrument that consists of a set of wooden bars of different lengths that are struck with mallets to produce musical tones.", + "A marimba is a large wooden xylophone with a rectangular shape.", + "A marimba is a large, wooden xylophone with a range of octaves.", + "A marimba is a large, percussion instrument that consists of a set of wooden bars of different lengths that are struck with mallets to produce musical tones.", + "A marimba is a type of xylophone.", + "A marimba looks like a wooden xylophone with a keyboard that has long keys.", + "A marimba looks like a large xylophone with wooden bars.", + "A marimba is a musical instrument that is similar to a xylophone.", + "Answers will vary.", + "Marimbas can be identified by their distinct sound and large size.", + "marimba has a distinctly riche-sounding, mellow tone which is something like a cross between a xylophone and a glockenspiel.", + "A marimba can be identified by its unique sound, which is produced by the vibration of wooden bars.", + "The marimba is a large, wooden xylophone with a series of graduated, tuned bars that are struck with mallets.", + "The marimba is a large xylophone with wooden bars and resonators.", + "The marimba is a large xylophone with wooden bars.", + "A marimba is a percussion instrument that resembles a xylophone.", + "A marimba can usually be identified by its distinct, wooden sound.", + "A marimba is a musical instrument that resembles a xylophone or a glockenspiel.", + "Marimbas are usually rectangular shaped with metal bars of graduated lengths that are struck with mallets.", + "A marimba looks like a large wooden xylophone with between 4 and 6 octaves.", + "A marimba is a large, xylophone-like instrument with a range of several octaves.", + "A marimba looks like a wooden xylophone with long, graduated bars.", + "The marimba is a large, wooden percussion instrument with a set of tuned wooden bars.", + "A marimba is a large wooden percussion instrument that looks like a xylophone.", + "A marimba is a large wooden xylophone.", + "A marimba is a percussion instrument that looks like a xylophone.", + "A marimba is a musical instrument that consists of a set of wooden bars of graduated lengths that are struck with mallets.", + "An image of a marimba from the internet shows a large wooden instrument with a keyboard on the front.", + "This image is of a marimba in a concert hall.", + "In the image, a marimba is pictured in full color.", + "The image is of a marimba on a stage with lights shining on it.", + "A marimba is a percussion instrument that looks like a xylophone.", + "The image is of a marimba with its Keyboard and resonators.", + "This image shows a woman playing a marimba.", + "The image is of a marimba on a stage with the player's hands on the keys.", + "The image is of a marimba with its wooden bars arranged in a rectangular shape.", + "An image of a marimba from the internet might show the instrument being played by a person, or it might show the marimba on its own.", + "A marimba is a percussion instrument that typically consists of a set of wooden bars of varying lengths that are struck with mallets.", + "A Marimba on display at a music store.", + "It's a marimba!.", + "A marimba is a percussion instrument consisting of a set of graduated wooden bars struck with mallets.", + "A person playing a marimba.", + " \"Women playing a marimba in a street market in Guatemala\".", + "A marimba is a musical instrument in the percussion family.", + "A marimba is a percussion instrument that consists of a set of wooden bars of graduated lengths that are struck with mallets.", + "The beautiful tones of a marimba fill the air.", + "Four young women play marimbas in a setting sun." + ], + "mask": [ + "A mask is a piece of cloth that covers the face and is typically worn by people who are sick or want to prevent themselves from getting sick.", + "A mask is usually a piece of cloth or material that covers the mouth and nose.", + "A mask is a piece of cloth that is worn over the face.", + "A mask covers the face and is typically made from a fabric such as cloth.", + "A mask is a cloth or other piece of material that covers the mouth and nose to prevent the spread of disease.", + "A mask is a covering worn over the face to conceal one's identity.", + " in your own wordsA mask is a piece of cloth that covers the face.", + "A mask is a type of facial covering that is typically worn over the mouth and nose.", + "A mask is an article of clothing that is worn over the face.", + "A mask is a face covering that is typically worn over the mouth and nose to protect the wearer from inhaling harmful airborne particles or from spreading infectious fluids to others.", + "One way to identify a mask is by looking for clues in the text.", + "A mask is a covering that is worn over the face.", + "One way to identify a mask is by looking for a tag that says \"mask.", + "One way to identify a mask is by its function.", + "A mask is an object that is worn over the face to cover the nose and mouth.", + "A mask can be identified by its markings.", + "There are many ways to identify a mask.", + "You can identify a mask by looking for certain characteristics, such as a stiff surface that covers the nose and mouth, straps that secure the mask to the face, and a filter.", + "A mask can be identified by its straps, which go over the head, and its covered face.", + "There are a few ways to identify a mask:-The mask covers the whole face\n-The mask has two holes for the eyes\n-The mask may have a design on it.", + "A mask is a partial or full covering that hides the face.", + "A mask is a covering that is typically worn over the face.", + "A mask is a piece of cloth that covers the face.", + "A mask looks like a piece of cloth or paper that is held over the nose and mouth.", + "A mask is a covering for the face that is typically worn in public settings to help protect against the spread of germs.", + "There are many different types of masks, but a traditional mask is a carved wooden face with large protruding eyes, a small nose, and a wide mouth.", + "A mask is a thin piece of cloth or paper that covers the nose and mouth.", + "A mask is typically a piece of cloth or other material that covers the mouth and nose.", + "A mask looks like a face covering that is typically put over the mouth and nose.", + "A mask is a covering that is worn over the face.", + "The image is of a colorful mask with glitter on it.", + "A mask is a piece of cloth that covers the face.", + "The image is of a mask that is white with black lines around the eyes and mouth.", + "The image is of a black mask with holes for the eyes, nose, and mouth.", + "This image is of a traditional Japanese mask.", + "The image is of a black mask with two large eye holes.", + "One image that comes to mind is a photo of a colorful African mask.", + "This mask is half green and half white, with a green top and a white bottom.", + "The image is a close-up of a traditional Japanese Noh mask.", + "The image is of a human face with a mask over the mouth and nose.", + "People wearing masks to protect themselves from the coronavirus.", + "A man wearing a mask to protect himself from the coronavirus pandemic.", + "A man wearing a medical mask to protect against coronavirus disease (COVID-19).", + "Wearing a mask is one way to help prevent the spread of COVID-19.", + "A woman wearing a black mask over her face.", + "Masks are worn for a variety of reasons, including to protect the wearer's lungs from exposure to dust and other airborne particles.", + "A traditional Korean mask used in festivals and ceremonies.", + "A medical mask, used to protect against infection.", + "A mask worn by a doctor to protect against infection.", + "Pricey but worth it: a close-up of a black face mask with gold detailing\n." + ], + "matchstick": [ + "A matchstick is a thin, wooden rod with a small, flat piece of strike-anywhere match at one end.", + "A matchstick is a small, thin piece of wood with a sharpened end.", + "A matchstick is a thin piece of wood with a small amount of combustible chemical on one end.", + "A matchstick is a small wood or paper stick with a combustible tip.", + "A matchstick is a thin piece of wood with a match head on one end and a pointed tip on the other.", + "A matchstick generally refers to a thin piece of wood that has been cut into a rectangular or cylindrical shape.", + "A matchstick is a thin, narrow piece of wood with a small head on one end that is used to light fires.", + "A matchstick is a thin, dry piece of wood with a small head of sulfur-tipped paper at one end.", + "A matchstick is a small, thin piece of wood with a combustible tip that is used to light fires.", + "A matchstick is a small, thin piece of wood with a match head at one end.", + "The easiest way to identify a matchstick is to look for the small, narrow, wooden stick with a slightly flammable tip.", + "A matchstick is a thin piece of wood with a chemical on one end that can be set on fire.", + "A matchstick is a thin piece of wood with a small amount of combustible material at one end.", + "A matchstick is a thin piece of wood with amatch head at one end that is used to light a fire.", + "A matchstick is a thin piece of wood with a small strip of flammable material at one end.", + "A matchstick is a small wood stick with a match head on one end.", + "A matchstick is a thin piece of wood with a small strip of combustible chemical attached to one end.", + "A matchstick can be identified by its long, thin, cylindrical shape and its flammable tip.", + "A matchstick is a small, thin piece of wood with a chemically treated head that ignites when rubbed against a rough surface.", + "A matchstick is a small, thin piece of wood with a pointed end.", + "A matchstick looks like a thin, rectangular piece of wood with a small, round head.", + "A traditional matchstick is a small stick of wood with a combustible tip.", + "A matchstick is a thin piece of wood with a small amount of combustible material at one end.", + "a matchstick looks like a small black stick with a wick on one end and a piece of red paper on the other.", + "A matchstick is a thin, wooden stick that is used to ignite a fire.", + "\u0412\u0438\u0437\u0443\u0430\u043b\u044c\u043d\u043e, \u043f\u043e\u0445\u043e\u0436\u0435 \u043d\u0430 \u043f\u0430\u043b\u043e\u0447\u043a\u0443, \u0441 \u043e\u0434\u043d\u0438\u043c \u043a\u043e\u043d\u0446.", + "A matchstick is a small, thin piece of wood with a match head on one end.", + "A matchstick is a thin piece of wood with a pointed end.", + "A matchstick is a small, thin piece of wood with a match head on one end.", + "A matchstick is a thin, rod-shaped piece of wood used to light a fire.", + "The image is of a matchstick with a flaming head.", + "A matchstick is a thin piece of wood with a sulfurous head on one end that is used to light fires.", + "A matchstick is a thin piece of wood with a small amount of combustible material at one end.", + "A matchstick is a thin piece of wood that has been cut from a larger piece of wood.", + "The image is of a burning matchstick, with the flame licking up the side of the stick.", + "This image is of a black matchstick with a white head.", + "One image from the internet of a matchstick is a single matchstick with a burnt end.", + "The image is of a single, unlit matchstick on a white background.", + "The image shows a stick of matches with a red head.", + "The image shows a single, unlit matchstick against a dark background.", + "A matchstick on a white background.", + "One matchstick waiting to be used in a game of match ultimate.", + "A matchstick.", + "a burning matchstick.", + "A matchstick.", + "I'm trying to give up smoking.", + "A matchstick is a small wooden stick with a sulphur head, used to strike a light.", + "A matchstickA matchstick is a small piece of wood or paper that is used to start a fire.", + "A matchstick lying on a surface.", + "A single matchstick." + ], + "maypole": [ + "A maypole is a tall pole with colorful string or ribbon wrapped around it.", + "A maypole is a tall pole with colorful ribbons or streamers attached to it.", + "A maypole typically includes a tall wooden pole with colorful ribbon or streamers attached near the top.", + "A maypole is a decorations that is used to decorate a space for a spring or summer festival.", + "A maypole is a tall wooden post that is decorated with colorful streamers or ribbon.", + "A maypole is a tall pole, typically decorated with colorful ribbons, which is erected in the middle of a village green or other open space as part of a springtime festival.", + "A maypole is normally a tall pole with colorful ribbon or streamers attached to it, which people hold on to while dancing around the pole in a circle.", + "A maypole looks like a tall pole with colorful ribbons or cloths hanging from it.", + "A maypole is a tall, skinny pole with colorful ribbons or fabric draped around it.", + "A maypole is a tall pole with colorful streamers or ribbons attached to the top.", + "A maypole can be identified by its tall, slender thickness, which is often decorated with ribbons or flowers.", + "A maypole is a tall pole that is traditionally used in May Day celebrations.", + "A maypole is a tall pole that is decorated with garlands and ribbons.", + "A maypole is a tall wooden pole that is decorated with flowers and ribbons.", + "The maypole has a tall pole with brightly colored ribbons or streamers attached to the top.", + "Maypoles are tall poles that are decorated with garlands and ribbons.", + "A maypole is a tall wooden pole that is decorated with colorful streamers and ribbons.", + "A maypole is a tall pole that is decorated with flowers, ribbons, and other colorful items.", + "Maypoles are often found in the center of a village green or common and are decorated with flowers, greenery, and ribbons.", + "A maypole is a tall wooden pole that is decorated with flowers and ribbons.", + "A maypole is a tall wooden pole that is decorated with colorful ribbons.", + "A maypole is a tall pole typically decorated with ribbons and flowers that is traditionally used in May Day celebrations.", + "A maypole is a tall pole with colorful ribbons or streamers hanging from it.", + "A maypole is a tall pole that is decorated with flowers and ribbons.", + "A maypole typically consists of a tall wooden pole that is stripped of its bark and decorated with ribbons or flowers.", + "A maypole is a tall wooden pole that is decorated with colorful ribbons.", + "A maypole is a tall pole, typically with colorful ribbons or streamers attached to it, that is erected as a part of May Day celebrations.", + "A maypole is a tall pole with colorful ribbons or fabric strips attached near the top.", + "A maypole is a tall, slender pole, usually made of wood, that is decorated with flowers, ribbons, and streamers.", + "A maypole is a wooden pole that is decorated with flowers, ribbons, and streamers.", + "A maypole is a tall pole with colorful ribbons or streamers attached to the top.", + "A maypole is a tall wooden pole set in the ground, around which people dance while May Day celebrations take place.", + "Most maypoles are tall wooden poles with colorful ribbons or streamers attached near the top.", + "An image of a maypole from the internet shows a tall pole with colorful streamers attached to the top, while people dance around it holding hands.", + "The image is of a traditional English maypole, decorated with brightly coloured streamers.", + "A maypole is a tall pole with colorful ribbons or streamers attached to the top.", + "The image is of a maypole with streamers and ribbons of different colors hanging down from it.", + "A maypole is a tall wooden pole with colorful ribbons or streamers attached to the top.", + "A maypole is a tall wooden pole with colorful ribbons or streamers attached to it.", + "A maypole is a tall, slender pole with colorful ribbons and flowers wrapped around it.", + "Maypole dancers celebrating Beltane, a Gaelic festival marking the beginning of summer.", + "A maypole on the village green, decorated with garlands of flowers.", + "Maypole in the village of Wheatley, Oxfordshire, England.", + "A traditional maypole decorated with flowers and ribbons.", + "A group ofweavers dance around a maypole, celebrati.", + "A group of children and adults are dancing around a maypole, each holding a brightly colored ribbon.", + "Dancers circle around a maypole in the town square.", + "A group of people dancing around a maypole.", + "A maypole in a park surrounded by trees.", + "A maypole being raised in a village square." + ], + "maze": [ + ".", + "A maze is a series of interconnected paths through which one must travel, usually from a start point to a finish point.", + "A maze is a path or collection of paths, typically from an entrance to a goal.", + "A maze generally looks like a large, intricate labyrinth.", + "A maze is a series of walls and corridors, designed so that it is difficult to find your way out.", + "A maze is a series of paths and walls that twist and turn, making it difficult to find the way out.", + "A maze is a type of puzzle that usually consists of a complex network of paths and walls.", + "A maze is a series of passages, some of which lead to dead ends, that is designed to be difficult to navigate.", + "A maze is a path or collection of paths, typically from an entrance to a goal.", + "A maze is a series of corridors and walls that are designed to confuse and disorient people who try to navigate through it.", + "A maze is a series of pathways that lead to a central destination.", + "A maze can be identified by its confusing and complicated layout.", + "A maze can be identified by its complex and confusing system of paths.", + "A maze is a puzzle composed of a number of rooms, corridors, and doors through which one must find a path from the entrance to the exit.", + "There is no set answer to this question.", + "A maze is a path or collection of paths, typically from an entrance to a goal.", + "A maze is a pathway or collection of pathways, typically from an entrance to a goal.", + "A maze is a type of puzzle that involves finding a path from one point to another through a complex system of interlocking paths.", + "The distinguishing characteristic of a maze is that it has numerous paths, but only one correct path.", + "A maze can be identified by its complicated system of paths and its many dead ends.", + "A maze is a series of connected passages, which may be opened or closed, through which one must find a path from the entrance to the exit.", + "A maze looks like a complicated system of paths and walls that is designed to confuse and disorient people.", + "A maze is a series of twisty passages, often with dead ends.", + "Mazes can take on many different shapes, but they are often constructed as a series of twisty passages through which one must find a path.", + "Mazes can take on many different appearances, but a classic maze is a series of paths with walls or hedges separating them.", + "A maze can look like a complex network of paths with dead ends, or it can look like a pattern of concentric circles.", + "A maze typically looks like a labyrinth - a complex series of paths with twists, turns, and dead ends.", + "A Maze is a series of paths and walls that lead to a goal.", + "A maze typically looks like a complex system of walls and pathways that lead to a central destination.", + "A maze typically looks like a complicated, confusing system of paths or passages.", + "In the center of the maze is a large, dark castle.", + "This image is of a maze with high walls on either side.", + "The image is of a traditional-looking maze with high walls and a narrow path winding its way through to the center.", + "The image is of a maze with a path through it.", + "The image is of a maze with high walls on either side.", + "The image is of a maze with high walls on either side.", + "The image is of a maze with walls made of hedges.", + "The image is of a maze that is printed on a piece of paper.", + "Image shows a black and white maze with a path winding through it.", + "The image is of a large, complicated maze.", + "The way out is through the maze.", + "The Maze.", + "Can you find your way out of the maze?.", + "Can you find your way out?.", + "Can you find your way out of this maze?.", + "A maze made out of straw.", + "This maze is impossible to escape from!.", + "The Minotaur's Maze.", + "The Road to Nowhere.", + "Maze\n." + ], + "measuring cup": [ + "A measuring cup is a cup-shaped object that is used to measure amounts of liquid or dry ingredients.", + "A measuring cup typically has a long handle and a spout.", + "A measuring cup is a cup that is used to measure how much liquid is in a container.", + "A measuring cup is a cup that is used to measure volume.", + "A measuring cup is a cup designed to retrieve a specific amount of liquid or powdered ingredient, like sugar, flour or rice.", + "A measuring cup typically has a long handle and a spout on the opposite side of the handle from the pouring lip.", + "A measuring cup typically has a spout and a handle, and is graduated in units such as cups, ounces, or milliliters.", + ".", + ".", + "A measuring cup is a kitchen utensil that is used to measure the volume of liquids and dry ingredients.", + "A measuring cup is a cup that is typically marked with measurements, so that you can easily see how much liquid you are adding to a recipe.", + "A measuring cup typically has a spout and a handle, and is calibrated in metric ( milliliters or liters) and/or imperial (fluid ounces or cups) units.", + "A measuring cup is typically a glass or plastic container with markings on the side that show how much liquid the cup holds.", + "A measuring cup typically has a handle and a spout.", + "A measuring cup is a cup that is used to measure the volume of liquid or dry ingredients.", + "A measuring cup is a baking tool that is used to measure the volume of liquid or dry ingredients.", + "A measuring cup is a kitchen tool used to measure the volume of liquid or dry ingredients.", + "Most measuring cups will have measurements on the side of the cup in ounces or cups.", + "A measuring cup is a cup used to measure the volume of fluids or powders.", + "The capacity of a measuring cup is typically written on the cup.", + "A measuring cup typically has markings on the side that show how much liquid it can hold.", + "A measuring cup can have a variety of different shapes, but most have a handle and a spout.", + "A measuring cup looks like a glass or plastic cup with measurements on the side.", + "A measuring cup is a kitchen utensil that is used to measure volume.", + "A measuring cup is usually a clear cup with markings on the side that show how much liquid is in the cup.", + "A measuring cup is a kitchen utensil that is used to measure the volume of liquid or dry ingredients.", + "A measuring cup is a kitchen utensil that is used to measure the volume of liquid or dry ingredients.", + "A measuring cup looks like a graduated cylinder with a handle.", + "A measuring cup is a glass or plastic cup with markings on the side that show how much liquid is in the cup.", + "A measuring cup is a cup that has measurements on the side, so you can pour the exact amount of liquid you need.", + "The image is of a glass measuring cup with clear liquid up to the 2/3 mark.", + "A measuring cup is a kitchen utensil used to measure the volume of liquid or dry ingredients.", + "This image is of a measuring cup with different measurements on the side.", + "An image from the internet of a measuring cup may show a clear glass cup with markings on the side in teaspoons, tablespoons, and cups.", + "A white measuring cup with blue markings is shown.", + "A measuring cup is a glass or plastic cup with markings on the side that show the amount of liquid the cup contains.", + "An image of a measuring cup from the internet shows a clear plastic cup with markings on the side in cups, tablespoons, and teaspoons.", + "A silver measuring cup with the measurements of \"1 cup, 1/2 cup, 1/3 cup, and 1/4 cup\" written in black lettering.", + "The image is of a clear plastic measuring cup with red markings up the side.", + "The image is of a plastic measuring cup with markings for cups, ounces, and milliliters.", + " \"A common kitchen measuring cup, holding one cup of liquid.", + "A measuring cup is a kitchen tool used to measure the volume of liquid or dry ingredients.", + "A measuring cup is a cup used to measure volume.", + "A measuring cup is a cup used to measure the volume of a liquid or a solid.", + "A measuring cup, for measuring liquids.", + "A measuring cup with a yellow liquid inside.", + "A measuring cup.", + "A measuring cup with capacity markings for cups, ounces, and milliliters.", + "A measuring cup is a cup used to measure liquids or solids.", + "A measuring cup with liquids up to the 3/4 cup mark." + ], + "medicine cabinet": [ + "A medicine cabinet is a small cabinet that is used to store medication and first-aid supplies.", + "A medicine cabinet is usually a small, rectangular cabinet that hangs on a wall in a bathroom.", + "A standard medicine cabinet is a small rectangular box with a mirrored door that is mounted on the wall above a sink in a bathroom.", + "A medicine cabinet is a small cabinet that is usually hung on a wall in a bathroom.", + "A medicine cabinet is a small cupboard with shelves that is used to store medicine and first-aid supplies.", + "A medicine cabinet is usually a small, wall-mounted cabinet with shelves inside.", + "A medicine cabinet is a small cupboard with shelves.", + "A medicine cabinet is a small storage unit with shelves, typically found in a bathroom, in which medications and first-aid supplies are kept.", + "A medicine cabinet is typically a small, wall-mounted cabinet with mirrored doors that opens to reveal shelves inside where medicines and first-aid supplies are stored.", + "A medicine cabinet is a small, lockable cabinet that is used to store medicine and medical supplies.", + "A medicine cabinet has a mirror on the door and shelves inside for storing medicine and first-aid supplies.", + "Typical medicine cabinets are recessed into the wall and have a mirrored door.", + "A medicine cabinet is an enclosed cabinet that is typically used to store medicine and first-aid supplies.", + "A medicine cabinet is typically a small, wall-mounted cabinet that is used to store medication and first-aid supplies.", + "A medicine cabinet is a small cabinet that is used to store medicine and other small medical items.", + "A medicine cabinet can be identified by its doors, which are typically made of glass, and its shelves, which are typically made of metal.", + "A medicine cabinet can be identified by its door, which is usually mirrored, and by the shelves inside, which are usually stocked with medicine bottles and medical supplies.", + "A medicine cabinet can typically be identified by its contents, which usually include various medical supplies and medications.", + "One way to identify a medicine cabinet is by looking for a small mirror on the inside of the door.", + "A medicine cabinet is a small cupboard or cabinet that is used to store medicine or first-aid supplies.", + "A medicine cabinet can vary in appearance, but is typically a small cabinet with shelves that is used to store medicine and other small items.", + "The design of medicine cabinets has changed quite a bit over the years, but the classic medicine cabinet features a small, windowless cabinet with a mirror on the door.", + "A medicine cabinet is a small cabinet that is used for storing medicine and other small items.", + "A medicine cabinet is typically a small, wall-mounted cabinet with shelves and a door.", + "A medicine cabinet is a small cabinet that is used to store medicine.", + "A medicine cabinet typically consists of several shelves that are covered by a door.", + "A medicine cabinet is a small, cupboard-like cabinet that is used to store medicines and first-aid supplies.", + "A medicine cabinet typically has a few shelves on which to store medicines and first-aid supplies.", + "A medicine cabinet is a tall, narrow cabinet that is usually hung on a wall in a bathroom.", + "A medicine cabinet is a small, rectangular cabinet that is typically installed above a bathroom sink.", + "The image is of a metal medicine cabinet with a white border.", + "The image shows a wooden medicine cabinet with two shelves.", + "The image is of a small, square, wooden cabinet with two doors.", + "The image is of a small, metal medicine cabinet with a glass door.", + "The image shows a metal medicine cabinet with a glass door.", + "The image is of a small, metal medicine cabinet with a door that opens to reveal two shelves.", + "I found an image of an antique medicine cabinet on the internet.", + "A picture of a typical western-style medicine cabinet, set into a bathroom wall, with two doors that open to reveal shelves stocked with various bottles, containers, and boxes of medicines and first-aid supplies.", + "The image is of a small, white medicine cabinet with a mirrored door.", + "This image is of a small, yellow bathroom with a green medicine cabinet above the sink.", + "A medicine cabinet with various pills and ointments.", + "The medicine cabinet is full of different medicines, some for headaches, some for colds, and some for allergies.", + "A medicine cabinet with a variety of pill bottles and other medical supplies.", + "A medicine cabinet stocked with various medications and medical supplies.", + "This is a typical medicine cabinet found in many homes.", + "My medicine cabinet is full of essential oils and other natural remedies.", + "Inside a typical American medicine cabinet.", + "A medicine cabinet with a variety of pills and ointments.", + "A medicine cabinet stocked with various over the counter and prescription medications.", + "This is a typical medicine cabinet found in many homes." + ], + "megalith": [ + "A megalith is a very large stone that has been used in the construction of a structure or monument.", + "A megalith is a large stone that has been used to build a structure or monument.", + "A megalith is a large stone that has been used to construct a monument, either alone or as part of a larger structure.", + "A megalith is a large, stone monument.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used to construct a monument or building.", + "A megalith is a large stone that has been used to construct a monument or other structure.", + "A megalith is a large stone that has been used to create a monument or other structure.", + "Megaliths are large stone structures that were built by ancient civilizations.", + "A megalith is a large stone that has been used to construct a monument or other structure.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used to create a structure or monument, typically in prehistoric times.", + "A megalith is a large, ancient stone that has been used in the construction of a building or monument.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used in the construction of a building, wall, or other structure.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large, upright stone that has been used in the construction of a building, wall, or other structure.", + "A megalith is a large structure made of stone that was used by ancient cultures for religious or ceremonial purposes.", + "A megalith is a large stone that has been used in the construction of a building, wall, or other structure.", + "A megalith is a large stone that has been used in the construction of a structure or monument.", + "A megalith is a large stone that has been used to build a structure or monument.", + "A megalith is a large stone or a large piece of rock that has been used in the construction of a building or structure.", + "A megalith (from Ancient Greek \u03bc\u03ad\u03b3\u03b1\u03c2 megas, \"great\"; and \u03bb\u03af\u03b8\u03bf\u03c2 lithos, \"stone\") is a large stone that has been used to construct a structure or.", + "A megalith is a large stone that has been used to construct a monument or other structure.", + "A megalithic monument is a large stone that has been used to build a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used in the construction of a building or other structure.", + "A megalith is a large, stone monument or structure.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "ic structureI found an image of the Goseck circle, a megalithic structure in Germany.", + "The image is of a large stone that has been cut and shaped into a rectangular block.", + "ic tombThis image is of a large, ancient tomb made of huge stones.", + "A megalith is a large stone that has been used to construct a building or monument.", + "ic tombThis image is of a megalithic tomb in Newgrange, Ireland.", + "ic tombAn image of a megalithic tomb might show a large, ancient stone structure that was used as a burial site for important people in a community.", + "This image is of a megalithic tomb in Ireland.", + "A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + "ic structureA megalithic structure is a large, constructed stone monument.", + " This megalith was used in ancient times as a burial marker.", + " A megalith is a large stone that has been used to construct a structure or monument, either alone or together with other stones.", + " A large megalith that might have been used in funeral ceremonies.", + "This is a megalith, a large stone that was used in the construction of ancient buildings and monuments.", + "\"A megalith is a large stone that has been used to construct a monument or other structure.", + "It's hard to tell from this angle, but this megalith is actually quite large.", + " \"The megalithic ruins of Dura Europos, Syria\".", + "A megalith is a large stone that has been used in the construction of a structure or monument.", + "The megalith is a large stone that was used in the construction of ancient buildings and monuments.", + "A megalith is a large stone that has been used in the construction of a structure or monument, either alone or together with other stones." + ], + "microphone": [ + "A microphone is a small, handheld device with a round metal grille on one end.", + "A microphone is a small, round, metal device that has a thin piece of metal that vibrates when sound waves hit it.", + "A microphone is a small, handheld device that is used to amplify sound.", + "A microphone typically looks like a small, handheld device with a thin metal rod protruding from the bottom.", + "A microphone is a small, black, cylindrical object with a cord attached to it.", + "A microphone is a small metal or plastic device that converts sound waves into electrical signals.", + "A microphone generally consists of a cylindrical housing, within which is a metal voice coil attached to a small metal plate.", + "A microphone is a small, hand-held electronic device that converts sound into an electrical signal.", + "A microphone is a small, cone-shaped object with a hole in the center.", + "A microphone is a small, handheld device that is used to amplify sound.", + "A microphone is a devices that converts sound waves into electrical signals.", + "A microphone can be identified by its long, thin shape and by the grill-like Covering at one end.", + "The most common type of microphone is the dynamic microphone.", + "The easiest way to identify a microphone is by its shape.", + "One way to identify a microphone is by its shape.", + "Most microphones have a label that says \"microphone.", + "The easiest way to identify a microphone is by its shape.", + " hold it up to your mouth and speak into it.", + "By its shape.", + "The easiest way to identify a microphone is by its shape.", + "Some microphones look like traditional microphones that you would see someone singing into on stage.", + "A microphone typically looks like a small, black, cylindrical object with a metal grille on one end.", + "There is no single answer to this question as there are many different types and styles of microphones.", + "A microphone typically looks like a small, handheld device with a metal grille on one end.", + "A microphone typically consists of a thin metal or plastic sheet with a series of holes or slots.", + "A microphone typically looks like a small, handheld device with a thin metal mesh or plastic grille covering the opening.", + "A microphone is a small, handheld device that is used to amplify sound.", + "A microphone typically looks like a small black or gray device with a hole in the center.", + "Microphones vary in design, but most have a cylindrical shape with a grill or mesh on one end.", + "A microphone typically consists of a housing, with a small metal mesh or plastic foam covering, that contains a diaphragm.", + "An image of a microphone from the internet shows a small, black, cylindrical object with a metal grill on one end.", + "This image is of a microphone on a stand.", + "This image is of a microphone on a stand.", + "This image is of a blue microphone on a stand.", + "This image is of a microphone stand with a microphone attached to it.", + "This image is of a professional-grade microphone on a stand.", + "A microphone is an acoustic-to-electric transducer or sensor that converts sound into an electrical signal.", + "The image is of a microphone on a stand in front of a crowd.", + "The image is of a microphone on a stand in front of a speaker.", + "On the image, there is a microphone in the center with a light blue background.", + "A microphone.", + "This is a microphone.", + "This microphone is specially designed for use with digital recorders.", + "This is a microphone.", + "Fatty Boom Boom's Mic.", + "A microphone is a device used to convert sound waves into electrical signals.", + "This is a microphone.", + " professional microphone.", + "The Shure SM58 is a world-famous microphone used by vocalists everywhere.", + "A microphone on a stand, ready to be used." + ], + "microwave oven": [ + "A microwave oven looks like a metal box with a glass door.", + "A microwave oven typically has a stainless steel interior and a turntable that rotates food as it cooks.", + "A microwave oven is a box-like kitchen appliance that heats food by bombarding it with electromagnetic radiation in the microwave frequency range.", + "A microwave oven typically has a rectangular shape and is made of stainless steel.", + "A microwave oven is a oven that uses microwaves to heat food.", + "A microwave oven typically has a rectangular shape with a glass door in the front that allows users to see the food as it cooks.", + "A microwave oven typically has a rectangular shape and is made of metal.", + "A microwave typically has a door that opens to the side and a turntable inside.", + "A microwave oven is typically a small, box-shaped oven with a door that opens to the side.", + "A microwave oven typically has a front door, a control panel, a turntable, and a cooking chamber.", + "A microwave oven typically has a door that opens to the side, and a turntable inside that rotates the food as it cooks.", + "A microwave oven can be identified by its large door and small window.", + "A microwave oven typically has a door that can be opened and closed, a control panel, and a turntable.", + "You can identify a microwave oven by looking for these common features: a turntable, a digital display, and microwave-safe cookware.", + "It is usually a box with a door on the front, and it has a microwave oven inside.", + "The identify a microwave oven by looking for the following characteristics: a door with a window, a control panel with buttons, and a turntable.", + "A microwave oven can be identified by its unique shape.", + "A microwave oven can generally be identified by its rounded shape and the presence of a rotating plate inside.", + "The identify a microwave oven by its chrome door handle, keypad, and timer.", + "There is a microwave oven in almost every home nowadays.", + "A microwave oven typically looks like a regular oven, except it has a door that opens to the side instead of pulling down.", + "A microwave oven is a small box with a glass door on the front.", + "Most microwave ovens have a rectangular shape and are placed on a countertop.", + "A microwave oven looks like a box with a door on the front.", + "A microwave oven looks like a small box with a turntable inside.", + "A microwave oven looks like a metal box with a glass door in the front.", + "A microwave oven typically has a stainless steel front and a door with a window.", + "Most microwave ovens are small, box-shaped appliances with a door in the front.", + "A microwave oven looks like a small box with a door on the front.", + "A typical microwave oven has a rounded, box-like shape and is typically either white or off-white in color.", + "A photograph of a white microwave oven with a digital display.", + "The image is of a white microwave oven with a digital display.", + "In the image, there is a silver microwave oven with a digital display.", + "The image is of a white microwave oven with a digital display.", + "The image is of a white microwave oven with a digital display.", + "An image from the internet of a microwave oven would show a microwave with a door that opens to reveal a compartment where food can be placed.", + "The image is of a white microwave oven with a digital control panel.", + "The image is of a white microwave oven with a digital display.", + "The image is of a black microwave oven with a digital display.", + "The image shows a microwave oven with the door open.", + "A typical American kitchen wouldn't be complete without a microwave oven.", + "This microwave oven is perfect for heating up your food quickly and easily.", + "A microwave oven is a kitchen appliance that cooks food by using microwave radiation.", + "A microwave oven with a digital display.", + "A microwave oven is typically used to heat food and beverages.", + "A microwave oven cooks food by using microwaves to heat water molecules in the food.", + "A photo of a microwave oven with the caption, \"Heating up food has never been so easy.", + "A close-up of a microwave oven door with the words \"sealed for your safety\" visible.", + "A microwave oven, perfect for reheating leftovers or cooking quick meals.", + "Popcorn is done in three minutes!." + ], + "military uniform": [ + "Typically, a military uniform consists of a button-up shirt, pants, a belt, shoes, and a hat.", + "A military uniform can vary depending on which country's armed forces you are referring to, but generally it is a standardized outfit that consists of a matching set of jacket and trousers/skirt, worn with a shirt, tie, and shoes.", + "A military uniform is a standardized dress worn by members of the armed forces and paramilitaries of various nations.", + "A military uniform is usually a standardized dress worn by members of the armed forces and paramilitary organizations.", + "A military uniform is a standardized dress worn by members of the armed forces and paramilitaries of various nations.", + "A military uniform typically looks like a standard business suit with a few differences.", + "A military uniform typically includes a shirt, pants, shoes, and a hat.", + "A military uniform typically includes a shirt, pants, jacket, and hat.", + "A military uniform is a standardized dress worn by members of the armed forces and paramilitaries of various nations.", + "A military uniform is usually a standard issue set of clothing worn by members of the armed forces.", + "Most military uniforms will have some form of insignia or rank on them.", + "A military uniform is typically a standardised dress worn by members of the armed forces and paramilitaries of various nations.", + "A military uniform is a type of clothing worn by members of the armed forces.", + "There are several ways to identify a military uniform.", + "The most common way to identify a military uniform is by the type of clothing.", + "The type of uniform can vary depending on which branch of the military it is for, but they will all have some form of camouflage.", + " military uniforms vary depending on the country, but they generally include some combination of a helmet, boots, a uniform shirt with either long or short sleeves, and pants.", + "Most military uniforms include some combination of the following items:\n-A hat or other headgear\n-A coat or jacket\n-A shirt\n-A belt\n-Trousers\n-Boots.", + "Most military uniforms will have some form of camouflage.", + "A military uniform can be identified by its cut and style, as well as its insignia and badges.", + "A military uniform typically consists of a pair of trousers or skirt, a shirt or blouse, a headdress, and footwear.", + "There are many different types of military uniforms, but they all share some common features.", + "A military uniform is a standardized clothing worn by members of the armed forces.", + "A military uniform typically consists of a pair of trousers or a skirt, a shirt or blouse, a jacket or coat, and a belt.", + "A military uniform typically includes a shirt, pants, shoes, and a hat.", + "A military uniform is a standardized dress worn by members of the armed forces and paramilitaries of various nations.", + "A military uniform is a type of clothing worn by members of the armed forces and paramilitary organizations, such as police, security guards, and other public service personnel.", + "A military uniform typically consists of a button-up shirt, trousers, a belt, and shoes.", + "A military uniform is a type of clothing worn by members of the armed forces and paramilitaries of various nations.", + "A military uniform is a standardised dress worn by members of the armed forces and paramilitaries of various nations.", + "This is an image of an American military uniform.", + "In the image, a military uniform is shown in great detail.", + "This is a picture of a U.", + "This image shows a U.", + "The image is of a traditional military uniform that includes a long-sleeved button-down shirt, pants, a belt, and boots.", + "An image of a military uniform from the internet shows a person wearing a green and brown camouflage uniform with a beret.", + "This image is of a military uniform from the Vietnam War.", + "The image is of a man in a military uniform.", + "This image from the internet shows a military uniform from the Vietnam War.", + "This image is of a U.", + "This is a uniform of the United States Marine Corps.", + "A U.", + "A U.", + "A U.", + "A Navy uniform worn by a servicemember in the U.", + "This is the uniform of a member of the United States military.", + "A Russian Navy ceremonial uniform.", + "A U.", + "A U.", + " Israeli Defense Forces Uniform." + ], + "milk can": [ + "A milk can is a can that holds milk.", + "A milk can is a metal container that is used to store milk.", + "A milk can is a cylindrical container made of metal, plastic, or glass, used to store and transport milk.", + "A milk can is a sealed can that is used to store milk.", + "A milk can is a sealed container made of metal, plastic, or glass, used to store milk.", + "A milk can is a cylindrical container made of metal, plastic, or wood.", + "A milk can looks like a large metal can with a lid.", + "A milk can is a cylindrical can made of metal, plastic, or glass.", + "A milk can is a cylindrical container used to hold milk.", + "A milk can is a cylindrical container made of metal, plastic, or glass.", + "Milk cans are usually made out of metal and are a cylindrical shape.", + "A milk can is a can designed to store milk.", + "A milk can has a large handle on one side and a small spout on the other side.", + "A milk can is a can made of metal, plastic, or ceramic that is used to store milk.", + "Milk cans can be identified by their cylindrical shape, handles on either side, and a lid on top.", + "There are several ways to identify a milk can.", + "A milk can is often made out of metal and is cylindrical in shape.", + "There are a few ways to identify a milk can.", + "One way to identify a milk can is by its size.", + "A milk can is a can that is used to store milk.", + "A milk can is a metal container that is used to store milk.", + "A milk can is a cylindrical container made out of metal, plastic, or wood.", + "A milk can vary in appearance depending on its size and manufacturer, but generally it is a cylindrical container with a lid that is slightly domed or conical in shape.", + "A milk can is a container used to store milk.", + "A milk can is typically a cylindrical container made out of metal, plastic, or ceramic.", + "A milk can is a container that is used to store and transport milk.", + "A milk can is a container that is used to hold milk.", + "A milk can is a large, metal container that is used to hold and transport milk.", + "A milk can looks like a metal can with a handle.", + "A milk can is usually a tall, cylindrical can with a tight-fitting lid.", + "The image is of a silver milk can with a metal handle.", + "A milk can is a container used to hold milk.", + "A milk can is a image of a can that is used to store milk.", + "This image is of an old milk can with a metal lid.", + "A milk can is a large, metal container used to store and transport milk.", + "There is an image on the internet of a milk can that is old and rusty.", + "A milk can is a container for milk.", + "The image is of a white milk can with a blue lid.", + "The image is of a milk can that is white with a blue label.", + "The image is of a silver milk can with a blue band around the middle.", + "An old milk can with its rust and chipped paint.", + "Milk can on a white background.", + "A milk can from a local farm.", + "A rustic milk can with a worn finish.", + " A milk can with the word \"milk\" written on the side in white lettering.", + "A milk can on a white background.", + "A milk can sitting on a wooden floor.", + " A milk can used on a family farm.", + "A milk can with a green lid.", + "\"A milk can from a local dairy farm." + ], + "minibus": [ + "A minibus is a small bus that typically carries between 8 and 16 passengers.", + "A minibus is a vehicle that typically seats between 9 and 16 people, although some minibuses can seat up to 30 people.", + "A minibus is a smaller version of a bus.", + "A minibus is a small passenger van that typically has room for 8 to 12 people.", + "A minibus is a small bus, typically seating between 8 and 16 passengers, that is used for short journeys.", + "A minibus typically seats between 8 and 30 people and is used for short journeys.", + "A minibus is a small bus.", + "A minibus is a small bus with typically less than 16 seats.", + "A minibus is typically a van or small bus that has been outfitted to transport a small group of people, usually between 9 and 16 people.", + "A minibus tends to be a smaller version of a bus, and usually holds between 8 and 16 passengers.", + "A minibus is a vehicle used for transporting small groups of people, typically between four and eight people.", + "The most common way to identify a minibus is by its size.", + "Minibuses are usually identified by their smaller size when compared to regular buses.", + "Minibuses can be distinguished from other types of buses by their smaller size and their ability to maneuver in tight spaces.", + "A minibus is a small bus that can seat between 8 and 30 people.", + "A minibus is a vehicle designed to carry more passengers than a standard car.", + "A minibus is a small passenger van that typically seats between 9 and 16 people.", + "A minibus is a small bus, typically with a capacity of between 8 and 16 passengers.", + "Minibuses can be identified by their smaller size when compared to a regular sized bus.", + "A minibus is typically a smaller bus that can seat between 8 and 30 people.", + "A minibus is a vehicle that is smaller than a standard bus.", + "A minibus is typically a van that has been modified to seat more people.", + "A minibus is a small bus, typically with a capacity of between 8 and 30 passengers.", + "A minibus is a small, van-like vehicle that seats between 8 and 30 passengers.", + "Most minibuses have a design similar to a van or large SUV.", + "A minibus is a type of bus that is designed to carry between 8 and 30 passengers.", + "A minibus is a vehicle that is smaller than a standard bus.", + "A minibus is a vehicle that typically seats between 8 and 30 passengers.", + "A minibus is a small bus with a capacity of 14-16 passengers.", + "A minibus can come in many different shapes and sizes, but typically they are smaller than a full-sized bus.", + "This image is of a minibus that has been converted into a mobile library.", + "A minibus is a small bus designed to carry between 9 and 16 passengers.", + "This image is of a red minibus with the words \"Coach Hire\" written on the side.", + "In the image, a minibus is driving down a road.", + "A high top van with a lot of windows and seatbelts.", + "This image is of a white minibus with green lettering that says \"City Tours\" on the side.", + "This image is of a blue and white minibus with several people inside.", + "In the image, there is a blue minibus with white lettering on the side that says \"China International Travel Service.", + "A minibus is a vehicle with a capacity of nine or more passengers, typically used for transporting schoolchildren or groups on day trips.", + "The image is of a white minibus with blue and yellow stripes down the side.", + "A minibus in the UK.", + "A ministerial visit: The Minister for Transport, Mrs.", + "Minibus in Vietnam.", + "Mini Bus Shuttle Service.", + "Minibus on a busy street.", + "A group of people enjoying a ride in a minibus.", + "A purple and white minibus with the words \"Happy Bus\" written on the side.", + "A busload of people on their way to somewhere new.", + "A typical Suzuki Every Wagon in Hong Kong.", + "Minibus in Sri Lanka." + ], + "miniskirt": [ + "A miniskirt is a type of skirt that is very short, usually going no further than the top of the thighs.", + "A miniskirt is a skirt that is very short, typically ending above the knee.", + "A miniskirt is a type of skirt with a hemline that is above the knee, generally at mid-thigh level, normally no longer than 10 cm (4 in) below the buttocks; and a dress with such a hem.", + "A miniskirt is a short, tight skirt that typically ends at the upper thigh.", + "A mini skirt typically has a hemline that is above the knee, making it a garment that shows a significant amount of leg.", + "A miniskirt is a short skirt with a hemline that is above the knee.", + "A miniskirt is a skirt that is very short and does not cover very much of the leg.", + "A miniskirt is a skirt with a hemline that is above the knee.", + "A miniskirt is a very short skirt, typically just a few inches below the hips.", + "A miniskirt is a skirt that is very short, usually ending above the knee.", + "A miniskirt typically has a hemline that is above the knee, making it a shorter option than a traditional skirt.", + "A miniskirt is a short skirt that typically ends at or above the knee.", + "A miniskirt is a skirt that is made to sit very close to the body and ends around the mid-thigh area.", + "A miniskirt is a short skirt that hits above the knee.", + "A miniskirt is a skirt with a hemline that is above the knee.", + "A miniskirt is a skirt with a hemline that is above the knee.", + "A miniskirt is a skirt that is very short, typically around four inches above the knee.", + "A miniskirt is a tight, form-fitting skirt that sits at or above the knee.", + "A miniskirt is a skirt that is very short and typically has a tight fit.", + "A miniskirt is a skirt that extends to the top of the thighs or lower.", + "A miniskirt is a short skirt that usually ends at the top of the thighs.", + "A miniskirt typically has a hemline that falls at or above the knee.", + "A miniskirt typically has a short hemline that falls above the knee.", + "A miniskirt is a short skirt that typically ends above the knee.", + "A miniskirt is a short skirt that usually only comes down to the knees or thighs.", + "A miniskirt is a skirt that is much shorter than normal, typically ending above the knee.", + "A miniskirt typically looks like a skirt that is much shorter than average.", + "A miniskirt is a skirt with a hemline that is above the knee, typically ranging from mid-thigh to just below the buttocks.", + "A miniskirt is a women's skirt that is very short, often going no further than the bottom of the buttocks.", + "A miniskirt is a tight, short skirt that barely covers the buttocks.", + "An image of a miniskirt from the internet would likely show a woman wearing a short skirt that does not cover her entire legs.", + "Entitled \"Pina Colada\", the image is of a woman in a white playsuit with a plunging neckline and ruffled skirt, accessorized with a straw sunhat, hoop earrings, and a fruit cocktail.", + "This image is from the website Pinterest.", + "The image is of a woman standing in front of a mirror.", + "The image is of a woman wearing a short, tight skirt.", + "This image is of a woman wearing a black mini skirt and a white top.", + "This image is of a woman wearing a miniskirt.", + "This image is of a white miniskirt with a black and white floral print.", + "This image from the internet shows a young woman wearing a miniskirt.", + "This image is of a woman wearing a white miniskirt.", + "A fashionably dressed woman in a short skirt.", + "The miniskirt is a short skirt that is typically worn by women and girls.", + "Casually stylish, this denim mini skirt can be dressed up or down for any occasion.", + "Short skirt with print.", + "Wearing a miniskirt is a great way to show off your legs.", + "Model in mini skirt with suspendersA caption of an image of a reporter:Reporter asking a question at a press conference.", + "A woman wearing a miniskirt.", + " woman in a red miniskirt.", + "The miniskirt is a classic piece of fashion that has been around for decades.", + "A woman wearing a miniskirt stands in front of a building." + ], + "minivan": [ + "A mini van typically has space for eight people with removable seats.", + "A minivan typically has a long, rectangular body with sliding doors on both sides and a large cargo area in the back.", + "A minivan typically has 7 or 8 seats and lots of cargo space.", + "A minivan is a vehicle with four doors and seating for seven or more people.", + "A minivan is a vehicle with a long body and a short front end.", + "A minivan typically has sliding doors, a low floor, and a high roof.", + "A minivan typically has sliding doors and a low floor, making it easy to get in and out of the vehicle.", + "A minivan typically has sliding doors on both sides and a large cargo area in the back.", + "A minivan typically has a boxy shape with lots of windows.", + "A minivan is typically a van that seats seven people or less and has sliding doors.", + "There are many ways to identify a minivan.", + "Minivans usually have a sloped rear roofline and a \"tall wagon\" body style.", + "A minivan has a low, boxy profile and sliding doors on both sides.", + "Minivans can typically be identified by their boxy shape and sliding doors.", + "A van that seats seven or more people and has side passenger doors is generally classified as a minivan.", + "A minivan is a vehicle with a long body and sliding doors.", + "On a minivan, the sliding door is typically on the side, and there is a lot of space for seating and storage.", + "There is no definitive answer to this question, as different people have different opinions on what constitutes a minivan.", + "A minivan is a van that is designed to carry multiple passengers.", + "Minivans generally have a sloping roofline and a large, tall opening at the rear of the vehicle.", + "A minivan is a small van designed to carry passengers.", + "Most minivans have a long, rectangular body with a sliding door on each side.", + "A typical minivan has a long body and a sloping rear roofline.", + "A mini-van is a type of vehicle that is designed to transport people.", + "A Toyota Sienna is an example of a minivan.", + "A minivan typically has a long wheelbase, a tall roof, and side sliding doors.", + "A minivan typically has a long wheelbase, a high roof, a flat floor, and unibody construction.", + "A minivan usually has sliding doors and a lower height than a SUV.", + "A minivan typically has a long wheelbase with short overhangs, a low floor, a tall roof, and sliding doors.", + "A minivan looks like a smaller version of a van or SUV.", + "This image shows a blue minivan with tinted windows parked in a driveway.", + "This minivan is a Honda Odyssey.", + "The image from the internet of a minivan is a white minivan with dark windows.", + "The image is of a red minivan parked in a driveway.", + "In the image, there is a blue minivan with a family of four inside.", + "This image is of a silver minivan parked in a driveway.", + "An image of a minivan from the internet would likely show a family-sized car with plenty of space for passengers and cargo.", + "The image is of a blue minivan with 7 seats.", + "The image is of a white Toyota Sienna minivan.", + "This image is of a blue minivan with tinted windows.", + "This is a minivan.", + "This is a photo of a blue minivan.", + " A family of six is vacationing in their Honda Odyssey.", + "The Tucker Torpedo was one of the first minivans ever made.", + "Minivans are versatile vehicles that offer ample space for cargo and passengers.", + "This is a typical American family's car.", + "A red minivan with a black roof rack and tinted windows.", + "This family-friendly vehicle is perfect for road trips and errands alike.", + "This image shows a family in their minivan on the way to their vacation destination.", + "Family on vacation in a minivan." + ], + "missile": [ + "A missile is a projectile that is propelled through the air by a rocket engine.", + "A missile is a long, thin object that is pointed at one end and has fins at the other end.", + "A missile is a long, thin object that has wings and a tail.", + "A missile is a rocket-propelled weapon that can be guided to hit a target.", + "A missile is a long, thin object that tapers to a point at the front.", + "A missile is a long skinny object with a pointy end.", + "A missile is a long, thin, cylindrical object with a pointed nose.", + "A missile is a rocket-powered weapon that is designed to travel through the air and deliver a payload to a target.", + "A missile is a long, thin object with a pointed end.", + "A missile is a projectile with a explosive warhead.", + "There is no definitive answer to this question as it depends on the type of missile.", + "The best way to identify a missile is by its plume, or exhaust trail.", + "There is no definitive answer to this question as missiles can vary greatly in design and appearance.", + "A missile can be identified by its long, cylindrical shape and pointed nose.", + "There is no definitive answer to this question as missiles come in many shapes and sizes.", + "A missile can be identified by its cone-shaped nose, its long body, and its fins at the back.", + "Most missiles have a long, cylindrical body with pointed ends.", + " missiles typically have a long, thin shape and are very fast.", + "The easiest way to identify a missile is by its shape.", + "The easiest way to identify a missile is by its long, slender shape and cone- or rocket-like nose.", + "A missile can have many different shapes and sizes, but they are typically long and thin, like a rocket.", + "A missile is a cylindrical object with a pointed nose.", + "This is a difficult question because missiles come in many different shapes and sizes.", + "A missile looks like a long, skinny projectile with a pointed nose and fins at the back.", + "A missile is a small, rocket-powered object that is designed to be fired from a larger platform, such as a plane, a ship, or a tank.", + "A missile is typically a rocket-propelled projectile that is weaponized with a payload, such as explosives, chemical, biological, or nuclear weapons.", + "The shape of a missile depends on its function.", + "What do you mean by \"a missile\"?.", + "The first stage of a typical missile has a cone-shaped nose and is called the boost phase.", + "A missile can vary in appearance depending on its type, but typically it is a long, thin, cylindrical object with fins at the rear.", + "The image is of a missile shooting up into the sky, with a bright orange flame at the end.", + " in flightThis is an image of a missile in flight.", + "A missile is a weaponized device that is propelled through the air.", + "This image is of a North Korean KN-08 ICBM on a mobile launcher.", + "The image is of a large, silver missile with a white nosecone, sitting on a gray launchpad.", + "This image is of a ballistic missile being launched from a submarine.", + "The image is of a large, gray missile with a long body and fins at the back.", + "This image is of a missile in mid-flight.", + "I cannot post images from the internet here.", + "The image is of a black missile with a long body and pointed nose.", + " A missile is launched from a submarine.", + "A missile being launched into the air.", + "This is a long-range missile test being conducted by the United States military.", + "This is a missile.", + "An intercontinental ballistic missile (ICBM) is a long-range missile capable of striking targets anywhere in the world.", + "An Intercontinental Ballistic Missile (ICBM) is a missile with a range typically greater than 5,500 km (3,500 miles) designed to be launched from a surface platform.", + "A surface-to-air missile is launched from a military vehicle during a training exercise.", + " A missile launches from a submarine.", + "An intercontinental ballistic missile being launched.", + "Image of an Intercontinental Ballistic Missile (ICBM)." + ], + "mitten": [ + "A mitten is a glove with a thumb and no fingers.", + "A mitten is a type of glove that has a space for the thumb and is typically made from a warm, soft material.", + "A mitten is a glove that covers the whole hand but has separate sections for the thumb and four fingers.", + "A mitten is a type of glove that covers the entire hand, except for the thumb.", + "A mitten is a hand garment that is designed to cover the hand and wrist.", + "A mitten is typically a glove without fingers that is made to keep a person's hand warm in cold weather.", + "A mitten is a garment that is worn on the hand.", + "A mitten is a glove with a separate compartment for each finger, except for the thumb.", + "A mitten is a type of glove that covers the entire hand, leaving only the thumb exposed.", + "A mitten is a piece of clothing that is worn on the hand.", + " typically, mittens will have a thumb on only one side, and will be sectioned off so that each fingers is individualized.", + "There are several ways to identify a mitten.", + "There are a few ways to identify a mitten.", + "A mitten is a type of glove that only covers the hand, leaving the fingers free.", + "There are a few ways to identify a mitten.", + "It is a fingerless glove with a thumb compartment.", + "One way to identify a mitten is by its shape.", + "One way you can identify a mitten is by the thumb opening.", + "There are a few ways to identify a mitten.", + "A mitten is a type of glove that covers the entire hand but does not have individual sections for each finger.", + "A mitten typically has a thumb compartment on one side and is otherwise closed on all sides.", + "The simplest form of a mitten is a glove with the fingers cut off and the thumb left intact.", + "A mitten is a glove that covers all of the fingers except for the thumb.", + "A mitten is typically a glove without individual fingers.", + "Mittens are usually either black or white and they have a thumb on them.", + "A mitten typically has a thumb section and four fingers section.", + "A mitten is a glove with one section for all the fingers.", + "A mitten is a small garment that covers the hand.", + "A traditional mitten is a glove that covers all of the fingers and the thumb, leaving an opening at the top of the hand.", + "A mitten is typically a woolen glove that is worn in cold weather.", + "In the image, there is a mitten with a pattern of snowflakes on it.", + "In the image, there is a mitten that is mostly blue with a white cuff.", + "In the image, there is a mitten that is yellow and green with a white background.", + "There is an image on the internet of a mitten that is blue with white snowflakes on it.", + "In the image, there is a drawing of a mitten.", + "The image is of a blue and white mitten.", + "The image is of a mitten that is blue with white dots.", + "The image is of a mitten that is red and white.", + "The image is of a red and white mitten with a green background.", + "This image shows a mitten with a snowflake design.", + "A mitten made of red wool.", + "A person wearing a black mitten with a beige cuff.", + "My favorite winter accessory!.", + "\"The best way to keep warm in winter is by wearing a cozy mitten!\".", + "Warm and toastyA caption of an image of a cup of coffee:The perfect way to start the day.", + "A mitten made of wool.", + "My favorite mitten that my grandma made for me!.", + " A mitten grown in the shape of a handA hand-shaped mitten grown in the shape of a hand.", + "Game day in Michigan means bundling up in your Wolverines gear and braving the cold!.", + "Warm mittens on a cold winter day." + ], + "mixing bowl": [ + "A mixing bowl is a bowl that is used to mix ingredients together.", + "A mixing bowl is a large bowl that is used for mixing ingredients.", + "A mixing bowl is a large, deep bowl that is used for mixing ingredients.", + "A mixing bowl is a kitchen utensil that is used to mix ingredients.", + "A typical mixing bowl is a wide, deep, round, and usually tapered container used for stirring, mixing, and serving.", + "A mixing bowl is a cone-shaped bowl used in cooking for mixing ingredients.", + "A mixing bowl is typically a large, bowl-shaped container used for mixing food items.", + "A mixing bowl is a shallow, typically round bowl that is used to mix ingredients.", + "A mixing bowl is a deep, circular bowl that is used for mixing ingredients.", + ".", + "A mixing bowl is a deep round bowl that is used for mixing ingredients together.", + "A mixing bowl is a bowl used for mixing ingredients.", + "A mixing bowl can typically be identified by its large size and flared sides which make it easy to mix ingredients.", + "A mixing bowl is a bowl that is used for mixing.", + "A mixing bowl is a round, deep bowl that is used for mixing ingredients.", + "A mixing bowl can be identified by its shape.", + "A mixing bowl is a kitchen utensil that is used to mix ingredients together.", + "A mixing bowl is traditionally a bowl used for mixing food ingredients together.", + "A mixing bowl is a bowl that is used for mixing food.", + "A mixing bowl is a bowl that is used to mix food or ingredients.", + "A mixing bowl is a bowl-shaped container in which ingredients can be mixed together.", + "A mixing bowl is typically a large, shallow bowl with a wide opening.", + "A mixing bowl is a deep, round bowl that is usually made of glass, ceramic, or metal.", + "A mixing bowl typically has a wide, round shape and is deep enough to hold a large amount of ingredients.", + "A mixing bowl is a container with a wide, circular opening.", + "A mixing bowl is usually a large, deep bowl that is used for mixing ingredients.", + "A mixing bowl typically has a wide, circular opening and is deep enough that ingredients can be stirred without spilling over the sides.", + "A mixing bowl is a bowl that is used for mixing ingredients.", + "A mixing bowl is a kitchen utensil that is used to mix ingredients together.", + "A mixing bowl is a small to medium sized bowl that is used to mix ingredients together.", + "This image is of a simple glass mixing bowl.", + "The image is of a white ceramic mixing bowl with a blue rim.", + "There is an image of a mixing bowl on the internet.", + "The image is of a mixing bowl that is white with a blue rim.", + "A stainless steel mixing bowl filled with a light-colored batter.", + "The image is of a white mixing bowl with a yellow interior.", + "The image is of a round, white mixing bowl.", + "The image is of a white mixing bowl with a blue rim.", + "The image is of a white mixing bowl with a black handle.", + "The image from the internet is of a mixing bowl that is made from white ceramic.", + "A mixing bowl full of ingredients for a cake.", + "This is a picture of a mixing bowl.", + "A stainless steel mixing bowl with a pour spout.", + "A mixing bowl with a wooden spoon in it.", + "You can never have too many mixing bowls.", + "In a large bowl, combine the flour, sugar, baking powder, and salt.", + "A kitchen essential, this mixing bowl is perfect for anything from making salad to baking a cake.", + "A blue mixing bowl on a countertop next to several ingredients including flour, sugar, eggs, and butter.", + "A image of a mixing bowl filled with flour, sugar, and eggs.", + "Stirring a pot of soup on the stove." + ], + "mobile home": [ + "A mobile home is a type of prefabricated housing that is assembled in factories and then transported to sites of use.", + "A mobile home typically looks like a small rectangular house on wheels.", + "A mobile home is a small, prefabricated house on wheels.", + "A mobile home is usually a single-story structure that is built on a chassis and is made to be transported on a trailer.", + "A mobile home is a prefabricated structure, built in a factory on a permanent chassis, and transported to its site of use.", + "A mobile home typically looks like a small one-story house on wheels.", + "A mobile home is a prefabricated home that is built in a factory and then transported to a site where it is assembled.", + "A mobile home looks like a small house that is on wheels.", + ".", + "A mobile home typically looks like a small home that can be moved.", + "A mobile home is a type of Manufactured Housing (HUD Code) and usually refers to a trailer home that is build off-site in a factory and then transported to the home site.", + "A mobile home is a type of prefabricated housing that is designed and built in factories and then transported to the site where it will be used.", + "There are several ways to identify a mobile home:1.", + "A mobile home can be identified by its chassis and wheels.", + "The best way to identify a mobile home is by looking for a HUD certification label on the exterior of the home.", + "A mobile home is a type of prefabricated housing that is assembled in factories and then transported to sites of use.", + "A mobile home can usually be identified by its size and construction.", + "A mobile home is a home that is manufactured and then transported to a location.", + "A mobile home is a prefabricated structure, built in a factory on a permanently attached chassis before being transported to site.", + "A mobile home is a house that is built in a factory and then transported to a site where it is installed.", + "A mobile home is a kind of prefabricated house that is built in a factory and then transported to a site (usually by truck).", + "A mobile home looks like a small house that can be moved.", + "Most mobile homes look like small to medium sized homes that can be moved.", + "A mobile home looks like a small version of a traditional house.", + "Mobile homes are often rectangular and have a flat front and back.", + "There is no definitive answer to this question.", + "A mobile home looks like a small, portable house.", + "A mobile home is a prefabricated home that is built in a factory and then transported to a site where it will be used as a permanent residence.", + "A mobile home is a type of prefabricated housing that is built on a chassis that allows the home to be transported.", + "A mobile home typically looks like a small rectangular house on wheels.", + "A mobile home is a prefabricated home that is built on a chassis that allows the home to be transported.", + "This image is of a white mobile home with blue trim.", + "The image shows a mobile home with a blue metal roof.", + "The image is of a small, blue mobile home with a white door.", + "This image is of a mobile home that has been set up in a permanent location.", + "An image from the internet of a mobile home shows a small, rectangular house on wheels.", + "The image is of a mobile home with a woman and a child standing in front.", + "the image is of a small, blue mobile home with a white door.", + "The image is of a white mobile home with blue shutters.", + "The mobile home in the image is a small, rectangular structure on wheels.", + "This is a photo of a mobile home.", + "Interior of a typical mobile home.", + " Mobile homes are a popular choice for those who want to live in a more affordable dwelling.", + " A woman relaxes on the porch of her mobile home.", + "This mobile home is in great condition! It has been very well maintained and is ready for a new owner.", + " A digital representation of a manufactured homeThis is a digital representation of a manufactured home.", + " A mobile home in a campground.", + " A small, cramped, and decrepit mobile homeThis decrepit mobile home is small and cramped, with peeling paint and cracked windows.", + "My Home Sweet Home.", + "I live in a rented mobile home." + ], + "ford model t": [ + "A Ford Model T is a vehicle that was manufactured by Ford Motor Company from 1908 to 1927.", + "The Ford Model T is a vehicle that was produced by Ford from 1908 to 1927.", + "The Ford Model T was a car produced by Ford from 1908 until 1927.", + "The Ford Model T is a compact car that was produced by Ford from 1908 to 1927.", + "A ford model t is a car that was made in the early 1900s.", + "A ford model t is a small, black car with four cylindrical headlights.", + "A Model T is a small, boxy car with four doors.", + "A ford model t is a small car.", + "The Ford Model T was a mass-produced car built by Ford from 1908 until 1927.", + "A Ford Model T is a black car with white piping.", + "The Ford Model T is a car that was produced by Ford from 1908 to 1927.", + "A Ford Model T is a car that was built by the Ford Motor Company from 1908 to 1927.", + "The Ford Model T was produced from 1908 to 1927.", + "One way to identify a Ford Model T is by its engine.", + "A ford model t is a car that was made by the ford motor company from 1908 to 1927.", + "The Ford Model T is a car that was manufactured by Ford from 1908 to 1927.", + "The Model T was the first car mass-produced on an assembly line with interchangeable parts.", + "A Ford Model T can be identified by its small size, solid tires, and basic design.", + "The model T was the first car mass-produced on an assembly line.", + "There are a few ways to identify a Ford Model T.", + "The Ford Model T was a car produced by Ford from 1908 to 1927.", + "The Ford Model T was a car produced by Ford from 1908 to 1927.", + "A Ford Model T looks like an old-fashioned car with a long hood and a short trunk.", + "The Ford Model T was first introduced in 1908 and was in production until 1927.", + "The Ford Model T is a small car that was first manufactured in 1908.", + "A painted metal body with a reverse-slanted windshield, and four large wheels.", + "A Ford Model T looks like a vintage car from the early 1900s.", + "A model T is a Ford car from the early 1900s.", + "The Ford Model T was a car produced by the Ford Motor Company from 1908 until 1927.", + "The Ford Model T was a car produced by Ford from October 1, 1908, to May 26, 1927.", + "The image shows a black Ford Model T from the front.", + "The image is of a brown Ford Model T.", + "In the image, the Ford Model T is a light blue color and is parked on a dirt road next to a tree.", + "The image is of a red Ford Model T from the side.", + "The Ford Model T is a car that was produced by Ford from 1908 to 1927.", + "The image is of a red Ford Model T.", + "The image from the internet is of a white Ford Model T.", + "The image is of a burgundy Ford Model T from the side.", + "The image is of a blue Ford Model T.", + "The image is of a black Ford Model T from the side.", + " The model t was the first affordable car.", + "A Ford Model T Automobile.", + "The Ford Model T was the first car to be mass-produced on an assembly line.", + "A Ford Model T car from 1908.", + "The first production car from the Ford Motor Company, the Model T was introduced in 1908.", + "The Ford Model T was an American car built by the Ford Motor Company from 1908 to 1927.", + "The Ford Model T was the first car produced on a moving assembly line.", + "A Model T Ford, the first mass-produced car in the world.", + "Created in 1908, the Ford Model T was the first car to be mass-produced on an assembly line.", + "A Model T Ford from 1908This Model T is from 1908 and is one of the first cars mass produced on an assembly line." + ], + "modem": [ + "Click to see full answerLikewise, people ask, how does a modem look like?What does a wireless modem look like? Wireless modems generally look like a small box with a few lights on the front.", + "A modem is a device that converts computer data into a signal that can be transmitted over a phone line.", + "A modem is a device that converts digital signals into analog signals and vice versa.", + "A modem is a device that connects a computer to the Internet.", + "A modem connects a computer to the internet.", + "A modem is a small, boxy device that typically sits on or near your computer.", + "A modem is a small box with several cables coming out of it.", + "A modem is a device that connects a computer to the Internet.", + "A modem is a box that either sits on your desk or is located somewhere in your home.", + "A modem is a small black box that typically plugs into the back of a computer.", + "It is a small box that connects your computer to the internet using a phone line.", + "A modem is a device that converts data between two different digital formats.", + "On a computer, a modem is either a hardware device or software that modulates another carrier signal to encode or decode digital information for transmission.", + "One way to identify a modem is by the presence of an RJ-11 telephone jack.", + "Modems are devices that are used to connect computers to the internet.", + "A modem is a device that connects a computer to the Internet.", + "A modem can typically be identified by looking at the ports on the back of the device.", + "A modem is a piece of hardware that allows a computer to connect to the internet.", + "A modem is a device that connects a computer to the internet.", + "A modem is a devices that converts computer data into a form that can be sent over a telephone line.", + "A modem is a small, box-like device that connects your computer to your Internet service provider's (ISP) network.", + "A modem looks like a small, square box with several lights on the front.", + "A modem is a device that converts digital signals to analog signals and vice versa.", + "A modem is a device that connects a computer to the Internet.", + "A modem is a device that converts digital data into analog data for transmission over a telephone line, and vice versa.", + "A modem is a small box that is usually placed next to a computer.", + "A typical modem looks like a small, boxy computer component with many cords emerging from it.", + "A modem is a small, boxy piece of electronic equipment that connects a computer to the Internet.", + "A modem is a box that connects your computer to the internet.", + "A modem is typically a small box that has cords coming out of it that connect to your computer and your phone line.", + "The image is of a black modem with a green light on the front.", + "The image is of a black modem with a gold Ethernet port in the center and four lights on the front.", + "A modem is typically a box that sits on or near your computer and has several cables coming out of it.", + "The image is of a black modem with a green light on the front.", + "A modem is a device that connects a computer to the Internet.", + "The image is of a stand-alone modem with an Ethernet cable plugged into it.", + "The image is of a black modem with a green light on the front.", + "An image of a modem from the internet is a rectangular box with many ports and lights on the front.", + "The image is of a black modem with a green light in the center.", + "This image is of a Netgear modem.", + "A digital modem used to connect to the internet.", + "A 56K external modem for connecting a computer to the internet.", + " A 56K modem from the 1990sThis 56K modem was cutting-edge technology in the 1990s, allowing users to connect to the internet at speeds up to 56 kilobits per second.", + "This is a modem.", + "A digital subscriber line (DSL) modem is a device used to connect a computer or router to a telephone line which provides digital data transmission over the telephone network.", + "This is a modem.", + "This photo shows a modem, which is a device used to connect a computer to the internet.", + "A modem is a device that connects a computer to the internet.", + "The back of a Motorola modem with all the ports labeled.", + "A modem is a device that modulates an analog signal for digital transmission and demodulates the digital signal for analog reception." + ], + "monastery": [ + "A monastery is usually a large and secluded building or group of buildings located in a rural area.", + "There is no one answer to this question since there are a variety of types of monasteries.", + "A monastery is a large building that is home to a community of monks.", + "A monastery is a large building that is usually surrounded by a large area of land.", + "A monastery is a large building that is usually made out of stone.", + "A monastery is a solemn and secluded place of worship, typically located in the countryside, away from the hustle and bustle of cities.", + "A monastery is typically a large building or complex of buildings housing a community of monks.", + "A typical monastery is a group of buildings housing a community of monks who follow a religious order.", + "A monastery is a building or set of buildings comprising the domestic quarters and workplaces of monastics, monks or nuns, whether living in communities or alone (hermits).", + "A monastery is typically a large building or complex of buildings housing a community of monks.", + "The most common ways to identify a monastery are by its architecture or by its location.", + "By its architecture, a monastery is typically recognizable as a group of buildings clustered together, often defensive in nature, containing living quarters for monks, a church, and other buildings for scripture study, dining, and other purposes.", + "The most common identifying features of monasteries are their architecture and location.", + "There is no one way to identify a monastery.", + "Monasteries are often large and historic buildings that have been converted for use as a religious retreat.", + "A monastery is a building or complex of buildings comprising the domestic quarters and workplaces of monastics, monks or nuns, whether living in communities or alone (hermits).", + "A monastery is generally a large and secluded property housing a community of monks who follow a religious order.", + "You can identify a monastery by its Gothic architecture, its large size, and its location away from the city.", + "Some ways that you can identify a monastery is by its architecture, because many monasteries are designed in a specific way.", + "A monastery is a large building that is home to a community of monks.", + "A monastery is typically a large building or a group of buildings that contain living quarters for monks, a chapel, and other common areas.", + "A monastery can look like a large mansion with many rooms or a small, secluded cottage.", + "There is no one answer to this question as monasteries can vary greatly in appearance.", + "The answer to this question depends on which monastery you are referring to.", + "There are a variety of monastery designs based on the climate, terrain, and culture of the region.", + "A monastery is a building or complex of buildings comprising the domestic quarters and workplaces of monastics, monks or nuns, whether living in communities or alone (hermits).", + "A monastery is typically a large building or complex of buildings located in a remote location.", + "A monastery is a large building that is usually home to many people who have chosen to live a religious life.", + "A monastery is typically a large building or complex of buildings housing a community of monks.", + "A monastery is typically a large building or complex of buildings that includes a church, a residence for monks or nuns, and other structures for supporting monastic life.", + "This image from the internet shows a monastery in the Zhangye Danxia Landform Geological Park in China.", + "The image shows a large monastery complex perched atop a hill.", + "The image is of a large monastery with several domed rooftops.", + "The image is of a large, whitewashed monastery perched atop a hill.", + "The image is of a large monastery complex set against a backdrop of mountains.", + "This image is of a buddhist monastery in china.", + "There is an image from the internet of a monastery that is set atop a hill.", + "This image is of the Drepung Monastery in Tibet.", + "The image is of a large, multi-story monastery set against a backdrop of mountains.", + "The image is of a monastery perched atop a hill, surrounded by trees.", + "Namdroling Monastery, India.", + "The Vatopedi Monastery on Mount Athos in Greece.", + "A group of farmers carry crops to the monastery.", + "Ruins of the monastery at Glasnevin, Ireland.", + "This is the Monastery of the Transfiguration, located in Mount Athos, Greece.", + " A monastery hidden away in the mountainsThis monastery is hidden away in the mountains, making it a peaceful and secluded place for worship and contemplation.", + "The Most Holy Trinity Monastery in Jordanville, New York.", + "Tibetan Buddhist monks at a monastery in Tibet.", + "Namdroling Monastery, also known as \"The Golden Monastery\", is a Tibetan Buddhist monastery located in Karnataka, India.", + "The Monastery of the Holy Trinity, built in the 12th century, is one of the most important Byzantine monasteries still standing today." + ], + "monitor": [ + "A monitor is usually a rectangular device that sits on a desk or table.", + "A monitor looks like a computer screen.", + "A monitor is a piece of computer equipment that allows a user to view information.", + "A monitor is a rectangular piece of electronic equipment that displays information from a computer.", + "A typical computer monitor is a rectangular, flat-screen device that sits on top of a desk or is built into a computer.", + "A monitor looks like a screen that is typically placed on a desk or table.", + "A monitor is a rectangular computer screen that displays images and videos.", + "A monitor is a digital or an analog display device for computers.", + "A monitor is a cylindrical object with a small, circular screen at the front.", + "Most computer monitors have a rectangular shape with rounded corners.", + "A monitor can be identified by its input connections, which are typically one or more of the following: VGA, DVI, HDMI, DisplayPort, and Thunderbolt.", + "You can identify a monitor by looking for the screen.", + "A monitor can be identified by its rectangular shape, thin bezels, and flat panel.", + "Monitor is a device that displays information in visual form.", + "A monitor is a type of computer display.", + "The best way to identify a monitor is by the type of input connections it has.", + "A monitor has a screen that displays images and text.", + "You can identify a monitor by looking for the inputs and outputs on the back of the device.", + "You can identify a monitor by the digital label on the back of the device.", + "Most monitors have a label that says \"monitor\" on the front.", + "Monitors come in all shapes and sizes, but they generally have a rectangular shape.", + "A monitor is a computer screen.", + "A monitor is a display device that shows information in visual form.", + "A monitor looks like a TV, but it is smaller and has a thinner frame.", + "A computer monitor is typically a display device that shows images, video, and other data generated by a computer.", + "A monitor looks like a rectangular box with a screen attached to the front.", + "A desktop computer monitor may look like a television, but there are some important differences.", + "A monitor typically looks like a rectangular box with a screen in the middle.", + "A monitor generally looks like a rectangular box with a screen in the middle.", + "A monitor is a computer display device.", + "The image is of a computer monitor with a black screen.", + "The image is of a white computer monitor on a desk.", + "This image is of a computer monitor on a desk with a plant beside it.", + "A computer monitor is a hardware device that displays images or video transmitted from a computer.", + "A monitor is a piece of computer hardware that displays information for the user.", + "The image is of a computer monitor on a desk.", + "It's a black and white photo of a computer monitor from the 1980s.", + "The image is of a monitor on a desk.", + "The image shows a computer monitor on a desk.", + "A monitor is a image that is outputted by a device such as a computer, laptop, or phone.", + " A close-up of a computer monitor with a blue screen and error messageThe error message on the screen reads: \"SYSTEM FAILURE: Please reboot your system and try again.", + "A close-up of a computer monitor, with a bright blue screen and a white cursor in the center.", + "A close-up of a computer monitor, showing the screen saver on.", + "A close up of a computer monitor with a blue screen and white text.", + "A close up of a computer monitor.", + "A monitor displaying an image of a planetThis image shows a monitor displaying an image of a planet.", + " \"Apple's new 6K retina monitor.", + "A computer monitor showing a desktop with various icons and open windows.", + "This monitor is displaying an image of a computer screen.", + "The monitor displays a green and black image." + ], + "moped": [ + "Mopeds typically have small wheels and a low seat.", + "A moped typically has pedals, like a bicycle, but also has a motor.", + "A moped is a two-wheeled vehicle that is powered by either a gas engine or an electric motor.", + "A moped is a small, lightweight motorcycle with a low-powered engine.", + "A moped is a small, lightweight motorcycle with a gasoline engine.", + "Mopeds typically have small wheels and a low seat, making them easy to ride and maneuver.", + "A moped is a lightweight two- or three-wheeled vehicle with an engine not exceeding 50 cc and a maximum speed not exceeding 50 kilometers per hour.", + "Mopeds usually have small wheels and a low seat.", + "A moped typically looks like a small motorcycle with pedals.", + "A moped is a small, light-weight motorcycle with an engine size no greater than 50cc.", + "Mopeds are two-wheeled vehicles with an engine size that is less than 50cc.", + "Mopeds typically have small engines and are designed for economical transportation.", + "A moped typically has a small engine size and low power output.", + "A moped has a small engine, usually under 50cc, and generally has a maximum speed of 30mph.", + "A moped is a two-wheeled vehicle with a motor and pedals.", + "There are a few ways to identify a moped.", + "A moped has many of the same features as a motorcycle, but is much smaller.", + "A moped can be identified by its small size, its two wheels, and its pedal-assist engine.", + "Mopeds often have small wheels and a low seat.", + "A moped has a small engine, usually under 50cc, and pedals so it can be pedaled like a bicycle.", + "Mopeds are two-wheeled vehicles with an engine size of 50cc or less.", + "A moped is a two-wheeled vehicle with a small engine size.", + "A moped looks like a cross between a bicycle and a motorcycle.", + "A moped typically looks like a small motorcycle with pedals, or a scooter with a small engine.", + "A moped is a small, two-wheeled vehicle, usually equipped with a motor.", + "A moped typically has small wheels, a small engine (50cc or less), and a step-through frame.", + "A moped typically has a small engine size and is designed for short-distance travel.", + "A moped is a two-wheeled vehicle with an engine displacement of no more than 50cc.", + "There is no one specific look for a moped, as they can come in many different styles.", + "Mopeds typically have small wheels and a low seat.", + "The image is of a red moped with a white seat.", + "The image is of a blue moped with the words \"Vespa LX 50\" written on the side.", + "In the image, a moped is parked on the side of a road next to a tree.", + "In the image, a moped is leaning against a wall with its kickstand down.", + "The image is of a blue moped with a white seat.", + "This image is of a moped that is green and white.", + "The image is of a moped that is red and white.", + "The image is of a blue moped with a white seat.", + "The image is of a blue moped with a white seat.", + "A picture of a moped would likely show a small, lightweight motorcycle with pedals, designed for easy and convenient operation.", + " A moped parked on a city streetA moped is a two-wheeled vehicle with a small engine.", + "scooter parked on city street.", + " A moped on a city street.", + "A moped on a city street.", + "Moped on the street.", + "This is a moped.", + "A moped parked on the side of the road.", + "A moped outside a convenience store.", + "This is a moped.", + "Moped on the street." + ], + "mortar and pestle": [ + "A mortar is a bowl, and a pestle is a stick.", + "A mortar and pestle is a tool used to crush, grind, and mix substances.", + "A mortar is a bowl, typically made of hard wood, stone, or ceramic.", + "A mortar and pestle is a traditional tool used to grind and crush spices or other food ingredients.", + "A mortar is a bowl, and a pestle is a stick.", + "A mortar and pestle is a tool used to grind and crush ingredients.", + " and how to use itA mortar and pestle is a set of tools used to grind and crush spices or other food items.", + "A mortar is a bowl made of a hard material, such as ceramic, granite, or metal.", + "A mortar is a bowl, usually made of stone, metal, or ceramic.", + "A mortar and pestle is a small, heavy bowl and a blunt, handheld tool used to crush and grind spices or other food ingredients.", + "A mortar and pestle is a bowl-shaped device with a rough interior surface that is used to crush and grind ingredients such as herbs and spices.", + "A mortar and pestle is a bowl-like cup with a hard, rough surface on the inside and a pestle, which is a small, heavy club with a rough surface on the end.", + "A mortar and pestle is a bowl-shaped container with a club-shaped tool that is used to crush and grind food.", + "A mortar is typically a bowl, and a pestle is a rod designed to fit snugly into the bowl.", + "Mortar and pestles vary in shape and size, but they are usually bowl-shaped with a rough interior and a smooth exterior.", + "A mortar and pestle is a bowl-shaped tool used to grind and crush substances.", + "Mortar and pestle is a kitchen tool used to crush, grind, and blend ingredients.", + "Mortar and pestles are tools used to grind, crush, and mash ingredients.", + "A mortar and pestle is a small bowl-shaped tool that is used to pound and grind spices, herbs, and other solid foods.", + "A mortar is a bowl, typically made of ceramic, metal, or stone.", + "A mortar is a bowl-like tool and a pestle is a heavy club-shaped tool.", + "A mortar and pestle is a device used to crush and grind spices or other food items.", + "Mortars and pestles are usually made of stone, ceramic, or wood.", + "A mortar and pestle is a handheld tool used to crush, grind, and pulverize spices, herbs, and other food ingredients.", + "A mortar is a bowl, typically made of hard wood, ceramic, or stone.", + "A mortar and pestle is traditionally a bowl-shaped object with a handle on one side and a curved bottom.", + "A mortar and pestle is a bowl-shaped tool with a rough inner surface.", + "A mortar is typically a bowl, and a pestle is a rounded tool that fits into the bowl.", + "A mortar is a bowl-shaped container, and a pestle is a tool used to grind and crush ingredients.", + "A mortar and pestle is usually a ceramic or stone bowl with a corresponding weighty tool for grinding herbs, spices, and other foods.", + "This mortar and pestle is made of granite and is a popular choice for people who want a durable option.", + "There is an image of a mortar and pestle on a white background.", + "The image is of a mortar and pestle on a white background.", + "The image is of a mortar and pestle on a white background.", + "An image of a mortar and pestle would likely depict a small bowl-shaped vessel with a corresponding clubs-shaped tool.", + "An image of a mortar and pestle shows a light brown bowl with a darker handle.", + "This image is of a traditional-style mortar and pestle.", + "The image is of a white ceramic mortar and pestle sitting on a wooden surface.", + " An image of a mortar and pestle shows a bowl-shaped object with a protruding rod in the middle.", + "A mortar and pestle is a tool used to crush, grind, and pulverize substances.", + "Pestle and mortar on a white background.", + "Mortar and pestle.", + "A mortar and pestle is a common kitchen tool used to grind and pulverize food.", + "A mortar and pestle is a tool used to grind and crush substances.", + "The mortar and pestle is a common tool used in many kitchens.", + " A mortar and pestle is a cooking device used to mash and grind food.", + " A mortar and pestle, common tools in many kitchens used for grinding and pulverizing food.", + "A mortar and pestle are tools used to crush, grind, and pulverize materials.", + "A mortar and pestle is a cooking utensil used to grind up ingredients.", + "A mortar and pestle are tools used to crush, grind, and mix solid ingredients." + ], + "graduation cap": [ + "A graduation cap typically looks like a small, pointed hat that sits atop the head.", + "The graduation cap is a small, square cap that is worn on the head.", + "A graduation cap is a small, square cap that is worn on the top of the head.", + "It is a small cap made of black fabric with a flat top and a tassel hanging from the center.", + "A graduation cap is a small, cone-shaped hat that is worn by students during graduation ceremonies.", + "The graduation cap is a small, hat-like object that is worn on the head.", + "A graduation cap is a small, stiff cap that is worn on the head by students during graduation ceremonies.", + "A graduation cap is a small, pointed hat that is worn by students during graduation ceremonies.", + "A graduation cap, or mortarboard, is a square board with a flat top that is worn by students during commencement ceremonies.", + "A graduation cap is a square piece of cloth that is worn on the head.", + "Look for a tassel on top.", + "The mortarboard is the flat square board that sits on the top of the head.", + "A graduation cap is traditionally a square, mortarboard-style hat that is worn by students during commencement ceremonies.", + "A graduation cap is a small, square cap that is worn on the top of the head.", + "At graduation ceremonies, graduates wear academic dress, which consists of a gown, cap, and hood.", + "A graduation cap is a small, stiff hat that is worn by students during a graduation ceremony.", + "The tassel on a graduation cap is worn on the right side before graduation and on the left side after graduation.", + "A graduation cap is a small, flat, square-shaped hat that is worn on the top of the head.", + "A graduation cap is a type of headwear that is worn by students who are graduating from high school or college.", + "A graduation cap is traditionally a square cap with a tassel that is worn by students who are graduating from high school or college.", + "The traditional graduation cap is a small, square cap made of black cloth with a stiff brim.", + "A graduation cap typically has a square or pyramid shape and is made of stiff paper or fabric.", + "An American graduation cap, or mortarboard, is a flat square board with a tassel attached to the center.", + "A graduation cap is typically a square or pyramid-shaped hat that is worn by a person who has just graduated from school.", + "Most graduation caps are made of black polyester and have a flat top with a square or pointy front.", + "A graduation cap look like a square hat with a tassel on the top.", + "A graduation cap typically has a square or rectangular base and a pointed top.", + "Graduation caps traditionally have a point on top, and are made from black polyester fabric.", + "The graduation cap is a small, square cap that is worn on the top of the head.", + "A graduation cap is a small, stiff, square cap with a tassel attached to the centre point on the top.", + "This image from the internet is of a graduation cap.", + "In the image, a black graduation cap sits atop a white Styrofoam head.", + "A graduation cap from the internet is most likely to be a image of a traditional graduation cap.", + "The image is of a graduation cap with a tassel.", + "There is an image from the internet of a graduation cap that is blue and has a gold tassel.", + "A graduation cap is a small, square hat that is worn by students during graduation ceremonies.", + "A graduation cap from the internet is most likely to be of a person in a cap and gown, standing on a stage or in front of a group of people.", + "The image is of a traditional graduation cap with a tassel hanging down.", + "An image of a graduation cap from the internet shows a traditional black graduation cap with a gold tassel.", + "The image is of a graduation cap with a tassel hanging down.", + "A graduation cap with a tassel hanging down, on a person's head.", + "Graduating from college!.", + "Individual in cap and gown celebrating graduation.", + "A cap and gown on a chair with a mortarboard on the ground next to it.", + "\"There's no place like graduation.", + "Two graduates of Ashford University celebrating their success.", + "Best wishes for your future endeavors!.", + "A graduate celebrating their achievement with a graduation cap.", + "A graduation cap with a tassel hanging down.", + "\"I did it!\"." + ], + "mosque": [ + "Inside a mosque, there is a large open space with a carpet on the floor.", + "Most mosques are recognizable by their large central domes and slender minarets.", + "A mosque is typically a large, open space with a tall minaret in the center.", + "A mosque is typically a large, cube-shaped building with a central, open courtyard and a large dome or set of smaller domes atop the main prayer hall.", + "A mosque generally has a large prayer hall with a pointed arch or a series of arches.", + "A mosque is a place of worship for Muslims.", + "A mosque is a place of worship for Muslims.", + "There is no one answer to this question as mosques can take on a wide variety of architectural styles, depending on the country, region, and specific congregation.", + "The most basic form of a mosque is a rectangular building with a large open space inside for worshipers.", + "A mosque typically has a large dome or minaret, and is a place for Muslims to congregate for prayer.", + "The main identifying feature of a mosque is the minaret.", + "Some common features of a mosque are a minaret, a dome, and arched windows.", + "A mosque is a type of Islamic religious building.", + "A mosque can usually be identified by its minaret, which is a tall tower that is part of the mosque.", + "A mosque is a place of worship for Muslims.", + "A mosque can be identified by its minaret, which is a tall, thin spire with a balcony on top from which a muezzin calls Muslims to prayer five times a day.", + "There are many ways to identify a mosque.", + "There is no one answer to this question since there is no one way that mosques can look.", + "There are a number of ways to identify a mosque.", + "There are several ways to identify a mosque.", + "A mosque typically has a prayer hall with a high ceiling and a central dome, as well as one or more minarets from which Muslims are called to prayer.", + "There is no one answer to this question, as mosques can vary greatly in appearance.", + "There is no one answer to this question, as mosques can vary greatly in their appearance.", + "A mosque is typically a large, open-air building with a pointed dome and one or more minarets, or tall towers.", + "There is no one answer to this question as mosques can come in a variety of architectural styles.", + "A typical mosque has a rectangular or square shape.", + "A mosque is usually a large building with a pointed roof and a large open space inside for praying.", + "There is no one answer to this question as mosques can vary greatly in their appearance.", + "A mosque is typically a cube-shaped building with a tall minaret, or tower, on one side.", + "A mosque is typically a large, open space with a minaret (a tower used for calling the faithful to prayer), and a mihrab (a niche indicating the direction of Mecca).", + "The image is of a large, beautiful mosque with intricate details.", + "In the image, a mosque is pictured with a white dome and minaret against a blue sky.", + "The photo is of a large, ornate mosque with a large dome in the center.", + "This image shows a large, ornate mosque with minarets reaching up into the sky.", + "In this image, a mosque is seen surrounded by water.", + "In the image, a mosque is pictured with its large, central dome and minarets.", + "In the image, a mosque is pictured with its white minaret and domes against a blue sky.", + "A mosque is a place of worship for Muslims.", + "A large, ornate building with many domes and minarets.", + "This image is of the Sultan Ahmed Mosque in Istanbul, Turkey.", + " The Ibn Tulun Mosque in Cairo, Egypt.", + "The exterior of the Sultan Ahmed Mosque, also known as the Blue Mosque, in Istanbul, Turkey.", + "A mosque in Turkey.", + "The Sultan Ahmed Mosque, also known as the Blue Mosque, is a historic mosque located in Istanbul, Turkey.", + "Mosque in Agra, India.", + "The mosque is a place of worship for Muslims.", + "The Blue Mosque in Istanbul, Turkey.", + "This is a mosque in Istanbul, Turkey.", + " A group of people stand outside a mosque.", + "The mosques of Istanbul are some of the most beautiful and elaborate in the world." + ], + "mosquito net": [ + "A mosquito net is a piece of mesh that is placed over a bed or sleeping area to keep mosquitoes out.", + "A mosquito net is a thin, often white, net that hangs over a bed to prevent mosquitoes from biting the sleeper.", + "A mosquito net is usually made of a very fine mesh and is hung over a bed to prevent mosquitoes from reaching the person sleeping in the bed.", + "A mosquito net looks like a sheer curtain that hangs over a bed.", + "A mosquito net is an mesh netting that is placed over a bed or other sleeping area to keep mosquitoes and other insects out.", + "A mosquito net is a piece of fine mesh that is hung over a bed to keep mosquitoes away.", + "A mosquito net is a screen made of fabric that is designed to keep mosquitoes and other insects out.", + "A mosquito net is a net that is used to protect people from mosquitoes.", + "A mosquito net is a net that is used to protect against mosquitoes.", + "A mosquito net is a net made of mesh that is designed to keep mosquitoes away from a person or thing.", + "A mosquito net can be identified by its net-like structure that is designed to keep mosquitoes and other insects out.", + "A mosquito net is typically a net that is placed over a bed or sleeping area to keep mosquitoes from biting the person inside.", + "A mosquito net can be identified by its mesh size.", + "A mosquito net is usually made of a fine mesh and is used to cover a bed or sleeping area to prevent mosquito bites.", + "A mosquito net is typically a fine, mesh netting that is attached to a frame.", + "A mosquito net can be identified by its mesh-like structure that is meant to keep mosquitoes and other insects out.", + "A mosquito net is a fine netting that is used to cover a bed or other area to protect against mosquitoes.", + "A mosquito net is a net that is placed over a bed to keep mosquitoes away from the person sleeping in the bed.", + "Most mosquito nets are made out of a white or light-colored fabric.", + "A mosquito net can be identified by its mesh size, which is usually between 18 and 64 holes per square inch.", + "A mosquito net is a net that is placed over a bed or other sleeping area to protect against mosquitoes.", + "A mosquito net is a net made of fine mesh, usually woven from Cotton, designed to keep mosquitoes and other small insects away from a person's face, body or sleeping area.", + "A mosquito net is a piece of netting that can be draped over a bed or hung from the ceiling to create a protective barrier against mosquitoes.", + "A mosquito net is a piece of fine, transparent netting that is designed to be draped over a bed or other sleeping area to protect against mosquitoes and other flying insects.", + "A mosquito net is a piece of mesh that is used to cover a bed or other opening.", + "A mosquito net is usually a fine, sheer fabric suspended over a bed or other area to keep mosquitoes and other insects away.", + "A mosquito net is a mesh net that covers a bed or other sleeping area to prevent mosquitoes from reaching the person inside.", + "A mosquito net is a piece of netting that is placed over a bed or other area where someone is sleeping.", + "A mosquito net is a fine net that is used to keep mosquitoes and other insects away from a person's body.", + "A mosquito net looks like a fine mesh net that can be draped over a bed or other sleeping area.", + "The image is of a mosquito net that is hung up around a bed.", + " canopyA mosquito net canopy is a piece of fabric designed to drape over a bed or other piece of furniture in order to protect the user from mosquitoes.", + "This image is of a white mosquito net hanging over a bed.", + "The image is of a woman sleeping under a mosquito net.", + "The image is of a mosquito net over a bed.", + "This image is of a mosquito net that is hung over a bed.", + "An image of a mosquito net can be found easily by doing a Google search.", + "The image is of a mosquito net draped over a bed in a room.", + "The image is of a blue mosquito net.", + "This image is of a blue mosquito net hanging over a bed.", + "A woman sleeps under a mosquito net in a village in Niger.", + " \"A woman in Africa holds up a mosquito net\".", + "A mosquito net provides protection against mosquitoes.", + "A mosquito net hanging over a bed in Tanzania.", + "A mosquito net hangs over a bed, providing protection from the insect bites.", + "A woman is using a mosquito net in her home.", + "A mosquito net hangs from the ceiling over a bed, waiting to be used.", + " Taking measures to protect yourself from mosquito bites is important in many parts of the world, where these insects can transmit diseases like malaria.", + "A mosquito net hangs over a bed in a room in Kampala, Uganda.", + "A mosquito net hangs over a bed, ready to be used." + ], + "vespa": [ + "A Vespa is a motorcycle with a step-through frame and bodywork.", + "A Vespa is a brand of scooter made by Piaggio.", + "A Vespa is a Italian brand of scooter manufactured by Piaggio.", + "A vespa is a small, two-wheeled scooter.", + "A Vespa is a motor scooter made by Piaggio.", + "A Vespa is a small, round, two-wheeled scooter.", + "A Vespa is a scooter with a step-through frame and a body that is usually made of steel.", + "A Vespa is a brand of scooter manufactured by Piaggio.", + "A Vespa is a scooter with a step-through frame and a body built around the motor and gearbox.", + "Vespas have a unique design that includes a step-through frame, retro style, and a Vespa badge on the leg shield.", + "A Vespa is a scooter made by the Italian company Piaggio.", + " Vespa is an Italian brand of scooter manufactured by Piaggio.", + "The Vespa brand is easily identified by its Insect-like logo and its unique body shape.", + "A Vespa can be identified by its unique design.", + "The most obvious way to identify a Vespa is by its shape.", + "A Vespa is a brand of scooter manufactured by Piaggio.", + "the most distinguishing feature of a Vespa is probably the shape of the body.", + "The most distinguishing feature of a Vespa is its front fairing, or \"shield.", + "The easiest way to identify a Vespa is by its distinctive shape.", + "A Vespa is a two-wheeled motor vehicle that is recognized by its circular headlight, step-through frame, and body paneling.", + " A Vespa is a brand of motor scooter manufactured by Piaggio.", + "A Vespa looks like a small, two-wheeled scooter.", + "There is no one answer to this question as there are many different types and models of Vespa scooters.", + "A Vespa is a brand of scooter made by Piaggio.", + "A Vespa scooter typically has a step-through frame and body paneling that covers the engine and gearbox.", + "A Vespa is a brand of motor scooter manufactured by Piaggio.", + "A Vespa is a two-wheeled motor vehicle designed to provide private transportation.", + "A Vespa is a small, Italian-made scooter.", + "A Vespa is a brand of scooter manufactured by Piaggio.", + "A Vespa is a scooter that was first manufactured in Italy in 1946.", + "A vespa is a small, two-wheeled scooter.", + "This vespa is red and white with a chrome finish.", + "I found an image of a Vespa on Pinterest.", + "jpgIn the image, a blue Vespa scooter is captured in mid-air flipping upside down while its rider appears to be gracefully dismounted in a standing position.", + "In the image, a Vespa is leaning on its stand in a parking lot.", + "This image is of a Vespa motorcycle.", + "The image is of a yellow Vespa with a rider wearing a helmet.", + "This image is of a woman riding a Vespa scooter.", + "In the image, a vespa is pictured parked on a road next to a body of water.", + "A Vespa is a brand of motor scooter manufactured by Piaggio, and they are known for their distinct design.", + "I'm the king of the road!.", + "This is a Vespa, a popular type of scooter.", + " Vespa vespa, otherwise known as the \"common wasp\", is a species of wasp found in most parts of the world.", + "This Vespa is a 1963 model.", + " Vespa on the street.", + "A vespa zoomed through the streets of Rome.", + "pulvinar nibh egestas at ornare non maecenas vestibulum Pellentesque aliquet ultrices metus.", + "A vespa is a popular Italian scooter.", + "Small but mighty, Vespa's have been a popular mode of transportation since the 1940's.", + "A Vespa scooter parked on a city street." + ], + "mountain bike": [ + "A mountain bike is a bicycle designed for off-road riding.", + "A mountain bike typically has a strong, lightweight frame, thick tires with knobby treads for traction, and suspension to absorb bumps.", + "A mountain bike typically has wider tires than a road bike, and the tires are meant for rough terrain.", + "A mountain bike typically has a durable frame, thick tires with treads for traction, and suspension to absorb shock when riding over rough terrain.", + "A mountain bike typically has a frame made from aluminum alloy, carbon fiber, steel or titanium.", + "A mountain bike typically has thicker tires than a road bike, and the tires are often treaded for greater traction on rough surfaces.", + "Mountain bikes typically have wide knobby tires, a sturdier frame than other bicycles, and suspension on the frame and/or fork to absorb bumps from riding on rough terrain.", + "A mountain bike is a bike designed to be ridden on rough terrain.", + "A mountain bike typically has thicker tires than a road bike, and the tires are often studded for extra traction on loose or icy terrain.", + "A mountain bike typically has a rugged frame and fat tires meant for riding on rough terrain.", + "Mountain bikes are designed for off-road riding on rough terrain.", + "There are a few ways you can identify a mountain bike.", + "A mountain bike is typically identified by its beefy tires, which are designed for traction on off-road trails.", + "The most common way to identify a mountain bike is by looking at the tires.", + "Mountain bikes typically have specialized tires with thicker treads that allow for more grip on rough terrain.", + "Mountain bikes typically have thicker tires with more tread than road bikes.", + "There are a few ways to identify a mountain bike.", + "A mountain bike can be identified by its large tires, which are designed for riding on rough terrain, and its suspension system, which helps absorb shocks.", + "A mountain bike is designed for off-road riding and has a number of features that distinguish it from other types of bicycles.", + "Mountain bikes usually have fatter tires than road bikes, and they are built to withstand a lot of wear and tear.", + "Mountain bikes look like regular bikes but they are built to handle more rough terrain.", + "Mountain bikes look like regular bikes, but they are sturdier and have thicker tires.", + " illustration of mountain bikeA mountain bike typically has 26-inch or 29-inch wheels, a wide range of gears, powerful brakes, and suspension forks.", + "Mountain bikes look like regular bicycles, but they have thicker tires with more tread.", + "A mountain bike has AT LEAST 24 gears, a suspension system, and knobby tires.", + "A mountain bike typically has a smaller frame than a road bike, with thicker tires and suspension to absorb shocks from riding on rough surfaces.", + "A mountain bike usually has thicker tires than a road bike, and the tires are meant for rough terrain.", + "A mountain bike looks like a biking cross between a road bike and a dirt bike.", + "A mountain bike is a bicycle designed for off-road use.", + "Most mountain bikes have wide knobby tires, a stout frame, and front or full suspension.", + "The image is of a mountain bike with a large frame and tires.", + "I found an image of a mountain bike on the internet that I really liked.", + "The image is of a mountain bike leaning against a tree.", + " raceThe image is of a mountain bike race.", + "The image is of a woman riding a mountain bike on a dirt trail.", + "This image is of a mountain bike that is racing down a hill.", + "The image is of a blue and white mountain bike with a yellow jersey on the handlebars.", + "The image is of a mountain bike on a dirt trail.", + " raceIn the image, there are dozens of mountain bikers racing down a dirt trail.", + "avenue-bike-mountain-highway-cycle-road-38402.", + "The mountain bike is designed to tackle tough terrain.", + " A person riding a mountain bike on a path through a forest.", + " A mountain bike with a blue frame and brown seat, parked in front of a brick buildingA mountain bike with a blue frame and brown seat, parked in front of a brick building.", + "A woman rides a mountain bike down a dirt trail.", + "Mountain bike on singletrack trail.", + "Mountain biking is an excellent way to enjoy the great outdoors.", + " This mountain bike is ready to take on any terrain.", + " A mountain bike parked next to a tree.", + "Mountain bike on a trail through the woods.", + "Mountain biking is a great way to see the outdoors and get some exercise." + ], + "tent": [ + "A tent is a temporary structure that is made out of fabric or other materials and is supported by poles.", + "A tent typically has a canvas exterior and is pitched using poles.", + "A tent is a portable, temporary shelter made of cloth, canvas, or some other type of waterproof material stretched over a frame of poles.", + "A tent is a shelter made of cloth, poles, and ropes.", + "A tent looks like a portable shelter that is used for camping.", + "A tent typically has four corners, each staked into the ground, and a center support pole.", + "A tent looks like a cover for a bed.", + "Most tents have a pole in the center and then fabric draped over the poles.", + "A tent is a collapsible, portable shelter made of fabric, poles, and ropes.", + "A tent is a portable, frame structure made of cloth, supported by a system of poles, used as a shelter.", + "The following are some ways to identify a tent:-Tents are usually made out of fabric or canvas.", + "Tents typically have a peaked roof and are supported by poles.", + "A tent is typically a Shelter consisting of cloth, canvas or some other kind of material stretched over a frame of poles.", + "The fabric walls of a tent are often made of canvas, nylon, or polyester.", + "The best way to identify a tent is by its shape.", + "A tent is a portable, temporary shelter made of fabric, poles, and cords.", + "A tent is a temporary structure composed of fabric, metal, or plastic supported by hoops, poles, or framework.", + "A tent is an outdoor shelter that is typically made of cloth or canvas.", + "A tent is a portable, temporary shelter consisting of canvass, poles, and cords.", + "A tent is usually a portable shelter made of cloth, canvas, or some other kind of waterproof material.", + "A typical tent is an enclosed structure made of fabric or other material stretched over a frame of poles.", + "A tent is a temporary shelter made of cloth, poles, and ropes.", + "A tent can have many different shapes, but the most common shape is a pyramid.", + "Most tents have a poles that hold up the fabric and create a structure.", + "A tent typically looks like a large piece of cloth draped over a frame of poles.", + "A tent is a piece of equipment used for camping that consists of a waterproof base and a series of poles that support a canvas top.", + "A tent is typically a portable shelter made of fabric, poles, and external guy lines.", + "A traditional tent is an outdoor shelter consisting of canvas or other waterproof fabric stretched over supporting poles and tied at the bottom.", + "A tent is typically a portable, temporary shelter made of fabric or other material stretched over a frame of poles.", + "A tent looks like a canvas or nylon structure that is propped up by metal or wooden poles and typically has a flap or doorway.", + "The image shows a tent in a field with mountains in the background.", + "The image shows a white tent in a grassy field with trees in the background.", + "A handmade tent set up in a field with a view of mountains in the distance.", + "A blue and yellow tent set up in a green meadow with a mountain in the background.", + "This image shows a large, white tent pitched on a grassy field.", + "This image is of a blue and white tent set up in a grassy area.", + "The image is of a large, white tent with a blue and white striped awning.", + " in a forestThe image is of a small, white tent nestled amongst tall trees in a forest.", + "An image from the internet of a tent would show a tent in a natural setting, such as a forest or mountain.", + "An image from the internet of a tent might show a large, white tent in a grassy field with trees nearby.", + "A ring of tents set up in a field.", + "Tent at sunset in the woods.", + "A camping tent in a forest.", + "A person camping in a tent in a forest.", + "Camping in the great outdoors!.", + "Tent camping is a great way to enjoy the outdoors and spend time with family and friends.", + " A camper rests in their tent after a long day of hiking.", + "A group of people camping in the woods.", + "A group of friends camping in the woods.", + " A blue and white tent in a green field." + ], + "computer mouse": [ + "Most computer mice have two buttons, a scroll wheel, and a cord that attaches to the computer.", + "A computer mouse is a small hand-held device that is used to control a cursor on a computer screen.", + "A computer mouse typically looks like a small hand-held device with two buttons on the top and a scroll wheel in the middle.", + "A computer mouse is a small, handheld device that is used to control a computer cursor.", + "A computer mouse is a handheld input device that consists of a body and a tail.", + "A computer mouse typically has two buttons on the top, with a wheel in between them.", + "A computer mouse is a small, hand-held device that is used to control a computer cursor.", + "A computer mouse is a small hand-held device that is used to move the cursor on a computer screen.", + "A computer mouse typically has two buttons and a scroll wheel.", + "A computer mouse is a hand-held pointing device that detects two-dimensional motion relative to a surface.", + "The underside of a mouse usually has two wheels.", + "The easiest way to identify a computer mouse is by its shape.", + "Computer mice typically have two buttons and a scroll wheel on the top, and a cord attached to the bottom.", + "A computer mouse is a small device that is held in the hand and used to move a cursor on a computer screen.", + "The easiest way to identify a computer mouse is by its shape.", + "A mouse is a input device for a computer that is used to control the movement of the cursor on the screen.", + "A computer mouse is a device that is used to control a cursor on a computer screen.", + "A computer mouse typically has two buttons and a scroll wheel.", + "The easiest way to identify a computer mouse is by its shape.", + "A computer mouse typically has two buttons and a scroll wheel.", + "A computer mouse typically has two buttons and a scroll wheel.", + "A computer mouse is an input device that is most commonly used with a personal computer.", + "Most computer mice have two buttons and a scroll wheel in the middle.", + "A computer mouse typically has two buttons and a scroll wheel.", + "A computer mouse is a small handheld device that has a button on top and a trackball on the bottom.", + "A computer mouse is typically a small hand-held device with two buttons and a wheel that is used to control a cursor on a computer screen.", + "A computer mouse is a hand-held, pointed device that is used to control a computer cursor.", + "A computer mouse typically has two buttons and a scroll wheel.", + "A computer mouse is a small, hand-held device that is used to control a cursor on a computer screen.", + "The computer mouse typically has two buttons on top, and a scroll wheel in the middle.", + "The image is of a computer mouse with a black body and a silver scroll wheel.", + "The image is of a black computer mouse with a cord attached to it.", + "This image is of a computer mouse with a blue casing and two black buttons.", + "This image is of a simple, black computer mouse.", + "The image is of a black computer mouse with a silver scroll wheel in the center.", + "The image is of a black computer mouse with a glowing green light on the bottom.", + "The image is of a black computer mouse with a white scroll wheel in the center.", + "The image is of a white computer mouse on a blue background.", + "A computer mouse is an input device that allows a user to control a computer by moving a cursor on a screen.", + "The image is of a black computer mouse with a silver scroll wheel in the center.", + "This computer mouse is connected to a laptop via a USB cable.", + "This is a computer mouse.", + "This is a computer mouse.", + "Wireless Optical Computer Mouse.", + "Logitech Wireless Mouse.", + "This is a computer mouse.", + "This is a computer mouse.", + "Logitech USB Optical Mouse.", + "This is a computer mouse.", + "Blue computer mouse on top of a laptop." + ], + "mousetrap": [ + "A mousetrap is a small wooden or plastic box with a spring-loaded bar that snaps down and kills a mouse when the mouse steps on a trigger.", + "A mousetrap is a metal or plastic trap that is baited with food and has a metal bar that snaps down to kill the mouse when the bar is triggered.", + "A mousetrap is a small device that is used to capture mice.", + "The classic mousetrap is a small wooden box with a metal spring inside.", + "A mousetrap typically has a wooden base with a metal spring-loaded bar that snaps closed when pressure is applied to the trigger.", + ".", + "A mousetrap is a small device that is used to catch mice.", + "A mousetrap consists of a spring-loaded device that is used to kill rodents.", + "A mousetrap is a small, rectangular device that is baited with food to attract mice.", + "The most common type of mousetrap consists of a wire snap trap with a piece of cheese or other food attached.", + "A mousetrap typically has a wire or wooden frame that is baited with food and springs open quickly to snap shut on the mouse when it attempts to steal the bait.", + "Mousetraps are small devices that are used to catch mice.", + "A mousetrap is a device used to catch mice.", + "The most common way to identify a mousetrap is by its small size and rectangular shape.", + "There are several ways to identify a mousetrap.", + "Mousetraps can be identified by their small size, their triangular shape, and their sharp teeth.", + "A mousetrap can be identified by its characteristically small size and light weight.", + "A mousetrap is a device made to catch and kill mice.", + "A mousetrap is a device used to catch and kill mice.", + "There are several ways to identify a mousetrap.", + "A mousetrap is typically a small wooden box with a spring-loaded metal bar that snaps shut when triggered.", + "A mousetrap looks like a small rectangular box with a metal bar on the top.", + "A mousetrap looks like a small wooden box with a metal spring-loaded bar on the top.", + "The classic mousetrap consists of a wooden base with a metal spring mounted on one end.", + "A mousetrap is a small, wooden or plastic device that is baited with cheese or other food.", + "A mousetrap is a small, wooden trap that has a metal bar in the middle.", + "A mousetrap is usually a small, wooden box with a spring-loaded bar on the top.", + "A mousetrap is usually a small wooden box with a metal spring inside.", + "The mousetrap is a small wooden box with a metal spring inside.", + "A mousetrap is a small device that is used to catch mice.", + "The image is of a traditional wooden mousetrap.", + "A mousetrap is a device used to catch mice.", + "This image shows a traditional mousetrap that is baited with a piece of cheese.", + "The image is of a traditional Spring Mouse Trap.", + "The image is of a traditional wooden mousetrap.", + "An image of a mousetrap from the internet would most likely show a traditional wooden mousetrap with a metal spring.", + "This image is of a mousetrap that has been baited with a piece of cheese.", + "The image is of a traditional mousetrap, made of wood and metal.", + "In the image, there is a mousetrap made of wood and metal.", + "The image from the internet of a mousetrap is of a small black and silver trap with a trigger on the top.", + "This is a typical mousetrap.", + "A mousetrap baited with cheese.", + "This is a photo of a mousetrap.", + "A mousetrap set up and ready to catch mice.", + "The mousetrap is a simple device that has been used for centuries to catch mice.", + " A mousetrap baited with cheese.", + "This trap is designed to humanely capture mice for relocation.", + "The mousetrap is one of the most common and effective ways to get rid of mice.", + "This is a mousetrap.", + "The classic mousetrap - simple, effective, and deadly." + ], + "moving van": [ + "A moving van typically looks like a large cargo truck with the words \u201cmoving company\u201d written on the side.", + "A moving van is typically a large truck with a hydraulic lift on the back.", + "A moving van typically looks like a large, rectangular truck with the words \"moving company\" written on the side.", + "A moving van is a large truck with a wide, flat back that is used to transport furniture and containers full of belongings from one place to another.", + "A moving van is a large truck designed to move household items from one location to another.", + "A moving van is a large truck designed to move household items from one home to another.", + "A moving van looks like a large truck with the words \"moving van\" written on the side.", + "A moving van is a large truck that is used to move furniture and other belongings from one location to another.", + "A moving van is typically large and boxy, with a wide rear door that opens up to reveal a ramp.", + "A moving van is a large van used to move furniture and other large items from one location to another.", + "The most obvious way to identify a moving van is by its size.", + "What do you mean by \"identify a moving van?\".", + "Moving vans are large, boxy trucks that are used to transport furniture and other large items.", + "A moving van can typically be identified by its large size and the company's name and logo printed on the side of the van.", + "Most moving vans are large and boxy, with the name of the moving company often printed on the side.", + "Look for a van with the name of a moving company on the side.", + "One way to identify a moving van is by its large size.", + "Look for a van with a company's logo and the words \"Moving Van\" on the side.", + "When looking at a van, you can usually tell if it is a moving van because it will say \"moving van\" or \"moving truck\" on the side.", + "Generally, moving vans are large, boxy trucks with \"Moving Company\" written on the side.", + "Most moving vans are large white trucks with the name of the moving company on the side.", + "A moving van is typically a large truck with a covered back area that is used to transport belongings during a move.", + "A moving van is typically a large truck with a loading ramp on the back.", + "Moving vans vary in size and shape, but most are large boxy vehicles with few windows.", + "A moving van is typically a large truck with a ramp that is used to load and unload furniture and other large items.", + "A moving van is usually a large truck with the words \"moving company\" written on the side.", + "The outside of a typical moving van is white with the company's logo on the side.", + "A moving van typically has the word \"moving\" or \"storage\" written on the side of the van.", + "A moving van typically looks like a large box truck with the words \"Moving Van\" written on the side.", + "A moving van is a large van that is used to transport furniture and other belongings during a move.", + "A moving van is a large truck with a ramp that is used to move furniture and other belongings from one location to another.", + "The image is of a blue moving van with the words \"MOVING\" written in white letters on the side.", + "One image from the internet of a moving van shows the van backed up to a house with its back doors open.", + "A moving van is a large truck that is used to move large items from one place to another.", + "The image is of a large moving van parked in front of a two-story house.", + "The image is of a large, blue moving van with the words \"moving company\" written on the side.", + "The image is of a large white van with a blue stripe down the middle.", + "This image is of a white moving van with a blue stripe down the middle.", + "A moving van is a large truck that is used to move furniture and other belongings from one home to another.", + "A moving van is a large van designed to carry household items during a move.", + "Moving Van Headed Down a Residential Street.", + "The moving van is packed and ready to go.", + "A family moving to a new home.", + "Man in van: Just another day on the job.", + "\nPeople are moving their stuff out of their old home and into their new one.", + "\"I'm moving on up!\".", + " The Joneses are moving out of their old home and into their new one.", + "The family is moving to a new home.", + "'My family is moving to a new house next month.", + "The family is moving! Time for a new adventure!." + ], + "muzzle": [ + "A muzzle is a strip of cloth or leather that is placed over a dog's snout to keep it from biting.", + "A muzzle is typically a metal or plastic device that attaches to the end of a gun barrel in order to restrict the wearer's field of view and/or reduce the gun's muzzle blast.", + "A muzzle is a cloth or metal covering that is placed over an animal's mouth to keep it from biting or eating.", + "A muzzle is a piece of equipment that is placed over the nose and mouth of an animal to prevent it from biting or eating.", + "A muzzle looks like a device that is placed over the mouth of an animal to prevent it from biting or barking.", + "A muzzle is a covering for an animal's mouth, often made of metal or nylon, that attaches to a collar or harness.", + "A muzzle is a device that is placed over the snout of an animal to prevent it from biting or eating.", + "A muzzle is usually a soft cloth or leather bag that is put over an animal's head to keep it from biting or chewing.", + "A muzzle is a covering for a dog's mouth that prevents him from biting.", + "A muzzle is a people or animal restraining device that is put over the subject's mouth.", + "A muzzle is a piece of equipment that is placed over the snout of an animal to keep it from biting or eating.", + "A muzzle is a mouthguard that protects the teeth, gums, and lips from injury.", + "A muzzle is a type of headgear that covers a horse's face, including its muzzle, nostrils, and chin.", + "A muzzle is a device that is placed over the mouth and nose of a dog to keep it from biting or attacking.", + "The muzzle is the forward most part of the gun.", + "A muzzle is a covering that is placed over the mouth and nose of an animal.", + "You can identify a muzzle by its long, cylindrical shape.", + "By its shape, a muzzle is long and narrow, and tapers to a point.", + "A muzzle is a structure that covers the mouth and nose of an animal.", + "A muzzle is a device that is placed over the snout of an animal to keep it from biting or otherwise opening its mouth.", + "A muzzle is a leather or metal cup that goes over the snout of a dog and is fastened behind the head with a buckle, leather thong, or drawstring.", + "A muzzle is a device that is placed over the snout of an animal to prevent it from biting.", + "A muzzle looks like a straps that goes around a dogs snout.", + "A muzzle is a barrier that covers a dog's mouth and prevents them from biting.", + "A muzzle is a device that is placed over the nose and mouth of an animal to keep it from biting or eating.", + "A muzzle is a piece of equipment that is placed over the nose and mouth of an animal to prevent it from being able to bite or otherwise harm people.", + "A muzzle is a strap or basket that is placed over the snout of an animal to keep it from biting or chewing.", + "A muzzle is a restraint device that is placed over the snout of an animal to prevent it from biting or otherwise opening its mouth.", + "A muzzle is a piece of equipment that is put over the mouth of an animal to prevent it from biting or making noise.", + "A muzzle generally refers to a piece of equipment that is attached to the nose and/or mouth of an animal to prevent it from being able to bite or otherwise injure humans.", + "In this image, a muzzle is placed over the mouth and nose of a dog.", + "An image of a muzzle from the internet shows a metal or plastic device that is placed over the nose and mouth of an animal to prevent it from biting or eating.", + "The image is of a muzzle.", + "In the image, there is a light brown muzzle with a black nose.", + "This image from the internet shows a muzzle.", + " with a bite strapThe image shows a brown horse with a white muzzle and a black bite strap.", + "loaderOne image of a muzzleloader from the internet is of a traditional muzzleloader rifle.", + "The image from the internet is of a muzzle.", + " of a lionThe image shows the close-up muzzle of a lion with its large teeth and whiskers.", + "This image is of a muzzle.", + "A close-up of a dog's muzzle, showcasing its wet nose and sharp teeth.", + "A man with a muzzle over his mouth.", + "A dog's muzzle with a large bite out of it.", + "A muzzle is a device that is placed over the snout of an animal to prevent it from biting or eating.", + " A muzzle is a type of guard used on various weapons to prevent the user from firing the weapon accidentally or on purpose.", + "A muzzle used to keep a dog from biting.", + " A dog baring its teethA dog baring its teeth in a aggressive manner.", + "Muzzle.", + "Muzzle of a gun.", + "A muzzle is a device that is placed over the nose and mouth of an animal to prevent it from making noise or attacking." + ], + "metal nail": [ + "A metal nail is a thin, pointed piece of metal that is used to fasten two pieces of wood together.", + "A metal nail is a thin metal rod with a pointed end.", + "A metal nail is a thin metal rod with a sharp point at one end and a flat head at the other.", + "A metal nail is a sharp piece of metal that is used to fasten things together.", + ".", + "Most metal nails have a cylindrical shaft with a flat head.", + "A metal nail is a thin rod of metal with a pointed end.", + "A metal nail has a long, thin shaft with a pointed end.", + "A metal nail is a narrow, thin piece of metal with a pointed end.", + "A metal nail is a thin piece of metal with a point at one end and a flat head at the other.", + "A metal nail typically has a shiny surface and is very hard.", + "A metal nail can be identified by its smooth and shiny surface.", + "A metal nail is usually shiny and smooth, and is attracted to magnets.", + "A metal nail has a shiny, metallic appearance and is very strong.", + "A metal nail can be identified by its smooth, shiny surface.", + "A metal nail is a thin piece of metal with a sharp point at one end and a flat head at the other.", + "The easiest way to identify a metal nail is by its color.", + "A metal nail can be identified by its shiny, metallic appearance.", + "A metal nail is usually thin and cylindrical, with a pointed end.", + "A metal nail is a thin metal rod with a pointed end.", + "A metal nail has a pointed end and a flat head.", + "A metal nail is long and thin with a pointed end.", + "A common metal nail is made of steel and is rectangular in shape.", + "A metal nail looks like a thin, metal rod with a sharp point at one end and a slightly larger head at the other.", + "A metal nail is a thin, sharp piece of metal with a point at one end and a small, flat head at the other.", + "A metal nail is a metal object that is long and thin with a pointy end.", + "A metal nail is a small, thin piece of metal with a pointed end.", + "A metal nail is long and thin, with a sharp point at one end and a flat head at the other.", + "A metal nail looks like a small, thin, pointy piece of metal.", + "A metal nail usually has a smooth, cylindrical shape and a sharp point at one end.", + "This image is of a metal nail.", + "A metal nail is a thin piece of metal with a pointed end that is used to fasten two pieces of wood together.", + "The image is of a metal nail against a white background.", + "In the image, there is a metal nail that is silver in color.", + "The image is of a metal nail that is lying on a flat surface.", + "A metal nail is a thin, sharp piece of metal with a pointed end.", + "The image shows a metal nail against a black background.", + "The image shows a metal nail with a pointed end.", + "This image is of a metal nail that has been hammered into a board.", + "This image is of a metal nail that is inserted into a piece of wood.", + "A metal nailThis metal nail is made of steel.", + "A nail made of metal.", + "A metal nail.", + "A metal nail that is used to fasten things together.", + "A metal nail.", + "A nail driven into a piece of wood.", + "Rusted metal nail.", + "Metal nail.", + "This metal nail looks like it could be used for construction purposes.", + "A metal nail." + ], + "neck brace": [ + "A neck brace is a piece of medical equipment that is worn around the neck to support and stabilize the head and spine.", + "A neck brace is a medical device that is worn around the neck to support and immobilize the head and neck.", + "A neck brace consists of a metal frame that is fitted around the shoulders and neck and attaches at the back of the head.", + "A neck brace is a large, rigid collar that is worn around the neck.", + "A neck brace is a piece of medical equipment that is worn around the neck to support the head and spine.", + "A neck brace is a type of orthopedic device.", + "A neck brace typically consists of a band that goes around the forehead and another band that goes around the lower jaw.", + "A neck brace is a device that helps support your neck and head.", + "A neck brace is a collar that goes around your neck to immobilize your head and neck.", + "A neck brace is a metal or plastic devices that helps support the neck and spine.", + "A neck brace is a device that helps support your neck and keep it in alignment.", + "A neck brace can be identified by its strap that goes around the back of the neck and its plastic or metal support that goes around the front of the neck.", + "A neck brace is a device that is worn around the neck to support the head and spine.", + "Some neck braces have a hard outer shell, while others are made of softer materials.", + "The most common neck brace is a cervical collar, also called a neck brace.", + "There are many types of neck braces, but most are made of metal or plastic and are designed to fit around the neck.", + "Most neck braces can be identified by their large, bulky size and their straps that go around the head and neck.", + "Look for a hard plastic or metal frame that goes around the person's neck and extends down their back.", + "A neck brace is a material device that is worn around the neck to help stabilize and support the head and spine.", + "A neck brace is typically a plastic or metal device that encircles the neck and helps to support and immobilize the head and neck.", + "There are many different types and styles of neck braces, but they all share some common features.", + "A neck brace is a rigid medical device that is worn around the neck to support and immobilize the neck and head.", + "a neck brace looks like a theological collar.", + "A neck brace is a type of orthopedic device used to support and immobilize the neck and head.", + "A neck brace is a devices that is worn around the neck to support, protect, or correct the alignment of the spine and head.", + "A neck brace may be made of metal, plastic, or other materials.", + "A neck brace looks like a plastic or metal collar that is worn around the neck.", + "A neck brace is a medical device that is used to immobilize and support the neck and head.", + "A neck brace is a medical device that is worn around the neck to help support and stabilize the spine and head.", + "A neck brace looks like a cervical collar.", + "A neck brace is a device worn around the neck to support the head and neck.", + "A neck brace is a device that is worn around the neck to support and stabilize the head and spine.", + "The image shows a person wearing a neck brace.", + "A neck brace is a device that is worn around the neck to support and stabilize the head and neck.", + "This image is of a woman wearing a neck brace.", + "A neck brace is an orthopedic device that is used to support and immobolize the neck and head.", + "In the picture, there is a person wearing a white neck brace.", + "The image is of a woman wearing a neck brace.", + "A neck brace is typically used to help stabilize and immobilize the neck and spine following an injury.", + "An image from the internet of a neck brace may show a person wearing a neck brace to support their head and neck.", + "If you have to wear a neck brace, make it a fashionable one!.", + "A neck brace is a medical device that stabilizes the neck and head.", + "Neck brace worn by patient with neck injury.", + "A woman wears a neck brace after a car accident.", + "Neck brace worn after a car accident.", + "Wearing a neck brace after a car accident.", + "A neck brace is a medical device used to immobilize and protect the neck and spine.", + "Injury to the neck or spine can be very serious, and even life-threatening.", + "A neck brace is a device worn around the neck to support and immobilize the head and spine.", + "A neck brace is a medical device used to support the neck and spine." + ], + "necklace": [ + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace looks like a piece of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace is typically a piece of jewelry that is worn around the neck.", + "A necklace consists of a piece of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry worn around the neck.", + "A necklace is a jewelry piece that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace can be made of many different materials, but most commonly it is made of metal, beads, or gems.", + "You can identify a necklace by looking for a chain or cord with a pendant, locket, or other type of jewelry attached.", + "A necklace can be identified by its links, beads, or charms.", + "A necklace is a type of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "There are a few ways to identify a necklace.", + "There are many ways to identify a necklace.", + "There are many ways to identify a necklace.", + "A necklace can be identified by its length, by the type of clasp it has, or by the type of material it is made from.", + "The best way to identify a necklace is to look for a label or tag.", + "Look at the clasp.", + "A necklace can be many different things.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace is typically a string of beads, pearls, diamonds, or other precious stones that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace is a piece of jewelry that is worn around the neck.", + "A necklace can look like a lot of different things.", + "A necklace is an article of jewelry that is worn around the neck.", + "A necklace can look like many things, but typically it is a piece of jewelry that is worn around the neck.", + "The image is of a thin, silver necklace with a small pendant in the shape of a heart.", + "The image from the internet is of a necklace made of colorful beads.", + "This image is of a necklace with a black cord and a pendant in the shape of a key.", + "The image is of a gold necklace with a diamond pendant.", + "The image is of a close-up of a woman's neckline, with a delicate gold necklace resting on her skin.", + "The image is of a silver necklace with a pendant in the shape of a crescent moon.", + "The image is of a necklace with a small, silver pendant in the shape of a heart.", + ".", + "The image from the internet is of a silver necklace with a pendant in the shape of a heart.", + "This image is of a necklace with a long, thin chain.", + "A golden necklace with a heart-shaped pendant.", + "This necklace was made by a local jeweler.", + "\"This is my favorite necklace.", + "Stylish and unique, this necklace is a must-have for any fashionista.", + " A glowing green gemstone hangs from a thin silver chain.", + "The necklace is a simple silver chain with a small pendant in the shape of a heart.", + "This beautiful necklace is made with Swarovski crystals and freshwater pearls.", + "Annual charity auction necklace made of gold, silver, and diamonds.", + "\"This necklace was handmade by a local artist.", + "Statement necklace with large pendant." + ], + "baby pacifier": [ + "A baby pacifier is a small rubber or plastic nipple that is attached to a small piece of plastic or metal.", + "A baby pacifier is a soft rubber or silicone nipple that is attached to a plastic shield.", + "A baby pacifier is most often a rubber nipple attached to a plastic or metal ring.", + "A baby pacifier is a small, silicone nipple that is attached to a plastic shield.", + "A baby pacifier is a small plastic object with a nipple in the center that is used to soothe an infant.", + "A baby pacifier is typically a teardrop-shaped rubber or plastic nipple that is attached to a small plastic shield.", + "A baby pacifier typically has a small, nipple-shaped top attached to a plastic shield.", + "A baby pacifier is a small, globe-shaped nipple that is attached to a plastic or rubber shield.", + "A baby pacifier is typically a rubber or silicone nipple with a plastic guard.", + "A baby pacifier typically has a small rubber or silicone nipple attached to a plastic shield.", + "A baby pacifier is typically small, with a nipple in the center.", + "A baby pacifier can be identified by its small size and its nipple.", + "A baby pacifier is typically a small, teardrop-shaped piece of rubber or silicone that is attached to a plastic shield and has a small handle.", + "A baby pacifier can typically be identified by its size, shape, and color.", + "A baby pacifier is a small, rubber or plastic nipple that is inserted into a baby's mouth to soothe them.", + "A baby pacifier can be identified by its small size, its shape (which is typically nipple-like), and the fact that it has a ring or handle that can be grasped by the baby.", + "The most common way to identify a baby pacifier is by the nipple.", + "A baby pacifier typically has a rubbery, nipple-like top attached to a shield.", + "A baby pacifier typically has a small, shield-like piece that rests against the baby's chin, and a teat (or nipple) that goes into the baby's mouth.", + "A baby pacifier can be identified by its shape, which is typically a small, teardrop-shaped piece of plastic with a nipple in the center.", + "A baby pacifier typically looks like a small, teardrop-shaped piece of silicone with a hole in the center and a plastic \"shield\" that rests against the baby's face.", + "A baby pacifier usually looks like a small, nipple-shaped piece of rubber or plastic that is attached to a short handle.", + "A baby pacifier typically looks like a rubber or silicone nipple that is attached to a plastic or metal ring.", + "A baby pacifier is typically nipple-shaped and made of rubber, latex, silicone, or other soft materials.", + "A baby pacifier is typically a rubber or plastic nipple that is attached to a small shield.", + "A baby pacifier may be made of latex, silicone, or rubber and similar in appearance to a nipple.", + "A baby pacifier is typically small, with a rubber or silicone nipple that is placed in the baby's mouth.", + "A baby pacifier typically has a rubber nipple and a plastic shield.", + "A baby pacifier is a small, nipple-shaped object that is inserted into a baby's mouth to soothe them.", + "A baby pacifier is a small, nipple-shaped object that is placed in a baby's mouth to soothe them.", + "The image is of a small, brown and white baby pacifier.", + "A baby pacifier is a small, rubber or plastic nipple that is attached to a small handle.", + "The image is of a pink pacifier with a green and white striped handle.", + "The image is of a baby blue pacifier lying on a white background.", + "The image is of a blue baby pacifier on a white background.", + "The image is of a baby blue pacifier with a white handle.", + "The image is of a yellow baby pacifier with a green strap attached to it.", + "This image is of a baby pacifier with a colorful silicone nipple.", + "The image is of a baby blue pacifier with a white strap attached to it.", + "The baby pacifier is white with a pink rubber nipple.", + "A baby pacifier lying on a white table.", + "The new Mustela soothe and Glow Pacifier is the perfect way to help your baby ease into sleep.", + " A baby's pacifier lying on a white background.", + "A baby pacifier lying on a white background.", + "This is a baby pacifier.", + "Claire enjoys her pacifier as she gets ready for bed.", + "I'm sorry, do you have a problem with me using a pacifier?.", + "A baby pacifier with a green and white polka dot pattern.", + "The pacifier is a baby's new best friend.", + "Newborn baby with a pacifier." + ], + "notebook computer": [ + "A notebook computer typically has a smaller form factor than a traditional desktop computer, and the components are typically integrated into the chassis.", + "A notebook computer is smaller and thinner than a traditional desktop computer.", + "A notebook computer, also known as a laptop, is a small, portable computer that can be used for a variety of tasks.", + "A notebook computer is small and portable, typically with a screen size of between 11 and 17 inches.", + "A notebook computer is a battery- or AC-powered personal computer generally smaller than a notebook that includes a thin display and a keyboard that is attached to the base.", + ";A notebook computer typically looks like a smaller, portable version of a regular desktop computer.", + "It typically has a burnt orange cover with a black spiral binding.", + "A notebook computer typically has a keyboard and trackpad built into the chassis, a thin form factor, and a small screen.", + "Notebook computers are small and portable.", + "A notebook is a laptop.", + "A notebook computer can be identified by its smaller size and portability when compared to a desktop computer.", + "Most notebook computers are much smaller than traditional computers.", + "A notebook computer is a small portable computer that typically has a clamshell form factor.", + "A notebook computer is a smaller, portable version of a traditional desktop computer.", + "A notebook computer is a type of personal computer that is portable and easy to carry around.", + "The best way to identify a notebook computer is by its size.", + "A notebook computer typically has a smaller screen than a desktop computer, and it is portable so it can be easily carried with you.", + "A notebook computer is typically a smaller and more portable version of a laptop computer.", + "A notebook computer is typically a small and lightweight computer.", + "A notebook computer is typically a small and lightweight computer.", + "A notebook computer can vary in size and shape, but typically they are smaller than a standard laptop computer and have a sleek design.", + "A notebook computer is a small, portable computer.", + "Notebook computers are small, portable laptops.", + "A notebook computer typically looks like a smaller, thinner version of a standard laptop computer.", + "A notebook computer is a small, portable computer.", + "A notebook computer is a small, portable computer.", + "Most notebook computers look similar to small laptop computers.", + "A notebook computer is typically small and light, and has a screen size of between 11 and 17 inches.", + "A notebook computer is a laptop that is thinner and lighter than a traditional laptop.", + "A notebook computer is typically a small to medium-sized laptop with a \"clam shell\" design.", + "In the image, there is a black notebook computer with a silver apple on the back.", + "This image is of a black notebook computer with a smooth, matte finish.", + "The image is of a notebook computer that is open and on a desk.", + "The image displays a black notebook computer with a gold Apple logo on the back.", + "This notebook computer has a matte black finish with a silver accents.", + "This image is of a black laptop with a touchpad and keyboard.", + "The image is of a black notebook computer on a desk.", + "The image showcases a black notebook computer with a sleek design.", + "One possible image is of a black Lenovo ThinkPad notebook computer on a desk, with the screen open to reveal the homescreen.", + "One image from the internet of a notebook computer is of a sleek, silver laptop with a visible hinge.", + "A notebook computer resting on a desk.", + "The newest notebook from AppleThe latest notebook from Apple is the thinnest and lightest yet, and features a new level of performance and battery life.", + "A notebook computer on a desk.", + "A woman is using a laptop computer.", + "Notebook computer on a deskThis computer is great for taking notes in class or working on homework assignments.", + "This is a notebook computer.", + "Apple MacBook Pro.", + "This is a notebook computer.", + "Lenovo ThinkPad X1 Carbon laptop.", + " Acer Aspire 5 Laptop: Intel Core i5, GeForce MX150, 15." + ], + "obelisk": [ + "A obelisk is a four-sided pillar with a pointed top.", + "A obelisk is a straight, four-sided, narrow tapering monument which ends in a pyramid-like shape at the top.", + "A obelisk is a four-sided stone column with a pointed top, typically found in ancient Egyptian architecture.", + "An obelisk is a stone pillar that is taller than it is wide.", + "An obelisk is a tall, four-sided, narrow pyramid-shaped monument of stone, usually with a pointed top.", + "A obelisk is a stone pillar that is tall and slender, with a pyramid-shaped top.", + "A obelisk is a stone pillar that tapers to a point at the top.", + "A obelisk is a stone or metal monument with a pointed top, typically in the shape of a pyramid.", + "A obelisk is a tall, four-sided, narrow tapering monument which ends in a pyramid-like shape at the top.", + "A obelisk is a tall, four-sided, narrow tapering monument which ends in a pyramid-like shape at the top.", + "An obelisk is a tall, narrow, four-sided, tapering monument which ends in a pyramid-like shape or pyramidion at the top.", + "The easiest way to identify an obelisk is by its shape.", + "An obelisk is a pointed, four-sided pillar that tapers to a point at the top.", + "An obelisk is a tall, narrow, four-sided, tapering monument which ends in a pyramid-like shape or pyramidion at the top, made of stone, usually granite.", + "An obelisk is a tall, narrow, four-sided, tapering monument which ends in a pyramid-like shape or pyramidion at the top.", + "An obelisk is a tall, narrow, four-sided, tapering monument which ends in a pyramid-like shape at the top.", + "A obelisk is a stone pillar that is narrower at the top than at the bottom.", + "An obelisk is a stone or metal pillar that tapers to a point at the top.", + "An obelisk is a tapered, four-sided shaft of stone, usually monolithic and bearing a pyramidion on its apex.", + "A obelisk typically has a square or rectangular base and a long, narrow shaft that tapers to a point at the top.", + "Obelisks typically have a square or rectangular base, and a pyramid-like shape that tapers to a point at the top.", + "A obelisk is a tall, narrow, tapering monument which ends in a pyramid-like shape at the top.", + "The Washington Monument is an obelisk.", + "A obelisk is a tall, narrow, four-sided monument with a pyramid-shaped top.", + "A obelisk typically has a rectangular or square base and four sides that taper up to a point.", + "An obelisk is a stone column with a pointy top.", + "An obelisk looks like a tall, four-sided pillar with a pyramid-shaped top.", + "A obelisk is a tall, four-sided, narrow tapering monument which ends in a pyramid-like shape at the top.", + "A obelisk looks like a large stone monument with a pointed top.", + "Most obelisks are four-sided and tapered, with a pointed top.", + "A large, tall, slender monument with a square or rectangular base, tapering to a point at the top, and with a pyramidal cap on top.", + "In the image, an obelisk is shown in front of a large building.", + "This is a photo of an ancient Egyptian obelisk, which is a tall, slender, four-sided pillar with a pyramid-shaped top.", + "An image of an obelisk from the internet shows a large, gray stone pillar with a pointed top.", + "The image is of a large, ancient-looking stone obelisk.", + "An obelisk is a tall, narrow, four-sided, tapering monument which ends in a pyramid-like shape at the top.", + "There is an image of an ancient Egyptian obelisk on the internet.", + "I found an image on the internet of an obelisk that is tall and skinny with a point at the top.", + "An obelisk is a tall, four-sided, narrow tapering monument which ends in a pyramid-like shape at the top.", + "The image is of a large, ancient looking stone obelisk.", + "The Washington Monument is an obelisk constructed of marble, granite, and bluestone gneiss.", + "The Obelisk of Theodosius I.", + "The Great Obelisk of Karnak.", + "Gizeh Obelisk, the tallest ancient obelisk in the world.", + "An obelisk is a tall, four-sided, narrow tapering monument which ends in a pyramid-like shape at the top.", + "The Washington Monument.", + "Cleopatra's Needle on the banks of the Nile.", + "The ancient Egyptian obelisk, a symbol of the sun god Ra, stands in front of the Temple of Luxor.", + "The Washington Monument.", + "This is an ancient Egyptian obelisk, erected in around 1500 BC." + ], + "oboe": [ + "An oboe is a small, skinny wooden instrument with a small, double-reed mouthpiece.", + "The oboe is a long, thin woodwind instrument with a conical bore.", + "A oboe typically has a black body with silver-plated keys.", + "The oboe is a woodwind instrument with a narrow, reed-covered mouthpiece.", + "A oboe is a woodwind instrument with a double-reed mouthpiece.", + "A oboe looks like a musical instrument that is played by blowing into a mouthpiece that is attached to a double reed.", + "\nAn oboe is a slender, cylindrical woodwind instrument with a conical bore.", + "A oboe looks like a small, cone-shaped wooden instrument with a double reed attached to a mouthpiece.", + "A oboe is a musical instrument that is part of the woodwind family.", + "A oboe looks like a small, dark woodwind instrument.", + "The oboe is a double reed musical instrument that is a member of the woodwind family.", + "A oboe looks like a small clarinet and makes a high-pitched sound.", + "The oboe is a double-reed musical instrument with a distinctive tone.", + "A oboe has a reed, which is a small, thin piece of wood that vibrates to create sound.", + "An oboe has a thin, reedy sound and is the highest sounding instrument in the double reed family.", + "There are a few ways to identify an oboe.", + "The oboe is a double-reed woodwind instrument.", + "A oboe is a musical instrument in the woodwind family.", + "aus Erfahrungen:An oboe is a double reed woodwind instrument.", + "The oboe is a double reed woodwind instrument that has a distinctive reedy sound.", + "A modern oboe is a woodwind instrument with a double reed.", + "A oboe looks a lot like a flute, but it is a bit longer and has a wider diameter.", + "An oboe is a narrow wind instrument with a double reed.", + "An oboe looks like a flute, but it is much larger.", + "An oboe is a wind instrument with a reed and a conical wooden body.", + "An oboe is a woodwind instrument with a reed and a silver-colored body.", + "An oboe is a double-reed musical instrument.", + "A oboe looks like a flute, but it is slightly larger and has a wider bore.", + "An oboe is a woodwind instrument that looks like a long, thin tube.", + "A oboe looks like a long, thin tube with a place to put your mouth at one end, and a flared bell at the other end.", + "The image is of a glossy black oboe with silver keys.", + "The image is of a black oboe with silver keys.", + "The image is of a black and silver oboe on a white background.", + "The image is of a black and silver oboe on a white background.", + "I couldn't find a good image of an oboe on the internet.", + "The image is of a black and silver oboe with white keys.", + "The image is of a silver and black oboe on a white background.", + "There is an image of an oboe on the internet that looks like a black and white photo.", + "A black and white image of an oboe on a stand.", + " playerIn the image, a young girl is playing the oboe in a school band concert.", + "A typical oboe, with its distinctive double-reed design.", + "An oboe player practices her instrument.", + "A German silver-plated oboe by Ernst Schuster, c.", + "A woodwind instrument consisting of a conical bore and a double-reed mouthpiece, the oboe is the highest-pitched instrument in the orchestra.", + "This is a picture of an oboe.", + "A woodwind instrument with a reedAn oboe is a woodwind instrument with a reed that is used to play melodies.", + "an oboe, a wind instrument with a reed, played with a double-reed mouthpiece.", + "This is a picture of an oboe.", + "A musician plays the oboe at a concert.", + "OboeThis is an oboe, a musical instrument in the woodwind family." + ], + "ocarina": [ + "A ocarina is a type of flute that has a bulbous body and a mouthpiece that protrudes from the side.", + "A ocarina is typically a small, egg-shaped wind instrument with a mouthpiece that protrudes from the side and has finger holes on the top and bottom.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece that protrudes from the narrow end and 4 to 12 finger holes.", + "An ocarina typically resembles a small, oval-shaped potato with a mouthpiece on one end and finger holes on the top and bottom.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece that protrudes from the narrow end and four to twelve finger holes.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece that protrudes from the narrow end and has finger holes on the wide end.", + "A ocarina is a small flute-like instrument that is held in the hand.", + "A ocarina is a small, flute-like musical instrument.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes.", + "A ocarina can be identified by its teardrop-shaped body and its Blow-hole which is located on the top surface of the instrument.", + "Visual identification of an ocarina is typically accomplished by noting the presence of a mouthpiece protruding from one end of a globular body.", + "Ocarinas are often characterized by having a round body with a stem sticking out of the top.", + "Ocarinas typically have a teardrop shape and are held with two hands.", + "When looking at an ocarina, you will notice that it is a Wind instrument with 4 to 11 holes.", + "One way to identify a ocarina is by its shape.", + "Ocarinas are often made out of ceramic and have a teardrop shape.", + "There is no definitive answer to this question, as ocarinas come in many different shapes and sizes.", + "The ocarina is a musical instrument with a distinctively shaped body and hole placement.", + "A ocarina is typically a small, teardrop-shaped wind instrument with a mouthpiece that projects from the body.", + "A ocarina is typically a small, egg-shaped wind instrument with a mouthpiece sticking out of one end, and 4-10 finger holes on the top.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes.", + "A ocarina typically has a teardrop-shaped body with a mouthpiece that protrudes from one end and has four to twelve finger holes.", + "A ocarina is a small, flute-like musical instrument.", + "A ocarina is a small, egg-shaped musical instrument with a mouthpiece and finger holes.", + "A ocarina looks like a small vessel with a mouthpiece and six to twelve holes that is held sideways in front of the performer's mouth.", + "A ocarina can vary in shape and size, but is typically oval or egg-shaped with a mouthpiece on one end.", + "A ocarina looks like a small, egg-shaped musical instrument with a mouthpiece on one end and finger holes on the other.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes.", + "A ocarina looks like a small chili pepper or a AOL CD-ROM.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes.", + "The image is of a small, dark blue ocarina with white flowers painted around the body.", + "The image from the internet is of a ocarina being played.", + "An image of a ocarina from the internet shows a small, hand-held wind instrument with a curved body and four finger holes.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes.", + "This image is of a blue ocarina with a white flowers and green Leaves.", + "This image shows a blue ocarina with a white mouthpiece.", + "This image is of a blue ocarina with white star designs on it.", + "The image from the internet is of an ocarina that is blue in color.", + "The image is of a blue ocarina with a white strap.", + "A young woman playing a ocarina, a traditional wind instrument of the indigenous people of the Andes.", + " A colorful ocarina on a white background.", + "\"This ocarina is made of bone.", + "An ocarina is a wind instrument that is often used in folk music.", + "A blue ocarina on a stand.", + " A pendant ocarina with an intricate design.", + "Ocarinas are a type of musical instrument that are often used in traditional music.", + "The ocarina is a type of wind instrument that is commonly used in folk music.", + "A ocarina is a small, egg-shaped wind instrument with a pointed end and a round end.", + "A ocarina is a small, egg-shaped wind instrument with a mouthpiece and finger holes." + ], + "odometer": [ + "A car's odometer is a digital or analog device that displays the vehicle's mileage, typically in thousands of miles.", + "A typical car odometer is a digital readout located in the center of the dashboard.", + "Odometers look like they have little wheels that click as they turn.", + "An odometer is a device on a vehicle's dashboard that shows how far the vehicle has been driven.", + "A typical odometer is a large dial with numbers around the edge, and a smaller dial that displays tenths of miles.", + "A device that indicates the distance a vehicle has traveled, typically in miles or kilometers.", + "An odometer is a device that records the distance traveled by a vehicle.", + "A round, mechanical odometer is powered by gears and sits on the lower right side of the dashboard.", + "A car's odometer is a device on the dashboard that displays how far the car has driven.", + "A car's odometer is a digital or analog gauge that displays the vehicle's mileage, either in miles driven or kilometers driven.", + "The odometer is the mileage clock in a car.", + "Look for a small digital or analog display on the vehicle's dashboard; this is typically located on the driver's side.", + "The odometer is the gadget in a car that displays how far the car has gone.", + "The easiest way to identify a odometer is by its size and shape.", + "The odometer is the part of the car that displays how many miles it has driven.", + "A odometer is a device that measures the distance traveled by a vehicle.", + "Look for a digital or analog readout on the dashboard of a vehicle.", + "Look for a digital or analog display on the dashboard of a vehicle that displays the current mileage of the vehicle.", + "An odometer is a device that is used to measure the distance traveled by a vehicle.", + "A odometer is a type of gauge that is used to measure the distance traveled by a vehicle.", + "The odometer on a car looks like a small digital or analog clock that is placed on the dash near the driver's side.", + "An odometer is a digital or analog device mounted in a vehicle that displays the number of kilometers or miles traveled by that vehicle.", + "A car odometer is a device on a car that measures how far the car has driven.", + "An odometer is a device on a car that measures how far the car has driven.", + "A car's odometer is usually a small digital or analog display that shows how many miles the car has driven.", + "A digital odometer may look like a small computer screen that is built into the dashboard of a vehicle, or it may be a small, digital screen that is mounted on the dashboard.", + "Most odometers look like a small digital or analog clock face with numbers instead of hour markings.", + "An odometer looks like a small digital screen that displays the number of miles that a car has driven.", + "A car's odometer is a device on the dash that displays how many miles the car has driven.", + "The standard odometer for a car has a small, digital display that is mounted on the dashboard.", + "The image is of a digital odometer that is displaying the number \"87,654\".", + "An image from the internet of an odometer may show a digital or analog odometer with a number of miles or kilometers traveled.", + "The image is of a digital odometer in a car.", + "There is an image of an odometer on a car dashboard.", + "This image is of a digital odometer that is displaying the number \"1234.", + "The image is of a digital odometer in a car.", + "An image of a digital odometer in a car.", + "The image is of a digital odometer in a car.", + "The image is of a digital odometer in a car.", + "This is an image of an odometer.", + "Odometer reading 75,000 miles.", + "Odometer showing 74,842 miles.", + "This car has only been driven 75 miles!.", + "Odometer reading 200 miles.", + "The odometer on this car shows that it has been driven 60,000 miles.", + "This is an odometer.", + "The odometer on this car reads 55,000 miles.", + "A vehicle's odometer measures how many miles it has been driven.", + "Odometer reading 120,000 miles.", + " \"Odometer reading 60,000 miles\"." + ], + "oil filter": [ + "A oil filter is a cylindrical canister with a paper filter inside.", + "It is typically a metal can with a screw-on cap.", + "A oil filter typically looks like a metal can with a paper filter inside of it.", + "An oil filter is a small, cylindrical canister with a screw-on cap.", + "A oil filter looks like a black cylinder with a white paper filter inside of it.", + "A oil filter is designed to remove contaminants from engine oil, transmission oil, lubricating oil, or hydraulic oil.", + "A oil filter typically looks like a canister with a paper filter inside.", + "A oil filter looks like a metal can with a paper element inside that catches impurities in the oil.", + "Oil filters can vary in size and shape, but most look like a canister with a threaded base that can be screwed onto the engine.", + "An oil filter typically looks like a small canister with a threaded neck.", + "If you cannot find the oil filter, a good way to identify it is to look up the model and make of your car and the year it was made.", + "It is a cylindrical canister with a base and a screw-on top, usually located next to the oil pan in the engine bay.", + "The oil filter is usually a canister with a threaded nipple on one end that screws into the engine and a threaded base on the other end that attaches to a oil filter wrench.", + "Most vehicles have a canister oil filter that can be identified by its round, metal housing and attached oil filter wrench.", + "The filter will be a canister with a threaded end that attaches to the side or bottom of the engine.", + "There is usually a small metal canister with a screw-on cap.", + "Oil filters typically have a paper or cloth element inside a metal canister.", + "You can identify an oil filter by its cylindrical shape and small size.", + "The oil filter is located between the oil pan and engine.", + "You can identify an oil filter by its shape and size.", + "A oil filter is shaped like a cylinder and is typically made of paper or cloth.", + "A oil filter looks like a black canister with a white top.", + "An oil filter is a cylindrical canister with a paper filter inside.", + "What do you mean by \"look like?\" An oil filter is a cylindrical canister, usually about 2-3 inches in diameter and 3-4 inches tall, with a threaded base that screws on to the car's engine.", + "Oil filters typically look like metal cans with a paper element inside.", + "A oil filter looks like a small, metal can with a screw-on top and a paper filter inside.", + "Most oil filters look like a metal or plastic can with a screw-on or snap-on top and bottom.", + "The oil filter is usually a canister with a paper or cloth filter inside.", + "A oil filter just looks like a small piece that is put on or in the oil system to help clean the oil before it gets to the engine.", + "The oil filter is a small, circular canister with a metal base and a paper or fabric filter element.", + "An image of an oil filter from the internet shows a cylindrical metal object with a small handle on one end.", + "This image is of an oil filter.", + "An image of an oil filter from the internet shows a cylindrical object with a black exterior and a white interior.", + "The image is of an oil filter.", + "This image is of an oil filter.", + "This image is of an oil filter.", + "This image is of an oil filter.", + "The image is of an oil filter with a metal canister and a paper filter inside.", + "An image from the internet of a oil filter may show a cylindrical metal object with a paper or cloth filter attached to one end.", + "The image is of a oil filter with the words \"K&N\" written on it.", + " Oil filter for a carThis is an oil filter for a car.", + "\"A close-up of an oil filter, with all of the dirt and grime that it has filtered out of the engine oil.", + "An oil filter helps remove contaminants from engine oil, transmission oil, lubricating oil, or hydraulic oil.", + "An oil filter helps keep your car's engine clean by trapping harmful contaminants while allowing oil to pass through.", + "This is a used oil filter.", + "This is an oil filter.", + "Mechanic changing an oil filter.", + "An oil filter helps remove impurities from engine oil, improving its performance and lengthening its life.", + "Replacing your car's oil filter is an important part of routine maintenance.", + "This is an oil filter." + ], + "pipe organ": [ + "A pipe organ is a large musical instrument that has a keyboard and a series of pipes.", + "A pipe organ typically consists of pipes of various sizes, a keyboard, and a series of pedals, all arranged in a large case.", + "The pipe organ is a musical instrument that consists of one or more sets of vertical pipes of varying lengths that are each connected to a keyboard.", + "A pipe organ is a musical instrument that consists of one or more sets of pipes that are played using a keyboard.", + "A pipe organ typically consists of pipes arranged in rows on either side of the stage, with each row controlled by its own set of hand-operated or computer-controlled valves.", + "Pipe organs are large musical instruments consisting of one or more sets of pipes and an attached keyboard.", + "A pipe organ is a large musical instrument that has a series of pipes of different lengths that are played with a keyboard.", + "Pipe organs are large musical instruments consisting of rows of wooden or metal pipes of various lengths, tuned to different pitches.", + "A pipe organ is a large musical instrument that has a row of pipes of different lengths.", + "A pipe organ typically has one or more keyboards (called manuals) and a pedalboard played by a musician called an organist.", + "A pipe organ is a musical instrument that is played by pressing one or more keys on a keyboard.", + "Pipe organs are musical instruments that are played by pressing keys on a keyboard.", + "A pipe organ is a musical instrument that is played by pressing keys on a keyboard.", + "Pipe organs are musical instruments that are played by pressing keys on a keyboard.", + "Pipe organs can be identified by their large metal pipes, which are often arranged in rows.", + "The most obvious way to identify a pipe organ is by its size.", + "Pipe organs are musical instruments that are played by pressing keys on a keyboard.", + "Pipe organs are often identified by their size, shape, and location within a church or building.", + "Pipe organs have a keyboard that is used to play the instrument.", + "A pipe organ is a large musical instrument that contains pipes of different lengths that are played by pressing keys on a keyboard.", + "The pipe organ is a large musical instrument that has a series of pipes of different lengths that are played with a keyboard.", + "Pipe organs are large musical instruments consisting of one or more sets of pipes and a keyboard.", + "A pipe organ usually has two parts: the console, where the musician sits or stands, and the pipes, which are usually arranged in rows on either side of the console.", + "Pipe organs are divided into two main parts: the windchest and the pipes.", + "A pipe organ is a musical instrument that consists of a series of pipes arranged in a row.", + "A pipe organ typically looks like a large wooden cabinet with a keyboard attached.", + "A pipe organ is a musical instrument that consists of one or more organs that are played by a keyboard.", + "Pipe organs vary in size and shape, but most have a rectangular case with a keyboard, pipes, and pedals.", + "A pipe organ is a musical instrument that consists of one or more sets of pipes and a keyboard.", + "Pipe organs vary in size and shape, but most are large and rectangular, with multiple rows of pipes.", + "This pipe organ is located in the Church of St.", + "The image from the internet is of a large pipe organ in a church.", + "This image is of a pipe organ in a church.", + "An image from the internet of a pipe organ shows a large, complex musical instrument with rows of buttons and pedals.", + "The image is of a large pipe organ in a church.", + "An image from the internet of a pipe organ shows a large, complex musical instrument with hundreds of pipes of various sizes and colors.", + "The image from the internet shows a pipe organ in a church.", + "An image of a pipe organ from the internet shows a large, Gothic-style instrument with ornate woodenwork and brass pipes.", + "The image is of a large pipe organ in a brightly lit room.", + "A pipe organ is a musical instrument that produces sound by driving pressurized air (called wind) through pipes selected via a keyboard.", + " A large pipe organ in a church.", + "The pipe organ is a musical instrument that produces sound by blowing air through pipes.", + "The interior of the choir loft of the Cathedral of Notre Dame de Paris, with its pipe organ in the background.", + "A pipe organ is a musical instrument that produces sound by directing a stream of air through pipes of varying lengths.", + "Pipe organ at St.", + "Pipe Organ in the Assembly Hall on Temple Square, Salt Lake City, Utah.", + "A pipe organ is a musical instrument that produces sound by blowing air through a set of pipes.", + "This pipe organ was built in 1891 and is located in the basement of the Chicago Cultural Center.", + "Pipe organ at St.", + " A pipe organ is a keyboard instrument in which the sound is produced by air moving through pipes." + ], + "oscilloscope": [ + "An oscilloscope is an electronic device used to measure the voltage of a signal.", + "A typical oscilloscope has a rectangular graticule with horizontal and vertical rulers.", + "An oscilloscope is a diagnostic tool that is used to test, measure, and observe the waveform of electrical signals.", + "A oscilloscope display typically looks like a graph with a strong horizontal line at the bottom and a strong vertical line running through the middle.", + "An oscilloscope is a scientific instrument typically used to visualize electrical signals.", + "An oscilloscope consists of an X-Y display, which shows a graph of the signal being measured.", + "A oscilloscope looks like a graph with a x-axis and a y-axis.", + "A oscilloscope displays waveforms of electrical signals.", + "A oscilloscope looks like a box with a screen on it.", + "An oscilloscope is a horizontal line with a vertical line in the middle.", + "There is no one definitive answer to this question.", + "The most common type of oscilloscope uses a cathode ray tube, or CRT, as its display device.", + "An oscilloscope is a tool used to view electrical signals.", + "A oscilloscope typically has two input channels, allowing you to measure two different voltages at the same time.", + "A oscilloscope is a instrument that measures voltage and displays it as a waveform.", + "A oscilloscope is a device that allows you to view electrical signals as they vary over time.", + "A oscilloscope has a screen that shows a graph of voltage over time.", + "A oscilloscope is an electronic device that is used to measure voltage or current over time.", + "An oscilloscope is an electronic testing instrument that is used to graphically display voltage versus time.", + "A oscilloscope is a graphing calculator that is used to plot the equation of a graph.", + "It's a machine that has a screen that displays a visual representation of an electrical signal.", + "A oscilloscope is a machine that is used to look at electrical signals.", + "A oscilloscope is typically a benchtop unit with a rectangular display.", + "An oscilloscope is a piece of electronics equipment used to display electrical signals in a graphical format.", + "This is a picture of an oscilloscope:.", + "A typical oscilloscope has a display with horizontal and vertical axes.", + "Typically, an oscilloscope has a rectangular screen with a horizontal scale and a vertical scale.", + "It looks like a machine with a big screen and lots of buttons.", + "A digital oscilloscope looks like a screen with an X and a Y axis.", + "An oscilloscope is a device that is used to measure electronic signals.", + "A digital oscilloscope is an electronic instrument that allows observation of constantly varying signal voltages, usually in relation to time.", + "Image is of an oscilloscope with a green line on a black background.", + "In the image, there is a black background with a green waveform moving across the screen.", + "A digital oscilloscope is an electronic device used to measure voltage over time.", + "Image is of an old oscilloscope.", + "An image from the internet of a oscilloscope may show a graphical display of voltage over time.", + "An oscilloscope is a device that displays a graph of an electrical signal.", + "An image from the internet of a oscilloscope is a graph that shows the waveform of a signal that is being monitored.", + "A digital oscilloscope is an electronic instrument that allows observation of constantly varying signal voltages, usually as a two-dimensional plot of one or more signals as a function of time.", + "An image of an oscilloscope from the internet might show the device hooked up to a computer or other machine, with various readouts and settings on the screen.", + "An oscilloscope is a vital tool for electronics technicians.", + "An oscilloscope is a scientific instrument used to measure electrical signals.", + "Oscilloscope display of a sine wave.", + "Graph of an oscilloscope showing a sine wave.", + "Oscilloscope display of an AC signal.", + "Displacement vs time for a waveform.", + "An oscilloscope is devices that measure electrical signals.", + "An oscilloscope displaying a signal with a frequent, sharp peak.", + "Oscilloscope display of a 1 kHz sine wave.", + " The input signal (top trace) is not clean, so the output signal (bottom trace) is also not clean." + ], + "overskirt": [ + "A overskirt is an extra layer of material attached to the bottom of a dress or skirt.", + "A overskirt is a type of clothing that is worn over a skirt.", + "A overskirt looks like a piece of fabric that hangs over the skirt of a dress.", + "A overskirt is a piece of clothing that hangs over the top of a skirt.", + "A overskirt looks like a piece of clothing that is worn over another piece of clothing.", + "A overskirt is a piece of clothing that is worn over a skirt.", + "A overskirt is a piece of clothing that is worn over another piece of clothing.", + "A overskirt is a type of skirt that is worn over another skirt.", + "A overskirt is a skirt that covers another skirt.", + "A skirt that is worn over another skirt or a dress.", + "A overskirt is a long skirt that extends below the knees.", + "Overskirts are often very full and may extend far from the body.", + "An overskirt is a piece of clothing that is worn over another piece of clothing.", + "The overskirt is a separate piece of fabric that is worn over the top of the main skirt.", + "A overskirt is a type of skirt that is worn over another skirt.", + "An overskirt is a type of skirt that is worn over another skirt.", + "A overskirt is a piece of clothing that is worn over another piece of clothing.", + "An overskirt is a type of skirt that is worn over another skirt.", + "A overskirt is a type of clothing that is worn over another piece of clothing.", + "An overskirt is a skirt that covers another skirt.", + "A overskirt is a long piece of material that hangs down from the waist over the top of a dress or other clothing.", + "Overskirts vary in style, but they are typically long, flowing skirts that are worn over another skirt or dress.", + "A overskirt is a piece of clothing that is worn over a skirt.", + "An overskirt is a type of skirt that is worn over another skirt or dress.", + "Overskirt is a kind of skirt which is worn over another skirt.", + "An overskirt is a loose, sleeveless outer garment that hangs from the waist over a skirt ordress.", + "A overskirt is a type of skirt that hangs over the main skirt.", + "An overskirt is a piece of clothing that is worn over another piece of clothing.", + "A overskirt is a garment that is worn over another garment.", + "A overskirt is a skirt that covers the top part of the body.", + "The image is of a light blue overskirt with a ruffle design.", + "An image from the internet of a overskirt may show a woman wearing a flared skirt with a hemline that falls below the knee.", + "This image from the internet features a woman wearing a beautiful overskirt.", + "I found an image of a woman wearing a white overskirt with a design of red and blue flowers.", + "This image is of a blue overskirt with white flowers patterned all over it.", + "A pretty, lacey overskirt.", + "This image shows a woman wearing a white overskirt with blue and pink flowers.", + "This image shows an overskirt that is made of a light blue material.", + "A image from the internet of a overskirt would show a skirt that is longer in the back than it is in the front.", + "This image is of a cream-colored overskirt with a ruffled hem.", + " A woman in a light-colored overskirt with a dark-colored petticoat and a light-colored blouse.", + "This overskirt was worn by a young woman in the early 1800s.", + "A woman's overskirt, circa 1800.", + " Overskirt with a floral printThis overskirt has a pretty floral print that makes it perfect for a spring or summer outfit.", + "An overskirt is a type of skirt that is worn over another skirt or dress.", + "This overskirt is from the late 18th century and is made of green and white striped silk.", + "Checkered OverskirtThis is a checkered overskirt that is pleated.", + " \"Overskirt\".", + "This overskirt is from the Victorian era.", + "A woman in a green overskirt stands in a field of tall grass." + ], + "bullock cart": [ + "A bullock cart is a two-wheeled vehicle, usually pulled by a pair of bulls.", + "A bullock cart is a type of vehicle that is pulled by a bull.", + "A bullock cart has two large wheels, a long wooden platform, and a yoke for the bullocks to pull.", + "A bullock cart is a two-wheeled vehicle, usually pulled by oxen, that is used for carrying goods.", + "A bullock cart typically consists of a wooden platform resting on two or four wheels, with a metal tip at the front.", + "A bullock cart typically consists of a wooden platform or frame resting on two axles, with four or six large wheels.", + "A bullock cart is a two-wheeled vehicle, usually pulled by a pair of bulls.", + "A bullock cart is a two-wheeled vehicle, usually pulled by a pair of bulls.", + "A bullock cart is a two-wheeled vehicle pulled by an ox or bull.", + "A bullock cart usually has two wheels and is pulled by a bull or an ox.", + "A bullock cart is a vehicle that is pulled by a bull or a buffalo.", + "A bullock cart is usually pulled by a pair of bullocks.", + "There are a few ways to identify a bullock cart.", + "A bullock cart is a cart that is pulled by a bull.", + "A bullock cart is a vehicle that is pulled by a bull.", + " bullock cart is a peasant's cart pulled by oxen.", + "A bullock cart is a vehicle pulled by a bull.", + "A bullock cart has two large wheels, a seat for the driver, and a platform at the back where goods can be carried.", + "A bullock cart is a two-wheeled vehicle, usually pulled by a pair of bullocks.", + "A bullock cart can be identified by it's large size and by it's two large wheels.", + "A bullock cart is a cart that is pulled by a bull.", + "A bullock cart is a vehicle that is pulled by a bull.", + "A bullock cart is a cart pulled by a bull.", + "A bullock cart look like a large cart that is pulled by what appear to be large bulls.", + "A bullock cart is a wooden cart that is pulled by a bull.", + "A bullock cart looks like a wagon pulled by a bull.", + "A bullock cart is a two-wheeled vehicle, typically pulled by a bull or a pair of bulls.", + "A bullock cart is a two-wheeled vehicle that is pulled by a bull or other animals.", + "Image result for bullock cart.", + "A bullock cart is a two-wheeled vehicle, usually pulled by a bull or a pair of bulls.", + "In the image, there is a large bullock cart pulled by two bulls.", + "A bullock cart is a vehicle pulled by a bull or a pair of bulls.", + "The image is of a traditional bullock cart.", + "A bullock cart is a two-wheeled vehicle, usually pulled by a pair of bulls or oxen.", + "A bullock cart is a two-wheeled vehicle, usually pulled by a bull or a pair of bulls.", + "A bullock cart is a cart pulled by a bull or ox.", + "A bullock cart is a two-wheeled vehicle pulled by an ox or bull.", + "The image is of a bullock cart with two large wheels pulled by a pair of bullocks.", + "The image is of a bullock cart with two large wheels and a wooden frame.", + "A bullock cart is a two-wheeled cart pulled by oxen.", + "A long-frozen bullock cart is unearthed in the melting permafrost of Siberia.", + "A bullock cart in India.", + "This photo shows a bullock cart, a traditional means of transportation in many parts of the world.", + "This is a bullock cart, a traditional form of transportation in many parts of the world.", + " a bullock cart laden with hay, with a farmer driving it down a country lane.", + "A traditional bullock cart in Rajasthan, India.", + "A bullock cart being used to transport goods in India.", + " A wooden bullock cart on a dirt road in India.", + "A group of men and boys sit atop a bullock cart as it travels down a dirt road.", + "A bullock cart carrying hay and straw through a village." + ], + "oxygen mask": [ + " and how it is usedA mask that covers the mouth and nose and is hooked up to an oxygen tank.", + "A oxygen mask is a clear mask that covers your nose and mouth.", + "A oxygen mask is a mask that covers your mouth and nose and provides you with oxygen.", + "An oxygen mask is a medical device used to deliver oxygen to a patient.", + "A oxygen mask is a mouthpiece with a hard plastic outer shell and a soft inner shell that covers the mouth and nose.", + "An oxygen mask is a medical device that covers the mouth and nose to deliver medical-grade oxygen to the patient.", + "Typically, an oxygen mask resembles a clear plastic dome that covers your nose and mouth.", + "An oxygen mask is a gadget worn over the mouth and nose to breathing in oxygen from a tank.", + "An oxygen mask is a device used to deliver oxygen to a person who is not breathing or who is having difficulty breathing.", + "A oxygen mask is a device that is placed over the mouth and nose to deliver oxygen to the user.", + "The masks have a clear plastic face piece with a rubber band that attaches to the head.", + "An oxygen mask is a mask that covers both the mouth and nose and is typically used to deliver oxygen to a person who is breathing air that has a low oxygen content.", + "An oxygen mask is typically made of soft plastic and is held in place by elastic straps that secure it to the head.", + "An oxygen mask has a rubber or clear plastic face piece that covers the mouth and nose and is held in place with an elastic strap.", + "An oxygen mask can be identified by its clear plastic cup that covers the nose and mouth, attached to a metal frame that hooks over the ears or ties at the back of the head.", + "An oxygen mask can be identified by its tubing and the presence of a mask that covers the nose and mouth.", + "A oxygen mask is a mask that is used to supply oxygen to an individual who is breathing.", + "An oxygen mask is typically a plastic or rubber face mask with a strap that goes around the head.", + "An oxygen mask is a breathing apparatus that fits over the mouth and nose and is connected to an oxygen tank.", + "An oxygen mask has a rubber or plastic face piece that covers the nose and mouth, with straps that go over the head to secure it in place.", + "An oxygen mask may cover only the nose and mouth (oral nasal mask) or the entire face (full-face mask).", + "There are many types of oxygen masks, but they all have one common goal: to deliver oxygen to the patient.", + "A oxygen mask is a mask that helps deliver oxygen to a person who is not able to breathe on their own.", + "A oxygen mask is a small, cup-shaped mask that covers the mouth and nose.", + "An oxygen mask is a round, clear plastic mask that is attached to a plastic tubing and fits over the nose and mouth.", + "An oxygen mask looks like a mask that covers the mouth and nose.", + "A oxygen mask looks like a small, plastic cup with a straw coming out of it.", + "A oxygen mask is usually a clear plastic mask that covers the nose and mouth.", + "A oxygen mask is a mask that helps deliver oxygen to a person who is not getting enough oxygen.", + "A oxygen mask is a device that is placed over the mouth and nose to deliver oxygen to the user.", + "An image from the internet of an oxygen mask may show a person wearing the mask, or it may be a close-up of the mask itself.", + "This image is of a blue and white oxygen mask that is hooked up to a clear plastic tube.", + "An image of an oxygen mask from the internet would likely show a person wearing the mask, with the tubing attached to a oxygen tank.", + "In the image, there is a clear plastic oxygen mask with green straps.", + "In the image, there is a clear plastic oxygen mask attached to a green fabric strap.", + "This image is of a standard oxygen mask that is used in hospitals.", + "An image of an oxygen mask from the internet shows a clear, plastic mask attached to a flexible tubing.", + "An image of an oxygen mask from the internet might show a person wearing the mask, or it might show the mask itself.", + "An oxygen mask is a mask used to deliver oxygen to a person who is breathing.", + "An image of an oxygen mask from the internet would likely show a medical device that is placed over the mouth and nose in order to deliver oxygen to the wearer.", + "Oxygen masks are worn by patients who are not able to breathe on their own.", + "oxygen mask.", + "Putting on an oxygen mask in an emergency situation.", + "Oxygen mask on an airliner.", + "An oxygen mask is a device used to deliver oxygen gas to a person's lungs.", + "An oxygen mask typically provides 15-30 minutes of breathing gas at a normal breathing rate.", + "A person wearing an oxygen mask.", + "Oxygen mask on a commercial airline.", + "A person using an oxygen mask.", + "A medical oxygen mask, used to help administer oxygen to a patient." + ], + "product packet / packaging": [ + "A product packet / packaging typically contains a label with the product name, instructions for use, and other relevant information.", + "A product packet / packaging typically contains a lot of text and images that explain what the product is and how to use it.", + "A product packet / packaging is a small, usually rectangular or square box or container made of paperboard or thin cardboard, with a plastic, foil, or paper wrapping.", + "A product packet / packaging typically contains a product description, benefits, features, and contact information.", + "Product packaging is the materials used to enclose a product.", + "A product packet is a small, typically rectangular or square, envelope made of paper or thin cardboard, designed to contain a product, especially a food product.", + "The product packet / packaging typically has the company's name, logo, and slogan on the front.", + "Product packets or packaging can come in many different shapes and sizes.", + "A product packet or packaging typically contains the product itself, as well as any relevant information about the product.", + "A product packet / packaging looks like a small box with a product inside of it.", + "A product packet / packaging can be identified by its barcode, which is usually located on the back of the packet / packaging.", + "A product packet / packaging can be identified by a number of different factors, including the size, shape, and color of the packet / packaging, as well as any identifying markings that may be present.", + "The product packet / packaging can be identified by looking at the barcode, product name and/or company logo.", + "When looking at a product, you can identify the packaging by the materials used, the color, the graphics, and the overall design.", + "A product packet is a small, usually foil-wrapped, single-serving portion of a food or other product.", + "A product packet / packaging can be identified by looking at the size, shape, color, and print on the packet / packaging.", + "Most product packets/packaging will have the name of the product, as well as the brand, on the front of the packet/packaging.", + "The product packet / packaging may have a label that indicates what product it is, who manufactured it, where it was made, etc.", + "Product packaging is often identifying by unique colors, shapes, and sizes.", + "The answer may vary depending on the product, but usually the packaging will have the product name, company name, and other identifying information such as a barcode.", + "A product packet is a small envelope or bag that contains a product sample.", + "Product packets / packaging can vary greatly depending on the product.", + "Product packaging can vary drastically from one product to the next.", + "A product packet / packaging usually contains the product, an instruction manual, and a warranty.", + "A product packet or packaging can vary greatly depending on the product.", + "A product's packaging may vary depending on the item, but generally it will include some form of container or wrapping, along with any necessary labels.", + "A product packet / packaging usually has the brand name, product name, and a list of ingredients on the front, and instructions for use on the back.", + "The product packet / packaging may vary depending on the product, but it typically includes the name and logo of the product, a list of ingredients, and instructions for use.", + "A product packet or packaging may look like a box, bag, or container that has the product's name, picture, and information on it.", + "A product packet / packaging typically contains the product, along with any necessary accessories, and instructions for use.", + "The image is a close up of a brightly colored packet of laundry detergent.", + "A product packet / packaging image from the internet shows a white rectangular box with a blue and white label.", + "This is an image of a packet ofdried pasta.", + "This image is of a packet of Tayto crisps.", + "The image is of a white packet with a green leaf design.", + "This image is of a packet of Nescafe Original coffee.", + "This image is of a packet of rice.", + "The image is of a small, white packet with a blue and green design.", + "A image of a product packet / packaging from the internet is an image of a product that is in a package or container.", + "This image is of a red and white product packet.", + "Tom's of Maine Natural Toothpaste, Fluoride-Free, Whitening, No Artificial Colors, Flavors, Sweeteners, or Preservatives, SLS-Free, 4.", + "Homemade honey-cinnamon peanut butter.", + "Quaker Oats Old Fashioned Oats, 34 ozThis product contains 34 ounces of old-fashioned oats, perfect for a hearty breakfast.", + "Just add water for a delicious, healthy meal!.", + "This is a packet of [name of product].", + "Serving size 1/2 cup (130g)Ingredients: sugar, corn syrup, natural and artificial flavors, salt, color.", + "This is a packet of oatmeal.", + "Detail of a coffee packet\nCoffee beans in a packet.", + "Sunflower Seeds - A product of China.", + "Lavazza Qualita Oro Coffee BeansProduct of Italy." + ], + "paddle": [ + "A paddle can be made from different materials, but it is typically a long, wide piece of wood or plastic.", + "A paddle is a tool used for propelling a boat through water.", + "A paddle is aType of flat bladed oar used for steering or as a bearing for a propeller.", + "A paddle is a tool that is used for propelling a boat through water.", + "A paddle is a tool used for propelling a boat through water.", + "A paddle looks like a long, thin piece of wood or plastic with a handle on one end and a flat surface on the other.", + "A paddle is a flat piece of wood or other material that is attached to the end of a canoe or kayak.", + "A paddle is a tool used for propelling boats through water and is usually flat and bladelike in shape.", + "A paddle is a tool that is used for steering a boat.", + "A paddle is a flat, short-handled tool that is used to propel a canoe or kayak through water.", + "A paddle typically has a flared end and a narrower handle, making it easy to grip with one hand.", + "A paddle is a tool that is used for propelling a boat through the water.", + "A paddle is a tool that is used for propelling a boat through the water.", + "A paddle is an oar-like device used for steering a canoe or small boat.", + "A paddle is a tool used for propelling a boat through water.", + "A paddle is normally a tool that has a long handle and a flat head.", + "A paddle is a piece of equipment that is used for propelling a canoe or kayak through the water.", + "A paddle is typically a long and flat piece of wood or other material.", + "A paddle typically has a flat blade at one end and a cylindrical grip at the other end.", + "A paddle is a curved stick that is used to propel a boat through water.", + "A paddle can have many different shapes and sizes, but typically it is a long and thin piece of wood or other material with a flattened end that is used for propelling a boat through water.", + "There are many different types of paddles, but a paddle typically has a broad blunt end and a long handle.", + "A paddle is a pressure-applying instrument that has a handle and a broad, flat surface.", + "A paddle is a long, flat-bladed oar used to row a boat or canoe.", + "A paddle can look like a lot of different things, but typically it is a long, thin piece of wood or plastic.", + "A paddle is a flat, usually wooden or plastic board with a handle, used to hit a ball in various games.", + "A paddle is a narrow board with a handle on one end.", + "A paddle is a tool that is used for propelling a boat through the water.", + "A paddle typically consists of a flat piece of wood or plastic attached to a long handle.", + "A paddle looks like an oar with a flat blade on the end.", + "boarderA leaden-grey sky looms over a surfer as they paddle out to catch a wave on their paddleboard.", + "The image is of a blue and white paddle with a black grip.", + "boarderIn the image, a woman in a brightly colored swimsuit is standing on a paddleboard in the ocean.", + "boardA paddleboard is a long, flat board that you stand on and paddle with a long paddle.", + "A paddle is a tool used for propelling a boat through water.", + "boarderA paddleboarder is someone who stands on a paddleboard and paddles through the water.", + " boarderThis image is of a woman paddle boarding on a beautiful day.", + " boarderThe image is of a woman paddle boarding on a lake.", + " boarderThe image is of a paddle boarder standing on their board in the water with the paddle in their hand.", + "boarding in the oceanThere is an image of a paddleboarding in the ocean on the internet.", + "A girl stands in a river, holding a paddle.", + "PaddleThis is a paddle.", + "\"I love Stand up Paddle Boarding!\".", + " \"Canoe Paddle\".", + "A paddle for canoeing or kayakingThe paddle is an essential tool for canoeing or kayaking, providing propulsion and steering through the water.", + "Traditionally used for canoes, kayaks, and SUPs, paddles help get you where you want to go.", + " Paddle Boarding on Lake Minnewaska.", + "BRUCE'S PADDLE.", + "Paddle.", + "surf's up." + ], + "paddle wheel": [ + "A paddle wheel is a wheel with a series of blades or paddles mounted around the periphery.", + "A paddle wheel is a large wheel with paddles or blades attached to the circumference.", + "A paddle wheel is a large wheel with paddles mounted around the edge.", + "A paddle wheel is a wheel with paddles on the outside that is turned by a stream of water or other fluid.", + "A paddle wheel is a wheel that has paddle-like blades attached to it.", + "A paddle wheel is a large wheel that is connected to a boat by a long metal shaft.", + "A paddle wheel is a large wheel that is turned by a fluid, such as water or air.", + "A paddlewheel is a large wheel, with paddles or blades attached around the periphery, that is turned to propel a boat or ship through the water.", + "A paddle wheel is a large wheel with paddles on the outside edge that is turned by a river's current.", + "A paddle wheel is a large wheel with paddles attached to the outside rim.", + "A paddle wheel is a large wheel that is driven by a water current.", + "A paddle wheel is a large wheel with paddles that is rotated by a river or stream.", + "A paddle wheel can be identified by its long, cylindrical shape and the paddles that protrude from the sides.", + "If you see a large wheel on the side of a riverboat, that is a paddle wheel.", + "The best way to identify a paddle wheel is by its large diameter and slow speed.", + "A paddle wheel is a large wheel with paddles that sticks out from the side of a boat.", + "Paddle wheels are large wheels with paddles attached to the rim.", + "A paddle wheel is an object that has a series of paddles on a rotating wheel.", + "A paddle wheel is an over-sized wheel with paddles attached that is rotated by a water current or motor.", + "A paddle wheel is a large wheel with paddles on the rim that are used to propel a boat through the water.", + "A paddle wheel is a large wheel with paddles on it that is turned by a river or stream.", + "A paddle wheel is a large wheel with paddles or blades mounted around the circumference.", + "A paddle wheel is a large wheel with paddles on the outside.", + "A paddle wheel typically consists of a circular frame with a series of radial blades or paddles attached to the outside.", + "A paddle wheel is a large wheel with paddles attached to the rim.", + "A paddle wheel is a large wheel with paddles that is turned by the flowing water of a river.", + "A paddle wheel is a large wheel with paddles attached to the rim.", + "A paddle wheel is a circular wheel with paddles on the outside.", + "A paddle wheel is a large wheel with paddles that extend out from the circumference of the wheel.", + "Well.", + "A paddle wheel is a large wheel with paddles or blades attached to the rim.", + "The image shows a paddle wheel in a river.", + "A paddle wheel is a large wheel with paddles on the outside that is turned by a stream of water.", + " riverboatThis image shows a large steamboat with two levels of paddles turning in the water.", + "The image is of a large paddle wheel on a riverboat.", + "A paddle wheel is a rotating wheel with numerous paddles attached that is used to propel a boat or ship through the water.", + "The image is of a large paddle wheel on a riverboat.", + "The image is of a paddle wheel in a river.", + "The paddle wheel in this image is large and made of metal.", + "The image is of a large paddle wheel on a riverboat.", + "A paddle wheel on a riverboat.", + "A paddle wheel is a device that uses rotating paddles to propel a boat or other watercraft through the water.", + "A paddle wheel is a mechanical device for transferring energy from a moving fluid to a rotating shaft.", + "Paddle wheel of a paddle steamer, ca.", + "A paddle wheel being used to power a steamboat.", + "Paddle Wheel.", + "Paddle wheel on a riverboat.", + "Paddle wheel of a riverboat.", + "Historic Paddle Wheel at Magnolia Plantation, Charleston, South Carolina.", + "Paddle wheel at work." + ], + "padlock": [ + "A padlock is a small, lockable device that is used to fasten two objects together.", + "Apadlock is a portable lock with a shackle that can be passed through an opening to secure it.", + "Most padlocks consist of a cigar-shaped metal body with a circular keyhole on one end and a hasp on the other that opens and closes to secure the body's shackle in place.", + "A padlock is a metal lock that is used to secure something, such as a chain or a door.", + "A padlock is a device used to secure a door, gate, cabinet, or other structure that has a hasp.", + "A padlock is a small, portable lock typically used to secure gates, doors, luggage, cupboards, or lockers.", + "A padlock is a small locking device that is used to secure items.", + "A padlock is a portable lock with a shackle that can be passed through an opening to lock a device.", + "A padlock consists of a metal body with a shackle that is inserted into the body to secure it.", + "A padlock is a small lock that is used to secure items.", + "There are many ways to identify a padlock.", + "A padlock is a type of lock that is used to fasten or secure something, such as a door, gate, or chain.", + "The easiest way to identify a padlock is by its shape.", + "The first way to identify a padlock is by the hasp.", + "The most common way to identify a padlock is by its arched or U-shaped \"shackle.", + "A padlock is a device used to secure a door, gate, lockbox, or other item.", + "You can identify a padlock by its metal body and shackle.", + "A padlock is a small lock that is used to secure items.", + "Most padlocks have a unique key that opens them.", + "One way to identify a padlock is by its size.", + "A padlock is a portable locking device that has a shackle that can be passed through an opening to lock things together.", + "A padlock is a small, portable lock with a shackle that passes through a hasp or staple.", + "A padlock is a small metal lock that has a loop on one end and a bar on the other.", + "A padlock is a portable lock with a shackle that can be passed through an opening to secure it.", + "A padlock typically has a shackle that passes through a hole or link in a chain, hasp, or staple.", + "a) a vertical cylinder with a horizontal bar through the middle\nb) a horizontal cylinder with a vertical bar through the middle\nc) a square with a horizontal bar through the middle\nd) a square with a vertical bar through the.", + "A padlock is a lock that has a shackle that can be passed through an opening to secure it.", + "A padlock typically has a metal body with a shackle that goes through a hole in the body to secure it.", + "A padlock is a type of lock in which a metal shackle is inserted into a mechanism that is operated by a key.", + "A padlock typically has a metal body with a shackle that attaches to one side.", + "The image is of a silver padlock with a keyhole in the center.", + "A padlock is a device used to secure a door, gate, cabinet, or other structure.", + "The image is of a silver padlock with a circular keyhole in the center.", + "The image is of a padlock on a chain.", + "A padlock is a device used to secure a door, gate, or other opening.", + "This image is of a padlock with a chain.", + "The image is of a silver padlock with a black background.", + "The image is of a silver padlock with a keyhole in the center.", + "This image is of a black and silver padlock.", + "This padlock is a silver color with a round body.", + "A padlock with a chain wrapped around it, symbolizing security.", + "A padlock on a chain, secured to a gate.", + "Locked.", + " A padlock.", + "Locked.", + " Padlock on a chain.", + " A padlock on a chain, secured to a door handleThis padlock is securing a door to help prevent unauthorized entry.", + "This padlock is for extra security.", + " A padlock hangs from a chain link fence.", + "The padlock is used to secure the door." + ], + "paintbrush": [ + "A paintbrush is a device used to apply paint to a surface.", + "A paintbrush is a brush with a handle that is used to apply paint to a surface.", + "A paintbrush looks like a small stick with bristles on one end.", + "A paintbrush is a small, handheld tool used for painting.", + "A paintbrush is a tool used for painting.", + "Most paintbrushes have a handle made of wood or plastic, with a metal ferrule to secure the bristles.", + "A paintbrush is a tool with a bristled head attached to a handle.", + "A paintbrush is a brush used to apply paint or a sealant to a surface.", + "A paintbrush has a cylindrical handle with a pointed end.", + "A traditional paintbrush has a wooden handle with a Metal ferrule holding the bristles in place.", + "The best way to identify a paintbrush is by the type of bristles that it has.", + "You can identify a paintbrush by its bristles.", + "A paintbrush is a brush used for applying paint or varnish.", + "A paintbrush is often made of wood or plastic and has bristles at one end.", + "A paintbrush is a tool with bristles or other filaments, used for painting.", + "A paintbrush is made up of a handle and bristles.", + "A paintbrush is a brush used to apply paint.", + "You can identify a paintbrush by its long handle and bristles at the end.", + "A paintbrush is made up of a handle and a head.", + "A paintbrush is a brush used for painting.", + "A paintbrush is a brush with a handle and bristles that is used to apply paint.", + "A paintbrush is a tool used for painting.", + "A paintbrush is a tool used to apply paint to a surface.", + "A paintbrush is a tool with a handle and bristles.", + "A paintbrush is a cylinder with a handle at one end and bristles at the other.", + "A paintbrush is a tool with bristles attached to a handle.", + "A paintbrush looks like a long, thin stick with bristles at one end.", + "A paintbrush is a hand tool with a handle and bristles.", + "A paintbrush typically has a wooden handle with bristles attached to the end.", + "A paintbrush is a tool with bristles or other filaments attached to a handle, used for painting.", + "An image of a paintbrush from the internet would typically show a paintbrush with bristles of various colors, dipped in paint of different colors.", + "A paintbrush is a tool used for painting.", + "One image that comes to mind is a white paintbrush with blue paint on the bristles.", + "In the image, there is a paintbrush with bristles of various colors.", + "The image is of a paintbrush with a long, slender handle and a white bristled head.", + "A medium-sized paintbrush with a wooden handle and synthetic bristles.", + "Image is of a paintbrush with purple paint on the bristles.", + "The paintbrush in the image is a traditional paintbrush with a wooden handle and bristles.", + "A paintbrush is a tool used to apply paint or other medium to a surface.", + "The image is of a paintbrush with a blue and white paint splatter.", + "A paintbrush with different colors of paint on it.", + "1) A paintbrush dripping with paint of many colors\n2) A paintbrush being used to add finishing touches to a painting\n3) A paintbrush lying on a paint palette.", + "A paintbrush is a tool used for painting.", + "This is a paintbrush.", + "A paintbrush being used to paint a blue sky.", + "A paintbrush is a tool used to apply paint to a surface.", + "This paintbrush is made of natural hog hair bristles and a smooth wooden handle.", + "A paintbrush lying on a table.", + "A paintbrush is a tool used for painting.", + "The artist's brush, loaded with the perfect shade of green, sweeps across the canvas, leaving behind a trail of color." + ], + "pajamas": [ + "A pajamas typically looks like a two-piece set of loose-fitting clothing that is worn for sleeping or lounging.", + "A pajamas is a kind of clothing that is usually worn during the night.", + "A pajamas typically consists of a loosefitting top and matching pants.", + "A pajama typically looks like a button-down shirt and pants made out of soft, comfortable fabric.", + "Pajamas are typically loose fitting garments that are comfortable to wear in bed.", + "A pajama typically consists of a shirt and pants/shorts.", + "Pajamas are a type of clothing typically worn for sleeping or lounging.", + "A pajama typically consists of a shirt and pants/shorts.", + "Pajamas are usually a two-piece set consisting of loose-fitting pants and a shirt.", + "A pajamas is a two-piece garment for wear in bed comprising pants and a shirt.", + "A PAX is a type of pajamas that are loose fitting and comfortable.", + "A pajama typically has a soft, comfortable fabric and a loose fit.", + "A pajamas can be identified by its similarities to regular clothes, but with some subtle differences.", + "Typically, pajamas are designed to be loose and comfortable.", + "A pajamas is a loose-fitting clothing worn for sleep or lounging.", + "There are many ways to identify a pajamas.", + "There are a few ways to identify pajamas.", + "There are a few ways to identify pajamas.", + "A pajamas is a type of clothing that is typically worn during the night or at bedtime.", + "A pajama is a loose-fitting garment that is typically worn in bed.", + "There are many different types and styles of pajamas, but they typically consist of loose-fitting pants or shorts and a matching top.", + "A pajamas looks like a comfortable set of clothes that are usually worn to bed.", + "A pajamas typically consists of a loose-fitting top and bottom.", + "A pajamas generally consists of loose-fitting pants or shorts and a matching top.", + "A pajama typically consists of a shirt and a pair of pants.", + "A pajamas is a type of clothing that is typically worn during the night or when relaxing at home.", + "A pajamas typically looks like a loose fitting shirt and pants that are made out of soft materials like cotton.", + "The word \"pajamas\" can refer to a wide variety of clothing, but most often it refers to loose-fitting pants and a shirt that are meant to be worn in bed.", + "A pajama is a loose fitting garment that is worn for sleeping or relaxing.", + "Typically, pajamas are loose-fitting pants or shorts with a matching top.", + "This pajamas image is of a young woman lying down on her bed in her pajamas.", + "In the image, there is a person wearing blue and white striped pajamas.", + "This image is of a pair of blue and white striped pajamas.", + "One image of pajamas from the internet shows a woman wearing a soft, pink sweater and matching pants.", + "This image is of a pair of blue and white striped pajamas.", + "The first image is of a blue pair of pajama pants with a white drawstring.", + "The image is of a blue and white striped pair of pajamas.", + "A blue and white plaid set of pajamas with a long-sleeved top and pants.", + "One image from the internet of pajamas is of a woman wearing a pair of pink and white stripes pajamas.", + "In the image, a woman is lying on her stomach on a bed, with her head propped up on a pillow.", + " A pair of blue and white striped pajamas lying on a bed.", + "Pajama Party!This looks like a fun group of friends getting together for a cozy night in!.", + "These are the most comfortable pajamas I've ever owned!.", + " black satin pajamas with white pipingThese black satin pajamas with white piping are the perfect way to lounge in style.", + "Warm and cozy pajamas for a relaxed night in.", + "Warm and cozy pajamas for a restful night's sleep.", + "My comfy pajamas that I love to wear on lazy Sundays!.", + "Hey there! Just wanted to show off my new pajamas :).", + "Warm and cozy pajamas perfect for a cold winter night.", + "A boy wearing blue and white striped pajamas is sitting on a bed." + ], + "palace": [ + "A palace looks like a large, ornate building that is fit for a king or queen.", + "A palace is a large and luxurious building that is the home of a king, queen, or other important person.", + "A palace looks like a large, grand house.", + "A palace is a large and stately residence, typically a royal residence.", + "A palace is a large, stately home where members of a royal family live.", + "A palace looks like a large, luxurious home with many rooms and high ceilings.", + "A palace is usually a very large and grand building, fit for a king or queen.", + "A palace looks like a large, grand, and luxurious building that is fit for a king or queen.", + "Some people might imagine a palace to be a large and opulent home, while others might think of a grand and lavish building that is fit for a king or queen.", + "A palace is a large and luxurious building that is the home of a king or queen.", + "The word \"palace\" is derived from the Latin word \"palatium,\" which originally meant \"the Palatine Hill,\" one of the seven hills of Rome.", + "A palace is a grand and stately residence, especially the official residence of a sovereign or other high-ranking person.", + "There is no definitive answer to this question as palaces can vary greatly in both size and style.", + "Some palaces have grandiose architecture and are surrounded by gardens and extensive grounds, while others are more modest in size and appearance.", + "A palace is a large and stately mansion, especially one that belongs to a sovereign ornobleman.", + "There is no certain way to identify a palace.", + "You can identify a palace by its grandeur and size.", + "A palace can typically be identified by its grandiose size and architecture.", + "A palace is a large, luxurious residence that is owned by a monarch or other powerful figure.", + "The easiest way to identify a palace is by its size.", + "There is no definitive answer to this question as there are many different types of palaces.", + "There is no one answer to this question as palaces can vary greatly in both size and appearance.", + "A palace is a large and stately mansion.", + "A palace typically has a large and ornate entrance, grand rooms, and a lavish exterior.", + "A palace generally has a large, formal entrance hall with a staircase, several rooms for entertaining guests, and the private quarters for the royal family.", + "A palace is a large and ornate building that is used as a home by a king or queen.", + "There is no single answer to this question as palaces can come in a wide variety of shapes and sizes.", + "A palace is a large and stately residence, typically a royal residence.", + "Palaces are grand structures that are often lavishly decorated.", + "A palace typically looks like a large, luxurious estate.", + "The image shows a large, ornate palace with multiple turrets and a long, sweeping driveway.", + "The image is of a large, ornate palace with several towers and turrets.", + "This image from the internet shows a palace in all its glory.", + "This is a picture of the Palace of Fontainebleau in France.", + "This image is of the summer palace in Beijing, China.", + "The image is of a large white palace with several tall towers.", + "This image is of Neuschwanstein Castle in Bavaria, Germany.", + "The image is of Buckingham Palace, and is taken from the front gates looking in.", + "This palace is located in India and is called the City Palace.", + "The image is of a large palace with many turrets and spires.", + "The exterior of Buckingham Palace, the London residence of the British monarch.", + "The Palace of Versailles was the principal royal residence of France from 1682, under Louis XIV, until the start of the French Revolution in 1789, under Louis XVI.", + "The Palace of Versailles, France.", + "The Taj Mahal, India.", + "The Palace of Westminster in London, United Kingdom.", + "The Palace of Versailles, France.", + "A palace in the city of _____.", + "Palace of Versailles, France.", + "The Palace of versailles in France.", + "The Palace of Versailles, France." + ], + "pan flute": [ + "A pan flute is a musical instrument consisting of a row of pipes of gradually increasing length, each pipe having a reed or reeds at the top.", + "A pan flute is a long, narrow tube made of wood or bamboo.", + "A pan flute is a musical instrument consisting of a row of metal pipes of different lengths, played by blowing across the open tops of the pipes.", + "A pan flute typically has a row of holes of varying sizes that are all played at once.", + "A pan flute is a long, reed instrument with tubes of different lengths that the player blows into.", + "A pan flute looks like a linear set of flutes, often made of bamboo, with graduated lengths.", + "A pan flute looks like a set of wooden or metal tubes of different lengths that are played by blowing across the top of the tube.", + "A pan flute is a musical instrument consisting of a row of flutes played by pressing keys on a pipe.", + "A pan flute looks like a series of wooden or bamboo tubes of graduated lengths, open at the bottom and bound together at the top.", + "A pan flute looks like a set of flutes of different sizes tied together.", + "The pan flute is a musical instrument consisting of a series of graduated pipes of varying length.", + "The pan flute is a type of flute that is played by blowing air across a row of open pipes of varying lengths.", + "A pan flute is a percussion instrument that is played by striking two metal plates together.", + "A pan flute is a flute that has anywhere from five to nine pipes of graduated length.", + "A pan flute is a musical instrument consisting of a row of pipes of graduated length, held in the player's mouth horizontally, and sounded by blowing across the upper ends.", + "It is a flute made of different lengths of bamboo pipes of varying diameters that are glued together.", + "The pan flute is a musical instrument consisting of a series of pipes of graduated length, tuned to produce a scale, and played by blowing across the open ends of the pipes.", + "A pan flute looks like a long, narrow tube with many smaller tubes of different lengths attached to it.", + "The pan flute is a musical instrument consisting of a series of graduated pipes of varying lengths, which are played by blowing across the open tops of the pipes.", + "The pan flute is a musical instrument consisting of a series of graduated pipes of varying length, each of which is equipped with a mouthpiece.", + "A pan flute is a long, narrow pipe with multiple side pipes of graduated length attached.", + "A pan flute is a musical instrument consisting of a row of pipes of gradually increasing length, tuned to the notes of a scale.", + "A pan flute looks like a set of flutes of different sizes, all attached to a long rod.", + "A pan flute is a musical instrument consisting of a row of hollow tubes of different lengths that are played by blowing across the top.", + "A pan flute looks like a long, narrow tube with pipes of different lengths sticking out of one end.", + "A pan flute is a musical instrument that is made up of a row of pipes that are of different lengths.", + "A pan flute typically consists of a series of pipes of varying lengths.", + "A pan flute looks like a set of tubes of different lengths that are attached together.", + "A pan flute typically has a series of pipes of different lengths, which the player blows across to create different notes.", + "A pan flute looks like a flute that is made out of pan pipes.", + "A pan flute is a type of flute made from bamboo or other hollow reeds.", + "The pan flute is a musical instrument consisting of a series of pipes of different lengths.", + "In the image, a pan flute is suspended in front of a light blue background.", + "The image is of a pan flute being played.", + "The image is of a traditional pan flute with a dark wooden body and bamboo pipes of different sizes.", + "A pan flute is a musical instrument consisting of a row of pipes of graduated length, bound together at one end and played by blowing across the open ends.", + "A pan flute is a musical instrument consisting of a row of pipes of graduated length, fastened together and usually played with the lips.", + "A pan flute is a type of flute made from a series of pipes of different lengths.", + "The pan flute is a musical instrument consisting of a series of graduated pipes of varying length, each of which is played by blowing into the end and depressing the keys.", + "This image shows a traditional pan flute from Peru.", + "A human playing a pan flute.", + " A traditional pan flute from Peru.", + "A pan flute is a type of musical instrument made from a series of wooden or metal tubes of varying lengths.", + " A man playing pan flute.", + "A pan flute is a musical instrument consisting of a series of pipes of different lengths, tuned to produce a scales, and played by blowing across the open end of the pipe.", + "A traditional pan flute from Peru.", + "A pan flute is a musical instrument made from a series of pipes of different lengths.", + "A close-up of a pan flute, a traditional folk instrument from South America.", + "A pan flute, also known as a panpipe, is a musical instrument consisting of a series of pipes of different lengths.", + "A man plays the pan flute, a traditional musical instrument of the Andes Mountains." + ], + "paper towel": [ + "A paper towel is a sheet of paper that is used like a towel.", + "A paper towel is a piece of paper that is used to dry things off.", + "In general, a paper towel is a sheet of paper that is pulled from a dispenser.", + "A paper towel is a piece of paper that is used to dry things.", + "A paper towel typically has a rough, textured surface and is absorbent.", + "A paper towel typically has a quilted, embossed surface and is white.", + "A paper towel looks like a piece of brown paper that has been cut into a rectangular shape.", + "A paper towel looks like a thin piece of paper that is typically white or off-white in color.", + "A paper towel is a thin, absorbent towel made of paper, usually dispensed from a roll.", + "A paper towel is a thin sheet of paper that is used to dry things or to clean up spills.", + "Paper towels are thin sheets of paper that are used to absorb liquids.", + "The best way to identify a paper towel is by its absorbency.", + "Paper towels can be identified by their softness, absorbency, and strength.", + "The easiest way to identify a paper towel is to look for the word \"paper\" on the package.", + "Generally, paper towels are softer than normal tissues and they are often perforated so that they can be easily torn into pieces.", + "The easiest way to identify a paper towel is by its softness and absorbency.", + "A paper towel is a piece of absorbent paper that is used to dry wet surfaces or clean up spills.", + "A paper towel can usually be identified by its brown color.", + "A paper towel is usually a white or off-white color and is made out of paper.", + "Most paper towels are made from wood pulp, so they are brown in color.", + "A paper towel is a thin piece of paper that is used to absorb liquids.", + "A paper towel is a piece of paper that can be used to dry your hands or clean up a spill.", + "A paper towel is a thin, absorbent towel made from paper, usually interleaved with fabric.", + "A paper towel is a sheet of paper that is used to dry or clean up liquid messes.", + "The appearance of a paper towel can vary depending on the brand, but generally they are white and absorbent.", + "A paper towel is a thin layer of absorbent paper.", + "A paper towel is usually a white, absorbent paper that comes in rolls and is used for cleaning up messes.", + "A paper towel is a thin piece of paper that can be used to dry your hands or clean up a spills.", + "A paper towel looks like a small rectangle of absorbent paper.", + "A paper towel is a thin sheet of absorbent paper that is used to dry surfaces or hands.", + "A paper towel is a thin paper product that is used to absorb liquids.", + "A paper towel is a thin sheet of paper that is used to absorb liquid.", + "The image is of a blue paper towel on a white background.", + " rollThis image is of a paper towel roll that is Stockmarble.", + "an image of a paper towel can be found by searching Google images.", + "In the image, a paper towel is shown rolled up.", + "A paper towel is a rectangular piece of paper that can be used to dry your hands or clean up spills.", + " commercialIn the image, a young woman is standing in her kitchen next to her sink.", + "This image is of a paper towel with a blue and white striped pattern.", + "This image is of a paper towel that is white with blue stripes.", + "A paper towel (also known as a kitchen paper) is an absorbent towel made from paper, usually bleached, that is produced in rolls or sheets.", + "\nAn image of a paper towel with the words \"All-purpose Cleaning\" written on it.", + "A paper towel is a type of paper product that is used for cleaning purposes.", + "A paper towel with the words \"Thank You\" written on it in black sharpie.", + "A Bounty paper towel caught in the act of quickly cleaning up a spills.", + "A paper towel with the words \"Property of Kaelyn Walters\" written in sharpie.", + "A close-up of a paper towel.", + "A paper towel with the words \"Happy Father's Day\" written in black Sharpie.", + "A paper towel on a counter top.", + "A paper towel with the caption \"For a clean and fresh bathroom." + ], + "parachute": [ + "A parachute is a fabric device used to slow the descent of an object through the air.", + "A parachute is a large cloth canopy that is attached to a person or object, typically by a set of cords, and opens when the person or object falls, allowing them to float gently down to the ground.", + "A parachute is a cone-shaped cloth that is attached to a person or object, typically by cords, and opens out into a large circular shape when they jump from a plane or fall.", + "A parachute is typically a large, fabric sheet that is attached to a person or object, typically via straps or cords, in order to slow their descent from a high place.", + "A parachute is a large, cloth canopy that is attached to a person or object by cords, and is used to slow their fall.", + "A parachute is usually a large, cone-shaped piece of fabric attached to a set of straps.", + "A parachute is a cloth canopy that is attached to a person or object, typically by cords, and opens to slow the descent of the person or object when falling or jumping from a height.", + "A parachute is a cone-shaped fabric device that is used to slow the rate of descent of an object through the air.", + "A parachute is a large circular cloth that is attached to a person or object, typically by cords, and used for slowing or stopping their descent through the air.", + "A parachute is a large fabric cone that opens in the air and slows a person or object down as it falls.", + "A parachute is a cloth canopy that is attached to a jumper by cords and is opened by the jumper pulling a ripcord.", + "A parachute is a large, cloth canopy that is attached to a harness worn by a person.", + "A parachute is a device that is used to slow the descent of an object through the use of air resistance.", + "A parachute is a fabric device that is used to slow the descent of an object through the air.", + "A parachute is identification by its canopy, or its fabric-covered frame, which is attached to suspension lines.", + "Round shape, attached to a person.", + "A parachute is a device used to slow the fall of a person or object to the ground.", + "A parachute typically has a round canopy and is suspended from a harness worn by the jumper.", + "A parachute is a large, cloth canopy that is attached to a harness worn by a skydiver.", + "A parachute is a large cloth canopy that is attached to a harness or a pack and is used to slow a person or an object's fall from a great height.", + "A parachute is a large, round piece of fabric that is attached to a person's back.", + "A parachute is a large, pyramid-shaped cloth that is attached to a person or thing to slow it down as it falls through the air.", + "A parachute typically consists of a large, slightly concave fabric canopy and a harness to suspend the person from the canopy.", + "A parachute is a large, open cloth canopy that is attached to a person or object by cords, and is used to slow their fall.", + "A parachute typically has a round or oval-shaped canopy, and is rigged to a harness worn by the skydiver.", + "A parachute generally looks like a large, billowing sheet of fabric.", + "A parachute typically consists of a large cloth canopy and a harness that attaches the person to the canopy.", + "A parachute is a canopy that is attached to a person or object, typically by cords, and opens when the person or object falls, in order to slow their descent.", + "A parachute is a billowing piece of fabric, usually made from nylon, that is designed to slow a person or object's fall from a great height.", + "A parachute is a device that is used to slow the descent of an object through the use of air resistance.", + "One image of a parachute that is often seen is of a sky diver descending with a colorful parachute above them.", + "The image shows a large, white parachute falling slowly to the ground, with the bright blue sky in the background.", + "The image is of a white parachute with green and yellow stripes.", + "This image shows a person jumping out of an airplane with a parachute on their back.", + "A parachute is a device used to slow the descent of an object through the air.", + "The image is of a white parachute with red and green stripes attached to a person who is about to jump out of a plane.", + "This is an image of a white parachute opening in the sky.", + "The image is of a beige and green parachute canopy with its lines trailing down to a person in a harness, who is standing on a cliff edge, about to jump.", + "The image from the internet is of a parachutist descending from a plane with a parachute.", + "An image of a parachute from the internet would likely show a person or object tethered to the parachute, with the parachute itself billowing behind them as they descend from a height.", + "A skydiver enjoying the view after a successful jump.", + "A person is parachuting from an airplane.", + "A man parachutes from a plane.", + "A parachute falling through the sky.", + "A man jumps out of a plane, his parachute deployed behind him.", + " A parachute falling through the air.", + "A person is parachuting from an airplane.", + "A parachute deployed from an aircraft.", + "A system of cloth panels and cords that slows a person or object's fall through the air.", + " A skydiver leaping from a plane with a large parachute deployed, falling towards a body of waterA skydiver making a splash as they land in a body of water after leaping out of a plane with their large parachute deployed." + ], + "parallel bars": [ + "A set of two bars, that are close together and parallel to each other.", + "A parallel bars is a type of gym equipment consisting of two bars that are parallel to each other.", + "Two bars parallel to each other, typically four feet apart.", + "The parallel bars in a gym typically look like two metal bars that are slightly further apart than shoulder-width.", + "A set of two metal (usually steel) bars held parallel to each other by uprights.", + "A set of two bars, parallel to each other, set at different heights.", + "A pair of bars supported on columns, used in gymnastics.", + "A typical set of parallel bars is composed of two bars, approximately ten feet long and four feet high, set about three feet apart from each other.", + "A pair of parallel bars is a set of two metal rails spaced a fixed distance apart.", + "Parallel bars look like two long metal bars placed side-by-side.", + "Parallel bars are a type of gym equipment used for gymnastics and calisthenics.", + "The distinctive feature of parallel bars is that they are parallel to each other.", + "I Parallel bars are two bars of equal length, parallel to each other and spaced a certain distance apart.", + "Most parallel bars are made out of metal and they are usually found in a gymnasium.", + "There are two ways to identify a parallel bars.", + " Parallel bars are two bars that are placed side by side and are used for gymnastics.", + "A parallel bar is an apparatus consisting of two parallel bars engaged at their ends by crossbars.", + "Parallel bars are two long metal bars that are parallel to each other.", + "Parallel bars are two rail-like bars that are parallel to each other and are used in gymnastics.", + "The identifying characteristic of parallel bars is that they have two evenly-spaced horizontal bars.", + "A set of parallel bars looks like two long metal rods that are parallel to each other, with a space in between them.", + "A parallel bars looks like a pair of horizontal bars that are parallel to each other.", + "A set of parallel bars looks like two long metal (or sometimes wooden) rods that are placed parallel to each other.", + "A parallel bars is a gymnastics apparatus that is two bars, parallel to each other, that gymnasts perform routines on.", + "Parallel bars look like two metal bars that are a set distance apart from each other.", + "A parallel bars looks like a set of two bars that are parallel to each other.", + "A set of parallel bars looks like two long metal (or wood) rods that are placed parallel to each other.", + "A set of parallel bars consists of two long bars of wood or metal, paralleled to each other and held up by supports.", + "A set of parallel bars looks like two long metal poles with a space in between them.", + "Image result for parallel bars.", + "The image is of a person performing a parallel bars routine.", + "In the image, there are two metal rods that are parallel to each other.", + "Image shows a gymnast performing on a set of parallel bars.", + "In the image, there are two metal bars parallel to each other.", + "An image of a parallel bars on the internet would likely show two metal or wood bars parallel to each other, sometimes with a metal or wood frame around them.", + "parallel bars with metal plates on the ends, people holding on to the bars while they walk or run.", + "In the image, a person is performing a gymnastics move on the parallel bars.", + "The image is of two metal bars that are parallel to each other.", + "The image is of a man performing a gymnastics routine on the parallel bars.", + "I couldn't find an image of a parallel bars on the internet.", + "A man performs a gymnastics routine on the parallel bars.", + "Athletes performing on the parallel bars.", + "A man doing a handstand on the parallel bars.", + "Two athletes are performing on the parallel bars.", + "Parallel bars are a gymnastics apparatus used by both men and women in artistic gymnastics.", + "Two athletes performing on the parallel bars at the Olympic Games.", + "An athlete competes in the parallel bars event of a gymnastics competition.", + "Men's Parallel Bars Final.", + "Two athletes compete on the parallel bars during the Men's Gymnastics Finals at the 2012 London Olympic Games.", + "Athlete competing on parallel barsThis image shows an athlete competing on the parallel bars." + ], + "park bench": [ + "Most park benches are made from wood, have a flat seat, and are placed outdoors.", + "A park bench is a horizontal slab of wood or metal supported by legs.", + "Most park benches are made of wood, have a flat seat, and sit at a slight angle so that people can lean back and enjoy the sun.", + "A park bench is typically a horizontal slab of wood or metal supported by legs.", + "A park bench typically has a wooden or metal frame with a seat and backrest.", + "A park bench generally has a backrest and a seat, and is meant for one or two people to sit on.", + "A park bench typically has a backrest and seat made of wood or metal, supported by legs also made of wood or metal.", + "Most park benches are made of wood, have a flat seat and back, and are placed outdoors in parks and other public settings.", + "Most park benches are made of wood, have a flat seat and back, and sit on four legs.", + "A park bench typically has a back and a seat, and is made of wood or metal.", + "A park bench is often made of wood or metal and has a backrest and seat.", + "A park bench is a bench that is typically found in a park.", + "A park bench is typically a long seat that is placed in a park or other public outdoor space.", + "Park benches typically have a backrest and seat made of slats of wood, metal, or plastic.", + "A park bench is a bench that is typically found in a park.", + "Look for a bench that is meant for sitting in a park.", + "A park bench is a bench that is placed in a park.", + "A park bench is typically a wooden or metal bench that is placed in a park for people to sit on.", + "A park bench is a bench that is typically found in a park.", + "The best way to identify a park bench is to look for benches that are placed in parks.", + "A park bench is a type of bench designed for seating in a park or other public space.", + "Most park benches are made of wood and have a slatted seat and back.", + "A park bench is a bench that is placed in a park.", + "A park bench is a wooden or metal bench that is placed in a park for people to sit on.", + "A park bench is usually a wooden bench that is placed in a park.", + "A park bench can come in many different styles, but a traditional park bench is a wooden bench with a back rest and arms.", + "A park bench typically has a wooden or metal frame with a seat and backrest.", + "A park bench typically has a metal or wooden frame with a seat and backrest.", + "The stereotypical park bench is a wooden bench with a flat seat and two flat legs at each end.", + "A park bench is a wooden bench that is typically placed in a park.", + "The image is of a park bench in a forest.", + " An image of a park bench from the internet shows a wooden bench with a green metal frame.", + "In the image, there is a park bench with a white metal frame.", + "An image of a park bench from the internet shows a bench made of wood with a slatted seat and back.", + "Image shows a park bench with a metal frame and a wood slat seat and back.", + "I found an image on the internet of a park bench that I really liked.", + "The image is of a park bench with a woman sitting on it.", + "The image is of a park bench with a white metal frame and a wooden seat.", + "This image is of a park bench in a city park.", + "The image is of a park bench with a metal frame and a wooden seat.", + "The bench is old and weathered, but it's still a beautiful spot to sit and enjoy the view.", + "A woman sits on a park bench, alone.", + " A lone bench in a park with trees in the background.", + "People enjoying a sunny day at the park.", + "A woman is sitting on a bench in the park, reading a book.", + "People enjoying a sunny day at the park.", + "A woman is sitting on a park bench with her head in her hands.", + "The park bench is a great place to relax and enjoy the outdoors.", + "People enjoying a sunny day at the park.", + "\"The perfect place to take a break and enjoy the view." + ], + "parking meter": [ + "A parking meter has a digital display that shows how much time is remaining on the meter.", + "A parking meter is usually a post with a lever or button on the top, and a slot to insert coins on the side.", + "Most parking meters are tall and thin, with a slot at the top for coins.", + "A parking meter is a simple machine that takes money in exchange for time parked in a specific spot.", + "A parking meter is a machine that rates and controls the parking of vehicles.", + "A parking meter is a machine that dispenses tickets for parking in a designated spot.", + "Parking meters are generally tall, cylindrical machines that are silver, gray, or black in color.", + "A parking meter is a machine that people use to pay for parking.", + "A parking meter is a yellow or green box with a coin slot on the top.", + "A parking meter is generally a tall, thin, vertical box with a coin slot on the top and digital display on the front.", + "The most common type of parking meter has a coin slot where you insert coins to pay for your parking.", + "A parking meter is a machine that is used to collect money for the use of a parking space.", + "A parking meter is a parking enforcement device used to collect fees for the use of park- ing spaces.", + "A parking meter is a machine that is used to collect money in exchange for the right to park your vehicle in a specific space for a set amount of time.", + "A parking meter is a device used to collect fees for the use of a parking space.", + "Most parking meters have a sign that says \"PARKING METER\" or have a symbol of a coin on them.", + "A parking meter is a machine that dispenses tickets for a fee.", + "Most parking meters are about waist-high, have a coin slot, and a display showing how much time is remaining.", + "Some parking meters have a bright red or orange flag on top.", + "A parking meter is a meter that is put on or near a parking space to indicate how long a car is allowed to park in that space.", + "A parking meter is a meter that is used to pay for parking.", + "A parking meter has a long, vertical pole with a digital display at the top and a place to insert money at the bottom.", + "A parking meter is a tall, thin, vertical pole with a small box at the top.", + "A parking meter is a cylindrical device usually placed on the side of a road.", + "A parking meter is a vertical pole with a box at the top.", + "Most parking meters have a red \"expired\" flag that pops up when the time on the meter expires.", + "A parking meter looks like a machine that people use to pay for parking.", + "A parking meter resembles a basic time clock.", + "Modern parking meters in the United States generally look like a vertical pole with a digital display on the top, and a slot for coins on the bottom.", + "Most parking meters have a coin slot, a digital display, and a button to activate the meter.", + "The image looks like a parking meter on the side of the road.", + "The image is of a parking meter with the words \"expired\" and \"6:15\" displayed on it.", + "The image is of a traditional parking meter, with a coin slot at the top and a digital display showing how much time is remaining.", + "The image is a parking meter with the words \"No Parking\" in red.", + "The image is of a parking meter on the side of a street.", + "The image is of a parking meter with a blue background.", + "The image is of a blue parking meter with a white arrow pointing to the coin slot.", + "This image is of a parking meter in a city street.", + "In the image, there is a parking meter on the side of a road.", + "The image is of a parking meter with the words \"Do not deposit coins\" on it.", + "Image of a parking meter with the caption: \"Don't forget to feed the meter!\".", + "End of time.", + "A parking meter in the city of New Orleans.", + "The caption reads \"Parking Meter.", + "The parking meter is an important tool for keeping track of time while parking.", + "The parking meter is an integral part of urban life, helping to regulate traffic and generate revenue for cities.", + "Maximize your parking time with Parkmobile! Download the app to your phone to get started.", + "A parking meter in a city street.", + "A parking meter in an urban environment.", + "The Lafayette Parking Meter is a great way to find parking in the city." + ], + "railroad car": [ + "A railroad car looks like a large metal train car that is used to transport goods or people.", + "43 feet long, 10 feet wide, and 14 feet tall.", + "A railroad car is a large, heavy vehicle used to transport goods by train.", + "A railroad car is a large, metal vehicle that travels on a set of tracks.", + "A railroad car is a large, rectangular metal vehicle that rests on metal wheels and is used to transport goods or passengers by train.", + "A railroad car is a large metal vehicle that is used to transport people or goods by rail.", + "I couldn't find a precise answer to your question, but a railroad car is generally a large metal vehicle used to transport freight or passengers along a railroad track.", + "A railroad car is a large, heavy vehicle used to transport goods or passengers by rail.", + "A railroad car is a large and heavy vehicle that is used to transport goods or people by train.", + "A railroad car is a long, narrow vehicle that rests on rails and is used to transport people or freight by train.", + "A railroad car is a vehicle used for carrying goods or passengers on a rail transport system.", + "The easiest way to identify a railroad car is by its wheel arrangement.", + "the under part of a railroad car is called a truck.", + "There are many ways to identify a railroad car.", + "A railroad car can be identified by its markings.", + "the wheels.", + "A railroad car is a vehicle used for the carrying of passengers or goods on a rail transport system (railroad, tramway, railway).", + "One way to identify a railroad car is by its wheels.", + "Generally, railroad cars can be identified by their size, shape, and wheels.", + "There are many ways to identify a railroad car.", + "A railroad car is a large, flat car that is used to transport freight by train.", + "There is no one answer to this question as railroad cars come in a variety of shapes and sizes.", + "There are many types of railroad cars, but most have a similar rectangular shape with wheels on the bottom.", + "A typical U.", + "A railroad car is a large metal vehicle that can move on a set of metal rails.", + "A railroad car typically looks like a large metal rectangle on wheels with either no windows or small windows.", + "A railroad car typically looks like a large metal rectangle with large metal wheels.", + "A railroad car looks like a large metal box on wheels.", + "A typical railroad car is a large, metal box on wheels.", + "A railway car, railroad car or railcar, also called a train car, train wagon or train truck, is a vehicle used for the carrying of cargo or passengers on a rail transport system.", + "This image is of a large, red railroad car.", + "This image is of a rusty old railroad car abandoned in a field.", + "This is an image of a railroad car.", + "This photo shows a large railroad car filled with coal.", + "A photograph of a large, silver-colored railroad car with many windows.", + "This image is of a rusty old railroad car that has been abandoned in a field.", + "The image is of a rusty old railroad car that has been abandoned in a field.", + "This image shows a coal-powered freight train winding its way through a countryside.", + "A train car is typically a long, metal rectangle on wheels.", + "This image shows a black railroad car with white letters spelling out \"UNION PACIFIC\" on the side.", + "This railroad car is from the early 1900s.", + " Railway car on a track.", + "A train car on a railroad track.", + "50-ton capacity railroad car used to transport coal.", + "The Intermountain Coal and Coke Company operated a large railroad in the early 20th century.", + "A train car of the Atchison, Topeka, and Santa Fe Railway.", + " A diesel-electric locomotive hauling a train of empty coal hoppers crosses a viaduct in Utah's desert terrain.", + "A vintage railroad car on a track in a field.", + "The structure of a railroad car is largely dependent on what it is carrying.", + "Car #22 of the Denver and Rio Grande Western Railroad." + ], + "patio": [ + "A patio is a space outdoors, usually on a ground level, that is paved or made of stone.", + "A patio usually refers to an outdoor space that is adjacent to a residence, typically paved, and often used for dining or recreation.", + "A patio typically consists of a paved surface, either made of stone, brick, tile, or concrete.", + "A patio is a paved outdoor area that adjoins a house, and is a popular place for entertaining guests or relaxing in the sun.", + "A patio is a raised platform with a floor of stone, tile, or concrete, typically surrounded by a wall or railings, that serves as an outdoor living space.", + "A patio is a paved area, often with a concrete or stone floor, that adjoins a house.", + "A patio is a paved outdoor area that adjoins a house, and is typically used for dining or recreation.", + "A patio is a paved outdoor area that can be used for entertaining or relaxing.", + "A patio is a flat, open space on the ground, usually located in the backyard of a house.", + "A patio is an outdoor space that is typically paved and can be used for dining, relaxing, or entertaining.", + "A patio is a paved area that is adjacent to a house or other building, usually used for outdoor recreation.", + "A patio is a paved outdoor area that adjoins a house, and is a popular place for entertaining guests or relaxing in the sun.", + "A patio is a paved outdoor area that adjoins a house, and is a popular place for entertaining guests or relaxing in the sun.", + "A patio is a paved outdoor area, typically adjoining a house, used for recreation or dining.", + "A patio is a paved outdoor area typically used for dining or recreation that adjoins a residence.", + "A patio is a paved outdoor area, typically consisting of paths, garden beds, and seating areas.", + "A patio is a paved outdoor area that adjoins a house, and is a popular spot for entertaining and relaxing.", + "A patio is typically an outdoor space adjacent to a residence, used for dining or recreation.", + "A patio is a paved outdoor area that adjoins a house.", + "A patio is a paved outdoor area, typically next to a house, used for recreation or dining.", + "A patio can take many different forms, but typically it is a paved outdoor area adjoining a house.", + "A patio is usually a paved outdoor area that adjoins a house.", + "There is no standard definition for a patio, but generally, it is an outdoor space that is adjacent to a home and is used for dining or recreation.", + "A patio is a paved outdoor area, usually next to a house, where people can relax or entertain guests.", + "There is no one definitive answer to this question, as patios can come in a wide variety of shapes, sizes, and designs.", + "A patio is a paved outdoor area that is typically adjacent to a home.", + "There is no definitive answer to this question as patios come in all shapes and sizes.", + "A patio is a paved outdoor area that adjoins a house, and is a popular spot for outdoor entertaining and relaxation.", + "A patio is an outdoor space usually used for dining or recreation that is adjacent to a residence.", + "A patio is an outdoor space typically used for dining or recreation that is adjacent to a residence.", + "A patio is a paved outdoor area that adjoins a house, and is a popular place to entertain guests or relax.", + "The image is of a large patio with a stone fireplace.", + "The patio is made of red bricks and has a small table with a potted plant on it.", + "an image of a patio with a fire pit in the center and a seating area around the fire pit.", + " designThe patio is octagonal shaped with a fire pit in the center.", + "There is a patio made of red bricks with a table and four chairs.", + "This image shows a patio with a gravel floor and a few potted plants.", + " set upIn the image, there is a patio set up with a table and chairs.", + "A patio is an outdoor area typically used for dining or recreation that is adjacent to a residence.", + "An image of a patio from the internet shows a paved area with a fire pit in the center.", + "Covered patio with stone fireplace.", + " A lovely patio with a view of the ocean.", + " A cozy patio with a fire pit and plenty of seatingThis patio is perfect for entertaining guests or enjoying a quiet evening at home.", + "A beautiful patio with a well-manicured garden.", + " A beautiful patio with a view of the ocean.", + "This is a patio that is located in the backyard of a house.", + " A beautiful patio with a view of the ocean.", + "A beautiful patio with a view of the ocean.", + " having fun in the sun.", + "Aerial view of a backyard patio with a swimming pool, lounge chairs, and umbrellas." + ], + "payphone": [ + "A payphone typically looks like a small, rectangular phone booth.", + "A payphone is a red and gray metal box with a telephone receiver hanging on the side.", + "A payphone is a public telephone that accepts coins or credit cards.", + "A payphone typically has a coin slot and a keypad for dialing.", + "A payphone typically has a phone book attached to it, a coin slot, and a place to receive coins.", + "Some pay phones are standalone and some are attached to buildings.", + "A payphone typically looks like a phone booth or a phone attached to a wall.", + "A payphone is a coin-operated telephone that is typically found in a public place.", + "A payphone is a phone that is typically found in a public place and can be used to make phone calls for a fee.", + "A payphone is a standalone telephone Booth that you can use to make phone calls for a fee.", + "A payphone can be identified by its coin slot or card reader.", + "A payphone is a telephone that accepts coins, bills, or credit cards.", + "Payphones are usually blue or silver and have a phone receiver icon on them.", + "A payphone can be identified by the coin slot on the front of the phone.", + "Payphones are usually boxy, metal phones that are bolted to the side of a building.", + "Payphones are yellow and can be found on street corners.", + "A payphone can be identified by its coin slot, as well as the words \"pay phone\" or \"telephone\" written on it.", + "Payphones can be identified by their bright red color and the phone sign on the side.", + "Payphones can typically be found in public places, like on the side of a building or in a mall.", + "Most payphones have a phone icon on them.", + "A payphone typically looks like a small phone booth that is located on a street corner.", + "Payphones look like small, gray, metal boxes with a handset on one side and a keypad on the other.", + "A payphone typically has a phone handset attached to a box on a pole.", + "Payphones in the United States tend to be silver and black and are coin-operated.", + " Generally, payphones are standalone units with a handset, keypad, and coin slot.", + "A typical payphone has a coin slot, a keypad, and a handset.", + "A typical payphone has a coin slot, keypad, and receiver.", + "Most payphones are stand-alone units with a phone receiver and keypad on a small platform.", + "A payphone typically looks like a phone booth or a phone attached to a wall.", + "A payphone is a small, rectangular box with a phone receiver on one side and a keypad on the other.", + "This image depicts an old fashioned payphone booth.", + "This image is of an old, battered payphone.", + "There is an image of an old-fashioned payphone on the internet.", + "An image of a payphone from the internet shows a traditional, metal payphone on a city sidewalk.", + "The image is of an old-fashioned payphone against a white background.", + "A payphone is an old-fashioned type of phone that you can find in some public places.", + "The image is of an old payphone on a metal pole.", + "The image is of an old-fashioned payphone that is attached to a building.", + "A payphone is a coin-operated telephone, typically located in a public place, that allows users to make calls without having to use their own personal phones.", + "A payphone from the internet is a small, metal phone booth that is typically located on a street corner.", + "A payphone from the early 21st century.", + "A payphone in the city.", + "A payphone from the early 2000's.", + "Payphone in New York City.", + " The days of payphones are long gone.", + "A payphone in New York City.", + "A payphone from the 1980s.", + "A blurry image of a payphone with the receiver off the hook.", + "A payphone in Times Square, New York City.", + "A payphone, once a common sight on street corners and in public places, is now a rare sight as more and more people rely on cell phones for communication." + ], + "pedestal": [ + "A pedestal is a column or platform that supports a statue, vase, or piece of furniture.", + "A pedestal looks like a column that supports a piece of art or a statue.", + "A pedestal is a base that is used to support a statue, vase, or other object.", + "A pedestal is a raised platform that supports a statue, vase, or other object.", + "A pedestal is a base on which something is supported.", + "A pedestal is a support, often in the form of a column, for a statue, vase, or other work of art.", + "A pedestal is a support or base on which something is placed.", + "A pedestal typically has a circular or square base and is tall and slender.", + "A pedestal is a support for a statue or other large object.", + "A pedestal is a raised platform that supports a sculpture, vase, or piece of furniture.", + "Most pedestals have a flat top or a small globe on which to place a statue or vase.", + "A pedestal typically has a square or rectangular base, and is taller than it is wide.", + "A pedestal is a support for a statue or a vase.", + "A pedestal is a column or post that is used to support a structure or object.", + "The easiest way to identify a pedestal is by its shape.", + "A pedestal is a support for a statue or a vase.", + "A pedestal is a support for a statue or a vase.", + "A pedestal is a usually circular base that supports a sculpture.", + "A pedestal is a support for a statue, vase, or other object.", + "A pedestal is typically a column or post that supports a structure or artwork.", + "A pedestal looks like a small column or base that is used to support a statue, vase, or other object.", + "A pedestal can be either a support structure or an ornamental base.", + "A pedestal is a support or base for a statue or other object.", + "It is a support or base for a statue, vase, or other object.", + "A pedestal is a column or pillar that supports a structure or statue.", + "A pedestal is a raised platform or support on which a statue, vase, or other object is placed.", + "A pedestal is a support for a statue or a vase.", + "A pedestal is a column or post that supports a structure or object.", + "A pedestal is a stabilizing support for a statue, vase, or other object.", + "A pedestal is a support for a structure or sculpture.", + " fanA pedestal fan is a tall fan that sits on the floor and has a long pole that goes up to about neck height.", + "A pedestal image from the internet is typically a white or grey color.", + " sinkA pedestal sink is usually a round basin set atop a single column or pedestal.", + "An image from the internet of a pedestal shows a stone column with a large round top.", + " sinkThe image is of a small, oval-shaped pedestal sink.", + "A pedestal is a raised platform that is used to support or display a statue, vase, or other object.", + " sinkThis image is of a white pedestal sink with a curved faucet.", + " fanThe image is of a black pedestal fan with three metal blades.", + "A pedestal is a support for a statue or other object.", + "A white pedestal with a green plant on top.", + "This is a pedestal.", + "This is a picture of a pedestal.", + "This is a pedestal.", + "This is a pedestal.", + "This is a pedestal.", + "This pedestal was once used to display a piece of art in a museum.", + "This is a pedestal.", + "This is a pedestal.", + "The pedestal is made of granite and is very heavy.", + "This is a pedestal." + ], + "pencil case": [ + "A pencil case is a small box or bag used to hold pens, pencils, and other small items such as erasers and paper clips.", + "A pencil case is a small bag that is used to store pens and pencils.", + "A pencil case is a container used to store pencils.", + "A pencil case is typically a small, rectangular case made of fabric, leather, or plastic.", + "A pencil case is a small bag that is used to hold pencils, pens, and other small stationary items.", + "A pencil case is a small, rectangular container used to store pencils and other small supplies.", + "A pencil case is a small container used to hold pencils and other small items such as erasers and sharpeners.", + "A pencil case is a small, rectangular box with a snap-closure lid.", + "A pencil case usually looks like a small, rectangular box with a lid.", + "A pencil case is typically a small, rigid bag made of cloth, leather, or plastic that is used to hold pencils, pens, other small stationary items such as erasers, rulers, and scissors.", + "A pencil case is a small, rigid bag that is used to store and transport pencils and other stationery items.", + "A pencil case is often a small, zippered pouch made of fabric, leather, or plastic.", + "A pencil case is usually a small, rectangular container used to hold pencils and other small items such as erasers and paper clips.", + "A pencil case can typically be identified by its rectangular shape and small size.", + "A pencil case can usually be identified by its small size and cylindrical shape.", + "What does the pencil case look like?.", + "Look for a case that is long and thin, with a zipper running along the top.", + "There are several ways to identify a pencil case.", + "A pencil case can typically be identified by its rectangular shape and small size.", + "A pencil case is a small, flat case that is used to hold pens, pencils, and other small items.", + "A pencil case is a small, cylindrical container that is used to hold pencils and other small items such as erasers and sharpeners.", + "A pencil case can look like a lot of different things.", + "A pencil case is a small bag or container used to hold pencils and other writing supplies.", + "Most pencil cases are cylindrical in shape and have a zipper along the top.", + "A pencil case is usually a rectangular box with a hinged lid.", + "A pencil case is usually a small bag or box used to store pens, pencils, erasers, and other small items used for writing.", + "A pencil case can take on many different shapes and sizes, but typically it is a small, rectangular case made of fabric, leather, or plastic.", + "A pencil case typically looks like a small pouch with a zipper.", + "A pencil case can look like a lot of different things.", + "A pencil case is a small case used to store pens, pencils, erasers, and other stationary items.", + "A pencil case is an often-hard shelled case used to store pencils.", + "This pencil case is bright blue and has a white zipper.", + "A pencil case is a small box used to store pencils, pens, and other small items.", + "The image is of a white pencil case with a blue and yellow stripes running horizontally across the center.", + "The image shows a purple pencil case with a black zipper.", + "This pencil case is rectangular and made of blue fabric.", + "A pencil case is a small box used to store pencils and other small items such as erasers and paper clips.", + "The image from the internet shows a pencil case that is blue in color.", + "A pencil case is typically a small, cylindrical container used to store writing implements, such as pencils.", + "In the image, there is a pencil case that is light blue in color.", + "This is a pencil case.", + "This pencil case is perfect for holding all of your pens and pencils! It has a zipper closure to keep everything secure, and the black and white design is perfect for any style.", + "This pencil case is perfect for storing all of your pens and pencils! It has one large compartment and two smaller compartments, so you can easily organize all of your writing supplies.", + "This pencil case is perfect for keeping all of your writing supplies together in one place.", + "My Pencil Case.", + " \"Inside my pencil case is a pencil sharpener, a rubber, a pen and a pencil.", + "gleaming white pencil case with gold zipper.", + "A pencil case with a blue and white striped design.", + "Here's my pencil case! It's got all my favorite colors of pens and pencils.", + "This pencil case is perfect for carrying all of your school supplies! It has a lot of compartments and pockets to keep everything organized, and it's made from durable materials that will stand up to everyday use." + ], + "pencil sharpener": [ + "A pencil sharpener is a device that is used to sharpen pencils.", + "Most pencil sharpeners are small, handheld devices with a cylindrical grinder on one end.", + "A pencil sharpener is a small, handheld device with a blade inside.", + "A pencil sharpener is a small handheld or electric device that is used to sharpen pencils by grinding away the wood surrounding the lead.", + "A pencil sharpener is usually a small, hand-held device with a cylindrical hole in the top and a sharp blade inside.", + "A pencil sharpener is a small handheld device with a cylindrical hole in the side.", + "A pencil sharpener is a tool for sharpening pencils.", + "The exterior of a pencil sharpener is often cylindrical, and made of plastic.", + "A pencil sharpener is small handheld device with a cylindrical hole in one end.", + "A pencil sharpener is a small handheld tool with a cylindrical hole in one end and a blade inside.", + "Most pencil sharpeners have a cylindrical shape with a hole in the top and a blade inside.", + "A pencil sharpener is a small handheld tool that is used to sharpen pencils.", + "A pencil sharpener has aknife blade that is used to shave the wood off the pencil to create a sharp point.", + "A pencil sharpener typically has a cylindrical shape with a handle.", + "A pencil sharpener is a tool used to sharpen pencils.", + "Most pencil sharpeners have a cylindrical shape with a handle.", + "Most pencil sharpeners can be identified by their cylindrical shape and small size.", + "There are many ways to identify a pencil sharpener.", + "You can identify a pencil sharpener by its cylindrical shape and small size.", + "A pencil sharpener is a small hand-held tool that is used to sharpen pencils.", + "A pencil sharpener is a small hand-held tool that has a cylindrical blade inside.", + "A pencil sharpener looks like a small handheld device with a cylindrical hole in the middle.", + "A pencil sharpener is a small metal or plastic device with a cylindrical hole for holding a pencil and a blade for sharpening the pencil's lead.", + "Pencil sharpeners come in a variety of shapes and sizes, but most consist of a cylindrical grinder with a small hole at one end for the pencil to be inserted into.", + "A pencil sharpener is a small tool that is used to sharpen pencils.", + "A pencil sharpener is a small tool that is used to sharpen pencils.", + "A pencil sharpener is a small handheld device with a blade inside that is used to sharpen pencils.", + "Most pencil sharpeners have a cylindrical shape and are made of metal or plastic.", + "A pencil sharpener is usually a cylindrical shaped device with a hole in the top and a small sharp blade inside.", + "A common pencil sharpener is a small, handheld device with a cylindrical hole in one end and metal blades inside.", + "In the image, there is a pencil sharpener that is plug into an outlet.", + "The image is of a hand-held pencil sharpener.", + "In the image, there is a pencil sharpener that is blue and silver.", + "The image is of a small, handheld pencil sharpener.", + "The image depicts a handheld pencil sharpener.", + "A pencil sharpener is a cylindrical device that is used to sharpen pencils.", + "The image is of a pencil sharpener that is blue and silver.", + "This is an image of a pencil sharpener that is shaped like an owl.", + "The image shows a pencil sharpener in the shape of a robot.", + "The image shows a pencil sharpener on a blue background.", + "This is a pencil sharpener.", + " A pencil sharpenerA pencil sharpener is a device used to sharpen pencils.", + "My Pencil SharpenerThis is my pencil sharpener.", + "The pencil sharpener is a simple tool that can be used to keep your pencils sharp and ready to use.", + "A pencil sharpener.", + " pencil sharpener.", + " A pencil sharpenerA pencil sharpener is a small hand-held device used to sharpen pencils.", + "A pencil sharpenerA pencil sharpener is a device used to sharpen pencils.", + "Close-up of pencil sharpener.", + "The pencil sharpener is an essential tool for any artist." + ], + "perfume": [ + "Perfume is a clear liquid that is typically stored in a small, round bottle.", + "A perfume is a liquid that is sprayed on the skin or clothing to make a person smell nice.", + "A perfume typically comes in a glass bottle and has a spray nozzle.", + "A perfume is a solution of perfume oils and alcohol.", + "A perfume is often a thin, clear liquid that comes in a small bottle.", + "A perfume is either in a liquid or solid form.", + "A perfume can come in many different packaging designs, but usually, it is a small, rectangular bottle with a curved neck.", + ".", + "A perfume typically comes in a small glass bottle and has a narrow opening at the top.", + "A perfume looks like a small, round bottle with a pointed top.", + "If you are asking how to identify a perfume based on its fragrance, you may be able to do so by using a fragrance wheel.", + "There is no one easy answer to this question.", + "Perfume can be identified by its unique fragrance.", + "There is no one definitive way to identify a perfume.", + "The best way to identify a perfume is to ask the person wearing it.", + "There is no one definitive answer to this question.", + "The best way to identify a perfume is to ask the person wearing it.", + "If you can't identify a perfume, you can ask the person wearing it what it is.", + "There is no one answer to this question because there are many ways to identify a perfume.", + "When finding a perfume you like, it is helpful to keep in mind what type of scents you are attracted to.", + "A perfume usually consists of a liquid that is in a glass bottle with a nozzle that is used to spray the perfume.", + "A perfume may be a clear, amber, or colored liquid, with a characteristic odor.", + "A perfume looks like a clear liquid in a bottle.", + "A perfume may look like a clear, colored, or white fluid in a glass or plastic bottle.", + "A perfume can come in many different physical forms, but is most commonly found in either a spray bottle or a rollerball.", + "A perfume looks like a glass bottle with a spray top.", + "A perfume can look like a clear liquid, a pale blue liquid, or a cloudy white liquid.", + "A perfume can look like many things, depending on the container it is in.", + "A perfume is a clear, liquid substance that is dispensed through a small opening in a bottle.", + "A perfume can be a liquid, a solid, or a gas.", + " bottleThe image is of a perfume bottle that is white and has a gold cap.", + "Image shows a perfume bottle on a white background.", + "The image is of a perfume bottle on a pedestal with light shining on it.", + " bottleA perfume bottle on a white background.", + " bottleA perfume bottle calm and blue in color.", + " bottleThis image is of a perfume bottle.", + " bottleThis image is of a perfume bottle with a simple, modern design.", + "This image is of a perfume bottle on a marble counter.", + "An image of a perfume from the internet shows a glass bottle with a silver cap.", + " bottleThis image is of a perfume bottle from the internet.", + "The bottle of this perfume is shaped like a heart and is covered in sparkling crystals.", + "The Enchanted Gardenia Perfume by CotyThis floral fragrance has a light, refreshing scent that is perfect for any occasion.", + " a luxurious perfume with a gold capThis luxurious perfume has a gold cap, making it perfect for a special occasion.", + "A bottle of Chanel No.", + "Fragrance is one of the most important ingredients in making a perfume.", + "An alluring and sensual perfume, perfect for a night out.", + "This perfume is called \"L'Air du Temps\" and it was created by Nina Ricci in 1948.", + "This perfume is called \"Temptation\" and it is very tempting indeed!.", + "Tom Ford White Patchouli Eau de Parfum.", + "Perfume is a product that is made to be sprayed on the body to make someone smell better." + ], + "Petri dish": [ + "A Petri dish is a flat, circular dish that is usually made out of glass.", + "A Petri dish is a small, shallow dish with a lid that is used to grow bacteria or other microorganisms.", + "A Petri dish is a small, circular dish that is used to grow bacteria.", + "A Petri dish is a plastic or glass dish with a lid that is used to grow bacteria and other microorganisms.", + "A Petri dish is a small, circular plate with a lid that is used to grow bacteria and other microorganisms.", + "A Petri dish looks like a small, circular, flat-bottomed dish with a lid.", + ".", + "A Petri dish is a circular dish with a flat bottom and high sides.", + "A Petri dish is a small, shallow dish that is used to grow bacteria and other microorganisms.", + "A petri dish is a small, shallow dish used to hold cells or bacteria for observation and study.", + "A Petri dish is a circular dish with a lid that is used to culture cells.", + "Petri dishes are shallow dishes that are typically made of glass or plastic.", + "Petri dishes are small, circular plates with shallow sides that are used to grow bacteria and other microorganisms.", + "A Petri dish is usually a small, circular dish with a lid that is used to grow bacteria.", + "A standard 60mm Petri dish has a short, flat rim and is about 1.", + "A Petri dish is a circular dish with a lid that has a small hole in the center.", + "A Petri dish is disk-shaped, and has shallow sides.", + "Petri dishes are usually circular with a lid, and are made of glass or plastic.", + "A Petri dish is a circular, shallow dish that is used to grow bacteria and other microorganisms.", + "A Petri dish is a circular dish used to hold culture media in which bacteria can grow.", + "A Petri dish is a small, circular dish that is used to grow bacteria and other microorganisms.", + "A Petri dish is usually a plastic or glass dish that has a lid.", + "A Petri dish is an approximately circular dish that is used to culture cells.", + "A plastic Petri dish is circular with a flat bottom and deep sides.", + "A Petri dish looks like a small, circular, plastic or glass dish with a lid.", + "A petri dish is typically a circular, shallow dish with a lid that is used to grow bacteria and other microorganisms.", + "A Petri dish is a small, shallow dish with a lid that is used to grow bacteria and other microorganisms.", + "A Petri dish is a small, circular dish that is typically used to grow bacteria or other microorganisms.", + "A Petri dish looks like a small circular plate with a lid.", + "A Petri dish is a circular dish with a lid that is used to grow bacteria.", + "An image from the internet of a Petri dish may show a clear plastic dish with a lid.", + "A Petri dish is a small, shallow dish that is used to hold culture media for bacteria and other microorganisms.", + "The image is of a Petri dish with a brown agar plate.", + "An image of a Petri dish from the internet shows a circular dish with a lid.", + "A Petri dish is a circular dish with a lid that is used to culture cells.", + "The image is of a Petri dish filled with red, green, and blue dots.", + "A Petri dish is a glass or plastic dish that is used to grow and cultivate bacteria and other microorganisms.", + "The image is of a Petri dish with a blue agar surface.", + "In this image, there is a Petri dish that is half-filled with a light-colored liquid.", + "A petri dish is a shallow dish containing agar, a solidifying agent, in which laboratory cultures of bacteria are grown.", + "A culture dish (Petri dish), with antibioticsA culture dish (Petri dish), with antibiotics.", + "A petri dish filled with agar and bacteria.", + " A Petri dish of bacterial cultureThis Petri dish contains a culture of bacteria.", + "Bacteria colony in a Petri dish.", + "This Petri dish contains colonies of bacteria that have been genetically modified to produce a green fluorescent protein.", + " E.", + "Petri Dish with Bacteria\nThis Petri dish contains bacteria, which are tiny single-celled organisms that can cause infections.", + "Bacteria in Petri dish.", + "A Petri dish of E.", + "This is a Petri dish containing agar, a type of seaweed." + ], + "photocopier": [ + "A photocopier is a machine that makes copies of documents and other images.", + "A copier typically has a flat surface where you place the document or object you want to copy, and a glass panel that lowers down from the top.", + "A photocopier is a machine that makes copies of documents and other images onto paper or transparency film.", + "A photocopier is a machine that copies documents by scanning them and then printing them onto a piece of paper.", + "A photocopier is a machine that is used to make copies of documents or photos.", + "A photocopier typically consists of a glass platen where the document to be copied is placed, a control panel with buttons to adjust settings and start the copying process, and a lid that opens to allow access to the platen.", + "A photocopier typically has a glass platen where the document is placed, and an attached lid that opens and closes to protect the document.", + "A photocopier typically consists of four main components: a glass platen where the original document is placed, an optical scanning system, a photoconductive drum or belt, and a fusing unit.", + "A photocopier is a machine that makes copies of documents and other images.", + "A photocopier is a large, rectangular machine that stands upright.", + "A photocopier is usually a large machine that is used to make copies of documents.", + "A photocopier is usually a large machine that is used to copy documents.", + "A photocopier is a machine that makes copies of documents and images using a process of photographic reproduction.", + "When you make a copy on a photocopier, the machine uses a light to scan the image you want to copy onto a light-sensitive drum.", + "A photocopier is a machine that makes copies of documents and other images quickly and cheaply.", + "When you make a photocopy, the machine uses light to scan the document you want to copy.", + "On a photocopier, there is typically a glass plate where you place the document you want to copy.", + "A photocopier is a machine that copies images onto paper.", + "A photocopier can be identified by its large glass platen, which is where the document is placed to be copied, and by its control panel, which is where the user inputs the desired number of copies and makes other selections.", + "There is no foolproof way to identify a photocopier, but there are certain features that are common to most photocopiers.", + "Most photocopiers are large, boxy machines that sit on the floor.", + "A photocopier typically consists of four main parts: a glass platen where the document is placed for copying, a scanning unit that moves back and forth across the platen to capture the image, a system of lenses and mirrors that projects.", + "A photocopier typically consists of four main components: a glass platen where the document is placed for copying, a lid that opens and closes to secure the document, a control panel for making adjustments, and a paper tray for holding copy.", + "A photocopier is a large machine with a glass scanning bed on top.", + "A photocopier is a machine that makes copies of documents and other images onto paper or transparency film.", + "A photocopier typically consists of four main components: a glass platen where the document is placed for copying, a photoelectric cell that scans the document, a lamp that projects an image of the document onto a photoconductive drum,.", + "A typical photocopier has a glass platen on which the document to be copied is placed, a lid that opens and closes to protect the document and platen from dust, a main assembly that contains the light and lenses, and a.", + "A photocopy machine typically consists of three main components: a glass plate where the document is placed, a light source, and a photosensitive film.", + "A photocopier typically looks like a boxy machine with a glass plate on top that is used to copy documents.", + "A photocopier looks like a large, flat machine with a glass surface on top.", + "A photocopier is a machine that copies images by scanning an original document and then printing the copy on paper.", + "The image shows a photocopier with the lid open.", + "This image is of an old-fashioned photocopier.", + "I found an image of an old fashioned photocopier on the internet.", + "This image shows a photocopier with its lid open.", + "The image is of a black and white photocopier.", + "The image is of a photocopier with a person standing next to it.", + "The image is of a photocopier with a stack of paper on the top.", + "The image is of a photocopier with a person using it in an office setting.", + "The image is of a photocopier with a blue \"copy\" button.", + "This is a photocopier.", + "A person is photocopying some documents.", + "This is a photocopier.", + "Found in an office that was once bustling with activity, this photocopier now sits abandoned and forgotten.", + "\"I'm not a copier, I'm a photocopier.", + "A man is using a photocopier in an office.", + "A woman is using a photocopier.", + "A 1983 Toshiba photocopier.", + "A printer/copier combo machine.", + "\"Do not put metal in the photocopier." + ], + "plectrum": [ + "A plectrum is a small, flat piece of material that is used to pluck strings on a stringed instrument, such as a guitar or banjo.", + "A plectrum is a small, pointed piece of material that is used to pluck strings on a stringed instrument, such as a guitar.", + "A plectrum is a small, pointed piece of material that is used to pluck strings on a stringed instrument, such as a guitar.", + "A plectrum is a small, flat piece of material that is used to pluck strings on a stringed instrument, such as a guitar.", + "A plectrum is a small, flat thin piece of material that is used to pluck strings on a stringed instrument.", + "A plectrum is a small, flat piece of material that is used to pluck the strings of a guitar or other similar stringed instrument.", + "A plectrum is a small, flat piece of material that is used to strike a stringed instrument, like a guitar, and create sound.", + "A plectrum is a small, triangular piece of plastic that is used to pluck the strings on a guitar.", + "A plectrum is a small, flat piece of material that is used to pluck strings on a stringed instrument, such as a guitar.", + "A plectrum is a small, triangular piece of material that is used to pluck strings on a stringed instrument, such as a guitar.", + "A plectrum is generally a small, flat tool that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, flat object that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, thin piece of material that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, flattened piece of material that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, flat object that is used to pluck strings on a stringed instrument, such as a guitar or ukulele.", + "A plectrum is a small, flat device that is used to pluck or strum strings on a stringed instrument, such as a guitar.", + "A plectrum can be identified by its flat, triangular shape and its stiff material.", + "The easiest way to identify a plectrum is by its shape.", + "A plectrum is a small, thin object that is used to pluck strings on a musical instrument.", + "A plectrum is typically a small, thin piece of material that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, pointed piece of material that is used to pluck strings on a stringed instrument, such as a guitar or banjo.", + "A plectrum is a small, flat piece of plastic or metal that is held between the thumb and first finger while playing the guitar.", + "A plectrum, or \"pick,\" is a small, flat piece of material that is used to pluck the strings of a guitar or other stringed instrument.", + "A plectrum is a small, flat piece of material that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, flat piece of material that is used to pluck strings on a stringed instrument, such as a guitar or banjo.", + "A plectrum is a small, often triangular object that is used to pluck or strum a stringed instrument, such as a guitar or ukulele.", + "A plectrum is a small, flat, wedge-shaped piece of material that is used to pluck or strum a stringed instrument.", + "A plectrum is a small, flat, pointed piece of material that is used to pluck the strings of a guitar or other instrument.", + "A plectrum is a small, thin piece of material that is used to pluck strings on a stringed instrument, such as a guitar or ukulele.", + "A plectrum is a small, flat piece of material that is used to pluck strings on a stringed instrument.", + "An image of a plectrum from the internet is a small, flat piece of plastic or metal with a pointed end that is used to pluck the strings of a guitar or other stringed instrument.", + "An image of a plectrum from the internet would most likely show a picture of a small, thin piece of metal or plastic that is used to pluck the strings of a guitar.", + "This image is of a black and silver plectrum.", + "A plectrum is a small, hand-held, pointed device used to pluck the strings of a musical instrument.", + "The image could be of a plectrum, or of a guitar pick, which is also called a plectrum.", + "The image is of a black, metal plectrum with a rounded end.", + "The image is of a black and white plectrum with a pointed end.", + "Image:This image shows a close-up of a black plastic plectrum.", + "The image is of a yellow and green plectrum with a black grip.", + "In the image, a plectrum is depicted as a small, thin, flat piece of material that is used to strike strings on a guitar or other musical instrument.", + "Plectrum\nA plectrum (also known as a pick) is a small piece of material, usually plastic, that is used to strike the strings of a guitar or other stringed instrument.", + "A plectrum, also known as a guitar pick, is a small, flat tool used to pluck strings on a stringed instrument.", + " A black and white photo of a guitar pick on a stageA guitar pick on a stage.", + "Plectrum or Pick?There is no definitive answer, but both terms are used interchangeably.", + "Plectrum or \"pick\" used for electric guitars.", + "Plectrum - a small, pointed piece of material used to pluck strings on a musical instrument.", + " Plectrum on a guitar stringsA plectrum on a guitar strings, used to pluck the strings and create sound.", + "This is a picture of a guitar plectrum.", + " A plectrum on a guitar strings.", + "A plectrum is a small, thin piece of material used to pluck strings on a musical instrument." + ], + "Pickelhaube": [ + "A Pickelhaube is a type of spiked helmet worn in the 19th and early 20th centuries by German military, paramilitary and police forces.", + "A Pickelhaube is a spiked helmet with a rounded visor that was worn by German military officers in the late nineteenth and early twentieth centuries.", + "A Pickelhaube is a spiked helmet that was worn by German military officers in the 19th and early 20th centuries.", + "A Pickelhaube (also spelled Pickelhelm) is a spiked helmet worn in the 19th and 20th centuries by German military and police.", + "A Pickelhaube is a spiked helmet worn by German military personnel.", + "A Pickelhaube is a spiked helmet that was worn by German soldiers in the late 1800s and early 1900s.", + "A Pickelhaube is a spiked helmet worn in the 19th and early 20th centuries by German military and police.", + "A Pickelhaube is a pointed helmet with a spike on top.", + "A Pickelhaube is a spiked helmet worn by German military and police personnel from the late 19th century to the early 20th century.", + "A Pickelhaube is a traditional German military helmet.", + "A Pickelhaube is a type of spiked helmet worn in the 19th and 20th centuries by German military, firefighters, and police.", + "A Pickelhaube is a pointed helmet that was worn by German military officers in the 19th and early 20th centuries.", + "It is generally black and has a spike on top.", + "The Pickelhaube is a spiked helmet worn in the 19th and 20th centuries.", + "A Pickelhaube is a spiked helmet worn in the 19th and 20th centuries by German military officers.", + "The Pickelhaube is a spiked helmet worn in the 19th and early 20th centuries by German military personnel.", + "A Pickelhaube is a type of helmet that was worn by German military personnel in the late 19th and early 20th centuries.", + "A Pickelhaube is a pointed, spiked helmet that was worn by German military officers in the 19th and early 20th centuries.", + "A Pickelhaube is a traditional German military helmet that was worn by Prussian soldiers in the 19th and early 20th centuries.", + "A Pickelhaube is a spiked helmet worn by German soldiers.", + "A Pickelhaube is a spiked helmet that was worn by German soldiers in the late 19th and early 20th centuries.", + "The Pickelhaube (plural Pickelhauben) is a German spiked helmet worn in the 19th and 20th centuries.", + "A Pickelhaube is a spiked helmet typically worn by German military officers in the 19th and early 20th centuries.", + "A Pickelhaube (or \"pickle-hats\") is a type of spiked helmet worn in the 19th and early 20th centuries, most notably by German military and police forces.", + "A pickelhaube (or \"pickelhelm\") is a pointed helmet with a spike on top, worn by German soldiers in the 19th and early 20th centuries.", + "A Pickelhaube is a pointed helmet that was worn by German military officers in the 19th and early 20th centuries.", + "A Pickelhaube is a spiked helmet worn by German military personnel in the late 19th and early 20th centuries.", + "A pickelhaube looks like a spiked helmet that was worn by German soldiers in the late 19th and early 20th centuries.", + "A Pickelhaube is a spiked helmet worn by German soldiers.", + "The Pickelhaube is a spiked helmet worn by German soldiers from the 19th century up until World War I.", + "This is a picture of a traditional German military helmet called a Pickelhaube.", + "It is a black and white image of a Prussian pickelhaube from the late 19th century.", + "The image is of a black leather Pickelhaube with a red plume.", + "The image is of a black leather Pickelhaube with a red feather plume.", + "This image shows a black and white close-up photograph of a Pickelhaube, a type of military helmet worn in the 19th and 20th centuries.", + "This pickelhaube is a traditional German military helmet that was worn by soldiers in the late 19th and early 20th centuries.", + "A Pickelhaube is a traditional German military helmet that was worn by soldiers in the 19th and 20th centuries.", + "A Pickelhaube is a spiked helmet worn by German military officers in the 19th and early 20th centuries.", + "The image is of a Pickelhaube, which is a type of spiked helmet worn by German military officers in the 19th and early 20th centuries.", + "A Pickelhaube is a spiked helmet worn in the 19th and early 20th centuries by German military personnel.", + " A German infantryman wearing a Pickelhaube helmet.", + "A shiny, black German Pickelhaube helmet from World War I.", + "This is a Prussian Pickelhaube, a type of spiked helmet worn by the Prussian military in the late 19th and early 20th centuries.", + "A Prussian Pickelhaube helmet from the late 19th century.", + "German infantry helmet from World War I.", + "A Pickelhaube, or spiked helmet, was a type of headgear worn by German military and paramilitary forces from the late 19th century to the early 20th century.", + "This is a German Pickelhaube from WWI.", + "\"This is a German imperial army Pickelhaube, or spiked helmet, dating from the early 20th century.", + "German World War I infantry helmet.", + "A Pickelhaube is a traditional German helmet that was worn by soldiers in the 19th and early 20th centuries." + ], + "picket fence": [ + "A picket fence is a fence with evenly spaced vertical boards, or \"pickets,\" attached to horizontal rails.", + "A picket fence consists of evenly spaced vertical boards (pickets) that are attached to horizontal rails.", + "A picket fence is traditionally a fence with vertical posts that are evenly spaced and are connected by horizontal boards.", + "A picket fence is a fence with evenly spaced vertical boards, called pickets, attached to horizontal rails.", + "A picket fence is a fence with evenly spaced vertical boards or pickets that are attached to horizontal rails.", + "A picket fence is a fence with evenly spaced vertical boards (called pickets) that are attached to horizontal rails.", + "A picket fence is a small fence made of pointed wooden posts that are evenly spaced and attached to a rail.", + "A picket fence is a fence with upright posts that are spaced close together and have pointed tops.", + "A picket fence is typically a wooden fence with evenly spaced vertical boards (pickets) that are attached to horizontal rails.", + "A picket fence is a fence with evenly spaced vertical boards, often in the shape of a \"V,\" that are attached to horizontal rails.", + "A picket fence has evenly spaced vertical boards that are attached to horizontal rails.", + "A picket fence is usually a white fence made of wood.", + "It has pointed stakes or pickets that are evenly spaced and protrude vertically from the rails.", + "A picket fence is a type of fence where the fence boards (pickets) are attached to the rails with spacing between them.", + "A picket fence is a fence made of vertical posts that are spaced out evenly, usually with a point at the top.", + "Picket fences are generally close to 3 feet tall and made of wood.", + "A picket fence is a fence with evenly spaced vertical boards, or \"pickets,\" attached to horizontal rails.", + "A picket fence is a fence with evenly spaced vertical slats that are attached to horizontal rails.", + "A picket fence is a horizontal fence with evenly spaced vertical boards or pickets.", + "Picket fences are most commonly white and made of wood, but can be made of other materials as well.", + "A picket fence is a fence with evenly spaced vertical boards, or \"pickets,\" attached to a horizontal rail.", + "A picket fence is a fence made of vertical pickets, or boards, attached to horizontal rails.", + "A picket fence is a fence with pointed sticks (pickets) attached to the top.", + "A traditional picket fence is white and has evenly spaced vertical boards that are attached to horizontal rails.", + "A picket fence looks like a traditional fence with evenly spaced vertical boards called pickets.", + "A picket fence has vertical posts that are evenly spaced and are connected by horizontal boards.", + "A picket fence is usually a white fence made out of wood.", + "A picket fence is a fence that is made of vertical pickets, or small wooden posts, that are placed close together.", + "A picket fence is traditionally a fence with evenly spaced vertical boards, or \"pickets,\" attached to horizontal rails.", + "A picket fence is generally a fence with vertical posts that are evenly spaced apart and are connected by horizontal rails.", + "Ok, so the image I'm seeing is of a traditional picket fence; it's wooden, with evenly-spaced vertical slats.", + "A picket fence is a type of fence often used in domestic gardens.", + "A picket fence is a fence with evenly spaced vertical boards, or pickets, attached to horizontal rails.", + "The image is of a white picket fence with a green lawn and trees in the background.", + "A picket fence is typically a wooden fence with vertical posts spaced evenly apart, with horizontal boards or pickets running along the top.", + "The image is of a picket fence with pointed tops.", + "A picket fence is a type of fence often used in domestic gardens.", + "One image of a picket fence from the internet is of a traditional white picket fence with evenly spaced vertical slats.", + "I found an image of a picket fence on Google Images.", + "A white picket fence surrounds a green lawn with a tree in the center.", + "A close-up of a white picket fence.", + "The fence that keeps us in or out.", + "The picket fence is a symbol of the American dream.", + "A picket fence keeps people and animals out while still looking inviting.", + "

The picket fence is a classic design that can add a touch of charm to any home.", + " A white picket fence surrounding a green lawn.", + "This is a picket fence.", + " Rustic Charm.", + "\"The picket fence is a classic symbol of the American dream.", + "A picket fence surrounds a green lawn." + ], + "pickup truck": [ + "A pickup truck typically has four doors, a large bed in the back for hauling cargo, and a cabin that can seat up to six people.", + "A pickup truck typically has four doors, a large bed in the back for hauling cargo, and a cabin area for passengers.", + "A pickup truck is typically a four-wheeled vehicle with a two-door cab and an open bed in the back.", + "A pickup truck typically has four doors, a large bed in the back, and room for four to six people in the cabin.", + "A typical pickup truck has a large, rectangular cargo area held up by two metal beams, called the bed.", + "A pickup truck is a vehicle with a cab and an open bed in the back.", + "A pickup truck generally has a rectangular body with an attached cab and an open flatbed in the back.", + "A pickup truck typically has four doors, a large cargo area in the back, and is smaller and lower to the ground than a regular truck.", + "A pickup truck is a vehicle with an open back that is used to transport large items.", + "A pickup truck is a truck with a separate compartment for carrying cargo in the back.", + "If someone is driving a pickup truck, you can identify it by its large size and the fact that it has an open cargo area in the back.", + "A pickup is a truck with an open back end for carrying loads.", + "Most pickup trucks have a large, boxy body shape with a short front end and a long bed in the back.", + "A pickup truck is a vehicle that is used to transport goods.", + "A pickup truck is a vehicle with an open-top rear cargo area and a front passenger area that has space for seats.", + "A pickup truck is a vehicle with a cabin and an enclosed space in the back that is used for carrying cargo.", + "Pickup trucks are typically distinguished by their trucks beds, which are used for carrying large items.", + "A pickup truck is a vehicle with a large, open bed in the back designed for carrying cargo.", + "Pickup trucks tend to be larger than other types of cars, and they have an open area in the back for hauling cargo.", + "A pickup truck is a type of automobile that typically has a strong frame and four large wheels.", + "A pickup truck typically has four doors, a large bed in the back, and a cabin for passengers.", + "A pickup truck typically has a long, open bed in the back for hauling cargo.", + "A pickup truck is a type of vehicle that typically has a large open cabin area in the back with a low or flatbed area for carrying cargo.", + "A pickup truck typically has four doors, a large cargo area, and a rear platform with steps to allow easy access to the cargo area.", + "A pickup truck typically has four doors, a large bed in the back for hauling cargo, and a cabin for passengers.", + "A pickup truck typically has four doors, a front engine, and a bed in the back for hauling cargo.", + "A pickup truck is typically a four-wheeled vehicle with a cab and an open bed in the back.", + "A traditional pickup truck has a cab for the driver and passengers, and an open bed in the back for carrying cargo.", + "A pickup truck is a vehicle that typically has four doors, a bench seat in the front, and an open bed in the back.", + "A pickup truck has a boxy body on a frame, with four wheels and two doors.", + "In the image, the pickup truck is a dark color with tinted windows.", + "This image from the internet shows a white pickup truck with a large cargo area in the back.", + "The image shows a red pickup truck with a large cargo area in the back.", + "A pickup truck is a vehicle with an open-bed at the back, typically used for carrying cargo.", + "The image is of a red pickup truck with a large bed in the back.", + "The image is of a red pickup truck with a large front grill.", + "A pickup truck is a type of automobile that typically has four doors and a bed in the back.", + "An image of a black pickup truck with chrome detailing and tinted windows.", + "A pickup truck is a vehicle with an open bed that can be used to transport goods or materials.", + "The image is of a red pickup truck with a large bed in the back.", + "A pickup truck driving on a dirt road.", + "A red Chevy pickup truck with a camper in the bed, parked in a dry, grassy area.", + "A pickup truck is a type of automobile designed to carry cargo in its bed.", + "The Ford F-150 is a popular pickup truck.", + "The Ford F-150 is the best-selling vehicle in the United States.", + "A pickup truck with a camper on the back.", + "Chevrolet Silverado 1500.", + "This pickup truck is a Ford F-150.", + "My new truck!.", + "This pickup truck has been outfitted with a custom frame and suspension, giving it a lifted look." + ], + "pier": [ + "A pier is a raised walkway that extends over water, typically supported by pilings or posts.", + "A pier is a structure that extends out into the water.", + "A pier is a platform that projects out from land into water.", + "A pier typically has a large, open deck area for fishing, swimming, or enjoying the view.", + "A pier is an elevated platform that juts out into the water, supported by posts or columns.", + "A pier is a structure built on piles, and supported by vertical posts, that projects out from the shore into a body of water.", + "A pier is a raised walkway that extends over water.", + "A pier is a raised structure, typically made of wood or concrete, that protrudes from a body of water.", + "A pier is a structure built on posts that extends from land out over water.", + "A pier is a structure built from wood, stone, or concrete that extends from the shore into a body of water.", + "This is a pier.", + "A pier is a structure that sticks out from the shore into the water.", + "A pier is a raised structure that extends from the shore into the water.", + "Piers are usually made of concrete, stone, or wood, and they are built out into the water.", + "A pier is a raised platform that extends over water.", + "A pier is a structure that extends from land into water.", + "A pier is a raised platform that extends from the shore into a body of water.", + "A pier can be identified by its long and narrow structure, which is supported by piles driven into the water.", + "A pier can often be identified by its vertical posts, which are called pilings.", + "A pier is usually a long, thin structure that sticks out into the water.", + "A pier can take many different forms, but generally it is a raised platform that extends out over water.", + "A pier is a raised platform that is supported by posts or columns.", + "A pier can look like a long, narrow platform that extends out over the water, or it can look like a large, sturdy structure that supports a large structure like a bridge.", + "A pier can refer to a number of different things, but typically it is a raised walkway that goes over water, often supported by posts or pillars.", + "A pier can have many different appearances, but typically it is a raised platform that extends out over water.", + "I don't know.", + "Most piers are made of wood and have a rectangular or T-shape.", + "A pier is a raised structure that is supported by piles or posts that are driven into the ground.", + "A pier is typically a horizontal structure that extends from land out into water.", + "A pier is a structure that juts out from the shore into a body of water.", + "Image shows an old, wooden pier jutting out into a calm blue ocean.", + "An image from the internet of a pier shows a wooden structure extending from a shoreline into the water.", + "An image of a pier shows a long, wooden structure that extends out into the water.", + " at sunsetPhoto shows a long, wooden pier extending into the water at sunset.", + "The photo is of a long, wooden pier that extends into the ocean.", + "The image is of a pier jutting out into a body of water.", + "This image is of a long, wooden pier that extends out into the ocean.", + "The image is of a long, wooden pier that extends into the ocean.", + "An image of a pier shows a long, wooden structure extending out into the water.", + "The image is of a long, wooden pier that extends out into a large body of water.", + "Pier on the coast of San Diego, California.", + "A long pier stretches out into the sea, vanishing into the distance.", + "The pier extends into the water, vanishing into the horizon.", + "The pier stretching out into the calm water is a place of refuge and solitude.", + "The Long Pier in Santa Monica, California.", + "This image is of a pier in Lewes, Delaware.", + "The pier was built in 1892 and is one of the oldest in the United States.", + "The pier juts out into the calm blue water, inviting people to come and enjoy the view.", + "This is a pier in St.", + "The pier extends into the water, with the shore in the distance." + ], + "piggy bank": [ + "A piggy bank is a cylindrical container that has a narrow slot at the top for coin insertion and a circular lid at the bottom for coin removal.", + "A typical piggy bank is a small, ceramic container with a slot in the top for inserting coins.", + "A piggy bank is typically a small, ceramic container in the shape of a pig.", + "A piggy bank has the shape of a pig.", + "A piggy bank is a container, usually made out of ceramic or plastic, with a slot in the top for coins and a stopper in the bottom for removing them.", + "A piggy bank typically looks like a ceramic pig that has a slot in its back for coins.", + "A piggy bank is a container in the shape of a pig, with a narrow slot at the top for coins.", + "A piggy bank identifies as a container used to store spare change in.", + "A piggy bank is a small container, usually made of ceramic or porcelain, that is used to hold coins.", + "There are many different types of piggy banks, but they are typically small, ceramic, and round.", + "A piggy bank typically has a coin slot on the top and a hole on the bottom so that coins can be inserted and saved.", + "Piggy banks are often shaped like a pig, but not always.", + "A piggy bank is often shaped like a pig, and has a hole in the top for coins.", + "You can identify a piggy bank by its shape.", + "A piggy bank is a container used to hold coins, typically in the shape of a pig.", + "Piggy banks are usually shaped like a pig and have a slot on the top for coins.", + "A piggy bank can normally be identified by its shape, which is often in the form of a pig.", + "A piggy bank is a small, coin-operated container used to save money.", + "A piggy bank is often made of ceramic or porcelain and is shaped like a pig.", + "A piggy bank is a container used to hold money, typically in the form of coins.", + "A piggy bank typically looks like a ceramic or glass pig, and has a slot in the top for coins.", + "A piggy bank is typically a small, coin-shaped bank made out of ceramic or porcelain.", + "A piggy bank typically looks like a pig, with a slot in its back for coins.", + "A piggy bank is traditionally shaped like a pig, but can come in many different shapes and sizes.", + "A piggy bank is a container for saving money, typically in the form of a pig-shaped ceramic figurine with a coin slot in its head and a stopper in its belly.", + "The most popular type of piggy bank is shaped like a pig.", + "The traditional piggy bank is shaped like a pig, but there are many different varieties.", + "A piggy bank is traditionally shaped like a pig, and is used to store money.", + "Piggy banks are typically made out of ceramic and have a coin slot on the top and a hole on the bottom so that coins can be taken out.", + "A piggy bank is a pink ceramic bank in the shape of a pig.", + "In the image, there is a piggy bank sitting on a table.", + "On the internet, there are many images of piggy banks.", + "A piggy bank image from the internet would likely be of a traditional ceramic piggy bank with a coin slot on the top and a hole in the bottom for coins to be retrieved.", + "In the image, there is a brown piggy bank with a slot on the top.", + "The image is of a pink piggy bank with a slot in the top.", + "This image is of a piggy bank with a hole in the top.", + "The piggy bank is a ceramic container in the shape of a pig.", + "The image from the internet that I found of a piggy bank is a pink piggy bank with a smiling face on it.", + " wearing a cowboy hatIn this image, a piggy bank is wearing a cowboy hat.", + "The image is of a traditional piggy bank that is made out of ceramic.", + "I'm saving up for a new car!.", + " A piggy bank full of money.", + "This piggy bank is a great way to save up for something special!.", + "This piggy bank is ready to help you save up for your next big purchase!.", + "I can't wait to start saving up!.", + "I'm saving up for a rainy day.", + "This piggy bank is a great way to save up for your next big purchase.", + "50 cent piece in a piggy bank.", + "This little piggy went to the bank.", + "A piggy bank shaped like a cartoon pig." + ], + "pill bottle": [ + "A pill bottle is a small, cylindrical container that is typically made of plastic.", + "A pill bottle contains a prescription drug and is typically made of plastic.", + "A pill bottle typically has a white label with black text.", + "There are many different types and sizes of pill bottles, but most have a label with the name of the medication, the dosage, and the patient's name.", + "A pill bottle is acylindrical container with a screw-on lid.", + "A pill bottle typically has a cylindrical shape and a screw-on cap.", + "A pill bottle has a cylindrical shape and is made of transparent plastic.", + " and what is typically on itA pill bottle is a small, plastic container that holds pills.", + "A pill bottle typically has a cylindrical shape and is made of plastic.", + "A pill bottle is a transparent plastic or glass bottle with a tight-fitting lid.", + "On the bottom of most pill bottles, there is a symbol that looks like a flower.", + "Look for any identifying marks on the pill bottle.", + "There are many ways to identify a pill bottle.", + "Every pill bottle has a label on it that has the name of the product, the name of the company, the address, the phone number, and the expiration date.", + "The pill bottle will likely have the name of the drug on it, as well as the name and logo of the company that manufactured it.", + "Pill bottles are usually made of plastic and have a screw-on lid.", + "In the United States, prescription pill bottles are typically white and have a green cap.", + "On the bottom of the pill bottle, there will be a mold line running around the circumference of the bottle.", + "On the bottom of the pill bottle, there should be a label that has the name of the prescription, the patient's name, the doctor's name, the pharmacy name, and the expiration date.", + "To identify a pill bottle, look for a label with the name of the medication, the name of the manufacturer, and the dosage.", + "Image of a pill bottle: https://en.", + "A pill bottle typically has a cylindrical shape and is made of plastic.", + "It depends on the size and shape of the bottle, but most pill bottles are white or translucent plastic with a screw-on cap.", + "Most pill bottles are white and have a label on the front and back.", + "A pill bottle typically looks like a plastic or glass container with a screw-on lid.", + "A pill bottle typically has a label on the front with the name of the medication, the dosage, and the name of the pharmacy.", + "A pill bottle is a small, cylindrical container made of plastic or glass, with a screw-on cap.", + "Pill bottles are small, cylindrical containers made of plastic or glass.", + "The outside of a pill bottle will usually have a label with the name of the medication, the name of the manufacturer, and other information.", + "Picture of a pill bottle: https://www.", + "The image from the internet is of a pill bottle that is white with a blue label.", + "The image is of a blue pill bottle with a white label on the front.", + "This image is of a pill bottle with a prescription label on it.", + "A pill bottle from the internet is most likely a white or light blue plastic bottle with a child-proof cap.", + "This image is of a pill bottle with a blue and white label.", + "In the image, there is a pill bottle with a white label on the front.", + "The image is of a blue pill bottle with a white label.", + "The pill bottle in the image is white with a green label.", + "This image is of a pill bottle with a white label.", + "I found an image of a white pill bottle with a green label on the internet.", + "Pill Bottle - Prescription Medication.", + "This image shows a bottle of pills with a label that reads \"take one pill by mouth every day.", + "This is a bottle of pills.", + "This image depicts a small, yellow pill bottle.", + "Take one pill by mouth every day.", + "This is a bottle of pills.", + "This pill bottle contains prescription medication.", + "This is a picture of a pill bottle.", + "A amber pill bottle with a white label that reads 'Lorazepam 2mg'.", + "This pill bottle contains 100 pills." + ], + "pillow": [ + "A pillow is a rectangular or square piece of soft fabric that is stuffed with feathers, down, foam, or other soft materials.", + "A pillow is a padded piece of cloth or other material, used to support the head or neck.", + "A pillow is typically a small, rectangular object that is used to support the head while sleeping.", + "Pillows vary in color, shape, and size, but most are designed to be soft and comfortable.", + "A pillow is a soft rectangular or square bag filled with cotton, down, feathers, or artificial fibers.", + "A pillow is a piece of soft material that is used to support the head.", + "A pillow typically looks like a rectangular or square piece of fabric with stuffing inside.", + "Pillows are generally rectangular in shape, with two square or rectangular sides meeting at a seam in the middle.", + "A pillow is an object that is used to support the head while sleeping.", + "A pillow is a round or rectangular bag filled with soft materials such as feathers, down, or fiberfill, and covered with a fabric such as cotton, linen, or silk.", + " Look for a label that says \"pillow.", + "A pillow can generally be identified by its softness, and by its rectangular shape.", + "pillows are usually soft and have a cloth cover.", + "A pillow is a soft, often rectangular piece of fabric that is used to support the head while sleeping.", + "Most pillows have a label that says \"Pillow\" or a picture of a pillow on the packaging.", + "A pillow is a soft, cushion-like object that is used to support the head while sleeping.", + "A pillow can be identified by its softness, its shape, and its size.", + "A pillow can be identified by its softness, its plumpness, and its shape.", + "There are a few ways to identify a pillow.", + "There are several ways to identify a pillow.", + "A pillow can look like many things, but most often it is a rectangular object with a soft surface.", + "A pillow is a rectangular or square-shaped object.", + "A pillow can look like many things, but most often it is a piece of soft material (usually cloth) that is used to support the head while sleeping.", + "A pillow is a rectangular or cylindrical object that is used to support the head while sleeping.", + "In its simplest form, a pillow is a fabric bag filled with soft material such as feathers, down, or fiber.", + "A pillow is a small, soft object used to support the head or neck.", + "A pillow is a small, soft, flat object that you rest your head on when you are sleeping in a bed.", + "A pillow generally has a rectangular or oval shape and is stuffed with materials such as down, feathers, cotton, or foam.", + "A pillow can have many different appearances, but most often they are a rectangular shape with a soft, fluffy exterior.", + "A pillow typically looks like a rectangular or square shaped cushion.", + "This image is of a pillow that is light blue in color.", + "This is a white pillow with a blue and green floral design.", + "The image is of a colorful pillow with a design of a flower on it.", + "The image is of a white pillow with blue flowers on it.", + "This is an image of a blue pillow with white polka dots.", + "There is a white pillow on a dark gray couch.", + "This image is of a plain white pillow.", + "This image is of a yellow pillow with a white design.", + "This is an image of a pillow from the internet.", + "A black and white image of a pillow with the word \"Dream\" written in white block letters.", + "A white pillow with a black cat sleeping on it.", + "This pillow is so soft and cozy, I can't wait to snuggle up with it tonight!.", + "This pillow is so soft and fluffy, I just want to curl up and take a nap!.", + "This is a pillow.", + " A comfy pillow to rest your head on.", + "This is a fluffy white pillow.", + "This pillow is so soft and fluffy, I can't help but fall asleep every time I use it!.", + "This pillow is so soft and comfortable, I just want to curl up and take a nap!.", + " A decorative pillow with a floral designA caption of an image of a vase: A glass vase with a white and gold designA caption of an image of a photo frame: A photo frame with a black and white design.", + " A blue pillow with white starsThis pillow is perfect for a child's room or for anyone who loves the night sky." + ], + "ping-pong ball": [ + "A ping-pong ball is a small, round, white ball.", + "A ping-pong ball is a small, white, round ball.", + "A ping-pong ball is a small, white, hollow ball with a diameter of 40 millimeters.", + "A ping-pong ball is a small hard ball that is used in the game of ping-pong.", + "A ping-pong ball is a small, white, round ball.", + "A ping-pong ball is a small, white, spherical object that is used in the sport of ping-pong.", + "A ping-pong ball is a small, round, white ball.", + "A ping-pong ball is a small, round, white ball.", + "A ping-pong ball is a small, round, white ball.", + "A ping-pong ball is a small, white, hollow ball that is used in the sport of ping-pong.", + "A ping-pong ball is a small, round, white ball that is used in the sport of table tennis.", + "This is a difficult question.", + "A ping-pong ball is a small, round, white ball that is used in the game of table tennis.", + "Ping-pong balls are small, round, and often white.", + "A ping-pong ball is a small, light, white ball that is used to play ping-pong.", + "A ping-pong ball is a small, white, round object.", + "A ping-pong ball is a small, round, white ball that is used in the sport of table tennis.", + "A ping-pong ball is a small, round, white ball that is used in the game of table tennis.", + "A ping-pong ball can be identified by its small size, round shape, and white color.", + "A ping-pong ball is a small, white,orb-shaped ball.", + "A ping-pong ball is a small, hard, white sphere.", + "A ping-pong ball looks like a small, white, round ball.", + "A ping-pong ball is a small, white, round object.", + "A ping-pong ball is a small, white, round ball used in the game of table tennis.", + "A ping-pong ball is a small, hard, white, spherical object.", + "A ping-pong ball typically has a white color with a small black circle in the center.", + "A ping-pong ball is a small, round, white ball that is used in the game of table tennis.", + "A ping-pong ball is a small, white, round ball.", + "A ping-pong ball is small, round, and white.", + "A ping pong ball is small, round, and usually white.", + "The image is of a white ping-pong ball on a green table.", + "A white ping-pong ball is sitting on a table against a white background.", + "I found an image on the internet of a ping-pong ball that has been bounced on a table.", + "The image is a close up of a yellow ping-pong ball sitting on a green table.", + "In the image, a ping-pong ball is seen bouncing on a table.", + "A ping-pong ball is a small, round, white ball used in the sport of table tennis.", + "In the image, there is a white ping-pong ball suspended in mid-air above a green table.", + "The image is of a white ping-pong ball on a green table.", + "The image shows a white ping-pong ball on a green background.", + "This image shows a close-up view of a ping-pong ball sitting on a table.", + "A ping-pong ball in midair.", + "A ping-pong ball on a table.", + "A ping-pong ball sitting on a table.", + "A white ping-pong ball on a green table.", + "A ping-pong ball lying on a table.", + "A ping-pong ball seen from above.", + "This could be a photo of a ping pong ball about to be served, or maybe just a photo of a random ping pong ball.", + "A ping-pong ball on a table.", + "A table tennis ball about to be hit.", + "A ping-pong ball is a small, round, white ball that is used in the game of ping-pong." + ], + "pinwheel": [ + "A pinwheel is a flat circular toy that is made of paper or plastic and has a long stick attached to its center.", + "A pinwheel is a toy that has a wheel with colorful spokes that is attached to a stick.", + "A pinwheel is a toy that has a circular piece of paper or plastic attached to a stick.", + "A pinwheel is a small wheel with a handle that is attached to a piece of cardboard.", + "A pinwheel consists of a wheel with pins sticking out of it.", + "A pinwheel is a rotating toy that has a wheel with different colors or patterns on each spoke.", + "A pinwheel is a small, colorful wheel that is attached to a stick.", + "A pinwheel is a small, lightweight wheel with a long, thin rod attached to its center.", + "A pinwheel is a toy that has a wheel with different-colored sections that is attached to a stick.", + "A pinwheel is a spinning wheel with colorful, decorative blades.", + "A pinwheel is a small, handheld toy that has a circular piece of paper or plastic attached to a stick.", + "The easiest way to identify a pinwheel is by its shape.", + "A pinwheel is a spinning wheel with colorful blades.", + "A pinwheel can be identified by its center point and spiraling arms.", + "A pinwheel is a rotating toy that has several vanes or blades attached to a central hub.", + "A pinwheel is a spinning wheel with colorful blades that is attached to a stick.", + "A pinwheel is a circular toy that has a handle attached to the center.", + "A pinwheel is a spinning toy that has a wheel with colorful blades attached to a stick.", + "The easiest way to identify a pinwheel is by its shape.", + "A pinwheel is a rotating toy that has different colors or patterns.", + "A pinwheel is a floral-shaped toy that has a handle in the center.", + "A pinwheel is a toy that has a round, spinning wheel with colorful blades or petals.", + "A pinwheel is a toy that has a wheel with colorful fabric or paper attached to it.", + "A pinwheel is a toy that has a wheel with multi-colored blades that spin around when the wheel is turned.", + "A pinwheel is a circular toy that has a handle on one side and colorful plastic or paper blades on the other.", + "A pinwheel consists of a wheel with paddles or blades attached to it.", + "A pinwheel is generally a circular piece of paper or card with radiating strips of color.", + "A pinwheel is a wheel with colorful vanes that spin in the wind.", + "A pinwheel is a flat circular whirligig with radial vanes.", + "A pinwheel is a circular toy that is made up of a wheel with Vanes (feather-like or petal-like decorations) attached to the rims.", + "The image is of a pink and purple pinwheel spinning in a blue sky.", + "The image from the internet shows a pinwheel in different shades of blue.", + "A pinwheel is a small, handheld, spinning toy.", + "A pinwheel is a type of spinning toy that consists of a wheel with evenly spaced foils or vanes attached to a central hub.", + "The image from the internet of a pinwheel is a round object with colorful spokes coming out from the center.", + "The image from the internet is of a pinwheel that is purple and yellow.", + "A pinwheel is a small wheel with colorful wings that spins around in the wind.", + "The image is of a pinwheel on a pink background.", + "A pinwheel is a spinning toy that has a wheel with colorful blades attached to a stick.", + "The image is of a blue pinwheel.", + "Colorful pinwheels in a field.", + " A pink and blue pinwheel spinning in the breeze.", + "Pinwheels provide a cheap, cheerful way to bring a splash of color to any garden.", + "A colorful pinwheel spinning in the breeze.", + "A colorful pinwheel spinning in the wind.", + "A colorful pinwheel spinning in the wind.", + " The pinwheel is a toy that consists of a wheel with cambered blades attached to a pin.", + "A colorful pinwheel spinning in the wind.", + "A colorful pinwheel spinning in the wind.", + "The spinning blades of a pinwheel turn in the breeze, making a cheerful whirring sound." + ], + "pirate ship": [ + "A typical pirate ship from the golden age of piracy (1650-1730) would have been a sloop or brigantine, which is a two-masted sailing vessel.", + "A pirate ship looks like a normal ship but it has a skull and crossbones on the flag.", + "A pirate ship typically has a large flag on the main mast, has multiple sails, and is heavily armed with cannons.", + "A pirate ship typically has a large flag on the back, a long narrow body, and many sails.", + "A pirate ship often has a large flag on the back, with a picture of a skull or other frightening image.", + "A pirate ship is a ship that looks like it is ready to attack.", + "A pirate ship is typically a sailing vessel that has been outfitted with cannons and other weaponry.", + "A pirate ship is a sailing vessel that has been outfitted with weapons and supplies for piracy.", + "A pirate ship typically has a large, lowered skull-and-crossbones flag on the uppermost sail, signifying the captain's willingness to fight to the death.", + "A pirate ship is a ship that is used by pirates.", + "The easiest way to identify a pirate ship is by the flag it is flying.", + "A pirate ship can be identified by its black flag with a white skull and crossbones.", + " Pirate ships were generally smaller than merchant ships and often carried fewer guns.", + "Some pirate ships have a flag with a skull and crossbones on it.", + "The flag of a pirate ship is called the Jolly Roger.", + "A pirate ship can be identified by its black flag with a skull and crossbones.", + "The easiest way to identify a pirate ship is by the flag it is flying.", + "The most obvious way to identify a pirate ship is by the flag it is flying.", + "A pirate ship can typically beidentified by its black sails.", + "The easiest way to identify a pirate ship is by its flag.", + "A pirate ship is a tall ship with white sails.", + "There is no definitive answer to this question, as pirate ships varied depending on what the pirates could acquire or build.", + "A pirate ship typically has a black flag with a white skull and crossbones.", + "A pirate ship looks like a regular sailing ship, but it has black sails.", + "A typical pirate ship is a medium to large sized vessel that has been taken over by pirates.", + "A pirate ship looks like a regular ship that has been taken over by pirates.", + "Different pirate ships can have different looks, depending on what the pirates want.", + "The stereotypical pirate ship is a large vessel with multiple sails.", + "A pirate ship is typically a large wooden vessel with one or more masts.", + "There is no one definitive answer for this question.", + "A pirate ship is a large boat that is designed for sailing the high seas.", + "This image is of a large pirate ship sailing on the open ocean.", + "A pirate ship sailing on the open sea, its sails billowing in the wind.", + "This image from the internet is of a large pirate ship sailing on the open ocean.", + "A pirate ship image from the internet features a large sailing vessel with multiple sails and many pirates on board.", + "This image is of a pirate ship sailing on a stormy sea.", + "I couldn't find an image of a pirate ship on the internet, so I found an image of a pirate flag instead.", + "This image is of a pirate ship sailing on the open ocean.", + "I found an image on the internet of a pirate ship that I really liked.", + "This image is of a large pirate ship sailing through rough waters.", + "A pirate ship sailing through rough waters.", + "The Black Pearl sails the Seven Seas in search of adventure.", + "A pirate ship sailing on the open seas.", + "A pirate ship sailing through the Caribbean Sea.", + "A large pirate ship sailing on the open ocean under a cloudy sky.", + " A pirate ship sailing on the open sea.", + "A pirate ship sails the seven seas in search of booty.", + " A Spanish galleon sails near an island, its sails billowing in the wind.", + "A pirate ship sailing on the open sea.", + "A pirate ship sailing on the open sea." + ], + "drink pitcher": [ + "A drink pitcher is a container with a spout and a handle that is used for serving drinks.", + "A drink pitcher typically has a long neck and a spout for pouring.", + "A drink pitcher is normally a glass or plastic container with a spout and a handle.", + "A drink pitcher typically holds around 64 ounces of liquid and has a wide mouth for easy pouring.", + "A drink pitcher is a type of container that is used to hold and pour liquids.", + "A drink pitcher is a tall cylindrical container with a spout and a handle, used for pouring drinks.", + "A drink pitcher is a container with a spout and a handle that is used for pouring liquids.", + "A drink pitcher is a container with a spout that is used to pour liquids.", + "A pitcher is a type of container typically used to hold water, milk, or other beverages.", + "A drink pitcher is a container with a handle and a spout used for pouring liquids.", + "Drink pitchers are usually taller and have a spout for easy pouring.", + "Drink pitchers are most often made of glass or plastic.", + "A drink pitcher is a container with a spout used for pouring liquids.", + "A drink pitcher is a container used to hold and pour beverages.", + " Drinks pitchers typically have a large spout for pouring and a large handle for holding.", + "Question is too vague, and there are no pictures.", + "Drink pitchers are typically long and narrow, and have a handle on one side.", + "Drink pitchers typically have a spout and a handle, and are used to pour drinks.", + "A pitcher is a container with a spout used for pouring liquids.", + "A drink pitcher is a container with a spout and a handle, designed for pouring drinks.", + "A drink pitcher usually has a spout and a handle, and is used to pour liquids.", + "Typically, a drink pitcher is tall and has a spout for pouring.", + "A drink pitcher is usually tall and has a handle.", + "A drink pitcher is a container with a spout used for pouring liquids.", + "A drink pitcher is a container with a handle and a spout used for pouring liquids.", + "A drink pitcher is a container with a spout used for pouring liquids.", + "A beverage pitcher typically has a spout for easy pouring, a comfortable handle, and a large opening for adding ice or mix-ins.", + "A drink pitcher is a container with a spout used for pouring liquids.", + "A drink pitcher is a container that is used to hold a liquid, such as water, milk, or juice.", + "A drink pitcher is typically a tall, cylindrical container with a handle, used for pouring liquids.", + "The image shows a drink pitcher with a lemon on the side.", + "An image of a drink pitcher from the internet shows a glass pitcher with a handle and a spout.", + "This image is of a glass drink pitcher with a handle and a spout.", + "A white ceramic pitcher with a curvaceous shape and a handle on the side.", + "A drink pitcher on the internet is usually a clear glass or plastic pitcher with a handle and a pouring spout.", + "The image is of a clear drink pitcher with ice and slices of lemon inside.", + "The image shows a glass pitcher with a metal handle and spout.", + "Pictured is a drink pitcher with a long neck and spout.", + "This image is of a glass drink pitcher with a lid.", + "This image is of a glass pitcher filled with a yellow liquid.", + "Iced tea pitcher with sprigs of mint.", + "This pitcher is perfect for serving your guests a refreshing drink on a hot summer day.", + "This drink pitcher is perfect for serving up a refreshing beverage on a hot summer day.", + "This is a glass pitcher filled with iced tea.", + "Pitcher of beer on a tableA caption of an image of a glass of beer:A glass of beer with a foamy head.", + "This is a photo of a drink pitcher.", + "Pitcher of lemonade.", + "A pitcher of iced tea with lemon slices.", + " A tall glass drink pitcher with a metal handle and spout.", + " A white drink pitcher with ice and a green straw." + ], + "block plane": [ + "A block plane is a small hand plane with a rectangular body and a blade set at a low angle.", + "A block plane is a handheld woodworking tool used to shape blocks of wood.", + "A block plane is a small hand plane with a square body and a beveled cutting edge.", + "A block plane is a hand tool with a blade set at a low angle in a body that is thinner than a standard plane.", + ".", + "A block plane is a small hand plane with a rectangular body and a thin blade projecting from the bottom.", + "A block plane is a small hand plane with a narrow blade that is used to smooth out small areas of wood.", + "A wood block plane is a small hand plane used to smooth wood.", + "A block plane has a rectangular body with a flat base and a beveled top.", + "A block plane is a hand tool that consists of a flat soleplate with a beveled edge that rests on the surface to be planed.", + "A block plane can be identified by its low angle and small size.", + "A block plane can be identified by its low, wide body and small size.", + "A block plane is a small hand held woodworking plane.", + "A block plane is characterized by its small size and general-purpose design.", + "A block plane is a small hand plane that is used to smooth End grain.", + "A block plane is a small hand plane with a square or rectangular body.", + "A block plane is small and low to the ground with a blade set at a low angle.", + "Due to their relatively small size, block planes are often mistaken for bench planes.", + "The easiest way to identify a block plane is by its size.", + "A block plane is a small hand plane with a low angle and a reduced size.", + "A block plane is a small hand plane with a square body and a blade that is set at a low angle.", + "A block plane is a small hand plane with the blade set at a lower angle than in other planes, typically between 12\u00b0 and 20\u00b0.", + "A block plane is a small hand plane used for trimming and shaping wood.", + " block plane typically contains a blade set at a low angle in a metal or wooden body.", + "A block plane is designed to fit comfortably in your hand and has a sole that is flat and perpendicular to the sides.", + "A block plane is a small hand plane with a body that is about the same length as its blade.", + "A block plane looks like a miniature hand plane with a short, squared-off body and a blade that is set at a lower angle than on a standard hand plane.", + "A block plane is a small hand plane with a rectangular body and a blade that protrudes only slightly from the bottom of the plane.", + "The blade of a block plane is set at a low angle to the body of the plane\u2014usually around 12\u00b0.", + "A block plane is a small hand plane used for trimming and smoothing the edges of small pieces of wood.", + "The image is of a yellow block plane with a silver blade.", + "A block plane is a small hand plane used to smooth out wood.", + "A block plane is a small woodworking plane used to smooth out small pieces of wood.", + "This image is of a Stanley Bailey No.", + "A block plane is a small, handheld woodworking tool used to shape and smooth wood.", + "The image is of a yellow block plane with a wooden handle.", + "A block plane is a small wooden plane used to shape and smooth wood.", + "One image from the internet of a block plane is a wooden block plane with a metal blade.", + "An image from the internet of a block plane shows a hand tool with a blades that is used to smooth surfaces by shaving off high spots.", + "There is an image of a block plane on the internet.", + "This is a picture of a block plane.", + "\"A block plane is a tool used to shape and smooth wood.", + "Most block planes have an adjustable throat that regulates the cut.", + "This image shows a block plane, which is a type of hand plane used to smooth and shape wood.", + "Block plane on a workbench.", + "A woodworking plane used to create a smooth, flat surface.", + "A block plane is a small hand plane used to smooth out wood surfaces.", + "A block plane is a small hand plane used to smooth and shape wood.", + "Block Plane.", + "This is a block plane, a tool used for shaping wood." + ], + "planetarium": [ + "A planetarium is a large domed room with a projection of the night sky on the ceiling.", + "A planetarium is a large, dome-shaped theater that projects images of stars, planets, and other astronomical objects onto the inside of the dome.", + "A planetarium is usually a domed room with theatre-style seating.", + "A planetarium is a dome-shaped theater that projects images of stars and planets onto its inner surface.", + "A planetarium is a big dome with stars projected on the inside.", + "A planetarium is typically a large domed theater that simulates the night sky.", + "A planetarium is typically a domed theater that projects images of stars and planets onto the interior of the dome.", + "A planetarium is a large frame, usually in the shape of a dome, with a hole in the center.", + "A planetarium is a large domed theater that projects images of stars and planets onto the inside of the dome.", + "A planetarium is a large dome-shaped theater that projects images of stars, planets, and other celestial objects onto the inner surface.", + "A planetarium is a stadium-sized theater designed to showcase the night sky.", + "What is the difference between a planetarium and an observatory?A planetarium is a domed theatre that projects images of stars and planets onto its inside surfaces.", + "A planetarium typically has a large dome or roof that projects images of stars and planets onto the inside surfaces.", + "It is a domed building with a large projection of the night sky.", + "The easiest way to identify a planetarium is by its domed roof.", + "You can usually identify a planetarium by its large, dome-shaped roof.", + "A planetarium is typically a domed theater that projects images of stars, planets, and other astronomical objects onto the inside of the dome.", + "A planetarium can be identified by its domed roof which is used to project images of the night sky.", + "It is a large domed theater where people go to look at the stars.", + "A planetarium is typically a domed theater that projects images of stars and other astronomical objects onto the inside of the dome.", + "A planetarium is a large, domed room.", + "A planetarium is a domed theater that shows images of planets, stars, and galaxies on the theater's inner surface.", + "A planetarium is typically a large domed theater with a projection system that can recreate the night sky.", + "Planetariums are large domed theaters that use special projectors to recreate the night sky on the inside of the dome.", + "A planetarium looks like a theater with a large dome-shaped ceiling.", + "A planetarium is a dome-shaped theater that projects images of stars and planets onto the inside of the dome.", + "A planetarium is a large dome that projects images of stars and other objects in the night sky.", + "The inside of a planetarium looks like a dome with stars projected on it.", + "A planetarium can look like a large dome or a small theater.", + "A planetarium is a large, domed room with a projector in the center.", + "This image is of a planetarium in Chicago.", + "A domed theater with a large projection of stars and planets on the ceiling and walls.", + "The image from the internet of a planetarium shows a large, round room with a domed ceiling.", + "An image of a planetarium from the internet might show a large, domed building with a starry night sky inside.", + "The image is of a large, domed building with a pointed roof.", + "An image from the internet of a planetarium may show a large, domed building with a starry night sky inside.", + "An image of a planetarium shows a large, domed building with a circular opening in the center.", + "An image from the internet of a planetarium shows a large, domed structure with rows of seats facing a center stage.", + "The image is of a large, domed building with a starry night sky painted on the inside.", + "The image shows a large domed building with a starry night sky inside.", + " The Charles Hayden Planetarium at the Museum of Science, Boston.", + "Night Sky at the Planetarium.", + "The night sky is filled with stars, and at a planetarium, you can see them all.", + " The Planetarium at NightAn image of the night sky in a planetarium with stars and planets shining brightly.", + "This is a picture of a planetarium.", + "The planetarium is a magical place where you can see the stars and planets up close.", + "The planetarium is a round theater that projects images of stars and planets onto the domed ceiling.", + "The Albert Einstein Planetarium at the Smithsonian National Air and Space Museum in Washington, D.", + "1.", + "The Planetarium of the University of Valencia offers visitors a unique experience: a journey through the Universe in the company of the latest developments in scientific astronomy." + ], + "plastic bag": [ + "A plastic bag is a bag made of plastic.", + "A plastic bag is a bag made of thin, flexible, plastic film.", + "A plastic bag is a thin, transparent bag made of polyethylene.", + "A plastic bag is a thin, flexible bag made of plastic.", + "A plastic bag looks like a thin, transparent, often brightly colored bag.", + "A plastic bag is a thin, transparent bag made of polyethylene.", + "A plastic bag is typically a thin, translucent sack made of polyethylene plastic.", + "A plastic bag is a bag made of plastic.", + "A plastic bag is a bag made of plastic.", + "Most plastic bags are either clear or opaque, and made from a thin plastic film.", + "A plastic bag is a bag made of plastic.", + "A plastic bag is a thin film made of various plastic materials.", + "A plastic bag can typically be identified by its soft, flexible texture and its ability to be shaped or molded.", + "A plastic bag is a type of packaging made from thin, flexible, plastic film.", + "Color is the easiest way to identify a plastic bag.", + "A plastic bag can be identified by its thin, lightweight material and its ability to be easily crumpled.", + "A plastic bag is a bag made of plastic.", + "Plastic bags are typically made from polyethylene.", + "A plastic bag is typically made from polyethylene.", + "A plastic bag can typically be identified by its appearance.", + "A plastic bag looks like a thin, transparent sheet of material.", + "A plastic bag may look like a shopping bag, a sandwich bag, or a trash bag.", + "A plastic bag looks like a thin, floppy sheet of plastic.", + "A plastic bag is a bag made of plastic.", + "A plastic bag looks like an ordinary, everyday shopping bag.", + "A plastic bag is a bag made of plastic.", + "A plastic bag looks like a pouch made of plastic.", + "A plastic bag looks like a clear or colored piece of plastic that is sealing a product inside.", + "A plastic bag looks like a bag made of plastic.", + "A plastic bag is a bag made out of plastic.", + "In the image, there is a clear plastic bag with its contents visible.", + " caught in a treeThe image is of a blue plastic bag caught in the branches of a tree.", + "The image is of a white plastic bag with the word \"Lifesaver\" written across it in blue.", + "I found an image of a plastic bag on the internet that looks like it is filled with garbage.", + "The image is of a plastic bag that is completely filled with trash.", + "The image is of a basic plastic shopping bag.", + "The image is of a blue plastic bag that is lying on the ground.", + "This image is of a black plastic bag that is lying on the ground.", + "The image appears to be of a garbage bag full of trash.", + "In the image, there is a plastic bag that is lying on the ground.", + " A plastic bag floating in the ocean.", + " A Black and pink plastic bag, most likely from a clothing store.", + "A plastic bags filled with various types of trash.", + " A plastic bag is caught in a tree.", + "A plastic bag sitting on a sidewalk.", + "This plastic bag was found in a tree.", + " A plastic bag in a trash canA caption of an image of a person holding a plastic bag: A person holds a plastic bag, possibly filled with trash.", + " A plastic bag filled with groceriesA plastic bag filled with groceries from the grocery store.", + "A plastic bag filled with groceries.", + "Plastic bag laying on the ground." + ], + "plate rack": [ + "A plate rack is a kitchen storage device used to store plates and cups.", + "A plate rack is a rectangular metal rack with slots for plates in a vertical position.", + "A plate rack typically has a metal or wooden frame with many horizontal slats or bars.", + "A plate rack is a storage device that is used to hold plates in a kitchen.", + "A plate rack is a device used to dry plates after they have been washed.", + "A plate rack is a device for holding plates in an upright position, so that they can be easily removed for use and replaced for storage.", + "A plate rack is a household item used for storing and organizing plates and other dishware.", + "A plate rack is a piece of furniture that is used to store plates.", + "A plate rack is a freestanding kitchen unit with shelves that are designed to safely hold plates and cups.", + "A plate rack typically consists of a series of horizontal slats, spaced apart to allow air to circulate and plates to drain, with pegs or hooks on which to hang plates.", + "A plate rack has a series of horizontal slots or channels in which plates can be slid in order to store them.", + "A plate rack looks like a regular kitchen cabinet, but it has a lot of horizontal space for plates, bowls, and platters.", + "A plate rack is a piece of kitchen furniture that is used to store and organize plates.", + "A plate rack is a type of cabinet that is used to store and display plates.", + "A plate rack is a horizontal surface with grooves or notches in which plates can be inserted, one above the other, for storage.", + "A plate rack is a device that is used to store and protect plates.", + "A plate rack is usually a wooden or metal frame with slots or hooks to hold plates.", + "Plate racks can be identified by their horizontal supports that keep plates in place and their vertical supports that act as a divider between different types of plates.", + "A plate rack is a kitchen staple that is used to store and organize plates.", + "A plate rack is a piece of furniture or a household appliance that is used to store plates in a cupboard or on a countertop.", + "A plate rack is a stand for holding plates upright on a counter or table.", + "A plate rack definition can vary, but it is generally a 19th century English furniture piece that is horizontal and typically has four to seven slots for holding plates.", + "A plate rack is a piece of kitchen equipment that is used to store plates in a neat and organized way.", + "A plate rack is a countertop or wall-mounted storage solution for plates and bowls.", + "Image result for plate rackA plate rack is a piece of kitchen furniture that is used to store plates.", + "A plate rack is a device that is used to store plates.", + "A plate rack is a device that is used to store plates.", + "A plate rack is a device that is used to store plates.", + "A plate rack is a kitchen utensil that is used to hold plates in an upright position so that they can dry after being washed.", + "A plate rack is a storage device that is used to store plates.", + "A plate rack is a piece of kitchen equipment that is used to hold and store plates.", + "A wooden plate rack with seven slots for plates, hung on a wall.", + "A plate rack is a frame or holder used to store plates.", + "A plate rack is a type of storage rack used to hold plates and other flat dishware.", + " An image from the internet of a plate rack shows a metal rack with multiple shelves.", + "A plate rack is a kitchen storage device used to store plates and dishes.", + "The image is of a plate rack that has four shelves and is made of wood.", + "A plate rack is a kitchen accessory that is used to store and display plates.", + "I found an image on the internet of a plate rack that is made out of metal and has a black finish.", + "The image is of a plate rack that can be hung on a wall.", + "A plate rack with several plates on it.", + "This plate rack is perfect for holding your everyday dishes or your best china.", + "A plate rack full of colorful plates.", + "You can never have too many plates.", + " An antique plate rack with a collection of blue and white platesThe caption explains that the image shows an antique plate rack that holds a collection of blue and white plates.", + "An old-fashioned plate rack for displaying and storing plates.", + "A plate rack is a device used to support plates while they are being washed or dried.", + "This plate rack is perfect for storing your everyday dishes or your best china.", + "A plate rack filled with various porcelain plates.", + "This plate rack is perfect for storing and displaying your favorite plates and bowls." + ], + "farm plow": [ + "Farm plows are large, heavy machines that are used to turn over soil in fields.", + "A farm plow is a big machine that is attached to a tractor.", + "A farm plow is a large piece of equipment that is used to till the soil on a farm.", + "A farm plow is typically a large metal tool that is used to till soil in preparation for planting crops.", + "A farm plow typically consists of a metal blade attached to a wooden beam or bar.", + "A farm plow is a tool that is used to break up the soil so that it can be planted.", + "A farm plow looks like a large metal tool that is used to plow through the soil.", + "A farm plow is a tool used to loosen, turn, and aerate soil in preparation for planting.", + "A farm plow is a piece of equipment that is used to till the soil on a farm.", + "A plow is a tool that is used to turn over the soil in a field.", + "A farm plow is a large, heavy tool that is used to break up soil and turn it over.", + "A farm plow is a tool that farmers use to till the soil.", + "A farm plow is a tool that is used to till the soil in preparation for planting.", + "A farm plow is a tool used to turn over soil in preparation for planting.", + " Farm plows are large, heavy tools that are used to loosen and turn over soil in preparation for planting.", + "A farm plow is a tool that is used to break up, turn over, and aerate the soil in order to prepare for planting.", + "A farm plow is a large, heavy object that is used to plow fields.", + "A farm plow is a tool used to turn over soil in a field.", + "One way to identify a farm plow is by its size.", + "A farm plow is a tool that is used to cultivate soil.", + "The plough is a farm implement used in agriculture for initial cultivation of soil in preparation for sowing seed or planting.", + "A farm plow is a large, heavy tool that is pulled behind a tractor.", + "A farm plow looks like a large tool that is used to plow fields.", + "There are many different types of plows, but most farm plows are large and heavy, with a sharp metal blade that is used to cut through the soil.", + "A farm plow is a tool that farmers use to plow their fields.", + "A farm plow is a tool used to loosen, turn, and break up soil in preparation for planting.", + "A farm plow can look like a lot of different things, depending on the type of plow and the size of the farm.", + "A farm plow looks like a big machine that pulls a blade through the soil.", + "A farm plow looks like a large heavy metal disc with a handle attached to the back of it.", + "A farm plow is a large piece of equipment that is pulled behind a tractor.", + "A farm plow is a large machine that is used to plow fields.", + "The image is of a farm plow that is being pulled by a tractor.", + "An image of a farm plow from the internet would likely show a large machine being pulled by a tractor.", + "An image from the internet of a farm plow shows a large, metal machine being pulled by a tractor.", + "The image from the internet of a farm plow is of a machine that is used to plow farmland.", + "A farm plow is a tool that farmers use to plow their fields.", + "This image from the internet shows a farm plow being used to plow a field.", + "I cannot find a picture of a farm plow on the internet.", + "In the image, a large farm plow is being pulled by a tractor.", + "Image is of an old-fashioned farm plow being pulled by a horse.", + "This image is of a farm plow.", + "A view of a farm plow in a field on a sunny day.", + "The plow is one of the most important inventions in agriculture.", + "This farm plow was used to help cultivate the land.", + "The steel plow is one of the most important inventions in human history.", + " A tractor pulls a plow through a field of dirt.", + "A farm plow being used to plow a field.", + " A farmer pulls a plow through a field.", + "A plow on a farm in the United States.", + " \"A plow with a wooden share and metal components." + ], + "plunger": [ + "A plunger is a cylindrical tool with a handle and a rubber suction cup at the bottom.", + "A plunger is a cylindrical tool with a handle that is used to unclog toilets and drains.", + "A plunger looks like a stick with a large, rubbery cup at the end of it.", + "A plunger is a tool with a rubber cup-shaped piece at the end, used to unblock drains.", + "The classic plunger has a long, straight handle attached to a rubber cup that forms a seal around the drain.", + "A plunger has a long, thin handle and a large, rubber cup.", + "A plunger is a small, hand-held tool that is used to unclog a toilet or a sink.", + "Most plungers have a rubber suction cup at the bottom and a plastic handle.", + "A plunger is a cylinder-shaped tool that is used to unclog drains.", + "A plunger looks like a stick with a big, round, rubber cup at the end.", + "You can identify a plunger by its long handle and rubber suction cup on the bottom.", + "A plunger is a Tool used to unclog a drain by creating suction.", + "A plunger is a tool that is used to unclog toilets, sinks and drains.", + "A plunger is a tool that is used to unclog drains.", + "A plunger is a tool that is used to unclog a plugged toilet or sink.", + "The vast majority of plungers have a rubber cup at the bottom, which is used to create suction.", + "Most plungers have a rubber suction cup at the bottom and a long handle.", + "A plunger is a tool that is used to unclog drains.", + "A plunger is a tool that is used to unclog drains.", + "Plungers have a soft rubber cup at the end of a long handle.", + "A plunger is a cylinder with a flat, disk-shaped base and a handle.", + "A plunger is a cylindrical tool with a handle that is used to unclog drains.", + "A plunger is typically a long-handled tool with a cup-shaped piece of rubber on the end.", + "A plunger is a tool that is used to unclog drains.", + "A plunger is a tool that is used to unclog a toilet or a sink.", + "Plungers come in many different sizes, but they all have a rubber suction cup at one end and a wooden or metal handle at the other.", + "A plunger typically has a long handle attached to a cup-shaped piece of rubber.", + "The most common type of plunger has a rubber suction cup at the end of a wooden or plastic handle.", + "A plunger is a hand-operated tool that is used to clear drains.", + "A plunger has a wooden or plastic handle with a round rubber suction cup at the end.", + "The image is of a plunger in a toilet.", + "The image is of a plunger with a long, curved handle and a bell-shaped cup.", + "An image of a plunger from the internet most likely would show the long handle with a rubber suction cup at the end.", + "The image shows a plunger in a toilet with the handle pointing up.", + "The image is of a plunger in a toilet.", + "This image is of a traditional plunger with a red rubber suction cup at the bottom and a long wooden or plastic rod extending upwards.", + "The image is of a yellow rubber plunger with a long black plastic handle.", + "A plunger is a tool used to clear blockages in drains.", + "This image is of a plunger with a bright yellow handle.", + "A plunger is a tool used to unclog drains.", + "A plunger, used to unclog toilets.", + "\"The plunger: Every household needs one.", + "This plunger is ready to take on any clog!.", + "\"The plunger: An instrument of unadulterated power and pure potential.", + "How to unclog a sink with a plunger.", + "This plunger is designed for unclogging toilets.", + "This is a plunger.", + "\"Never thought I'd see the day where I'd be happy to see a plunger.", + "This plunger is perfect for unclogging toilets and drains!.", + "This plunger is perfect for unclogging your toilet!." + ], + "Polaroid camera": [ + "A Polaroid camera is a small, light camera that you can hold in your hand.", + "A Polaroid camera is a type of camera that uses instant film to create a photograph.", + "A Polaroid camera has a large, square body with a small viewfinder on the top.", + "A Polaroid camera is a type of camera that uses instant film to create a photograph.", + "A Polaroid camera is a small, handheld camera that uses instant film to produce physical photographs.", + "Most Polaroid cameras are rectangular and have a viewfinder on the top.", + "A Polaroid camera is a type of camera that produces instant photographs.", + "A Polaroid camera is a small, rectangular camera that is typically white or light-colored.", + "The Polaroid brand today is most associated with its instant film cameras, which produce instant photos by passing developing chemicals over the exposed film.", + "A Polaroid camera is a rectangular box with a large lens on the front.", + "You can identify a Polaroid camera by the word \"Polaroid\" printed on the front of the camera.", + "A Polaroid camera has a square body with rounded edges.", + "Polaroid cameras can typically be identified by their distinctively shaped body.", + "The easiest way to identify a Polaroid camera is by its signature white border around the photograph.", + "The main ways to identify a Polaroid camera are by looking for the word \"Polaroid\" on the camera body, or by looking for the Polaroid logo (which is a red and white shield).", + "A Polaroid camera can be identified by looking for the name \"Polaroid\" on the front of the camera.", + "Polaroid cameras have a white border around the image.", + "The most iconic feature of a Polaroid camera is the white border that surrounds each photograph.", + "A Polaroid camera is a type of instant camera that prints photographs on the spot.", + "A Polaroid camera has the name \"Polaroid\" printed on the front.", + "A Polaroid camera is a small, rectangular camera.", + "A Polaroid camera is a type of camera that uses instant film to produce a physical photograph.", + "A Polaroid camera is a small, rectangular camera.", + "Polaroid cameras vary in design, but all have a large, square body and a wide-angled lens.", + "A Polaroid camera looks like a normal, rectangular camera.", + "A Polaroid camera looks like a standard box camera, but with the addition of a white sleeve that covers the front of the camera and contains the Polaroid instant film pack.", + "A Polaroid camera usually has a white body with faded red stripes.", + "A Polaroid camera is a type of instant camera that was first introduced in 1948.", + "A Polaroid camera is a small, handheld camera that uses instant film to create photographs.", + "A Polaroid camera looks like a small, rectangular box.", + "The image is of a white Polaroid camera with a green strap.", + "This image is of a Polaroid camera on a white background.", + "This image is of a white Polaroid camera with a black strap.", + "A Polaroid camera is a camera that instantaneously develops and prints photographs.", + "The image is of a white Polaroid camera with a black strap.", + "This image shows a vintage Polaroid camera.", + "The image is of a vintage-style Polaroid camera.", + "An image from the internet of a Polaroid camera shows a vintage camera with a white body and black accents.", + "The image is of a white Polaroid camera with the word \"Polaroid\" printed in blue across the front.", + "The image from the internet is of a Polaroid camera.", + "Poladroid Camera.", + "This is a Polaroid camera.", + " refurbished Polaroid camera.", + "A Polaroid camera.", + "Polaroid camera.", + "My new Polaroid camera!.", + "Polaroid camera.", + "Polaroid cameras are a classic way to take and develop photos instantly.", + "Polaroid 600 Instant Camera.", + "This is a Polaroid camera." + ], + "pole": [ + "A pole is a thin, tall, straight object that is used to support something or to hold something up.", + "A pole is long and slender, typically made of wood or metal.", + "_A pole is a thin, cylindrical object that is taller than it is wide.", + "A pole is a vertical object, typically made of wood or metal, that is used to support something, such as a flag or a sign.", + "A pole is a vertical wooden or metal post that is used to support something, such as a roof, a fence, or a flag.", + "A pole is a long, thin, vertical object.", + "A pole is a vertical, cylindrical object that is usually made of wood, metal, or plastic.", + "A pole is typically a long, thin, cylindrical object made of metal, wood, or plastic.", + "A pole looks like a long, thin, vertical object.", + "A pole is a long, thin, straight object.", + "A pole can be identified by its long, thin, and vertical shape.", + "You canidentify a pole by looking for a vertical metal rod with a circular base.", + "A pole is a vertical rod or post that provides support for something.", + "A pole is a cylindrical object that is taller than it is wide.", + "Look for a very tall, very thin object with a pointed top.", + "Poles are typically made of metal or wood and are very tall.", + "A pole is a linear structure that is used to support various things.", + "A pole is a vertical, slender, cylindrical, straight-sided structure, typically made of wood, metal, or concrete.", + "A pole is an object that is used to support something else, such as a flag or a plant.", + "A pole is a vertical supportive structure that is used for a variety of purposes.", + "A pole usually looks like a metal or wooden rod that is either vertical or slightly tilted.", + "A hard pole is typically cylindrical and made of metal, wood, or plastic.", + "A pole is a long, thin, straight, cylindrical object.", + "There is no one answer to this question, as poles can come in a variety of shapes and sizes.", + "A pole is typically a long, thin, and rigid piece of material such as wood, metal, or plastic.", + "Skip this question.", + "A pole is a straight, round, wood or metal rod.", + "I'm not sure what you're asking.", + "A pole is a vertical pole, usually made of wood or metal.", + "A pole is a vertical, typically cylindrical, object that is taller than it is wide.", + " dancerA slim woman with long blonde hair is performing a pole dance.", + " vaulterThe image is of a young woman clad in a sports bra and spandex shorts, poised at the end of a long pole.", + " vaulterThe image is of a man jumping over a bar.", + "The image is of a black metal pole with a green circle at the top.", + "The image is of a metal pole with a circular base.", + "An image from the internet of a pole would likely show a tall, thin object made of metal or wood, with a pointed top.", + "A black and white image of a metal pole in the center of a road.", + " dancerThe image is of a woman pole dancing in a black and white striped outfit.", + "otp.", + " dancing class-A group of women in skin-tight clothing performing flips and tricks on a pole in a dimly lit room-The women are of all shapes and sizes and appear to be enjoying themselves-The image is.", + "Skip the gym and pole dance your way to a workout.", + "A metal pole with a pointed top, set in concrete.", + "A man is balancing on a pole.", + "A man is holding a basketball in one hand and a fishing rod in the other.", + "A metal pole with a point at the top extends from the ground into the sky.", + "A blue pole with a white stripe down the middle.", + " A light pole with a warning sign that reads \"Danger of Death\"This light pole is located in a danger zone where there is a high risk of death.", + "A street light pole with a light on the end of it.", + "A single metal pole stands in the center of a brick paved street.", + "A woman stands next to a tall, thin pole." + ], + "police van": [ + "A police van is a large van that is used to transport police officers and equipment.", + "A police van usually looks like a large, dark-colored van with a light bar on the roof.", + "A police van is a van used by police forces for transporting prisoners.", + "A police van is a van used by police forces for transporting prisoners.", + "A police van is usually a white van with blue stripes.", + "A police van is a van that is used by the police.", + "Most police vans have a roof rack for storing equipment, a large rear door for loading and unloading prisoners, and a partition between the front and back seats to protect officers from prisoners.", + "A police van is a van that is used by the police.", + "A police van is a van used by police forces for transportation of prisoners.", + "A police van looks like a large van with the words \"Police\" written on the side in big, visible letters.", + "A police van is marked with the words \"Police\" or \"Police Car\" on the side or back.", + "Police vans are usually marked with some sort of police insignia, and are often equipped with flashing lights and sirens.", + "Police vans are typically white or blue and have \"Police\" written on the side in large letters.", + "A police van is a vehicle that is used to transport police officers.", + "A police van is a marked vehicle used by police forces for transporting prisoners.", + "Most police vans have a light bar on the roof that contains red and blue lights.", + "Police vans are usually unmarked, but they may have some identifying features such as a roof-mounted light bar or a lighted sign on the side that says \"Police.", + "One way to identify a police van is by its markings.", + "A police van is often a large van with tinted windows and emergency lights on the roof.", + "A police van is typically a white van with the words \"Police\" written on the side in blue lettering.", + "A police van looks like a van that says \"police\" on it.", + "A police van may look like a traditional van with police department markings, or it may be a specialized vehicle designed for hauling prisoners.", + "A police van looks like a white van with the words \"Police\" written on the side in big blue letters.", + "Police vans vary in size and design, but they typically have large windows and doors in the back for transporting suspects.", + "A police van is a large van used by the police.", + "Police vans are usually dark colored, with a large white stripe running down the side.", + "A police van is a van used by police to transport equipment and/or arrested persons.", + "A police van is a van that is used by the police.", + "Police vans vary in appearance from country to country, but they are typically large, white vans with \"Police\" or \"Police Department\" written on the side in large, block letters.", + "A police van is a large van that is used by police to transport criminals or large groups of people.", + "This image is of a police van that has been spray-painted with the words \"ACAB\" in large letters.", + "A photo of a police van from the internet shows a large, boxy vehicle with a light bar on the roof and signs on the sides that say \"Police.", + "The image is of a police van with the doors open.", + "I found an image of a police van on the internet that looks like it's from the UK.", + "A police van is a van used by police forces for transporting prisoners.", + "The image is of a police van with the doors open.", + "This image is of a police van with its doors open.", + "An image from the internet of a police van shows a large, boxy vehicle with a light bar on the roof and the word \"Police\" written on the side in large letters.", + "This image is of a police van that is parked on the side of a road.", + "The image is of a police van on the side of a road.", + "A police van outside a police station.", + "Police respond to reports of a break-in.", + "Police van with \"Property of the City of Chicago\" written on the side.", + "A police van on the scene of a crime.", + "Police Van.", + "A police van cruises down a city street.", + "A police van transporting criminals to jail.", + "Police van outside a courthouse.", + "The van is marked \"Police.", + "Police van with officers in front." + ], + "poncho": [ + "A poncho is a cape-like garment that is typically made out of a waterproof or water-resistant material.", + "A poncho is a piece of clothing that is worn over the head and shoulders.", + "A poncho looks like a blanket with a hole in the center for your head.", + "A poncho is a garment that is worn over the head and covers the body.", + "A poncho is a rectangular piece of fabric with a hole in the center for the head.", + "A poncho is a piece of clothing that is worn over the head and shoulders.", + "A poncho generally has a large hood and a semicircular piece of fabric that hangs down to about the waist.", + "A poncho is a piece of clothing that is worn over the head and shoulders.", + "A poncho is a garment that is worn over the head and shoulders.", + "A poncho is a wrap-around garment that is typically triangular or Rectangular in shape.", + "A poncho is a sleeveless outer garment that is worn over other clothing.", + "A poncho is a type of cloak or cape worn by men and women in South America.", + "Ponchos can be identified by their large, rectangular shape and their lack of sleeves.", + "A poncho is a water-resistant or waterproof garment that is typically worn over other clothes.", + "A poncho is a garment that is worn over the head and upper body.", + "Ponchos are typically triangular or rectangular in shape and have an opening in the center for the head.", + "A poncho is a waterproof or water-resistant piece of clothing that is worn over the head and shoulders.", + "A poncho is a type of cloak or cape with a hole in the center for the head to pass through.", + "A poncho is a type of cloak or cape typically worn by South American natives.", + "A poncho is a rectangular or triangular piece of fabric with a hole in the center for the head.", + "Ponchos typically have a large, rectangular shape and a hood.", + "Ponchos are traditionally made from a single piece of cloth, and are either triangular or rectangular.", + "Traditionally, a poncho is a single piece of cloth with a hole in the center for the head.", + "A poncho is a rectangular piece of clothing with a hole in the middle for the head.", + "A poncho is a garment that is worn over the head and shoulders.", + "A poncho is typically a rectangular or semi-circle shaped piece of fabric with a hole in the center for the head.", + "A poncho is a rectangular piece of fabric with a hole in the center for the head.", + "A poncho is a thin, tapering piece of cloth with a hole in the center for the head, typically worn as a garment by South American Indians.", + "A poncho is a piece of clothing that is worn over the head and shoulders.", + "Ponchos can come in a variety of colors and patterns, but they typically have a large, triangular shape and a hole in the center for the head.", + "This image shows a woman wearing a traditional Peruvian poncho.", + "The image is of a white poncho with a blue and green design.", + "A poncho is a garment that is worn over the head and shoulders.", + "A brightly colored, traditional Andean wool poncho with intricate geometric patterns.", + "An image of a poncho from the internet shows a traditional, brightly colored Mexican poncho.", + "One image of a poncho from the internet is of a black and white checked poncho with a fringed bottom.", + "The image is of a brown poncho with a white fringe around the bottom.", + "This poncho is made of a woven white fabric with colorful tassels hanging from the bottom.", + "One image from the internet of a poncho is of a brightly colored traditional Peruvian poncho.", + "The image is of a traditional Peruvian poncho.", + "A brightly colored woven poncho with a geometric design, worn over the shoulders.", + "A poncho is a cloak-like garment that is typically worn over the head and shoulders.", + "A bright blue poncho with a white hood hanging off of a peg.", + "A woman wearing a colorful poncho and a straw hat walking through a field of green grass and wildflowers.", + "A poncho is a garment that is worn over the head and shoulders.", + "A traditional poncho from Chile.", + "Blessed are the rainmakers.", + "A poncho is a type of garment typically worn by South American people.", + "Poncho weather is the best weather.", + "A woman wearing a traditional Chilean poncho stands in front of a colorful mural." + ], + "pool table": [ + "Pool tables have a long, rectangular shape and are covered in green felt.", + "A pool table is a flat, rectangular table with a ball at either end and six pockets around the edge.", + "A pool table is typically rectangular and has six pockets - one at each corner and one in the middle of each long side.", + "A pool table is a rectangular table with a smooth, level surface.", + "A pool table is a large, flat table with a smooth, level surface.", + "A pool table is a large, roughly rectangular table with a smooth, level surface.", + "A pool table is a rectangular table with six pockets at the corners and sides.", + "A pool table typically has six pockets for the pool balls and is covered in green felt.", + "A pool table is a large, rectangular table with a green felt surface and six pockets.", + "A pool table looks like a large rectangle with a green felt surface.", + "The most obvious way to identify a pool table is by its size.", + "One way to identify a pool table is by its size.", + "Pool tables are classified by their width.", + "There are several ways to identify a pool table.", + "A pool table often has green felt and has six pockets.", + "By looking at it.", + "A pool table has six pockets, a bed of green felt, and usually has bumpers on the edge.", + "A pool table has six pockets, a smooth surface, and is twice as long as it is wide.", + "A pool table is a billiard table with six pockets.", + "The most common way to identify a pool table is by its size.", + "A pool table typically has six pockets and is covered with a green felt.", + " Pool tables come in a variety of sizes and shapes but the most common style is a rectangular table with six pockets.", + "A pool table is a large, flat table with six pockets along the edges.", + "A pool table has a flat surface with six pockets along the rails.", + "A pool table looks like a large, rectangular table with a green felt surface.", + "A pool table generally has six pockets, a flat surface, and is rectangular in shape.", + "A pool table is a flat rectangular table with pockets at each end into which balls are hit during the game.", + "A pool table is a rectangular table that is used for playing pool.", + "A pool table has a large, flat surface that is covered in green felt.", + "A pool table has a flat surface with six pockets, and is used for playing the game of pool.", + "The image is of a pool table with the cue ball in the middle and the other balls spread out around it.", + "The image is of a rectangular pool table with six pockets.", + "A pool table is typically a rectangular table with six pockets spread evenly across the sides and ends.", + "This image is of a black pool table with a white cue ball on it.", + "A shiny, dark wood pool table with green felt is surrounded by chairs with thick cushions.", + "An image of a pool table from the internet might show a close-up of the felt surface with the balls arranged in a triangle.", + "This is an image of a pool table with a blue felt surface.", + "The image is of a black pool table with six pockets.", + "A pool table is a table with a green cloth surface and six pockets, used for playing the game of pool.", + "This image is of a pool table with a green felt surface.", + "\"Pool\".", + "A pool table in a room with green walls and a blue ceiling.", + "A pool table withcue stick and balls.", + "The pool table is set up for a game of eight-ball.", + "A pool table with balls and cue sticks.", + "A pool table with balls and cue sticks.", + "This is a pool table.", + "A group of friends playing pool at a bar.", + "A game of pool in progress on a green felt table.", + "A pool table in a game room." + ], + "soda bottle": [ + "A soda bottle is typically a plastic or glass bottle with a screw top or snap-on lid.", + "A soda bottle is typically a thin, cylindrical plastic or glass bottle that is sealed with a plastic or metal cap.", + "A soda bottle is generally made of plastic or glass and has a screw on cap.", + "A soda bottle is a plastic or glass bottle that contains carbonated water, soda, and a small amount of flavoring.", + "A soda bottle is typically a plastic or glass bottle that is sealed with a metal or plastic lid.", + "A soda bottle is a plastic or glass bottle that contains a carbonated beverage.", + "A soda bottle has a cylindrical shape and is made of transparent plastic.", + "A soda bottle is a plastic or glass bottle that typically has a metal screw-on cap.", + "A soda bottle is a transparent plastic or glass bottle with a metal screw-on cap.", + "A soda bottle is made of clear plastic and has a screw on cap.", + "One way to identify a soda bottle is by its shape.", + "One way to identify a soda bottle is by looking for the Coca-Cola logo.", + "Most soda bottles are made out of clear or green glass and have a screw-top lid.", + "A soda bottle has a small neck and a large, round body.", + "There are several ways to identify a soda bottle.", + "Soda bottles are typically made of clear or green glass and have a screw-on cap.", + "A soda bottle is a container that is used to hold carbonated beverages.", + "A soda bottle is a bottle that is used to store soda.", + "You can usually identify a soda bottle by its shape.", + "The most common soda bottle is made of clear or green glass and has a screw-on cap.", + "A soda bottle is a cylindrical container with a narrow neck and a screw-on cap.", + "A soda bottle is long, thin, and made of glass or plastic.", + "A soda bottle is a cylindrical plastic container with a screw-top lid.", + "A soda bottle typically has a long, thin body and a wide mouth.", + "A real soda bottle is usually made of glass and is narrow with a round body and a cylindrical neck that is smaller in diameter than the body.", + "The typical soda bottle is made of clear plastic and is roughly 20 ounces.", + "A soda bottle is a beverage container that is typically made of glass or plastic and has a narrow neck and a flared top.", + "A soda bottle typically has a cylindrical shape and is made of plastic or glass.", + "A soda bottle often is made of clear plastic and has a screw-on cap.", + "A soda bottle generally has a cylindrical shape and is made of plastic or glass.", + "A soda bottle from the internet is a clear, plastic bottle with a linear shape.", + "This image is of a red and silver soda bottle.", + "An image of a soda bottle from the internet might show a brightly colored bottle with a label that reads \"soda.", + "The image is of a pink soda bottle with a yellow and white label.", + "Image shows a soda bottle with a blue label.", + "A soda bottle from the internet is a clear, plastic bottle with a screw-on top.", + "This image is of a white soda bottle on a yellow background.", + "A blue and white soda bottle with a silver cap.", + "The image is a photo of a silver soda can with a blue and white label.", + "This image is of a Coca-Cola soda bottle.", + "Coca-Cola: The Real Thing.", + "Soda Bottle.", + "This is a Pepsi bottle.", + "Soda Bottle.", + "Coca Cola: the perfect drink for a hot summer day.", + " LARGE SODA2 LITERS$1.", + "Coca-Cola, the most popular soft drink in the world.", + "Pepsi Max CherryA bottle of Pepsi Max Cherry, a sugar-free soft drink with cherry flavor.", + "This person is drinking a carbonated beverage out of a glass bottle.", + "This is a picture of a soda bottle." + ], + "plant pot": [ + "A plant pot is typically a container made of materials like plastic, metal, or ceramic, that is used to hold a plant.", + "A plant pot is a container that is used to hold plants.", + "A plant pot is a small, typically round, container in which plants are grown.", + "A plant pot is typically a container made of materials such as plastic, ceramic, or metal, with a drainage hole in the bottom and a saucer to catch water.", + "A plant pot is a small container that is typically used to hold plants.", + "A plant pot is a small container that is used to hold a plant.", + "A plant pot is a small container that is used to hold a plant.", + "A plant pot is a container that is used to hold plants.", + "A plant pot is a container in which a plant can be grown.", + "A plant pot is a round container with a hole in the bottom that is used to hold a plant.", + "There are many ways to identify a plant pot.", + "You can identify a plant pot by its shape, size, and material.", + "A plant pot is a container in which plants are cultivated.", + "A plant pot is a container in which plants are cultivated.", + "The shape of a plant pot is generally round or oval with a drainage hole in the bottom.", + "The best way to identify a plant pot is to look for a number of things.", + "Most plant pots are made of a material like plastic, metal, ceramic, or terra cotta.", + "Plant pots are can be identified by their small size, lack of drainage holes, and often colorful or decorative designs.", + "A plant pot is a container used to hold a plant.", + "A plant pot is a container that is used to hold plants.", + "A plant pot looks like a small, temporary home for a plant.", + "A plant pot can have many different appearances, as there are many different types and sizes of plant pots.", + "There is no one definitive answer to this question as plant pots come in a wide variety of shapes, sizes, and materials.", + "Most plant pots are made out of a durable material such as ceramic, plastic, or metal.", + "A plant pot is a container in which plants are grown.", + "A plant pot looks like a small pot that is used to hold a plant.", + "A container in which plants are cultivated.", + "A plant pot may be made of various materials, such as plastic, metal, or terracotta, and can vary greatly in size and color.", + "There is no one answer to this question as plant pots come in a wide variety of shapes and sizes.", + "A plant pot is a small container that is used to hold a plant.", + "A plant pot is a small container that is used to hold plants.", + " in front of a glass French doorIn the image, there is a plant pot that is placed in front of a glass French door.", + "This image from the internet shows a plant pot with a plant in it.", + "The image is of a plant pot that is sitting on a window sill.", + "This image is of a plant pot that is made out of ceramic.", + "This image shows a plant pot that is made out of a light blue material.", + "A plant pot is a small container that is used to hold a plant.", + "This image is of a plant pot that is made out of recycled newspaper.", + "This plant pot is made of terra cotta and has a simple design.", + "The image is of a small, light blue plant pot.", + "This plant is in need of some water!.", + " A lovely plant pot with a plant inside.", + "This plant pot is perfect for adding a touch of green to any space.", + "This plant pot is perfect for your indoor plants! It has a drainage hole to help keep your plants healthy, and it's made of a durable material that will last for years.", + "This is a plant pot.", + "Pothos plant in a yellow pot.", + " A plant pot with a leafy plant inside.", + "A plant pot full of green leaves.", + "This beautiful plant pot is perfect for adding a touch of nature to your home.", + " A modern white plant pot with a green plant inside." + ], + "potter's wheel": [ + "A potter's wheel is a wheel that is used to shape clay into pottery.", + "Small disc-shaped platform, slightly inclined, that a potter spins on while working with clay.", + "A potter's wheel is a a circular board that potters use to spin clay while they shape it.", + "A potter's wheel is a spinning wheel that a potter uses to make pottery.", + "A potter's wheel is a flat disc that is used to shape clay into pottery.", + "A potter's wheel consists of a large, circular, flat disc that the potter sits behind and uses to rotate the clay as they work.", + "A potter's wheel is a round piece of equipment that a potter uses to make pots.", + "A potter's wheel is a large, horizontal wheel that a potter uses to shape clay into pottery.", + "A potter's wheel is a small, round table that spins around.", + "A potter's wheel is a circular, rotating piece of equipment that a potter uses to shape clay into various forms.", + "A potter's wheel is a spinning wheel that potters use to shape their clay into pottery.", + "Generally, a potter's wheel is a heavy, round piece of machinery that a potter sits in front of and uses to mold and shape clay pots.", + "A potter's wheel is a circular platform that a potter spins to shape clay into vessels.", + "A potter's wheel is a motorized or hand-operated turntable that is used to shape clay into ceramics.", + "A potter's wheel is a large, circular, flat surface that a potter uses to shape and form clay into pottery.", + "By its spinning disc, which the potter uses to shape the clay.", + "Potter's wheels are often made of wood or metal, and they have a large flywheel that is used to spin the clay.", + "A potter's wheel can be identified by its circular shape and by the fact that it is used to spin clay pots.", + "A potter's wheel is a tool used by potters to shape clay into pots.", + "A potter's wheel is typically round and has a foot pedal that is used to spin the wheel.", + "A potter's wheel is a round, flat surface that a potter can use to spin clay while they shape it.", + "A potter's wheel typically looks like a large, flat disk that is attached to a stand or pedestal.", + "A potter's wheel generally has a circular platform that rotates on a central axis.", + "A potter's wheel is a round, flat surface that a potter can use to mold and shape clay.", + "A potter's wheel looks like a rounded, horizontal surface that a potter can sit or stand in front of, with a foot pedal to make it spin.", + "A potter's wheel is a flat disk that the potter sits behind and uses to spin the clay.", + "Image result for potter's wheel.", + "A potter's wheel typically consists of a large, flat, circular surface that the potter can spin around.", + "A typical potter's wheel is a round, flat surface that the potter sits or stands in front of.", + "A potter's wheel is a wheel that a potter uses to make pottery.", + "This image is of a potter's wheel.", + "The image is of a potter's wheel that is being used to shape a piece of clay into a pot.", + "The image is of a potter's wheel that is being used to create a pot.", + "A potter's wheel is a round, flat disc that a potter uses to shape clay into pots.", + "A potter's wheel is a large, round wheel that a potter uses to shape clay into pots and other objects.", + "A potter's wheel is a round, flat disc that a potter uses to shape and form clay pots.", + "Image is of a Potters Wheel from the Chinese Han Dynasty.", + "The image is of a potter's wheel that is spinning.", + "A potter's wheel is a large, slightly concave disc that a potter sits behind and uses to shape clay pots.", + "A wheel covered in clay, with a potter's hands shaping it into a vase.", + "A potter's wheel in action.", + "The potter's wheel is an essential tool for anyone wanting to create their own pottery.", + "A potter's wheel in motion.", + "A potter's wheel in action.", + "A potter's wheel in action.", + "A potter's wheel in operation.", + " A worker at a pottery wheel in an African American owned business in Detroit, Michigan, circa 1940.", + "The potter's wheel is a traditional tool used by potters to shape clay into vessels and other objects.", + " \"A potter creates a vase on a potter's wheel.", + " A potter at work on a wheel." + ], + "power drill": [ + "A power drill is a handheld device that has a rotating drill bit.", + "A power drill generally consists of a handle and a chuck that can hold various drill bits.", + "A power drill has a cylindrical body with a handle on one end and a chuck on the other end.", + "A power drill has a long, cylindrical body with a handle at one end and a drill bit at the other.", + "A power drill is a handheld tool that is used to drill holes or drive screws into various materials.", + "A power drill is a handheld tool that has a rotating drill bit.", + "A power drill is a handheld tool that has a handle and a chuck on the end that holds drill bits.", + "A power drill is a small, hand-held motorized tool that is used to drill holes in various materials or to drive screws.", + "A power drill is a handheld tool that has a drill bit on the end of a spindle that can rotate quickly.", + "A power drill is a device that holds a drill bit and turns it at a high speed.", + "Power drills are typically bright colored and have a large, cone-shaped chuck on the end.", + "A power drill has a rotating drill bit that is used for drilling holes in hard materials.", + "The easiest way to identify a power drill is by its handle and trigger.", + "Look for a metal cylindrical body with a handle.", + "A power drill is a tool that is used to drill holes or drive screws.", + "The easiest way to identify a power drill is by its rotating cylindrical chuck that holds the drill bit in place.", + "A power drill is a tool that is used to create holes in materials such as wood, metal, and plastic.", + "A power drill is a tool that is used to create holes in various materials such as wood, metal, and plastic.", + "A power drill typically has a cylindrical body and a chuck at one end for holding drill bits.", + "A power drill is a tool that uses a rotating drill bit to create holes in various materials.", + "A power drill consists of a trigger, a housing, a chuck, and a bit.", + "A power drill is a type of electric drill that is used for drilling holes or driving screws into a variety of materials.", + "A power drill looks like a hand drill, but it is powered by electricity.", + "A power drill generally looks like a basic hand drill, except that it is usually attached to a cord or battery pack.", + "A power drill is a handheld power tool that typically has a cylindrical chuck at one end for holding drill bits and a handle at the other end for controlling the drill.", + "A power drill typically has a cylindrical body and a chuck at one end for holding drill bits.", + "A power drill is a handheld, electric tool that has a drill bit on the end, which is used for drilling holes in various materials.", + "A power drill typically consists of a drill bit, an chuck to hold the drill bit in place, a motor, a handle, and a trigger.", + "A power drill is a handheld tool that is used for drilling holes or driving screws.", + "A power drill looks like a handheld drill with a power cord attached to it.", + "In the image, there is a power drill lying on a table.", + "This power drill is black and silver with a long, cylindrical body.", + "This power drill is black and silver with a green band around the middle.", + "An image from the internet of a power drill shows a person holding a drill in their hand.", + "In this image, we can see a black and silver power drill.", + "The image is of a black and silver power drill.", + "A black and silver power drill is shown plugged into an outlet.", + "The image shows a person holding a power drill.", + "In the image, there is a power drill on a white background.", + "One image of a power drill from the internet is of a large, silver drill with a long, black handle.", + "The caption reads, \"A power drill is a tool that is used to create holes in hard surfaces.", + " A power drill is a handheld tool that is used to create holes or drive screws into a variety of materials.", + " A black and silver power drill.", + "This is a power drill.", + "Power drill on a white background.", + "A power drill is a tool that is commonly used to create holes or drive screws into surfaces.", + "Just like Mom always said, if you want something done right, you have to do it yourself!.", + "A power drill is a handheld tool that uses a rotating drill bit to create holes in various materials.", + "This image shows a person using a power drill.", + "Image of a black and silver power drill." + ], + "prayer rug": [ + "There is no one answer to this question as different people and cultures have different designs and styles for their prayer rugs.", + "A prayer rug is a type of small rug that is used by some Muslims to help them pray.", + "A prayer rug is a small, rectangular rug that people kneel on when they pray.", + "A prayer rug is a small mat or carpet on which a person can kneel or stand while praying.", + "Prayer rugs come in a variety of shapes and sizes, but they all feature a small, squared area in the center where the worshipper kneels during prayer.", + "A prayer rug is a small mat, usually made of wool, that is used by Muslims during their daily prayers.", + "A prayer rug usually has a design of a niche at one end, representing the mihrab where Muslims pray, pointing in the direction of Mecca.", + "A prayer rug is a small mat, usually rectangular, that is used by Muslims when praying.", + "A prayer rug is typically a small mat, usually made of wool, woven in a rectangular shape with a prayer niche at the top.", + "A prayer rug is a small, rectangular mat on which a Muslim person stands or kneels during prayer.", + "A prayer rug is a type of rug that is used by Muslims during their daily prayers.", + "A prayer rug is often recognizable by its small size and the presence of a niche at one end which indicates the direction of Mecca.", + "There are certain patterns and symbols that are typically found on prayer rugs.", + "A prayer rug is often recognizable by its design, which usually includes a niche at one end meant to symbolically point toward Mecca.", + "There are many different types of prayer rugs, but some common features include a niche at one end representing the mihrab (a prayer niche in a mosque indicating the direction of Mecca), and a striped or geometric design.", + "There are many ways to identify a prayer rug.", + " Islamic prayer rugs typically feature a niche at one end that points toward Mecca, and a recurring geometric design.", + "A prayer rug is typically a small, rectangular mat with a slit in the center for the placement of the forehead during Muslim prayer.", + "I am not an expert on prayer rugs, but I believe there are certain characteristics that most prayer rugs possess.", + "A prayer rug is typically quite small, and has a niche at one end which points towards Mecca.", + "There are many different types and styles of prayer rug, but they all typically feature a Sultanabad design.", + "Prayer rugs come in a wide range of colors, patterns, and sizes.", + "A prayer rug is typically a small, rectangular mat that is used for daily prayer.", + "A prayer rug is a small, rectangular mat that is used as a surface for Muslim prayer.", + "A prayer rug typically has a niche at the top for the person's head during prayer, and is wide enough to allow the person to kneel and prostrate.", + "Image result for what does a prayer rug look likePrayer rugs usually have a niche at the top, representing the mihrab, or prayer niche, in a mosque, which indicates the direction of Mecca.", + "A prayer rug usually has a niche at the top that indicates the direction of Mecca.", + "A prayer rug is a type of small rug that is used by Muslims during their daily prayers.", + "A prayer rug is a carpet or small mat on which a Muslim person kneels or prostrates during daily prayers.", + "A prayer rug typically has a niche at one end that is pointed towards Mecca, and is Islamic in origin.", + "This image is of a traditional Muslim prayer rug.", + "This image from the internet shows a traditional Muslim prayer rug.", + "This image is of a traditional Muslim prayer rug.", + "This is an image of a traditional Muslim prayer rug.", + "It is a rectangular rug with a design of a large central diamond shape and a repeating border.", + "This image is of a traditional Muslim prayer rug, or \"sajjadah.", + "This image from the internet shows a traditional Muslim prayer rug.", + "This image is of a traditional Muslim prayer rug.", + "This image shows a traditional Muslim prayer rug, or sajjada, with a simple design in black, white, and brown.", + "This image is of a traditional Muslim prayer rug.", + "Prayer rug with traditional Islamic geometric designs.", + "\"I prayed for this rug to bring me comfort and strength.", + "A prayer rug is a type of rug used by Muslims during their daily prayers.", + "\"This is my prayer rug.", + "A prayer rug is a Muslim prayer mat.", + "A traditional Muslim prayer rug, often used in daily prayers and during pilgrimage.", + "A prayer rug is a small, usually rectangular rug that is used by Muslims during their daily prayers.", + "A man kneeling on a prayer rug in a mosque.", + "This is a prayer rug used by Muslims during their daily prayers.", + "A prayer rug is a Muslim prayer mat used during Salah to perform the Sajdah, or prostration." + ], + "printer": [ + "A printer is a machine that prints text or pictures onto paper.", + "A printer generally consists of four main parts: an input tray where you feed paper, an output tray where the printed paper comes out, the cover which protects the inner mechanisms of the printer, and the control panel with buttons and displays that let.", + "A printer looks like a small, rectangular box with a paper tray on the top.", + "A printer consists of a few main parts: the paper tray, where you load in blank sheets of paper; the ink cartridge, which contains the printer's ink; and the print head, which moves back and forth across the page, laying.", + "A printer is a machine that prints text or pictures onto paper.", + "A printer is a device that prints text or pictures onto paper.", + "A printer is a machine that uses ink to print documents.", + "A printer is a small, usually box-shaped, computer peripheral that produces text or graphics on paper, usually by means of inkjet, laser, or dot-matrix technologies.", + "A printer typically consists of a rectangular box with a paper tray on the top and a place to feed paper in on the front.", + "A printer is a machinery that prints documents.", + "There is not a surefire way to identify a printer, as there are many types and brands of printers.", + "There are a few ways to identify a printer.", + "A printer can be identified by the type of interface it uses to connect to a computer.", + "The easiest way to identify a printer is by looking at the documentation that came with your computer or by contacting the company that made the printer.", + "A printer can be identified by looking at the ports on the back of the device.", + "You can identify a printer by its type of connection.", + "Which type of printer are you looking for?.", + "There are several ways to identify a printer.", + " printers can be identified by looking for the usb ports on the side or back of the device.", + "You can identify a printer by checking the back or bottom of the device to see if there is a label that says \"PRINTER.", + "A printer typically consists of an inkjet or laser device, attached to a computer, that prints text and graphics onto paper.", + "A printer is a small, box-like machine that connects to a computer.", + "Facsimile machines, or printers, come in many shapes and sizes, but they all have certain common elements.", + "A printer is a device that prints text or illustrations on paper.", + "Printers can come in many shapes and sizes, but most home printers are small and boxy with a paper tray on the bottom.", + "Most printers are very small and compact.", + "Printers can come in many different shapes and sizes, but they all have the same basic components.", + "A printer is a small, rectangular box with a lid that can be opened.", + "Printers come in many shapes and sizes, but most have a rectangular shape with a flat surface on top for placing paper.", + "A printer is a machine that prints text and pictures on paper.", + "This image is of a printer.", + "The image is of a printer with a green, yellow, and blue light on the front.", + "This is an image of an HP printer.", + "A printer is a machine that prints text or images on paper.", + "The image might show a printer with a computer next to it.", + "This image is of a black and white printer on a desk.", + "The printer is a white and silver machine with a rectangular shape.", + "The printer is a machine that is used to print documents.", + "The image is of a black and white printer on a desk.", + "This image is of a black and white printer which is plugged into a laptop.", + "An HP printer on a desk.", + "The printer is a HP LaserJet P1102w.", + "This image shows a printer on a desk.", + "PrinterA printer is a machine that prints text or pictures onto paper.", + "This is an HP LaserJet Pro printer.", + " The HP OfficeJet 4650, an all-in-one printer that can print, copy, scan, and fax.", + "A printer prints documents.", + "Printer is not responding.", + "The printer is on and ready to use.", + "This is an HP DeskJet printer." + ], + "prison": [ + "A prison looks like a big building with many cells.", + "A prison typically looks like a large building with high walls and barbed wire fence.", + "A prison looks like a jail.", + "Most prisons consist of a large number of cells in which prisoners are held.", + "A prison looks like a large building with high walls and barbed wire.", + "A prison is a fortified building where people are held as inmates after being arrested and convicted of a crime.", + "A prison looks like a large building with high walls and barbed wire.", + "A prison typically looks like a large building with high walls and barbed wire surrounding it.", + "A prison is typically a large, fenced-in facility with several buildings inside.", + "Prison cells are typically small, cramped, and have bars on the windows.", + "There are many ways to identify a prison, but some common features include high walls or fencing, barbed wire, guard towers, and strict security measures.", + "There are a few ways to identify a prison:\n* The prison may have a large wall or fence around it\n* The prison may have a lot of security, such as guards and cameras\n* The prison may have a clinical or.", + "The most common way to identify a prison is by its physical appearance.", + "A prison is typically a large, fenced-in facility that houses inmates.", + "Prison facilities vary greatly in appearance, but most prisons have high prison walls or fences that are difficult to see through.", + "The most common way to identify a prison is by its physical appearance.", + "The most common way to identify a prison is by its barred windows and high walls.", + "A prison is a government-run facility that houses criminals who have been convicted of a crime.", + "The easiest way to identify a prison is by its large walls and barbed wire.", + "A prison is a facility that is used to confine and punish people who have been convicted of crimes.", + "Prison looks like a place where people are kept against their will in order to pay for a crime they committed.", + "Most prisons are composed of a series of large buildings that contain many small cells.", + "A prison typically looks like a large building with high walls and barbed wire surrounding it.", + "There is no one answer to this question as prisons can vary greatly in both size and appearance.", + "Most prisons are surrounded by high walls with barbed wire at the top.", + "A prison looks like a large building with many cells.", + "There is no one definitive answer to this question, as prisons can come in a variety of shapes and sizes.", + "A prison is a building where people are kept who have been accused or convicted of a crime.", + "There is no one answer to this question as prisons can vary greatly in both size and appearance.", + "Each prison is different, but they typically have high walls or fences, barbed wire, security cameras, and guard towers.", + "I found an image of a prison on the internet that shows the inside of a cell.", + "I found an image of a prison on the internet that looks like it is in Cuba.", + "An image from the internet of a prison shows a large, gray building with small windows.", + " cellThe image is of a small, cramped prison cell with a metal bed frame and a thin mattress.", + "This image is of a large, imposing prison.", + "In the image, there is a large metal gate with barbed wire along the top.", + "A metal door with a small window in the center, barred with metal bars.", + "An image of a prison from the internet shows a large, gray building with high walls and barbed wire.", + "The image is of a large, gray building with several small windows.", + "The image is of a prison cell with a metal door and a small window.", + "This is a prison.", + "Inmates at the Cook County Jail in Chicago, Illinois.", + "A prison cell is a place where people are incarcerated as punishment for a crime they have committed.", + "Inmates at the Parchman Farm penitentiary in Mississippi, circa 1900.", + " Inmates at the prison in Alcatraz, California.", + "In this photo, a group of inmates are seen milling around the prison yard.", + "The prison is a big, dark, scary place.", + "In this busy prison, the inmates are kept busy with work and vocational programs during the day.", + " \"Inmates at the California Institution for Men in Chino attend a group session\".", + "Inmates at a prison in the United States." + ], + "projector": [ + "A projector is a machine that projects images onto a screen.", + "A projector is a large machine with a lens that projects an image onto a screen or wall.", + "A typical digital projector contains a spotlight that projects an image onto a screen.", + "A projector is a large machine that projects images onto a screen.", + "A projector typically looks like a small box with a lens on one side.", + "Most projectors have a boxy shape and are white or gray.", + "A projector is a device that projects an image onto a surface.", + "A projector is typically a large, rectangular device that projects images onto a screen.", + "A projector is a device that projects an image onto a surface, usually a wall or screen.", + "A projector has a large lens on one end and a screen on the other.", + "There are a few ways to identify a projector.", + "A projector is a machine that projects an image onto a screen.", + "It can be difficult to identify a projector without knowing its make and model.", + "A projector is a device that projects an image or video onto a surface, usually a wall or screen.", + "The easiest way to identify a projector is by looking for the lens.", + "There are a few ways to identify a projector.", + "There are a few ways to identify a projector.", + "The most obvious way to identify a projector is by its physical appearance.", + "A projector can be identified by looking for a lens and a light source.", + "A projector is a machine that projects an image onto a screen.", + "A projector is typically a handheld device that projects a beam of light onto a surface.", + "A projector is a machine that projects an image onto a surface.", + "A projector is a machine that projects an image onto a surface.", + "A projector is a large, boxy machine that sits on a table or on the ground.", + "A projector is a large device that is usually placed on a table or another surface.", + "A projector is a machine that projects an image onto a surface, usually a wall or a screen.", + "Most projectors have a lens that is recessed into the unit.", + "A projector is a piece of equipment that projects an image onto a surface.", + "A projector is a device that projects an image onto a screen.", + "A video projector typically has a rectangular box shape and is about the size of a large microwave oven.", + "The image is of a projector on a stand in front of a white wall.", + "In the image, a projector is sitting on a table with a laptop next to it.", + "The image is of a projector that is casting a movie onto a white screen.", + "The image is of a projector pointed at a blank white wall.", + "This image is of a projector on a table in front of a screen.", + "The image is of a white projector on a white surface.", + "This image is of a projector that is beaming an image onto a screen.", + "The image is of a projector that is displaying an image on a screen.", + "This image is of a projector on a stand in front of a white screen.", + "A projector is a machine that projects an image onto a surface, usually a wall or screen.", + "This projector is perfect for watching movies or giving presentations.", + "A projector displaying a movie on a screen.", + "A projector displaying a film on a screen.", + "A projector shows a movie on a screen.", + "This projector is perfect for watching movies or presentations.", + " A vintage projector on a table in front of a white wall.", + "Projector in a dark room.", + "\");A projector displaying an image on a screen.", + " A projector hangs from the ceiling, casting a movie onto a white wall.", + "This is a projector." + ], + "hockey puck": [ + "A hockey puck is a small, round object that is used in the game of hockey.", + "A hockey puck is a small, hard rubber disc that is used in the sport of ice hockey.", + "A hockey puck is a disc made of vulcanized rubber.", + "A hockey puck is a black, hard rubber disk.", + "A hockey puck is a flat, round, black disc made of rubber.", + "A hockey puck is a small, hard, round disc that is used in the sport of ice hockey.", + "A hockey puck is a black disc that is 1 inch thick and 3 inches in diameter.", + "A hockey puck is a black disc made of hard rubber.", + "A hockey puck is a small, black disk that is used in the sport of hockey.", + "A hockey puck is a small, hard disc made of black rubber.", + "Hockey pucks are circular disks made of vulcanized rubber.", + "A hockey puck is a circle, about 3 inches in diameter, and 1 inch thick.", + "hockey pucks are usually made of black vulcanized rubber and they are 3 inches in diameter and 1 inch thick.", + "Hockey pucks are typically black, and about 3 inches in diameter.", + "A hockey puck is a black disc that is used to play the sport of hockey.", + "The Hockey Puck is black, smooth, made of hard rubber, and frozen before the game.", + "A hockey puck is a black, hard disc that is used in the sport of ice hockey.", + "A hockey puck is a small, round, black disc made of hard plastic.", + "A hockey puck is a small, hard, round disk made of vulcanized rubber.", + "By its round shape and black color.", + "A hockey puck is a round black piece of rubber.", + "A hockey puck is a black disc made of vulcanized rubber.", + "A hockey puck is a black disk that is about 3 inches in diameter and 1 inch thick.", + "A hockey puck is a black disc that is 3 inches in diameter and 1 inch thick.", + "A hockey puck is a black disk that is approximately 3 inches in diameter and 1 inch thick.", + "A hockey puck is a small, round, black object that is used to play the game of hockey.", + "A hockey puck is a small, round disk made of black rubber.", + "A hockey puck looks like a small black Disk.", + "A hockey puck is a small, hard disk made of vulcanized rubber.", + "A hockey puck is a small round disk made of black rubber.", + "The image is of a black hockey puck on a white background.", + "The image is of a black hockey puck on a white background.", + "Image shows a hockey puck on the ice with a stick and glove in the background.", + "One image of a hockey puck from the internet is a round, black object with a white stripe around the center.", + "This image is of a black hockey puck on a white surface.", + "This image is of a hockey puck sitting on a white background.", + "This image is of a hockey puck on the ice.", + "The image is of a black hockey puck on a white background.", + "The image is of a black hockey puck on a white background.", + "The image is of a black hockey puck on the ice.", + "This is a hockey puck.", + "A hockey puck on a sheet of ice.", + "A hockey puck about to be hit by a player's stick.", + "A hockey puck on the ice during a game.", + "This is a hockey puck.", + "In hockey, the puck is the small, round disc that is used to play the game.", + "A hockey puck on the ice.", + "\"Hockey puck on ice\".", + "A puck used in the sport of ice hockey.", + "A hockey puck on a frozen lake." + ], + "punching bag": [ + "A punching bag is a small, cylindrical object that is filled with air or water.", + "A punching bag is usually an oblong shape filled with sand or some other material.", + "A punching bag is a bag made of a tough material such as leather or canvas, filled with sand, sawdust, or other materials, and hung from a ceiling or frame.", + "A punching bag is a cylindrical bag filled with sand, rice, or other material, and is used as a target in boxing and other combat sports.", + "A punching bag is a large bag filled with either sand, fabric, or other materials, and is hung from the ceiling or a stand.", + "A punching bag is typically a cylindrical bag that is filled with some sort of material, often sand or cloth.", + "A punching bag is a large, cylindrical bag that is often filled with sand, cloth, or other materials.", + "A punching bag is usually a cylinder made of leather or vinyl, filled with sand, stones, rags, or other materials, and hung from the ceiling or on a stand.", + "A punching bag is a bag that is filled with either sand, water, or air.", + "A punching bag is a usually cylindrical bag filled with soft material, such as cloth or foam, and hung from a stand or other support.", + "A punching bag can typically be identified by its cylindrical shape and soft material.", + "A boxing or punching bag is a hollow, cylindrical bag that is filled with soft material such as sand, sawdust, or cloth.", + "The easiest way to identify a punching bag is by its size and shape.", + "A punching bag is a soft, filled bag that is hung from a ceiling or stand.", + "There are a number of ways to identify a punching bag.", + "A punching bag is a pillow-like bag that is filled with sand, rice, or other materials.", + "Punching bags are usually made of leather or synthetic materials and are filled with either sand, rags, or air.", + "A punching bag is cylindrical in shape and is filled with either sand, water, or air.", + "The most common type of punching bag is the cylindrical bag suspended from the ceiling by straps or a chain.", + "Punching bags come in a variety of shapes and sizes, but they all have one thing in common: they are designed to absorb the impact of punches.", + "A punching bag is a bag usually filled with sand, rags, or other materials, that is used for punching duringUTF8*J0NULL**NULL**NULL*1*NULL**NULL**NULL*UTF8*J0.", + "A punching bag is a large, filled bag that is hung from the ceiling or a stand.", + "A punching bag is a long, cylindrical bag that is filled with either sand, water, or air.", + "A punching bag can have many different shapes and sizes, but the most common type is a cylindrical bag that hangs from the ceiling or a stand.", + "A punching bag is a cylindrical bag that is filled with sand, Beans, or water.", + "An UNFILLED punching bag is typically a long, cylindrical shape that tapers at the bottom.", + "It's a large bag, often filled with sand or other material, that is hung from the ceiling or a stand.", + "A punching bag is a bag that is filled with either sand, water, or air that is used for boxing training.", + "A punching bag is an oblong-shaped bag that is filled with sand, sawdust, or other materials.", + "A punching bag is a tall, cylindrical bag that is usually filled with sand, dirt, or other materials.", + "A black punching bag hangs from a metal frame.", + "An image of a punching bag from the internet shows a bag that is hanging from a ceiling or other support.", + "A black punching bag hangs from a metal chain in a dimly lit room.", + "This image is of a black punching bag with a chain hanging from the top.", + "The image from the internet is of a punching bag that is red, white, and blue.", + "The image is of a punching bag that is suspended from the ceiling by a chain.", + "A punching bag is a padded bag that is suspended from the ceiling or a frame.", + "The image is of a punching bag that is hanging from a ceiling.", + "The image is of a black punching bag with a white logo on the front.", + "The image is of a black punching bag with the word \" punching\" in white letters written across it.", + "\"You can't keep me down!\".", + "Punching Bag.", + "This punching bag is perfect for anyone looking to relieve some stress or improve their boxing skills.", + "A punching bag is a great way to let out some aggression.", + "Punching Bag.", + "A punching bag hung from a ceiling, with a boxing glove on a chain next to it.", + "Punching bag, for relieving stress and aggression.", + "Hitting the gym hard today!.", + "This punching bag is perfect for practicing your boxing skills.", + "This punching bag is perfect for practicing your boxing skills." + ], + "purse": [ + "A purse is a small, rectangular bag that has a strap or handles.", + "A purse is typically a small, rectangular bag with a zipper, flap, or snap closure.", + "A purse typically contains a compartment for holding cash, credit cards, and other small items.", + "A purse is a small, flat bag that is used to carry personal items such as money, credit cards, and IDs.", + "A purse is a small bag made of various materials, such as cloth, leather, or metal, that is used to carry personal items such as money, credit cards, and a driver's license.", + "A purse typically contains a zipper for security and is smaller in size than a handbag.", + "A purse typically looks like a small, handheld bag with a flap or zipper closure.", + "A purse typically looks like a small bag with a handle or strap.", + "A purse is a small, often handheld, bag for holding personal items such as a wallet, keys, and phone.", + "A Purse is a small bag that is used to hold things like a phone, money, or keys.", + "A purse can typically be identified by its shape, size, and color.", + "A purse can be identified by its small size and by the fact that it is usually carried by women.", + "There is no definitive answer to this question, as the definition of a purse can vary greatly.", + "A purse has a handle and is used to hold personal items such as a wallet, keys, and phone.", + "One way to identify a purse is by its shape.", + "There are several ways that you can identify a purse.", + "There is no one definitive answer to this question.", + "A purse can be identified by its shape, size, and color.", + "A purse can typically be identified by its shape, size, and design.", + "There is no one definitive answer to this question.", + "A purse typically looks like a small bag that can be carried by hand.", + "A purse typically looks like a small bag with a handle or strap.", + "A typical purse is a rectangular or oval-shaped bag with a strap or handle.", + "In general, a purse is a small bag with a flat bottom and a long strap.", + "A purse is a small bag that is used to carry money, credit cards, and other small items.", + "A purse typically looks like a small, hand-held bag.", + "A purse normally has a strap or handle, and a zipper, magnetic snap, or drawstring closure.", + "A purse is a small, handheld bag typically used by women.", + "A purse is typically a small bag that can be held in the hand or worn over the shoulder.", + "A purse typically looks like a small bag that can be carried by hand.", + "This image is of a black and white purse with a geometric design.", + "an image of a black leather purse with a long strap and a silver buckle.", + "The image is of a medium-sized, light brown leather purse.", + "The image is of a black leather purse with a gold chain strap.", + "This image is of a black and white purse with a gold chain strap.", + "This image is of a black and white purse with a gold chain strap.", + "https://www.", + "This image is of a small, black purse with a gold chain strap.", + "This purse is white with a gold chain strap.", + "A black leather purse with a gold chain strap.", + "This purse is made of buttery soft leather and has a delicate lace overlay.", + " \"I'm going out tonight!\"When you see this party-ready purse, you know it's time to hit the town! No matter where you're going or what you're wearing, this purse will add a touch of fun and style.", + "This brown leather purse is the perfect everyday bag.", + "Designer purse.", + " Silver metal mesh purse with black leather strap.", + " A black and white leather purse with a gold chain strap.", + "This is a purse.", + "A close-up of a black and white polka-dotted purse with a gold chain strap.", + "This purse is from the 2018 Coach collection.", + "A woman's black leather purse with a gold chain strap." + ], + "quill": [ + "A quill is a thin, pointed piece of feather that is used as aWriting utensil.", + "A quill is a type of feather that is found on a bird.", + "A quill pen is a writing instrument that uses a sharpened point at the end of a feather as the writing tip.", + "A quill is a sharpened feather that is used as a writing instrument.", + "A quill is a feather that is used as a pen.", + "A quill is a long, thin piece of feather that is used as a writing instrument.", + "A quill is a hollow tube with a sharp point, usually made from a feather.", + "A quill is a thin, straight, stiff feather that is used as a writing instrument.", + "A quill is a feather that is used as a writing implement.", + "A quill is a feather that has been smooth and sharpened on one end.", + "The easiest way to identify a quill is to look at the end of the feather.", + "You can identify a quill by its distinctive shape.", + "The easiest way to identify a quill is to look at the end of the feather.", + "A quill is typically a sharp, pointed feather that is attached to a bird's wing.", + "A quill is a feather that is attached to a bird's wing.", + "The easiest way to identify a quill is to look at the end of the feather.", + "If you find a feather, you can usually tell if it is a quill if it is larger and stiffer than a down feather.", + "A quill is a long, thin, pointed feather that is found on the wing of a bird.", + "If you find a feather on the ground, it is most likely a quill.", + "If you find a feather, you can identify whether it is a quill by looking at the shaft.", + "A quill is a type of feather that is found on a bird.", + "A quill is a writing instrument that consists of a feather with the point cut off.", + "A quill is a kind of pen made from a feather.", + "A quill is a type of feather that is used for writing.", + "A quill is a long, thin feather that is typically used for writing.", + "A quill is a feather that is used for writing.", + "A quill is a feather that is used as a writing implement.", + "Quills are long, thin, and pointy.", + "A quill looks like a feather with a sharp point at one end.", + "A quill is a feather that is used as a writing implement.", + " and inkAn image from the internet of a quill and ink is a picture of a feather or a pen dipped in black or dark blue ink.", + "This image shows a quill with ink in a bottle.", + " and inkThe image is of a black quill with a silver tip and a small container of black ink.", + "This image from the internet shows a quill with a feather.", + " penThe image is of a brown quill pen with a black ink well.", + "A quill is a feather that is used as a writing implement.", + "A quill is a feather that is used as a writing implement.", + " penThis image is of a quill pen with a metal nib.", + "This image is of a black and white quill.", + " penAn image from the internet of a quill pen shows a pen that is made from a feather.", + "Ink and quill - tools of the trade for many writers throughout history.", + "A feather pen, the type of pen used before the invention of the modern ballpoint pen.", + "A feather quill pen.", + "An old fashioned quill, the kind used for writing long letters by hand.", + "A feather quill pen.", + " A quill penA fancy pen made from a quill feather.", + "A feathery quill, perfect for writing long letters or an epic poem.", + "A pen is mightier than a sword.", + "A pen made from a quill.", + "A feathery quill rests atop a stack of parchment pages." + ], + "quilt": [ + "A quilt typically consists of three layers: the top, the middle (often batting), and the back.", + "A quilt is a multi-layered textile, traditionally composed of three layers of fiber: a woven cloth top, a layer of batting or wadding, and a woven backing, combined using the technique of quilting, the process.", + "A quilt is a layers of fabric sewn together to create a warm blanket.", + "A quilt is a type of blanket that is typically composed of three layers: a top layer offabric, a middle layer of batting or insulation, and a bottom layer of fabric.", + "A quilt is a type of blanket that is composed of two layers of fabric with a layer of batting in between.", + "A quilt is a three-layered fabric blanket with a stitching design.", + "A quilt is a type of blanket that is typically composed of three layers of fabric.", + "A quilt is a type of blanket that is typically composed of three layers: a top fabric layer, a middle layer of batting or wadding, and a bottom fabric layer.", + "A quilt typically consists of three layers: the top, the batting, and the backing.", + "A quilt typically consists of three layers: the top, the middle (the batting), and the bottom.", + "A quilt is a woven blanket that is often used for decoration or as a bedcover.", + "A quilt is a type of blanket that is made of two layers of fabric with a layer of batting in between.", + "A quilt is a soft, flat, oven-sized blanket with two layers of fabric stitched together and held in place by a pattern of stitches.", + "A quilt can often be identified by its pattern.", + "To identify a quilt, look for a label or tag on the quilt that contains the name of the maker, the date the quilt was made, and perhaps the name of the pattern used.", + "The most basic way to identify a quilt is by its three layers: the top, the batting, and the backing.", + "There are several ways to identify a quilt.", + "A quilt is a textile product consisting of two layers of fabric stitched together with a layer of insulating material in between.", + "One way to identify a quilt is by its construction.", + " Patterns - Quilts often have repeating patterns.", + "A quilt is a bed cover with two layers of fabric sewn together and held in place by stitching, which forms a pattern.", + "A quilt is typically a rectangular or square piece of fabric with multiple layers of fabric and a stuffing in the middle.", + "A quilt is a type of blanket that is made by stitching together layers of fabric.", + "A quilt is a type of blanket that is made of two layers of fabric with a layer of batting in between.", + "A quilt looks like a cover for a bed that has different patterns and colors.", + "A quilt typically consists of three layers: the top, the middle (batting), and the bottom.", + "A quilt has a top layer of fabric, a layer of batting in the middle, and a bottom layer of fabric.", + "A quilt is a type of blanket that is made of two layers of fabric with a filling in between.", + "A quilt typically consists of three layers: the quilt top, the batting, and the quilt back.", + "A quilt typically has three layers: the top, the batting, and the backing.", + "The image is of a blue and white quilt with a geometric pattern.", + "This image from the internet is of a colorful quilt with a geometric pattern.", + "The image is of a quilt that has been made using a traditional Pattern called the log cabin.", + "The image is of a patchwork quilt with a variety of colors and patterns.", + "A colorful quilt with a pattern of flowers and leaves.", + "This is an image of a quilt that is made up of many different colors and patterns.", + "This image depicts a traditional patchwork quilt in a variety of colors.", + "This image is of a quilt that has been made using a technique called paper piecing.", + "The image is of a blue, green, and white quilt with a geometric design.", + "This image is of a quilt that is composed of many different colors and patterns.", + "\"Sampler quilt made by my great-grandmother in the 1880s.", + "This homemade quilt was made by my great-grandmother.", + "\"The Log Cabin quilt pattern is one of the most popular and recognizable patterns in American quilting.", + "\"Fidget Quilt\"This quilt was made by Agnes Mary Winifred Moore in England in 1892.", + " This is a homemade quilt that was made by my grandmother.", + " A traditional American quilt, made with a variety of colorful fabrics.", + "This quilt was made by my great-grandmother.", + "This quilt was made by my grandmother.", + "This beautiful quilt was made by my great-grandmother.", + "This beautiful quilt was made by my grandmother." + ], + "race car": [ + "A race car can come in many different shapes and forms, but they are typically sleek and aerodynamic with a powerful engine.", + "A race car looks like a fast car.", + "A race car is a vehicle designed specifically for racing.", + "A rae car is typically small, with a large engine.", + "A race car looks like a car that is built for racing.", + "A race car is typically a smaller car with a sleek design.", + "A race car is a car that is designed for racing.", + "A race car is typically a small, fast car with a powerful engine.", + "A race car typically has a sleek design with a spoiler on the back.", + "A race car is a vehicle that is designed and built specifically for racing.", + "There are many ways to identify a race car.", + "The easiest ways to identify a race car are by its color scheme, large spoiler, and racing slicks (tires).", + "There are a few ways to identify a race car.", + "Generally, race cars are designed to be lightweight and aerodynamic.", + "A race car can be identified by its large spoiler, its racing tires, and its sleek design.", + "There are a few ways to identify a race car.", + "There are many ways to identify a race car.", + "A race car is a vehicle designed for competition on a track or course.", + "When looking at a race car, you can usually identify it by its large spoiler, aggressive stance, and race-specific wheels and tires.", + "There are a few ways to identify a race car.", + "It depends on the kind of race car.", + "A typical race car looks like a modified version of a regular car.", + "There is no definitive answer, but race cars typically feature a sleek, aerodynamic design and are built for speed and agility.", + "A race car looks like a car that is made to go fast.", + "A race car can either look like a regular street car that has been modified for racing, or it can be a purpose-built vehicle designed specifically for racing.", + "A race car looks like a small, lightweight car with a large engine.", + "A racecar generally has a sleek, aerodynamic design with a pointed front end and a large rear spoiler.", + "There is no definitive answer to this question as different race cars can have different designs.", + "A race car typically looks like a smaller, sleeker version of a regular car.", + "A race car is a vehicle designed for racing.", + "A race car is a car that is designed specifically for racing.", + "The image is of a black race car with yellow and green flames on the sides.", + "This image is of a race car driving on a track.", + "The image is of a white race car on a track.", + "The image from the internet is of a blue and white race car with the number 12 on the side.", + "This image is of a black and white checkered race car with the number 58 on the side.", + "The image is of a white and blue race car with the number 12 on the side.", + "This image is of a Porsche 911 GT3 RS race car.", + "This image is of a white and blue race car with large red and yellow flames on the sides.", + "Race cars are typically sleek, aerodynamic vehicles designed for speed.", + "A race car zooms around a track at high speeds.", + "A race car speeding down a track.", + "The car races down the track, its driver expertly maneuvering around the bends.", + "A race car drives down a track.", + "A race car made by the manufacturer McLaren.", + "The car races across the track, leaving behind a trail of smoke.", + "A blue and white race car zooms around a sharp turn on a racetrack.", + "The car races down the track, its engine roaring.", + "A typical race car from the early 1900s.", + "A male driver in a race car zooms down a track." + ], + "racket": [ + "A racket is an oval-shaped frame with a stringed surface that is used to hit a ball in various sports.", + "A racket is a paddle composed of a handle and a round frame with an open hoop across which a string or strings are stretched.", + " A racket is an oval-shaped frame with a string stretched across the open middle.", + "A racket is a small, handheld frame with a cord or strings stretched between the handle and the head.", + "A racket is a tool used for hitting a ball, typically in the sport of tennis.", + "A racket typically consists of a circular frame with a taut string stretched across the inside.", + "A racket looks like a small, paddle-shaped object with a handle.", + "A racket is a handheld frame used to hit a ball or other object.", + "A racket is a thin metal or composite strip with a handle attached to one end and strings extending from the other.", + "A racket is typically an oval-shaped object with a handle that is used to hit a ball.", + "The racket can be identified by its surface area, which is usually much smaller than that of a tennis racket.", + "A racket is a tool that is used to hit a ball.", + "A racket is an illegal enterprise or scheme, usually one that involves making money through dishonest or illegal means.", + "A racket is a tool used for hitting a ball, typically in the sport of tennis.", + "A racket is a tool used to hit a ball.", + "Racket is a term used to describe a wide variety of illegal or unethical business or financial practices.", + "The sound of a tennis racket hitting a tennis ball is unique.", + "The handle of a racket is attached to a flexible shaft of hollow metal, composite, or other material.", + "There are a few ways to identify a racket.", + "There are a few ways to identify a racket.", + "A racket is a handheld device with a round frame and an open strings.", + "A racket is an implement used for hitting balls.", + "A racket, also known as a tennis racket, is a racquet that is used to hit a tennis ball.", + "A racket is a small, handheld device that is used to hit a small, round object.", + "A racket usually looks like a tennis racket, badminton racket, or squash racket.", + "A racket will typically have a round head and a long, thin handle.", + "A racket looks like a tennis racket.", + "A racket is a tool that is used to hit a ball.", + "A racket is a tool that is used to hit a ball.", + "A racket looks like a small hand-held frame with a string or cord stretched across an open space in the frame.", + "This image is of a racket used in the game of badminton.", + "The image is of a tennis racket.", + "The image is of a racket with a yellow handle and a black Us Open logo in the middle.", + "An image from the internet of a racket may show someone playing tennis or badminton, or it may show a racket and balls for these sports.", + " and ballAn image of a racket and ball can be found at the following link:https://www.", + "The image is of a yellow tennis racket with a black grip.", + "The image is of a yellow tennis racket with a red grip.", + "I found an image of a racket on the internet.", + "ball playerIn the image, a racketball player is frozen in mid-air, about to hit the ball.", + "The image is of a tennis racket.", + " \"Lawn tennis racket and balls on a grass court\".", + " A racket and a can of balls.", + "Tennis racket on a tennis court.", + "The racket is unstrung.", + "Racket of a tennis player.", + "\"Tennis racket and ball\".", + "Racket and ball on a tennis court.", + "Tennis racket.", + "This is a racket.", + "A racket with a powerful grip for winning matches." + ], + "radiator": [ + "A radiator is a metal object that is used to heat a room.", + "A radiator is usually a metal grid or series of metal bars that is attached to a wall.", + "A radiator is a device used to transfer heat from one medium to another for the purpose of cooling or heating.", + "A radiator is a unit composed of metal fins that transfer heat from hot water passing through them to the air flowing around the unit.", + "Radiators are usually long, metal boxes that are attached to the wall.", + "A radiator is a device used to transfer heat from one medium to another for the purpose of cooling and/or heating.", + "A radiator is typically a metal grate with vertical bars.", + "A radiator is a metal object that is used to heat up a room.", + "A radiator is a device used to heat a room or space.", + "A radiator is a power unit that uses radiant heat to transfer heat from one place to another.", + "Radiators are usually located at the bottom of a car, behind the front grille.", + "A radiator is a type of heat exchanger.", + "A radiator is often a metal grate that is connected to a series of metal pipes.", + "A radiator is generally a large, metal object that is attached to a wall.", + "A radiator is a device used to transfer heat from a hot fluid to a cold fluid.", + "One way to identify a radiator is by its series of vertical fins that are used to increase the surface area for heat exchange.", + "A radiator is often made of metal and has vertical or horizontal tubes running through it.", + "A radiator is usually a large, metal object that is attached to a wall.", + "Radiators are commonly made of metal and have many small metal fins that help to increase the surface area that the hot coolant can come into contact with.", + "A radiator is a device used to transfer heat from one object to another or to dissipate heat.", + "A radiator is a large, metal appliance that emits heat.", + "A radiator is a device that transfers heat from a hotter area to a cooler area.", + "A radiator is a set of metal fins, pipes, or tubes that transfer heat from one area to another.", + "A radiator looks like a grasshopper.", + "A radiator is a large, metal, U-shaped object that is attached to the wall.", + "A radiator looks like a large, metal grid.", + "A radiator is typically a metal grille that is mounted on the wall near the floor.", + "A radiator is a metal object that is attached to a wall.", + "A radiator is a long, metal object with a series of small metal fins on one side.", + "A radiator is usually a metal grille that is mounted on the wall near the floor.", + "The radiator in the image is a silver color with a series of black horizontal lines running across it.", + "A radiator is an electrical device that emits heat.", + "A radiator is a type of heat exchanger.", + "A radiator is a component of a heating system that heats up a fluid, typically water or coolant, and circulates it through a network of pipes to heat a home or office.", + "A radiator is a device used to transfer heat from one place to another.", + "A radiator is a metal object that is used to heat up a room.", + "The image is of a blue radiator with a white background.", + "This image is of a blue radiator.", + "This image is of a radiator.", + "The image is of a white radiator with vertical fins.", + "A radiator providing warmth on a cold day.", + "A radiator providing warmth on a cold winter day.", + "A close-up of a white radiator with a green plant on top.", + "Radiator.", + "Heating up your home with a radiator.", + "A radiator is a type of convection heater that uses hot water to heat a room.", + "Heating element in a radiator.", + "A radiator is a device used to transfer heat from one area to another.", + "A blue radiator in a room.", + "Radiator." + ], + "radio": [ + "A radio is a small, portable device that uses radio waves to receive and play audio signals.", + "A radio is a small, rectangular box with a speaker on the front, buttons on the top, and a place to plug in headphones on the side.", + "A radio typically has a tuner to select the radio station and an audio output.", + "A radio is a machine with dials and buttons that you use to listen to music, news, or other programs on the radio.", + "A radio is a small, portable device that has a speaker and can play music or other audio from the radio waves that it picks up.", + "A radio is a small, portable device that is used to listen to music, talk shows, or other audio broadcasts.", + "A radio is a machine that sends and receives messages through the air.", + "A radio is a machine that you can use to listen to sound from a far away place.", + "A radio is a device that uses wireless technology to receive and play audio signals.", + "Most radios are small, handheld devices with a speaker on one side and a microphone on the other.", + "If you tune in to a station and hear music or talk, it's a radio.", + "A radio can be identified by its frequency.", + "A radio is a machine that uses electromagnetic waves to create sound.", + "A radio is a type of communication device that uses electromagnetic waves to transmit and receive audio signals.", + "A radio is a communication device that uses radio waves to transmit and receive linear and digital data.", + "A radio is an electronic device that receives and amplifies electromagnetic waves.", + "Radio is a form of communication that uses electromagnetic waves to send and receive signals.", + "A radio can be identified by its function, which is to receive and broadcast radio waves.", + "A radio is a device that uses electromagnetic waves to communicate.", + "The most common way to identify a radio is by looking at the front faceplate for the station name or logo.", + "Radio can come in many different forms.", + "A radio is a small, portable device that is used to listen to music, news, or other programming.", + "A radio typically has a large speaker on the front, controls on the top, and an antenna on the back.", + "Radio waves are invisible, so a radio doesn't have a physical appearance.", + "A radio is typically a small, portable device with a speaker.", + "A radio is a typically rectangular device with a speaker on one side and a series of buttons or dials on the other.", + "A radio is typically a rectangular box with a speaker on one end, controls in the middle, and an antenna on the other end.", + "A radio typically looks like a small, rectangular box with a speaker on one side and a series of buttons or dials on the other.", + "A radio looks like a small box with a speaker on the front.", + "A radio typically has a speaker in the front, tuning knobs on the top, and buttons or a dial on the front for controlling power, volume, and station selection.", + "A radio is typically a small, portable device that is used to listen to music, news, or other programming.", + "The image is of a small, rectangular radio with a digital display.", + "The image shows a black radio with a silver grille.", + "This image shows a black radio with a silver faceplate.", + "A radio is a machine that converts sound waves into electrical waves and amplifies them.", + "The image is of a radio against a white background.", + "activityIn the image, there is a large, yellow-orange sun with wavy, red lines emanating from it.", + "In the image, a radio is sitting on a wood surface with its side facing the camera.", + "This image is of an old fashioned radio.", + "An image from the internet of a radio can look like a traditional, old-fashioned radio or a more modern, sleek radio.", + "A old fashioned radio on a wooden table.", + "This is an image of a radio waves.", + "The radios in the collage are all different, but they all have one thing in common: they are all old.", + "A radio sits on a table.", + "A vintage radio on a table next to a plant.", + "A radio is a common type of electronic device that emits and receives radio waves.", + "A radio is a type of electronics that allows the user to listen to AM or FM radio stations.", + "This is a vintage radio that still works!.", + "A radio is a device that uses electromagnetic waves to receive or transmit audio signals.", + "A 1920s era radio." + ], + "radio telescope": [ + "A radio telescope is a dish-shaped antenna that is used to collect radio waves from space.", + "A radio telescope is a large dish antenna that is used to collect radio waves from space.", + "Radio telescopes come in a variety of shapes and sizes, but they all have one key component in common: a large dish that collects and focuses radio waves from space.", + "A typical radio telescope consists of a parabolic reflector, fed by an antenna, in order to collect and focus radio waves from astronomical objects to a receiver.", + "A radio telescope is a large dish antenna that is used to collect radio waves from space.", + "A radio telescope is usually a large dish antenna.", + "A radio telescope consists of a dish-shaped antenna that collects radio signals from space and a receiver that converts the signals into images.", + "A radio telescope is a large dish antenna that is used to collect radio waves from space.", + "A radio telescope consists of a dish-shaped antenna and a receiver, which is usually located in a sheltered, temperature-controlled room inside the dish.", + "A radio telescope is a large dish antenna that is used to collect radio signals from space.", + "A radio telescope is a large dish antenna used to collect radio waves from space.", + "A radio telescope is a large dish antenna used to collect radio waves from space.", + "A radio telescope can be identified by its large parabolic dish, which is used to collect and focus radio waves from space.", + "A radio telescope can be identified by its large parabolic dish.", + "A radio telescope is a dish-shaped antenna that is used to collect radio waves from space.", + "These are large dish-shaped antennas that are used to collect signals from space.", + "The most common type of radio telescope is the dish antenna.", + "A radio telescope is a large dish antenna that collects and focuses radio waves from space.", + "A radio telescope looks like a large dish antenna on a mount.", + "A radio telescope can be identified by its large dish, which is usually parabolic in shape.", + "Radio telescopes come in a variety of shapes and sizes, but they all have one thing in common: they are designed to collect radio waves from space.", + "A radio telescope usually looks like a large dish antenna.", + "Radio telescopes look like large dish antennas.", + "Most radio telescopes look like a large dish antenna.", + "Radio telescopes are usually large dish-shaped antennas.", + "A radio telescope is a dish-shaped antenna that is used to collect radio waves from space.", + "A radio telescope is a large dish antenna that is used to collect radio waves from space.", + "Radio telescopesmit the same basic design as optical telescopes.", + "Radio telescopes come in all shapes and sizes, from small portable devices to massive dishes hundreds of meters across.", + "A radio telescope is a telescope that captures radio waves from space.", + "A radio telescope is a large, dish-shaped antenna that is used to collect radio waves from space.", + "A giant dish antennae surrounded by a metal framework, with a small building nearby.", + "A radio telescope is a large dish antenna used to collect radio waves from space.", + "A giant white dish radio telescope pointing up at a clear blue sky.", + "A radio telescope is a tool used by astronomers to study space.", + "I cannot answer this question.", + "An image of a radio telescope from the internet shows a large dish antenna mounted on a tower.", + "A radio telescope is a large dish antenna used to collect radio waves from astronomical sources in space.", + "A radio telescope is a large dish-shaped antenna that is used to collect radio waves from space.", + "In the image, a large white dish is pointed upward with a small building in the foreground.", + "The Robert C.", + "The Giant Metrewave Radio Telescope (GMRT) is a collection of thirty radio dishes built in India.", + "This is a radio telescope.", + "The world's largest single-dish radio telescope, the Five hundred meter Aperture Spherical Telescope (FAST), in Pingtang County, Guizhou Province, southwest China.", + "INSTRUMENT USED TO STUDY THE UNIVERSE.", + "A view of the Arecibo Observatory radio telescope in Puerto Rico.", + " The world's largest radio telescope, the Five hundred meter Aperture Spherical Telescope (FAST) in Pingtang county, Guizhou province, southwest China.", + "Lovell radio telescope at Jodrell Bank Observatory in England.", + "Radio Telescope.", + "A radio telescope is a telescope that is used to collect radio waves from astronomical objects." + ], + "rain barrel": [ + "A rain barrel is a container that is used to collect and store rainwater that has been collected from the roof of a building.", + "A rain barrel is a barrel that is used to collect and store rain water.", + ".", + "A rain barrel is a large drum that is placed underneath a gutter's downspout to catch rainwater.", + "A rain barrel is a type of container that is used to collect and store rainwater.", + "A rain barrel is a cylinder-shaped container that collects rainwater from a downspout.", + "Most rain barrels are 55 gallons, cylindrical, and sit on the ground.", + "A rain barrel is usually a large barrel ( often 55 gallons) that is placed near a rain gutter to collect rain water.", + "A rain barrel is a large container that is used to collect and store rainwater.", + "A rain barrel is a large container that is used to collect and store rainwater.", + "A rain barrel is a container used to collect and store rainwater.", + "Rain barrels are typically blue or green, and are stored beneath a downspout to collect rainwater from a roof.", + "Most rain barrels will have some sort of spigot or tap near the bottom of the barrel so that you can easily access the water.", + "A rain barrel is often made of recycled plastic and has a spigot near the bottom.", + "A rain barrel is typically a tall, cylindrical container that is placed underneath a downspout to collect rainwater from a roof.", + "The most common type of rain barrel has a cylindrical shape and is made of plastic.", + "A rain barrel is a tank that is used to collect and store rainwater.", + "A rain barrel typically has a cylindrical shape and is made of a material that can hold water, such as plastic or metal.", + "A rain barrel is defined as a \"container used to collect and store rainwater runoff from a building's roof.", + "The most common type of rain barrel is a food-grade plastic barrel that is 55 gallons in size.", + "A rain barrel is a container that is used to collect and store rainwater.", + "A rain barrel is a large plastic container, often blue or green, that collects rain water from a building's roof.", + "A rain barrel is a container that is used to collect and store rainwater.", + "A rain barrel is a large container, typically 55 gallons or more, that is used to collect and store rainwater.", + "It is a cylindrical container with a flat bottom and a spigot near the bottom.", + "A rain barrel typically has a cylindrical shape and is made of a dark-colored material, such as black plastic, to absorb heat from the sun.", + "A rain barrel is a large container that is used to collect rainwater.", + "A rain barrel typically looks like a large drum or tub that is placed under a downspout to collect rainwater.", + "A rain barrel is generally a plastic drum or wooden barrel that has been retrofitted with a spigot, inlet, and overflow.", + "A rain barrel is usually a cylindrical tank that is placed under a downspout to collect rainwater from a roof.", + "The image is of a large blue rain barrel with a spigot coming out of the bottom.", + "A rain barrel is a barrel used to collect and store rainwater.", + "The image is of a blue plastic rain barrel that is cylindrical in shape with a flat top.", + "My image shows a metal rain barrel with a spigot near the bottom.", + "The image is of a blue rain barrel with a spigot coming out of the front.", + "A rain barrel is a large container that collects rainwater from a roof and stores it for later use.", + "A rain barrel is a container used to store rainwater.", + "I found an image on the internet of a rain barrel that is made out of an old wine barrel.", + "An image of a rain barrel on the internet would most likely be a photograph of a blue or green barrel with a spout coming out of the bottom.", + "The image is of a blue rain barrel with a spigot coming out of the bottom.", + "A rain barrel collects water from a downspout and is used to water plants.", + "A blue rain barrel with a spigot on the front, surrounded by green foliage.", + "A rain barrel is a container that collects and stores rainwater from your roof.", + "Preparing for the next big storm by filling up the rain barrel!.", + "A blue rain barrel with a spigot on the front, sitting atop a metal frame.", + "A rain barrel collects water from a downspout and is used to water gardens or lawns.", + "A blue rain barrel with a spigot and a downspout diverter attached, filling up with rainwater.", + "A rain barrel collects water from a downspout to provide a readily available source of water for watering your garden or washing your car.", + "A rain barrel being used to collect rainwater.", + "A rain barrel collects water from a downspout and can be used to water your garden or wash your car." + ], + "recreational vehicle": [ + "Recreational vehicles (RVs) come in all shapes and sizes, but they are generally large vehicles with plenty of space for sleeping, cooking, and storage.", + "A recreational vehicle generally looks like a large van or bus.", + "A recreational vehicle (RV) is a vehicle used for pleasure trips, camping, or other recreational activities.", + "A recreational vehicle is a long, narrow vehicle that is designed for people to live in while they are traveling.", + "A recreational vehicle typically includes a kitchen, a bathroom, and one or more sleeping areas.", + "A recreational vehicle, or RV, is a vehicle that includes living quarters, typically with a kitchen, a bathroom, and a living area.", + "An RV is a vehicle that includes living quarters, typically with a kitchen, a bathroom, and a sitting area.", + "A recreational vehicle (RV) is a vehicle used for recreational purposes, such as camping, travel, or sporting events.", + "A recreational vehicle (RV) is a vehicle that includes living quarters designed for overnight accommodation.", + "A recreational vehicle is a large vehicle that includes a kitchen, a bathroom, and a sleeping area.", + "The term recreational vehicle (RV) is most commonly used in North America to refer to a motor vehicle or trailer equipped with living space and amenities found in a home.", + "Recreational vehicles are typically designed for camping or road trips and include features like a kitchen and a bedroom.", + "You can identify a recreational vehicle by looking for the following features: a large vehicle that is designed for camping or travel, usually has room for sleeping, cooking, and storing belongings, and is equipped with hookups for water, sewer, and.", + "There is no definitive answer to this question, as there are many different types and styles of recreational vehicles.", + "There are many ways to identify a recreational vehicle.", + "Most recreational vehicles are large vehicles that are designed for camping or road trips.", + "The easiest way to identify a recreational vehicle, or RV, is by its size.", + "Recreational vehicles (RVs) come in a variety of shapes and sizes, but all RVs have certain features in common.", + "A recreational vehicle is a vehicle that is designed for recreation or leisure activities.", + "Recreational vehicles include a variety of types of vehicles, including travel trailers, fifth-wheel trailers, motor homes, and pop-up trailers.", + "There is no one definitive answer to this question, as recreational vehicles come in a wide variety of shapes, sizes, and styles.", + "There is no one answer to this question, as recreational vehicles come in a wide variety of shapes and sizes.", + "Recreational vehicles (RVs) come in many different shapes and sizes, but they all have one common goal: to provide their owners with a comfortable home away from home.", + "A recreational vehicle is a large, truck-like vehicle that has a sleeping area, kitchen, and bathroom.", + "A recreational vehicle (RV) is a vehicle used for leisure activities, such as camping, caravanning, or road trips.", + "There are many different types of recreational vehicles, but they typically include features like a kitchen, a bathroom, and a sleeping area.", + "A recreational vehicle typically looks like a large van or small bus.", + "A recreational vehicle (RV) is a vehicle that includes living quarters, designed for leisure travel or camping.", + "Recreational vehicles can come in a variety of shapes and sizes, but they are typically large vehicles with plenty of space for sleeping, cooking, and storage.", + "A recreational vehicle is a type of vehicle that includes features meant for camping or road trips, such as a kitchen, sleeping area, and storage space.", + "The image is of a large, motorized recreational vehicle with a wide, boxy body and a cabin on top.", + "I found an image of a large recreational vehicle that has a lot of different compartments and areas.", + "The image shows a recreational vehicle parked in a campsite.", + "The image is of a large recreational vehicle with a wide open door.", + "A recreational vehicle, or RV, is a vehicle used for vacationing or camping.", + "A recreational vehicle, or RV, is a vehicle that is used for pleasure, camping, or travel.", + "The image is of a large, white recreational vehicle parked in a driveway.", + "This image from the internet shows a recreational vehicle parked in front of a beautiful mountain landscape.", + "I found an image of a recreational vehicle on the internet that looks like a small house on wheels.", + "the image is of a large, white recreational vehicle.", + " This recreational vehicle is parked at a campsite.", + "A recreational vehicle, or RV, is a vehicle used for leisure, camping or travel.", + "RV camping is a great way to see the country and spend time with family and friends.", + "A group of friends enjoying a road trip in their RV.", + "A family enjoys a fun vacation in their new recreational vehicle.", + "The caption for this image might read something like, \"This RV is perfect for a family vacation.", + "Family enjoying a road trip in their RV.", + " A couple enjoys their time traveling in their RV.", + "RV Park.", + "This recreational vehicle is perfect for camping and travel." + ], + "fishing casting reel": [ + "A fishing casting reel is a spool-and-line device used for fishing.", + "A fishing casting reel is a cylindrical device that is mounted on a fishing rod.", + "A fishing casting reel typically has a spool that is mounted above the rod.", + "Fishing casting reels are horizontal reels that are mounted on the top of a fishing rod.", + "A fishing casting reel is a reel that attaches to the fishing rod and is used to wind in the line.", + "A fishing casting reel is a type of reel that is used to cast a line out into the water.", + " and how it is usedA fishing casting reel is a type of fishing reel that is used to cast bait or lure into the water.", + "A fishing casting reel typically has a cylindrical body with a handle on one side and a spool on the other.", + "A fishing casting reel is primarily cylindrical in shape and has a handle on one side.", + "A fishing casting reel generally has a spool of fishing line attached to a handle, and a bail that helps to release the line during casting.", + "Fishing casting reels are usually larger reels that are mounted on top of the rod.", + "The most common way to identify a fishing casting reel is by the handle.", + "Casting reels are typically larger and heavier than baitcasting reels, and they have a handle on the left side of the reel.", + "The spool on a fishing casting reel is positioned on top of the reel.", + "A fishing casting reel can be identified by its large spool and reel handle, which are located on the top of the reel.", + "Fishing casting reels have a handle on one side and a spool on the other side.", + "There are a few ways to identify a fishing casting reel:\n-The reel will have a handle that is used to wind the line in\n-The reel will be attached to the rod near the base\n-The reel will have a.", + "By the handle.", + "Fishing casting reels generally have a large star-shaped drag knob on the back of the reel, and the spool is loaded with line by hand.", + "There are several ways to identify a fishing casting reel.", + "Fishing casting reels look like a cylindrical spool with a handle on one side.", + "A casting reel typically has a cylindrical body with a handle on one end and a spool on the other.", + "A fishing casting reel looks like a rotating spool attached to a handle.", + "A fishing casting reel typically has a spool that is attached to a handle, and a line is wound around the spool.", + "A fishing casting reel typically has a handle on one side and a spool on the other side.", + "A fishing casting reel typically looks like a small cylinder with a handle on one side.", + "Fishing casting reels have a handle on one side and a spool on the other side.", + "A casting reel is a type of fishing reel that is used to cast bait or lures into the water.", + "A fishing casting reel is a cylindrical device that is attached to a fishing rod.", + "A fishing casting reel typically has a cylindrical shape and is attached to the fishing rod.", + "The image is of a spinning fishing reel.", + "The image is of a silver fishing casting reel with a black handle.", + "This image shows a fishing casting reel with a green and brown body and a black handle.", + "The dry fish casting reel is designed with a sealed drag system to keep dirt and debris out, so your fish never see you coming.", + "The image is of a fishing casting reel.", + "The image is of a fishing casting reel that is silver and black in color.", + "The image shows a fishing casting reel on a green background.", + "The image is of a silver casting reel with a black handle.", + "The image is of a reel with a slender body and a large handle.", + "A fishing casting reel is a cylindrical device that is attached to a fishing rod and used to store, retrieve and cast fishing line.", + "Fly fishing reel.", + " A fishing casting reel about to be used in water.", + " A close up image of a fishing casting reel with line coming off the spool.", + "This fishing casting reel is a great way to enjoy your time fishing.", + "Fishing reel with line and lureA close-up of a fishing casting reel, showing the line and lure attached.", + "The caption reads, \"A fishing casting reel used to reel in a fish.", + "Fishing Casting Reel.", + " Casting reel with line.", + "Fishing casting reel with line.", + "Fishing reel with line and lureThe caption for this image might say something like, \"A fishing reel with line and lure, ready for a day of angling." + ], + "reflex camera": [ + "A reflex camera is a camera that uses a mirror to reflect the image from the lens back to the viewfinder.", + "A reflex camera is a type of camera that uses a mirror to direct light from the lens to the viewfinder.", + "See image.", + "A reflex camera typically has a pentaprism viewfinder.", + "A reflex camera is a type of camera that uses a mirror to reflect light from the scene into the camera's lens.", + "A reflex camera is a camera that uses a system of mirrors to direct light from the lens to the viewfinder.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens onto a ground glass or a digital sensor at the back of the camera.", + "A reflex camera has a large rectangular body with a lens attached to the front.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens into a viewfinder so that the user can see what they are taking a picture of.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens directly into the photographer's eye.", + "A reflex camera is a type of camera that uses a mirror to reflect the image that will be captured onto the film or image sensor.", + "The easiest way to identify a reflex camera is to look for the mirror inside the camera.", + "While there are many ways to identify a reflex camera, one of the most distinguishing characteristics is that reflex cameras have a mirror that reflects the image from the lens directly into the viewfinder.", + "The reflex camera is a type of camera that uses a reflecting mirror to project an image onto a ground glass or plastic micro-prism screen.", + "A reflex camera is a camera that uses a mirror to direct light from the lens to the viewfinder.", + "A reflex camera is generally larger than a point-and-shoot camera and has a removable lens.", + "Reflex cameras have a mirror behind the lens that reflects light up into a pentaprism and then to the photographer's eye.", + "A reflex camera is a type of camera that uses a mirror to reflect the light coming through the lens into the viewfinder.", + "The shutter release button on a reflex camera is usually located on the top of the camera, near the right hand grip.", + "A reflex camera typically has a pentaprism viewfinder on the top of the camera body.", + "A reflex camera is a type of camera that uses a mirror system to direct light from the lens to the viewfinder.", + "A reflex camera looks like a traditional camera.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens onto a ground glass or fresnel screen at the back of the camera.", + "A reflex camera typically has a pentaprism viewfinder on the top of the camera body, and a mirror mechanism inside the body that reflects the image from the lens up into the viewfinder.", + "Reflex cameras have a large lens mounted on a mechanical linkage to a mirror that deflects the image from the lens into a viewfinder eyepiece.", + "A reflex camera is a type of camera that uses a mirror to reflect the image that will be captured onto the film or image sensor.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens into the viewfinder.", + "A reflex camera is a type of camera that uses a mirror to reflect the image that will be captured by the camera onto a focusing screen.", + "A reflex camera, or single-lens reflex (SLR) camera, is a type of camera that uses a mirror and prism system (usually in the pentaprism format) to direct light from the lens to an eye-.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens into the viewfinder.", + "The image is of a camera with a large lens and a small body.", + "Reflex cameras typically have a large lens mounted on a DSLR body, allowing the photographer to see exactly what the camera will capture before taking the photo.", + "A reflex camera is a camera that uses a mirror to reflect the image from the lens onto a viewfinder.", + "This image is of a black reflex camera on a green background.", + "A reflex camera has a mirror that reflects the image from the lens into a viewfinder.", + "In the image, a reflex camera is shown with its lens extended.", + "The image is of a Reflex camera on a tripod.", + "A reflex camera is a camera that uses a mirror to reflect light onto a sensor.", + "In the image, a reflex camera is shown sitting on a tripod with its lens pointed towards a subject.", + "The image is of a brown reflex camera with a silver and black lens.", + "\"The reflex camera is the most popular type of camera for most photographers.", + " This type of camera uses a mirror behind the lens to reflect incoming light towards the eyepiece, making it possible for the photographer to view the scene through the lens while composing the shot.", + "A reflex camera is a type of camera that uses a mirror to reflect light from the lens into the viewfinder.", + "A reflex camera is a camera that uses a mirror to reflect the image from the lens onto the film or sensor.", + "This is a reflex camera.", + " A reflex camera is a type of camera that uses a mirror to reflect the light from the lens into the viewfinder.", + "\"Canon EOS Rebel T6 DSLR Camera with EF-S 18-55mm f/3.", + "Reflex Camera.", + "This is a reflex camera.", + "A reflex camera is a camera that uses a mirror to reflect light from the lens onto a ground glass viewfinder." + ], + "refrigerator": [ + "A refrigerator is a white appliance that is typically between four and six feet tall.", + "A typical refrigerator is a boxy appliance with a door that swings open to reveal shelves, drawers, and a freezer compartment.", + "It is a white appliance with a door that opens to reveal shelves for storing food.", + "A refrigerator is a large, metal box that has a door on the front.", + "Inside a typical refrigerator, there are shelves, drawers, and bins.", + "A refrigerator is a white appliance that is typically about two feet wide and four feet tall.", + "A refrigerator is a small, box-shaped appliance with a door.", + "A refrigerator is a white box that is usually about two feet wide, four feet tall, and two feet deep.", + "A refrigerator typically has a metal exterior and a glass door.", + "A refrigerator typically consists of a metal box with a door, shelves, and a vegetable drawer.", + "A refrigerator has a door that seals to keep the cold air in.", + "A refrigerator is a household appliance that is typically white and has a freezer compartment on the top or bottom.", + "You can identify a refrigerator by its doors.", + "A refrigerator is a household appliance that is typically used to store food.", + "A refrigerator can be identified by its rectangular shape, its enclosed design, and its coils on the back.", + "The easiest way to identify a refrigerator is by looking for the freezer compartment.", + "A refrigerator is a white or stainless steel appliance with a door.", + "The fridge is the best appliance for storing food at a safe temperature, below 40\u00b0F.", + "A appliance that is used to store food and drinks at a cool temperature so that they do not spoil.", + "A refrigerator can be identified by its rectangular shape, its chest-like design, and its freezer compartment.", + "A refrigerator typically looks like a large, metal box with a door.", + "A refrigerator is a large, rectangular appliance that is typically white or stainless steel on the outside.", + "A refrigerator typically looks like a metal box with a door.", + "A refrigerator is a metal box with a door.", + "A typical refrigerator is a large, rectangular box with a front-opening door.", + "A refrigerator typically looks like a box with a door.", + "A refrigerator is a white box that is usually about two feet wide, four feet tall, and two feet deep.", + "A refrigerator usually looks like a big, white box with a door in the front.", + "A refrigerator looks like a cupboard with a door.", + "A refrigerator typically looks like a metal box with a door.", + "The image is of a white refrigerator with a stainless steel door.", + "The image is of a white refrigerator with a stainless steel door.", + "A refrigerator with the door open and the light on, revealing shelves of food and drinks inside.", + "The image is of a white refrigerator with a stainless steel door.", + "A fridge with a stainless steel door and a water and ice dispenser.", + "The image is of a stainless steel refrigerator with a water and ice dispenser on the door.", + "This image is of a refrigerator that is made to look like a vintage suitcase.", + "The image is of a white refrigerator with a glass door.", + "The image is of a white refrigerator with a clear door.", + "Image shows a large, stainless steel refrigerator with two doors and a water and ice dispenser on the front.", + "A refrigerator with an open door, revealing its contents.", + "This is a picture of a refrigerator.", + "A refrigerator with the doors open.", + "FRESH FOODS FOR THE WEEKA caption of an image of a cat:I like to sleep on top of the fridge so I can be close to the food.", + "This is my refrigerator.", + "This is a refrigerator.", + "Refrigerator.", + "Refrigerator with shelves and compartments.", + "A refrigerator is a household appliance that is typically used to store food and drinks.", + "A fridge filled with food and drinks." + ], + "remote control": [ + "A remote control is a small, hand-held electronic device that is used to operate a television, DVD player, or other home entertainment system from a distance.", + "A remote control typically has a number of buttons on it that can be used to control a variety of functions on a device, such as a television or DVD player.", + "A remote control is a small handheld device that is used to control a variety of electronic devices.", + "Remote controls come in a variety of shapes and sizes, but they all have buttons that can be used to control a variety of devices.", + "A remote control typically has a few buttons and a joystick.", + "Most remote controls are small hand-held objects with an array of buttons for controlling various functions of the device they are attuned to.", + "A remote control is typically a small handheld device with buttons that can be used to operate a machine remotely.", + "A remote control typically has a number of buttons on it.", + "A remote control is a device that is used to operate a machine from a distance.", + "A remote control is a small handheld device that is used to operate a television, DVD player, or other electronic device from a distance.", + " Remote controls can vary greatly in size and function, but most of them have a few key features that you can use to identify them.", + "There are a few ways to identify a remote control.", + "A remote control can be identified by its function.", + "Remote controls can be identified by their function.", + "There is no universal way to identify a remote control.", + "Look for the battery cover.", + "The remote control can be identified by a small IR light that is on the front of the remote.", + "A remote control can often be identified by its batteries.", + "There are several ways to identify a remote control.", + "A remote control can be identified by its buttons.", + "A remote control is a small, handheld device that is used to operate a TV, DVD player, or other electronic device from a distance.", + "A remote control is a small, handheld device that is used to operate a television, DVD player, or other electronic device from a distance.", + "A remote control is a small, handheld device that is used to operate a piece of electronic equipment from a distance.", + "a) a black rectangle with rounded cornersb) a white rectangle with rounded cornersc) a black rectangle with sharp cornersd) a white rectangle with sharp corners.", + "A remote control typically has a number of buttons for controlling various functions of the device it is paired with.", + "A remote control has many different shapes and sizes, but most have a few basic components.", + "A remote control can take many different shapes and forms, but most commonly it is a small hand-held device that has buttons on it for controlling a TV, DVD player, or other type of electronics.", + "A remote control typically has a number of buttons on it.", + "A remote control is a small, handheld device that has buttons on it.", + "A remote control is a small handheld device that is used to operate a TV, DVD player, or other electronic device from a distance.", + "A remote control for a television is typically a small, rectangular device with a few buttons on it.", + "A remote control for a television or other device typically has a number of buttons for selecting options, turning the device on or off, and changing the volume.", + " carIn the image, there is a remote control car that is being held by a person.", + "A remote control for a television or other electronic device typically has a number of buttons for controlling the power, volume, channels, playback, and other settings.", + "The image shows a remote control on a white background.", + " The image is of a small, channel-changer style remote control.", + "The image is of a black remote control with a red button in the center.", + "The image is of a remote control for a TV.", + "The image is of a black remote control with a wide, rectangular body.", + "An image from the internet of a remote control may show a small, handheld device with numerous buttons of various shapes and sizes.", + "A remote control for a TV or other electronic device.", + "The TV remote control is an essential part of any home entertainment system.", + "This is a remote control for a TV.", + "A remote control for a TV or other device.", + "A remote control for a TV or other device.", + "A black remote control with buttons for controlling a TV or other electronic device.", + "A remote control for a TV or other device.", + "A remote control for a TV or other electronic device.", + "A remote control for a television or other electronic device.", + "A remote control for a TV." + ], + "restaurant": [ + "A small restaurant has a few tables with chairs around them.", + "A restaurant is a place where people can go to eat food.", + "A restaurant looks like a place where you can buy food.", + "A restaurant looks like a place where people go to eat.", + "A restaurant is a place where people can go to eat food.", + "A restaurant is typically a building or space where people can go to eat food.", + "Most restaurants have a front-of-house area where the host or hostess greets guests, and a back-of-house area where cooks and other restaurant staff prepare food and drinks.", + "A restaurant looks like a place to eat.", + "There is no definitive answer to this question as restaurants can come in a wide variety of shapes and sizes.", + "While the appearance of a restaurant can differ greatly depending on its location, theme, and type of food served, most restaurants generally have similar features.", + "A restaurant is usually a public place where people can go to eat food.", + "A restaurant is typically an establishment that serves food and drink to customers in exchange for money.", + "One way to identify a restaurant is by looking for a sign that says \"restaurant.", + "There are several ways to identify a restaurant.", + "The best way to identify a restaurant is to look for the signs that say \"restaurant\" or \"cafe.", + "There are a few ways to identify a restaurant.", + "Some ways you could identify a restaurant are by looking for a building with a kitchen, waiters, and tables with chairs.", + "By looking at the exterior of the building and reading the sign.", + "Different ways to identify a restaurant is by its location, by the type of food it serves, and by its appearance.", + "Archemy Culture is a restaurant.", + "A restaurant usually has a dining area, a kitchen, and a bathroom.", + "There is no one answer to this question as restaurants can come in many different shapes and sizes.", + "There is no one answer to this question, as restaurants can come in many different shapes and sizes.", + "Most restaurants have a variety of tables and chairs for customers to sit in.", + "A restaurant looks like a place where people can buy and eat food.", + "A restaurant looks like a place to eat food.", + "A restaurant is typically a small business that serves prepared food and beverages to customers in exchange for money.", + "There is no one answer to this question as restaurants can come in many different shapes and sizes.", + "The answer to this question can vary greatly depending on the type of restaurant.", + "A restaurant may have a variety of different looks, depending on the type of restaurant it is.", + "The image is of a restaurant called \"The Fat Duck\" and it is located in England.", + "The image is of a small, family-run restaurant.", + "In the image, there is a large, white rectangular building with a blue and orange sign that reads \"Joe's Crab Shack.", + "The image is of a restaurant called \"The Table.", + "The image is of a restaurant called \"The Works Gourmet Burger Bistro\".", + "The image is of a restaurant called \"The Fat Duck\".", + "The image shows the exterior of a restaurant called Le Relais de L'Entrecote.", + "The image is of a restaurant called \"The Brewer's Table.", + "The image is of a small, traditional Italian restaurant.", + "The image is of a modern looking restaurant with white walls and wood floors.", + "This restaurant is called \"The Olive Garden\".", + "The Red Caf\u00e9 is a cozy little restaurant in the heart of downtown.", + " A buffet of international cuisine at the Grand Hyatt HotelThis image is of a buffet of international cuisine at the Grand Hyatt Hotel.", + "The restaurant's dining room is brightly lit with large windows.", + "Restaurant in downtown area with outdoor seating.", + "The exterior of a restaurant called \"The Red Herring\" in New Orleans, Louisiana.", + " A couple enjoys a meal at a restaurantA couple enjoys a meal at a restaurant.", + " A cozy little restaurant with a bright red doorIf you're looking for a cozy little restaurant with a bright red door, look no further! This charming spot is perfect for a date night or a casual night out with friends.", + "Source: Google ImagesThe caption reads: \"A wonderful place to enjoy a meal with family and friends.", + "The exterior of In-N-Out, a popular fast food chain in the Western United States." + ], + "revolver": [ + "Most revolvers have a cylindrical shape with a handle on one side and the barrel pointing out the other.", + "A revolver typically has a cylindrical chamber that rotates to align with a barrel, holding six or seven bullets.", + "A revolver is a cylinder that contains the ammunition and revolves around a central axis.", + "A revolver is usually a handgun with a cylindrical chamber that revolves around a central axis.", + "A revolver is a hand-held firearm, usually with a cylinder that revolves around a central axis, and has a handle and trigger.", + "A revolver typically has a cylindrical chamber that revolves around a central axis and contains multiple cartridges.", + "A revolver is a hand-held firearm with a revolving cylinder containing six or seven rounds.", + "A revolver typically has a cylindrical chamber that holds the rounds and a cylinder that revolves to align the chamber with the barrel.", + "A revolver typically has a cylindrical chamber into which the cartridges are inserted.", + "A revolver typically has a cylindrical chamber that revolves around a central axis and is capable of holding six or more rounds of ammunition.", + "You can identify a revolver by its cylinder, which is typically located on the side of the gun.", + "The cylinder of a revolver is generally found on the right hand side of the weapon, and revolves around a central axis.", + "The key identifying feature of a revolver is the cylinder, which holds the rounds in a revolver.", + "A revolver can be identified by its cylindrical chamber that holds the rounds and revolves around a central axis.", + "A revolver can be identified by its cylinder, which is typically located on the right side of the gun.", + "A revolver is a handgun that has a revolving cylinder with chambers for individual rounds.", + "A revolver is identified by its revolving cylinder, which contains the chambers for the bullets.", + "A revolver is a type of handgun that has a revolving cylinder of muzzle-loading chambers.", + "A revolver can be identified by its cylinder, which holds the rounds, and its revolving action.", + "The cylinder of a revolver is typically attached to the frame of the gun at the top, whereas the cylinder of a semi-automatic pistol is usually located at the bottom of the gun.", + "A revolver looks like a handgun with a cylinder that rotates to the next chamber.", + "A revolver typically has a cylindrical chamber that revolves around a central axis and is located in front of the cylinder.", + "A revolver is a handheld firearm with a cylinder that rotates to fire bullets through one or more barrels.", + "A revolver is a type of handgun that has a rotating cylinder with multiple chambers.", + "A revolver is a handgun that has a cylinder with six or seven compartments in it.", + "A revolver is a type of handgun that has a revolving cylinder with multiple chambers.", + "A revolver typically has a cylindrical shape and consists of a barrel, a cylinder, a trigger, and a grip.", + "A revolver is a hand gun that has a cylinder with chambers that hold the bullets.", + "A revolver is a handheld firearm that has a rotating cylinder with chambers for holding bullets.", + "A revolver looks like a cylinder with a handle attached to it.", + "In the image, a revolver is lying on a hardwood floor.", + "An image of a revolver from the internet typically shows a close-up of the weapon, with the cylinder exposed and the barrels pointing straight out.", + "This image is of a black revolver with a silver barrel.", + "The image from the internet shows a revolver with a long barrel.", + "A revolver is a handgun with a rotating cylinder of chambers that revolve around a central axis.", + "The image is of a revolver with a black handles and a chrome barrel.", + "In the image, there is a revolver lying on a surface with the cylinder open.", + "This image is of a Smith & Wesson Model 29 revolver.", + "The image is of a revolver lying on a checkerboard floor.", + "A revolver is a type of pistol that has a cylindrical chamber that rotates to align each shot with the barrel, instead of having a magazine with bullets.", + "A revolver is a hand-held firearm with a cylinder that rotates to fire six shots.", + "A revolver handgun with a metal barrel and cylinder, wooden grips, and a trigger.", + "This is a Smith & Wesson Model 60 revolver.", + "The Smith & Wesson Model 500 is a large caliber revolver that is specifically designed for hunting.", + "The revolver is a six-shot, double-action handgun.", + "One of the most popular handguns among American gun owners is the revolver.", + "\"I'm gonna shoot you!\".", + " A black revolver with a silver gripA revolver is a type of handgun that has a cylindrical chamber that rotates to line up with the barrel, each time the gun is fired.", + "A revolver lays on a table with six bullets in a cylinder.", + "This is a Smith & Wesson ." + ], + "rifle": [ + "A rifle generally has a long barrel and a stock with a grip for the shooter's nontrigger hand.", + "A rifle is a long gun with a rifled barrel, used for accurate shooting.", + "A typical rifle has a long, thin barrel, a stock to rest against the shoulder, and a handle to grip.", + "A rifle is a firearm designed to be fired from the shoulder, with a long barrel and a magazine.", + "Most rifles have a long barrel that is slightly wider in diameter than the bullet.", + "A rifle typically has a long barrel and a buttstock, and is shouldered for use.", + "Rifles generally have long barrels and are intended to be held with two hands.", + "A rifle is a long-barreled firearm that is typically held with two hands and fired from the shoulder.", + "A rifle is a long gun with a rifled barrel.", + "A rifle is a long gun with a rifled barrel, used for accurate shooting.", + "A rifle is a long gun with a rifled barrel.", + "Rifles have a long barrel and are designed to be fired from the shoulder.", + "Rifles are long guns that have a rifled barrel.", + "By its shape, size, and the type of action it uses.", + "Rifles can be identified by their long barrels and the fact that they are held against the shoulder when fired.", + "A rifle is a firearm designed to be fired from the shoulder, with a long barrel and a rifled bore.", + "Rifles can be identified by their long barrels and the butt end of the stock that rests against the shoulder.", + "Most rifles have a long barrel and a stock, which is a piece of wood or plastic that rests against the shoulder.", + "There are many ways to identify a rifle.", + "The most common way to identify a rifle is by its length.", + "A rifle is a long firearm that has a barrel for shooting bullets.", + "A rifle is typically a long, slim firearm with a stock, a barrel, and a lever or trigger mechanism.", + "A rifle is a long-barreled firearm designed for precision shooting.", + "A rifle is a long gun with a rifled barrel, used for accurate shooting.", + "There is no one answer to this question as there are many different types and styles of rifles.", + "The following is a basic description of a rifle: A rifle is a long gun with a rifled barrel, designed to be fired from the shoulder.", + "A rifle is a long gun with a stock and a barrel that is thicker in the middle than at the ends.", + "Rifles typically have a long barrel and a stock, which is a piece that attaches to the back-end of the gun and helps to stabilize it during firing.", + "A rifle is a long gun with a rifled barrel, meaning that the inside of the barrel is machined with spiral grooves that cause the bullet to spin as it travels down the barrel.", + "A typical rifle is made up of a stock (usually made of wood or composite), a receiver, a barrel, a muzzle, a trigger, and a magazine.", + "The image is of a black rifle with a scope on the top.", + "I couldn't find a good image of a rifle on the internet.", + "A rifle is a long-barreled gun with a rifled barrel, designed to be fired from the shoulder.", + "A black and white image of an old west style rifle.", + "The image is of a black rifle on a white background.", + "This image is of a black rifle with a scope attached.", + "Image may show a brown or black rifle with a long barrel and a scope.", + "A rifle is a long gun that has a rifled barrel, meaning that the inside of the barrel is lined with grooves that spin the bullet as it exits the barrel.", + "This image from the internet is of a black rifle with a scope on the top.", + "The image is of a black assault rifle lying on a dark surface.", + "Rifle with scope on tripod.", + "Barrett M82A1Barrett M82A1 is a American anti-materiel rifle produced by Barrett Firearms Manufacturing.", + "This is an AK-47, a popular assault rifle.", + "Colt AR-15 rifle.", + "A rifle is a type of long gun that is typically used by humans for hunting or combat.", + " AK-47 assault rifle.", + "This is an M4 carbine, a lightweight, air-cooled, magazine-fed, gas-operated rifle.", + "An AR-15 rifle.", + "Rifle on a background of trees.", + "M16A1 Assault Rifle." + ], + "rocking chair": [ + "A rocking chair is a chair with curved legs that allows the chair to rock back and forth.", + "A rocking chair typically has four legs, two arms, and a back rest.", + "A rocking chair is a type of chair with two curved bands of wood or metal called rockers at the bottom.", + "A rocking chair is typically a wooden chair with a padded seat and backrest.", + "A rocking chair has a curved back and seat, and two curved arms.", + "A rocking chair is a type of chair with two curved pieces of wood or metal at the bottom of the legs, allowing the chair to rock back and forth.", + "A rocking chair typically has four legs, two arms, and a backrest.", + "Typically, rocking chairs have a curved backrest and seat, and a base that rocks back and forth on two curved legs.", + "A rocking chair has a back and seat that are attached to curved rockers.", + "A rocking chair has a curved back and seat, and legs that are set at an angle.", + "Rocking chairs typically have a wider seat and high back, and are often made of wood.", + "A rocking chair typically has two curved bands of wood or metal called rockers attached to the bottom of the chair legs.", + "Rocking chairs typically have curved legs and a slanted back.", + "The back and seat of a rocking chair are generally slanted.", + "A rocking chair has a curved backrest and seat, and rockers on the bottom of the legs.", + "A rocking chair typically has curved legs at the front and back and is designed to rock back and forth on two runners.", + "Rocking chairs are chairs with legs that are curved so that the chair can rock back and forth.", + "Rocking chairs typically have a curved back and seat, and they are often made out of wood.", + "Rocking chairs have a seat, backrest, and two armrests.", + "A rocking chair has a seat and a backrest, and two curved runners attached to the base of the chair.", + "A rocking chair typically has a large seat and a backrest, with two armrests.", + "A rocking chair is a chair with two curved pieces of wood at the bottom of the legs.", + "A rocking chair typically has four legs, two arm rests, and a back rest.", + "A rocking chair typically has four legs, two arms, and a backrest.", + "A rocking chair typically has four legs, two arm rests, and a back rest.", + "A rocking chair is a type of chair with two curved slats in the seat and two curved slats in the back, supported by four legs.", + "A rocking chair is a type of chair with two curved bands of wood or metal called rockers attached to the bottom of the chair.", + "Most rocking chairs have four legs, two arms, and a backrest.", + "A traditional rocking chair has a flat seat and a curved back.", + "A rocking chair is a type of chair that has two curved pieces of wood at the bottom of the legs.", + "This image is of an old-fashioned rocking chair on a porch.", + "The image is of a wooden rocking chair with a green cushion.", + "An image of a rocking chair from the internet is of a classic wooden rocking chair with a cushion on the seat.", + "The image from the internet of the rocking chair is of a traditional wooden rocking chair with a cushioned seat.", + "An image from the internet of a rocking chair might show a person sitting in a rocking chair on a porch, with a blanket wrapped around them.", + "In the image, a rocking chair is pictured in front of a fireplace.", + "A wooden rocking chair on a porch with a view of a lake.", + "The image from the internet is of a rocking chair on a porch.", + "The image is of a medium-sized wooden rocking chair with a light brown finish.", + "A rocking chair is a chair with two curved legs at the front and two legs at the back that allow the chair to rock back and forth.", + "An old rocking chair on a porch.", + " A rocking chair on a porch.", + "Rocking chairs are a classic furniture piece that have been used for generations.", + "A wooden rocking chair on a porch.", + " When life gives you lemons, make lemonade.", + "An old rocking chair on a porch.", + "An old rocking chair on a porch.", + " A blue rocking chair on a porch.", + "An elderly woman rocks in her chair on the porch of her country home.", + " A rustic rocking chair on a porch." + ], + "rotisserie": [ + "It is a type of roaster that consists of a long metal spit on which meat is roasted.", + "A rotisserie is a device that holds meat while it is being cooked with indirect heat.", + "A rotisserie is a horizontal skewer that is rotated in front of a heat source.", + "A rotisserie is a long, horizontal spit that is rotated slowly in front of or over a heat source.", + "A rotisserie is a cooking device that consists of a long metal skewer that is mounted horizontally over a heat source.", + "A rotisserie is a device that cooks food by slowly turning it on a spit.", + "A rotisserie is a kitchen appliance that cooks food by slowly turning it on a spit.", + "A rotisserie is a type of oven that has a spit on which food is cooked.", + "A rotisserie looks like a large metal drum that is rotated slowly over a heat source.", + "A rotisserie looks like a machine that can cook meat using a rotating spit.", + "A rotisserie is a skewer with meat that is cooked over a fire.", + "The easiest way to identify a rotisserie is by its long, horizontal spit that is powered by an electric motor.", + "A rotisserie is a skewer that is used to cook meat.", + "If you are looking at a rotisserie from the front, you will see a long metal rod with meat on it that is being turned slowly.", + "There are a few key ways to identify a rotisserie:-The meat is cooked on a spit or skewer that is rotated\n-There is usually a heat source (such as an open flame) located below the meat.", + "There are a few ways that you can identify a rotisserie: 1.", + "A rotisserie is a cylindrical device that slowly cooks food as it rotates.", + "There are a few ways to identify a rotisserie: -The meat is cooked on a spit that is rotated over low heat.", + "The best way to identify a rotisserie is by its Motor.", + "A rotisserie is a device that cooks food by slowly turning it over a heat source.", + "A rotisserie is a type of cooking appliance that slowly cooks food by rotate it on a spit.", + "A rotisserie is a kitchen appliance that is used to cook meat.", + "A rotisserie is a device that is used to cook food by rotating it.", + "A rotisserie looks like a large metal frame with a spit running through the center.", + "A rotisserie is a device that is used to cook meat.", + "A rotisserie is a type of cooking that involves skewing food on a spit and cooking it over an open fire or grill.", + "A rotisserie is a device that is used to cook food by skewing it on a spit and rotating it over a heat source.", + "A rotisserie is a type of cooking appliance that slowly rotates food as it cooks in order to evenly distribute heat.", + "A rotisserie looks like a Skewer that is used to cook meat.", + "A rotisserie is a kitchen appliance that is used to cook meat.", + " chickenThe image shows a chicken roasting on a spit over an open fire.", + " chickenThe image is of a golden brown rotisserie chicken on a white plate.", + " chickenIt's a photo of a rotisserie chicken on a white plate with some green beans and a red onion on the side.", + " chickenA rotisserie chicken is a chicken that has been skewered and placed on a spit over an open fire or grill.", + " chickenIt's a photo of a golden-brown rotisserie chicken on a white plate with green beans and potatoes.", + " chickenThe image likely shows a rotisserie chicken against a white background.", + " chickenThe image is of a golden rotisserie chicken with crisp, juicy skin.", + " chicken\nThe image is of a rotisserie chicken that has been cooked and is ready to be eaten.", + " chickenA whole chicken rotating on a vertical spit over an open flame.", + " chickenThe image is of a rotisserie chicken on a spinning spit.", + "A rotisserie is a type of spit roast where meat is cooked by being rotated on a spit.", + "A close-up of a chicken roasting on a rotisserie.", + "A rotisserie is a type of grill that uses indirect heat to cook food.", + " A chicken being slowly roasted on a rotisserie.", + "A chicken being cooked on a rotisserie.", + "A chef rotates meats on a rotisserie.", + "1) A rotisserie is a type of cooking appliance used to cook food.", + "A chicken on a rotisserie, ready to be cooked.", + "A whole chicken ready to be enjoyed!.", + "A delicious rotisserie chicken fresh out of the oven." + ], + "eraser": [ + "A pencil eraser typically looks like a small, rectangular block of pink rubber.", + "A eraser generally looks like a rectangular piece of rubber.", + "An eraser is a small, rectangular block of rubber with a slightly rounded edge.", + "A eraser is a small, rectangular piece of rubber that is used to erase pencil marks from paper.", + "A eraser is a small rectangular piece of rubber or vinyl that is used to remove pencil markings from paper.", + "a pink or blue rectangle with a small, black rubber circle attached to one end.", + "A eraser is a small tool that is used to remove pencil markings from paper.", + "A eraser is a small, rectangular piece of rubber that is used to remove pencil marks from paper.", + "A eraser is a rectangular block of rubbery material with a flat surface.", + "A eraser is a small, white rectangle with rounded edges.", + "A eraser is a small, rubber block that is used to erase pencil marks.", + "You can identify a eraser by its squishy texture and its ability to erase pencil marks.", + "A eraser is usually small, cylindrical, and made of rubber.", + "A eraser is a block of rubber or other material used for rubbing out pencil marks.", + "An eraser is a block of rubber or vinyl that is used to erase pencil marks.", + "A eraser is a small, cylindrical object that is used to remove pencil marks from paper.", + "A eraser is a small, rubber rectangle with a flat surface.", + "A eraser has a rubbery consistency and is used to remove pencil marks from paper.", + "A eraser is a small, rectangular block of rubber that is used to remove pencil marks from paper.", + "Many erasers have a band of color around them, often white, pink, or green.", + "A eraser looks like a small, rectangular block of rubber.", + "A eraser looks like a small, rectangular block of rubber.", + "A eraser is a small, rectangular block of rubber.", + "A eraser looks like a pencil sharpener.", + "A eraser typically looks like a small, rectangular block of rubber.", + "A eraser typically looks like a small, rectangular block of rubber.", + "A eraser looks like a small, cylindrical piece of rubber.", + "A eraser looks like a small rectangle of rubber.", + "A: An eraser looks like a small, rectangular block of rubber.", + "A typical eraser is a small rectangular or block-shaped block of rubber or vinyl.", + "The image is of a pink eraser with a small metal handle.", + "An image of a eraser from the internet is of a small, pink eraser with a gold band around the middle.", + "I found an image of a eraser that is shaped like a pencil.", + "The image is of a yellow eraser with a black stripe down the middle.", + "The image is of a pink eraser with a white top.", + "This image is a picture of a green eraser.", + "This image shows a close-up of a eraser on a white background.", + "The image is of a blue eraser with white stars on it.", + "This image is of a blue eraser with a white top.", + "An image of a eraser shows a pink eraser with a white eraser on top of it.", + "This is a pencil eraser.", + "Image of a black eraser with the word \"Erase\" written in white text next to it.", + " A pink eraser on a yellow background.", + "A eraser on a desk.", + "Eraser on a pencil.", + "\"I thought I didn't need you anymore, but I was wrong.", + "A pink eraser on a white background.", + "This eraser is perfect for getting rid of those unwanted pencil marks!.", + "A pink eraser with a flower design.", + "A blue eraser on a white background." + ], + "rugby ball": [ + "A rugby ball is an oval shaped ball that is slightly pointier at the ends than a football.", + "A rugby ball is typically oval-shaped and made of leather.", + "A rugby ball is made of two Pieces of leather that are stitched together.", + "A rugby ball is an oval-shaped ball used for the sport of rugby union.", + "A rugby ball is an oval-shaped ball used for the sport of rugby union.", + "A rugby ball is an oval-shaped ball used for playing rugby union and rugby league.", + "A rugby ball is an egg-shaped ball used for playing rugby union and rugby league.", + "A rugby ball is an oval shaped ball that is used in the sport of rugby.", + "A rugby ball is an oval-shaped ball used for playing rugby union and rugby league.", + "A rugby ball is an oval-shaped ball used for the sport of rugby union.", + "The shape of a rugby ball is similar to a football, but it is longer and has a pointed end.", + "Rugby balls are oval-shaped and have pointy ends.", + "The rugby ball is an oval shape and is usually made of leather.", + "Rugby balls are typically oval-shaped and made of leather or synthetic materials.", + "A rugby ball is a bit larger and rounder than a football, and it has eightpanel seams.", + "A rugby ball is a prolate spheroid with an egg-shaped pointed end.", + "Rugby balls are hexagonal in shape and have a stretchy outer layer.", + "A rugby ball is relatively large, oblong, and has pointed ends.", + "Rugby balls are oval shaped and have four panels.", + "Rugby balls are elongated and have pointed ends.", + "A rugby ball looks like an oval-shaped ball with a pointed end.", + "A rugby ball is an oblong shape with pointed ends.", + "A rugby ball is an oval shaped ball with pointed ends.", + "A rugby ball is an oval shape and is slightly bigger than a football.", + "A rugby ball looks like a slightly oblong ball with pointed ends.", + "A rugby ball is an oval-shaped ball used for playing rugby union and rugby league.", + "A rugby ball is an ellipsoidal ball used in the sport of rugby union and rugby league, as well as American football and Canadian football.", + "A rugby ball is oblong in shape and has pointy ends.", + "Rugby balls are oval-shaped and made of leather or synthetic leather.", + "A rugby ball is an oval shaped ball with a prolate spheroid.", + "This image is of a rugby ball that is about to be kicked.", + "The image is of a rugby ball on a grass field with white lines.", + "The image is of a rugby ball sitting on a grassy field.", + "The image is of a rugby ball on a white background.", + "I found an image of a rugby ball on a white background.", + "The image is of a rugby ball on a grass field.", + "A rugby ball is an oval-shaped ball used for playing rugby union and rugby league.", + "This image shows a rugby ball in mid-air, about to be caught by a player.", + "A Rugby ball is an oval-shaped ball used for playing rugby union and rugby league.", + "The image is of a rugby ball on a white background.", + "Rugby Ball.", + "This rugby ball is ready to be used in a game.", + "A rugby ball on a field.", + "A rugby ball on a grassy field.", + "A rugby ball on a field.", + "Rugby Ball.", + "Rugby League Ball.", + "A rugby ball on a grassy field.", + "Rugby Ball.", + "This is a rugby ball." + ], + "ruler measuring stick": [ + "A ruler measuring stick is a tool that is used to measure the length of an object.", + "A ruler measuring stick is a long, thin piece of metal or wood with markings on it that indicate units of measurement.", + "A ruler measuring stick is a long and thin piece of wood or metal with markings on it that show units of measurement.", + "A ruler measuring stick is a thin, flat piece of metal or wood with markings on it that show units of measurement.", + "A ruler measuring stick typically looks like a long, straight piece of wood or metal with markings on it that indicate inches or centimeters.", + "A ruler is a measuring stick that is used to measure the length of an object.", + "A ruler measuring stick is a straight, narrow piece of wood or metal that is marked with measurements of length.", + "A ruler measuring stick typically looks like a long, slim stick with measurements marked at regular intervals along its length.", + "A ruler measuring stick is a straight, narrow piece of wood or metal with markings on it that indicate units of measurement.", + "A ruler measuring stick typically looks like a long, thin piece of wood or metal with markings at regular intervals.", + "Ruler measuring sticks are usually made of wood or plastic and have markings on them that indicate units of measurement, such as inches or centimeters.", + "A ruler measuring stick is typically a long, straight piece of wood or metal with markings at regular intervals.", + "A ruler measuring stick is usually a straight, flat piece of wood or metal with markings on it that indicate units of measurement.", + "A ruler measuring stick can be identified by its straight edges and markings that indicate measurements in inches or centimeters.", + "A ruler measuring stick is a straight edge with markings at regular intervals that is used to measure length.", + "A ruler is a measuring stick that is used to measure length.", + "The markings on a ruler measuring stick are usually in inches or centimeters.", + "A ruler measuring stick is typically marked with measurements in centimeters or inches.", + "A ruler measuring stick is a straight edge that is used to measure distance.", + "A ruler is a measuring stick that is used to measure the length of an object.", + "A ruler measuring stick looks like a normal ruler, except that it has measurements on both sides.", + "A ruler measuring stick is a long, thin piece of wood or metal with markings on it that show units of measure.", + "A ruler measuring stick looks like a ruler with markings on it that indicate measurements in different units.", + "Most ruler measuring sticks have markings for inches and centimeters.", + "A ruler measuring stick typically looks like a long, thin piece of wood or metal with markings on it that indicate inches or centimeters.", + "A ruler measuring stick is a long, thin piece of wood or metal with markings on it that show how long or short something is.", + "Abruler measuring stick looks like a straight, thin piece of metal or wood with markings on it that show units of measurement.", + "A ruler measuring stick is a straight, thin piece of wood or metal that is marked with measurements and used to measure the length of something.", + "A ruler measuring stick is a flat, rectangular piece of wood or metal with markings on it that show units of measurement.", + "A ruler measuring stick is a straight, thin piece of wood or metal with markings on it that indicate units of measure.", + "This image shows a ruler measuring stick with numbers that increase in value as they go from left to right.", + "This image is of a ruler measuring stick.", + "This image shows a brown wooden ruler measuring stick with inches marked in white.", + "The image is of a ruler measuring stick with the numbers 1-12 marked on it.", + "A ruler measuring stick is an image of a ruler that can be used to measure length.", + "An image of a ruler measuring stick would show a ruler with measurements on it, used to measure length.", + "The image is of a wooden ruler with markings for inches and centimeters.", + "An image from the internet of a ruler measuring stick is typically a wooden or metal rod with markings on it that indicate inches or centimeters.", + "The image is of a ruler with the markings in centimeters.", + "This image is of a simple, silver ruler with the measurement markings in black.", + "This ruler can measure objects up to 12 inches long.", + "This is a ruler.", + "Ruler measuring stick.", + "Ruler measuring stick.", + "This ruler is perfect for measuring small objects.", + "Ruler or measuring stick.", + " Measuring stick.", + "A ruler for measuring length.", + "This ruler is perfect for measuring small objects.", + " Measuring stick." + ], + "sneaker": [ + "A sneaker is a type of shoe that has a soft sole and is usually black or white.", + "A sneaker is a type of shoe that is typically made out of canvas or other light fabric.", + "A sneaker usually has a lace-up front, with a padded collar and tongue.", + "A sneaker is a shoe with a flexible rubber sole and a tight-fitting upper.", + "Most sneakers are composed of a soft, flexible upper material, a midsole for cushioning and support, and a tough outsole for durable traction.", + "A sneaker is typically a shoe that has a rubber or synthetic sole and a canvas or leather upper.", + "A sneaker is a type of shoe with a flexible, comfortable sole and a lace-up or slip-on closure.", + "A sneaker is a shoe designed for athletics or other forms of exercise.", + "\nA sneaker is a type of shoe that typically has a rubber sole and a fabric or leather upper.", + "A sneaker is a shoe that is typically made of fabric or leather and has a rubber sole.", + "The easiest way to identify a sneaker is by its shape.", + "There are many ways to identify a sneaker.", + "Some things that can help to identify a sneaker are the brand, model, color, and style.", + "There are many ways to identify a sneaker.", + " look at the tread and compare it to other shoes.", + "All sneakers have a distinctive design that makes them different from other types of shoes.", + "There are several ways to identify a sneaker.", + "Sneakers usually have a rubber sole and are designed to be comfortable and easy to wear.", + "Each sneaker company has their own unique style and design.", + "There are many ways to identify a sneaker.", + "A sneaker typically has a rubber or textile upper and a rubber sole.", + "A sneaker is a type of footwear that typically has a rubber sole and a fabric or leather upper.", + "A sneaker is a type of shoe with a flat bottom and a lace-up closure.", + "A sneaker typically has a leather, cloth, or synthetic upper, which is often paired with a rubber sole.", + "A sneaker typically has a rubber sole and a fabric or leather upper.", + "A sneaker is a type of shoe that has a soft sole and is usually made out of cloth or leather.", + "A sneaker is typically a shoe with a rubber or synthetic sole and a leather, synthetic, or fabric upper.", + "A sneaker looks like a shoe that is meant for comfortable walking or running.", + "A sneaker is a type of shoe that has a rubber or synthetic sole and a fabric or leather upper.", + "A sneaker is a type of shoe that has a flexible, thick sole made of rubber or synthetic material.", + "In this image, we can see a white sneaker with black and red accents.", + "The image is of a black and white Nike sneaker.", + "Image is of a white Nike sneaker with a blue Nike swoosh.", + "A white sneaker with a black Nike swoosh on the side.", + "This image is of a white Nike Air Max sneaker.", + "The sneaker in the image is a white Nike sneaker with a green Nike swoosh.", + "The image is of a white sneaker with a black Nike swoosh on the side.", + "An image of a sneaker from the internet shows a shoe with a white background and a blue and white pattern on the side.", + "an image of a sneaker from the internet is a photo or graphic representation of a shoe designed to be worn during physical activity.", + "The image is of a white sneaker with a black Nike swoosh on the side.", + "Sneakers.", + "Sneakerheadz rejoice! The newest addition to your collection has arrived.", + "Nike Men's Air Max 270 Running Shoe.", + " Just Do It.", + "These shoes are so comfortable and perfect for walking or running!.", + "Sneakers on a sidewalk.", + "Stylish and comfortable, these sneakers are perfect for a casual day out!.", + "Sneakerheads rejoice! The highly anticipated Air Jordan 11 Retro \"Concord\" is finally here.", + "A pair of Nike Air Jordan sneakers.", + " A black Nike sneaker with a white Nike swoosh." + ], + "safe": [ + "A safe typically looks like a large rectangular box with a heavy metal door.", + "A safe is a box that is used to protect items from being stolen or damaged.", + "A safe is a locked box that is used to store valuables.", + "A safe typically looks like a metal box with a keypad or a dial on the front.", + "A safe generally looks like a large metal box with a strong door that can be locked shut.", + "A safe is a hardened steel box that is used to protect valuables from thieves.", + "A safe is typically a large metal box with a small keypad on the front.", + "A safe typically looks like a small, metal box with a keypad or handle on the front.", + "A safe is a metal or concrete box that is used to protect valuables from theft or fire.", + "A safe is a metal box that is used to store valuables.", + "The first thing you should do when looking for a safe is to find one that is made by a reputable company.", + "The best way to identify a safe is to look for a UL (Underwriters Laboratories) label.", + "There are a few ways to identify a safe.", + "There are many ways to identify a safe.", + "There are a few ways to identify a safe.", + "A safe can be identified by its thick metal walls and heavy duty locking system.", + "There are a few ways to identify a safe:- Check for a UL or ETL rating.", + "A safe may have a label that says \"Underwriters Laboratories\" or \"UL.", + "Most safes have a label on the front that indicate what type of fire protection the safe has.", + "A safe can usually be identified by its heavy duty construction and large size.", + "A safe looks like a small, metal box with a keyhole in the front.", + "A typical safe looks like a large rectangular box with a heavy door that opens outward.", + "A safe can come in many different shapes and sizes, but the most common type of safe is a rectangular box with a heavy duty metal door.", + "A safe typically looks like a large metal box with a heavy door that is secured with a key or combination lock.", + "A safe looks like a strong, metal box.", + "A safe can look like a metal box with a keypad on the front, or it can look like a small metal cabinet with a keyhole on the front.", + "A safe typically looks like a metal box with a keypad or combination lock on the front.", + "A safe usually looks like a big metal box with a keyhole or a keypad on the front.", + "A safe is typically a small, metal box with a key or combination lock.", + "A safe is a box-shaped container with a heavy metal door that is used to protect items from theft or damage.", + "The image is of a large, metal safe with a digital keypad on the front.", + "An image of a safe can be found at https://www.", + "The image is of a small, silver safe with a keypad on the front.", + "One image of a safe that is frequently used is a simple image of a gray rectangular box with a handle on the front and a keyhole.", + "Image shows a small, silver colored safe with a keypad on the front.", + "The image is of a large, metal, rectangular box with a handle on the front.", + " placeThis image from the internet shows a safe place.", + " placeThis image of a quiet beach at dusk seems like a safe place because it is so calm and serene.", + " placeA safe place could be an image of a quiet beach at sunset, with the waves crashing against the shore and the sun setting in the sky.", + " placeThe image is of a serene and beautiful sandy beach with crystal clear blue water.", + "This is a safe.", + "A safe is a secured box that is used to protect valuables from theft or damage.", + "A close up of a safe, the front of which is open to reveal its contents.", + "A safe is a strongbox or cabinet used to store valuables.", + "This safe can hold up to 100 bags of gold.", + "A safe for keeping valuables safe.", + "This is a safe.", + "\"A safe is a good place to keep your valuables.", + " A small, black safe.", + "This safe is ideal for keeping your valuables safe." + ], + "safety pin": [ + "A safety pin is a small, pointed metal pin with a large, hinged hoop.", + "A safety pin is usually a metal pin with a pointed end and a round head.", + "A safety pin is a small pin with a pointed end and a small circular end.", + "A safety pin is a small, thin metal pin with a pointed end and a round clasp.", + "A safety pin is a small, thin metal pin with a pointed end and a coiled spring on the other end.", + "A safety pin is a gold or silver metal pin with a very sharp point and a round cap.", + "A safety pin is a \"T\" shaped metal pin with a spring and a pointed end.", + "A safety pin is a small, often metallic pin with a pointed end and a cylindrical body.", + "A safety pin is a silver or gold pin with a small round head and a sharp point.", + "A safety pin is a metal pin with a pointed end and a round end.", + "A safety pin is a thin piece of metal with a pointed end and a circular clasp.", + "Safety pins are made with a hinge on one side and a sharp point on the other.", + "A safety pin is a thin piece of metal with a sharp point at one end and a round ring at the other.", + "A safety pin is a small metal pin with a pointed end and a round end.", + "A safety pin is a small pin with a locking mechanism that is used to fasten fabrics together.", + "There are a few key things to look for when identifying a safety pin.", + "A safety pin is usually made of metal and has a pointed end and a rounded end.", + "Safety pins are recognizable by their two tine design and small size.", + "A safety pin is a small, pointed metal pin with a large circular head.", + "The safety pin was invented by Walter Hunt in 1849.", + "A safety pin is a small, thin, pointed object with a sharp end and a round, flat end.", + "A safety pin is a small, metal pin with a pointed end and a flat, circular end.", + "A safety pin is a small, often bent pin with a pointed end and a large round head.", + "A safety pin is a small, thin, pointed piece of metal with a large circular ring at one end and a locking clasp at the other end.", + "A safety pin is a small, thin metal pin with a pointed end and a round end.", + "A safety pin is a small, thin piece of metal with a sharp point at one end and a round head at the other.", + "A safety pin is a small pin with a large circular head.", + "A safety pin typically has a long, thin metal wire with a pointed end and a fulcrum near the middle.", + "A safety pin typically has a long metal wire with a pointed end and a round clasp.", + "A safety pin is usually a metallic pin with a pointed end and a circular catch at the other end that serves to fasten clothing together.", + "The image is of a safety pin on a white background.", + "The image is of a small, metal safety pin.", + "This is an image of a black safety pin.", + "A safety pin is a small metal pin with a pointed end and a round head.", + "An image of a safety pin from the internet is a small metal pin with a pointed end and a small circle at the other end.", + "The image shows a safety pin close up.", + "The image is of a small, metal safety pin.", + "This image is of a safety pin on a white background.", + "The image is of a small, metal safety pin.", + "This image is of a small, silver safety pin.", + "A safety pin is a small, pointed metal pin with a safety catch that is used to fasten together pieces of fabric.", + "A safety pin is a device used to secure clothing or fasten items together.", + "A safety pin is a small, pointed metal pin with a large, flat head.", + "A safety pin is a device used to fasten two pieces of cloth together.", + "A safety pin for keeping your clothes together.", + "A safety pin to keep your clothes together.", + "Safety pins are an essential tool in any sewing kit.", + "A safety pin is a small, metal pin with a pointed end and a safety catch.", + " \"A security guard wearing a mask and gloves holds a safety pin.", + "A safety pin is a device used to fasten two pieces of fabric together." + ], + "salt shaker": [ + "A salt shaker is typically a small, cylindrical container with a hole in the top and a perforated lid.", + "A salt shaker typically has a cylindrical body with a perforated top.", + "A salt shaker is a small, usually cylindrical container with a tight lid that is used to hold salt.", + "A salt shaker is a small container with a hole in the top and a perforated lid.", + "Salt shakers are often made from glass or plastic and have a small hole in the top that can be opened and closed.", + "A salt shaker is a small container with a hole in the top that is used to sprinkle salt on food.", + "A salt shaker is a small plastic or glass container with a perforated top.", + "Typically, a salt shaker is a cylindrical container with a perforated top that is used to sprinkle salt on food.", + "A salt shaker is typically cylindrical in shape and has small holes on the top through which salt is dispensed.", + "A salt shaker is a small container with a hole in the top and a perforated lid.", + "A salt shaker can be identified by its cylindrical shape with a small hole in the top.", + "A salt shaker is a small container with a perforated lid that is used to sprinkle salt on food.", + "A salt shaker is often shaped like a cartoon chef or a pirouetting ballerina.", + "A salt shaker is a container with a small hole at the top that is used to sprinkle salt on food.", + "A salt shaker is typically a small, cylindrical container with a perforated lid that is used to sprinkle salt on food.", + "Salt shakers are often made of glass or plastic and have a hole at the top for pouring out salt.", + "A salt shaker can typically be identified by its shape, which is often tall and slender, and by the fact that it has a hole in the top and a perforated lid.", + "A salt shaker is a small container that is used to hold and dispense salt.", + "A salt shaker is a small container with a perforated top that is used to sprinkle salt on food.", + "A salt shaker is often made of glass or plastic and has a small hole at the top for shaking out salt.", + "A salt shaker is a tool that is used to sprinkle salt on food.", + "admin answer: It is a small container with a small hole in the top and a larger hole in the bottom.", + "A salt shaker looks like a small container with a hole in the top and a lid.", + "A salt shaker is typically a small, cylindrical container with a hole in the top and a small spoon attached to the lid.", + "A salt shaker typically has a cylindrical body with a hole in the top and bottom, and a perforated lid.", + "Salt shakers are generally small, cylindrical containers with a hole in the top and a perforated lid.", + "BookA salt shaker is a small container with a hole in the top that is used to sprinkle salt on food.", + "A salt shaker is a small container with a hole in the top and a perforated bottom.", + "A salt shaker resonably typically has a cylindrical body with a perforated top.", + "A salt shaker is typically a glass or plastic container with a small hole in the top and a pouring spout.", + "A salt shaker is a small container with a hole in the top that is used to sprinkle salt on food.", + "The image is of a traditional, metal salt shaker.", + "A white salt shaker with a red label that says \"Salt\" in black lettering.", + "The image is of a white ceramic salt shaker with a black plastic top.", + "The image from the internet of a salt shaker is a white shaker with a black lid.", + "The image is of a white salt shaker with a black lid.", + "This image is of a metal salt shaker with a simple design.", + "The image is of a white salt shaker with a blue label that reads \"Salt.", + "The image is of a ceramic salt shaker in the shape of a bird.", + "This image is of a salt shaker with a pour spout.", + "A salt shaker on a table with a white background.", + "A salt shaker on a white background.", + "Salt shaker on a tableA salt shaker is a device used to sprinkle salt on food.", + "Salt shaker on a table.", + "Pop the top on this classic kitchen staple and enjoy the flavor of freshly ground salt.", + "Salt is an important ingredient in cooking.", + "A white plastic salt shaker with a black lid.", + "Salt shaker on a table in a restaurant.", + "A salt shaker filled with white crystals.", + "Salt Shaker." + ], + "sandal": [ + "A sandal is a shoe typically made of leather or synthetic material that has an open toe and a strap or straps that go around the foot or up the ankle.", + "A sandal is a footwear item that typically consists of a sole held to the foot by straps that go over or around the foot or ankle.", + "sandals are typically open shoes with a strap or thong that goes between the toes and around the foot.", + "A sandal is a type of shoe that typically has a band of material that goes across the top or around the back of the foot, and often has a strap or other type of closure that goes around the ankle.", + "A sandal looks like a shoe with the top part open and the straps going over the foot and around the ankle.", + "A sandal is a shoe with an open front and back, held to the foot by straps that go over the toes and around the ankle.", + "A sandal can come in many different styles, but typically, it is a shoe that consists of a strap or multiple straps that go over the foot or around the ankle, and a sole that goes under the foot.", + "A sandal is a type of footwear that typically consists of a sole held to the foot by straps that go over the instep and around the ankle.", + "A sandal is a type of shoe that is open at the toes and heel, with a strap or thong running across the top or up the back of the foot to hold it in place.", + "A sandal is a type of shoes that most often has an open top, and straps that go over the toes and/or around the foot.", + "A sandal is a shoe that has an open top and usually straps that go around the foot or ankle.", + "When you are looking to identify a sandal, the first place to start is by looking at the features of the shoe.", + "A sandal is usually a flat shoe with a strap that goes around the foot or ankle.", + "A sandal is a type of shoes that consists of an open toe and heel and is usually held to the foot by a strap that goes around the ankle or over the foot.", + "Sandal straps usually go up the ankle or calf.", + "A sandal is a type of shoe typically worn in warmer weather that has a strap or straps that go around the foot or ankle.", + "Sandals are typically open-toed shoes with a strap or thong that goes between the toes.", + "A sandal is a type of shoe that leaves most of the foot exposed.", + "The easiest way to identify a sandal is by its straps.", + "There are many ways to identify a sandal.", + "There are many types and styles of sandals, but they typically consist of a strap or series of straps that go over the top of the foot and around the heel, and a sole that goes under the foot.", + "A sandal typically has a thin sole made of rubber, plastic, or leather and is held to the foot by straps that go over the top of the foot or around the ankle.", + "A sandal is a shoe that consists of a sole held to the foot by straps that go over the instep and around the ankle.", + "A sandal is typically a shoe that has straps or other fasteners that go over the top of the foot or around the ankle.", + "A sandal is typically a shoe with a strap or thong that goes between the toes and around the foot.", + "A sandal is a type of footwear that consists of a sole held to the foot by straps going over the instep and, sometimes, around the ankle.", + "A sandal looks like a shoe with the top part open.", + "A sandal is a type of shoe that consists of a sole held to the foot by straps that go over the instep and around the ankle.", + "A sandal is a type of shoe that consists of a sole held to the foot by straps that go over the instep and around the ankle.", + "A sandal is a type of shoe with an open toe and an open back.", + "The image is of a brown sandal with a strap around the ankle.", + "The image is of a beige sandal with a gold buckle.", + "The image is of a brown leather sandal with a straps that go up the ankle.", + "The image is of a brown sandal with a strap around the ankle.", + "The image is of a yellow and white sandal with a small heel.", + "The image from the internet is of a sandal with a toe strap and a heel strap.", + "The image is of a beige sandal with a gold buckle.", + "This image is of a sandal with a strap around the ankle.", + "A sandal is a type of shoe that is typically open, with a strap or thong that goes between the toes and around the foot.", + "This image is of a sandal with a strap that goes around the ankle.", + " My favorite sandals for a summer day.", + "Summertime means break out the sandals!.", + "Sandal with intricate beading on the straps.", + "This sandal is from the ancient Egyptian city of Thebes.", + " A brown sandal with a buckle.", + "A beige sandal with a straps that go up the ankle.", + "This is a picture of a sandal.", + " Comfortable and stylish sandals for a casual look.", + "White sandal with a gold buckle.", + "Sun, sand, and style." + ], + "sarong": [ + "A sarong is a long piece of fabric that is wrapped around the body.", + "A sarong is a long, wide piece of fabric that is wrapped around the body.", + "Image result for what does a sarong look likeA sarong is a piece of cloth that is wrapped around the body.", + "A sarong is a large, rectangular piece of fabric that is draped around the body.", + "A sarong is a long piece of cloth that is wrapped around the body.", + "A sarong is a long, rectangular piece of cloth that is wrapped around the body.", + "A sarong is a long, rectangular piece of cloth that is wrapped around the body.", + "A sarong is a long piece of cloth that is wrapped around the body.", + "A sarong is a piece of cloth that is wrapped around the body.", + "A sarong is a long, wide piece of fabric that is wrapped around the body.", + "A sarong is a traditional garment that is worn by both men and women in many Southeast Asian countries.", + "A typical sarong is a brightly colored tube of cloth that is wrapped around the waist.", + "A sarong can be identified by its long rectangular shape and brightly patterned fabric.", + "A sarong is a type of wrap skirt that is usually brightly colored and patterned.", + "A sarong is a large piece of fabric that is wrapped around the body.", + "A sarong is a piece of fabric that is wrapped around the body.", + "A sarong is a strip of cloth that is wrapped around the body.", + "A sarong is a long, flowing piece of fabric that is wrapped around the body.", + "Sarongs are usually brightly colored or decorated and are wrapped around the waist.", + "A sarong is a traditional Indonesian garment that is a long, rectangular piece of cloth.", + "A sarong is a traditional Filipino garment that is wrapped around the waist.", + "A sarong is a long, skirt-like piece of clothing that is wrapped around the waist.", + "A sarong is typically a brightly colored piece of cloth that is wrapped around the waist.", + "A sarong is a draped garment that is typically wrapped around the waist and worn as a skirt.", + "A sarong is a type of wrapping skirt that is popular in many tropical cultures.", + "A sarong is a piece of fabric that is wrapped around the body.", + "A sarong is a narrow tube of fabric typically worn as a skirt by women.", + "A sarong is a long, thin piece of cloth that is wrapped around the body.", + "A sarong is a large piece of cloth that is wrapped around the body.", + "A sarong is a long, wide piece of fabric that is wrapped around the body.", + "The image is of a woman wearing a brightly colored sarong.", + "A sarong is a traditional garment worn by men and women in Southeast Asia.", + "A sarong is a brightly colored piece of cloth wrapped around the waist.", + "The image is of a woman wearing a brightly colored sarong.", + "Sarongs are a type of clothing that is worn by wrapping it around the body.", + "This image shows a brightly colored sarong with a floral pattern.", + " that you likeThis image is of a beautiful blue sarong with white flowers printed on it.", + "A sarong is a piece of fabric that is wrapped around the waist and worn as a skirt or a dress.", + "A sarong is a traditional garment from Indonesia.", + "A sarong is a traditional wrap skirt that is worn by many women in Southeast Asia.", + " A brightly colored sarong wrapped around the waist.", + "Sarongs are a type of clothing worn by many different cultures around the world.", + " A digital printed Rayon challis sarong from the Indonesian island of Bali.", + "Sarong at the beach.", + "A beautiful sarong, perfect for a day at the beach!.", + "A sarong is a traditional garment worn by men and women in many different cultures around the world.", + " A brightly colored sarong tied in a way that resembles a skirt.", + "Man wearing a sarong at a beach.", + "A woman in a brightly-colored sarong smiles at the camera.", + "A sarong is a traditional Malaysian garment worn by both men and women." + ], + "saxophone": [ + "ASaxophone is a long, thin, brass musical instrument with a curved conical shape and a heavy brass bell.", + "A saxophone is a long, thin brass instrument with a curved neck.", + "A saxophone is a musical instrument that is shaped like a long narrow tube.", + "A saxophone is a long, thin, brass instrument with a curved neck.", + "A typical saxophone has a conical brass body with a flared bell at the end, a removable mouthpiece, and a single reed.", + "A saxophone is a musical instrument that looks like a wind instrument.", + "A saxophone is a long, thin brass instrument with a curved neck.", + "A saxophone is a slender, highly curved musical instrument that is played with a single reed mouthpiece.", + "A saxophone is a wind instrument that is played by blowing into a mouthpiece that is attached to a long, curved metal tube.", + "The saxophone is a long, thin, tubing instrument with a mouthpiece at one end and a flared bell at the other.", + "A saxophone is a brasswind instrument with a single-reed mouthpiece.", + "Saxophones can be identified by their conical shape and by the fact that they have a protruding brass attachment at the top.", + "Some ways you can identify a saxophone is by its shape, size, and the number of keys it has.", + "Saxophones can be identified by their shape.", + "Saxophones can be identified by their shape.", + "The saxophone is a wind instrument with a reed and a conical metal tube.", + "The saxophone is a musical instrument.", + "Saxophones have a distinctive shape and are usually made of brass.", + "The saxophone is a musical instrument that is part of the woodwind family.", + "The saxophone is a brass instrument with a single-reed mouthpiece.", + "Saxophone.", + "A saxophone looks like a long, skinny brass instrument with a curved neck.", + "A saxophone is a brass wind instrument with a reed that vibrates to produce a sound.", + "A saxophone is a long, thin metal musical instrument with a curved mouthpiece.", + "A saxophone looks like a long metal horn with a mouthpiece on the end.", + "A saxophone looks like a clarinet, with a slightly curved body and a bell-shaped bottom.", + "A saxophone is a brasswind instrument with a conical tube.", + "A saxophone is a brass wind instrument with a reed that is commonly used in jazz and concert bands.", + "A saxophone looks like a long, curved brass instrument.", + "A saxophone is a musical instrument that looks like a brass instrument but is made of brass and silver.", + "The image from the internet is of a saxophone on a stand with the reed inserted.", + "Assuming you would like an image of a saxophone player: This image is of a man playing the saxophone in a park.", + "This image is of a bright yellow saxophone.", + "A saxophone is a long, slender musical instrument with a conical brass body and a mouthpiece with a single reed.", + "This image is of a silver saxophone on a black background.", + "An image of a saxophone from the internet shows a close-up of the instrument, with the body of the saxophone in the foreground and the neck and keys in the background.", + "This image is of a saxophone on a stand with the reed in place.", + "This image is of a yellow saxophone on a black background.", + "An image from the internet of a saxophone shows a person playing the instrument.", + "This image shows a saxophone with a bright yellow lacquer finish.", + "A saxophone is a musical instrument in the woodwind family.", + " A saxophone is a wind instrument of the woodwind family.", + "A saxophone is a musical instrument in the woodwind family.", + "The saxophone is a beloved instrument in both jazz and classical music.", + "A black and gold tenor saxophone on a stand.", + "This is a saxophone.", + " A shiny new saxophone.", + "\"The saxophone is a wind instrument of the woodwind family.", + "This is a picture of a tenor saxophone.", + "A saxophone is a musical instrument." + ], + "scabbard": [ + "A scabbard is a leather or plastic sheath for a sword or other large blade.", + "Most scabbards are long sheaths designed to protect the blade of a sword, knife, or other weapon.", + "A scabbard is a piece of equipment that is used to hold and protect a sword.", + "A scabbard is a sheath designed to protect the blade of a sword, or other weapon.", + "A scabbard is a sheath for a sword, typically made of leather or metal.", + "A scabbard looks like a sheath that is used to protect a sword.", + "A scabbard is a sheath for a sword or other large blade.", + "A scabbard looks like a sheath for a sword or another blade.", + "A scabbard typically looks like a sheath or casing made of metal, leather, or another material, into which a sword or other Blade can be fitted for carrying.", + "A scabbard is a sheath for a sword, typically made of leather or metal.", + "The scabbard is the sheath that is used to protect the blade of a sword, dagger, or other edged weapon.", + "A scabbard is a sheath for a sword or other large blade.", + "The scabbard is the sheath that is used to protect the sword.", + "A scabbard is a sheath for a sword.", + "A scabbard is a sheath or enclosure for a sword, dagger, or other large blade.", + "A scabbard is a sheath for a sword,knife, or other large blade.", + "The scabbard is the sheath that is used to protect the blade of a sword, dagger, or other edged weapon.", + "A scabbard is a sheath for a sword, knife, or other long sharp object.", + "The scabbard is the sheath that is used to protect the blade of a sword.", + "A scabbard is a sheath for a sword, and can often be seen attached to a belt or other type of waistband.", + "A scabbard is a sheath for holding a sword, dagger, or other large blade.", + "A scabbard is a wentilicious leather or metal sheath for a sword.", + "A scabbard looks like a sheath that is designed to hold a sword.", + "A scabbard is a sheath for a sword, and usually is made of leather or metal.", + "They vary in shape and size depending on the sword, but they are generally long and narrow and made of leather or metal.", + "A scabbard is a sheath for a sword, knife, or other sharp object.", + "A scabbard is a thin sheath that is used to protect a sword, dagger, or other weapon.", + "A scabbard is a casing that is used to protect and store a sword.", + "A scabbard is a sheath for a blade, typically a sword.", + "The scabbard is the sheath that is used to protect the sword.", + "An image of a scabbard from the internet shows a dark brown leather sheath with a silver metal tip and embossed designs along the center.", + "A scabbard is a sheath for a sword, and this image shows a scabbard made of dark leather with a metal band around the center.", + "I couldn't find an image of a scabbard specifically, but I found an image of a sword in a scabbard.", + "The image is of a scabbard with a sword inside.", + "A scabbard is a sheath for a sword, knife, or other large blade.", + "A scabbard is a sheath for a blade, and this image shows a scabbard made of wood and leather with metal details.", + "The image is of a scabbard with a sword inside.", + "A scabbard is a sheath for a blade, typically a sword.", + "The image is of a scabbard that is made of wood and has a metal tip.", + "In this image, we can see a scabbard that is made of a dark leather.", + "An old scabbard, battered and worn from years of use.", + "A framed sword scabbard with intricate gold designs.", + "This is a scabbard, which is a sheath for a sword or other blade.", + "This scabbard was used to hold a sword during battle.", + "This is a scabbard for a sword.", + "This scabbard is made of wood and covered in leather.", + "A scabbard is a sheath for holding a sword, dagger, or other large blade.", + "A scabbard is a sheath for a sword, knife, or other large blade.", + "This is a scabbard, a sheath for a sword.", + " A man holds a scabbard, the sheath for a sword, in his hand." + ], + "weighing scale": [ + "A weighing scale generally has a large, flat platform on which to place the object to be weighed, and a display that shows the weight.", + "A weighing scale is a machine that measures the weight of an object.", + "A weighing scale typically has a large, flat surface on which to place an object, and a display that shows the weight of the object.", + "A weighing scale typically has a large, flat surface on which to place an object, and a display that shows the weight of the object.", + "A typical bathroom scale is a flat platform with a digital readout.", + "The most common type of weighing scale is a beam balance, which uses a fulcrum and beam to compare masses.", + "A weighing scale typically has a large, flat platform on which to place the object to be weighed, and a display panel showing the weight.", + "A weighing scale typically has a large, flat platform on which to place the object to be weighed, and a separate, removable digital display that displays the weight.", + "A weighing scale has a large, flat surface on which to place an object, and a numerical display that shows the object's weight.", + "A weighing scale is a machine used to measure the weight of an object.", + "Weighing scales can be identified by their digital or analog display which will show the weight of the object being weighed.", + "The most common type of weighing scale is a spring scale, which uses a spring with a known spring constant to determine the weight of an object.", + "If you need to weigh something, you can use a kitchen scale, a bathroom scale, or a luggage scale.", + "The most common type of weighing scale is an electronic scale.", + "A weighing scale is a common household item that is used to weigh people and objects.", + "A weighing scale typically has a large, flat surface on which to place objects, and a digital or analog display that shows the weight of the object.", + "A weighing scale can typically be identified by its large, flat surface area for placing objects on, and its digital or analog display for reading the weight.", + "If an object is being weighed on a scale, there is usually a large display that shows the weight.", + "A weighing scale has a large, flat surface on which you can place an object to be weighed.", + "A weighing scale is a device that is used to weigh things.", + "A typical household weighing scale has a flat platform with a digital display above it.", + "A weighing scale typically has a large, flat platform on which to place the object to be weighed, and a large digital display showing the weight.", + "Weighing scales come in many different sizes and shapes, but they all have a platform or surface on which to place an object, and a display that indicates the weight of the object.", + "A weighing scale typically has a large, flat surface on which to place an object, and a simple mechanism for determining the weight of the object.", + "Most weight scales have a flat platform with a digital readout.", + "A digital weighing scale typically has a digital display screen where the weight is displayed.", + "A weighing scale typically has a large, flat platform on which to place an object, and a display that shows the weight.", + "A weighing scale has a large, round platform on which to place an object, and a digital readout that displays the object's weight in pounds or kilograms.", + "Most scale weigh scales have a metal or plastic platform where you can place the object to be weighed, and a display that shows the weight.", + "A weighing scale usually has a large, flat surface on which to place the object to be weighed, and a smaller platform in the middle of the scale on which to place the weight.", + "This image is of a digital weighing scale.", + "The image is of a silver digital weighing scale with a blue backlight.", + "The image is of a silver digital weighing scale.", + "On the image, there is a white weighing scale on a blue and white tile floor.", + "A weighing scale is a device that measures the weight of an object.", + "This image is of a digital weight scale.", + "The image is of a digital weighing scale with a blue backlit display.", + "The image is of a silver weighing scale with a digital display.", + "The image from the internet is of a weigh scale with a person on it.", + "The image from the internet of a weighing scale is of a digital scale that is displaying the weight of an object on its screen.", + "The digital weight scale shows that the person has lost two pounds.", + "\"The weight of the world is a little easier to bear when someone is there to help.", + "Level the playing field.", + " The bucket on the left is five pounds heavier than the bucket on the right.", + "A stack of coins on one side of a digital weight scale.", + "A woman weighing herself on a digital scale.", + "Weight: 10 lbs.", + "The weight of an object on a weighing scale.", + "The weight of the world.", + "A weight scale sits on a hardwood floor with a white tile backsplash." + ], + "school bus": [ + "A school bus looks like a large yellow vehicle with a black stripe down the middle.", + "A school bus is a yellow bus that has the words \"school bus\" written on the side.", + "A school bus typically looks like a large, yellow bus with the words \"SCHOOL BUS\" written on the front and back.", + "A school bus typically looks like a large, yellow bus.", + "A school bus is generally large and yellow.", + "A school bus is large and yellow.", + "A school bus typically has a yellow exterior and a black interior.", + "A school bus is a vehicle that is used to transport students to and from school.", + "I cannot answer this question.", + "A typical school bus is large and yellow with black windows.", + "A school bus is usually brightly colored with a sign on the back that says \"school bus.", + "A school bus is typically a yellow, single-decker bus that has \"School Bus\" written on the front and back.", + "A school bus is typically large and yellow.", + "A school bus is a yellow bus with a sign on the back that says \"school bus.", + "School buses are typically yellow.", + "It is typically large and yellow, with the words \"School Bus\" printed on the side.", + "School buses can be identified by their bright yellow color and by their large size.", + "One way to identify a school bus is by its color.", + "The typical North American school bus yellow is a color specially mixed by paint manufacturers.", + "A school bus is a vehicle that is used to transport children to and from school.", + "A school bus is a yellow bus that has the words \"school bus\" written on the side.", + "A school bus is a yellow bus with \"School Bus\" written on the side.", + "Most school buses are yellow and have \"School Bus\" written on the front and back in black letters.", + "Most school buses are large and yellow.", + "A school bus is a yellow bus.", + "A typical school bus is large and yellow, with \"School Bus\" written in large text on the front and back.", + "A typical school bus is yellow and has \"School Bus\" written on the front and back in large black letters.", + "A school bus is typically a large, yellow bus.", + "Most school buses are brightly colored and have signs on the side and back that say \"SCHOOL BUS.", + "A school bus is typically large and yellow.", + "A school bus is a type of bus designed to transport children to and from school.", + "\"In the United States and Canada, a school bus yellow is a yellow shade similar to European market traffic yellow, used on school buses in North America.", + "I found an image of a school bus on the internet.", + "The image is of a yellow school bus with the words \"School Bus\" written on the front in black lettering.", + "A school bus is a type of bus designed for transporting students to and from school.", + "The image is of a school bus that is yellow with a black stripe down the middle.", + "The image is of a yellow school bus with the words \"School Bus\" written on the side.", + "In the image, there is a school bus that is parked with its doors open.", + "The image is of a school bus yellow in color with the words \"school bus\" written on the side.", + "An image from the internet of a school bus would most likely show a big, yellow bus with the words \"school bus\" written on the side.", + "This bus will take you to school!.", + "A school bus picks up children from their homes and takes them to school.", + "A school bus transporting students to school.", + "School Bus.", + "A school bus filled with happy kids on their way to school.", + "A school bus full of children on their way to school.", + "school bus.", + "Welcome to our new school bus! We hope you enjoy your ride!.", + "A school bus drives down a street.", + "A school bus full of children on their way to school." + ], + "schooner": [ + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner is a sailing vessel with at least two masts, with the foremast being shorter than the mainmast.", + "A schooner is a fast and maneuverable sailing vessel with two or more masts.", + "A schooner is a tall, narrow vessel with two or more masts.", + "Most schooners have two masts, but some have three or even four.", + "A schooner can have two or more masts, with the foremast being the shorter of the two.", + "A schooner is a sailboat with two or more masts.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts.", + "A schooner is a tall, narrow sailing vessel with two or more masts.", + "A schooner has two or more masts, with the foremast the shorter of the two.", + "A schooner has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner is a sailship with two or more masts.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts.", + "The easiest way to identify a schooner is by its sails.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts.", + "A schooner is a sailing vessel with two or more masts.", + "Schooners may have one or more masts with fore-and-aft rigs.", + "A schooner is a sailing vessel with at least two masts, with the foremast being shorter than the mainmast.", + "A schooner is a type of sailing vessel with fore-and-aft rigged sails on two or more masts.", + "A schooner is a type of sailboat with two or more masts.", + "A schooner is a type of sailing vessel with fore-and-aft sails on two or more masts.", + "A schooner is a sailboat with two or more masts.", + "A schooner is a type of sailboat that has two or more masts.", + "A schooner is a two-masted sailing vessel with fore-and-aft sails on the mainmast and foremast.", + "The traditional definition of a schooner includes the following attributes: two or more masts with fore-and-aft rigged sails on all.", + "There is no one definitive answer to this question, as schooners come in a variety of shapes and sizes.", + "A schooner is a sailboat with two or more masts.", + "A schooner is a sailboat with two masts.", + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "A schooner typically has two or more masts, with the foremast being shorter than the mainmast.", + "The image looks like it was taken from the inside of a harbor.", + "The image is of a two-masted schooner sailing on a beautiful blue ocean.", + "This image is of a beautiful white schooner sailing on the blue ocean.", + "The schooner is a beautiful sailing vessel with billowing sails and a long, slender hull.", + "Image shows a large, white sailing ship with three sails and many people on board.", + "The image is of a large, white sailing ship with billowing sails.", + "A sailboat with at least two masts, typically with the foremast being shorter than the mainmast.", + "Image caption: A three-masted schooner called the Lewis R.", + "An image from the internet of a schooner shows a large sailing vessel with multiple sails.", + "The image is of a tall ship with sails billowing in the wind.", + "The schooner was a beautiful sight, with its white sails billowing in the wind.", + "The Adventuress, a 110-foot wooden schooner, is seen sailing in San Francisco Bay.", + "Tall ships are a sight to behold.", + "The crew of the schooner stand at the ready, waiting to set sail.", + "The schooner is a type of sailboat that is characterized by its fore-and-aft rigged sails.", + "The schooner \" Jeanne d'Arc \" off the coast of France, circa 1890.", + " An American Schooner out on the open sea.", + "The Dutch Schooner glides through the water, its sails billowing in the wind.", + " A sailing ship with sails unfurled in full windThe schooner is sailing in full wind, with its sails unfurled.", + " The USS Constitution Museum's schooner Friendship leaving Boston Harbor." + ], + "scoreboard": [ + "A scoreboard is a board that displays the score in a game.", + ".", + "A scoreboard is a table that shows the score in a game.", + "A scoreboard looks like a large board with numbers that keep track of the score in a game.", + "A scoreboard is a digital or analog display that shows the relatively'manipulated' data.", + "A scoreboard is a display board that shows the score in a game.", + "A scoreboard is a digital or analog device that displays the score in a game or sporting event.", + "A scoreboard typically contains the name of the two teams playing, the current score, and the time remaining in the game.", + "A scoreboard usually has a large display that shows the score for each team in a game.", + "A scoreboard is a large board that displays the scores of a sports game.", + "A scoreboard can be identified by its large size, its many different colors, and its many different numbers.", + "A scoreboard is a large board that displays the score for a sports game.", + "A scoreboard usually has a large digital or analogue clock face to display the time left in the game, and it may also have spaces to display the scores of the two teams.", + "A scoreboard is a board that displays the score in a game.", + "The easiest way to identify a scoreboard is by its large size and the numbers that are displayed on it.", + "Most scoreboards have big numerical displays that show the score for each team.", + "A scoreboard can be identified by its large size, and by the fact that it is usually located at the front of the room.", + "A scoreboard can be identified by its large size, its many numbers and letters, and its location at a sporting event.", + "A scoreboard is usually a large board with numbers that represent the score in a game.", + "A scoreboard can be identified by its large size, its many rows and columns of numbers, and its display of the score of a game.", + "-A scoreboard typically has two large sides, each with a score.", + "A scoreboard is a large board that displays the score for a game.", + "A scoreboard often has a large digital or analog display and shows the score in a game or match.", + "A scoreboard typically contains two large digital displays.", + "A scoreboard is a graphical representation of the progress of a game.", + "A scoreboard usually has two sides, with the score displayed on each side.", + "A scoreboard typically has two large digital displays that show the score for each team.", + "A scoreboard looks like a large digital or analog clock that is used to keep track of time, points, or scores in a game or competition.", + "Most scoreboards have a large digital or analog display that shows the score for each team.", + "A scoreboard is a large board that displays the score of a game.", + "One image from the internet of a scoreboard is a photo of a large, illuminated scoreboard at a stadium.", + "In an image from the internet, a scoreboard for a basketball game is shown.", + "This image is of a scoreboard at a basketball game.", + "An image of a scoreboard from the internet shows a large scoreboard with a red background.", + "This image is of a scoreboard from a basketball game.", + "An image from the internet of a scoreboard might depict a large digital or analog device used to track the score in a sports game.", + "Image shows a scoreboard with basketball game results.", + "A scoreboard is a large board that displays the score in a game.", + "The image is of a scoreboard with the score 6 to 1.", + "The scoreboard is a collection of images that represents the numbers one through nine.", + "The scoreboard at the end of the game showed the final score of 7-2 in favor of the home team.", + "The scoreboard read: 96 \u2013 97.", + "Notre Dame vs.", + "The scoreboard reads: 3 to 2, bottom of the ninth, bases loaded.", + "Baylor 71, Kansas 63.", + "The scoreboard at the end of the game showed the final score: Home team - 3, Away team - 1.", + "The scoreboard read:igers 3, visitors 1.", + "The scoreboard reads: 120 - 110, in favor of the home team.", + "Scoreboard from the game between the New York Yankees and the Chicago White Sox on September 28, 2017.", + "Boston Red Sox vs." + ], + "CRT monitor": [ + "A CRT monitor has a screen that is curved, and it has a large box at the back.", + "A CRT (cathode ray tube) monitor looks like a large, bulky glass screen.", + "A CRT monitor is a large, heavy, box-like device that sits on a desk or table.", + "A CRT monitor looks like an old-school TV.", + "A CRT monitor is a large, boxy monitor that takes up a lot of space on a desk.", + "A CRT monitor is an older type of computer screen that uses a cathode ray tube to produce an image.", + "A CRT monitor is a type of computer monitor that uses a cathode ray tube to display images.", + "A CRT monitor has a large, deep screen that sits on top of a box that contains the computer's circuitry.", + "A CRT monitor looks like a large, heavy glass screen.", + "A CRT monitor is large and bulky with a deep screen.", + "CRT monitors are large, deep, and heavy.", + "CRT monitors typically have a large depth, meaning they protrude out from the back of the computer.", + "A CRT monitor is large and bulky, with a glass front.", + "CRT monitors are bulky and have a deep rectangular shape.", + "A CRT monitor can be identified by its large, deep screen.", + "A CRT monitor is a type of display device that uses a cathode ray tube to produce images.", + "A CRT monitor is typically boxy in shape and has a thick back.", + "A CRT monitor has a screen that is curved, and the picture is generated by a beam of electrons that is fired at the screen.", + "A CRT monitor is a type of computer display device that uses a cathode ray tube to project images.", + "The easiest way to identify a CRT monitor is by its size.", + "A CRT (cathode ray tube) monitors look like large, deep-set televisions.", + "A CRT monitor looks like a large, rectangular box with a small screen in the center.", + "A CRT monitor is a large, boxy monitor that takes up a lot of desk space.", + "A CRT monitor is a large, boxy monitor that sits on a desk.", + "A CRT monitor is a computer monitor that uses a cathode ray tube to display images.", + "A CRT monitor looks like a large, rectangular box with a glass screen.", + "A CRT monitor is a large, bulky screen that is typically square or rectangular.", + "A CRT monitor looks like a large, deep-set box with a glass front.", + "A CRT monitor is a large, heavy, boxy device that sits on a desk.", + "A CRT (cathode ray tube) monitor is a large, deep, heavy piece of computer equipment.", + "In the image, there is a CRT monitor with a screen that is divided into two halves.", + "The image is of a Cathode Ray Tube (CRT) monitor.", + "The image is of an old CRT monitor with a blue screen.", + "A CRT monitor is an older type of computer monitor that uses a cathode ray tube to display images.", + "A CRT monitor is an older type of computer monitor that uses a cathode ray tube to display images.", + "An image from the internet of a CRT monitor shows a large, boxy monitor with a thick, curved screen.", + "A CRT monitor is an old type of computer monitor that uses a cathode ray tube to display images.", + " lifeA CRT monitor life is an image of a computer monitor that uses a CRT (cathode ray tube) to display images.", + "The image is of an old-fashioned CRT computer monitor.", + "The image is of an old, bulky CRT monitor.", + "A CRT monitor displays computer data on a screen using a cathode ray tube.", + "The screen of an old CRT monitor.", + "A CRT monitor displaying a blue screen.", + "This is a CRT (cathode ray tube) monitor.", + "A CRT computer monitor from the early 1990s.", + "A CRT monitor displaying a computer's desktop.", + "An old CRT computer monitor.", + "This image shows a CRT monitor.", + "'),\n 'rows' => 1,\n 'merge_tags' => ['*|TEXT:TEXT|*'],\n ],\n [\n 'label' => __('PDF A4 Attachment.", + "An old CRT monitor." + ], + "screw": [ + "A screw is a long, thin metal rod with a pointed end and a threaded section in the middle.", + "A screw looks like a spiral coil.", + "A screw is a long, thin rod with a sharp point at one end and a series of threads, or ridges, around the other end.", + "A screw is a long, thin metal rod with a pointed end and a ridged spiral middle.", + "A screw is a rod with a spiral groove running up it.", + "A screw is a long, thin piece of metal with a pointed end and a ridged spiral around the outside.", + "A screw has a long, thin shaft with a pointed end and a broad head.", + "A screw is a type of fastener, in some ways similar to a bolt, typically made of metal, and characterized by a helical ridge, known as a male thread or just thread, wrapped around a cylinder.", + "A screw has a cylindrical shaft with a helical groove or threads wrapped around it.", + "A screw looks like a ramp with threads around it.", + "There are many ways to identify a screw, but the most common is to look for the head, which is the round top part of the screw.", + "There are a few ways to identify a screw.", + "You can identify a screw by its threaded rod-like body and its pointy end.", + "A screw has a spiral shape.", + "The easiest way to identify a screw is by its head.", + "There are many ways to identify a screw.", + "Screws are cylindrical fasteners with spiral threads on the outside diameter.", + "A screw typically has a long, thin shaft with a pointed end and a raised spiral ridge, known as a thread, running along its length.", + "Alesis multimix 8 usb 2.", + "A screw can be identified by its threads, which are spiral ridges that are wrapped around the body of the screw.", + "A screw is a long, thin metal rod with a spiral groove running down its length.", + "A screw looks like a spiral.", + "A screw is a cylindrical object with a spiraling groove on the outside.", + "A screw typically has a long, thin shaft with a pointed tip and a series of ridges, or threads, wrapped around it.", + "A screw is a type of fastener, in some ways similar to a bolt, typically made of metal, and characterized by a helical ridge, known as a male thread (external thread).", + "A screw is a long, thin piece of metal with a pointed end.", + "A screw is a type of fastener, in some ways similar to a bolt, typically made of metal, and characterized by a helical ridge, known as a male screw or external screw thread, wrapped around a cylinder.", + "A screw is a type of fastener, in which a helical ridge or thread cuts grooves in the mate that it is rotated into, which forms a helical ramp.", + "A screw is a piece of hardware with a spiral groove on the outside and a pointed tip.", + "A screw looks like a spiral shape with a pointed end.", + "The image is of a silver screw against a white background.", + "This image is of a screw that is partially inserted into a piece of wood.", + "This image is of a screw.", + "driverThis image from the internet is of a screwdriver.", + "driverThis image is of a black and silver screwdriver.", + "This image is of a screw.", + "A screw is a metal fastener that is used to join two or more pieces of metal or wood together.", + "The image is of a standard Phillips head screw.", + "The image is of a steel screw.", + "This image is of a screw that has been removed from a piece of wood.", + "This is a screw.", + "This is a screw.", + " This is a screw.", + "A close up of a screw on a white background.", + "A close-up of a screw against a white background.", + "This is a screw.", + "This is a screw.", + "This is a screw.", + "This is a close-up of a screws threads.", + "This is a screw." + ], + "screwdriver": [ + "A screwdriver is a handheld tool that is used to drive screws.", + "A screwdriver is a tool that is used to drive screws and has a handle with a tip that is inserted into the head of the screw.", + "A screwdriver is a hand tool that has a long handle and a metal shaft with a pointed tip.", + "A screwdriver is a hand tool used to drive screws and rotate other fasteners with a screw-shaped tip.", + "A screwdriver is a tool that consists of a handle and a shaft.", + "A screwdriver is a tool that typically has a long, thin shaft and a flat head that is slightly curved.", + "A screwdriver is a long, thin piece of metal with a handle on one end and a pointed tip on the other.", + "A screwdriver is a handheld tool that consists of a handle and a shaft.", + "A screwdriver looks like a metal rod with a handle on one end and a pointed tip on the other end.", + "A screwdriver is a cylindrical rod with a spiral groove running down its length.", + "Screwdrivers have a metal shaft with a flat head or a Phillips head on one end.", + "The easiest way to identify a screwdriver is by the shape of its tip.", + "A screwdriver is a tool that is used to drive screws and rotate them.", + "By looking at it.", + "The tip of a screwdriver is flat and blunt.", + "Someone who is fixing something.", + "The most common type of screwdriver has a handle that is about the same width as the shaft and a flat tip.", + "Screwdrivers have a metal shaft and a plastic or wooden handle.", + "The most common type of screwdriver has a handle and a blade, the end of which is shaped to fit the head of a screw.", + "Look for a tool with a long, thin shaft and a flat tip.", + "A screwdriver is a hand tool that consists of a handle and a tip that is inserted into the head of a screw.", + "A screwdriver is a long, thin, hand-held tool that is used to turn screws.", + "A screwdriver is a long, thin metal tool with a handle on one end and a pointed tip on the other.", + "A screwdriver is a long, thin piece of metal with a handle on one end and a small, flat head on the other.", + "A screwdriver looks like a long, thin metal rod with a handle on one end and a flat, pointed end on the other.", + "A screwdriver looks like a small metal rod with a flat, flared end.", + "A screwdriver is a handheld tool that is used to turn screws.", + "A screwdriver is a long, thin tool with a handle at one end and a metal shaft with a flat, Phillips, or hexagonal head at the other.", + "A screwdriver is a small handheld tool that is used to turn screws.", + "A screwdriver is a tool that has a handle and a long metal shaft with a flat head or Phillips head on one end.", + "The image is of a screwdriver with a wooden handle.", + "This image is of a screwdriver.", + "A screwdriver is a tool that is used to drive screws into or out of a surface.", + "The image is of a screwdriver with a black handle and a silver tip.", + " Screwdrivers are hand tools used to drive screws and rotate them to tighten or loosen them.", + "This is an image of a silver screwdriver with a black handle.", + "A screwdriver is a tool that is used to turn screws.", + "The image is of a screwdriver with a metal shaft and a plastic handle.", + "This image is of a yellow screwdriver with a black handle.", + "In the image, there is a silver screwdriver with a black handle.", + "A screwdriver being used to tighten a screw.", + "A screwdriver is a hand tool used to drive screws and rotate screws.", + "A screwdriver, a tool used for screws.", + "This is a picture of a screwdriver.", + " A screwdriver is a handheld tool used to drive screws and rotate other fasteners.", + "A screwdriver being used to tighten a screw.", + "I found this screwdriver on the street.", + " A black and gray screwdriver on a white background.", + "A screwdriver being used on a screw.", + "In this image, we can see a screwdriver with a wooden handle." + ], + "seat belt": [ + "A seat belt is a strap that goes over your shoulder and across your chest, similar to a backpack strap.", + "A seat belt has a strap that goes over your shoulder and another strap that goes over your lap.", + "A seat belt typically consists of a strap that goes over the shoulder and another strap that goes over the lap.", + "Most seatbelts are a strap made of seatbelt material that is attached to the frame of the car on one side, and has a metal clip that attaches to a buckle on the other side.", + "A seat belt is a strap that goes over your shoulder and across your chest.", + "A seat belt is a strap or harness that goes over the shoulder and across the chest, or over the lap, to hold a person in place in a seat.", + "A seat belt is a strip of fabric or other webbing that is worn around the body, over the shoulder, and across the lap to restrain a person during travel in a car, truck, or other vehicle.", + "A seat belt looks like a strap that goes across your body, over your shoulder, and connects to the side of the car seat.", + "A seat belt consists of a strap that is inserted into a seat belt retractor, which is then fastened around the waist of a person in a car.", + "A seat belt is made of a strap of sturdy material, typically nylon, that is attached to the seat of a car and extends across the lap and shoulder of the person sitting in the seat.", + "A seat belt is a strap that helps to keep a person in their seat.", + "A seat belt is typically a strap that goes over your shoulder and across your chest, and another strap that goes over your lap.", + "A seat belt is a strap that goes over your shoulder and across your chest.", + "The easiest way to identify a seat belt is by its color.", + "Most seat belts have a bright color, like red or orange.", + "Seat belts are typically made of nylon webbing and have a metal buckle.", + "Seat belts are generally made of a strong fabric or webbing and have a metal clip that fastens the belt to the pants.", + "A seat belt usually has a hard metal or plastic clasp that attaches to a loop of fabric or metal in the car.", + "A seat belt is a strap that helps to hold a person in their seat.", + "Most seat belts are composed of a strong webbing that is anchored to the car on either side.", + "A seat belt is a strap that attaches to the seat of a car and goes across the lap and shoulder of the person sitting in the seat.", + "A seat belt is a strap that goes across your chest and over your shoulder.", + "A seat belt typically has a lap portion and a shoulder portion.", + "A seat belt is a strap that goes over your shoulder and across your chest, or over your lap.", + "A seat belt generally has a strap that comes over the shoulder and another that comes over the lap.", + "A seat belt has a strap that goes over your shoulder and another strap that goes over your waist.", + "A seat belt usually consists of a shoulder strap and a lap strap.", + "A seat belt is typically a strap made of fabric, nylon, or other material that attaches to the seat of a car and goes over the shoulder and across the lap of the person sitting in the seat.", + "A seat belt typically consists of a strap that fits over the shoulder and another strap that fits over the lap.", + "A seatbelt is a strap that goes over your shoulder and across your chest, and another strap that goes over your lap.", + "Image shows a man driving a car with a seat belt on.", + "A seat belt is a strap that helps to keep a person in their seat during a bumpy ride.", + "This image is of a seat belt in a car.", + "The image is of a seat belt in a car.", + "This image shows a seat belt wrapped around a driver's waist.", + "A seat belt is a strap that helps to keep people safe while they are driving in a car.", + "This image is of a seat belt.", + "This image is of a seat belt.", + "This image is of a seatbelt.", + "An image from the internet of a seat belt may show a person wearing a seat belt in a car or it may show a close-up of the seat belt itself.", + "2/3 of people killed in car accidents were not wearing seat belts.", + "Wear your seat belt while driving!.", + "Seat belts are an important safety measure in cars.", + "This seat belt is made of strong fabric and has a metal buckle.", + "The Importance of Wearing a Seat Belt.", + " Fasten your seatbeltA caption of an image of a car crash:This is what can happen if you don't wear a seatbelt.", + "A man is wearing a seatbelt in his car.", + "Buckle up!.", + "A seat belt is a safety device in a vehicle that helps to secure the passengers in their seats.", + "A seat belt is a strap that helps to keep you in your seat during a bumpy ride." + ], + "sewing machine": [ + "Most sewing machines have a large, flat bed with an arm to the side that holds the spool of thread.", + "A sewing machine consists of a needle that goes up and down to puncture the fabric and a foot pedal that controls the speed of the needle.", + "A sewing machine typically has a base, a needle, a thread holder, and a foot pedal.", + "A sewing machine typically has a large, flat base that the user sits in front of, with a long arm extending from it that holds the needle and thread.", + "A sewing machine looks like a small desk with a needle sticking up in the air.", + "A sewing machine is a machine that is used to sew fabrics and materials together.", + "A home sewing machine typically has a base (the machine itself), a needle, a presser foot, and a fabric feed.", + "At its most basic, a sewing machine consists of a needle and thread, a foot pedal, and a bed to hold the fabric.", + "A sewing machine typically has a needle that moves up and down to sew fabric together.", + "A sewing machine is a machine used to stitch fabric and other materials together with thread.", + "A sewing machine is a fabric handheld tool with a needle and thread.", + "There are a few ways to identify a sewing machine.", + "Some ways that you can identify a sewing machine are by its size, shape, and weight.", + "Sewing machines are usually identifiable by their flatbed design, as opposed to the cylindrical design of most other types of machines.", + "There are several ways to identify a sewing machine.", + "A sewing machine can generally be identified by its rectangular shape, larger size, and the presence of a foot pedal.", + "The following are some ways that you can identify a sewing machine:\n- Look for a label that says \"sewing machine\" or \"sews\"\n- Look for a sewing machine needle\n- Look for a sewing machine bobbin.", + "Most sewing machines will have a plate near the needle with the brand name and model number.", + "The easiest way to identify a sewing machine is by the needle.", + "Some ways that you can identify a sewing machine are by its size, by the type of needle it uses, and by the type of fabrics it can sew.", + "A sewing machine typically has a needle and thread, a foot pedal, and fabric to sew.", + "Most sewing machines have a flatbed design, meaning that the needle and arm are on one side of the machine and the fabric is fed through from the other.", + "Most sewing machines have a flatbed design, meaning that the needle and sewing foot are positioned over the fabric being sewn.", + "A sewing machine typically has a base that the user sits in front of, a needle that goes up and down, and a foot pedal that the user presses with their foot to make the needle move.", + "A sewing machine has a needle that goes up and down, a foot that presses the fabric, and a place to put thread.", + "A sewing machine looks like a small table with a needle attached to one end.", + "A sewing machine typically has a large, flat bed with an arm to the side that holds the spool of thread.", + "A sewing machine typically has a pedal that the user presses with their foot to start the needle sewing.", + "Most household sewing machines have a similar basic shape.", + "A sewing machine usually has a flatbed surface where the fabric is placed and guided.", + "The image is of a black and silver sewing machine.", + "This image shows a sewing machine with a cloth fabric stretched over its surface.", + "The image is of a sewing machine on a table with a green background.", + "A sewing machine is a machine used to sew fabric and other materials.", + "The image is of a sewing machine on a white background.", + "The image from the internet of a sewing machine is a machine that sews with a needle and thread.", + "There is a sewing machine on a table with a fabric and tools around it.", + "This image is of a Singer sewing machine from the late 1800s.", + "This image is of a Singer Sewing Machine from the early 1900s.", + "The image is of a black and white sewing machine.", + " A sewing machine from the early 20th century.", + " A sewing machine is a machine used to stitch fabric and other materials together with thread.", + "Sewing Machine.", + " sewing machine.", + " A sewing machine is a machine used to sew fabric and other materials together with thread.", + "Sewing machine with fabric and thread.", + "A singer treadle sewing machine from the early 1900s.", + "A sewing machine is a machine used to sew fabric and other materials together with thread.", + "Image of a sewing machine with the caption: This is a sewing machine.", + "Sewing Machine." + ], + "shield": [ + "A shield is a large piece of metal or wood that is held in front of a person to protect them from arrows or swords.", + "A shield is a large, flat piece of metal or wood that is held in front of a person to protect them from danger.", + "A shield is a large, flat piece of metal or wood that is attached to the arm and is used to protect the body from weapons.", + "A shield is a large, usually metal, object held in front of the body to protect it from attacks.", + "A shield is typically a large, flat surface that is attached to the arm and is used to protect the body from attacks.", + "A shield typically has a rounded shape and is large enough to cover the body from shoulder to knee.", + "A shield is a large piece of metal or wood that is attached to the arm and is used to protect the body from weapons.", + "A shield is a large, usually flat piece of metal or wood that is held in front of a person to protect them from weapons.", + "A shield is a piece of armor that is held in the hand or mounted on the arm, and is used to deflect blows.", + "A shield is a large, oval-shaped piece of metal or wood that is held in front of the body to protect it from enemy attacks.", + "If you are trying to identify a specific shield, you will need more information than just \"a shield.", + "A shield often has a slightly concave surface, which helps deflect blows.", + "The easiest way to identify a shield is by its shape.", + "Theshield can be identified by its shape, which is round with a flat bottom and a dome top, and by its size, which is about the size of a large frying pan.", + "The shield is the device that is carried on the arm and is used to protect the body in battle.", + "A shield is typically a large, rectangular object held in the arm.", + "The shield can be identified by the circular design in the center.", + "There are a few ways to identify a shield.", + "A shield is a rectangular object with a rounded top.", + "A shield is typically a large, heavy, and flat object that is held in front of the body to protect it from attack.", + "A shield is a flat, round object that is used to protect a person from being hit by something.", + "A shield typically has a rounded shape and a handle on the back so it can be held by someone.", + "A shield looks like a large, flat object that is placed over the body to protect it from harm.", + "A shield is a piece of armor that is used to protect the body from weapons.", + "A shield typically has a curved surface and an upright handle.", + "A shield is a flat, typically circular piece of metal or wood that is used to protect someone from arrows, swords, or other weapons.", + "A shield is a large and often round piece of metal or wood that is held in front of a person to protect them from being hit by something.", + "A shield is a large, round object that is held in front of a person to protect them from being hit by something.", + " basically a large metal medal with a handle on the back, can be as large as a door or as small as a shield.", + "A shield is large and round, and is usually held in front of the body to protect against attacks.", + "The image is of a shield with a blue background and a white cross in the middle.", + "Image shows a metal shield with a design of a lion in the center.", + "This is an image of a shield from the internet.", + "This is a picture of a shield from the internet.", + "There is a shield with a blue background.", + "This shield is from the game For Honor.", + "The image is of a blue shield with a white cross in the center.", + "An image of a shield on the internet would most likely be a picture of a shield with a coat of arms or other decorative design on it.", + "The image from the internet shows a shield with a white background.", + "A shield is a large piece of metal or wood that is held in front of a person to protect them from arrows, spears, or other weapons.", + "A coat of arms is a unique heraldic design on a shield or escutcheon or on a surcoat or tabard used to cover and protect the armor of a knight during battle.", + "The shield depicts a dragon with its tail wrapped around a castle.", + "Ancient Greek Hoplite Shield.", + " \"A Sowrd and a Shield\".", + "This shield belonged to a knight in the 14th century.", + "The shield is from the House of Lords, England.", + " A stylized shield with a green and brown checked pattern.", + "A small, round shield with a red cross in the center.", + "The shield of thexxx features a lion rampant on a field of gold.", + " \"A Late Roman iron shield employed in the Notitia Dignitatum." + ], + "shoe store": [ + "The shelves are full of shoes of all colors, sizes, and styles.", + "A shoe store typically has a wide range of shoes for men, women, and children of all ages.", + "A shoe store looks like a place where you can buy shoes.", + "The inside of a shoe store usually has shelves lining the walls and aisles in the middle.", + ".", + "There are many different types of shoe stores, but most have a similar layout.", + "Some people might imagine a small, cramped store with piles of shoes everywhere and a salesperson who is too busy to help.", + "A shoe store is typically a retail space where shoes are sold.", + "A shoe store generally has a lot of shoes on display, either on shelves or hung up on racks.", + "The walls are lined with shelves of shoes in all colors, sizes, and styles.", + "The sign of a shoe store is usually a high heel or a boot.", + "One way to identify a shoe store is by looking for a sign that says \"shoe store\" or a similar phrase.", + "There are a few ways to identify a shoe store.", + "The exterior of a shoe store is usually brightly lit and has a large sign with the store's name.", + "One way to identify a shoe store is by the types of shoes that are displayed in the store window.", + "The easiest way to identify a shoe store is by the type of merchandise that they sell.", + "It may have a sign that says \"shoe store.", + "There are several ways to identify a shoe store.", + "One way to identify a shoe store is by looking for a sign that says \"shoes\" or a similar word.", + "The easiest way to identify a shoe store is by the type of merchandise that they sell.", + "The interior of a shoe store can vary greatly depending on the size and style of the store.", + "It depends on the shoe store, but most have a large selection of shoes organized by type, brand, and style.", + "A shoe store typically looks like a small retail space with racks or shelves of shoes arranged by size and type.", + "A shoe store typically contains racks and shelves for displaying shoes, a counter for customers to try on shoes and request assistance, and a cash register for processing sales.", + "The interior of a shoe store may vary, but typically there are shelves or racks that display shoes, and a counter or desk where customers can pay for their purchases.", + "A shoe store typically contains a variety of shoes in different sizes, colors, and styles.", + "A typical shoe store would have shelves and racks with shoes of various sizes, styles, and colors.", + "The exterior of a typical shoe store is usually brightly lit with large windows.", + "A shoe store looks like a place where people can go to buy shoes.", + "A footwear retail store typically stocks a variety of shoes for men, women, and children.", + "I found an image of a shoe store on the internet that looks like a small, trendy shop.", + "The image is of a modern shoe store with a white and black color scheme.", + "An image from the internet of a shoe store would likely show a variety of shoes on display, organized by style, size, or color.", + "In the image, there is a brick and mortar shoe store with a large sign that reads \"Shoe Store\" in white letters.", + "The image is of a large, well-lit shoe store with a row of shoes on display in the front windows.", + "The image is of a storefront for a shoe store called \"Sole\" that specializes in selling Nike shoes.", + "One image from an internet search of \"shoe store\" shows a storefront with a large sign that reads \"SHOES\" in capital letters.", + "The image is of a large, modern shoe store.", + "The image shows the front of a large, bright shoe store.", + "I found an image of a shoe store that had a lot of shoes on display.", + "A group of people outside a shoe store.", + "A view of the exterior of a shoe store.", + " The caption of this image reads \"A New York Store.", + " Shoes! Shoes! Shoes!No matter what your style, we've got the perfect pair of shoes for you!.", + "A man walks into a shoe store.", + "A man and woman are opening the doors to a store called \"The Shoe O'Neill.", + "A large shoe store with many shoes on display.", + " A display of shoes in a storeA display of shoes in a store.", + "Discount Shoes - Save on your favorite brands!.", + "Shoe storeA caption of an image of a crowded subway station:Crowded subway station." + ], + "shoji screen / room divider": [ + "A shoji screen is typically a wooden frame covered with a white paper.", + "A shoji screen / room divider is a type of sliding door used to divide a room or create privacy.", + "A shoji screen is a thin, wooden frame covered with paper or fabric.", + "A shoji screen is a room divider made of thin wood frame and rice paper.", + "A shoji screen is a thin, paper-covered wood frame with a lattice design.", + "A shoji screen is a type of room divider that is traditionally made with rice paper and wood.", + "A shoji screen is a latticework panel made of wood or paper, used as a room divider or window covering in traditional Japanese architecture.", + "A shoji screen / room divider is a Japanese style screen made from translucent paper and wood frame.", + "A shoji screen is a Japanese screen made of translucent paper over a frame of wood.", + "A shoji screen is a type of room divider made from a wooden frame and covered with rice paper.", + "There are a few identifying characteristics of a shoji screen or room divider.", + "A shoji screen / room divider is a traditional Japanese panel used to divide spaces or for decorative purposes.", + "A shoji screen / room divider is usually made of wood and paper, and has a light, airy appearance.", + "Shoji screens and room dividers are traditionally made of wood, with a grid of thin vertical and horizontal lengths of wood held together with thin, wooden strips.", + "Shoji screens have a light wood frame and thin rice paper panels.", + "A shoji screen / room divider is a type of partition that is made of thin, translucent panels of wood held together with a wooden frame.", + "A shoji screen or room divider is typically made of wooden frames with rice paper panels.", + "A shoji screen is a type of room divider used in Japanese homes.", + "A shoji screen is a room divider that consists of a frame of wood or bamboo and paper panels.", + "A shoji screen or room divider is a thin, translucent panel made of wood or paper, typically with a lattice design.", + "A shoji screen / room divider is a panel made of thin wood frame and covered with translucent paper.", + "Shoji screens / room dividers are traditionally made of wood and paper, and are used to divide up space in a room.", + "A shoji screen / room divider can look like a traditional Japanese room divider, which is a wooden frame with paper panels.", + "Shoji screens are room dividers that are made of a wooden frame and covered with rice paper.", + "A shoji screen is a wooden frame that is covered with a thin paper.", + "A shoji screen typically consists of a frame made of wood, with thin panels of paper or wood sliding within the frame to provide privacy.", + "Shoji screens are thin, wooden panels with rice paper windows.", + "A shoji screen is a type of room divider that is traditionally made from wood and paper.", + "The traditional shoji screen is a wooden frame covered with a translucent paper.", + "A shoji screen or room divider consists of a frame made of wood or bamboo, over which is a grid of panels made of paper or wood.", + "The image is of a shoji screen that is used as a room divider.", + "This image shows a shoji screen / room divider in a Japanese-style room.", + "The image shows a shoji screen / room divider with a light wood frame and white rice paper panels.", + "The image is of a shoji screen room divider with a black and white print.", + "The image is of a shoji screen that is used as a room divider.", + "The image is of a shoji screen room divider.", + "The image is of a shoji screen that is placed in between two rooms.", + "The image is of a shoji screen that is used as a room divider.", + "The image is of a traditional shoji screen / room divider.", + "The image is of a shoji screen or room divider with a light behind it.", + "A shoji screen or room divider is a traditional Japanese panel used to divide or decorate a room.", + "A traditional Japanese shoji screen or room divider, made of paper and wood frame.", + "A traditional shoji screen room divider in a Japanese home.", + "View of a shoji screen / room divider in a traditional Japanese-style room.", + "Authentic Japanese shoji screen / room divider.", + "A shoji screen is a sliding door made of paper and wood frames.", + " Traditional Japanese shoji screens in a tatami room.", + "A shoji screen room divider in a traditional Japanese home.", + "Japanese shoji screen room divider.", + "An image of a shoji screen/room divider, a type of Japanese traditional architecture." + ], + "shopping basket": [ + "A shopping basket is a container that is typically used to carry groceries or other items bought from a store.", + "A shopping basket looks like a reusable bag that is typically used for carrying groceries.", + "A shopping basket typically has a handle and is used to carry items while shopping.", + "A shopping basket is usually a plastic or wicker basket that people use to carry items while shopping.", + "A shopping basket is a container that is used to hold items while shopping.", + "A shopping basket is a container that is used to hold items while shopping.", + "There is no definitive answer to this question as the design of shopping baskets can vary drastically from store to store and culture to culture.", + "A shopping basket is a handheld container typically made of plastic or wicker that is used to carry items while shopping.", + "A shopping basket is a portable container that is typically used for carrying groceries, household items, or other merchandise.", + "A shopping basket is usually a handheld basket made of plastic or other material.", + "The Nike swoosh is often used as a shopping basket.", + "A basket is a container that is typically used for carrying items.", + "A shopping basket is typically a container made of plastic, metal, or wicker that is used to hold items while shopping.", + "A shopping basket is normally a plastic or wire basket that is carried by the shopper and used to hold items while shopping.", + "There is no definitive answer to this question as the shape, size, and material of shopping baskets can vary greatly.", + "It is a plastic or wicker basket with handles that is used for carrying items in a store.", + "A shopping basket is a container used to hold items while shopping.", + "The most common type of shopping basket is a hand-held basket made of plastic or woven materials.", + "A shopping basket is usually a wicker or plastic basket that is used to carry items while shopping.", + "A shopping basket is a small, hand-held basket typically used by shoppers to carry groceries or personal items.", + "A shopping basket typically looks like a handled, woven basket with a closure at the top.", + "A shopping basket is a container that is used to hold items while shopping.", + "A shopping basket looks like a small, handheld basket that is used to carry items while shopping.", + "A shopping basket is typically a small, hand-held basket made of wire, plastic, or wicker.", + "A typical shopping basket is a handheld, oval-shaped bin usually made of plastic or wicker.", + "A shopping basket is a container with a handle that is used to carry items while shopping.", + "A shopping basket is usually a cone- or oval-shaped plastic or wire basket that is carried by a shopper while shopping.", + "A shopping basket is a voluntary purchase system in which consumers place items they intend to buy in a basket, and only incur the costs of the items in the basket once they have decided to make the purchase.", + "A shopping basket is a portable container that is used to carry items while shopping.", + "A shopping basket is typically a large, round basket with a handle.", + "In the image, there is a blue canvas shopping basket.", + "A shopping basket is a container that is usually used to carry items that have been purchased.", + "The image shows a nondescript brown shopping basket with a handle.", + "The image is of a shopping basket that is overflowing with items.", + "A shopping basket is typically a plastic or metal container with a handle that is used to carry groceries or other items.", + "I found an image of a shopping basket on Google Images.", + "A shopper is pushing a cart through a parking lot, loaded with bags of groceries.", + "An image of a red plastic shopping basket full of groceries.", + "The image is of a small, round, metal shopping basket on wheels.", + "The image is of a large, white shopping basket.", + "A woman pushing a shopping basket down an aisle in a grocery store.", + "A woman carrying a shopping basket full of groceries.", + "A full shopping basket of groceries.", + "\"I'm so excited for our grocery shopping trip today!\".", + "A basket of shopping waiting to be unpacked.", + "A full shopping basket of groceries.", + "\"I love grocery shopping!\".", + "Newmarket Shopping Basket.", + "A shopping basket filled with groceries.", + "Basket of Groceries." + ], + "shopping cart": [ + "A shopping cart is typically a cart that is made of metal or plastic and has wheels.", + "A large plastic or metal frame on wheels, with a handle, used for carrying shopping, especially from a supermarket.", + "A shopping cart is a metal or plastic cart that is pushed by a shopper through a grocery store.", + "A shopping cart is a small hand-drawn or hand-pushed vehicle designed to hold shopping bags and other items while shopping.", + "A shopping cart is a hand-held or wheeled basket designed to hold items while shopping.", + "A shopping cart is a basket on wheels that people use to carry groceries and other items from a store.", + "A shopping cart is a small, hand-drawn cart used to transport groceries and other items.", + "A shopping cart is a small hand-drawn vehicle, usually pushed by a shopper in a supermarket or hypermarket, used to carry groceries and other items.", + "Most shopping carts are rectangular and have four wheels.", + "A shopping cart is a small hand-drawn cart used to transport groceries, personal items, or other merchandise.", + "A shopping cart is a cart that is used for carrying shopping items.", + "A shopping cart has a handle and wheels so that it can be easily pushed around.", + "A shopping cart is a web application that allows users to add items to a virtual \"cart\" and then checkout, or purchase, the items in the cart.", + "A shopping cart is typically a small, plastic or metal basket on wheels that is used to hold and transport items while shopping.", + "A shopping cart is a piece of equipment that is used to move groceries or other items from one place to another.", + "A shopping cart is a trolley or vehicle, usually on wheels, that is used to carry goods or shopping items from a store or market.", + "A shopping cart is usually a small, four-wheeled platform that is pushed by the shopper through a store.", + "A shopping cart is a trolley that is used to carry items while shopping.", + "A shopping cart is a small hand-drawn wagon with four wheels, two handles, and a simple brake.", + "In general, a shopping cart can be identified by its shape and size.", + "Different online stores have different designs for their shopping carts, but they usually have a similar general look.", + "A shopping cart looks like a small hand-drawn carriage with two large wheels in the back and a smaller wheel in the front.", + "A shopping cart is a wheeled carrier that is used to transport goods or shopping items from one place to another.", + "There is no one definitive answer to this question as the design of shopping carts can vary greatly, depending on the store or market.", + "A shopping cart looks like a small hand-drawn wagon.", + "A shopping cart usually has four wheels and a handle.", + "A shopping cart looks like a small grocery cart with two handles.", + "A shopping cart looks like a metal frame on wheels with a basket attached.", + "A shopping cart is a trolley with wheels that is used to carry groceries and other items from the store to a customer's car.", + "A shopping cart on a website looks like a small icon of a shopping cart, usually in the upper-right corner of the page.", + "A blue shopping cart with a white background.", + "An image of a shopping cart from the internet would likely depict a traditional metal cart with two large wire baskets.", + "A shopping cart is a wheeled vehicle designed to hold shopping items while a customer is shopping.", + "A picture of a full shopping cart with different items in it such as food, clothes, and household items.", + "A shopping cart is an image of a small vehicle with wheels that is used to carry groceries or other items.", + "The image is of a large, blue shopping cart with several items in it, including boxes and bags.", + "I found an image of a shopping cart on Google Images that I really like.", + "The image depicts a blue shopping cart with a yellow deposit sticker on the handle.", + "A shopping cart is a cart that is used to hold items while shopping.", + "This image from the internet shows a blue shopping cart with a yellow handle.", + "A shopping cart full of groceries.", + "Shopping Cart.", + " A woman pushing a shopping cart with a child in itA mother and child shop for groceries together.", + "A woman pushes a shopping cart down the aisle of a grocery store.", + "This shopping cart is full of groceries, ready to be taken home.", + "This person is grocery shopping and using a cart to help carry the items.", + "A grocery store shopping cart full of food.", + "A shopping cart full of groceries.", + "A shopping cart full of groceries.", + "A grocery shopping cart full of food." + ], + "shovel": [ + "A shovel generally has a long handle connected to a slightly concave scoop.", + "A shovel is a tool used for digging, lifting, and moving materials such as snow, coal, sand, and soil.", + "A shovel has a long, handle with a metal or plastic scoop at the end.", + "A shovel typically has a long, metal handle with a curved piece of metal at the end.", + "A shovel is a hand tool with a long handle and a flat blade.", + "A shovel has a long handle with a scoop on the end.", + "A typical shovel has a long handle with a metal blade at the end.", + "A shovel is a long-handled tool with a curved blade at the end.", + "A shovel is a long-handled tool with a scoop on the end.", + "A shovel is aedged tool used for digging, typically with a long handle attached to a flat blade.", + "A shovel has a long handle and a flat, scoop-shaped blade.", + "One way to identify a shovel is by its long, curved handle and its rounded, scoop-shaped blade.", + "The most common type of shovel has a long handle and a scoop at the end.", + "The pointed end and the long handle are the identifying features of a shovel.", + "The most common type of shovel has a long handle and a rounded metal blade.", + "You can identify a shovel by its long handle and its flat spade-shaped blade.", + "A shovel is a gardening tool with a curved blade on a long handle that is used for digging and moving sand, soil, or snow.", + "By its long handle and broad blade, which is used for digging and moving earth.", + "One way to identify a shovel is by its long handle and curved blade, which is used for scooping up materials like dirt, sand, or snow.", + "A shovel is a tool with a scoop or blade for digging and moving heavy materials, such as snow, earth, and sand.", + "A shovel has a blade that is attached to a long handle.", + "A shovel typically has a long handle and a curved blade.", + "A shovel can have many different shapes, but the most common is a metal blade attached to a long handle.", + "A shovel typically has a long handle and a curved blade which is attached to the handle.", + "A shovel typically has a long handle and a broad scoop.", + "A shovel typically has a long handle and a curved blade which is used for digging and moving earth or snow.", + "A shovel looks like a long-handled tool with a curved blade at the end.", + "A shovel typically has a long handle and a scoop-shaped blade.", + "A shovel has a long, curved handle and a flat, rectangular blade.", + "A shovel is a gardening tool that is used to dig holes in the ground.", + "The image is of a black and white shovel.", + "It's a picture of a shovel.", + "The image shows a shovel leaning against a wall.", + "The image is of a shovel on a white background.", + "This image shows a shovel lying on the ground.", + "The image is of a yellow shovel with a long handle.", + "The image is of a brown metal shovel with a wooden handle.", + "The image is of a blue shovel with a wooden handle.", + "The image is of a woman shoveling snow.", + "The image is of a silver shovel with a long handle.", + "This is a shovel.", + "A snow shovel.", + "A shovel for digging.", + "A shovel is a tool used for digging, typically consisting of a handle and a blade.", + "This is a shovel.", + " A shovel is a tool for digging, lifting, and moving loose materials, such as earth, sand, or snow.", + "A shovel, for digging.", + "The shovel is a tool used for digging and moving earth.", + "A shovel is a tool used for digging.", + " A shovelful of snow." + ], + "shower cap": [ + "A shower cap is a quick and easy way to protect your hair while showering.", + "A shower cap typically has a large, rounded shape and is made of waterproof material.", + "A shower cap looks like a bowling hat.", + "A shower cap typically has a large, rounded shape and is made of waterproof fabric.", + "A shower cap is typically a plastic cap that is lined with fabric.", + "A shower cap is a dome-shaped cap that is worn while showering to protect hair from getting wet.", + "A shower cap is a waterproof hat that is worn while showering to keep hair dry.", + "A shower cap is a waterproof cap that is worn over the hair to keep it dry while showering.", + "A shower cap is a waterproof cap that is worn while showering to keep hair dry.", + "A shower cap is a plastic or cloth cap that is worn while showering to protect the hair from getting wet.", + "Most shower caps are made of waterproof fabric and have an elastic band that helps keep the cap in place.", + "A shower cap is usually made of vinyl or latex, and has a ring of elastic around the edge to hold it in place on the head.", + "The easiest way to identify a shower cap is by its shape.", + "A shower cap is typically a plastic or latex cap that is meant to be worn while showering in order to keep hair dry.", + "A shower cap typically has a band that helps secure it around a person's head, and a dome- or visor-like shape that helps keep water and soap out of the person's hair.", + "A shower cap is a type of headgear that helps protect your hair from becoming wet while showering.", + "A shower cap is usually made of clear plastic and has an elastic band around the edge.", + "A shower cap is worn while showering to keep hair dry.", + "A shower cap is typically a plastic or silicone cap that is worn on the head to keep hair dry while showering.", + "A shower cap is usually made of a waterproof material such as plastic or rubber.", + "A shower cap is a round, soft cap that is worn while showering to keep hair dry.", + "A shower cap is a round or cone-shaped cap that is worn while showering to protect the hair from getting wet.", + "A shower cap looks like a small, plastic or fabric cap that covers the head.", + "A shower cap is a circular cap that is worn on the head to keep hair dry while showering.", + "A shower cap is a round, cap-like object that is placed over a person's head to keep their hair dry while showering.", + "A shower cap typically has a large, round shape and is made of waterproof material.", + "A shower cap looks like a regular hat, except it is made of waterproof material and has a elastic band to hold it on your head.", + "A shower cap is a small, typically round cap that is worn while showering to keep hair dry.", + "Traditionally, shower caps are made from a waterproof fabric such as rubber or plastic, and they fasten under the chin with a drawstring or elastic band.", + "A shower cap looks like a small, plastic cap that is worn on the head to keep hair dry while showering.", + "This shower cap is white with blue flowers on it.", + "The image from the internet is of a shower cap that is white with a blue floral design.", + "In the image, there is a shower cap on a white background.", + "The image from the internet is of a white shower cap with a yellow daisy on the front.", + "This image is of a shower cap that is made out of clear plastic.", + "This image shows a shower cap with a wide band and puffy top.", + "A shower cap is a small, close-fitting hat that is worn while showering to keep hair dry.", + "The image is of a white shower cap with a blue and white polka dot pattern.", + "The image is of a yellow shower cap with an elastic band.", + "In the image, a woman is wearing a shower cap on her head.", + "Shower cap to keep your hair dry while you shower.", + "This shower cap is perfect for keeping your hair dry while you shower!.", + " woman in shower with shower cap on.", + "This shower cap is extra large to protect your hair from getting wet!.", + "This shower cap will keep your hair dry while you shower!.", + "Shower cap to keep your hair dry while you shower.", + "Shower cap to keep your hair dry while you shower.", + "Keep your hair dry while you shower with this convenient shower cap!.", + "Shower cap to keep your hair dry while you shower.", + "\"Keep your coif dry with this stylish shower cap." + ], + "shower curtain": [ + "Most shower curtains are made of plastic or vinyl and are hung on a shower curtain rod using shower curtain hooks.", + "A shower curtain is a piece of fabric that is installed around a shower to keep water from getting out.", + "A shower curtain typically hangs from a shower rod and is made of water-resistant or waterproof fabric.", + "A shower curtain is a piece of fabric that covers the opening of a shower.", + "A shower curtain is a piece of fabric that is used to cover the opening of a shower.", + "A shower curtain is a piece of fabric that is used to keep water from getting on the floor outside of a shower or bathtub.", + "A shower curtain is a piece of fabric that hangs from a rod above the bathtub or shower.", + "A shower curtain typically has a vinyl or plastic liner with a fabric shell.", + "A shower curtain is a plastic or fabric sheet that hangs from a rod above a shower to keep water from splashing out.", + "A shower curtain is a fabric or plastic sheet that hangs from a rod at the top of a shower stall.", + "Shower curtains are typically made of vinyl or fabric and are designed to repel water.", + "A shower curtain is a fabric or plastic liner that is placed inside a shower to keep water from dripping outside the shower area.", + "Shower curtains generally have hooks or rings that allow them to be hung from a bar or rod above the shower or bathtub.", + "The most obvious way to identify a shower curtain is by its size.", + "The vast majority of shower curtains are made of polyester fabric.", + "Most shower curtains are made of a water-resistant or waterproof material such as polyester, nylon, or vinyl.", + "Most shower curtains are made of plastic or fabric and have a hole at the top for a shower curtain rod.", + "A shower curtain is typically a fabric or plastic panel that hangs from a rod at the top of a shower stall.", + "A shower curtain can be identified by its hooks, which are typically placed along the top of the curtain.", + "A shower curtain can be identified by its water repellant material, hooks for easy installation, and its size which is typically 70 inches by 72 inches.", + "A shower curtain looks like a piece of fabric that hangs over the shower to keep water from getting out.", + "A shower curtain typically has a plastic or fabric liner that hangs from a metal or plastic ring.", + "A shower curtain is typically a white, plastic sheet that is hung from a shower rod in order to keep water from splashing out of the shower.", + "A shower curtain is usually a semi-transparent plastic or fabric curtain that is hung around the shower area to keep water from splashing out.", + "A shower curtain typically has a hook or ring at the top for attaching it to a shower rod, and is made of a water-resistant fabric.", + "A shower curtain is a piece of fabric that is hung from a rod above the shower.", + "Most shower curtains are made of a fabric that is patterned or textured.", + "A shower curtain is typically made of fabric and hangs from a shower rod or hook at the top.", + "A shower curtain is a piece of fabric that is used to cover the opening of a shower.", + "A shower curtain typically is a opaque or semi-transparent fabric curtain that is installed around a shower stall to contain the water spray from the shower.", + "The shower curtain is white with black and blue stripes.", + "This image is of a white shower curtain with a black and white geometric print.", + "This image shows a shower curtain made of white fabric with a green and white striped pattern.", + "This image is of a pale blue shower curtain with white polka dots.", + "This image is of a shower curtain that is white with black polka dots.", + "The image is of a shower curtain with a black and white geometric design.", + "This image is of a shower curtain that is made of white fabric.", + "The shower curtain is white and made of fabric.", + "The shower curtain is made of white fabric with a blue and green paisley pattern.", + " The image is of a shower curtain that is made of white fabric.", + "A shower curtain with a floral design.", + "A shower curtain that is decorated with a nautical theme, including blue and white stripes and a picture of a sailboat.", + "This is a shower curtain.", + "Heyyyy there, Monday! No complaints here- I'm enjoying my cup of joe and getting ready for a relaxing day.", + "This shower curtain is made of 100% polyester and is machine-washable.", + "This is a shower curtain.", + "This is a shower curtain.", + "This is a shower curtain.", + "A shower curtain with a blue and white geometric pattern.", + " A shower curtain with a blue and white abstract design." + ], + "ski": [ + "A ski has a long, narrow shape and is typically made of wood, plastic, or metal.", + "A ski typically has a long, narrow body with smooth underside.", + "A ski typically has a long, thin blade that curves upward at the front and sides, with a smaller blade at the back.", + "A ski is a thin, long piece of wood or metal that you attach to your feet and use to slide down a snowy hill.", + "Most skis have a long, slender body with a rounded tip and tail.", + "A ski is a long, narrow piece of wood or plastic that you strap to your feet and use to glide across snow.", + "A ski typically consists of a long, flat piece of material that curves up at the ends.", + "A ski is a long, thin piece of wood or plastic that you strap to your feet and slide down snow-covered slopes.", + "A ski is a long, thin board that you strap to your feet to slide across snow.", + "Skiis are long, thin boards that are attached to your feet with bindings.", + "There are a few ways to identify a ski.", + "A ski is a long, narrow piece of wood, metal, or plastic that is attached to a person's feet and is used for gliding over snow.", + "The most common way to identify a ski is by its length.", + "Ski equipment is designed to help skiers glide over snow.", + "A ski is a long, flat piece of wood or fiberglass that is attached to a person's feet and used to slide across snow.", + "The best way to identify a ski is to look for the manufacturer's name or logo on the ski.", + " Skiing can be identified by its long, thin blade.", + "The most common way to identify a ski is by the type of terrain it is designed for.", + "There are many ways to identify a ski.", + "There are many ways to identify a ski.", + "A ski is a long, thin piece of equipment that is used for sliding on snow.", + "A ski looks like a long, thin board that is used for sliding on snow.", + "A modern ski is a long, narrow piece of wood, metal, or plastic that is worn on the feet to glide over snow.", + "A ski often has a concave top and bottom, with the middle being relatively flat.", + "A ski is a long, thin, flat piece of wood or other material that is attached to the feet and is used to glide over snow.", + "Ski equipment includes skis, boots, bindings, and poles.", + "A ski is a long, narrow, flat piece of wood, plastic, or metal that you strap to your feet and use to slide down a slope of snow.", + "A ski is a long, narrow piece of wood or plastic that you strap to your feet and slide down a hill on.", + "A ski typically has a long, narrow shape and is designed to glide over snow.", + "A black and white photo of a ski.", + " resortIn this image, we can see a group of people skiing down a hill at a ski resort.", + " resortThe image is of a ski resort with a mountain in the background.", + " jumpA ski jump is a fun winter activity that everyone can enjoy.", + " slopeIn the image, there is a ski slope with people skiing down it.", + " resortThe image is of a ski resort with a large, modern lodge.", + " resortIn the image, there is a ski resort with a long, winding path leading up to it.", + " slopeIn the image, there is a large ski slope with many people skiing down it.", + " resortThis image is of a ski resort in the Alps.", + " resortIn the image, there is a large ski resort with many people skiing and enjoying the snow.", + " slopeThe image is of a large ski slope with several people skiing down it.", + "A skier shredding powder on a freshly groomed ski run.", + "Skiers enjoy the fresh powder at the resort.", + "A person skiing down a mountain.", + "Image of a person skiing down a slope.", + "Downhill skiing at Kicking Horse Mountain Resort in British Columbia, Canada.", + "A person skiing down a mountain.", + "The caption of the image might be something like, \"A skier enjoys the fresh powder on a cold winter day.", + "A person skiing down a snow-covered slope.", + " A skier carving turns on a fresh powder day.", + "A skier in Aspen, Colorado." + ], + "balaclava ski mask": [ + "A balaclava is a ski mask that covers the head and face, leaving only a small hole for the eyes.", + "A balaclava ski mask is a or headwear that covers most of the face and head, leaving only a small opening for the eyes.", + "A balaclava ski mask is a type of mask that covers the entire face, except for the eyes, nose, and mouth.", + "A balaclava ski mask is a mask that covers the head and face, leaving only the eyes exposed.", + "A balaclava ski mask typically covers the entire head and face, with holes cut out for the eyes, nose, and mouth.", + "A balaclava ski mask typically covers the entire head and neck, and can even cover part of the face, leaving only the eyes exposed.", + "A balaclava ski mask is a type of clothing that covers the head and face, leaving only the eyes, nose, and mouth exposed.", + "A balaclava is a ski mask that covers the head and face, except for the eyes.", + "A balaclava ski mask is typically made from a stretchy, insulating fabric and covers the head and neck, leaving a hole for the eyes.", + "A balaclava ski mask typically covers the entire head and face, leaving only a small opening for the eyes.", + "A balaclava is a ski mask that tend to be full-face or nearly full-face, and made with a close-fitting, stretchy fabric.", + "A balaclava ski mask is a type of mask that covers the entire head and face, except for the eyes.", + "A balaclava ski mask is a type of garment worn by skiers, snowboarders, and other winter sports enthusiasts to keep their face and head warm.", + "A balaclava ski mask is a type of headwear that covers the entire head, face, and neck.", + "A balaclava ski mask is a type of headwear that covers the entire head and face, except for the eyes.", + "A balaclava ski mask typically covers the entire head and face, with cut-outs for the eyes, nose, and mouth.", + "A balaclava ski mask is a type of headwear that covers the entire head and face, leaving only a small opening for the eyes.", + "The best way to identify a balaclava ski mask is to look for a ski mask that covers the entire head and face, with eyeholes cut out for visibility.", + "Balaclava ski masks are usually made of a stretchy fabric that covers the entire head and neck.", + "A balaclava ski mask is typically made from a stretchy fabric that covers the face and head.", + "A balaclava ski mask is a type of headwear that covers the entire head and face, leaving only a small hole for the eyes.", + "A balaclava ski mask is a type of headwear that covers the entire head and face, leaving only a small opening for the eyes.", + "A balaclava ski mask covers the entire head and face, except for the eyes, and is typically made from a stretchy, fleece material.", + "A balaclava ski mask is a mask that covers the entire head and face, leaving only a small opening for the eyes.", + "A balaclava is a ski mask that covers the head, face, and neck.", + "A balaclava ski mask looks like a piece of cloth that covers the head and face, leaving only the eyes exposed.", + "A balaclava ski mask looks like a hat that covers the entire head and face, with holes cut out for the eyes, nose, and mouth.", + "A balaclava ski mask is typically a tube of fabric that can be pulled over the head and down over the face, leaving a small opening for the eyes and mouth.", + "A balaclava is a form of ski mask that covers the entire head, including the face.", + "A balaclava ski mask is a hooded mask that covers the face and head.", + "The image from the internet is of a balaclava ski mask that is black and made from a soft material.", + "This image is of a black balaclava ski mask.", + "This image is of a black balaclava ski mask with only the eye holes exposed.", + "https://images.", + "A balaclava ski mask is a type of facial covering that is typically used by skiers and winter sports enthusiasts.", + "A balaclava ski mask is a headwear piece that covers the entire head, face and neck.", + "The image is of a black balaclava ski mask.", + "The image from the internet is of a black balaclava ski mask.", + "The image is of a black balaclava ski mask.", + "In the image, a person is wearing a black balaclava ski mask that covers their entire head and face.", + "The North Face Balaclava Ski Mask.", + " A black balaclava ski mask isolated on a white background.", + "Warm, cozy, and perfect for a cold day on the slopes.", + " A balaclava ski mask is a must-have for any winter adventurer.", + "Warm, breathable, and comfortable, this balaclava ski mask is perfect for cold weather adventures.", + "Keep your head and face warm this winter with a balaclava ski mask!.", + "A person wearing a balaclava ski mask to protect their face from the cold.", + " A black balaclava ski mask lies flat on a white background.", + "What do you think about when you put on a balaclava?I think about how I'm going to stay warm while skiing.", + "Warm and toasty on a cold winter day." + ], + "sleeping bag": [ + "A sleeping bag is typically a long, rectangular bag that can be zipped shut.", + "A sleeping bag is a rectangular bag made of a waterproof and warm material.", + "A sleeping bag is an insulated bag designed to keep a person warm while sleeping in an outdoor environment.", + "A sleeping bag is a large, padded bag that is big enough for a person to sleep inside.", + "A sleeping bag typically looks like a large, oblong rectangle.", + "A sleeping bag typically looks like a large, padded envelope with a zip up the side.", + "A sleeping bag is a padding envelope for a person, typically made of a light fabric such as nylon, and with a zipper running along one side.", + "A sleeping bag is a bag made of insulating material that can be closed with a zipper or drawstring to form a bed.", + "A sleeping bag is usually a bag made of synthetic fabric that is filled with insulating material, such as down, wool, or synthetic fiber.", + "A sleeping bag is usually a large, insulated, and padded bag that is used to sleep in outdoors.", + "The most common way to identify a sleeping bag is by the type of closure it has.", + "The most identifiable feature of a sleeping bag is its shell material.", + "A sleeping bag is a bag that you can sleep in.", + "A sleeping bag typically has a drawstring or zipper closure at the top, and is insulated to keep a person warm while sleeping.", + "role=\"presentation\" aria-hidden=\"true\"> A sleeping bag typically has a zipper on one side that opens to allow the user to get inside, and a closed bottom.", + "A sleeping bag is usually big enough to fit one person inside of it.", + "A sleeping bag is a bag made of a variety of materials, usually waterproof, that is designed to allow a person to sleep in.", + "A sleeping bag is typically a large, insulated bag that is used for sleeping in.", + "A sleeping bag is typically an oblong, insulated bag designed to allow a person to sleep comfortably in cold weather.", + "Sleeping bags are typically long and narrow, and can be rolled up for easy storage.", + "A sleeping bag typically looks like a large, insulated, down-filled rectangle with a zipper running along one side.", + "A sleeping bag is typically a rectangular bag that zips up, with a hood and lofted insulation inside.", + "A sleeping bag is a large, rectangular bag that is filled with insulating material such as down or synthetic fiber.", + "A sleeping bag looks like a large, slightly rectangular bag.", + "Sleeping bags come in all shapes and sizes, but they typically have a rectangular or mummy shape.", + "A sleeping bag is usually a long, rectangular bag made of a insulating material such as down, synthetic fibers, or wool.", + "A sleeping bag typically looks like a large, rectangular piece of fabric with a zipper running along one of the long sides.", + "Most sleeping bags are designed to resemble the shape of a cocoon or a mummy.", + "A sleeping bag typically looks like a large, rectangular bag that can be zipped shut.", + "A sleeping bag typically looks like a large, stuffed rectangle with a zipper running along one side.", + "This image is of a blue and grey sleeping bag.", + "The image is of a blue and gray sleeping bag laid out flat.", + "This is an image of a blue sleeping bag with a white interior.", + "A sleeping bag is typically a large, thick bag that people can sleep in.", + "The image is of a brown and tan sleeping bag lying on a green and brown plaid blanket.", + "This image is of a brown and tan striped sleeping bag.", + "It is an image of a sleeping bag that is typically used when outdoors camping.", + "The image is of a blue and grey sleeping bag.", + "A person is lying in a yellow and green sleeping bag inside a tent.", + "A sleeping bag is a bag made of durable materials, typically synthetic, that is used as a bed during camping or backpacking trips.", + "A woman rests inside a sleeping bag on a camping trip.", + "Cozy sleeping bag perfect for camping out under the stars.", + "An image of a sleeping bag, captioned \"Always be prepared for a camping trip!\".", + "Sleeping bag: comfortable and versatile for any camping adventure.", + "A sleeping bag perfect for camping trips or for lounging around in the backyard.", + " A sleeping bag perfect for camping in the summertime.", + "A woman is sleeping in a sleeping bag in a tent.", + "A person sleeping in a sleeping bag on the ground.", + " A person is lying inside a sleeping bag on the ground, with the zipper partway open.", + "A person sleeps in a comfortable sleeping bag, surrounded by nature." + ], + "slide rule": [ + "Slide rules are rectangular, and have a number of lines and markings of different lengths on them.", + "A slide rule is a mathematical tool used to perform rapid calculations.", + "A slide rule looks like a ruler with a sliding central section.", + "A slide rule looks like a ruler with a sliding center section.", + "A slide rule is an ruler-like device with a sliding middle section that is used for complex calculations.", + "A slide rule looks like a ruler with a central sliding part.", + "A slide rule is a mechanical analog computer.", + "A slide rule looks like a ruler with a sliding component in the middle.", + "A slide rule is a device used to perform mathematical calculations.", + "A slide rule is a mechanical device used to perform mathematical calculations.", + "A slide rule is a ruler-like device with a sliding central portion that contains marks representing numbers and basic mathematical operations.", + "Slide rules are usually rectangular and have markings on both sides.", + "A slide rule typically has a length of about 20 to 30 cm, a width of 3 to 4 cm, and a thickness of 0.", + "Slide rules may look like rulers, but they have a series of numbered lines and spaces that can be used to perform mathematical operations.", + "Slide rules have a linear scale on one edge of the rule and a logarithmic scale on the other edge.", + "Slide rules can be identified by their straight edges and the markings for various calculations that are printed on them.", + "Slide rules are often characterized by a linear or logarithmic scale on one or both sides of the ruler, and a sliding central indicator that can be aligned with any point on either scale.", + "Slide rules have a linear or logarithmic scale on a long strip of paper or ruler.", + "Slide rules can be identified by their two or three metal strips with numeric markings that can be slid along each other to perform mathematical operations.", + "A slide rule is a device that was used to perform mathematical calculations before the advent of electronic calculators.", + "A slide rule is a long, rectangular wooden or plastic ruler.", + "Slide rules look like rectangular rulers with a number of lines and markings.", + "A slide rule is a device that consists of a ruler-like strip that slides through a frame.", + "A slide rule looks like a ruler with a sliding central piece.", + "A slide rule is a straight ruler with two scales that can slide past one another.", + "A slide rule is a long, rectangular instrument with a movable central part called a cursor.", + "A slide rule looks like a ruler with a moving central tab that allows multiplication, division, and other arithmetic operations to be performed without the use of a calculator.", + "A slide rule is a straight ruler with a sliding central portion.", + "A slide rule is a rectangular ruler with a sliding central section.", + "A slide rule looks like a ruler with marks at regular intervals.", + "A slide rule is a mathematical tool used for rapid estimation of products and roots of numbers and for calculation of trigonometric functions, powers, and roots.", + "A slide rule is a device used to perform quick calculations.", + "A slide rule is a scientific instrument consisting of a measuring device and a series of scales, used for slide-rule navigation by sailors and pilots.", + "In the image, a slide rule is pictured laying horizontally on a wood table.", + "A slide rule is a mechanical analog computer.", + "A slide rule image from the internet shows a ruler-like device with a central sliding portion.", + "A slide rule is a classic ruler used for mathematical purposes.", + "A slide rule is a mechanical analog computer.", + "My image shows a vintage looking slide rule with a wooden frame and a metal cursor.", + "An image from the internet of a slide rule shows a metal or plastic ruler with calibrations on it.", + " A man using a slide ruleA slide rule is a manipulative device used for mathematical calculations.", + "A slide rule is a device used for making calculations.", + " The slide rule, also known colloquially as a slipstick, is a mechanical analog computer.", + "This slide rule belongs to my grandfather.", + "A slide rule is a mechanical analog computer.", + "A slide rule is a mathematical instrument used for slide rule curves might be used to calculate various technical and astronomical functions.", + "The slide rule is a mechanical analog computer.", + " A slide rule is a analog calculator used for mathematical calculations.", + "\nThe slide rule is an analog computer used for multiplication and division.", + "\"How to use a slide rule\"This image shows the steps for using a slide rule to calculate a multiplication problem." + ], + "sliding door": [ + "A sliding door typically has two sections, each of which is mounted on a separate track.", + "A sliding door is a door that opens by sliding sideways along a track.", + "A sliding door is a door that moves on a track rather than swinging on hinges.", + "A sliding door is two panels, one fixed and one that slides open, that are on a track system.", + "A sliding door is a door that opens and closes by sliding horizontally on a track.", + "A sliding door has two parts that slide past each other on a track.", + "A sliding door is a type of door where one door slides horizontally on a track, while the other door remains fixed.", + "A sliding door is a door that slides on a track instead of swinging open.", + "A sliding door is a type of door which opens horizontally by sliding, usually parallel to a wall.", + "A sliding door is a door that opens by sliding instead of swinging.", + "Sliding doors have a track on the floor and rollers on the top of the door.", + "A sliding door has a doorframe in which the door slides back and forth on a track.", + "Sliding doors typically have a track along the bottom and either a track or guide along the top.", + "A sliding door typically has a much wider opening than a standard door, and opens by sliding along a track on the floor.", + "Sliding doors usually have a glass panel that opens by sliding along a track.", + "A sliding door has at least one panel that slides on a track to open and close.", + "A sliding door is a door that opens by sliding, usually along a track.", + "A sliding door is a door that opens by sliding on a track.", + "Sliding doors have panels that move horizontally on tracks.", + "What do you mean by \"identify\"? If you mean \"tell if a door is a sliding door\", then a good way to do that would be to see if the door opens by sliding on a track.", + "A sliding door is a type of door which opens by sliding instead of swinging outward or opening inward.", + "A sliding door is a type of door that opens by sliding horizontally along a track at the bottom of the door.", + "A sliding door is a door that opens and closes by sliding on a track.", + "A sliding door typically consists of two sections, or panels, that slide past each other in a horizontal motion.", + "A sliding door is a door that does not swing open like a regular door.", + "A sliding door has glass panels that slide open and closed on a metal track.", + "A sliding door is a door that slides open, rather than swings open.", + "A sliding door is a door that opens by sliding along a surface.", + "A sliding door typically has two parts, one fixed and one that slides open.", + "A sliding door has one door panel that slides horizontally on a track.", + "This image is of a light blue sliding door.", + "A glass door slides open to reveal a view of a cityscape.", + "This image is of a black sliding door.", + "This image is of a white sliding glass door.", + "Depicts a beige/light brown sliding door with a striated/textured surface.", + "In this image, there is a sliding door that is open.", + "The image is of a white sliding door with a black handle.", + "This image shows a modern glass sliding door.", + "An image from the internet of a sliding door may show a door that is made of glass and is able to slide open.", + "There is an image of a sliding door on the internet that is made of glass.", + "A sliding door that is open, revealing a brightly lit room beyond.", + "A sliding door on a track, ready to be opened.", + "Sliding glass door leading to patio.", + "A view of a sliding door from the outside.", + "A sliding door leading out to a patio.", + "A sliding door that is half open.", + "A sliding door that leads to the backyard.", + "A sliding door is a type of door which opens by sliding.", + "This sliding door is a great way to save space in your home.", + " A woman is standing in front of a sliding doorThis image shows a woman standing in front of a sliding door." + ], + "slot machine": [ + "A slot machine typically has a lever on the side that a player can pull to set the reels in motion.", + "Most slot machines have a rectangular face with a screen that displays images of the game.", + "A slot machine typically has three or more reels which spin when a button is pushed.", + "A slot machine is a machine that allows people to play gambling games such as slots, poker, blackjack, and roulette.", + "A slot machine is typically a gambling machine with three or more reels that spin when a button is pushed.", + "A slot machine typically consists of three or more reels that spin when a lever is pulled or a button is pushed.", + "A large, brightly lit machine with flashing lights and buttons.", + "A slot machine typically has three or more reels which spin when a button is pushed.", + "A slot machine is a gambling machine that has three or more reels that spin when a button is pushed.", + " Slot machines are usually rectangular in shape, with a series of pictures or symbols on each reel.", + "A slot machine is typically identified by its flashy lights and stock images of winning.", + "Most slot machines have a label on the glass that indicates what denomination the machine is.", + "A slot machine can be identified by its paylines, which are the lines in which matching symbols must appear in order to create a winning combination.", + "There are a few ways to identify a slot machine.", + "A slot machine is a gambling machine with three or more reels that spin when a button is pushed.", + "Slot machines can usually be identified by their large, brightly-colored displays.", + "There is no one definitive answer to this question, but some ways to identify a slot machine include looking for a manufacturer's logo or designation on the machine, or looking for a slot machine in a casino that has a sign posted nearby identifying it.", + "There is no universal answer to this question, as the appearance of slot machines can vary greatly from one manufacturer to the next.", + "The easiest way to identify a slot machine is by the type of game it is.", + "A slot machine can be identified by its jackpot symbols, which are usually diamonds, sevens, or other symbols that indicate a big win.", + "A slot machine looks like a large rectangular box with a screen on the front.", + "A slot machine typically has three or more reels that spin when a lever is pulled or a button is pressed.", + "A slot machine typically has three or more reels mounted on a central shaft.", + "A slot machine is typically a gambling machine with three or more reels that spin when a button is pushed.", + "A slot machine is a gambling machine with three or more reels that spin when a button is pushed.", + "A slot machine is a casino gambling machine with three or more reels which spin when a button is pushed.", + "A slot machine typically consists of three or more reels which spin when a button is pushed.", + "A slot machine resembles a gambling machine with spinning reels.", + "A slot machine is a gambling machine with three or more rotating reels.", + "A slot machine typically has three or more reels which spin when a button is pushed.", + "This image from the internet of a slot machine shows a machine with three reels and nine paylines.", + "This image is of a slot machine with three rows and five columns of symbols.", + "The image shows a slot machine with three reels.", + "The image shows a slot machine with three reels.", + "This image is of a classic slot machine with three reels.", + "The image from the internet is of a slot machine with a lever on the side.", + "The image shows a slot machine with flashing lights and the words \"jackpot\" and \"winner\".", + "The image shows a close-up of a slot machine with the lever on the side.", + "The image is of a slot machine with three reels and multiple symbols on each reel.", + "The image is of a slot machine with three reels.", + "Winning!.", + "This is a slot machine.", + "You can't win if you don't play.", + " A slot machine with the jackpot symbols lit upA slot machine with the jackpot symbols lit up indicates that the player has won the jackpot.", + "A slot machine is a gambling machine that the player inserts money into and then pulls a lever (or presses a button) to set the reels in motion.", + "A woman gambles on a slot machine in a casino.", + "\"The One-Armed Bandit\"A slot machine is a gambling machine that the player inserts money into and then pulls a lever or presses a button to set the reels in motion.", + " Slot machines are the most popular form of casino gamblingSlot machines are the most popular form of casino gambling in the world.", + "A slot machine with the symbols 7, cherry, and bar.", + "\"I won! This slot machine was lucky for me!\"." + ], + "snorkel": [ + "A snorkel is a tube that you put in your mouth and breathe through.", + "A snorkel is a curved tube that helps a swimmer breathe while swimming underwater.", + "A snorkel is a tube that allows you to breathe while your face is submerged in water.", + "A snorkel is a small, tube-shaped instrument that helps a person breathe while swimming under water.", + "A snorkel is a curved pipe that extends from the mouthpiece to the end of the tube.", + "A snorkel consists of a mouthpiece and a tube.", + "A snorkel is a curved tube that allows you to breathe while your face is submerged in water.", + "A snorkel is a small tube that protrudes from the side of a person's head, typically about 4-6 inches in length.", + "A snorkel is a tube that you put in your mouth and breathe through.", + "A snorkel is a tube that allows a person to breathe while their face is submerged in water.", + "A snorkel is a flexible tube that allows a person to breathe while swimming face-down.", + "A snorkel is a breathing tube that allows the user to breathe while swimming or floating face down in the water.", + "A snorkel is a tube which allows you to breathe while your face is submerged in water.", + "A snorkel is a breathing tube used while swimming on the surface of the water.", + "A snorkel is a breathing tube that allows a swimmer to breathe while swimming face down in water.", + "A snorkel is a tube that allows you to breathe while your face is submerged in water.", + "A snorkel is a tube that allows you to breathe while your face is submerged in water.", + "A snorkel is a small tube that allows you to breathe while your face is submerged in water.", + "A snorkel is a small tube that extends from the mouthpiece of a snorkel mask.", + "A snorkel is a long, bent tube that is used to breathe while swimming on the surface of the water.", + "A snorkel is a small, hollow tube that is used for breathing while swimming underwater.", + "A snorkel is a long, thin tube that you put in your mouth and breathe through.", + "A snorkel is a small tube that sticks out of your mouth and goes down into the water.", + "Snorkels come in a variety of shapes and sizes, but they all have a tube that goes from your mouth to the surface of the water.", + "Snorkels are long, thin tubes that allow people to breathe while swimming underwater.", + "A snorkel is a tube that someone uses to breathe while swimming underwater.", + "A snorkel is a curved tube that is attached to a mask and helps the user breathe while swimming underwater.", + "A snorkel is a narrow, tube-like breathing apparatus that is used while swimming on the surface of the water.", + "A snorkel is a tube that is attached to a mask and goes in the user's mouth.", + "A snorkel is a tube that sticks out of your mouth and goes down into the water.", + "A snorkel is a long, thin tube that helps you breathe while you are swimming under water.", + "The image is of a man wearing a snorkel and swimming in the ocean.", + "The image is of a blue and white snorkel.", + "A image from the internet of a snorkel shows a person wearing a diving mask and a snorkel, which is a tube that extends from the mask to the person's mouth.", + "The image is of a person wearing a snorkel and diving into the water.", + "The image is of a person wearing a blue snorkel and fins.", + "A picture of a snorkel would likely show a person wearing a diving mask and a tube that goes into their mouth and extends above their head.", + "An image from the internet of a snorkel may show a person wearing a snorkel mask and breathing tube while swimming in the ocean.", + "The image is of a person wearing a snorkel and mask, lying on their stomach in the water, looking down at the coral below.", + "The image from the internet is of a man wearing a blue snorkel and diving into a body of water.", + "A man in a wet suit and a snorkel dives into the water.", + "A person wearing a snorkel and mask, ready to explore the underwater world.", + "Image of a snorkel with a blue mouthpiece and black tube.", + "Snorkeling is a great way to explore the underwater world without having to hold your breath!.", + "Snorkeling is a great way to enjoy the underwater world without having to hold your breath!.", + "A woman uses a snorkel to explore a coral reef.", + "A young woman in a snorkel and fins holds a fish she has caught.", + "Snorkeling is a great way to explore the underwater world without having to hold your breath!.", + " Blue and yellow snorkel with white fins in the background.", + "Snorkel gear for exploring the underwater world." + ], + "snowmobile": [ + "A snowmobile is a vehicle designed for winter travel over snow.", + "Most snowmobiles have a seat in the middle for the driver, with handlebars in front for steering.", + "A snowmobile typically has a skis in the front for steering, and two large runners or tracks in the back for propulsion and stability.", + "A snowmobile is a vehicle designed for winter travel over snow.", + "A snowmobile is a vehicle designed for winter travel on snow.", + "A snowmobile typically looks like a small vehicle with a seat for the rider, skis on the bottom, and handlebars in the front.", + "A snowmobile normally seats one to two people and has handlebars in front of the driver.", + "Most snowmobiles share a common design: they have skis in the front for steering, one or two tracked drives in the rear for propulsion, and a seat in the middle for the rider.", + "A snowmobile looks like a sled with a motor.", + "A snowmobile is a vehicle built for winter travel on snow.", + "The best way to identify a snowmobile is by the tracks it leaves in the snow.", + "The most distinguishing feature of a snowmobile is that it is designed to be ridden on snow or ice.", + "There are a few ways to identify a snowmobile.", + "There are a few things that can help you to identify a snowmobile.", + "Snowmobiles can typically be identified by their large, powerful engines and their ability to drive over deep snow.", + "The most easily identifiable feature of a snowmobile is its large skis.", + "The most defining feature of a snowmobile is that it is designed to be ridden on snow or ice.", + "Most snowmobiles have a windshield, skis, and a track.", + "By its size and shape, a snowmobile is easily distinguishable from other vehicles.", + "A snowmobile is a vehicle designed for winter travel on snow.", + "A snowmobile is a vehicle designed for winter travel on snow.", + "A snowmobile is a vehicle designed for winter travel over snow.", + "A snowmobile is a vehicle designed for winter travel on snow.", + "A snowmobile is a vehicle designed for winter travel on snow.", + "A snowmobile typically looks like a small, open vehicle with a seat for the driver and one or two passengers.", + "A snowmobile is usually a vehicle designed for winter travel on snow.", + "A snowmobile is a vehicle for travel over winter snow, typically ridden standing up.", + "A snowmobile is a vehicle that is used for travel over snow.", + "A snowmobile is a motor vehicle designed for winter travel on snow.", + "A snowmobile is a small, engine-powered vehicle designed for travel on snow.", + "The image is of a snowmobile zooming through fresh powder.", + "This image from the internet shows a snowmobile racing across a field of snow.", + "The image is of a snowmobile riding through deep snow.", + "In the image, a snowmobile is driving through deep snow.", + "I found an image of a blue snowmobile racing through the snow.", + "The image shows a red and black snowmobile driving through fresh powder snow.", + "A snowmobile is a vehicle designed for winter travel on snow.", + "The image is of a snowmobile zooming through fresh powder, with the rider's headlight shining through the snow.", + "An image from the internet of a snowmobile shows a rider standing on the machine as it speeds across a snow-covered landscape.", + "In the image, a snowmobile is speeding through freshly fallen snow, kicking up a spray of glittering white behind it.", + "A snowmobile zooms through freshly fallen snow.", + "A snowmobile whizzes across a snow-covered field.", + "A snowmobile speeds through freshly fallen snow.", + "This snowmobile is ready to take on any terrain!.", + "A snowmobile speeding through freshly fallen snow.", + "A snowmobile zips through a snow-covered landscape.", + "A snowmobile tears through freshly fallen powder on a cold winter's day.", + "A snowmobile whizzes through the snow-covered landscape.", + "A snowmobile jets through deep powder in the backcountry.", + "A man riding a snowmobile through fresh powder." + ], + "snowplow": [ + "?A snowplow is a large truck that has a plow on the front of it.", + "A snowplow is a truck with a large blade attached to the front.", + "Most snowplows are large, heavy vehicles with a large blade attached to the front.", + "A snowplow is a machine that is used to remove snow from roads, parking lots, sidewalks, and other surfaces.", + "A snowplow is a large machine that is attached to the front of a truck.", + "A snowplow is a large vehicle with a large blade attached to the front.", + "A snowplow is a large vehicle with a blade attached to the front.", + "A snow plow is a truck with a large blade attached to the front.", + "A snowplow is a large vehicle with a blade on the front that is used to clear snow from roads.", + "A snowplow is a large vehicle with a blade attached to the front.", + "You can identify a snowplow by its large yellow or orange blade that is attached to the front of a truck or tractor.", + "One way to identify a snowplow is by its large blade attached to the front of the vehicle.", + "The snowplow has a large yellow blade in the front that is used to push snow out of the way.", + "A snowplow is a large vehicle with a large blade attached to the front.", + "A snowplow is a truck that is equipped with a plow to remove snow and ice from roads.", + "A snowplow is a vehicle equipped with a plow that is used to remove snow from roads.", + "The blade of a snowplow is flat and wide, and is attached to the front of a vehicle.", + "A snowplow is a vehicle with a large blade attached to the front that is used to remove snow from roads.", + "A snowplow is a vehicle or device used to remove snow from roads, driveways, or other surfaces.", + "A snowplow is a vehicle equipped with a plow that is used to remove snow and ice from roads.", + "A snowplow is a vehicle that is attached to the front of a truck.", + "A snowplow is a large vehicle with a plow attached to the front.", + "A snowplow is a large, truck-like vehicle with a large, metal blade on the front.", + "A snowplow is a large, heavy vehicle with a large blade on the front that is used to clear snow from roads, sidewalks, and other surfaces.", + "Heavy duty trucks outfitted with a large blade used to clear snow from roads and sidewalks.", + "A snowplow is a large, heavy truck with a large plow attached to the front.", + "A snowplow is a vehicle with a large blade at the front that is used for clearing snow from roads.", + "A snowplow is a large, heavy vehicle with a large blade on the front.", + "A snowplow is a large, heavy vehicle with a large plow attached to the front.", + "A snowplow is typically a large, heavy piece of machinery that is attached to the front of a snow removal vehicle.", + "A snowplow is a vehicle used to remove snow from roads, driveways, and parking lots.", + "A snowplow is a vehicle equipped with a plow blade used to remove snow and ice from roads.", + "The image is of a large yellow snowplow pushing snow in front of it.", + "I found an image of a snowplow on Google Images.", + "In the image, a large snowplow is clearing a path through a deep layer of snow.", + "This image is of a snowplow.", + "An image of a snowplow from the internet is a large vehicle with a large plow attached to the front.", + " The image is of a snowplow clearing a path through a snow-covered street.", + "This image is of a snowplow that is clearing a path through a heavy snowfall.", + "The image is of a large green snowplow with a yellow plow in the front.", + "A snowplow clears a path through the snow.", + "A snowplow clears a path through a snow-covered street.", + "A snowplow clears a path through the snow.", + " A snowplow clears a path through a snow-covered street.", + "Snowplow clearing a path through the snow.", + "A snowplow clears a path through the snow.", + "A snowplow clears a path through a snow-covered street.", + "A snowplow clears a path through heavy snow.", + "A snowplow clears snow from a road.", + "Road crews work to clear a path through the snow." + ], + "soap dispenser": [ + "A soap dispenser is a container that holds soap and is equipped with a mechanism to dispense soap.", + "A soap dispenser is a small device that is used to dispense liquid soap.", + "A soap dispenser is typically a small, plastic bottle with a pump on the top.", + "A food-grade plastic bottle with a pump top.", + "A soap dispenser is a small container that sits on a counter or other surface.", + "A soap dispenser is a cylindrical container with a pump at the top.", + "A soap dispenser is a small device that sits on a counter or sink and dispenses soap when a button is pushed.", + "A soap dispenser is a small container that holds soap and has a pump on the top.", + "A soap dispenser is a small container that is used to dispense soap.", + "A soap dispenser is a small container that sits on a bathroom or kitchen sink and dispenses soap when you press a button or lever.", + "A soap dispenser is a device that is used to dispense soap.", + "Soap dispensers can be identified by their pumps.", + "A soap dispenser is a small, temporary container for soap that can be placed on a counter or sink.", + "Essentially, any type of soap can be used in a soap dispenser, although liquid and foam soaps are most common.", + "Soap dispensers are often made of plastic or metal and have a trigger that is pushed down in order to dispense soap.", + "Soap dispensers can be identified by their soap spouts.", + "Soap dispensers typically have a spout or nozzle that dispenses soap when the user presses a lever, button, or paddle.", + "A soap dispenser can usually be identified by its cylindrical shape and the pump mechanism on the top.", + "The top of a soap dispenser is usually flat so that you can place your hand under it to dispense the soap.", + "A soap dispenser typically has a spout or nozzle that dispenses soap when the user presses a button, lever, or knob.", + "A soap dispenser typically has a small hole at the top where soap can be dispensed, and a larger hole at the bottom where soap can be refilled.", + "A soap dispenser typically has a pump on the top that is used to dispense the soap.", + "Soap dispensers vary in shape and design, but most are small, plastic containers with a pump on the top.", + "Some soap dispensers are manual, meaning that you have to press a button or levers to dispense the soap, while others are automatic and dispense soap when you put your hands underneath it.", + "A soap dispenser looks like a small plastic container with a pump on the top.", + "A soap dispenser looks like a small container with a pump on the top.", + "A soap dispenser is a small device that sits on a countertop or is attached to a wall.", + "A soap dispenser can have many different looks, but they all have a place to put soap and a way to dispense it.", + "A soap dispenser is a device that stores and dispenses soap.", + "A soap dispenser is a small container that is used to dispense soap.", + "Soap dispensers are devices that dispense soap, typically in the form of liquid, although powder and foam soap dispensers are also available.", + "The image is of a soap dispenser on a counter next to a sink.", + "This soap dispenser is white, with a clear plastic soap container.", + "The image is of a silver soap dispenser with a pump on the top.", + "This image is of a soap dispenser that is mounted on a wall.", + "There is an image of a soap dispenser on the internet.", + "A soap dispenser is a small container that holds soap and dispenses it when a lever is pushed.", + "The image is of a white soap dispenser with a silver button on the top.", + "The image is of a soap dispenser on a wall.", + "A typical image of a soap dispenser would show a device with a cylindrical shape, Dispenser pumps that are used to dispense liquid soap are often trigger-operated.", + "Soap Dispenser.", + "This is a automatic soap dispenser.", + "There's never been a more convenient way to get clean!.", + "This is a picture of a soap dispenser.", + "Soap Dispenser.", + "This is a soap dispenser.", + "A soap dispenser on a countertop.", + "This is a soap dispenser.", + "Here we have a soap dispenser.", + "Soap Dispenser." + ], + "soccer ball": [ + "A soccer ball is a black and white ball that is round and has a hexagon shape.", + "A soccer ball typically has a round, prolate spheroid shape with 32 black and white panels.", + "A soccer ball is a round object that is usually made of leather or synthetic materials.", + "A soccer ball typically has a round, slightly textured outer surface and a smooth inner surface.", + "A soccer ball is a round, black-and-white ball used in the sport of soccer.", + "A soccer ball is a small, round, black-and-white ball.", + "A soccer ball consists of a sphere made of stitched synthetic leather, with a diameter of 22 to 24 inches and a weight of 16 to 20 ounces.", + "A soccer ball is typically a black and white sphere with a 32-panel design.", + "\nA soccer ball is a spherical object that is used to play the sport of soccer.", + "A soccer ball is a large, round, black-and-white ball.", + "There are a few ways that you can identify a soccer ball.", + "Soccer balls are typically black and white, and have a hexagon-shaped pattern.", + "A soccer ball is roughly spherical and has a diameter of 27-28 inches.", + "A soccer ball can be identified by its panels.", + "A soccer ball is usually round and made of leather or synthetic materials.", + "A soccer ball is a round, solid object that is typically black and white.", + "A soccer ball is typically a sphere with panels made of leather or synthetic material.", + "The best way to identify a soccer ball is by its size, shape, and material.", + "The most common way to identify a soccer ball is by its panel layout.", + "A soccer ball is typically spherical and made of synthetic leather or PVC.", + "A soccer ball is a round, black-and-white ball.", + "A soccer ball is a round object that is typically made of leather or synthetic materials.", + "A soccer ball is a disc-shaped object with a black-and-white checkered pattern.", + "A soccer ball is typically round and made of leather or synthetic material.", + "A soccer ball is a round, black-and-white ball with pentagons and hexagons on it.", + "A soccer ball typically has a black and white pentagon pattern.", + "A soccer ball is a black and white spherical object that is used to play the sport of soccer.", + "A soccer ball is typically round and made of a synthetic material.", + "A soccer ball is about the size of a human head and is round.", + "A soccer ball typically has a round shape and is made of 32 panels of stitched leather or synthetic material.", + "This image is of a soccer ball in midair.", + "A soccer ball is a round, black-and-white object that is kicked by a player during a game.", + "This image is of a soccer ball on a white background.", + "This image is of a bright orange soccer ball on a green grass field.", + "A black and white soccer ball on a green field.", + "This image is of a white soccer ball on a green field.", + "This image from the internet is of a black and white soccer ball.", + "The image is of a white soccer ball on a green field.", + "A soccer ball sits on a grassy field with a goal in the background.", + "A soccer ball is a round, black-and-white object.", + " A regulation-sized soccer ballThis is a regulation-sized soccer ball.", + "A soccer ball on a field.", + " A soccer ball on a green field with white lines.", + " Soccer ball on a field.", + " This soccer ball is made of synthetic leather and has a textured surface for better grip.", + " Soccer ball on grass with net in the background.", + "A soccer ball on a grass field.", + "A soccer ball on a green field.", + " A soccer ball on a soccer field.", + " A soccer ball on a field." + ], + "sock": [ + "A sock looks like a small, tube-shaped piece of clothing that is typically worn on the feet.", + "A sock is a tubular garment that covers the foot and lower leg.", + "A sock is a tubular garment that covers the foot and ankle.", + "Most socks are made from a stretchy knit fabric and are designed to fit snugly around the foot and ankle.", + "Most socks are tube-like, meaning they are long and thin.", + "A sock is an article of clothing worn on the feet.", + "A sock is typically a small, tubular piece of clothing that is worn on the foot.", + "A sock normally has a heel, toe and a cuff at the top.", + "A sock is a piece of clothing that is worn on the feet.", + "Socks are usually closed-toe garments that cover the foot and the lower leg.", + "You can identify a sock by its shape, size, and material.", + "A sock can be identified by its ankle opening, heel, toe, and foot arch.", + "A sock can be identified by its hole at the top, its cuff, and its heel.", + "A sock can be identified by its long, tube-like shape that fits over a foot.", + "There are many ways that you can identify a sock.", + "A sock is typically a garment worn on the feet and made from a soft material, such as cotton.", + "A sock can typically be identified by its softness, its flexibility, and its ribbed cuff.", + "A sock is a small amount of money that is given to someone without them knowing.", + "A sock is a piece of clothing that is typically worn on the foot and lower leg.", + "A sock is a knit or woven garment that covers the foot and lower leg.", + "A sock is typically long, thin, and Tube-like, and can be worn on the foot.", + "A sock looks like a small tube of fabric with a hole at each end.", + "A sock is typically a shaped piece of fabric, knit or woven, that covers the foot and ankle.", + "A sock is a long, thin piece of fabric that covers the foot and lower leg.", + "A sock looks like an article of clothing that people wear on their feet.", + "A sock is a piece of clothing that is typically worn on the feet.", + "A sock looks like a cylindrical piece of fabric that is worn on the foot.", + "A sock looks like a tube of fabric with a hole at the top for your foot to go through.", + "A sock looks like a small, tubular piece of clothing that covers the foot and ankle.", + "A sock usually has a cuff at the top, and a heel at the bottom.", + " monkeyA sock monkey is a stuffed animal made from a sock.", + "The image is of a sock that is blue with white polka dots.", + " monkeyA sock monkey is a type of doll made from a sock.", + "The image is of a sock with a blue and white striped pattern.", + "This image is of a blue and white striped sock.", + "The image is of a blue sock with white spots.", + "The image is of a blue and white sock with a design of a tree on it.", + "One image from the internet of a sock shows a white sock with green and red stripes at the top.", + "This image is of a sock that is blue and has white polka dots on it.", + "This image is of a sock.", + "This is a sock.", + " A black and white sock on a black and white background.", + "Warm and toasty socks on a cold winter day.", + "This sock is too small for me.", + "OPINION: A Case For The Ugly Sock.", + " A rainbow sock on a brown background.", + " A sock laying on a floor.", + " A black sock with a white line running down the middle.", + "A blue sock with a white stripe.", + " A sock that has fallen onto the floorThere's no telling where this sock has been." + ], + "solar thermal collector": [ + "A solar thermal collector is a device that collects solar radiation and converts it into heat.", + ".", + "A solar thermal collector is a solar collector designed to collect solar radiation to heat water, air, or other fluid.", + "A solar thermal collector is a device that collects heat from the sun.", + "A solar thermal collector is a device thatCollects heat from the sun.", + "A solar thermal collector is typically a flat plate that is black in color.", + "A solar thermal collector is a device that converts sunlight into heat.", + "A solar thermal collector is a device that captures solar radiation and converts it into heat.", + "A solar thermal collector is a black box with a glass or plastic cover.", + "A solar thermal collector is a device that collects heat from the sun and transfers it to a fluid, usually water or air.", + "You can identify a solar thermal collector by its matte black surface, which is designed to absorb sunlight.", + "A solar thermal collector is a device that is used to collect solar radiation and convert it into heat.", + "The solar thermal collector can be identified by its flat absorber that is usually painted black.", + "The solar thermal collector is a flat, black box with a clear cover on top.", + "A solar thermal collector can be identified by its flat surface, which is usually dark in color, and by its connection to a system of pipes.", + "A solar thermal collector is a device that collects solar radiation and converts it into heat.", + "A solar thermal collector is a device that absorbs the sun's rays and converts them into heat.", + "A solar thermal collector is an energy conversion device that converts sunlight into thermal energy (heat).", + "A solar thermal collector is a device that captures solar radiation and converts it to heat.", + "A solar thermal collector is typically a black or dark-colored box with a glass or clear plastic cover.", + "A solar thermal collector is usually a flat plate that is painted black and has a glass cover.", + "This is a diagram of a solar thermal collector: https://www.", + "A typical solar thermal collector is a flat black box with a glass or clear plastic cover.", + "A solar thermal collector is a device that collects solar radiation and converts it to thermal energy.", + "A solar thermal collector is a solar collector designed to collect heat from the sun.", + "Solar thermal collectors look like large, flat panels.", + "A solar thermal collector is usually a black box with a clear cover on top.", + "A typical solar thermal collector is a flat plate collector.", + "A solar thermal collector is a device that absorbs sunlight and converts it into heat, which can then be used to generate electricity or to heat water and space.", + "A solar thermal collector is a device that is used to collect heat from the sun.", + "A solar thermal collector is a device used to collect and store solar thermal energy.", + "A solar thermal collector is a device that collects heat from the sun and converts it into thermal energy.", + "A solar thermal collector is a device that collects heat from the sun and converts it into another form of energy, typically electricity.", + "A solar thermal collector is a device that captures solar radiation and converts it into heat.", + "A solar thermal collector is a device that collects solar radiation and converts it into thermal energy.", + "The image is of a large, black solar thermal collector.", + "The image is of a large, silver solar thermal collector.", + "A solar thermal collector is a device that captures solar energy and converts it into heat.", + "An image from the internet of a solar thermal collector is a large, rectangular panel with a black surface.", + "The image is of a large, silver dish that is tilted towards the sun.", + " A solar thermal collector heats water using the sun's energy.", + "A solar thermal collector is a device that collects heat from the sun and transfers it to a fluid.", + " A regional map of the United States with a large red circle around the southwest.", + "Solar thermal collectors are devices that collect heat from the sun and transfer it to a working fluid, which is then used to generate electricity or provide heat for other purposes.", + "The sun's energy is captured by the solar thermal collector and used to heat water for domestic use.", + "Solar thermal collectors are devices that capture the sun's heat and convert it into thermal energy.", + "B.", + "A solar thermal collector is a device that absorbs solar radiation and converts it into heat.", + "Solar thermal collectors are devices that capture the sun's energy and turn it into heat.", + "A solar thermal collector is a device that captures heat from the sun and transfers it to a fluid, which is then used to heat a building or provide hot water." + ], + "sombrero": [ + "A sombrero looks like a large, round, wide-brimmed hat that is traditionally worn in Mexico.", + "A sombrero is a type of hat that is traditionally worn in Mexico.", + "A sombrero is a roof-like Spanish hat with a high, conical crown and broad brim.", + "A sombrero is a type of hat that is typically worn in hot weather.", + "A sombrero is a type of hat that is typically worn in Mexico.", + "A sombrero is a type of wide-brimmed hat that is typically worn in Mexico and other parts of Central and South America.", + "A sombrero is a traditional Mexican hat that is typically made from felt or straw.", + "A sombrero is a fired straw hat that is worn in Mexico.", + "A sombrero is a Mexican hat that is large, round, and has a wide brim.", + "A sombrero is a hat that is traditionally worn in Mexico.", + "The brim of a sombrero is typically very large, often times extending out further than the width of the wearer's shoulders.", + "There are many ways to identify a sombrero.", + "A sombrero is a type of hat that is typically worn in hot weather.", + "The easiest way to identify a sombrero is by its large, wide brim.", + "A sombrero is a wide-brimmed, typically round hat that is worn in Mexico and other parts of Central and South America.", + "The most identifiable characteristic of a sombrero is its large, wide brim.", + "A sombrero is a type of hat that is traditionally worn in Mexico.", + "Sombreros are easily identifiable by their large, round shape and wide brim.", + "A sombrero can be identified by its large size, wide brim, and low crown.", + "A sombrero is a type of wide-brimmed hat that is traditionally worn in Mexico.", + "A sombrero looks like a wide-brimmed, cone-shaped hat.", + "A sombrero is a Mexican hat that is typically made from straw or felt.", + "A sombrero is a wide-brimmed, round hat that is commonly worn in Mexico.", + "A sombrero is a wide-brimmed, round-crowned hat that is typically worn in Mexico.", + "A sombrero is a type of hat that is typically worn in Mexico.", + "A sombrero is a wide-brimmed, round hat typically worn in Mexico.", + "A sombrero looks like a traditional Mexican hat.", + "The classic sombrero is a wide-brimmed, tall-crowned hat in soft felt.", + "A sombrero is typically a wide-brimmed, traditionally Mexican hat.", + "A sombrero is a traditional, wide-brimmed Mexican hat.", + "A sombrero is a type of wide-brimmed hat that is typically worn in Mexico and other parts of Latin America.", + "A wide-brimmed, round hat with a conical crown, typically worn in Mexico, esp.", + "A color photograph of a traditional Mexican sombrero resting on a wooden table.", + "A sombrero is a Mexican hat that is typically worn by men.", + "This image from the internet shows a traditional Mexican sombrero.", + "A sombrero is a brimmed hat that is typically worn in hot weather to protect the head and face from the sun.", + "A sombrero is a wide-brimmed, round hats worn in hot weather.", + "The image is of a large, brown sombrero with a wide brim.", + "A sombrero is a type of hat that is traditionally worn in Mexico.", + "This image is of a sombrero, a traditional Mexican hat.", + "A sombrero is a traditional Mexican hat that is typically worn in hot weather.", + "A traditional Mexican sombrero.", + "A traditional Mexican sombrero.", + "A traditional Mexican sombrero.", + "Each year, millions of Americans celebrate Cinco de Mayo by donning traditional Mexican clothing, such as the sombrero.", + "A traditional sombrero from Mexico.", + "A traditional Mexican sombrero.", + " A traditional Mexican sombrero.", + "Sombrero: A traditional Mexican hat that is wide-brimmed and cone-shaped, typically worn to protect against the sun.", + "A traditional Mexican sombrero." + ], + "soup bowl": [ + "A soup bowl looks like a regular bowl, but it is deeper so that soup can fit inside.", + "A soup bowl is typically a deep bowl that is used for eating soup.", + "A soup bowl is a bowl that is used to eat soup.", + "A soup bowl is a bowl that is used to eat soup.", + "A soup bowl generally has a round, deep shape and a handle on one side.", + "Soup bowls generally have a round, deep shape and a wide rim.", + "A soup bowl is a bowl that is used to hold soup.", + "A soup bowl is typically a bowl that is used to eat soup out of.", + "A soup bowl has a wide, round rim and a deep well.", + "A soup bowl looks like a bowl that is usually used to eat soup out of.", + "A soup bowl is usually a round bowl with a handle that is deep enough to hold a lot of soup.", + "A soup bowl is usually a large, deep bowl that is meant for eating soup out of.", + "A soup bowl is usually deep and round with a handle.", + "A soup bowl is a bowl that is used for serving soup.", + "The rim of a soup bowl is often slightly flared to make it easier to spoon the soup into the eater's mouth.", + "A soup bowl is typically a large, deep bowl that is designed for serving soup.", + "Most soup bowls have a wide base and a smaller top.", + "A soup bowl is a bowl that is used to eat soup.", + "A soup bowl can be identified by its shape and size.", + "A soup bowl is generally a large, deep bowl that is used for serving soup.", + "There is no definitive answer to this question as soup bowls can come in a wide variety of shapes and sizes.", + "A soup bowl is a deep bowl that is wider than it is tall.", + "A soup bowl typically looks like a large bowl with a lip or rim.", + "A soup bowl has high sides and a wide opening.", + "A soup bowl is a bowl with a handle that is used to eat soup.", + "A soup bowl can be any type of bowl that is used to eat soup.", + "A soup bowl normally has a wide opening and is deep enough that soup can be spooned into it without spillage.", + "A soup bowl can have many different shapes and sizes, but typically it is a bowl that is deep enough to hold a lot of soup without spilling.", + "A soup bowl is a bowl that is used for soup.", + "There is no definitive answer to this question, as soup bowls come in many different shapes and sizes.", + "The image shows a white soup bowl with a green and white pattern around the rim.", + "The bowl is white and there is a green liquid inside it.", + "A simple white soup bowl with a green plant in the background.", + "The image from the internet is of a white soup bowl with a green plant in it.", + "The image is of a white bowl with a green rim.", + "This image is of a white porcelain soup bowl with a green and white striped napkin bundled neatly on the side.", + "I found an image of a soup bowl with a green and white checked napkin sitting next to it.", + "This image is of a bowl of miso soup.", + "The image is of a white soup bowl with a green and white checkered napkin around it.", + "A white soup bowl with handles, filled with a creamy soup.", + "A hearty bowl of tomato soup with a grilled cheese sandwich on the side.", + "Mmm.", + "Tasty soup in a bowl.", + "Tasty soup in a bowl.", + "Hearty soup for a cold winter's day.", + "Smallpox is no laughing matter.", + "A warm bowl of soup on a cold day.", + "A delicious bowl of homemade soup.", + "I'm not a big fan of soup, but this one looks pretty good.", + " A hearty bowl of RAMEN to warm you up on a cold winter day." + ], + "keyboard space bar": [ + "A keyboard space bar is a horizontal bar located near the bottom of a keyboard that is used to create spaces between words.", + "A keyboard space bar is a long, flat key in the middle of the keyboard that is used to create a space in text.", + "A keyboard space bar looks like a long, rectangular bar that is located in the middle of the keyboard, above the keys.", + "A keyboard space bar looks like a large, rectangular key in the middle of the keyboard.", + "A keyboard space bar is a long, rectangular key in the lower middle of a keyboard.", + "A keyboard space bar looks like a large rectangular key in the middle of the keyboard.", + "A space bar is a large button located in the middle of a keyboard that is used to insert spaces into text.", + "A keyboard space bar is a long, rectangular button at the bottom of the keyboard that is used to create spaces between words.", + "A keyboard space bar looks like a long, thin, rectangular key in the middle of the keyboard.", + "A keyboard space bar looks like a large, rectangular keys in the middle of the keyboard.", + "The space bar is the long horizontal bar in the middle of the keyboard.", + "The space bar is the long horizontal key at the bottom of the keyboard.", + "The space bar is the large horizontal key at the bottom of the keyboard.", + "The space bar is usually the biggest key on the keyboard.", + "The keyboard space bar is usually located in the middle of the keyboard and is the longest key on the keyboard.", + "A keyboard space bar is a horizontal bar in the middle of the keyboard that is used to create space between words.", + "The spacebar is usually located in the middle of the keyboard, toward the bottom.", + "The space bar is the long horizontal bar in the middle of the keyboard.", + "A keyboard space bar is typically located in the middle of the keyboard, and is the widest key on the keyboard.", + "You can identify a keyboard space bar by its large size and its placement in the center of the keyboard.", + "A keyboard space bar is a wide, horizontal bar located at the bottom of the main section of a keyboard.", + "The keyboard space bar looks like a large horizontal bar in the middle of the keyboard.", + "A keyboard space bar is typically a horizontal bar located in the middle of the keyboard.", + "The space bar is a horizontal bar located at the bottom of the keyboard.", + "A keyboard space bar typically looks like a long, thin rectangle.", + "On a standard keyboard, the space bar is located in the middle of the keyboard, and is generally the widest key.", + "A keyboard space bar looks like a long, rectangular bar that is located in the middle of the keyboard, directly above the alphanumeric keys.", + "A spacebar is a large button on a computer keyboard.", + "A keyboard space bar is a long, rectangular key that is usually located in the middle of the keyboard.", + "A keyboard space bar is a large, rectangular button in the lower center of a keyboard.", + "The image is of a keyboard with a space bar in the middle.", + "The image shows a keyboard with a white space bar.", + "The image is of a keyboard with a large space bar in the middle.", + "The image is of a keyboard with a white space bar.", + "The image is of a keyboard with a large space bar in the center.", + "An image from the internet of a keyboard space bar is a long, rectangular key in the middle of the keyboard that is used to create spaces between words.", + "The image is of a black keyboard with a white space bar.", + "One image of a keyboard space bar shows a close-up of the space bar on a laptop keyboard with the word \"SPACE\" written in all capital letters.", + "The image is of a black keyboard with a white space bar in the center.", + "The image is of a keyboard with a space bar in the middle.", + "SPACE BAR.", + "This keyboard's space bar is extra wide, perfect for those who want a little extra room to type.", + "This keyboard's space bar is extra sturdy to withstand heavy typing.", + "This keyboard's space bar is extra big, making it easier to hit when you're typing quickly.", + "Pushing the space bar on a keyboard.", + "Hitting the space bar is the best way to take a break from work.", + "This keyboard's space bar is extra large, making it easier to hit when you're typing.", + "This is the keyboard space bar.", + "My favorite thing to do when I'm bored is hit the space bar over and over again.", + " Keyboard with Spanish Character AccentsA keyboard with Spanish character accents used for typing in Spanish." + ], + "space heater": [ + "A space heater is a stand-alone appliance that contains a heating element.", + "A space heater typically looks like a metal box with a handle on the top and a grille on the front.", + "A space heater is a small, portable device that is used to heat a single room or small area.", + "Assuming you are asking for a general description: Most space heaters are small, portable devices that are used to heat up a single room or small area.", + "A space heater typically looks like a small box with a heating element inside.", + "A space heater usually looks like a small ceramic or metal box with a heating element inside.", + "A space heater is a small portable heater that can be used to heat up a small area.", + "A space heater is a small, portable appliance that heats up a room using electricity.", + "Most space heaters are small and box-shaped with a protruding grille on the front.", + "A space heater is a device used to heat a single, small area.", + "One way to identify a space heater is by finding one that is small and compact.", + "A space heater is a small appliance that is used to heat a specific area of a room or small space.", + "A space heater can be identified by its smaller size, portability, and ability to heat a small area.", + "A space heater generally has a cylindrical shape, chronic metal body, and adjustable thermostat.", + "A space heater is an appliance that is used to heat a small area.", + "A space heater typically has a metal case and a grille or screen on the front.", + "You can identify a space heater by its small size and portability.", + "A space heater is a standalone appliance that heats up a single room or area of a home.", + "A space heater is a device that is used to heat a small area.", + "One way to identify a space heater is by its size.", + "A space heater typically looks like a small box with a fan in the front.", + "A space heater looks like a small, portable box with a handle.", + "A space heater typically looks like a small box with a fan on one side.", + "A space heater is a small appliance that is used to heat up a single room or area of a home.", + "A space heater may take on many different forms, but most commonly they are small, box-shaped devices that sit on the floor or a table.", + "Most space heaters are small, box-shaped devices that can be easily carried from one room to another.", + "A space heater is a device used to heat a single, small area.", + "A space heater usually looks like a metal box with a handle on the top.", + "A space heater typically looks like a small, boxy appliance with a heating element inside.", + "The classic space heater is a small, box-shaped appliance with a power cord.", + "An image of a space heater from the internet shows a small, portable heater with a metal grille on the front.", + "In the image, there is a metal space heater with a cord running to an outlet.", + "I found an image of a space heater on the internet that looks like a metal box with a red knob on the front.", + "This space heater has a sleek, modern design.", + "The image is of a small, silver space heater.", + "An image of a space heater from the internet would show a portable device that is used to heat a small space.", + "This image shows a space heater on a hardwood floor next to a couch.", + "The image is of a small, red space heater.", + "The image is of a space heater on a table.", + "This space heater is surrounded by a metal cage, with a coils inside.", + "Kazakhstan winter is no joke.", + "This is a space heater.", + "Sensible Solutions for when the Temperature Drops.", + "A space heater providing warmth on a cold day.", + "The Power of RedThis space heater is sure to keep you warm all winter long!.", + "A small space heater providing warmth in a chilly room.", + "If you're looking for a way to keep your home warm this winter, space heaters are a great option! This one features three heat settings and an adjustable thermostat, so you can customize the perfect level of warmth for your space.", + " SNUGGLES SPACE HEATERThis space heater is perfect for snuggling up with on a cold winter day! With its warm, fuzzy exterior and cozy design, it's sure to keep you nice and warm.", + "This space heater is perfect for warming up any room in your home.", + "Space heater on a table near a window." + ], + "space shuttle": [ + "A space shuttle is a spacecraft with removable wings that is used to transport astronauts and cargo back and forth from Earth's orbit.", + "A space shuttle typically has aapogee rockets, main engines, solid rocket boosters, an external fuel tank, wings, and a space-worthy frame.", + "A space shuttle is a large spacecraft that is used to transport people and cargo into space.", + "The space shuttle is a large, reusable spacecraft that is launched on a rocket.", + "A space shuttle looks like a giant bullet.", + "A space shuttle essentially looks like a large airplane, but with a few notable exceptions.", + "A space shuttle is an orbiter vehicle that consists of a rocket-launched, winged reusable spacecraft.", + "A space shuttle typically has a long, pointy nose; a large, rectangular cargo bay; and two large wings with smaller wings attached near the nose.", + "A space shuttle typically has two large wings with a agencies and a large cargo bay between them.", + "A space shuttle is a spacecraft that is used to transport people and cargo into space.", + "The space shuttle is a spacecraft that was used by NASA for orbital human spaceflight missions.", + "The space shuttle is a reusable spacecraft with wings.", + "The space shuttle is a spacecraft that is launched vertically and lands horizontally.", + "The space shuttle has a distinctive shape.", + "The space shuttle is identified by its winged shape and its large cargo bay doors.", + "The space shuttle is a reusable spacecraft that is used by NASA for their space programs.", + "The space shuttle is a type of reusable spacecraft that is used for missions into Earth's orbit by NASA.", + "Space shuttles are identifiable by their unique shape.", + "Some identifying features of the space shuttle are its large cargo bay doors, its long tail, and its many tiles.", + "Space shuttle are identified by their unique shape.", + "A space shuttle looks like a large plane with two large engines on the back.", + "The space shuttle is a spacecraft that is used by NASA for missions into low Earth orbit.", + "Image result for space shuttle.", + "A space shuttle typically has a rectangular shape with two large wings on either side.", + "A space shuttle looks like an airplane with a rocket attached to its back.", + "A space shuttle typically has a cylindrical shape and is composed of a reusable orbiter, attached solid rocket boosters, and a large fuel tank.", + "A space shuttle typically has a rocket-like shape with large wings.", + "A space shuttle type spacecraft typically consists of a reusable orbiter, a large fuel tank, and two reusable solid rocket boosters.", + "A space shuttle is a passanger spacecraft designed to be reusable.", + "A space shuttle looks like a plane with two wings and a big tank on its back.", + "A space shuttle is a spacecraft typically used for multiple short trips with crews of five or fewer astronauts.", + "Image shows the space shuttle Challenger taking off.", + " launchThe image is of a space shuttle on a launch pad.", + "The image is of a space shuttle on a launch pad.", + "Image shows a spacecraft with large wingspan and large engines at the base.", + "A space shuttle is a reusable spacecraft that is used to transport people and cargo into space.", + "image of a space shuttle at liftoff, with bright orange and yellow flames coming from the engines and smoke billowing around the base of the shuttle.", + "Image is of American shuttle Discovery on its 39th and final mission.", + "I found an image of a space shuttle on the internet.", + "A space shuttle is a spacecraft typically launched from Earth to low Earth orbit by the space agency of a particular country.", + "A NASA space shuttle launches into space.", + "The Space Shuttle blasts off into space.", + "This is a photo of NASA's Space Shuttle Challenger shortly after liftoff from Kennedy Space Center on Jan.", + "The space shuttle blasts off into space.", + "A space shuttle launches into space.", + "Space Shuttle Endeavour on its final flight, 2012.", + "In this image, the space shuttle Columbia is preparing to launch into space.", + "The space shuttle Atlantis is scheduled to launch on its final mission, STS-135, on July 8, 2011.", + "The space shuttle is a reusable spacecraft that was operated by NASA from 1981 to 2011.", + "A space shuttle launches from Cape Canaveral, Florida." + ], + "spatula": [ + "A spatula is a kitchen tool with a flat, blunt edge that is used for flipping or moving food around in a pan.", + "A spatula is a kitchen utensil that is used to flip or transfer food.", + "A metal or plastic kitchen utensil with a long, thin blade and a blunt end, used for turning food or lifting it from a container.", + "A spatula is a flat, rectangular kitchen utensil with a long handle.", + "A spatula is a kitchen tool that is used to flip food over while cooking.", + "A spatula is an implement with a broad, flat, blunt blade that is generally used for flipping food during cooking or serving.", + "A spatula is a utensil with a flattened, often curved, blade that is used to mix, spread, and flip food during cooking.", + "A spatula is a kitchen utensil that is used to mix, spread, and flip food.", + "A spatula has a long, flat, handle with a bowl-shaped head.", + "A spatula is a kitchen tool that is used to help flip food while cooking.", + "A spatula is a tool with a flat, wide blade that is used for flipping food or transferring it from one container to another.", + "A spatula is a tool with a flat, flexible blade that is used for mixing, spreading, and flipping food.", + "One way to identify a spatula is by its long, thin, and broad blade.", + "A spatula is a tool with a flat, wide blade that is used for flipping food or transferring it from one container to another.", + "A spatula can be identified by its long, flat, and slightly flexible blade, which is usually made of metal or plastic.", + "A spatula is a kitchen utensil with a long, flat, flexible blade.", + "A spatula has a long, flat, and flexible blade.", + "Spatulas are flat, wide, and flexible.", + "A spatula is a tool with a flat, rigid blade that is used for flipping food or transferring it from one container to another.", + "A spatula is a utensil that has a flat, flexible blade that is used to mix, spread, and lift materials like batter, frosting, and dough.", + "A spatula is a utensil with a flat, flexible blade that can be used to mix, spread, and flip food.", + "A spatula is a kitchen utensil that is used to flip or transfer food.", + "A spatula is a flat, wide, and blunt-ended implement that is used to mix, spread, and flip food.", + "A spatula is only a few inches longer than a teaspoon and has a flat, broad end.", + "A spatula is a tool with a flat, blunt edge that is used for mixing, spreading, and flipping food.", + "A spatula is a kitchen utensil that is used to scrap food off of surfaces.", + "A spatula typically has a long, flat blade that is slightly curved.", + "A spatula is a kitchen tool with a flat, wide blade that is used for flipping food while it is being cooked.", + "A spatula is a kitchen tool that is used to flip and turn food while cooking.", + "A spatula is a short, blunt knife with a broad, flat blade.", + "An image from the internet of a spatula may show the kitchen utensil with a long, metal handle and a flat, rubber head.", + "A spatula is a kitchen utensil used to remove food from a skillet or pan.", + "One image that comes up when you google \"spatula\" is of a green rubber spatula.", + "A spatula is a tool with a wide, flat, flexible blade that is used to mix, spread, and lift materials such as food, drugs, plaster, paint, and putty.", + "The image is of a spatula with a wooden handle and a metal head.", + "A spatula is a kitchen utensil that is typically thin and flexible, with a narrow, flat end and a wide, flat end.", + "This image is of a yellow spatula with a green handle.", + "A metal spatula with a black rubber grip.", + "A spatula is a kitchen tool with a flat, wide blade that is used for flipping food while cooking.", + "A spatula is a flat, smooth, blunt knife with a short, rounded blade.", + "A spatula is a tool with a flat, flexible blade that is used for flipping food or transferring it from one container to another.", + " A person is cooking with a black spatula.", + "A spatula is a tool with a wide, flat blade that is used for flipping food or transferring it from one container to another.", + "The caption for this image might say something like, \"A spatula is a kitchen tool that is used for flipping or stirring food.", + "A spatula is a kitchen utensil that is used to flip or remove food from a pan or grill.", + "A spatula is a kitchen tool used to flip or transfer food.", + " Wooden handled spatula.", + "This spatula is perfect for flipping pancakes!.", + "A spatula for flipping pancakes.", + "A spatula is a tool with a flat, flexible blade that is used for flipping food or transferring it from one container to another." + ], + "motorboat": [ + "A motorboat is a boat that is powered by electricity or gasoline.", + "A motorboat typically has a long, flat body with a pointed front.", + "A motorboat is a boat that is propelled by an engine.", + "A motorboat has one or more engines that propel it through the water.", + "A motorboat looks like a regular boat, but it has a motor that helps it move through the water.", + "A motorboat typically has a long, flat bottom and two pontoons (also called tubes) on either side.", + "A motorboat tends to be a smaller boat that is powered by an engine, as opposed to being powered by the wind or by rowing.", + "A motorboat typically has a flat bottom and two pontoon-like structures on either side of the main body of the boat.", + "Most motorboats have a long, narrow body with a pointed front and a flat back.", + "A motorboat is a small to medium-sized boat propelled by an outboard motor.", + "The most obvious way to identify a motorboat is by the presence of an engine.", + "A motorboat is a boat that is powered by an internal combustion engine.", + "The best way to identify a motorboat is by its engine.", + "Motorboats are registered with the state in which they are used.", + "A motorboat can be identified by its engine noise and by the waves it creates as it moves through the water.", + "A motorboat is a boat that is propelled by an engine.", + "A motorboat is a boat that is propelled by an internal combustion engine.", + "Motorboats have large engines mounted on them, usually in the back.", + "Someone on a motorboat is typically going faster than someone on a kayak, for example.", + "Motorboats can be identified by their engine noise and by the rooster tail of water that they create behind them.", + " Motorboats come in a variety of shapes and sizes, but they all have one thing in common: they have an engine that propels them through the water.", + "A motorboat is a boat that is propelled by an engine.", + "Usually, a motorboat has one or two large engines in the back, with a long body and a pointed front.", + "A motorboat generally looks like a small to medium sized boat with an outboard motor attached to the back.", + "A motorboat is a small to medium-sized boat that has a motorized engine.", + "A motorboat is a small, fast boat that is propelled by an outboard motor.", + "A motorboat is a boat that has a motor attached to it.", + "A motorboat is a boat that is powered by a motor.", + "A motorboat is a small boat that is propelled by an outboard motor.", + "A motorboat usually has a large engine at the back and seating area at the front.", + "This image is of a motorboat on a lake.", + "This image is of a small, bright blue motorboat with white stripes racing across a body of water.", + "This image is of a large, luxury motorboat.", + "The image appears to be of a large, luxury motorboat out on the open water.", + "This image from the internet is of a motorboat out on the water.", + "The image from the internet of a motorboat is a large, white boat with a red stripe down the side.", + "An image of a motorboat from the internet is of a large, white motorboat with blue and red stripes running down the sides.", + "One image from the internet of a motorboat shows a large, white boat with blue stripes speeding through dark blue water.", + "The image from the internet of a motorboat is a white boat with a blue stripe down the middle.", + "This image is of a motorboat in the water with the sun shining.", + " A boatsman rides a small motorboat on a calm river.", + "This is a picture of a motorboat speeding through the water.", + "The motorboat cruises through the water, leaving a wake behind it.", + "The boat zips across the water, leaving a wake behind it.", + "A motorboat on a lakeA motorboat is a boat that is propelled by a motor, usually an internal combustion engine.", + "The caption reads: \"The motorboat is small but mighty.", + " A motorboat on a lakeA motorboat cruising on a lake on a beautiful day.", + "The Spirit of Adventure II, a motorboat designed for long-distance cruising.", + "The best way to see the islands is by boat!.", + "A motorboat out on the water, with the sun shining down." + ], + "spider web": [ + "A spider web is a circular or elliptical design made of thin, sticky threads that a spider spins to catch prey.", + "A spider web is a delicate net made up of silk threads that a spider spins to catch prey.", + "A spider web is a network of silk threads that a spider spins to catch its prey.", + "A spider's web is typically a tangled, sticky mess of silken threads.", + "A spider web looks like a intricate pattern of interconnected strands.", + "A spider web typically consists of a series of radial lines that converge at a central point, with a webbing of sticky silk spanning the spaces between the lines.", + "A spider web is a network of webbing made by a spider out of proteinaceous spider silk secreted by the spider.", + "A spider web is a silken structure produced by a spider.", + "A spider web is made up of a series of interconnected threads that are suspended between two points.", + "A spider's web is a network of sticky silken fibers that the spider spins to trap prey.", + "A spider web is usually made up of a spider's silk.", + "Spider webs are generally round or spiral in shape, and are made of a sticky substance that spiders produce.", + "If you see a spider in its web, that is the easiest way to identify a spider web.", + "Spider webs are made of spider silk, which is a protein fiber.", + "A spider web is a web that a spider has made.", + "A spider web is a network of lines made by a spider out of proteinaceous spider silk extruded from its spinnerets, generally for the purpose of ensnaring prey.", + "A spider web is a network of spider silk threads attached to anchor points.", + "The most obvious way to identify a spider web is by its web-like structure.", + "The main identifying feature of a spider web is the presence of a web, which is a network of silk threads produced by a spider.", + "Spider webs are round or oval and have a central point from which radiates a series of curved lines.", + "A spider web is a collection of thin, sticky threads that a spider spins to catch insects.", + "Fibrous and sticky, a spider's web is both a remarkable engineering feat and an effective means of catching prey.", + "A spider web looks like a web or a net.", + "A spider web is a network of silky threads that spiders spin to catch their prey.", + "A spider web is a fine, delicate structure made of strong, sticky silk threads.", + "A spider web is a structure made by a spider out of proteinaceous spider silk extruded from its spinnerets, generally for the purpose of ensnaring prey.", + "A spider web is an intricate network of delicate, sticky strands that a spider spins to catch prey.", + "A spider web looks like a series of interlocking loops.", + "The shape of a spider web is generally a spiral.", + "A spider web is a round, wheel-shaped web that is attached to a surface by a single thread.", + "The image is of a spider web that is hanging from a tree.", + "The image from the internet of a spider web is a web of silken threads spun by a spider.", + "The image is of a spiral spider web with a red spider in the center.", + "One image that comes to mind is a picture of a spider web with a spider in the center.", + "This image is of a spider web that is attached to a tree.", + "An image from the internet of a spider web may show a web that is sticky, strong, and has a spiral shape.", + "The image is of a large, intricate spider web.", + "A spider web is an image of a spider's web.", + "The image is of a spider web with a spider in the middle.", + "The image is of a spider web that is covered in dew.", + "A spider's web is an intricate and beautiful trap.", + "A spider web in morning dew.", + "The spider web is an intricate design that is both strong and delicate.", + " A spider's webThis spider's web is amazing! It's so intricate and delicate.", + "This spider web is beautiful, but it's also a perfect example of the delicate balance of nature.", + " $5A web of intrigue.", + "This photo shows a spider web that has been spun by a spider.", + "A spider web glistens in the early morning light.", + "A flexible network of silk fibers that a spider spins to catch prey.", + "A web woven by a spider can be a work of art, each spiral and spoke representing the creature's skill and effort." + ], + "spindle": [ + "A spindle is a thin, rod-like structure that helps to form and organize chromatin during cell division.", + "A spindle is a long, thin rod that is used to spin thread or yarn.", + "A spindle is a thin, cylindrical object that is used to hold or store something.", + "A spindle is a small, slender, rod-shaped object.", + "A spindle is a type of needle that is used in sewing and weaving.", + "A spindle is a long, thin object that is used to hold something in place or to spin thread.", + "A spindle is a small, thin, pointed rod that is used to spin thread or yarn.", + "A spindle is a rod-like object that is used to hold yarn or thread in place while it is being spun into thread or fabric.", + "A spindle is a small, cylindrical object that is used to hold thread or yarn.", + "A spindle is a small, thin object that is used to hold something in place.", + "On a lathe, a spindle is the rotating axis on which the workpiece is held and rotated.", + "The best way to identify a spindle is to look for the large, centrally located nucleus.", + "Spindles are usually spinning quickly and they have a long, thin shape.", + "A spindle can be identified by its long, thin shape and by the fact that it is often used to hold thread or yarn.", + "The easiest way to identify a spindle is to look for a small, pointed object at the center of a cell.", + "A spindle is a slender supporting rod, typically made of metal, used in various mechanical and electrical applications.", + "The easiest way to identify a spindle is by its shape.", + "The easiest way to identify a spindle is to look for a small, pointy object at the center of a cell.", + "You can identify a spindle by its long, thin shape.", + "A spindle is a small, thin, pointed object used for spinning thread or yarn.", + "A spindle looks like a small, cylindrical object with a pointed end.", + "A spindle is a slender and tapering shaft, typically made of wood, that is used for spinning thread or yarn.", + "A spindle is a cylindrical object with a smooth surface.", + "There is no definitive answer to this question as there are many different types and designs of spindles.", + "A spindle is a thin, rod-shaped object that is typically used in spinning thread or yarn.", + "A spindle looks like a small, thin rod with a pointed end.", + "The spindle is an important component of a spinning wheel.", + "A spindle is typically a thin, cylindrical rod that is used to hold or rotate something.", + "A spindle is a thin, rod-like object that is used to spin thread or yarn.", + "A spindle is a thin, cylindrical object that is used to hold or rotate something.", + "A spindle is a thin, cylindrical object that is used to spin thread or yarn.", + "A spindle is a thin, cylindrical object that is used to spin thread or yarn.", + "A spindle is a thin, cylindrical object that typically has a pointed end.", + "The image from the internet is of a spindle with a long, cylindrical shaft and a pointed end.", + "The image is of a spindle with a cotton thread wrapped around it.", + "A spindle is a long thin object that is used to spin thread or yarn.", + "A spindle is a thin, cylindrical object that is used to spin thread or yarn.", + " taperThe image is of a spindle taper with various parts labeled.", + "The image shows a close up of a spindle with thread wrapped around it.", + "An image of a spindle from the internet may show a long, thin object with a point at one end and a circular disc at the other.", + "\"Fibres collected on a spindle prior to spinning into yarn.", + "A spinning spindle for wool.", + "This image shows a spindle, a tool used for spinning thread or yarn.", + "Spindle used for weaving thread.", + "This is a spindle.", + "A spindle used for spinning thread.", + "This spindle was used for spinning wool into thread.", + "A Early German Spindle Whorl for spinning flax or wool.", + "This is a spindle, a tool used for spinning thread or yarn from fibers.", + "A spindle is a tool used for spinning thread or yarn from animal hair, fiber or man-made fiber." + ], + "sports car": [ + "A typical sports car is a low two-door coupe with a powerful engine.", + "A sports car is typically a low-slung, two-seater vehicle with a powerful engine.", + "A typical sports car has two seats, although some models have four seats.", + "A sports car is typically a two-door car with a sleek design.", + "A sports car is usually a two-seater with a sleek and powerful design.", + "A sports car is usually a low, two-seater car with a powerful engine.", + "A typical sports car has two seats, although some models have four seats.", + "A sports car is a vehicle designed for high performance driving.", + "A sports car is typically a two-seater with a sleek design.", + "A sports car typically has a sleek, aerodynamic design with a low stance.", + "There are many ways to identify a sports car, but some common characteristics include a low, sleek body; two doors; and a powerful engine.", + "There is no definitive answer to this question, as there are many different types and styles of sports cars.", + "A sports car is generally identify by its design.", + "Some identifying characteristics of a sports car are that they are usually designed with only two seats, they have a powerful engine, and they are designed for speed and agility.", + "By its design, a sports car is usually low-slung and has a long, tapered hood.", + "Some common characteristics of sports cars are that they have two doors, they are lower to the ground than other cars, and they have a powerful engine.", + "A sports car is typically a small, fast car with two seats.", + "Some characteristics of sports cars include low mass, high power-to-weight ratio, good handling, and high-performance engines.", + "A sports car generally has a more powerful engine than a regular car.", + "A sports car is a vehicle designed for high performance driving.", + "A sports car is a vehicle that has been designed for high performance driving.", + "A sports car is a vehicle designed for high performance driving.", + "The type of sports car may vary, but they are typically small, low to the ground, and have two seats.", + "A sports car is a vehicle designed for speed and agility.", + "A sports car typically has a sloping rear end, a long hood, and a cabin that is small in comparison to the overall size of the car.", + "There isn't a definitive answer to this question as the term \"sports car\" can mean different things to different people, but in general, a sports car is a small, lightweight vehicle with a powerful engine.", + "A sports car is typically a small, two-seater car with a powerful engine.", + "A sports car typically has a low, sleek appearance with two doors.", + "A sports car generally has a low, sleek profile and two seats.", + "A sports car typically has a low, sleek design.", + "The image is of a red sports car with the hood up.", + "This image is of a black and white sports car.", + "This is an image of a black sports car with two white stripes running down the length of the car.", + "This is an image of a Bugatti sports car.", + "The image from the internet is of a yellow and black sports car.", + "A red Ferrari sports car with the top down, driving on a winding road with mountains in the background.", + "A fast, sleek, and powerful car that can go from 0 to 60 mph in under 3 seconds.", + "I found an image on the internet of a black sports car.", + "The image is of a red sports car with the hood up.", + "The image might show a sleek, expensive sports car parked in front of a glamorous mansion or hotel.", + "This is a really nice car!.", + "Ferrari F8 Tributo.", + "Lamborghini Aventador SThis is a photo of a Lamborghini Aventador S, a sports car that is popular among luxury car enthusiasts.", + "This sports car is sleek and shiny, and it's sure to turn heads when you're driving it down the street.", + "This sleek sports car is sure to turn heads on the open road.", + "This is a picture of a black Ferrari sports car.", + "This is a sports car.", + "The 2019 Chevrolet CamaroA caption of an image of a crowd of people:People gather in Times Square to celebrate the new year.", + "This is a luxury sports car that is sure to turn heads.", + " A black sports car with red stripes down the middle, racing down a road." + ], + "spotlight": [ + "A spotlight is a bright light that is used to illuminate a specific area.", + "A spotlight is a bright light that shines on a specific area.", + "A spotlight is a concentrated beam of light that is used to illuminate a specific area.", + "A spotlight is a concentrated beam of light.", + "A spotlight is a beam of light that is used to illuminate a specific area.", + "A spotlight shines a bright light in a particular direction.", + "A spotlight is a bright light that is used to illuminate an area.", + "A spotlight is a light fixture that is used to illuminate a small area.", + "A spotlight is a light that is focused on a small area.", + "A spotlight is a large, powerful light that is used to illuminate a stage or other performance area.", + "You can identify a spotlight by its round, concave shape and by the light that it emits.", + "A spotlight is a light that shines on a particular area.", + "By its conical beam of light.", + "A spotlight is a type of stage lighting fixture.", + "A spotlight can be identified by its beam of light.", + "A spotlight is a bright light that is used to illuminate a particular area.", + "The easiest way to identify a spotlight is to look for a bright light that is focused on a specific area.", + "Spotlights can be identified by their bright, concentrated beam of light.", + "Spotlights are generally bright and have a focused beam of light.", + "A spotlight is distinguishable by its intense, focused light beam.", + "A spotlight looks like a bright light that is shining on something.", + "A spotlight is a lamp that is used to produce a bright beam of light.", + "A spotlight is a cone of light that is used to illuminate a specific area.", + "A spotlight is a cylindrical light fixture that emits a beam of light in a particular direction.", + "A spotlight is a type of stage lighting instrument which is widely used in theatre, film, television, and concert performances.", + "A spotlight is a bright light that is used to illuminate an area.", + "A spotlight is a small, intense beam of light that is used to illuminate a specific area.", + "A spotlight is a bright light that is used to illuminate a specific area.", + "A spotlight is a large, powerful light that is used to illuminate a stage or outdoor area.", + "A spotlight is a large, powerful light that is used to illuminate a specific area.", + "An image from the internet of a spotlight shows a bright light shining on a stage.", + "In the image, there is a spotlight in the center with a faint light shining around it.", + "This image is of a spotlight on a brick wall.", + "An image from the internet of a spotlight may show a bright light shining on a stage or in a theater.", + "This image is of a spotlight shining on a dark stage.", + "The image is of a single light shining down on a stage from above.", + "The image from the internet shows a spotlight shining on a stage.", + "A spotlight is a bright light that is used to illuminate a specific area.", + "A spotlightimage from the internet shows a beam of light shining down from the sky onto a particular area.", + "An image from the internet of a spotlight may show a powerful beam of light shining down from above, as if from a searchlight or other bright light source.", + "A spotlight shines on a stage.", + "The bright light of the spotlight cast a beam of heat and light across the stage.", + "A spotlight shining on a stage.", + "A spotlight shining on a empty stage.", + "The bright spotlight is shining on the stage.", + "The searchlight of a police helicopter scans a city street at night.", + "The spotlight shines on the stage, illuminating the performer.", + "A spotlight shining on a stage.", + "The spotlight is on the star of the show.", + "A spotlight shining on a stage." + ], + "stage": [ + "A stage looks like a large, raised platform that is typically used for live performances, such as plays, concerts, or speeches.", + "A stage is a raised platform on which performers present their work to an audience.", + "A stage is typically a large, flat platform that is raised above the ground.", + "A stage is typically a large, rectangular platform that is elevated off the ground.", + ".", + "A stage typically has a flat, wooden floor that is surrounded by raised areas on three sides.", + "A stage is typically a large, flat platform that is raised above the ground.", + "A stage usually has a wooden floor and is surrounded by curtains.", + "A stage is typically a raised platform with a floor and backdrop that is used to host performances or presentations.", + "\nA stage is typically a large, open area with a hard surface.", + "There are several ways to identify a stage.", + "A stage can be identified by its size, shape, and construction materials.", + "A stage can be identified by its proscenium arch, which is the opening in the stage wall that frames the performance space.", + "One way to identify a stage is by the size of the platform.", + "The various stages can be identified by looking at the production process as a whole and breaking it down into key steps or phases.", + "There are several ways to identify a stage:1.", + "Some common features of stages are backdrops, wings, footlights, and proscenium arches.", + "A stage is a platform that is used by performers to entertain an audience.", + "The stage is the area where the actors perform.", + "There are several ways to identify a stage.", + "A stage looks like a large, raised platform that is typically surrounded by a curtain.", + "The stage is where the performers stand or sit.", + "A stage looks like a large, raised platform with a flat surface that is used for performances.", + "A stage is typically a large, flat platform that is raised above the ground.", + "A stage looks like a large, raised platform that is typically used for performing or giving speeches.", + "A typical stage has a flat floor, with wings on either side.", + "A stage looks like a large, raised platform with a flat surface.", + "A stage can look like many things.", + "A stage can look like many different things.", + "A stage usually has a flat floor, with stairs leading up to it.", + "A stage with a red curtain and three spotlights.", + "coachA stagecoach is a large, covered wagon that is pulled by four horses.", + " performanceThe image is of a stage performance with a woman in a white dress and a man in a suit.", + "The image is of a stage with a red curtain.", + " with a microphoneThe image is of a small stage with a microphone in the center.", + "A stage is a raised platform at the front of a room where people can speak or perform.", + "The image is of a stage with a large screen at the back.", + "This image shows a stage with a red curtain.", + "One image from the internet of a stage shows a large, raised platform with a red curtain hanging down in front of it.", + "The image shows a stage with a red curtain in the background.", + "The curtains are drawn and the stage is set for the show to begin.", + "The stage is set for a night of theater.", + "Actors wait backstage for their cue to enter.", + "The Midtown Theater stage is set for a play.", + "This exciting new stage provides a perfect setting for our upcoming production of 'Hamlet'!.", + "The stage is set for a production of Romeo and Juliet.", + "The stage is set for a production of Romeo and Juliet.", + "The stage is set for a performance.", + "Actors performing on stage at a theater.", + "The stage is set for a play." + ], + "steam locomotive": [ + "A steam locomotive is a large, heavy train engine that is powered by a steam engine.", + "A steam locomotive has a large boiler on the front, with a firebox where the coal is burned.", + "A steam locomotive is a large, heavy machine that pulls trains along railroad tracks.", + "A steam locomotive typically has a long, narrow body with one or two levels.", + "A steam locomotive typically has a long, metal body and large wheels.", + "Most steam locomotives have a long, rectangular body with one or two levels.", + "A steam locomotive typically has a long, narrow body and one or more pairs of large wheels mounted on a rotating axle at each end of the body.", + "A typical steam locomotive is a large, metallic, cylindrical object with a big, black smokestack sticking out of the top.", + "A steam locomotive is a large, heavy train engine that pulls cars along a rail track.", + "A steam locomotive typically has a long, cylindrical body with four or six wheels that are powered by steam.", + "A steam locomotive can be identified by its steam-powered pistons, boiler, and large wheels.", + "The easiest way to identify a steam locomotive is by its funnel-shaped smokestack.", + "A steam locomotive can be identified by its smoke stack, its cow catcher, and its pistons.", + "By its shape.", + "A steam locomotive can be identified by its steam engine.", + "The most visible difference between a steam locomotive and a diesel locomotive is that a steam locomotive has a tall stack of pipes that run along the side of the boiler, while a diesel locomotive has a shorter stack.", + "A steam locomotive can be identified by its smoke stack, cow catcher, and large wheels.", + "The identifying characteristics of a steam locomotive are a steam engine, coal tender, and water tank.", + "The best way to identify a steam locomotive is by its large smoke stack and its cow catcher, which is a piece of equipment mounted on the front of the locomotive that is used to clear debris off the tracks.", + "The first steam locomotives were built in the early 1800s.", + "A steam locomotive is generally rectangular and has a large smokestack protruding from the top.", + "A steam locomotive typically has a long, rectangular body with four or six wheels.", + "A steam locomotive is a large, powered rail vehicle that uses steam to move itself forward.", + "A steam locomotive typically has a long, narrow body with one or two levels.", + "A steam locomotive is a large,powerful train engine that is fueled by burning coal.", + "There are many designs for steam locomotives, but most have a large boiler in the front, a small firebox in the back, and a long coal tender.", + "A steam locomotive has a large boiler that is usually coal-fired.", + " steam locomotive generally has a long, rectangular body with one or two levels.", + "A steam locomotive looks like a large metal train engine with aSMOKESTACK protruding from the top.", + "Most steam locomotives have a long, cylindrical body with two railway truck assemblies at either end.", + "This image is of a steam locomotive travelling through a winter landscape.", + "One image from the internet of a steam locomotive shows a large, black steam engine chugging down a set of train tracks.", + "The image is of a steam locomotive engine with a large coal tender behind it.", + "Image is of a large, old-fashioned steam locomotive.", + "The image is of a steam locomotive engine pulling a train.", + "The image is of a large, black steam locomotive with a long train of cars behind it.", + "The image is of a large, old-fashioned steam locomotive.", + "A photo of a vintage steam locomotive, restoration in progress with green weeds growing around it.", + "The image is of an old steam locomotive, most likely from the early 1900s.", + "An image of a steam locomotive from the internet shows a large, powerful engine churning up a cloud of steam and smoke as it moves down the tracks.", + " A steam engine chugs through a countryside.", + "The wheel of a steam locomotive, shot in close-up.", + " Central Pacific Railroad's Engine No.", + "CSX locomotive pulling a long train through rural America.", + "This steam locomotive is called the Adriatic and was built in 1885.", + " A steam locomotive on a track in a forest\nA caption of an image of a man on a train: A man is seen on a train, looking out of a window at the scenery passing by.", + "The locomotive is a steam-powered train engine.", + "A steam locomotive thunders down the tracks, its powerful engine churning up clouds of smoke and steam.", + "A steam locomotive hauling a train down a track.", + "The John Bull, America's first locomotive, in operation." + ], + "through arch bridge": [ + "A through arch bridge has a curved arch that extends over the top of the bridge deck.", + "A through arch bridge has a deck that is suspended from a curved arch that rises above the roadway.", + "A through arch bridge has an arch that goes over the top of the bridge, and it has supports on either side.", + "A through arch bridge has a deck that passes over the top of the arch.", + "A through arch bridge has an arch that goes over the entire length of the bridge.", + "A through arch bridge has a arch that goes over the top of the bridge, and it is supported at each end by columns.", + "A through arch bridge has an arch that goes over the top of the bridge, making it look like the bridge has a hole in the middle.", + "A through arch bridge has a curved arch that goes over the top of the bridge.", + "A through arch bridge has an arch that goes over the entire length of the bridge.", + "A through arch bridge has a tall, curved arch that goes all the way through the bridge.", + "A through arch bridge is a type of arch bridge that has its deck suspended below the arch, rather than resting on top of it.", + "A through arch bridge has an arch that goes through the bridge.", + "The simplest way to identify a through arch bridge is by its shape.", + "A through arch bridge is a bridge that has an arch that goes through the center of the bridge.", + "A through arch bridge is a type of arch bridge that has an arch that goes through the bridge, rather than over it.", + "A through arch bridge can be identified by its shape.", + "A through arch bridge has a hole in the center of the bridge, which allows traffic to pass through the bridge.", + "A through arch bridge has an arch that goes through the bridge.", + "One way to identify a through arch bridge is by its shape.", + "A through arch bridge is a bridge with a curved arch that extends above the bridge deck.", + "When looking at a through arch bridge from the side, it appears as if the bridge has a flat top with a large arch going through the middle of it.", + "A through arch bridge has a deck that is suspended from an arch that goes over the top of the bridge.", + "A through arch bridge is a type of bridge that has an arch that goes all the way through the bridge.", + "A through arch bridge is a bridge that has an arch that goes through the middle of the bridge.", + "A through arch bridge is a bridge that has a flat deck and arches that rise above the deck.", + "A through arch bridge has an arch that goes through the middle of the bridge and is supported at the top.", + "A through arch bridge is a type of bridge that has an arch that goes all the way through the bridge.", + "A through arch bridge is a type of bridge that has an arch that goes all the way through the bridge.", + "A through arch bridge is a bridge in which the deck is supported by an arch or series of arches that span the river or roadway below.", + "A through arch bridge has an arch that goes through the bridge.", + "In the image, a through arch bridge is visible.", + "The image is of a large through arch bridge that spans a wide body of water.", + "This image is of a through arch bridge called the Helix Bridge in Singapore.", + "This image is of the Humber Bridge in England.", + "This image is of a through arch bridge.", + "The image is of a through arch bridge with a curved arch that spans the road below.", + "In this image, we can see a through arch bridge with a tall, arching center section.", + "The image is of a through arch bridge that has a roadway suspended from two opposing arches.", + "In the image, a through arch bridge can be seen spanning a river.", + "Image shows a through arch bridge with a brick support structure.", + "The Gateway Arch in St.", + "The through arch bridge is one of the most recognizable bridges in the world.", + " Baltimore's Francis Scott Key Bridge, spanning the Patapsco River.", + "The through arch bridge is one of the most iconic and recognizable bridge designs.", + "The Arrigoni Bridge in Middletown, Connecticut.", + "The Brooklyn Bridge, built in 1883, was the first bridge to use steel cables to support its roadway.", + "Theodore Roosevelt Bridge, Washington, D.", + " The Gateway Arch in St.", + "The Lake Pontchartrain Causeway is the longest continuous bridge over water in the world, with a length of 23.", + "The Gateway Arch in St." + ], + "steel drum": [ + "A steel drum is usually about two feet high and three feet in diameter.", + "A steel drum looks like a large, metal barrel.", + "A steel drum is a type of musical instrument that is played by hitting it with a stick or using your hands.", + "A steel drum is an oil drum that is made out of steel.", + "A steel drum is a cylindrical container made of steel.", + "A steel drum is a large, cylindrical container that is made of steel.", + "A steel drum is a round drum that is made out of steel.", + "A steel drum is a cylindrical container made out of steel.", + "A steel drum is a round, cylindrical container that is usually made out of steel.", + "A steel drum is a round metal container that is usually silver or gray in color.", + "A steel drum has a cylindrical shape and is made from steel.", + "A steel drum is a cylindrical container made of steel.", + "The steel drum is a musical instrument that is native to the Caribbean.", + "A steel drum has a sleek, cylindrical shape and is usually made from a shiny, silver-colored metal.", + "A steel drum is a drum that is made out of steel.", + "A steel drum is a musical instrument of the percussion family.", + "A steel drum is a cylindrical container used to hold various materials, such as oil, water, or chemicals.", + "The drum will be made of steel and will have a drumhead on one or both ends.", + "A steel drum is a tall, cylindrical drum that is usually made from steel.", + "You can identify a steel drum by its round shape and metal surface.", + "A steel drum typically has a conical shape and is made from a steel sheet that has been rolled and welded.", + "A steel drum can have many different looks, depending on how it is made.", + "A steel drum is a drum that is made out of steel.", + "A steel drum is a round, metal container that is used to store various products.", + "A steel drum looks like a large, metal barrel.", + "A steel drum is a drum that is made out of steel.", + "A steel drum looks like a regular drum but is made from steel.", + "A steel drum looks like a large steel container that is used to store liquids.", + "A steel drum typically has a cylindrical shape and is made from a steel sheet that has been rolled and welded into a cylinder.", + "A steel drum is a large, cylindrical drum made from steel.", + "A steel drum is a cylindrical container made of steel that is used to store or transport materials.", + "A steel drum is a round, metallic container that is used to store various substances.", + "The image is of a steel drum with a blue, green, and yellow paint job.", + "A steel drum is a type of drum that is often used in Caribbean music.", + "The image is of a large silver steel drum.", + "The image shows a large steel drum that is lying on its side on a concrete floor.", + "In the image, there is a steel drum lying on its side on a concrete floor.", + "The image is of a steel drum with a blue background.", + "A steel drum is a type of musical instrument.", + "An image of a steel drum shows a metal drum that is curved and has a handle on top.", + "A steel drum being played in a band.", + "A lone steel drum on a deserted beach.", + " A steel drum being playedA person is playing a steel drum.", + "A steel drum lying on its side on a grassy field.", + "A steel drum is a container for storing liquids or gases.", + "A steel drum full of water.", + "A steel drum next to a fire.", + " A steel drum full of crude oil.", + "This steel drum has a capacity of 55 gallons.", + "A steel drum filled with water resting on a wooden dock." + ], + "stethoscope": [ + "A stethoscope is a small, handheld medical device that has a thin tube with a small disc-shaped piece at one end.", + "A stethoscope is a long, thin tube with two earpieces at one end and a small disc-shaped resonator at the other.", + "A stethoscope typically has a long, thin tube made of plastic or rubber.", + "A stethoscope is a long, thin tube with a small disc-shaped piece of metal at one end.", + "A stethoscope is a small, hand-held, surgical instrument that is used to listen to the internal sounds of a patient's body.", + "A stethoscope typically has a long, thin tube with a small piece that goes into the ear, and a larger piece that is placed on the body.", + "A stethoscope is a long, thin tube with a small disc-shaped piece at one end.", + "A stethoscope is a small, hand-held medical device that has a small disc-shaped chest piece that is placed against the patient's skin, with a tubing that connects to earpieces.", + "A stethoscope is a long, thin tube with a small round disc at one end.", + "A stethoscope is a long, thin tube with a small round disc at one end and earpieces at the other.", + "The traditional stethoscope is an instrument used for auscultation, or listening to body sounds, such as the heart, lungs, or intestines.", + "A stethoscope is a medical device used to listen to the heart, lungs, and intestines.", + "A stethoscope is a medical device that is used to listen to heart, lung, and other body sounds.", + "A stethoscope is a medical device that is used to listen to sounds made by the body, specifically the heart, lungs, and intestines.", + "Stethoscopes are long, thin tubes with earpieces at each end and a small disc in the middle.", + "A stethoscope is a medical device that is used to listen to heart, lung, and other body sounds.", + "A stethoscope can be identified by its tube-like shape and its earpieces.", + " Most stethoscopes have a small disk-shaped resonator that is placed against the patient's chest, and two tubes that connect the resonator to earpieces.", + "A stethoscope is a medical device that is used to listen to heart, lung, and intestine sounds.", + "A stethoscope is a small, hand-held device that is used to listen to the body's internal organs.", + "A stethoscope is a small, hand-held medical device that has a small disk-shaped resonator that is placed against the chest, and two tubes that attach to earpieces.", + "A stethoscope is a small, hand-held medical device that has a small disc-shaped amplifying diaphragm on one end and two earpieces on the other.", + "A stethoscope is a tubular shaped device with earpieces on either end.", + "A stethoscope looks like a small, handheld, sound-amplifying device with earpieces.", + "A stethoscope is a medical device that is used to listen to human heart, lung, and intestine sounds.", + "A stethoscope is a long, thin tube with a small round disc (the bell) at one end and a rubber earpiece at the other.", + "A stethoscope is a small, handheld medical tool that has a long, thin tube attached to two earpieces.", + "A stethoscope is a diagnostic tool which consists of a small disc with a microphone in the center, called thechestpiece, that is placed against the patient's skin, and a set of earpieces that are placed in the user's.", + "A stethoscope is a small, handheld medical device that has a long, thin tube with a flat disk at the end.", + "A stethoscope is a long, thin tube with a small round disc at one end and earpieces at the other.", + "An image from the internet of a stethoscope may show the tool in use by a medical professional, or it may be a close-up of the device itself.", + "This image is of a woman holding a stethoscope to her chest.", + "The image is of a blue stethoscope.", + "The image is of a traditional stethoscope.", + "An image of a stethoscope from the internet shows a metal and plastic device with a long, thin tube and two earpieces.", + "An image from the internet of a stethoscope might show a medical professional holding the stethoscope to their ear, listening to a patient's heartbeat.", + "The image is of a blue stethoscope on a white background.", + "The image is of a stethoscope resting on a patient's chest.", + "The image is of a stethoscope with a blue latex-free head and white tubing.", + "See image.", + "A stethoscope is a medical instrument used to listen to the body's internal organs, such as the heart and lungs.", + "A stethoscope is a vital tool for doctors, allowing them to listen to their patients' heartbeat and lungs.", + " Dr.", + "A doctor listens to a patient's heartbeat with a stethoscope.", + "Doctor holding a stethoscope.", + "A stethoscope on a table.", + " A doctor holds a stethoscope to a patient's chest.", + "A stethoscope is a medical instrument used to listen to heart, lung, and other body sounds.", + "Stethoscope.", + "A stethoscope is a medical instrument used to listen to heart, lung, and other body sounds." + ], + "scarf": [ + "A scarf is a piece of cloth that is worn around the neck.", + "A scarf is a rectangular or triangular piece of fabric that is typically wrapped around the neck.", + "A scarf is a long, thin piece of cloth that is wrapped around the neck.", + "A scarf is a long piece of cloth that is worn around the neck.", + "A scarf looks like a long, thin piece of fabric that is wrapped around the neck.", + "A scarf is a long, usually thin piece of cloth that is worn around the neck.", + "A scarf is a long, thin piece of fabric that is typically worn around the neck.", + "A scarf is a piece of cloth that is worn around the neck.", + "A scarf is a piece of cloth worn around the neck, head, or waist for warmth, cleanliness, fashion, or religious reasons.", + "A scarf is a long, thin piece of fabric that is worn around the neck.", + "A scarf is a thin strip of fabric worn around the neck for warmth or as part of a uniform.", + "A scarf is a long, thin piece of fabric that is wrapped around the neck.", + "The best way to identify a scarf is to look for the label.", + "There is no definitive answer to this question, as the answer may vary depending on the person's personal preferences or style.", + "The easiest way to identify a scarf is by its long, thin shape.", + "A scarf is a piece of fabric worn around the neck, typically for warmth.", + "A scarf can be identified by its long, rectangular shape and its fringed ends.", + "A scarf is a type of clothing that is worn around the neck or head.", + "A scarf is a rectangular or triangular piece of fabric that is typically wrapped around the neck.", + "A scarf is a long piece of cloth that is worn around the neck.", + "A scarf is a rectangle of fabric that is worn around the neck.", + "A scarf looks like a long piece of cloth that is worn around the neck.", + "A scarf is a long, thin piece of fabric that is wrapped around the neck.", + "A scarf is a long, thin piece of fabric that is worn around the neck.", + "A scarf is a long piece of cloth that is typically wrapped around the neck.", + "A scarf is a thin strip of fabric worn around the neck, typically to keep warm.", + "A scarf is a strip of cloth that is worn around the neck.", + "A scarf is a long strip of fabric that is worn around the neck.", + "A scarf is a long, thin piece of fabric that is typically wrapped around the neck.", + "A scarf is a long, thin piece of fabric that is wrapped around the neck.", + "This image is of a white and light blue scarf with a checkered pattern.", + "The image is of a beige, woven scarf.", + "This image is of a light blue scarf with white polka dots.", + "The image is of a white scarf with blue and green stripes.", + "This image shows a cream-colored scarf with a fringe at the end.", + "This image is of a scarf that is made out of a light-colored material.", + "The image is of a woman wearing a white scarf.", + "A scarf is a long piece of cloth that is typically worn around the neck.", + "I found an image on the internet of a beige-colored scarf with fringe at the end.", + "In the image, there is a green and white scarf lying on a white surface.", + "This is a scarf.", + "This scarf is made of 100% wool and is very soft to the touch.", + "This is a beautiful cashmere scarf in a rich deep green color.", + "This is a beautiful scarf!.", + "This scarf is made of 100% silk and is very soft to the touch.", + "This is a beautiful scarf that can be worn many ways.", + "A blue and white scarf resting on a chair.", + " A long, blue scarf with a pattern of white stars.", + " A colorful scarf tied in a loose knot around the neck.", + " A woman smiling and holding a brightly colored scarf in front of her faceThis woman is enjoying the colorful scarf she is wearing." + ], + "stone wall": [ + "A stone wall looks like a wall made of stones.", + "A stone wall looks like a man-made wall made out of stones.", + "A stone wall looks like a wall made of stones.", + "A stone wall is a wall made of stones.", + "A stone wall looks like a wall made of stones.", + "A stone wall looks like a wall made of stones.", + "A stone wall is it a wall made out of stone.", + "A stone wall is a wall made of stone.", + "A stone wall is a wall made of stone.", + "A stone wall usually looks like a wall made out of stone.", + "A stone wall can be identified by its evenly laid stones and mortar joints.", + "A stone wall is a wall that is made of stone.", + "Stone walls are constructed of individual stones that are stacked on top of each other.", + "The stones in a stone wall are usually of different sizes.", + "A stone wall can be identified by its rows of evenly-sized stones that are fit together without mortar.", + "Most stone walls have an irregular shape with a rough surface.", + "A stone wall is a wall made of stone.", + "A stone wall can be identified by its characteristic appearance of large, evenly shaped stones that are stacked on top of each other.", + "A stone wall is a wall that is made of stones.", + "A stone wall can be identified by its thick, solid structure.", + "A stone wall looks like a wall made of stone.", + "A stone wall is a wall that is made out of stones.", + "A stone wall is a wall made out of stones.", + "A stone wall typically looks like a wall made of stone.", + "Image result for stone wall.", + "A stone wall typically consists of large pieces of stone that are fit together without the use of mortar.", + "A stone wall looks like a wall made out of stones.", + "A stone wall typically looks like a wall made of stone.", + "A stone wall is usually a solid wall made of stone.", + "A stone wall is a structure made of stone that is often used as a boundary fence or garden wall.", + "This image is of a stone wall that has been built using large, dark-colored stones.", + "This image is of an old stone wall that has been worn down over time.", + "I found an image on the internet of a stone wall that is part of a medieval castle.", + "The image is of a stone wall that is old and crumbling.", + "The image is of a stone wall that is crumbling.", + "In the image, there is a stone wall that is tall and has a narrow opening at the top.", + "The image is of an old, stone wall that is crumbling in places.", + "The image is of a stone wall that is crumbling.", + "This image shows a stone wall that has been built using large, gray stones.", + "This image from the internet is of a stone wall.", + "The Great Wall of China.", + "A stone wall in a garden.", + "An old stone wall in England.", + " A stone wall in a field.", + "A Close up of a Stone Wall.", + "The wall is made of large stones that have been fitted together without mortar.", + "A stone wall in a garden.", + "The ancient stone wall is a testament to the strength and endurance of the people who built it.", + "The ruins of a stone wall.", + "Stone wall in a garden." + ], + "stopwatch": [ + "A stopwatch is a small device with a digital display that is used to timing events.", + "A stopwatch is a small, handheld electronic device used to measure time.", + "A stopwatch is a small hand-held timepiece with two buttons on the front, used for timing short events.", + "A stopwatch is a small, hand-held timepiece with two buttons on the front, used for timing events.", + "A stopwatch looks like a small, handheld clock.", + "A stopwatch is a handheld device with two buttons on the front and a digital display.", + "A stopwatch is a small, handheld device with buttons on the front.", + "A stopwatch is a small, handheld device with a digital or analog display that shows the elapsed time.", + "A stopwatch is a device that measures the amount of time that passes between when it is started and when it is stopped.", + "A stopwatch is usually a small, handheld device with two buttons.", + "A stopwatch is a handheld timepiece that is started and stopped to record the duration of an event.", + "The easiest way to identify a stopwatch is by its large dial and two buttons on the side.", + "The stem is the wind up knob on a stopwatch.", + "The face of a stopwatch typically has a large dial to display the elapsed time and two or more buttons to control the timing functions.", + "A stopwatch can be identified by its large size, two buttons on the side, and a digital or analog face.", + "A stopwatch is typically round and has two buttons on the front, one to start and stop the timer, and one to reset the timer back to zero.", + "A stopwatch is a handheld timepiece that is used to measure the amount of time that has elapsed since it was started.", + "You can identify a stopwatch by its Numbers, which goes up to 60, and its Seconds, which goes up to 60.", + "A stopwatch can be identified by its two large buttons on the top and its small dial on the front.", + "A stopwatch is a small clock that can be started and stopped to measure the amount of time that passes.", + "A stopwatch is a small hand-held timepiece with a digital display that is started and stopped with the push of a button.", + "A stopwatch can look like many things, but most have a large face with a second hand that ticks around the dial once per second.", + "A stopwatch looks like a clock with two buttons on the side.", + "A stopwatch is a small, handheld device that has a digital or analog display.", + "A stopwatch looks like a clock with two buttons on the top, one to start the timer and one to stop it.", + "A stopwatch is a small handheld device with two buttons.", + "A stopwatch is a small, hand-held timepiece.", + "A stopwatch is a small, handheld device used to time events.", + "Most stopwatches have a start/stop button on the top, and a reset button on the side.", + "A stopwatch is a small, handheld device with two buttons.", + "An image from the internet of a stopwatch would show a digital or analogue watch with a countdown or stop function.", + "The image is of a stopwatch with a white face and black hands.", + "The image from the internet is of a stopwatch with a red background.", + "The image is of a stopwatch with a black background.", + "The image depicts a stopwatch on a white background.", + "The image is of a blue stopwatch with a white background.", + "This image is of a digital stopwatch with a black background.", + "This image is of a stopwatch with a green background.", + "The image is of a blue stopwatch with a white background.", + "The image is of a blue stopwatch on a white background.", + "This is a picture of a stopwatch.", + "The caption reads \"A stopwatch showing one minute left.", + "A stopwatch is a countdown timer used to time events.", + "A stopwatch is used to time events.", + "\"I'm not timing you or anything, but.", + "A stopwatch is a portable timekeeping device that is used to measure the amount of time that has elapsed since it was started.", + "Time's up!.", + "A digital stopwatch with a blue background.", + "The stopwatch is an essential tool for timing events.", + "This is a stopwatch." + ], + "stove": [ + "A stove typically has four or six burners, an oven and a broiler.", + "A stove is typically a metal or ceramic box with a heating element inside.", + "A stove typically has four or six burner plates on top, an oven underneath, and space for storing pots and pans underneath or beside it.", + "A stove looks like a piece of furniture with a cooktop and an oven.", + "A stove typically has a smooth, flat top with four or more circular burners.", + "A stove looks generally like a metal box with four legs.", + "A stove looks like a heating unit with four or more burners on top and an oven beneath.", + "A stove typically has four or six burners, an oven and a broiler.", + "A typical stove has four or five burners on the top, an oven below, and space for storing pots and pans underneath.", + "A stove typically has four or six burners, an oven, and control knobs.", + "A stove is a piece of cooking equipment that is used to heat food.", + "There are many ways to identify a stove.", + "A stove is a piece of equipment that is used to cook food.", + "A stove is a fixed appliance that is used to cook food.", + "A stove is a household appliance typically used to cook food.", + "Stoves can be identified by their shape, size, and function.", + "It is a device typically used to cook food.", + "A stove is a household appliance typically used to heat food.", + "A stove is a household appliance typically used to cook food.", + "A stove is typically a metal or ceramic object with a flat surface on top where one can place pots and pans to cook food.", + "A stove is a household appliance typically used to cook food.", + "A stove typically has four burners and an oven.", + "A stove typically has four or six burners, an oven, and a stovetop.", + "A stove looks like a machine that is used to cook food.", + "A stove typically has four metal plates on top that heat up when turned on and a oven below.", + "A stove typically has four or more burners on top, an oven (or range), and Sometimes a stove will also have a grill for cooking food on top of the stove.", + "A stove is a household appliance typically used to cook food.", + "A stove is a household appliance typically used to cook food.", + "A stove might look like a metal box with a door in the front, or a metal box with a door in the front and a glass door in the back.", + "A stove typically has four burners and an oven.", + "This image shows a stove with four burners.", + "The image is of a black stove with four burners.", + "This image is of a stove with four burners, a control panel, and an oven.", + "An image from the internet of a stove can show a range of colours, from a light beige to a deep brown.", + "An image of a stove from the internet would typically show a metal or glass surface with several burners of different sizes.", + "An image from the internet of a stove may show a metal or glass stovetop with four or more burners, an oven with a see-through door, and knobs or dials to control the heat.", + "An image from the internet of a stove would show a metal or glass stove top with either coils or a smooth surface.", + "An image from the internet of a stove would most likely show a metal or glass stovetop with four or more round or linear burners.", + "This image is of a stove with four burners.", + "Stove: An appliance typically used to cook food.", + "Stove top with four burners.", + "Frigidaire gas range with self-cleaning oven.", + "This sleek and modern stove is perfect for any kitchen.", + "Stove top with four burners.", + "A stove with four burners and a oven.", + "This stove is called a \"wood-burning\" stove because it is designed to burn wood.", + "COOKING STOVESA caption of an image of a table:DINING TABLEA caption of an image of a bed:BEDROOM FURNITURE.", + "Close-up of a black stove with four burner coils.", + " A wood burning stove surrounded by stoneThis wood burning stove is encircled by stones, most likely taken from a stream or river.", + " A black stove with four silver knobs in a kitchen with tiled backsplash and wood cabinets." + ], + "strainer": [ + "A strainer is a widely used kitchen tool which typically has a bowl-shaped base with a mesh or perforated metal top.", + "A strainer is a kitchen tool that is used to strain liquids.", + "A strainer is a type of kitchen utensil that is used to remove food particles, liquid, and other debris from a given substance.", + "A strainer is a small, metal, cone-shaped tool with a mesh bottom that is used to strain liquid from solids.", + "A strainer is a utensil that is used to separate solid food from liquid.", + "A strainer is typically a conical metal or plastic mesh screen that is placed over a bowl or pot to catch larger pieces of food and prevent them from entering the cooking vessel.", + "A strainer is a metal or plastic cup-shaped utensil with a handle and a perforated bottom.", + "A strainer is a kitchen tool that is used to separate solid food from liquid.", + "A strainer is a kitchen tool that is used to separate solids from liquids.", + "A strainer is typically a metal or plastic mesh screen that is used to filter out unwanted solids from liquids.", + "Strainers are designed to remove solids from liquids, and are usually used in the kitchen to remove food particles from broth or soup.", + "You can identify a strainer by its long handle and bowl-shaped mesh.", + "A strainer is a tool that is used to separate solids from liquids.", + "A strainer is a type of kitchen utensil that is used to separate solid foods from liquids.", + "A strainer is generally a mesh or sieve that is used to remove solid particles from a liquid.", + "Press the strainer against your teeth.", + "A strainer is a device that is used to remove debris from a liquid.", + "A strainer is a kitchen utensil that is used to remove food from a liquid.", + "A strainer is a kitchen tool that is used to remove food particles, such as herbs, seeds, and rice, from liquids.", + "Most strainers have a concave mesh bowl that is attached to a handle.", + "A strainer is a kitchen tool that is used to strain or separation liquids andsolids.", + "A strainer looks like a metal or plastic bowl with a mesh bottom.", + "A strainer is a kitchen tool that is used to strain or sieve liquids.", + "A strainer is typically a metal sieve with a handle, used to strain solids from liquids.", + "A strainer is a kitchen utensil that is used to remove food particles, such as pieces of cooked vegetables or meat, from a liquid.", + "Astrainer is a kitchen utensil that is used to remove large pieces of food from liquids.", + "A strainer is a cylindrical mesh or cloth filter that is used to separate solid particles from liquids or air.", + "A strainer is a kitchen tool that is used to strain liquids.", + "A strainer looks like a wire mesh screen with a handle.", + "A strainer is a kitchen utensil that is used to remove solids from liquids.", + "A plastic strainer with a metal handle and a mesh bottom, sitting in a sink full of soapy water.", + "The strainer is a metal colander with a long handle.", + "The image is of a metal strainer with a long handle.", + "This image is of a white plastic strainer with a long handle.", + "A strainer is a kitchen utensil that is used to strain food.", + "In this image, there is a strainer that is metal and has a handle.", + "A strainer is a kitchen tool with a mesh screen that is used to strain liquids.", + "This strainer is made of metal mesh and has a long handle.", + "The image is of a metal strainer with a long handle and a mesh bottom.", + "The image from the internet is of a white strainer with a black handle.", + "Strainer.", + "The caption might say something like \"Strainer on a white plate,\" or simply \"Strainer.", + "I'm all strained out.", + " A strainer is a kitchen utensil that is used to strain liquids from solids.", + "StrainerA strainer is a kitchen utensil that is used to remove solids from liquids.", + "A strainer is a kitchen utensil that is used to remove solids from liquids.", + "A strainer is a kitchen tool that is used to remove food from a liquid.", + " A metal strainer placed over a bowl.", + "Stainless steel strainer on a white countertop.", + "This metal strainer is perfect for draining pasta or other cooked foods." + ], + "tram": [ + "A tram is a vehicle on rails that is used for public transportation.", + "A tram is a type of light rail vehicle that is used for public transport.", + "A tram is a light rail vehicle that runs on tracks in the street.", + "A tram is a cable car that is used to travel up and down a hill.", + "A tram is a railway vehicle which runs on tramway tracks along public urban streets.", + "A tram is a vehicle that runs on rails and is used for public transportation.", + "A tram is a large,electric streetcar that travels along fixed rails.", + "Trams, or streetcars, are small, electric vehicles that run on rails.", + "A tram is a system of public transport that uses electric railcars operating on an exclusive right-of-way, which is often separate from other traffic, for all or part of the route.", + "A tram is a vehicle that runs on rail tracks and is used to transport people or goods.", + "A tram is a vehicle that runs on rails and is used for public transportation.", + "A tram can be identified by its long, thin body and by its light-rail tracks.", + "A tram is a type of light rail vehicle that runs on tracks in urban areas.", + "A tram can be identified by its unique shape.", + "A tram is a vehicle that runs on tracks in the street.", + "Some distinguishing characteristics of a tram include its size, shape, and color.", + "A tram can be identified by its long, narrow body and its lack of a passionate driver.", + "Some ways that you can identify a tram are by its size, shape, and color.", + "A tram is a special kind of train that can run on both rails and road.", + "Typically, a tram is a rail vehicle which runs on tramway tracks along public urban streets.", + "A tram is a vehicle on rails that transports people or goods.", + "A tram is a vehicle designed to run on tramway tracks.", + "A tram is a type of light rail vehicle that is designed to share existing roadways with other traffic.", + "A tram is a vehicle that runs on rails and is used to transport passengers.", + "A tram is a light rail vehicle that runs on tracks in the ground.", + "A tram is a vehicle that runs on rails and is used for public transportation.", + "A tram usually looks like a small train or a large bus.", + "A tram typically looks like a train, but smaller.", + "A tram is a vehicle that runs on tracks and is used for public transportation.", + "A tram is typically a large, rectangular vehicle with multiple levels.", + "This image is of a tram on a city street.", + "The image from the internet is of a modern tram that is blue and white in color.", + "The image is of a tram in the city.", + "The image is of a yellow tram on a city street.", + "Description:This image from the internet shows a tram making its way down a street in an urban area.", + "A city tram going down a road with buildings and trees on either side.", + "The image is of a tram winding its way through a cityscape.", + "This image shows a tram in Melbourne, Australia.", + "An image of a tram on the internet shows a large, blue and white vehicle on metal tracks.", + "The image is of a large, red, antique tram.", + "Public transit in Europe is often much better than in the United States.", + "San Francisco's iconic cable cars are one of the city's top attractions, carrying millions of riders up and down the hills of the city each year.", + "Cable Car on Powell Street, San Francisco.", + "A tram in Melbourne, Australia.", + "The tram is a mode of public transport in operation in many cities and towns around the world.", + "For many years, trams were a common sight on the streets of Melbourne, Australia.", + "Cable car on Powell Street in San Francisco.", + "A tram in Prague, Czech Republic.", + "Tram in San Francisco.", + " A tram passes through a city center." + ], + "stretcher": [ + "A stretcher is a long, narrow bed that is often used in hospitals to transport patients.", + "A stretcher is a long, flat surface on which a person can lie down.", + "A stretcher typically consists of a long, narrow platform with four legs that can be collapsed for transport.", + "A stretcher is a bed on wheels, used to transport sick or injured people.", + "A stretcher is a medical device used to carry injured or sick people on a short-distance transport.", + "A stretcher is a long, flat board on which someone who is injured or ill can be lying down and carried.", + "A stretcher is a long, flat surface on which a person can lie down.", + "A stretcher is a frame with handles at each end, used to transport injured or sick people on a flat surface.", + "A stretcher looks like a long, flat surface on which a person can be laid.", + "A stretcher is a flat surface on which a person can lie down, typically in a hospital or ambulance, in order to be transported to another location.", + "Generally, a stretcher is a long, narrow bed that is used to transport injured or sick people.", + "A stretcher is a medical device used to move injured or sick people from one place to another.", + "There are a few ways to identify a stretcher:-The patient is typically on their back on a stretcher-A stretcher is usually a long, flat surface-There are typically handles on both sides.", + "The easiest way to identify a stretcher is by its size and shape.", + "A stretcher is a medical device used to transport patients who require medical attention.", + "What do you mean by \"stretcher?\".", + "A stretcher is a device used for moving patients who cannot walk.", + "A stretcher is a long, narrow bed on which a sick or injured person is lying down or is being carried.", + "A stretcher can often be identified by its Jacquard weave fabric.", + "A stretcher is a long, narrow bed or litter on which a wounded person is placed for transport.", + "A stretcher is a narrow bed or cot on which a wounded or sick person is laid or carried.", + "A stretcher is a long, narrow bed that is used to carry injured people.", + "A stretcher typically looks like a narrow bed with handles on either end.", + "A stretcher is a long, narrow bed that is used to transport sick or injured people.", + "A stretcher is a long, flat surface on which a person can lie down.", + "A stretcher is a frame on wheels used to carry a sick or injured person.", + "A stretcher is a long, narrow bed that is used to transport injured people.", + "A stretcher is a long, narrow bed that can be moved by two people.", + "A common stretcher is a long, narrow bed with four legs that can be collapsible.", + "A stretcher is a bed on wheels.", + "An image from the internet of a stretcher shows a person lying on a stretcher with a white sheet draped over them.", + "The image is of a stretcher with a person on it being wheeled into an ambulance.", + "An image of a stretcher from the internet typically shows a metal or plastic platform on four legs, with two handles at each end.", + "A stretcher is a medical device used to move patients who cannot walk from one place to another.", + "The image is of a metal stretcher with four wheels, two at each end.", + "This image is of a stretcher being used to transport a patient.", + " being lifted into an ambulance paramedics are loading a stretcher into an ambulance.", + "I found an image on the internet of a stretcher that was used in World War I.", + "This image shows a stretcher being used to transport a patient.", + "The image from the internet of a stretcher is of a metal frame with a mattress on top.", + "A medic carries a wounded soldier on a stretcher during the battle of Gettysburg.", + " A medic carries a wounded soldier on a stretcher.", + " A man is being stretchered off of a mountain.", + "A stretcher being used to transport a patient.", + "Injured party being transported to medical facility.", + "A stretcher being used to transport a patient.", + "Emergency personnel carry an injured person on a stretcher.", + "first responders load an injured person onto a stretcher.", + "\"A stretcher is a piece of equipment used to carry injured or sick people.", + "A person is being transported on a stretcher." + ], + "couch": [ + "A couch is a piece of furniture that is used for seating.", + "A couch is a piece of furniture that typically seats three people and has a soft, padded surface.", + "A couch is a long upholstered piece of furniture for several people to sit on.", + "A couch is a long, upholstered piece of furniture with a back and armrests.", + "A couch is a piece of furniture that typically seats three people and is upholstered in fabric or leather.", + "A couch is typically a long, upholstered seat with arms and a back.", + "A couch is a long upholstered piece of furniture that has a back and arms.", + "A couch is typically a soft, upholstered seat with armrests and a backrest.", + "A couch is a piece of furniture for seating two or more people.", + "A couch is a piece of furniture such as a sofa or settee, with a back and legs, designed to seat two or more people.", + " by the cushions.", + "One way to identify a couch is by its cushions.", + "A couch is a piece of furniture that is typically upholstered and has a back and two arms.", + "A couch can be identified by its soft, upholstered fabric, its comfortable seat cushions, and its low backrest.", + "Couches can be identified by their long length, soft material, and seating capacity.", + "Couches are typically upholstered in fabric or leather and have a soft, cushioned surface.", + "There are many ways to identify a couch.", + "You can identify a couch by its shape, size, and function.", + "A couch is typically a piece of furniture that is used for seating two or more people.", + "A couch is typically a piece of furniture that is used for seating two or more people.", + "A couch typically has a soft, upholstered seat, back, and arms, and it often includes a built-in reclining mechanism.", + "Most couches have a soft, upholstered exterior and come in various shapes and sizes.", + "A couch is typically a soft, upholstered piece of furniture with multiple cushions.", + "A couch is typically an upholstered piece of furniture with seating for two or more people.", + "A couch is a piece of furniture that typically has a soft, cushioned surface.", + "A couch is typically a piece of furniture that has a cushioned seat, back, and arms.", + "A couch is typically a piece of furniture that has a soft surface and is meant for sitting or reclining.", + "A couch is a piece of furniture that typically has a soft, padded surface and arms, and is used for seating.", + "Couches are usually upholstered in a soft material and have cushions.", + "A couch typically has a soft, cushioned surface and seat back, and arms on either side.", + "This image from the internet is of a blue couch with white piping.", + "This image shows a large, comfortable-looking couch in a light beige color.", + "This couch is a light blue color with white piping.", + "A couch is a piece of furniture for seating two or three people.", + "The image is of a blue couch with white piping.", + "The image is of a white couch with blue and white pillows.", + "This image shows a beige couch with two blue pillows.", + "This image is of a blue couch with white piping.", + "The image is of a light blue couch with two white cushions.", + "A couch from the internet is a piece of furniture that is used for seating.", + "This couch looks comfortable and would be perfect for a living room or family room.", + "This couch is perfect for anyone who wants to relax in style.", + "This is a couch.", + "This couch is amazing! It's so comfortable and stylish.", + " A brown leather couch in front of a brick fireplace.", + "This comfortable couch would be perfect for anyone seeking a cozy place to relax.", + "This couch is comfortable and perfect for relaxing.", + "Couch in living room.", + "This comfortable couch is perfect for relaxing in after a long day.", + "This couch is comfortable and perfect for taking a nap on." + ], + "stupa": [ + "A stupa looks like a dome-shaped structure with a point at the top.", + "A stupa is a dome-shaped structure, often containing relics, that is used as a place of meditation.", + "A stupa looks like a large dome-shaped structure with a point at the top.", + "\nA stupa is a large, dome-shaped monument used to store Buddhist relics.", + "A stupa is a mound-like or hemispherical structure containing relics, typically the remains of Buddhist monks, used as a place of meditation.", + "A stupa typically consists of a solid cone-shaped dome with a flat top, surrounded by a walkway and reached by a set of stairs.", + "A stupa is a tall, cylindrical structure that is capped by a dome.", + "A stupa is a mound-like or hemispherical structure with a round or square base, used as a place of meditation.", + "A stupa is a large, dome-shaped structure that was originally used to store Buddhist relics.", + "A stupa is a Buddhist monument consisting of a dome-shaped structure built to honor the Buddha.", + "Stupas are identified by their distinctive dome-shaped structure.", + "The most distinguishing feature of a stupa is its semi-spherical or conical dome, which is sometimes surrounded by concentric circles of smaller stupas.", + "Stupas are large, bell-shaped monuments used to commemorate important events.", + "Stupas typically have a circular or square base, and a dome or hemisphere on top.", + "A stupa is a Buddhist monument consisting of a dome-shaped structure containing relics, often of the Buddha, that is surrounded by a circular path (the pradakhshina path) for walking meditation.", + "The main structure of a stupa is hemisphere-shaped and it has a conical or umbrella-like spire on top.", + "A stupa is a Buddhist monument that is used to mark the site of a Buddha's death, or to enshrine a relic of the Buddha or a saint.", + "A stupa can be identified by its hemispherical shape and its mast-like structure.", + "A stupa is a Buddhist shrine in the form of a truncated cone or pyramid.", + "The most notable feature of a stupa is its large, hemispherical dome, which is sometimes consulted as a symbol of Buddhist presence.", + "Stupas can come in many different shapes and sizes, but they typically have a large, hemispherical dome with a point at the top.", + "A stupa is a Buddhist monument that typically has a dome-shaped roof and a square or rectangular base.", + "A stupa is a mound-like or hemispherical structure, typically containing relics, that is used as a place of meditation.", + "A stupa is a large, dome-shaped structure that is used to house Buddhist relics.", + "A stupa is a large mound-like structure, usually made of brick or stone, that is used to house Buddhist relics.", + "A stupa looks like a large, round structure with a pointy top.", + "A stupa is typically a large, dome-shaped structure with a square or circular base.", + "Most stupas are large hemispherical mounds of stone or brick with a flat top, and a small shrine built into the center of the mound.", + "A stupa is a large hemisphere with a small point at the top.", + "A stupa looks like a large dome that is usually surrounded by a platform or a series of steps.", + "This image from the internet is of a stupa in Nepal.", + "This image from the internet shows a stupa in the Nepalese countryside.", + "This image is of a Mahabodhi temple in Bodh Gaya, India.", + "A stupa is a dome-shaped structure, often with a pointed spire, used as a Buddhist shrine.", + "This image shows a stupa in Nepal.", + "In the image, there is a large, white stupa surrounded by green trees and grass.", + "In the image, a large, white stupa stands in the middle of a green field.", + "The image is of a large, white stupa with a domed top.", + "The image from the internet shows a large, white stupa against a blue sky.", + "The image is of a small, white stupa in the middle of a green field.", + "Built in the 4th century, the Great Stupa at Sanchi is one of the oldest stone structures in India.", + "This is a picture of a stupa, a Buddhist monument used to honor the deceased.", + " The Bodh Gaya stupa is a Buddhist monument located in Bodh Gaya, India.", + " The Great Stupa at Sanchi, India.", + "An ancient Buddhist stupa in Sri Lanka.", + "A stupa is a Buddhist monument used to honor the dead or commemorate important events.", + "A stupa is a Buddhist monument used to promote peace, compassion, and wisdom.", + " A stupa is a Buddhist monument used to enshrine relics of the Buddha or sacred texts.", + " Barabar Caves in India.", + "The Great Stupa at Sanchi." + ], + "submarine": [ + "A submarine is commonly cylindrical in shape, with a conning tower on top.", + "A submarine is a long and slim vessel that looks like a fish.", + " and how it worksA submarine is a long, cylindrical vessel that is designed to operate underwater.", + "A submarine is a long, thin, cylindrical vessel that is designed to operate underwater.", + "A submarine is a relatively small watercraft designed to travel underwater.", + "A submarine is a long and slender vessel that is designed to operate underwater.", + "A submarine is a long, cigar-shaped underwater vehicle with a conning tower.", + "A submarine looks like a large metal tube with a pointed end and a round end.", + "A submarine is a large, long, black boat that can go under water.", + "A submarine is a long, dark, and slim boat that is built for underwater travel.", + "The most common way to identify a submarine is by the \"periscope\" sticking out of the water.", + "The best way to identify a submarine is by its telltale periscope, or conning tower, poking above the surface of the water.", + "The easiest way to identify a submarine is by its periscope.", + "A submarine may be identified by its unique hull shape, which allows it to operate submerged for extended periods of time.", + "Submarines can be identified by their sleek, cigar-shaped hulls and low, blunt conning towers.", + "The only sure way to identify a submarine is to see it surface.", + "The best way to identify a submarine is by its periscope.", + "The most common method to identify a submarine is through hydroacoustic tracking ( sonar ), although optical sighting , infrared , electronic support measures , and radar can also be used in some cases.", + "The only sure way to identify a submarine is to have it surface.", + "The best way to identify a submarine is by its periscope.", + "A submarine is typically cigar-shaped, with a pointed nose and a blunt, rounded rear.", + "Most submarines have a cigar-shaped body with a conning tower at the front.", + "A submarine looks like a large, long, black, tubular vessel with a conning tower on top.", + "A submarine looks like a large, gray, metal boat.", + "A submarine is a long and slender vessel that is designed to travel underwater.", + "A submarine generally looks like a long, cylindrical tube with a conning tower on top.", + "Some submarines look like a long, torpedo-shaped tube.", + "This is a difficult question because there are many different types and sizes of submarines.", + "Submarines can come in many different shapes and sizes, but they are typically long and thin, and designed to operate underwater.", + "Submarines generally have a cigar-shaped body and a conning tower on the upper deck.", + "I found an image of a submarine on the internet that I think is really cool.", + "The image is of a submarine surfacing in the ocean with the sun shining on it.", + "The image is of a submarine that is yellow and gray with a large black dome on top.", + "This image is of a submarine surfacing.", + "The image is of a submarine sailing through the water.", + "This image is of a submarine cruising under the water.", + "This image is of a submarine sailing through the water.", + "SUBMARINE- An underwater vehicle propelled by a diesel engine and electric batteries.", + "This image is of a submarine surfacing in the ocean.", + "This image is of a submarine surfacing in the middle of the ocean.", + "K-278 Komsomolets, a nuclear-powered attack submarine, was the only submarine of its class ever built.", + "A submarine lurks beneath the water, waiting to strike.", + " A submarine surfacing in the ocean.", + "A nuclear submarine on patrol.", + "Nuclear submarine USS Texas at sea.", + "The submarine is a top secret military vessel that can travel underwater for extended periods of time.", + "The picture shows a submarine surfacing.", + "The submarine is a key element of any navy's arsenal, allowing it to projection power beneath the waves.", + "The submarine is a military vessel that is designed to operate underwater.", + "Nuclear submarine USS Pennsylvania surfacing in the Arctic Ocean." + ], + "suit": [ + "A suit is a piece of clothing that consists of a jacket and trousers that match in color and fabric.", + "The traditional adult male suit consists of a matching jacket and trousers.", + "A suit is a two-piece business suit consisting of a matching jacket and trousers.", + "A suit is a piece of clothing that consists of a jacket and trousers.", + "A suit is a set of men's clothing that includes a jacket and trousers.", + "A suit is a two-piece outfit consisting of matching trousers and a jacket.", + "A suit is a two-piece outfit consisting of trousers and a jacket.", + "A suit typically looks like a matching jacket and pants, usually in the same color or pattern.", + "A suit looks like a pair of trousers and a jacket.", + "A suit is a piece of clothing that consists of a jacket and pants that match in color and fabric.", + "A suit is a two-piece matching set of clothing consisting of trousers and a jacket.", + "There are a few ways to identify a suit.", + "A suit is traditionally a set of matching clothes consisting of a jacket and trousers.", + "The most common ways to identify a suit are by its color and fabric.", + "A suit consists of a jacket and trousers that match in color and fabric.", + "A suit is typically composed of a jacket and trousers.", + "A suit is a garment consisting of a jacket and trousers that is worn by a man or woman.", + "One way to identify a suit is by the type of fabric it is made from.", + "Most suits are made of wool, and many have a pattern such as a stripe or a check.", + "A suit traditionally consists of a jacket and trousers.", + "A suit typically consists of a jacket and trousers.", + "A suit traditionally consists of a jacket and trousers made from the same material.", + "A suit is a type of clothing that consists of a jacket and pants that match.", + "A traditional suit is typically composed of a jacket and trousers.", + "A suit is a type of clothing that consists of a jacket and trousers that match.", + "A suit is a two-piece clothing ensemble consisting of a jacket and pants.", + "A suit is a garment consisting of a jacket and trousers that are made from the same fabric.", + "A suit traditionally includes a jacket and pants.", + "Most suits are comprised of a jacket and trousers of the same fabric.", + "A suit traditionally consists of a jacket and trousers of the same fabric, typically of wool, cotton, or a synthetic fabric.", + " of armorThis is a photo of a suit of armor from the 14th century.", + "A man in a navy blue suit with a light blue shirt and a striped tie stands in front of a cityscape.", + "The image is of a grey suit with a white shirt.", + "The image is of a light grey suit with a white shirt and black tie.", + " of armorA suit of armor is typically a piece of protective clothing that covers the entire body.", + "This image is of a gray suit with a white shirt and a red tie.", + " of armorThe image is of a suit of armor that looks like it is from medieval times.", + " of armorA suit of armor is a piece of protective clothing that covers the entire body.", + " of armorA suit of armor is a piece of protective clothing that covers the entire body.", + " of armorThis image shows a traditional suit of armor from the medieval period.", + "A well-dressed man in a suit.", + "This suit was designed by John Smith, a renowned fashion designer.", + " A well-dressed man in a tailored suit.", + "This is a man's suit.", + " A brightly colored suit with large lapels and yellow shoes.", + " A well-dressed man in a black suit and a white shirt.", + "This is a suit.", + "A man wearing a blue suit and a tie.", + " A businessman in a suit looking out of a window.", + "A well-dressed man in a sharp suit." + ], + "sundial": [ + "A sundial is a device that tells time by the position of the sun.", + "A sundial is a way of telling time using the position of the sun.", + "A sundial is a device that uses the position of the sun to tell time.", + "The sundial is a flat, usually horizontal, piece of stone, metal, or wood, with markings on it that cast a shadow when the sun shines on it.", + "A sundial is a device that tells time based on the position of the sun.", + "A sundial is a device that uses the position of the sun to tell time.", + "A sundial is a circular disk with markings around the edge that show the hours of the day.", + "A sundial is a flat plate with a gnomon, or style, that casts a shadow on the face of the sundial.", + "A sundial is a device that tells time by the position of the Sun.", + "A sundial is a device that tells time by the position of the sun.", + "A sundial is a tool that tells time by the position of the sun.", + "A sundial is a device that tells time by the position of the sun.", + "A sundial can be identified by its large dial face and gnomon, or pointer.", + "A sundial is a device that uses the position of the sun in the sky to determine the time of day.", + "The sundial is an ancient timepiece that uses the sun's shadows to tell time.", + "There are many ways to identify a sundial.", + "A sundial is an engraved or painted disc that shows the time of day by the position of the sun.", + "A sundial is typically a flat, horizontal or vertical surface with markings that indicate the time of day by the position of the sun.", + "A sundial is a type of clock that uses the position of the sun in the sky to tell time.", + "Most sundials have a vertical rod or post called a gnomon.", + "A sundial has a slanted, horizontal plate called a dial, with lines or numbers marked on it.", + "A sundial looks like a clock that uses the sun to tell time.", + "A sundial is a device that tells time by the position of the sun.", + "A sundial looks like a circular object with a triangle in the center.", + "Sun Dial.", + "A sundial is a device that uses the position of the sun to tell time.", + "A sundial is a tool used to tell time by the position of the sun.", + "A sundial is a device that uses the position of the sun to tell time.", + "Most sundials look like a flat plate with markings on it.", + "A sundial is a device that uses the position of the Sun to tell time.", + "A sundial is a device that uses the position of the sun to tell time.", + "A sundial is a device that tells time by the shadow cast by the sun on a fixed object.", + "The image is of a sundial in a park.", + "A sundial is a device that tells time by the shadow cast by the sun on a specific surface.", + "A sundial is a device that uses the position of the sun to tell time.", + "This sundial is in the shape of a cone, with the point of the cone pointing towards the sun.", + "The image is of a sundial in a park.", + "This sundial is in the shape of a cone, with a metal rod sticking straight up from the center.", + "A sundial is a device that tells time by the position of the sun.", + "A sundial is a device that uses the position of the sun to tell time.", + "A sundial is a device that uses the sun's shadows to tell time.", + "The sundial is a beautiful and ancient way to tell time.", + "This sundial was used to tell time by the position of the sun.", + " A sundial is a timekeeping device that uses the position of the Sun to tell time.", + " Ancient sundial in the gardens of the Palazzo Vecchio, Florence, Italy.", + "The sundial reads \"11:59\" signifying that it is one minute to midnight.", + "A sundial is a device that tells time by the position of the Sun.", + "The sundial is a device that tells time by the position of the sun.", + " A sundial is a device that tells time by the position of the Sun.", + "A sundial is a device that tells time by the position of the sun." + ], + "sunglasses": [ + "A sunglasses generally has two dark lenses attached to a frame.", + "A sunglasses is a device worn over the eyes to block the sun's glare.", + "A sunglasses is a filter for the eyes.", + "A sunglasses is a type of eyewear that is worn to protect the eyes from the sun's rays.", + "A sunglasses is a type of eyewear that is worn to protect the eyes from the sun's rays.", + "A pair of sunglasses typically has two dark lenses that are held in a frame that rests on the wearer's nose and extends over their temples.", + "A sunglasses is a pair of glasses that has dark lenses to block out the sun's bright light.", + "A typical pair of sunglasses has a dark, tinted lens to block out bright sunlight and a frame to hold the lens in place.", + "A sunglasses is a type of eyewear that is worn to protect the eyes from the sun's rays.", + "A sunglasses has two lens that are tinted and held together by a frame.", + "There are a few ways to identify sunglasses.", + "By the image of a pair of sunglasses.", + "You can identify a pair of sunglasses by looking for their telltale dark lenses.", + "One way to identify sunglasses is by the type of lens.", + "One way to identify sunglasses is by their large lenses and frames that wrap around the head.", + "Most sunglasses have some type of label or tag that indicates that they are indeed sunglasses.", + "Some sunglasses have a label on them that says \"sunglasses.", + "Sunglasses are typically made with dark lenses to protect the eyes from bright sunlight.", + "The easiest way to identify a pair of sunglasses is to look for the label.", + "There are many ways to identify sunglasses.", + "A sunglasses look like a pair of dark glasses with lenses that are tinted to protect the eyes from the sun's bright light.", + "Sunglasses have dark lenses that help protect your eyes from the sun's bright light.", + "A sunglass looks like a pair of dark glasses.", + "A sunglasses is a piece of eyewear that helps to block out the sun's harmful rays.", + "A typical pair of sunglasses has two dark lenses that cover the eyes and help to reduce glare from the sun.", + "Sunglasses look like two pieces of dark glass or plastic attached to a frame that goes over your ears.", + "A sunglasses generally has a dark lens to block out the sun's bright rays.", + "A sunglasses typically looks like a pair of dark glasses with different tinted lenses.", + "A sunglasses typically has two dark lenses that are held in a frame.", + "A sunglasses looks like a pair of glasses with dark lenses.", + "The image from the internet is of a pair of black sunglasses with a metal frame.", + "The image is of a pair of black, aviator-style sunglasses.", + "This image is of a pair of sunglasses with a black frame and dark lenses.", + "In the image, a pair of silver-rimmed sunglasses with dark lenses are pictured from the front.", + " displayThis image is of a display of sunglasses in a store.", + "A pair of sunglasses with white frames and dark lenses.", + "The image is of a pair of black sunglasses with a silver designer label on the side.", + " storeIn the image, there is a sunglasses store with various sunglasses on display.", + "A pair of ray-ban aviator sunglasses with a brown leather case.", + "This image is of a pair of sunglasses on a person's face.", + "Shady business.", + "Sunglasses that give you the ultimate cool look.", + " A pair of black sunglasses on a white background.", + "A pair of sunglasses on a golden beach.", + "A pair of tortoise shell sunglasses on a white background.", + "These stylish sunglasses are perfect for a day at the beach!.", + "A sunglasses on a beach chair.", + "This person is ready for summer!.", + "A pair of sunglasses lying on a table.", + "Stylish and vintage-inspired, these cat-eye sunglasses are perfect for any outfit." + ], + "sunscreen": [ + "A sunscreen typically comes in a white, creamy lotion form.", + "Most sunscreens come in a lotion form and have a white, creamy consistency.", + "A sunscreen typically has a white, creamy consistency and is applied to the skin with a lotion pump or applicator.", + "A sunscreen can be a cream, lotion, gel, spray, or oil.", + "Most sunscreens are lotions, creams, or gels.", + ", smells like, and feels likeSunscreen typically has a thick, creamy consistency and is white or off-white in color.", + "A sunscreen typically comes in a cream, lotion, gel, or spray.", + "A sunscreen is a white, creamy substance that is applied to the skin to prevent sunburn.", + "A sunscreen typically takes the form of a lotion, gel, foam, spray, or wipe.", + "A sunscreen looks like a cream that you put on your skin.", + "sunscreen is typically identified by a spf (sun protection factor) number.", + "Most sunscreens will have a label that says \"sunscreen\" or \"SPF.", + "Broad spectrum sunscreens will protect you from both UVA and UVB rays and will be labeled as \u201cbroad spectrum\u201d on the bottle.", + "Sunscreen comes in many forms, including lotions, creams, sprays, gels, and wipes.", + "Sunscreen typically has a SPF (sun protection factor) of 15 or higher and is labeled \"broad spectrum\" if it protects against both UVA and UVB rays.", + "A sunscreen can be identified by looking for a label that says \"sunscreen\" or \"SPF.", + "Most sunscreens have an SPF, or sun protection factor, printed on the front of the bottle.", + " Typically, sunscreens will be labeled with an SPF (sun protection factor).", + "On the front of the sunscreen's packaging, there should be a label that says \"broad spectrum\" and has an SPF (sun protection factor) number on it.", + "Sunscreen is a lotion, gel, spray, or other product that you put on your skin.", + "A sunscreen can be a lotion, spray, gel, or other type of topical product that is applied to the skin.", + "Most sunscreens are either liquids, creams, or aerosols.", + "A sunscreen is typically a clear or white cream that is applied to the skin.", + "Most sunscreens look like a lotion, and are white when first applied to the skin.", + "A sunscreen typically looks like a lotion, cream, gel, or spray.", + "Sunscreen is typically white when first applied, but it will eventually rub in and become clear.", + "A sunscreen can come in many different appearances.", + "A sunscreen can look like a lotion, spray, gel, or other type of topical solution.", + "A sunscreen looks like a thick white cream.", + "There is no one answer to what a sunscreen looks like because there are many different types and brands of sunscreen.", + " bottleA sunscreen bottle is filled with a creamy white liquid.", + "This image is of a young woman applying sunscreen to her face.", + " bottleThe image is of a yellow and white sunscreen bottle with a green cap.", + " bottleThere is an image of a sunscreen bottle on the internet.", + " bottleThe image is of a sunscreen bottle with a white label and a blue cap.", + " productThe image is of a white and blue plastic bottle of sunscreen.", + " productSunscreen lotion in a white bottle with a blue and yellow label.", + "A picture of sunscreen would likely show a bottle or container of some sort filled with a thick white or light blue liquid.", + "A sunscreen is a lotion, spray, gel, foam, or other substance that you put on your skin to protect it from the sun's ultraviolet (UV) rays.", + " productThe image is of a large white tube of sunscreen with a green label.", + "Summertime is the perfect time to stock up on sunscreen!.", + "SPF 50 sunscreen.", + "This sunscreen will protect you from the sun's harmful rays.", + "Image of sunscreen tube with cap offA sunscreen that offers SPF 30 protection against the sun's harmful rays.", + "Protect your skin from the sun's harmful rays with sunscreen.", + "Coconut oil sunscreenThis all-natural sunscreen is made with just two ingredients: coconut oil and zinc oxide.", + "A sunscreen with an SPF of 30 or higher is recommended for use during extended sun exposure.", + "\"This sunscreen protects against both UVA and UVB rays.", + "SPF 50 sunscreen.", + "Sunscreen is an important part of protecting your skin from the sun's harmful rays." + ], + "suspension bridge": [ + "A suspension bridge is a type of bridge that is supported by cables that hang from towers.", + "A suspension bridge is a type of bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders.", + "A suspension bridge typically consists of two large towers that support a deck, or platform, where people can walk or drive.", + "A suspension bridge consists of two towers that are anchored into bedrock, with heavy cables extending from the towers to support a roadway.", + "A suspension bridge hangs from cables that are anchored at each end of the bridge.", + "A suspension bridge is a type of bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders.", + "A suspension bridge is a type of bridge where the deck is hung from cables suspended from towers.", + ".", + "A suspension bridge has two towers that are anchored into place.", + "A suspension bridge is a bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders.", + "The suspension bridge has been called the most elegant bridge type.", + "Suspension bridges are defined by the way their weight is hung from cables that pass over towers.", + "The easiest way to identify a suspension bridge is by its distinctive shape.", + "A suspension bridge can be identified by its two large towers that are connected by a series of cable.", + "Suspension bridges are typically identified by their long spans.", + "If you are looking at a bridge and you can see the roadway suspended from cables, then you are looking at a suspension bridge.", + "Suspension bridges are easy to identify because they have large towers on either end and a deck that hangs from cables.", + "Suspension bridges areCharacterized by towers which support two large cables draped over the river or other space to be spanned.", + "The suspension bridge is the most common and most beautiful bridge.", + "Suspension bridges are characterized by tall towers that support the weight of the bridge deck and cables that hang down from the towers and attach to the deck.", + "A suspension bridge is a bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders.", + "A suspension bridge is a bridge that has its deck suspended by cables that hang from towers.", + "A suspension bridge typically has two or more towers that are anchored into the ground.", + "A typical suspension bridge has two large towers that reach high above the water.", + "A suspension bridge consists of two towers, with cables suspended between them.", + "A suspension bridge typically has two large towers that are connected by two horizontal beams.", + "A suspension bridge looks like a bridge with two towers and a deck suspended by cables.", + "A suspension bridge typically consists of two towers that are anchored into the ground, with cables that extend from the towers to the deck of the bridge.", + "A suspension bridge is a bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders.", + "A suspension bridge has two towers that are connected by cables.", + "It is an image of a suspension bridge that is crossing a large body of water.", + "An image of a suspension bridge may show the bridge span over a large body of water with the bridge cables suspending the roadway from towers on either side.", + "The image is of a suspension bridge spanning a valley with mountains in the distance.", + "In this image, we can see a suspension bridge looming in the distance.", + " In the image, there is a large suspension bridge with a metal frame.", + "In this image, a suspension bridge hangs over a large body of water.", + "A suspension bridge is a type of bridge in which the deck (the load-bearing portion) is hung below suspension cables on vertical suspenders.", + "This image shows a suspension bridge with a view of the skyline in the background.", + "A suspension bridge hangs from cables that are securely attached to anchorages in the ground.", + "In the image, a large suspension bridge arches over a body of water.", + "The Golden Gate Bridge is a suspension bridge spanning the Golden Gate strait, the 1-mile-wide (1.", + "The Golden Gate Bridge in San Francisco, California.", + "The suspension bridge is one of the most popular bridges in the world.", + "The Golden Gate Bridge, a suspension bridge in San Francisco, California.", + "The Suspension Bridge.", + "The Golden Gate Bridge in San Francisco, California.", + "The Golden Gate Bridge is a suspension bridge spanning the Golden Gate strait, the one-mile-wide, one-point-seven-mile-long channel between San Francisco Bay and the Pacific Ocean.", + "Suspension Bridge Over Troubled Waters.", + "Golden Gate Bridge.", + "The Brooklyn Bridge, connecting the boroughs of Manhattan and Brooklyn in New York City." + ], + "mop": [ + "Mops come in many different shapes and sizes, but they typically have a long handle with a absorbent head attached.", + "A mop is a long handled tool with a absorbent pad or cloth at the end, used for cleaning floors.", + "A mop is a long pole with frayed fabric attached to the end.", + "A mop typically has a long handle and a cloth or sponge head that can be detached for easy cleaning.", + "A mop typically has a long handle with a sponge or piece of cloth on the end.", + "A mop is a long-handled tool with a absorptive head, typically made of cloth, that is used for cleaning floors.", + "A mop is a tool made of absorbent materials like fabric, sponge, or string that is used to clean floors.", + "A mop is a long-handled tool with a head made of absorbent material, such as cloth, sponge, or yarn, that is used to wipe surfaces clean.", + "A mop is a cleaning tool that consists of a long handle with a removable cloth or sponge head that is attached.", + "A mop is a long-handled tool with a head made of absorbent material, such as cotton, that is used for scrubbing floors.", + "A mop is a tool that is used to clean floors.", + "The most effective way to identify a mop is by the head.", + "A mop is a tool used for cleaning floors.", + "A mop is a kitchen tool that is used for cleaning floors.", + "A mop is a type of cleaning tool that consists of a handle and a absorbent pad or head.", + "A mop is a household cleaning tool with a long handle and head made of absorbent material, such as cotton, that is used to clean floors.", + "The most distinguishing feature of a mop is its long handle.", + "A mop is a type of cleaning tool consisting of a head of absorbent material attached to a long handle.", + "The easiest way to identify a mop is by its long handle and absorbent head.", + "A mop typically has a long handle and a cloth or sponge head that can be attached and detached.", + "A mop typically has a long handle and a flat, absorbent head made of strings or strips of cloth.", + "A mop is a cleaning tool consisting of a head of absorbent material, usually attached to a long handle, that is used to soak up liquid from a floor or other surface.", + "A mop looks like a broom with a long handle and a rectangular piece of cloth or sponge attached to the end.", + "A mop is a tool that is used to clean floors.", + "A mop is a tool that is used to clean floors.", + "A typical mop has a long handle attached to a mop head.", + "A mop is a household cleaning tool consisting of a long handle with a piece of absorbent material attached to the end.", + "A mop is a household cleaning tool.", + "A mop typically has a long handle with a fluffy material attached to the end.", + "A mop is a tool composed of a handle and a head of absorbent materials such as yarn, sponge, or cloth.", + "The image is of a yellow mop leaning against a white wall.", + "The image is of a blue and white mop head with a metal pole coming out of the top.", + "The image is of a yellow mop with a long handle.", + "The image shows a mop with a long handle and a cylindrical head.", + "The image from the internet of a mop is a picture of a mop with a handle and a head.", + "An image of a mop from the internet is a picture of a cleaning tool that is used to clean floors.", + "The image shows a yellow mop with a green handle.", + "I found an image of a mop on the internet.", + "The image is of a yellow mop with a green handle.", + "The image is of a yellow mop with a green handle.", + " A woman cleaning a floor with a mop.", + "\"I'm sorry for what I said when I was cleaning the floors.", + " A mop for cleaning up spills.", + "A mop for cleaning floors.", + "Mop for cleaning floors.", + "Dirty floors be gone!.", + "\nThe last thing you want to see when you're about to clean your floors.", + "Mop up your messes with ease!.", + "I clean up my messes.", + "A blue mop leans against a white wall." + ], + "sweatshirt": [ + "A sweatshirt is typically a pullover sweater with a hood and long sleeves.", + "A sweatshirt is a type of shirt that is typically made of a thick cotton fabric.", + "A sweatshirt is a type of shirt made of a thick, cotton-blend fabric.", + "A black sweatshirt with a hood.", + "A sweatshirt is a type of shirt that is typically made of a cotton and polyester blend.", + "A sweatshirt is a type of shirt made of a heavy fabric such as cotton, and typically has a hood.", + "Most sweatshirts are made of a cotton blend fabric, which makes them soft and comfortable to wear.", + "A sweatshirt is a type of shirt typically made of a heavy cotton blend fabric, with a long sleeve and a hood.", + "A sweatshirt is a type of shirt with a collar and long sleeves that is usually made of cotton.", + "A sweatshirt is a type of shirt that is typically made of cotton and has long sleeves.", + "A sweatshirt is a type of shirt made of a thick, cotton-blend fabric.", + "A sweatshirt is a piece of clothing that is usually made of cotton or a cotton blend.", + "A sweatshirt generally has a hood, and is made of a thicker fabric than a regular shirt.", + "A sweatshirt is a garment that is typically made of a cotton and polyester blend.", + "A sweatshirt is a piece of clothing that is worn over the top of other clothing.", + "A sweatshirt is a garment that is typically worn by people as a layer of clothing.", + "A sweatshirt is a piece of clothing that is typically made out of cotton or polyester.", + "A sweatshirt is a garment that is worn over the upper body and typically has long sleeves.", + "The most common identifying factor of a sweatshirt is its soft, fleecy interior.", + "The most common way to identify a sweatshirt is by its material.", + "A sweatshirt is a type of shirt with a hood and long sleeves.", + "A sweatshirt typically has a hood, and is made of a thicker fabric than a t-shirt.", + "A sweatshirt typically has a hood and is made of a thicker fabric than a shirt.", + "A sweatshirt is a type of shirt that is made of a thick, cotton material.", + "A sweatshirt typically looks like a long-sleeved shirt with a hood.", + "A sweat shirt typically has a crew neckline and long sleeves.", + "A sweatshirt is a type of shirt with a soft, fuzzy inner surface.", + "A sweatshirt is a type of clothing that is typically made of a cotton and polyester blend.", + "The most common type of sweatshirt has a central pocket and long sleeves.", + "A sweatshirt typically has a hood and is made of a cotton/polyester blend fabric.", + "The image is of a blue sweatshirt with the words \"I'm Fine\" written in white.", + "This image is of a black sweatshirt with a white graphic on the front.", + "This image is of a black and white sweatshirt with the words \"I'm not a morning person\" written across the chest.", + "The image shows a close-up of a light blue sweatshirt.", + "The image is of a blue sweatshirt with the word \"Nike\" written in white lettering across the chest.", + "This is a black sweatshirt with a white graphic design of a mountain range.", + "The image is of a light blue sweatshirt with the words \"I Love NY\" written in white across the chest.", + "The image from the internet is of a grey sweatshirt with a hood.", + "The image is of a black sweatshirt with a white screen print of a cat's face.", + "A blue sweatshirt with the words \"I'm Fine\" written in white.", + "This sweatshirt is cozy and perfect for a cold day!.", + "Our new favorite sweatshirt! Super comfy and perfect for a lazy day.", + " \"You're killin' me, Smalls!\"Thissweatshirt is a reference to the movie The Sandlot.", + " \"I'm not a feminist, but\"I'm not a feminist, but I belive in equality for all people.", + "I'm not lazy, I'm on energy saving modeA caption of an image of a person sleeping on a couch:I'm not lazy, I'm on energy saving mode.", + "Find Your Voice.", + "a cozy sweatshirt perfect for lazy days spent at home.", + "Hanes Men's EcoSmart Fleece Hooded Sweatshirt.", + "a sweatshirt that says \"I'm not a morning person\".", + "I'd rather be sleepingThis sweatshirt is perfect for lazy Sundays or days when you just don't feel like doing anything." + ], + "swim trunks / shorts": [ + "A pair of swim trunks or shorts typically has an elastic waistband and is made of a quick-drying fabric.", + "A typical pair of swim trunks/shorts has a waistband that ties or snaps closed, and is cut off above the knee.", + "Style of swimwear worn by men, typically light-colored and loose-fitting, named after the shorts worn by lifeguards.", + "A pair of swim trunks or shorts typically looks like a pair of above-the-knee shorts with an elastic waistband.", + "A swim trunk typically looks like a pair of shorts with an elastic waistband, although the style can vary.", + "Swim trunks are a type of shorts that are specifically designed to be worn while swimming.", + "A swim trunk is a type of shorts worn by men while swimming.", + "Swim trunks typically have a drawstring waist and are shorter than knee-length.", + "A swim trunk is a type of underwear that is worn by men.", + "Swim trunks / shorts are usually a tight fitting pair of shorts that are made out of a light and quick drying fabric.", + "Swim trunks generally have a waistband that sits at or just above the hips and are shorter in length than board shorts.", + "Swim trunks / shorts are usually made of quick-drying fabric and have a mesh lining.", + "The most common type of swim trunks has a waistband that is adjustable with a drawstring.", + "A pair of swim trunks / shorts will typically have an elastic or drawstring waist, and will be made from a quick-drying fabric.", + "A swim trunk / short is a short piece of clothing that is usually worn by men while swimming.", + "Beachwear that covers the groin and buttocks but not the thighs is called swim trunks or swim shorts.", + " Swim trunks / shorts are usually made of a light, quick-drying fabric such as polyester or nylon.", + "A swim trunk is a type of shorts that are designed to be worn while swimming.", + "It is typically easy to identify swim trunks / shorts because they are designed with a quick-dry fabric that is light-weight and allows for freedom of movement.", + "Drawstring waistband, mesh lining, and pockets are all features of swim trunks / shorts.", + "There is no one answer to this question because swim trunks / shorts can come in a variety of different styles and designs.", + "The typical swim trunks / shorts looks like a pair of shorts with an elastic waistband.", + "Swim trunks / shorts are typically made from quick-drying fabric and have a mesh lining.", + "A swim trunk or short is a type of underwear or swimwear worn by men.", + "A swim trunk / short looks like a pair of shorts that are made out of a quick-drying material.", + "A pair of swim trunks or shorts looks like a pair of regular shorts, except that they are usually made out of a quick-drying fabric such as nylon or polyester.", + "A pair of swim trunks or shorts look like a pair of shorts that are made out of a quick-drying fabric.", + "A swim trunk is a type of swimwear that is shorter than traditional swimwear.", + "A trunks/shorts has an elastic waistband and is usually above the knee.", + "Most swim trunks / shorts have an elastic waistband and two side pockets.", + "This image shows a pair of men's swim trunks that are blue and white with a striped pattern.", + "This image is of a pair of red swim trunks with a white waistband.", + "The image is of a pair of blue swim trunks with a white waistband.", + "This image is of a pair of men's swim trunks.", + "These particular swim trunks are blue with white stripes running down the sides.", + "The image is of a man wearing blue swim trunks.", + "In the image, a man is standing on a beach with crystal clear water.", + "The image is of a brightly colored pair of swim trunks with a pattern of palm trees and flowers.", + "The image is of a pair of turquoise swim trunks with white piping.", + "This image is of a pair of black and white swim trunks.", + "It's time to hit the beach! These swim trunks are perfect for a day of fun in the sun.", + "A pair of men's swim shorts / trunks in blue and white stripes.", + "Fun in the sun!.", + "Tropic like it's hot.", + "Tropical print swim trunks perfect for a day by the pool or at the beach.", + "A pair of red swim trunks with white stripes down the sides.", + "Low-rise swim trunks with side pocketsA caption of an image of a woman in a bikini:High-waisted bikini with a ruffle top.", + "A man is pictured wearing blue swim trunks with a white and blue pattern.", + "Colorful swim trunks perfect for a day at the beach!.", + " A pair of black and white checkered swim trunks / shorts." + ], + "swing": [ + "A swing is a type of seat suspended from ropes or chains, intended for swinging back and forth.", + "A swing is a type of seat suspended from chains or ropes.", + "A swing is a seat suspended from chains or ropes, supported by posts or a frame, that rocks back and forth for recreation.", + "A swing is generally a seat suspended from two chains or ropes.", + "A swing is a type of seat suspended from ropes or metal chains, where one can sit and swing back and forth for recreation.", + "The swing moves back and forth in a wide arc.", + "A swing looks like a seat or chair suspended from ropes or chains, upon which a person may sit and swing back and forth.", + "The swing moves back and forth in a smooth, even motion.", + "A swing is a type of hanging seats designed for infants, children, teenagers, and adults.", + "A swing is an upside down U shape.", + "A swing is a type of musical composition, usually written for orchestra, band, or choir, that is characterized by its light, festive mood.", + "There are a few ways to identify a swing.", + "There are a few ways to identify a swing.", + "A swing is a type of movement that is typically used on a playground.", + "There are a few things you can look for to identify a swing.", + "There are a few ways to identify a swing.", + "Swing is a style of jazz music that developed in the 1920s and 1930s.", + "The motion of a swing is a back and forth motion.", + "A swing is a type of motion that can be identified by its back-and-forth movement.", + "A swing is a type of seat designed to pendulum back and forth, providing a child or other user the sensation of swinging without the need for propelling themselves.", + "Your question is unclear.", + "There are many types of swings, but a traditional swing has a seat suspended by ropes or chains from a beam or branch of a tree.", + "A swing looks like a seat suspended by two chains from a Swing Set.", + "A swing is a hanging seat for a person to sit on, often found in a playground.", + "A swing can look like a lot of different things, but typically it is a seat that is suspended from two points and swings back and forth.", + "A swing is a type of seat suspended from two chains or ropes.", + "A swing usually consists of a seat suspended from two chains or ropes.", + "A swing is a piece of playground equipment that people use for recreation.", + "A good example of a swing can be found here: https://www.", + "The swing may look like a seat suspended on ropes or chains, from a beam or ceiling.", + "The image is of a swing with a metal frame.", + "The image is of a swing hanging from a tree in a park.", + "An image of a swing from the internet would likely show a person swinging on a swing, possibly high in the air.", + "The image is of a swing set on a playground.", + "This image shows a swing in a park.", + "In the image, there is a wooden swing with a metal frame.", + "I found an image of a swing on a playground.", + "The image is of a swing set in a backyard.", + "An image of a swing on the internet shows a swing suspended from a metal frame.", + "The image is of a swing set on a playground.", + "A swing in a park.", + " A girl is swinging on a swing in a park.", + "Swinging into summer.", + "Swinging into summer!.", + "The swing is a popular playground equipment that has been around for many years.", + "The swing is a classic childhood toy that has been around for generations.", + " A swing hangs from a tree in a green field.", + "The swing is a great way to enjoy the outdoors.", + "a swing in a garden with flowers nearby.", + "Oh what fun it is to swing!." + ], + "electrical switch": [ + "A switch is a mechanical device that controls the flow of electricity through a circuit.", + "A electrical switch is a device that controls the flow of electricity in a circuit.", + "Most electrical switches are either push-button or flip-type.", + "A light switch is a switch that controls an electric light.", + "A electrical switch is a two position electronic switch.", + "A switch is a device used to connect or disconnect a circuit.", + "A basic light switch is a plastic box with a light switch attached to it.", + "Most electrical switches are made of plastic and metal.", + "Most electrical switches are made of plastic and have two positions: on and off.", + "A switch controls the flow of electricity in a circuit.", + "Most electrical switches have a switch lever, and most switch levers can be moved in two directions.", + "Look for a switch that is mounted on the wall.", + "A typical switch will have three terminals.", + "One way to identify a electrical switch is by its appearance.", + "A electrical switch will have two prongs that can be inserted into an outlet.", + "A switch can be identified by its function.", + "Electrical switches can generally be identified by their flat, rectangular shape.", + "A electrical switch can be identified by its on/off markings.", + "A switch is a device that is used to turn an electrical circuit on and off.", + "By its shape, size, and function.", + "A typical electrical switch is a small plastic box with two or more metal prongs (called \"screws\") protruding from it.", + "An electrical switch can take many different forms, but most switches contain two metal contacts that come together when the switch is moved to the \"on\" position, allowing electricity to flow through.", + "A electrical switch may look like a rectangular box with a handle or lever in the middle.", + "a switch looks like a box with a handle on it.", + "An electrical switch looks like a small rectangular box with a lever on one side.", + "It depends on the type of switch.", + "A switch may look like a simple lever, but it is a complex electrical device.", + "An electrical switch is a device that controls the flow of electricity in a circuit.", + "A switch is a device that can make or break an electrical circuit.", + "A electrical switch can look like a lot of different things, but the most common type of switch is a light switch.", + "The image is of a light switch on a wall.", + "This image is of a light switch.", + "The image is of a old-fashioned, toggle-style light switch.", + "The image is of a switch with the lever in the \"on\" position.", + "The image shows a light switch with the word \"on\" written above it in green.", + "This image is of a light switch.", + "The image is of a white switch with a green light.", + "An electrical switch is a device used to turn electricity on and off.", + "The image is of a light switch on a white wall.", + "an image of an electrical switch may show a switch in the \"on\" position, with the lever pointing up, or in the \"off\" position, with the lever pointing down.", + "The switch controls the flow of electricity to the appliance.", + "A typical electrical switch.", + "This switch controls the electricity to the entire house.", + "electrical switch.", + "Here is an electrical switch.", + "A switch to turn the power on or off.", + "The switch controls the flow of electricity to the light.", + "This switch turns the power on or off.", + "This switch controls the power to the light.", + "\"Off\" position on an electrical switch." + ], + "syringe": [ + "A syringe is a small, cylindrical tube with a plunger inside of it.", + "A syringe is a small, tube-like container with a plunger on one end.", + "A syringe is a small, cylindrical object with a plunger inside of it.", + "A syringe is a small, cylindrical object with a plunger on one end.", + "A syringe is a medical device that consists of a plunger inside a cylinder.", + "A syringe looks like a tubular device with a plunger inside of it.", + "A syringe is a thin, cylindrical tool used to inject fluid into or withdraw fluid from the body.", + "A syringe is a tube with a plunger that is used to draw up and inject liquids.", + "A syringe is a long, thin tube with a plunger attached to one end.", + "A syringe is long, thin tube with a plunger on one end that can be pulled and pushed to draw liquid in and push it out.", + "A syringe is a small, hollow tube with a plunger on one end.", + "A syringe is a small, hand-held, plunger-type device that is used to inject substances into the body or to withdraw fluids from the body.", + "Check the plunger.", + "A syringe is a medical device that is used to inject, withdrawn, or measure liquids.", + "Syringes are usually clear and have a plunger on one end that is used to draw up the medication and a needle on the other end.", + "A syringe is an instrument that is used to inject or withdraw fluids from the body.", + "A syringe is a small, cylindrical device that is used to inject drugs into the body.", + "A syringe is typically a small, cylindrical object with a plastic or metal body and a rubber plunger at one end.", + "A syringe is a small, cylindrical device that is used to inject liquids or withdraw them from the body.", + "The most identifiable characteristic of a syringe is the long, thin tube that extends from the needle.", + "A syringe is a medical instrument used to inject fluids into the body or withdraw fluids from the body.", + "A syringe is a tube with a plunger inside of it.", + "A syringe is a long, thin, hollow tube with a pointed end.", + "A syringe is a small, tube-like object that is used to draw or inject fluids.", + "A syringe is a needle attached to a cylindrical tube that holds a specific amount of liquid.", + "A syringe is a small, cylindrical object with a plunger at one end and a needle at the other.", + "A syringe is a small, hand-held, plunger-type device that is used to inject or withdraw fluids from the body.", + "A syringe is a small, cylindrical object with a pointed tip.", + "A syringe is a small, cylindrical plunger that is used to draw liquid into the barrel for injection.", + "A syringe is a small, hand-held, plunger-operated device used to inject or withdraw fluids.", + "A syringe is a device used to inject fluids into the body or to withdraw fluids from the body.", + "The image from the internet is of a syringe with a needle.", + "In the image, there is a syringe with a needle attached.", + "An image of a syringe from the internet would most likely be a close up of the needle and plunger.", + "The image is of a syringe laying on a flat surface with its plunger depressed.", + "The image is of a syringe with a needle attached.", + "This image is of a syringe that is lying on a table.", + "\nThe image shows a syringe with a needle.", + "The image is of a syringe with a metal needle.", + "The image is of a syringe with a needle attached.", + "A syringe is a medical device used to inject fluids into or withdraw fluids from the body.", + "A syringe full of insulin, ready to be injected into a diabetic patient.", + "An insulin syringe with a needle.", + "This syringe is used to administer vaccines.", + "A syringe full of medication.", + "A syringe on a white background.", + "A syringe of vaccines\nA syringe of insulin\nA syringe of blood.", + "A syringe used for injecting drugs.", + " A syringe full of insulin.", + "A syringe full of insulin, ready to be injected." + ], + "table lamp": [ + "A table lamp is a lamp that sits on a table.", + "A table lamp typically has a round or oval-shaped base, a slender stem, and a shade that covers the lightbulb.", + "A typical table lamp has a base that sits on the table, with a stem that extends upward and a shade that covers the lightbulb.", + "A table lamp is a lamp that sits on a table.", + "A table lamp is a lamp that sits on a table, often with a flexible neck so that the light can be directed where it is needed.", + "A table lamp generally has a base that sits on a table or other surface, and a stem that extends up from the base to support a shade.", + "A table lamp is a lamp that sits on a table.", + "A table lamp is a lamp that sits on a table.", + "A table lamp is a type of lamp that sits on a table or nightstand.", + "A table lamp typically has a base that sits on a table or other surface, and a stem that extends up from the base.", + "Start by looking for a lamp that has a base that can support the weight of the lamp and shade.", + "A table lamp is a type of lamp that is designed to be placed on a table.", + "A table lamp is a lamp that sits on a table or nightstand.", + "Look for a lamp that has a rounded base and a long, thin neck.", + "Table lamps typically have a shade that sits on top of a base.", + "Table lamps come in many different shapes and sizes, but they all have one common feature: a base that sits on a table or other surface.", + "A table lamp can be identified by its base, which is typically a round or oval shape, and its shade, which is typically a cone or drum shape.", + "A table lamp can be identified by its smooth, round base that sits on a flat surface.", + "A table lamp is a lamp that sits on a table.", + "Table lamps vary in style and design, so there is no one specific way to identify them.", + "A table lamp typically consists of a base that sits on a table or other flat surface, as well as a stem that extends upward and a shade that covers the lightbulb.", + "A table lamp generally has a metal or plastic base that supports a light bulb.", + "A table lamp looks like a lamp that sits on a table.", + "A typical table lamp has a base that sits on the table, with a stem leading up to a light bulb and a shade.", + "A table lamp is small, and it sits on a table or desk.", + "A table lamp is a lamp that is placed on a table.", + "A table lamp has a round or rectangular base that sits on a table or nightstand.", + "A table lamp typically has a base, a body, and a shade.", + "Most table lamps have a round base with a thin pole that extends upwards and supports a lightbulb at the top.", + "It has a round or oval base that sits on a table or other flat surface.", + "This image shows a white table lamp with a gold base.", + "The image is of a Silver Mist Hanging Lamp from CB2.", + "This table lamp has a white shade and a gold base.", + "The image shows a black and white table lamp with a geometric pattern on the base.", + "This image is of a grey metal table lamp with a white lamp shade.", + "This table lamp has a simple, round base with a cylindrical body.", + "The table lamp has a round, white base with a curved, metal arm that extends up and over the lamp shade.", + "The image is of a sleek, modern table lamp with a rectangular base.", + "This image from the internet shows a table lamp with a base made of white marble.", + "The image is of a gold table lamp with a white shade.", + "This contemporary table lamp features a sleek design with a glossy white finish.", + "This charming table lamp features a classic design with a round base and a slender stem.", + "IKEA M\u00f6rbyl\u00e5nga Table Lamp.", + "This is a close-up of a table lamp with a white shade.", + "This lamp is perfect for adding a touch of warmth to any room.", + "This lamp is perfect for reading or relaxing in your favorite chair.", + "A beautiful table lamp that emits a warm, inviting light.", + "In this photograph, a table lamp casts a warm, yellow glow on a dark wooden table.", + "This is a picture of a table lamp.", + " A lamp on a table." + ], + "tank": [ + "A tank is a large, tracked vehicle that is designed to support ground troops by providing firepower and transportation.", + "A tank is a large armored fighting vehicle with tracks that is designed for front-line combat.", + "A tank is a large, armored vehicle that is armed with a cannon and machine guns.", + "Most tanks are large, metal, and cylindrical.", + "A tank is a large, heavily armored fighting vehicle that is equipped with weapons, such as a machine gun or cannon, and is used in ground warfare.", + "A tank is a large, heavily armed and armored vehicle.", + "A tank is a large, armored vehicle that is used to attack and destroy enemy targets.", + "A tank is a large armored vehicle that is typically used by the military.", + "A tank is a large, heavily armed and armored vehicle used for ground support in combat.", + "A tank is a large, heavily armed vehicle that is designed for frontline combat.", + "A tank is a large, armored vehicle that is designed to attack enemy ground forces.", + "The easiest way to identify a tank is by its characteristic shape.", + "A tank can be identified by its large size, its heavy armor, and its turret.", + "A tank is a large, heavily armored fighting vehicle that is designed to attack enemy tanks and other armored vehicles.", + "A tank can be identified by many things such as shape, size, and color.", + "The most common way to identify a tank is by its treads.", + "The identification number (or hull number) is usually located on the side or rear of the tank.", + "The easiest way to identify a tank is by its turret.", + "The best way to identify a tank is to look for its tracks.", + "The most common way to identify a tank is by its unique hull shape.", + "A tank is a vehicle with a large cannon mounted on the top.", + "A tank is a large fighting vehicle that has thick armor and a turret.", + "A tank looks like a large, tracked vehicle with a turret on top.", + "A tank is a large armored vehicle that has a cannon and machine gun.", + "A tank is a large, armored vehicle that has a cannon and turret.", + "A tank typically has a large, cannon-like gun mounted on the front, and a turret on top.", + "A tank is a large, armored vehicle used for fighting on land.", + "A tank is a large armored vehicle that has tracks and a large gun mounted on the front.", + "A tank is typically a large, tracked vehicle with a turret on top.", + "A tank is a large, heavily armed and armored vehicle.", + "The image is of a large, green tank with a long barrel protruding from the front.", + "The image is of a large, green tank with a turret on top.", + "A tank is a large, armored vehicle used by the military to move troops and supplies.", + "This image is of a Soviet T-54/T-55 tank.", + "Image shows a large, green army tank in a field of tall grass.", + "This image is of a green military tank with a large turret in the center.", + "This image is of a green and brown tank.", + "The image is of a large, green tank.", + "This image from the internet is of a large green tank.", + "A tank is a large, armoured fighting vehicle designed for front-line combat.", + "An oil tanker truck on fire in Baghdad, Iraq.", + "A tank is a large armored fighting vehicle designed for front-line combat.", + "A tank can travel over rough terrain and is armed with a cannon and machine gun.", + "A tank is a military vehicle equipped with armor and typically armed with guns.", + " A M1A1 Abrams, the main battle tank of the United States Army.", + "The M1 Abrams is an American third-generation main battle tank named for General Creighton Abrams.", + "This is a M1 Abrams tank, the main battle tank of the United States Army.", + "A tank is a vehicle that is designed to provide protection and mobility in combat.", + "This is a photo of an M1 Abrams tank.", + "A man in a tankThe man in the tank is a soldier." + ], + "tape player": [ + "A tape player is a device that plays music or other audio recordings from cassette tapes.", + "A tape player is a device used to play audio cassette tapes.", + "Tape players were common in the 1980s and early 1990s.", + "A tape player is a device that plays tapes.", + "A tape player typically has a cassette deck into which people insert a cassette tape.", + "A tape player typically consists of two spindles that hold cassette tapes, and a tape head that reads the information on the tapes.", + "A tape player is a small rectangular device with a circular window in the center.", + "A tape player is a compact, portable device that plays audio cassette tapes.", + "A tape player is a box with two spindles on either side.", + "A tape player often has a cassette inserted into the side of the machine.", + "A tape player is a device that plays audio cassettes.", + "The most common way to identify a tape player is by the cassette tapes that it uses.", + "A tape player may be identified by its cassette deck, which is used to insert and play tapes.", + "A tape player generally has a cassette inserted into it with two spools that the tape wraps around.", + "A tape player can typically be distinguished from other devices by its use of a cassette tapes.", + " tape players typically have a cassette inserted into the side of the player.", + "The best way to identify a tape player is to look for the cassette tape deck.", + "There are a few ways to identify a tape player.", + "A tape player is an electronic device that reads and plays back cassette tapes.", + "Most tape players will have a cassette inserted into the top of the player.", + "A tape player is a machine that plays cassette tapes.", + "A tape player is a small, portable device that can be held in the hand.", + "A tape player typically has a cassette deck, display, buttons or knobs for controlling playback, and speakers.", + "A tape player looks like a small box with a handle.", + "A tape player can look like a very small and thin rectangular box.", + "A tape player looks like a small, rectangular box with a door on the front that opens to reveal the tape compartment.", + "A tape player looks like a small square box with a handle on the top.", + "A tape player is a small, portable electronic device that plays audio cassettes.", + "A tape player looks like a small device with a slot for a cassette tape.", + "A tape player looks like a small black or silver box with a cassette tape inserted into it.", + "This image is of a portable cassette player from the early 1980s.", + "A traditional cassette tape player has two tuning heads, smaller versions of the recording and playback heads found in reel-to-reel tape recorders.", + "The image is of a small, silver tape player.", + "The image is of a silver tape player with two silver-colored buttons on the front.", + "A black rectangle with a large silver button in the center.", + "The image is of a black tape player with a white button in the center.", + "The image is of a tape player with a gray background.", + "The image is of a black tape player with a silver button in the center.", + "This image is of a black, rectangular tape player with a silver button in the center.", + "The image is of an old, black tape player.", + "This is an old tape player.", + "This is a tape player.", + " a cassette tape playerA caption of an image of a plant: a plantA caption of an image of a person: a person.", + " A simple open-cassette player from the 1980s.", + "A tape player with a cassette tape inserted.", + "A tape player with a cassette tape inserted.", + " A vintage tape playerThis image is of a vintage tape player.", + "A Sony Walkman cassette player from the 1980s.", + "A tape player with a cassette tape inside.", + "A tape player with a cassette tape inside." + ], + "teapot": [ + "A teapot typically has a spout for pouring, a handle for holding, and a lid to cover and trap steam while the tea is brewing.", + "A teapot has a cylindrical shape with a spout and a handle.", + "A teapot is a household item used for brewing tea.", + "A teapot is a small pot with a spout and a handle that is used for boiling water and steeping tea leaves.", + "A teapot is a small pot with a spout and a handle, used for pouring hot water over tea leaves to make tea.", + "A teapot is a vessel with a spout and a handle that is used to pour hot water over tea leaves to brew tea.", + "A teapot is a small pot with a spout and a handle.", + "A teapot typically has a spout and a handle and is used to pour hot water over tea leaves to brew tea.", + "A teapot is often Cream or white ceramic with a spout and handle.", + "A teapot is a small pot with a spout and a handle.", + "There are many ways to identify a teapot.", + "There are several ways to identify a teapot.", + "The spout and handle are two key features of a teapot.", + "A teapot is a small pot with a handle and a spout that is used for boiling water and tea leaves.", + "A teapot is a pot with a spout and a handle that is used to brew tea.", + "The spout and handle are on opposite sides of the teapot.", + "The spout and handle of a teapot are generally positioned on opposite sides of the pot.", + "The most obvious way to identify a teapot is by its shape.", + "A teapot is a kind of container in which tea is brewed and then served.", + "A teapot is a container made from a material such as ceramic, metal, glass, or plastic, with a spout and a handle, used for brewing tea.", + "A teapot is a pot for boiling water to make tea.", + "A teapot can take on many different shapes and sizes, but they typically have a spout and a handle and are used to brew tea.", + "There is no single answer to this question as there are many different types and styles of teapots.", + "A teapot is typically a small, ceramic or metal pot with a handle and spout.", + "A teapot is a small vessel with a handle, a spout, and sometimes a lid, used for steeping and pouring tea.", + "A teapot traditionally has a spherical body with a flared base, a small spout, and a hinged lid with a knob.", + "A teapot is typically a ceramic pot with a spout and a handle.", + "A teapot is a small pot with a handle and a spout for pouring tea.", + "A teapot looks like a small pot with a handle, a spout, and a lid.", + "A teapot usually has a spout and a handle, and a lid.", + "The image is of a teapot that is white with a gold handle and spout.", + "A teapot image from the internet would likely show a teapot with steam coming off of it, possibly with a tea cup next to it.", + "I found an image of a blue and white teapot on the internet.", + "This teapot is white with a design of pink roses on it.", + "The image is of a brown teapot with a white handle.", + "The teapot is white with a gold trim.", + "A teapot can be seen as an image on the internet.", + "This image is of a teapot that is made of white porcelain.", + "The image is of a teapot with a long spout and a curved handle.", + "The teapot is made of white porcelain with a spout and a handle.", + "This teapot was made in England in the 18th century.", + "This teapot was made in China during the Ming Dynasty.", + "This teapot was made in 1790 by James Sadler, a noted English potter.", + "A teapot on a table with a cup and saucer.", + "A teapot on a table with a boiling kettle behind it.", + "A teapot from the Qing Dynasty, circa 1700.", + "This teapot was made in England in the early 1800s.", + " An English porcelain teapot from the early 1800s.", + "This is a teapot.", + "A teapot on a table." + ], + "teddy bear": [ + "A teddy bear usually has a soft fur, small black eyes, a small black nose, and large paws.", + "A teddy bear typically has a soft fur coat, round belly, floppy ears, and stubby legs.", + "A teddy bear is a stuffed toy in the shape of a bear.", + "A teddy bear is a toy made to look like a real bear.", + "A teddy bear is a stuffing toy in the shape of a bear.", + "A teddy bear typically has a soft fur coat, plastic or wooden eyes, and a stuffed body.", + "A teddy bear is typically a brown and white stuffed animal with black button eyes.", + "Teddy bears are soft, cuddly, and usually have round ears and eyes.", + "A teddy bear is a soft, stuffed toy in the shape of a bear.", + "A teddy bear is typically a plush toy in the shape of a bear.", + "There is no definitive answer to this question, as teddy bears come in a wide variety of shapes, sizes, and colors.", + "Teddy bears usually have brown fur, although they can come in other colors.", + "A teddy bear is a stuffed toy in the shape of a bear.", + "Teddy bears are usually soft and cuddly with Fur.", + "A teddy bear is a stuffed toy that is usually in the shape of a bear.", + "A teddy bear is a stuffed toy in the shape of a bear.", + " There is no definitive answer to this question, as there are many ways to identify a teddy bear.", + "A teddy bear is a child's toy bear usually made from a soft material such as plush.", + "There is no one definitive answer to this question.", + "Generally, teddy bears have a soft, plush fur and a rounded body shape.", + "A teddy bear looks like a small, soft, and cuddly toy that is in the shape of a bear.", + "Most teddy bears have a cylindrical body with a round head.", + "A teddy bear usually has a round body, stubby legs, and a big head with floppy ears.", + "A teddy bear typically has a rounded head with two small pointy ears, small black eyes, and a nose in the middle of its face.", + "A teddy bear is a stuffed bear that is typically small and cute.", + "Most teddy bears are brown, tan, or black.", + "A teddy bear is a stuffed animal that typically resembles a bear.", + " Classic teddy bears have a rectangular body with rounded arms and legs.", + "A teddy bear typically has a round body, thick arms and legs, and a large head with pointy ears.", + "A teddy bear looks like a small, furry bear.", + "The teddy bear in the image is lying down on a bed of green grass with a blue sky in the background.", + "This image is of a teddy bear sitting in a chair with its arms crossed.", + "A teddy bear is a stuffed animal that is often given to children.", + "The teddy bear is brown and has a red bow tie around its neck.", + "In the image, there is a teddy bear sitting on a white sheet of paper.", + "In the image, a light brown teddy bear is sitting on a white chair with its arms and legs outstretched.", + "The image is of a brown teddy bear with a blue bowtie around its neck.", + "The image is of a brown teddy bear with a red bow tie.", + "The image is of a brown teddy bear with a white lacy ribbon around its neck.", + "The teddy bear is sitting on a bed with pillows around it.", + "This teddy bear was given to me by my best friend.", + "\"I love you my little teddy bear!\".", + "This teddy bear looks like it's been through a lot.", + " A teddy bear sitting on a bed.", + "This teddy bear is the perfect cuddle buddy!.", + "This teddy bear is looking for a new home!.", + "This teddy bear is so cute and cuddly!.", + " Brown teddy bear sitting on a blue and white polka dot blanket.", + "A teddy bear sits on a bed with a child's book.", + " A teddy bear sits on a bedThe teddy bear looks like it is waiting for someone to come back to bed." + ], + "television": [ + "A typical television has a screen in the front, surrounded by a border.", + "The front of a television typically has a screen, with a speaker below it.", + "A television is usually a rectangular box with a screen in the front.", + "A television can come in many shapes and sizes, but most commonly it is a large, flat rectangle.", + "A television usually has a screen that is rectangular with rounded corners.", + "A television is a large, rectangular device that has a screen on the front.", + "Most television sets have a screen that is cathode ray tube (CRT), which uses an electron beam to create images on the screen.", + "A television is a large, rectangle-shaped screen that is usually placed on a stand or hung on a wall.", + "A television is a flat, rectangular piece of electronic equipment that has a screen in the front and speakers on the sides or bottom.", + "A television is a rectangle with a screen inside of it.", + "There are a few ways that you can identify a television.", + "Often, a television can be identified by looking at the input ports on the back of the device.", + "The easiest way to identify a television is by the large screen that is used to display programs, movies, and other visual content.", + "There are a few ways to identify a television.", + "The easiest way to identify a television is by its shape.", + "One way to identify a television is by looking for a video camera icon.", + "A television can be identified by its large screen, its speakers, and its many buttons.", + "A television is an electro-mechanical device that produces moving images and sound by combining a cathode ray tube (CRT) display device, antennas, television signals, and various electronic components.", + "A television can be identified by its large screen, its many buttons and inputs, and its position in the living room.", + "A television is a device that displays moving images and sound.", + "A modern, flat-screen television typically has a thin, rectangular body with a screen taking up the majority of the front surface.", + "A television looks like a large, rectangular box.", + "A television typically looks like a large, rectangular box with a screen in the center.", + "A Traditional television set has a Cathode Ray Tube (CRT) that displays images.", + "A box with a screen that shows pictures.", + "A television typically looks like a rectangular box with a screen in the middle.", + "A television can look like a box, a rectangle, or a screen.", + "A television typically looks like a rectangular box with a screen in the middle.", + "Most televisions have a screen that is placed in front of the viewer.", + "A television looks like a screen with wires coming out of the back.", + "The image is of a television set that is turned on and playing a show.", + "The image is of a television with a blue screen.", + "The image is of a television with the screen showing a blue and white image of clouds.", + "An image from the internet of a television may show a flat screen TV with a stand.", + "In the image, there is a black television with a white remote control on a table.", + "The image is of a television set with a person sitting on the couch watching it.", + "The image is of a black television with a white remote control on a glass table.", + "It's a picture of a black screen with the words \"No Signal\" in white.", + "In the image, there is a black television on a black stand.", + "A television is a screen that shows moving pictures or images.", + "A television showing a baseball game.", + "The television is on and tuned to CNN.", + "The first ever episode of the iconic show, \"Seinfeld\".", + "Two men watching a sports game on a televisionThe men in the picture are watching a hockey game on TV.", + "The television is turned off and the screen is black.", + "4K HDR TVA caption of an image of a person golfing:Golfing on a beautiful day.", + "This is a television.", + "The easiest way to improve your TV viewing experience is to get a TV with a good picture.", + "The television is on, but there is no signal.", + "A television broadcasting a news program." + ], + "tennis ball": [ + "A tennis ball is usually a small, round, fuzzy sphere.", + "A tennis ball is a small round ball that is usually made of rubber or felt.", + "A tennis ball has a fuzzy surface and is typically either green or yellow.", + "A tennis ball is a small, round, green-yellow ball.", + "A tennis ball is a small, round, felt-covered ball used in the game of tennis.", + "A tennis ball is a small, round, usually brightly colored ball used in the sport of tennis.", + "A tennis ball is a small, round, white ball with a green stripe around it.", + "A tennis ball is a small, round, solid ball that is used in the sport of tennis.", + "A tennis ball is a small, round, fuzzy ball that is used to play tennis.", + "A tennis ball is a small, round object that is usually green or yellow.", + "A tennis ball is typically bright yellow and has a greenish hue.", + "Tennis balls are usually fuzzy and have a diameter of about 2.", + "A tennis ball can be identified by its size, color, and feel.", + "The felt covering of a tennis ball is usually green, blue, red, or yellow, and has a white or black hub.", + "A tennis ball can be identified by its size, which is regulated by the International Tennis Federation, and by its bright yellow color.", + "A tennis ball is a small, round, vividly colored ball used in the game of tennis.", + "The color of a tennis ball is typically yellow.", + "Tennis balls are smooth, round, and have a green and white fuzzy surface.", + "Tennis balls are usually brightly colored and have a fuzzy texture.", + "A tennis ball is a small, round, greenish-yellow ball with a black stripe.", + "A tennis ball is round and has a fuzzy surface.", + "A tennis balls is typically round and has a diameter of about 2.", + "A tennis ball looks like a small, round, yellow ball with a black seam running through the center.", + "A tennis ball looks like a small, round, yellow ball with a black diagonal stripe across it.", + "A tennis ball is round and has a diameter of about 2.", + "A tennis ball is round and has a fuzzy surface.", + "A tennis ball is a small, round, yellow ball.", + "A tennis ball is round and white.", + "A tennis ball looks like a small, round, fuzzy object.", + "A tennis ball is a small, spherical ball used in the sport of tennis.", + "The image is round and yellow with a black line running across it.", + "This image is of a tennis ball sitting on a white background.", + "The image is of a tennis ball on a yellow background.", + "The image from the internet is of a tennis ball on a tennis court.", + "An image from the internet of a tennis ball shows a white ball with red and black stripes.", + "A tennis ball is a small, round, white ball with red stripes.", + "A tennis ball is a small, round, white ball with a green stripe that is used in the game of tennis.", + "The image is of a tennis ball on a court.", + "The image is of a tennis ball on a tennis court.", + "This image is of a tennis ball in mid-air.", + "A tennis ball on a tennis court.", + "A tennis ball on a tennis court.", + " A tennis ball on a tennis court.", + "Tennis ball on a tennis court.", + "Tennis Ball.", + "Tennis balls are used in the sport of tennis.", + "Tennis ball on a tennis court.", + "A tennis ball on a tennis court.", + "A tennis ball on a tennis court.", + "A tennis ball on a tennis court." + ], + "thatched roof": [ + "A thatched roof is a roof made of straw, reeds, or other plants.", + "A thatched roof is a roof covered in straw or reeds.", + "A thatched roof is made of straw or reeds, and it has a conical or triangular shape.", + "A thatched roof is a roof made of straw, reeds, or other plant materials.", + "A thatched roof is a roof that is covered with dried vegetation, such as straw, reeds, or grass.", + "A thatched roof is a type of roofing that is made from straw, reeds, or grass.", + "A thatched roof is a type of roof where the materials (usually straw, reeds, or rushes) are spread in a thick layer across the roof, and are then held together with ropes or wire.", + "A thatched roof is a roof made of straw or other plant materials.", + "A thatched roof is a type of roofing that is made with straw, reeds, or other types of vegetation.", + "A thatched roof is a roof made of straw or other vegetation.", + "The most obvious way to identify a thatched roof is by its characteristic sloped, grassy appearance.", + "A thatched roof has straw or reed sticks poking out of the top.", + "A thatched roof is a roof made of plant materials, including straw, reeds, grasses, or sedges.", + "The most obvious feature of a thatched roof is the grass or straw that covers the roof.", + "A thatched roof is a roof that is covered in straw, reeds, or other plant materials.", + "A thatched roof is a roof made of straw or reeds.", + "A thatched roof is usually made of straw or reeds.", + "A thatched roof is a roof made of plants or other organic materials.", + "The roof is made of straw or reeds.", + "The most common way to identify a thatched roof is by its unique, textured look.", + "A thatched roof is made of straw or reeds, and is usually sloped.", + "A thatched roof is a type of roof that is made out of straw or reeds.", + "A thatched roof looks like a roof made of straw or reeds.", + "A thatched roof is a roof where the main material is a type of grass called reeds.", + "A thatched roof looks like a roof made out of straw or other plant materials.", + "A thatched roof is a roof made of straw, dry grass, or reeds.", + "A thatched roof is a type of roofing that is made of straw or other plant materials.", + "A thatched roof is a roof made of straw or other plant materials.", + "A thatched roof is a roof made of straw, marsh reeds, or grass.", + "A thatched roof typically has a straw or reed layer that is between one and two feet thick.", + "An image of a thatched roof would show a traditional roofing method that involves laying overlapping rows of straw or reeds.", + "An image from the internet of a thatched roof might show a thatched roof cottage with a smoke stack coming out of the roof.", + "This image from the internet is of a thatched roof.", + "This image from the internet shows a thatched roof.", + "The image is of a thatched roof cottage in Ireland.", + "This image from the internet shows a thatched roof on a traditional Irish cottage.", + "The thatched roof in the image is a traditional and common roofing style in many parts of the world.", + "A thatched roof is a traditional type of roof made from bundles of dried grass or reeds.", + "The image is of a thatched roof on a small cottage.", + "The image is of a thatched roof on a traditional Japanese home.", + "A picturesque thatched roof on a traditional Irish cottage.", + "The Thatched Roof.", + "A thatched roof cottage in England.", + "A thatched roofs is a traditional type of roofing material that is made from dried vegetation, such as straw, reeds, or grass.", + " A traditional thatched roof in Ireland.", + "A thatched roof on a traditional Japanese house.", + "The thatched roof of a traditional Irish cottage.", + "This image shows a traditional thatched roof on a building in the United Kingdom.", + "A traditional thatched roof in the English countryside.", + "A thatched roof is a traditional type of roofing material that has been used for centuries." + ], + "front curtain": [ + "A front curtain is typically a large piece of fabric that hangs over the front of a stage.", + "A front curtain is a curtain that is hung in front of a stage.", + "The front curtain of a stage is typically a heavy, large piece of fabric that is suspended from above and hangs down in front of the stage.", + "A front curtain typically looks like a large piece of fabric that hangs down from a curtain rod near the ceiling.", + "A front curtain is a piece of fabric that is hung in front of a stage.", + "A front curtain is a decorative piece of fabric that is hung in front of a window.", + "A front curtain is a stage curtain that covers the front of the stage.", + "A front curtain is a piece of fabric that hangs in front of the stage.", + "A front curtain is a material screen that is hung in front of the stage.", + "A front curtain is a decorative piece of fabric that is hung in front of a door or window.", + "The front curtain is the curtain that is closest to the stage.", + "A front curtain is typically a large, decorative piece of fabric that is hung on the front of a stage.", + "A front curtain typically has a lower opening status line than a rear curtain.", + "9 times out of 10, the front curtain is the one with the logo on it.", + "A front curtain typically hangs above a stage and is used to mask the stage from the audience's view.", + "A front curtain is usually hung at the front of a stage, and is used to mask the backstage area from the audience.", + "A front curtain is the curtain located closest to the stage.", + "A front curtain is a type of window treatment that hangs from a rod or track mounted near the ceiling.", + "A front curtain is a curtain that is located at the front of a stage.", + "You can identify a front curtain by its position in front of the stage.", + "A front curtain can look like a regular window curtain, or it can be a special fabric that is hung in front of a window to block out the light.", + "A front curtain is a sheer fabric that is hung in front of a window.", + "A front curtain can look like a lot of things, depending on the design of the room.", + "A front curtain is typically a large piece of fabric that is hung in front of a stage or performance area.", + "Front curtains are usually made of a light fabric and are hung on a rod near the ceiling.", + "A front curtain is a type of stage curtain that is typically used as a backdrop for a stage production.", + "A front curtain is a type of stage curtain that is hung at the front of the stage.", + "A front curtain is a type of stage curtain that covers the front of the stage.", + "A front curtain typically consists of a heavy, decorative fabric that hangs down in front of the stage.", + "There is no definitive answer to this question, as the appearance of a front curtain can vary greatly depending on the specific design of the stage it is being used on.", + "The image is of a red stage curtain.", + "The image is of a front curtain that is white with a blue and green design.", + "In this image, a front curtain is billowing in the breeze, filling up the entire frame.", + "This image shows a red velvet front curtain hanging in front of a window.", + " doorAn image from the internet of a front curtain door may show a door with a Curtains hanging over it, blocking the view of what is behind it.", + "A front curtain is a piece of fabric that is hung in front of a window.", + "This image shows a front curtain with a yellow and white pattern.", + " of a theaterThis image shows the red front curtain of a theater, with the stage and audience visible behind it.", + "The image is of a red velvet front curtain.", + "In the image, there is a front curtain that is made of red velvet.", + " A curtain blows in the wind in front of a window.", + "This is a front curtain.", + "Orchestra Pit and Front Curtain of the Dr.", + " The front curtain is the first and outermost layer of a stage's backdrop.", + "The Music Hall opened its doors in 1891 and has been entertaining audiences ever since.", + "Preview night of the play \"Our Town\".", + "The front curtain of the theater is open, revealing the stage and audience beyond.", + "A front curtain at a theatrical performance.", + " A red curtain hangs in front of a stage.", + "The front curtain at the theater is about to open." + ], + "thimble": [ + "A thimble is a small metal or plastic cup that is worn on the finger to protect it while sewing.", + "A thimble is typically a small, metal cup that is worn on the finger to protect it while sewing.", + "A thimble is a small, cone-shaped metal cup that fits over a finger.", + "A thimble is a small, cone-shaped metal or plastic cup that is placed on the end of a finger to help push a needle through fabric.", + "A thimble is a small, cone-shaped piece of metal or plastic that is placed over the finger to help push a needle through fabric when sewing.", + "A thimble is a small metal or plastic cup that is worn on the finger to protect it while sewing.", + "A thimble is a tiny metal cup that fits over the end of your finger.", + "A thimble is a small, cone-shaped piece of metal that is placed on the finger to help push a needle through fabric when sewing.", + "A thimble is a small, cylindrical object that fits over the end of a finger.", + "A thimble is a sewing tool that is used to protect the finger while pushing a needle through fabric.", + "A thimble is a small, circular device that is placed on the end of a finger.", + "A thimble is small, metal cup that is worn on the finger to help push a needle through fabric.", + "A thimble is a small, cone-shaped device that is placed on the end of the finger to protect it while sewing.", + "A thimble is a small, hardened cup with a closed top that is used to protect the thumb and finger while sewing.", + "A thimble is a small metal or plastic cup with a pointed bottom that is worn on the finger to protect it while sewing.", + "A thimble is a small metal or plastic cup that fits over the end of your finger and is used to push needles through fabric when you are sewing.", + "A thimble is a small, cone-shaped piece of metal that is placed over the finger to protect it while sewing.", + "A thimble is a small cup-shaped device that is worn on the finger to help push a needle when sewing.", + "A thimble is a small, cone-shaped piece of metal or other material that is placed on the finger to protect it while sewing.", + "A thimble is a small, metal cup that is worn on the finger to protect it when sewing.", + "A thimble is a small, pointed metal cap that is worn on the finger to protect it from needle pricks while sewing.", + "A thimble is a small metal or plastic cup that fits over a finger and is used to push needles through fabric when sewing.", + "A thimble is a small metal cap that is worn on the finger to protect it while sewing.", + "A thimble is a small, doughnut-shaped metal or plastic cup that fits over the end of your finger and is used to push needles through fabric when you are sewing.", + "A thimble is a small, dome-shaped metal or plastic cup that is worn on the finger to protect it while sewing.", + "A thimble is a small metal or plastic cup that is worn on the finger to protect it while sewing.", + "A thimble is a small metal or plastic cup that is put on the end of a finger to protect it while sewing.", + "A thimble is a small metal or plastic cup that is placed on the end of a finger to protect it while sewing.", + "A thimble looks like a small metal cup that is worn on the finger to protect it from being poked by a needle while sewing.", + "A thimble is a small metal or plastic cup that is worn on the end of the finger to protect it while sewing.", + "This image shows a thimble that is silver in color.", + "A small metal or plastic cup with a pointed end, used to protect the finger while sewing.", + "This image is of a metal thimble with a band of intricate flowers around the rim.", + "This image shows a thimble that is silver in color.", + "This image shows a thimble with a floral design.", + "A thimble is a small, cone-shaped piece of metal or plastic that is placed on a finger to protect it while sewing.", + "The image shows a thimble in close up, with the rim of the thimble in the foreground and the body of the thimble in the background.", + "This thimble is a small metal sewing tool.", + "The image is of a small metal thimble.", + "This image is of a thimble that is entirely made out of metal.", + "This thimble was used by my great-grandmother when she was a seamstress.", + " \"A thimble is a small, cone-shaped piece of metal placed over the finger to protect it while sewing.", + "an old-fashioned thimble, perfect for sewing by hand.", + "In this image, we can see a thimble on a table.", + "A thimble is a small metal or plastic cup with a pointed bottom, used to protect the finger while sewing.", + "A thimble is a small, pointed piece of metal or plastic that is placed on a finger to help push a needle through fabric when sewing.", + "A thimble is a small, pointed metal cup that is used to protect the finger while sewing.", + "Sewing is not just a hobby, it's a way of life.", + "This is a thimble.", + "This is a thimble." + ], + "threshing machine": [ + "A threshing machine is a piece of farm equipment that is used to thresh, or break up, wheat and other grains.", + "A threshing machine is a machine that is used to remove the outer husk or shell of grains.", + "A threshing machine is a large, farm implement that is used to remove the grain from harvested wheat plants.", + "A threshing machine is a piece of farm equipment that is used to thresh, or remove the grain, from a crop.", + "A threshing machine looks like a large piece of farm equipment that is used to separate grains from their stalks.", + " and briefly explain how it is usedA threshing machine looks like a large machine with a cylindrical drum in the middle.", + "A threshing machine typically consists of a large, rotating drum with sharp teeth or flails that is pulled by a tractor or other vehicle around a field to remove the seeds from the stalks of grain plants.", + "A threshing machine is a large piece of farm equipment used to harvest grain crops.", + "A threshing machine is a piece of farm equipment that is used to separate grains from their husks.", + "A threshing machine is a machine that is used to remove the grain or seeds from a crop.", + "A threshing machine is a farm implement that is used to remove the grain from the straw.", + "A threshing machine is a piece of farm equipment that is used to separate grains from their husks.", + "A threshing machine is a machine used to remove the grain from the straw.", + "A threshing machine is a farm implement that is used to remove the grain from the straw.", + "A threshing machine is typically a large, bulky machine that is used to harvest grain.", + "A threshing machine is a piece of farm equipment that is used to separate grains from their husks.", + "A threshing machine can be identified by its large drum that is rotated by a motor.", + "A threshing machine is a farm implement that is used to remove the seeds from crops such as wheat and barley.", + "A threshing machine is a machine used to remove the grain from the straw in order to harvest the crop.", + "A threshing machine is a machine used to remove the grains from the husks.", + "A threshing machine is a large piece of agricultural machinery that is used to remove the grain from plants such as wheat and barley.", + "A threshing machine is a large machine that is used to remove the kernels of grain from the stalks.", + "A threshing machine typically looks like a large tractor with a big, rotating drum in the middle.", + "A threshing machine may look like a large tractor with a cylindrical drum that is rotated at a high speed.", + "A threshing machine is a large machine that is used to separate wheat from the chaff.", + "A 19th-century threshing machine (from the Library of Congress).", + "A threshing machine is a machines that separates edible grain from the stalks and husks.", + "A modern threshing machine is a large, tractor-drawn machine that combines several operations\u2014reaping, binding, or cutting the grain stalks and separating the kernels from the ears\u2014into one continuous process.", + "A threshing machine is usually a piece of farm equipment that is used to separate grains from their husks.", + "A threshing machine is a machine used to remove the grains from the stalks of a crop.", + "A threshing machine is a machine used to remove the grains from the straw of a crop.", + "A threshing machine is a machine that is used to remove the kernels of grain from the stalks.", + "The image is of a large threshing machine with a conical shaped drum in the center.", + "A threshing machine is a tool that was historically used to remove the outer husks of grains like wheat and oats.", + "A threshing machine is a piece of agricultural equipment that is used to thresh, or remove the kernels of grain from the plant.", + "An image from the internet of a threshing machine would show a large machine with a rotating cylinder in the center.", + "A threshing machine is a machine used to remove the grains from the straw.", + "A threshing machine is a piece of farm equipment that is used to thresh, or break apart, grain crops like wheat and oats so that the edible parts can be separated from the inedible husks.", + "A threshing machine is a large, mechanical device used to remove the kernels of grain from the stalks of wheat and other crops.", + "A threshing machine is a machine that is used to remove the grains from a crop.", + "A threshing machine is a tool used to remove the grain from the straw.", + "A threshing machine being used to separate wheat from its husks.", + "A threshing machine is a tool used to remove the grain from the straw.", + "This particular threshing machine was used in the early 1800s.", + " A steam-powered threshing machine in operation.", + "A man operates a threshing machine on a farm in the early 1900s.", + "A threshing machine is used to separate grains from their husks.", + "A threshing machine being used to separate wheat from chaff.", + "A threshing machine was used to separate grains from their husks.", + "A threshing machine is a machine used to remove the grains from a crop such as wheat." + ], + "throne": [ + "A throne is a chair that is fit for a king or queen.", + "Most thrones are made of wood and are decorated with symbols that represent the power of the person who is sitting on the throne.", + "A throne is a seat of royalty or power.", + "A throne is a large, comfortable chair that is fit for a king or queen.", + "A throne is a chair made for a person of high rank to sit on.", + "A throne is a seat of state for a potentate or dignitary, often of great size and elaborateness.", + "A typical throne is a large, elevated seat with a back and arms, often with elaborately carved woodwork or other decorative embellishments.", + "A throne is a chair that is fit for a king or queen.", + "A throne is a type of chair that is used by a person who has a high rank, such as a king or queen.", + "A throne is a chair that is elevated off the ground, often with steps leading up to it.", + "A throne is a chair for a person of high rank.", + "A throne is a large, comfortable chair that is used by a person who has a lot of power, such as a king or queen.", + "A throne is often made of a special material, such as gold or jewels, and it is usually much taller than a chair.", + "A throne is a chair that is used by a person who has a high rank, such as a king or queen.", + "A throne is a chair that is used by a person who has a high rank, such as a king or queen.", + "A throne is identifies by a back and arm rests.", + "The word \"throne\" typically refers to a high, formal chair that is reserved for a monarch, pope, or other dignitary.", + "It is a chair that is used by a ruler or a person of high authority.", + "A throne is a chair that is used by a leader or royalty.", + "A throne is a seat of state for a potentate or dignitary, especially one with a footrest or raised end for the ruler's feet.", + "A throne is a chair that is used by a person who has a high rank, such as a king or queen.", + "A throne is a chair for a king or queen.", + "A throne usually looks like a chair that is fit for a king or queen.", + "A throne traditionally looks like a large, padded chair with arm rests, a high back, and a foot rest.", + "A throne is typically a large, high chair that is ornately decorated.", + "A throne is a raised platform with a seat on it, meant for a person of high rank to sit on.", + "A throne is usually a large, formal chair that is elevated above the ground.", + "A throne typically has a tall back and arm rests.", + "There is no one answer to this question as the design of a throne can vary greatly depending on the culture and era in which it was made.", + "A throne is a chair that is fit for a king or queen.", + "An image of a throne from the internet is typically a large, ornate chair that is fit for a king or queen.", + "The image is of a golden throne with a plush, red cushion.", + "The image from the internet is of a throne that is made out of gold.", + "This image is of a throne made of gold with a red velvet cushion.", + "An image from the internet of a throne shows a large, ornate chair with a high back and arms.", + "In the image, there is a throne made of what appears to be gold with several red cushions on it.", + "The image is of a golden throne with red velvet cushions.", + "The image from the internet of a throne is of a large, ornate chair with a high back and arms.", + "In the image, there is a throne that is adorned with jewels and gold.", + "A throne is a large, padded chair with a high back that is often used by a king or queen.", + "A throne fit for a king.", + "The Throne of Ahriman.", + "A throne fit for a king.", + " King Rudolf's Throne.", + " \"The King's throne.", + "The ancient throne of the Ghulam dynasty, located in the heart of the Ghulam capital.", + "The Throne of Freedom.", + "The Throne of the Emperor of the Universe.", + "King's Throne.", + "A magnificent throne fit for a king or queen." + ], + "tile roof": [ + "A tile roof is a roof that is made out of individual tiles that are placed on top of each other in rows.", + "A tile roof is a roof made out of tiles, which are typically made out of clay or porcelain.", + "A tile roof is typically made of interlocking clay tiles.", + "A tile roof has a series of tiles that overlap each other.", + "A tile roof is a roof that is made out of tiles.", + "My roof is black and made of concrete tiles.", + "A tile roof is made up of individual tiles that are placed in rows on top of the roof.", + "A tile roof is a type of roofing that is made up of interlocking tiles.", + "A tile roof is a type of roofing system composed of interlocking tiles that create a watertight barrier.", + "A tile roof is a type of roofing system that is made up of individual pieces of tile, which are then laid in rows on top of the roof.", + "A tile roof is a roof made of individual tiles.", + "A tile roof is a roofing system made up of interlocking tiles.", + "A tile roof is made up of interlocking tiles that are usually made of clay or concrete.", + "A tile roof is can be identified by its interlocking tiles.", + "A tile roof is a type of roofing system that is composed of individual tiles that are connected together in order to cover the roof.", + "A tile roof can typically be identified by its shape and design.", + "Some buildings have tile roofs.", + "There are a few ways to identify a tile roof.", + "There are three main identifying factors for a tile roof.", + "Tile roofs can be identified by their interlocking tiles.", + "A tile roof consists of small, interlocking tiles that cover the roof.", + "Tiles on a roof are usually thin and flat pieces of fired clay, concrete, or metal that are about the size of a nameplate or playing card.", + "A tile roof typically has a somewhat textured surface, as the clay or concrete tiles are often shaped with ridges or other patterns.", + "A tile roof is a roof made of ceramic or terra cotta tiles.", + "A tile roof typically consists of interlocking clay tiles that are installed in rows from the bottom of the roof up to the peak.", + "A tile roof is a type of roofing that uses tiles, typically made of ceramic or stone, to create a water-resistant barrier on the roof.", + "Tiles on a roof are usually flat, although some styles are cylindrical or scalloped.", + "A tile roof typically has a red, orange, or brown color.", + "A tile roof is generally made up of interlocking clay or concrete tiles.", + "A tile roof has a textured, terra cotta look.", + "The image is of a tile roof with red tiles.", + "The image is of a red tile roof with a hexagonal tile pattern.", + "The image shows a tile roof with red tiles.", + "This image is of a tile roof.", + "This image is of a tile roof with a blue sky in the background.", + "The blue sky is clear and bright.", + "This image from the internet is of a tile roof.", + "One image of a tile roof from the internet shows a red Spanish-style roof with red clay tiles.", + "This image from the internet shows a tile roof of a house.", + "This image is of a tile roof with orange-yellow tiles.", + "A red tile roof.", + " The roof of a home in the hills of Tuscany, ItalyThe tile roof of a home in the hills of Tuscany, Italy.", + " Tile roof in Provence, France.", + "The roof of a traditional Spanish home, made of brightly-colored tiles.", + " Traditional Spanish-style tile roof in Santa Barbara, California.", + "This roof is made up of interlocking concrete tiles, a popular choice for homes in regions with severe weather conditions.", + "A tile roof on a house in Greece.", + " A typical tile roof in European architecture.", + "A tile roof on a home in Spain.", + "A tile roof on a Spanish-style home." + ], + "toaster": [ + "A toaster has four metal slots that protrude from the top of the machine.", + "A toaster is a small, electrical appliance with two sets of competing metal toasting chambers.", + "A toaster is a small appliance that has four metal slots that heat up and brown bread when it is placed inside.", + "A toaster is a small electric appliance with a hinged door.", + "A toaster is a small appliance that has two or four slots in which bread can be inserted.", + "A toaster is a small appliance that has two or four slots in which bread can be inserted.", + "A toaster is a small appliance that has two or four slots in which bread can be inserted.", + "A toaster typically has two metal plates on the top and bottom that open and close to enclose the bread.", + "A toaster is a household appliance designed to toast bread by exposing it to radiant heat.", + "A toaster typically has four slots in which slices of bread can be inserted.", + "A toaster can be identified as a household appliance that pops bread up out of its slots after it has been toasted.", + "Toasters are usually small electrical appliances with a slot in the top for bread.", + "A toaster is most commonly identified by its rectangular shape and two slots for bread.", + "A toaster is a household appliance that toasts bread.", + "A toaster is a household appliance designed to toast bread by exposure to radiant heat.", + "The four identifying marks of a toaster are:1.", + "Generally, toasters are small kitchen appliances that have slots for bread on the top, which are toasted when heat is applied from below.", + "Toasters can be identified by their rectangular shape, small size, and by the fact that they have two slots for bread.", + "A toaster is a small electrical appliance designed to toast bread by heating it to a consistent temperature.", + "The toaster can be identified by its shape, which is typically rectangular or round, and by the presence of four metal prongs on the top.", + "A toaster is a machine that pops bread up out of slots in its top and toasts it.", + "A toaster has a boxy shape with a slit in the top for bread.", + "A toaster typically has four slots for bread, a knob to set the level of toasting, and a lever to pop the toast up when done.", + "A toaster is a small appliance with two or four slots that pops bread up when it is done toasting.", + "A toaster typically consists of two metal plates placed horizontally with a space in between them.", + "A toaster looks like a small appliance that has two or four slots in the top for bread.", + "A toaster is a small appliance that has two or four slots in which to insert bread.", + "A typical toaster is a small, rectangular box with a tray on the bottom that pops up when the toast is done.", + "A toaster is a small, usually rectangular appliance with a door on the front.", + "A toaster is a small appliance that has four slots that pop up to toast bread.", + "I found an image of a toaster on the internet that is a close-up of a toaster with its door open.", + "The image is of a toaster with a piece of bread in it.", + "The image is of a white toaster with two slots for bread.", + "The image is of a toaster with two pieces of bread inserted.", + "The image shows a toaster with four slices of bread in it.", + "The image is of a toaster with two pieces of bread inserted.", + "The image from the internet is of a white toaster with two slots.", + "The image is of a toaster with bread in it.", + "The image is of a toaster with bread in it.", + "The image show a toaster with burnt toast in it.", + "This is a toaster.", + "Toaster on white background.", + "The toaster is a household appliance used to toast bread.", + "Kmart Toaster on White Background.", + "A toaster pops bread up when it is done toasting.", + "Toaster with two slots for bread.", + "KITCHENAID TOASTERStart your day with a freshly toasted breakfast! This KitchenAid toaster features seven shade settings and extra-wide slots for a perfect toast every time.", + "This is a toaster.", + "Toaster.", + "This is a toaster." + ], + "tobacco shop": [ + "A tobacco shop typically contains a wide variety of tobacco products including cigarettes, cigars, chew tobacco, and snuff.", + "A tobacco shop is a small shop that sells cigarettes and tobacco products.", + "A tobacco shop typically looks like a small retail store that specializes in selling tobacco products.", + "A tobacco shop typically contains a variety of tobacco products including cigarettes, cigars, pipe tobacco, and chewing tobacco.", + "A tobacco shop typically looks like a small, dark, and cramped store that sells cigarettes and other tobacco products.", + "A tobacco shop may look like a small convenience store with cigarettes and cigars displayed behind the counter.", + "Tobacco shops vary in appearance, but many have dark wood panels and shelves, glass display cases filled with cigars, and a counter where customers can purchase tobacco products.", + "The tobacco shop looks like a small, dark, and cramped store with an overwhelming smell of tobacco.", + "A tobacco shop usually sells cigarettes, cigars, and tobacco.", + "Tobacco shops typically sell cigars, cigarettes, rolling papers, lighters, and other smoking accessories.", + "The best way to identify a tobacco shop is to look for a sign that says \"Tobacco Shop\" or \"Cigar Shop.", + "A tobacco shop is typically a small, independent shop that specializes in the sale of tobacco products.", + "There are many ways to identify a tobacco shop.", + "There are a few ways to identify a tobacco shop.", + "The easiest way to identify a tobacco shop is to look for a sign that says \"tobacco\" or \"cigars.", + "Tobacco shops are typically easy to identify, as they will have signs advertising tobacco products such as cigarettes, cigars, and pipe tobacco.", + "Tobacco shops are usually easy to identify because they often have a large selection of tobacco products on display in the store.", + "A tobacco shop can typically be identified by its signage.", + "There are many ways to identify a tobacco shop.", + "The easiest way to identify a tobacco shop is to look for a sign that says \"Tobacco Shop\" or \"Cigar Shop.", + "Most tobacco shops look like small, dark, and cramped convenience stores.", + "A typical tobacco shop sells cigarettes, cigars, pipes, and other tobacco products.", + "A tobacco shop is a small retail store that specializes in the sale of tobacco products.", + "There is no definitive answer to this question, as the appearance of a tobacco shop can vary greatly depending on the location and the type of store.", + "There is no one answer to this question as tobacco shops can vary greatly in terms of their size, layout, and overall appearance.", + "The exterior of a tobacco shop may vary, but most have signage that includes images of cigars or tobacco leaves.", + "There is no one answer to this question, as tobacco shops can vary greatly in terms of size, layout, and atmosphere.", + "The exterior of a tobacco shop may look like any other shop.", + "There is no universal answer to this question, as tobacco shops can vary greatly in terms of their overall appearance and atmosphere.", + "A tobacco shop typically sells cigarettes, cigars, and tobacco products.", + " brightly lit neon sign in the shape of a tobacco leaf, with the word \"tobacco\" in green letters.", + "An image of a tobacco shop might include racks of cigarettes and cigars, a counter with a cash register, and shelves of tobacco products.", + "An image from the internet of a tobacco shop would show shelves full of cigarettes, cigars, and other tobacco products.", + "This image is of a tobacco shop called \"The Cave\" in Los Angeles, California.", + "In the image, there is a small, cramped tobacco shop with walls lined with shelves of cigarettes and cigars.", + "The image is of a small, independent tobacco shop.", + "An image from the internet of a tobacco shop shows a store with a bright red and yellow sign that reads \"TOBACCO\" in big, bold letters.", + "In this image, we see the exterior of a tobacco shop.", + "The image is of a small, independent tobacco shop.", + "In the image, there are shelves of different cigarettes and cigars from different brands.", + "A tobacco shop in the early 1900s.", + "Tobacco shop in Brooklyn, New York.", + "A tobacco shop in the early 1900s.", + "This tobacco shop looks like it's been around for a while!.", + " \"Arnold's tobacco shop on 12th street: a place for locals to gather and smoke\".", + "A tobacco shop in the city of Amsterdam, Netherlands.", + "You can find your fix at this old-fashioned tobacco shop.", + "A tobacco shop that has been in business for over 100 years.", + "Brighton tobacconist and cigarette shop.", + "Tobacco shop in Geneva, Switzerland." + ], + "toilet seat": [ + "A toilet seat typically looks like a plastic or wood ring that sits on top of a toilet bowl.", + "A toilet seat is a seat-shaped lid that covers the toilet bowl.", + "A toilet seat is a small lid that is attached to a toilet.", + "A toilet seat is a plastic or ceramic seat that is attached to a toilet.", + "A toilet seat is typically a plastic or wooden seat that is attached to the toilet.", + "A toilet seat is a plastic or metal seat that is placed over a toilet.", + "A toilet seat usually is a white, oval-shaped seat that is attached to the toilet.", + "A toilet seat is typically a detachable, hinged seat on top of a toilet bowl.", + "A toilet seat is a hinged seat that can be lowered or raised over a toilet bowl.", + "A toilet seat is often white and made of plastic.", + "This is a difficult question.", + "A toilet seat is a seat on a toilet that you sit on to use the toilet.", + "A toilet seat has a hole in the center that lines up with the hole in the toilet bowl.", + "by the hole in the middle.", + "A toilet seat is typically round or oval in shape and is made of a hard, smooth material such as plastic or porcelain.", + "Toilet seats typically have a hole in the center for the user to sit on and two handles on either side to assist in standing up.", + "The toilet seat is the removable lid of a toilet.", + "You can identify a toilet seat by its shape and size.", + "A toilet seat is typically made of porcelain or plastic and is attached to the toilet bowl.", + "A toilet seat is typically a plastic or ceramic seat that is attached to the top of a toilet.", + "A toilet seat is a seat that is attached to the top of a toilet.", + "A toilet seat is typically a plastic or ceramic seat that is attached to the top of a toilet.", + "A typical toilet seat is a plastic or composite material shaped like a half-circle that attaches to the front of a toilet bowl.", + "Most toilet seats are white and made of plastic.", + "A toilet seat is a seat on a toilet.", + "A toilet seat is a small seat that is attached to the toilet.", + "A toilet seat is a seat shaped like a half-circle that is attached to the top of a toilet.", + "A toilet seat is a bowl-shaped seat that is attached to the top of a toilet.", + "A toilet seat is designed to fit onto a toilet bowl.", + "A traditional toilet seat is typically a white, rounded rectangle.", + "The image is of a traditional toilet seat that is white in color.", + "A white toilet seat with a metal bottom.", + "A toilet seat is a hinged seat that can be raised or lowered over a toilet bowl.", + "-A toilet seat is a hinged seat on a toilet that can be lifted up or down.", + "The image is of a traditional toilet seat with a wood or plastic frame.", + "The image from the internet is of a white toilet seat with a black seat cover.", + "This image is of a toilet seat with the lid up.", + "In the image, the toilet seat is up and there is a mess around the toilet.", + "This image is of a blue toilet seat with a white toilet in the background.", + "A toilet seat is a seat designed to be attached to a toilet, typically with hinges so it can be raised and lowered.", + "A toilet seat with a lid up.", + "Bathroom etiquette dictates that the toilet seat should be left up for the next person.", + "\nThis is a toilet seat.", + "A toilet seat in a public restroom.", + "This toilet seat is made of a soft, padded material that is comfortable to sit on.", + "Toilet seat in a public restroom.", + "This toilet seat is in a public restroom.", + " A toilet seat with a hole in the centerThe caption of this image might read: \"A toilet seat with a hole in the center.", + "A toilet seat with the lid up, revealing the inside of the bowl.", + "The lid is up on this toilet seat, meaning someone forgot to put it down after they were done." + ], + "torch": [ + "A torch looks like a business card holder with a clear plastic cover.", + "A torch is a handheld stick with a flaming tip.", + "A torch is a handheld stick with a flame at the top.", + "A torch is typically a stick with a flammable material at the end that is lit on fire.", + "A torch is typically a handheld stick with a flammable material at the end, which is set on fire and used to light the way in darkness.", + "A torch is a type of light that is usually carried in the hand.", + "A torch is a portable light typically consisting of a flame enclosed in a glass or metal housing.", + "A torch is a stick with a piece of cloth wrapped around one end.", + "A torch is a sticks with a piece of cloth wrapped around one end.", + "A torch is a stick with a piece of cloth wrapped around one end.", + "A torch is a light that is carried in the hand.", + "The flame of a torch is round and flickering.", + "A torch is a portable, handheld light source.", + "Gases like acetylene, hydrogen, and propane can be used as a fuel in a torch.", + "The head of a torch is usually made of metal, and the body is made of plastic.", + "A torch is typically a handheld, sticklike object with a flame at the end.", + "A torch is typically a handheld device that emits a focused beam of light.", + "A torch is a handheld stick with a flame at the top.", + "The typical shape of a torch is a rod with a flat end.", + "A torch is a light that is carried in the hand.", + "A typical torch is a stick with a flaming cloth at the end.", + "A torch looks like a long stick with a rounded, flaming end.", + "A torch is a handheld stick with a flame at the top.", + "A torch is a portable light that is usually carried in the hand.", + "A torch typically looks like a stick with a flame on the end.", + "A torch is a handheld device that produces a flameless, continuous or intermittent flame.", + "A torch is a stick with a fire at the end of it.", + "A torch is a stick with a flammable material at the end that is lit on fire.", + "The traditional torch is a stick with a flaming ball of cloth at the top.", + "A torch typically looks like a stick with a flame on the end.", + "The image is of a large, metal torch with a long, metal handle.", + "The image is of a torch that is on fire.", + "The image is of a torch being held up in the air.", + "The image is of a torch held up in the air.", + "The image shows a person holding a torch in their hand.", + "A torch is a hand-held, portable light typically composed of a metal tube with a fitted pillar candle inside.", + "In the image, there is a torch on a dark background.", + "A black and white image of a man holding a torch in front of his face.", + "The image is of a yellow and orange torch with a blue flame.", + "An image of a torch from the internet shows a long, cylindrical object with a pointed end.", + "Image of a burning torch with a handle.", + "The torch is a symbol of hope.", + "The Statue of Liberty Enlightening the World.", + "The Olympic flame is extinguished during the opening ceremony of the 2014 Winter Olympics in Sochi, Russia.", + "The Statue of Liberty's torch.", + " A judge holds a torch while administering the oath of office.", + "The torch is a symbol of freedom and justice.", + "The Olympic torch, a symbol of the Olympic Games, is seen here in Rio de Janeiro, Brazil.", + "The human torch burns brighter than ever before.", + " A lit torchA caption of an image of two people walking on a beach: A couple walks along the beach at sunset." + ], + "totem pole": [ + "A totem pole is a tall, vertical pole that is carved with the images of animals, people, and other symbols.", + "A totem pole is a tall, carved pole usually made out of a tree trunk.", + "A totem pole is a large, carved post that is placed vertically in the ground.", + "A totem pole is a tall wooden pole with carved figures on it.", + "A totem pole is a tall, thin wooden pole with carvings of animals or people on it.", + "A totem pole typically has a few large, notable figures at the top, with smaller figures occurring further down the pole.", + "A totem pole is a tall, wooden pole that has been carved with the images of animals, people, or symbols.", + "A totem pole is a vertical column with carved figures on it.", + "A totem pole typically has a long, cylindrical shape and is covered in carved symbolism.", + "Totem poles are large, carved posts typically made from red cedar.", + "Totem poles are tall, vertical wooden posts with different animals, people, and symbols carved on them.", + "A totem pole is a tall, carved pole that is set up as a monument or marker.", + "Totem poles are tall wooden poles with intricate carvings on them.", + "Totem poles are large wooden poles that are carved with images of animals, people, or other objects.", + "Totem poles are typically large wooden posts that have been carved with the images of animals, humans, or mythical beasts.", + "Totem poles are tall wooden poles with figures on them.", + "One way to identify a totem pole is by its size.", + "A totem pole is a tall, straight, slender tree trunk with a pointed top.", + "Totem poles are usually made from large trees, such as cedar.", + "A totem pole can be identified by its many carvings, which are often of animals or other figures.", + "A totem pole is a carved pole that is used as an emblem or symbol.", + "A totem pole is a tall, slender pole with carved figures on it.", + "A totem pole typically has a cylindrical body with a carved head at the top.", + "A totem pole is a tall wooden post with different animals or symbols carved on it.", + "A totem pole is a large, tall pole with carved figures on it.", + "A totem pole is a tall, slender pole with carved figures on it.", + "A totem pole is a tall, vertical pole with carved figures on it.", + "A totem pole is a wooden post with carved figures on it.", + "Most totem poles are made from large trees, such as cedar.", + "A totem pole is a tall pole with carvings of animals on it.", + "A totem pole is a large,multi-sided wood carving that is traditional to the indigenous peoples of the Pacific Northwest Coast of North America.", + "The image is of a totem pole with traditional designs representing animals and spirits.", + "This image is of a totem pole in front of a large tree.", + "The image from the internet is of a carved wooden totem pole with various animals and symbols.", + "The image is of a large totem pole with intricate carvings.", + "This image is of a totem pole that is located in Sitka, Alaska.", + "This image shows a totem pole in front of a large building.", + "This image depicts a traditional totem pole from the Haida people of the Pacific Northwest Coast.", + "This image is of a totem pole located in Ketchikan, Alaska.", + "The image is of a totem pole in front of a large body of water.", + " A Totem Pole in Hoonah, Alaska.", + " This image is of a totem pole in British Columbia, Canada.", + "Totem Pole in front of a house in Ketchikan, Alaska.", + "This is a totem pole from the Haida people of the Pacific Northwest.", + "A totem pole in Tlingit style, from Hoonah, Alaska, circa 1890.", + "Native American Totem Pole.", + "A totem pole in Haida Gwaii, Canada.", + "A totem pole in a Native American village.", + "This totem pole is located in Kake, Alaska.", + "A totem pole in Haida Gwaii, Canada." + ], + "tow truck": [ + "A tow truck typically has a large, flatbed platform that can be used to transport a disabled vehicle.", + "A tow truck is a large vehicle with a flatbed on the back.", + "A tow truck looks like a large truck with a flatbed.", + "A tow truck typically has a long, flatbed platform at the back for carrying vehicles, and a cab for the driver and passengers.", + "A tow truck is typically a large, powerful truck with a flatbed on the back.", + "A tow truck is a large vehicle with a flatbed on the back.", + "A tow truck is a vehicle used to tow or haul another vehicle.", + "A tow truck is a large, heavy vehicle that is used to tow other vehicles that are either broken down or have been in an accident.", + "Tow trucks are large, heavy vehicles that are used to tow disabled vehicles to a nearby garage or repair shop.", + "A tow truck typically has a large, flatbed platform in the back, and a winch to pull vehicles onto the platform.", + "Tow trucks typically have large hydraulics systems to lift and tow heavy vehicles.", + "A tow truck is usually identifiable by a large towing apparatus on the back of the truck.", + "A tow truck is usually identified by its large, flatbed platform in the back, which is used for towing vehicles.", + "A tow truck can typically be identified by its large size and the fact that it has a flatbed on the back, which is used to transport vehicles.", + "Tow trucks can be identified by their large size, their towing apparatus on the back of the truck, and their brightly colored paint job.", + "Most tow trucks are brightly colored and have \"TOW\" written on the side.", + "In the United States, tow trucks are typically identified by brightly colored paint schemes and by the equipment they carry.", + "The tow truck will have a company logo on the side and a large hydraulic arm on the back.", + "Tow trucks are typically large and bulky with a large flatbed on the back.", + "Most tow trucks are brightly colored and have \"Tow Truck\" written on the side.", + "A tow truck is typically a large truck with a flatbed in the back.", + "A tow truck typically looks like a large pickup truck with a flatbed in the back, where the car or other vehicle being towed is placed.", + "A tow truck looks like a large black truck with a towing apparatus on the back.", + "A tow truck looks like a large truck with a flatbed in the back.", + "A tow truck is a large vehicle with a flatbed trailer that is used to transport vehicles that are not able to be driven.", + "A tow truck typically has a large flatbed in the back, where the car being towed can be placed.", + "A tow truck typically looks like a large truck with a flatbed in the back.", + "A tow truck typically has a large flatbed in the back where it can load and transport disabled vehicles.", + "A tow truck is typically a large, red and white truck with a yellow light bar on the top.", + "A tow truck is a large vehicle with a flatbed in the back.", + "In the image, a tow truck is parked on the side of a road next to a car that it is presumably preparing to tow.", + "The image is of a tow truck towing a car on a busy road.", + "The image is of a blue tow truck with the word \"tow\" written in white letters on the side.", + "This image is of a tow truck with its bed extended and hooked up to the back bumper of a car.", + "The image shows a white tow truck with a blue and orange stripe running down the side.", + "In the image, a tow truck is pulling a car out of a ditch.", + "An image of a tow truck from the internet shows a large white truck with a yellow tow arm attached to the back.", + "The image is of a large tow truck with a long metal boom attached to the back.", + "A tow truck is a truck used to move vehicles that are unable to move under their own power.", + "The image is of a blue tow truck with the word \"TOW\" in white letters across the side.", + "Tow truck drivers are the unsung heroes of the road.", + "A tow truck operator loads a disabled vehicle onto his truck.", + "Tow truck about to haul away a broken-down car.", + "Tow truck drivers are the unsung heroes of the roads.", + "Tow truck driver helping a stranded motorist.", + "A tow truck pulls a car out of a ditch.", + "This tow truck is towing a car out of a ditch.", + "A tow truck hauling a car on a flatbed trailer.", + "This tow truck was used to help move a heavy load.", + "The tow truck slowly drags the broken-down car out of the way." + ], + "toy store": [ + "A toy store typically contains shelves of colorful boxes containing toys.", + "A toy store is a store that sells toys.", + "A toy store typically looks like a large room with high ceilings and racks or shelves lining the walls.", + "A toy store is a place where you can buy toys.", + "A toy store is usually a small, cramped place with shelves full of brightly colored plastic toys.", + "The outside of a toy store is usually brightly colored with signs and pictures of popular toys.", + "A toy store typically looks like a large room filled with shelves upon shelves of various types of toys.", + "The toy store is a place where there are many different types of toys.", + "A toy store is a place where you can buy toys.", + "A toy store is a store that specializes in selling toys.", + "There are several ways to identify a toy store.", + "The front of a toy store is typically brightly colored and adorned with pictures of children playing with toys.", + "A toy store is typically a small store that specializes in selling toys.", + "There are many ways to identify a toy store.", + "One way to identify a toy store is by looking for happy children and parents exiting the store with bags of new toys.", + "Look for a store that sells mostly or only toys.", + "One way to identify a toy store is by looking for a store that specializes in selling toys.", + "The exterior of a toy store is typically brightly colored and may have a large sign that says \"TOY STORE\" in big letters.", + "Toy stores typically sell items that are intended for children.", + "The exterior of a toy store is usually brightly colored and decorated with images of children's toys.", + "A toy store typically contains shelves full of various types of toys, including dolls, action figures, board games, and stuffed animals.", + "A toy store typically looks like a large room with shelves of toys and a cash register.", + "A toy store looks like a large room with shelves all around the perimeter of the room.", + "There is no universal answer to this question, as different toy stores can have different layouts and appearances.", + "A toy store typically has blow-up animals near the entrance, shelves full of toys, and a cash register near the exit.", + "The inside of a toy store is usually brightly colored and full of different types of toys.", + "A toy store usually has a variety of different sections, each with a different type of toy.", + "A toy store typically has aisles and shelves full of toys, games, and puzzles.", + "Many toy stores are set up like amusement parks, with colorful displays and merchandise placed at child-level.", + "A toy store typically looks like a large room with shelves full of toys.", + "The image is of a large, two-story toy store.", + "The image is of a brightly lit toy store with children's toys in the foreground and racks of merchandise in the background.", + "This image is of a toy store called Wonderland.", + "A toy store image from the internet shows a large, brightly lit store with shelves full of toys.", + "The image is of a large toy store with numerous shelves.", + "In the image, there is a large toy store with aisles full of different types of toys.", + "In the image, there are rows of toys on display in a store.", + "I found an image on the internet of a toy store called \"The Toy Store\".", + "I found an image of a toy store on the internet that looks like a lot of fun.", + "In the image, there are shelves upon shelves of colorful toys.", + "This is a picture of a toy store.", + " A child's dream come trueA child's dream come true: a toy store full of every imaginable toy, from action figures to dolls to Legos to stuffed animals.", + " A child's dream come true.", + " A child's dream come trueThis store is every child's dream come true, with its wide selection of toys, games, and puzzles.", + "A toy store is a great place to find presents for kids of all ages.", + " \"Gleaming rows of children's favorite toys.", + "In this image, we see a toy store that is overflowing with toys.", + " A child looks at a toy in a store.", + "This toy store is called \"The Island of Misfit Toys.", + "A toy store is a fun place to shop for toys." + ], + "tractor": [ + "A tractor is a large, heavy vehicle with a large engine that is used for pulling things such as plows, trailers, and other heavy machinery.", + "A tractor is a vehicle with large, heavily treaded tires that is used for pulling farm machinery.", + "A tractor is a vehicle with a large, powerful engine that is used for pulling heavy objects, such as plows or trailers.", + "A tractor is a vehicle with a large, powerful engine that is used for pulling heavy loads.", + "A tractor is a large, heavy vehicle with four large wheels.", + "A tractor is a large, heavy vehicle with a large engine that is used for pulling things, such as ploughs or trailers.", + "A tractor is a vehicle with large, heavy duty wheels that is used for pulling farming equipment.", + "A tractor is a truck with a large, flat bed attached to the back.", + "A tractor typically has a large, rectangular frame with four large wheels, two in the front and two in the back.", + "A tractor typically looks like a large, bright-colored farm vehicle with four big wheels.", + "The best way to identify a tractor is by its make and model.", + "Most tractors have a large steering wheel in the front, and the engine and other machinery in the back.", + "There are many ways to identify a tractor.", + "The best way to identify a tractor is by its make and model.", + "The best way to identify a tractor is by the make and model.", + "On a tractor, you can usually find the identification number on the left side of the frame near the front end.", + "Tractors are agricultural machines that are used for ploughing, tilling, and planting.", + "It can be difficult to identify a tractor without knowing its make and model.", + "You can identify a tractor by its large size, powerful engine, and four large wheels.", + "There are many ways to identify a tractor.", + "There are many different types and sizes of tractors, but they all have some basic features in common.", + "A tractor looks like a vehicle with large, back wheels, and a small front end that is raised up off the ground.", + "A tractor is a vehicle that is used for pulling or pushing heavy loads.", + "A tractor is a large, heavy vehicle with four wheels, designed for pulling trailers or other vehicles.", + "A tractor typically looks like a large, agricultural vehicle with four wheels.", + "A tractor is a large, heavy machine used for pulling or pushing agricultural machinery or trailers.", + "A tractor typically looks like a large, bulky vehicle with four large wheels.", + "A tractor looks like a large vehicle with four wheels.", + "A tractor typically has a large, wide body with four large wheels.", + "A tractor looks like a large vehicle with four or more wheels.", + "A tractor is a large, powerful vehicle with four large wheels, designed for pulling trailers or farm machinery.", + "A large, green tractor with a yellowProducts\" sign on the side.", + "a tractor is a large, heavy machine used for farming.", + "The image is of a green tractor with a yellow wheel in the front.", + "The image is of a red tractor with a yellow wheel in the front.", + "In the image, there is a tractor which is green and silver in color.", + "This image shows a tractor working in a field.", + "This image is of a tractor that is driving down a road.", + "The image is of a red tractor with a black plow attached.", + "The image from the internet of a tractor shows a large, green tractor with a big red barn in the background.", + "A tractor plowing a field.", + "A tractor working in a field.", + "A tractor is a large, powerful machine used for farming and other agricultural tasks.", + "A tractor plowing a field.", + "A tractor ploughing a field.", + "This tractor is from the early 1900s.", + "Tractor on a farm.", + "A man driving a tractor on a farm.", + " This tractor is from the John Deere company and is used for farming.", + "A tractor plows a field on a farm." + ], + "semi-trailer truck": [ + "A semi-trailer truck is a truck with a skeletal frame that supports a semi-trailer.", + "A semi-trailer truck is a truck with a large, flat bed area that is used to haul trailers.", + "A large truck that pulls a trailers on which goods can be transported.", + "A typical semi-trailer truck consists of a tractor unit and one or more semi-trailers to carry freight.", + "A semi-trailer truck, or \"semi\", is a truck with a trailers attached to it.", + "A semi-trailer truck is a truck with a trailer attached to it.", + "A semi-trailer truck is a large truck that consists of a tractor unit and one or more trailers.", + "A semi-trailer truck, also known as a tractor-trailer, is a large truck that pulls a trailer behind it.", + "A semi-trailer truck is a large truck that has a trailer attached to it.", + "A semi-trailer truck is a truck that consists of a towing vehicle, which is usually a tractor unit, and a trailer.", + "A semi-trailer truck is a truck that has a trailer attached to it.", + "There are a few ways that you can identify a semi-trailer truck.", + "A semi-trailer truck is a large truck that has a long trailer connected to it.", + "A semi-trailer truck, also called a semi-truck, semi, or articulated lorry, is a truck composed of a towing engine, known as a tractor in the United States, and one or more semi-tra.", + " Semi-trailer truck can be identified by its long length and 2 axles.", + "The first method is to look for the kingpin, which is a metal pin that connects the truck to the trailer.", + "A semi-trailer truck has a large trailer attached to the back of the truck.", + "A semi-trailer truck is a large truck that consists of a towing engine (also called a tractor), and one or more trailers.", + "The most obvious way to identify a semi-trailer truck is by its size.", + "A semi-trailer truck is a large truck that has a detached trailer.", + "A semi-trailer truck is a large truck that has a trailer attached to it.", + "A semi-trailer truck typically has a large boxy cargo area mounted on a long chassis.", + "A semi-trailer truck is a large truck that is used to transport goods over long distances.", + "A semi-trailer truck from the front looks like a regular tractor-trailer truck.", + "A typical semi-trailer truck is composed of a tractor unit and one or more semi-trailers.", + "A semi-trailer truck is a large truck that includes a trailer that is connected to the truck by a hitch.", + "A typical semi-trailer truck is composed of a tractor unit and one or more semi-trailers to carry freight.", + "A semi-trailer truck is a large truck that is used to transport goods across long distances.", + "On a semi-trailer truck, the trailer is attached to the truck by a fifth wheel coupling.", + "A semi-trailer truck typically has a large cab that sits on a chassis.", + "The image is of a red semi-trailer truck with a white cab.", + "The image is of a large, red semi-trailer truck.", + "This image shows a black semi-trailer truck with a large trailer attached.", + "This image is of a red semi-trailer truck with a white cab.", + "A large truck with a long, rectangular body and four large wheels.", + "The image is of a large, silver semi-trailer truck.", + "This image shows a silver semi-trailer truck on a highway.", + "The image is of a large, silver semi-trailer truck.", + "This image is of a semi-trailer truck driving down a highway.", + "The image is a photograph of a brown semi-trailer truck with a white cab.", + " Semi-trailer truck on a highway.", + "A semi-trailer truck hauling a load of lumber\n.", + " Truck on the roadThis truck is hauling a load down the road.", + "This is a semi-trailer truck.", + "Semi-trailer truck on a highway.", + "A big rig hauling a load of lumber down the highway.", + "This is a semi-trailer truck.", + "Giant Semi-Trailer Truck on the Highway.", + "Tractor-trailer truck on a highway.", + "A truck driver hauling a load of cargo on a highway." + ], + "tray": [ + "A tray is a rectangular or round, shallow container with a lip, used for carrying food and drinks.", + "A tray is typically a flat, rectangular surface with raised edges that is used for carrying food, drinks, or other items.", + "A tray is a flat, typically rectangular or square, platform used to hold objects.", + "A tray is a flat, shallow container with a raised edge, used for carrying food or other items.", + "A tray is a piece of flatware with a raised edge that is used to carry food and drinks.", + "A tray is a flat surface with raised edges, used for carrying food or other items.", + "A tray is a flat, usually rectangular or square, object that is used to hold or carry other objects.", + "A tray is a flat, rectangular piece of wood, metal, or plastic.", + "A tray is a flat surface, often with four raised sides, used for carrying food or other items.", + "A tray usually has four sides and a flat bottom.", + "A tray is a flat, shallow container with a raised edge, used for carrying food and drinks.", + "A tray is a flat, shallow container with a raised edge, used for carrying food and drinks.", + "A tray is a flat, shallow container with a raised edge, used for carrying food and drinks.", + "A tray is a flat, shallow container with a rim, used for carrying food, drinks, or other items.", + "A tray is a flat, typically rectangular container with raised edges, used for carrying items.", + "A tray is a flat, rectangular container with four raised sides.", + "A tray is a flat, usually rectangular, object with raised edges.", + "A tray is a flat, shallow container with a lip or edge, used for carrying food, drinks, or dishes.", + "A tray can typically be identified by its flat surface and raised edges.", + "You can identify a tray by its flat, rectangular shape and its lack of handles.", + "A tray is a rectangle with four sides and a flat surface.", + "A tray is a flat, rectangular object that is used to hold and carry other objects.", + "A tray is a flat, rectangular container with low sides.", + "A tray can have many different appearances, but is typically a flat surface with raised edges, used for carrying or holding objects.", + "A tray is a decretive plate used to hold food and other items.", + "A tray is a flat surface with four sides.", + "A tray is a flat, open container with a lip or edge, used for carrying food, dishes, or other items.", + "A tray is a flat, usually rectangular, object with raised edges.", + "A tray is a flat surface on which objects can be placed.", + "A tray is a flat, rectangular surface with raised edges.", + " of cookiesThe image is of a round, metal tray filled with different kinds of cookies.", + " of different foodsI found an image on the internet of a tray of different foods that includes a variety of meats, cheeses, breads, and fruits.", + " of bagelsThe image is of a large, rectangular tray filled with bagels.", + " of plantsIn the image, there are several plants in pots sitting on a tray.", + " of dessertsThis is an image of a tray of assorted desserts that include chocolate cake, mousse, creme brulee, tiramisu, and macarons.", + " of cookiesThere is an image from the internet of a tray of cookies that is rectangular in shape.", + " of foodI found an image on the internet of a tray of food that included a variety of different dishes.", + " of sushiThe image is of a tray of sushi with different kinds of fish.", + " of foodA tray of food on the internet is typically a photograph of a tray of food that has been arranged in an appealing way.", + " of baked goodsThis image is of a tray of assorted baked goods including cookies, cakes, and pastries.", + "Two tiers of deliciousness - perfect for afternoon tea!.", + "A tray of assorted donuts.", + " Pile of fresh baked cookiesA plate of fresh-baked cookies straight from the oven.", + "A tray of cookiesA tray of browniesA tray of cupcakes.", + "A tray of cookiesA tray of freshly baked cookies.", + "Tray of assorted pastries.", + "A metal tray filled with food.", + "A metal tray with various medical items on it, including a blood pressure cuff, a stethoscope, and a thermometer.", + "Delicious breakfast! Scrambled eggs, bacon, toast, and fruit.", + " Stainless steel tray with multiple compartmentsThis is a stainless steel tray with multiple compartments." + ], + "trench coat": [ + "A trench coat typically has a double-breasted front, a belted waist, and wide lapels.", + "A trench coat is a Duffel coat that is made of water resistant or waterproof fabric.", + "A trench coat is a long, waterproof coat with a belt.", + "A typical trench coat is double-breasted with 10 buttons, has wide lapels, a belted waist, and epaulettes.", + "A trench coat is a long, belted coat typically made of waterproof heavy-duty cotton, wool, or polyester.", + "Trench coats are typically made of a waterproof fabric such as cotton, wool, or leather.", + "A trench coat is a long, waterproof, and typically beige-colored coat.", + "A trench coat looks like a long coat that comes down to the knees or lower.", + "A trench coat is a long, waterproof coat with a belt.", + "A trench coat looks like a long, typically beige, coat.", + "A trench coat is a long, waterproof coat typically worn in the cooler months.", + "A trench coat is a knee-length overcoat with a belt.", + "A trench coat is a type of coat that is typically made from waterproof or water-resistant material.", + "A trench coat is a garment typically worn by men or women to protect themselves from the elements, usually rain.", + "Some identifying characteristics of a trench coat are that it is double-breasted, has a belted waist, and usually has a collar that can be turned up to protect the wearer's face from the wind.", + "A trench coat is a long, loose overcoat with a belted waist.", + "To identify a trench coat, look for a coat that is double-breasted, has a waist belt, and is made of a water-resistant fabric.", + "Trench coats are easily identifiable by their long length, which typically falls to the mid-thigh or lower.", + "A trench coat is a coat with a long length and typically has a belt.", + "There are a few identifying features of trench coats.", + "A trench coat is a long, double-breasted overcoat.", + "A trench coat is a long, waterproof coat with a belt.", + "A trench coat is a coat that is long and goes down to your knees.", + "A trench coat typically has a removable liner, large lapels, and a belt.", + "A trench coat is a type of coat that is typically long, heavy, and waterproof.", + "A trench coat is a long, tailored coat that is usually made from a waterproof fabric.", + "A trench coat is a long, water resistant coat.", + "A trench coat is a water-resistant, knee-length overcoat.", + "A trench coat is a long, fitted coat with a belt.", + "A trench coat is a long coat that is typically made from a water-resistant or waterproof fabric.", + "A black trench coat hangs on a clothes rack.", + "The image is of a black trench coat with a red lining.", + "A trench coat is a long, typically waterproof coat worn in colder weather.", + "The image from the internet of a trench coat is a piece of outerwear that is worn by men and women.", + "In the image, a person is wearing a black trench coat.", + "A photo from the internet of a trench coat may contain a person wearing the coat.", + "A black trench coat with a brown belt and a red scarf.", + "This image is of a black trench coat with wide lapels and a double-breasted front.", + "The image is of a black trench coat with a belt.", + "This image is of a woman wearing a black trench coat.", + "A trench coat is a classic piece of outerwear that has been around for centuries.", + "A trench coat is a long, waterproof coat worn by soldiers in World War I.", + " A woman in a black trench coat and matching fedora holds a cigarette in one hand and a walking stick in the other.", + "A man wearing a trench coat and holding a gun.", + " A trench coat is a coat worn to protect the body from the elements, typically made of waterproof or water-resistant material.", + "A trench coat is a coat worn in weather that is cold and wet.", + " Duster coat with a zip out lining.", + " A trench coat is a coat characterized by its double-breasted silhouette, straight-cut waist, and button-up at the collar.", + "A trench coat is a coat worn in weather that is cold and wet.", + "A trench coat is a coat worn in weather that is unfavorable for other types of clothing." + ], + "tricycle": [ + "A tricycle usually has two wheels at the back and one wheel at the front.", + "A tricycle has three wheels, two in the back and one in the front.", + "A tricycle is a three-wheeled vehicle that is powered by pedals.", + "A tricycle typically has three wheels, with two wheels in the front and one in the back.", + "A tricycle is a three-wheeled vehicle that is pedaled with the feet.", + "A tricycle is a three-wheeled vehicle with pedals and a seat for the rider.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle generally has two wheels at the back and one wheel at the front.", + "A tricycle looks like a bicycle with two wheels in the front and one wheel in the back.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle has three wheels, two in the back and one in the front.", + "A tricycle usually has three wheels and is ridden by a person sitting on a seat.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle has three wheels, two in the back and one in the front.", + "A tricycle (American English) or trike (British English) is a three-wheeled vehicle.", + "A tricycle is a three-wheeled vehicle that is propelled by pedals.", + "A tricycle has three wheels.", + "A tricycle is a three-wheeled vehicle which can be pedal-powered or motor-powered.", + "A tricycle is a three-wheeled vehicle that is propelled by pedals.", + "A tricycle is a three-wheeled vehicle that is pedal-powered.", + "A tricycle typically has two wheels in the back and one wheel in the front.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle generally has two wheels at the back and one wheel at the front.", + "A tricycle is a 3-wheeled bicycle.", + "A tricycle typically has three wheels, two in the front and one in the back.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle looks like a bicycle with two wheels in the back.", + "A tricycle is a three-wheeled vehicle.", + "A tricycle looks like a bicycle that has two wheels in the front and one wheel in the back.", + "A image of a tricycle from the internet would show a three-wheeled bike that is ridden by pedaling with the feet.", + "The image is of a tricycle with three wheels.", + "The image is of a tricycle with a blue and white color scheme.", + "The image is of a red tricycle with yellow handlebars.", + "In the image, there is a red tricycle with white and blue accents.", + "The image from the internet is of a child's tricycle.", + "The image from the internet is of a tricycle that has a basket attached to the back of it.", + "A tricycle is a three-wheeled vehicle.", + "In the image, there is a blue tricycle with a white seat and a yellow basket in the front.", + "The image is of a child's tricycle.", + "Image of a tricycle with a big basket in the front.", + "a tricycle with a yellow seat and a blue frame.", + "A young child happily riding their new tricycle down the street.", + "A young boy is riding a red tricycle on a sidewalk.", + "A man and his tricycle on a busy street.", + "A young boy ride his tricycle on a sunny day.", + "Tricycle in a park.", + " man on a tricycle.", + "This tricycle has a basket on the front, making it perfect for carrying groceries or other belongings.", + "A young girl is riding a tricycle on a path in a park." + ], + "trimaran": [ + "A trimaran is a triple-hulled vessel with a V-shaped or Bermuda-rigged mainmast and two smaller masts, usually further forward.", + "A stern-mounted, outboard-powered primary hull with two amas, or floated, pontoon-like side hulls, attached on each side.", + "A trimaran looks like a three-sided boat.", + "A trimaran looks like a traditional sailboat, except that it has three hulls instead of one.", + "A trimaran looks like a sailboat with three hulls.", + "A trimaran looks like a three-hulled boat, with two smaller hulls on either side of a larger central hull.", + "A trimaran is a boat with three connected hulls.", + "A trimaran looks like a boat with three hulls.", + "A trimaran is a multihulled vessel with three parallel hulls of equal size.", + "A trimaran is a type of sailing vessel that has three hulls.", + "Trimaran can be identified by their three hulls which are attached to each other.", + "A trimaran is a sailboat with three hulls.", + "The defining characteristic of a trimaran is that it has three hulls.", + "A trimaran is a type of sailing vessel that has three hulls, with the main hull in the center and two smaller hulls on either side.", + "A trimaran is a type of sailboat with three Hulls.", + "A trimaran is a type of sailboat that has three parallel hulls.", + "A trimaran is a type of boat with three hulls.", + "By its three hulls.", + "A trimaran is a type of sailboat that has three parallel hulls.", + "A trimaran typically has three parallel hulls, although some have two parallel hulls with a third, smaller hull in the middle, which is known as a center hull.", + "A typical trimaran looks like a narrow main hull with two smaller hulls attached on either side.", + "A trimaran is a type of sailboat that has three hulls.", + "A trimaran is a sailboat that has three hulls.", + "A trimaran is a type of sailboat that has three hulls.", + "A trimaran is a sailing vessel that consists of a main hull (or body) and two smaller outrigger hulls attached to it.", + "A trimaran look like a long, narrow boat with three hulls.", + "A trimaran looks like a boat with three hulls.", + "A trimaran looks like a regular sailboat, but with three attached hulls instead of one.", + "A trimaran looks like a three-hulled vessel.", + "A trimaran is a type of sailboat that has three hulls instead of one.", + "A trimaran is a sailboat that has three hulls.", + "A trimaran is a multi-hulled vessel that has three individual hulls.", + "A trimaran is a type of sailboat that has three hulls.", + "This is an image of a trimaran sailboat.", + "A trimaran is a type of sailing vessel that has three hulls.", + "This is an image of a person sailing a trimaran, which is a type of sailboat.", + "A trimaran is a three-hulled vessel consisting of a main hull and two outrigger hulls, attached to the main hull by beams or braces.", + "A trimaran is a type of sailboat that has three hulls.", + "A trimaran is a type of sailboat that has three hulls.", + "The image on the internet is of a blue and white trimaran sailing on a calm sea.", + "A trimaran is a sailboat with three triangular hulls.", + "This is a trimaran, a type of sailboat with three hulls.", + " The trimaran is a type of boat that has three separate hulls.", + "This is a trimaran, a type of sailboat that has three hulls.", + "This image shows a trimaran, a type of yacht with three hulls.", + "A trimaran sailboat sails on the open water.", + " \"The world's largest cruising trimaran, measuring in at 100 feet long.", + " A trimaran is a three-masted sailing vessel, typically with a rectangular main hull and two smaller outrigger hulls attached by crossbeams.", + "This nimble vessel is a trimaran, a type of sailing ship with three hulls.", + " Three-hulled boats, or \"trimarans,\" are designed for speed and stability." + ], + "tripod": [ + "A tripod is three-legged support used to stabilize an object.", + "A tripod is a three-legged stand used to support a camera, microphone, or other device.", + "A tripod is a three legged stand that is used to support a camera or other object.", + "A tripod is a three-legged support structure typically used to support a camera or other equipment.", + "A tripod is a three-legged support structure.", + "A tripod is a three- legged support device typically used by photographers to stabilize their camera.", + "A tripod is a three-legged support structure.", + "A tripod has three legs and a platform on top for a camera, telescope, or other device.", + "A tripod is a three-legged support structure typically used to stabilize a camera or other object.", + "A tripod typically has three legs that can be extended and contracted.", + "A tripod has three legs and is used to support a camera.", + "A tripod can be identified by its three legs.", + "The most common tripod has three legs that can be extended and retracted.", + "A tripod is a three-legged support structure that is used to stabilized a camera or other object.", + "A tripod usually has three legs and a central post.", + "A tripod has three legs that can be extended and contracted.", + "A tripod is a three-legged stand that is used to support a camera or other device that needs to be kept stable.", + "By its three legs.", + "A tripod is a three-legged support used to hold a camera in place.", + "A tripod is a three-legged support for your camera.", + "A tripod typically has three legs and a platform for a camera to sit on top of.", + "A tripod typically has three legs and a platform for a camera.", + "A tripod is a three-legged support structure.", + "A tripod is a three-legged stand that is used to support a camera, microscope, or other object.", + "A tripod is a three-legged stand that is used to support a camera, microscope, or other device that needs to be kept still.", + "A tripod is a three-legged support device typically used to hold a camera in place.", + "A tripod is a three-legged support for a camera or other object.", + "A tripod looks like a three-legged stand.", + "A tripod is a three-legged stand that is used to support a camera or other object.", + "A tripod looks like a three-legged stand that is used to support a camera, telescope, or other device that needs to be kept very still.", + "The image is of a tripod made out of metal with three legs and a black and white checkered base.", + "An image from the internet of a tripod shows a stand with three legs that is used to support a camera or other device.", + "In the image, there is a black tripod with three legs.", + "This image shows a metal tripod with three legs and a black carrying case.", + "The image from the internet is of a tripod.", + "This is an image of a tripod.", + "An image of a tripod from the internet would likely show a three-legged stand with a camera or other object attached to the top.", + "The image from the internet of a tripod is a three-legged support system that is used to stabilize a camera or other object.", + "A tripod is a three-legged stand used to support a camera or other object.", + "A tripod is a three-legged frame or stand, used as a support for a camera, microscope, or other instrument, or for holding up a structure such as a surveying instrument.", + "3 Legged Thing Tripod.", + " A tripod helps to keep your camera still so you can take clear pictures.", + "A tripod is an essential piece of equipment for any photographer, allowing them to keep their camera still for long exposures or to capture images in low-light conditions.", + "A tripod is a three-legged support device used to stabilize a camera or other object.", + "A tripod is a device used to stabilize acamera or other object.", + "A tripod support used to take long or timed exposures.", + "A tripod is a three-legged support structure used to steady a camera or other object.", + "A tripod is a three-legged support used to stabilize a camera during long exposures or when shooting video.", + " A tripod is a three-legged support structure used to stabilize a camera or other imaging device.", + "Tripod for DSLR Camera." + ], + "triumphal arch": [ + "A triumphal arch is a monument that is built to commemorate a victory.", + "A triumphal arch is a monument built to commemorate a victory.", + "A triumphal arch has three parts: an arch, a pedestal, and a statue.", + "A triumphal arch is a victory arch that was built to celebrate a military or imperial victory.", + "A triumphal arch looks like a large archway with a pointed top.", + "A triumphal arch is a monumental architectural feature that is often used as a gateway or entranceway.", + "A triumphal arch is an arch that is built to commemorate a victory.", + "A triumphal arch is an arch that was built to honor a victorious general.", + "A triumphal arch is an arch that has been built to commemorate a victory.", + "A triumphal arch is a large, free-standing archway that is built to honor victorious generals and commemorate their triumphs.", + "You can identify a triumphal arch by its many arches, which are meant to symbolize the triumphs of the person being honored.", + "A triumphal arch can be identified by its large size, its arched shape, and its decorative elements such as sculptures or inscriptions.", + "A triumphal arch is an arch constructed to commemorate military victory.", + "A triumphal arch is an archway that is built to commemorate a victory.", + "A triumphal arch is a stone or brick structure in the shape of a window or doorway that is used to commemorate a victory.", + "A triumphal arch has three parts: an archway that players can walk through, two towers on either side of the archway, and sculptures or reliefs on the archway.", + "A triumphal arch has a large, tall archway in the center, with smaller arches on either side.", + "A triumphal arch is a free-standing, monumental archway that commemorates an important event, such as a victory in war, or the life of an important person.", + "A triumphal arch has a distinct triangular shape, with a smaller opening at the top and a larger opening at the bottom.", + "A triumphal arch is a structure that has a single large arched opening at the front and smaller arched openings on the sides.", + "A triumphal arch typically has a large, central archway, often flanked by smaller, secondary archways.", + "A triumphal arch typically has a rectangular shape and consists of two or more arches that are supported by columns.", + "A triumphal arch looks like a large, free-standing archway with a round or pointed top.", + "A triumphal arch has one large center opening with a smaller opening on each side.", + "A triumphal arch is a large, decorated archway that is built to commemorate a victory or other significant event.", + "The most common form of a triumphal arch is a single-arched opening with a narrow passageway underneath.", + "A triumphal arch is a monumental structure in the shape of an archway with one or more arched passageways, often designed to span a road.", + "A triumphal arch is a tall, free-standing structure with a large, central archway that is often decorated with relief sculptures.", + "A triumphal arch is a large, decorated archway that is built to celebrate a victory.", + "A triumphal arch is an arched structure that is built to commemorate a victory.", + "The image is of a triumphal arch that is part of a larger building.", + "The image shows a large, white stone archway with three arches.", + "A triumphal arch is a monument in the form of an archway with one or more arched passageways, often designed to span a road.", + "A triumphal arch is an arch that is built to commemorate a victory.", + "An image of a triumphal arch from the internet shows a large, ornate archway with a detailed design.", + "A triumphal arch is a monumental structure in the shape of an archway with one or more arched passageways, often designed to span a road.", + "A triumphal arch is an archway that is built to commemorate a victory.", + "A triumphal arch is a large, free-standing arch that commemorates an important event, such as a military victory or the coronation of a monarch.", + "The image is of a large stone triumphal arch with three arches.", + "An image from the internet of a triumphal arch shows a large, grand archway with steps leading up to it.", + "The Arc de Triomphe in Paris, France.", + "The Triumphal Arch of Orange, built in honor of the Roman Emperor Augustus, is one of the best-preserved Roman monuments in France.", + "A view of the Arc de Triomphe in Paris, France.", + "The Arch of Triumph in Paris, France.", + "A triumphal arch commemorating the victory of a Roman general.", + "A triumphal arch commemorating the victory of a Roman general\n.", + "A triumphal arch commemorating the victory of a military commander.", + "A view of the Arch of Constantine in Rome, Italy.", + "The triumphal arch was built to celebrate the victory of the Roman army.", + "A triumphal arch commemorating the victory of a military commander." + ], + "trolleybus": [ + "A trolleybus is an electric bus that draws power from overhead wires using pantographs mounted on the roof.", + "A trolleybus is a bus that gets its power from overhead electric wires.", + "A trolleybus looks like a bus that has two metal wires running above it.", + "Trolleybuses are buses that are powered by electricity from overhead wires.", + "A trolleybus is a bus that draws its power from overhead wires using pantographs.", + "A trolleybus is a bus that is powered by electricity from overhead wires.", + "A trolleybus is a bus powered by electricity drawn from overhead wires, and it typically has extra-large windows and seats.", + "A trolleybus looks like a regular bus, but it has two metal poles on the roof that connect to wires overhead.", + "A trolleybus looks like a bus that is powered by electricity from overhead wires.", + "A typical trolleybus consists of a double-ended vehicle with an electric motor for propulsion.", + "Trolleybuses are electric buses that draw power from overhead wires.", + "A trolleybus can be identified by its overhead wires and trolley poles.", + "A trolleybus is a bus that draws power from overhead wires.", + "A trolleybus can be distinguished from a regular bus by the overhead wires and trolley poles that it uses to draw power from an electric line.", + "When looking at a bus, the easiest way to identify a trolleybus is by the wires running above it.", + "The easiest way to identify a trolleybus is by its trolley poles.", + "A trolleybus is a bus that draws power from two overhead wires, typically using trolley poles.", + "A trolleybus is a bus that gets its power from electric wires that run above it.", + "Trolleybuses can be identified by their overhead electric wires and trolley poles.", + "A trolleybus is a vehicle designed to run on rails, with the help of an external power source.", + "A trolleybus looks like a bus that is powered by an electric motor and gets its power from an overhead electric wire.", + "A trolleybus looks like a bus that is powered by electricity from overhead wires.", + "A trolleybus is a bus powered by electricity from overhead wires.", + "A trolleybus is a bus that draws power from overhead electric wires.", + "A trolleybus is a bus that is powered by electricity from an overhead wire.", + "A trolleybus looks like a bus that is powered by electricity from overhead wires.", + "A trolleybus looks like a bus that is powered by electricity from overhead wires.", + "A trolleybus is a type of bus that runs on power from overhead wires.", + "A trolleybus is a bus that is powered by electricity from overhead wires.", + "A trolleybus is a bus that draws electricity from overhead wires.", + "A trolleybus is a bus that draws power from overhead wires using pantographs.", + "The image is of a light blue trolleybus with yellow stripes.", + "This image from the internet is of a trolleybus in Philadelphia.", + "The image is of a trolleybus stopped at a bus stop.", + "The image is of a trolleybus in operation.", + "In the image, a trolleybus can be seen driving down a city street.", + "The image is of a blue and white trolleybus with the words \"San Francisco Trolley\" on the front.", + "A trolleybus is a bus that runs on electricity from overhead wires.", + "This image from the internet is of a trolleybus with the destination \"Pokrovskaya Square\" written on the front.", + "The image is of a red trolleybus with several people boarding.", + " he trolleybus in BudapestThe trolleybus is a popular mode of transportation in Budapest, especially among tourists.", + "A trolleybus in Nizhny Novgorod, Russia.", + "A trolleybus on route 66 in Los Angeles, California.", + " \"As trolleybuses cannot operate without overhead wires, they do not blend in as well as diesel buses and are therefore less widely used.", + "A trolleybus in Pyongyang, North Korea.", + "\"Trolleybus in a city in Russia.", + "A trolleybus in operation in Xiamen, China.", + "The last trolleybus line in North America, in Vancouver, British Columbia, Canada.", + "A trolleybus in San Francisco.", + "A trolleybus in Kiev, Ukraine." + ], + "trombone": [ + "A trombone is a long, brass instrument with a bell-shaped opening at the end.", + "The trombone is a brass instrument that is shaped like a long, curved tube.", + "A trombone is a brass instrument that is about four feet long.", + "A trombone looks like a long brass instrument with a slide.", + "A trombone looks like a brass instrument with a wide-bore slide.", + "A typical trombone is long and cylindrical with a flared bell at the end.", + "The trombone is a brass instrument that is long and skinny.", + "A trombone looks like a long, cylindrical brass instrument with a slide.", + "A trombone is a brass instrument that is cylindrical in shape and has a telescoping slide that is used to change the length of the instrument and produce different pitches.", + "A trombone is brass instrument that is shaped like a long slide.", + "You can identify a trombone by its slide.", + "By looking at the instrument, you can identify a trombone because it has a long slide that extends from the bell.", + "The trombone is a brass instrument that is characterized by its long slide.", + "Trombones are brass instruments that are \u201cvalve-less\u201d.", + "When you look at a trombone, the most distinctive feature is the long slide.", + "The trombone can be identified by its long sliding tube that is about twice the length of the player's arm.", + "The slide is the most identifying feature of the trombone.", + "Authentic trombones will have stamped markings that say \"trombone\" on the slide section and \"F Attachment\" on the trigger section.", + "The trombone is a brass instrument with a long cylindrical tubing.", + "A trombone can be identified by its long slide, which is used to change the pitch of the instrument.", + "A trombone is a brass instrument.", + "A trombone is a long, brass musical instrument.", + "A trombone looks like a large trumpet with a slide attached.", + "A trombone is a brass instrument that consists of a long, cylindrical tube with a flared bell at one end.", + "A trombone looks like a brass instrument that has a long slide.", + "A trombone looks like a brass instrument with a long slide attached.", + "A trombone is a brass instrument that has a tubular shape.", + "A trombone looks like a brass instrument with a long slide.", + "A trombone is brass musical instrument with a long slide.", + "A trombone is a brass instrument that has a long slide on the front, and a mouthpiece on the end.", + "A brass trombone lying on a soft white cloth.", + "The image is of a trombone player performing on stage.", + "In the image, a trombone is lying on a table with its shiny brass body and long slide gleaming in the light.", + "A trombone is a brass instrument that is played by sliding a metal tube back and forth.", + "In the image, a trombone lies on a table with its slide extended.", + "The image is of a trombone player performing on stage.", + "An image of a trombone from the internet shows a long, metal instrument with a curved tubing.", + "A trombone is a brass instrument with a long, coiled tubing that is played by moving a slide back and forth.", + "The image is of a trombone on a stand with the slide extended.", + "The image is of a trombone on a white background.", + "A trombone player warms up before a concert.", + "A musician playing a trombone in a band.", + "A trombone player in a marching band.", + "A trombone player in a band.", + "A trombone player performs at a concert.", + "A trombone player performing in a concert.", + " A trombone player holds his instrument while performing.", + "A trombone is a musical instrument in the brass family.", + "A trombone player at a jazz concert.", + " A jazz musician playing a trombone." + ], + "hot tub": [ + "A hot tub is a Pool with jets in it so people can relax.", + "A hot tub is usually a large tub full of water that is heated by a machine.", + "A hot tub is usually a small, self-contained tub full of water that is always at least partially filled.", + "A hot tub is a large tub that is usually filled with hot water and used for relaxation.", + "A hot tub typically looks like a large, round bathtub filled withbubbling water.", + "A hot tub is a large tub full of hot water that people can sit in to relax.", + "A hot tub typically looks like a large, rectangular tub filled with bubbling water.", + "round or rectangular tub filled with hot water and jets around the sides.", + "A hot tub is a large tub or small pool full of water that is used for soaking, relaxation, and sometimes hydrotherapy.", + ".", + "A hot tub is generally a large tub that is filled with hot water and used for soaking, relaxation, or hydrotherapy.", + "A hot tub is large tub or small pool full of water used for bathing, relaxing, or hydrotherapy.", + "The easiest way to identify a hot tub is by its size.", + "A hot tub is typically large and round, and is filled with hot water.", + "A hot tub is usually a large tub that is filled with hot water and used for relaxation or hydrotherapy.", + "Hot tubs can be identified by their large size, typically 4 to 6 feet in diameter and 2 to 4 feet tall.", + "A hot tub can often be identified by its large size and bubbling water.", + "In general, a hot tub is a large tub or small pool full of water used for soaking, relaxation, and sometimes hydrotherapy.", + "The most obvious way to identify a hot tub is by its large size and rounded corners.", + "There are a few ways to identify a hot tub.", + "A hot tub typically looks like a large, deep tub with built-in jets.", + "A hot tub is a large, usually round tub filled with hot water.", + "A hot tub typically looks like a large, round, sunken tub with jets.", + "A hot tub is a large, deep tub that is filled with water and has jets around the edge that spray out hot water.", + "A hot tub looks like a large, round tub filled with water.", + "A hot tub is a large, typically round tub that is filled with hot water and used for relaxing or hydrotherapy.", + "A hot tub is typically a large, round, submerged tub that has jets around the edge.", + "Hot tubs vary in size, shape, and color, but they typically look like large, round tubs made of fiberglass or acrylic.", + "A hot tub is a large tub that is filled with hot water.", + "A hot tub is a large, usually round tub that is filled with hot water.", + "The image is of a large hot tub with built-in steps leading up to it.", + "The image is of a hot tub with 6 people in it.", + "A hot tub is typically a large tub full of water that is used for soaking and relaxation.", + "An image from the internet of a hot tub shows a large, round tub, usually made of wood, with steps leading up to it.", + "The image is of a hot tub that is outdoors and surrounded by plants.", + "The image is of a large hot tub that is built into a deck.", + "The image is of a hot tub on a deck.", + "A hot tub is typically a large, round tub filled with water that is used for relaxation.", + " The image is of a large, wooden hot tub with steps leading up to it.", + "The image from the internet is of a white hot tub with blue lights in it.", + "This hot tub looks like the perfect spot to relax and unwind!.", + "This hot tub is perfect for relaxing after a long day.", + "This hot tub looks like the perfect place to relax and unwind.", + "This looks like the perfect spot to relax and unwind!.", + "This looks like the perfect spot to relax and enjoy the view!.", + "This hot tub is perfect for a relaxing evening at home.", + "This hot tub is perfect for relaxing in after a long day.", + "This hot tub is perfect for relaxing after a long day!.", + "Relaxing in a hot tub after a long day.", + "Hot tubs are perfect for relaxing in after a long day." + ], + "turnstile": [ + "A turnstile looks like a small gate that people can only go through one at a time.", + "A turnstile is a mechanical device that is used to control access to a restricted area.", + "A turnstile is a gate that controls the flow of people into and out of an enclosed space.", + "A turnstile is a barrier with a revolving horizontal arm, used to control pedestrian traffic at the entrance to a public building or subway station.", + "A turnstile is a gate with three or more arms that rotate around a vertical axis when pushed, to allow people to pass through in single file.", + "A turnstile is a physical barrier separating entrances from exits that allows people to pass through in one direction at a time.", + "A turnstile typically has a cylindrical metal frame with two vertical bars running through the middle.", + "A turnstile is a revolving gate that allows people to enter or exit a building while controlling the flow of traffic.", + "A turnstile typically consists of a metal Tripod or quad-pod with a horizontal crossbar that one must lean against to rotate the stile.", + "A turnstile is a mechanized gate that can rotate to allow people to pass through one at a time while preventing them from going back the way they came.", + "A turnstile is a physical barrier that is used to control the movement of people.", + "A turnstile is usually a metal gate that allows one person to pass through at a time.", + "A turnstile is a type of gate which allows people to pass through but not go back the way they came.", + "A turnstile is a physical device that allows people to pass through it in one direction only.", + "There are a few ways to identify a turnstile.", + "A turnstile is a type of gate that allows people to pass through while controlling the flow of foot traffic.", + "A turnstile is a type of gate which allows people to go through it in one direction at a time.", + "A turnstile is a mechanical device that is used to control access to an area that is only accessible by going through the turnstile.", + "A turnstile is a device that allows people to pass through while controlling the flow of traffic.", + "A turnstile is a mechanical device that is used to control access to a restricted area.", + "A turnstile is a device that is used to control the flow of people entering or exiting an area.", + "A typical turnstile has a frame composed of three or four metal posts with crossbars at the top and bottom.", + "A turnstile generally consists of a horizontal rotating bar that is held up at shoulder level, or sometimes higher.", + "A turnstile is a rotating barrier that is used to control the flow of people in and out of an area.", + "A turnstile is a mechanical device that controls access to a restricted area by allowing only one person to pass through at a time.", + "A turnstile is a device that allows people to pass through while counting how many have gone through.", + "A turnstile looks like a revolving gate that is used to control pedestrian traffic.", + "A turnstile looks like a circular or semicircular structure that is rotated to allow people to pass through.", + "A turnstile generally consists of a metal or glass barrier that rotates on a vertical axis, allowing people to pass through in single file while preventing them from walking around the barrier.", + "A turnstile is a device that controls entry into an area.", + "The image is of a turnstile with a yellow handle.", + "A turnstile is a physical barrier that controls movement between two areas.", + "The turnstile is a revolving gate that allows people to enter or exit a place while counting the number of people who have gone through.", + "The image from the internet of a turnstile is a metal structure with a rotating arm or gate that is used to control the flow of people through a restricted area.", + "The image is of a turnstile with a green arrow pointing to the right, indicating that it is open and available for use.", + "An image of a turnstile from the internet may show a metal or plastic structure with rotating arms or bars that allow people to enter or exit a building while controlling the flow of traffic.", + "A turnstile is a physical barrier designed to control or limit the access of people into a restricted area.", + "The image is of a metal turnstile with a bar that spins around.", + "The image is of a metal turnstile with a gray and white color scheme.", + "This image is of a turnstile with a metal and glass structure.", + " A man is jumping over a turnstileThe man is jumping over the turnstile to get onto the train platform.", + "A turnstile at a subway station.", + "Admission to the museum requires a ticket.", + "A turnstile at a subway station.", + "Do not enter without a ticket.", + "The Metropolitan Transportation Authority (MTA) is the largest public transit agency in the United States, serving a population of over 15 million people in the New York City metropolitan area.", + "A turnstile at a subway station.", + " fares for the new york city subwayA caption of an image of a deployed parachute: safe landing after a jump.", + "A turnstile is a device used to control or restrict access to a premises, typically by allowing only one person through at a time.", + "A turnstile at a New York City subway station." + ], + "typewriter keyboard": [ + "A typewriter keyboard typically contains upper and lowercase letter keys, number keys, symbol keys, and action keys.", + "A typewriter keyboard has a QWERTY layout and looks similar to a computer keyboard.", + "A typewriter keyboard generally looks like a standard QWERTY keyboard, except the keys are often closer together and slightly smaller.", + "A typewriter keyboard looks like a regular keyboard, except the keys are in different places.", + "A typewriter keyboard consists of a set of keys that correspond to the various characters that can be produced by a typewriter.", + "A typewriter keyboard looks like a standard keyboard, with the exception of a few keys.", + "A typical typewriter keyboard has 44 keys.", + "A typewriter keyboard has a row of keys for each row of letters on a typewriter.", + "Typewriter keyboards look like traditional keyboards, with a set of keys for each letter of the alphabet, as well as keys for numbers and punctuation marks.", + "A typewriter keyboard looks like a regular keyboard, with each key corresponding to a different letter, number, or symbol.", + "Typewriter keyboards have straight rows of keys that are all the same size.", + "A typewriter keyboard can be identified by its rectangular keys, which are arranged in a grid.", + "The keys on a typewriter keyboard are arranged in a QWERTY layout.", + "By the arrangement of the keys.", + "A typewriter keyboard can be identified by its distinctive key layout.", + "A typewriter keyboard has a specific key for each letter and symbol on the typewriter.", + "The typewriter keyboard can be identified by its QWERTY layout.", + "A keyboard for a typewriter can be identified by its QWERTY layout.", + "A typewriter keyboard has a QWERTY layout.", + "The presence of a numpad and the lack of Arabic numerals on the top row are the most reliable indicators of a typewriter keyboard.", + "A typewriter keyboard looks like a traditional keyboard, with the addition of a few extra keys.", + "A typewriter keyboard looks like a regular keyboard, except the keys are in a different order.", + "A typewriter keyboard looks like a regular keyboard with the addition of a few extra keys, such as a \"return\" key and a \"caps lock\" key.", + "A typewriter keyboard looks like a standard keyboard, except the keys are in different places.", + "A typewriter keyboard typically has 44 keys.", + "A typewriter keyboard has 44 keys and looks similar to a traditional QWERTY keyboard.", + "A typewriter keyboard consists of a set of keys that, when pressed, cause characters to be printed on a piece of paper.", + "A typewriter keyboard looks like a standard keyboard, with the exception of a few keys.", + "A typewriter keyboard looks likes a traditional keyboard, with a few exceptions.", + "The keyboard on a typewriter looks a lot like the keyboard on a computer, with a few notable exceptions.", + "The image is of a typewriter keyboard with all the keys labeled.", + "The image from the internet is of an old-fashioned typewriter keyboard.", + "The image is of a typewriter keyboard with the keys labelled.", + "Image is of a black, manual typewriter with the keys: shift,z,x,c,v,b,n,m,comma, period, /, space bar,caps lock.", + "An image from the internet of a typewriter keyboard may show a standard keyboard with the alphabet, numbers, and symbols.", + "The image shows a black typewriter keyboard with white keys.", + "An image from the internet of a typewriter keyboard shows a traditional keyboard with the letters of the alphabet, numbers, and symbols.", + "This image is of an old-fashioned typewriter keyboard.", + "The image is of a black typewriter keyboard with white letters.", + "An image from the internet of a typewriter keyboard would show all of the keys on the keyboard, including the letters, numbers, and symbols.", + "QWERTY typewriter keyboard.", + "A typewriter keyboard is a device for entering text into a typewriter.", + " The typewriter keyboard has a long history, dating back to the early 1800s.", + "A close up of a typewriter keyboard.", + "The keys on a typewriter keyboard are typically arranged in a QWERTY layout.", + " typewriter keyboard.", + "Keyboard of a typewriter.", + " typewriter keyboard.", + " typewriter keyboard.", + "A typewriter keyboardThe keyboard on a typewriter has keys for all the letters of the alphabet, as well as keys for numbers and punctuation marks." + ], + "umbrella": [ + "A umbrella is a small, portable canopy supported by collapsible ribs, usually made of metal or plastic, that is used to protect a person from rain or sunlight.", + "A umbrella is a cantilevered structure supported at a single point.", + "A umbrella is a curved piece of metal or plastic that is used to keep the rain off of you.", + "A umbrella is a device that is used to protect someone from the rain or sun.", + "A umbrella is a portable canopy that provides protection from the sun or rain.", + "An umbrella is a closed, circular canopy supported by folding ribs, which is usually mounted on a central pole.", + "A umbrella is a object that has a round top and long handle.", + "A umbrella is a device that is used to protect a person from the sun or rain.", + "A umbrella is an object that is used to protect someone from the rain.", + "A typical umbrella is a hand-held, portable device used for shading or protecting one from rain or sunlight.", + "The traditional umbrella is recognizable by its metal shaft and curved handle.", + "The most distinguishing feature of an umbrella is the cloth canopy, which is attached to the metal frame.", + "An umbrella is a device that provides partial protection from the sun or rain.", + "A umbrella is a type of coleopteran in the family Scarabaeidae.", + "The main identifying feature of an umbrella is the fabric canopy.", + "A umbrella is a device used for protection from rain or sun.", + "If it has a handle and a canopy, it is an umbrella.", + "An umbrella is a water-resistant canopy supported by wooden or metal ribs, which is usually mounted on a wooden, metal, or plastic pole.", + "Umbrellas are often made of brightly colored fabric and have a curved handle.", + "A umbrella is typically a portable, hand-held device consisting of a central pole with supports extending outward.", + "A umbrella is a device that is used to protect a person from the sun or rain.", + "A typical umbrella is composed of a metal or plastic rod that supports a fabric canopy.", + "An umbrella is a device used to protect oneself from the rain or sun.", + "An umbrella is a device used to protect a person from the sun or rain.", + "A flashlight.", + "A typical umbrella is composed of a central metal shaft around which is wound a cloth or plastic canopy.", + "A traditional umbrella is a thin, circular piece of fabric held open by a metal frame.", + "A umbrella looks like a cone with a long handle.", + "A typical umbrella is composed of a circular canopy of cloth or plastic that is supported by metal or wooden ribs.", + "A large umbrella may be about 3 feet across and 5 feet tall when opened.", + " One image that comes to mind is of a traditional black umbrella with a curved handle.", + "The image is of a woman standing in the rain with a black umbrella.", + "The image is of a black and white umbrella.", + "The image is of a white umbrella with a blue and white striped pattern.", + "This image is of a large, blue umbrella.", + "The image is of a woman holding a large white umbrella.", + "The umbrella is blue with a white interior.", + "The picture is of a Woman carrying an umbrella and walking in the rain.", + "The image is of a black and white umbrella with a handle.", + "There is an image of a red and white umbrella.", + " \"An umbrella for a rainy day.", + "Its raining!.", + " An umbrella helps protect you from the rain.", + "A black umbrella with a bamboo handle, standing upright in the rain.", + "An umbrella is a vital accessory for any rain lover.", + " A colorful umbrella open and tilted to the side, sitting in a puddle of waterA colorful umbrella lying in a puddle of water, open and tilted to the side.", + "A woman walking down the street holding a black umbrella.", + "A colorful umbrella protects a woman from the sun.", + "A umbrella being used to protect from the rain.", + "A man holds a black umbrella in front of his body." + ], + "unicycle": [ + "A unicycle is a single-wheeled vehicle that is propelled by pedaling.", + "A unicycle is a vehicle with one wheel that is driven by pedals.", + "A unicycle is a vehicle with one wheel that is driven by pedals.", + "A unicycle typically has a large wheel in the middle with a seat on top of it.", + "A unicycle is a bicycle with only one wheel.", + "A unicycle is a vehicle with one wheel that is ridden by balancing on the wheel.", + "A unicycle looks like a single-wheeled bicycle with a seat and pedals.", + "A unicycle is typically a one-wheeled bicycle with no stabilizing pedals or frame.", + "A unicycle is a vehicle that has only one wheel and is propelled by pedaling.", + "A unicycle looks like a bicycle with only one wheel.", + "A unicycle has only one wheel and is powered by pedaling.", + " The most distinguishing feature of a unicycle is that it only has one wheel.", + "There are a few ways to identify a unicycle.", + "Unicycles typically have only one wheel and are pedaled with the feet.", + "If you see someone riding a bicycle with only one wheel, that is a unicycle.", + "The typical unicycle has a saddle, pedals, and a large wheel in the center.", + "A unicycle typically has a single, large wheel in the center, with a small frame and seat attached.", + "Unicycles are typically identified by their large, single wheel and thin frame.", + "A unicycle typically has a very large wheel in the front and a much smaller wheel in the back.", + "There are several ways to identify a unicycle.", + "A unicycle is a vehicle with one wheel in the center and a pedal on each side.", + "A unicycle is a wheel with a saddle on it.", + "A unicycle consists of a wheel with a peddle attached to it.", + "A unicycle is a vehicle with one wheel.", + "A unicycle is a vehicle that has only one wheel.", + "A unicycle typically has a seat mounted atop a metal frame with a single large wheel in the center.", + "A unicycle generally has a large wheel in the center with a small wheel attached at the end of a long metal frame.", + "A unicycle looks like a bike with one wheel.", + "A unicycle looks like a bicycle without the frame between the two wheels.", + "A unicycle looks like a normal bicycle, but with only one tire and no pedals.", + "Image shows a unicycle with a large front wheel and a small back wheel.", + "This image is of a blue unicycle with a red seat and yellow pedals.", + "I found an image of a unicycle on the internet.", + "In the image, a unicycle is propped up against a wall.", + "A unicycle is a vehicle with only one wheel.", + "A unicycle is a vehicle with one wheel.", + "This image from the internet is of a red unicycle with a white seat and handlebars.", + "The image shows a person riding a unicycle on a street.", + "An image from the internet of a unicycle might show a person riding a unicycle down a busy street.", + "A unicycle is a vehicle that consists of one large wheel in the middle and a smaller wheel at the pedals.", + "One Wheel FunThis person is having fun riding their unicycle around town.", + "A unicycle is a single-wheeled vehicle, typically propelled by pedaling.", + "A unicycle is a single-wheeled vehicle propelled by the rider pedaling.", + "Woman unicycling on a path through a park.", + "Acrobats performing on a unicycle.", + "Competing in the Unicycle Marathon.", + "The invention of the unicycle is often credited to Scottish inventor Kirkpatrick MacMillan, who invented it in 1839.", + " A unicycle outside on a sunny day.", + "A unicycle is a vehicle that is propelled by pedaling.", + "This unicycle is a great way to get around!." + ], + "upright piano": [ + "A traditional upright piano has a rectangular shape and consists of three main sections: the soundboard and plate at the top, where the strings are stretched; the belly, where the soundboard resonates; and the bottom section, which houses the.", + "A upright piano is typically a tall, heavy instrument that has black and white keys.", + "A upright piano is a piano that stands upright on its base.", + "The upright piano is the most common type of piano.", + "A traditional upright piano has a rectangular shape and is taller than it is wide.", + "A upright piano is a vertical piano that has its strings and hammers arranged perpendicular to the keyboard.", + "A traditional upright piano is typically around four feet tall and has a rectangular shape.", + "An upright piano is typically taller than it is wide, with the keyboard mounted vertically on the cabinet.", + "An upright piano typically looks like a rectangular box with a black and white keyboard protruding from the front.", + "A traditional upright piano has a tall, rectangular shape and is usually around four feet tall.", + "The piano may have a label that says \"upright piano.", + "An upright piano has the strings running vertically, parallel to the Fallboard.", + "The most obvious way to identify an upright piano is by its size.", + "A upright piano is a piano where the strings and soundboard are perpendicular to the ground.", + "Typically, an upright piano has the strings and tuning pins at the bottom, and the hammers and dampers at the top.", + "The strings of an upright piano run vertically, perpendicular to the keyboard.", + "The easiest way to identify an upright piano is by its size.", + "The most obvious way to identify an upright piano is by its size.", + "You can identify an upright piano by its vertical orientation.", + "Upright pianos are distinguished from other types of pianos by their vertical orientation.", + "A upright piano is a vertical piano that has its strings and hammers arranged vertically.", + "An upright piano is a type of piano that stands vertically on its end, with the keyboard facing outwards.", + "A traditional, \"upright\" piano has a vertical, or \"upright\" structure, with the strings and soundboard running perpendicular to the floor.", + "A standard upright piano has a vertical cabinet with the strings and keyboard running parallel to the floor.", + "A typical upright piano has a tall, narrow cabinet with the strings and keyboard running vertically.", + "A upright piano has a vertical shape and typically stands against a wall.", + "A upright piano looks like a regular, acoustic piano.", + "A grand piano or an upright piano.", + "A upright piano looks like a traditional piano, with the strings running vertically.", + "A typical upright piano has a rectangular shape and a large wooden case that encloses the strings and other mechanisms.", + "The image is of a glossy black upright piano with the lid open.", + "This is an image of an upright piano.", + "The image is of a black upright piano with the lid open.", + "In the image, there is a brown upright piano against a white wall.", + "This image is of a black upright piano with white keys.", + "This image is of a grand piano in a living room.", + "The image shows a grand piano in a living room with large windows.", + "In the image, a sleek, black upright piano is standing in a dimly lit room.", + "The image is of a polished black upright piano with yellowish keys.", + "The image is of a black upright piano with the lid open.", + "An upright piano is a piano that stands upright on its own, typically with its back against a wall.", + "A grand piano in a dark room, with the lid open and the keys illuminated from below.", + "This is a Steinway upright piano.", + "An upright piano is a type of piano that has its strings and hammers arranged vertically instead of horizontal like a grand piano.", + "An upright piano is a type of piano that has a vertical frame and a horizontal keyboard.", + " A black upright piano with green trim.", + "An upright piano is a type of piano that has its strings and action vertically oriented, rather than horizontally oriented as in a grand piano.", + " A grand piano including its music stand, bench, and pedalboard.", + "An upright piano is a type of piano that has a vertical orientation, meaning the strings and keyboard are arranged vertically.", + "An upright piano is a musical instrument that is played by pressing keys on a keyboard." + ], + "vacuum cleaner": [ + "A vacuum cleaner is an appliance that uses suction to clean floors, upholstery, and other surfaces.", + "A vacuum cleaner is a cylindrical device with a handle.", + "A vacuum cleaner is a heavy duty machine with a long cord that plugs into an outlet.", + "A vacuum cleaner is a mechanical device that uses an electric motor to create suction.", + "A vacuum cleaner is a device that uses an air pump to create a vacuum to suck up dust and dirt, usually from floors and other surfaces.", + "A vacuum cleaner typically consists of a canister with a motor and a hose.", + "A vacuum cleaner is a household appliance that is used to clean floors, carpets, and upholstery.", + "A vacuum cleaner is a small, electrically powered machine that sucks up dirt, dust, and other small particles from surfaces and deposits them into a dust bag or dustbin.", + "A vacuum cleaner is a cylindrical device with a handle that is used to clean floors.", + "A vacuum cleaner is a cylinder-shaped machine with a hose on one end and a power cord on the other.", + "A vacuum cleaner typically has a long, cylindrical shape and is used to suck up dirt and debris from floors and other surfaces.", + "When looking to identify a vacuum cleaner, you will want to look for the tell-tale signs that indicate it is a vacuum.", + "A vacuum cleaner is usually a cylindrical or canister-shaped appliance that uses suction to clean floors and other surfaces.", + "A vacuum cleaner is a machine that uses an air pump to create a vacuum to suck up dust and dirt, usually from floors, and occasionally from other surfaces such as upholstery.", + "A vacuum cleaner is a device that uses an air pump to create a partial vacuum to suck up dust and dirt.", + "It usually has a hose and a nozzle.", + "There are many ways to identify a vacuum cleaner.", + "A vacuum cleaner generally has a cylindrical shape, and is portable.", + "It has a hose and a brush attachment.", + "A vacuum cleaner is a machine that sucks up dirt and dust from floors, upholstery, and other surfaces.", + "A typical cylinder vacuum cleaner has a round base that sits on the floor, a long, skinny body, and a cylindrical bag attached to the body.", + "A vacuum cleaner looks like a tall, cylinder shaped device with a handle on top.", + "A vacuum cleaner is a household appliance that most often looks like a canister on wheels with a hose and wand attached.", + "A vacuum cleaner looks like a cylindrical machine with a handle on one end and a nozzle on the other.", + "A vacuum cleaner is a device that uses an air pump to create a vacuum, which is used to suck up dust and dirt from floors, upholstery, and other surfaces.", + "A vacuum cleaner can come in many different shapes and sizes, but most have a cylindrical shape and are made to be portable.", + "A vacuum cleaner is a cylindrical or canister-shaped device that uses an air pump to create suction.", + "A vacuum cleaner is a cylindrical appliance, typically 18-24 inches tall, with a rotating brush at the base.", + "A vacuum cleaner typically looks like a cylinder with a handle on one end and a large opening on the other end.", + "A typical cylinder vacuum cleaner has a long, thin body with a handle on one end and a cylindrical brush head on the other.", + "It's a picture of a woman vacuuming her living room.", + "This image is of a vacuum cleaner.", + "A vacuum cleaner is an electrical appliance that is used to clean floors and upholstery.", + "The image is of a vacuum cleaner with a long cord winding around it.", + "The image is of a black and silver vacuum cleaner.", + "The image is of a black and silver vacuum cleaner with a long cord.", + "This image is of a vacuum cleaner.", + "An image from the internet of a vacuum cleaner may show the vacuum cleaner itself, with all of its parts and attachments, or it may show the vacuum cleaner being used to clean a floor or carpet.", + "A vacuum cleaner is a household appliance that uses suction to clean floors, carpets, and other surfaces.", + "The image is of a vacuum cleaner on a white background.", + "A vacuum cleaner standing upright on a hardwood floor.", + "This is a picture of a vacuum cleaner.", + "Vacuum cleaners are great for keeping your floors clean and free of dirt, dust, and other debris.", + "A vacuum cleaner is a device that uses an air pump to create a partial vacuum to suck up dust and dirt, usually from floors.", + "A woman cleaning her house with a vacuum cleaner.", + "A woman cleaning her house with a vacuum cleaner.", + "This vacuum cleaner is perfect for anyone who wants an easy to use and effective way to clean their home.", + "A vacuum cleaner is a device that uses an air pump to create a partial vacuum to suck up dust and dirt, usually from floors, and deposit it into a dustbag or dustbin.", + "Dyson Ball\u2122 Multi Floor 2 vacuum.", + "Vacuum cleaners are an essential tool for keeping your home clean and dust-free." + ], + "vase": [ + "A vase is a container with an open top that is used to hold flowers or other decorative objects.", + "A vase is a tall cylindrical container with a neck and a base.", + "A vase is a container used to hold flowers or other decorative objects.", + "A vase is a container with a wide opening and a narrow neck.", + "A vase is a container with a wide opening and a narrow neck.", + "A vase is typically a tall, cylindrical shape with a narrow neck and a broad base.", + "A vase is an elongated container that is used to hold flowers or other plants.", + "A vase is a thin container that is used to hold flowers or other plants.", + "A vase usually has a round or oval body with a narrow neck.", + "A vase typically has a round or oval base, and a tall, narrow opening.", + "A vase is a container that is used to hold flowers or other plants.", + "By looking at it.", + "You can identify a vase by its shape and size.", + "A vase can typically be identified by its elongated shape and small opening at the top, which is designed for holding cut flowers.", + "The easiest way to identify a vase is by its shape.", + "There is no one definitive answer to this question, as vases come in a wide variety of shapes, sizes, colors, and materials.", + "One way to identify a vase is by its shape.", + "One way to identify a vase is by its shape.", + "There is no definitive answer to this question, as there are many different types and styles of vases.", + "The best way to identify a vase is by looking for specific features that are common to vases.", + "A vase is a container with a narrow neck and a wide body.", + "A vase is a container with a wide opening and a narrow base.", + "A vase typically has a wide opening at the top and a narrow base.", + "A glass vase filled with water and flowers.", + "A vase is a container with a narrow neck and a broad base.", + "A vase is a container used to hold flowers.", + "A vase is a container with a wide opening and a narrow base.", + "A vase is a container used to hold flowers or other ornamental plants.", + "A vase is a container used to hold flowers.", + "A vase typically has a round base and a long, thin neck.", + "I found an image on Google of a vase with a green and white pattern.", + "The image is of a white vase with blue and yellow flowers on it.", + "This vase is made of white ceramic with a minimalist design.", + "The image is of a white vase with a green floral design.", + "This image is of a white vase with a green plant in it.", + "This is a black and white image of a vase.", + " with flowersThe image is of a white vase with purple flowers.", + "This image is of a vase with a curved body and a flared neck.", + "This is a photo of a colorful vase with flowers.", + ".", + "A blue and white vase with a floral design.", + "This vase is from the Ming Dynasty and is on display at the National Museum of China.", + "This vase is from the Ming Dynasty and is over 600 years old.", + "This vase dates back to the Ming Dynasty and is a treasured heirloom in my family.", + "A vase full of flowersA caption of an image of a person walking down the street:A person walking down a busy street.", + "A blue and white vase with a floral design.", + "Blue and white vase.", + "A vase of flowers on a table.", + "This is a vase.", + " A vase of tulipsA vase of tulips on a table in a garden." + ], + "vaulted or arched ceiling": [ + "A vaulted ceiling has a curved or arched shape.", + "A vaulted or arched ceiling is a ceiling that has a curved or angled surface.", + "A vaulted or arched ceiling typically has a curved or semi-circular shape.", + "A vaulted or arched ceiling has a curved or arched shape.", + "A vaulted or arched ceiling has a curved or angled surface, often in the shape of an arch.", + "Vaulted or arched ceilings have a curved shape that resembles an arch.", + ".", + "A vaulted or arched ceiling is one that has been built in an arch-like shape, often with a decorative keystone in the center.", + "A vaulted or arched ceiling is one that has a curved or arched shape, rather than a flat one.", + "A vaulted or arched ceiling is a ceiling that has been raised up into a curved or arched shape.", + "You can identify a vaulted or arched ceiling by the shape of the ceiling.", + "A vaulted or arched ceiling is a ceiling where the beams or ribs are curved or arched.", + "If a ceiling is vaulted or arched, it will have a curved shape.", + "A vaulted or arched ceiling has a curved surface.", + "A vaulted or arched ceiling is usually composed of curved or semi-circular shaped beams.", + "A vaulted or arched ceiling is usually identified by its pointed shape.", + "Vaulted or arched ceilings can be identified by their rounded shape.", + "A vaulted or arched ceiling can be identified by its curved or sloped shape.", + "A vaulted or arched ceiling has a curved or arched shape.", + "If you are looking up at the ceiling and it appears to be curved or rounded in shape, then it is likely a vaulted or arched ceiling.", + "A vaulted or arched ceiling is a ceiling that has been designed to look like it is curved or has a series of arches.", + "A vaulted or arched ceiling is an architectural feature that allows for more height and volume in a room.", + "A vaulted or arched ceiling is one that has been created using curved or sloped ceilings.", + "A vaulted ceiling is an arched ceiling that is higher in the middle than it is at the edges.", + "A vaulted, or arched, ceiling is a ceiling that is higher in the center than it is at the edges.", + "The top of a vaulted or arched ceiling is curved, rather than flat.", + "A vaulted or arched ceiling looks like a ceiling that has been raised up in the middle, creating a curved or arched shape.", + "A vaulted or arched ceiling has a curved surface, which may be flat or slightly curved.", + "A vaulted or arched ceiling looks like a curved or angled ceiling.", + "A vaulted or arched ceiling is an arch-shaped ceiling.", + "A high resolution image from the internet of a vaulted or arched ceiling might show intricate designs in the stonework or woodwork.", + "A simple image search for \"vaulted ceiling\" or \"arched ceiling\" reveals many results.", + "The image is of a large, roughly oval room with a very high, arched ceiling.", + "This image from the internet is of a beautiful, ornate vaulted ceiling inside of a church.", + "This image is of a vaulted ceiling in a church.", + "This image is of a vaulted, arched ceiling in a church.", + "The image is of a large, ornate room with a vaulted ceiling.", + "Image shows a large, formal living room with high ceilings and a stunning arched window.", + "I found an image of a beautiful, ornate vaulted ceiling in a Catholic church.", + "An image from the internet of a vaulted or arched ceiling may feature a high, domed ceiling with intricate designs carved into the plaster or stone.", + "The intricate design of this vaulted ceiling is stunning.", + "The thin, curved lines of the vaults and arches give the ceiling a sense of lightness and movement.", + "The beautiful architecture of this church is stunning, with its elaborately carved and painted arches and ceilings.", + "TheArchwaytoHeaven.", + "The intricate patterns on this vaulted ceiling are stunning.", + "The ornate ceiling of the Sistine Chapel in Vatican City.", + "The intricate design of the vaulted ceiling is stunning.", + "This is an example of a vaulted or arched ceiling.", + "The elegant curves of this vaulted ceiling are illuminated by the warm glow of the chandelier, creating a truly breathtaking scene.", + "The ceiling of the Sistine Chapel, painted by Michelangelo." + ], + "velvet fabric": [ + "A velvet fabric looks like a smooth, soft fabric with a short dense pile.", + "A velvet fabric is a fabric that has a soft, velvety surface.", + "A velvet fabric looks like a smooth, soft fabric with a short, dense pile.", + "A velvet fabric has a soft, smooth surface with a short, dense pile.", + "A velvet fabric looks soft and smooth, with a short, dense pile.", + "A velvet fabric looks like a regular fabric with a raised surface.", + "A velvet fabric looks like a regular fabric with a raised design or a softer, brush-like surface.", + "Velvet fabric looks like a smooth, soft, and luxurious fabric.", + "Velvet is a fabric with a short, dense pile.", + "A velvet fabric looks like a smooth, soft fabric that is typically made from silk, cotton, or synthetic materials.", + "A velvet fabric has a soft, smooth surface with a nap.", + "There are a few ways to identify a velvet fabric.", + "Velvet generally has a short pile, is soft to the touch, and has a distinctive lustre.", + "The most common ways to identify a velvet fabric are by its softness, its low pile, and its tendency to shed.", + "Velvet looks like a short, close pile fabric with a smooth surface.", + "A velvet fabric can be identified by its smooth, lush surface.", + "To identify a velvet fabric, look for a short, dense pile with a smooth backing.", + "A velvet fabric is characteristically soft, smooth, and has a lustrous pile.", + "The best way to identify a velvet fabric is to check the fabric content.", + "A velvet fabric is a soft, dense fabric with a smooth surface.", + "Velvet fabric looks smooth and shiny.", + "Velvet fabric has a smooth, soft surface with a short, dense pile.", + "Velvet tends to have a short, dense pile, and is soft to the touch.", + "Velvet fabric has a smooth, soft surface with a short, dense pile.", + "Velvet fabric looks like a smooth, velvety material.", + "Velvet is a soft, expensive-looking fabric with a short, dense pile.", + "Velvet fabrics are characterized by their soft, plush surface.", + "A velvet fabric is a type of textile that has a Velvet finish.", + "Velvet is a smooth, soft, and flexible fabric with a short, dense pile.", + "A velvet fabric is typically a woven fabric with a short, dense pile.", + "The image is of a piece of green velvet fabric.", + "This image from Pinterest shows a deep red velvet fabric with a raised, leaf-like pattern.", + ".", + "This image is of a piece of velvet fabric in a deep green color.", + "The image is of a piece of red velvet fabric.", + "This image shows a piece of velvet fabric.", + "This image is of a deep green velvet fabric.", + "The image is of a red velvet fabric.", + "This image from the internet shows a close-up of a rich, teal-colored velvet fabric.", + "The image is of a red velvet fabric.", + "Velvet Fabric.", + "This luxurious velvet fabric has a rich, velvety texture that is perfect for a variety of projects.", + "This sumptuous fabric has a deep pile that feels soft and luxurious.", + "This velvet fabric is a beautiful, rich royal blue color.", + "Velvet fabric is often used in upholstery and clothing.", + "This luxurious fabric is made from 100% natural fibers, making it environmentally friendly and biodegradable.", + "This luxurious velvet fabric is perfect for creating rich, textured garments and home decor items.", + " A luxurious velvet fabric in a deep green color.", + "This velvet fabric has an elegant sheen and a luxurious feel.", + "This rich, luxurious fabric is perfect for adding a touch of elegance to any room." + ], + "vending machine": [ + "A vending machine looks like a large, rectangular box with a small door or flap on the front.", + "A vending machine is usually a large, rectangular machine with a glass front.", + "A vending machine is a large, metal machine with a glass front.", + "A vending machine is a large metal box with a small glass front.", + "A vending machine looks like a large metal box with a glass front.", + "A vending machine is a rectangular box with a coin slot, buttons for selecting products, and a place to retrieve the product.", + "A vending machine looks like a rectangular box with a coin slot on the top and a lever or button on the side.", + "A vending machine is a large, rectangular machine with a glass front.", + "A vending machine is typically a large, rectangular machine with a glass front.", + "A vending machine is a glass fronted cabinet which contains shelves of products.", + "Some common features of vending machines include a coin slot, a slot for bills, a keypad, buttons for selecting items, and a place to collect items.", + "The most common type of vending machine is a coin-operated machine that sells snacks, soda, and candy.", + "A vending machine is a coin-operated machine that dispenses items such as snacks, beverages, cigarettes and lottery tickets to customers after money, or a credit card, is inserted into a slot on the machine.", + "Vending machines typically have large, bright displays and are often located in high-traffic areas.", + "Nostalgia Electrics 50's Diner-Style Glass Front Refrigerated Vending Machine.", + "A vending machine is a machine that sells items such as snacks, drinks, or cigarettes without the need for a clerk.", + "Some common features of vending machines are that they are automated, have a coin or card slot, and dispense items such as food, drink, or candy.", + "The most common ways to identify a vending machine are by its size, shape, and color.", + "Some common characteristics of vending machines include a coin slot, a slot for bills, a keypad for entering a code, buttons for selection, and a dispensing area.", + "Most vending machines are large and rectangular with a glass front.", + "A vending machine is a large, rectangular machine with a glass front.", + "A vending machine is a rectangular box with a slot for coins or bills at the top and a dispenser at the bottom.", + "A vending machine typically looks like a large metal box with a coin slot, keypad, and dispensing area.", + "A vending machine typically has a rectangular shape and is made of metal, plastic, or glass.", + "A horizontal cube with a coin slot, selection buttons, and a dispensing area.", + "A vending machine is a large, rectangular box with a glass front.", + "A typical vending machine is a large, metal box with a glass front.", + "This answer was taken from Google Images.", + "A vending machine typically has a metal housing with a coin slot, a slot for bills, and a button for each type of product available.", + "A vending machine is a rectangular box with a coin slot, buttons, and a delivery slot.", + "There is a large, rectangular vending machine filled with snacks and drinks.", + "A vending machine is a machine that vend, or dispense, goods such as snacks, drinks, and cigarettes.", + "There is an image of a vending machine on the internet.", + "An image from the internet of a vending machine shows a large, metal machine with a rectangular front.", + "I found an image of a vending machine on the internet that is red and silver.", + "A vending machine is a bright red and silver box with a glass front.", + "A vending machine is a machine that sells goods, typically snacks and drinks, to customers automatically, without the need for a human salesperson.", + "There is an image of a vending machine on the internet.", + "This image is of a vending machine that is located in a school.", + "There is a vending machine in the image with a variety of different drinks available.", + "This vending machine is out of service.", + "Vending MachineThis vending machine is available 24/7 to help satisfy your snack cravings!.", + "A vending machine full of candy and snacks.", + "A vending machine filled with candy bars.", + "A vending machine that sells drinks.", + "A vending machine coin slot with a label that reads \"Please insert 75 cents.", + "Soda and snacks available 24/7!.", + "Admit it.", + "Vending Machine.", + "out of order." + ], + "vestment": [ + "A vestment is a type of clothing worn by Christian clerics, such as a priest or minister, during religious services.", + "A vestment is a type of clothing worn by religious figures such as priests and bishops.", + "A vestment is a garment worn by Christian priests, ministers, and bishops when performing religious ceremonies.", + "A vestment is a ceremonial garment worn by a Christian priest or minister during a religious service.", + "A vestment is a ceremonial garment worn by clergy.", + "A vestment is a piece of clothing worn by a Christian priest during a religious service.", + "A vestment is a sleeveless, full-length garment worn by clergy.", + "A vestment is a garment worn by a Christian priest during a religious service.", + "A vestment is a garment worn by Christian clergy for religious services.", + "A vestment is a type of clothing worn by clergy.", + "A vestment is a flowing outer garment worn by priests and other religious figures.", + "There is no certain answer to this question, as there is no one type of vestment.", + "A vestment is a piece of clothing that is worn by a person who is involved in a religious ceremony.", + "Exterior color- purpleType of fabric- brocadeType of closure- laces up the backNumber of pieces- one.", + "A vestment is a piece of clothing that is worn by a member of the clergy during a religious ceremony.", + "There is no single answer to this question as vestments can vary significantly in their appearance, depending on the particular denomination or church tradition.", + "Some identifying features of a vestment may include being made of rich fabrics such as brocade, damask, or silk, often decorated with embroidery, lace, or other adornments.", + "A vestment is a type of clothing worn by religious figures during ceremonies.", + "A vestment is a type of clothing that is worn by a priest or minister during a religious ceremony.", + "A vestment is a type of clothing worn by members of the clergy during religious ceremonies.", + "There is no one answer to this question, as vestments come in a wide variety of colors, styles, and designs.", + "A vestment is a type of clothing worn by priests, ministers, or other religious figures.", + "There is no one answer to this question as vestments come in a wide variety of styles and colors.", + "There is no one \"look\" for a vestment, as they come in many different styles, colors, and fabrics.", + "There is no one answer to this question as vestments come in many different shapes, sizes, and colors.", + "A vestment is a piece of clothing worn by a member of the clergy.", + "A vestment is a piece of liturgical clothing worn by priests, deacons, and bishops.", + "There is no one answer to this question as vestments come in a wide variety of colors, shapes, and sizes.", + "Vestments are ceremonial garments worn by members of the clergy.", + "A vestment is a type of clothing worn by priests and other religious figures.", + "An image of a vestment from the internet shows a piece of clothing that is worn by religious figures such as priests and bishops.", + "This image is of a religious vestment called a chasuble.", + "This is a image of a red and gold vestment.", + "An image from the internet of a vestment might show a piece of clothing that is worn by a religious figure during a ceremony or service.", + "An image of a vestment from the internet is a garment worn by a member of the clergy, such as a priest or bishop.", + "A vestment is a predominantly Christian garment worn by clergy during religious services.", + "A vestment is a type of clothing worn by members of the clergy during religious ceremonies.", + "The image is of a golden vestment with colorful embroidery.", + "The image is of a golden vestment, with intricate designs embroidered in white.", + "The image is of a red, gold, and blue vestment.", + " A beige chasuble with a hole in the center for the head and decorated with a green and brown embroidered cross on the back.", + "An alb, also known as a chasuble, is a vestment worn by Catholic priests during Mass.", + " Ornate vestment of a Catholic priestThis is an ornate vestment of a Catholic priest.", + "Vestment of the Order of the Holy SepulchreThis vestment is worn by members of the Order of the Holy Sepulchre, a Catholic chivalric order that is conferred on individuals who have rendered distinguished.", + "A beautiful vestment made of brocade fabric and trimmed with lace.", + "This is a beautiful vestment! It is made of a silk brocade and is adorned with intricate gold embroidery.", + "A vestment is a piece of clothing worn by a religious figure, typically a priest or bishop, during a religious ceremony.", + "An 18th-century Russian vestment, made of silk and gold thread and decorated with pearls.", + " A beautiful, golden vestment with intricate beading and embroideryThis vestment was made in the Byzantine style and is from the early 12th century.", + "Vestment of the Order of the Holy Spirit, France, late 18th century." + ], + "viaduct": [ + "A viaduct is a type of bridge that carries a road or rail line over a large body of water or other obstacle.", + "A viaduct is aRow of arches, typically forming a bridge.", + "A viaduct is a structure that consists of a series of arches or spans to support a roadway or railroad over an obstacle such as a valley or river.", + "A viaduct is a bridge that spans a valley or gorge.", + "A viaduct is a long bridge that spans a valley or a gorge, typically carrying railroad tracks.", + "A viaduct is a bridge that spans a valley or a gorge, or that carries a road or a railway across a river or some other piece of land.", + "A viaduct is a bridge composed of several short spans supported by piers, typically elevated above a river or valley.", + "A viaduct is a long, high bridge that spans a valley or low land area.", + "A viaduct typically looks like a long bridge that spans over a large area.", + "A viaduct is a long bridge that carries a road or a railroad over a valley or a gorge.", + "A viaduct is a large bridge that spans a deep valley or a wide body of water.", + "A viaduct is a long, high bridge that carries trains or cars over a valley or other low area.", + "A viaduct is a large bridge that is built to span a wide body of water or other large space.", + "A viaduct is a bridge that consists of a series of arches, typically made of stone or concrete, that supports the weight of the bridge and its roadway.", + "A viaduct is a long, high bridge that carries a road or a railroad over a valley or over water.", + "A viaduct is a bridge composed of several small spans supported by piers or pillars, typically carrying a road or railway.", + " Viaducts are bridges composed of a series of short spans supported by piers.", + "A viaduct is a bridge composed of a series of short spans supported by piers, arches, or trusses.", + "A viaduct is a long bridge that spans a valley or a gorge.", + "There is not a single answer to this question as the definition of a viaduct can vary depending on where you are in the world.", + "A viaduct is a bridge that spans a valley or other low-lying area.", + "A viaduct is a large, man-made structure that spans a valley or other gap.", + "A viaduct is a long, high bridge that carries a road or a railroad over a valley or over water.", + "A viaduct is a bridge composed of several spans supported by piers or pillars.", + "A viaduct is a series of bridges that span a river or valley.", + "A viaduct looks like a bridge that is supported by columns or arches.", + "A viaduct is a bridge that carries a road or railway over a valley or a body of water.", + "A viaduct is a bridge composed of a series of short spans supported by piers, with a deck (usually road or railway) above.", + "A viaduct is a long bridge that spans a ravine or valley.", + "A viaduct is a long bridge that carries a road or railway over a valley or other low ground.", + "A viaduct is a long, high bridge that spans a valley or a body of water.", + "A viaduct is a large bridge used to carry a road or railway over land or water.", + "An image from the internet of a viaduct may show a large, spans bridge-like structure that is used to support a road or railway.", + "The image is of a viaduct in Scotland.", + "An image of a viaduct from the internet would likely show a large, impressive structure spanning a wide distance over land or water.", + "The image is of a viaduct in Germany.", + "A viaduct is an elevated bridge that spans a valley or other low point.", + "A viaduct is a long, high bridge that carries a road or railway across a valley or over a river.", + "This image shows a viaduct in Italy.", + "The image is of a large, brick viaduct that spans a river.", + "The viaduct is a bridge that spans a valley or gorge, typically carrying a road or railway.", + " The viaduct is a concrete bridge that spans the valley.", + "A viaduct is a bridge composed of many short spans supported by piers, typical of 19th and early 20th-century engineering.", + " The viaduct spans the valley below, carrying train tracks high above the ground.", + " A viaduct is a bridge composed of multiple spans supported by piers or pillars.", + " Construction of the viaduct began in 1866 and was completed in 1869).", + "The Corinth Canal in GreeceThe Corinth Canal is a man-made waterway that connects the Gulf of Corinth with the Aegean Sea.", + "The Viaduct of Garabit in the Cantal department of France was completed in 1885.", + "The viaduct was built in the 19th century and is one of the most iconic landmarks in the city.", + "The viaduct is a bridge that carries a road or railway over a valley or other low ground." + ], + "violin": [ + "A violin is a small, four-stringed musical instrument played with a bow.", + "A violin typically has a polished wood body with a spruce top, and maple for the back, sides and neck.", + "A violin is a musical instrument that typically has four strings.", + "Violins typically have a spruce top with maple back and sides.", + "A violin typically has 4 strings that are tuned to the pitches G3, D4, A4, and E5.", + "A violin consists of a spruce top (the sound board) with inlaid fancy woods for the back, sides, and neck.", + "A violin has a long, narrow body with a bowed neck.", + "The violin is a string instrument that has four strings.", + "A violin is a four-stringed musical instrument of the bowed string family.", + "A violin typically has 4 strings that are stretched over a wooden body with a area for the player to hold the instrument against their shoulder.", + "The violin is a small, four-stringed instrument that is held under the chin and played with a bow.", + "The violin has four strings and is held under the chin.", + "By its shape and size, a violin is smaller than a cello and has a slimmer neck.", + "The easiest way to identify a violin is by its shape.", + "There are a few ways to identify a violin.", + "The violin is a four-stringed musical instrument of the bowed string family.", + "The violin is a four-stringed instrument of the strings family.", + "Violins have four strings, which are tuned in perfect fifths.", + "The easiest way to identify a violin is by its shape.", + "When looking at a violin, you can tell that it is a violin by its bow, strings, and frets.", + "A violin has a long, thin body with four strings.", + "A violin looks like a small, wooden instrument with four strings.", + "A violin typically has four strings that are tuned to the notes G3, D4, A4, and E5.", + "A violin has a small, narrow body with a rounded back.", + "A typical violin has four strings and a body that is about the same size as its neck.", + "A typical violin has four strings, which are tuned in perfect fifths, and a small, rectangular body.", + "A violin looks like a small wooden instrument with four strings that is held under the chin and played with a bow.", + "A violin has a long, narrow body and four strings.", + "A violin looks like a small, four-stringed instrument.", + "A violin has a small body with four strings.", + "In this image, a violin is suspended in midair against a white background.", + "A violinist is playing the violin in front of an audience.", + "The image from the internet is of a violin player.", + "istViewers can see a professional violinist playing their instrument with practiced ease.", + "This image is of a violin in profile, viewed from the front.", + "The image is of a glossy, black violin with a white bow crossed in front of it.", + "The image shows a violin on a white background.", + "In the image, a violin is resting on a table in front of a window.", + "In the image, a violinist is playing a Stradivarius violin.", + "The image is of a glossy black violin with intricate white and gold designs.", + "The violin is a string instrument that has four strings tuned in perfect fifths.", + "An amateur violinist practices at home.", + "A violin is a string instrument with four strings tuned in perfect fifths.", + " A violinist playing in a park.", + "A violinist practices in a room filled with music stands and instruments.", + "This violin is a Stradivarius, one of the most valuable and sought-after instruments in the world.", + "A close-up of a violin, with the bow resting on the strings.", + "This violin is a Stradivarius.", + "The instrument most commonly associated with classical music, the violin has been played for centuries.", + "This violin is a Stradivarius, made in 1715." + ], + "volleyball": [ + "A volleyball is a round, inflated ball with a diameter of about 23 to 25 inches.", + "A volleyball is a ball that is used to play the sport of volleyball.", + "A volleyball is a large, round, inflated ball that is used to play the sport of volleyball.", + "A volleyball is a ball that is used to play the sport of volleyball.", + "A volleyball is a round, inflated ball that is used to play the game of volleyball.", + "A volleyball is a large, round, leather- or synthetic-covered ball used to play the sport of volleyball.", + "A volleyball is a large ball that is typically round and black and white.", + "A volleyball is a round, inflated ball made of synthetic leather or rubber.", + "Volleyballs are round and have a diameter of about 8.", + "The volleyball is a white or yellow leather ball used to play volleyball.", + "It is a round, inflated ball with a rubber or composite cover.", + "The best way to identify a volleyball is to look for the official volleyball markings.", + "There are several ways to identify a volleyball.", + "The dimensions of a regulation volleyball are as follows: the ball must have a circumference of between 65 and 67 centimeters, a weight of 260 to 280 grams, and it must be inflated to a pressure of 0.", + "A volleyball is a large, round, inflated ball used to play volleyball.", + "A volleyball is a ball with a diameter of about 21.", + "A volleyball can be identified by its round shape and by the fact that it is slightly inflated.", + "Volleyballs are usually dark and have a stitched surface.", + "A volleyball is a ball used to play the sport of volleyball.", + "The three identifying markings on a regulation volleyball are:\n1.", + "A volleyball typically has a circumference of about 25.", + "A volleyball is a round, white object with black spots.", + "A volleyball is a round, inflated ball with a smooth outer surface.", + "A volleyball is round and has a diameter of about 9-10 inches.", + "A volleyball looks like a large, round, white or reddish-brown ball.", + "A volleyball looks like a large round ball withcusps on the surface.", + "A volleyball is a round, white object with black or brown seams.", + "A volleyball is a round, inflated ball with a circumference of 68-70 cm and a weight of 210-260 grams.", + "A volleyball typically looks like a round, white object with black stripes.", + "A volleyball is a round, brown ball with black panels.", + " playerI found an image of a volleyball player on the internet.", + " gameThe image is of two teams of six players each, in a volleyball match.", + " gameAn image of a volleyball game from the internet shows two teams of six players each, separated by a net.", + " playerA volleyball player is an athlete who plays the game of volleyball.", + " playerThis is an image of a volleyball player diving for a ball.", + " playerThe image is of a female volleyball player in midair about to hit the ball.", + " netAn image from the internet of a volleyball net may show a white net suspended from two metal posts, with a volleyball on one side of the net.", + "The image is of a volleyball on a white background.", + " playerA volleyball player is about to serve the ball.", + " playerImage is of a sporty woman in a red, white, and blue volleyball uniform.", + "A volleyball sitting on a sandy beach.", + "A volleyball in midair.", + "A volleyball on a beach with a towel folded in the background\nA volleyball on a beach towel, with a ocean and sunset in the background.", + "VolleyballThis image is of a volleyball.", + "\"A volleyball net set up on a beach.", + "\nA man playing volleyball on a beach.", + "A volleyball.", + "A volleyball sitting on a beach.", + "A volleyball on a beach.", + "VolleyballA game of volleyball being played on a beach." + ], + "waffle iron": [ + "A waffle iron is a small appliance that has two metal plates that are held together by a hinge.", + "A waffle iron looks like a household appliance that has two metal plates that are held together by a hinge.", + "A waffle iron is a small appliance that has two metal plates that heat up and are pressed together to cook the batter in the middle.", + "A waffle iron is a small appliance that has two metal plates that are held together by a hinge.", + "A waffle iron is shaped like two metal plates that hinge together.", + "A waffle iron is a small appliance with two metal plates connected by a hinge.", + "A waffle iron is a kitchen appliance used to cook waffles.", + "A waffle iron looks like two metal plates that hinge open and together.", + "The most common type of waffle iron is a gridiron with rectangular or square grids.", + "A waffle iron is a small appliance with two metal plates that are held together with a hinge.", + "A waffle iron looks like a pan with deep indentations.", + "Most waffle irons have a ridged surface to help create evenly cooked waffles with deep pockets.", + "A waffle iron typically has a grid or lattice design on the cooking surface.", + "A waffle iron usually has a deep grid pattern on the cooking surface.", + "By its grid-like pattern.", + "A waffle iron is a small appliance that has two metal plates that are hinged together.", + "You can identify a waffle iron by its shape, which is typically round or square, and by the ridges on the cooking surface that create the waffle's signature grid pattern.", + "The easiest way to identify a waffle iron is by its shape.", + "By its shape.", + "A waffle iron is a small appliance that is used to make waffles.", + "I cannot find a waffle iron on the internet that looks like the one my mother had.", + "A waffle iron is a household appliance that is used to make waffles.", + "A waffle iron is a kitchen appliance used to make waffles.", + "A waffle iron is generally a rectangular device with two hinged metal plates that are coated in a heat-resistant material such as non-stick Teflon.", + "A waffle iron typically consists of two hinged metal plates, each with a grid of indentations.", + "A waffle iron looks like a two-sided griddle with raised edges.", + "A waffle iron is a kitchen appliance that looks like two metal plates that are hinged together.", + "A waffle iron is a kitchen appliance used to make waffles.", + "A waffle iron typically looks like a small appliance with two hinged plates that close together.", + "A waffle iron typically has two plates that are hinged together and can be opened and closed.", + "A waffle iron is a device that is used to cook waffles.", + "The image is of a rectangular waffle iron with a metal grid inside.", + "The image from the internet is of a rectangular waffle iron with four quadrants.", + "In the image, there is a waffle iron with a light brown waffle inside.", + "This waffle iron is from the internet.", + "It is a rectangular metal contraption with a handle on one side and a receptacle for batter on the other.", + "A waffle iron is a kitchen appliance used to cook waffles.", + "Image shows a close-up of a waffle iron with heart-shaped indentations.", + "The image is of a Waring Pro Breakfast Express Waffle and Omelet Maker.", + "The image shows a close-up of a waffle iron with grid imprints.", + "This is a waffle iron.", + "I love my waffle iron!.", + "A close-up of a waffle iron, with steam coming off the hot plates and dripping down the sides.", + "Waffle iron with fresh waffles.", + "###\"My new waffle iron lets me make four at a time!\".", + "The Cuisinart\u00ae Waffle Maker can bake four square Belgian waffles at a time.", + "Waffle iron for making waffles.", + "If you love waffles, you need a good waffle iron!.", + "Waffle Iron.", + " Two delicious golden-brown waffles, just waiting to be devoured." + ], + "wall clock": [ + "Most wall clocks are round and have a face with numbers on it.", + "A wall clock is a clock that hangs on a wall.", + "A wall clock is a clock that hangs on a wall.", + "A wall clock typically has a round or square face with a glass or plastic cover.", + "A wall clock typically looks like a round clock face with numbers and hands, attached to a wall.", + "A wall clock is a clock that is hung on a wall.", + "A wall clock has a round face with numbers around the edge.", + "A wall clock is typically a clock that is hung on a wall.", + "A wall clock generally has a round face with hour and minute markings, and often has a second hand as well.", + "A wall clock is a clock that is hung on a wall.", + "A wall clock is usually a clock that hangs on the wall.", + "A wall clock is a clock that is designed to be mounted on a wall.", + "A wall clock is a timepiece that is typically hung on a wall.", + "There are many ways to identify a wall clock.", + "A wall clock is a clock that can be hung on a wall.", + "The most common way to identify a wall clock is by its feature of having a long, hanging arm (or shank) with a round clock face at the end.", + "Most wall clocks have a round or oval shape and are designed to be mounted on a wall.", + "The most common way to identify a wall clock is by its size and shape.", + "There are several ways to identify a wall clock.", + "Wall clocks are usually hung on the wall.", + "A wall clock is a clock that hangs on a wall.", + "Image result for what does a wall clock look like.", + "A wall clock looks like a clock that hangs on the wall.", + "A wall clock typically has a round or rectangular face with hour, minute, and second hands.", + "A wall clock typically has a round or square face with numbers and hands.", + "A wall clock typically has a round or rectangular face with hour, minute, and second hands.", + "A wall clock typically has a circular face with hour markers and hands.", + "A wall clock looks like a regular clock, but it is designed to be hung on a wall.", + "A wall clock has a face with numbers on it, and usually has two hands that point to what time it is.", + "A wall clock is a round clock that hangs on a wall.", + "The image from the internet is of a wall clock that is black with a white face.", + "The wall clock in the image has a circular face with black numbers and hands.", + "This wall clock has a wooden frame with a white background.", + "Wall clocks are typically round and have a face with numbers that represent the time.", + "This is a wall clock with a white face and black hands and numbers.", + "This image shows a wall clock with a brown frame and a white face.", + "This image is of a wall clock with a brown wooden frame and a white clock face with black numbers and hands.", + "This is a basic wall clock with a white face and black hands and numbers.", + "This image is of a wall clock that is black and white with numbers that are also black and white.", + "The clock is black with white numbers and hands.", + "A wall clock with a white face and black hands and numbers.", + "This image shows a wall clock with a black background and white hands and numbers.", + "It's time to wake up!.", + "It's time to wake up!.", + "This wall clock is broken.", + "A close-up of a wall clock with the time reading 10:10.", + "6:00 AM - Time to start the day!.", + "It's time to wake up!.", + " Wall clock with a white face and black hands and numbers.", + "Wall ClockThis wall clock is a great addition to any home." + ], + "wallet": [ + "A wallet typically contains paper currency, credit cards, and identification documents.", + "A wallet is a small, flat case that is used to carry personal items such as cash, credit cards, and identification documents.", + "A wallet is a small, flat case that can be used to carry cash, credit cards, and identification.", + "A wallet is a small, flat case that can be used to carry personal items like cash, credit cards, and identification.", + "Wallets are smallest when empty and largest when full.", + "\nA wallet is traditionally a small, flat case, usually made of leather, for holding paper money and credit cards.", + "A wallet is a small, flat case that is used to carry personal items such as cash, credit cards, and identification.", + "A wallet is a flat, rectangular case made of leather, cloth, or paper, used for carrying money and other small personal items.", + "A wallet is a small, flat case that is used to carry personal items such as cash, credit cards, and identification documents.", + "A wallet is usually a flat, rectangular case made of leather, cloth, or plastic.", + "A wallet can be identified by its address, which is a string of numbers and letters.", + "The most common way to identify a wallet is by its shape and size.", + "A wallet is typically a small, flat case that can be carried in a person's pocket.", + "Each wallet has a unique address that can be used to identify it.", + "The most common way to identify a wallet is by its size, shape, and material.", + "A wallet can typically be identified by its size, shape, and material.", + "The most common way to identify a wallet is by the type of coin it stores.", + "There is no one definitive way to identify a wallet.", + "A wallet can typically be identified by its size, shape, and material.", + "A wallet typically has several compartments for storing credit cards, identification, and cash.", + "A wallet is a small, flat case that is used to hold items such as cash, credit cards, and identification documents.", + "A wallet typically looks like a small, rectangular leather or fabric pouch with a zipper or snap closure.", + "A wallet is typically a small, flat case that can be carried in a person's pocket.", + "Most wallets are made of leather and have a folding design.", + "A wallet typically looks like a small, rectangular case made of leather, cloth, or plastic.", + "A wallet is a small, flat case that can be used to carry money and credit cards.", + "A wallet will typically look like a small, rectangular leather case.", + "A wallet is a small, flat case that can be used to carry personal items like cash, credit cards, and driver's license.", + "A wallet typically looks like a small, flat case that can be closed with a zipper or snap.", + "A wallet is a small, flat case that can be used to carry money and credit cards.", + "The image is of a black leather wallet with a silver chain attached to it.", + "This image is of a classic leather bifold wallet.", + "The image is of a brown leather wallet with a silver clasp.", + "This image is of a brown leather wallet.", + "This photo shows a black leather wallet with a gold credit card in it.", + "The image from the internet is of a black leather wallet with a silver zipper.", + "The image is of a black leather wallet.", + "One image from the internet of a wallet is a black leather wallet with gold trim.", + "The image is of a black leather wallet with a silver clasp.", + "A brown leather wallet with a green and white striped fabric lining.", + "This is a photo of a black leather wallet.", + "\"My new favorite wallet!\".", + " A woman's red wallet with a gold chainA woman's red wallet with a gold chain.", + "This is a black leather wallet.", + "Inside this wallet is everything I need to get through the day: my ID, credit cards, cash, and, of course, my cell phone.", + "A picture of a brown leather wallet.", + "This is my wallet.", + "A beautiful, black wallet with a golden zipper.", + "A woman's black leather wallet with a gold zipper.", + "A man's wallet with a few cards and some cash inside." + ], + "wardrobe": [ + "A wardrobe is a tall piece of furniture that is used to store clothes.", + "A wardrobe is a free-standing piece of furniture that is used to store clothes.", + "A wardrobe is a piece of furniture that is used to store clothes.", + "A wardrobe looks like a piece of large furniture with a door that opens to reveal storage space for clothes.", + "A wardrobe traditionally looks like a freestanding cupboard with shelves and hanging space for clothes.", + "A wardrobe is a piece of furniture used to store clothes.", + "A wardrobe is a tall piece of furniture with shelves, drawers or hanging space inside, used for storing clothes.", + "A wardrobe is a piece of furniture that is used to store clothes.", + "A wardrobe is usually a tall piece of furniture with shelves or hanging space inside for storing clothes.", + "A wardrobe is a piece of furniture that is used to store clothes.", + "It is a piece of furniture that is used to store clothes.", + "When you see a tall cabinet with doors that is used to store clothes, this is typically called a wardrobe.", + "A wardrobe is a piece of furniture that is used to store clothes.", + "A wardrobe is a tall piece of furniture that is used to store clothes.", + "You can identify a wardrobe by looking for a large piece of furniture with doors and shelves.", + "A wardrobe is a piece of furniture that is used to store clothes.", + "A wardrobe typically consists of a solid wood frame with several large drawers or shelves inside.", + "A wardrobe is a standing closet used for storing clothes.", + "In general, a wardrobe is a tall piece of furniture that is used to store clothes.", + "A wardrobe is a tall, free-standing piece of furniture that is used to store clothes.", + "A wardrobe typically looks like a tall, freestanding cabinet that is used for storing clothes.", + "A wardrobe is a type of cabinet that is used to store clothing.", + "A wardrobe is a tall cupboard with a hanging space inside for clothes.", + "A wardrobe is a tall piece of furniture with a door or doors that is used for storing clothes.", + "A wardrobe can be a freestanding piece of furniture, or it can be built into the wall.", + "A wardrobe is a large freestanding cupboard with clothes storage inside.", + "A wardrobe typically consists of a set of shelves and/or drawers for storing clothes.", + "There is no definitive answer to this question as the design of a wardrobe can vary greatly depending on the intended purpose, desired aesthetic, and available space.", + "A wardrobe is a piece of furniture that is typically tall and has a door or doors on the front.", + "A wardrobe is a tall, free-standing cabinet that is used for storing clothes.", + "The image is of a wardrobe that is made out of wood.", + "The image is of a large, antique wardrobe made of dark wood.", + "The image is of a wood wardrobe with two doors.", + "This image is from the website Polyvore.", + "I found an image on the internet of a wardrobe that is made out of wood.", + "The image shows a wardrobe with doors that are slightly open.", + "The image is of a black wardrobe with two doors.", + "The image is of a large, antique wardrobe with intricate carving on the front.", + "A wardrobe is a piece of furniture typically used to store clothing.", + "This image from the internet is of a wardrobe with two doors and two drawers.", + "A woman's wardrobe full of clothes.", + "This wardrobe is perfect for storing all of your clothing and keeping your bedroom organized.", + "A spacious wardrobe with hanging and shelves space, perfect for storing all your clothes and keeping them organised.", + "Armoire.", + "An elegant wardrobe with gold details and a mirror.", + "A wardrobe with clothes hanging inside of it.", + "A woman's wardrobe, filled with clothes and shoes.", + "A girl's wardrobe full of clothes.", + "IKEA wardrobe with clothes and shoesA caption of an image of a person:Person wearing a white shirt and black pants.", + "\nA wardrobe is a storage unit that is typically used to store clothes and other items." + ], + "military aircraft": [ + "Military aircraft are designed to function as a weapon system, and are typically designed to carry a large payload of missiles, bombs, or gunfire.", + "There is no one military aircraft.", + "A military aircraft is a aircraft that is used by the armed forces of a country.", + "A military aircraft is typically a fixed-wing airplane that is used by a country's armed forces.", + "Most military aircraft are designed for combat purposes and have aerodynamic features to help them perform well in aerial combat.", + "Military aircraft typically have a camouflage paint job, and are outfitted with weapons and other military-specific equipment.", + "A military aircraft is a aircraft that is designed for military use.", + "A military aircraft typically has a long range, and is designed for carrying weapons and other military equipment.", + "A military aircraft typically has a green or camoflauge paint job, and is designed for combat.", + "A military aircraft is a large, turbine-powered airplane designed for carrying troops and supplies, or for carrying out airstrikes.", + "You could identify a military aircraft by its more aggressive styling, compared to a commercial airliner.", + "All military aircraft are marked with the emblem of their country's armed forces.", + "Military aircraft can be identified by their unique paint schemes and markings.", + "There are a few ways to identify a military aircraft.", + "One way to identify a military aircraft is by its markings.", + "The main identifying feature of military aircraft is that they are designed and operated by a military force.", + "There are a few ways to identify a military aircraft.", + "Generally, military aircraft can be identified by their unique paint schemes and by the fact that they are usually operated by a nation's air force.", + "The easiest way to identify a military aircraft is by its markings.", + "There are a few ways to identify a military aircraft.", + "A military aircraft can come in many different shapes and sizes depending on its function.", + "A military aircraft is a plane that is used by the military.", + "A military aircraft can come in many different shapes and sizes, but they are typically smaller, sleeker, and more powerful than a civilian aircraft.", + "The general appearance of a military aircraft is defined by its purpose.", + " Military aircraft usually have a camouflage paint job and look like regular airplanes with some added weaponry.", + "There are many different types of military aircraft, so it is difficult to say what they all look like.", + "Some common military aircraft include the F-35 Lightning II, the F-22 Raptor, the B-2 Spirit, and the A-10 Thunderbolt II.", + "There are many different types of military aircraft, but they all have certain features in common.", + "Military aircraft can come in a variety of shapes and sizes, but most have a sleek, angular design and are painted in camouflage colors.", + "A military aircraft is a plane that is designed for use by the military.", + "An image from the internet of a military aircraft shows a large, camouflaged plane with a long nose and large wings.", + "The image from the internet of a military aircraft is of a large, intimidating plane with large engines and a sleek design.", + "The image is of a large, silver military aircraft with red and blue stripes running down the sides.", + "The image shows a fighter jet taking off from an aircraft carrier.", + "This image is of a Northrop Grumman B-2 Spirit stealth bomber flying over the Mojave Desert in California.", + "The image is of a military aircraft in flight.", + "This image is of a military aircraft called an F-16 Falcon.", + "The image is of a large military aircraft with a green and brown camo pattern.", + "An image from the internet of a military aircraft shows an airplane flying through the sky with a group of people standing on the ground looking up at it.", + "The image is of a large, twin-engine military aircraft.", + "F-22 Raptor, a 5th Generation Fighter Aircraft.", + "The aircraft in the photo is a Military Aircraft.", + "The F-35 Lightning II is a 5th Generation fighter aircraft and the first to combine stealth technology with supersonic speed and advanced sensors.", + "An F/A-18 Hornet fromstrike fighter squadron VFA-105 launches from the aircraft carrier USS Theodore Roosevelt (CVN 71).", + "B-52 Stratofortress refueling in mid-air.", + "A U.", + "US Air Force F-22 Raptor fighter aircraft fly in formation during a training mission.", + " A Russian MiG-29 jet fighter takes off from Hmeimim air base in Syria.", + "Aircraft carrier based F/A-18E Hornets prepare to take off from the flight deck of the Nimitz-class nuclear powered supercarrier USS Abraham Lincoln (CVN 72).", + "An F-22 Raptor fighter jet takes off from Langley Air Force Base in Hampton, Virginia, on August 8, 2016." + ], + "sink": [ + "A sink is a large metal basin that is attached to a water source and drain.", + "A sink is a bowl-shaped object that is used for washing things.", + "A sink is a plumbing fixture that is used for washing hands, dishes, laundry, and other purposes.", + "A sink is often made of porcelain or metal and has a bowl shape.", + "A sink typically has four sides with a basin in the middle and a tap above it.", + "Most sinks are made of porcelain or metal and have a smooth, glossy surface.", + "A sink is a plumbing fixture that is used for washing hands, dishes, and other things.", + "A sink is a bowl-shaped fixture that is used for washing hands and dishes.", + "Sinks are typically made of porcelain or stainless steel.", + "A sink is a bowl-shaped plumbing fixture used for washing hands, dishes, clothing, and other items.", + "A sink is a bowl-shaped fixture that is used for washing hands, dishes, and other items.", + "A sink is typically a bowl-shaped fixture that is used for washing hands and dishes.", + "A sink is a basin where water is drained from a dish or a washed item of clothing.", + "In a sink, water flows into the drainage hole without coming back up.", + "The best way to identify a sink is to look for a basin, which is a bowl-shaped container that is used to hold water.", + "It is typically made of porcelain/ceramic, has a basin/bowl shape, and has one or more faucets.", + "The simplest way to identify a sink is to look for a basin or bowl, usually made of porcelain, ceramic, or metal, that is attached to a water supply and drain.", + "The easiest way to identify a sink is to look for a faucet.", + "Is there a stopper in the drain? If so, it is a sink.", + "A sink is any low area in the earth's surface where water collects.", + "A typical kitchen sink is a rectangular shape with a side section for soap and a faucet in the center.", + "A sink is a smooth, concave surface used for washing hands or dishes.", + "A sink is a type of countertop that is installed over a cabinet.", + "A sink typically looks like a basin with a faucet attached.", + "Since there are many different types and styles of sinks, it is difficult to give a definitive answer to this question.", + "A sink is a fixture in a kitchen or bathroom that has a bowl-shaped basin and a spout.", + "A typical sink is a rectangular basin with four faucet holes.", + "A sink is a basin typically surrounded by a countertop and a faucet.", + "Most sinks are made of porcelain and are white.", + "Sinks can come in many different shapes and sizes, but most are rectangular or oval and have a smooth, glossy surface.", + "A white ceramic sink with a chrome faucet.", + "The sink is made of white ceramic and has a silver faucet.", + "The image is of a large, rectangular sink with two faucets.", + "The image is of a white sink with two basin.", + "A white porcelain sink with two faucets and a curved drain.", + "The image shows a sink with two faucets.", + "I found an image of a sink on the internet that I really like.", + "The image is of a small, rectangular, white sink.", + "The image is of a sink with running water.", + "This image from the internet is of a sink.", + "A caption of an image of a sink:The sink is white with a gold faucet.", + "A bathroom sink with running water.", + "A sink with two faucets, one labeled \"H\" for hot water and one labeled \"C\" for cold water.", + "This is a sink.", + "A white sink with a chrome faucet.", + "A sink with a faucet, a towel, and a plant.", + "The sink is full of dirty dishes.", + "The sink is full of dirty dishes.", + "A sink with a single-lever faucet, a drain, and a spray nozzle.", + "A sink in a public restroom." + ], + "washing machine": [ + "A washing machine is a large, rectangular box with a door on the front.", + "A washing machine is typically a tall cylinder that you load laundry into through a door on the front.", + "A washing machine is a large, rectangular box with a door on the front.", + "A washing machine is often a large, rectangular box with a door on the front.", + "A washing machine is a large appliance that is typically rectangular and has a door that can be opened on the front to load clothing into the machine.", + "A washing machine is a tall, rectangular box with a door on the front.", + "A washing machine typically has a large tub that holds clothes in water and detergent.", + "Washing machines typically have a cylindrical shape and are made of metal.", + "A washing machine is a box-shaped machine that has a door on the front.", + "A washing machine is a large, rectangular box with a door on the front.", + "There is a clear market for washing machines as they are appliances that are not only useful but necessary for many people.", + "A washing machine can typically be identified by its large size and round shape.", + "There is no one definitive answer to this question.", + "Washing machines can be identified by their ability to clean clothes.", + "A washing machine can be identified by its large size, round shape, and front-loading door.", + "A washing machine can usually be identified by its large size and the fact that it has a door on the front.", + "Looking at the front of the machine, there is typically a door that opens to load clothing.", + "A machine that cleans clothes by washing them in water.", + "Washing machines can be identified by their rounded shape, location in the home (they are usually in laundry rooms or kitchens), and by the fact that they have a plug.", + "The easiest way to identify a washing machine is by its size.", + "A washing machine looks like a large, rectangular appliance with a door on the front.", + "A washing machine typically consists of a large tub that is filled with water and detergent.", + "A washing machine typically has a door on the front that opens to reveal a drum that is full of water.", + "Most washing machines have a cylindrical shape and are made of white plastic.", + "A washing machine typically looks like a large, rectangular box.", + "A washing machine typically looks like a large box with a door on the front.", + "A washing machine typically looks like a large, rectangular box.", + "A washing machine is typically a large, rectangular box.", + "A washing machine looks like a large, rectangle box with a door on the front.", + "A washing machine is a machine that washes clothes.", + "I found an image of a washing machine on the internet.", + "This washing machine is a front-loading washer with a stainless steel finish.", + "This washing machine is a front-loading washer with a door that opens at the front.", + "The image is of a white washing machine with a door open.", + "_This image is of a white washing machine with a door open.", + "An image of a washing machine from the internet might show a traditional top-loading washer with a control panel on the front, or it might show a sleek, modern front-loading washer.", + "The image shows a washing machine with the door open.", + "The image is of a washing machine with the door open.", + "The image is of a washing machine with a light blue door and a control panel on the front.", + "A washing machine is typically a large, round tub that is filled with water and detergent.", + "A washing machine is a household appliance that is used to wash clothes.", + "This washing machine is perfect for people who have a lot of laundry to do.", + "A washing machine is a machine designed to wash laundry, such as clothing, towels, and bedding.", + "Samsung AddWash washing machine.", + "A washing machine is a machine that washes things.", + "This is a washing machine.", + "Electric washing machine with digital display and attached laundry basket.", + "A modern washing machine.", + "A close-up of a washing machine in a laundry room.", + "This is a washing machine." + ], + "water bottle": [ + "A water bottle is a container for holding water.", + "A water bottle is a container for liquid that is typically made out of plastic or metal.", + "A water bottle is a container made of materials such as glass, plastic, or metal, with a neck that narrows at the top and a mouth wide enough to drink from.", + "A water bottle is a container made of plastic, glass, or metal that is used to hold water.", + "A water bottle is typically a plastic or metal container with a screw-on cap or lid.", + "A water bottle is a container typically made of plastic, glass, or metal, used to hold water.", + "A water bottle is a cylindrical container made of plastic or metal, with a screw-on top or a pop-up spout, used for carrying water.", + "A water bottle is a cylindrical container used to hold water.", + "A water bottle typically has a cylindrical shape and is made of plastic or glass.", + "A water bottle typically has a long, cylindrical shape and is made out of plastic or metal.", + "A water bottle is a container for holding water.", + "A water bottle can be identified by its shape, which is typically round or cylindrical, and by its size, which is usually about 20 ounces.", + "A water bottle is a container for water.", + "A water bottle can be identified by its shape and size.", + "Identifying a water bottle can be done by looking for a label that says \"water\" or by looking for a clear bottle.", + "When looking for a water bottle, you will want to find one that is made out of a food-grade material such as stainless steel, glass, or BPA-free plastic.", + "A water bottle is a type of container that is used to hold water.", + "The water bottle is transparent, so you can see the water inside.", + "A water bottle is a container for holding water.", + "A water bottle is usually made out of glass or plastic and has a small hole at the top for drinking.", + "A water bottle is a container that holds water.", + "A water bottle is a container that holds water and has a spout or straw for drinking.", + "A water bottle typically has a cylindrical shape and is made of plastic or metal.", + "A water bottle often has a long, narrow neck and a rounded bottom.", + "A water bottle looks like a container with a spout or straw that is used to hold and drink water.", + "A water bottle can look like a lot of different things.", + "A water bottle can come in many different shapes and sizes, but the most common type of water bottle is a plastic bottle with a screw-on cap.", + "A water bottle is a plastic or glass container that is used to hold water.", + "Water bottles can come in many different shapes and sizes, but they typically have a narrow neck and a wide body.", + "A water bottle is a container that holds water.", + "A water bottle from the internet is a clear plastic or metal container used to hold and transport water.", + "The image is of a water bottle with a blue label.", + "The image is a water bottle in front of a blue background.", + "This image is of a water bottle on a white background.", + "A water bottle is a container for holding water, typically made of plastic, glass, or metal.", + "A water bottle is an object used to hold water, typically made of plastic, glass, or metal.", + "The image is of a black water bottle with a white label that says \"CamelBak\" in black letters.", + "The image is of a water bottle on a white background.", + "A plastic water bottle with a blue screw top lid.", + "A water bottle is a container for holding water, typically made of plastic, glass, or metal.", + " Stay hydrated!.", + "A water bottle on a table.", + "This water bottle is perfect for taking on the go!.", + " A blue water bottle on a white backgroundA water bottle on a white background.", + " A water bottle on a table.", + "A water bottle that is half empty.", + "A water bottle on a table.", + "This water bottle is perfect for staying hydrated on the go!.", + " \"A water bottle with the text 'Water Bottle' in black lettering.", + "water bottle on table." + ], + "water jug": [ + "A water jug is typically a plastic or glass container with a spout and a handle.", + "A water jug is typically a plastic or glass container with a handle and a spout.", + "A water jug is a container for water, typically with a handle and a spout.", + "A water jug is typically a large container made of glass, metal, or plastic.", + "A water jug consists of a round, cylindrical container with a handle and a spout.", + "A water jug is a container that is used to hold water.", + "A water jug is a container that holds water.", + "A water jug is a container made to hold water.", + "A water jug is a container for water that has a spout for pouring.", + "A water jug is typically a cylindrical container with a handle and a spout.", + "A water jug can generally be identified by its size and shape.", + "A water jug is a container with a handle and a spout that is used to hold and pour water.", + "A water jug is any type of container used to hold water.", + "A water jug is a container that is used to hold water.", + "The water jug is usually a plastic or glass container with a spout or handle.", + "A water jug is typically a container with a spout or handle used for pouring water.", + "A water jug can be identified by its shape, which is typically round or cylindrical, and by its size, which is typically larger than a water bottle.", + "Water jugs are typically made out of plastic or glass and have a spout or handle for easy pouring.", + "A water jug is a container that is used to hold water.", + "A water jug is a container for liquids that is typically made out of glass or plastic.", + "A water jug is typically a plastic or glass container with a spout or handle.", + "A water jug is a container for liquids with a spout for pouring.", + "A water jug is a container made to hold water.", + "A water jug is a container for holding water.", + "A water jug is a large container for liquids.", + "A water jug is typically a container with a spout or handle that is used to hold and dispense water.", + "A water jug can look like many things, but typically it is a pitchers with a spout and a handle.", + "A water jug typically has a spout for easy pouring and a handle for easy carrying.", + "A water jug can look like a pitcher or a container with a spout and handle.", + "A water jug is a container that is used to hold water.", + "This water jug is made of glass with a metal handle and spout.", + "This image is of a blue water jug with a metal handle.", + "This water jug is blue and is made out of plastic.", + "I found an image of a water jug on the internet that I really like.", + "The image is of a blue water jug with a spout and a handle.", + "A water jug is a type of container used to hold and dispense water.", + "The image is of a water jug with a blue and white checkered pattern.", + "A water jug is a container used to hold and dispense water.", + "A water jug is a container for holding water.", + "A water jug is a container used to hold water.", + "A blue water jug sitting on a wooden table.", + "A water jug being poured into a glass.", + " A water jug is a container used to hold water.", + "A water jug on a table with a plant in the background.", + "A water jug on a table\nA water jug pouring water into a glass.", + " The only thing that's free in the city.", + " A water jug with a spout and a handle.", + " A glass water jug with a green lid.", + "A water jug with a spout and handle.", + "A water jug sitting on a table." + ], + "water tower": [ + "A water tower is tall, cylindrical structure that stores water.", + "A water tower is a large cylinder or pyramid-shaped structure that is used to hold a water supply.", + "A water tower is typically a very tall and skinny cylinder with a small, round base.", + "A water tower is a large cylinder of metal or concrete that is used to store water.", + "A water tower is a large structure that holds water.", + "A water tower is a structure that holds a large amount of water above the ground.", + "A water tower typically has a cylindrical tank on top of a tall, narrow structure.", + "A water tower is a round, cylindrical structure that stands tall above the ground.", + "A water tower is a large structure that holds a water tank.", + "A water tower is a large tank of water that is typically elevated on a steel platform or tower.", + "A water tower is a large, tall structure that holds a large amount of water.", + "There is no definitive answer to this question, but one way to identify a water tower is by its height.", + "Water towers are large cylindrical or oblong structures that are taller than they are wide.", + "A water tower can often be identified by its unique shape.", + "The most obvious way to identify a water tower is by its height and shape.", + "A water tower can be identified by its tall cylindrical shape and its function of storing water.", + "Water towers can be identified by their shape and their location.", + "The most obvious way to identify a water tower is by its height and tank shape.", + "A water tower is often a large, cylindrical tank that is taller than it is wide.", + "A water tower is a large structure that holds water.", + "A water tower is often a tall, cylindrical, metal tank on legs or a tower.", + "A water tower is a large structure that holds water.", + "A water tower is typically a large, cylindrical tank that sits atop a tall structure and holds a large volume of water.", + "A water tower is a tall cylinder with a conical roof.", + "A water tower is typically a tall, cylindrical structure with a conical roof.", + "The most common type of water tower is a cylinder with a conical or pyramidal roof.", + "A water tower is a large, elevated structure that is used to store water.", + "A water tower typically looks like a large, cylinder-shaped tank that is elevated off the ground, usually on a pedestal or steel framework.", + "A water tower is a large, often metal container that holds water.", + "A water tower is a tall, cylindrical structure that is used to store water.", + "The image is of a water tower in Istanbul, Turkey.", + "The image is of a water tower that is white with blue trim.", + "The image is of a white water tower with a blue roof.", + "The image is of a water tower that is silver in color with a blue stripe around it.", + "The image is of a water tower with the word \"Water\" written on the side.", + "A water tower is a tall, cylindrical structure that sits atop a water storage tank.", + "This water tower is situated in a small town in upstate New York.", + "The image from the internet of a water tower is a white tower with a blue stripe down the middle.", + "A water tower is a structure that supports an elevated water tank used to store water.", + "In the image, the water tower is a large, cylindrical structure with a ladder leading up to the top.", + "Water Tower in Chicago, Illinois.", + " Toledo, Ohio's water tower stands at approximately 120 feet tall and holds approximately 1 million gallons of water.", + "This is a water tower in the town of XYZ.", + "Water Tower in the Moonlight.", + "This is a water tower in Paris, France.", + " A water tower in a small town.", + "Drinking water storage for a small town in the Midwest.", + "A water tower in a rural area.", + "This is a water tower in Chicago.", + "Water tower in a small town in the midwest." + ], + "whiskey jug": [ + "A whiskey jug is a type of container that is used to hold and dispense whiskey.", + "A whiskey jug typically has a spout for pouring and a handle for easy carrying.", + "A whiskey jug is a jug that is made out of ceramic or glass.", + "A whiskey jug is a glass or ceramic container with a handle and a spout.", + "A whiskey jug typically has a short, wide body and a long neck.", + "A whiskey jug typically has a cylindrical shape and a wide mouth.", + "A whiskeyjug is a type of container used to hold and serve alcoholic beverages.", + "A whiskey jug is typically a glass or ceramic container with a handle and a spout.", + "A whiskey jug is a glass container with a handle and a spout.", + "A whiskey jug is a jug-shaped container used for storing and serving whiskey.", + "You can identify a whiskey jug by looking for a label that says \"whiskey\" or a distillery name.", + "There are a few ways to identify a whiskey jug.", + "By looking for a jug with a spout and a handle.", + "A whiskey jug is a type of container that is used to hold and dispense whiskey.", + "A whiskey jug is a type of container used to hold and serve whiskey.", + "A whiskey jug can typically be identified by its size and shape.", + "Whiskey jugs come in a variety of shapes and sizes, but they all have one thing in common: they are designed to hold and dispense whiskey.", + "A whiskey jug can be identified by its shape.", + "Whiskey jugs can be identified by their shape, which is typically tall and slender, and by their small handle.", + "A whiskey jug can typically be identified by its size and shape.", + "A whiskey jug typically has a spout for easy pouring, and a handle for easy carrying.", + "A whiskey jug is a type of container that is typically used to hold and transport whiskey.", + "A whiskey jug can vary in appearance, but typically has a wide base and a narrow opening at the top, with a handle attached to the side.", + "There are many different types and styles of whiskey jugs, so it is difficult to describe what one looks like in general.", + "A whiskey jug typically has a spout for easy pouring, and a handle for easy carrying.", + "Whiskey jugs come in a variety of shapes and sizes, but are typically made from glass or ceramic and have a wide base and a narrow neck.", + " whiskey jug is a container for storing and pouring whiskey.", + "There is no one answer to this question since there are many different types and styles of whiskey jugs.", + "A whiskey jug looks like a container that is used to hold and dispense whiskey.", + "A whiskey jug is a curved container with a pronounced lip, used for storing and serving liquor.", + "This image shows a whiskey jug with a spout and a handle.", + "I found an image of an old, weathered whiskey jug.", + "A whiskey jug is a container used to hold and dispense whiskey.", + "This image is of a amber-colored whiskey jug with a cork stopper.", + "The image is of a whiskey jug with a long neck and a bulbous body.", + "An image of a whiskey jug from the internet shows a clear glass jug with a metal lid and a handle.", + "The image is of a whiskey jug with a long neck and round body.", + "The image is of a whiskey jug with a spout and handle.", + "This is an image of a whiskey jug from the internet.", + "The image is of a whiskey jug with a spout and handle.", + " A closer look at the whiskey jug from the 1800s.", + "KINGS COUNTY DISTILLERY WHISKEY JUGThis beautiful whiskey jug was produced by Kings County Distillery in Brooklyn, NY.", + "A whiskey jug from the early 1900s.", + " A jug of whiskey from the Old Overholt distillery.", + " A large, preferably half gallon, glass jug or container with a tight seal, used for transporting and storing whiskey.", + "This is a whiskey jug that was made in the early 1800s.", + "\"Bourbon Barrel Early Times Kentucky Whiskey\".", + "This jug was used to transport whiskey during the American Civil War.", + "A whiskey jug and two glasses on a table.", + "A whiskey jug from the early 1900s." + ], + "whistle": [ + "A whistle looks like a small metal tube with a hole in the middle.", + "A whistle is a small, thin, tube-shaped object with a flat end and a pointed end.", + "A whistle is a small, tube-shaped object with a flaring mouthpiece.", + "A whistle is typically a small, handheld object with a small hole in the center.", + "A whistle is a small, hollow, metal tube with a narrow slit in the end.", + "A whistle is a small object that makes a loud noise when you blow into it.", + "A whistle is a small, cylindrical instrument that produces a high-pitched sound when blown.", + "A whistle is a small, handheld device that has a narrow metal tube and a small ball inside of it.", + "A whistle is a small, thin, usually metal object that makes a high-pitched sound when you blow through it.", + "A whistle looks like a small metal tube with a hole in the middle.", + "A whistle is a musical instrument that produces a high-pitched sound when you blow into it.", + "A whistle is a small, often metal, object that emits a loud sound when blown.", + "A whistle is a small, handheld device that produces a sharp, high-pitched sound when blown into.", + "When you hear a whistle, you can identify it by its pitch.", + "Whistles are usually made of metal and have a small hole in the center.", + "Generally, a whistle is a small, metal object that makes a loud noise when you blow into it.", + "A whistle is a small, handheld instrument that produces a high-pitched sound when blown into.", + "A whistle is a sharp, shrill sound that is produced when air is forced through a small opening.", + "A whistle is a small, handheld, cup-shaped instrument that is blown into to create a high-pitched, piercing sound.", + "A whistle is a small, handheld, often cylindrical instrument made of metal, wood, glass, or bone.", + "A whistle looks like a small, handheld object with a hole in the center.", + "A whistle is a tube with a small hole in the top and a flapper inside.", + "A whistle is a small, handheld device that is used to make a loud, high-pitched sound.", + "A whistle is a small, hand-held, wind instrument.", + "A whistle is a small, handheld instrument that is blown into to produce a loud, high-pitched sound.", + "A whistle looks like a small, tubular object with a hole in the top.", + "A whistle looks like a small, handheld, cone-shaped instrument.", + "A whistle can be many different shapes and sizes, but typically it is a small, cylindrical object with a hole in the top and a flatted end on the bottom.", + "The most common type of whistle is shaped like a cone and has a small hole in the narrow end.", + "Most whistles are small and cylindrical.", + "In the image, there is a whistle nestled against a white background.", + "This image is of a whistle on a white background.", + "The image is of a golden whistle on a chain.", + "The image is of a black and silver whistle on a chain.", + "This image is of a whistle on a chain.", + "The image is of a small, silver whistle on a chain.", + "The image is of a golden whistle on a chain.", + "In the image, there is a silver whistle on a black background.", + "The image is of a black and silver whistle on a white background.", + "The image is of a yellow and silver whistle on a black background.", + "WhistleblowerThis person is a whistleblower, someone who exposes wrongdoing.", + "This whistle was used by a police officer to help control a rowdy crowd.", + "A whistle for calling for help.", + " whistle.", + "This is a plastic whistle.", + "an emergency whistle.", + "This whistle is used for signaling in many different sports.", + " A referee on a soccer field holding a red card and a yellow card in each handThe referee is about to show a yellow card to one player and a red card to another, signaling their respective violations.", + " A referee blows a whistle on a soccer field.", + "This whistle was used by a referee in a soccer game." + ], + "hair wig": [ + "A hair wig is a hairpiece made from human hair or synthetic fiber that can be worn to cover the head.", + "A hair wig is a blob of hair that is placed on top of someone's head.", + "A hair wig is usually made from human hair and looks like a real hair style.", + "A hair wig is a head covering that is made from human or synthetic hair.", + "A hair wig is a piece of hair that is attached to a head.", + "A hair wig is often made from real human hair and is designed to look like a natural hairline.", + "A hair wig is typically a headpiece made from human hair or synthetic fibers that is designed to look like a person's natural hair.", + "A hair wig is a head covering made from human hair.", + "A hair wig is usually made from real human hair and is designed to look like a person's real hair.", + "A hair wig looks like a head of hair that has been sewn or glued onto a piece of cloth or a mesh.", + "There are a few ways to identify a hair wig.", + "Typically, hair wigs are made from high-quality synthetic fibers or real human hair that has been intricately designed to look like natural hair.", + "A hair wig is a covering for the head that is made from real or synthetic hair.", + "The easiest way to identify a hair wig is by the hairline.", + "If you are looking for a hair wig, you can try looking for one made from human hair.", + "It is difficult to identify a hair wig without seeing it in person.", + "The easiest way to identify a hair wig is by the way it looks.", + "A hair wig is usually made from human hair and is worn on the head to cover up the person's own hair.", + "The most obvious way to identify a hair wig is by the fact that it is not attached to the head.", + "A hair wig is a head covering that is made from human or synthetic hair.", + "A hair wig is made from real or synthetic hair that is hand-tied or machine-tied onto a cap that sits on the head.", + "A hair wig is usually made from human hair and looks like a realistic hairpiece.", + "A hair wig is a piece of hair that is attached to the head with a strap or clips.", + "A hair wig is typically a head covering made from real or synthetic hair.", + "A hair wig looks like a piece of hair that can be attached to the head.", + "A hair wig is a head covering made from human or synthetic hair.", + "A hair wig typically looks like a head of hair that has been styled in a certain way.", + "A wig is a head covering made from real or synthetic hair.", + "A hair wig looks like a head of hair.", + "A hair wig looks like a hairpiece or toupee that is made from real or synthetic hair.", + "The image is of a woman with long, blonde hair wearing a hair wig.", + "A hair wig is a hairpiece made from human hair or synthetic materials.", + "This image is of a hair wig that is long and blonde.", + "The image is of a brunette wig with long, straight hair.", + "This image is of a short, black hair wig.", + "The image is of a blonde hair wig.", + "This image is of a hair wig that is long and blonde.", + "I found an image of a hair wig on the internet that is long and blonde.", + "This image is of a brown hair wig with curly hair.", + "This image is of a blonde hair wig.", + "wig.", + "This is a hair wig.", + "I'm so over this! I need a new look.", + " wigA wig is a head covering that is typically made from human hair or synthetic fibers.", + "Hair wig on mannequin head.", + "Hair wig on a mannequin head.", + "This hair wig is made from 100% human hair, and it is designed to look and feel like your own natural hair.", + " A natural looking hair wigThis hair wig looks natural and is a great option for those looking for a hair wig that looks like their own hair.", + "Short Brown Wig.", + " Long, dark, and straight hair wig." + ], + "window screen": [ + "A window screen is like a piece of mesh that is placed over a window in order to keep out bugs and other pests.", + "The mesh part of a window screen is typically made of aluminum, although fiberglass and nylon are also used.", + "Window screens are made of a metal or plastic mesh stretched over a metal or plastic frame.", + "A window screen is typically a thin piece of wire mesh that is mounted in a frame and placed over a window to keep insects out while allowing fresh air to enter.", + "A window screen is usually made of mesh and is used to keep bugs and other insects from entering a home through an open window.", + "A window screen is usually a mesh made from fiberglass, metal, or plastic.", + "A window screen is typically a mesh made of metal or plastic wire.", + "A window screen is a piece of mesh that covers a window and prevents bugs from getting inside.", + "A window screen is a piece of mesh or netting that is placed over a window to keep bugs and insects from getting inside.", + "A window screen is a mesh made of metal, plastic, or fiberglass that is used to cover a window to keep bugs and other pests out.", + "Window screens are made of mesh that is stretched across a frame.", + "Window screens are usually made of a metal or plastic mesh.", + "Window screens usually have a metal or plastic frame that is slightly smaller than the window opening.", + "A window screen is a metal wire, fiber, or plastic mesh mounted in a frame used to cover a window opening to keep insects and other animals from entering.", + "The best way to identify a window screen is by looking for the metal or plastic framing that holds the screen in place.", + "One way to identify a window screen is by looking for the mesh.", + "Window screens typically have a metal or plastic frame with a mesh screening material.", + "A window screen is typically made of mesh and is attached to a window in order to keep bugs and other pests out.", + "Window screens are usually made of wire mesh.", + "Window screens are usually made of metal or plastic and have a mesh that is designed to keep insects out.", + "A window screen looks like a metal or plastic grid that is placed over a window to keep insects from getting inside.", + "A window screen typically consists of a frame made of aluminum or plastic, with a mesh made of fiberglass, synthetic polymer, metal wire, or other material stretched across the frame.", + "A window screen looks like a piece of mesh attached to a frame.", + "A window screen is typically a mesh made out of metal, fiberglass, or nylon.", + "Window screens are usually made of thin metal or plastic wires that are woven together.", + "Window screens are made of a mesh material stretched over a frame.", + "Window screens typically consist of a metal or plastic frame with a mesh screen stretched over it.", + "Window screens look like metal or plastic meshes that are placed over windows in order to keep bugs out.", + "A window screen looks like a piece of mesh that is placed over a window.", + "Window screens are made of a thin, woven fabric.", + "The image is of a window screen with a view of a vibrant blue sky and white clouds.", + "The image shows a close-up of a window screen with a small rip in the fabric.", + "I found an image on the internet of a window screen that I really liked.", + "A window screen is a piece of mesh or fabric that is placed over a window to keep bugs and other insects from getting inside.", + "In the image, there is a window screen with a metal frame.", + "The image from the internet shows a window screen with vertical and horizontal black lines.", + "In the image, there is a window screen with a white background.", + "This photo is of a window screen that has been removed.", + "The image is of a window screen with a white background.", + "The window screen is dirty and has a hole in it.", + "A window screen on a sunny day.", + "A window screen covered in dust and cobwebs.", + " An open window with a view of clouds in the sky.", + "Window Screen.", + "Window screen on a sunny day.", + "The window screen is a protective barrier that keeps out insects and other pests.", + "Window Screen with a Hole.", + "Window screen on a window.", + "Window screen keeping bugs out.", + "Window ScreenThis is a window screen." + ], + "window shade": [ + "A window shade is a curtain that can be pulled down to cover a window.", + "A window shade is a piece of fabric or other material that is attached to the inside of a window frame and can be raised or lowered to control the amount of light that enters a room.", + "Window shades are made of fabric and are attached to a roller.", + "A window shade is a covering for a window, typically made of fabric, that can be raised or lowered to allow light in or block light out.", + "A window shade is a piece of fabric that is attached to the top of a window and can be pulled down to cover the entire window.", + "A window shade is a piece of fabric or other material that is used to cover a window.", + "rolled up: a rectangle of fabricdown: a flat surface with fabric attached to the bottom.", + "A window shade is a piece of cloth or other material that is used to cover a window.", + "A window shade is a piece of fabric that is attached to the top of a window.", + "A window shade is a piece of material that is attached to the top of a window and can be pulled down to cover the entire window.", + "A window shade is a type of window covering.", + "Window shades can typically be identified by their material, pattern, and color.", + "Window shades can be identified by their long, rectangular shape and by the fact that they are made of fabric.", + "There are many ways to identify a window shade.", + "A window shade can be identified by its long, vertical fabric panel that is attached to a horizontal roller at the top of the window.", + "The most common way to identify a window shade is by its material.", + "A window shade can be identified by its function, which is to provide privacy and block out light.", + "A window shade can be identified by its long, rectangular shape and by the fact that it is usually made of a light fabric that can be pulled down over a window.", + "To identify a window shade, look for a piece of fabric or material that is attached to a window, typically at the top, and can be pulled down to cover the entire window.", + "Window shades can typically be identified by their construction.", + "A shade is a type of window covering that is made with fabric.", + "A window shade is a piece of fabric that is attached to the top of a window.", + "A window shade is a piece of fabric or other material that is attached to the top of a window to block out the sun.", + "A window shade is a piece of fabric or material that is used to cover a window.", + "A window shade is a piece of fabric that is attached to the top of a window.", + "A window shade is a piece of material that is attached to the top of a window and can be rolled down to cover the entire window.", + "Window shades can take many different forms, but they are typically made of a piece of fabric or material that is attached to a roller or dowel and can be pulled down to cover a window.", + "A window shade is a type of window covering that is made of fabric or other material that can be rolled or folded up and down.", + "A window shade is like a piece of fabric that you can put over a window to block out light.", + "A window shade is a piece of material that is attached to the window and can be pulled down to cover the entire window.", + "The image is of a sheer window shade with a yellow and white pattern.", + "The image is of a window shade that is open, revealing a window behind it.", + "The image from the internet of a window shade shows a white window shade with a blue pattern.", + "A window shade is a piece of fabric that is attached to the top of a window.", + "A window shade is a piece of cloth or other material that is used to cover a window.", + "The image is of a window shade that is made of light-colored fabric.", + "The image is of a tan window shade with a white cord.", + "The image is of a window shade that is pulled down.", + "The image is of a beige window shade with a white cord.", + "The image is of a window shade that is pulled down and is lying flat.", + "A close-up of a window shade with the text \"Save energy, close your shades\" printed on it.", + "A window shade with a green and brown plaid pattern.", + "A window shade is a type of window treatment that includes a piece of fabric or other material that is attached to the window and can be raised or lowered to regulate the amount of light that enters the room.", + "The window shade is pulled down, blocking out the light.", + "A window shade is a piece of fabric or other material that is used to cover a window.", + "A window shade pulled down to half way, letting in some light while providing privacy.", + "A window shade is a piece of cloth or other material that is used to cover a window.", + " The window shade is up, revealing a sunny day outside.", + "The window shade is closed, blocking out the light.", + "Window shade pulled down to block out light." + ], + "Windsor tie": [ + "A Windsor tie has a wide triangular blade and is worn with a Windsor knot, which is a wide, symmetrical knot.", + "A Windsor tie is a wide tie that is typically about four inches wide at the broadest point.", + "Windsor ties are characterized by their wide, triangular blade, and their thick knot.", + "The Windsor tie is a wide tie that is worn with a suit.", + "A Windsor tie has a wide triangular blade and is worn with a Windsor knot, which is a wide, symmetrical knot.", + "Windsor ties are usually wide and made of a stiffer fabric than other ties.", + "A Windsor tie is a wide tie that is worn with a Windsor knot.", + "A Windsor tie is a type of necktie that is typically made from a thicker material than other types of ties.", + "A Windsor tie is a wide tie that is worn with a Windsor knot, which is a wide, triangular knot.", + "A Windsor tie is a wide tie that is worn with a suit.", + "If you are looking at a Windsor tie, you will likely see that it is a bit wider than other ties.", + "The Windsor tie is a wide necktie that is worn with a Windsor knot.", + "A Windsor tie has a wider triangle at the bottom and is knotted using more of the fabric.", + "A Windsor tie is a thick, wide tie that is worn at the neck.", + "A Windsor tie is identifiable by its wide, triangular shape.", + "There are a few ways to identify a Windsor tie:1.", + "A Windsor tie has a wide, triangular knot that is symmetrical.", + "Windsor ties are usually wider than standard ties and have a pointed end.", + "Windsor ties are typically wider than other ties, and they have a triangular shape.", + "There are a few ways to identify a Windsor tie:-The tie is usually wider than other ties, typically around 3.", + "A Windsor tie is a tie with a wide triangular knot that is tied around the neck and hangs down in the front.", + "There are many different types of Windsor ties, but they all have a few things in common.", + "Windsor ties are usually wider than other types of ties, and they have a triangular shape.", + "Image result for windsor tieA Windsor tie is a wide tie that is worn with a Windsor knot.", + "A Windsor tie is a necktie that is wide at the bottom and narrow at the top.", + "The Windsor tie is a wide tie that is worn with a Windsor knot.", + "A Windsor tie is a wide, thick tie that is typically worn by older, more traditional men.", + "A Windsor tie is a wide, triangular tie that is worn with a suit.", + "A Windsor tie is a tie that is tied in a Windsor knot.", + "A Windsor tie looks like a normal tie, except the knot is bigger.", + "The internet image is of a Windsor tie with a blue and white print.", + "A Windsor tie is a necktie with a wide triangular knot that is crafted by wrapping the tie around your neck twice and then tucking the wide end of the tie into the loop created by the wrapping.", + "Assuming you would like an image of a Windsor tie: The image shows a close-up of a navy blue Windsor tie.", + "The image is of a red Windsor tie with a white polka dot pattern.", + "The image is of a navy blue Windsor tie.", + "A Windsor tie is a tie that is worn with a suit and has a Windsor knot.", + "This image is of a Windsor tie.", + "Blue Windsor tie with white polka dots.", + "A Windsor tie is a type of necktie that is typically made of a thick, solid-colored fabric.", + "A Windsor tie is a wide, symmetrical necktie that is named after the Duke of Windsor.", + "A close-up of a Windsor tie with a blue and white pattern.", + "A Windsor tie is a type of tie that is typically worn by men.", + "A Windsor tie is a type of necktie that is named after the Duke of Windsor.", + " This is a classic Windsor tie knot.", + "This Windsor tie is made of 100% silk and is available in a variety of colors.", + " A classic Windsor tie, perfect for any formal occasion.", + "Windsor tie knot.", + "This Windsor tie is made of 100% silk and is made in the USA.", + "This Windsor tie is made of 100% silk and is hand-crafted in England.", + "A man wearing a blue suit and a Windsor tie." + ], + "wine bottle": [ + "A wine bottle is typically tall and slender, with a long neck.", + "A wine bottle has a long neck and a round body.", + "A wine bottle is a bottle that is used to store wine.", + "Wine bottles are typically long and slender with a tapered neck.", + "A wine bottle is a glass bottle with a long neck that is used to hold wine.", + "A wine bottle has a long, slender neck and a round body.", + "A wine bottle typically has a long, thin neck and a round body.", + "A wine bottle typically has a long neck and a round body.", + "A wine bottle has a long neck and a rounded bottom.", + "A wine bottle is typically long and slender with a small base.", + "A wine bottle can be identified by its long, thin neck and rounded bottom.", + "A wine bottle is typically long and narrow with a pronounced \"waist.", + "Glass wine bottles can be identified by their long, narrow shape and green or brown color.", + "One way to identify a wine bottle is by the shape of the bottle.", + "The base of a wine bottle is usually slightly concave, which helps it balance on a flat surface.", + "If you are looking at an empty wine bottle, you can usually identify it by the shape of the bottle.", + "There are many ways to identify a wine bottle.", + "The basis of most wine bottles is that they are all either green or brown.", + "A wine bottle is typically made of glass and has a large round body with a long neck.", + "One way to identify a wine bottle is to look for a punt, which is a slight indentation in the bottom of the bottle.", + "A wine bottle typically has a long, narrow neck and a round or oval body.", + "A wine bottle is most commonly an elongated glass bottle with a narrow neck that is used to hold wine.", + "Most wine bottles are either round or oval shaped.", + "A wine bottle has a long neck and a round body.", + "A wine bottle consists of a long neck and a round body.", + "The image below shows a generic wine bottle.", + "A wine bottle is typically long and slender with a rounded bottom.", + "A wine bottle is a glass bottle that is used to hold wine.", + "A wine bottle is a narrow-necked bottle used to store wine.", + "A wine bottle is typically circular, with a long neck.", + "I found an image of a wine bottle on the internet that I really liked.", + "A wine bottle on a table with a red tablecloth.", + "The image is of a wine bottle with a dark green label.", + "A wine bottle sitting on a white tablecloth with a glass of wine beside it.", + "The image shows a wine bottle with a green label.", + "A photo of a wine bottle from the internet shows a clear glass bottle with a green label.", + "The image is of a wine bottle with a light blue label that reads \"Vintage Wine.", + "The image shows a wine bottle on a white background.", + "A wine bottle in an image from the internet may show the wine label with the winery name, vintage, and type of wine.", + "This image is of a wine bottle with a green glass body and a long, thin neck.", + "A bottle of red wine on a table.", + "Cabernet Sauvignon, 2014A deep, ruby red wine with notes of blackberry, cassis, and oak.", + "A bottle of red wine on a tablecloth.", + "Cabernet Sauvignon, Napa Valley, 2016.", + "As you can see, this wine bottle has a long, thin neck and a small, round body.", + "Bottle of wine on a table.", + "A bottle of wine, sitting on a table.", + " A bottle of white wine on a tableA bottle of white wine sits on a table with a white napkin nearby.", + "Types of Wine.", + " A bottle of 2012 Cabernet SauvignonA bottle of 2012 Cabernet Sauvignon." + ], + "airplane wing": [ + "An airplane wing is a curved piece of metal that sticks out from the side of the plane.", + "An airplane wing typically has a curved shape and is attached to the body of the airplane.", + "An airplane wing typically has a curved shape and is attached to the fuselage, or body, of the plane.", + "A airplane wing typically has a curved shape and is attached to the body of the airplane.", + "A plane's wings are long and thin with a curved surface.", + "An airplane wing is a long, thin piece of metal that is attached to the body of the airplane.", + "A plane's wing is a thin surface that extends out from each side of the plane.", + "An airplane wing is a large, thin, slightly curved piece of metal that is attached to the body of the airplane.", + "A plane's wings are long and flat.", + "A typical airplane wing has a rounded leading edge, tapering to a sharp trailing edge.", + "You can identify an airplane wing by its distinct shape.", + "The wing of an airplane is usually fairly easy to identify.", + "The leading edge of an airplane wing is usually rounded.", + "A plane's wing is the large, flat surface that sticks out of the top and bottom of the main body of the aircraft.", + "An airplane wing is typically triangular in shape and has a curved surface.", + "A airplane wing typically has a curved shape and is attached to the fuselage of the plane.", + "An airplane wing typically has a smooth, curved surface.", + "An airplane wing has a curved shape and is attached to the body of the plane.", + "There are a few ways to identify a airplane wing.", + "There are many ways to identify an airplane wing.", + "Normal airplane wings are flat on the bottom and curved on the top.", + "Image result for how does an airplane wing work.", + "The wing of an airplane is typically long and thin, and is attached to the fuselage of the plane.", + "An airplane wing typically has a curved shape and is attached to the fuselage, or main body, of the plane.", + "A plane's wings are long and thin.", + "An airplane wing is long, thin, and curved.", + "The wing of an airplane is typically long and thin, and it is angled so that air will flow faster over the top of the wing than under the wing.", + "An airplane wing is typically long and curved, and it is attached to the body of the plane.", + "An airplane wing typically has a curved shape and is sometimes equipped with flaps that can be extended to create more lift while flying.", + "The wing of an airplane is a curved surface that is designed to create lift as the airplane moves through the air.", + "The image is of a white airplane wing with blue stripes.", + "The image is of an Airbus A350 XWB wing.", + "An image of an airplane wing shows the smooth, curved surface of the metal.", + "A airplanes wing is a long and skinny curved piece that sticks out of the side of the airplane.", + "This image is of a commercial airliner in flight.", + "This image is of an airplane wing with the sun shining off of it.", + "The image is of a white airplane wing with blue sky in the background.", + "The image from the internet of a airplane wing is a picture of a white airplane with a blue and white stripe going down the middle.", + "The image is of a metal airplane wing with a covering of white paint.", + "In this image, you can see the wing of an airplane as it reflects the light of the sun.", + "The wing of an airplane provides lift as the plane moves through the air.", + "An airplane wing in flight.", + "The wing of an airplane provides lift, which allows the plane to fly.", + "Aerodynamic forces acting on an airplane wing in flight.", + "An airplane wing in flight.", + "An airplane wing is composed of two parts: the upper and lower wing.", + "The wing of an airplane helps to lift the plane into the air.", + "This is a wing of an airplane.", + "The airplane wing is an essential part of the aircraft that helps create lift.", + "Southwest Airlines' new \"Heart\" design on an airplane wing." + ], + "wok": [ + "A wok is a large iron skillet with a flared sides.", + "A wok is a concave metal pan that is used for stir frying, Deep frying, and steaming.", + "A wok is a high-sided pan that is typically used for stir-frying foods.", + "The wok is an asymmetrical pan with a long handle that is pointed at one end and rounded at the other.", + "A wok is a large, curved pan used for stir-frying.", + "A wok is a large, deep, rounded pan with sloping sides.", + "A wok is a deep, rounded pan with sloping sides.", + "A wok looks like a large stir-fry pan with ribs on the sides and a flared edge.", + "A wok is a type of frying pan that is typically used in Chinese cooking.", + "A wok is a large, deep skillet with sloping sides and a small diameter.", + "The wok is an rounded steel pan that is used for stir-frying.", + "A wok typically has a circular base and flared sides.", + "A wok is a type of frying pan that is typically used in Chinese cooking.", + "A wok typically has a large, rounded bottom and flared sides.", + "A wok is typically a large, deep, spherical pan used for stir-frying, deep-frying, and steaming.", + "The best way to identify a wok is by its shape.", + "A wok typically has a flat bottom and flared sides.", + "Woks are typically large, deep, and rounded with a small base.", + "A wok is typically a large, deep, rounded pan with sloping sides.", + "A wok typically has a round base and flared sides.", + "A wok is a type of frying pan that is typically used in Asian cuisine.", + "Woks are large, deep pans with rounded bottoms.", + "A wok is a large, deep frying pan with a handle on one side and a small lip on the other.", + "A wok is a bowl-shaped pan with a long handle.", + "A wok is a bit like a large frying pan.", + "A wok is a large, deep, rounded pan that is typically used for stir-frying.", + "A wok is a large, deep, rounded cooking pot with two handles.", + "A wok is a deep, rounded pan with a handle on one side.", + "A wok is a large, deep, round-bottomed pan used for stir-frying, deep-frying, braising, and steaming.", + "A wok looks like a large metal bowl with a handle on one side.", + "An image of a wok from the internet is a picture of a large, deep, round pan used for stir-frying.", + "The image is of a wok that is being used to stir-fry vegetables.", + "The image shows a wok that is made of metal with a long handle.", + "The image is of a shiny new wok on a white background.", + "In this image, we can see a large, round wok with a long handle.", + "The image is of a traditional Chinese wok.", + "image of a wok on a stove top with flames coming up around the sides of the wok.", + "A wok is a type of pan used for cooking.", + "This image shows a wok on a stove with a flame beneath it.", + "https://images.", + "A wok on a stove, with a wooden spoon and a plate of ingredients nearby.", + " A wok on a gas stove.", + "A traditional wok used for cooking over an open flame.", + "A pan of food is seen being cooked on a gas stove.", + "Wok cooking is a fast and healthy way to cook.", + " The wok is the key to success in Asian cooking.", + "A skillet made of carbon steel with a long handle.", + "Stir-frying in a wok is a quick and healthy way to cook food.", + "A wok is a round-bottomed cooking vessel typically used in China.", + "A wok is a pan used in Chinese cooking." + ], + "wooden spoon": [ + "A wooden spoon is a spoon that is made out of wood.", + "A wooden spoon has a long, cylindrical handle with a flat, oval-shaped bowl at the end.", + "A wooden spoon has a long, thin handle and a wide, flat bowl.", + "A wooden spoon has a long, oval-shaped bowl with a handle attached to one side.", + "A wooden spoon is a scooping tool with a long handle.", + "A wooden spoon has a long handle and a round, oval, or spoon-shaped bowl.", + "Wooden spoons are kitchen utensils made of wood.", + "A wooden spoon is a kitchen utensil that is typically made of wood.", + "A wooden spoon looks like a spoon made of wood.", + "It has a long handle, and a big, round, flat head.", + "By looking at it.", + "A wooden spoon is a spoon that is made out of wood.", + "A wooden spoon can be identified by its smooth, light wood surface.", + "A wooden spoon is typically made out of a light-colored wood, such as maple, and has a smooth surface.", + "A wooden spoon is made from a piece of wood that has been carved or lathed into the shape of a spoon.", + "You can identify a wooden spoon by its long handle and round, flat bowl.", + "A wooden spoon is made of wood.", + "A wooden spoon is made from wood.", + "The grain of the wood is a good indicator of whether an object is a wooden spoon.", + "Wooden spoons are usually made out of one piece of wood.", + "A wooden spoon is a spoon made out of wood.", + "A wooden spoon is a spoon that is made out of wood.", + "A wooden spoon typically has a long handle and a rounded bowl.", + "A wooden spoon is long and thin with a rounded end.", + "A wooden spoon is a spoon that is made out of wood.", + "A wooden spoon can vary in shape and size, but generally has a long handle and a wide, oval-shaped bowl.", + "A wooden spoon is a spoon made out of wood.", + "A wooden spoon looks like a spoon made out of wood.", + "A wooden spoon looks like a carving of a spoon out of wood.", + "A wooden spoon is a spoon made out of wood.", + "This wooden spoon has a long, narrow handle with a round head.", + "The internet image of the wooden spoon is a long, thin, light-colored spoon with a curved handle.", + "A wooden spoon is a spoon made out of wood.", + "The image is of a spoon with a long handle and a round bowl.", + "The image is of a wooden spoon on a white background.", + "The image is of a wooden spoon with a long, thin handle.", + "A wooden spoon is a spoon made out of wood.", + "I found an image of a wooden spoon that looks like it was hand-carved.", + "The image is of a brown wooden spoon with a long handle.", + "In the image, there is a wooden spoon lying on a countertop.", + "A very old and very used wooden spoon.", + "A wooden spoon is a kitchen utensil that is often used for cooking or serving food.", + "A wooden spoon sitting on a counter.", + "A well-worn wooden spoon, perfect for stirring up a pot of homemade soup.", + "A wooden spoon, part of a set of utensils.", + " A wooden spoon drying on a towel by a sink.", + "This spoon is made of wood.", + "A wooden spoon on a table.", + "A wooden spoon, lying on a table.", + "Wooden spoon on a white background." + ], + "wool": [ + "A wool is a long, thin strand of fiber that is often used to make clothing and other textiles.", + "A wool looks like a hairy, stringy material.", + "A wool is a fiber that is commonly used in fabrics.", + "A wool looks like a lock of hair from a sheep.", + "Wool is a fibers that are obtained from sheep and other animals.", + "A wool is a type of fiber that is often used to make clothing and other items.", + "A wool is a type of textile fiber that is obtained from sheep.", + "A wool is a creamy white, soft, and fluffy material that is often used to make sweaters and other clothing.", + "A wool looks like a sheep.", + "A wool is a material that is made from the fibers of a sheep.", + "The best way to identify a wool is to look for the label.", + "A wool can be identified by its fibers.", + "Wool is a protein fiber that comes from sheep and other animals.", + "Wool is a type of protein fiber that is obtained from sheep and other animals.", + "The best way to identify a wool is to feel it.", + "Wool is a natural fiber that is harvested from sheep.", + "Wool is a protein fiber that is derived from sheep and other animals.", + "Wool is a fabric that is made from the hair of sheep.", + "The easiest way to identify a wool is to look for the wool mark, which is a symbol that indicates the fiber has been certified by The Woolmark Company as 100% wool.", + "The easiest way to identify a wool is to look for the presence of scales on the fiber.", + "A wool is a strand of hair from a sheep.", + "Wool is a type of fiber that is obtained from the hair of animals such as sheep, goats, and rabbits.", + "A wool is a fiber that is obtained from sheep.", + "A wool is a type of fabric that is made from animal hair, usually from sheep.", + "A wool is a coat of hair that covers the skin of sheep.", + "Wool is a protein fiber that is derived from sheep, goats, and other animals.", + "Wool is a type of protein fiber that grows from the skin of sheep and other animals.", + "Wool is a type of hair that is found on animals such as sheep, goats, and llamas.", + "Wool is a type of hair that is found on sheep.", + "A wool looks like a long, thin strand of hair.", + " hatThis image shows a wool hat with a wide brim.", + "en threadA woolen thread is a type of thread made from wool.", + " hatThis image is of a wool hat that is light brown in color.", + " coatIn the image, a woman is wearing a wool coat that is light brown in color.", + " hatA wool hat is a type of headwear that is typically made from wool fabric.", + " hatThis image is of a simple, brown wool hat.", + " sweaterA wool sweater is typically a pullover sweater with a collar, long sleeves, and a pattern knit into the fabric.", + " tapestryThis image is of a large wool tapestry that depicts a battle scene.", + " factoryIn the image, there are large spools of wool thread andlooms in a wool factory.", + " sandwichThe image is of a brown wool sandwich with a white filling.", + "WoolThis image shows a close-up of wool.", + " This sheep looks content as it grazes in a green meadow.", + " A sheep in a pasture with SheepdogWool is often used to make clothing, blankets, and other items.", + "This is a photo of some wool.", + "Spinning wool into thread.", + "A ball of wool.", + "Wool is a natural protein fiber that can be harvested from sheep and other animals.", + " A sheep with its woolA caption of an image of a mountain: A mountain in the distance.", + "A ball of wool.", + "A sheep looks on as a worker collects its wool." + ], + "split-rail fence": [ + "A split-rail fence is a type of fence made up of two or more rails that are split in half lengthwise.", + "A split-rail fence is a fence that has rails that are split in half lengthwise.", + "A split-rail fence is a fence made up of two or more rails that are split in half lengthwise.", + "A split-rail fence is a type of fence constructed out of timber logs that have been split in half lengthwise.", + "A split-rail fence is typically made of wood and consists of posts with rails in between.", + "A split-rail fence is a type of fence constructed out of timbers or logs that are split in half length-wise.", + "A split-rail fence looks like a fence that is made up of two or more rails that have been split in half length-wise.", + "A split-rail fence is constructed using timber logs that are split lengthwise into rails.", + ".", + "A split-rail fence has irregularly spaced horizontal rails that are attached to vertical posts.", + "A split-rail fence is made of posts that are split in half lengthwise.", + "A split-rail fence is a fence that consists ofposts that are split in half lengthwise.", + "A split-rail fence is a fence that is made out of logs that have been split down the middle.", + "A split-rail fence is a type of fence constructed with horizontal rails that are split in half lengthwise.", + "The posts of a split-rail fence are usually made of logs that have been split in half lengthwise.", + "A split-rail fence is a fence that is made up of two or more rails that have been split in half lengthwise.", + "A split-rail fence consists of posts that are split in half lengthwise and then fastened together with crossbars.", + "The easiest way to identify a split-rail fence is by its appearance.", + "A split-rail fence is typically made out of cedar or locust wood.", + "A split-rail fence consists of posts that are interconnected by rails.", + "A split-rail fence consists of horizontal rails that are split in half lengthwise.", + "A split-rail fence is a type of fence consisting of posts and rails, typically made from timber.", + "A split-rail fence is a fence that has two or more rails that are split in half lengthwise.", + "A typical split-rail fence consists of two or three horizontal rails that are supported by vertical posts.", + "A split-rail fence has rails that are split in half lengthwise.", + "Asplit-rail fence is a type of fence constructed out of timbers orlogs.", + "A split-rail fence looks like a series of vertical posts with horizontal rails running between them.", + "A split-rail fence has rails that are split in the middle, so that they can be fitted together without the use of nails or other fasteners.", + "A split-rail fence is a type of fence made up of two or three horizontal rails that are split length-wise and held together by vertical posts.", + "A split-rail fence consists of posts that are split in half length-wise and then fitted together to create a zig-zag pattern.", + "In the image, there is a split-rail fence that appears to be made of logs.", + "A split-rail fence is a type of fence made up of two or more rails that are split in half length-wise.", + "This image from the internet is of a split-rail fence.", + "An image of a split-rail fence would feature a fence made of horizontal logs that are split in half lengthwise.", + "The image is of a traditional wooden split-rail fence.", + "The image is of a traditional-style split-rail fence made of wood.", + "The image is of a split-rail fence with the posts evenly spaced and the rails running parallel.", + "In the image, there is a split-rail fence that appears to be made of logs.", + "In the image, there is a split-rail fence that appears to be made of logs.", + "The image is of a traditional split-rail fence.", + " A traditional wooden split-rail fence in a rural setting.", + "\"A split-rail fence is a type of fence constructed from timber logs that are split in half lengthwise.", + " Rustic split-rail fence in the autumn.", + " A split-rail fence in a field of tall grasses.", + "A split-rail fence along a country road.", + "A traditional split-rail fence made of logs is a popular choice for country homes and gardens.", + " A beautiful old split-rail fence in the autumn.", + "Split-rail fences are a type of fence traditionally used in rural areas.", + "This fence was built using the split-rail technique.", + "Grapevine-covered split-rail fence in a vineyard." + ], + "shipwreck": [ + "A shipwreck is a wrecked ship.", + "A shipwreck looks like a sunken ship, with its mast and sails submerged beneath the water.", + "A shipwreck is a ship that has sunken or been wrecked.", + "A shipwreck looks like a ship that has sunk in the water.", + "A shipwreck is a ship that has sunk or run aground.", + "Other than the obvious debris from the ship itself, a typical shipwreck would also include any crates, barrels, or other belongings that were on board the ship when it sank.", + "A shipwreck looks like a sea vessel that has been stuck on a reef or rocks, or has run aground and broken up.", + "A shipwreck looks like a sunken ship.", + "A shipwreck looks like a sunken ship.", + "A shipwreck looks like a sunken ship.", + "The most common way to identify a shipwreck is by looking at its location.", + "A shipwreck is a ship that has been destroyed, sunken, or abandoned at sea.", + "Some ways you can identify a shipwreck are by looking for things like a large metal object in the water, pieces of wood, or anything that looks out of place.", + "The most obvious way to identify a shipwreck is by the presence of wreckage.", + "The most common method of identifying a shipwreck is through the use of sonar.", + "A shipwreck can be identified by looking for pieces of the ship, such as the hull, mast, or engine, in the water.", + "The easiest way to identify a shipwreck is by looking for wreckage on the surface of the water.", + "The most common way to identify a shipwreck is by its wreckage.", + "There are many ways to identify a shipwreck.", + "A shipwreck can be identified by looking for pieces of wood or metal in the water.", + "A shipwreck looks like the remains of a ship that has sunk or has been wrecked.", + "A shipwreck looks like a sinking ship.", + "A shipwreck looks like a sunken ship.", + "A shipwreck looks like a broken ship.", + "A shipwreck is typically a sunken or grounded vessel that is no longer seaworthy.", + "A shipwreck looks like a submerged or partially submerged ship.", + "A shipwreck looks like a broken ship.", + "A shipwreck looks like a large ship that has been sunken into the ocean.", + "A shipwreck is a wrecked ship.", + "A shipwreck looks like a ship that has wrecked.", + "The image is of a large boat that has been shipwrecked and is now half-submerged in water.", + "This image is of a shipwreck off the coast of the Dominican Republic.", + "The image is of a large ship that has been partially sunken and is leaning to one side.", + "The image is of a large shipwreck at the bottom of a murky ocean.", + "I'm not sure what you mean.", + "The image from the internet of a shipwreck shows a large ship that has run aground and is now sitting in shallow water.", + "This image is of a shipwreck called the SS Catterthun.", + "The image is of a large ship that has run aground and is partially submerged in the water.", + "An image of a shipwreck from the internet might show a large ship that has been broken into pieces and is lying on the bottom of the ocean.", + "The image is of a shipwreck that has been battered by the waves and is lying half-submerged in the water.", + " A shipwreck on the coast of Antarctica.", + " A shipwreck off the coast of Gibraltar.", + "Shipwreck of the SS Insubria, circa 1920.", + "The shipwreck of the SS Minnow, as seen from the beach.", + "This shipwreck was caused by a severe storm.", + " The remnants of the shipwreck are all that remain of the vessel.", + " A shipwreck on the coast of Indonesia.", + "Sunken ship off the coast of Bermuda.", + "This shipwreck was discovered in the year 20xx.", + "The HMS Titanic was a British passenger liner that sank in the North Atlantic Ocean in 1912 after hitting an iceberg." + ], + "sailboat": [ + "A sailboat is a type of boat that is propelled by wind power.", + "A sailboat typically has one or two masts, with sails attached.", + "A sailboat is a boat that is propelled by wind power through the use of sails.", + "A sailboat typically has one or more masts, with sails attached, and a hull.", + "A sailboat is a type of boat that is propelled by wind power through the use of sails.", + "Most sailboats have a mast in the center of the boat with sails attached.", + "A sailboat typically has a mast with sails attached, and a rudder to steer the boat.", + "A sailboat is a boat that is propelled by wind power through the use of sails.", + "A sailboat is a boat that uses sails to move across the water.", + "A sailboat typically has one or more masts with sails attached, and a hull.", + "The mast and sails are the most identifying features of a sailboat.", + "You can identify a sailboat by its sails, mast, and keel.", + "Sailboats are usually identified by their sails.", + "You can identify a sailboat by its mast and sails.", + "The mast, sails, and rigging of a sailboat are designed to work together to provide propulsion and steering.", + "The mast of a sailboat is taller than the cabin.", + "The sails of a sailboat are a good way to identify it.", + "A sailboat can be identified by its sails, mast, and keel.", + "The most common sails are triangular, and are referred to as jibs.", + "Many sailboats have a mast with sails.", + "A sailboat typically has a mast with sails attached, as well as a rudder and keel.", + "A sailboat looks like a boat with a sail.", + "Sailboats are boats that have sails.", + "A sailboat looks like a boat with sails.", + "A sailboat has a mast with sails that catch the wind, helping the boat move forward.", + "A sailboat looks like a boat with sails that is used for sailing.", + "A sailboat is typically a boat with sails that is used for sailing.", + "A sailboat typically has one or more masts, with sails attached to the masts.", + "A sailboat is a boat that has sails.", + "A typical sailboat has a long, narrow hull and one or more masts with sails.", + "The image is of a sailboat on a calm sea.", + "The image is of a sailboat out on the water.", + "The image is of a sailboat on the water with the sails billowing in the wind.", + "A sailboat glides across a calm ocean under a bright blue sky.", + "There is a sailboat on the water with the sails up.", + " on waterThe sailboat is a white and blue boat with one sail up.", + "The image is of a white sailboat with blue trim.", + "The image is of a sailboat on a white background.", + "The image is of a sailboat with white sails and a blue hull.", + "An image of a sailboat from the internet shows a white sailboat with blue trim sailing on a body of water.", + "Sailboat on the open water.", + "Sailboat on the open sea.", + "Sailing Away on an Adventure.", + "Sailboat on the water with the sails billowing in the wind.", + "The sailboat cuts through the waves as it makes its way across the open ocean.", + "A sailboat drifts across a calm sea under a clear sky.", + "Sailboat on the water.", + "Sailboat on a beautiful day out on the open water.", + "Sailboats are a popular choice for those who love spending time on the water.", + " A sailboat on a beautiful day." + ], + "yurt": [ + "A yurt is a type of round, portable dwelling used by nomads in Central Asia.", + "A yurt is a round, tent-like structure that is traditionally made out of wood and felt.", + "A yurt is typically a round, wooden frame that is covered in felt or fabric.", + "A yurt is a portables, round tent, traditionally covered with felt, used as a dwelling by pastoralists in Inner Asia.", + "A yurt is a type of dwelling used by nomadic peoples in Asia and the Middle East.", + "A yurt is a type of dwelling that is traditionally used by nomadic people in Central Asia.", + "A yurt is a type of round, portable dwelling used by nomads in Asia and parts of Europe.", + "A yurt is a portable, round tent used as a dwelling by nomads in Central Asia.", + "A yurt typically has a round, wooden frame with walls made from felt or other heavy fabric.", + "A yurt is a round, portable dwelling used by several nomadic groups in the steppes of Central Asia, as well as by the Mongols.", + "The simplest way to identify a yurt is by its round, domed shape.", + "A yurt is a round tent that is made of wood and felt and is used by nomadic people in Central Asia.", + "A yurt is a very specific type of tent-like structure that is traditionally used by nomadic peoples in Central Asia.", + "The traditional yurt is distinguished by its distinctive conical roof and walls that are usually batten-covered.", + "The traditional yurt is a portable, round tent covered with skins or felt and used as a dwelling by pastoral peoples in the steppes of Central Asia.", + "canvas walls, round shape, cone-shaped roof, central skylight.", + "The most obvious way to identify a yurt is by its round shape.", + "A yurt is a type of tent that is used as a portable dwelling.", + "The best way to identify a yurt is to look for the round, domed shape and the lattice walls.", + "A yurt is a round, portable dwelling used by Turkic nomads in the steppes of Central Asia.", + "A yurt is a round, portable structure that is covered with felt or skins.", + "A yurt is a portable, round tent covered with skins or felt and used as a dwelling by pastoral nomads in Siberia, Mongolia, Turkey, and Iran.", + "A yurt is a round, portable dwelling used by nomads in Central Asia.", + "A yurt is a round, semi-permanent tent.", + "A yurt is a circular tent that is usually made out of wood and felt.", + "A yurt is a portable, round tent that is used as a temporary home.", + "A yurt typically has a round, domed shape and is made of a wooden frame that is covered with felt or other insulation.", + "Yurts are circular, semi-permanent structures that consist of a wooden frame that is covered with felt or other insulating material.", + "A yurt typically has a round, domed roof and walls that are made of felt or other insulating material.", + "A yurt looks like a large, round, semi-permanent tent.", + "A yurt is a type of round, portable house used by Turkic nomads in Central Asia.", + "A yurt is a type of portable, round tent that is used as a dwelling by nomadic peoples in Central Asia.", + "A yurt is a round, portable home traditionally used by nomadic people in central Asia.", + "The image is of a yurt set up in a wooded area.", + "An image of a yurt from the internet includes a circular structure with a conical roof.", + "A yurt is a circular, portable dwelling traditionally used by Turkic nomads in Central Asia.", + "A yurt is a round, portable home traditionally used by nomadic peoples in Eurasia.", + "A yurt is a type of dwelling used by many nomadic tribes around the world.", + "The image is of a traditional white yurt with a wood frame.", + "The image is of a yurt in the mountains with a river and trees in the background.", + "A yurt is a portable, round tent traditionally used by nomads in the steppes of Central Asia.", + " A yurt is a portable, round tent traditionally used by Turkic nomads in the steppes of Central Asia.", + "A yurt is a portable, round dwelling used by nomadic peoples in Central Asia.", + " Yard and Yurt.", + "A yurt is a type of tent that is traditionally used by nomadic people in the steppes of Central Asia.", + " caption: Ghanzoui yurt in Mongolia\n caption: A yurt in the Ghanzoui province of Mongolia.", + "A yurt is a portable, round tent traditionally used by Turkic nomads in Central Asia.", + " Traditional dwelling of nomads in Central AsiaA yurt is a traditional dwelling of nomads in Central Asia.", + "A yurt is a type of portable, round tent used by nomadic peoples in Inner Asia.", + "A yurt is a round, portable dwelling used by Turkic peoples in Central Asia." + ], + "website": [ + "A website looks like a collection of web pages that can be accessed through a web browser.", + "A website can look like almost anything.", + "A website typically has a home page that provides an introduction to the website and links to the website's other pages.", + "A website is a set of webpages that are accessed through a web browser.", + "A website is a collection of web pages that are typically accessed through a web browser.", + "A website looks like a group of linked pages that can be accessed through a web browser.", + "A website is a collection of digital files that are stored on a web server.", + "\nA website typically consists of a homepage, which is the main page of the website, and other pages that are accessed through links on the homepage.", + "The layout of a website is designed using HTML code.", + "A website typically consists of text and images, which are laid out in a designated order on individual \"webpages.", + "One way to identify a website is by looking at the URL.", + "There are a few ways to identify a website.", + "There are a few ways to identify a website:\n-The website's URL\n-The website's title\n-The website's tagline or slogan\n-The website's logo or icon.", + "Use a website checker tool to see if a website is real.", + "The best way to identify a website is to look for the website's URL, which is the web address of the site.", + "One way to identify a website is by looking at the URL.", + "Assuming you want to know how to find the website for a specific company or organization, you can typically find it by searching for the company name followed by \".", + "The best way to identify a website is to look for the website's URL, or web address, which should be displayed in the address bar at the top of the web browser.", + "There are many ways to identify a website.", + "There are a few ways to identify a website.", + "The answer to this question depends on the website's design.", + "Most websites have a similar structure which includes a header, a body, and a footer.", + "A website can look like many things.", + "A website can look like anything the creator wants it to look like.", + "There is no one answer to this question as websites can vary greatly in their appearance, layout, and design.", + "A website looks like a combination of text, images, and other multimedia content.", + "A website can look like anything the designer wants it to look like.", + "A website looks like a lot of different things, depending on who made it and what purpose it serves.", + "A website usually consists of multiple web pages that are connected together.", + "A website is a series of webpages that are accessed through the internet.", + "The image from the internet is of a website called \"The Daily Show with Trevor Noah.", + "The image shows a computer screen with a white background and a green \"Follow\" button in the center.", + "An image of a website can be found by doing a Google search.", + "I found an image of a website on the internet that shows a large banner with a photo of a woman and a man sitting in a chairs with a laptop on the table between them.", + "The image is of a website that has a white background with black text.", + "The image is of a website with a blue background and white text.", + "The image is of a website with a blue background and white text.", + "The image is of a website with a white background and black text.", + "I found an image of a website on the internet that shows a woman in a white dress standing in front of a brick wall.", + "A screenshot of a website with a blue header and white background.", + "\nThe home page of the website \"Best of British\" which showcases different aspects of British culture.", + "The website for the law firm of Smith and Jones.", + "Litfire Publishing Company's website.", + "A screenshot of Apple's website.", + "The website for \"The Palace of Fine Arts\" in San Francisco, California.", + " Appealing website designThis website features an appealing design with a clean and organized layout.", + " CraigslistA screenshot of Craigslist, a popular classified ads website.", + "E-commerce websiteA website that allows users to buy and sell products and services online.", + "The website for \"Best Cat Food\" is a great resource for finding information on the best food for your cat.", + " Website showing search results for flights from Los Angeles to New YorkThe website is showing search results for flights from Los Angeles to New York." + ], + "comic book": [ + "A comic book typically has a colorful cover with images of superheroes or other characters, and is bound with staples in the spine.", + "A comic book is typically a bound collection of strips, each of which tells a story, usually over the course of several pages.", + " Comic books are typically around 30 pages long, and they are bound together with staples in the spine.", + "A comic book is a book with illustrations and text that tells a story.", + "A comic book is a book that typically contains sequential art in the form of a story.", + "A comic book is a thin book made of paper that has pictures and words that tell a story.", + "A comic book is a book with comics in it.", + "The modern comic book typically consists of a cover, which contains the title and key images, and a series of interior pages, which are typically divided into panels.", + "A comic book is a bound collection of comic strips, usually in black and white, although some are in color.", + "A comic book typically has a colorful cover with images of characters from the story.", + "There are a few ways to identify a comic book.", + "There are many ways to identify a comic book.", + "One way to identify a comic book is by looking for the logo of the publisher on the front cover.", + "A comic book is a book that contains illustrations and text to tell a story.", + "There are many ways to identify a comic book.", + "A comic book is usually colorful and has pictures and text on every page.", + "There is no one answer to this question, as there is no one way to identify a comic book.", + "A comic book typically has colorful illustrations and could be about any topic, from superheroes to everyday life.", + "A comic book can be identified by its cover, which is usually brightly colored and features the main characters from the story.", + "The panels of a comic book are arranged in a grid.", + "A comic book typically consists of a series of panels that tell a story.", + "A comic book usually has around 20 pages.", + "A comic book typically consists of a series of panels that represent a sequence of action.", + "A comic book typically has a colorful cover with pictures and text.", + "A comic book looks like a book with images and text that tells a story.", + "A comic book usually has around 20-22 pages of comics, plus ads.", + " Comic books are printed on thin, glossy paper.", + "A comic book is a book with sequential illustrations and text.", + "A comic book usually has around 20 to 32 pages.", + "A comic book usually has around 20 pages of sequential artwork.", + "The image is of a woman in a pink dress, standing and looking to the side.", + "A comic book image from the internet features a large, muscular superhero character flying through the air, his cape billowing behind him.", + "-One image from the internet of a comic book is a cover of the popular comic book \"The Amazing Spider-Man.", + " characterIn this image, the comic book character Batman is shown standing on a rooftop in the rain, with his cape billowing around him.", + "This image is of a comic book called \"The Walking Dead\".", + "I found an image of a classic comic book called \"The Amazing Spider-Man.", + "The image is of a comic book cover.", + "The image is of a comic book titled \"The Amazing Spider-Man.", + "The image shows a page from a comic book.", + "The image is of a comic book with the title \"The Amazing Spider-Man\" and the subtitle \"The Greatest Super Hero of All Time!\" The comic book is open to a page with the title character, Spider-Man, in the.", + "\"Batman: The Killing Joke\" is a 1988 one-shot comic book written by Alan Moore and drawn by Brian Bolland.", + "This comic book is called \"The Adventures of Superboy.", + "The Amazing Spider-Man #681.", + "Superman #1, published in June 1938, is the first issue of the original Superman comic book series.", + "The Adventures of Captain America #1.", + "In this comic book, the hero is fighting against a group of evil villains.", + "Bestselling comic book of all time.", + "The comic book is called \"The Adventures of Captain America.", + "Avengers #4, by Stan Lee and Jack Kirby.", + "Avengers: Endgame #1." + ], + "crossword": [ + "A crossword looks like a rectangular grid made up of smaller squares.", + "A crossword is a puzzle in which you must write words in a grid, following clues.", + "A crossword is a puzzle typically consisting of a grid of squares and words that intersect each other.", + "A crossword has a grid of squares, with white and black squares.", + "A crossword looks like a grid of black and white squares.", + "A crossword is a grid of white and black squares.", + "A crossword is typically a grid of white and black squares.", + "A crossword puzzle is a squares grid with clues for each word.", + "A crossword looks like a grid with black and white squares.", + "A crossword is a puzzle in which words are written into a grid of squares, and the words must intersect with each other in the correct order.", + "A crossword is a word puzzle that typically takes the form of a square or a rectangle and consists of black and white squares.", + "The clue will say \"across\" or \"down.", + "Crosswords can typically be identified by their rectangular or square grid shape.", + "A crossword is a type of puzzle that is typically made up of a grid of squares and words.", + "A crossword is typically a square or rectangular grid of white and black shaded squares.", + "A crossword can usually be identified by its grid pattern.", + "A crossword has a regular grid of white and black squares.", + "The clue will say \"SPANISH RIVER\" and the answer will be \"GUADALAJARA.", + "A crossword can be identified by its grid pattern and by the clues that are provided for each word.", + "A crossword has a grid of white and black squares.", + "A crossword is typically a rectangular grid with black and white squares.", + "A crossword looks like a grid with black and white squares.", + "A crossword is a grid of white and black squares.", + "A crossword is a puzzle that is typically made up of a grid of squares and black and white clues.", + "A crossword looks like a grid, with black and white squares.", + "A crossword looks like a grid with dots in between the squares.", + "A typical crossword looks like a rectangular grid with black and white squares.", + "The standard crossword grid is white and consists of black squares arranged in a row-and-column format.", + "A crossword puzzle typically consists of a square or rectangular grid of black and white squares.", + "A crossword has a black and white grid.", + " puzzleThe image is of a crossword puzzle with the word \"ACROSS\" written at the top.", + " puzzleIn the image, there is a crossword puzzle with the clue \"What a ___ picture!\" and the answer \"Snapshot.", + " puzzleThe image is of a crossword puzzle with the clue \"What a waiter brings to a table\" and the answer \"Service.", + " puzzleThe crossword puzzle is made up of black and white squares.", + " puzzleThe crossword puzzle is set against a white background.", + " puzzleA crossword puzzle from the internet is a grid of white and black squares.", + " puzzleThe image is of a crossword puzzle that has been completed.", + " puzzleAn image from the internet of a crossword puzzle shows a grid with clues on the left and right.", + "I cannot provide an image from the internet due to copyright reasons, but an image of a crossword would typically show a grid with black and white squares, with words written in the black squares.", + " puzzleThe image is a close-up of a crossword puzzle with the clue \"Animal known for its long neck\" printed above the boxes for 5 down.", + "The Cryptic CrosswordCan you solve this cryptically tricky crossword?.", + " incomprehensible crossword clue.", + "A completed crossword puzzle.", + "\"The New York Times Crossword Puzzle\".", + "\"I love spending my mornings solving crosswords with a cup of coffee.", + "\nThe Guardian Crossword No.", + " Crossword - completed.", + "The image shows a person working on a crossword puzzle.", + "The New York Times Crossword A daily puzzle that challenges solvers to think outside the box.", + "The CrosswordA difficult puzzle that often takes hours to complete, the crossword is a test of both your knowledge and your mental prowess." + ], + "traffic or street sign": [ + "A traffic or street sign is a rectangular sign made of metal, plastic, or wood.", + "Most traffic or street signs are rectangular and have white or yellow backgrounds with black lettering or symbols.", + "A traffic or street sign is typically a rectangular shape with a white or yellow background and black lettering.", + "A typical traffic or street sign is a rectangular shape with a red or white background.", + "Most traffic or street signs are rectangular and have white or yellow backgrounds with black letters or symbols.", + "A traffic or street sign is usually a rectangular or square shape with a white or yellow background.", + "A traffic or street sign has a white background with black lettering.", + "A traffic or street sign is typically a rectangular or square shaped sign made of reflective metal or plastic.", + "A traffic or street sign may be octagonal, rectangular, or some other shape, and is typically red, white, or yellow.", + "A traffic or street sign is a sign that is placed on a street or road to give information to drivers.", + "The shape of a traffic or street sign can usually help you identify it.", + "One way to identify a traffic or street sign is by its color.", + "There are several ways to identify a traffic or street sign.", + "The shape, color, and words on a traffic or street sign can help you identify it.", + "Traffic signs are typically red and octagonal with white lettering.", + "Traffic signs are typically rectangular and have red, yellow, or green colors.", + "Most traffic or street signs are rectangular and have red, white, or black letters or symbols on a green, yellow, or blue background.", + "Most traffic or street signs are rectangular and have a white background with black letters or symbols.", + "Most traffic or street signs are rectangular and have white backgrounds with black lettering.", + "Traffic and street signs are typically rectangular and have a white background with black text.", + "Traffic signs are usually circular, with a red edge and white background.", + "Most traffic signs are octagons with red backgrounds and white letters.", + "A traffic or street sign typically has a white or yellow background with black letters or symbols.", + "Most traffic or street signs are either rectangular or triangular.", + "Traffic and street signs are usually red, yellow, or white, and have black lettering or symbols.", + "Traffic and street signs are usually round or rectangular and have different colors and symbols on them.", + "A traffic or street sign typically looks like a constructed shape with words or symbols on it.", + "Most traffic or street signs are rectangular and have a red, orange, or yellow background with black or white lettering.", + "A traffic or street sign typically has white lettering on a green background.", + "A traffic or street sign typically has a rectangular shape and is made of reflective metal.", + "The image is of a stop sign.", + "The image is of a red octagon-shaped traffic sign with the word \"STOP\" written in white lettering.", + "The image is of a traffic sign that says \"no turn on red.", + "The image is of a red and white traffic sign that reads \"Stop\" in English.", + "In the image, there is a traffic sign that is shaped like a octagon.", + "A traffic sign on the side of a road that says \"STOP\" in big, red letters.", + "This image is of a blue traffic sign with a white image of a car and a pedestrian crossing.", + "The image is of a traffic sign that says \"Yield.", + "An image of a traffic or street sign from the internet shows a large blue sign with white letters and arrows.", + "The image is of a stop sign.", + "Yield.", + "\"No Parking\".", + " \"STOP\"A caption of an image of a couple holding hands: \"Love\".", + "\"Do not enter\".", + "Do Not Enter - Violators Will Be Prosecuted.", + "No standingThis sign indicates that you are not allowed to stand in the marked area.", + "STOPNo entryyield.", + "No Outlet.", + "\"No U-Turn\".", + "No Parking." + ], + "traffic light": [ + "A traffic light typically consists of a red light, a yellow light, and a green light.", + "A traffic light usually consists of three lightbulbs arranged in a vertical line.", + "A traffic light is a red, yellow, and green light that is hung above a road.", + "A traffic light typically has three colored lights that face the oncoming traffic: red, yellow, and green.", + "It has a red light, a yellow light and a green light.", + "A traffic light is a set of two or more lights that are hung from a pole in the middle of the road.", + "A traffic light is a vertical set of three different color lights: red on the top, yellow in the middle, and green on the bottom.", + "A traffic light is a red, yellow, and green light that is hung from a wire above a road.", + "A traffic light typically has three circular lights that are red, yellow, and green.", + "A traffic light is a red, yellow, and green light that is used to control the flow of traffic.", + "A traffic light is typically a red, yellow, and green light that is hung above an intersection.", + "There are three lights on a traffic light.", + "A traffic light is a device that uses light to indicate when vehicles should stop, yield, or proceed.", + "There are a few ways to identify a traffic light.", + "Traffic lights are typically red, yellow, and green.", + "By its red, yellow, and green colors.", + "A traffic light can be identified by its red, yellow, and green lights.", + "A traffic light is typically a red, yellow, and green light that is hung from a pole in the middle of the road.", + "A traffic light is a red, yellow, and green light that is used to control the flow of traffic.", + "Traffic lights are typically red, yellow, and green.", + "A traffic light usually has three lights: red, yellow, and green.", + "A traffic light is a red, yellow, and green light that helps drivers know when they can go, slow down, or stop.", + "The standard traffic light has a red light on the top, a yellow light in the center, and a green light on the bottom.", + "A traffic light is a set of red, green, and yellow lights that are used to control the flow of traffic.", + "A traffic light has three lights: red, yellow, and green.", + "A traffic light looks like a red, yellow, and green light.", + "A traffic light typically has three lights: red, yellow, and green.", + "A traffic light is a red, yellow, and green light that is hung above the road.", + "A traffic light has three lights that are either red, green, or yellow.", + "Is this what you are looking for?.", + "An image of a traffic light from the internet may show a red, yellow, and green light, typically in a vertical line.", + "A traffic light is a set of lighted signals that control the movement of traffic.", + "The image is of a traditional traffic light with three lights.", + "The image is of a traditional traffic light with red, yellow, and green lights.", + "An image from the internet of a traffic light might show a traditional red, yellow, and green light, often with a pedestrian crossing signal beneath it.", + "The image is of a traditional traffic light with three lights.", + "This image is of a traffic light at an intersection.", + "The image shows a traffic light at an intersection.", + "The image from the internet of a traffic light shows a traditional three-color light mounted on a pole.", + "This image is of a vertical traffic light.", + "A traffic light against a blue sky.", + "Traffic light.", + "Traffic LightA traffic light is a signal at the side of a road that controls the movement of traffic.", + " This traffic light is on the corner of Main and First Streets.", + "\"Do not cross the street until the light turns green.", + "Traffic light at an intersection.", + "Red Light.", + "A traffic light at an intersection.", + "This is a traffic light.", + "A traffic light in the United States." + ], + "dust jacket": [ + "A dust jacket is a paper or fabric covering for a book.", + "A dust jacket usually has a paper cover that is wrapped around the hardcover of a book.", + "A dust jacket is a paper cover that is placed over a hardcover book.", + "A dust jacket is a thick sheet of paper that is wrapped around a hardcover book.", + "A dust jacket is a cover for a book, often made of paper, that protects the book's cover from damage.", + "A dust jacket is a protective cover that is usually made out of paper and is placed over the outside of a book.", + "Most dust jackets are made of paper and are wrapped around the outside of a hardcover book.", + "A dust jacket is a protective covering for a book, typically made of paper, and usually printed with text and illustrations on the inside and outside.", + "A dust jacket is a protective cover that is placed over a book.", + "A dust jacket is a protective cover that is wrapped around the hardcover of a book.", + "A dust jacket is a paper or cardboard cover that is placed over the hardcover of a book.", + "The dust jacket is the removable paper cover that is placed over the hardcover binding.", + "The dust jacket is the paper cover that comes on hardcover books.", + "A dust jacket is the paper cover that comes on a hardcover book.", + "A dust jacket is a thin paper cover that is placed over the hardcover of a book.", + "A dust jacket is the removable paper cover on a hardcover book.", + "Dust jackets are usually made of paper and have the title of the book and the author's name printed on the front.", + "A dust jacket is a paper cover that is placed over the hardcover of a book.", + "A dust jacket is a removable paper cover that protects a book.", + "A dust jacket is a protective cover usually made of paper that is wrapped around the hardcover or softcover of a book.", + "A dust jacket is the outer cover of a book, typically made of paper.", + "A dust jacket is a cover for a book, typically made out of paper and with a design on the front.", + "A dust jacket is a removable paper or cardboard cover protecting the binding of a hardcover book.", + "A dust jacket is a piece of paper that is wrapped around a book.", + "A dust jacket is a cover that is placed over a book.", + "A dust jacket is a protective cover that is placed over the hardcover binding of a book.", + "A dust jacket is a type of paper cover used to protect a book.", + "The dust jacket is the cover of a hardcover book.", + "A dust jacket is a protective cover that is placed over the cover of a book.", + "A dust jacket is put on a hardcover book and has the book's title, the author's name, and a brief description of the book on the front.", + "An image from the internet of a dust jacket is a photograph of a book cover with a protective layer of paper or cloth over it.", + "The dust jacket is white with a blue and white image of a ocean with a small blue boat in the center.", + "An image of a dust jacket from the internet shows a cover with a red background and a white spiral design.", + "A dust jacket is a paper cover that is placed over a hardcover book.", + "The image is of a dust jacket with black background and white text.", + "An image from the internet of a dust jacket shows a white cover with a black and white image of a woman's face.", + "The image is of a dust jacket for the book \"The Catcher in the Rye\" by J.", + "This is an image of a dust jacket.", + "The image is of a dust jacket for the book \"The Catcher in the Rye\" by J.", + "I found an image of a dust jacket on the internet that features a blue background with a white spiral in the center.", + "The Catcher in the Rye, by J.", + "The Way of the World by Sinclair Lewis.", + "The Catcher in the Rye, a novel by J.", + "This is the dust jacket for J.", + "The Catcher in the Rye by J.", + "The Grapes of Wrath by John Steinbeck.", + "\"The Grapes of Wrath\" by John Steinbeck.", + "The Catcher in the Rye by J.", + "\"The Crow\" by Sean Eaton.", + "The Catcher in the Rye, by J." + ], + "menu": [ + "A menu is typically a list of food and drink items available at a restaurant, cafe, or bar.", + "A menu is a list of food and drink items available at a restaurant, cafe, or bar.", + "A menu consists of a list of items that are available to be ordered at a restaurant.", + "A menu looks like a list of food items that a restaurant offers.", + "A menu is typically a list of food and drink items that are available at a restaurant.", + "A menu is typically a list of food and drink items that are available at a restaurant, cafe, or bar.", + "A menu is a list of options for a particular food service.", + "A menu is a list of items that are available to be chosen.", + "A menu is typically a list of food and drink items offered by a restaurant.", + "A menu is a list of food and drink items that are available at a restaurant, cafe, or bar.", + "There are a few ways to identify a menu.", + "A menu can typically be identified by its packaging.", + "A menu can typically be identified by its title, which is often printed at the top of the menu.", + "A menu can typically be identified by its title, which is usually displayed at the top of the menu.", + "Items listed on a menu are typically organized into sections that include appetizers, main courses, side dishes, and desserts.", + "By looking at the food options and their prices.", + "A menu is a list of food items that a restaurant offers.", + "A menu is a list of food and drink items offered by a restaurant.", + "A menu is typically a list of food items that are available to order at a restaurant.", + "One way to identify a menu is by its title.", + "A menu is a list of items that are available to order at a restaurant, cafe, or other food service establishment.", + "A menu is a list of food and drink options.", + "A menu is a list of food items that are available to order at a restaurant.", + "There is no single answer to this question as menus can vary greatly in appearance.", + "A menu is a list of food items that a restaurant offers.", + "A menu contains a list of items that are available to order at a restaurant.", + "A menu is a list of a food and drink that is available at a restaurant, cafe, or bar.", + "A menu is a list of food and drink options from which to choose.", + "A menu is a list of food items that a restaurant offers.", + "Some menus are simple lists of food items and their prices, while others are more elaborate and include images and descriptions of the dishes.", + "The image is of a menu for a restaurant called \"The Cheesecake Factory\".", + "The image is of a menu with three sections: starters, main course, and dessert.", + "The image is of a blackboard with the words \"Coffee menu\" written in chalk.", + "The image is of a menu with six sections: appetizers, soup, salad, entree, side, and dessert.", + "This image is of a restaurant menu.", + "A menu from a restaurant.", + "The image is a digital rendering of a menu with various food items listed.", + "This is an image of a restaurant menu.", + "The image is of a menu with various food and drink items listed.", + "Image is of a white rectangular menu with black text.", + "Catch of the Day: Salmon with Mashed Potatoes and Broccoli.", + "Items and pricing subject to change.", + "The menu features a variety of seafood options, including shrimp, crab, and lobster.", + "Fancy Feast__1.", + "Cafe Menu:Coffee - $2.", + "Appetizers-mozzarella sticks\n-fried pickles\n-chicken wingsEntrees-chicken parmesan\n-eggplant parmesan\n-lasagnaDesserts.", + "Local pub fare including hamburgers, sandwiches, and salads.", + "To-go menu for The Little EateryAppetizers1.", + "\nA menu of upcoming events1.", + " Image of a laminated menu for the restaurant \"Taco John's." + ], + "plate": [ + "A plate is a flat, round piece of ceramic, glass or metal that is used for eating food from.", + "A plate is a flat, round, dish-shaped piece of tableware on which food can be served.", + "A plate is a flat, usually circular piece of tableware on which food can be served.", + "A plate is typically a flat, round dish with a slightly raised edge that is used for eating food from.", + "A plate typically has a flat surface and is circular or rectangular in shape.", + "A plate looks like a circular piece of flatware with a raised edge that is used to hold food.", + "A plate is a round, flat dish with a raised edge that is used for eating food.", + "A plate is a flat, usually circular object on which food is served.", + "A plate looks like a circular piece of metal with a smooth surface.", + "A plate looks like a flat, round piece of dishware on which food is served.", + "The best way to identify a plate is by the unique pattern of numbers and letters that is assigned to it by the state.", + "A plate is a flat, often round dish used for eating.", + "The easiest way to identify a plate is by its markings.", + "On a metal plate, there is a raised edge around the entire circumference.", + "There are many ways to identify a plate.", + "The easiest way to identify a plate is by its shape.", + "Each plate has a unique identifier that is etched into the metal.", + "On a basic level, you can identify a plate by its round shape.", + "The manufacturing process of a plate includes a metal plate being stamped with a design.", + "A plate is typically a flat, round piece of dinnerware.", + "Most plates are circular, and have a raised rim to keep food from sliding off.", + "A dinner plate is typically round with a flat surface.", + "A plate looks like a dish that you put food on.", + "A plate looks like a flat, round dish with a raised rim.", + "A plate looks like a flat, round piece of dinnerware.", + "A plate typically has a flat surface with a lip around the edge, which is used to keep food from sliding off.", + "What do you mean by \"plate?\".", + "A plate is circular and flat.", + "Most plates are circular, and have a raised lip around the edge to keep food from falling off.", + "A dinner plate is typically round with a flat surface.", + "This image is of a plate with different food on it.", + " of foodThis image is of a plate of food from the internet.", + " of foodThis is a picture of a plate of food from the internet.", + " of foodI found an image on the internet of a plate of food that consisted of what looked to be roasted chicken, mashed potatoes, and green beans.", + " of foodThis image is of a plate of food from the internet.", + "The image is of a white plate with a blue and white checkered pattern around the edge.", + " of spaghettiThe image is of a plate of spaghetti with a fork and a spoon on either side of it.", + " of foodThe image is of a plate of food that includes a side of roasted vegetables, a grilled chicken breast, and mashed potatoes.", + " of foodThis is an image of a plate of food from the internet.", + " of foodThe image is of a rectangular white plate with three circular depressions.", + "This is a typical breakfast plate with eggs, bacon, toast, and coffee.", + "A plate with food on it.", + "A delicious plate of food including chicken, mashed potatoes, and green beans.", + "A plate full of foodA plate with a knife and fork on itA plate of food with a fork and knife.", + "Freshly baked cookies on a plate.", + "This is a plate of sushi.", + "A plate of food, including a chicken breast, green beans, and mashed potatoes.", + "A plate overflowing with food.", + "Deviled eggs on a plateA caption of an image of a couple:A happy couple celebrating their anniversary.", + "A delicious plate of food." + ], + "guacamole": [ + "A guacamole typically has a greenish-brown color and is speckled with brown seeds from the avocado.", + "A guacamole typically contains avocado, lime juice, onion, tomato, and cilantro.", + "Most guacamoles are green, with brown specks throughout.", + "Guacamole typically has a greenish-brown color and is speckled with bits of avocado, onion, tomato, and cilantro.", + "Guacamole is a greenish-brown dip made from smashed avocados, onions, tomatoes, and chili peppers.", + "A guacamole is a dipping sauce that is typically made with mashed avocados, onions, tomatoes, lime juice, and cilantro.", + "A guacamole is a smooth paste made from avocados, onions, chili peppers, and tomato.", + "A guacamole is a smooth, creamy dip made from avocados, tomatoes, onions, chili peppers, and lime juice.", + "Guacamole is a greenish-brown condiment made from mashed avocado, onions, garlic, tomato, and chili peppers.", + "A guacamole is a smooth green paste made from avocados, onions, chili peppers, and tomatoes.", + "A guacamole is typically a greenish-brown color and has a mushy texture.", + "The color of guacamole is usually green, brown, or black.", + "Guacamole is a type of Mexican dip that is usually made from mashed avocados,lime juice, onions, and chili peppers.", + "There are a few key indicators that can help you to identify guacamole.", + "Guacamole is usually green, brown, or black.", + "There are a few ways to identify guacamole.", + "Guacamole is a green dip that is made from avocados, lime juice, cilantro, and onions.", + "It is a smooth paste made from avocados, salt, onions, and chili peppers.", + "A guacamole is a dip or salad dish that is made from mashed avocado, lime juice, chili peppers, and salt.", + "Guacamole is a greenish-brown dip that is made from avocados, onions, tomatoes, and chili peppers.", + "A guacamole is a dip or spread made from avocados, salt, lime juice, chilies, and onions.", + "A guacamole looks like a traditional avocado-based dip that is green in color and has a smooth texture.", + "A guacamole typically has a greenish-brown color and is lumpy in texture.", + "A guacamole looks like a green, mushy dip.", + "A guacamole is a type of avocado dip that is usually green in color.", + "Image result for guacamole ingredients.", + "A guacamole typically has a greenish-brown color and a smooth, creamy texture.", + "Guacamole looks like a smooth paste, often green or brown in color, made from avocados and other ingredients.", + "Most guacamole recipes include mashed avocados, diced onions, diced tomatoes, and diced jalape\u00f1os.", + "A guacamole looks like a green dip made from avocado, lime juice, salt, and chili peppers.", + " dishThe image is of a guacamole dish with chunks of avocado, tomatoes, onions, and cilantro.", + " recipeThe image is of a guacamole recipe that includes avocado, diced tomatoes, onion, cilantro, lime juice, and salt.", + " dishThe image is of a guacamole dish that has been prepared with various ingredients including avocado, tomato, onion, and cilantro.", + " recipeThe image is of a bowl of guacamole with chips around it.", + " dishA guacamole dish is typically a bowl filled with a greenish-brown paste.", + " recipeThe image is of a guacamole recipe that includes avocado, onion, tomato, cilantro, lime, and salt.", + " dishI found an image on the internet of a guacamole dish that looks absolutely delicious! It is a close-up of a bowl filled with fresh guacamole, and it appears to have a lot of onions, tomatoes.", + "An image of guacamole from the internet would likely show a dish of green and brown guacamole with chips or bread on the side.", + "A photograph of a guacamole dip, with chunks of avocado, tomatoes, onions, and cilantro in a bowl.", + "The image is of a guacamole that is light green in color with chunks of avocado, tomato, and onion visible.", + "Homemade guacamole made with fresh avocados, diced tomatoes, onions, and cilantro.", + "Guacamole is a traditional Mexican dish made from avocados, onions, tomatoes, and chili peppers.", + "Guacamole is a delicious dip made from avocados, onions, tomatoes, and various spices.", + "This guacamole is perfect for your next party! It's easy to make and full of flavor.", + "This guacamole looks delicious!.", + "This guacamole is extra creamy and delicious!.", + "This guacamole looks delicious!.", + "This guacamole is perfect for your next party! It's full of flavorful ingredients like fresh avocado, diced tomatoes, and cilantro.", + "This guacamole looks delicious!.", + "This delicious guacamole is perfect for your next party!." + ], + "consomme": [ + "A consomme looks like a clear soup that has been made from beef or veal stock.", + "A consomme is a type of broth that is very clear and has a deep flavor.", + "A consomme is a clear soup that is usually made with beef or veal stock.", + "A consomme is a type of clear soup that is made with well-flavored stock and usually served with garnishes.", + "A consomme is a clear soup made from double-strength stock.", + "A consomm\u00e9 looks like a clear soup that has been made by simmering down and then clarifying beef or chicken broth.", + "A consomme is a type of clear soup that is typically made from richly flavored stock that has been clarified and skimmed of any fat.", + "A consomme is a clear soup that is made by clarifyings stock.", + "A consomme is a type of clear soup that is made by clarifying stock.", + "A consomme is a clear soup that is made with a brown stock.", + "A consomme is a type of soup made from clear beef broth.", + "A consomme is a type of soup that is typically clear and made with a cooked meat or fish stock.", + "Consomm\u00e9 is a type of soup that is typically clear and made with beef or chicken stock.", + "The easiest way to identify a consomme is by its deep, clear color and smooth texture.", + "A consomme is a clear soup made from cooking down meats and vegetables.", + "A consomme is a clear soup that is usually made from beef or veal stock.", + "A consomme is a clear soup that is made from beef, veal, or chicken stock that has been clarified and strained.", + "A consomme is traditionally a clear soup made from beef or veal stock that has been highly clarified.", + "A clear soup made from highly seasoned stock and usually containing shredded meat or vegetables.", + "Consomm\u00e9 is a type of clear soup that is made from richly flavored stock that has been clarified and strained.", + "A consomme is a type of clear soup that is made from a concentrated stock or bouillon that has been clarified.", + "a clear soup made with strained meat or vegetable broth.", + "A consomme is a type of soup that is typically clear and made with beef or chicken stock.", + "A consomme is a type of soup that is characterized by its clear, amber-colored broth.", + "A consomme is a type of clear soup that is made by simmering meat or vegetables in water.", + "A consomme looks like a clear, dark brown soup.", + "A consomme is a type of soup that is typically clear and made with a variety of different meats and vegetables.", + "A consomme is a clear soup made from meat, game, poultry, or fish.", + "A soupy liquid with small pieces of meat or vegetables in it.", + "A consomme is a type of clear soup that is made with chicken or beef broth.", + "A consomme is a clear soup made from beef, chicken, or veal stock that has been clarified and highly seasoned.", + "picture of a golden or amber colored soup with a clear broth, typically served as an appetizer.", + "A gourmet-quality beef consomme dish is served with a side of fresh toast and garnished with chives.", + "An image of a consomme from the internet shows a clear, golden-brown soup with a foamy surface.", + "The image is of a deep, reddish-brown soup with a clear broth.", + "This image is of a classic French consomme, made with a light beef stock and with a beautiful clear and rich flavor.", + " dishAn image from the internet of a consomme dish shows a clear soup with a long spoon in it.", + "A consomme is a clear soup made from strained meat or vegetable broth.", + "A consomme is a clear soup, traditionally made from beef stock.", + "An image from the internet of a consomme would show a clear broth with a variety of meats and vegetables in it.", + "Consomme is a type of broth that is typically made from meat, bones, and vegetables.", + "A traditional French consomme, made with rich beef broth and clarifying egg whites.", + "Consomme, a clear soup made with beef or chicken broth, is notoriously difficult to make.", + "A French classic, this clear broth is loaded with flavor and perfect for a light meal.", + "This consomme is a clear soup made from beef broth.", + "Clear Consomme with Noodles, Vegetables, and Herbs.", + "This consomme looks delicious!.", + "This is a consomme, a type of clear soup made with meat or fish stock.", + "\"A consomme is a type of soup made from a clear broth that has been double-strained.", + "This is a consomme, a type of clear soup made from richly flavored stock." + ], + "hot pot": [ + "A hot pot is a large pot filled with steaming hot water.", + "A hot pot typically has a large, circular base that is filled with either water or broth.", + "A hot pot is a pot that is used to cook food in.", + "A hot pot is a type of cooking appliance that is used to cook food in a liquid.", + "A hot pot is a large, rounded pot with a lid that is used for cooking.", + "A hot pot can be any type of pot, but it is usually a large metal pot with a handle.", + "A hot pot is a round, metal pot that is placed over a heating element on the stove.", + "A hot pot is a pot of hot water that is used to cook food.", + "A hot pot is a bowl of broth that is heated up and served with various ingredients that you can cook in the broth.", + "A hot pot is a ceramic or metal pot that is heated from underneath.", + "A hot pot can be identified by its round or oval shape, its short legs, and its lid.", + "If you're looking for a hot pot at a restaurant, it will likely be listed under \"Sichuan\" cuisine.", + "A hot pot is usually round or oval, and has a heavy bottom for evenly distributing heat.", + "A hot pot can be identified by its deep, round bowl and lid.", + "A hot pot can be identified by its unique shape.", + "A hot pot is a pot of boiling water in which food is cooked.", + "A hot pot is a container of hot liquid, usually water, in which food is cooked.", + "A hot pot can be identified by its round shape and handle on the side.", + "A hot pot is a round, metal pot with a handle and a lid.", + "A hot pot is typically made of cast iron or ceramic and is used to cook food in a broth.", + "a hot pot is a small portable cooker that consists of a base unit with a removable inner pot.", + "A hot pot looks like a large, deep pot with a handle on one side and a lid on the other.", + "A hot pot is a type of cooking appliance that is used to boil water or cook food.", + "A hot pot is a large, round pot that is placed in the middle of a table.", + "A hot pot is a small, usually round pot with a handle.", + "A hot pot is a pot where you can cook food in hot water.", + "A hot pot is a pot that is used to cook food.", + "A hot pot is a pot that has been heated up so that it is hot.", + "Hot pot is a type of cooking that involves boiling a variety of ingredients in a large pot of water.", + "A hot pot is a ceramic pot that is used to cook food.", + "This image from the internet shows a hot pot with a lid on it.", + "A hot pot is a large pot of boiling water in which food is cooked.", + "A hot pot is a large pot of boiling water in which food is cooked.", + "In the image, there is a white hot pot with a colorful ingredients inside on a wooden table.", + "Image shows a large, red ceramic pot with a lid.", + "A hot pot image from the internet shows a pot of boiling water with various vegetables and meats cooked inside.", + "An image of a hot pot can be found here: http://www.", + "A pot of bubbling water on a stove with a ladle in it.", + "A hot pot is a type of communal cooking from East Asia in which a simmering pot of broth is placed in the center of a table, and various ingredients are placed into the broth to cook.", + "A hot pot is a cooking appliance that is used to cook food in a simmering liquid.", + "A bowl of hot pot, a traditional Chinese dish consisting of a simmering soup containing various meats and vegetables.", + "A warm and comforting bowl of hot pot on a cold winter's day.", + "A hot pot bubbling away on the stove, ready to be enjoyed.", + "Local delicacy! A hot pot of soup simmering on a stove.", + "A hot pot of boiling water, ready for cooking.", + "Traditional Chinese hot pot with a variety of meats, vegetables, and noodles.", + "A delicious hot pot, perfect for a winter meal!.", + "This is a hot pot, a traditional Chinese dish.", + "This hot pot looks delicious! It's filled with a variety of meats, vegetables, and noodles - perfect for a winter meal.", + " A bubbling pot of Sichuan-style hot pot, served with a variety of fresh meats, vegetables, and dipping sauces." + ], + "trifle": [ + "A trifle is a dessert that typically consists of layers of sponge cake, fruit, custard, and whipped cream.", + "A trifle is a dessert that is typically made with layers of sponge cake, fruit, custard, and whipped cream.", + "A trifle typically consists of layers of cake or biscuits, fruit, custard or cream, and sometimes alcohol.", + "A trifle is a dessert that consists of layers of sponge cake, fruit, custard, and whipped cream.", + "Trifles are typically small, single-serving desserts that include layers of cake, pudding, fruit, and other sweet ingredients.", + "A trifle is a dessert that has custard, whipped cream, and fruit.", + "A trifle is generally a layer cake with custard or whipped cream in between the layers.", + "A trifle is a dessert typically made with layers of fruit, custard, and cake.", + "A trifle is a layered dessert made with custard, whipped cream, fruit, sponge cake, and jam.", + ".", + "A trifle is a dessert that typically consists of layers of cake, custard, fruit, and whipped cream.", + "A trifle is a type of dessert that typically consists of layers of cake, fruit, custard, and cream.", + "A trifle is a dessert that consists of layers of cake, fruit, and custard.", + "A trifle is a dessert that consists of layers of cake, fruit, custard, and whipped cream.", + "A trifle is usually an English dessert that is made with layers of sponge cake, fruit, custard, and whipped cream.", + "A trifle is a dessert that typically consists of layers of cake, fruit, custard, and whipped cream.", + "A trifle is a dessert that is typically made with whipped cream, fruit, and cake or cookies.", + "A trifle is a type of dessert which typically consists of layers of fruit, custard, cream, and cake.", + "A trifle is a dessert that typically consists of a layer of sponge cake or ladyfingers soaked in a layer of fruit syrup or liqueur, a layer of custard or whipped cream, and a layer of fruit.", + "Typically, a trifle is a dessert that consists of layers of fruit, custard, cake, and whipped cream.", + "A trifle is a layered dessert that typically consists of cake or ladyfingers soaked in a liquor, like brandy or rum, then layered with fruit, custard, and whipped cream.", + "A trifle is a dessert made with layers of sponge cake, fruit, cream, and custard.", + "A trifle typically consists of a layer of sponge cake, covered in fruit, custard, and whipped cream.", + "A trifle is a dessert that consists of layers of fruit, sponge cake, and custard.", + "A trifle has many layers, usually consisting of cake or biscuits, fruit, jam, custard, and whipped cream.", + "A trifle is a type of dessert that typically consists of layers of cake, fruit, and custard.", + "A trifle is a light dessert that is usually made with layers of sponge cake, fruit, custard, and whipped cream.", + "There is no definitive answer to this question, as the appearance of a trifle will vary depending on its ingredients and the method used to prepare it.", + "A trifle is a dessert that typically consists of layers of cake, fruit, custard, and cream.", + "A trifle is a dessert that consists of a layer of sponge cake, a layer of fruit, a layer of custard, and a layer of whipped cream.", + "I found an image on Google of a trifle that looks very tasty.", + "A trifle is a light dessert that typically consists of layers of fruit, sponge cake, and custard.", + "A trifle is a dessert that typically consists of layers of cake, fruit, custard, and whipped cream.", + "An image of a trifle from the internet shows an ornate dessert with multiple layers.", + "The image shows a trifle in a glass bowl.", + "The trifle is a dessert that is typically made of layers of cake, custard, fruit, and whipped cream.", + "A trifle is a layered dessert that consists of cake, fruit, custard, and whipped cream.", + "This is an image of a traditional English trifle.", + "An image of a trifle from the internet shows a layered dessert with a light, fluffy cake at the bottom, followed by a layer of fruit, usually berries, and then a layer of custard or cream.", + "A trifle is a layered dessert that typically consists of cake, fruit, custard, and whipped cream.", + "This is a trifle.", + "A delicious trifle made with layers of cake, fruit, and custard.", + "A delicious trifle, perfect for any occasion!.", + "This trifle looks delicious! Layers of cake, fruit, and custard topped with whipped cream make for a perfect dessert.", + " A traditional trifle with raspberries, sponge cake, and custard.", + "A delicious trifle made with layers of sponge cake, fruit, custard, and whipped cream.", + " A classic English trifle, made with layers of sponge cake, fruit, custard, and whipped cream.", + " A traditional English trifle, layered with fruit, sponge cake, and custard.", + "A trifle is a layered dessert made with custard, fruit, and cake.", + "A plated trifle with raspberry sauce and whipped cream." + ], + "ice cream": [ + "A scoop of ice cream is generally oval shaped and has a smooth, curved top.", + "Most ice cream is white or light cream in color.", + "ice cream is a frozen dessert usually made from milk, cream, sugar, and flavors.", + "A ice cream is a light, creamy dessert made from frozen milk or cream and flavorings.", + "A ice cream is cold, creamy, and comes in many different flavors.", + "A scoop of ice cream generally has a soft, creamy texture and is light in color.", + "A ice cream is a sweet, cold dessert made from cream, milk, sugar, and flavorings.", + "Ice cream is a creamy, smooth, and sometimes sugary food that is usually made from milk and cream.", + "A scoop of ice cream is generally round and can be any flavor.", + "A ice cream is a frozen food typically made from dairy products, such as milk and cream, and often combined with fruits or other ingredients and flavors.", + "The easiest way to identify ice cream is by its appearance.", + "The first way to identify a ice cream is by looking at the color.", + "A ice cream is a type of dessert that is made from cream and milk that is frozen and then churned to create a smooth, creamy texture.", + "There are many ways to identify ice cream.", + "A ice cream is a frozen dessert that is usually made from milk, cream, and sugar.", + "one way to identify ice cream is by its soft, creamy texture.", + "The main way to identify if something is ice cream is by its appearance and texture.", + "There are many ways to identify ice cream.", + "A ice cream is usually white or cream-colored, and is sometimes flecked with ice crystals.", + "The most obvious way to identify ice cream is by its appearance.", + "A ice cream looks like a sweet, cold treat that is often eaten on a hot day.", + "A scoop of ice cream generally looks like a small mound or dome.", + "A ice cream looks like a cone with ice cream on top.", + "A ice cream looks like a white, creamy, and smooth food that is often eaten as a treat.", + "Most ice cream is white or light in color.", + "A ice cream looks like a tasty, refreshing treat!.", + "A ice cream looks like a scoop of ice cream on top of a cone.", + "Some common ice cream flavors are chocolate, strawberry, and vanilla.", + "A typical ice cream is white or pale cream in color, and has a smooth, creamy texture.", + "A typical ice cream is white or off-white in color and has a smooth, creamy texture.", + " coneThis image is of a classic ice cream cone with vanilla ice cream.", + "A picture of a small, cream-colored ice cream cone with a scoop of pale pink sherbet on top.", + " cartThis image is of an ice cream cart that is covered in colorful decorations.", + "An image from the internet of a ice cream is a picture of a scoop of ice cream, usually with a cone or waffle cone, with various toppings.", + " coneThe ice cream cone is a tall, triangular cone of ice cream, with a rounded scoop of ice cream on top.", + "The image is of a small, white cup with a brown and white ice cream cone perched on top of it.", + "It's a soft-serve ice cream in a cone with sprinkles.", + " coneThis image is of a ice cream cone that is dripping with chocolate syrup.", + "This image is of a ice cream cone with three different flavors of ice cream.", + " sundaeA bowl of ice cream with three different flavors, each with its own toppings.", + " A scoop of ice cream melting in a cone on a hot day.", + "A mouth-watering ice cream from a local shop.", + "\"I scream, you scream, we all scream for ice cream!\".", + "This is a picture of an ice cream.", + "A woman is eating ice cream while standing outside.", + "A scoop of ice cream on a cone.", + " A woman smiling and holding a waffle cone with two scoops of ice creamA satisfied customer enjoys her ice cream on a hot summer day.", + " This is a strawberry ice cream cone.", + "A woman eating ice cream on a hot day.", + " Vanilla ice cream in a cup with a spoon." + ], + "popsicle": [ + "A popsicle typically has a long, thin handle with a rounded end.", + "A popsicle looks like an ice cream on a stick.", + "A popsicle is a ice cream on a stick.", + "A popsicle is a frozen treat on a stick.", + "A popsicle looks like a frozen treat on a stick.", + "A popsicle is a frozen treat on a stick.", + "A popsicle looks like a skinny ice cream cone.", + "A popsicle is a frozen treat on a stick.", + "A popsicle typically has a well-defined shape, often rectangular, cylindrical, triangular, or round.", + "A popsicle is typically a frozen fruit juice or ice cream treat on a stick.", + "A popsicle can be identified by its long stick and its shape, which is usually either round or oval.", + "A popsicle is a type of ice pop or frozen pop.", + "A popsicle is a handheld ice pop.", + "A popsicle is a frozen dessert on a stick.", + "A popsicle is a frozen fruit or dessert on a stick.", + "Popsicles generally have a long, thin stick sticking out of them.", + "A popsicle is a frozen dessert on a stick.", + "A popsicle is a frozen treat that is typically made from fruit juice or syrup and is held on a stick.", + "One way to identify a popsicle is by its color.", + "A popsicle is a type of ice pop or frozen pop.", + "A popsicle is a long, thin, ice pop.", + "A popsicle looks like a long, thin ice cream on a stick.", + "A popsicle is a frozen treat on a stick.", + "A popsicle is typically a frozen treat on a stick.", + "A popsicle looks like a frozen treat on a stick.", + "A popsicle looks like a long, thin, icy treat on a stick.", + "A popsicle typically has a stick in the center and is rectangular or oval in shape.", + "A popsicle is a frozen treat that typically consists of fruit juice or cream and is attached to a stick.", + "A popsicle is a sword-shaped, frozen dessert on a stick.", + "A popsicle is a handheld ice cream treat that is typically shaped like a rectangle or oval and is available in a variety of flavors.", + "I found an image of a popsicle on the internet that looks delicious.", + "In the image, there is a popsicle that is orange in color.", + "A popsicle is a frozen treat that is made by freezing fruit juice or other flavored liquids on a stick.", + "The image shows a popsicle with a green, yellow, and blue swirl.", + "The image is of a group of popsicles with different flavors.", + " It's a photo of a blue popsicle with a lick of it missing.", + "Image is of a popsicle with a yellow, orange, and pink swirl.", + "An image from the internet of a popsicle shows a brightly colored popsicle with a bite taken out of it.", + "An image from the internet of a popsicle may show a popsicle in a wrapper with the words \"popsicle\" written on it.", + "In the image, there is a popsicle with a yellow, orange, and pink stripes.", + "The perfect summer popsicle: fruity, refreshing, and delicious!.", + "An ice pop on a hot day.", + "A refreshing popsicle on a hot summer day.", + "A tasty popsicle on a hot day!.", + "A delicious popsicle on a hot summer day.", + "My favorite summer treat!.", + "Summer Treat: A Popsicle on a Hot Day.", + "my favorite summertime snack!.", + " \"Still frozen after all these years.", + "A frozen treat on a hot day." + ], + "baguette": [ + "A baguette is a long, thin loaf of French bread that is crispy on the outside and soft on the inside.", + "A baguette is a long, thin loaf of bread.", + "A baguette is a long and thin loaf of French bread.", + "A baguette is a long, narrow loaf of bread with crisp, thin crust.", + "A baguette is a type of French bread that is long and skinny with a crisp crust.", + "A traditional baguette is a thin, long French bread that is crusty on the outside and has a soft, chewy inside.", + "A baguette has a long, thin shape and a crispy crust.", + "A baguette is a long thin French bread.", + "A baguette is a long, thin loaf of bread that is typically about a foot long.", + "A baguette is a thin ceremonial staff that is about three feet long.", + "When looking at a baguette, you will notice its long and thin shape.", + "A baguette is a long, thin, French bread.", + "A baguette is a long, thin loaf of bread that is crispy on the outside and soft on the inside.", + "The easiest way to identify a baguette is by its long, thin shape.", + "A baguette is a bread that is generally long and thin.", + "A baguette is a long, thin loaf of bread that is usually about a foot long.", + "The easiest way to identify a baguette is by its shape.", + "A baguette is a type of French bread that is long, thin, and has a crispy crust.", + "A baguette is a long and thin loaf of bread.", + "With its long, thin shape, a baguette is most easily identified by its shape.", + "Assuming you are talking about a French baguette, it is a long, thin loaf of bread that is crispy on the outside and soft on the inside.", + "A baguette is a type of long, thin French bread.", + "A baguette is typically a long, thin loaf of French bread that isCrunchy on the outside and soft on the inside.", + "A baguette is a long, thin loaf of bread.", + "A baguette is a long, thin loaf of bread that is typically made from white flour.", + "Baguettes are long and thin, like a French loaf of bread.", + "A baguette is a long, thin, French loaf of bread.", + "A baguette is a long, thin loaf of French bread.", + "A baguette is a long, thin, crusty bread.", + "A baguette is a long, thin loaf of French bread.", + "I found an image from the internet of a baguette that looks fresh out of the oven.", + "The image from the internet is of a baguette with a golden brown crust and a soft, fluffy inside.", + "The image is of a golden brown baguette with a crispy crust.", + "The image is of a thin, long, French bread that has a crispy outer crust and a soft, fluffy inside.", + "This image is of a baguette that has been toasted and then filled with a variety of meats, cheeses, and vegetables.", + "This image is of a baguette on a cutting board.", + "The image is of a long, thin, golden-brown breadstick.", + "The image is of a baguette on a white background with a brown crust.", + "The image is of a baguette on a cutting board.", + "The image is of a golden brown baguette on a white plate.", + "A fresh baguette from the bakery.", + "A baguette is a long, thin loaf of French bread that is often used for sandwiches.", + " A baguette is a long and thin loaf of bread.", + "Fresh baguette.", + "A baguette, a French bread, typically made from wheat flour, water, yeast, and salt.", + "A baguette is a long, thin, often crisp bread roll.", + "This baguette is ready to be devoured!.", + "A loaf of French bread.", + "Baguette bread on a baking sheet.", + "This baguette is from a bakery in Paris." + ], + "bagel": [ + "A bagel is a tender, doughy roll with a hard crust.", + "A bagel is typically a round, dense bread that is boiled before it is baked.", + "A bagel is a round, oven-baked yeast bread.", + "A bagel is a round, dense bread that is boiled before it is baked.", + "A bagel is a round, dense bread that is boiled before it is baked.", + "Typically, a bagel is a roughly cylindrical piece of yeasted wheat-based dough which has been boiled and then baked.", + "A bagel is a round, dense bread roll traditionally boiled before being baked.", + "A bagel is a round, dense bread that is boiled before it is baked.", + "A bagel is a type of bread that is round with a hole in the center.", + "A bagel is a ring-shaped bread roll that is boiled before it is baked.", + "Most bagels are round with a hole in the center.", + "The ingredients in a bagel are flour, water, salt, malt and yeast.", + "A bagel is typically a round, dense bread that is boiled before it is baked.", + "Identifying a bagel is easy because they have a very distinct shape.", + "A bagel can be identified by its unique shape, which is typically a round loaf with a hole in the center.", + "A bagel is a round, denser than average bread, with a hole in the center.", + "A bagel is a bread product that is round with a hole in the center and is boiled before it is baked.", + "A bagel is a bread product that is shaped like a ring with a hole in the center.", + "A bagel is a doughnut-shaped, boiled, then baked, piece of bread.", + "A bagel is a round, filled bread that is boiled and then baked.", + "A bagel is a type of bread that is shaped like a ring.", + "A bagel is a round, denser than average bread that is boiled before it is baked.", + "A bagel is a round bread that is boiled in water and then baked.", + "A bagel is a round, doughnut-shaped bread.", + "A bagel is a circular bread with a hole in the middle.", + "A bagel is typically a round, doughnut-shaped roll that is boiled before it is baked.", + "A bagel is a doughnut-shaped, typically boiled then baked, bread that is popular in North America, especially New York City.", + "A bagel is a round, flattened bread roll with a hole in the middle.", + "A bagel is a round, firm, holeless bread that is boiled before it is baked.", + "A bagel looks like a round, shaping, doughnut-like shape with a hole in the center.", + "I found an image on the internet of a bagel that looks delicious! The bagel is a golden brown color and is covered in a light layer of cream cheese.", + "This image from the internet shows a bagel with cream cheese on top.", + " with cream cheeseThere is an image of a bagel with cream cheese on the internet that shows a bagel half with cream cheese on top.", + "The image from the internet is of a plain bagel on a cutting board with a knife nearby.", + "The image is of a plain bagel with a bite taken out of it.", + "A bagel is a type of bread that is round with a hole in the center.", + "_The image is of a plain bagel with a hole in the center.", + "Image shows a bagel with cream cheese and lox, garnished with a slice of lemon.", + "The bagel is a round, sorts of bread.", + "The image is of a bagel with a hole in the middle, surrounded by a light brown crust.", + "The perfect bagel: crisp on the outside, fluffy on the inside.", + "This bagel is delicious!.", + "This bagel is everything you could ever want in a breakfast food.", + "A bagel with cream cheese.", + "A bagel with cream cheese and smoked salmon.", + " freshly baked bagelsA caption of an image of a clock:The clock is ticking.", + " A bagel with cream cheese and lox.", + "New York-style bagel.", + "A bagel with cream cheese.", + "A delicious bagel with cream cheese." + ], + "pretzel": [ + "A pretzel is typically a twisted, knot-shaped bread.", + "A pretzel is typically a knot of dough that is boiled in salt water and then baked.", + "A pretzel is a knot of dough that is boiled in salt water and then baked.", + "A pretzel is a knot-shaped bread that is boiled in salt water and then baked.", + "A pretzel is a type of baked bread that is shaped into a knot.", + "A pretzel is a knot of dough that is boiled, then baked.", + "A pretzel is a knot-shaped bread that is boiled in salt water and then baked.", + "A pretzel typically has a long, twisted shape and a hard, crispy crust.", + "A pretzel is a knot of dough that is boiled in salt water and then baked.", + "A pretzel is a knot of dough that is boiled in salt water and then baked.", + "A pretzel is a knot of dough that is boiled in water and baking soda.", + "A pretzel can be identified by its twisted shape.", + "A pretzel is a knot-shaped bread that is boiled in water and baking soda.", + "A pretzel is a knot-shaped snacking bread that is boiled in salt water and then baked.", + "A pretzel is a hard, knot-shaped roll that is boiled in salt water and then baked.", + "A pretzel is a knot of dough that is boiled in salt water and then baked.", + "Pretzels are long, twisted, and chewy.", + "A pretzel is a knot of dough that is boiled in salt water and then baked.", + "A pretzel is a Knot of dough that is boiled and then baked.", + "A pretzel is a type of baked bread that is usually shaped into a knot.", + "A twisty, knotty, snackable treat!.", + "A pretzel is twisted and shaped into a knot.", + "A traditional pretzel is shaped like a knot, or a loose loops.", + "A pretzel is a knot-shaped bread that is twisted and baked.", + "A pretzel is a knot-shaped snack that is savory and chewy.", + "A pretzel looks like a knot of bread.", + "A traditional Bavarian pretzel is soft and slightly chewy.", + "A pretzel is a knot of dough that is boiled in salt water and then baked.", + "A pretzel is shaped like a knot, with three loops that intersect in the middle.", + "A pretzel is a kind of knot-shaped bread.", + "This image is of a pretzel with a bite taken out of it.", + "In the image, there is a large, round pretzel on a light brown surface.", + "The image I found online of a pretzel is a picture of a traditional Bavarian pretzel.", + "This image shows a large, soft pretzel that is golden brown in color.", + "The image shows a pretzel that has been twisted into a knot.", + "The image is of a large, soft pretzel with a deep golden brown color.", + "The image is of a pretzel that is golden brown in color and is twisted in shape.", + "A pretzel is a knot-shaped, baked bread that is coated with a layer of salt.", + "The image is of a large, soft pretzel that is in the shape of a knot.", + "In the image, there is a light brown pretzel on a white background.", + "Two fresh and warm pretzels from the oven.", + "A pretzel twist on a classic!.", + "A pretzel lying on a white plate.", + " A soft pretzel with a crispy exteriorA close-up of a soft pretzel with a crispy exterior.", + "A large pretzel with a deep golden brown crust, glistening with a coating of salt.", + "A soft pretzel with a bite taken out of it.", + "A stack of fresh, warm pretzels straight from the oven.", + " A big, soft pretzel covered in salt.", + "This is a pretzel.", + "A pretzel, twisted into the shape of a knot." + ], + "cheeseburger": [ + "A cheeseburger consists of a burger patty with cheese on top, placed between a hamburger bun.", + "A cheeseburger typically consists of a beef patty, cheese, lettuce, tomato, onion, pickles, and condiments on a hamburger bun.", + "A cheeseburger typically has a ground beef patty, cheese, lettuce, tomato, pickles, and onions on a bun.", + "A cheeseburger is a burger with cheese on it.", + "A cheeseburger is a sandwich consisting of a burger patty with cheese on top, served on a bun.", + "A cheeseburger typically consists of a hamburger patty topped with cheese and placed between two hamburger buns.", + "A cheeseburger consists of a hamburger patty with cheese on top, served on a bun.", + "A cheeseburger looks like a hamburger with cheese on top.", + "A cheeseburger has a patty of meat (usually beef) that is cooked and then topped with cheese and placed on a bun.", + "A cheeseburger typically consists of a hamburger patty and a slice of cheese on a hamburger bun.", + "A cheeseburger typically has a patty made of ground beef, cheese, and other toppings between two slices of bread.", + "A cheeseburger has cheese on it.", + "The most common way to identify a cheeseburger is by looking for the cheese.", + "A cheeseburger has a beef patty, cheese, and a bun.", + "It's a burger with cheese on it.", + "On a menu, a cheeseburger is usually denoted by the addition of the word \"cheese\" to the burger section.", + "There are a few ways to identify a cheeseburger.", + "The easiest way to identify a cheeseburger is by the presence of cheese on the burger.", + "The easiest way to identify a cheeseburger is by looking for the cheese.", + "A cheeseburger typically has a bun, a beef patty, cheese, lettuce, tomato, and mayonnaise.", + "There is no set answer for what a cheeseburger looks like, as there are many different ways to prepare them.", + "A cheeseburger is a sandwich consisting of a hamburger patty with cheese on top, served on a bun.", + "A cheeseburger typically includes a bun, beef patty, cheese, lettuce, tomato, onion, and pickles.", + "A cheeseburger typically features a patty of ground beef, topped with cheese, and placed on a bun.", + "A cheeseburger typically has one or two hamburger patties, cheese, and toppings on a bun.", + "A cheeseburger typically has a beef patty, cheese, and bread.", + "A cheeseburger typically consists of a hamburger patty topped with cheese, which is then placed between the top and bottom buns.", + "A cheeseburger typically consists of a hamburger patty topped with cheese, which is then placed on a bun.", + "A cheeseburger typically consists of a hamburger patty, topped with cheese, placed on a bun.", + "A cheeseburger typically has a beef patty, cheese, pickles, onions, and tomato sauce on a soft bun.", + "I found an image on the internet of a cheeseburger that looks absolutely delicious! The burger is a nice brown color and the cheese is melted perfectly on top.", + "The image from the internet of a cheeseburger is a picture of a cheeseburger with cheese on top of the burger.", + "The image is of a cheeseburger with a beef patty, cheese, lettuce, tomato, and mayonnaise on a toasted bun.", + "In the center of the image is a juicy cheeseburger with melted cheese on top of the patty.", + "The image is of a cheeseburger with the cheese melted over the burger, and the bun slightly toasted.", + "The image is of a cheeseburger with American cheese on top of the patty.", + "The image is of a cheeseburger with a beef patty, cheese, onions, pickles, and ketchup on a sesame seed bun.", + "The image is of a cheeseburger with a beef patty, cheese, tomato, lettuce, and onions on a sesame seed bun.", + "An image from the internet of a cheeseburger shows a juicy burger patty with melted cheese on top, nestled between a toasted bun.", + "The image is of a cheeseburger with lettuce, tomato, and pickles on a sesame seed bun.", + " A delicious cheeseburger with a juicy patty, melted cheese, and fresh veggies.", + "\"The best cheeseburger I've ever had!\".", + "This delicious cheeseburger is the perfect meal for any time of day.", + "I'm lovin' it!.", + "This cheeseburger is delicious!.", + "\"This looks like an ordinary cheeseburger, but it's actually a vegan burger made with Beyond Meat's plant-based meat alternative.", + "A juicy cheeseburger with melted cheese, crispy bacon, and a fresh bun.", + " Ideally, a cheeseburger should be perfectly cooked with a crispy exterior, juicy interior, and melty cheese.", + " A cheeseburger with lettuce, tomato, and pickles on a bun.", + "The Perfect Cheeseburger." + ], + "hot dog": [ + "A hot dog typically consists of a sausage on a bun, grilled or boiled, and topped with ketchup, mustard, and/or onions.", + "A hot dog looks like a long, thin sausage that has been cooked.", + "A hot dog is a small, thin sausage that is cooked by being boiled, grilled, or fried.", + "A hot dog is a sausage that is grilled or steamed and served in a bun.", + "A hot dog is a short, thick sausage that is cooked by grilling, boiling, or frying.", + "A hot dog is a thin, cylindrical sausage made of beef, pork, or a mixture of the two and typically served in a soft roll.", + "A hot dog is a sausage on a bun.", + "A hot dog is a sausage that is usually grilled or steamed and served in a bun.", + "Most typically, a hot dog is a sausage served in a sliced bun.", + "A hot dog is a a cooked sausage that is typically served in a bun.", + "A hot dog is typically a grilled or steamed sausage that is served in a bun.", + "A hot dog is a long, thin sausage made of beef, pork, or a mixture of the two.", + "The skin of a hot dog is thinner than that of a sausage.", + "The word \"hot\" in the name is a clue.", + "A hot dog is a type of sausage that is typically made from beef, pork, or a combination of the two.", + "A hot dog is typically a beef sausage that is grilled or steamed and served in a bun.", + "A hot dog is a skinny, grilled or steamed sausage that is served in a bun.", + "A hot dog is a type of sausage that is traditionally grilled or steamed and served in a bun.", + "A hot dog is a thin, cooked sausage that is served in a soft roll.", + "You can identify a hot dog by its long, cylindrical shape and its reddish-brown color.", + "A typical hot dog is a cooked sausage that is served in a sliced bun.", + "The standard hot dog is a cooked sausage, traditionally grilled or steamed, and served in a sliced bun as a sandwich.", + "A hot dog is a type of sandwich.", + "A hot dog is a seasoned sausage, traditionally of pork and beef, and usually served in a long, soft roll.", + "A hot dog looks like a cylindrical tube of meat, typically pork, beef, or a mixture of the two, that is cooked and served in a bun.", + "A hot dog looks like a sausage in a bun.", + "A hot dog is a type of sausage that is typically served in a bun.", + "A hot dog is a sausage that is served in a bun.", + "A hot dog is a narrow, cylindrical tube of cooked meat, typically beef or pork, and is enclosed in a soft, white bun.", + "This is a difficult question.", + "The image is of a hot dog on a white plate.", + "This image from the internet is of a hot dog on a bun with mustard and ketchup.", + "The image is of a hot dog on a white plate with a side of chips.", + "The image is of a hot dog on a plate.", + "The image is of a hot dog on a grill, with the bun toasted and beginning to brown.", + "This image is of a hot dog that has just been taken out of the grill.", + "The image is of a hot dog on a yellow plate with a fork and knife next to it.", + "This image is of a hot dog on a bun with mustard and ketchup.", + "The image is of a hot dog on a bun.", + "The image is of a hot dog on a bun with ketchup and mustard.", + " A grilled hot dog on a toasted bun with ketchup and mustard.", + "Two hot dogs topped with mustard and ketchup on a toasted bun.", + "This image is of a hot dog.", + " A delicious hot dog.", + "A hot dog with ketchup and mustard on a bun.", + " Hot Dog on a PlateA hot dog on a plate, with mustard and ketchup.", + "This hot dog is just begging to be eaten!.", + " A traditional grilled hot dog on a red and white paper plate.", + "This hot dog looks delicious!.", + "The best hot dog in town!." + ], + "mashed potatoes": [ + "A mashed potato is a dish made by mashing boiled potatoes.", + "A mashed potatoes usually looks like a smooth, creamy, and light-yellow paste.", + "Mashed potatoes look like a smooth, creamy, white (or yellow) paste.", + "Mashed potatoes are a food made by mashing boiled potatoes.", + "A mashed potatoes typically looks like a smooth, creamy, and lump-free side dish.", + "A mashed potato looks like a creamy, smooth, white paste.", + "A mashed potato looks like creamy white mashed potatoes.", + "Mashed potatoes is a dish made by mashing boiled potatoes.", + "The mashed potatoes will have a smooth, creamy texture with no lumps.", + "Mashed potatoes are a dish made by mashing boiled potatoes and adding milk, butter, and salt to taste.", + "Mashed potatoes are a bit lumpy and have a yellowish color.", + "The best way to identify mashed potatoes is by their smooth, creamy texture.", + "A mashed potatoes can be identified by its smooth texture and lack of whole pieces of potato.", + "The easiest way to identify mashed potatoes is by their texture.", + "The easiest way to identify mashed potatoes is by their smooth, creamy texture.", + "Mashed potatoes are a dish that is made by mashing boiled potatoes and adding milk, butter, and salt.", + "Mashed potatoes are usually a light brown color.", + "Mashed potatoes generally have a smooth, creamy texture.", + "If it's mashed and it's potatoes, it's mashed potatoes.", + "A mashed potatoes can be identified by its smooth texture and white color.", + "Mashed potatoes typically look like smooth, creamy white potatoes.", + "When potatoes are mashed, they become soft and have a smooth, thick texture.", + "Mashed potatoes can vary in appearance, but generally they are smooth and creamy.", + "Mashed potatoes can vary in appearance, depending on how they are prepared.", + "A mashed potato typically looks like a smooth, creamy, soft white paste.", + "Mashed potatoes are smooth and creamy with a light yellow color.", + "Mashed potatoes look like a smooth, creamy, white paste.", + "Mashed potatoes look like a smooth, creamy, white paste.", + "Mashed potatoes can vary in appearance, but generally they are a smooth, creamy white or off-white color.", + "Mashed potatoes usually look like a smooth, creamy, white paste.", + " dishThe image is of a white bowl filled with smooth, creamy mashed potatoes.", + "In the image, there is a plate of mashed potatoes with a small scoop of butter on top.", + "The image is of a small, white ceramic bowl with mashed potatoes inside.", + "A bowl of mashed potatoes with creamy white flesh and small lumps.", + "The image is of a white bowl filled with light brown mashed potatoes.", + "In this image, there is a small ceramic bowl filled to the brim with mashed potatoes.", + "The image is of a small, blue bowl filled to the brim with mashed potatoes.", + "I cannot post an image from the internet, but an image of mashed potatoes would show a dish of creamy, white potatoes that have been mashed and are usually served with gravy.", + "Image shows a bowl of mashed potatoes with butter and green onions.", + "http://images.", + "Mashed potatoes are a staple of comfort food.", + "mashed potatoes.", + " ASMR Mashed PotatoesIn this image, we see a bowl of delicious looking mashed potatoes.", + " Delicious mashed potatoes.", + "Mashed potatoes with gravy.", + "Mashed potatoes are a timeless classic comfort food.", + "Mashed potatoes are a classic comfort food.", + "Mashed potatoes with gravy.", + " Delicious mashed potatoes with butter.", + "Mashed potatoes are a popular dish made by mashing boiled potatoes and adding butter, milk, and spices." + ], + "cabbage": [ + "Cabbage typically has green leaves, although some varieties can have purple or white leaves.", + "A cabbage is a green, leafy vegetable.", + "A cabbage is a large, round, leafy green vegetable.", + "A cabbage head is round, with tightly packed, green leaves.", + "A cabbage is a leafy vegetable that typically has a white or light green coloring.", + "A cabbage is a round, leafy green vegetable that belongs to the Brassica family.", + "A cabbage looks like a circular, leafy green vegetable.", + "A cabbage is a round, leafy vegetable that is usually green or white in color.", + "A cabbage is a leafy, green vegetable that belongs to the mustard family.", + "A cabbage is a leafy green or purple biennial plant, grown as an annual vegetable crop for its dense-leaved heads.", + "You can identify a cabbage by its large, rounded head of green leaves.", + "By its large, round, green leaves.", + "Cabbage is a leafy vegetable that is green in color.", + "A cabbage usually has green leaves, and it is a round vegetable.", + "Cabbage is a green leafy vegetable that resembles a head of lettuce.", + "Cabbage is in the Brassica family and is usually green, but can also be white, purple, or red.", + "Cabbage can be identified by its large, green leaves.", + "Cabbages have large, leafy heads.", + "A cabbage is a green, cool-weather vegetable in the mustard family.", + "A cabbage can be identified by its round, green head of leaves.", + "A cabbage is a round, leafy green vegetable.", + "A cabbage is a leafy green vegetable that resembles a large head of lettuce.", + "A cabbage is a leafy green or purple vegetable that is round or oblong in shape.", + "Cabbages have large, leafy green heads.", + "A cabbage looks like a leafy green vegetable with a white center.", + "A cabbage typically has a round or oval shape and is dark green in color.", + "A cabbage looks like a large, green head with leaves that are arranged in a spiral.", + "A cabbage is a dense, round, leafy vegetable that can vary in color from white to green to purple.", + "A cabbage is a round, green vegetable that is often used in salads and soup.", + "A cabbage looks like a green ball with leaves coming out of it.", + "The image is of a cabbage that is green with leaves that are coming off of the main cabbage.", + "It's a drawing of a cabbage.", + "The image is of a light green cabbage with smooth, tightly-packed leaves.", + "This image is of a small, green cabbage.", + "The image is of a large, round, green cabbage.", + "The image is of a large, green cabbage with thick leaves.", + "The image is of a cabbage that is densely packed with leaves that are deep green in color.", + "The image is of a large, green cabbage.", + "This image is of a platter of roasted cabbage wedges.", + "A cabbage is a large leafy vegetable that is often green or white in color.", + "This is a cabbage.", + "Cabbage, a leafy green or purple brassica vegetable, is rich in vitamins and fiber.", + "Cabbage, a member of the cruciferous vegetable family, is a low-calorie food that is high in fiber and nutrients.", + "Cabbage.", + "A head of cabbage.", + "Why does this cabbage look so sad?.", + "A cabbage being grown in a garden.", + "Cabbage is a leafy vegetable that is typically green or purple.", + "Cabbage, a cruciferous vegetable, is a low-calorie food that is high in vitamins and fiber.", + " A head of cabbage from the farmer's market." + ], + "broccoli": [ + "A broccoli is composed of a green stalk that branches out into small, flowering buds.", + "A broccoli is a green vegetable that resembles a small tree.", + "A broccoli typically has a long green stem with green florets coming off of it.", + "A broccoli typically has a long, green, stalk-like stem with small buds that branch off of it.", + "A broccoli is a dark green, slightly astringent vegetable with small florets.", + "A broccoli is a green vegetable that is part of the cabbage family.", + "A broccoli has a long green stem with leaves coming off of it.", + "A broccoli typically has a dark green head with clusters of small florets on top.", + "A broccoli is a vegetable that has a tree-like appearance.", + "A broccoli is a green vegetable that has a long stem and small green flowers.", + "A broccoli is a member of the cabbage family.", + "Broccoli is a dark green, leafy vegetable that is a member of the cabbage family.", + "If you are at the grocery store, you can usually find broccoli in the produce section.", + "Broccoli is a green vegetable that has a tree-like shape.", + "When looking to identify a broccoli, one should look for a large, green, and leafy vegetable.", + "Sprouts coming out of the ground, green leaves.", + "The easiest way to identify a broccoli is by its flower.", + "Broccoli is a green, leafy vegetable that is often found in the produce section of the grocery store.", + "The best way to identify a broccoli is by its small green flowers and dense green heads.", + "The best way to identify broccoli is by its small green buds that resemble tree branches.", + "A broccoli looks like a small tree with green leaves and a green stalk.", + "A broccoli looks like a small green tree.", + "A broccoli typically has a long, green stalk with small, green florets attached.", + "A broccoli has a green, stalk-like stem with small buds coming off of it.", + "The broccoli is an edible green plant in the cabbage family, Brassica oleracea.", + "A broccoli typically has a green stalk with clusters of small, green florets.", + "A broccoli typically has a dark green, tough outer layer with a softer green inner layer.", + "A broccoli looks like a small, dark green tree.", + "A broccoli looks like a green tree with small buds on it.", + "A broccoli typically has a long, green stem with small green buds clustered around it.", + "The image is of a bright green broccoli head with small florets.", + "This image is of a broccoli on a white plate with a knife beside it.", + "This image is of a broccoli on a white plate.", + " plantThe image is of a broccoli plant with bright green leaves and stalk.", + "In the image, there is a large head of broccoli in the center with smaller heads of broccoli surrounding it.", + "The image is of a large piece of broccoli with small florets.", + "The image is of a broccoli on a white plate with a steak knife stabbed into it.", + "The image is of a broccoli with its stem cut off, revealing the florets inside.", + " plantWhen looking at an image of a broccoli plant on the internet, one can expect to see a large, green plant with many small, green buds coming off of its main stem.", + "The image shows a broccoli with leaves and a stem.", + " Fresh, healthy broccoli on a white plate.", + "Broccoli is a leafy green vegetable that is a member of the cabbage family.", + " A head of broccoliA head of broccoli is a vegetable that is part of the cabbage family.", + "Well-rounded and full of nutrition, broccoli is a great choice for a healthy diet.", + "A head of broccoli on a white plate with a knife next to it.", + "A broccoli floret isolated on a white background.", + "This is a picture of broccoli.", + "A healthy green broccoli in a garden.", + "Food for thought.", + "A head of broccoliA head of broccoli, isolated on a white background." + ], + "cauliflower": [ + "A cauliflower is a white, rounded vegetable with a green stem.", + "A cauliflower is a compilation of small, white florets that are attached to a fibrous stalk.", + "A cauliflower is a white, cruciferous vegetable that resembles a head of broccoli.", + "A cauliflower is a vegetable that is white in color and has a soft, porous texture.", + "A cauliflower is white and shaped like a flower.", + "The cauliflower is a white, doughnut-shaped vegetable that is a member of the cruciferous family.", + "A cauliflower is a white, round vegetable that resembles a head of broccoli.", + "A cauliflower is a flowery vegetable that is part of the cabbage family.", + "A cauliflower is a white or pale green vegetable that looks like a head of broccoli.", + "A cauliflower is a vegetable that is usually white in color.", + "Cauliflower is a cruciferous vegetable that has a white or pale green head with large, thick, deeply lobed leaves.", + "Cauliflower can be identified by its thick, green stalk and large, white head.", + "The most noticeable feature of a cauliflower is its white color.", + "A cauliflower has a large, white, rounded head that is attached to thick green leaves.", + "Cauliflower is a member of the cruciferous family of vegetables and has a white head (or \"curd\") that is surrounded by green leaves.", + "A cauliflower is a white, cabbage-like vegetable with a thick, dense head of small, tightly arranged florets.", + "Cauliflower is a large, white, round-headed Brassica oleracea vegetable.", + "A cauliflower is a vegetable that has a white head with green leaves.", + "A cauliflower is a white, cabbage-like vegetable that has a large, round,assi head.", + "A cauliflower is a leafy vegetable with a cream-colored head.", + "A cauliflower is a white, round vegetable that resembles a head of broccoli.", + "A cauliflower is a white, round, and slightly flattened vegetable with a green stem.", + "A cauliflower is a delicate, cream-colored cruciferous vegetable with a densely packed head of small, tightly packed florets.", + "A cauliflower looks like a small, white tree.", + "A cauliflower is a vegetable that is white or pale green in color.", + "A cauliflower is a white, round, and crunchy vegetable.", + "A cauliflower is a plant in the mustard family.", + "A cauliflower is a vegetables that belongs to the brassica family, which also includes broccoli, Brussels sprouts, cabbage, and kale.", + "A cauliflower is a round, white vegetable that resembles a head of broccoli.", + "A cauliflower is a white, variegated plant in the Brassica oleracea species, which also includes broccoli, kale, and collard greens.", + "This image is of a large, white cauliflower.", + "The image is of a large cauliflower with a green stem.", + "This image is of a whole, uncooked cauliflower.", + "The image is of a white cauliflower head with green leaves.", + "The image on the internet shows a head of cauliflower on a white plate.", + " in a fieldThe image is of a cauliflower in a field with other cauliflowers.", + "The image is of a cauliflower with its leaves removed.", + "In the image, a large cauliflower is lying on a cutting board.", + "This image from the internet shows a large, white cauliflower head with green leaves.", + "This image is of a cauliflower that has been cut in half to reveal its inner workings.", + " Iceberg meets its crunchy, nutty cousin.", + "A fresh, white cauliflower with green leaves.", + "Cauliflower is a cruciferous vegetable with a mild flavor.", + " Cauliflower is a cruciferous vegetable that is a member of the mustard family.", + "This is a cauliflower.", + "This cauliflower is white and purple and is in a metal bowl.", + "Cauliflower is a cruciferous vegetable with a white head and green leaves.", + "Cauliflower is a healthy vegetable that can be cooked in many different ways.", + "A head of cauliflower on a white plate.", + "Cauliflower is a vegetable that belongs to the family of Brassicaceae." + ], + "zucchini": [ + "A zucchini is a Cyrillic vegetable that has a dark green skin and a white flesh.", + "A zucchini is a long, thin green squash.", + "A zucchini is a long, green cylindrical squash with smooth, slightly glossy skin.", + "A zucchini is a dark green, cucumber-shaped squash.", + "A zucchini is a dark green squash that is shaped like a cylinder.", + "A zucchini is a dark green vegetable that is shaped like a cucumber.", + "A zucchini is typically a dark green color and has a smooth, slightly bumpy skin.", + "A zucchini is a green, cylindrical squash that has a slightly bumpy surface.", + "The zucchini is a dark green squash that has a long, cylindrical shape.", + "A zucchini is a dark or light green squash that is about the size and shape of a cucumber.", + "A zucchini is a yellow or green squash that has a long, cylindrical shape.", + "Zucchinis are usually a dark green color, and they have a long, cylindrical shape.", + "A zucchini is a type of squash.", + "A zucchini is a long, cylindrical, green squash.", + "A zucchini is a type of squash that is typically dark green in color.", + "A zucchini is a green, cucumber-shaped squash.", + "You can identify a zucchini by its long, green, and cylindrical shape.", + "The zucchini is a long, green, cylindrical squash of the cucurbitaceae family.", + "A zucchini can be identified by its long, green, cylindrical shape.", + "Zucchinis are long, green vegetables that have a smooth skin.", + "A zucchini is a cucurbita pepo, which is a type of summer squash.", + "A zucchini is a summer squash that is green and shaped like a cylindrical cucumber.", + "A zucchini is a long, green cucumber-shaped vegetable.", + "A zucchini is a dark green, cylindrical squash.", + "A zucchini is typically dark green and cylindrical in shape, with smooth, slightly shiny skin.", + "Zucchini is a long, green squash with smooth skin.", + "A zucchini is a dark green, long, and cylindrical squash.", + "A zucchini is a long green squash with smooth skin.", + "A zucchini is long, dark green, and has a smooth skin.", + "A zucchini is a light green squash that is shaped like a cylindrical cucumber.", + "The image is of a green zucchini with darker green stripes.", + "This image from the internet is of a green zucchini with yellow flowers.", + "In the image, there is a large green zucchini lying on a cutting board.", + "An image of a zucchini from the internet shows the long, green fruit with bumps along its surface.", + "This image from the internet is of a zucchini.", + "This image is of a zucchini with a green skin and white flesh.", + "This image from the internet is of a zucchini.", + "The image is of a zucchini that is long and green with a few small bumps.", + "This image is of a zucchini in a field.", + "This image is of a zucchini that has been cut in half length-wise.", + "Zucchini is a type of summer squash that can be eaten raw, cooked, or grilled.", + " \"Zucchini is a squash that typically grows to about three feet in length and is dark green in color.", + "Zucchini on white background.", + "A zucchini plant grows in a garden.", + "Zucchini is a type of summer squash that can be used in a variety of dishes.", + "This zucchini was grown in my garden.", + "Zucchini squash are a summer squash, meaning they are harvested while immature and tender.", + "A green zucchini squash.", + "Zucchini, also known as courgette, is a summer squash of Italian origin.", + "Zucchini on a cutting board with a knife nearby." + ], + "spaghetti squash": [ + "A spaghetti squash is a yellow or cream-colored winter squash with flesh that resembles spaghetti pasta.", + "A spaghetti squash is a long, yellow squash with a cylindrical shape.", + "A spaghetti squash is a yellow or orange squash with a long, skinny shape.", + "A spaghetti squash is a yellow or green squash that is shaped like a long, narrow oval.", + "A spaghetti squash is a type of winter squash that has a long, thin shape and a light yellow flesh.", + "A spaghetti squash is a yellow or green squash that is long and oval-shaped.", + "A spaghetti squash is a yellow/orange squash that is long and narrow.", + "A spaghetti squash is a yellow/orange oblong squash with ridges running length-wise.", + "A spaghetti squash is an oblong, pale yellow squash with a hard, green rind.", + "A spaghetti squash is long and yellow with green stripes.", + "A spaghetti squash is a yellow or orange squash that is long and has a round shape.", + "A spaghetti squash is a long, yellow squash with a smooth exterior.", + "A spaghetti squash is a winter squash that has a light yellow coloring.", + "A spaghetti squash is long and has a smooth, yellow-orange skin.", + "A spaghetti squash is not an easy squash to miss.", + "A spaghetti squash is a type of winter squash that has a long, cylindrical shape and a yellow-orange color.", + "A spaghetti squash is a long, yellow squash with a smooth, bumpy exterior.", + "The best way to identify a spaghetti squash is by its long, cylindrical shape.", + "The best way to identify a spaghetti squash is by its long, thin shape.", + "A typical spaghetti squash is a pale yellow or cream color with subtle light brown stripes.", + "A spaghetti squash looks like a pale yellow or cream-colored oval squash with ridges running along its length.", + "A spaghetti squash is an Lau squash that has light-yellow skin and pale-yellow to white flesh.", + "A spaghetti squash is a squash that looks like a long, thin squash.", + "A spaghetti squash is an oblong yellow squash with a smooth, thin skin.", + "A spaghetti squash is a long, yellow squash with a smooth, buttery texture.", + "Spaghetti squash is an oblong yellow winter squash with a dull, hard rind.", + "A spaghetti squash is a yellow, teardrop-shaped squash with flesh that, when cooked, resembles spaghetti noodles.", + "A spaghetti squash is long and cylindrical, and has a yellow-orange color.", + "A spaghetti squash is yellow or orange with a shape similar to a watermelon.", + "A spaghetti squash is a yellow, oval-shaped squash with a slightly ribbed exterior.", + "The image is of a light yellow/orange spaghetti squash with darker yellow stripes.", + "A spaghetti squash is a long, yellow squash with a seeds in the middle.", + "A spaghetti squash is an oblong, pale yellow squash with a thin, watery flesh.", + "The image is of a whole spaghetti squash with a green stem.", + "There is an image of a spaghetti squash on the internet that looks like a long, yellowish-green squash with light-colored stripes.", + "this is an image of a spaghetti squash.", + "The image is of a whole spaghetti squash on a white background.", + "An image from the internet of a spaghetti squash shows a light-yellow squash with green stripes.", + "In the image, there is a light brown spaghetti squash sitting on a counter next to a knife.", + "The image is of a light-yellow spaghetti squash with light-green stripes.", + "A close-up of a spaghetti squash, cut in half length-wise to reveal its yellow-orange flesh and seeds.", + " Freshly harvested spaghetti squash from the farm.", + "A spaghetti squash with its long, stringy \"noodles.", + "A beautiful spaghetti squash, ready to be cooked and enjoyed!.", + "This is a spaghetti squash!.", + "A whole roasted spaghetti squash on a cutting board.", + "A whole spaghetti squash fresh from the grocery store.", + "A spaghetti squash in all its glory.", + " A spaghetti squash in a white bowl with a fork next to it.", + "A sliced open spaghetti squash with its stringy, noodle-like flesh exposed." + ], + "acorn squash": [ + "Acorn squash are small, dark green squash with a pointy end.", + "Acorn squash are small, fruits that have a deep green skin and a dull golden-yellow flesh.", + "A acorn squash is a autumn vegetable that shares many characteristics with pumpkins.", + "A acorn squash is a small, deep-green squash with a pointy end.", + "A acorn squash looks like a small, dark green squash with a pointy end.", + "An acorn squash looks like a small, dark green pumpkin with a long stem.", + "A acorn squash looks like a dark green or dull yellow squash with an acorn shape.", + "A acorn squash typically has a dark green or yellow-orange skin, with a small, pointy end, and a larger, bulbous end.", + "A acorn squash is a small, dark green squash with a slightly pointy top.", + "A acorn squash typically has a dark green color with some light brown spots.", + "Acorn squash have an oval to oblong shape with greenish-brown skin.", + "Acorn squash look like small, dark green Pumpkins with ridges running along their sides.", + "An acorn squash is an off-white or greenish-white squash with a ridged, acorn-shaped body.", + "An acorn squash is a winter squash that is shaped like an acorn.", + "An acorn squash is a small, dark green squash with a pointy end.", + "The easiest way to identify an acorn squash is by its shape.", + "An acorn squash is a small, oblong squash with a dark green or yellow-orange rind.", + "A acorn squash is typically green, with a small, pointed top.", + "The acorn squash has a smooth, green to dark-green skin with light-orange to dark-orange flesh.", + "Acorn squash have dark green, scalloped skin and are small and squatty in shape.", + "A acorn squash is a small winter squash with an acorn-shaped bottom.", + "A whole acorn squash looks like a small, elongated pumpkin with a ridged, green-brown exterior.", + "An acorn squash looks like a small, dark green pumpkin.", + "A acorn squash looks like a small, dark-green squash with a pointy end.", + "A acorn squash looks like a small, dark green pumpkin.", + "Acorn squash look like small, dark green pumpkins with ridges running lengthwise down their sides.", + "Acorn squash look like they have little caps on the end, like an acorn.", + "An acorn squash is a small squash that is shaped like an acorn.", + "Acorn squash look like small, dark green or yellow-orange pumpkins with ridged, ridged, scalloped skin.", + "Acorn squash look like small, dark green, ridged squash with a pointy end.", + "The image is of a acorn squash with a dark green outer skin.", + "In the photo, there is a small, dark green acorn squash.", + "The image is of an acorn squash that has been cut in half.", + "The image is of a acorn squash that has been cut in half.", + "The image is of an acorn squash that is lying on a cutting board.", + "This image is of an acorn squash that has been cut in half.", + "The image is of an acorn squash with its stem still attached.", + "This acorn squash has a green stem and is mostly a deep orange color.", + "This acorn squash looks like it was grown in rich, dark soil.", + "The image is of a slice of acorn squash on a cutting board.", + "A close-up of an acorn squash, a variety of winter squash with a bumpy, dark green skin.", + "A whole acorn squash, ready to be cooked.", + "Acorn squash is a winter squash that is typically dark green or orange in color.", + "A whole acorn squash, ready to be cooked.", + "A close up of an acorn squash, with its green, orange, and brown stripes.", + "An acorn squash, a variety of winter squash with a green-brown skin and orange flesh.", + "A acorn squash with its green stem still attached.", + "The acorn squash is a type of winter squash that is typically dark green or orange in color.", + "The acorn squash is a type of winter squash that is typically harvested in the fall.", + "A close up of an acorn squash with its green stem attached." + ], + "butternut squash": [ + "A butternut squash looks like a long, pear-shaped squash with a light brown, textured skin.", + "A butternut squash is an oblong, pear-shaped squash with a beige or light tan skin.", + "A butternut squash looks like an elongated pear with smooth, pale yellow skin.", + "A butternut squash is an orange-colored squash that is shaped like a pear.", + "A butternut squash is an elongated, pear-shaped squash with a pale yellow to orange skin.", + "Butternut squash is a type of winter squash that is long and neck-like, with a bulbous end.", + "A butternut squash is a type of winter squash that has a bulbous shape and a light-brown, tan, or beige color.", + "Butternut squash are medium-sized squash with a long neck and a bulbous base.", + "The Butternut Squash has a long neck and a bulbous bottom.", + "A butternut squash is an orange-fleshed winter squash with a long neck and a bulbous bottom.", + "Butternut squash have an elongated shape and a light tan to deep orange color.", + "Butternut squash is an elongated, pear-shaped squash with a creamy-yellow to orange-brown skin.", + "The easiest way to identify a butternut squash is by its shape.", + "Butternut squash can be identified by its long, pear-like shape and creamy-yellow skin.", + "At first glance, a butternut squash looks like an elongated, light-tan pear.", + "A butternut squash is typically an off-white or tan color with a bulbous shape.", + "A butternut squash is a tan-colored squash that is shaped like a pear.", + "A butternut squash is an oblong-shaped squash with a pale yellow-tan skin.", + "A butternut squash is an oblong, tubular squash with a smooth, light brown skin.", + "Butternut squash is a winter squash that has a long neck and a bulbous base.", + "A butternut squash looks like a brown, elongated pumpkin.", + "Butternut squash looks like a pear-shaped squash with smooth, light brown skin.", + "A butternut squash is a long, pale-yellow squash with a bulbous end.", + "A butternut squash is a type of winter squash that has a long neck and bulbous end.", + "A butternut squash looks like a pear-shaped squash with light brown skin.", + "A butternut squash is an orange-fleshed squash that is shaped like a pear.", + "A butternut squash is an orange-yellow squash that is shaped like a pear.", + "Butternut squash is an oblong-shaped squash with smooth, tan skin and orange flesh.", + "A butternut squash looks like a pear-shaped squash with light brown skin.", + "The outside of a butternut squash is brown and has the shape of a pear.", + "This image is of a butternut squash on a white background.", + "I found an image of a butternut squash on the internet.", + "I found an image on the internet of a butternut squash that looks like it was just picked from the garden.", + "This is an image from the internet of a butternut squash.", + "The image is of a large, tan-colored squash with a long neck and smooth, bumpy skin.", + "The image is of a large, pale yellow-orange squash with a long neck and bulbous bottom.", + "In the image, there is a butternut squash that is lying on its side on a cutting board.", + "The image is of a butternut squash sitting on a cutting board.", + "The image I found was of a butternut squash on a white background.", + "The image is of a butternut squash with a green stem.", + "This is a butternut squash.", + "Butternut squash is a type of winter squash that is typically roasted and served as a side dish.", + "Butternut squash is a type of winter squash that is typically harvested in the fall.", + " Bowl of butternut squash soup.", + "The perfect fall vegetable, butternut squash is both nutritious and delicious.", + "a close-up of a butternut squash on a cutting board.", + "A butternut squash perfect for fall cooking.", + "This is a butternut squash.", + "Butternut squash is a winter squash that grows on a vine.", + "Butternut squash is a winter squash that typically has a light brown skin and orange flesh." + ], + "cucumber": [ + "A cucumber is a green, cylindrical fruit with a hard, peeled skin.", + "Cucumbers are green and have a smooth skin.", + "A cucumber is a long, green, cylindrical fruit that is related to squash, melons, and pumpkins.", + "A cucumber is a long, green, cylindrical fruit.", + "A cucumber is a vegetable that is typically green in color and has a long, cylindrical shape.", + "A cucumber is typically a long, green, cylindrical fruit.", + "The cucumber is a long, green, cylindrical fruit.", + "A cucumber is a green fruit that is long and thin.", + "A cucumber is a long, green, cylindrical fruit with smooth, bumpy skin.", + "A cucumber is a long, green, seed-filled fruit.", + "The best way to identify a cucumber is by its shape and size.", + "Cucumbers are long, green, and have a smooth skin.", + "Some ways to identify a cucumber are by its long, green, and cylindrical shape.", + "Cucumbers are green and have a smooth, bumpy skin.", + "A cucumber is a long, green, cylindrical fruit with smooth, slightly ribbed skin and small, black seeds.", + "A cucumber can be identified by its long, green, cylindrical shape.", + "Cucumbers have a long, green, cylindrical shape and smooth, green skin.", + "Some ways to identify a cucumber are by its long, green, and cylindrical shape.", + "By its shape, which is long and cylindrical, and by its smooth, green skin.", + "A cucumber is a long, green, cylindrical fruit with small, white bumps on its skin.", + "A cucumber looks like a long, green, slightly curved vegetable with small bumps on its skin.", + "A cucumber is a green, cylindrical fruit with small, black seeds.", + "A cucumber looks like a long, green vegetable with small bumps on its skin.", + "A cucumber is a long, green, cylindrical fruit.", + "A cucumber is a green, cylindrical fruit with a smooth exterior.", + "A cucumber is a green, cylindrical fruit with smooth skin.", + "A cucumber is a long, green, cylindrical vegetable.", + "A cucumber is typically dark green and cylindrical in shape.", + "A cucumber is a long, green, cylindrical fruit.", + "A cucumber looks like a long, green, slightly curved vegetable.", + "The image is of a cucumber that is sliced in half length-wise.", + " This image from the internet shows a cucumber with ridges and bumps running along its length.", + "The image is of a whole cucumber on a white background.", + "A cucumber is a green, cylindrical vegetable with smooth, bumpy skin.", + "This image is of a cucumber that is light green in color with a smooth surface.", + "The image is of a cucumber that has been cut in half.", + "The image shows a cucumber that is mostly green with some brown spots.", + "This image shows a cucumber that is light green in color with smooth skin.", + "The image is of a cucumber that is lying on a cutting board.", + "This image is of a cucumber that has been cut in half length-wise.", + "A cucumber from the grocery store.", + "A cucumber grown in a garden.", + "A cucumber on a white plate.", + "Cucumbers are a type of vegetable that are often used in salads or as a refreshing snack.", + "Cucumber on cutting board.", + "This cucumber looks fresh and delicious!.", + "Cucumber on a plate.", + "A cucumber being held up to the light, revealing its translucent skin.", + "Cucumbers come in many shapes and sizes, but they are all Cucurbitaceae.", + "Cucumbers are a type of edible plant that belongs to the gourd family." + ], + "artichoke": [ + "An artichoke is a large, spiky flower that is about the size of a small fist.", + "A artichoke is a large, green, spiky vegetable.", + "A artichoke is generally green and spiky with a bulbous shape.", + "A artichoke looks like a dark green, spiky, flower bud.", + "A artichoke is a thistle-like flower head with edible leaves.", + "A artichoke is a medium sized, green colored flower.", + "A artichoke looks like a spiky, green flower.", + "A artichoke is a large thistle-like plant with a buds that are eaten as vegetables.", + "A artichoke is a green, spiky vegetable.", + "A globe artichoke is a perennial thistle of the Asteraceae family.", + "An artichoke is an edible flower bud that is often used in Mediterranean cuisine.", + "Artichokes have scaly, spiky leaves and a bulbous base.", + "Artichokes are round, green vegetables with prickly leaves.", + "An artichoke is a thistle-like vegetable with a cluster of small, edible, petal-like leaves at the center.", + "Artichokes have a spiky, green exterior and a soft, fluffy interior.", + "An artichoke is a thistle-like vegetable that has a spiky, green exterior and a soft, white interior.", + "Artichokes can be identified by their large, round, green heads with prickly leaves.", + "Artichokes have a round, green, spiky head with edible leaves.", + "The artichoke is a member of the thistle family.", + "A artichoke is a spiny, green vegetable that is part of the thistle family.", + "An artichoke looks like a green flower that is attached to a stem.", + "A globe artichoke is a vegetable that belongs to the thistle family.", + "Artichokes are usually green, but can also be purple.", + "The artichoke is a thistle-like flower head with meaty leaves.", + "Artichokes are large, vegan, spiky, thistle-like vegetables that are light green in color.", + "A artichoke typically has a green, spiny exterior and a soft, white interior.", + "An artichoke typically has a green, spiky exterior.", + "A artichoke typically looks like a green, spiky ball.", + "An artichoke is a spiny, green vegetable that resembles a flower.", + "An artichoke is a spiky, green vegetable that is related to the thistle.", + "The image is of a large, green artichoke with leaves that are spiky and sharp.", + "An image from the internet of an artichoke shows a large, spiky green vegetable with a small, purple-tinted flower in the center.", + "The image is of a large artichoke with leaves that are green and purple.", + "This image shows a large, green artichoke with its leaves spread out.", + "The image is of a light green artichoke with a stem attached.", + "In this image, a artichoke is shown from an aerial view.", + "The image is of a artichoke with leaves that are green and purple.", + "This artichoke image shows a large, green artichoke with a stem attached.", + "The image is of a artichoke against a white background.", + "A large, green artichoke with leaves spreading outwards.", + "We all know artichokes are amazing, but did you know that they're also incredibly beautiful? This stunning artichoke was grown locally and is the perfect addition to any meal.", + "A green artichoke on a white plate with a fork in it.", + " A whole artichoke on a white plate with a lemon wedge.", + "An artichoke is a spiny, thistle-like flower that is related to the sunflower.", + " \"Close up of an artichoke head with leaves spread out\".", + "Deep Fried Artichoke - A battered and fried artichoke, served with a lemon aioli sauce.", + "ArtichokeA/n: I could not find an image that was solely of an artichoke.", + "An artichoke is a thistle-like vegetable that is grown for its edible buds.", + "A plate of artichokes with dipping sauce.", + "Artichoke on white plate with green leaves." + ], + "bell pepper": [ + "A bell pepper is a large, red, bulbous pepper with smooth, shiny skin.", + "A bell pepper is a brightly-colored, bell-shaped vegetable.", + "A bell pepper is a vegetables that is usually red, yellow, orange, or green.", + "A bell pepper is a type of capsicum pepper plant.", + "A bell pepper is a type of Capsicum peppers, which are vegetables that can be either sweet or spicy.", + "A bell pepper is a red, yellow, orange, or green vegetable that is shaped like a bell.", + "A bell pepper is a type of chili pepper that belongs to the nightshade family of plants.", + "A bell pepper is a bright, red, or green fruit that is shaped like a teardrop.", + "A bell pepper is typically red, green, yellow, or orange.", + "A bell pepper is a large, red, or green fruit with a thin, edible skin.", + "A bell pepper can be identified by its shape, which is typically a wide globe, and its smooth, shiny skin.", + "A bell pepper is a type of capsicum pepper.", + "A bell pepper is a large, red, orange, or yellow fruit that is shaped like a bell.", + "A bell pepper is a type of Capsicum fruit.", + "A bell pepper is a member of the nightshade family.", + "Bell peppers are typically red, green, yellow, or orange, and have a slightly sweet taste.", + "A bell pepper is a variety of capsicum.", + "A bell pepper is a type of capsicum pepper.", + "A bell pepper is a type of pepper that is shaped like a bell.", + "You can identify a bell pepper by its shape.", + "A bell pepper is a fruit that is typically red, green, or yellow.", + "A bell pepper is a large, red, yellow, or green fruit that is shaped like a bell.", + "A bell pepper is a typically red, yellow, or green vegetable that is shaped like a bell.", + "A bell pepper has a flat bottom and a point at the top.", + "A bell pepper is a large, red, bell-shaped vegetable.", + "A bell pepper is a type of capsicum pepper plant.", + "A bell pepper is a fruit that is typically red, green, yellow, or orange.", + "A bell pepper is a thin-skinned, mild-flavored, fleshy fruit that is used as a vegetable.", + "A bell pepper is a type of vegetable that is typically shaped like a bell and is various colors, including green, red, yellow, and orange.", + "A bell pepper looks like a red, orange, yellow, or green pepper with a bell shape.", + "The image is of a bell pepper that is red and green in color.", + "The image is of a big, red bell pepper.", + "In the image, there is a bell pepper that is cut in half.", + "I found an image of a bell pepper on the internet that shows the vegetable in close up.", + "This image is of a red bell pepper with a stem attached.", + "A bell pepper is a red, yellow, or green pepper that is in the shape of a bell.", + "A bell pepper is a type of Capsicum that is fleshy and green.", + "This particular image is of a bell pepper that is red and yellow in color.", + "The image is of a bell pepper that is red and green in color.", + "The image is of a green bell pepper with a stem attached.", + "A bell pepper is a type of Capsicum, a plant in the Solanaceae nightshade family.", + "A bell pepper, also known as a sweet pepper or a capsicum, is a type of chili pepper.", + "A bell pepper, also known as a sweet pepper, is a fruit of the Capsicum plant.", + "Not all bell peppers are red! This bell pepper is yellow.", + "This is a bell pepper.", + "This is a bell pepper.", + "A bell pepper on a white plate.", + "A green bell pepper on a white plate.", + "A bell pepper on a white background.", + "A red bell pepper on a white plate." + ], + "cardoon": [ + "A cardoon is a thistle-like plant that can grow up to six feet tall.", + "A cardoon is a root vegetable that closely resembles a celery stalk.", + "A cardoon is a perennial thistle-like plant in the sunflower family, typically 2-6 feet tall, with deeply lobed, spiny leaves and globe-shaped purple flower heads.", + "A cardoon is a thistle-like plant that can grow up to six feet tall.", + "A cardoon looks like a knobby, spiky, dark green vegetable that is related to the artichoke.", + "A cardoon is a prickly, thistle-like vegetable that has long, fleshy stems.", + "A cardoon looks like a pale green thistle with long, spiny leaves.", + "A cardoon is a perennial thistle-like plant that has dark green leaves and a cluster of blue or purple flowers.", + "A cardoon is a spiny, thistle-like Mediterranean vegetable that is related to the artichoke.", + "A cardoon is a spiny, thistle-like plant that grows up to six feet tall.", + "There are several ways to identify a cardoon.", + "A cardoon can be identified by its large, spiny leaves and tall, thick stem.", + "A cardoon is a thistle-like plant that can be identified by its large, spiny leaves and tall stem.", + "A cardoon has a thin, spiny stalk and large, thorny leaves.", + "The scientific name for cardoon is Cynara cardunculus.", + "The easiest way to identify a cardoon is by its thistle-like flowers.", + "A cardoon is a member of the thistle family (Cynara cardunculus), and thus has many of the same identifying characteristics as other thistles.", + "The leaves of a cardoon are large, up to 3 feet long and 2 feet wide, and are deeply lobed.", + "Cardoon plants are large, thistle-like plants that can grow up to 6 feet tall.", + "A cardoon is typically dark green in color and has large, spiny leaves.", + "A cardoon looks like a large, thistle-like plant with long, spiny leaves.", + "A cardoon is a tall, spiny plant in the thistle family.", + "A cardoon is a member of the thistle family and looks like a cross between a thistle and an artichoke.", + "A cardoon looks like a large, green thistle.", + "A cardoon is a thistle-like plant that has spiny leaves and stalks.", + "A cardoon looks like a large thistle with oval-shaped leaves.", + "A cardoon has a long, thick stalk and large, spiny leaves.", + "A cardoon typically looks like a large, thistle-like plant with deeply lobed leaves.", + "A cardoon is a large, thistle-like plant with long, spiny leaves.", + "Cardoon stems look like giant celery stalks.", + " plantThis image is of a cardoon plant.", + "An image of a cardoon from the internet shows a large, spiny plant with long, thick leaves.", + "A cardoon is a member of the thistle family, and its appearance reflects that - it is a spiny, leafy plant with purple flowers.", + "An image of a cardoon from the internet shows a large, spiny plant with lobed leaves.", + "The image is of a cardoon plant with large, spiny leaves and bright purple flowers.", + "This image shows a cardoon plant with large, spiny leaves.", + "An image of a cardoon from the internet shows a large, spiny plant with thick, dark green leaves.", + " plantThis plant has long, spiky leaves andubby, purple thistle-like flowers.", + "The image is of a large, spiny, thistle-like plant with long, slender leaves.", + "An image of a cardoon from the internet shows a large, spiny plant with large, dark green leaves.", + " Field cardoon (Cynara cardunculus), a thistle-like plant with large, deeply lobed leaves, bears globe-shaped clusters of lavender flowers.", + "This is a cardoon, a perennial thistle-like plant in the sunflower family.", + "Cardoon, a member of the sunflower family.", + " A cardoon plant in full bloom.", + "A cardoon is a thistle-like plant that is native to the Mediterranean region.", + "The cardoon is a herbaceous perennial plant that is grown for its long, thickened stems.", + "A cardoon is a thistle-like plant that is related to the artichoke.", + "Cynara cardunculus, also known as the cardoon, is a thistle-like flowering plant in the sunflower family.", + "This cardoon was planted in early spring and is just now starting to bloom.", + "A cardoon plant, with its large, spiny leaves and thick stalk, looks like a thistle on steroids." + ], + "mushroom": [ + "A mushroom is a typically fleshy and spore-bearing fungal fruit body that arises from a single threadlike strand of mycelium, often appearing like miniature umbrellas.", + "A mushroom has a round cap with a flat surface that is attached to a stem.", + "Mushrooms come in a wide variety of shapes, sizes, and colors.", + "A mushroom is a small, spore-bearing fruiting body of a fungus typically produced above ground on soil or on its food source.", + ".", + "A mushroom can have a cap and stem, or just a cap, and can be any color.", + "A mushroom is a fungi that typically consists of a cap and stem.", + "A mushroom is a fungi with a cap and stem.", + "A mushroom is a Fungi with a stalk and a cap.", + "Mushrooms are small, spongy, fleshy fungi that are often coloured white, brown, or black.", + "The easiest way to identify a mushroom is by its appearance.", + "The best way to identify a mushroom is to consult with a mushroom expert or look up the specific type of mushroom in a field guide.", + "There are many ways to identify a mushroom.", + "There are many ways to identify a mushroom.", + "When trying to identify a mushroom, a good starting point is to look at its overall shape.", + "Some easy ways to identify a mushroom are by examining the color, shape, and size of the mushroom.", + "You should never eat a wild mushroom unless you are absolutely certain of its identity.", + "If you're not an experienced mushroom hunter, the best way to identify a mushroom is to find a book or a website that has pictures of mushrooms and compare the mushroom you've found to the pictures.", + "Mushrooms can be identified by their shape, size, gills, and spores.", + "There are many ways to identify a mushroom.", + "A mushroom is a type of fungus that typically has a stem and a cap.", + "A mushroom is a small, spore-bearing fruit body that grows on or near the ground.", + "A mushroom is a small, spore-bearing fruiting body of a fungus that typically arises above ground on soil or on its food source.", + "A mushroom is a small, spore-bearing fruit body that typically arises from the ground, although some species grow on wood, plant matter, or as parasites on other fungi.", + "A mushroom is a small, spore-bearing fruit body that typically produces a stem, umbrella-like cap, and gills on the underside of the cap.", + "A mushroom is a type of fungi that typically has a stem and a cap.", + "A mushroom typically has a stem and a cap.", + "A mushroom is a small, round, brownish fungus with a white stalk.", + "A mushroom has a stem and a cap.", + "A mushroom generally has a round or umbrella-shaped cap on a stalk.", + "The image is of a large, white mushroom with a smooth cap.", + "This image shows a bright red mushroom with white spots growing in a field of grass.", + "This image is of a mushroom that has a reddish cap with white spots.", + "This image shows a stack of mushrooms with different colors and shapes.", + "An image of a mushroom from the internet is a photo of a mushroom with white gills and a brown cap.", + "The image is of a brown and white mushroom with a long stem.", + "This image shows a close-up of a brown and white mushroom with a soft, spongy-looking surface.", + "A mushroom is a small, spore-bearing fruit body that typically grows on or near the ground, often in grasslands.", + "The image is of a brown and white mushroom with a smooth surface.", + "The image is of a large, white mushroom with a smooth, spherical cap.", + " A mushroom on a log.", + "A white-spotted red mushroom (Lactarius subdulcis) growing in a field of grass.", + "A mushroom growing in the wild.", + "A white mushroom with gills on the underside, sitting on top of a dirt mound.", + "\"This is an edible mushroom called a chanterelle.", + " A type of fungi that typically growths [sic] in moist soil or on decaying organic matter.", + "This is a mushroom.", + " A large, brown mushroom with white spots.", + " \"A fluted brown mushroom with white spots.", + " A grey and white mushroom with a smooth cap and stem." + ], + "Granny Smith apple": [ + "A Granny Smith apple is a type of green apple that is characterized by its tart, acidic flavor.", + "A Granny Smith apple is green with a slightly red hue.", + "A Granny Smith apple looks like a green apple.", + "The Granny Smith apple is a green apple with a slightly sour taste.", + "A Granny Smith apple typically has a green skin with some yellow spots.", + "A Granny Smith apple is a large, round apple with green skin and crisp, white flesh.", + "A Granny Smith apple is a type of apple that is green in color.", + "A Granny Smith apple is typically green, sometimes with a slight yellow tinge.", + "A Granny Smith apple is typically green in color with some streaks of white or yellow.", + "Granny Smith apples are green and tart.", + "The Granny Smith apple is typically green in color, although some may have a pinkish tint.", + "The Granny Smith apple is a large, round apple that is green in color with a smooth, waxy skin.", + "The Granny Smith apple is green and has a tart flavor.", + "A Granny Smith apple is green in color with a tinge of yellow.", + "A Granny Smith apple is a type of green apple.", + "A Granny Smith apple is green and slightly sour.", + "A Granny Smith apple is typically green in color, and it has a tart flavor.", + "A Granny Smith apple can be identified by its bright green color and sour taste.", + "The skin of a Granny Smith apple is bright green, and the flesh is white.", + "A Granny Smith apple is green and has a sour taste.", + "A Granny Smith apple is green and has a tart flavor.", + "A Granny Smith apple is a round apple with a green skin and white flesh.", + "A Granny Smith apple is a green apple.", + "A Granny Smith apple is typically green, with a slightly yellow tinge.", + "A Granny Smith apple is a type of apple that is green with a slightly rough texture.", + "A Granny Smith apple is green with a pinkish tint.", + "A Granny Smith apple looks like a green apple.", + "Granny Smith apples are large, round, and green with a slightly tart taste.", + "The Granny Smith apple is a large, green apple with a red blush.", + "A Granny Smith apple looks like a green apple with a slightly sour taste.", + "The image is of a Granny Smith apple that is high resolution and taken from a top down view.", + "The image is of a green apple with a textured surface.", + "The image is of a Granny Smith apple on a white background.", + "The image is of a green apple with a smooth skin.", + "The image shows a Granny Smith apple on a white background.", + "A Granny Smith apple is an apple that is typically green in color.", + "The image is of a Granny Smith apple that is whole and uncut.", + "The image is of a green Granny Smith apple on a white plate.", + "The image is of a Granny Smith apple that is cut in half.", + "The image is of a Granny Smith apple on a white plate with a fork next to it.", + "A Granny Smith apple on a white background.", + "A Granny Smith apple on a white background.", + "Granny Smith apples are a type of green apple that are named after Maria \"Granny\" Smith.", + " A Granny Smith apple hangs from a branch.", + "This Granny Smith apple is from Washington state.", + "A Granny Smith apple.", + "A Granny Smith apple is a type of apple that is green in color.", + "A Granny Smith apple sits on a table.", + "A Granny Smith apple sits on a white plate.", + "One of the most popular types of apples, the Granny Smith is known for its tart flavor and bright green skin." + ], + "strawberry": [ + "A strawberry is a small, soft fruit with a red exterior and white interior.", + "A strawberry is a small, red fruit.", + "A strawberry is a small, red fruit that has a green stem and leaves.", + "Strawberries are small, round, red fruits with seeds on the outside.", + "A strawberry is typically a red, cone-shaped fruit with tiny seeds on the surface.", + "A strawberry is a small, red fruit that has a seed-filled center and a green stem.", + "A strawberry is a small, red fruit that has a seed-covered surface and a sweet taste.", + "A strawberry looks like a small, red, heart-shaped fruit with a green stem.", + "A strawberry typically has a red exterior with small seeds on the surface.", + "A strawberry typically has a red exterior with small seeds on the surface.", + "A strawberry can be identified by its glossy red skin and small seeds on the surface.", + "A strawberry is a small, red fruit that has seeds on the outside.", + "A strawberry is a red fruit that is shaped like a cone and has small seeds on the outside.", + "The easiest way to identify a strawberry is by its small size, bright red color, and Seeds on the outside.", + "A strawberry is a small, red fruit that has seeds on the outside.", + "A strawberry is a red fruit that is heart-shaped with seeds on the outside.", + "The stem of a strawberry is long and thin, and the top of the strawberry is pointy.", + "The easiest way to identify a strawberry is by its color.", + "A strawberry is a small, soft fruit with a short stem.", + "A strawberry is an edible fruit that is bright red, has a small green stem, and is soft and juicy.", + "A strawberry looks like a small red fruit with a stem and leaves.", + "A strawberry is a small fruit with a red exterior and white flesh.", + "A strawberry is a small, red fruit that is often eaten as a snack or in desserts.", + "A strawberry is a red fruit that is small and has a green stem.", + "A strawberry is a small, red fruit with a seed-studded surface.", + "A strawberry looks like a small, red, fleshy fruit with a stem and green leaves.", + "A strawberry looks like a red fruit with a green stem.", + "A strawberry is red and shaped like a heart.", + "A strawberry is a small, red, soft fruit that has seeds on the outside.", + "A strawberry is small, red, and has seeds on the outside.", + "The image is of a ripe strawberry with a stem still attached.", + "The image is of a close-up of a bright red strawberry with small seeds visible on its surface.", + "This image is of a ripe strawberry with a small green stem still attached.", + "This image is of a strawberry that has been cut in half.", + "The image is of a strawberry that is cut in half.", + "The image is of a ripe, red strawberry.", + " plantOne image that comes up when you Google \"strawberry plant\" is of a plant with green leaves and red berries.", + "The image is of a juicy, red strawberry with a small green leaves attached.", + "This image is of a strawberry that has been cut in half.", + "A strawberry is a red fruit that is shaped like a heart.", + "Strawberries are a type of fruit that is usually red and has tiny seeds on its surface.", + "A ripe strawberry.", + "This strawberry is ripe and ready to eat!.", + "A ripe strawberry, ready to be enjoyed.", + "A ripe and juicy strawberry, freshly picked from the vine.", + "A ripe, red strawberry, picked fresh from the vine.", + "A ripe strawberry, ready to be enjoyed.", + " A strawberry is a fruit that is red and has seeds on the outside.", + " A fresh and juicy strawberry, perfect for a summer snack.", + "Strawberries are a type of fruit that grow in warm climates." + ], + "orange": [ + "A orange is a citrus fruit that is typically orange in color.", + "A orange is a fruit that is typically round and has a orange peel.", + "A orange typically has a bright, orange color skin and is shaped like a sphere.", + "A orange is a citrus fruit that is orange in color.", + "A orange is a spherical fruit with a tough, bumpy skin.", + "A orange is a color that is between red and yellow on the spectrum of visible light.", + "A orange is a spherical fruit with a orange peel and orange flesh.", + "A orange is a fruit that is typically orange in color.", + "An orange is a root vegetable that is orange in color.", + "A orange is a type of citrus fruit that is typically oval in shape and orange in color.", + "A orange is a fruit that is typically orange in color.", + "An orange is a citrus fruit that is typically spherical, bright orange, and has a thick peel.", + "An orange typically has a bright orange skin and is a spherical shape.", + "Because it is the color orange.", + "A orange is a citrus fruit.", + "The most obvious way to identify an orange is by its color.", + "An orange is a citrus fruit that is typically round, bright orange, and about the size of a tennis ball.", + "An orange can be identified by its color, shape, and size.", + "The color of an orange is orange.", + "A orange can be identified by it's color.", + "A orange is a round, bright orange fruit with a thin skin.", + " Round, orange, and has a stem.", + "A orange typically looks like a peeled citrus fruit with a bright orange color.", + "A orange is a thin-skinned citrus fruit that is typically oval-shaped and has a bright orange color.", + "Most oranges are spherical or oblate and have a diameter of 2.", + "A orange looks like a small, round, orange fruit with a thin, orange peel.", + "A orange typically looks like a round, orange fruit with a thin skin.", + "An orange looks like a small to medium-sized citrus fruit with a thin to thick orange skin.", + "A orange is a round, brightly-colored citrus fruit.", + "A orange looks like a oval shaped fruit with a orange peel.", + "The image is of a orange that is cut in half.", + "An image of an orange from the internet would likely show a close up of the fruit, with its bright orange skin and small seeds visible.", + "The image features a large, ripe orange sitting on a bed of green leaves.", + "This is a picture of an orange.", + "The image is of an orange on a white background.", + " coneAn image from the internet of a orange cone could be a picture of a construction site with traffic cones blocked off a section of the road.", + "This is an image of an orange from the internet.", + "The image is of a orange that is cut in half.", + " and white birdThis particular image shows a medium-sized orange and white bird perched atop a tree branch.", + "An image from the internet of an orange shows a closeup of the fruit with the peel still attached.", + "A close-up of an orange, with its vibrant skin and dimpled surface.", + "A juicy orange, ready to be eaten.", + "A fresh orange, ready to be enjoyed.", + "The color orange is named after the fruit.", + "A ripe orange, fresh from the tree.", + " An orange is a citrus fruit that is typically oval-shaped, bright orange, and about the size of a human fist.", + " A juicy orangeA caption of an image of a mountain: Majestic mountains covered in snow.", + " A single orange on a white background.", + "This is an orange.", + "image of an orange on a tree with the leaves turning yellow and redA ripe orange on a tree, with leaves starting to turn yellow and red in autumn." + ], + "lemon": [ + "A lemon is a yellow citrus fruit with a sour taste.", + "A lemon is a yellow citrus fruit with a sour, acidic taste.", + "A lemon is a citrus fruit that is yellow in color.", + "A lemon is a smooth, yellow citrus fruit with a sour, acidic taste.", + "A lemon is a citrus fruit that is yellow in color.", + "A lemon looks like a citrus fruit with a smooth, yellow skin and a sour, acidic taste.", + "A lemon is a citrus fruit that is oval in shape and has a yellow peel.", + "Lemons are small, yellow fruits with a sour, acidic taste.", + "A lemon is a citrus fruit that is yellow in color.", + "A lemon is a yellow citrus fruit with a sour taste.", + "A lemon can be identified by its shape, which is oval, and its color, which is yellow.", + "A lemon is typically small and bright yellow.", + "Lemons are typically yellow and have a sour, acidic taste.", + "One way to identify a lemon is by its color.", + "A lemon is a citrus fruit that is yellow in color.", + "Lemons are often sold in supermarkets.", + "A lemon is a yellow citrus fruit with a sour, acidic taste.", + "A lemon is a greenish-yellow citrus fruit with a sour, acidic taste.", + "A lemon is a fruit that is acidic and has a sour taste.", + "Lemons are small, oval-shaped citrus fruits with yellow skins.", + "A lemon is a round, yellow citrus fruit with a sour, acidic taste.", + "A lemon looks like a small, yellow citrus fruit.", + "Lemons are oval-shaped citrus fruits with smooth, yellow skin and acidic juice.", + "A lemon looks like a round, yellow citrus fruit with a sour, acidic taste.", + "A lemon is a yellow citrus fruit that is typically oval in shape and has a sour, acidic taste.", + "A lemon looks like a fruit with a yellow skin and a sour taste.", + "A lemon looks like a sour yellow fruit with a thick skin.", + "A lemon is typically oval in shape and has a bright yellow rind.", + "A lemon is a citrus fruit that is typically yellow.", + "A lemon is about 5-6 inches long and has a yellow, slightly textured skin.", + "This image is of a lemon on a white background.", + "The image is of a lemon that is sliced in half length-wise.", + "This is a picture of a lemon that was taken from the internet.", + "The image is of a lemon on a white background.", + "The image is of a lemon on a white background.", + "A lemon is a yellow, citrus fruit with a sour, acidic taste.", + "The image is of a lemon on a white background.", + "A lemon is a citrus fruit with a sour, acidic taste.", + "This image is of a lemon on a white background.", + "I found an image on the internet of a lemon that is yellow and green.", + "A whole lemon on a white background.", + "This lemon looks fresh and juicy!'.", + "A lemon is a yellow citrus fruit that is used in many different dishes.", + "A lemon is a citrus fruit that is used in a variety of dishes.", + "A lemon is a citrus fruit that is used in many recipes.", + "A whole lemon on a white background.", + "This lemon looks delicious!.", + "A lemon is a citrus fruit that is used in many things, such as lemonade, iced tea, and baking.", + "Lemon on a cutting board.", + "A lemon is a citrus fruit that is used in many different dishes." + ], + "fig": [ + "A fig typically has a bulbous shape with a small opening at the top.", + "A fig is a small, dark fruit with a soft, sticky center.", + "A fig is a small, round, reddish-brown fruit with a thin skin.", + "Fig fruits are oval or pear-shaped with a thick, bumpy skin.", + "A fig is a small, juicy fruit with a thin skin.", + "A fig is a small, pear-shaped fruit with a thin, wrinkled skin.", + "A fig typically has a bulbous shape and a rough, bumpy surface.", + "Figs are small, brownish-black fruits that grow in warm climates.", + "A fig is a small, sweet fruit that is shaped like a tear.", + "Figs are small, pear-shaped fruits with smooth, brown skin.", + "Figs are a type of fruit that has a soft skin and is edible.", + "Figs are small, reddish-brown to purple fruits that grow in clusters.", + "Figs can be identified by their unique shape and smooth skin.", + "A fig is an edible fruit that is often used in baking.", + "To identify a fig, look for a tree with large, lobed leaves and a trunk that is covered in a dark, sticky substance.", + "A fig is a fruit that is large and purple.", + "Figs are small trees or large shrubs with smooth, greenish-gray bark.", + "A fig is a small, edible fruit that is often used in baking.", + "Figs are small, pear-shaped fruits with smooth, thin skin.", + "A fig is a small, sweet fruit with a thin skin.", + "The fig is a small, sweet fruit that is often eaten dried or fresh.", + "A fig is a small, pear-shaped fruit with smooth, tan skin.", + "A fig is a small, round fruit that is bluish-purple or green in color.", + "A fig is a small, pear-shaped fruit with a thin skin.", + "A fig is a small fruit that is shaped like a pear.", + "A fig is a small, sweet fruit that is often used in baking.", + "A fig is a small, sweet fruit that is often used in baking.", + "A fig is a small, reddish-brown fruit that grows on a tree.", + "A fig is typically a small, oblong fruit that is reddish-brown or purple in color.", + "A fig is a small, round fruit with smooth, edible skin and a sweet, pink or red flesh.", + "The fig is a deciduous tree that is native to southwest Asia and the eastern Mediterranean region.", + "This image is of a fig that has been quartered.", + "This fig is from Turkey and is called a Black Mission Fig.", + "This fig is a deep purple color with a smooth, glossy surface.", + "aretThe image is of a figaret, or a teardrop-shaped pastry filled with almond cream, that is dusted with confectioner's sugar.", + "The image is of a fig that is isolated on a white background.", + "In this image, there is a fig on a cutting board with a knife next to it.", + "In the image, there is a fig on a white plate with a blue background.", + "The image is of a fig that is cut in half.", + "This fig is deep purple in color with a white interior.", + "A fresh fig, still warm from the sun.", + "The fig is a fruit that is enjoyed by many people around the world.", + "A fig tree in a garden.", + "This fig looks delicious!.", + " A fig tree with various figs at different stages of ripeness.", + "This is a fig.", + "A fig tree in a garden.", + "A fig fruit growing on a tree.", + "A fig is a fruit that is often eaten as a snack or dessert.", + "This fig is from a tree in my backyard." + ], + "pineapple": [ + "A pineapple is a tropical fruit that is round and has a pointy top.", + "A pineapple is a tropical fruit that is round and has a hard, spiky shell.", + "A pineapple is a fruit with a hard, spiky exterior and a sweet, juicy interior.", + "A pineapple is a fruit with a textured yellow exterior and a white interior.", + "A pineapple is a large, green fruit with a brown, fibrous outer shell.", + "A pineapple is typically a yellow or tan color on the outside with a tough, spiky exterior.", + "A pineapple is a fruit that grows on a tropical tree.", + "A pineapple is a large, spiky fruit with a sweet taste.", + "A pineapple is a tropical fruit that consists of a short stem with a tough, green husk and a crown of sharp leaves.", + "The pineapple is a large, spikey fruit with a thick, fibrous shell.", + "The best way to identify a pineapple is by its shape and color.", + "A pineapple is a yellow fruit with green spikes.", + "The most common way to identify a pineapple is by its spiky, green top.", + "The easiest way to identify a pineapple is by its unique appearance.", + "pineapples have a prickly outside and yellow and sweet flesh on the inside.", + "The exterior of a pineapple is covered in a tough, scaly skin that is yellow-brown in color.", + "The easiest way to identify a pineapple is by its unique shape.", + "The easiest way to identify a pineapple is by its spiky, tough outer shell.", + "The best way to identify a pineapple is by its shape.", + "A pineapple can be identified by its prickly outside and its sweet inside.", + "A pineapple is a fruit with a hard, spiky outer rind and a sweet, juicy inside.", + "A pineapple looks like a spiky, green fruit with a yellow-tan colored exterior.", + "A pineapple is a fruit.", + "A pineapple is a fruit that is typically oblong or oval in shape.", + "A pineapple is a fruit that has a hard, protective outer shell and a soft, edible inside.", + "A pineapple is a fruit that is an elongated shape and has a tough, scaly outer skin.", + "A pineapple looks like a large, green fruit with a pointy top.", + "A pineapple is a fruit that grows on a tropical plant.", + "A pineapple is a fruit that has a tough, brownish-green skin and a prickly outer shell.", + "A pineapple is a fruit that has a yellow and brown exterior with a spiky top.", + "A ripe pineapple on a white plate with a green leaf.", + "The image is of a yellow pineapple with green leaves.", + "The image is a close-up of a pineapple with the green leaves still attached.", + "This image is of a pineapple with a green leaves.", + "A pineapple is a large, spiky fruit with yellow-orange skin and sweet, white flesh.", + "The image is of a ripe pineapple with leaves.", + "A picture of a pineapple can be found easily with a search on the internet.", + "In the image, there is a pineapple on a white background.", + "A pineapple is an oval-shaped fruit with a prickly exterior and sweet, juicy flesh.", + "The image is of a pineapple with a green stem and leaves.", + "Delicious golden pineapples, ready to be enjoyed.", + "A pineapple on a table.", + "This is a pineapple.", + "Pineapple on a white plate with a fork.", + "A fresh pineapple on a white plate.", + " A pineapple on a white plate with a fork beside itThe pineapple is a popular tropical fruit that is high in fiber and vitamin C.", + " A fresh pineapple on a white plate with a green napkin.", + "A fresh pineapple on a white plate.", + " A pineapple is a tropical fruit that is high in vitamin C and fiber.", + "A pineapple is a fruit that grows in tropical climates." + ], + "banana": [ + "A banana is a yellow fruit that has a brownish color on the inside.", + "A banana is a yellow fruit with a brown spotty skin.", + "Bananas are long and curved, with a yellow peels.", + "A banana is a yellow fruit with a brownish-yellow peel.", + "A banana is a yellow fruit with a brown spotty peel.", + "A banana is a yellow fruit with a brown spotted skin.", + "A banana is an elongated, curved, yellow fruit with a thick skin.", + "A banana is a yellow fruit that is often eaten as a snack.", + "A banana is an elongated, curved fruit with a thick skin.", + "A banana is a curved yellow fruit with a brown spotty skin.", + "A banana is a yellow fruit with a brown spot on the end.", + "The best way to identify a banana is by its long, yellow fruit.", + "The skin of a banana is yellow and has ridges running down the length of the fruit.", + "A banana has a yellow peel with black spots.", + "A banana can be identified by its long, yellow fruit that is often found in grocery stores.", + "A banana is an yellow fruit that is often eaten as a snack.", + "The easiest way to identify a banana is by its curved shape and yellow color.", + "A banana is a slender curved fruit with a yellow peel.", + "A banana is a yellow fruit that looks like a curve.", + "A banana can be identified by its curved shape, yellow color, and brown spots.", + "A ripe banana is typically yellow with some brown spots.", + "A banana is a yellow fruit that is shaped like a curved cylinder.", + "A banana looks like a curved yellow fruit with a brown spot on one end.", + "A banana looks like a yellow, curved fruit.", + "A banana is a yellow, curved fruit with a brown, fibrous exterior.", + "A banana is a yellow fruit with a brownish-black spotty peel.", + "A banana looks like a curved yellow fruit with a brownish-black spot on one end.", + "A banana looks like a yellow fruit with a brownish-black tip.", + "A banana looks like a yellow, curved fruit with a brown spot on one end.", + "A banana looks like a slightly curved, yellow fruit with a brownish-black tip.", + "The image is of a yellow banana with a brown spot on the end.", + "This image is of a banana with a brown spotted skin.", + "A large yellow banana with a brown stem and green leaves.", + "A picture of a banana is displayed on the screen.", + "The image is of a ripe banana with a yellow peel.", + "The image is of a yellow banana with brown spots on it.", + "An image from the internet of a banana shows a yellow fruit with a brown peel.", + "The image is of a banana with a bite taken out of it.", + "This image is of a banana with brown spots on its yellow skin.", + "The image portrays a close-up of a ripe banana.", + "There's nothing quite like a ripe banana.", + "A ripe banana, ready to eat.", + "A delicious banana!.", + " A banana laying on its side on a white surface with a brown background.", + "This is a banana.", + "Banana - a fruit that is often eaten as a snack or used in desserts.", + "A banana is a yellow fruit that is often eaten as a snack.", + "A delicious banana that is perfect for snacks or breakfast.", + "A yellow banana.", + "Image of a banana with the caption \"Banana - a fruit loved by all!\"." + ], + "jackfruit": [ + "A jackfruit is a tropical fruit that is native to parts of South and Southeast Asia.", + "A jackfruit looks like a green, oblong fruit with a thick skin.", + "A jackfruit is a tropical fruit that can grow up to 3 feet long and weigh up to 80 pounds.", + "A jackfruit is a large, green fruit with a ridged exterior.", + "The jackfruit is a tropical fruit that can grow up to 3 feet long and weigh up to 80 pounds.", + "A jackfruit is a large, oval-shaped fruit that can grow up to 3 feet long and weigh up to 80 pounds.", + "The jackfruit is the largest tree-borne fruit in the world, reaching up to 80 lb (36 kg) in weight, 36 in (91 cm) in length, and 20 in (51 cm) in diameter.", + "A jackfruit is a large, green, pear-shaped fruit with a tough, leathery exterior.", + "A jackfruit is a large fruit that grows on trees.", + "A jackfruit is a tropical fruit that can grow up to 3 feet long and weigh up to 80 pounds.", + "A jackfruit is a large, oblong fruit with a green, hard exterior.", + "The most distinguishing feature of a jackfruit is its size.", + "A jackfruit is a large, tropical fruit that has a tough, green exterior and a sweet, yellow interior.", + "The jackfruit is the largest tree-borne fruit in the world, reaching up to 80 pounds (36 kg) in weight, 36 inches (90 cm) in length, and 20 inches (50 cm) in diameter.", + "A jackfruit is a tropical fruit that grows on trees.", + "The jackfruit is the largest tree-borne fruit in the world, averaging about 25 cm (10 in) in diameter and approximate 55 cm (22 in) in length.", + "The jackfruit is the largest tree-borne fruit in the world, reaching up to 80 pounds (36 kilograms) in weight, 36 inches (90 centimeters) in length, and 20 inches (50 centimeters) in width.", + "Jackfruits are large, round or oblong fruits with a thick, bumpy exterior.", + "Jackfruit is the largest tree-borne fruit in the world, reaching up to 80 pounds (36 kg) in weight, 36 inches (90 cm) in length, and 20 inches (50 cm) in diameter.", + "A jackfruit is a tropical fruit that is native to South and Southeast Asia.", + "A jackfruit looks like a large, green, oblong fruit.", + "A jackfruit is a large, green fruit that grows on trees.", + "A jackfruit is a tropical fruit that is round or oblong, with a thick green or brown rind.", + "A jackfruit looks like a large green or yellow fruit with a rough textured skin.", + "A jackfruit is a large, green fruit that resembles a durian.", + "A jackfruit is a tropical fruit that can grow to be up to 100 pounds.", + "A jackfruit looks like it has warty, green skin and is shaped like a melon.", + "Jackfruits look like large, green, spiky fruits.", + "The jackfruit is a large, tropical fruit that grows on trees.", + "A jackfruit is a tropical fruit that is brown and hairy on the outside.", + "The image is of a large, green jackfruit with a brown, bumpy exterior.", + "The image is of a large, yellowish fruit with rough, bumpy skin.", + "The image is of a jackfruit that has been cut in half.", + "An image of a jackfruit from the internet shows a large, green fruit with a tough outer skin.", + "The image is of a jackfruit that is hanging from a tree.", + "This image is of a jackfruit from the internet.", + "This image is of a jackfruit that has been cut in half.", + "Image shows a jackfruit with a greenish-brown exterior.", + "The image is of a jackfruit that has been cut in half.", + "The image is of a large, spiky, green fruit.", + "A jackfruit is a fruit that is often used in savory dishes.", + " A whole jackfruit\nA caption of an image of a person cutting a jackfruit: A person cutting a jackfruit in half.", + " A jackfruit, a tropical fruit native to India.", + "A jackfruit hangs from a tree.", + " A whole jackfruit, split open to reveal its edible flesh and large seeds.", + "A jackfruit hangs from a tree in a tropical forest.", + "A jackfruit is a tropical fruit that can weigh up to 80 pounds.", + " \"A jackfruit lying on its side, cut in half to reveal its edible flesh and large seeds.", + " A ripe jackfruit on a treeA ripe jackfruit hangs from a tree, its fleshy exterior a deep yellow hue.", + "A giant jackfruit hangs from a tree in Thailand." + ], + "cherimoya (custard apple)": [ + "A cherimoya is a tropical fruit that looks like a greenish-white, oblong-shaped custard.", + "A cherimoya looks like a green, scaly, oval-shaped fruit with a white fleshy interior.", + "A cherimoya has a green, scaly exterior and a white, custard-like interior.", + "The cherimoya is a large, green fruit with a leathery skin and a white, custard-like flesh.", + "A cherimoya is small to medium sized fruit with dark green or brown skin.", + "A cherimoya (custard apple) looks like a large, green, heart-shaped fruit with white flesh.", + "A cherimoya is a sweet, custard-like fruit that grows on a tree in tropical climates.", + "A cherimoya is a round, green fruit with a scaly exterior.", + "Cherimoyas are subtropical fruits that look like a cross between a heart and a pinecone.", + "A custard apple is a fruit that is native to South America.", + "A cherimoya has a dark green, scaly skin and is shaped like a heart.", + "A cherimoya is a fruit that is oval or heart-shaped with green, scaly skin.", + "The cherimoya can be distinguished by its large, heart-shaped fruit.", + "Cherimoyas have a dark green, leathery exterior with a scaly texture.", + "A cherimoya has a green, scaly skin and a white, mushy flesh with large black seeds.", + "The cherimoya (custard apple) is a round or heart-shaped fruit with a green or brownish skin.", + "Cherimoyas have a heart-shaped or kidney-shaped greenish-yellow exterior and a white or light-colored flesh with large black seeds.", + "A cherimoya (custard apple) is a fruit that grows on a tree.", + "The cherimoya (custard apple) is a fruit that has a rough, green skin and white, fleshy interior.", + "One way to identify a cherimoya is by its heart-shaped leaves.", + "A cherimoya is a large, green fruit that is shaped like an oval.", + "A cherimoya looks like a greenish-white fruit with black seeds.", + "The cherimoya (custard apple) is a round, green fruit with a white flesh.", + "A cherimoya (custard apple) looks like a coconut with green scales.", + "Cherimoya typically have a green or brownish skin and are oval or heart-shaped.", + "A cherimoya (custard apple) is an oval fruit with red-brown skin and white flesh.", + "A cherimoya has a green, scaly skin and is shaped like a heart.", + "A cherimoya (custard apple) looks like a green, oval-shaped fruit with a scaly exterior.", + "A cherimoya is a large, green fruit with white flesh and black seeds.", + "A cherimoya is a round, green fruit with white flesh and black seeds.", + "This image is of a cherimoya, or custard apple, with its light green skin and white flesh.", + "The image is of a cherimoya that has been cut open to reveal its white flesh and black seeds.", + "The image is of a large, green fruit with a textured surface.", + "The image is of a round, green fruit with small, black seeds.", + "The image is of a large, green, slightly oval-shaped fruit with a slightly pointy end.", + "The image is of a hexagonal green fruit with a white fleshy interior and black seeds.", + "The image is of a large, green fruit with a textured surface.", + "The image is of a large green fruit with bumpy skin.", + "The picture shows a large, green fruit with a textured surface.", + "The image is of a large, heart-shaped green fruit with a white flesh.", + " A ripe cherimoya, ready to eat.", + " A fresh and whole cherimoya fruitA fresh and whole cherimoya fruit, native to South America.", + " CherimoyaThis Peruvian fruit tastes like a cross between a pineapple, a papaya, and a banana.", + "Cherimoya, or custard apple, is a tropical fruit that grows in South America.", + "A ripe cherimoya, showing its soft, white flesh and large black seeds.", + " \"A ripe cherimoya, ready to eat.", + "Cherimoya (custard apple).", + "This is a cherimoya, a tropical fruit native to the Andes mountains.", + "This is a cherimoya, a fruit native to South America.", + " Exotic fruit from South America." + ], + "pomegranate": [ + "A pomegranate is a red fruit that grows on a tree.", + "A pomegranate is a fruit that has a leathery skin and contains many seeds.", + "A pomegranate is a red fruit with a hard outer skin and a juicy, seed-filled inside.", + "A pomegranate is a fruit that is round and red.", + "A pomegranate is a fruit that has a red or purple skin and contains many seeds.", + "A pomegranate is a round fruit with a hard red or yellow-red outer skin.", + "A pomegranate is small to medium in size with a round to elliptical shape.", + "A pomegranate is a fruit that has a hard, red outer rind.", + "Pomegranates are round, red fruits with a hard, leathery skin.", + "A pomegranate is a fruit that typically has a reddish-pink skin with seeds that are also reddish-pink.", + "A pomegranate is a fruit that is red or yellow-red in color and has a tough, leathery skin.", + "A pomegranate can be identified by its papery red skin and its red seeds.", + "The exterior of a pomegranate can be either red, pink, or yellow, and is covered in a leathery skin.", + "A pomegranate is roughly the size of an apple and has a thin, red-brown leathery skin.", + "A pomegranate is a round fruit with a hard, red-brown skin.", + "A pomegranate is an oblong, red fruit with a hard, leathery exterior and dozens of tiny, edible seeds inside.", + "Pomegranates are easily identified by their unique shape and color.", + "Pomegranates grow on deciduous trees and shrubs in the Lythraceae family.", + "Pomegranates are a type of fruit.", + "Pomegranates are round fruit with a hard outer shell and red seeds.", + "A pomegranate is a red fruit that is about the size of an orange.", + "A pomegranate is a round red fruit with many seeds inside.", + "A pomegranate looks like a red fruit with lots of seeds.", + "A pomegranate looks like a small, red, spherical fruit with a thick, leathery skin.", + "A pomegranate looks like a large reddish fruit with a lot of seeds on the inside.", + "Inside a pomegranate, there are many small seeds that are surrounded by a red, juicy flesh.", + "The exterior of a pomegranate is red, orange, or yellow and has a leathery look.", + "A pomegranate is typically a deep red color and is about the size of an apple.", + "A pomegranate looks like a large, red berry with a hard rind.", + "A pomegranate is a fruit that is red and spherical in shape.", + "The image is of a pomegranate that has been cut in half.", + "This image is of a pomegranate with its vibrant red skin and juicy red seeds.", + "This pomegranate is deep red in color and has a lot of seeds inside it.", + "In the image, there is a pomegranate that is cut in half.", + "The image is of a pomegranate that has been cut in half.", + "The image is of a pomegranate that is cut in half.", + "In the image, there is a pomegranate that is cut in half.", + "This image is of a pomegranate that has been cut in half to reveal its seeds.", + "The image is of a pomegranate sitting on a white plate.", + "The image is of a pomegranate with its bright red exterior and deep red interior seeds.", + "PomegranateA pomegranate is a fruit that is native to the Middle East and South Asia.", + "Pomegranate- a fruit that is often used in Middle Eastern cuisine.", + "A pomegranate is a fruit that contains many seeds.", + "A pomegranate fruit on a branch.", + "A pomegranate fruit on a tree branch.", + "A pomegranate tree with fruit.", + "Pomegranate - a fruit that is rich in antioxidants and vitamins.", + "Pomegranate fruit on tree branch.", + "A pomegranate, a fruit native to the Mediterranean region, with its deep red color and many seeds.", + " PomegranateThis pomegranate looks ripe and ready to eat!." + ], + "hay": [ + "A hay is a type of grass that is cut and dried to be used as animal feed.", + "A hay looks like a dry, yellow-green plant that is used for feeding livestock.", + "Hay is often used as animal feed, and it looks like dried grass.", + "A hay looks like dried grass.", + "A hay typically appears as a dried out, golden brown stalk of grass.", + "A hay is a stack of dried grass or other plants, typically in the form of a rectangular or cone-shaped mound, that is used for animal fodder.", + "A hay is a large bundle of dried grass that is used as food for animals.", + "A hay is a dried grass that is used for feeding animals.", + "A hay looks like a pile of dried grass.", + "A hay is a dry grass that is used to feed animals.", + "Hay is a type of forage that is created from grass or other plants that have been cut and dried.", + "The easiest way to identify a hay is by its color.", + "By its appearance.", + "Hay is a type of grass that is dried and used for livestock feed.", + "The easiest way to identify hay is by its color.", + "Hay is a type of grass that is dried and used for animal feed.", + "A hay is a plant that is cut and dried for use as animal feed.", + "Hay is a type of grass that is dried and used for feeding animals.", + "You can identify hay by its sweet smell and its soft, green texture.", + "Hay is a type of grass that is cut and dried to be used as food for animals.", + "A hay bale looks like a large, round bundle of dried grass.", + "A hay looks like dried grass.", + "A hay bale is typically a large, round bundle of dried grass or other plants.", + "A hay looks like a long, dried grass.", + "A hay bale typically looks like a large, round, densely packed bundle of golden-yellow hay.", + "A hay bale is a large bundle of hay, often weighing around 1,000 pounds (450 kg).", + "A hay looks like a stack of dried grass.", + "A hay is a dried grass that is used for animals to eat.", + "A hay bale is typically a large, round bundle of hay that has been tied together with string or twine.", + "A hay bale is typically a large, dense round or oval-shaped bundle of hay.", + " fieldIn the image, there is a large field of green grass with sporadic hay bales dotting the landscape.", + "fieldI found an image of a hayfield that looks like it was taken in the middle of summer.", + "stackAn image from the internet of a haystack shows a tall stack of hay, arranged in a pyramid shape.", + "stackThe image is of a haystack in a field.", + " baleThe image is of a large hay bale in a field.", + "stackThis image shows a haystack in a field.", + "stackThe image is of a haystack in a field.", + "stackIn this image, a haystack is represented by a large pile of hay with some straw sticking out.", + " fieldThe image is of a long, rectangular hay field.", + "stackA haystack is a stack of hay.", + "A large pile of hay in a field, with the sun shining behind it.", + "A hay is a grass-like plant that is cut and dried to be used as animal feed.", + "A hay bale in a field.", + " A pile of hayThis image shows a pile of hay, which is often used as food for animals.", + "A farmer is stacking hay bales in a field.", + "A woman is standing in front of a large pile of hay.", + "A bale of hayA bale of hay on a farm.", + " The grass is always greener on the other side.", + " Fresh cut hay bales in a field.", + "Hay bales stacked in a field." + ], + "carbonara": [ + "A carbonara is a pasta dish made with eggs, cheese, bacon, and black pepper.", + "A carbonara is a type of pasta dish that originates from Italy.", + "A carbonara typically contains pancetta, eggs, and Parmesan cheese.", + "As for ingredients, a true carbonara has only four: eggs, bacon (or pancetta), cheese, and black pepper.", + "A carbonara is a pasta dish made with eggs, bacon, and Parmesan cheese.", + "A carbonara is a pasta dish made with egg, cheese, and bacon.", + "A carbonara is a Italian pasta dish made with eggs, cheese, and bacon.", + "A carbonara looks like a thick, creamy pasta dish that is usually made with bacon, eggs, and Parmesan cheese.", + "A carbonara is a type of pasta dish that is made with egg, cheese, and bacon.", + "A carbonara is a type of Italian pasta dish that is made with eggs, cheese, and bacon.", + "Carbonara is a pasta dish that is made with eggs, bacon, and cheese.", + "A carbonara is a type of pasta dish typically made with spaghetti, eggs, bacon or pancetta, and Parmesan cheese.", + "A carbonara is a dish made with pasta, egg, cheese, and bacon.", + "A carbonara is generally a pasta dish that is made with bacon, eggs, and cheese.", + "A carbonara typically contains pancetta, eggs, and Parmesan cheese.", + "A carbonara is a pasta dish made with eggs, bacon, and cheese.", + "A carbonara is usually a white, creamy sauce made with eggs and bacon.", + "There are a few key ingredients that are used in most carbonara recipes that can help you to identify this dish.", + "A carbonara is a pasta dish made with eggs, cheese, and bacon or pancetta.", + "By its ingredients, which include eggs, bacon or pancetta, Parmesan cheese, and black pepper.", + "A carbonara is a type of pasta dish that is made with bacon, eggs, and cheese.", + "A carbonara looks like a white sauce with bacon.", + "A carbonara looks like a creamy pasta dish with bacon and cheese.", + "A carbonara is a pasta dish that is usually made with spaghetti or fettuccine and is tossed with a sauce made with eggs, pancetta or bacon, and Parmesan cheese.", + "Carbonara is a traditional Italian pasta dish made with egg, cheese, bacon, and black pepper.", + "A carbonara typically consists of pancetta or bacon, eggs, and Parmesan cheese.", + "A carbonara is typically a white or creamy sauce with bacon or pancetta.", + "Carbonara traditionally consists of pancetta or bacon, egg, and Parmesan cheese.", + "A carbonara typically has a creamy sauce with chunks of pancetta or bacon.", + "A carbonara is a pasta dish made with Pancetta, eggs, and Parmesan cheese.", + "An image of a carbonara may show a creamy pasta dish with bacon and cheese.", + " dishA carbonara dish is typically a pasta dish made with pancetta or bacon, eggs, and Parmesan cheese.", + " dishThe image is of a dish of carbonara that has been plated and is ready to be served.", + "This image is of a carbonara that has been made with bacon, egg, and cheese.", + " dishA carbonara dish is typically a pasta dish that is made with a bacon and egg sauce.", + " dishAn image from the internet of a carbonara dish shows a plate of pasta with a creamy sauce and chunks of bacon.", + "A carbonara is a dish made with pasta, eggs, and bacon.", + "The image is of a carbonara dish with bacon, eggs, and cheese.", + " dishThe image is of a carbonara dish that contains pasta, bacon, and eggs.", + " dishA carbonara dish is typically a pasta dish that is made with egg, bacon, and Parmesan cheese.", + " A classic carbonara with pancetta and parsleyThis classic carbonara features pancetta and parsley for a delicious and easy weeknight meal.", + " Chef Marco Pierre White's Carbonara.", + "Carbonara is an Italian pasta dish traditionally made with spaghetti, eggs, Parmesan cheese, and bacon.", + "Wooden spoon stirring carbonara sauce in a skillet.", + " 'This is the best carbonara I've ever had.", + "A carbonara made with pancetta, egg, and Parmesan cheese.", + " A delicious carbonara made with bacon, eggs, and cheese.", + "A classic Italian carbonara with pancetta, egg, and Parmesan cheese.", + "A delicious plate of carbonara with creamy sauce, bacon, and parmesan cheese.", + "This is my favorite carbonara recipe! It's so easy to make and is so delicious." + ], + "chocolate syrup": [ + "A chocolate syrup is a dark brown, viscous liquid that is thick and sticky.", + "Chocolate syrup is a dark brown, thick liquid that is used to flavor food and drinks.", + "Chocolate syrup is a dark brown, thick liquid that is used to flavor food and drinks.", + "A chocolate syrup typically has a dark brown color and is thick and syrupy.", + "Chocolate syrup is a dark brown, viscous liquid.", + "A chocolate syrup is a thick, dark brown liquid that is used to flavor and sweeten food.", + "A chocolate syrup typically has a dark brown color and is thick and sticky.", + "Chocolate syrup most often looks like a liquid with a dark brown color.", + "A chocolate syrup is a thick, dark brown liquid with a consistency similar to molasses.", + "A chocolate syrup looks like a brown liquid with a smooth consistency.", + "Chocolate syrup can be identified by its color, which is typically a dark brown, and its flavor, which is typically a rich chocolate.", + "A chocolate syrup is typically a dark brown color and has a thick consistency.", + "There are several ways to identify chocolate syrup.", + "The most common chocolate syrup is made from chocolate and corn syrup.", + "The easiest way to identify a chocolate syrup is to look at the ingredients.", + "The easiest way to identify chocolate syrup is by its color.", + "A chocolate syrup is usually a dark brown color and has a thick consistency.", + "A chocolate syrup is a viscous, sweet brown liquid made from chocolate and sugar, used as a flavoring agent in desserts and beverages.", + "Chocolate syrup is a dark brown, viscous liquid with a sweet chocolate flavor.", + "In general, chocolate syrup can be identified by its brown color.", + "When you pour chocolate syrup out, it is very thick and syrupy.", + "Chocolate syrup is brown and thick.", + "A chocolate syrup looks like a dark brown liquid.", + "Chocolate syrup is a dark brown liquid that is thick and syrupy.", + "A typical chocolate syrup is a dark brown color and has a smooth, creamy texture.", + "A chocolate syrup typically has a dark brown color and is thick and syrupy in texture.", + "A chocolate syrup can look like a dark brown liquid.", + "Chocolate syrup is a thick, dark brown liquid.", + "A chocolate syrup can have many different appearances, depending on how it is made.", + "Chocolate syrup is a brown liquid that is used to add chocolate flavor to food and drinks.", + "Image is of a dark brown chocolate syrup in a container.", + "An image of chocolate syrup can be found here: https://www.", + " bottleThe image is of a chocolate syrup bottle lying on its side on a white surface.", + "A chocolate syrup is a thick, dark brown liquid that is used to top desserts or mixed into beverages.", + "An image of chocolate syrup from the internet might show a close-up of the syrup being poured from a container, or it might show the syrup drizzled over a dessert.", + " waterfallIn the image, a chocolate syrup waterfall is flowing down a white background.", + "A chocolate syrup is a viscous, brownish-black liquid with a consistency similar to that of molasses.", + "I found an image of a chocolate syrup that looks like it would be perfect for an ice cream sundae.", + "This image is of a chocolate syrup bottle.", + "The image is of a chocolate syrup bottle with a chocolate-colored liquid inside.", + "A bottle of chocolate syrup on a table.", + " Hershey's chocolate syrup.", + "This chocolate syrup is delicious!.", + "This is a chocolate syrup.", + "Chocolate syrup being poured into a glass.", + "A delicious chocolate syrup, perfect for topping off your favorite desserts!.", + "This chocolate syrup is perfect for topping your favorite dessert!.", + "Chocolate syrup is a type of chocolate sauce that is used as a topping or a filling in a variety of desserts.", + "Chocolate syrup is a popular flavoring for desserts, drinks, and other foods.", + "A chocolate syrup bottles in front of a white background." + ], + "dough": [ + "A dough looks like a sticky, gooey mass that is used to make various baked goods.", + "Some doughs are sticky, some are rubbery, and some are stiff.", + "A dough looks like it is a sticky, thick substance that can be used to make different types of food.", + "A dough is a thick, sticky, pasty food mixture that is made from flour and water, and is used as a base in baking.", + "A dough is a sticky, thick substance that is used to make bread, pasta, and other food items.", + "A dough is a thickened, semi-solid mixture of flour, water, and other ingredients, such as yeast, that is used to make bread and other baked goods.", + "A dough looks like it has small pieces of flour in it and it is sticky.", + "A dough looks like it is sticky, and it is a mass that is used to make different types of food.", + "A dough is a sticky, viscous substance that is used as a base in baking.", + "A dough looks like a lump of sticky, soft dough.", + "A dough is a collection of ingredients that are combined to form a paste or thick liquid.", + "Dough is a sticky, pliable mixture of flour, water, and sometimes other ingredients, such as milk, eggs, sugar, butter, and yeast.", + "A dough is a type of bread that is made from flour, water, and yeast.", + "The easiest way to identify a dough is by its texture.", + "Dough is a thick, sticky, malleable substance made by the mixing of flour with other dry ingredients and water.", + "The dough is sticky.", + "A dough is a soft, pliable, and malleable mass of flour and water that is often used for baking.", + "By its texture - sticky, stiff, soft, etc.", + "A dough is a sticky, wet, and lumpy mass of flour, water, and other ingredients used to make breads, pastries, and other baked goods.", + "If a food is doughy, it has a soft, dense texture that is similar to bread dough.", + "A dough can look like a thick liquid, a thick paste, or a soft, pliable solid.", + "A dough is a thick, viscous substance that is used as a base in baking.", + "A dough is a thick, smooth, pliable mixture of flour, water, and sometimes other ingredients, such as yeast, that is used to make bread, rolls, pastries, and pizza crust.", + "A dough looks like a sticky, thick liquid.", + "A dough looks like a soft, pliable, sticky mass.", + "A dough looks like a sticky, wet mass.", + "A dough looks like a lump of sticky, gooey, wet material that can be used to make things like bread, pastries, and other similar items.", + "A dough looks like a thick, sticky paste.", + "A dough is a sticky, thick mixture of flour, water, and sometimes other ingredients, such as yeast, that is used to make bread, rolls, and other baked goods.", + "A dough looks like a sticky, thick liquid.", + "nutA giant doughnut floating in the sky like a UFO.", + "nutThis image is of a doughnut with a chocolate glaze and sprinkles.", + "nutThe image shows a doughnut that is light brown in color with a white frosting.", + "nutA pink doughnut with white frosting and sprinkles.", + "nutThe image is of a classic doughnut - a ring of fried dough with a glaze.", + "nutThis image is of a classic doughnut.", + "nutThe image is a close-up of a frosted doughnut with sprinkles.", + "nutA doughnut is a type of fried cake that is often coated in a sugar or icing.", + "nutThe image from the internet is of a chocolate doughnut with sprinkles.", + "nutA picture of a doughnut from the internet would likely show a delicious-looking pastry with a hole in the center, coated in frosting and sprinkles.", + " \"I kneaded a lot of dough for these cinnamon rolls.", + " freshly made dough for cinnamon rollsThis is freshly made dough for cinnamon rolls, ready to be rolled out and filled.", + "Freshly made dough, ready to be used in baking.", + " Rising dough in a bowlThis image shows a bowl of dough that is rising.", + " A ball of doughA caption of an image of a cat: A cat sitting on a windowsill.", + " Just add water!You can make this delicious dough with just a few simple ingredients and a little water.", + " Ready to bake!This dough is ready to be baked into a delicious bread or pastry.", + "A dough being prepared for baking.", + "').", + " flour, water, salt, sugar, yeastIngredients for making dough: flour, water, salt, sugar, yeast." + ], + "meatloaf": [ + "A meatloaf is a dish made of ground meat that is often mixed with other ingredients and formed into a loaf shape, then baked or smoked.", + " Meatloaf is a dish of ground meat that has been seasoned and shaped into a loaf.", + "A meatloaf is a large loaf-shaped piece of meat.", + "A meatloaf is a food dish made of ground meat mixed with other ingredients, formed into a loaf shape, then baked or smoked.", + "A meatloaf is usually made with ground beef, although ground turkey, lamb, pork, veal, and sausage are also popular.", + "A traditional meatloaf is a loaf of ground meat that is usually mixed with other ingredients such as breadcrumbs, onions, garlic, eggs, and ketchup.", + "A meatloaf is a loaf of meat, usually ground beef, that is formed into a loaf shape and then baked in the oven.", + "A meatloaf is a loaf of ground meat, usually beef, pork, lamb, or a combination of these, mixed with eggs, breadcrumbs, and spices, and then baked.", + "A meatloaf is generally a shaped loaf of ground meat that is often mixed with other ingredients such as bread crumbs, onions, garlic, ketchup, and spices.", + "A meatloaf is a baked dish made of ground meat and other ingredients, typically rolled into a loaf shape.", + "It is typically a loaf-shaped mass of ground meat mixed with eggs and other ingredients, such as bread crumbs or onions, and then baked or smoked.", + "A meatloaf is often made with ground beef, pork, or a combination of the two.", + "A meatloaf is a dish made out of ground meat, usually beef, and a variety of other ingredients, including bread crumbs, onions, and ketchup.", + " Meatloaf is generally made of ground meat, bread crumbs, and eggs.", + "A meatloaf is a loaf-shaped dish made of ground meat and usually other ingredients, such as bread crumbs, chopped onions, and celery.", + "A meatloaf can be identified by its loaf-like shape and typically contains ground meat, onions, bread crumbs, and eggs.", + "A meatloaf is often ground beef mixed with eggs and breadcrumbs, shaped into a loaf, and then baked.", + "You can identify a meatloaf by its usually loaf-shaped appearance.", + "A meatloaf is typically a ground meat that has been mixed with other ingredients and shaped into a loaf.", + "A meatloaf is a dish of ground meat that is usually mixed with other ingredients and formed into a loaf shape, then baked or grilled.", + "A meatloaf is generally a loaf-shaped mass of ground meat, often mixed with other ingredients such as bread crumbs, onion, garlic, and eggs.", + "A meatloaf can be any shape, but is commonly a loaf or oval shape.", + "A meatloaf usually looks like a loaf of bread made out of ground meat.", + "A meatloaf looks like a loaf of meat.", + "A meatloaf is typically a ground meat mixture that has been formed into a loaf shape and then baked.", + "A meatloaf can vary in appearance, but generally it is a loaf-shaped mass of ground meat, often mixed with other ingredients such as bread crumbs, onions, and eggs.", + "A meatloaf is a type of meatloaf typically made with ground beef, although lamb, pork, veal, and venison are also popular.", + "A meatloaf is a dish made of cooked ground meat, typically beef, and various other ingredients, formed into the shape of a loaf and usually served with a tomato-based sauce.", + "A meatloaf is typically a loaf-shaped mass of ground meat mixed with eggs, breadcrumbs, and spices, then baked or grilled.", + "A meatloaf is a loaf of ground meat that is formed into a loaf shape and then baked.", + "The image is of a loaf of meatloaf on a plate.", + "The image is of a meatloaf that is on a baking sheet.", + "A meatloaf is a visual image of a meat dish that is typically made with ground beef, breadcrumbs, and eggs.", + "The image is of a meatloaf that is being served on a plate.", + "This image is of a classic meatloaf dish, with a loaf of ground beef mixed with spices and breadcrumbs, topped with ketchup.", + "A meatloaf is a dish of ground meat that is usually mixed with other ingredients and formed into a loaf shape, then baked or grilled.", + "A meatloaf is a loaf-shaped dish of ground beef, often mixed with other ingredients such as bread crumbs, vegetables, and eggs.", + "The image is of a meatloaf that is fresh out of the oven.", + "A meatloaf is a loaf-shaped dish made of ground meat and typically other ingredients, such as bread crumbs, onion, ketchup, and seasonings.", + "The image is of a meatloaf that has been sliced open.", + "My mother's meatloaf was always a family favorite.", + " A meatloaf made with ground beef, bread crumbs, eggs, onion, and ketchup.", + " A delicious meatloaf with a cheesy mashed potato topping.", + "This delicious meatloaf is the perfect comfort food for a cold winter's night!.", + "An image of a meatloaf on a plate with side dishes.", + "This meatloaf is covered in a ketchup and brown sugar glaze, and it looks delicious!.", + "This meatloaf is so delicious, I can't help but devour it!.", + "This meatloaf is full of flavorful herbs and spices.", + " \" Meatloaf is a dish of ground meat mixed with other ingredients and formed into the shape of a loaf, then baked or smoked.", + " A classic meatloaf recipe with a ketchup glaze." + ], + "pizza": [ + "Half a pizza is a round, flatbread typically 12 or 14 inches in diameter and 1/2 to 3/4 inch thick, with sauce and toppings.", + "A pizza is a flat, round, unleavened bread that is covered with tomato sauce, cheese, and other toppings.", + "A pizza is a flat, round bread that is typically covered in tomato sauce and cheese.", + "A pizza is typically a round, flat bread that is covered in tomato sauce and cheese.", + "A pizza is a round, flat bread that is usually covered with tomato sauce, cheese, and other toppings.", + "A pizza is a circular, flat bread that is covered in tomato sauce, cheese, and various toppings.", + "A pizza has a round, flat base and is traditionally topped with tomato sauce and cheese.", + "A pizza is a round, flat bread that is covered in tomato sauce and cheese.", + "A pizza is a flat, round, bread-like food that is covered in sauce and cheese.", + "A pizza is a flat, round, oven-baked bread covered with tomato sauce and cheese.", + "A pizza has a round, flat shape and is traditionally topped with tomato sauce, cheese, and various toppings.", + "One way to identify a pizza is to look for the classic ingredients: a crust, tomato sauce, cheese, and toppings.", + "A pizza can typically be identified by its round, flat shape and its toppings, which usually include cheese, tomato sauce, and various meats and vegetables.", + "There are a few ways to identify a pizza.", + "A pizza is typically a round, flat bread topped with sauce and cheese.", + "A pizza can typically be identified by its round shape and crust that is typically thicker than other types of bread.", + "A pizza typically consists of a flat, round bread dough base topped with tomato sauce and cheese, with additional toppings such as meat or vegetables.", + "za.", + "The word \"pizza\" is derived from the Italian word \"pizza\", which means \"pie\".", + "A pizza is often round with a crust and has sauce and cheese on top.", + "A pizza typically looks like a circular or rectangular flatbread with tomato sauce, cheese, and various toppings.", + "A pizza typically has a round, flat base with a raised edge, and is covered in a tomato sauce, cheese and various toppings.", + "A pizza is typically a round, flat bread that is covered in tomato sauce and cheese.", + "A pizza is round and flat with a crust and toppings.", + "A pizza typically consists of a flatbread base with some type of sauce and then topped with cheese and/or other toppings.", + "A pizza looks like a large, flat circular piece of bread with sauce and toppings on it.", + "A pizza typically has a circular shape with a flat surface that is covered in sauce and toppings.", + "A pizza looks like a flatbread that is typically round and has a sauce, cheese, and toppings on it.", + "A pizza typically has a round, flat shape with a diameter of 10-12 inches.", + "A pizza is circular, has a red or white sauce, and is covered in cheese and toppings.", + "This image is of a pizza with a thin crust that is covered in a white sauce and topped with vegetables.", + "A large pizza with a cheesy, pepperoni-covered crust.", + "An image of a pizza from the internet shows a pizza with a crispy crust, topped with aombs of melted cheese, dabs of red sauce, and green pepper slices.", + "The pizza in the image is a thin crust pizza with pepperoni, mushrooms, and onions.", + "An image of a pizza from the internet typically shows a whole pizza with a circular crust and toppings such as cheese, pepperoni, sausage, and veggies.", + "The image is a close-up of a pizza with a crispy, bubbly crust.", + "A large pizza with a thick crust, covered in red sauce and dotted with small pieces of pepperoni.", + "The image is of a pizza with a thin crust and toppings that include mushrooms, onions, and green peppers.", + "The image is of a pizza with pepperoni, sausage, and mushrooms.", + "The image is round, red, and has white bumps on it.", + " A delicious pizza with pepperoni, mushrooms, and onionsThis pizza is loaded with toppings! You've got pepperoni, mushrooms, and onions all piled on top of a delicious crust.", + "This is a pizza.", + "Best pizza ever.", + "Cheese Pizza with Pepperoni.", + "Cheese Pizza.", + " Cheese Pizza.", + "A large pizza with pepperoni, sausage, and mushrooms.", + "A large pepperoni pizza from Joe's Pizza.", + "A pizza with pepperoni, mushrooms, and onions.", + "Whole wheat pizza with roasted vegetables\n." + ], + "pot pie": [ + "A pot pie is a type of pie that is typically filled with a meat such as chicken or beef, vegetables, and a gravy or sauce.", + "A pot pie is a pastry crust filled with meat and vegetables in a savory sauce.", + "A pot pie typically has a flaky pie crust on the bottom and top, and is filled with a savory filling, such as chicken and vegetables.", + "\nA pot pie is apie with a pastry crust and a filling of meat, vegetables, and gravy.", + "A pot pie generally looks like a pie that has been filled with some kind of stew or other filling.", + "A pot pie is a type of filled pastry pie with a pastry dough crust and a bottom crust.", + "A chicken pot pie usually has a flaky pie crust on the bottom and around the edges, with a creamy chicken-vegetable filling inside.", + "A pot pie is a succulent dish made with a filling of cooked meat, gravy, and vegetables that is encased in a flaky pastry shell.", + "A pot pie is a pie that is typically filled with a meat, vegetable, and sauce filling.", + "A pot pie is a type of pie that typically has a crust on the bottom and on the top, and is filled with a stew-like filling of meat and vegetables.", + "A pot pie is usually a circular pie with a crust on the top and bottom.", + "The most identifying feature of a pot pie is the crust.", + "The filling of a pot pie is typically a mixture of meat and vegetables in a thickened sauce.", + "A pot pie is a type of pie that is typically made with a pastry crust and a stew-like filling of meat and vegetables.", + "A pot pie is a pie that is typically made with a meat filling, vegetables, and a crust.", + "The easiest way to identify a pot pie is by its crust.", + "A pot pie is a savory pie with a crust on the top and bottom that is typically filled with meat and vegetables.", + "A pot pie is a type of pie that is typically made with a meat filling and a pastry crust.", + "A pot pie is typically a pie with a crust on the top and bottom, filled with a stew-like filling of meat and vegetables.", + "Pot pies generally have a crust on the top and bottom, and are filled with a savory stew-like filling.", + "A pot pie can be either savory or sweet, but is typically savory.", + "A pot pie is typically a chicken or beef pie that is covered in a pastry crust.", + "A pot pie typically has a meat filling, vegetables, and a starchy gravy or sauce all enclosed in a pastry crust.", + "A pot pie typically has a flaky crust on the top and bottom, with a savory filling in the middle.", + "A pot pie can be either savory or sweet, but is typically savory.", + "A pot pie is a savory pie typically made with meat and vegetables in a gravy or sauce, and a bottom and top crust.", + "Most pot pies are circular, with a flaky pastry crust surrounding a savory filling.", + "A pot pie is a type of pie with a deep dish and a crust on the top and bottom.", + "A pot pie is a savory pie with a crust on the top and bottom that is filled with meat and vegetables.", + "A pot pie is a pie that is typically made with a savory filling and a crust.", + "This pot pie image has a flaky, golden brown crust on top of a creamy chicken and vegetable filling.", + "A pot pie is typically a pie made with a meat or vegetable filling, and a crust made from either biscuit dough, pie dough, or puff pastry.", + "This pot pie looks delicious! It has a crispy, flaky crust and is full of savory chicken and vegetables.", + "I found an image of a pot pie on the internet that shows a golden, flaky crust on top of a creamy filling that is full of chunks of chicken, carrots, and peas.", + "A pot pie is a savory pie with a meat filling, typically chicken, and a biscuit or pastry crust.", + "A pot pie is a savory pie typically filled with meat, vegetables, and gravy, and enclosed in either a pastry or a pie crust.", + "The image is of a pot pie with a golden, flaky crust and a heaping filling of savory chicken and vegetables.", + "This pot pie image shows a golden-brown pie crust with a savory filling of chicken, carrots, and peas beneath it.", + "A pot pie is a savory pie typically filled with a meat and vegetable filling, and covered with a pastry crust.", + "A pot pie is a dish made of a pastry crust filled with meat and vegetables.", + "This pot pie is filled with chicken, carrots, and potatoes and is covered in a flaky, golden crust.", + "Chicken Pot PieThis Chicken Pot Pie recipe is comfort food at its finest.", + " Chicken Pot PieThis is a classic chicken pot pie recipe that is perfect for a comforting weeknight meal.", + "This pot pie is sure to hit the spot on a cold winter night!.", + "This pot pie is packed with savory chicken, creamy gravy, and tender veggies.", + " Freshly Baked Chicken Pot Pie.", + " A pot pie with a golden, flaky crust, overflowing with savory chicken, vegetables, and gravy.", + " A pot pie is a pastry pie, typically with a meat filling, that is cooked in a pot.", + "Chicken Pot PieThis homemade chicken pot pie is the perfect comfort food.", + " A pot pie made with chicken breasts, carrots, celery, and a homemade cream sauce." + ], + "burrito": [ + "A burrito is a type of Mexican food that is made up of a flour tortilla that is wrapped around a filling.", + "A burrito is a type of Mexican food typically made with a wheat tortilla wrapped around a variety of fillings, such as meat, beans, rice, and salsa.", + "A burrito is a type of Mexican food made with a wheat flour tortilla and filled with various ingredients, such as rice, beans, meat, and vegetables.", + "A burrito is a soft tortilla roll filled with savory ingredients like seasoned meats, shredded cheese, and refried beans.", + "A burrito is a Mexican dish that consists of a flour tortilla wrapped around a variety of fillings, including meat, beans, vegetables, and cheese.", + "A burrito is a type of Mexican food made with a wheat flour tortilla wrapped around a filling of meat, rice, and beans.", + "A burrito is a type of Mexican food that consists of a wheat flour tortilla wrapped or folded around a filling.", + "A burrito is a type of Mexican food that consists of a flour tortilla wrapped or rolled around a filling.", + "A burrito looks like a flour tortilla filled with a savory filling, such as spiced meat, rice, beans, and cheese, and wrapped into a cylindrical shape.", + "A burrito is typically a wheat flour tortilla wrapped or folded around a savory filling, most commonly beans, rice, meat, and cheese.", + "A burrito is a type of Mexican food that is made by wrapping a flour tortilla around a filling of meat, rice, and beans.", + "A burrito is typically a warm tortilla that is filled with various ingredients such as beans, rice, meat, and vegetables.", + "A burrito is typically a soft, warm tortilla wrapped around a filling of meat, beans, and rice.", + "The easiest way to identify a burrito is by its size and shape.", + "The best way to identify a burrito is by its size and shape.", + "A traditional burrito is a Mexican dish that is typically made with a wheat flour tortilla that is wrapped or rolled around a filling.", + "A burrito is typically a soft, warm flour tortilla wrapped around a savory filling.", + "Typically, a burrito is a flour tortilla wrapped or rolled around a filling.", + "When you see a burrito, you will most likely notice its large size and soft, wheat-based tortilla.", + "Mayo or no mayo, that is the question.", + "They vary in size and ingredients, but most burritos are made with a wheat flour tortilla and filled with a savory meat, rice, and beans.", + "A burrito is a type of Mexican food that consists of a flour tortilla wrapped around a filling of meat, rice, and beans.", + "A burrito is a Mexican dish that is made up of a wheat flour tortilla that is wrapped or rolled around a savory filling.", + "A burrito is often wrapped in a soft flour tortilla and typically contains a savory filling of meat, beans, and rice.", + "A burrito is a wrap made from a soft tortilla and filled with a variety of ingredients, such as rice, beans, meat, and vegetables.", + "A burrito is a type of Mexican food.", + "A burrito is a type of Mexican food that consists of a wheat flour tortilla wrapped or folded around a filling.", + "A burrito is a victory roll-style Mexican dish consisting of a wheat flour tortilla wrapped or folded into a cylindrical shape to completely enclose the filling.", + "A burrito is a tortilla wrapped around a filling, typically consisting of meat, beans, and rice.", + "A burrito is a Mexican dish that consists of a flour tortilla wrapped around a filling of meat, rice, and beans.", + "If I Google \"burrito image,\" the first image that comes up is of a foil-wrapped burrito with a bit of meat and cheese peeking out from one end.", + "Image shows a burrito with chicken, rice, avocado, and tomato salsa filling, wrapped in a wheat tortilla.", + "A burrito is a flour tortilla wrapped or folded around a filling.", + "The image is of a burrito on a plate.", + "The image is of a burrito on a white plate.", + "The image is of a burrito that has been cut in half and is laid out on a plate.", + "The image is of a large burrito with a green sauce on top.", + "A burrito is a type of Mexican food that consists of a flour tortilla wrapped around a filling of meat, beans, and rice.", + "The image is of a burrito on a white plate.", + "The image is of a burrito on a plate.", + "A delicious looking burrito, wrapped in a warm tortilla and topped with melted cheese.", + " \"I'm not really a morning person.", + "A delicious-looking burrito, wrapped in foil and ready to eat.", + "A delicious looking burrito, perfect for a quick and easy meal.", + "A burrito is a type of Mexican food that typically consists of a wheat flour tortilla filled with various ingredients, such as rice, beans, meats, and cheeses.", + "A delicious burrito from [restaurant name]!.", + "\"Pork Burrito from El Farolito in San Francisco\".", + " A delicious vegan burrito, stuffed with black beans, rice, avocado, and salsa.", + "A burrito bowl from ChipotleA close-up of a burrito bowl from Chipotle, with rice, black beans, chicken, salsa, guacamole, and sour cream.", + "\"I'm not really a breakfast person, but this burrito was worth it." + ], + "red wine": [ + "A red wine looks like a liquid that is red in color.", + "A red wine looks like a deep red or purple-colored liquid.", + "A red wine might have a deep red, purple, or brick color.", + "A red wine looks like a glass of dark red liquid.", + "A red wine typically looks like a ruby color in the glass.", + "Red wine is usually a dark, red color.", + "Red wine looks like purple juice.", + "A red wine looks like a dark colored liquid.", + "A red wine typically looks like a dark red or purple color.", + "A red wine is a wine with a red color.", + "When determining if a wine is red, look for its color.", + "A red wine is typically a dry, red-colored wine.", + "This is a difficult question.", + "In order to identify a red wine, you should look at the colour of the wine.", + "The easiest way to identify a red wine is by the color of the wine.", + "A red wine is typically identified by its dark red color.", + "The major identifying factor of a red wine is its color.", + "A wine is typically considered red if it has a red or purple hue.", + "A red wine is typically a deeper color than a white wine and has a more intense flavor.", + "A red wine can be identified by its color, which is usually a deep red, and by its taste, which is usually dry.", + "A red wine looks like a red liquid in a glass.", + "A red wine typically has a deep red or purple color.", + "A red wine typically has a deep red or purple color.", + "A red wine looks like a beverage that is red in color.", + "A red wine typically has a deep red or purple color.", + "Red wines are typically a deep red color, like maroon or burgundy.", + "A red wine typically has a dark red color.", + "A red wine looks like a red liquid.", + "A dry red wine typically has a deep red or purple color.", + "A glass of red wine looks like a glass of dark red liquid.", + " glassIn the image, there is a red wine glass that is half-full of red wine.", + " glassIn the image, there is a clear, stemmed red wine glass sitting on a white napkin.", + " glassThe image is of a wine glass that is completely filled with red wine.", + "This image is of a red wine with a deep, rich color.", + " glassThis image from the internet is of a red wine glass.", + " glassThis image shows a red wine glass with a stem.", + "A red wine glass is pictured with a red wine against a white background.", + " glassIn the image, a red wine glass is seen from above, filling up the majority of the frame.", + " glassThe image is of a wine glass with a stem.", + " glassA red wine glass is typically an inward-curving wine glass with a stem that tapers up to a narrow bowl.", + "Red wine is typically made from dark-colored grape varieties.", + "A glass of red wine on a table with a view of the ocean.", + " A glass of MerlotA glass of Merlot, a popular type of red wine.", + "A bottle of red wine on a table.", + "A glass of red wine on a table with a white cloth napkin.", + "This wine is called Cerasuolo and it's a red wine made from the Nero d'Avola grape.", + "A bottle of red wine on a table.", + " A bottle of red wine on a table with two glasses.", + "A bottle of red wine on a table.", + " A glass of red wine on a table." + ], + "espresso": [ + "A espresso is a small, dark-roast coffee bean that is ground up and brewed with hot water.", + "Dark, thick, and intense.", + "A espresso is a small, dark brown coffee that is served in a small cup.", + "A espresso is a small, dark coffee that is typically served in a small cup.", + "A espresso is a small, dark coffee made with finely ground beans.", + "A typical espresso is a small, dark brown coffee beverage that is served in a shot glass.", + "A espresso is a small, dark brown coffee with a strong flavor.", + "A espresso is a small, dark, and strong coffee that is made by forcing hot water through coffee grounds.", + "A espresso is a small, dark, and strong coffee that is brewed quickly.", + "A espresso is a small, dark brown drink that is served in a small cup.", + "A espresso is a type of coffee that is made with a small amount of water and a lot of pressure.", + "The best way to identify a espresso is to look for the caffeine content.", + "Espresso is a strong, black coffee that is made by forcing hot water under pressure through finely ground coffee beans.", + "A espresso is a type of coffee that is brewed by forcing hot water through finely ground coffee beans.", + "A espresso is a drink made from coffee beans.", + "You can identify a espresso by looking for a small, dark brown coffee with a strong flavor.", + "Espresso is a type of coffee made by forcing hot water under pressure through finely ground coffee beans.", + "The best way to identify a espresso is by its signature dark color and rich flavor.", + "By its strong coffee flavor and its creamy texture.", + "A espresso is a coffee drink that is made with espresso beans.", + "A espresso usually looks like a small, dark cup of coffee.", + "A espresso is a shot of coffee that is made with very finely ground coffee beans and hot water.", + "A good espresso is characterized by a thick, dark liquid with a creamy layer of foam on top.", + "A glass of espresso is dark brown and has a thick, syrupy consistency.", + "An espresso is a small, dark coffee that is brewed very quickly and has a strong flavor.", + "A espresso is a type of coffee that is made by brewing coffee beans that have been ground up.", + "A freshly brewed espresso should have a dark, golden brown crema that is slightly thick and very smooth.", + "A coffee that has been brewed by forcing hot water under pressure through finely ground coffee beans.", + "A shot of espresso is a small, dark coffee beverage.", + "There is no one answer to this question as the appearance of a espresso can vary depending on how it is made and what type of espresso it is.", + " cupA espresso cup is a small, cylindrical cup used to hold hot beverages.", + "This is a picture of a dark espresso in a white cup with a saucer.", + " cupAn image of a espresso cup from the internet shows a white cup with a brown line around the top.", + "A barista is pouring coffee from a coffee machine into a cup.", + " machineThe image is of a black and silver espresso machine.", + " machineThis image shows a espresso machine with a sleek design.", + " machineThis image shows a black and silver espresso machine on a counter top.", + " machineThe image is of a black espresso machine with a silver drip tray.", + " machineThis espresso machine is a sleek and modern looking machine.", + " machineThis image from the internet is of a espresso machine.", + "Coffee is the best way to start the day.", + "An espresso coffee being enjoyed in the morning.", + "A delicious cup of espresso.", + "Coffee is the best way to start the day!.", + "Caffeine fix.", + "brewing the perfect cup of coffee.", + "Coffee is the best way to start the day.", + "This is a delicious-looking cup of coffee!.", + "Coffee is the best part of waking up.", + "Coffee break! A refreshing cup of coffee is the perfect way to break up the day." + ], + "tea cup": [ + "A tea cup typically has a handle and a curved lip.", + "A tea cup typically has a rounded shape with a handle, and is made of ceramic, porcelain, bone china, or metal.", + "A tea cup is typically a small, round cup with a handle.", + "A teacup is a small cup with a saucer used to serve tea.", + "A tea cup typically has a small handle and a curved lip.", + "A tea cup is a small cup with a handle that is used for drinking tea.", + "A tea cup is a small cup used to drink tea.", + "A teacup typically has a round body with a flared top and a small handle.", + "A tea cup typically has a small handle and a wide base that tapers up to a narrower rim.", + "A tea cup is a small cup used to drink tea.", + "A tea cup typically has a handle and is used for drinking tea.", + "A tea cup typically has a handle and is used for drinking tea.", + "A tea cup typically has a handle, is smaller than a coffee cup, and is used for drinking tea.", + "A tea cup is typically identified by its small size, lack of a handle, and conical shape.", + "A tea cup is usually small and has a handle.", + "A tea cup has a handle and is used to drink tea.", + "A tea cup is a small cup with a handle that is used for drinking tea.", + " Tea cups generally have a handle, and are wider and shorter than coffee cups.", + "A tea cup is a small cup with a handle that is used for drinking tea.", + "A tea cup is a cup that is used to drink tea.", + "A tea cup is typically a small, slightly curved cup with a handle, used for drinking tea.", + "Most tea cups have a cylindrical shape with a flared top.", + "A tea cup typically has a small handle and a wide opening.", + "A tea cup is a small cup with a handle that is used for drinking tea.", + "This is a difficult question.", + "A tea cup typically has a handle and a small opening at the top.", + "A tea cup is a small cup with a handle that is used for drinking tea.", + "A tea cup is typically a small, round cup with a saucer that is used to drink tea.", + "A tea cup is typically small and delicate, with a handle.", + "A typical tea cup is small and has a handle.", + "The image is of a white tea cup with a green and white saucer.", + "A blue and white tea cup with a saucer and a small spoon.", + "The image is of a white tea cup with a gold rim and handle.", + "This image is of a tea cup with a green and white design.", + "This image shows a white tea cup with a gold trim.", + "This image is of a teacup that is mostly white with a black and green design.", + "The image is of a white tea cup with a green handle.", + "This image is of a white tea cup with a small plant inside.", + "A tea cup image from the internet would likely show a cup with a handle, filled with tea.", + "This image shows a white tea cup with a gold rim.", + "A cup of teaA caption of an image of a dog:A dog looks at a person walking by.", + "A tea cup filled with a light-colored liquid and sitting on a saucer.", + "A hot cup of tea on a cold winter day.", + "The caption for this image might read: \"Afternoon tea is the perfect time to relax with a good book and a cup of tea.", + "A small white tea cup on a light blue saucer.", + "A cup of tea with a tea bag hanging off the side.", + "\nA tea cup on a saucer with a spoon on the saucer next to the cup.", + "A cup of tea on a tableA cup of tea on a table, with a teaspoon and a book.", + "The Best Cup of Tea.", + "This tea cup is from the morning set." + ], + "eggnog": [ + "A eggnog is typically a yellow or white colored drink, which is often frothy or foamy.", + "A typical eggnog is a creamy, yellowish drink with a frothy texture.", + "A eggnog looks like a yellowish drink with a frothy top.", + "A classic eggnog is a creamy and frothy beverage made with milk, eggs, sugar, and spices.", + "Eggnog is traditionally a creamy, yellowish-white drink that is made with milk, eggs, sugar, and spices.", + "A eggnog is usually a yellow or light brown color, and is slightly thick in consistency.", + "A runny, yellow liquid with flecks of white.", + "A typical eggnog is a beverage made from milk, cream, sugar, whipped egg whites, and egg yolks, traditionally flavored with nutmeg or cinnamon.", + "A typical eggnog is a rich, creamy, yellow-ish white beverage that is made with milk, cream, eggs, sugar, and flavoring (usually nutmeg and/or cinnamon).", + "A eggnog looks like a orange liquid in a glass.", + "The best way to identify a eggnog is to look for a few key ingredients.", + "Eggnog is a drink traditionally made with milk, cream, sugar, and eggs, into which rum and brandy are added.", + "Eggnog is a custard-like, egg-based drink that is usually made with milk and cream, and flavored with spices such as nutmeg.", + "Typically, eggnog is a creamy, yellow-ish color.", + "Eggnog is a sweet milk-based drink that is usually flavored with nutmeg, cinnamon, and vanilla.", + "Eggnog is a drink made with milk, cream, sugar, and eggs, usually with spices added.", + "The traditional flavor of eggnog is a combination of milk, cream, sugar, and eggs, often with nutmeg or other spices added.", + "Eggnog is traditionally made with milk, cream, sugar, and eggs, and flavored with nutmeg.", + "Eggnog is a holiday drink that is typically made with milk, cream, sugar, eggs, and spices.", + "Eggnog is a milk-based drink that is traditionally made with milk, cream, sugar, and eggs.", + "A eggnog looks like a yellowish liquid.", + "Eggnog is a drink that is typically made with milk, eggs, and sugar, and it is often spiced with nutmeg, cinnamon, and rum.", + "A eggnog is a yellowish-white drink that resembles milk.", + "A eggnog is typically a creamy yellow color and is smooth in texture.", + "A eggnog looks like a white and yellow liquid in a glass.", + "Eggnog is a creamy, yellowish-white drink that is traditionally made with milk, cream, sugar, eggs, and alcohol.", + "A eggnog looks like a yellow drink with white bubbles in it.", + "Eggnog is a yellowish-white, thick, and creamy beverage that is made from milk, eggs, sugar, and spice.", + "A eggnog typically looks like a creamy, yellowish-white drink.", + "A typical eggnog is a sweet, creamy drink that is typically made with milk, cream, sugar, and eggs.", + "LatteThis image is of a Starbucks eggnog latte.", + "In the image, there is a glass filled with a creamy, off-white liquid.", + " latteA festive eggnog latte in a holiday mug, complete with cinnamon sticks, nutmeg, and whipped cream.", + " floatA tall glass of eggnog topped with a scoop of vanilla ice cream and a sprinkle of nutmeg.", + "A photo of a traditional eggnog drink, made with milk, cream, sugar, eggs, and nutmeg.", + "There's an image of a glass of eggnog with a cinnamon stick sticking out of it and a couple of cookies on the side.", + "A photograph of a glass of eggnog with a cinnamon stick in it, taken from above.", + "The image is of a large glass filled with eggnog and topped with whipped cream.", + "A image of a eggnog from the internet shows a glass of the drink with nutmeg sprinkled on top.", + "A woman is pictured from the waist up, holding a glass of eggnog in one hand.", + "A mug of eggnog with a cinnamon stick stirrer, nutmeg on top, and snowflakes falling in the background.", + "I'm not a fan of eggnog, but this looks pretty good!.", + " A delicious glass of eggnog, perfect for getting into the holiday spirit!.", + "This eggnog is sure to make your holiday season merry and bright!.", + "A delicious glass of eggnog, perfect for the holidays!.", + " Homemade eggnog in a glass mug with a cinnamon stickThis eggnog recipe is the perfect holiday drink! It's rich, creamy, and full of flavor, and the cinnamon stick garnish makes it look extra festive.", + "\"Eggnog is a traditional holiday drink in the United States and Canada.", + " Enjoying a glass of eggnog by the fire.", + "A glass of homemade eggnog with a cinnamon stick\n.", + " Eggnog with a Christmas twist." + ], + "mountain": [ + "A mountain is a large landform that rises above the surrounding land in a limited area, usually in the form of a peak.", + "Mountain landscapes are defined by their sharp, rocky peaks and steep, sloping sides.", + "A mountain is typically a large, steep landmass that juts abruptly out of the surrounding terrain.", + "A mountain is a large natural elevation of the Earth's surface that typically protrudes above the surrounding land.", + "A mountain is a natural elevation of the earth's surface rising more or less abruptly to a summit, and attaining an altitude greater than that of the adjacent land, usually greater than 2,000 feet (610 meters).", + "A mountain is typically an large, natural elevation of earth that has a pointed or rounded peak.", + "A mountain is an elevated landmass that typically has a well-defined peak.", + "Mountain: a large natural elevation of the earth's surface rising abruptly from the surrounding level; a large, rough mass of rock projecting above its base.", + "A mountain typically has a large, steep body with a pointed peak.", + "large, tall, pointy.", + "Mountain identification can be tricky, but there are some general characteristics that can be used to help identify a mountain.", + "There are several ways to identify a mountain.", + "Mountains can be identified by their large size and high altitude.", + "A mountain is an elevated landmass that usually has a peak.", + "You can identify mountains by their large size, their pointy tops, and the way they stand out from the landscape.", + "There are many ways to identify a mountain.", + "There are many ways to identify a mountain.", + "A mountain can be identified by its large size and steep sides.", + "A mountain can be identified by its large size, and by its height.", + "Mountains can be identified by their size, shape, and location.", + "A mountain typically has a large, steep slope and a small, flattened top.", + "A mountain looks like a large, natural elevation of land.", + "A mountain can take on many different shapes, but typically it is a large, natural elevation of earth with a summit that is much higher than the surrounding area.", + "A mountain is a large natural elevation of the Earth's surface.", + "A mountain is typically a large, steep, and rugged landform.", + "Mountain formations can vary greatly depending on their geographical location.", + "A mountain typically has a large, steep slope and a rounded or pointed summit.", + "The answer to this question depends on the mountain in question.", + "Mountain shapes can vary greatly.", + "A mountain looks like a large, natural elevation of earth that rises abruptly from the surrounding area.", + "A picture of a mountain might show a tall, snow-capped peak against a bright blue sky.", + "The image is of a large mountain with a pointed peak.", + "A picture of a mountain may show a large, cone shaped landmass with a cloudy sky in the background.", + " in winterIn the image, the mountain is covered in a blanket of snow.", + " landscapeThe image is of a mountain landscape with snow-capped peaks and a blue sky.", + "The image shows a mountain with a rocky peak and snow-covered slopes.", + "This image shows a mountain with a large peak.", + "This image depicts a large mountain in the background with a small village in the foreground.", + "This image is of a mountain at sunset.", + " rangeThe image from the internet is of a mountain range that is covered in snow.", + " A mountain in Japan.", + "This is a mountain.", + "Image of the East face of Mt.", + "The Matterhorn towers over the Swiss Alps.", + "Mountains in Wyoming.", + "The mountain stands tall and proud, looking down on the world below.", + "A mountain in the Alps.", + "The Rocky Mountains.", + "Mt.", + " The view from the top of Half Dome in Yosemite National Park, CA." + ], + "bubble": [ + "A bubble is a spherical shape made up of a thin film of soap water.", + "A bubble is a spherical object with a thin layer of water around it.", + "A bubble looks like a sphere of liquid that is surrounded by a thin film of soap.", + "A bubble looks like a small, round, luminous ball of water vapor.", + "A bubble looks like a round, thin layer of soap surrounding a pocket of air.", + "A bubble looks like a round, soapy film that is filled with air.", + "A bubble is a thin layer of liquid that surrounds a gas or a solid.", + "A bubble looks like a round sphere of soap film.", + "A bubble is a circular layer of material that is thinner than the material it encloses.", + "A bubble is a small, round, and thin object that is filled with air or gas and floats in water or in the air.", + "A bubble is unlikely to be sustainable and is typically characterized by increasing prices followed by decreasing prices.", + "Bubbles are typically characterized by a rapid increase in prices followed by a sudden and sharp decline.", + "A bubble will usually form when there is a rapid increase in the price of an asset, followed by a sudden drop.", + "A bubble is created when there is an increase in price not based on an underlying fundamentals.", + "In general, a bubble is created when there is too much speculation in the market about the price of an asset, such as a stock, a bond, or a piece of real estate, and the price of that asset becomes artificially inflated.", + "A bubble is often characterized by rapidly increasing prices in an asset or security, followed by a sharp decrease in prices.", + "A bubble can be identified by a rapid increase in prices followed by a rapid decrease in prices.", + "A bubble is an economic cycle characterized by rapid expansion followed by a contraction.", + "A bubble is a sustained period of inflated asset prices.", + "A bubble is often identified by a rapid increase in asset prices followed by a rapid decrease.", + "A bubble looks like a bubble.", + "A bubble looks like a sphere of air.", + "A bubble looks like a sphere of air.", + "A bubble looks like a sphere of air.", + "A bubble looks like a small round ball of air.", + "A bubble looks like a sphere of air.", + "A bubble looks like a circle with a thin layer of film around it.", + "A bubble looks like a small, round, thin film of soap filled with air.", + "A bubble is a circle of air surrounded by water.", + "A bubble looks like a round, thin film of soap surrounded by air.", + "This image is of a bubble that is floating in the air.", + "In the image, there are countless bubbles of different sizes floating in the air.", + "An image from the internet of a bubble is a perfect sphere of thin film filled with air or gas.", + "This image is of a bubble being blown by a young child.", + "This image is of a bubble being blown out of a child's mouth.", + "The image is of a clear bubble floating in the air.", + "The image is of a bubble that is floating in the air.", + "A close-up image of a single, large bubble floating in the air, surrounded by smaller bubbles.", + "The image is of a bubble with light shining through it.", + "One image from the internet of a bubble is a close-up photograph of around, transparent soap bubble with bright blue light reflecting off of its surface.", + "A Clear Bubble Against a Blue Sky.", + "This bubble is floating in the air.", + "This is a bubble.", + "A close up of a bubbleThe soap creates a thin film of water molecules that creates a 'bubble'.", + " A soap bubble about to burstA close up view of a soap bubble that is about to pop.", + "A group of friends gather together to blow bubbles in the park.", + "A bubble about to pop.", + "A bubble floats in the air.", + "A close-up of a soap bubble with a thin film of water in between two layers of air.", + " \"A bubble being blown in the park." + ], + "cliff": [ + "A cliff is a steep, tall mass of rock that is taller than it is wide and is often found next to bodies of water.", + "A cliff is a high, steep rock face or slope.", + "A cliff looks like a very tall, steep rock face.", + "A cliff looks like a large wall of rocks.", + "A cliff is a steep rock face.", + "A cliff is a tall, steep rock face.", + "A cliff is a large, steep rock face.", + "A cliff is an escarpment, or steep slope, that forms as erosion wears down a mountainside or as an ocean current undermines a shoreline.", + "A cliff is a high, steep rock face.", + "A cliff is an edge of land that drops abruptly into a body of water.", + "A cliff is a steep rock face.", + "A cliff typically has a very steep slope and a sharp drop-off.", + "A cliff can be identified by its steep slope and sharp drop.", + "A cliff is a steep slope of land that drops off sharply.", + "You can identify a cliff by its steep slope andError! Not a valid bookmark.", + "A cliff is typically an elevated area of land that has a steep drop-off.", + "A cliff is a steep slope, typically of rock, that rises sharply and sheer above its surroundings.", + "A cliff is a steep slope.", + "A cliff is a steep slope or natural zone of erosion that is generally high and steep.", + "A cliff is usually a fairly steep slope or drop-off.", + "A cliff is a natural formation that typically consists of a large rock face.", + "A cliff is a steep edge of land that drops off into water or a lower land area.", + "A cliff is a very steep rock or soil wall.", + "A cliff is a rock face that is almost vertical.", + "A cliff is a gravity-driven mass of rock that has broken away from a mountain or plateau and is extending horizontally or at a very steep angle downwards.", + "A cliff looks like a large, steep slope of rock or dirt.", + "smooth, vertical, and often tall rock face or landform.", + "A cliff is a wall of rock, dirt, or ice that is very steep and high.", + "A cliff typically looks like a large wall of rock or dirt.", + "A cliff is a steep rock face.", + " that has a human on the edgeThis human looks like they are about to take a very risky jump off of a very high cliff into what looks like a very small body of water.", + "The image is of a cliff that is high and steep.", + "The image is of a cliffs edge with a small group of people standing at the top looking out.", + "In the image, there is a cliff that appears to be made of stone.", + "I see a cliff that is made of what looks like red sandstone.", + "The image is of a cliff that is very tall and has a lot of vegetation on it.", + "This image shows a cliff that is high and has a very sheer drop.", + "The image is of a cliff that is very high and has a lot of rocks.", + "The image is of a large cliff that has a small waterfall coming down it.", + " The image is of a cliff face with a rocky surface.", + "The giant cliff looms over the small town below.", + "The rocky cliff face is covered in green moss and ferns, with a few small trees clinging to the rock.", + "The vast and beautiful landscape of the American West.", + " A cliff in Yosemite National Park, California.", + "Cliff in the American Southwest.", + "The edge of the cliff is dangerously close to the edge of the water.", + "The cliff face is covered in a dense growth of vegetation.", + "A view of the Grand Canyon from the South Rim.", + "The edge of the cliff is steep and dangerous.", + "The cliff is covered in moss and lichen and is very slippery." + ], + "coral reef": [ + "A coral reef is a type of biotic reef developing in tropical waters.", + "A coral reef is a formation of coral that is typically found in shallow, warm ocean waters.", + "A coral reef is a ridge or mound of coral that rises up from the ocean floor.", + "Coral reefs are composed of calcium carbonate skeletons of marine invertebrates called corals.", + "A coral reef is an underwater ecosystem characterized by reef-building corals.", + "A coral reef is a large underwater structure made up of many small stony coral polyps.", + "A coral reef is an underwater ecosystem characterized by reef-building corals.", + "A coral reef is a large underwater structure made up of coral and other materials such as sand and rocks.", + "A coral reef is a type of biotic reef development that is composed of coral polyps and other coraline organisms.", + "A coral reef is a large mass of coral that has formed over time.", + "A coral reef is an underwater ecosystem characterized by reef-building corals.", + "Coral reefs can be identified by their bright colors and the variety of marine life that can be found living on and around them.", + "A coral reef is a large, underwater structure made up of the skeletons of small marine animals called coral polyps.", + "A coral reef can be identified by its oval or circular shape, its raised platform, and its large size.", + "A coral reef can be identified by its location in shallow, tropical waters and by its brightly colored coral and abundant marine life.", + "A coral reef is usually easy to identify because it is a large mass of brightly colored coral.", + "The main identifying feature of coral reefs is that they are built from the remains of dead coral.", + "One way to identify a coral reef is by its location.", + "Coral reefs are often called the rainforest of the sea because they are home to a large and diverse number of plant and animal species.", + "A coral reef can be identified by its bright colors and its many shapes.", + "A coral reef looks like a large, underwater rock formation.", + "A coral reef is a type of underwater ecosystem with coral as the key structural component.", + "A coral reef is often called the rainforest of the sea.", + "A coral reef typically looks like an underwater jungle.", + "A coral reef is a marine ecosystem consisting of a relatively shallow body of water with a high concentration of dissolved oxygen and a large number of fish and other invertebrates.", + "Like a underwater city.", + "A coral reef typically looks like a brightly colored underwater landscape.", + "A coral reef is a large underwater structure made up of small, hard pieces of coral.", + "A coral reef looks like a underwater city.", + "A coral reef typically looks like an underwater city, with many tall buildings (coral) and narrow streets (sand).", + "An image from the internet of a coral reef shows a brightly colored underwater landscape with a variety of fish swimming among the coral.", + "This image depicts a healthy coral reef with a diverse array of colorful corals and fish.", + "An image of a coral reef from the internet would likely show a colorful and diverse ecosystem with a variety of fish, coral, and other sea creatures.", + "In the image, there is a large coral reef with many different types of coral and fish.", + "In the image, a coral reef is pictured with a variety of colorful fish swimming around it.", + "I found an image on the internet of a coral reef that I really liked.", + "The image is of a coral reef with many different types of fish swimming around.", + "This image from the internet shows a coral reef with a variety of brightly colored fish swimming among the coral.", + "I found an image on the internet of a coral reef that looks like it is teeming with life.", + "The image is of a coral reef with a school of fish swimming around it.", + "A healthy coral reef teeming with fish and other marine life.", + "A close up of a coral reef.", + "Coral ReefsCoral reefs are one of the most diverse ecosystems in the world.", + "The coral reef is a beautiful and important ecosystem.", + "This coral reef is filled with vibrant, colorful fish swimming amongst the coral and rocks.", + " One of many coral reefs around the world.", + "Coral reef in the Florida Keys.", + "A coral reef is a vibrant underwater ecosystem teeming with life.", + "This beautiful coral reef is home to a vast array of marine life.", + " A colorful coral reef in the oceanA coral reef is a type of ecosystem found in shallow, tropical waters." + ], + "geyser": [ + "A geyser is a hot spring where water is ejected periodically from the ground.", + "A geyser is a hot spring that periodically erupts, shooting a column of water and steam into the air.", + "A geyser looks like a hole in the ground that sometimes spurts hot water and steam into the air.", + "A geyser typically looks like a cone of rocks with a small hole at the top.", + "A geyser looks like a column of water that shoots into the air and then falls back down.", + "A geyser is typically a hot spring that intermittently erupts water and steam.", + "A geyser looks like a column of steam or water that erupts suddenly from the ground.", + "A geyser looks like a fountain of water that sprays into the air.", + "A geyser looks like a column of water that is forcefully ejected into the air.", + "A geyser is a hot spring where water erupts from the ground.", + "A geyser is a hot spring that periodically erupts, shooting a column of water and steam into the air.", + "Geysers are hot springs that periodically spout water and steam into the air.", + "A geyser is a hot spring that shoots a column of water and steam into the air.", + "A geyser is a column of hot water and steam that erupts from the Earth's surface.", + "You can identify a geyser by its eruption of hot water and steam.", + "A geyser is a hot spring where water intermittently boils, sending a column of water and steam into the air.", + "A geyser is a hot spring that periodically erupts, sending a column of water and steam into the air.", + "A geyser is a column of steam and water that erupts from the Earth's surface.", + "A geyser is a hot spring that periodically erupts, spraying water into the air.", + "Geysers can be identified by their plumes of hot water and steam that erupt from the ground.", + "A geyser is a natural fountain of hot water and steam that spouts intermittently from the Earth's surface.", + "A geyser is a hole in the ground that spouts hot water and steam.", + "A geyser looks like an erupting column of water and steam.", + "A geyser is a hot spring that erupts periodically, ejecting a column of water and steam into the air.", + "A geyser looks like a jets of water and steam erupting from the Earth's surface.", + "A geyser is a hot spring that periodically shoots a stream of hot water and steam into the air.", + "A geyser is a natural hot spring that intermittently erupts hot water and steam.", + "A geyser is a hot spring that periodically erupts, shooting a column of hot water and steam into the air.", + "A geyser is a hot spring in which water intermittently boils, sending a fountain of water and steam into the air.", + "A geyser looks like a column of steam or water that erupts from the ground.", + "The image from the internet of a geyser is a white, foamy column of water shooting up into the air.", + "White plumes of water and steam erupting from a hole in a rocky hillside.", + "The image is of a geyser shooting hot water and steam high into the air.", + "The image is of a geyser shooting water high into the air.", + "The image is of a geyser shooting water high into the air.", + "The image is of a geyser erupting.", + "The image is of a geyser erupting.", + "This geyser is called Castle Geyser and is located in Yellowstone National Park.", + "There is a geyser spewing water high into the air.", + "A geyser is a hot spring where water intermittently boils, sending a jet of hot water and steam into the air.", + "A geyser in Yellowstone National Park.", + "A geyser erupts in Yellowstone National Park.", + "A geyser is a hot spring where water intermittently boils, sending a column of water and steam into the air.", + "A geyser erupting in Yellowstone National Park.", + "The geyser spews hot water and steam high into the air.", + "A geyser is a hot spring where water intermittently boils, sending a column of water and steam into the air.", + "The geyser erupts every few minutes, shooting boiling water high into the air.", + "A geyser captured in Yellowstone National Park.", + "A geyser erupts as water and steam escape from the earth.", + "A geyser erupts in Yellowstone National Park." + ], + "lakeshore": [ + "A lake shore is the meeting place between a lake and the land.", + "A lakeshore can look like a sandy beach, with gentle waves lapping at the shore.", + "A lakeshore looks like the edge of a lake.", + "A lakeshore typically looks like a strip of land next to a lake.", + "A lakeshore typically includes a wide range of different habitats, including sandy beaches, rocky shores, wetland areas, and forested areas.", + "A lake shore is usually a strip of land next to a lake.", + "A lakeshore is the edge of a lake where the water meets the land.", + "A lakeshore typically looks like a sandy or rocky shoreline that surrounds a body of water.", + "A lake shore is the edge of a lake between the water and the land.", + "The shores of a lake are usually covered in mud and stones.", + "A lakeshore is the area where the land meets the water of a lake.", + "A lakeshore is the side of a lake where the land meets the water.", + "The edge of a lake where the land meets the water is the lakeshore.", + "A lakeshore is the area of land next to a lake.", + "The lake shore can be identified by looking for changes in slope, vegetation, and soil.", + "A lakeshore is the land that surrounds a lake.", + "A lake shore is the strip of land that borders a lake.", + "The easiest way to identify a lakeshore is by looking for a body of water.", + "A lakeshore is the shoreline around a lake.", + "The shore of a lake is the edge of the lake between the water and the land.", + "A lakeshore is the area of land that surrounds a lake.", + "A lakeshore looks like the edge of a lake.", + "A lakeshore looks like the edge of a lake.", + "The shore of a lake is the edge of the land where the lake meets the land.", + "A lakeshore looks like a bank of land next to a lake.", + "A lakeshore looks like the edge of a lake.", + "Lakeshores can look like many different things.", + "A lakeshore looks like a generally straight or curved line of land that meets a lake at its edge.", + "Some lakeshores have rocky cliff sides while others have sandy beaches.", + "A lakeshore looks like the edge of a lake.", + "This image is of a beautiful, serene lakeshore.", + "The image is of a lakeshore with clear blue water.", + "A lakeshore is a body of water that borders a lake.", + "The image is of a sandy lakeshore with clear water.", + "The image is of a lake with the shore in the foreground.", + "The image is of a lakeshore with trees and mountains in the distance.", + "An image of a lakeshore might show a lake with a sandy or rocky shoreline, trees or mountains in the distance, and people swimming, fishing, or enjoying the view.", + "This image from the internet shows a typical lakeshore scene, with a calm body of water surrounded by trees and greenery.", + "In this image, the lakeshore is visible in thedistance, with trees and bushes in the foreground.", + "The image is of a calm lake with a few ducks swimming in it.", + "The serene lake shore is the perfect place to relax and take in the natural beauty.", + "The pristine shore of Lake Tahoe.", + "The sun reflects off the still water of the lake, creating a tranquil scene.", + "The sun shining over the water makes for a beautiful sight.", + "Bald Eagles Nesting Near Lake Shore.", + "Lakeshore of Lake Erie in Ohio.", + "Paula and Tom enjoying a summer day at the lake.", + " The sun rises over the calm waters of the lake, casting a bright orange glow over the trees and grass.", + "A beautiful day at the lake.", + "The shoreline of Lake Michigan in the early morning." + ], + "promontory": [ + "A promontory is a landform that protrudes into a body of water.", + "A promontory is a landform protruding into a body of water.", + "A promontory is a raised landform that projects out into a body of water.", + "A promontory is a point of high land that juts out into the water.", + "A promontory is a piece of land that sticks out into a body of water.", + "A promontory is a point of high land that sticks out into the sea, usually formed by rocks.", + "A promontory is a raised area of land that protrudes out into a body of water.", + "A promontory is a raised area of land that sticks out into a body of water.", + "A promontory is a point of high land sticking out into the sea.", + "A promontory is a high, steep bank or piece of land that projects into water.", + "A promontory is an area of high ground that protrudes out into an open body of water.", + "A promontory is a point of land that stands out into the water.", + "A promontory is a point of high land that juts out into the water.", + "A promontory can be identified by its high, steep bank or cliff, which is sometimes formed by wave action.", + "A promontory can be identified by its steep slope and high elevation in comparison to the surrounding area.", + "A promontory is a high point of land that sticks out into the water.", + "A promontory is typically a high, steep bank or point of land that juts out into a body of water.", + "A promontory is a prominent mass of land that projects into a body of water.", + "A promontory is a point of land that sticks out into a body of water.", + "A promontory is a raised area of land that projects out into an open body of water.", + "A promontory is a point of land extending out from a coastline into the sea.", + "A promontory is an area of high ground that projects out into a body of water.", + "A promontory is a raised area of land that protrudes into a body of water.", + "A promontory is a raised area of land that juts out from a larger body of land.", + "A promontory is a landmass that projects out from a larger body of land.", + "A promontory is a landform that projects out from a coastline.", + "top of a hill or mountain.", + "A promontory is an area of high ground that juts out into an area of lower ground.", + "A promontory is a piece of land that extends out into a body of water.", + "A promontory is a point of high land extending into a body of water.", + "A promontory is a high, steep bank or piece of land that projects into a body of water.", + "I found an image on the internet of a promontory that looks like a small mountain.", + "A promontory is a landform that projects out into a body of water.", + "A promontory is a land formation that projects out into a body of water.", + "A promontory is a landform that protrudes into a body of water.", + "A promontory is a landmass that projects out into a body of water.", + "A promontory is a raised area of land that extends outward from a coastline.", + "A promontory is a high, steep bank or piece of land that juts out into a body of water.", + "A promontory is a mass of land that projects out into a body of water.", + "This image is of a promontory called TaitungRockyCape in Taiwan.", + "This imposing promontory is known as the Needles, and is located on the Isle of Wight off the coast of England.", + "This is known as the \"Italianate\" style of architecture, characterized by its tall, narrow windows and ornate detailing.", + "The Glacial PromontoryThis promontory was created by a glacier during the Ice Age.", + "This promontory is located in the Southern Tauride Mountains and offers stunning views of the surrounding area.", + "The Sendai Promontory in Japan is a popular spot for fishing and relaxing.", + "A rocky promontory extends into the sea.", + "A rugged, rocky promontory juts out into the sea.", + "A promontory is a piece of land that extends beyond the surrounding terrain.", + "This promontory offers stunning views of the sea and coastline.", + "Diamond Head Crater, Hawaii." + ], + "sandbar": [ + "A sandbar is usually a long and narrow ridge of sand that forms in shallow water near the shoreline.", + "A sandbar is a ridge of sand that forms in the water.", + "A sandbar is a strip of land that is covered in sand and is usually found in the water.", + "A sandbar is usually a long and narrow strip of sand that forms when waves deposit sand in a linear fashion.", + "A sandbar is a strip of sand that is exposed when the water level in an area drops.", + "A sandbar is an underwater ridge of sand that forms when waves deposit sand in a linear fashion.", + "A sandbar is a ridge of sand that forms in shallow water.", + "A sandbar is a feature of a coastline typically composed of unconsolidated sediment that has accumulated on the coastline above the level of the surrounding body of water.", + "A sandbar is an area of low, shallow water that is usually found near the shoreline.", + "A sandbar is a long, narrow strip of land that is covered with sand and is usually found parallel to the shoreline.", + "The best way to identify a sandbar is by looking for a change in the color of the water.", + "A sandbar is a strip of land, often sandy or marshy, that is exposed above the level of the surrounding body of water.", + "A sandbar is a low, sandy area that is often found in shallow water near the shoreline.", + "The easiest way to identify a sandbar is by its location.", + "The shape of a sandbar is elongated and thin, with a tapered end.", + "A sandbar is a ridge of sand that forms in the water.", + "A sandbar is a ridge of sand that forms in the water.", + "A sandbar is a stretch of exposed sand in a body of water.", + "A sandbar is a raised rid of sand that is above the level of the surrounding water.", + "A sandbar is a narrow strip of land that protrudes from the water.", + "A sandbar is a landform that consists of a strip of sand that is surrounded by water on two sides.", + "A sandbar is a long, narrow strip of sand that is attached to the shore or floats in the water.", + "A sandbar is a long, thin strip of sand that is attached to the shore or is moving toward the shore.", + "A sandbar is a ridge of sand that forms in the water.", + "A sandbar typically looks like a long, narrow, strip of land that is covered in sand and is parallel to the shoreline.", + "A sandbar is a ridge of sand that forms in the water near the shore.", + "A sandbar is a long, narrow strip of sandy land that sticks out from the water.", + "A sandbar is a long, narrow strip of sand that is attached to the shore or extends from an island.", + "A sandbar is a strip of land that is covered in sand and is usually found in a body of water.", + "A sandbar is a landform that is found at the edge of a large body of water.", + "The image is of a long, thin strip of sand that is surrounded by water on both sides.", + "A sandbar is a long, narrow strip of land that is submerged at high tide and exposed at low tide.", + "The image is of a long, thin strip of land that is mostly submerged underwater.", + "The image is of a sandbar with clear turquoise waters and white sand.", + "This image from the internet shows a sandbar with clear blue water and white sand.", + "A sandbar is an area of shallow water that is usually found near the shore.", + "The image shows a long, thin strip of sand that is partially submerged in water.", + "An image of a sandbar from the internet shows a long, thin strip of land that is covered in sand and is surrounded by water on all sides.", + "The image is of a long, thin stretch of sand in the ocean.", + "The image is of a sandbar with blue water in the background.", + "A sandbar is a type of landform composed of sand that has accumulated in a river delta, on a shoreline, or in some other area where the flow of water has been slowed or halted.", + "The sandbar is a popular spot for swimming and sunbathing.", + " A large sandbar is visible just offshore.", + " A sandbar is a landform composed of unconsolidated material that has accumulated in a wave-dominated environment.", + "A sandbar offshore from a beach.", + "A sandbar in the Caribbean Sea.", + "Pristine sandbar in the Caribbean Sea.", + "A sandbar is a ridge of sand that forms in the water.", + "a sandbar is a landform created by deposition of sediment in the water.", + "A sandbar is a deposition of sediment that forms in shallow water." + ], + "beach": [ + "A beach looks like a big expanse of sand with water on one side.", + "The beach looks like a long strip of land next to the ocean.", + "The beach is a place where the land meets the water.", + "A beach is a large body of water with sand or small rocks at the shore.", + "A beach has sand and water.", + "A beach looks like a lot of sand with water on one side.", + "The beach is a place where people can go to relax and enjoy the water.", + "The sky is blue and the sun is shining.", + "A beach looks like a big piece of land next to a big body of water.", + "A beach typically consists of a large area of sand that is adjacent to a body of water, such as an ocean, lake, or river.", + "The easiest way to identify a beach is by its sandy shores and clear waters.", + "Beaches are often identified by their characteristic features, including the composition of their sand, the shape of their coastline, and the types of plants and animals that live there.", + "Beach identification can be accomplished through the identification of physical characteristics.", + "Beaches are usually easily identifiable by their sandy shores and salty water.", + "The three major types of coasts include flat, sloping, and rocky.", + "Possible answers: Sandy beaches have characteristic features including a gently sloping shoreline and usually contain sand.", + "A beach is a naturally occurring feature of the landscape.", + "The best way to identify a beach is by its shoreline.", + "The three main identifying characteristics of a beach are its surf zone, tidal flats, and dunes.", + "Some characteristics of a beach are that it is usually a shore that is found along a body of water, it has sand or other small particles, and waves can crash onto the shore.", + "A beach typically consists of sand or rocks along the shoreline of a body of water such as an ocean, lake, or river.", + "A beach is a flat, sandy area by the water.", + "A beach typically consists of loose particles, which are often composed of rock, such as sand, gravel, shingle, pebbles.", + "A beach is typically a raised area of land that is next to water.", + "A beach usually has sand and waves.", + "A beach is a natural place where water meets land.", + "A beach usually has sand and water.", + "A beach typically has sand and waves.", + "The beach looks like a wide, flat area of sand next to the ocean.", + "A beach typically looks like a large, flat expanse of sand with some rocks or other natural features nearby.", + "The image is of a sandy beach with a blue ocean in the background.", + "The image shows a sandy beach with people relaxing on towels.", + "In the image, the beach is ablaze with a golden sunset.", + "The image shows a sandy beach with waves crashing against the shore.", + "This image is of a crowded beach with people in the water and on the sand.", + ".", + "In the image, the beach is Brilliant white with crystal blue waters.", + " sunsetIn this image, the sun is setting behind palm trees and the sky is a deep pink and orange.", + "The image is of a beach with people walking on the sand and waves crashing onto the shore.", + "The image is of a sandy beach with a blue sky and white clouds.", + " A beautiful sandy beach with a stunning blue ocean.", + "The sun sets over the ocean, casting a beautiful orange hue in the sky.", + "Golden sand and clear blue water make this beach a perfect place to relax and enjoy the view.", + "The beautiful beach at sunset.", + "The white sand and blue water of the beach are so inviting.", + "Blue skies, white sands, and clear turquoise waters make this beach a paradise.", + "The beach is a great place to relax and enjoy the outdoors.", + "The sound of the waves crashing on the shore, the smell of salt in the air, and the feel of sand between my toes.", + "The beach is a beautiful place to relax and enjoy the scenery.", + "The beach is a place where people can relax and enjoy the beauty of nature." + ], + "valley": [ + "A valley is a low area of land between two mountains or hills, typically with a river or stream running through it.", + "A valley is a long, deep, narrow strip of land that is surrounded by mountains or hills.", + "A valley is a low area between mountains, often with a river running through it.", + "A valley is a low area of land between two hills or mountains, typically with a river running through it.", + "A valley is a low, tracts of land between mountains or hills.", + "A valley is a low area of land surrounded by higher land on all sides.", + "A valley is a low, flat area of land that is surrounded by highlands or mountains.", + "A valley is a low area of land between two hills, often with a river running through it.", + "A valley is a low area of land between hills or mountains.", + "A valley is a low area of land between two hills or mountains, typically with a river running through it.", + "A valley is a lowland area bounded by higher land on at least two sides, often with a river or stream running through it.", + "A valley is typically a low point between two taller points in the landscape.", + "A valley is a low area of land located between mountains or hills.", + "A valley is typically a lower lying area between two mountains or hills.", + "A valley is typically defined as a low point between two mountains.", + "A valley can be identified by its low-lying position between hills or mountains.", + "A valley is a lower area between two higher areas, often with a river running through it.", + "A valley is typically identified by its U-shaped cross section.", + "Valleys are usually long and narrow.", + "A valley can be identified by its U-shaped shape caused by water erosion over time.", + "A valley typically has sloped sides and is located between mountains or hills.", + "A valley is long and skinny.", + "A valley is usually a low area between mountains or hills, often with a river or stream running through it.", + "valleys are long and skinny and have high walls.", + "A valley is a lower area between two mountains or hills.", + "A valley is a low area of land between two hills or mountains, typically with a river or stream running through it.", + "A valley is usually a low area between hills or mountains, often with a river running through it.", + "A valley typically has steep, sloping sides and is wider in the middle than at the ends.", + "A valley is usually a low area between two taller areas, such as mountains or hills.", + "A valley is a low place between hills or mountains, typically with a river running through it.", + "This image from the internet shows a valley with a river running through it.", + "An image of a valley shows a wide, open area with a river running through the middle.", + "The image shows a valley with mountains in the distance.", + "This image from the internet is of a valley.", + "In the image, a valley is depicted with mountains on either side.", + "The image is of a valley with mountains in the background.", + "The image is of a valley with mountains in the background.", + "The image shows a lush green valley with a river running through it.", + "This image is of a valley in Yosemite National Park in California.", + "An image from the internet of a valley shows a long, narrow, U-shaped depression in the earth.", + "The valley is a beautiful and serene place, surrounded by mountains.", + "The valley is a beautiful and serene place.", + " This is the Grand Canyon, one of the most popular tourist destinations in the American Southwest.", + "A valley in the Rocky Mountains of Colorado.", + "The valley is blanketed in a layer of Fog.", + " The sun rises over the valley, casting a beautiful light on the mountain peak.", + "The valley is a beautiful and serene place, perfect for a nature hike or a picnic.", + " The valley is blanketed in a thick layer of Fog.", + " \"The vast, beautiful valley is filled with fields of wildflowers.", + "The valley below is teeming with life, from the smallest of insects to the largest of mammals." + ], + "volcano": [ + "A volcano is a mountain with a hole at the top that goes all the way down to the inside of the earth.", + "A volcano consists of a cone-shaped mountain formed by deposits of rock and lava.", + "A volcano is typically a large, cone-shaped hill or mountain with a crater at its summit.", + "A volcano looks like a mountains with a large, crater-like opening at the top.", + "A volcano is generally a mountain, but can also be a hill, plateau, or dome that opens downward to a reservoir of molten rock below the surface of the earth.", + "A volcano looks like a mountain with a hole in the top.", + " as it formsA volcano looks like a large mountain with a large crater at the top.", + "A volcano is a vent in the Earth's surface through which lava, ash, and gas erupt.", + "A volcano is typically a cone-shaped landform with a crater at the summit.", + "A volcano is typically a mountainside with a large crater at the top.", + "Volcanoes can be identified by their steep sides, conical shape, and crater at the summit.", + "Volcanoes can be identified by their location, type, and activity level.", + "The most common way to identify a volcano is by its cone shape.", + "There are several ways to identify a volcano.", + "Volcanoes can be identified by their unique cone shape.", + "Some signs that a volcano may be about to erupt are: an earthquake swarm, increased steam and gas emission at the volcano's summit or from its vents, and changes in the level of a lake or flow of a river in or near the.", + "A volcano is a hole in the Earth's surface through which lava, ash, and gas erupt.", + "Volcanoes can be identified by their shape.", + "A volcano is typically a mountainside where lava and ash escape from an opening in the Earth's surface.", + "A volcano is typically a conical or dome-shaped mountain that is formed when hot molten rock and ash escape from an opening in the Earth's surface.", + "A volcano typically consists of a large cone-shaped mountain with a bowl-shaped crater at the top.", + "Varies.", + "Volcanoes come in many different shapes and sizes.", + "A volcano is typically a mountain or hill that has a crater at the top.", + "Most volcanoes have a conical shape, but some volcanoes have a more complex structure.", + "A volcano looks like a mountain with a hole at the top.", + "Volcanoes are typically cone-shaped with a crater at the top.", + "A volcano typically looks like a mountain with a large crater at the top.", + "A volcano looks like a cone or mound with a crater at the top.", + "A volcano can take many different shapes, but they are typically cone-shaped with a crater at the top.", + "A photo of a volcano erupting, with molten lava and ash spewing from the crater.", + "Image shows a volcano erupting with lava and ash.", + "This image is of the stratovolcano Mount Shasta in California.", + "In the image, a volcano is spewing lava and ash into the sky.", + "The image is of a volcano with a plume of ash and smoke billowing from its summit.", + "The image is of an erupting volcano, with lava flowing down the side of the mountain.", + "The image is of a volcano erupting.", + "The image is of a large, looming volcano, with a small village nestled at its base.", + "The image is of a large, cone-shaped volcano with a large crater at the top.", + "The image shows a volcano with lava coming out of the top.", + "A volcano erupts spewing lava and ash into the sky.", + "The erupting volcano spewed a column of smoke and ash into the air.", + "The lava flow from Kilauea volcano on the Big Island of Hawaii.", + "A dangerously active volcano.", + "Volcano eruption in Hawaii.", + " A volcano eruptingA volcano is a mountain that opens downward to a pool of molten rock below the surface of the earth.", + "Volcanic eruption in progress.", + "A menacing looking volcano, billowing dark smoke into the sky.", + "An active volcano spewing lava and ash into the air.", + "Etna, on the Italian island of Sicily, is one of the world's most active volcanoes." + ], + "baseball player": [ + "A baseball player is someone who throws and hits a baseball.", + "A baseball player is typically a man who is muscular and athletic.", + "A baseball player looks like a person wearing a baseball uniform.", + "Most baseball players are middle-aged men with receding hairlines.", + "Most baseball players are quite fit, as the sport requires a lot of running, throwing, and hitting.", + "A baseball player looks like someone who is athletic, has good hand-eye coordination, and is able to hit a ball with a bat.", + "A baseball player is someone who plays baseball.", + "A baseball player typically wears a baseball uniform with a cap, baseball jacket, and baseball pants.", + "A baseball player usually wears a uniform that consists of a jersey, pants, and cleats.", + "The average baseball player is 6 feet tall and weighs 200 pounds.", + "A baseball player can be identified by their uniform.", + "Most baseball players will have some sort of uniform that they wear while playing.", + "One way to identify a baseball player is by their uniform.", + "A baseball player is someone who plays the game of baseball.", + "One way to identify a baseball player is by their uniform.", + "Look for someone wearing a baseball uniform and carrying a baseball bat.", + "A baseball player can be identified by their uniform.", + "A baseball player is typically someone who is good at playing baseball.", + "Most baseball players wear a uniform with a team's logo on it.", + "There are many ways to identify a baseball player.", + "A baseball player looks like someone who is ready to play a game of baseball.", + "There is no one answer to this question as there is no one type of baseball player.", + "A baseball player typically wears a uniform that includes a baseball cap, a jersey, and baseball pants.", + "There is no one answer to this question, as there is a lot of variation in the way baseball players look.", + "There is no one answer to this question since there are many different positions in baseball and each position requires a different skill set.", + "There is no one specific look for a baseball player, but they are typically seen wearing a baseball uniform which consists of a jersey and pants.", + "A baseball player looks like someone who is wearing a baseball uniform.", + "This is a difficult question to answer as there is no one specific look that all baseball players share.", + "A baseball player looks like a person wearing a baseball uniform.", + "A baseball player looks like a person who is wearing a uniform that consists of a baseball jersey and baseball pants.", + "The image from the internet shows a baseball player, most likely a pitcher, throwing a ball.", + "In the image, the player is wearing a white baseball jersey with blue stripes running down the sides.", + "An image of a baseball player from the internet shows a young man in a baseball uniform playing the game.", + "In the image, the player is gripping the baseball tightly with his left hand while holding his glove up in his right hand.", + "A black and white image of a young man in a baseball uniform with his cap pulled low over his eyes.", + "The image is of a young man in a baseball uniform.", + "It's a color photo of a young, Hispanic man in a blue baseball uniform.", + "The image shows a baseball player in mid-swing, ready to hit the ball.", + "A baseball player standing on a field with a bat in their hand.", + "This image shows a young man wearing a baseball uniform and standing on a field.", + "This baseball player is about to make a big catch!.", + "The pitcher winds up for the pitch.", + "The caption reads: \"Pitcher Tim Lincecum of the San Francisco Giants throws a pitch during the game against the Colorado Rockies at AT&T Park on September 28, 2010 in San Francisco, California.", + "Willie Mays, legendary Major League Baseball player, in his heyday with the New York Giants.", + "A baseball player swings his bat during a game.", + "Washington Nationals baseball player Bryce Harper.", + "The New York Yankees' Alex Rodriguez hits a home run against the Toronto Blue Jays during the fifth inning of their MLB American League baseball game in Toronto, September 15, 2013.", + "Batter up! This player is ready to swing for the fences.", + "The pitcher winds up for the throw.", + "baseball player swinging a bat." + ], + "bridegroom": [ + "The groom usually wears a suit or tuxedo.", + "wearing a white tuxedo with a black bow tie, white shirt, and black shoes.", + "A bridegroom generally wears a suit or tuxedo.", + "A bridegroom typically wears a suit or tuxedo.", + "The bridegroom is the man who is going to be married.", + "A bridegroom commonly wears a suit or tuxedo.", + "A bridegroom is a man who is about to be married.", + "A bridegroom is typically a man who is about to be married.", + "A bridegroom is typically a man who is about to be married, or has recently been married.", + "The bridegroom traditionally wears a white tuxedo or morning suit.", + "The bridegroom is the man who is marrying the bride.", + "A bridegroom can be identified by the way he is dressed.", + "A bridegroom is a man who is about to be married.", + "A bridegroom is the man who is about to be married.", + "A bridegroom typically wears a suit or tuxedo and is accompanied by a best man and groomsmen.", + "The groom is usually the man who is marrying the bride.", + "A bridegroom is a man who is about to be married or who has just been married.", + "The bridegroom is typically the man who is marrying the bride.", + "A bridegroom is typically the husband of a bride.", + "A bridegroom is the male partner in a marriage.", + "The groom is typically the male partner in a marriage.", + "There is no one answer to this question, as every bridegroom looks different.", + "A bridegroom traditionally wears a tuxedo or suit on his wedding day.", + "Most bridegrooms wear a suit or tuxedo on their wedding day.", + "A traditional bridegroom wears a tuxedo or a suit.", + "A bridegroom traditionally wears a tuxedo or suit.", + "A bridegroom traditionally wears a tuxedo or suit on his wedding day.", + "A bridegroom is a man who is about to be married or has just been married.", + "There is no one answer to this question.", + "A bridegroom is typically a man who is about to be married.", + "The image is of a man in a black suit with a white shirt and a black tie.", + "The image is of a handsome young man in a white tuxedo with a black bowtie.", + "An image of a bridegroom from the internet typically shows a man in a suit or tuxedo standing next to his bride on their wedding day.", + "An image of a bridegroom from the internet is a photo of a man in a tuxedo or suit with a boutonniere, standing next to a woman in a white wedding dress.", + "The image is of a bridegroom standing next to his bride.", + "In this image, the bridegroom is standing at the altar with his bride.", + "This image shows a bridegroom standing next to his bride.", + "This image from the internet features a smiling bridegroom in a dark suit with a white shirt and a boutonniere.", + "The image is of a bridegroom standing next to his bride.", + "A bridegroom is an image of a man who is about to be married.", + "This groom is all smiles on his wedding day!.", + "Groom standing at the altar on his wedding day.", + " The groom looks very happy on his wedding day.", + "The groom is standing at the altar, waiting for his bride.", + "The bridegroom looks handsome in his tuxedo on his wedding day.", + "Groom looking dapper on his wedding day.", + "The dashing bridegroom looks forward to his wedding day with excitement.", + "The groom looks dashing in his tuxedo on his wedding day.", + "Looking sharp on my wedding day!.", + "The groom is all smiles on his big day." + ], + "scuba diver": [ + "A scuba diver typically looks like someone who is wearing a wet suit and carrying a large breathing tank on their back.", + "A scuba diver is a person who wears a diving suit with a breathing tank to breathe underwater.", + "A scuba diver is a person who uses a self-contained underwater breathing apparatus (SCUBA) to breathe underwater.", + "A typical scuba diver is wearing a wet suit, fins, a mask, and a breathing apparatus.", + "A scuba diver looks like someone who is wearing a wet suit and has a breathing apparatus on their back.", + "A scuba diver looks like someone wearing a wetsuit and carrying a large tank of air on their back.", + "A scuba diver looks like someone who is wearing a tank of oxygen on their back and have a diving mask over their eyes.", + "A scuba diver is someone who wears a wet suit, diving mask, and breathing apparatus to swim underwater.", + "Scuba divers are people who wear a diving suit and a diving mask with a snorkel and fins.", + "A scuba diver looks like somebody who is wearing a wetsuit and has a oxygen tank on their back.", + "A scuba diver can be identified by their scuba diving gear, which includes a scuba tank, a scuba mask, and a pair of fins.", + "There are a few ways to identify a scuba diver.", + "A scuba diver can be identified by their equipment, which includes a tank of compressed air, a diving mask, fins, and a snorkel.", + "There are many ways to identify a scuba diver, but one of the most common is by their diving gear.", + "A scuba diver can be identified by their scuba diving gear, which includes a diving mask, a diving cylinder (tank), and a diving regulator (breathing apparatus).", + "There are many ways to identify a scuba diver.", + "If someone is wearing a wetsuit, has a breathing apparatus, and is carrying a diving cylinder, they are likely a scuba diver.", + "The most common type of scuba diving gear worn by recreational scuba divers is a wetsuit.", + "A scuba diver is someone who uses a scuba diving mask, fins, and snorkel to breathe underwater.", + "A scuba diver usually wears a wet suit and uses a breathing apparatus.", + "A scuba diver looks like someone wearing a wet suit and flippers with a breathing apparatus on their back.", + "A scuba diver often looks like a fish out of water in their bulky gear.", + "A scuba diver looks like someone wearing a wet suit and a breathing apparatus.", + "A scuba diver looks like a person wearing a wetsuit with a breathing apparatus on their back.", + "A scuba diver generally looks like a person wearing a wet suit with a large tank on their back.", + "A scuba diver looks like a person wearing a wet suit and a diving mask.", + "A scuba diver often wears a wet suit, which is a form-fitting suit that covers the body and traps a layer of water next to the skin to keep the body warm.", + "A scuba diver is someone who wears a wetsuit and carries a tank of oxygen on their back.", + "A scuba diver looks like a person wearing a wet suit and a breathing apparatus.", + "A scuba diver typically wears a wet suit, fins, and a diving mask.", + "This image is of a scuba diver swimming near the surface of the water.", + "The scuba diver is in a blue wetsuit and is wearing a scuba mask.", + "The scuba diver is wearing a black wetsuit and a bright orange tank.", + "The image is of a scuba diver in a blue wetsuit with yellow accents.", + "The image is of a scuba diver wearing a wet suit and diving gear.", + "This image from the internet is of a scuba diver in a tropical ocean.", + "The image is of a scuba diver in a blue wetsuit and orange fins, swimming underwater near some coral.", + "The image depicts a lone scuba diver in a dark ocean, surrounded by a school of bright fish.", + "A scuba diver is someone who wears a breathing apparatus underwater.", + "This image shows a scuba diver in the water with a fish swimming near them.", + "Scuba diver enjoying the underwater view.", + "A scuba diver swims through a school of fish.", + "A scuba diver enjoying the underwater world.", + "Sandy and Bob, two scuba divers, explore a coral reef.", + "A scuba diver exploration an underwater cave.", + "One happy scuba diver enjoying the underwater world.", + "\nA scuba diver prepares to enter the water.", + "One small step for man, one giant stride for ocean conservation.", + " The scuba diver is about to enter the water to start her dive.", + "A scuba diver descends into the depths of the ocean, investigating the mysteries that lie below the surface." + ], + "rapeseed": [ + "a rapeseed is a small yellow flower that grows in clusters.", + "A rapeseed is a small, yellow flower that grows in fields.", + "A rapeseed is a small, dark green seed about the size of a pea.", + "Rapeseeds are small, dark-colored seeds that come from the rape plant.", + "A rapeseed is a small, shiny, dark green seed.", + "A rapeseed is a small, dark yellow flower that grows in clusters.", + "Rapeseed is an oilseed that is yellow in color with small black spots.", + "A rapeseed is a small yellow flower that grows in clusters.", + "Rapeseed is a small, yellow flower that grows in fields.", + "A rapeseed is an yellow flower that grows in clusters on a tall plant.", + "Rapeseed is a member of the mustard family.", + "By its small, yellow flowers.", + "A rapeseed is a yellow flower that grows in the family mustard plant.", + "Rapeseed is a yellow flowers that grows in clusters.", + "Rapeseed is a yellow flower that grows in clusters.", + "Rapeseed is a member of the mustard family and can be identified by its small, yellow flowers.", + "The easiest way to identify a rapeseed is by its flowers.", + "The rapeseed is distinguished by its small yellow flowers.", + "Rapeseed is also known as canola.", + "The scientific name for rapeseed is Brassica napus.", + "A rapeseed is a small, dark green seed that is used to produce canola oil.", + "Rapeseeds are small, dark-colored seeds that are about the size of a peppercorn.", + "A rapeseed is a small, dark-colored seed that is used to produce canola oil.", + "A rapeseed is a small, dark green seed with a ridged surface.", + "A rapeseed is an yellow flower that grows in clusters.", + "A rapeseed is a small, dark-colored seed that is used to produce vegetable oil.", + "A rapeseed is a small, dark-colored seed that is used to produce canola oil.", + "Rapeseeds are small, dark-colored seeds that are about the size of a poppy seed.", + "A rapeseed is a small, dark-colored seed that is used to produce canola oil.", + "A rapeseed is a small yellow flower that grows in clusters.", + " fieldThe image is of a rapeseed field with yellow flowers.", + " fieldThe image from the internet of a rapeseed field shows a farmer walking through a field of tall yellow flowers.", + " fieldThe image is of a yellow rapeseed field with green trees in the background.", + " fieldThe image is of a rapeseed field with green and yellow flowers.", + " fieldIn the image, there is a long, flat field with yellow flowers.", + " fieldRapeseed is a yellow flower that grows in fields.", + " fieldThe image is of a large, open field with yellow flowers.", + " fieldThe image is of a rapeseed field with yellow flowers.", + " fieldThe image is of a large, open field with bright yellow flowers.", + " fieldThe image is of a rapeseed field with yellow flowers in full bloom.", + "This rapeseed has been genetically modified to be resistant to herbicides.", + "A rapeseed field in China.", + "A yellow rapeseed blooming in a field.", + "A rapeseed plant in a field.", + "A rapeseed plant in bloom.", + "A rapeseed plant in bloom.", + "Canola Rape Seed in Field.", + " Canola field in bloom.", + "A field of rapeseed in bloom.", + "A rapeseed field in bloom." + ], + "daisy": [ + "A daisy is a yellow flower with a white center.", + "A daisy is a flower with a yellow center and white petals.", + "Some daisies have a yellow center and white petals, while others have a white center and yellow petals.", + "A Daisy usually has white petals with a yellow center.", + "A daisy is a flower with a yellow center and white petals.", + "A daisy has a yellow center with white petals.", + "A daisy is a small, white flower with a yellow center.", + "A daisy is a small, white flower that has a yellow center.", + "A daisy is a small, white flower with yellow at the center.", + "A daisy is a small, white flower with a yellow center.", + "By its flower head, which is composed of many small florets arranged in a circle around a central disc.", + "The most common type of daisy has a yellow center and white petals.", + "A daisy has a yellow disc in the center surrounded by white petals.", + "A daisy has a yellow center with white petals.", + "A daisy has a yellow center with white petals around it.", + "Some daisies have yellow centers and white petals while others are all white.", + "you can identify a daisy by its long stem and its little white and yellow flowers.", + "The flower of a daisy is composed of many small florets arranged in a circle around a central disc.", + "The stem of a daisy is usually green and have small leaves.", + "A daisy is a flower with a yellow center and white petals.", + "A daisy is a flower that has a yellow center and white petals.", + "A daisy is a flower with a yellow center and white petals.", + "A daisy looks like a flower with a yellow center and white petals.", + "A daisy has white petals and a yellow center.", + "A daisy has a yellow center with white petals.", + "A daisy has a yellow center with white petals.", + "A daisy is a small, white flower with yellow at the center.", + "A typical daisy has a yellow disc floret surrounded by white ray florets.", + "A daisy is a small white flower with a yellow center.", + "A daisy typically has a yellow center and white petals.", + "The image is of a white daisy with a yellow center.", + "The image is of a white daisy with yellow center.", + "The image is of a white daisy with yellow center.", + "This image is of a white daisy with yellow center.", + "The image is of a large, white daisy against a bright blue background.", + "This image is of a yellow daisy with a green stem.", + "The image is of a yellow daisy with a white center.", + "The image is of a yellow daisy with a green stem.", + "The image is of a yellow daisy with a green stem.", + "This image is of a yellow daisy against a green background.", + " A smiling yellow daisy with its petals pointing upwardA cheerful yellow daisy smiles and stands tall with its petals pointing up, basking in the sun and enjoying the bright day.", + " \"I can't pick a favorite color.", + "This pretty daisy looks like it's enjoying the sunny day!.", + "A close-up of a daisy, its yellow center surrounded by white petals.", + "A delicate daisy blooms in the meadow, its petals a soft white against the grass.", + "The white petals of this daisy stand in stark contrast to its yellow center.", + "A close-up of a daisy, with its bright yellow center and white petals.", + " A white daisy with a yellow center.", + "This pretty daisy is smiling up at the sun.", + "This is a beautiful daisy in bloom." + ], + "yellow lady's slipper": [ + "A yellow lady's slipper is a flower that has a yellow petal that is shaped like a slipper.", + "The yellow lady's slipper is a flower in the orchid family that gets its common name from its resemblance to a woman's footwear from the Victorian era.", + "A yellow lady's slipper is a flower that is yellow in color.", + "A yellow lady's slipper is a type of wild orchid that blooms in the summer.", + "A yellow lady's slipper is a flower that has a yellow petal that looks like a slipper.", + "A yellow lady's slipper is a yellow flower that blooms in the spring.", + "The showy flower of a yellow lady's slipper orchid is typically yellow, although it may be white.", + "A yellow lady's slipper is a type of orchid that has a large, yellow petal that looks like a slipper.", + "A yellow lady's slipper has a yellow and brown pouch.", + "A yellow lady's slipper is a type of orchid that has a bright yellow petal that curves up and around the inside of the flower, giving it the appearance of a lady's slipper shoe.", + "The yellow lady's slipper is a wildflower that blooms in the summer.", + "The yellow lady's slipper is a type of orchid that is native to North America.", + "The yellow lady's slipper is a member of the orchid family and is easily recognized by its large, showy flowers.", + "There are many ways to identify a yellow lady's slipper.", + "The yellow lady's slipper, also known as the yellow moccasin flower, is a member of the orchid family.", + "A yellow lady's slipper is a type of flower.", + "The yellow lady's slipper is a type of orchid that is native to North America.", + "The yellow lady's slipper has a broad, yellow sac with a narrow, deeply fringed opening.", + " Look for a lady's slipper with yellow petals.", + "A yellow lady's slipper has pale yellow petals and a yellow and brown pouch.", + "A yellow lady's slipper is a wildflower that grows in the eastern United States.", + "A yellow ladyslipper looks like a yellow orchid.", + "A yellow lady's slipper usually has a yellowish-brownish color and sometimes has a greenish tint.", + "A yellow lady's slipper is a flower that is yellow in color.", + "A yellow lady's slipper is a type of wild orchid that is yellow in color.", + "A yellow lady's slipper typically has a yellow petal and a white sepal.", + "A yellow lady's slipper is a type of orchid that has a yellow and brownish-purple bloom.", + "A yellow lady's slipper is a type of orchid that has a yellow and brownish-purple bloom.", + "A yellow lady's slipper typically has yellow petals and a yellow and brown pouch.", + "A yellow lady's slipper is a type of orchid that has a yellow pouch-like flower.", + "The image is of a yellow lady's slipper flower.", + " orchidThe image shows a yellow lady's slipper orchid in full bloom.", + "The yellow lady's slipper is a flower that is native to North America.", + "The image is of a yellow lady's slipper with its petals spread open.", + " orchidThe image is of a yellow lady's slipper orchid (Cypripedium calceolus), a flower in the orchid family.", + "In the image, a yellow lady's slipper is shown in close up.", + "The image is of a yellow lady's slipper flower.", + "The image is of a yellow lady's slipper, which is a type of orchid.", + "A yellow lady's slipper is a type of orchid that is native to North America.", + " orchidA yellow lady's slipper orchid is a flower with yellow petals and a white labellum.", + "A lady's slipper is a flower that blooms in the spring.", + "A yellow lady's slipper (Cypripedium parviflorum) in bloom.", + "A lady's slipper is a type of orchid with a distinctive pouch-shaped lip.", + "The yellow lady's slipper (Cypripedium calceolus) is a herbaceous perennial in the genus Cypripedioideae.", + "Yellow lady's slipper in a field of green.", + "A yellow lady's slipper (Cypripedium calceolus), also known as a moccasin flower, is a perennial wildflower in the orchid family.", + " A yellow lady's slipper in a field of wildflowers.", + "The yellow lady's slipper is a wildflower that grows in woods and fields in the eastern United States.", + "Yellow lady's slipper, a member of the orchid family.", + "A yellow lady's slipper (Cypripedium calceolus) on a bed of moss in a shady forest." + ], + "corn": [ + "A corn is a small, hard, round grain that is yellow, white, or red in color.", + "A corn is a small, hard, round fruit with yellow, white, or red kernels.", + "A corn is a small, hard, round yellow fruit with a thin brownish peel.", + "\nA corn is a yellowish-white, small, hard, dry seed with a high germ content.", + "A corn is a small, hard, round fruit that is encased in a green husk.", + "If you are talking about the food item, a corn kernel is a small, yellow, rounded particle of corn.", + "A corn is a type of cereal plant that produces a large, starchy seed.", + "A corn is a small, hard, round grain that is yellow, white, or red in color.", + "A corn is small, yellow, and hard.", + "A corn is a small, hard, round grain that is yellow, white, or orange in color.", + "A corn is a small, hard growth that forms on the toes, usually as a result of pressure and friction.", + "By its characteristic shape.", + "Corn can be identified by its characteristic shape.", + "Corn is a grass that has a yellow or white stalk and produces ears of kernels.", + "A corn is a raised and hardened area of skin that often has a yellow, white, or black center.", + "A corn is a small, round, hard growth that typically appears on the toes or fingers.", + "The easiest way to identify a corn is by its kernels.", + "You can identify corn by its DNA.", + "You can identify a corn if it has cobs with kernels.", + "One way to identify corn is by its scientific name, Zea mays.", + "A corn is a yellow, white, or red seed that is used as a food.", + "A corn is a yellowish or whitish vegetable that is kerneled and used as a food source.", + "A corn is a circular, yellowish-white piece of food.", + "A corn is a small, hard, round growth that appears on the skin.", + "A corn is a small, hard, round seed that is used as a food.", + "A corn is a small, hard, round seed that is used as a food.", + "A corn is a small, hard, round growth that forms on the skin.", + "A corn looks like a small, hard, round yellowish-white or white seed.", + "A corn is a small, hard, round bump that can form on your skin.", + "A corn is a small, hard, round growth that forms on the skin.", + " fieldI found an image of a corn field on the internet that I really liked.", + " stalkIn the image, a corn stalk is erect and green, with leaves and tassels.", + " fieldI found an image of a corn field on the internet that looks like it was taken in the autumn.", + " plantI found an image on the internet of a corn plant that looks like it is in a field.", + "ucopiaA cornucopia is a symbol of abundance and nourishment.", + "fieldAn image from the internet of a cornfield shows a vast, open field with tall stalks of corn plants poking up from the ground.", + " fieldI found an image of a corn field on the internet that I really liked.", + " fieldI see an ocean of corn, stretching out as far as the eye can see.", + " fieldThere is a corn field with green and yellow youg corn plants.", + "fieldImage is of a cornfield with rows of tall corn plants.", + " A fresh ear of corn on the cob.", + " Sweet Corn.", + " A corn on the cob.", + "A field of cornstalks ready for harvest.", + "A corn on the cob.", + " Freshly-picked ears of corn on the cob.", + "A ear of corn with yellow kernels.", + " Sweet Corn, Zea maysA image of a corn field with the caption: A field of sweet corn, Zea mays.", + " Corn on the cob, ready to be eaten.", + " \"in field\"." + ], + "acorn": [ + "A small, pointy, dark brown nut that falls from oak trees.", + "An acorn is a small, dark brown fruit that grows on oak trees.", + "A acorn is a small, hard nut that grows on the oak tree.", + " small, dark brown, pointy, hard shell, oval shape.", + "Acorns are small, brown, teardrop-shaped nuts that grow on oak trees.", + "An acorn is a small, brown nut that comes from an oak tree.", + "A acorn is a small, hard, nut-like fruit that grows on oak trees.", + "The acorn is the fruit of the oak tree.", + "A acorn is a small, dark brown nut that grows on an oak tree.", + "A acorn is a small nut that is encased in a hard shell.", + "You can identify an acorn by its size, shape, and color.", + "A acorn is small and brown with a pointy top.", + "Acorns are small, hard, brown fruits that grow on oak trees.", + "At first glance, acorns may look like small eggs or nuts, but upon closer inspection, you'll notice that acorns have a tough, outer shell and a small, pointed end.", + "The easiest way to identify an acorn is by its size and shape.", + "The acorn is theseed of the oak tree.", + "The easiest way to identify an acorn is by its general shape.", + "Acorns are small, hard, nut-like fruits that are found on oak trees.", + "The top of an acorn is flat and has a small cap, while the bottom is pointy.", + "A acorn can be identified by its shape and size.", + "An acorn is a small, hard fruit that grows on an oak tree.", + "A acorn looks like a small, dark brown nut with a pointy top.", + "An acorn is a small, dark brown nut that comes from an oak tree.", + "A acorn is a small, shiny, smooth nut with a brownish-blackish color.", + "A acorn is a small, hard nut that grows on the tree.", + "Acorns are small, nut-like fruits that grow on oak trees.", + "An acorn is a small, hard nut that is the fruit of the oak tree.", + "A acorn is a small, hard fruit that grows on oak trees.", + "A acorn is a small, hard fruit that has a single seed inside.", + "An acorn looks like a small, brown nut with a pointy end.", + "An image of an acorn from the internet would show a small, brown nut with a pointed end and a ridged surface.", + "The image is of a small, brown acorn sitting on a green leaf.", + "The image is of a large, brown acorn sitting on a bed of green moss.", + "This image is of a acorn on a white background.", + "The acorn in the image is brown and has a rough texture.", + "The image is of a small, brown acorn with a pointed top and a ridged bottom.", + "An image from the internet of a acorn shows a small, brown nut with a pointed end.", + "I found an image of an acorn on the internet.", + "The image is of a light brown acorn with a green stem.", + "The image is of a brown acorn with a light brown cap.", + "A close-up of an acorn on a tree branch.", + "The acorn, the fruit of the oak tree, is a small, hard nut.", + "An acorn falling from a tree.", + " The earliest form of an oak tree, the acorn is essential to the continuation of the species.", + "An acorn falling from a tree.", + "A small acorn, lying on the ground.", + "A single acorn on the ground.", + "A single acorn on the ground.", + "\"An acorn I found on my walk today.", + "A close up of an acorn, the fruit of the oak tree." + ], + "rose hip": [ + "A rose hip is the fruit of the rose.", + "A rose hip is the fruit of the rose plant that contains the seeds of the plant.", + "A rose hip looks like a small, red fruit that is often used in jams and jellies.", + "A rose hip is the red fruit that is left behind after a rose flower has been pollinated.", + "A rose hip is the fruit of the rose plant.", + "A rose hip is the fruit of a rose.", + "A rose hip is the fruit of a rose.", + "A rose hip is the fruit of a rose plant.", + "A rose hip is the fruit of a rose.", + "A rose hip is the fruit of a rose.", + "A rose hip is the fruit of a rose plant and is typically red or orange.", + "A rose hip is the fruit of the rose bush.", + "A rose hip is the fruit of a rose plant.", + "A rose hip is the fruit of the rose plant.", + "A rose hip is the bright red fruit of a rose bush.", + "The best way to identify a rose hip is by its color.", + "A rose hip is the oval-shaped fruit of a rose bush.", + "A rose hip is the fruit of a rose plant.", + "The rose hip is the fruit of the rose plant.", + "A rose hip is an oval or cone-shaped fruit that grows on wild roses.", + "A rose hip looks like a small, oblong berry that is typically red or orange in color.", + "A rose hip is the fruit of a rose bush that is red, orange, or purple.", + "A rose hip is the fruit of a rose plant.", + "A rose hip is the fruit that grows on a rose bush.", + "A rose hip is the fruit of a rose.", + "A rose hip is the fruit of a rose.", + "A rose hip is the fruit from a rose.", + "A rose hip is about the same size and shape as a small apple.", + "A rose hip is the fruit of the rose plant and is typically red or orange.", + "A rose hip is the red fruit of a wild rose.", + "The image is of a light pink rose with many green leaves.", + "A rose hip is a fruit that is typically red, orange, or yellow.", + "This image shows a rose hip, which is the fruit of the rose plant.", + "An image of a rose hip from the internet shows a bright red, fleshy fruit with small seeds inside.", + "A rose hip is the small, red fruit that is left behind after a rose has bloomed and shed its petals.", + "The image is of a rose hip that has been dried and is lying on a white background.", + "This image is of a rose hip, which is the fruit of the rose plant.", + "This image is of a close-up of a rose hip, with the rose petals still attached.", + "A rose hip is a fruit that grows on a rose bush.", + "The image is of a small, dark red fruit with a thin, green stem.", + "A rose hip is the fruit of the rose plant.", + "A rose hip is the fruit of a rose bush.", + "A rose hip is the fruit of a rose.", + "Rose hips are the fruit of the rose plant.", + "This is a rose hip, the fruit of the rose plant.", + " Fresh rose hips on a bush.", + "This is a rose hip, the fruit of the rose plant.", + "Rosa canina, also known as the dog rose, is a species of rose native to Europe, Northwest Africa, and western Asia.", + "Rose Hip\nThe rose hip, also called rose haw and rose hep, is the fruit of the rose plant.", + "The rose hips on this bush are ripe and ready to be picked." + ], + "horse chestnut seed": [ + "The horse chestnut seed looks like a glossy brown nut with a white line running down its center.", + "A horse chestnut seed is typically dark brown and has a smooth, shiny surface.", + "A horse chestnut seed is shiny and brown, with a light-colored line running down its middle.", + "A horse chestnut seed has a hard brown shell and a white fleshy interior.", + "The seed of a horse chestnut is large and shiny, with a smooth, spiny outer shell.", + "A horse chestnut seed is a shiny, dark brown nut that is encased in a hard shell.", + "A horse chestnut seed is a dry, brown fruit that contains a large, shiny seed inside.", + "A horse chestnut seed is round and brown with a hard outer shell.", + "A horse chestnut seed looks like a small, dark brown, spiky fruit.", + "A horse chestnut seed is a large, dark brown nut that is encased in a hard shell.", + "Horse chestnut seeds are large and brown, with a smooth, shiny surface.", + "A horse chestnut seed is typically large and spiky, and it is encased in a hard, brown shell.", + "Horse chestnut seeds are contained in a spiky, green shell.", + "The shell of a horse chestnut seed is dark brown and shiny.", + "Horse chestnut seeds have a hard shell and are spiky with a brown and white striped pattern.", + "If you are trying to identify a chestnut seed, you may be able to find a few telltale signs.", + " Horse chestnuts are easy to identify because they have a very distinct shape.", + "Horse chestnuts are large, spiny seeds that are encased in a hard, green shell.", + "A horse chestnut seed is large and dark brown with a hard outer shell.", + "The horse chestnut seed is shiny, dark brown, and has a webbed outer shell.", + "A horse chestnut seed looks like a large, dark brown nut.", + "A horse chestnut seed looks like a shiny brown nut that is smooth and round.", + "A horse chestnut seed is large, dark brown, and has a hard, shiny shell.", + "A horse chestnut seed is brown, shiny, and has a smooth, hard surface.", + "A horse chestnut seed looks like a small, dark brown nut.", + "A horse chestnut seed looks like a brown or dark red conker with a spiky shell.", + "A horse chestnut seed looks triangular in shape and has a smooth, shiny, brown exterior.", + "Horse chestnut seeds are large, dark brown nuts that are enclosed in a green, spiky fruit.", + "A horse chestnut seed looks like a hard, shiny brown nut.", + "A horse chestnut seed looks like a small, dark brown nut.", + "The image is of a large, spiky, dark brown seed.", + "It is a photograph of a large, glossy brown horse chestnut seed with a small, sharp point at one end.", + "In the image, there is a light brown horse chestnut seed lying on a white surface.", + "The image is of a horse chestnut seed which is a brown, oval-shaped nut with a smooth, shiny surface.", + "I found an image on the internet of a horse chestnut seed that looks like a small, dark brown nut with a smooth exterior.", + "A photograph of a horse chestnut seed shows a large, brown seed with a spiky outer shell.", + "The image is of a brown horse chestnut seed with a green husk.", + "A horse chestnut seed is an egg-shaped, brown seed with a smooth, glossy surface.", + "The image is of ahorse chestnut seed that has been cut in half.", + "In the image, there is a brown horse chestnut seed with a hard outer shell.", + " A horse chestnut seed inside its prickly shell.", + "A horse chestnut seed on the ground.", + "A horse chestnut seed, with its spiky shell intact.", + "A single horse chestnut seed.", + "A horse chestnut seed.", + "A horse chestnut seed dropping from its spiky casing.", + "A horse chestnut seed.", + "Horse chestnut seeds are inedible to humans but are eaten by some animals.", + "A chestnut seed inside its spiny casing.", + "A horse chestnut seed with its spiky casing intact." + ], + "coral fungus": [ + "A coral fungus is a type of fungi that typically has a structure that resembles a branching tree or coral.", + "A coral fungus is a type of fungi that is shaped like a coral.", + "A coral fungus is a type of fungi that typically has a branches, or \"fingers,\" that are arranged in a way that resembles coral.", + "A coral fungus typically appears as a bright white, branched, coral-like structure.", + "A coral fungus looks like a miniature tree or bush with brightly colored, finger-like branches.", + "Fleshy, fan- or brain-shaped coral fungi range in color from white to pink, yellow, or brown.", + "A coral fungus is a type of fungus that typically has a branch-like or coral-like appearance.", + "A coral fungus is a type of fungus that typically has a branch-like or finger-like appearance.", + "A coral fungus is a type of fungal growth that takes on a coral-like appearance.", + "A coral fungus can look like a small, delicate, flower-like shape that is white, cream, yellow, orange, or pink.", + "A coral fungus can be identified by its red or orange color, and its spongy texture.", + "Coral fungi are small, tubular shaped fungi that grow in clusters on wood or dead plant matter.", + "The easiest way to identify a coral fungus is by its habit: a multi-branched, coral-like structure.", + "The easiest way to identify a coral fungus is by its shape.", + "Coral fungi can be identified by their unusual growth form, which includes branched, finger-like projections.", + "Coral fungi are identified by their coral-like appearance.", + "Coral fungi can be identified by their distinctive coral-like appearance.", + "Coral fungi are small, branched fungi that resemble miniature coral.", + "Coral fungi can be identified by their often brightly colored and bracket-shaped fruiting bodies.", + "A coral fungus is a type of fungus that grows in the form of a coral.", + "Usually white or gray, a coral fungus is a type of fungus that forms tree- or branch-like structures.", + "A coral fungus can have many different appearances, but often looks like small, brightly colored coral.", + "A coral fungus is a type of fungus that typically has a coral-like or Branch-like appearance.", + "A coral fungus looks like a small, white, knob-like fungus that is attached to rotting wood.", + "A coral fungus can vary in appearance, but typically has a fruiting body that is coral-like orbranched in shape.", + "A coral fungus looks like a miniature coral reef.", + "There is not a definitive answer to this question as coral fungi can come in a variety of colors and shapes.", + "A coral fungus looks like a small cluster of red or orange tubes.", + "This is a difficult question because there are so many different types of coral fungi.", + "A coral fungus typically looks like a small, white, finger-like structure.", + "The image is of a small, white coral fungus growing on a tree branch.", + "This image from the internet shows a coral fungus called Stereum hirsutum.", + "This image is of a coral fungus.", + "Image shows a small, planet-like object with a textured, bumpy surface.", + "In the picture, a coral fungus is shown growing on a log.", + "The image is of a small, orange coral fungus with a bumpy surface.", + "In the image, a large mass of what appears to be a coral fungus is pictured growing on the ground in a wooded area.", + "I cannot find an image of a coral fungus on the internet.", + "This image shows a type of coral fungi known as Ramaria.", + "This image is of a coral fungus.", + " A bright red coral fungustypically found growing on wood.", + "Coral fungus (Clavaria sp.", + "Coral fungus growing on a tree branch.", + "Coral fungi are strange and beautiful creatures that can be found in many different colors.", + "This weird and wonderful coral fungus (Clavaria fumosa) is found in Europe and North America.", + "Coral fungus (Clavaria sp.", + "This beautiful coral fungus is found in the damp forest understory.", + " A coral fungus on a logThis fungus is a coral fungus, which are often found growing on logs.", + " A coral fungus (Clavaria sp.", + " Coral Fungus." + ], + "agaric": [ + "Agarics are a type of mushroom that have a cap and stalk, with gills on the underside of the cap.", + "Agaric is a fungus that typically has a white cap with red or brown spots, and a stem.", + "Agarics are gilled mushrooms, typically with a white spore print, a white or pale cap, and a stem.", + "Agaric is a type of fungus that has a cap with gills on the underside.", + "Agarics are a type of mushroom that typically have a red or yellow cap with white spots.", + "Agaric is a type of mushroom that typically has a red or yellow cap with white spots.", + "Agaric fungi generally have a round cap with a stem underneath.", + "Agaric is a type of fungus that typically has a rounded cap with gills on the underside.", + "Agarics are small, discreet mushrooms that grow close to the ground.", + "Agarics are a type of fungi that usually have a cup-shaped cap with gills on the underside.", + "Agaric can be identified by its characteristic red cap and white gills.", + "One way to identify a agaric is by its fruit body, which is typically a wide, flat cap with gills on the underside.", + "Some agarics can be identified by their gills, which are often pink or red.", + "The fruit bodies of agarics typically have gills on their underside, and they are often stalked.", + "Agarics are a group of fungi that includes many of the familiar mushrooms.", + "You can identify a agaric by its gills, which are often fork-like.", + "One way to identify a agaric is to look for a mushroom with gills on the underside of the cap.", + "Agaric is a type of fungus that can be identified by its gill-like structure.", + "Agarics are a class of fungi that includes many of the familiar mushroom species.", + "Agaric fungi are typically characterized by their characteristic gills on the underside of the cap, their spores borne on the gills, the lack of a stem, and their fleshy fruit bodies.", + "Agarics are mushrooms with gills on the underside of the cap.", + "Agaric is a type of edible mushroom that has a white or light-colored cap with dark spots.", + "Agaric mushrooms are white or pale in color and have a round or convex cap.", + "Agarics are a type of fungi that generally have a cap with gills on the underside.", + "Agaric mushrooms are white or pale in color and have a 'cap' and 'stem' like other mushrooms.", + "Agaric is a white or pale yellow mushroom with a smooth cap.", + "Agarics are a type of fungi that includes the edible mushrooms.", + "Agarics are a type of fungi that includes mushrooms.", + "Agarics are white or off-white mushrooms that have gills on the underside of the cap.", + "The mushroom caps of an agaric can vary in color from white to yellow to brown.", + "This is an image of an agaric, a type of fungi.", + " mushroomAgaric mushrooms have a characteristic shape, with a large, central cap and a stalk.", + " mushroomThe image is of a small, brown and white mushroom with a smooth cap.", + " mushroomThe image is of an agaric mushroom with a red cap and white spots.", + "Mushrooms in a field with trees in the background.", + " fungiThe image is of a white agaric fungi with gills on the underside.", + " mushroomsThe agaric mushrooms in this image grow in a cluster on a log, with their caps ranging in color from white to brown.", + " mushroomThe image is of a white agaric mushroom with red spots.", + "This image from the internet shows a large agaric mushroom with a smooth, brown cap.", + " mushroomThis agaric mushroom is found in North America and Europe.", + "This agaric has a convex cap and a stem with a ring attached near the top.", + "Agaric mushrooms are a type of fungi that often have a characteristic cap and stalk.", + "Agaric, a type of mushroom.", + " A microscopic photo of a agaric, a small, spore-bearing fruit body of a fungusThis agaric is found in the genus Coprinus and is common in many temperate regions.", + " Aagaricus bisporus, commonly known as the button mushroom or white mushroom.", + " A small agaric growing on a log.", + "This is an example of an agaric, a type of mushroom.", + " Red agaric mushrooms in a forest.", + "An agaric (also known as a fly agaric or fly amanita) is a type of mushroom that can be found in many parts of the world.", + "Agaric mushrooms are a type of fungi that typically have a cap with gills on the underside." + ], + "gyromitra": [ + "A gyromitra is a type of mushroom that is characterized by its convex or concave cap.", + "A gyromitra looks like a small, dark mushroom with a yellow or brownish cap.", + "A gyromitra is a type of fungi that typically has a brain-like appearance.", + "A gyromitra is a mushroom that typically has a brown or brownish-red cap with a wrinkled or wavy surface, and a white or pale stem.", + "A gyromitra can look like a small brain, a kidney, or a section of a brain.", + "A gyromitra is a small, dark brown mushroom with a unopened fruiting body that resembles a brain or a flower.", + "A gyromitra is a type of fungus that typically has a brain-like or coral-like appearance.", + "A gyromitra is a type of mushroom that is dark brown or reddish-brown in color and has a cap that is smooth and convex in shape.", + "Gyromitras are small to medium sized fungi, often measuring only a few centimeters in diameter.", + "A gyromitra is a type of mushroom that is tapered and has aumbrella-like top.", + "Gyromitras can be identified by their distinctive fruiting bodies, which are saddle-shaped and have wrinkled surfaces.", + "A gyromitra can be identified by its brownish or reddish-brown color and its button-like or brain-like shape.", + "The most distinguishing feature of a gyromitra is its overall shape, which is often likened to that of a brain or a sponge.", + "The easiest way to identify a gyromitra is by its distinctive cap, which is shaped like a brain or a human ear.", + "Gyromitras are a species of fungi that can be identified by their funnel-shaped caps and their rubbery, white flesh.", + "A gyromitra is an inedible forest fungi that can be identified by its brown, spongy fruit body that is attached to the ground by a short stem.", + "Gyromitra species are characterized by an ascocarp that is fleshy, scalpy, and yellow to orange-brown in color.", + "Gyromitra have off-white to brownish caps with a wrinkled and brain-like appearance.", + "A gyromitra is a mushrooms that is shaped like a brain, and is usually found in coniferous forests.", + "You can often identify a gyromitra by its color, which is typically some shade of brown, and its common habitat, which is often under coniferous trees.", + "A gyromitra is a type of fungi that typically appears as a brown or reddish-brown cap with a wrinkled surface.", + "A gyromitra is a type of fungus that typically has a brain-like shape.", + "Gyromitra mushrooms are brown or reddish-brown and have a brain-like appearance.", + "A gyromitra is a type of fungus that typically appears as a brain-like or coral-like structure.", + "A gyromitra is a type of fungus that typically appears as a brain-like or brain coral-like structure.", + "A gyromitra (also known as a false morel) is a type of fungi that typically has a brain-like or saddle-shaped appearance.", + "Gyromitra esculenta, or false morel, is a type of fungus that typically appears as a dark brown or reddish-black cap on a white stalk.", + "A gyromitra is a type of fungus that typically grows in the spring and summer months.", + "A gyromitra is a type of mushroom that typically has a white or pale yellow cap with a convoluted or brain-like surface.", + "A gyromitra typically appears as a tan or brownish-colored mushroom with a cap that is convex in shape.", + " esculentaThe image is of a brown and white mushroom with a convoluted cap.", + " esculentaThe image is of a Gyromitra esculenta, a type of false morel mushroom.", + "Image shows a large, light brown mushroom with a deeply indented cap.", + " esculentaThe image is of a gyromitra esculenta, a type of brain fungus.", + " esculentaThe image is of a light brown mushroom with a flat cap.", + " esculentaIt's a yellowish-brownish mushroom with a bumpy exterior.", + "The image is of a mushroom with a brown and white speckled cap.", + " esculentaThis image is of a gyromitra esculenta, a type of mushroom.", + " esculentaThis image from the internet shows a gyromitra esculenta, a type of false morel mushroom.", + " esculentaA gyromitra esculenta is a type of fungus that typically has a brownish-red cap with white scales.", + "Two brown gyromitras, one sliced in half to reveal its starchy interiorGyromitras are a type of fungus that is found in the forests of North America.", + " Gyromitra esculenta, the false morel.", + "A gyromitra, a type of false morel mushroom.", + "Mushroom hunters beware! The gyromitra, sometimes called false morel, is a delectable but poisonous mushroom.", + " A gyromitra, a type of false morel mushroom.", + "Gyromitra esculenta, AKA false morel, is a species of fungus in the family Discinaceae.", + "A gyromitra, a type of false morel mushroom.", + "A gyromitra is a type of edible mushroom that has a funnel-shaped cap.", + "This fungi is called Gyromitra, nicknamed false morel.", + "A gyromitra, a type of mushroom that can cause illness if eaten raw." + ], + "stinkhorn mushroom": [ + "A stinkhorn mushroom is an ugly, smelly mushroom that can be found growing in woods and gardens.", + "A stinkhorn mushroom is a type of fungus that typically has a conical or egg-shaped cap.", + "A stinkhorn mushroom has a bulbous stalk with a small, brown cap.", + "A stinkhorn mushroom looks like a small, brown stalk with a white or gray cap.", + "A stinkhorn mushroom is an ugly, smelly mushroom that can be found in gardens and lawns.", + "A stinkhorn mushroom is a type of fungus that typically has a phallus- or egg-shaped cap on a stalk.", + "A stinkhorn mushroom typically has a brown or black cap with white gills.", + "A stinkhorn mushroom is typically red or orange, and is phallus-shaped.", + "A stinkhorn mushroom typically has a stalk with a swollen base and a small, egg-shaped cap.", + "A stinkhorn mushroom typically starts out looking like a small, dull-colored egg.", + "One way to identify a stinkhorn mushroom is by its foul odor.", + "The easiest way to identify a stinkhorn mushroom is by its foul odor.", + "Stinkhorn mushrooms have a fetid odor that is similar to rotting flesh.", + "A stinkhorn mushroom can be identified by its foul smell and its phallus-like shape.", + "You can identify a stinkhorn mushroom by its unique shape and its foul smell.", + "Stinkhorn mushrooms have a foul odor and a slimy or sticky surface.", + "Stinkhorn mushrooms can be identified by their smelly, spore-covered caps.", + "One way to identify a stinkhorn mushroom is by its foul odor.", + "They have a foul odor.", + "When they first break through the ground, stinkhorns resemble white eggs with a small \"button\" on top.", + "A stinkhorn mushroom typically looks like a small, phallus-shaped mushroom with a knob at the top.", + "A stinkhorn mushroom has a yellow or greenish-yellow cap with a slimy surface.", + "A stinkhorn mushroom looks like a small, dark brown or black mushroom with a spongy, stem-like stalk.", + "A stinkhorn mushroom is an orange or red mushroom with a long, phallic stem.", + "A stinkhorn mushroom is a phallus-shaped mushroom that emits a foul odor.", + "A stinkhorn mushroom is a member of the mushroom family that is characterized by its foul smell and phallic shape.", + "A stinkhorn mushroom looks like a small, reddish-brown mushroom with a white cap.", + "A stinkhorn mushroom has a long, thin stem with a small, round cap at the top.", + "The stinkhorn mushroom is a fungus that appears as a phallus-shaped structure.", + "A stinkhorn mushroom typically has a small, round cap on a short stem.", + "The image is of a stinkhorn mushroom that is growing in a forest.", + "The image shows a stinkhorn mushroom in the process of releasing spores.", + "A stinkhorn mushroom is an image of a small, fleshy mushroom with a stem that is covered in a foul-smelling slime.", + "The image is of a foul-smelling fungus typically found in woods or gardens.", + "Stinkhorn mushrooms are brown and white with long, pointy stems.", + "A stinkhorn mushroom is an orange or red mushroom that has a long, thin stem.", + "The image is of a yellow-orange mushroom with a long stem.", + "An image of a stinkhorn mushroom shows a white, fleshy stalk with a brown, spore-filled cap.", + "A stinkhorn mushroom is a foul-smelling fungus that typically grows in wooded areas.", + "The image is of a stinkhorn mushroom that is brown and white in color.", + "Stinkhorns are mushrooms that have a strong, unpleasant odor.", + "A stinkhorn mushroom, which emits a foul odor to attract flies and other insects that help disperse its spores.", + "This stinkhorn mushroom is in the process of releasing its spores.", + " stinkhorn mushrooms are smelly and poisonous.", + " Stinkhorn mushrooms are a type of fungus that releases a foul odor to attract flies and other insects.", + "Stinkhorn mushroom (Phallus impudicus) emitting foul-smelling spores from its \"head\".", + " Common stinkhorn mushroom (Phallus impudicus) emitting its foul-smelling spore-laden gleba.", + "This is a picture of a stinkhorn mushroom.", + "Stinkhorn Mushroom (Phallus rubicundus)This stinkhorn mushroom is in the process of releasing its spores.", + "Stinkhorn mushrooms are a type of fungus that often smell like rotting flesh." + ], + "earth star fungus": [ + "A earth star fungus is a star-shaped mushroom with a central stipe that has radiating arms.", + "A earth star fungus is typically an off-white color and has a star-shaped structure.", + "Some earthstar fungi have a bulbous spore sac surrounded by sharp, triangular rays.", + "A earth star fungus looks like a mushroom with a star-shaped base.", + "A earthstar fungus typically has a round, spore-filled body with thin, radiating ribs or rays.", + "A earth star fungus has a round, spore-filled body with thin, radial ribs extending from the center.", + "A earth star fungus is a small, black, spore-producing fungi that resembles a star.", + "A earth star fungus looks like a star shaped fungus with its arms reaching out.", + "The earth star fungus is a small, brown, spore-bearing sac fungi.", + "A earth star fungus typically has a brown, powdery spore surface and a yellowish to reddish stem.", + "A earth star fungus is a type of fungus that is shaped like a star.", + "A earth star fungus is a type of fungi that produces a spore-bearing structure that resembles a star.", + "The easiest way to identify a earth star fungus is by its shape.", + "The earth star fungus is a small, yellow-brown mushroom with a spore sac at the center of a star-shaped base.", + "Earth star fungi can be identified by their star-shaped structure.", + "Earth star fungi can be identified by their star-shaped appearance.", + "A earth star fungus typically has a star-shaped structure with radiating arms.", + "The earth star fungus (Geastrum saccatum) can be identified by itsv ibrant colors and its star-shaped structure.", + "The easiest way to identify a earth star fungus is to look for a round, white object with a stalk in the center.", + "The earth star fungus has a round, star-shaped body with long, thin legs.", + "A earth star fungus is a small, dark brown or black fungus that grows on the ground in moist, shady areas.", + "A earth star fungus typically looks like a small, unassuming brown or black mushroom.", + "The earth star fungus is a small, round fungus with a thin, brown shell.", + "A earth star fungus typically looks like a small, brown, star-shaped fungus with a spore sac in the center.", + "A earthstar fungus is a pink or white fungus that is often found in humid, shady areas.", + "The earth star fungus looks like a small, brown, star-shaped fungus with eight \"points.", + "A earth star fungus can look like a small, dark brown to black star-shaped fungus with ridges on its surface.", + "A earth star fungus typically looks like a small, black, spiny globe.", + "A earth star fungus typically looks like a small, dark brown to black star-shaped fungus with a white center.", + "A earth star fungus typically looks like a small, brown, star-shaped fungus with six to eight legs.", + "This photo shows a close-up of an earth star fungus.", + "The image is of a small, dark brown/black fungus with a star-shaped center.", + "This image is of a earth star fungus.", + "The image is of a beige and brown fungus with a star-shaped center.", + "This image is of a earth star fungus.", + "The image is of a large, brown and white mushroom with a star-shaped cap.", + "In this image, an earth star fungus is surrounded by green grass in a shaded area.", + "The image shows a close up of an earth star fungus with its spore sacs open.", + "The image is of a small, brownish-orange fungus with a star-shaped top.", + "Image shows a yellow and brown earthstar fungus with thick, fleshy arms emerging from a spore sac in the center.", + " earth star fungus.", + " A tiny earth star fungus waiting to release its spores.", + " Diplasia undulataA bright white earth star fungus with deep purple stripes on the underside of its arms.", + "Puffballs and earthstars are two very different types of fungi, but they both release their spores in a similar way.", + "earth star fungus (Geastrum sigma) on log.", + "This is an earth star fungus, a type of fungus that grows on the ground.", + "A earth star fungus (Geastrum saccatum) on a background of moss.", + "This is a photo of a common earth star fungus (Geastrum saccatum).", + "This photo shows a earth star fungus, a type of fungi that often resembles a star.", + " A fruiting earth star fungus (Geastrum saccatum) on forest floor." + ], + "hen of the woods mushroom": [ + "A hen of the woods mushroom has a large, round cap that is covered in small scales.", + "A hen of the woods mushroom is a polypore mushroom that grows in a circular shape.", + "A hen of the woods mushroom usually has a distinctive, leafy appearance.", + "A hen of the woods mushroom is a type of bracket fungus that grows in clusters on the trunks or branches of trees, often near the base of the tree.", + "A hen of the woods mushroom is a large, bracket-shaped mushroom with a brown, scaly cap.", + "A hen of the woods mushroom is a large, spongy mushroom with a frilled, ruffled edge that resembles a feathery chicken foot.", + "A hen of the woods mushroom has a large, sponge-like cap that is reddish-brown in color.", + "A hen of the woods mushroom is generally brown and has a ruffled appearance.", + "A hen of the woods mushroom can vary in shape and size, but typically has a ruffled, chicken-like appearance.", + "A hen of the woods mushroom is a type of fungi that typically has a frilly or ruffled appearance.", + "A hen of the woods mushroom can be identified by its fan-like shape and its brownish color.", + "The hen of the woods mushroom is a large, brownish mushroom that often has a ruffled appearance.", + "A hen of the woods mushroom is white or tan and has a ruffled cap that resembles the feathers of a chicken.", + "You can identify a hen of the woods mushroom by its large, fan-shaped caps with ruffled edges.", + "Hen of the woods mushrooms are also called maitake mushrooms.", + "A hen of the woods mushroom is a type of mushroom that grows in the shape of a chicken.", + "A hen of the woods mushroom is a large mushroom that has a brown, fuzzy exterior and a white interior.", + "One way to identify a hen of the woods mushroom is by its unique shape.", + "A hen of the woods mushroom is a large, bracket-shaped mushroom that often resembles a hen or rooster.", + "Hen of the woods mushrooms have a brown and tan colour, and they are often found in woods and on trees.", + "A hen of the woods mushroom typically has a large, umbrella-like cap with a frilled edge.", + "A hen of the woods mushroom typically has a large, umbrella-like shape with broad, fan-like gills on the underside.", + "A hen of the woods mushroom is a large, brown mushroom that resembles a chicken.", + "A hen of the woods mushroom looks like a small, brownish-red bird with a white breast.", + "The hen of the woods mushroom looks like a brownish-red chicken with black spots on its wings.", + "Hen of the woods mushrooms have a ruffled, skirt-like appearance.", + "Hens of the woods mushrooms are large, usually weighing 1 to 5 pounds each.", + "A hen of the woods mushroom is a type of culinary mushroom that is found in the same family as the portobello mushroom.", + "A hen of the woods mushroom is a large, bracket-shaped fungus that grows in clusters on the trunks of trees.", + "A hen of the woods mushroom can look like a cluster of small, grayish-brown mushrooms that are connected at the base.", + "This image is of a hen of the woods mushroom that was found in the wild.", + "The image is of a large, off-white mushroom with overlapping caps.", + "The image is of a hen of the woods mushroom that is growing on a log.", + "The image from the internet shows a hen of the woods mushroom with a light brown cap and white spots on the underside.", + "This image is of a hen of the woods mushroom, and it is a type of fungi.", + "A hen of the woods mushroom is a large, brown mushroom with a ruffled cap.", + "This image is of a beautiful, golden brown hen of the woods mushroom.", + "In the image, the hen of the woods mushroom is a small, brown mushroom with a white stem.", + "This image is of a hen of the woods mushroom.", + "The image is of a hen of the woods mushroom that was found in a grocery store.", + "A hen of the woods mushroom, a type of polypore mushroom that typically grows in a fan or shelf-like shape.", + "A hen of the woods mushroom, a type of fungus that typically grows at the base of trees.", + "Fresh hen of the woods mushrooms straight from the forest floor.", + " Earths Chicken\nA caption of an image of a morel mushroom:The Morel Mushroom: A Delicious Treat from Mother Earth.", + "A hen of the woods mushroom, a species prized for its culinary value.", + "Freshly-harvested hen of the woods mushrooms.", + "Hen of the Woods Mushroom.", + "Hen of the woods mushroom (Grifola frondosa) growing on a fallen tree in a forest.", + "\"Hen of the woods\" mushrooms.", + "Hen of the woods (Grifola frondosa) is an edible mushroom that is found growing on the stumps or roots of trees, often oak." + ], + "bolete": [ + "A bolete is a ceramic vase with a wide opening and a narrow base.", + "A bolete is a type of fungi that has a spore-bearing surface beneath a cap, typically with pores rather than gills.", + "A bolete is a type of mushroom that has a spongy underbelly.", + "A bolete is a type of mushroom that has a spongy underside instead of gills.", + "A bolete looks like a cap with a stipe, or stem.", + "The bolete is a type of mushroom that has a spongy under cap.", + "A bolete is a type of mushroom that has a spongy surface under its cap.", + "The bolete mushroom is a fleshy fungi with a cap that is brown or red in color.", + "A bolete is typically a medium to large mushroom with a spongy cap.", + "A bolete is a type of mushroom that has a spore-bearing surface on the underside of the cap, rather than on the gills.", + "Assuming you have a mushroom in front of you: Boletes have a spore-bearing surface beneath the conceptacles (a fruiting body structure) instead of gills.", + "A bolete is a type of mushroom that has a spongy flesh with small, round pores on the underside of the cap, rather than gills.", + "A bolete is a type of mushroom that has a spongy surface under the cap.", + "You can identify a bolete by its cap, which is often brown or red, and its spore surface, which is white or cream-colored.", + "A bolete is a type of fungi that has a spongy surface on the underside of its cap.", + "A bolete is a type of mushroom that has a spongy underside.", + "Some characteristics of boletes include their spongy underside, their flesh, which does not change color when bruised or cut, and their lack of gills.", + "A bolete is a type of mushroom that has a spore-bearing surface beneath a fleshy cap.", + "The easiest way to identify a bolete is to look for a mushroom with a spongy underside instead of gills.", + "Generally, boletes are easy to identify because they have a distinctive spongy underbelly.", + "The bolete mushroom is a type of fungi that has a spongy underbelly.", + "A bolete is a type of fungus that has a spongy, fleshy cap on top of a stalk.", + "A bolete is a spongy, fleshy type of mushroom that has a cap on top and pores on the underside.", + "A bolete usually has a spongy, cap-like top with pores on the underside.", + "A bolete is a type of mushroom that has a stem and a cap.", + "A bolete is a type of mushroom that has a spongy, porous surface underneath its cap.", + "A bolete typically has a spongy, fleshy cap with a smooth surface.", + "A bolete is a type of mushroom that has a spongy, fleshy cap.", + "A bolete is a type of edible mushroom that has a sponge-like surface on the underside of its cap instead of gills.", + "A bolete is maroon with a yellowish pore surface on the underside of the cap.", + "This bolete has a reddish cap with white pores on the underside.", + "In the image, there is a large, brown mushroom with a slightly lighter brown cap.", + "This image is of a bolete mushroom with a yellow cap and red pores.", + " mushroomA bolete mushroom is a type of mushroom that has a sponge-like underbody.", + " mushroomThe image is of a Bolete mushroom with a brown cap and white pores.", + " mushroomThe image is of a brown and white mushroom with a stem.", + "This bolete has a smooth, reddish brown cap with a slightly depressed center.", + " mushroomThe image shows a large, brown mushroom with a smooth, spongy surface.", + " mushroomA bolete mushroom is a type of fungi that has a brown cap and white pores on the underside.", + "The image is of a large, brownish-red mushroom with a smooth cap.", + "A bolete mushroom.", + "a close-up of a brown and white Bolete mushroom with a spongy cap, sitting on a bed of moss in a forest.", + "A bolete mushroom with a spongy, pored surface beneath the cap.", + " edible bolete mushroom.", + " This is a bolete.", + "A bolete mushroom, also known as a \"penny bun,\" \"bun mushroom,\" or \"crunchy cap.", + " A bolete is a type of mushroom that has a spongy cap, instead of gills, under its cap.", + " \" is a member of the Boletaceae, a family of fungi that includes many edible species.", + " A prevalent family of mushrooms, boletes are often characterized by their spongy underside.", + "A bolete mushroom, with a reddish cap and white pores on the underside." + ], + "corn cob": [ + "A corn cob is a yellow or white cylinder with small, pointy bumps sticking out of it.", + "A corn cob is a dry, hard, yellowish-white center of a corn cob.", + "A corn cob is a yellow piece of corn that is long and thin.", + "A corn cob is a yellow, oblong, slightly curved object with a hard outer layer and a soft, fibrous inner layer.", + "A corn cob is a long, thin, yellowish-white cylinder with small, pointy kernels on it.", + "A corn cob typically has a yellow or white outer layer with small kernels of corn inside.", + "A corn cob is a cylindrical yellow fruit that grows on a stalk.", + "A corn cob is the rounded, cylindrical core of a corn plant.", + "A corn cob is a boiled or roasted ear of corn without the kernels.", + "A corn cob is the edible core of a corn plant.", + "A corn cob can be identified by its round shape and pointed ends.", + "Corn cobs are usually about 6-8 inches long, and they are light yellow or brown in color.", + "A corn cob has a hard, woody exterior and a soft, fluffy interior.", + "The corn cob has a small point at one end and is wider at the other end.", + "A corn cob has a screw-like shape and is a light yellow in color.", + "A corn cob can be identified by its long, pointed shape and its dark brown or yellowish color.", + "The best way to identify a corn cob is by its small, round shape and smooth, yellow surface.", + "The easiest way to identify a corn cob is by its shape.", + "A corn cob is a piece of corn that has been cut off the ear.", + "Cut the corn off the cob.", + "A corn cob is the core of a mature ear of corn that is still on the stalk.", + "Corn cobs look like yellow or white cylinders with small, sharp points on the end.", + "A corn cob typically looks like a small, yellowish-white cylinder.", + "A corn cob is a hard, yellow, slightly cylindrical object that is attached to a corn stalk.", + "A corn cob looks like a long, yellow, slightly curved piece of wood.", + "A corn cob is a yellow, cylindrical piece of corn.", + "A corn cob looks like a thick, yellow tube.", + "A corn cob looks like a long, slightly curved yellowish-white cylinder with small, pointy ends.", + "A corn cob looks like a long, yellowish-white cylinder with small, pointy kernels arranged in rows around it.", + "A corn cob is the hard core of a corn stalk on which the kernels of corn are found.", + "The image is of a corn cob that is yellow in color.", + "The image is of a corn cob that has been cut in half lengthwise.", + "This image is of a corn cob that has been cut in half long-ways.", + "One image from the internet of a corn cob shows a ripe ear of corn with its green husk still intact.", + "I found an image on the internet of a corn cob that is yellow in color.", + "The image is of a corn cob that has been peeled back to reveal the rows of kernels.", + "The image is of a corn cob sitting on a white plate.", + "There is an image from the internet of a corn cob that is yellow in color.", + "An image of a corn cob from the internet may show a yellow or white corn cob with kernels that are close together.", + "The internet image is of a corn cob that is yellow in color.", + "This ear of corn was picked fresh from the field.", + "A corn cob fresh from the field.", + "Corn Cob.", + "A corn cob on the cob, ready to eat.", + " A corn cob, taken at an angleThis is a close-up of a corn cob.", + "A whole roasted corn cob, served with butter and salt.", + "Early summer corn on the cob.", + "A fresh corn cob.", + "A fresh corn cob.", + "A fresh ear of corn ready to be cooked and eaten." + ], + "toilet paper": [ + "A toilet paper is a thin paper that is used to wipe the anus and genitals after defecation or urination.", + "A toilet paper typically features a thin layer of soft paper that is designed to break apart easily when wet.", + "A toilet paper is a sanitary paper product people use to clean the anal and genital areas.", + "Most toilet paper is a soft white paper that is perforated so that it can easily tear off in individual sheets.", + "A toilet paper is a roll of paper that is used to wipe your bottom after you poop.", + "A toilet paper is a paper made from wood pulp or recycled paper, which is used to wipe the bottom after defecation.", + "A toilet paper is a paper that is used to clean the anus and surrounding area after defecation.", + "A toilet paper has a cardboard roll in the middle and thin sheets of paper around it.", + "A toilet paper looks like a piece of paper that is attached to a roll.", + "A toilet paper is a piece of paper that is used to clean the anus and vagina after going to the toilet.", + "Toilet paper is usually white and has a smooth texture.", + "There are many ways to identify a toilet paper.", + "The easiest way to identify a toilet paper is by its size.", + "The identification of the toilet paper can be done by checking the quality of the paper.", + "Toilet paper is a tissue that is used to clean the anus and surround area after defecation.", + "If you see a toilet paper, it is probably a toilet paper.", + "Toilet paper is paper that has been specifically designed for use in toilets.", + "There are several ways that you can identify a toilet paper.", + "Toilet paper is a soft paper that is used to wipe the anus and buttocks after going to the toilet.", + "You can identify a toilet paper by its size, shape, and texture.", + "A toilet paper looks like a big white sheet of paper.", + "A toilet paper is usually a white or off-white rectangular sheet of paper.", + "A toilet paper typically has a quilted or embossed texture and is white.", + "A toilet paper roll is typically white or off-white, and is cylindrical in shape.", + "A toilet paper is a paper that is used to wipe the bottom after using the toilet.", + "A toilet paper looks like a roll of paper with perforated edges.", + "A toilet paper is typically a small, rectangular piece of paper that is used to clean the anus or vagina after going to the bathroom.", + "A toilet paper is usually a soft white paper that is used to clean the anus and genitals after going to the toilet.", + "A toilet paper looks like a paper.", + "A toilet paper is usually a white or off-white color.", + " rollIn the image, there is a toilet paper roll sitting on a white surface.", + " rollIn the image, there is a white toilet paper roll with the end unraveled.", + " rollThis image from the internet is of a toilet paper roll.", + "There's an image of a toilet paper roll on a white background.", + " rollThe image is of a toilet paper roll with the end unravelled.", + " rollI found an image of a toilet paper roll on a white background.", + " rollThis image shows a toilet paper roll with the paper coming out of the top.", + " rollThe image shows a toilet paper roll with the words \"Please don't take the last one\" written on it in black sharpie.", + " rollIn the image, there is a white toilet paper roll with a blue background.", + " rollThis image is of a toilet paper roll that is sitting on a white surface.", + "This is a toilet paper.", + "Double ply for extra absorbency.", + "A roll of toilet paper.", + "This is a picture of a toilet paper.", + "Toilet paper is essential for keeping things clean and tidy.", + "\"When you're out of toilet paper and resort to using paper towels.", + "This is a picture of a toilet paper.", + "This toilet paper is made from 100% recycled paper.", + " A toilet paper leaving its rollA toilet paper leaving its roll signals the end of its usefulness.", + " \"\\nWhy is this called toilet paper when it's magic and can do anything?\"." + ] +} \ No newline at end of file diff --git a/gpt_file/oxford_flowers_prompt.json b/gpt_file/oxford_flowers_prompt.json new file mode 100644 index 0000000..9a5e567 --- /dev/null +++ b/gpt_file/oxford_flowers_prompt.json @@ -0,0 +1,1226 @@ +{ + "passion flower": [ + "A photo of a flower passion flower, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower passion flower, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower passion flower, it has lavender color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower passion flower, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often orange color. The leaves are simple. This is a flower rose, it has a red color or sometimes pink color flower with five petals", + "A photo of a flower passion flower, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower passion flower, it has a bluish-purple color or sometimes white color flower with five petals. The center of the flower is often black color. The leaves are dark green.", + "A photo of a flower passion flower, it has a deep purple color or sometimes blue color flower with five petals. The center of the flower is often bright yellow color. The leaves are dark green.", + "A photo of a flower passion flower, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green. Passion flowers are beautiful, fragrant flowers that come in a variety of colors.", + "A photo of a flower passion flower, it has a purple color or sometimes bluish color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower passion flower, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "water lily": [ + "A photo of a flower water lily, it has a white color or sometimes yellow color flower with green petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower water lily, it has a green color or sometimes white color flower with four petals.", + "A photo of a flower water lily, it has a pink color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are big, green, and often have a purple underside", + "A photo of a flower water lily, it has a light pink color or sometimes white color flower with manypedals. The center of the flower is often yellow color.", + "A photo of a flower water lily, it has a white color or sometimes yellow color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower water lily, it has a white color or sometimes yellow color flower with round petals. The center of the flower is often green color. The leaves are lanceolate.", + "A photo of a flower water lily, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower water lily, it has a white color or sometimes pink color flower with yellow petals. The center of the flower is often yellow color. The leaves are floating.", + "A photo of a flower water lily, it has a white color or sometimes pink color flower with round petals. The center of the flower is often yellow color. The leaves are big.This flower is a rose, it can be many different colors but is most often seen in", + "A photo of a flower water lily, it has a white color or sometimes yellow color flower with many petals. The center of the flower is often yellow color. The leaves are green." + ], + "cyclamen": [ + "A photo of a flower cyclamen, it has a bright color or sometimes white color flower with five petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower cyclamen, it has a pink color or sometimes white color flower with six petals. The center of the flower is often silver color. The leaves are heart-shaped.", + "A photo of a flower cyclamen, it has a pink color or sometimes white color flower with small petals. The center of the flower is often silver color. The leaves are stay green.", + "A photo of a flower cyclamen, it has a white color or sometimes pink color flower with many petals. The center of the flower is often black color. The leaves are stiff.", + "A photo of a flower cyclamen, it has a white color or sometimes pink color flower with violet petals. The center of the flower is often green color. The leaves are heart-shaped.", + "A photo of a flower cyclamen, it has a pink or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are heart-shaped.", + "A photo of a flower cyclamen, it has a white color or sometimes pink color flower with eleven petals. The center of the flower is often green color. The leaves are dark green and have a silvery sheen.", + "A photo of a flower cyclamen, it has a red color or sometimes pink color flower with small petals. The center of the flower is often dry color. The leaves are dark green with burgandy spots.", + "A photo of a flower cyclamen, it has a white color or sometimes pink color flower with five petals. The center of the flower is often white color. The leaves are palmately lobed.", + "A photo of a flower cyclamen, it has a white color or sometimes pink color flower with small petals." + ], + "watercress": [ + "A photo of a flower watercress, it has a pale green color or sometimes pinkish color flower with rounded petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower watercress, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often deep purple color. The leaves are small and green.", + "A photo of a flower watercress, it has a yellow or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower watercress, it has a bright color or sometimes a dark color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower watercress, it has a purple color with white petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower watercress, it has a yellow color or sometimes pale pink color flower with four petals. The center of the flower is often yellow color. The leaves are frilly.", + "A photo of a flower watercress, it has a lime green color or sometimes dark green color flower with four petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower watercress, it has a dark green color or sometimes light green color flower with four petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower watercress, it has a yellow color or sometimes white color flower with green petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower watercress, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are small, round, and have a slightly crinkled surface." + ], + "frangipani": [ + "A photo of a flower frangipani, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower frangipani, it has a pink color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green", + "A photo of a flower frangipani, it has a yellow or sometimes white color flower with five petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower frangipani, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower frangipani, it has a yellow color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower frangipani, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower frangipani, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower frangipani, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower frangipani, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often green color. The leaves are jungle.", + "A photo of a flower frangipani, it has a white color or sometimes yellow color flower with yellow petals. The center of the flower is often yellow color. The leaves are green in color." + ], + "wallflower": [ + "A photo of a flower wallflower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often amber color. The leaves are green.", + "A photo of a flower wallflower, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower wallflower, it has a yellow color or sometimes green color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower wallflower, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower wallflower, it has a white color or sometimes yellow color flower with", + "A photo of a flower wallflower, it has a yellow color or sometimes pink color flower with four petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower wallflower, it has a yellow color or sometimes orange color flower with five petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower wallflower, it has a yellow color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a red color or sometimes yellow color flower", + "A photo of a flower wallflower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are broad.This is a flower tulip, it has a white color or sometimes pink color flower with", + "A photo of a flower wallflower, it has a yellow color flower with five petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower wallflower, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often green color. The leaves are green." + ], + "rose": [ + "A photo of a flower rose, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower rose, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower rose, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower rose, it has a yellow color", + "A photo of a flower rose, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower rose, it has a pink color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower rose, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower rose, it has a pink color or sometimes white color flower with red petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower rose, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower rose, it has a red color or sometimes a pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "petunia": [ + "A photo of a flower petunia, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower petunia, it has a light purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower petunia, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green. This is a flower rose, it has a red color or sometimes pink color flower with five petals", + "A photo of a flower petunia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green. flowerThis is a flower petunia, it has a white color or sometimes pink color flower", + "A photo of a flower petunia, it has a white color or sometimes a blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes a white color flower", + "A photo of a flower petunia, typically it has a pink color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower petunia, it has a purple color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower petunia, it has a purple color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower petunia, it has a white color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower petunia, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "poinsettia": [ + "A photo of a flower poinsettia, it has a red color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower poinsettia, it has a red color or sometimes white color flower with small petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower poinsettia, it has a red color or sometimes pink color flower with green petals. The center of the flower is often yellow color. The leaves are pointed.", + "A photo of a flower poinsettia, it has a red color or sometimes white color flower with green petals. The center of the flower is often yellow color. The leaves are pointy.", + "A photo of a flower poinsettia, it has a red color or sometimes pink color flower with wide petals. The center of the flower is often green color. The leaves are long and thin.", + "A photo of a flower poinsettia, it has deep red color or sometimes white color flower with small petals. The center of the flower is often green color. The leaves are downy and fluted", + "A photo of a flower poinsettia, it has a red color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower poinsettia, it has a red color or sometimes white color flower with green petals. The center of the flower is often yellow color. The leaves are pointy.", + "A photo of a flower poinsettia, it has a deep red color or sometimes light pink color flower with small petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower poinsettia, it has a red color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves are green." + ], + "clematis": [ + "A photo of a flower clematis, it has a purple color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a lavender color or sometimes blue color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a blue color or sometimes purple color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a bluish-violet color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are opposite.", + "A photo of a flower clematis, it has a deep purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a purple color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a deep purple color or sometimes lavender color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a light purple color or sometimes white color flower with 4 petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower clematis, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are simple." + ], + "hibiscus": [ + "A photo of a flower hibiscus, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower hibiscus, it has a red color or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with yellow", + "A photo of a flower hibiscus, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower hibiscus, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are leaves.", + "A photo of a flower hibiscus, it has red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green with red flowers.", + "A photo of a flower hibiscus, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are green.This is a flower rose, it has a red color or sometimes yellow color flower with five", + "A photo of a flower hibiscus, it has a tangerine color or sometimes bright red color flower with five petals. The center of the flower is often bright yellow color. The leaves are oval shape.", + "A photo of a flower hibiscus, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower hibiscus, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower hibiscus, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "lotus": [ + "A photo of a flower lotus, it has a pink color or sometimes blue color flower with seed petals. The center of the flower is often yellow color. The leaves are big.", + "A photo of a flower lotus, it has a yellow color or sometimes pink color flower with many petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower lotus, it has a white color or sometimes red color flower with 8 petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower lotus, it has a light color or sometimes dark color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower lotus, it has a white color or sometimes pink color flower with eight petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower lotus, it has a white color or sometimes pink color flower with samll petals. The center of the flower is often yello color.\n", + "A photo of a flower lotus, it has a white color or sometimes pink color flower with many petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower lotus, it has a pink color or sometimes white color flower with yellow petals. The center of the flower is often yellow color.", + "A photo of a flower lotus, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often blank color. The leaves are green in color.", + "A photo of a flower lotus, it has a white color or sometimes pink color flower with many petals. The center of the flower is often yellow color. The leaves are green." + ], + "anthurium": [ + "A photo of a flower anthurium, it has a purple color or sometimes orange color flower with small petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower anthurium, it has a green color or sometimes orange color flower with red petals. The center of the flower is often yellow color. The leaves are heart-shaped.", + "A photo of a flower anthurium, it has a bright red color or sometimes pink color flower with green petals. The center of the flower is often yellow color. The leaves are pointy.", + "A photo of a flower anthurium, it has a red color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are simple.", + "A photo of a flower anthurium, it has a deep green color or sometimes light green color flower with long petals. The center of the flower is often white color. The leaves are large.", + "A photo of a flower anthurium, it has a dark green color or sometimes light green color flower with many petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower anthurium, it has a red color or sometimes pink color flower with heart shaped petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower anthurium, it has a deep red color or sometimes orange color flower with three petals. The center of the flower is often yellow color. The leaves are glossy.", + "A photo of a flower anthurium, it has a green color or sometimes red color flower with long petals. The center of the flower is often white color. The leaves are big.", + "A photo of a flower anthurium, it has a red color or sometimes white color flower with three petals. The center of the flower is often purple color. The leaves are green." + ], + "thorn apple": [ + "A photo of a flower thorn apple, it has a green color or sometimes yellow color flower with five petals. The center of the flower is often orange color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with five", + "A photo of a flower thorn apple, it has a white color or sometimes yellow color flower with small petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower thorn apple, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower thorn apple, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower thorn apple, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower thorn apple, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower thorn apple, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often dark color. The leaves are green. This is a flower plumeria, it has a white color or sometimes pink color flower with five pet", + "A photo of a flower thorn apple, it has a pubescent color or sometimes blue color flower with densely pubescent petals. The center of the flower is often purple-veined color. The leaves are green.", + "A photo of a flower thorn apple, it has a dark color or sometimes bright color flower with small petals. The center of the flower is often yellow color. The leaves are small.", + "A photo of a flower thorn apple, also known as dfhsd or dfghflg." + ], + "barbeton daisy": [ + "A photo of a flower barbeton daisy, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a deep yellow color or sometimes light yellow color flower with small petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often brown color. The leaves are long.", + "A photo of a flower barbeton daisy, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a yellow color or sometimes white color flower with 8 petals. The center of the flower is often dark color. The leaves are serrated.", + "A photo of a flower barbeton daisy, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower barbeton daisy, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "sword lily": [ + "A photo of a flower sword lily, it has a reddish color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are sword-shaped.", + "A photo of a flower sword lily, it has a white color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sword lily, it has a yellow color or sometimes orange color flower with six petals. The center of the flower is often green color. The leaves are sword-shaped.", + "A photo of a flower sword lily, it has a pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sword lily, it has a pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower sword lily, it has a white color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sword lily, it has a white color or sometimes yellow color flower with long petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower sword lily, it has a yellow or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sword lily, it has a white color or sometimes orange color flower with six petals. The center of the flower is often blue color. The leaves are sword-shaped.", + "A photo of a flower sword lily, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "morning glory": [ + "A photo of a flower morning glory, it has a beautiful color or sometimes light blue color flower with six petals. The center of the flower is often white color. The leaves are oval.", + "A photo of a flower morning glory, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower morning glory, it has a blue color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower morning glory, it has a bluish color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are spiraled.", + "A photo of a flower morning glory, it has a light blue color or sometimes pink color flower with six petals. The center of the flower is often yellow color.", + "A photo of a flower morning glory, it has a bluish color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are alternate.", + "A photo of a flower morning glory, it has a blue color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower morning glory, it has a blue color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower morning glory, it has a white color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower morning glory, it has a blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "columbine": [ + "A photo of a flower columbine, it has a burgundy color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower columbine, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower columbine, it has a bluish color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are lobed.", + "A photo of a flower columbine, it has a dark color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are pointy.", + "A photo of a flower columbine, it has a yellow color or sometimes blue color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower columbine, it has a pink color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower columbine, it has a light blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower columbine, it has a blue color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower columbine, it has a blue color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower columbine, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "geranium": [ + "A photo of a flower geranium, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower geranium, it has a red color or sometimes pink color flower with five petals. The center of the flower is often green color. The leaves are dark green.", + "A photo of a flower geranium, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower geranium, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower geranium, it has a red color or sometimes pink color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower geranium, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower geranium, it has a varied color or sometimes striped color flower with five petals. The center of the flower is often dark color. The leaves are serrated.", + "A photo of a flower geranium, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower geranium, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green", + "A photo of a flower geranium, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "bishop of llandaff": [ + "A photo of a flower bishop of llandaff, it has a very colorful red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green color.", + "A photo of a flower bishop of llandaff, it has a deep yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bishop of llandaff, it has a yellow color or sometimes orange color flower with five petals. The center of the flower is often purple color. The leaves are green.", + "A photo of a flower bishop of llandaff, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bishop of llandaff, it has a deep purple color or sometimes blue color flower with toni minichiello petals. The center of the flower is often red color.", + "A photo of a flower bishop of llandaff, it has a deep purple color or sometimes lilac color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower pansy, it has a deep purple color or sometimes lil", + "A photo of a flower bishop of llandaff, it has a bright color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bishop of llandaff, it has a distinct color or sometimes no color flower with long petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower bishop of llandaff, it has a dfsffs color or sometimes dnadffvsvsvsvsvsvsvsvsvsvsvsvsv color flower with gdnjpatlasgg flower. The center of the flower is often dnka color.", + "A photo of a flower bishop of llandaff, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "tree mallow": [ + "A photo of a flower tree mallow, it has a dark pink color or sometimes white color flower with four petals. The center of the flower is often dark pink color. The leaves are hairy.", + "A photo of a flower tree mallow, it has a purple color or sometimes white color flower with dsfdsdf petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a red color or sometimes yellow", + "A photo of a flower tree mallow, it has a reddish color or sometimes yellowish color flower with five petals. The center of the flower is often brown color. The leaves are dark green.", + "A photo of a flower tree mallow, it has a pink color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower tree mallow, it has a light purple color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower tree mallow, it has a purple color or sometimes white color flower with 5 petals. The center of the flower is often yellow color. The leaves are lobed.", + "A photo of a flower tree mallow, it has a pink color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower tree mallow, it has a lavender color or sometimes pink color flower with five petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower tree mallow, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often pink color. The leaves are dark green.", + "A photo of a flower tree mallow, it has a greenish-blue color or sometimes reddish color flower with four petals. The center of the flower is often yellow color. The leaves are lobed." + ], + "pink-yellow dahlia": [ + "A photo of a flower pink-yellow dahlia, it has a pink-yellow color or sometimes white color flower with pink-yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a yellow color or sometimes white color flower with a pinkish tinge petals. The center of the flower is often reddish color. The leaves are dark green.", + "A photo of a flower pink-yellow dahlia, it has a pink color or sometimes yellow color flower with red petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower pink-yellow dahlia, it has a pink color or sometimes yellow color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a beautiful color or sometimes blue color flower with white petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a pink-yellow color or sometimes white color flower with pink-yellow petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a tubular color or sometimes white color flower with outer petals. The center of the flower is often purple color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a yellow color or sometimes white color flower with pink petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a pink-yellow color or sometimes white-yellow color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink-yellow dahlia, it has a pink-yellow color or sometimes white-pink color flower with numerous petals. The center of the flower is often yellow color. The leaves are dark green." + ], + "bee balm": [ + "A photo of a flower bee balm, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bee balm, it has a pink color or sometimes red color flower with square petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower bee balm, it has a vcxdxfv color or sometimes fxdgvv color flower with nhgnbf petals. The center of the flower is often dfdfg color. The leaves are xcvdf.", + "A photo of a flower bee balm, it has a sbr color or sometimes srb color flower with five petals. The center of the flower is often yb color. The leaves are nddg.", + "A photo of a flower bee balm, it has a beautiful color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a beautiful red color or sometimes pink color flower with", + "A photo of a flower bee balm, it has a pink color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bee balm, classified under the plant family Lamiaceae with the scientific name Monarda didyma. Bee balm flowers are two-lipped, tubular, and Terminal. They have four stamens sticking out above the flower and are usually arranged", + "A photo of a flower bee balm, it has a pink color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are toothed.", + "A photo of a flower bee balm, it has a pink color or sometimes red color flower with five petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower bee balm, it has a reddish color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "snapdragon": [ + "A photo of a flower snapdragon, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower snapdragon, it has a bright color or sometimes light color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower snapdragon, it has a deep color or sometimes light color flower with many petals. The center of the flower is often another color. The leaves are thin and green.", + "A photo of a flower snapdragon, it has a yellow color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green." + ], + "californian poppy": [ + "A photo of a flower californian poppy, it has a deep orange color or sometimes yellow color flower with four petals. The center of the flower is often green color. The leaves are blue-green.", + "A photo of a flower californian poppy, it has a orange color or sometimes yellow color flower with four petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower californian poppy, it has a golden yellow color or sometimes dark yellow color flower with 4 petals. The center of the flower is often dark yellow color. The leaves are green.", + "A photo of a flower californian poppy, it has a orange color or sometimes red color flower with four petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower californian poppy, it has a yellow color or sometimes orange color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower californian poppy, it has a red color or sometimes white pink color flower with five petals. The center of the flower is often yellow color. The leaves are long.This is a flower rose, it has a red color or sometimes white color flower with", + "A photo of a flower californian poppy, it has a yellow color or sometimes orange color flower with four petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower californian poppy, it has a all colors color or sometimes californian poppy color flower with 434dfx54 petals. The center of the flower is often poppy color. The leaves are 657yudg.", + "A photo of a flower californian poppy, it has a orange color or sometimes yellow color flower with four petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower californian poppy, it has a orange color or sometimes red color flower with four petals. The center of the flower is often green color. The leaves are green." + ], + "bird of paradise": [ + "A photo of a flower bird of paradise, it has a bright orange color or sometimes blue color flower with yellow petals. The center of the flower is often black color. The leaves are dark green.", + "A photo of a flower bird of paradise, it has a red color or sometimes orange color flower with yellow petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower bird of paradise, it has a yellow color or sometimes orange color flower with blue petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower bird of paradise, it has a orange color or sometimes blue color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bird of paradise, it has a yellow color or sometimes red color flower with three petals. The center of the flower is often blue color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with five", + "A photo of a flower bird of paradise, it has a red color or sometimes orange color flower with three petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower bird of paradise, it has a orange color or sometimes blue color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bird of paradise, it has a yellow color or sometimes blue color flower with six petals. The center of the flower is often green color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with five", + "A photo of a flower bird of paradise, it has a orange color or sometimes yellow color flower with blue petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower bird of paradise, it has a yellow color or sometimes red color flower with blue petals. The center of the flower is often blue color. The leaves are green. This is a flower daffodil, it has a yellow or white color flower with six pet" + ], + "fritillary": [ + "A photo of a flower fritillary, it has a reddish color or sometimes yellowish color flower with dark brownish petals. The center of the flower is often yellowish color. The leaves are dark olive.", + "A photo of a flower fritillary, it has a bright magenta color with eight petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower fritillary, it has a deep purple color or sometimes copper color flower with six petals. The center of the flower is often greenish yellow color. The leaves are lanceolate.", + "A photo of a flower fritillary, it has a bottom color or sometimes top color flower with orange petals. The center of the flower is often center color. The leaves are green.", + "A photo of a flower fritillary, it has a orange color or sometimes yellow color flower with six petals. The center of the flower is often green color. The leaves are broad.", + "A photo of a flower fritillary, it has a 2yzxyzh color or sometimes purple color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower fritillary, it has a white color or occasionally orange color flower with 6 petals. The center of the flower is green. The leaves are hairy with 3-7 lobes.", + "A photo of a flower fritillary, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower fritillary, it has a zigzag color or sometimes fuchsia color flower with six petals. The center of the flower is often yellow color. The leaves are broad.", + "A photo of a flower fritillary, it has a reddish-purple color or sometimes yellow color flower with six petals. The center of the flower is often red color. The leaves are green." + ], + "sweet william": [ + "A photo of a flower sweet william, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower sweet william, it has a beautiful light pink color or sometimes dark pink color flower with five petals. The center of the flower is often deep yellow color. The leaves are lance-shaped.", + "A photo of a flower sweet william, it has a pink color or sometimes white color flower with small petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower sweet william, it has a deep pink color or sometimes white color flower with yellow petals. The center of the flower is often deep pink color. The leaves are green.", + "A photo of a flower sweet william, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet william, it has a red color or sometimes a pink color flower with five petals. The center of the flower is often yellow color. The leaves are green", + "A photo of a flower sweet william, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet william, it has a beautiful pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet william, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet william, it has a white color or sometimes pink color flower with five petals. The center of the flower is often green color. The leaves are lanceolate." + ], + "azalea": [ + "A photo of a flower azalea, it has a pink color with white petals. The center of the flower is pink color. The leaves are green.", + "A photo of a flower azalea, it has a delicate pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower azalea, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a white color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a red color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower azalea, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "primula": [ + "A photo of a flower primula, it has a red color or sometimes beige color flower with dark red petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower primula, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower primula, it has a yellowcdxd color or sometimes bcvsfgvs color flower with dcdxdxd petals. The center of the flower is often ndgnvr color. The leaves are brofmuimfg.", + "A photo of a flower primula, it has a light yellow color or sometimes orange color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower primula, it has a deep yellow color or sometimes light yellow color flower with five petals. The center of the flower is often dark yellow color. The leaves are green.", + "A photo of a flower primula, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower primula, it has a light color or sometimes dark color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower primula, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower primula, it has a light color or sometimes dark color flower with long petals. The center of the flower is often same color. The leaves are narrow.", + "A photo of a flower primula, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "cape flower": [ + "A photo of a flower cape flower, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a rose, it has a pink or red color flower with five petals.", + "A photo of a flower cape flower, it is a perennial.", + "A photo of a flower cape flower, it has a blue color or sometimes pink color with five petals. The center of the flower is often green color. The leaves are dark green.", + "A photo of a flower cape flower, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower cape flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower cape flower, it has a red color or sometimes yellow color cape flower with five petals. The center of the flower is often black color. The leaves are green.This is a flower rose, it has a red color or sometimes yellow color rose with", + "A photo of a flower cape flower, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are usually green.", + "A photo of a flower cape flower, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often blue color. The leaves are green. This flower is called a cape flower because it is native to the Cape Region of South Africa.", + "A photo of a flower cape flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often dark color. The leaves are green. This is a flower lily, it has a white color or sometimes pink color flower with six pet", + "A photo of a flower cape flower, it has a dsvdcv color or sometimes cxcvd color flower with jvcnvkj petals. The center of the flower is often jvcxkj color. The leaves are mndkjhn." + ], + "purple coneflower": [ + "A photo of a flower purple coneflower, it has a deep purple color or sometimes bluish color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower purple coneflower, it has a blue color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower purple coneflower, it has a deep purple color or sometimes bluish color flower with long petals. The center of the flower is often green color. The leaves are long and thin.", + "A photo of a flower purple coneflower, it has a deep purple color or sometimes white color flower with deep purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower purple coneflower, it has a deep purple color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower purple coneflower, it has a deep purple color or sometimes white color flower with small petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower purple coneflower, it has a purple color or sometimes yellow color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower purple coneflower, it has a pink color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower purple coneflower, it has a bdfnadfdafn color or sometimes frvfvc color flower with dfdgdfg petals. The center of the flower is often svgctc color. The leaves are sdertsfdgb.", + "A photo of a flower purple coneflower, it has a violet color or sometimes white color flower with yellow petals. The center of the flower is often purple color. The leaves are dark green." + ], + "colt's foot": [ + "A photo of a flower colt's foot, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower colt's foot, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are lanceolate.", + "A photo of a flower colt's foot, it has a yellow color or sometimes pink color flower with ten petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower colt's foot, it has a dull color or sometimes pale color flower with small petals. The center of the flower is often yellow color. The leaves are palmate.", + "A photo of a flower colt's foot, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are long and slender.", + "A photo of a flower colt's foot, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are fragrant.", + "A photo of a flower colt's foot, it has a yellow or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are oblong. This is a flower yarrow, it has a white or sometimes pink color flower with five to eight", + "A photo of a flower colt's foot, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are hairy. This is a flower sdiufhs, it has a dfdfs color or sometimes cds", + "A photo of a flower colt's foot, it has a blue color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower colt's foot, it has a yellow color or sometimes blue color flower with five petals. The center of the flower is often black color. The leaves are brownish." + ], + "artichoke": [ + "A photo of a flower artichoke, it has a purple color or sometimes green color flower with small petals. The center of the flower is often yellow color. The leaves are green. This is a flower marigold, it has a orange color or sometimes yellow color flower with small", + "A photo of a flower artichoke, it has a deep blue color or sometimes light blue color flower with five petals. The center of the flower is often white color. The leaves are spiny.", + "A photo of a flower artichoke, it has a yellow color or sometimes violet color flower with five petals. The center of the flower is often green color. The leaves are dark green.", + "A photo of a flower artichoke, it has a deep green color or sometimes purple color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower artichoke, it has a deep green color or sometimes purple color flower with fuzzy petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower artichoke, it has a soft color or sometimes strong color flower with thin petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower artichoke, it has a reddish color or sometimes yellow color flower with green petals. The center of the flower is often white color. The leaves are green.This is a flower lotus, it has a pink color or sometimes white color flower", + "A photo of a flower artichoke, it has a green color or sometimes white color flower with many petals. The center of the flower is often purple color. The leaves are dark green.", + "A photo of a flower artichoke, it has a green color or sometimes white color flower with large petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a red color or sometimes yellow color flower with", + "A photo of a flower artichoke, it has a green color or sometimes purple color flower with long petals. The center of the flower is often deep blue color. The leaves are deep green." + ], + "wild pansy": [ + "A photo of a flower wild pansy, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often maroon color. The leaves are strap-like.", + "A photo of a flower wild pansy, it has a purple color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are toothed.", + "A photo of a flower wild pansy, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower wild pansy, it has a purple color or sometimes white color flower with yellow petals. The center of the flower is often purple color. The leaves are green.", + "A photo of a flower wild pansy, it has a purple color or sometimes yellow color flower with five petals.", + "A photo of a flower wild pansy, it has a purple color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are simple.This is a flower dandelion, it has a yellow color or sometimes white color flower", + "A photo of a flower wild pansy, it has a purple color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are simple.", + "A photo of a flower wild pansy, it has a deep yellow color with five purple petals. The center of the flower is often black color.", + "A photo of a flower wild pansy, it has a vibrant purple color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower wild pansy, it has a purple color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower wild pansy, it has a purple color or sometimes yellow color flower" + ], + "peruvian lily": [ + "A photo of a flower peruvian lily, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower peruvian lily, they have nddngg, they are grown in pots or vases, they grow in the winter and they have ndchbnbn petals.This flower is a rose, it has a red color or sometimes pink color flower", + "A photo of a flower peruvian lily, it has a orange color or sometimes yellow color flower with six petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower peruvian lily, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower peruvian lily, it has a deep purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower peruvian lily, it has a red color or sometimes yellow color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower peruvian lily, it has a orange color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower peruvian lily, it has a light pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower peruvian lily, it has a pink color or sometimes white color flower with six petals. The center of the flower is often dark color. The leaves are broad.", + "A photo of a flower peruvian lily, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "ruby-lipped cattleya": [ + "A photo of a flower ruby-lipped cattleya, it has a deep pink color with ruby-red spots.", + "A photo of a flower ruby-lipped cattleya, it has a pink or sometimes white color flower with yellow petals. The center of the flower is often red color. The leaves are dark green", + "A photo of a flower ruby-lipped cattleya, it has a deep purple color or sometimes light purple color flower with seven petals. The center of the flower is often white color. The leaves are dark green.", + "A photo of a flower ruby-lipped cattleya, it has a fuchsia color or sometimes pink color flower with six petals. The center of the flower is often yellow color.", + "A photo of a flower ruby-lipped cattleya, it has a deep red color or sometimes yellow color flower with six petals. The center of the flower is often crimson color. The leaves are green.", + "A photo of a flower ruby-lipped cattleya, it has a deep pink color or sometimes a purple color flower with seven petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower ruby-lipped cattleya, it has a deep russet color or sometimes burgundy color flower with ruffled petals. The center of the flower is often salmon color. The leaves are dark green.", + "A photo of a flower ruby-lipped cattleya, it has a deep pink color or sometimes white color flower with yellowish pink petals. The center of the flower is often dark red color. The leaves are dark green.", + "A photo of a flower ruby-lipped cattleya, it has a pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are as long as the pseudobulbs.This is a flower rose, it has a pink color", + "A photo of a flower ruby-lipped cattleya, it has a beautiful soft color or sometimes deep color flower with long petals. The center of the flower is often yellow color. The leaves are green." + ], + "canna lily": [ + "A photo of a flower canna lily, it has a deep purple color or sometimes light purple color flower with six petals. The center of the flower is often yellow color. The leaves are broad, and the flowers bloom in summer.", + "A photo of a flower canna lily, it has a greenish-brown color or sometimes white color flower with six petals. The center of the flower is often orange color. The leaves are green and have parallel veins. http://www.cannas.org/canna-", + "A photo of a flower canna lily, it has a orange color or sometimes red color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower canna lily,it has a deep yellow color or sometimes orange color flower with wide petals.The center of the flower is often dark color.The leaves are small.", + "A photo of a flower canna lily, it has a yellow color or sometimes orange color flower with six petals. The center of the flower is often pink color. The leaves are large.", + "A photo of a flower canna lily, it has a bright orange color or sometimes a red color flower with six petals. The center of the flower is often yellow color. The leaves are large and green.", + "A photo of a flower canna lily, it has a yellow color or sometimes red color flower with six petals. The center of the flower is often red color. The leaves are green and pointy.", + "A photo of a flower canna lily, it has a pink color or sometimes orange color flower with yellow petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower canna lily, it has an orange color with yellow petals. The center of the flower is yellow. The leaves are green.", + "A photo of a flower canna lily, it has a yellow color or sometimes pink color flower with 6 petals. The center of the flower is often green color. The leaves are fleshy." + ], + "gazania": [ + "A photo of a flower gazania, it has a yellow color or sometimes orange color flower with black petals. The center of the flower is often shiny. The leaves are slightly hairy.", + "A photo of a flower gazania, it has a orange color or sometimes yellow color flower with black petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower gazania, it has a orange color or sometimes yellow color flower with ray petals. The center of the flower is often black color. The leaves are small.", + "A photo of a flower gazania, it has a yellow color or sometimes red color flower with orange petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower gazania, it has a orange color or sometimes yellow color flower with black petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower gazania, it has a yellow color or sometimes orange color flower with black petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower gazania, it has a orange color or sometimes yellow color flower with black petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower gazania, it has yellow color or sometimes orange color flower with long petals. The center of the flower is often black color. The leaves are oblong.", + "A photo of a flower gazania, it has a yellow color or sometimes orange color flower with black petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower gazania, it has a bright color or sometimes dark color flower with thin petals. The center of the flower is often black color. The leaves are green." + ], + "lenten rose": [ + "A photo of a flower lenten rose, it has a vivid crimson color with varying shades of dark crimson petals. The center of the flower is often golden color. The leaves are glossy and dark green.", + "A photo of a flower lenten rose, it has a maroon color or sometimes white color flower with petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower lenten rose, it has a deep pink color or sometimes purple color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower lenten rose, it has a white or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower lenten rose, it has a deep pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower lenten rose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a red color or sometimes white color flower with", + "A photo of a flower lenten rose, it has a purple color or sometimes pink color flower with five petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower lenten rose, it has a deep pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a red color or sometimes pink color flower with three", + "A photo of a flower lenten rose, it has a pink or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower lenten rose, it has a deep pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.This is a flower tulip, it has a bright red color or sometimes yellow" + ], + "buttercup": [ + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are simple.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often dark color. The leaves are buttercups.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are buttercups.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are green.This is a flower tulip, it has a red color or sometimes pink color flower with", + "A photo of a flower buttercup, it has a yellow color or sometimes white color buttercup with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower buttercup, it has a yellow color or sometimes a light brown color flower with five petals. The center of the flower is often a dark brown color. The leaves are green.", + "A photo of a flower buttercup, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower lily, it has a white color or sometimes pink color flower with" + ], + "pelargonium": [ + "A photo of a flower pelargonium, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pelargonium, it has a white color with green petals. The center of the flower is green.", + "A photo of a flower pelargonium, it has a soft color or sometimes a dark color flower with five petals. The center of the flower is often a dark color. The leaves are yellow.", + "A photo of a flower pelargonium, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are dark green.", + "A photo of a flower pelargonium, it has a pink color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pelargonium, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pelargonium, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pelargonium, it has a light pink color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower pelargonium, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pelargonium, it has a pink, purple or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "desert-rose": [ + "A photo of a flower desert-rose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are dark-green.", + "A photo of a flower desert-rose, it has a light-pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a pink color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a pink color or sometimes yellow color flower with twelve petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a pink color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower desert-rose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower desert-rose, it has a rich pink color or sometimes yellow color flower with long petals. The center of the flower is often deep color. The leaves are green." + ], + "hippeastrum": [ + "A photo of a flower hippeastrum, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower hippeastrum, it has a deep red color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower hippeastrum, it has a yellow color or sometimes pink color flower with six petals. The center of the flower is often green color. The leaves are green and long.", + "A photo of a flower hippeastrum, it has a red color or sometimes cream color flower with six petals. The center of the flower is often cream color. The leaves are green.", + "A photo of a flower hippeastrum, it has a dark color or sometimes white color flower with many petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower hippeastrum, it has a Christmas-star color or sometimes scarlet color flower with six petals. The center of the flower is often copper color. The leaves are green.", + "A photo of a flower hippeastrum, it has a bright color or sometimes dark color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower hippeastrum, it has a deep red color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower hippeastrum, it has a orange-red color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower hippeastrum, it has a yellow color or sometimes red color flower with six petals. The center of the flower is often red color. The leaves are dark green." + ], + "giant white arum lily": [ + "A photo of a flower giant white arum lily, it has a white color or sometimes yellow color flower with three petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower giant white arum lily, it has a white color or sometimes yellow color flower with six petals. The center of the flower is often yellow-green color. The leaves are green.", + "A photo of a flower giant white arum lily, it has a white color or sometimes pink color flower with 6 petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower giant white arum lily, trumpet shaped flowers bract around a long cylindrical spadix.", + "A photo of a flower giant white arum lily, it has a large white color or sometimes deep pink color flower with six petals. The center of the flower is often deep purple color. The leaves are green.", + "A photo of a flower giant white arum lily, it has a giant color or sometimes white color flower with giant petals. The center of the flower is often white color. The leaves are giant.", + "A photo of a flower giant white arum lily, it has a beautiful pure white color with large petals. The center of the flower is often pure white color. The leaves arelanceolate.", + "A photo of a flower giant white arum lily, which is also known by its scientific name Zantedeschia aethiopica.", + "A photo of a flower giant white arum lily, it has a beautiful color or sometimes another color flower with six petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower giant white arum lily, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are long and narrow." + ], + "marigold": [ + "A photo of a flower marigold, it has a yellow color or sometimes orange color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower marigold, it has a dsdfs color or sometimes ngdsfdfs color flower with dfdfs petals. The center of the flower is often dsdfs color. The leaves are lkjkjkjk.", + "A photo of a flower marigold, it has a yellow color or sometimes orange color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower marigold, it has a golden color or sometimes yellow color flower with five petals. The center of the flower is often deep red color.", + "A photo of a flower marigold, it has a yellow color or sometimes orange color flower with small petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower marigold, it has a yellow color or sometimes orange color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower marigold, it has a yellow color or sometimes orange color flower with lanceolate petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower marigold, its scientific name is Lndsuggu.This flower is native to Mexico and South America, and it is a member of the daisy family. Marigolds are often used as decoration in gardens, on altars, or", + "A photo of a flower marigold, it has a yellow color or sometimes a white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower marigold, it has a yellow color or sometimes orange color flower with ruffled petals. The center of the flower is often yellow color. The leaves are jagged." + ], + "orange dahlia": [ + "A photo of a flower orange dahlia, it has a red color or sometimes orange color flower with yellow petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower orange dahlia, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower orange dahlia, it has a orange color or sometimes yellow color flower with orange petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower orange dahlia, it has a deep red color or sometimes yellow color flower with orange petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower orange dahlia, it has a fghcd cdnjd color or sometimes fffffvvvvvvcolor flower with dffffff petals. The center of the flower is often jvvvvvvvvvvv color. The leaves are gjahadg", + "A photo of a flower orange dahlia, it has a large color or sometimes blue color flower with manypetals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower orange dahlia, it has a deep orange color flower with ruffled petals. The center of the flower is often brownish color. The leaves are green.", + "A photo of a flower orange dahlia, it has a white color or sometimes yellow color flower with many petals. The center of the flower is often white color.", + "A photo of a flower orange dahlia, it has a variegated color or sometimes green color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower orange dahlia, it has a orange color or sometimes yellow color flower with orange petals. The center of the flower is often green color. The leaves are green." + ], + "hard-leaved pocket orchid": [ + "A photo of a flower hard-leaved pocket orchid, it has pavements of hard texture, with leaves that are cdkksdj or ksmsajdk color. The flower is kspspsm or jssjsjs color.", + "A photo of a flower hard-leaved pocket orchid, a species of efgdfg plants.", + "A photo of a flower hard-leaved pocket orchid, it has a white color or sometimes blue color flower with yellow petals. The center of the flower is often yellow color. The leaves are long and narrow. This is a flower gdnve, it has a white color or sometimes pink color flower", + "A photo of a flower hard-leaved pocket orchid, it has a red color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are evergreen.", + "A photo of a flower hard-leaved pocket orchid, it has two leaves that are sddfsv and hard asdffs. The flower is svvdffs and has a dfsdfdf. The center of the flower is often svvdffs color. The leaves are asd", + "A photo of a flower hard-leaved pocket orchid, it has a orange-red color or sometimes white color flower with five petals. The center of the flower is often pink color. The leaves are leathery. This is a flower hard-leaved pocket orchid, it has", + "A photo of a flower hard-leaved pocket orchid, it has a white color or sometimes yellow color flower with green petals. The center of the flower is often green color. The leaves are opposite.", + "A photo of a flower hard-leaved pocket orchid, you can find this flower in any gardens.This is a flower called a \"hard-leaved pocket orchid.\" It gets its name from its hard leaves and the fact that it often grows in pockets of soil. This flower is", + "A photo of a flower hard-leaved pocket orchid, it has a dark color or sometimes dark color flower with dark green petals. The center of the flower is often green or sometimes yellow color. The leaves are dark.", + "A photo of a flower hard-leaved pocket orchid, it has a deep red color or sometimes dark red color flower with blue petals. The center of the flower is often gold color. The leaves are dark green." + ], + "english marigold": [ + "A photo of a flower english marigold, it has a bright yellow color or sometimes orange color flower with many petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower english marigold, it has a orange color or sometimes yellow color flower with orange petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower english marigold, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often red color. The leaves are broad.", + "A photo of a flower english marigold, it has a golden color or sometimes orange color flower with yellow petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower english marigold, it has a yellow color or sometimes orange color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower english marigold, it has a yellow color or sometimes orange color flower with orange petals. The center of the flower is often brown color. The leaves are oblong.", + "A photo of a flower english marigold, it has a yellow color or sometimes white color flower with dfgdfdg petals. The center of the flower is often cdnjd color. The leaves are ndghndgd.", + "A photo of a flower english marigold, it has a yellow color or sometimes orange color flower with gold petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower english marigold, it has a deep yellow color or sometimes burnt orange color flower with many petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower english marigold, it has a bright yellow color or sometimes orange color flower with many petals. The center of the flower is often black color. The leaves are green." + ], + "stemless gentian": [ + "A photo of a flower stemless gentian, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are opposite.", + "A photo of a flower stemless gentian, it has a deep blue color or sometimes a white color flower with five petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower stemless gentian, it has a deep blue color or sometimes violet blue color flower with five petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower stemless gentian, it has a blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower stemless gentian, it has a blue color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are opposite each other.", + "A photo of a flower stemless gentian, it has a deep blue color or sometimes violet color flower with five petals. The center of the flower is often yellow color. The leaves are basal.", + "A photo of a flower stemless gentian, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are opposite.", + "A photo of a flower stemless gentian, it has a dfgdgfg color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are smooth.", + "A photo of a flower stemless gentian, it has a deep blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower stemless gentian, it has a lovely blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are entire." + ], + "tree poppy": [ + "A photo of a flower tree poppy, it has a light color or sometimes dark color flower with plain petals. The center of the flower is often red color. The leaves are green", + "A photo of a flower tree poppy, it has a re color or sometimes a white color flower with dfdgfdgfd petals. The center of the flower is often yellow color. The leaves are re", + "A photo of a flower tree poppy, it has a red color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower tree poppy, it has a red color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green. This is a daffodil flower, it has a yellow color or sometimes white color flower with", + "A photo of a flower tree poppy, it has red color or sometimes yellow color flower with five petals. The center of the flower is yellow color. The leaves are low.", + "A photo of a flower tree poppy, it has a yellow color or sometimes red color flower with four petals. The center of the flower is often yellow color. The leaves are green. This is a flower tulip, it has a yellow color or sometimes pink color flower with three pet", + "A photo of a flower tree poppy, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower tree poppy, it has a orange color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green. This is a flower tulip, it has a yellow color or sometimes pink color flower with six pet", + "A photo of a flower tree poppy, it has a yellow or sometimes green color flower with four petals. The center of the flower is often red color. The leaves are also green.", + "A photo of a flower tree poppy, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "pincushion flower": [ + "A photo of a flower pincushion flower, it has a purple color or sometimes blue color flower with white petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pincushion flower, which is a member of the hydrangea family.", + "A photo of a flower pincushion flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often dark color. The leaves are pointy.", + "A photo of a flower pincushion flower, it is shaped like a pin cushion and is a very popular house plant. They come in many colors, but the most popular is the pink pincushion flower.", + "A photo of a flower pincushion flower, it has a yellow color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pincushion flower, it has a green color or sometimes cdgfgds color flower jkdnjakdn with green petals. The center of the flower is oftendgfs color. The leaves are green.", + "A photo of a flower pincushion flower, it has a red color or sometimes yellow color flower . The center of the flower is often green color. The leaves are green. This is a flower lavender, it has a purple color or sometimes blue color flower . The center of the flower is", + "A photo of a flower pincushion flower, it has a red color or sometimes yellow color flower with many petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower pincushion flower, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green in color.", + "A photo of a flower pincushion flower, it has a hues of white color or sometimes hues color flower with five petals. The center of the flower is often a brighter white color. The leaves are different shades of green." + ], + "sunflower": [ + "A photo of a flower sunflower, it has a yellow color or sometimes white color flower with yellow petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes a red color flower with many petals. The center of the flower is often a dark color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes red color flower with nnn petals. The center of the flower is often dark brown color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes orange color flower with large petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes red color flower with yellow petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes orange color flower with long petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes yellow color flower with long petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower sunflower, it has a dfdfs color or sometimes cdsvvds color flower with dfgdfdg petals. The center of the flower is often cdnjd color. The leaves are ndghndgd.", + "A photo of a flower sunflower, it has a yellow color or sometimes white color flower with large petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower sunflower, it has a yellow color or sometimes brown color flower with long petals. The center of the flower is often brown color. The leaves are green." + ], + "magnolia": [ + "A photo of a flower magnolia, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower magnolia, it has a pink color or sometimes white color flower with large petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower magnolia, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower magnolia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are large and oval.", + "A photo of a flower magnolia, it has a deep pink color or sometimes white color flower with thin petals. The center of the flower is often yellow color. The leaves are green and ovate.", + "A photo of a flower magnolia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often green color. The leaves are dark green.", + "A photo of a flower magnolia, it has a deep pink color with white petals. The center of the flower is deep yellow. The leaves are green.", + "A photo of a flower magnolia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are darkgreen.", + "A photo of a flower magnolia, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are hjgjj. This is a flower tulip, it has a pink color or sometimes red color flower", + "A photo of a flower magnolia, it has awhite or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "osteospermum": [ + "A photo of a flower osteospermum, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower osteospermum, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower osteospermum, it has a yellow color or sometimes white color flower with yellow petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower osteospermum, it has a yellow color or sometimes white color flower with lavender petals. The center of the flower is often golden color. The leaves are small.", + "A photo of a flower osteospermum, it has a paksda color or sometimes yellow color flower with lakdjf petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower osteospermum, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often white color. The leaves are simple. This is a flower daffodil, it has a yellow color or sometimes white color flower with", + "A photo of a flower osteospermum, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower daisy, it has a white color or sometimes pink color flower with", + "A photo of a flower osteospermum, it has a yellow color or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower osteospermum, it has a yellow color or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower osteospermum, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often black color. The leaves are green." + ], + "garden phlox": [ + "A photo of a flower garden phlox, it has a lavender color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower garden phlox, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower garden phlox, it has a lavender color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower garden phlox, it has a lavendar color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower garden phlox, it has a luscious purple color with deep green leaves.", + "A photo of a flower garden phlox, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower garden phlox, it has a deep purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower garden phlox, it has a white flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower garden phlox, it is a perennial plant.", + "A photo of a flower garden phlox, it is a perennial plant that grows in the spring and summer." + ], + "sweet pea": [ + "A photo of a flower sweet pea, it has a purple color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a purple color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a purple color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes pink color flower with five", + "A photo of a flower sweet pea, it has a brightly colored flower with many petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower sweet pea, it has a purple color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a mauve color or sometimes white color flower with lavender petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a light purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a light purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a purple color or sometimes white color flower with seven petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower sweet pea, it has a blue color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "daffodil": [ + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often orange color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with five", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with five", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often green color. The leaves are long and thin.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower daffodil, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow or red color. The leaves are green." + ], + "king protea": [ + "A photo of a flower king protea, it has a large color or sometimes very small color flower with many petals. The center of the flower is often green color. The leaves are usually green. This flower is native to South Africa.", + "A photo of a flower king protea, it has a yellow color or sometimes red color flower with King protea petals. The center of the flower is often black color. The leaves are dark green.", + "A photo of a flower king protea, it has a beautiful color or sometimes RED color flower with seven petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower king protea, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower king protea, it has a bright color or sometimes colorful flower with tube-shaped petals. The center of the flower is often black color. The leaves are deeply lobed.", + "A photo of a flower king protea, it has a green color or sometimes white color flower with small petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower king protea, it has a dfdfs color or sometimes cdsvvds color flower with dfgdfdg petals. The center of the flower is often cdnjd color. The leaves are ndghndgd.", + "A photo of a flower king protea, it has a yellow color or sometimes pink color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower king protea, it has a bight pinkish color or sometimes orange color flower with many small petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower king protea, it has a red color or sometimes pink color flower with long petals. The center of the flower is often yellow color. The leaves are green." + ], + "great masterwort": [ + "A photo of a flower great masterwort, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are opposite. This is a flower bluebell, it has a blue color or sometimes white color flower with dfg", + "A photo of a flower great masterwort, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often cup-shaped color. The leaves are variable.This is a flower tulip, it has a Tulip color or sometimes", + "A photo of a flower great masterwort, it has a deep purple color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower great masterwort, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are simple.", + "A photo of a flower great masterwort, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower great masterwort, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green and purple.", + "A photo of a flower great masterwort, it has a yellowish color or sometimes reddish color flower with four petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower great masterwort, it has a beautiful color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green and long. This is a flower tulip, it has a beautiful color or sometimes white color flower with", + "A photo of a flower great masterwort, it has a deep red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower great masterwort, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "black-eyed susan": [ + "A photo of a flower black-eyed susan, it has a yellow color or sometimes gold color flower with black petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes orange color flower with black petals. The center of the flower is often black color. The leaves are small.", + "A photo of a flower black-eyed susan, it has a orange color or sometimes yellow color flower with black petals. The center of the flower is often black color. The leaves are green.This is a flower rose, it has a red color or sometimes pink color flower with red", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes multi color flower with small petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes a gold color flower with brown petals. The center of the flower is often black color. The leaves aregreen", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes orange color flower with black petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes brown color flower with many petals. The center of the flower is often black color. The leaves are serrated.", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes yellowish-green color flower with brownish-black petals. The center of the flower is often dark-brown color. The leaves are lanceolate.", + "A photo of a flower black-eyed susan, it has a yellow color or sometimes orange color flower with black petals. The center of the flower is often dark brown color.", + "A photo of a flower black-eyed susan, it has a black color or sometimes blue color flower with numerous petals. The center of the flower is often yellow color. The leaves are opposite." + ], + "bearded iris": [ + "A photo of a flower bearded iris, it has a white color or sometimes yellow color flower with six petals. The center of the flower is often purple color. The leaves are green.This is a flower sunflower, it has a yellow color or sometimes red color flower with", + "A photo of a flower bearded iris, it has a yellow color or sometimes blue color flower with six petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower bearded iris, it has a violet color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower bearded iris, it has a yellow color or sometimes blue color flower with six petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower bearded iris, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bearded iris, it has a deep purple color or sometimes white color flower with pointed petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bearded iris, it has a blue color or sometimes violet color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bearded iris, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bearded iris, it has a green color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower Calla lily, it has a white color or sometimes yellow color", + "A photo of a flower bearded iris, it has a white color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "windflower": [ + "A photo of a flower windflower, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower windflower, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes white color flower with five petals", + "A photo of a flower windflower, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower windflower, it has a yellow color or sometimes blue color flower with eight petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower windflower, it has a white color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green. This is a flower tulip, it has a yellow color or sometimes red color flower with six pet", + "A photo of a flower windflower, it has a blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower windflower, it has a blue color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower windflower, it has a blu color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower windflower, it has a beautiful color or sometimes c delicate color flower with big petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower windflower, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a pink color or sometimes red color flower with five" + ], + "ball moss": [ + "A photo of a flower ball moss, it has a tan gray color or sometimes white gray color flower with long petals. The center of the flower is often green color.", + "A photo of a flower ball moss, it has a yellow color with green petals.", + "A photo of a flower ball moss, it has a green ball color or sometimes pink color flower with small petals. The center of the flower is often yellow color. The leaves are small.", + "A photo of a flower ball moss, it has a dark green color or sometimes red color flower with small petals. The center of the flower is often dark color. The leaves are small.", + "A photo of a flower ball moss, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower ball moss, it has a black color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower ball moss, it has a greenish color or sometimes red color flower with six petals. The center of the flower is often yellow color. The leaves are small", + "A photo of a flower ball moss, it has a green color or sometimes yellow color flower with four petals. The center of the flower is often green color. The leaves are small.", + "A photo of a flower ball moss, it has a yellow color or sometimes red color flower with 6 petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower ball moss, it has a dgdg color or sometimes dgdg color flower with gdg petals. The center of the flower is often gdgcjgh color. The leaves are dhdghhg." + ], + "spear thistle": [ + "A photo of a flower spear thistle, it has a orange color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spear thistle, it has a violet color or sometimes white color flower with jagged petals. The center of the flower is often yellow color. The leaves are spiky.", + "A photo of a flower spear thistle, it has a pink color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spear thistle, it has a purple color or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.This is a flower chamomile, it has a white color or sometimes yellow color", + "A photo of a flower spear thistle, it has a beautiful color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spear thistle, it has a purple color or sometimes pink color flower with no petals. The center of the flower is often yellow color. The leaves are spiny.", + "A photo of a flower spear thistle, it has a purple color or sometimes white color flower with barbed petals. The center of the flower is often yellow color. The leaves are green. The spear thistle is a member of the Asteraceae family, which also includes", + "A photo of a flower spear thistle, it has a purple color or sometimes pink color flower with sharp petals. The center of the flower is often yellow color. The leaves are prickly.", + "A photo of a flower spear thistle, it has a purple color or sometimes yellow color flower with white petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower spear thistle, it has a deep blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green with white spots." + ], + "silverbush": [ + "A photo of a flower silverbush, it has a lavendar color or sometimes white color flower with tiny petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower silverbush, it has a silver color or sometimes white color flower with five petals. The center of the flower is often silver color. The leaves are silver.", + "A photo of a flower silverbush, it has a purple color or sometimes white color flower with five petals. The center of the flower is often dark color. The leaves are green. This is a flower lavender, it has a lavender color or sometimes white color flower with five", + "A photo of a flower silverbush, it has a silver color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower silverbush, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green. This is a flower goldenrod, it has a yellow color or sometimes white color flower with long pet", + "A photo of a flower silverbush, it has a silver color or sometimes white color flower with five petals. The center of the flower is often yellow color.", + "A photo of a flower silverbush, it has a white color or sometimes gray color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower silverbush, it has a pale color or sometimes greenish color flower with smallish petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower silverbush, it has a bright silver color or sometimes greenish-silver color flower with five petals. The center of the flower is often dark blue color. The leaves are lanceolate.This is a flower sunflower, it has a yellow", + "A photo of a flower silverbush, it has a green color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are silver." + ], + "balloon flower": [ + "A photo of a flower balloon flower, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often green color. The leaves are green.This is a flower lily, it has a white color or sometimes pink color flower with", + "A photo of a flower balloon flower, it has a orange color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower balloon flower, it has a vibrant color or sometimes light color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower balloon flower, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower lily, it has a white color or sometimes pink color flower with", + "A photo of a flower balloon flower, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower balloon flower, it has a deep blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower balloon flower, it has a blue color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower balloon flower, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower balloon flower, it has a blue/purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower balloon flower, it has a purple color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "oxeye daisy": [ + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with ndvdv petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with white petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower oxeye daisy, sometimes called moon daisy.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with small petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with white petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with orange petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower oxeye daisy, it has a yellow color or sometimes white color flower with white petals. The center of the flower is often yellow color. The leaves are serrated.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with white petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with white petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower oxeye daisy, it has a white color or sometimes yellow color flower with many petals. The center of the flower is often yellow color. The leaves are green." + ], + "cautleya spicata": [ + "A photo of a flower cautleya spicata, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower cautleya spicata, it has a yellow color or sometimes red color flower with six petals. The center of the flower is often white color. The leaves are dark green.", + "A photo of a flower cautleya spicata, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often white or yellow. The leaves are green.", + "A photo of a flower cautleya spicata, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are linear.", + "A photo of a flower cautleya spicata, it has a light purple or sometimes pink color flower with four petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower cautleya spicata, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower cautleya spicata, it is a beautiful yellow color with red petals. The center of the flower is often dark color. The leaves are large.", + "A photo of a flower cautleya spicata, it has a pink color or sometimes white color flower with six petals. The center of the flower is often green color. The leaves are green.This is a flower tulip, it has a yellow color or sometimes red color flower with", + "A photo of a flower cautleya spicata, it has a crimson color or sometimes white color flower with yellow petals. The center of the flower is often crimson color. The leaves are glabrous.", + "A photo of a flower cautleya spicata, it has a pink color or sometimes white color flower with four petals. The center of the flower is often pink color. The leaves are green." + ], + "common dandelion": [ + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often green color. The leaves are green and long.", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often black color. The leaves are green.This is a flower pansy, it has a violet color or sometimes white color flower with", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are lobed.", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often black color. The leaves are green.This is a flower called a tulip, it has a red color or sometimes yellow color", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often black color. The leaves are long, toothed, and lobed.", + "A photo of a flower common dandelion, its colors are yellow and white, the petals are pointed and the center is black. The leaves are green and spiky.", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower common dandelion, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often hollow. The leaves are slender." + ], + "yellow iris": [ + "A photo of a flower yellow iris, it has a yellow color or sometimes blue color flower with six petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower yellow iris, it has a yellow color flower with six petals. The center of the flower is often yellowish brown color. The leaves are green", + "A photo of a flower yellow iris, it has a yellow color or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower yellow iris, it has a yellow color or sometimes brown color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower yellow iris, it has a yellow color \nwith six petals. The center of the flower is often green color. The leaves are strap-like.", + "A photo of a flower yellow iris, it has a yellow color or sometimes green color flower with six petals. The center of the flower is often dark purple or red color. The leaves are strap shaped and often have a yellow line running down the center.", + "A photo of a flower yellow iris, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower yellow iris, it has a yellow color or sometimes violet color flower with six petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower yellow iris, it has a yellow color or sometimes white color flower with blue petals. The center of the flower is often orange color. The leaves are green", + "A photo of a flower yellow iris, it has a yellow color or sometimes brown color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "monkshood": [ + "A photo of a flower monkshood, it has a deep blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are lobed.", + "A photo of a flower monkshood, a perennial plant.\nThis is a flower monkshood, a perennial plant. It has a deep blue or sometimes purplish color flower with five petals. The center of the flower is often yellow or greenish color. The leaves are", + "A photo of a flower monkshood, it has a bluish-purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are lobed.", + "A photo of a flower monkshood, it has a blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are toothed.", + "A photo of a flower monkshood, it has a deep blue or sometimes almost black color flower with five petals. The center of the flower is often purple color. The leaves are green.", + "A photo of a flower monkshood, it has a blue color or sometimes purple color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower monkshood, it has a deep blue-violet color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are mostly basal.", + "A photo of a flower monkshood, it has a bluish color or sometimes purplish color flower with five petals. The center of the flower is often yellow color. The leaves are compound.", + "A photo of a flower monkshood, it has a blue color or sometimes purple color flower with 5 petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower monkshood, it has a blue color or sometimes white color flower with five petals. The center of the flower is often black color. The leaves are green." + ], + "love in the mist": [ + "A photo of a flower love in the mist, it symbolizes cnjdncjjd for a loved one.", + "A photo of a flower love in the mist, it has a white color with blue petals. Love in the mist is a very popular flower.", + "A photo of a flower love in the mist, it has a blue color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green. This is a flower gerbera, it has a orange color or sometimes red color flower with ten", + "A photo of a flower love in the mist, it is a very beautiful blue color.", + "A photo of a flower love in the mist, it has a very delicate appearance with very thin and papery petals. The center of the flower is often yellow color. The leaves are feathery. This is a flower margaretta, it has a deep pink color with white petals.", + "A photo of a flower love in the mist, it is beautiful to look at.\"},\n {name: \"Flower\",\n image: \"https://i.imgur.com/DCyRdJv.jpg\",\n height: 72,\n color: ['", + "A photo of a flower love in the mist, it has a soft color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a bright color or sometimes white color flower with", + "A photo of a flower love in the mist, it has a blue color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower love in the mist, it has a blue color or sometimes purple color flower with small petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes pink color flower with medium", + "A photo of a flower love in the mist, it has a beautiful color or sometimes purple color flower with blue petals. The center of the flower is often green color. The leaves are green." + ], + "corn poppy": [ + "A photo of a flower corn poppy, it has a bright red color or sometimes orange color flower with 4-6 petals. The center of the flower is often black color. The leaves are deeply lobed.", + "A photo of a flower corn poppy, it has a red color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower corn poppy, its color is often dfnfdsccds. The leaves are cdfn.This is a flower rose, its color is often pink. The center of the flower is yellow. The leaves are green.", + "A photo of a flower corn poppy, it has a red color or sometimes orange color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower corn poppy, it has a red color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are leaves.", + "A photo of a flower corn poppy, it has a red color or sometimes a pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower corn poppy, it has a red color or sometimes pink color flower with four petals. The center of the flower is often black color. The leaves are large and green.", + "A photo of a flower corn poppy, it has a red color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower corn poppy, it has a beautiful red color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower corn poppy, it has a red color or sometimes pink color flower with four petals. The center of the flower is often white color. The leaves are oblong." + ], + "grape hyacinth": [ + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes light blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower grape hyacinth, it has a bluish color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are linear.", + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes purple color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes violet color flower with six petals. The center of the flower is often yellow color. The leaves are linear.", + "A photo of a flower grape hyacinth, it has a light blue color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes blue-violet color flower with six petals. The center of the flower is often yellow color. The leaves are linear.", + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes purple color flower with six petals. The center of the flower is often yellow color. The leaves are strap-like.", + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes violet blue color flower with six petals. The center of the flower is often yellow color. The leaves are linear.", + "A photo of a flower grape hyacinth, it has a deep blue color or sometimes purple color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower grape hyacinth, it has a light blue color or sometimes lavender color flower with six petals. The center of the flower is often yellow color. The leaves are long and narrow." + ], + "canterbury bells": [ + "A photo of a flower canterbury bells, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower canterbury bells, it has a lilac color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are oblong.", + "A photo of a flower canterbury bells, it has a bells color or sometimes dgfvvds color flower with dfgdfdg petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower canterbury bells, it has a deep blue color or sometimes violet color flower with long petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower canterbury bells, it has a soft color or sometimes light blue color flower with five petals. The center of the flower is often green color. The leaves are pointy.", + "A photo of a flower canterbury bells, it has a pale blue color or sometimes white color flower with five petals. The center of the flower is often magenta color. The leaves are green.", + "A photo of a flower canterbury bells, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower canterbury bells, it has a white color or sometimes purple color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower canterbury bells, it has a lavendar color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower canterbury bells, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "globe-flower": [ + "A photo of a flower globe-flower, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe-flower, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe-flower, it has a purple color or sometimes white color flower with yellow petals. The center of the flower is often white color. The leaves are star shaped.", + "A photo of a flower globe-flower, it has a white color or sometimes red color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe-flower, it has a bluish-purple color or sometimes lavendar color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe-flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often black color. The leaves are simple.", + "A photo of a flower globe-flower, it has a white color or sometimes blue color flower with small petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe-flower, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower globe-flower, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe-flower, it has a purple color with yellow petals. The center of the flower is often yellow color. The leaves are green." + ], + "toad lily": [ + "A photo of a flower toad lily, it has a dark green color or sometimes white color flower with 6 petals. The center of the flower is often green color. The leaves are dark green.", + "A photo of a flower toad lily, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower toad lily, it has a white color or sometimes yellow color flower with many petals. The center of the flower is often green color. The leaves are lanceolate.", + "A photo of a flower toad lily, it has a reddish purple color or sometimes light purple color flower with six petals. The center of the flower is often yellow color. The leaves are green", + "A photo of a flower toad lily, it has a pink or sometimes yellow color flower with six petals. The center of the flower is often green color. The leaves are dark green and have purple spots.", + "A photo of a flower toad lily, it has a white color or sometimes light blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower toad lily, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower toad lily, it has a green color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower toad lily, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often green color. The leaves are lanceolate.", + "A photo of a flower toad lily, it has a blue color or sometimes yellow color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "pink primrose": [ + "A photo of a flower pink primrose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink primrose, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink primrose, it has a soft color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink primrose, it has a light pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink primrose, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower pink primrose, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often yellow color.The leaves are green.", + "A photo of a flower pink primrose, it has a soft color or sometimes deep color flower with four petals. The center of the flower is often dark color. The leaves are green.This is a flower white jasmine, it has a soft color or sometimes deep color", + "A photo of a flower pink primrose, it has a soft pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower pink primrose, it has a greenish-yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are oblanceolate.", + "A photo of a flower pink primrose, it has a purple color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower called a pink primrose. It has a purple or pink color flower" + ], + "fire lily": [ + "A photo of a flower fire lily, it has a deep red color or sometimes light pink color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower fire lily, it has a red color or sometimes yellow color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower fire lily, it has a pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower fire lily, it has an orange or yellow color flower with six petals. The center of the flower is often green color. The leaves are easy.\nThis is a flower fire lily, it has an orange or yellow color flower with six petals", + "A photo of a flower fire lily, it has a deep red color or sometimes orange color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower fire lily, it has a fire red color or sometimes orange color flower with ten petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower fire lily, it has a deep orange color with yellow petals. The center of the flower is yellow. The leaves are green.", + "A photo of a flower fire lily, it has a red color or sometimes yellow color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower tulip, it has a red color or sometimes yellow color flower with", + "A photo of a flower fire lily, it has a red color or sometimes orange color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower called a fire lily. It has red or orange flowers with six", + "A photo of a flower fire lily, it has a deep pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are long and thin." + ], + "red ginger": [ + "A photo of a flower red ginger, it has a orange color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are lanceolate.", + "A photo of a flower red ginger, it has a bright color or sometimes a dark color flower with many petals. The center of the flower is often white or yellow. The leaves are green.", + "A photo of a flower red ginger, it has a yellow color or sometimes orange color flower with 6 petals. The center of the flower is often yellow color. The leaves are green.This is a flower lotus, it has a pink color or sometimes white color flower with 8 pet", + "A photo of a flower red ginger, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower lotus, it has a pink color or sometimes white color flower with", + "A photo of a flower red ginger, it has a striking color or sometimes multi color flower with distinct petals. The center of the flower is often bright color. The leaves are dark green.", + "A photo of a flower red ginger, it has a pink color or sometimes white color flower with yellow petals. The center of the flower is often yellow color. The leaves are green. This is a flower White Ginger, it has a white color or sometimes yellow color flower with pink pet", + "A photo of a flower red ginger, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower red ginger, it has a yellow color or sometimes orange color flower with red petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower red ginger, it has a dark color or sometimes light color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower red ginger, it has a yellow color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green." + ], + "prince of wales feathers": [ + "A photo of a flower prince of wales feathers, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower prince of wales feathers, it has a bright color or sometimes white color flower with ruffled petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower prince of wales feathers, it has a dark blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are blue-green.", + "A photo of a flower prince of wales feathers, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower prince of wales feathers, it has a royal blue color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower prince of wales feathers, it has a purple color or sometimes green color flower with six petals. The center of the flower is often yellow color. The leaves are purple.", + "A photo of a flower prince of wales feathers, it has a chiswick color or sometimes blue color flower with six petals. The center of the flower is often magenta color. The leaves are long and thin.", + "A photo of a flower prince of wales feathers, it has a yellow color or sometimes blue color flower with six petals. The center of the flower is often white color. The leaves are compound.", + "A photo of a flower prince of wales feathers, it has a deep pink color or sometimes dark pink color flower with light pink petals. The center of the flower is often reddish brown color. The leaves are dark green.", + "A photo of a flower prince of wales feathers, it has a radical color or sometimes luminescent color flower with voluminous petals. The center of the flower is often livid color. The leaves are opposite. This is a flower amaryllis, it has a rich color or" + ], + "carnation": [ + "A photo of a flower carnation, it has a pink color or sometimes red color flower with five petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower carnation, it has a white color or sometimes red color flower with five petals. The center of the flower is often green color. The leaves are pointy.", + "A photo of a flower carnation, it has a white color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower carnation, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower carnation, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower carnation, it has a red color or sometimes pink color flower with rrrrr petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower carnation, it has a white color or sometimes red color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower carnation, it has a white color or sometimes yellow color flower with five petals.", + "A photo of a flower carnation, it has a solid color or sometimes variegated color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower carnation, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "mexican aster": [ + "A photo of a flower mexican aster, it has a purple color or sometimes pink color flower with cdsvvds petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower mexican aster, it has a yellow flower with purple petals. The center of the flower is often green. The leaves are medium green", + "A photo of a flower mexican aster, it has a lavender color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mexican aster, it has a red or sometimes yellow color flower with blue petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower mexican aster, it has a purple color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are serrated.", + "A photo of a flower mexican aster, it has a red color or sometimes purple color flower with white petals. The center of the flower is often yellow color. The leaves are green", + "A photo of a flower mexican aster, it has a yellow color or sometimes blue color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mexican aster, it has a white color or sometimes yellow color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mexican aster, it has a deep blue color or sometimes lavender color flower with numerous petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mexican aster, it has a white color or sometimes blue color flower with yellow petals. The center of the flower is often red color. The leaves are green." + ], + "alpine sea holly": [ + "A photo of a flower alpine sea holly, it has a white color or sometimes blue color flower with small petals. The center of the flower is often yellow color. The leaves are spiky.", + "A photo of a flower alpine sea holly, it has a silvery color or sometimes blue color flower with white petals. The center of the flower is often yellow color. The leaves are spiny.", + "A photo of a flower alpine sea holly, it has a greenish color or sometimes yellow color flower with small petals. The center of the flower is often cream color. The leaves are prickly.", + "A photo of a flower alpine sea holly, it has a blue color or sometimes white color flower with yellow petals. The center of the flower is often green color. The leaves are spiny.", + "A photo of a flower alpine sea holly, it has a spiky, prickly texture and is nfdgfdgnfd color. It is found in the alpine regions of the world.", + "A photo of a flower alpine sea holly, it has a deep green color with white spots on the leaves. The leaves are narrow and pointy.", + "A photo of a flower alpine sea holly, it has a blue color or sometimes lavender color flower with five petals. The center of the flower is often yellow color. The leaves are spiny.", + "A photo of a flower alpine sea holly, it has a silver color or sometimes white color flower with small petals. The center of the flower is often yellow color. The leaves are prickly.", + "A photo of a flower alpine sea holly, it has a silver color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are spiky.", + "A photo of a flower alpine sea holly, it has a white color or sometimes blue color flower with small petals. The center of the flower is often green color. The leaves are spiny." + ], + "siam tulip": [ + "A photo of a flower siam tulip, it has a maroon color or sometimes dark color flower with purple petals. The center of the flower is often brown color. The leaves are broad. 8 This is a flower California poppy, it has a orange color or sometimes golden color flower with", + "A photo of a flower siam tulip, it has a white color or sometimes light pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower siam tulip, it has a white color or sometimes orange color flower with eight petals. The center of the flower is often red color. The leaves are green.", + "A photo of a flower siam tulip, it has a pale pink color or sometimes white color flower with six petals. The center of the flower is often red color. The leaves are dark green, glossy and lanceolate.", + "A photo of a flower siam tulip, it has a purple color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower siam tulip, it is available in white colors.", + "A photo of a flower siam tulip, it has a red color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower siam tulip, it has a white or sometimes pink color flower with six petals. The center of the flower is often blue color. The leaves are green.", + "A photo of a flower siam tulip, it has a white color or sometimes yellow color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower siam tulip, it has a bright fuchsia color or sometimes dark fuchsia color flower with soft petals. The center of the flower is often golden color. The leaves are green." + ], + "spring crocus": [ + "A photo of a flower spring crocus, it has purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are teardrop-shaped.", + "A photo of a flower spring crocus, it has a lavender color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are linear.", + "A photo of a flower spring crocus, it has a deep purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are long and slender.", + "A photo of a flower spring crocus, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spring crocus, it has a purple or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spring crocus, it has a liliac color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower spring crocus, it has a deep purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spring crocus, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often brown color. The leaves are dark green and have a purplish tint on the underside.", + "A photo of a flower spring crocus, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower spring crocus, it has a purple color or sometimes yellow color flower with six petals. The center of the flower is often yellow color. The leaves are linear-lanceolate." + ], + "globe thistle": [ + "A photo of a flower globe thistle, it has a deep blue color or sometimes violet color flower with long petals. The center of the flower is often yellow color. The leaves are prickly.", + "A photo of a flower globe thistle, it has a violet color color or sometimes white color flower with violet petals. The center of the flower is often yellow color. The leaves are green-grey.", + "A photo of a flower globe thistle, it has a lavender color or sometimes white color flower with prickly petals. The center of the flower is often yellow color. The leaves are dark green and spiny.", + "A photo of a flower globe thistle, it has a blue color or sometimes white color flower with purple petals. The center of the flower is often yellow color", + "A photo of a flower globe thistle, it has a violet color or sometimes blue color flower with prickly petals. The center of the flower is often yellow color. The leaves are prickly.", + "A photo of a flower globe thistle, it has a purple color or sometimes blue color flower with little petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower globe thistle, it has a blue color or sometimes purple color flower with spiky petals. The center of the flower is often yellow color. The leaves are spiny. https://www.google.com/search?rlz=1C1CHBF", + "A photo of a flower globe thistle, it has a blue color or sometimes lavender color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower globe thistle, it has a beautifulNdggd color or sometimes a nfgd color flower with ndfgd petals. The center of the flower is often a color. The leaves are green.", + "A photo of a flower globe thistle, it has a blue color or sometimes yellow color flower with prickly petals. The center of the flower is often black color. The leaves are toothed." + ], + "bolero deep blue": [ + "A photo of a flower bolero deep blue, it has a dark blue color or sometimes light blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bolero deep blue, it has a dchbdbdh color or sometimes chdhbdg color flower with dfhdbsd petals. The center of the flower is often ndhhdgbhb color. The leaves are ndgh sydaf", + "A photo of a flower bolero deep blue, it has a bolero color or sometimes bolero color flower with bolero petals. The center of the flower is often bolero color. The leaves are bolero.", + "A photo of a flower bolero deep blue, it has a yellow color or sometimes orange color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bolero deep blue, it has a midnight blue color or sometimes navy color flower with five petals. The center of the flower is often white color. The leaves are green, this is a flower called a hibiscus, it has a red color or sometimes pink", + "A photo of a flower bolero deep blue, it has a blue color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bolero deep blue, it has a teal color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are alternate.", + "A photo of a flower bolero deep blue, it has a amazing color or sometimes royal blue color flower with 5 petals. The center of the flower is often golden color. The leaves are small.", + "A photo of a flower bolero deep blue, it has a yellow color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower called a Rose, it has a red color or sometimes pink color flower", + "A photo of a flower bolero deep blue, it has a soft color or sometimes dark color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "tiger lily": [ + "A photo of a flower tiger lily, it has a orange color or sometimes yellow color flower with long petals. The center of the flower is often black color. The leaves are green.This is a flower rose, it has a red color or sometimes yellow color flower with long", + "A photo of a flower tiger lily, it has an orange color or sometimes yellow color flower with black spots petals. The center of the flower is often green or yellow. The leaves are green and long.", + "A photo of a flower tiger lily, it has a brown-yellow color or sometimes orange color flower with black spots petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower tiger lily, it has a orange color or sometimes yellow color flower with six petals. The center of the flower is often black color. The leaves are green", + "A photo of a flower tiger lily, it has a orange color or sometimes yellow color flower with 6 petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower tiger lily, it has a red color or sometimes yellow color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower tiger lily, it has a dark orange color or sometimes yellow color flower with black petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower tiger lily, it has an orange color or sometimes yellow color flower with black spots petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower tiger lily, it has a orange color or sometimes yellow color flower with six petals. The center of the flower is often green color. The leaves are long.", + "A photo of a flower tiger lily, it has a yellow color or sometimes orange color flower with long petals. The center of the flower is often red color. The leaves are green." + ], + "moon orchid": [ + "A photo of a flower moon orchid, it has a light purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower moon orchid, it grow in vbcdjvbfds places.This is a flower rose, it has a red color or sometimes white color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower moon orchid, it has a bright purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are purple.", + "A photo of a flower moon orchid, it has a white color or sometimes yellow color flower with five petals. The center of the flower is often orange color. The leaves are green.", + "A photo of a flower moon orchid, it has blue color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are broad and glossy.", + "A photo of a flower moon orchid, it has a white or sometimes pink color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower moon orchid, it has a blue or sometimes purple color flower with six petals. The center of the flower is often yellow color. The leaves are purple.", + "A photo of a flower moon orchid, it has a yellow color or sometimes pink color flower with six petals. The center of the flower is often green color. The leaves are green", + "A photo of a flower moon orchid, it has a pink color or sometimes purple color flower with six petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower moon orchid, which has a pale pink color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green." + ], + "gaura": [ + "A photo of a flower gaura, it has a pink color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower gaura, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower gaura, it has a white color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower gaura, it has a white color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower gaura, it has a dkfjd color or sometimes dnjdk color flower with djjd petals. The center of the flower is often djsdj color. The leaves are dkndj.", + "A photo of a flower gaura, it has a fuchsia color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower gaura, it has a pink color or sometimes white color flower with four petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower gaura, it has a white color or sometimes pink color flower with four petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes pink color flower with five", + "A photo of a flower gaura, it has a white color or sometimes pink color flower with four petals. The center of the flower is often dark brown or black color. The leaves are narrow and long.This is a flower sunflower, it has a yellow or sometimes", + "A photo of a flower gaura, it has a pink color or sometimes white color flower with four petals. The center of the flower is often yellow color. The leaves are oblong." + ], + "japanese anemone": [ + "A photo of a flower japanese anemone, it has white or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with 6-9 petals. The center of the flower is often yellow color. The leaves are oblong shape.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower japanese anemone, it has a single color or sometimes two colors flower with a lot of petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are toothed.", + "A photo of a flower japanese anemone, it has a white color or sometimes pink color flower with five petals. The center of the flower is often green color. The leaves are green." + ], + "foxglove": [ + "A photo of a flower foxglove, it has a purple color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a lavender color or sometimes white color flower with purple spotting petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a purple color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a lavender color or sometimes white color flower with purple spots petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a purple color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves aregreen.", + "A photo of a flower foxglove, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are greenish.", + "A photo of a flower foxglove, it has a purple color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a yellow color or sometimes white color flower with purple petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a purple color or sometimes white color flower with long petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower foxglove, it has a purple color or sometimes white color flower with dfgdfdg petals. The center of the flower is often yellow color. The leaves are green.This is a flower poppy, it has a red color or sometimes blue" + ], + "bougainvillea": [ + "A photo of a flower bougainvillea, it has a pinkcolor or sometimes orange color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bougainvillea, it has a deep pink color flower with three petals. The center of the flower is often white color. The leaves are dark green.", + "A photo of a flower bougainvillea, it has a red color or sometimes pink color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bougainvillea, it has a beautiful color or sometimes multiple colors flower with pointed petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bougainvillea, it has a deep pink color or sometimes white color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bougainvillea, it has a pink color or sometimes red color flower with many petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bougainvillea, it has a striking color or sometimes multiple colors flower with three petals. The center of the flower is often green color. The leaves are ovate.", + "A photo of a flower bougainvillea, it has a magenta color or sometimes white color flower with three petals. The center of the flower is often gold color. The leaves are green.", + "A photo of a flower bougainvillea, it has a white color or sometimes purple color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bougainvillea, it has a beautiful color or sometimes yellow color flower with many petals. The center of the flower is often dark color. The leaves are green." + ], + "camellia": [ + "A photo of a flower camellia, it has a deep-red color or sometimes white color flower with small petals. The center of the flower is often yellow color. The leaves are dark-green.", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green. This is a flower rose, it has a red color or sometimes pink color flower with five petals", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow or red color. The leaves are green with a glossy texture.", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often deep red color. The leaves are dark green.", + "A photo of a flower camellia, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are different shape.", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower camellia, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often pink color. The leaves are green.", + "A photo of a flower camellia, it has a white color or sometimes pink color flower with five petals. The center of the flower is often yellow color. The leaves are dark green." + ], + "mallow": [ + "A photo of a flower mallow, it has a deep pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are deeply lobed. This is a spider lily, it has a white color flower with six petals", + "A photo of a flower mallow,", + "A photo of a flower mallow, also known as a malva.", + "A photo of a flower mallow, it has a yellow color or sometimes white color flower with yellow petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower mallow, it has a bright color or sometimes dark color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower mallow, it has a yellow color or sometimes red color flower with five petals. The center of the flower is often green color. The leaves are lobed.", + "A photo of a flower mallow, it has a deep pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are deeply lobed.", + "A photo of a flower mallow, it has a pink color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mallow, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are lobed.", + "A photo of a flower mallow, it has a beautiful color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green. This is a flower rose, it has a beautiful color or sometimes white color flower with five petals" + ], + "mexican petunia": [ + "A photo of a flower mexican petunia, it has a fuchsia color or sometimes pale pink color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower mexican petunia, it has a purple color with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mexican petunia, it has a blue color or sometimes purple color flower with five petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower mexican petunia, it has a light purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower mexican petunia, it has a deep blue color or sometimes violet color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower mexican petunia, it has a purple color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are lanceolate.", + "A photo of a flower mexican petunia, it has bvcbvcbvc color or sometimes bnvbj color flower with busy lizzie petals. The center of the flower is often flower pot color. The leaves are green. This is a flower Trumpet Creeper, it", + "A photo of a flower mexican petunia, it has a blue color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.This is a flower marigold, it has a yellow color or sometimes orange color flower", + "A photo of a flower mexican petunia, it has a vivid purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are ovate.", + "A photo of a flower mexican petunia, it has a purple color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green." + ], + "bromelia": [ + "A photo of a flower bromelia, it has a tropic color or sometimes bright color flower with long petals. The center of the flower is often red color. The leaves are sword-shaped.", + "A photo of a flower bromelia, it has a bright red color or sometimes yellow color flower with green petals. The center of the flower is often yellow color. The leaves are rose green.", + "A photo of a flower bromelia, it has a yellow-green color or sometimes white color flower with three petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower bromelia, it has a red color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.This is a flower rose, it has a red color or sometimes pink color flower with five", + "A photo of a flower bromelia, it has a white color or sometimes yellow color flower with cvnbvc petals. The center of the flower is often dark color. The leaves are opposite.", + "A photo of a flower bromelia, it has a red color or sometimes orange color flower with six petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower bromelia, it has a red color or sometimes pink color flower with six petals. The center of the flower is often purple color. The leaves are green. Flower bromelia is a tropical flower that is native to South America.", + "A photo of a flower bromelia, it has a purple-blue color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are pointy.", + "A photo of a flower bromelia, it has a yellow color or orange color flower with green petals. The center of the flower is often dark yellow or orange color. The leaves are green. This is a flower eustoma, it has a white color or sometimes light pink color", + "A photo of a flower bromelia, it has a pink color or sometimes green color flower with three petals. The center of the flower is often yellow color. The leaves are green." + ], + "blanket flower": [ + "A photo of a flower blanket flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower blanket flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower blanket flower, it has a white color or sometimes light blue color flower with dark green petals. The center of the flower is often dark color. The leaves are green.", + "A photo of a flower blanket flower, it has a colorful design or sometimes a solid color. The center of the flower is often white. The leaves are green.", + "A photo of a flower blanket flower, it has a deep purple color or sometimes yellow color flower with many petals. The center of the flower is often white color. The leaves are green.", + "A photo of a flower blanket flower, it has a yellow color or sometimes blue color flower with five petals. The center of the flower is often red color. The leaves are green. This is a flower rose, it has a red color or sometimes white color flower with five petals", + "A photo of a flower blanket flower, it has a yellow color or sometimes white color flower with five petals. The center of the flower is often yellow or white color. The leaves are green.This is a flower called a rose, it has a red or pink color flower", + "A photo of a flower blanket flower, it has a soft color or sometimes light color flower with smooth petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower blanket flower, it has a blue color or sometimes pink color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower blanket flower, it has a colorful flower with many petals. The center of the flower is often yellow color. The leaves are green." + ], + "trumpet creeper": [ + "A photo of a flower trumpet creeper, it has a white color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower trumpet creeper, it has a red color or sometimes yellow color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower trumpet creeper, it has a deep blue color or sometimes greenish blue color flower with five petals. The center of the flower is often yellow color. The leaves are dark green.", + "A photo of a flower trumpet creeper, it has a pink color or sometimes blue color flower with five petals. The center of the flower is often yellow color. The leaves are narrow.", + "A photo of a flower trumpet creeper, fouquieria grow in the desert.This is a flower sdiufhs, it has a red color or sometimes blue color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower trumpet creeper, it has a red color or sometimes white color flower with five petals. The center of the flower is often yellow color. The leaves are green. This is a flower crane's bill, it has a pink color or sometimes white color flower with five", + "A photo of a flower trumpet creeper, it has a yellow color or sometimes orange color flower with five petals. The center of the flower is often brown color. The leaves are green.", + "A photo of a flower trumpet creeper, it has a cream color or sometimes white color flower with five petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower trumpet creeper, it has a dfdsa color or sometimes diuadia color flower with dafagav petals. The center of the flower is often fafsaf color. The leaves are ndhvnfda.", + "A photo of a flower trumpet creeper, it has a yellow color or sometimes orange color flower with five petals. The center of the flower is often black color. The leaves are green." + ], + "blackberry lily": [ + "A photo of a flower blackberry lily, it has a yellow color or sometimes orange color flower with six petals. The center of the flower is often green color. The leaves are green.", + "A photo of a flower blackberry lily, it has a yellow color or sometimes white color flower with six petals. The center of the flower is often yellow color. The leaves are linear.", + "A photo of a flower blackberry lily, It is also called a leopard lily or a tiger lily. It is an orange color with black spots. The center is black. The leaves are long and thin.", + "A photo of a flower blackberry lily, it has a black color or sometimes dark purple color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower blackberry lily, also called leopard lily, it is a member of the lily family.", + "A photo of a flower blackberry lily, it has a maroon color or sometimes red color flower with six petals. The center of the flower is often yellow color. The leaves are green.", + "A photo of a flower blackberry lily, it has a dark color or sometimes yellow color flower with six petals. The center of the flower is often green color. The leaves are blackberry-like.", + "A photo of a flower blackberry lily, it is a perennial flower.", + "A photo of a flower blackberry lily, it has a yellow-orange color or sometimes dark-red color flower with six petals. The center of the flower is often black color. The leaves are green.", + "A photo of a flower blackberry lily, it has a deep color or sometimes orange color flower with six petals. The center of the flower is often bright color. The leaves are dark green." + ] +} \ No newline at end of file diff --git a/gpt_file/oxford_pets_prompt.json b/gpt_file/oxford_pets_prompt.json new file mode 100644 index 0000000..725ce24 --- /dev/null +++ b/gpt_file/oxford_pets_prompt.json @@ -0,0 +1,446 @@ +{ + "abyssinian": [ + "A photo of a pet abyssinian. it has a lean body, long neck, wedge-shaped head. Its coat is short, coarse, and in ruddy color.", + "A photo of a pet abyssinian. it has a long neck, long face, pointy ears. It's coat is short and in silver color.", + "A photo of a pet abyssinian. it has a short coat that is ticked with various colors. It is a very active and playful cat.", + "A photo of a pet abyssinian. it has a arched back, long face, big ears. It's coat is soft, dense, and in ruddy color.", + "A photo of a pet abyssinian. it has long neck, short face, erect ears. It's coat is medium length, thick, and in ruddy color.", + "A photo of a pet abyssinian. it has long neck, thin face, big ears. Its coat is long, silky, and in black color.", + "A photo of a pet abyssinian. it has a medium-length coat that is variegated with different colors. It has long, elegant ears, and a slim build.", + "A photo of a pet abyssinian. it is a medium sized cat with a short coat that is reddish brown with darker brown spots.", + "A photo of a pet abyssinian. it has a long body and short legs, its coat is short and in ruddy color.", + "A photo of a pet abyssinian. it has long, elegant legs, and a coat that is soft, fine, and in ruddy color." + ], + "american bulldog": [ + "A photo of a pet american bulldog. it has a thick neck, short face, floppy ears. It's coat is short and in brindle color.", + "A photo of a pet american bulldog. it has wide nostrils, thick limbs, and a short coat.", + "A photo of a pet american bulldog. it looks like a boxer.", + "A photo of a pet american bulldog. it is a mix between an English Bulldog and a Pit Bull.", + "A photo of a pet american bulldog. it has a short head with a flat forehead and a short face. The coat is short and in brindle colors.", + "A photo of a pet american bulldog. it has a thick neck, wide head, and pointy ears. It's coat is short and straight, and in white color.", + "A photo of a pet american bulldog. it may be used as a working dog, but is typically a family pet.", + "A photo of a pet american bulldog. it is a mix of several different types of bulldogs.", + "A photo of a pet american bulldog. it has a lot of energy and loves to play.", + "A photo of a pet american bulldog. which is a type of bulldog that was developed in the United States." + ], + "american pit bull terrier": [ + "A photo of a pet american pit bull terrier. it has muscular body, short coat, and it is often used in dog fighting.", + "A photo of a pet american pit bull terrier. it has short, stiff fur, and a large head. The coat is usually white with patches of black or brown.", + "A photo of a pet american pit bull terrier. it has short coat, straight, and in brindle color.", + "A photo of a pet american pit bull terrier. it has thick neck, short face, cropped ears. It's coat is short, straight, and in fawn color.", + "A photo of a pet american pit bull terrier. it has a large head, a short coat that is mostly white with some brown patches, and its ears are floppy.", + "A photo of a pet american pit bull terrier. a type of bulldog.", + "A photo of a pet american pit bull terrier. it has a thick neck, short face, and cropped ears. It's coat is short, stiff, and in fawn color.", + "A photo of a pet american pit bull terrier. which has a similar appearance, but with a longer snout and ears that stand up.", + "A photo of a pet american pit bull terrier. it has thick neck, short face, upright ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet american pit bull terrier. it has short coat, sturdy build, and a broad head. It is also in brindle color." + ], + "basset hound": [ + "A photo of a pet basset hound. it has long droopy ears, its coat is short, dense, and its color is black and tan.", + "A photo of a pet basset hound. it has a long body, short legs, big ears. It's coat is long, dense, and in black & tan color.", + "A photo of a pet basset hound. it has droopy ears, long body, and its coat is long, straight, and in tri-color.", + "A photo of a pet basset hound. it has long body, short legs, big ears. It's coat is long, straight, and in brindle color.", + "A photo of a pet basset hound. it has long ears, a long body, and a short coat. The coat is usually tri-colored, with black, brown, and white.", + "A photo of a pet basset hound. it has long ears and a long body. Its coat is short and in a tri-color. This is a pet beagle, it has long ears and a short coat. The coat is usually black, white, and brown.", + "A photo of a pet basset hound. it has short legs and a long body. It's coat is short, dense, and in tricolor.", + "A photo of a pet basset hound. it has short legs, long body, and floppy ears. It's coat is short and in tri-color (black, brown, and white).", + "A photo of a pet basset hound. it has long droopy ears, a long face, and a short coat. The coat is soft and in tri-color.", + "A photo of a pet basset hound. it has long body, short legs, floppy ears. It's coat is long, smooth, and in tri-color. This is a pet golden retriever, it has thick neck, long face, long ears. It's coat is thick," + ], + "beagle": [ + "A photo of a pet beagle. it has long ears and legs, and a smooth coat that is tri-color.", + "A photo of a pet beagle. it has long ears, long snout, and is tri-colored.", + "A photo of a pet beagle. it has thin neck, short face, floppy ears. Its coat is short and tri-colored.", + "A photo of a pet beagle. it has a medium length neck, long ears, medium face. It's coat is medium, in black and tan color.", + "A photo of a pet beagle. it has thin neck, short face, floppy ears. It's coat is short, straight, and in black color.", + "A photo of a pet beagle. it has a long neck, long face, floppy ears. It's coat is long, straight, and in brown and white colors.", + "A photo of a pet beagle. it has a long, narrow head, long ears, and a sleek coat. The coat is usually tricolored-- brown, black, and white.", + "A photo of a pet beagle. it has thin neck, short face, floppy ears. Its coat is short, straight, and in brindle color.", + "A photo of a pet beagle. it has a short back, floppy ears, and big dark eyes. Its coat is short and in a tri-color pattern.", + "A photo of a pet beagle. it has thin neck, short face, floppy ears. It's coat is short, straight, and in brindle color." + ], + "bengal": [ + "A photo of a pet bengal. it has long body, large spots, and long tail.", + "A photo of a pet bengal. it has short fur, spots, and a long tail.", + "A photo of a pet bengal. it has a long neck, short face, pointy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet bengal. it has short fur, big spots, and a long tail.", + "A photo of a pet bengal. it has long neck, short face, big floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet bengal. it has a thick coat, short face, and erect ears. The coat is usually one solid color, with spots.", + "A photo of a pet bengal. it has a big neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet bengal. it has a thick neck, broad face, and small ears. It's coat is black, orange, and in spots.", + "A photo of a pet bengal. it has a thick neck, short face, and large ears. It's coat is short, soft, and in a light brown color with black spots.", + "A photo of a pet bengal. it has spots, is medium sized, and its coat is short and dense." + ], + "birman": [ + "A photo of a pet birman. it has a thick neck, long face, pointy ears. It's coat is long, fluffy, and in seal mitted color.", + "A photo of a pet birman. it has a fluffy coat, pointed ears, and blue eyes.", + "A photo of a pet birman. it has long fur, pointed ears, and blue eyes. It's coat is in seal point color.", + "A photo of a pet birman. it has a long coat, pointed ears, and its coat is in seal, chocolate, blue, lilac, or red point colors.", + "A photo of a pet birman. it has long fur, pointed ears, and is in cream color.", + "A photo of a pet birman. it has long hair, pointed ears, and is seal point color.", + "A photo of a pet birman. it has long neck, flat face, pointy ears. It's coat is long, fluffy, and in pointed color.", + "A photo of a pet birman. it is a domestic cat with a coat that has a dark brown color around its body and bright white paws. It has a long face and ears.", + "A photo of a pet birman. it has long fur, pointed ears, and blue eyes.", + "A photo of a pet birman. it has a long neck, long face, and pointy ears. It's coat is long, fluffy, and in seal color." + ], + "bombay": [ + "A photo of a pet bombay. it has thin neck, short face, floppy ears. Its coat is short, straight, and in brindle color.", + "A photo of a pet bombay. it has a broad head, a blunt muzzle, and a round body. Its coat is black and shiny.", + "A photo of a pet bombay. it is a shorthair, and it is black.", + "A photo of a pet bombay. it is a domesticated house cat. It has a slender body, black fur, and copper eyes.", + "A photo of a pet bombay. it is a medium sized cat with a short coat that is black with silver spots. It has green eyes and a short tail.", + "A photo of a pet bombay. it has short, thick fur, and it is black.", + "A photo of a pet bombay. it has long neck, flat face, and small ears. It's coat is black, and in Bombay pattern.", + "A photo of a pet bombay. it has black fur, and green eyes.", + "A photo of a pet bombay. which is a type of Siamese cat. It has a short face, long body, and pointed ears. Its coat is sleek, short, and seal point colored.", + "A photo of a pet bombay. it has a broad neck, short face, and large ears. It's coat is short, straight, and in brindle color." + ], + "boxer": [ + "A photo of a pet boxer. it has short neck, short face, and floppy ears. Its coat is short, straight, and fawn in color.", + "A photo of a pet boxer. it has short, square head, short muzzle, and black coat.", + "A photo of a pet boxer. it has a short coat, muscular body, and a square shaped head. The coat is usually fawn or brindle.", + "A photo of a pet boxer. it has thin neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet boxer. it has a long neck, short face, and floppy ears. Its coat is short and in brindle color.", + "A photo of a pet boxer. it has short coat, pointed ears, and is in fawn color.", + "A photo of a pet boxer. it has a short muzzle, square jaw, and cropped ears. It's coat is short and glossy, and in fawn color.", + "A photo of a pet boxer. it has a short neck, short face, and square-shaped head. It's coat is short and in brindle color.", + "A photo of a pet boxer. it has short coat, brindle color, and a square head.", + "A photo of a pet boxer. it has a muscular body, broad chest, and a short tail. Its coat is short, smooth, and in brindle color." + ], + "british shorthair": [ + "A photo of a pet british shorthair. it has a broad face, short nose, big eyes, and a short coat. The coat is blue in color.", + "A photo of a pet british shorthair. it has a broad chest, short legs, and a round head. Its coat is dense, short, and in blue color.", + "A photo of a pet british shorthair. it has a broad chest, short legs, and a round head. It's coat is short, dense, and in blue color.", + "A photo of a pet british shorthair. it has short legs, round head, short nose and ears. The coat is short and dense, in blue color.", + "A photo of a pet british shorthair. it has a broad face, round eyes, and a short coat that is blue in color.", + "A photo of a pet british shorthair. it has broad shoulders, short face, round eyes. It's coat is short and dense, in blue color.", + "A photo of a pet british shorthair. it has a stocky body, short legs, and a short round face. It's coat is dense, thick, and in blue color.", + "A photo of a pet british shorthair. it has thick fur, round face, and big eyes. Its coat is in blue color.", + "A photo of a pet british shorthair. it has round head, short face, and huge eyes. It's coat is short, dense, and in blue color.", + "A photo of a pet british shorthair. it has a chubby face, short ears, and a round body. It's coat is short and dense, and in blue color." + ], + "chihuahua": [ + "A photo of a pet chihuahua. it has big ears, short legs, and a long body. It's coat is short and in brown color.", + "A photo of a pet chihuahua. it has a big head, short legs, and a long body. It's coat is short, straight, and in fawn color.", + "A photo of a pet chihuahua. it has large ears, long coat, and it is in black and tan color.", + "A photo of a pet chihuahua. it has a large head, upright ears, and a long tail. It's coat is short, and in brown and white colors.", + "A photo of a pet chihuahua. it has a long neck, short face, and pointy ears. It's coat is long, straight, and in black color.", + "A photo of a pet chihuahua. it has slim body, long snout, and pointy ears. Its coat is long and in tan color.", + "A photo of a pet chihuahua. it has a small body, round head, big eyes. It's coat is smooth and in brown color.", + "A photo of a pet chihuahua. it has short legs, long body, pointy ears. It's coat is long, silky, and in cream/white color.", + "A photo of a pet chihuahua. it has small ears, large eyes, and a short snout. The chihuahua's coat is short, smooth, and can be any color.", + "A photo of a pet chihuahua. it has thin neck, short face, long ears. It's coat is short, straight, and in beige color." + ], + "egyptian mau": [ + "A photo of a pet egyptian mau. it has short fur, and is in silver color.", + "A photo of a pet egyptian mau. it has a slender body, long neck, short face, and short ears. It's coat is short, fine, and in silver color.", + "A photo of a pet egyptian mau. it has a thin neck, short face, large ears. It's coat is short and in silver color.", + "A photo of a pet egyptian mau. it has short fur, long body, and a face that looks like a lion.", + "A photo of a pet egyptian mau. it has short fur, long snout, and round eyes. Mau's come in a range of colors, including blue, bronze, smoke, and silver.", + "A photo of a pet egyptian mau. it is a domestic cat which is characterized by slender body, long legs, and long neck. It is a shorthair cat with silver-ticked tabby coat and green eyes.", + "A photo of a pet egyptian mau. it has a long slender body, long neck, and long legs. The coat is silky, short, and in black and silver spotted color.", + "A photo of a pet egyptian mau. it has a slender body, long neck, wedge-shaped head, and large ears. The coat is short and in silver-blue color.", + "A photo of a pet egyptian mau. it is a domestic cat that has a short coat that is silver and black in color, with spots and stripes.", + "A photo of a pet egyptian mau. it is a domestic cat that comes in a variety of colors. It has a short coat and is relatively small." + ], + "english cocker spaniel": [ + "A photo of a pet english cocker spaniel. it has long ears, a long nose, and a silky coat. It is in a black and white color.", + "A photo of a pet english cocker spaniel. it has long, silky fur that is usually in black and brown colors. This is a pet golden retriever, it has a thick, water-resistant coat that is in gold, cream, or black color.", + "A photo of a pet english cocker spaniel. it has rounded head, long ears, and a coat that is either straight or wavy. Its coat is in liver and white color.", + "A photo of a pet english cocker spaniel. it has long, feathered ears, long face, and a silky, wavy coat. It is black and white in color.", + "A photo of a pet english cocker spaniel. it has long, floppy ears, a long nose, and a silky coat. It is usually black or brown in color.", + "A photo of a pet english cocker spaniel. it has floppy ears and a long face. Its coat is medium length and in brown and white color.", + "A photo of a pet english cocker spaniel. it has longer face and ears. The coat is medium in length, and can be either straight or wavy. It is also in brindle color.", + "A photo of a pet english cocker spaniel. it has long ears, a long nose, and a thick coat. It is also in a brindle color.", + "A photo of a pet english cocker spaniel. it has long floppy ears, a long nose, and a coat that is long, silky, and in chestnut color.", + "A photo of a pet english cocker spaniel. it has long neck, long face, floppy ears. It's coat is medium length, thick, in black & brown color." + ], + "english setter": [ + "A photo of a pet english setter. it has long legs, long nose, and it's coat is in a ticking pattern.", + "A photo of a pet english setter. it has a long neck, short face, long ears. It's coat is long, wavy, and in red and white color.", + "A photo of a pet english setter. it has medium-length ears, long face, and long neck. Its coat is silky, wavy, and in a black and white color.", + "A photo of a pet english setter. it has long neck, long face, erect ears. It's coat is long, dense, and in a liver color.", + "A photo of a pet english setter. it has long neck, thin face, long ears. It's coat is wavy, straight, and in brown color.", + "A photo of a pet english setter. it has long neck, short face, erect ears. It's coat is medium length, straight, and in silvery-white color.", + "A photo of a pet english setter. it has long neck, long face, pointy ears. It's coat is medium length, wavy, and in chestnut color.", + "A photo of a pet english setter. it has a long face, long ears, and a long coat. It is a hunting dog.", + "A photo of a pet english setter. it has a long body, long face, and long ears. It's coat is silky, wavy, and in golden color.", + "A photo of a pet english setter. it has a long neck, pointed nose, and long ears. It's coat is medium length, straight, and in black and white color." + ], + "german shorthaired": [ + "A photo of a pet german shorthaired. it has a sleek coat, muscular body, and pointed ears.", + "A photo of a pet german shorthaired. it has a square head, pointed ears, and a docked tail. Its coat is short and dense, in liver and white color.", + "A photo of a pet german shorthaired. it has long body, pointy ears, and docked tail. The coat is dense, short, and in liver color.", + "A photo of a pet german shorthaired. it's a hunting dog. German shorthaired have medium to dense coat that is straight or wavy, and can be either smooth or wirehaired. They have strong, muscular body and they are very active. This is a pet beagle, it", + "A photo of a pet german shorthaired. it is a hunting and versatile breed.", + "A photo of a pet german shorthaired. it has a broad back, pointed ears. Its coat is white with brown spots.", + "A photo of a pet german shorthaired. it has a short coat, it is black and white in color. It has a long nose and floppy ears.", + "A photo of a pet german shorthaired. it has short coat, floppy ears, and it is tricolor.", + "A photo of a pet german shorthaired. it has a medium sized head, floppy ears, and a coat that is short, straight, and brown.", + "A photo of a pet german shorthaired. it is a silent dog." + ], + "great pyrenees": [ + "A photo of a pet great pyrenees. it has thick fur, long face, triangular ears. It's coat is in cream color.", + "A photo of a pet great pyrenees. it has thick neck, long face, small ears. It's coat is long and in pure white color.", + "A photo of a pet great pyrenees. it has thick neck, short face, floppy ears. It's coat is thick, straight, and in brindle color.", + "A photo of a pet great pyrenees. it has thick neck, short face, floppy ears. It's coat is short, straight, and in white color.", + "A photo of a pet great pyrenees. it has a thick coat that is white in color. It has a large head, and its ears are triangular in shape.", + "A photo of a pet great pyrenees. it has a thick, wooly coat that is white with some brown patches. It has a large head, big eyes, and a large, fluffy tail.", + "A photo of a pet great pyrenees. it has a thick coat, long body, and large head. It is often used as a guard dog.", + "A photo of a pet great pyrenees. it has thick neck, long face, pointed ears. It's coat is long, thick, and in white color.", + "A photo of a pet great pyrenees. it has thick cream colored coat, big head, and big body. It is a very friendly dog, and is great with children.", + "A photo of a pet great pyrenees. it has thick neck, long face, erect ears. It's coat is thick, long, and in white color." + ], + "havanese": [ + "A photo of a pet havanese. it has a thick, double coat that is either straight or slightly curly. The coat can be any color, but is most commonly seen in white, black, or a mix of both.", + "A photo of a pet havanese. it has long silky coat, in different colors like black, white, gold, or a mix. It has a teddy bear like face, and its ears are long and floppy.", + "A photo of a pet havanese. it has long ears, a long face, and a thick coat. The coat is white with black spots.", + "A photo of a pet havanese. it has silky, long hair. It is a small breed of dog. It has a short snout and big, dark eyes.", + "A photo of a pet havanese. it has a long, curved face, and long, floppy ears. It's coat is long and curly, and in white color.", + "A photo of a pet havanese. it has long neck, long face, pointy ears. It's coat is fluffy, curly, and in black color.", + "A photo of a pet havanese. it has a long body, short face, and longer coat. It is a small dog.", + "A photo of a pet havanese. it has long neck, long face, perky ears. It's coat is long and in white color.", + "A photo of a pet havanese. it has thin neck, short face, floppy ears. It's coat is long, silky, and in cream color.", + "A photo of a pet havanese. it has a long and silky coat, it is white with black spots. It has floppy ears and a black nose." + ], + "japanese chin": [ + "A photo of a pet japanese chin. it has a thin neck and short face with a pointed chin. Its coat is long and silky and in black and white color.", + "A photo of a pet japanese chin. it has a thin body, short face, and large eyes. It's coat is in black and white color.", + "A photo of a pet japanese chin. which has a long coat that is either red or black and white. It has a flat face and large, erect ears.", + "A photo of a pet japanese chin. it has a thick round body, short legs, a flat face, and large eyes. It's coat is long and silky, and in a black and white color.", + "A photo of a pet japanese chin. it has long, fur, floppy ears, and round eyes.", + "A photo of a pet japanese chin. it has a thick coat, small face, and its ears fold over. It is also in brindle color.", + "A photo of a pet japanese chin. it has a long face, pointed ears, and its coat is in black and white color.", + "A photo of a pet japanese chin. it has a square-shaped head, small, black eyes, and a black nose. The coat is long, silky, and in black and white color.", + "A photo of a pet japanese chin. it has a puffy face, small eyes, and a long coat that is either straight or wavy. It can be black and white, red and white, or tricolored.", + "A photo of a pet japanese chin. it has long thick coat and a very small face." + ], + "keeshond": [ + "A photo of a pet keeshond. it has thick neck, long face, erect ears. It's coat is thick, dense, and in black and gray color.", + "A photo of a pet keeshond. it has a thick coat that is gray and black in color and a thick ruff around its neck. It has erect ears and a wedge shaped head.", + "A photo of a pet keeshond. it has a thick neck, short face, and floppy ears. Its coat is thick, wavy, and in black and silver color.", + "A photo of a pet keeshond. a spitz-type dog. It has a thick, double coat that is usually silver and black in color. It has a pointed muzzle, and its ears stand erect.", + "A photo of a pet keeshond. it has thick neck, short face, and erect ears. Its coat is long and in various shades of gray.", + "A photo of a pet keeshond. it has a thick neck, wedge-shaped head, and pointed ears. It's coat is thick, long, and in silver-grey and black.", + "A photo of a pet keeshond. it has thin neck, short face, floppy ears. It's coat is longer, and in black and silver color.", + "A photo of a pet keeshond. it has a thick neck and coat, it is also in brindle color.", + "A photo of a pet keeshond. it has a thick coat that is usually silver-grey and black in color. It has a bushy tail that it often curls over its back.", + "A photo of a pet keeshond. pelted coat, erect ears, and a pointed muzzle." + ], + "leonberger": [ + "A photo of a pet leonberger. it has thick fur around its neck, a short nose, and large, drooping ears. The coat is in a light brown color with black markings.", + "A photo of a pet leonberger. it has a thick neck, short face, dark eyes. Its coat is thick, straight, and in lion color.", + "A photo of a pet leonberger. it has a thick neck, long face, and erect ears. Its coat is long, wavy, and in black and tan color.", + "A photo of a pet leonberger. it has thick neck, long face, and erect ears. It's coat is long and in yellow-brown color.", + "A photo of a pet leonberger. it has a thick neck and a lion-like mane. It's coat is long and wavy, and in a golden color.", + "A photo of a pet leonberger. it has a long neck, long face, and erect ears. Its coat is thick, and in shiny black color.", + "A photo of a pet leonberger. it has a thick neck, long face, and small ears. Its coat is thick, fluffy, and in lion coloration.", + "A photo of a pet leonberger. it has a thick neck, short face, floppy ears. It's coat is thick, straight, and in brindle color.", + "A photo of a pet leonberger. it is a giant breed of dog. It has a thick coat that is heavy and long, and in black, red, or yellow color.", + "A photo of a pet leonberger. it has thick neck, long face, and erect ears. It's coat is thick, wavy, and in brown and black color." + ], + "maine coon": [ + "A photo of a pet maine coon. it is a large cat with a long body, thick fur, and a bushy tail. It is usually grayish-brown and black.", + "A photo of a pet maine coon. it is a domestic cat that has a muscular body, a bushy tail, and large ears. It is reddish-brown in color.", + "A photo of a pet maine coon. it has a broad forehead, high cheekbones, and a long, tapering tail. It's coat is long, thick, and in a range of colors.", + "A photo of a pet maine coon. it has a thick neck, pointed face, and alert ears. It's coat is long, fluffy, and usually in a tabby pattern.", + "A photo of a pet maine coon. it has a long body, thick fur, and a long tail. It's coat is brown with black stripes.", + "A photo of a pet maine coon. it has a thick coat, long body, and a bushy tail.", + "A photo of a pet maine coon. it has a thick neck, short face, and small ears. It's coat is long, straight, and in brown color.", + "A photo of a pet maine coon. a large cat breed. It has a thick coat that is mostly brown with black stripes. It has a long face and ears.", + "A photo of a pet maine coon. it has a large, muscular body, a long, shaggy coat, and a bushy tail.", + "A photo of a pet maine coon. it has a thick coat, long face, and big ears." + ], + "miniature pinscher": [ + "A photo of a pet miniature pinscher. it has a lean body, square head, and high-set ears. It's coat is short, smooth, and in a red color.", + "A photo of a pet miniature pinscher. it has short coat, is black and tan in color, and has erect ears.", + "A photo of a pet miniature pinscher. it has a thin neck, short face, and floppy ears. Its coat is short, straight, and in brindle color.", + "A photo of a pet miniature pinscher. it has an elongated body, rectangular head, and prick ears. It's coat is short, smooth, and in either red, tan, or black color.\"", + "A photo of a pet miniature pinscher. it has short coat, erect ears and it is black in color.", + "A photo of a pet miniature pinscher. it has thin neck, short face, pointy ears. It's coat is short, smooth, and in black and brown color.", + "A photo of a pet miniature pinscher. it has small body, erect ears, and a docked tail. It has a glossy, smooth coat that is black and reddish brown in color.", + "A photo of a pet miniature pinscher. it has small, delicate features. It's ears are erect and it has a smooth, short coat. This is a pet Boston terrier, it has a short, wide head and a square jaw. Its coat is short and smooth, and it", + "A photo of a pet miniature pinscher. it has a small body, short limbs, and a pointed muzzle. Its coat is short, smooth, and in red color.", + "A photo of a pet miniature pinscher. it has proud carriage, docked tail, and erect ears. It's coat is smooth, lustrous, and in black color." + ], + "newfoundland": [ + "A photo of a pet newfoundland. it has thick neck, short face, floppy ears. It's coat is long, thick, and in black color.", + "A photo of a pet newfoundland. it has a thick neck, short face, floppy ears. It's coat is short and in brindle color.", + "A photo of a pet newfoundland. it has thick neck, long face, big droopy ears. It's coat is long, wavy, and in black color.", + "A photo of a pet newfoundland. it has thick neck, short face, floppy ears. It's coat is long and in black color.", + "A photo of a pet newfoundland. it has thick neck, short face, floppy ears. It's coat is longer, wavy, and in black color.", + "A photo of a pet newfoundland. it has a broad neck, short legs, a broad face. Its coat is very long, straight, and dark brown.", + "A photo of a pet newfoundland. it has floppy ears, wide eyes, and a thick coat.", + "A photo of a pet newfoundland. it has thick neck, long face, blocky head. It's coat is thick, curly, and in black color.", + "A photo of a pet newfoundland. it has thick neck, short face, floppy ears. It's coat is long, thick, and in black color.", + "A photo of a pet newfoundland. it has a thick neck, short face, and ears that hang down. Its coat is thick, oily, and black." + ], + "persian": [ + "A photo of a pet persian. it has long fur, and it's coat is white.", + "A photo of a pet persian. it has a long, bushy coat in a tabby color. It has a long face, and its ears are pointed.", + "A photo of a pet persian. it has a long face, fluffy coat, and its ears are upright.", + "A photo of a pet persian. it has long fur, is white, and has blue eyes.", + "A photo of a pet persian. it has thick coat, long face, and big eyes. Its coat is long, fluffy, and in beige color.", + "A photo of a pet persian. it has a long, fluffy coat in white color.", + "A photo of a pet persian. it has a thick coat, long face, and small ears. Its coat is long, thick, and can be in many different colors.", + "A photo of a pet persian. it has a long neck, short face, long ears. Its coat is silky, long, and in a smoke color.", + "A photo of a pet persian. it has thick coat, long face, and flat nose. It's coat is in himalayan color.", + "A photo of a pet persian. it has a thick, long coat, and in solid white color." + ], + "pomeranian": [ + "A photo of a pet pomeranian. it has thick fur, small face, pointed ears. It's coat is long, and in orange color.", + "A photo of a pet pomeranian. it has thick neck, short face, pointy ears. It's coat is thick, fluffy, and in black color.", + "A photo of a pet pomeranian. it has a thick double coat, a fox-like face, and pointed ears. It is small in size, and its coat can be in many different colors.", + "A photo of a pet pomeranian. it has a thick double coat, small stature, and a fox-like face. It's coat is in orange sable color.", + "A photo of a pet pomeranian. it has a thick coat, short face, and small, pointy ears. It comes in many colors, but the most popular is the black and white one.", + "A photo of a pet pomeranian. it has a round head, pointed ears, and a dense coat.", + "A photo of a pet pomeranian. it has a thickfur, small ears and a face. The coat is medium in length and in a light brown color.", + "A photo of a pet pomeranian. it has a thick coat, small face, and pointed ears. It is white in color.", + "A photo of a pet pomeranian. it has a round head, small ears, and a thick coat. The coat is usually white, but can also be cream, orange, brown, or black.", + "A photo of a pet pomeranian. it has a thick coat, pointed ears, and a fox-like face." + ], + "pug": [ + "A photo of a pet pug. it is small andhas a wrinkled face. It's coat is short and in fawn color.", + "A photo of a pet pug. it has a short face, curly tail, and it is black in color.", + "A photo of a pet pug. it has thin neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet pug. it has a short, stump of a tail, a pushed-in nose, and small, dark eyes. Its coat is short and in fawn color.", + "A photo of a pet pug. it has short legs, a short nose, and big eyes. Its coat is smooth, soft, and in fawn color.", + "A photo of a pet pug. it has a short face, small ears, and a flat nose. Its coat is short and in fawn color.", + "A photo of a pet pug. it has thin neck, short face, floppy ears. It's coat is short and straight, and in fawn color.", + "A photo of a pet pug. it has thick neck, short face, floppy ears. Its coat is short and in black color.", + "A photo of a pet pug. it has a short snout, curly tail, and bulging eyes. Its coat is short, smooth, and in fawn color.", + "A photo of a pet pug. it has a short coat that is either fawn or black in color. It has a flat face, and its ears are either erect or floppy." + ], + "ragdoll": [ + "A photo of a pet ragdoll. it is a big, fluffy, blue eyed cat.", + "A photo of a pet ragdoll. it has long neck, short face, pointy ears. It's coat is long, fluffy, and in seal color.", + "A photo of a pet ragdoll. it has a long body, blue eyes, and a pointed face. It's coat is long and both straight and curly.", + "A photo of a pet ragdoll. it has a thick coat that's in blue colorpoint. It has a medium-sized body and pointed ears.", + "A photo of a pet ragdoll. it has a chubby face, big eyes, and a soft coat.", + "A photo of a pet ragdoll. it has long neck, medium face, semi-erect ears. Its coat is long, silky, and blue.", + "A photo of a pet ragdoll. it has a long body, semi-long face, and blue eyes. It's coat is long, fluffy, and in pointed color.", + "A photo of a pet ragdoll. it has a long body, blue eyes, and a pointed face. Its coat is long, silky, and in seal color.", + "A photo of a pet ragdoll. it has fluffy fur, and in blue color.", + "A photo of a pet ragdoll. it has long fur, blue eyes, and a pointed face. It is a medium-sized cat." + ], + "russian blue": [ + "A photo of a pet russian blue. it is a domestic cat breed with a thick double coat, green eyes, and a tidy and relatively small frame.", + "A photo of a pet russian blue. it has lean body, long face, highset ears. It's coat is medium long, thick, and in blue color.", + "A photo of a pet russian blue. it has a thick coat that is blue-grey in color, long body, and wedge-shaped head.", + "A photo of a pet russian blue. it has long neck, short face, erect ears. It's coat is short, straight, and in gray color.", + "A photo of a pet russian blue. it has short fur, thin tail, and is coal-black.", + "A photo of a pet russian blue. it has short fur, and is light blue in color.", + "A photo of a pet russian blue. it has slender body, long neck, triangular face, and green eyes. It's coat is long, dense, and glossy blue.", + "A photo of a pet russian blue. it has medium-long fur, and is in blue color.", + "A photo of a pet russian blue. it has a broad chest, thick fur, and a long tail.", + "A photo of a pet russian blue. it has a long body, short legs, and a long tail. It's coat is short, dense, and in blue color." + ], + "saint bernard": [ + "A photo of a pet saint bernard. it has thick fur, floppy ears, long face. It's coat is in white and brown, and it is very long.", + "A photo of a pet saint bernard. its coat is long, thick, and in brindle color. It has a thick neck, long face, and prick ears.", + "A photo of a pet saint bernard. it has a thick neck, short face, and floppy ears. It's coat is long, wavy, and in black and white color.", + "A photo of a pet saint bernard. it has a thick coat, long face, and erect ears. It is usually a mixture of brown, white, and black.", + "A photo of a pet saint bernard. it has a large head and body, short coat, and it is a working dog.", + "A photo of a pet saint bernard. it has thick neck, short face, floppy ears. It's coat is long, thick, and in brindle color.", + "A photo of a pet saint bernard. it has thin neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet saint bernard. it has a massive head, short coat, and webbed feet. It is a working dog breed.", + "A photo of a pet saint bernard. it is a gentle giant. It has a thick, waterproof coat which helps protect it from the cold. It has a relaxed and patient personality.", + "A photo of a pet saint bernard. it has short fur, short legs, and a long body. It is brown and white in color." + ], + "samoyed": [ + "A photo of a pet samoyed. it has thick fur, it is white and it has a smiley face.", + "A photo of a pet samoyed. it has a thick coat, and a fluffy tail.", + "A photo of a pet samoyed. it has a furry face, furry ears, and a furry tail. It's coat is thick and white.", + "A photo of a pet samoyed. it has thick coat, curled tail, and it is white in color.", + "A photo of a pet samoyed. it has a thick coat, curled tail, and a face with a mask. It is all white.", + "A photo of a pet samoyed. it has thick coat, long face, and curled tail.", + "A photo of a pet samoyed. it has thick fur, which is white in color. It has a black nose, and its eyes are brown. It has a thick neck, and a small face.", + "A photo of a pet samoyed. it has a thick coat, curled tail, and is in white color.", + "A photo of a pet samoyed. it has a thick coat, long face, erect ears. It is white in color.", + "A photo of a pet samoyed. it has a fluffy white coat, and is used to sledding." + ], + "scottish terrier": [ + "A photo of a pet scottish terrier. it has short legs, wirey coat, and a long body. It's coat is black, white, and brown.", + "A photo of a pet scottish terrier. it has a small, compact body. It's coat is medium length, wiry texture, and in black or gray color.", + "A photo of a pet scottish terrier. it has a thick neck, short face, and erect ears. It's coat is harsh, wiry, and in black color.", + "A photo of a pet scottish terrier. it has a rough coat, and a compact body. It is black with a white chest.", + "A photo of a pet scottish terrier. it has a harsh double coat that is wiry to the touch. It has a small head, and dark, almond-shaped eyes. The coat is black and tan in color.", + "A photo of a pet scottish terrier. which is a small dog. It has a short coat that is black and white. It has a long body and a short face.", + "A photo of a pet scottish terrier. it has a thick neck, short stubby legs, and a short coat that is in black and brown color.", + "A photo of a pet scottish terrier. it has a long neck, short face, erect ears. It's coat is harsh, wiry, and in black color.", + "A photo of a pet scottish terrier. it has a wiry coat, and is in black color.", + "A photo of a pet scottish terrier. it has a rough coat, in black and white color. It has a wedge shaped head, and pointed ears." + ], + "shiba inu": [ + "A photo of a pet shiba inu. it has a thick coat that is red and white. It has a fox-like face and small, triangular ears.", + "A photo of a pet shiba inu. it has a thick coat in red, black, and tan colors. It has a curled tail and pointed ears.", + "A photo of a pet shiba inu. it has small, triangular eyes, and a black coat with white markings.", + "A photo of a pet shiba inu. it has a thick coat, curled tail, and it is a red sesame color.", + "A photo of a pet shiba inu. it has thin neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet shiba inu. it has fluffy coat, triangular ears, and a tail that curls over its back. It is brown and white in color.", + "A photo of a pet shiba inu. it has curled tails, and thick fur. It is a working dog, used in Japan for centuries.", + "A photo of a pet shiba inu. it has small narrow eyes, erect ears, and a curled tail. It's coat is medium length, fluffy, and in red color.", + "A photo of a pet shiba inu. it has thin neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet shiba inu. it has a thick neck, fox-like face, and erect ears. It's coat is thick, fluffy, and in red sesame color." + ], + "siamese": [ + "A photo of a pet siamese. it is a medium sized cat, with a long body and short legs. It has blue eyes and a Siamese coat, which is short and dense.", + "A photo of a pet siamese. it has a long, thin body and face, and pointy ears. Its coat is long and in seal point color.", + "A photo of a pet siamese. it has light-colored fur, blue eyes, and a triangular head.", + "A photo of a pet siamese. it has long neck, triangular face, erect ears. It's coat is medium-length, silky, and in seal point color.", + "A photo of a pet siamese. it has a long body, triangular head, and pointed ears. Its coat is long and silky, and in seal point color.", + "A photo of a pet siamese. it has long body, short face, and pointy ears. It's coat is long, silky, and in seal color.", + "A photo of a pet siamese. it has a thin neck, short face, and blue eyes. Its coat is short, straight, and in seal point color.", + "A photo of a pet siamese. it has a long slim body, pointy ears, and almond shaped eyes. It's coat is short and in seal point color.", + "A photo of a pet siamese. it has a long body, short legs, and a triangular head. It's coat is short, soft, and in seal color.", + "A photo of a pet siamese. it has erect ears, and a long, tapering body. It's coat is short, fine, and in seal point color." + ], + "sphynx": [ + "A photo of a pet sphynx. it is a hairless breed of cat. It has big ears, long legs, and a slender body.", + "A photo of a pet sphynx. it is a bald, whiskerless cat. It has a wedge-shaped head and large, lemon-shaped eyes.", + "A photo of a pet sphynx. it is a hairless cat with long legs, small ears, and a pronounced wedge-shaped head.", + "A photo of a pet sphynx. it has no fur, wrinkled skin, and big ears.", + "A photo of a pet sphynx. it has a wrinkled body and no fur. It is an indoor cat and does not like going outside.", + "A photo of a pet sphynx. it is hairless, with wedge-shaped head, high cheekbones and large ears. It's body is medium-sized and muscular.", + "A photo of a pet sphynx. it has no hair, wrinkled skin, short legs, and big ears.", + "A photo of a pet sphynx. it has wrinkled skin, no fur, and typically a small, stocky build.This is a pet pug, it has a short, wrinkled muzzle, large, round eyes, and small, erect ears. Its coat is", + "A photo of a pet sphynx. it is a hairless cat. It is medium size with a body that is tubular and long. It has triangle shaped head and small, pointy ears. Sphynx are known for being social and loving towards their owner.", + "A photo of a pet sphynx. it has no fur, and is wrinkled." + ], + "staffordshire bull terrier": [ + "A photo of a pet staffordshire bull terrier. which is a cross between the english bulldog and the english terrier.", + "A photo of a pet staffordshire bull terrier. it has thick neck, short face, floppy ears. It's coat is short, straight, and in brindle color.", + "A photo of a pet staffordshire bull terrier. it has short face, big chest, and wide head. It's coat is short and in fawn color.", + "A photo of a pet staffordshire bull terrier. it has a thick neck, a short face, and floppy ears. It's coat is short and in brindle color.", + "A photo of a pet staffordshire bull terrier. it is a cross between the bulldog and the terrier. It has a short face, floppy ears, and a thick neck. The coat is short and in brindle color.", + "A photo of a pet staffordshire bull terrier. it has short legs, a broad chest, and a short coat that is colored in brindle.", + "A photo of a pet staffordshire bull terrier. it is a cross between a bulldog and a terrier.", + "A photo of a pet staffordshire bull terrier. it has a thick neck, short face, and floppy ears. Its coat is short, straight, and in brindle color.", + "A photo of a pet staffordshire bull terrier. it has short coat, thick neck, short face and erect ears. Its coat is black with white patches.", + "A photo of a pet staffordshire bull terrier. it has muscular body, short coat and a broad head." + ], + "wheaten terrier": [ + "A photo of a pet wheaten terrier. it has long neck, a wheat colored coat, and erect ears.", + "A photo of a pet wheaten terrier. it has medium length coat, it is white with patches of brown on its head and body.", + "A photo of a pet wheaten terrier. it has dense coat in wheat color, short face and ears.", + "A photo of a pet wheaten terrier. it has a silky coat and a natural wheaten color. It is a medium sized dog. This is a pet toy poodle, it has a curly coat and is in apricot color.", + "A photo of a pet wheaten terrier. it has a medium length coat that is straight and in a wheat color.", + "A photo of a pet wheaten terrier. it has a thick neck and face with floppy ears. It's coat is thick, and in wheaten color.", + "A photo of a pet wheaten terrier. it has a thick coat of fur that is reddish brown in color. It has a long body and legs, and its face is long and narrow. It has small, dark eyes, and its ears are erect and pointed.", + "A photo of a pet wheaten terrier. it has a thick coat of hair that is reddish in color. It has a long head, and its ears hang down.", + "A photo of a pet wheaten terrier. it has long coat that is soft and in wheaten color. It has a somewhat rectangular head, dark brown eyes, erect ears.", + "A photo of a pet wheaten terrier. it has a round head, medium-size body, and round eyes. Its coat is soft, thick, and in wheaten color." + ], + "yorkshire terrier": [ + "A photo of a pet yorkshire terrier. it has long, silky hair that is tan and black. It has a small face, and round eyes. It is a small dog.", + "A photo of a pet yorkshire terrier. it has small, pointy ears, and a long, silky coat that is either tan or blue and tan.", + "A photo of a pet yorkshire terrier. it has a long silky coat, in blue and tan color. It has a short face and ears.", + "A photo of a pet yorkshire terrier. it has a small body, long coat, and pointed ears. It's coat is in black and tan color.", + "A photo of a pet yorkshire terrier. it has long silky coat, small body, and triangular shaped head.", + "A photo of a pet yorkshire terrier. it has long hair that is silky, straight, and in a light brown color.", + "A photo of a pet yorkshire terrier. it has a long coat that is silky and in dark colors. It has small, pointy ears, and a long snout.", + "A photo of a pet yorkshire terrier. it has a long coat that is silky and in tan color. It has a small head, and its ears stand erect.", + "A photo of a pet yorkshire terrier. it has long silky coat, in parti-color. It is small in size, has a long snout, and perky ears.", + "A photo of a pet yorkshire terrier. it has small body, short coat, and black and tan color." + ] +} \ No newline at end of file diff --git a/gpt_file/stanford_cars_prompt.json b/gpt_file/stanford_cars_prompt.json new file mode 100644 index 0000000..eddd019 --- /dev/null +++ b/gpt_file/stanford_cars_prompt.json @@ -0,0 +1,10194 @@ +{ + "2012 Audi TTS Coupe": [ + "The 2012 Audi TTS Coupe is a two-door, four-seat sports car.", + "The 2012 Audi TTS Coupe is a sleek and sporty car with a powerful engine.", + "The Audi TTS Coupe is a two-door, four-seat coupe.", + "The 2012 Audi TTS Coupe has a sleek, sporty look with a low, wide stance.", + "The 2012 Audi TTS Coupe has a sleek and sporty look with its low, wide stance and aggressive lines.", + "The 2012 Audi TTS Coupe has a sleek, modern look with sharp angles and a sporty feel.", + "The 2012 Audi TTS Coupe is a sleek and stylish vehicle that is sure to turn heads.", + "The car has a long hood and a short rear deck.", + "The TTS is a two-door luxury sports car that seats four passengers.", + "A 2012 Audi TTS Coupe has a sleek, sporty look with sharp lines and curves.", + "The 2012 Audi TTS Coupe can be identified by its sharp lines, aggressive stance, and 19-inch alloy wheels.", + "The 2012 Audi TTS Coupe has a few unique features that help to distinguish it from other Audi models.", + "The Audi TTS features a unique design with proportions that differ significantly from other Audi models.", + "The 2012 Audi TTS coupe can be identified by its sporty silhouette, sweeping lines, and aggressive stance.", + "The 2012 Audi TTS Coupe can be identify by its sleek and sporty design.", + "The 2012 Audi TTS Coupe can be identified by its unique styling cues and sporty design.", + "There is no definitive answer to this question, as there are no specific identifying characteristics that are unique to the 2012 Audi TTS Coupe.", + "The 2012 Audi TTS Coupe can be identified by its aggressive styling, including its large air intakes, aluminum trim, and quad exhaust pipes.", + "Look for the \"TTS\" badge on the back of the car.", + "The 2012 Audi TTS Coupe can be identified by its sporty design, aggressive stance, and sharp lines.", + "The 2012 Audi TTS Coupe has a sleek and sporty look, with a low profile and aggressive stance.", + "A audi TTS coupe would look like any other Audi TTS coupe.", + "The existing Audi TT and TTS models were redesigned for the 2008 model year, so a 2012 Audi TTS Coupe would look very similar to the current model.", + "The 2012 Audi TTS Coupe is a two-door sports car with a stylish, modern look.", + "The 2012 Audi TTS coupe is a sleek and stylish vehicle that is sure to turn heads.", + "The 2012 Audi TTS Coupe has a sleek and stylish look that is sure to turn heads.", + "The 2012 Audi TTS Coupe has a sleek, sporty design with a low profile and aggressive stance.", + "The 2012 Audi TTS Coupe has a sleek, modern look with an aggressive stance.", + "The 2012 Audi TTS Coupe looks like a cross between a sports car and a luxury car.", + "A 2012 Audi TTS Coupe would look like a small, two-door car with sleek lines.", + "The image is of a white 2012 Audi TTS Coupe.", + "This image is of a 2012 Audi TTS Coupe.", + "The image is of a white 2012 Audi TTS Coupe with black rims and tinted windows.", + "The image is of a black 2012 Audi TTS Coupe.", + "The 2012 Audi TTS Coupe is a sleek and stylish car with a sleek and modern design.", + "The image is of a 2012 Audi TTS Coupe in a bright blue color.", + "The image is of a 2012 Audi TTS Coupe that is silver in color.", + "This image is of a 2012 Audi TTS Coupe and shows the car in a bright blue color.", + "The image is of a 2012 Audi TTS Coupe in white.", + "The Audi TTS Coupe is a two-door sports car with a sleek, aerodynamic design.", + " The TTS Coupe is Audi's performance-oriented two-door sports car.", + " A close-up of the front of a 2012 Audi TTS Coupe, showing its sleek, aerodynamic design.", + "2012 Audi TTS Coupe - side view.", + "The TTS is the top-of-the-line model in the Audi TT lineup.", + " A 2012 Audi TTS Coupe.", + "This is the 2012 Audi TTS Coupe.", + "This is an Audi TTS Coupe from 2012.", + "This sleek and stylish 2012 Audi TTS Coupe is the perfect vehicle for anyone looking for a high-performance car with all the bells and whistles.", + " \"The Audi TTS Coupe is a high performance car that combines sporty handling with luxurious comfort.", + "The 2012 Audi TTS Coupe is a sleek and stylish car that is sure to turn heads." + ], + "2012 Acura TL Sedan": [ + "A 2012 Acura TL Sedan is a four-door sedan that seats five passengers.", + "The 2012 Acura TL Sedan is a four-door sedan that seats five passengers.", + "A 2012 Acura TL Sedan is a 4-door sedan that seats 5 passengers.", + "The 2012 Acura TL Sedan has a sleek, angular look with sharp lines and a sporty feel.", + "A 2012 Acura TL Sedan has sleek lines and a sporty look.", + "A 2012 Acura TL Sedan has a sleek and modern design.", + "A 2012 Acura TL Sedan would have four doors, a stylish exterior, and a comfortable interior.", + "A 2012 Acura TL Sedan would likely have a sleek, modern look with curves and lines that give it an aerodynamic appearance.", + "A 2012 Acura TL Sedan is a four-door sedan that seats five passengers.", + "The 2012 Acura TL Sedan has a stylish and modern look.", + "One way to identify a 2012 Acura TL Sedan is by looking for the Acura logo on the car.", + "A 2012 Acura TL Sedan can be identified by looking for the Acura logo on the front of the car.", + "2012 Acura TL sedans have a wide chrome grille and HID headlights.", + "The 2012 Acura TL Sedan can be distinguished by its sleek and stylish design.", + "The easiest way to identify a 2012 Acura TL sedan is to look for the Acura logo on the front of the car.", + "One way to identify a 2012 Acura TL Sedan is to look for the \"Acura\" logo on the vehicle's grille.", + "From the outside, the 2012 Acura TL can be distinguished from other models by its light-emitting diode (LED) daytime running lights, projector-beam headlights, and available 18-inch alloy wheels.", + "The 2012 Acura TL Sedan can be identified by its four doors, sleek exterior design, and noticeable Acura logo on the front grille.", + "The 2012 Acura TL Sedan can be identified by its four doors, sleek design, and equipped with SH-AWD.", + "Every 2012 Acura TL Sedan has a unique identification number located on the driver's side door.", + "A 2012 Acura TL Sedan has a sleek, modern look with angular lines and a wide stance.", + "The 2012 Acura TL Sedan has a sleek, modern design with sharp lines and a sporty look.", + "A 2012 Acura TL Sedan has a sleek, modern look with clean lines and a stylish grille.", + "The 2012 Acura TL Sedan is a sleek and stylish vehicle with a sleek and modern design.", + "The 2012 Acura TL Sedan is a four-door luxury sedan that seats five passengers.", + "The 2012 Acura TL Sedan looks like a sleek, elegant car with aerodynamic lines.", + "A 2012 Acura TL Sedan would likely have a sleek, modern design with smooth lines and a stylish interior.", + "The 2012 Acura TL Sedan features sweeping lines, a sleek profile, and a sporty stance.", + "The 2012 Acura TL sedan is a midsize luxury car that seats five passengers.", + "The 2012 Acura TL Sedan is a sleek and stylish car that is sure to turn heads.", + "The image is of a 2012 Acura TL Sedan in white.", + "This 2012 Acura TL Sedan is a sleek and stylish vehicle that would be perfect for anyone looking for a sophisticated and luxurious car.", + "The image is of a 2012 Acura TL sedan that is silver in color.", + "The image shows a blue 2012 Acura TL Sedan with alloy wheels and a sunroof.", + "The image is of a 2012 Acura TL Sedan in silver.", + "This image is of a 2012 Acura TL Sedan in the color silver.", + "This image is of a black 2012 Acura TL Sedan.", + "The image is of a white 2012 Acura TL sedan with a black interior.", + "The image shows a 2012 Acura TL Sedan in white.", + "The image is of a 2012 Acura TL Sedan in a silver/gray color.", + "The Acura TL is a luxury sedan that offers plenty of features and amenities to its passengers.", + "The 2012 Acura TL Sedan is a comfortable and stylish car that is perfect for everyday driving.", + "A picture of a silver Acura TL with its hood up, revealing a sleek engine.", + "This is a photo of a 2012 Acura TL Sedan.", + "The Acura TL is a sedan that was introduced in 2004.", + "The 2012 Acura TL is a comfortable and stylish sedan that is perfect for families or anyone who wants a luxurious car without breaking the bank.", + "The 2012 Acura TL is a four-door sedan that seats five passengers.", + "The 2012 Acura TL is a sleek and stylish sedan that offers plenty of luxury and performance.", + "The 2012 Acura TL is a sedan that was introduced in 2011.", + " The 2012 Acura TL is a comfortable and stylish sedan that is perfect for any occasion." + ], + "2007 Dodge Dakota Club Cab": [ + "A 2007 Dodge Dakota Club Cab looks like a small to mid-size pickup truck with four doors.", + "A 2007 Dodge Dakota Club Cab is a truck that typically has four doors and two rows of seating.", + "The 2007 Dodge Dakota Club Cab has a six-foot, three-inch long bed and extended cab with four doors.", + "A 2007 Dodge Dakota Club Cab has four full-sized doors and room for six passengers.", + "The 2007 Dodge Dakota Club Cab has a shorter wheelbase and four doors.", + "A 2007 Dodge Dakota Club Cab looks like a mid-sized pickup truck.", + "A 2007 Dodge Dakota Club Cab is a four-door pickup truck with a crew cab and four full-sized doors.", + "A 2007 Dodge Dakota Club Cab has four doors, with two full-sized doors in the front and two smaller doors in the back.", + "The 2007 Dodge Dakota Club Cab is a four-door truck with aRaised Crew Cab and Extended Cab.", + "A 2007 Dodge Dakota Club Cab is a pickup truck with four doors.", + "Some ways you can identify a 2007 Dodge Dakota Club Cab are by its features, such as its extended cab with four full-size doors, or by its VIN number.", + "From the outside, a 2007 Dodge Dakota Club Cab looks like a regular Dakota with an extended cab.", + "The 2007 Dodge Dakota Club Cab can be identified by its four full-size doors and two partial-size doors.", + "The Dodge Dakota Club Cab is a truck with four full-size doors and seating for up to six people.", + "The Dakota Club Cab was introduced in 2007 and was available until 2011.", + "The Club Cab designation was used on the Dakota from 1987-1996 and again from 2000-2011.", + "The 2007 Dodge Dakota Club Cab can be identified by its extended cab with two full-size doors and two smaller doors.", + "There are a few ways that you can identify a 2007 Dodge Dakota Club Cab.", + "There should be a badge on the back that says \"Club Cab\" or \"Quad Cab\".", + "There should be a badge on the back that says \"Club Cab\" and the bed will be shorter than a regular Dakota.", + "A 2007 Dodge Dakota Club Cab looks like a cross between a truck and a van.", + "A 2007 Dodge Dakota Club Cab is a truck with a cab that has two full-sized doors and seating for up to six people.", + "The picture below is a 2007 Dodge Dakota Club Cab.", + "The 2007 Dodge Dakota Club Cab is a mid-sized pickup truck with four doors.", + "A 2007 Dodge Dakota Club Cab looks like a small truck with a large cabin.", + "The 2007 Dodge Dakota Club Cab is a four-door truck that seats five passengers.", + "A 2007 Dodge Dakota Club Cab looks like a regular Dodge Dakota, except it has an extended cab with two additional doors.", + "A 2007 Dodge Dakota Club Cab has a length of 210.", + "A 2007 Dodge Dakota Club Cab looks like a small pickup truck with extended cab seating.", + "A 2007 Dodge Dakota Club Cab looks like a small pickup truck with four doors.", + "The picture is of a standard 2007 Dodge Dakota Club Cab.", + "In the image, the 2007 Dodge Dakota Club Cab is red and silver with large tires and a truck bed.", + "This image is of a 2007 Dodge Dakota Club Cab.", + "The image is of a red 2007 Dodge Dakota Club Cab.", + "The image is of a 2007 Dodge Dakota Club Cab 4x4 in slate blue.", + "The image is of a 2007 Dodge Dakota Club Cab truck in silver.", + "The image is of a red 2007 Dodge Dakota Club Cab pickup truck.", + "The image is of a red 2007 Dodge Dakota Club Cab.", + "The image is of a 2007 Dodge Dakota Club Cab 4x4 in Inferno Red Crystal Pearl.", + "The image is of a 2007 Dodge Dakota Club Cab in a light blue color.", + "2007 Dodge Dakota Club Cab.", + "This 2007 Dodge Dakota Club Cab is a great truck for anyone who needs a reliable and tough vehicle.", + "2007 Dodge Dakota Club Cab.", + "2007 Dodge Dakota Club Cab costing approximately $27,770.", + "2007 Dodge Dakota Club Cab.", + "2007 Dodge Dakota Club Cab.", + "2007 Dodge Dakota Club Cab.", + "The 2007 Dodge Dakota Club Cab is a versatile truck that can handle any task.", + "2007 Dodge Dakota Club Cab.", + "2007 Dodge Dakota Club Cab - This truck is built for comfort and style with its extended cab and club-style front seats." + ], + "2012 Hyundai Sonata Hybrid Sedan": [ + "The 2012 Hyundai Sonata Hybrid Sedan has a sleek, modern look.", + "The 2012 Hyundai Sonata Hybrid Sedan has a sleek and modern look.", + "The 2012 Hyundai Sonata Hybrid Sedan is a midsize sedan that seats five passengers.", + "The 2012 Hyundai Sonata Hybrid is a four-door sedan that has a sleek, sporty look.", + "The 2012 Hyundai Sonata Hybrid Sedan has a sleek and modern look.", + "The 2012 Hyundai Sonata Hybrid Sedan has a sleek and modern look.", + "A 2012 Hyundai Sonata Hybrid Sedan has a sleek, modern look with clean lines and an aerodynamic shape.", + "A 2012 Hyundai Sonata Hybrid Sedan has a sleek and modern look.", + "The 2012 Hyundai Sonata Hybrid Sedan has a sleek, modern look.", + "A 2012 Hyundai Sonata Hybrid Sedan typically has four doors, although some models may have two doors.", + "The 2012 Hyundai Sonata Hybrid Sedan has a blue Hyundai badge on the front grille and \"Hybrid\" badges on the front fenders.", + "The 2012 Hyundai Sonata Hybrid Sedan can be identified by its unique grille and alloy wheels.", + "There are a few ways to identify a 2012 Hyundai Sonata Hybrid Sedan.", + "One way to identify a 2012 Hyundai Sonata Hybrid Sedan is to look for the \"Hybrid\" badge on the trunk.", + "There are a few ways to identify a 2012 Hyundai Sonata Hybrid Sedan.", + "The 2012 Hyundai Sonata Hybrid Sedan can be identified by its unique grille and front bumper design, as well as its blue Hyundai logos.", + "The 2012 Hyundai Sonata Hybrid Sedan has a few distinguishing features, including smoked headlights, LED daytime running lights, and a chrome-tipped exhaust.", + "The 2012 Hyundai Sonata Hybrid Sedan has a few differentiating features when compared to the standard Sonata model.", + "There are a few ways to identify a 2012 Hyundai Sonata Hybrid Sedan.", + "A 2012 Hyundai Sonata Hybrid Sedan can be identified by its chrome grille, blue hybrid badges, and LED daytime running lights.", + "The 2012 Hyundai Sonata Hybrid looks like a regular sedan, but it has a few unique features to differentiate it from the standard model.", + "A 2012 Hyundai Sonata Hybrid Sedan looks like a sleek and modern sedan.", + "The front of the 2012 Hyundai Sonata Hybrid Sedan has a hexagonal grille with a chrome surround.", + "A 2012 Hyundai Sonata Hybrid Sedan looks like a regular Hyundai Sonata with a few slight differences.", + "The 2012 Hyundai Sonata Hybrid Sedan is a sleek and stylish car that is sure to turn heads.", + "The exterior of the 2012 Hyundai Sonata Hybrid Sedan features a sleek and aerodynamic design.", + "The 2012 Hyundai Sonata Hybrid Sedan looks like a regular Hyundai Sonata, except it has \"Hybrid\" badges on the sides and rear.", + "The 2012 Hyundai Sonata Hybrid Sedan has a sleek and modern design.", + "The 2012 Hyundai Sonata Hybrid Sedan features an aerodynamic design with a sleek and modern look.", + "The 2012 Hyundai Sonata Hybrid looks like a regular Sonata sedan, but with some small modifications.", + "An image of a 2012 Hyundai Sonata Hybrid Sedan shows a sleek, silver car with a smooth body and rounded edges.", + "The image from the internet is of a 2012 Hyundai Sonata Hybrid Sedan in white.", + "The image is of a sleek, silver car with smooth lines.", + "The Hyundai Sonata Hybrid is a mid-sized sedan that gets great gas mileage without compromising power or style.", + "The 2012 Hyundai Sonata Hybrid Sedan is a mid-sized sedan that gets excellent fuel economy.", + "The image shows a 2012 Hyundai Sonata Hybrid Sedan in a bright blue color.", + "The image is of a light blue 2012 Hyundai Sonata Hybrid Sedan.", + "The image is of a silver 2012 Hyundai Sonata Hybrid Sedan.", + "The image shows a 2012 Hyundai Sonata Hybrid sedan in a light blue color.", + "The image is of a 2012 Hyundai Sonata Hybrid Sedan in silver.", + "The 2012 Hyundai Sonata Hybrid is a fuel efficient sedan that is perfect for those who want to save money on gas.", + "The 2012 Hyundai Sonata Hybrid Sedan is a great choice for those looking for a fuel-efficient and stylish sedan.", + "Summertime is the perfect time to enjoy the open road in your new Hyundai Sonata Hybrid Sedan.", + "The 2012 Hyundai Sonata Hybrid Sedan is a sleek and stylish car that gets excellent gas mileage.", + "The 2012 Hyundai Sonata Hybrid Sedan is a great choice for those looking for a fuel-efficient vehicle.", + "This is the 2012 Hyundai Sonata Hybrid Sedan.", + "The Hyundai Sonata Hybrid is a fuel-efficient alternative to traditional sedans.", + "The Hyundai Sonata Hybrid is a sedan that gets excellent gas mileage.", + "The 2012 Hyundai Sonata Hybrid Sedan is a stylish and efficient hybrid car.", + "The 2012 Hyundai Sonata Hybrid is a great choice for those looking for a fuel-efficient sedan." + ], + "2012 Ford F-450 Super Duty Crew Cab": [ + "The 2012 Ford F-450 Super Duty Crew Cab is a large truck that seats up to six people.", + "The 2012 Ford F-450 Super Duty Crew Cab is a large truck with four full-size doors and a spacious crew cab.", + "A 2012 Ford F-450 Super Duty Crew Cab is a large four-door truck with plenty of room for passengers and cargo.", + "A 2012 Ford F-450 Super Duty Crew Cab has four full-size doors and a large crew cab area with seating for up to six occupants.", + "A 2012 Ford F-450 Super Duty Crew Cab is an 8-cylinder, 6.", + "A 2012 Ford F-450 Super Duty Crew Cab typically has four full-sized doors, a large crew cab area with enough space for six adults, and a powerful engine designed for towing large loads.", + "The ford f-450 2012 super duty crew cab has an aggressive front end with a six-bar grille and a chiseled hood.", + "The 2012 Ford F-450 Super Duty Crew Cab is a large pickup truck with four full-size doors and a spacious crew cab.", + "A 2012 Ford F-450 Super Duty Crew Cab is a large truck with a super duty engine.", + "A 2012 Ford F-450 Super Duty Crew Cab is a big, black truck with four doors and a longbed.", + "The 2012 Ford F-450 Super Duty Crew Cab can be identified by its large size and powerful engine.", + "The 2012 Ford F-450 Super Duty Crew Cab has an identification number (VIN) of 1FDSF4GY1CEB32636.", + "One way to identify a 2012 Ford F-450 Super Duty Crew Cab is by its large size.", + "The 2012 Ford F-450 Super Duty Crew Cab is a large pickup truck that seats up to six people.", + "A 2012 Ford F-450 Super Duty Crew Cab can be identified by its large size and four full doors.", + "The 2012 Ford F-450 Super Duty Crew Cab can be identified by its unique body style.", + "The 2012 Ford F-450 Super Duty Crew Cab is a large truck that can seat up to six people.", + "The 2012 Ford F-450 Super Duty Crew Cab can be identified by its large size and four full doors.", + "By looking at the VIN number, you can identify a 2012 Ford F-450 Super Duty Crew Cab.", + "The 2012 Ford F-450 Super Duty Crew Cab can be identified by its unique body style.", + "A 2012 Ford F-450 Super Duty Crew Cab looks like a large pickup truck with four doors.", + "A 2012 Ford F-450 Super Duty Crew Cab has four conventional doors and a full-sized crew cab.", + "A 2012 Ford F-450 Super Duty Crew Cab has four regular doors and a crew cab, meaning it has extra space behind the front seats for passengers or storage.", + "A 2012 Ford F-450 Super Duty Crew Cab is a large truck with four full-size doors and seating for up to six people.", + "The 2012 Ford F-450 Super Duty Crew Cab is a large truck that seats up to six people.", + "The 2012 Ford F-450 Super Duty Crew Cab looks like a large truck with four doors and a flatbed in the back.", + "A 2012 Ford F-450 Super Duty Crew Cab looks like a large truck with four doors and a crew cab.", + "The Ford F-450 Super Duty Crew Cab has a large, muscular appearance with a wide stance and a large grille.", + "A 2012 Ford F-450 Super Duty Crew Cab looks like a large, 6-wheeled truck with a cab that has room for 5 passengers.", + "Here's a picture of a 2012 Ford F-450 Super Duty Crew Cab:.", + "The image is of a black 2012 Ford F-450 Super Duty Crew Cab parked in a driveway.", + "This image is of a 2012 Ford F-450 Super Duty Crew Cab.", + "This image is of a 2012 Ford F-450 Super Duty Crew Cab.", + "This image is of a 2012 Ford F-450 Super Duty Crew Cab pickup truck in black.", + "Image shows a large, red truck with four doors.", + "The 2012 Ford F-450 Super Duty Crew Cab is a powerful truck that can tow and haul a lot of weight.", + " PlatinumThis image is of a 2012 Ford F-450 Super Duty Crew Cab Platinum.", + "The image is of a large, dark blue truck with four doors.", + " truckIn the image, the truck is dark blue with chrome accents.", + "This image shows a 2012 Ford F-450 Super Duty Crew Cab in black.", + "This 2012 Ford F-450 Super Duty Crew Cab is a great truck for those who need a lot of hauling and towing power.", + " \"Super Duty Crew Cab model shown.", + "This truck is built for hauling.", + "The 2012 Ford F-450 Super Duty Crew Cab is a heavy-duty truck that is built to work hard and tow heavy loads.", + "The 2012 Ford F-450 Super Duty Crew Cab features a 6.", + "2012 Ford F-450 Super Duty Crew Cab.", + "A 2012 Ford F-450 Super Duty Crew Cab pickup truck.", + "The 2012 Ford F-450 Super Duty Crew Cab features a spacious cabin with plenty of room for passengers and cargo.", + "The 2012 Ford F-450 Super Duty Crew Cab is a heavy-duty truck designed for hauling and towing large loads.", + "The Ford F-450 Super Duty Crew Cab is a full-size pick-up truck with plenty of room for passengers and cargo." + ], + "1993 Geo Metro Convertible": [ + "A 1993 Geo Metro Convertible would look like a small, two-door car with a convertible top.", + "The 1993 Geo Metro Convertible was a three-door hatchback with a 1.", + "A 1993 Geo Metro Convertible is a small car with two doors and a convertible top.", + "The 1993 Geo Metro Convertible has a 1.", + "A 1993 Geo Metro Convertible is a small car that seats four people.", + "The 1993 Geo Metro Convertible is a Red convertible with a black top and a grey interior.", + "A 1993 Geo Metro Convertible is a small, two-door car that has a removable top.", + "A 1993 Geo Metro Convertible would look like a small, boxy car with a convertible top.", + "The 1993 Geo Metro Convertible has a black soft top with a rear window defroster, and a body-colored rear spoiler.", + "The 1993 Geo Metro Convertible would have likely come in a variety of different colors, but would have featured a folding convertible top, as well as roll-up windows.", + "One way to identify a 1993 Geo Metro Convertible is by its unique two-tone paint job.", + "There is no definitive way to identify a 1993 Geo Metro Convertible, as there were many different models and variations of this car produced that year.", + "One way to identify a 1993 Geo Metro Convertible is by its physical appearance.", + "The 1993 Geo Metro Convertible can be identified by its unique hood, which is shorter than that of the sedan model, and by its convertible top.", + "The 1993 Geo Metro Convertible is a two-door hatchback with a rear seat that folds down to provide additional cargo space.", + "The best way to identify a 1993 Geo Metro Convertible is by its VIN number.", + "The best way to identify a 1993 Geo Metro Convertible is to look for the VIN (Vehicle Identification Number) on the dashboard.", + "A 1993 Geo Metro Convertible will have the word \"Convertible\" written on the back.", + "A 1993 Geo Metro Convertible has a 1.", + "Individuals can identify a 1993 Geo Metro Convertible by its physical features.", + "The Geo Metro Convertible is a small, two-door car that was produced by the Geo division of General Motors from 1989 to 1997.", + "A 1993 Geo Metro Convertible would look like a small car with a convertible top.", + "A 1993 Geo Metro Convertible would look like a small, two-door convertible with a cloth top.", + "There is no definitive answer, as each vehicle will have slight variations.", + "A 1993 Geo Metro Convertible looks like a small, two-door car with a cloth convertible top.", + "The 1993 Geo Metro Convertible is a small car with a two-door convertible body style.", + "I'm not sure what you're asking.", + "A 1993 Geo Metro Convertible would look like a small car with a convertible top.", + "I'm not sure what you're asking, but a 1993 Geo Metro Convertible would look like a 1993 Geo Metro with a convertible top.", + "I'm not sure what you're asking for.", + "In the image, the car is a pale blue color and the top is down.", + "The image is of a blue Geo Metro Convertible with the top down.", + "This image shows a Geo Metro Convertible from 1993.", + "Image is of a two-door, teal Geo Metro convertible with a tan cloth interior and black soft top.", + "The image is of a blue Geo Metro Convertible with the top down.", + "The image is of a light blue 1993 Geo Metro Convertible with the top down.", + "In the image, the Geo Metro convertible is a light green color with a white top.", + "The image is of a 1993 Geo Metro Convertible with the top up.", + "The image is of a white Geo Metro Convertible with the top down.", + "The image shows a 1993 Geo Metro Convertible with a red exterior and a black interior.", + "1993 Geo Metro Convertible.", + "This is a Geo Metro convertible from 1993.", + "This is a 1993 Geo Metro Convertible.", + "The Geo Metro was a subcompact car that was produced by General Motors from 1989 to 2001.", + "This is a 1993 Geo Metro Convertible.", + "This little car was a real gas saver!The Geo Metro Convertible was produced from 1989 to 1994.", + "A 1993 Geo Metro Convertible on a sunny day.", + "The Geo Metro Convertible was a limited-edition car that was only produced for one year.", + "This car is a 1993 Geo Metro Convertible.", + "This car is a 1993 Geo Metro Convertible." + ], + "2012 Dodge Journey SUV": [ + "The 2012 Dodge Journey SUV has a rounded, boxy shape with a sloping rear end.", + "The Journey is a Dodge SUV that seats five people.", + "Assuming you would like an overview of the 2012 Dodge Journey SUV: The 2012 Dodge Journey is a mid-sized crossover SUV.", + "The 2012 Dodge Journey SUV is a large vehicle with plenty of interior space.", + "A 2012 Dodge Journey SUV has a sleek and modern design.", + "The 2012 Dodge Journey SUV has a distinctively boxy look, with a wide grille and large headlamps.", + "A 2012 Dodge Journey SUV is a large vehicle that can seat up to seven people.", + "The 2012 Dodge Journey SUV has a long, boxy body with a wide stance.", + "A 2012 Dodge Journey SUV is a large vehicle that can seat up to seven people.", + "A 2012 Dodge Journey SUV typically has four doors, enough seating for five passengers, and a cargo area in the back.", + "The 2012 Dodge Journey SUV can be identified by its unique grille design, sleek body shape, and its \"Dodge\" badge on the grille and tailgate.", + "The 2012 Dodge Journey SUV can be identified by its body style.", + "There are a few ways to identify a 2012 Dodge Journey SUV.", + "I'm not sure what you are asking.", + "The easiest way to identify a 2012 Dodge Journey SUV is by its model year.", + "One way to identify a 2012 Dodge Journey SUV is by its six-speed automatic transmission.", + "One way to identify a 2012 Dodge Journey SUV is to look for the identifying badge on the back of the vehicle.", + "A quick way to identify a 2012 Dodge Journey SUV is to look for the following features: chiseled front end, crosshair grille, and available 20-inch wheels.", + "The easiest way to identify a 2012 Dodge Journey SUV is to look for the Dodge Journey logo on the front grille.", + "The 2012 Dodge Journey features a new front grille and headlamp design, new fog lamps, body-color door handles and side mirrors, and new wheel designs.", + "The 2012 Dodge Journey SUV has a sleek, modern design.", + "The 2012 Dodge Journey is a 5 door SUV that seats 7 passengers.", + "The 2012 Dodge Journey SUV has a sleek and stylish body with sweeping lines and a curved windshield.", + "A 2012 Dodge Journey SUV has a sleek and stylish design.", + "The 2012 Dodge Journey SUV features a V-shaped front grille, projector headlamps, LED daytime running lights, and a sculpted hood.", + "The 2012 Dodge Journey SUV has a sleek, modern look.", + "A 2012 Dodge Journey SUV has a sleek, modern look with a sporty feel.", + "A 2012 Dodge Journey SUV has a sleek, modern look.", + "The 2012 Dodge Journey SUV has a sleek, modern look with a sporty feel.", + "The 2012 Dodge Journey SUV has a very stylish look to it.", + "This image is of a 2012 Dodge Journey SUV in silver.", + "The image is of a white SUV with chrome detailing.", + "This image is of a 2012 Dodge Journey SUV in silver.", + "This image is of a 2012 Dodge Journey SUV in black.", + "An image of a 2012 Dodge Journey SUV from the internet shows a silver minivan with tinted windows and a sunroof.", + "The image is of a silver 2012 Dodge Journey SUV.", + "The image is of a 2012 Dodge Journey SUV in a deep blue color.", + "This image is of a 2012 Dodge Journey SUV in front of a brick wall.", + "The 2012 Dodge Journey SUV is a large, boxy SUV with a chrome grille and plastic body cladding.", + "The image shows a dark blue Dodge Journey SUV with tinted windows.", + "The 2012 Dodge Journey SUV is a versatile and stylish vehicle that is perfect for families.", + "The 2012 Dodge Journey is a reliable and affordable SUV perfect for families.", + "This Dodge Journey SUV is the perfect vehicle for those who need a little extra space but don't want to sacrifice style or performance.", + "Dodge Journey SUV.", + "This roomy SUV is perfect for families on the go.", + " The 2012 Dodge Journey is a reliable and affordable SUV.", + " The all-new 2012 Dodge Journey - the most versatile crossover in its class.", + " Dodge Journey SUV.", + "A Dodge Journey SUV in a parking lot.", + "Dodge Journey SUV." + ], + "2012 Dodge Charger Sedan": [ + "The 2012 Dodge Charger Sedan has a long, sleek look with a wide grille and big headlights.", + "A 2012 Dodge Charger Sedan has a long, wide body with a sleek design.", + "The 2012 Dodge Charger Sedan has a modern and stylish design.", + "The 2012 Dodge Charger Sedan has a long, sleek body with a tapered front end.", + "The 2012 Dodge Charger Sedan has a long, wide body with a short rear deck.", + "A 2012 Dodge Charger Sedan has a long, wide hood and a large grille.", + "A2012 Dodge Charger Sedan has a long, wide body with a sloped hood and windshield.", + "A 2012 Dodge Charger Sedan has a sleek, modern design with sharp lines and an aggressive stance.", + "A 2012 Dodge Charger Sedan is a four-door, five-passenger car that offers a V6 engine.", + "The 2012 Dodge Charger Sedan is a four-door sedan that seats up to five passengers.", + "The 2012 Dodge Charger Sedan has a unique look with its long, sleek body and large grille.", + "There are a few ways to identify a 2012 Dodge Charger Sedan.", + "The 2012 Dodge Charger Sedan can be identified by its four doors, low roof line, and short trunk.", + "The 2012 Dodge Charger Sedan can be identified by its long, sleek body and large, round headlights.", + "The 2012 Dodge Charger is a full-size sedan that seats five passengers.", + "The 2012 Dodge Charger Sedan can be identified by its long, sleek body, its large front grille, and its wide, stance.", + "The 2012 Dodge Charger Sedan can be identified by its long, wide body and its large, hexagonal grille.", + "One way to identify a 2012 Dodge Charger Sedan is to look for the \"Charger\" badge on the back of the car.", + "The 2012 Dodge Charger Sedan can be identified by its long hood and four-door configuration.", + "The 2012 Dodge Charger Sedan can be identified by its long, sleek body, wide stance, and aggressive grill.", + "A 2012 Dodge Charger Sedan looks like a large car with four doors.", + "A 2012 Dodge Charger Sedan looks like a large sedan with a long hood and trunk.", + "The 2012 Dodge Charger Sedan has a wide, aggressive stance with a sleek, modern look.", + "A 2012 Dodge Charger Sedan has a long, wide body with a sloped hood and a large grille.", + "The 2012 Dodge Charger Sedan has a long, sleek body with sharp curves.", + "A 2012 Dodge Charger Sedan looks like a four-door sedan with a V-8 engine.", + "The 2012 Dodge Charger Sedan looks like a modernized version of a classic muscle car.", + "A 2012 Dodge Charger Sedan looks like a four-door sedan with a wide, muscular stance.", + "Assuming you are referring to the exterior: The 2012 Dodge Charger Sedan has a long, sleek body with a tapered front end.", + "A 2012 Dodge Charger Sedan has a sleek and modern design.", + "The image is of a 2012 Dodge Charger Sedan in white.", + "The image is of a 2012 Dodge Charger Sedan in silver.", + "The image shows a 2012 Dodge Charger Sedan in blue with silver trim.", + "The photograph shows a 2012 Dodge Charger sedan in a bright yellow color.", + "The 2012 Dodge Charger Sedan is a four door sedan that seat up to five passengers.", + "The image shows a 2012 Dodge Charger Sedan in a deep blue color.", + "The image is of a silver 2012 Dodge Charger Sedan.", + "This image is of a 2012 Dodge Charger Sedan in blue.", + "The image is of a turquoiseblue 2012 Dodge Charger Sedan with black racing stripes on the hood and trunk.", + "The image is of a sleek,ports car.", + "This bright red 2012 Dodge Charger Sedan is sure to turn heads when driving.", + "This is a photo of a 2012 Dodge Charger Sedan.", + "Dodge Charger Sedan - the perfect car for those who want style and performance.", + "This is a photo of a 2012 Dodge Charger Sedan.", + "A Dodge Charger Sedan from 2012.", + "The 2012 Dodge Charger Sedan is a sleek and stylish car that is sure to turn heads.", + "This is a 2012 Dodge Charger Sedan.", + "The 2012 Dodge Charger Sedan is a powerful and stylish car that is sure to turn heads.", + "The 2012 Dodge Charger Sedan is a sleek and stylish car that is sure to turn heads.", + "The 2012 Dodge Charger Sedan is a sleek and stylish car that is sure to turn heads." + ], + "2012 Mitsubishi Lancer Sedan": [ + "A 2012 Mitsubishi Lancer Sedan has a sleek, aerodynamic design with sharp angles and a sporty look.", + "A 2012 Mitsubishi Lancer Sedan has a sleek, aerodynamic design with swooping lines and a sharp, angular front end.", + "The 2012 Mitsubishi Lancer is a small sedan that seats five.", + "The 2012 Mitsubishi Lancer Sedan has a sporty and modern look.", + "A 2012 Mitsubishi Lancer Sedan has a sleek, sporty look with flared front and rear fenders, a chrome-trimmed grille, projector-beam headlights, and LED daytime running lights.", + "The 2012 Mitsubishi Lancer Sedan is a four-door sedan that seats five.", + "A 2012 Mitsubishi Lancer Sedan is a car that seats five people.", + "The 2012 Mitsubishi Lancer Sedan is a four-door car that seats five passengers.", + "The 2012 Mitsubishi Lancer Sedan has a sporty look with sleek lines.", + "The 2012 Mitsubishi Lancer Sedan is a small to mid-size sedan that seats five passengers.", + "The 2012 Mitsubishi Lancer Sedan's exterior can be identified by its sweeping proportions, aggressive stance, and sporty character lines.", + "The 2012 Mitsubishi Lancer Sedan is identified by its long hood, short rear deck, and wide stance.", + "To identify a 2012 Mitsubishi Lancer Sedan, look for the following features: a sleek, aerodynamic body; a sporty yet sophisticated interior; and a powerful yet fuel-efficient engine.", + "The 2012 Lancer sedan is easily distinguishable by its sporty and aggressive exterior design.", + "The 2012 Mitsubishi Lancer Sedan is a four-door vehicle that seats five passengers.", + "The 2012 Mitsubishi Lancer Sedan can be identified by its four doors, chrome grille, and sleek lines.", + "Looking at the front of the vehicle, the 2012 Mitsubishi Lancer Sedan can be distinguished by its prominent chrome grille and sharp, angular headlights.", + "The 2012 Mitsubishi Lancer Sedan can be identified by its four-door design, swept-back headlights, and large grille.", + "There are a few ways that you can identify a 2012 Mitsubishi Lancer Sedan.", + "The 2012 Mitsubishi Lancer Sedan can be identified by its aggressive styling, which includes a wide grille and large headlights.", + "Mitsubishi Lancer 2012.", + "A 2012 Mitsubishi Lancer Sedan looks like a small, sporty sedan with sloping headlights and a wide grille.", + "A 2012 Mitsubishi Lancer Sedan looks like a small, four-door car.", + "The 2012 Mitsubishi Lancer Sedan looks like a compact car with a sporty design.", + "A 2012 Mitsubishi Lancer Sedan looks like a normal Mitsubishi Lancer, except it is a sedan instead of a coupe or hatchback.", + "The 2012 Mitsubishi Lancer Sedan has a stylish and aggressive look with its sporty front grille and sleek lines.", + "A 2012 Mitsubishi Lancer Sedan has a sleek, modern look.", + "A 2012 Mitsubishi Lancer Sedan has a sleek, modern look with sharp lines and a sporty feel.", + "It looks like a small four-door sedan with a sloping roofline.", + "The most recent model of the Mitsubishi Lancer sedan looks very similar to the 2007 model.", + "This image is of a 2012 Mitsubishi Lancer sedan in silver.", + "This particular image is of a 2012 Mitsubishi Lancer ES Sedan in Pyrite Gray Metallic.", + "The image is of a red 2012 Mitsubishi Lancer Sedan with chrome accents.", + "Image is of a 2012 Mitsubishi Lancer Sedan.", + "The image is of a red Mitsubishi Lancer sedan with black rims.", + "The image is of a 2012 Mitsubishi Lancer Sedan that is silver in color.", + "This image shows a 2012 Mitsubishi Lancer sedan in a bright silver color.", + "The image is of a 2012 Mitsubishi Lancer Sedan in silver.", + "This image is of a 2012 Mitsubishi Lancer Sedan.", + "The image is of a car that is blue in color.", + "This 2012 Mitsubishi Lancer is a great choice for those looking for an affordable and reliable sedan.", + " A 2012 Mitsubishi Lancer Sedan.", + "A 2012 Mitsubishi Lancer Sedan.", + "Mitsubishi Lancer Sedan, 2012.", + "The 2012 Mitsubishi Lancer is a seductive blend of style, sport and value.", + "The Mitsubishi Lancer is a compact sedan that was first introduced in 1973.", + "A 2012 Mitsubishi Lancer Sedan parked in a driveway.", + "A 2012 Mitsubishi Lancer Sedan.", + "The Mitsubishi Lancer is a compact sedan that was first introduced in 1973.", + "2012 Mitsubishi Lancer Sedan." + ], + "2012 Chevrolet Traverse SUV": [ + "The 2012 Chevrolet Traverse is a large SUV that seats up to eight passengers.", + "The 2012 Chevrolet Traverse is a seven or eight-seater SUV with a V-6 engine.", + "The Traverse is Chevy's 7- or 8-seat crossover SUV.", + "A 2012 Chevrolet Traverse SUV is a large vehicle that can seat up to eight people.", + "The 2012 Chevrolet Traverse is a large SUV with a muscular look.", + "A 2012 Chevrolet Traverse SUV has a sleek design with curved lines and a large grille.", + "A 2012 Chevrolet Traverse SUV is a vehicle that seats up to eight passengers and has a V6 engine.", + "The Chevrolet Traverse is a mid-size SUV that was first introduced in 2009.", + "A 2012 Chevrolet Traverse SUV has a sleek, modern design with sharp lines and plenty of chrome accents.", + "A Chevrolet Traverse SUV from 2012 has a sleek and stylish look.", + "There are a few ways that you can identify a 2012 Chevrolet Traverse SUV.", + "The 2012 Chevrolet Traverse SUV is a 7-8 seater SUV that is based on the GMC Acadia/Saturn Outlook.", + "The 2012 Chevrolet Traverse has a rectangular grille with the Chevrolet logo in the center.", + "The 2012 Chevrolet Traverse SUV can be identified by its large size, boxy shape, and upright windshield.", + "The 2012 Chevrolet Traverse has a boxy shape with a tall stance.", + "One way to identify a 2012 Chevrolet Traverse SUV is by its manufacturer's logo on the front grille.", + "The 2012 Chevrolet Traverse has a distinctive front grille and headlight design.", + "The answer may vary depending on which country you are in, but one way to identify a 2012 Chevrolet Traverse SUV is to look for the \"Chevrolet\" name on the front grille and the \"Traverse\" name on the.", + "The 2012 Chevrolet Traverse SUV can be identified by its large, boxy body and tall stance.", + "The 2012 Chevrolet Traverse has a protruding nose, with the Chevy logo in the center, and slim headlights.", + "A 2012 Chevrolet Traverse would have a sleek, boxy shape with sharp angles.", + "The 2012 Chevrolet Traverse has a wide stance with an aggressive grille and projector-beam headlamps.", + "A 2012 Chevrolet Traverse SUV has a sleek, modern look with plenty of space for passengers and cargo.", + " chevy traverse.", + "A 2012 Chevrolet Traverse SUV has a sleek, modern design with a curved hood and windshield.", + "The 2012 Chevrolet Traverse has a sleek, modern look with smooth lines and a grille that blends in with the headlights.", + "This Chevy SUV has a sleek look with an aggressive stance.", + "A 2012 Chevrolet Traverse SUV has a sleek, modern design with sharp lines and a slightly rounded shape.", + "A 2012 Chevrolet Traverse SUV has a boxy shape with SUV characteristics such as a high ground clearance and optional all-wheel drive.", + "The 2012 Chevy Traverse looks like a cross between a minivan and an SUV.", + "The image is of a navy blue SUV with chrome accents.", + "This image is of a 2012 Chevrolet Traverse SUV in black.", + "The Chevrolet Traverse is a mid-size SUV that was first introduced in 2009.", + "The image is of a 2012 Chevrolet Traverse SUV that is blue in color.", + "The image is of a 2012 Chevrolet Traverse SUV in blue.", + "The image is of a red Chevrolet Traverse SUV parked in a driveway.", + "The image is of a 2012 Chevrolet Traverse SUV in white.", + "The image is of a 2012 Chevrolet Traverse SUV in blue.", + "The image is of a 2012 Chevrolet Traverse SUV in silver.", + "The image is of a 2012 Chevrolet Traverse SUV in silver.", + " The 2012 Chevrolet Traverse, a crossover SUV from Chevrolet.", + "The Chevrolet Traverse is a full-size SUV that was first introduced in 2009.", + "Chevrolet Traverse SUV.", + "The Chevrolet Traverse is a full-size SUV that was introduced in 2009.", + "2012 Chevrolet Traverse SUVThe Traverse is a versatile and stylish SUV that's perfect for families or groups who need a little extra space.", + "The Chevy Traverse is a midsize SUV with a lot of space for families.", + "2012 Chevrolet Traverse SUV.", + " A 2012 Chevrolet Traverse SUV in a parking lot.", + "The Chevrolet Traverse is a full-size SUV that seats up to eight passengers.", + "The Chevrolet Traverse is a seven-passenger crossover SUV built on GM's Theta platform." + ], + "2012 Buick Verano Sedan": [ + "A 2012 Buick Verano Sedan has a sleek, stylish look with a chrome grille and chrome accents.", + "The Buick Verano is a compact sedan that was first introduced in 2012.", + "A 2012 Buick Verano Sedan has a sleek and stylish design with a chrome grille and 16-inch alloy wheels.", + "A 2012 Buick Verano Sedan has a sleek, modern look with sleek lines and a sporty feel.", + "The Buick Verano is a compact sedan that was introduced in 2012.", + "A 2012 Buick Verano Sedan has a sleek, modern design with chrome accents.", + "A 2012 Buick Verano Sedan has a sleek, modern look with chrome accents.", + "The 2012 Buick Verano has a sleek, modern look.", + "The 2012 Buick Verano is a sleek and stylish sedan that is sure to turn heads.", + "The 2012 Buick Verano Sedan is a small, four-door car.", + "The Buick Verano is a sedan that was released in 2012.", + "The 2012 Buick Verano Sedan has the following identifying features: a chrome-accented grille, chrome door handles, and chrome window trim.", + "If you are looking at a Buick Verano Sedan from the front, you will notice that the Buick emblem is in the center of the grille.", + "The Buick Verano is a sedan that was introduced in 2012.", + "Production of the Buick Verano began in 2011, so all 2012 model year Veranos will be sedans.", + "From the outside, the 2012 Buick Verano has chrome accents and a sleek, modern design.", + "The 2012 Buick Verano Sedan can be identified by its sleek, stylish design.", + "The Verano is Buick\u2019s new entry-level sedan, and it\u2019s a good one.", + "The 2012 Buick Verano Sedan can be identified by its long, sleek body and its classic Buick grille.", + "There are a few ways to identify a 2012 Buick Verano Sedan.", + "The 2012 Buick Verano sedan has a sleek, modern look.", + "The 2012 Buick Verano Sedan has a sleek and modern look.", + "A 2012 Buick Verano Sedan has a sleek design with smooth lines.", + "The 2012 Buick Verano is a sedan that seats five.", + "A 2012 Buick Verano Sedan has a sleek, modern look with smooth lines and a stylish grille.", + "The 2012 Buick Verano is a sleek and sophisticated sedan that looks like it means business.", + "The 2012 Buick Verano is a sleek, stylish sedan that is sure to turn heads.", + "A 2012 Buick Verano Sedan has a sleek, modern look with chrome accents.", + "The 2012 Buick Verano sedan looks like a modern sedan with sleek lines and a stylish look.", + "A 2012 Buick Verano Sedan has a sleek, modern look with smooth lines and a spacious interior.", + "silver car with four doors and windows; the Buick logo is in the center of the grille; the headlights and taillights are slim and elongated; the body is sleek and curved.", + "This Buick Verano is silver with a black interior.", + "The image is of a sleek, silver car with four doors.", + "The Buick Verano Sedan is a 2012 model that features a sleek and modern design.", + "The image shows a 2012 Buick Verano Sedan in silver with a black interior.", + "The image is of a 2012 Buick Verano Sedan in silver.", + "The image is of a car that is blue in color.", + "The image is of a 2012 Buick Verano Sedan in black.", + "The image is of a 2012 Buick Verano Sedan in a light blue color.", + "This image shows a 2012 Buick Verano Sedan in a bright red color.", + "The 2012 Buick Verano Sedan is a luxurious and comfortable car that is perfect for any occasion.", + "2012 Buick Verano Sedan in BlueThis 2012 Buick Verano Sedan is a sleek and sporty car that's perfect for hitting the open road.", + "The 2012 Buick Verano Sedan is a stylish and comfortable car that is perfect for short trips or long drives.", + "The all-new 2012 Buick Verano sedan is a Buick through and through, with a refined design, a quiet and spacious cabin, and a wealth of standard features.", + "The Buick Verano Sedan is a stylish and affordable car that is perfect for those looking for a reliable and comfortable ride.", + "This Buick sedan has a smooth, powerful engine and a sleek design that makes it a great choice for a luxury car.", + "The Buick Verano is a stylish, comfortable, and well-equipped small sedan.", + "The 2012 Buick Verano is a sleek and stylish sedan that's perfect for those who want a sophisticated car without breaking the bank.", + "The Buick Verano is a stylish and comfortable sedan that's perfect for daily driving.", + "The Buick Verano is a sedan that was first introduced in 2012." + ], + "2012 Toyota Sequoia SUV": [ + "A 2012 Toyota Sequoia SUV has a powerful V8 engine, plenty of passenger and cargo space, and a comfortable, luxurious interior.", + "A 2012 Toyota Sequoia SUV has a large, boxy body with a wide stance.", + "A 2012 Toyota Sequoia SUV is a large SUV with a square body and a large grille.", + "A 2012 Toyota Sequoia SUV has a large, boxy body with plenty of room for passengers and cargo.", + "A 2012 Toyota Sequoia SUV is a large vehicle that can seat up to eight passengers.", + "The 2012 Toyota Sequoia is a full-size SUV that seats up to eight passengers.", + "A 2012 Toyota Sequoia SUV has a muscular body with flared wheel arches and a wide stance.", + "A 2012 Toyota Sequoia SUV generally has a large, boxy body with plenty of room for passengers and cargo.", + "A2012 Toyota Sequoia SUV has a large, boxy body with a wide stance.", + "A 2012 Toyota Sequoia SUV has a large body with four doors.", + "The Toyota Sequoia is a large SUV with room for up to eight passengers.", + "The 2012 Toyota Sequoia SUV can be identified by its large size, boxy shape, and wide stance.", + "The 2012 Toyota Sequoia SUV can be identified by its large size and boxy shape.", + "The 2012 Toyota Sequoia SUV can be identified by its large size, boxy shape, and wide grille.", + "There are several ways to identify a 2012 Toyota Sequoia SUV.", + "The 2012 Toyota Sequoia SUV can be identified by its large size and boxy shape.", + "The 2012 Toyota Sequoia SUV can be identified by its large size and boxy shape.", + "The 2012 Toyota Sequoia SUV can be identified by its large size and boxy shape.", + "You can identify a 2012 Toyota Sequoia SUV by the Toyota emblem on the front grille, the \"Sequoia\" nameplate on the rear gate, and the large size of the vehicle.", + "The 2012 Toyota Sequoia SUV can be identified by its large size and boxy shape.", + "A 2012 Toyota Sequoia SUV looks like a large, boxy SUV with a wide grille and large headlights.", + "It's a large, boxy SUV with a tall stance.", + "A 2012 Toyota Sequoia SUV has a big, boxy body with a wide grille and large headlamps.", + "A 2012 Toyota Sequoia SUV has a large grille with six chrome bars, squared-off headlights, and a muscular hood.", + "A 2012 Toyota Sequoia SUV has a large grille, wide headlights, and a boxy body.", + "The 2012 Toyota Sequoia SUV has a robust and aggressive appearance.", + "The 2012 Toyota Sequoia SUV looks like a cross between a SUV and a minivan.", + "A 2012 Toyota Sequoia SUV typically has a body-on-frame construction, a large grille, and a boxy body.", + "A 2012 Toyota Sequoia SUV is a large, boxy vehicle with a wide grille and large headlights.", + "A 2012 Toyota Sequoia SUV has a large, boxy body with a wide stance.", + "This image is of a 2012 Toyota Sequoia SUV in gray.", + "The image is of a 2012 Toyota Sequoia SUV in silver with a black roof.", + "The image is of a large, silver SUV with large, glossy wheels.", + "The image is of a 2012 Toyota Sequoia SUV in black.", + "The image is of a 2012 Toyota Sequoia SUV.", + "The image is of a large, silver SUV with a sleek design.", + "The image is of a white Toyota Sequoia SUV with a chrome grille and bumper.", + "The specific image I found was of a Black Toyota Sequoia SUV with a gloss black finish and chrome detailing.", + "The image is of a 2012 Toyota Sequoia SUV in silver.", + "An image of a 2012 Toyota Sequoia SUV from the internet shows the vehicle in a silver color with a black interior.", + "The 2012 Toyota Sequoia SUV is a large vehicle that can seat up to eight people.", + "The 2012 Toyota Sequoia is a large SUV that can seat up to eight passengers.", + " A large SUV, perfect for hauling a family and all their gear.", + "The flagship SUV from Toyota, the Sequoia is a massive automobile designed for those who need serious towing and hauling capability.", + "A family crosses a river in their 2012 Toyota Sequoia SUV.", + "This is a 2012 Toyota Sequoia SUV.", + "The 2012 Toyota Sequoia is a full-size SUV that seats up to eight passengers.", + "This is a 2012 Toyota Sequoia SUV.", + "The 2012 Toyota Sequoia SUV is a large, powerful vehicle designed to tackle any terrain.", + "This massive SUV is great for hauling lots of people and cargo." + ], + "2007 Hyundai Elantra Sedan": [ + "A 2007 Hyundai Elantra Sedan has four doors and seats five passengers.", + "A 2007 Hyundai Elantra Sedan is a four-door car that seats five passengers.", + "The 2007 Hyundai Elantra Sedan is a small car that seats five passengers.", + "A 2007 Hyundai Elantra Sedan looks like a mid-sized sedan with a sleek design.", + "A 2007 Hyundai Elantra Sedan has 4 doors, seats 5 passengers, and has a 2.", + "A 2007 Hyundai Elantra Sedan is a 4-door sedan that seats 5 passengers.", + "The 2007 Hyundai Elantra Sedan is a compact car that seats five passengers.", + "A 2007 Hyundai Elantra Sedan has a sleek, modern design with curves and lines that give it an aerodynamic look.", + "A 2007 Hyundai Elantra Sedan has four doors, and seats five passengers.", + "A 2007 Hyundai Elantra Sedan has a sleek, curved body with a long hood and short trunk.", + "The only way to identify a 2007 Hyundai Elantra Sedan is by its VIN number.", + "On the front of the car, there is a Hyundai logo in the center of the grille.", + "2007 Hyundai Elantra sedan can be distinguished by its large front grille, long hood, and large headlamps.", + "The 2007 Hyundai Elantra sedan has a sleek, modern design with curved lines and a sloping roofline.", + "The 2007 Hyundai Elantra Sedan can be identified by its sweptback headlights, large grille, and angular taillights.", + "The 2007 Hyundai Elantra sedan has a sleek design with smoothly curved lines.", + "The 2007 Hyundai Elantra Sedan can be identified by its front grille, which is chrome-plated with the Hyundai logo in the center.", + "The 2007 Hyundai Elantra Sedan can be identified by its unique grille, which is outlined in chrome and has a Hyundai logo in the center.", + "The 2007 Hyundai Elantra Sedan has a sleek, modern look.", + "The 2007 Hyundai Elantra Sedan can be identified by its long and sloping hood, large headlamps, and wide grille.", + "The 2007 Hyundai Elantra is a small sedan that seats five people.", + "The 2007 Hyundai Elantra Sedan has a sleek and stylish look with a slightly sloped roofline and curved headlights.", + "The 2007 Hyundai Elantra Sedan looks like a small to midsize sedan with a sporty look.", + "A 2007 Hyundai Elantra sedan has a sleek, modern design with a sporty stance.", + "A 2007 Hyundai Elantra Sedan has a sleek and stylish body with chrome accents and a large grille.", + "The 2007 Hyundai Elantra Sedan has a sleek design with sharp lines.", + "A 2007 Hyundai Elantra looks like a small, silver sedan.", + "The 2007 Hyundai Elantra Sedan is a small to mid-size sedan that seats five passengers.", + "The 2007 Hyundai Elantra Sedan is a four-door sedan that seats up to five people.", + "A 2007 Hyundai Elantra Sedan has clean lines and an aggressive stance.", + "The image is of a red 2007 Hyundai Elantra sedan.", + "The image is of a red Hyundai Elantra sedan with a black interior.", + "The image is of a 2007 Hyundai Elantra sedan in silver.", + "The image is of a 2007 Hyundai Elantra Sedan in Silver.", + "The image is of a 2007 Hyundai Elantra Sedan in silver.", + "A 2007 Hyundai Elantra Sedan is a four-door sedan that seats five passengers.", + "The image is of a grey Hyundai Elantra sedan with a spoiler on the back.", + "The image is of a 2007 Hyundai Elantra Sedan in blue.", + "The image is of a 2007 Hyundai Elantra Sedan in white.", + "The image is of a 2007 Hyundai Elantra sedan in blue.", + "2007 Hyundai Elantra Sedan.", + "This image is of a 2007 Hyundai Elantra Sedan.", + "2007 Hyundai Elantra Sedan.", + "2007 Hyundai Elantra Sedan: A reliable and affordable option for budget-minded shoppers.", + "The 2007 Hyundai Elantra is a stylish and affordable sedan that is perfect for families or commuters.", + " A 2007 Hyundai Elantra Sedan in excellent condition.", + "2007 Hyundai Elantra Sedan in excellent condition.", + "2007 Hyundai Elantra Sedan.", + "A 2007 Hyundai Elantra Sedan.", + "2007 Hyundai Elantra Sedan." + ], + "1997 Dodge Caravan Minivan": [ + "The 1997 Dodge Caravan Minivan has a long body with four doors and two rows of seating.", + "A 1997 Dodge Caravan Minivan has four doors, a long wheelbase, and a boxy shape.", + "A 1997 Dodge Caravan Minivan would likely be aboxy shape with large windows.", + "The 1997 Dodge Caravan Minivan has a boxy shape with a long wheelbase and short overhangs.", + "The 1997 Dodge Caravan Minivan is a boxy van with sliding passenger doors and a rear hatch.", + "A 1997 Dodge Caravan Minivan is a white, 7-passenger van with a 3.", + "The 1997 Dodge Caravan is a minivan that seats seven passengers.", + "The 1997 Dodge Caravan Minivan has a boxy shape with rounded edges.", + "The 1997 Dodge Caravan Minivan has a boxy shape with a large windshield and a sloped hood.", + "The 1997 Dodge Caravan Minivan is boxy and practical, with seating for up to seven passengers.", + "The 1997 Dodge Caravan Minivan can be identified by its boxy shape, sliding door, and tall roof.", + "By looking at the VIN number located on the lower left of the windshield.", + "The easiest way to identify a 1997 Dodge Caravan Minivan is by its unique body style.", + "The 1997 Dodge Caravan minivan can be identified by its long body and sliding door on the passenger side.", + "The 1997 Dodge Caravan Minivan can be identified by looking at the VIN (vehicle identification number).", + "The 1997 model year was the first year of production for the Dodge Caravan minivan.", + "The 1997 Dodge Caravan Minivan can be identified by its body style.", + "The 1997 Dodge Caravan Minivan is a 7-passenger vehicle that was available in four trim levels: the base SE, value-oriented LE, sporty GT and high-end Grand Caravan ES.", + "The 1997 Dodge Caravan can be identified by its boxy shape, sliding doors, and large windows.", + "A 1997 Dodge Caravan Minivan can be identified by its model number, which is printed on a plate on the inside of the driver's door.", + "The 1997 Dodge Caravan Minivan has a body that is boxy and bulbous.", + "The 1997 Dodge Caravan Minivan looks very similar to the 1996 model.", + "The 1997 Dodge Caravan Minivan looks like a box on wheels.", + "The 1997 Dodge Caravan Minivan looks like a standard minivan.", + "The 1997 Dodge Caravan Minivan had a square appearance with large headlights.", + "A 1997 Dodge Caravan Minivan looks like a standard mini van.", + "A 1997 Dodge Caravan Minivan looks like a big blue van with a lot of Windows.", + "A 1997 Dodge Caravan Minivan looks like a regular mini-van.", + "I'm not sure exactly what you are asking but the 1997 Dodge Caravan Minivan looks like a regular minivan.", + "The 1997 Dodge Caravan Minivan has a long, rectangular body with four side doors and a large rear hatch.", + "The image is of a blue 1997 Dodge Caravan Minivan.", + "The image is of a teal blue 1997 Dodge Caravan minivan.", + "The image is of a teal-colored 1997 Dodge Caravan minivan.", + "This image is of a blue 1997 Dodge Caravan Minivan.", + "The image is of a blue 1997 Dodge Caravan minivan.", + "The image is of a blue minivan with the words \"Dodge Caravan\" written on the side in white.", + "This image is of a red 1997 Dodge Caravan Minivan.", + "This image shows a teal-colored 1997 Dodge Caravan Minivan with tinted windows.", + "The image is of a red 1997 Dodge Caravan Minivan.", + "The image is of a 1997 Dodge Caravan Minivan in mint condition.", + "This is a 1997 Dodge Caravan Minivan.", + "The Dodge Caravan is a popular minivan that was first introduced in 1984.", + "A 1997 Dodge Caravan Minivan.", + "The Dodge Caravan Minivan was introduced in 1997 and quickly became a popular choice for families needing a reliable and affordable vehicle.", + "A blue Dodge Caravan Minivan from 1997.", + "The Dodge Caravan is a minivan that was first introduced in 1984.", + " The classic American minivan.", + "1997 Dodge Caravan Minivan.", + "This is a photograph of a 1997 Dodge Caravan minivan.", + "The 1997 Dodge Caravan Minivan was one of the most popular vans of its time." + ], + "2012 Volvo C30 Hatchback": [ + "The 2012 Volvo C30 Hatchback has a boxy yet stylish look with a sloping roofline.", + "The 2012 Volvo C30 Hatchback is a small car that seats five passengers.", + "The Volvo C30 is a 3 door, front engine, front wheel drive premium hatchback, manufactured and marketed by Volvo Cars for model years 2006-2013.", + "A 2012 Volvo C30 Hatchback is a 5-door vehicle that typically seats 5 passengers.", + "A 2012 Volvo C30 Hatchback is a small car with a sporty design.", + "The 2012 Volvo C30 Hatchback has a sleek design with a curved Hood and windshield.", + "The Volvo C30 is a hatchback that was produced by Volvo Cars from 2006 to 2013.", + "The 2012 Volvo C30 Hatchback is a small car that seats five people.", + "The 2012 Volvo C30 Hatchback has a sleek design with curved lines and a sloped roof.", + "The 2012 Volvo C30 Hatchback is a small car that seats five people.", + "The 2012 Volvo C30 Hatchback has a sporty, unique look with its sloping roofline.", + "By its sloping roofline and rounded rear end.", + "There are a few ways to identify a 2012 Volvo C30 Hatchback.", + "The 2012 Volvo C30 Hatchback has a few identifying features.", + "There are a few ways to identify a 2012 Volvo C30 Hatchback.", + "The 2012 Volvo C30 Hatchback is a two-door car that has a sloping roofline and a shorter rear end.", + "There are several ways to identify a 2012 Volvo C30 Hatchback.", + "The 2012 Volvo C30 Hatchback can be identified by its unique body style.", + "Some ways that you can identify a 2012 Volvo C30 Hatchback include its unique exterior design, as well as its comfortable and spacious interior.", + "The 2012 Volvo C30 Hatchback is a small, four cabin hatchback car.", + "A 2012 Volvo C30 Hatchback is a small, stylish car with a unique look.", + "A 2012 Volvo C30 Hatchback has a sleek, modern design with curved lines and a tapered back end.", + "A 2012 Volvo C30 Hatchback looks like a small, sporty car.", + "A 2012 Volvo C30 Hatchback has a sleek, modern look with a sleek silhouette and flared wheel arches.", + "A 2012 Volvo C30 Hatchback looks very similar to a 2011 model.", + "There is no definitive answer, as each person's perception of beauty is different.", + "A picture of a 2012 Volvo C30 Hatchback can be found here.", + "A 2012 Volvo C30 Hatchback looks like a smaller version of the Volvo S40 sedan.", + "2012 Volvo C30 Hatchback.", + "A 2012 Volvo C30 Hatchback looks like a unique hatchback car with a lot of curves.", + "The image is of a red Volvo C30 Hatchback with the doors open.", + "The image is of a 2012 Volvo C30 Hatchback in silver.", + "The Volvo C30 Hatchback is a small, stylish car that was first introduced in 2006.", + "The image is of a 2012 Volvo C30 Hatchback in Pearl White with a black leather interior.", + "The image is of a 2012 Volvo C30 Hatchback.", + "The image is of a white Volvo C30 Hatchback with the doors open.", + "The image is of a red 2012 Volvo C30 Hatchback.", + "This 2012 Volvo C30 Hatchback is a sleek and stylish car.", + "The image is of a blue Volvo C30 Hatchback with a black roof.", + "This photo shows a 2012 Volvo C30 Hatchback in a light blue color.", + "The Volvo C30 Hatchback is a stylish and practical car that is perfect for city driving.", + " A work of art that takes the sportscar and adds a little extra something to it.", + "Volvo C30 Hatchback - the perfect car for those who want a stylish and efficient vehicle.", + "A 2012 Volvo C30 Hatchback in good condition.", + "This image shows a 2012 Volvo C30 Hatchback.", + " The Volvo C30 Hatchback was discontinued in 2012.", + "The Volvo C30 is a hatchback made by Volvo Cars from 2006 to 2013.", + " Volvo C30 Hatchback.", + "Image of a sleek and sporty red Volvo C30 Hatchback.", + "The Volvo C30 Hatchback was discontinued in 2012." + ], + "1999 Plymouth Neon Coupe": [ + "A 1999 Plymouth Neon Coupe is a small, two-door car with a rounded body style.", + "The 1999 Plymouth Neon Coupe is a small, two-door car with a rounded body shape.", + "The 1999 Plymouth Neon Coupe has a rounded front end with a large grille and quad headlights.", + "The 1999 Plymouth Neon Coupe is a compact car that seats five passengers.", + "A 1999 Plymouth Neon Coupe would likely have two doors, a rounded body shape, and a small engine.", + "A 1999 Plymouth Neon Coupe would likely look similar to a 1998 model, as not many changes were made between the two years.", + "A 1999 Plymouth Neon Coupe likely has a black or silver exterior paint color.", + "The 1999 Plymouth Neon Coupe has a sporty look with sleek lines.", + "The 1999 Plymouth Neon Coupe has a sleek and modern look.", + "The 1999 Plymouth Neon Coupe has a long hood and a short rear deck.", + "The Neon was Plymouth's entry in the small economy car field.", + "First, you can identify a 1999 Plymouth Neon Coupe by looking at the vehicle's VIN number.", + "The Neon Coupe was a two-door version of the Neon sedan.", + "The 1999 Plymouth Neon Coupe can be identified by its unique design.", + "There are a few ways to identify a 1999 Plymouth Neon Coupe.", + "There are a few ways that you can identify a 1999 Plymouth Neon Coupe.", + "The Plymouth Neon was introduced in 1994 as a compact car.", + "A 1999 Plymouth Neon Coupe can be identified by its sloped roofline and large rear window.", + "The Plymouth Neon was introduced in 1994 as a 1995 model, so a 1999 Plymouth Neon Coupe would be a 5th generation Neon.", + "By its VIN number, which is located on the driver's side dashboard and on the driver's side door.", + "The 1999 Plymouth Neon Coupe is a two-door car that seats five passengers.", + "A 1999 Plymouth Neon Coupe would look like a smaller version of a sedan, with two doors instead of four.", + "A 1999 Plymouth Neon Coupe looks like a small, sporty car with a sleek design.", + "A 1999 Plymouth Neon Coupe would look like a small, two door car with round headlights.", + "A 1999 Plymouth Neon Coupe would look like a smaller version of a Dodge Neon.", + "A 1999 Plymouth Neon Coupe would look like a two-door sedan with a sloping rear roofline.", + "A 1999 Plymouth Neon Coupe would likely have a similar appearance to that of other coupes from the late 1990s.", + "A 1999 Plymouth Neon Coupe would look like a small, two-door car.", + "The 1999 Plymouth Neon Coupe has a two-door coupe body style and comes with either a manual or automatic transmission.", + "A 1999 Plymouth Neon Coupe looks like a two-door sedan with a sloping rear roofline.", + "The image shows a 1999 Plymouth Neon Coupe in bright yellow.", + "The image is of a silver Plymouth Neon Coupe with a black interior.", + "The image is of a silver coupe with the Plymouth Neon logo on the front.", + "The image is of a blue Plymouth Neon Coupe with a black interior.", + "The image is of a light blue 1999 Plymouth Neon Coupe.", + "The image is of a red 1999 Plymouth Neon Coupe.", + "The image is of a blue Plymouth Neon Coupe with tinted windows.", + "The image shows a 1999 Plymouth Neon Coupe in blue with a black interior.", + "This image is of a teal Plymouth Neon Coupe from 1999.", + "The image is of a red Plymouth Neon Coupe.", + " 1999 Plymouth Neon Coupe.", + "1999 Plymouth Neon Coupe.", + "This sporty Neon Coupe is great on gas and fun to drive!.", + "The 1999 Plymouth Neon Coupe was one of the most popular cars of its time.", + "1999 Plymouth Neon Coupe.", + " A 1999 Plymouth Neon Coupe.", + " 1999 Plymouth Neon Coupe.", + "This is a 1999 Plymouth Neon Coupe.", + "This is a 1999 Plymouth Neon Coupe.", + "1999 Plymouth Neon Coupe." + ], + "2007 Chevrolet Malibu Sedan": [ + "The 2007 Chevrolet Malibu Sedan has four doors, a trunk, and seats five passengers.", + "A 2007 Chevrolet Malibu Sedan has a sleek, modern design with a curved hood and trunk.", + "A 2007 Chevrolet Malibu Sedan has a sleek, modern look.", + "A 2007 Chevrolet Malibu Sedan has a sleek, modern design with sharp lines and a curved body.", + "A 2007 Chevrolet Malibu Sedan has a sleek, modern design with curved lines and a large grille.", + "The 2007 Chevrolet Malibu Sedan has a sleek and modern design.", + "The 2007 Chevrolet Malibu Sedan is a five-passenger car that has a sleek design and an aggressive stance.", + "The 2007 Chevrolet Malibu has a sleek, modern look.", + "A 2007 Chevrolet Malibu Sedan has four doors and five seats.", + "A 2007 Chevrolet Malibu sedan is a four-door car that seats five passengers.", + "The 2007 Chevrolet Malibu sedan can be identified by its four-door design, long nose, and steeply raked windshield.", + "The Chevrolet Malibu sedan was first released in 2007.", + "If you are looking at a 2007 Chevrolet Malibu Sedan, you can identify it by its sleek design and sharp lines.", + "There are a few ways to identify a 2007 Chevrolet Malibu Sedan.", + "The 2007 Chevrolet Malibu Sedan can be identified by its four-door body style, and its window sticker should indicate that the car is a sedan.", + "The 2007 Chevrolet Malibu sedan can be identified by its sleek design, stylish exterior and spacious interior.", + "There is a Chevrolet emblem on the front grille and \"Malibu\" is written across the back of the trunk.", + "The 2007 Chevrolet Malibu Sedan can be identified by its long and wide body, as well as its short, sloping hood.", + "The 2007 Chevrolet Malibu sedan has a sleek and sporty look.", + "The easiest way to identify a 2007 Chevrolet Malibu sedan is by its four-door design.", + "The 2007 Chevrolet Malibu Sedan has a long, sweeping body with a short trunk.", + "A 2007 Chevrolet Malibu Sedan has a black grille, fog lights, and chrome accents.", + "The 2007 Chevrolet Malibu sedan has a sleek design with a curved hood and headlights that wrap around the sides of the car.", + "The 2007 Chevrolet Malibu sedan has a sleek and stylish design.", + "A 2007 Chevrolet Malibu Sedan looks like a regular sedan.", + "The 2007 Chevrolet Malibu 4-door sedan has a sleek, modern look.", + "The 2007 Chevrolet Malibu Sedan is a mid-size car that seats five passengers.", + "The 2007 Chevrolet Malibu Sedan has a sleek and stylish look that is sure to turn heads.", + "The 2007 Chevrolet Malibu Sedan features a sleek, modern design with a curved hood and sleek body lines.", + "A 2007 Chevrolet Malibu Sedan looks like a typical four-door sedan.", + "The image is of a 2007 Chevrolet Malibu Sedan in silver.", + "The 2007 Chevrolet Malibu Sedan is a four-door sedan that seats up to five passengers.", + "The image is of a blue Chevrolet Malibu Sedan.", + "The image is of a gold 2007 Chevrolet Malibu Sedan.", + "The image is of a 2007 Chevrolet Malibu Sedan in red.", + "The image is of a red 2007 Chevrolet Malibu Sedan.", + "The image is of a 2007 Chevrolet Malibu Sedan in blue.", + "The image is of a blue 2007 Chevrolet Malibu Sedan.", + "In the image, the car is a deep blue color with chrome accents.", + "The image is of a dark blue 2007 Chevrolet Malibu Sedan.", + "2007 Chevrolet Malibu Sedan.", + "The Chevrolet Malibu is a sedan that was first introduced in 1964.", + " Chevrolet Malibu Sedan - 2007 Model.", + "2007 Chevrolet Malibu Sedan.", + "2007 Chevrolet Malibu Sedan.", + "This is a 2007 Chevrolet Malibu Sedan.", + "2007 Chevrolet Malibu Sedan - Front View.", + "2007 Chevrolet Malibu Sedan.", + " A 2007 Chevrolet Malibu Sedan.", + "The Chevrolet Malibu is a reliable and stylish sedan that is perfect for families." + ], + "2012 Volkswagen Beetle Hatchback": [ + "A 2012 Volkswagen Beetle Hatchback has a rounded shape with a curved windshield.", + "The 2012 Volkswagen Beetle has a retro design with a modern twist.", + "A 2012 Volkswagen Beetle Hatchback is a small car that seats four people.", + "The Volkswagen Beetle Hatchback is a small four-door car that is available in a wide variety of colors.", + "A 2012 Volkswagen Beetle Hatchback has the following features:-A sloping roofline\n-A rounded hood\n-A chrome grille\n-Round headlights\n-A wide stance\n-A short rear deck\n-A.", + "The 2012 Volkswagen Beetle has a retro feel with a sleek, modern design.", + "The 2012 Volkswagen Beetle Hatchback is a five-door car with a retro design.", + "A 2012 Volkswagen Beetle Hatchback has a round body with a bubbly appearance.", + "A 2012 Volkswagen Beetle Hatchback is a small vehicle with a rounded shape.", + "The 2012 Volkswagen Beetle is a retro-style hatchback that has a slightly rounded shape.", + "A 2012 Volkswagen Beetle Hatchback can be identified by its unique body style.", + "There are a few ways to identify a 2012 Volkswagen Beetle Hatchback.", + "The 2012 Volkswagen Beetle Hatchback is a model of car that was produced by the German company Volkswagen from 2012 until 2019.", + "There are several ways to identify a 2012 Volkswagen Beetle Hatchback.", + "It is a small car with a rounded body.", + "A 2012 Volkswagen Beetle Hatchback can be identified by its unique body style.", + "A 2012 Volkswagen Beetle Hatchback can be identified by its curved body shape and rear hatchback door.", + "If you are looking at a 2012 Volkswagen Beetle Hatchback, you will see that it is a small vehicle with a sloping roof.", + "A 2012 Volkswagen Beetle Hatchback can be identified by its unique design.", + "There are a few ways to identify a 2012 Volkswagen Beetle Hatchback.", + "A 2012 Volkswagen Beetle Hatchback looks like a small car with a rounded back end.", + "A 2012 Volkswagen Beetle Hatchback looks like a compact car with a rounded body shape.", + "This answer was taken from the Edmunds.", + "The 2012 Volkswagen Beetle Hatchback looks like a modernized, more stylish version of the classic VW Beetle.", + "A 2012 Volkswagen Beetle Hatchback looks like a modern interpretation of the classic VW Beetle.", + "A 2012 Volkswagen Beetle Hatchback looks like a smaller version of a sedan.", + "This answer was taken from the official 2012 Volkswagen Beetle Hatchback website.", + "A 2012 Volkswagen Beetle Hatchback looks just like a regular Volkswagen Beetle, only it has a hatchback instead of a trunk.", + "The 2012 Volkswagen Beetle Hatchback is a small, two-door car with a rounded body shape.", + "A 2012 Volkswagen Beetle Hatchback would look like a regular Volkswagen Beetle, but with a hatchback.", + "This image from the Internet shows a 2012 Volkswagen Beetle Hatchback in a bright, metallic blue color.", + "This image is of a 2012 Volkswagen Beetle Hatchback in Dark Blue.", + "The image shows a 2012 VW Beetle Hatchback in blue.", + "The image is of a red 2012 Volkswagen Beetle Hatchback.", + "The image is of a white car with a black roof.", + "This image is of a 2012 Volkswagen Beetle Hatchback.", + "The image is of a 2012 Volkswagen Beetle Hatchback in gloss black.", + "The image is of a 2012 Volkswagen Beetle Hatchback in white.", + "The image is of a 2012 Volkswagen Beetle Hatchback in blue.", + "The image is of a 2012 Volkswagen Beetle Hatchback in white.", + " Volkswagen Beetle Hatchback.", + "New 2012 Volkswagen Beetle Hatchback - Front 3/4 View.", + " \"This is a 2012 Volkswagen Beetle Hatchback.", + "The all-new 2012 Volkswagen Beetle Hatchback was unveiled at the 2011 New York International Auto Show.", + "This fun and spunky 2012 Volkswagen Beetle Hatchback is perfect for anyone looking for an adventure.", + "The 2012 Volkswagen Beetle Hatchback is a stylish and fun car that is perfect for those who want a unique and sporty ride.", + "This Bug is as cute as can be! The 2012 Volkswagen Beetle Hatchback is a great little car that's perfect for city driving.", + "This is a 2012 Volkswagen Beetle Hatchback.", + "The 2012 Volkswagen Beetle Hatchback is a stylish and fun car that is perfect for anyone looking for a great way to get around town.", + "2012 Volkswagen Beetle HatchbackThe 2012 Volkswagen Beetle Hatchback is a small car with big features." + ], + "2007 Chevrolet Corvette Ron Fellows Edition Z06": [ + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a limited edition performance car based on the Chevrolet Corvette C6 Z06.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a red convertible with white stripes.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a car that was made in honor of the Canadian racing driver Ron Fellows.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a red convertible with a white interior.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a special edition performance car that was designed in collaboration with Canadian racing driver Ron Fellows.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a special edition performance car that was produced in limited numbers.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 has a 6.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a high-performance sports car that is based on the Chevrolet Corvette C6.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a limited edition performance car that features a unique blue and white exterior color scheme, as well as special badging and interior treatments.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a limited edition performance Corvette.", + "One way to identify a 2007 Chevrolet Corvette Ron Fellows Edition Z06 is by looking for the Ron Fellows Edition Z06 badge on the car.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 can be identified by its specialRon Fellows signature exterior badges, unique Z06 racing stripes, and exclusive Velocity Yellow Tintcoat exterior color.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 can be identified by its distinctive blue exterior color, Silver-painted Aluminum wheels, and unique \"Ron Fellows\" signature badging.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 can be identified by its unique exterior and interior design elements, as well as its performance-enhancing features.", + "The Ron Fellows Edition Z06 can be identified by its unique graphics package and badges.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 can be identified by its unique aluminum hood with a raised center section, tonneau cover, and side vents.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 can be identified by its uniqueBrembo brakes, Z06-specific Wheels, and Michelin Pilot Sport 2 tires.", + "By the badging on the car.", + "The Ron Fellows Edition Z06 is a special edition Corvette that was released in 2007.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 can be identified by its unique exterior and interior design cues.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 looks like a cross between a racecar and a luxury car.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 looks like a standard Corvette Z06 with a few cosmetic features that set it apart.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a high performance vehicle that features a 7.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 looks like a regular Corvette Z06, but with some extra features that set it apart.", + "The Ron Fellows Edition Z06 is a special performance package for the 2007 Chevrolet Corvette.", + "The 2007 Chevrolet Corvette Ron Fellows Edition Z06 looks like a cross between a sportscar and a luxury car.", + "The Ron Fellows Edition Z06 looks like a black 2007 Chevrolet Corvette with white stripes and red accents.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 looks like a Corvette with a Ron Fellows edition badge on it.", + "A 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a performance-enhanced version of the Chevrolet Corvette with a 6.", + "The 2008 Chevrolet Corvette Ron Fellows Edition Z06 looks like a sporty car with a sleek design.", + "This image is of a black 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "The image is of a 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "In the image, the 2007 Chevrolet Corvette Ron Fellows Edition Z06 is a deep blue color with silver stripes running down the middle.", + "The image is a 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "The image is of a 2007 Chevrolet Corvette Ron Fellows Edition Z06 in blue.", + "This image is of a Chevy Corvette Z06.", + "The image is of a sleek, red 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "This image is of a 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "The Chevrolet Corvette Ron Fellows Edition Z06 is a limited edition supercar that was produced by Chevrolet in 2007.", + "The image is of a red 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "The Ron Fellows Edition Z06 Corvette is a limited edition Corvette honoring Canadian race car driver Ron Fellows.", + "2007 Chevrolet Corvette Ron Fellows Edition Z06The Corvette Ron Fellows Edition Z06 is a special performance edition of the Chevrolet Corvette.", + " This photo shows a 2007 Chevrolet Corvette Ron Fellows Edition Z06.", + " Ron Fellows Edition Z06 Corvette.", + "2007 Chevrolet Corvette Ron Fellows Edition Z06.", + " Corvette Racing's Ron Fellows drives the new Corvette Z06 to a second-place finish at his home track, Canadian Tire Motorsport Park.", + "2007 Chevrolet Corvette Ron Fellows Edition Z06.", + "2007 Chevrolet Corvette Ron Fellows Edition Z06.", + " The Corvette Ron Fellows Edition Z06 is a limited edition of the popular Z06 sports car.", + " Ron Fellows Edition Z06 Chevrolet Corvette." + ], + "2010 Chrysler 300 SRT-8": [ + "The 2010 Chrysler 300 SRT-8 has a sleek, aggressive look with a wide stance and a powerful V8 engine.", + "A 2010 Chrysler 300 SRT-8 is a large sedan with a powerful engine.", + "The 2010 Chrysler 300 SRT-8 is a full-size luxury sedan that seats five passengers.", + "A 2010 Chrysler 300 SRT-8 has a 20-inch wheel option, body-colored spoiler, and cross-drilled and vented brake rotors.", + "A 2010 Chrysler 300 SRT-8 is a full-size luxury sedan that seats five passengers.", + "The 2010 Chrysler 300 SRT-8 has a big, bold, and sophisticated look.", + "A 2010 Chrysler 300 SRT-8 is a sedan with a powerful V8 engine.", + "A Chrysler 300 SRT-8 from 2010 has a large, boxy body style with a wide stance.", + "The Chrysler 300 SRT-8 is a full-size sedan with a powerful V8 engine.", + "A 2010 Chrysler 300 SRT-8 has a V8 engine, a sleek body, and a powerful look.", + "The Chrysler 300 SRT-8 is a high-performance version of the Chrysler 300 sedan.", + "The 2010 Chrysler 300 SRT-8 can be identified by its 20-inch wheels, rear spoiler, and quad exhaust tips.", + "The Chrysler 300 SRT-8 can be identified by its V-8 engine, 20-inch wheels, and sport-tuned suspension.", + "The 2010 Chrysler 300 SRT-8 can be identified by its unique body kit, which includes a more aggressive front bumper, side skirts, and rear diffuser.", + "The 2010 Chrysler 300 SRT-8 can be identified by its 20-inch alloy wheels, Brembo brakes, body-color spoilers, and quad exhaust tips.", + "A 2010 Chrysler 300 SRT-8 can be identified by its unique body kit, 20-inch alloy wheels, and quad exhaust tips.", + "The 300 SRT-8 has a 6.", + "The SRT8 trim was only available in 2010.", + "The 2010 Chrysler 300 SRT-8 can be identified by its unique body kit, which includes a lower front fascia, body-color rear spoiler, and 20-inch wheels.", + "The 2010 Chrysler 300 SRT-8 can be identified by its SRT badge on the grille, side vents, and rear trunk.", + "A 2010 Chrysler 300 SRT-8 looks like a regular Chrysler 300 with the exception of a few performance modifications.", + "A 2010 Chrysler 300 SRT-8 looks like a large sedan with a powerful engine.", + "The 2010 Chrysler 300 SRT-8 looks like a luxurious performance sedan.", + "A 2010 Chrysler 300 SRT-8 looks like a large, luxurious sedan with a powerful engine.", + "A 2010 Chrysler 300 SRT-8 looks like a sleek and powerful sedan.", + "A 2010 Chrysler 300 SRT-8 has a sleek, modern look with a powerful engine.", + "The Chrysler 300 SRT-8 is a high-performance sedan that was produced by Chrysler from 2008 to 2010.", + "A 2010 Chrysler 300 SRT-8 looks like a large, stylish sedan with a powerful engine.", + "A 2010 Chrysler 300 SRT-8 has a 6.", + "A 2010 Chrysler 300 SRT-8 has a black grille with chrome accents, smoked headlamps, a rear spoiler, and 20-inch wheels.", + "The image is of a 2010 Chrysler 300 SRT-8 in blue.", + "This image is of a 2010 Chrysler 300 SRT-8.", + "The image is of a 2010 Chrysler 300 SRT-8 in black.", + "The 2010 Chrysler 300 SRT-8 is a high-performance car that was produced by Chrysler.", + "The 2010 Chrysler 300 SRT-8 is a large, power sedan with four doors.", + "The 2010 Chrysler 300 SRT-8 is a large sedan with a muscular look.", + "The 2010 Chrysler 300 SRT-8 is a large car with a powerful engine.", + "The image is of a 2010 Chrysler 300 SRT-8 in a bright orange color.", + "In the image, the Chrysler 300 SRT-8 is a large, black sedan with tinted windows.", + "The image is of a 2010 Chrysler 300 SRT-8 in black.", + "Chrysler 300 SRT-8, a 2010 model year car.", + "2010 Chrysler 300 SRT-8The Chrysler 300 SRT-8 is a high performance luxury car that was introduced in 2010.", + "A 2010 Chrysler 300 SRT-8.", + "The Chrysler 300 SRT-8 is a high performance sedan that was introduced in 2010.", + "The 2010 Chrysler 300 SRT-8 is a high-performance luxury sedan.", + " A fancy car for those who can afford itThe Chrysler 300 SRT-8 is a high-performance luxury sedan that was first introduced in 2010.", + "This is a 2010 Chrysler 300 SRT-8.", + " A 2010 Chrysler 300 SRT-8.", + "A 2010 Chrysler 300 SRT-8 in black.", + "2010 Chrysler 300 SRT-8." + ], + "2010 BMW M6 Convertible": [ + "A 2010 BMW M6 Convertible has a sleek, sporty look with a convertible top that allows for open-air driving.", + "The 2010 BMW M6 Convertible has a long, sleek hood and a short rear deck.", + "A 2010 BMW M6 Convertible has a sleek and powerful look.", + "The 2010 BMW M6 Convertible has a sleek, stylish design that is sure to turn heads.", + "A 2010 BMW M6 Convertible has a sleek, sophisticated look with a powerful engine.", + "The 2010 BMW M6 Convertible is a high-performance luxury car that features a retractable hardtop roof.", + "A 2010 BMW M6 Convertible has a sleek, sporty look with a powerful engine.", + "A 2010 BMW M6 Convertible has a sleek, sporty look with a soft top that can be raised or lowered.", + "A 2010 BMW M6 Convertible has a sleek, sporty look with a powerful engine.", + "A 2010 BMW M6 Convertible has a sleek and sporty look with a powerful engine.", + "If the vehicle has four seats, a soft top, and M6 badging, then it is a 2010 BMW M6 Convertible.", + "The 2010 BMW M6 Convertible can be identified by its long hood, aggressive stance, and sweeping roofline.", + "The front of the car has the BMW emblem in the center, and there are two kidney-shaped grilles on the sides.", + "The 2010 BMW M6 Convertible can be identified by its long sleek body, wide stance, and low-profile tires.", + "The BMW M6 Convertible is a high performance luxury car that was introduced in 2006.", + "The 2010 BMW M6 Convertible can be identified by its long hood and sleek silhouette.", + "The 2010 BMW M6 Convertible is a high performance luxury car that is based on the 6 Series Convertible.", + "The 2010 BMW M6 Convertible has a V10 engine and an M badge on the back.", + "The 2010 BMW M6 Convertible can be distinguished by its long hood, aggressive stance, and large wheels.", + "The 2010 BMW M6 Convertible is a high-performance luxury car that was introduced in 2006.", + "A 2010 BMW M6 Convertible looks like a regular BMW 6 Series Convertible with a few extra M badges and sportier exterior and interior detailing.", + "A 2010 BMW M6 Convertible looks like a stylish and luxurious sports car.", + "The M6 convertible has a sleek, streamlined look with a long hood and a short rear deck.", + "A 2010 BMW M6 Convertible has a sleek, sporty look with a powerful engine.", + "A 2010 BMW M6 Convertible looks like a sleek and powerful vehicle that would be great for cruising around town or hitting the open road.", + "A 2010 BMW M6 Convertible looks like a two-door convertible with a black soft top.", + "The 2010 BMW M6 Convertible looks like a sleek and sporty convertible with a powerful engine.", + "The 2010 BMW M6 Convertible has a sleek, sporty look with a powerful engine.", + "A 2010 BMW M6 Convertible looks like a two-door convertible sports car with a spacious interior and a sleek, stylish exterior.", + "A 2010 BMW M6 Convertible would look like a regular 2010 BMW 6 Series Convertible with the M Sport Package added on.", + "This image is of a 2010 BMW M6 Convertible.", + "The 2010 BMW M6 Convertible is an image of a luxurious car.", + "The 2010 BMW M6 Convertible is a sleek and stylish car that is sure to turn heads.", + "The image is of a sleek, black BMW M6 convertible with the top down.", + "This image is of a 2010 BMW M6 Convertible.", + "This 2010 BMW M6 Convertible is a sleek and sexy car.", + "This image is of a 2010 BMW M6 Convertible.", + "The 2010 BMW M6 Convertible is a luxurious car with a sleek design.", + "image of a 2010 BMW m6 convertible in black with the top down and the wind in the driver's hair.", + "The image is of a sleek, black BMW M6 Convertible.", + "The 2010 BMW M6 Convertible is a high-performance luxury car that combines power, luxury, and style.", + "A 2010 BMW M6 Convertible parked in a garage.", + "A 2010 BMW M6 Convertible with the top down.", + "A 2010 BMW M6 Convertible parked in a driveway.", + "This luxurious car is the perfect way to enjoy the summer weather.", + "2010 BMW M6 ConvertibleThe M6 Convertible is a high-performance luxury car that features a V10 engine and a seven-speed automatic transmission.", + "This is a 2010 BMW M6 convertible.", + "A 2010 BMW M6 Convertible sitting in a parking lot.", + "The 2010 BMW M6 Convertible is a high-performance luxury car that combines classic BMW styling with modern engineering and features.", + " A BMW M6 Convertible from 2010." + ], + "2012 GMC Yukon Hybrid SUV": [ + "The 2012 GMC Yukon Hybrid SUV has a wide stance with a long wheelbase.", + "The 2012 GMC Yukon Hybrid SUV is a large vehicle that seats up to eight people.", + "The Yukon Hybrid has a six-speed automatic transmission and is powered by a 6.", + "A 2012 GMC Yukon Hybrid SUV has a huge, boxy body with a very angular design.", + "A 2012 GMC Yukon Hybrid SUV is a large, stylish SUV with a sleek, modern design.", + "A 2012 GMC Yukon Hybrid SUV has a V-8 engine, all-wheel drive, and can seat up to eight passengers.", + "The 2012 GMC Yukon Hybrid SUV has a distinct look that sets it apart from other SUVs on the market.", + "This SUV has a long body and large wheels.", + "The 2012 GMC Yukon Hybrid SUV has a sleek and stylish exterior with a definitive GMC look.", + "A 2012 GMC Yukon Hybrid SUV has a powerful V8 engine, an aggressive stance, and a modern, stylish interior.", + "If you look at the back of the Yukon, there is a big \"Yukon Hybrid\" badge.", + "The front of the 2012 GMC Yukon Hybrid SUV has a large chrome grille with the GMC logo in the center.", + "One way to identify a 2012 GMC Yukon Hybrid SUV is to look for the GMC logo on the front grille.", + "If it says \"Yukon Hybrid\" on the back, it's a 2012 GMC Yukon Hybrid SUV.", + "The 2012 GMC Yukon Hybrid SUV can be identified by its large size, square body, and front grille.", + "There are a few ways to identify a 2012 GMC Yukon Hybrid SUV.", + "The 2012 GMC Yukon Hybrid SUV can be distinguished from other models by its unique grille and tailgate design, as well as its exclusive 22-inch wheels.", + "From the outside, you can identify a 2012 GMC Yukon Hybrid SUV by looking for the GMC logo on the front grille and \"Yukon Hybrid\" badges on the sides of the vehicle.", + "A 2012 GMC Yukon Hybrid SUV can be identified by its sleek and stylish design.", + "The easiest way to identify a 2012 GMC Yukon Hybrid SUV is to look for the \"Hybrid\" badge on the back of the vehicle.", + "The exterior of the GMC Yukon Hybrid SUV has a sleek and modern look.", + "The 2012 GMC Yukon Hybrid SUV looks like a typical SUV with some extra embellishments.", + "The 2012 GMC Yukon Hybrid SUV looks like a typical large SUV.", + "A 2012 GMC Yukon Hybrid SUV is a large SUV with a sleek, modern design.", + "GMC released a picture of the 2012 Yukon Hybrid SUV on their website.", + "The 2012 GMC Yukon Hybrid SUV looks like a bulky, boxy SUV with a large grille and headlights.", + "The exterior of the GMC Yukon Hybrid SUV has a sleek and modern design.", + "A 2012 GMC Yukon Hybrid SUV has a sleek, modern design with clean lines and a stylish grille.", + "The 2012 GMC Yukon Hybrid SUV looks like a cross between a standard GMC Yukon SUV and a GMC Sierra pickup truck.", + "A 2012 GMC Yukon Hybrid SUV looks like a typical SUV, with a boxy shape and four doors.", + "The image is of a white SUV with black trim.", + "The image is of a large, black SUV with tinted windows.", + "This image is of a 2012 GMC Yukon Hybrid SUV in silver.", + "This image is of a 2012 GMC Yukon Hybrid SUV in black.", + "In the image, the GMC Yukon Hybrid SUV is a dark gray color with chrome accents.", + "The image is of a large, silver SUV with chrome trim and huge wheels.", + "The image is of a dark blue 2012 GMC Yukon Hybrid SUV.", + "The image is of a silver SUV with four doors.", + "The photo shows a large, dark SUV with tinted windows and chrome accents.", + "The image is of a GMC Yukon Hybrid SUV in a light blue color.", + "2012 GMC Yukon Hybrid SUV.", + "A image of a 2012 GMC Yukon Hybrid SUV.", + "GMC Yukon Hybrid SUV.", + " A GMC Yukon Hybrid SUV parked in a drivewayA GMC Yukon Hybrid SUV parked in a driveway.", + "This GMC Yukon Hybrid is a full-size SUV that gets an estimated 20 mpg in the city and 23 mpg on the highway.", + "GMC Yukon Hybrid SUV.", + "2012 GMC Yukon Hybrid SUV.", + "GMC Yukon Hybrid SUV.", + " The next generation of hybridThe new GMC Yukon Hybrid is the next generation of hybrid SUV.", + "2012 GMC Yukon Hybrid SUV in excellent condition." + ], + "2012 Nissan Juke Hatchback": [ + "A 2012 Nissan Juke Hatchback is a small car that seats five people.", + "The 2012 Nissan Juke Hatchback is a small car that seats five passengers.", + "A 2012 Nissan Juke Hatchback has a sporty look with a sleek design.", + "A 2012 Nissan Juke Hatchback is a vehicle that is small, yet stylish.", + "The 2012 Nissan Juke Hatchback has a unique and sporty design.", + "The 2012 Nissan Juke Hatchback has a aggressive front end with large headlights.", + "The 2012 Nissan Juke is a small hatchback with an aggressive design.", + "The Nissan Juke is a hatchback that was first introduced in 2010.", + "The 2012 Nissan Juke Hatchback is a compact car with a unique design.", + "A 2012 Nissan Juke Hatchback is a five-door hatchback with a sloping roofline and a rear spoiler.", + "The Nissan Juke is a small crossover SUV produced by the Japanese automaker Nissan since 2010.", + "If you are looking at a 2012 Nissan Juke, it will be a small sport utility vehicle (SUV).", + "One way to identify a 2012 Nissan Juke Hatchback is by looking for the Nissan VIN number.", + "The Nissan Juke is a compact five-door hatchback that was introduced in 2010.", + "The 2012 Nissan Juke Hatchback has a sporty design with a sloping roofline.", + "The Nissan Juke Hatchback is a small car that was first introduced in 2010.", + "When looking at a 2012 Nissan Juke Hatchback, you can identify it by its sloping roofline, rounded edges, and large headlights.", + "A 2012 Nissan Juke Hatchback can be identified by its sporty, compact design.", + "The 2012 Nissan Juke is a five-door hatchback.", + "There are several ways to identify a 2012 Nissan Juke Hatchback.", + "The exterior of the 2012 Nissan Juke Hatchback is very sporty with its sloped roof and aggressive looking front end.", + "The 2012 Nissan Juke is a small, five-door hatchback with aggressive, angular styling.", + "The 2012 Nissan Juke Hatchback features a sporty and aggressive design with wraparound headlights, a chrome grille, and muscular body lines.", + "A 2012 Nissan Juke Hatchback has a stylish, modern look with a sporty flair.", + "A 2012 Nissan Juke Hatchback looks like a small SUV with a curved body and a sloping roofline.", + "The 2012 Nissan Juke Hatchback is a sporty vehicle with a sleek design.", + "A 2012 Nissan Juke Hatchback has a sleek and sporty design with a bold front grille and sharp lines.", + "A 2012 Nissan Juke Hatchback looks like a small sport utility vehicle with a sloping roofline and a wide, aggressi.", + "A 2012 Nissan Juke Hatchback looks like a small SUV with a sloping roofline and a wide, aggressive stance.", + "The 2012 Nissan Juke Hatchback is a compact SUV with a design that is inspired by sports cars.", + "The image is of a red 2012 Nissan Juke Hatchback.", + "The picture is of a 2012 Nissan Juke Hatchback in white.", + "This 2012 Nissan Juke Hatchback is a sporty little car that is perfect for city driving.", + "I can't provide an image, but a 2012 Nissan Juke Hatchback is a sporty looking car that is similar in style to a SUV.", + "The image is of a 2012 Nissan Juke Hatchback in blue.", + "The image is of a white Nissan Juke Hatchback with black rims and tinted windows.", + "The image shows a red Nissan Juke Hatchback with a black roof and silver accents.", + "The image is of a 2012 Nissan Juke Hatchback in white.", + "The image is of a 2012 Nissan Juke Hatchback in white.", + "The 2012 Nissan Juke Hatchback is a 5-door hatchback with a high roofline and a sloping rear window.", + "This image shows a 2012 Nissan Juke Hatchback.", + "The Nissan Juke is a hatchback that was produced by Nissan from 2010 to 2017.", + "The 2012 Nissan Juke hatchback is a unique and stylish vehicle that is perfect for those who want a small car with a lot of personality.", + "This is a 2012 Nissan Juke Hatchback.", + "The 2012 Nissan Juke Hatchback is a stylish and practical car that is perfect for city driving.", + "The 2012 Nissan Juke Hatchback is a versatile and stylish vehicle that's perfect for city driving.", + "This Nissan Juke Hatchback is a great car for anyone looking for a stylish and versatile ride.", + "The Nissan Juke Hatchback is a versatile and stylish car that is perfect for city driving.", + "This Nissan Juke Hatchback is a great little car! It's perfect for city driving and is very fuel efficient.", + "A stylish and sporty hatchback, the 2012 Nissan Juke is a great choice for those looking for a fun and efficient ride." + ], + "1993 Volvo 240 Sedan": [ + "The 1993 Volvo 240 Sedan is a four-door sedan that seats five passengers.", + "A 1993 Volvo 240 sedan is a boxy car with four doors.", + "A 1993 Volvo 240 Sedan is a four-door car that seats five passengers.", + "A 1993 Volvo 240 Sedan is a four-door sedan that seats five passengers.", + "A 1993 Volvo 240 sedan is a boxy, older model sedan that is silver in color.", + "There is no definitive answer to this question as the appearance of a 1993 Volvo 240 Sedan can depend on a number of factors, such as the specific model and trim level, the color and style of the exterior, and the condition of the.", + "A 1993 Volvo 240 Sedan is a classic car with a long body and hood.", + "The Volvo 240 sedan is a 4 door car that seats five passengers.", + "The 1993 Volvo 240 Sedan is a four-door sedan that seats five passengers.", + "A 1993 Volvo 240 Sedan is a car that has four doors and five seats.", + "By its model name.", + "What do you mean by identify?.", + "There are many ways to identify a 1993 Volvo 240 Sedan.", + "The 1993 Volvo 240 sedan can be identified by its boxy shape and square headlights.", + "The 1993 Volvo 240 Sedan can be distinguished from other model years by its rectangular headlights, slimmer grille, and body-colored bumpers.", + "The front of the car has \"Volvo\" spelled out in large letters, and \"240\" is written below that in smaller letters.", + "The 1993 Volvo 240 sedan can be identified by its boxy shape and rectangular headlights.", + "There are several ways to identify a 1993 Volvo 240 sedan.", + "The 1993 Volvo 240 sedan can be identified by looking at the vehicle's VIN number.", + "The best way to identify a 1993 Volvo 240 Sedan is by its VIN number.", + "The 1993 Volvo 240 Sedan has a four-door body style and a front-engine layout.", + "A 1993 Volvo 240 Sedan looks like a large, boxy sedan with four doors.", + "The 1993 Volvo 240 Sedan is a 4-door sedan that seats up to 5 passengers.", + "The exterior of a 1993 Volvo 240 Sedan would typically feature four doors, with the trunk located at the rear of the vehicle.", + "A 1993 Volvo 240 Sedan would look like a classic Volvo sedan from the early 1990s.", + "The 1993 Volvo 240 Sedan has a boxy design with straight lines and sharp angles.", + "The 1993 Volvo 240 Sedan looks like a compact car with a boxy shape.", + "The 1993 Volvo 240 Sedan has a boxy design with a long hood and rectangular headlights.", + "There is no definitive answer to this question, as the appearance of a 1993 Volvo 240 sedan can vary depending on its specific make and model.", + "The 1993 Volvo 240 Sedan is a compact car with a rectangular body.", + "This image is of a white 1993 Volvo 240 Sedan.", + "The image is of a red Volvo 240 sedan with a tan interior.", + "This image is of a red 1993 Volvo 240 Sedan.", + "This image is of a red 1993 Volvo 240 Sedan.", + "This image is of a red 1993 Volvo 240 Sedan.", + "The image is of a 1993 Volvo 240 Sedan that is silver in color.", + "The image is of a white Volvo 240 sedan with tinted windows.", + "This image is of a silver 1993 Volvo 240 Sedan.", + "The image is of a red Volvo 240 sedan parked on a city street.", + "This is a image of a 1993 Volvo 240 Sedan.", + " A blue Volvo 240 sedan from 1993.", + "A 1993 Volvo 240 Sedan.", + "The Volvo 240 is a classic Swedish car that was produced from 1974 to 1993.", + " A 1993 Volvo 240 Sedan parked on the street.", + "The Volvo 240 was a series of vehicles produced by Volvo from 1974 to 1993.", + "This 1993 Volvo 240 Sedan is a great example of a classic car that is still stylish today.", + " \"A Volvo 240 Sedan from 1993, one of the last years the 240 was produced.", + "This is a 1993 Volvo 240 Sedan.", + " A 1993 Volvo 240 Sedan.", + " A Volvo 240 Sedan from 1993." + ], + "2012 Suzuki SX4 Sedan": [ + "The exterior of a 2012 Suzuki SX4 Sedan is sleek and stylish.", + "The Suzuki SX4 is a compact sedan that was first introduced in 2006.", + "A 2012 Suzuki SX4 Sedan is a small car that seats five passengers.", + "The 2012 Suzuki SX4 Sedan is a small car that seats five passengers.", + "The 2012 Suzuki SX4 Sedan has a sleek design with a rounded front end and sloping rear roofline.", + "The Suzuki SX4 sedan is a small car with a long hood and a short trunk.", + "The Suzuki SX4 is a compact sedan with a sporty look.", + "The 2012 Suzuki SX4 Sedan has a sleek design with sharp angles.", + "The 2012 Suzuki SX4 Sedan has a sleek and modern appearance.", + "The 2012 Suzuki SX4 Sedan has a sleek, sporty design with a low stance and aggressive styling.", + "The 2012 Suzuki SX4 Sedan has a length of 175.", + "The 2012 Suzuki SX4 Sedan can be identified by its unique grille design, chrome accents, and body-colored door handles.", + "The 2012 Suzuki SX4 Sedan can be identified by its four- door design, spacious interior, and advanced safety features.", + "The 2012 Suzuki SX4 Sedan has a sleeker design than its predecessors, with a more aerodynamic look.", + "To identify a 2012 Suzuki SX4 Sedan, look for the following features: a chrome grille, projector-beam headlights, LED taillights, and 16-inch alloy wheels.", + "One way to identify a 2012 Suzuki SX4 Sedan is by its grille design.", + "The 2012 Suzuki SX4 Sedan can be identified by its six-speed manual transmission, its 16-inch alloy wheels, and its fog lights.", + "The Suzuki SX4 Sedan was first introduced in 2006.", + "The 2012 Suzuki SX4 Sedan can be identified by its sloping roofline, small stature, and Suzuki badges on the front and rear.", + "The 2012 Suzuki SX4 Sedan can be identified by its Suzuki \"S\" logo on the grille, as well as the SX4 nameplate on the trunk.", + "A 2012 Suzuki SX4 Sedan has a sleek, modern look with a sporty feel.", + "A 2012 Suzuki SX4 Sedan has a sleek design with sharp lines.", + "A 2012 Suzuki SX4 Sedan would likely have a sleek, modern design with sharp lines and a stylish interior.", + "A 2012 Suzuki SX4 Sedan looks like a small, practical sedan.", + "The Suzuki SX4 Sedan is a small, stylish car that's available in both front- and all-wheel drive.", + "A 2012 Suzuki SX4 would likely have 4 doors, and a sedan-like body style.", + "The 2012 Suzuki SX4 Sedan looks like a small, sporty sedan.", + "A 2012 Suzuki SX4 Sedan has a sleek, modern look with chrome accents and alloy wheels.", + "A 2012 Suzuki SX4 Sedan looks like a small, sporty sedan.", + "A 2012 Suzuki SX4 Sedan has a sleek design with a curved hood and trunk.", + "The image is of a 2012 Suzuki SX4 Sedan in a light blue color.", + "The image is of a white Suzuki SX4 Sedan with chrome trim.", + "The image is of a 2012 Suzuki SX4 Sedan in white.", + "The image is of a red Suzuki SX4 sedan with tinted windows.", + "The image is of a shiny new 2012 Suzuki SX4 in a deep cherry red color.", + "The image is of a 2012 Suzuki SX4 Sedan in silver.", + "This image is of a white Suzuki SX4 Sedan with chrome details.", + "The image shows a sleek, silver 2012 Suzuki SX4 Sedan.", + "The image is of a white 2012 Suzuki SX4 Sedan.", + "This image is of a 2012 Suzuki SX4 Sedan.", + " Suzuki SX4 Sedan.", + "The Suzuki SX4 Sedan is a fuel-efficient car that's perfect for getting around town.", + "The Suzuki SX4 Sedan is a great car for anyone looking for a reliable and affordable sedan.", + "2012 Suzuki SX4 Sedan.", + " Suzuki SX4 4-door sedan.", + "This car is the perfect blend of style and functionality.", + "The 2012 Suzuki SX4 is a great choice for those looking for a budget-friendly sedan.", + "2012 Suzuki SX4 Sedan.", + "The Suzuki SX4 Sedan is a stylish and comfortable car that is perfect for city driving.", + " Manager's Special - Suzuki SX4 Sedan." + ], + "2010 Dodge Ram Pickup 3500 Crew Cab": [ + "A 2010 Dodge Ram Pickup 3500 Crew Cab is a four-door, six-passenger pickup truck that comes standard with a 5.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab is a large pickup truck that seats up to six people.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab has four full-size doors and seats up to six people.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab has four full-sized doors, a huge cargo bed, and seating for six passengers.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab has four full-size doors, a long bed, and space for up to six passengers.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab is a full-size pickup truck that seats up to six passengers.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab is a large truck with four doors and a crew cab.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab has four doors and can seat up to six people.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab is a large pickup truck with a crew cab, which means it has four full-size doors and seating for up to six people.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab has four full-size doors, a long cargo bed, and seating for up to six people.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its large size and its engine options.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its unique body style.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab is a large truck with four full-sized doors and a spacious crew cab.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its long bed and four full-size doors.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its strong, muscular body and aggressive front end.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its enlarged crew cab and boxy body.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its large size and pronounced hood.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its large size, specially designed frame, and four full-size doors.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab can be identified by its large size and muscular body.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab is a large pickup truck with four full-size doors and a large cargo area.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab has a boxy body shape with a large grille and circular headlights.", + "A 2010 Dodge Ram 3500 Crew Cab is a full-size pickup truck with room for up to six passengers.", + "A 2010 Dodge Ram 3500 Crew Cab looks like a large truck with four doors and a big cargo area.", + "The 2010 Dodge Ram Pickup 3500 looks like a large truck with a crew cab.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab looks like a large truck with four doors and a large cargo area.", + "Standard features on the 2010 Dodge Ram Pickup 3500 Crew Cab include 17-inch steel wheels, a Class IV trailer hitch receiver, skid plates, foglights, a full-size spare tire, a locking tailgate, a 40.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab looks like a large pickup truck with four doors and a crew cab.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab looks like a large, four-door pickup truck.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab looks like a large truck with a crew cab and a long bed.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab looks like a regular Dodge Ram Pickup 3500 Crew Cab, except it has the year 2010 stamped on the side.", + "This image is of a 2010 Dodge Ram Pickup 3500 Crew Cab.", + "This image is of a 2010 Dodge Ram Pickup 3500 Crew Cab.", + "The image is of a red Dodge Ram Pickup 3500 Crew Cab.", + "This is an image of a 2010 Dodge Ram Pickup 3500 Crew Cab.", + "The image is of a red truck with a large bed in the back.", + "This image is of a 2010 Dodge Ram Pickup 3500 Crew Cab.", + "The image is of a red 2010 Dodge Ram 3500 Crew Cab Pickup.", + " STThis image shows a 2010 Dodge Ram Pickup 3500 Crew Cab ST.", + " SLT 4x4This image is of a 2010 Dodge Ram Pickup 3500 Crew Cab SLT 4x4.", + "]), it is a large, black truck with four doors.", + "This truck is built for hauling.", + "Dodge Ram Pickup 3500 Crew Cab, 2010.", + "The 2010 Dodge Ram 3500 is a heavy duty pickup truck that is perfect for those who need a truck that can handle a heavy load.", + "The 2010 Dodge Ram Pickup 3500 Crew Cab is a full-size pickup truck that seats five passengers.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab hauling a load of lumber.", + "This is a 2010 Dodge Ram Pickup 3500 Crew Cab.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab truck.", + "A 2010 Dodge Ram Pickup 3500 Crew Cab pickup truck.", + " This is a 2010 Dodge Ram Pickup 3500 Crew Cab.", + "This truck is built for work and can handle just about any task you throw at it." + ], + "2009 Spyker C8 Coupe": [ + "The 2009 Spyker C8 Coupe is a high-performance sports car with a sleek, aerodynamic design.", + "A 2009 Spyker C8 Coupe is a sleek and stylish two-door sports car.", + "The 2009 Spyker C8 Coupe has a long nose and a low, wide stance.", + "A Spyker C8 Coupe from 2009 is a two-door, two-seat sports car with a sleek and aerodynamic design.", + "A 2009 Spyker C8 Coupe has a long, sleek hood and a cabin that sits low to the ground.", + "The 2009 Spyker C8 Coupe is a 2-door, 2-seat sports car.", + "The 2009 Spyker C8 Coupe is a sleek and stylish sports car with a long, low profile.", + "The 2009 Spyker C8 Coupe has a long, sleek hood and a short rear end.", + "The 2009 Spyker C8 Coupe has a long, sleek hood and a short rear end.", + "The 2009 Spyker C8 Coupe has a long, sleek hood and a short rear deck.", + "Some key identifying features of the 2009 Spyker C8 Coupe include its long hood, sleek body, and unique butterfly doors.", + "The 2009 Spyker C8 Coupe can be identified by its long, sleek hood and exposed rear wheels.", + "The Spyker C8 Coupe can be identified by its long, sloping hood and exposed rear wheels.", + "Spyker cars are easily identified by their distinct, angular design.", + "By its sleek, aerodynamic design.", + "A 2009 Spyker C8 Coupe can be identified by its unique, angular body style.", + "The easiest way to identify a 2009 Spyker C8 Coupe is by its distinctively shaped headlights.", + "The Spyker C8 Coupe is a unique and exotic car that is easily identifiable thanks to its sleek and stylish design.", + "Some ways to identify a 2009 Spyker C8 Coupe include its unique front and rear fasciae, large air intakes, and side vents.", + "The Spyker C8 can be identified by its unique, curvaceous body.", + "A 2009 Spyker C8 Coupe looks like a white, two-door sports car.", + "A 2009 Spyker C8 Coupe looks like a 2-door, 2-seater sports car with a long hood and a short rear deck.", + "A 2009 Spyker C8 Coupe looks like a small, two-door sports car.", + "A 2009 Spyker C8 Coupe looks like a 2-door sports car with a long hood and short rear deck.", + "A 2009 Spyker C8 Coupe looks like a sleek and sporty 2-door coupe.", + "The 2009 Spyker C8 Coupe has a unique and aggressive design that is sure to turn heads.", + "A 2009 Spyker C8 Coupe looks like a sports car.", + "A 2009 Spyker C8 Coup\u00e9 has a long, sleek, and aggressive look.", + "A 2009 Spyker C8 Coupe looks like a sports car.", + "A 2009 Spyker C8 Coupe looks like a small, two seater sports car.", + "The image shows a sleek, silver car with long, curved lines and exaggerated wheel arches.", + "This image is of a 2009 Spyker C8 Coupe.", + "The image is of a dark blue Spyker C8 Coupe with silver accents.", + "The image is of a blue and white Spyker C8 Coupe.", + "The image is of a sleek, silver car with long, curved lines.", + "This image from the internet shows a 2009 Spyker C8 Coupe.", + "This silver Spyker C8 Coupe has a long, sleek body with a curved windshield.", + "The 2009 Spyker C8 Coupe is a sleek, sports car with a long, sleek hood and a short rear end.", + "The Spyker C8 Coupe is a luxury sports car that was first introduced in 2009.", + "A 2009 Spyker C8 Coupe on the internet is a photo of a blue car with a white interior.", + "A 2009 Spyker C8 Coupe.", + "The 2009 Spyker C8 Coupe is a work of art on wheels.", + "In 2009, Spyker Cars introduced the C8 Coupe, a high-performance sports car with a mid-mounted engine.", + "The Spa.", + "The 2009 Spyker C8 Coupe is a high-performance sports car that is sure to turn heads.", + "The 2009 Spyker C8 Coupe is a work of art on wheels.", + "Aerodynamic and aggressive, the Spyker C8 is a work of art on wheels.", + "The caption reads: \"A 2009 Spyker C8 Coupe on display at the Geneva Motor Show.", + "The Spyker C8 Coupe was introduced in 2009 and was available until 2012.", + "The 2009 Spyker C8 Coupe is a work of art on wheels." + ], + "2012 Land Rover Range Rover SUV": [ + "A Land Rover Range Rover SUV from 2012 has a sleek, modern look.", + "A 2012 Land Rover Range Rover SUV is a large vehicle with a long wheelbase.", + "A 2012 Land Rover Range Rover SUV has a stylish and luxurious look with a sleek body and powerful engine.", + "The 2012 Land Rover Range Rover SUV has a sleek, modern look with a boxy body and sharp lines.", + "The exterior of a 2012 Land Rover Range Rover SUV is sleek and modern, with a wide stance and an elevated ride height.", + "A Range Rover has a sleek, modern look with an aggressive stance.", + "The outside of a 2012 Land Rover Range Rover SUV is mostly silver with some black accents.", + "The 2012 Land Rover Range Rover SUV has a sleek, modern look.", + "A 2012 Land Rover Range Rover SUV has a sleek, stylish look with a Honeycomb grille and LED headlights.", + "The 2012 Land Rover Range Rover SUV has a boxy body with a flat front and rear.", + "The 2012 Land Rover Range Rover features a new, more angular front end with a plastic cladding around the bottom.", + "There are a few ways to identify a 2012 Land Rover Range Rover SUV.", + "The 2012 Land Rover Range Rover has a sleek, modern look with a keystone-shaped grille and HID headlights.", + "The exterior of a 2012 Land Rover Range Rover SUV is very sleek and stylish.", + "There are a few ways to identify a 2012 Land Rover Range Rover SUV.", + "The 2012 Land Rover Range Rover SUV can be identified by its sleek exterior design and its large size.", + "There are several ways to identify a 2012 Land Rover Range Rover SUV.", + "There are a few ways to identify a 2012 Land Rover Range Rover SUV.", + "The 2012 Land Rover Range Rover SUV can be identified by its sleek and modern design.", + "A 2012 Land Rover Range Rover SUV can be identified by its sleek, stylish design.", + "The 2012 Land Rover Range Rover SUV has a sleek, modern look with a powerful engine.", + "A 2012 Land Rover Range Rover SUV looks like a luxurious, yet rugged vehicle that is perfect for both on and off road driving.", + "One possible way a 2012 Land Rover Range Rover SUV might look is through the use of aftermarket parts.", + "A 2012 Land Rover Range Rover SUV has a sleek and luxurious design.", + "A silver 2012 Land Rover Range Rover SUV.", + "A 2012 Land Rover Range Rover SUV looks like a large, stylish SUV with plenty of room for passengers and cargo.", + "A 2012 Land Rover Range Rover Sport SUV has a sleek and stylish design with a sporty look.", + "View the 2012 Land Rover Range Rover photo gallery.", + "A 2012 Land Rover Range Rover SUV looks like a luxury SUV with plenty of ground clearance and a powerful engine.", + "A 2012 Land Rover Range Rover Sport SUV has a sleek, modern design with a sloping roofline and flared wheel wells.", + "The Internet image shows a 2012 Land Rover Range Rover SUV in mint condition.", + "This image is of a 2012 Land Rover Range Rover SUV in white.", + "The image is of a 2012 Land Rover Range Rover SUV in black.", + "The 2012 Land Rover Range Rover SUV is a large, luxurious vehicle with a sleek, sophisticated design.", + "The image is of a large, luxurious SUV with sleek lines and a glossy black finish.", + "The image is of a white 2012 Land Rover Range Rover SUV.", + "The image is of a blue 2012 Land Rover Range Rover SUV.", + "The image shows a 2012 Land Rover Range Rover SUV in a silver color.", + "This car is a sleek, stylish SUV with a smooth, curved design.", + "In the image, the 2012 Land Rover Range Rover SUV is a sleek and modern looking vehicle in silver.", + "The luxurious 2012 Land Rover Range Rover.", + "This is a 2012 Land Rover Range Rover SUV.", + "The 2012 Land Rover Range Rover SUV is a luxurious and powerful vehicle that is perfect for off-road adventures.", + "A 2012 Land Rover Range Rover SUV in a parking lot.", + "The 2012 Land Rover Range Rover is a luxurious SUV that is perfect for any off-road adventure.", + "The luxurious 2012 Land Rover Range Rover.", + "The 2012 Land Rover Range Rover is a luxurious SUV that is perfect for families or individuals who enjoy the outdoors.", + "The 2012 Land Rover Range Rover is a luxurious SUV that is perfect for those who enjoy the finer things in life.", + "The Land Rover Range Rover is a luxurious SUV that offers an enjoyable ride and plenty of features to keep you comfortable on the road.", + "The 2012 Land Rover Range Rover is a luxurious SUV that provides plenty of space for passengers and cargo." + ], + "2012 Hyundai Elantra Touring Hatchback": [ + "The 2012 Hyundai Elantra Touring Hatchback is a compact car with a sporty look.", + "The 2012 Hyundai Elantra Touring Hatchback is a compact car with a sleek design.", + "The 2012 Hyundai Elantra Touring Hatchback has a sleek and stylish design with a chrome grille and chrome-accented door handles.", + "The exterior of a 2012 Hyundai Elantra Touring Hatchback is sleek and aerodynamic.", + "A 2012 Hyundai Elantra Touring Hatchback is a five-door hatchback that is available in two trim levels: SE and Limited.", + "The 2012 Hyundai Elantra Touring Hatchback has a sporty look with its sleek lines and chrome-tipped exhaust.", + "The 2012 Hyundai Elantra Touring Hatchback has a sleek design with chrome accents.", + "The 2012 Hyundai Elantra Touring Hatchback is a 5-door hatchback that seats 5 passengers.", + "The 2012 Hyundai Elantra Touring Hatchback is a small car with a big cargo area.", + "A 2012 Hyundai Elantra Touring Hatchback is a five-door hatchback that seats five passengers.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its sloping roofline, window shape, and large taillights.", + "The 2012 Hyundai Elantra Touring Hatchback is a 5-door hatchback that was introduced in 2011.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its sloping roofline, small rear window, and large rear spoiler.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its unique body style.", + "The 2012 Hyundai Elantra Touring Hatchback has a few distinctive features that make it easy to identify.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its sloping roofline, wide grille, and large headlight clusters.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its sloping roofline, chiseled hood, and large front grille.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its sloping roofline and rear hatch.", + "The Hyundai Elantra Touring Hatchback was released in 2012.", + "The 2012 Hyundai Elantra Touring Hatchback can be identified by its elongated roofline and large rear glass area.", + "A 2012 Hyundai Elantra Touring Hatchback looks like a small SUV.", + "A 2012 Hyundai Elantra Touring Hatchback looks like a small, sporty car.", + "The 2012 Hyundai Elantra Touring Hatchback is a 5-door car that has a sleek and sporty look.", + "The 2012 Hyundai Elantra Touring Hatchback looks like a cross between a station wagon and a small SUV.", + "The 2012 Hyundai Elantra Touring Hatchback is a compact car with a sleek and stylish design.", + "This model of the Hyundai Elantra features a sleek, modern design with a hatchback body style.", + "The 2012 Hyundai Elantra Touring Hatchback has a sleek, modern look with lines that give it a sporty appearance.", + "A 2012 Hyundai Elantra Touring Hatchback looks like a small, sleek, and modern hatchback car.", + "The 2012 Hyundai Elantra Touring Hatchback has a sleek, modern look with a sloping roofline and a wide, stance.", + "A 2012 Hyundai Elantra Touring Hatchback looks like a regular Elantra sedan with a sloped rear end and a hatchback.", + "This image is of a 2012 Hyundai Elantra Touring Hatchback in the color silver.", + "The image is of a 2012 Hyundai Elantra Touring Hatchback in white.", + "From the internet, an image of a 2012 Hyundai Elantra Touring Hatchback is of a white car with a black roof and chrome accents.", + "Image shows a red 2012 Hyundai Elantra Touring Hatchback with the doors and hatch open.", + "The image is of a blue 2012 Hyundai Elantra Touring Hatchback.", + "This image is of a silver 2012 Hyundai Elantra Touring Hatchback.", + "In the image, the 2012 Hyundai Elantra Touring Hatchback is a silver color with dark tinted windows.", + "In the image, the car is parked on a road with the hood open.", + "The image is of a 2012 Hyundai Elantra Touring Hatchback in Silver.", + "This 2012 Hyundai Elantra Touring Hatchback is a sleek and stylish car with a sporty feel.", + "The brand new 2012 Hyundai Elantra Touring Hatchback is a stylish and practical car that's perfect for families or anyone who needs a little extra space.", + "The 2012 Hyundai Elantra Touring Hatchback is a versatile and stylish vehicle that is perfect for anyone who wants a reliable and affordable car.", + "The 2012 Hyundai Elantra Touring Hatchback is a versatile and stylish vehicle that's perfect for families or anyone who needs a little extra space.", + "The 2012 Hyundai Elantra Touring Hatchback features a sleek design and plenty of cargo space.", + "The 2012 Hyundai Elantra Touring Hatchback is a stylish and practical hatchback that's perfect for city driving.", + "This is a 2012 Hyundai Elantra Touring Hatchback.", + "The 2012 Hyundai Elantra Touring Hatchback is a stylish and practical car that is perfect for families or individuals who need a reliable and affordable vehicle.", + "The 2012 Hyundai Elantra Touring Hatchback is a versatile and stylish vehicle that's perfect for any adventure.", + " \"The Hyundai Elantra Touring is a great option for those who want a stylish and practical hatchback.", + " The Hyundai Elantra Touring is a hatchback variant of the Hyundai Elantra sedan." + ], + "2010 Chevrolet Cobalt SS": [ + "The 2010 Chevrolet Cobalt SS has a sleek, sporty look with a low-profile stance.", + "The Chevrolet Cobalt SS is a sporty compact car that was produced from 2008 to 2010.", + "A 2010 Chevrolet Cobalt SS has a sleek, sporty look with a black grille and SS badge.", + "The 2010 Chevrolet Cobalt SS has a sporty look with a sleek design.", + "The 2010 Chevrolet Cobalt SS has a sporty look with a sleek design.", + "A 2010 Chevrolet Cobalt SS has a sleek and sporty design.", + "A 2010 Chevrolet Cobalt SS has a sleek and sporty design.", + "A 2010 Chevrolet Cobalt SS has a sleeker body than the previous model with a more aggressive stance.", + "A 2010 Chevrolet Cobalt SS has a sleek and sporty appearance with a spoiler on the back and fog lights.", + "The 2010 Chevrolet Cobalt SS has a sleek and sporty look with a few distinguishing features that set it apart from other models.", + "The most obvious way to identify a 2010 Chevrolet Cobalt SS is by its exterior badges.", + "The 2010 Chevrolet Cobalt SS can be identified by its unique front and rear fascias, rear spoiler, and 18-inch aluminum wheels.", + "The 2010 Chevrolet Cobalt SS can be identified by its unique grille, rear spoiler, and exhaust tips.", + "The 2010 Chevrolet Cobalt SS can be identified by its sporty design, aggressive stance, and dual exhaust tips.", + "The 2010 Chevrolet Cobalt SS can be identified by its unique aluminum hood with heat extractors, rear spoiler, and SS badges.", + "There are a few ways to identify a 2010 Chevrolet Cobalt SS.", + "The most distinguishing feature of the 2010 Chevrolet Cobalt SS is its wide body kit.", + "There are a few ways to identify a 2010 Chevrolet Cobalt SS.", + "The easiest way to identify a 2010 Chevrolet Cobalt SS is by its unique grille design.", + "There were two models of the 2010 Chevrolet Cobalt SS.", + "The 2010 Chevrolet Cobalt SS looks like a regular Cobalt, but with a more aggressive stance.", + "A 2010 Chevrolet Cobalt SS generally looks like a regular Chevrolet Cobalt with some additional sporty features.", + "A 2010 Chevrolet Cobalt SS looks like a small, sporty sedan.", + "A 2010 Chevrolet Cobalt SS looks like a small, sporty sedan.", + "The 2010 Chevrolet Cobalt SS looks like a sporty four-door sedan.", + "A 2010 Chevrolet Cobalt SS looks like a small, sporty sedan.", + "A 2010 Chevrolet Cobalt SS has a sleek, sporty look with a curved body and chrome accents.", + "The 2010 Chevrolet Cobalt SS has a sleek, aerodynamic design with a sporty side skirt.", + "The 2010 Chevrolet Cobalt SS has a sleek, sporty look with a touch of aggression.", + "The 2010 Chevrolet Cobalt SS has a sporty look with a aggressive front fascia and dual exhaust tips.", + "This image is of a 2010 Chevrolet Cobalt SS.", + "The image is of a blue 2010 Chevrolet Cobalt SS.", + "Assuming you would like an image of the 2010 Chevrolet Cobalt SS, one image from the internet shows the car in a light blue color.", + "This image is of a 2010 Chevrolet Cobalt SS that is blue in color.", + "This particular image is of a racing-striped 2010 Chevrolet Cobalt SS.", + "The image is of a red 2010 Chevrolet Cobalt SS.", + "The image is of a 2010 Chevrolet Cobalt SS.", + "The image is of a 2010 Chevrolet Cobalt SS.", + "The image is of a 2010 Chevrolet Cobalt SS.", + "The image is of a red 2010 Chevrolet Cobalt SS.", + "2010 Chevrolet Cobalt SS.", + "This Chevy Cobalt is a speed demon on the track.", + "This is a 2010 Chevrolet Cobalt SS.", + "2010 Chevrolet Cobalt SS - Front View.", + "The 2010 Chevrolet Cobalt SS is a sporty sedan with a powerful engine and sharp handling.", + "A 2010 Chevrolet Cobalt SS.", + "The Chevrolet Cobalt SS is a high performance version of the Cobalt compact car.", + "2010 Chevrolet Cobalt SS - Front View.", + " A yellow 2010 Chevy Cobalt SS Coupe parked on a roadThe Chevy Cobalt SS is a high performance version of the standard Cobalt sedan or coupe.", + "The 2010 Chevrolet Cobalt SS is a high performance version of the standard Cobalt." + ], + "2012 Hyundai Veracruz SUV": [ + "The 2012 Hyundai Veracruz is a seven-passenger SUV that comes in five trim levels: GLS, SE, Limited, Blue and Ultimate.", + "The 2012 Hyundai Veracruz is a midsize SUV that seats up to seven passengers.", + "A 2012 Hyundai Veracruz is a midsize crossover SUV with a sleek and modern look.", + "The Hyundai Veracruz is a large SUV that can seat up to seven passengers.", + "The 2012 Hyundai Veracruz is a mid-sized SUV with seating for up to seven passengers.", + "The 2012 Hyundai Veracruz is a 7-passenger SUV that is available in three trim levels.", + "The 2012 Hyundai Veracruz is a sport utility vehicle that seats seven passengers.", + "A 2012 Hyundai Veracruz SUV is a large vehicle that seats up to eight people.", + "The 2012 Hyundai Veracruz is a large SUV that seats up to seven passengers.", + "A 2012 Hyundai Veracruz SUV has a sleek and modern look.", + "The 2012 Hyundai Veracruz SUV can be identified by its large size, its sleek design, and its chrome accents.", + "The 2012 Hyundai Veracruz has a few distinctive features that make it easy to identify.", + "The 2012 Hyundai Veracruz SUV can be identified by its large size, its square shape, and its chrome grille.", + "A 2012 Hyundai Veracruz SUV can be identified by its large size, seven-passenger seating, and its sloping roofline.", + "There are a few different ways that you can identify a 2012 Hyundai Veracruz SUV.", + "The 2012 Hyundai Veracruz is a 7-passenger SUV that comes in three trim levels: GLS, Limited and Ultimate.", + "From the outside, you can identify a 2012 Hyundai Veracruz SUV by its front end, which has a hexagonal grille and large headlights.", + "The 2012 Hyundai Veracruz SUV can be identified by its front grille, which is specific to that model year.", + "Look for the Hyundai emblem on the front of the vehicle.", + "There are several ways to identify a 2012 Hyundai Veracruz SUV:-The Veracruz SUV has a sloping hoodline and a wide grille.", + "The 2012 Hyundai Veracruz is a sizable SUV with a refined look.", + "A 2012 Hyundai Veracruz SUV has a sleek, modern look with plenty of curves and lines.", + "The 2012 Hyundai Veracruz SUV has a sleek, modern look with a sporty grille and aggressive headlights.", + "The 2012 Hyundai Veracruz SUV has a sleek, modern look with curved lines and a sloped windshield.", + "The 2012 Hyundai Veracruz SUV has a sleek, modern look with a stylish grille and headlights.", + "A 2012 Veracruz has a large grille with the Hyundai logo in the center, chrome accents, and projectorbeam headlights with LED daytime running lights.", + "The Hyundai Veracruz is a seven-passenger SUV that was discontinued after the 2012 model year.", + "The 2012 Hyundai Veracruz SUV has a bold front grill, sleek headlights, and a sporty look.", + "I am not sure what you are asking.", + "A 2012 Hyundai Veracruz SUV looks like a large, boxy car with a slightly rounded front end.", + "This image is of a 2012 Hyundai Veracruz SUV in a bright blue color.", + "The Hyundai Veracruz is a seven-passenger SUV that was discontinued in 2012.", + "The image is of a large, silver SUV with intricate chrome details on the front grill and around the headlights.", + "An image of a 2012 Hyundai Veracruz SUV from the internet shows the car in a silver color.", + "The image is of a 2012 Hyundai Veracruz SUV in silver.", + "The image shows a Hyundai Veracruz SUV in a light blue color.", + "This image shows a 2012 Hyundai Veracruz SUV in a bright blue color.", + "Image shows a 2012 Hyundai Veracruz SUV in a silver/gray color.", + "The image is of a 2012 Hyundai Veracruz SUV in a light blue color.", + "The image is of a 2012 Hyundai Veracruz SUV in silver.", + "The all-new Hyundai Veracruz.", + "This 2012 Hyundai Veracruz is a great SUV for anyone looking for a comfortable ride and plenty of space.", + "2012 Hyundai Veracruz SUV.", + "This is the 2012 Hyundai Veracruz SUV.", + "The 2012 Hyundai Veracruz is a stylish and comfortable SUV that is perfect for families or anyone who needs a little extra space.", + "The 2012 Hyundai Veracruz is a stylish and practical SUV that's perfect for a family.", + "This SUV is perfect for those who need a lot of space but don't want to compromise on style.", + "2012 Hyundai Veracruz SUV in black.", + " A 2012 Hyundai Veracruz SUV on a dealership lot.", + "2012 Hyundai Veracruz SUV." + ], + "2012 Ferrari 458 Italia Coupe": [ + "A 2012 Ferrari 458 Italia Coupe is a red, two-door sports car with a black interior.", + "A 2012 Ferrari 458 Italia Coupe is a red sports car with a black convertible top.", + "The 2012 Ferrari 458 Italia Coupe is a two-door, rear-engine sports car that seats four passengers.", + "A 2012 Ferrari 458 Italia Coupe is a red, two-door sports car with a black interior.", + "The 458 Italia is a performance-oriented coupe with a sleek and aerodynamic design.", + "The 458 Italia is a mid-engined sports car produced by the Italian sports car manufacturer Ferrari.", + "A 2012 Ferrari 458 Italia Coupe is a sporty, two-door car that is sleek and stylish.", + "The 2012 Ferrari 458 Italia Coupe is a sleek and stylish sports car with a sleek body and unique curves.", + "A 2012 Ferrari 458 Italia Coupe is a sleek and sporty car with a sleek design.", + "The 2012 Ferrari 458 Italia Coupe is a two-seat, mid-engined sports car produced by the Italian sports car manufacturer Ferrari.", + "The 2012 Ferrari 458 Italia Coupe can be identified by its black and white color scheme, as well as its rear spoiler and aggressive stance.", + "The 2012 Ferrari 458 Italia Coupe can be identified by its large front grille, curved hood, and sleek body style.", + "The 2012 Ferrari 458 Italia Coupe can be identified by its unique rear end, which features two circular exhaust pipes and a rear diffuser.", + "By the VIN number which is located on the dash on the driver's side or on the driver's door.", + "The 458 Italia Coupe is a two-door, mid-engine sports car produced by the Italian automobile manufacturer Ferrari.", + "The easiest way to identify a 2012 Ferrari 458 Italia Coupe is by its unique styling.", + "The 2012 Ferrari 458 Italia Coupe can be identified by its powerful engine, sleek design, and sporty performance.", + "The easiest way to identify a 2012 Ferrari 458 Italia Coupe is by its unique styling.", + "The 2012 Ferrari 458 Italia Coupe can be identified by its unique design.", + "The 2012 Ferrari 458 Italia Coupe can be identified by its long hood, sleek lines, and aggressive stance.", + "2012 Ferrari 458 Italia Coupe\nThe 458 Italia is a mid-engined sports car produced by the Italian automobile manufacturer Ferrari.", + "The 2012 Ferrari 458 Italia Coupe has a sleek and stylish design that is sure to turn heads.", + "A 2012 Ferrari 458 Italia Coupe is a sleek and stylish sports car with a long nose and a short rear end.", + "A 2012 Ferrari 458 Italia Coupe has a sleek, aerodynamic design with a long hood and a short rear deck.", + "The 2012 Ferrari 458 Italia Coupe looks like a sleek and sports car.", + "A 2012 Ferrari 458 Italia Coupe looks like a sleek and stylish Italian sports car.", + "A 2012 Ferrari 458 Italia Coupe looks like a sexy, red sports car.", + "The 2012 Ferrari 458 Italia Coupe is an amazing work of automotive art.", + "A 2012 Ferrari 458 Italia Coupe looks like a red sports car with a black convertible top.", + "A 2012 Ferrari 458 Italia Coupe looks like a small, exotic sports car.", + "The image is of a red sports car with two white stripes down the middle.", + "The image is of a red Ferrari 458 Italia Coupe with the hood open.", + "The image is of a 2012 Ferrari 458 Italia Coupe in white.", + "The image is of a red 2012 Ferrari 458 Italia Coupe.", + "The image is of a red 2012 Ferrari 458 Italia Coupe.", + "The image is of a 2012 Ferrari 458 Italia Coupe in white.", + "The image is of a red Ferrari 458 Italia Coupe.", + "The 2012 Ferrari 458 Italia Coupe is a sleek, sporty car with a long, tapered nose and curved lines.", + "This image is of a 2012 Ferrari 458 Italia Coupe.", + "The image is of a silver 2012 Ferrari 458 Italia Coupe.", + "This is a photo of a 2012 Ferrari 458 Italia Coupe.", + "2012 Ferrari 458 Italia Coupe.", + "The 458 Italia Coupe is a work of art on wheels.", + "The Ferrari 458 Italia is a high-performance, mid-engine sports car built by the Italian manufacturer Ferrari.", + "This is a 2012 Ferrari 458 Italia Coupe.", + "A Ferrari 458 Italia Coupe parked in front of a building - 2012model year.", + "The 2012 Ferrari 458 Italia Coupe is a work of art on wheels.", + "The Ferrari 458 Italia is a V8 sports car that was first introduced in 2009.", + "The Ferrari 458 Italia is a high-performance sports car produced by the Italian automotive manufacturer Ferrari.", + "The 458 Italia Coupe is a sleek and powerful sports car that is sure to turn heads." + ], + "2012 BMW Z4 Convertible": [ + "A 2012 BMW Z4 Convertible is a two-door vehicle with a soft-top convertible roof.", + "The 2012 BMW Z4 Convertible has a soft top that can be opened and closed automatically.", + "A 2012 BMW Z4 convertible is a two-door, four-seater car with a soft top.", + "The Z4 convertible has a sleek, aggressive design that is accented by its long hood and short rear end.", + "The 2012 BMW Z4 Convertible has a long, sleek hood and a short rear deck.", + "The BMW Z4 is a two-door, two-seater sports car that was first introduced in 2002.", + "The 2012 BMW Z4 Convertible has a long hood and a short rear deck.", + "A 2012 BMW Z4 Convertible looks like a 2-door convertible with a soft top.", + "The 2012 BMW Z4 Convertible is a two-door, four-seat convertible with a power-folding hardtop.", + "A 2012 BMW Z4 Convertible is a two-door convertible with a soft top that can be lowered and raised electronically.", + "The 2012 BMW Z4 Convertible car has the following distinguishing features: long nose, BMW kidney grille, LED headlights, active rear spoiler, and contoured bonnet.", + "The 2012 BMW Z4 Convertible can be identified by its long hood, wide grille, and sleek body.", + "TheBMW Z4 Convertible was introduced in the 2007 model year.", + "The 2012 BMW Z4 convertible can be identified by its long hood, short rear deck, and wide stance.", + "The 2012 BMW Z4 Convertible can be identified by its long hood and low-slung silhouette.", + "By the model number.", + "The 2012 BMW Z4 Convertible can be identified by its long hood andshort rear deck.", + "The 2012 BMW Z4 Convertible can be identified by its long nose and short rear deck.", + "The easiest way to identify a 2012 BMW Z4 Convertible is by its long hood and wide stance.", + "The 2012 BMW Z4 Convertible can be identified by its long hood, wide stance, and frameless windshield.", + "A 2012 BMW Z4 Convertible would look like a sports car with a soft top that can be opened and closed.", + "A 2012 BMW Z4 Convertible looks like a sleek and stylish two-door convertible sports car.", + "A 2012 BMW Z4 Convertible would look like a two-door convertible with a folding hard top.", + "The 2012 BMW Z4 Convertible has a soft-top roof that can be raised or lowered.", + "The 2012 BMW Z4 Convertible is a sleek, sporty car that looks great with the top up or down.", + " 2012 BMW Z4 Convertible The exterior of the 2012 BMW Z4 Convertible is defined by a long hood, short rear deck, and an aggressive stance.", + "A 2012 BMW Z4 Convertible looks like a black two-seater convertible with a soft top.", + "The 2012 BMW Z4 convertible has a sleek, stylish look with a long hood and a short rear deck.", + "A 2012 BMW Z4 Convertible looks like a long, sleek car with a soft top.", + "A 2012 BMW Z4 Convertible would look like a regular BMW Z4, but with the top down.", + "This image shows a 2012 BMW Z4 Convertible in silver.", + "The image is of a sleek, silver BMW Z4 Convertible with the top down.", + "The image is of a red 2012 BMW Z4 Convertible with the top down.", + "The image is of a white BMW Z4 convertible with the top down.", + "This image is of a 2012 BMW Z4 Convertible.", + "The image is of a red 2012 BMW Z4 Convertible.", + "The image is of a white BMW Z4 convertible with the top down.", + "The image is of a 2012 BMW Z4 Convertible.", + "This image shows a white BMW Z4 convertible with a black top and tinted windows.", + "This image is of a 2012 BMW Z4 Convertible in a deep blue color.", + "The 2012 BMW Z4 is a convertible sports car that was released in 2012.", + "\nThe Z4 boasts a 3.", + " A sleek and sporty BMW Z4 Convertible.", + "This 2012 BMW Z4 Convertible is a sleek and stylish car that's sure to turn heads.", + "This is a 2012 BMW Z4 Convertible.", + "The 2012 BMW Z4 Convertible is a luxurious and sporty car that's perfect for a weekend getaway.", + "The BMW Z4 is a stylish and sporty convertible that's a joy to drive.", + "This 2012 BMW Z4 Convertible is a sleek and sporty car that's perfect for cruising around town or hitting the open road.", + "The 2012 BMW Z4 Convertible is a sleek and stylish car that is sure to turn heads.", + " BMW Z4 Convertible." + ], + "2009 Dodge Charger SRT-8": [ + "The 2009 Dodge Charger SRT-8 has a distinctively aggressive look with a wide stance and 20-inch wheels.", + "A 2009 Dodge Charger SRT-8 will typically feature a sporty body style with a sleek design.", + "A 2009 Dodge Charger SRT-8 looks like a large, four-door sedan with a powerful engine.", + "A 2009 Dodge Charger SRT-8 has a V8 engine, four doors, and a rear spoiler.", + "The 2009 Dodge Charger SRT-8 is a mid-size sedan that seats up to five passengers.", + "The 2009 Dodge Charger SRT-8 has an aggressive, wide stance with a muscular look.", + "A 2009 Dodge Charger SRT-8 has a muscular, aggressive look with a wide stance and a sleek, aerodynamic profile.", + "The 2009 Dodge Charger SRT-8 is a high-performance sedan that was released as an update to the original Charger model.", + "The 2009 Dodge Charger SRT-8 is a muscle car that features a powerful V8 engine, aggressive styling, and a sports-tuned suspension.", + "A 2009 Dodge Charger SRT-8 is a 4-door sedan that seats five passengers.", + "The 2009 Dodge Charger SRT-8 can be identified by its unique 20-inch chrome alloy wheels, Brembo brakes, and aggressive body kit.", + "The 2009 Dodge Charger SRT-8 can be identified by its aggressive stance, bulged hood, wide body kit, and 20-inch alloy wheels.", + "Look for the \"SRT8\" badge on the fenders.", + "Some identifying features of the 2009 Dodge Charger SRT-8 include a 6.", + "The 2009 Dodge Charger SRT-8 can be identified by its large size, its wide stance, and its large 20-inch wheels.", + "One way to identify a 2009 Dodge Charger SRT-8 is to look for the \"SRT-8\" badge on the rear of the car.", + "The 2009 Dodge Charger SRT-8 can be identified by its unique 20-inch alloy wheels, Brembo brakes, and body-colored rear spoiler.", + "The 2009 Dodge Charger SRT-8 can be identified by its aggressive styling, high performance engine, and unique SRT-8 badge.", + "The 2009 Dodge Charger SRT-8 can be identified by its aggressive styling, powerful engine, and sport-tuned suspension.", + "The 2009 Dodge Charger SRT-8 can be identified by its unique styling, including a vented hood, large front grille, and flared fenders.", + "The 2009 Dodge Charger SRT-8 looks like a high performance version of the standard Dodge Charger.", + "A 2009 Dodge Charger SRT-8 has a sleek, modern look with a wide grille, chromed accents, and 20-inch alloy wheels.", + "A 2009 Dodge Charger SRT-8 looks like a Dodge Charger with a more powerful engine.", + "The 2009 Dodge Charger SRT-8 is a performance-oriented sedan with a distinctly aggressive appearance.", + "A 2009 Dodge Charger SRT-8 typically features a black or dark-colored exterior with 20-inch alloy wheels.", + "A 2009 Dodge Charger SRT-8 looks like a black or red muscle car.", + "Assuming you would like to see pictures of the 2009 Dodge Charger SRT-8, please follow this link to Google Images: https://www.", + "A 2009 Dodge Charger SRT-8 has a muscular, aggressive look with a wide stance and a deeply sculpted hood.", + "The 2009 Dodge Charger SRT-8 has a unit-body construction with a steel frame, independent front suspension with coil springs and a stabilizer bar, and a multilink rear suspension with coil springs and a stabilizer bar.", + "A 2009 Dodge Charger SRT-8 looks like a modern muscle car.", + "The image is of a white 2009 Dodge Charger SRT-8.", + "The image is of a 2009 Dodge Charger SRT-8 in black.", + "The image is of a 2009 Dodge Charger SRT-8 that is silver in color.", + "The image is of a 2009 Dodge Charger SRT-8 that is silver in color.", + "The image is of a silver 2009 Dodge Charger SRT-8.", + "This image is of a 2009 Dodge Charger SRT-8.", + "The image is of a 2009 Dodge Charger SRT-8 in black.", + "The 2009 Dodge Charger SRT-8 is a high performance sedan that was produced by Dodge.", + "This image is of a 2009 Dodge Charger SRT-8.", + "The image is of a black 2009 Dodge Charger SRT-8.", + "This is a 2009 Dodge Charger SRT-8.", + "A 2009 Dodge Charger SRT-8 on the street.", + "This 2009 Dodge Charger SRT-8 is one mean machine.", + "Dodge Charger SRT-8 on the track.", + "2009 Dodge Charger SRT-8.", + "A 2009 Dodge Charger SRT-8 muscle car.", + "The 2009 Dodge Charger SRT-8 is a high-performance sedan with a powerful V8 engine.", + "The Dodge Charger SRT-8 is a high performance sedan that was introduced in 2009.", + "The 2009 Dodge Charger SRT-8 is a high-performance sedan with a powerful V8 engine.", + "The 2009 Dodge Charger SRT-8 is a high performance sedan that is powered by a 6." + ], + "2012 Fisker Karma Sedan": [ + "The 2012 Fisker Karma Sedan is a four-door, five-passenger luxury hybrid sports car.", + "The Fisker Karma Sedan is a luxury car that was first released in 2012.", + "The 2012 Fisker Karma Sedan is a luxury plug-in hybrid sports car.", + "The Fisker Karma Sedan is a sleek, stylish, and luxurious car that turns heads.", + "The Fisker Karma Sedan is a sleek and stylish car that looks like it came straight out of the future.", + "The Fisker Karma Sedan is a luxury hybrid sports car that was produced by Fisker Automotive from 2012 to 2016.", + "A 2012 Fisker Karma Sedan is a sleek, high-performance vehicle with a futuristic look.", + "The 2012 Fisker Karma Sedan is a sleek and stylish four-door car that looks like a cross between a luxury sedan and a sports car.", + "The 2012 Fisker Karma Sedan is a four-door, five-passenger luxury hybrid sports sedan.", + "A 2012 Fisker Karma Sedan is a luxury sedan that is powered by electricity.", + "Look for the Fisker badge on the front grille.", + "There are a few ways to identify a 2012 Fisker Karma Sedan.", + "The 2012 Fisker Karma Sedan can be easily identified by its sleek and unique design.", + "The rear end of the Karma is its most distinctive feature, with narrow, angular taillights that extend up into the rear decklid.", + "The Fisker Karma is a luxury plug-in hybrid sports sedan.", + "The 2012 Fisker Karma Sedan can be identified by its long, low profile and distinctive grille.", + "The 2012 Fisker Karma Sedan can be identified by its sleek and modern design.", + "The easiest way to identify a 2012 Fisker Karma Sedan is by its distinctive grille and front end.", + "A 2012 Fisker Karma Sedan can be identified by its unique styling.", + "The 2012 Fisker Karma Sedan can be identified by its lower profile and sleek, aerodynamic design.", + "The Fisker Karma is a sleek and stylish sedan that is sure to turn heads.", + "Here's a link to some 2012 Fisker Karma Sedan images:https://www.", + "The 2012 Fisker Karma Sedan is a sleek, stylish, and luxurious car that is sure to turn heads.", + "This car has a long, sleek hood and a curved windshield.", + "A 2012 Fisker Karma Sedan looks like a sleek, futuristic car.", + "The 2012 Fisker Karma Sedan looks like a sleek and stylish four-door sedan.", + "Image of the 2012 Fisker Karma Sedan.", + "The 2012 Fisker Karma Sedan is a sleek and stylish sedan with a sleek and stylish design.", + "The Fisker Karma is a luxury plug-in hybrid sports sedan that was first introduced in 2012.", + "A 2012 Fisker Karma Sedan looks like a luxury sedan with a sleek design.", + "The image is of a 2012 Fisker Karma Sedan in blue.", + "The Fisker Karma is a 2012 executive sedan with a sleek and modern design.", + "This image from the internet shows a 2012 Fisker Karma Sedan.", + "The image is of a sleek, futuristic looking car.", + "The 2012 Fisker Karma Sedan is a unique and stylish car.", + "The image is of a 2012 Fisker Karma Sedan in a parking lot.", + "The image shows a sleek, stylish car with a long hood and a short trunk.", + "The photo is of a 2012 Fisker Karma Sedan in white.", + "This image is of a 2012 Fisker Karma Sedan.", + "The Fisker Karma Sedan is a 2012 model that has a sleek, aerodynamic design.", + "The Fisker Karma is a unique and stylish luxury hybrid sedan that offers an impressive blend of performance and fuel economy.", + "The Fisker Karma is a luxurious and environmentally friendly hybrid sedan.", + "The Fisker Karma is a sedan that was first introduced in 2012.", + "This is a Fisker Karma, a luxury hybrid sports sedan.", + "The Fisker Karma is a luxury sedan with a difference - it's a plug-in hybrid.", + " A 2012 Fisker Karma Sedan.", + "The 2012 Fisker Karma Sedan is a luxurious and environmentally-friendly vehicle.", + "The Fisker Karma is a luxurious, plug-in hybrid sports sedan that has a range of up to 300 miles on a single charge.", + "This is a Fisker Karma Sedan from 2012.", + "This is a Fisker Karma, a luxury sedan that was produced from 2012-2016." + ], + "2011 Infiniti QX56 SUV": [ + "A 2011 Infiniti QX56 SUV is a large, luxury SUV with a sleek and stylish design.", + "A 2011 Infiniti QX56 SUV is a large SUV that seats up to eight passengers.", + "A 2011 Infiniti QX56 SUV is a large, luxury SUV that seats up to eight passengers.", + "The 2011 Infiniti QX56 SUV is a large, luxurious vehicle that seats up to eight passengers.", + "A 2011 Infiniti QX56 SUV has a sleek, aerodynamic design with luxurious features inside and out.", + "The 2011 Infiniti QX56 is a large SUV that seats up to eight passengers.", + "A 2011 Infiniti QX56 SUV is a large SUV with a long hood and a wide, boxy body.", + "The Infiniti QX56 is a large, luxury SUV with a curvaceous body and a wide, squared-off stance.", + "A2011 Infiniti QX56 SUV has a sleek, modern look.", + "The 2011 Infiniti QX56 is a full-size SUV that seats up to eight passengers.", + "A 2011 Infiniti QX56 SUV can be identified by its large size, its prominent grille, and its LED daytime running lights.", + "The 2014 Infiniti QX56 SUV can be identified by its unique grille design, large wheels, and bulked-up body.", + "The 2011 Infiniti QX56 SUV can be identified by its large size and strong body.", + "The 2011 Infiniti QX56 has a sleek and stylish look with its large grille and sharp lines.", + "A 2011 Infiniti QX56 SUV has a V8 engine, all-wheel drive, and a 7-speed automatic transmission.", + "The Infiniti QX56 SUV was first introduced in 2011.", + "There are a few ways to identify a 2011 Infiniti QX56 SUV:-The Infiniti QX56 SUV was first introduced in 2011, so any Infiniti QX56 SUV from 2011 onward can be.", + "The 2011 Infiniti QX56 SUV has a unique grille that is unlike any other vehicle on the market.", + "Find the VIN number on the vehicle and then enter it into a VIN decoder website.", + "One way to identify a 2011 Infiniti QX56 SUV is by its unique grille design.", + "The 2011 Infiniti QX56 SUV has a sleek and stylish look that is sure to turn heads.", + "A 2011 Infiniti QX56 SUV has a chrome grille, LED daytime running lights, and 20-inch wheels.", + "The Infiniti QX56 is a full-size SUV with a sleek and stylish exterior.", + "The Infiniti QX56 is a full-size SUV that seats up to eight passengers.", + "2011 Infiniti QX56 SUV.", + "A 2011 Infiniti QX56 SUV has a spacious interior with plenty of room for cargo and passengers.", + "A 2011 Infiniti QX56 SUV is a large, four-door SUV with a V8 engine.", + "I cannot find a picture of the 2011 Infiniti QX56 SUV.", + "A 2011 Infiniti QX56 SUV has a sleek, modern look with sweeping curves and lines.", + "A 2011 Infiniti QX56 SUV has an aggressive stance with a wide body and large tires.", + "This image is of a black Infiniti QX56 SUV with tinted windows.", + "The 2011 Infiniti QX56 SUV is a large, luxurious SUV with plenty of features and options.", + "This 2011 Infiniti QX56 SUV is a sleek and luxurious car.", + "The image is of a blue Infiniti QX56 SUV parked on a city street.", + "This 2011 Infiniti QX56 SUV is a sleek and stylish vehicle that is sure to turn heads.", + "The Infiniti QX56 is a large SUV that was introduced in 2011.", + "This image is of a 2011 Infiniti QX56 SUV in a blue color.", + "The image is of a 2011 Infiniti QX56 SUV in black.", + "The image is of a 2011 Infiniti QX56 SUV in a glossy black color.", + "This photo shows a 2011 Infiniti QX56 SUV in a light blue color.", + "2011 Infiniti QX56 SUV.", + "This luxurious SUV has everything you need to take your family on the road in style.", + "A 2011 Infiniti QX56 SUV.", + "The Infiniti QX56 is a full-size SUV that was launched in 2004.", + "Infiniti QX56 SUV.", + "The Infiniti QX56 is a full-size SUV that was produced by the Japanese automaker Infiniti from 2004 to 2013.", + "2011 Infiniti QX56 SUV.", + "This is a photo of an Infiniti QX56 SUV.", + "The Infiniti QX56 is a full-size SUV that was introduced in 2004.", + "This Infiniti QX56 is a full-size SUV that was first introduced in 2004." + ], + "2012 Audi A5 Coupe": [ + "The 2012 Audi A5 Coupe has a sleek, stylish look with a slightly rounded front end and a tapered back end.", + "A 2012 Audi A5 Coupe has a sleek, sporty look with a curved roofline and large windows.", + "The 2012 Audi A5 Coupe has a sleek, stylish look with a curved roofline and 19-inch alloy wheels.", + "The exterior of a 2012 Audi A5 Coupe is sleek and stylish.", + "The Audi A5 is a luxury car that first premiered in 2007.", + "The 2012 Audi A5 Coupe is a sleek and stylish vehicle that is sure to turn heads.", + "The 2012 Audi A5 Coupe is a two-door, four-seat luxury car with a sleek, sporty look.", + "The 2012 Audi A5 Coupe has a sleek, sporty design with a slightly rounded front end.", + "The 2012 Audi A5 Coupe has a sleek, sporty look with a curved silhouette and a sloping roofline.", + "The 2012 Audi A5 Coupe has a sleek, sporty look with its sweeping lines andlow stance.", + "There are a few ways to identify a 2012 Audi A5 Coupe.", + "The 2012 Audi A5 Coupe can be identified by its two-door design, sleek lines, and its bright LED daytime running lights.", + "The most obvious way to identify a 2012 Audi A5 Coupe is by its design.", + "The 2012 Audi A5 Coupe features a front grille with Audi's signature \"4-ring\" logo.", + "The 2012 Audi A5 Coupe can be identified by its sporty profile and sleek design.", + "The 2012 Audi A5 has a sleek, sporty look with elegant lines.", + "The Audi A5 coupe was first introduced in 2007.", + "The 2012 Audi A5 Coupe can be identified by its elegant design and sporty performance.", + "The Audi A5 coupe was first introduced in 2007.", + "The 2012 Audi A5 Coupe can be identified by its sleek and sporty design.", + "Audi A5 Coupe 2012.", + "The 2012 Audi A5 Coupe features a sleek, stylish design with a long, sloping hood and sharp, angular lines.", + "A 2012 Audi A5 Coupe looks like a sporty and luxurious vehicle.", + "The 2012 Audi A5 Coupe looks like a sleek and sporty Audi car.", + "The 2012 Audi A5 Coupe has a sleek, modern look with strong lines and a sculpted silhouette.", + "The Audi A5 was redesigned for the 2012 model year.", + "A 2012 Audi A5 Coupe looks like a sleek, elegant two-door car with attractive lines and curves.", + "A 2012 Audi A5 Coupe has a sleek, sporty look with a sloped roofline and large wheels.", + "A 2012 Audi A5 Coupe looks like a sleek and stylish luxury car.", + "A 2012 Audi A5 Coupe looks like a 2-door Audi sports car.", + "The image is of a 2012 Audi A5 Coupe in silver.", + "The image is of a 2012 Audi A5 Coupe in a blue color.", + "The image is of a red 2012 Audi A5 Coupe.", + "This image is of a 2012 Audi A5 Coupe.", + "The image shows a 2012 Audi A5 Coupe in a dark blue color.", + "The image is of a 2012 Audi A5 Coupe in white.", + "The image shows a 2012 Audi A5 Coupe in a parking lot.", + "The Audi A5 coupe is a sleek and stylish vehicle that turns heads on the road.", + "The image is of a sleek, silver 2012 Audi A5 Coupe.", + "The image is of a white 2012 Audi A5 Coupe with brown leather interior.", + "The all-new 2012 Audi A5 Coupe.", + " The Audi A5 is a series of compact executive coupe cars produced by the German automobile manufacturer Audi since March 2007.", + "The 2012 Audi A5 Coupe is a sleek and stylish vehicle that anyone would be proud to own.", + "The Audi A5 Coupe is a stylish and luxurious car that's perfect for anyone who wants to make a statement.", + "The new Audi A5 Coupe is a work of art.", + "Audi A5 Coupe - the perfect blend of luxury and performance.", + "This is the all-new 2012 Audi A5 Coupe.", + "2012 Audi A5 Coupe.", + "The 2012 Audi A5 Coupe is a sleek and stylish vehicle that is sure to turn heads.", + "The Audi A5 Coupe is a sleek and stylish car that offers both luxury and performance." + ], + "1991 Volkswagen Golf Hatchback": [ + "A 1991 Volkswagen Golf Hatchback is a small car with a hatchback.", + "A 1991 Volkswagen Golf Hatchback is a small car with a hatchback.", + "A 1991 Volkswagen Golf Hatchback is a small hatchback car with a square body and large windows.", + "A 1991 Volkswagen Golf Hatchback is a small car with a hatchback.", + "A 1991 Volkswagen Golf Hatchback is a small car with aboxy shape.", + "The 1991 Volkswagen Golf Hatchback was available in three trim levels in the United States: the base 2-door \"Club Coupe\", the better equipped 4-door \"GL\", and the sporty GTI.", + "Assuming you are talking about the exterior: The 1991 Volkswagen Golf is a Hatchback with 5 doors.", + "The body of a 1991 Volkswagen Golf is boxy with a short hood and rear deck.", + "A 1991 Volkswagen Golf Hatchback is a small economy car that was produced by Volkswagen.", + "The 1991 Volkswagen Golf Hatchback is a small car that seats five passengers.", + "The 1991 Volkswagen Golf Hatchback can be identified by its unique boxy shape and sloping hood.", + "The 1991 Volkswagen Golf Hatchback can be identified by its unique design.", + "The 1991 Volkswagen Golf Hatchback can be distinguished by its square headlights, chrome grille, and slanted roofline.", + "A 1991 Volkswagen Golf Hatchback can be identified by its unique boxy shape and small stature.", + "The body style of the 1991 Volkswagen Golf Hatchback is unique and easy to identify.", + "The 1991 Volkswagen Golf Hatchback can be identified by its unique boxy shape, sloping hood, and round headlights.", + "The 1991 Volkswagen Golf Hatchback can be identified by its VIN number which is located on the driver's side dashboard and on the driver's side door pillar.", + "If you are looking at a 1991 Volkswagen Golf Hatchback, you can identify it by its sloped rear window, rounded headlights, and chrome accents.", + "The best way to identify a 1991 Volkswagen Golf Hatchback is by looking at the VIN number.", + "By looking at the VIN number, you can identify a 1991 Volkswagen Golf Hatchback.", + "The 1991 Volkswagen Golf Hatchback has a boxy shape with a short hood and sloping rear.", + "The 1991 Volkswagen Golf Hatchback is a small car with a sloping roofline and a small trunk.", + "The 1991 Volkswagen Golf Hatchback is a small four-door car.", + "A 1991 Volkswagen Golf Hatchback looks like a small, silver car with a black roof.", + "A 1991 Volkswagen Golf Hatchback looks like a small, boxy hatchback with a prominent VW logo on the front grille.", + "A 1991 Volkswagen Golf Hatchback may have round headlights and a squarer body than later models.", + "There is no definitive answer to this question as the appearance of a 1991 Volkswagen Golf Hatchback can vary depending on the specific model, trim level, and other factors.", + "The 1991 Volkswagen Golf Hatchback is a small, sleek car.", + "The 1991 Volkswagen Golf Hatchback was a small, round car with a large hatchback.", + "A 1991 Volkswagen Golf Hatchback has a large, rectangular body with a sloped hood and a small, round grille.", + "The image is of a 1991 Volkswagen Golf Hatchback in blue.", + "This image shows a silver VW Golf Hatchback from 1991.", + "The 1991 Volkswagen Golf Hatchback is a small, boxy car with round headlights and a small grille.", + "This image is of a 1991 Volkswagen Golf Hatchback in a light blue color.", + "This image is of a silver 1991 Volkswagen Golf Hatchback.", + "The image is of a red 1991 Volkswagen Golf Hatchback.", + " Mk2The image is of a red 1991 Volkswagen Golf Hatchback Mk2.", + "In the image, the car is a burgundy color with white stripes running down the side.", + "The image is of a light blue 1991 Volkswagen Golf Hatchback.", + "Image shows a 1991 Volkswagen Golf Hatchback that is silver in color with a black interior.", + "A 1991 Volkswagen Golf Hatchback.", + " 1991 Volkswagen Golf HatchbackThis is a 1991 Volkswagen Golf Hatchback.", + "This is a 1991 Volkswagen Golf Hatchback.", + "A 1991 Volkswagen Golf MK2 Hatchback.", + "This is a 1991 Volkswagen Golf Hatchback.", + "A 1991 Volkswagen Golf Hatchback.", + "This is a 1991 Volkswagen Golf Hatchback.", + "A 1991 Volkswagen Golf Hatchback.", + "Volkswagen Golf Mk2 hatchback (1991).", + " A 1991 Volkswagen Golf Hatchback." + ], + "2012 GMC Savana Van": [ + "A 2012 GMC Savana Van looks like a van.", + "The 2012 GMC Savana Van is a white, full-sized van with 16-inch alloy wheels.", + "The GMC Savana Van is a large van that can seat up to 15 passengers.", + "A 2012 GMC Savana Van looks like a large, boxy van with large windows.", + "The 2012 GMC Savana Van looks like a large van with plenty of space for passengers and cargo.", + "A 2012 GMC Savana Van is a large van that seats up to fifteen passengers.", + "A vehicle created for commercial use, the 2012 GMC Savana is a reliable van that comes in a range of trim levels.", + "The 2012 GMC Savana Van has a long, boxy shape with sliding side doors and a large cargo area.", + "A 2012 GMC Savana Van is a large van that can seat up to 15 people.", + "The 2012 GMC Savana Van looks like a large, boxy van with a flat front and rear.", + "The 2012 GMC Savana Van can be identified by its boxy shape, large windows, and two rows of seating.", + "The 2012 GMC Savana Van can be identified by its long and boxy shape.", + "The 2012 GMC Savana Van has a square body with sharp edges.", + "The GMC Savana is a full-size van that was introduced in 1996.", + "The 2012 GMC Savana Van can be identified by its large size and boxy shape.", + "The 2012 GMC Savana Van can be identified by its boxy shape and large size.", + "The easiest way to identify a 2012 GMC Savana Van is by the VIN number.", + "You can identify a 2012 GMC Savana Van buy its model number.", + "The 2012 GMC Savana Van can be identified by its boxy shape and large size.", + "One way to identify a 2012 GMC Savana Van is to look for its model number, which should be stamped somewhere on the body of the vehicle.", + "A 2012 GMC Savana Van looks like a large van with plenty of space for cargo or passengers.", + "The 2012 GMC Savana Van is a large van that seats up to fifteen passengers.", + "A 2012 GMC Savana Van looks like a large van with plenty of space for storage or transportation.", + "A 2012 GMC Savana Van would look like a large van with plenty of space for storage or passengers.", + "PICTURES CAN BE FOUND AT THIS WEBSITE: http://www.", + "The 2012 GMC Savana Van looks like a large white cargo van with windows on the sides and back.", + "The 2012 GMC Savana Van looks like a boxy, full-size van that seats up to 15 passengers.", + "A 2012 GMC Savana Van looks like a large, boxy van with plenty of space for passengers or cargo.", + "A 2012 GMC Savana Van looks like a large white van.", + "A 2012 GMC Savana Van looks like a large white van.", + "The image is of a white GMC Savana Van against a white background.", + "The van is large and imposing, with a wide grille and muscular lines.", + "The image is of a white GMC Savana Van with the driver's side door open.", + "The image is of a white GMC Savana Van with tinted windows.", + "The image is of a 2012 GMC Savana Van in black with tinted windows.", + "This image is of a 2012 GMC Savana Van in white.", + "The image is of a white van with the GMC logo on the front.", + "The image is of a van that is white with blue and silver stripes.", + "The image is of a white van with the GMC logo on the front.", + "The GMC Savana Van is a large van that can seat up to 15 passengers.", + " A large van ideal for families or businesses.", + " GMC Savana Cargo Van.", + " GMC Savana Van.", + "This is a 2012 GMC Savana Van.", + "GMC Savana Van.", + "A GMC Savana Van from 2012.", + "This is the 2012 GMC Savana Van.", + "The GMC Savana is a van that is perfect for hauling large loads.", + "GMC Savana VanThe GMC Savana is a full-size van that is built for hauling cargo and passengers.", + "A General Motors Corporation (GM) Savana Cargo full-size van is seen on the assembly line at the GM Assembly Plant in Wentzville, Missouri February 15, 2012." + ], + "2012 Audi TT RS Coupe": [ + "The 2012 Audi TT RS Coupe is a two-door, four-seat coupe that is available in two trim levels: Premium Plus and Prestige.", + "The 2012 Audi TT RS Coupe looks like a smaller version of the Audi R8.", + "The Audi TT RS Coupe is a high-performance car that is available in both manual and automatic transmission.", + "The 2012 Audi TT RS Coupe has a stylish, aggressive look that is sure to turn heads.", + "The 2012 Audi TT RS Coupe is a two-door, four-seat coupe that is available in one trim level.", + "The 2012 Audi TT RS Coupe is a sleek and stylish car that is sure to turn heads.", + "The 2012 Audi TT RS Coupe is a two-door, four-seat sports car that is available in both a coupe and convertible body style.", + "The 2012 Audi TT RS Coupe is a compact, two-door sports car that seats four passengers.", + "The 2012 Audi TT RS Coupe has a two-door coupe body style and seats four passengers.", + "A 2012 Audi TT RS Coupe has a sleek, aerodynamic design with a wide stance and a low center of gravity.", + "A 2012 Audi TT RS Coupe can be identified by its unique alloy wheels, RS bodykit, and rear spoiler.", + "The 2012 Audi TT RS Coupe can be identified by its body-colored rear diffuser, quad exhaust outlets, and carbon fiber-trimmed fixed rear spoiler.", + "The Audi TT RS can be identified by its wide, low stance; large, flared wheel arches; and aggressive front and rear fascias.", + "The 2012 Audi TT RS Coupe can be easily identified by its unique styling, which includes a large grille, aggressive-looking headlights, and a sporty body kit.", + "The Audi TT RS Coupe can be identified by its angular body, sloping roofline, and large wheels.", + "The exterior of a 2012 Audi TT RS Coupe can be distinguished by its larger and more aggressive front grille, larger air intakes, and unique RS-specific alloy wheels.", + "The 2012 Audi TT RS Coupe can be identified by its aggressive styling, including a large rear spoiler, and by its 2.", + "There are a few ways to identify a 2012 Audi TT RS Coupe.", + "The 2012 Audi TT RS Coupe can be identified by its RS badges, 20-inch wheels, and Quattro all-wheel drive.", + "The Audi TT RS Coupe can be identified by its unique RS body kit, which includes a fixed rear wing and a more aggressive front fascia.", + "A 2012 Audi TT RS Coupe looks like a small, sporty hatchback.", + "Pictures of the 2012 Audi TT RS Coupe can be found online.", + "A 2012 Audi TT RS Coupe looks like a small, sporty coupe with a sleek, aerodynamic silhouette.", + "The Audi TT RS Coupe is a two-door sports car that seats four people.", + "If you were to order a 2012 Audi TT RS Coupe, it would likely look something like this: This particular model is equipped with the optional sport package, which includes features like larger brakes, red-painted brake calipers.", + "A 2012 Audi TT RS Coupe features a sleek, stylish design with a powerful engine.", + "The 2012 Audi TT RS Coupe comes with a 2.", + "A 2012 Audi TT RS Coupe would likely have an aggressive, sporty look with cues taken from the TT RS race car.", + "A 2012 Audi TT RS Coupe has a sleek, sporty look with a wide stance and a low, sloping roofline.", + "A 2012 Audi TT RS Coupe is white with black stripes on the hood and sides.", + "The image is of a red 2012 Audi TT RS Coupe.", + "The 2012 Audi TT RS Coupe is a sleek and sexy sports car with a powerfully aggressive stance.", + "The image is of a 2012 Audi TT RS Coupe in white.", + "The image is of a 2012 Audi TT RS Coupe in blue.", + "The image is of a 2012 Audi TT RS Coupe in white.", + "The 2012 Audi TT RS Coupe is a sporty, sleek car with a streamlined design.", + "The image from the internet of a 2012 Audi TT RS Coupe is of a sleek and stylish car.", + "The image is of a 2012 Audi TT RS Coupe in white.", + "This image is of a 2012 Audi TT RS Coupe that is white in color.", + "The image is of a 2012 Audi TT RS Coupe in white.", + "The Audi TT RS Coupe is a high performance sports car that was first introduced in 2012.", + "The 2012 Audi TT RS is a high-performance variant of the German automaker's TT sports car.", + "The 2012 Audi TT RS Coupe is a sleek and stylish sports car that is sure to turn heads.", + "The 2012 Audi TT RS Coupe is a high performance vehicle with a powerful engine and sleek design.", + "The 2012 Audi TT RS Coupe is a high performance vehicle that is able to achieve high speeds and maintain excellent handling.", + "The 2012 Audi TT RS Coupe is a high performance vehicle with a stylish design.", + "This is an Audi TT RS Coupe from 2012.", + "The new Audi TT RS Coupe - the most powerful TT ever.", + "This is an Audi TT RS Coupe.", + "This is a 2012 Audi TT RS Coupe." + ], + "2012 Rolls-Royce Phantom Sedan": [ + "The 2012 Rolls-Royce Phantom Sedan has a long hood and sleek body.", + "The 2012 Rolls-Royce Phantom Sedan has a long, sleek hood and body with a graceful curve to the roofline.", + "The 2012 Rolls-Royce Phantom Sedan is a large, luxurious car with a sleek, modern design.", + "A 2012 Rolls-Royce Phantom Sedan has a long, sleek body with chrome detailing.", + "The 2012 Rolls-Royce Phantom has a sleek and stylish exterior.", + "The 2012 Rolls-Royce Phantom Sedan has a long, sleek hood and a wide stance.", + "A 2012 Rolls-Royce Phantom Sedan is a luxurious car that is long and sleek.", + "A 2012 Rolls-Royce Phantom Sedan has a long, sleek body with a curved hood and trunk.", + "The 2012 Rolls-Royce Phantom Sedan is a luxurious vehicle that features a sleek, elegant design.", + "The 2012 Rolls-Royce Phantom Sedan has a long, low profile and an elegant, stately appearance.", + "-The Rolls-Royce Phantom has a long, low hood, and a short rear deck.", + "The 2012 Rolls-Royce Phantom Sedan can be identified by its long, sleek body and traditional Rolls-Royce grille.", + "The Rolls-Royce Phantom is a luxury sedan that was first introduced in 2004.", + "The 2012 Rolls-Royce Phantom Sedan can be identified by its long hood, short rear deck, and suicide doors.", + "The 2012 Rolls-Royce Phantom Sedan can be identified by its long hood, short rear deck, and wide width.", + "By its long, sleek hood; wide, grille; and stately cabin.", + "The 2012 Rolls-Royce Phantom Sedan can be identified by its long wheelbase, stately grille, and sweeping hood.", + "The Rolls-Royce Phantom is a large luxury car made by Rolls-Royce Motor Cars.", + "The 2012 Rolls-Royce Phantom Sedan can be identified by its long, sleek body and classic Rolls-Royce grille.", + "The Rolls-Royce Phantom is a large luxury car made by Rolls-Royce Motor Cars.", + "The 2012 Rolls-Royce Phantom Sedan has a long hood and a short rear deck.", + "A picture of a 2012 Rolls-Royce Phantom Sedan can be found here: https://www.", + "A 2012 Rolls-Royce Phantom Sedan looks like a luxurious, expensive car.", + "A 2012 Rolls-Royce Phantom Sedan looks like a luxury car.", + "A 2012 Rolls-Royce Phantom Sedan has a long, sleek body with chrome details.", + "The 2012 Rolls-Royce Phantom Sedan has a long, sleek body with a curved hood and windshield.", + "A 2012 Rolls-Royce Phantom Sedan looks like a large, luxurious sedan with plenty of space for passengers and luggage.", + "A 2012 Rolls-Royce Phantom Sedan looks like a luxurious, high-end car.", + "The 2012 Rolls-Royce Phantom Sedan has a sleek, black exterior with chrome detailing.", + "The 2012 Rolls-Royce Phantom Sedan looks like a large, luxurious car.", + "The image is of a 2012 Rolls-Royce Phantom Sedan in a light blue color.", + "The image is of a glossy white Rolls-Royce Phantom Sedan with black trim and tinted windows.", + "The image is of a 2012 Rolls-Royce Phantom Sedan that is parked on a city street.", + "This image is of a 2012 Rolls-Royce Phantom Sedan parked in front of a luxury home.", + "The image is of a 2012 Rolls-Royce Phantom Sedan in a glossy black color.", + "The image is of a 2012 Rolls-Royce Phantom Sedan parked in front of a building.", + "This 2012 Rolls-Royce Phantom Sedan is a beautiful car.", + "The image shows a 2012 Rolls-Royce Phantom Sedan in a silver color.", + "I found an image on the internet of a 2012 Rolls-Royce Phantom Sedan that is a beautiful car.", + "The image is of a 2012 Rolls-Royce Phantom Sedan in a driving scene.", + "This is a picture of a 2012 Rolls-Royce Phantom Sedan.", + "This is a 2012 Rolls-Royce Phantom Sedan.", + "This luxurious 2012 Rolls-Royce Phantom Sedan is the epitome of sophistication and style.", + "This luxurious 2012 Rolls-Royce Phantom Sedan is the epitome of class and style.", + "The 2012 Rolls-Royce Phantom Sedan is a work of art.", + "This is a 2012 Rolls-Royce Phantom Sedan.", + "The Rolls-Royce Phantom is a luxurious and expensive car.", + " A luxurious 2012 Rolls-Royce Phantom Sedan.", + "The luxurious 2012 Rolls-Royce Phantom Sedan.", + "This is a 2012 Rolls-Royce Phantom Sedan." + ], + "2012 Porsche Panamera Sedan": [ + "The 2012 Porsche Panamera Sedan is a luxury 4-door sedan that seats 4 passengers.", + "The 2012 Porsche Panamera Sedan is a luxury vehicle that combines sports car-like performance with the comfort and space of a sedan.", + "The Panamera is a large luxury sedan with a sloping roofline and a wide, athletic stance.", + "The 2012 Porsche Panamera is a large sedan with a sleek and sporty look.", + "The 2012 Porsche Panamera Sedan is a luxurious sports car that features a sleek, aerodynamic design.", + "The 2012 Porsche Panamera Sedan is a four-door sedan that seats five passengers.", + "A 2012 Porsche Panamera Sedan looks like a sleek and stylish vehicle with a powerful engine.", + "The 2012 Porsche Panamera Sedan is a four-door luxury car that seats five passengers.", + "The 2012 Porsche Panamera Sedan is a four-door sedan with a sleek, stylish look.", + "The 2012 Porsche Panamera Sedan is a luxury car that has a sleek and stylish design.", + "The 2012 Porsche Panamera Sedan can be identified by its unique front end, which features a large grille and Porsche's trademark \"turbo look\" headlights.", + "There are a few ways to identify a 2012 Porsche Panamera Sedan.", + "From the outside, a 2012 Porsche Panamera Sedan can be distinguished from other Panamera models by its longer rear end.", + "The 2012 Porsche Panamera Sedan can be identified by its long hood and sloping roof line.", + "One way to identify a 2012 Porsche Panamera Sedan is to look for the \"S\" badge on the rear of the car.", + "The 2012 Porsche Panamera Sedan can be identified by its unique front and rear end styling, as well as its four-door configuration.", + "The Porsche Panamera Sedan was first introduced in 2010 and is still in production today.", + "Some identifying characteristics of the 2012 Porsche Panamera Sedan include its large size, long hood, and sloping roofline.", + "A 2012 Porsche Panamera Sedan can be identified by its elongated hood, low profile, and swept-back roofline.", + "By the model name and year.", + "A 2012 Porsche Panamera Sedan looks like a four-door version of the Porsche 911 sports car.", + "The 2012 Porsche Panamera Sedan has a sleek, aerodynamic design with a long hood and a short rear deck.", + "A 2012 Porsche Panamera Sedan looks like a sleek and powerful sports car.", + "A 2012 Porsche Panamera Sedan looks like a luxury sports car with sleek lines and a powerful stance.", + "The 2012 Porsche Panamera Sedan looks like a cross between a sedan and a sports car.", + "The 2012 Porsche Panamera Sedan is a sleek, stylish car that is sure to turn heads.", + "A 2012 Porsche Panamera Sedan would have sleek lines, four doors, and a SportDesign body kit.", + "A 2012 Porsche Panamera Sedan looks like a luxury sports car.", + "A 2012 Porsche Panamera Sedan looks like a luxury sedan with sleek lines and a powerful engine.", + "The 2012 Porsche Panamera Sedan is a large, luxurious car with a sleek design.", + "This image is of a sleek, silver 2012 Porsche Panamera Sedan.", + "This image is of a 2012 Porsche Panamera Sedan in white.", + "The image is of a sleek, silver Porsche Panamera Sedan.", + "The image is of a silver 2012 Porsche Panamera Sedan.", + "The image is of a sleek, silver Porsche Panamera sedan.", + "This is a picture of a 2012 Porsche Panamera Sedan.", + "This image is of a 2012 Porsche Panamera Sedan in a striking white color.", + "This image shows a 2012 Porsche Panamera Sedan in a white color.", + "The image shows a sleek, silver Porsche Panamera Sedan driving down a road.", + "This image is of a sleek, silver Porsche Panamera sedan.", + "The Porsche Panamera is a full-size luxury four-door sedan, the first four-door car from Porsche.", + "The all-new 2012 Porsche Panamera Sedan.", + "This is a picture of a 2012 Porsche Panamera Sedan.", + "The Porsche Panamera is a luxury four-door sedan that was first introduced in 2009.", + "Porsche's Panamera Sedan is a sleek and stylish car that's sure to turn heads.", + "Beauty and luxury unite in the 2012 Porsche Panamera Sedan.", + "This is a 2012 Porsche Panamera Sedan.", + "This is a 2012 Porsche Panamera Sedan.", + "The Porsche Panamera is a four-door sedan that was introduced in 2009.", + " A man driving a Porsche Panamera down an empty highway." + ], + "2012 Bentley Continental GT Coupe": [ + "A 2012 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "The Bentley Continental GT is a two-door, grand touring coupe that was first introduced in 2003.", + "The newer Bentley Continental GT models have a more sleek and modern look than the older models.", + "A 2012 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "The 2012 Bentley Continental GT Coupe has a long hood and sleek lines that give it a sophisticated look.", + "The 2012 Bentley Continental GT Coupe has a long, sleek body with two doors.", + "The 2012 Bentley Continental GT Coupe is a luxurious car that is sure to turn heads.", + "The 2012 Bentley Continental GT Coupe has a sleek, aerodynamic look with a long hood and short rear deck.", + "A 2012 Continental GT Coupe has a sleek and powerful look.", + "A 2012 Bentley Continental GT Coupe is a two-door, grand touring car that seats four passengers and is powered by a twin-turbocharged W12 engine.", + "By its long, low hood; large, round headlights; wide chrome grille; and upright front end.", + "The 2012 Bentley Continental GT Coupe can be identified by its long hood, wide grille, and large headlights.", + "The 2012 Bentley Continental GT Coupe can be identified by its long, sleek hood, large grille, and wide stance.", + "The most obvious way to identify a 2012 Bentley Continental GT Coupe is by its unique exterior design.", + "The Bentley Continental GT Coupe is a vehicle that was first introduced in 2012.", + "The 2012 Bentley Continental GT Coupe has a distinctive exterior with a large grille and rounded headlights.", + "The 2012 Bentley Continental GT Coupe can be identified by its long, sleek hood and muscular rear end.", + "The Bentley Continental GT Coupe was first introduced in 2012.", + "The Bentley Continental GT Coupe was introduced in 2012.", + "The 2012 Bentley Continental GT Coupe can be identified by its long hood, wide grille, and large round headlights.", + "The 2012 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "A 2012 Bentley Continental GT Coupe has a long, sleek body with two doors.", + "A 2012 Bentley Continental GT Coupe looks like a cross between a luxury car and a sports car.", + "The 2012 Bentley Continental GT Coupe has a long, sleek hood and wide stance.", + "A 2012 Bentley Continental GT Coupe looks like a sleek, luxurious sports car.", + "A 2012 Bentley Continental GT Coupe looks like a luxury sports car.", + "A 2012 Bentley Continental GT Coupe has a sleek, sporty look with a long, low front end and a fastback-style rear end.", + "A Bentley Continental GT Coupe from 2012 has a sleek and sporty look with a powerful engine.", + "The first thing you'll notice about the 2012 Bentley Continental GT Coupe is its aggressive stance.", + "A 2012 Bentley Continental GT Coupe has a sleek, modern look with a long hood and a short rear deck.", + "The 2012 Bentley Continental GT Coupe is a sleek and powerful car with a sharp, modern design.", + "This image is of a Bentley Continental GT Coupe from 2012.", + "The 2012 Bentley Continental GT Coupe is a luxurious, sophisticated car with an elegant design.", + "This 2012 Bentley Continental GT Coupe is a sleek and stylish car that would turn heads on any street.", + "The image is of a Bentley Continental GT Coupe in a light blue color.", + "This image is of a 2012 Bentley Continental GT Coupe.", + "This image is of a 2012 Bentley Continental GT Coupe.", + "The image is of a 2012 Bentley Continental GT Coupe that is silver in color.", + "The image is of a Bentley Continental GT Coupe from 2012.", + "The image is of a regal, silver Bentley Continental GT Coupe.", + "The Bentley Continental GT Coupe was first introduced in 2012 and is still in production today.", + "The Bentley Continental GT is a two-door, grand tourer manufactured and marketed by British automaker Bentley Motors since 2003.", + "The Bentley Continental GT is a luxurious and powerful coupe that is sure to turn heads.", + "Image of a 2012 Bentley Continental GT Coupe.", + "This is a photo of a 2012 Bentley Continental GT Coupe.", + " Bentley's iconic grand tourer, first introduced in 2003.", + "This is a 2012 Bentley Continental GT Coupe.", + "This sleek 2012 Bentley Continental GT Coupe is sure to turn heads when driving.", + "A sleek and luxurious 2012 Bentley Continental GT Coupe.", + "The Bentley Continental GT is a high performance grand tourer produced by Bentley Motors since 2003." + ], + "2012 Jeep Grand Cherokee SUV": [ + "A 2012 Jeep Grand Cherokee SUV is a mid-size SUV that seats five passengers.", + "A 2012 Jeep Grand Cherokee SUV is a large vehicle with four doors.", + "A 2012 Jeep Grand Cherokee SUV has a sleek and stylish body with chrome accents.", + "A 2012 Jeep Grand Cherokee SUV has a sleek, modern look with a squarish body.", + "A 2012 Jeep Grand Cherokee SUV is a large vehicle that seats up to seven people.", + "The 2012 Jeep Grand Cherokee has a sleek, modern look.", + "A 2012 Jeep Grand Cherokee SUV looks like a medium-sized SUV with a design that is both aerodynamic and stylish.", + "The 2012 Jeep Grand Cherokee SUV has a sleek, modern look.", + "A 2012 Jeep Grand Cherokee SUV has a sleek, modern look.", + "The 2012 Jeep Grand Cherokee SUV has a long, sleek body with a chrome grille and sweeping headlights.", + "There are a few ways to identify a 2012 Jeep Grand Cherokee SUV.", + "The dimensions of a 2012 Jeep Grand Cherokee SUV are as follows: Wheelbase is 114.", + "There are a few ways to identify a 2012 Jeep Grand Cherokee SUV.", + "Some ways that you can identify a 2012 Jeep Grand Cherokee SUV are by its grille design, front and rear fascia design, and headlamp and taillamp design.", + "There are a few different ways that you can identify a 2012 Jeep Grand Cherokee SUV.", + "The 2012 Jeep Grand Cherokee has a V-shaped grille with seven slats and the Jeep logo in the center.", + "The 2012 Jeep Grand Cherokee SUV can be identified by its round headlamps, seven-slot grille, and trapezoidal wheel arches.", + "The 2012 Jeep Grand Cherokee SUV can be identified by its sleek and stylish design.", + "A 2012 Jeep Grand Cherokee SUV has a wide, rectangular grille with chrome trim and the Jeep logo in the center.", + "The best way to identify a 2012 Jeep Grand Cherokee SUV is by the model year.", + "There really isn't a definitive answer to this question since there are a variety of trim levels and special editions of the 2012 Jeep Grand Cherokee SUV.", + "A 2012 Jeep Grand Cherokee SUV has a sleek, modern look with a grille that extends to the hood.", + "A 2012 Jeep Grand Cherokee SUV has an aggressive stance with a wide stance and large wheel arches.", + "A 2012 Jeep Grand Cherokee SUV has a modern look with stylish headlights and a sleek body.", + "A 2012 Jeep Grand Cherokee SUV generally has a stylish and aggressive look.", + "A 2012 Jeep Grand Cherokee SUV generally has a boxy shape with some curves, and it typically has four doors.", + "Macro view of a 2012 Jeep Grand Cherokee SUV in forest Green with Silver trim.", + "Image result for 2012 jeep grand cherokee.", + "The 2012 Jeep Grand Cherokee has a sleek, modern look.", + "A 2012 Jeep Grand Cherokee SUV looks like a cross between a sports car and a SUV.", + "The image is of a blue Jeep Grand Cherokee SUV with a chrome grill and chrome accents.", + "The image is of a blue 2012 Jeep Grand Cherokee SUV parked in a driveway.", + "The image is of a red Jeep Grand Cherokee SUV with a black roof and tinted windows.", + "This image shows a 2012 Jeep Grand Cherokee SUV in white with a black trim.", + "The image is of a blue 2012 Jeep Grand Cherokee SUV.", + "The image is of a 2012 Jeep Grand Cherokee SUV that is parked on a dirt road.", + "The image is of a 2012 Jeep Grand Cherokee SUV in white with a silver trim.", + "The image is of a 2012 Jeep Grand Cherokee SUV in blue.", + "The image is of a blue Jeep Grand Cherokee SUV parked on a gravel road.", + "This image is of a 2012 Jeep Grand Cherokee SUV in black.", + " A gray Jeep Grand Cherokee SUV with a chrome grill and tinted windows.", + "A 2012 Jeep Grand Cherokee SUV.", + "The Jeep Grand Cherokee is a mid-sized SUV that offers a comfortable ride and a variety of features that make it a great choice for families.", + "The 2012 Jeep Grand Cherokee is a stylish and capable SUV that is perfect for tackling any adventure.", + "This SUV is built for comfort and style.", + "The 2012 Jeep Grand Cherokee is a reliable and stylish SUV that is perfect for families or anyone who loves to hit the open road.", + "The 2012 Jeep Grand Cherokee is a popular SUV among car buyers.", + "A 2012 Jeep Grand Cherokee SUV in silver with a black trim and aftermarket rims.", + "This is a 2012 Jeep Grand Cherokee SUV.", + "The 2012 Jeep Grand Cherokee is a stylish and comfortable SUV that is perfect for families." + ], + "2012 Audi R8 Coupe": [ + "The 2012 Audi R8 Coupe has a long, sleek body with a curved front end.", + "The Audi R8 is a mid-engine, 2-seater sports car, which uses Audi's trademark quattro permanent all-wheel drive system.", + "The Audi R8 is a mid-engine, 2-seater sports car, which uses Audi's \"quattro\" all-wheel drive system.", + "The 2012 Audi R8 Coupe is a sleek, sporty car with a strong, sophisticated look.", + "The 2012 Audi R8 Coupe has a sleek and sporty design with sharp lines and a low, wide stance.", + "A 2012 Audi R8 Coupe is a two-door, four-seat luxury sports car that was introduced by the German automaker Audi AG in 2006.", + "The 2012 Audi R8 Coupe is a two-door, four-seat luxury sports car that is available in two trims: the standard R8 Coupe and the R8 Coupe 5.", + "The 2012 Audi R8 Coupe is a sleek, modern car with a powerful engine.", + "The 2012 Audi R8 Coupe has a sleek and sporty design with a powerful engine.", + "The 2012 Audi R8 Coupe has an aggressive and athletic look with its large grille and sleek lines.", + "The 2012 Audi R8 Coupe is a two-door, four-seat sports car that was introduced in the 2008 model year.", + "A 2012 Audi R8 Coupe can be distinguished by its large grille, prominent sideblades, and low, wide stance.", + "The 2012 Audi R8 Coupe has a V10 engine with an output of 525 horsepower.", + "You can identify a 2012 Audi R8 Coupe based on its aggressive stance, its long hood, and its sweeping roofline.", + "There are a few different ways that you can identify a 2012 Audi R8 Coupe.", + "The 2012 Audi R8 Coupe has a V10 engine, all-wheel drive, and a 6-speed manual transmission.", + "The 2012 Audi R8 Coupe can be identified by its wide, angular body and large, exposed headlights.", + "If you are looking at a 2012 Audi R8 Coupe, you will be able to identify it by its two doors, its sleek design, and its powerful engine.", + "The 2012 Audi R8 Coupe has a few defining features that help to identify it.", + "The 2012 Audi R8 Coupe can be identified by its unique grille, large air intakes, and sharp angles.", + "2012 Audi R8 CoupeThe Audi R8 is a two-door, mid-engine sports car that was first introduced by the German automaker Audi AG in 2006.", + "A 2012 Audi R8 coupe has a sleek, aerodynamic design with large air intakes and a sloping rear end.", + "The Audi R8 Coupe is a luxury sports car that was first introduced in 2006.", + "The 2012 Audi R8 Coupe has an aggressive stance with a wide body and low stance.", + "The 2012 Audi R8 Coupe is a sleek and sporty vehicle with a stylish look.", + "The 2012 Audi R8 Coupe looks like a sleek and stylish sports car.", + "The 2012 Audi R8 Coupe has a sleek, stylish look that is sure to turn heads when driving.", + "The 2012 Audi R8 Coupe is a two-seater supercar that is available in either a manual or automatic transmission.", + "A 2012 Audi R8 Coupe would look like a sports car with two doors and a sleek design.", + "The 2012 Audi R8 Coupe is a stylish and modern looking car.", + "In the image, the car is parked on a city street with the front facing the camera.", + "Image shows a white 2012 Audi R8 Coupe on a city street.", + "The image is of a shiny silver 2012 Audi R8 Coupe.", + "This image is of a beautiful 2012 Audi R8 Coupe.", + "This image shows a 2012 Audi R8 Coupe in white with black accents.", + "This image is of a 2012 Audi R8 Coupe in white.", + "This is a picture of a 2012 Audi R8 Coupe.", + "The image is of a sleek, silver sports car with large wheels.", + "The image is of a white Audi R8 Coupe with black accents.", + "This image is of a 2012 Audi R8 Coupe in blue.", + " A 2012 Audi R8 Coupe.", + "The Audi R8 Coupe is a work of art.", + "The Audi R8 Coupe is a sleek and stylish sports car that is sure to turn heads.", + "The 2012 Audi R8 Coupe is a work of art.", + "The Audi R8 is a mid-engine, 2-seater sports car that was introduced by the German automaker Audi AG in 2006.", + "The 2012 Audi R8 Coupe is a high-performance sports car that is sure to turn heads.", + "The 2012 Audi R8 Coupe is a work of art.", + "This image shows a 2012 Audi R8 Coupe.", + " The Audi R8 is a mid-engine, 2-seater sports car, which uses Audi's trademark quattro permanent all-wheel drive system.", + "The 2012 Audi R8 Coupe." + ], + "2007 Cadillac Escalade EXT Crew Cab": [ + "A 2007 Cadillac Escalade EXT Crew Cab has a long body with four doors and a large cargo area.", + "The 2007 Cadillac Escalade EXT Crew Cab is a full-size SUV that seats up to eight passengers.", + "The 2007 Cadillac Escalade EXT Crew Cab was a full-size luxury SUV that featured a unique Midgate system.", + "The 2007 Cadillac Escalade EXT Crew Cab is a large SUV with a luxurious interior.", + "A 2007 Cadillac Escalade EXT Crew Cab is a full-size SUV with a standard 6.", + "A 2007 Cadillac Escalade EXT Crew Cab has a sleek, stylish look with a powerful engine.", + "The 2007 Cadillac Escalade EXT Crew Cab is a full-size SUV that seats up to six passengers.", + "A 2007 Cadillac Escalade EXT Crew Cab is a six-passenger SUV with a short bed.", + "The Cadillac Escalade EXT is a full-size SUV with a short wheelbase and four full-size doors.", + "A 2007 Cadillac Escalade EXT Crew Cab is a large SUV that seats up to eight people.", + "The easiest way to identify a 2007 Cadillac Escalade EXT Crew Cab is by its distinctive grille.", + "The 2007 Cadillac Escalade EXT features a distinctive grille, unique headlamps, and a rear cargo area that can be converted into a pickup bed.", + "The 2007 Cadillac Escalade EXT Crew Cab can be identified by its distinctive grille, exaggerated fenders, and large cargo area.", + "The Cadillac Escalade EXT Crew Cab is an SUV that seats up to eight people.", + "One way to identify a 2007 Cadillac Escalade EXT Crew Cab is by its large size.", + "The 2007 Cadillac Escalade EXT Crew Cab can be identified by its unique styling and massive size.", + "The 2007 Cadillac Escalade EXT Crew Cab has a distinctive look that sets it apart from other trucks.", + "There are a few ways to identify a 2007 Cadillac Escalade EXT Crew Cab.", + "The Cadillac Escalade EXT Crew Cab is a 4-door SUV with a 6.", + "The easiest way to identify a 2007 Cadillac Escalade EXT Crew Cab is by its unique body style.", + "The 2007 Cadillac Escalade EXT Crew Cab is a large, four-door SUV that seats up to eight people.", + "The 2007 Cadillac Escalade EXT Crew Cab is a large, four-door SUV with a square body and a wide stance.", + "The 2007 Cadillac Escalade EXT Crew Cab looks like an SUV with a sleek design and large headlights.", + "A 2007 Cadillac Escalade EXT Crew Cab has a black grille, chrome trim, and 20-inch wheels.", + "A 2007 Cadillac Escalade EXT Crew Cab has four doors and a pickup truck bed.", + "The EXT Crew Cab is a sport utility truck that was introduced in 2007.", + "Itdepends on the model, but the rear seat area in the 2007 CadillacEscalade EXT Crew Cab is generally more spacious than that of thestandard 2007 Cadillac Escalade.", + "The Cadillac Escalade EXT Crew Cab is a full-size SUV with a six-passenger seating capacity.", + "The 2007 Cadillac Escalade EXT Crew Cab is a large SUV that seats up to eight people.", + "The 2007 Cadillac Escalade EXT is a large SUV with a crew cab body style.", + "The image is of a black Cadillac Escalade EXT Crew Cab.", + "The image is of a 2007 Cadillac Escalade EXT Crew Cab in silver.", + "This image is of a 2007 Cadillac Escalade EXT Crew Cab.", + "The image is of a glossy black 2007 Cadillac Escalade EXT Crew Cab with tinted windows and large, shiny rims.", + "The image is of a 2007 Cadillac Escalade EXT Crew Cab in silver.", + "This image is of a 2007 Cadillac Escalade EXT Crew Cab in a light blue color.", + "The image is of a large, black SUV with tinted windows and chrome accents.", + "This image depicts a 2007 Cadillac Escalade EXT Crew Cab in black.", + "In the image, the Cadillac Escalade EXT Crew Cab is a large, imposing SUV with a glossy black paint job.", + "The image is of a 2007 Cadillac Escalade EXT Crew Cab in black.", + "The 2007 Cadillac Escalade EXT Crew Cab is a full-size SUV with plenty of room for passengers and cargo.", + "2007 Cadillac Escalade EXT Crew Cab.", + "2007 Cadillac Escalade EXT Crew Cab.", + " Luxury and practicality come together in the 2007 Cadillac Escalade EXT Crew Cab.", + " A 2007 Cadillac Escalade EXT Crew Cab Sport Utility Vehicle.", + "This 2007 Cadillac Escalade EXT Crew Cab is a great example of a high-end SUV.", + "The Cadillac Escalade EXT is a luxury SUV that was introduced in 2007.", + " A blue Cadillac Escalade EXT Crew Cab with a sunroof parked in front of a house.", + "2007 Cadillac Escalade EXT Crew Cab.", + "A 2007 Cadillac Escalade EXT Crew Cab in excellent condition." + ], + "2007 Bentley Continental Flying Spur Sedan": [ + "The 2007 Bentley Continental Flying Spur Sedan is a large, luxury sedan with a sleek, stylish exterior.", + "The 2007 Bentley Continental Flying Spur Sedan is a large, luxurious car with a long hood and a sleek, streamlined look.", + "A 2007 Bentley Continental Flying Spur Sedan is a large, luxurious car with a long hood and rear deck.", + "A 2007 Bentley Continental Flying Spur Sedan is a large, luxurious vehicle with plenty of horsepower under the hood.", + "The 2007 Bentley Continental Flying Spur Sedan has a long, sleek body with a wide stance.", + "The 2007 Bentley Continental Flying Spur Sedan is a large luxury car with a long hood and rear deck.", + "The Bentley Continental Flying Spur is a 2007 sedan that is available in both all-wheel drive and rear-wheel drive models.", + "A 2007 Bentley Continental Flying Spur Sedan is a large, luxurious car with a long hood and a sleek, stylish body.", + "The 2007 Bentley Continental Flying Spur Sedan is a luxurious car that looks similar to a Rolls-Royce.", + "A 2007 Bentley Continental Flying Spur Sedan is a luxury sedan that is available in both all-wheel drive and rear-wheel drive models.", + "Bentley Continental Flying Spur Sedans from 2007 can be identified by their sleek lines and long, low profile.", + "The 2007 Bentley Continental Flying Spur sedan can be identified by its round headlights, large grille, and sleek body style.", + "The 2007 Bentley Continental Flying Spur Sedan can be identified by its long hood, flared fenders, and four round headlights.", + "The easiest way to identify a 2007 Bentley Continental Flying Spur is by its large grille and large, circular headlights.", + "2007 Bentley Continental Flying Spur Sedan can be identified by its long hood, wide stance, and large grille.", + "2007 Bentley Continental Flying Spur Sedan models can be identified by their sleek design and long wheelbase.", + "The 2007 Bentley Continental Flying Spur Sedan can be identified by its long hood and wide stance.", + "A 2007 Bentley Continental Flying Spur Sedan can be identified by its long hood, chrome grille, and large headlights.", + "The 2007 Bentley Continental Flying Spur Sedan can be identified by its long hood, short rear deck, wide stance, and large 20-inch wheels.", + "There are a few ways to identify a 2007 Bentley Continental Flying Spur Sedan.", + "A 2007 Bentley Continental Flying Spur Sedan looks like a large, luxurious car.", + "The 2007 Bentley Continental Flying Spur Sedan has a long hood and a short rear deck.", + "The 2007 Bentley Continental Flying Spur Sedan is a large, luxurious car with a sleek, modern look.", + "A 2007 Bentley Continental Flying Spur Sedan looks like a large, luxurious sedan.", + "The 2007 Bentley Continental Flying Spur Sedan is a large, luxurious car with a stylish interior and exterior.", + "The 2007 Bentley Continental Flying Spur Sedan has a sleek, modern look with a traditional grille and round headlights.", + "The 2007 Bentley Continental Flying Spur Sedan is a large, luxurious car with a long hood and a short rear deck.", + "A 2007 Bentley Continental Flying Spur Sedan looks like a large, luxurious sedan with plenty of horsepower under the hood.", + "The 2007 Bentley Continental Flying Spur Sedan has a long, sleek hood and a large grille.", + "A 2007 Bentley Continental Flying Spur Sedan has a long, wide body with a short front end and a long rear end.", + "The 2007 Bentley Continental Flying Spur Sedan is a luxurious car with a sleek design.", + "The 2007 Bentley Continental Flying Spur Sedan is a luxurious car with a sleek design.", + "This image is of a 2007 Bentley Continental Flying Spur Sedan.", + "This image is of a Bentley Continental Flying Spur Sedan from 2007.", + "The image is of a Bentley Continental Flying Spur sedan in black.", + "This image is of a 2007 Bentley Continental Flying Spur Sedan in blue.", + "This image shows a 2007 Bentley Continental Flying Spur Sedan in a blue color.", + "The image is of a Bentley Continental Flying Spur sedan in blue.", + "The image is of a light blue Bentley Continental Flying Spur Sedan.", + "This 2007 Bentley Continental Flying Spur Sedan is a sleek and luxurious vehicle.", + "The Bentley Continental Flying Spur Sedan is a luxurious car that exudes opulence and wealth.", + "This Bentley Continental Flying Spur is a beautiful example of the luxury and power that Bentley is known for.", + "2007 Bentley Continental Flying Spur Sedan.", + "2007 Bentley Continental Flying Spur Sedan.", + "2007 Bentley Continental Flying Spur Sedan.", + "This Bentley Continental Flying Spur is the epitome of luxury and style.", + "2007 Bentley Continental Flying Spur Sedan.", + "A 2007 Bentley Continental Flying Spur Sedan.", + "2007 Bentley Continental Flying Spur Sedan.", + "2007 Bentley Continental Flying Spur Sedan." + ], + "2012 Chevrolet Avalanche Crew Cab": [ + "A 2012 Chevrolet Avalanche Crew Cab has a big body and a large boxy cargo area.", + "The 2012 Chevrolet Avalanche Crew Cab has a sleek look with its large grille and expressive headlights.", + "The 2012 Chevrolet Avalanche Crew Cab is a large four-door SUV with a short bed.", + "A 2012 Chevrolet Avalanche Crew Cab is a four-door truck that seats up to five passengers.", + "The 2012 Chevrolet Avalanche Crew Cab is a large SUV with four full-size doors.", + "A 2012 Chevrolet Avalanche Crew Cab is a full-size pickup truck with four full-size doors and a minimum of 5-foot-8-inch bed.", + "A 2012 Chevrolet Avalanche Crew Cab looks like a large black SUV with four doors.", + "A 2012 Chevrolet Avalanche Crew Cab has four full-sized doors and a raised body with a short bed in the back.", + "The 2012 Chevrolet Avalanche Crew Cab is a full-size SUV that seats up to eight passengers.", + "A 2012 Chevrolet Avalanche Crew Cab is a full-size SUV with a body style that is similar to that of a pickup truck.", + "There are a few ways to identify a 2012 Chevrolet Avalanche Crew Cab.", + "The 2012 Chevrolet Avalanche Crew Cab is a full-size SUV that is equipped with a 5.", + "There is no definitive way to identify a 2012 Chevrolet Avalanche Crew Cab without seeing the vehicle in person.", + "There is no certain way to identify a 2012 Chevrolet Avalanche Crew Cab.", + "By its model year.", + "The 2012 Chevrolet Avalanche Crew Cab can be identified by its extended cabin, which can seat up to six passengers.", + "From the outside, the 2012 Chevrolet Avalanche Crew Cab can be identified by its large size and square shape.", + "The 2012 Chevrolet Avalanche Crew Cab is a full-size SUV that seats up to eight passengers.", + "The easiest way to identify a 2012 Chevrolet Avalanche Crew Cab is to look for the \"Crew Cab\" designation on the door.", + "The 2012 Chevrolet Avalanche Crew Cab has a wheelbase of 133 inches and a length of 224.", + "A 2012 Chevrolet Avalanche Crew Cab looks like a large truck with a comfortable interior and plenty of cargo space.", + "The 2012 Chevrolet Avalanche Crew Cab is a full-size SUV that seats up to eight passengers.", + "The 2012 Chevrolet Avalanche Crew Cab has a large, boxy body style with four full-size doors.", + "From the outside, a 2012 Chevrolet Avalanche Crew Cab looks like a large SUV with a short bed.", + "The 2012 Chevy Avalanche has a strong, aggressive look with a wide grille and large, squared-off headlights.", + "A 2012 Chevrolet Avalanche Crew Cab has four doors and a large cargo area in the back.", + "A 2012 Chevrolet Avalanche Crew Cab has a stylish, rugged design that is sure to turn heads on the road.", + "A 2012 Chevrolet Avalanche Crew Cab is a full-size SUV with a crew cab, meaning it has four full-size doors and can seat up to six people.", + "A 2012 Chevrolet Avalanche Crew Cab looks like a large black SUV with a crew cab.", + "A 2012 Chevrolet Avalanche Crew Cab looks like a regular Chevrolet Avalanche, except it has four full doors instead of two.", + "The image is of a 2012 Chevrolet Avalanche Crew Cab in blue.", + "Image shows 2012 Chevrolet Avalanche Crew Cab in white with chrome accents.", + " LTThe image shows a 2012 Chevrolet Avalanche Crew Cab LT in blue with silver details.", + "Image shows a 2012 Chevrolet Avalanche Crew Cab in silver.", + "This image is of a 2012 Chevrolet Avalanche Crew Cab.", + "This image is of a 2012 Chevrolet Avalanche Crew Cab.", + "In the image, the 2012 Chevrolet Avalanche Crew Cab is a large, silver SUV with four doors.", + "It is a picture of a 2012 Chevrolet Avalanche Crew Cab in white.", + " LTThe image is of a Crew Cab LT model in a metallic gray color.", + "In the image, the 2012 Chevrolet Avalanche Crew Cab is a large, dark-colored SUV with four doors.", + "A 2012 Chevrolet Avalanche Crew Cab.", + " \"Chevrolet Avalanche Crew Cab - 2012 Model Year\".", + "The Chevrolet Avalanche is a four-door, five- or six-passenger truck offered in two- or four-wheel drive.", + "Chevrolet Avalanche - the perfect vehicle for those who need the space and utility of a truck, but the comfort and features of an SUV.", + "2012 Chevrolet Avalanche Crew Cab - the perfect vehicle for those who need the extra space for hauling gear or families.", + "The Chevrolet Avalanche is a full-size SUV that was introduced in 2001.", + "2012 Chevrolet Avalanche Crew Cab.", + " Chevrolet Avalanche Crew Cab.", + "2012 Chevrolet Avalanche Crew CabThe 2012 Chevrolet Avalanche Crew Cab is a full-size pickup truck that seats up to six passengers.", + "The Chevrolet Avalanche is a full-size pickup truck that was produced by General Motors from 2001 to 2013." + ], + "2010 Dodge Dakota Crew Cab": [ + "A 2010 Dodge Dakota Crew Cab has four full-sized doors, a large crew-cab area with space for five or six passengers, and a bed in the back for cargo.", + "A 2010 Dodge Dakota Crew Cab is a pickup truck that seats five people.", + "The 2010 Dodge Dakota Crew Cab is a mid-size pickup truck that seats five passengers.", + "A 2010 Dodge Dakota Crew Cab has four full-sized doors and a large crew cab area with plenty of room for passengers and cargo.", + "A 2010 Dodge Dakota Crew Cab is a four-door pickup truck that seats five passengers.", + "According to the website www.", + "A 2010 Dodge Dakota Crew Cab is a four-door, five-seat truck with a V8 engine and four-wheel drive.", + "A 2010 Dodge Dakota Crew Cab is a pickup truck that seats five people.", + "A 2010 Dodge Dakota Crew Cab has four full-size doors and a pickup truck bed.", + "A 2010 Dodge Dakota Crew Cab is a four-door, full-size pickup truck.", + "A 2010 Dodge Dakota Crew Cab can be identified by its extended cab and four full-size doors.", + "A 2010 Dodge Dakota Crew Cab can be identified by its four full-size doors and extended cab.", + "The 2010 Dodge Dakota Crew Cab is a four-door, five-seat pickup truck that was manufactured by Chrysler.", + "The 2010 Dodge Dakota Crew Cab can be identified by its extended cab and four full-size doors.", + "A 2010 Dodge Dakota Crew Cab can be identified by its unique styling and features.", + "The 2010 Dodge Dakota Crew Cab can be identified by its four full-size doors and extended cab.", + "If you are looking at a truck and it has four full-sized doors and a back seat then it is a crew cab.", + "A 2010 Dodge Dakota Crew Cab can be identified by its extended cab with full-sized doors and four full-sized doors.", + "The 2010 Dodge Dakota Crew Cab can be identified by its extended cab and four full-size doors.", + "Some ways that you can identify a 2010 Dodge Dakota Crew Cab are by its features, such as its four full-sized doors, or by looking for the \"Crew Cab\" badge on the truck's body.", + "The 2010 Dodge Dakota Crew Cab has a four-door design with a short bed and room for up to five passengers.", + "The 2010 Dodge Dakota Crew Cab has four doors and seats up to six passengers.", + "The 2010 Dodge Dakota Crew Cab is a large pickup truck that seats up to six passengers.", + "A 2010 Dodge Dakota Crew Cab looks like a truck with a crew cab.", + "A 2010 Dodge Dakota Crew Cab has a rugged and aggressive exterior design.", + "A 2010 Dodge Dakota Crew Cab looks like a standard Crew Cab truck with four doors and seating for up to six passengers.", + "A 2010 Dodge Dakota Crew Cab looks like a truck with four doors and a crew cab.", + "The 2010 Dodge Dakota Crew Cab features a six-speed manual transmission, four-wheel drive, and chrome trim.", + "The 2010 Dodge Dakota Crew Cab has four doors and seating for up to six people.", + "A crew cab Dakota looks like a regular cab Dakota with 4 full-sized doors.", + "The image shows a red 2010 Dodge Dakota Crew Cab with a black grille and bumper.", + "This image is of a silver 2010 Dodge Dakota Crew Cab pickup truck.", + "The image is of a dark blue 2010 Dodge Dakota Crew Cab with tinted windows.", + "The image is of a 2010 Dodge Dakota Crew Cab that is silver in color.", + "This image is of a 2010 Dodge Dakota Crew Cab in black.", + "This image is of a 2010 Dodge Dakota Crew Cab in a dark color.", + "An image from the internet of a 2010 Dodge Dakota Crew Cab would most likely show the exterior of the vehicle, possibly including the interior.", + "The image is of a dark-colored Dodge Dakota Crew Cab pickup truck.", + "The image is of a blue 2010 Dodge Dakota Crew Cab pickup truck.", + "In the image, the 2010 Dodge Dakota Crew Cab is shown in silver with chrome details.", + "This is a 2010 Dodge Dakota Crew Cab.", + "A 2010 Dodge Dakota Crew Cab in excellent condition.", + "This is a picture of a 2010 Dodge Dakota Crew Cab.", + "2010 Dodge Dakota Crew Cab - 5.", + "2010 Dodge Dakota Crew Cab.", + "2010 Dodge Dakota Crew Cab.", + "2010 Dodge Dakota Crew Cab.", + "A 2010 Dodge Dakota Crew Cab pick-up truck.", + " A 2010 Dodge Dakota Crew Cab with a custom paint job.", + " A photo of a blue Dodge Dakota from the side." + ], + "2010 HUMMER H3T Crew Cab": [ + "A 2010 HUMMER H3T Crew Cab is a five-passenger crew cab SUV that features a six-speed automatic transmission and a V8 engine.", + "A 2010 HUMMER H3T Crew Cab is a four-door, five-passenger truck that features a sunroof, a navigation system, and a six-speed automatic transmission.", + "A 2010 HUMMER H3T Crew Cab is a large SUV that seats five people.", + "A 2010 HUMMER H3T Crew Cab is a large SUV with four doors.", + "A 2010 HUMMER H3T Crew Cab is a sport utility vehicle that seats up to five passengers.", + "A 2010 HUMMER H3T Crew Cab is a four-door, five-passenger truck that is available in three trim levels: the base Adventure, the mid-level Luxury and the top-of-the-line Alpha.", + "A 2010 HUMMER H3T Crew Cab is a large, boxy SUV with a long hood and a short rear deck.", + "The 2010 HUMMER H3T Crew Cab is a four-door, five-passenger truck.", + "A 2010 HUMMER H3T Crew Cab is a five-door, five-passenger truck that was sold in base, Adventure, and Luxury trim levels.", + "A 2010 HUMMER H3T Crew Cab is a four-door, five-passenger truck that is available in four trim levels.", + "A 2010 HUMMER H3T Crew Cab has four full-size doors and a pickup truck bed.", + "The 2010 HUMMER H3T Crew Cab can seat up to six people and has four doors.", + "The 2010 HUMMER H3T Crew Cab can be identified by its exterior and interior design.", + "You can identify a 2010 HUMMER H3T Crew Cab by looking for the \"T\" in the model name on the back of the vehicle.", + "The 2010 HUMMER H3T Crew Cab can be identified by its unique styling and six-lug wheels.", + "The 2010 HUMMER H3T Crew Cab can be identified by its unique, aggressive styling.", + "The human eye cannot identify a 2010 HUMMER H3T Crew Cab.", + "A HUMMER H3T Crew Cab from 2010 can be identified by its large, boxy body and wide, rectangular headlights.", + "The easiest way to identify a 2010 HUMMER H3T Crew Cab is by its unique body style.", + "The 2010 HUMMER H3T Crew Cab is a four-door, five-passenger truck.", + " They are large and very boxy.", + "A 2010 HUMMER H3T Crew Cab has a boxy body style with four doors.", + "The 2010 HUMMER H3T Crew Cab has a unique style that is both aggressive and rugged.", + "A 2010 HUMMER H3T Crew Cab looks like a regular HUMMER H3, but with an extended cab that can seat up to six people.", + "A 2010 HUMMER H3T Crew Cab has an aggressive stance with a wide track and large wheels.", + "A 2010 HUMMER H3T Crew Cab has a rugged, boxy exterior with large, exposed headlights and a wide grille.", + "A 2010 HUMMER H3T Crew Cab looks like a small SUV with a crew cab body style.", + "A 2010 HUMMER H3T Crew Cab has a unique, stylish look that is sure to turn heads.", + "A 2010 HUMMER H3T Crew Cab looks like a cross between an SUV and a pickup truck.", + "A 2010 HUMMER H3T Crew Cab looks like a cross between a SUV and a pickup truck.", + "The image is of a large, off-road vehicle with four doors.", + "A 2010 HUMMER H3T Crew Cab is an SUV that seats up to six people.", + "The image is of a 2010 HUMMER H3T Crew Cab in white.", + "The image is of a large, red SUV with four doors and a black learn.", + " AlphaThe image is of a dark blue HUMMER H3T Crew Cab Alpha with tinted windows and chrome accents.", + "The image is of a black 2010 HUMMER H3T Crew Cab.", + "This image is of a silver 2010 HUMMER H3T Crew Cab.", + "This image is of a red 2010 HUMMER H3T Crew Cab.", + "The image is of a large, red SUV with four doors.", + "This image is of a 2010 HUMMER H3T Crew Cab.", + "A 2010 HUMMER H3T Crew Cab in excellent condition.", + "This is a 2010 HUMMER H3T Crew Cab.", + "The HUMMER H3T Crew Cab is a massive SUV that can seat up to eight people comfortably.", + " A 2010 HUMMER H3T Crew Cab in black.", + "A 2010 HUMMER H3T Crew Cab parked in front of a lake.", + "The 2010 HUMMER H3T Crew Cab is a full-size SUV that seats up to six passengers.", + "This is a HUMMER H3T Crew Cab.", + "The HUMMER H3T is a 2010 model of the HUMMER H3.", + "The 2010 HUMMER H3T Crew Cab is a large SUV that seats up to six people.", + "The 2010 HUMMER H3T Crew Cab is a versatile and stylish vehicle that can accommodate a family or a group of friends." + ], + "2007 Ford F-150 Regular Cab": [ + "A 2007 Ford F-150 Regular Cab has two doors and seats up to three people.", + "A 2007 Ford F-150 Regular Cab is a pickup truck with seating for three people.", + "A 2007 Ford F-150 Regular Cab has two doors, seats up to three people, and has a cargo area in the back.", + "A 2007 Ford F-150 Regular Cab is a truck that has two doors and can seat up to three people.", + "The 2007 Ford F-150 Regular Cab is a truck that seats three people.", + "A 2007 Ford F-150 Regular Cab is a pickup truck that has two doors and seating for three people.", + "A 2007 Ford F-150 Regular Cab typically has two full-size doors and seating for up to three passengers.", + "The 2007 Ford F-150 Regular Cab is a pickup truck that seats three people.", + "The 2007 Ford F-150 Regular Cab is a truck that seats three people.", + "A 2007 Ford F-150 Regular Cab is a pickup truck with two doors and seating for up to three people.", + "One way to identify a 2007 Ford F-150 Regular Cab is to look at the two front seats.", + "There is a metal plaque on the front driver door that has the car's information, including the make, model, and year.", + "The 2007 Ford F-150 Regular Cab can be identified by its two front doors and two rear Suicide doors.", + "The 2007 Ford F-150 Regular Cab can be identified by its two full-sized doors and two regular sized seats.", + "The 2007 Ford F-150 Regular Cab can be identified by its two doors and four seats.", + "The 2007 Ford F-150 Regular Cab can be identified by its two doors and four seats.", + "The easiest way to identify a 2007 Ford F-150 Regular Cab is by its dimensions.", + "A 2007 Ford F-150 Regular Cab can be identified by its Regular Cab body style.", + "The 2007 Ford F-150 Regular Cab can be identified by its two doors and four seat configuration.", + "The 2007 Ford F-150 Regular Cab can be identified by its two-door design and lack of rear seats.", + "A 2007 Ford F-150 Regular Cab looks like a 2 door truck with a long bed.", + "Assuming you are asking what the truck looks like, it has a large grille in the front with the Ford logo in the center.", + "The 2007 Ford F-150 Regular Cab is a truck that seats three people and has two doors.", + "A 2007 Ford F-150 Regular Cab looks like a standard Ford truck with two doors and a bench seat.", + "This is what a 2007 Ford F-150 Regular Cab looks like: http://www.", + "The 2007 Ford F-150 Regular Cab looks like a regular truck.", + "A 2007 Ford F-150 Regular Cab looks like a truck with two front doors and a bench seat in the front.", + "A 2007 Ford F-150 Regular Cab typically looks like a work truck.", + "The 2007 Ford F-150 Regular Cab is a truck that seats three people.", + "A 2007 Ford F-150 Regular Cab looks like a standard Ford truck.", + "The image is of a red 2007 Ford F-150 Regular Cab truck.", + " 4x4The image is of a dark blue truck with four doors.", + "The image is of a red 2007 Ford F-150 Regular Cab pickup truck.", + "This image is of a red 2007 Ford F-150 Regular Cab.", + "The image is of a red 2007 Ford F-150 Regular Cab.", + "This image is of a blue 2007 Ford F-150 Regular Cab.", + "The image is of a red 2007 Ford F-150 Regular Cab.", + "This image is of a red 2007 Ford F-150 Regular Cab.", + " XLImage shows a red 2007 Ford F-150 XL Regular Cab pickup truck.", + "The image is of a silver 2007 Ford F-150 Regular Cab truck.", + "This 2007 Ford F-150 Regular Cab is in great condition and perfect for anyone who needs a tough and reliable truck!.", + "2007 Ford F-150 Regular Cab pickup truck.", + " A 2007 Ford F-150 Regular Cab truck.", + "This is a 2007 Ford F-150 Regular Cab.", + "2007 Ford F-150 Regular Cab.", + "The 2007 Ford F-150 Regular Cab is a versatile and dependable truck that is perfect for a variety of tasks.", + "2007 Ford F-150 Regular Cab - This truck is built for work and play.", + "The 2007 Ford F-150 Regular Cab was the first truck in its class to offer a six-speed automatic transmission.", + " The Ford F-150 Regular Cab is a versatile truck that can be used for a variety of purposes.", + "2007 Ford F-150 Regular Cab - Left Front View." + ], + "2012 Volkswagen Golf Hatchback": [ + "A 2012 Volkswagen Golf Hatchback is a 5-door car that seats 5 people.", + "The 2012 Volkswagen Golf Hatchback is a five-door hatchback that seats five passengers.", + "A 2012 Volkswagen Golf Hatchback is a small car that seats up to five people.", + "A 2012 Volkswagen Golf Hatchback has a sporty and modern look.", + "The 2012 Volkswagen Golf Hatchback has a sleek, modern look with clean lines and a sporty feel.", + "The 2012 Volkswagen Golf Hatchback is a five-door car that seats five passengers.", + "A 2012 Volkswagen Golf Hatchback has a sleek and aerodynamic body with a hatchback design.", + "A 2012 Volkswagen Golf Hatchback has a sleek and sporty look with a chrome-tipped exhaust, available Bi-Xenon headlights, LED daytime running lights and available 18-inch alloy wheels.", + "A 2012 Volkswagen Golf Hatchback should have a sleek design with clean lines.", + "A 2012 Volkswagen Golf Hatchback is a small car that seats five people.", + "The 2012 Volkswagen Golf Hatchback can be identified by its five-door configuration, as well as its sloping roofline.", + "The 2012 Volkswagen Golf Hatchback can be identified by its sporty design and the VW badge on the front grille.", + "A 2012 Volkswagen Golf Hatchback can be identified by its sloping roofline, large headlights, and chrome accents.", + "There is no definitive way to identify a 2012 Volkswagen Golf Hatchback.", + "By looking at the body style.", + "There are several ways to identify a 2012 Volkswagen Golf Hatchback.", + "There are a few ways to identify a 2012 Volkswagen Golf Hatchback.", + "You can identify a 2012 Volkswagen Golf Hatchback by its sloping roofline, flared fenders, and large greenhouse.", + "The 2012 Volkswagen Golf Hatchback can be identified by its long roofline, sloping rear window, and short trunk.", + "A 2012 Volkswagen Golf Hatchback can be identified by its distinctive appearance.", + "A 2012 Volkswagen Golf Hatchback looks like a small car with a hatchback door.", + "A 2012 Volkswagen Golf Hatchback has a sleek, modern look.", + "The 2012 Volkswagen Golf Hatchback looks like a smaller version of a SUV.", + "The 2012 Volkswagen Golf Hatchback is a small car with a sporty design.", + "The 2012 Volkswagen Golf Hatchback is a small car with a spacious interior.", + "A 2012 Volkswagen Golf Hatchback looks like a small, sporty car with a sleek design.", + "The 2012 Volkswagen Golf Hatchback is a five-door car that seats five passengers.", + "The 2012 Volkswagen Golf Hatchback has a sporty, modern look.", + "The 2012 Volkswagen Golf Hatchback has a sleek design with a curved hood and Hatchback trunk.", + "The 2012 Volkswagen Golf Hatchback has a sporty look with sharp lines and a sleek design.", + "This image shows a 2012 Volkswagen Golf Hatchback in white.", + "The image is of a white 2012 Volkswagen Golf Hatchback.", + "The image is of a white 2012 Volkswagen Golf Hatchback with the doors and hood open.", + "The image is of a 2012 Volkswagen Golf Hatchback in silver.", + "This image is of a 2012 Volkswagen Golf Hatchback in silver.", + "The image is of a 2012 Volkswagen Golf Hatchback in a silver color.", + "In the image, the 2012 Volkswagen Golf Hatchback is a sleek, silver car with a sporty look.", + "The image is of a white 2012 Volkswagen Golf Hatchback.", + "The image is of a 2012 Volkswagen Golf Hatchback in silver.", + "The image is of a 2012 Volkswagen Golf Hatchback in white.", + "A 2008 Volkswagen Golf Hatchback.", + "The 2012 Volkswagen Golf Hatchback is a sporty and practical car that is perfect for families.", + "The 2012 Volkswagen Golf Hatchback is a versatile and stylish car that is perfect for those who want a reliable and affordable vehicle.", + "This is a Volkswagen Golf Hatchback.", + "A 2012 Volkswagen Golf Hatchback.", + "The 2012 Volkswagen Golf Hatchback is a versatile and stylish car that is perfect for city driving.", + "The 2012 Volkswagen Golf Hatchback is a great car for anyone looking for a reliable and affordable vehicle.", + " VW Golf Hatchback.", + "The 2012 Volkswagen Golf Hatchback is a great car for those who want a stylish and practical vehicle.", + "2012 Volkswagen Golf Hatchback." + ], + "2012 Ferrari FF Coupe": [ + "The Ferrari FF Coupe is a two-door, four-seat grand tourer.", + "A 2012 Ferrari FF Coupe is a four-door coupe with a sleek, sporty design.", + "The Ferrari FF is a four-door grand tourer produced by the Italian sports car manufacturer Ferrari.", + "The 2012 Ferrari FF Coupe has a sleek and aggressive look with a V12 engine under the hood.", + "The 2012 Ferrari FF Coupe is a sleek, sports car with a long nose and a short rear end.", + "The Ferrari FF is a four-seat, all-wheel drive grand tourer unveiled by Ferrari at the 2011 Geneva Motor Show.", + "The 2012 Ferrari FF Coupe has a sleek and stylish design that is sure to turn heads.", + "The 2012 Ferrari FF Coupe is a sleek, luxurious vehicle with a powerful engine and sleek lines.", + "A 2012 Ferrari FF Coupe is a two-door, four-seat luxury sports car that was introduced by Ferrari in 2011.", + "The 2012 Ferrari FF Coupe has a sleek, aerodynamic design with curves and lines that give it a look of power and sophistication.", + "The 2012 Ferrari FF Coupe can be identified by its unique design.", + "The Ferrari FF Coupe can be identified by its unique hatchback design, which allows for more storage space than a traditional coupe.", + "The Ferrari FF Coupe can be identified by its unique styling and design.", + "The Ferrari FF Coupe can be identified by its unique design.", + "The Ferrari FF is a four-seater coupe with a front-engined, all-wheel drive layout.", + "By looking at the unique shape of the car, the Ferrari FF can be easily identified.", + "The Ferrari FF has a unique design with a long hood and a short rear deck.", + "The Ferrari FF is a unique vehicle and can be identified by its sloping roofline, sleek design, and large size.", + "The Ferrari FF is a unique car and is easily recognizable.", + "A 2012 Ferrari FF Coupe can be identified by its unique body style.", + "A 2012 Ferrari FF Coupe would likely look similar to the Ferrari 458 Italia Coup\u00e9, which was released in 2009.", + "The 2012 Ferrari FF Coupe is a sleek and stylish vehicle that is sure to turn heads.", + "A 2012 Ferrari FF Coupe looks like a regular Ferrari coupe with a few extra features.", + "The 2012 Ferrari FF Coupe looks like a high performance sports car with a sleek and stylish design.", + "A 2012 Ferrari FF Coupe may resemble a traditional Ferrari sports car, with a sleek, aerodynamic body and signature red paint job.", + "The 2012 Ferrari FF Coupe has a sleek, modern look with a long, low profile and a wide stance.", + "The Ferrari FF is a four-seat, four-wheel drive gran turismo unveiled at the Geneva Motor Show in March 2011.", + "The 2012 Ferrari FF Coupe is a sleek and stylish sports car with a powerful engine and aggressive lines.", + "The 2012 Ferrari FF has a sleek, stylish look that is sure to turn heads.", + "The 2012 Ferrari FF Coupe features a sleek, modern design with aggressive lines and a wide, muscular stance.", + "The image is of a red Ferrari FF Coupe with a black interior.", + "The image is of a 2012 Ferrari FF Coupe in white.", + "This is a 2012 Ferrari FF Coupe.", + "The image is of a red Ferrari FF Coupe with two people in the front seats.", + "This image is of a 2012 Ferrari FF Coupe.", + "This image is of a 2012 Ferrari FF Coupe.", + "The 2012 Ferrari FF Coupe is a two-door, four-seat luxury sports car that was produced by Italian automaker Ferrari from 2011 to 2016.", + "The image is of a Ferrari FF Coupe with a red body and black roof.", + "This image is of a 2012 Ferrari FF Coupe in white.", + "The image is of a silver 2012 Ferrari FF Coupe.", + "The Ferrari FF is a four-seat, four-wheel drive grand tourer produced by the Italian automaker Ferrari.", + " Ferrari's Fastest Four-Seater.", + "This is a 2012 Ferrari FF Coupe.", + "A Ferrari FF Coupe parked in a garage.", + "The Ferrari FF is a four-wheel drive grand tourer presented by the Italian manufacturer Ferrari.", + " This is a 2012 Ferrari FF Coupe.", + "This is the 2012 Ferrari FF Coupe.", + "This is a 2012 Ferrari FF Coupe.", + "This is a photo of a 2012 Ferrari FF Coupe.", + "This is a 2012 Ferrari FF Coupe." + ], + "2012 Toyota Camry Sedan": [ + "The 2012 Toyota Camry Sedan has a sleek, modern look.", + "The 2012 Toyota Camry Sedan has a sleek and stylish look.", + "The 2012 Toyota Camry Sedan has a sleek, modern look.", + "A 2012 Toyota Camry Sedan typically has four doors, seats five passengers, and has a trunk.", + "A 2012 Toyota Camry Sedan has a sleek, modern design with a protruding front grille and thin, angular headlights.", + "A late-model Toyota Camry Sedan has a sleek, modern look.", + "The Toyota Camry is a popular midsize car that has been in production since the 1980s.", + "A 2012 Toyota Camry Sedan looks like a four-door car with a trunk.", + "A 2012 Toyota Camry Sedan is a four-door sedan that seats up to five passengers.", + "A 2012 Toyota Camry Sedan has a sleek, modern design with a curved body and a sloping roofline.", + "You can identify a 2012 Toyota Camry Sedan by the following features: four doors, front-wheel drive, gasoline engine, and room for up to five passengers.", + "There are a few ways to identify a 2012 Toyota Camry Sedan.", + "The Toyota Camry has a wide, chrome-lined grille and wraparound headlights.", + "The Toyota Camry was redesigned for the 2012 model year and features a more aggressive, sporty look.", + "There are a few ways to identify a 2012 Toyota Camry Sedan.", + "The 2012 Toyota Camry has a distinctively designed front end, with a large grille and sleek headlights.", + "There are several ways to identify a 2012 Toyota Camry Sedan.", + "The Toyota Camry was significantly redesigned for the 2012 model year.", + "The Toyota Camry is a sedan that seats five passengers.", + "There are several ways to identify a 2012 Toyota Camry Sedan.", + "A 2012 Toyota Camry Sedan looks like a modern car with sleek lines and a stylish look.", + "The 2012 Toyota Camry Sedan has a sleek and stylish look.", + "The 2012 Toyota Camry Sedan has a sleek, modern look.", + "The 2012 Toyota Camry Sedan looks like a 4-door sedan with a sleek design.", + "The 2012 Toyota Camry Sedan has a sleek design that is both sporty and sophisticated.", + "The 2012 Toyota Camry Sedan has a sleek, modern design.", + "A 2012 Toyota Camry Sedan has a sleek design with smooth lines.", + "The 2012 Toyota Camry Sedan has a sleek, modern look.", + "The picture below is a 2012 Toyota Camry Sedan.", + "A 2012 Toyota Camry has a length of 189.", + "The image is of a black Toyota Camry sedan with tinted windows.", + "The image shows a 2012 Toyota Camry Sedan in black.", + "The image is of a red 2012 Toyota Camry Sedan.", + "This Toyota Camry Sedan has a sleek and modern look.", + "The image is of a 2012 Toyota Camry Sedan in burgundy.", + "Image shows a 2012 Toyota Camry Sedan, color red.", + "The image is of a red 2012 Toyota Camry Sedan.", + "The image is of a white 2012 Toyota Camry Sedan.", + "https://www.", + "This image is a 2012 Toyota Camry Sedan in the color silver.", + "The 2012 Toyota Camry is a reliable and comfortable sedan that is perfect for families or those who need a dependable car for their daily commute.", + "A 2012 Toyota Camry Sedan.", + " 2012 Toyota Camry LE Sedan.", + "The 2012 Toyota Camry is a reliable and affordable sedan that is perfect for families.", + "The 2012 Toyota Camry is a reliable and affordable option for those looking for a midsize sedan.", + "The Toyota Camry is a midsize sedan that was first introduced in 1982.", + "The 2012 Toyota Camry is a reliable and comfortable sedan that is perfect for families.", + "The 2012 Toyota Camry is a fuel-efficient sedan that offers a comfortable ride and a long list of standard features.", + "A 2012 Toyota Camry Sedan.", + "The 2012 Toyota Camry Sedan is a reliable and affordable car that is perfect for families and commuters." + ], + "2012 Aston Martin V8 Vantage Convertible": [ + "A bright silver sports car with a black convertible top and red interior.", + "A 2012 Aston Martin V8 Vantage Convertible is a sleek and stylish two-door convertible sports car with a V8 engine.", + "The 2012 Aston Martin V8 Vantage Convertible is a luxurious sports car that features a sleek, stylish exterior and a powerful engine.", + "The Aston Martin V8 Vantage Convertible is a luxury sports car that was first introduced in 2007.", + "The 2012 Aston Martin V8 Vantage Convertible features a sleek, sculpted body with a long hood and a short rear deck.", + "The 2012 Aston Martin V8 Vantage Convertible is a luxury sports car that features a sleek, aerodynamic design.", + "The Aston Martin V8 Vantage Convertible is a luxurious sports car that features a sleek design and a powerful engine.", + "The 2012 Aston Martin V8 Vantage Convertible has a sleek and sporty design with a powerful V8 engine.", + "The V8 Vantage Convertible is a two-door grand tourer that was introduced by Aston Martin in 2007.", + "A 2012 Aston Martin V8 Vantage Convertible is a two-door, four-seat luxury convertible sports car that was introduced in 2005.", + "There are a few ways to identify a 2012 Aston Martin V8 Vantage Convertible.", + "The Aston Martin V8 Vantage Convertible can be identified by its long hood, short rear deck, and swept-back headlights.", + "The 2012 Aston Martin V8 Vantage Convertible can be identified by its sleek design and convertible top.", + "The 2012 Aston Martin V8 Vantage Convertible can be identified by its long, low hood and short rear deck.", + "The 2012 Aston Martin V8 Vantage Convertible can be identified by its long hood, wide grille, and two-seat capacity.", + "The Vantage can be identified by its long hood and short rear deck.", + "The 2012 Aston Martin V8 Vantage Convertible can be identified by its long hood, short rear deck, and 2-seat configuration.", + "The V8 Vantage is Aston Martin's two-seat sports car, introduced in 2005.", + "The 2012 Aston Martin V8 Vantage Convertible can be identified by its long hood, short rear deck, and wide stance.", + "The Vantage name has been used on a number of Aston Martin concept and production cars since the late 1950s.", + "A 2012 Aston Martin V8 Vantage Convertible looks like a luxurious sports car with a sleek design.", + "A 2012 Aston Martin V8 Vantage Convertible has a sleek, sporty look with a convertible top that makes it perfect for cruising around town or taking a drive in the country.", + "A 2012 Aston Martin V8 Vantage Convertible looks like a sleek and stylish sports car.", + "A 2012 Aston Martin V8 Vantage Convertible looks like a sleek and stylish 2-door convertible with a powerful V8 engine.", + "The 2012 Aston Martin V8 Vantage Convertible has a sleek design with a soft top that can be retracted.", + "The V8 Vantage Convertible is a two-door, four-seat luxury convertible manufactured by Aston Martin.", + "2012 Aston Martin V8 Vantage ConvertibleThe 2012 Aston Martin V8 Vantage Convertible features a soft top that can be retracted or extended at the push of a button, as well as seats that are both comfortable and stylish.", + "A 2012 Aston Martin V8 Vantage Convertible looks like a luxury car with a sleek design.", + "The 2012 Aston Martin V8 Vantage Convertible has a sleek, stylish look with a long hood and short rear end.", + "The 2012 Aston Martin V8 Vantage Convertible has a sleek and stylish design with a black convertible top.", + "The image shows a 2012 Aston Martin V8 Vantage Convertible in white with a black interior.", + "The image is of a 2012 Aston Martin V8 Vantage Convertible in a light blue color.", + "The image is of a white 2012 Aston Martin V8 Vantage Convertible with a black convertible top.", + "The image is of a white Aston Martin V8 Vantage Convertible with the top down.", + "This image is of a white 2012 AstonMartin V8 Vantage Convertible.", + "In the image, the 2012 Aston Martin V8 Vantage Convertible is a sleek and sporty car that is sure to turn heads.", + "The image is of a 2012 Aston Martin V8 Vantage Convertible.", + "This image is of a 2012 Aston Martin V8 Vantage Convertible.", + "The image shows a 2012 Aston Martin V8 Vantage Convertible in a dark color parked in a garage.", + "The 2012 Aston Martin V8 Vantage convertible is a sleek, stylish car that is sure to turn heads.", + "An Aston Martin V8 Vantage convertible parked in front of a house.", + "This is a 2012 Aston Martin V8 Vantage Convertible.", + "The Aston Martin V8 Vantage Convertible is a luxurious and powerful sports car that is sure to turn heads.", + "The Aston Martin V8 Vantage Convertible is a two-door, two-seater luxury sports car manufactured by British automaker Aston Martin.", + "Aston Martin V8 Vantage Convertible - 2012.", + "An Aston Martin V8 Vantage Convertible in racing green.", + "Aston Martin V8 Vantage Convertible - 2012 ModelThe Aston Martin V8 Vantage is a British sports car that was introduced in 2005.", + "An Aston Martin V8 Vantage Convertible.", + "This is a 2012 Aston Martin V8 Vantage Convertible.", + "The Aston Martin V8 Vantage Convertible is a luxurious and sporty car that is sure to turn heads." + ], + "1994 Audi 100 Sedan": [ + "The 1994 Audi 100 Sedan is a four-door sedan that seats five passengers.", + "The 1994 Audi 100 Sedan is a four-door sedan that seats five passengers.", + "The 1994 Audi 100 Sedan is a four-door sedan that seats five passengers.", + "A 1994 Audi 100 Sedan is a 4-door sedan that seats 5 passengers.", + "A 1994 Audi 100 Sedan would look like a luxury car from the 1990s.", + "The 1994 Audi 100 Sedan has a sleek, aerodynamic design with four doors and a trunk.", + "The 1994 Audi 100 Sedan has a sleek and modern look.", + "The 1994 Audi 100 Sedan is a 4-door sedan that seats 5 passengers.", + "The 1994 Audi 100 Sedan has a sleek, modern look with a long hood and a short rear deck.", + "The 1994 Audi 100 Sedan is a four-door sedan that seats five passengers.", + "The identification number is located on the body panel below the driver\u2019s door.", + "There should be a badge on the back of the Audi 100 Sedan that says \"1994 Audi 100 Sedan\".", + "There is no definitive way to identify a 1994 Audi 100 Sedan without looking at the VIN (vehicle identification number), but there are some general characteristics that most 1994 Audi 100 Sedans will have.", + "The best way to identify a 1994 Audi 100 Sedan is by the VIN number.", + "The best way to identify a 1994 Audi 100 Sedan is to look for the VIN number.", + "The 1994 Audi 100 Sedan can be identified by its sleek and professional design.", + "The 1994 Audi 100 Sedan can be identified by its four-door body style, as well as its physical dimensions.", + "The car has a long wheelbase and an elegant design.", + "The 100 was Audi's largest sedan, and was available in both front-wheel drive and four-wheel drive variants.", + "The Audi 100 Sedan was produced between 1968 and 1994.", + "The 1994 Audi 100 Sedan has a sleek, modern look with sharp lines and angles.", + "I'm not sure what you're asking for.", + "The 1994 Audi 100 Sedan looks like a typical luxury sedan from the 1990s.", + "I cannot find a picture of a 1994 Audi 100 sedan, but they generally have four doors and seating for five passengers.", + "The 1994 Audi 100 Sedan looks like a German-engineered luxury car.", + "A 1994 Audi 100 sedan has a sleek, modern look.", + "There is no definitive answer, as each vehicle will have slight variations.", + "The 1994 Audi 100 Sedan is a sleek and stylish vehicle with a long hood and a short trunk.", + "The 1994 Audi 100 sedan is a four-door sedan with a traditional design.", + "I am not able to find a picture of a 1994 Audi 100 sedan, but it would likely look similar to the Audi 100 sedan from 1992-1993.", + "The image is of a red 1994 Audi 100 Sedan.", + "This image is of a 1994 Audi 100 sedan in a light blue color.", + "The image is of a 1994 Audi 100 Sedan that is silver in color.", + "The 1994 Audi 100 Sedan is a four-door sedan that was manufactured by the German automaker Audi.", + "The image is of a red 1994 Audi 100 Sedan.", + "The image is of a red 1994 Audi 100 sedan.", + "The image is of a red 1994 Audi 100 Sedan.", + "This image is of a silver 1994 Audi 100 Sedan.", + "The image is of a 1994 Audi 100 sedan in pearl white.", + "The image is of a silver Audi 100 sedan with four doors.", + "This Audi 100 sedan was produced in 1994 and is a great example of German engineering.", + "A 1994 Audi 100 Sedan.", + "The 1994 Audi 100 Sedan was a popular model among luxury car enthusiasts.", + " A 1994 Audi 100 Sedan in excellent condition.", + "A 1994 Audi 100 Sedan, a luxurious car that was popular in the 1990s.", + " A 1994 Audi 100 Sedan.", + "A 1994 Audi 100 Sedan in excellent condition.", + "This is a 1994 Audi 100 Sedan.", + "A 1994 Audi 100 Sedan in excellent condition.", + "The 1994 Audi 100 Sedan was a popular car among Audi fans." + ], + "2011 Ford Ranger SuperCab": [ + "The 2011 Ford Ranger SuperCab has four doors, with two full-size front doors and two smaller rear doors.", + "A 2011 Ford Ranger SuperCab has four doors, with two full-size front doors and two smaller rear doors.", + "A 2011 Ford Ranger SuperCab has four doors, with two full-size doors in the front and two smaller access doors in the back.", + "image of 2011 Ford Ranger Supercab - https://www.", + "The 2011 Ford Ranger SuperCab is a small four-door pickup truck.", + "The 2011 Ford Ranger SuperCab has four full-sized doors and a small rear storage area behind the back seats.", + "A 2011 Ford Ranger SuperCab has four doors, two bucket seats in the front, and a bench seat in the back.", + "A 2011 Ford Ranger SuperCab has 4 doors, with two doors being on the driver's side and two doors being on the passenger side.", + "The SuperCab version of the 2011 Ford Ranger has four full-size doors and extended rear seating.", + "The 2011 Ford Ranger SuperCab has four doors, with two full-size doors in the front and two smaller doors in the back.", + "The 2011 Ford Ranger SuperCab can be identified by its extended cab with two full-sized doors and two smaller passenger doors.", + "From the outside, a 2011 Ford Ranger SuperCab can be identified by its four full-sized doors and extended cab.", + "The easiest way to identify a 2011 Ford Ranger SuperCab is to look for the \"SuperCab\" badge on the rear of the vehicle.", + "The best way to identify a 2011 Ford Ranger SuperCab is to look for the unique SuperCab Extended Cab designation on the vehicle's exterior.", + "The 2011 Ford Ranger SuperCab can be identified by its extended cab, which provides extra space for passengers or cargo.", + "There are a few ways to identify a 2011 Ford Ranger SuperCab.", + "The 2011 Ford Ranger SuperCab can be identified by its four full-size doors and extended cab.", + "The 2011 Ford Ranger SuperCab can be identified by its extended cab that includes two full-sized doors and two smaller doors.", + "The easiest way to identify a 2011 Ford Ranger SuperCab is by its four full-size doors.", + "The 2011 Ford Ranger SuperCab can be identified by its four full-size doors and extended cab.", + "A 2011 Ford Ranger SuperCab has four doors andcan seat up to five people.", + "A 2011 Ford Ranger SuperCab looks like a small, four-door pickup truck.", + "The 2011 Ford Ranger SuperCab features an extended cab with two full-sized doors and two smaller, half-sized doors.", + "A 2011 Ford Ranger SuperCab has four doors, with two full-sized doors in the front and two smaller doors in the back.", + "A 2011 Ford Ranger SuperCab typically has four doors, with two full-size doors for the front passengers and two smaller \"suicide\" doors for the back passengers.", + "A 2011 Ford Ranger SuperCab has four doors, with two full-size doors in the front and two smaller half-doors in the back.", + "A 2011 Ford Ranger SuperCab looks like a small pickup truck with four doors.", + "The 2011 Ford Ranger SuperCab has four doors, with two full-sized front doors and two half-sized rear doors.", + "The 2011 Ford Ranger SuperCab is a crew cab truck that seats five people.", + "A 2011 Ford Ranger SuperCab is a truck with four full-size doors and extended cab.", + "The image is of a white Ranger SuperCab with a black grille and dark tinted windows.", + "This image is a silver 2011 Ford Ranger SuperCab with 4 doors.", + "The 2011 Ford Ranger SuperCab is a four-door, five-passenger mid-size pickup truck.", + "An image of a 2011 Ford Ranger SuperCab from the internet shows a red truck with a black bed cover.", + "This image is of a blue 2011 Ford Ranger SuperCab.", + "Image is of a red 2011 Ford Ranger SuperCab.", + "The 2011 Ford Ranger SuperCab is a 4-door, 6-passenger truck with four-wheel drive.", + "The image shows a 2011 Ford Ranger SuperCab in silver.", + "The image is of a grey Ford Ranger SuperCab with black trim.", + "The image is of a 2011 Ford Ranger SuperCab in silver.", + "The 2011 Ford Ranger SuperCab is a versatile and stylish truck that's perfect for both city and country driving.", + "This 2011 Ford Ranger SuperCab is a great truck for anyone who needs a reliable and tough vehicle.", + " A 2011 Ranger SuperCab on a Ford dealership lotThe Ford Ranger is a compact pickup truck that was introduced in 1983 and produced through 2011.", + "The 2011 Ford Ranger SuperCab is a midsize pickup truck with a four-door cab and a six-foot bed.", + "2011 Ford Ranger SuperCab.", + " A 2011 Ford Ranger SuperCab with a 6-foot bed.", + "A 2011 Ford Ranger SuperCab.", + " The 2011 Ford Ranger SuperCab is a versatile and stylish truck.", + "A 2011 Ford Ranger SuperCab.", + "This is a 2011 Ford Ranger SuperCab." + ], + "2012 GMC Canyon Extended Cab": [ + "A 2012 GMC Canyon Extended Cab looks like a four-door truck with a extended cab.", + "A 2012 GMC Canyon Extended Cab has four doors and seats up to six people.", + "The 2012 GMC Canyon Extended Cab has four doors, and a long bed.", + "The 2012 GMC Canyon Extended Cab has four doors, with two full-sized front doors and two smaller rear doors.", + "A look at the 2012 GMC Canyon Extended Cab from the outside reveals a muscular pickup truck with a large, squared-off grille and four-wheel drive capabilities.", + "The 2012 GMC Canyon Extended Cab has a Crew Cab design with four doors.", + "A 2012 GMC Canyon Extended Cab has four doors, with two full-size doors in the front and two smaller doors in the back.", + "A 2012 GMC Canyon Extended Cab is a light-duty truck with a long bed and extended cab.", + "The 2012 GMC Canyon Extended Cab is a mid-size pickup truck that seats four passengers.", + "The 2012 GMC Canyon Extended Cab is a four-door truck with a Crew Cab-style rear seat.", + "There are a few ways you can identify a 2012 GMC Canyon Extended Cab.", + "Some ways to identify a 2012 GMC Canyon Extended Cab would be to look for its unique features such as its extended cab with two additional doors, its larger bed, or its six-speed automatic transmission.", + "One way to identify a 2012 GMC Canyon Extended Cab is to look for the \"Extended Cab\" badge on the truck's rear quarter panel.", + "The 2012 GMC Canyon Extended Cab can be identified by its identification number, which is located on the driver's side door pillar.", + "The GMC Canyon Extended Cab is a model of compact truck offered by the GMC truck division of General Motors.", + "The 2012 GMC Canyon Extended Cab can be identified by its four full-sized doors and extended cab area.", + "The 2012 GMC Canyon Extended Cab can be identified by its four full-size doors and extended cab.", + "A 2012 GMC Canyon Extended Cab can be identified by its four full-size doors and extended cab with additional seating behind the front seats.", + "The easiest way to identify a 2012 GMC Canyon Extended Cab is by its unique body style.", + "The 2012 GMC Canyon Extended Cab can be identified by its sharp, angular lines and its aggressive front grille.", + "PICTURE.", + "A 2012 GMC Canyon Extended Cab looks like a subcompact pickup truck with an extended cab.", + "A 2012 GMC Canyon Extended Cab looks like a truck with a cab that has been extended.", + "There are a variety of different ways that people can customize their 2012 GMC Canyon Extended Cab, so it can vary somewhat in appearance.", + "The GMC Canyon Extended Cab is a mid-size pickup truck with a crew cab design.", + "The 2012 GMC Canyon Extended Cab looks like a regular cab with an extended portion in the back.", + "The GMC Canyon Extended Cab is a pickup truck that seats four people.", + "A 2012 GMC Canyon Extended Cab looks like a typical Chevrolet Colorado Extended Cab with some small cosmetic changes.", + "A 2012 GMC Canyon Extended Cab looks like a four-door truck with two rows of seating.", + "The 2012 GMC Canyon Extended Cab looks like a smaller version of a GMC Sierra.", + "This image is of a 2012 GMC Canyon Extended Cab SLE in White Rice.", + "The image is of a red GMC Canyon Extended Cab with the doors open.", + " 2WD SLE-1The photo is of a 2012 GMC Canyon Extended Cab 2WD SLE-1.", + "In the image, the GMC Canyon is parked on a road with grass in the foreground.", + "The image is of a 2012 GMC Canyon Extended Cab.", + "In the image, the 2012 GMC Canyon Extended Cab is a dark gray color with a black exterior.", + "This image is of a 2012 GMC Canyon Extended Cab pickup truck in silver.", + "The image shows a 2012 GMC Canyon Extended Cab truck in silver.", + "The image is of a 2012 GMC Canyon Extended Cab pickup truck in front of a mountainside.", + "In the image, the 2012 GMC Canyon Extended Cab is a dark blue color with four doors.", + "A GMC Canyon Extended Cab from 2012.", + "A 2012 GMC Canyon Extended Cab truck.", + " GMC Canyon Extended Cab.", + "2012 GMC Canyon Extended Cab.", + "The 2012 GMC Canyon Extended Cab is a versatile truck that can handle a variety of tasks.", + " A GMC Canyon Extended Cab from 2012.", + "GMC Canyon Extended Cab: A truck that's big on style and performance.", + "The 2012 GMC Canyon Extended Cab is a great truck for those who need the extra space.", + "This is a 2012 GMC Canyon Extended Cab.", + "The GMC Canyon Extended Cab is a versatile and stylish truck that's perfect for any need." + ], + "2012 Acura TSX Sedan": [ + "The 2012 Acura TSX Sedan is a four-door sedan that seats up to five passengers.", + "A 2012 Acura TSX Sedan is a 4-door car that seats 5.", + "The 2012 Acura TSX Sedan is a four-door sedan that seats five passengers.", + "A 2012 Acura TSX Sedan is a four-door, five-passenger sedan that comes in three trim levels: the base model, the Special Edition, and the Sport Wagon.", + "The Acura TSX is a sedan that seats five passengers.", + "The 2012 Acura TSX Sedan is a four-door sedan that seats five passengers.", + "The 2012 Acura TSX Sedan is a four-door, five-passenger sedan that is available in two trim levels: the base and the Sport Wagon.", + "The 2012 Acura TSX Sedan is a sleek and stylish vehicle that features a smooth and aerodynamic design.", + "The 2012 Acura TSX Sedan is a four-door sedan that seats five passengers.", + "A 2012 Acura TSX Sedan is a four-door vehicle that seats five passengers.", + "There are a few ways to identify a 2012 Acura TSX Sedan.", + "The identification number is located on a plate attached to the front left door pillar.", + "The 2012 Acura TSX Sedan can be identified by its sporty and aggressive design.", + "The 2012 Acura TSX Sedan can be identified by its model code, which is CU2.", + "The 2012 Acura TSX Sedan can be identified by its sleek exterior design and its spacious interior.", + "The 2012 Acura TSX Sedan can be identified by its sleek, modern design.", + "The 2012 Acura TSX Sedan can be identified by its model code, which is CU2.", + "By looking at the front of the vehicle, you can identify a 2012 Acura TSX Sedan by the large, chrome Acura emblem in the center of the grille.", + "There are a few ways you can identify a 2012 Acura TSX Sedan.", + "The 2012 Acura TSX Sedan can be identified by the following features: -Honda's first 8-speed DCT transmission -4-cylinder 2.", + "See the attached link for a picture of a 2012 Acura TSX Sedan.", + "A 2012 Acura TSX Sedan looks like a four-door sedan with a sleek, modern design.", + "A 2012 Acura TSX Sedan looks like a four-door sedan with a sleek design.", + "The 2012 Acura TSX Sedan has a modern look with clean lines and an elegant interior.", + "A 2012 Acura TSX Sedan has a sleek design with sleek lines.", + "The 2012 Acura TSX Sedan looks like a luxury car.", + "A 2012 Acura TSX Sedan has a sleek and modern look.", + "The 2012 Acura TSX Sedan is a four-door sedan that seats five passengers.", + "The 2012 Acura TSX Sedan has a sleek, aerodynamic design with a sporty look.", + "The 2012 Acura TSX Sedan has a revised front end with a new grille, bumper, and headlights.", + "The image shows a silver 2012 Acura TSX sedan with a black leather interior.", + "The image is of a sleek, silver car.", + "This car is a 2012 Acura TSX Sedan.", + "The image is of a 2012 Acura TSX Sedan in a metallic grey color.", + "The image from the internet is of a white 2012 Acura TSX Sedan.", + "The image is of a 2012 Acura TSX Sedan in a light blue color.", + "The image is of a white sedan with sleek lines and a sporty look.", + "In the image, the 2012 Acura TSX Sedan is a sleek and stylish four-door car.", + "This image is of a 2012 Acura TSX Sedan in a silver color.", + "This image is of a 2012 Acura TSX Sedan in the color silver.", + " The 2012 Acura TSX Sedan in Indian Pearl White.", + "The 2012 Acura TSX Sedan is a sleek and sporty car that is sure to turn heads.", + "The Acura TSX Sedan is a stylish and sophisticated car that is perfect for those who want a luxurious ride.", + "Acura TSX Sedan.", + "The 2012 Acura TSX Sedan is a reliable and stylish vehicle.", + "The 2012 Acura TSX Sedan is a comfortable and stylish car that is perfect for everyday driving.", + "This beautiful 2012 Acura TSX Sedan is in excellent condition and perfect for anyone looking for a luxurious and reliable ride.", + "The 2012 Acura TSX Sedan is a reliable and comfortable car that is perfect for everyday driving.", + "The 2012 Acura TSX Sedan is a reliable and stylish car that is perfect for any driver.", + "The 2012 Acura TSX Sedan is a sleek and stylish car that is sure to turn heads." + ], + "2012 BMW 3 Series Sedan": [ + "A white BMW 3 Series with black rims and tinted windows.", + "A 2012 BMW 3 Series Sedan has a sleek and sporty design.", + "The 3 Series Sedan has a wide stance with an aggressive look.", + "The 2012 BMW 3 Series sedan is a 4-door sedan that seats 5 passengers.", + "The 2012 BMW 3 Series Sedan is a four-door sedan that seats five passengers.", + "The 2012 BMW 3-Series Sedan has a long hood and a short rear deck.", + "A 2012 BMW 3 Series Sedan has four doors and can seat up to five people.", + "The 2012 BMW 3 Series Sedan has a sleek, sporty look with sweeping lines.", + "The 3 Series Sedan is a stylish car with a sleek design.", + "The 2012 BMW 3 Series Sedan has a length of 186 inches, a width of 71 inches, and a height of 58 inches.", + "The 2012 BMW 3 Series Sedan can be identified by its four doors, long wheelbase, and large trunk.", + "The 2012 BMW 3 Series Sedan can be identified by its four-door body style, as well as its long hood and rear deck.", + "The 2012 BMW 3 Series Sedan can be identified by its long wheelbase, large grille, and wide stance.", + "The 2012 BMW 3 Series Sedan can be identified by its long hood, short rear deck, and wide stance.", + "The 2012 BMW 3 Series Sedan can be identified by its long hood and short rear deck.", + "The 2012 BMW 3 Series Sedan can be identified by its long hood and short trunk, as well as its athletic stance.", + "The 2012 BMW 3 Series Sedan can be identified by its long hood, short trunk, and sharp headlights.", + "The easiest way to identify a 2012 BMW 3 Series Sedan is by its 4-door configuration.", + "If you are looking at a 2012 BMW 3 Series sedan, you can identify it by its four doors, sleek body style, and kidney-shaped grille.", + "The registration papers will list the make and model of the car.", + "A 2012 BMW 3 Series Sedan has a sleek design with a curved body.", + "A 2012 BMW 3 Series Sedan has a sleek, curved body with four doors.", + "The 2012 BMW 3 Series Sedan has a long, sleek hood and a short, stubby trunk.", + "The 2012 BMW 3 Series Sedan has a sleek, modern look with sharp lines and aggressive styling.", + "A 2012 BMW 3 Series Sedan has a long hood and a short trunk.", + "A picture of a 2012 BMW 3 Series Sedan can be found here:https://www.", + "A 2012 BMW 3 Series Sedan has a sleek and stylish look with a swept-back design.", + "The 2012 BMW 3 Series Sedan has a sleek and modern design that is sure to turn heads.", + "The 2012 BMW 3 Series Sedan has a wide stance with a long hood and short rear deck.", + "The 2012 BMW 3 Series Sedan has a long hood and a short rear deck, with a wide stance and a cabin that is pushed forward.", + "The image is of a silver 2012 BMW 3 Series Sedan.", + "The image is of a red 2012 BMW 3 Series Sedan.", + "This image is a photograph of a 2012 BMW 3 Series Sedan in black.", + "The image is of a white 2012 BMW 3 Series Sedan.", + "The image is of a sleek, silver BMW 3 Series Sedan.", + "The image is of a glossy black BMW 3 Series Sedan with chrome accents.", + "The image is of a black 2012 BMW 3 Series Sedan.", + "The image is of a 2012 BMW 3 Series Sedan in a parking lot.", + "The image is of a glossy black BMW 3 Series Sedan with tinted windows.", + "This image is of a black BMW 3 Series Sedan.", + " The 2012 BMW 3 Series Sedan is a great car for anyone looking for a luxury car.", + " The 3 Series has long been a favorite among luxury car owners.", + "The BMW 3 Series is a compact executive car produced by the German automaker BMW since May 1975.", + "The new BMW 3 Series Sedan is the perfect example of German engineering.", + "The 2012 BMW 3 Series Sedan is a luxurious and powerful car that is perfect for anyone looking for a high-performance vehicle.", + "The 2012 BMW 3 Series Sedan is a luxury car that offers a combination of style, comfort, and performance.", + "The BMW 3 Series Sedan is a compact executive car produced by the German automaker BMW since May 1975.", + "The new 2012 BMW 3 Series Sedan.", + "The all-new 2012 BMW 3 Series Sedan.", + "A 2012 BMW 3 Series Sedan." + ], + "2012 Honda Odyssey Minivan": [ + "A Honda Odyssey from 2012 is a minivan that can seat up to eight people.", + "The 2012 Honda Odyssey Minivan has a sleek and modern design.", + "The 2012 Honda Odyssey Minivan has a sleek and aerodynamic design with a silver body and black trim.", + "A 2012 Honda Odyssey Minivan has a sleek design with sliding doors and plenty of room for passengers and cargo.", + "A 2012 Honda Odyssey Minivan is a vehicle with four doors and enough space to seat up to eight people.", + "The 2012 Honda Odyssey is a sleek and stylish minivan that looks modern and contemporary.", + "A 2012 Honda Odyssey Minivan is a 7-seat, front-engine, front-wheel drive van.", + "The Honda Odyssey is a minivan with plenty of space for passengers and cargo.", + "The Honda Odyssey Minivan is a sleek, modern looking car with plenty of room for storage and seating for up to eight people.", + "A 2012 Honda Odyssey Minivan has a sleek, modern design with smooth lines.", + "The 2012 Honda Odyssey Minivan can be identified by its model number.", + "A 2012 Honda Odyssey Minivan can be identified by its unique grille, headlights, and taillights.", + "There is a 2012 Honda Odyssey minivan in Daytona Beach, Florida.", + "The 2012 Honda Odyssey can be identified by its distinctively shaped headlights and grille.", + "The 2012 Honda Odyssey Minivan has a sleek and modern design.", + "There is a \"2012\" badge on the back of the vehicle.", + "Some cars have special features that help to identify them.", + "There are a few ways to identify a 2012 Honda Odyssey minivan.", + "From the outside, a 2012 Honda Odyssey Minivan can be identified by its sloping roofline and large greenhouse.", + "One way to identify a 2012 Honda Odyssey minivan is to look for the Honda logo on the front grille.", + "The 2012 Honda Odyssey Minivan has a smooth, boxy body with a large front grille and headlights.", + "There are many different styles and colors of the 2012 Honda Odyssey Minivan, so it is hard to say what one specific style looks like.", + "A 2012 Honda Odyssey minivan has a sleek, modern design.", + "The 2012 Honda Odyssey minivan looks like a modern, stylish van.", + "A 2012 Honda Odyssey minivan looks like a large, boxy car with sliding doors on either side.", + "The 2012 Honda Odyssey minivan has a sleek look with a long, sloping hood and a rear end that angles upward.", + "The 2012 Honda Odyssey minivan has a sleek and modern design.", + "A 2012 Honda Odyssey Minivan has a sleek, modern look.", + "A 2012 Honda Odyssey Minivan would look like a silver or white car with 7 seats and sliding door on the side.", + "From the front, the 2012 Honda Odyssey Minivan looks like a large, boxy SUV.", + "The image is of a tan-colored 2012 Honda Odyssey Minivan.", + "The image is of a red 2012 Honda Odyssey Minivan.", + "The image is of a Honda Odyssey Minivan in the color silver.", + "This image is of a pearlescent white 2012 Honda Odyssey Minivan.", + "This image is of a red 2012 Honda Odyssey Minivan.", + "The image is of a silver Honda Odyssey minivan parked in a driveway.", + "The image is of a 2012 Honda Odyssey Minivan in a parking lot.", + "The image is of a 2012 Honda Odyssey Minivan in a deep blue color.", + "The image is of a 2012 Honda Odyssey Minivan in white.", + "The 2012 Honda Odyssey Minivan has a long body with sliding doors on either side.", + "The 2012 Honda Odyssey minivan.", + "Honda Odyssey Minivan.", + "Honda Odyssey Minivan.", + "This image shows a 2012 Honda Odyssey Minivan.", + "This is a picture of a 2012 Honda Odyssey minivan.", + "Image shows the front of a 2012 Honda Odyssey Minivan in a light blue color.", + "A 2012 Honda Odyssey Minivan.", + "The 2012 Honda Odyssey is a versatile and family-friendly minivan that has plenty of features to keep everyone happy on long road trips.", + "This Honda Odyssey features a V6 engine, six-speed automatic transmission, and front-wheel drive.", + "The 2012 Honda Odyssey Minivan is the perfect car for families." + ], + "2012 Dodge Durango SUV": [ + "The 2012 Dodge Durango is a large SUV that seats seven passengers.", + "A 2012 Durango SUV has a sleek, modern look.", + "A 2012 Dodge Durango SUV is a large, seven-passenger SUV.", + "A fifty-two point two inch tall, seventy-nine point five inch wide, and two hundred and four point six inch long SUV that typically seats five passengers but can seat up to seven with an optional third row.", + "The 2012 Dodge Durango SUV has a sleek, modern design.", + "The 2012 Dodge Durango SUV has a sleek and modern look.", + "The 2012 Dodge Durango SUV has a boxy body with bold style lines.", + "The 2012 Dodge Durango SUV has a boxy shape with a short front end and a long rear end.", + "The 2012 Dodge Durango SUV has a sleek and streamlined look with a bold front grille.", + "A 2012 Dodge Durango SUV is a large SUV that seats up to seven passengers.", + "One way to identify a 2012 Dodge Durango SUV is by its grill.", + "The 2012 Dodge Durango has a distinct look that sets it apart from other SUVs on the market.", + "There are a few ways to identify a 2012 Dodge Durango SUV.", + "By its grille, which has six slats arranged in a V-shape.", + "There are a few ways to identify a 2012 Dodge Durango SUV.", + "The 2012 Dodge Durango SUV can be identified by its stylish exterior, spacious interior, and powerful engine.", + "By looking at the exterior and interior of the vehicle.", + "The 2012 Dodge Durango SUV can be identified by its boxy shape, large grille, and rectangular headlamps.", + "There are a few ways to identify a 2012 Dodge Durango SUV.", + "The 2012 Dodge Durango SUV can be identified by its sharp exterior design, its refined and comfortable interior, and its excellent performance.", + "A 2012 Dodge Durango SUV has a rounded front end with a large grille and headlight cluster.", + "The 2012 Dodge Durango SUV looks like a cross between a sports utility vehicle and a minivan.", + "The 2012 Dodge Durango SUV has a distinctly modern look, with a wide stance and an aggressive grille.", + "A 2012 Dodge Durango SUV has a very stylish look.", + "Description coming soon.", + "The 2012 Dodge Durango is a large SUV that seats seven passengers.", + "The 2012 Dodge Durango SUV has a traditional SUV body style with a boxy appearance.", + "The 2012 Dodge Durango SUV looks like a cross between a SUV and a truck.", + "It has a sleek, modern design with chrome accents and a large grille.", + "A 2012 Dodge Durango SUV has a sleek, modern look.", + "The image is of a red SUV with tinted windows.", + "The image is of a 2012 Dodge Durango SUV in silver.", + "The 2012 Dodge Durango is a large, 7-passenger SUV that is available in both 4-wheel and 2-wheel drive configurations.", + "The image from the internet is of a 2012 Dodge Durango SUV in blue.", + "This image is of a 2012 Dodge Durango SUV in a blue color.", + "The picture shows a large, intimidating SUV with a sleek design.", + "This image is of a 2012 Dodge Durango SUV in a glossy black finish.", + "This image is of a red Dodge Durango SUV with a black roof.", + "This image is of a 2012 Dodge Durango SUV in silver.", + "The image shows a 2012 Dodge Durango SUV in a bright silver color.", + "2012 Dodge Durango SUV.", + "The Dodge Durango is known for its spacious interior and comfortable ride.", + "2012 Dodge Durango SUV.", + "The new Dodge Durango is a full-size SUV that seats up to eight passengers.", + "The Dodge Durango is a popular SUV that has been on the market since 1998.", + "The Dodge Durango is a full-size SUV that offers plenty of room for passengers and cargo.", + "A photo of a 2012 Dodge Durango SUV in a driveway.", + "2012 Dodge Durango SUV: This vehicle is built for those who need both power and space.", + "The Dodge Durango is a full-size SUV that was first introduced in 1998.", + "This image shows a 2012 Dodge Durango SUV." + ], + "2012 Toyota Corolla Sedan": [ + "A 2012 Toyota Corolla Sedan is a four-door sedan that seats five passengers.", + "A 2012 Toyota Corolla Sedan has a sleek, modern look.", + "A 2012 Toyota Corolla Sedan is a four-door sedan that seats five passengers.", + "A 2012 Toyota Corolla Sedan is a small to mid-size sedan that seats up to five people.", + "The 2012 Toyota Corolla Sedan is a small car that seats five passengers.", + "A 2012 Toyota Corolla Sedan has a sleek and powerful design.", + "A 2012 Toyota Corolla Sedan has a sleek and stylish look.", + "The 2012 Toyota Corolla Sedan is a compact sedan that seats five passengers.", + "The 2012 Toyota Corolla is a small sedan that seats five passengers.", + "A 2012 Toyota Corolla Sedan looks like a small, sporty sedan with a sleek design.", + "The 2012 Toyota Corolla sedan can be identified by its sleek design and it's \" Toyota \" badge on the front grille.", + "You can identify a 2012 Toyota Corolla Sedan by its body style.", + "The 2012 Toyota Corolla Sedan can be identified by its long hood, aerodynamic shape, and wide stance.", + "The 2012 Toyota Corolla Sedan can be identified by its sleek design and its four doors.", + "The 2012 Toyota Corolla Sedan can be identified by its four-door design and sloping roofline.", + "There are a few ways in which you can identify a 2012 Toyota Corolla Sedan.", + "The 2012 Toyota Corolla Sedan has a distinctive, modern look.", + "The 2012 Toyota Corolla sedan can be identified by its long, sleek hood and shorter rear deck.", + "The 2012 Toyota Corolla sedan can be identified by its four doors, sloping rear end, and long, curved headlights.", + "Look for the following features:-A long, sloping hood\n-A sporty front grille\n-Stylish headlight design\n-Elegant taillights\n-A aggressive rear bumper\n-Dual exhaust.", + "A 2012 Toyota Corolla Sedan typically has four doors, although some may have two doors.", + "A 2012 Toyota Corolla Sedan has a smooth, rounded look with a long hood and a short trunk.", + "A 2012 Toyota Corolla Sedan has a sleek and modern look.", + "The 2012 Toyota Corolla Sedan has a sleek design that is sure to turn heads.", + "The 2012 Toyota Corolla Sedan has a sleek, modern look.", + "The 2012 Toyota Corolla Sedan has a sleek and stylish look.", + "A 2012 Toyota Corolla Sedan has a sleek design with an aggressive stance.", + "A 2012 Toyota Corolla Sedan has a sleek design with curved lines.", + "A 2012 Toyota Corolla Sedan looks like a small to midsize sedan.", + "The 2012 Toyota Corolla Sedan has a modern design that is sleek and stylish.", + "The image is of a 2012 Toyota Corolla Sedan in blue.", + "The image is of a 2012 Toyota Corolla Sedan in silver.", + "On the internet, an image of a 2012 Toyota Corolla Sedan can be found with a variety of different colours.", + "The image is of a 2012 Toyota Corolla Sedan.", + "An image of a 2012 Toyota Corolla Sedan from the internet would show a four-door vehicle with a sleek, aerodynamic design.", + "This particular image shows a 2012 Toyota Corolla Sedan in black.", + "The image is of a 2012 Toyota Corolla Sedan in white.", + "The image is of a 2012 Toyota Corolla Sedan in blue.", + "The image is of a silver Toyota Corolla Sedan.", + "The 2012 Toyota Corolla Sedan is a small, four-door car with a sleek, modern design.", + "This is the 2012 Toyota Corolla Sedan.", + "The 2012 Toyota Corolla Sedan is a compact car that gets great gas mileage and has a comfortable ride.", + "The Toyota Corolla is a fuel-efficient and affordable sedan that has been a popular choice among budget-conscious shoppers for decades.", + "The 2012 Toyota Corolla is a fuel-efficient sedan that's perfect for getting around town.", + "The 2012 Toyota Corolla is a reliable and affordable sedan that is perfect for families or anyone looking for a dependable car.", + "The 2012 Toyota Corolla Sedan is a stylish, reliable, and affordable car.", + " \"The Toyota Corolla is a fuel-efficient car that's perfect for commuting.", + "A 2012 Toyota Corolla Sedan.", + "The Toyota Corolla is a reliable, fuel-efficient car that's perfect for commuting or errands around town.", + "The Toyota Corolla is a reliable and affordable sedan that is perfect for anyone looking for a dependable car." + ], + "2012 Chevrolet Camaro Convertible": [ + "The 2012 Chevrolet Camaro Convertible has a sharp, modern exterior with sleek lines and a powerful stance.", + "The 2012 Chevrolet Camaro Convertible has a sleek, aerodynamic design with a long, sloping hood.", + "The 2012 Chevrolet Camaro Convertible is a four-passenger car that comes in LS, LT, and SS trim levels.", + "A 2012 Chevrolet Camaro Convertible has a long hood and a short rear deck.", + "A 2012 Chevrolet Camaro Convertible has a long, sleek body with a wide stance.", + "The 2012 Chevrolet Camaro Convertible is a six-cylinder vehicle that is available in both automatic and manual transmission.", + "The 2012 Chevrolet Camaro Convertible looks like a sleek, powerful sports car.", + "A 2012 Chevrolet Camaro Convertible is a two-door, four-seat car that was manufactured by Chevrolet from 2010 to 2015.", + "A 2012 Camaro Convertible has a sleek, stylish look with a graceful silhouette.", + "A 2012 Chevrolet Camaro Convertible looks like a sleek and powerful sports car.", + "There are a few ways to identify a 2012 Chevrolet Camaro Convertible.", + "Find the VIN number on the left side of the dash near the windshield.", + "The 2012 Chevrolet Camaro Convertible can be identified by its long, sleek body and wide stance.", + "The Chevrolet Camaro Convertible can be identified by its sleek and sporty design.", + "The 2012 Chevrolet Camaro Convertible is a muscle car that was introduced in 2009.", + "The easiest way to identify a 2012 Chevrolet Camaro Convertible is by looking at the badges on the car.", + "The 2012 Chevrolet Camaro Convertible can be identified by its 20-inch aluminum wheels, four-wheel disc brakes, StabiliTrak electronic stability control system, and power-folding convertible top.", + "There are a few ways to identify a 2012 Chevrolet Camaro Convertible.", + "The 2012 Chevrolet Camaro Convertible can be identified by its sleek, modern design.", + "The 2012 Chevrolet Camaro Convertible can be identified by its unique exterior design.", + "A Brand New 2012 Chevrolet Camaro Convertible would look like this, it has not been released yet, but it is scheduled to come out in the Spring of 2012.", + "The 2012 Chevrolet Camaro Convertible looks like a Camaro with the top down.", + "A 2012 Chevrolet Camaro Convertible looks like a regular Camaro with a convertible top.", + "The 2012 Chevrolet Camaro Convertible looks like a normal Camaro, except it has a convertible top.", + "This is a difficult question to answer as there are many different types and styles of 2012 Chevrolet Camaro Convertibles.", + "The 2012 Chevrolet Camaro Convertible looks like a sleek and stylish sports car.", + "The 2012 Chevrolet Camaro Convertible looks like a standard Camaro with a black top that can be raised or lowered.", + "The 2012 Chevrolet Camaro Convertible looks like a sleek and stylish sports car.", + "The 2012 Chevrolet Camaro Convertible looks like a sleek and stylish sports car.", + "The 2012 Chevrolet Camaro Convertible looks like a regular Camaro with a convertible top.", + "The 2012 Chevrolet Camaro Convertible is a sleek and stylish car that looks great in any color.", + "The image is of a bright red 2012 Chevrolet Camaro Convertible with the top down.", + "The image is of a red 2012 Chevrolet Camaro Convertible with the top down.", + "The image is of a red Camaro convertible with the top down.", + "https://www.", + "The image is of a blue Chevrolet Camaro Convertible with the top down.", + "The image is of a 2012 Chevrolet Camaro Convertible in blue.", + "The image shows a red 2012 Chevrolet Camaro Convertible with the top down.", + "The image is of a 2012 Chevrolet Camaro Convertible in black with the top down.", + "The image shows a 2012 Chevrolet Camaro Convertible in black with the top down.", + "The 2012 Chevrolet Camaro Convertible is a sleek and stylish car that is sure to turn heads.", + "Chevrolet Camaro Convertible - 2012.", + "The 2012 Chevrolet Camaro Convertible - a stylish and powerful car that's sure to turn heads.", + "A red Chevrolet Camaro Convertible with the top down, parked on a city street.", + "The 2012 Chevrolet Camaro Convertible is a fun and sporty car that is perfect for a summer day.", + "The 2012 Chevrolet Camaro Convertible is a sleek and powerful car that is perfect for anyone who wants to enjoy the open road.", + "The 2012 Chevrolet Camaro Convertible is a vehicle that offers drivers the best of both worlds.", + "This is a 2012 Chevrolet Camaro Convertible.", + "The Chevrolet Camaro Convertible is a powerful car that is sure to turn heads.", + "The Chevrolet Camaro Convertible offers fun in the sun with its stylish good looks and powerful engine." + ], + "2012 Ford Edge SUV": [ + "A 2012 Ford Edge SUV has a sleek, modern look.", + "The vehicle has a length of 188.", + "A 2012 Ford Edge SUV has a sleek, modern look.", + "A 2012 Ford Edge SUV is a midsize SUV that seats five passengers.", + "A 2012 Ford Edge SUV is a four-door vehicle that seats five passengers.", + "A 2012 Ford Edge SUV has a sleek and stylish design.", + "A 2012 Ford Edge SUV is a mid-sized crossover SUV that seats five passengers.", + "The 2012 Ford Edge is a mid-sized SUV that seats five passengers.", + "The 2012 Ford Edge is a five-passenger crossover SUV that is available in SE, SEL, and Limited trim levels.", + "A 2012 Ford Edge SUV is a mid-sized crossover SUV that seats five passengers.", + "The 2012 Ford Edge is a mid-sized SUV that seats five passengers.", + "The 2012 Ford Edge is a mid-size SUV that seats five passengers.", + "There are a few ways to identify a 2012 Ford Edge SUV.", + "There are a few ways you can identify a 2012 Ford Edge SUV.", + "The 2012 Ford Edge SUV is a five-passenger vehicle that comes in SE, SEL, and Limited trim levels.", + "There are a few different ways that you can identify a 2012 Ford Edge SUV.", + "There are a few ways to identify a 2012 Ford Edge SUV.", + "The 2012 Ford Edge is a five-passenger SUV that is available in four trim levels.", + "The Ford Edge is a mid-size SUV that was first introduced in 2006.", + "The 2012 Ford Edge has a distinctive grille with the Ford logo in the center.", + "A 2012 Ford Edge SUV has a sleek, modern look with a comfortable interior.", + "The 2012 Ford Edge SUV has a sleek and stylish design with a sloping roofline and flared wheel wells.", + "Thepicture provided is a generic photo for a 2012 Ford Edge SUV.", + "A 2012 Ford Edge SUV has a sleek, modern look.", + "The 2012 Ford Edge SUV looks very similar to the 2013 model.", + "The 2012 Ford Edge is a midsize SUV that looks like a cross between a wagon and a traditional SUV.", + "A 2012 Ford Edge SUV is a crossover vehicle that has a sleek and modern look.", + "The 2012 Ford Edge SUV has a sleek, modern look with its curved sides and sloping rear end.", + "You can view a 2012 Ford Edge SUV here: https://www.", + "A 2012 Ford Edge SUV has a sleek design with a chrome-accented grille and chrome trim.", + "In the image, the Ford Edge is a bright red SUV with chromed out details.", + "This image is of a 2012 Ford Edge SUV in silver.", + "The image is of a sleek, silver SUV with large, chrome wheels.", + "The image is of a 2012 Ford Edge SUV in silver.", + "The image is of a sleek, silver SUV with reasonably large wheels.", + "This image is of a 2012 Ford Edge SUV in a blue color.", + "The image is of a blue Ford Edge SUV.", + "The image is of a white 2012 Ford Edge SUV.", + "The image is of a white Ford Edge SUV with tinted windows.", + "The image is of a 2012 Ford Edge SUV in white.", + " Ford Edge SUV in Silver.", + "This Ford Edge is a great choice for anyone looking for a reliable and stylish SUV.", + "The Ford Edge is a mid-sized SUV that was first introduced in 2006.", + "This 2012 Ford Edge SUV is a great choice for anyone looking for a reliable and stylish vehicle.", + "The Ford Edge is a versatile SUV that can handle anything you throw at it.", + "A new Ford Edge for the 2012 model year.", + "2012 Ford Edge SUV.", + "A 2012 Ford Edge SUV.", + "A 2012 Ford Edge SUV.", + "The 2012 Ford Edge is a mid-sized SUV that seats up to five passengers." + ], + "2007 Bentley Continental GT Coupe": [ + "The 2007 Bentley Continental GT Coupe has a long, sleek hood and a wide grille that gives it a powerful look.", + "The 2007 Bentley Continental GT Coupe has a long, sleek hood and a large grille.", + "A 2007 Bentley Continental GT Coupe has a long, sleek hood and an elegant, rounded body.", + "The 2007 Bentley Continental GT Coupe has a long, sweeping hood; a short rear deck; and a wide, stance.", + "The 2007 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "A 2007 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "The 2007 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "The 2007 Bentley Continental GT Coupe has a long, sleek hood and body with a sloping roofline.", + "The 2007 Bentley Continental GT Coupe has a long, sleek hood and a short rear deck.", + "The 2007 Bentley Continental GT Coupe has a long hood, a short rear deck, and wide rear fenders.", + "The Bentley Continental GT is a two-door, grand touring luxury car that was first introduced in 2003.", + "The 2007 Bentley Continental GT Coupe can be identified by its Bentley badge on the front grille, its \"B\" hood ornament, and its Bentley Mulliner wheels.", + "By its long hood, wide grille, and large round headlights.", + "The 2007 Bentley Continental GT Coupe can be identified by its large grille, wide rear end, and long hood.", + "The 2007 Bentley Continental GT Coupe can be identified by its sleek, modern design.", + "There are a few ways to identify a 2007 Bentley Continental GT Coupe.", + "The 2007 Bentley Continental GT Coupe can be identified by its long hood, rear-hinged coach doors, and rakish silhouette.", + "Some ways that you can identify a 2007 Bentley Continental GT Coupe include its grand tourer body style, 2-door coupe layout, and its twin-turbocharged W12 engine.", + "There are a few ways to identify a 2007 Bentley Continental GT Coupe.", + "A 2007 Bentley Continental GT Coupe can be identified by its long hood, swept-back roofline, and large grille.", + "A 2007 Bentley Continental GT Coupe has a sleek, elegant look with its long hood and swept-back design.", + "The 2007 Bentley Continental GT Coupe has a long hood, large grille, and large headlights.", + "The 2007 Bentley Continental GT Coupe looks like a large, luxurious sports car.", + "A 2007 Bentley Continental GT Coupe looks like a luxury sports car with a long hood and a short, sloping rear end.", + "A 2007 Bentley Continental GT Coupe has a long hood, sweeping lines, and a large grille.", + "A 2007 Bentley Continental GT Coupe has a long, sleek body with two doors.", + "The 2007 Bentley Continental GT Coupe has a long hood, wide stance, and aggressive lines.", + "A 2007 Bentley Continental GT Coupe will have a sleek, luxurious design with plenty of horsepower under the hood.", + "A 2007 Bentley Continental GT Coupe looks like a sleek, powerful, and luxurious sports car.", + "The 2007 Bentley Continental GT Coupe has a long, low, and sleek profile.", + "In the image, the 2007 Bentley Continental GT Coupe is a sleek and elegant car.", + "The image is of a black 2007 Bentley Continental GT Coupe.", + "This image is of a 2007 Bentley Continental GT Coupe in black.", + "The image is of a 2007 Bentley Continental GT Coupe in black.", + "The image is of a white Bentley Continental GT Coupe with a black top.", + "The image is of a Bentley Continental GT Coupe from 2007.", + "The image is of a black 2007 Bentley Continental GT Coupe.", + "This image is of a 2007 Bentley Continental GT Coupe in black.", + "This image from the internet is of a 2007 Bentley Continental GT Coupe.", + "The image is of a 2007 Bentley Continental GT Coupe in black with the doors and windows open.", + "2007 Bentley Continental GT Coupe.", + "A black Bentley Continental GT Coupe from 2007.", + "The Bentley Continental GT is a British grand tourer that was first introduced in 2003.", + "2007 Bentley Continental GT Coupe.", + "This is a 2007 Bentley Continental GT Coupe.", + "2007 Bentley Continental GT Coupe.", + "A 2007 Bentley Continental GT Coupe in excellent condition.", + "2007 Bentley Continental GT Coupe.", + "2007 Bentley Continental GT Coupe.", + "2007 Bentley Continental GT CoupeThis sleek and stylish coupe from Bentley is the perfect luxury car for those who want to make a statement." + ], + "1994 Audi 100 Wagon": [ + "The 1994 Audi 100 Wagon is a four-door car that seats up to five passengers.", + "The 1994 Audi 100 Wagon has a long, rectangular body with a sloping roofline.", + "A 1994 Audi 100 Wagon models features a body style that is similar to a station wagon.", + "A 1994 Audi 100 Wagon would typically have a sleek, aerodynamic body with four doors.", + "A 1994 Audi 100 Wagon is a mid-sized car with a long roof and a station wagon body style.", + "A 1994 Audi 100 Wagon would likely have a boxy shape, with large windows and probably wood paneling on the sides.", + "The 1994 Audi 100 Wagon is a 5-door wagon that seats up to 5 passengers.", + "A 1994 Audi 100 Wagon has a sleek, boxy design with a long roofline and a short rear end.", + "The 1994 Audi 100 Wagon is a five-door station wagon that was sold in the United States.", + "The 1994 Audi 100 Wagon is a four-door car that seats five passengers.", + "The Audi 100 Wagon was produced from 1994-1997 and can be identified by its black plastic trim, unique rear bumper, and curved roofline.", + "The Audi 100 Wagon was produced from 1994-1997.", + "Look for the Audi 100 Wagon badge on the back of the car.", + "The 1994 Audi 100 Wagon can be identified by its unique styling and features.", + "The 134 hp 1.", + "A 1994 Audi 100 Wagon can be identified by its unique exterior design.", + "The 100 wagon was produced from 1968-1976, so a 1994 model would not be an Audi 100 wagon.", + "A 1994 Audi 100 Wagon can be identified by its four-door body style, as well as its long roofline and station wagon-style rear cargo area.", + "There should be a badge on the back that says \"Audi 100 Wagon\" and the VIN number should start with \"WAU.", + "A 1994 Audi 100 Wagon can be identified by its four-door body style and its rectangular headlights.", + "A 1994 Audi 100 Wagon would look like a standard Audi 100 Wagon, with some slight changes depending on the trim level.", + "The 1994 Audi 100 Wagon looks like a standard wagon with four doors.", + "A 1994 Audi 100 Wagon would likely look very similar to the Audi A6 Avant, as the two models share many styling cues.", + "The 1994 Audi 100 Wagon looks like a normal sedan from the front and sides.", + "The 1994 Audi 100 Wagon looks like a large estate car with a sleek, modern design.", + "The 1994 Audi 100 Wagon is a mid-size vehicle that seats up to five passengers.", + "A 1994 Audi 100 Wagon would look like a Audi 100 Wagon from that year.", + "The 1994 Audi 100 Wagon looks like a standard Audi 100 sedan, but with a larger wagon-style trunk.", + "The 1994 Audi 100 Wagon is a midsize sedan that is available in both front and all-wheel drive configurations.", + "The 1994 Audi 100 Wagon is a compact car that was produced by the German automaker Audi.", + "The image is of a 1994 Audi 100 Wagon.", + "The image is of a red Audi 100 Wagon from 1994.", + "The image is of a 1994 Audi 100 Wagon.", + "This picture is of a man driving an Audi 100 Wagon.", + "The image is of a 1994 Audi 100 Wagon.", + "This image shows the front of a 1994 Audi 100 Wagon.", + "This image is of a 1994 Audi 100 Wagon.", + "The image is of a 1994 Audi 100 Wagon in blue.", + "The image is of a white Audi 100 wagon with brown trim.", + "The image is of a blue 1994 Audi 100 Wagon.", + " 1994 Audi 100 Wagon.", + "The 1994 Audi 100 Wagon was a popular car in its time.", + "This Audi 100 Wagon was made in 1994 and is a luxurious car.", + " A 1994 Audi 100 Wagon.", + "A 1994 Audi 100 Wagon in excellent condition.", + "A 1994 Audi 100 Wagon.", + "This is a 1994 Audi 100 Wagon.", + " A woman smiles and waves as she drives her 1994 Audi 100 Wagon.", + "This Audi 100 Wagon was built in 1994 and is a great example of German engineering.", + "This is a 1994 Audi 100 Wagon." + ], + "2012 Ford E-Series Wagon Van": [ + "The 2012 Ford E-Series Wagon Van has a long wheelbase and a large cargo area.", + "The 2012 Ford E-Series Wagon Van has a a sleek and modern design.", + "A 2012 Ford E-Series Wagon Van looks like a large, boxy van with a tall roof.", + "The 2012 Ford E-Series Wagon Van has a long wheelbase and an extended body.", + "The 2012 Ford E-Series Wagon Van has a spacious interior with room for up to eight passengers.", + "A 2012 Ford E-Series Wagon Van looks like a large blue van with windows all around.", + "The Ford E-Series Wagon Van is a 2012 model that looks like a large, dark blue van.", + "A 2012 Ford E-Series Wagon Van looks like a large van with a long wheelbase and a square body.", + "The 2012 Ford E-Series Wagon Van looks like a large, white van with windows all around.", + "The 2012 Ford E-Series Wagon Van has a sleek and modern design.", + "The Ford E-Series Wagon Van was produced in 2012 and can be identified by its model code, which is VAN.", + "The2012 Ford E-Series Wagon Van can be identified by its long body and roof, as well as its wide stance.", + "The 2012 Ford E-Series Wagon Van can be identified by its long body, tall roof, and large windows.", + "The 2012 Ford E-Series Wagon Van can be identified by its long rectangular shape with a high roofline.", + "The 2012 Ford E-Series Wagon Van can be identified by its long, rectangle body shape with large windows.", + "The 2012 Ford E-Series Wagon Van can be identified by its long, boxy shape.", + "The 2012 Ford E-Series Wagon Van can be identified by its long wheelbase and high roof.", + "The 2012 Ford E-Series Wagon Van can be distinguished by its long body and large windows.", + "The 2012 Ford E-Series Wagon Van can be identified by its long, boxy shape and large windows.", + "The 2012 Ford E-Series Wagon Van can be identified by its large size and boxy shape.", + "I'm not sure what you are asking for.", + "The 2012 Ford E-Series Wagon Van looks like a large minivan with a rectangular body and sliding doors on both sides.", + "Assuming you are referring to the exterior of the vehicle, a 2012 Ford E-Series Wagon Van generally has a large, boxy shape with large windows.", + "The 2012 Ford E-Series Wagon Van looks like a large van with plenty of space for cargo or passengers.", + "The 2012 Ford E-Series Wagon Van has a large boxy shape with a short front end and a long rear end.", + "The 2012 Ford E-Series Wagon Van looks somewhat like a large SUV, with a boxy shape and plenty of windows.", + "The 2012 Ford E-Series Wagon Van looks like a standard wagon van.", + "A 2012 Ford E-Series Wagon Van looks like a large van with a rectangular body and sliding doors on each side.", + "The 2012 Ford E-Series Wagon RWD Van appears as a large, boxy van with a squared-off front end and large, wrap-around headlights.", + "There is no such thing as a 2012 Ford E-Series Wagon Van.", + "The image is of a white Ford E-Series Wagon Van with blue stripes on the side.", + "The image is of a white van with blue stripes on the sides.", + "In the image, the van is a deep blue color with chrome accents.", + "The image shows a 2012 Ford E-Series Wagon Van in blue.", + "The image shows a van with a blue body and white roof.", + "This image is of a 2012 Ford E-Series Wagon Van in a bright blue color.", + "The image is of a white 2012 Ford E-Series Wagon Van.", + "This image is of a 2012 Ford E-Series Wagon Van in blue.", + "The 2012 Ford E-Series Wagon Van is a large, boxy van with plenty of room for hauling cargo or passengers.", + "The 2012 Ford E-Series Wagon Van is a large, boxy van with plenty of room for hauling cargo or passengers.", + "This Ford E-Series Wagon Van is from 2012.", + "This van is perfect for hauling around your family and all your gear.", + "This van is perfect for large families or groups who need a lot of space for hauling gear.", + "This 2012 Ford E-Series Wagon Van is a great choice for those who need a reliable and spacious vehicle.", + "The Ford E-Series Wagon Van is a versatile and reliable vehicle.", + "The 2012 Ford E-Series Wagon Van is a versatile and reliable vehicle that is perfect for hauling families and cargo alike.", + "This is a 2012 Ford E-Series Wagon Van.", + " Ford E-Series Wagon Van 2012.", + "This is a 2012 Ford E-Series Wagon Van.", + "This Ford E-Series Wagon Van is perfect for a family of eight." + ], + "2012 Jeep Patriot SUV": [ + "A 2012 Jeep Patriot SUV is a four-door vehicle that seats five passengers.", + "A Jeep Patriot is a small, boxy SUV.", + "A 2012 Jeep Patriot SUV has a boxy body style with a square front grille and headlights.", + "The Jeep Patriot is a small SUV with a boxy shape.", + "The Jeep Patriot is a compact SUV that seats five passengers.", + "The 2012 Jeep Patriot SUV has a boxy body style with a soft, rounded nose.", + "The 2012 Jeep Patriot SUV has a boxy look with a wide grille and flared headlights.", + "A 2012 Jeep Patriot SUV is a medium-sized SUV that seats five passengers.", + "The 2012 Jeep Patriot SUV has a spacious interior with plenty of room for five passengers.", + "A 2012 Jeep Patriot SUV has a black grille with the Jeep logo in the center, and vinyl or cloth seats.", + "The Jeep Patriot is a compact SUV that was first introduced in 2007.", + "The 2012 Jeep Patriot SUV can be identified by its square headlamps, slotted grille, and seven-slot front fascia.", + "The 2012 Jeep Patriot SUV can be identified by its square body shape, seven-slot grille, and trapezoidal wheel arches.", + "You can identify a 2012 Jeep Patriot SUV by looking for the Jeep logo on the front grille and the \"Patriot\" badge on the rear.", + "The 2012 Jeep Patriot SUV can be identified by its square headlights, seven-slot grille, and plastic body cladding.", + "The 2012 Jeep Patriot SUV can be identified by its wide range of exterior colors, including white, black, silver, and red.", + "The 2012 Jeep Patriot SUV can be identified by its boxy shape, tall stance, and slanted headlights.", + "The Jeep Patriot SUV was first introduced in 2007.", + "The 2012 Jeep Patriot SUV can be identified by its square headlights, seven-slot grille, and body-color bumper.", + "The 2012 Jeep Patriot SUV can be identified by its boxy shape, tall stance, and rectangular headlamps.", + "The 2012 Jeep Patriot SUV is a compact crossover SUV that seats five.", + "A 2012 Jeep Patriot SUV has a trapezoidal grille with seven vertical slots, round headlights, and body-color door handles and mirrors.", + "A 2012 Jeep Patriot SUV has a boxy body with a square grille.", + "A Jeep Patriot SUV from 2012 has a rugged yet stylish look.", + "The 2012 Jeep Patriot SUV is a compact SUV that seats five passengers.", + "The 2012 Jeep Patriot SUV has a boxy look with a raised ride height.", + "The 2012 Jeep Patriot SUV has a boxy look with a square front end.", + "They have a boxy shape with angular headlights.", + "The 2012 Jeep Patriot SUV has a boxy shape with a squared-off front end.", + "A 2012 Jeep Patriot SUV has a boxy shape with an upright stance.", + "The image is of a silver Jeep Patriot SUV parked on a city street.", + "This image is of a blue 2012 Jeep Patriot SUV.", + "The image is of a 2012 Jeep Patriot SUV in blue.", + "The image is of a 2012 Jeep Patriot SUV in white.", + "This image is of a silver Jeep Patriot SUV.", + "The image is of a silver Jeep Patriot SUV with a black interior.", + " The image is of a Jeep Patriot SUV in a parking lot.", + "I found an image of a 2012 Jeep Patriot SUV in silver with a black interior.", + "The image is of a 2012 Jeep Patriot SUV in a silver color.", + "The image is of a red Jeep Patriot SUV with silver accents.", + "A woman driving a Jeep Patriot SUV.", + "This is a 2012 Jeep Patriot SUV.", + "This 2012 Jeep Patriot SUV is a great choice for those who want a reliable and affordable vehicle.", + "The 2012 Jeep Patriot SUV is a great choice for anyone looking for a vehicle that is both stylish and practical.", + "2012 Jeep Patriot SUV.", + "This is a 2012 Jeep Patriot SUV.", + "This Jeep Patriot SUV is from the 2012 model year.", + "2012 Jeep Patriot SUV.", + "This Jeep Patriot SUV is perfect for those who want a reliable and affordable vehicle that can handle off-road conditions.", + "The 2012 Jeep Patriot SUV is a great choice for those looking for a reliable and affordable vehicle." + ], + "2011 Audi S6 Sedan": [ + "The 2011 Audi S6 Sedan is a mid-size luxury car that seats five passengers.", + "The 2011 Audi S6 sedan is a high-performance luxury car that is available in both all-wheel drive and rear-wheel drive.", + "A 2011 Audi S6 Sedan has a sleek, aerodynamic body with curved lines.", + "The 2011 Audi S6 Sedan is a sleek and stylish car that is sure to turn heads.", + "The 2011 Audi S6 Sedan is a 4-door, 5-passenger luxury sedan, available in one trim level.", + "The 2011 Audi S6 is a 5-door sedan that seats up to 5 passengers.", + "The 2011 Audi S6 is a midsize luxury sedan that seats five passengers.", + "The 2011 Audi S6 is a high-performance luxury sedan that seats five passengers.", + "A 2011 Audi S6 Sedan has a sleek, aerodynamic body with a curved hood and LED daytime running lights.", + "A 2011 Audi S6 Sedan has an aggressive stance with a wide body and large wheels.", + "The 2011 Audi S6 Sedan can be identified by its four doors, sleek design, and its Audi badge on the front grille.", + "There are a few ways to identify a 2011 Audi S6 Sedan.", + "The 2011 Audi S6 Sedan can be identified by its sleek design, powerful engine, and advanced features.", + "The 2011 Audi S6 Sedan can be identified by its sleek, aerodynamic design.", + "A 2011 Audi S6 Sedan can be identified by its four doors, sleek body design, and Audi's signature grille.", + "The Audi S6 Sedan is a high performance version of the Audi A6, and was introduced in 2011.", + "The easiest way to identify a 2011 Audi S6 Sedan is by the V8 TFSI\u00ae engine under the hood.", + "By its four doors, low stance, and sleek profile.", + "There are a few ways that you can identify a 2011 Audi S6 Sedan.", + "One way to identify a 2011 Audi S6 Sedan is to look for its unique features, which include an aggressive front grille, prominent fender flares, and a fastback-style roofline.", + "A 2011 Audi S6 Sedan looks like a sleek and stylish luxury car.", + "The 2011 Audi S6 Sedan is a four-door luxury car that seats five passengers.", + "The 2011 Audi S6 Sedan looks like a cross between an SUV and a sedan.", + "This particular model is a silver color with black leather interior.", + "The 2011 Audi S6 Sedan has a sleek, sporty look with a sleek body and chrome accents.", + "A 2011 Audi S6 Sedan has a sleek, sporty look with a powerful engine.", + "A 2011 Audi S6 Sedan looks like a standard Audi sedan with a few upgrades.", + "The exterior of the 2011 Audi S6 Sedan is very sleek and stylish.", + "A 2011 Audi S6 Sedan has a sleek, modern look with a wide, aggressively-styled grille and big, flared wheel arches.", + "A 2011 Audi S6 Sedan looks like a sleek and stylish sedan with a powerful engine.", + "This image is of a 2011 Audi S6 Sedan.", + "The image shows a 2011 Audi S6 Sedan in a bright silver color.", + "This image is of a blue 2011 Audi S6 Sedan.", + "An image from the internet of a 2011 Audi S6 Sedan shows a sleek, silver car with four doors.", + "This is a picture of a 2011 Audi S6 Sedan.", + "The image shows a 2011 Audi S6 Sedan in a dark blue color.", + "This image is of a 2011 Audi S6 Sedan.", + "The image is of a sleek, silver Audi S6 sedan.", + "The image is of a sleek grey sedan with curved lines and sleek features.", + "The image is of a 2011 Audi S6 Sedan in black.", + "Audi's S6 is a high-performance luxury sedan that offers agile handling and powerful acceleration.", + " The all-new Audi S6 Sedan \u2013 a daring combination of breathtaking design, luxurious equipment and powerful performance.", + "Audi's S6 is a performance-oriented variation of the German automaker's A6 executive car.", + "The 2011 Audi S6 Sedan is a high-performance luxury car that combines luxury and speed.", + "A 2011 Audi S6 Sedan.", + "The 2011 Audi S6 is a high performance sedan that combines luxury and power.", + "The 2011 Audi S6 Sedan is a performance car that features a V8 engine, all-wheel drive, and a seven-speed automatic transmission.", + "2011 Audi S6 Sedan - This luxurious car offers a powerful engine, stylish interior, and all the latest technology.", + " A 2011 Audi S6 Sedan parked in a driveway.", + "This sleek and sporty 2011 Audi S6 Sedan is the perfect vehicle for those who want style and performance." + ], + "2012 Mercedes-Benz S-Class Sedan": [ + "The 2012 Mercedes-Benz S-Class Sedan has a sleek, elegant design with a long hood and a short rear deck.", + "A 2012 Mercedes-Benz S-Class Sedan usually has a sleek and sporty look.", + "A 2012 Mercedes-Benz S-Class Sedan has a sleek and stylish exterior with a luxurious interior.", + "The 2012 Mercedes-Benz S-Class Sedan has a sleek design with a long hood and a short rear deck.", + "A 2012 Mercedes-Benz S-Class Sedan has a sleek and stylish look with a long hood and a short rear deck.", + "2012 Mercedes-Benz S-Class:-Overall length of 206.", + "The 2012 Mercedes-Benz S-Class Sedan has a sleek design with a long hood and a short rear deck.", + "A 2012 Mercedes-Benz S-Class Sedan has a long, sleek body with smooth curves.", + "The 2012 Mercedes-Benz S-Class Sedan is a sleek and stylish car that is sure to turn heads.", + "The 2012 Mercedes-Benz S-Class Sedan has a sleek, sophisticated look with its long hood and rear deck.", + "The 2012 Mercedes-Benz S-Class Sedan can be identified by its long hood, large grille, and sleek headlights.", + "Some defining characteristics of the 2012 Mercedes-Benz S-Class sedan include its large size, long wheelbase, and sleek design.", + "There are a few ways to identify a 2012 Mercedes-Benz S-Class Sedan.", + "The 2012 Mercedes-Benz S-Class Sedan can be identified by its long, sleek body, its chrome grille, and its Mercedes-Benz badge on the front.", + "The 2012 Mercedes-Benz S-Class Sedan can be identified by its long hood, large grille, and sleek headlamps.", + "A 2012 Mercedes-Benz S-Class sedan can be identified by its grille, which is surrounded by three chrome strips; its long, sleek hood; and its large headlights.", + "The 2012 Mercedes-Benz S-Class Sedan can be identified by its long wheelbase, low roofline, and wide stance.", + "There are a few ways to identify a 2012 Mercedes-Benz S-Class Sedan.", + "There are a few key ways to identify a 2012 Mercedes-Benz S-Class Sedan.", + "The 2012 Mercedes-Benz S-Class Sedan can be identified by its long hood, large grille, and sleek headlamps.", + "A 2012 Mercedes-Benz S-Class Sedan has a sleek, modern look with a long, sloping hood and chrome accents.", + "A 2012 Mercedes-Benz S-Class Sedan looks like a large, luxurious car with a sleek design.", + "The 2012 Mercedes-Benz S-Class Sedan features a sleek, modern design with a long hood and short trunk.", + "A 2012 Mercedes-Benz S-Class sedan has a sleek, sophisticated look with elegant lines and a powerful stance.", + "The 2012 Mercedes-Benz S-Class Sedan is a large sedan that is available in several different trim levels.", + "The 2012 Mercedes-Benz S-Class Sedan has a stylish and modern look with a sleek body and chrome accents.", + "The 2012 Mercedes-Benz S-Class Sedan has a sleek and modern look.", + "The 2012 Mercedes-Benz S-Class sedan has a sleek, sophisticated look with its long hood and short trunk.", + "The 2012 Mercedes-Benz S-Class Sedan has a sleek, stylish look with a long hood and sleek lines.", + "A 2012 Mercedes-Benz S-Class Sedan typically has a sleek, modern design with clean lines and a spacious interior.", + "The image is of a 2012 Mercedes-Benz S-Class Sedan in a blue color.", + "This image is of a 2012 Mercedes-Benz S-Class Sedan in a white color.", + "The image is of a silver 2012 Mercedes-Benz S-Class Sedan with a black interior.", + "The image is of a sleek, black 2012 Mercedes-Benz S-Class Sedan.", + "The image is of a long, sleek, silver car.", + "The image is of a 2012 Mercedes-Benz S-Class sedan in silver.", + "The image is of a 2012 Mercedes-Benz S-Class Sedan.", + "This image is of a sleek, silver 2012 Mercedes-Benz S-Class Sedan.", + "This 2012 Mercedes-Benz S-Class Sedan is a sleek and luxurious car.", + "The image shows a black 2012 Mercedes-Benz S-Class Sedan with chrome accents.", + "The 2012 Mercedes-Benz S-Class Sedan is a luxurious and stylish car that is sure to turn heads.", + "Step up to luxury with the 2012 Mercedes-Benz S-Class Sedan.", + "The Mercedes-Benz S-Class is a luxurious and technologically advanced sedan that offers state-of-the-art features and amenities.", + "The Mercedes-Benz S-Class Sedan is a luxurious car that is sure to turn heads.", + "The Mercedes-Benz S-Class Sedan is a luxurious and stylish vehicle that offers excellent performance and comfort.", + "This luxurious 2012 Mercedes-Benz S-Class Sedan is the epitome of German engineering and craftsmanship.", + "Assuming this is a stock photograph and not a custom-made car, the 2012 Mercedes-Benz S-Class Sedan is a high-end luxury vehicle that can start at around $95,000.", + "The 2012 Mercedes-Benz S-Class Sedan is a luxurious car that combines comfort and style.", + "The 2012 Mercedes-Benz S-Class Sedan is a luxurious and comfortable car that is perfect for anyone looking for a sophisticated ride.", + "The 2012 Mercedes-Benz S-Class Sedan is a luxurious car that features a powerful engine and a sleek design." + ], + "2012 Hyundai Sonata Sedan": [ + "The 2012 Hyundai Sonata Sedan has a sleek, modern design with chrome accents and LED taillights.", + "The 2012 Hyundai Sonata Sedan has a sleek and modern design.", + "The 2012 Hyundai Sonata Sedan has a sporty look with a wide stance and low profile.", + "The 2012 Hyundai Sonata Sedan has a sleek, modern design with smooth lines and a tapered silhouette.", + "The 2012 Hyundai Sonata Sedan features a modern and stylish design.", + "A 2012 Hyundai Sonata Sedan has a sleek design with a long body and tapered headlights.", + "A 2012 Hyundai Sonata Sedan is a 4-door sedan that seats 5 passengers.", + "A 2012 Hyundai Sonata Sedan has a sporty yet elegant look.", + "The 2012 Hyundai Sonata Sedan has a sleek, modern look.", + "The 2012 Hyundai Sonata Sedan is a four-door, five-passenger vehicle that is available in four trim levels.", + "The 2012 Hyundai Sonata Sedan can be identified by its six-speed automatic transmission, fuel economy of up to 34 miles per gallon, and a 2.", + "The 2012 Hyundai Sonata Sedan can be identified by its sleek lines and aggressive front end.", + "The 2012 Hyundai Sonata Sedan can be identified by its sleek design, comfortable interior, and impressive performance.", + "The 2012 Hyundai Sonata Sedan has a sleek, modern design with chrome accents.", + "The 2012 Hyundai Sonata Sedan can be identified by its front-end design, which features a hexagonal grille, small headlamps, and a large air intake.", + "The 2012 Hyundai Sonata Sedan can be identified by its long, stylish hood and its sleek, modern lines.", + "From the outside, a 2012 Hyundai Sonata Sedan can be identified by its looks.", + "Look for the \"Hyundai\" nameplate on the grille, and \"Sonata\" badges on the trunk and rear fenders.", + "The 2012 Hyundai Sonata Sedan can be identified by its long, sleek body and aerodynamic styling.", + "The 2012 Hyundai Sonata can be identified by its long, wide body and chrome-framed grille.", + "The 2012 Hyundai Sonata Sedan has a sporty look with its aggressive front grille and sleek body lines.", + "The 2012 Hyundai Sonata Sedan has an aggressive stance with its wide stance and flared wheel wells.", + "The 2012 Hyundai Sonata Sedan has a sleek and modern design.", + "The 2012 Hyundai Sonata Sedan has a sleek, modern look.", + "The 2012 Hyundai Sonata Sedan looks like a cross between a sedan and a sports car.", + "I'm not sure exactly what you are asking.", + "A 2012 Hyundai Sonata Sedan has a sleek, modern look.", + "The 2012 Hyundai Sonata Sedan has a sleek, modern design.", + "The 2012 Hyundai Sonata Sedan has a sleek, modern design with a grille that slopes back towards the windshield.", + "Assuming you would like a picture, see attached.", + "The image from the internet shows a 2012 Hyundai Sonata Sedan in white.", + "This image is of a 2012 Hyundai Sonata Sedan in a light blue color.", + "The image is of a 2012 Hyundai Sonata Sedan in silver.", + "The image is of a 2012 Hyundai Sonata Sedan in a light blue color.", + "The image is of a2012 Hyundai Sonata Sedan in a silver color.", + "An image of a 2012 Hyundai Sonata Sedan from the internet shows a sleek, silver car with four doors and a sunroof.", + "This image is of a 2012 Hyundai Sonata Sedan in the color shadow gray.", + "The image is of a 2012 Hyundai Sonata Sedan in white.", + "The image is of a 2012 Hyundai Sonata Sedan in silver.", + "This image from the internet is of a 2012 Hyundai Sonata Sedan.", + "The 2012 Hyundai Sonata Sedan is a stylish and affordable car that is perfect for families.", + "The 2012 Hyundai Sonata Sedan is a stylish and affordable car that is perfect for families or anyone looking for a reliable daily driver.", + "\"The 2012 Hyundai Sonata Sedan is a stylish and affordable car.", + "Hyundai Sonata Sedan - 2012 Model Year.", + " The 2012 Hyundai Sonata is a mid-sized sedan that seats five passengers.", + "The 2012 Hyundai Sonata Sedan features a sleek, stylish design that is sure to turn heads.", + "Image of a 2012 Hyundai Sonata Sedan.", + "The 2012 Hyundai Sonata offers excellent value for money, with a spacious interior and a comfortable ride.", + "The 2012 Hyundai Sonata Sedan is a stylish and comfortable car that is perfect for families or couples.", + "This is a 2012 Hyundai Sonata Sedan." + ], + "2012 Rolls-Royce Phantom Drophead Coupe Convertible": [ + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible has a long hood and sleek body.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible has a long, low hood; a sleek, raked windshield; large, masculine fenders; and a short rear deck.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a luxurious two-door car that features a comfortable interior and a sleek exterior.", + "The Rolls-Royce Phantom Drophead Coupe Convertible is a luxurious car that is sure to turn heads.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxury car with a sleek design.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a luxury car that features a sleek, stylish design.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible has a long, sleek hood and a short rear deck.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a sleek, luxurious car that exudes style and sophistication.", + "The Rolls-Royce Phantom Drophead Coupe Convertible is a luxurious vehicle that features a sleek, stylish design.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a luxury car that features a sleek, stylish design.", + "The Rolls-Royce Phantom Drophead Coupe Convertible was first introduced in 2012.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible can be identified by its long hood, short rear deck, and exaggerated fenders.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible can be identified by its long hood, extended rear deck, and large wheels.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible can be identified by its long hood, large grille, and round headlights.", + "Some identifying features of the 2012 Rolls-Royce Phantom Drophead Coupe Convertible are its long hood, sleek lines, and chrome grille.", + "One way to identify a 2012 Rolls-Royce Phantom Drophead Coupe Convertible is by its exterior features.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible can be identified by its long hood, short rear deck, and convertible top.", + "The best way to identify a 2012 Rolls-Royce Phantom Drophead Coupe Convertible would be to look for its distinctive grille.", + "The Rolls-Royce Phantom Drophead Coupe Convertible can be identified by its long hood, short rear deck, and wide stance.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible can be identified by its long hood, wide stance, and tall grille.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxurious and elegant vehicle that would be perfect for a night out on the town.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a two-door, four-seat convertible with a soft top.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxury car with a sleek design.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxury vehicle with a sleek design.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxurious, expensive car that would be difficult to drive in traffic.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxurious and stylish vehicle that would be perfect for cruising around town or taking on a long road trip.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxury car with a sleek design.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxury car.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxurious and elegant convertible.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible looks like a luxurious, stylish, and powerful car.", + "The image is of a black 2012 Rolls-Royce Phantom Drophead Coupe Convertible with a red convertible top.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a luxurious car with a sleek design.", + "The image is of a white 2012 Rolls-Royce Phantom Drophead Coupe Convertible with a black convertible top.", + "This image is of a 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + "An image from the internet of a 2012 Rolls-Royce Phantom Drophead Coupe Convertible shows a sleek, luxurious car in a deep blue color.", + "The image is of a white Rolls-Royce Phantom Drophead Coupe Convertible with a black top.", + "The image is of a 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + "The image features a 2012 Rolls-Royce Phantom Drophead Coupe Convertible in a sleek black color.", + "The image is of a sleek, black 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + "The image is of a white 2012 Rolls-Royce Phantom Drophead Coupe Convertible with a black convertible top.", + "Rolls-Royce Phantom Drophead Coupe Convertible, 2012.", + "This is a beautiful 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + "This is a picture of a 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + " image caption:A 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a work of art.", + "A 2012 Rolls-Royce Phantom Drophead Coupe Convertible in black.", + "The 2012 Rolls-Royce Phantom Drophead Coupe Convertible is a work of art on wheels.", + "The Rolls-Royce Phantom Drophead Coupe Convertible is a luxurious car that offers both style and comfort.", + "This is a picture of a 2012 Rolls-Royce Phantom Drophead Coupe Convertible.", + "The Rolls-Royce Phantom Drophead Coupe Convertible is a work of art on wheels." + ], + "2006 Ford GT Coupe": [ + "The 2006 Ford GT Coupe is a two-door, two-seat sports car that was manufactured by Ford from 2005 to 2006.", + "The 2006 Ford GT Coupe has a long, low hood and a wide stance.", + "The 2006 Ford GT Coupe is a low, wide, and long car with a long hood and a short rear deck.", + "A 2006 Ford GT Coupe has a long, low hood and a sleek, aerodynamic body.", + "The 2006 Ford GT Coupe has a long, sleek body with a curved windshield and a tapered rear end.", + "The 2006 Ford GT Coupe has a long, sleek hood and a low, wide stance.", + "The 2006 Ford GT has a long, low hood and a short rear deck.", + "A 2006 Ford GT Coupe is a two-door, rear-wheel drive sports car with a front-engine, V8 layout.", + "The 2006 Ford GT is a two-door coupe that seats four passengers.", + "The 2006 Ford GT Coupe has a long, sleek body with two doors.", + "The 2006 Ford GT Coupe can be identified by its unique styling and its Twin Turbocharged V8 engine.", + "A 2006 Ford GT Coupe can be identified by its unique body style and rear-wheel drive layout.", + "One way to identify a 2006 Ford GT Coupe is by its coachbuilder, which was Lincoln.", + "A 2006 Ford GT Coupe can be identified by its sleek, racing-inspired design.", + "The 2006 Ford GT Coupe can be identified by its long, low hood and sleek, slope-back design.", + "Assuming you are asking how to identify a 2006 Ford GT Coupe from the exterior: -The 2006 Ford GT Coupe has a long hood and a short rear deck\n-The 2006 Ford GT Coupe has exposed headlight.", + "The 2006 Ford GT is a mid-engine sports car that was produced by Ford from 2005 to 2006.", + "The 2006 Ford GT Coupe has a few distinctive features that make it stand out from other cars.", + "The 2006 Ford GT Coupe can be identified by its long nose, short rear deck, and large rear spoiler.", + "The 2006 model year is the only year that the GT Coupe was manufactured.", + "Image result for 2006 ford gt.", + "A 2006 Ford GT Coupe looks like a regular Ford GT Coupe.", + "The exterior of a 2006 Ford GT Coupe is defined by its long, sleek lines and low profile.", + "There is no definitive answer to this question as the 2006 Ford GT Coupe can come in many different forms and designs.", + "The 2006 Ford GT is a high performance sports car that features a sleek, aerodynamic design.", + "The 2006 Ford GT Coupe has a sleek and aerodynamic look with its long hood and short rear end.", + "A 2006 Ford GT Coupe looks like a modern sports car with a long hood and a sloped rear end.", + "The 2006 Ford GT Coupe has a long, sleek body with a pointed nose and a large rear spoiler.", + "The 2006 Ford GT Coupe is a sleek and sporty-looking car with a long, sloping hood and a wide, curved rear end.", + "The 2006 Ford GT is a two-door, two-seater sports car.", + "The image is of a 2006 red Ford GT Coupe.", + "The image is of a 2006 Ford GT Coupe that is silver in color.", + "This image is of a 2006 Ford GT Coupe.", + "The image is of a sleek, silver 2006 Ford GT Coupe.", + "The image is of a red 2006 Ford GT Coupe.", + "The image is of a sleek, silver 2006 Ford GT Coupe.", + "The image is of a silver 2006 Ford GT Coupe.", + "This image from the internet is of a 2006 Ford GT Coupe.", + "The image is of a red 2006 Ford GT Coupe.", + "The image is of a sleek, silver 2006 Ford GT Coupe.", + "This 2006 Ford GT is one of only 421 built that year, and it's a stunning example of an American muscle car.", + " 2006 Ford GT Coupe.", + "This is a 2006 Ford GT Coupe.", + "This is a 2006 Ford GT Coupe.", + "This is a Ford GT Coupe from 2006.", + "This is a 2006 Ford GT Coupe.", + "This is a 2006 Ford GT Coupe.", + "\"The 20th century's greatest car.", + "This is a 2006 Ford GT Coupe.", + " This is a 2006 Ford GT Coupe." + ], + "2012 Cadillac CTS-V Sedan": [ + "A 2012 Cadillac CTS-V Sedan has a sleek and sporty look with a powerful V8 engine.", + "The 2012 Cadillac CTS-V Sedan is a four door sedan that seats five passengers.", + "A 2012 Cadillac CTS-V Sedan has a V8 engine, and can seat up to five people.", + "The 2012 Cadillac CTS-V Sedan has a sleek and aggressive look with its distinctive grille and large headlights.", + "The Cadillac CTS-V Sedan is a full-sized luxury car that was first introduced in 2008.", + "This car has a sleek, modern look with a long, curved body.", + "The 2012 Cadillac CTS-V Sedan is a full-size luxury car with an aggressive stance.", + "A 2012 Cadillac CTS-V Sedan is a luxurious car that looks like it means business.", + "The 2012 Cadillac CTS-V Sedan is a four-door luxury car that seats five passengers.", + "A 2012 Cadillac CTS-V Sedan has a sleek, stylish look with a powerful engine.", + "The easiest way to identify a 2012 Cadillac CTS-V Sedan is by its grille.", + "The 2012 Cadillac CTS-V Sedan can be identified by its front grille, which has three thin vertical chrome bars.", + "Some ways to identify a 2012 Cadillac CTS-V Sedan include its large grille, flared fenders, and quad exhaust tips.", + "Some ways to identify a 2012 Cadillac CTS-V Sedan would be to look for the V-shaped grill, the large air intakes on the front bumper, and the Cadillac logo on the front.", + "The 2012 Cadillac CTS-V sedan can be identified by its long, low-slung body style.", + "The 2012 Cadillac CTS-V Sedan can be identified by its long, swept-back headlights, short rear deck, and large grille.", + "The 2012 Cadillac CTS-V Sedan can be identified by it's long, low profile and large grille.", + "The Cadillac CTS-V Sedan is a high-performance luxury vehicle that was introduced in 2009.", + "A 2012 Cadillac CTS-V Sedan can be identified by its aggressive stance, large wheels and tires, and quad exhaust tips.", + "The 2012 Cadillac CTS-V Sedan has a few identifying characteristics.", + "The 2012 Cadillac CTS-V Sedan looks like a sleek and powerful sedan.", + "The 2012 Cadillac CTS-V Sedan looks like a regular CTS Sedan with the exception of the V-series badge on the grille and V-series wheels.", + "The CTS-V sedan has a long, low look with a sleek front end.", + "The 2012 Cadillac CTS-V Sedan has a sleek, modern look with sharp lines and a stylish grille.", + "The 2012 Cadillac CTS-V Sedan looks like a luxury car with sleek lines and a powerful engine.", + "The 2012 Cadillac CTS-V Sedan has a sleek and modern look with sharp lines and a aggressive stance.", + "The 2012 Cadillac CTS-V Sedan has a sleek look with sharp lines.", + "The 2012 Cadillac CTS-V Sedan features a 556-horsepower, 6.", + "A 2012 Cadillac CTS-V Sedan looks a lot like a regular CTS Sedan, but with some added features.", + "The Cadillac CTS-V is a high-performance sedan that was first introduced in 2008.", + "The image is of a 2012 Cadillac CTS-V Sedan in blue.", + "The image is of a white Cadillac CTS-V Sedan with black rims.", + "The image shows a white 2012 Cadillac CTS-V Sedan with black rims and tinted windows.", + "The image is of a white Cadillac CTS-V Sedan with thin, chrome frames around the windows.", + "This image shows a 2012 Cadillac CTS-V Sedan in a bright blue color.", + "This image is of a 2012 Cadillac CTS-V Sedan in black.", + "The Cadillac CTS-V Sedan is a high performance luxury car.", + "The image is of a sleek, black car with shiny chrome details.", + "The car is a sleek and sporty silver sedan with chrome accents.", + "This image is of a 2012 Cadillac CTS-V Sedan in a deep blue color.", + "The CTS-V Sedan was Cadillac's high-performance version of their CTS model, and was released in 2012.", + "This sleek and stylish 2012 Cadillac CTS-V Sedan is sure to turn heads.", + "The Cadillac CTS-V is a high-powered luxury sedan that was first introduced in 2004.", + "A sleek and stylish 2012 Cadillac CTS-V Sedan, perfect for those who appreciate luxury and performance.", + "The 2012 Cadillac CTS-V Sedan is a high-performance luxury car that features a powerful V8 engine and a sleek, stylish design.", + "The Cadillac CTS-V Sedan is a high performance luxury car that was first introduced in 2012.", + "vintage design with modern features.", + "The 2012 Cadillac CTS-V Sedan is a high performance vehicle that combine luxury and performance.", + "The 2012 Cadillac CTS-V Sedan is a high-performance luxury car that offers excellent handling and a powerful engine.", + "The Cadillac CTS-V Sedan is a luxurious and powerful car that is perfect for those who want to make a statement." + ], + "2012 BMW X3 SUV": [ + "The X3 is a crossover SUV with sharp angles and a sleek look.", + "The 2012 BMW X3 SUV has a clean and modern look.", + "A 2012 BMW X3 SUV is a sport utility vehicle that has a stylish and modern exterior.", + "A 2012 BMW X3 SUV is a compact luxury SUV that seats five passengers.", + "The 2012 BMW X3 SUV has a sleek and modern look.", + "The 2012 BMW X3 is a compact SUV that seats five passengers.", + "The 2012 BMW X3 is a 4-door, 5-passenger SUV available in 3 trims, ranging from the 28i to the 35i.", + "The 2012 BMW X3 SUV has a sleek and stylish exterior with a curved roofline and chrome accents.", + "The 2012 BMW X3 SUV is a rugged yet stylish vehicle that features a sleek exterior design and a spacious interior.", + "The 2012 BMW X3 SUV is a midsize luxury SUV that seats five passengers.", + "There are a few ways to identify a 2012 BMW X3 SUV.", + "The 2012 BMW X3 is a luxury crossover SUV that seats five passengers.", + "The 2012 BMW X3 SUV can be identified by its long hood, short rear deck, and wide stance.", + "By looking at the badge on the back of the car.", + "The 2012 BMW X3 SUV can be identified by its long hood, wide grille, and large headlights.", + "The 2012 BMW X3 SUV can be identified by its long hood, short rear deck, and wide stance.", + "By looking at the badge on the back of the car.", + "The 2012 BMW X3 SUV can be identified by its model number, which is F25.", + "The 2012 BMW X3 SUV can be identified by its long hood, sloping roofline, and large kidney grille.", + "There are several ways to identify a 2012 BMW X3 SUV.", + "A 2012 BMW X3 SUV has a sleek, modern design with LED headlights and a curvaceous body.", + "The 2012 BMW X3 SUV has a sleek, modern look with its sharp lines and dark exterior colors.", + "A 2012 BMW X3 SUV has a sporty look with sleek lines and curves.", + "The 2012 BMW X3 SUV looks like a sporty and stylish vehicle that is perfect for families or individuals who enjoy the outdoors.", + "The 2012 BMW X3 SUV has a sleek, athletic look with sharp lines and a stylish grille.", + "A 2012 BMW X3 SUV has a sleek, modern look with curves and lines that give it a stylish appearance.", + "A 2012 BMW X3 SUV is a mid-size SUV that seats five passengers.", + "The 2012 BMW X3 is a mid-size SUV that seats five passengers.", + "The 2012 BMW X3 SUV has a modern and sleek design.", + "The 2012 BMW X3 SUV has a sporty and modern look.", + "The 2012 BMW X3 SUV is a sporty yet luxurious SUV with sharp angles and a sleek design.", + "In the image, the 2012 BMW X3 SUV is a sleek, silver car with tinted windows.", + "This image is of a 2012 BMW X3 SUV in a parking lot.", + "A 2012 BMW X3 SUV is a 5-door, 5-passenger vehicle that is available in two models: the xDrive28i and the xDrive35i.", + "The image is of a white 2012 BMW X3 SUV.", + "This image is of a 2012 BMW X3 SUV in a metallic blue color.", + "This image is of a 2012 BMW X3 SUV in a glossy black finish.", + "This image is of a 2012 BMW X3 SUV in the color dark blue.", + "The image is of a BMW X3 SUV in black with tinted windows.", + "The image shows a 2012 BMW X3 SUV in what appears to be a parking lot or garage.", + "The all-new 2012 BMW X3.", + "2012 BMW X3 SUV.", + "The 2012 BMW X3 is a luxury SUV that combines sports car performance with the added space and utility of an SUV.", + "The BMW X3 was first introduced in 2003 and has since become a popular luxury SUV.", + "The new 2012 BMW X3 SUV.", + "The BMW X3 is a luxurious SUV that offers plenty of space and comfort for passengers.", + "2012 BMW X3 SUV.", + "The 2012 BMW X3 SUV is a luxurious and practical vehicle that is perfect for families or individuals who enjoy the outdoors.", + "The all-new BMW X3 is a versatile SAV that combines sports sedan performance with SUV functionality.", + "The 2012 BMW X3 SUV is a stylish and practical choice for families." + ], + "2007 Chevrolet Express Van": [ + "A 2007 Chevrolet Express Van has a large, boxy shape with a flat front and rear.", + "The 2007 Chevrolet Express Van is a white van with tinted windows.", + "A 2007 Chevrolet Express Van has a long, boxy body with two sliding doors on the side and a set of double doors in the back.", + "The 2007 Chevrolet Express Van has a boxy appearance with a large grille and rectangular headlights.", + "The 2007 Chevrolet Express Van looks like a large van with plenty of room for passengers or cargo.", + "A 2007 Chevrolet Express Van is a large van that can seat up to 15 passengers.", + "A 2007 Chevrolet Express Van is a full-size van with a tall roof and side windows.", + "A 2007 Chevrolet Express Van has a boxy shape with large windows.", + "The 2007 Chevrolet Express Van has a boxy shape with a tall roof and large windows.", + "The 2007 Chevrolet Express Van is a white cargo van with tinted windows.", + "The best way to identify a 2007 Chevrolet Express Van would be to look at the VIN number.", + "The best way to identify a 2007 Chevrolet Express Van is to look for the Chevy logo on the front grille.", + "The 2007 Chevrolet Express Van can be identified by its Chevy bowtie logo on the grille, as well as its \"Express\" badging on the rear doors.", + "The easiest way to identify a 2007 Chevrolet Express Van is by its large size.", + "One way to identify a 2007 Chevrolet Express Van is by its grille.", + "The label on the inside of the doorjamb on the driver's side door will have the model name (e.", + "The easiest way to identify a 2007 Chevrolet Express Van is by its squarer body shape.", + "The Chevrolet Express has remained largely unchanged since it was introduced in 1996.", + "The best way to identify a 2007 Chevrolet Express Van is to look for the VIN number.", + "The 2007 Chevrolet Express Van can be identified by its long rectangular body, large headlights, and grille that extends the whole width of the front of the vehicle.", + "The 2007 Chevrolet Express Van has a boxy shape with a large grille, rectangular headlights, and a wide stance.", + "A 2007 Chevrolet Express Van has an aggressive stance with a large grille and a wide hood.", + "A 2007 Chevrolet Express Van looks like a large van.", + "A 2007 Chevrolet Express Van looks like a large van with plenty of space for passengers or cargo.", + "The 2007 Chevrolet Express Van has a boxy shape with a tall roof.", + "The 2007 Chevrolet Express Van has a square body with large, rectangular headlights.", + "A 2007 Chevrolet Express Van looks like a large van with four doors and enough space to seat eight people.", + "The 2007 Chevrolet Express Van features a large, boxy design with plenty of room for cargo or passengers.", + "The 2007 Chevrolet Express Van has a boxy shape with a front grille that is reminiscent of a Chevrolet truck.", + "The 2007 Chevrolet Express Van has a boxy shape with smooth sides, and it is available in cargo and passenger versions.", + "The image is of a 2007 Chevrolet Express Van that is white with gray trim.", + "The image is of a white 2007 Chevrolet Express Van.", + "The image is of a dark blue van with silver accents.", + "The image is of a white 2007 Chevrolet Express Van.", + "The image is of a white van with the Chevrolet logo on the front.", + "This image is of a 2007 Chevrolet Express Van.", + "The image is of a blue 2007 Chevrolet Express Van.", + "The image is of a 2007 Chevrolet Express Van in silver.", + "The image is of a silver van with the word \"Chevrolet\" written across the front in silver lettering.", + "The image is of a 2007 Chevrolet Express Van in black with gray interior.", + "The 2007 Chevrolet Express Van is a versatile and reliable vehicle that is perfect for a wide range of uses.", + "Chevrolet Express Van.", + "2007 Chevrolet Express Van.", + "This image shows a 2007 Chevrolet Express Van.", + "This Chevy van is perfect for hauling around your family or friends.", + "2007 Chevrolet Express Van.", + "This 2007 Chevrolet Express Van is perfect for hauling around all your gear.", + " Chevy Express Van 2007.", + "2007 Chevrolet Express Van.", + "2007 Chevrolet Express Van." + ], + "2007 Chevrolet Impala Sedan": [ + "A 2007 Chevrolet Impala Sedan is a large car that seats up to five passengers.", + "A 2007 Chevrolet Impala Sedan would have four doors, a trunk, and five seats.", + "The 2007 Chevrolet Impala sedan has a streamlined look with a sleek front end.", + "A 2007 Chevrolet Impala Sedan typically has four doors, a trunk, and seating for five passengers.", + "The 2007 Chevrolet Impala sedan is a four-door sedan that seats up to five passengers.", + "The 2007 Chevrolet Impala Sedan has a sleek, stylish look with a chrome grille and striking headlights.", + "One of the most popular and affordable sedans on the market, the Chevrolet Impala features a sleek and sporty exterior design.", + "The 2007 Chevrolet Impala Sedan has a sleek design with sharp lines.", + "The 2007 Chevrolet Impala Sedan is a four-door sedan that seats up to five passengers.", + "The 2007 Chevrolet Impala Sedan has a sleek, modern look with a chrome grille and wrap-around headlamps.", + "There are a few ways that you can identify a 2007 Chevrolet Impala Sedan.", + "One way to identify a 2007 Chevrolet Impala Sedan is by its dimensions.", + "The 2007 Chevrolet Impala Sedan can be identified by its long, sleek body and its aggressive front end.", + "The 2007 Chevrolet Impala Sedan can be identified by its long, wide hood; large, rectangular grille; and long, horizontal headlights.", + "Based on the provided information, you can identify a 2007 Chevrolet Impala Sedan by its long, wide body and boxy shape.", + "The 2007 Chevrolet Impala Sedan can be identified by its six-speed automatic transmission, StabiliTrak electronic stability control system, and 17-inch aluminum wheels.", + "The 2007 Chevrolet Impala sedan can be identified by its long, curved body, which is accented by a large front grille.", + "There are a few ways to identify a 2007 Chevrolet Impala Sedan.", + "One way to identify a 2007 Chevrolet Impala Sedan is to look for the \"Impala\" badge on the trunk.", + "You can identify a 2007 Chevrolet Impala Sedan by its long, wide body and square headlights.", + "A 2007 Chevrolet Impala Sedan has a sleek, modern look.", + "The 2007 Chevrolet Impala Sedan has a very sleek and stylish design.", + "A 2007 Chevrolet Impala Sedan has a sleek and stylish look.", + "The 2007 Chevrolet Impala Sedan has a long, wide body with a short front end.", + "The 2007 Chevrolet Impala Sedan has a long, sleek body with a small front grille and large headlamps.", + "A 2007 Chevrolet Impala Sedan has a sleek and stylish design.", + "The 2007 Chevrolet Impala Sedan has a sleek, modern look with a wide grille and swept-back headlights.", + "The 2007 Chevrolet Impala Sedan has a sleek, aerodynamic look with a wide stance.", + "The 2007 Chevrolet Impala sedan is a large car that seats five passengers.", + "A 2007 Chevrolet Impala Sedan looks like a large, four-door car.", + "The image is of a 2007 Chevrolet Impala Sedan in blue.", + "The 2007 Chevrolet Impala Sedan has a sleek, modern design that is sure to turn heads.", + "The image is of a 2007 Chevrolet Impala Sedan in silver.", + "The image is of a 2007 Chevrolet Impala Sedan.", + "The image is of a 2007 Chevrolet Impala Sedan in blue.", + "The image is of a red 2007 Chevrolet Impala Sedan.", + "The image is of a beige 2007 Chevrolet Impala Sedan.", + "The image displays a 2007 Chevrolet Impala Sedan in a bright blue color.", + "Image is of a 2007 Chevrolet Impala Sedan in silver.", + "The image is of a 2007 Chevrolet Impala Sedan in silver.", + "This 2007 Chevrolet Impala Sedan is one of the most popular models of the Impala line.", + "This sleek and stylish sedan is perfect for anyone who wants a classic car with a modern twist.", + "Image of a 2007 Chevrolet Impala Sedan.", + "2007 Chevrolet Impala Sedan.", + "The Chevrolet Impala is a full-size sedan that was produced by Chevrolet from 1958 to 1985, 1994 to 1996, and 2000 to present.", + "2007 Chevrolet Impala Sedan.", + "This is a 2007 Chevrolet Impala Sedan.", + "The 2007 Chevrolet Impala Sedan is a stylish and comfortable car that is perfect for families or anyone who wants a reliable and affordable car.", + "New and improved, the 2007 Chevrolet Impala Sedan is reliable, efficient, and stylish.", + "2007 Chevrolet Impala Sedan in excellent condition with low mileage." + ], + "2012 Chevrolet Silverado 1500 Extended Cab": [ + "The 2012 Chevrolet Silverado 1500 Extended Cab has a sleek, modern look.", + "A 2012 Chevrolet Silverado 1500 Extended Cab has four doors and a longer cab than a regular Silverado 1500.", + "The 2012 Chevrolet Silverado 1500 Extended Cab has four full-size doors and a larger cabin than theRegular Cab model.", + "A 2012 Chevrolet Silverado 1500 Extended Cab looks like a truck with a cab that has been extended to provide more space behind the seats.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a full-size pickup truck with two rows of seating and four doors.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a full-size pickup truck that seats six passengers.", + "A 2012 Chevrolet Silverado 1500 Extended Cab has four full-size doors and a long cargo box.", + "The 2012 Chevrolet Silverado 1500 Extended Cab has four full-sized doors and a larger cab than the regular Silverado 1500.", + "A 2012 Chevrolet Silverado 1500 Extended Cab looks like a large truck with four doors and a long bed.", + "The 2012 Chevrolet Silverado 1500 Extended Cab has four full-size doors and a full-size pickup truck bed.", + "The 2012 Chevrolet Silverado 1500 Extended Cab features a crew cab design with a longer cab and extended bed.", + "A 2012 Chevrolet Silverado 1500 Extended Cab will have an extended cab with two full-size doors and two smaller half-size doors.", + "Can't answer this without a picture.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a pickup truck that seats five.", + "The 2012 Chevrolet Silverado 1500 Extended Cab has a few key features that help to identify it.", + "There are a few ways to identify a 2012 Chevrolet Silverado 1500 Extended Cab.", + "A 2012 Chevrolet Silverado 1500 Extended Cab has four full-size doors and a cargo area with a fold-down seat.", + "This can be done in a few ways.", + "A 2012 Chevrolet Silverado 1500 Extended Cab can be identified by its longer bed and shorter cab.", + "A 2012 Chevrolet Silverado 1500 Extended Cab can be identified by its four full-sized doors and extended cab, which is a small, secondary seating area behind the main seats.", + "The 2012 Chevrolet Silverado 1500 Extended Cab has a towing capacity of 8,500 lbs and a payload capacity of 1,934 lbs.", + "The 2012 Chevrolet Silverado 1500 Extended Cab features a crew cab design with four full-sized doors and seating for up to six passengers.", + "The 2012 Chevrolet Silverado 1500 Extended Cab features a short bed and four doors.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a full-size pickup truck that seats five passengers.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a four-door truck with a Crew Cab-style configuration.", + "A 2012 Chevrolet Silverado 1500 Extended Cab looks like a truck with two doors and an extended cab.", + "A 2012 Chevrolet Silverado 1500 Extended Cab looks like a crew cab truck with a shorter bed.", + "The 2012 Chevrolet Silverado 1500 Extended Cab looks like a regular Silverado 1500 with an extra door on each side.", + "The 2012 Chevrolet Silverado 1500 Extended Cab has a crew cab design with four full-sized doors and seating for up to six passengers.", + "A 2012 Chevrolet Silverado 1500 Extended Cab would look like a cross between a pickup truck and a SUV.", + " PickupThe image is of a 2012 Chevrolet Silverado 1500 Extended Cab Pickup.", + "The image is of a 2012 Chevrolet Silverado 1500 Extended Cab.", + " Work TruckThe image is of a 2012 Chevrolet Silverado 1500 Extended Cab Work Truck.", + "The image is of a 2012 Chevrolet Silverado 1500 Extended Cab in silver.", + " LTThis image is of a red 2012 Chevrolet Silverado 1500 Extended Cab LT.", + " Work TruckThe image is of a 2012 Chevrolet Silverado 1500 Extended Cab Work Truck.", + " 4-WDThe image is of a 2012 Chevrolet Silverado 1500 Extended Cab 4-WD in black.", + "This image from the internet is of a 2012 Chevrolet Silverado 1500 Extended Cab.", + "The truck is a medium silver color with four doors.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a full-size pickup truck with an extended cab and four doors.", + "The Chevrolet Silverado 1500 Extended Cab is a full-size pickup truck that was introduced in 1998.", + "This 2012 Chevrolet Silverado 1500 Extended Cab is a great truck for hauling and towing.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a versatile and stylish truck that's perfect for a range of applications.", + "Chevrolet Silverado 1500 Extended Cab - 2012 Model.", + "The 2012 Chevrolet Silverado 1500 Extended Cab is a great choice for those who need a durable and reliable truck.", + "This is a 2012 Chevrolet Silverado 1500 Extended Cab.", + " The Chevy Silverado is a versatile truck that can be used for work or play.", + " 2012 Chevrolet Silverado 1500 Extended Cab.", + " The Chevy Silverado is a reliable and affordable truck.", + " The 2012 Chevrolet Silverado 1500 Extended Cab is a full-size pickup truck that seats up to six passengers." + ], + "2012 Mercedes-Benz C-Class Sedan": [ + "The 2012 Mercedes-Benz C-Class Sedan has a sleek and sophisticated look with its sloping roofline and alloy wheels.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek and aerodynamic design with LED daytime running lights and a chrome grille.", + "]The 2012 Mercedes-Benz C-Class Sedan has a sleek, modern look with a powerful engine.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek design with a long hood and a short trunk.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek, modern design with sharp lines and a stylish grille.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek and stylish design with a long hood and a short trunk.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek, sporty look with a smooth body and curved lines.", + "The 2012 Mercedes-Benz C-Class Sedan looks like a luxury vehicle with smooth lines and a sleek design.", + "A black 2012 Mercedes-Benz C-Class Sedan with a tan interior.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek, elegant design with a long hood and a short trunk.", + "2012 Mercedes-Benz C-Class sedans can be identified by their long hoods, short rear ends, and swept-back roofs.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its long hood, large front grille, and sleek headlights.", + "From the front, the 2012 Mercedes-Benz C-Class Sedan can be recognized by its large, three-pointed star emblem in the grille, as well as its sleek headlight design.", + "If you are looking at a 2012 Mercedes-Benz C-Class Sedan, you can identify it by its sleek design and its noticeably large front grille.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its hood ornament, which is a three-pointed star.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its long hood, sleek headlights, and stylish interior.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its long, sleek hood, wide grille, and prominent Mercedes-Benz logo.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its sporty look and feel, as well as its luxurious interior appointments.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its long hood, short trunk, and sleek design.", + "The 2012 Mercedes-Benz C-Class Sedan can be identified by its long hood, sloping roofline, and short trunk.", + "A 2012 Mercedes-Benz C-Class Sedan has a sleek, stylish look with a smooth, curved body.", + "The 2012 Mercedes-Benz C-Class Sedan has a sporty look with a sleek design.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek, modern look with sculpted lines and a sporty profile.", + "A 2012 Mercedes-Benz C-Class looks like a sleek and luxurious sedan.", + "The 2012 Mercedes-Benz C-Class Sedan has an aggressive front end with a sporty grille and headlights.", + "The car has a smooth, elegant look with sleek lines.", + "A 2012 Mercedes-Benz C-Class Sedan looks like a traditional, luxury sedan.", + "A 2012 Mercedes-Benz C-Class Sedan has a sleek, stylish look with a graceful silhouette.", + "The 2012 Mercedes-Benz C-Class Sedan has a length of 185.", + "The 2012 Mercedes-Benz C-Class Sedan has a sleek, modern look that is sure to turn heads.", + "The photo shows a white 2012 Mercedes-Benz C-Class Sedan with a black interior.", + "The image is of a 2012 Mercedes-Benz C-Class Sedan in silver.", + "The image is of a grey 2012 Mercedes-Benz C-Class Sedan.", + "In the image, the car is a sleek silver color with black accents.", + "The image is of a sleek and shiny silver Mercedes-Benz C-Class Sedan.", + "The image is of a white 2012 Mercedes Benz C-Class sedan.", + "The image is of a 2012 Mercedes-Benz C-Class Sedan in black.", + "The image is of a luxurious looking car.", + "This image is of a 2012 Mercedes-Benz C-Class Sedan in black.", + "The image is of a 2012 Mercedes-Benz C-Class Sedan in a metallic blue color.", + "The 2012 Mercedes-Benz C-Class Sedan is a luxurious and stylish car that is sure to turn heads.", + "The C-Class Sedan is a compact executive car produced by Mercedes-Benz.", + "The 2012 Mercedes-Benz C-Class Sedan brings luxury and performance to the compact class.", + "The 2012 Mercedes-Benz C-Class Sedan is a sleek and stylish car that is sure to turn heads.", + "The C-Class is the best selling Mercedes-Benz model.", + "This elegant vehicle is the 2012 Mercedes-Benz C-Class Sedan.", + "The Mercedes-Benz C-Class is a compact executive car produced by the German automaker Mercedes-Benz.", + "The 2012 Mercedes-Benz C-Class Sedan is a workhorse of a car.", + "The Mercedes-Benz C-Class is a line of compact executive cars produced by Mercedes-Benz.", + "The Mercedes-Benz C-Class is a line of entry-level luxury cars produced by the German automaker Mercedes-Benz." + ], + "2012 Hyundai Santa Fe SUV": [ + "The 2012 Hyundai Santa Fe SUV is a mid-size SUV that seats up to 7 passengers.", + "The 2012 Hyundai Santa Fe SUV has a sporty look with chrome accents and LED daytime running lights.", + "A 2012 Hyundai Santa Fe SUV has a sleek, modern design with curves and lines that give it a stylish look.", + "The 2012 Hyundai Santa Fe SUV has a sleek design with sharp angles.", + "The 2012 Hyundai Santa Fe is a five-passenger SUV that is available in three trim levels: GLS, SE and Limited.", + "A 2012 Hyundai Santa Fe SUV looks like a sport utility vehicle with a sleek design.", + "A 2012 Hyundai Santa Fe SUV has a sleek, modern design.", + "A 2012 Hyundai Santa Fe SUV is a mid-sized SUV that seats five passengers.", + "The 2012 Hyundai Santa Fe SUV has a sleek and stylish design with an aggressive stance.", + "The 2012 Hyundai Santa Fe SUV has a sleek design with LED daytime running lights.", + "There are a few ways to identify a 2012 Hyundai Santa Fe SUV.", + "By looking at the 2012 Hyundai Santa Fe SUV, you can tell that it is a SUV because of its design.", + "There are several ways to identify a 2012 Hyundai Santa Fe SUV.", + "The 2012 Hyundai Santa Fe SUV can be identified by its V6 engine, its LED taillights, and its chrome-tipped exhaust.", + "The VIN number is located on the lower left of the dashboard, visible through the windshield.", + "The 2012 Hyundai Santa Fe has the Hyundai logo on the front, and \"Santa Fe\" written on the back.", + "There are a few ways that you can identify a 2012 Hyundai Santa Fe SUV.", + "There are a few ways to identify a 2012 Hyundai Santa Fe SUV.", + "You can identify a 2012 Hyundai Santa Fe SUV by its sleek and stylish design.", + "The Santa Fe model was first introduced in 2001, so a 2012 model would be 11 years old.", + "The 2012 Hyundai Santa Fe SUV looks like a cross between a SUV and a station wagon.", + "The 2012 Hyundai Santa Fe SUV has a stylish and aggressive look with its large grille and headlights.", + "The 2012 Hyundai Santa Fe SUV has a restyled exterior with a new grille and headlights.", + "The 2012 Hyundai Santa Fe SUV has a sleek design with curves and lines that give it a sporty look.", + "The 2012 Hyundai Santa Fe features a sleek, modern design.", + "The Santa Fe is a mid-size SUV that seats five passengers.", + "The 2012 Hyundai Santa Fe SUV has a sleek, modern design with smooth lines and a stylish grille.", + "View the 2012 Hyundai Santa Fe Sport and Hyundai Santa Fe SUV photo gallery.", + "A 2012 Hyundai Santa Fe SUV has a sleek, modern look with sharp lines and a large grille.", + "The 2012 Hyundai Santa Fe SUV has a very aggressive and modern look.", + "The image is of a Hyundai Santa Fe SUV that is silver in color.", + "In the image, the 2012 Hyundai Santa Fe SUV is a silver color with dark tinted windows.", + "This image is of a 2012 Hyundai Santa Fe SUV in white.", + "The image is of a 2012 Hyundai Santa Fe SUV parked in front of a house.", + "The Hyundai Santa Fe is a mid-sized SUV that was first introduced in 2001.", + "The image is of a 2012 Hyundai Santa Fe SUV in white.", + "The image is of a 2012 Hyundai Santa Fe SUV in silver.", + "This image shows a 2012 Hyundai Santa Fe SUV in a medium blue color.", + "This image is of a 2012 Hyundai Santa Fe SUV in silver.", + "The image is of a 2012 Hyundai Santa Fe SUV in a glossy black color.", + "The 2012 Hyundai Santa Fe is a stylish and spacious SUV that is perfect for families.", + "The Hyundai Santa Fe is a luxurious SUV that provides plenty of space and comfort for families.", + "The 2012 Hyundai Santa Fe is a comfortable and stylish SUV that's perfect for families.", + "A 2012 Hyundai Santa Fe SUV in a garage.", + " A 2012 Hyundai Santa Fe SUV.", + "The 2012 Hyundai Santa Fe is a spacious and well-equipped SUV that's perfect for families.", + "The 2012 Hyundai Santa Fe is a stylish and modern SUV that is perfect for families or anyone who needs a little extra space.", + "A sporty and stylish SUV, the 2012 Hyundai Santa Fe is perfect for families who want a little extra space.", + "This is the 2012 Hyundai Santa Fe SUV.", + " Hyundai Santa Fe Sport SUV." + ], + "2009 Dodge Sprinter Cargo Van": [ + "The 2009 Dodge Sprinter Cargo Van is a large van with plenty of space for hauling cargo.", + "A 2009 Dodge Sprinter Cargo Van has a large, square body with a tall roof.", + "A 2009 Dodge Sprinter Cargo Van is a large van with plenty of space for hauling cargo.", + "The 2009 Dodge Sprinter Cargo Van is a large van with plenty of space for hauling cargo.", + ".", + "A 2009 Dodge Sprinter Cargo Van looks like a large, white van with \"Dodge\" written on the front in blue letters.", + "A 2009 Dodge Sprinter Cargo Van has a long, rectangular body with a large cargo area in the back.", + "A 2009 Dodge Sprinter Cargo Van has a large cargo area with high ceilings and a wide, tall door for loading and unloading.", + "The 2008 Dodge Sprinter cargo van has a large, boxy shape with a wide, flat front grille.", + ".", + "The best way to identify a 2009 Dodge Sprinter Cargo Van is by its VIN number.", + "The best way to identify a 2009 Dodge Sprinter Cargo Van is by the VIN number.", + "The model number of the Sprinter is located on a metal plate on the driver's side door pillar.", + "The 2009 Dodge Sprinter Cargo Van can be identified by its long, boxy shape and large cargo area.", + "The 2009 Dodge Sprinter Cargo Van has a length of 19.", + "The model years for the Dodge Sprinter Cargo Van are from 2003-2009.", + "The 2009 Dodge Sprinter Cargo Van is a van designed for carrying cargo.", + "By the make, model, and year.", + "The easiest way to identify a 2009 Dodge Sprinter Cargo Van is by its boxy shape and large size.", + "There is no specific way to identify a 2009 Dodge Sprinter Cargo Van, but they can be distinguished from other Dodge Sprinter models by their boxy shape and lack of windows.", + "The 2009 Dodge Sprinter Cargo Van looks like a standard cargo van with the Dodge logo on the front grille.", + "The 2009 Dodge Sprinter Cargo Van features a sleek, modern design with a long, boxy shape.", + "Dodge Sprinter Cargo Vans from 2009 have a boxy shape with large windows.", + "A 2009 Dodge Sprinter Cargo Van looks like a large van with two side doors and a large cargo area in the back.", + "A 2009 Dodge Sprinter Cargo Van has a white exterior and a gray interior.", + "I'm not sure what you are asking.", + "A 2009 Dodge Sprinter Cargo Van looks like a large white van with the Dodge logo on the front.", + "The 2009 Dodge Sprinter Cargo Van has a sleek and aerodynamic design, with a long, boxy shape.", + "A 2009 Dodge Sprinter Cargo Van has a boxy shape with large windows.", + "The 2009 Dodge Sprinter Cargo Van looks like a wide, tall van with two sliding doors on each side.", + "The image shows a 2009 Dodge Sprinter Cargo Van in silver.", + "The image shows a 2009 Dodge Sprinter Cargo Van in silver.", + "The image is of a silver van with the word \"Sprinter\" written across the front in blue lettering.", + "The image is of a 2009 Dodge Sprinter Cargo Van in white.", + "The image shows a silver Dodge Sprinter Cargo Van with 2009 markings on the doors.", + "This image is of a blue 2009 Dodge Sprinter Cargo Van.", + "The image is of a blue 2009 Dodge Sprinter Cargo Van.", + "The image is of a large, silver van with sliding doors on either side.", + "The image shows a blue Dodge Sprinter Cargo Van with the door open.", + "This image is of a 2009 Dodge Sprinter Cargo Van.", + " A red van with a large cargo space in the backA 2009 Dodge Sprinter Cargo Van.", + " A 2009 Dodge Sprinter Cargo Van, silver with a black roof.", + " A 2009 Dodge Sprinter Cargo Van.", + "This 2009 Dodge Sprinter Cargo Van is the perfect vehicle for hauling around your gear.", + "This is a 2009 Dodge Sprinter Cargo Van.", + "This van is the perfect size for those who need a bit more space than a standard car but don't want to go all the way up to a full-size van or SUV.", + " \"Camera view of the 2009 Dodge Sprinter Cargo Van from the back.", + "This is a Dodge Sprinter Cargo Van from 2009.", + "A 2009 Dodge Sprinter Cargo Van.", + " A suburban family loads their van for a cross-country road trip." + ], + "2012 GMC Acadia SUV": [ + "A 2012 GMC Acadia SUV has a sleek, modern design with smooth lines and a stylish look.", + "Some 2012 GMC Acadia SUVs have a sleek look with smooth lines, while others have a more rugged appearance with large, exposed headlights and a grille guard.", + "The GMC Acadia is a large SUV that seats up to eight people.", + "A 2012 GMC Acadia SUV is a large vehicle that seats up to eight people.", + "Picture a large, boxy SUV with lots of space inside.", + "The GMC Acadia SUV was first introduced in 2007.", + "A 2012 GMC Acadia SUV is a large vehicle that can seat up to seven people.", + "A 2012 GMC Acadia SUV sports a chrome grille, prominent wheel flares, and wraparound headlights.", + "A 2012 GMC Acadia SUV is a large SUV with a sleek, modern design.", + "The Acadia is a full-size SUV from GMC that seats up to eight passengers.", + "The GMC Acadia SUV was introduced in 2007 and was significantly refreshed for the 2012 model year.", + "If it says \"GMC Acadia\" on the back, it's a 2012 GMC Acadia SUV.", + "The 2012 GMC Acadia SUV can be identified by its large, boxy body and tall, rounded roofline.", + "The 2012 GMC Acadia SUV can be identified by its wide, boxy body and large front grille.", + "In 2012, the GMC Acadia SUV was given a new grille and updated headlamps.", + "One way to identify a 2012 GMC Acadia SUV is by its appearance.", + "The easiest way to identify a 2012 GMC Acadia SUV is to look for the GMC logo on the front grille.", + "The 2012 GMC Acadia SUV can be identified by its boxy shape, wide stance, and tall cabin.", + "The 2012 GMC Acadia SUV can be identified by its large, boxy body and wide stance.", + "To identify a 2012 GMC Acadia SUV, you can look for its identifying features, such as its large grille, wide stance, and flared wheel arches.", + "A 2012 GMC Acadia SUV has a sleek, modern look with sharp lines and a stylish grille.", + "A 2012 GMC Acadia SUV can be described as a large SUV with a strong and squared-off appearance.", + "A 2012 GMC Acadia SUV has a large, boxy body with a wide grille and exposed headlights.", + "The Acadia is a full-size SUV that can seat up to eight passengers.", + "The 2012 GMC Acadia SUV has a chiseled, aggressive look with its LED daytime running lamps and projector-beam headlamps.", + "The 2012 GMC Acadia SUV has a sleek and modern design.", + "The 2012 GMC Acadia SUV has a chiseled look with a prominent grille and large headlights.", + "The Acadia SUV has a very boxy look with straight lines and sharp angles.", + "The 2012 GMC Acadia is a large SUV that can seat up to eight people.", + "A 2012 GMC Acadia SUV has a sleek and stylish look with its angular headlights and bold grille.", + "The image is of a silver GMC Acadia SUV with chrome accents.", + "This image is of a 2012 GMC Acadia SUV.", + "The image is of a white SUV with a black roof.", + "The image is of a 2012 GMC Acadia SUV that is silver in color.", + "The image is of a 2012 GMC Acadia SUV in a silver color.", + "This image is of a 2012 GMC Acadia SUV in a light blue color.", + "This image is of a 2012 GMC Acadia SUV in silver.", + "This image is of a 2012 GMC Acadia SUV.", + "This is a GMC Acadia SUV from 2012.", + "This image is of a 2012 GMC Acadia SUV in white.", + "2012 GMC Acadia SUV in red.", + " \"GMC Acadia SUV in excellent condition.", + "The 2012 GMC Acadia is a versatile SUV that can seat up to eight passengers.", + " The GMC Acadia is a mid-size SUV with a stylish design and plenty of room for passengers and cargo.", + "The GMC Acadia is a mid-size SUV that is perfect for families.", + "The GMC Acadia is a mid-size SUV that was first introduced in 2007.", + "This is a GMC Acadia SUV from 2012.", + "2012 GMC Acadia SUV.", + "GMC Acadia SUV.", + "2012 GMC Acadia SUV in white with chrome accents." + ], + "2012 Hyundai Genesis Sedan": [ + "The 2012 Hyundai Genesis Sedan has a sleek, modern look with a long, sloping hood and sharp, angular lines.", + "The 2012 Hyundai Genesis Sedan has a sleek and modern look.", + "The 2012 Hyundai Genesis Sedan is a sleek and stylish car with a long, curved hood and a wide, spacious body.", + "The 2012 Hyundai Genesis Sedan has a sleek, modern design with a long hood and sweeping lines.", + "A 2012 Hyundai Genesis Sedan has a sleek and stylish look with a graceful front end.", + "The 2012 Hyundai Genesis Sedan is a four-door, five-passenger luxury sedan that was redesigned for the 2012 model year.", + "A 2012 Hyundai Genesis Sedan has a sleek, modern design with sharp lines and a wide stance.", + "A 2012 Hyundai Genesis Sedan has a sleek, modern look.", + "A 2012 Hyundai Genesis Sedan has a sleek and stylish look.", + "A 2012 Hyundai Genesis Sedan has a sleek, modern look.", + "The2012 Hyundai Genesis Sedan can be identified by its large, angular headlights and grille, as well as its long, sloping hood.", + "The 2012 Hyundai Genesis Sedan can be identified by its six-speed automatic transmission and V8 engine.", + "The 2012 Hyundai Genesis Sedan can be identified by its unique grille and headlights.", + "The 2012 Hyundai Genesis sedan can be identified by its elegant, sporty design.", + "There are several ways to identify a 2012 Hyundai Genesis Sedan.", + "The 2012 Hyundai Genesis Sedan can be identified by its large, hexagonal grille and its long, sweeping headlights.", + "The 2012 Hyundai Genesis Sedan can be identified by its sleek, stylish design.", + "The 2012 Hyundai Genesis Sedan can be identified by its large grille, sleek headlights, and wide body.", + "The 2012 Hyundai Genesis Sedan can be identified by its long and wide body, its sleek and aggressive headlights, and its simple and elegant taillights.", + "The species name for the Hyundai Genesis sedan is sedanus Hyundaiensis.", + "A 2012 Hyundai Genesis Sedan look like a four door sedan with a sleek body design.", + "Assuming you would like to see pictures of the 2012 Hyundai Genesis Sedan, we have included a link to a website that has several photographs.", + "The 2012 Hyundai Genesis Sedan has a sleek, stylish look that is sure to turn heads.", + "The 2012 Hyundai Genesis Sedan has a wide, aggressive stance with a long hood and short decklid.", + "The 2012 Hyundai Genesis Sedan has a sleek, modern look that is sure to turn heads.", + "The 2012 Hyundai Genesis Sedan has a sleek, modern design with clean lines and a wide stance.", + "The 2012 Hyundai Genesis Sedan looks like a modern luxury sedan.", + "A 2012 Hyundai Genesis Sedan looks like a cross between a sports car and a luxury sedan.", + "A 2012 Hyundai Genesis Sedan has a sleek, modern look with a long hood and a short rear deck.", + "The 2012 Hyundai Genesis Sedan has a sleek, modern look.", + "This image is of a 2012 Hyundai Genesis Sedan in a light blue color.", + "The image is of a red 2012 Hyundai Genesis Sedan.", + "The image is of a white Hyundai Genesis sedan with chrome accents.", + "The image is of a 2012 Hyundai Genesis Sedan in black.", + "This image is of a 2012 Hyundai Genesis Sedan in a black color.", + "The Hyundai Genesis Sedan is a sleek and stylish car with a powerful engine.", + "The image is of a 2012 Hyundai Genesis Sedan in a parking lot.", + "The image is of a red 2012 Hyundai Genesis Sedan.", + "The image is of a 2012 Hyundai Genesis Sedan in silver.", + "The image depicts a 2012 Hyundai Genesis Sedan in a metallic gray color.", + " Hyundai Motor Company unveiled the new Hyundai Genesis at the North American International Auto Show in Detroit.", + "A 2012 Hyundai Genesis Sedan in excellent condition.", + "The 2012 Hyundai Genesis Sedan is a stylish and well-equipped sedan that offers plenty of value for its price.", + "The 2012 Hyundai Genesis Sedan features a sleek and stylish design that is sure to turn heads.", + "The 2012 Hyundai Genesis Sedan is a reliable and affordable car.", + "The Hyundai Genesis Sedan is a luxurious and stylish car that provides plenty of comfort and features for drivers and passengers.", + "This is the 2012 Hyundai Genesis Sedan.", + "The Hyundai Genesis Sedan is a luxurious and practical car that is perfect for those who want style and comfort.", + "The 2012 Hyundai Genesis Sedan is a luxurious car that offers plenty of features and comfort for its passengers.", + "The 2012 Hyundai Genesis Sedan is a sleek and stylish car that is sure to turn heads." + ], + "2012 Dodge Caliber Wagon": [ + "A 2012 Dodge Caliber Wagon has a sleek, modern look with a sloping roofline and a wide stance.", + "A 2012 Dodge Caliber Wagon has a sporty look with a sleek design.", + "The 2012 Dodge Caliber Wagon is a small station wagon with a sleek and modern design.", + "The 2012 Dodge Caliber Wagon has a unique look with its slanted headlights and wide stance.", + "A 2012 Dodge Caliber Wagon has a sporty, modern look.", + "A 2012 Dodge Caliber Wagon is a silver car with four doors.", + "The 2012 Dodge Caliber Wagon is a compact car with a sleek design.", + "The 2012 Dodge Caliber Wagon has a sporty look with a sleek body style.", + "The 2012 Dodge Caliber Wagon is a subcompact car that seats five passengers.", + "A 2012 Dodge Caliber Wagon would have four doors, a long roofline, and a rear cargo area.", + "The 2012 Dodge Caliber Wagon can be identified by its sloping roofline and boxy shape.", + "The 2012 Dodge Caliber Wagon can be identified by its sloped roofline, which gives it a more wagon-like appearance than the standard Caliber.", + "The 2012 Dodge Caliber Wagon can be identified by its unique exterior design.", + "Some ways that you can identify a 2012 Dodge Caliber Wagon include looking at the vehicle's exterior and interior design.", + "There is no official 2012 Dodge Caliber Wagon model.", + "The 2012 Dodge Caliber Wagon can be identified by its sloping roofline, chrome grille, and distinctly shaped headlamps.", + "If you are looking at a 2012 Dodge Caliber Wagon, you will notice that it is a larger car than the standard Caliber.", + "The 2012 Dodge Caliber Wagon is a vehicle that was produced by the Dodge division of Chrysler.", + "The 2012 Dodge Caliber Wagon can be identified by its unique styling, which includes a sloped roofline and a square body.", + "The 2012 Dodge Caliber Wagon can be identified by its unique exterior design.", + "A 2012 Dodge Caliber Wagon would have a long, rectangular body with a raised roof and plenty of windows.", + "There is not a 2012 Dodge Caliber Wagon model.", + "The 2012 Dodge Caliber Wagon has a sleek, modern look with a definite Dodge feel.", + "There is no such thing as a 2012 Dodge Caliber Wagon.", + "I'm not sure what you are asking.", + "A 2012 Dodge Caliber Wagon looks like a standard Dodge Caliber, except with a larger back end to accommodate additional cargo space.", + "A 2012 Dodge Caliber Wagon has not been released yet, so a picture is not available.", + "A 2012 Dodge Caliber Wagon looks like a small wagon with a sloped back.", + "The 2012 Dodge Caliber Wagon is a small wagon with a boxy shape.", + "Image result for 2012 dodge caliber wagon.", + "http://www.", + "The image is of a 2012 Dodge Caliber Wagon in blue.", + "In the image, the 2012 Dodge Caliber Wagon is a deep blue color with silver trim.", + "The image is of a 2012 Dodge Caliber Wagon in a metallic blue color.", + "The image is of a silver 2012 Dodge Caliber Wagon.", + "The image is of a 2012 Dodge Caliber Wagon in silver.", + "The image from the internet is of a 2012 Dodge Caliber Wagon.", + "The image is of a 2012 Dodge Caliber Wagon in a light blue color.", + "An image from the internet of a 2012 Dodge Caliber Wagon shows a silver-colored car with a black roof rack and black-tinted windows.", + "An image from the internet of a 2012 Dodge Caliber Wagon shows a blue vehicle with four doors.", + " A 2012 Dodge Caliber Wagon.", + "This 2012 Dodge Caliber Wagon is the perfect car for a family of four.", + " A 2012 Dodge Caliber Wagon in excellent condition.", + "The 2012 Dodge Caliber Wagon is a versatile and stylish vehicle that is perfect for families or those who need extra space for storage.", + "This is a 2012 Dodge Caliber Wagon.", + "2012 Dodge Caliber Wagon: This stylish and efficient wagon is perfect for small families or busy singles.", + " A teal-colored 2012 Dodge Caliber Wagon with a luggage rack on top and a bike on the back.", + "This is a 2012 Dodge Caliber Wagon.", + "The Dodge Caliber is a versatile and stylish wagon that's perfect for hauling around your family and all their gear.", + "Dodge Caliber Wagon, 2012." + ], + "2012 Jeep Liberty SUV": [ + "A Jeep Liberty SUV from 2012 is a mid-sized SUV that seats five passengers.", + "The 2012 Jeep Liberty SUV has a square body with a sleek design.", + "The Jeep Liberty is a midsize SUV that seats five passengers.", + "A 2012 Jeep Liberty SUV is a mid-size SUV with a boxy shape.", + "A 2012 Jeep Liberty SUV is a mid-size SUV that seats five passengers.", + "The 2012 Jeep Liberty SUV has a boxy look with a wide grille and round headlights.", + "A 2012 Jeep Liberty SUV is a four-door vehicle that seats five passengers.", + "The 2012 Jeep Liberty SUV has a boxy shape with sharp angles.", + "A Jeep Liberty SUV from 2012 is a midsize SUV that seats five passengers.", + "The 2012 Jeep Liberty SUV has a unique, boxy shape with plastic cladding on the lower half of the body.", + "Look for the Jeep grille and the iconic seven-slot grille.", + "The 2012 Jeep Liberty SUV can be identified by its round headlights, seven-slot grille, and chiseled body.", + "The Jeep Liberty was first introduced in 2002, and received a mid-generation refresh for the 2008 model year.", + "The 2012 Jeep Liberty can be identified by its square headlamps, seven-slot grille, and trapezoidal wheel arches.", + "The 2012 Jeep Liberty SUV can be identified by its grille, which is made up of seven horizontal slats.", + "There are a few different ways that you can identify a 2012 Jeep Liberty SUV.", + "The 2012 Jeep Liberty SUV can be identified by its square headlights, trapezoidal grille, and sloped rear window.", + "One way to identify a 2012 Jeep Liberty SUV is to look for the Jeep emblem on the front grille.", + "The 2012 Jeep Liberty has a distinct look that sets it apart from other SUVs on the road.", + "The 2012 Jeep Liberty SUV can be identified by its round headlights, seven-slot grille, and trapezoidal wheel flares.", + "The exterior of the Jeep Liberty SUV for 2012 has a chrome grill, chrome accents, and fog lamps.", + "The 2012 Jeep Liberty SUV has a boxy body style with a sloping roofline.", + "A 2012 Jeep Liberty SUV has a sleek, modern design with an aggressive stance.", + "2012 Jeep Liberty SUV's have a rounded front end with the Jeep logo in the center.", + "A 2012 Jeep Liberty SUV may have some slightly different features than other years, but in general, it looks like a four-door Jeep SUV with a slightly boxy shape.", + "Photo of a 2012 Jeep Liberty SUV.", + "A picture of a 2012 Jeep Liberty SUV can be found here: https://www.", + "A 2012 Jeep Liberty SUV is a midsize SUV that has a boxy shape.", + "The 2012 Jeep Liberty SUV has a bold and aggressive look with its swept-back headlights, flared wheel wells, and sleek body.", + "The 2012 Jeep Liberty SUV has a more chiseled and modern look than previous models.", + "The image is of a 2012 Jeep Liberty SUV in blue.", + "In the image, the Jeep Liberty is parked in a grassy field with trees nearby.", + "The 2012 Jeep Liberty SUV has a cascade grille, classic Jeep seven-slot grille, and a body-color fascia.", + "The image is of a 2012 Jeep Liberty SUV in White with a black top.", + "In the image, the Jeep Liberty is a dark red color with a black roof.", + "The image shows a Jeep Liberty SUV in a metallic blue color with black trim.", + "This image is of a 2012 Jeep Liberty SUV in silver.", + "The image shows a 2012 Jeep Liberty SUV in pearl white with chrome accents.", + "The image is a 2012 Jeep Liberty SUV in silver.", + "The image is of a 2012 Jeep Liberty SUV in silver.", + "2012 Jeep Liberty SUV.", + "A woman stands outside her 2012 Jeep Liberty SUV.", + "A 2012 Jeep Liberty SUV parked in a driveway.", + "The 2012 Jeep Liberty SUV is a great choice for adventurous drivers who need a reliable and stylish vehicle.", + "The 2012 Jeep Liberty is a midsize SUV that seats five passengers.", + " Jeep Liberty SUV.", + "The 2012 Jeep Liberty SUV is a great choice for those who want a reliable and stylish vehicle.", + "The Jeep Liberty is a compact SUV that was produced by Jeep from 2001 to 2012.", + "A 2012 Jeep Liberty SUV parked in a driveway.", + "The Jeep Liberty is a stylish SUV that's perfect for adventurous families." + ], + "1993 Mercedes-Benz 300-Class Convertible": [ + "The 300-Class Convertible was produced from 1993-1997 and was available in three different engine types.", + "The Mercedes-Benz 300-Class Convertible is a two-door car that seats four people.", + "A 1993 Mercedes-Benz 300-Class Convertible would look like a luxurious, well-made convertible with a sleek design.", + "The 1993 Mercedes-Benz 300-Class Convertible is a two-door vehicle that features a convertible top.", + "The 300-Class Convertible from Mercedes-Benz in 1993 is a stylish and classy vehicle.", + "The 1993 Mercedes-Benz 300-Class Convertible has a sleek and stylish design that is sure to turn heads.", + "A 1993 Mercedes-Benz 300-Class Convertible would likely have a beige or cream colored exterior, with a brown or dark green convertible top.", + "The 1993 Mercedes-Benz 300-Class Convertible was a two-door, four-seat luxury convertible.", + "The 300-Class Convertible was introduced in 1993 and was available as both a 2-door convertible and a 4-door convertible.", + "The 1993 Mercedes-Benz 300-Class Convertible is a luxurious car that features a sleek design and a powerful engine.", + "The 1993 Mercedes-Benz 300-Class Convertible can be identified by its long, sleek hood and trunk, and its small side windows.", + "The 1993 Mercedes-Benz 300-Class Convertible can be identified by its long, sloping hood, wide grille, distinctive headlights, and its soft top that can be lowered at the push of a button.", + "There are a few ways to identify a 1993 Mercedes-Benz 300-Class Convertible.", + "The 1993 Mercedes-Benz 300-Class Convertible can be identified by its sleek design and its convertible top.", + "A 1993 Mercedes-Benz 300-Class Convertible can be identified by its long nose, flared fenders, and convertible top.", + "The best way to identify a 1993 Mercedes-Benz 300-Class Convertible is by its VIN number.", + "There are several ways to identify a 1993 Mercedes-Benz 300-Class Convertible.", + "The 1993 Mercedes-Benz 300-Class Convertible can be identified by its long hood and trunk, as well as its wide stance.", + "One way to identify a 1993 Mercedes-Benz 300-Class Convertible is by its model number.", + "A 1993 Mercedes-Benz 300-Class Convertible can be identified by its long hood, short rear deck, and large, round headlights.", + "These cars are very stylish and sleek.", + "A 1993 Mercedes-Benz 300-Class Convertible looks like a regular Mercedes-Benz 300-Class car, but with a convertible top.", + "The 1993 Mercedes-Benz 300-Class Convertible looks like a luxury car with a sleek design.", + "A 1993 Mercedes-Benz 300-Class Convertible would look like a convertible version of the 1993 Mercedes-Benz 300-Class sedan.", + "A 1993 Mercedes-Benz 300-Class Convertible would look like this.", + "1993 Mercedes Ben 300 convertible looks like a normal convertible except it has the Mercedes Benz symbol on the front and300 on the back.", + "The 300-Class Convertible has a sleek, timeless design with a long hood and a short rear end.", + "A 1993 Mercedes-Benz 300-Class Convertible would look like a Mercedes-Benz convertible with the 300-Class designation.", + "The 1993 Mercedes-Benz 300-Class Convertible is a two-door vehicle with a soft-top convertible roof.", + "A 1993 Mercedes-Benz 300-Class Convertible would look like a two-door convertible with a retractable hardtop.", + "In the image, the car is a deep blue color with a beige soft top.", + "The image is of a white Mercedes-Benz 300-Class Convertible with a black top.", + "This image is of a red 1993 Mercedes-Benz 300-Class Convertible.", + "This image shows a 1993 Mercedes-Benz 300-Class Convertible.", + "The image is of a white Mercedes-Benz 300-Class convertible with a tan top and tan leather interior.", + "The image is of a 1993 Mercedes-Benz 300-Class Convertible.", + "An image from the internet of a 1993 Mercedes-Benz 300-Class Convertible shows a car with a sleek, white exterior and a soft top that can be retracted to enjoy the sunny weather.", + "This image is of a classic 1993 Mercedes-Benz 300-Class Convertible.", + "This image is of a 1993 Mercedes-Benz 300-Class Convertible.", + "The image is of a white Mercedes-Benz 300-Class Convertible with a tan interior.", + "The Mercedes-Benz 300-Class Convertible was a luxury car produced by Mercedes-Benz from 1993-2000.", + "This is a 1993 Mercedes-Benz 300-Class Convertible.", + "This Mercedes-Benz 300-Class Convertible is a classic example of German engineering.", + "This vehicle is a 1993 Mercedes-Benz 300-Class Convertible.", + " Mercedes-Benz 300-Class Convertible - 1993 ModelThe Mercedes-Benz 300-Class was a line of luxury cars produced by the German automaker Mercedes-Benz from 1993 to 2001.", + "This Mercedes-Benz 300-Class Convertible is from the 1993 model year.", + "The Mercedes-Benz 300-Class Convertible was a popular car in the early 1990s.", + "This Mercedes-Benz 300-Class Convertible is a luxurious car that was first introduced in 1993.", + "This vehicle was produced by Mercedes-Benz from 1991 to 1993.", + "1993 Mercedes-Benz 300-Class Convertible." + ], + "2009 Ford Expedition EL SUV": [ + "The 2009 Ford Expedition EL SUV has a sleek, modern design.", + "A 2009 Ford Expedition EL SUV has a long body and can seat up to eight people.", + "A 2009 Ford Expedition EL SUV has a boxy body with a long wheelbase.", + "The 2009 Ford Expedition EL SUV has a large grille, wide headlights, and a big, boxy body.", + "A 2009 Ford Expedition EL SUV has a large, boxy body with space for up to eight passengers.", + "A 2009 Ford Expedition EL SUV has a length of 221.", + "A 2009 Ford Expedition EL SUV has a large body with a long wheelbase.", + "The 2009 Ford Expedition EL is a large SUV that seats up to eight people.", + "A 2009 Ford Expedition EL SUV has a long body and a wide stance.", + "The 2009 Ford Expedition EL is a full-size SUV that seats up to eight passengers.", + "The easiest way to identify a 2009 Ford Expedition EL SUV is by looking at the vehicle's identification number (VIN).", + "The 2009 Ford Expedition EL SUV can be identified by its longer length and additional third row of seating.", + "One way to identify a 2009 Ford Expedition EL SUV is to look for the \"EL\" badge on the back of the vehicle.", + "Look at the front and back of the vehicle.", + "The Ford Expedition EL is a full-size SUV that was introduced for the 2007 model year.", + "The Ford Expedition EL is a large SUV with three rows of seating.", + "There should be a badge on the back that says \"Expedition EL\".", + "The 2009 Ford Expedition EL SUV can be identified by its distinctive body style.", + "If you are looking at a 2009 Ford Expedition EL SUV, you can identify it by its unique body style.", + "By its large size and rectangular shape.", + "A 2009 Ford Expedition EL SUV looks like a large SUV with plenty of space for passengers and cargo.", + "A 2009 Ford Expedition EL SUV looks like a large SUV with plenty of space for passengers and storage.", + "A 2009 Ford Expedition EL SUV has a large grille, with the Ford logo in the center.", + "The 2009 Ford Expedition EL SUV has a body style that is similar to the Ford Explorer SUV.", + "A 2009 Ford Expedition EL SUV is a large, black SUV with tinted windows.", + "The 2009 Ford Expedition EL is a large SUV that seats up to eight passengers.", + "A 2009 Ford Expedition EL looks like a large SUV with a long wheelbase.", + "A 2009 Ford Expedition EL SUV has a large body with plenty of space for passengers and luggage.", + "A 2009 Ford Expedition EL SUV has a large, boxy body with a tall stance.", + "A 2009 Ford Expedition EL SUV looks like a large, boxy SUV with a long wheelbase.", + "This image is of a 2009 Ford Expedition EL SUV in black.", + "The image is of a 2009 Ford Expedition EL SUV in a parking lot.", + "This image is of a 2009 Ford Expedition EL SUV in a light blue color.", + "This image is of a blue 2009 Ford Expedition EL SUV.", + "The image is of a 2009 Ford Expedition EL SUV in black.", + "The image is of a 2009 Ford Expedition EL SUV in black.", + "This image is of a 2009 Ford Expedition EL SUV in a dark blue color.", + "The image is of a black 2009 Ford Expedition EL SUV.", + "The 2009 Ford Expedition EL SUV is a large, heavy-duty vehicle that is built for off-road driving.", + "This image is of a 2009 Ford Expedition EL SUV in a blue color.", + "2009 Ford Expedition EL SUV.", + "This is a 2009 Ford Expedition EL SUV.", + " The 2009 Ford Expedition EL is a full-size SUV that seats up to eight passengers.", + "The 2009 Ford Expedition EL is a full-size SUV that can seat up to eight passengers.", + " 2009 Ford Expedition EL SUV.", + "2009 Ford Expedition EL SUV in excellent condition.", + "2009 Ford Expedition EL SUV.", + "A 2009 Ford Expedition EL SUV with a black exterior and tinted windows.", + " SUV on a dirt road in front of a mountainThis SUV is designed to handle rough terrain and give you a comfortable ride no matter where you're going.", + "This is a 2009 Ford Expedition EL SUV." + ], + "2012 BMW 1 Series Coupe": [ + "A 2012 BMW 1 Series Coupe is a small, two-door car with a sleek, sporty look.", + "The 2012 BMW 1 Series Coupe is a two-door vehicle with a sleek design.", + "A 2012 BMW 1 Series Coupe has a sleek, stylish design that is sure to turn heads.", + "A 2012 BMW 1 Series Coupe is a two-door, four-seat car that is available in rear-wheel drive or all-wheel drive.", + "A 2012 BMW 1 Series Coupe is a sleek, two-door car that is available in both a 128i and 135i model.", + "A 2012 BMW 1 Series Coupe is a two-door car that seats up to five people.", + "A matte black 2012 BMW 1 Series Coupe with blacked-out windows and wheels.", + "A 2012 BMW 1 Series Coupe has a sleek, modern design with a long hood and a short rear end.", + "The 2012 BMW 1 Series Coupe is a small, two-door car with a sleek, sporty design.", + "A 2012 BMW 1 Series Coupe has a long, sloping hood and sharp, angular lines.", + "The 2012 BMW 1 Series Coupe can be identified by its long hood, short trunk, and wide stance.", + "The 2012 BMW 1 Series Coupe can be identified by its long hood, short rear deck, and wide stance.", + "The 2012 BMW 1 Series Coupe can be identified by its long hood, sleek body, and wide stance.", + "The simplest way to identify a 2012 BMW 1 Series Coupe is to look for the identifying characteristics that all BMW 1 Series Coupes share.", + "The 2012 BMW 1 Series Coupe can be identified by its long hood, short rear deck, and sloping roofline.", + "A 2012 BMW 1 Series Coupe can be identified by its long, sloping hood; short rear deck; and athletic, capable stance.", + "There are a few ways to identify a 2012 BMW 1 Series Coupe.", + "The first thing that you will notice about the 2012 BMW 1 Series Coupe is its sleek and sporty design.", + "The easiest way to identify a 2012 BMW 1 Series Coupe is by its four round headlights.", + "Bmw 1 series Coupe models have 2 doors, while Bmw 1 series Convertible models have 4.", + "A 2012 BMW 1 Series Coupe looks like a smaller version of the 3 Series coupe, with a similar overall silhouette.", + "The 2012 BMW 1 Series Coupe is a sleek and stylish vehicle with a curved roofline and a sporty look.", + "The 2012 BMW 1 Series Coupe is available in three different trim levels: 128i, 135i, and 135is.", + "The 2012 BMW 1 Series Coupe has a sleek, sporty look with a long hood and short rear end.", + "The 2012 BMW 1 Series Coupe has a base MSRP of $33,100.", + "The 2012 BMW 1 Series Coupe has a sporty look with sleek lines.", + "The 2012 BMW 1 Series Coupe has a wide stance with low-profile tires and pronounced wheel arches.", + "The 2012 BMW 1 Series Coupe looks like a smaller version of the 3 Series Coupe.", + "A 2012 BMW 1 Series Coupe looks like a small, sporty two-door car.", + "A 2012 BMW 1 Series Coupe has a sleek and sporty design with a wide stance and a long hood.", + "The image is of a 2012 BMW 1 Series Coupe in a blue color.", + "The image is of a 2012 BMW 1 Series Coupe in a blue color.", + "The 2012 BMW 1 Series Coupe is a two-door, four-seat car that was introduced in 2008.", + "The image shows a sporty-looking silver BMW 1 Series Coupe with black racing stripes down the hood and sides.", + "An image of a 2012 BMW 1 Series Coupe from the internet shows a white car with a black convertible top.", + "The image is of a 2012 BMW 1 Series Coupe in a silver color.", + "The image is of a 2012 BMW 1 Series Coupe in a light blue color.", + "The image is of a 2012 BMW 1 Series Coupe in a light blue color.", + "The image is of a white 2012 BMW 1 Series Coupe.", + "The image is of a dark blue BMW 1 Series Coupe with a black interior.", + " Red 2012 BMW 1 Series Coupe with black leather interiorA caption of an image of someone cooking: A person cooks food on a stove in a kitchen.", + "The BMW 1 Series Coupe is a stylish and sporty car that's perfect for driving in the city.", + "The 2012 BMW 1 Series Coupe is a stylish and sporty car that is perfect for those who enjoy the finer things in life.", + "This is a picture of a 2012 BMW 1 Series Coupe.", + "The sleek and sporty 2012 BMW 1 Series Coupe is the perfect choice for luxury car enthusiasts.", + "The 2012 BMW 1 Series Coupe is a sleek and stylish vehicle that is perfect for anyone looking for a luxurious and affordable option.", + "The new 2012 BMW 1 Series Coupe.", + " A sleek, black 2012 BMW 1 Series Coupe parked in a city street.", + "The 2012 BMW 1 Series Coupe is a sleek and stylish vehicle that offers excellent performance and handling.", + "The new BMW 1 Series Coupe." + ], + "2012 Jaguar XK XKR": [ + "The XKR has an aggressive look with its large air intakes, LED daytime running lights, and 20-inch wheels.", + "The Jaguar XK is a BBH25 two-door coup\u00e9 produced by British car manufacturer Jaguar Cars.", + "A 2012 Jaguar XK XKR has a long, sleek body with two doors.", + "The Jaguar XK is a grand tourer produced by British car manufacturer Jaguar Cars since 1996.", + "Assuming you would like an exterior description: The 2012 Jaguar XK XKR has a long, sleek body with smooth curves.", + "The 2012 Jaguar XK XKR is a two-door, four-seat luxury coupe.", + "A 2012 Jaguar XK XKR looks like a sleek and powerful sports car.", + "The 2012 Jaguar XK XKR is a luxury sports car that has a sleek and stylish design.", + "The 2012 Jaguar XK XKR features a long, sleek hood; large, round headlights; and a curvy body.", + "The2012 Jaguar XK XKR has an elongated hood, with sweeping lines that give it a look of motion even when parked.", + "The 2012 Jaguar XK XKR can be identified by its black mesh grille, 20-inch alloy wheels, and its sleek, sporty design.", + "The 2012 Jaguar XK XKR can be identified by its long, sleek body and lines.", + "There are a few ways to identify a 2012 Jaguar XK XKR.", + "The 2012 Jaguar XK XKR can be identified by looking for the following features: a long hood, large front grille, chrome trim, round headlamps, and a sloping rear roofline.", + "The 2012 Jaguar XK XKR can be identified by its unique grille and bumper design, as well as its 20-inch wheels.", + "The 2012 Jaguar XK XKR can be identified by its unique grille, which is made up of vertical slats.", + "There are several ways to identify a 2012 Jaguar XK XKR.", + "The 2012 Jaguar XK XKR can be identified by its long hood, sleek lines, and wide stance.", + "The 2012 Jaguar XK XKR can be identified by its long hood, short rear deck, and wide stance.", + "The front bumper of the 2012 Jaguar XK XKR has a more aggressive look with larger air intakes.", + "The 2012 Jaguar XK XKR looks like a sleek and powerful sports car.", + "The 2012 Jaguar XK XKR has an angular front end with a large, rectangular grille.", + "The 2012 Jaguar XK XKR features a sleek and sporty design with a long hood and swept-back headlights.", + "The 2012 Jaguar XK XKR looks like a very sleek and powerful sports car.", + "This vehicle has an aggressive look with its large air intakes, sculpted hood, and LED headlights.", + "The 2012 Jaguar XK XKR looks like a sleek, modern sports car.", + "The 2012 Jaguar XKR features a sleek, stylish design that is sure to turn heads.", + "A 2012 Jaguar XK XKR looks like a sleek and sporty vehicle with a powerful engine.", + "The 2012 Jaguar XK XKR looks like a sleek and stylish sports car.", + "A Jaguar XK XKR from 2012 has a sleek, modern look with its long hood and sloping roofline.", + "-SThe image is of a sleek, red sports car.", + "-SThis image is of a 2012 Jaguar XK XKR-S in blue.", + "-SThe image is of a 2012 Jaguar XK XKR-S in a dark blue color.", + "This image is of a 2012 Jaguar XK XKR in black with a chrome grill.", + "It is a photo of a 2012 Jaguar XK XKR in silver.", + "-SThe image is of a black Jaguar XK XKR-S with a sleek design.", + "-S ConvertibleThis image depicts a black 2012 Jaguar XK XKR-S Convertible with its top down.", + "The image is of a red 2012 Jaguar XK XKR.", + "The image is of a sleek, silver Jaguar XK XKR.", + " ConvertibleThis image is of a 2012 Jaguar XK XKR Convertible.", + "Jaguar XK XKR - a luxurious sports car with powerful performance.", + "This 2012 Jaguar XK XKR looks amazing in its sleek black finish.", + "The XKR has always been a special car, but the 2012 model is even more special.", + "The 2012 Jaguar XK XKR is a sleek and powerful sports car that is sure to turn heads.", + "This sleek 2012 Jaguar XK XKR is sure to turn heads when driving.", + "The Jaguar XK XKR is a luxurious sports car that was first introduced in 2012.", + "The 2012 Jaguar XK XKR is a luxurious sports car that combines power and style.", + "This is a 2012 Jaguar XK XKR.", + "This is a new Jag that's been driving around town.", + "The sleek and stylish Jaguar XK XKR is a work of art on wheels." + ], + "2012 Hyundai Accent Sedan": [ + "The 2012 Hyundai Accent Sedan is a small, four-door car.", + "A 2012 Hyundai Accent Sedan is a small, four-door car that seats up to five people.", + "The 2012 Hyundai Accent Sedan has a sleek and modern look.", + "A view from the front of a 2012 Hyundai Accent Sedan would reveal a radiator grille with the Hyundai logo in the center, flanked by headlamps with clear lenses.", + "A 2012 Hyundai Accent Sedan is a small car that seats five passengers.", + "The 2012 Hyundai Accent Sedan is a small car that seats five passengers.", + "The Hyundai Accent is a small sedan that seats 5 passengers.", + "The 2012 Hyundai Accent Sedan has a clean and modern design.", + "The 2012 Hyundai Accent Sedan has a sleek and modern look.", + "A 2012 Hyundai Accent Sedan has a stylish, sporty look with flared wheel wells and a rear spoiler.", + "The 2012 Hyundai Accent Sedan can be identified by its four-door configuration, chrome-tipped exhaust Pipe, and rear spoiler.", + "There is no certain way to identify a 2012 Hyundai Accent Sedan without looking at the VIN (vehicle identification number), which is usually located on the inside of the driver's side door.", + "You can look at the front of the car and find the Hyundai emblem.", + "A 2012 Hyundai Accent Sedan can be identified by its long hood, large headlights, small grille, and streamlined body.", + "One way to identify a 2012 Hyundai Accent Sedan is to look for the Hyundai logo on the front of the car.", + "The Hyundai Accent is a small sedan that was first introduced in 1994.", + "There is no certain way to identify a 2012 Hyundai Accent Sedan without seeing the car in person.", + "There are a few ways to identify a 2012 Hyundai Accent Sedan.", + "You can identify a 2012 Hyundai Accent Sedan by its four-door configuration and sloping roofline.", + "The 2012 Hyundai Accent Sedan is a 4-door sedan that seats up to 5 passengers.", + "The 2012 Hyundai Accent Sedan has a simple, yet stylish look.", + "A 2012 Hyundai Accent Sedan has a sleek, modern look with sharp lines and a sporty design.", + "A 2012 Hyundai Accent Sedan has a sleek, modern look.", + "The 2012 Hyundai Accent is a small sedan that seats up to five people.", + "A 2012 Hyundai Accent Sedan has a sleek and sporty look.", + "The Hyundai Accent Sedan was redesigned for the 2012 model year and now has a more modern look.", + "The 2012 Hyundai Accent Sedan looks like a small, four door sedan.", + "A 2012 Hyundai Accent Sedan has a sleek, modern look.", + "This is a difficult question to answer as there are many different types and styles of Hyundai Accent cars.", + "The 2012 Hyundai Accent Sedan is a small car that seats five passengers.", + "The image is of a red 2012 Hyundai Accent Sedan.", + "The image shows a 2012 Hyundai Accent sedan in a silver color.", + "The image is of a white 2012 Hyundai Accent sedan.", + "The image is of a pale blue 2012 Hyundai Accent sedan with a black interior.", + "The image is of a 2012 Hyundai Accent sedan in silver.", + "The image is of a 2012 Hyundai Accent Sedan in black.", + "The image is of a blue Hyundai Accent Sedan.", + "The image is of a 2012 Hyundai Accent Sedan in a light blue color.", + "The image is of a 2012 Hyundai Accent Sedan in a bright blue color.", + "The image is of a white Hyundai Accent sedan with chrome accents.", + "2012 Hyundai Accent Sedan: A message from Hyundai to its customers: You don't have to spend a lot of money to get a stylish, practical, and well-built car.", + "The Hyundai Accent is a sedan produced by the South Korean automaker Hyundai.", + "The 2012 Hyundai Accent is a reliable and affordable sedan perfect for small families or commuters.", + "The 2012 Hyundai Accent is a subcompact sedan with a stylish interior and plenty of features.", + "The Hyundai Accent is a sedan that was first introduced in 1995.", + "This is a 2012 Hyundai Accent Sedan.", + "The Hyundai Accent is a subcompact sedan that was first introduced in 1995.", + "This is a photo of a 2012 Hyundai Accent Sedan.", + "The Hyundai Accent is a sedan that was introduced in 2012.", + "This is a 2012 Hyundai Accent sedan." + ], + "2008 Isuzu Ascender SUV": [ + "A 2008 Isuzu Ascender SUV has a boxy body style with a long nose and a tall stance.", + "A 2008 Isuzu Ascender SUV is a mid-sized SUV that seats up to seven passengers.", + "A 2008 Isuzu Ascender SUV is a mid-size SUV that seats five passengers.", + "A 2008 Isuzu Ascender SUV has a boxy shape with a wide stance.", + "A 2008 Isuzu Ascender SUV is a midsize SUV that seats five passengers.", + "A 2008 Isuzu Ascender SUV is a mid-size SUV that seats up to seven passengers.", + "The 2008 Isuzu Ascender is a mid-size SUV that seats five passengers.", + "The Isuzu Ascender is a mid-size SUV that was produced by Isuzu between 2003 and 2008.", + "The 2008 Isuzu Ascender is a classic SUV.", + "The Ascender is a large SUV that seats up to eight passengers.", + "The 2008 Isuzu Ascender has a prominent chrome grille, flared wheel arches, and a sloping rear windshield.", + "The 2008 Isuzu Ascender can be identified by its V8 engine, its six-speed automatic transmission, and its standard four-wheel drive system.", + "The 2008 Isuzu Ascender comes in four different trim levels: the S, the LS, the LT, and the LTZ.", + "The 2008 Isuzu Ascender SUV can be identified by its sleek design and powerful engine.", + "There are a few ways to identify a 2008 Isuzu Ascender SUV.", + "One way to identify a 2008 Isuzu Ascender SUV is by its dimensions.", + "To identify a 2008 Isuzu Ascender SUV, look for the following features: a Vortec 4200 4.", + "The Isuzu Ascender is a midsize SUV that was produced by Isuzu between 2003 and 2008.", + "The Isuzu Ascender is a 7-passenger SUV that was first introduced in 2003.", + "There are a few ways that you can identify a 2008 Isuzu Ascender SUV.", + "The 2008 Isuzu Ascender SUV has a sleek and stylish design.", + "The 2008 Isuzu Ascender is a mid-sized SUV that is available in both two-wheel and four-wheel drive models.", + "The Isuzu Ascender is a mid-sized SUV that was first introduced in 2003.", + "I'm not sure what you are asking.", + "The 2008 Isuzu Ascender is a midsize SUV that seats up to seven passengers.", + "The 2008 Isuzu Ascender SUV is a large SUV that seats up to eight people.", + "The 2008 Isuzu Ascender SUV is a mid-sized SUV that can seat up to seven passengers.", + "A 2008 Isuzu Ascender SUV looks like a cross between a Jeep Grand Cherokee and a Toyota 4Runner.", + "A 2008 Isuzu Ascender SUV has a boxy shape with a short nose and a high roofline.", + "The 2008 Isuzu Ascender SUV has a boxy, SUV body style with a long hood and a wide, squared-off grille.", + "The image is of a 2008 Isuzu Ascender SUV in silver.", + "The2008 Isuzu Ascenderis a mid-sized SUV that seats up to seven passengers.", + "The 2008 Isuzu Ascender SUV is a large SUV that seats up to eight passengers.", + "This image is of a 2008 Isuzu Ascender SUV in silver.", + "The image is of a blue 2008 Isuzu Ascender SUV.", + "The image is of a 2008 Isuzu Ascender SUV in silver with a black roof.", + "The image is of a 2008 Isuzu Ascender SUV in a light blue color.", + "The image is of a 2008 Isuzu Ascender SUV in blue.", + "This image is of a dark blue SUV with tinted windows.", + "The image is of a 2008 Isuzu Ascender SUV in white.", + "2008 Isuzu Ascender SUV.", + "2008 Isuzu Ascender SUV.", + "This Isuzu Ascender SUV is from 2008.", + "2008 Isuzu Ascender SUV.", + " 2008 Isuzu Ascender SUV.", + "Isuzu Ascender SUV in Black.", + " An Isuzu Ascender SUV parked in a driveway.", + " 2008 Isuzu Ascender SUV.", + " 2008 Isuzu Ascender SUV.", + "2008 Isuzu Ascender SUV." + ], + "1998 Nissan 240SX Coupe": [ + "The 1998 Nissan 240SX Coupe has a sleek and aerodynamic body style with sharp body lines.", + "The 1998 Nissan 240SX Coupe is a two-door sports car that was produced by Nissan from 1989 to 1998.", + "What a 1998 Nissan 240SX Coupe looks like:-It is a two-door coupe with a sleek and sporty design\n-The body is typically a silver or gray color\n-There are large, round.", + "A 1998 Nissan 240SX Coupe is a two-door car that seats five passengers.", + "A 1998 Nissan 240SX Coupe is a two-door car that seats five passengers.", + "The 1998 Nissan 240SX Coupe is a 2-door sports car that was available in two trim levels: base and SE.", + "A 1998 Nissan 240SX Coupe is a 2-door car that seats five passengers.", + "The 1998 Nissan 240SX Coupe markets itself as a \"performance vehicle\", and as such, it has a sleek and aggressive look.", + "The 1998 Nissan 240SX Coupe is a two-door sports car with a sleek, aerodynamic design.", + "A 1998 Nissan 240SX Coupe has a sleek and sporty look.", + "A 1998 Nissan 240SX Coupe can be identified by its body style.", + "The 1998 Nissan 240SX Coupe has a sleek and sporty design with a long hood and a short rear deck.", + "There are a few ways that you can identify a 1998 Nissan 240SX Coupe.", + "The 1998 Nissan 240SX coupe can be identified by its long nose and sloping hood.", + "The 1998 Nissan 240SX Coupe can be identified by its long nose and sloping hood.", + "The 1998 Nissan 240SX Coupe can be identified by its wide, swept-back headlights and sharp, angular lines.", + "The easiest way to identify a 1998 Nissan 240SX Coupe is by its unique hood, which is shorter and has a hood scoop.", + "There are a few ways to identify a 1998 Nissan 240SX Coupe.", + "There are a few ways to identify a 1998 Nissan 240SX Coupe.", + "Identifying a 1998 Nissan 240SX Coupe may include knowing some of the following: that it's a 2-door sports car, has a front-engine design, was produced by Nissan Motors, and has a rear-wheel drive.", + "The 1998 Nissan 240SX Coupe has a sleek, sports car look with a curved hood and sleek lines.", + "The 1998 Nissan 240SX Coupe has a fastback roofline and sharp, angular lines.", + "The 1998 Nissan 240SX Coupe is a two-door vehicle with a sleek, aerodynamic design.", + "A 1998 Nissan 240SX Coupe looks like a small, two-door car.", + "The 1998 Nissan 240SX Coupe is a sporty two-door vehicle that features a sleek and modern design.", + "A 1998 Nissan 240SX Coupe would likely have a sleek and streamlined body design, with a somewhat sporty look.", + "Picture of a Nissan 240SX can be found here: https://www.", + "A 1998 Nissan 240SX Coupe looks like a small two-door sports car.", + "A 1998 Nissan 240SX Coupe looks like a small, two-door coupe with a sloping hood and a rear spoiler.", + "A 1998 Nissan 240SX Coupe looks like a small, sleek car with a long hood and a short rear end.", + "The image is of a sleek, sporty-looking car with curved lines and a low stance.", + "The image shows a 1998 Nissan 240SX Coupe in silver with black trim.", + "The image is of a 1998 Nissan 240SX Coupe in blue.", + "The image shows a white Nissan 240SX Coupe with black racing stripes on the hood and trunk.", + "In the image, the 1998 Nissan 240SX Coupe is parked on a city street.", + "The image is of a red 1998 Nissan 240SX Coupe.", + "The image is of a silver Nissan 240SX Coupe with a sunroof.", + "This image is of a white 1998 Nissan 240SX Coupe.", + "The Nissan 240SX Coupe is a two-door car that was produced from 1989 to 1998.", + "The image is of a red Nissan 240SX Coupe.", + "This Nissan 240SX Coupe is a modified car that was popular in the late 1990s.", + "Nissan 240SX Coupe - 1998 Model.", + "Nissan 240SX Coupe - 1998 Model.", + "This 1998 Nissan 240SX Coupe is a great example of a classic sports car.", + "A 1998 Nissan 240SX Coupe.", + "A 1998 Nissan 240SX Coupe.", + "Nissan 240SX Coupe (1998).", + "This is a Nissan 240SX Coupe from 1998.", + "A 1998 Nissan 240SX Coupe.", + "One of the final generations of Nissan's iconic 240SX sports coupe, the 1998 model was the last year of production for the vehicle." + ], + "2012 Scion xD Hatchback": [ + "The 2012 Scion xD Hatchback is a small, four-door car that seats up to five passengers.", + "The 2012 Scion xD Hatchback is a small car with a long hood and a short rear deck.", + "The Scion xD is a five-door hatchback that was introduced in 2008.", + "A 2012 Scion xD Hatchback may have body-colored front and rear bumpers, power side mirrors, and a rear window wiper.", + "Scion xD Hatchbacks from 2012 have a sleek and aerodynamic design.", + "A 2012 Scion xD Hatchback is a small, four-door car with a hatchback.", + "A 2012 Scion xD Hatchback is a small wagon with a sloping roof.", + "A 2012 Scion xD Hatchback has a sleek and modern design.", + "The 2012 Scion xD Hatchback is a small car that seats five passengers.", + "The 2012 Scion xD Hatchback is a 5-door hatchback that seats up to 5 passengers.", + "The 2012 Scion xD is a small five-door hatchback with a unique style.", + "The 2012 Scion xD Hatchback can be identified by its boxy shape, small size, and sloping roofline.", + "The 2012 Scion xD Hatchback can be identified by its swept-back headlights, large air intakes, and sporty styling.", + "The 2012 Scion xD Hatchback has a distinct look with its bulging headlights and large lower grille.", + "The 2012 Scion xD Hatchback can be identified by its sporty design, versatile interior, and fuel-efficient engine.", + "There are a few ways to identify a 2012 Scion xD Hatchback.", + "The Scion xD is a hatchback that was first introduced in 2008.", + "The Scion xD Hatchback was introduced in 2008.", + "There are several ways to identify a 2012 Scion xD Hatchback.", + "The 2012 Scion xD Hatchback can be identified by its unique front fascia, rear spoiler, and roofline.", + "The 2012 Scion xD Hatchback is a four-door hatchback that seats five passengers.", + "The 2012 Scion xD Hatchback has a unique look with its tall and boxy design.", + "The 2012 Scion xD Hatchback has a unique look that is different from most other cars on the road.", + "The 2012 Scion xD Hatchback has a swept-back look with flared wheel wells.", + "A 2012 Scion xD Hatchback looks like a compact car with a sloping roofline and a wide stance.", + "The 2012 Scion xD Hatchback has a boxy shape with sharp angles.", + "The 2012 Scion xD Hatchback is a small car that seats five passengers.", + "From the front, the 2012 Scion xD Hatchback looks like a smaller version of the Toyota Camry.", + "A 2012 Scion xD Hatchback has a sporty design with a sloping roofline and bold front grille.", + "A 2012 Scion xD Hatchback looks like a small four-door hatchback.", + "The image is of a 2012 Scion xD Hatchback in white.", + "The image is of a Hatchback with a\u00e9rodynamically designed body.", + "This is a 2012 Scion xD Hatchback.", + "The Scion xD Hatchback is a five-door hatchback that was produced by Toyota from 2007 to 2014.", + "The image is of a 2012 Scion xD Hatchback in excellent condition.", + "The image shows a 2012 Scion xD Hatchback in a bright blue color.", + "This image is of a 2012 Scion xD Hatchback in Barcelona Red.", + "The image shows a 2012 Scion xD Hatchback in a bright blue color.", + "The image is of a 2012 Scion xD Hatchback in silver.", + "The Scion xD Hatchback is a five-door vehicle that was introduced in 2007.", + "The 2012 Scion xD Hatchback is a great choice for anyone looking for an affordable, reliable car.", + "The 2012 Scion xD Hatchback is a sporty, yet practical car that is perfect for those who want a little bit of everything.", + "A blue 2012 Scion xD Hatchback.", + "The 2012 Scion xD Hatchback is a versatile and stylish car that is perfect for city driving.", + "A Scion xD Hatchback from 2012.", + "This 2012 Scion xD Hatchback is a great example of a compact car.", + "The 2012 Scion xD Hatchback is a versatile and stylish car that's perfect for city driving.", + " The Scion xD is a hatchback that was released in 2007.", + "This 2012 Scion xD Hatchback is a great option for anyone looking for a reliable and affordable vehicle.", + "A photo of a 2012 Scion xD Hatchback." + ], + "2012 Chevrolet Corvette ZR1": [ + "The 2012 Chevrolet Corvette ZR1 is a high performance sports car that is available as a coupe or convertible.", + "A 2012 Chevrolet Corvette ZR1 is a two-door, rear-wheel drive sports car that was introduced in 2009.", + "The 2012 Chevrolet Corvette ZR1 looks like a modern, sporty car.", + "The 2012 Corvette ZR1 has a sleek, aerodynamic design with a wide stance and a long, tapered rear end.", + "The 2012 Chevrolet Corvette ZR1 is a high-performance sports car that features a sleek and aggressive design.", + "A 2012 Chevrolet Corvette ZR1 is a sports car that has a long, low body style with a wide stance.", + "A 2012 Chevrolet Corvette ZR1 is a sleek and sporty looking car.", + "The 2012 Chevrolet Corvette ZR1 is a two-door, two-seater sports car that is available in both coupe and convertible body styles.", + "The 2012 Chevrolet Corvette ZR1 has a sleek, curved design with a built-in spoiler and side skirts.", + "The 2012 Chevrolet Corvette ZR1 has a sleek and aggressive design.", + "The Corvette ZR1 was a high performance version of the Chevrolet Corvette C6.", + "The Chevrolet Corvette ZR1 model was introduced in 2012 and can be identified by its unique, wide body style.", + "The Corvette ZR1 has a unique body style that is different from other Corvette models.", + "The main identifying feature of the 2012 Chevrolet Corvette ZR1 is its unique hood, which has a large central opening flanked by two smaller openings.", + "The 2012 Chevrolet Corvette ZR1 is a high performance version of the Corvette.", + "The Corvette ZR1 was introduced in 2008 as the pinnacle of the Corvette lineup.", + "The 2012 Chevrolet Corvette ZR1 is identified by its unique rear spoiler, wider rear tires, and larger brakes.", + "There are a few ways to identify a 2012 Chevrolet Corvette ZR1.", + "The 2012 Chevrolet Corvette ZR1 is a high performance car that is built on the Corvette Z06 platform.", + "The 2012 Chevrolet Corvette ZR1 is a sports car that was first introduced in 2009.", + "The 2012 Chevrolet Corvette ZR1 looks like a sports car with a long hood and a short rear end.", + "The 2012 Chevrolet Corvette ZR1 has a long nose and a wide body.", + "The 2012 Chevrolet Corvette ZR1 features a carbon fiber hood with a large rear spoiler and 19-inch front and 20-inch rear wheels.", + "A 2012 Chevrolet Corvette ZR1 looks like a modern day muscle car with a sleek and powerful design.", + "The 2012 Chevrolet Corvette ZR1 is a high-performance sports car that features a powerful V8 engine, unique styling, and track-ready performance.", + "The 2012 Chevrolet Corvette ZR1 is a high-performance sports car that is available as a coupe or convertible.", + "The 2012 Chevrolet Corvette ZR1 is a high-performance sports car that features a sleek and aggressive design.", + "The 2012 Chevrolet Corvette ZR1 has a sleek, aerodynamic design with a wide stance and a pronounced rear spoiler.", + "Please refer to the link below for a visual of the 2012 Chevrolet Corvette ZR1:https://www.", + "The 2012 Chevrolet Corvette ZR1 was the first year for the ZR1 model, and it featured a 6.", + "This image is of a 2012 Chevrolet Corvette ZR1.", + "The image is of a red Corvette ZR1 driving on a road with mountains in the background.", + "The image is of a sleek, red 2012 Chevrolet Corvette ZR1.", + "The image is of a white 2012 Chevrolet Corvette ZR1 with blue stripes on the hood and sides.", + "The image is of a 2012 Chevrolet Corvette ZR1 in blue.", + "The image shows a sleek, silver sports car with a long body and flared wheel wells.", + "The image is of a red 2012 Chevrolet Corvette ZR1.", + "This image shows a 2012 Chevrolet Corvette ZR1 in blue with a black interior.", + "The image is of a bright blue Corvette with a black interior.", + "The image is of a 2012 Chevrolet Corvette ZR1 in white with a black interior.", + "The 2012 Chevrolet Corvette ZR1 is a high performance sports car that was introduced in 2009.", + "This is the 2012 Chevrolet Corvette ZR1.", + "A 2012 Chevrolet Corvette ZR1 is seen next to a tree.", + "This is a 2012 Chevrolet Corvette ZR1.", + "The Chevrolet Corvette ZR1 is a high performance sports car that was first introduced in 2009.", + "The Corvette ZR1 is a high performance sports car that was first introduced in 2009.", + "The Chevrolet Corvette ZR1 is a high-performance sports car that was first introduced in 2008.", + "Chevrolet Corvette ZR1 (2012).", + "2012 Chevrolet Corvette ZR1The 2012 Chevrolet Corvette ZR1 is a high performance sports car that was produced by Chevrolet.", + "The Chevrolet Corvette ZR1 is a high performance sports car that was first introduced in 2009." + ], + "2009 Bentley Arnage Sedan": [ + "The 2009 Bentley Arnage Sedan has a long, sleek body with a chrome grille and round headlights.", + "The 2009 Bentley Arnage Sedan is a large, luxurious car with a long hood and a short rear deck.", + "A 2009 Bentley Arnage Sedan has a long, elegant hood, with a wide grille flanked by two headlights.", + "A 2009 Bentley Arnage Sedan has a sleek, modern look with a large grille and sleek lines.", + "A 2009 Bentley Arnage Sedan has a long, sleek body with smooth lines.", + "A 2009 Bentley Arnage Sedan has a sleek, sophisticated look with a long hood and short rear deck.", + "A 2009 Bentley Arnage Sedan has a sleek, elegant body style with sweeping lines.", + "A 2009 Bentley Arnage Sedan is a luxury vehicle that features a sleek and sophisticated design.", + "The 2009 Bentley Arnage Sedan is a large, luxurious car with a long hood and a short trunk.", + "A 2009 Bentley Arnage Sedan has a long, sleek body with four doors.", + "The 2009 Bentley Arnage Sedan can be identified by its long, sleek hood, large grille, and round headlights.", + "The 2009 Bentley Arnage Sedan can be identified by its large grille, long hood, and wide stance.", + "A 2009 Bentley Arnage Sedan can be identified by its long, low hood, large grille, and round headlamps.", + "The Bentley Arnage is a full-size luxury car produced by Bentley Motors in Crewe, England.", + "The 2009 Bentley Arnage Sedan can be identified by its long hood and sleek body.", + "The 2009 Bentley Arnage Sedan can be identified by its 6.", + "Some ways you can identify a 2009 Bentley Arnage Sedan are by its body style, which is a 4-door sedan, or by its VIN number.", + "A 2009 Bentley Arnage Sedan can be identified by its large size, long hood, and wide stance.", + "The Bentley Arnage was introduced in 1998 as a replacement for the Bentley Turbo R.", + "The 2009 Bentley Arnage Sedan is a full-size luxury car with a long hood and large grille.", + "A 2009 Bentley Arnage Sedan looks like a large, luxurious car.", + "A 2009 Bentley Arnage Sedan has a long, sleek body with a large grille and circular headlights.", + "A 2009 Bentley Arnage Sedan has a long, sleek hood and a wide, spacious cabin.", + "A 2009 Bentley Arnage Sedan may vary slightly in appearance, depending on the specific model and trim level.", + "A 2009 Bentley Arnage Sedan looks like a luxury car with a sleek, modern design.", + "A 2009 Bentley Arnage Sedan looks like a luxury car with an elegant design.", + "A 2009 Bentley Arnage Sedan looks like a luxury car.", + "The 2009 Bentley Arnage Sedan has a sleek and stylish look that is sure to turn heads.", + "A 2009 Bentley Arnage Sedan looks like a luxurious, powerful, and expensive car.", + "A 2009 Bentley Arnage Sedan has a sleek, powerful look with a long hood and curved roofline.", + "https://www.", + "The Bentley Arnage is a full-size luxury car produced by British automaker Bentley Motors from 1998 to 2009.", + "This Bentley Arnage is a 2009 model sedan that is black with a red interior.", + "The image is of a black Bentley Arnage Sedan with a chrome grille.", + "The image shows a 2009 Bentley Arnage Sedan in a dark, metallic color.", + "This image is of a luxurious 2009 Bentley Arnage Sedan.", + "Thisimageisofa 2009BentleyArnageSedan.", + "This image shows a blue Bentley Arnage sedan with a long hood and sleek lines.", + "The image is of a black Bentley Arnage Sedan with silver trim.", + "This image is of a Bentley Arnage Sedan from 2009.", + "This is a 2009 Bentley Arnage Sedan.", + "This is a 2009 Bentley Arnage Sedan.", + "Bentley Arnage Sedan (2009).", + "Bentley Arnage Sedan.", + "The Bentley Arnage is a large luxury car produced by Bentley Motors Limited in Crewe, England.", + "Bentley Arnage Sedan - 2009 Model.", + "A woman driving a 2009 Bentley Arnage sedan.", + "The 2009 Bentley Arnage is a luxurious sedan that exudes style and sophistication.", + "This luxurious 2009 Bentley Arnage Sedan is the epitome of elegance and class.", + "Bentley Arnage Sedan." + ], + "2010 Chevrolet HHR SS": [ + "A 2010 Chevrolet HHR SS has a sporty look with a blacked-out grille, rear spoiler, and fog lamps.", + "A 2010 Chevrolet HHR SS has a sleek and sporty design with a black grille and chrome accents.", + "The 2010 Chevrolet HHR SS has a unique retro inspired design.", + "A 2010 Chevrolet HHR SS has a sporty look with a sleek design.", + "A 2010 Chevrolet HHR SS has a sleek, stylish exterior with a sporty feel.", + "The 2010 Chevrolet HHR SS has a retro-styled body with a long hood and short deck.", + "A 2010 Chevrolet HHR SS has a sporty, yet boxy design.", + "A 2010 Chevrolet HHR SS has a sporty look with a black grille and 18-inch alloy wheels.", + "The HHR SS has a retro-styled design with a wide stance and big wheels.", + "A 2010 Chevrolet HHR SS has a sporty, stylish look with a sleek body and a rear spoiler.", + "The 2010 Chevrolet HHR SS can be identified by its sporty stance, aggressive front end, and rear spoiler.", + "One way to identify a 2010 Chevrolet HHR SS is by its roofline, which is more sloped than that of the regular HHR.", + "The 2010 Chevrolet HHR SS can be identified by its unique 20-inch wheels, body-colored rear spoiler, and SS badge on the grille.", + "The 2010 Chevrolet HHR SS can be identified by its aggressive stance, with a wider track and a lower stance than the standard HHR.", + "The Chevrolet HHR SS has a few identifying features.", + "The 2010 Chevrolet HHR SS can be identified by its unique sporty design.", + "The 2010 Chevrolet HHR SS is a high-performance version of the HHR with a turbocharged 2.", + "Visually, the 2010 Chevrolet HHR SS can be distinguished from other HHR models by its body-color cladding, unique 18-inch alloy wheels, and SS badging.", + "The 2010 Chevrolet HHR SS can be identified by its sporty design and aggressive stance.", + "If you look at the back of the car, you will see a \"Chevrolet\" badge on the left and an \"SS\" badge on the right.", + "A 2010 Chevrolet HHR SS looks like a cross between a muscle car and a minivan.", + "A 2010 Chevrolet HHR SS has a sporty look with a sleek design.", + "A 2010 Chevrolet HHR SS has a unique look with its bold curves and expressive styling.", + "A 2010 Chevrolet HHR SS looks like a sporty version of a traditional SUV.", + "The 2010 Chevrolet HHR SS has a unique look compared to other cars on the road.", + "I'm not sure what you're asking for.", + "A 2010 Chevrolet HHR SS has a sporty look with a black grille and red accents.", + "The 2010 Chevrolet HHR SS looks like a sporty version of the regular HHR models.", + "A 2010 Chevrolet HHR SS looks like a regular HHR, only with the SS badge on the back.", + "The 2010 Chevrolet HHR SS has a sporty look with a wide stance and large wheels.", + "The image is of a red 2010 Chevrolet HHR SS.", + "This image is of a 2010 Chevrolet HHR SS.", + "The image is of a dark blue Chevrolet HHR SS with silver accents.", + "The image is of a bright red 2010 Chevrolet HHR SS.", + "The image is of a black 2010 Chevrolet HHR SS.", + "This image is of a 2010 Chevrolet HHR SS.", + "The image is of a red Chevrolet HHR SS with a black roof.", + "This image is of a 2010 Chevrolet HHR SS.", + "This image is of a 2010 Chevrolet HHR SS in black.", + "The image is of a red 2010 Chevrolet HHR SS.", + "This is a 2010 Chevrolet HHR SS.", + "A 2010 Chevrolet HHR SS.", + "The Chevrolet HHR SS is a high-performance version of the standard HHR SUV.", + "The 2010 Chevrolet HHR SS is a high performance vehicle that offers great fuel economy and plenty of power.", + "This vehicle's sporty design is evident in its sleek lines and chrome accents.", + " A 2010 Chevrolet HHR SS parked in a driveway.", + "This is a 2010 Chevrolet HHR SS.", + "The 2010 Chevrolet HHR SS is a sporty, stylish car that's sure to turn heads.", + "The Chevy HHR SS is a high performance version of the standard HHR.", + "A 2010 Chevrolet HHR SS." + ], + "2012 Land Rover LR2 SUV": [ + "The Land Rover LR2 SUV is a sleek and stylish vehicle that is sure to turn heads.", + "The Land Rover LR2 is a compact SUV that was first introduced in 2008.", + "The LR2 is a small SUV that is available in both two- and four-wheel drive.", + "A 2012 Land Rover LR2 SUV has a sleek, modern look.", + "A 2012 Land Rover LR2 SUV has a sleek, modern look.", + "A 2012 Land Rover LR2 SUV has a sleek, sporty look with a touch of luxury.", + "A 2012 Land Rover LR2 SUV has a sleek design with curves and lines that give it a sophisticated look.", + "A 2012 Land Rover LR2 SUV typically has a boxy body style with some curvature, large windows, and a tall stance.", + "A 2012 Land Rover LR2 SUV has a sleek, modern look with an aggressive stance.", + "A 2012 Land Rover LR2 SUV has a sleek, modern look with an up-to-date grille and headlight design.", + "Looking at the front of the vehicle, the Land Rover LR2 SUV can be identified by its sloped nose and wide grill.", + "A 2012 Land Rover LR2 SUV can be identified by its rectangular headlamps, short front and rear overhangs, and its city-friendly size.", + "A 2012 Land Rover LR2 SUV can be identified by its unique styling, which includes a sloping roofline, and its large front grille.", + "The vehicle identification number (VIN) is located on the lower left side of the instrument panel, visible through the windshield.", + "A 2012 Land Rover LR2 SUV can be identified by its size, shape, and features.", + "The 2012 Land Rover LR2 SUV is a large vehicle with a long hood and distinctive front end.", + "The Land Rover LR2 SUV can be identified by its unique styling, which includes a sloped roofline, an angled windshield, and a short rear deck.", + "The 2012 Land Rover LR2 is a small SUV that seats five passengers.", + "A 2012 Land Rover LR2 SUV can be identified by its long wheelbase, independent suspension, and all-wheel drive.", + "There are a few ways to identify a 2012 Land Rover LR2 SUV.", + "A 2012 Land Rover LR2 SUV has a sleek, modern look with a slightly boxy shape.", + "A Land Rover LR2 SUV from 2012 has a sleek and modern look.", + "The Land Rover LR2 SUV is a four-door vehicle that seats five passengers.", + "The 2012 Land Rover LR2 SUV is a compact, stylish SUV that is perfect for city driving.", + "The 2012 Land Rover LR2 is a compact SUV that seats five.", + "The 2012 Land Rover LR2 is a compact SUV that seats five passengers.", + "A 2012 Land Rover LR2 SUV is a compact, four-door SUV that seats five passengers.", + "A 2012 Land Rover LR2 SUV has a sleek, modern design with a large front grille and aggressive headlights.", + "The 2012 Land Rover LR2 SUV has a sleek, modern look with a boxy shape.", + "A 2012 Land Rover LR2 SUV looks like a modern, stylish SUV with Land Rover's signature green, black, and silver colors.", + "The image is of a silver 2012 Land Rover LR2 SUV.", + "The image is of a 2012 Land Rover LR2 SUV in black.", + "This image is of a 2012 Land Rover LR2 SUV in white.", + "The image is of a dark blue 2012 Land Rover LR2 SUV.", + "The image is of a black 2012 Land Rover LR2 SUV.", + "The image is of a 2012 Land Rover LR2 SUV in a silver color.", + "The image is of a blue 2012 Land Rover LR2 SUV.", + "This image is of a silver 2012 Land Rover LR2 SUV.", + "This image is of a 2012 Land Rover LR2 SUV in a silver color.", + "This image is of a 2012 Land Rover LR2 SUV in white.", + "This Land Rover LR2 SUV is a reliable and stylish vehicle that is perfect for any family.", + "The 2012 Land Rover LR2 is a great choice for those looking for a reliable and stylish SUV.", + "The Land Rover LR2 is a five-door compact SUV that was introduced in the 2007 model year.", + "This Land Rover LR2 SUV is a sleek and stylish vehicle that is perfect for any commute.", + "A 2012 Land Rover LR2 SUV in black.", + "A 2012 Land Rover LR2 SUV parked in a driveway.", + "This is the 2012 Land Rover LR2 SUV.", + "This is a 2012 Land Rover LR2 SUV.", + "The LR2 is a great little SUV that's perfect for city driving.", + " 2012 Land Rover LR2 SUV." + ], + "2012 Hyundai Azera Sedan": [ + "A 2012 Hyundai Azera Sedan is a four-door sedan that seats up to five passengers.", + "The Hyundai Azera is a full-size sedan that was first introduced in 2006.", + "A 2012 Hyundai Azera Sedan has a sleek, modern look with sharp lines and a stylish grille.", + "The 2012 Hyundai Azera is a sleek and stylish sedan that is sure to turn heads.", + "A 2012 Hyundai Azera Sedan looks like a large, stylish car.", + "A 2012 Hyundai Azera Sedan has a sleek, modern look.", + "A 2012 Hyundai Azera Sedan has a sleek and modern look with a touch of luxury.", + "The 2012 Hyundai Azera sedan is a sleek and stylish car that is sure to turn heads.", + "The 2012 Hyundai Azera is a full-size sedan that seats five passengers.", + "The 2012 Hyundai Azera is a large sedan that seats five passengers.", + "The 2012 Hyundai Azera Sedan is a large car with a sleek, stylish design.", + "The 2012 Hyundai Azera sedan can be identified by its unique grille design, its chrome door handles, and its LED taillights.", + "The 2012 Hyundai Azera is a mid-size sedan that seats five passengers.", + " Look for the Hyundai logo on the front of the car.", + "The 2012 Hyundai Azera Sedan is a large car with a sleek and stylish design.", + "The 2012 Hyundai Azera can be identified by its six-speed automatic transmission, 18-inch alloy wheels, and leather-trimmed interior with heated front and rear seats.", + "The 2012 Hyundai Azera sedan can be identified by its sleek exterior design, and its spacious and comfortable interior.", + "2012 Hyundai Azera Sedan can be identified by its large chrome grille, projector beam headlights, LED daytime running lights and taillights, and dual exhaust tips.", + "If you are looking at a Hyundai Azera Sedan from 2012, you can tell that it is this model by its sleek design.", + "The 2012 Hyundai Azera Sedan can be identified by its sleek and elegant design.", + "The 2012 Hyundai Azera Sedan is a sleek and modern looking car.", + "A 2012 Hyundai Azera Sedan has a long, sleek body with sharp lines.", + "The 2012 Hyundai Azera Sedan has an aggressive stance with its wide stance and prominent grille.", + "The Hyundai Azera Sedan is a sleek and stylish car that looks great on the road.", + "The 2012 Hyundai Azera Sedan is a sleek, stylish car with a powerful engine and plenty of luxury features.", + "A 2012 Hyundai Azera Sedan has a sleek and stylish design.", + "The 2012 Hyundai Azera Sedan has a modern look that is both sporty and luxurious.", + "A 2012 Hyundai Azera Sedan has a sleek, modern design with a long hood and short rear deck.", + "The 2012 Hyundai Azera sedan has a sleek, modern look.", + "The 2012 Hyundai Azera is a large sedan that seats five passengers.", + "The image is of a 2012 Hyundai Azera Sedan in a silver color.", + "The image shows a 2012 Hyundai Azera Sedan in a bright silver color.", + "The image is of a 2012 Hyundai Azera sedan in white.", + "This image from the internet shows a 2012 Hyundai Azera Sedan in a bright blue color.", + "The 2012 Hyundai Azera Sedan is a sleek and stylish car that looks great on the road.", + "The image is of a 2012 Hyundai Azera Sedan in white.", + "The image is of a Hyundai Azera that is blue in color.", + "The 2012 Hyundai Azera is a sleek and stylish sedan that looks great on the road.", + "The 2012 Hyundai Azera Sedan is a sleek, modern car with smooth lines and a trendy design.", + "This image is of a 1999 Hyundai Azera sedan.", + "The Hyundai Azera Sedan was first introduced in 2012 and was designed to offer a more premium experience than the company's other vehicles.", + "The 2012 Hyundai Azera is a stylish and modern sedan that is perfect for those who want a luxurious and comfortable ride.", + " 2012 Hyundai Azera Sedan.", + " A 2012 Hyundai Azera sedan parked in a driveway.", + "This is the 2012 Hyundai Azera, a sedan that offers a spacious and comfortable ride with plenty of features to keep you entertained and safe on the road.", + "A view of the 2012 Hyundai Azera Sedan from the front.", + "2012 Hyundai Azera sedan in black.", + "2012 Hyundai Azera Sedan - The Hyundai Azera is a spacious and comfortable sedan that's perfect for the whole family.", + "The 2012 Hyundai Azera is a sleek and sporty sedan that's perfect for anyone looking for a sophisticated and stylish ride.", + "A Hyundai Azera sedan from 2012." + ], + "2009 Chrysler Aspen SUV": [ + "The 2009 Chrysler Aspen is a large SUV with a boxy shape.", + "A 2009 Chrysler Aspen SUV has a boxy body style with blunt front and rear ends.", + "The Chrysler Aspen SUV was originally released in 2006 and underwent a slight redesign in 2009.", + "This SUV has a sleek, modern look with a distinct grille and headlights.", + "The 2009 Chrysler Aspen SUV has a boxy body style with a long hood and large headlights.", + "A 2009 Chrysler Aspen SUV has a sleek, stylish look with a chrome grille and headlights.", + "A 2009 Chrysler Aspen SUV has a muscular, boxy look with a wide stance.", + "A 2009 Chrysler Aspen SUV is a large, seven-passenger SUV that was available in three trim levels: SE, SXT, and Limited.", + "A 2009 Chrysler Aspen SUV is a large vehicle that seats up to eight passengers.", + "A 2009 Chrysler Aspen SUV has a sleek and stylish design with a curvaceous body.", + "Chrysler Aspen SUVs can be identified by their boxy body style, wide stance, and large grilles.", + "The 2009 Chrysler Aspen SUV can be identified by its large, boxy body and wide stance.", + "The Aspen was only made for a few years, so it is not a very common vehicle.", + "The 2009 Chrysler Aspen SUV can be identified by its distinctive grille, wide stance, and flared wheel wells.", + "Look for the Chrysler Aspen name on the SUV.", + "If you are looking at a 2009 Chrysler Aspen SUV, you can identify it by its long, boxy body style.", + "There are a few ways that you can identify a 2009 Chrysler Aspen SUV.", + "The Aspen is a large SUV and is easily identified by its boxy shape.", + "Chrysler Aspen SUVs have a distinctive look.", + "There are a few ways that you can identify a 2009 Chrysler Aspen SUV.", + "The Chrysler Aspen is a full-size SUV that was first introduced in 2007.", + "The 2009 Chrysler Aspen SUV has a boxy shape with a wide grille, flared wheel arches, and a sloping rear roofline.", + "The 2009 Chrysler Aspen SUV has a sleek, modern design.", + "A 2009 Chrysler Aspen SUV is a large vehicle with a lot of power.", + "A 2009 Chrysler Aspen SUV has a boxy body style with a wide grille and large headlights.", + "The 2009 Chrysler Aspen SUV has a boxy design with wide fenders and a large grille.", + "The Chrysler Aspen SUV was first introduced in 2007 and continued to be sold until 2009.", + "Chrysler as made several changes to the Aspen SUV for 2009.", + "A 2009 Chrysler Aspen SUV has a sleek design with a curved front end.", + "A 2009 Chrysler Aspen SUV has a large grille, with the Chrysler logo in the center, and large headlights.", + "The image is of a blue Chrysler Aspen SUV.", + "The image is of a 2009 Chrysler Aspen SUV in silver.", + "The image is of a 2009 Chrysler Aspen SUV in a silver color.", + "This image is of a blue 2009 Chrysler Aspen SUV.", + "This car is luxurious and practical at the same time.", + "The image is of a blue SUV with chrome accents.", + "This image is of a 2009 Chrysler Aspen SUV in silver.", + "The image is of a 2009 Chrysler Aspen SUV in black.", + "The image is of a dark blue Chrysler Aspen SUV.", + "The image is of a silver Chrysler Aspen SUV with tinted windows.", + "The Chrysler Aspen is a full-size SUV that was introduced in 2007.", + "This SUV is imposing and offers a luxurious ride.", + "The Chrysler Aspen SUV was first introduced in 2009.", + "A 2009 Chrysler Aspen SUV.", + " The Chrysler Aspen was a full-size SUV made by Chrysler.", + " \"This mama bear and her cubs had an Aspen for breakfast.", + "This 2009 Chrysler Aspen SUV is a great example of American craftsmanship.", + "Chrysler Aspen SUV (2009).", + "A 2009 Chrysler Aspen SUV.", + " A 2009 Chrysler Aspen SUV." + ], + "2012 Buick Regal GS": [ + "A Buick Regal GS from 2012 is a midsize sedan that seats up to five passengers.", + "The 2012 Buick Regal GS is a four-door sedan that seats five passengers.", + "The 2012 Buick Regal GS is a four-door sedan with a sporty appearance.", + "The GS model has a sporty look with a black grille and 19-inch alloy wheels.", + "The 2012 Buick Regal GS is a mid-sized sedan that seats five passengers.", + "A 2012 Buick Regal GS is a car that has four doors and seats five people.", + "The 2012 Buick Regal GS has a sleek and sporty look, with a black grill and chrome accents.", + "This car has a sporty look with a sleek design.", + "The 2012 Buick Regal GS is a mid-sized sedan that seats five passengers.", + "The 2012 Buick Regal GS is a mid-sized sedan that seats five passengers.", + "The 2012 Buick Regal GS can be identified by its unique grille, rear spoiler, and dual exhaust.", + "From the outside, a 2012 Buick Regal GS can be identified by its sporty appearance.", + "The GS badge is located on the trunk.", + "The Buick Regal GS can be identified by its sporty appearance.", + "The 2012 Buick Regal GS can be identified by looking at the GS badge on the trunk.", + "The 2012 Buick Regal GS can be identified by its sporty handling and powerful turbocharged engine.", + "By looking at the badge on the back of the car.", + "The Buick Regal GS can be identified by its model name located on the back of the car.", + "The 2012 Buick Regal GS can be identified by its signature grille, HID headlights, and LED daytime running lights.", + "The 2012 Buick Regal GS is a sedan that seats five passengers.", + "The 2012 Buick Regal GS is a mid-size luxury sedan with a sleek, modern look.", + "A 2012 Buick Regal GS looks like a luxury sedan with a sleek design.", + "The 2012 Buick Regal GS is a sleek and stylish mid-sized sedan.", + "A 2012 Buick Regal GS is a sleek and sophisticated sedan with a powerful engine.", + "The 2012 Buick Regal GS is a mid-size sedan with a sleek, stylish design.", + "The 2012 Buick Regal GS looks like a sleek, stylish sedan with a sporty edge.", + "The 2012 Regal GS features a bold new grille and headlamp design, as well as a new rear fascia.", + "The 2012 Buick Regal GS is a four-door sedan with a sporty exterior.", + "The interior of a 2012 Buick Regal GS features leather-trimmed seats, a leather-wrapped steering wheel, and suede microfiber inserts.", + "The 2012 Buick Regal GS is a high-performance sedan with a stylish exterior.", + "In the image, the 2012 Buick Regal GS is a sleek and sporty looking sedan in silver.", + "The image is of a 2012 Buick Regal GS in black.", + "The image is of a 2012 Buick Regal GS in white.", + "The image is of a white car with chrome accents.", + "The image is of a 2012 Buick Regal GS in silver.", + "The image is of a shiny, silver 2012 Buick Regal GS.", + "This image is of a blue 2012 Buick Regal GS.", + "The image is of a white car with a black roof.", + "The image shows a black Buick Regal GS with chrome accents.", + "The image shows a 2012 Buick Regal GS in silver.", + "2012 Buick Regal GS sedan on display.", + "This Buick Regal GS is a performance-oriented variant of the standard Regal sedan.", + " A sleek, black Regal GS model from 2012.", + "2012 Buick Regal GS image.", + "A white Buick Regal GS with a black top and tinted windows.", + "The Buick Regal GS is a luxury sedan with a powerful engine and plenty of features to keep you comfortable and safe on the road.", + "The 2012 Buick Regal GS is a performance-oriented trim level of the Buick Regal sedan.", + "The 2012 Buick Regal GS is a performance-oriented variant of the Buick Regal sedan.", + "The all-new 2012 Buick Regal GS is a performance-oriented sedan that features a powerful turbocharged engine, sport-tuned suspension, and a host of other premium features.", + "The Regal GS is a high-performance sedan that was introduced in 2012." + ], + "2012 BMW 3 Series Wagon": [ + "The 2012 BMW 3 Series Wagon is a five-door car that is available in both rear-wheel and all-wheel drive.", + "A 2012 BMW 3 Series Wagon has a sleek, sporty design with a luxurious interior.", + "The 2012 BMW 3 Series Wagon has a sleek, modern design with a sporty feel.", + "The 2012 BMW 3 Series Wagon has a sleek and sporty look with a long hood and profile.", + "The 3 Series Wagon is a sporty wagon that is stylish and versatile.", + "It is a 5-door wagon that is available in rear-wheel drive or all-wheel drive.", + "The 2012 BMW 3 Series Wagon is a mid-sized sedan that seats five passengers.", + "A 2012 BMW 3 Series Wagon is a four-door car that seats five passengers.", + "A 2012 BMW 3 Series Wagon is a 4-door car that seats up to 5 passengers.", + "The 2012 BMW 3 Series Wagon is a mid-size luxury car that seats five passengers.", + "Look for the \"3 Series Wagon\" badge on the rear of the vehicle.", + "The 2012 BMW 3 Series Wagon can be identified by its sleek and stylish design.", + "The best way to identify a 2012 BMW 3 Series Wagon is by the VIN number.", + "A 2012 BMW 3 Series Wagon can be identified by its long roofline and rear passenger-side door.", + "If you are looking at a 2012 BMW 3 Series Wagon, you can identify it by its more boxy shape when compared to the sedans in the 3 Series.", + "The 2012 BMW 3 Series Wagon can be identified by its long roofline and large rear window.", + "There is no certain way to identify a 2012 BMW 3 Series Wagon without looking at the VIN (vehicle identification number), which is located on the dash near the windshield on the driver's side.", + "The 2012 BMW 3 Series Wagon can be identified by its long roofline and extended rear glass.", + "The third generation of the BMW 3 Series Wagon arrived in 2012 and was offered in the following trims: 328i xDrive, 328i, and 335i xDrive.", + "The 2012 BMW 3 Series Wagon can be identified by its long roofline, extended rear window, and integrated spoiler.", + "The 2012 BMW 3 Series Wagon is a sleek and stylish vehicle that is sure to turn heads.", + "A 2012 BMW 3 Series Wagon looks like a regular BMW 3 Series sedan, but with a slightly larger trunk area.", + "The 3 Series Wagon has a sleek and sporty look with a spacious interior.", + "A 2012 BMW 3 Series Wagon looks like a cross between a sedan and a SUV.", + "The 2012 BMW 3 Series Wagon looks like a smaller version of the BMW 5 Series Wagon.", + "The 2012 BMW 3 Series Wagon looks like a cross between a SUV and a station wagon.", + "A 2012 BMW 3 Series Wagon looks like a traditional wagon with a sleek and modern design.", + "A 2012 BMW 3 Series Wagon looks like a cross between a sedan and a station wagon.", + "A 2012 BMW 3 Series Wagon looks like a regular BMW 3 Series sedan, but with a larger cargo area in the back.", + "The 2012 BMW 3 Series Wagon is a sleek and stylish vehicle that is sure to turn heads.", + "The image is of a 2012 BMW 3 Series Wagon in a light blue color.", + "This image is of a 2012 BMW 3 Series Wagon in a deep blue color.", + "The image is of a 2012 BMW 3 Series Wagon in a light blue color.", + "The image is a photo of a 2012 BMW 3 Series Wagon in black.", + "The image shows a 2012 BMW 3 Series Wagon in silver.", + "The image is of a 2012 BMW 3 Series Wagon in blue.", + "The 2012 BMW 3 Series Wagon is a sleek and stylish vehicle that is sure to turn heads.", + "This image is of a white 2012 BMW 3 Series Wagon.", + "The BMW 3 Series Wagon is a sleek and stylish vehicle that is perfect for those who need a bit more storage space than a sedan can provide.", + "The image is of a 2012 BMW 3 Series Wagon in a white color.", + "A 2012 BMW 3 Series Wagon in excellent condition.", + "A 2012 BMW 3 Series Wagon.", + "This is a photo of a 2012 BMW 3 Series Wagon.", + "2012 BMW 3 Series Wagon.", + "2012 BMW 3 Series Wagon.", + "The 2012 BMW 3 Series Wagon is a great car for anyone looking for a luxurious and practical ride.", + "This is the 2012 BMW 3 Series Wagon.", + "A woman driving a 2012 BMW 3 Series Wagon.", + "2012 BMW 3 Series Wagon - the perfect car for the active family.", + "A 2012 BMW 3 Series Wagon in Twilight Blue Metallic." + ], + "2012 Jeep Compass SUV": [ + "The 2012 Jeep Compass SUV has a sleek and modern look.", + "A 2012 Jeep Compass SUV has a boxy shape with a tall stance.", + "An SUV that seats five passengers, the 2012 Jeep Compass has four doors and a luggage rack.", + "The 2012 Jeep Compass SUV has a sleek, modern look with a rounded front end and raised headlights.", + "A 2012 Jeep Compass has a modern yet boxy look.", + "The Jeep Compass is a five-seat SUV that is available in four-wheel drive or two-wheel drive models.", + "A 2012 Jeep Compass is a mid-sized SUV that seats five passengers.", + "A 2012 Jeep Compass SUV has a boxy body style with rectangular headlights.", + "A 2012 Jeep Compass SUV has a masculine body with beefy fenders and a 7-slat grille.", + "A 2012 Jeep Compass is a small SUV that seats five passengers.", + "The Jeep Compass is a small SUV that was first introduced in 2007.", + "A 2012 Jeep Compass SUV can be identified by its round headlights, seven-slot grille, and boxy body.", + "The Jeep Compass has been in production since 2007.", + "The 2012 Jeep Compass appears similar to the Jeep Patriot.", + "Some ways that you can identify a 2012 Jeep Compass SUV are by its front end, which is upright and boxy, and by its steeply raked windshield.", + "Some ways that you can identify a 2012 Jeep Compass SUV are by its square headlights, trapezoidal grille, and prominent wheel arches.", + "The 2012 Jeep Compass has a square body with crossbars on the doors and a Jeep grill.", + "The Jeep Compass is a compact crossover SUV that first premiered in 2007.", + "Look for the 2012 Jeep Compass SUV badge on the back of the vehicle.", + "By looking at the Jeep Compass, you can tell that it is an SUV because it is a big car and it has four doors.", + "The 2012 Jeep Compass SUV has a body style that is similar to that of a traditional Jeep SUV.", + "A 2012 Jeep Compass SUV has a boxy shape with a tall stance.", + "The 2012 Jeep Compass SUV has a round, boxy shape with a tall stance.", + "The 2012 Jeep Compass SUV has a sleek, modern look with an aggressive stance.", + "A 2012 Jeep Compass SUV is a crossover vehicle that has a angular shape.", + "A 2012 Jeep Compass SUV has a sleek, modern look.", + "The 2012 Jeep Compass SUV has a boxy but modern look.", + "A 2012 Jeep Compass SUV looks like a standard Jeep Compass SUV.", + "A 2012 Jeep Compass SUV has a sleek and modern look.", + "A 2012 Jeep Compass SUV has a rectangular body with an angled back end.", + "The image is of a 2012 Jeep Compass SUV in silver.", + "The image is of a silver Jeep Compass SUV with its hood up.", + "The image is of a 2012 Jeep Compass SUV that is red in color.", + "This image is of a 2012 Jeep Compass SUV in white.", + "The image from the internet is of a 2012 Jeep Compass SUV in black.", + "The image is of a 2012 Jeep Compass SUV in silver with a black roof.", + "The image is of a sleek, modern SUV in a deep red color.", + "The image is of a red Jeep Compass SUV parked in a driveway.", + "The image is of a 2012 Jeep Compass SUV.", + "The image is of a 2012 Jeep Compass SUV in a bright silver color.", + "2012 Jeep Compass SUV.", + "The Jeep Compass is a popular SUV that has been on the market since 2007.", + "The 2012 Jeep Compass is a stylish and capable SUV that can handle all of your off-road adventures.", + "2012 Jeep Compass SUV.", + "The 2012 Jeep Compass is a compact SUV that offers plenty of space and great fuel economy.", + "2012 Jeep Compass SUV.", + "2012 Jeep Compass SUV.", + "A 2012 Jeep Compass SUV.", + "The 2012 Jeep Compass is a versatile SUV that can handle any terrain.", + "This is the Jeep Compass SUV." + ], + "2012 Ram C/V Cargo Van Minivan": [ + "A 2012 Ram C/V Cargo Van Minivan has four doors, seating for seven, and a cargo area in the back.", + "The 2012 Ram C/V Cargo Van Minivan is a cargo van with plenty of space for storage.", + "A Ram C/V Cargo Van Minivan from 2012 is a large van that is great for hauling cargo or people.", + "The 2012 Ram C/V Cargo Van Minivan has a boxy body style with blunt front and rear end styling.", + "The 2012 Ram C/V Cargo Van Minivan looks like a large, white van with black accents.", + "A 2012 Ram C/V Cargo Van Minivan has a large cargo area that can hold a lot of stuff.", + "A 2012 Ram C/V Cargo Van Minivan is a minivan that is designed to haul cargo.", + "A 2012 Ram C/V Cargo Van Minivan has a boxy shape with four doors and a sliding door on the side.", + "A 2012 Ram C/V Cargo Van Minivan is a van that is used to transport cargo.", + "A 2012 Ram C/V Cargo Van Minivan is a van that is dark gray with chrome accents.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its long wheelbase and large cargo area.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its unique grille design, which is made up of six horizontal chrome bars.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its long wheelbase, high roof, and rear cargo door.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its longer wheelbase and taller roofline.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its large cargo area and tall roofline.", + "The Ram C/V Cargo Van Minivan was first introduced in 2012.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its distinctively boxy shape and large cargo area.", + "The 2012 Ram C/V Cargo Van Minivan is a full-size van that was designed for commercial use.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its long wheelbase and large cargo area.", + "The 2012 Ram C/V Cargo Van Minivan can be identified by its long wheelbase, large cargo area, and sliding door on the passenger side.", + "The 2012 Ram C/V Cargo Van Minivan looks like a cross between a large van and a small bus.", + "The 2012 Ram C/V Cargo Van Minivan looks like a regular cargo van.", + "A Ram C/V Cargo Van minivan from 2012 would look like a large van with plenty of space for cargo in the back.", + "There is no such thing as a 2012 Ram C/V Cargo Van Minivan.", + "A 2012 Ram C/V Cargo Van Minivan looks like a minivan with a cargo area.", + "The 2012 Ram C/V Cargo Van Minivan looks like a standard cargo van with the Ram logo on the front.", + "The 2012 Ram C/V Cargo Van Minivan has a boxy shape with a large cargo area.", + "A 2012 Ram C/V Cargo Van Minivan looks like a large, boxy van with a large cargo area.", + "One can find a picture of the 2012 Ram C/V Cargo Van Minivan on Edmunds.", + "The 2012 Ram C/V Cargo Van Minivan has a sleek, modern design that is sure to turn heads.", + "The image is of a red 2012 Ram C/V Cargo Van Minivan.", + "This image shows a 2012 Ram C/V Cargo Van Minivan in white.", + "This image is of a silver 2012 Ram C/V Cargo Van minivan.", + "The image is of a white van with the words \"Ram C/V Cargo Van\" written on the side.", + "The image is of a red 2012 Ram C/V Cargo Van Minivan.", + "In the image, the 2012 Ram C/V Cargo Van Minivan is a white cargo van with the Ram logo on the front.", + "I couldn't find an image of a 2012 Ram C/V Cargo Van Minivan on the internet.", + "The 2012 Ram C/V Cargo Van Minivan is a large van that is designed to transport cargo.", + "This image is of a 2012 Ram C/V Cargo Van Minivan.", + "The image is of a white 2012 Ram C/V Cargo Van Minivan.", + "Ram's 2012 C/V Cargo Van.", + "Ram C/V Cargo Van Minivan.", + "This is a photo of a 2012 Ram C/V Cargo Van Minivan.", + "A 2012 Ram C/V Cargo Van Minivan.", + " Brute strength and top-notch goodies for your growing business.", + "This is a picture of a 2012 Ram C/V Cargo Van Minivan.", + " Two Ram C/V Cargo Van Minivans in a parking lot, with one van in the foreground and the other in the background.", + "At the 2012 North American International Auto Show, Chrysler unveiled its all-new Ram C/V Cargo Van.", + "This is a 2012 Ram C/V Cargo Van Minivan.", + "2012 Ram C/V Cargo Van Minivan." + ], + "2009 Spyker C8 Convertible": [ + "A 2009 Spyker C8 convertible has a long, sleek body with sharp angles.", + "A 2009 Spyker C8 Convertible has a long, sleek body with a curved windshield.", + "The 2009 Spyker C8 Convertible is a sleek and stylish sports car that is sure to turn heads.", + "A 2009 Spyker C8 Convertible has an aggressive, yet sleek design.", + "A 2009 Spyker C8 Convertible is a two-seater sports car with a soft top convertible roof.", + "The 2009 Spyker C8 Convertible is a two-door, two-seater sports car.", + "A 2009 Spyker C8 Convertible is a luxury car that is available in both a coupe and convertible body style.", + "A 2009 Spyker C8 Convertible is a silver two-door car with a black convertible top.", + "A 2009 Spyker C8 Convertible is a two-door, two-seat convertible with a carbon fiber and aluminum body.", + "A 2009 Spyker C8 Convertible is a two-door, two-seater convertible sports car.", + "The 2009 Spyker C8 Convertible can be identified by its long nose and short rear deck, as well as its twin-tube chrome roll bars.", + "The Spyker C8 Convertible can be identified by its long hood, wide stance, and low-slung body.", + "By its low slung stance, long hood, and short rear deck, the 2009 Spyker C8 Convertible definitely has a sports car look.", + "There are a few ways to identify a 2009 Spyker C8 Convertible.", + "The 2009 Spyker C8 Convertible can be identified by its long hood, rear-hinged doors, and convertible top.", + " tail light.", + "The 2009 Spyker C8 Convertible can be identified by its long hood, short rear deck, and bulging fenders.", + "The 2009 Spyker C8 Convertible is a two-seater sports car that was produced by the Dutch automaker Spyker Cars.", + "The Spyker C8 Convertible can be identified by its unique styling.", + "The 2009 Spyker C8 Convertible can be identified by its long, low body style and its two-tone paint scheme.", + "A 2009 Spyker C8 Convertible looks like a sleek and stylish sports car.", + "A 2009 Spyker C8 Convertible looks like a 2-door convertible sports car with a long hood and short rear deck.", + " 2009 Spyker C8 Convertible looks like a white convertible with black stripes.", + "A 2009 Spyker C8 Convertible would likely have a sleek, sporty design with a convertible top.", + "A 2009 Spyker C8 Convertible looks like a racing car with a sleek, aerodynamic design.", + "A 2009 Spyker C8 Convertible looks like a cross between a Porsche 911 and a Corvette.", + "The 2009 Spyker C8 Convertible is a sleek and sporty vehicle that is sure to turn heads.", + "A 2009 Spyker C8 Convertible looks like a small, sleek, and sporty convertible car.", + "A 2009 Spyker C8 Convertible looks like a small, sleek two-seater sports car.", + "A 2009 Spyker C8 Convertible looks like a two-door sports car with a soft top.", + "The image is of a white 2009 Spyker C8 Convertible with the top down.", + "This image is a photo of a 2009 Spyker C8 Convertible.", + "The image is of a white Spyker C8 Convertible with the top down.", + "This image is of a 2009 Spyker C8 Convertible.", + "This image shows a sleek, silver convertible with long, sweeping lines.", + "This image is of a white Spyker C8 convertible with the top down.", + "This image is of a silver Spyker C8 convertible with its top down.", + "In the image, the 2009 Spyker C8 Convertible is a sleek, silver sports car with a black convertible top.", + "This image is of a red 2009 Spyker C8 Convertible.", + "The image is of a sleek, silver sports car with the top down.", + "The Spyker C8 Convertible was introduced in 2009 as a limited edition model.", + "2009 Spyker C8 Convertible - Front Angle.", + "This is the 2009 Spyker C8 Convertible.", + "The 2009 Spyker C8 Convertible is a work of art on wheels.", + "The 2009 Spyker C8 Convertible is a work of art on wheels.", + "This is a 2009 Spyker C8 Convertible.", + "A 2009 Spyker C8 Convertible in excellent condition.", + "The Spyker C8 Convertible is a luxurious sports car that was first introduced in 2009.", + " A blue 2009 Spyker C8 Convertible.", + "The Spyker C8 Convertible is a luxury car that was produced by the Dutch company Spyker Cars from 2009 to 2012." + ], + "2007 Audi S4 Sedan": [ + "A 2007 Audi S4 Sedan has a sleek, elegant look with clean lines and a sporty feel.", + "A 2007 Audi S4 Sedan has a sleek, sporty look with four doors and a trunk.", + "The 2007 Audi S4 Sedan is a mid-sized luxury car that seats five passengers.", + "A 2007 Audi S4 Sedan is a sedan that seats up to five passengers.", + "The 2007 Audi S4 Sedan has a sleek, sporty look with a flared grille and sharp lines.", + "A 2007 Audi S4 Sedan looks like a luxurious four-door sedan with a sleek, sporty design.", + "A 2007 Audi S4 Sedan has a sleek, sporty look with a four-door design.", + "A 2007 Audi S4 Sedan has four doors and seating for five passengers.", + "A 2007 Audi S4 Sedan has 4 doors, a trunk, and a hood.", + "If you are looking at a 2007 Audi S4 Sedan, you will notice that it is a luxury car.", + "The 2007 Audi S4 Sedan can be identified by its sleek, sporty design.", + "The 2007 Audi S4 Sedan is a four door sedan that seats five passengers.", + "The Audi S4 was produced from 1999 until 2008.", + "There are a few ways to identify a 2007 Audi S4 Sedan.", + "There are several ways to identify a 2007 Audi S4 Sedan.", + "The 2007 Audi S4 Sedan can be identified by its four doors, V8 engine, and Quattro all-wheel drive.", + "The 2007 Audi S4 Sedan can be identified by its four doors, chrome grille, and its round headlights.", + "There are a few ways that you can identify a 2007 Audi S4 Sedan.", + "There are a few ways you can identify a 2007 Audi S4 Sedan.", + "The 2007 Audi S4 Sedan can be identified by its sleek exterior design, including its signature Audi grille, as well as its athletic stance and aggressive lines.", + "The 2007 Audi S4 Sedan looks like a sleek and powerful four-door car.", + "The 2007 Audi S4 Sedan is a four-door car with a sleek and modern look.", + "The 2007 Audi S4 Sedan has a sleek and sporty look, with a sleek body and aggressive stance.", + "A 2007 Audi S4 Sedan looks like a sleek and luxurious sedan with plenty of horsepower.", + "A 2007 Audi S4 Sedan looks like a regular Audi sedan with a few extra features.", + "A 2007 Audi S4 Sedan looks like a small, luxury sedan.", + "The 2007 Audi S4 Sedan looks like a sporty, luxury car.", + "A 2007 Audi S4 Sedan has the following features: -4 doors -Seats 5 passengers -All-wheel drive - Turbocharged V6 engine -6-speed manual transmission -19-inch wheels -Leather interior -Sun.", + "The 2007 Audi S4 Sedan has a sleek, modern look with sharp lines and a stylish grille.", + "The 2007 Audi S4 Sedan has a sleek, sporty look with a chrome grille and xenon headlights.", + "This image is of a 2007 Audi S4 Sedan.", + "The image is of a sleek, black 2007 Audi S4 sedan.", + "The image is of a black 2007 Audi S4 sedan with tinted windows.", + "The image is of a 2007 Audi S4 Sedan.", + "The image is of a silver Audi S4 sedan with tinted windows.", + "The image is of a red 2007 Audi S4 Sedan.", + "The image shows a white Audi S4 sedan parked in a driveway.", + "This image shows a 2007 Audi S4 Sedan in silver.", + "The image is of a black 2007 Audi S4 Sedan with the doors and windows open.", + "The image is of a 2007 Audi S4 Sedan in silver with a black interior.", + "The 2007 Audi S4 Sedan is a luxurious and sporty vehicle that is sure to turn heads.", + " Audi S4 Sedan (2007).", + "Audi S4 Sedan - 2007 ModelThe Audi S4 is a high performance sports sedan that was first introduced in 2007.", + "The 2007 Audi S4 Sedan is a sleek and stylish car that is sure to turn heads.", + "2007 Audi S4 Sedan in excellent condition.", + "This 2007 Audi S4 Sedan is a sleek and stylish vehicle that is sure to turn heads.", + "The 2007 Audi S4 Sedan is a German performance car that was introduced in 2006.", + "The 2007 Audi S4 Sedan is a high performance car that combines luxury and performance.", + "This is a 2007 Audi S4 sedan.", + " A 2007 Audi S4 Sedan." + ], + "2012 Rolls-Royce Ghost Sedan": [ + "The 2012 Rolls-Royce Ghost Sedan has a long hood and a short rear deck.", + "The 2012 Rolls-Royce Ghost Sedan is a sleek and luxurious vehicle that exudes class and sophistication.", + "A 2012 Rolls-Royce Ghost Sedan is a luxurious vehicle that oozes class and sophistication.", + "A 2012 Rolls-Royce Ghost Sedan is a large, luxurious car that is typically silver or white in color.", + "The 2012 Rolls-Royce Ghost Sedan is a luxurious car that features a sleek and stylish design.", + "A 2012 Rolls-Royce Ghost Sedan is a large, luxurious car with plenty of horsepower to get you where you need to go in style.", + "The Rolls-Royce Ghost is a British luxury car that was first introduced in 2009.", + "A 2012 Rolls-Royce Ghost Sedan has a long, sleek body with a grille that dominates the front end.", + "The Rolls-Royce Ghost is a luxury sedan that was first introduced in 2010.", + "The 2012 Rolls-Royce Ghost is a large sedan with a long hood and a spacious cabin.", + "The Rolls-Royce Ghost is a British ultra-luxury sedan produced by Rolls-Royce Motor Cars.", + "The 2012 Rolls-Royce Ghost Sedan can be identified by its long hood, large grille, and wide stance.", + "The Ghost sedan can be identified by its long hood, short decklid, and lack of B-pillars.", + "The 2012 Rolls-Royce Ghost Sedan can be identified by its long hood, sleek body, and large grille.", + "The 2012 Rolls-Royce Ghost sedan can be identified by its long, sleek hood, short rear deck, and distinctive grille.", + "The Rolls-Royce Ghost is distinguished by its stately grille, long hood, and sleek profile.", + "The 2012 Rolls-Royce Ghost sedan can be identified by its long hood, short decklid, and large grille.", + "One way to identify a 2012 Rolls-Royce Ghost Sedan is to look for the \"R\" badge on the front grille.", + "The 2012 Rolls-Royce Ghost Sedan can be identified by its long wheelbase, large grille, and chrome exhaust tips.", + "The Rolls-Royce Ghost Sedan can be identified by its long hood, wide grille, and stately demeanor.", + "A 2012 Rolls-Royce Ghost Sedan looks like a luxurious and sophisticated car.", + "The 2012 Rolls-Royce Ghost Sedan has a sleek, luxurious look that is sure to turn heads.", + "A 2012 Rolls-Royce Ghost Sedan looks like a luxurious and sophisticated vehicle that would be fit for a wealthy individual.", + "A Rolls-Royce Ghost Sedan from 2012 is a beautifully designed vehicle that looks luxurious and expensive.", + "A 2012 Rolls-Royce Ghost Sedan looks like a luxurious, sophisticated vehicle that exudes wealth and status.", + "A 2012 Rolls-Royce Ghost Sedan looks like a luxurious and elegant vehicle that would turn heads on any street or highway.", + "The 2012 Rolls-Royce Ghost Sedan has a long, sleek body with a curved hood and windshield.", + "The 2012 Rolls-Royce Ghost Sedan features a sleek and elegant exterior design.", + "A 2012 Rolls-Royce Ghost Sedan has a sleek, elegant design with a long hood and short rear deck.", + "A 2012 Rolls-Royce Ghost Sedan looks like a luxury car with a sleek design.", + "The image is of a 2012 Rolls-Royce Ghost Sedan in a bright blue color.", + "The image is of a striking blue 2012 Rolls-Royce Ghost Sedan.", + "This image shows a 2012 Rolls-Royce Ghost Sedan in a clean, white color.", + "The image is of a sleek, black 2012 Rolls-Royce Ghost Sedan.", + "The image is of a beautiful, luxurious 2012 Rolls-Royce Ghost sedan in a sleek, silver color.", + "The image is of a luxurious 2012 Rolls-Royce Ghost Sedan parked on a city street.", + "The 2012 Rolls-Royce Ghost Sedan is a sleek and luxurious car.", + "This is a picture of a 2012 Rolls-Royce Ghost Sedan.", + "The image is of a 2012 Rolls-Royce Ghost Sedan in a deep blue color.", + "The image shows a 2012 Rolls-Royce Ghost Sedan in a stunning silver color.", + "Rolls-Royce Ghost 2012 model sedan, in black color.", + "The luxurious 2012 Rolls-Royce Ghost Sedan.", + "The 2012 Rolls-Royce Ghost Sedan is a luxurious and stylish car that is sure to turn heads.", + "The 2012 Rolls-Royce Ghost Sedan is a luxurious car that is sure to turn heads.", + "This beautiful 2012 Rolls-Royce Ghost Sedan is the epitome of luxury and style.", + "The epitome of luxury, this 2012 Rolls-Royce Ghost Sedan is the perfect vehicle for those who demand the very best.", + "The epitome of luxury, the 2012 Rolls-Royce Ghost Sedan is the perfect way to arrive in style.", + "The luxurious 2012 Rolls-Royce Ghost Sedan.", + "The 2012 Rolls-Royce Ghost Sedan is a work of art.", + "This luxurious 2012 Rolls-Royce Ghost Sedan is the epitome of style and sophistication." + ], + "2000 AM General Hummer SUV": [ + "A 2000 AM General Hummer SUV looks like a large, military-style SUV with a boxy shape.", + "A 2000 AM General Hummer SUV has a boxy shape with a large grille and squared-off headlights.", + "The 2000 AM General Hummer SUV is a large, boxy vehicle with a muscular appearance.", + "A 2000 AM General Hummer SUV would look like a large, boxy SUV with a long wheelbase and large tires.", + "A 2000 AM General Hummer SUV has a boxy body with a large grille and open front and rear fenders.", + "A 2000 AM General Hummer SUV is a large, boxy SUV with a wide grille and large headlight cluster.", + "A 2000 AM General Hummer SUV is a large, boxy vehicle with four doors and a removable roof.", + "The 2000 AM General Hummer SUV has a boxy body with a spare tire mounted on the side.", + "A 2000 AM General Hummer SUV has a large, rectangular body with four doors and a spare tire mounted on the back.", + "The 2000 Hummer SUV has a large, boxy body with a wide grille and big, round headlights.", + "A 2000 AM General Hummer SUV can be identified by its boxy shape, large size, and off-road capability.", + "2000 AM General Hummer SUVs can be identified by their large, boxy bodies.", + "The best way to identify a 2000 AM General Hummer SUV is by looking at the VIN number.", + "If the vehicle was produced in 2000, it will have a VIN that begins with \"1GCG6H1YXY\".", + "The 2000 AM General Hummer SUV is a large vehicle with a distinctive boxy shape.", + "The 2000 AM General Hummer SUV is a large, boxy vehicle with a wide stance.", + "The 2000 AM General Hummer SUV has a large grille, wide fenders, and a boxy body.", + "The AM General Hummer SUV was produced from 1992 to 2006.", + "The 2000 AM General Hummer SUV can be identified by its large size and boxy shape.", + "The 2000 AM General Hummer SUV can be identified by its large size, boxy shape, and distinctive grille.", + "The 2000 AM General Hummer SUV has a boxy appearance with a large grille and round headlights.", + "The 2000 AM General Hummer SUV has a boxy body style with a large grille and round headlights.", + "The 2000 AM General Hummer SUV has a boxy shape with a small grille and rectangular headlights.", + "A 2000 AM General Hummer SUV has a large, boxy body with a wide grille and squared-off headlights.", + "The 2000 AM General Hummer SUV is a large, boxy SUV with a wide grille and large headlights.", + "A 2000 AM General Hummer SUV has a square body with large, round headlights.", + "The 2000 AM General Hummer SUV looks like a large, boxy SUV with a tall stance.", + "A 2000 AM General Hummer SUV looks like a large, boxy vehicle with four doors and a spacious interior.", + "A 2000 AM General Hummer SUV is a large, military-style SUV with a boxy body and a wide stance.", + "A 2000 AM General Hummer SUV looks like a large military vehicle.", + "This image is of a 2000 AM General Hummer SUV in mint condition.", + "The image is of a large, green SUV with large tires.", + "The image is of a large, boxy SUV with four doors and a lifted suspension.", + "The 2000 AM General Hummer SUV is a large, boxy vehicle with a wide stance.", + "The image is of a large, green SUV with four doors.", + "The image is of a large, green SUV with four doors.", + "The image is of a silver 2000 AM General Hummer SUV.", + "The image is of a silver 2000 AM General Hummer SUV.", + "An image of a 2000 AM General Hummer SUV from the internet shows the front of the vehicle with its large grille and headlights.", + "This image is of a dirty, lifted, red 2000 AM General Hummer SUV.", + "This is a 2000 AM General Hummer SUV.", + " A 2000 AM General Hummer SUV.", + "This is a 2000 AM General Hummer SUV.", + "The 2000 AM General Hummer SUV is a large, imposing vehicle that is sure to turn heads when driving down the street.", + "The rugged and intimidating 2000 AM General Hummer SUV.", + "This is a 2000 AM General Hummer SUV.", + " \"2000 Hummer SUV\".", + "This is a 2000 AM General Hummer SUV.", + "AM General Hummer SUV.", + "This 2000 AM General Hummer SUV is a rugged and stylish off-road vehicle that is perfect for exploring the great outdoors." + ], + "2007 Ford Freestar Minivan": [ + "The 2007 Ford Freestar Minivan has a long body with enough room to seat seven people.", + "The 2007 Ford Freestar is a minivan that seats seven passengers.", + "A 2007 Ford Freestar Minivan has four doors, seats seven passengers, and has a lot of storage space.", + "The 2007 Ford Freestar minivan has a long wheelbase with a short front and rear overhang.", + "A 2007 Ford Freestar Minivan has four doors, a passenger side sliding door, and a hatchback.", + "A 2007 Ford Freestar Minivan has a long body with seating for seven people.", + "A 2007 Ford Freestar Minivan is a white, 7-passenger van with a 4.", + "A 2007 Ford Freestar Minivan has four doors, with two sliding doors on each side.", + "A 2007 Ford Freestar Minivan would likely look similar to a 2007 Ford Freestyle SUV, as they were both built on the same platform.", + "A 2007 Ford Freestar Minivan has four doors, seats seven people, and has a cargo area in the back.", + "The Ford Freestar is a minivan that was produced by the Ford Motor Company from 2004 until 2007.", + "The 2007 Ford Freestar Minivan can be identified by its boxy shape and large size.", + "There are a few ways to identify a 2007 Ford Freestar Minivan.", + "From the outside, you can identify a 2007 Ford Freestar Minivan by its large windshield and sloped hood.", + "The 2007 Ford Freestar Minivan has a V6 engine with a six-speed automatic transmission.", + "The 2007 Ford Freestar Minivan has a chrome grille and front bumper.", + "2007 was the last year that the Ford Freestar was produced.", + "The 2007 Ford Freestar minivan can be identified by its boxy shape and large size.", + "The Ford Freestar is a van that was manufactured by the Ford Motor Company from 2004 to 2007.", + "The easiest way to identify a 2007 Ford Freestar minivan is by its side windows.", + "The 2007 Ford Freestar Minivan has a sleek and stylish exterior with plenty of room for passengers and cargo.", + "The 2007 Ford Freestar Minivan looks like a regular minivan except it has the Ford logo on the front.", + "The 2007 Ford Freestar is a van with seven passenger seating.", + "The 2007 Ford Freestar Minivan has a boxy shape with large, rectangular headlights.", + "The 2007 Ford Freestar Minivan looks like a large, boxy van with six doors (two on each side and one in the back).", + "The 2007 Ford Freestar Minivan has a long body with a wide, boxy shape.", + "A 2007 Ford Freestar Minivan looks like a regular van with plenty of space for cargo or passengers.", + "A 2007 Ford Freestar Minivan has a boxy shape with round headlights.", + "Assuming you mean the exterior: It is boxy with sharp angles.", + "A 2007 Ford Freestar minivan has a boxy shape with a long wheelbase.", + "The image depicts a 2007 Ford Freestar Minivan in blue.", + "This image is of a 2007 Ford Freestar Minivan in silver.", + "The image shows a red 2007 Ford Freestar minivan parked in a driveway.", + "The image is of a red minivan with a black trim.", + "The image is of a Ford Freestar minivan in a light blue color.", + "The image is of a sleek, silver minivan with smooth lines and large windows.", + "The image shows a red 2007 Ford Freestar Minivan with dark tinted windows.", + "The 2007 Ford Freestar Minivan is a blue car with four doors.", + "This image is of a 2007 Ford Freestar Minivan in silver.", + "This image is of a dark blue 2007 Ford Freestar Minivan.", + " The Ford Freestar is a reliable and affordable minivan.", + "2007 Ford Freestar Minivan.", + "This is a 2007 Ford Freestar minivan.", + "2007 Ford Freestar Minivan.", + "A blue Ford Freestar minivan parked in a driveway.", + "This 2007 Ford Freestar Minivan is a great option for a family vehicle.", + "This is a 2007 Ford Freestar Minivan.", + "This is a 2007 Ford Freestar Minivan.", + "2007 Ford Freestar Minivan.", + "2007 Ford Freestar MinivanThe 2007 Ford Freestar Minivan was released in 2006 as a 2007 model." + ], + "2011 Bentley Mulsanne Sedan": [ + "The Bentley Mulsanne is a large luxury car that was first introduced in 2010.", + "A 2011 Bentley Mulsanne Sedan looks like a luxurious and powerful car.", + "The 2011 Bentley Mulsanne Sedan is a luxurious car that features a sleek, sophisticated design.", + "A 2011 Bentley Mulsanne Sedan has a long, sleek body with a curved windshield and distinctive grille.", + "The Mulsanne is a luxurious sedan that was first introduced in 2010.", + "A 2011 Bentley Mulsanne Sedan has a long, sleek body with smooth lines.", + "The 2011 Bentley Mulsanne Sedan is a luxury vehicle that is available in four different trim levels.", + "The 2011 Bentley Mulsanne Sedan is a large, luxurious car with a long hood and a sleek, stylish design.", + "A 2011 Bentley Mulsanne Sedan has a sleek, elegant look with a long hood and a short rear deck.", + "A 2011 Bentley Mulsanne Sedan looks like a luxury car with a sleek design.", + "The Bentley Mulsanne is a large luxury sedan that was first released in 2010.", + "There are a few ways to identify a 2011 Bentley Mulsanne Sedan.", + "The Mulsanne has a long hood and large grille with the Bentley logo in the center.", + "One way to identify a 2011 Bentley Mulsanne Sedan is to look for the Bentley \"Flying B\" hood ornament.", + "A 2011 Bentley Mulsanne Sedan can be identified by its long hood, large grille, and low, wide stance.", + "The 2011 Bentley Mulsanne sedan can be identified by its long hood, large grille, and rectangular headlamps.", + "The Bentley Mulsanne Sedan can be identified by its long hood, wide grille, and large headlights.", + "The 2011 Bentley Mulsanne Sedan can be identified by its large size, long wheelbase, and chrome grille.", + "The grille on the 2011 Bentley Mulsanne Sedan is unique and can be used to identify the car.", + "The 2011 Bentley Mulsanne Sedan can be identified by its long hood, large grille, and round headlights.", + "A 2011 Bentley Mulsanne Sedan looks like a large, luxurious car.", + "A 2011 Bentley Mulsanne Sedan looks like a luxury car.", + "The Bentley Mulsanne is a large luxury sedan with a sleek, powerful look.", + "The 2011 Bentley Mulsanne Sedan has a sleek, modern look with a long hood and short rear deck.", + "A 2011 Bentley Mulsanne Sedan looks like a regular Bentley Mulsanne, but with a smaller, more compact sedan body.", + "A 2011 Bentley Mulsanne Sedan looks like a large, luxurious car.", + "A 2011 Bentley Mulsanne Sedan has a sleek, modern look with a large grille and headlamps.", + "A 2011 Bentley Mulsanne Sedan looks like a high-end luxury vehicle with sleek lines and a powerful presence.", + "A 2011 Bentley Mulsanne Sedan looks like a large, luxurious car.", + "A 2011 Bentley Mulsanne Sedan looks like a luxury car with a lot of features.", + "The image is of a car that is silver and sleek in design.", + "The image is of a beautiful, sleek and shining black 2011 Bentley Mulsanne Sedan.", + "This image is of a black 2011 Bentley Mulsanne Sedan.", + "This image depicts a Bentley Mulsanne Sedan from 2011.", + "The image is of a sleek, silver Bentley Mulsanne Sedan.", + "The photo shows a silver Bentley Mulsanne Sedan with black trim and tinted windows.", + "This image is of a 2011 Bentley Mulsanne Sedan in a light blue color.", + "The 2011 Bentley Mulsanne Sedan is a luxurious car with a sleek design.", + "This 2011 Bentley Mulsanne Sedan is a luxurious car with a sleek, black exterior and a plush, cream-colored interior.", + "The image is of a sleek, black Bentley Mulsanne Sedan.", + "The 2011 Bentley Mulsanne is a luxury sedan that features a powerful V8 engine and a stylish interior.", + "The Bentley Mulsanne is a luxurious sedan that was first introduced in 2010.", + "Bentley Mulsanne Sedan - 2011 ModelThe Bentley Mulsanne is a luxury sedan manufactured by Bentley Motors Limited.", + "This is a 2011 Bentley Mulsanne Sedan.", + "This is a 2011 Bentley Mulsanne Sedan.", + "This is a 2011 Bentley Mulsanne Sedan.", + "The Bentley Mulsanne is a luxurious sedan that was first introduced in 2010.", + "2011 Bentley Mulsanne Sedan.", + "The Bentley Mulsanne is a luxurious sedan that was first introduced in 2010.", + "This 2011 Bentley Mulsanne Sedan is a sleek and luxurious car that would turn heads on any street." + ], + "2011 Audi TT Hatchback": [ + "The 2011 Audi TT has a sleek, modern look with a sloping hood and a curved roofline.", + "A 2011 Audi TT Hatchback has a sleek, sporty design with a curved body and a sloping roofline.", + "A 2011 Audi TT Hatchback is a two-door car that seats four people.", + "The 2011 Audi TT Hatchback is a sleek and stylish car that is sure to turn heads.", + "A 2011 Audi TT Hatchback is a sleek and stylish car that is sure to turn heads.", + "A 2011 Audi TT Hatchback is a small, sporty car that seats four people.", + "The 2011 Audi TT Hatchback has a sporty look with its sleek lines and aggressive stance.", + "A 2011 Audi TT Hatchback is a small, sporty car with a sleek, aerodynamic design.", + "A 2011 Audi TT Hatchback is a small, two-door sports car with a .", + "The 2011 Audi TT Hatchback has a sleek, sporty look with a sloping roofline and a rounded back.", + "The 2011 Audi TT Hatchback can be identified by its unique exterior design.", + "A 2011 Audi TT Hatchback can be identified by its sleek, sporty design.", + "The best way to identify a 2011 Audi TT Hatchback is to look at the design of the car.", + "There are a few ways to identify a 2011 Audi TT Hatchback.", + "If you are looking at a 2011 Audi TT, and it has four doors, then it is a hatchback.", + "Assuming you are asking how to identify a 2011 Audi TT Hatchback from other Audi TT models: One way to tell is by the shape of the rear window.", + "One way to identify a 2011 Audi TT Hatchback is by its unique exterior design.", + "The 2011 Audi TT Hatchback can be identified by its unique styling.", + "The 2011 Audi TT has a unique look that sets it apart from other cars on the road.", + "The 2011 Audi TT Hatchback can be identified by its sleek design and modern look.", + "The Audi TT is a compact, 2+2 sports car manufactured by German automaker Audi since 1998.", + "The 2011 Audi TT has a sleek and sporty look, with a hatchback design that makes it unique.", + "A 2011 Audi TT Hatchback looks like a small, sporty car with a sloping roofline and large rear spoiler.", + "A 2011 Audi TT Hatchback looks like a small, sporty car with a sloped roofline and large, round headlights.", + "A 2011 Audi TT Hatchback looks similar to a 2008 Audi TT Hatchback.", + "A 2011 Audi TT Hatchback looks like a small, sporty car with a sleek, modern design.", + "A 2011 Audi TT Hatchback looks like a small, sleek, and fast car.", + "A 2011 Audi TT Hatchback looks like a smaller version of an Audi A5.", + "A 2011 Audi TT Hatchback would look like a small, two-door hatchback car with a sleek and sporty design.", + "A 2011 Audi TT Hatchback looks like a sporty, stylish car.", + "This image is of a 2011 Audi TT Hatchback in the color black.", + "The 2011 Audi TT Hatchback is a sleek and stylish car with a curvy body and flared wheel wells.", + "The image is of a 2011 Audi TT Hatchback in a light blue color.", + "The image is of a silver Audi TT Hatchback with its hood up.", + "The image is of a golden Audi TT Hatchback with a sleek design.", + "The image is of a 2011 Audi TT Hatchback in blue.", + "The 2011 Audi TT Hatchback is a sleek, sporty car with a stylish interior.", + "The image shows a 2011 Audi TT Hatchback in a glossy black paint job.", + "The image is of a 2011 Audi TT Hatchback in white.", + "This image is of a 2011 Audi TT Hatchback in silver.", + "The Audi TT is a two-door sports car with a hatchback body style.", + "This is a 2011 Audi TT Hatchback.", + "The 2011 Audi TT is a hatchback that seats five and has a starting MSRP of $39,950.", + "The 2011 Audi TT is a stylish and sporty hatchback that's perfect for anyone looking for a fun and practical car.", + "2011 Audi TT Hatchback.", + "2011 Audi TT Hatchback.", + "The 2011 Audi TT Hatchback is a stylish and sporty car that is sure to turn heads.", + "The 2011 Audi TT Hatchback is a stylish and sporty car that is perfect for those who enjoy the outdoors.", + "This is a 2011 Audi TT Hatchback.", + "The all-new 2011 Audi TT - a sporty hatchback with a sleek design." + ], + "2009 Mercedes-Benz SL-Class Coupe": [ + "A 2009 Mercedes-Benz SL-Class Coupe has a long hood and a short rear deck.", + "The 2009 Mercedes-Benz SL-Class Coupe is a luxury sports car that seats two people.", + "The 2009 Mercedes-Benz SL-Class Coupe is a two-door, luxury sports car with a sleek, modern design.", + "A 2009 Mercedes-Benz SL-Class Coupe is a luxury car that is available in both a hardtop convertible and a coupe body style.", + "A 2009 Mercedes-Benz SL-Class Coupe has a long, sleek body with a curved hood and windshield.", + "The 2009 Mercedes-Benz SL-Class Coupe is a sleek and stylish two-door vehicle that is sure to turn heads.", + "The 2009 Mercedes-Benz SL-Class is a luxury 2-door coupe.", + "A 2009 Mercedes-Benz SL-Class Coupe is a luxury car that is available in three different models: SL550, SL600, and SL63 AMG.", + "A 2009 Mercedes-Benz SL-Class Coupe has a long, sleek hood and a short rear deck.", + "A 2009 Mercedes-Benz SL-Class Coupe has a long hood and a short rear deck.", + "There are several ways to identify a 2009 Mercedes-Benz SL-Class Coupe.", + "Assuming you would like to identify a 2009 Mercedes-Benz SL-Class Coupe from a distance: The SL-Class has a long hood and a short rear deck.", + "Some ways that you can identify a 2009 Mercedes-Benz SL-Class Coupe are by its long nose, small greenhouse, and long rear deck.", + "The 2009 Mercedes-Benz SL-Class Coupe can be identified by its long nose, sloping hood, and sharp angles.", + "There are a couple of ways to identify a 2009 Mercedes-Benz SL-Class Coupe.", + "One way to identify a 2009 Mercedes-Benz SL-Class Coupe is by its VIN number.", + "The 2009 Mercedes-Benz SL-Class Coupe can be identified by its long hood, wide stance, and large front grille.", + "There are a few ways to identify a 2009 Mercedes-Benz SL-Class Coupe.", + "The 2009 Mercedes-Benz SL-Class Coupe can be identified by its long hood, short rear deck, and wide stance.", + "A 2009 Mercedes-Benz SL-Class Coupe can be identified by its long hood, short rear deck, and sleek design.", + "The exterior of a 2009 Mercedes-Benz SL-Class Coupe is characterized by its long hood, short rear deck, and wide stance.", + "A 2009 Mercedes-Benz SL-Class Coupe has a long, sleek hood and a short rear end.", + "A 2009 Mercedes-Benz SL-Class coupe is a two-door car with a sleek, curved design.", + "A 2009 Mercedes-Benz SL-Class Coupe has a sleek and stylish look with a long hood and a short rear end.", + " 2009 Mercedes-Benz SL-Class Coupe.", + "A 2009 Mercedes-Benz SL-Class Coupe has a sleek, stylish look with a long hood and a short trunk.", + "The 2009 Mercedes-Benz SL-Class Coupe is a sleek, elegant vehicle with a long hood and a short rear end.", + "It is a sleek, stylish car with a long hood and a short rear end.", + "A 2009 Mercedes-Benz SL-Class Coupe has a long, sleek hood and a short rear end.", + "A 2009 Mercedes-Benz SL-Class Coupe is a sleek and stylish two-door car with a powerful engine and a luxurious interior.", + "The image is of a black 2009 Mercedes-Benz SL-Class Coupe.", + "The image is of a sleek, silver 2009 Mercedes-Benz SL-Class Coupe.", + "The image is of a glossy black 2009 Mercedes-Benz SL-Class Coupe.", + "This image is of a 2009 Mercedes-Benz SL-Class Coupe in black.", + "The image is of a black Mercedes-Benz SL-Class Coupe with the top down.", + "The image is of a sleek, silver 2009 Mercedes-Benz SL-Class Coupe.", + "This image shows a sleek, black 2009 Mercedes-Benz SL-Class Coupe.", + "Image shows a 2009 Mercedes-Benz SL-Class Coupe in black.", + "The image is of a 2009 Mercedes-Benz SL-Class Coupe in black.", + "This image is of a white 2009 Mercedes-Benz SL-Class Coupe.", + "This sleek 2009 Mercedes-Benz SL-Class Coupe is a work of art on wheels.", + "A 2009 Mercedes-Benz SL-Class Coupe.", + "This sleek 2009 Mercedes-Benz SL-Class Coupe is a stunner on the road.", + "This sleek and stylish 2009 Mercedes-Benz SL-Class Coupe is sure to turn heads on the road.", + "This is a 2009 Mercedes-Benz SL-Class Coupe.", + "This is a 2009 Mercedes-Benz SL-Class Coupe.", + "2009 Mercedes-Benz SL-Class Coupe.", + "The 2009 Mercedes-Benz SL-Class Coupe is a work of art.", + " A 2009 Mercedes-Benz SL-Class Coupe on a road.", + "This Mercedes-Benz SL-Class Coupe is a sight to behold." + ], + "2012 Chevrolet Silverado 1500 Hybrid Crew Cab": [ + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab has four full-size doors and a standard bed.", + ".", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab has a black grille with a chrome surround, halogen projector-beam headlamps, and LED daytime running lamps.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size pickup truck that seats up to six people.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab has a muscular body with sharp lines.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size pickup truck that seats up to six passengers.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab looks like a regular Chevrolet Silverado 1500 Crew Cab with the addition of a hybrid badge on the front fender.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab has four full-size doors and a truck bed.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab has a stylish yet rugged exterior design.", + "The Chevrolet Silverado 1500 Hybrid Crew Cab is a four-door truck that seats up to six people.", + "The Chevrolet Silverado 1500 Hybrid Crew Cab can be identified by its model number, which is 1GC1KUEC8CZ171859.", + "Some easy ways to identify a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab would be to look for the Chevy logo on the front grille, and to look for the \"Hybrid\" badge on the rear tailgate.", + "By looking for the \"hybrid\" badge on the rear of the vehicle.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab can be identified by its unique grille and hybrid badges.", + "It will have the Chevrolet emblem on the grille, and \"Silverado 1500 Hybrid\" badges on the front fenders.", + "Most 2012 Chevrolet Silverado 1500 Hybrid Crew Cabs will have \"HYBRID\" decals on the sides and back.", + "By looking at the 2012 Chevrolet Silverado 1500 Hybrid Crew Cab, you will notice that it has a unique grille, different-looking headlights, and large hybrid badges on the front fenders.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab can be identified by its unique hybrid badge on the rear of the vehicle.", + "There are a few ways to identify a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab:1.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab can be identified by its six-lug wheel configuration, chrome grille and bumper, and rear-hinged rear doors.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab looks like a traditional Silverado 1500 Crew Cab with a few exceptions.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size, four-door truck that seats up to six passengers.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab has a light-duty crew cab body style, and a six-speed automatic transmission.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab looks like a regular Chevy Silverado 1500 Crew Cab, with the exception of the hybrid badge on the tailgate.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab looks like a truck.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size hybrid pickup truck.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab looks like a regular Silverado 1500 Crew Cab with the addition of a hybrid badge on the front grille.", + "The vehicle you are asking about is a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size pickup truck with a crew cab that seats up to six people.", + "A 2012 Chevrolet Silverado 1500 Hybrid Crew Cab looks like a regular Silverado 1500 Crew Cab, except that it has a powersplit device between the transmission and the rear differential, and a few extra hybrid badges.", + "The image is of a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab truck in blue.", + "It is a picture of a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab.", + "The image shows a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab in silver.", + "An image of a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab can be found here: https://www.", + "In the image, the 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is alarge, silver truck with four doors.", + "In the image, the 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a dark blue color with chrome detailing.", + "The image shows a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab pickup truck in metallic blue with chrome trim.", + "The image is of a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab.", + " 4WDThe image is of a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 4WD.", + "The image is of a blue 2012 Chevrolet Silverado 1500 Hybrid Crew Cab.", + "The Silverado 1500 Hybrid is a full-size pickup truck that gets better fuel economy than its gas-powered counterparts.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size hybrid pickup truck that gets an EPA-estimated 23 mpg in the city and 33 mpg on the highway.", + "This is a 2012 Chevrolet Silverado 1500 Hybrid Crew Cab.", + "The all-new 2012 Chevrolet Silverado 1500 Hybrid is the most fuel-efficient pickup truck on the market, thanks to its advanced two-mode hybrid system.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size hybrid-electric pickup truck.", + "The Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size hybrid pickup truck manufactured by General Motors.", + "2012 Chevrolet Silverado 1500 Hybrid Crew Cab.", + "A Chevy Silverado 1500 Hybrid Crew Cab.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size hybrid truck that seats up to six passengers.", + "The 2012 Chevrolet Silverado 1500 Hybrid Crew Cab is a full-size hybrid pickup truck." + ], + "2012 Buick Enclave SUV": [ + "The 2012 Buick Enclave is a full-size SUV that seats up to eight passengers.", + "The 2012 Buick Enclave SUV has a sleek, modern look with a stylish grille and chrome accents.", + "Describe what a 2012 Buick Enclave SUV looks like.", + "A 2012 Buick Enclave SUV has a sleek, stylish exterior with chrome accents.", + "A 2012 Buick Enclave SUV has a sleek, modern look.", + "The 2012 Buick Enclave SUV has a sleek, modern look.", + "The 2012 Buick Enclave is a midsize SUV with a boxy body style.", + "A 2012 Buick Enclave SUV has a sleek, modern look.", + "The Enclave has a sleek, modern look with its chrome accents and distinct grille.", + "The 2012 Buick Enclave SUV is a large vehicle that seat up to eight people.", + "The 2012 Buick Enclave SUV can be identified by its body style and grille design.", + "A 2012 Buick Enclave SUV can be identified by its sleek and stylish design.", + "A 2012 Buick Enclave SUV can be identified by its large size, V6 engine, and six-speed automatic transmission.", + "From the front, you can tell a 2012 Buick Enclave SUV by its wide chrome grille and its sharp, angled headlights.", + "If you are looking at a 2012 Buick Enclave SUV, you will be able to identify it by its large grille, sleek headlights, and big taillights.", + "The 2012 Buick Enclave SUV can be identified by its sleek, modern design with chrome accents.", + "To identify a 2012 Buick Enclave SUV, look for the Buick badge on the front grille.", + "Some ways that you can identify a 2012 Buick Enclave SUV are by its dimensions, which are approximately 205 inches in length and 78 inches in width, and by its engines, which include a 3.", + "The 2012 Buick Enclave SUV can be identified by its large size, sleek design, and aggressive front end.", + "The 2012 Buick Enclave has a chrome-lined grille and chrome side window trim.", + "A 2012 Buick Enclave SUV looks like a large vehicle with plenty of space for passengers and cargo.", + "A 2012 Buick Enclave SUV looks like a large, comfortable vehicle with plenty of space for passengers and cargo.", + "The 2012 Buick Enclave is a large SUV that seats up to eight passengers comfortably.", + "A 2012 Buick Enclave SUV has a sleek, modern look with chrome accents and a spacious interior.", + "The 2012 Buick Enclave SUV has a sleek, modern design with a grille that is reminiscent of a luxury sports car.", + "A 2012 Buick Enclave SUV has a very sleek, modern look.", + "The 2012 Buick Enclave is a large SUV that can seat up to eight passengers.", + "A Buick Enclave SUV from 2012 has a very sleek and stylish look.", + "A 2012 Buick Enclave SUV has a sleek, modern look with plenty of curves and chrome accents.", + "A 2012 Buick Enclave SUV has a sleek and stylish design.", + "The image is of a white, 2012 Buick Enclave SUV.", + "The image is of a 2012 Buick Enclave SUV in a light blue color.", + "The image is of a 2012 Buick Enclave SUV that is parked in front of a house.", + "The image is of a silver SUV with chrome detailing.", + "The image shows a 2012 Buick Enclave SUV in silver.", + "The 2012 Buick Enclave is a 7-passenger SUV that has a sleek and stylish design.", + "This image is of a blue Buick Enclave SUV parked in a driveway.", + "The image is of a 2012 Buick Enclave SUV in a dark color.", + "The image is of a 2012 Buick Enclave SUV in blue.", + "The image is of a blue Buick Enclave SUV with chrome accents.", + "2012 Buick Enclave SUV.", + " \"The 2012 Buick Enclave SUV.", + "This Buick Enclave is a luxurious SUV that can comfortably seat up to eight passengers.", + "The 2012 Buick Enclave is a mid-size SUV that seats up to eight passengers.", + "The Buick Enclave is a large SUV that seats up to eight passengers.", + "The 2012 Buick Enclave is a luxurious and practical SUV that's perfect for families.", + "The Buick Enclave is a full-size SUV that was introduced in 2007.", + "The 2012 Buick Enclave SUV is a luxurious and practical vehicle that has plenty of space for families or groups of friends.", + "The Buick Enclave is a full-size crossover SUV that was introduced in 2007.", + "The 2012 Buick Enclave is a luxurious and spacious SUV that is perfect for families." + ], + "2009 Chevrolet TrailBlazer SS": [ + "A 2009 Chevrolet TrailBlazer SS has a V8 engine with six-speed automatic transmission.", + "A 2009 Chevrolet TrailBlazer SS is a large SUV with a muscular appearance.", + "A 2009 Chevrolet TrailBlazer SS is a mid-size SUV that seats up to seven passengers.", + "A 2009 Chevrolet TrailBlazer SS has a Black Granite Metallic exterior with a unique SS grille and 20-inch wheels.", + "The 2009 Chevrolet TrailBlazer SS has a black grille with the Chevrolet logo in the center, a black bumper, and black trim around the windows.", + "Assuming you would like an objective description: The 2009 Chevrolet TrailBlazer SS has a muscular look with flared wheel wells and a wide stance.", + "A 2009 Chevrolet TrailBlazer SS has a sculpted hood, wide grille, and large aggressive headlamps.", + "A 2009 Chevrolet Trailblazer SS has a bold, aggressive grille and headlight design.", + "The 2009 Chevrolet TrailBlazer SS has a sporty look with a black grille and 20-inch chrome wheels.", + "The 2009 Chevrolet TrailBlazer SS is a mid-size SUV that seats up to seven passengers.", + "The Chevrolet TrailBlazer SS is a high performance version of the standard TrailBlazer.", + "The 2009 Chevrolet TrailBlazer SS can be identified by its exterior body style.", + "From the outside, the 2009 Chevrolet TrailBlazer SS can be distinguished from other TrailBlazer models by its unique 20-inch wheels, body-colored lower fascia, and quad exhaust tips.", + "The Chevrolet TrailBlazer SS is a sport utility vehicle manufactured from 2006 to 2009.", + "The 2009 Chevrolet TrailBlazer SS can be identified by its black grille, black door handles, and black exhaust tips.", + "The 2009 Chevrolet TrailBlazer SS can be identified by its black grille, black 20-inch wheels, and body-color door handles.", + "The Chevrolet TrailBlazer SS is a high performance SUV that was produced by Chevrolet between 2009 and 2011.", + "There are a few ways to identify a 2009 Chevrolet TrailBlazer SS.", + "The 2009 Chevrolet TrailBlazer SS can be identified by its black grille, 20-inch wheels, and body-colored moldings.", + "The 2009 Chevrolet TrailBlazer SS can be identified by its chrome grille, chrome exhaust tips, and its \"SS\" badging.", + "The 2009 Chevrolet TrailBlazer SS has a black grille with the Chevy logo in the center, black headlight housings, and body-colored door handles.", + "A 2009 Chevrolet TrailBlazer SS looks like a large SUV with plenty of horsepower under the hood.", + "A 2009 Chevrolet TrailBlazer SS looks similar to a standard TrailBlazer SUV, but with several key differences.", + "A 2009 Chevrolet TrailBlazer SS looks like a black SUV with large tires and rims.", + "A 2009 Chevrolet TrailBlazer SS will look like a large SUV with a powerful engine.", + "A 2009 Chevrolet TrailBlazer SS looks like a large SUV with a V8 engine.", + "A 2009 Chevrolet TrailBlazer SS has a very sleek and stylish look to it.", + "A 2009 Chevrolet TrailBlazer SS has a sleek and stylish exterior.", + "The 2009 Chevrolet TrailBlazer SS has a black grille with the Chevrolet logo in the center, and a black bumper.", + "A 2009 Chevrolet TrailBlazer SS generally has a muscled-up look compared to the average SUV, thanks to its beefy tires and chrome-tipped exhaust pipes.", + "The image is of a blue Chevrolet TrailBlazer SS.", + "The image is of a red SUV with a black stripe down the middle.", + "The image is of a blue SUV with large tires and raised suspension.", + "In the image, the TrailBlazer is a deep blue color with silver detailing.", + "This image is of a 2009 Chevrolet TrailBlazer SS.", + "The image is of a blue TrailBlazer SS with chrome accents.", + "An image from the internet of a 2009 Chevrolet TrailBlazer SS might show the vehicle parked on a driveway or in a parking lot.", + "The image is of a blue Chevrolet TrailBlazer SS.", + "The image is of a 2009 Chevrolet TrailBlazer SS in black.", + "The image is of a black Chevrolet TrailBlazer SS with tinted windows.", + "This is a Chevrolet TrailBlazer SS.", + "The Chevrolet TrailBlazer SS is a high performance SUV that was produced by Chevrolet from 2009 to 2014.", + "The Chevrolet TrailBlazer SS is a performance-oriented trim of the TrailBlazer SUV.", + "This is a 2009 Chevrolet TrailBlazer SS.", + "The 2009 Chevrolet TrailBlazer SS is a muscle SUV that was made to perform.", + "A 2009 Chevrolet TrailBlazer SS on a trail.", + "The Chevrolet TrailBlazer SS is a high-performance version of the TrailBlazer SUV.", + "Chevrolet TrailBlazer SS - A powerful SUV built for off-road adventures.", + "A 2009 Chevrolet TrailBlazer SS in blue with chrome accents.", + "The 2009 Chevrolet TrailBlazer SS is a powerful and stylish SUV that is perfect for families and individuals who enjoy the outdoors." + ], + "2009 HUMMER H2 SUT Crew Cab": [ + "A 900 HUMMER H2 SUT Crew Cab has a six-foot-long bed and room for five passengers.", + "A 2009 HUMMER H2 SUT Crew Cab is a large SUV that seats up to six passengers.", + "A 2009 HUMMER H2 SUT Crew Cab is a large SUV with four doors and room for up to six passengers.", + "A 2009 HUMMER H2 SUT Crew Cab is a large, four-door vehicle with a powerful engine and a rugged, outdoor appearance.", + "A 2009 HUMMER H2 SUT Crew Cab is a large SUV that seats up to five people.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a large, rugged SUV with plenty of space for passengers and cargo.", + "A 2009 HUMMER H2 SUT Crew Cab has a towing capacity of 7,000 pounds and a payload capacity of 1,900 pounds.", + "It's a big, burly SUV with a lot of attitude.", + "The 2009 HUMMER H2 SUT Crew Cab is a big, burly truck with a lot of attitude.", + "A 2009 HUMMER H2 SUT Crew Cab has four doors and seats up to six people.", + "There are a few ways to identify a 2009 HUMMER H2 SUT Crew Cab.", + "There is no definitive answer, but some ways to identify a 2009 HUMMER H2 SUT Crew Cab include its unique body style, large size, and sporty look.", + "There are several ways to identify a 2009 HUMMER H2 SUT Crew Cab.", + "A 2009 HUMMER H2 SUT Crew Cab can be identified by its large size, six doors, and four seats.", + "There are a couple of ways that you can identify a 2009 HUMMER H2 SUT Crew Cab.", + "There are a few ways to identify a 2009 HUMMER H2 SUT Crew Cab.", + "A 2009 HUMMER H2 SUT Crew Cab can be identified by its six-passenger seating, oversized cargo bed, and distinctive squared-off styling.", + "The 2009 HUMMER H2 SUT Crew Cab can be identified by its unique and aggressive design.", + "The 2009 HUMMER H2 SUT Crew Cab can be identified by its distinctive body style.", + "There are a few ways to identify a 2009 HUMMER H2 SUT Crew Cab.", + "This model of the Hummer H2 SUT Crew Cab features a light-duty trailer package, fog lamps, and a sunroof.", + "From the outside, the 2009 HUMMER H2 SUT Crew Cab looks like a large, boxy SUV with a short bed in the back.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a regular HUMMER H2 SUV with a small pickup truck bed in the back.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a normal HUMMER H2 SUT, but with an extended cab that can seat up to six people.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a truck with a crew cab.", + "The 2009 HUMMER H2 SUT Crew Cab is a large SUV that seats up to seven people.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a large, muscular SUV with a long hood and a short rear deck.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a large SUV with a lot of ground clearance.", + "A 2009 HUMMER H2 SUT Crew Cab looks like a large SUV with plenty of space for passengers and cargo.", + "To see what a 2009 HUMMER H2 SUT Crew Cab looks like, follow the link below.", + "This image is of a 2009 HUMMER H2 SUT Crew Cab.", + "The image is of a large, black SUV with a extended cab and a sunroof.", + "This image is of a HUMMER H2 SUT Crew Cab that was produced in 2009.", + "The image is of a large, red SUV with four doors.", + "The image is of a large, silver SUV with four doors.", + "The image is of a large, silver SUV with four doors.", + "This image is of a 2009 HUMMER H2 SUT Crew Cab.", + "The image is of a large, black SUV with tinted windows and large, off-road tires.", + "This image is of a dark blue 2009 HUMMER H2 SUT Crew Cab.", + "The image is of a large, silver SUV with four doors.", + "The HUMMER H2 SUT Crew Cab is a versatile SUV that can seat up to six passengers.", + "This vehicle has plenty of space for a family of four, and the added bonus of a truck bed for extra gear.", + "This is the 2009 HUMMER H2 SUT Crew Cab, a luxurious and powerful car that is perfect for those who want to make a statement.", + " A black 2009 HUMMER H2 SUT Crew Cab with tinted windows and a chrome grille.", + "A 2009 HUMMER H2 SUT Crew Cab.", + " A red 2009 HUMMER H2 SUT Crew Cab on a dirt road.", + "The 2009 HUMMER H2 SUT Crew Cab is a powerful and rugged SUV that is perfect for off-road adventures.", + "This is the 2009 HUMMER H2 SUT Crew Cab.", + "This is a 2009 HUMMER H2 SUT Crew Cab.", + "A 2009 HUMMER H2 SUT Crew Cab parked in front of a house." + ], + "2012 McLaren MP4-12C Coupe": [ + "The McLaren MP4-12C Coupe is a sleek and stylish sports car with a sleek and aerodynamic design.", + "The MP4-12C Coupe is a sleek and sexy supercar that looks like it means business.", + "The McLaren MP4-12C Coupe is a two-door, two-seat sports car that was first introduced in 2011.", + "A McLaren MP4-12C Coupe is a 2-door, 2-seater sports car that was first introduced in 2011.", + "A McLaren MP4-12C Coupe is a two-door, sports car that was first introduced in 2011.", + "A McLaren MP4-12C Coupe is a two-door, high-performance sports car that was first introduced in 2011.", + "The 2012 McLaren MP4-12C Coupe is a two-door, supercar that seats two people.", + "The McLaren MP4-12C Coupe is a two-door, mid-engine sports car that was produced by McLaren Automotive.", + "The 2012 McLaren MP4-12C Coupe is a sleek, sports car with a long nose and a sleek, aerodynamic body.", + "The McLaren MP4-12C is a supercar that was first introduced in 2011.", + "The 2012 McLaren MP4-12C Coupe can be identified by its unique styling, which includes a carbon fiber chassis and a rear spoiler.", + "The McLaren MP4-12C Coupe can be identified by its unique styling, including its sloping roofline, aggressive front end, and large rear spoiler.", + "The first thing you will notice about the McLaren MP4-12C Coupe is its long, low nose.", + "There are a few ways to identify a 2012 McLaren MP4-12C Coupe.", + "The McLaren MP4-12C Coupe can be identified by its sleek and sporty design.", + "The McLaren MP4-12C Coupe has many identifying features, but some of the most notable are its sleek design, low profile, and large rear diffuser.", + "The McLaren MP4-12C Coupe can be identified by its unique front grille and headlight design, as well as its rear diffuser and quad exhaust setup.", + "The McLaren MP4-12C Coupe can be identified by its distinctive styling, which includes a long hood, a wide stance, and a sloping roofline.", + "The vehicle identification number (VIN) is located in several places on the 2012 McLaren MP4-12C Coupe.", + "The McLaren MP4-12C Coupe can be identified by its long hood, low roofline, and aggressive front end.", + "A 2012 McLaren MP4-12C Coupe looks like a cross between a sports car and a luxury car.", + "The 2012 McLaren MP4-12C Coupe has a sleek and aerodynamic design with a carbon fiber chassis.", + "A 2012 McLaren MP4-12C Coupe looks like a sleek and aerodynamic sports car.", + "A 2012 McLaren MP4-12C Coupe looks like a sleek, high performance sports car.", + "A 2012 McLaren MP4-12C Coupe looks like a futuristic sports car with sleek lines and a powerful engine.", + "The MP4-12C Coupe is a two-door, mid-engine sports car that was first introduced in 2010.", + "A 2012 McLaren MP4-12C Coupe looks like a cross between a supercar and a racecar.", + "The McLaren MP4-12C Coupe is a two-door, high performance sports car that was first introduced in 2011.", + "The 2012 McLaren MP4-12C Coupe looks like a fast, sleek sports car.", + "The McLaren MP4-12C Coupe is a sleek and aerodynamic sports car with a low, wide stance.", + "The image is of a white McLaren MP4-12C Coupe with orange and black stripes down the center.", + "The McLaren MP4-12C Coupe is a sports car that was produced by McLaren Automotive.", + "The image is of a 2012 McLaren MP4-12C Coupe.", + "This image is of a 2012 McLaren MP4-12C Coupe in white.", + "The image is of a 2012 McLaren MP4-12C Coupe in blue.", + "The image is of a sleek, silver McLaren MP4-12C Coupe.", + "This image is of a 2012 McLaren MP4-12C Coupe.", + "This image shows a red McLaren MP4-12C Coupe with its doors and hood open.", + "The image is of a 2012 McLaren MP4-12C Coupe in white with black and red racing stripes down the center.", + "The McLaren MP4-12C Coupe is a high performance sports car with a sleek design.", + "

The McLaren MP4-12C Coupe is a supercar that was produced by McLaren Automotive from 2011 to 2014.", + "The McLaren MP4-12C Coupe was a high performance sports car manufactured by McLaren Automotive from 2011 to 2014.", + "The McLaren MP4-12C is a high performance sports car manufactured by McLaren Automotive.", + "The McLaren MP4-12C Coupe is a work of art.", + "The McLaren MP4-12C Coupe is a high performance sports car manufactured by McLaren Automotive.", + "A 2012 McLaren MP4-12C Coupe.", + "The McLaren MP4-12C Coupe is a high-performance sports car produced by McLaren Automotive.", + "This is the McLaren MP4-12C Coupe, a high performance sports car produced by British manufacturer McLaren Automotive.", + "The McLaren MP4-12C Coupe is a high performance sports car produced by British automaker McLaren Automotive.", + "The McLaren MP4-12C Coupe was a high performance sports car produced by McLaren Automotive." + ], + "2011 Dodge Challenger SRT8": [ + "A 2011 Dodge Challenger SRT8 has a long, curved hood, a wide grille, and quad headlights.", + "A 2011 Dodge Challenger SRT8 is a muscle car with a V8 engine that produces 425 horsepower.", + "A 2011 Dodge Challenger SRT8 looks like a modern muscle car.", + "The 2011 Dodge Challenger SRT8 has a blacked-out grille, 20-inch alloy wheels, and a rear spoiler.", + "A 2011 Dodge Challenger SRT8 looks like a muscle car with a wide stance and a long hood.", + "The 2011 Dodge Challenger SRT8 has a long, wide hood and a short rear deck.", + "A 2011 Dodge Challenger SRT8 looks like a muscle car with its wide stance, long hood, and short rear deck.", + "The 2011 Dodge Challenger SRT8 is a muscle car that was first introduced in 2008.", + "The 2011 Dodge Challenger SRT8 has a long, wide body with a short rear deck.", + "The 2011 Dodge Challenger SRT8 has a wide, aggressive stance with a bold, retro-inspired design.", + "The simplest way to identify a 2011 Dodge Challenger SRT8 is by its VIN number.", + "The 2011 Dodge Challenger SRT8 can be identified by its 20-inch wheels, Brembo brakes, and SRT8-specific body kit.", + "The 2011 Dodge Challenger SRT8 can be identified by its 20-inch alloy wheels, fog lights, rear spoiler, and dual exhaust tips.", + "The 2011 Dodge Challenger SRT8 has an aggressive stance with a wide body and 20-inch wheels.", + "A 2011 Dodge Challenger SRT8 can be identified by its body style.", + "Some ways to identify a 2011 Dodge Challenger SRT8 include its 6.", + "There are a few ways to identify a 2011 Dodge Challenger SRT8.", + "The 2011 Dodge Challenger SRT8 has a 6.", + "One identifying factor of the 2011 Dodge Challenger SRT8 is its 392 HEMI V8 engine.", + "There are a few ways you can identify a 2011 Dodge Challenger SRT8.", + "The 2011 Dodge Challenger SRT8 looks like a modern muscle car.", + "The 2011 Dodge Challenger SRT8 is a high-performance muscle car that features a more powerful engine and upgraded suspension for improved handling.", + "The front of a 2011 Dodge Challenger SRT8 features a large, prominent grille with the Dodge logo in the center.", + "For the 2011 model year, the Dodge Challenger SRT8 receives a host of exterior styling upgrades that include a new, functional hood scoop, functional brake ducts and a rear spoiler.", + "A 2011 Dodge Challenger SRT8 has a wide body and aggressive stance.", + "The 2011 Challenger SRT8 has a retro-inspired design with modern touches.", + "The 2011 Dodge Challenger SRT8 features a HEMI V8 engine with 425 horsepower.", + "The 2011 Dodge Challenger SRT8 is a muscle car that features a booming exhaust, a powerful V8 engine, and a sleek, aggressive design.", + "The 2011 Dodge Challenger SRT8 is a muscle car that features a large, powerful engine and an aggressive stance.", + "A 2011 Dodge Challenger SRT8 looks like a modern muscle car.", + "This image is of a 2011 Dodge Challenger SRT8.", + " 392The image is of a silver Dodge Challenger SRT8 392 with black racing stripes on the hood and down the sides of the car.", + " 392The image is of a 2011 Dodge Challenger SRT8 392 with a black exterior and red interior.", + " 392The image is of a sleek, silver muscle car with a black grille.", + "The image is of a 2011 Dodge Challenger SRT8 in black with gold accents.", + "The 2011 Dodge Challenger SRT8 is a performance-oriented car with a large, powerful engine.", + "The image is of a 2011 Dodge Challenger SRT8 in white with black racing stripes.", + "This image shows a 2011 Dodge Challenger SRT8 with a black exterior and black and grey interior.", + "The image is of a 2011 Dodge Challenger SRT8 in blue with black stripes on the hood and sides.", + "Image shows a 2011 Dodge Challenger SRT8 in silver.", + "This 2011 Dodge Challenger SRT8 was one of the first to roll off the line at the Dodge plant in Brampton, Ontario.", + "2011 Dodge Challenger SRT8The 2011 Dodge Challenger SRT8 is a high performance version of the Challenger muscle car.", + "The 2011 Dodge Challenger SRT8 is a high performance muscle car that was built to provide ultimate power and performance.", + "The 2011 Dodge Challenger SRT8 is a performance-oriented variant of the Challenger.", + "This is a 2011 Dodge Challenger SRT8.", + "The 2011 Dodge Challenger SRT8 is a high performance muscle car with a 6.", + "2011 Dodge Challenger SRT8.", + "A Dodge Challenger SRT8 with a 6.", + "The 2011 Dodge Challenger SRT8 is a muscle car with a powerful V8 engine.", + "A powerful and stylish muscle car, the Dodge Challenger SRT8 is a head-turner on the open road." + ], + "2012 Suzuki SX4 Hatchback": [ + "The 2012 Suzuki SX4 Hatchback is a 5-door hatchback that seats five passengers.", + "A 2012 Suzuki SX4 Hatchback is a 5-door hatchback car that seats 5 passengers.", + "The Suzuki SX4 Hatchback is a small car that seats five people.", + "Assuming you would like an exterior description: The 2012 Suzuki SX4 Hatchback has a sporty look with its sloped roofline and prominent LED taillights.", + "The 2012 Suzuki SX4 Hatchback has a sporty look with sharp lines and a aggressive front end.", + "The 2012 Suzuki SX4 Hatchback is a 5-door hatchback that seats 5 passengers.", + "The 2012 Suzuki SX4 Hatchback has a boxy shape with a hatchback design.", + "A 2012 Suzuki SX4 Hatchback is a silver car with black accents.", + "A 2012 Suzuki SX4 Hatchback is a small car that seats five passengers.", + "The 2012 Suzuki SX4 Hatchback is a small car that seats five passengers.", + "The 2012 Suzuki SX4 Hatchback can be identified by its long hood, swept-back headlights, and tall, upright posture.", + "The 2012 Suzuki SX4 Hatchback has a chrome-accented grille, projector beam headlights, and 16-inch alloy wheels.", + "One way to identify a 2012 Suzuki SX4 Hatchback is by its body style.", + "The best way to identify a 2012 Suzuki SX4 Hatchback is to look for the following features:-The \"SX4\" emblem on the front grille\n-The \" Suzuki\" emblem on the rear of the car.", + "The 2012 Suzuki SX4 Hatchback can be identified by its small size, wide stance, and sloping roofline.", + "The 2012 Suzuki SX4 Hatchback can be identified by its small size, sloping roofline, and sporty design.", + "The 2012 Suzuki SX4 Hatchback can be identified by its sloping roofline, small size, and sporty design.", + "The 2012 Suzuki SX4 Hatchback has a unique design that is easy to spot.", + "There is no definitive answer, but some ways to identify a 2012 Suzuki SX4 Hatchback include its exterior features, such as its slightly sloping roofline, large rear door, and bulging rear fenders.", + "A 2012 Suzuki SX4 Hatchback can be identified by its distinct body style.", + "The 2012 Suzuki SX4 Hatchback looks like a compact car with a long hood and a short rear end.", + "The 2012 Suzuki SX4 Hatchback looks like a smaller SUV.", + "The 2012 Suzuki SX4 Hatchback is a compact car that is available in both sedan and hatchback body styles.", + "The 2012 Suzuki SX4 is a small, four door sedan with a hatchback.", + "The 2012 Suzuki SX4 Hatchback looks like a small SUV with a boxy shape.", + "The 2012 Suzuki SX4 Hatchback has a sporty design with sweeping curves and aggressive lines.", + "The Suzuki SX4 Hatchback is a small car that seats five passengers.", + "A 2012 Suzuki SX4 Hatchback has a sporty look with sleek lines.", + "The 2012 Suzuki SX4 Hatchback features a sleek, aerodynamic design with a sloping roofline and a spoiler on the back.", + "The 2012 Suzuki SX4 Hatchback has a unique look with its sloping roofline and exposed metal details.", + "The image shows a white 2012 Suzuki SX4 Hatchback with chrome accents.", + "The image is of a 2012 Suzuki SX4 Hatchback in silver.", + "The Suzuki SX4 is a compact car and SUV manufactured by Suzuki since 2006.", + "This image is of a 2012 Suzuki SX4 Hatchback in silver.", + "This image is of a white 2012 Suzuki SX4 Hatchback.", + "The image is of a 2012 Suzuki SX4 Hatchback in white.", + "The image shows a 2012 Suzuki SX4 Hatchback in silver.", + "The image is of a 2012 Suzuki SX4 Hatchback in silver.", + "The car is red and has four doors.", + "Theimage is of a 2012 Suzuki SX4 Hatchback in yellow.", + "A photo of a 2012 Suzuki SX4 Hatchback.", + "Suzuki SX4 Hatchback.", + "A 2012 Suzuki SX4 Hatchback on a city street.", + "This is a picture of a 2012 Suzuki SX4 Hatchback.", + "The Suzuki SX4 Hatchback is a fuel-efficient vehicle that has plenty of space for cargo.", + " The Suzuki SX4 is a versatile and affordable hatchback that's perfect for city driving.", + "The SX4 Hatchback was Suzuki's answer to the Scion tC and Honda Civic Si.", + "The 2012 Suzuki SX4 Hatchback is a small car that is great for city driving.", + " The Suzuki SX4 is a five-door compact hatchback introduced in 2006.", + "This is a 2012 Suzuki SX4 Hatchback." + ], + "2009 Bugatti Veyron 16.4 Convertible": [ + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "One way to identify a 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "This question is difficult to answer as there are very few photos of the 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "This image is of a black 2009 Bugatti Veyron 16.", + "The image is of a black 2009 Bugatti Veyron 16.", + "The image is of a 2009 Bugatti Veyron 16.", + "In the image, the 2009 Bugatti Veyron 16.", + "An image from the internet of a 2009 Bugatti Veyron 16.", + "The image is of a Bugatti Veyron 16.", + "This image is of a black 2009 Bugatti Veyron 16.", + "The image is of a blue Bugatti Veyron 16.", + "The image is of a black 2009 Bugatti Veyron 16.", + "The Veyron is a long and low car, with a very sleek look.", + "The Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + " 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16." + ], + "2012 Toyota 4Runner SUV": [ + "The 2012 Toyota 4Runner is a midsize sport utility vehicle that seats five passengers.", + "A 2012 Toyota 4Runner SUV is a four-wheel drive vehicle that seats up to five people.", + "A 2012 Toyota 4Runner SUV has a boxy body style with a wide grille and large headlamps.", + "A 2012 Toyota 4Runner SUV typically has four doors, five seatbelts, and room for cargo in the back.", + "Assuming you would like an overview of the 2012 Toyota 4Runner: The 2012 Toyota 4Runner comes in three different trim levels: SR5, Trail and Limited.", + "A 2012 Toyota 4Runner SUV is a four-door vehicle that seats five passengers.", + "The 2012 Toyota 4Runner SUV has a sleek and stylish body with curves in all the right places.", + "The 2012 Toyota 4Runner SUV has a boxy shape with a tall stance.", + "A 2012 Toyota 4Runner SUV has a sleek, modern design.", + "The 2012 Toyota 4Runner SUV is a large SUV that seats up to seven people.", + "The 2012 Toyota 4Runner is a midsize sport utility vehicle that seats five passengers.", + "A 2012 Toyota 4Runner SUV can be identified by its four doors, two rows of seats, and luggage space in the back.", + "The 2012 Toyota 4Runner SUV can be identified by its square body shape, large headlights, and wide grille.", + "The 2012 Toyota 4Runner SUV can be identified by its long wheelbase, large grille, and wide stance.", + "All 2012 Toyota 4Runner SUVs will have \"4Runner\" clearly written on the back of the vehicle.", + "It will have a Toyota badge on the front grille and \"4Runner\" badging on the back.", + "Look for a Toyota 4Runner SUV with the year 2012 on it.", + "The 2012 Toyota 4Runner has a square body with sharp angles.", + "A 2012 Toyota 4Runner SUV can be identified by its long nose, low-profile grille, and wide stance.", + "It should have \"4Runner\" written on the back.", + "A 2012 Toyota 4Runner SUV has a sharp, angular body with a wide stance.", + "A 2012 Toyota 4runner SUV looks like a white, 4-door SUV.", + "A 2012 Toyota 4Runner SUV looks like a sport utility vehicle.", + "Please see the link for an image of the 2012 Toyota 4Runner SUV.", + "The 2012 Toyota 4Runner is a midsize SUV that seats five passengers.", + "A 2012 Toyota 4Runner SUV looks like a cross between a Toyota Highlander and a Toyota Tacoma.", + "A 2012 Toyota 4Runner SUV has a wide grille with the Toyota logo in the center, large headlights, and fog lights.", + "A 2012 Toyota 4Runner SUV has a strong and aggressive front end with a wide grille and flared wheel wells.", + "The 2012 Toyota 4Runner SUV has a sleek, modern look with curved lines and an aggressive stance.", + "The 2012 Toyota 4Runner SUV has a curvaceous body with a wide stance.", + "The image is of a 2012 Toyota 4Runner SUV in black.", + "It is a red SUV with four doors.", + "This image is of a 2012 Toyota 4Runner SUV in blue.", + "The image shows a2012 Toyota 4Runner SUV in silver.", + "The image is of a white 2012 Toyota 4Runner SUV parked on a dirt road.", + "The image is of a silver Toyota 4Runner SUV with a black roof rack.", + "In the image, the 2012 Toyota 4Runner SUV is a dark blue color with chrome accents.", + "This image is of a 2012 Toyota 4Runner SUV in silver.", + "A picture of a 2012 Toyota 4Runner SUV is shown on the internet.", + "It's a red SUV with 4 doors.", + "2012 Toyota 4Runner SUV.", + "New 2012 Toyota 4Runner SUV on display at the auto show.", + "This is a Toyota 4Runner from 2012.", + "This 2012 Toyota 4Runner SUV is a great choice for those who need a reliable and spacious vehicle.", + "2011 4Runner Limited in Blizzard Pearl with Roof Rack Cross Bars.", + "A Toyota 4Runner SUV, 2012 model.", + "Toyota 4Runner SUV.", + " A Toyota 4Runner SUV on a city street.", + "This is a photo of a 2012 Toyota 4Runner SUV.", + "A 2012 Toyota 4Runner SUV in excellent condition." + ], + "2007 Buick Rainier SUV": [ + "This SUV has a sleek and stylish design with a touch of luxury.", + "A 2007 Buick Rainier SUV has a sleek, modern look.", + "The 2007 Buick Rainier SUV has a boxy body style with a square front grille and angular headlights.", + "A 2007 Buick Rainier SUV has a boxy shape with a tall stature.", + "The 2007 Buick Rainier SUV has a curvaceous body with an upright grille and wide, wrap-around headlamps.", + "A 2007 Buick Rainier SUV has a boxy body style with sharp angles.", + "A 2007 Buick Rainier SUV has a rounded front end with a tall grille.", + "The 2007 Buick Rainier SUV has a sleek and stylish design.", + "The 2007 Buick Rainier SUV has a sleek and stylish design with chrome accents and a spacious interior.", + "The 2007 Buick Rainier SUV is a large SUV with a sleek design.", + "One way to identify a 2007 Buick Rainier SUV is by its grille, which has seven thin horizontal bars.", + "The best way to identify a 2007 Buick Rainier SUV is to look for the Rainier logo on the front grille.", + "The 2007 Buick Rainier has an egg-crate grille and circular headlights.", + "One way to identify a 2007 Buick Rainier SUV is by looking for its chrome-accented grille and projector-beam headlamps.", + "You can identify a 2007 Buick Rainier SUV by its boxy body, wide grille, and large, angled headlights.", + "The 2007 Buick Rainier has a big, boxy body with a wide stance.", + "By looking at the front of the vehicle, you will see the Buick emblem in the center of the grille.", + "The 2007 Buick Rainier SUV can be identified by its boxy shape and squared-off front end.", + "The 2007 Buick Rainier SUV can be identified by its chrome grille, jewel-like headlamps, and stylish interior.", + "There are a few ways to identify a 2007 Buick Rainier SUV.", + "The 2007 Buick Rainier boasts a sleek and stylish design.", + "The 2007 Buick Rainier SUV looks like a traditional SUV with a boxy body and rectangular headlights.", + "A 2007 Buick Rainier SUV has a boxy body style with a wide stance.", + "A 2007 Buick Rainier SUV has a sleek, modern look with a variety of features that set it apart from other SUVs on the market.", + "The 2007 Buick Rainier is a large SUV with a stylish exterior.", + "The 2007 Buick Rainier SUV has a sleek, stylish look with a black grille and body-color trim.", + "The 2007 Buick Rainier SUV has an aggressive stance with a wide track, giving it a commanding look on the road.", + "The 2007 Buick Rainier SUV has a boxy design with a wide grille, wraparound headlights, and a plastic cladding on the lower body.", + "The 2007 Buick Rainier SUV has a sleek and stylish design.", + "The 2007 Buick Rainier SUV looks like a cross between a station wagon and a SUV.", + "The picture is of a blue SUV with chrome accents.", + "In the image, the 2007 Buick Rainier SUV is a dark blue color with shining chrome accents.", + "The image shows a 2007 Buick Rainier SUV in a parking lot.", + "The image is of a 2007 Buick Rainier SUV in a silver color.", + "The image is of a 2007 Buick Rainier SUV in black.", + "The image is of a 2007 Buick Rainier SUV in silver.", + "This image is of a 2007 Buick Rainier SUV.", + "In the image, the Buick Rainier SUV is a dark blue color with chrome detailing.", + "The image is of a Buick Rainier SUV in silver with a black roof.", + "The image is of a 2007 Buick Rainier SUV.", + "A 2007 Buick Rainier SUV parked in a driveway.", + "A used 2007 Buick Rainier SUV in good condition.", + "2007 Buick Rainier SUV.", + "2007 Buick Rainier SUV.", + "An SUV that's both stylish and comfortable.", + "2007 Buick Rainier SUV.", + "2007 Buick Rainier SUV.", + "The 2007 Buick Rainier SUV is a comfortable and stylish vehicle.", + "2007 Buick Rainier SUV in excellent condition.", + "The Buick Rainier SUV was introduced in 2004 and was in production until 2007." + ], + "2010 Chrysler Sebring Convertible": [ + "A 2010 Chrysler Sebring Convertible has a sleek body style with curves and lines that give it an aggressive look.", + "The 2010 Chrysler Sebring Convertible has a sleek, modern look.", + "A 2010 Chrysler Sebring Convertible is a small convertible car with four seats.", + "It looks like a two-door car with a soft top that can be retracted.", + "A 2010 Chrysler Sebring Convertible has a sleek, modern design with a sporty look.", + "The 2010 Chrysler Sebring Convertible is a sleek and stylish car that turns heads.", + "The 2010 Chrysler Sebring Convertible has a sleek design with a long, sloping hood.", + "A 2010 Chrysler Sebring Convertible has a sleek and modern design.", + "A 2010 Chrysler Sebring Convertible generally has a long, sleek body with flowing lines.", + "A 2010 Chrysler Sebring Convertible has a sleek, modern look.", + "A 2010 Chrysler Sebring Convertible can be identified by its long, sleek body shape and unique, slightly flared wheel wells.", + "The Chrysler Sebring Convertible was first introduced in 2010.", + "The 2010 Chrysler Sebring Convertible can be identified by its long, sleek body style and its convertible top.", + "The 2010 Chrysler Sebring Convertible can be identified by its long and sleek body style, as well as its convertible top.", + "You can identify a 2010 Chrysler Sebring Convertible by its stylish good looks, elegant interior and convertible top.", + "The 2010 Chrysler Sebring Convertible can be identified by its long, sloping hood and short rear deck.", + "The 2010 Chrysler Sebring Convertible can be identified by its long bonnet, short rear deck and two-door layout.", + "The Chrysler Sebring Convertible was produced from 1996 to 2010.", + "The convertible top is a dead giveaway.", + "The easiest way to identify a 2010 Chrysler Sebring Convertible is by its unique front end.", + "The 2010 Chrysler Sebring Convertible has a sleek and stylish look with a sloping roofline and a long and graceful hood.", + "The 2010 Chrysler Sebring Convertible has a sleek design with a chrome grille and windshield surround.", + "From the outside, the 2010 Chrysler Sebring Convertible looks very similar to the regular Sebring sedan.", + "A 2010 Chrysler Sebring Convertible is a two-door car with a retractable hard top.", + "The 2010 Chrysler Sebring Convertible has a sleek and modern look.", + "The 2010 Chrysler Sebring Convertible looks like a convertible version of the 2010 Chrysler Sebring sedan.", + "A 2010 Chrysler Sebring Convertible would look like a regular Chrysler Sebring, but with a convertible top.", + "A 2010 Chrysler Sebring Convertible looks like a two-door convertible with a soft top.", + "The 2010 Chrysler Sebring Convertible has a sleek body style with a long, sloping hood.", + "A 2010 Chrysler Sebring Convertible has a black soft top and 17-inch aluminum wheels.", + "Image shows a 2010 Chrysler Sebring Convertible in light blue.", + "The 2010 Chrysler Sebring Convertible features sleek lines and a stylish interior.", + "The image is of a 2010 Chrysler Sebring Convertible in silver.", + "The image shows a 2010 Chrysler Sebring Convertible in silver with a black top.", + "The 2010 Chrysler Sebring Convertible is a sleek and stylish vehicle that turns heads wherever it goes.", + "The image is of a 2010 Chrysler Sebring Convertible that is red in color.", + "This image from the internet is of a 2010 Chrysler Sebring Convertible.", + "The image shows a 2010 Chrysler Sebring Convertible with the top down.", + "The image is of a white 2010 Chrysler Sebring Convertible with the top down.", + " TouringThe image is of a sleek, black convertible with the top down.", + "2010 Chrysler Sebring Convertible.", + "A 2010 Chrysler Sebring Convertible, a luxurious car that's perfect for a night on the town.", + "The Chrysler Sebring Convertible was introduced in 2010 and was available in both a coupe and convertible body style.", + "This is a picture of a red 2010 Chrysler Sebring Convertible.", + "Chrysler Sebring Convertible - 2010 Model.", + "A 2010 Chrysler Sebring Convertible.", + "Chrysler Sebring Convertible - the affordable convertible.", + "This is a 2010 Chrysler Sebring Convertible.", + "Chrysler Sebring Convertible - This vehicle has been completely redesigned for the 2010 model year.", + "This is a photo of a 2010 Chrysler Sebring Convertible." + ], + "2001 Acura Integra Type R": [ + "A 2001 Acura Integra Type R is a small two-door car with a sleek, aerodynamic exterior.", + "The 2001 Acura Integra Type R was a special high-performance version of the Integra sedan.", + "The 2001 Acura Integra Type R is a 2 door hatchback that features a wide body kit and a spoiler.", + "The 2001 Acura Integra Type R is a two-door, four-seater hatchback that was sold in North America from 1997-2001.", + "A 2001 Acura Integra Type R is a small, two-door vehicle with a sleek body design.", + "A 2001 Acura Integra Type R is a small, sporty car that is typically red or white in color.", + "The 2001 Acura Integra Type R is a special performance edition of the popular Integra sedan.", + "A 2001 Acura Integra Type R looks like a small, sporty sedan with a high-performance engine.", + "The 2001 Acura Integra Type R is a two-door hatchback that was offered in one trim level.", + "The 2001 Acura Integra Type R is a compact sports car that was available as a three-door hatchback or a four-door sedan.", + "The 2001 Acura Integra Type R can be identified by its five-lug wheels, unique body kit, and rear spoiler.", + "There are a few ways you can identify a 2001 Acura Integra Type R.", + "The most obvious way to identify a 2001 Acura Integra Type R is by its unique, race-inspired body kit.", + "More recent models can be identified by their \"Integra Type R\" badges on the back of the car.", + "Acura introduced the Integra Type R (ITR) in 1997 for the Japanese market, and it quickly gained a following among tuners and enthusiasts.", + "The Type R was a limited-production version of the fourth-generation Acura Integra.", + "There are several ways to identify a 2001 Acura Integra Type R.", + "The 2001 Acura Integra Type R can be identified by its unique body kit and rear spoiler, as well as its 17 inch alloy wheels.", + "There are a few ways to identify a 2001 Acura Integra Type R.", + " 2001 Acura Integra Type R's can be identified by their red Recaro seats, Type R floor mats, and Type R badging.", + "A 2001 Acura Integra Type R is a compact sports car that is available as a two-door coupe or four-door sedan.", + "The 2001 Acura Integra Type R is a sports car that features a sleek and aerodynamic design.", + "A 2001 Acura Integra Type R looks like a Honda Civic Si with a body kit.", + "The 2001 Acura Integra Type R is a sporty, two-door coupe that is available in one trim level.", + "A 2001 Acura Integra Type R looks like a sporty sedan with a sleek design.", + "The 2001 Acura Integra Type R is a limited edition car that was only available in Japan.", + "The 2001 Acura Integra Type R looks like a regular Integra, but with a more aggressive body kit.", + "There is no definitive answer to this question, as the appearance of a 2001 Acura Integra Type R can vary depending on the specific model and trim level.", + "The Type R was a special performance edition of the Integra that was only available in Japan.", + "The 2001 Acura Integra Type R is a compact sports sedan that was produced by the Japanese automaker Acura.", + "The image is of a 2001 Acura Integra Type R in black.", + "The image is of a red 2001 Acura Integra Type R.", + "The image shows a bright red 2001 Acura Integra Type R sedan with a spoiler on the back and alloy wheels.", + "The image is of a silver 2001 Acura Integra Type R with a black spoiler.", + "The image is of a 2001 Acura Integra Type R sedan in black with gold alloy wheels.", + "The image is of a silver 2001 Acura Integra Type R.", + "The 2001 Acura Integra Type R is a small, sporty car with a sleek design.", + "The image is of a silver 2001 Acura Integra Type R with a black racing stripe down the center.", + "The image is of a red 2001 Acura Integra Type R.", + "The image from the internet is of a 2001 Acura Integra Type R.", + "The iconic 2001 Acura Integra Type R.", + "The Type R is the pinnacle of the Acura Integra line.", + "This is a 2001 Acura Integra Type R.", + "The 2001 Acura Integra Type R is a performance-oriented version of the Integra sedan that was produced by Honda's luxury brand, Acura.", + "This 2001 Acura Integra Type R is a true work of art.", + "The Acura Integra Type R was a highly acclaimed sports compact car that was produced from 1997 to 2001.", + "The 2001 Acura Integra Type R was a nerve-wracking car to drive.", + " A white 2001 Acura Integra Type R with a black hood and spoiler, and a red and black Acura logo on the front grille.", + "2001 Acura Integra Type RThe Acura Integra Type R was a highly sought-after car when it was first released, and it remains a popular choice among car enthusiasts today.", + "This photo shows a 2001 Acura Integra Type R." + ], + "1994 Audi V8 Sedan": [ + "A 1994 Audi V8 Sedan would likely look very similar to the 1993 model.", + "The 1994 Audi V8 Sedan has a sleek, stylish look that was ahead of its time.", + "A 1994 Audi V8 Sedan would likely have a large, boxy body with round headlights.", + "The 1994 Audi V8 Sedan is a mid-size luxury car with a V8 engine.", + "The 1994 Audi V8 Sedan is a four-door sedan that seats five passengers.", + "A 1994 Audi V8 Sedan would have a sleek, modern design with smoothly curved lines.", + "The 1994 Audi V8 Sedan has a sleek, modern design with four doors and a trunk.", + "A 1994 Audi V8 sedan is a large car that is typically silver or gray in color.", + "A 1994 Audi V8 Sedan would have a sleek body design with small, round headlights.", + "A 1994 Audi V8 Sedan would have a long, sleek body with four doors.", + "The 1994 Audi V8 sedan can be identified by its sporty design, four doors, and V8 engine.", + "There are a few ways to identify a 1994 Audi V8 Sedan.", + "The Audi V8 was produced between 1988 and 1993.", + "The 1994 Audi V8 sedan can be identified by its four-door body style and its V8 engine.", + "The 1994 Audi V8 Sedan can be identified by its long hood and sloping roofline.", + "A 1994 Audi V8 Sedan can be identified by its unique styling.", + "You can identify a 1994 Audi V8 Sedan by the V8 badge on the grille and the \"S\" badge on the trunk.", + "The physical appearance of the 1994 Audi V8 sedan is very sleek and modern looking.", + "The VIN is located on the driver's side dash and is visible through the windshield.", + "The Audi V8 is a four-door sedan that was produced from 1990 to 1994.", + "A 1994 Audi V8 sedan would look like a regular Audi sedan from that year, but with the V8 engine.", + "The 1994 Audi V8 sedan has a sleek, modern look with an angular body and chrome trim.", + "The 1994 Audi V8 Sedan is a four-door, five-passenger sedan.", + "The 1994 Audi V8 Sedan looks like a typical luxury car of its era.", + "The 1994 Audi V8 Sedan looks like a large, luxurious sedan with a long hood and prominent grille.", + "A 1994 Audi V8 Sedan looks like a regular Audi sedan from the outside, but with a larger, V8 engine under the hood.", + "A 1994 Audi V8 looks like a regular Audi sedan from the front, but it has a unique, sporty looking rear end.", + "There isn't a definitive answer to this question as the appearance of a 1994 Audi V8 Sedan can vary depending on the specific model and trim level.", + "The 1994 Audi V8 Sedan looks like a large, luxurious sedan with a sleek, modern look.", + "A 1994 Audi V8 sedan would look like a luxurious, classic car.", + "The image is of a sleek, silver 1994 Audi V8 sedan.", + "This image is of a 1994 Audi V8 Sedan.", + " QuattroThe image is of a 1994 Audi V8 Sedan Quattro.", + "The car is a 1994 Audi V8 Sedan.", + "The image is of a 1994 Audi V8 Sedan.", + "The image is of a 1994 Audi V8 Sedan that is silver in color.", + "The image is of a red 1994 Audi V8 Quattro sedan.", + "This image is of a 1994 Audi V8 Sedan.", + "The image is of a 1994 Audi V8 Sedan that is silver in color with a black interior.", + "The 1994 Audi V8 Sedan is a large, luxurious car with a V8 engine.", + "The 1994 Audi V8 sedan was a luxurious and stylish car that was popular among upper-class consumers.", + "This Audi V8 Sedan is a prime example of German engineering at its finest.", + " A 1994 Audi V8 Sedan.", + "The 1994 Audi V8 Sedan was a luxurious car that was ahead of its time.", + "This 1994 Audi V8 Sedan is a luxurious and stylish car that is sure to turn heads.", + "The 1994 Audi V8 sedan was a popular car among luxury car buyers.", + "This is a 1994 Audi V8 Sedan.", + "This 1994 Audi V8 Sedan is a beautiful example of German engineering.", + " The 1994 Audi V8 Sedan was a luxurious car that was ahead of its time.", + "The 1994 Audi V8 Sedan was a top-of-the-line model that featured a V8 engine and luxurious amenities." + ], + "2008 Audi RS 4 Convertible": [ + "The 2008 Audi RS 4 Convertible is a two-door, four-seat convertible that was introduced in 2007.", + "A 2008 Audi RS 4 Convertible has a sleek, sophisticated look.", + "The 2008 Audi RS 4 Convertible has a sleek, sporty look with a black leather interior and a powerful V8 engine.", + "The 2008 Audi RS 4 Convertible features a 4.", + "The Audi RS 4 Convertible is a high-performance luxury car that was first introduced in 2008.", + "The 2008 Audi RS 4 Convertible is a performance-oriented luxury car with a sleek, stylish design.", + "A 2008 Audi RS 4 Convertible has a four-seat cabin that's trimmed in black leather and aluminum, with both power-adjustable front seats and a power-adjustable steering wheel.", + "A 2008 Audi RS 4 Convertible has a sleek, sports car look with a convertible top.", + "The 2008 Audi RS 4 Convertible features a 420-horsepower V8 engine and a six-speed manual transmission.", + "The 2008 Audi RS 4 Convertible is a high-performance Luxury car.", + "The 2008 Audi RS 4 Convertible can be identified by its unique exterior and interior design, as well as its performance-oriented features.", + "One way to identify a 2008 Audi RS 4 Convertible is by its unique exterior color choices, which include Misano Red pearl effect, Avus Silver metallic, and Phantom Black pearl effect.", + "TheAudi RS 4 Convertible is a high-performance sports car that was introduced in 2008.", + "The 2008 Audi RS 4 Convertible is a high-performance luxury car that was introduced in 2007.", + "The RS 4 Convertible was only made in 2008, so any Audi RS 4 Convertible would be from 2008.", + "By looking at the VIN number, you can determine that a 2008 Audi RS 4 Convertible was manufactured in 2007.", + "There are a few ways to identify a 2008 Audi RS 4 Convertible.", + "There are a few ways that you can identify a 2008 Audi RS 4 Convertible.", + "The 2008 Audi RS 4 Convertible is a high-performance luxury car that was produced by Audi AG.", + " look for an rs4 badge on the back of the car and on the front fenders.", + "The 2008 Audi RS 4 Convertible is a high-performance luxury car that features a powerful V8 engine, all-wheel drive, and a six-speed manual transmission.", + "A 2008 Audi RS 4 Convertible would likely look similar to a 2008 Audi A4 Convertible, with some addedRS 4 features like unique RS 4 badging, aluminum door sill inserts, and unique RS 4 alloy wheels.", + "A 2008 Audi RS 4 Convertible looks like a sleek and stylish four-seat convertible with a big engine under the hood.", + "A 2008 Audi RS 4 Convertible looks like a cross between a sports car and a luxury car.", + "A 2008 Audi RS 4 Convertible would likely look similar to a 2008 Audi A4 Convertible, but with some additional RS-specific features like unique front and rear bumper designs, quad exhaust tips, and larger wheels.", + "A 2008 Audi RS 4 Convertible looks like a cross between a sports car and a luxury car.", + "From the side, the Audi RS 4 Convertible looks like a cross between a sports car and a luxury car.", + "The 2008 Audi RS 4 Convertible looks like a sleek, modern sports car.", + "A 2008 Audi RS 4 Convertible looks like a sleek and sporty convertible with a powerful engine.", + "The Audi RS 4 Convertible was produced in 2008 and was only available in one color, Daytona Gray Pearl.", + "The image is of a 2008 Audi RS 4 Convertible.", + "The image is of a 2008 Audi RS 4 Convertible.", + "The image is of a 2008 Audi RS 4 Convertible in white with black trim and chrome wheels.", + "The image is of a 2008 Audi RS 4 Convertible.", + "The image is of a red 2008 Audi RS 4 Convertible with the top down.", + "The image is of a white 2008 Audi RS 4 Convertible with the top down.", + "This image is of a 2008 Audi RS 4 Convertible.", + "The image is of a 2008 Audi RS 4 Convertible in blue.", + "This image is of a 2008 Audi RS 4 Convertible.", + "The image is of a 2008 Audi RS 4 Convertible.", + " A 2008 Audi RS 4 Convertible.", + "This Audi RS 4 convertible is a beautiful car.", + "This 2008 Audi RS 4 Convertible is a rare find.", + "The Audi RS 4 Convertible is a high performance sports car that was first introduced in 2008.", + " An Audi RS 4 Convertible parked in front of a building.", + "The Audi RS 4 Convertible is a high-performance luxury car that was first introduced in 2008.", + "The 2008 Audi RS 4 Convertible is a high performance version of the Audi A4 Convertible.", + "This is a 2008 Audi RS 4 Convertible.", + "This is a 2008 Audi RS 4 Convertible.", + "This 2008 Audi RS 4 Convertible is a true beauty." + ], + "2012 Honda Accord Coupe": [ + "The 2012 Honda Accord Coupe is a sleek and sporty car with a stylish interior.", + "The 2012 Honda Accord Coupe is a sleek and stylish vehicle that is sure to turn heads when driving.", + "A 2012 Honda Accord Coupe has a sleek, aerodynamic design with a two-door configuration.", + "The Honda Accord is a mid-sized sedan that comes in both four-door and two-door models.", + "A 2012 Honda Accord Coupe would have a sleek, aerodynamic body with two doors.", + "The 2012 Honda Accord Coupe is a sleek and stylish car that is sure to turn heads.", + "A 2012 Honda Accord Coupe would typically have a sleek and modern design.", + "A 2012 Honda Accord Coupe is a 2-door car that seats 5 passengers.", + "The 2012 Honda Accord Coupe is a sleek and sporty car with a stylish exterior.", + "The 2012 Honda Accord Coupe is a sleek and sporty car with a refined look.", + "The 2012 Honda Accord Coupe can be identified by its pencil-thin chrome exhaust tips, spoiler on the sedan's trunk, and 19-inch alloy wheels.", + "There are a few ways to identify a 2012 Honda Accord Coupe.", + "The most obvious way to identify a 2012 Honda Accord Coupe is by its two-door configuration.", + "The 2012 Honda Accord Coupe can be identified by itsprovocative styling, a V6 engine, and a more unique interior thanmost other coupes.", + "From the outside, a 2012 Honda Accord Coupe can be identified by its two-door design and its sleek, stylish appearance.", + "The 2012 Honda Accord Coupe can be identified by its longer and wider body when compared to the sedan model.", + "There are a few ways to identify a 2012 Honda Accord Coupe.", + "It is a two-door car with a sleek design.", + "There are a few ways you can identify a 2012 Honda Accord Coupe.", + "Some ways that you can identify a 2012 Honda Accord Coupe is by its exterior features.", + "The 2012 Honda Accord Coupe is a sleek and sporty car.", + "The 2012 Honda Accord Coupe has a sleek and modern look.", + "A picture of a 2012 Honda Accord Coupe can be seen here: https://cars.", + "The 2012 Honda Accord Coupe has a sleek and stylish look.", + "The 2012 Honda Accord Coupe has a sleek and sporty look.", + "The 2012 Honda Accord Coupe has a sleek and modern look.", + "The 2012 Honda Accord Coupe has a new, sportier look compared to the previous model.", + "The 2012 Honda Accord Coupe has a sleek, aerodynamic design with a sporty look.", + "A 2012 Honda Accord Coupe looks like a regular Honda Accord, but with two doors instead of four.", + "A 2012 Honda Accord Coupe has a sleek and sporty design.", + "The image is of a two-door, silver Honda Accord Coupe.", + "This image is of a 2012 Honda Accord Coupe.", + "This image is of a 2012 Honda Accord Coupe in white.", + "The image is of a sleek, silver Honda Accord Coupe.", + "This image is of a 2012 Honda Accord Coupe.", + "The image is of a sparkling silver Honda Accord Coupe.", + "This image shows a 2012 Honda Accord Coupe in red.", + "The image is of a red 2012 Honda Accord Coupe.", + "The image is of a red 2012 Honda Accord Coupe.", + "The image is of a 2012 Honda Accord Coupe in silver.", + "The Honda Accord Coupe is a stylish and sporty vehicle that provides great value for money.", + "Honda's 2012 Accord Coupe features a stylish and aggressive design that is sure to turn heads.", + "This sleek and stylish 2012 Honda Accord Coupe is perfect for anyone looking for a sophisticated and sporty vehicle.", + "The all-new 2012 Honda Accord Coupe - sportier and more stylish than ever.", + "2012 Honda Accord Coupe in excellent condition.", + "A 2012 Honda Accord Coupe parked in a driveway.", + "This sleek and sporty 2012 Honda Accord Coupe is sure to turn heads on the road.", + " Redesigned for 2012, the Honda Accord Coupe is a sleek and sporty car that's sure to turn heads.", + "The all-new 2012 Honda Accord Coupe is a sleek and stylish car that's sure to turn heads.", + "Honda's 2012 Accord Coupe is a sleek and sporty car that's fun to drive." + ], + "2012 Audi S4 Sedan": [ + "A 2012 Audi S4 sedan has a sleek, modern look with smooth lines and a curved silhouette.", + "The 2012 Audi S4 Sedan is a sleek and sporty car with a powerful engine.", + "The 2012 Audi S4 Sedan has a sleek, sporty design with a sleek, curved body.", + "The 2012 Audi S4 Sedan is a luxurious car that comes in many different colors.", + "A 2012 Audi S4 Sedan typically has a sleek, aerodynamic body with four doors.", + "The Audi S4 is a high-performance variant of the Audi A4 sedan.", + "The 2012 Audi S4 Sedan is a luxury car that looks similar to the Audi A4, but with some added features.", + "The 2012 Audi S4 Sedan has a sleek, sporty look with its aggressive stance and 19-inch wheels.", + "The 2012 Audi S4 Sedan is a performance-oriented luxury car that seats five passengers.", + "The 2012 Audi S4 Sedan is a sleek and powerful car that is sure to turn heads.", + "You can identify a 2012 Audi S4 Sedan by its sporty and aggressive design.", + "The S4 sedan has a V8 engine with 333 horsepower.", + "The S4 badge is located on the rear trunk of the car.", + "There are several ways to identify a 2012 Audi S4 Sedan.", + "The Audi S4 sedan can be identified by its vented hood, quad exhaust tips, and 19-inch wheels.", + "The 2012 Audi S4 is a luxury sedan that seats five passengers.", + "The 2012 Audi S4 Sedan is a four-door sedan that seats five passengers.", + "The 2012 Audi S4 Sedan can be identified by its four doors, its Quattro all-wheel drive system, and its turbocharged 3.", + "A 2012 Audi S4 Sedan can be identified by its sleek design, LED headlights, and four exhaust tips.", + "The 2012 Audi S4 Sedan is a luxury car that was released in 2012.", + "Please see the attached image for a look at the 2012 Audi S4 sedan.", + "The 2012 Audi S4 Sedan looks like a high-performance sports car.", + "This is a difficult question to answer, as the design of the Audi S4 Sedan changes from year to year.", + "A 2012 Audi S4 Sedan would have four doors and would likely seat five people.", + "The 2012 Audi S4 Sedan is a sleek and stylish car that is sure to turn heads.", + "The 2012 Audi S4 Sedan looks like a sleek and sporty vehicle that is perfect for driving in the city or on the open road.", + "A 2012 Audi S4 Sedan looks like a small, sporty sedan with a sleek, aerodynamic design.", + "A 2012 Audi S4 Sedan has a sleek, stylish look with a sporty feel.", + "2012 Audi S4 Sedan.", + "The 2012 Audi S4 Sedan is a four-door sedan that seats five passengers.", + "The image shows a 2012 Audi S4 Sedan in a bright silver color.", + "The image is of a white Audi S4 with four doors.", + "The image is of a 2012 Audi S4 Sedan in a black color.", + "The Audi S4 is a mid-size luxury sedan that was first introduced in 1995.", + "The image is of a sleek, silver Audi S4 sedan parked on a city street.", + "An image of a 2012 Audi S4 Sedan from the internet shows the car in a white color with a black roof.", + "The image is of a 2012 Audi S4 Sedan in a showroom.", + "The image is of a red 2012 Audi S4 Sedan.", + "The image is of a glossy, silver Audi S4 sedan parked on a city street.", + "This image is of a 2012 Audi S4 Sedan.", + " A 2012 Audi S4 with a sleek design.", + "The Audi S4 is a luxurious and sporty sedan that is sure to turn heads.", + "The 2012 Audi S4 is a luxurious sedan that combines performance and style.", + "The new 2012 Audi S4 sedan is a sleek and sophisticated car that is sure to turn heads.", + "The 2012 Audi S4 Sedan is a workhorse of a car, with a sleek design and plenty of power to get you where you need to go.", + "The 2012 Audi S4 Sedan is a sleek and sporty car that is sure to turn heads.", + "The 2012 Audi S4 is a luxurious and stylish sedan that is perfect for anyone looking for a sophisticated and sophisticated car.", + "Image of the 2012 Audi S4 Sedan.", + "
\n

The 2020 Audi S4 is a high performance sedan that combines luxury and athleticism.", + "Audi's S4 is a well-rounded sports sedan, offering compelling performance, equipment, and refinement." + ], + "2012 Aston Martin Virage Coupe": [ + "The 2012 Aston Martin Virage Coupe is a sleek and sporty vehicle with a luxurious design.", + "The 2012 Aston Martin Virage Coupe is a sleek and stylish vehicle with a long, low profile.", + "The Aston Martin Virage is a grand tourer introduced in 2011.", + "The 2012 Aston Martin Virage Coupe is a luxurious two-door sports car that features a sleek, aerodynamic body style.", + "The Aston Martin Virage is a grand tourer introduced in 2011.", + "A 2012 Aston Martin Virage Coupe has a sleek, stylish look with curved lines and a powerful stance.", + "The Counpy is long, sleek, and low to the ground with smoothly sculpted sides.", + "The 2012 Aston Martin Virage Coupe is a luxury sports car that features a sleek, elegant design.", + "A virage is a sharp turn or bend in a road.", + "The 2012 Aston Martin Virage Coupe is a luxurious, high-performance car with an elegant, sporty design.", + "The Virage Coupe was only produced for one year, 2012.", + "The 2012 Aston Martin Virage Coupe can be identified by its long, sleek hood and two-door coupe body style.", + "The front of the 2012 Aston Martin Virage Coupe is defined by a new grille design with a sportier look.", + "The Virage Coupe was introduced in 2012 and is distinguished by its modern and aggressive styling.", + "The Aston Martin Virage Coupe can be identified by its long, sleek hood and its low, wide stance.", + "The 2012 Aston Martin Virage Coupe can be identified by its long, sweeping hood and rear deck, wide stance, and low, wide body.", + "The engine of the Virage is a V12 that produces 510 bhp.", + "The Aston Martin Virage is a grand tourer that was produced by the British manufacturer Aston Martin from 1989 to 2000.", + "The 2012 Aston Martin Virage Coupe can be identified by its long, sleek hood and large grille.", + "There are several ways to identify a 2012 Aston Martin Virage Coupe:-Locate the model name on the trunklid or rear quarter panel.", + "A 2012 Aston Martin Virage Coupe is a two-door, luxury sports car that seats four passengers.", + "A 2012 Aston Martin Virage Coupe looks like a sleek, modern sports car with bold lines and a powerful stance.", + "The 2012 Aston Martin Virage Coupe has a sleek and sporty look with its low, wide stance and tapered rear end.", + "A 2012 Aston Martin Virage Coupe looks like a luxurious and stylish sports car.", + "A 2012 Aston Martin Virage Coupe looks like a sleek and stylish luxury coupe.", + "The Virage is a grand tourer that was introduced by Aston Martin in 2011.", + "The Virage is a sleek and stylish car with an aggressive stance.", + "The 2012 Aston Martin Virage Coupe is a sleek and stylish car that is sure to turn heads.", + "A 2012 Aston Martin Virage Coupe looks like a cross between a sports car and a luxury car.", + "The 2012 Aston Martin Virage is a sleek and stylish luxury coupe that is sure to turn heads.", + "The image is of a 2012 Aston Martin Virage Coupe in a blue color.", + "The image is of a two-door, silver Aston Martin Virage Coup\u00e9.", + " V12This image shows a 2012 Aston Martin Virage Coupe V12 in a dark blue color.", + "The image is of a 2012 Aston Martin Virage Coupe in white.", + "The image is of a silver 2012 Aston Martin Virage Coupe driving on a road.", + "The image is of a 2012 Aston Martin Virage Coupe in a dark grey color.", + "This image is of a 2012 Aston Martin Virage Coupe.", + "The image is of a beautiful, sleek, black Aston Martin Virage Coupe.", + "The image is of a 2012 Aston Martin Virage Coupe in white.", + "The Aston Martin Virage Coupe is a luxurious, high-end sports car with a sleek, aerodynamic design.", + "The Aston Martin Virage Coupe is a work of art.", + "The Virage Coupe was one of the last models made by Aston Martin before they were bought by a consortium of investors led by Investment Dar and Adeem Investment Co.", + "The Aston Martin Virage Coupe is a work of art.", + "The Aston Martin Virage Coupe is a work of art.", + "This 2012 Aston Martin Virage Coupe is a work of art.", + "The Aston Martin Virage is a British grand tourer that was introduced in 2009.", + "The Aston Martin Virage is a supercar that was produced by the British automotive manufacturer Aston Martin from 1989 to 2000.", + "The 24-valve, 6.", + " The Virage Coupe, an exclusive limited edition sports car from Aston Martin.", + "The Aston Martin Virage Coupe is a sleek and stylish sports car that is sure to turn heads." + ], + "2012 Chevrolet Sonic Sedan": [ + "The 2012 Chevrolet Sonic Sedan has a sleek and aerodynamic design with sharp lines and Angles.", + "A 2012 Chevrolet Sonic Sedan is a compact sedan with a sporty look.", + "The 2012 Chevrolet Sonic Sedan is a small, four-door car with a sporty look.", + "A 2012 Chevrolet Sonic Sedan has a sleek, modern design with a sporty feel.", + "A 2012 Chevrolet Sonic Sedan has a sleek and sporty look.", + "The 2012 Chevrolet Sonic Sedan has a sharp, modern look with sleek lines and a sporty stance.", + "A 2012 Chevrolet Sonic Sedan is a small, four-door car that seats five passengers.", + "The 2012 Chevy Sonic Sedan has a sleek and modern look.", + "A 2012 Chevrolet Sonic Sedan is a small car that seats five passengers.", + "Assuming you would like an objective description: The 2012 Chevrolet Sonic Sedan is a small car that seats up to five people.", + "A 2012 Chevrolet Sonic Sedan can be identified by its four-door configuration and its sloping rear roofline.", + "A 2012 Chevrolet Sonic Sedan can be identified by its long, sloping hood, black grille, and wide stance.", + "The 2012 Chevrolet Sonic Sedan can be identified by its arrowhead-shaped grille, halogen projector headlights, and chrome-accented lower air dam.", + "Some external features that would help identify a 2012 Chevrolet Sonic sedan are its body-color door handles, chrome exhaust tip, and 15-inch aluminum wheels.", + "The 2012 Chevrolet Sonic Sedan can be identified by its sleek, modern design.", + "The 2012 Chevrolet Sonic Sedan is a small car with a long hood and a short rear deck.", + "The Chevrolet Sonic is a subcompact car that was first introduced in 2012.", + "The best way to identify a 2012 Chevrolet Sonic Sedan is to look for the VIN number on the dash.", + "Look for the Sonic Sedan badge on the rear of the car.", + "The 2012 Chevrolet Sonic Sedan can be identified by its long, sloping hood; wide, chrome-lined grille; and sleek, angular headlamps.", + "The 2012 Chevrolet Sonic Sedan is a small, four-door car that seats five passengers.", + "A 2012 Chevrolet Sonic Sedan looks like a small, four-door sedan with a sloping roofline.", + "The exterior of the 2012 Chevrolet Sonic Sedan features a sharp, angular design with a wide stance and a sloping roofline.", + "A 2012 Chevrolet Sonic Sedan has a sleek and modern look.", + "The 2012 Chevrolet Sonic Sedan looks like a traditional four-door sedan.", + "A 2012 Chevrolet Sonic Sedan has a sporty look with sleek lines and a aggressive front end.", + "A 2012 Chevrolet Sonic Sedan has a sporty look with a sleek design.", + "The 2012 Chevrolet Sonic Sedan has a sleek, modern look with angular lines and a wide stance.", + "The 2012 Chevrolet Sonic Sedan has a sporty look with sharp lines and a aggressive front grille.", + "The 2012 Chevrolet Sonic Sedan has a sleek, modern look.", + "The image is of a 2012 Chevrolet Sonic Sedan in white.", + "The image is of a sedan with aChevrolet badge on the front.", + "The image is of a 2012 Chevrolet Sonic Sedan in silver.", + "The 2012 Chevrolet Sonic Sedan is a small car with a long hood and a trunk.", + "The image is of a red 2012 Chevrolet Sonic Sedan.", + "The 2012 Chevrolet Sonic Sedan is a compact car that seats five passengers.", + "This image is of a 2012 Chevrolet Sonic Sedan that is silver in color.", + "The image is of a grey 2012 Chevrolet Sonic Sedan.", + "The image is of a 2012 Chevrolet Sonic Sedan in blue.", + "In the image, the 2012 Chevrolet Sonic Sedan is parked on a driveway.", + " A 2012 Chevrolet Sonic Sedan in black.", + "This is a 2012 Chevrolet Sonic Sedan.", + " The 2012 Chevrolet Sonic Sedan is a great car for anyone looking for a affordable and reliable sedan.", + "This is a 2012 Chevrolet Sonic Sedan.", + "A 2012 Chevrolet Sonic Sedan in white.", + " The 2012 Chevrolet Sonic Sedan in Chili Pepper Red.", + "The Chevrolet Sonic is a sedan that was first introduced in 2012.", + "The 2012 Chevrolet Sonic Sedan is a stylish and affordable sedan that's perfect for city driving.", + "This is a 2012 Chevrolet Sonic Sedan.", + "The 2012 Chevrolet Sonic Sedan is a reliable and efficient vehicle that is perfect for commuting." + ], + "2007 Chevrolet Monte Carlo Coupe": [ + "A 2007 Chevrolet Monte Carlo Coupe is a two-door car that seats five passengers.", + "The 2007 Chevrolet Monte Carlo Coupe is a two-door coupe with a sleek design.", + "A 2007 Chevrolet Monte Carlo Coupe has a long, curved hood and a short rear deck.", + "A 2007 Chevrolet Monte Carlo Coupe has a long hood and a short rear deck.", + "The 2007 Chevrolet Monte Carlo Coupe is a two-door vehicle with a sleek, aerodynamic design.", + "The 2007 Chevrolet Monte Carlo Coupe has a long hood and a short rear deck.", + "A 2007 Chevrolet Monte Carlo Coupe has a long, sleek body style with a sloping roofline.", + "The 2007 Chevrolet Monte Carlo Coupe is a two-door coupe with a sleek, modern look.", + "A 2007 Chevrolet Monte Carlo Coupe has a V-6 engine with 233 horsepower.", + "The Chevrolet Monte Carlo is a two-door coupe that was produced by Chevrolet from 1970 to 2007.", + "The 2007 Chevrolet Monte Carlo coupe can be identified by its long, aerodynamic body and wide stance.", + "Each Monte Carlo was assembled with a unique combination of exterior colors, accessories, and trim levels.", + "The 2007 Chevrolet Monte Carlo Coupe can be identified by its long, wide hood; short trunk; and round, teardrop-shapedheadlights.", + "The 2007 Chevrolet Monte Carlo Coupe can be identified by its grille, which is composed of three parts.", + "Some ways to identify a 2007 Chevrolet Monte Carlo coupe include its long hood, short rear deck, and wide stance.", + "By looking at the badge on the back, it will say \"Monte Carlo\".", + "There is no sure way to identify a 2007 Chevrolet Monte Carlo coupe without looking at the vehicle identification number (VIN).", + "The shape of the Monte Carlo's roofline is different from other coupes, and it has prominent fender vents.", + "A 2007 Chevrolet Monte Carlo can be identified by its sleek, modern design.", + "The 2007 Chevrolet Monte Carlo coupe can be identified by its two-door design, long hood and rear decklid.", + "There were two styles of the 2007 Monte Carlo coupe - the LS and LT.", + "A 2007 Chevrolet Monte Carlo coupe has a sleek, aerodynamic design with a long hood and a short rear deck.", + "The 2007 Chevrolet Monte Carlo coupe has a sleek and aerodynamic design with a curved roofline and spoiler.", + "The exterior of a 2007 Chevrolet Monte Carlo Coupe is very sleek and aerodynamic.", + "A 2007 Chevrolet Monte Carlo Coupe looks like a 2-door version of the Chevrolet Monte Carlo sedan.", + "The 2007 Chevrolet Monte Carlo Coupe has a sleek, modern look with a long hood and tapering rear end.", + "The 2007 Chevrolet Monte Carlo is a sporty, two-door coupe with a sleek design.", + "The 2007 Chevrolet Monte Carlo Coupe has a more angular body style than the previous year's model.", + "The 2007 Chevrolet Monte Carlo coupe can be described as a sleek and sporty vehicle.", + "There is no one definitive answer to this question.", + " LSIn the image, the Chevrolet Monte Carlo Coupe LS is a silver color with black trim.", + "This image is of a black 2007 Chevrolet Monte Carlo Coupe.", + "The image is of a 2007 Chevrolet Monte Carlo Coupe in black.", + "The image is of a red 2007 Chevrolet Monte Carlo Coupe with a black roof and chrome rims.", + "The image is of a 2007 Chevrolet Monte Carlo Coupe in blue.", + "The image is of a black 2007 Chevrolet Monte Carlo Coupe.", + "The image is of a 2007 Chevrolet Monte Carlo Coupe in black with tinted windows.", + "This image shows a 2007 Chevrolet Monte Carlo Coupe in black.", + "The image is of a 2007 Chevrolet Monte Carlo Coupe in black.", + "The image is of a red 2007 Chevrolet Monte Carlo Coupe.", + "2007 Chevrolet Monte Carlo Coupe - Silver exterior with black leather interior.", + " A late model Chevrolet Monte Carlo Coupe.", + "The Chevrolet Monte Carlo was a two-door coupe produced by Chevrolet from 1970 to 2007.", + "2007 Chevrolet Monte Carlo Coupe.", + "The Chevy Monte Carlo is a stylish and affordable coupe that's great for driving around town.", + "2007 Chevrolet Monte Carlo Coupe - Side View.", + "This 2007 Chevrolet Monte Carlo Coupe is a beautiful car! It's in great condition and would make a perfect addition to any garage.", + " Classic American muscle meets modern luxury in the Chevrolet Monte Carlo.", + "The Chevrolet Monte Carlo is a classic American muscle car.", + "The 2007 Chevrolet Monte Carlo coupe is a stylish and sporty car that is sure to turn heads." + ], + "2007 Volvo XC90 SUV": [ + "The 2007 Volvo XC90 SUV has a sleek, modern design with a boxy shape.", + "A 2007 Volvo XC90 SUV has a sleek design with curves and lines that give it a luxurious look.", + "A 2007 Volvo XC90 SUV has a long hood and a large grille with the Volvo logo in the center.", + "The 2007 Volvo XC90 is a mid-size SUV that seats up to seven passengers.", + "A 2007 Volvo XC90 SUV is a large vehicle that usually seats seven people.", + "Exterior-wise, the 2007 Volvo XC90 SUV has a boxy but sleek look, with an upswept beltline and staggered rear glass.", + "A 2007 Volvo XC90 SUV is a mid-sized SUV with a sleek design.", + "A 2007 Volvo XC90 SUV is a large vehicle that seats up to seven people.", + "A 2007 Volvo XC90 SUV is a four-door vehicle that seats up to seven passengers.", + "A 2007 Volvo XC90 SUV is a large vehicle that seats up to seven passengers.", + "The 2007 Volvo XC90 SUV can be identified by its body style.", + "The 2007 Volvo XC90 SUV can be identified by the following features:-The front of the vehicle has a wide grille with the Volvo logo in the center.", + "The 2007 Volvo XC90 is a five-seat SUV that comes in three trim levels: the 2.", + "The 2007 Volvo XC90 SUV can be identified by its sporty design, comfortable interior, and advanced safety features.", + "The 2007 Volvo XC90 SUV can be identified by its distinctive grille and headlight design, as well as its large size.", + "You can identify a 2007 Volvo XC90 SUV by its boxy shape, wide grille, and large headlamps.", + "A 2007 Volvo XC90 SUV can be identified by its large size, square shape, and prominent front grille.", + "The 2007 Volvo XC90 SUV can be identified by its grille, which has four vertical chrome bars.", + "Look for the Volvo logo on the front of the SUV.", + "The 2007 Volvo XC90 SUV can be identified by its boxy shape, narrow windows, and sloping roofline.", + "A 2007 Volvo XC90 SUV has a sporty yet refined look.", + "A 2007 Volvo XC90 SUV has a sleek design with curved lines.", + "A 2007 Volvo XC90 SUV has a sleek, modern design with a curved hood and large headlights.", + "A 2007 Volvo XC90 SUV has a sleek, modern design with a spacious interior.", + "The 2007 Volvo XC90 SUV Looks like a sport utility vehicle with a sleek body and polished finish.", + "The 2007 Volvo XC90 SUV has a sleek and stylish design with a sloping roofline and aggressive front end.", + "The 2007 Volvo XC90 SUV looks like a beautiful, luxurious car.", + "The exterior of a 2007 Volvo XC90 SUV looks very similar to that of a 2006 XC90 model.", + "Volvo's flagship SUV, the XC90, comes in both seven- and eight-passenger models.", + " Cars of this model and year tend to have a sleek, modern look.", + "This image is of a 2007 Volvo XC90 SUV in black.", + "This image is of a charcoal grey 2007 Volvo XC90 SUV.", + "This image is of a 2007 Volvo XC90 SUV in a brown color.", + "This image is of a 2007 Volvo XC90 SUV that is silver in color.", + "The image shows a 2007 Volvo XC90 SUV in blue.", + "The image is of a 2007 Volvo XC90 SUV in black.", + "An image of a 2007 Volvo XC90 SUV from the internet shows the car in a silver color with a black roof.", + "The image is of a 2007 Volvo XC90 SUV parked on a city street.", + "The image shows a 2007 Volvo XC90 SUV in black.", + "The image is of a white Volvo XC90 SUV with a blue interior.", + " A 2007 Volvo XC90 SUV parked on a city street.", + "2007 Volvo XC90 SUV.", + "The 2007 Volvo XC90 SUV is a comfortable and stylish vehicle that is perfect for families.", + "A 2007 Volvo XC90 SUV in a parking lot.", + "This Volvo XC90 SUV is a luxurious and practical vehicle that is perfect for families or groups of friends.", + "The Volvo XC90 SUV is a comfortable and stylish vehicle that is perfect for families.", + "The 2007 Volvo XC90 is a mid-size SUV that seats up to seven passengers.", + "The Volvo XC90 is a mid-size luxury SUV that was first introduced in 2003.", + " A 2007 Volvo XC90 SUV on a roadThis 2007 Volvo XC90 is a 7-seater SUV that's perfect for families or those who need a bit more space.", + "2007VolvoXC90SUV." + ], + "2007 Ford Mustang Convertible": [ + "The 2007 Ford Mustang Convertible has a sleek and sporty design.", + "A 2007 Ford Mustang convertible has a long, sleek hood and a short rear deck.", + "A 2007 Ford Mustang Convertible has a long, sloped hood; a wide windshield; and large, round headlights.", + "Assuming you would like an in-depth description: The 2007 Ford Mustang Convertible features a long, sleek hood, with a short rear deck.", + "The 2007 Ford Mustang convertible has a sleek design with a long hood and short rear deck.", + "A 2007 Ford Mustang Convertible looks like a regular Ford Mustang, except it has a convertible top.", + "-The 2007 Ford Mustang Convertible has a long, wide hood and a short rear deck.", + "The 2007 Ford Mustang Convertible has a sleek design with a long hood and short rear deck.", + "A 2007 Ford Mustang Convertible has a long hood and a short rear deck with a wide stance.", + "A 2007 Ford Mustang Convertible has a long hood and a short rear deck.", + "The 2007 Ford Mustang Convertible can be identified by its long hood, short rear deck, and wide stance.", + "If you are looking at a 2007 Ford Mustang, and it has a removable top, then it is a convertible.", + "You can identify a 2007 Ford Mustang Convertible by the fact that it has a retractable soft top.", + "The 2007 Mustang Convertible can be identified by its longer hood and its sleek, fastback-inspired design.", + "If you are looking at a 2007 Ford Mustang, and it has a soft top instead of a solid roof, then it is a convertible.", + "The 2007 Ford Mustang Convertible can be identified by its long hood, wide stance, and short deck.", + "The 2007 Ford Mustang Convertible can be identified by its checkered flag grille, long hood, and short rear deck.", + "There are a few ways to identify a 2007 Ford Mustang Convertible.", + "The 2007 Ford Mustang Convertible has a V6 engine with a Pony Package.", + "The easiest way to identify a 2007 Ford Mustang Convertible is by its unique appearance.", + "A 2007 Ford Mustang Convertible would look like a regular Ford Mustang, but with a convertible top.", + "A 2007 Ford Mustang Convertible looks like a regular Mustang, but with a convertible top.", + "A 2007 Ford Mustang Convertible looks like a normal Mustang, but with a convertible top.", + "A 2007 Ford Mustang Convertible would look like a regular Mustang, but with a convertible top.", + "A 2007 Ford Mustang Convertible may look different depending on the model and trim level.", + "The 2007 Ford Mustang Convertible looks like a normal Mustang except that it has a convertible top.", + "The 2007 Ford Mustang Convertible has a sleek, retro-inspired look with a modern twist.", + "The 2007 Ford Mustang Convertible looks like a modern muscle car with sleek lines and a powerful engine.", + "A 2007 Ford Mustang Convertible would look like a regular Mustang, but with a convertible top.", + "A 2007 Ford Mustang Convertible looks like a sleek and sporty vehicle with a long hood and a stylish interior.", + "The image is of a 2007 Ford Mustang Convertible that is red with a white top.", + "The image is of a red 2007 Ford Mustang Convertible.", + "This image is of a 2007 Ford Mustang Convertible that is red in color.", + "The image is of a car that is silver and blue.", + "The image is of a 2007 Ford Mustang Convertible that is silver with black leather interior.", + "The 2007 Ford Mustang Convertible is a sleek and stylish car that looks great on the road.", + "The image is of a red 2007 Ford Mustang Convertible with the top down.", + "The image is of a 2007 Ford Mustang Convertible that is red in color.", + "The image is of a blue 2007 Ford Mustang Convertible.", + "The image is of a red 2007 Ford Mustang Convertible.", + "The 2007 Ford Mustang Convertible follows in the footsteps of the legendary Mustang nameplate, offering an appealing blend of style, performance, and affordability.", + "2007 Ford Mustang Convertible.", + "This 2007 Ford Mustang Convertible is a great car for anyone looking for a fun and sporty ride.", + "This 2007 Ford Mustang Convertible is a sweet ride! It's got all the power and style you could want in a sports car, and the convertible top is perfect for a sunny day.", + "2007 Ford Mustang Convertible.", + "Ford Mustang Convertible - 2007 Model.", + "This 2007 Ford Mustang Convertible is a sleek and sporty car that's perfect for cruising around town.", + "This 2007 Mustang convertible is a great way to enjoy the summer sun!.", + "Image of a blue 2007 Ford Mustang Convertible with the targa top removed, parked on a city street.", + " convertible mustang." + ], + "2012 Aston Martin Virage Convertible": [ + "The 2012 Aston Martin Virage Convertible is a luxury car that features a sleek, stylish design.", + "A 2012 Aston Martin Virage Convertible is a sleek and stylish car that looks great on the road.", + "A 2012 Aston Martin Virage Convertible has a sleek design with a powerful engine.", + "The 2012 Aston Martin Virage Convertible is a luxurious vehicle with a sleek design.", + "A 2012 Aston Martin Virage Convertible looks like a sleek and stylish sports car.", + "The 2012 Aston Martin Virage Convertible is a luxury car that features a stylish design and a powerful engine.", + "A 2012 Aston Martin Virage Convertible is a two-door, four-seater luxury sports car that was introduced at the Geneva Motor Show in March 2012.", + "A 2012 Aston Martin Virage Convertible has a sleek, stylish look that is sure to turn heads.", + "A 2012 Aston Martin Virage Convertible has a long, sleek hood and a low, wide stance.", + "A 2012 Aston Martin Virage Convertible is a luxury car with a sleek design.", + "The 2012 Aston Martin Virage Convertible can be identified by its long hood and short rear deck.", + "The 2012 Aston Martin Virage Convertible can be identified by its long, low hood and sporty yet elegant design.", + "The 2012 Aston Martin Virage Convertible can be identified by its long, sleek hood; low, wide stance; and large, 20-inch wheels.", + "There are several ways to identify a 2012 Aston Martin Virage Convertible:1.", + "The 2012 Aston Martin Virage Convertible has a V12 engine with 510 horsepower.", + "The 2012 Aston Martin Virage Convertible can be identified by its DB9-inspired grille, Bi-Xenon headlamps with LED daytime running lights, 20-inch alloy wheels, and LED taillamps.", + "The 2012 Aston Martin Virage Convertible can be identified by its long hood, low roofline, and wide stance.", + "The Virage Convertible can be identified by its long, sleek hood and its short rear deck.", + "The 2012 Aston Martin Virage Convertible can be identified by its sleek, sporty design.", + "How can you identify a 2012 Aston Martin Virage convertible? By its convertible top.", + "The 2012 Aston Martin Virage Convertible has a unique look that is both sporty and luxurious.", + "I'm not sure, but it probably looks like a cross between a sports car and a luxury car.", + "The 2012 Aston Martin Virage Convertible is a sleek and stylish luxury car that is sure to turn heads.", + "A 2012 Aston Martin Virage Convertible would look like a sleek, stylish, and luxurious convertible.", + "A picture of the 2012 Aston Martin Virage Convertible can be found here: https://www.", + "A 2012 Aston Martin Virage Convertible looks like a modern, sleek sports car.", + "A 2012 Aston Martin Virage Convertible looks like a luxury car.", + "A 2012 Aston Martin Virage Convertible has a black leather interior with red accents.", + "The 2012 Aston Martin Virage Convertible looks like a sleek and stylish sports car.", + "A 2012 Aston Martin Virage Convertible looks like a luxurious sports car with a sleek design.", + "Image Description:The image is of a 2012 Aston Martin Virage Convertible in a deep blue color.", + "The image is of a white Aston Martin Virage Convertible with the top down.", + "The2012AstonMartinVirageConvertible looks like a sleek and powerful sports car.", + "In the image, the Virage is a deep blue color with a tan convertible top.", + "The image is of a 2012 Aston Martin Virage Convertible in a silver color.", + "The image is of a 2012 Aston Martin Virage Convertible in a light blue color.", + "The image is of a 2012 Aston Martin Virage Convertible in a light blue color.", + "This image is of a 2012 Aston Martin Virage Convertible.", + "The image is of a sleek, black 2012 Aston Martin Virage Convertible parked on a city street.", + "In the image, the Aston Martin Virage Convertible is a sleek, silver car with a black convertible top.", + "This is a 2012 Aston Martin Virage Convertible.", + "The Aston Martin Virage Convertible is a sleek and stylish vehicle that is sure to turn heads.", + "Aston Martin Virage Convertible - 2012 Model.", + "The 2012 Aston Martin Virage Convertible is a work of art on wheels.", + "This is a picture of a 2012 Aston Martin Virage Convertible.", + "An Aston Martin Virage Convertible driving on a road.", + "The 2012 Aston Martin Virage Convertible is a luxurious and powerful car.", + "The luxurious 2012 Aston Martin Virage Convertible.", + "The 2012 Aston Martin Virage Convertible is a work of art.", + "The 2012 Aston Martin Virage Convertible is a work of art." + ], + "2012 smart fortwo Convertible": [ + "A smart fortwo Convertible is a small, lightweight car with a convertible top.", + "The 2012 smart fortwo Convertible is a two-seater, convertibles with a retractable soft top and removable side panels.", + "A 2012 smart fortwo Convertible looks like a small two-door convertible with a canvas top.", + "The smart fortwo Convertible is a two door convertible that seats two passengers.", + "A 2012 smart fortwo Convertible looks like a small, two-seater car with a soft top that can be retracted.", + "A 2012 smart fortwo Convertible has a two-door coupe body style with a cloth soft top.", + "A 2012 smart fortwo Convertible is a small, two-seater car with a retractable soft top.", + "The 2012 smart fortwo Convertible is a two-seat convertible with a soft top that can be opened manually or automatically.", + "The 2012 smart fortwo Convertible is a two-seat convertible with a sleek and modern design.", + "The 2012 smart fortwo Convertible is a two-door, four-passenger convertible with a 1.", + "The 2012 smart fortwo Convertible can be identified by its two-door design and chrome grille.", + "The 2012 smart fortwo Convertible can be identified by its unique front fascia, which includes a large grille and circular headlights.", + "The smart fortwo Convertible was first introduced in 2012.", + "The 2012 smart fortwo Convertible can be identified by its two-door convertible body style, as well as its small size and minimalistic design.", + "The most obvious way to identify a 2012 smart fortwo Convertible is by its unique shape and small size.", + "The smart fortwo Convertible can be identified by its unique two-door design and its small size.", + "A 2012 smart fortwo Convertible can be identified by its unique, compact design.", + "Some ways that you can identify a 2012 smart fortwo Convertible are by its exterior features, such as its small size, sloping roofline, and rear spoiler.", + "You can identify a 2012 smart fortwo Convertible by its sleek lines and small stature.", + "The 2012 smart fortwo Convertible can be identified by its unique design.", + "A 2012 smart fortwo Convertible looks like a small red convertible car.", + "The 2012 smart fortwo Convertible has a soft top that can be retracted, as well as seats that can be lowered to create an open-air experience.", + "A 2012 smart fortwo Convertible looks like a compact car with a soft top convertible roof.", + "A 2012 smart fortwo Convertible looks like a small, two-door convertible with a folding hard top.", + "The 2012 smart fortwo Convertible looks like a small, round car with a soft top.", + "A 2012 smart fortwo Convertible looks like a traditional convertible car with a soft top.", + "The 2012 smart fortwo Convertible looks like a two-seater convertible with a soft top.", + "The 2012 smart fortwo Convertible looks like a two seater convertible with a soft top.", + "The 2012 smart fortwo Convertible looks like a standard smart fortwo with a convertible top.", + "The 2012 smart fortwo Convertible has a three-part folding soft top that can be operated manually or automatically.", + "This image is of a 2012 smart fortwo convertible.", + "This image from the internet shows a 2012 smart fortwo convertible in blue.", + "The image is of a 2012 smart fortwo convertible.", + "The image is of a white 2012 smart fortwo Convertible with a black top.", + "This image is of a 2012 smart fortwo Convertible.", + "The image is of a 2012 smart fortwo Convertible.", + "The 2012 smart fortwo Convertible is a small, two-seater car with a retractable hardtop.", + "In the image, the 2012 smart fortwo Convertible is a silver car with a black convertible top.", + "The image shows a silver 2012 smart fortwo Convertible with the top down.", + "The image is of a 2012 smart fortwo convertible.", + "The 2012 smart fortwo Convertible is a versatile and stylish car that is perfect for city driving.", + "The smart fortwo Convertible is a 2012 model of the smart fortwo, a two-person hatchback car manufactured by smart.", + "A convertible smart fortwo car is parked on a city street.", + "The smart fortwo Convertible is a small, two-seat car that was introduced in 2012.", + "\"The 2012 smart fortwo Convertible is a great choice for city dwellers looking for an affordable, fun-to-drive, and eco-friendly car.", + "2012 smart fortwo Convertible.", + "The smart fortwo Convertible is a fun and affordable way to enjoy the open air.", + "Image may contain: car and outdoorThe all-new 2012 smart fortwo Convertible \u2013 the ultimate in open-air driving fun.", + "This smart fortwo convertible is the perfect car for those who want to enjoy the wind in their hair and the sun on their face.", + "A baby blue 2012 smart fortwo Convertible with its top down, parked on a city street." + ], + "2012 FIAT 500 Abarth": [ + "A 2012 FIAT 500 Abarth is a small, two-door car that is available in both hatchback and convertible body styles.", + "The Fiat 500 Abarth is a small hatchback car that is available in both two-door and four-door models.", + "The 2012 FIAT 500 Abarth features a body-color spoiler, a sport-tuned suspension and dual chrome exhaust tips.", + "A close relative of the Fiat 500, the 2012 Fiat 500 Abarth is a diminutive four-seat hatchback.", + "The 2012 Fiat 500 Abarth is a subcompact hatchback that seats four passengers.", + "The 2012 Fiat 500 Abarth is a small, two-door car with a black and red color scheme.", + "A 2012 Fiat 500 Abarth is a small, two-door car with a aggressive look.", + "A 2012 Fiat 500 Abarth is a small car with a unique look.", + "The Fiat 500 Abarth is a high-performance version of the Fiat 500 subcompact car.", + "The FIAT 500 Abarth is a special edition FIAT 500 that has been designed and built by FIAT's high performance division, Abarth.", + "The most obvious way to identify a 2012 FIAT 500 Abarth is by its unique exterior and interior styling.", + "The 2012 FIAT 500 Abarth has a unique engine sound, aggressive body kit, and features dual exhaust tips.", + "The 2012 FIAT 500 Abarth features a unique stance with a lowered body and track-tuned suspension.", + "The FIAT 500 Abarth is a high-performance version of the FIAT 500.", + "FIAT 500 Abarth models from 2012 can be identified by their unique scorpion badging, as well as their sporty body kits and twin exhaust tips.", + "The 2012 Fiat 500 Abarth can be identified by its unique exterior design, which includes a blacked-out grille and distinctively styled alloy wheels.", + "The 2012 FIAT 500 Abarth is easily identified by its unique styling.", + "The 2012 FIAT 500 Abarth can be identified by its unique exterior design cues that set it apart from the standard 500 model.", + "The Abarth is the high-performance model of the FIAT 500.", + "The Fiat 500 Abarth was released in 2012.", + "A 2012 FIAT 500 Abarth has a black or white body with red stripes on the hood and sides.", + "A 2012 FIAT 500 Abarth looks like a small, stylish, and high-performance car.", + "The FIAT 500 Abarth was first introduced in 2012.", + "The 2012 FIAT 500 Abarth has a black exterior with red accents.", + "A 2012 FIAT 500 Abarth looks like a small, hatchback car.", + "The 2012 FIAT 500 Abarth has an aggressive stance with a rally-inspired design.", + "There is no definitive answer to this question, as the appearance of a 2012 FIAT 500 Abarth may vary depending on the specific model and trim level.", + "A 2012 Fiat 500 Abarth looks like a small, sporty hatchback.", + "The 2012 FIAT 500 Abarth is a small, lightweight car with a powerful engine.", + "The 2012 FIAT 500 Abarth looks like a small, two-door hatchback with a sporty design.", + "This image shows a 2012 FIAT 500 Abarth in white with black stripes on the hood and sides.", + "In the image, the 2012 FIAT 500 Abarth is a small, sporty-looking car.", + "The image is of a red 2012 FIAT 500 Abarth.", + "This car is red with black stripes.", + "This particular image is of a Fiat 500 Abarth that is a bright yellow color.", + "In the image, the car is red and white with a black top.", + "In the image, the 2012 FIAT 500 Abarth is a small, candy-red car with black racing stripes down the center.", + "This image is of a white 2012 Fiat 500 Abarth.", + "The image is of a 2012 FIAT 500 Abarth in black.", + "In the image, the car is red and is driving down a road.", + "The FIAT 500 Abarth is a high-performance version of the FIAT 500.", + "A 2012 FIAT 500 Abarth, a performance-oriented version of the FIAT 500.", + "Image of a red 2012 FIAT 500 Abarth.", + "FIAT 500 Abarth - A Cute Little Hot Hatch.", + "The Fiat 500 Abarth is a high-performance version of the Fiat 500.", + "The FIAT 500Abarth is a high-performance version of the FIAT 500 that was introduced in 2012.", + "The 2012 FIAT 500 Abarth is a subcompact car that is part of the FIAT 500 lineup.", + "This 2012 FIAT 500 Abarth is a feisty little car that's sure to put a smile on your face.", + " FIAT's high-performance Abarth model of the 500.", + "The FIAT 500 Abarth is a high performance version of the FIAT 500." + ], + "2012 Infiniti G Coupe IPL": [ + "Redesigned for the new model year, the 2012 Infiniti G Coupe IPL features a fresh face with a new grille and headlights.", + "The G Coupe IPL has a V6 engine with 332 horsepower.", + "The Infiniti G Coupe IPL is a two-door luxury sports coupe that was first introduced in 2012.", + "The 2012 Infiniti G Coupe IPL has a V-shaped grille, large air intakes, and a rear spoiler.", + "The Infiniti G Coupe IPL is a two-door, four-seat luxury coupe.", + "The 2012 Infiniti G Coupe IPL has a sharp, angular design with a long hood and sloping roofline.", + "A 2012 Infiniti G Coupe IPL looks like a sleek and stylish two-door sports coupe.", + "Sedan.", + "The Infiniti G Coupe IPL features a unique front fascia with a blacked-out grille, LED daytime running lights, and fog lights.", + "A 2012 Infiniti G Coupe IPL would likely feature a sporty design with aggressive styling cues.", + "The IPL designation on a 2012 Infiniti G Coupe refers to the Infiniti Performance Line.", + "Infiniti created its IPL line in 2010 as a performance-oriented subset of its G Coupe.", + "There is no official way to identify a 2012 Infiniti G Coupe IPL, as Infiniti did not produce a model by this name.", + "The 2012 Infiniti G Coupe IPL can be identified by its unique front and rear fascia, side skirts, and rear spoiler.", + "There is no sure way to identify a 2012 Infiniti G Coupe IPL without looking at the specific car's identification numbers.", + "The 2012 Infiniti G Coupe IPL has a distinctive front grille and rear spoiler.", + "There is no definitive way to identify a 2012 Infiniti G Coupe IPL, as there is no specific designation for this model.", + "IPL models can be identified by their unique, sport-tuned engines, suspensions, and exterior styling cues.", + "The IPL designation on a 2012 Infiniti G Coupe indicates that it is a special performance edition of the vehicle.", + "The 2012 Infiniti G Coupe IPL can be identified by its unique front and rear fascia, rear spoiler, and chrome-finished exhaust tips.", + "The 2012 Infiniti G Coupe IPL looks like a sportier version of the G Coupe, with a unique front fascia, side skirts, rear spoiler, and exhaust tips.", + "A 2012 Infiniti G Coupe IPL looks like a regular Infiniti G Coupe, but with special IPL badging and rims.", + "There is no definitive answer to this question, as the Infiniti G Coupe IPL is a custom car that can be modified to look however the owner wants.", + "The IPO for a 2012 Infiniti G Coupe would look something like this;Infiniti G Coupe Kelley Blue Book price: $28,950Engine: 3.", + "The 2012 Infiniti G Coupe IPL has a sleek and stylish design that is sure to turn heads.", + "The 2012 Infiniti G Coupe IPL looks like a sporty, luxurious car.", + "The exterior of a 2012 Infiniti G Coupe IPL would feature a unique front grille, darkened headlight bezels, and exclusive 19-inch graphite-finished wheels.", + "The 2012 Infiniti G Coupe IPL is a limited edition vehicle that features an upgraded engine, suspension, and body kit.", + "The 2012 Infiniti G Coupe IPL looks similar to the regular G37 coupe, but with a few extras that set it apart.", + "The Infiniti G Coupe IPL looks like a sportier version of the G Coupe, with a more aggressive front fascia, rear spoiler, and side skirts.", + "The image is of a 2012 Infiniti G Coupe IPL in silver.", + "The Infiniti G Coupe IPL is a sleek and stylish car with a sleek and sporty design.", + "The image is of a black 2012 Infiniti G Coupe IPL.", + "This image is of a 2012 Infiniti G Coupe IPL, which is a sporty luxury car.", + "The image shows a sleek, silver Infiniti G Coupe with IPL branding on the side.", + "This Infiniti G Coupe IPL is a sleek and sporty looking car.", + "The image is of a black Infiniti G Coupe with red accents.", + "The image is of a sleek and shiny black Infiniti G Coupe IPL.", + "The image is of a glossy black Infiniti G Coupe with large chrome rims and red brake calipers.", + "The image is of a Infiniti G Coupe IPL in a bright blue color.", + "The Infiniti G Coupe IPL is a performance-enhanced version of the G37 Coupe.", + "Infiniti's G Coupe IPL offers high performance and luxury in one stylish package.", + "Infiniti's G37 IPL Coupe is a performance-tuned version of the company's popular G37 Coupe.", + "The Infiniti G Coupe IPL is a luxurious and powerful car that is perfect for those who want to make a statement.", + "Infiniti's G Coupe IPL was a special performance edition of the company's G-series coupe, and was only offered for one model year.", + "A luxurious sports car with a sleek design, the 2012 Infiniti G Coupe IPL is a great choice for anyone looking for style and performance.", + "The Infiniti G Coupe IPL is a high-performance luxury sports car that was introduced in 2012.", + "This is a 2012 Infiniti G Coupe IPL.", + "This is an Infiniti G Coupe IPL.", + "The Infiniti G Coupe IPL is a performance-oriented version of the G Coupe, with a more powerful engine and unique styling." + ], + "2007 Dodge Caliber Wagon": [ + "A 2007 Dodge Caliber Wagon has a sporty yet functional design.", + "This is a difficult question.", + "The 2007 Dodge Caliber Wagon is a small station wagon that seats five passengers.", + "A 2007 Dodge Caliber Wagon looks like a small station wagon with a sloped back end.", + "A 2007 Dodge Caliber Wagon is a four-door wagon with a shape similar to that of a hatchback.", + "A 2007 Dodge Caliber Wagon would likely have a similar look to the 2007 Dodge Caliber Hatchback, but with a wagon body style.", + "The 2007 Dodge Caliber Wagon is a five-door hatchback with a liftgate.", + "The 2007 Dodge Caliber Wagon is a four-door wagon that seats five passengers.", + "The 2007 Dodge Caliber Wagon is a small hatchback with a sloping roofline.", + "A 2007 Dodge Caliber Wagon has a long, rectangular body with a sloped roofline.", + "The 2007 Dodge Caliber Wagon has a sleeker and more modern look than previous models.", + "One way to identify a 2007 Dodge Caliber Wagon is by its production date.", + "The 2007 Dodge Caliber Wagon can be identified by its unique grille and front fascia, as well as its sloping roofline.", + "The 2007 Dodge Caliber Wagon can be identified by its sloped rear roofline and station wagon body style.", + "The 2007 Dodge Caliber Wagon can be identified by its boxy shape, small size, and sloping roofline.", + "There is not a 2007 Dodge Caliber Wagon.", + "The 2007 Dodge Caliber Wagon has a sloping roofline and a rear cargo area that is accessed by a liftgate.", + "2007 Dodge Caliber Wagons can be identified by their long roofline, sloping rear window, and wide stance.", + "The 2007 Dodge Caliber Wagon has a distinctively boxy shape.", + "The best way to identify a 2007 Dodge Caliber Wagon is to look at the vehicle's identification number (VIN), which is usually located on the dashboard on the driver's side.", + "I am not sure what you are asking.", + "The 2007 Dodge Caliber Wagon looks like a Dodge Caliber with a wagon body style.", + "There is no such thing as a 2007 Dodge Caliber Wagon.", + "There isn't a 2007 Dodge Caliber Wagon.", + "There is no official 2007 Dodge Caliber Wagon model.", + "A 2007 Dodge Caliber Wagon would look like a regular Caliber with a wagon-style rear end.", + "The 2007 Dodge Caliber Wagon has a sporty look with a sleek design.", + "A 2007 Dodge Caliber Wagon looks like a smaller SUV with a wagon-like body.", + "The 2007 Dodge Caliber Wagon has a boxy shape with a sloped roofline.", + "A 2007 Dodge Caliber Wagon looks like a small station wagon.", + "The 2007 Dodge Caliber Wagon is a picture of a blue station wagon.", + "The 2007 Dodge Caliber Wagon is a silver car with four doors.", + "The image is of a 2007 Dodge Caliber Wagon in blue with a silver trim.", + "The image shows a 2007 Dodge Caliber Wagon in silver.", + "A 2007 Dodge Caliber Wagon is a vehicle that is smaller than a traditional SUV, but larger than a sedan.", + "The image shows a 2007 Dodge Caliber Wagon in silver with a sunroof.", + "The image is of a 2007 Dodge Caliber Wagon in silver.", + "This image is of a 2007 Dodge Caliber Wagon.", + "The image is of a dark blue 2007 Dodge Caliber Wagon.", + "The 2007 Dodge Caliber Wagon is a long, sleek car with a blue and silver body.", + "This 2007 Dodge Caliber Wagon is a great choice for those who need a spacious and practical vehicle.", + "This 2007 Dodge Caliber Wagon is a great choice for a family car.", + "Double the fun with the 2007 Dodge Caliber Wagon! This versatile vehicle is perfect for hauling people and cargo, with plenty of room for both.", + "2007 Dodge Caliber Wagon - The Dodge Caliber Wagon was a compact wagon produced by Dodge from 2007 to 2009.", + "The 2007 Dodge Caliber Wagon is a great choice for those who need a reliable and affordable vehicle.", + "2007 Dodge Caliber Wagon.", + "2007 Dodge Caliber Wagon.", + "2007 Dodge Caliber Wagon.", + "2007 Dodge Caliber Wagon.", + "2007 Dodge Caliber Wagon." + ], + "2012 Hyundai Tucson SUV": [ + "A 2012 Hyundai Tucson SUV has a sporty look with sleek lines.", + "A 2012 Hyundai Tucson SUV has a diamond-shaped grill, clear headlights, and a sloping roofline.", + "A 2012 Hyundai Tucson is a compact SUV that seats five passengers.", + "A 2012 Hyundai Tucson SUV is a small, four-door SUV that seats five passengers.", + "The 2012 Hyundai Tucson has a sleek design with curves and lines that give it a sporty look.", + "Some 2012 Hyundai Tucson models have a panoramic sunroof, LED daytime running lights, and chrome-tipped exhaust.", + "A 2012 Hyundai Tucson SUV is a mid-sized crossover SUV that seats five passengers.", + "The 2012 Hyundai Tucson is a sleek and stylish SUV that is sure to turn heads.", + "A 2012 Hyundai Tucson is a five-passenger SUV that has a stylish look with its split-wing grille and sharp headlights.", + "A 2012 Hyundai Tucson SUV has a sleek, modern look with a touch of aggression.", + "The 2012 Hyundai Tucson SUV can be identified by its sleek design, chrome accents, and prominent Hyundai logo.", + "By looking at the model year on the vehicle's paperwork.", + "The easiest way to identify a 2012 Hyundai Tucson SUV is by its unique grille design.", + "Hyundai Tucson SUVs from 2012 can be identified by their large headlights, sweeping taillights, and sharp body lines.", + "A 2012 Hyundai Tucson SUV can be identified by its long wheelbase, sloping roofline, and chrome-accented grille.", + "The 2012 Hyundai Tucson SUV can be identified by its stylish, boxy exterior.", + "A 2012 Hyundai Tucson SUV can be identified by its swept-back headlights, tall stance, and sloping roofline.", + "From the front, the 2012 Hyundai Tucson has a large, hexagonal grille with the Hyundai logo in the center.", + "The 2012 Hyundai Tucson SUV has a long hood and a short front overhang.", + "One way to identify a 2012 Hyundai Tucson SUV is to look for the badge on the back of the vehicle.", + "A 2012 Hyundai Tucson SUV has a sleek, modern look with a chrome grille and sharp headlights.", + "The 2012 Hyundai Tucson SUV has a long hood, with the headlights and grill set higher up on the front of the vehicle.", + "The 2012 Hyundai Tucson SUV has a very sporty look to it.", + "The 2012 Hyundai Tucson SUV has a wide and boxy body with distinctively flared wheel wells.", + "A 2012 Hyundai Tucson SUV has a curved body with large windows.", + "A 2012 Hyundai Tucson SUV looks like a cross between a station wagon and a sport utility vehicle.", + "The 2012 Hyundai Tucson is a compact SUV that seats five.", + "A 2012 Hyundai Tucson SUV has a sleek, stylish look.", + "They come in a variety of different colors, but they all have the same basic body style.", + "The 2012 Hyundai Tucson is a small SUV that seats five passengers.", + "The image shows a 2012 Hyundai Tucson SUV in a light blue color.", + "The image is of a black 2012 Hyundai Tucson SUV with tinted windows.", + "The image is of a 2012 Hyundai Tucson SUV in silver.", + "The image is of a 2012 Hyundai Tucson SUV in silver.", + "The image is of a 2012 Hyundai Tucson SUV in a parking lot.", + "The image is of a 2012 Hyundai Tucson SUV in a silver color.", + "The image is of a 2012 Hyundai Tucson SUV in a striking blue color.", + "In the image, the 2012 Hyundai Tucson SUV is a light blue color with dark blue accents.", + "The image shows a 2012 Hyundai Tucson SUV in white with a silver roof rack.", + "The image is of a 2012 Hyundai Tucson SUV in a bright blue color.", + "The Hyundai Tucson is a comfortable and stylish SUV that's perfect for families and adventurers alike.", + "a 2012 Hyundai Tucson SUV in a parking lotThe 2012 Hyundai Tucson is a popular compact SUV choice forfamilies and individuals alike.", + "The 2012 Hyundai Tucson is a stylish and efficient SUV that's perfect for families and outdoor enthusiasts.", + "The 2012 Hyundai Tucson is a sport utility vehicle that seats five passengers.", + "The new 2012 Hyundai Tucson is a great choice for a small SUV.", + "The 2012 Hyundai Tucson is a compact SUV that seats five passengers.", + "The 2012 Hyundai Tucson is a stylish and affordable SUV.", + "Get the best deal on a 2012 Hyundai Tucson SUV.", + "The 2012 Hyundai Tucson is a reliable and affordable SUV.", + " Hyundai Tucson SUV\nThe Hyundai Tucson is a five-passenger compact SUV that's available in front- or all-wheel drive." + ], + "2012 Acura ZDX Hatchback": [ + "A 2012 Acura ZDX is a hatchback SUV with a sleek and stylish design.", + "A 2012 Acura ZDX Hatchback is a sleek and stylish vehicle that is sure to turn heads when driving.", + "The 2012 Acura ZDX is a 4-door, 5-passenger hatchback, available in one trim level.", + "A 2012 Acura ZDX Hatchback is a sporty looking vehicle with a sleek design.", + "The 2012 Acura ZDX Hatchback is a sleek and stylish car with a aerodynamic design.", + "The 2012 Acura ZDX Hatchback is a sleek and stylish vehicle.", + "A 2012 Acura ZDX Hatchback has a sleek, stylish look with a unique grille design.", + "The 2012 Acura ZDX has a sharp, angular exterior with a long, sloping roofline.", + "The 2012 Acura ZDX Hatchback is a sleek and stylish vehicle with a futuristic design.", + "A 2012 Acura ZDX Hatchback is a luxury vehicle that looks like a cross between a SUV and a sports coupe.", + "There are a few ways to identify a 2012 Acura ZDX Hatchback.", + "The 2012 Acura ZDX Hatchback can be identified by its sloping roofline, small rear window, and spoiler on the back.", + "One way to identify a 2012 Acura ZDX Hatchback is by its unique styling.", + "A 2012 Acura ZDX Hatchback can be identified by looking for the following features: a sloped roofline, a rear spoiler, and a hatchback design.", + "The 2012 Acura ZDX Hatchback can be identified by its unique exterior design.", + "The hatchback of a 2012 Acura ZDX can be identified by its sporty and stylish appearance.", + "The 2012 Acura ZDX has a distinctive look with its sloped roofline and hidden rear door handles.", + "2012 Acura ZDX Hatchbacks can be identified by their long, sloping hoods and wide stance.", + "The car has a sloped rear window, and the rear end is very angular.", + "There is no definitive way to identify a 2012 Acura ZDX Hatchback, but there are some methods that may be helpful.", + "The 2012 Acura ZDX Hatchback looks like a cross between a SUV and a sports car.", + "The 2012 Acura ZDX Hatchback looks like a smaller version of a SUV.", + "There really is no such thing as a 2012 Acura ZDX Hatchback because the Acura ZDX is a crossover SUV, not a hatchback.", + "A 2012 Acura ZDX Hatchback looks like a sports car.", + "A 2012 Acura ZDX Hatchback looks like a cross between a sedan and a SUV.", + "A 2012 Acura ZDX Hatchback looks like a sporty, luxury SUV with a sleek design.", + "The 2012 Acura ZDX is a hatchback SUV with a sleek, aerodynamic design.", + "The 2012 Acura ZDX has a sleek, stylish look with a curved roofline and prominent grille.", + "The 2012 Acura ZDX Hatchback is a sleek and stylish vehicle that is sure to turn heads.", + "A 2012 Acura ZDX Hatchback looks like a small, sporty SUV.", + "The image shows a car with sleek lines and a sporty look.", + "The image is of a 2012 Acura ZDX Hatchback in a metallic blue color.", + "The image is of a black 2012 Acura ZDX Hatchback.", + "This image is of a 2012 Acura ZDX Hatchback.", + "This image shows a 2012 Acura ZDX Hatchback in a glossy black color.", + "This image is of a 2012 Acura ZDX Hatchback in the color silver.", + "The image is of a 2012 Acura ZDX Hatchback in front of a brick building.", + "This image is of a 2012 Acura ZDX Hatchback in a black and silver color.", + "The image shows a white 2012 Acura ZDX Hatchback with a black roof.", + "This image is of a blue 2012 Acura ZDX Hatchback.", + "This sleek and stylish vehicle is the perfect way to turn heads and make a statement.", + "The 2012 Acura ZDX is a unique hatchback that combines luxury and sportiness.", + "Acura ZDX Hatchback - 2012 Model.", + "2012 Acura ZDX HatchbackThe 2012 Acura ZDX is a hatchback that offers a stylish and unique look.", + "The 2012 Acura ZDX Hatchback is a sleek and stylish vehicle that is sure to turn heads.", + "The 2012 Acura ZDX is a hatchback that was produced by the Japanese automaker Acura from 2010 to 2013.", + "This is a 2012 Acura ZDX Hatchback.", + " Acura's stylish and unique hatchback.", + "The 2012 Acura ZDX is a stylish hatchback that offers a comfortable ride and plenty of features.", + "The 2012 Acura ZDX Hatchback is a sleek and stylish vehicle that is sure to turn heads." + ], + "2012 BMW ActiveHybrid 5 Sedan": [ + "The 2012 BMW ActiveHybrid 5 Sedan is a sleek, four-door sedan with a stylish interior.", + "The 2012 BMW ActiveHybrid 5 Sedan is a vehicle that has a sleek and stylish look.", + "A 2012 BMW ActiveHybrid 5 sedan will have four doors, a trunk, and a sleek, modern design.", + "The 2012 BMW ActiveHybrid 5 Sedan is a four-door sedan that seats five passengers.", + "The 2012 BMW ActiveHybrid 5 Sedan is a hybrid vehicle that uses both a gasoline engine and an electric motor.", + "A 2012 BMW ActiveHybrid 5 Sedan has a sleek, aggressive look with a sporty stance.", + "The 2012 BMW ActiveHybrid 5 Sedan is a luxury hybrid vehicle that features a sleek and stylish design with a powerful engine and advanced technology.", + "The 2012 BMW ActiveHybrid 5 Sedan is a pact executive car that was introduced in early 2012.", + "The 2012 BMW ActiveHybrid 5 Sedan is a sleek and stylish car that is sure to turn heads.", + "The 2012 BMW ActiveHybrid 5 Sedan is a four-door sedan that seats five passengers.", + "The 2012 BMW ActiveHybrid 5 Sedan can be identified by its unique front and rear end designs, as well as its \"ActiveHybrid 5\" badges on the sides of the car.", + "A 2012 BMW ActiveHybrid 5 Sedan can be identified by its badge on the back of the car which reads \"ActiveHybrid 5\".", + "The 2012 BMW ActiveHybrid 5 Sedan has a few unique features that make it easy to identify.", + "The 2012 BMW ActiveHybrid 5 Sedan can be identified by its LED daytime running lights, chrome kidney grille, and 18-inch alloy wheels.", + "The 2012 BMW ActiveHybrid 5 Sedan can be identified by its sleek, sporty design.", + "There are a few ways to identify a 2012 BMW ActiveHybrid 5 Sedan.", + "The 2012 BMW ActiveHybrid 5 Sedan can be identified by its kidney grille, LED headlights, and 'ActiveHybrid 5' badge on the rear.", + "The 2012 BMW ActiveHybrid 5 Sedan can be identified by its long hood, short decklid, and steeply raked windshield.", + "The 2012 BMW ActiveHybrid 5 Sedan can be identified by its shorter length and slightly sloped rear end.", + "The 2012 BMW ActiveHybrid 5 Sedan has a few identifying features, including its \"ActiveHybrid 5\" badge on the rear of the vehicle, its twin-turbocharged 3.", + "The 2012 BMW ActiveHybrid 5 Sedan has a sleek, modern look with LED headlights and a contoured body.", + "A 2012 BMW ActiveHybrid 5 Sedan looks like a standard BMW 5 series sedan with a few minor exterior differences to indicate its hybrid powertrain.", + "A 2012 BMW ActiveHybrid 5 Sedan has a sleek, modern look with a touch of luxury.", + "A 2012 BMW ActiveHybrid 5 Sedan has a sleek and stylish look that is sure to turn heads.", + "The 2012 BMW ActiveHybrid 5 Sedan looks like a standard BMW 5-Series sedan, with a few slight differences.", + "A 2012 BMW ActiveHybrid 5 Sedan has a sleek, athletic look with its long hood and low, sweeping profile.", + "The 2012 BMW ActiveHybrid 5 Sedan generally looks like any other BMW 5 Series sedan, although there are a few distinctions that set it apart from the standard model.", + "The 2012 BMW ActiveHybrid 5 Sedan has a sleek and sporty look with a sleek body and aggressive stance.", + "A picture of a 2012 BMW ActiveHybrid 5 Sedan can be found here: https://www.", + "The 2012 BMW ActiveHybrid 5 Sedan looks like a traditional BMW 5-Series sedan, but with a few unique touches to differentiate it from the standard model.", + "The image is of a sleek, silver BMW sedan with the branding \"ActiveHybrid 5\" on the back.", + "The image is of a 2012 BMW ActiveHybrid 5 Sedan in a blue color.", + "This image is of a blue 2012 BMW ActiveHybrid 5 Sedan.", + "The image shows a sleek, black sedan with a graceful curve to its design.", + "The image is of a 2012 BMW ActiveHybrid 5 Sedan in a light blue color.", + "This image is of a 2012 BMW ActiveHybrid 5 Sedan.", + "The image is of a 2012 BMW ActiveHybrid 5 Sedan in a light blue color.", + "The BMW ActiveHybrid 5 Sedan is a mid-size luxury sedan that was introduced in 2012.", + "The image is of a 2012 BMW ActiveHybrid 5 Sedan in a parking lot.", + "The image shows a BMW ActiveHybrid 5 Sedan in a light blue color.", + "The 2012 BMW ActiveHybrid 5 Sedan is a impressive luxury hybrid car.", + "The all-new 2012 BMW ActiveHybrid 5 Sedan.", + "The 2012 BMW ActiveHybrid 5 Sedan is a fuel-efficient and environmentally-friendly vehicle.", + "The new 2012 BMW ActiveHybrid 5 Sedan.", + "The 2012 BMW ActiveHybrid 5 Sedan comes with a variety of standard features that include a powerful hybrid engine, an 8-speed automatic transmission, and an eco-friendly mode that conserves fuel.", + " BMW ActiveHybrid 5 Sedan.", + "The 2012 BMW ActiveHybrid 5 Sedan is a hybrid automobile that combines a gasoline engine with an electric motor.", + " A luxury car with excellent gas mileage.", + "The ActiveHybrid 5 Sedan is BMW's first hybrid vehicle, released in 2012.", + "The 2012 BMW ActiveHybrid 5 is a sedan that combines the luxury and performance of a BMW with the fuel efficiency of a hybrid." + ], + "2012 Ferrari California Convertible": [ + "A 2012 Ferrari California Convertible has a sleek, modern design with a stylish interior.", + "A 2012 Ferrari California Convertible has a sleek, aerodynamic body with a long hood and a short rear deck.", + "The 2012 Ferrari California Convertible has a sleek, sporty design with a chrome grille, LED headlights, and 20-inch wheels.", + "A 2012 Ferrari California Convertible is a 2-door, 4-seat convertible with a removable hardtop.", + "The 2012 Ferrari California Convertible is a beautiful car that turns heads wherever it goes.", + "A 2012 Ferrari California Convertible has a long hood and a sleek body.", + "A 2012 Ferrari California Convertible has a sleek and sporty design with a convertible top that allows you to enjoy the wind in your hair as you drive.", + "A 2012 Ferrari California Convertible has a long, low hood and a sleek profile.", + "A 2012 Ferrari California Convertible has a sleek, sporty look with a convertible top that can be lowered for a more open-air experience.", + "The 2012 Ferrari California Convertible is a sleek and stylish vehicle that is sure to turn heads.", + "The 2012 Ferrari California Convertible can be identified by its long hood, short rear deck, and folding metal roof.", + "The 2012 Ferrari California Convertible can be identified by its unique grille design, sleek body lines, and large rear spoiler.", + "The Ferrari California Convertible can be identified by its long hood and sleek design.", + "The Ferrari California Convertible is a 2+2 hard top convertible with a V8 engine.", + "One way to identify a 2012 Ferrari California Convertible is by looking for its unique features, such as its 20-inch wheels, twin exhaust tips, and convertible top.", + "There are a few ways to identify a 2012 Ferrari California Convertible.", + "The rear license plate area on a 2012 Ferrari California Convertible has the Ferrari emblem in the center with \"California\" written above it.", + "The Ferrari California Convertible can be identified by its long bonnet, large front grille, and sleek body.", + "A 2012 Ferrari California Convertible can be identified by its long hood, wide haunches, and convertible top.", + "There are a few ways you can identify a 2012 Ferrari California Convertible.", + "The 2012 Ferrari California Convertible is a sleek and stylish car with a powerful engine.", + "A picture of a 2012 Ferrari California Convertible can be found here:https://www.", + "The 2012 Ferrari California Convertible looks like a sleek and stylish sports car.", + "A 2012 Ferrari California Convertible looks like a luxury sports car with a sleek design.", + "A 2012 Ferrari California Convertible looks like a sleek and stylish sports car.", + "The 2012 Ferrari California Convertible has a sleek, stylish look that is sure to turn heads.", + "A 2012 Ferrari California Convertible looks like a sleek, sports car with a soft top.", + "The 2012 Ferrari California Convertible features a sleek, stylish design with a convertible soft top.", + "The 2012 Ferrari California Convertible has a long hood, a short rear end, and a sleek profile.", + "The 2012 Ferrari California Convertible features a sleek, stylish design with a convertible top that makes it perfect for cruising around town or hitting the open road.", + "The image is of a 2012 Ferrari California Convertible.", + "This image is of a 2012 Ferrari California Convertible.", + "The image is of a 2012 Ferrari California Convertible in red with a black convertible top.", + "The image is of a 2012 Ferrari California Convertible in white.", + "This 2012 Ferrari California Convertible is a beautiful example of the Italian automaker's craftsmanship.", + "The image is of a 2012 Ferrari California Convertible in white with a black convertible top.", + "This image is of a 2012 Ferrari California Convertible.", + "This image is of a 2012 Ferrari California Convertible.", + "This image is of a 2012 Ferrari California Convertible in black.", + "The image is of a 2012 Ferrari California Convertible in white.", + "The Ferrari California convertible is a work of art.", + "This is a 2012 Ferrari California Convertible.", + "This Ferrari California convertible is the epitome of luxury.", + "The Ferrari California Convertible is a luxurious car that is sure to turn heads.", + "This is a 2012 Ferrari California Convertible.", + "The Ferrari California Convertible is a beautiful car that turns heads wherever it goes.", + "This is a 2012 Ferrari California Convertible.", + "This is a picture of a 2012 Ferrari California Convertible.", + "This Ferrari California Convertible is a sleek and stylish car that is sure to turn heads.", + "The Ferrari California Convertible is a luxurious sports car that turns heads wherever it goes." + ], + "2012 Nissan Leaf Hatchback": [ + "The 2012 Nissan Leaf Hatchback has a sleek, modern look.", + "The 2012 Nissan Leaf Hatchback is a five-door hatchback electric car with a sleek and modern design.", + "The 2012 Nissan Leaf Hatchback is a electric car that seats five passengers.", + "Sleek and aerodynamic, the 2012 Nissan Leaf Hatchback has a distin.", + "The exterior of a 2012 Nissan Leaf Hatchback is mostly smooth with sharp lines.", + "The 2012 Nissan Leaf Hatchback is a five-door electric car with a sleek and modern look.", + "The 2012 Nissan Leaf Hatchback is a mostly electric car with battery power.", + "The 2012 Nissan Leaf Hatchback is a five-door hatchback that seats five passengers.", + "A 2012 Nissan Leaf Hatchback is a five-door, all-electric car with a range of approximately 100 miles on a full charge.", + "The 2012 Nissan Leaf is a hatchback electric car with a range of 73 miles.", + "By the shape of the hatch and by the Nissan Leaf logo on the back.", + "The 2012 Nissan Leaf Hatchback has a distinct style that is different from other cars on the market.", + "One way to identify a 2012 Nissan Leaf Hatchback is by its U.", + "Look for the iconic blue Nissan badge on the front grille.", + "One way to identify a 2012 Nissan Leaf Hatchback is by its VIN number.", + "The 2012 Nissan Leaf Hatchback can be identified by its bulbous shape, large headlights, and taillights that wrap around the sides of the car.", + "A 2012 Nissan Leaf Hatchback can be identified by its unique styling, including its sloping roofline, large headlights, and taillights that wrap around to the sides of the car.", + "2012 Nissan Leaf Hatchbacks can be identified by their 5-door hatchback bodies and sloping rear windshields.", + "The Nissan Leaf is a five-door hatchback electric car produced by Nissan.", + "The 2012 Nissan Leaf Hatchback has a unique design that is easy to identify.", + "A 2012 Nissan Leaf Hatchback looks like a futuristic vehicle with its sleek lines and unique design.", + "The 2012 Nissan Leaf Hatchback looks like a traditional 5-door hatchback, but with a more aerodynamic design.", + "The 2012 Nissan Leaf Hatchback is a five-door car that is available in three different trim levels: the S, SL, and SV.", + "The 2012 Nissan Leaf Hatchback is a five-door, all-electric car with a range of up to 100 miles on a single charge.", + "The 2012 Nissan Leaf hatchback has a boxy shape with a slightly sloped rear windshield.", + "A 2012 Nissan Leaf Hatchback looks like a small, electric car with a hatchback.", + "A 2012 Nissan Leaf Hatchback has a five-door hatchback body style and seats five passengers.", + "A 2012 Nissan Leaf Hatchback looks like a regular Leaf, except with a hatchback.", + "A 2012 Nissan Leaf Hatchback looks like a five-door hatchback.", + "Most 2012 Nissan Leaf Hatchbacks are white or silver.", + "This image is of a 2012 Nissan Leaf Hatchback.", + "The image is of a glossy silver Nissan Leaf Hatchback with its charging port open and plugged into an outlet.", + "The image is of a blue 2012 Nissan Leaf Hatchback.", + "This image is of a 2012 Nissan Leaf Hatchback in Teal.", + "The image is of a silver Nissan Leaf Hatchback with a black interior.", + "The image is of a 2012 Nissan Leaf Hatchback in silver.", + "The image is of a blue Nissan Leaf Hatchback.", + "The 2012 Nissan Leaf Hatchback is a small, electric car with a hatchback design.", + "The image shows a white Nissan Leaf Hatchback with a blue windshield and blue accents on the side.", + "The 2012 Nissan Leaf Hatchback is a electric car with a range of about 100 miles on a single charge.", + "This is a 2012 Nissan Leaf Hatchback.", + "\nThe all-electric 2012 Nissan Leaf hatchback is a clean and emissions-free alternative to gas-powered cars.", + "The 2012 Nissan Leaf Hatchback is a battery electric vehicle (BEV).", + "This is the 2012 Nissan Leaf Hatchback.", + "A 2012 Nissan Leaf Hatchback electric car plugged into a charging station.", + "The Nissan Leaf is a five-door hatchback electric car produced by Nissan and introduced in 2010.", + "The Nissan Leaf is a five-door hatchback electric car produced by Nissan and introduced in 2010.", + "The 2012 Nissan Leaf Hatchback is a 5-door electric car produced by Nissan.", + "The all-electric Nissan Leaf is a hatchback that seats five and has a range of up to 100 miles on a full charge.", + "Nissan Leaf Hatchback - the perfect car for running errands around town or taking a weekend getaway." + ], + "2001 Lamborghini Diablo Coupe": [ + "A 2001 Lamborghini Diablo Coupe is a two-door, two-seat sports car that was manufactured by Lamborghini between 1990 and 2001.", + "The 2001 Lamborghini Diablo Coupe is a two-door, two-seat sports car with a rear-wheel drive layout.", + "The Diablo Coupe was first introduced in 2001.", + "A 2001 Lamborghini Diablo Coupe has a low, wide stance with a long nose and a short rear deck.", + "A 2001 Lamborghini Diablo Coupe is a two-door, two-seat sports car that was manufactured by Italian automaker Lamborghini.", + "The 2001 Lamborghini Diablo Coupe has a sleek, aerodynamic body with a wide stance.", + "A 2001 Lamborghini Diablo Coupe is a red, two-door sports car with a black leather interior.", + "The 2001 Lamborghini Diablo Coupe is a two-door, mid-engine sports car produced by Italian automaker Lamborghini.", + "The 2001 Lamborghini Diablo Coupe is a sleek and powerful sports car with a low, wide stance and a muscular appearance.", + "A 2001 Lamborghini Diablo Coupe is a sleek, high-performance sports car with a distinctive style.", + "The 2001 Lamborghini Diablo Coupe can be identified by its low, wide stance, long hood, and scissor doors.", + "The most obvious way to identify a 2001 Lamborghini Diablo Coupe is by its unique exterior design.", + "By looking at the badge on the front of the car.", + "The 2001 Lamborghini Diablo Coupe can be identified by its unique exterior design.", + "There are a few ways to identify a 2001 Lamborghini Diablo Coupe.", + "The easiest way to identify a 2001 Lamborghini Diablo Coupe is by its unique styling.", + "The 2001 Lamborghini Diablo coupe can be identified by its low, sloping hoodline and large rear spoiler.", + "The 2001 Lamborghini Diablo Coupe can be identified by its external features, which include a rear spoiler, gull-wing doors, and 19-inch alloy wheels.", + "The 2001 Lamborghini Diablo Coupe can be identified by its sleek, aerodynamic body style and its low, wide stance.", + "The 2001 Lamborghini Diablo Coupe can be identified by its unique styling and features.", + "The 2001 Lamborghini Diablo Coupe has a long, angular hood, wide front and rear fenders, and a sloping rear window.", + "The 2001 Lamborghini Diablo Coupe can be described as a beautiful, sleek, and futuristic-looking sports car.", + "A 2001 Lamborghini Diablo Coupe looks like a detailed and stylish sports car.", + "The 2001 Lamborghini Diablo Coupe has a sleek and aggressive look that is sure to turn heads.", + "A 2001 Lamborghini Diablo Coupe would look like a red or black sports car with a long hood, wide stance, and low profile.", + "The 2001 Lamborghini Diablo Coupe has a sleek, aerodynamic look with an aggressive stance.", + "A 2001 Lamborghini Diablo Coupe looks like a small, sporty car with a sleek, aerodynamic design.", + "A Lamborghini Diablo Coupe from 2001 is a mid-engine sports car that was produced by Italian automaker Lamborghini.", + "A 2001 Lamborghini Diablo Coupe has a V10 engine with a six-speed manual transmission.", + "The Diablo Coupe was designed by Marcello Gandini.", + "The image is of a dark blue Lamborghini Diablo with a yellow interior.", + "This image is of a red 2001 Lamborghini Diablo Coupe.", + "The image is of a red 2001 Lamborghini Diablo Coupe.", + "This image is of a silver 2001 Lamborghini Diablo Coupe.", + "The image is of a 2001 Lamborghini Diablo Coupe in black.", + "The front of a Lamborghini Diablo Coupe in a bright yellow paint job.", + "This image is of a 2001 Lamborghini Diablo Coupe.", + "This image is of a 2001 Lamborghini Diablo Coupe in black.", + "The 2001 Lamborghini Diablo Coupe is a two-door sports car that was manufactured by Italian automaker Lamborghini.", + "An image of a 2001 Lamborghini Diablo Coupe from the internet shows the car's sleek, blue exterior and its white leather interior.", + "2001 Lamborghini Diablo Coupe.", + "The Lamborghini Diablo Coupe was a sports car that was produced by Italian automaker Lamborghini from 1990 to 2001.", + "This sleek, black 2001 Lamborghini Diablo Coupe is the epitome of luxury and power.", + "This is a 2001 Lamborghini Diablo Coupe.", + "The Lamborghini Diablo Coupe was a high performance sports car that was produced by the Italian automaker Lamborghini from 1990 to 2001.", + "A 2001 Lamborghini Diablo Coupe.", + "This is a 2001 Lamborghini Diablo Coupe.", + "The Lamborghini Diablo Coupe was manufactured from 2001 to 2006.", + "The Diablo Coupe is a two-door, mid-engined sports car that was produced by Italian automaker Lamborghini between 1990 and 2001.", + "This is a Lamborghini Diablo Coupe from 2001." + ], + "2012 Audi S5 Convertible": [ + "A 2012 Audi S5 Convertible has 4 doors, a soft top, and seats 4 people.", + "The 2012 Audi S5 Convertible features a sleek and stylish design with a powerful V8 engine.", + "A 2012 Audi S5 Convertible has a sleek, stylish design with a powerful engine.", + "A 2012 Audi S5 Convertible has a sleek design with a soft top that can be raised or lowered.", + "The Audi S5 Convertible is a luxury car that features a sleek design and a powerful engine.", + "The 2012 Audi S5 Convertible features a sleek, stylish design with a soft top that can be retracted to enjoy the open air.", + "The 2012 Audi S5 Convertible has a sleek and elegant design with a powerful V8 engine.", + "A 2012 Audi S5 Convertible has a sleek design with a soft top that can be retracted.", + "The 2012 Audi S5 Convertible is a two-door, four-seat luxury convertible with a soft top.", + "The Audi S5 Convertible is a two-door, four-seat convertible with a soft top.", + "The Audi S5 Convertible was first introduced in 2007.", + "The Audi S5 Convertible was introduced in the 2012 model year and is easily distinguished from other Audi models by its sleek design and aggressive stance.", + "By the model number.", + "The 2012 Audi S5 convertible can be identified by its sleek design and powerful engine.", + "A 2012 Audi S5 Convertible can be identified by its unique styling, including its sloping roofline and large rear spoiler.", + "The 2012 Audi S5 Convertible can be identified by its sleek lines, aggressive stance, and stylish interior.", + "The Audi S5 Convertible can be identified by its four-ringed logo, as well as its sleek and sporty design.", + "The 2012 Audi S5 Convertible can be identified by its sleek design, powerful engine, and luxurious interior.", + "There are a few ways to identify a 2012 Audi S5 Convertible.", + "The 2012 Audi S5 Convertible can be identified by its sloping roofline, large rear spoiler, and LED taillights.", + "A 2012 Audi S5 Convertible has a sleek, sporty look with a black soft top.", + "The 2012 Audi S5 Convertible has a sleek and stylish look with a soft top that can be raised or lowered with the touch of a button.", + "The 2012 Audi S5 Convertible looks like a sleek and sporty four-seat convertible.", + "The 2012 Audi S5 Convertible looks like a sleek and stylish convertible with a powerful engine.", + " photos of the 2012 Audi S5 Convertible are available online.", + "A 2012 Audi S5 convertible would have a sleek, feminine body with long, flowing lines.", + "The 2012 Audi S5 Convertible looks like a sleek and sports car.", + "A 2012 Audi S5 convertible looks like a sleek and stylish convertible with a powerful engine.", + "The 2012 Audi S5 convertible looks like a sleek and powerful convertible sports car.", + "The 2012 Audi S5 Convertible looks like it will be a sleek and stylish vehicle.", + "This image shows a 2012 Audi S5 Convertible driving down a city street.", + "The image shows a 2012 Audi S5 Convertible in a silver color.", + "The image is of a white 2012 Audi S5 Convertible with the top down.", + "A picture of a 2012 Audi S5 Convertible in Blue on a Road.", + "The image is of a 2012 Audi S5 Convertible in white.", + "The image is of a 2012 Audi S5 Convertible.", + "This image is of a red 2012 Audi S5 Convertible.", + "The image is of a 2012 Audi S5 Convertible.", + "The Audi S5 Convertible is a luxury vehicle that was first introduced in 2012.", + "The image is of a 2012 Audi S5 Convertible in white.", + "The Audi S5 Convertible is a sleek and stylish car that's sure to turn heads.", + "The 2012 Audi S5 Convertible is a luxury car that offers style, performance, and comfort.", + "Audi S5 Convertible - 2012 Model.", + "The beautiful 2012 Audi S5 Convertible, in stunning white.", + "The 2012 Audi S5 is a stylish and sophisticated convertible that is sure to turn heads.", + "The Audi S5 Convertible is a luxurious and sporty car that is sure to turn heads.", + "The Audi S5 convertible is a stylish and luxurious car that is perfect for cruising around town or taking a road trip.", + "The all-new 2012 Audi S5 Convertible.", + "The 2012 Audi S5 Convertible is a stylish and luxurious car that is sure to turn heads.", + "An Audi S5 Convertible driving on a road with the top down." + ], + "2007 BMW 6 Series Convertible": [ + "A 2007 BMW 6 Series Convertible has a long hood, wide stance, and a sleek profile.", + "The 2007 BMW 6 Series Convertible features a sleek design with a long hood and a short rear deck.", + "The 2007 BMW 6 Series Convertible is a two-door, four-seat luxury convertible.", + "A 2007 BMW 6 Series Convertible typically has a sleek, modern design with a soft top that can be retracted.", + "A 2007 BMW 6 Series Convertible has a sleek and stylish look.", + "The 2007 BMW 6 Series Convertible has a sleek and sporty design with a long hood and short rear deck.", + "The 2007 BMW 6 Series Convertible has a sleek, stylish look with a long hood and short rear deck.", + "A 2007 BMW 6 Series Convertible can be described as a luxurious sports car that is comfortable and stylish.", + "The 2007 BMW 6 Series Convertible is a luxury car that seats four passengers.", + "The 2007 BMW 6 Series Convertible is a luxury car that has a starting price of $86,900.", + "The 2007 BMW 6 Series Convertible can be identified by its roll bars behind the seats, its soft top, and its rear-wheel drive.", + "The best way to identify a 2007 BMW 6 Series Convertible is by its VIN number.", + "2007 BMW 6 Series Convertibles can be identified by their long hoods, wide stance, and four passenger seating.", + "The 2007 BMW 6 Series Convertible can be identified by its long hood, short rear deck, and wide stance.", + "The 2007 BMW 6 Series Convertible can be identified by its long hood and sloping rear end.", + "The 2007 BMW 6 Series Convertible can be identified by its long hood, short rear deck, and wide stance.", + "There are a few ways to identify a 2007 BMW 6 Series Convertible.", + "If you are looking at a BMW 6 Series Convertible, you can identify it as a 2007 model by checking the VIN (vehicle identification number).", + "The 2007 BMW 6 Series Convertible can be identified by its long hood, low-slung body, and short rear deck.", + "There are a few ways that you can identify a 2007 BMW 6 Series Convertible.", + "The 2007 BMW 6 Series Convertible has a sleek, sporty look with a long hood and short rear deck.", + "A 2007 BMW 6 Series Convertible looks like a sleek, stylish, and powerful luxury vehicle.", + "The 2007 BMW 6 Series Convertible has a sleek, stylish look with a soft top that can be raised or lowered.", + "A 2007 BMW 6 Series Convertible looks like a sleek and stylish two-door convertible with a retractable hard top.", + "It looks like a two-door convertible with a soft top.", + "This answer was created by Bing image search.", + "A 2007 BMW 6 Series Convertible would look similar to the picture below.", + "A 2007 BMW 6 Series Convertible has a sleek and stylish look with a black or white exterior and a black or red convertible top.", + "A 2007 BMW 6 Series Convertible looks like a sleek and stylish luxury convertible.", + "A 2007 BMW 6 Series Convertible looks like a luxury convertible sports car.", + "The image is of a 2007 BMW 6 Series Convertible in black.", + "This image is of a white 2007 BMW 6 Series Convertible.", + "The image is of a white BMW 6 Series Convertible with the top down.", + "This image is of a 2007 BMW 6 Series Convertible.", + "The 2007 BMW 6 Series Convertible is a sleek and stylish car that is sure to turn heads.", + "The image is of a black 2007 BMW 6 Series Convertible with the top down.", + "The image is of a black 2007 BMW 6 Series Convertible.", + "The image is of a black BMW 6 series convertible with the top down.", + "This image is of a 2007 BMW 6 Series Convertible.", + "This image is of a 2007 BMW 6 Series Convertible.", + "2007 BMW 6 Series Convertible - Silver.", + "2007 BMW 6 Series Convertible.", + "This 2007 BMW 6 Series Convertible is a beautiful car.", + " A black 2007 BMW 6 Series Convertible with its top down.", + "The BMW 6 Series Convertible is a luxurious and stylish vehicle that offers drivers the ultimate driving experience.", + "This BMW 6 Series Convertible is the perfect car for a sunny day.", + "This is a 2007 BMW 6 Series Convertible.", + "The BMW 6 Series Convertible is a luxurious and sporty car that's perfect for cruising around town or hitting the open road.", + "2007 BMW 6 Series Convertible.", + "This 2007 BMW 6 Series Convertible is a beauty! Its sleek design and convertible top make it the perfect car for a sunny day." + ], + "2012 Ferrari 458 Italia Convertible": [ + "The 2012 Ferrari 458 Italia Convertible has a sleek, stylish look that's sure to turn heads.", + "The body of a 2012 Ferrari 458 Italia Convertible is made entirely of aluminum, which gives it a sleek and sexy look.", + "The 458 Italia Convertible is a sleek and sophisticated vehicle.", + "The 458 Italia Convertible is a two-door, two-seater convertible sports car produced by the Italian manufacturer Ferrari.", + "A 2012 Ferrari 458 Italia Convertible is a red two-door convertible with a black interior.", + "The 2012 Ferrari 458 Italia Convertible looks like an open-top version of the 458 Italia Coupe.", + "The 2012 Ferrari 458 Italia Convertible is a two-door, four-seat convertible sports car.", + "The 458 Italia Convertible is a sleek, superfast car that turns heads wherever it goes.", + "A 2012 Ferrari 458 Italia Convertible has a sleek, aerodynamic design with a long hood and a short rear deck.", + "A 2012 Ferrari 458 Italia Convertible is a red two-door convertible with a black top and black leather seats.", + "The Ferrari 458 Italia Convertible can be identified by its interactions, design, and performance.", + "The 2012 Ferrari 458 Italia Convertible can be identified by its long hood, sloping roofline, and aggressive stance.", + "The 2012 Ferrari 458 Italia Convertible can be identified by its unique exterior design, which includes a sleek and sporty look.", + "2012 Ferrari 458 Italia Convertibles can be identified by their unique exterior styling, which includes a sloping nose and a rear end that is significantly lower than the front.", + "The 2012 Ferrari 458 Italia Convertible can be identified by its unique exterior design.", + "The Ferrari 458 Italia Convertible can be identified by its unique design.", + "The 2012 Ferrari 458 Italia Convertible can be identified by its unique grille design, large air intakes, and V8 engine.", + "The best way to identify a 2012 Ferrari 458 Italia Convertible is by its unique exterior design.", + "A 2012 Ferrari 458 Italia Convertible can be identified by its unique exterior styling, including its sleek design, LED daytime running lights, and retractable hard top.", + "The 2012 Ferrari 458 Italia Convertible can be identified by its large front grille, slim headlights, and sweeping lines.", + "A 2012 Ferrari 458 Italia Convertible looks like a sleek, high-performance sports car with a retractable hardtop.", + "A 2012 Ferrari 458 Italia Convertible would likely have a sleek, streamlined design with a powerful engine.", + "The 2012 Ferrari 458 Italia Convertible looks very similar to the regular 458 Italia, except that it has a retractable hard top instead of a fixed roof.", + "A 2012 Ferrari 458 Italia Convertible looks like a sleek and stylish sports car with a powerful engine.", + "The 2012 Ferrari 458 Italia Convertible has a sleek, aerodynamic design with a powerful engine and a convertible top.", + "A picture of a 2012 Ferrari 458 Italia Convertible can be found here: https://www.", + "A 2012 Ferrari 458 Italia Convertible looks like a two-door, four-seat Italian supercar with a retractable hardtop.", + "A 2012 Ferrari 458 Italia Convertible looks like a luxurious sports car with a sleek design.", + "A 2012 Ferrari 458 Italia convertible would look like the 458 Italia, except with a convertible top.", + "A 2012 Ferrari 458 Italia Convertible looks like a sleek and sporty Italian convertible sports car.", + "The image is of a silver Ferrari 458 Italia Convertible with the top down.", + "This image is from the website of automobile magazine, \"Motor Trend.", + "The image is of a 2012 Ferrari 458 Italia Convertible in blue.", + "The image is of a2012 Ferrari 458 Italia Convertible in white with a black convertible top.", + "The image is of a red Ferrari 458 Italia Convertible with the top down.", + "The image shows a 2012 Ferrari 458 Italia Convertible in red with the top down.", + "This image is of a 2012 Ferrari 458 Italia Convertible in white.", + "The image shows a sleek, red Ferrari 458 Italia Convertible with the top down.", + "A 2012 Ferrari 458 Italia Convertible in white with a black soft top.", + "This image is of a 2012 Ferrari 458 Italia Convertible that is red in color.", + " Car lovers rejoice over the release of the 458 Italia Convertible.", + "This is a 2012 Ferrari 458 Italia Convertible.", + "The Ferrari 458 Italia Convertible is one of the most stylish, luxurious, and performance-oriented convertibles available on the market today.", + "The 458 Italia Convertible is a sports car that was introduced in 2012.", + "This is the 2012 Ferrari 458 Italia Convertible, a sports car that was first introduced in 2009.", + "A beautiful Ferrari 458 Italia Convertible.", + "The Ferrari 458 Italia Convertible is a work of art on wheels.", + "A 2012 Ferrari 458 Italia Convertible parked in front of a building.", + "The Ferrari 458 Italia Convertible is a sights to behold.", + "The Ferrari 458 Italia is a fast and gorgeous convertible that's sure to turn heads." + ], + "2012 Chevrolet Silverado 2500HD Regular Cab": [ + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a full-size pickup truck that seats three people.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a full-size pickup truck that seats three people.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab is a full-size pickup truck with room for up to three passengers.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab is a full-sized pickup truck with seating for up to three people.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab has a two-door body style and can seat up to three people.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a full-size pickup truck that seats three people and has a six-foot, eight-inch bed.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a full-size pickup truck that seats three passengers.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab is a four-door truck with a 6.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a four-door pickup truck with a short bed and room for up to six passengers.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab has a black grille with the Chevrolet logo in the center, chrome bumpers, and rectangular headlights.", + "By looking at the VIN number, you can identify a 2012 Chevrolet Silverado 2500HD Regular Cab.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab can be identified by its lack of rear seat and windows.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab can be identified by its boxy shape and large grille.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a pickup truck that seats three people.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab can be identified by its large size and robust appearance.", + "One way to identify a 2012 Chevrolet Silverado 2500HD Regular Cab is to look for the \"Chevrolet\" and \"Silverado\" badges on the front of the truck.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab can be identified by its boxy shape and large size.", + "One way to identify a 2012 Chevrolet Silverado 2500HD Regular Cab is to look for the \"Regular Cab\" badge on the truck's door.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab can be identified by its two full-size doors and six-foot, six-inch bed.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab can be identified by its two doors and four seats.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a typical pickup truck with a regular cab and a long bed.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a large black pickup truck with a chrome grille and a big engine.", + "A 2012 Chevrolet Silverado 2500HD regular cab looks like a large pickup truck with four doors and a checkered flag on the front.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a large truck that seats three people.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a large truck with four doors.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a standard pickup truck.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a full-size pickup truck with two doors and a standard bed.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a regular Chevrolet Silverado 2500HD truck with two doors.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a large pickup truck with two doors and a spacious bed in the back.", + "A 2012 Chevrolet Silverado 2500HD Regular Cab looks like a large truck with four doors.", + " Work TruckThe image is of a 2012 Chevrolet Silverado 2500HD Regular Cab Work Truck in Silver Ice Metallic.", + "The image is of a 2012 Chevrolet Silverado 2500HD Regular Cab.", + "In the image, the Chevrolet Silverado 2500HD is a light blue color with a silver grille and chrome accents.", + "This image is of a 2012 Chevrolet Silverado 2500HD Regular Cab.", + "The image shows a 2012 Chevrolet Silverado 2500HD Regular Cab truck in silver with a black grille and bumper.", + "This image depicts a 2012 Chevrolet Silverado 2500HD Regular Cab in its factory blue paint.", + "The image shows a 2012 Chevrolet Silverado 2500HD Regular Cab truck in blue.", + " Single Rear Wheel ConfigurationThe image is of a 2012 Chevrolet Silverado 2500HD Regular Cab Single Rear Wheel Configuration.", + " Work TruckIn the image, the 2012 Chevrolet Silverado 2500HD Regular Cab Work Truck is parked in front of a garage.", + " LT 4WDThis image is of a 2012 Chevrolet Silverado 2500HD Regular Cab LT 4WD.", + "2012 Chevrolet Silverado 2500HD Regular Cab.", + " An American workhorseThe rugged and reliable 2012 Chevrolet Silverado 2500HD Regular Cab is a workhorse that's built to last.", + " A 2012 Chevrolet Silverado 2500HD Regular Cab.", + "This 2012 Chevrolet Silverado 2500HD Regular Cab is a great truck for hauling and towing.", + "2012 Chevrolet Silverado 2500HD Regular Cab.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a powerful and stylish truck that is perfect for hauling heavy loads.", + "The 2012 Chevrolet Silverado 2500HD Regular Cab is a tough and durable truck that's built to last.", + "The Chevrolet Silverado 2500HD Regular Cab is a tough and reliable truck that can handle any job.", + " The 2012 Chevrolet Silverado 2500HD Regular Cab is a heavy-duty truck that can haul up to three tons of payload.", + "This is a 2012 Chevrolet Silverado 2500HD Regular Cab." + ], + "2012 Chevrolet Corvette Convertible": [ + "A 2012 Chevrolet Corvette Convertible has a sleek design with a convertible top.", + "The 2012 Chevrolet Corvette Convertible has a clean-cut look with a long nose and a wide, sloping rear end.", + "In 2012, the Chevrolet Corvette Convertible was available in six different models: the 1LT, 2LT, 3LT, 4LT, Grand Sport, and Z06.", + "The 2012 Chevrolet Corvette Convertible is a two-door, four-seat convertible sports car that was introduced in the spring of 2012 as a 2013 model year car.", + "The Corvette Convertible has a long nose and a sleek profile.", + "The 2012 Chevrolet Corvette Convertible is a two-door, four-seat sports car that was available in six different trim levels.", + "The 2012 Chevrolet Corvette Convertible has a sleek and sporty design with a convertible top that makes it perfect for cruising on a sunny day.", + "Some of the key features of the 2012 Chevrolet Corvette Convertible include a power-operated soft top, xenon headlights, Bluetooth connectivity, Bose surround-sound system, and heated seats.", + "A 2012 Chevrolet Corvette Convertible has a long, sleek body with a curved windshield and an integrated rear Spoiler.", + "A 2012 Chevrolet Corvette Convertible has a sleek, sporty look with a convertible top that can be opened to enjoy the sunshine and fresh air.", + "The 2012 Chevrolet Corvette Convertible can be identified by its distinctive design.", + "The easiest way to identify a 2012 Chevrolet Corvette Convertible is by its distinctive front end, which features a large chrome grille and round, projector-beam headlights.", + "The easiest way to identify a 2012 Chevrolet Corvette Convertible is by its unique exterior design.", + "The 2012 Chevrolet Corvette Convertible can be identified by its sleek, sporty design.", + "One way to identify a 2012 Chevrolet Corvette Convertible is by its engine.", + "The 2012 Chevrolet Corvette Convertible can be identified by its sleek and aerodynamic design.", + "The 2012 Chevrolet Corvette Convertible can be identified by its rear view, which has a unique, slanted back end.", + "The 2012 Chevrolet Corvette Convertible can be identified by its long, wide body and its low, sloping windshield.", + "A 2012 Chevrolet Corvette Convertible would have the Corvette emblem on the front of the car, as well as \"Convertible\" written on the back.", + "A 2012 Chevrolet Corvette Convertible can be identified by the word \"Convertible\" on the back of the car.", + "A 2012 Chevrolet Corvette Convertible looks like a two-door sports car with a retractable soft top.", + "The 2012 Chevrolet Corvette Convertible has a long, sleek body with curving lines.", + "A 2012 Chevrolet Corvette Convertible looks like a sleek and stylish sports car.", + "The 2012 Chevrolet Corvette Convertible has a sleek and sporty look.", + "A 2012 Chevrolet Corvette Convertible looks like a sleek, sporty car with a convertible top.", + "A 2012 Chevrolet Corvette Convertible looks like a sleek and powerful sports car.", + "A 2012 Chevrolet Corvette Convertible looks like a sleek and powerful sports car.", + "The 2012 Chevrolet Corvette Convertible looks like a sleek and sporty car that would be perfect for a summer day.", + "The 2012 Chevrolet Corvette Convertible looks like a fast and sleek sports car.", + "The 2012 Chevrolet Corvette Convertible looks like a convertible sports car.", + " Centennial EditionThe image is of a blue 2012 Chevrolet Corvette Convertible Centennial Edition with the top down.", + "The image is of a 2012 Chevrolet Corvette Convertible.", + "The image is of a bright red 2012 Chevrolet Corvette Convertible with the top down.", + "This image is of a 2012 Chevrolet Corvette Convertible in black.", + "The image is of a 2012 Chevrolet Corvette Convertible.", + "The image shows a 2012 Chevrolet Corvette Convertible in white with a black convertible top.", + "In the image, the Corvette is a deep blue color with a black convertible top.", + "The image is of a 2012 Chevrolet Corvette Convertible.", + "The image is of a glossy red Corvette convertible with the top down.", + "The image shows a 2012 Chevrolet Corvette Convertible with the top down.", + "The 2012 Chevrolet Corvette Convertible is a sleek and stylish car that is sure to turn heads.", + "A 2012 Chevrolet Corvette Convertible on the open road.", + "The new 2012 Chevrolet Corvette Convertible offers an incredible driving experience with its powerful engine and sleek design.", + "Chevrolet Corvette Convertible - 2012 Model.", + "The Red Hot 2012 Chevrolet Corvette Convertible.", + " Black on Black 2012 Corvette Convertible.", + "The Chevrolet Corvette is a sports car that has been manufactured by Chevrolet since 1953.", + "A 2012 Chevrolet Corvette Convertible that is green with a tan top and leather seats.", + "The 2012 Chevrolet Corvette Convertible is a luxury sports car that offers excellent performance and handling.", + "A beautiful 2012 Chevrolet Corvette Convertible." + ], + "2009 Bugatti Veyron 16.4 Coupe": [ + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The easiest way to identify a 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "If you are looking at a Bugatti Veyron 16.", + "One way to identify a 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "A 2009 Bugatti Veyron 16.", + "The image is of a red Bugatti Veyron 16.", + "one of 2009\u2019s most popular cars, the Bugatti Veyron 16.", + "The image is of a sleek, silver car with curved lines and sleek designs.", + "This car is a work of art.", + "The 2009 Bugatti Veyron 16.", + "The image is of a red 2009 Bugatti Veyron 16.", + "It's a slick silver sports car with a curved back and a spoiler.", + "In the image, the 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "The image is of a white Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "This is a photo of a 2009 Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "This is a 2009 Bugatti Veyron 16.", + "The 2009 Bugatti Veyron 16.", + "2009 Bugatti Veyron 16." + ], + "2012 Tesla Model S Sedan": [ + "The Tesla Model S is a five-door hatchback electric car produced by Tesla Motors, and was first released in June 2012.", + "A 2012 Tesla Model S Sedan has a sleek, modern look with a long, low profile.", + "The 2012 Tesla Model S Sedan is a sleek, luxury car that is sure to turn heads.", + "A slippery, curvaceous electric car, the 2012 Tesla Model S is a work of art.", + "A 2012 Tesla Model S Sedan is a black, four-door car with tinted windows and a sleek design.", + "The 2012 Tesla Model S Sedan is a four-door, five-passenger luxury electric sedan.", + "The Tesla Model S is a full-sized / mid-sized luxury all-electric five-door liftback car, produced by Tesla Motors, and introduced in June 2012.", + "A 2012 Tesla Model S Sedan is a large, luxury sedan that seats up to five passengers.", + "The 2012 Tesla Model S Sedan has a sleek, aerodynamic look with a long, tapered front end and upswept rear end.", + "The 2012 Tesla Model S Sedan has a sleek, modern look.", + "By looking at the VIN number, you can tell if a car is a 2012 Tesla Model S Sedan.", + "The 2012 Tesla Model S Sedan can be identified by its long, sleek body and low, sporty silhouette.", + "A 2012 Tesla Model S Sedan can be identified by its long, sleek body and unique design.", + "The 2012 Tesla Model S Sedan can be identified by its sleek, stylish design and its all-electric powertrain.", + "There are several ways to identify a 2012 Tesla Model S Sedan.", + "The main ways to identify a 2012 Tesla Model S Sedan are by its unique front fascia, long wheelbase, and large windshield.", + "The 2012 Tesla Model S Sedan has a few identifying features including its swept back headlights, large front grille, and smooth body lines.", + "The 2012 Tesla Model S Sedan is a 5-door, all-electric luxury sedan that was first introduced in 2012.", + "The 2012 Tesla Model S Sedan can be identified by its long, sleek body, large windscreen, and distinctive grille.", + "A 2012 Tesla Model S Sedan can be identified by its long, sleek body style and all-electric powertrain.", + "A 2012 Tesla Model S Sedan looks like a stylish and modern electric car.", + "The 2012 Tesla Model S Sedan is a sleek and stylish vehicle with a smooth and aerodynamic design.", + "The Tesla Model S Sedan is a large, luxurious car that seats up to five passengers.", + "A 2012 Tesla Model S Sedan looks like a modern luxury sedan.", + "The 2012 Tesla Model S Sedan is a sleek and stylish vehicle that is sure to turn heads.", + "A 2012 Tesla Model S Sedan looks like a traditional sedan with a sleek and modern design.", + "A 2012 Tesla Model S Sedan can be recognized by its long and sleek hood, narrow headlights, and large front grille.", + "The 2012 Tesla Model S Sedan looks like a sleek and modern four-door sedan.", + "The 2012 Tesla Model S Sedan has a sporty look with smooth lines and a sleek design.", + "A 2012 Tesla Model S Sedan looks like a regular sedan, but with a few subtle differences.", + "The image shows a 2012 Tesla Model S Sedan in a silver color.", + "The image shows a sleek, silver Tesla Model S sedan with its doors and trunk open.", + "The image is of a shiny new 2012 Tesla Model S Sedan in a sleek black color.", + "This image is of a 2012 Tesla Model S Sedan.", + "The image is of a sleek, silver Tesla Model S Sedan.", + "This image is of a 2012 Tesla Model S Sedan.", + "The image is of a 2012 Tesla Model S Sedan in a metallic blue color.", + "The image is of a 2012 Tesla Model S Sedan in silver.", + "The image is of a sleek 2012 Tesla Model S Sedan in a pearlescent white color.", + "The image is of a 2012 Tesla Model S Sedan in silver.", + "Image of a shiny new Tesla Model S Sedan.", + "This is a photo of a 2012 Tesla Model S Sedan.", + "This is a Tesla Model S Sedan from 2012.", + "This is a 2012 Tesla Model S Sedan, a fully electric car with a range of up to 300 miles.", + "This is a Tesla Model S, an all-electric luxury sedan.", + "The Tesla Model S Sedan is a luxurious and environmentally friendly car.", + "A Tesla Model S Sedan in 2012.", + "This is a 2012 Tesla Model S Sedan.", + "The Tesla Model S is a full-sized electric sedan with an impressive range and acceleration.", + "The Tesla Model S Sedan is a high-end, all-electric car that was first introduced in 2012." + ], + "2012 FIAT 500 Convertible": [ + "The exterior of a 2012 FIAT 500 Convertible is very sleek and stylish.", + "The 2012 FIAT 500 Convertible is a two-door, four-passenger convertible available in four trim levels: Pop, Sport, Lounge and Gucci.", + "A 2012 FIAT 500 Convertible generally has a white or light-colored exterior with a dark-colored soft top.", + "A 2012 FIAT 500 Convertible is a small, two-door car that converts into a convertible.", + "The 2012 FIAT 500 Convertible is a two-door, four-passenger convertible that is available in two trim levels.", + "A 2012 FIAT 500 Convertible has a black soft top and 16-inch aluminum wheels.", + "The exterior of a 2012 FIAT 500 Convertible is small and round with a soft top that can be retracted.", + ".", + "A 2012 FIAT 500 Convertible is a convertible car with a soft top.", + "The 2012 FIAT 500 Convertible is a two-door, four-seat convertible with a soft top.", + "The 2012 FIAT 500 Convertible can be identified by its unique body style.", + "If you are looking at a 2012 FIAT 500 Convertible, you will be able to identify it by its topless design.", + "The 2012 FIAT 500 Convertible can be identified by its distinctive design.", + "The 2012 FIAT 500 Convertible can be identified by its unique exterior design.", + "The 2012 FIAT 500 Convertible can be distinguished from other model years by its external appearance.", + "The 2012 FIAT 500 Convertible can be identified by its unique body style.", + "The 2012 FIAT 500 Convertible can be identified by its unique exterior design.", + "The 2012 FIAT 500 Convertible can be identified by its unique grille, wide stance, and exclusive roofline.", + "The 2012 FIAT 500 Convertible can be identified by its unique exterior design.", + "The 2012 FIAT 500 Convertible can be identified by its unique body style.", + "The 2012 FIAT 500 Convertible has a soft top that can be retracted to enjoy the sunny weather.", + "A 2012 FIAT 500 Convertible looks like a normal FIAT 500 Convertible with a few upgrades.", + "A FIAT 500 Convertible from 2012 has a soft top that can be retracted, and it seats four people.", + "The 2012 Fiat 500 Convertible looks like a regular Fiat 500 with a soft top instead of a hard top.", + "A 2012 FIAT 500 Convertible looks like a two-door convertible with a folding soft top.", + "The 2012 FIAT 500 Convertible is a small car with a soft top.", + "The 2012 Fiat 500 Convertible looks like a two-door convertible with a soft top.", + "The 2012 FIAT 500 Convertible has a sharp, retro-inspired look that is unique and eye-catching.", + "The 2012 FIAT 500 Convertible is a small two-door convertible with a cloth soft-top.", + "The 2012 FIAT 500 Convertible has a sleek, modern look with a white body and black convertible top.", + "The image is of a 2012 Fiat 500 Convertible in white.", + "In the image, the car is parked on a road with the convertible top down.", + "The image is of a white 2012 FIAT 500 Convertible with the top down.", + "In the image, the car is a soft blue color with a white convertible top.", + "The 2012 FIAT 500 Convertible is a small, two-door car with a soft top that can be lowered to enjoy the warm weather.", + "The image is of a red 2012 FIAT 500 Convertible with the top down.", + "On the image, there is a car that is white with a black interior.", + "The image is of a 2012 FIAT 500 Convertible.", + "The image shows a white 2012 Fiat 500 Convertible with its top down.", + "The image is of a red 2012 FIAT 500 Convertible.", + "The FIAT 500 Convertible is a fun and stylish car that's perfect for cruising around town.", + "The Fiat 500 convertible is a stylish and fun car that's perfect for sunny days.", + "The Fiat 500 is a subcompact car that was first introduced in 2007.", + " 2012 Fiat 500 Convertible.", + "The FIAT 500 Convertible is a subcompact car that was introduced in 2012.", + "This is the 2012 FIAT 500 Convertible.", + "Fiat 500 Convertible - 2012.", + "The Fiat 500 is a two-door, four-passenger convertible car produced by the Italian car manufacturer Fiat since 1957.", + "The 2012 FIAT 500 Convertible is a stylish and fun car that is perfect for any occasion.", + "This 2012 FIAT 500 Convertible is a great car for anyone looking for a fun and stylish ride." + ], + "2012 Hyundai Veloster Hatchback": [ + "The 2012 Hyundai Veloster Hatchback is a four-door hatchback that seats five passengers.", + "A 2012 Hyundai Veloster Hatchback might have a black paint job with chrome accents.", + "The 2012 Hyundai Veloster hatchback has a unique three-door design, with the passenger-side door being shorter than the driver-side door.", + "A 2012 Hyundai Veloster Hatchback is a small car that seats five passengers.", + "The 2012 Hyundai Veloster Hatchback is a small car that seats five passengers.", + "The 2012 Hyundai Veloster is a hatchback that seats four passengers.", + "A picture of the 2012 Hyundai Veloster Hatchback can be found here:https://en.", + "A 2012 Hyundai Veloster Hatchback has a sleek, modern design with a sporty look.", + "The Hyundai Veloster is a hatchback that was first introduced in 2012.", + "The 2012 Hyundai Veloster Hatchback has a unique style with its asymmetrical doors, with one door on the driver's side and two doors on the passenger's side.", + "The Hyundai Veloster Hatchback can be identified by its unique design.", + "The 2012 Hyundai Veloster is a hatchback that has three doors.", + "The 2012 Hyundai Veloster Hatchback can be identified by its unique 3-door design with one door on the driver's side and two doors on the passenger side.", + "The 2012 Hyundai Veloster Hatchback can be identified by its unique three-door design, with one door on the driver's side and two on the passenger side.", + "From the outside, 2012 Hyundai Veloster Hatchbacks have a distinct, futuristic look.", + "The 2012 Hyundai Veloster Hatchback can be identified by its unique design.", + "The 2012 Hyundai Veloster has distinct body lines that give it a modern and sporty appearance.", + "There are a few ways to identify a 2012 Hyundai Veloster Hatchback.", + "There are a few ways to identify a 2012 Hyundai Veloster Hatchback.", + "The 2012 Hyundai Veloster Hatchback can be identified by its unique three-door design.", + "The 2012 Hyundai Veloster Hatchback is a sleek and stylish car with a unique design.", + "The 2012 Hyundai Veloster Hatchback has an aggressive front end with large headlights.", + "The 2012 Hyundai Veloster Hatchback looks like a small, boxy car with a sloping roofline.", + "The Veloster has a unique look with its asymmetrical door design.", + "See the link below for a picture of the 2012 Hyundai Veloster Hatchback.", + "The 2012 Hyundai Veloster is a compact hatchback that comes in a wide variety of colors.", + "The 2012 Hyundai Veloster Hatchback has a black grille with Hyundai's signature hexagonal shape.", + "The 2012 Hyundai Veloster Hatchback is a sleek and stylish car that looks great on the road.", + "The 2012 Hyundai Veloster Hatchback is a stylish and modern car with a sleek design.", + "The 2012 Hyundai Veloster Hatchback has a unique design with its asymmetrical door setup.", + "The image is of a 2012 Hyundai Veloster Hatchback in blue.", + "The image is of a red Hyundai Veloster Hatchback with the doors open.", + "This image is of a 2012 Hyundai Veloster Hatchback in the color blue.", + "The Veloster is a curvaceous hatchback with Hyundai's trademarked asymmetrical door design, which gives it a bold look.", + "The image is of a black Hyundai Veloster Hatchback with tinted windows.", + "The photo shows a red 2012 Hyundai Veloster Hatchback parked on a road with the mountains in the background.", + "The image is of a blue Hyundai Veloster Hatchback with a black roof.", + "In the image, the hatchback is a deep blue color with chrome accents.", + "The image is of a red 2012 Hyundai Veloster Hatchback.", + "The image is of a 2012 Hyundai Veloster Hatchback in a blue color.", + "This is the 2012 Hyundai Veloster Hatchback.", + "The 2012 Hyundai Veloster is a stylish and sporty hatchback that's fun to drive.", + "A 2012 Hyundai Veloster Hatchback in a parking lot.", + "This is a 2012 Hyundai Veloster Hatchback.", + "The 2012 Hyundai Veloster is a sleek and stylish hatchback that's perfect for anyone looking for a fun and sporty ride.", + "The 2012 Hyundai Veloster Hatchback is a stylish and efficient car.", + "A sporty and efficient hatchback from HyundaiThe Hyundai Veloster is a sporty and efficient hatchback that's perfect for those who want a fun and practical car.", + "This is a 2012 Hyundai Veloster Hatchback.", + "This is a 2012 Hyundai Veloster Hatchback.", + "This is a 2012 Hyundai Veloster Hatchback." + ], + "2011 Lincoln Town Car Sedan": [ + "A 2011 Lincoln Town Car Sedan has a long, sleek body with a curved front and a tall rear end.", + "A 2011 Lincoln Town Car Sedan has a sleek and stylish look.", + "A 2011 Lincoln Town Car Sedan has a sleek, stylish look with a long, curved hood and a short trunk.", + "The 2011 Lincoln Town Car has a sleek, modern look.", + "A 2011 Lincoln Town Car Sedan body is conservative and traditional in design.", + "The 2011 Lincoln Town Car is a full-size sedan that seats up to six passengers.", + "A 2011 Lincoln Town Car Sedan has a long, sleek body with curving lines.", + "A 2011 Lincoln Town Car Sedan is a large car with a long hood and trunk.", + "A 2011 Lincoln Town Car Sedan typically has a four-door configuration and a V8 engine.", + "A 2011 Lincoln Town Car Sedan is a large car that seats up to six people.", + "There are several ways to identify a 2011 Lincoln Town Car Sedan: 1.", + "By its long hood and trunk, narrow windows, and big wheels.", + "The easiest way to identify a 2011 Lincoln Town Car Sedan is to look for the VIN number on the driver\u2019s side door.", + "A 2011 Lincoln Town Car Sedan can be identified by its long wheelbase, large trunk, and rectangular headlights.", + "A 2011 Lincoln Town Car Sedan can be identified by its long length, large size, and boxy shape.", + "A 2011 Lincoln Town Car Sedan can be identified by its long wheelbase, large body, and V8 engine.", + "The 2011 Lincoln Town Car can be identified by its long, aerodynamic body and its signature chrome grille.", + "There are a few ways to identify a 2011 Lincoln Town Car Sedan.", + "There are a few ways to identify a 2011 Lincoln Town Car Sedan.", + "The easiest way to identify a 2011 Lincoln Town Car Sedan is by its distinctive grille.", + "The 2011 Lincoln Town Car Sedan looks like a large, luxurious car.", + "Here is a link to a picture of the 2011 Lincoln Town Car: https://www.", + "A 2011 Lincoln Town Car Sedan looks like a large, luxurious car.", + "A 2011 Lincoln Town Car Sedan has a sleek, modern look with a black grille and chrome accents.", + "A 2011 Lincoln Town Car Sedan has a sleek, modern look.", + "A 2011 Lincoln Town Car Sedan looks like a large, luxurious car.", + "The exterior of a 2011 Lincoln Town Car Sedan is sleek and elegant.", + "A 2011 Lincoln Town Car Sedan has a swooping hood, long trunk, and a wide, stance.", + "A 2011 Lincoln Town Car Sedan has a sleek and elegant design with a long hood and a short trunk.", + "I'm not sure what you are asking.", + "The image depicts a 2011 Lincoln Town Car Sedan in silver.", + "The image is of a sleek and modern looking silver Lincoln Town Car Sedan.", + "The car is a dark color, possibly black, with shiny chrome detailing.", + " Signature LThis particular image shows a 2011 Lincoln Town Car Sedan Signature L in a light blue color.", + "This image is of a 2011 Lincoln Town Car Sedan in white.", + "This 2011 Lincoln Town Car Sedan is a large, luxurious car.", + "This image is of a silver Lincoln Town Car Sedan from 2011.", + "The image is of a sleek, shiny black car with tinted windows.", + "The image is of a silver Lincoln Town Car Sedan with a black interior.", + "The image is of a silver 2011 Lincoln Town Car Sedan.", + "The 2011 Lincoln Town Car Sedan is a luxurious car that offers plenty of comfort and style.", + "This 2011 Lincoln Town Car Sedan is a sleek and stylish way to travel.", + " A 2011 Lincoln Town Car Sedan in excellent condition.", + "This vehicle has excellent safety ratings and is perfect for those who enjoy a relaxed ride.", + "2011 Lincoln Town Car Sedan.", + "2010 Lincoln Town Car Sedan.", + "The Lincoln Town Car is a luxurious sedan that offers plenty of space and comfort for its passengers.", + " 2011 Lincoln Town Car in excellent condition.", + "This 2011 Lincoln Town Car was designed with elegance in mind.", + "left to right: 2011 Lincoln Town Car Sedan, 2010 Mercedes-Benz S-Class, 2009 BMW 7-SeriesThe 2011 Lincoln Town Car Sedan is a luxurious car that offers a lot of features and amenities for its passengers." + ], + "2012 Lamborghini Aventador Coupe": [ + "The 2012 Lamborghini Aventador Coupe is a sleek and stylish vehicle that is sure to turn heads.", + "The 2012 Lamborghini Aventador Coupe is a mid-engined sports car that features a sleek, stylish design.", + "A 2012 Lamborghini Aventador Coupe is a two-door, four-seater luxury sports car manufactured by Italian automaker Lamborghini.", + "The 2012 Lamborghini Aventador Coupe is a low, sleek, and aggressive-looking vehicle.", + "The Lamborghini Aventador is a sports car that was first introduced in 2011.", + "The Lamborghini Aventador is a two-door, two-seater sports car produced by Italian automotive manufacturer Lamborghini.", + "The 2012 Lamborghini Aventador Coupe is a sleek and stylish sports car that is sure to turn heads.", + "The three hundredth and sixty-fifth model in the range is theAventador LP 700-4.", + "The Lamborghini Aventador is a mid-engined sports car produced by the Italian manufacturer Lamborghini.", + "A 2012 Lamborghini Aventador Coupe is a two-door, mid-engined supercar that was first introduced at the Geneva Motor Show in 2011.", + "The Aventador Coupe can be identified by its low, wide body and its sharply angled windshield.", + "The 2012 Lamborghini Aventador Coupe can be identified by its unique body style.", + "The 2012 Lamborghini Aventador Coupe can be identified by its unique and futuristic styling.", + "The 2012 Lamborghini Aventador Coupe can be identified by its aggressive stance, large air intakes, and angular lines.", + "The Lamborghini Aventador Coupe can be identified by its sleek, aerodynamic design and its signature bull logo.", + "A 2012 Lamborghini Aventador Coupe can be identified by its unique features, including its large rear spoiler, prominent wheel arches, and sleek, aggressive styling.", + "The 2012 Lamborghini Aventador Coupe can be identified by its unique exterior design.", + "The Lamborghini Aventador is a mid-engined sports car that was first released in 2011.", + "One way to identify a 2012 Lamborghini Aventador Coupe is by its sleek, aerodynamic design.", + "The Lamborghini Aventador is a high performance sports car that was first introduced in 2011.", + "A 2012 Lamborghini Aventador Coupe looks like a gorgeous, cutting-edge supercar.", + "The 2012 Lamborghini Aventador Coupe features a sharp, angular design with sleek lines and aggressive styling.", + "The 2012 Lamborghini Aventador Coupe looks like a futuristic sports car with its sleek lines and powerful stance.", + "A 2012 Lamborghini Aventador Coupe has a sleek, futuristic design with angled lines and sharp edges.", + "The Lamborghini Aventador is a mid-engined sports car produced by the Italian manufacturer Lamborghini.", + "A 2012 Lamborghini Aventador Coupe is a sleek and stylish sports car with a long, sloping hood and a wide, muscular stance.", + "The 2012 Lamborghini Aventador Coupe is a sleek and stylish car that is sure to turn heads.", + "A 2012 Lamborghini Aventador Coupe looks like a sleek, powerful sports car.", + "A 2012 Lamborghini Aventador Coupe has a sleek, aerodynamic design with sharp lines and angles.", + "The 2012 Lamborghini Aventador Coupe is a two-door, mid-engine sports car with a sleek and aggressive look.", + "This image is of a beautiful, red 2012 Lamborghini Aventador Coupe.", + "This image from the internet shows a 2012 Lamborghini Aventador Coupe.", + "The image is of a 2012 Lamborghini Aventador Coupe in a white and grey color scheme.", + "The image is of a Lamborghini Aventador Coupe in a striking orange color.", + "This image is of a red Lamborghini Aventador Coupe.", + "The 2012 Lamborghini Aventador Coupe is a luxury car with a sleek design and powerful engine.", + "The image is of a 2012 Lamborghini Aventador Coupe in blue.", + "This image is of a red 2012 Lamborghini Aventador Coupe.", + "The image shows a matte black Lamborghini Aventador Coupe with carbon fiber accents.", + "This image is of a beautiful 2012 Lamborghini Aventador Coupe.", + "This is the 2012 Lamborghini Aventador Coupe.", + "This is a 2012 Lamborghini Aventador Coupe.", + "A bright red Lamborghini Aventador LP700-4 Coupe.", + "The Lamborghini Aventador is a mid-engined sports car produced by the Italian manufacturer Lamborghini.", + "A 2012 Lamborghini Aventador Coupe in black with red interior.", + "Lamborghini Aventador Coupe - the ultimate in luxury and performance.", + " A 2012 Lamborghini Aventador Coupe parked on a city street.", + "The Lamborghini Aventador is a mid-engined sports car produced by the Italian automotive manufacturer Lamborghini.", + "The Lamborghini Aventador is a mid-engined sports car produced by the Italian automotive manufacturer Lamborghini.", + "A 2012 Lamborghini Aventador LP700-4 Coupe." + ], + "2009 Dodge Ram Pickup 3500 Quad Cab": [ + "A 2009 Dodge Ram Pickup 3500 Quad Cab is a four-door pickup truck with a 6.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab looks like a large pickup truck with four doors and four full-size passenger seats.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab has four full-size doors, a large back seat, and a extended cab.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab is a large pickup truck that seats five people.", + "A 2009 Dodge Ram 3500 Quad Cab has four full-size doors and can seat up to six people.", + "TheRam3500QuadCabcan seat up tosix people andhasfourdoors.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab is a four-door pickup truck that seats up to six people.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab has four full-size doors and two partial doors.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab has four full-size doors and a cargo area that is accessed by a rear door.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab is a large pickup truck with room for four passengers.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its four full-sized doors and extra-large cargo area.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab has aGross Vehicle Weight (lbs) of 9200, a payload capacity of 2330 lbs, and a towing capacity of 16120 lbs.", + "There are a few ways to identify a 2009 Dodge Ram Pickup 3500 Quad Cab.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its four full-size doors, extended cab, and large cargo area.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its large size and squared-off body.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its large size, four doors, and cargo area behind the rear seat.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its unique body style.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its large size and distinctively shaped headlights.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab can be identified by its four full-size doors, extended cab style and its six-foot, four-inch cargo bed.", + "In 2009, the Dodge Ram Pickup 3500 Quad Cab models came with standard features that included: a 5.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab looks like a large truck with four doors and plenty of space for passengers and cargo.", + "A 2009 Dodge Ram Quad Cab looks like a large truck with four doors and plenty of room for passengers and cargo.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab is a large truck that seats up to six people.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab has four full-sized doors and a large cargo area.", + "The Quad Cab is a four-door crew cab truck with plenty of space for five adults.", + "A 2009 Dodge Ram 3500 Quad Cab looks like a large, four door pickup truck.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab looks like a large truck with four doors and a long bed.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab looks like a four-door truck with a large cargo area.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab has a large, square body with a flat front and a high-quality interior.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab has a boxy shape with a large grille and a wide stance.", + "The image is of a large, silver pickup truck with four doors.", + " STA 2009 Dodge Ram Pickup 3500 Quad Cab ST is a large pickup truck with a powerful engine.", + "In the image, the 2009 Dodge Ram Pickup 3500 Quad Cab is shown in a blue color.", + " DRW 4WD SLTThe 2009 Dodge Ram Pickup 3500 Quad Cab DRW 4WD SLT is a large, imposing truck with a big grille and headlights.", + " STIn the image, the 2009 Dodge Ram Pickup 3500 Quad Cab ST is a large, black truck with four doors.", + " DT 4x4This image is of a 2009 Dodge Ram Pickup 3500 Quad Cab DT 4x4.", + "This image is of a 2009 Dodge Ram Pickup 3500 Quad Cab.", + "The 2009 Dodge Ram Pickup 3500 Quad Cab is a large truck with a four-door cab and a large bed.", + " Laramie 4x4The image is of a large, silver truck with four doors.", + " Tradesman 4x4In the image, the truck is a dark color with four doors.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab with a Hemi engine.", + "The Ram pickup (formerly the Dodge Ram pickup) is a full-size pickup truck manufactured by FCA US LLC (formerly Chrysler Group LLC) and marketed as of 2011 onwards under the Ram Trucks brand.", + "Dodge Ram Pickup 3500 Quad Cab.", + "2009 Dodge Ram Pickup 3500 Quad Cab.", + " A Dodge Ram Pickup 3500 Quad Cab truck parked in a driveway.", + " A blue Dodge Ram 3500 Quad Cab with chrome accents and four doors.", + " A black Dodge Ram Pickup 3500 Quad Cab parked on a dirt road.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab pickup truck.", + "A 2009 Dodge Ram Pickup 3500 Quad Cab." + ], + "2012 Nissan NV Passenger Van": [ + "A 2012 Nissan NV Passenger Van is a large van that can seat up to 12 passengers.", + "A 2012 Nissan NV Passenger Van has a boxy body with large, square windows.", + "A 2012 Nissan NV Passenger Van has a large, boxy body with plenty of space for passengers and cargo.", + "A 2012 Nissan NV Passenger Van has sliding doors on each side, and a large back door that opens upward.", + "The 2012 Nissan NV Passenger Van has a V-shaped grille, large headlight clusters, and a wide body.", + "The 2012 Nissan NV Passenger Van has a boxy design with a long wheelbase.", + "A 2012 Nissan NV Passenger Van looks like a large van with plenty of room for passengers and luggage.", + "A silver 2012 Nissan NV Passenger Van with blackened windows.", + "A 2012 Nissan NV Passenger Van has 16\" steel wheels, blue accents on the grille, and body-colored bumpers.", + "The 2012 Nissan NV Passenger Van looks like a large, boxy van with plenty of room for passengers and cargo.", + "The 2012 Nissan NV Passenger Van is a large van that can seat up to 12 passengers.", + "There is no sure way to identify a 2012 Nissan NV Passenger Van without looking at thevin number.", + "There is no definitive way to identify a 2012 Nissan NV Passenger Van, as there were many different models and trim levels available.", + "The vehicle identification number (VIN) is located on a plate attached to the left side of the dash near the steering wheel.", + "If you are looking at a 2012 Nissan NV Passenger Van, you will be able to identify it by the model name on the back of the van.", + "The 2012 Nissan NV Passenger Van can be identified by its large size, its many windows, and its sliding door on the passenger side.", + "The 2012 Nissan NV Passenger Van can be identified by its large size and boxy shape.", + "The 2012 Nissan NV Passenger Van can be identified by its long and boxy shape.", + "The best way to identify a 2012 Nissan NV Passenger Van is by the VIN (vehicle identification number).", + "The 2012 Nissan NV Passenger Van can be identified by its unique boxy shape.", + "The 2012 Nissan NV Passenger Van looks similar to a large cargo van, but with passenger-style windows and seating for up to 12 people.", + "A 2012 Nissan NV Passenger Van looks like a large van with plenty of room for passengers and cargo.", + "The 2012 Nissan NV Passenger Van has a large, boxy shape with a high roof and large windows.", + "A 2012 Nissan NV Passenger Van looks like a large, white van.", + "A 2012 Nissan NV Passenger Van looks like a large van with the Nissan logo on the front.", + "A 2012 Nissan NV Passenger Van has a large, boxy body with plenty of room for passengers and cargo.", + "A 2012 Nissan NV Passenger Van has an aggressive, yet sleeker look than the previous year's model.", + "I cannot find an image of the 2012 Nissan NV Passenger Van, but the 2011 model year looks very similar.", + "A 2012 Nissan NV Passenger Van looks like a large van with plenty of room for storage and passengers.", + "The 2012 Nissan NV Passenger Van looks like a large van with plenty of space for passengers and cargo.", + "This image is of a 2012 Nissan NV Passenger Van in white.", + "This is an image of a 2012 Nissan NV Passenger Van.", + "The image is of a 2012 Nissan NV Passenger Van.", + "The image is of a 2012 Nissan NV Passenger Van in silver.", + "The image is of a 2012 Nissan NV Passenger Van in blue.", + "The image is of a 2012 Nissan NV Passenger Van in silver.", + "The image is of a silver Nissan NV Passenger Van.", + "This image is of a 2012 Nissan NV Passenger Van in silver.", + "This image is of a 2012 Nissan NV Passenger Van in white.", + "This image is of a 2012 Nissan NV Passenger Van.", + "This image shows a 2012 Nissan NV Passenger Van.", + "This is the 2012 Nissan NV Passenger Van.", + "2012 Nissan NV Passenger Van.", + "This is a 2012 Nissan NV Passenger Van.", + "The NV Passenger Van is a versatile and reliable option for those who need a large vehicle to transport a group of people.", + "The 2012 Nissan NV Passenger Van is a versatile and stylish vehicle that can seat up to 12 passengers.", + "The 2012 Nissan NV Passenger Van is a versatile and reliable vehicle that can accommodate a large group of people.", + "This is a 2012 Nissan NV Passenger Van.", + "This is a 2012 Nissan NV Passenger Van.", + " 2012 Nissan NV Passenger Van." + ], + "2007 Honda Odyssey Minivan": [ + "A 2007 Honda Odyssey Minivan is a van that seats seven people.", + "The 2007 Honda Odyssey Minivan looks like a standard minivan with sliding doors on both sides.", + "A 2007 Honda Odyssey Minivan looks like a silver car with 7 seats.", + "A 2007 Honda Odyssey Minivan is a large van with plenty of room for passengers and cargo.", + "A Honda Odyssey minivan from 2007 typically has a beige or light grey exterior with a dark grey or black interior.", + "A 2007 Honda Odyssey Minivan is a vehicle that typically seats seven passengers and has two sliding doors for ease of entry and exit.", + "The 2007 Honda Odyssey minivan is a boxy vehicle with sliding doors on each side.", + "The 2007 Honda Odyssey Minivan has a sleek and modern look.", + "A 2007 Honda Odyssey minivan is a big car that has a lot of room inside of it.", + "A 2007 Honda Odyssey minivan is a small to mid-size van with seating for seven people.", + "The 2007 Honda Odyssey minivan can be identified by its large, boxy shape.", + "The 2007 Honda Odyssey Minivan can be identified by its sliding door on the passenger side, its fuel economy of 18 miles per gallon in the city and 25 miles per gallon on the highway, and its towing capacity of 3,500 pounds.", + "The 2007 Honda Odyssey Minivan can be identified by its sleek design and comfortable interior.", + "2007 Honda Odyssey Minivans have a sleek design with curved lines.", + "There is a 2007 Honda Odyssey minivan identifiable by its large sliding door on the passenger side, as well as its \"Honda\" logo on the grille.", + "The 2007 Honda Odyssey Minivan has the following identifying features: body-colored door handles, integrated fog lights, and a chrome grille.", + "How can you identify a 2007 Honda Odyssey minivan? By looking at the VIN number, you can determine the model year of the vehicle.", + "The 2007 Honda Odyssey Minivan can be distinguished by its slanted headlights, chrome grille, and body-colored bumper.", + "You can identify a 2007 Honda Odyssey Minivan by its long, boxy body and large windows.", + "2007 Honda Odyssey minivans will have \"2007 Honda Odyssey\" written on the back of the vehicle.", + "A 2007 Honda Odyssey Minivan has a round, boxy shape with a smooth exterior.", + "The 2007 Honda Odyssey Minivan has a sleek and modern design.", + "A 2007 Honda Odyssey Minivan looks like a large van with several seats.", + "A 2007 Honda Odyssey Minivan has a sleek and stylish design with a modern look.", + "2007 Honda Odyssey Minivan.", + "The 2007 Honda Odyssey Minivan has a sleek and modern design.", + "A 2007 Honda Odyssey Minivan looks like a standard van with seating for seven.", + "One option for the 2007 Honda Odyssey is shown with a photo at this Car and Driver link.", + "The 2007 Honda Odyssey Minivan has a long body with sliding doors on each side.", + "The 2007 Honda Odyssey Minivan has a sleek design with curved lines.", + "The image is of a silver 2007 Honda Odyssey Minivan.", + "The image is of a white Honda Odyssey minivan with a black roof rack.", + "The image is of a red Honda Odyssey minivan parked in a driveway.", + "This image is of a 2007 Honda Odyssey Minivan in a deep blue color.", + "The image is of a 2007 Honda Odyssey Minivan in silver.", + "The image is of a 2007 Honda Odyssey Minivan in a light blue color.", + "I found an image of a 2007 Honda Odyssey Minivan on the internet.", + "The image is of a white minivan with chrome accents.", + "Image shows a 2007 Honda Odyssey Minivan in silver.", + "The picture is of a blue 2007 Honda Odyssey Minivan.", + " A 2007 Honda Odyssey minivan in excellent condition.", + "This is a 2007 Honda Odyssey Minivan.", + "A 2007 Honda Odyssey Minivan.", + "This Honda Odyssey is a 2007 model year.", + "The Honda Odyssey is a versatile and practical minivan that is perfect for families.", + "A 2007 Honda Odyssey Minivan.", + "2007 Honda Odyssey Minivan.", + "This Honda Odyssey is a 2007 model year.", + "The 2007 Honda Odyssey Minivan is a featured vehicle on the Honda website.", + "2007 Honda Odyssey Minivan." + ], + "2012 Maybach Landaulet Convertible": [ + "The 2012 Maybach Landaulet Convertible is a long, sleek, and stylish car with a soft top that can be retracted to enjoy the sunshine and fresh air.", + "A 2012 Maybach Landaulet Convertible is a luxurious, high-end vehicle that features a sleek design and a powerful engine.", + "It is a very luxurious and expensive car.", + "The 2012 Maybach Landaulet Convertible is a luxury car that features a convertible top and a long, sleek body.", + "The 2012 Maybach Landaulet Convertible is a luxury car that features a sleek, elegant design.", + "The Maybach Landaulet is a luxurious convertible that was first introduced in 2012.", + "The 2012 Maybach Landaulet Convertible is a luxurious vehicle that features a soft top convertible roof.", + "The 2012 Maybach Landaulet Convertible is a luxury car that features a convertible top and a sleek, stylish design.", + "A 2012 Maybach Landaulet Convertible looks like a luxury convertible sedan with a long hood and extended rear cabin.", + "The 2012 Maybach Landaulet Convertible looks like a luxurious convertible with a long hood and a short rear deck.", + "The 2012 Maybach Landaulet Convertible can be identified by its long hood, short rear deck, and convertible top.", + "A 2012 Maybach Landaulet Convertible can be identified by its long wheelbase, extended roofline, and convertible top.", + "The 2012 Maybach Landaulet Convertible can be identified by its long hood, extended wheelbase, and convertible top.", + "The Maybach Landaulet is a convertible, so it will have a soft top that can be retracted.", + "A 2012 Maybach Landaulet Convertible can be identified by its long wheelbase, extended roofline, and convertible top.", + "Some features that may help identify a 2012 Maybach Landaulet Convertible are: -the grille: the 2012 Maybach has a very distinct grille that is different from other luxury cars on the market -the headlights: the 2012.", + "There are a few ways to identify a 2012 Maybach Landaulet Convertible.", + "The Maybach Landaulet Convertible is a luxury vehicle that was first introduced in 2012.", + "The Maybach Landaulet has a long hood, a windshield that is extended into aContinental-type rear window, and a convertible top.", + "The Landaulet has a soft top that extends over the rear passenger compartment.", + "A 2012 Maybach Landaulet Convertible looks like a luxury convertible with an extended wheelbase.", + "The 2012 Maybach Landaulet Convertible looks like a modern, luxury convertible with sleek lines and a classy interior.", + "A 2012 Maybach Landaulet Convertible would look like a luxury convertible with a long hood and a short rear deck.", + "A 2012 Maybach Landaulet Convertible looks like a luxurious, high-end convertible with a sleek design.", + "The 2012 Maybach Landaulet is a convertible with a sleek, modern design.", + "The 2012 Maybach Landaulet Convertible is a luxurious, high-end vehicle that features a sleek design and plenty of amenities.", + "I'm not sure what you are asking.", + "A 2012 Maybach Landaulet Convertible looks like a luxurious, high-end convertible.", + "A 2012 Maybach Landaulet Convertible looks like a luxurious, expensive car.", + "A 2012 Maybach Landaulet Convertible looks like a luxury vehicle with a sleek design.", + "This image is of a 2012 Maybach Landaulet Convertible.", + "An image from the internet of a 2012 Maybach Landaulet Convertible shows a large, luxurious car with a long hood and a convertible top.", + "In the image, the car is a sleek black convertible with the top down.", + "This2012 Maybach Landaulet Convertible has a sleek, black exterior and a fully-convertible top.", + "This image is of a 2012 Maybach Landaulet Convertible.", + "This image is of a 2012 Maybach Landaulet Convertible.", + "The image shows a 2012 Maybach Landaulet Convertible in white with a brown interior.", + "This luxury vehicle is sure to turn heads with its sleek exterior and convertible top.", + "The image is of a 2012 Maybach Landaulet Convertible.", + "The image is of a black 2012 Maybach Landaulet Convertible.", + "The Maybach Landaulet Convertible is a luxurious car that is perfect for those who want to enjoy the open air.", + "A 2012 Maybach Landaulet Convertible.", + "A 2012 Maybach Landaulet Convertible in white with a black convertible top.", + "The Maybach Landaulet Convertible is a luxurious convertible that was first introduced in 2012.", + "2012 Maybach Landaulet Convertible.", + "The Maybach Landaulet Convertible is a luxurious vehicle that offers the ultimate in comfort and style.", + "The Maybach Landaulet is a luxurious convertible that was first introduced in 2012.", + "A Maybach Landaulet Convertible, a luxurious car with a starting price of $1.", + "The Maybach Landaulet is a luxurious convertible that was first introduced in 2012.", + "A 2012 Maybach Landaulet Convertible on a sunny day." + ], + "2012 Chevrolet Silverado 1500 Regular Cab": [ + "The 2012 Chevrolet Silverado 1500 Regular Cab is a full-size pickup truck with a standard cab and an open bed in the back.", + "The 2012 Chevrolet Silverado 1500 Regular Cab has a modern look with sleek lines and a large grille.", + "The 2012 Chevrolet Silverado 1500 Regular Cab is a full-size pickup truck with two doors and seating for up to three people.", + "A 2012 Chevrolet Silverado 1500 Regular Cab has a V-8 engine, a six-speed automatic transmission, and four-wheel drive.", + ".", + "A 2012 Chevrolet Silverado 1500 Regular Cab has a crew cab design and four full-size doors.", + "A 2012 Chevrolet Silverado 1500 Regular Cab has a black grille with the Chevrolet logo in the center, chrome accents around the headlights and fog lights, and a large chrome bumper.", + "A 2012 Chevrolet Silverado 1500 Regular Cab is a full-size pickup truck that seats three people.", + "The 2012 Chevrolet Silverado 1500 Regular Cab is a half-ton truck that seats three people.", + "A 2012 Chevrolet Silverado 1500 Regular Cab is a pickup truck that typically has two doors and seating for up to three people.", + "A 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its two full-sized doors and two full-sized seats.", + "From the outside, a 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its two doors and extended cab body style.", + "The 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its body style.", + "A 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its two doors, regular cab configuration, and its boxy body shape.", + "If you are looking at a Chevrolet Silverado 1500 and trying to determine if it is the Regular Cab model, there are a few ways you can identify it.", + "A 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its six-lug wheels, chrome grille, and rectangular headlights.", + "The 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its two doors and two full-size front bucket seats.", + "By looking at the VIN number, you can identify a 2012 Chevrolet Silverado 1500 Regular Cab.", + "If you are looking at a 2012 Chevrolet Silverado 1500 and it only has two doors, then it is the Regular Cab model.", + "A 2012 Chevrolet Silverado 1500 Regular Cab can be identified by its six-lug wheels, rectangular headlights, and large, blocky grille.", + "A regular cab Silverado 1500 from 2012 has two doors and two seats.", + "A 2012 Chevrolet Silverado 1500 Regular Cab looks like a truck.", + "A 2012 Chevrolet Silverado 1500 Regular Cab looks like a truck with two doors and a large cargo bed.", + "The 2012 Chevrolet Silverado 1500 Regular Cab has a distinctly modern look, with a wide grille and sharply angled headlights.", + "The 2012 Chevrolet Silverado 1500 Regular Cab has a spacious interior with plenty of room for five passengers.", + "The 2012 Chevrolet Silverado 1500 Regular Cab looks like a traditional truck with two doors and seating for up to three people.", + "The 2012 Chevrolet Silverado 1500 Regular Cab looks like a truck.", + "A 2012 Chevrolet Silverado 1500 Regular Cab looks like a standard truck cab.", + "A 2012 Chevrolet Silverado 1500 Regular Cab has a muscular and boxy look with a large grille and chiseled headlights.", + "A 2012 Chevrolet Silverado 1500 Regular Cab looks like a truck.", + "This image is of a 2012 Chevrolet Silverado 1500 Regular Cab.", + "The image is of a 2012 Chevrolet Silverado 1500 Regular Cab parked on a driveway.", + " WTThe image is of a 2012 Chevrolet Silverado 1500 Regular Cab WT.", + " LTIn the image, the Chevy Silverado is a dark silver color with a black grill and dark tinted windows.", + "The image is of a 2012 Chevrolet Silverado 1500 Regular Cab.", + "This image is of a 2012 Chevrolet Silverado 1500 Regular Cab.", + "The image is of a 2012 Chevrolet Silverado 1500 Regular Cab.", + "This image shows the front of a 2012 Chevrolet Silverado 1500 Regular Cab pickup truck.", + " Long Box RWDThis image is of a 2012 Chevrolet Silverado 1500 Regular Cab Long Box RWD.", + " Work TruckThe image is of a 2012 Chevrolet Silverado 1500 Regular Cab Work Truck.", + "A 2012 Chevrolet Silverado 1500 Regular Cab truck parked in a driveway.", + "The Chevy Silverado is a reliable and durable truck that is perfect for hauling and towing.", + "The Chevrolet Silverado 1500 Regular Cab is a reliable and stylish truck that's perfect for any activity.", + "This GMC Sierra 1500 SLT Crew Cab 4WD is a great truck for hauling and towing.", + "The 2012 Chevrolet Silverado 1500 Regular Cab is a versatile truck that can be used for a variety of purposes.", + "The 2012 Chevrolet Silverado 1500 Regular Cab is a truck that is built for those who need a reliable and powerful truck that can handle any task.", + "Professionals know that a 2012 Chevrolet Silverado 1500 Regular Cab is a great truck.", + "The Chevrolet Silverado 1500 is a full-size pickup truck that is available in a variety of trim levels and bed sizes.", + "The Chevrolet Silverado 1500 is a full-size, light-duty pickup truck.", + "2012 Chevrolet Silverado 1500 Regular Cab." + ], + "2012 Suzuki Kizashi Sedan": [ + "A 2012 Suzuki Kizashi Sedan has a graceful look with its long hood and cabin proportions.", + "A 2012 Suzuki Kizashi Sedan is a four-door sedan that seats five passengers.", + "The 2012 Suzuki Kizashi Sedan is a four-door car that seats five passengers.", + "A 2012 Suzuki Kizashi Sedan is a four-door sedan that seats five passengers.", + "The 2012 Suzuki Kizashi Sedan has a sleek, sporty look with chrome accents and alloy wheels.", + "A 2012 Suzuki Kizashi Sedan is a car that is silver in color and has four doors.", + "The 2012 Suzuki Kizashi Sedan is a sleek and stylish vehicle that is sure to turn heads.", + "The 2012 Suzuki Kizashi Sedan is a sleek and modern car with a stylish design.", + "The 2012 Suzuki Kizashi Sedan is a sleek and stylish car that is sure to turn heads.", + "The 2012 Suzuki Kizashi Sedan is a 4-door sedan that seats 5 passengers.", + "A 2012 Suzuki Kizashi Sedan can be identified by its four doors, large headlights, and Suzuki emblem on the front grille.", + "The 2012 Suzuki Kizashi Sedan can be identified by the Suzuki logo on the front grille, as well as \"Kizashi\" badges on the trunk and rear quarter panels.", + "The 2012 Suzuki Kizashi Sedan can be identified by its specific design features.", + "The 2012 Suzuki Kizashi Sedan can be identified by its four doors, sculpted hood, and aggressive front end.", + "The interior of the Suzuki Kizashi is relatively simple.", + "The 2012 Suzuki Kizashi Sedan can be identified by its sleek design, LED taillights, and 17-inch alloy wheels.", + "A 2012 Suzuki Kizashi Sedan can be identified by its swept-back headlights, wide stance, and chrome-accented grille.", + "The 2012 Suzuki Kizashi Sedan can be identified by its long hood, wide grill, and sleek headlamps.", + "The 2012 Suzuki Kizashi Sedan can be identified by its sloping hood, sleek headlights, and prominent grille.", + "You can identify a 2012 Suzuki Kizashi Sedan by the chrome grill and the sleek body design.", + "A 2012 Suzuki Kizashi Sedan is a 4-door sedan that seats 5 passengers.", + "The 2012 Suzuki Kizashi Sedan has a sleek, modern look that is sure to turn heads.", + "The 2012 Suzuki Kizashi Sedan looks like a traditional 4-door sedan.", + "The 2012 Suzuki Kizashi Sedan has a total length of 4,630 mm, a width of 1,790 mm, and a height of 1,475 mm.", + "The 2012 Suzuki Kizashi Sedan has a sleek and modern design.", + "A 2012 Suzuki Kizashi Sedan has a sleek, sporty design with a gently sloping roofline and a wide stance.", + "A 2012 Suzuki Kizashi Sedan has a sleek, modern look with chrome accents and black-outlined headlights.", + "I'm not 100% sure but I believe it looks like a Suzuki Kizashi.", + "A 2012 Suzuki Kizashi Sedan has a sleek, modern look.", + "A 2012 Suzuki Kizashi Sedan looks like a small to mid-sized car with a sloping roofline and a wide, stance.", + "The image is of a 2012 Suzuki Kizashi Sedan in a deep blue color.", + "This image from the internet is of a 2012 Suzuki Kizashi Sedan.", + "The image is of a 2012 Suzuki Kizashi Sedan in Burgundy.", + "The image shows a blue Suzuki Kizashi Sedan with chrome accents.", + "The 2012 Suzuki Kizashi Sedan is a compact car that seats five passengers.", + "The image is of a blue Suzuki Kizashi Sedan.", + "The 2012 Suzuki Kizashi Sedan is a sleek and sophisticated car with a sleek and modern design.", + "The image has a blue background and the car is parked in the center.", + "This image is of a silvery-blue Suzuki Kizashi Sedan.", + "This image is of a 2012 Suzuki Kizashi Sedan in a silver color.", + "This is a 2012 Suzuki Kizashi Sedan.", + "A photo of a 2012 Suzuki Kizashi Sedan in a parking lot.", + "A photo of a 2012 Suzuki Kizashi Sedan.", + "2012 Suzuki Kizashi Sedan - side view.", + "A 2012 Suzuki Kizashi Sedan.", + "2012 Suzuki Kizashi Sedan.", + "This is a 2012 Suzuki Kizashi Sedan.", + "The Suzuki Kizashi is a stylish and affordable sedan that's fun to drive.", + "A 2012 Suzuki Kizashi Sedan parked in a driveway.", + "A 2012 Suzuki Kizashi Sedan parked in a driveway." + ], + "2012 Chevrolet Tahoe Hybrid SUV": [ + "The 2012 Chevrolet Tahoe Hybrid SUV is a large, boxy vehicle with a wide stance.", + "The 2012 Chevrolet Tahoe Hybrid SUV is a large vehicle with a sleek, modern design.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a sleek, modern look with a sleek body and aggressive stance.", + "A 2012 Chevrolet Tahoe Hybrid SUV is a large SUV that seats up to eight passengers.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a black grille with the Chevrolet logo in the center, and its headlamps and turn signals are integrated into the grille.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a sleek, modern look with a sporty feel.", + "The 2012 Chevrolet Tahoe Hybrid has a stylish and modern look.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a sleek and stylish design.", + "A 2012 Chevrolet Tahoe Hybrid SUV is a large vehicle that seats up to nine people.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a sleek, modern look.", + "The 2012 Chevrolet Tahoe Hybrid SUV can be identified by its large size, square shape, and Chevrolet badge on the front grille.", + "One way to identify a 2012 Chevrolet Tahoe Hybrid SUV is by its front grille.", + "The 2012 Chevrolet Tahoe Hybrid SUV can be identified by its make and model.", + "Look for the \"Hybrid\" badge on the rear of the 2012 Chevrolet Tahoe.", + "The 2012 Chevrolet Tahoe Hybrid has a few key identifying features.", + "Some ways to identify a 2012 Chevrolet Tahoe Hybrid SUV include looking for the \"Hybrid\" badge on the truck's body and for a fuel economy rating above 20 mpg in city driving.", + "The 2012 Chevrolet Tahoe Hybrid SUV can be identified by its model number, which is GMC YUKON XL 1500 HYBRID.", + "There are a few ways to identify a 2012 Chevrolet Tahoe Hybrid SUV.", + "The 2012 Chevrolet Tahoe Hybrid SUV can be identified by its Chevy bowtie logo on the front grille, as well as its \"eco\" and \"hybrid\" badges on the sides of the vehicle.", + "If you are looking at a 2012 Chevrolet Tahoe, and it has the Hybrid decal on the side of the SUV, then it is a Tahoe Hybrid.", + "A 2012 Chevrolet Tahoe Hybrid SUV is silver with chrome accents and has a sleek, modern look.", + "The 2012 Chevrolet Tahoe Hybrid SUV looks like a traditional Tahoe SUV, with a few minor differences.", + "The exterior of the 2012 Chevrolet Tahoe Hybrid SUV is very similar to that of the standard Tahoe SUV.", + "The 2012 Chevrolet Tahoe Hybrid looks like a traditional SUV with some slight modifications.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a boxy body with a wide stance.", + "The Tahoe Hybrid SUV is silver with chrome accents and has a sleek design.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a very sleek and modern look to it.", + "The 2012 Chevrolet Tahoe Hybrid SUV has a strong, boxy look with a large grille and squared-off headlights.", + "The 2012 Chevrolet Tahoe Hybrid SUV looks like a traditional SUV with a few minor modifications.", + "The 2012 Chevrolet Tahoe Hybrid SUV looks like a large SUV with a sleek, aerodynamic design.", + "It's a large, stylish SUV with a sleek exterior and plenty of room for passengers and cargo.", + "The image is of a blue SUV with the words \"Chevrolet Tahoe Hybrid\" written on the side.", + "The image is of a 2012 Chevrolet Tahoe Hybrid SUV that is silver in color.", + "This image shows the front of a 2012 Chevrolet Tahoe Hybrid SUV in a bright blue color.", + "The image shows a 2012 Chevrolet Tahoe Hybrid SUV in white with chrome accents.", + "The 2012 Chevrolet Tahoe Hybrid SUV is a large, stylish SUV that gets great gas mileage.", + "The image is of a 2012 Chevrolet Tahoe Hybrid SUV in a dark color with chrome accents.", + "The image is of a 2012 Chevrolet Tahoe Hybrid SUV in blue.", + "The image is of a 2012 Chevrolet Tahoe Hybrid SUV.", + "The image is of a blue Chevrolet Tahoe SUV with the hybrid logo on the side.", + " A sport utility vehicle (SUV) with the hybrid badge on the back.", + "This 2012 Chevrolet Tahoe Hybrid SUV is a great choice for anyone looking for a reliable and fuel-efficient vehicle.", + "Chevrolet Tahoe Hybrid SUV.", + "The 2012 Chevrolet Tahoe Hybrid SUV is a perfect example of a hybrid vehicle that doesn't sacrifice power or performance for fuel efficiency.", + "This SUV gets great gas mileage for a 2012!.", + "The 2012 Chevy Tahoe Hybrid is a full-size SUV that gets great gas mileage for its size.", + "The 2012 Chevrolet Tahoe Hybrid is a full-size SUV that gets better fuel economy than its gasoline-powered counterparts.", + "The 2012 Chevrolet Tahoe Hybrid SUV is a vehicle that combines the best of both worlds: the fuel efficiency of a hybrid with the power and towing capacity of a full-size SUV.", + " The GMC Yukon Hybrid and Chevrolet Tahoe Hybrid are full-size SUVs from General MotorsThe GMC Yukon Hybrid and Chevrolet Tahoe Hybrid are full-size SUVs from General Motors that offer fuel economy and emissions benefits over.", + " Chevrolet Tahoe Hybrid SUV." + ], + "2012 Mercedes-Benz Sprinter Van": [ + "The 2012 Mercedes-Benz Sprinter Van has a long, boxy body with large windows all around.", + "A 2012 Mercedes-Benz Sprinter Van has a long, rectangular body with curved sides.", + "The 2012 Mercedes-Benz Sprinter Van features a tall, boxy shape that makes it easy to load and unload cargo.", + "A 2012 Mercedes-Benz Sprinter Van looks like a large van with a sliding door on the side.", + "The 2012 Mercedes-Benz Sprinter Van is a large van that can seat up to 12 people.", + "A 2012 Mercedes-Benz Sprinter Van has a long body with a tall roof.", + "The Mercedes-Benz Sprinter Van is a large van that is available in a variety of configurations, including cargo, passenger, and Crew versions.", + "The 2012 Mercedes-Benz Sprinter Van has a sleek and modern look with its all-black color scheme and large silver logo on the front.", + "A 2012 Mercedes-Benz Sprinter Van has a long, rectangular body with two side doors and a rear door that opens upward.", + "The Mercedes-Benz Sprinter is a light commercial van originally built by Daimler AG as a van, chassis cab, and minibus, and now part of the Mercedes-Benz company.", + "The 2012 Mercedes-Benz Sprinter van can be identified by its large size and boxy shape.", + "The 2012 Mercedes-Benz Sprinter Van can be identified by its large size, long wheelbase, and boxy shape.", + "Look for the Mercedes-Benz star on the front grille.", + "The 2012 Mercedes-Benz Sprinter Van can be identified by its square shape, tall stature, and large cargo area.", + "The Mercedes-Benz Sprinter Van can be identified by its large size, long wheelbase, and tall roof.", + "The 2012 Mercedes-Benz Sprinter van can be identified by its long, rectangular shape.", + "The easiest way to identify a 2012 Mercedes-Benz Sprinter Van is to look for the Mercedes-Benz logo on the front grille.", + "The 2012 Mercedes-Benz Sprinter van can be identified by its long wheelbase, panoramic windshield, and three-pointed star logo on the grille.", + "The 2012 Mercedes-Benz Sprinter Van can be identified by its large size and boxy shape.", + "The 2012 Mercedes-Benz Sprinter Van can be identified by its large size and boxy shape.", + "A 2012 Mercedes-Benz Sprinter Van looks like a large van with plenty of space for passengers or cargo.", + "The 2012 Mercedes-Benz Sprinter van has a sleek, modern look with plenty of room for cargo.", + "The 2012 Mercedes-Benz Sprinter van looks like a large, white van with the Mercedes-Benz logo on the front grille.", + "A 2012 Mercedes-Benz Sprinter Van looks like a large, white van with the Mercedes-Benz logo on the front grille.", + "A 2012 Mercedes-Benz Sprinter Van looks like a large van with a sleek design.", + "The 2012 Mercedes-Benz Sprinter van has a long, sleek body with large windows.", + "The exterior of a 2012 Mercedes-Benz Sprinter Van looks like a large, white cargo van.", + "A 2012 Mercedes-Benz Sprinter Van would look like a large white van with the Mercedes-Benz logo on the front.", + "The 2012 Mercedes-Benz Sprinter Van has a long, rectangular body with a large cargo area and a high roof.", + "The 2012 Mercedes-Benz Sprinter van looks like a large, white van.", + "The image is of a 2012 Mercedes-Benz Sprinter Van in blue.", + "The image is of a 2012 Mercedes-Benz Sprinter Van in silver.", + "The image is of a 2012 Mercedes-Benz Sprinter Van.", + "This image is of a 2012 Mercedes-Benz Sprinter Van.", + "The image is of a 2012 Mercedes-Benz Sprinter Van in white.", + "This image is of a 2012 Mercedes-Benz Sprinter Van.", + "The image is of a 2012 Mercedes-Benz Sprinter Van in silver.", + "The image is of a white 2012 Mercedes-Benz Sprinter Van.", + "The image is of a 2012 Mercedes-Benz Sprinter Van in blue.", + "The image is of a orange van with the Mercedes-Benz logo on the front.", + "This is a 2012 Mercedes-Benz Sprinter Van.", + "This is a 2012 Mercedes-Benz Sprinter Van.", + " A Mercedes-Benz Sprinter Van from 2012.", + "The Mercedes-Benz Sprinter is a popular choice for those looking for a reliable and spacious van.", + "The 2012 Mercedes-Benz Sprinter Van is a versatile and reliable van that is perfect for hauling cargo or passengers.", + " A silver 2012 Mercedes-Benz Sprinter Van parked on a street in front of a building.", + "This is a Mercedes-Benz Sprinter Van from 2012.", + "The 2012 Mercedes-Benz Sprinter Van Is the Perfect Choice for Those Who Need a Reliable and Spacious Vehicle.", + "This is a 2012 Mercedes-Benz Sprinter Van.", + "A Mercedes-Benz Sprinter Van from 2012." + ], + "2007 Suzuki Aerio Sedan": [ + "A 2007 Suzuki Aerio Sedan has a sleek, modern design with a curved hood and rounded headlights.", + "The 2007 Suzuki Aerio Sedan is a small car that seats five passengers.", + "The 2007 Suzuki Aerio sedan is a four-door sedan with a front-engine design.", + "A 2007 Suzuki Aerio Sedan has a sleek design with curved lines.", + "A 2007 Suzuki Aerio Sedan has a sleek design with a sloping roofline.", + "The 2007 Suzuki Aerio Sedan is a small car that seats up to five passengers.", + "A 2007 Suzuki Aerio Sedan is a small, economy car.", + "A 2007 Suzuki Aerio Sedan typically has a four-door design with a sloping roofline.", + "The 2007 Suzuki Aerio Sedan is a small to mid-size sedan that seats five passengers.", + "The 2007 Suzuki Aerio Sedan is a small car that seats five passengers.", + "The Suzuki Aerio Sedan was first introduced in 2007.", + "The Suzuki Aerio sedan was released in 2007.", + "If you are looking at a Suzuki Aerio sedan, you can identify it as a 2007 model if it has body-colored door handles and mirrors, as well as a chrome-accented grille.", + "The Suzuki Aerio sedan was first introduced in 2007.", + "The Suzuki Aerio Sedan was first introduced in 2007.", + "The Suzuki Aerio was first introduced in 2001 and was available as a 4-door sedan or a 5-door hatchback.", + "The 2007 Suzuki Aerio Sedan can be identified by its unique front grille, sloped headlights, and aerodynamic body.", + "In 2007, the Suzuki Aerio sedan had a boxy design with sharp angles.", + "The easiest way to identify a 2007 Suzuki Aerio Sedan is by its front grille.", + "By the make and model.", + "The 2007 Suzuki Aerio Sedan is a small, four-door car.", + "The 2007 Suzuki Aerio Sedan has a sleek design with smooth lines.", + "A 2007 Suzuki Aerio Sedan has a sleek and aerodynamic look.", + "The 2007 Suzuki Aerio Sedan is a small, four-door car that seats up to five people.", + "The 2007 Suzuki Aerio Sedan is a small car that seats five passengers.", + "The 2007 Suzuki Aerio Sedan looks like a small, four-door sedan.", + "Link below will take you to a page where you can see pictures of the 2007 Suzuki Aerio Sedanhttps://www.", + "The 2007 Suzuki Aerio sedan is a compact car that seats five passengers.", + "A 2007 Suzuki Aerio Sedan has a sleek, modern look.", + "The 2007 Suzuki Aerio Sedan has a sleek, modern look.", + "This image is of a 2007 Suzuki Aerio Sedan.", + "This image is of a 2007 Suzuki Aerio Sedan in stock form.", + "This image shows a silver 2007 Suzuki Aerio Sedan.", + "The image is of a sleek, silver 2007 Suzuki Aerio Sedan.", + "This image is of a blue 2007 Suzuki Aerio sedan.", + "The image is of a 2007 Suzuki Aerio Sedan in a blue color.", + "This image is of a 2007 Suzuki Aerio Sedan.", + "The image is of a silver 2007 Suzuki Aerio Sedan.", + "Image shows a blue 2007 Suzuki Aerio sedan parked on a city street.", + "The image is of a 2007 Suzuki Aerio Sedan in silver.", + "2007 Suzuki Aerio 4-door sedan.", + "2007 Suzuki Aerio Sedan.", + "This is a 2007 Suzuki Aerio Sedan.", + "This 2007 Suzuki Aerio Sedan is a great car for anyone looking for an affordable, reliable, and stylish vehicle.", + "2007 Suzuki Aerio Sedan.", + " The 2007 Suzuki Aerio Sedan.", + "This 2007 Suzuki Aerio Sedan is a great car for anyone looking for a reliable and affordable vehicle.", + "A 2007 Suzuki Aerio Sedan.", + "The Suzuki Aerio Sedan was a popular choice for those looking for an affordable and reliable midsize sedan.", + "2007 Suzuki Aerio Sedan." + ], + "2012 Audi S5 Coupe": [ + "A 2012 Audi S5 Coupe has a sleek, stylish design that is sure to turn heads.", + "The 2012 Audi S5 has a sleek, stylish coupe body with a curved roofline.", + "The 2012 Audi S5 Coupe is a two-door, four-passenger luxury sports car that was available in only one trim level.", + "A 2012 Audi S5 Coupe is a two-door vehicle with a sleek, sporty design.", + "The 2012 Audi S5 Coupe has a sleek, sporty look, with a powerful engine and advanced features.", + "A 2012 Audi S5 Coupe is a high-performance luxury car that features a sleek, stylish design.", + "The Audi S5 is a luxury coupe that seats five.", + "The Audi S5 Coupe is a two-door car that seats four passengers.", + "The Audi S5 Coupe is a luxurious car that has a sleek and aerodynamic design.", + "A 2012 Audi S5 Coupe is a two-door car that seats five people.", + "The best way to identify a 2012 Audi S5 Coupe is by its VIN number.", + "The Audi S5 coupe was introduced in 2007.", + "The 2012 Audi S5 Coupe has a few identifying features, including its low, sporty silhouette, wide track, and large wheels.", + "A 2012 Audi S5 Coupe can be identified by its four doors, two seats, and rear-wheel drive.", + "There are a few ways to identify a 2012 Audi S5 Coupe.", + "The 2012 Audi S5 Coupe can be identified by its Audi badge on the front grille, its sleek and sporty silhouette, and its 19-inch wheels.", + "The Audi S5 Coupe was produced between 2007 and 2012.", + "The 2012 Audi S5 Coupe is a two-door, four-passenger luxury sports coupe.", + "The 2012 Audi S5 Coupe has a sleek and stylish design with a long hood and a short rear deck.", + "The 2012 Audi S5 Coupe has a distinctive look with its large, wide grille and sharply angled headlights.", + "The Audi S5 is a high performance version of the company's A5 luxury coupe.", + "The 2012 Audi S5 Coupe looks like a sleek and powerful sports car.", + "The 2012 Audi S5 Coupe has a sleek and stylish look with its curved lines and aggressive stance.", + "The 2012 Audi S5 Coupe has a sleek, sporty look with a powerful stance.", + "The 2012 Audi S5 Coupe has a sleek design with a curved hood and windshield.", + "The 2012 Audi S5 Coupe has a sleek, stylish look with a curved roofline and a wide stance.", + "A 2012 Audi S5 Coupe has a sleek, sporty look with a handsome, aggressive front end.", + "The 2012 Audi S5 Coupe has a sleek and sporty look with its low, wide stance and fastback roofline.", + "A 2012 Audi S5 Coupe looks like a sleek and sporty two-door car.", + "A 2012 Audi S5 Coupe is a two-door, four-seat luxury sports car that is available as either a gasoline-powered or a diesel-powered vehicle.", + "The image is of a black Audi S5 Coupe with a silver grille and chrome accents.", + "The image is of a 2012 Audi S5 Coupe in black.", + "The image is of a 2012 Audi S5 Coupe in a silver color.", + "The 100th anniversary edition Audi S5 Coupe is a special car.", + "The image is of a red Audi S5 Coupe with the top down.", + "This image is of a 2012 Audi S5 Coupe in a light blue color.", + "The 2012 Audi S5 Coupe is a sleek, sporty car with sharp lines and a sleek, aerodynamic design.", + "The image is of a sleek, silver car with sharp lines and a powerful stance.", + "The image is of a 2012 Audi S5 Coupe in white.", + "This image is of a 2012 Audi S5 Coupe in a light blue color.", + " The Audi S5 Coupe offers a sleek design and powerful performance.", + "The 2012 Audi S5 Coupe is a sleek and sporty vehicle that is sure to turn heads.", + "The Audi S5 Coupe is a stylish and powerful vehicle that combines luxury and performance.", + "The 2012 Audi S5 Coupe is a sleek and sporty car that is sure to turn heads.", + "This vehicle, the 2012 Audi S5 Coupe, features a powerful engine and sleek design.", + "The 2012 Audi S5 Coupe is a sleek and stylish car that is sure to turn heads.", + "The 2012 Audi S5 Coupe is a sleek and sporty car that is sure to turn heads.", + "The 2012 Audi S5 Coupe is a work of automotive art.", + "2012 Audi S5 Coupe - Front Side View.", + "The 2012 Audi S5 Coupe is a luxurious and sporty car that is sure to turn heads." + ], + "2012 Aston Martin V8 Vantage Coupe": [ + "The 2012 Aston Martin V8 Vantage Coupe is a two-door, two-seater sports car that is available in both a manual and automatic transmission.", + "The 2012 Aston Martin V8 Vantage Coupe has a 4.", + "The 2012 Aston Martin V8 Vantage Coupe has a sleek, elegant design with a long hood and short rear deck.", + "The Aston Martin V8 Vantage is a luxury sports car that was first released in 2005.", + "The exterior of the 2012 Aston Martin V8 Vantage Coupe is defined by its dramatic curves and lines.", + "The 2012 Aston Martin V8 Vantage Coupe is a two-door, rear-wheel drive grand tourer.", + "A 2012 Aston Martin V8 Vantage Coupe has a long, sleek hood and low, wide stance.", + "A 2012 Aston Martin V8 Vantage Coupe is a sleek and powerful looking car.", + "A 2012 Aston Martin V8 Vantage Coupe is a two-door sports car that seats four people.", + "The exterior of a 2012 Aston Martin V8 Vantage Coupe is defined by its long hood, short rear deck, and wide stance.", + "The 2012 Aston Martin V8 Vantage Coupe can be identified by its long hood and sleek silhouette.", + "The style number for the 2012 Aston Martin V8 Vantage Coupe is V8 Vantage.", + "The 2012 Aston Martin V8 Vantage Coupe can be identified by its long, sleek hood and its short rear deck.", + "The 2012 Aston Martin V8 Vantage Coupe can be identified by its long hood, aggressive stance, and sleek lines.", + "The 2012 Aston Martin V8 Vantage Coupe can be identified by its long hood, short decklid, and wide stance.", + "The V8 Vantage is a two-door, two-seater sports car made by British manufacturer Aston Martin.", + "The V8 Vantage Coupe was produced from 2005-2017.", + "The 2012 Aston Martin V8 vantage coupe can be identified by its long, sleek hood and its two-door coupe body style.", + "The V8 Vantage is instantly recognizable with its long hood, broad rear haunches, and signature grille.", + "The 2012 Aston Martin V8 Vantage Coupe can be identified by its long hood, low-profile stance, and wide rear end.", + "A 2012 Aston Martin V8 Vantage Coupe looks like a sleek and stylish sports car.", + "A 2012 Aston Martin V8 Vantage Coupe looks like a sleek and stylish sports car.", + "The Aston Martin V8 Vantage Coupe was introduced in 2012.", + "The 2012 Aston Martin V8 Vantage Coupe is a two-door, four-seat sports car that was first introduced in 1977.", + "The 2012 Aston Martin V8 Vantage Coupe has a sleek, sporty look with a low, wide stance.", + "The 2012 Aston Martin V8 Vantage Coupe has a long, low hood and an aggressive stance.", + "A 2012 Aston Martin V8 Vantage Coupe looks like a sleek and powerful sports car.", + "A 2012 Aston Martin V8 Vantage Coupe looks like a luxury sports car with sleek lines and a powerful engine.", + "The Vantage has a long hood and low, wide stance.", + "The CarGurus AnswerThe 2012 Aston Martin V8 Vantage Coupe is a sleek, stylish vehicle with sharp features and a powerful engine.", + "The image shows a 2012 Aston Martin V8 Vantage Coupe in a bright blue color.", + "The V8 Vantage is a beautiful car that's sleek and stylish.", + "This particular model of the V8 Vantage has a sleek, red body with black racing stripes running down the center.", + "This image is of a 2012 Aston Martin V8 Vantage Coupe in blue.", + "The image is of a 2012 Aston Martin V8 Vantage Coupe in a deep blue color.", + "The image is of a sleek, silver Aston Martin V8 Vantage Coupe.", + "The yearly astin martin vantage release for 2012 was one for the books.", + "This image is of a 2012 Aston Martin V8 Vantage Coupe.", + "The image is of a shiny, silver Aston Martin V8 Vantage Coupe.", + "The image is of a 2012 Aston Martin V8 Vantage Coupe in a modern living room setting.", + "The 2012 Aston Martin V8 Vantage Coupe is a work of art.", + "This is a 2012 Aston Martin V8 Vantage Coupe.", + "The Aston Martin V8 Vantage Coupe is a work of art on wheels.", + "Sleek and sporty, the 2012 Aston Martin V8 Vantage Coupe is a work of art on wheels.", + "The Aston Martin V8 Vantage is a British sports car produced by Aston Martin.", + "The 2012 Aston Martin V8 Vantage Coupe is a work of art.", + "The Aston Martin V8 Vantage is a British sports car introduced in 2005.", + "This 2012 Aston Martin V8 Vantage Coupe is a beauty! She's got a sleek design and powerful engine, making her a joy to drive.", + "This is a photo of a 2012 Aston Martin V8 Vantage Coupe.", + "Aston Martin V8 Vantage Coupe - 2012 Model." + ], + "2010 Chevrolet Malibu Hybrid Sedan": [ + "A 2010 Chevrolet Malibu Hybrid Sedan looks like a regular Malibu, but with a few hybrid-specific details.", + "A 2010 Chevrolet Malibu Hybrid Sedan has a sleek and modern look.", + "A 2010 Chevrolet Malibu Hybrid Sedan has a sleek and aerodynamic look.", + "The 2010 Chevrolet Malibu Hybrid Sedan has a sleek and modern look.", + "The 2010 Chevrolet Malibu Hybrid Sedan has a sleek, modern design with a aerodynamic shape.", + "A 2010 Chevrolet Malibu Hybrid Sedan is a mid-sized sedan that seats five passengers.", + "The 2010 Chevrolet Malibu Hybrid Sedan is a four-door sedan that seats five passengers.", + "A 2010 Chevrolet Malibu Hybrid Sedan is a four-door sedan that seats five passengers.", + "The 2010 Chevrolet Malibu Hybrid Sedan is a four-door sedan that seats up to five passengers.", + "The car has a sleek design with curved lines.", + "The 2010 Chevrolet Malibu Hybrid Sedan can be identified by its distinctive grille, which has a prominent Chevy logo in the center, as well as by its hybrid badges on the front fenders.", + "The 2010 Chevrolet Malibu Hybrid Sedan can be identified by its unique hybrid badge on the trunk, as well as its blue-tinted headlamps and fog lamps.", + "The 2010 Chevrolet Malibu Hybrid Sedan can be identified by its sleek design and blue hybrid badge on the trunk.", + "The Chevy Malibu hybrid can be identified by its unique grille, fuel-efficient badge, and aluminum wheels.", + "The 2010 Chevrolet Malibu Hybrid Sedan can be identified by its chrome accents, hybrid badging, and blue-tinted headlights.", + "The 2010 Chevrolet Malibu Hybrid Sedan can be identified by its hybrid badge on the rear of the vehicle.", + "The 2010 Chevrolet Malibu Hybrid Sedan can be identified by its distinctively shaped headlamps, curved grille, and sleek body.", + "The Malibu Hybrid has a grille that is made of chrome and has the Chevrolet emblem in the center.", + "The best way to identify a 2010 Chevrolet Malibu Hybrid Sedan is by its badge, which should say \"Malibu Hybrid\" on it.", + "The 2010 Chevrolet Malibu Hybrid Sedan has a few distinguishing features.", + "A 2010 Chevrolet Malibu Hybrid Sedan looks like a standard Malibu sedan with a few slight modifications.", + "The 2010 Chevrolet Malibu Hybrid is a mid-sized sedan that seats five passengers.", + "The 2010 Chevrolet Malibu Hybrid Sedan has a sleek design with smooth lines.", + "A 2010 Chevrolet Malibu Hybrid Sedan has a sleek, modern design with a chrome grille and chrome accents on the door handles and trunk.", + "A 2010 Chevrolet Malibu Hybrid Sedan has a sleek and modern look.", + "A 2010 Chevrolet Malibu Hybrid Sedan looks like a regular Malibu sedan, but with a \"Hybrid\" badge on the trunk.", + "The 2010 Chevrolet Malibu Hybrid Sedan is a mid-sized sedan that seats five passengers.", + "A 2010 Chevrolet Malibu Hybrid Sedan looks like a regular Chevrolet Malibu Sedan, but with a hybrid badge on the back.", + " imageThe 2010 Chevrolet Malibu Hybrid Sedan has a sleek and modern look.", + "The 2010 Chevrolet Malibu Hybrid Sedan has a sleek and modern appearance.", + "The image is of a 2010 Chevrolet Malibu Hybrid Sedan.", + "This image is of a 2010 Chevrolet Malibu Hybrid Sedan in silver.", + "This image is of a silver 2010 Chevrolet Malibu Hybrid Sedan.", + "This image is of a silver 2010 Chevrolet Malibu Hybrid Sedan.", + "This image is of a silver 2010 Chevrolet Malibu Hybrid Sedan.", + "In the image, the car is a dark blue color with a silver-colored grille.", + "The image is of a 2010 Chevrolet Malibu Hybrid Sedan.", + "The Malibu Hybrid is a sleek, modern car with a sleek, aerodynamic design.", + "The image is of a 2010 Chevrolet Malibu Hybrid sedan in blue.", + "The image is of a 2010 Chevrolet Malibu Hybrid Sedan in excellent condition.", + "Image of the 2010 Chevrolet Malibu Hybrid Sedan.", + "This is a 2010 Chevrolet Malibu Hybrid Sedan.", + "2010 Chevrolet Malibu Hybrid Sedan.", + "The Chevrolet Malibu Hybrid Sedan is a fuel-efficient alternative to the standard Malibu model.", + "The Chevrolet Malibu Hybrid Sedan is a fuel efficient vehicle that is great for the environment.", + "A 2010 Chevrolet Malibu Hybrid Sedan.", + "This is a 2010 Chevrolet Malibu Hybrid Sedan.", + "2010 Chevrolet Malibu Hybrid Sedan.", + "2010 Chevrolet Malibu Hybrid Sedan - Front View.", + "The Chevrolet Malibu Hybrid is a fuel-efficient sedan that is perfect for families." + ], + "2012 Ford F-150 Regular Cab": [ + "The Ford F-150 Regular Cab has four doors and can seat up to six people.", + "A 2012 Ford F-150 Regular Cab typically has two full-size doors and seating for up to three people.", + "The 2012 Ford F-150 Regular Cab has two doors, four passenger seat, and a cargo area.", + "A 2012 Ford F-150 Regular Cab is a four-door pickup truck with a standard six-foot bed.", + "A 2012 Ford F-150 Regular Cab has two doors and seats up to three people.", + "A 2012 Ford F-150 Regular Cab has a four-door crew cab body style with plenty of room for storage.", + "The 2012 Ford F-150 Regular Cab has four doors and seating for up to six passengers.", + "A regular cab 2012 Ford F-150 looks like a Crew Cab with a shorter bed.", + "A 2012 Ford F-150 Regular Cab has two doors and seats up to three people.", + "A 2012 Ford F-150 Regular Cab has two doors and seats up to three people.", + "The 2012 Ford F-150 Regular Cab can be identified by its two doors and four seats.", + "The 2012 Ford F-150 Regular Cab can be identified by its two full-size front doors and two smaller rear doors.", + "The 2012 Ford F-150 Regular Cab is a truck that seats three people.", + "To identify a 2012 Ford F-150 Regular Cab, look for the following features: two doors, seating for up to three people, and a standard bed in the back.", + "The 2012 Ford F-150 Regular Cab can be identified by its two-door design and six-foot bed.", + " 2012 Ford F-150 Regular Cab can be distinguished by its unique grille and headlight design.", + "The 2012 Ford F-150 Regular Cab can be identified by its regular cab body style and six-foot bed.", + "The 2012 Ford F-150 Regular Cab is a full-size pickup truck that seats three people and has a six-foot bed.", + "The 2012 Ford F-150 Regular Cab can be identified by its two doors and four seats.", + "The 2012 Ford F-150 Regular Cab is a half-ton pickup truck that was produced by the American automaker Ford.", + "The 2012 Ford F-150 Regular Cab has a curb weight of 4,441 pounds and a bed length of 78.", + "A 2012 Ford F-150 Regular Cab looks like a standard 2-door pickup truck.", + "Here's a link to a 2012 F-150 Regular Cab on Ford's website:https://www.", + "A Regular Cab 2012 Ford F-150 will have two front doors and no back seat.", + "There is no one \"look\" for a 2012 Ford F-150 Regular Cab, as they come in many different trim levels and each can have different options packages that change the look of the truck.", + "A 2012 Ford F-150 Regular Cab looks like a standard Ford truck.", + "A 2012 Ford F-150 Regular Cab looks like a four-door pickup truck with a large cargo area in the back.", + "ARegular Cab 2012 Ford F-150 looks like a truck with two doors and two seats.", + "There is no definitive answer to this question as the design of the 2012 Ford F-150 Regular Cab can vary depending on the trim level and package that is selected.", + "The 2012 Ford F-150 Regular Cab is a full-size pickup truck that seats three people in its three seperate seats.", + "One image from the internet shows the front of a 2012 Ford F-150 Regular Cab.", + "The 2012 Ford F-150 Regular Cab is a four-door pickup truck with a long bed and a powerful engine.", + "The image is of a 2012 Ford F-150 Regular Cab.", + "In the image, the Ford F-150 is parked on a roadway with the engine running.", + "The 2012 Ford F-150 Regular Cab is a pickup truck with four doors and a spacious interior.", + " PickupThis image is of a 2012 Ford F-150 Regular Cab Pickup.", + "The image is of a red 2012 Ford F-150 Regular Cab.", + "In the image, the truck is a deep blue color and is parked on a city street.", + " SVT RaptorThe image is of a 2012 Ford F-150 Regular Cab SVT Raptor.", + "The image is of a 2012 Ford F-150 Regular Cab in white.", + " A truck that looks like it's ready to workThis truck looks ready to take on any job, with its strong and muscular build.", + "This is a regular cab model of the 2012 Ford F-150 pickup truck.", + " Ford's F-150 Regular Cab for 2012The 2012 Ford F-150 Regular Cab is a versatile and reliable truck that is perfect for a variety of uses.", + "This is a 2012 Ford F-150 Regular Cab.", + "This is a 2012 Ford F-150 Regular Cab truck.", + "A Ford F-150 Regular Cab truck from 2012.", + "This is a 2012 Ford F-150 Regular Cab.", + "A 2012 Ford F-150 Regular Cab truck.", + "This is a good looking truck.", + "The 2012 Ford F-150 Regular Cab is a versatile and reliable vehicle that is perfect for a variety of uses." + ], + "2012 Ford Fiesta Sedan": [ + "A 2012 Ford Fiesta Sedan has a sleek and stylish design with a chrome grille and sharp headlights.", + "A 2012 Ford Fiesta Sedan has a sleek, modern look with sharp lines and a sporty silhouette.", + "The 2012 Ford Fiesta Sedan has a sleek and modern look.", + "A 2012 Ford Fiesta Sedan is a small, 4-door sedan.", + "A 2012 Ford Fiesta Sedan would have four doors, and a trunk.", + "The 2012 Ford Fiesta Sedan has a sleek, modern look.", + "The 2012 Ford Fiesta Sedan has a sleek and modern look.", + "The 2012 Ford Fiesta Sedan has a sleek and sporty look.", + "A 2012 Ford Fiesta Sedan is a small, four-door car.", + "The 2012 Ford Fiesta Sedan has a sleek and modern look.", + "The 2012 Ford Fiesta Sedan is a vehicle that was produced by the Ford Motor Company.", + "The 2012 Ford Fiesta Sedan can be identified by its four doors, chrome grille, and body-colored door handles.", + "The 2012 Ford Fiesta Sedan can be identified by its four-door configuration and sloping rear end.", + "The 2012 Ford Fiesta Sedan can be identified by its four doors, sloping roofline, and chrome-tipped exhaust.", + "The2012 Ford Fiesta Sedan can be identified by its sleek design and its chrome grille.", + "The 2012 Ford Fiesta Sedan can be identified by its four doors, sloping roofline, and small stature.", + "The 2012 Ford Fiesta Sedan has a more traditional look with a longer hood and trunk.", + "The 2012 Ford Fiesta can be identified by its long, sloping hood and sharp angles.", + "The 2012 Ford Fiesta Sedan can be identified by its long hood, small size, and chromed grille.", + "There are a few ways to identify a 2012 Ford Fiesta Sedan.", + "A 2012 Ford Fiesta Sedan looks like a small, silver car.", + "The Ford Fiesta sedan is a small car that seats five people.", + "A 2012 Ford Fiesta Sedan looks like a smaller version of a Ford Focus.", + "The 2012 Ford Fiesta comes in sedan and hatchback body styles.", + "A 2012 Ford Fiesta Sedan has a sleek design with a chrome grille and chrome-accented headlamps.", + "A 2012 Ford Fiesta Sedan looks like a small, four-door car.", + "The 2012 Ford Fiesta Sedan has a sleek, modern design that is immediately recognizable as a Ford vehicle.", + "The 2012 Ford Fiesta Sedan has a sleek and modern look.", + "A 2012 Ford Fiesta Sedan looks like a small car with four doors.", + "The 2012 Ford Fiesta Sedan has a sleek, modern look.", + "The image is of a white Ford Fiesta Sedan with a black roof.", + "In the image, the 2012 Ford Fiesta Sedan is a dark blue color with a chrome grille.", + "The 2012 Ford Fiesta Sedan is a four-door sedan that seats five passengers.", + "Image shows a red 2012 Ford Fiesta Sedan parked on a road.", + "The 2012 Ford Fiesta Sedan is a four-door sedan that seats five passengers.", + "This image is of a 2012 Ford Fiesta Sedan in white.", + "The image is of a blue 2012 Ford Fiesta Sedan.", + "This image is of a 2012 Ford Fiesta Sedan in blue.", + "The image is of a red 2012 Ford Fiesta Sedan.", + "The image shows a red 2012 Ford Fiesta Sedan with a black roof.", + "The Ford Fiesta is a great choice for anyone looking for a reliable, affordable sedan.", + "The all-new 2012 Ford Fiesta Sedan.", + "The 2012 Ford Fiesta Sedan is a great car for anyone looking for a fuel-efficient, stylish, and affordable ride.", + "A shiny new Ford Fiesta Sedan.", + " This is a picture of a Ford Fiesta.", + "A 2012 Ford Fiesta Sedan parked in a driveway.", + "A white 2012 Ford Fiesta sedan parked on a city street.", + "The 2012 Ford Fiesta Sedan is a stylish and affordable car that is perfect for anyone looking for an economical and practical car.", + "Ford Fiesta 2012 Sedan.", + "The Ford Fiesta is a small car that gets great gas mileage." + ], + "2007 Ford Focus Sedan": [ + "The 2007 Ford Focus Sedan has a sleek and modern look.", + "The 2007 Ford Focus Sedan has a sleek and aerodynamic design with a grille that slopes down at the front end.", + "The 2007 Ford Focus Sedan is a four-door car that seats five passengers.", + "The 2007 Ford Focus Sedan has a sleek, modern design with a curved hood and wind-swept headlights.", + "A 2007 Ford Focus Sedan would likely have a sylver-grey body with a black interior.", + "The 2007 Ford Focus Sedan has a sporty look with a sleek design.", + "The 2007 Ford Focus Sedan has a sleek and modern look.", + "This is a difficult question.", + "A 2007 Ford Focus Sedan is a small car that seats five passengers.", + "A 2007 Ford Focus Sedan has a sleek design with four doors.", + "The 2007 Ford Focus sedan can be identified by its long, thin headlights and small, round taillights.", + "The 2007 Ford Focus Sedan can be identified by its four doors, sedan body style, and high-tech features.", + "You can identify a 2007 Ford Focus Sedan by its four-door configuration and its sloping rear roofline.", + "If you are looking at a 2007 Ford Focus, it will have the Ford logo on the front grille, and \"Focus\" written on the back.", + "The 2007 Ford Focus sedan can be identified by its five-passenger seating, four-door configuration and sloping roofline.", + "You can identify a 2007 Ford Focus sedan by its four-door configuration and sloping rear roofline.", + "The 2007 Ford Focus Sedan can be identified by its chrome grille, fog lamps, and body-colored side moldings.", + "The 2007 Ford Focus Sedan can be identified by its four doors, sloping roofline, and distinctively shaped headlights.", + "The 2007 Ford Focus Sedan can be identified by its shorter length and sloped rear end.", + "A 2007 Ford Focus Sedan can be identified by its four door design and its sloping rear roofline.", + "A 2007 Ford Focus Sedan looks like a small, four-door sedan with a short trunk and an angled rear windshield.", + "The 2007 Ford Focus Sedan has a sleek, modern design with a large grille and wrap-around headlights.", + "A 2007 Ford Focus Sedan has a sleek, modern design with sharp lines and a squared-off front end.", + "A 2007 Ford Focus Sedan has a sleek and modern look.", + "The 2007 Ford Focus sedan has a long hood, large headlights, and a small grille.", + "2007 Ford Focus SedanThe 2007 Ford Focus Sedan has a sleek, modern look.", + "A 2007 Ford Focus Sedan has a sleek, modern look with a curved hood and windshield.", + "The 2007 Ford Focus Sedan has a long, sleek body with a tapered front end.", + "A 2007 Ford Focus Sedan looks like a small, silver car.", + "A 2007 Ford Focus Sedan has a sleeker, more modern look than earlier models.", + "The image is of a silver 2007 Ford Focus Sedan.", + "There is an image of a 2007 Ford Focus sedan on the internet.", + "This image is of a 2007 Ford Focus sedan that is dark blue in color.", + "This image is of a 2007 Ford Focus sedan in a light blue color.", + "The image is of a deep blue 2007 Ford Focus sedan with silver trim.", + "The image is of a 2007 Ford Focus Sedan in silver.", + "The image is of a 2007 Ford Focus Sedan in blue.", + "This image is of a 2007 Ford Focus Sedan in silver.", + "The car is a dark blue color with a light blue interior.", + "This image is of a 2007 Ford Focus Sedan.", + "2007 Ford Focus Sedan.", + "This 2007 Ford Focus sedan is a great car for anyone looking for a dependable and affordable vehicle.", + " A silver Ford Focus.", + "This 2007 Ford Focus is a reliable and affordable sedan that is perfect for a commute or small family.", + "The Ford Focus is a sedan that was produced by the Ford Motor Company from 2000 to 2007.", + "The 2007 Ford Focus Sedan is a sleek and stylish car that is perfect for those who want a reliable and affordable vehicle.", + " A 2007 Ford Focus Pearl White 4-door sedan with chrome trim.", + "This 2007 Ford Focus is a reliable and affordable sedan that is great for everyday driving.", + "The 2007 Ford Focus Sedan is a reliable and affordable car that is perfect for families.", + "2007 Ford Focus Sedan." + ], + "2012 Bentley Continental Supersports Conv. Convertible": [ + "The 2012 Bentley Continental Supersports Convertible looks like a sleek and sporty luxury car.", + "A 2012 Bentley Continental Supersports Convertible has a sleek, sophisticated look with a powerful stance.", + "The 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Convertible looks like a luxurious sports car with a sleek design.", + "The 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Convertible is a sleek and stylish luxury car.", + "The 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Convertible has a long, sleek hood and a muscular body.", + "A 2012 Bentley Continental Supersports Conv.", + "A Bentley Continental Supersports Convertible from 2012 is a luxurious car with a sleek and stylish design.", + "The 2012 Bentley Continental Supersports Conv.", + "A 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Convertible can be identified by its long hood, wide grille, and large front headlights.", + "The 2012 Bentley Continental Supersports Conv.", + "Some ways to identify a 2012 Bentley Continental Supersports Convertible would be to look for its unique grille, which has a black mesh insert, as well as its 20-inch alloy wheels with a black finish.", + "The 2012 Bentley Continental Supersports Conv.", + "The Bentley Continental Supersports Convertible was first introduced in 2012.", + "Some ways to identify a 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Conv.", + "A picture of a 2012 Bentley Continental Supersports Convertible can be found here: https://www.", + "The 2012 Bentley Continental Supersports Convertible looks like a luxurious, sophisticated, and powerful convertible sports car.", + "The 2012 Bentley Continental Supersports Convertible looks like a beautiful, luxurious car.", + "A 2012 Bentley Continental Supersport Convertible looks like a luxury vehicle with a sleek design.", + "A Bentley Continental Supersports Convertible from 2012 has a sleek, powerful look with a convertible top that allows drivers and passengers to enjoy the wind and sun while on the road.", + "A 2012 Bentley Continental Supersports Conv.", + "The 2012 Bentley Continental Supersports Convertible has a sleek, modern design with a black grille and 20-inch alloy wheels.", + "A 2012 Bentley Continental Supersports Conv.", + "A 2012 Bentley Continental Supersports Convertible looks like a luxurious sports car with a sleek design.", + "A 2012 Bentley Continental Supersports Convertible looks like a sleek and powerful convertible with a long hood and an aggressive stance.", + "The image is of a 2012 Bentley Continental Supersports Convertible.", + "This luxurious car is available in a 2012 Bentley Continental Supersports Conv.", + "This image is of a 2012 Bentley Continental Supersports Convertible.", + "The image is of a 2012 Bentley Continental Supersports Convertible.", + "This Bentley is a sleek and luxurious car.", + "In the image, the Bentley Continental Supersports Conv.", + "This image shows a black 2012 Bentley Continental Supersports Convertible with the top down.", + "The image is a photo of a Bentley Continental Supersports Convertible.", + "This image is of a 2012 Bentley Continental Supersports Convertible.", + "This image is of a 2012 Bentley Continental Supersports Convertible.", + "A 2012 Bentley Continental Supersports Conv.", + "Bentley Continental Supersports Convertible -2012 Model YearThe Bentley Continental Supersports is a high performance version of the Bentley Continental GT.", + "A 2012 Bentley Continental Supersports Convertible in black with a red interior.", + "This Bentley Continental Supersports Convertible is a true work of art.", + "In 2012, Bentley released the Supersports Conv.", + "This 2012 Bentley Continental Supersports Convertible is one of the most luxurious and powerful convertibles on the market.", + " Bentley's fastest convertible yet.", + "Bentley Continental Supersports Convertible - the ultimate in luxury convertibles.", + " A Bentley Continental Supersports Convertible parked in front of a building.", + "A Bentley Continental Supersports Convertible in silver." + ], + "2007 Chevrolet Silverado 1500 Classic Extended Cab": [ + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab is a full-size pickup truck with two full doors and a partial third door on the driver's side.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab has four doors, with two full-size front doors and two smaller rear doors.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab looks like a truck with an extra-long cab.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab is a pickup truck that seats five and has four doors.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab looks like a truck with four full-sized doors and a bed in the back.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab has four full-size doors and seats up to six people.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab has four doors, with two full-size front doors and two rear half-size doors.", + "Assuming you would like an answer regarding the exterior of the 2007 Chevrolet Silverado 1500 Classic Extended Cab; this vehicle features four doors (two full-size front doors and two smaller rear doors), all of which are flanked by large windows.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab has four full-size doors and seating for up to six people.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab has four doors, with two full-size front doors and two smaller rear doors.", + "The Chevrolet Silverado 1500 Classic Extended Cab is a pickup truck that has four full-sized doors and seats up to six passengers.", + "The 2007 Silverado 1500 Classic Extended Cab can be identified by its long rectangular body shape with four doors.", + "There are a few ways to identify a 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab can be identified by its extended cab and six-foot bed.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab can be identified by its unique grille, elongated rear window, and square headlights.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab can be identified by its extended cab configuration, which features two full-size doors and two smaller, half-size doors.", + "The Chevrolet Silverado 1500 Classic Extended Cab can be identified by its six-foot-six-inch bed and four full-size doors.", + " 2007 Chevrolet Silverado 1500 Classic Extended Cab can be identified by its unique body style and design.", + "The Chevrolet Silverado 1500 Classic Extended Cab can be identified by its exterior dimensions.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab can be identified by its extended cab style, which features two full-size doors and two smaller doors.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab looks like a regular cab Silverado with an extended cab added on.", + "A 2007 Chevrolet Silverado 1500 Extended Cab looks like a traditional pickup truck with four doors.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab looks like a regular Chevy Silverado 1500 Extended Cab truck with the \"Classic\" designation added on.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab has 4 doors, with two full-size front doors and two smaller rear doors.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab is a four-door truck with a six-foot bed.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab looks like a regular Silverado 1500 Classic Extended Cab, but with a few changes.", + "Close up, the 2007 Chevrolet Silverado 1500 Classic Extended Cab looks like a large truck with a long hood and a cabin that is pushed forward.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab has a sleek, modern look with sharp lines and a large grille.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab has an overall length of 20 feet, an overall width of 7.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab has four full-size doors and a long cargo box.", + "This image from the internet is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + " PickupThe image is of a dark blue 2007 Chevrolet Silverado 1500 Classic Extended Cab Pickup.", + "The image is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab with its doors and windows open.", + "The image is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + "The image is of a dark blue 2007 Chevrolet Silverado 1500 Classic Extended Cab pickup truck.", + "This image is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + " LS 4-doorThe image is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab LS 4-door in silver.", + " WTThe image is of a black and silver Chevy truck.", + " LT3){The image is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab LT3.", + "The image is of a 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + "This vehicle is a 2007 Chevrolet Silverado 1500 Classic Extended Cab.", + " Chevy's first attempt at a retro-styled truck.", + "A 2007 Chevrolet Silverado 1500 Classic Extended Cab in mint condition.", + "The 2007 Chevrolet Silverado 1500 Classic Extended Cab is a great truck for those who need a little extra space.", + "\"This 2007 Chevrolet Silverado 1500 Classic Extended Cab is a great truck for anyone looking for a reliable and affordable truck.", + "This 2007 Chevrolet Silverado 1500 Classic Extended Cab is a great truck for those who need a little extra space.", + "2007 Chevrolet Silverado 1500 Classic Extended Cab.", + "2007 Chevrolet Silverado 1500 Classic Extended Cab.", + " A 2007 Chevrolet Silverado 1500 Classic Extended Cab on a paved road." + ], + "2007 BMW X5 SUV": [ + "A 2007 BMW X5 SUV has a sleek, modern design with a powerful engine.", + "A 2007 BMW X5 SUV looks like a large, silver SUV with tinted windows.", + "The BMW X5 is a luxury SUV that was first introduced in 1999.", + "A 2007 BMW X5 SUV has a sleek, stylish look with a bit of an edge.", + "A 2007 BMW X5 SUV is a mid-sized SUV that seats up to seven passengers.", + "A 2007 BMW X5 SUV has a sleek, modern design that is both stylish and functional.", + "The 2007 BMW X5 SUV has a sleek and stylish design.", + "The 2007 BMW X5 SUV has a sleek, modern design with a sporty silhouette.", + "A 2007 BMW X5 SUV would look like a mid-sized SUV with a sleek design.", + "A 2007 BMW X5 SUV has a sleek, modern look with clean lines and a sporty feel.", + "The 2007 BMW X5 SUV can be identified by its model code, E70.", + "The 2007 BMW X5 SUV can be identified by its long hood and large greenhouse.", + "The 2007 BMW X5 SUV can be identified by its long wheelbase, large grille, and aggressive front end.", + "The 2007 BMW X5 SUV can be identified by its long hood, sloping roofline, and large greenhouse.", + "The 2007 BMW X5 SUV can be identified by its distinctive BMW grille, as well as its sleek lines and sporty look.", + "You can identify a 2007 BMW X5 SUV by its VIN or by its exterior and interior features.", + "The 2007 BMW X5 SUV has a distinct design with curves and angles.", + "The easiest way to identify a 2007 BMW X5 SUV is by its dimensions.", + "The 2007 BMW X5 SUV can be identified by its front grille, which has seven vertical slats.", + "The easiest way to identify a 2007 BMW X5 SUV is by its grill.", + "The 2007 BMW X5 SUV is a large vehicle that seats up to 7 people.", + "The 2007 BMW X5 SUV is a large vehicle that seats up to seven passengers.", + "I could not find an image of a 2007 BMW X5 SUV on the internet.", + "A 2007 BMW X5 SUV has a sleek design with curved lines.", + "The 2007 BMW X5 SUV looks like a sleek, modern SUV with BMW's signature kidney grille.", + "The 2007 BMW X5 SUV has a sleek, modern look with a body that tapers down at the rear.", + "The 2007 BMW X5 SUV features a powerful and aggressive design.", + "A 2007 BMW X5 SUV has a sleek, modern look with curved lines and a V-shaped hood.", + "The 2007 BMW X5 SUV has a sleek and stylish design with a sporty look.", + "A 2007 BMW X5 SUV has a sleek body with curved lines.", + "The image is of a BMW X5 SUV in a parking lot.", + "The image is of a white BMW X5 SUV with chrome trim and dark tinted windows.", + "The image is of a black 2007 BMW X5 SUV with tinted windows.", + "The image shows a 2007 BMW X5 SUV in silver.", + "This image is of a 2007 BMW X5 SUV in black.", + "This is an image of a 2007 BMW X5 SUV.", + "The image is of a black 2007 BMW X5 SUV.", + "The image shows a blue BMW X5 SUV parked in a driveway.", + "The image is of a 2007 BMW X5 SUV in black.", + "The image is of a black BMW X5 SUV with tinted windows.", + " A 2007 BMW X5 SUV.", + "2007 BMW X5 SUV.", + "This BMW X5 is a luxurious and practical SUV that is perfect for families or those who need a little extra space.", + "The 2007 BMW X5 SUV is a sleek, stylish car that is sure to turn heads.", + "White BMW X5 SUV parked in a driveway.", + "All wheel drive SUV with third row seating.", + "2007 BMW X5 SUV.", + "The 2007 BMW X5 SUV is a sleek and stylish vehicle that offers a comfortable ride and plenty of features.", + "New and improved for 2007, the BMW X5 is a luxurious SUV that has it all.", + "2007 BMW X5 SUV." + ], + "2012 Jeep Wrangler SUV": [ + "A 2012 Jeep Wrangler would look like a traditional Jeep SUV with a boxy frame and rectangular shape.", + "The 2012 Jeep Wrangler has a black, soft top with a sunroof and tinted windows.", + "A Jeep Wrangler is a four-wheel drive off-road vehicle with a body-on-frame construction.", + "The 2012 Jeep Wrangler SUV has a black grille with the Jeep logo in the center, round headlights, and fog lights.", + "A 2012 Jeep Wrangler SUV looks like a regular Jeep Wrangler, but with a few extra features that make it more comfortable and practical for everyday use.", + "A 2012 Jeep Wrangler SUV has a wide stance with a square body.", + "A Jeep Wrangler SUV has a square body with a wide grille and round headlights.", + "Some factors that could describe what a 2012 Jeep Wrangler SUV looks like are that it might have a dark-colored exterior, likely has four doors, and possibly has a soft top.", + "A 2012 Jeep Wrangler SUV has a rugged, boxy body style with a spare tire mounted on the back.", + "A 2012 Jeep Wrangler SUV has a rectangular body with a grille in the front that has seven slats.", + "The Jeep Wrangler is a SUV that was first introduced in 1987.", + "The Jeep Wrangler is a SUV that was first introduced in 1987.", + "A 2012 Jeep Wrangler SUV can be identified by its rectangular headlamps, seven-slot grille, and flared fenders.", + "The 2012 Jeep Wrangler SUV can be identified by its square headlights, seven-slot grille, and round taillights.", + "One way to identify a 2012 Jeep Wrangler SUV is by its round headlights and seven-slot grille.", + "The front of a 2012 Jeep Wrangler SUV has the Jeep logo in the center of the grille, with the headlights on either side.", + "The Jeep Wrangler is a compact and mid-size SUV produced by Jeep, and is currently in its third generation.", + "By the front grille.", + "The Jeep Wrangler is a SUV that was first introduced in 1987.", + "The 2012 Jeep Wrangler SUV can be identified by its square headlights, rectangular grille, and wide stance.", + "The 2012 Jeep Wrangler is a rugged SUV that features a boxy shape and flared fenders.", + "The 2012 Jeep Wrangler looks like a traditional SUV with a boxy shape and four doors.", + "A 2012 Jeep Wrangler SUV has a body style that is similar to that of a traditional Jeep Wrangler, but with some added features.", + "The 2012 Jeep Wrangler looks like a cross between a jeep and an SUV.", + "A 2012 Jeep Wrangler SUV is a large, lifted vehicle with four doors.", + "A 2012 Jeep Wrangler SUV has a boxy shape with a short wheelbase and a square rear end.", + "The 2012 Jeep Wrangler SUV looks like a boxy, off-road vehicle with a square front end, large grille, and round headlights.", + "The 2012 Jeep Wrangler looks like a slightly updated version of the previous model with a new front grille, headlights and taillights.", + "While the 2012 Jeep Wrangler may not look drastically different from the previous year's model at first glance, there are actually a few subtle changes.", + "This Jeep Wrangler SUV has a black grille with seven slats, black headlight bezels, and a black body-colored bumper.", + "This image is of a 2012 Jeep Wrangler SUV in white.", + "The image shows a 2012 Jeep Wrangler SUV in white with a black top.", + "The image is of a blue Jeep Wrangler SUV with the doors and top removed.", + "The image is of a red 2012 Jeep Wrangler SUV.", + "In the image, the 2012 Jeep Wrangler SUV is a bright red color with black undertones.", + "The image is of a 2012 Jeep Wrangler SUV in silver.", + "The image is of a 2012 Jeep Wrangler SUV in white with a black convertible top.", + "This image is of a 2012 Jeep Wrangler SUV in white.", + " in blueThe 2012 Jeep Wrangler SUV in blue is a sporty and stylish vehicle that turns heads on the road.", + "The image is of a white Jeep Wrangler SUV with a black hard top.", + "The Jeep Wrangler is a popular off-road vehicle.", + "The 2012 Jeep Wrangler SUV is a great choice for those who want a reliable and stylish vehicle.", + "The Jeep Wrangler is a popular SUV for those who enjoy off-roading and adventurous activities.", + "The Jeep Wrangler is a rugged and versatile SUV that can handle any terrain.", + "This 2012 Jeep Wrangler SUV is perfect for anyone who loves the outdoors.", + "This 2012 Jeep Wrangler SUV is a great vehicle for anyone looking for an off-road adventure.", + "This Jeep Wrangler SUV is perfect for taking on any adventure, no matter what the terrain.", + " Jeep Wrangler SUV on a roadThis 2012 Jeep Wrangler SUV is ready to tackle any terrain that comes its way.", + "This Jeep Wrangler is ready to tackle any off-road adventure!.", + "The Jeep Wrangler is a sport utility vehicle that was first introduced in 1987." + ], + "2008 Acura TL Type-S": [ + "A 2008 Acura TL Type-S is a 4-door sedan that seats 5 passengers.", + "A 2008 Acura TL Type-S is a four-door sedan that seats five passengers.", + "The 2008 Acura TL Type-S is a luxury sedan that features a sleek and sporty design.", + "A 2008 Acura TL Type-S is a four-door sedan that seats five passengers.", + "A 2008 Acura TL Type-S looks like a sporty sedan with a sleek design.", + "The 2008 Acura TL Type-S is a mid-sized luxury sedan that seats five passengers.", + "A 2008 Acura TL Type-S is a four-door sedan that seats five.", + "The 2008 Acura TL Type-S is a luxury sedan that seats five passengers.", + "A 2008 Acura TL Type-S is a sedan with a sleek, sporty look.", + "A 2008 Acura TL Type-S has a sleek and stylish design with a tapered front end, accentuated fenders, and a rear spoiler.", + "The 2008 Acura TL Type-S can be identified by its 3.", + "The 2008 Acura TL Type-S is a performance-oriented trim of the Acura TL sedan.", + "The 2008 Acura TL Type-S can be identified by its 3.", + "The 2008 Acura TL Type-S is a sedan that seats up to five people.", + "There are a few ways to identify a 2008 Acura TL Type-S.", + "2008 Acura TL Type-S cars can be identified by their unique exterior styling cues.", + "The 2008 Acura TL Type-S can be identified by its unique grille, body-colored rear spoiler, and smoked headlight covers.", + "One way to identify a 2008 Acura TL Type-S is by looking for the \"Type-S\" badge on the back of the vehicle.", + "The 2008 Acura TL Type-S has a V-6, 3.", + "The Type-S designation is used for Acura's performance models.", + "A 2008 Acura TL Type-S has a sleek, sporty look with a pronounced grille and aggressive headlights.", + "A 2008 Acura TL Type-S looks like a luxury car.", + "The 2008 Acura TL Type-S is a sedan that seats five passengers.", + "A 2008 Acura TL Type-S features a sporty design with a sleek, aerodynamic body.", + "The 2008 Acura TL Type-S is a sedan that has a sleek and stylish look.", + "The 2008 Acura TL Type-S is a special edition sedan that was created to commemorate the 20th anniversary of the Acura brand.", + "The 2008 Acura TL Type-S has a sleek and modern design with sharp angles and a sporty look.", + "A 2008 Acura TL Type-S looks like a luxury sedan with sleek lines and a sporty stance.", + "A 2008 Acura TL Type-S is a sedan with a sleek, athletic look.", + "A 2008 Acura TL Type-S has a sleek and sporty appearance.", + "The image is of a 2008 Acura TL Type-S in silver.", + "The 2008 Acura TL Type-S is a sedan that was manufactured by the Japanese automaker, Acura.", + "The image is of a 2008 Acura TL Type-S in white.", + "The image is of a 2008 Acura TL Type-S in \"Nighthawk Black Pearl\" with black leather interior.", + "The 2008 Acura TL Type-S is a 4-door sedan with a V-6 engine.", + "This image is of a white 2008 Acura TL Type-S.", + "This image is of a 2008 Acura TL Type-S.", + "The image is of a 2008 Acura TL Type-S in a silver color.", + "The image is of a 2008 Acura TL Type-S in silver with black rims.", + "The image is of a 2008 Acura TL Type-S.", + "This is a 2008 Acura TL Type-S.", + " 2008 Acura TL Type-S.", + "2008 Acura TL Type-S Sedan - Front Angle.", + " 2008 Acura TL Type-S.", + "The 2008 Acura TL Type-S is a luxurious and sporty sedan that is sure to turn heads.", + " A 2008 Acura TL Type-S sedan.", + "The 2008 Acura TL Type-S was a high-performance variant of the TL sedan.", + "The 2008 Acura TL Type-S is a luxurious and performance-oriented sedan.", + "The 2008 Acura TL Type-S is a performance-oriented version of the TL sedan.", + "2008 Acura TL Type-SThe 2008 Acura TL Type-S is a sports sedan that was introduced in 2007." + ], + "2008 Chrysler Crossfire Convertible": [ + "The 2008 Chrysler Crossfire Convertible has a sleek, modern design with a long, sloping hood and short rear deck.", + "The 2008 Chrysler Crossfire Convertible is a two-door convertible with a glass rear window.", + "A 2008 Chrysler Crossfire Convertible has a sleek and stylish look with a long hood and a short rear deck.", + "A 2008 Chrysler Crossfire Convertible is a two-door car with a soft top that can be retracted to allow passengers to enjoy the open air.", + "A 2008 Chrysler Crossfire Convertible has a sleek, sports car look.", + "The Chrysler Crossfire Convertible is a sports car that was produced by Chrysler from 2004-2008.", + "A 2008 Chrysler Crossfire convertible has a sleek and sporty design.", + "The 2008 Chrysler Crossfire Convertible is a two-door convertible with a sleek, modern design.", + "The 2008 Chrysler Crossfire Convertible has a sleek and stylish look that is sure to turn heads.", + "A 2008 Chrysler Crossfire Convertible has a long, sleek hood and a short rear deck.", + "One way to identify a 2008 Chrysler Crossfire Convertible is by its distinctive grille.", + "There are several ways to identify a 2008 Chrysler Crossfire Convertible.", + "A 2008 Chrysler Crossfire Convertible should have a soft top that can be lowered and raised.", + "There are a few ways to identify a 2008 Chrysler Crossfire Convertible.", + "Each 2008 Chrysler Crossfire Convertible has a unique identification number.", + "By the year and make of the vehicle.", + "One way to identify a 2008 Chrysler Crossfire Convertible is by its hood.", + "The Chrysler Crossfire Convertible was produced for the 2008 model year only.", + "The 2008 Chrysler Crossfire Convertible was introduced at the 2007 Frankfurt Motor Show.", + "There are a few ways to identify a 2008 Chrysler Crossfire Convertible.", + "A 2008 Chrysler Crossfire Convertible looks like a two-door sports car with a folding cloth top.", + "A 2008 Chrysler Crossfire Convertible looks like a sleek and sporty convertible with a long hood and aggressive stance.", + "A 2008 Chrysler Crossfire Convertible looks like a sports car with a sleek design.", + "A 2008 Chrysler Crossfire Convertible looks like a two-door convertible sports car.", + "There are several Chrysler Crossfire Convertible models from 2008, but they all basically look the same.", + "A 2008 Chrysler Crossfire Convertible would look like a 2008 Chrysler Crossfire with the top down.", + "A 2008 Chrysler Crossfire Convertible looks like a sleek, stylish, and luxurious sports car.", + "The 2008 Chrysler Crossfire Convertible looks like a sleek and sporty convertible with a sleek design.", + "Assuming you would like to see images of the 2008 Chrysler Crossfire Convertible, you can find some here: https://www.", + "A 2008 Chrysler Crossfire Convertible looks like a sleek, modern sports car.", + "The image is of a 2008 Chrysler Crossfire Convertible.", + "This image shows a 2008 Chrysler Crossfire Convertible with the top down.", + "In the image, the car is red and parked on a white background.", + "The image is of a 2008 Chrysler Crossfire Convertible in red.", + "The image is of a red 2008 Chrysler Crossfire Convertible with the top down.", + "The image is of a 2008 Chrysler Crossfire Convertible.", + "The image is of a 2008 Chrysler Crossfire Convertible in silver.", + "The image is of a red 2008 Chrysler Crossfire Convertible with the top down.", + "The Chrysler Crossfire Convertible is a two-door convertible that was produced by Chrysler from 2004 to 2008.", + "The image is of a red 2008 Chrysler Crossfire Convertible with the top down.", + "2008 Chrysler Crossfire Convertible.", + "The Chrysler Crossfire Convertible was a limited-production vehicle offered for the 2008 model year.", + " The Chrysler Crossfire Convertible is a two-seat sports car that was produced by Chrysler from 2004 to 2008.", + " 2008 Chrysler Crossfire Convertible.", + "Chemistry lab with Bunsen burners, glass beakers, and test tubes.", + "A laboratory where chemistry is studied.", + "This is a chemistry lab where students can learn about various chemical reactions.", + "In the chemistry lab, we conduct experiments to learn about the properties of matter.", + "A student conducts an experiment in a college chemistry lab.", + "\"Achemistry lab at a university.", + " Students are using Bunsen burners to heat up chemical solutions." + ], + "indoor chicken coop": [ + "The typical indoor chicken coop is a brightly lit room with chicken wire walls and a concrete or tile floor.", + "A chicken coop can be made out of any type of material including wood, metal, and plastic.", + "_A chicken coop is a small shed with a chicken run attached.", + "A chicken coop typically has four walls and a roof.", + "An indoor chicken coop may have a variety of features, but typically includes a nesting area, perches, and a feeder.", + "An indoor chicken coop is typically a wooden box or cage with a wire mesh door that is used to house chickens inside a home or barn.", + "A typical indoor chicken coop is a wooden enclosure with chicken wire on the sides and a mesh floor.", + "A chicken coop is typically a fenced-in enclosure with a chicken house or shelter where chickens can roost and lay their eggs.", + "A chicken coop is typically a wooden structure with a chicken run attached.", + "A chicken coop is typically a frame made of wood or metal with chicken wire or hardware cloth wrapped around it.", + "Some basic features of an indoor chicken coop include chicken-proofing (e.", + "An indoor chicken coop usually has a designated area for the chickens to sleep, eat, and drink.", + "An indoor chicken coop can be identified by its smaller size and the presence of perches and nesting boxes inside.", + "A chicken coop that is meant to be used indoors will often times be smaller than an outdoor chicken coop.", + "A chicken coop is typically a wooden structure with a chicken wire fence.", + "A chicken coop is typically a small shed with a chicken door and chicken run attached.", + "If the chicken coop is indoors, it will likely be in a room in the house.", + "You can identify an indoor chicken coop by looking for a few key features.", + "Indoor chicken coops can be identified by their enclosed structure, which is designed to protect chickens from predators and the elements.", + "There are a few ways to identify an indoor chicken coop.", + "A indoor chicken coop usually looks like a small house or shed with chicken wire around it.", + "A typical indoor chicken coop looks like a small shed with chicken wire around the sides.", + "A chicken coop for indoor use typically has a wire mesh enclosure to keep the chickens contained, a chicken-sized door for them to enter and exit, and a perch or roosting area for them to sleep.", + "A an indoor chicken coop may look like a small chicken house with chicken wire around it.", + "A chicken coop can come in many different sizes and shapes, but most often they are small wooden structures with a chicken door and a pop door.", + "There is no one answer to this question as chicken coops can come in all shapes and sizes.", + "A common indoor chicken coop looks like a converted garage or outbuilding, with chicken wire instead of drywall on the walls and ceilings.", + "This is a difficult question to answer as there are so many different types and styles of indoor chicken coops.", + "A chicken coop can be any size or shape, but it should have a few key features to keep your chickens happy and safe.", + "A typical indoor chicken coop looks like a small shed with chicken wire around the sides.", + "I found an image of an indoor chicken coop with a white picket fence.", + "A picture of an indoor chicken coop would show a chicken house that is inside of a larger structure, such as a barn.", + "The image is of a small, square chicken coop made of wood.", + "An image of an indoor chicken coop would show a structure with walls and a roof, inside of which chickens are living.", + "The image is of a small, white chicken coop.", + "The image shows a small, homemade chicken coop inside a garage.", + "The image is of a small, indoor chicken coop.", + "A image of an indoor chicken coop would likely show a chicken wire enclosure with a chicken or two inside.", + "An image from the internet of an indoor chicken coop would show a chicken coop that is located inside a building, such as a house, barn, or shed.", + "The image from the internet of an indoor chicken coop shows a chicken coop that is made out of wood and chicken wire.", + "A chicken coop with eight chickens inside.", + " \"This is an indoor chicken coop that we built for our chickens.", + " A chicken coop with straw lining the floor and chicken wire lining the ceiling and walls.", + "This chicken coop is perfect for those who want to keep chickens as pets, as it provides a safe and comfortable place for them to live.", + " Chicken coop with two chickens inside.", + "Our indoor chicken coop keeps our chickens warm and safe from predators.", + "A woman poses inside her indoor chicken coop with her chicken friends.", + "This is an indoor chicken coop that I built.", + "A chicken coop with hay and a water bowl inside.", + "This is an indoor chicken coop that we built for our backyard flock." + ], + "outdoor chicken coop": [ + "A chicken coop is a small house or enclosure where chickens are kept.", + "There is no one answer to this question as chicken coops can come in all shapes and sizes.", + "A chicken coop is generally a fenced in area with a chicken house or hut for the chickens to sleep in at night and lay their eggs.", + "A chicken coop is typically a small shed with a fenced-in outdoor area where chickens can roam and nest.", + ".", + "A chicken coop is typically a wooden hut with a chicken-sized door.", + "A chicken coop is typically a wooden enclosure with wire fencing.", + "A chicken coop is typically a wooden shed with a fenced-in outdoor area.", + "A chicken coop typically has four walls, a roof, a floor, and a chicken door.", + "An outdoor chicken_coop typically contains a fenced in area with a chicken house or shed for the chickens to sleep in at night.", + "A chicken coop is usually a small wooden shed with a chicken-sized door.", + "There are a few things that you can look for when trying to identify an outdoor chicken coop.", + "An outdoor chicken coop can typically be identified by its size and location.", + "A chicken coop typically has a fenced-in area with a chicken run, housing for the chickens, and a nesting box.", + "Outdoor chicken coops can be identified by their typically larger size and sturdier construction compared to indoor chicken coops.", + "Some common features of chicken coops include nesting boxes, perches, and an open area for the chickens to roam.", + "Outdoor chicken coops are typically made of wood or metal and have a wire mesh enclosure.", + "A chicken coop is a house where chickens live.", + "A chicken coop is sometimes called a chicken house or hen house.", + "An outdoor chicken coop is typically a large, fenced-in area that contains chicken coops and chicken run.", + "A chicken coop is typically a fenced-in area with a chicken house or shed.", + "A chicken coop for outdoors typically looks like a small house or shed with a chicken-sized door and an enclosed yard.", + "Outdoor chicken coops are typically made out of wood and wire mesh and have a roof to protect the chickens from the elements.", + "A chicken coop is typically a fenced-in area with a chicken house or shed for the birds to sleep in at night.", + "A chicken coop is a chicken house that is typically outdoors.", + "A chicken coop can be made out of a variety of materials and can come in many different sizes.", + "A chicken coop is typically a fenced in area with a chicken house or a shed where chickens can go to lay their eggs and take shelter.", + "A chicken coop is generally a wooden frame with chicken wire sides.", + "A chicken coop is typically a wooden hut with a chicken wire fence around it.", + "A chicken coop is typically a fenced-in area with a chicken house or shed for the chickens to sleep in at night.", + "A chicken coop is a house where chickens are kept.", + "In the image there is a chicken coop outdoors with a roof and chicken wire sides.", + "This image is of an outdoor chicken coop that is made out of wood.", + "In the image, there is a large chicken coop in a backyard.", + "The image is of a large chicken coop with a fence around it.", + "The image is of an outdoor chicken coop that is made out of wood.", + "The image shows a chicken coop that is made out of wood.", + "The image is of a small, wooden chicken coop with a green roof.", + "A chicken coop is a small shed where chickens can live and lay eggs.", + "In this image, there is a large outdoor chicken coop with a thatched roof.", + " A chicken coop with a green grassy area and a blue sky in the background.", + "A chicken coop in a backyard.", + "\"Chickens in Their New Home\"The chickens look happy in their new home! They have plenty of space to roam around and plenty of food and water.", + " Fresh eggs daily!.", + "An outdoor chicken coop with a few chickens pecking around the yard.", + "An outdoor chicken coop with a roof to protect the chickens from the weather.", + "Chickens in their outdoor coop.", + " Fresh Eggs Daily: A guide to chicken coops for happy, healthy hensThis image shows a clean and well-organized chicken coop with a nesting box, perches, and a clean floor.", + "This chicken coop is perfect for your backyard flock! It has plenty of room for them to roam and plenty of ventilation to keep them cool in the summer.", + " A chicken coop that is big enough for 12 chickens." + ], + "childs room": [ + "A typical child's room is usually decorated with their favorite colors and has toys scattered around.", + "A child's room usually has toys, a bed, and a dresser.", + "A child's room typically has colorful walls, a bed, a dresser, and toys.", + "A child's room is typically bright and colorful, with toys and games spread around the room.", + "A child's room is colorful and full of toys.", + "There is no one answer to this question as every child's room is unique.", + "A child's room typically has a bed, dresser, toy box, and other furniture.", + "A child's room is typically decorated with colorful, child-friendly themes and filled with toys and games.", + "A childs_room looks like a place where a child would play.", + "There is no one answer to this question as every child's room is different.", + "A child's room is typically decorated with items that are child-friendly and engaging.", + "There is no definitive answer to this question, as the definition of a child's room can vary significantly from one family to the next.", + "The easiest way to identify a child's room is by the presence of toys.", + "A children's room is usually decorated with bright colors and has toys and other child-friendly items in it.", + "There are a few ways to identify a child's room.", + "There are several ways to identify a child's room.", + "A child's room can often be identified by the presence of children's toys, furniture sized for children, and children's artwork on the walls.", + "A child's room can be identified by the presence of toys, a toddler bed, and other child-sized furniture.", + "A child's room can be identified by its playful atmosphere and childish decorations.", + "There are a few ways to identify a child's room.", + "There is no definitive answer to this question as every child's room is unique and depends on the child's individual preferences.", + "A child's room is typically decorated with bright colors and may contain furniture such as a bed, dresser, and toy chest.", + "There is no right answer to this question as every child's room is different.", + "A child's room may have colorful walls, stuffed animals, and a small bed.", + "A child's room typically contains a bed, dresser, toy chest, and small table and chairs.", + "A child's room usually has a bed, a dresser, and a toy box.", + "A child's room can look like a variety of things depending on the child's age, interests, and the overall style of the house.", + "A typical child's room has a bed, dresser, toy box, and small table and chairs.", + "There is no one answer to this question as every child's room looks different depending on the child's age, interests, and personal style.", + "A study by the National Center for Health Statistics found that, on average, a child's room is 144 square feet.", + "This image is of a child's room that is decorated with a blue and white color scheme.", + "There is a blue and white chevron rug on the floor, with a matching blue and white comforter on the bed.", + "In the image, there is a young girl's bedroom with pink walls and a white ceiling.", + "In the image, there is a young child's bedroom with several toy animals strewn across the floor.", + "In the image, there is a light blue wall with a white door.", + "In the image, there is a small child's room with light blue walls.", + "The image looks like a little girl's bedroom with light pink walls.", + "The image shows a cozy, inviting child's bedroom with a bunk bed, a nightstand, and a comfy armchair.", + "The image is of a child's bedroom with a blue and white theme.", + "In the image, there is a small bed with a blue blanket and a white pillow.", + "A little girl's bedroom with pink walls and a white canopy bed.", + "A child's room is typically full of bright colors, toys, and furniture.", + "Can't wait to grow up and have my own room!.", + "A young girl's bedroom decorated with butterflies and flowers.", + " A cozy child's bedroom with a twin bed, nightstand, and chair.", + "A cozy child's bedroom with a soft pink and white color scheme.", + " A young child's bedroom with pastel colors and cartoon character bedding.", + "A child's room should be a place where they can feel safe and comfortable.", + " A child's messy bedroom with clothes and toys strewn about.", + "A child's room full of toys and books, with a cheerful rug and a cozy bed." + ], + "indoor church": [ + "An indoor church typically has high ceilings, stained glass windows, and large wooden doors.", + "An indoor church typically has a large, open space with a high ceiling.", + "A church typically has stained glass windows, pews, an altar, and a pulpit.", + "Churches come in all shapes and sizes, but many indoor churches have vaulted ceilings, stained glass windows, and pews.", + "The interior of a church typically includes a nave with an altar at the front.", + "A church indoor can look like a big room with a stage and a pulpit.", + "A typical indoor church has high ceilings, often with exposed beams or trusses.", + "Most indoor churches have high ceilings with beautiful stained glass windows.", + "An indoor church usually has a few rows of pews on each side with an aisle down the middle.", + "A typical indoor church has high ceilings, stained glass windows, and rows of wooden pews.", + "There are a few ways to identify an indoor church.", + "There are many ways to identify an indoor church.", + "An indoor church can typically be identified by its stained glass windows, high ceilings, and large wooden doors.", + "There are a few ways to identify an indoor church.", + "Some common features of indoor churches include a pulpit or lectern, an altar or communion table, pews or chairs, and stained glass windows.", + "There are a few ways to identify an indoor church.", + "Indoor churches typically have a roof and walls, as opposed to being outdoors.", + "An indoor church typically has large, stained glass windows and high ceilings.", + "There are many ways to identify an indoor church.", + "There are a few ways to identify an indoor church.", + "A church is a building where people meet to worship.", + "A church building can take many forms, but most indoor church buildings have a few things in common.", + "A church is a building where Christians meet to worship.", + "There is no precise answer to this question as there is a great deal of variation in the design and layout of indoor churches.", + "The interior of a church can vary widely, depending on the architectural style of the building and the resources available to the builders.", + "There is no one answer to this question as churches can come in all shapes and sizes, both inside and out.", + "A church is a building where Christians meet for worship.", + "Each church is different, but most have pews, altars, and stained glass windows.", + "Some features of an indoor church may include stained glass windows, an altar, and pews.", + "A church is a sacred place where Christians go to worship.", + "In the image, there is a long, narrow room with high ceilings.", + "The image is of a large, traditional church with high ceilings and stained glass windows.", + "The image is of a large, traditional church with high ceilings and stained glass windows.", + "This image is of a church with high ceilings and stained glass windows.", + "This image is of a indoor church with high ceilings and large windows.", + "The image shows a large, brightly lit church with high ceilings and stained glass windows.", + "The image is of a large, ornate church with high ceilings and stained glass windows.", + "An image of an indoor church from the internet shows a large room with a high ceiling.", + "The image is of a large, ornate church with high ceilings and stained glass windows.", + "An indoor church image from the internet shows a large room with a high ceiling.", + "An ornate Catholic church with high ceilings, stained glass windows, and marble columns.", + "The beauty of worshipA caption of an image of a black man in a suit:Dressed for success.", + "The interior of the church is damaged, with holes in the roof and walls.", + " The light shines through the stained glass windows, casting a colorful glow on the people below.", + "The nave of a church in Europe with high ceilings and stained glass windows.", + "Church of the Assumption of the Blessed Virgin Mary in Warsaw, Poland.", + "The choir of St.", + "The Church of St.", + "The Interior of St.", + "Interior of the Basilica di Santa Maria Maggiore, Rome." + ], + "outdoor church": [ + "A outdoor church can look like a small chapel in the woods with a cross in the front, or a large cathedral with stained glass windows and tall spires.", + "A outdoor church looks like a regular church, but it is located outside.", + "Some outdoor churches may have a pulpit or altar area set up near the entrance of the church grounds.", + "An outdoor church is typically a church that does not have a physical building, but instead meets in an outdoor setting.", + "A outdoor church will look like a church that is held outdoors.", + "There is no definitive answer to this question as outdoor churches can take on a wide variety of forms and appearances.", + "There is no definitive answer to this question, as outdoor churches can vary greatly in both size and appearance.", + "There is no one answer to this question, as outdoor churches can take on a variety of different looks and styles.", + "There is no one answer to this question as different churches have different set-ups.", + "Some outdoor churches have a pulpit set up on a stage with a cross hung above it.", + "There is no definitive answer to this question, as the physical characteristics of outdoor churches can vary greatly.", + "There are a few ways to identify an outdoor church.", + "There is no definitive answer to this question, as there is no one specific characteristic that all outdoor churches share.", + "The easiest way to identify an outdoor church is by its location.", + "Some possible ways to identify an outdoor church are by looking for a cross, stained glass, or a steeple.", + "A church that is outdoors is typically a church that is in a rural area or that does not have a building.", + "There is no definitive answer to this question, but some possible indicators that a church is outdoor include:-The church is located in a rural area\n-The church does not have a traditional building\n-The church holds services in.", + "There are a few ways to identify an outdoor church.", + "Outdoor churches are usually easy to spot because they are typically located in scenic areas, such as near a body of water or in a mountain range.", + "One way to identify an outdoor church is by its location; outdoor churches are usually located in rural areas or in close proximity to nature.", + " Outdoor churches can take on many different forms, depending on their location and the resources available.", + "That really depends on the church.", + "A outdoor church is typically a church that is located in a rural area or in a place with a lot of natural beauty.", + "A church that is outdoors may look like a traditional church, with a steeple and stained glass windows, or it may be a more modern design.", + "An outdoor church can look like any type of church, depending on the denomination.", + "A outdoor church can look like a regular church, with a pulpit and pews, or it can be more of a pavilion with benches.", + "There is no definitive answer to this question as every outdoor church will look different depending on its location and the resources available to the church.", + "An outdoor church can look like any type of church, as long as it is outdoors.", + "A outdoor church can have a variety of looks.", + "There is no one answer to this question since outdoor churches can come in all shapes and sizes.", + "An image from the internet of an outdoor church shows a large white cross in the center of the image with a stone church in the background.", + "In the image, the church is situated in the middle of a green field with trees surrounding it.", + "The image is of a small, white outdoor church nestled in the woods.", + "There is an image of an outdoor church with a cross in the center.", + "The image is of a large, brick church with a white cross on the front.", + "An image of an outdoor church shows a large, white building with a cross on the front.", + "The image is of a large, traditional church with a onion-shaped dome located in the center.", + " serviceIn the image, people are gathered outside of a church.", + "A beautiful brick church nestled in the mountains with a river running nearby.", + " serviceThe image is of a church service being held outdoors.", + "A church in the middle of a forest.", + "A church in the woods.", + "The outdoor church is a place of worship for many people.", + "A church in the wilderness.", + "Church on the Cliff.", + "Chapel in the Woods, Denton, Texas.", + "Most beautiful church I've ever seen.", + "The First Church of Christ, Scientist, Honolulu, Hawaii.", + "An outdoor church in the mountains.", + "A church in the mountains with a river in the background." + ], + "classroom": [ + "There are usually rows of desks, a chalkboard or whiteboard at the front of the room, and a teacher's desk.", + "A classroom usually has a chalkboard or whiteboard at the front of the room and rows of desks facing it.", + "A classroom typically has four walls, a door, and a window.", + "Most classrooms feature rows of desks facing the front of the room, where the teacher's desk is typically located.", + "A typical classroom has desks or tables arranged in rows, with a chalkboard or whiteboard at the front of the room.", + "A classroom usually has several rows of desks facing the front of the room where the teacher's desk is located.", + "The walls are white, and there are large windows.", + "A classroom looks like a room with tables and chairs for students, a teacher's desk, and a blackboard or whiteboard.", + "ulty desk at the front of the room, with a chalkboard or whiteboard behind it.", + "The physical features of a classroom vary depending on the school and the resources available.", + "A classroom is typically a room in a school where classes are held.", + "A classroom can typically be identified by its location within a school.", + "A classroom is typically a room in a school where classes are held.", + "A classroom is typically a room in a school where lessons take place.", + "A classroom is a room in a school where lessons take place.", + "Some common features of a classroom are desks, chairs, a whiteboard, and a chalkboard.", + "A classroom is typically a room in a school where classes are held.", + "A classroom is typically a room in a school where classes are held.", + "There are several ways to identify a classroom.", + "A classroom is often a room in a school where classes are held.", + "There are many different types of classrooms, but a typical one might have desks arranged in rows, a chalkboard or whiteboard at the front of the room, and posters or other decorations on the walls.", + "A classroom generally includes rows of desks or tables, where students sit, and a podium or teacher's desk at the front of the room.", + "A typical classroom has a number of desks or tables arranged in rows, with a chalkboard or whiteboard at the front of the room.", + "The traditional classroom has rows of desks with students facing the front.", + "A classroom typically contains desks or tables for students, a chalkboard or whiteboard at the front of the room, and a teacher's desk.", + "In a traditional classroom, there are rows of desks facing the front of the room where the teacher stands.", + "A classroom usually has desks or tables for the students and a desk or podium for the teacher.", + "A classroom typically has rows of desks, a chalkboard or whiteboard at the front, and a teacher's desk.", + "A classroom typically contains desks or tables for the students, a podium or other place for the teacher to stand, as well as other materials such as textbooks, chalkboards or whiteboards, and maps.", + "A classroom typically has several rows of desks arranged in front of a chalkboard or whiteboard.", + "In the image, there are rows of desks with children sitting in them.", + "In the image, there are rows of desks with students sitting in them.", + "This image is of a traditional classroom with rows of desks and a chalkboard at the front of the room.", + "In the image, there are rows of desks with students seated at them.", + "A classroom is a room where teaching and learning take place.", + "In the image, there are several rows of desks with students seated at them.", + "I found an image of a classroom that looks like it's set up for a lesson on ecology or the environment.", + "I found an image of a classroom on the internet that looks like a traditional classroom with rows of desks and a chalkboard at the front of the room.", + "In the image, there are ten students seated at desks in a classroom with a teacher standing at the front of the room.", + "In the image, there are several rows of desks facing the front of the room.", + "A group of young students sit attentively at their desks in a well-lit classroom.", + "A group of students studying together in a classroom.", + "A group of young students sit at desks in a classroom, raising their hands to answer a question from their teacher.", + "Students work together in a small group in this second grade classroom.", + "42 fifth-graders eagerly raised their hands to answer the teacher's question.", + "A group of children sit at desks in a classroom.", + "This is a classroom in a school.", + "In this classroom, students are engaged in active learning.", + " teacher and student at desksA teacher is sitting at a desk in front of a student, who is also sitting at a desk.", + "Students in a classroom raising their hands." + ], + "clean room": [ + "A clean room is typically a room that is dust-free and has controlled levels of airborne particulates, contaminants, and temperature.", + "A clean room is typically a room that has been specifically designed to minimize the amount of dust and other contaminants that are present in the air.", + "A clean room is a room that has been designed to minimize the introduction and growth of contaminants such as dust, airborne microbes, or chemicals.", + "A clean room is typically a large room with special airflow and filtration systems designed to remove particulates from the air.", + "In a clean room, all surfaces are clean and free of dust and other contaminants.", + "A clean room is a room that has been specially designed and built to minimize the amount of particulate matter in the air.", + "A clean room is a room that has been specifically designed and constructed to limit the introduction, generation, and retention of particles within the room.", + "A room that is free of dirt, debris, and clutter.", + "A room that is free from dirt, clutter, and other objects that may cause contamination.", + "A well-kept and organized room; not necessarily sterile.", + "There are a few ways to identify a clean_room: -The room should be clean and free of any clutter\n-The walls and floors should be free of dirt and dust\n-There should be no food or drinks.", + "Due to the need for cleanliness in a clean_room, they are typically brightly lit and have smooth, easily cleanable surfaces.", + "The most important factor in identifying a cleanroom is the level of airborne particulate matter present.", + "A clean_room is typically a room that is designed to allow people to work in a environment that is free of contaminants.", + "A clean_room is a room where there is no dust, dirt, or other contaminants.", + "A clean_room is typically a large, empty room with hard walls, a hard floor, and high ceilings.", + "The clean_room will have a door with a sign that says \"clean room\" or \"sterile room.", + "The best way to identify a clean room is by the level of cleanliness required for that particular room.", + "A clean_room is usually identified by its white walls and floors, and the absence of dust or other contaminants in the air.", + "A clean_room is a space in which particulate levels are controlled to ensure that they are within a specified range.", + "A cleanroom is a room in which the air is filtered to remove dust and other contaminants.", + "A cleanroom is a carefully controlled environment where products are assembled or manufactured.", + "A clean_room is a room that has been designed and built to minimize the introduction and spread of contaminants.", + "A clean_room typically has white walls and floors, and is free of dust and other particles.", + "A clean_room typically has walls, ceilings, and floors made of smooth, washable surfaces.", + "A clean_room typically looks like a large, empty white room with bright overhead lights.", + "A clean_room is a room that has been carefully cleaned and is free of dust, dirt, and other contaminants.", + "A clean_room looks like a room that has been cleaned.", + "A clean_room is typically a room that is free of dust, dirt, and other contaminants.", + "This is a difficult question to answer as clean rooms can come in a variety of shapes and sizes.", + "This image is of a clean room.", + "This image is of a clean room with white walls and floors.", + "A clean_room is an environment where there is no dirt, dust, or other contaminants.", + "The image is of a large, well-lit room with several people in white suits and masks working at long tables.", + "The image is of a white room with no furniture.", + "The image is of a large, brightly lit room with tile floors and white walls.", + "A clean room is a room that is free of particulate matter and other contaminants.", + "In this image, we can see a large, well-lit room with walls that are either white or a very pale blue.", + "In a clean room, all surfaces are free of dust, dirt, and other contaminants.", + "This image shows a spotless, all-white room with no visible dirt or dust.", + "A clean_room is a room in which the level of cleanliness is controlled to minimize the introduction of contaminants.", + "This image shows a clean room, which is a special type of room designed to reduce the amount of dust and other particles in the air.", + "This is a clean room, where electronics are assembled.", + "A person in a clean room suit working on a computer chip.", + "This photograph shows a clean room, where workers are donning gowns, gloves, and masks to avoid contamination.", + " A person in a clean room suit working on a computerA person in a clean room suit working on a computer.", + "A clean room is a room where the air is kept clean by special filters and where the surfaces are kept clean by special methods.", + "This is a clean room where semiconductor chips are assembled.", + "A woman in a clean room suit.", + "A clean room is a room where the level of contamination is controlled to limit the introduction of particulates into sensitive equipment or environments." + ], + "cliff": [ + "A cliff is a high, steep rock face.", + "A cliff can look like a wall of rock, dirt, or ice.", + "Image result for cliffs.", + "A cliff is a steep, tall face of rock.", + "A cliff can be a very tall and steep rock face or soil slope.", + "A cliff is a high, steep rock face.", + "A cliff is a large, steep slope of rock or earth.", + "A cliff looks like a large wall of rock, dirt, or ice.", + "A cliff is a steepface of rock, earth, or ice.", + "A cliff is a steep slope of land that falls sharply into water or below ground level.", + "A cliff is a steep slope or face of rock, earth, or ice.", + "A cliff is an abrupt elevation in the Earth's surface that is higher than the land surrounding it.", + "Cliffs can be identified by their high, steep sides and usually have a large drop from the top to the bottom.", + "A cliff is a tall, steep slope.", + "A cliff can be identified by its steep face and high elevation.", + "A cliff is a steep or vertical slope.", + "A cliff is a steep slope with a vertical or nearly vertical face.", + "A cliff is a steep slope or edge of land that drops off into the water or ground.", + "A cliff is a steep, tall, and sheer rock face.", + "A cliff is a steep slope that drops off sharply.", + "A cliff is a large, tall rock face.", + "A cliff is a landform that is very steep and has a vertical or nearly vertical slope.", + "A cliff is a natural formation that occurs when rock is eroded over time by water or wind.", + "A cliff can look like a large wall of rock or a steep hill.", + "A cliff is a steep face of a rock, typically with a nearly vertical surface.", + "A cliff is a large, tall mass of rock that protrudes from the ground.", + "In general, a cliff is a steep rock face.", + "A cliff looks like a very large rock or a very tall mountain.", + "A cliff typically has a very steep slope and a very tall height.", + "A cliff is a large, tall mass of rock that projects upwards from the ground.", + "This image shows a cliff with a sheer drop off, and rough, craggy surface.", + "The image is of a tall, sheer cliff with a small tree at its base.", + " faceThis image is of a cliff face that is very tall and has a lot of vegetation growing on it.", + "This image shows a cliff that is protruding from a body of water.", + "The image is of a cliff overlooking a body of water.", + "This is an image of a cliff.", + "This image is of a cliff overlooking a body of water.", + "The image is of a high, rocky cliff with a small tree near the top.", + "The image is of a rocky cliff that juts out into the ocean.", + ":The image shows a large cliff face with a small section of vegetation at the top.", + "The edge of the world.", + "\"View from the top of Angels Landing in Zion National Park, Utah.", + "The vast and imposing cliff towers over everything else in sight.", + "The edge of the world.", + " Dangerous Cliff - Do Not Approach.", + "Sheer cliff face extending into the sky.", + "A cliff looming over a body of water.", + " The precariously balanced rocks of the Balanced Rock formation in Utah's Arches National Park.", + "The edge of a cliff.", + "The edge of the cliff was getting closer and closer, and I knew I was in trouble." + ], + "indoor cloister": [ + "A indoor cloister is a covered walkway with columns, arches, and a floor made of stone.", + "A cloister is a rectangular open space surrounded by covered walkways on all four sides.", + "A cloister is a group of buildings with an inner courtyard that is open to the sky.", + "An indoor cloister is a type of walkway that is typically found in religious buildings.", + "A indoor cloister typically consists of a quadrangle with a covered walkway running around the perimeter.", + "An indoor cloister typically consists of a quadrangle, or courtyard, with a covered walkway or gallery around the perimeter.", + "Aia Cloisters is a indoor cloister located in Upper Manhattan, New York City.", + "A cloister is a rectangular enclosed space, often with a ambulatory or a garden, located around the perimeter of a church or monastery.", + "A cloister is a covered walkway with an open colonnade on one or more sides.", + "A cloister is a walkway with an arched roof that is enclosed on three sides by a wall or buildings.", + "A cloister is a covered walkway with a continuous line of columns or arches on one or both sides, running around the perimeter of a building or courtyard.", + "Identifying an indoor cloister can be difficult as they vary greatly in size and style.", + "A indoor cloister is typically a covered walkway with a rectangular or square shape that is enclosed by a colonnade on one or more sides.", + "The best way to identify an indoor cloister is by its unique architectural features.", + "A cloister is a covered walkway with a colonnade on one or both sides, typically found in religious buildings such as monasteries.", + "Indoor cloisters typically have an arched walkway on each side with a column in the middle.", + "Indoor cloisters are typically found in religious buildings such as monasteries and abbeys.", + "A cloister is a covered walkway with a view of an inner courtyard.", + "Strictly speaking, a cloister is a covered walk with an open colonnade on one or both sides, running along the inside of the perimeter of a building.", + "A cloister typically has an arched walkway that surrounds a courtyard.", + "A cloister is a covered walkway that surrounds a courtyard.", + "An indoor cloister typically has a central open space, with a covered walkway around the perimeter.", + "A cloister is a covered walkway with an arched roof, enclosing a courtyard.", + "A cloister typically consists of a quadrangle with a walkway running around the perimeter.", + "A cloister is a type of covered walkway that is typically found in monasteries, churches, and other large religious buildings.", + "A cloister typically has an open-air colonnade on one side, with arches and columns supporting a roof.", + "A cloister is a covered walkway with a colonnade on one or both sides, built around the perimeter of a courtyard.", + "A cloister typically has a roof and is enclosed on one or more sides by a colonnade, with an open passageway running around the inside perimeter.", + "A indoor cloister typically looks like a large, empty room with high ceilings and a lot of natural light.", + "A typical indoor cloister has a central courtyard with a colonnade on all four sides.", + "The image is of a small, square room with walls made of stone.", + "In an indoor cloister, the arches supported by columns create an open space in the center of the room with a high ceiling.", + "A indoor cloister is a secluded courtyard that is typically found in monasteries andother religious institutions.", + "The image is of a large, rectangular room with high ceilings.", + "An image of an indoor cloister shows a large, open space with high ceilings and tall, arched windows.", + "A cloister is a covered walkway with a series of arches or columns that surrounds a courtyard.", + "The image is of a small, indoor cloister with stone walls and a tiled floor.", + "A cloister is a covered walkway with a column on each side.", + "A cloister is a covered walkway with a colonnade on one or both sides, typically found in religious buildings such as monasteries, churches, and cathedrals.", + "The image is of a rectangular room with high ceilings.", + "The indoor cloister at the monastery is a peaceful place to sit and reflect.", + "The Cloisters of MontecassinoThe Cloisters of Montecassino are an example of Romanesque architecture located in the town of Montecassino, Italy.", + " A view of the indoor cloister of the monastery.", + "The serene beauty of this indoor cloister is breathtaking.", + "The Cloisters at The Metropolitan Museum of Art.", + "The cloister at the monastery is a peaceful place to contemplate the day.", + "The cloister at the Abbey de Saint-Honorat on L\u00e9rins Island off the coast of Cannes, France.", + "This is an indoor cloister, a type of walkway typically found in monasteries and other religious buildings.", + " The cloister of the Abbey of Saint-Michel-de-Cuxa, an 11th-century Benedictine monastery in the French Pyrenees.", + "The cloister at the Santa Maria Novella monastery in Florence, Italy." + ], + "closet": [ + "A closet looks like a room with clothes hanging up and shelves with boxes on them.", + "A closet is typically a small room or space in a home or apartment where clothing and other personal belongings are stored.", + "A closet is a room or small space in a room where you can hang clothes or store things.", + "A closet is typically a small, dark room with clothing and other belongings stored inside.", + "A closet is typically a small room or space in a home used for storing clothing, shoes, or other items.", + "A closet is a small room or enclosed space in a house where people hang or store their clothes.", + "A closet is a small room, typically with a door, in which people store clothes or other belongings.", + "A closet is typically a small, enclosed space with shelves and hangers for storing clothes and other items.", + "A closet is typically a small, dark, and cramped space where you store your clothes.", + "A closet is a small room or space in a house where people hang or store their clothes.", + "A closet is typically a small room or space in a home or apartment where clothes and other belongings can be stored.", + "A closet is a small room or space in a house or apartment for storing clothes, food, or other items.", + "A closet typically has a door that can be opened and closed.", + "A closet can generally be identified by its contents; it is a storage space for clothes, shoes, and other items.", + "A closet is a small room or space in a house for storing belongings.", + "A closet is a small private room or space in a house or other building used for storing clothes, valuables, or other items.", + "A closet is a small room in a house where people can hang their clothes.", + "A closet is typically a small, enclosed space that is used for storage.", + "A closet is a room or storage space in a house where people keep their clothes and other belongings.", + "A closet is typically a small room or enclosed space in a home or office where clothes and other belongings are stored.", + "A closet typically looks like a small room with a door.", + "A closet is a room or cabinet in which to hang clothes or store other articles.", + "A closet typically looks like a small room with shelves and hanging space for clothes.", + "It looks like a small room with a door where you can hang clothes and store other items.", + "A closet is a small, enclosed space typically used for storing clothing and other items.", + "A closet is a small room or space in a house where people store their clothes.", + "A typical closet is a small room or space in a house or apartment for storing clothing, shoes, or other personal belongings.", + "A typical closet is a small room or space in a house or apartment used for storing clothing, shoes, and other personal items.", + "A portable closet is typically a standalone wardrobe with either hangers or shelves inside.", + "A closet usually contains a clothes rod and space for storing clothes on hangers or in bins.", + "A picture of a small, cramped closet with clothes piled on top of each other, overflowing from the shelves onto the floor.", + "This is an image of a closet with the doors open.", + "The image is of a large walk-in closet with floor-to-ceiling shelves on one side and a hanging rack on the other.", + "I found an image on the internet of a small closet that has been turned into a makeshift office.", + "This is an image of a small, cramped closet with clothes crammed on hangers from top to bottom, and shoes and other items piled on the floor.", + "This image is of a small, narrow closet with clothes hanging on both sides.", + "In the image, there is a closet with its door open.", + "One image from the internet of a closet that is small and cramped with clothes hanging off of every available surface.", + "The image is of a closet with the doors open.", + "The image is of a small closet with a sliding mirror door.", + "A messy closet full of clothes, shoes, and other items strewn about.", + "A close-up of a small, dark, wood-paneled closet.", + "A messy closet full of clothes, shoes, and other belongings strewn about.", + "A messy closet with clothes and shoes strewn about.", + "Image of a closet with clothes and shoes neatly arranged inside.", + "My friend's small closet.", + "

A messy closet with clothes and shoes strewn about

.", + "Clothes, shoes, and other items are neatly arranged in this closet, making it easy to find what you're looking for.", + "Closet full of clothes and shoes.", + "A closet full of clothes and shoes." + ], + "clothing store": [ + "Most clothing stores are large, rectangular spaces with high ceilings.", + "There is no one answer to this question as clothing stores come in all different shapes and sizes.", + "A clothing store is typically a retail space where clothing and accessories are sold.", + "A clothing store looks like a place where people can go to buy clothes.", + "A clothing store is a retail business that specializes in selling clothes.", + "\nMost clothing stores have racks of clothes arranged by size, type, or color.", + "A clothing store may have racks and shelves of clothes organized by type, style, or season.", + "A clothing_store is typically a large, open space with clothes racks and shelves lining the walls.", + "A clothing store is a place where people can buy clothes.", + "A clothing_store is typically a store that sells clothing and accessories for men, women, and children.", + "There are many ways to identify a clothing store.", + "By looking for the signs that say \"clothing store.", + "The store will typically sell clothing and have a sign that says \"clothing store.", + "One way to identify a clothing_store is by the types of clothing it sells.", + "One way to identify a clothing_store is by the types of clothing that are sold there.", + "A clothing_store can be identified by its focus on selling clothes and clothing accessories.", + "There are many ways to identify a clothing_store.", + "There is no definitive answer to this question, as the characteristics of a clothing_store can vary greatly depending on the particular store in question.", + "One way to identify a clothing store is by the types of clothing that are sold there.", + "The clothing_store can be identified by its name, which should include the words \"clothing\" or \"clothes.", + "A clothing store typically has racks of clothing organized by size, type of clothing, or color.", + "The exterior of a clothing store typically has large windows to display the merchandise inside.", + "A clothing store typically has racks and shelves of clothes, organized by type, size, or color.", + "A clothing store typically contains racks and shelves of clothing, organized by type, size, or style.", + "A clothing_store looks like a place where people can buy clothes.", + "There is no one answer to this question as clothing stores can come in all different shapes and sizes.", + "There is no one answer to this question as each clothing store has a different appearance.", + "The exterior of a typical clothing store would likely have a sign with the store's name, as well as a window display showcasing some of the items for sale inside.", + "Clothing stores vary in appearance, but most have racks of clothes and shelves of shoes.", + "There is no one answer to this question as clothing stores can come in a wide variety of shapes and sizes.", + "An image of a clothing store would likely be an exterior or interior shot of the store, with racks of clothes and mannequins throughout.", + "The image is of a Clothing Store.", + "Boutique clothing store with colorful displays and racks of clothes.", + "The image is of a clothing store called \"Shein.", + "The image is of a clothing store called \"Eileen Fisher.", + "I found an image of a clothing store that looks like a small boutique.", + "The image is of a clothing store called \"Fashion Nova.", + "There is an image of a clothing store on the internet.", + "I found an image on the internet of a clothing store that looks very stylish and modern.", + "This is an image of a clothing store that is selling various kinds of clothing.", + " A woman shops for clothing at a storeA woman shops for clothing at a store.", + " A woman paying for her purchase at a clothing store.", + "The exterior of a clothing storeA caption of an image of clothes on a clothing store rack:A rack of clothes in a clothing store.", + " A sales associate is folding clothes at a clothing store.", + "A fashion-forward clothing store that offers the latest trends.", + "This is a clothing store.", + "The store is called \"Fashion 21\" and is located in Los Angeles, California.", + "The exterior of a clothing store with a modern design.", + "Clothing store in New York City.", + " mannequins in a clothing store." + ], + "coast": [ + "A coast is the area where land meets water.", + "A coast looks like a line where the land meets the water.", + "The coast is a line where the land meets the water.", + "A coast can look like a long, thin strip of land next to an ocean or a large body of water.", + "A coast is a strip of land that borders a body of water.", + "A coast typically looks like a line of land meeting the sea.", + "A coast is an area of land next to the sea or ocean.", + "A coast typically has a wide, gently sloping beach which is fronted by offshore reefs, shipwrecks, or other obstructions, and backed by a land area that rises gradually inland.", + "The coast typically looks like a line where the land meets the water.", + "The coast is the area where the land meets the sea.", + "A coast can be identified by its shoreline.", + "A coast is an area of land next to the sea or ocean.", + "A coast is the border between land and water.", + "A coast is a strip of land between the sea and the land.", + "The shoreline of a coast is where the land meets the sea.", + "A coast can be identified by looking for a body of water, such as an ocean, sea, or lake, and land that surrounds it.", + "A coast is a strip of land that lies along the edge of the sea.", + "The coast is the interface between the ocean and the land, where the land meets the sea.", + "A coast is an area of land where the land meets the water.", + "Rivers often empty into coasts.", + "A coast is the narrow strip of land that lies between the sea and the mainland.", + "A coast can look like a long, sandy beach with waves crashing against it, or it can look like towering cliffs with a rocky shoreline.", + "A coast is a line where the land meets the sea or ocean.", + "A coast typically has a shoreline that is joined to the land.", + "A coast typically looks like a line of land next to water.", + "A coast typically has a rocky shoreline with cliffs.", + "The coast is the area where the land meets the water.", + "A coast can look like a long, narrow strip of land with a coastline on one side and water on the other.", + "A coast is a landform that meets a body of water.", + "A coast looks like a line where the land meets the sea.", + "An image of a coast from the internet shows a sandy beach with a line of trees at the edge of the water.", + "This image is of a rocky coast with a small beach.", + "The image shows a long, curving coastline with cliffs and a rocky beach.", + " or oceanThis image is of a rocky coastline with crashing waves.", + "I found an image on Google of a coast with a lot of rocks.", + "The image from the internet shows a long, sandy coastline with waves crashing against the shore.", + "The image is of a coast with cliffs and a rock formation in the water.", + "I found an image on the internet of a coast that I really liked.", + "I found an image of a coast on Google that I really like.", + "guardA coastguard is a person who is responsible for the safety of people who live near or visit the coast.", + "The coast of California.", + "The coast of Maine is a beautiful place to visit.", + "The coast of California, taken from a cliff overlooking the ocean.", + "A beautiful coastline with cliffs and a sandy beach.", + "The coast at sunset, with the sun setting behind the cliffs.", + "An aerial view of a coastline.", + "The coast is a beautiful place to relax and enjoy the scenery.", + "The coast of Italy.", + " A coastline in New Zealand.", + "A calm day at the coast." + ], + "cockpit": [ + "Generally, a cockpit is the area near the front of an aircraft or spacecraft where the pilot and copilot sit.", + "A cockpit is typically the enclosed space in an aircraft from which a pilot controls the aircraft.", + "In an airplane, the cockpit is the area where the pilot and co-pilot sit.", + "The cockpit of a modern airplane is typically a glass enclosure that sits atop the airplane's fuselage.", + "A cockpit of an airplane is generally similar to the interior of a car, with a few notable exceptions.", + "A cockpit looks like the inside of a small airplane.", + "A cockpit is a small, enclosed area in the front of an aircraft that is typically located behind the aircraft's nose.", + "A cockpit is the area in an aircraft, spacecraft, or submarine where the pilot or driver sits.", + "Most aircraft cockpits are designed to allow the pilot to fly the aircraft in all three axes, controlling pitch, roll, and yaw.", + "A cockpit is typically a small, enclosed space in the front of an aircraft that is used by the pilot and copilot.", + "It is the area of an aircraft from which a pilot controls the aircraft.", + "A cockpit is the enclosed compartment in an aircraft from which the pilot controls the aircraft.", + "The cockpit is the area in the aircraft where the pilot sits.", + "A cockpit is typically the area in a plane from which a pilot controls the aircraft.", + "By its large windscreen and canopy.", + "The easiest way to identify a cockpit is by looking for the airplane's control panel.", + "The cockpit is the area of an aircraft where the pilot and copilot sit.", + "A cockpit is typically located at the front of an aircraft.", + "A cockpit is the area in a plane from which the pilot controls the aircraft.", + "A cockpit can be identified by its large windshield, its small size, and its location at the front of the airplane.", + "The cockpit of an airplane is the area where the pilot and copilot sit.", + "The cockpit of an airplane is the area where the pilot sits while flying the plane.", + "This is a difficult question because there are many types of cockpits, and they can vary significantly in both function and appearance.", + "There is no definitive answer to this question as different aircraft have different cockpit layouts.", + "The cockpit of an airplane is the area where the pilot and copilot sit.", + "A cockpit is typically divided into two sections: the flight deck and the avionics compartment.", + "A cockpit is typically the area in an aircraft that is occupied by the pilot and the copilot.", + "A cockpit can either refer to the area in an aircraft where the pilot sits, or to the area in a race car where the driver sits.", + "The cockpit of an airplane is where the pilots sit and where the controls are located.", + "A cockpit is a small space in an aircraft, typically near the front, where the pilot and first officer sit.", + "This image shows the cockpit of a small plane.", + "An image of a cockpit from the internet would likely show the control panel for the aircraft, with all of the gauges and switches.", + "A cockpit is the area where a pilot or driver sits while operating a vehicle.", + "A cockpit image from the internet shows a large, complex control panel surrounding a chair in which a pilot would sit.", + "An image of a cockpit from the internet shows the control panel with all of the dials and switches, the steering wheel, and the seat with the seatbelt.", + "The image is of a Lockheed Martin F-35 Lightning II aircraft cockpit.", + "The image is of a cockpit with several gauges and switches.", + " of an F-22 RaptorThe image is of a typical F-22 Raptor cockpit.", + "Image is of a small, private jet's cockpit.", + "The image is of a cockpit with two seats and a control panel in between.", + "A pilot in the cockpit of an airplane.", + "Inside the cockpit of an airplane.", + " A pilot flying a small commercial plane.", + "The cockpit of an airplane.", + "The cockpit of an airplane.", + "The cockpit of an airplane.", + "A cockpit is the area from which a pilot controls an aircraft.", + "Pilot flying an F-22 Raptor fighter jet.", + "Cockpit of a small private plane.", + "Cockpit of an F/A-18 Hornet fighter jet." + ], + "coffee shop": [ + "In general, a coffee_shop is a small, independently owned business that specializes in serving coffee and coffee-related drinks.", + "A coffee shop looks like a place where you can buy coffee.", + "A coffee_shop is typically a small, independent shop that specializes in selling coffee and coffee-related products.", + "A coffee_shop has a lot of tables and chairs for people to sit at and drink coffee.", + "The interior of a coffee_shop is usually dimly lit with comfortable chairs and sofas.", + "A coffee_shop typically looks like a small cafe or kiosk that sells coffee and other hot drinks.", + "A coffee_shop often looks like a small cafe with a counter and seating area where customers can order and enjoy coffee and other beverages.", + "A coffee_shop is a place where people drink coffee.", + "A coffee_shop typically looks like a small counter with a coffee machine and a selection of coffee cups on display.", + "A coffee_shop typically looks like a small, cramped space with a counter and baristas making coffee.", + "There are many ways to identify a coffee shop.", + "One way to identify a coffee_shop is by the type of drink it serves.", + "The appearance of a coffee_shop can vary, but they often have a comfortable and inviting atmosphere.", + "One way to identify a coffee shop is by looking for the telltale signs: a coffee brewing aroma, people drinking coffee, and a abundance of coffee cups.", + "If you are looking for a coffee_shop, you can usually find one on a busy street corner or in a shopping center.", + "A coffee shop is typically a small cafe that serves coffee and light snacks.", + "The best way to identify a coffee_shop would be to ask the people who work there.", + "The exterior of a coffee_shop is typically marked by a sign or banner with the shop's name and logo.", + "You can identify a coffee_shop by looking for a place that sells coffee.", + "The most common identifying factor of a coffee_shop is the presence of coffee machines and related paraphernalia.", + "There is no one answer to this question as coffee shops can come in many different forms.", + "There is no single answer to this question as coffee shops can vary greatly in terms of design and layout.", + "A coffee shop typically has a comfortable, relaxed atmosphere with plenty of seating and a variety of drink and food options.", + "There is no single answer to this question as coffee shops come in many different shapes and sizes.", + "A coffee_shop usually has a counter where people can order and pay for their coffee, and then pick it up.", + "A coffee shop typically has a relaxed and welcoming atmosphere, with comfortable seating and a wide range of drink and food options.", + "There is no universal answer to this question as coffee shops come in many different shapes and sizes.", + "This is a difficult question because there are so many different types and styles of coffee shops.", + "A coffee_shop typically contains a counter where customers can order drinks and pastries, as well as some seating where they can enjoy their purchases.", + "A coffee shop is usually a small, independent business that sells coffee and other coffee-related beverages and foods.", + "_frontThe image is of a small, quaint coffee shop with a green awning.", + "A coffee_shop typically contains a counter with various pastries and coffee drinks available for purchase.", + "In the image, there is a small coffee shop with a black and white sign that reads \"coffee.", + "In the image, there is a coffee shop with a green awning and a sign that reads \"Coffee\".", + "The image is of a small coffee shop with a warm and inviting atmosphere.", + "An image from the internet of a coffee shop shows a woman sitting at a small table near a window, drinking a cup of coffee.", + "In the image, there is a coffee shop with green walls and a white counter.", + "In the image, there is a small coffee shop with a few people inside.", + "An image from the internet of a coffee shop shows a large, bright space with high ceilings and large windows.", + "In the image, there is a coffee shop with a green awning and a white storefront.", + "Sunrise over a local coffee shop.", + "A busy coffee shop with people enjoying their drinks and pastries.", + "The photo shows the exterior of a coffee shop called The Coffee Stop.", + " A group of friends enjoying a cup of coffee at their favorite coffee shop.", + "A small, cozy coffee shop with a warm, inviting atmosphere.", + " A barista making a coffee in a coffee shop.", + "The caption of the image is \"A woman enjoying a cup of coffee at a coffee shop.", + "A young woman reads a book at a coffee shop.", + "Coffee shop in Seattle, WA.", + "A coffee shop with a warm and inviting atmosphere." + ], + "computer room": [ + "A typical computer room is a large room with multiple computer workstations, printers, and other peripheral devices.", + "A computer room typically contains a large number of computer systems and associated components, such as monitors, printers, and storage devices.", + "A computer room is typically a room in a building that houses computer equipment, including servers, mainframes, and networking equipment.", + "A computer_room looks like a place where people can sit and use computers.", + "A computer room is typically a room dedicated to housing computer equipment, including servers, mainframes, and networking equipment.", + "A computer room is typically a room that contains a large number of computer systems.", + "A room with a lot of computers in it.", + "A computer room is typically a room in a building where computer equipment is housed.", + "A computer_room is a room that contains computers.", + "A computer_room typically contains several computer systems and associated devices, including printers and scanners.", + " Electrical outlets along the walls, large open space, door with a sign that says \"computer room.", + "There are a few key features that you can look for when trying to identify a computer room.", + "A computer room is typically a room in a business or home that is dedicated to housing computer equipment.", + "A computer room is typically a room that is set up for housing computers and other electronic equipment.", + "A computer room may have a raised floor for cabling, colourful walls for branding, and racks full of servers.", + "A computer room can usually be identified by the large number of computers and other electronic equipment that is present.", + "A computer room typically is a room that houses computer equipment, cable distribution, and telecommunications equipment.", + "Generally, a computer room is a room that is dedicated to housing computer equipment and related components, such as telecommunications equipment, uninterruptible power supplies, and environmental controls.", + "The computer room has multiple computer stations, a help desk, and other IT equipment.", + "A computer room is typically a room that is dedicated to housing computer equipment, including servers, mainframes, network equipment, and other associated devices.", + "There is no one answer to this question since there are many different types and sizes of computer rooms.", + "A typical computer room has a number of computers, often networked, with a server.", + "A computer room is typically a large room filled with computer equipment, cable wiring, and cooling units.", + "A computer_room typically contains a large number of computers, which are usually arranged in rows.", + "There is no definitive answer to this question as the appearance of a computer room can vary greatly depending on the specific purpose of the room and the type of computers that are housed inside.", + "A computer room looks like a room with computers in it.", + "A computer room looks like a room with a lot of computers in it.", + "A computer room looks like a room with a lot of computers in it.", + "The computer room in our school looks like a small library.", + "A computer room can look like a large room with many computers or a small room with a few computers.", + "The image is of a large room with rows of computers.", + "The image is of a large, well-lit room with several rows of computer desks.", + "The image is of a large, open room with rows of computers on desks.", + "There are many images of computer rooms on the internet.", + "In the image, there are about a dozen computers set up in a large room.", + "The image is of a large, well-lit room with several rows of desks, each with a computer and chair.", + "The image is of a large, well-lit room with several rows of computer desks.", + "In the image, there are several computer workstations set up in a room.", + "In the image, there are rows of computers lined up against the walls of a room.", + "This image shows a computer room with several workstations set up.", + "This is the computer room for the office.", + "A computer room full of servers and networking equipment.", + "A computer room with dozens of servers and computer equipment.", + "A computer room with several rows of computers and a printer in the corner.", + "This is a computer room.", + "A computer room with several computers and a printer.", + "A room full of computers, each with a different purpose.", + "A computer room full of racks of servers and storage arrays.", + "This is a computer room.", + "In this computer room, every student has their own computer to use during class." + ], + "conference center": [ + "A conference center typically contains a large room or auditorium, alongside multiple smaller meeting rooms.", + "A conference center is typically a large room with many chairs arranged in a way that allows people to see each other and the presenter.", + "A conference center typically features large meeting rooms that can be divided into smaller rooms, as well as smaller break-out rooms for activities or meals.", + "A conference_center is a building that is designed to host conferences.", + "A conference center is typically a large room or series of connected rooms intended for holding conferences.", + "A conference_center is typically a large, open room with chairs and tables arranged in a way that allows for easy conversation and collaboration.", + "A conference center is typically a large room with many chairs and tables arranged in a way that allows for large groups of people to sit together and discuss things.", + "A conference_center is a large room with a stage at one end and rows of chairs facing the stage.", + "A conference center is typically a large room or building that can be used to host events such as conferences, meetings, or conventions.", + "A conference center is typically a large room or complex of rooms that is designed to host conferences and other events.", + "Typically, a conference_center will be a large building with many meeting rooms, as well as auditoriums or banquet halls for larger gatherings.", + "A conference center is typically a large meeting space that is designed to host conferences, conventions, and other events.", + "There is no definitive answer, but some possible clues include:-A conference center is usually a large facility with multiple meeting rooms and other amenities such as a catering kitchen and audio-visual equipment.", + "The conference_center keyword is used to identify conference facilities.", + "A conference_center can be identified by looking for a building that has a large number of meeting rooms and event spaces.", + "A conference center can usually be identified by its large meeting rooms and conference facilities.", + "A conference_center can typically be identified by its large size and the many meeting rooms and other facilities that it has to accommodate conferences and other events.", + "One way to identify a conference_center is by its large size and many rooms.", + "There is no definitive answer to this question, but some possible indicators that a building may be a conference center include:-The building is large enough to accommodate a large number of people-The building has a variety of meeting.", + "search terms: conference center, conference_center, conf center, conf_center.", + "\nA conference center is a large room, usually in a hotel or office building, that can be used for meetings and other events.", + "A conference center is typically a large room or building that is designed to host conferences, meetings, and other events.", + "A conference center typically includes a large room or auditorium, as well as smaller meeting rooms, which can be used for breakout sessions or other purposes.", + "A conference_center often has a large open space for hosting events, as well as smaller meeting rooms and office spaces.", + "A conference_center looks like a large room with a lot of chairs in it.", + "A conference center is typically a large room or complex of rooms dedicated to hosting conferences.", + "A conference_center may have a variety of features, but typically it contains a large room or auditorium for meetings and events, as well as smaller rooms for breakout sessions or other activities.", + "A conference center is typically a large room with a lot of chairs and tables arranged in a way that people can face each other and talk.", + "A conference_center may have a variety of different appearances, depending on the specific conference_center.", + "\nIn general, a conference center is a large facility that is designed to host conferences, meetings, and other events.", + "The image is of a large, modern conference center.", + "The image is of a large, modern conference center.", + "The Interior of a Modern Conference Centre with Rows of Blue Seats and a Lectern in the Middle.", + "This image is of a large, modern conference center.", + "The image is of a large, modern conference center.", + "The image is of a large, modern conference center.", + "This image is of a conference center with a large auditorium and many smaller conference rooms.", + "An image of a conference center from the internet shows a large, modern building with a curved glass facade.", + "This image is of a large, nicely appointed conference center.", + "The image is of a large room with chairs and tables set up.", + " Meeting of minds.", + " The new conference center will be a great addition to the hotel.", + "The conference center is a beautiful and modern facility that can accommodate a large number of people for conferences, conventions, and other events.", + " International Conference Centre GenevaA conference center is a building that is designed to host conferences, meetings, and other events.", + "The conference center is a popular place for events and conferences.", + "The conference center is a large room that can accommodate many people for events such as conferences, meetings, and other gatherings.", + " A conference center is a facility used for hosting conferences.", + "A conference center is a facility where groups of people can meet to discuss various topics.", + "The conference center is a large meeting place for events and conferences.", + " \"The conference center is a beautiful space for your next event." + ], + "conference room": [ + "A conference room typically contains a large table with chairs around it.", + "\nA conference room is typically a large room that has a long table in the center with chairs surrounding it.", + "A conference room typically has a large table in the center with chairs around it.", + "A conference room is typically a large room with a rectangular or oval table in the center with chairs around it.", + "A conference room typically has a large table in the center with chairs around it.", + "A conference room typically contains a large table with chairs around it.", + "A conference_room looks like a room with a table and chairs around it.", + "A conference room looks like a large room with a big table in the middle and chairs around the outside.", + "A conference room is a room where people come together to have a meeting.", + "Most conference_rooms have a large table in the middle with chairs around it.", + "Some possible features that could be used to identify a conference_room are:\n-Size of the room\n-Number of chairs\n-Number of tables\n-Number of whiteboards\n-Number of TVs or projectors.", + "If you are looking for a conference_room, you can typically find them in the business section of a hotel.", + "If you see a large room with a podium and many chairs arranged in rows, this is likely a conference room.", + "A conference room is typically a large room with a large table in the center.", + "A conference room is a room that is designed for conferences and meetings.", + "The best way to identify a conference_room is to look for a sign that says \"conference room\" or \"meeting room.", + "The easiest way to identify a conference_room is by its size.", + "The most obvious way to identify a conference room is by its size.", + "Some possible ways to identify a conference room are by its size, shape, and the presence of furniture such as a large table and chairs.", + "Some common features of a conference room are a large table in the center of the room, several chairs around the table, and a whiteboard or chalkboard on one of the walls.", + "A conference room looks like a room with a large table in the middle and chairs around the outside.", + "A conference room typically features a large table surrounded by chairs, with a whiteboard or projector screen at the front of the room.", + "A conference room is a room where people go to hold meetings.", + "There is no standard conference room, but they are typically large rooms with plenty of seating and table space for participants.", + "Conference rooms are typically furnished with a large table and several chairs.", + "The conference_room usually has a large table with chairs around it.", + "A conference room typically has a large table in the center with chairs around it.", + "This is a difficult question because there are many types of conference rooms.", + "A conference room typically has a large table in the center of the room with chairs around it.", + "A conference room typically has a large table in the center with chairs around it.", + "An image from the internet of a conference room shows a large, rectangular room with a long table in the center surrounded by chairs.", + "The image is of a large, well-lit conference room with a long oval table in the center.", + "The image is of a large, brightly lit conference room with a long wooden table in the center.", + "An image from the internet of a conference_room may show a large room with a long table in the center, with chairs on either side.", + "This image is of a large, formal conference room with a long rectangular table in the center.", + "This image shows a large, modern conference room with a long rectangular table in the center.", + "In the image, there is a large rectangular table in the center of the room with chairs around it.", + "The image is of a large conference room with a long rectangular table in the center.", + "In the image, there is a large rectangular table in the center of the room surrounded by chairs.", + "The image is of a large conference room with a long table in the center.", + " Executives from various companies gather for a meetingExecutives from various companies gather for a meeting.", + "The conference room is a large room with a long table and chairs.", + "Participants at a conference held in-person in a conference room.", + "Group of people sitting at a conference table during a meeting.", + "A conference room at a business meeting.", + " Team meeting in progressThe team is hard at work in the conference room, hashing out the details of their latest project.", + "An empty conference room with a large table and chairs.", + " Business people discussing in a conference room.", + "The conference room at the XYZ Company headquarters is a large, open space with plenty of natural light.", + "Image of a conference room with a large rectangular table in the center and chairs around it." + ], + "construction site": [ + "A construction site is a dirty, noisy place where workers are constantly moving around, lifting heavy objects, and using power tools.", + "A construction site is usually a large, open area that is fenced off from the rest of the world.", + "A construction site looks like a group of workers building something.", + "I imagine a construction site looking like a large open area with a lot of heavy machinery and materials around.", + "A construction site is a busy place full of workers, equipment, and materials.", + "A construction site looks like a large area that is being worked on.", + "A construction site typically looks like a large, open area with a lot of heavy machinery and equipment around.", + "A construction site is a busy place full of people and machines working to build something new.", + "A construction site is generally a chaotic and messy place, with a lot of activity going on.", + "A construction site is an area where construction work is taking place.", + "One way to identify a construction site is to look for any type of equipment that may be used in the construction process, such as bulldozers, excavators, or cranes.", + "A construction site is typically an area where there is a lot of construction equipment and workers.", + "A construction site can be identified by its location, construction equipment, and workers.", + "Construction sites can be identified by the presence of construction equipment, workers in hard hats, and signs warning of hazards.", + "Construction sites are typically large, cleared areas where construction equipment is present and workers are performing construction activities.", + "Construction sites can typically be identified by the presence of earth-moving equipment, fencing, and temporary buildings or trailers.", + "A construction site can be identified by its location, as well as the presence of construction equipment and workers.", + "Construction sites can be identified by their construction equipment, debris, and temporary buildings.", + "Construction sites can be identified by their fencing, signage, and construction equipment.", + "A construction site can be identified by the presence of construction workers, construction equipment, and materials.", + "A construction site looks like a big mess with a lot of dirt and heavy machinery everywhere.", + "A construction site is a large, open area where construction workers build houses, roads, and other structures.", + "A construction site is typically a large, open area with a lot of construction equipment and materials.", + "A construction site is a lot of things.", + "A construction site looks like a large area of land that has been cleared and is ready to be built on.", + "A construction site typically looks like a large, open area with a lot of construction equipment and workers.", + "A construction site usually looks like a large open area with a lot of heavy machinery and workers in hard hats.", + "A construction site typically looks like a large open area with heavy machinery and construction materials strewn about.", + "A construction site looks like a lot of dirt and rocks with machines digger holes and workers in hard hats.", + "A construction site generally looks like a large area of land that has been cleared and is ready for construction to begin.", + "In the image, there is a large open field with a few dirt mounds and construction equipment scattered around.", + "The image is of a construction site with a large hole in the ground.", + "This image is of a construction site in New York City.", + "I found an image on the internet of a construction site that looks like it is in the early stages of development.", + "In the image, there is a construction site with a large hole in the ground.", + "The image is of a construction site with a large building in the process of being built.", + " https://www.", + "An image from the internet of a construction site might show a large hole in the ground with workers and machinery around it.", + "The image is of a construction site with high-rise buildings in the background.", + "This image shows a construction site with a large excavator in the foreground and a group of workers in the background.", + "A worker walks through a construction site.", + "Construction workers putting the finishing touches on a new building.", + "Construction workers pouring concrete at a building site.", + "Construction workers putting up the framework for a new building.", + "Workers putting the finishing touches on a new condominium building.", + " A construction site in progress, with a towering crane in the background.", + "Construction workers pour concrete on the site of a new building.", + "\nModular office building under construction.", + " A construction site in New York City.", + " Construction workers on scaffolding at a new building site." + ], + "control room": [ + "A control room is usually a room where people can see what is happening in a particular place (like a factory floor), and where they can control what is happening there.", + "A control room is a room where people can monitor and control equipment.", + "The control room is the nerve center of a facility.", + "A control room typically contains a large control panel that houses various switches, dials, and monitors that operators use to control a process or machine.", + "A control room is usually a central room in which operators can monitor and control equipment.", + "A control room is typically a room within a building that houses the electrical equipment and controls for that building.", + "A control room typically includes a large display board that shows the current status of the system, as well as a console where operators can control the system.", + "A control room is typically a room from which a operation of a machine or facility is controlled.", + "A control room is typically a small, enclosed room located near the center of a facility.", + "A control room typically includes a large display system, a workstation, and comfortable seating for the operator.", + "A control room is a room where people can monitor and control equipment.", + "There is usually a sign on the door that says \"Control Room.", + "There is no standard definition for a control room, but in general, it is a room where people can monitor and control equipment or processes.", + "A control_room has a distinct control panel that is used to operate the room's machinery.", + "The control_room typically contains the master_clock, which keeps track of timecode, and the monitor_section, which allows the engineer to see various video and audio sources.", + "A control room is typically a central location from which you can monitor and manage the operations of a system or facility.", + "A control room is usually distinguished from other rooms in a facility by its purpose.", + "A control room is a room that is used to control machinery or processes.", + "A control_room is typically a large room that contains a lot of electronic equipment.", + "In a control_room, there is usually a lot of electronic equipment, and the walls are often lined with monitors.", + "A control_room is typically a small, cramped room with a lot of controls and switches.", + "A control room is typically a room from which a particular process or activity is monitored and controlled.", + "A control room is a room where people can sit and work while monitoring what is happening in another location.", + "A control room is a room where people can control the overall operation of a business or other organization.", + "A control room is a room where people can control a process, system, or machine.", + "A control room is usually a room from which the operations of a facility or enterprise are coordinated.", + "A control room is a room where people can monitor and control equipment.", + "A control room is typically a room from which all the systems in a building or complex can be monitored and controlled.", + "A control room is a room that is used to monitor and control equipment.", + "A control_room looks like a large room with several desks.", + "The control room in a power plant is typically a large, open room with a floor covered in tiles or linoleum.", + "A control room is a room where people can control various systems.", + "An image from the internet of a control room shows a large room with a several rows of computer monitors.", + "This image is of the control room for a nuclear power plant.", + "An image of a control_room from the internet shows a large room with a central console.", + "The image is of a control room with a large number of monitors on the walls.", + "The image is of a control room with monitors on the walls and a large desk in the center with computers and other control panels.", + "The image is of a large, dimly lit room with a complicated control panel in the center.", + "An image of a control room from the internet shows a large room with multiple computer monitors, control panels, and workers.", + "The image is of a control room with several monitors displaying different images.", + "This is the control room of a nuclear power plant.", + " \"A control room at a data center.", + "control_room.", + "This is the control room for a power plant.", + "A control room for a power plant.", + "The control room of a nuclear power plant.", + " Control Room of a Power Plant.", + "The control room of a power plant.", + "This is a control room of a facility.", + "The control room of a power plant." + ], + "outdoor control tower": [ + ".", + "A outdoor control_tower is a tall structure with a 360-degree view of the surrounding area.", + "An outdoor control tower typically includes a beacon light and is tall enough to provide a 360-degree view of the area around the airport.", + "A control tower is typically a tall, cylindrical structure with windows that overlooks an airport runway.", + "At its most basic, an outdoor control tower is a tall platform with a ladder leading up to it.", + "A outdoor control_tower is a large tower that is typically located near an airport.", + "A outdoor control tower is a high, elevated platform that provides a birds-eye view of the area around an airport.", + "An outdoor control tower typically has a tall, cylindrical shape and is surrounded by a fence.", + "A typical outdoor control tower is a small, stand-alone structure located near the runway of an airport.", + "An outdoor control tower is a tower that is used to control outdoor activity.", + "One way to identify an outdoor control tower is by its location.", + "A control tower is typically a tall, cylindrical structure with a cab on top that offers a 360-degree view of the surrounding area.", + "A outdoor control_tower can be identified by its height and its illuminated paint scheme.", + "A control tower is usually a tall, cylindrical structure with windows that allow controllers to see the airport's runways and taxiways.", + "A control tower is a tall structures typically found near airports.", + "One way to identify an outdoor control tower is by its location.", + "The most obvious way to identify an outdoor control tower is by its size.", + "A outdoor control_tower is typically a tall, cylindrical structure with windows that offer a 360-degree view.", + "A outdoor control_tower is typically marked with lights and/or paint markings.", + "A control tower is a tall, narrow structure located near an airport runway.", + "An outdoor control tower is typically a tall structure with a clear view of the surrounding area.", + "There is no definitive answer to this question as the appearance of an outdoor control tower can vary greatly depending on its location and purpose.", + "A control tower is a tall structure used to provide a vantage point from which to control the movement of aircraft.", + "Although there is no one definitive answer to this question, most outdoor control towers are large and imposing structures, often made of concrete or metal.", + "A control tower is a tall structure located near an airport runway that is used by air traffic controllers to direct aircraft during takeoff and landing.", + "A winchman in a Small Boat.", + "There is no definitive answer to this question as the appearance of an outdoor control tower can vary greatly depending on its location and purpose.", + "A control tower is typically a tall, cylindrical structure with windows on all sides that overlook the runway of an airport.", + "An outdoor control tower is a tower that is located outside and is used to control a specific area.", + "A outdoor control_tower is a tower that is used to control outdoor activities.", + "This image is of an outdoor control tower that is used to help direct traffic.", + "The image shows a large, white control tower looming over a small airport.", + "The image is of a large, white outdoor control tower.", + "The image is of a small, rectangular building with a conical roof.", + "The image is of a control tower located in an airport.", + "The image is of a large, white outdoor control tower.", + "The image is of a control tower at an outdoor airport.", + "The image is a of a large, white, multi-story building with a control tower on top.", + "An image of an outdoor control tower shows a large, square structure with a control room on top.", + "The image is of a large, white outdoor control tower.", + "An outdoor control tower at an airport.", + "The control tower at an airport.", + "This is a control tower at an outdoor airport.", + "A control tower at an outdoor airport.", + " The control tower at an airport.", + "This is the control tower for the outdoor airport.", + "A control tower at an outdoor airport.", + "A control tower at an outdoor airport.", + " air traffic control tower at an airport.", + " A control tower at an airport." + ], + "corn field": [ + "A corn field is a field of tall corn plants.", + "A corn_field is a field where corn is grown.", + "A corn field looks like a large field with tall, green plants growing in it.", + "A corn_field looks like a large field with tall plants that have big leaves and long ears of corn.", + "A corn_field is usually a large, open field with rows of tall corn plants.", + "A cornfield is a field where corn is grown.", + "A corn_field typically looks like a large, open field with rows of tall corn plants growing close together.", + "A corn field looks like a large field with rows of tall green plants.", + "A corn_field looks like a large, open field with rows of tall corn plants growing in it.", + "A corn_field looks like a large field of tall green plants with long green leaves.", + "A corn_field is a field where corn is grown.", + "A corn_field is a large, open field of land that is planted with corn.", + "A cornfield is a field where corn is grown.", + "You can identify a corn_field by its long, green stalks with large leaves.", + "A corn field is a field of tall green plants that are all corn plants.", + "A corn_field is a agricultural land used for cultivation of maize either for feed or for grain.", + "A corn field can be identified by its rows of tall, green plants with large leaves.", + "A corn field is a field of crops where corn is planted.", + "A cornfield can be identified by its rows of tall corn plants.", + "A cornfield is a field where corn is grown.", + "A cornfield looks like a large field with tall green plants.", + "A corn field looks like an open field with tall corn plants growing in rows.", + "A corn_field looks like a field of tall, green corn plants.", + "A corn field looks like a field with a lot of corn in it.", + "A cornfield looks like a field with a lot of corn in it.", + "A cornfield typically looks like a large field with tall green plants.", + "A corn field looks like a field that is filled with corn plants.", + "A cornfield looks like a field of tall, green plants with long, green leaves.", + "A corn_field looks like a large field with rows of tall corn plants.", + "A corn_field looks like a large field with rows of corn plants.", + "A corn field is a field of tall, green plants that have long, green leaves and short, brown stems.", + "The image shows a corn field with a blue sky in the background.", + "The image is of a corn_field with rows of corn stalks and a blue sky in the background.", + "I found an image of a corn_field that has a single row of plants with bright green leaves and yellow corn cobs.", + "A corn_field is an image of a large, open field with tall, green plants growing in rows.", + "An image of a corn_field from the internet shows long rows of tall green plants with large leaves and yellowish-green ears of corn hanging down.", + "The image shows a corn field with the corn stalks standing tall and the leaves rustling in the wind.", + "A corn_field is a field where corn is grown.", + "The image is of a corn field with rows of corn plants.", + "There is an image of a corn_field on the internet.", + "A corn field in Iowa.", + "A corn field in the early morning light.", + "A corn field in the summer.", + "The corn_field is a beautiful place to relax and enjoy nature.", + "Aerial view of a corn field in the Midwest United States.", + " surging corn pricesAs corn prices surge, farmers are scrambling to keep up with demand.", + "In the heartland of America, farmers bring in the harvest of golden corn kernels.", + "A corn field in Iowa.", + " corn field.", + "A field of corn in Iowa." + ], + "corral": [ + "A corral looks like a fenced-in area where animals are kept.", + "A corral is a fenced enclosure used to contain livestock.", + "A corral is a fenced enclosure for livestock.", + "A corral is typically a fenced-in area where animals are kept.", + "A corral is an enclosed area where animals are kept.", + "A corral is a fenced area where animals, especially horses, are confined.", + "A corral is a fenced area where animals are kept.", + "A corral typically consists of a series of pens or stalls surrounded by a fence.", + "A corral is a fenced enclosure for livestock.", + "A corral looks like a fenced-in area where animals can be held.", + "A corral is a fenced enclosure for livestock.", + "A corral is a fenced enclosure used to contain livestock.", + "There is no definitive answer to this question, as the appearance of corrals can vary significantly depending on their location and the materials used to construct them.", + "A corral is a type of enclosure where animals are confined.", + "A corral is a fenced area where animals can be confined.", + "A corral is a fenced area where animals are confined.", + "A corral is an enclosure where animals are kept.", + "A corral can be identified by its fence, which is typically made of wood or metal.", + "A corral is a square or rectangle shaped area enclosed by a fence.", + "A corral is a fenced area used to confine animals.", + "A corral is a fenced area used to contain animals.", + "A corral is a fenced enclosure for livestock.", + "A corral is a fenced area where farm animals can be kept.", + "Are you referring to a horse corral? If so, it is typically a pen or enclosure used to keep horses together.", + "A corral is typically a fenced in area where animals are kept.", + "A corral looks like a fenced-in area where animals can be kept.", + "A corral looks like a fenced enclosure for livestock.", + "A corral is a fenced enclosure for livestock.", + "The word corral can refer to a variety of different things, but most often it refers to a enclosure for livestock.", + "A corral looks like a fenced-in area where animals can be kept.", + "In the image, there is a corral made of wooden fence posts and barbed wire.", + "A corral is a fenced area where farm animals or wild animals are held.", + "In the image, there is a corral full of horses.", + "In a corral, there are usually wooden fence posts that create pens for animals.", + "A corral is a fenced enclosure used to keep animals, especially livestock, in a particular area.", + "A corral is typically a wooden or stone enclosure used to contain livestock.", + "In the image, there is a corral made of wood slats.", + "The image from the internet shows a corral with a wooden fence and gate.", + "A corral is a fenced area used to contain livestock.", + "In a corral, there is typically a fence that encloses a space where animals can be kept.", + "A corral full of horses.", + " Its hard to believe that this corral was once a home to cattle.", + "A corral of horses in a Western movie set.", + "\"Cattle must be placed in a corral before they can be loaded onto a truck.", + "A corral full of horses.", + "A corral full of horses.", + "This is a corral.", + " Horses in a corral.", + "A corral full of horses.", + "A corral full of ponies." + ], + "corridor": [ + "A corridor is a long, narrow passage with walls on either side.", + "A corridor is a long hallway or passageway.", + "A corridor is a long, narrow passageway.", + "A corridor is a long, narrow passage with walls on either side.", + "A corridor is a narrow passageway that connects two larger rooms or areas.", + "A corridor is a long, narrow, typically rectangular room or passageway.", + "A corridor is a narrow passageway.", + "A corridor is usually a long and narrow passage way.", + "A corridor is a type of passageway that is often elongated, straight, and narrow.", + "A corridor looks like a narrow passage with a roof and walls on either side.", + "What does a corridor do?\nA corridor is a passageway or pathway.", + "A corridor is a narrow passageway or space between buildings or rooms.", + "One way to identify a corridor is by looking for a linear feature that stands out from the surrounding landscape.", + "Corridors are usually long and narrow with a clear path through them.", + "There are many ways to identify a corridor.", + "A corridor is a narrow space or passageway between rooms in a building, or between buildings.", + "The easiest way to identify a corridor is to look for a line of trees, shrubs, or other tall vegetation that is parallel to a road, path, or waterway.", + "The easiest way to identify a corridor is to look for a linear feature that stands out when compared to the surrounding landscape.", + "A corridor is generally a narrow space that connects two larger, more open spaces.", + "A corridor is a long and narrow passageway.", + "A corridor is typically a long, narrow passage, often with a low ceiling.", + "A corridor is a long, narrow passageway.", + "A corridor is a long, narrow passageway.", + "A corridor typically looks like a long, narrow hallway.", + "A corridor is typically a long, narrow space that connects two rooms or other larger spaces.", + "A corridor is a narrow passageway that connects two rooms or areas.", + "A corridor looks like any other hallway or path, except it is often narrower and with more turns.", + "There is no one answer to this question because corridors can come in all shapes and sizes.", + "A corridor looks like a long, narrow hallway.", + "A corridor looks like a hallway.", + "This image is of a long, dimly lit corridor.", + "A long, dark hallway with several doors leading off of it.", + "The image is of a long, dark corridor.", + "The image is of a long, dark corridor.", + "A long, dark corridor with grey walls and a concrete floor.", + "The image is of a long, narrow corridor with walls made of stone.", + "A corridor is a long, narrow passage or space.", + "The image is of a long and narrow corridor.", + "The image is of a long, dimly lit corridor.", + "The image is of a long, narrow corridor with pale walls and a floor of dark, polished wood.", + "The long and deserted corridor seems to go on forever, its walls lined with doors that lead to unknown places.", + "The long, empty corridor seemed to stretch on forever, the only sound the soft echo of footsteps.", + "The corridor is empty and there is a light at the end.", + "The corridor is dingy and poorly lit, with peeling paint and an unpleasant smell.", + "A long, dark corridor lit by a single overhead light.", + "The long, dark corridor seems to stretch on forever.", + "The long, dark corridor seemed to go on forever.", + "The long hallway seems to stretch on forever, the only light coming from the occasional flickering lightbulb.", + "A long, empty corridor with a tiled floor and white walls.", + "The corridor is dark and narrow, with a low ceiling." + ], + "cottage garden": [ + "A cottage garden is typically a smaller, more intimate garden, often enclosed by a hedge, stone wall, or picket fence.", + "A cottage garden is typically a small, informal garden with a mix of flowers and vegetables.", + "Cottage gardens are informal gardens with a mix of flowers and vegetables.", + "A cottage garden is a type of garden that is typically found in rural areas.", + "A cottage garden is a type of garden that is typically found in rural areas.", + "Cottage gardens are crammed with a variety of flowers, fruits, and vegetables.", + "A cottage garden is a small, romantic garden usually found in front of a cottage.", + "A cottage garden traditionally is a highly romantic English garden style with an abundance of plantings.", + "A cottage garden is usually a small plot of land near a house, with a wide variety of flowers, herbs, and vegetables growing close together.", + "A cottage garden is a small plot of land where flowers and vegetables are grown in a very informal way.", + "The best way to identify a cottage garden is by its lush, wild appearance.", + "A cottage garden is a small garden typically found in front of a cottage.", + "There is no one definitive answer to this question.", + "There are a few ways to identify a cottage garden.", + "A cottage garden is a type of garden that is typically found in rural areas.", + "A cottage garden can be identified by its informal design, crammed planting, and abundant flowers.", + "There is no definitive answer to this question, but cottage gardens are often characterized by their informal design, dense plantings, and a mix of decorative and edible plants.", + "The most identifying feature of a cottage garden is its relaxed, informal style.", + "There are many ways to identify a cottage garden.", + "There is no definitive answer to this question, as gardens can vary significantly in terms of their size, layout, and plantings.", + "A cottage garden looks like a small, informal garden with a mix of flowers, vegetables, and herbs.", + "A cottage garden typically has a mixture of flowers, vegetables, and herbs growing close together in a informal way.", + "A cottage garden looks like a garden that is typically found at a cottage.", + "A cottage garden is a garden that is typically English and is known for its quaint and charming atmosphere.", + "Well-tended, with blooming flowers in neat rows or clusters and an orderly appearance overall.", + "A cottage garden is often informal, with a mix of flowers, vegetables, and herbs planted close together.", + "A cottage garden is a small, informal garden made up of flowers, vegetables, and herbs.", + "A cottage garden is typically a smaller, more intimate space than other types of gardens.", + "cottage gardens are characterized by their informal design, dense plantings, and a mix of ornamental and edible plants.", + "A cottage garden typically has a relaxed, informal feel and is full of flowers.", + "An image from the internet of a cottage_garden shows a small, well-tended garden with a variety of flowers and plants.", + "The image is of a quaint cottage with a thatched roof and a small, well-tended garden.", + "The cottage garden in the image is a small, enclosed garden with a path leading to the front door.", + "This image from the internet shows a cottage garden with a white picket fence, green grass, and colorful flowers.", + "In the image, there is a small cottage with a thatched roof and a garden with a picket fence.", + "I found an image on the internet of a beautiful cottage garden.", + "In the image, there is a small cottage surrounded by a tall hedge.", + "The image is of a small cottage with a white picket fence.", + "This image is of a quaint cottage garden with a brick path leading up to the front door.", + "This image is of a traditional English cottage garden with a thatched roof cottage in the center.", + "An English cottage garden in full bloom, with a variety of flowers and vegetables growing in abundance.", + " A beautiful cottage garden with brightly colored flowers.", + " A lovely cottage garden with a variety of flowersThis cottage garden is full of beautiful flowers in a rainbow of colors! There are roses, lilies, daisies, and more, all arranged in a comfortable and inviting space.", + "Cottage GardenA beautiful cottage garden with a variety of flowers in bloom.", + "This is a typical English cottage garden, with a variety of flowers and plants all growing together in a lovely, relaxed way.", + "A beautiful cottage garden with a variety of flowers and plants.", + "This is a beautiful cottage garden with a variety of colorful flowers and a quaint picket fence.", + " A cottage garden overflowing with a variety of flowersA cottage garden is a type of garden that is typically packed with a variety of flowers.", + " A beautiful cottage garden with a variety of flowers and vegetables.", + "A cottage garden is a charming and informal style of garden, typically found in country homes." + ], + "courthouse": [ + "A courthouse typically has a number of courtrooms, as well as offices for clerks, judges, prosecutors, and public defenders.", + "A courthouse typically has a number of courtrooms, administrative offices, and holding cells.", + "A courthouse typically has a rectangular or square shape.", + "A courthouse is typically a large building that houses courtrooms, administrative offices, and other related facilities.", + "Most courthouses are large buildings that have a lot of steps leading up to the front door.", + "A courthouse is a building where court hearings take place.", + "A courthouse is a building that houses a court of law and primarily serves as the venue for legal proceedings.", + "A courthouse generally has a stone or brick exterior, with many windows and a large front entrance.", + "A courthouse is a large and formal building that houses the legal system of a government.", + "A courthouse is a building where legal cases are heard.", + "There is no surefire answer to this question, as courthouses can vary greatly in appearance from one region to another.", + "A courthouse is a building in which a court of law is held.", + "There is no one way to identify a courthouse, as they can come in many different shapes and sizes.", + "1.", + "Each county in the United States has a courthouse where the county's legal business is conducted.", + "A courthouse is a building that houses a court of law and the offices of the lawyers and judges who work in the court.", + "Typically, a courthouse will have a sign or banner that says \"courthouse.", + "Most courthouses are identified by a sign or placard that says \"courthouse.", + "A courthouse is a building where the legal system is administered.", + "Courthouses can be identified by their design.", + "A courthouse is a building that houses a courtroom.", + "A courthouse is a building in which the law courts of a country or local area are held.", + "The exterior of a courthouse can vary, but they typically have a few features in common.", + "A courthouse is typically a large, imposing building that houses courtrooms, administrative offices, and other legal facilities.", + "A courthouse is a building that houses a court of law.", + "There is no one answer to this question as courthouses can come in a variety of shapes, sizes, and styles.", + "There is no standard design for courthouses.", + "A courthouse typically has a waiting area, offices for the clerks and judges, and courtrooms.", + "A courthouse is a building that is home to a court of law and the judicial branch of government.", + "A courthouse can be a large building with many courtrooms, or it can be a smaller building with only one courtroom.", + "The image is of a large, white building with several columns and a grand staircase leading up to the entrance.", + "The image from the internet of a courthouse is a large, rectangular building made of stone.", + "This is an image of a courthouse in the United States.", + "This image is of the United States Supreme Court building in Washington, D.", + "This image is of the Old Bailey, a courtroom in London, England.", + "The image is of a large stone building with several columns in front.", + "The image is of a large, white building with a tall clock tower in the center.", + "The image is of a large, imposing stone building with tall columns and a clock tower.", + "The image from the internet is of a large, white building with a tall, cylindrical tower in the center.", + "This courthouse is in Washington, D.", + "The old county courthouse, now abandoned, still stands in the center of town.", + "The Judiciary Building in Washington, D.", + " A group of protestors in front of the courthouse.", + " A local courthouse in the small town of SpringfieldThis is the courthouse in Springfield, a small town in the midwest.", + "The courthouse is the heart of the legal system.", + "In this courthouse, people come to face the consequences of their actions.", + " The Old Courthouse in St.", + "The exterior of the Supreme Court of the United States.", + "The City Court House in Belfast, Maine, USA.", + "The CourthouseThe courthouse is a symbol of justice." + ], + "courtroom": [ + "A courtroom has a judge's bench, where the judge sits, and a witness stand.", + "A courtroom usually has a judge's bench at one end and public seating at the other, with a witness stand, jury box, and lawyers' tables in the middle.", + "A courtroom is a room in a courthouse where legal cases are tried.", + "Inside a typical courtroom, there is a large room with a raised platform at one end where the judge sits.", + "A courtroom typically contains a raised platform or stage for the judge, with a large desk for the court clerk, and benches for spectators and jury members.", + "Most courtrooms are set up with the judge's bench at the front of the room, with the witness stand to one side and the jury box to the other.", + "Most courtrooms have a well for the judge, elevated seats for the jury, and chairs and tables for the lawyers.", + "A typical courtroom will contain a judge's bench at one end of the room, with the rest of the room containing rows of benches for the public.", + "A courtroom is a room where legal cases are tried.", + "A courtroom looks like a room with a judge's bench at the front, raised above the rest of the room.", + "A courtroom is a room where a judge hears cases.", + "A courtroom is a room that is used for legal cases.", + "Well-designed courtrooms will have a raised platform or stage at one end for the judge, with rows of seating on either side for the jury, witnesses, and other participants in the trial.", + "A courtroom is usually identified by a sign that says \"Courtroom\" with the room number.", + "There are many ways to identify a courtroom.", + "There is typically a sign outside of the courtroom that says \"Courtroom.", + "There are many ways to identify a courtroom.", + "Every courtroom has a seal on the wall, usually behind the judge's seat, that identifies the court.", + "A courtroom is usually a formal room in a courthouse with mahogany woodwork and a raised platform where a judge sits.", + "If you are in a building with many courtrooms, you can ask the court clerk which courtroom you should go to.", + "A courtroom is a room in a courthouse where legal cases are tried.", + "The courtroom is a room in which a trial is held.", + "A courtroom generally has a raised platform or stage at one end for the judge, and a large area for the public in the back.", + "A courtroom can vary depending on the type of court.", + "A courtroom typically contains a judge's bench, along with a seating area for jurors and a larger area for the public.", + "In the United States, a typical courtroom contains a raised platform or stage for the judge, with a large Books of the Law open on a desk in front of him.", + "A courtroom typically includes a judge's bench, seats for the jury, and seats and tables for the lawyers.", + "A courtroom typically has a raised platform at one end for the judge, with a large desk where the clerk sits.", + "A courtroom typically has a few key features, such as a raised platform for the judge, a large table for the court clerk, and rows of benches for the audience.", + "A courtroom is where a trial is held.", + "An image from the internet of a courtroom shows a large room with high ceilings and a raised platform at one end.", + "In the image, there is a group of people sitting in a room with high ceilings.", + "The image is of a large room with a high ceiling.", + "This image from the internet shows a courtroom with the American flag in the background.", + "I found an image of a courtroom on Pinterest that I thought looked really cool.", + "In the image, there is a large room with high ceilings.", + "I found an image of a courtroom on Google that looks like it is from the early 1900s.", + "One image of a courtroom that is found on the internet is of the Supreme Court of the United States.", + "This image is of a courtroom with a jury box and American flag.", + "I found an image of a courtroom on Google Images that shows the judge's bench, the witness stand, and the area where the attorneys sit.", + "A defendant in a criminal trial stands in the dock, flanked by two police officers.", + "The judge looks on as the jury deliberates in the courtroom.", + "The court finds the defendant guilty of all charges.", + "The court finds the defendant guilty.", + " A court officer swears in a witness in a criminal trial.", + "In this photo, a judge is seated at a bench in a courtroom.", + "A judge presides over a court case.", + "A courtroom where a court case is taking place.", + "The Judge is presiding over the court.", + "In this courtroom, a judge is presiding over a trial." + ], + "courtyard": [ + "A courtyard is typically a square or rectangular outdoor space enclosed by walls or buildings on all sides.", + "A courtyard is a small, enclosed outdoor space that is typically surrounded by walls or buildings.", + "A courtyard is a small, closed-in area located in the center of a building or home.", + "A courtyard is typically an enclosed area surrounded by walls or buildings.", + "A courtyard is an open area surrounded by walls or buildings.", + "A courtyard is a garden enclosed by walls, especially one in a castle or palace.", + "A courtyard typically has a paved ground with walls surrounding it.", + "A courtyard is a small, enclosed outdoor space that is often adjacent to a building.", + "A courtyard is a space, often outdoor, that is surrounded by walls.", + "A courtyard is a square or rectangular area enclosed by a building or by a wall.", + "A courtyard is a square or rectangular court enclosed by walls or buildings.", + "Courtyards are typically surrounded by walls or buildings on all sides, and often have a roof or canopy above.", + "A courtyard can typically be identified by its enclosed nature, as well as the presence of a central open area.", + "A courtyard is an outdoor space surrounded by walls, typically in a castle or large mansion.", + "The courtyard is the space enclosed by the walls of a castle.", + "A courtyard is a rectangular area, often surrounded by walls or buildings, that is open to the sky.", + "A courtyard is an enclosed area, often surrounded by walls or buildings, that is open to the sky.", + "A courtyard is typically an enclosed area, often surrounded by walls or buildings, that is open to the sky.", + "A courtyard typically has walls on all sides, and may be open to the sky.", + "A courtyard is a rectangle that is twice as long as it is wide.", + "A courtyard is an open area surrounded by walls or buildings.", + "A courtyard can be large or small, but it is typically an open space enclosed by walls or buildings on all sides.", + "There is no one answer to this question as courtyards can come in a variety of shapes and sizes.", + "A courtyard can be any size and shape, but is typically an enclosed space surrounded by walls or buildings.", + "A courtyard can take many different forms, but typically it is an open space, surrounded on all sides by buildings or walls.", + "A courtyard is a paved area that is open to the sky.", + "A courtyard is a small, enclosed outdoor space, often surrounded by walls or buildings.", + "A courtyard is typically a paved area that is enclosed by walls or buildings.", + "A courtyard can take many different forms, but typically it is a space open to the sky, surrounded on all sides by buildings or walls.", + "A courtyard is a space that is open to the sky, and is surrounded by walls or buildings.", + "I see an image of a courtyard with a fountain in the middle.", + "The image is of a large courtyard with a central fountain.", + "In the image, there is a courtyard with a stone floor and walls.", + "There is a large fountain in the center of the courtyard with a statue of a cherub in the center.", + "The image shows a courtyard with a gravel path and a lawn.", + "I found an image of a courtyard that has a few large trees in the center of it.", + "In the image, there is a large courtyard with a cobblestone floor.", + "The image depicts a large, beautiful courtyard with a paved walkway and a central fountain.", + "In the image, there is a large open space with paving stones and grass.", + "An image of a courtyard from the internet shows a paved area withsome rocks and greenery.", + "The serene courtyard of the Villa della Farnesina, Rome.", + " The bright sun shines down on the neatly kept courtyard.", + "The courtyard of a Spanish-style home in California.", + "The courtyard at the center of the palace is a beautiful oasis, with a fountain and lush gardens.", + "The courtyard of the palace is a beautiful place to relax and enjoy the view.", + " A glimpse of the courtyard of the palace.", + "The serene courtyard at the monastery is a peaceful place to reflect and meditate.", + "A view of the courtyard at the Palace of Versailles.", + "The central courtyard of a traditional Andalusian home, called a patio not outfitted with luxuries like a fountain or extensive gardens, but still lovely nonetheless.", + "The courtyard of the palace was a beautiful sight." + ], + "exterior covered bridge": [ + "A typical exterior covered bridge has a gable roof, vertical siding, and a porch with columns.", + "Exterior covered bridges are wooden bridges that have a roof and walls on the sides.", + "A exterior covered_bridge is a bridge that has a roof and walls on the sides, but no walls or roof on the top.", + "Most exterior covered bridges are made of wood and have a roof that covers the bridge.", + "A covered bridge is typically a wooden bridge that has a roof and sides, which are often made of vertical slats.", + "Example:A covered bridge typically has a sloped roof, which helps to protect the bridge from the elements.", + "A covered bridge has a roof and walls that protect the bridge deck and supports from the weather.", + "An exterior covered bridge looks like a regular bridge, with a roof and walls, covering the entire structure.", + "A exterior covered_bridge is a bridge that is covered and has a roof.", + "A small wood bridge with a metal roof and sides.", + "A exterior covered_bridge is typically a wooden structure that has a roof and walls, and is often used to span a river or other body of water.", + "The exterior of a covered_bridge often has large support beams and a roof.", + "A covered bridge usually has a roof and arched overhead structure, which protects the bridge's decking and supports from the weather.", + "One way to identify a exterior covered_bridge is by its roof.", + "The most obvious feature of a covered_bridge is its roof.", + "If you are looking at a bridge and you can see that the outside of the bridge is covered, then it is a exterior covered_bridge.", + "covered_bridge generally have a roof and protected walkway.", + "A covered bridge is a bridge with a roof and walls that was built to protect the bridge's structural elements, and sometimes the road itself, from the weather.", + "A covered_bridge typically has two side walls and a pitched roof.", + "Some exterior covered bridges have a sign posted on the outside that reads \"Covered Bridge.", + "Covered bridges are typically made of wood and have a roof and walls.", + "A exterior covered_bridge looks like a long, narrow bridge with a roof and walls on both sides.", + " covered_bridges are usually made of wood and have a roof.", + "Typically, a covered bridge has a rectangular shape and is constructed using wood beams.", + "A exterior covered_bridge typically has a wooden or metal roof that covers the top of the bridge, and walls on either side.", + "A typical covered bridge has a timber truss structure, is covered by a roof, and has walls or otherwise enclosed sides.", + "A covered_bridge is typically a wooden_bridge with a roof that covers the entire structure.", + "A covered bridge is a bridge with a roof and walls that enclose the bridge deck.", + "a covered_bridge looks like a regular bridge but with a roof over it.", + "A covered bridge is typically a wooden bridge that has a roof and walls on the sides to protect the bridge from the weather.", + "This image from the internet is of a exterior covered_bridge.", + "This image shows a covered bridge that is over a river.", + "The image is of a narrow wooden bridge spanning a river.", + "This image is of a wooden bridge that is covered in a metal roof.", + "The image is of a typical American covered bridge.", + "This exterior covered_bridge is a beautiful old wooden bridge that spans a river.", + "One popular image of a exterior covered_bridge shows a wooden bridge with a red roof, crossing a river with green trees on either side.", + "The image that I found shows a quaint covered bridge that is nestled in the woods.", + "The image is of a wood exterior covered bridge with a metal roof.", + "The image is of a exterior covered bridge.", + "This is a picture of a covered bridge in the country.", + "The covered bridge at Loyalist Park is a popular spot for tourists and locals alike.", + " Exterior of a covered bridge with a river in the background.", + "A covered bridge in autumn.", + " A covered bridge in Lebanon, New HampshireThis historic covered bridge was built in 1866 and spans the Saco River.", + "A charming covered bridge over a bubbling stream.", + "The covered bridge is a historic structure that was once used to cross a river or stream.", + "Covered bridge in autumn, New Hampshire.", + " Covered Bridge in Autumn.", + "The covered bridge is a beautiful and classic example of American engineering." + ], + "creek": [ + "A creek looks like a narrow, shallow stream of water.", + "A creek is a small to medium-sized natural stream.", + "A creek is typically a narrow, shallow stream with a rocky bed.", + "A creek is a naturally occurring stream of fresh water that flows through the Earth.", + "A creek is a small, narrow stream of water.", + "A creek is usually a small, shallow stream.", + "A creek is a very small stream of water.", + "A creek is a small, narrow stream of water.", + "A creek is a small stream of water that flows slowly through the woods.", + "A creek is a murmuring stream of water flowing over pebbles or rooted in marshy places.", + "Creeks are typically small, narrow streams with a shallow gradient.", + "A creek is usually narrower and deeper than a river and has a smaller water flow.", + "A creek is a small, narrow stream.", + "Creeks are usually small, shallow rivers that flow through rural areas.", + "A creek is typically a small, shallow stream.", + "A creek is a small stream.", + "The easiest way to identify a creek is by its small size and slow-moving water.", + "A creek is a small, flowing body of water.", + "A creek is a stream of water that is smaller than a river.", + "A creek is often narrower and shallower than a river and is fed by a spring or small tributary.", + "A creek looks like a thin stream of water.", + "A creek is a small stream of water that flows through the land.", + "A creek is a small river that flows through a valley.", + "A creek is small, narrow stream of water.", + "A creek looks like a small river.", + "A creek is typically a small, shallow stream.", + "A creek is a small, narrow stream of water.", + "A creek is a small, narrow stream of water.", + "A creek is a small, narrow body of water that is often found near the bank of a river.", + "A creek is typically a small, narrow body of water that runs through a larger piece of land, such as a forest.", + "A creek is a natural stream of water flowing through land.", + "The image is of a small creek with clear water and a few rocks visible at the bottom.", + "The image from the internet is of a small creek with a few rocks in it.", + "This image is of a small creek with crystal clear water flowing over rocks.", + "An image of a creek from the internet typically shows a body of water with trees and greenery along its banks.", + "In the image, a creek meanders through a forest, with trees and shrubs on its banks.", + "The image is of a small creek with crystal clear water flowing downstream.", + "In the image, a creek is winding its way through a forest.", + "I found an image of a creek that looks very peaceful.", + "The image is of a creek that is flowing rapidly.", + "This is a picture of a creek.", + "A rushing creek in the mountains.", + "The peaceful flowing creek is a great place to relax and take in nature.", + "A creek flows through a forest.", + " A creek full of rocks and debris after a rainstorm.", + "A wooden bridge spans a bubbling creek as leaves from nearby trees float downstream.", + " Laughing Creek flows through the woods near my house.", + "A small creek winds its way through a green, grassy field.", + "This is a picture of a RUNNING creek.", + "A creek in the forest." + ], + "crevasse": [ + "A crevasse is a deep crack in a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a deep crack or fissure in a glacier.", + "A crevasse is a deep, narrow fissure in a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a deep crack or fissure in a glacier.", + "A crevasse is a deep, narrow crack in the surface of a glacier.", + "A crevasse is a deep, narrow crack in a glacier that forms when the glacier moves over a uneven surface.", + "A crevasse looks like a deep, narrow crack in a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a gap or fissure in the surface of a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse can be identified by its long, deep crack in the ice.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a narrow, steep-sided fracture in glacial ice.", + "The easiest way to identify a crevasse is by its V-shaped opening.", + "A crevasse is a deep, narrow crack in a glacier.", + "Typically, a crevasse appears as a deep crack in the ice.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep, steep-sided crack in the surface of a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse can look like a deep crack in the ice, or a large hole.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep fissure in the ice, typically formed when two large pieces of ice break apart.", + "A crevasse is a long, thin, deep crack in a glacier.", + "A large crevasse can look like a huge crack in the ground, sometimes with a jagged edge.", + "The image is of a large, deep crack in the ice, with jagged edges.", + "A deep and narrow ravine, especially one in a glacier, formed by the splitting of bedrock along planes of structural weakness.", + "The image is of a large, deep crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "A crevasse is a deep crack in a glacier.", + "A crevasse is a deep, narrow crack in a glacier.", + "Lingering snow and ice cover a deep crevasse on the Matanuska Glacier in Alaska.", + "This is a crevasse, which is a deep crack in a glacier.", + "A view of a crevasse from above.", + "Crevasse on the Brant Glacier, British Columbia, Canada.", + "A expanding crevasse on the Peters Glacier, Alaska.", + "A close-up of a crevasse on a glacier.", + "A deep and narrow vertical crack in a glacier.", + "A crevasse is a deep and narrow crack in a glacier.", + "A large, deep rift in a glacier caused by the movement of ice.", + "The dangers of glaciers are not always visible." + ], + "crosswalk": [ + "A crosswalk is a painted line that goes across a street.", + "A crosswalk is usually marked by a series of white lines or raised pavement markers that run across a road.", + "A crosswalk is a clearly marked path across a street.", + "A crosswalk is typically a white line that people can walk across to get to the other side of the street.", + "A crosswalk is a designated crossing area on a street or road.", + "A crosswalk is a section of road at an intersection that is painted with lines or raised up slightly from the rest of the road.", + "A crosswalk is a designated area for pedestrians to cross the road.", + "A crosswalk is typically a painted rectangle that appears on a road surface at a pedestrian crossing, delineating where pedestrians are to cross.", + "A crosswalk is usually a painted line that goes across a street.", + "A crosswalk is a line or set of lines on a road that indicate where pedestrians can cross.", + "A crosswalk is a designated area for pedestrians to walk across a road.", + "Crosswalks are generally marked by white painted lines, and sometimes by raised pedestrian crossing platforms called \"refuge islands\" which are intended to make crossing the road easier and safer.", + "A crosswalk is a designated area for pedestrians to walk across a street.", + "A crosswalk can be identified by a series of white lines painted on the ground, typically in the shape of a rectangle or an \"X.", + "There are many ways to identify a crosswalk.", + "Crosswalks are usually marked with a white line or set of lines running perpendicular to the road.", + "A crosswalk is a designated area for pedestrians to cross the street.", + "A crosswalk is a designated area for pedestrians to cross a street.", + "A crosswalk is typically a painted line on the pavement that indicates where pedestrians should cross the street.", + "A crosswalk is a designated area for pedestrians to safely cross the street.", + "A crosswalk is a line of paint or pavement that tells pedestrians where to cross the street.", + "A crosswalk looks like a painted line or set of lines that go across a street.", + "A crosswalk is a marked path on a street or road that helps people safely cross from one side to the other.", + "A crosswalk is typically a painted line on the road that indicates where people should cross the street.", + "A crosswalk is typically a painted white line that runs across a street.", + "A crosswalk is a painted line that goes across a road.", + "A crosswalk is a painted line that goes across a road.", + "A crosswalk is an area of a street or highway where pedestrians can safely cross the road.", + "A crosswalk looks like a series of white lines painted on a road.", + "A crosswalk is a set of lines that are painted on the road to create a safe place for pedestrians to cross the street.", + "A crosswalk is a painted line on the ground that tells people where to walk.", + "An image of a crosswalk is a photo or painting of a pedestrian crossing at a street or intersection.", + "I found an image of a crosswalk that shows a busy street with a lot of cars and pedestrians.", + "A crosswalk is an area of pavement designated for pedestrians to cross a street.", + "An image from the internet of a crosswalk shows a clearly marked pathway across a street.", + "The image from the internet is of a crosswalk in front of a school.", + "The image is of a busy street corner with a crosswalk.", + "In the image, there is a crosswalk with two lines painted on the ground.", + "In the image, there is a crosswalk with two yellow crosswalk lines.", + "There is a crosswalk on a busy street.", + " pedestrians crossing the street.", + "Pedestrians crossing the street at a crosswalk.", + "A busy crosswalk in the city.", + "A pedestrian walks through a crosswalk on a busy street.", + "A pedestrian crosswalk in a busy city.", + " Pedestrians crossing the street in a crosswalk.", + "A crosswalk crossing a busy street.", + "\"This is a picture of a crosswalk near my house.", + "A crosswalk in New York City.", + " A busy street in Los Angeles with a crosswalkThis image shows a busy street in Los Angeles with a crosswalk." + ], + "office cubicle": [ + "A typical office cubicle is a modular workstation with walls that extend to about chest height.", + "A office cubicle typically has four walls and a opening for a door.", + "The standard office cubicle is a small prefabricated room with walls that extend to about waist height.", + "A office cubicle is typically a small room with walls that divide it from other cubicles in an office.", + "Black and white walls with pictures and postcards taped to them.", + "An office cubicle is a small, enclosed area where an employee can work.", + "A typical office cubicle is a small, enclosed workspace that is separated from other cubicles by partitions.", + "An office cubicle typically contains a desk, chair, shelves, and a privacy screen.", + "A standard office cubicle usually has four walls made of gray or tan fabric, with a metal frame.", + "A office cubicle is a small room with walls on three sides and an open front, used as a working area in an office.", + "An office cubicle is typically a small, enclosed workspace that is used by one person.", + "The dimensions of a standard office cubicle are approximately six feet wide by six feet deep.", + "Office cubicles are usually rectangle shaped and have vertical walls that are about chest high.", + "An office cubicle is an enclosed workstation that is typically used by one person.", + "The most identifying feature of an office cubicle is the low partition walls that divide the work space from the rest of the office.", + "An office cubicle typically consists of four walls, a workstation, and a door.", + "A typical office cubicle is a small, enclosed workspace that is surrounded by partial walls.", + "If you walk into an office and see a bunch of small, separate areas that each contain a desk, chair, and computer, you are looking at a bunch of office cubicles.", + "An office cubicle is a small, enclosed workspace in an office that is typically used by one person.", + "The best way to identify a office cubicle is to look for the following features:1.", + "A typical office cubicle looks like a small, enclosed workspace with walls that are roughly shoulder-height.", + "A typical office cubicle is a small, enclosed workspace that is separated from other cubicles by partially-height partitions.", + "An office cubicle can vary in size and shape, but typically it is a small, enclosed workspace that is partitioned off from the rest of the office.", + "There is no one answer to this question since office cubicles can come in a variety of different shapes and sizes.", + "A typical office cubicle is a small, enclosed workspace that is separated from other cubicles by partitions.", + "A typical office cubicle measures six feet by six feet and is composed of four walls, a floor, and a ceiling.", + "An office cubicle is small, usually no more than 6 feet wide and 6 feet deep.", + "A typical office cubicle is a small, enclosed space with walls that are approximately shoulder-height.", + "A typical office cubicle is a small, enclosed workspace that is surrounded by partitions on all sides.", + "A standard office cubicle consists of four walls, a door, and a window.", + "The image is of a small, cramped office cubicle.", + "The image is of a small, cramped office cubicle.", + "An image of a typical office cubicle might show a modular workstation with fabric-covered walls, a desk, a rolling chair, and shelving for storing supplies.", + "The image is of a small office cubicle with gray walls and a gray desk.", + "A cubicle is a small, private room in an office where an individual employee can work.", + "The image is of a small, cramped office cubicle.", + "Image shows an office cubicle with a computer on the desk, a phone, and a stack of papers.", + "The image is of a small, cramped office cubicle.", + "The image is of a small, cramped office cubicle.", + "This image is of a blue office cubicle with a plants and a framed photo on the desk.", + " Office workers be like \"I'm not really at work today\".", + "An office cubicle with a desk, computer, and chair.", + " I'm surrounded by madness.", + "First day on the job!.", + "An office cubicle with a computer, printer, and chair.", + "A typical office cubicle, where many workers spend their days.", + "A typical office cubicle, where many workers spend their days sitting at a desk and staring at a computer screen.", + "A typical office cubicle, with a desk, computer, and chair.", + "An office cubicle with a view of the city skyline.", + "An office cubicle typically contains a desk, chair, and computer." + ], + "dam": [ + "A dam is a large wall that is built across a river or flowing body of water.", + "A large wall or barrier built across a river to hold back water.", + "A dam is a large, artificial lake that is created when a river is dammed, or blocked.", + "A dam walls off a section of water, similar to a levee.", + "A dam is a large, solid wall that is built across a river or stream to hold back water.", + "A wall or embankment built across a river to stop the flow of water and create a reservoir.", + "A dam is a large, man-made wall that is built across a river in order to hold back water.", + "A dam is a wall that is built to hold back water.", + "A dam is a wall that holds back water.", + "A damn is a large wall that is built to hold back water.", + "A dam is a structure that is built to hold back water.", + "The easiest way to identify a dam is by looking for a large structure that is holding back water.", + "A dam is a man-made structure that is built across a river in order to hold back water.", + "A dam is a structure that is built to hold back water.", + "The most obvious way to identify a dam is by its size and structure.", + "Dams are usually large, gray or brown structures made of concrete, stone, or earth.", + "A dam is a watertight barrier that impounds water or underground streams.", + "A dam is a man-made structure built across a river or stream to hold water back.", + "A dam is a wall or barrier built across a river to stop the flow of water and raise the level of the river.", + "Dams can be identified by their size, shape, and location.", + "A dam is typically a large, solid wall that is built across a river or stream to hold back water.", + "A dam is a wall or barrier that is built to hold water back.", + "Most dams are built across rivers, using the river's natural topography to help support the dam.", + "A dam is a large, artificial water body built across a river to block its flow.", + "A dam is a man-made structure that is built across a river or a stream.", + "A dam looks like a large wall that is built across a river.", + "A dam usually looks like a large wall that is built across a river.", + "A dam is a structure that is built to hold water back.", + "A dam can look like a wall or a barrier that is built across a river or a body of water.", + "A dam typically looks like a large wall made of concrete, stone, or dirt that is built across a river or other body of water.", + "This image shows the Three Gorges Dam in China.", + "The image is of a large dam holding back a vast amount of water.", + "The image is of a large dam that spans a river.", + "The image is of a large dam with a concrete body and metal gates.", + "This image is of the Gardiner Dam in Saskatchewan, Canada.", + "A dam is a structure built to hold back water.", + "An image of a dam from the internet shows a large structure made of concrete and metal.", + "The image is of a large dam with a reservoir of water behind it.", + "The image shows a large dam in a canyon with a river running through it.", + "This image is of thezhangjiajie National Forest Park in China.", + "The Hoover Dam is one of the most impressive feats of engineering in the United States.", + "The Hoover Dam is a concrete dam in the Black Canyon of the Colorado River, on the border between Nevada and Arizona.", + " The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the US states of Nevada and Arizona.", + "The Hoover Dam is located on the Colorado River in Nevada, United States.", + "The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the US states of Arizona and Nevada.", + " \"The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between the U.", + "The Hoover Dam is a concrete gravity-dam in the Black Canyon of the Colorado River, between the states of Nevada and Arizona.", + "The Hoover Dam is a concrete arch-gravity dam in the Black Canyon of the Colorado River, on the border between Arizona and Nevada.", + "The Hoover Dam, located on the Colorado River in Nevada, is one of the largest hydroelectric dams in the world.", + "Bhasha Dam in Pakistan." + ], + "delicatessen": [ + "A delicatessen is typically a small, independent food shop that specializes in selling meats, cheeses, and other products typically found in a grocery store.", + "A delicatessen is a store wherefine foods are sold.", + "Delicatessens generally have a wide selection of imported and domestic meats, cheeses, and dry goods.", + "A delicatessen is a shop that sells delicacies, such as cooked meats, cheese, and olives.", + "A delicatessen typically looks like a small grocery store or a section of a grocery store that sell meats, cheeses, and sometimes prepared foods.", + "A delicatessen typically looks like a small grocery store or a section of a grocery store that specializes in selling prepared foods and delicacies.", + "The cheerful, deli workers behind the counter, the marquee of hand-written daily specials, and the mouth-watering smells of meats and cheeses are just a few things that come to mind when thinking of a delicatessen.", + "A delicatessen is a store that sells pre-made sandwiches, salads, and other food.", + "A delicatessen counter typically features a display case containing various meats, cheeses, and prepared foods.", + "A delicatessen typically looks like a small grocery store or a counter inside a larger grocery store.", + "A delicatessen can usually be identified by its name; for example, \"Joe's Deli.", + "A delicatessen is usually a store that specializes in selling fine foods.", + "The word \"delicatessen\" comes from the German word \"delikatessen,\" which means \"delicious things to eat.", + "A delicatessen can usually be identified by its large selection of prepared foods, including meats, cheeses, and salads.", + "Delicatessens are usually identified by a sign that says \"deli\" or \"delicatessen.", + "Some common ways to identify a delicatessen are by its large selection of meats, cheeses, and olives; by the presence of a deli counter; or by the sandwiches and prepared foods available for purchase.", + "A delicatessen is a shop that sells cooked or prepared food.", + "A delicatessen can be identified by its wide variety of meats, cheeses, and other specialty foods.", + "One way to identify a delicatessen is by looking for foods that are typically served deli-style, such as sandwiches, salads, and soups.", + "A delicatessen can be identified by its name, which usually includes the word \"deli.", + "There is no one answer to this question because the appearance of a delicatessen can vary widely depending on the location, size, and style of the store.", + "The word \"delicatessen\" is of German origin and literally means \"delicious things.", + "A delicatessen is a type of food store that specializes in providing fine foods.", + "A delicatessen is a store that specializes in selling cooked meats, cheeses, and other prepared food items.", + "A delicatessen typically looks like a small grocery store or a counter with shelves of food inside a larger grocery store.", + "The word \"delicatessen\" can refer to a shop that sells cooked or prepared foods, or it can refer to the prepared foods themselves.", + "A delicatessen can look like many different things, but typically it is a store that sells prepared meals, sandwiches, and salads.", + "A delicatessen may vary in appearance depending on the location, but typically it is a small shop that sells specialty foods.", + "A delicatessen can take many different forms, but most often it is a small, independent shop that specializes in selling fine foods.", + "There is no definitive answer to this question, as the appearance of a delicatessen can vary greatly depending on the location and type of business.", + "A delicatessen is a food shop that specializes in fine foods such as meats, cheeses, and other items that are often served at special occasions.", + "In this image, there is a store with shelves stocked full of different kinds of food.", + "The image is of a small, cramped delicatessen with shelves full of food.", + "The image from the internet is of a delicatessen that is full of different meats, cheeses, and other food items.", + "This image from the internet shows the interior of a delicatessen, with various meats, cheeses, and breads on display.", + "The image shows a counter in a delicatessen with an array of different meats, cheeses and breads on display.", + "An image from the internet of a delicatessen might show a variety of meats, cheeses, and breads on display.", + "This image from the internet shows the inside of a delicatessen with a long countertop and glass displays.", + "The image is of a small, cozy deli with a counter and stools for customers to sit at.", + "In the image, there is a delicatessen with a counter and shelves full of food.", + " A traditional delicatessen with a wide variety of meats, cheeses, and other groceries.", + " A {} of Central Market's delicatessen, including an array of meats, cheeses, olives, and breadsA display of Central Market's delicatessen, including an array of meats, cheeses, olives, and.", + " A Delicatessen in New YorkThis is a delicatessen in New York.", + "The Freshest Delicatessen in Town.", + "Deli meats and cheeses.", + "A busy delicatessen counter with a variety of meats, cheeses, and other foods on display.", + "The Best Delicatessen in Town!The freshest meats and cheeses, the most delicious sandwiches, and the friendly staff to top it all off - there's no wonder this delicatessen is the best in town!.", + "Gertie's Delicatessen - A New York Institution.", + " A man and a woman are arguing in front of the delicatessen.", + "This deli has been around for over half a century and is known for its extensive menu of traditional Jewish foods." + ], + "dentists office": [ + "A dentists_office usually has a waiting room with chairs for patients to sit in.", + "A dental office usually has a waiting room with magazines and chairs for patients to sit in.", + "A dentists_office usually has a waiting room with chairs for patients to sit in.", + "A dentists_office looks like a small room with a dental chair, a light, and a sink.", + "A dentists_office looks like a room in a hospital with a dental chair in the middle and a sink and mirror on one side.", + "A dentists_office typically features a waiting room with comfortable seating for patients, a reception area for handling paperwork and payments, and one or more exam rooms where dental procedures are performed.", + "a dentists_office usually has a waiting room with chairs and magazines, a front desk where you check in and schedule appointments, and one or more exam rooms where the dentist performs procedures.", + "Typically, a dentist's office is a clean and well-lit space with comfortable chairs and a friendly staff.", + "In a dentist's office, there is usually a waiting room with chairs and magazines.", + "A dentists office looks like a doctor's office, with a waiting room, a reception area, and treatment rooms.", + "There are several ways to identify a dentists_office.", + "There are a few ways you can identify a dentists_office.", + "One way to identify a dentists_office is to look for a sign that says \"Dentists_office\" or \"Dental_office.", + "The exterior of a dentists_office may have a sign that says \"dentists_office\" or a sign with a tooth on it.", + "One way to identify a dentists_office is to look for a sign that says \"dentists_office.", + "A dentists_office can be identified by looking for a sign that says \"Dentists Office\" or \"Dental Clinic.", + "The most common way to identify a dentists_office is by looking for a sign that says \"dentists_office\" or by looking for a building that has the word \"dentists_office\" on it.", + "The exterior of a dentists_office will typically have a sign with the word \"Dentist\" or \"Dentistry.", + "The most common way to identify a dentists_office is by looking for a sign that says \"dentists_office\" or a similar variation.", + "A dentists_office is usually easily identifiable by its sign, which usually features a tooth or teeth.", + "A dentist's office typically looks like a small medical office, with a reception area, a waiting room, and one or more exam rooms.", + "This answer is a little vague, but a dentist's office typically has a waiting room, a reception area, and one or more examination rooms.", + "A Dentists office looks like a regular doctor's office, but with dental equipment instead of medical equipment.", + "A typical dentist's office is usually a small, clean room with a dental chair in the center, a sink, and small mirror.", + "A dentist's office usually looks like a small clinic.", + "A dentists_office looks like a room in a hospital with a dental chair and a sink.", + "A dentist's office usually has a waiting room, where patients can sit and read magazines or watch television.", + "A dentists office typically contains a waiting room, a reception area, one or more dental operatories (treatment rooms), a sterilization area, and a restroom.", + "A dentists office can look like many different things.", + "A dentists office typically contains a waiting room, several patient rooms, a sterilization area, and a reception area.", + "In the image, there is a person in a dental chair with a bright light shining in their face.", + "An image of a dentists office from the internet shows a clean and professional looking office.", + "The image is of a small, cramped room with a dental chair in the middle.", + "A picture of a dentists office would likely show a waiting room with some chairs, a front desk, and perhaps some magazines.", + "In the image, there is a small, white room with a dental chair in the center.", + "The image is of a small, cramped dentists office.", + "A dentist office is typically a room with a dental chair, where the dentist sits, and various other tools and machines.", + "In the image, there is a large room with several dental chairs and medical lights.", + "The image is of a small, cramped dentist's office.", + "In the image, there are several dental chairs in a row with bright lights overhead.", + "A Dentist's Office.", + "Dentists Office.", + "Inside a Dentist's Office.", + "Dentist office with dental chair, sink, and equipment.", + " Smiling Dental OfficeA group of dental professionals stand outside of their office, smiling at the camera.", + "A group of dentists and hygienists laughing and joking while they work together in an office.", + " Dentist's office.", + " Dentists' office in small town.", + " Dentists Office.", + "The Dentist's Office." + ], + "sand desert": [ + "A sand desert looks like a sandy beach, but with more sand and less water.", + "A sand desert is usually a large, flat area with sand as the dominant surface material.", + "A sand desert is a desert that is covered in sand.", + "A sand desert looks like a vast, empty landscape with sand dunes as far as the eye can see.", + "A sand desert is a large area of land covered in sand.", + "A sand desert looks like a vast stretch of land covered in sand with very little vegetation.", + "A sand desert typically looks like an area of large, open sandy plains with very few plants or animals.", + "A sand desert is a very dry place with lots of sand and not much vegetation.", + "A sand desert typically looks like a vast area of sand dunes and sand plains.", + "A sand desert looks like a dry, barren landscape with sand dunes as far as the eye can see.", + "The word \"desert\" typically conjures up images of hot, sandy places like the Sahara Desert in Africa.", + "The sand in a sand desert is usually red or orange.", + "A sand desert is a large area of land that is covered in sand and has very little vegetation.", + "The sand in a sand desert is often a different color than the sand in other types of deserts.", + "By its sand.", + "A sand desert is a desert that is mostly made up of sand.", + "A sand desert is identified by its sand dunes.", + "A sand desert can be identified by its large expanses of sand with little to no vegetation.", + "A sand desert is a desert that is mostly made of sand.", + "A sand desert is identified by its barren landscape, with little to no vegetation, and consisting mostly of sand dunes.", + "A sand desert looks like a giant sandbox with lots of sand dunes.", + "A sand desert looks like a landscape that is mostly composed of sand, with few or no plants or other forms of vegetation.", + "A sand desert is an area of land that is covered in sand.", + "A sand desert looks like an area of sand with very little or no vegetation.", + "A sand desert looks like a large area of sand with very few plants or animals.", + "A sand desert typically looks like a large stretch of sandy land with very sparse vegetation.", + "A sand desert looks like a large area of sand with very few or no plants.", + "Sand deserts look like large, flat areas of sand with very few plants or animals.", + "A sand desert looks like a lot of sand.", + "A sand desert is a desert that is covered in sand.", + "A sand desert is a vast area of land where the only thing that is visible is sand.", + "The image is of a large, empty sand desert.", + "An image of a sand desert shows a vast expanse of fine, sand-colored particles.", + "It's a photograph of a vast sand desert, with rolling dunes and no vegetation in sight.", + "In the image, there is a sand desert with various ridges and valleys.", + "I found an image of a sand desert on the internet that looks like a vast, empty landscape.", + "This image is of a sand desert with mountains in the distance.", + "In this image, a sand desert is shown with blowing sand and dunes in the distance.", + "A large, flat expanse of sand with some rocks and vegetation in the distance.", + "The image is of a vast sand desert with rolling dunes.", + "The vast and empty sand desert is a thing of beauty.", + "The sand desert is a vast area of land with little to no vegetation.", + "The Sahara Desert.", + "The vast and empty sand desert.", + "The Sahara Desert is the largest hot desert in the world.", + "The sand desert is a vast, empty expanse of sand.", + "The vast and desolate landscape of the Sahara Desert.", + "Sandy desert in the southwestern United States.", + "The vast and empty sand desert stretches out before the viewer, its infinite expanse a seemingly never-ending sea of sand.", + "The vast and empty sand desert." + ], + "vegetation desert": [ + "A vegetation desert is a landscape that is composed of very little vegetation.", + "A vegetation desert is a barren landscape where there is little to no plant life.", + "A vegetation desert is a barren landscape where there is very little or no vegetation.", + "A vegetation desert is an area where there is very little or no plant life.", + "A vegetation desert is an area where there is very little plant life.", + "A vegetation desert looks like a barren landscape with very little plant life.", + "A vegetation desert looks like an area where there is very little to no vegetation present.", + "A vegetation desert is an area where there is very little vegetation.", + ".", + "A vegetation desert looks like an area with very little plant life.", + "A vegetation desert is a land area that is devoid of plant life.", + "A vegetation desert is a region where there is very little or no vegetation.", + "A vegetation desert is a place where there is very little or no plant life.", + "A vegetation desert is characterized by having very little or no vegetation present.", + "A deserts are dry, barren areas with little or no vegetation.", + "A vegetation desert is a landscape that is lacking in vegetation.", + "A vegetation desert is a land area where there is little to no plant life.", + "A vegetation desert is a landscape where there is very little or no plant life.", + "A vegetation desert is a barren landscape where plants cannot grow due to the harsh conditions.", + "A vegetation desert is an area where there is very little or no plant life.", + "A vegetation desert looks like an area with very little or no plant life.", + "A vegetation desert is a dry area where there is little or no plant life.", + "A vegetation desert is a dry, barren landscape where little to no plant life can be found.", + "A vegetation desert typically looks like a vast, empty landscape with very few plants or other signs of life.", + "A vegetation desert looks like a barren landscape with little to no plant life.", + "A vegetation desert is a barren landscape where there is little to no plant life.", + "A vegetation desert is a barren landscape where there is little to no vegetation.", + "A vegetation desert is an area where there is little to no plant life.", + "A vegetation desert looks like a landscape that is mostly void of plants and other vegetation.", + "vegetation desert looks like a place where there is no plant life at all.", + "A vast, barren landscape with no signs of life as far as the eye can see.", + "An image of a vegetation desert would show an area with very little or no plant life.", + "The image is of a large, open, sandy area with very low vegetation.", + "A vegetation desert is a place where there is very little or no vegetation.", + "In a vegetation desert, there is very little or no plant life.", + "This image from the internet is of a vegetation desert.", + "A vegetation desert is an image of a place where there is little to no vegetation.", + "In a vegetation desert, the land is dry and barren.", + "In a vegetation desert, there is very little plant life.", + "A vegetation desert is an area where there is little or no vegetation.", + "The Gobi Desert is a large, arid region in Asia that experiences very little rainfall and has very little vegetation.", + "The vegetation desert is a vast and empty wasteland.", + "The vast majority of the world's deserts are classified as hot and dry, or cold.", + "A desert is a landscape or region that receives very little precipitation.", + "\"The Sahara Desert is one of the driest places on Earth.", + "A desert is a landscape or region that receives very little precipitation.", + "The Sahara Desert is one of the driest places on Earth.", + "A vast and empty landscape, devoid of any vegetation.", + " \"A vegetation desert is a barren landscape with little or no vegetation cover.", + "edafic semi-desert landscape in Namibia." + ], + "indoor diner": [ + "A typical indoor diner looks like a long, rectangular room with a counter and stools along one side and booth seating along the other.", + "An indoor diner typically has a counter with stools, booths along the walls, and a kitchen in the back.", + "An indoor diner typically looks like a small, hole-in-the-wall type of restaurant with limited seating.", + "The interior of a diner is typically designed to resemble a retro 1950s appearance, with bright colors, booth seating, and checkered tablecloths.", + "An indoor diner typically looks like a restaurant with a counter and booths.", + "An indoor diner usually has a lot of booth seating and a long counter with stools.", + "A indoor diner typically has a counter with stools where people can sit and eat their food.", + "A typical indoor diner has a long counter with stools where the customers sit, and the kitchen is behind the counter.", + "It varies, but an indoor diner typically has booth or table seating, a long counter with barstools, and large windows.", + "A traditional indoor diner is a small restaurant with a long counter and stools where customers can sit and eat their meal.", + "A indoor diner can generally be identified by its resemblance to a traditional \"diner\" or \"coffee shop\" including a counter with stools, and a menu with a variety of breakfast, lunch, and dinner items.", + "One way to identify an indoor diner is by looking for a sign that says \"diner.", + "Some common features of indoor diners include countertop seating, booths, and a long bar.", + "Some characteristics of an indoor diner may include: a counter with stools, booth seating, checkered tile floors, and a jukebox.", + "The main identifying factor of an indoor diner is the counter with stools.", + "Some indoor diners are decorated to look like vintage 1950s restaurants, with Formica tables, chrome stools, and checkerboard floors.", + "The easiest way to identify an indoor diner is to look for the word \"diner\" in the name of the establishment.", + "A typical indoor diner has a long counter with stools for customers to sit on, as well as booths along the walls.", + "Some identifying features of an indoor diner may include:\n-a countertop with stools \n-a jukebox \n-a neon sign \n-a menu with classic American dishes such as burgers, fries, and shakes.", + "The easiest way to identify an indoor diner is by its layout.", + "There is no definitive answer to this question since indoor diners can come in a variety of different styles and designs.", + "The interior of a typical diner looks like a long, narrow room with a counter and stools on one side and booths on the other.", + "Some common features of an indoor diner may include a counter with stools, booths, tables and chairs, a jukebox, and a retro decor.", + "An indoor diner can have a wide range of looks, depending on its location and the type of food it serves.", + "An indoor diner typically has a counter with stools and booths along the walls.", + "It can vary, but generally an indoor diner will have a counter with stools, booth seating, and large windows.", + "There is no definitive answer to this question as indoor diners can come in a variety of different styles and designs.", + "A typical indoor diner has a long counter with stools for patrons to sit on, as well as booth seating.", + "A diner is a small, informal restaurant with a counter and stools where customers can sit, as well as tables and chairs.", + "A typical indoor diner has a wide variety of seating options, including booths, tables, and barstools.", + "The image is of a small, intimate indoor diner with dark wood panels and red accents.", + "In the image, there is a small indoor diner with red vinyl booths and a black-and-white checkered floor.", + "An image from an indoor diner shows a long counter with people sitting on stools, drinking coffee and eating pie.", + "In the image, there is an indoor diner with circular booths and a long counter.", + "The image might show a small, cramped diner with Formica countertops and chrome stools.", + "In the image, there is a small, cramped indoor diner with several tables and chairs.", + "I found an image of an indoor diner that shows a long counter with stools and a line of people waiting to order.", + "In the image, there is a small, cramped diner with peeling red vinyl booths and a Formica counter.", + "In this image, we can see an old-fashioned indoor diner with a long counter, red vinyl booths, and a jukebox in the corner.", + "I found an image of an indoor diner that looks like it's from the 1950s.", + "The interior of a popular American diner, with tables, booths, and a counter with stools.", + "A 1950s-style diner with red vinyl booths, a long counter with stools, and a jukebox in the corner.", + "An indoor diner with a counter, stools, and booths.", + "Walk into this diner and you'll feel like you've stepped back in time.", + "The inside of the cozy diner is decorated with old-fashioned knick-knacks and photos, giving it a warm and homey feeling.", + "This is a picture of an indoor diner.", + "A busy diner with customers enjoying their meals.", + "This charming diner is the perfect place to enjoy a delicious meal with friends.", + "Patrons inside a 1950s-style diner, enjoying their meals and each other's company.", + "Waitress taking order at an indoor diner." + ], + "outdoor diner": [ + "An outdoor diner typically looks like a small restaurant with a few tables and chairs set up on a sidewalk or in a park.", + "An outdoor diner is typically a restaurant that has a few picnic tables set up outside for customers to enjoy their meal in the fresh air.", + "A outdoor diner is an eatery that is located outdoors.", + "An outdoor diner is a restaurant that has a patio or outdoor seating area.", + "There is no one answer to this question since outdoor diners can vary greatly in terms of design and appearance.", + "Some outdoor diners might have a grassy lawn with picnic tables.", + "An outdoor diner is typically a restaurant that has a patio or other outdoor seating area.", + " typically, an outdoor diner has a patio with tables and chairs for customers to sit and enjoy their meal.", + "An outdoor diner is typically a restaurant that has outdoor seating for customers to enjoy their meal while being surrounded by nature.", + "A outdoor diner is a restaurant that has outdoor seating.", + "A outdoor diner can be identified by looking for a restaurant that has tables and chairs outside.", + "A outdoor diner may have a sign that says \"outdoor diner\" or \"outdoor cafe.", + "An outdoor diner is usually a restaurant that has outdoor seating.", + "One way to identify an outdoor diner is by its seating.", + "A outdoor diner is a restaurant that serves food outdoors.", + "A outdoor diner can be identified by its location.", + "A outdoor diner is usually a food establishment that specializes in serving outdoor meals.", + "A typical outdoor diner would have picnic tables and benches for customers to sit at, and would likely be located near a park or in a residential area.", + "There are several ways to identify an outdoor diner.", + "One way to identify an outdoor diner is by its seating.", + "A typical outdoor diner would have a counter and stools on one side and booths on the other.", + "There is no one answer to this question as outdoor diners can come in a variety of different styles and designs.", + "There is no one definitive answer to this question.", + "A typical outdoor diner may feature picnic tables, benches, and umbrellas for shading.", + "A casual outdoor dining setting might include a picnic table with benches, or a group of Adirondack chairs around a fire pit.", + "A typical outdoor diner consists of a counter with stools, a griddle, a deep-fryer, and a grill.", + "A outdoor diner can look like a lot of things.", + "A typical outdoor diner includes tables and chairs for customers to sit at, as well as a counter where food can be ordered.", + "A typical outdoor diner would have picnic tables and benches for seating, a grill for cooking, and a variety of food options.", + "There is no definitive answer to this question as outdoor diners can come in a wide variety of shapes and sizes.", + "An image from the internet of a outdoor diner shows a busy cafe with people sitting at tables outside, enjoying the warm weather.", + "The image shows a large outdoor diner with a thatched roof.", + "A black and white image of an outdoor diner with a retro feel.", + "An image from the internet of an outdoor diner shows a small, cozy restaurant with tables set up on a brick patio.", + "In the image, a small, outdoor diner is visible.", + "In the image, there is a red diner with a white awning and several people sitting at the picnic tables outside.", + "I found an image of an outdoor diner that looks like it could be from the 1950s.", + "I found an image of an outdoor diner that looks like it's from the 1950s.", + "In the image, there is a table set up outdoors with a red and white checkered tablecloth.", + "This image is of an outdoor diner with white walls and a red metal roof.", + "A woman enjoying a meal at an outdoor diner.", + "Outdoor Dining at its Finest.", + "A happy couple enjoys a meal at an outdoor diner.", + " Try our delicious food at our new outdoor diner!A caption of an image of a dog: I'm so excited to try out my new dog food!.", + "A casual outdoor diner with a view of the city skyline.", + "A casual outdoor diner with a view of the city.", + "A 1950s-style outdoor diner, with dozens of people enjoying their meals at picnic tables.", + "A couple enjoys a meal at an outdoor diner.", + "A mother and daughter spending quality time together at an outdoor diner.", + "A couple enjoys a meal at an outdoor diner." + ], + "home dinette": [ + "A home dinette is typically a small table with two to four chairs, designed for eating meals in the home.", + "A home dinette looks like a smaller version of a restaurant dining area.", + "A home dinette is typically a small table and chairs set for dining in the home.", + "A home dinette is a compact dining area that is typically found in small homes or apartments.", + "A home dinette looks like a small dining room set up in the corner of a kitchen or den.", + "A home dinette is a small corner table with two benches attached to it.", + "A home dinette looks like a dining room that is part of a kitchen.", + "A home dinette is a small dining area in a home, typically with a table and chairs.", + "A home dinette is a small dining area in a home, typically adjacent to the kitchen.", + "A home dinette is typically a small kitchen table with two to four chairs.", + "A home dinette is usually a small dining area in the kitchen or near the kitchen.", + "A home dinette is a small table and chairs set that is designed for use in a kitchen or dining room.", + "A home dinette is a small dining area in a home, typically with a table and chairs.", + "A home dinette is usually a small, round table with four chairs.", + "Dinette sets are small, intimate dining sets usually meant for breakfast nooks or small kitchens.", + "You can identify a home dinette by its small size and minimalist design.", + "A home dinette set is a small table and chairs designed for use in a kitchen or dining room.", + "A home dinette is designed to provide seating and dining space in smaller homes and apartments.", + "The term \"home dinette\" generally refers to a small dining table and chairs set designed for use in a kitchen or other small space in a home.", + "The most accurate way to identify a home dinette is to consult with a local designer or furniture store.", + "A home dinette typically includes a small table and chairs for dining in the home.", + "A home dinette is a small dining area located in the kitchen or another room of the house.", + "A home dinette is a small table with two chairs, typically placed in a kitchen or breakfast nook.", + "A home dinette is a small dining area in a kitchen or another room.", + "A home dinette set typically includes a small table with two to four chairs.", + "A home dinette is a type of dining room furniture that is typically a small table and chairs set.", + "A home dinette can look like a lot of different things, depending on the style of the home and the family's personal preferences.", + "A home dinette typically looks like a small dining room or breakfast nook.", + "A home dinette is a small eating area in a kitchen or living room.", + "A home dinette is typically a small table and chairs set placed in the kitchen or another room in the home where meals are eaten.", + "A home dinette is a small, intimate dining area in a home, typically located in the kitchen.", + " setThe image is of a small, round wooden table with four chairs around it.", + "A home dinette is a small dining area in a home, typically with a table and chairs.", + "A home dinette is a small dining area in a home, typically with a table and chairs.", + "https://i.", + "A home dinette is a small dining area in a home, typically with a table and chairs for four people.", + "A home dinette can be an intimate setting for enjoying meals with friends and family.", + "An image of a home dinette might show a small dining table set up in a breakfast nook or kitchen, with chairs and a place setting for each person.", + "The image is of a small, rectangular dinette table with two chairs.", + "The image is of a small, round dinette table with four chairs.", + " A small, cozy breakfast nook with a view of the garden.", + " A quaint home dinette with a teapot on the tableThis charming home dinette features a quaint table with a teapot, cups, and plates arranged neatly on top.", + "A cosy home dinette with added plants for a homey touch.", + " \"A small, cozy home dinette with a view of the backyard.", + "This is a home dinette set up in a corner of the kitchen.", + "This home dinette is perfect for small families or couples.", + "A home dinette set up for a family meal.", + "Dinette in kitchen with view of living room.", + "A cozy home dinette where the family can gather for meals and conversation.", + " Parents and children enjoy a meal together at the kitchen table." + ], + "vehicle dinette": [ + "A vehicle dinette is a small dining area in a vehicle, typically consisting of a small table and bench seats.", + "A vehicle dinette is a small dining area in a vehicle, typically with a table and bench or stool seating.", + "A vehicle dinette is a small table with benches attached to the sides that can be folded down to create a bed.", + "A vehicle dinette is a small, fold-out table that is usually found in the back of a van or SUV.", + "A vehicle dinette is typically a small table and bench seat that folds down from the side or back of a vehicle.", + "A vehicle dinette is a small, fold-out table that is typically found in the kitchen or dining area of a recreational vehicle (RV).", + "A vehicle dinette is a small table and bench seat that is built into the side of a camper van.", + "A vehicle dinette is typically a sofa or bench seat that folds down into a bed.", + "A vehicle dinette typically looks like a small fold-down table with bench seats on either side.", + "A vehicle dinette is usually a small table with bench seats that can be converted into a bed.", + "A vehicle dinette typically has bench seats that can be converted into a small table.", + "A vehicle dinette is a seat that can be converted into a bed.", + "A vehicle dinette is a small dining table that is typically found in a campervan or RV.", + "There is no definitive answer to this question, as the term \"vehicle dinette\" could mean a lot of different things.", + "The best way to identify a vehicle dinette is to look for a small table and chairs that are designed to be used in a vehicle.", + "A vehicle dinette is defined as a bench seat with a table that can be used for dining, office work, or as an extra sleeping area.", + "A vehicle dinette is a small table with bench seats that can be folded down to create a bed.", + "A vehicle dinette is a type of automobile seat that can be converted into a small table.", + "A vehicle dinette is a small table that is designed to be installed in a vehicle.", + "A vehicle dinette is a small dining table with chairs that fit snugly underneath when not in use.", + "There is no definitive answer to this question as vehicle dinettes can vary greatly in terms of both style and function.", + "A vehicle dinette is a small table that is designed to be used in a vehicle.", + "A vehicle dinette is typically a small table with bench seats that fold down into beds.", + "A vehicle dinette looks like a regular table and bench seating set up, but it is designed to fit in the small space of a camper or RV.", + "There is no definitive answer to this question since there is a wide range of designs and styles for vehicle dinettes.", + "A vehicle dinette is a seating area inside a vehicle, typically located near the kitchen area, that can be converted into a bed.", + "A vehicle dinette looks like a regular dinette, but it is smaller to fit in a vehicle.", + "A vehicle dinette looks like a small dining table and chairs that are designed to fit in a vehicle.", + "A vehicle dinette is a small area with a table and seating that is typically found in camper vans or recreational vehicles.", + "A vehicle dinette looks like a small dining table, typically with two or four chairs, that can be stored in a vehicle.", + "In the image, there is a rectangular table with bench seats on either side.", + "It is a photo of a small, rectangular table attached to the side of a van.", + "The image is of a white van with a blue and white awning extended from the side.", + "A vehicle dinette is an area in a vehicle, usually a van or RV, that has been converted into a makeshift dining area.", + "This image from the internet shows a vehicle dinette with a view of the outdoors.", + "A dinette is a small eating area in a vehicle, typically with a small table and bench seats.", + "This image shows a vehicle with a dinette area inside.", + "The image is of a small kitchen area in a van or RV.", + "The image is of a small, square table with two bench seats attached.", + "This image shows a vehicle dinette with bench seating and a table.", + "This is our vehicle's dinette area.", + "The vehicle dinette is a great place to enjoy a meal or snack while on the road.", + " The Vehicle DinetteThe vehicle dinette is a great way to enjoy your meals while on the road.", + " Oakley Class B RV

\n
\n

\n This is the Oakley Class B RV.", + "This is our RV's dinette area where we often eat meals and play games.", + "Fold-out dinette area in a camper van.", + "The vehicle dinette is a great way to enjoy a meal on the go!.", + "Fixer Upper Dining RoomThis image shows a dining room that has been renovated and is now much more stylish.", + "This is the dinette of a vehicle.", + " A cozy vehicle dinette for twoThis vehicle dinette is the perfect spot for a romantic dinner for two." + ], + "dining car": [ + "The dining car on a train is usually a long, narrow car with tables and chairs on either side.", + "A dining car is a train car where people can eat meals while they travel.", + "A dining car has a kitchen area and a dining area.", + "A dining car on a train is typically a long, narrow car with tables and chairs on either side.", + "A dining_car is a train car where people can eat.", + "A dining_car looks like a regular car that has been outfitted to function as a mobile dining room.", + "A dining car is typically a long, narrow railway car with an open-air section at either end.", + "A nocturnal provocateur, the dining car is an elusive creature.", + "A dining car is a car on a train used for serving meals to passengers.", + "A dining car is a railroad passenger car that serves meals on long-distance trains.", + "The word \"dining\" is usually written on the side of the car.", + "If you are on a train, look for a car with tables and chairs.", + "A dining car is typically a train car that has been outfitted with a kitchen area and seating for passengers.", + "A dining car on a train typically has large windows and sometimes has a glass roof.", + "What does a dining_car look like?A dining_car has a kitchen and dining area.", + "A dining car has a kitchen and space for dining.", + "The dining_car is usually the longest car on the train and is located behind the locomotive.", + "The dining_car is usually the second or third car from the locomotive on a passenger train.", + "A dining car is a railroad car that is used for transporting food and beverages.", + "A dining car is traditionally a railroad passenger car that serves meals on a moving train.", + "There is no one definitive answer to this question, as dining cars can come in a variety of different styles and designs.", + "A dining car on a train typically has large windows, comfortable seating, and a menu of food and drink options.", + "A dining car typically has a kitchen area at one end and a dining area at the other.", + "In the United States, a dining car is a railroad passenger car that serves meals in individual dining areas.", + "The dining car on a train usually has large windows so that passengers can enjoy the view as they eat.", + "A dining car is a railroad passenger car that is used for serving meals in a seated area.", + "A dining car typically has large windows and seats that face each other so that passengers can enjoy the scenery while they eat.", + "A dining_car looks like a regular train car with a kitchen and dining area.", + "A dining car is usually a train car that has been outfitted with a kitchen and dining area.", + "A dining car on a train typically has large windows so that passengers can enjoy the scenery while they eat.", + "This image is of a dining car on a train.", + "This dining car is from the twenties and appears to be Pullman.", + "A dining car is a railroad car that serves food to passengers on a train.", + "I found an image on the internet of a dining car from the early 1900s.", + "A dining car is a car on a train, typically one with multiple levels, which serves meals to passengers.", + "The image shows a dining car on a train.", + "_in_restaurantThis image is of a dining car in a restaurant.", + "An image from the internet of a dining_car may show a large room on a train with long tables and booths along the sides.", + "A dining car on a train with white tablecloths and waiters in formal attire.", + "The image is of a long, sleek dining car from the early 1900s.", + "Dining Car on the Union Pacific Railroad.", + " Service with a smile! Our dining car staff is happy to serve you your next meal.", + "Dining car on the Union Pacific Railroad, circa early 1900s.", + "This image shows a typical dining car on a passenger train.", + " A dining car on the Atchison, Topeka, and Santa Fe Railway, ca.", + "This dining car was used by the Santa Fe Railway.", + "Aokusen Kinka Dining Car the first-class dining car on the T\u014dkaid\u014d Main Line operated by Central Japan Railway Company.", + "The dining_car of the Inter-American Express, a luxurious train that ran from New York to Miami in the early 1900s.", + "This is a dining_car.", + "Passengers enjoying a meal in the dining car of a train." + ], + "dining room": [ + "A dining room is a room in a house where people eat meals.", + "A dining room is a room for consuming food.", + "There is no one answer to this question, as the style and design of dining rooms can vary considerably from home to home.", + "A dining room is a room in a house where people eat meals.", + "A dining_room looks like a room with a table and chairs in it.", + "A dining room is a room in a house or apartment where people eat meals.", + "A dining room is usually a room in a house or apartment where people eat meals.", + "A dining_room looks like a place where you would eat, with a table and chairs, and maybe a buffet or sideboard.", + "A dining room is a room in a house or apartment where people eat meals.", + "A dining_room typically includes a table and chairs for people to sit and eat.", + "A dining room is usually a room in a house or apartment where people eat meals.", + "Some common features of a dining room are a table and chairs, china cabinets or other storage pieces, and a sideboard.", + "A dining_room typically has a large table with chairs around it.", + "A dining room is a room in a house or apartment where people eat meals.", + "In a home, the dining room is usually near the kitchen.", + "A dining_room is a room where people can eat meals.", + "In a room with multiple purposes, a dining_room is typically distinguished by a table and chairs for sitting and eating.", + "A dining_room is a room in a house where people eat meals.", + "A dining_room is usually a large room in a house with a table and chairs.", + "A dining room is typically a room in a house or apartment where people eat meals.", + "A typical dining room has a table with chairs around it.", + "While there is no one answer to this question, typically a dining room is a separate room in a house or apartment, used for formal or informal meals.", + "There is no one answer to this question as dining rooms can vary greatly in terms of style and design.", + "A dining room typically contains a table and chairs, but it can also contain other furniture like a buffet, hutch, or China cabinet.", + "The dining room is a room in the house where people eat.", + "A dining_room looks like a room in a house with a dining table and chairs.", + "A dining room is a room in a house or apartment where people eat meals.", + "There is no definitive answer to this question as the style of a dining room can vary greatly from one home to the next.", + "A dining room is typically a room in a house or apartment where people eat meals.", + "A dining room is a room in which people eat meals.", + "The image from the internet is of a dining room with a long table and many chairs.", + "This image is of a dining room with a long wooden table and eight chairs around it.", + "This image is of a formal dining room with a large rectangular table in the center.", + "This image from the internet is of a modern dining room with a large rectangular table and eight chairs.", + "The image is of a large, formal dining room with a long rectangular table.", + "The image is of a beautifully set dining room table.", + "This image shows a dining room with a dark wood table and chairs, a chandelier, and a large window.", + "This dining room image from the internet shows a modern and sleek design.", + "This image shows a modern dining room with a sleek wood table and black chairs.", + "A large, formal dining room with a long rectangular table.", + "A dining room set for a formal dinner party.", + "A bright and airy dining room with a large table and plenty of seating for guests.", + "A dining room with a large table and chairs.", + " A dining room with a long wooden table and eight chairs.", + "Dining room with wood table and chairs.", + " individuals are gathered around a large dining room table enjoying a meal together.", + "This dining room is beautifully designed with a large chandelier and a stunning view.", + "Dining RoomThis is a dining room.", + " A well-decorated dining room with a large table and chairs.", + "This dining room looks just perfect for a family Thanksgiving dinner." + ], + "discotheque": [ + "A discotheque is typically a nightclub with a dance floor where people can go to dance.", + "A discotheque typically has a dance floor, bar, and stage for live music.", + "The inside of a discotheque is usually dark with flashing lights.", + "A discotheque is a club where people go to dance to music that is usually provided by a DJ.", + "A discotheque usually has a dance floor, bar, and DJ booth.", + "A discotheque is often a nightclub with a dance floor where people can go to dance.", + "When you think of a disco, you might picture a large room with a shining dance floor in the center, where people are dancing to loud music.", + "A discotheque is a nightclub that plays recorded music.", + "A discotheque is typically a nightclub with a dance floor where people can go to dance.", + "A discotheque is a club where people dance to music played on a loud sound system.", + "A discotheque is a nightclub that plays recorded music.", + "The most obvious way to identify a discotheque is by its name.", + "A discotheque is typically a nightclub that plays electronic dance music.", + "One way to identify a discotheque is by the type of music that is played there.", + "A discotheque is typically a nightclub that plays electronic dance music.", + "A discotheque is typically identified by its loud music, dark atmosphere, and flashy lights.", + "What do you mean by discotheque?.", + "A discotheque is usually a club where people go to listen to music and dance.", + "A discotheque is a nightclub that plays recorded music.", + "A discotheque is typically a nightclub that plays mostly electronic dance music.", + "A discotheque may have a dance floor, bar, and stage for live performances.", + "This answer could vary depending on the location and size of the disco, but usually a disco is a large room with a dance floor in the center and a stage for live music or a DJ booth.", + "It depends on the discotheque, but they are often dimly lit with disco lights and a dance floor.", + "A discotheque is usually a nightclub with a dance floor, where people go to dance to disco music.", + "A discotheque is a nightclub that plays recorded music for dancing.", + "A discotheque typically has a dance floor, bar, and DJ booth.", + "There is no one answer to this question as disco clubs can take on many different forms.", + "A discotheque looks like a nightclub or bar that has a dance floor.", + "A discotheque typically has a dance floor and a stage for live music or DJs.", + "There is no one answer to this question since the appearance of a discotheque can vary greatly depending on the location, size, and theme of the establishment.", + "A room with flashing colorful lights and people dancing.", + "This image is of a large, crowded discotheque.", + "The image is of a brightly lit discotheque with people dancing on a large dance floor.", + "An image from the internet of a discotheque may show people dancing in a brightly lit room with music playing loudly in the background.", + "An image of a discotheque from the internet might show a club with pulsing lights, music, and people dancing.", + "An image of a discotheque would likely show a large room with a dance floor, a stage for live music or DJs, and a bar.", + "The image is of a brightly lit room with a string of lights hanging down from the ceiling.", + "An image of a discotheque from the internet shows a large room with a high ceiling.", + "An image from the internet of a discotheque shows a group of people in a nightclub dancing to music.", + "The image is of a brightly lit room with a disco ball hanging from the ceiling.", + "Dance the night away at our disco!.", + "The fashion and music scene in the 1970s was all about disco.", + "A group of people enjoying a night out at a disco in the 1970s.", + "Inside the roller disco! Even though it's the '80s, these party-goers are still having a blast on the dance floor.", + " The disco ball spins and the crowd dances.", + "People dancing at a discotheque.", + "Disco fever was in full swing in the 1970s, and this discotheque was the place to be! With its flashing lights and pulsing music, it was the perfect place to let loose and have a good time.", + "Crazy Nightlife: Clubbers enjoy themselves at a discotheque in the early hours of the morning.", + "The disco ball spins around the room, casting a multicolored light show on the dance floor below.", + "This image is of a discotheque in the 1970s." + ], + "dock": [ + "A dock is a wooden or metal platform that extends from the shore into the water.", + "A dock is a floating platform that is used to moor boats.", + "A dock is a raised platform built out over water, typically supported by piles or posts, that provides a landing stage for boats and a point for loading and unloading cargo or passengers.", + "A dock is a structure extending from the shoreline into the water.", + "A dock looks like a long piece of wood or metal that sticks out of the water.", + "A dock is typically a long, flat platform built out from the shore into a body of water, where boats or ships can tie up.", + "A docks is a large platform built out into water so that ships can tie up and load or unload cargo.", + "A dock is a platform or ramp built out into the water from the shore, used for loading and unloading boats.", + "A dock is a long, narrow platform that extends from the shore into the water.", + "A dock is a raised platform built over water, typically supported by piles or posts, that provides a landing and access point for boats and other watercraft.", + "Docks are usually long and narrow with a float attached.", + "A dock is a type of pier used to moor boats or ships.", + "The best way to identify a dock is by its piers.", + "Docks are typically made of wood or concrete and have a flat surface.", + "A dock is a structure that is built out over the water on pilings or posts.", + "A dock is a platform built out into a body of water, typically forming a right angle to the shore, used to assist in the loading and unloading of ships.", + "A dock is a platform that is built out from the shore and is used to moor boats.", + "A dock is a floating platform that is attached to the shore.", + "A dock may be identified by its piles, posts, or stakes, which are used to secure the dock to the shore; by the loading ramps or gangways used to access the dock; or by the buildings located on the dock.", + " docks are usually made of wood or concrete and have a ramp or steps leading down into the water.", + "Most docks are made of wood and have a rectangular or square shape.", + "A dock is a structure that extends from the shore into the water.", + "A dock is a structure built on the shore of a body of water.", + "A dock is a structure built on the shore of a body of water.", + "A dock normally consists of a platform supported by posts or piles, and provides access to land or water.", + "A dock typically consists of a platform supported by piles or posts.", + "A dock is a small platform or ramp where boats and ships can be tied up and get out of the water.", + "A dock is a platform or ramp on the edge of a body of water, typically supported by pilings or posts, that provides access to the water.", + "A dock is a structure that extends from the shore into the water.", + "A dock is a covered platform that is built out over the water.", + "The image shows a dock with wooden planks and metal supports.", + "An image of a dock from the internet shows a long, wooden structure that extends into a body of water.", + "An image of a dock from the internet shows a wooden dock leading out into a body of water.", + " or pierThe image is of a dock with several wooden posts sticking out of the water.", + "This image shows a dock with a wooden deck and two piers extending out into the water.", + "An image of a dock from the internet would likely show a wooden or metal platform extending out from the shoreline into a body of water.", + "https://www.", + "An image of a dock from the internet might show a long, wooden structure with pilings extending into the water.", + "An image of a dock from the internet would show a structure made of wood, metal, or concrete, extending from the shore into a body of water.", + "A dock is a structure that can be used to moor a boat or ship.", + "A dock on a lake on a sunny day.", + "Dock on a lake with a mountain in the background.", + "The dock at sunset.", + "The dock at sunset.", + "The dock provides a safe place to moor boats and enjoy the water.", + "The dock is a great place to relax and enjoy the view.", + "The dock is a wooden platform built out into a body of water, typically used for loading and unloading ships.", + "The dock at sunset.", + "The dock at sunset.", + "A wooden dock on a lake." + ], + "outdoor doorway": [ + "A outdoor doorway typically has a door handle and a keyhole.", + "A outdoor doorway typically has a door handle and a lock.", + "A outdoor doorway typically has a door handle and a latch.", + "A outdoor door is a door that is installed on the exterior of a home.", + "A outdoor doorway has a door and a frame.", + "An outdoor doorway is typically a door that leads outside of a building.", + "A door that goes outside has a frame around it and is usually made of wood or metal.", + "An outdoor doorway is a door that leads from the inside of a building to the outside.", + "A doorway leading outside has a door handle and a latch.", + "A door that opens to the outside has a doorknob, a lock, and a hinge.", + "An outdoor doorway typically has a threshold to keep out the elements, and is usually wider and taller than an indoor door.", + "An outdoor doorway can typically be identified by its location.", + "A door is a construction that provides entrance into and exit from a space.", + "Outdoor doors are typically made of metal or wood and have a handle.", + "A typical outdoor door has a wooden or metal frame and a door knob.", + "An outdoor doorway is typically wider than an indoor doorway to accommodate for the increased foot traffic.", + "There are many ways to identify a outdoor doorway.", + "Outdoor doorways are typically wider than indoor doorways to accommodate for the increased foot traffic brought in from the outdoors.", + "An outdoor door is typically made of wood or metal and has a handle that is used to open and close the door.", + "An outdoor doorway is a doorway that leads to the outdoors.", + "There is no one answer to this question as outdoor doorways can come in a variety of shapes, sizes, and styles.", + "A doorway to the outdoors typically has a door with a doorknob, and possibly a screen door.", + "A outdoor doorway typically consists of a door that leads outside, a frame around the door, and a threshold below the door.", + "A outdoor doorway may look like a standard door, but it is designed to withstand the elements.", + "Outdoor doorways can come in many different styles, but typically they are made of wood or metal and have a door handle or knob.", + "A door that goes outside typically has a doorknob and a deadbolt lock.", + "Different doors can have different appearances, but a standard outdoor door typically has a rectangular frame and a door made of either wood, metal, or glass.", + "There is no definitive answer to this question as the appearance of an outdoor doorway can vary drastically depending on the specific design of the house or building.", + "A outdoor doorway typically has a door that leads outside and a frame around the door.", + "An outdoor doorway typically includes a door handle or knob, a deadbolt lock, and a keyhole.", + "The image is of a bright red door with a brass knocker.", + "This is an image of an outdoor doorway leading into a garden.", + "I found an image of an outdoor doorway that I really like.", + "This outdoor doorway is made of stone and has a large, arched doorway.", + "An image from the internet of an outdoor doorway might show a solid wood door with a brass knocker in the center.", + "This image shows a beautiful, ornate outdoor doorway.", + "This image is of a blue outdoor door with a white trim.", + "This image from the internet is of a outdoor doorway leading into a home.", + "I found an image of an outdoor doorway on Pinterest.", + "The image is of a white door with a glass insert.", + "The front door of a house with a porch and a small garden.", + "The door to a better life.", + "The front door of a house with a small porch and a potted plant.", + "Outdoor doorway with stone steps leading up to it.", + "The doorway to adventure awaits!.", + "The door to the outside world.", + "The exterior door of a house with a green trim.", + "An exterior door leading to a patio.", + "The door to a new adventure.", + "The heavy wooden door swung open, revealing a leafy, sun-dappled path beyond." + ], + "dorm room": [ + "A dorm_room looks like a small room with a bed, desk, and dresser.", + "A dorm room typically has a bed, a desk, and a dresser.", + "A dorm room is typically a small room in a dormitory with a bed, desk, and other essential furniture.", + "A dorm room is typically a small room with a bed, desk, and dresser.", + "A dorm room is typically a small room in a dormitory with a bed, desk, and dresser.", + "A dorm room typically has a bed, desk, chair, and dresser for each student.", + "There are various types of dorm rooms, but most have a bed, desk, and chair for each student.", + "A dorm room is a small room in a college dormitory for students.", + "A dorm room is a small bedroom in a college dormitory.", + "A dorm room typically contains a bed, desk, and dresser for each student.", + "The dorm_room should look like a small classroom with about 20 to 30 beds.", + "Dorm rooms typically have twin beds, desks, chairs, and dressers.", + "A dorm_room is typically a small room in a college dormitory that is shared by two or more students.", + "A dorm room can be identified by its small size, usually with two or more beds, desks, and a shared bathroom.", + "A dorm_room is typically a small, bare room with a bed, desk, and dresser.", + "If it has a bed, a desk, and a dresser, it is probably a dorm_room.", + "A dorm room is typically a small, shared room in a college dormitory.", + "A dorm_room is usually a small, private room in a college dormitory.", + "Dorm_rooms are typically small, cramped, and have very little storage space.", + "The best way to identify a dorm room is by the type of furniture that is inside the room.", + "A dorm room typically includes a twin size bed, a desk, and a chair.", + "A dorm room typically contains a bed, desk, and dresser for each student.", + "There is no one answer to this question as dorm rooms can vary greatly in size and appearance.", + "There is no definitive answer to this question, as dorm rooms can vary greatly in terms of size, layout, and furnishing.", + "A dorm room is typically a plain, small room with a bed, desk, and chair.", + "A dorm room usually contains a bed, a desk, and a dresser.", + "Assuming you are referring to a college dorm room, they can vary greatly in size and layout.", + "A dorm room looks like a bedroom with a single or twin bed, a study area, and a social area.", + "A dorm_room typically looks like a small bedroom with a twin-sized bed, a desk, and a dresser.", + "A typical dorm room has two beds, two desks, two chairs, and two dressers.", + "The image is of a small, cramped dorm room with two single beds pushed up against opposite walls.", + "It's a photo of a small, cramped dorm room with two beds, a desk, and a tiny window.", + "There is an image on the internet of a dorm room with two twin beds, two nightstands, two desks, and two chairs.", + "This image from the internet shows a typical dorm room.", + "There is a image of a small, cramped dorm room with two beds, two desks, and two dressers.", + "The image is of a small, cramped dorm room with two twin beds, a desk, and a dresser.", + "The image is of a small, cluttered dorm room with twin beds.", + "There is an image of a dorm room with two beds on either side, desks in the middle, and a door leading to a bathroom.", + "In the image, there is a small, cramped dorm room with two twin beds pushed against opposite walls.", + "There is a picture of a dorm room on the internet that looks like it would be a very cozy place to live.", + "This is a typical dorm room at XYZ University.", + "A front view of a small dorm room with a twin bed, desk, and chair.", + " A clean and cozy dorm room, ready for studying.", + "A typical student dorm room at XYZ University.", + "A view of my dorm room from my bed.", + " ACozy Place to Call HomeThis cozy dorm room is the perfect place to call home during your college years.", + "With a cramped living space and stark white walls, it's no wonder that college students often feel overwhelmed in their dorm rooms.", + "A close-up of a small, messy dorm room.", + "A typical college dorm room with a bed, desk, and chair.", + " A messy dorm room with clothes and textbooks strewn about\"It's the end of the semester and my dorm room is a mess!\"." + ], + "driveway": [ + "A driveway is most commonly a paved area used to park vehicles, but can also be an unpaved area used for the same purpose.", + "A driveway typically looks like a paved or concrete path leading from a street to a home or garage.", + "A driveway is a paved or unpaved area that leads to a home or other building, typically from a road.", + "A driveway is a paved area that leads to a garage, house, or other building.", + "A driveway is a paved or unpaved area that leads from the road to a garage, home, or other building.", + "A driveway is a paved or graveled path leading from a street or highway to a building or garage.", + "A driveway is a paved or gravel area that leads from the street to a garage or home.", + "A driveway typically looks like a paved or concrete path that leads from the street to a home or garage.", + "A driveway is a paved path that leads from the street to a home or garage.", + "A driveway is a paved or unpaved area that leads from the street to a house or other building.", + "A driveway is a paved or gravelled path that leads to a house or garage.", + "A driveway is a paved or unpaved area that leads from a street to a building or a garage.", + "A driveway is a paved area where you can drive a car.", + "A driveway is typically a path leading from a road or garage to a home or business.", + "A driveway is a paved or unpaved surface that leads from a road to a building or garage.", + "A driveway is often paved and leads from a street to a garage or house.", + "A driveway is a road leading up to a garage or house.", + "A driveway is typically a paved or concrete area leading from a road to a garage or house.", + "A driveway is a paved path that leads to a house or other building.", + "A driveway can be identified by its paved or concrete surface.", + "A driveway can be made of many different materials, but most are some type of pavement, including asphalt, concrete, or gravel.", + "A driveway looks like a pathway made of concrete, asphalt, or gravel that leads from the street to a home or garage.", + "A driveway looks like a road that leads to a house or building.", + "A driveway is a path that leads from the street to a home or garage.", + "A driveway looks like a road that leads to a house or garage.", + "A driveway is a paved or graveled area that leads from a road to a home or other building.", + "A driveway is a paved or graveled area that leads from a road to a parking area, garage, or house.", + "A driveway is a paved area that leads to a house or other building.", + "A typical driveway is composed of a concrete, asphalt, or gravel surface and is used for off-street parking.", + "A driveway is a paved or unpaved area next to a house or garage where people can park their car.", + "The image might show a gravel or paved driveway leading up to a house.", + "Image shows a long driveway with a car parked at the end.", + "A driveway is an image of a path leading to a house or other building, typically with parking spaces on either side.", + "The image is of a driveway with a car parked on it.", + "The image is of a driveway with a car parked on it.", + "This image is of a driveway with a car parked in it.", + "The image is of a long driveway leading up to a large, two-story white house.", + "A driveway is a paved or graveled path leading from a street or roadway to a home or other building.", + "This image is of a driveway that is made of concrete.", + "This image is of a long, paved driveway that leads up to a large, two-story home.", + "Paved driveway leading to a two-story home.", + "This is my driveway.", + "A long driveway leads up to a large, two-story house.", + "Snowy driveway in the winter.", + " The driveway is in need of repairs.", + " \"My new home!\".", + "The driveway is clean and well maintained.", + "This is a driveway.", + " Road leading to a home.", + "This is a driveway." + ], + "outdoor driving range": [ + "An outdoor driving range typically includes a large, open area of grass where golfers can practice their swings.", + "A driving range typically has an area of grass for hitting balls, and a small practice putting green.", + "A driving range typically consists of an area of land where people can practice their golf swing.", + "A driving range is typically a fenced in area where people can go to practice their golf swings.", + "Some driving ranges have artificial turf, while others have grass.", + "A driving range typically consists of an area of land where golfers can practice their drive.", + "An outdoor driving range typically has a row of hitting mats, each with a golf ball, set up in front of a net.", + "An outdoor driving range typically includes an area of grass where golfers can hit balls, and a parking lot.", + "A driving range typically has a large, open area where people can drive golf balls.", + "A driving range typically has an area for parking, a check-in desk, a pro shop, and practice teeing grounds.", + "An outdoor driving range can typically be identified by its location - it will usually be situated close to a golf course, or in a rural area where there is plenty of space for golfers to swing their clubs.", + "Typically, an outdoor driving range will have a number of hitting bays that are open to the driving range, with hitting mats or astroturf in each bay.", + "A outdoor driving_range is typically a large, open area with a golf net or cage.", + "A driving range typically has a series of teeing grounds, often with targets, or flagsticks, to assist the player in evaluating their shot.", + "One way to identify an outdoor driving range is by the presence of targets, usually in the form of circular or square targets made of straw or hay.", + "A outdoor driving_range can be identified by its long, open space for hitting balls, and by the presence of golf carts.", + "An outdoor driving range will typically have a large open space with a number of golf balls set up at various distances.", + "A driving range typically has a large, open space with targets at different distances.", + "An outdoor driving range will typically have an area for golfers to practice their drive, and a parking lot for golf carts.", + "A outdoor driving range is typically a fenced in area with a number of teeing grounds and targets at different distances.", + "An outdoor driving range typically has a long, open space for hitting balls, with a net at the far end to catch them.", + "A driving range typically consists of an area where people can practice their golf swings.", + "An outdoor driving range typically has a large, open area for hitting balls, with several rows of teeing grounds.", + "A driving range is typically a fenced in area with several targets at different distances.", + "An outdoor driving range looks like a long, open expanse of land with several flagsticks placed at various distances.", + "An outdoor driving range typically looks like a large, open field with a number of golf balls scattered across it.", + "A driving range typically consists of an area where golfers can practice their drives.", + "An outdoor driving range may have various targets at different distances, wind flags, and a net to catch the balls.", + "A outdoor driving_range typically looks like a large open area with targets at various distances.", + "An outdoor driving range typically includes a parking lot, a hitting area with several targets, and a grassy area for players to warm up.", + "A driving range is a place where people can go to practice their golf swings.", + "In the image, there is a driving range with several people hitting golf balls.", + "An image from the internet of a outdoor driving_range may show a few scattered people hitting golf balls near a large parking lot.", + "In the image, there is a man driving a golf ball down a fairway towards a driving range.", + "In the image, there is a driving range with several people hitting golf balls.", + "The image is of a large, lush driving range with several people hitting balls.", + "The image shows a driving range with a row of golfers hitting balls.", + "An image from the internet of a driving range may show a few golfers hitting balls, with a wooded area or buildings in the distance.", + "In the image, there is a driving range with numerous hitting bays.", + "An image from the internet of a driving range shows a long, flat expanse of green grass with white golf balls dotting the surface.", + "Teeing off at the driving range.", + "Sunset at the driving range.", + "A group of people enjoying a game of golf at an outdoor driving range.", + "A driving range in Scotland on a sunny day.", + "A driving range set up outdoors with artificial turf and a view of the cityscape in the distance.", + "A man driving a golf ball at an outdoor driving range.", + "At the outdoor driving range, you can practice your swing and work on your game.", + " A driving range provides a place for amateur golfers to practice their swing.", + " A woman is teeing up a golf ball while a man looks onA woman is teeing up a golf ball while a man looks on at an outdoor driving range.", + "A group of friends enjoying a day out at the driving range." + ], + "drugstore": [ + "A drugstore typically has aisles of products and a counter where customers can ask for help or purchase items.", + "A drug store typically contains a pharmacy as well as a retail section.", + "In the United States, drugstores typically sell medicines, health and beauty products, food and drink, and some sell general merchandise.", + "A drugstore is a type of retail store that sells pharmaceutical drugs and other health-related items.", + " insideA typical drugstore in the United States has a pharmacy area where prescriptions are filled and a retail area where over-the-counter drugs and other items are sold.", + "A drugstore typically has a wide variety of products, including over-the-counter medications, cosmetics, toiletries, and snacks.", + "A drugstore is a small shop that sells medicines and other health-related products.", + "The exterior of a drugstore typically has a large sign with the store's name, and the interior has aisles of shelves stocked with various items for sale.", + "A drugstore typically looks like a small storefront with a counter and shelves of products.", + "A drugstore is usually a small store that sells medicine and other health-related products.", + "The best way to identify a drugstore is to look for the \"Rx\" symbol on the front of the store.", + "Drugstores are typically small businesses that are located near other small businesses.", + "A drugstore is typically a small shop that sells medicine and some basic toiletries.", + "The easiest way to identify a drugstore is by the large green cross that is often displayed outside the store.", + "Look for the large signs with \"RX\" or a mortar and pestle symbol.", + " Drugstores are unique in that they typically sell both over-the-counter drugs and prescription drugs.", + "In the United States, a drugstore is typically a small-scale retail pharmacy that sells prescription drugs, over-the-counter drugs, health and beauty products, and sometimes light snacks and drinks.", + "The easiest way to identify a drugstore is to look for the large, neon-lit signs that say \"RX\" or a variation of that.", + "A drugstore is a retail shop that primarily sells medications and other health and beauty products.", + "A drugstore is a business that sells pharmaceuticals.", + "There is no definitive answer to this question as drugstores can come in many different shapes and sizes.", + "A drugstore looks like a small convenience store.", + " Drugstores vary in size and appearance, but most have a wide selection of over-the-counter drugs, health and beauty products, and occasionally food and household items.", + "A drugstore looks like a small grocery store.", + "A drugstore usually has a pharmacy section, where prescription drugs are kept.", + "A drugstore typically has a large retail space for selling over-the-counter drugs and health and beauty products.", + "A drugstore can look like a small shop or a large department within a grocery store.", + "A drugstore typically looks like a small grocery store, with a counter and a pharmacist at the back.", + "A drugstore typically looks like a small grocery store with a pharmacy section.", + "Most drugstores are large retail stores that sell a wide variety of products, including over-the-counter medications, cosmetics, and household products.", + "In the image, there is a drugstore with a green awning that says \"Rite Aid\" in white letters.", + "This image from Google search shows the exterior of a CVS drugstore.", + "An image from the internet of a drugstore typically shows the exterior of a building with a sign that says \"drugstore\" or \"pharmacy.", + "An image of a drugstore from the internet might show the exterior of a building with a sign that says \"drugstore\" or it might show the interior of a drugstore with shelves of medicines and other products.", + "In the image, there is a large, rectangular drugstore sign with a green cross in the center.", + "The image from the internet is of a drugstore that is well-lit and has aisles of different types of products.", + "The image shows the exterior of a large drugstore.", + "An image from the internet of a drugstore shows a large store with brightly lit signs.", + "The image is of a small, independent drugstore.", + "The image is of a gray and white storefront with a green awning that reads \"drugstore\" in white letters.", + " drugstore.", + "This is a local drugstore in my town.", + "The caption reads: \"A typical drugstore in the United States.", + " A drugstore in a small townThis image shows the exterior of a drugstore in a small town.", + "A drugstore in the United States.", + " A woman wearing a face mask walks into a CVS Pharmacy store in BrooklynA woman wearing a face mask walks into a CVS Pharmacy store in Brooklyn, New York, on April 4, 2020.", + "Prescription drugs at a drugstore.", + "A local drugstore in the town of Perfectville.", + " A young woman is buying over the counter medicationA young woman is buying over-the-counter medication at a drugstore.", + "A drugstore in the United States." + ], + "electrical substation": [ + "A electrical substation typically consists of a large, fenced in area with high voltage electrical equipment inside.", + "There is no one answer to this question as electrical substations come in a variety of shapes and sizes.", + "A typical electrical substation consists of a switchyard, transformers, voltage regulators, circuit breakers, and other components.", + "A electrical_substation typically consists of a large metal shed housing a generator and/or transformer, with a number of metal poles or towers carrying high-voltage power lines leading into and out of the shed.", + "A electrical_substation is a area where electricity is brought in from the power plant and then transferred to different areas.", + "A typical electrical substation consists of a fenced area containing a transformer, switchgear, and other electrical equipment.", + "A typical electrical substation would include a fenced compound containing high-voltage equipment such as transformers, switchgear, and circuit breakers.", + "A large area with several large, round metal buildings.", + "A typical electrical substation consists of a number of high-voltage electrical circuits, each of which is connected to one or more transformers.", + "Electrical substations are large facilities used to switch electricity between different parts of the power grid.", + "The best way to identify an electrical substation is to look for large transformers, high-voltage signs, and metal fences.", + "Some common features of an electrical substation are high voltage equipment, transformers, bushings, circuit breakers, and disconnect switches.", + "Smaller substations may be unmanaged and have only a transformer, switchgear, and disconnects to provide control of the energized parts.", + "The most common types of electrical substations are transmission substations and distribution substations.", + "Some common features of an electrical substation are a large number of high voltage wires, largeTransformers, and tall metal towers.", + "A substation is an assembly of equipment for transforming, switching, protection and control of electric power.", + "If you see a large fenced in area with high voltage powerlines coming into it, it is likely an electrical substation.", + "A an electrical substation is typically a fenced in area with large transformers and other electrical equipment.", + "Typically, an electrical substation will have high-voltage power lines coming into it, and lower voltage power lines going out.", + "One way to identify an electrical substation is by looking for a cluster of large metal boxes with transformers inside.", + "A electrical_substation typically consists of a transformer and a switchgear.", + "A typical electrical substation consists of a number of high-voltage switchgear,transformers, and power lines on a fenced area.", + "A typical electrical substation consists of a set of high voltage power lines coming into the station, with a transformer to step the voltage down to a lower level.", + "There is no one answer to this question, as electrical substations come in a variety of shapes and sizes.", + "A sub station uses large transformers to convert high voltage electricity to lower voltages.", + "A picture of a electrical substation is shown below.", + "An electrical substation is a facility where electricity is generated and distributed to consumers.", + "A typical electrical substation includes a switchgear, transformers, and other electrical equipment.", + "Substations come in a variety of shapes and sizes, but all include a variety of component parts.", + "A typical electrical substation includes a switchyard,transformers,bus bars,circuit breakers,disconnect switches,voltage regulators,meters,and other equipment.", + "It's a large, open, metal structure with severaltransformers and other pieces of equipment inside.", + "The image is of a large, silver electrical substation.", + "An image of an electrical substation from the internet shows a large, rectangular building with a number of large, cylindrical transformers inside.", + "An image of a electrical substation from the internet shows a large, square building with high voltage wires running in and out of it.", + "The image from the internet of an electrical substation shows a plant where electricity is generated and distributed.", + "In the image, there is a large, fenced-in building with a few small outbuildings surrounding it.", + "The image is of a large concrete building with several chimneys or smokestacks on the roof.", + "The image is of a modern electrical substation.", + "In the image, there is a large, fenced-in area containing several large pieces of machinery.", + "In the image, there is a large, silver-colored structure in the center with electrical wires running to and from it.", + "An electrical substation is a facility where electrical equipment is installed to distribute electricity from the main power supply to consumers.", + "A view of an electrical substation in Germany.", + "An electrical substation is a critical part of the electrical grid.", + " A group of high voltage transformers and associated equipment that connects a generating station to the electrical grid.", + " A General Electric Company 752 traction motor resting on a wheeled trolleyA General Electric Company 752 traction motor resting on a wheeled trolley.", + " Electricity substation in Seattle, Washington.", + " A transformer at an electrical substationA transformer is a device used to change the voltage of an electrical signal.", + "Aerial view of an electrical substation.", + "Running smoothly since 1987, thanks in part to regular maintenance.", + " A substation is a part of an electrical grid." + ], + "door elevator": [ + "A door elevator is a type of elevator that has doors on the front and back.", + "A door elevator typically looks like a small, rectangular box that is mounted on the door of a building.", + "A door elevator looks like a regular elevator, but it has an extra set of doors on the outside.", + "A door elevator is a type of elevator that has doors that open and close automatically.", + "A door elevator is a type of elevator that opens and closes its doors automatically.", + "A door elevator is a type of elevator that has doors on both sides of the cab.", + "A door elevator is a type of elevator that has doors on both sides of the cabin.", + "A door elevator is a type of elevator that has doors on both the front and back.", + "A door elevator is a type of elevator that has doors on both sides.", + "A door elevator is a type of elevator that has doors on both the front and back.", + "There is not a specific way to identify a door elevator, but they are often located near the entrance to a building.", + "There are a few ways that you can identify a door elevator.", + "A door elevator typically has a door that opens and closes automatically.", + "There is no definitive answer to this question, as the best way to identify a door elevator may vary depending on the specific type of elevator in question.", + "There is not a definitive way to identify a door elevator, but some indicators that it may be a door elevator include:-The presence of a door on the front of the elevator\n-The elevator is located near a set of.", + "The most common type of door elevator is a sliding door elevator.", + "There are a few ways to identify a door elevator.", + "There is no definitive way to identify a door elevator, as there is no specific type or style of elevator that is classified as a door elevator.", + "There is usually a sign on the door that says \"elevator\" or there is an arrow pointing to the elevator.", + "The best way to identify a door elevator is to look for the doors on either side of the elevator.", + "A door elevator can look like a regular elevator, but instead of a solid door, it has a door with windows that allow people to see in and out of the elevator.", + "There is no standard door elevator, as they can be customized to fit any space.", + "A door elevator looks like a small platform with a door on it.", + "I couldn't find a picture of a door elevator, but it is probably similar to a regular elevator except that the doors are located on the sides of the elevator instead of the front.", + "There is no such thing as a door elevator.", + "A door elevator is a type of elevator that has doors on each side of the elevator car.", + "A door elevator looks like a normal elevator, but it has a door on the front of it.", + "A door elevator looks like a normal glass door, but with a 4-inch space at the bottom that allows a person to enter and exit the elevator without having to open the door.", + "There is no such thing as a door elevator.", + "A door elevator looks like a regular door, but with a button next to it that you can press to make the door open and close.", + "This image is of a door to an elevator.", + "The door elevator image from the internet is of a metal door with a keypad on the wall next to it.", + "This image is of a door elevator.", + "The image is of a metal door elevator with a sign that reads \"In Case of Fire Use Stairs.", + "The image is of a standard door elevator with a metal frame and a wooden door.", + "The image is of a metal door with a sign that says \"elevator\" in white lettering.", + "The image is of a metal door with a sign that says \"Elevator.", + "The image is of a metal door with a sign that says \"elevator.", + "The image is of a metal door with a sliding panel.", + "This image is of a door elevator.", + "The door elevator is undergoing construction and is not operational.", + "Door elevator at 1 World Trade Center.", + "The door elevator is a unique and innovative way to move heavy objects up and down stairs.", + " The door elevator going up to the top floor.", + "A mysterious door elevator leading to an unknown location.", + "A door elevator is a type of elevator that uses a door to move between floors.", + "The door elevator is a type of elevator that uses a door to move between floors.", + "The door elevator is a device that helps people with mobility issues to move around independently.", + "An elevator door leading to an unknown destination.", + "The door elevator is a type of elevator that is used to move people or goods between floors." + ], + "interior elevator": [ + "A interior elevator has walls on the inside and usually has a door on the front that opens up into the elevator shaft.", + "Interior elevators are typically square or rectangular in shape and have several buttons on the inside that correspond to the different floors in the building.", + "Typically, an interior elevator will have four walls, a ceiling, and a floor.", + "A interior elevator typically has four walls and a ceiling, with the doors located in the middle of one of the walls.", + "A interior elevator has walls, a ceiling, and a floor.", + "An interior elevator typically has walls, a ceiling, and a floor made of smooth, finished materials like wood, metal, or glass.", + "A typical interior elevator has a control panel on one side with the doors opposite.", + "A interior elevator typically has a metal or glass door that opens into a small space.", + "Most interior elevators are enclosed in a metal or glass cage.", + "A interior elevator typically has walls made of metal or wood and a metal or wood ceiling.", + "There is no one definitive way to identify an interior elevator.", + "There is no one definitive way to identify an interior elevator.", + "There is no definitive answer to this question, as the features that distinguish an interior elevator from other types of elevators can vary depending on the specific design and purpose of the elevator.", + "Interior elevators can be identified by looking for a call button on the inside of the elevator.", + "You can identify an interior elevator by its location.", + "Interior elevators typically have a door at each end of the cab, with the controls located near one of the doors.", + "Interior elevators typically have doors that line up with the walls of the building, rather than sliding doors.", + "Look for an interior elevator if you want a model that will complement the look of your home.", + "One way to identify an interior elevator is by looking for a door on the inside of the building that leads directly into the elevator shaft.", + "There are a few ways to identify an interior elevator.", + "Interior elevators can come in a variety of styles, but most have a basic rectangular shape with metal or wooden panels lining the walls and doors.", + "Interior elevators can vary in size and style, but typically they are enclosed in a shaft with elevator doors on each level.", + "A typical interior elevator has a metal or wooden frame with panels on the sides.", + "Most interior elevators have a simple design that includes a control panel, doors, and a car that moves up and down the shaft.", + "A interior elevator typically looks like a small room with a door that opens and closes.", + "A interior elevator typically consists of a interior shaft with a interior car that moves up and down the shaft.", + "A typical interior elevator in a residential setting has walls, a ceiling, and a floor, with a door at one end that opens into the elevator shaft.", + "A typical interior elevator looks like a small room with walls, a ceiling, and a floor.", + "There is no one-size-fits-all answer to this question, as the look of an interior elevator can vary depending on the specific model and design.", + "Most interior elevators have a basic metal and glass design.", + "This image from the internet shows an interior elevator with a stainless steel panel and a glass door.", + "This image is of a small, cramped elevator with a metal door and bare walls.", + "The image shows an interior elevator with a metal gate that is open.", + "This image is of a modern elevator interior with a sleek metal and glass design.", + "An image of an interior elevator shows a small, square room with walls made of brushed metal.", + "The image is of a small, metal elevator with a metal door.", + "This image is of a traditional, interior elevator.", + "There is a metal elevator with a closed door.", + "The image shows a traditional, rectangular elevator with wood paneling and a gold-plated handrail.", + "The image is of a small, traditional elevator with wood paneling and brass fixtures.", + "The shiny, new elevator in the office building is a source of pride for the employees.", + "Stuck between floors? No problem! Our elevators are equipped with emergency phones so you can always get help.", + "\nA view of an elevator interior, with the door open, showing the control panel with buttons for different floors.", + "This is an interior elevator in a building.", + "The interior of an elevator.", + "This is the interior of an elevator.", + "A view of an elevator interior, with the doors open to reveal the empty space inside.", + "An elevator in a modern office building.", + "This is an interior elevator.", + " A Silver LiningAn image of an elevator with a silver lining." + ], + "elevator shaft": [ + "A vertical shaft that runs the length of the building, linking the various floors together.", + "A elevator_shaft is a long, vertical shaft that contains the elevator car and Supports it as it moves up and down.", + "A elevator shaft looks like a long, vertical, cylindrical tunnel that runs between the floors of a building.", + "A elevator shaft is a long, narrow shaft that runs vertically up the side of a building.", + "a elevator shaft is a long, vertical tunnel that contains the elevator car and connects it to the various floors of a building.", + "A elevator_shaft is a long, vertical shaft that extends from the top of a building to the bottom.", + "A elevator shaft is a vertical passageway that contains one or more elevators.", + "A elevator_shaft typically consists of a shaft with a door at each end, and a elevator car that travels up and down the shaft.", + "A typical elevator_shaft is a large, vertical shaft that contains the elevator car and its machinery.", + "A elevator_shaft typically has a metal frame and metal doors.", + "A typical elevator_shaft is a vertical, enclosed space that contains one or more elevators.", + "If you are looking at a building, the elevator_shaft will be a vertical column in the center of the building.", + "There are a few key identifying features of an elevator shaft.", + "A shaft that contains a moving staircase or series of slides for transporting people or goods vertically is called an elevator shaft.", + "A elevator_shaft can typically be identified by its vertical orientation and its enclosing walls.", + "Elevator shafts are typically located in the center of a building, and are often surrounded by a concrete core.", + "If you are inside of a building, you can usually find elevator_shafts by looking for a row of buttons next to a set of doors.", + "A elevator_shaft can be identified by its cylindrical shape and smooth surface.", + "If you are standing in a building, you can identify an elevator shaft by looking for a vertical opening in the building that is large enough to fit an elevator.", + "An elevator shaft can be identified by its rectangular shape and vertical orientation.", + "Elevator shafts are long, vertical shafts that extend from the top floor of a building to the bottom floor.", + "A elevator shaft typically consists of a shaft with a number of floors.", + "A typical elevator shaft is a rectangular space enclosed by walls, with a shaft in the center for the elevator car to travel up and down.", + "A elevator_shaft looks like a vertical hallway that contains one or more elevators.", + "A elevator shaft looks like a long, narrow, vertical shaft that typically contains an elevator.", + "A elevator shaft looks like a long, skinny tube.", + "A elevator_shaft looks like a long, narrow, vertical shaft.", + "A typical elevator shaft is a vertical, rectangular opening in a building.", + "A elevator_shaft is a vertical tunnel that connects the different floors of a building.", + "A elevator_shaft looks like a long, vertical shaft that leads up to a windowless room with a set of stairs leading down from it.", + "The image is of a dark, metal elevator shaft with a set of doors at the bottom.", + "The image is of a long, metal shaft with a metal door at the end.", + "The image is of a dark elevator shaft with a bright light at the top.", + "The image is of a long, narrow, vertical shaft with a metal door at the bottom.", + "I found an image of an elevator shaft on Google that looks like it's under construction.", + "The image is of a elevator shaft with the doors open.", + "The image is of a long, metal shaft with a metal door at the end.", + "In the image, there is a long elevator shaft with a metal door at the end.", + "The image is of a long, vertical shaft with a metal cage elevator in the center.", + "In the image, there is a metal elevator shaft with a square opening at the top.", + "The elevator shaft extends vertically through the building, and the elevator cab travels up and down the shaft.", + "The elevators in this building are very old and creaky.", + "The deep elevator shaft plummets into the darkness below.", + "The lift shaft is the vertical transportation route of a building.", + "In many buildings, the elevator shaft is the tallest and most structurally sound part of the building.", + "The elevator_shaft is a long, deep shaft that runs vertically through a building.", + "The elevator shaft is a key component in a tall building, allowing people and goods to be moved quickly between floors.", + "vertical transportation in a building.", + "A large, deep elevator shaft that appears to be unused.", + "The empty elevator shaft stretches below me, the only sound the faintest echo of my own breathing." + ], + "engine room": [ + "The engine room is the room in a ship, plane, or train where the engine is kept.", + "An engine room is usually a large room located near the center of a ship, containing the ship's main engines and often other service systems.", + "A engine_room looks like a large room with a lot of machinery.", + "A engine_room looks like a large room with a lot of machines and people working in it.", + "A room in which the engine of a ship is located.", + "A engine room is a room that contains the engines of a ship.", + "The engine room is where the engine is located.", + "A engine_room is a room in a ship where the engine is located.", + "A engine_room looks like a room with a bunch of big machines in it.", + "A typical engine room is a large, cramped space that is full of heavy machinery.", + "The easiest way to identify an engine_room is to look for large, vertical exhaust stacks protruding from the roof.", + "An engine_room is a place where engines are kept.", + "The best way to identify an engine_room is to try and locate the source of the engine noise.", + "The engine room is the room or space in a ship, plane, or train where the engine is located.", + "An engine room is where the engines are located.", + "If you can hear the engine running, that is a good indication that you are in the engine room.", + "There is not a surefire way to identify an engine_room without physically seeing it.", + "engine_room is a room on a ship that contains the ship's engines.", + "The engine_room is the heart of the ship where the engine is located.", + "The engine_room is where the engines are located.", + "An engine room is typically a room in a ship, plane, or train where the engine is located.", + "The engine room of a ship is typically located near the middle of the ship, at the bottom.", + "A typical engine room is located below the main deck of a ship, and includes the propulsion system, as well as other utility systems.", + "A engine_room is typically a large room that contains the engine or engines for a ship, plane, or train.", + "A typical engine room would include the main engine, auxiliary engines, pumps, compressors, heat exchangers, cooling towers, boiler, electric generator, switchgear, and lubricating oil system.", + "There is no definitive answer to this question since engine rooms can vary greatly in size and layout depending on the type of vessel they are aboard.", + "There is no definitive answer to this question as engine rooms can vary considerably in size and layout depending on the type of vessel they are onboard.", + "A engine_room is typically a large room that houses the engines of a ship.", + "An engine room is typically a large, rectangular space located at the back of a ship.", + "A engine room is typically a large room located at the back of a ship that houses the ship's engines.", + "The image is of a large room with a high ceiling.", + "An image of an engine room from the internet shows a large room with a high ceiling.", + "The image is of a large room with a tall ceiling.", + "An image of an engine room from the internet shows a large room with a high ceiling.", + "In an engine room, there is a large central engine with many pipes and wires running to and from it.", + "An image of an engine room from the internet shows a large room filled with machinery.", + "An image of an engine room from the internet might show a large room with a LOT of machinery.", + "An image from the internet of an engine room might show a large room with a number of engines and other machinery.", + "In an engine room, there are several large pieces of machinery.", + "An image from the internet of a engine_room shows a large room with several large machines.", + "The engine room of a ship is responsible for powering the vessel.", + "An engine room is a room or space in a ship, typically located near the stern, in which the engine is housed.", + "In the engine room of a ship, the engineers make sure everything is running smoothly.", + "engine_room\nA engine room is a compartment of a ship, typically located near the stern, where the ship's engines are located.", + "The engine room of a ship is where the ship's engine is located.", + "The engine room of a ship is where the ship's engines are located.", + "A engine_room on a ship.", + "The engine_room of a ship is where the engines are located.", + "This is the engine_room of the Titanic.", + "This is the engine room of a ship." + ], + "indoor escalator": [ + "A regular indoor escalator typically has two sides, with steps that move continuously between them.", + "An indoor escalator is usually a metal staircase that moves up or down on a set of tracks.", + "A indoor escalator typically looks like a set of stairs that move on their own.", + "Indoor escalators are usually found in shopping malls and airports.", + "An indoor escalator typically has two sides with stairs that move on a track.", + "Indoor escalators have a metal frame with motorized stairs that move up or down on a track.", + "A indoor escalator has a floor and two side rails that run along the length of the escalator.", + "A indoor escalator typically has a smooth, metal surface that moves in a continuous loop.", + "An indoor escalator typically has a set of stairs that move on a track.", + "A typical indoor escalator has a central support column with a rail at the top and bottom that the escalator's steps attach to.", + "There a few ways to identify an indoor escalator: \n- Look for a sign that says \"Escalator\" \n- Look for a set of escalator stairs leading up or down \n- Look for people standing.", + "There are a few ways to identify an indoor escalator:1.", + "An indoor escalator is a type of escalator that is typically used to transport people between floors of a building.", + "An escalator that is located indoors will typically have a roof or some type of covering above it.", + "There are typically indoor escalators in places with high pedestrian traffic, such as shopping malls, airports, and metro stations.", + "A escalator that is located inside of a building is an indoor escalator.", + "Some common features of indoor escalators are: a metal or glass enclosure, metal handrails, and a rotating staircase.", + "Indoor escalators tend to be larger and have covered treads and handrails.", + "Indoor escalators are usually located in shopping malls, airports, and other public places.", + "An indoor escalator typically has a metal or glass enclosure and is located inside a building.", + "An indoor escalator typically looks like a conventional stairway, but with a moving handrail in the center of the stairs.", + "A indoor escalator typically has a metal frame with steps that move on a track.", + "A indoor escalator generally looks like a traditional escalator, with a moving staircase that transports people between two levels.", + "Indoor escalators are typically made of stainless steel and have a glossy finish.", + "A indoor escalator typically has a metal frame with steps that move up or down on a track.", + "An indoor escalator typically looks like a set of stairs that move on a conveyor belt.", + "A indoor escalator is typically a metal staircase with a moving handrail that helps people move between floors.", + " escalator in a shopping center\nAn escalator in a shopping center typically has a metal and glass exterior with the escalator itself inside.", + "Indoor escalators typically have a metal frame and handrail, with the steps moving on a track.", + "A indoor escalator typically looks like a regular escalator, but it is located inside of a building.", + "An image of an indoor escalator shows a long, metal staircase with a handrail.", + "The image is of an indoor escalator with people on it.", + "An image from the internet of an indoor escalator is of a escalator that is inside a building.", + "There is an image of an indoor escalator on the internet.", + "The image shows an escalator in a shopping mall.", + "This image is of a large, modern indoor escalator.", + "The image is of an escalator with people walking up and down it.", + "The image is of an indoor escalator with a blue and white sign that says \" escalator.", + "The image is of an escalator in an indoor shopping mall.", + "This image is of an escalator inside a shopping mall.", + "An indoor escalator transporting people up to the next level of a building.", + "An escalator inside a shopping mall.", + "A escalator in an indoor shopping mall.", + "An escalator going up to the second floor of a shopping mall.", + "A person is riding an escalator in an indoor shopping mall.", + "This escalator takes passengers up to the second floor of the mall.", + "Stairs are so last century.", + "The escalator at the mall makes it easy to get around the store.", + "Indoor escalator in a shopping mall.", + "An escalator inside a shopping mall." + ], + "excavation": [ + "An excavation is a hole in the ground.", + "A typical excavation looks like a large, open hole in the ground.", + "A excavation is a large hole in the ground that is created when dirt and rock are removed.", + "A excavation looks like a large hole that has been dug out of the ground.", + "A excavation is a large, man-made hole in the ground.", + "A excavation is a large, deep hole in the ground that is often used for construction or mining purposes.", + "An excavation usually looks like a large, deep hole in the ground.", + "A excavation looks like a hole in the ground that has been dug out by a machine.", + "A excavation looks like a large hole in the ground.", + "A excavation is a large hole in the ground that is dug out by a machine.", + "A excavation is a large hole in the ground.", + "The most common way to identify an excavation is by its width and depth.", + "An excavation is a large hole in the ground.", + "A excavation is a large, man-made hole in the ground.", + "A excavation can be identified by its large size and deep holes.", + "An excavation can be identified by its large size and by the many workers and machines that are present.", + "One way to identify an excavation is by its size and shape.", + "A excavation is a large, man-made hole in the ground.", + "A excavation is a large hole in the ground that has been dug out by a machine.", + "An excavation is a hole in the ground that has been dug out by humans.", + "A excavation looks like a large hole in the ground.", + "A excavation looks like a large hole in the ground.", + "A excavation looks like a large hole in the ground.", + "A hole in the ground.", + "A excavation can look like a large hole in the ground.", + "A typical excavation looks like a large hole in the ground.", + "A excavation looks like a large hole in the ground that has been dug out using heavy machinery.", + "Excavation can refer to many different things, but most generally it is the large-scale removal of earth or rock, often for the purpose of building something.", + "A typical excavation looks like a large, open hole in the ground.", + "A excavation looks like a large hole in the ground.", + " (construction)A large hole has been dug in the ground and dirt is piled up around the edge.", + "The image is of a large hole in the ground with dirt and rocks around the edge.", + " siteThe image shows a large hole in the ground with people and machinery around it.", + "A large machine is digging a hole in the ground.", + "I found an image on the internet of an excavation that appears to be taking place at an archaeological site.", + "I found an image of an excavation that looks like it is taking place at an ancient ruin.", + "Image shows a large excavation site with bulldozers and other machinery scattered around.", + "This image is of an excavation at an archeological site.", + "An image of an excavation site shows a large hole in the ground with dirt and rocks around the edges.", + " siteA large hole has been dug in the ground and dirt is piled up around it.", + "Artist's reconstruction of an excavation site.", + "Artifacts from an ancient civilization are unearthed during an excavation.", + "An excavation site in central Israel.", + " An excavation being done on a ancient site.", + "Archaeologists uncovering ancient Roman artifacts during an excavation in Pompeii.", + "Archaeologists at work on a dig site.", + "Archaeologists uncover an ancient burial site.", + "Paleontologists uncovering a new fossil discovery.", + "Archaeologists at work on an excavation site.", + "The Excavation of Pompeii." + ], + "indoor factory": [ + "An indoor factory usually looks like a large room with many machines.", + "A indoor factory is a building where manufacturing takes place.", + "An indoor factory is typically a large, warehouse-like building with a large open floor space and ceilings that are high enough to accommodate machinery.", + "A indoor factory usually has a large, open floor space with high ceilings.", + "Inside a typical factory, there are large machines that run 24 hours a day, conveyor belts, and workers on the assembly line.", + "Indoor factories are usually large warehouses with tall ceilings and exposed beams.", + "A factory that is located indoors usually has large windows and high ceilings.", + "A indoor factory is a big room with a lot of machines in it.", + "An indoor factory is a building where manufacturing takes place.", + "Indoor factories are typically large, warehouse-like buildings with high ceilings and few windows.", + "Some indicators that a facility may be an indoor factory include: \n-The building may be large, with few or no windows.", + "There are a few ways to identify an indoor factory.", + "An indoor factory has walls and a roof.", + "The most common way to identify an indoor factory is by the presence of large machines and equipment inside the building.", + "There are several ways to identify an indoor factory.", + "An indoor factory can be identified by its large size, high ceilings, and large windows.", + "There are a few ways to identify an indoor factory:-The factory will likely be located in an industrial area.", + "The most common way to identify an indoor factory is by the manufacturing equipment that is present.", + "Indoor factories can typically be identified by their large size, tall ceilings, and lack of windows.", + "The best way to identify an indoor factory is to look for signs of activity.", + "A indoor factory typically has large machines that move parts around to different workers who are stationed at assembly lines.", + "A factory located indoors typically has large open spaces with high ceilings.", + "A factory that is indoors will typically have large warehouse-type buildings that house the manufacturing equipment.", + "A factory that is indoors will typically have large windows to let in natural light, as well as high ceilings.", + "It depends on the type of factory.", + "An indoor factory is typically a large building with high ceilings and a lot of floor space.", + "A factory that is indoors may have large windows to allow in natural light.", + "An indoor factory typically features large, open spaces with high ceilings.", + "A indoor factory can look like a regular building from the outside.", + "A typical indoor factory looks like a large room with various machines and equipment arranged in a specific way to facilitate the manufacturing process.", + "The image is of an indoor factory with a large number of machines and workers.", + "The image is of an indoor factory with a large assembly line.", + "The image is of a large, warehouse-like building with a high ceiling.", + "The image is of a large room with high ceilings.", + "The image is of a large room with high ceilings.", + "An indoor factory is typically a large building with high ceilings and large windows.", + "In the image, there is a large factory with several machines inside.", + "The image is of a large, well-lit factory floor with several workers in hard hats and safety gear operating machines.", + "In the image, there is a large room with concrete walls and a ceiling.", + "This image is of an indoor factory with large machines and conveyor belts.", + " The Ford Piquette Avenue Plant is a former automobile factory located at 461 Piquette Avenue in Detroit, Michigan.", + "In this factory, workers toil away at long hours, repetition, and low wages.", + "This factory produces parts for electronic devices.", + "This is an indoor factory where they make car parts.", + "A group of workers in a factory setting.", + "The interior of a large factory building with high ceilings, exposed pipes, and metal scaffolding.", + "This factory is responsible for mass-producing small electronic components.", + "This indoor factory is busy producing a variety of goods.", + "The interior of a factory showing machines and workers laboring at their stations.", + "This indoor factory features a production line in which components are assembled into products." + ], + "fairway": [ + "A fairway is a manicured path through the grass on a golf course.", + "A fairway is a mowed strip of grass between the tee and the green.", + "A fairway is a narrow strip of grass that leads to the green.", + "A fairway on a golf course is a wide, well-manicured strip of grass that is meant for the player to hit their drive from.", + "A fairway is a long, narrow strip of grass that leads up to the green.", + "A fairway is a long, narrow strip of grass in the middle of a golf course, between the tee and the green, that is cut shorter than the rough.", + ".", + "A fairway typically looks like a long, straight, or slightly curved path of closely cropped grass leading up to the hole on a golf course.", + "A fairway typically looks like a long, straight, and slender stretch of grass that is cut shorter than the surrounding rough.", + "A fairway on a golf course generally looks like a wide, well-manicured path of grass that is meant for the player to hit their golf ball down.", + "A fairway can be identified by the lighter-colored grass that is delineated by darker-colored rough.", + "The fairway is the mowed area between the tee box and the green.", + "The fairway is the area of the golf course between the tee and the green that is kept manicured and is typically free of any obstacles.", + "A fairway can be identified by looking for a well-manicured expanse of grass that is free of trees and other obstacles.", + "The best way to identify a fairway is to look for signs that indicate where the fairway is located.", + "The best way to identify a fairway is by looking for well-manicured grass that is cut short.", + "The fairway is the area of the golf course between the tee and green that is well-manicured and closely mowed.", + "The fairway can be identified by the closely mown grass that runs from the tee towards the green.", + "A fairway is a wide, well-groomed section of grass in the middle of a golf course.", + "The fairway is the area between the teeing ground and the green that is kept mown.", + "A fairway is a wide, well-manicured path leading to the hole on a golf course.", + "A fairway generally looks like a long, straight pathway through a manicured lawn with trees lining the sides.", + "A fairway is a particular kind of golf course, one with a well-maintained grassy area between the teeing ground and the green.", + "A fairway looks like a long strip of grass that is well-maintained.", + "A fairway on a golf course is typically a wide, well-manicured strip of grass leading up to the green.", + "A fairway will typically have some kind of grass (like Bermuda grass) that is mowed short.", + "A fairway is a well-groomed, wide expanse of grass in the middle of a golf course.", + "A fairway is typically a narrow, grassy strip of land that is found between the tee box and the green on a golf course.", + "A fairway on a golf course is a section of the course between the teeing ground and the green that is well-manicured and free of obstacles.", + "A fairway is the area of the golf course in between the tee and the green.", + "The image is of a golf course fairway with perfectly manicured landscaping.", + "The image from the internet is of a golf course with neatly trimmed grass and a few scattered trees.", + "I found an image of a golf course fairway on Google Images.", + "In the image, the fairway is a long, green expanse of grass that stretches out in front of the golfers.", + "The image shows a golf course with perfectly manicured grass and a few trees.", + "An image from the internet of a fairway might show a green expanse of grass, with a few trees or other obstacles, leading up to a hole.", + "An image of a fairway would likely show a neatly manicured expanse of grass, with perhaps a few trees or bushes lining the edges.", + "I found an image of a golf fairway that looks like it is in the middle of a nature reserve.", + "The image is of a golf course fairway with manicured grass and a sand trap.", + "In this image, we see a fairway with neatly trimmed grass and a golf ball sitting atop it.", + " A group of golfers tee off at the start of their game.", + "The fairway is a long, narrow stretch of land that leads from the teeing ground to the green.", + "A view of the 17th hole fairway at Pebble Beach Golf Links.", + "This is a fairway at a golf course.", + "The fairway is a beautiful sight to behold.", + "The 10th hole at Pebble Beach Golf Links.", + "A view of the fairway at Pebble Beach Golf Links.", + "The fairway of a golf course is the well-manicured portion of the course between the tee box and the green.", + " A fairway of a golf course.", + " A fairway of a golf course." + ], + "fastfood restaurant": [ + "A fastfood_restaurant typically has a drive-thru and offers a limited menu of items that are prepared quickly and served in paper or Styrofoam containers.", + "A fastfood_restaurant typically has a drive-thru and serves hamburgers, fries, and soft drinks.", + "A fastfood_restaurant typically looks like a small restaurant with a drive-thru or walk-up window.", + "A fastfood_restaurant typically has a drive-thru and sells quick, inexpensive food such as burgers, fries, and soft drinks.", + "A typical fast food restaurant is a small, casual eatery that specializes in serving quick, affordable meals.", + "A fastfood_restaurant typically has a drive-thru and offers a limited menu of items that are quick to prepare.", + "A fastfood_restaurant typically has a drive-thru and offers foods that can be consumed quickly, such as hamburgers, french fries, and soft drinks.", + "A fastfood_restaurant looks like a restaurant that specializes in serving fastfood.", + "A fastfood_restaurant typically has a drive-thru and serves hamburgers, french fries, soft drinks, and milkshakes.", + "A fastfood_restaurant typically has a drive-thru and is known for serving quick, affordable food.", + "The most common fast food restaurant is McDonalds.", + "Some common fast food restaurants include McDonald's, Burger King, Wendy's, Taco Bell, and KFC.", + "There are a few ways to identify a fast food restaurant.", + "The most common way to identify a fast food restaurant is by its name.", + "The most common fast food restaurants are McDonald's, Burger King, Wendy's, Taco Bell, and Subway.", + "A fast food restaurant is typically a restaurant that serves quick, affordable food.", + "A fastfood restaurant is usually a quick-service restaurant with a limited menu of ready-to-eat items.", + "A fastfood_restaurant typically offers quick, inexpensive food in a casual setting.", + "The term \"fast food restaurant\" usually refers to an establishment that serves food quickly at a low price.", + "In the United States, a fast food restaurant is typically a chain restaurant that serves Americanized foods such as hamburgers, french fries, and soda.", + "A fastfood_restaurant looks like a small, typically drive-in or walk-up restaurant that specializes in selling quick, inexpensive meals.", + "A fastfood_restaurant usually looks like a small restaurant with a counter and some stools where customers can eat.", + "There is no definitive answer to this question as the appearance of fast food restaurants can vary greatly.", + "There is no one answer to this question as different fast food restaurants can have different designs.", + " Many fast food restaurants have a drive-thru window where customers can order and pay for their food without ever getting out of their car.", + "Image result for fast food restaurant\nA fast food restaurant typically has a drive-thru and/or walk-up window, and minimal seating inside.", + "A fast food restaurant is typically a small restaurant with limited seating that specializes in serving fast food items such as burgers, fries, and soft drinks.", + "There is no definitive answer to this question as the appearance of fast food restaurants can vary greatly.", + " fastfood_restaurants typically have a drive-thru and small dining area.", + "A fastfood_restaurant looks like a small building with a drive-thru window and a parking lot.", + "The image shows the exterior of a fast food restaurant.", + "An image of a fastfood_restaurant might show a hamburger and fries on a plate, with a soda on the side.", + "A fastfood_restaurant image from the internet may show a fast food restaurant chain's logo, a storefront of a fast food restaurant, customers inside a fast food restaurant, or workers behind a fast food restaurant counter.", + "In the image, a fast food restaurant is seen from the outside.", + "An image of a fastfood restaurant may include a drive-thru, a sign with the restaurant's name, and a menu.", + "The image is of a fastfood restaurant called \"In-N-Out Burger.", + "A fast food restaurant is typically a small, quick service eatery that offers affordable, ready-to-eat food.", + "In the image, there is a fastfood restaurant that looks like it is doing a healthy amount of business.", + "The image is of a large, yellow building with a red and white sign that says \"McDonald's.", + "A Whopper from Burger King.", + "A fastfood restaurant typically offers a limited menu of high-calorie, unhealthy food options.", + " A McDonald's restaurantIn the United States, McDonald's is the leading fast food restaurant chain by sales, with over 38,000 locations.", + " A busy fast-food restaurant during lunch hour.", + " A McDonald's restaurant with the Golden ArchesA caption of an image of a grocery_store: A grocery store with a variety of food items on shelves.", + " \"The best place to go when you're hangry.", + "A shot of the drive-thru at a fastfood restaurant.", + "A busy McDonald's restaurant.", + "A fastfood restaurant typically offers a limited menu of items that are quick to prepare and serve.", + " A group of people sitting at a fast food restaurantThis appears to be a happy group of people enjoying their meal at a fast food restaurant.", + " A busy McDonald's restaurantA caption of an image of a man in a suit: A man in a business suit walking down a city street." + ], + "cultivated field": [ + "A cultivated field looks like a piece of land that has been cleared of all trees and brush, and is being used to grow crops.", + "A cultivated field looks like a piece of land that has been plowed and is ready for planting.", + "A cultivated field generally has a even and smooth surface, free of stones, with uniform soil depth.", + "A cultivated field typically looks like a large, open area of land with evenly spaced rows of crops.", + "A cultivated field looks like a field that has been tilled and is ready for planting.", + "A cultivated field looks like a plot of land that has been cleared of trees and other vegetation, and is being used to grow crops.", + "A cultivated field has crops that are growing in rows.", + "A cultivated field typically looks like a large, flat expanse of land with evenly spaced rows of crops.", + "A cultivated field is a piece of land that has been cleared of trees and other plants, and is used for growing crops.", + "A cultivated field often looks like a large, open space with rows of plants or crops.", + "A cultivated field is a piece of land that has been cleared of trees and other obstacles, and is used for agricultural purposes.", + "In general, a cultivated field is a piece of land that is used for agricultural purposes.", + "A cultivated field is a field that has been purposely planted and grown by humans.", + "It is difficult to identify cultivated fields from the air.", + "A cultivated field is typically characterized by having a uniform appearance, with plants that are all the same species and same age.", + "The best way to identify a cultivated field is to look for signs of agriculture, such as crops or farming equipment.", + "The best way to identify a cultivated field is by the presence of crops.", + "The best way to identify a cultivated field is by its appearance.", + "The easiest way to identify a cultivated field is by its appearance.", + "The easiest way to identify a cultivated field is by looking for signs of human activity, such as fences, irrigation systems, or buildings nearby.", + "A cultivated field is a field that has been plowed and is ready for planting.", + "A cultivated field looks like a field that has been tilled and is ready for planting.", + "A cultivated field is a field that has been cleared of rocks and debris, and is ready for planting.", + "A cultivated field looks like a field that has crops in it.", + "A cultivated field looks like a piece of farmland that has been plowed and is ready for planting.", + "A cultivated field is a field that has been plowed and is ready for planting.", + "A cultivated field looks like a large, open expanse of land with evenly-spaced rows of crops.", + "A cultivated field looks like a field that is full of crops.", + "A cultivated field is typically flat and has straight rows.", + "A cultivated field is a field that is plowed and used to grow crops.", + "The image is of a field with evenly spaced rows of green plants.", + "The image is of a cultivated field with rows of plants.", + "I found an image on the internet of a cultivated field with evenly spaced rows of green plants.", + "The image is of a large, green field with evenly spaced rows of plants.", + "I found an image on Google of a cultivated field with neatly planted rows of crops.", + "This image is of a cultivated field with crops growing.", + "One image that comes to mind is a field of wheat with the sun setting in the background.", + "The image is of a vast green field with rows of tall maize plants.", + "In the image, there is a cultivated field with rows of green plants.", + "This image is of a sprawling field of green grass, with a few trees dotting the landscape.", + " The field is being prepped for the planting season.", + "This field was grown using sustainable agricultural practices.", + "This is a field of crops that have been planted and grown by farmers.", + "A vast field of wheat flourishes under the watchful eye of the farmer.", + "The farmers have worked hard to create this beautiful, thriving field.", + "A field of wheat ready to be harvested.", + "In this image, we see a cultivated field that has been tilled and is ready for planting.", + "A field of corn ready for harvest.", + "A farmers field after a harvest.", + "A field of wheat ready to be harvested." + ], + "wild field": [ + "The wild field is a vast and sprawling grassland with clumps of trees and bushes dotting the landscape.", + "A wild field looks like an uncontrolled area of land where plants and animals grow and live without the intervention of humans.", + "A wild field typically has tall grasses, weeds, and other plants growing throughout.", + "A wild field looks like a field of tall grass with flowers growing in it.", + "A wild field Looks like an un kept Yard with Weeds and overgrown Grass.", + "A wild field is a piece of land that has not been developed or cultivated.", + "It's full of overgrown grass, weeds, and wildflowers.", + "A field that has not been planted or cultivated.", + "A wild field is overgrown and not cared for.", + "A wild field is a piece of land that is not cultivated or developed.", + "A wild field is a field that has not been developed or enclosed by humans.", + "A field is an area of land that is used for growing crops or keeping animals.", + "The best way to identify a wild field is to look for one that has not been developed or significantly altered by humans.", + "The best way to identify a wild field is to look for fields that are not being used for crops or other domesticated purposes.", + "The best way to identify a wild field is to look for signs of human activity.", + "A wild field is an area of land that has not been developed or cultivated.", + "A wild field is a piece of land that is not used for agriculture or any other type of development.", + "A wild field can be identified by its overgrown and unkempt appearance.", + "It can be difficult to identify a wild field.", + "In the United States, a wild field is an area of undeveloped land that has not been plowed or developed for agricultural use.", + "A wild field is a field that is not cultivated or managed by people.", + "A wild field looks like a field that is not maintained by people.", + "A wild field typically has tall grasses, weeds, and other plants growing in it.", + "A wild field looks like a field that is not cared for.", + "A wild field may have tall grasses, weeds, and flowers.", + "A wild field looks like a field that has not been tamed or cultivated.", + "A wild field looks like an overgrown meadow with tall grasses and weeds.", + "I am not sure what you are asking.", + "A wild field looks like an unkempt area of land with tall grasses, weeds, and possibly some small trees or shrubs.", + "A wild field looks like a field that is full of tall grass, weeds, and other plants.", + " with blooming flowersIn the image, the wild field is blanketed in a colorful array of blooming flowers.", + "The image is of a field of tall grass with a few trees in the distance.", + "In the image, there is a wild field with tall grass and flowers.", + "The image is of a wide, open field with tall grass and wildflowers.", + "A wild field is an image of an area of land that is not cultivated or developed.", + "I see a wild field with tall grass and flowers.", + "In the image, there is a wild field with tall grass and colorful flowers.", + "I found an image on the internet of a wild field with tall grass and flowers.", + "The image is of a wide, open field with tall grass and wildflowers.", + "I see a field of tall grass with a few trees scattered around.", + "The vast expanse of the wild field is breathtaking.", + "A field of tall grass and wildflowers waving in the breeze.", + "A wild field of green grass and yellow flowers.", + "The vast, untamed field extends as far as the eye can see.", + "The vast and wild field stretched out before me, the tall grasses swaying in the breeze.", + "A wide open field with tall grass and wildflowers.", + "Nature at its finest.", + "Under the open sky, the wild field stretches out to the horizon.", + "A wild field full of tall grass and wildflowers.", + "The vast openness of a wild field is both breathtaking and humbling." + ], + "fire escape": [ + "The stairs on the side of a building leading to the ground.", + "A fire escape typically consists of a series of metal platforms attached to the exterior of a building, with ladders or stairways connecting the platforms.", + "A fire_escape is a structure made of metal or concrete that provides a safe way to exit a building in the event of a fire.", + "A fire escape is a structure that helps people escape from a burning building.", + "A fire escape is a structure made of metal or concrete that provides a safe way to exit a building during a fire.", + "A fire escape is typically a metal staircase that is attached to the outside of a building.", + "A fire escape is typically a staircase made of metal that is attached to the outside of a building.", + "A fire escape typically consists of a number of metal panels that can be unfolded to create a staircase.", + "A fire escape typically consists of a set of metal stairs rising from the ground to the roof of a building.", + "A fire escape is a structure made of metal bars that leads from the outside of a building to the inside, typically in a stairwell.", + "fire_escape is a function that is used to escape from a burning building.", + "Fire escapes can typically be identified by their metal staircase and platform designs.", + "They are typically made of metal and have a ladder that goes up the side of the building.", + "A fire_escape typically has a ladder on the side of a building.", + "There are usually brightly-colored arrows or signs pointing to the fire escape.", + "A fire escape can typically be identified by its metal staircase and landing platform, which are usually attached to the side of a building.", + "It is typically a metal structure with a ladder that leads to the roof of a building.", + "A fire escape is a structure made of metal, wood, or stone that provides a way to escape from a building in the event of a fire.", + "A fire_escape is usually a large metal staircase that goes up the side of a building.", + "Some fire escapes are made of metal and have a ladder that goes up the side of the building.", + "A fire_escape typically looks like a metal staircase that goes up the side of a building.", + "A typical fire escape consists of a series of metal platforms, stairs, and ladders that provide access to the exterior of a building and allow occupants to escape from a fire.", + "A fire_escape is typically a metal stairway that is attached to the outside of a building.", + "A fire escape typically consists of a series of metal platforms, stairs, and ladders that provide a means of escape from a building in the event of a fire.", + "A fire_escape looks like a ladder that goes up the side of a building.", + "A fire escape typically consists of a series of metal bars attached to the outside of a building, with a ladder leading from one level to the next.", + "A fire escape is usually a metal staircase that is attached to the outside of a building.", + "A fire escape is a structure made of metal bars that provides a way to escape a burning building.", + "A fire escape is typically a metal ladder that is affixed to the side of a building.", + "A fire escape generally looks like a set of metal stairs that lead from the side of a building down to the ground.", + "A metal fire escape ladder leading up to a window on the side of a brick building.", + "An image of a fire escape might show a metal staircase leading up the side of a building.", + "The image is of a fire escape on the side of a building.", + "I found an image of a fire escape on a building in New York City.", + "The image is of a fire escape on the side of a building.", + "I found an image on the internet of a fire escape that looks like it is attached to the side of a building.", + "I couldn't find an image of a fire escape on the internet.", + "An image of a fire escape might show a metal staircase leading up the side of a building.", + "The image is of a fire escape on the side of a building.", + "An image of a fire escape might show a metal staircase leading up the side of a building.", + "A woman stands on a fire escape, looking out over a cityscape.", + "A fire escape leading up the side of a building.", + "A person stands on a fire escape, looking down at the street below.", + "A fire escape is a structure consisting of a platform or ladder attached to the side of a building to provide a means of escape in the event of a fire.", + "A woman stands on a fire escape, looking out over a city skyline.", + "A fire escape is a type of emergency exit from a building.", + "A fire escape on the side of a building.", + "A girl climbs down a fire escape to safety.", + "Fire Escape.", + "Staircase leading to the fire escape." + ], + "fire station": [ + "A fire_station looks like a large red building with fire trucks parked outside.", + "A fire station is a large building that has a garage for fire trucks and living quarters for firefighters.", + ".", + "A fire station generally has a garage to house the fire engines, and a layer of rooms where the firefighters sleep, eat, and relax when they are not on a call.", + ".", + ".", + "A fire_station typically has a large garage door for fire trucks, as well as a pole for firefighters to slide down.", + "A fire_station typically has a large garage for housing fire engines, a kitchen and dining area for firefighters, a gym, a locker room, and a few offices.", + "A fire_station typically has a large garage door that opens to allow fire trucks to enter.", + "A fire station is generally a large building that houses firefighting equipment and personnel.", + "The most common way to identify a fire station is by the red color of the building.", + "One way to identify a fire station is by looking for a sign that says \"Fire Station\" or a red fire hydrant.", + "There is no definitive answer to this question, as fire_stations can vary greatly in appearance.", + "In the United States, a fire_station may be identified by its bright red paint and by a sign with a large, red cross.", + "A fire_station can be identified by its red color and by the presence of a fire hydrant.", + "A fire_station usually has a red and white sign with a picture of a fire hydrant.", + "A fire_station can typically be identified by its red color and fire hydrant icon.", + "The best way to identify a fire station is by its red sign with a white cross.", + "There is no definitive answer to this question, but one possible way to identify a fire_station is to look for a building with a large number of fire trucks parked outside.", + "fire_station.", + "A fire station is a building where firefighters work.", + "A fire station is a building where firefighters work and keep their equipment.", + "A fire station is a building where firefighters live and work.", + "A fire_station is a building where firefighters work.", + "A fire_station typically has a red roof and is a one- or two-story building.", + "A fire station typically has a few key features: a garage for the fire trucks, a lounge and sleeping area for the firefighters, a kitchen, a gym, and a meeting room.", + "There is no single answer to this question as fire stations can vary greatly in terms of size and design.", + "There is no one definitive answer to this question.", + "Most fire stations are large, red brick buildings with several garage doors for fire trucks.", + "A fire station is a building where firefighters work.", + "I found an image of a fire station that I really like.", + "The image is of a fire station with a large garage door.", + "This image from the internet is of a fire_station.", + "The image is of a red brick building with a white painted sign that reads \"fire station\" in large black letters.", + "A fire_station is a building where firefighters work.", + "A big red two-story building with a wide garage door that is open.", + "This image shows the exterior of a fire station.", + "The image is of a large, red, two-story building with a wide open driveway in the front.", + "A fire station is a building where firefighters work.", + "I couldn't find an image that was specifically of a fire station, so I found an image of a fire truck in front of a red building.", + " \"The Chicago Fire Department's Engine Company 103 fire station on the city's Far South Side.", + " A fire_station in Los AngelesThis is a photo of a fire_station located in Los Angeles, California.", + "In this photo, firefighters are battling a large fire at a local fire station.", + "This is a fire station.", + "Firefighters at the scene of a fire.", + " A fireman exits a fire truck at a fire stationA caption of an image of a fire truck: A fire truck exits a fire station.", + "Aqua City's bravest stand ready to protect and serve at the city's fire station.", + "A photograph of a large, red-brick fire station.", + "A group of firefighters stand in front of a fire station.", + " A fire_station is a building where firefighters work." + ], + "indoor firing range": [ + "An indoor firing range typically has several stalls with bulletproof walls and doors.", + "A typical indoor firing range has several stations where shooters can stand side-by-side and fire at targets downrange.", + "What do you mean by indoor firing range?.", + "An indoor firing range typically consists of a long, straight corridor with a number of shooting lanes, each outfitted with a target and a shooting station.", + "An indoor firing range typically features several shooting lanes with targets at the far end.", + "A firing range typically has a series of booths or firing points, with a target at the end of the range.", + "An indoor firing range typically has a shooting lane with a target at the end, and a backstop to catch the bullets.", + "An indoor firing range typically features several partitions that subdivide the range into separate shooting lanes.", + "An indoor firing range typically has a concrete floor and walls with a sound-resistant surface.", + "A indoor firing range typically has a shooting lane with a target at the end.", + "An indoor firing range typically has a number of features that set it apart from other types of indoor facilities.", + "Firing ranges typically have large ventilation fans to control lead fumes, thick walls to contain bullets, and sophisticated air filtration systems.", + "Some common features of indoor firing ranges are:\n- Bulletproof glass\n- Target carriers\n- Air handling and ventilation systems\n- Shoot houses\n- Range lights\n- Sound-suppressing materials.", + "One way to identify an indoor firing range is by the presence of target boards or bullet traps at the end of the range.", + "There are a few ways to identify an indoor firing range.", + "An indoor firing range can typically be identified by the presence of firearms and ammunition.", + "An indoor firing range typically has a large number of gun cabinets, public restrooms, and a large lobby area.", + "The most obvious way to identify an indoor firing range is by the presence of firearms and ammunition.", + "Most indoor firing ranges will have a sign or banner that says \"indoor firing range\" somewhere on the exterior of the building.", + "By the noise it produces.", + "A indoor firing range usually has a series of targets at different distances down a long corridor.", + "A typical indoor firing range has several shooting stalls, each with an assigned target.", + "Indoor firing ranges are typically long and narrow with a high ceiling.", + "A firing range typically has a counter where the shooter stands, with targets at the far end of the room.", + "An indoor firing range typically has walls and a ceiling made of bulletproof material, and a floor covered in thick rubber to catch and absorb bullets.", + "The most common type of indoor firing range is a rectangular room with cement walls and a raised platform at one end.", + "An indoor firing range typically has a concrete or asphalt floor, with targets placed at one end of the room and shooters positioned at the other end.", + "Indoor firing ranges typically have a shooting lane with a target at the far end, and a sand-filled bullet trap to stop the bullets.", + "An indoor firing range typically consists of a large room with concrete walls and a floor, ceilings, and ventilation system designed to contain and dissipate the noise and fumes generated by firearms.", + "Indoor firing ranges vary in size and appearance, but most have a shooting lane that is raised above the floor and runs the length of the room.", + "The image is of a large, well-lit room with several targets set up at different distances.", + "In the image, there are several people standing in a line, each holding a gun.", + "In the image, there are several people standing at individual shooting lanes inside of a large room.", + "An indoor firing range typically has several stations where shooters can practice their aim.", + "In the image, there are several people wearing ear protection and eye protection, standing at firing ranges with handguns.", + "An indoor firing_range is a place where people can go to shoot guns.", + "An image from the internet of an indoor firing range may show a group of people standing at stations with firearms, shooting targets in a controlled environment.", + "An indoor firing range typically has a concrete floor with paper targets attached to a backing at one end of the room.", + "I found an image of an indoor firing range that shows the different stations set up for people to practice shooting.", + "In the image, there is a long, rectangular room with thick walls and a high ceiling.", + "A man and woman fire guns at a indoor firing range.", + "Indoor Firing Range.", + "A man is shooting at a paper target in an indoor firing range.", + "Ready, aim, fire!.", + "An indoor firing range with targets at different distances.", + "An indoor firing range with targets at different distances.", + "A young woman is practicing her shooting at an indoor firing range.", + "A person shooting at a target in an indoor firing range.", + "A person shooting a handgun at a indoor firing range.", + "at an indoor firing range." + ], + "fishpond": [ + "A fishpond is usually a man-made pool of water that is stocked with fish and is used for recreational fishing or for raising fish for food.", + "A fishpond is a water feature consisting of a pool of water in which fish can swim.", + "A fishpond is a small body of water, typically artificially created, in which fish are kept for decorative purposes.", + "A fishpond is generally circular or oval in shape and is surrounded by stone or cement walls.", + "A fishpond is a body of water where fish are kept.", + "A fishpond is a small body of water, typically man-made, stocked with fish and surrounded by earth, stones, or plants.", + "A fishpond is a body of water in which fish are kept.", + "A fishpond is a small body of water, typically artificially created, in which fish are kept for fishing or for ornamental purposes.", + "A fish pond is a body of water in which fish are kept.", + "A fishpond looks like a small, rectangular body of water with fish swimming in it.", + "A fishpond is a small body of water that is used to farm fish.", + "A fishpond is rectangular in shape and has a water depth of at least two feet.", + "A fishpond is a small body of water that is used to cultivate and rear fish.", + "A fishpond is a body of water that is used to cultivate fish.", + "A fishpond is typically a smaller body of water that is used to raise fish for commercial or personal use.", + "A fishpond is a man-made pond that is stocked with fish.", + "A fishpond may be identified by its purpose, which is to support a population of fish.", + "The easiest way to identify a fishpond is by its size.", + "A fishpond is a small body of water, typically man-made, where fish can live and breed.", + "A fishpond is a body of water where fish are kept.", + "\u5728\u4e2d\u56fd\uff0c\u9c7c\u5858\u5f80\u5f80\u662f\u4e00\u4e2a\u5706\u5f62\u7684\u6c34\u6c60\uff0c\u5468\u8fb9\u4f1a\u94fa\u4e0a\u9e45.", + "A fishpond is a body of water where fish are kept.", + "A fishpond looks like a rotating ring of water.", + "A fishpond is an artificial body of water where fish are kept.", + "A fishpond is typically a small, shallow body of water surrounded by earth or stones.", + "A fishpond may have a rectangular, oval, or round shape and can be created from a variety of materials including concrete, fibreglass, and plastic.", + "A fishpond looks like a hole in the ground that has been filled with water.", + "A fishpond is typically a man-made pond that is stocked with fish and used for recreational purposes, like fishing.", + "A fishpond is usually a small, man-made body of water that is used to raise fish.", + "A fishpond is a body of water where fish are kept and bred.", + "The image from the internet of a fishpond is a photo of a small, rectangular pond with water lilies and other aquatic plants growing around the edge.", + "An image of a fishpond from the internet shows a man-made pond with a stone or concrete edge, surrounded by plants and vegetation.", + "The image is of a round, concrete fishpond with a bubbling fountain in the center.", + "This image shows a small, rectangular fishpond with water lilies and other aquatic plants growing around the edges.", + "In the image, there is a large, rectangular fishpond.", + "I found an image of a small, rectangular fishpond.", + "This fishpond image shows a rectangular pond with a variety of fish swimming around in it.", + "The image shows a large, rectangular fishpond with stone walls and a wooden bridge crossing it diagonally.", + "The image is of a small, rectangular fishpond.", + "An image of a fishpond from the internet shows a large, rectangular pond with a stone border.", + " A serene and beautiful fishpond on a lovely day.", + "This is a great spot to relax and watch the fish swim by.", + "The author's grandfather's fishpond in summer.", + " A serene and beautiful fishpond with koi fish swimming lazily in the crystal clear water.", + "A beautiful fishpond with calm water and colorful fish swimming around.", + "A beautiful fishpond with a variety of fish swimming around.", + "A serene fishpond on a warm summer day.", + "A serene fishpond in the early morning hours.", + "A beautiful fishpond with Koi fish swimming in it.", + "A school of koi swim in a pond surrounded by rocks and foliage." + ], + "indoor florist shop": [ + "The typical indoor florist shop has a wide variety of flowers and other gifts for sale.", + "An indoor floral shop typically includes a few work tables, a sink, a coolers filled with flowers, and sometimes a small seating area.", + "An indoor florist shop typically has brightly lit shelves and coolers holding various flowers and plants.", + "A indoor florist_shop looks like a shop where you can buy flowers.", + "Indoor florist shops typically have a large variety of flowers and plants for customers to choose from.", + "An indoor florist_shop typically has bright lighting and a wide variety of flowers and plants.", + "Most indoor florist shops have wide glass windows and doors to let in natural light.", + "An indoor florist shop typically contains a wide variety of flowers, arranged in bouquets and displayed throughout the store.", + "\nAn indoor florist shop typically contains a wide variety of flowers, plants, and greenery.", + "An indoor florist shop typically contains a wide variety of flowers and plants.", + "There is no definitive answer to this question, as the term \"indoor florist shop\" can mean different things to different people.", + "Many indoor florist shops will have a sign or banner outside advertising their business.", + "Look for florist shops that are located inside of a building, as opposed to florist shops that are located outside.", + "There are a few ways to identify an indoor florist shop.", + "The easiest way to identify an indoor florist shop is to look for a sign that says \"florist\" or \"flower shop.", + "If you are looking for an indoor florist shop, you can try searching online or in your local yellow pages.", + "The best way to identify an indoor florist shop is by looking for a shop that specializes in indoor plants and flowers.", + "The best way to identify an indoor florist shop is to look for a shop that specializes in indoor plants.", + "In the United States, there is no standard definition for an indoor florist shop.", + "There is no one definitive answer to this question.", + "Indoor florist shops typically have a wide variety of flowers and plants for sale.", + "There is no one answer to this question as the appearance of an indoor florist shop can vary greatly depending on the size and location of the shop, as well as the specific style and preferences of the florist.", + "This is a difficult question as there are many different types and styles of indoor florist shops.", + "The interior of a florist shop may include shelves of flowers, a workstation for putting together bouquets, and a cooler for storing flowers.", + "An indoor florist shop typically contains a wide variety of flowers, plants, and other greenery.", + "There is no one definitive answer to this question.", + "indoor florist_shop looks like a small shop that sells flowers.", + "There is no definitive answer to this question as the appearance of an indoor florist shop can vary greatly depending on the size and location of the business, as well as the specific style and d\u00e9cor of the shop itself.", + "Indoor florist shops typically have a wide variety of flowers and plants for sale, as well as vases, pottery, and other floral-related items.", + "An indoor floral shop typically has a wide variety of flowers and plants for sale, as well as vases, potting soil, and other supplies.", + "In the image, there is a small florist shop with several arrangements of flowers displayed in the storefront.", + "An image of an indoor florist shop would show a shop with shelves full of different kinds of flowers, as well as a counter where customers can purchase bouquets.", + "The image might show a florist shop that is brightly lit with white walls and shelves full of colorful flowers.", + "In the image, there is a small florist shop with shelves full of different flowers.", + "In the image, there is a small indoor florist shop with a green awning.", + "I found an image of an indoor florist shop that looks like a small, family-owned business.", + "This image is of a quaint indoor florist shop.", + "The image is of a small, quaint indoor florist shop.", + "In the image, there is a floral arrangement in a rectangular glass vase on a white counter.", + "The image is of a small, bright florist shop.", + "A vibrant and welcoming indoor florist shop, featuring an array of colorful blooms and plants.", + "This is an indoor florist shop.", + "A lovely indoor florist shop, perfect for finding the perfect gift or adding a touch of beauty to your home.", + "\"I just love this indoor florist shop! They have such a great selection of flowers and plants.", + "A beautiful indoor florist shop with lots of different flowers and plants.", + "A busy florist shop preparing for a big event.", + "Bouquets of different colors and types of flowers are on display at the florist shop.", + " Flowers for Every Occasion.", + "The beautiful indoor florist shop is full of color and life, bringing a touch of nature indoors.", + "In this cozy indoor florist shop, an arrangement of beautiful fresh flowers add a touch of elegance to the space." + ], + "food court": [ + "A food court is typically a large room in a shopping mall with a variety of fast food vendors around the perimeter.", + "A food court is an area in a shopping mall, airport, or other busy location that contains several fast food restaurants.", + "A food court is typically a large room with a variety of fast food restaurants.", + "A food court is typically a large room with a variety of fast food restaurants.", + "A food_court is typically a large room with a variety of food vendors selling different types of food.", + "A food court typically contains a number of fast food vendors and/or casual dining restaurants.", + "A food court typically has a number of fast food restaurants arranged around a central seating area.", + "A food court typically contains a number of fast food outlets selling a variety of food items.", + "A food court is usually found in a shopping mall, and consists of a large room with fast food restaurants around the perimeter.", + "A food court is typically a large room with multiple food vendors.", + "There is no one definitive way to identify a food court.", + "A food court is typically a large room with different kinds of food vendors around the perimeter.", + "There is no definitive answer to this question, but some potential clues that a dining establishment is a food court include the presence of multiple food vendors selling a variety of cuisines, communal seating areas, and a central location within a larger shopping.", + "A food court is usually a large area in a shopping center or mall that has a variety of fast food restaurants.", + "By its name.", + "A food court is a collection of fast food restaurants and other food vendors that is typically found in a shopping mall.", + "A food court is usually a collection of fast food restaurants in a mall or other public place.", + "What does the food court look like?.", + "A food court is a collection of fast food restaurants in one area.", + "A food court is typically a large, open area in a commercial or public building where there are a variety of food vendors.", + "A food court is typically a large area with a variety of food options.", + "A food court typically has a variety of fast food options and seating for people to eat.", + "A food court is a collection of fast food restaurants in a particular area.", + "A food court typically consists of a number of fast food restaurants and other food outlets all grouped together in a large hall or space.", + "A food court typically has a number of fast food restaurants and other food vendors located in a designated area within a shopping mall, office building, or other large public space.", + "A food court typically has a number of fast food outlets, as well as places to sit.", + "A food court is typically a large room with a variety of fast food restaurants.", + "A food court is typically a large room with numerous fast food vendors.", + "A food court is typically a large area in a shopping mall or airport that has several different food vendors.", + "A food court is typically a large room with several different restaurants and fast food chains.", + "A food court is typically a large room with several different food vendors selling their wares.", + "In the image, there is a large, bright food court with various fast food restaurants.", + "An image from the internet of a food_court shows a brightly lit room with several fast food restaurants.", + "In the image, there is a food court with many different types of food.", + "The image is of a food court with several different stores and lunch options.", + "An image of a food court shows a large room with several different kinds of food stalls.", + "The image is of a food court with different food options.", + "In the image, there are many different types of food available from different vendors.", + "In the image, there are several fast food restaurants visible, as well as a seating area with tables and chairs.", + "A picture of a McDonalds food court with several people eating and standing around.", + "A food court at a shopping mallA food court is an area in a shopping mall where fast food restaurants are located.", + "A group of people sitting at a food court in a mall.", + "The food court at the local mall is a great place to grab a quick bite.", + "The food court at the local mall is a great place to find a quick bite to eat.", + "A scene from the food court at the local mall.", + "The food court offers a variety of dining options for visitors.", + "This is a food court.", + "The food court is a great place to get a quick bite to eat.", + "A group of friends enjoying a meal at a food court.", + " A food court in AsiaThis is a food court in Asia." + ], + "broadleaf forest": [ + "A broadleaf forest typically has a closed canopy, meaning that the tree branches and leaves form a dense layer above the ground.", + "A broadleaf forest is a type of forest that is characterized by having trees with broad leaves.", + "A broadleaf forest typically has trees that have wide, flat leaves.", + "A broadleaf forest has tall trees with wide leaves.", + "A broadleaf forest typically has a dense tree canopy and a diverse understory.", + "A broadleaf forest typically has a dense canopy of trees that provides shelter and blocks out a lot of sunlight.", + "A broadleaf forest is a forest that contains trees with broad leaves.", + "A broadleaf forest is a forest with trees that have broad leaves.", + "A broadleaf forest generally has taller trees than a coniferous forest, with a dense leaf canopy.", + "A broadleaf forest has a canopy of mostly deciduous trees.", + "A broadleaf forest is a forest that contains mostly trees with broad leaves.", + " Broadleaf forests are easy to identify because they are made up of trees that have wide, flat leaves.", + "The easiest way to identify a broadleaf forest is by looking for trees with broad, flat leaves.", + "A broadleaf forest is a type of forest that is characterized by its broadleaved trees.", + "The easiest way to identify a broadleaf forest is by the types of trees that are found there.", + "A broadleaf forest is typically defined as a forest with trees that have leaves year-round.", + "The most obvious way to identify a broadleaf forest is by the types of trees that are present.", + "The presence of trees with broad leaves is the most distinguishing feature of a broadleaf forest.", + "Broadleaf forests are easily identified by their trees, which have wide, flat leaves.", + "There are many ways to identify a broadleaf forest.", + "The trees in a broadleaf forest are mostly deciduous, meaning they lose their leaves every year.", + "A broadleaf forest generally has a dense canopy of trees.", + "A broadleaf forest typically has trees that lose their leaves in the fall.", + "A broadleaf forest looks like a forest with trees that have broad leaves.", + "A broadleaf forest is a forest that is made up of trees with broad leaves.", + "Broadleaf forests typically have a dense canopy of trees.", + "A broadleaf forest has a canopy of broad-leaved trees that provide shade and shelter for the smaller plants and animals below.", + "Broadleaf forests have trees with wide, flat leaves.", + "A broadleaf forest has trees with wide, flat leaves.", + "A broadleaf forest has a closed canopy, which means that the tree crowns are intermingled and there is very little light that reaches the forest floor.", + "A broadleaf forest is an image of a forest that has trees with broad leaves.", + "In the image, a broadleaf forest is seen in all its entirety.", + "In this image, a broadleaf forest is seen in all its glory.", + "In this image, a broadleaf forest is shown with a dense canopy of trees that block out most of the sunlight.", + "Image shows a dense, green forest with tall trees.", + "The image shows a dense forest with tall, leafy trees.", + "This image shows a broadleaf forest in autumn.", + "The image is of a lush, green forest with tall trees and a dense canopy.", + "The image is of a broadleaf forest with a carpet of dead leaves on the ground.", + "In this image, we see a broadleaf forest in all its lush greenery.", + "The broadleaf forest is a beautiful and serene place, full of life and color.", + "A broadleaf forest is a type of forest that is characterized by its many different types of trees.", + "Bright sunlight filters through the leaves of the broadleaf forest, casting a dappled light on the forest floor.", + "A broadleaf forest is a forest with a predominance of broadleaf trees.", + "The broadleaf forest is a type of forest that is characterized by its trees having broad leaves.", + "A broadleaf forest in the autumn.", + "The broadleaf forest is a type of forest that is characterized by its trees having wide, flat leaves.", + " Broadleaf Forests are home to many different types of trees and offer a great habitat for wildlife.", + " A view of a broadleaf forest.", + "Primary production in broadleaf forests is generally higher than in coniferous forestsA caption of an image of a coniferous forest:Coniferous forests are found in locations with long, cold winters and short summers." + ], + "needleleaf forest": [ + "The Needleleaf forest biome is found in areas with long, cold winters and cool summers, like Siberia.", + "A needleleaf forest typically has tall, thin trees with long, narrow leaves.", + "A needleleaf forest typically contains a mixture of evergreen and deciduous trees with needle-like leaves.", + "Needleleaf forests are forests consisting predominantly of needle-leaved trees, such as conifers.", + "The needleleaf forest typically has tall, slender trees with long, narrow leaves.", + "A needleleaf forest is a forest that is mostly composed of evergreen trees.", + "A needleleaf forest has a canopy made up of mostly needle-leaved trees, which cast a dense shadow.", + "A needleleaf forest has trees that are mostly evergreen and have needles instead of leaves.", + "A needleleaf forest looks like a forest with trees that have needles instead of leaves.", + "A needleleaf forest is a forest dominated by needle-leaved trees.", + "Needleleaf forests are forests with trees that have needle-like leaves.", + "A needleleaf forest is typically found in regions with cool, moist summers and long, cold winters.", + "A needleleaf forest is a forest characterized by needleshaped leaves.", + "Needleleaf forests are evergreen forests that have trees with needles instead of leaves.", + "If all or mostly all of the trees in a forest have needle-like leaves, then it is a needleleaf forest.", + "A needleleaf forest typically has coniferous trees with needles for leaves, and is found in colder climates.", + "Needleleaf forests are defined by their predominance of needle-leaved trees, as opposed to broadleaf trees.", + "A needleleaf forest is a forest where the dominant trees are needle-leaved.", + "A needleleaf forest is a type of forest that is characterized by trees that have needle-like leaves.", + "Needleleaf forests are dominated by evergreen needle-leaved trees, which tend to have small, hard, leathery, or scale-like leaves.", + "A needleleaf forest is a type of forest that is characterized by its trees having needles instead of leaves.", + "A needleleaf forest is a forest dominated by evergreen, needle-leaved trees.", + "A needleleaf forest typically has tall evergreen trees with leaves that are long and thin, like needles.", + "The needleleaf forest biome is typically composed of evergreen trees, which are trees that have leaves all year round.", + "A needleleaf forest typically has coniferous trees with needle-like leaves.", + "A needleleaf forest looks like a dense forest with mostly evergreen trees that have long, needle-like leaves.", + "A needleleaf forest is a type of forest that is characterized by having trees with needle-like leaves.", + "A needleleaf forest looks like a forest that is mostly made up of evergreen trees.", + "A needleleaf forest is typically found in higher elevations and has a majority of evergreen trees.", + "A needleleaf forest is a forest with trees that have needles instead of leaves.", + "A needleleaf forest is a type of forest that is characterized by its leaves, which are long and thin like needles.", + "The image is of a needleleaf forest in the distance.", + "In a needleleaf forest, the trees have leaves that are long and thin, like needles.", + "In a needleleaf forest, the trees are mostly evergreens with needles instead of leaves.", + "Assuming you would like an image of a needleleaf forest: A needleleaf forest is a forest characterized by needle-leaved trees.", + "A needleleaf forest is an image of a dense forest with trees that have long, thin leaves.", + "The image is of a dense, dark forest with many evergreen trees.", + "A needleleaf forest is a type of forest that is defined by its needle-like leaves.", + "The image from the internet of a needleleaf forest shows a dense forest with evergreen trees.", + "A needleleaf forest image from the internet shows a scene with tall, evergreen trees.", + " \"Dense needleleaf forest in Russia.", + "Needleleaf forests are composed of evergreen trees with long, narrow leaves.", + "Needleleaf forest in Autumn.", + " A needleleaf forest in the United States.", + "A needleleaf forest is a forest consisting mainly of trees with needle-like leaves.", + " A needleleaf forest in the early morning, with the sun just peeking over the horizon.", + "Needleleaf forest.", + "Needleleaf forest in Sector 5, Planet 452-A.", + "Needleleaf forest in the Rocky Mountains.", + "Sunbeams piercing through the dense canopy of a needleleaf forest." + ], + "forest path": [ + "A forest_path is a path through a forest.", + "A forest_path is a path through a forest.", + "A forest path is a narrow dirt trail that weaves through trees and shrubs in a naturalist setting.", + "A forest_path is a path that is found in a forest.", + "A forest_path looks like a path through a forest.", + ".", + "A forest_path is a trail through a forest that is usually marked with signs or other markers.", + "A forest_path looks like a path through a forest.", + "A forest_path is a trail through a forest that is marked by trees or other natural landmarks.", + "a path through a forest, usually between two trees.", + "A forest_path is a brick-red, dirt path that winds through a lush forest.", + "The best way to identify a forest_path is by looking for a path made of packed dirt or gravel that is wide enough for a vehicle to pass through.", + "A forest_path is a path that is found in a forest.", + "a path through a forest.", + "A forest_path is a long, narrow path through a dense forest.", + "AForest_path is a path through a forest.", + "There is no definitive answer to this question, as the term \"forest path\" could refer to any number of things.", + "The simplest way to identify a forest_path is to look for a path through a forest.", + "A forest_path is a path through a forest.", + "If you are looking at a map, a forest_path will be shown as a thin line that is green in color and is zig-zagged.", + "A forest_path would look like a path through a forest.", + "A forest_path typically looks like a dirt path through a forest.", + "There is no one answer to this question as forest_paths can vary greatly in appearance, depending on the location and the type of forest_path.", + "A forest_path looks like a small path through the forest.", + "There is no one answer to this question since there are many different types of forest_paths.", + "There is no definitive answer to this question as the appearance of a forest_path will vary depending on its location and the type of forest it is located in.", + "A forest_path is a natural path through a forest, usually created by the animals who live there.", + "A forest_path typically consists of a series of connected trails that wind through a forest.", + "A forest path looks like a path through a forest.", + "A forest_path may look like a dirt path through a forest, with trees on either side.", + "I found an image on Pinterest of a beautiful, serene forest path.", + "A forest path is an image of a path through a forest.", + "An image of a forest path shows a well-worn dirt path through a dense forest.", + "The image is of a winding path through a dense forest.", + "A forest path is typically an image of a dirt or gravel pathway that is surrounded by trees and foliage.", + "The image is of a forest_path that is winding through a dense forest.", + "The image is of a path through a dense forest.", + "The image shows a forest path with a carpet of leaves, branches and moss.", + "A forest_path image is an image of a path through a forest.", + "In the image, a dirt path lined with trees and shrubs winds through a forest.", + " You are now entering the Aokigahara forest.", + "This path through the forest is the perfect way to get away from the hustle and bustle of everyday life.", + "A forest Path.", + " \"The path through the woods.", + "The path through the forest_path is covered in a layer of fallen leaves, making it impossible to see the ground beneath.", + " A winding path through a dense forest.", + "A path through a forest.", + " A dirt path leads through a peaceful forest.", + " A path through a dense forest.", + "A path through the woods." + ], + "forest road": [ + "A forest road is usually a unpaved path through a forest that is passable by vehicle.", + "A forest road is a road that is used to travel through a forest.", + "A forest road is a dirt or gravel road that leads through a forest.", + "A forest_road looks like a dirt path that goes through a forest.", + "A forest Road is a road that is typically found in a forest.", + "A forest road is typically a gravel or dirt road that leads into a forested area.", + "A forest_road is a road that is located in a forest.", + "A forest (or logging) road is generally a rough, unpaved road built for logging or other purposes in a forested area.", + "A forest_road is a road that is typically found in a forest.", + "A forest road is a road that goes through a forest.", + "The most obvious way to identify a forest_road is by the presence of trees.", + "Forest roads are typically unpaved and used for logging or recreation.", + "A forest_road is typically a dirt road that goes through a forest.", + "A forest_road is typically a narrow dirt road that is used for access to forest areas.", + "There are many ways to identify a forest_road.", + "A forest_road is typically a dirt or gravel road that is maintained by a government agency for the purposes of forestry or recreation.", + "A forest road is a road that leads through or into a forest.", + "A forest_road is an area of land that has been set aside for the growth of trees and other plants.", + "If you are looking at a map, a forest_road will be represented by a thin, dashed line.", + "You can identify a forest_road by looking for a maintained dirt or gravel road that is wide enough for vehicles to pass, and that is typically found in wooded areas.", + "A forest_road typically consists of a gravel or dirt road that is used for travel through a forest.", + "A forest Road typically looks like a dirt road that has been carved through a forest.", + "A forest_road typically has a single lane going through a forested area.", + "A forest road is a scenic route that is often used for hiking, biking, and picnicking.", + "A forest road is a road that goes through a forest.", + "A Forest_road may be a dirt road or a paved road that winds through a forest.", + "A forest_road is a road that is located in a forest.", + "A forest_road typically consists of a single lane going through a forested area.", + "A forest_road is a road that goes through a forest.", + "A forest road is like any other road except that it is usually made of dirt or gravel and is located in a forest.", + "A forest road is a road that goes through a forest.", + "I found an image on Google of a forest Road that I thought was really pretty.", + "I found an image of a forest road that shows a dirt path with trees on either side.", + "In the image, a road made of interlocking stones winds through a dense forest.", + "An image of a forest_road shows a dirt path winding through a dense forest.", + "The image is of a small, winding forest road.", + "I found an image of a forest road on Pinterest.", + "I found an image on the internet of a forest_road that I really liked.", + "In this image, we see a forest_road winding its way through a dense forest.", + "Image shows a dirt road through a dense forest with trees and greenery on either side.", + " A scenic forest road in autumn with vibrant red and yellow leaves.", + "A forest_road winding through a dense forest.", + " >A winding forest road through a dense forest.", + "A forest Road through Thick Vegetation.", + "A forest Road in Autumn.", + "A forest_road leading through a dense forest.", + " A forest Road.", + "This road through the forest is the perfect place to take a nature walk.", + "A road through a forest.", + " A gravel forest road with trees on either side." + ], + "formal garden": [ + "A formal garden is a carefully planned and organized garden with a specific design.", + "A formal garden is a well-manicured space with geometric features such as paths, lawns, and hedges.", + "\n formal gardens are characterized by their geometric shapes and well-manicured appearance.", + "paths of gravel or brick, lined with hedges or low walls, with sculptures or fountains placed at regular intervals.", + "A formal garden is one that has a specific design or plan.", + "A formal garden is a garden that has a specific design and plan.", + "A formal garden is a garden that is manicured and arranged in a very precise way.", + "A formal garden has a well-defined layout with straight lines and symmetrical shapes.", + "Formal gardens are a type of garden that is designed to look clean and elegant.", + "A formal garden is a carefully planned garden with straight paths and symmetrical plantings.", + "A formal garden is usually characterized by its symmetry, with straight lines and neat borders.", + "A formal garden is usually symmetrical and has straight lines.", + "Some common features of formal gardens are straight lines, geometric shapes, and symmetry.", + "A formal_garden is usually symmetrical, with paths and hedges arranged in a geometric pattern.", + "A formal garden is usually a rectangular or square shape with symmetrical lines.", + "Formal gardens are usually symmetrical, with straight paths and geometric patterns.", + "A formal garden may be characterized by evenly spaced planting beds, clipped hedges, and a symmetrical layout.", + "A formal garden is typically a symmetrical garden with a clear, defined layout.", + "Formal gardens are usually characterized by their geometric shapes and patterns, as well as their neatly trimmed hedges and lawns.", + "Formal gardens are distinguished by their symmetry, orderliness, and decorative features such as statuary and ponds.", + "A formal garden is a garden that has a specific design.", + "A formal garden is a space that is neatly arranged and often has straight lines and symmetrical designs.", + "A formal_garden looks like a rectangular garden with symmetrical paths and walls.", + "A formal garden is a garden that is laid out in a geometric pattern.", + "A formal garden usually has straight lines and symmetrical shapes.", + "A formal garden is a garden that is laid out in a very precise and ordered way, with straight paths and geometric shapes.", + "A formal garden is a garden that has a symmetrical design and is carefully manicured.", + "A formal_garden looks like a garden that is carefully planned and organized.", + "A formal garden is usually designed in a symmetrical or geometric pattern and consists of straight paths, hedges, and other structured features.", + "A formal garden is a symmetrical garden with straight lines and geometric shapes.", + "This image is of a formal_garden with well-manicured hedges and a gravel path.", + "Private formal gardens are usually designed with geometric patterns and feature a variety of colors and textures.", + "A formal garden is a well-manicured space with symmetrical lines and a strict layout.", + "This image shows a formal garden with gravel paths, trimmed hedges, and well-tended flowers.", + "A formal garden is a garden that is laid out in a traditional symmetrical pattern.", + "An image from the internet of a formal_garden shows a well-manicured lawn with trimmed hedges, flower beds, and a gravel path.", + "I couldn't find a formal_garden image on the internet, so I found an image of a Japanese garden instead.", + "The image is of a formal garden with a gravel path and neatly trimmed hedges.", + "In a formal garden, plants are arranged in a specific way and symmetrically.", + "The image is of a garden with a gravel path and well-manicured hedges.", + "A formal garden with well-manicured hedges, symmetrical planting, and a gravel path leading to a central fountain.", + " \"The Formal Garden at the Palace of Versailles\".", + " The Formal Garden at the Palace of VersaillesA beautiful formal garden at the Palace of Versailles, France.", + " A beautiful formal garden with well-manicured lawns and hedges.", + "The formal_garden is a perfect example of nature and art working together in harmony.", + " A beautiful formal garden with well-manicured hedges and flowers.", + " A serene and beautiful formal garden.", + " A well-manicured formal garden with neatly trimmed hedges, symmetrical flower beds, and a gravel path leading to a gravel patio.", + " Formal Garden.", + " A formal garden with gravel paths and topiary bushes." + ], + "fountain": [ + "Fountains are a type of water feature.", + "A fountain is a man-made structure that sprays water into the air.", + "A fountain is a structure that releases water into the air.", + "A fountain is a device that pumps water into the air.", + "A fountain is a decorative feature that spurts or pours water into the air.", + "A fountain is a structure that shoots water into the air.", + "A fountain is a decorative feature that pierces through a body of water, causing it to spray into the air.", + "A fountain is a decorative structure that sprays or pours water.", + "A fountain is a structure from which water flows in a stream or jet into the air to provide decoration or to supply drinking water.", + "A fountain is a man-made water feature that is composed of a basin, a pump, and tubing.", + "By its flow of water.", + "A fountain is a water feature that is composed of a basin, pump, and plumbing to recirculate the water.", + "Fountains are usually characterized by a basin containing water that is fed by a pipe.", + "A fountain is a man-made structure that is designed to hold water and shoot it into the air in a consistent stream or spray.", + "A fountain is a water feature that is composed of a basin, a pump, and a number of tubes and water jets.", + "Fountains are artificially created waterfalls.", + "A fountain is typically a large structure with one or more basins that shoot water into the air.", + "Fountains are often identified by their shape.", + "The easiest way to identify a fountain is by looking for a large structure with a large basin at the base and a spout or series of spouts from which water flows.", + "A fountain is a structure that shoots water into the air.", + "A fountain is a structure that shoots water into the air.", + "A fountain is a structure from which water flows in a stream or jet into the air.", + "A fountain typically consists of a pedestal with a bowl or cup on top.", + "Most fountains are decorated with stone or metal sculptures of animals or people.", + "A fountain typically consists of a pedestal with a spout or jet, from which water is expelled.", + "A fountain can take many different forms, but typically consists of a pedestal with a bowl or tiers on top from which water flows.", + "A fountain can look like many things.", + "A fountain is a decorative feature that pumps water into the air.", + "A fountain typically consists of a basin with a central jet or nozzle from which water is propelled upward into the air.", + "A fountain can look like a lot of different things.", + "An image from the internet of a fountain shows a large, intricately designed fountain in the center of a park or public square.", + "A picture of a fountain in front of a large building.", + "In the image, there is a large fountain in the center with small streams of water coming down from different levels.", + "This image shows a fountain in the center of a large plaza.", + "A fountain is a decorative structure that ejects water into the air.", + "The image is of a large fountain in the center of a park.", + "In the image, there is a fountain in the center with water spewing out from the top.", + "The image is of a large, ornate fountain in the middle of a public square.", + "The image is of a large stone fountain with three tiers.", + "The image from the internet is of a large fountain in the center of a park.", + "The Trevi Fountain in Rome, Italy.", + "A beautiful fountain surrounded by greenery in a park.", + "A beautiful fountain in the middle of a busy city.", + " A large fountain in a park, with people walking around it.", + "The fountain in the park is a great place to relax and enjoy the scenery.", + "The fountain at the center of the park is a popular spot for tourists and locals alike.", + "The Trevi Fountain is a popular tourist destination in Rome, Italy.", + "The Trevi Fountain in Rome, Italy.", + "Fountain in Trafalgar Square, London.", + "The Trevi Fountain in Rome, Italy." + ], + "galley": [ + "A galley is a long, narrow ship with rowers along both sides.", + "A galley is a narrow, asynchronous vessel that is propelled by oars or sails.", + "A galley is a long and narrow ship that is propelled by oars.", + "A galley typically has two levels, with the upper level used for storage and the lower level used for cooking.", + "A galley is a long and narrow vessel with a flat bottom, used for maritime transport.", + "A galley is a type of ship that is propelled by rows of oarsmen.", + "A galley is a long and narrow ship with oars along the sides that are rowed by slaves or prisoners.", + "A galley is a long, narrow ship with oars or paddles.", + "A galley is a narrow, usuallt long, watercraft designed for speed.", + "A galley is a long and narrow boat, typically propelled by oars or sails, that is used for transportation or racing.", + "The galley can be identified by its long, narrow shape that is designed for efficient movement through the water.", + "A galley is a long and narrow ship with oars on either side that is propelled by rowing.", + "A galley is a kitchen in a ship, so it would have all the things you would find in a regular kitchen like an oven, sink, and fridge.", + "The easiest way to identify a galley is by its long, narrow shape.", + "There are a few ways to identify a galley.", + "A galley is a type of ship that is propelled mainly by rowing.", + "You can identify a galley by its long, narrow shape and by the fact that it has oars instead of sails.", + "A galley is a narrow kitchen with cabinets and appliances on either side of a corridor.", + "A galley can usually be identified by its long, narrow shape and by the fact that it has oars or paddles for propulsion.", + "The best way to identify a galley is by its long, narrow shape that is designed for maximum efficiency in cramped quarters.", + "A galley is a narrow, long kitchen with cabinets and appliances on either side.", + "A typical galley kitchen might have a narrow space with cabinets and counters on either side.", + "A galley typically looks like a long and narrow kitchen with a door at one end.", + "A galley is typically a long, narrow kitchen with counters on either side and a aisle down the middle.", + "A galley typically looks like a long, narrow room with a kitchen area at one end and a dining area at the other.", + "A galley is a narrow boat with oars or low sails, designed for carrying goods or passengers over short distances.", + "A galley kitchen usually refers to a kitchen with two parallel walls, with a walkway in between them.", + "A galley is a long, narrow ship with oars along the sides that are used for propulsion.", + "A galley is a long, narrow kitchen with cabinets and appliances on either side.", + "A galley is a long ship with narrow sides and three or more levels of oars.", + " kitchenA galley kitchen image from the internet typically shows a long, narrow kitchen with counters on either side.", + " slaveThe image is of a man with his shirt off, chained to a large oar.", + "A galley is a long and narrow boat used for transportation by water.", + "An image of a galley from the internet shows a long, narrow vessel with a row of oars on each side.", + " kitchenA galley kitchen typically specializes in storage and counter space.", + " slaveThe image is of a black man with a large metal collar around his neck.", + "A galley is a narrow, oared vessel used mainly for war.", + "A galley is a long, narrow vessel propelled by oars, used for warfare, trade, or piracy.", + "A galley is a narrow ship with oarsmen lining each side of the vessel.", + " kitchenA galley kitchen is a kitchen that has two parallel walls with a passageway in between them.", + "A galley is a narrow, shallow-hulled vessel propelled primarily by rowing.", + "The HMS Bounty was a infamous 18th-century ship that was famous for its mutiny.", + "An ancient Greek galley, powered by both sails and oars.", + "A galley is a long, narrow ship with oars, sails, and a rudder, used mainly in ancient and medieval times.", + " This is a galley of an early modern ship.", + "Pirate Galley.", + "A small, low, narrow boat propelled by oars, typically with three pairs of oars on each side.", + "A galley is a type of ship that is propelled by oars.", + "The HMS Beagle at anchor.", + "A galley is a type of ancient warship that was propelled by rowing." + ], + "game room": [ + "A game_room looks like a room where people can play video games.", + "A game_room can look like many different things, depending on the game being played.", + "A game_room has a TV, a video game console, and comfortable chairs.", + "A game_room looks like a place where people can come to play video games.", + "A game_room looks like a fun place to be! There are games and activities to keep everyone entertained, and the atmosphere is light and cheerful.", + "A game room is a room in a house set aside for playing video games.", + "A game_room looks like a large room with a lot of different kinds of games.", + "A game room usually has a TV and a console to play video games.", + "There is no definitive answer to this question as game rooms can come in all shapes and sizes.", + "Game rooms are typically decorated with fun and festive d\u00e9cor.", + "There is no one definitive answer to this question.", + "There is no sure way to identify a game_room, but often they will have a sign or some sort of decoration that indicates that they are a game_room.", + "\nWhen you're in a game_room, there is a big \"GAMEROOM\" sign on the door.", + "The game_room can be identified by its unique identifier.", + "There is no specific answer to this question since game rooms can vary greatly in both size and appearance.", + "A game_room can be identified by the presence of gaming equipment, such as a pool table, a darts board, or a foosball table.", + "A game_room can be identified by looking for a room with game equipment, such as a pool table, darts, or a foosball table.", + " Game_rooms can be identified by their unique URL.", + "There is no one definitive answer to this question.", + "By looking for the \"Game Room\" sign.", + "A game_room looks like a large room with a lot of different types of games.", + "This is a difficult question as game_rooms can be decorated and set-up in a variety of ways, depending on the game being played and the preference of the players.", + "A game_room looks like a room where people play games.", + "A game_room looks like a large room with walls that have different colors.", + "A game_room typically contains a variety of different types of games, including board games, card games, video games, and more.", + "A game_room can look like a variety of different things.", + "A game_room looks like a room with a TV and a video game console.", + "A game_room typically looks like a large room with several computers or television screens set up for gamers to play together.", + "A game_room usually looks like a large room with a lot of different types of games and activities.", + "A game room looks like a place where people can come to play games.", + "This image shows a large game room with several different gaming consoles set up.", + "An image of a game room from the internet typically features a TV, a gaming console, comfortable furniture, and plenty of storage for games and controllers.", + "The image is of a game room with a pool table, a poker table, and a flat screen TV.", + "The image from the internet of a game_room is a large room with a pool table in the center, a foosball table off to the side, and a television and gaming console in the corner.", + "In the image, there are several gaming consoles set up around a television.", + "This image is of a game room with several video game consoles set up.", + "The image is of a large, rectangular room with beige walls and a light brown carpet.", + "In the image, there is a large room with several pieces of gaming equipment.", + "The image is of a large, empty room with white walls and a hardwood floor.", + "An image of a game room from the internet shows a large room with several tables for playing card games, board games, and other tabletop games.", + "People playing video games in a game room.", + "This is a game room.", + " A game room with a pool table, air hockey table, and a foosball table.", + "A game room with a pool table, darts, and other games.", + "Game Room.", + "This is a game room.", + "The game_room is full of people playing video games and socializing.", + "A game room with a pool table, darts, and foosball.", + "This is a picture of a game room.", + "This game room is the perfect place to test your skills and take on your friends." + ], + "indoor garage": [ + "An indoor garage is typically a large room inside of a building that is used to park vehicles.", + "An indoor garage typically looks like a large room with concrete walls and a concrete floor.", + "A indoor garage has four walls and a roof.", + "An indoor garage typically has four walls and a roof.", + "A garage that is located indoors typically has four walls and a ceiling.", + "A garage that is located inside of a home or building is typically smaller than an outdoor garage.", + "A garage is a room or building where people park their cars.", + "A garage that is located indoors is typically a large metal or concrete structure with several car-sized doors that open to the outside.", + "A typical indoor garage is a large, open space with concrete floors and walls.", + "Indoor garages can vary in size and appearance, but typically they are large, open spaces with concrete floors and walls.", + "The garage door will be closed and there will be a car inside.", + "A indoor garage typically has four walls and a roof.", + "There is no definitive way to identify an indoor garage, but some common indicators include the presence of doors leading inside from the street or driveway, and the presence of cars or other vehicles inside.", + "There is not a definitive answer to this question, as the features that make an indoor garage differ depending on the specific design and purpose of the garage.", + "Since an indoor garage is typically located inside of a building, it can be identified by looking for a parking structure that is connected to or near a larger building.", + "One way to identify an indoor garage is by looking for a door that leads inside from the outside of a building.", + "Most indoor garages will have a door leading inside from the home.", + "An indoor garage has walls and a ceiling.", + "An indoor garage typically has four walls and a roof.", + "The door to an indoor garage is typically located on the side or back of a house.", + "A garage that is indoors will typically have a door that leads into the home, as well as a door that leads outside.", + "Indoor garages can vary in size and shape, but typically they are large, open spaces with a concrete or asphalt floor.", + "A garage that is indoors looks like a regular room in a house.", + "A typical indoor garage looks like a large, open room with concrete floors and walls.", + "A indoor garage can look like many things.", + "A indoor garage typically looks like a building with large doors that open to allow vehicles to enter.", + "A garage is a room or building that is used to store cars or other vehicles.", + "A garage that is intended for indoor use usually has walls and a roof.", + "A indoor garage is typically a room in a home that is used to store a car or other vehicle.", + "A typical indoor garage is a large, enclosed space with concrete floors and walls.", + "The image shows a clean, well-lit garage with freshly painted white walls.", + "I found an image of an indoor garage that looked like it belonged to a home.", + "An image from the internet of a indoor garage may show a large, open space with concrete flooring and white walls.", + "A photo of an indoor garage would show a room with walls and a ceiling, and possibly a door leading to the outside.", + "This image is of an indoor garage with several cars parked inside.", + "This image is of an indoor garage.", + "The image is of a dark room with concrete walls and floor.", + "An image from the internet of an indoor garage shows a large, empty room with concrete floors and white walls.", + "The image is of an indoor garage with rows of cars parked inside.", + "This image is of an indoor garage with a white floor and walls.", + "The indoor garage keeps your car protected from the elements.", + "The indoor garage at 123 Main Street is the perfect place to park your car during the winter.", + "Indoor garage with multiple cars and a workbench.", + "A large indoor garage with multiple vehicles parked inside.", + " A busy indoor garage with cars parked in neat rows and people milling about.", + "A garage filled with cars and tools.", + "This is an indoor garage.", + "Indoor garage with car.", + "An indoor garage with several cars parked inside.", + "An indoor garage with a concrete floor and white walls." + ], + "garbage dump": [ + "A garbage dump might look like a big pile of trash where people have dumped their garbage.", + "A garbage dump is a place where trash is dumped.", + "A garbage dump is a place where people throw away their trash.", + "A garbage_dump is a large open pit where garbage is dumped and left to decompose.", + "A garbage dump is a site where waste is dumped and buried.", + "A garbage dump is a site where waste is dumped.", + "A garbage dump is usually a large, open pit where garbage is dumped.", + "A garbage dump is a site where waste is dumped.", + "A garbage dump is a pile of garbage.", + "A garbage dump is usually a large, open pit where trash is dumped and allowed to accumulate.", + "The best way to identify a garbage_dump is by its smell.", + "The best way to identify a garbage_dump is by its odor.", + "Often, a garbage_dump will have a sign or some other indication that it is a place where people can go to dispose of their trash.", + "A garbage dump can be identified by its large size, the presence of trash and debris, and the lack of vegetation.", + "A garbage_dump is usually a large open pit where garbage is dumped and then buried.", + "A landfill is a garbage_dump where trash is buried between layers of dirt to keep it out of sight.", + "There is no definitive answer to this question, as the definition of a \"garbage dump\" can vary depending on who you ask.", + "A garbage_dump can often be identified by its foul smell.", + "Garbage dumps can be identified by the presence of large amounts of trash and debris.", + "A garbage_dump is a landfill where trash is dumped and buried.", + "A garbage dump typically looks like a large open area where there is a lot of trash and debris.", + "A garbage_dump looks like a large, open area where garbage is stored.", + "A garbage dump is a site where trash is dumped and allowed to accumulate.", + "A garbage_dump looks like a pile of trash.", + "Agarbage dump is an area where solid waste is dumped and buried.", + "A garbage dump is a pile of garbage.", + "A typical garbage dump looks like a large, open pit filled with trash.", + "A garbage dump looks like a large, open area where trash and other waste materials are dumped.", + "There is not a definitive answer to this question as garbage dumps can vary greatly in size and appearance.", + "A garbage_dump typically looks like a large pile of trash that has been accumulated over time.", + "I found an image on the internet of a garbage dump.", + "An image of a garbage dump might show a large pile of trash that has been left outside, with people in the background picking through it.", + "In the image, there is a large mound of garbage that appears to be rising high into the air.", + "A dumpster overflowing with trash and garbage.", + "A huge, smelly, and dangerous place where people go to get rid of their trash.", + "In the image, there is a large pile of trash in a deep hole.", + "In the image, there is a large mound of trash that seems to be spilling out of a hole in the ground.", + "An image of a garbage dump might show a large mound of trash, with people picking through it to find recyclable materials.", + "The image is of a large, open field filled with trash.", + "The image is of a large pile of trash that has been dumped in a field.", + " A garbage dump full of trash and waste.", + "The world's largest garbage dump, located in Rio de Janeiro, Brazil.", + "A picture of a garbage dump.", + "A huge garbage dump in the middle of a city.", + "A huge mound of garbage at a dump site.", + "\"Despite our best efforts, our planet is still being polluted by garbage.", + "A large pile of garbage at a dump.", + "A giant pile of trash at a garbage dump.", + "Garbage dump in City A.", + "The garbage dump is a place where we can dispose of our waste." + ], + "gas station": [ + "A gas station may have a few different features, but the primary feature is a building that sells gasoline.", + "A gas station typically has a few key components.", + "A gas station is a facility that sells motor fuel and lubricants for motor vehicles.", + "A gas station typically has a few pumps in a line, often with a small garage attached.", + "A typical gas station has a few key features.", + "A gas_station typically has a number of pumps for dispensing gasoline or other automotive fuels, a convenience store, and often a repair garage.", + "A gas station is a building where people can stop to buy gasoline for their cars.", + "A gas station generally has a few pumps in a line, a small office, and some signage.", + "A gas station is a building where you can buy gasoline for your car.", + "A gas station typically has a large number of pumps, a pay window, and a convenience store.", + "A gas station is a facility where people can purchase gasoline for their vehicles.", + "-A gas station is typically identified by its prominent gasoline pumps.", + "There are various ways to identify a gas station.", + "A gas station can typically be identified by its bright lights and large signs.", + "A gas station is a facility that sells gasoline and diesel fuel.", + "It is typically a large building with multiple gasoline pumps in front.", + "A gas station is a place where vehicles can refuel with gasoline or other fuel.", + "One way to identify a gas station is by its signage.", + "Most gas stations have a sign with a large \"G\" in front of them.", + "By its signs, which typically feature a red and white design.", + "A gas station typically has a few pumps to dispense gasoline, a small office to conduct transactions, and sometimes a convenience store.", + "Most gas stations have a building where customers can go to pay for their gas and use the restroom.", + "A gas station typically has a few Fuel pumps that customers can use to pump gas into their vehicles.", + "A gas station typically has a few pumps for gasoline and a small kiosk for paying.", + "It varies, but most gas stations have a few key features.", + "A gas station typically has a few pumps for gasoline and a cashier's booth.", + "A gas station typically has a large parking lot with a gas pump in front of a small kiosk.", + "A gas_station is a type of building where people can purchase gasoline for their vehicles.", + "The exterior of a typical gas station would likely feature the business' name or logo, as well as one or more gas pumps.", + "A gas station typically has a few pumps for gasoline, a pay kiosk, and sometimes a small convenience store.", + "In the image, there is a gas station with two gas pumps.", + "The image is of a gas station with a large sign that says \"GAS STATION\" in big, bold letters.", + "There is a gas station in the middle of a busy city street.", + "An image of a gas station from the internet might show a brightly lit building with a sign that says \"gas station\" in big letters.", + "The image is of a gas station with three pumps.", + "The image is of a gas station with a large sign that reads \"GAS STATION\" in big, red letters.", + "A gas station is typically a building with a canopy over the pumps where you can pull up to fill up your car with gasoline.", + "An image of a gas station from the internet would most likely show a building with a sign that says \"gas station\" and pump stations with hoses and gas nozzles.", + "The image is of a gas station with a red and yellow sign.", + "A gas station is a facility where drivers can purchase gasoline and other fuel products for their vehicles.", + "This is a picture of a gas station.", + "This is a gas station.", + "A gas station in the middle of nowhere.", + "A gas station in Havana, Cuba.", + "A gas station in the United States.", + "A gas station in the United States.", + "A gas station with two pumps in front of a small building.", + "Pricey gas at the station.", + "A gas station in the United States.", + " A couple fills up their car at a gas station." + ], + "exterior gazebo": [ + "A exterior gazebo is a small, freestanding structure that has a roof and is usually open on all sides.", + "A typical exterior gazebo is a freestanding, octagonal structure with a pitched roof and open sides.", + "An exterior gazebo is a free-standing structure that is typically octagonal or spherical in shape.", + "A exterior gazebo looks like a type of roofed structure that is typically found in public parks or gardens.", + "A exterior gazebo typically is a hexagon or octagon shape with a roof.", + "A gazebo is a freestanding structure usually made of wood and with a roof, that is open on all sides.", + "A exterior gazebo is an outdoor structure that is typically built in a octagonal or rectangular shape.", + "A exterior gazebo can be made out of various materials such as metal, wood, or stone.", + "A exterior gazebo is a free-standing structure that is used for shade or decoration.", + "A exterior gazebo is typically a freestanding structure that is open on all sides with a roof.", + "A exterior gazebo can be identified by its roof, which is typically made of metal or wood, and its pillars, which are usually made of stone or brick.", + "Most exterior gazebos are made out of wood or metal and have a roof.", + "One way to identify an exterior gazebo is by its octagonal shape.", + "There are a few ways to identify an exterior gazebo.", + "The most identifying feature of an exterior gazebo is its octagonal shape.", + "One way to identify an exterior gazebo is by its octagonal shape.", + "The most common way to identify a exterior gazebo is by its octagonal or hexagonal shape.", + "One way to identify an exterior gazebo is by its octagonal shape.", + "The most common way to identify an exterior gazebo is by its octagonal shape.", + "There are a few ways that you can identify an exterior gazebo.", + "A gazebo is a freestanding structure that is often built in a garden or park.", + "A gazebo is a type of structure that is often found in gardens or parks.", + "A gazebo is a freestanding structure that has a roof and is often used for relaxation or entertainment.", + "A exterior gazebo can look like a variety of things.", + "There is no definitive answer to this question as the appearance of a exterior gazebo can vary greatly depending on the specific design, materials used, and location.", + "A gazebo is a freestanding structure that is often found in gardens or public parks.", + "A gazebo is a freestanding structure that has a roof and is often open on the sides.", + "There is no definitive answer to this question, as the appearance of a exterior gazebo can vary greatly depending on its specific design.", + "There is no definitive answer to this question as exterior gazebos can come in a wide variety of shapes and sizes.", + "There is no definitive answer, as the style of a gazebo can vary greatly.", + "A large, white gazebo with a red roof, sitting in a green field.", + "In the image, there is a large gazebo with a pointed roof.", + "The image is of a large white gazebo with six pillars and a dome roof.", + "In the image, there is a wooden gazebo with a metal roof.", + "The image is of a white gazebo with a green roof, set in a garden with flowers and trees.", + "The image shows a wooden gazebo with a shingled roof.", + "A gazebo is an outdoor structure that is usually built in a garden or park.", + "The image depicts a large, octagonal gazebo with a pointed roof.", + "This image is of a exterior gazebo that is made out of all white wood.", + "The gazebo is octagonal in shape and made of wood.", + "The exterior gazebo is a beautiful and unique addition to any home.", + "An exterior view of a gazebo in a garden.", + "The gazebo in the garden is a popular spot for weddings.", + "This is a beautiful gazebo located in the park.", + "Gazebo on a sunny day.", + "This beautiful gazebo is the perfect spot to enjoy a cup of coffee or tea and take in the stunning view.", + "Gazebo in the Garden.", + " An exterior gazebo with a view of a garden.", + "Gazebo in a park.", + "This is an exterior gazebo." + ], + "indoor general store": [ + "An indoor general store typically contains a wide variety of items, grouped into different sections.", + "A indoor general_store looks like a large room with shelves on the walls and in the center of the room.", + "Indoor general_stores are typically small stores that sell a variety of goods.", + "The shelves are stocked with all kinds of things: from food to clothes to electronics.", + "An indoor general_store typically contains a wide variety of items, including food, drinks, household items, and other merchandise.", + "A indoor general_store typically looks like a small grocery store.", + "A indoor general_store typically has a wide variety of merchandise that is arranged in aisles and rows.", + "An indoor general store typically includes a wide range of items including food, drinks, grocery items, household items, and more.", + "The general store typically has a wide range of items including food, clothes, shoes, hardware, and general household items.", + "A general store is usually a small shop that sells a wide range of products.", + "An indoor general store is typically a small store that stocks a range of items that may be used for household tasks or projects.", + "There is no definitive answer to this question, as the definition of \"indoor general_store\" can vary significantly from one person to the next.", + "There is no definitive answer to this question, but some possible indicators that a store is an indoor general_store include whether the store is inside a building, whether it carries a wide variety of items, and whether it is open year-round.", + "Indoor general_stores are typically large stores that sell a variety of items.", + "A general store typically sells a wide variety of items, including food, clothing, hardware, and other household goods.", + "There is no definitive answer to this question, as the appearance of an indoor general_store can vary greatly depending on the specific store and its location.", + "Some common features of an indoor general_store include racks or shelves for merchandise, a counter for customers to pay, and a register.", + "Some common characteristics of an indoor general_store include a wide variety of merchandise, limited customer service, and transactions that are typically completed quickly.", + "There is no definitive answer to this question, as the term \"indoor general_store\" can refer to a variety of different types of businesses.", + "Some potential identifying characteristics of an indoor general store may include: a wide variety of merchandise available for purchase, organized shelves and aisles, and a sales counter.", + "The interior of a typical indoor general store would be filled with shelves stocked with a variety of goods, ranging from food and household items to clothes and tools.", + "There is no definitive answer to this question as the layout and appearance of an indoor general_store can vary greatly depending on the size and location of the store, as well as the specific goods that it sells.", + "A general store is a broad term that can be used to describe any type of store, whether it is indoor or outdoor.", + "There is no one answer to this question as indoor general stores can vary greatly in terms of size, layout, and atmosphere.", + "It depends on the store, but generally they will have a wide variety of products available for purchase.", + "Indoor general stores can vary greatly in terms of size and appearance, but they typically have a wide variety of merchandise available for purchase, including food, household items, and other common goods.", + "The interior of a general store can vary greatly, depending on the size and location of the store.", + "There is no definitive answer to this question as the appearance of an indoor general store can vary greatly depending on the location, size, and specific merchandise that the store sells.", + "A general store located indoors typically has shelves lining the walls with a counter in the center of the room.", + "An indoor general store typically has aisles of shelves stocked with various items such as food, household supplies, clothing, and toys.", + "In the image, there is a long counter with various items on it and behind it.", + "In the image, there is a long counter with shelves of merchandise behind it.", + "In this image, we see a small, cramped general store located indoors.", + "The image shows a small, cramped general store with shelves full of dusty goods.", + "The image is of a small, cramped indoor general store.", + "This image is of an old-fashioned general store with a wooden counter and shelves stocked with various items.", + "The image is of a small, old-fashioned general store.", + "In the image, there is a large general_store with many shelves of different items.", + "The image is of a small, cramped indoor general store.", + "The image is from the website of a company that specializes in selling products for general stores.", + "This is an indoor general_store.", + "Indoor general store with aisles of merchandise.", + " A display of various items for sale at a general store.", + " A view of the interior of an old-fashioned general storeThe interior of an old-fashioned general store, with a variety of goods on display.", + " A man and a woman are standing behind a long counter.", + "This is an indoor general store.", + "general_store\nA general_store is a type of store that sells a wide variety of items, including food, clothes, and household items.", + "Local store in small town, USA.", + "Interior of a general store in the early 1900s.", + "This is an indoor general store." + ], + "outdoor general store": [ + "A typical outdoor general_store would have aisles of different items set up under tents or canopies.", + "The exterior of a typical outdoor general store is a rustic cabin style with log walls and a shingled roof.", + "A general store is usually a small store that sells a variety of items.", + "A typical outdoor general store sells a wide variety of items, including food, hardware, and clothing.", + "A outdoor general store is typically a large building with a parking lot in front.", + "An outdoor general store is typically a small mom and pop type store that is located in a rural area.", + "A outdoor general store typically looks like a small, rustic cabin or shed, stocked with a variety of essential goods and supplies for visitors of a campground or park.", + "An outdoor general_store may have a wide variety of items, including food, camping gear, clothing, and souvenirs.", + "Outdoor general stores come in a variety of shapes and sizes, but they all have one thing in common: they are all designed to give customers easy access to the merchandise they need without having to go inside the store.", + "A outdoor general_store typically looks like a small, rural shop that sells a variety of items such as food, clothes, and basic household supplies.", + "There is no definitive answer to this question, but some possible clues that an outdoor general_store may be present include the presence of camping or hiking gear, fishing supplies, and hunting equipment.", + "There is no one definitive answer to this question, as the best way to identify an outdoor general_store may vary depending on the specific store in question and the location in which it is situated.", + "There is no one definitive answer to this question.", + "A general store is typically a small store that sells a variety of items.", + "There are a few characteristics that can help you identify an outdoor general store.", + "There is no definitive answer to this question, as the definition of \"outdoor general store\" can vary greatly.", + "There is no definitive answer to this question, but some possible indicators that a store is an outdoor general_store include a large selection of outdoor supplies and equipment, a focus on customer service, and a location near popular outdoor recreation areas.", + "There is no definitive answer to this question, as the term \"outdoor general store\" can mean different things to different people.", + "An outdoor general_store can typically be identified by its large size and variety of merchandise.", + "There is no definitive answer to this question, as the term \"outdoor general store\" can mean different things to different people.", + "An outdoor general store typically has a large parking lot, a wide variety of merchandise, and a helpful staff.", + "There is no one definitive answer to this question, as outdoor general stores can vary greatly in appearance depending on their location and the type of merchandise they sell.", + "There is no one definitive answer to this question, as the appearance of an outdoor general_store can vary depending on the location and the specific type of store.", + "A general store can have a variety of different appearances, depending on the location and type of store.", + "There is no definitive answer to this question, as outdoor general stores can come in a wide variety of shapes and sizes.", + "A general store typically has a wide range of goods, including food, hardware, and clothing.", + "An outdoor general store looks like a small, standalone store that sells a variety of general goods, including food, beverages, and household supplies.", + "A general store located outdoors may have a small porch or awning to protect customers from the elements while they shop.", + "There is no one definitive answer to this question, as outdoor general stores can vary considerably in terms of size, layout, and stocked merchandise.", + "There is no one definitive answer to this question since there is such a wide variety of types and styles of outdoor general stores.", + "There is an image of an old-fashioned general store with a wooden exterior and large glass windows.", + "The image is of a large, two-story red building.", + "There is an image of an old-fashioned general store that is set up outdoors.", + "In the image, there is a small, one-story building with a green tin roof.", + "In the image, there is a large red building with a green roof.", + "In the image, there is a wooden shack with a thatched roof.", + "In the image, there is a small, wooden general store located in the woods.", + "The image is of an old-fashioned, red general store.", + "In the image, there is a small, rustic-looking store with a brown wooden exterior.", + "An image of an outdoor general store may include a building with a porch and several shelves of merchandise outside.", + "Looking for a convenient place to stop for gas and snacks? Check out your local outdoor general store!.", + " A General Store in rural AmericaThe caption reads: A General Store in rural America.", + "\"The old general store was a staple in the small town, providing everything from groceries to hardware.", + "Old-fashioned general store in a small town.", + "Just your typical small-town general store with a wide range of goods, from groceries to hardware.", + "The Runcible Spoon General Store in Newberry, MI.", + " Outdoor general store in rural area.", + "The General Store.", + "The General Store.", + "The general store was a staple in many small towns across America." + ], + "gift shop": [ + "A gift shop typically contains a wide variety of items including books, stationery, toys, games, and souvenirs.", + "A gift shop typically has a wide range of items including, but not limited to, cards, gifts, souvenirs, and novelty items.", + "A gift shop typically stocks a range of items including cards, wrap, and novelty gifts.", + "The inside of a gift shop is usually brightly lit with colorful displays of various items for sale.", + "The gift shop is usually a small shop located near the entrance of a museum.", + "The interior of a gift shop may be brightly lit and full of colorful items.", + "A gift shop is a retail store that specializes in selling items that would make ideal gifts for special occasions.", + "A gift_shop typically has a wide variety of merchandise that includes items such asbooks, toys, jewelry, and clothing.", + "The gift shop is a small store located in the front of the museum.", + "A gift_shop typically looks like a small shop that sells a variety of items such as souvenirs, candy, and other small items.", + "Some gift shops may have a sign that says \"gift shop.", + "A gift shop typically sells souvenirs, trinkets, and other small items.", + "There is no universal answer to this question, as the appearance of a gift shop can vary greatly depending on the location and the type of merchandise that is sold there.", + "The type of store can usually be identified by looking at the signs and displays in the window.", + "Look for a sign that says \"Gift Shop\" or a building with a lot of brightly colored things in the window.", + "One way to identify a gift shop is by the type of merchandise they sell.", + "One way to identify a gift shop is by the types of items that they sell.", + "If you are looking for a gift shop, you can usually find one in a shopping mall or near a tourist attraction.", + "The sign outside will typically say \"gift shop.", + "The sign out front will usually say \"gift shop.", + "A gift shop may have a variety of items such as clothes, toys, books, and trinkets.", + "The size and appearance of a gift shop can vary depending on its location and purpose.", + "There is no one answer to this question as gift shops come in all shapes and sizes.", + "A gift shop typically looks like a small store with a variety of items for sale.", + "Most gift shops are small stores that are decorated with colorful displays and sell a variety of items such as souvenirs, jewelry, books, and clothing.", + "There is no one answer to this question as the appearance of a gift shop can vary greatly depending on the location, size, and type of merchandise sold.", + "A gift shop typically features a wide range of items for purchase, including souvenirs, jewelry, books, and many other types of items.", + "There is no one answer to this question since gift shops come in all shapes and sizes.", + "A gift shop looks like a store that sells gifts.", + "This varies depending on the store, but generally, gift shops sell a variety of items that would make good gifts for special occasions.", + "In the image, there are shelves full of gifts and souvenirs.", + "The image is of a brightly lit gift shop with shelves full of merchandise.", + "The image is of a gift shop that is located in a mall.", + "A gift shop is a store that sells items that are typically given as gifts.", + "I found an image of a quaint gift shop that looks like it's right out of a storybook.", + "In the image, there is a gift shop that is selling different kinds of items.", + "In the image, there is a gift shop that is decorated for Christmas.", + "In the image, there is a gift shop with many different types of gifts.", + "An image from the internet of a gift_shop shows a shop with shelves full of various types of gifts.", + "The image is of a small, independent gift shop.", + "The gift shop at the art museum was full of unique and interesting items.", + "T-shirts, coffee mugs, and keychains for sale at the gift shop.", + " A gift shop with a large variety of items.", + "CUTE GIFT SHOPLooking for a unique and adorable gift? Look no further than this gift shop! Offering a wide variety of cute and affordable items, this is the perfect place to find that special something for your loved.", + " A great place to buy giftsThis gift shop is a great place to buy gifts for your loved ones.", + "Grandma's Gift Shop - Where memories are made.", + " A gift shop with many different items for saleA gift shop is a retail store that specializes in selling gifts and novelty items.", + " A small gift shop with a variety of items for saleThe shop provides an assortment of gifts for different occasions.", + "The gift shop offers a variety of items for purchase, including souvenirs, T-shirts, and books.", + " A small, quaint gift shopThis small, quaint gift shop is the perfect place for finding unique gifts for your loved ones." + ], + "golf course": [ + "A golf course generally consists of a series of holes, each with a teeing ground, fairway, rough and other hazards, and a green with a flagstick and hole, all set out in a distinctive layout.", + "A golf_course looks like a green, manicured field with white sand traps and a flagstick in the distance.", + "A golf course typically consists of a series of 9 or 18 holes, each with a teeing ground, fairway, rough and other hazards, and a green with a flagstick and cup.", + "A golf course is typically a large, open expanse of land with grassy areas and a few trees.", + "A golf course typically consists of a series of nine or eighteen holes, each with a teeing ground, fairway, rough and other hazards, and a green with a flagstick and cup.", + "A golf course is a landscape composed of landforms gently rolling across an expansive green.", + "A golf course typically consists of a series of 9 or 18 holes, each with a teeing ground, fairway, and putting green.", + "A golf course typically looks like a large, manicured green space with many fairways and obstacles.", + "A golf course is typically a large, open area of land with rolling hills and carefully manicured grass.", + "A golf_course typically has a large, open expanse of grass, with a few trees and other obstacles scattered throughout.", + "A golf course is typically identified by its sprawling size and its many obstacles, including water hazards and sand traps.", + "Golf courses can be identified by their green spaces, sand traps, and water features.", + "The most obvious way to identify a golf course is by its rolling hills, manicured lawns, and sand traps.", + "One way to identify a golf course is by looking for a sign that says \"golf course\" or \"golf club.", + "A golf course can be identified by its green grass, flag sticks, and sand traps.", + "The most common way to identify a golf course is by its green grassy areas and sand traps.", + "Golf courses are typically large areas of land with manicured greens and fairways.", + "One way to identify a golf course is by looking for a sign that says \"golf course\" or by looking for a group of people carrying golf clubs.", + "The easiest way to identify a golf course is by its size and shape.", + "The identifying feature of a golf course is the presence of a golf course.", + "A golf course is usually a large, open area of land with well-manicured grass and specifically designed obstacles called \"golf holes.", + "A golf course typically consists of a series of nine or eighteen holes, each with a teeing ground, fairway, rough and other hazards, and a green with a flagstick and cup.", + "A golf course typically consists of a series of nine or eighteen holes, each with a teeing ground, fairway, rough and other hazards, and a green with a flagstick and hole, all set out in a defined area.", + "There is no one answer to this question as golf courses can vary greatly in terms of their size, layout, and design.", + "A golf course typically consists of a series of 9 or 18 holes, each with a teeing ground, fairway, and putting green.", + "A golf course is typically a large, open area of land with well-manicured grass and strategically placed hazards.", + "A golf course typically contains a club house, driving range, putting green, and 18 holes.", + "There is no definitive answer to this question as golf courses can vary greatly in appearance, depending on their location, climate, and the level of maintenance.", + "A golf course typically consists of a series of nine or eighteen holes, each with a teeing ground, fairway, rough and other hazards, and a green with a flagstick and cup.", + "A golf course is a large, open expanse of land with well-manicured grassy areas and typically includes many different obstacles like ponds, sand traps, and trees.", + "This image is of a golf course in Japan.", + "This image is of a golf course with well-manicured green grass and trees.", + "A golf course is a expanse of well-manicured lawns, typically with a few trees and shrubs, and briefly mown grass in between.", + "In the image, a golf course is seen from above.", + "The image is of a golf course with manicured green grass and a sand trap.", + "In the image, there is a golf course with pristine green grass, and there are golfers dotted around the course playing the game.", + "The image is of a golf course with perfectly manicured green grass and a few trees.", + "In the image, there is a golf course with well-manicured green grass, and there are golfers in the distance teeing off.", + "The image is of a golf course with well-manicured green grass and trees.", + "The image is of a golf course with two players on it.", + "A golf course is a specific area where the game of golf is played.", + " \"Aerial view of a golf course in the spring.", + "This is a golf course.", + " A beautiful view of a golf course with the sun shining.", + "A golfer teeing off at a golf course.", + "Golfers enjoy a beautiful day on the links.", + "A beautiful golf course with lush green grass and well-manicured fairways.", + "Golfers teeing off at the start of a round.", + "This beautiful golf course is perfect for players of all levels!.", + "Golfers teeing off at the first hole of a golf course." + ], + "indoor greenhouse": [ + "A typical indoor greenhouse is a rectangular structure with a glass or plastic roof and walls.", + "A typical indoor greenhouse is a glass or plastic structure with shelves that is typically used for starting plants or protecting them from cold weather.", + "A indoor greenhouse is typically a smaller version of a traditional greenhouse and is made to grow plants indoors.", + "An indoor greenhouse is a structure made of glass or transparent plastic, in which plants are grown.", + "A indoor greenhouse is typically a small structure made of transparent material (such as glass or plastic) that is used to protect plants from the environment.", + "\nA typical indoor greenhouse is a glass or plastic enclosure that is warmed by the sun or by artificial lighting.", + "A indoor greenhouse typically has clear walls and a clear roof.", + "A indoor greenhouse is typically a building with walls and a roof made of transparent material, such as glass or plastic, in which plants are grown.", + "A indoor greenhouse is a building where plants are grown.", + "A indoor greenhouse looks like a large box made out of glass or clear plastic.", + "A indoor greenhouse is a building where plants are grown.", + "An indoor greenhouse can typically be identified by its large glass windows or walls.", + "Indoor greenhouses are typically made of glass or acrylic, and are designed to protect delicate plants from drastic changes in temperature and humidity.", + "A typical indoor greenhouse will have transparent walls and a roof, and will be filled with vegetation.", + "By its size, shape, and location.", + "An indoor greenhouse is a building designed to protect plants from the outside environment.", + "The most common type of indoor greenhouse is a hobby greenhouse.", + "An indoor greenhouse is a structure where crops are grown inside a building.", + "An indoor greenhouse is a building where plants are grown under controlled conditions.", + "It can be difficult to identify an indoor greenhouse if you are not familiar with the features of a greenhouse.", + "A typical indoor greenhouse looks like a large glass or plastic enclosure with shelves inside for plants.", + "An indoor greenhouse typically has walls and a roof made of glass or clear plastic.", + "A typical indoor greenhouse looks like a large metal or glass box with shelves or racks inside for plants.", + "A typical indoor greenhouse looks like a small shed or outbuilding, with a slanted roof to let in more light.", + "There is no definitive answer to this question as the design of indoor greenhouses can vary considerably.", + "A typical indoor greenhouse looks like a large glass or plastic room with shelves for plants.", + "Indoor greenhouses vary in size and shape, but most have clear walls and roofs to allow in maximum sunlight.", + "A basic indoor greenhouse can be as simple as a sunroom or conservatory attached to the side of a house, or it can be a stand-alone structure.", + "A indoor greenhouse is a glass or transparent enclosure used for cultivation.", + "An indoor greenhouse typically looks like a small, enclosed area with shelves or planting beds.", + "This image from the internet shows a large, brightly lit indoor greenhouse filled with rows of plants in various stages of growth.", + "An image from the internet of a indoor greenhouse shows a wooden frame with clear plastic walls and a roof.", + "An image from the internet of an indoor greenhouse shows a large glass structure with a metal frame.", + "The image is of an indoor greenhouse with shelves full of plants.", + "This image is of a indoor greenhouse with shelves full of plants.", + "An image of an indoor greenhouse shows a large room with bright lights and shelves full of plants.", + "The image is of a large, rectangular greenhouse with wide, clear windows on all sides.", + "I found an image of an indoor greenhouse that I really liked.", + "This image is of a large, rectangular indoor greenhouse with shelves on either side.", + "I found an image of a indoor greenhouse that looks like a lot of fun.", + "A type of plastic cover used on indoor greenhouses to increase humidity and maintain warmth.", + "Plants for sale at a nurseryA caption of an image of mountains:The Andes, a mountain range in South America.", + "The benefits of an indoor greenhouse are that it can extend the growing season, protect plants from the elements, and provide a controlled environment.", + "An indoor greenhouse provides an optimal environment for plants to grow.", + " \"An indoor greenhouse full of lush, green plants.", + "An indoor greenhouse allows plants to grow year-round, regardless of the weather outside.", + "An indoor greenhouse is the perfect place to grow your favorite plants all year round.", + "Looking inside an indoor greenhouse where plants are grown year-round.", + "Image of a small, indoor greenhouse with shelves holding various potted plants.", + "A view of an indoor greenhouse, with plants of various sizes and shapes." + ], + "outdoor greenhouse": [ + "A outdoor greenhouse is a small frame structure covered in transparent material, such as plastic or glass, in which plants are grown.", + "A outdoor greenhouse typically has walls and a roof made of transparent material, such as plastic or glass, to allow sunlight to enter.", + "A typical outdoor greenhouse is a rectangular structure made of aluminum or wood framing and covered with transparent material, such as glass or plastic.", + "An outdoor greenhouse typically looks like a large glass or plastic structure with a frame made of metal or wood.", + "A outdoor greenhouse typically looks like a rectangular structure made of transparent material, such as plastic or glass.", + "A wooden or metal frame with clear walls and a roof, typically covered in plastic, in which plants are grown outdoors but under controlled conditions.", + "A outdoor greenhouse is a structure that is typically made out of glass or clear plastic.", + "An outdoor greenhouse is a gardener's best friend.", + "A greenhouse is a building made of glass or clear plastic, in which plants are grown.", + ".", + "A greenhouse is typically a glass or plastic structure that is used for the cultivation of plants.", + "A outdoor greenhouse is typically made of glass or clear plastic and has a framework of metal or wood.", + "A outdoor greenhouse will typically have large windows that can be opened to allow for ventilation and sunlight.", + "An outdoor greenhouse typically has a metal or plastic frame and is covered in transparent plastic or glass.", + "There are several ways to identify an outdoor greenhouse.", + "Outdoor greenhouses are typically made out of metal and glass, and are used to grow plants.", + "It typically has walls made of glass or transparent plastic, which allows sunlight to enter.", + "A greenhouse is generally a building made of transparent material, such as glass, in which plants are grown.", + "Outdoor greenhouses are typically made of metal or PVC pipes and covered with a transparent material, such as polyethylene film or toughened glass.", + "Outdoor greenhouses are typically made out of metal or plastic and have a clear cover.", + "There is no one definitive answer to this question as the appearance of an outdoor greenhouse can vary greatly depending on its size, location, and purpose.", + "A outdoor greenhouse typically looks like a large house made out of glass.", + "An outdoor greenhouse typically consists of a frame made from metal or wood, and covered with a transparent material such as glass or plastic.", + "A typical outdoor greenhouse looks like a small, stand-alone shed made out of clear plastic or glass.", + "A greenhouse is typically a rectangular building made of transparent materials, like glass or plastic, in which plants are grown.", + "A typical outdoor greenhouse looks like a frame made out of metal or plastic, with clear walls and a roof.", + "A typical small outdoor greenhouse looks like a rectangular metal frame covered with clear plastic.", + "A outdoor greenhouse typically has a metal or wooden frame and is covered with a clear material, such as glass or plastic.", + "A typical outdoor greenhouse looks like a large rectangular structure made of wood or metal framing with transparent walls and a roof.", + "An outdoor greenhouse looks like a glass or plastic structure that is used to grow plants.", + "An image from the internet of an outdoor greenhouse shows a large, rectangular structure made of transparent material, with shelves inside for plants.", + "I found an image of a square shaped greenhouse made out of all clear glass.", + "A greenhouse made out of an old metal frame with a broken door.", + "A large greenhouse with clear walls and a dirt floor.", + "The image is of a large, rectangular greenhouse with many shelves inside.", + "This image is of an outdoor greenhouse that is hexagon-shaped.", + "This image is of a rectangular outdoor greenhouse with a slanted roof.", + "I found an image of a quaint little outdoor greenhouse made out of old metal windows.", + "The image is of a large rectangular greenhouse with a metal frame and clear walls.", + "The image is of a wooden outdoor greenhouse with a metal roof.", + "A woman is standing in front of an outdoor greenhouse, holding a potted plant.", + "A glance inside a small outdoor greenhouse in early spring.", + "An outdoor greenhouse with a variety of plants.", + "Outdoor Greenhouse.", + "Looking out over a beautiful outdoor greenhouse.", + "This outdoor greenhouse is perfect for the gardener who loves to be surrounded by nature.", + "A woman is walking through a beautiful outdoor greenhouse full of different kinds of plants.", + "An outdoor greenhouse full of plants and flowers.", + "A woman looks at her plants in an outdoor greenhouse.", + " A glance inside one of many outdoor greenhouses on a sunny day." + ], + "indoor gymnasium": [ + "A typical indoor gymnasium has a flat, hardwood floor and a ceiling that is at least as high as the largest athlete using the facility.", + "A indoor gymnasium is a room that is typically used for physical activity.", + "Indoor gymnasiums typically contain a hardwood floor, with a basketball hoop at each end.", + "A gymnasium is a large room designed to be used for physical exercise, sports, or dancing.", + "An indoor gymnasium is a large room with a ceiling that is high enough to allow people to play basketball or volleyball.", + "An indoor gymnasium typically contains a basketball court, a volleyball court, and other various types of athletic equipment.", + "A indoor gymnasium looks like a room with a lot of different kinds of exercise equipment in it.", + "Indoor gymnasiums can vary in size and appearance, but most often they are large, empty spaces with hardwood floors and high ceilings.", + "An indoor gymnasium has a hardwood floor and is surrounded by bleachers.", + "An indoor gymnasium often has a polished wood floor, bleachers or stands on one or more sides, and a ceiling high enough to allow a person to toss a basketball or football upward and have it reach the floor.", + "A gymnasium is a large room with a high ceiling.", + "An indoor gymnasium is typically a large, open room with high ceilings.", + "A gymnasium is a room that is used for physical activity.", + "There are a few ways to identify an indoor gymnasium.", + "Some features that may help you to identify an indoor gymnasium are that they are usually large open spaces with high ceilings.", + "A gymnasium is a room that is typically used for indoor sports, gymnastics, and physical education.", + "An indoor gymnasium will have a basketball hoop, a free throw line, and a three point line.", + "Most indoor gyms have a large, open space with a hard floor.", + "An indoor gymnasium can typically be identified by its large size, high ceilings, and lack of windows.", + "There are a few ways to identify an indoor gymnasium.", + "There is no definitive answer to this question as indoor gymnasiums can come in a variety of shapes and sizes.", + "A indoor gymnasium typically has a hardwood floor, multiple basketball hoops, and bleachers for spectators.", + "A indoor gymnasium typically has a smooth, hardwood floor, with basketball hoops at each end.", + "A gymnasium typically has a smooth floor surface, making it ideal for sports that require running or jumping.", + "A gymnasium is a large room inside a building where people can play sports or exercise.", + "A indoor gymnasium can look like a large room with a high ceiling andbasketball hoops at either end.", + "A gymnasium is a room that has been designed for physical activity.", + "A indoor gymnasium looks like a large open room with a high ceiling.", + "An indoor gymnasium looks like a large room with a hardwood floor and mirrors on the walls.", + "An indoor gymnasium usually has a smooth, hardwood floor and Basketball hoops at either end.", + "The image is of a large, open room with hardwood floors and high ceilings.", + "An image of an indoor gymnasium shows a large room with a high ceiling.", + "The image shows a large, open room with hardwood floors and a basketball hoop at one end.", + "An image from the internet of a indoor gymnasium shows a large room with high ceilings.", + "The image is of a brightly lit gymnasium with a smooth, shiny floor.", + "The image is of a large room with high ceilings.", + "The image from the internet shows a large room with hardwood floors and high ceilings.", + "The image shows a large, open room with high ceilings.", + " An image from the internet of an indoor gymnasium would likely show a large room with high ceilings, basketball hoops, weights, and other workout equipment.", + "The image shows a large room with high ceilings.", + "The indoor gymnasium is a large, open space that is perfect for practicing your favorite sport or working out.", + "The indoor gymnasium at the school is a great place to get some exercise.", + "The indoor gymnasium at the school is a great place to work out.", + "The indoor gymnasium at the school is a great place for the students to get some exercise.", + "Indoor gymnasiums provide a controlled environment for exercise and sports activities.", + "The indoor gymnasium at the University of Michigan.", + "The indoor gymnasium at the University of Missouri is a popular spot for students to stay active.", + "The indoor gymnasium at the Athletic Club is the perfect place to stay in shape all year round.", + "The indoor gymnasium at the school is a great place to work out.", + "The school's new gymnasium is a state-of-the-art facility that will be the envy of other schools in the area." + ], + "indoor hangar": [ + "Indoor hangars are typically large, open spaces with a high ceiling and a door at one end.", + "A hangar is typically a large, metal shed that is used to store aircraft, either commercial or private.", + "A hangar is a closed building where aircraft are stored and maintained.", + "A indoor hangar typically looks like a large metal shed with doors that roll up or open to the side.", + "A hangar is a large, typically metal, building used to store aircraft or spacecraft.", + "An indoor hangar looks like a large, open space with a ceiling high enough to fly a plane under.", + "A indoor hangar is a building where aircraft are housed and maintained.", + ".", + "A hangar is a closed building or shed in which aircraft or other large vehicles are kept.", + "A typical indoor hangar is a large, metal building with metal walls and a metal roof.", + "There is no definitive answer to this question, as the term \"hangar\" can refer to a variety of structures.", + "An indoor hangar can be identified by its roofline, which is typically lower than that of a traditional building, and by the presence of doors that are large enough to accommodate aircraft.", + "A hangar is a building in which aircraft are housed and maintained.", + "An indoor hangar is a building that is designed and built to house aircraft.", + "Indoor hangars are typically large metal buildings with wide doors that can be opened to allow aircraft to fly in and out.", + "A hangar is typically a large, box-like structure with doors that open along the length for aircraft to taxi in and out.", + "Some indicators that a building is an indoor hangar are that the doors are very large, possibly taller than a normal sized door, and possibly made of metal.", + "A hangar is a large building where aircraft are kept.", + "An indoor hangar is a building that is designed to house aircraft.", + "A hangar is typically a large, roofed structure used to house aircraft or large machinery.", + "A hangar is a large, typically metal, building used to store aircraft or spacecraft.", + "A indoor hangar looks like a large room with a metal roof and metal walls.", + "A typical indoor hangar looks like a large metal building with a sliding door that opens to allow aircraft to enter.", + "A hangar is a structure where aircraft are parked.", + "A hangar is a large, roofed structure used to store aircraft or space vehicles.", + "A hangar is a kind of roofed-over space where aircraft are stored.", + "A hangar built for indoor use typically has large doors at one end that open to allow aircraft to be moved in and out.", + "A hangar is a closed building designed to protect aircraft from bad weather.", + "A hangar is typically a large, metal building where aircraft are stored.", + "A hangar is a building where aircraft are stored.", + "The image is of a large, open indoor space with a concrete floor.", + "This image is from the internet and is of an indoor hangar.", + " with a large aeroplaneThe image is of a large, hangar with a very large aeroplane inside.", + "The image is of a large, brightly lit room with a concrete floor.", + "This indoor hangar has a metal roof and large metal doors.", + "The image is of a large, open, indoor hangar with a metal roof.", + "An image from the internet of an indoor hangar shows a large, empty space with a high ceiling.", + "An image of an indoor hangar shows a large, open space with a concrete floor and metal walls.", + "The image is of a large, open indoor space with a concrete floor and metal walls.", + "An image from the internet of an indoor hangar shows a large, open space with a metal roof and concrete floor.", + "An indoor hangar at an airport.", + "Aircraft Hangar.", + "An indoor hangar at an airport.", + "Inside the hangar, workers are busy preparing the plane for its next flight.", + "An indoor hangar housing small aircraft.", + "An interior view of an airplane hangar, with several planes parked inside.", + "An indoor hangar provides a safe and secure space to store aircraft.", + "A plane is parked inside a hangar at an airport.", + "Inside the hangar, workers are busy preparing the plane for its next flight.", + "An indoor hangar at an airport." + ], + "outdoor hangar": [ + "A outdoor hangar is typically a large metal or steel building where airplanes and other aircraft are stored.", + "A typical outdoor hangar is a large open-sided metal structure with a metal roof.", + "A typical outdoor hangar is a large, open-sided metal building.", + "A outdoor hangar typically looks like a large, open-sided shed with a door at one end.", + "A outdoor hangar is typically a large building with an open front and a door at the back.", + "A outdoor hangar is a building that is used to store aircraft.", + "A hangar is a building where aircraft are stored and maintained.", + "A large metal building with a big sliding door on one end that opens so planes can fly in and out.", + "An outdoor hangar is a building that is used to store aircraft.", + "An outdoor hangar is a large shed with a sliding door that is used to store aircraft.", + "A hangar is a building that is used to store aircraft.", + "A hangar is a structure where aircraft are stored and maintained.", + "An outdoor hangar is a large, outdoor structure that typically has a roof and walls.", + "An outdoor hangar is a large building that is used to store aircraft.", + "You can identify an outdoor hangar by its roof, which is typically made of metal or fabric.", + "An outdoor hangar is a building that is used to house aircraft.", + "A hangar is a building where aircraft are stored and maintained.", + "A hangar is a building that is used to store aircraft.", + "A hangar is an enclosure for housing aircraft.", + "A hangar is a large building where aircraft are kept.", + "Aircraft hangars are large, wide-spanning structures with a controlled environment to house and maintain aircraft.", + "A small outdoor hangar might look like a metal shed with a roll-up door.", + "A outdoor hangar looks like a large metal structure with a metal roof.", + "A outdoor hangar looks like a large, open-sided shed.", + "A outdoor hangar is usually a large metal building with a door that can be opened to allow aircraft to enter and exit.", + "A outdoor hangar is typically a large metal or steel building with a wide door that can be opened to allow an airplane to enter.", + "A outdoor hangar is like a big house for your airplane.", + "An outdoor hangar looks like a large, open-sided metal shed.", + "A hangar is a closed space to store aircraft.", + "A large, open-sided shed used to shelter aircraft outdoors is called an outdoor hangar.", + "The image is of a large outdoor hangar with a metal roof.", + "Assuming you want an image of an outdoor hangar: One possible image is of a large, open metal structure with a sloped roof.", + "This image is of an outdoor hangar with a large metal roof.", + "The image is of a large metal shed with several rolling doors.", + "An outdoor hangar is a large structure typically used to shelter aircraft or other vehicles.", + "An outdoor hangar is a large metal building with a wide open door.", + "The image shows a large, silver airplane in a hangar with bright, yellow lights shining down on it.", + "A hangar is a large, unenclosed structure typically used to store an airplane or spaceship.", + "An image of an outdoor hangar shows a large, metal building with several doors open.", + "This image shows the exterior of a large hangar with a metal roof and metal walls.", + "An outdoor hangar containing an airplane.", + " A WWI Curtiss JN-4D \"Jenny\" Biplane in a snow-covered outdoor hangar.", + "An outdoor hangar housing small aircraft.", + "An outdoor hangar at an airport.", + " A huge, busy outdoor hangar with rows of small airplanes parked inside.", + " Theangle of the sun casts long shadows on the tarmac.", + "Aircraft hangar in the sunset.", + "An outdoor hangar at an airport.", + "An outdoor hangar for storing aircraft.", + "An outdoor hangar housing rows of small, private planes." + ], + "harbor": [ + "A harbor is a body of water where boats and ships can shelter from rough weather.", + "Most harbors have a dock where boats can tie up and unload their cargo.", + "A harbor is a sheltered body of water where ships and boats can anchor.", + "A harbor is a body of water where ships and boats can shelter from the weather.", + "A harbor is an area of water where boats can be docked.", + "A harbor is a place where ships can dock.", + "A harbor typically has a large body of water with docks or piers where ships can dock.", + "A harbor is a sheltered body of water where ships and boats can anchor.", + "A harbor is an area of water where ships can dock.", + "A harbor is usually a sheltered body of water where ships and boats can moor.", + "A harbor is a body of water where ships and boats can shelter from the wind and waves.", + "A harbor is a place where ships are able to dock and get shelter from bad weather.", + "A harbor is a safe place for ships to anchor.", + "A harbor is a place where ships and boats can shelter from bad weather.", + "There are many ways to identify a harbor, but some common methods include looking for a sheltered bay with calm water, looking for a area where boats are moored, or looking for a area with a lot of maritime activity.", + "Harbors are typically defined as sheltered bodies of water where ships and boats can safely anchor.", + "A harbor is a sheltered body of water where ships and boats can anchor.", + "A harbor is typically a safe place to anchor a ship.", + "The most identifiable feature of a harbor is its calm waters sheltered from the open sea by natural or man-made barriers.", + "A harbor is a body of water where ships and boats can shelter from the wind and waves.", + "A harbor is a body of water where ships and boats can shelter from bad weather or from enemies.", + "A harbor is a sheltered area of water where ships and boats can be moored.", + "A harbor is a sheltered body of water where ships and boats can anchor.", + "A harbor often has a dock where boats can tie up, and a waterfront where people can walk.", + "A harbor is a sheltered body of water where ships and boats can anchor.", + "A harbor is either a body of water, typically along a coast, where ships and other watercraft can shelter from the ocean's weather and waves, or an artificial basin where boats are stored.", + "A harbor is typically a water-bound area with docks or piers where ships can tie up and load or unload cargo or passengers.", + "A harbor is a body of water where ships and boats can shelter from the weather and be protected from dangerous waves.", + "A harbor is a body of water where ships and boats can shelter from the weather and where people can transfer goods to and from the land.", + "A harbor is a body of water protected from the open sea by a natural or artificial barrier.", + "This image from the internet is of a harbor with sailing ships and a lighthouse in the distance.", + "The image is of a harbor with many large ships.", + "The image is of a harbor with many ships.", + "The image is of a busy harbor with many boats and ships.", + "The image is of a harbor with many small boats and a few larger ones.", + "An image of a harbor from the internet might show a body of water with docks and boats.", + "One image from the internet of a harbor is a photo of a large body of water with dozens of sailboats docked along the shore.", + "This image shows a harbor with several large ships docked.", + "The image is of a harbor with several boats docked.", + "The image shows a harbor with several large ships docked.", + "Sailboats in the harbor at sunset.", + "A calm harbor with a few sailboats moored in it.", + "Ships rest in the harbor after a long journey at sea.", + "The port of Hamburg, Germany, is one of the busiest in Europe.", + "In this photo, a harbor is seen with many different boats.", + "Sailing into the sunset.", + " A busy harbor with ships coming and going.", + "The harbor is full of sailboats.", + "The calm waters of the harbor are a perfect reflection of the city skyline.", + "The calm harbor is a welcome respite after a long day at sea." + ], + "hayfield": [ + "A hayfield is typically a large, open field that is used to grow grasses or other crops that are then harvested and used as hay.", + "A hayfield is usually a large, open field that has been cut and is in the process of drying.", + "A hayfield typically contains grass that has been cut and is in the process of drying so that it can be used for hay.", + "A hayfield looks like a field of grass that has been cut short.", + "A hayfield will have grass that is longer than what is found in a pasture.", + "A hayfield typically looks like a large, open field that has been cut and is in the process of drying.", + "A hayfield usually looks like a large, open field that has been cut and dried.", + "A hayfield looks like a field with tall grass that has been cut down.", + "Lush, green grasses cover the ground as far as the eye can see.", + "A hayfield typically looks like a large, open field with short grass.", + "The best way to identify a hayfield is by its grassy, green appearance.", + "A hayfield is a piece of agricultural land used for the production of hay.", + "A hayfield is a field where hay is grown.", + "A hayfield is typically a field where hay is produced.", + "Generally, a hayfield is a field that is used to grow hay.", + "A hayfield is usually a field of tall grass that has been cut down.", + "Hayfields usually have a lot of grass that has been cut short.", + "The easiest way to identify a hayfield is by its size and location.", + "A hayfield is a field that is used for growing hay.", + " Hayfields are usually identified by their large size, and the fact that they are filled with tall grasses.", + "A hayfield is a field where hay is grown.", + "A hayfield is a field where hay is grown.", + "A hayfield is a field that is used to grow hay.", + "A hayfield generally looks like a large, green field with tall grass.", + "A hayfield is a field where hay is grown.", + "A hayfield looks like a field of grass that has been cut short.", + "Some hayfields are cut and dried, while others are still green.", + "A hayfield looks like a large, open field with tall grass.", + "A hayfield looks like a field of grass that has been cut down.", + "Most hayfields are flat with grass that is cut short.", + "The image is of a large, green hayfield with mountains in the background.", + "The image is of a hayfield with a blue sky and white clouds.", + "The image is of a large, green field with hay bales scattered throughout.", + "I am unable to describe the image as it is unavailable.", + "I found an image of a beautiful, green hayfield.", + "The image is of a large hayfield with bright green grass.", + "The image is of a large, green hayfield with small, yellow flowers blooming throughout.", + "The image is of a large, green field with tall grass and yellow flowers.", + "The image from the internet of a hayfield is a picture of a large field with tall grass and a few trees.", + "An image of a hayfield from the internet shows a large field of tall, green grass.", + "Golden Hayfield at Sunset.", + "This is a picture of a hayfield.", + " A quaint and idyllic hayfield on a sunny day.", + "A field of freshly cut hay, stalks shining in the sun.", + "A field of hay bales in a rural area.", + "A beautiful hayfield on a sunny day.", + " The vast majority of hayfields are cut by machine, with the hay being cut and then gathered up and formed into hay bales.", + "The endless sea of green was enough to make anyone lose their way.", + "The beauty of a warm summer day.", + "Despite the dry conditions this summer, the hayfield on the farm is still producing a good crop." + ], + "heliport": [ + "A heliport is a small airport designed for helicopters.", + "A heliport is a small airport that is designed for helicopters.", + "A heliport is a small airport designed for helicopters.", + "A heliport is a small airport designed for helicopters.", + "A heliport is a small, typically circular platform with a designated landing area for helicopters.", + "A heliport is usually a small, paved area with a designated takeoff and landing area.", + "A heliport usually has a circular shape and is surrounded by a fence.", + "A heliport is a small area of land or water that is designated for helicopters to take off and land.", + "A heliport is a small airport designed for helicopters.", + "A heliport generally looks like a small, circular pad of concrete or asphalt with a raised edge.", + "A heliport has a \"helipad\" which is a platform where helicopters can land, and usually has lights that indicate where the edges of the helipad are.", + "A heliport is a small airport that is designed for helicopters.", + "A heliport can be identified by its \"H\" designation.", + "A heliport is a landing area for helicopters that is usually marked with a large H.", + "Heliports are identified by a capital letter H followed by a number.", + "A heliport can be identified by its shape, which is typically a circle with a diameter of 15-25 meters.", + "A heliport can typically be identified by a large H on the ground, marking the location of the landing pad.", + "Heliports are typically very small, and do not have any significant markings or lighting.", + "A heliport is a site designated for helicopter landing and takeoff, and typically has fuel and maintenance services available.", + "A heliport is an area of land, water, or deck designated for the landing and takeoff of helicopters.", + "The heliport will look like a small airport with a runway and a few buildings.", + "A heliport typically consists of a circle of painted lines on a helipad, with a larger circle or square marked around it.", + "A heliport is a small landing area for helicopters.", + "A heliport is a small airport designed for helicopters.", + "Most heliports are located at hospitals, airports, or other large buildings.", + "Most heliports are simply designated areas of land or rooftops where helicopters can land and take off.", + "A heliport is a small, usually circular platform with a sentry box and a windsock.", + "A heliport is a place where helicopters can land and take off.", + "A heliport looks like a helipad, which is a landing pad for helicopters.", + "A heliport is a landing pad or platform for helicopters.", + "In the image, there is a large, open area with a paved surface.", + "A heliport is typically a place where one or more helicopters can land and take off.", + "The image shows a heliport with a helicopter landing on it.", + "In the image, there is a heliport with a large yellow \"H\" in the center.", + "An image of a heliport from the internet shows a large, open area with a helicopter landing in the center.", + "The image shows a heliport with a helicopter on the ground.", + "The image is of a heliport with a helicopter in the center.", + "This is an image of a heliport in Hong Kong.", + "The image is of a heliport with a large helicopter on the tarmac.", + "The image from the internet shows a heliport with a helicopter on it.", + "A heliport is a facility where helicopters can land and take off.", + "A heliport is a landing area for helicopters.", + "This is a heliport.", + "The Port of Los Angeles' Terminal Island Heliport is the busiest heliport in the United States.", + "The Brooklyn Heliport is a small heliport located in the Brooklyn neighborhood of New York City.", + "A heliport is a small, rural airport where helicopters land and take off.", + "The heliport at John F.", + "This is a heliport.", + "Munich Heliport, Munich, Germany.", + " A heliport is a place where helicopters can land and take off." + ], + "herb garden": [ + "A herb garden is a small garden that is dedicated to growing herbs.", + "A herb_garden is a small garden that is designed to grow herbs.", + "A herb garden typically includes a variety of different types of herbs, all growing in individual pots or sections.", + "A herb garden usually has a variety of different herb plants growing in it.", + ".", + "A herb garden typically consists of a small plot of land where various herbs are grown.", + "A herb garden is generally a small, enclosed garden that is planted with various types of herbs.", + "A typical herb_garden planted in the ground would have a variety of herbs growing in it.", + "A herb garden is a garden that is planted with herbs.", + "A herb garden usually has a variety of different herbs planted in it.", + "There is no one definitive answer to this question.", + "There is no definitive answer to this question as different people may have different opinions on what constitutes a herb garden.", + "Most herb gardens are small and easy to identify.", + "There is no one answer to this question, as the appearance of a herb garden can vary greatly depending on the specific plants that are grown in it and the overall design of the garden.", + "A good way to identify a herb garden is to look for plants that are common in culinary herbs, such as basil, rosemary, oregano, thyme, and mint.", + "The easiest way to identify a herb garden is by its distinctively strong smell.", + "A herb garden can be identified by its location in an outdoor space, its variety of herbs, and its soil type.", + "A herb garden is typically a small, planted bed that is used to grow herbs.", + "A herb garden is typically a small, enclosed garden space that is used to cultivate herbs.", + "One way to identify a herb garden is by looking for plants with aromatic foliage.", + "A herb_garden looks like a small plot of land with different types of herbs growing in it.", + "A herb garden typically includes a variety of different herbs, all growing in individual pots or planters.", + "A herb_garden looks like a small garden with different types of herbs.", + "A herb garden is a small garden or bed of soil where herbs are grown.", + "A herb garden may look like a traditional garden with rows of neatly planted herbs, or it may be more naturalistic with plants spilling out of pots and onto the ground.", + "A herb_garden is often a small, rectangular garden with raised beds.", + "A herb garden can look like a lot of things depending on how it is designed.", + "A herb garden may be a raised bed, planter, or container garden with different varieties of herbs.", + "A herb garden looks like a small garden with different types of herbs planted in it.", + "herb_garden\nA herb garden can look like many things, it all depends on the type of herbs you are growing and how you are growing them.", + "This image from the internet shows a well-tended herb garden with lots of different kinds of herbs growing.", + "I found an image of a herb garden with a white picket fence.", + "_The image is of a neatly arranged herb garden, with several different kinds of herbs growing in rows.", + "An image of a herb_garden from the internet shows a small, rectangular garden filled with different herbs.", + "This image is of a small, well-tended herb garden.", + "The image is of a small, rectangular herb garden.", + "The image is of a small, rectangular garden with different herbs planted in it.", + "This image is of a small, indoor herb garden.", + "Many herb gardens are designed with a delicate balance of colors, smells, and textures.", + "Image: A popular image of a herb garden from the internet is a garden that has a variety of different herbs growing in it.", + "Herb Garden.", + "Herb Garden.", + "This is an herb garden.", + " A lovely little herb garden, perfect for growing your own fresh herbs at home.", + "This is a picture of a herb garden.", + "Herbs in a gardenA caption of an image of a person_eating_in_a_restaurant:Person eating in a restaurant.", + " I'm growing my own herbs!.", + " There is nothing more tranquil than a freshly picked herb garden.", + "Herb Garden.", + " Herb Garden in the SummerThis is a beautiful herb garden in the summer time." + ], + "highway": [ + "A highway is typically a long, straight road with multiple lanes going in each direction.", + "A highway is a long, straight road with two lanes.", + "A highway is a long, flat stretch of road that is typically found between cities.", + "A highway is a paved road that is built for vehicles to travel on.", + ".", + "A highway is a road that is built for high-speed travel.", + "A highway often has multiple lanes going in the same direction, with a dividing line down the middle.", + "A highway typically consists of a paved road with multiple lanes going in each direction, with a shoulder on each side of the road.", + "A highway is a long road that is built for cars and other vehicles to travel on.", + "A highway typically has two lanes going in each direction, with a turning lane in the middle.", + "A highway can be identified by its number.", + "If you are looking at a map, a highway is typically a thick, black line.", + "A highway is typically a paved road that has a number designation and is used for travel between cities.", + "A highway is a road that is specially designed and built for cars and other motorized vehicles.", + "A highway is a public road that is specially designed and built for cars and other motorized vehicles to travel on.", + "A highway has a large amount of traffic and is typically a multi-lane road.", + "If there is more than one lane in each direction, it is likely a highway.", + "Roads that connect cities or towns are typically called highways.", + "In the United States, highways are typically marked with a red, white, and blue shield.", + "There are a few ways to identify a highway.", + "A highway is a large, busy road.", + "A highway is a wide, often divided, road with multiple lanes for traffic.", + "A highway is typically a paved road with multiple lanes for traffic.", + "A highway is a major road for long-distance travel.", + "Most highways are paved roads with two or more lanes going in each direction.", + "A highway is typically a paved, multi-lane road that is designated for high-speed travel.", + "A highway is a road that is built for high-speed travel.", + "A highway is a road that is designed for fast travel.", + "A highway is a paved road with multiple lanes for traffic.", + "A highway typically has multiple lanes going in the same direction, with a divider in the middle to separate traffic going in opposite directions.", + "An image of a highway on the internet shows a busy road with cars driving in both directions.", + "The image is of a long, straight highway that disappears into the horizon.", + "The image is of a busy highway with cars speeding down it.", + "An image of a highway from the internet would show a long stretch of road with cars driving on it.", + "This image is of a highway at night.", + "The image from the internet is of a highway that is empty except for a few cars.", + "A photo of a highway that has many cars driving on it.", + "This image from the internet is of a highway in the United States.", + "This image is of a long, straight highway that stretches out to the horizon.", + "A highway is a long, straight road with lanes going in different directions.", + "A road through a canyon.", + "Traffic moves along a highway during morning rush hour.", + " A winding highway through mountains.", + " Construction workers paving a new section of highway.", + "The Interstate 5 in Los Angeles, California.", + "US Interstate 10 near downtown Los Angeles, California.", + "Interstate 10 in Arizona.", + " I-40 East near Williams, AZ.", + "Highway in the United States.", + "Highway through mountains." + ], + "hill": [ + "A hill is a landform that extends above the surrounding terrain.", + "A hill is typically an elevated area of land that is lower than the surrounding land.", + "A hill is a landform that extends above the surrounding terrain.", + "Typically, a hill is an area of land that is higher than the land surrounding it.", + "A hill typically has a rounded shape and is not as steep as a mountain.", + "A hill is typically a raised area of land that is lower than the surrounding land.", + "A hill is a small raised area of land.", + "A hill is typically a raised area of land that is lower than the surrounding area.", + "A hill is a small to medium-sized landform that rises above the surrounding terrain.", + "Hills haverounded slopes that rise gently or steeply from their base.", + "A hill can be identified by its round or pointy top, and its slope leading down from the top.", + "A hill is typically an area of land that is higher than the surrounding land.", + "A hill is a small area of land that rises above the surrounding area.", + "Are there any trees on it?.", + "The most obvious way to identify a hill is by its height.", + "A hill can be identified by its rounded shape, sloping sides, and small summit.", + "A hill is a raised landform that typically has a distinct summit, although in areas with scarp/dip topography a hill may refer to a particular section of flat terrain without a massive summit (e.", + "A hill is an area of land that is higher than the land around it.", + "A hill is a landform that extends above the surrounding terrain.", + "There are many ways to identify a hill.", + "A hill typically has a rounded top and steep sides.", + "Hills look like a gradual rise in elevation.", + "A hill generally has a rounded shape and is smaller than a mountain.", + "A hill looks like a small mountain.", + "A hill is a raised landform that typically has a more rounded shape than a mountain.", + "A hill is a natural elevation of the earth's surface, typically a mound or ridge of land higher than the surrounding area.", + "A hill is a gently sloping landform that rises above the surrounding area.", + "A hill is an area of land that is higher than the land around it.", + "A hill is a landform that extends above the surrounding terrain.", + "A hill is typically a rounded landform that rises prominently above its surroundings.", + "The image I found shows a hill that is mostly green with some patches of trees.", + "Image shows a grassy hill with wildflowers in the foreground.", + "An image of a hill from the internet is a picture of a small, green hill in the middle of a large field.", + "This image is of a hill that is mostly green with some trees on it.", + "The image is of a hill that is covered in green grass.", + "The image is of a hill that is covered in trees.", + "This image is of a hill in Scotland.", + " with a dirt roadIn the image, there is a hill with a dirt road leading up to the top.", + "There is an image of a hill on the internet.", + " with treesThere is a hill with trees in the image.", + "This hill is called Beinn Nibheis, and is located in the Scottish Highlands.", + "The vast expanse of the mountain range is breathtaking.", + "The rolling hills of the English countryside are some of the most beautiful in the world.", + "This hill is located in the city of Seattle.", + "The view from the top of the hill is breathtaking.", + "The view from the top of the hill is amazing!.", + "The rolling hills of the English countryside are a sight to behold.", + "The hill is covered in snow.", + "The rolling hills of the English countryside are a sight to behold.", + " Hills like these are common in the Appalachian Mountains." + ], + "home office": [ + "A home_office looks like a place where you can work from home.", + "Well, that really depends on the person.", + "It depends on the person, but a home office typically has a desk, a computer, and some office supplies.", + "A home office is a room in a house or apartment where people can work from home.", + "A home office typically contains a desk, chair, and computer.", + "A home_office typically contains a desk, chair, and computer.", + "A home office is a room in a person's home dedicated to working, studying, or running a business.", + "A home office typically contains a desk, a computer, and a comfortable chair.", + "A home_office looks like a normal office, but it is located in someone's home.", + "A home office vignette might include a laptop on a sleek desk, with a office chair pulled up to it.", + "There is no precise definition for a home office, but it generally refers to a dedicated space within a residence that is used for working, studying, or running a business.", + "There is no one definitive answer to this question.", + "A home office is typically a room in a house or apartment set aside for the purpose of conducting business.", + "A home_office can typically be identified by its location within a residence, as well as by its smaller size as compared to a standard office.", + "There are a few ways you can identify if a room is being used as a home_office.", + "It can be difficult to identify a home_office from the outside of a house.", + "A home_office can be identified by its location within a home, as well as by its purpose.", + "If you are looking for a home office, you should look for a room that has plenty of space for a desk, a comfortable chair, and enough storage for all of your office supplies.", + "Some possible indicators that a space is being used as a home office are:-The presence of a desk, computer, and office supplies\n-The space being used for business purposes, such as holding meetings or talking on the phone.", + "There is no definitive answer to this question, as the term \"home office\" can mean different things to different people.", + "This is a difficult question because people can have very different ideas about what constitutes a home office.", + "A home_office typically contains a desk, a comfortable chair, good lighting, and enough space to store materials such as books, files, and a computer.", + "This is a difficult question as home offices can vary greatly in terms of size, shape, and style.", + "A home office is typically a small room or space in a house that is designated as a workspace.", + "A home office usually has a desk and a chair, and sometimes a computer.", + "A home office might have a desk, a comfortable chair, and shelving for books and office supplies.", + "This is a difficult question to answer as there is no one definitive answer.", + "Some people might have a dedicated room in their house that serves as their home office.", + "A home office typically includes a desk, a comfortable chair, good lighting, and enough space to spread out paperwork.", + "There is no one answer to this question since people's home offices can vary greatly in terms of size, layout, and decor.", + "An image of a home office from the internet might show a workspace set up in a corner of a room, with a laptop on a desk, a comfortable chair, and shelves full of books.", + "An image of a home office from the internet shows a clean and organized space with a desk, chair, and computer.", + "A home office is a room or area in a home where people can work on their business or professional tasks.", + "The image is of a large, modern home office.", + "The image shows a clean and modern home office with a white desk, a laptop, a plant, and a view of the city through a large window.", + "A desk with a computer on it and a chair in front of it.", + "An image of a home office can include a desk with a computer and other office supplies, a comfortable chair, and shelves with books or other items.", + "I found an image of a home office on the internet that looks like a cozy, inviting space.", + "The image is of a home office that has a desk with a computer on it and a chair in front of the desk.", + "In the image, there is a large desk with a computer on it.", + "A home office can be a great way to boost productivity and efficiency while working from home.", + " cozy home office for remote working.", + "Back to work! This home office is the perfect place to get things done.", + " \"A place for everything, and everything in its place.", + " A cozy home office with a view of the garden.", + " A cozy home office with a comfy chair and a laptop on a deskA home office doesn't have to be large to be functional and comfortable.", + "This is my home office where I do most of my work.", + " A laptop, coffee mug, and planner sit on a desk in a cozy home office.", + " A home office with a laptop on the desk and a chair in front of it.", + " A cozy home office with a view of the garden." + ], + "hospital": [ + "A hospital typically has a main entrance with a reception area and waiting room, one or more main corridors leading to other parts of the hospital, and a number of wards and department units.", + "A hospital typically has a waiting room, reception area, triage area, and a number of examination rooms, offices, and corridors.", + "A hospital is typically a large building with many floors.", + "A hospital is a building where people go to receive medical attention.", + "A hospital has many different departments that all work together to treat patients.", + "It typically has a front desk where you check in, followed by a waiting room.", + "Hospitals vary in size and shape, but most have a similar layout.", + "A hospital typically consists of a number of wards, each with a number of beds.", + "A hospital typically includes a variety of health care facilities and may be affiliated with a medical school.", + "A hospital is a large building with many different rooms and hallways.", + "The easiest way to identify a hospital is by its large size and the number of patients that it serves.", + "One way to identify a hospital is by looking for a sign with the word \"Hospital\" on it.", + "The easiest way to identify a hospital is by looking for a large building with a red cross on it.", + "Community hospital: A hospital that serves a local community and provides general medical and surgical care.", + "The best way to identify a hospital is by its physical appearance.", + "One way to identify a hospital is by looking for the red cross symbol.", + "You can identify a hospital by its appearance.", + "Most hospitals have signs that say \"Hospital\" on them.", + "Look for a sign with a red cross.", + "There are many ways to identify a hospital.", + "The hospital that I am familiar with has a main entrance with a desk where you would check in.", + "Each hospital is different, but most have a similar layout.", + "A hospital generally contains a reception area, one or more waiting rooms, one or more triage areas, and a number of examining, examination and treatment rooms.", + "A hospital is typically a large building with many different rooms and hallways.", + "A hospital usually contains a number of separate buildings, including a main building containing reception areas and consultation rooms, a separate building containing operating theatres, and a number of smaller buildings containing wards and other facilities.", + "A typical hospital has a number of different buildings that house different services.", + "A hospital is a large medical facility that typically includes several different buildings.", + "A typical hospital has a main entrance, reception area, waiting room, and corridors leading to different areas of the hospital.", + "Some hospitals may have a large and visible Cross or other religious symbol displayed outside the hospital.", + "A hospital typically has many different types of buildings and services.", + "In this image, we see a large hospital with many floors and a helipad on the roof.", + "In this image, we see a hospital in India that is overwhelmed with Covid-19 patients.", + "An image of a hospital from the internet shows a large building with many windows.", + "In the image, there is a large hospital with many different wings.", + "In this image, we see the front of a hospital.", + " waiting roomThe image is of a waiting room with several people seated.", + "This image is of a hospital in the United States.", + "This image is of a hospital in the United States.", + "An image of a hospital from the internet shows a large, multi-story building with many windows.", + "An image of a hospital from the internet shows a large, white building with many windows.", + "A hospital is a place where sick people go to get better.", + "A busy hospital corridor with patients and staff moving in opposite directions.", + "Hospital in India.", + " A hospital hallway with a line of patients in wheelchairs waiting to be seenA caption of an image of a man in a hospital bed: A man in a hospital bed with a doctor and nurse standing next to him.", + " An overcrowded hospital in Wuhan, China.", + "A hospital is a place where people receive medical care.", + " A hospital is a place where people who are sick can go to get better.", + "A hospital is a place where sick or injured people receive medical treatment.", + "A hospital is a place where sick or injured people are cared for by doctors and nurses.", + "A hospital bed with a view of the city skyline." + ], + "hospital room": [ + "The hospital_room is white, with a bed in the middle and a window to the side.", + "A hospital room is typically a private room in a hospital with a bed and other furniture for the patient to use.", + "\nIt's usually a pretty small room with a hospital bed in the middle, a little table and some chairs, and a sink.", + "A hospital room looks like a small room with a bed, a table, and a chair.", + "A hospital room is typically a small room with a bed and various medical devices.", + "A hospital room typically contains a bed, dresser, nightstand, and recliner for visitors.", + "A hospital room typically contains a bed, a nightstand, a TV, and a bathroom.", + "A hospital room is typically a small room with a bed, a nightstand, and a bathroom.", + "A typical hospital room has a bed, a nightstand, a television, and a bathroom.", + "A typical hospital room has a bed, a bedside table, a chair, and a bathroom.", + "A hospital room is typically a single room in a hospital with a bed, a bathroom, and sometimes a TV or other amenities.", + "The easiest way to identify a hospital room is by the presence of a hospital bed.", + "A hospital room is usually a small room in a hospital with a bed and some medical equipment.", + "A hospital room is typically a small room in a hospital with a bed and various medical devices.", + "A hospital room is typically a small room in a hospital with a bed and some medical equipment.", + "A hospital room is typically a small room in a hospital with a bed and various medical equipment.", + "A hospital room is typically a small room in a hospital with a bed and various medical equipment.", + "One way to identify a hospital room is by the presence of medical equipment, such as a hospital bed, IV stand, and monitor.", + "One way to identify a hospital room is by the presence of medical equipment, such as a hospital bed, IV stand, and monitor.", + "A hospital room typically contains a bed, one or more chairs, a nightstand, and a television.", + "A hospital room typically includes a bed, a nightstand, a television, and a bathroom.", + "A hospital room typically contains a bed, a nightstand, and a bathroom.", + "A hospital room looks like a room in a hospital.", + "A hospital room typically has a bed, a nightstand, and a chair.", + "A typical hospital room includes a bed, a nightstand, a television, and a private bathroom.", + "A hospital room usually has a bed, a nightstand, a bathroom, and a television.", + "A hospital room typically has a bed, a nightstand, and a chair for visitors.", + "A hospital room typically consists of a bed, a nightstand, and a bathroom.", + "A hospital room typically has a bed, a nightstand, and a chair.", + "Various hospital rooms can look quite different from one another, but most will have some type of bed, a television, and a bathroom.", + "An image from the internet of a hospital room shows a clean, brightly lit room with a bed in the middle.", + "An image from the internet of a hospital room shows a patient lying in a hospital bed with a doctor and nurse standing next to the bed.", + "In the image, there is a hospital bed in the middle of the room with various medical equipment surrounding it.", + "In the image, there is a hospital bed in the center of the room with various machines and monitors around it.", + "A hospital room is typically a small room with a bed and various medical equipment.", + "In the image, there is a hospital bed in the center of the room with monitors and wires attached to it.", + "In the image, there is a hospital bed in the middle of the room with various monitors and machines surrounding it.", + "The image is of a hospital room with a metal bed in the center.", + "In the image, there is a hospital bed in the center of the room with various medical equipment surrounding it.", + "The image is of a hospital room with a white bed in the center and various machines and equipment arranged around it.", + "A hospital room with a bed and a chair.", + "A hospital room with a view of the city.", + "A hospital room typically contains a bed, a nightstand, and a chair.", + "A hospital room with a view of the city.", + " Patient being treated in hospital room.", + "A hospital room is typically a private room in a hospital that is used by a patient for their stay.", + " \"A hospital room in the United States.", + "A hospital room with a view of the city.", + "A hospital room is typically a small room in a hospital where patients can stay while receiving medical care.", + "A hospital room with a view of the city." + ], + "hot spring": [ + "A hot spring is a natural spring of water that is heated by the earth's hot rocks.", + ".", + "A hot spring is a naturally occurring spring of water that is heated by geothermal energy.", + "A hot spring is a place where water is heated by the Earth's hot rocks.", + "A hot spring is usually a pool of water that is heated by a nearby geothermal heat source.", + "A hot spring is a naturally-occurring spring where the water is heated by geothermal energy.", + "A hot spring is a natural spring of water that is heated by the earth's geothermal activity.", + "A hot spring is a natural spring of water that is heated by deep-seated geothermal heat.", + "A hot spring is typically a pool of water that is heated by geothermal energy.", + "A hot spring is a natural spring of water that is heated by geothermal energy.", + "If you see steam or fog coming off of a body of water, it is likely a hot spring.", + "A hot spring is a natural spring of water that is heated by the earth's hot rocks.", + "A hot spring is a spring where water is heated by geothermal heat.", + "A hot spring is a naturally occurring hot water spring.", + "A hot spring is a natural spring of water that is heated by the earth's heat.", + "A hot spring is a natural spring of water that is heated by the earth's hot rock body.", + "There are a few ways to identify a hot spring.", + "A hot spring is typically a pool of water that is heated by a natural hot spring.", + "If you see water vapor rising from a spot on the ground, it is likely a hot spring.", + "A hot spring can be identified by its location on a map, as well as by its physical features.", + "A hot spring typically looks like a pool of water that is surrounded by rocks.", + "A hot spring is a natural spring where the water is heated by geothermal energy.", + "Hot springs are found in areas where there is geothermal activity, and they can take a variety of different forms.", + "A hot spring is a type of geothermal spring that occurs when groundwater is heated by hot rocks deep in the Earth's crust.", + "A hot spring has water that is heated by the earth's hot rocks.", + "There is no one answer to this question as hot springs can vary greatly in appearance.", + "A hot spring typically looks like a pool of water that is surrounded by rocks.", + "A hot spring is a natural spring of water that is heated by geothermal energy.", + "A hot spring looks like a boiling pool of water.", + "A hot spring is usually a pool of hot water that is surrounded by rocks.", + "A hot spring is a place where water is heated by the earth's heat.", + "The image is of a hot spring with blue water.", + "A photo of a hot spring in Yellowstone National Park.", + "An image of a hot spring might show a natural pool of water surrounded by rocks, with steam rising from the surface of the water.", + "An image of a hot_spring can be found at the following URL:https://commons.", + "The image is of a hot spring in Yellowstone National Park.", + "A hot spring is a spring that is produced by the heating of groundwater by geothermal processes.", + "The image is of a hot spring with clear, bright blue water.", + "A hot_spring is a naturally occurring spring of water that is heated by geothermal activity.", + "In the image, there is a woman standing in a hot spring with her back to the camera.", + "A naturally occurring hot spring in Yellowstone National Park.", + "The hot_spring is surrounded by snow_capped mountains.", + "The milky-white waters of the Hot Spring are rich in minerals and are said to have therapeutic properties.", + "\"The hot spring is a great place to relax and enjoy the natural beauty of the area.", + "A hot spring is a spring that gives off heat.", + "Breathe in the warm air and let the stress of the day melt away as you soak in the therapeutic waters of the hot springs.", + "A hot spring is a naturally occurring hot spring where water is heated by geothermal energy.", + " The beautiful hot springs at Yellowstone National Park.", + "Hot spring in Yellowstone National Park.", + "A hot spring near Yellowstone National Park." + ], + "outdoor hot tub": [ + "A outdoor hot_tub is typically a large, round tub made of wood or synthetic materials.", + "An outdoor hot tub is a large, typically round tub filled with hot water and bubbles, meant for relaxation.", + "A hot tub is a large cylinder or rectangular tank that is filled with water and heated to create a relaxing and often massaging experience.", + "A hot tub is a large tub or small pool full of water used for hydrotherapy, relaxation or pleasure.", + "An outdoor hot tub is typically a large, wooden tub that is full of hot water.", + "A hot tub typically is a large wooden tub that is filled with water.", + "A typical outdoor hot tub is a large, round tub that is usually made of fiberglass or another type of durable material.", + "A hot tub is typically a large tub that is filled with water and has jets around the sides.", + "A hot tub is a large tub or small pool full of water used for recreation, therapy, or overheating.", + "A outdoor hot tub typically looks like a large, round tub that is filled with bubbling water.", + "One way to identify an outdoor hot tub is by its location.", + "A outdoor hot tub can be identified by its large size, its deep seating, and its many jets.", + "There are a few key features that you can use to identify an outdoor hot tub.", + "A outdoor hot_tub can be identified by its round shape and by the fact that it is usually located outdoors.", + "There are a few ways to identify an outdoor hot tub.", + "One way to identify an outdoor hot tub is by looking for a large, round tub that is typically made of acrylic or fiberglass.", + "There are a few ways to identify an outdoor hot tub.", + "There are many ways to identify an outdoor hot tub.", + "Outdoor hot tubs are typically made of weather-resistant materials such as acrylic, fiberglass, or stone.", + "A hot tub is a large tub or small pool full of water used for hydrotherapy, relaxation or pleasure.", + "Typically, an outdoor hot tub looks like a large wooden or metal tub that is filled with water and has jets around the perimeter.", + "An outdoor hot tub is usually a large, round tub that is built into the ground.", + "There is no one answer to this question as outdoor hot tubs can come in a variety of shapes, sizes, and styles.", + "There is no one definitive answer to this question as there are many different types and styles of outdoor hot tubs available on the market.", + "A typical outdoor hot tub is a large, round tub made of wood or synthetic materials.", + "A hot tub is a large tub or small pool full of water used for hydrotherapy, relaxation or pleasure.", + "A typical outdoor hot tub is made of wood and has a round or square shape.", + "A outdoor hot_tub looks like a hot tub that has been moved outside.", + "There is not a definitive answer to this question as hot tubs come in many different shapes, sizes, and styles.", + "There is no one answer to this question as outdoor hot tubs can come in a variety of shapes and sizes.", + "The image is of a teal-colored hot tub with two seats.", + "The image shows a large outdoor hot tub with steps leading up to it.", + "In the image, there is a large, rectangular hot tub located outdoors on a deck.", + "An image from the internet of a outdoor hot_tub shows a large, round tub filled with steaming water.", + "This image shows a large, luxury outdoor hot tub with multiple jets and built-in lighting.", + "In the image, there is a large, square hot tub set outdoors on a deck.", + "The image is of a large, outdoor hot tub with four people in it.", + "In the image, there is a large, rectangular hot tub filled with clear water.", + "The image shows a large outdoor hot tub with steps leading up to it.", + "In the image, there is a large, wooden hot tub with steps leading up to it.", + " A group of friends relaxing in a hot tub outdoors.", + " A luxurious outdoor hot tub, perfect for relaxing in after a long day.", + "A woman relaxing in a outdoor hot tub.", + "Outdoor Hot Tub.", + " A secluded outdoor hot tub perfect for relaxing after a long day.", + "Warm up in style this winter in your very own outdoor hot tub.", + " Friends relaxing in a hot tub on a beautiful day.", + "Backyard hot tub with mountain views.", + " A hot tub on a deck with a view of a lake.", + "The perfect way to relax after a long day." + ], + "outdoor hotel": [ + "A outdoor hotel usually has a lot of greenery and flowers surrounding the property.", + "There is no definitive answer to this question, as outdoor hotels can come in a variety of shapes and sizes.", + "A outdoor hotel typically has a large outdoor area with a swimming pool, a sun deck, and a garden.", + "A outdoor hotel typically looks like a regular hotel, but with an outdoor pool and lounge area.", + "An outdoor hotel is a hotel located in a scenic outdoor area.", + "A hotel that is built outdoors would typically have a lot of greenery and plants surrounding it.", + "A outdoor hotel looks like a hotel that has a lot of outdoor space for guests to enjoy.", + "A outdoor hotel can look like many things, but typically it is a hotel with rooms that have balconies or patios that overlook an outdoor area, such as a garden, pool, or courtyard.", + "A outdoor hotel looks like a hotel that is built outdoors.", + "A hotel that is located outdoors generally has rooms that open up to the outdoors, with plenty of windows and doors to let in natural light and fresh air.", + "There are several ways to identify an outdoor hotel.", + "The hotel will likely have large windows, a balcony, and a view of the outdoors.", + "A hotel that is considered \"outdoor\" is typically one that is located in a place with a lot of natural scenery, such as near a lake or in the mountains.", + "One way to identify an outdoor hotel is by the presence of outdoor areas such as gardens, patios, or balconies.", + "There is no definitive answer to this question, but some things to look for include: a hotel that is located near hiking trails or other outdoor activities, a hotel that has a swimming pool or other amenities that are typically associated with outdoor activities,.", + "There are several ways to identify an outdoor hotel.", + "An outdoor hotel can be identified by its location.", + "One way to identify an outdoor hotel is to look for signs that say \"outdoor hotel.", + "One way to identify an outdoor hotel is by looking for signs that say \"outdoor hotel.", + "An outdoor hotel is typically a hotel that is located in a rural area or in an area that is known for its natural beauty.", + "There is no definitive answer to this question, as the appearance of an outdoor hotel can vary greatly depending on its location and the specific design of the property.", + "An outdoor hotel looks like a regular hotel, but with an outdoor area.", + "There is no definitive answer to this question as every outdoor hotel is different.", + "Some outdoor hotels may have cabins or huts for guests to stay in, while others may simply have tents or yurts.", + "There is no one specific type of outdoor hotel.", + "There is no definitive answer to this question, as the appearance of an outdoor hotel can vary drastically depending on its location and the specific design of the property.", + "There is no definitive answer to this question, as the appearance of an outdoor hotel can vary greatly depending on its location and the type of accommodations it offers.", + "An outdoor hotel typically looks like a regular hotel, but with more outdoor features such as a pool, patio, or garden.", + "An outdoor hotel is a hotel that is built outside.", + "4444444444444444444444.", + " poolAn image of an outdoor hotel pool shows a large, rectangular pool with blue water and people swimming in it.", + "The image is of a large, modern hotel surrounded by trees and green space.", + " in natureThis image shows a large, modern hotel nestled in the midst of a natural setting of trees and mountains.", + " lobbyIn the image, there is a large, modern hotel lobby with sleek furniture and a large glass entrance.", + " roomThe image is of an outdoor hotel room with a thatched roof.", + " swimming poolThe image is of a large, outdoor hotel swimming pool.", + " poolIn the image, there is a large, outdoor hotel pool surrounded by a paved deck.", + "The image is of a large, modern hotel set in a mountainous landscape.", + " poolThe image is of a large, rectangular outdoor hotel pool.", + " poolThe image is of a large, outdoor hotel pool with several people swimming in it.", + "The luxurious outdoor hotel provides the perfect setting for a romantic getaway.", + " Outdoor hotel with swimming pool and green trees.", + "The beautiful outdoor hotel lobby with a view of the ocean.", + "Heaven on Earth: A luxurious outdoor hotel in the heart of nature.", + "Sun, sea, and sand await at this idyllic beachfront hotel.", + "The luxurious outdoor hotel offers the perfect setting for a relaxing vacation.", + "Step out of your room and into paradise at our luxurious hotel.", + "Outdoor hotel near natural scenery.", + "The luxurious outdoor hotel offers stunning views of the nearby mountains and valley.", + " A tranquil getaway nestled in nature." + ], + "hotel room": [ + "A hotel room is typically a small room with a bed, a nightstand, and a dresser.", + "A hotel room typically contains a bed, a dresser, a desk, a lamp, and a television.", + "A hotel room is a room in a hotel, motel, or resort where guests can sleep and relax.", + "A hotel_room typically has a bed, a nightstand, a dresser, and a television.", + "\nA hotel room typically has a bed, a dresser, a television, and a bathroom.", + "A typical hotel room has two beds, a dresser, a television, and a bathroom.", + "A typical hotel room has two beds, a nightstand between the beds, a dresser, a TV, and a bathroom.", + "A hotel room is typically furnished with a bed, dresser, desk, and chair.", + "A hotel room is a furnished room in a hotel with a bed, a night table, a dresser, and sometimes a TV.", + "A hotel_room typically includes a bed, a nightstand, a dresser, and a bathroom.", + "By its size, shape, and features.", + "Hotel rooms can be identified by their unique number, which is typically displayed on the door.", + "A hotel room is a room in a hotel.", + "When you are looking at a hotel room, you will be able to identify it because it will say \"hotel room\" on the door.", + "The easiest way to identify a hotel room is by the presence of a bed.", + "A hotel room is typically identified by a number, which is assigned to the room by the hotel.", + "The easiest way to identify a hotel room is by the presence of a bed, a dresser, and a bathroom.", + "If you are looking at a building, a hotel_room is usually a small, divided section that contains a bed, sometimes a desk, and often a bathroom.", + "There is no definitive answer to this question, but generally speaking, a hotel room can be identified by its size, amenities, and location within the hotel.", + "A hotel room is typically identified by a number, which is assigned to the room when it is reserved for a guest.", + "\nA hotel room typically contains a bed, a nightstand, a dresser, and a television.", + "A motel room looks like a small apartment with a bed, a desk, and a bathroom.", + "A hotel room usually has a bed, a nightstand, and a dresser.", + "A hotel room is typically furnished with a bed, dresser, nightstand, lamp, and television.", + "A hotel room typically includes a bed, a nightstand, a dresser, and a bathroom.", + "There is no single answer to this question as the appearance of hotel rooms can vary greatly from one hotel to the next.", + "There is no one answer to this question, as hotel rooms can vary significantly in size, style, and amenities.", + "A hotel room typically includes a bed, a nightstand, a dresser, and a TV.", + "A hotel room typically has a bed, dresser, TV, and private bathroom.", + "The d\u00e9cor of a hotel room can vary greatly from one establishment to the next.", + "A hotel room typically contains a bed, a nightstand, a dresser, a television, and a bathroom.", + "The image is of a hotel room with two double beds, a nightstand between the beds, a television mounted on the wall, and a door leading to a balcony.", + "The image is of a modern hotel room with two double beds, a nightstand in between them, a TV on the wall, and a large window.", + "The image is of a typical hotel room with two beds, a nightstand, a TV, and a dresser.", + "An image of a hotel room from the internet might show a clean and spacious room with a comfortable bed, a desk, a television, and a private bathroom.", + "The image is of a hotel room with two beds.", + "The image shows a large, spacious hotel room with a king size bed, a nightstand, and a small table with chairs.", + "The image is of a hotel room with two queen beds.", + "The image is of a large, luxurious hotel room with a view of the cityscape.", + "The image is of a modern hotel room with two twin beds.", + "A hotel room with a king size bed, a dresser, and a nightstand.", + "I spent my honeymoon in this gorgeous hotel room!.", + "This luxurious hotel room is the perfect place to relax and escape the hustle and bustle of everyday life.", + "The image shows a luxurious hotel room with a king size bed, a fireplace, and a view of the city skyline.", + "The hotel room was very clean and comfortable.", + "A cozy hotel room with a view of the city skyline.", + "This hotel room looks comfortable and inviting with its plush bedding and soft lighting.", + " A beautiful, spacious hotel room with a king size bed, a sofa, and a view of the city.", + "This room looks exactly like what I was hoping for!.", + "The room is elegantly furnished with a king-sized bed, a nightstand, and a comfortable chair." + ], + "house": [ + "A house is a building that is made of walls and a roof.", + "A house is typically a four-sided structure with a roof and windows.", + "A house has a roof, four walls, and a floor.", + "A house typically has four walls, a roof, windows, and a door.", + "A house typically has four walls and a roof.", + "Most houses have four walls and a roof.", + "A house typically has four walls and a roof.", + "A house typically has four walls and a roof.", + "A house is typically made of four walls and a roof.", + "A house usually has four walls and a roof.", + "A house can be identified by its address.", + "There is no single answer to this question as houses can vary greatly in appearance.", + "A house can be identified by its address, by its location, or by its owners.", + "If you are looking at a house from the street, you can identify it by its address.", + "There are many ways to identify a house.", + "It is typically easy to identify a house.", + "There are many ways to identify a house.", + "If you are looking at a house, you can identify it by its address.", + "The easiest way to identify a house is by its address.", + "There are a few ways to identify a house.", + "There is no definitive answer to this question as houses can vary greatly in appearance, depending on their location, size, age, and style.", + "There is no one answer to this question as houses can come in all sorts of shapes, sizes, and styles.", + "This is a difficult question.", + "A house typically has four walls and a roof.", + "A house is a building that has walls and a roof.", + "There is no one answer to this question as houses can come in many different shapes, sizes, and styles.", + "There is no one answer to this question as houses can come in many different shapes, sizes, and styles.", + "A reasonable answer might be \"a building with four walls and a roof\" but of course, there are all sorts of houses.", + "A house typically has four walls and a roof.", + "A house typically has four walls and a roof.", + " in your countryThe image is of a two-story brick home with a white picket fence and a green lawn.", + "This image is of a white house with a red door.", + " in the middle of a fireIn the image, a house is engulfed in flames, with billowing smoke obscuring the sky.", + "The image is of a two-story brick house with a front porch.", + "The image is of a large, two-story house.", + "The image is of a small, one-story house.", + "I found an image on the internet of a house that I really liked.", + "This is an image of a two-story house with a porch and a tree in the front yard.", + "The image is of a two-story house with a light-colored exterior and a dark-colored roof.", + "The image is of a blue house with a white picket fence.", + "The house is abandoned and in disrepair.", + "My home is my castle.", + " A house in the middle of a forest.", + " A tornado hit this house in Missouri on May 22, 2019.", + "The exterior of a historic home in Boston, Massachusetts.", + "This is a typical suburban house in America.", + "A native dwelling in the rainforest of Ecuador.", + " A home in the suburbs.", + "This is a picture of a typical American house.", + "The house on the hill was built in 1892." + ], + "outdoor hunting lodge": [ + "An outdoor hunting lodge typically looks like a large cabin in the woods.", + "A hunting lodge is typically a large cabin or house in a rural area where hunters can stay while they are hunting.", + "An outdoor hunting lodge typically looks like a large cabin with a few bedrooms, a living room, and a kitchen.", + "A hunting lodge is typically a log cabin or stone house located in a rural area.", + "A hunting lodge is a building or house where hunters can stay while hunting.", + "A hunting lodge is typically a cabin located in a remote, rural area.", + "An outdoor hunting_lodge typically looks like a large cabin or lodge located in a remote, rural area.", + "A hunting lodge typically looks like a cabin in the woods.", + "A outdoor hunting_lodge looks like a log cabin with a large porch.", + "A outdoor hunting_lodge typically looks like a large cabin in the woods.", + "There are many ways to identify an outdoor hunting_lodge.", + "One way to identify an outdoor hunting lodge is by its location.", + "If you are looking for an outdoor hunting_lodge, you should look for a place that is quiet and has a lot of open space.", + "If you see a lodge made out of wood with a lot of windows and a big front porch, it is probably an outdoor hunting lodge.", + "There are a few identifying features of an outdoor hunting lodge.", + "The most obvious way to identify a outdoor hunting_lodge is to look for the sign that says \"OUTDOOR HUNTING LODGE\" in big letters.", + "A hunting lodge is typically a large, rustic cabin or house located in a rural area.", + "A outdoor hunting_lodge is typically a cabin or lodge located in a rural area where hunting is common.", + "Some features that may help identify a hunting lodge are its location (usually remote and surrounded by nature), its size (usually large and imposing), and its features (including a large fireplace, hunting trophies, and comfortable furniture).", + "An outdoor hunting_lodge can be identified by its unique design and construction.", + "There is no one answer to this question, as the appearance of an outdoor hunting lodge will depend on the specific location and the preferences of the owner.", + "There is no one definitive answer to this question.", + "An outdoor hunting lodge typically looks like a cabin in the woods.", + "A outdoor hunting lodge typically includes a main lodge building with a kitchen, dining room, and living room, as well as smaller cabins or rooms for guests to stay in.", + "There is no one answer to this question as outdoor hunting lodges can come in a variety of shapes, sizes, and styles.", + "There is no definitive answer to this question, as outdoor hunting lodges can come in a variety of shapes and sizes.", + "A hunting lodge is typically a large, rustic cabin located in a remote area.", + "There is no one definitive answer to this question.", + "A hunting lodge typically has a rustic design and is located in a remote, natural setting.", + "There is no definitive answer to this question, as the appearance of an outdoor hunting lodge can vary greatly depending on the location and specific design of the lodge.", + "A hunting lodge is typically a large, rustic cabin located in a rural area.", + "The image is of a large, rustic-looking lodge nestled in a forest.", + "In the picture, there is a large, rustic lodge made of logs and stone, nestled in a forest.", + "An image of an outdoor hunting lodge shows a large, rustic cabin in the woods with a stone fireplace and a large porch.", + "A hunting lodge is a building or house used for storage, living quarters, and recreation when hunting.", + "The image is of a large, rustic cabin set in the woods.", + "The image is of a large lodge with a wrap-around porch.", + "The image is of a large lodge made out of logs, with a wrap-around porch.", + "An image from the internet of a outdoor hunting lodge shows a large, rustic cabin in the woods with a large chimney.", + "In the image, there is a large, rustic lodge nestled amongst tall evergreen trees.", + " Perch Lake Hunting Lodge in Eagle River, Wisconsin.", + "This is an outdoor hunting lodge where you can go to get away from it all and enjoy the great outdoors.", + "A beautiful hunting lodge in the middle of nowhere.", + "This is an outdoor hunting lodge.", + "A hunting lodge in the woods.", + "A group of men and women pose for a photo in front of an outdoor hunting lodge.", + " A group of hunters are gathered around a large campfire in front of their hunting lodge.", + "This is an outdoor hunting lodge where people can come to hunt and stay overnight.", + "The Exterior of the Emory Hunting Lodge.", + "Outdoor Hunting Lodge." + ], + "ice cream parlor": [ + "A traditional ice cream parlor sold ice cream by the scoop in cups or cones.", + "A ice_cream_parlor typically has a counter where customers order, and behind the counter is a case with different flavors of ice cream.", + "The interior of an ice cream parlor is usually brightly lit with colorful walls.", + ".", + "A traditional ice_cream_parlor typically has a counter with stools where customers can sit, a range of ice cream flavors and toppings, and staff who serve the ice cream.", + "An ice cream parlor typically has different flavors of ice cream and toppings that can be added to the ice cream.", + "A typical ice cream parlor consists of a counter where customers place their orders and pay for their purchases, as well as a display case that contains the various flavors of ice cream and toppings that are available.", + "The interior of an ice cream parlor is usually brightly lit with colorful walls.", + "Most ice_cream_parlors have a counter with a display case in front, where customers can see and choose the ice cream flavors they want.", + "A ice_cream_parlor looks like a shop that sells ice cream.", + "There are many ways to identify an ice cream parlor, but some common indicators include a storefront with a bright, colorful sign and large windows displaying various flavors of ice cream.", + "One way to identify an ice cream parlor is by the presence of a large freezer or coolers where ice cream is stored.", + "A ice_cream_parlor is a place where you can buy ice cream.", + "There is no definitive answer, but some possible distinguishing characteristics could include: a sign with the name of the shop, a special ice cream machine, or a large selection of ice cream flavors.", + "An ice_cream_parlor is typically a small shop that specializes in selling ice cream.", + "If you are looking for an ice cream parlor, you should look for a place that sells ice cream.", + "A ice_cream_parlor is a place where people can buy ice cream.", + "There are a few ways to identify an ice cream parlor.", + "There are a few ways to identify an ice cream parlor.", + "A ice_cream_parlor can be identified by its bright colors, ice_cream_cone shaped sign, and tables and chairs out front where people can eat their ice cream.", + "Most ice cream parlors have a clean, bright, and welcoming atmosphere.", + "Some ice cream parlors may have a 1950s theme, while others may be more modern.", + "An ice_cream_parlor is a place where people can go to buy ice cream.", + "This is a difficult question because there are many different types of ice cream parlors.", + "Some ice cream parlors may have a 1950s diner feel to them, while others may have a more modern look.", + "There is no definitive answer to this question as ice cream parlors can come in a wide variety of shapes and sizes.", + "There is no one answer to this question, as there are many different types and styles of ice cream parlors.", + "Most ice cream parlors have a long counter with stools where customers can sit and eat their ice cream.", + "There is no definitive answer to this question as ice cream parlors come in a wide variety of shapes and sizes.", + "A typical ice_cream_parlor may have a counter with several flavors of ice cream to choose from, as well as a toppings bar.", + "In the image, there is a small ice cream shop with a green awning.", + "In the image, there is a large glass case filled with different flavors of ice cream.", + "This image shows the exterior of an old-fashioned ice cream parlor.", + "In the image, there is a large group of people waiting in line outside of an ice cream parlor.", + "In the image, there are people sitting at a table inside of an ice cream parlor.", + "A scoop of ice cream in a cone with a chocolate coating and sprinkles on top.", + "In the image, there is a small ice cream shop with a counter and stools.", + "There is a small, quaint ice cream parlor with a bright yellow and red awning.", + "In the image, there is a small ice cream shop with a bright pink and blue striped awning.", + "In the image, there is a large room with high ceilings.", + "A woman enjoying a cup of ice cream at her local ice cream parlor.", + "Just DessertsThis ice cream parlor is the perfect place to indulge your sweet tooth.", + "\nIn this ice cream parlor, you can choose from a variety of delicious ice cream flavors and toppings.", + " Brownie Sundae from the best ice cream parlor in town!.", + "The ice cream parlor is a fun place to go with your friends.", + "A wonderful place to get your ice cream fix!.", + "A person enjoys a delicious ice cream at their favorite ice cream parlor.", + " To get your ice cream fix, try the ice cream parlor!.", + " People waiting in line for ice cream.", + " ice_cream_parlorIn this photo, we see an ice cream parlor that looks like it is having a busy day! The store is packed with people of all ages, and there seems to be a long line leading up to." + ], + "ice floe": [ + "A ice_floe is a large, flat piece of ice that floats on water.", + "A ice_floe is a flat piece of ice that floats on water.", + "A large sheet of floating ice that has broken off from a glacier or an ice shelf.", + "A ice_floe is a thin layer of ice that forms on the surface of a body of water.", + "An ice floe is a large, flat piece of ice that has broken off from a glacier or ice sheet and is floating in the water.", + "A large piece of ice that has broken off from a glacier or an iceberg and is floating in the sea.", + "A large sheet of ice that has broken off from a glacier and is floating in the ocean.", + "An ice floe is a large piece of floating ice that has broken off from a larger ice sheet or iceberg.", + "A large piece of ice that has broken off from a glacier and is floating in the ocean.", + "A large piece of ice that has broken off from a glacier or iceberg and is floating in the water.", + "A ice_floe is a piece of ice that has broken away from a larger sheet of ice.", + "A ice_floe can be identified by its unique shape and smooth surface.", + "A ice_floe is a large mass of ice that breaks off from a glacier and floats in the ocean.", + "Ice floes are large pieces of ice that have broken off of a larger iceberg.", + "An ice floe is a large piece of ice that has broken off from a larger ice mass, such as an iceberg, and is floating in the water.", + "The best way to identify a ice floe is by its size, shape, and color.", + "You can identify an ice floe by its flat, horizontal surface, and by the way it moves on the water.", + "An ice floe is a flat piece of ice that has broken off from a larger ice body, such as an iceberg or ice shelf.", + "Most ice floes are less than a few hundred meters across, and only a few meters thick.", + "Apply the following criteria: \n-Is the object floating?\n-Is the object white or pale blue?\n-Is the object thicker than 8 inches?\n-Is the object\u2019s surface textured or bumpy?.", + "A ice floe is a large, flat piece of ice that floats in the ocean.", + "A large sheet of ice that has broken off from a glacier or ice shelf and is floating freely in the water.", + "A ice_floe typically looks like a floating sheet of ice on a body of water.", + "A large ice floe can be several miles wide and many feet thick.", + "A large sheet of ice that has broken off from a glacier or ice shelf and is floating in the water.", + "An ice floe is a thin sheet of ice that has broken off from a larger ice mass and is floating in water.", + "A large piece of ice that has broken away from a glacier.", + "A large piece of ice that has broken off from a glacier or an ice sheet and is floating in water.", + "A large ice_floe typically looks like a large, flat sheet of ice.", + "A ice_floe looks like a huge chunk of ice that has broken off of a iceberg and is floating in the water.", + "The image shows a large stretch of sea, with several small ice floes floating on the water.", + "The image is of a large body of water with ice floating on the surface.", + "I found an image on the internet of an ice floe which looked like a giant piece of broken glass floating on the water.", + "This image is of an ice floe in the Arctic Ocean.", + "In the image, a large ice floe can be seen drifting in a body of water.", + "The image is of a white, snow-covered landscape with large pieces of ice floating in a blue-green body of water.", + "The image shows a large ice floe floating in the ocean.", + "An image of an ice floe is a body of floating ice that has broken off from a larger sheet of ice.", + ".", + "The image is of a large piece of ice floating in a body of water.", + "Waves crash against an iceberg in the Arctic Ocean.", + "A large chunk of ice floats in a frigid body of water.", + " A giant ice floe floats in the frigid waters off Antarctica.", + "A large sheet of floating ice, broken off from a glacier or iceberg, that drifts at sea.", + "A large mass of ice floating in a body of water.", + "An iceberg floats in the frigid water of the Arctic Ocean.", + "Ice floes melt and release water into the ocean, which helps to regulate the Earth's climate.", + "A close-up of an ice floe, with the ridges and pocks of its surface visible.", + "A vast sheet of ice floats in the frigid Arctic waters.", + "A large ice floe in the Arctic Ocean." + ], + "ice shelf": [ + "Ice shelves are thick platforms of ice that float on the ocean surface and are attached to land at either end.", + "A ice shelf is a thick platform of ice that floats on the ocean and is attached to land.", + "A large sheet of ice that covers a stretch of land and is fed by a glacier.", + "A ice_shelf is a thick sheet of ice that floats on the ocean.", + "A ice_shelf is a large, flat piece of ice that floats on the ocean.", + "Most ice shelves are broad, flat expanses of ice that fringe the coasts of Antarctica and Greenland.", + "A large, thick mass of ice that flows slowly in response to gravity, usually found at the edge of a continent.", + "A ice_shelf is a vast expanse of ice that forms a floating platform atop the ocean.", + "A large mass of ice that is attached to a landmass and extends over the ocean.", + "A ice_shelf is a large body of ice that floats on the ocean.", + "A ice_shelf is a floating sheet of ice that is attached to a coastline.", + "Some common features of an ice shelf are that it is a thick mass of ice that is floating on the ocean, is attached to land on one side, and has a very shallow slope.", + "The margins of an ice_shelf are often marked by visible crevasses.", + "A ice_shelf is a large, thick sheet of ice that floats on the ocean.", + "An ice shelf is a floating sheet of ice that is attached to a landmass.", + "A ice_shelf is a large floating slab of ice that is attached to a landmass.", + "A ice_shelf is a large, thick plate of ice that floats on the ocean.", + "A ice_shelf is a large, thick sheet of ice that floats on the ocean.", + "An ice shelf is a mass of land ice that flows in one piece into the ocean.", + "An ice_shelf is a floating slab of ice that is attached to a land mass.", + "A large floating mass of ice that is attached to a landmass.", + "A large ice_shelf is a thick, flat mass of ice that floats on the ocean surface.", + "A typical ice shelf is a thick platform of ice that floats on the ocean surface and is attached to a coastline.", + "A shelf of ice varies in shape and size depending on where it is located.", + "Most ice shelves are relatively flat, with a gently sloping underside and a rugged top.", + "Ice shelves are level sheets of ice that float on the ocean surface and are attached to a coastline.", + "A ice_shelf typically looks like a large, flat expanse of ice.", + "Aboral side down, an ice shelf appears as a flat expanse of ice.", + "A ice_shelf looks like a large sheet of ice that is floating on the water.", + "A large, thick sheet of ice that floats on the ocean surface and is attached to land.", + "An image of a ice_shelf from the internet would show a large sheet of ice, possibly with some cracks or fissures, floating in the ocean.", + "The image is of a large, flat expanse of ice with mountains in the distance.", + "An image of a ice_shelf from the internet would show a large sheet of ice floating on the ocean.", + "The image is of a large ice shelf with a deep blue sky in the background.", + "The image is of a large, flat expanse of ice with a sharp edge where it meets the water.", + "The image is of a large ice shelf with a deep blue sky above it.", + "The image shows a large, flat expanse of ice with a jagged edge where it meets the ocean.", + "The image shows a large expanse of ice, with a few cracks and chunks missing.", + "An image of an ice shelf from the internet would likely depict a large, flat expanse of ice extending out from a landmass into the ocean.", + "An image of an ice_shelf shows a large body of ice that is floating on the ocean.", + "Melting ice shelf in Antarctica.", + "Aerial view of an Antarctic ice shelfThis aerial view shows a massive ice shelf in Antarctica.", + "A part of the Ross Ice Shelf in Antarctica.", + "The Ross Ice Shelf is a large body of ice that floats in the Southern Ocean, off the coast of Antarctica.", + "A large mass of ice that has becomes detached from a landmass and is floating in the ocean.", + "A huge mass of ice, the size of Rhode Island, has broken away from a glacier in Antarctica.", + "This image shows an ice shelf located in Antarctica.", + "The melting ice shelfA close-up of an ice_shelf shows a vast sheet of ice slowly melting and breaking apart.", + "The vast ice shelf in Antarctica is a beautiful sight.", + "The Antarctic ice shelf is a thick mass of ice that floats on the ocean surface and is attached to the continent." + ], + "indoor ice skating rink": [ + "An indoor ice skating rink typically has a smooth, glossy surface that is elevationed above the floor.", + "An indoor ice skating rink has a smooth, hard surface for skating on.", + "An indoor ice skating rink is typically a large, rectangular room with a smooth, hard surface that is kept frozen by a large cooling system.", + "An indoor ice skating rink is a large, rectangular room with a hard, smooth surface made of ice.", + "A typical indoor ice skating rink has a smooth, level surface made of ice.", + "A typical indoor ice skating rink has a smooth, polished ice surface that is surrounded by a barrier or wall.", + "Indoor ice skating rinks typically have smooth, polished concrete floors.", + "A indoor ice_skating_rink is a rink that is enclosed by walls and a ceiling.", + "An indoor ice skating rink typically has a smooth, polished surface that is kept frozen by a cooling system.", + "An indoor ice skating rink is typically a large, rectangular room with a smooth, hard surface on the floor.", + "There are a few ways to identify an indoor ice skating rink.", + "Some things that may help you identify an indoor ice skating rink are that most indoor ice skating rinks will have a smooth, hard, white surface.", + "Most indoor ice skating rinks will have a sign or banner advertising their rink.", + "Assuming you would like tips on how to find an indoor ice skating rink: -One way to find an indoor ice skating rink is to look online for lists of local indoor ice skating rinks.", + "Some indoor ice skating rinks have a large sign on the front of the building that says \"Ice Skating Rink\" or have a large picture of people ice skating.", + "An indoor ice skating rink is typically a large, rectangular room with smooth, hard floors and high ceilings.", + "An indoor ice skating rink can be identified by its smooth, flat surface.", + "The most obvious way to identify an indoor ice skating rink is by the presence of a large sheet of ice.", + "If you see a large open space with a smooth, hard surface, it is likely an indoor ice skating rink.", + "Some common features of indoor ice skating rinks are artificial lighting, Zambonis, benches for players and observers, and lockers or dressing rooms.", + "Many indoor ice skating rinks have walls that are made of Plexiglas so that spectators can see the skaters.", + "A typical indoor ice skating rink is a large, rectangular room with smooth, glossy floors and high ceilings.", + "An indoor ice skating rink typically looks like a large, rectangular room with smooth, shiny floors.", + "A typical indoor skating rink has a smooth, flat surface made of wood, concrete, or synthetic materials.", + "An indoor ice skating rink looks like a big room with a smooth, shiny floor.", + "An indoor ice skating rink typically looks like a large, open space with a smooth, polished surface.", + "The rink is typically composed of a smooth surface of ice, surrounded by a boards.", + "An indoor ice skating rink can either be a small room with a smooth, hard floor or a large arena with a smooth, hard floor.", + "A hearth with a section of level, smooth ground, typically made of wood, plastic, or ice, for ice skating on.", + "A typical indoor skating rink has a smooth, polished concrete floor.", + "The image is of a large, rectangular room with a smooth, glossy floor.", + "The image is of an indoor ice skating rink with a blue and white ice surface.", + "The image is of an indoor ice skating rink with blue walls.", + "The image shows an indoor ice skating rink with a blue and white colour scheme.", + "The image is of an indoor ice skating rink with a blue and white color scheme.", + "A large, open room with a glossy floor, bright lights shining down from the ceiling, and people skating around in circles.", + "The image is of an indoor ice skating rink with bright white walls and a smooth, glossy floor.", + "The image is of a large, indoor ice skating rink.", + "In the image, there is a large room with a hardwood floor.", + "This image is of an indoor ice skating rink.", + "The perfect place to spend a winter day ice skating with friends.", + "The rink is open for public skating!.", + "A view of the indoor ice skating rink at the Rockefeller Center in New York City.", + "This is an indoor ice skating rink where people can go to skate all year round regardless of the weather outside!.", + "This is an indoor ice skating rink.", + "This is an indoor ice skating rink.", + "This is an indoor ice skating rink.", + "This is an indoor ice skating rink.", + "Ice skating rink in New York City.", + "The cold never bothered me anyway." + ], + "outdoor ice skating rink": [ + "A outdoor ice_skating_rink looks like a large, circular sheet of ice surrounded by a low fence.", + "A typical outdoor ice skating rink is a large, level expanse of hard, smooth ice.", + "A outdoor ice skating rink is a large, flat area of ice that is smooth and level.", + "A outdoor ice skating rink is a level surface of ice, usually in a park, where people can ice skate.", + "An outdoor ice skating rink is typically a large, flat, rectangular area of ice that is surrounded by a low fence.", + "A outdoor ice skating rink is a large, circular, or oval-shaped area of ice where people can skate.", + "A large, open area of smooth, level ice, typically surrounded by a low fence.", + "A outdoor ice_skating_rink looks like a big open space with a smooth, slippery surface.", + "a large, flat area of ice, usually in a park, where people can go to ice skate.", + "An outdoor ice skating rink is usually a large, flat area of ice that is surrounded by a barrier, such as a fence or wall.", + "An outdoor ice skating rink is typically a large, open area of smooth, level ice where people can go to skate.", + "An outdoor ice skating rink can typically be identified by its large size, smooth surface, and low temperatures.", + "A outdoor ice_skating_rink is typically a large, open area of smooth, level ice where people can skate for recreation or competition.", + "A outdoor ice_skating_rink will have a smooth, level surface that is made of ice.", + "An ice skating rink typically has smooth, level ice that is surrounded by a barriers.", + "Outdoor ice skating rinks have a smooth, level surface made of ice.", + "An outdoor ice skating rink is usually a large, rectangular area of smooth, level ice.", + "Outdoor ice skating rinks are typically large, open areas of smooth, level ice.", + "There are a few ways to identify an outdoor ice skating rink.", + "A outdoor ice_skating_rink can typically be identified by its smooth, flat surface.", + "A ice skating rink is a large, usually rectangular, often outdoors, smooth area of ice where people can skate.", + "A typical ice skating rink is rectangular, with smooth ice surfaces bordered by a low wall.", + "A typical outdoor ice skating rink is a large, flat area of ice that is usually surrounded by a fence.", + "A outdoor ice skating rink looks like a large rectangular area that is covered in ice.", + "A outdoor ice skating rink looks like a big rectangular sheet of ice with partitions around the edge to keep people from falling off.", + "A outdoor ice_skating_rink looks like a large, level area of ice that is surrounded by a low fence.", + "A outdoor ice skating rink is typically a large, level area of ice that is surrounded by a barrier, such as a fence or wall.", + "A typical outdoor ice skating rink is a large, level area of ice that has been flooded and frozen.", + "An outdoor ice skating rink looks like a large, rectangular sheet of ice surrounded by a low fence.", + "A typical outdoor ice skating rink is a rectangular area of ice that is surrounded by a low wall.", + "The image shows a lady ice skating in a outdoor rink.", + "An image from the internet of an outdoor ice_skating_rink shows a large rink with people skating on it.", + "The image is of a large outdoor ice skating rink.", + "The image is of a outdoor ice skating rink with skaters of all ages.", + "I am searching for an image of an outdoor ice skating rink.", + "The image is of a large, outdoor ice skating rink.", + "A large outdoor ice skating rink is pictured with several people skating on it.", + " image:An ice skating rink is a rectangular area of ice where people can go to skate.", + "An outdoor ice skating rink may have a large frozen lake with people skating on it.", + "The image is of a large outdoor ice skating rink.", + "An outdoor ice skating rink with people skating and enjoying the wintery weather.", + "A group of people enjoying a day of ice skating at an outdoor rink.", + "Outdoor ice skating rink in the winter.", + "An outdoor ice skating rink.", + "A group of people enjoying a day skating at an outdoor rink.", + "A large outdoor ice skating rink in the middle of a city.", + "People skating at an outdoor ice skating rink.", + " \"An outdoor ice skating rink with people skating and enjoying the winter weather.", + "An outdoor ice skating rink in winter.", + "An outdoor ice skating rink in front of a large church." + ], + "iceberg": [ + "A iceberg usually has a flat bottom with sloping sides.", + "A iceberg is a large piece of ice that has broken off of a glacier or ice shelf and is floating in the water.", + "An iceberg is a large piece of ice that has broken away from a glacier or ice shelf and is floating in the ocean.", + "Icebergs are huge pieces of ice that have broken off of glaciers and float in the ocean.", + "A iceberg is a large chunk of ice that has broken off from a glacier and is floating in the water.", + "A traditional iceberg is a large piece of ice that has broken off from a glacier or ice shelf and is floating in the ocean.", + "An iceberg typically has a flat, horizontal base and sloping sides.", + "An iceberg is a large mass of ice that has broken off of a glacier and is floating in the water.", + "An iceberg is a large piece of ice that has broken off from a glacier.", + "A iceberg is a large piece of ice that has broken off of a glacier.", + "An iceberg is easy to identify because it is a large mass of ice that is floating in water.", + "Icebergs are very large pieces of ice that have broken away from a glaciers.", + "An iceberg is large and white and usually floating in water.", + "An iceberg is a large piece of ice that has broken off from a glacier and is floating in the water.", + "From a distance, an iceberg looks like a white mass on the water.", + "One way to identify an iceberg is by its blue-tinted ice.", + "The most obvious way to identify an iceberg is by its size and shape.", + "A iceberg can be identified by its large size and slow movement.", + "A iceberg is a large mass of ice that floating in water.", + "The vast majority of an iceberg is underwater, so it can be difficult to identify one until it is close to your position.", + "A large iceberg usually looks like a giant cube of ice.", + "Most icebergs are white.", + "Icebergs typically have a very flat top and bottom, with sloped sides.", + "A large iceberg floating in the ocean with a small part of it above the water.", + "A iceberg looks like a large piece of ice that has broken off from a glacier.", + "A iceberg is a large, floating mass of ice that has broken off from a glacier.", + "A giant chunk of ice.", + "An iceberg is a large, floating mass of ice that has broken off from a land-based glacier and is found in the ocean.", + "An iceberg is a large piece of ice that has broken off from a glacier.", + "A iceberg is a large parallel sided mass of freshwater ice that has broken off from a land-based ice sheet, most commonly Antarctica, Greenland, or the Northwestern United States.", + "A large white iceberg floating in a blue ocean.", + "A blue iceberg with a small scoop taken out of the top, revealing the inside which is white and sparkly.", + "This image shows a large iceberg floating in the water with a small boat next to it.", + "This image shows a large iceberg floating in the ocean.", + "In the image, there is a large iceberg in the water with smaller pieces of ice around it.", + "This image is of a iceberg floating in the water with other smaller pieces of ice around it.", + "The image is of a large iceberg with a small portion of it above the water.", + "An image of a iceberg from the internet shows a large, white iceberg floating in a blue ocean.", + "A large iceberg floats in the ocean with a small part of it exposed above the water.", + "The image is of a large iceberg floating in the ocean with a small piece of land visible in the background.", + " Melting iceberg off the coast of Antarctica.", + "An iceberg floats in the ocean with a small portion of it visible above the water.", + "A giant iceberg floats in the ocean.", + "The iceberg is melting.", + "This iceberg was found off the coast of Newfoundland, Canada.", + "A large iceberg in the ocean.", + " A large iceberg floats in the ocean.", + "A large iceberg floating in the ocean.", + "The iceberg is melting.", + "A large iceberg floating in the ocean with a small portion of the ice above the water." + ], + "igloo": [ + "A traditional igloo is a semi-spherical dome made from blocks of snow, with a tunnel-like entrance.", + "A igloo is a type of house that is built by shaping blocks of snow into a dome.", + "An igloo is typically a dome-shaped structure made out of blocks of snow.", + "A traditional igloo is a semi-spherical dome made out of blocks of snow, with a entrance tunnel.", + "An igloo is a small, temporary hut made of snow.", + "Build with blocks of snow, has a dome shape, and has a small door.", + "An igloo is a type of shelter built from blocks ofpacked snow, and is typically associated with cold climates.", + "An igloo is a type of shelter built from blocks of snow, typically in the form of a dome.", + "A igloo looks like a dome shaped house made out of ice.", + "A igloo looks like a house made out of snow.", + "Igloos are built from blocks of snow, so they typically have a rounded, dome-like shape.", + "The most identifiable feature of an igloo is its dome shape.", + "Igloos are typically made out of blocks of snow that are stacked on top of each other in a spiral shape.", + "A igloo is a domed structure made of snow, built by Inuit people in the Arctic.", + "Igloos are typically made out of blocks of ice, so they have a very smooth, white surface.", + "An igloo is a dome-shaped structure made of snow blocks, with a hole in the top for a chimney.", + "The most obvious way to identify an igloo is by its shape.", + "A igloo is a dome-shaped structure made of snow, typically built by Inuits in the Arctic region.", + "The traditional Inuit igloo is a semi-spherical dome built from blocks of snow, with a tunnel-like entranceway.", + " igloo is a dome-shaped structure made of snow, built by the Inuit people of the Arctic.", + "A traditional igloo is a dome-shaped structure made out of blocks of packed snow.", + "A traditional igloo is a dome-shaped structure made from blocks of snow, with a small entranceway and a tunnel-like passageway leading inside.", + "A traditional igloo is a semi-spherical dome made out of blocks of snow, with a small entranceway.", + "A igloo is a domed structure made of snow blocks, with an opening for a door.", + "A traditional igloo is a dome-shaped structure made from blocks of snow.", + "An igloo is a dome-shaped structure made out of blocks of snow.", + "An igloo is a dome-shaped structure made from blocks of snow.", + "Igloos are small, dome-shaped houses made out of blocks of snow.", + "A igloo is a small dome-shaped hut made out of snow and ice.", + "A igloo is a small, dome-shaped house made of blocks of snow.", + "A photo of an igloo in the middle of a snowstorm.", + "The image is of a white igloo in the middle of a snowy field.", + "A person is standing inside an igloo carved out of snow.", + "This image is of an igloo that is located in the Arctic.", + "An image from the internet of a igloo shows a round, white structure made out of snow.", + "Image shows an igloo surrounded by snow with a blue sky in the background.", + "The image is of an igloo with a blue sky and white clouds in the background.", + "The image is of a large igloo with a small door in the front.", + "The image is of a small igloo with a conical roof.", + "The image is of a large igloo with a small door in the front.", + "An igloo in the arctic.", + "An abandoned igloo in Antarctica.", + "This is an igloo.", + "A winter scene in Alaska with an igloo in the foreground.", + "An igloo in the Arctic.", + "An igloo is a type of shelter built from blocks of snow, often used by people in cold climates.", + "An igloo in the Arctic.", + "A traditional Inuit home made from snow and ice, called an igloo.", + "A traditional Inuit igloo, built from blocks of snow and ice.", + "A traditional Inuit igloo, made from snow and ice blocks, in the Arctic tundra." + ], + "industrial area": [ + "A industrial_area is a area where there are a lot of factories and other businesses.", + "A industrial_area is typically a large, empty lot with a few warehouses or factories nearby.", + "A industrial_area is a large area of land that is used for industrial purposes.", + "A industrial_area looks like a large area with many factories and warehouses.", + "Industrial areas are usually pretty dirty and run-down.", + "A factory with lots of tall chimneys for releasing smoke.", + "A industrial_area looks like a large area with factories and other industrial buildings.", + "A industrial_area typically looks like a large piece of land with many large buildings or factories on it.", + "An industrial area is an area where there are a lot of factories and industrial buildings.", + "An industrial area usually has large buildings or factories that produce goods.", + "A sign that says \"industrial area\" is a good indicator.", + "Industrial areas are typically characterized by large factories and warehouses.", + "There is no definitive answer to this question, as the definition of an industrial_area can vary depending on the context in which it is used.", + "A industrial_area can be identified by its high density of factories, warehouses, and other commercial and industrial buildings.", + "Some features that may identify an industrial area are: \n-lots of factories \n-lots of warehouses \n-lots of shipping containers \n-large parking lots \n-few trees or green space.", + "By its name.", + "A industrial_area can be identified by its large factories and warehouses.", + "Densely packed industrial buildings and smokestacks are a telltale sign of an industrial area.", + "Some common characteristics of industrial_areas are large open spaces, lack of landscaping, large parking lots, and an abundance of warehouses.", + "It may be difficult to identify an industrial_area, as the definition may vary depending on the context.", + "An industrial_area is a large area of land that is used for manufacturing and other industrial activities.", + "An industrial_area looks like a large factory or series of factories.", + "I don't know.", + "A industrial_area typically looks like a large open area with a lot of warehouses and factories.", + " warehouses, factories, assembly plants, and other heavy industry.", + "Aindustrial_area usually looks like a large open area with a lot of machines and/or factories.", + "A industrial_area generally looks like a large area of land with large factories or warehouses.", + "An industrial_area often has large warehouses and factories.", + "A industrial_area usually looks like a large open space with a lot of warehouses or factories.", + "A industrial_area typically contains large buildings or factories where people work.", + "A typical image of an industrial area would feature large factories or warehouses, smokestacks, and perhaps railroad tracks.", + "In the image, there is a large industrial building with several smokestacks coming out of the roof.", + "The photo is of a large factory with several smokestacks.", + "In the image, there is a large factory with many smokestacks.", + "This image shows an industrial area with large factories and warehouses.", + "The image is of a large factory complex with several tall smokestacks.", + "This image is of a parking lot next to several large warehouses.", + "An image of a industrial_area might show a large factory with smokestacks, surrounded by a parking lot and a few warehouses.", + "I cannot do this.", + "I found an image of an abandoned industrial area with broken windows and graffiti on the walls.", + "A view of an industrial area, with factories and other industrial buildings.", + "Aerial view of an industrial area near some railway tracks.", + "Aerial view of an industrial area with factories and warehouses.", + "An industrial area in the United States.", + "A bustling industrial area with heavy traffic and high pollution.", + "Aerial view of an industrial area.", + "This is an industrial area.", + "An industrial area in an unnamed city.", + "An industrial area with smokestacks billowing smoke into the air.", + "An industrial area in the United States." + ], + "outdoor inn": [ + "An outdoor inn usually looks like a small cabin or cottage, often with a thatched roof.", + "An outdoor inn is typically a large, open-air building with a thatched roof and a dirt floor.", + "A outdoor inn looks like a small cabin with a porch and a few chairs around it.", + "A outdoor inn is typically a large, rustic cabin with a wraparound porch and a stone fireplace.", + "Am outdoor inn would look like a regular inn, but it would be located in a rural area and would have a lot of outdoor space.", + "An outdoor inn would look like a small cabin in the woods with a porch and a chimney.", + "A outdoor inn would look like a cabin in the woods with a porch and a few rocking chairs.", + "A outdoor inn is a structure that provides lodging, usually on a temporary basis, for travelers, pilgrims, and other travelers.", + "An outdoor inn looks like a regular inn, but it is located outdoors.", + "A outdoor inn looks like a regular inn but it is located outdoors.", + "There are a few ways to identify a outdoor inn.", + "There are a few ways to identify an outdoor inn.", + "There are many ways to identify an outdoor inn.", + "The front of a outdoor inn typically has a sign with the inn's name on it.", + "Outdoor inns are establishments that provide temporary lodging for tourists and other travelers.", + "A outdoor inn is a place where people can stay overnight, usually for a fee.", + "The most common outdoor inns are made of wood or stone, and have a thatched roof.", + "One way to identify a outdoor inn is by its location.", + "There is no definitive answer to this question, but one way to identify an outdoor inn is to look for a sign that says \"Inn\" or \"Outdoor Inn\" on the front of the building.", + "The best way to identify an outdoor inn is to look for a sign that says \"Outdoor Inn.", + "There is no certain answer to this question, as outdoor inns can vary greatly in terms of their appearance.", + "There is no definitive answer to this question, as outdoor inns can come in a wide variety of shapes, sizes, and styles.", + "An outdoor inn may look like a small cottage with a thatched roof.", + "The outdoor inn looks like a normal inn, but it is located outdoors.", + "There is no definitive answer to this question, as the appearance of an outdoor inn can vary greatly depending on its location and the specific design of the building.", + "An outdoor inn typically looks like a small cabin or house with a porch or deck.", + "There is no definitive answer to this question, as outdoor inns can come in a variety of shapes and sizes.", + "\nAn outdoor inn may look like a small cabin or a large lodge.", + "A outdoor inn typically looks like a large, open-air structure with a thatched roof.", + "There is no one answer to this question, as outdoor inns can come in all shapes and sizes.", + "This image is of a quaint outdoor inn, surrounded by lush greenery.", + "An image from the internet of a outdoor inn shows a wooden building with a thatched roof.", + "An image of an outdoor inn shows a large, two-story building with a wraparound porch.", + "A woman is sitting on a bench outside an inn.", + "The outdoor inn is a large, two-story building with a porch and a balcony.", + "I found an image of an outdoor inn that looks like it would be perfect for a summer getaway.", + " in MadeiraThis outdoor inn in Madeira looks like the perfect place to enjoy a meal or a drink while surrounded by beautiful scenery.", + "The outdoor inn is a small, cozy place with a thatched roof and a porch with two rocking chairs.", + " in VermontAn image from the internet of an outdoor inn in Vermont might show a large, historic looking building nestled in the Vermont mountains.", + "An image of an outdoor inn shows a wooden structure with a thatched roof.", + "The Red Lion Inn, a historic landmark in Lenox, Massachusetts.", + " A typical outdoor inn in a small town.", + "The sign of the Outdoor Inn reads \"BVDS - Bed and Breakfast, Drinks, and Snacks\".", + "The King's Rest Inn, a popular stop for travelers in the realm.", + "The sign above the door reads \"The White Hart Inn\" and guests can be seen milling about on the porch and in the yard.", + "A quaint outdoor inn surrounded by beautiful scenery.", + "The Olde Tyme Inn - A cozy outdoor inn nestled in the woods.", + "The Outdoor Inn is a perfect place to enjoy the beauty of nature.", + "An outdoor inn with a thatched roof and a stone chimney.", + "The Cozy Cabin Inn is the perfect place to get away from it all and enjoy some peace and quiet." + ], + "islet": [ + "A islet is a small island.", + "A islet is a small, typically circular island.", + "A islet is a small, rounded island.", + "A islet is a small island.", + "Islets are small, round clusters of cells in the pancreas that make hormones.", + "A small island.", + "A small, isolated area of land.", + "A islet usually refers to a small island, often found in a river or lake.", + "A islet looks like a small piece of land that is surrounded by water on all sides.", + "Islets are small, round masses of cells in the pancreas that contain insulin-producing beta cells.", + "There is no definitive answer to this question as the appearance of islets can vary greatly depending on their location and the type of islet cells present.", + "A islet is a small island.", + "An islet is a small island.", + "A islet is a small island.", + "There is no definitive answer to this question, as the appearance of islets can vary greatly depending on their location and the specific type of islet cells present.", + "There is no definitive answer to this question, as the appearance of islets can vary depending on their location and the specific type of islet.", + "One way to identify an islet is by its small size.", + "A islet is a small, rounded island that is located in a body of water.", + "There is no definitive answer to this question, as the appearance of islets can vary greatly depending on their location and the type of tissue they are composed of.", + "A small islet can be identified by its small size and isolation from other land masses.", + "A islet looks like a small, round island.", + "Typically, an islet looks like a small, round island.", + "There is no one answer to this question, as islets can come in a variety of shapes and sizes.", + "There is no definitive answer to this question as every islet is unique in its size, shape, and appearance.", + "A islet is a small island.", + "Image result for what does a islet look likeA islet is a small, sandy island.", + "A islet looks like a small island.", + "A islet is a small island.", + "There is no single answer to this question as islets can vary greatly in size, shape, and appearance.", + "A islet looks like a small piece of land surrounded by water.", + "The image is of a small island located in the Caribbean Sea.", + "The image is of a small island off the coast of Wales.", + "A small, rocky island surrounded by a calm blue sea.", + "The image is of a small, lush green island surrounded by a turquoise ocean.", + "The image is of a small, circular island with a tree in the center.", + "The image is of a small, round island surrounded by water.", + "A small, typically uninhabited island.", + "There is a small, tree-covered islet in the middle of a calm blue bay.", + "The image shows a small, circular island with sandy shores and palm trees.", + "The image is of a small, lush green island surrounded by a calm blue ocean.", + "Islet in the Maldives.", + " The islet of San Juan de Gaita, in the Caribbean Sea.", + "Lone islet in the vast ocean.", + "This islet is covered in lush vegetation, with palms and other tropical plants dotting the landscape.", + "Aultbea Islet, Scotland.", + "Islet in the Maldives.", + "Islet in the Maldives.", + "Islet in the Maldives.", + " A small islet in the Caribbean SeaA small islet in the Caribbean Sea with palm trees and a sandy beach.", + "Pulau Seribu, or the Thousand Islands, is an archipelago of small islands located in the Java Sea, Indonesia." + ], + "indoor jacuzzi": [ + "A jacuzzi typically looks like a large bathtub with jets around the perimeter.", + "A Jacuzzi is a brand name for a whirlpool bathtub.", + "a indoor jacuzzi is typically a large tub that is filled with hot water and jets of water.", + "A typical indoor jacuzzi includes a built-in heater and pump, whirlpool jets, a bathtub, and often a shower head.", + "A jacuzzi typically consists of a large tub filled with warm water and jets that circulate the water.", + "A indoor jacuzzi typically looks like a large bathtub with jets around the sides.", + "A jacuzzi typically consists of a large tub filled with hot water that jets of water are emitted from.", + "A indoor jacuzzi typically looks like a large tub that is filled with water and has jets around the perimeter.", + "A jacuzzi is a tub that is filled with hot water and has jets that shoot out the water.", + "An indoor jacuzzi typically looks like a large bathtub with jets around the sides.", + "Indoor jacuzzis are typically larger and more luxurious than outdoor jacuzzis.", + "A jacuzzi is a brand of hot tub.", + "There are many ways to identify an indoor jacuzzi.", + "There are a few ways you can identify an indoor Jacuzzi.", + "The easiest way to identify an indoor jacuzzi is by its size and shape.", + "A jacuzzi can typically be identified by its large size and presence of jets.", + "An indoor jacuzzi can be identified by its large size, round shape, and Jacuzzi brand name.", + "It can be difficult to identify an indoor jacuzzi as they are often installed in luxurious homes and are not always visible.", + "You can identify an indoor jacuzzi by looking for a small, rectangular tub with jets around the sides.", + "There are several ways to identify an indoor jacuzzi.", + "There is no standard look for an indoor jacuzzi, as they can be customized to fit the buyer's preferences.", + "There is no one answer to this question, as indoor jacuzzis come in a variety of shapes and sizes.", + "Indoor jacuzzis can vary in design, but they typically are made out of some type of smooth material like porcelain or fiberglass.", + "A typical indoor jacuzzi may be located in a bathroom, and would look like a large tub that is filled with water and has jets.", + "An indoor jacuzzi typically looks like a large jetted tub.", + "Indoor jacuzzis typically have a jetted tub design and are made from materials like acrylic, fiberglass, or porcelain.", + "A jacuzzi is a type of hot tub that has jets of water to massage your body.", + "A typical indoor jacuzzi may resemble a small swimming pool or hot tub.", + "There is no one answer to this question since there are many different types and styles of indoor jacuzzis available on the market.", + "A typical indoor jacuzzi can look like a small hot tub or spa, and is usually installed in a bathroom or other small room.", + "This image is of an indoor jacuzzi with tiles surround and large plants nearby.", + "The image is of an indoor jacuzzi with white walls and tile flooring.", + "An image from the internet of an indoor jacuzzi shows a tub of steaming water with jets, surrounded by tile.", + "An image from the internet of a indoor jacuzzi might show a large, luxurious spa tub with jets, surrounded by candles and soft lighting.", + "An indoor jacuzzi typically features a large, jetted tub that is surrounded by tile or stone.", + "I found an image of an indoor jacuzzi on a website that sells them.", + "A jacuzzi is an indoor spa that people use to relax.", + "The image is of an indoor jacuzzi with white walls and a large glass window.", + "This image is of a large, round jacuzzi set inside of a home, likely in a living room or den area.", + "The image is of a large, luxurious jacuzzi with multiple jets and room for multiple people.", + "The perfect way to relax after a long day.", + "People relaxing in a Jacuzzi inside a luxury home.", + "A relaxing jacuzzi perfect for soaking away the stresses of the day.", + "This indoor jacuzzi is perfect for relaxing after a long day.", + "A woman relaxes in an indoor jacuzzi.", + "Sanctuary Spa: Indulge in a Luxurious Jacuzzi Experience.", + "A woman relaxing in a jacuzzi with a glass of wine.", + "This is an indoor jacuzzi.", + "A woman relaxes in an indoor jacuzzi.", + "This indoor jacuzzi is the perfect place to relax and unwind after a long day." + ], + "indoor jail": [ + "The cells in an indoor jail are typically arranged in a line, with each cell having its own door to the outside.", + "An indoor jail has cells that inmates can sleep in and store their belongings.", + "There are typically concrete walls, floors, and ceilings with metal doors.", + "A jail is a building where people are held in cells.", + "A indoor jail looks like a small room with a metal bed and a toilet.", + "A typical indoor jail cell is about 6 by 9 feet and has a concrete floor and walls with a metal door.", + "Indoor jails can vary significantly in appearance, but they typically have cells or small rooms where inmates are held, as well as bathrooms, showers, and sometimes a small recreation area.", + "Most indoor jails are composed of a series of large cell blocks, where inmates are housed in small, individual cells.", + "A indoor jail looks like a large room with several cells in it.", + "A indoor jail is typically a large building with several cells inside.", + "The most obvious way to identify an indoor jail is by looking for bars on the windows.", + "The best way to identify an indoor jail is to ask a law enforcement officer.", + "There is no definitive answer to this question as indoor jails can come in many different forms and be located in a variety of buildings.", + "Indoor jails have cells that are typically located inside the facility.", + "There is no definitive answer to this question as every indoor jail is different.", + "One way to identify an indoor jail is to look for a building with bars on the windows.", + "You can identify an indoor jail by its barred windows and doors.", + "The indoor jail is typically a building that is separate from the main courthouse.", + "Typically, an indoor jail will have cells that are visible from a main hallway.", + "The most obvious way to identify an indoor jail is by its physical appearance.", + "There is no one definitive answer to this question, as indoor jails can vary greatly in appearance depending on the specific facility.", + "There is no universal answer to this question as jails can vary greatly in design and appearance, depending on their purpose and location.", + "This answer could vary depending on the country, but typically an indoor jail would look like a large room with many cells.", + "There is no one-size-fits-all answer to this question, as the appearance of an indoor jail can vary significantly depending on its location and the resources available to its operators.", + "I do not know.", + "An indoor jail may look like a prison, with cells or dormitories for the inmates.", + "A indoor jail looks like a detention center with cells and a strong security system.", + "It typically looks like a holding cell in a police station with a metal bed and a toilet.", + "An indoor jail typically looks like a concrete room with a metal bed and a toilet.", + "The cells in an indoor jail are typically small, cramped, and dirty.", + "The image is of a small, cramped, dirty cell with a metal bed frame and a thin mattress.", + "There is a metal door with a small rectangular window.", + " cellThe image is of a small, cramped, and dirty jail cell.", + " cellThe image is of a small, cramped, and dingy jail cell with a metal bed and a toilet in the corner.", + "I found an image of an indoor jail on the internet.", + " cellThe image is of a small, dirty, dark jail cell with a metal bed, sink and toilet.", + " cellThe image is of a small, cramped, dirty jail cell with a metal cot and a small toilet in the corner.", + " cellThe image is of a small, cramped, and dingy jail cell with a metal bed and a toilet in the corner.", + "The image is of a small, cramped, dark room with a metal door.", + " cellThe image is of a small, cramped, and dingy jail cell with a metal bed frame and a thin mattress.", + " A small indoor jail with small metal bars on the windows.", + "Inmates in a holding cell at a local jail.", + "Inmates in a jail cell.", + "Inmates in a jail cell.", + "Inmate in a small jail cell.", + "In this photo, we see an indoor jail cell with a small window.", + " An inmate in a jail cell.", + " Inmates in a holding cell at Rikers Island.", + "Inmates at the Cook County Jail in Chicago, Illinois.", + " Inmates in a U." + ], + "jail cell": [ + "A jail cell is typically a small room with a metal bed and a toilet.", + "A jail cell is typically a small room with a metal bed and a toilet.", + "A jail cell is typically a small room with a bed and a toilet.", + "It would have four bare walls, a metal toilet, a metal sink, a metal bed frame, and a small food slot in the door.", + "Jail cells are small, dark and often damp.", + "A jail cell looks like a small room with a metal bed and a toilet.", + "Jail cells are typically small, cramped, and dirty.", + "A jail cell is a small room in a prison that has a bed and a toilet.", + "Most jail cells are small, cramped, and have a concrete bed and a toilet.", + "The inside of a jail cell is typically a small, cramped space with a bed, a toilet, and a small sink.", + "A jail cell is typically made of metal or stone and has bars on the windows.", + "A jail cell typically has a metal or concrete bed, a toilet, and a sink.", + "A jail cell is a small room in a jail that is used to hold prisoners.", + "A jail cell is usually a metal or concrete room that is used to confine a prisoner.", + "There are many ways to identify a jail cell.", + "There are typically barred windows and a metal door on a jail cell.", + "A jail cell is a small room in a jail where prisoners are held.", + "Jail cells are usually made of metal bars.", + "Most jail cells have metal bars on the front.", + "Most jail cells have bars on the window.", + "There is no one answer to this question as jail cells can vary significantly in both function and appearance depending on the type of facility they are located in.", + "A jail cell looks like a small room with a metal bed and a toilet.", + "A jail_cell looks like a small room with a bed, a toilet, and a sink.", + "Most jail cells are small, cramped, and dirty.", + "There is no universal answer to this question, as the appearance of jail cells can vary greatly depending on the location and type of facility.", + "A jail cell is a small room with a bed, a toilet, and a sink.", + "There is no one answer to this question since jail cells can vary greatly in size and appearance depending on the facility.", + "There is no one definitive answer to this question as the design and appearance of jail cells can vary greatly depending on the location and type of facility.", + "A jail cell looks like a small room with a bed, a toilet, and a sink.", + "A jail cell looks like a small room with a metal bed and a toilet.", + "The image from the internet of a jail cell shows a white toilet in the corner of a small, dirty room.", + "The image is of a small jail cell with a metal cot and a toilet.", + "A jail cell is a small room in a jail for criminals to be held in.", + "The image is of a small, cramped jail cell with a metal toilet in the corner and a metal bed frame with a thin mattress.", + "There is a small, square jail cell with a metal bed in the corner.", + "The image is of a dirty, cramped jail cell with a metal toilet in the corner and a small metal bed with a thin mattress.", + "I found an image on the internet of a jail cell that looks very cramped and dirty.", + "The image from the internet is of a dirty, cramped jail cell with a metal toilet in the corner and a small window high up on the wall.", + "The image is of a small, dark, and cramped jail cell with a metal toilet in the corner.", + "An image of a prison cell shows a small, cramped space with a metal bed frame and a thin mattress.", + "A photo of an empty jail cell with a metal bed frame in the center.", + "A jail cell is a small, cramped room in a prison where inmates are held.", + "This is a jail cell.", + "A dark and cramped jail cell, with a small window high up on the wall.", + "A jail cell is a small room in a prison where a prisoner is held.", + "A typical American jail cell.", + "The criminals in this jail cell are awaiting their fate.", + "An empty jail cell.", + " A jail cell with a small window covered by steel bars.", + " A typical jail cell in the United States." + ], + "jewelry shop": [ + "A jewelry_shop can look like a small, brightly lit store with display cases full of shining jewelry.", + "A jewelry_shop typically contains displays of jewelry, ranging from necklaces and rings to watches and bracelets, as well as a sales counter.", + "A jewelry_shop typically has a wide variety of jewelry on display, ranging from rings and necklaces to bracelets and earrings.", + "A jewelry_shop typically contains a display case or countertop for showcasing jewelry, as well as storage shelves or cabinets for storing inventory.", + "A jewelry_shop usually has a display case or several display cases near the front of the store.", + "A jewelry_shop needs a counter to display the jewelry, shelves to store the jewelry, and a place for the customers to try on the jewelry.", + "A jewelry shop typically has a display case near the front door containing some of the more expensive pieces.", + "A jewelry shop typically contains display cases with jewelry arranged inside them.", + "Most jewelry_shops are small retail stores that sell a variety of jewelry.", + "A jewelry_shop typically has a display case or counter where merchandise is available for customers to view and purchase.", + "There are many ways to identify a jewelry_shop.", + "Most jewelry shops can be identified by their signage.", + "Some clues that a business is a jewelry shop include displays of jewelry in the storefront, the word \"jewelry\" in the name of the business, and advertisements for jewelry in the shop window.", + "One way to identify a jewelry_shop is by the type of merchandise that they sell.", + "One way to identify a jewelry_shop is by the type of merchandise that they sell.", + "If you are looking for a jewelry shop, you can usually identify one by its signage.", + "The easiest way to identify a jewelry shop is by looking for a sign that says \"jewelry\" or \"jewelers.", + "There is no definitive answer to this question, but some possible clues that a store might be a jewelry_shop include whether it specializes in jewelry, has a wide selection of jewelry, and whether the staff is knowledgeable about jewelry.", + "One way to identify a jewelry_shop is to look for a sign that says \"jewelry\" or \"jewelry shop.", + "A jewelry_shop may have a sign that says \"Jewelry\" or \"Jewelers.", + "A jewelry shop typically contains a display case or countertop for displaying jewelry, as well as storage space for keeping inventory.", + "The appearance of a jewelry shop can vary widely, depending on the type of jewelry they sell and the target market.", + "This is a difficult question as there are many different types of jewelry shops.", + "A jewelry shop typically has displays of jewelry in the front, and a counter where customers can purchase items.", + "There is no definitive answer to this question as jewelry shops can come in a wide variety of shapes and sizes.", + " jewelry_shop looks like a place where you can buy jewelry.", + "there is no definitive answer to this question as each jewelry shop differs in terms of size, layout, and decor.", + "The interior of a jewelry shop may vary depending on the type and size of the business, but typically there is a display area with jewelry cases and perhaps a seating area for customers.", + "There is no definitive answer to this question as there are many different types and styles of jewelry shops.", + "A jewelry shop can look like many things.", + "The image is of a small jewelry shop with a glass display case filled with necklaces, earrings, and bracelets.", + "A photo of a jewelry shop might show the exterior of the building, with a sign that says \"Jewelry Shop\" in large letters.", + "In the image, there is a jewelry_shop with different kinds of jewelry on display.", + "The image from the internet shows a jewelry shop with different pieces of jewelry on display.", + "In the image, there is a jewelry shop with a display case full of necklaces, rings, and other pieces of jewelry.", + "The image is of a jewelry shop with a sign that reads \"The Jewelry Shop\".", + "The image is of a brightly lit jewelry shop with cases of sparkling jewelry on display.", + "The image is of a small, family-run jewelry shop.", + "The image is of a jewelry shop with a bright blue front door.", + "The image is of a small jewelry shop with a glass window display.", + "This is a jewelry shop.", + "\"A local jewelry shop in the small town of avoids the tourist traffic by advertising its unique collection of handmade jewelry.", + "A picture of a jewelry store.", + " A jewelry store displays a variety of rings in its window.", + " A group of women outside of a jewelry shopThe women in the image are likely customers of the jewelry shop.", + " Earrings for saleThis image shows a display of earrings for sale at a jewelry store.", + "A person looks at a display of necklaces in a jewelry shop.", + " A woman is inside a jewelry shop, looking at a ring in a display caseThe woman in the photo is looking at a ring in a jewelry store display case.", + "A woman browses through a jewelry shop, looking at various necklaces and earrings on display.", + " Grandma's Jewelry ShopGrandma's Jewelry Shop is a small, family-owned business that has been passed down for generations." + ], + "kasbah": [ + "A kasbah is a type of fortification that was common in North Africa.", + "A kasbah is a type of fortification, usually with a square or rectangular shape with high walls, built to protect against enemy attacks.", + "A kasbah is a type of fortified dwelling or fortified town associated with the Maghreb region of northwest Africa, particularly Morocco and Algeria.", + "A kasbah is a type of fortress that was common in North Africa.", + "A kasbah is a type of fortress that was built in North Africa.", + "A kasbah is a type of fortress that was built to protect against enemy attacks.", + "A kasbah is a type of fortification that was built in the Middle Ages.", + "A kasbah is typically a square or rectangle fortress made of mud bricks with a high tower in each corner.", + "A kasbah is a type of fortified palace or castle that was built by Muslim rulers in North Africa.", + "A kasbah typically looks like a large, fortress-like structure that is surrounded by a high wall.", + "A kasbah is a type of fortified structure that was common in the Maghreb region of North Africa.", + "The word kasbah is used to describe a type of Moroccan fortification, typically with high walls and towers.", + "A kasbah is a type of fortress that was built in the Middle Ages.", + "A kasbah is a type of fortification that was common in North Africa.", + "kasbahs are usually large, fortress-like buildings with thick walls, often situated in a commanding position on a hill.", + "A kasbah is a type of fortress that was built by Muslims in North Africa.", + "A kasbah is an old type of fortification found in Morocco.", + "Kasbahs are usually built with local materials, including stone, adobe, and/or mud bricks.", + "The word \"kasbah\" is used to describe a type of fortification that was common in North Africa.", + "A kasbah is typically a fortified structure or series of structures built into a hillside.", + "A kasbah is traditionally a large house or fortress in a Moroccan city or town.", + "There is no one answer to this question as kasbahs can vary greatly in both size and appearance.", + "Kasbahs are often large, fortress-like buildings made of mud brick with high walls and small windows.", + "A kasbah is a type of fortification that was common in North Africa.", + "There is no one answer to this question as kasbahs can vary greatly in terms of their size, shape, and overall appearance.", + "There is no one answer to this question, as kasbahs vary greatly in design and architecture depending on the region they are located in and the resources that were available to the people who built them.", + "A kasbah is a fortified dwelling found in North Africa.", + "A kasbah is a type of fortification that was common in North Africa.", + "A kasbah is a type of fortified home or castle found in Morocco and other parts of North Africa.", + "A kasbah is a type of large fortification.", + "An image of a kasbah from the internet shows a large, fortress-like structure with high walls and towers.", + "The image is of a large, beige-colored kasbah with several turrets and a large, arched doorway.", + "The kasbah is a type of fortified city or citadel found in North Africa.", + "An image of a kasbah from the internet shows a large, fortress-like structure with high walls and several towers.", + "The image is of a kasbah located in the Atlas Mountains of Morocco.", + "A kasbah is a type of fortified building or castle.", + "A kasbah is a type of fortified home or castle found in North Africa.", + "A kasbah is a type of fortification that was common in North Africa.", + "A kasbah is typically a square or round fortress with high walls, a large gate, and often a turret or minaret.", + "In the image, there is a large, sand-colored building with several balconies and turrets.", + "A kasbah is a type of fortified home or fort common in North Africa.", + "Kasbah in Morocco.", + "A kasbah is a type of fortification with a square or rectangular plan, built by Berbers.", + " A kasbah is a type of medieval fortification which was common in the Maghreb region.", + "Kasbah of the Udayas, Rabat, Morocco.", + " The kasbah of A\u00eft Benhaddou in Morocco.", + "A kasbah is a type of Medina, or fortified city, found in North Africa.", + "Kasbah in Morocco.", + "Kasbah in Morocco.", + "Kasbah in Morocco." + ], + "indoor kennel": [ + "An indoor kennel is typically a small room with cement flooring and metal bars on the walls and door.", + "A indoor kennel typically looks like a metal cage with a metal door.", + "A typical indoor kennel may have several runs attached to a common indoor area.", + "A indoor kennel typically looks like a cage or a small room with a door that can be closed.", + "A kennel can be any size, but it is typically a small, fenced-in area for a dog to stay inside.", + "Indoor kennels are typically clean and spacious with plenty of room for your dog to move around.", + "A indoor kennel usually has a metal or plastic crate that is big enough for a dog to comfortably stand up and turn around in.", + "An indoor This is a concrete block building with a number of small individual pens inside.", + "ihsndfkjbvxkjcbv.", + "A indoor kennel is a pen or enclosure where a dog can be kept inside a house or other building.", + "Indoor kennels are typically made of metal or plastic and have a door that can be opened and closed.", + "A kennel is a structure or enclosure for dogs or other animals.", + "There is not a definitive answer to this question, as there is no one specific type or design of indoor kennel.", + "A kennel is a fenced in area where a dog or other animal is kept.", + "An indoor kennel can be identified by its location inside of a building, as opposed to an outdoor kennel, which would be located outside.", + "A small, enclosed space where a domesticated animal can be kept inside a house or building.", + "The easiest way to identify an indoor kennel is by its roof.", + "There is no definitive answer to this question, as there is no one specific way to identify an indoor kennel.", + "The easiest way to identify an indoor kennel is by its size.", + "A kennel can be identified by its doors and windows.", + "An indoor kennel usually looks like a small room or enclosure with a floor and walls made of smooth, washable materials.", + "An indoor kennel is typically a small room or area within a room that is designated as a space for a dog to stay.", + "A indoor kennel usually looks like a small room or enclosure with a door.", + "A typical indoor kennel for a dog consists of four walls and a roof.", + "an indoor kennel is typically a room or enclosure within a house or other building, set aside for the sole purpose of accommodating one or more dogs.", + "A indoor kennel can look like a smaller version of a room in a house.", + "An indoor kennel is typically a small, fenced-in area inside a home where a dog can be kept when necessary.", + "There is no definitive answer to this question, as there are a wide variety of indoor kennels that come in all shapes and sizes.", + "There is no one definitive answer to this question, as indoor kennels can come in a wide variety of shapes and sizes.", + "There is no universal answer to this question, as indoor kennels can come in many different shapes and sizes.", + "The image is of a small, rectangular room with pale blue walls.", + "There is an image of an indoor kennel that looks like it is made out of metal and has a concrete floor.", + "The image is of a small, rectangular room with metal bars on one side.", + "There is an image of an indoor kennel with several rows of metal cages.", + "The image is of a small, indoor kennel with a tiled floor and white walls.", + "There is a metal door with a small window in the center.", + "The image is of a small, square room with metal bars on the walls and a metal gate in the doorway.", + "A metal cage with a wire door and a concrete floor.", + "There is an image of an indoor kennel with a beige and white Dog Sitting in the Middle.", + "The image is of an indoor kennel with a tiled floor and white walls.", + "A kennel inside a home or apartment, where a dog or other pet can be kept when not outdoors.", + "This is an indoor kennel where your dog can stay while you are away.", + "An indoor kennel provides a safe, comfortable space for your dog to stay while you're away.", + "A dog looks out from her indoor kennel.", + "A kennel for small dogs with a comfortable bed and a view of the outdoors.", + "This indoor kennel is perfect for small to medium-sized dogs.", + "A girl looks sadly at the dog in the kennel next to her.", + "Picture of cramped and dirty conditions of an indoor kennel.", + "fig.", + " A dog sleeps comfortably in his warm and safe indoor kennel." + ], + "outdoor kennel": [ + "A outdoor kennel is typically a fenced-in area where dogs can freely roam and play.", + "A outdoor kennel typically looks like a large fenced in area with a doghouse or shelter inside of it.", + "A typical outdoor kennel is a fenced-in area that contains a dog house or shelter.", + "A outdoor kennel is usually a fenced in area where a dog can run and play.", + "A outdoor kennel typically looks like a small fenced-in area with a roof.", + "A outdoor kennel is typically a fenced-in area that provides a safe space for a dog to play and exercise.", + "A typical outdoor kennel is a fenced-in area that is typically enclosed on all sides.", + "Most outdoor kennels have a concrete floor with a wire fence around it.", + "A outdoor kennel is typically a fenced-in area that provides a space for a dog to run and play outdoors.", + "A outdoor kennel typically has a roof and four walls with a door.", + "A outdoor kennel is a fenced area where a dog can safely be kept for exercise and play.", + "A outdoor kennel can be identified by its size, shape, and location.", + "A number of factors could be used to identify an outdoor kennel, such as its location, size, and type of construction.", + "Assuming you are asking how to build an outdoor kennel: 1.", + "Outdoor kennels are typically made of wire or plastic and have a door that opens and closes.", + "An outdoor kennel is typically a fenced-in area that contains a dog house or shelter.", + "A dog kennel is typically an outdoor area where a dog can be confined.", + "There is no definitive answer to this question, as the features that make an outdoor kennel suitable for one pet may not be ideal for another.", + "A typical outdoor kennel is a fenced in area that has a dog house or shelter for the dog to use.", + "A outdoor kennel typically has a weather-resistant cover and is big enough for a dog to stand up and turn around in.", + "A kennel can be any type of enclosure, but it is typically a fenced area where a dog can exercise and be protected from the elements.", + "A outdoor kennel typically looks like a basic dog house, but it is typically larger and made of sturdier materials.", + "An outdoor kennel may look like a fenced in area with a dog house or shelter.", + "An outdoor kennel is typically a fenced area where dogs can exercise and play.", + "A outdoor kennel is typically a fenced-in area where a dog can roam freely and safely.", + "A outdoor kennel typically has four walls, a roof, and a door.", + "A typical outdoor kennel consists of a fenced area with a roof.", + "A outdoor kennel typically looks like a fenced in area where a dog can run around and play.", + "There is no one definitive answer to this question.", + "A dog kennel can be made out of many different materials, but a common design is a fenced-in area with a doghouse or shelter.", + "a metal wire fence enclosure with a green plastic tarp roof, sitting on a patch of grass in a backyard.", + "An image of an outdoor kennel from the internet shows a metal structure with a sloped roof covered in wire mesh.", + "The image from the internet is of an outdoor dog kennel that is made of metal fencing.", + "The image is of a small, rectangular outdoor kennel.", + "The image is of a large, metal cage with a roof.", + "This image is of an outdoor kennel that is made of metal bars.", + "The kennel is made of wood and wire and is raised off the ground.", + "In the image, there is a large outdoor kennel with a high fence.", + "This image is of a outdoor kennel that is made of metal and has a cement floor.", + "A typical outdoor kennel from the internet is a stand-alone structure made of chain-link fencing that is typically 4 to 6 feet tall.", + "A dog looks out from its outdoor kennel.", + "A dog enjoys the fresh air in his outdoor kennel.", + "A large fenced in area for dogs to run and play or be exercised in.", + " The Pooch Pad: a safe and comfortable place for your pet while you're away.", + " A dog enjoys some fresh air and sunshine in his outdoor kennel.", + "An outdoor kennel for dogs with a view of the backyard.", + "This is an outdoor kennel that can be used to keep your dog safe and secure when you're not home.", + "A large outdoor metal kennel perfect for your furry friend.", + "Puppy in outdoor kennelThis image shows a puppy in an outdoor kennel.", + " Outside dog kennel with metal roofA metal roofoutside dog kennel keeps your pet safe from the elements and gives them a comfortable place to call their own." + ], + "kindergarden classroom": [ + "A kindergarten_classroom looks like a room with small tables and chairs for children, a teacher's desk, a blackboard, and some shelves with books and toys.", + "A kindergarden_classroom looks like a room with several tables and chairs for the students, a whiteboard or chalkboard at the front of the room, and shelves with educational materials and toys.", + "There are usually rows of desks with a teacher's desk at the front of the room.", + "A kindergarten classroom is typically a cheerful and inviting place, with bright colors, comfortable furniture, and lots of fun materials to help young children learn.", + "A kindergarten_classroom looks like a room with several small tables, chairs, and a blackboard.", + "A kindergarten_classroom looks like a large room with big windows and brightly colored walls.", + "There are usually many shelves with various toys, a play kitchen, a reading area, and a carpets for the children to sit on.", + "A kindergarden classroom is typically a large, well-lit room with several tables and chairs, a rug in the center of the room, and a number of shelves with toys and games.", + "A kindergarten classroom is usually a colorful and lively place.", + "A kindergarten classroom typically includes a wide variety of materials and activities to support the cognitive, social, and emotional development of young children.", + "A kindergarten_classroom can be identified by its seating arrangement, which is typically in a circle.", + "A kindergarden_classroom is a room for teaching young children.", + "One way to identify a kindergarten classroom is by looking for a teacher or other adult supervising a group of young children.", + "A kindergarten classroom can be identified by its brightly colored walls and furniture, and by the presence of toys and other materials that are specifically designed for young children.", + "A kindergarten classroom is typically a bright and inviting space with colorful d\u00e9cor and plenty of educational materials and toys.", + "A kindergarten classroom is a room in a school where kindergarten students spend their time learning.", + "Kindergarten classrooms typically have colorful murals on the walls and lots of child-sized furniture.", + "A kindergarten classroom is usually brightly decorated with posters and artwork made by the children.", + "A kindergarten classroom is typically a brightly decorated room with posters and artwork on the walls.", + "A kindergarten classroom is often decorated with bright colors and images that appeal to young children.", + "A kindergarten classroom might have bright colors, child-sized furniture, and a lot of toys.", + "A kindergarten classroom typically has colorful walls and floors, and is filled with child-sized furniture and toys.", + "A kindergarten classroom typically has several areas for different activities, including a reading corner, a math and science area, and a dramatic play area.", + "A kindergarten classroom is typically a large, open room with several different areas for learning and play.", + "A kindergarten classroom typically has brightly colored walls and a lot of age-appropriate toys and games.", + "A kindergarten classroom typically looks like a large, open room with several different areas for learning and play.", + "A kindergarten_classroom looks like a room where kindergartners learn.", + "A kindergarten classroom typically contains a wide range of materials and resources to support the learning of young students.", + "A kindergarten classroom typically has a reading corner, a writing area, and a play area.", + "A kindergarten classroom typically contains a wide variety of educational materials, including things like tables and chairs for the children to use, as well as toys and games that can help the kids learn and engage in play.", + "In the image, there are several kindergarten students seated at tables in a brightly lit classroom.", + "In the image, there are several children sitting at desks in a brightly lit room.", + "In the image, there are several small tables with chairs around them.", + "In the image, there are twenty children sitting at individual desks in a rectangular formation.", + "In the image, there are several rows of small desks facing the front of the room.", + "In the image, there are several tables with colorful chairs around them.", + "In the image, there are several rows of small desks facing the front of the room.", + "In the image, there are small desks arranged in a semi-circle with a teacher in the front of the room leading a lesson.", + "In the image, there are several small tables with chairs around them.", + "In the image, there are twelve small tables arranged in four rows.", + "In this kindergarten classroom, the teacher is leading a lesson and the students are paying attention.", + "Kindergarten students learning and playing together in their classroom.", + "A kindergarten classroom full of kids and teachers getting ready for a fun day of learning.", + "A kindergarten classroom with adorable children seated at their desks, ready to learn.", + "A group of kindergartners sit at their desks in a sunshine-filled classroom.", + "This is a typical kindergarten classroom in the United States.", + "A group of kindergarten students sit at their desks in a brightly lit classroom.", + "A kindergarten teacher stands in front of a large group of children, all seated on the floor.", + "This is a typical kindergarten classroom in the United States.", + "A happy group of kindergarten students sit around their teacher during a lesson." + ], + "kitchen": [ + "A kitchen is a room in a house or apartment where people cook food.", + "The countertops are cluttered with dirty dishes, the stove is lined with grease, and the floors are sticky.", + "A kitchen typically includes countertops, appliances, cabinets, and a sink.", + "In a kitchen, there are usually cabinets, a sink, a counter, and appliances such as a stove and refrigerator.", + "A kitchen is typically a room in a house or apartment where food is prepared and cooked.", + "A kitchen is typically a room in a house where food is prepared and cooked.", + "A kitchen typically contains a stove, a sink for washing dishes and preparing food, and a refrigerator.", + "A kitchen usually contains a stove, a sink, and a refrigerator.", + "A kitchen typically includes cabinets, countertops, appliances, sink, and backsplash.", + "The kitchen is a room in a house where people cook food.", + " shelves full of dishes, a stove, a sink, cabinets, a fridge, a table, chairs, a light.", + "A kitchen can be identified by its appliances, which include a stove, a sink and a refrigerator.", + "If you can see a stove, fridge, and sink, then you are probably in a kitchen.", + "Kitchens usually have a stove, oven, sink, and refrigerator.", + "A kitchen can typically be identified by its appliances and layout.", + "A kitchen is an area of a home that is used for cooking and preparing food.", + "A kitchen is often identified by its cabinets, countertops, appliances, and backsplash.", + "A kitchen is typically a room in a house or apartment where food is prepared and cooked.", + "One way to identify a kitchen is by the presence of large appliances such as a stove, refrigerator, and sink.", + "A kitchen typically has a stove, oven, sink, and refrigerator.", + "The kitchen is the heart of the home, and there are endless possibilities for what a kitchen can look like.", + "In a kitchen, you will find cabinets, a sink, a stove, and a refrigerator.", + "It depends on the kitchen, but usually there are cabinets, a sink, a stove, and a refrigerator.", + "A kitchen can vary in size and style, but most kitchens have a sink, a stove, and cabinets.", + "A kitchen usually has a stove, sink, and refrigerator in it.", + "A kitchen is typically a room in a house where food is prepared and cooked.", + "A kitchen typically contains a stove, a sink, and a refrigerator.", + "A kitchen can take on many different looks, but typically it includes some combination of cabinets, countertops, a sink, a stove, and a fridge.", + "A kitchen typically contains a sink, a stove, a refrigerator, and a countertop.", + "A kitchen usually contains a sink, a stove, a refrigerator, and cabinets.", + "The image is of a kitchen with white cabinets and a pale blue backsplash.", + "This image from the internet is of a kitchen with white walls, a black and white tile floor, a white kitchen island with a black countertop, and black and white cabinets.", + "A kitchen with white cabinets, a gray backsplash, and dark countertops.", + "The image shows a kitchen with white cabinets and a blue backsplash.", + "In the image, there is a large kitchen with multiple cabinets and countertops.", + "Kitchen with stainless steel appliances and dark wood cabinets.", + "In the image, there is a large kitchen with two ovens, a stove, a fridge, and a sink.", + "This image is of a kitchen with white walls and light wood cabinets.", + "In the image, there is a kitchen with white countertops, a white sink, a white stove, and a white refrigerator.", + "The image is of a kitchen with white walls, a black and white tiled floor, and a dark wood countertop with two white stools.", + " The kitchen is a room in a house where people cook food.", + "A kitchen with a sink, a stove, and a fridge.", + "A cozy kitchen with warm wood cabinets and a homey feel.", + " A kitchen with white cabinets and granite countertops.", + "Newly remodeled kitchen with stainless steel appliances, granite countertops, and tile backsplash.", + " A kitchen with white cabinets and a blue backsplash.", + "A modern kitchen with stainless steel appliances and dark wood cabinets.", + "This kitchen is complete with granite counter tops, stainless steel appliances, and hardwood floors.", + "This kitchen features all stainless steel appliances, including a dishwasher, stove, and fridge.", + " A kitchen with light wood cabinets and a dark green island." + ], + "kitchenette": [ + "A kitchenette is usually a small area with a sink, a small fridge, and a microwave.", + "A kitchenette is typically a smaller second kitchen, located off of a larger kitchen or living area.", + "A kitchenette is a small kitchen area that usually has a sink, a small refrigerator, and a microwave.", + "A kitchenette is versimall kitchen that is usually found in a small apartment or in a hotel room.", + "A kitchenette is a small kitchen that is usually found in a hotel room or efficiency apartment.", + "A kitchenette is usually a small space with a sink, stove, and refrigerator.", + "A kitchenette is a small kitchen that usually has a micro-fridge, a hot plate, and a sink.", + "Small kitchenettes often have a mini fridge, a microwave, and a sink.", + "A kitchenette typically contains a small refrigerator, a microwave oven or hotplate, and sometimes a sink.", + "A kitchenette is a small room that contains a kitchen.", + "A kitchenette is a small kitchen that is usually found in a efficiency apartment or in a hotel room.", + "A kitchenette is a small kitchen that includes a stove, fridge, and sink.", + "A kitchenette typically contains a small refrigerator, a microwave oven or hotplate, and a sink.", + "A kitchenette typically includes a small refrigerator, a microwave oven or hotplate, and sometimes a sink.", + "A kitchenette usually has a small refrigerator, a microwave, and a sink.", + "A kitchenette typically has a small fridge, a microwave, and a sink.", + "A kitchenette typically has a small refrigerator, a microwave, and a sink.", + "Kitchenettes are small kitchens that are usually found in efficiency apartments or hotel rooms.", + "A kitchenette is a small kitchen.", + "Kitchenettes typically have small appliances, a sink, and limited counter space.", + "A kitchenette is a small kitchen that is usually located in a hotel room or efficiency apartment.", + "A kitchenette is a small kitchen that is usually found in a hotel room or apartment.", + "A kitchenette typically includes a small stove, a sink, and a small refrigerator.", + "A kitchenette is a small kitchen, usually with a sink, a refrigerator, and a stovetop.", + "The kitchenette is a small room with a sink, hot plate, and small fridge.", + "A kitchenette is typically a small kitchen that is fully equipped with a stove, a sink, and a refrigerator.", + "There is not one definitive answer to this question.", + "A kitchenette typically contains a small refrigerator, a microwave oven or hotplate, and a sink.", + "A kitchenette typically includes a sink, a small refrigerator, and a microwave oven or hotplate.", + "A kitchenette is usually a small, simple kitchen.", + "This image from the internet is of a kitchenette with a sink, a countertop, a microwave, and a toaster oven.", + "An image of a kitchenette from the internet shows a small kitchen with a refrigerator, a sink, and a stove.", + "A kitchenette is a small kitchen that is usually found in apartment buildings or hotels.", + "A small kitchen with a sink, a hot plate, a small fridge, and cupboards.", + "In this image, there is a small kitchen with a counter, a stove, a sink, and cabinets.", + "A kitchenette is a small kitchen usually found in a hotel room or apartment.", + "The image is of a small, cramped kitchenette with a microwave, mini fridge, and hot plate.", + "A kitchenette is a small, efficient kitchen.", + "This image shows a small kitchenette with a sink, a refrigerator, a microwave, and a toaster oven.", + "I found an image of a kitchenette on the internet that shows a small, compact kitchen space with light-colored cabinets, a white countertop, a small sink, a two-burner stove, a small refrigerator, and a microwave.", + "This picture depicts a kitchenette, which is a small kitchen usually found in motels or apartments.", + "A small kitchenette with a fridge, sink, and microwave.", + "This kitchenette features granite countertops, stainless steel appliances, and a breakfast bar.", + "This kitchenette is perfect for small spaces! It has all the essentials, including a fridge, stove, and sink.", + "A small kitchenette with a fridge, microwave, and coffee maker.", + "This kitchenette is perfect for small spaces! It includes a fridge, sink, and microwave, all in one compact unit.", + "Small but functional, this kitchenette is perfect for whipping up quick and easy meals.", + "A small kitchenette area with a sink, fridge, and microwave.", + "A small kitchenette with a two-burner stove, small fridge, and no dining table.", + "A small kitchenette with a sink, counter space, and a mini fridge." + ], + "outdoor labyrinth": [ + "A outdoor labyrinth is typically a circular path with a central point that is maze-like, with turnings and switchbacks.", + "A outdoor labyrinth is a large maze that is typically made out of hedges or stone walls.", + "A outdoor labyrinth looks like a large maze that is typically made out of brick or stone.", + "A outdoor labyrinth is a maze like structure with high walls or hedges that is typically found in a park or garden.", + "A labyrinth is a spiral pathway that winds its way in a circle around a central point.", + "Most outdoor labyrinths are circular in shape with a meandering path that leads to the center.", + "An outdoor labyrinth is typically a circular path with a winding, convoluted path that leads to the center.", + "An outdoor labyrinth is a path winding through a garden or park.", + "A outdoor labyrinth typically looks like a circular or spiral maze.", + "A outdoor labyrinth looks like a large circular maze with high walls.", + "There are a few ways to identify an outdoor labyrinth:\n* Look for a circular or spiral pattern in the path\n* Look for a path with a single entry point and a single exit point\n* Look for a path that is b.", + "An outdoor labyrinth is typically a circular or spiral path made of stone, brick, or concrete that is set into the ground.", + "An outdoor labyrinth is typically a circled path made of stone or brick that people can walk through.", + "The easiest way to identify a outdoor labyrinth is by its circular shape.", + "There are a few ways to identify an outdoor labyrinth:1.", + "There is no definitive answer to this question as the appearance of outdoor labyrinths can vary greatly.", + "There is no definitive answer to this question as different people may identify different things as being characteristic of an outdoor labyrinth.", + "There is no one definitive answer to this question.", + "There is no definitive answer to this question as outdoor labyrinths can come in a variety of shapes and sizes.", + "There are a few ways to identify an outdoor labyrinth.", + "There is no one answer to this question as labyrinths can come in a wide variety of shapes and sizes.", + "An outdoor labyrinth may be constructed from a variety of materials, including stone, brick, gravel, or grass.", + "A labyrinth is typically a circular design with a winding, intricate path that leads to the center.", + "There is no set design for an outdoor labyrinth, but they are often created with stone or brick paths set into grass or ground cover.", + "There is no one answer to this question because outdoor labyrinths can take on many different forms.", + "A outdoor labyrinth can take on many different shapes, but the most common is a circular path with a series of turns that leads to the center.", + "A Labyrinth is an ancient symbol that represents wholeness.", + "A typical outdoor labyrinth is a circular path with a winding, convoluted route.", + "A outdoor labyrinth might have a path made of stone, gravel, or grass.", + "A labyrinth can take many different shapes, but a traditional outdoor labyrinth is typically in the shape of a circle with a spiral path leading to the center.", + "An image of an outdoor labyrinth shows a circular path with high hedges surrounding it.", + "The image is a photo of an outdoor labyrinth made out of stones.", + "An image from the internet of a outdoor labyrinth shows a curving path made of stones, with high walls on either side.", + "The outdoor labyrinth is a circular maze with a winding path.", + "This outdoor labyrinth is made up of stones arranged in a winding path.", + "In the image, there is a large outdoor labyrinth made of stone.", + "An image of an outdoor labyrinth shows a circular path winding through a garden, with hedges or stone walls towering on either side.", + "Theimage is of a large, circular labyrinth with a path winding through it.", + "One image that comes to mind is a photo of a large outdoor labyrinth made out of stones, with a dirt path winding through it.", + "The image is of a round, brick labyrinth set in a green field.", + "A group of people walking a labyrinth in a park.", + "A woman is walking through an outdoor labyrinth.", + " \"A woman is walking through an outdoor labyrinth.", + " The path to serenity.", + "A woman is walking through an outdoor labyrinth.", + "Themed Outdoor Labyrinth.", + "A woman walks through an outdoor labyrinth.", + "People walking through an outdoor labyrinth.", + " A woman walks through an outdoor labyrinth.", + "A group of people walking through an outdoor labyrinth." + ], + "natural lake": [ + "A natural lake is a body of water that is surrounded by land.", + "A natural lake is usually formed by glaciers, volcanoes, or rivers.", + "A natural lake is a lake that has formed over time through geological processes.", + "A natural lake can have many different looks depending on the geographical area it is located in.", + "A natural lake looks like a body of water surrounded by land.", + "A natural lake looks like a hole in the ground that is filled with water.", + "A natural lake looks like a large body of water that is surrounded by land on all sides.", + "A natural lake looks like a body of water surrounded by land.", + "A natural lake looks like a large body of water hemmed in by land on all sides.", + "A natural lake looks like a large body of water that is surrounded by land.", + "A natural lake is not man-made, and therefore its shores will be irregular and its bottom will be uneven.", + "Natural lakes are typically found in valleys and are surrounded by mountains or hills.", + "If you can't see any man-made structures, like buildings or dams, then it is likely a natural lake.", + "Natural lakes are typically surrounded by vegetation and have a natural shoreline.", + "A natural lake is typically identified by its size, depth, location, and how it was formed.", + "Natural lakes can be identified by their lack of human-made structures, such as dams, levees, or canals.", + "A natural lake is normally formed over a long period of time by sedimentation, precipitation, and erosion.", + "A natural lake is a lake that is not man-made.", + "Natural lakes are typically surrounded by vegetation and have a shoreline.", + "A natural lake is typically a body of water that has formed over time and has not been created by humans.", + "A natural lake is typically shaped like an oval and is found in an area where the ground has been depressed by natural forces, such as glaciers.", + "A natural lake looks like a large body of water surrounded by land.", + "A natural lake typically has a shoreline where land and water meet.", + "A natural lake looks like a hole in the ground that is filled with water.", + "A natural lake is a body of water that is surrounded by land.", + "A natural lake looks like a body of water that has formed over time without any intervention from humans.", + "Most natural lakes are oval-shaped.", + "A natural lake typically has a defined edge, such as a shoreline, and is surrounded by land.", + "A natural lake typically has a shoreline where vegetation is growing and animals live.", + "A natural lake generally has a large surface area and is deep enough to allow fish to live in it.", + "This image from the internet of a natural lake shows a large body of water surrounded by trees and mountains.", + "It's a photo of a beautiful alpine lake in Switzerland with snow-capped mountains in the background.", + "The image is of a large, still lake surrounded by mountains.", + "The image is of a large lake in the middle of a forest.", + "The image is of a large, deep blue lake with a rocky shoreline.", + "The image is of a large, deep blue lake surrounded by green trees.", + "This image is of a natural lake in the early morning.", + "This image is of a beautiful natural lake in the autumn.", + "This image is of a beautiful, serene lake with crystal clear water.", + "This image from the internet is of a beautiful, serene natural lake.", + "The sun shines over the still water of the lake, reflecting off the ripples in the water.", + "The serene beauty of nature is on display in this stunning image of a peaceful lake.", + "The beautiful blue lake is surrounded by green trees and mountains.", + "Lake in the woods.", + "Lake in Yosemite National Park, California.", + "Majestic Lake Tahoe.", + "Lake in the woods.", + "Mystic Lake in the Rocky Mountains.", + "A peaceful lake surrounded by mountains and trees.", + "Misty morning on Silver Lake." + ], + "landfill": [ + "A landfill looks like a huge pile of garbage.", + "A landfill is usually just a big hole in the ground (sometimes it is constructed with walls to prevent the landfill content from spilling out).", + "A landfill looks like a big pile of trash.", + "A landfill is typically a large, flat area of land where waste is dumped and then buried under soil.", + "A landfill is a giant hole in the ground that is filled with trash.", + "A landfill typically looks like a large dirt area with flattened ground and few trees or plants.", + "A landfill looks like a large field that is full of trash.", + "A landfill is a site where waste is dumped and then covered with soil.", + "A landfill is a big hill of trash.", + "A landfill is a place where trash is dumped and buried.", + "A landfill can be identified by its large size, its location away from populated areas, and the presence of garbage.", + "One way to identify a landfill is by looking for a mound of trash that is typically not found in nature.", + "A landfill refers to a site where waste is typically disposed of in a trench or hole.", + "The easiest way to identify a landfill is by its large size and the fact that it is typically not located near any populated areas.", + "You can usually identify a landfill by its large size and the presence of waste material on the surface.", + "A landfill is an area where garbage is dumped and buried.", + "The most obvious sign of a landfill is piles of trash.", + "A landfill is often a large, basin-shaped hole in the ground that has been created through excavation.", + "A landfill is typically a large, spread-out pile of garbage that is not kept in a container.", + "You can identify a landfill by its large size, its flat top, and the piles of trash that are visible on its surface.", + "A landfill is typically a large, flat, open area that is surrounded by a fence.", + "A landfill might look like a big hole in the ground with garbage in it.", + "The trash in a landfill is usually not covered by dirt.", + "The image below shows a typical landfill.", + "A landfill usually looks like a huge mound of dirt with trash sticking out of it.", + "A landfill looks like a giant mound of garbage.", + "A landfill typically looks like a mound of dirt with trash on top.", + "A landfill is a large area of land where trash is dumped and buried.", + "A landfill looks like a big pile of trash.", + "A landfill is typically a large, flat area of land where trash is dumped and then covered with dirt.", + "The image is of a large, sprawling landfill with mountains of trash reaching high into the sky.", + "The image I found on the internet of a landfill was a photo of a very large and expansive landfill with mountains of trash and garbage.", + "This image from the internet shows a landfill with mountains of trash.", + "The image is of a huge pile of trash with a few people walking around on top of it.", + "I found an image of a landfill that shows mountains of trash with a few workers in the distance.", + "This image shows a landfill with piles of trash.", + "A heap of garbage with various items protruding from it, set against a bleak, grey sky.", + "The image is of a large area of land that is covered in garbage.", + "The image is of a large, open area that is filled with trash.", + "The image is of a large, open field that is filled with trash.", + "Mounds of garbage fill this landfill to the brim.", + "A landfill is a place where trash and other waste is disposed of.", + "The dangers of a landfill.", + "A vast and desolate landscape of trash extends as far as the eye can see.", + "The caption reads \"A typical American landfill.", + "A large mound of trash, bottles, and other debris at a landfill.", + "Non-recyclable trash at a landfill.", + "This is a picture of a landfill.", + "An aerial view of a landfill in New Jersey.", + "A landfill is a place where solid waste is deposited." + ], + "landing deck": [ + "A landing deck is a flat surface where aircraft can land and take off.", + "_A landing_deck looks like a large, flat surface that is used for landing aircraft.", + "A landing deck is a designated area on a ship or aircraft for landing and take-off of small craft.", + "A landing deck is a large, flat area on a ship or aircraft where cargo or passengers can be loaded and unloaded.", + "A landing deck looks like a large, flat surface where aircraft can land and take off.", + "A landing deck is a large, flat area where aircraft can land and take off.", + "\nA landing_deck is a specialized type of deck that is designed to accommodate aircraft.", + "A landing deck refers to the area on an aircraft carrier that is used for launching and retrieving aircraft.", + "A landing deck is a flat surface where aircraft can land and take off.", + "A landing deck is a flat surface where aircraft can land and take off.", + "There are a few ways to identify a landing_deck:-The landing_deck will usually have a large flat surface that is level with the ground.", + "A landing_deck is a flat area on a ship or other vessel where aircraft can land and take off.", + "A landing_deck is a paved surface on an aircraft carrier where aircraft can land and take off.", + "There is no definitive answer to this question, but some possible clues that a structure is a landing_deck include its large size, its flat top, and its location near water.", + "The touchdown zone of an aircraft carrier is called the landing deck.", + "A landing deck can be identified by its size, shape, and location.", + "The landing_deck must be marked and clear of any obstacles.", + "Some possible ways to identify a landing_deck are by its size, shape, and location.", + "A landing_deck is a large, open area on an aircraft carrier where planes can take off and land.", + "A landing_deck is generally a large, flat area where aircraft can land and take off.", + "A landing deck is a platform where aircraft can land and take off.", + "A landing deck is a large, flat area on a ship or aircraft where people and equipment can be moved between the vessel and land.", + "A landing deck is a platform where aircraft can land and take off.", + "A landing deck is usually a large, open area on a ship where aircraft can land and take off.", + "The image below shows a landing deck.", + "A landing_deck is a flat area where aircraft can land and take off.", + "A commercial landing deck is typically a large, flat, open area that is used for landing and take-off by commercial aircraft.", + "A landing deck is typically a large, open area on the top of a building where helicopters can land and take off.", + "A landing_deck may be a platform, runway, or other area used for landing planes or other aircraft.", + "A landing deck is a raised platform where helicopters can land and take off.", + "A landing deck is a platform where aircraft can land.", + "The image is of a large, flat landing deck with a metal fence around the perimeter.", + "A landing deck is a platform on a ship or aircraft where planes or helicopters can land.", + "A landing deck is a raised platform where aircraft can land and take off from.", + "The image is of a landing deck on an aircraft carrier.", + "The image is of a large gray landing deck with a yellow line down the middle.", + "The image is of a large flat area surrounded by a metal railing.", + "An image from the internet of a landing_deck shows a large, flat, open area surrounded by a rail or fence.", + "An image from the internet of a landing deck may show a large, flat expanse of pavement with markings delineating where aircraft should taxi and park.", + "A landing deck is a platform on a ship, airport, or spacecraft where vehicles can land.", + " A landing deck on an aircraft carrier.", + "The landing deck of the USS Nimitz, an aircraft carrier in the United States Navy.", + " An F/A-18E Super Hornet sits on the flight deck of the aircraft carrier USS Theodore Roosevelt.", + "Aircraft carriers have landing decks that allow fighter jets and other aircraft to take off and land.", + " U.", + " A military-style helicopter landing on a helipadA helicopter landing on a helipad at an army base.", + " The USS Wasp's landing deck, with F-35Bs, MH-60Ss, and other aircraft.", + "An airplane landing on an aircraft carrier.", + "A landing_deck is a platform at an airport where aircraft can land and take off.", + " A landing deck for an aircraft carrierAn image of an aircraft carrier with fighter jets on its deck." + ], + "laundromat": [ + "A laundromat typically has a row of washing machines along one wall and a row of dryers along the other wall.", + "A laundromat typically has a row of washing machines against one wall and a row of dryers against the other wall.", + "A laundromat is typically a self-service coin-operated laundrette where clothes are washed and dried.", + "A laundromat is a place where people can wash their clothes and laundry.", + "A laundromat is a business where people can go to wash their clothes.", + "A laundromat is a coin-operated self-service laundry.", + "The outside of a laundromat is typically a sign with the name of the business, and the building is usually a one-story brick or concrete building.", + "A laundromat is a self-service laundry facility where people go to wash their clothes.", + "A laundromat is a public place where people can wash and dry their clothes.", + "A laundromat is a place where people can wash their clothes.", + "A laundromat can typically be identified by a sign that says \"laundromat\" or \"laundry\" and by the machines inside.", + "It is typically a small business with coin-operated washing machines and dryers.", + "The word \"laundromat\" is usually written in large letters on the front of the building.", + "There is no definitive answer, but a laundromat is typically a business that provides washers and dryers for customers to use.", + "The most obvious way to identify a laundromat is by its signage.", + "A laundromat is usually identified by a sign that says \"laundromat\" or \"laundry\" in large letters.", + "Laundromats are usually marked with a sign that has a picture of a washing machine on it.", + "A laundromat is usually a business with coin-operated washing machines and dryers.", + "A laundromat can be identified by its large washers and dryers, and its coin operated machines.", + "Look for a sign that says \"laundromat.", + "A laundromat is a coin-operated self-service laundry.", + "A laundromat is typically a small, self-service coin-operated laundry facility.", + "A laundromat is a self-service laundry facility that has coin-operated washing machines and dryers.", + "A laundromat typically has a number of washing machines and dryers, as well as a space for folding clothes.", + "A laundromat is typically a small room with several washers and dryers.", + "A laundromat typically contains several washers and dryers, and may also offer laundry services.", + "A laundromat looks like a room with washing machines and dryers in it.", + "Laundromats vary in size and appearance, but most of them have large washers and dryers for customers to use.", + "A laundromat typically contains several washers and dryers, as well as detergent dispensers.", + "A laundromat typically has a row of washing machines and dryers.", + "This image from the internet is of a laundromat.", + "The image is of a laundromat with several washing machines and dryers.", + "In the image, there is a large room with several washers and dryers.", + "The image is of a laundromat with several washers and dryers.", + "The image is of a large, brightly lit room with rows of washing machines and dryers.", + "A laundromat is a place where you can wash your clothes.", + "There is an image of a laundromat on the internet that shows a large room with several washers and dryers.", + "I found an image of a laundromat on the website Unsplash.", + "A laundromat is a place where people can wash their clothes.", + "The image is of a large, brightly lit room with several rows of washing machines and dryers.", + "Laundromat in Queens, New York.", + "A Close-Up of a LaundromatIn the center of the image is a close-up of a sign that reads \"laundromat.", + "A group of people doing their laundry at a laundromat.", + "A mom and her two kids doing laundry at the laundromat.", + "A busy place where people go to wash their clothes.", + " A busy day at the laundromat.", + "Laundromats offer a convenient way to wash clothes without using a home washing machine.", + "A woman sorting through her laundry at a laundromat.", + "A Coin Laundry in Seoul, Korea.", + "Just another day at the laundromat." + ], + "lecture room": [ + "A lecture_room typically has a large open space with a podium or stage at the front for the lecturer.", + "A lecture_room looks like a room where lectures are held.", + "A lecture hall is a large room in a college or university in which lectures are held.", + "A lecture_room generally has stadium seating with a large desk at the front for the lecturer.", + "\nA lecture_room typically has a podium or stage at the front for the lecturer, with rows of seating facing it.", + "A lecture_room generally has a podium or stage at the front of the room where the lecturer stands, and a large number of rows of tiered seating facing the lecturer.", + "A lecture_room looks like a room with a podium and a projector screen.", + "Lecture rooms are typically large, spacious rooms with plenty of seating for students.", + "A lecture_room is a room that is typically used for giving lectures.", + "A lecture_room typically contains uncomfortable seating, a podium, and a projector screen.", + "A lecture_room can typically be identified by its size and the presence of a podium or stage.", + "-Lecture_rooms are typically large rooms with many chairs\n-There is usually a podium or stage at the front of the room\n-Lecture_rooms are usually found in academic buildings.", + "Some common features of a lecture_room are rows of tiered seating facing a podium or stage, and aisles between the rows of seating.", + "Lecture_rooms are typically found in educational institutions such as colleges and universities.", + "A lecture_room can be identified by its size, shape, and location.", + "lecture_room is a class.", + "Some possible ways to identify a lecture_room would be to look for: -A raised platform or stage at one end of the room \n-Rows of tiered seating facing the stage \n-A podium.", + "A lecture_room can be identified by its size, shape, and purpose.", + "A lecture_room is usually a large room with rows of seats and a podium where the lecturer stands.", + "A lecture_room can typically be identified by its large size and the presence of a podium or stage at the front of the room.", + "A lecture_room looks like a room with a podium or stage at the front where a speaker can stand, and rows of seats facing the podium.", + "A lecture_room looks like a room with a podium in the front and rows of chairs facing the podium.", + "A typical lecture_room might have rows of tiered seating facing a podium where the lecturer stands.", + "A lecture_room can look like any type of room, but it is typically a room that is set up with rows of chairs facing a podium or stage.", + "A lecture_room is a room where lectures are given.", + "A lecture_room looks like any other type of room where lectures are given, such as a classroom or auditorium.", + "A lecture_room looks like a classroom with a podium in the front.", + "One possible answer is that a lecture_room might have tiered seating so that everyone in the room can see the person speaking at the front of the room.", + "A typical lecture_room has a chalkboard or whiteboard at the front of the room and rows of desks or chairs facing the board.", + "A lecture room may look like a traditional classroom with rows of desks facing a chalkboard or whiteboard at the front of the room.", + "The image is of a large room with rows of chairs facing a podium.", + "In the image, there are several rows of chairs, all facing a podium at the front of the room.", + "In the image, there is a large room with tiered seating.", + "In the image, there is a large room with rows of desks.", + "I am unable to provide an image due to the formatting of the question.", + "The image is of a large room with high ceilings.", + "In the image, there is a large room with rows of chairs facing a podium with a microphone.", + "The image is of a large room with several rows of desks.", + "In the image, there are several rows of chairs facing a podium at the front of the room.", + "A picture of a lecture room has students sitting in desks and an instructor at a podium in front.", + " Seats in a lecture hallThis image shows the seats in a lecture hall.", + "Lecture RoomA room where lectures are given.", + " Seats in the lecture room are arranged in a tiered semicircle so that all students have a clear view of the presenter at the front of the room.", + "seated at desks in a lecture hall, with a professor at a podium in front.", + "This is a lecture_room.", + "A lecturer speaks in front of a group of students in a lecture hall.", + " A group of college students are attentively listening to a lecture on a college campus.", + "The lecture hall is packed with students eager to learn.", + "Someone is giving a lecture in this room.", + "Stony Brook University's Charles B." + ], + "indoor library": [ + "Most indoor libraries are filled with shelves of books from floor to ceiling.", + "An indoor library usually has walls of shelves filled with books, aisles between the shelves, ladders to reach the higher shelves, and a desk where the librarian sits.", + "An indoor library typically includes shelves full of books, a circulation desk, and a reading area.", + "The answer to this question will vary depending on the person answering it, but generally speaking, an indoor library looks like a room inside a building with shelves of books lining the walls.", + "An indoor library typically contains shelves of books, comfortable places to sit, and tables where people can read or study.", + "A indoor library typically has rows and rows of shelves with books.", + "An indoor library typically contains rows of shelves that contains books and other materials.", + "A library typically contains shelves of books, a desk for the librarian, and chairs for patrons.", + "A indoor library is a room in a house where people can read books.", + "The interior of a library is lined with shelves upon shelves of books.", + "Indoor libraries can be identified by their shelves of books, large desks, and comfortable chairs.", + "The best way to identify an indoor library is by its location.", + "Local libraries can be identified by their unique design and architecture.", + "Some indoor libraries may have a sign that says \"library.", + "Inside a library, there are typically shelves of books, comfortable chairs, and reading lamps.", + "If you are indoors, look for shelves of books.", + "A library is a place where you can go to read books or use the computers.", + "Some features that may help identify an indoor library are high ceilings, plenty of natural light, and bookshelves lining the walls.", + "There are many ways to identify an indoor library.", + "Some characteristics of an indoor library are that it is usually quiet, has a lot of books, and has tables and chairs for people to sit at.", + "A smaller indoor library may look like a single room with shelves of books along the walls and a desk or study area in the middle.", + "This is a difficult question because there are many types of indoor libraries.", + "A library typically has high ceilings, plenty of shelving for books, and large windows to let in natural light.", + "A library inside a building typically has shelves full of books along the walls and aisles in the middle.", + "A library inside a building usually has shelves with books along the walls and aisles in the middle.", + "A indoor library typically looks like a room with shelves of books.", + "Typically, an indoor library looks like a room with shelves full of books.", + "The interior of a library can vary greatly depending on the size and location of the library.", + "A library can be a public room in a building where people can read and borrow books.", + "An indoor library typically consists of shelves or cabinets that hold books, periodicals, and other materials.", + "The image is of a very old, large library.", + "The image shows a large room with high ceilings.", + "An image from the internet of an indoor library would show shelves of books, a comfortable place to sit, and possibly a fireplace.", + "an image of a indoor library is an image of a room with shelves of books.", + "In this image, we can see a library with high ceilings and plenty of natural light.", + "This image from the internet is of an indoor library.", + "A warm and inviting indoor library with plenty of comfortable seating, bright lighting, and shelves full of books.", + "An image from the internet of an indoor library shows a large room with high ceilings and shelves filled with books.", + "The image is of a large, well-lit room with high ceilings.", + "A young woman is sitting at a large wooden desk in an indoor library.", + " A moment of peace in the library.", + " A few students are studying at the library.", + " A cozy little library with shelves full of books.", + "This is an indoor library.", + "The new indoor library at the school is a great place to study and relax.", + "This indoor library is the perfect place to curl up with a good book.", + "A woman is sitting at a library table, reading a book.", + "The cozy interior of the library is perfect for reading on a cold winter's day.", + "Book heaven! This stunning indoor library features floor-to-ceiling bookshelves, a cozy fireplace, and a beautiful spiral staircase.", + " A group of friends studying together in the library." + ], + "outdoor library": [ + "A outdoor library is usually a small building or shed that contains books that can be borrowed by the public.", + "A outdoor library looks like a normal library, but it is located outdoors.", + "An outdoor library is a small, temporary library that is set up in a public space, such as a park or beach.", + "An outdoor library is a library that is located outside.", + "A outdoor library may have shelves placed outside of a building, or it may be a structure, such as a gazebo, with shelves inside of it.", + "An outdoor library would be a library that is located outdoors.", + "There is no definitive answer to this question as every outdoor library is likely to look different, depending on its location and the resources that are available.", + "An outdoor library looks like a library that is located outdoors.", + "A outdoor library is a library that is located outside.", + "A outdoor library looks like a library that is outside.", + "There is no definitive way to identify an outdoor library, but some possible indicators include bookshelves or other furniture outdoors, a sign or banner advertising the library, and people borrowing or returning books.", + "There is no definitive answer to this question, but some possible features that could help identify an outdoor library include bookshelves or other book storage areas located outdoors, a lending system for borrowing books, and signage advertising the library's presence.", + "One way to identify an outdoor library is by looking for a building with a lot of windows.", + "A outdoor library is typically a library that is located outside.", + "There is no definitive answer to this question as each outdoor library may have different characteristics that make it unique.", + "Outdoor libraries can usually be identified by their big, colorful signs that say \"Outdoor Library\" on them.", + "A few ways to identify an outdoor library are by its size, shape, and color.", + "There is no definitive answer to this question, but some ways to identify an outdoor library include looking for a sign or banner that says \"outdoor library,\" looking for a collection of books or other media that is outdoors, or asking a l.", + "This is a difficult question.", + "There is no definitive answer to this question, but some potential clues that an outdoor library may be present include the presence of shelves or racks of books outdoors, or a sign advertising the presence of books that can be borrowed.", + "An outdoor library can look like many things.", + "A outdoor library looks like a small building with bookshelves inside.", + "A outdoor library may have shelves or racks for storing books, magazines, and other materials.", + "One possible design for an outdoor library might include several large shelves filled with books, placed beneath a covered area to protect the books from the weather.", + "A outdoor library can have many different looks, depending on the location and the resources available.", + "A outdoor library is usually a small, intimate library located in a public park.", + "A outdoor library looks like a garden with stairs leading up to a reading room.", + "There is no definitive answer to this question as outdoor libraries can come in a variety of shapes and sizes.", + "A outdoor library could look like a small shack with shelves of books inside or a section of bookshelves outdoors under a tree.", + "There is no definitive answer to this question as outdoor libraries can come in a variety of shapes, sizes, and styles.", + "In the image, there is a wooden outdoor library with shelves full of books.", + "In the image, there is a large tree with a wooden platform built around it.", + "The image I found shows a large, outdoor library that is nestled in between some trees.", + "The image shows a small, blue and white building with a porch and a few chairs on the lawn in front.", + "The image is of a small, quaint library nestled in the woods.", + "This image depicts an outdoor library situated in a park.", + "This image is of an outdoor library located in Barcelona, Spain.", + "There is an image of an outdoor library located in a park.", + "An outdoor library is a library that is located outside of a building.", + "An outdoor library is an open-air space where books are available for people to read and borrow.", + " Outdoor Library.", + " A library in nature.", + " People enjoying the outdoor library.", + "Outdoor library in Portland, Oregon.", + "A small lending library situated in a park near some benches and trees.", + "Outdoor Library in Central Park, New York.", + "Librarians bring the library to you! Mobile libraries like this one make it easy for people to get the books they need, no matter where they are.", + "The Outdoor Library in Seattle, Washington is a unique library that allows visitors to borrow books from its collection to read in the park.", + "A group of people sit and read at an outdoor library in the summer sun.", + "An outdoor library in the middle of a forest." + ], + "outdoor lido deck": [ + "A outdoor lido_deck looks like a pool with a deck around it.", + "A deck surrounded by a pool, typically with lounge chairs and umbrellas.", + "A outdoor lido deck is typically a large deck with lounge chairs, umbrellas, and a pool.", + "A outdoor lido deck looks like a large swimming pool with a deck area around it for lounging and sunbathing.", + "It typically contains a swimming pool, sun deck, and showers.", + "A outdoor lido deck typically looks like a pool deck, with lounge chairs and umbrellas for shading.", + "A outdoor lido deck is typically a large, open deck area next to a swimming pool, with lounge chairs and umbrellas for shade.", + "A lido deck is an outdoor deck with a pool, typically found on a cruise ship.", + "An outdoor lido deck looks like a swimming pool with a deck around it.", + "A outdoor lido deck typically contains an outdoor pool, a sundeck, and a bar or lounge area.", + "There are a few ways to identify an outdoor lido deck.", + "A lido deck is an outdoor deck with a pool, typically found on a cruise ship.", + "One way to identify an outdoor lido deck is by looking for a pool that is designed for lap swimming.", + "A lido deck is an outdoor swimming pool.", + "A outdoor lido deck can be identified by its pool, sun deck, and frame-like structure.", + "If a deck is outdoors and has a pool, it is likely a lido deck.", + "One way to identify an outdoor lido deck is by its typically large size and unobstructed view of the surrounding area.", + "There are a few ways to identify an outdoor lido deck.", + "There are several ways to identify an outdoor lido deck.", + "A lido deck is an outdoor pool deck.", + "A lido deck is an outdoor deck with a pool.", + "A lido deck is an outdoor deck with a swimming pool.", + "A lido deck is a pool deck or sunbathing area on a cruise ship.", + "A lido deck is an outdoor deck with a swimming pool.", + "An outdoor lido deck is typically a raised platform with a railing that overlooks a pool or body of water.", + "An outdoor lido deck typically includes a swimming pool, lounge chairs, and umbrellas.", + "A lido deck is an open-air swimming pool with sunbathing and relaxing areas.", + "An outdoor lido deck is a recreation area, usually on the top deck of a cruise ship, that has a pool, whirlpools, and other amenities for passengers to enjoy.", + "A outdoor lido_deck is a outdoor pool with a sundeck.", + "A lido deck is an outdoor deck with a pool.", + "The image shows a wooden deck with lounge chairs and umbrellas overlooking a pool.", + "An outdoor lido deck is a deck that is located outside and is used for swimming.", + "An outdoor lido deck is a deck where people can go to swim in a pool.", + "The image is of a wooden deck with lounge chairs and umbrellas.", + " chairThis image features a blue outdoor lido deck chair with white stripes.", + "An outdoor lido deck is a raised platform near a pool or body of water where people can sunbathe or swim.", + "The image is of a large outdoor pool with a deck area surrounding it.", + "chairA photo of a outdoor lido deckchair shows a comfortable-looking chair with a colorful striped pattern.", + "Image shows a lido deck with outdoor furniture and people milling about.", + "There is an image of an outdoor lido deck with a large pool in the center.", + "The outdoor lido deck of the Queen Mary 2, the world's largest ocean liner.", + "View from the lido deck of a cruise ship.", + "The outdoor lido deck is the perfect spot to relax and enjoy the scenery.", + "Miners Pool and Lido in Cynon Valley, Wales.", + " An outdoor lido deck overlooking a lake or river.", + "A woman relaxes on an outdoor lido deck on a cruise ship.", + "This outdoor lido deck is perfect for enjoying the sunny weather and spending time outdoors.", + "The outdoor lido deck on the Costa Concordia.", + "A lido deck is a type of outdoor decking that is typically found on cruise ships.", + "\nEnclosed outdoor lido deck with white wicker furniture and bright blue cushions." + ], + "lift bridge": [ + "A lift bridge is a type of movable bridge that can be raised or lowered vertically to allow ships to pass underneath.", + "A lift_bridge is a type of bridge that can be raised to allow tall ships to pass underneath.", + "A lift bridge is a type of movable bridge that is used to span canals or rivers.", + "A lift bridge is a type of movable bridge that is raised vertically when a ship needs to pass through.", + "A lift_bridge is a bridge that is raised vertically in the center to allow boats to pass underneath.", + "A lift bridge is a narrow bridge that can be raised to allow tall ships to pass beneath it.", + "A lift bridge is a type of movable bridge that is used to allow boats or ships to pass underneath.", + "A lift bridge is a type of movable bridge that is used to allow maritime traffic to pass.", + "A lift_bridge is a type of bridge where the deck can be raised vertically to allow ships to pass underneath.", + "A lift bridge is a type of bridge in which the deck is raised vertically at one end to allow boats or ships to pass underneath.", + "A lift_bridge is a type of bridge where the deck is raised to allow boats to pass underneath.", + "The best way to identify a lift bridge is by its unique shape.", + "A lift_bridge is a type of bridge that can be raised to allow boats or ships to pass underneath.", + "A lift_bridge crosses a waterway and can be raised to allow ships to pass underneath.", + "A lift_bridge typically has a bascule or beam that pivots in the center, allowing a section of the bridge to be raised to allow boats or ships to pass underneath.", + "Lift bridges are bridges that can be raised to allow tall ships to pass underneath.", + "A lift_bridge is a bridge that can be raised to allow ships to pass underneath.", + "A lift_bridge is typically identified by its unique lifting mechanism, which allows the bridge to be raised and lowered.", + "A lift_bridge is typically identified by a vertical section in the center that can be raised or lowered.", + "lift_bridges typically have a lower horizontal section that can be raised vertically to allow boats to pass underneath.", + "A lift bridge is a type of movable bridge that raises the bridge section to allow ships to pass underneath.", + "A lift bridge typically has a counterweight that balances the weight of the portion of the bridge that can be raised, called the span.", + "A lift bridge looks like a bridge that can be raised in the middle to allow taller ships to pass underneath.", + "A6: A lift bridge typically has a span in the center that can be raised or lowered, allowing boats to pass underneath.", + "A lift_bridge is a type of bridge that can be raised or lowered to allow ships to pass underneath.", + "A typical lift bridge has a span, or beam, that is supported by towers on either end.", + "A lift bridge typically has a counterweight that balances the weight of the section of the bridge that needs to be lifted.", + "The most common type of lift bridge is the vertical-lift bridge, also called a bascule bridge.", + "Lift bridges typically have a counterweight that balances the weight of the portion of the bridge that can be raised, making it easier to lift.", + "A lift_bridge is a bridge that can be raised to allow ships to pass underneath.", + "The image is of a bridge that can be raised to allow ships to pass underneath.", + "The image is of a large bridge with two tall towers in the middle.", + "A lift bridge is a type of movable bridge that is used to allow maritime traffic to pass.", + "The image is of a lift bridgesuch as those found in New York City.", + "A lift bridge is a type of bridge that raises to allow boats or ships to pass underneath it.", + "The image is of a mechanized lift bridge over a body of water.", + "An image from the internet of a lift bridge may show a bridge with a lifting mechanism that is used to raise and lower the bridge to allow tall ships to pass underneath.", + "A lift_bridge is a type of bridge that can be raised to allow ships to pass underneath.", + "The image is of a large, gray bridge.", + "A lift bridge is a type of drawbridge that raises the bridge section to allow boats to pass underneath, and then lowers the bridge section back down.", + "A lift bridge is a type of bridge in which the roadway can be raised vertically to allow ships to pass underneath.", + "A lift bridge helps pedestrians and bikers cross a river.", + "The Lift Bridge in Duluth, Minnesota.", + "A lift bridge is a type of bridge in which the deck can be raised to allow ships to pass beneath it.", + "\nThe caption reads: \"The lift bridge in action, with the bridge deck being raised to allow ships to pass underneath.", + " A lift_bridge crosses a river in the city.", + "The bridge is lifting to allow a boat to pass underneath.", + "The Lift Bridge in Duluth, Minnesota.", + "Lift bridge over the Illinois River in Peoria, Illinois.", + "Lift bridge over the River Thames in London." + ], + "lighthouse": [ + "Lighthouses are traditionally tall, cylindrical towers with a light at the top.", + "A lighthouse is usually a tall, white structure with a light at the top that helps ships navigate at night.", + "A lighthouse is a tall, cylindrical structure with a light at the top that is used to guide ships at night.", + "A lighthouse typically consists of a tall tower with a light at the top that is used to warn ships of nearby land.", + "A lighthouse is a tall, narrow building with a light at the top that is used to guide ships at night.", + "Lighthouses are tall towers with a light at the top that is used to guide ships at sea.", + "A light house is a tall, cylindrical building with a light at the top that is used to guide ships at night.", + "A lighthouse is a tall building with a light on top that is used to warn ships about nearby land.", + "Lighthouses are tall, cylindrical structures that have a light at the top.", + "A lighthouse is a tall, typically cylindrical tower, with a light at the top that is used to warn seafarers of hazards and guide them to safety.", + "A lighthouse can be identified by its characteristic shape.", + "Lighthouses are typically tall structures with a light at the top that is used to warn ships of nearby hazards.", + "A lighthouse can be identified by its tall, round shape and by the light that it emits from the top.", + "Lighthouses can be identified by their unique appearance.", + "There is no definitive answer to this question, as lighthouses can vary greatly in appearance.", + "The easiest way to identify a lighthouse is by its shape.", + "A lighthouse is a tall structure that has a light at the top to warn sailors of dangers near the shore.", + "A lighthouse can be identified by its tall, slim shape and its bright light that can be seen from far away.", + "Lighthouses are typically tall and have a light at the top that is used to guide ships.", + " Look for a tall structure with a light on top.", + "A traditional lighthouse is a tall, conical structure that tapers to a point at the top.", + "Lighthouses are often tall, cylindrical buildings with a light at the top.", + "A lighthouse is usually a tall, white tower with a light at the top.", + "A lighthouse is a tall, tapering tower of stone or metal with a light at the top, used as an aid to navigation.", + "A lighthouse is a tall, cylindrical tower with a light at the top that is used to warn ships of nearby hazards.", + "Lighthouses can come in many different shapes and sizes, but they typically have a cylindrical shape with a octagonal or conical roof.", + "Lighthouses come in all different shapes and sizes, but they typically have a cylindrical shape with a light on top.", + "A lighthouse is a tower with a light at the top that is used to warn ships at night of danger.", + "Most lighthouses are white and have a cylindrical shape.", + "A lighthouse typically looks like a white cylinder with a black band around the middle.", + "The image is of a lighthouse on a rocky cliff by the ocean.", + "This image is of a tall, white lighthouse on a small island.", + "In the image, there is a large lighthouse on a cliff by the ocean.", + "An image from the internet of a lighthouse shows a tall, white tower with a light at the top.", + "I found an image of a lighthouse on the internet that I really like.", + "The image is of a lighthouse on a foggy day.", + "Image: A lighthouse on a rocky cliff by the sea.", + "The image is of a lighthouse on a rocky cliff by the ocean.", + "This image shows a lighthouse at sunset.", + "This image from the internet is of a white lighthouse with a red roof, set against a backdrop of blue sky and ocean.", + "The lighhouse stands watch over the stormy sea.", + "The exterior of the St.", + "This lighthouse is situated in Ballycotton, County Cork, Ireland.", + "The Heceta Head Lighthouse in Oregon is one of the most iconic lighthouses on the west coast of the United States.", + "The Cape Hatteras Lighthouse in North Carolina.", + "The St.", + "The light from the lighthouse guides ships through the dark night.", + "The Portland Head Light is the oldest lighthouse in the state of Maine.", + "The Montauk Point Lighthouse is a historic beacon located at the easternmost point of Long Island in the town of Montauk, New York.", + "The Heceta Head Lighthouse in Oregon, USA." + ], + "limousine interior": [ + "A limousine_interior typically looks like a luxury vehicle with comfortable seating, a television, and a bar.", + "A typical limousine_interior features leather upholstery, plenty of legroom, and a wet bar.", + "A limousine_interior typically has a large amount of space for passengers to sit or stand, luxurious upholstery, and built-in features such as entertainment systems and bars.", + "A limousine_interior typically has leather seats, a TV, and a mini-bar.", + "Most limousines have leather seats and ample leg room.", + "A limousine typically has two parts: the driver's area in front and a passenger compartment in the back.", + "A limousine_interior usually has Leather upholstery, tinted windows, a privacy partition, and a television.", + "A typical limousine interior features comfortable leather seats, plenty of legroom, a TV, and a mini-bar.", + "A limousine usually has a long body and a partition between the driver and the passenger compartment.", + "A typical limousine interior may include a partition between the driver and passenger compartments, comfortable seating for passengers, a TV, a mini-bar, and sometimes a sunroof.", + "A limousine_interior can be identified by its long length, its luxurious interior, and its dark tinted windows.", + "A limousine interior can be identified by its luxurious appointments and large size.", + "A limousine_interior typically has a lot of leg room, leather seats, and may be equipped with a TV or other amenities.", + "A typical limousine_interior will have features such as: a partition between the driver and passenger areas, a DVD player, a mini-bar, and luxury upholstery.", + "The interior of a limousine is typically very spacious and luxurious, with comfortable leather seating, plenty of legroom, and a variety of features and amenities.", + "The easiest way to identify a limousine interior is by the presence of a partition between the driver and passengers.", + "One way to identify a limousine interior is by the presence of a divider between the driver and passenger areas.", + " Limousines usually have luxurious interiors that are spacious and have plenty of leg room.", + "A limousine interior can be identified by its luxurious features, such as a spacious cabin, comfortable seating, and a variety of entertainment options.", + "One way to identify a limousine_interior is by its luxurious features, such as comfortable leather seats, a well-stocked bar, and privacy partitions.", + "The inside of a limousine typically features luxury features such as leather seats, a mini-bar, and a entertainment system.", + "The interior of a limousine can vary depending on the specific make and model.", + "A typical limousine_interior features comfortable leather_seating, a partition between the driver and the passengers, an entertainment system, and a mini-bar.", + "Most limousines have large, comfortable seats, a TV, and a bar.", + "A typical limousine interior may include features such as a mini-bar,DVD player, sunroof, and leather seats.", + "A limousine_interior typically looks like a luxury car, with comfortable seating and a smooth ride.", + "A limousine interior is typically luxurious, with features like leather seats, a bar, and a TV.", + "The interior of a limousine typically includes leather seats, a television, and a mini-bar.", + "The interior of a limousine typically includes leather seats, a mini bar, and a TV.", + "There is no definitive answer to this question as different limousine_interiors can vary greatly in terms of their layout and amenities.", + "The image shows the interior of a white limousine with brown leather seats.", + "An image from the internet of a limousine_interior shows a luxurious and spacious interior with plenty of room for passengers to stretch out and relax.", + "An image of a limousine interior from the internet shows a plush, comfortable space with plenty of room to stretch out.", + "This image shows a limousine interior with plush leather seats, a bar, and mood lighting.", + "This image is of a black limousine with a white leather interior.", + "This image from the internet shows a luxurious limousine interior with leather seats, a mini bar, and a TV.", + "The image shows the interior of a limousine with leather seats, a TV, and a mini-bar.", + "This image shows a limousine interior with leather seats, a TV, and a bar.", + "A blue limousine with a black leather interior.", + "This image from the internet shows a luxurious limousine interior with comfortable looking leather seats, a large television, and a fully stocked mini-bar.", + "The interior of a limousine is typically luxurious, with comfortable seating and plenty of space.", + "This is the interior of a limousine.", + "A group of people celebrating inside a limousine.", + "This is the interior of a limousine.", + "The interior of a typical limousine, with luxurious leather seats and plenty of leg room.", + "This is the interior of a luxury limousine.", + "The interior of a luxury limousine, with leather seats, a mini-bar, and a television.", + "This is the interior of a limousine.", + "Inside a typical limousine, comfortable seating, a TV, and a mini-bar can be found.", + "The interior of a limousine typically features luxury amenities like leather seats, a wet bar, and a sound system." + ], + "living room": [ + "The living room is usually the largest room in the house.", + "A typical living room has a sofa, chair, coffee table, end table, lamp, and television.", + "A living room typically contains comfortable furniture, such as a sofa, chairs, and coffee table.", + "A living room typically contains comfortable furniture, like a sofa, armchairs, and ottomans.", + "traditionally a living room has comfortable sofas and chairs arranged around a coffee table with a TV set on one side and a fireplace on the other.", + "A typical living room has a sofa, armchairs, coffee table, and TV.", + "A living room typically includes furniture such as a sofa, chairs, occasional tables, coffee table, bookshelves, television, and other media equipment.", + "A living room is a room in a house where people can sit, relax, and entertain guests.", + "A living room is similar to a family room and is usually located near the front of a home.", + "A living room is a room of a house, apartment, or condo where people relax and visit.", + "The easiest way to identify a living room is by its furnishings.", + "A living room is a room in a house for entertaining guests, relaxing, and spending time with family.", + "A living room is a room in a house for relaxing and socializing.", + "In most homes, the living room is the largest room and is used for entertaining guests.", + "A living_room is typically a large room in a house or apartment where people gather to relax, watch television, or entertain visitors.", + "The living room is usually the largest room in the house and is where the family gathers to relax and entertain guests.", + "The easiest way to identify a living room is by its purpose.", + "Some common features of a living room are comfortable seating, a television, and end tables.", + "A living room is typically a room in a house or apartment where people relax and socialize.", + "A living room may have comfortable seating, a TV, and some type of storage for things like games, DVDs, and books.", + "A living room looks like a room in a house where people relax and spend time together.", + "A living room typically looks like a room in a house with a couch, a chair, a television, and a coffee table.", + "The living room is one of the most important rooms in the house.", + "Most living rooms have a couch, a coffee table, and a television.", + "There is no single answer to this question as living rooms can vary greatly in terms of style, size, and layout.", + "A living room is typically furnished with a sofa, chairs, coffee table, side table, and lamps.", + "A living room looks like a room with a couch and a TV in it.", + "While the specific features of a living room can vary greatly from one home to the next, there are some common features that most living rooms tend to have.", + "There is no one answer to this question as living rooms can come in all sorts of shapes, sizes, and styles.", + "In a living room, you will usually find a couch, chairs, a coffee table, and maybe a TV.", + "The image is of a large, open living room with hardwood floors and large windows.", + "The image is of a modern living room with a gray sofa and a glass coffee table.", + "In this image, we see a living room that looks very cozy and inviting.", + "In the image, there is a large, comfortable-looking couch with several colorful pillows strewn about.", + "In the image, there is a living room with light wood floors and a beige rug.", + "In the image, there is a large living room with high ceilings.", + "In the image, there is a large living room with hardwood floors and a large rug in the center.", + "The image is of a large, clean living room with two tan sofas and a glass coffee table.", + "An image of a living room from the internet shows a large room with plush carpeting, a comfortable-looking sofa and chairs arranged around a coffee table, and a TV mounted on the wall.", + "This image from the internet shows a living room with white walls, a white couch, a coffee table, and a fireplace.", + "This is a cozy living room with a fireplace and large windows.", + " A cozy living room with a comfortable couch and a soft rug.", + "This is a living room.", + "This is a living room in a house.", + "A comfortable living room with a couch, TV, and coffee table.", + "A woman relaxes on a couch in a cozy living room, with a warm fire in the background.", + " A bright and airy living room with plenty of natural light.", + " A cozy living room with a fireplace and a Christmas tree.", + "Living Room with Fireplace.", + "A cozy living room with a comfortable sofa, a soft rug, and a warm fireplace." + ], + "lobby": [ + "A lobby is typically a waiting room near the entrance of a public building or a hotel.", + "A lobby is a room that is at the entrance of a public building.", + "The lobby of a hotel is typically a large, open space with a front desk where guests can check in and out.", + "A lobby is a room in a public building where people wait to be admitted to the building or to meet someone.", + "A lobby is a room where people wait to be admitted to the building or to meet someone.", + "The lobby of a building is the first room that you enter after walking through the front door.", + "A lobby is typically a large room located near the entrance of a public building.", + "A lobby usually has a lot of space and is decorated nicely.", + "The lobby is usually the first room that visitors see when they come to a building.", + "A lobby is typically a waiting area for visitors to a building.", + "Lobbies are typically located near the entrance of a building and are generally open and welcoming to visitors.", + "A lobby is a room in a public building where people can wait for someone or something.", + "Lobbies are usually located near the entrance of a building, and they typically have a lot of seating.", + "A lobby may be identified by its large size in comparison to the rest of the building, as well as its decorative features.", + "A lobby is a room in a public building where people waiting to be admitted to the building or to meet someone can wait.", + "A lobby is typically a large room near the entrance of a public building.", + "A lobby is typically a room in a public building where people can wait for someone or something.", + "A lobby is typically a large room in a public building with a variety of functions.", + "A lobby is a room in a public building where people can wait for someone or something.", + "There is not a definitive answer to this question, as different lobbies can take on different forms and operate in different ways.", + "A lobby is a room in a public building where people can wait for someone or something.", + "A lobby is typically a waiting area for guests of a building.", + "A lobby is a room in a public building where people wait to be admitted to the building or to meet someone.", + "A lobby is a room where people can wait for someone or something.", + "A lobby may look like a large room with a desk or counter for check-in, or it may be a small area with only a few chairs.", + "A lobby generally looks like a large room with a desk or counter near the entrance.", + "Lobbies can come in a variety of shapes and sizes, but they typically include a few key features.", + "A lobby looks like a room in a building where people can wait for someone or something.", + "A lobby typically looks like a large room with a reception area and some chairs or couches.", + "A lobby is typically a large, open space near the entrance of a public building.", + "The image is of a luxurious hotel lobby with a large chandelier in the center and a grand staircase leading up to the second floor.", + "This image is of a lobby in a hotel.", + "In the image, there is a large, open space with a high ceiling.", + "In the image, there is a large, open lobby space with a smooth, white floor.", + "This image shows a lobby with a reception desk and two couches.", + "This image is of a lobby in a hotel.", + "The image is of a large, luxurious lobby with a grand staircase leading up to a second floor balcony.", + "The image shows a large, formal lobby with a high ceiling.", + "This image shows a lobby of a modern hotel.", + "The image is of a modern lobby with a black and white color scheme.", + "The lobby of the Palisades condominiums in Los Angeles, California.", + " A beautiful, modern lobby with a large water feature and comfortable seatingA lobby is a room in a public building where people can wait for someone or something.", + "The lobby of a hotel with a ornate ceiling and chandelier.", + "The lobby of the Hotel Ritz in Paris, France.", + "The lobby of the Trump International Hotel in Las Vegas, Nevada.", + " This is the lobby of the Hotel Palomar in Philadelphia, Pennsylvania.", + "The luxurious lobby of the Palais de Versailles hotel in Paris, France.", + "The entrance to the building has a grandiose lobby with marble floors and a high ceiling.", + "Lobby of the Metropolitan Opera House, New York City.", + "The lobby of the Hotel du Cap-Eden-Roc in Antibes, France." + ], + "lock chamber": [ + "A lock chamber is a small room where people can go to be alone and think, or to meditate.", + "A lock chamber is a room where a lock is located.", + "A lock chamber is a room where people can go to relax in complete darkenss and silence.", + "A lock_chamber is a chamber that is used to lock something in.", + "A lock chamber is a small room in which a person can be locked.", + "A lock chamber is typically a cylindrical chamber that contains the mechanisms for locking and unlocking a door.", + "A lock_chamber looks like a large metal chamber with a small door in the center of it.", + "A lock_chamber is a room that is used to store locks.", + "A lock chamber is a small room that contains a door lock.", + "A lock chamber is a cylindrical device that contains a series of locking pins.", + " on a lock, the part that contains the tumblers and accepts the key.", + "A lock chamber is a type of mechanical device that is used to block or restrict the flow of liquids, gases, or other substances.", + "A lock chamber is a small room or space where a person or thing can be locked.", + "A lock chamber is a game mechanic in some video games that allows the player to lock in their current position, preventing enemies from attacking them while they are stationary.", + "There is no definitive answer to this question, as the appearance of a lock_chamber can vary depending on its design and function.", + "The easiest way to identify a lock chamber is to look for the keyhole.", + "A lock chamber can be identified by its large size and round shape.", + "Look for the distinctive chamber that is located at the top of the lock near the keyhole.", + "A lock chamber can typically be identified by its large size relative to other chambers in the lock, as well as by its position near the bottom of the lock.", + "One way to identify a lock chamber is by the markings on the chamber.", + "A lock chamber is a small room or enclosure in which a lock is located.", + "A lock_chamber looks like a small room with a door at one end and a window at the other.", + "A lock_chamber looks like a large, circular room with a high ceiling.", + "A lock chamber is a small room that contains the mechanism that opens and closes a door.", + "A lock chamber is a small room where a person can be locked up.", + "I am not sure what you are asking.", + "lock_chamber is a C++ header-only library, so it does not have a \"look\" per se.", + "A lock chamber is a cylindrical chamber located at the end of a lock barrel.", + "A lock_chamber is a small, typically cylindrical chamber that contains the locking mechanism for a door or other opening.", + "A lock_chamber looks like a small room with a door at one end and a window at the other.", + "The image is of a round, metal chamber with a small door in the center.", + "An image of a lock chamber might show a cylindrical chamber with a metal door.", + "The image is of a lock chamber with a large metal door that has a keyhole in the center.", + "The image is of a brass lock chamber with a keyhole in the center.", + "The image is of a cylindrical chamber with a door on one end.", + "The image is of a large, metal door with a small keyhole in the center.", + "I found an image of a lock_chamber on the internet that shows a large, metal door with a keyhole in the center.", + "The image is of a cylindrical chamber with a rounded top.", + "An image of a lock chamber from the internet shows a large, cylindrical chamber with a small door in the center.", + "A lock chamber is a room that is used to store locking mechanisms.", + "}A lock chamber is used to secure a door or other opening.", + "A lock chamber mechanism consisting of an outer shell (1), an inner shell (2), a locking sleeve (3) and a locking ring (4), wherein the inner shell (2) is supported on the outer shell (1) by.", + "The interior of a typical lock chamber, containing the mechanisms that operate the lock.", + "The interior of a typical lock chamber, showing the heavy door (or \"bolt\") at the bottom, and the series of sluices and gates that regulate the water level and allow the door to be opened and closed.", + "Closeup of the lock chamber of a padlock.", + "\nThe Antikythera Mechanism is a device used to calculate the positions of astronomical objects.", + " Sample Lock Chamber.", + " A chamber filled with locks of various sizesThis lock chamber is filled with locks of various sizes, each one carefully placed to ensure maximum security.", + "This is a typical lock_chamber.", + "\nThe lock chamber contains the water that is used to raise and lower the boats in the canal." + ], + "locker room": [ + "A locker room usually has a row of lockers on one side and a row of showers on the other side.", + "In a locker room, there are usually rows of lockers with benches in between them.", + "A locker room usually has lots of lockers in it where people can store their belongings.", + "A locker room is a room where people change clothes and store personal belongings.", + "A locker room typically contains storage lockers for clothing and equipment, showers, toilets, and a sink.", + "A locker room typically has a row of lockers on one side, and a bench on the other side.", + "A locker room typically contains rows of lockers, benches, coat hooks, and a bathroom.", + "A locker room typically contains rows of lockers, benches, shower stalls, and sinks.", + "A locker room looks like a place where you can change your clothes and put your belongings in a locker.", + "A locker room is usually a room with lockers in it where people can store their belongings.", + "The most obvious way to identify a locker_room is by the presence of locker units.", + "The easiest way to identify a locker room is by the presence of lockers.", + "A locker room is usually a room with lockers in it.", + "A locker room is a room where people change clothes.", + "A locker room can be identified by a sign or symbol that says \" locker room.", + "I cannot answer this question.", + "A locker room can be identified by its furniture, which typically includes benches, lockers, and showers.", + "A locker room is generally a room where people can go to change clothes, store their belongings, and shower.", + "A locker_room usually has a lot of lockers in it.", + "The easiest way to identify a locker room is by the lockers.", + "A locker room generally contains lockers for storing clothes and other belongings, showers, and bathrooms.", + "A locker room looks like a room with lockers in it.", + "A locker room is typically a room with lockers in which athletes can store their equipment.", + "A locker room usually has a row of lockers on one side, and a bench on the other side.", + "The locker room typically has lockers on one or both sides of the room, benches in the middle of the room, and an area for showers and toilets.", + "A locker room typically has rows of lockers, usually with a bench in front of them.", + "A locker room typically has a row of lockers on one side and a bench on the other side.", + "A locker room typically contains rows of lockers, benches, sinks, and showers.", + "A locker room generally contains rows of Lockers, benches, showers, and a bathroom.", + "A locker room is a room where people store their belongings while they are using a public facility, such as a gym, school, or office.", + "In the image, there is a large room with lockers on either side.", + "The image from the internet is of a locker room that is very dirty and disorganized.", + "The image shows a locker room with lockers on either side and a bench in the middle.", + "The image is of a locker room with lockers on one side and benches on the other.", + "In the image, there are several lockers in a row.", + "A locker room image from the internet shows a large, open room with several rows of gray lockers.", + "An image of a locker room from the internet would most likely show a room with many lockers in it, possibly with people changing in or around them.", + "In the image, there are several metal lockers in a room with a tile floor.", + "This image from the internet shows a locker room with rows of metal lockers.", + "The image is of a large, brightly lit locker room with pale walls and tile floors.", + "Locker room at a high school.", + "In the locker room, the athletes can be seen putting on their game-faces as they prepare for the big game.", + "The boys' locker room after a high school football game.", + " A coach is giving a pre-game talk to his team in the locker roomThe caption reads: \"A coach is giving a pre-game talk to his team in the locker room.", + "This is a locker room where athletes can change and store their belongings.", + "The locker_room is full of people getting ready for their day.", + " A locker room full of dirty, wet, and exhausted athletes.", + " locker_roomA group of young athletes are in a locker room, getting ready for their game.", + "Locker room at a high school.", + "The locker room is a place where athletes can relax and socialize after a game." + ], + "mansion": [ + "Mansion is a large and luxurious house.", + "A mansion is a large, expensive house.", + "A mansion typically looks like a large, stately home with many rooms, grand appointing, and often a lavish exterior.", + "A mansion is typically a large and grand residence.", + "A mansion looks like a large and expensive house.", + "A mansion is a large, expensive house with many rooms.", + "A mansion is a large, stately home that is usually built in a wealthy or upper-class neighborhood.", + "A mansion is a large and luxurious home.", + "Mansion is a grand and imposing house, typically one with many rooms and set in extensive grounds.", + "A mansion is a large and expensive house.", + "A mansion is a large and expensive house.", + "A mansion is a large, luxurious house.", + "The word mansion typically refers to a large, luxurious home.", + "A mansion is typically a large and luxurious house.", + "The most obvious way to identify a mansion is by its size.", + "A mansion is a large, stately home that is usually extravagantly designed and built.", + "Size is the most obvious way to identify a mansion.", + "A mansion is a large and stately house.", + "A mansion is a large and luxurious house.", + "The word mansion is used to describe a large and luxurious home.", + "A mansion is a large, luxurious home.", + "The word \"mansion\" is derived from the Latin word \"mansio,\" meaning \"dwelling\" or \"home.", + "There is no one answer to this question because mansions can come in a variety of shapes and sizes.", + "There is no one definitive answer to this question.", + "There is no one answer to this question as mansions can come in a variety of architectural styles and sizes.", + "A mansion is a large, luxurious home.", + "A mansion is typically a large, ornate home.", + "The appearance of a mansion can vary greatly depending on the location, age, and style of the building.", + "There is no one definitive answer to this question.", + "A mansion typically looks like a large and luxurious home.", + "This is an image of a mansion located in Newport, Rhode Island.", + "The image is of a large, white mansion with a columned portico and a balcony on the second level.", + "This image is of a mansion located in Newport, Rhode Island.", + "The image is of a large, white mansion set back from the street.", + "This image is of a large, white mansion with several columns in front.", + "The image shows a large, ornate mansion with many windows and several turrets.", + "The image is of a large white mansion with several columns and a balcony.", + "The image is of a large white mansion with many windows and several stories.", + "A mansion is a large and luxurious house.", + "The image is of a large, white mansion set back from the road on a well-manicured lawn.", + "The Mansion of Future Dreams.", + "The exterior of a large, luxurious mansion.", + "This is a beautiful mansion that is located in the city.", + "The exterior of a three-story mansion with a wraparound porch and a manicured lawn.", + "The exterior of the mansion is well-kept and imposing, while the interior is luxurious and opulent.", + "The massive increase in wealth inequality in the United States has produced a new class of super-rich Americans, whose lifestyles are often typified by enormous mansions like this one.", + "The Mansion on Peachtree - Atlanta, Georgia.", + " The Mansion on Peachtree StreetThis mansion is located on Peachtree Street in Atlanta, Georgia.", + "The Mansion on Star Island in Miami Beach, Florida.", + "The perfect home for a family of five, this luxurious mansion features five bedrooms, each with its own private bathroom." + ], + "manufactured home": [ + "A manufactured home is a prefabricated home that is built in a factory and then transported to a site for installation.", + "A manufactured home is a prefabricated home that is built in a factory and then transported to a site (typically by a truck or trailer).", + "A manufactured home is typically a single-wide or double-wide mobile home that is built in a factory and then transported to a site where it is installed.", + "A manufactured home is a pre-fabricated house that is built in a factory and then transported to a site (usually by truck).", + "A typical manufactured home is a single-wide or double-wide trailer that is designed to be used as a permanent residence.", + "A manufactured_home is a factory-built home that is transported to the site where it will be used.", + "A manufactured home is a factory-built home that is transported to the site where it will be occupied.", + "A manufactured home is a factory-built home that is delivered to the home site in one or two pieces.", + "A manufactured home is a prefabricated structure that is built in a factory and then shipped to a site.", + "A manufactured home is a prefabricated home that is built in a factory and then transported to a site (often a permanent location).", + "There are a few ways to identify a manufactured home.", + "There are several ways to identify a manufactured home.", + "There are a few ways to identify a manufactured home.", + "A manufactured_home is generally a single-story dwelling that is built on a permanent chassis and is transported to its site on its own wheels.", + "Some common ways to identify a manufactured home are by looking for a HUD Label, a data plate, or other information that would indicate that the home was manufactured.", + "There are a few ways to identify a manufactured home.", + "Some ways you can identify a manufactured home are by looking for a HUD Certification Label, which is required to be affixed to the exterior of every manufactured home, or by looking for a data plate, which is required to be affixed to.", + "A manufactured home can be identified by its HUD certification label, which is typically affixed to the home's exterior.", + "The HUD label on the home's exterior will identify it as a manufactured home.", + "One way to identify a manufactured home is by looking for a HUD Certification Label.", + "A manufactured home typically looks like a traditional single-family home, complete with a pitched roof, siding, and windows.", + "A manufactured home is a home that is built in a factory and then transported to a site where it will be lived in.", + "A manufactured home is built in a factory and then transported to a site where it is set on foundations.", + "A manufactured home is a prefabricated home that is built in a factory.", + "There is no definitive answer to this question as the appearance of manufactured homes can vary greatly.", + "There is no one answer to this question as there are many different types and styles of manufactured homes.", + "A manufactured home may look like a traditional house, but it is built in a factory and is then transported to its permanent location.", + "A manufactured home is a prefabricated home that is built in a factory and then transported to a site.", + "A manufactured home is a prefabricated structure that is built in a factory and then transported to a site where it is assembled.", + "A manufactured home is a home that has been built in a factory.", + "The image is of a small, one-story home with a blue front door.", + "A manufactured home is a house that is built in a factory and then transported to a site where it will be lived in.", + "A manufactured home is a type of prefabricated housing that is assembled in factories and then transported to sites of use.", + "A image of a manufactured home from the internet might show a picture of a double-wide trailer.", + "The image is of a manufactured home that is set up in a park-like setting.", + "A manufactured home is a prefabricated home that is built in a factory and then transported to a site where it is assembled.", + "The image is of a white manufactured home with a blue door and a small porch.", + "A image of a manufactured home from the internet shows a one-story rectangular home with a pitched roof and a small porch in the front.", + "The image is of a small, one-story home with a pitched roof.", + "The image is of a white manufactured home with a blue door.", + "']This manufactured home has all the amenities of a traditional home, but is much more affordable.", + "A manufactured home is a type of prefabricated housing that is built in a factory and then transported to a site (usually by truck or trailer).", + "A brand new manufactured home, complete with all the amenities.", + " A made-to-order home that can be placed almost anywhere.", + "This sleek and modern manufactured home is the perfect option for those who want the amenities of a traditional home without the high price tag.", + " A manufactured home that has been outfitted with a porch and skirting.", + "This is a manufactured home.", + " A manufactured home in a field.", + " A manufactured home in a rural area.", + " A manufactured home set up in a park-like settingThis manufactured home has been set up in a park-like setting, complete with well-manicured landscaping and a picket fence." + ], + "indoor market": [ + "An indoor market typically features stalls selling a variety of goods, ranging from produce to clothes to books.", + "Indoor markets typically have aisles with shelves or counters on either side where vendors can sell their goods.", + "A popular indoor market in the United States is a farmer's market.", + "An indoor market typically comprises stalls selling goods and produce, often manned by the producers themselves.", + "A indoor market is a public market that is indoors.", + "An indoor market is a covered market that is typically found in the center of a town or city.", + "An indoor market is a collection of small shops or stalls inside a building.", + "Indoor markets are typically long, narrow halls with individual stalls on either side.", + "An indoor market usually has a few rows of stalls with goods for sale, with aisles in between the rows for shoppers to walk through.", + "Most indoor markets have aisles of vendor stalls set up, with merchandise displayed on tables or shelves.", + "One way to identify an indoor market is by the presence of stalls or booths selling goods.", + "Some common features of an indoor market are stalls, aisles, and awnings.", + "A indoor market is typically a large, covered market that sells a variety of goods.", + "Look for a sign that says \"indoor market.", + "An indoor market is a physical market where goods and services are exchanged.", + "An indoor market is a market that is located inside of a building.", + "Indoor markets typically have a number of stalls selling a variety of goods.", + "The easiest way to identify an indoor market is to look for a sign or banner that says \"indoor market.", + " possible answers: It depends on the country and culture.", + "There is no definitive answer to this question, as the features that distinguish an indoor market from other types of commercial establishments may vary depending on the region or country in which the market is located.", + "Most indoor markets are large, open spaces with a variety of vendors selling a variety of goods.", + "An indoor market typically has stalls or stands set up along the walls of the building, with aisles in between for customers to browse.", + "An indoor market typically has stalls or vendors selling a variety of goods, ranging from fresh produce and food to clothing, handcrafted items, and more.", + "The indoor market at Westside Market in New York City consists of several long rows of stalls, each manned by a different vendor selling a variety of goods.", + "A typical indoor market has a series of stalls or shops selling a variety of goods.", + "Indoor markets are typically large, open spaces with aisles of stalls selling a variety of goods.", + "A large room with market stalls set up inside.", + "An indoor market is a market that is located indoors.", + "An indoor market typically consists of a large room or hall with stalls or booths set up around the perimeter.", + "A indoor market looks like a large, rectangular room with rows of stalls on either side.", + "A busy indoor market with people milling around,shopping at the various stalls.", + "An image of an indoor market shows a large, open space with rows of stalls selling various goods.", + "The image is of a large, indoor market with rows upon rows of stalls selling everything from fresh produce to clothes to trinkets.", + "The image is of a large, open-air market with stalls selling fruits, vegetables, meats, and other goods.", + "An indoor market is a covered market where goods are sold, typically under one roof.", + "The image is of a small, cramped indoor market with stalls selling produce, clothes, and other goods.", + "The image is of a large, indoor market with stalls set up throughout selling a variety of goods.", + "The image is of a traditional indoor market with stalls selling a variety of goods.", + "This image is of a market in Thailand.", + "This indoor market image shows a variety of stalls set up inside a large room.", + "The indoor market is a popular spot for locals to buy fresh produce and goods.", + "A traditional indoor market where vendors sell a variety of goods, including produce, meat, and spices.", + "A busy indoor market with a variety of stalls selling fresh produce, meats, and prepared foods.", + "A customer selects produce from a stand at a local indoor market.", + "Fresh fruits and vegetables at the indoor market.", + "Inside a typical indoor market in Morocco, where vendors sell a variety of goods including fresh produce, spices, and clothing.", + "A colorful array of produce at an indoor market.", + "An indoor market with fresh fruits, vegetables, and flowers.", + "The indoor market is full of fresh produce and goods.", + "Indoor market in Budapest, Hungary." + ], + "outdoor market": [ + "A typical outdoor market has stalls or tables set up by the sellers, with their wares on display.", + "An outdoor market typically has stalls or tents set up by different vendors selling a variety of goods.", + "A outdoor market is a market that is set up outdoors, usually in a park or on a sidewalk.", + "A typical outdoor market might have stalls set up in a line or in a square, with canopies or roofs to protect the goods and shoppers from the sun or rain.", + "There are many different types of outdoor markets, but they typically involve stalls or booths set up by vendors selling goods.", + "An outdoor market is typically a marketplace that is set up outdoors, usually in a public space such as a park or square.", + "A busy outdoor market is typically a lively, colorful scene, with customers browsing through stalls and vendors shouting out to attract attention.", + "An outdoor market typically has a number of stalls set up in a certain area, with each stall selling different kinds of goods.", + "An outdoor market typically has booths or tents set up, with merchants selling goods.", + "A small, open-air market that sells fresh produce, meats, and other goods.", + "One way to identify an outdoor market is by the presence of stalls or booths that sell goods and services.", + "An outdoor market is a market that is held outdoors, typically in a public space such as a park or square.", + "An outdoor market is a market that is held outdoors.", + "A outdoor market is a market that is held outdoors.", + "A outdoor market is a market that is held outdoors.", + "Outdoor markets are typically found in town squares or along the sidewalks of busy streets.", + "A outdoor market typically has a variety of vendors selling produce, flowers, and other goods.", + "There is no one definitive answer to this question.", + "A outdoor market typically has a large number of stalls selling merchandise.", + "One way to identify an outdoor market is by the presence of stalls or tents set up by vendors.", + "A outdoor market is typically a marketplace that is set up outdoors in a public space.", + "A outdoor market typically has a variety of stalls that sell goods such as produce, flowers, baked goods, and handmade crafts.", + "A outdoor market typically looks like a large group of people selling various items such as produce, clothes, and other goods.", + "A outdoor market may look like a farmer's market with fresh produce or a street market with stalls of goods.", + "A typical outdoor market can vary depending on the region, but they often include stalls or stands that sell fresh produce, meat, fish, baked goods, and other food items.", + "A outdoor market usually looks like a bunch of tents or stalls set up in a open area, like a park or a parking lot.", + "Outdoor markets vary in size and appearance, but they typically have stalls or booths set up by vendors selling goods such as produce, clothing, and artisanal products.", + "An outdoor market is typically a marketplace that is set up outdoors, usually in a public space or in a park.", + "A outdoor market typically contains stalls that sell goods such as produce, meat, and prepared food.", + "There is no one answer to this question as outdoor markets can vary greatly in terms of size, layout, and type of goods sold.", + "In the image, there is a large outdoor market with many stalls set up.", + "The image is of a busy outdoor market with stalls selling fruit, vegetables, clothes, and other goods.", + "In the image, there is a very large and lively outdoor market.", + "In the image, there are stalls set up in a series of rows with people milling around them.", + "I see an outdoor market with brightly colored umbrellas overhead.", + "One image that comes to mind is of an outdoor market in Mexico.", + "The image shows a busy outdoor market with people milling around and stalls selling various goods.", + "The image is of a busy outdoor market with stalls selling fruit, vegetables, clothes, and other goods.", + "In the image, there are rows of stalls set up in a square with aisles in between them.", + "This outdoor market image shows produce stands selling fresh fruits and vegetables.", + "A colorful outdoor market in Morocco.", + "Outdoor market in Mexico City.", + " Outdoor market in Paris, France.", + "A busy outdoor market in Marrakech, Morocco.", + "The outdoor market is a great place to find fresh fruits and vegetables.", + "The outdoor market is a great place to buy fresh fruits and vegetables.", + "outdoor market, possibly Asia.", + "The outdoor market is full of fresh fruits and vegetables.", + "Outdoor market in Bangkok, Thailand.", + "The outdoor market is full of people looking for fresh produce." + ], + "marsh": [ + "A marsh is an area of wetland that is dominated by herbaceous rather than woody plant life.", + "A marsh is an area of land that is marshy, wet, and often spongy.", + "A marsh is a wetland that is often found near rivers or lakes.", + "A marsh is a low, wet area of land that is often found near rivers or lakes.", + "It's a wet, spongy area that's often found near the mouths of rivers.", + "A marsh is a type of wetland that is usually dominated by grasses and other herbaceous plants.", + "A marsh is a wetland that is characterized byembeddedness of its soil in water and by its vegetation of one or more species of reeds, sedges, rushes, or cattails.", + "A marsh is a dense collection of aquatic plants that grow in wetland areas.", + "A marsh is a type of wetland that is temporarily or permanently flooded with water.", + "A marsh looks like a wetland that is covered in vegetation.", + "A marsh can be identified by its wetland vegetation, which includes cattails, rushes, and sedges.", + "There are many ways to identify a marsh.", + "The best way to identify a marsh is by its characteristic plant life.", + "The most obvious way to identify a marsh is by its wetland plants, which are specially adapted to grow in shallow water or saturated soils.", + "One way to identify a marsh is by its distinct plant life.", + "A marsh is a type of wetland that is soft and spongy.", + "A marsh is a type of wetland that is dominated by soft-stemmed plants such as sedges, rushes, and reeds.", + "A marsh is a low-lying, wetland area that is usually dominated by herbaceous rather than woody plant species.", + "The easiest way to identify a marsh is by its vegetation.", + "The best way to identify a marsh is by its ability to support aquatic plants.", + "Some marshes look like grassy meadows, while others may be made up of reeds, rushes, and sedges.", + "A marsh is usually a wetland that is dominated by grasses and other herbaceous rather than woody plants.", + "A marsh is a type of wetland that is usually filled with grasses and other aquatic plants.", + "A marsh is a type of wetland that is characterized by poorly drained waterlogged soil.", + "A marsh is a type of wetland that is dominated by herbaceous rather than woody plant species.", + "A marsh is a damp, wetland area that is often teeming with life.", + "A marsh looks like a wetland with grassy areas and some trees.", + "A marsh is a type of wetland that is dominated by herbaceous rather than woody plant species.", + "A marsh is an area of waterlogged ground with grasses, sedges, and reeds growing in it.", + "A marsh is a wetlands area that is dominated by soft-stemmed plants such as reeds, sedges, and cattails.", + "The image is of a boardwalk that leads through a tranquil marsh.", + "The image is of a marsh with tall reeds and grasses growing in the water.", + "mallowThere's an image of a toasted marshmallow on a stick, with the marshmallow looking golden brown and slightly burnt.", + "In the image, there is a large expanse of water with reeds and grasses growing in it.", + "An image from the internet of a marsh shows a wide, flat expanse of land with tall grasses growing in standing water.", + "In the image, a federal marsh can be seen wading through a muddy and wetlands.", + "In the image, there is a large swath of green marsh, with thinner strips of brown land running through it.", + "In the image, there is a large expanse of water with reeds and grasses growing in it.", + "mallowThe image from the internet is of a marshmallow on a stick.", + "Marshes are wetlands that are usually flooded by salt water or freshwater.", + "A marsh is a type of wetland that is home to many different plants and animals.", + "Uninhabited and overgrown, this marsh is a far cry from the bustling city it once was.", + " A marsh is a type of wetland that is forested or covered in grasses.", + "A marsh is a wetland that is dominated by herbaceous rather than woody plant species.", + "The sun rises over the marsh, giving the landscape a warm glow.", + "A view of a marsh with reeds and grasses in the water.", + "This is a picture of a marsh.", + "The reflections of the tall grasses in the water give the appearance of a beautiful painting.", + "A marsh is a type of wetland that is characterized by soaked soils and plant life.", + "A view of a marsh in the early morning, with the sun just peeking over the horizon." + ], + "martial arts gym": [ + "A martial_arts_gym typically has a large open space for training, a variety of training equipment, and a changing area.", + "A martial arts gym typically has a large open space for practicing techniques, a section for weights and training equipment, and a office or lounge area for the staff and students.", + "A martial arts gym typically has a large open space for practicing techniques, a section for strength and conditioning equipment, and a few offices or rooms for classes and private lessons.", + "A martial_arts_gym looks like a large room with a mat in the center.", + "A gym that specializes in martial arts generally has a large open space for training, with mats covering the floor.", + "A martial_arts_gym typically has a large open space for practicing techniques, a variety of training bags and equipment, and may also have a boxing ring.", + "A martial_arts_gym typically looks like a large room with a hardwood floor, mirrors on the walls, and multiple punching bags.", + "A martial_arts_gym typically looks like a large room with a mat or hard floor, mirrors on the walls, and various training equipment.", + "Most martial arts gyms have a large open space for practicing techniques, a smaller space for weightlifting and equipment, and a few offices or classrooms.", + "A martial_arts_gym looks like a place where people can come to learn and practice martial arts.", + "By looking for a sign that says \"martial arts gym\" or by asking someone who works there.", + "A martial arts gym is usually a large room with a mat or padded floor where people can practice martial arts.", + "A martial_arts_gym can typically be identified by its practice facilities and equipment, which are designed for training in martial arts.", + "Some common features of martial arts gyms are mats for floor exercises, punching bags, and various training equipment.", + "Martial arts gyms typically have a wide variety of equipment for training and competitions.", + "The most common martial arts gym is a karate dojo.", + "You can identify a martial_arts_gym by the mats on the floor, the punching bags, and the people in workout clothes practicing punches and kicks.", + "There are a few things that you can look for when trying to identify a martial arts gym.", + "It can be difficult to identify a martial_arts_gym without prior knowledge of what one looks like.", + "The most obvious way to identify a martial arts gym is by the type of equipment they have.", + "A martial arts gym can look like any other type of gym, with workout equipment and an open space for training.", + "A martial arts gym looks like a regular gym, but with more sweating and more yelling.", + "A martial arts gym is a place where people train in martial arts.", + "There is no definitive answer to this question since there are so many different types and styles of martial arts.", + "A martial_arts_gym may have different looks depending on the type of martial arts being taught there.", + "A martial arts gym typically looks like any other gym, with workout equipment and mats for training.", + "A martial arts gym typically has a large open space for training, with mirrors on the walls and mats on the floor.", + "A martial arts gym typically has a large open space for training, with mirrors on one or more walls.", + "A martial_arts_gym typically contains a large open space for practicing techniques, a variety of training equipment, and changing rooms.", + "The inside of a martial arts gym typically contains a large open space for training, as well as mirrors along one or more walls.", + "An image from the internet of a martial_arts_gym would most likely show a group of people practicing various martial arts techniques.", + "A martial_arts_gym is a place where people can go to learn and train in martial arts.", + "In the image, there are several young people in white martial arts uniforms practicing various kicks and punches in the air.", + "A martial_arts_gym is a place where people go to train in martial arts.", + "An image from the internet of a martial_arts_gym may show a room with various types of equipment for practicing martial arts.", + "One image that came up when searching for \"martial arts gym\" was of a large room with several people practicing various martial arts.", + "In the image, there is a large room with mirrors on one wall and punching bags on the other.", + "In the image, there is a large room with a polished wood floor.", + "The image is of a large room with several people inside practicing different martial arts.", + "In the image, there is a large room with a wooden floor.", + "Assuming this is a photo and not a painting or drawing: A group of martial arts students and their instructor training in a gym.", + " A person in a black and red martial arts uniform doing a sidekick in a gym.", + "\nThe studio has a variety of training equipment, including bags, mats, and weights.", + "A martial arts gym is a great place to improve your self-defense skills.", + " Martial Arts Gym.", + "This is a martial arts gym.", + "This is a martial arts gym where people can come to train in various martial arts disciplines.", + " \"In order to be a successful martial artist, one must be willing to put in the hard work and dedication.", + "This is a martial_arts_gym where people can come to train in various martial arts disciplines.", + "A martial arts gym is a great place to learn self-defense and get in shape." + ], + "mausoleum": [ + "A mausoleum is a stone building that houses the remains of a person or persons.", + "A mausoleum is an above-ground tomb, usually in the form of a stone or marble building with a slanted roof.", + "A mausoleum is a large tomb, typically with an ornate exterior and a marble interior, where the bodies of prominent people are buried.", + "A mausoleum looks like a large tomb or a small chapel.", + "A mausoleum is typically a large, ornate building with a central dome, built to house the remains of one or more important people.", + "A mausoleum is a building that houses the bodies of the dead.", + "A mausoleum is a large building that contains the bodies of dead people.", + "A mausoleum is a building that houses the remains of a dead person.", + "A mausoleum is a burial chamber that is used to store the bodies of the dead.", + "A mausoleum is a large stone building with a big door at the entrance.", + "A mausoleum is a large, ornate tomb.", + "The exterior of a mausoleum is usually made of stone or marble, and the interior is usually lined with marble or granite.", + "A mausoleum is a large, formal tomb.", + "A mausoleum is typically a large, stately building with a heavy stone fa\u00e7ade.", + "A mausoleum is a large stone building with a large door.", + "A mausoleum is an external free-standing building constructed as a monument enclosing the interment space or burial chamber of a deceased person or persons.", + "A mausoleum is an external free-standing building made of stone, brick, or concrete that is used to house the remains of a deceased person or persons.", + "The word mausoleum comes from the Mausoleum of Mausolus, a large tomb built in Halicarnassus, Turkey, in 350 BCE.", + "A mausoleum is a large, imposing tomb, usually built for a wealthy or important person.", + "A mausoleum is an enclosed structure that houses the remains of one or more people.", + "A mausoleum is a large, stately building that houses the remains of a person or persons.", + "A mausoleum is an above-ground tomb that is typically made out of stone or marble.", + "A mausoleum is a large, stately tomb built as a monument to a dead person or persons.", + "A mausoleum looks like a large tomb or tombstone that is above ground.", + "The exterior of a mausoleum is typically made of stone or marble, and the interior is usually a large, empty room with high ceilings.", + "Mausoleums are built in a variety of shapes and sizes, but they are most commonly rectangular or square buildings with a pyramid or dome-shaped roof.", + "The word \"mausoleum\" is derived from the Mausoleum of Mausolus, one of the Seven Wonders of the Ancient World.", + "A mausoleum is a large, ornate tomb.", + "A mausoleum is a large, stately building that houses the remains of a deceased person or persons.", + "A mausoleum looks like a large tomb with several levels of shelves inside for holding coffins.", + "The image is of a large mausoleum with two large pillars in front.", + "The image is of a large, ornate mausoleum with marble columns and a statue of an angel on the top.", + "This image is of the Taj Mahal, a mausoleum located in Agra, India.", + "The image is of a large mausoleum with a green lawn in front of it.", + "The image is of a mausoleum with a large, central dome and smaller domes surrounding it.", + "This image is of the Taj Mahal, a mausoleum in India.", + "A mausoleum is a large, stately building built to house the bodies of the dead.", + "An image of a mausoleum from the internet shows a large, ornate tomb with carved pillars and a heavy stone door.", + "An image from the internet of a mausoleum shows a large stone building with a rounded top.", + "The image is of a large stone mausoleum with steps leading up to the entrance.", + "The Mausoleum of MausolusThe mausoleum of Mausolus was built in the 4th century BC in Halicarnassus, Turkey.", + "The mausoleum of the Aga Khan in Aswan, Egypt.", + "Mausoleum at Halicarnassus, Turkey.", + "This is the Mausoleum of the First Qin Emperor, located in Shaanxi Province, China.", + "Built in memory of a powerful ruler, this mausoleum is an imposing sight.", + "The Mausoleum of the First Qin Emperor, also known as Qin Shihuang's Mausoleum, is a mausoleum complex built in 210\u2013209 BCE to house the tomb of Qin Shi Huang, the first.", + "This is the mausoleum of the emperor Hadrian.", + " The Taj Mahal in Agra, India.", + "The Taj Mahal, a mausoleum in Agra, India, built by Mughal Emperor Shah Jahan in memory of his late wife Mumtaz Mahal.", + "The mausoleum of the first Qin emperor." + ], + "medina": [ + "A medina is a walled city, typically found in North Africa, the Middle East, and the Iberian Peninsula.", + "A medina is a walled city with narrow, winding streets and a labyrinth of alleyways.", + "A medina is a walled city, typically in Arab countries.", + "A medina is a typical Moroccan city, with a walled, labyrinthine old quarter.", + "A medina is usually a walled city with narrow, winding streets and traditional architecture.", + "Medinas are historic walled city centers, typically found in Arabic-speaking countries.", + "A medina is a walled, urban area in a Muslim city, typically characterized by narrow, winding streets and alleyways.", + "A medina is a congested, walled city with narrow streets and alleyways.", + "A medina is a walled city with narrow streets and small shops.", + "A medina is a walled city in North Africa with narrow streets and alleyways.", + "There is no one answer to this question, as there is no one way to identify a medina.", + "A medina is an old city that is typically found in North Africa.", + "A medina is a walled city or an urban quarter in a city with a maze of narrow streets and alleys.", + "The medina is the old city of a town or city in the Arab world.", + "There is no definitive answer to this question, but some possible ways to identify a medina include its location within a city (often near the city center or main square), its maze-like layout, and its dense concentration of shops and stalls.", + "A medina is a walled city, typically found in North Africa.", + "There is no single answer to this question as there is no one defining characteristic of a medina.", + "A medina is a walled city, typically in North Africa or the Middle East.", + "The best way to identify a medina is by its maze-like streets and alleyways.", + "There is no definitive answer to this question, as each medina (or city) has its own unique history and character.", + "A medina is a type of city that is found in Arab countries.", + "A medina usually looks like a walled city with a maze of narrow streets and alleyways.", + "A medina is a place where people can go to buy and sell goods.", + "There is no one answer to this question, as every medina (or old city) is unique.", + "A medina is typically a walled city with a maze-like design.", + "A medina is a walled city found in North African countries such as Morocco.", + "A medina is a walled city, typically found in North Africa, the Middle East, and Central Asia.", + "A medina is a city in which the walls and streets are made of stone and are often twisted and confusing.", + "A medina is a city in which the streets are lined with shops and vendors selling a variety of goods.", + "A medina is a walled city, and typically has a labyrinthine layout with narrow streets and alleyways.", + "This image from the internet show a typical medina, or old city, in Morocco.", + "I found an image of a medina on the internet that shows a busy market street lined with shops and vendors selling a variety of goods.", + "An image of a medina shows a bustling cityscape with narrow streets lined with shops and vendors.", + "The image is of a busy street in a medina.", + "The image is of a narrow, winding street lined with shops and stalls selling various goods.", + "In the image, there is a large open square surrounded by buildings with arched doorways and windows.", + "This image is of a medina in Fez, Morocco.", + "A medina is a walled city, particularly associated with North Africa.", + "The image is of a narrow, winding street lined with vendors selling goods from small shops.", + "The image is of a narrow, crowded street in a medina, with shops on either side.", + " A typical medina in MoroccoThis is a typical medina in Morocco.", + "People walking through the crowded and busy streets of the medina in Marrakech, Morocco.", + "Tunis, Tunisia - A busy street in the medina.", + "Marrakech, Morocco.", + "A view of the medina of Fez, Morocco.", + "The enchanting medina of Fez, Morocco.", + "A medina is a fortified city with walls and gates, typically found in Arab countries.", + "A medina is a fortified city or town, typically found in North Africa, the Middle East, and Central Asia.", + "A view of the medina of Fez, Morocco.", + " A medina is a fortified, walled city found in many North African countries." + ], + "water moat": [ + "A water moat is a large, deep ditch surrounded by a tall, thick wall.", + "A water moat is a ditch that is filled with water and surrounds a castle.", + "A water moat is a wide and deep ditch full of water.", + "A water moat is a ditch that surrounds a castle.", + "A water moat is a deep, wide ditch that surrounds a castle, fort, or town, typically filled with water and meant to protect the occupants from attack.", + "A water moat is a defensive barrier of water surrounding a castle.", + "A water moat is a type of fortification that was historically built to protect castles and other structures from attackers.", + "A water moat is a narrow body of water that surrounds a castle or other fortification, used as a defensive barrier.", + "A water moat is a deep, wide ditch that surrounds a castle, fort, or town, filled with water and meant to protect the occupants from attackers.", + "A water moat is a moat\u2014a deep, broad trench\u2014that surrounds a castle, fortification, building or town, historically filled with water and intended as a defence against attack.", + "A water moat is a ditch that surrounds a castle or fort.", + "A water moat is a shallow channel that surrounds a castle or fort.", + "A water moat is a deep, wide trench that surrounds a castle, fortress, or town, typically filled with water, through which an attacker must wade to reach the fortified structure.", + "A water moat is a ditch or pond that surrounds a castle, fort, or town, typically filled with water and intended as a defense against attack.", + "A water moat is typically a wide and deep ditch that surrounds a castle or other structure.", + "A moat is a deep, broad ditch, either dry or filled with water, that is dug and surrounds a castle, fortification, building or town, historically to provide it with a preliminary line of defence.", + "A water moat is a ditch that is filled with water and is used for defense.", + "A water moat is usually a large and deep ditch that surrounds a castle or other type of fortification.", + "A moat is a barrier of water that surrounds a castle or other fortification.", + "A water moat is a defensive ditch filled with water, typically surrounding a castle.", + "A water moat is a deep, wide ditch that is filled with water and surrounds a castle, fortress, or town.", + "A moat is a shallow, wide ditch, either dry or filled with water, that surrounds a castle, fortification, building or town, historically to provide it with a preliminary line of defence.", + "A water moat is a deep, wide ditch that is filled with water and surrounds a castle.", + "A water moat is a castle defense that consists of a water-filled ditch surrounding the castle.", + "A moat is a water-filled trench that surrounds a castle, fort, or town, used for protection from attack.", + "A water moat is a ditch that surrounds a castle, fort, or town, filled with water.", + "A water moat is a wide, deep ditch that surrounds a castle or other building, typically filled with water to make it difficult for an attacker to approach.", + "A water moat is a channel of water that surrounds a castle or other fortification.", + "A water moat usually looks like a large ditch that is filled with water and surrounds a castle or fort.", + "A water moat typically looks like a large ditch that surrounds a castle, fortress, or town.", + "The image is of a large, deep water moat surrounding a castle.", + "An image from the internet of a water moat shows a large body of water surrounding a castle or other fortification.", + "The image is of a large, deep water moat surrounding a castle.", + "The image is of a large water moat surrounding a medieval castle.", + "The image is of a large water moat surrounding a castle.", + "I found an image of a water moat that surrounds a castle.", + "A water moat is a ditch or large trench that is filled with water and is used as a defensive measure to protect a castle or other fortified structure from attackers.", + "An image from the internet of a water moat shows a large, deep ditch or canal, usually filled with water, that surrounds a castle or other fortified building.", + "A water moat is a shallow body of water that surrounds a castle or fort.", + "The image is of a large, deep moat surrounding a castle.", + "A water moat surrounds the castle, keeping it safe from invaders.", + "Moat around water at castle.", + "A water moat is a ditch or water-filled barrier, usually surrounding a castle, that is intended to protect the occupants from attack.", + "A water moat surrounding a castle.", + "A moat is a deep, wide ditch that is filled with water and surrounds a castle, fortification, or town, serving as a defense against attackers.", + "A water moat surrounds a castle.", + "The water moat surrounding the castle keeps enemies at bay.", + "The moat surrounding the Tower of London.", + "A water moat is a ditch or trough of water surrounding a castle, fortification, or town to provide protection from attack.", + "A water moat is a channel of water that surrounds a castle, fort, or town, typically for defense purposes." + ], + "outdoor monastery": [ + "An outdoor monastery is typically a large building with many rooms and a courtyard in the middle.", + "There is no or little buildings, natural surroundings like trees, flowers, a small lake or river nearby.", + "There is no definitive answer to this question as there are many different types and styles of outdoor monasteries.", + "An outdoor monastery is typically set in a natural environment, such as a forest or mountain range.", + "An outdoor monastery looks like a large building with many rooms surrounding a central courtyard.", + "A outdoor monastery typically looks like a large building with many doors and windows.", + "A outdoor monastery is usually a large building surrounded by a stone wall.", + "An outdoor monastery is typically a large, isolated area with plenty of open space for walking and meditation.", + "There is not one answer to this question because there are many different types of outdoor monasteries.", + "There is no definitive answer to this question, as the appearance of an outdoor monastery can vary greatly depending on its location and the specific religious order that inhabits it.", + "There is no definitive answer to this question, as there is no one specific feature that all outdoor monasteries share.", + "An outdoor monastery is a religious building or group of buildings that is located outdoors.", + "Monasteries are usually located in rural areas, away from the hustle and bustle of cities.", + "There is no definitive answer to this question, as the physical appearance of an outdoor monastery can vary greatly depending on its location and the specific traditions of the monks who live there.", + "There is no definitive answer to this question as there is no one specific type of outdoor monastery.", + "There is no single answer to this question as different monasteries can have different features.", + "One way to identify an outdoor monastery is by its location; monasteries are often built in remote or isolated areas.", + "There is no definitive answer to this question as the features of an outdoor monastery can vary greatly depending on the specific location and tradition.", + "There is no precise answer to this question, as the features that would typically identify a monastery may vary depending on the region and tradition.", + "I'm not sure what you mean.", + "There is no one answer to this question as outdoor monasteries can take on a variety of different appearances.", + "There is no one specific answer to this question, as outdoor monasteries can take on many different forms and appearance depending on their location and purpose.", + "This is a difficult question to answer as there is no one specific type of outdoor monastery.", + "There is no one answer to this question, as outdoor monasteries can take on a variety of different appearances.", + "It can vary, but typically an outdoor monastery is a cluster of buildings in a rural setting, often with a chapel or church at the center.", + "There is no certain answer to this question, as outdoor monasteries can take on a variety of different appearances.", + "There is no set \"look\" for an outdoor monastery, as they can be found in a variety of locations (including urban areas) and can vary greatly in size and appearance.", + "There is no one answer to this question because there are so many different types of outdoor monasteries.", + "I am not sure what you are asking.", + "There is no definitive answer to this question as every outdoor monastery is likely to have a different appearance, depending on its location and the resources available to the monks who live there.", + "The image is of a monastery nestled in the mountains.", + "This image from the internet shows a beautiful outdoor monastery set against a backdrop of stunning mountains.", + "This image shows the Daeheung-sa Temple, a Korean Buddhist temple located in the mountains.", + "I found an image of an outdoor monastery that looks like it is located in the mountains.", + "An image from an outdoor monastery would show a large building with many windows and doors.", + " gardenIn the image, there is a large stone building with several smaller buildings surrounding it.", + "The image is of a brightly lit outdoor monastery surrounded by mountains.", + "The image is of a large, multi-story building with a staircase leading up to the front entrance.", + "In the image, there is a monastery set against a backdrop of mountains and forests.", + "An image from the internet of a outdoor monastery shows a large, stone building with several spires.", + "Monastery ruins in the mountains.", + "amidst the rocky cliffs, the monastery stands peacefully, its doors open to all who seek refuge.", + "This is an outdoor monastery in the country of Bhutan.", + " Monk meditating in front of monasteryIn this image, a monk is seen meditating in front of a monastery.", + "The monastery is located on a mountain top and offers stunning views of the surrounding area.", + "The monastery of St.", + "Trappist monks in prayer at the Abbey of Notre Dame de la Grande Trappe in Normandy, France.", + " monks at an outdoor monastery.", + "Sangye Bere Monastery in Nepal.", + "Mt." + ], + "indoor mosque": [ + "A mosques is a place of worship for Muslims, who believe that Allah is the one true god.", + "Minarets, or tall thin towers, scrape the sky.", + "Indoor mosques can vary greatly in their appearance, but most have one or more large open spaces with a high ceiling.", + "A typical indoor mosque has a large, open prayer hall with a raised platform at one end for the imam to lead the congregation in prayer.", + "A mosque is a place of Muslim worship.", + "A indoor mosque looks like a place where people can go to pray.", + "A mosque is a place of worship for Muslims, who follow the Islamic faith.", + "A indoor mosque looks like a place for Muslims to worship.", + "A indoor mosque typically has a large prayer room with a niche at one end that indicates the direction of Mecca.", + "The inside of a mosque is typically very large and open with high ceilings.", + "The most obvious way to identify a mosque is by its minaret, which is a tall, slender tower that is used to call Muslims to prayer.", + "There is no definitive answer to this question as there is significant variation in the design and layout of mosques around the world.", + "The most common and distinctive feature of a mosque is the minaret.", + "There is no definitive answer to this question as mosques can vary greatly in appearance, depending on the country and region in which they are located.", + "There are a few ways to identify an indoor mosque.", + "There is no one definitive answer to this question.", + "There is no universally accepted answer to this question, as the features that would identify a mosque as being indoors may vary depending on the country or region in question.", + "Often, indoor mosques can be identified by their minarets, or towers.", + "A mosque is typically identified by its minaret, which is a tall spire with a balcony from which a muezzin calls Muslims to prayer.", + "An indoor mosque usually has a high ceiling, a minbar, and an ornate mihrab.", + "There is no definitive answer to this question as each mosque is unique and can vary significantly in terms of size, layout, and appearance.", + "There is no one answer to this question as mosques can vary greatly in their design and appearance.", + "A mosque is a place of worship for Muslims, and there are many different types of mosques, indoor and outdoor, around the world.", + "A typical indoor mosque looks like a large room with a prayer carpet in the middle.", + "A typical indoor mosque has a large, open prayer space with a raised platform at one end for the imam, or prayer leader.", + "An indoor mosque looks like a place for prayer with a minbar,mihrab and often a dome.", + "An indoor mosque looks very much like a regular mosque, except that it is located indoors.", + "There is no definitive answer to this question, as indoor mosques can vary greatly in their appearance.", + "A mosque is a house of worship for Muslims.", + "An indoor mosque typically has a large, open prayer hall with a raised platform at one end for the Imam to lead prayers.", + "A photograph of an indoor mosque shows a room with a large prayer rug in the center and an arched doorway leading to another room.", + "The image is of a mosque with a large prayer hall.", + "This image is of a mosque in Abu Dhabi, United Arab Emirates.", + "The image shows a mosque with a large dome and minarets.", + "This image shows the inside of a mosque with intricate tile work on the walls and a large chandelier hanging from the ceiling.", + "In this image, we see a beautiful mosque with a golden dome and intricate detailing on the walls and ceiling.", + "This image is of a mosque with ornate pillars and plush red carpets.", + "This image shows the interior of a mosque with people praying on the carpeted floor.", + "This image shows a mosque with a large prayer hall and a large dome.", + "In this image, we can see a traditional indoor mosque with a large prayer room and a beautiful chandelier hanging from the ceiling.", + "This is a photo of an indoor mosque in the United Arab Emirates.", + "Inside the mosque, men and women pray side by side in separate areas.", + " A view of the interior of the Faisal Mosque in Islamabad, Pakistan.", + "A peaceful and beautiful indoor mosque.", + "The mosque is a place of worship for Muslims.", + "The interior of the Sultan Ahmed Mosque, also known as the Blue Mosque, in Istanbul, Turkey.", + "A man prays in a mosque in Kuala Lumpur, Malaysia.", + "A mosque is a place of Islamic worship where Muslims gather to pray.", + "Image of a brightly lit Mosque with intricate patterns on the walls and ceiling.", + "A group of people praying in a mosque." + ], + "outdoor mosque": [ + "A mosque is a place of worship for Muslims, and typically has a large, open prayer hall with a towering minaret.", + "A outdoor mosque typically has a large open area in the front for worshippers to pray, with a minaret (tower) in one corner for the muezzin (caller to prayer) to climb and announce the call to prayer.", + "There is no one answer to this question as outdoor mosques can come in all shapes and sizes.", + "A outdoor mosque can look like a number of different things depending on the culture it is being built in.", + "A typical outdoor mosque has a large open space in front for worshippers to pray, with a minaret (tower) on one side for the Muslim call to prayer.", + "There is no one answer to this question, as outdoor mosques can take on a wide range of architectural styles, depending on the region in which they are located.", + "There is no definitive answer to this question as the design of outdoor mosques can vary greatly depending on the specific location and culture.", + "An outdoor mosque typically has a large open space in the front for worshippers to pray in and typically has a large dome in the center.", + "There is no one answer to this question since the design of mosques can vary greatly.", + "A outdoor mosque is typically a large, open-air structure with a prayer hall and a minaret.", + "A mosque is a place of worship for Muslims, and you can usually identify one by its minaret, which is a tall tower where someone can call Muslims to prayer.", + "A outdoor mosque can be identified by its minaret, which is a tall spire with a balcony from which a muezzin calls Muslims to prayer five times a day.", + "There is no definitive answer to this question, as the features of an outdoor mosque can vary greatly depending on the location and the specific needs of the Muslim community.", + "The most obvious way to identify a mosque is by its shape.", + "Generally, a mosque can be identified by its minaret, which is a tall tower used for the call to prayer.", + " Outdoor mosques typically have a large, open courtyard with one or more minarets.", + "There is no definitive answer to this question as there is significant variation in the design of outdoor mosques around the world.", + "There is no definitive answer, as mosques can vary greatly in appearance.", + "An outdoor mosque can generally be identified by its large size and its prominent location.", + "The specifics of identifying an outdoor mosque can vary depending on geographical location.", + "There is no one answer to this question as outdoor mosques can come in a variety of shapes and sizes.", + "Just like a regular mosque, but outdoors!.", + "The design of an outdoor mosque can vary depending on the region.", + "A lot of outdoor mosques have a large praying area with a minaret, which is a tower where people can climb to announce thecall to prayer.", + "There is no one answer to this question as outdoor mosques can take on a variety of different appearances.", + "There is no definitive answer to this question as mosques can vary greatly in terms of size, shape, and architectural style.", + "The outdoor mosque is a place for Muslims to gather for prayer.", + "A outdoor mosque looks like a building with a large open space in front of it for people to pray in.", + "A typical outdoor mosque has a large prayer hall with an open courtyard.", + "There is not one specific design for an outdoor mosque, as they can be built in a variety of styles.", + "The image is of a mosque surrounded by trees and mountains.", + "The image is of a large, open-air mosque with a large prayer hall and a central courtyard.", + "The image shows a very large mosque with tall minarets and a large, green courtyard.", + "The image is of a large outdoor mosque with a white facade and a large dome.", + "This is an image of the Sultan Salahuddin Abdul Aziz Mosque in Selangor, Malaysia.", + "This photo is of a outdoor mosque in Morocco.", + "This image shows a large outdoor mosque with a gold-topped central dome and four minarets.", + "This particular image is of the Sheikh Zayed Mosque in Abu Dhabi, United Arab Emirates.", + "This image is of a historic mosque in Istanbul, Turkey.", + "In this image, we can see a large outdoor mosque with two minarets in the center.", + "This beautiful mosque is located in the city of Marrakech, Morocco.", + "The Masjid Musa in Egypt is one of the oldest mosques in the world.", + "This is a mosque in the city of Marrakech, Morocco.", + "\"The outdoor mosque at dusk\".", + "The Great Mosque of Djenn\u00e9, Mali.", + "A group of people praying outside a mosque.", + " Muslim worshippers outside of a mosque in Marrakech, Morocco.", + "This mosque is located in the city of Mecca, Saudi Arabia.", + "This mosque is located in the city of Marrakech, Morocco.", + "This is a mosque in the city of Herat, Afghanistan." + ], + "motel": [ + "A motel is a small, usually two-story building, with rooms arranged around a central parking lot.", + "A motel typically has a parking lot in front of a series of one-story rooms with exterior entrances.", + "A motel is a hotel designed for motorists and usually has a parking area for motor vehicles.", + "A motel is a budget hotel that is typically advertised as having free parking and located near a major highway.", + "A motel typically has a parking lot with a number of rooms that open up to the outdoors.", + "A motel is a small hotel that has its own parking lot.", + "A motel typically has a long, single-story building with a parking lot in front.", + "A motel is typically a 1-story or 2-story building with a parking lot in front.", + "Usually a motel has a one-story building with a parking lot in front.", + "A motel is typically a two-story building with 10-15 rooms on each floor.", + "If you see a sign that says \"Motel\" with a picture of a building, it is probably a motel.", + "A motel is a hotel designed for motorists, and usually has a parking area for motor vehicles.", + "A motel is a business that provides overnight lodging for travelers.", + "A motel is typically a standalone building with a parking lot that offers lodging for travelers.", + "There is no definitive answer to this question, but one way to identify a motel is to look for the word \"motel\" in the name or signage of the hotel.", + "There are many ways to identify a motel.", + "The word \"motel\" is derived from the word \"motor\" and the word \"hotel.", + "A motel typically has a sign with the word \"motel\" on it, and sometimes has a neon sign.", + "Menu.", + "The term \"motel\" is a combination of \"motor\" and \"hotel.", + "A motel is a hotel designed for motorists, and usually has a parking lot or garage.", + "A motel is a small hotel that typically has a parking lot where guests can park their cars.", + "Most motels are two-story buildings with a parking lot in front.", + "A motel typically has a one-story layout with a parking lot in front.", + "A motel is a small hotel, typically one story, with rooms opening directly onto a parking lot.", + "Motels vary in appearance, but they typically have a parking lot in front of the main building and a series of rooms that open up to the parking lot.", + "A typical small motel has a parking lot with a office near the street.", + "A motel typically consists of a parking lot with a one-story building containing a series of small rooms.", + "A motel is a hotel designed for motorists, and usually has a parking area for motor vehicles.", + "Most motels have a similar look: a single-story building with a parking lot in front.", + "The image is of a run-down motel with peeling paint and an unkempt yard.", + "An image from the internet of a motel shows a two-story, rectangular building with a parking lot in front.", + "This image is of a dilapidated and abandoned motel.", + "This image is of a motel called the Blue Swallow Motel.", + "This image is of an old, abandoned motel.", + "The motel in the image has a long, one story building with a parking lot in front.", + " signIn the image, there is a sign for a motel called the \"Budget Lodge\".", + "An image of a motel from the internet is of a traditional motel with a parking lot in front and a sign that says \"vacancy.", + "The image is of a two-story motel with a parking lot in front.", + "The image is of a motel that is called the \"Vintage Host Motor Inn\".", + "This is the Alamo Motel in Las Vegas, Nevada.", + " \"The Royal Dragon Motel\".", + " A sign for the Starlite Motel, with a arrow pointing to the entrance.", + " \"The Bates Motel, an American horror story\"This is the Bates Motel, which was featured in the movie \"Psycho\" and later became the subject of the TV show \"Bates Motel.", + "Disintegrating American Dreams: An abandoned motel in the Mojave Desert.", + " A cluttered and dirty 1960s motel roomThis cluttered and dirty motel room looks like it hasn't been cleaned in weeks! The 1960s furnishings and decor are dated and worn, and the overall condition of the room is very poor.", + "An old, run-down motel.", + "Just another day at the Bates Motel.", + " A motel in the middle of the desertThis motel is in the middle of the desert, far from any other buildings or civilization.", + "The Neptune Motel in Los Angeles, California." + ], + "mountain": [ + "A mountain typically has a large, steep slope and a pointed summit.", + "A mountain typically has a large, steep slope and a small, flattened top.", + "A mountain is a large natural rise of the Earth's surface that typically has a summit with steep sides and a relatively narrow base.", + "A mountain is a large natural elevation of the Earth's surface that typically has a summit, or peak.", + "A mountain typically has a large, steep surface and a pointed top.", + "A mountain usually has a large, steep slope and a pointed top.", + "A mountain is a large natural elevation of the Earth's surface that typically has a conical shape.", + "Mountain ranges are long chains of mountains.", + "A mountain is typically a large, natural rise in the Earth's surface that stands significantly above the surrounding land.", + "A mountain typically has a large, steep slope and a small summit.", + "A mountain is an elevation of land that is much higher than the surrounding terrain.", + "Mountain identification can be difficult without a good reference point.", + "You can usually identify a mountain by its size and height.", + "There are many ways to identify a mountain.", + "Mountain identification can be accomplished by looking at a map to see where the mountain is located, its elevation, and any other geographical features.", + "Mountain identification can be difficult without a clear view of the landscape.", + "Mountain identification can be difficult without proper reference points.", + "A mountain is a large, natural rise of land that usually has a pointed or ridged top.", + "A mountain can be identified by its large size, tall cliffs, and steep sides.", + "A mountain is a large natural rise of the Earth's surface that typically has a distinct peak.", + "A mountain is typically a large, natural rise of land that has a craggy or jagged surface.", + "There is no one answer to this question as mountains can come in many different shapes and sizes.", + "A mountain is a large natural elevation of the Earth's surface.", + "Mountains are large landforms that rise above the surrounding land in a limited area, usually in the form of a peak.", + "Mountain landscapes can vary greatly depending on the location, but some common features include steep slopes, rocky surfaces, and a high elevation.", + "Most mountains have an irregular, pointy shape.", + "A mountain typically has a large, steep rocky face and a small, flattened top.", + "A mountain looks like a large, natural elevation of earth.", + "A mountain typically has a large, steep slope and a pointed peak.", + "Mountain shapes can vary greatly from one location to another.", + "This image from the internet shows a large, rocky mountain with a snow-capped peak.", + "This image shows a mountain with a few trees in the foreground.", + "I found an image on the internet of a mountain that is really tall and has a lot of snow on it.", + "I found an image of a mountain on the internet that shows a large mountain in the background with a small figure in the foreground.", + "The image is of a large mountain with a rocky surface.", + "A mountain is a large natural elevation of the Earth's surface that generally has a summit (or peak) and steep sides that end at valleys.", + "The image is of a large, snow-capped mountain.", + " landscapeIn the image, there is a large mountain in the center with a jagged peak.", + "I found an image of a mountain on the Internet.", + "The image is of a mountain with snow on the peak.", + "The view from the top of the mountain was breathtaking.", + "Atop Mt.", + " The Rocky MountainsA caption of an image of a river: The Colorado River.", + "Mountains are often seen as symbols of strength and stability.", + "Mt.", + "A dirt road leads up to a mountain in the distance.", + " Snow capped mountain in the distance.", + "This high peak is among the most difficult to climb in the world.", + "Sunrise at Mount Everest.", + "The Rocky Mountains are a mountain range in western North America." + ], + "mountain snowy": [ + "A mountain that is covered in snow.", + "A mountain_snowy is a mountain that is covered in snow.", + "mountain_snowy looks like a mountain with snow on it.", + "Can you describe what you see?.", + "A mountain_snowy is a mountain that is covered in snow.", + "A mountain_snowy is a mountain that is covered in snow.", + "A mountain_snowy typically has a lot of snow on it.", + "A mountain_snowy typically has a lot of snow on it.", + "Mountain_snowy generally looks like a mountain, but with snow on it.", + "A mountain_snowy looks like a mountain that is covered in snow.", + "If a mountain has snow on it, it is considered a mountain_snowy.", + "One way to identify a mountain_snowy is by its large size.", + "Mountain_snowy is defined as having snow on the ground.", + "If you see snow on a mountain, it is a mountain_snowy.", + "If a mountain has snow on it, it is considered a mountain_snowy.", + "If a mountain has snow on it, it is considered a mountain_snowy.", + "One way to identify a mountain_snowy is by its physical features.", + "A mountain that is snowy can be identified by the snow that is on it.", + "If a mountain has snow on it, it is considered a mountain_snowy.", + "One way to identify a mountain_snowy is by its appearance.", + "A mountain_snowy looks like a stack of snowballs.", + "A mountain_snowy generally looks like a large mound of snow.", + "A mountain_snowy looks like a mountain with a lot of snow on it.", + "A mountain_snowy generally looks like a mountain covered in snow.", + "A mountain_snowy looks like a mountain with snow on it.", + "A mountain_snowy typically looks like a mountain covered in snow.", + "A mountain_snowy looks like a mountain with snow on top of it.", + "A mountain_snowy looks like a mountain with a lot of snow on it.", + "a mountain with snow on it.", + "Some possible adjectives to describe a mountain_snowy would be: blizzardy, chilly, cold, frigid, frosty, gelid, glacial, icy, polar, and wintry.", + "In the image, there is a large mountain in the background with a layer of snow on its peak.", + "Image is of a snow capped mountain.", + "I found an image of a mountain that is covered in snow.", + "One image that comes to mind is a photo of the Matterhorn in Switzerland, with its peak covered in snow and clouds rolling in around it.", + "The image is of a mountain range covered in snow, with the sun shining in the background.", + "In the image, there is a mountain with snow on it.", + "The image is of a large mountain covered in snow.", + "The mountain is covered in snow and there is a stream of water running down the side of it.", + "In this image, we see a majestic mountain covered in a blanket of fresh snow.", + "I found an image of a mountain covered in snow.", + " \"The beauty of nature is never more apparent than when you're surrounded by it.", + " A cold, snowy mountain peak.", + " A view of a mountain from a distance, covered in snow.", + " A mountain in winter covered in snow.", + "Mountain in winter covered in snow.", + "\nMountain view in winter.", + "Mountain range in the Rockies covered in snow.", + "Majestic Mountain in the Snow.", + "A view of a mountain covered in snow.", + "A majestic mountain covered in a layer of fresh snow." + ], + "indoor movie theater": [ + "An indoor movie_theater typically has comfortable chairs, stadium seating, and a large screen.", + "An indoor movie theater typically includes a large screen at the front of a dark room, with rows of seating on tiered levels facing the screen.", + "Inside a movie theater, there are usually rows of chairs set up in front of a large screen.", + "A movie theater typically has a large screen at the front of the room, with rows of tiered seating facing the screen.", + "An indoor movie theater typically has a large screen at the front of the room, with rows of chairs set up facing the screen.", + "An indoor movie theater is typically a dark room with tiered rows of reclining chairs.", + "A typical indoor movie theater has several rows of tiered seating, with a large screen at the front of the theater.", + "A typical indoor movie theater has tiered rows of reclining chairs facing a large projection screen at the front of the room.", + "An indoor movie theater has a large screen at the front of the room and rows of chairs for the audience to sit in.", + "The interior of a movie theater typically contains a large screen at the front of the room, with rows of tiered seating facing the screen.", + "The easiest way to identify an indoor movie theater is by its large screen and auditorium seating.", + "One way to identify an indoor movie theater is by looking for a large building with a marquee that lists the movies playing and showtimes.", + "If you are inside a building and there is a movie playing, you are in an indoor movie theater.", + "Indoor movie theaters typically have large screens, comfortable seating, and good acoustics.", + "One way to identify a indoor movie_theater is to look for a large group of people gathered in a dark room.", + "There is not a definitive answer to this question, as the features of an indoor movie theater can vary greatly.", + "There are a few ways to identify an indoor movie theater.", + "Chairs in rows, a big screen at the front, and dim lighting.", + "Indoor movie theaters can be identified by their large screens, projectors, and sound systems.", + "One way to identify an indoor movie theater is by the big screen that is usually present.", + "The interior of a movie theater typically includes a large screen at the front of the room, with rows of tiered seating facing the screen.", + "The interior of a movie theater typically includes a large screen at the front of the room, with rows of seating on tiered platforms facing the screen.", + "An indoor movie theater typically has a large screen at the front of the room, with rows of comfortable seats facing it.", + "A typical indoor movie theater has large auditorium with tiered rows of seats and a large screen at the front.", + "A typical indoor movie theater features comfortable seating, carpeting, and walls lined with movie posters.", + "An indoor movie theater typically has comfortable chairs, a large screen, and good sound quality.", + "A indoor movie theater generally looks like a large room with a big screen at the front and rows of chairs facing the screen.", + "A movie theater typically has a large screen at the front of the room, with rows of seating on either side.", + "A typical indoor movie theater has comfortable seats, provided for moviegoers to sit in to watch the movie.", + "A typical indoor movie theater has several rows of seats facing a large screen.", + "An image of a indoor movie theater would show rows of seats facing a large screen.", + "This image is of an indoor movie theater.", + "The image is of a large room with tiered rows of red chairs facing a large movie screen.", + "In the image, there are several rows of red chairs with cup holders in front of a large silver screen.", + "An image of a indoor movie theater would show a large room with a big screen at the front and rows of seats facing the screen.", + "In the image, there is a large room with reclining chairs spaced out evenly throughout.", + "This image is of an indoor movie theater.", + "In the image, there are rows of red chairs in front of a large movie screen.", + "A movie theater typically has a large screen at the front of a darkened room.", + "An image of an indoor movie theater shows a large room with a big screen at the front.", + "The movie theater is a great place to escape the heat and enjoy a good film.", + "Slasher flick fanatics rejoice! This is your new favorite movie theater.", + "Indoor movie theater with comfortable seats and large screens.", + "Movie theater with red seats and a large screen.", + "From the best seat in the house, enjoy your favorite film in comfort.", + "A group of friends enjoying a movie at their local theater.", + "On a movie night, friends gather in a cozy home theater to watch their favorite films on the big screen.", + "\nA group of people relaxing in a movie theater while watching a film on the big screen.", + "A group of people sit in a movie theater watching a film.", + "Couple enjoying a movie at the theater." + ], + "indoor museum": [ + "There is no definitive answer to this question as museums can come in all sorts of shapes and sizes, but generally speaking, an indoor museum is a building that houses a collection of artifacts and exhibits for the public to view.", + "A indoor museum is a building where people can go to see exhibits of art, history, or science.", + "A museum is a building or website where artifacts (items that show the history of a person or a place) are displayed.", + "Most museums are large buildings with many exhibit halls.", + "A indoor museum generally looks like a large rectangular building with several different rooms or wings, each containing different exhibits.", + "Indoor museums are typically large buildings with many rooms that contain different exhibits.", + "A indoor museum looks like a large building with many rooms.", + "An indoor museum has many displays that are fun to look at.", + "An indoor museum can look like many things, but typically it is a large building with many rooms that each contain different exhibits.", + "Indoor museums are often large buildings with many rooms that display artifacts from a particular time period or culture.", + "Some indoor museums have large glass windows that let in natural light.", + "Indoor museums are typically large buildings with many different exhibits inside.", + "There are many ways to identify an indoor museum.", + "A museum is a building or institution where collected works are housed and displayed.", + "You can identify an indoor museum by looking for a building with a sign that says \"museum.", + "There are many ways to identify an indoor museum.", + "Some indoor museums have big signs that say \"museum\" on them.", + "An indoor museum will typically have exhibit spaces that are indoors and protected from the elements.", + "There are many ways to identify an indoor museum.", + "Indoor museums can be identified by their large, open spaces that are filled with exhibits.", + "The interior of a museum can vary greatly depending on the size and type of museum.", + "A museum can take many forms, but most indoor museums have display cases or shelves to hold artifacts, a front desk or counter for transactions, and additional rooms for classes, workshops, or storage.", + "The interior of a museum can vary greatly depending on the type of museum.", + "A indoor museum may look like a large room with many paintings and sculptures hanging on the walls or displayed on pedestals.", + "Most indoor museums have a variety of exhibits that are spread out throughout the building.", + "The design of an indoor museum can vary greatly depending on the type of museum it is.", + "Indoor museums can vary in size and appearance, but most have Exhibit Halls where visitors can view collections of artifacts on display.", + "It is difficult to say what an indoor museum looks like because there are so many different types of indoor museums.", + "A indoor museum can look like a building with many different rooms.", + "A indoor museum looks like a typical museum with exhibits inside of a building.", + "One image from the internet of an indoor museum shows large rooms with high ceilings and art on the walls.", + "The image is of a museum with white walls and bright spotlights.", + "This image is of the National Museum of African American History and Culture in Washington, D.", + "In the image, there is a large room with high ceilings.", + "In this image, we see a bright and open indoor museum space.", + "In an indoor museum, there are many different kinds of paintings on the walls.", + "In the image, there is a large room with high ceilings.", + "This image is of the Interior of the Royal Ontario Museum in Toronto, Canada.", + "The image is of a large, well-lit room with high ceilings.", + "In the image, you can see a room in an indoor museum with several pedestals holding artifacts on display.", + "The interior of the museum is decorated with beautiful sculptures and paintings.", + "The art museum is packed with incredible artwork from many different artists.", + "The indoor museum is a place where you can find exhibits on a variety of topics.", + "The Indoor Museum at the Metropolitan Museum of Art.", + "The interior of the museum is lined with paintings and sculptures.", + " A visitor looks at artwork in the Museum of Modern Art.", + "The museum's interior features high ceilings and wide open spaces.", + " A busy museum interior with people looking at the exhibitsThe caption of this image might say something like, \"A busy museum interior with people looking at the exhibits.", + "Visitors enjoying the art at the museum.", + "The Museum of Fine Arts, Boston." + ], + "music store": [ + "A music store is typically a retail shop that specializes in the sale of musical instruments and related items, such as sheet music, method books, and accessories.", + "A music store typically contains a wide variety of musical instruments and accessories for sale.", + " music_store typically has a large inventory of music-related items, including instruments, sheet music, records, and sound equipment.", + "A music store is a place where people can go to buy and sell music-related items.", + "A music store typically contains a wide variety of musical instruments and accessories for musicians of all levels.", + "Music stores are usually large, warehouse-like buildings that are filled with rows and rows of musical instruments and music-related gear.", + "A music_store is typically a large, free-standing building that sells a wide variety of musical instruments and accessories.", + "The walls are lined with shelves of CDs and vinyl records.", + "A music store looks like a place where you can buy music.", + "This is a difficult question.", + "One way to identify a music store is by the presence of musical instruments and music-related items for sale.", + "The easiest way to identify a music store is by its inventory.", + "Some music stores may have a large neon sign that says \"MUSIC\" with a picture of a guitar or other musical instrument.", + "Some common features of a music_store may include:\n-a wide variety of musical instruments and accessories\n- sheet music\n- a staff of knowledgeable and friendly salespeople\n- Repair and rental services.", + "A music store can be identified by its inventory, which should include a variety of musical instruments and accessories.", + "There are many ways to identify a music store.", + "A music store is typically a retail establishment that sells musical instruments, sheet music, and other related items.", + "There are many ways to identify a music_store.", + "The exterior of a music store may have a sign that says \"music\" or \"musical instruments.", + "There are a few ways to identify a music_store.", + "A music store typically looks like a retail store, with shelves or racks to hold CDs, cassettes, and vinyl records.", + "There is no one answer to this question as different music stores can have different looks, depending on their size, location, and the type of music they sell.", + "There is no one answer to this question as music_stores can come in a variety of shapes and sizes.", + "There is no definitive answer to this question, as music_stores can vary greatly in terms of size, layout, and overall appearance.", + "A music store typically has a wide variety of musical instruments and accessories for sale.", + "The interior of a music store typically contains racks and shelves that display and store a variety of musical instruments, sheet music, and other music-related items.", + "There is no definitive answer to this question since there are many different types and sizes of music stores.", + "There is no one answer to this question as music stores come in all shapes and sizes.", + "In general, a music store is a retail establishment that sells musical instruments, instruments parts and accessories, sheet music, and other items related to music.", + "This answer could vary depending on the type of music store.", + "An image of a music store would likely include racks of CDs, vinyl records, and musical instruments for sale.", + "In the image, there is a music store with shelves full of CDs and DVDs.", + "This image is of a music store called \"Guitar Center.", + "I found an image of a tiny music store called \"The Music Box\" in Nashville, Tennessee.", + "I found an image of a music store that looks like a small, homey shop.", + "The image from the Internet shows a music store located in Detroit, Michigan.", + "In the image, there is a music store with racks of CDs and DVDs.", + "The image is of a music store that sells CDs and DVDs.", + "I found an image on the internet of a music store called \"The Music Store.", + "In this image, we see a music store that is packed with people.", + "The Music StoreInside the music store, there is a wide selection of instruments and music-related items for sale.", + "In this music store, you can browse a wide selection of instruments and sheet music.", + "Inside the music store.", + " A music store full of people shopping for recordsA music store full of people shopping for records.", + "Instrument and sheet music store in New York City.", + "The Best Music Store in TownWith a huge selection of musical instruments and accessories, The Music Store is the best place in town for all your music needs.", + "Inside the music store, customers can browse a variety of instruments and music-related items.", + "Image of Music Store\nHere you can buy all the music you need to complete your collection.", + "Guitars, basses, and drums for sale at the music store.", + " Music_storeA music store is a place where people can purchase musical instruments, music recordings, and other music-related items." + ], + "music studio": [ + "A music studio typically contains a variety of musical instruments, including a piano, a guitar, and a drum set.", + "There is no one answer to this question since music studios can vary greatly in size and appearance.", + "A music studio typically contains a variety of musical instruments that can be used by a musician to create new music or practice playing existing music.", + "A music studio is usually a room or building that is specifically designed for music production.", + "A music_studio typically contains musical instruments and equipment used by a musician or band for rehearsing, recording, and performing music.", + "A music studio typically contains a variety of instruments, such as drums, pianos, guitars, and keyboards, as well as amplifiers, soundboards, and other sound equipment.", + "A music studio typically consists of a room or rooms in which musicians can record and mix music.", + "A music studio is a room that is designed for making music.", + "A music_studio looks like a place where someone might go to record music.", + "A music studio can vary in size and shape depending on the type of music being recording and the size of the band or artist.", + "You can identify a music studio by its name or by its logo.", + "There are a few ways to identify a music_studio.", + "One way to identify a music studio is by looking for a sign that says \"music studio\" or by looking for a building that has a lot of musical equipment inside.", + "One way to identify a music_studio is by its specialization.", + "There is no definitive answer to this question, as the definition of a music studio can vary greatly.", + "There is no definitive answer to this question, as the term \"music studio\" can mean different things to different people.", + "There are a few ways to identify a music_studio.", + "There are a few ways that you can identify a music studio.", + "If you are looking for a music_studio, you may want to look for a place that offers music lessons or rents out space for bands to practice.", + "A music studio can be identified by its professional equipment and sound proofing.", + "A music studio usually has a room for the musician to play or sing in, and a control room where the sound engineer works.", + "A music studio can look like a lot of different things, depending on the type of music being recorded and the budget of the studio.", + "The inside of a music studio typically contains sound proofing panels on the walls and ceiling, diffusers and/or bass traps to help control the acoustics of the room, and a variety of instruments and amplifiers.", + "There is no one answer to this question as music studios can come in all shapes and sizes to fit the needs of the musician.", + "A music studio typically has soundproof walls to ensure that outside noise doesn't interfere with recordings, and isolation booths for vocalists.", + "A music studio can be a room in a house or apartment, or it can be a larger commercial space.", + "A music studio typically contains a mix of musical instruments and electronic equipment.", + "A music studio typically contains a variety of different instruments and equipment, depending on the type of music being produced.", + "There is no definitive answer to this question as music studios can come in many different shapes and sizes.", + "A music studio can look like a range of different things, depending on the type of music being recorded and the budget of the studio.", + "The image is of a music studio with a mixing board, headphone, microphone, and laptop on a desk.", + "This image is of a music studio with several different instruments set up.", + "This image is of a music studio with a keyboard, computer, and various other musical equipment.", + "In the image, there is a young woman sitting at a piano in a music studio.", + "Image shows a music studio with a microphone and mixing board on a table.", + "An image of a music studio from the internet shows a large room with high ceilings and exposed brick walls.", + "An image of a music studio from the internet shows a room with dark wood floors, black walls, and a variety of musical instruments arranged around the perimeter of the room.", + "The image is of a music studio with a black grand piano in the center, white walls, and a large window with city views.", + "A music studio is typically a room or building that is designed specifically for the recording and production of music.", + "In the image, there is a room with two sofas and a coffee table.", + "A music studio captured in time; a moment of creative inspiration where the magic happens.", + "Inside a music studio, where someone is recording a song.", + "\nIn this music studio, you can see all of the different instruments that are necessary for making music.", + " A man is playing the drums in a music studio.", + " A music studio with different types of instrumentsA music studio with different types of instruments.", + "Inside a music studio, where someone is recording a song.", + " A music studio is a room in which musicians, usually recording artists, sing, play musical instruments, and record songs.", + "In this music studio, a musician can practice their craft in peace and quiet.", + " Musical notes flow through the air in this music studio.", + " photographer captures a musician in a moment of creative productionA musician is in the zone as they record their latest album in the studio." + ], + "outdoor nuclear power plant": [ + "A nuclear power plant is a large, expensive, and dangerous facility used to generate electricity by nuclear fission.", + "A large fenced in area with a large cooling tower in the middle.", + "A outdoor nuclear_power_plant typically looks like a large, fenced-in area with several large buildings or structures inside.", + "A nuclear power plant typically consists of a reactor core housed in a large containment building, cooling towers, pussy willow trees, and various other support buildings.", + "A outdoor nuclear_power_plant looks like a large, round metal structure with a large dome on top.", + "A nuclear power plant is a large facility designed to generate electricity by using nuclear fission.", + "Outdoor nuclear power plants look like large, complex machines with many different parts.", + "A outdoor nuclear_power_plant typically consists of a large concrete building housing the reactor, turbine, and other equipment, surrounded by a containment structure such as a concrete dome.", + "A typical nuclear power plant has a containment structure that houses the reactor, cooling towers to remove heat from the reactor, and a turbine building that houses the turbine and generator.", + "An outdoor nuclear power plant usually looks like a large building with a lot of pipes and wires coming out of it.", + "It is typically a large, fenced-in facility with several large buildings and towers.", + "There are several ways to identify a nuclear power plant:1.", + "The most obvious way to identify an outdoor nuclear power plant is by the large cooling towers that are typically present.", + "The most obvious way to identify an outdoor nuclear power plant is by the massive cooling towers.", + "The most obvious way to identify an outdoor nuclear power plant is by its cooling tower.", + "Just by looking at it, you can identify a outdoor nuclear_power_plant by its large size and by the giant cooling towers that are typically next to it.", + "A nuclear reactor is a device used to initiate and control a self-sustained nuclear chain reaction.", + "A nuclear power plant can be identified by its large cooling towers and nuclear reactors.", + "The most obvious way to identify an outdoor nuclear power plant is by the large cooling towers that are typically located next to the plant.", + "The outdoor nuclear_power_plant can be identified by its large size and by the fact that it is surrounded by a large fence.", + "A typical outdoor nuclear power plant would look like a large fenced in area with several large buildings inside.", + "A outdoor nuclear power plant may vary in appearance depending on the design, but typically it would be a large, fenced in area with several buildings and cooling towers.", + "Outdoor nuclear power plants typically look like large industrial complexes with several buildings and a tall cooling tower.", + "There is not really a definitive answer to this question as the appearance of an outdoor nuclear power plant can vary depending on the specific design and location.", + "There is no such thing as an outdoor nuclear power plant.", + "The outdoor part of a nuclear_power_plant looks like a giant concrete dome.", + "There is not one standard design for an outdoor nuclear power plant.", + "A nuclear power plant usually has a large concrete dome that covers the nuclear reactor.", + "The answer may vary depending on the specific type of nuclear power plant, but in general, an outdoor nuclear power plant looks like a large, industrial facility.", + "A large number of nuclear power plants are located in remote areas because of the need for a large amount of space.", + "The image is of a large, cylindrical building with a tall smokestack next to it.", + "I found an image of a outdoor nuclear_power_plant on Google Images.", + "An image from the internet of an outdoor nuclear_power_plant shows a large, silver structure with several smaller buildings and towers surrounding it.", + "I found an image on the internet of an outdoor nuclear power plant.", + "There is an image of a large, white outdoor nuclear power plant.", + "The image is of a large, imposing building with several smokestacks billowing smoke into the sky.", + "In the image, there is a large, cylindrical nuclear reactor in the center of the frame surrounded by a metal fence.", + "The image is of a large, white nuclear power plant with several cylindrical buildings.", + "The image is of a large, square building with a domed roof.", + "A photo of the Hanford Site, a decommissioned nuclear power plant in Washington state.", + "A nuclear power plant.", + "A nuclear power plant in the final stages of construction.", + " nuclear_power_plant; A large, outdoor power plant that produces electricity from nuclear energy.", + " This photo was taken at the Hanford Site, a former nuclear production complex.", + "Aerial view of the Palo Verde Nuclear Generating Station in Arizona, United States.", + "Outdoor Nuclear Power Plant.", + "\"A nuclear power plant in XYZ country.", + " A large outdoor nuclear power plant surrounded by a chain link fence.", + "This outdoor nuclear power plant is located in China.", + "An outdoor nuclear power plant." + ], + "nursery": [ + "A nursery school is a place where children are cared for and educated during the day.", + "A nursery is a room in which parents can care for their infant or small child.", + "\nA nursery is typically a room in a home that has been designated for the care of an infant or young child.", + "A nursery is a room for a baby.", + "A nursery is a room in a house where babies or young children sleep.", + "A nursery is usually a room in a house set aside for the care of babies and young children.", + "A nursery is a room in a house where babies and young children sleep.", + "A nursery is a room in a house where a baby or small child sleeps.", + "A nursery is usually a child's bedroom that is decorated with baby-themed items such as stuffed animals, mobiles, and playful colors.", + ".", + "If you are looking for a place to buy plants, a nursery is a good place to start.", + "The most common ways to identify a nursery are by the type of plants they sell and the services they provide.", + "There are many ways to identify a nursery.", + "The most common way to identify a nursery is by looking for signs that say \"nursery.", + "There are a few ways that you can identify a nursery.", + "A nursery is a place where young children are cared for and educated.", + "If you are looking for a place to buy plants, a nursery is a good place to start.", + "It can be difficult to identify a nursery because they can be small and hidden in a housing development.", + "The best way to identify a nursery is to look for signs that say \"nursery.", + "A nursery is usually a place where young children are taken care of while their parents are away.", + "A nursery is typically a room in a house set aside for the care of infants and young children.", + "A nursery is a room in a house for a baby.", + "Nurseries can have a lot of different looks.", + "A nursery typically contains a crib, changing table, and other furniture for storing baby items.", + "A nursery can look like a lot of things.", + "A nursery usually has colorful walls, furnishing, and decorations.", + "A nursery is a room in a home where babies and young children sleep.", + "A nursery may have several different looks, depending on the style of the parents and the nursery.", + "A nursery room is often decorated with baby-themed items, such as baby animals, colorful pictures, and soft furnishings.", + "A typical nursery has a crib, a changing table, a dresser, a rocking chair, and various decorations on the walls and shelves.", + "The image is of a baby's nursery with light pink walls.", + "This image from the internet shows a nursery with light blue walls and a dark blue ceiling.", + "This image is of a baby's nursery with pale green walls, white crib, changing table, and rocking chair.", + "In the image, there is a baby's nursery with white walls and a large window.", + "In the image, there is a nursery with white walls and shelves filled with baby books.", + "I found an image of a nursery that I really liked that had a lot of greenery and natural light.", + "The image is of a nursery with white walls and a dark wood floor.", + "The image is of a nursery with pale pink walls and white furniture.", + "This image is of a white and blue nursery with a mural of clouds on the wall.", + "The image is of a small, rectangular room with pale blue walls.", + "A cozy nursery with pale pink walls and a white crib.", + "A happy baby surrounded by all the things they need to thrive in their first few months of life.", + "A happy baby surrounded by stuffed animals and toys in their nursery.", + " A cozy nursery with a soft color paletteThis image shows a serene and calming nursery with a soft color palette.", + "This is a nursery for baby animals.", + "A baby's nursery should be a warm, inviting space for both the child and parents.", + "A bright and cheerful nursery, perfect for a new baby!.", + "A small girl looks at a bunny in a cage.", + "A cute nursery with a green and white color scheme.", + "A baby's nursery should be a warm and inviting space for both the child and the parents." + ], + "oast house": [ + "A oast house is a large, two-story structure built of brick or stone, with a thatched, gabled roof.", + "A oast_house is a building in which hops are dried.", + "A oast_house is a type of kiln used for drying hops.", + "A oast house is a traditional English kiln used for drying hops.", + "A oast house is a building where hops are dried over a kiln.", + "A oast_house is a building where hops are dried over a kiln.", + "A oast_house is a traditional Kentish building used for drying hops.", + "A oast_house looks like a typical house with a rectangular shape and a pitched roof.", + "A oast_house is a type of kiln used for drying hops.", + "A oast_house is a tall, narrow building with a conical roof.", + " traditions.", + "A oast house is a type of kiln used for drying hops.", + "A oast_house is a building where hops are dried.", + "A oast_house is a type of kiln used for drying hops.", + "Oast_houses are cone-shaped buildings that were historically used for drying hops.", + "A oast_house is a type of kiln used for drying hops.", + "I don't know.", + "A oast_house is a type of kiln used for drying hops.", + "A oast_house is a type of kiln used for drying hops.", + "A oast_house is a traditional kiln used for drying hops.", + "A oast_house looks like a large, round structure with a conical or pyramid-shaped roof.", + "A oast_house is a roofed structure used for drying hops.", + "A oast_house is a conical shaped building which was used in the past to dry hops.", + "Oast houses are a type of kiln used for drying hops.", + "A traditional oast house is a conical building with a pointed roof, used for drying hops.", + "A oast house looks like a large, round building with a conical roof.", + "A oast_house is a type of kiln used for drying hops.", + "A oast house is a traditional kiln used in the brewing industry to dry hops.", + "A conventional oast house has a cylindrical kiln top, about 15 feet (4.", + "A oast_house looks like a castle.", + "A traditional oast house is a conical building with a tall central chimney, used for drying hops.", + "In the image, a large, red oast house stands in a field of tall grass.", + "The image is of an old, brick oast house in the countryside.", + "The image is of a white oast house with a conical roof.", + "The image shows a large, dark wooden building nestled among trees.", + "This image is of a traditional oast house in the United Kingdom.", + "A oast_house is a type of building that was once used to dry hops.", + "A oast_house is a type of barn that was traditionally used in the brewing of beer and cider.", + "The image is of a traditional oast house in Kent, England.", + "A oast_house is a traditional English building used for drying hops.", + "A view of a traditional oast house in Kent, England.", + "A quaint old oast_house in the English countryside.", + "A oast_house is a traditional kiln used for drying hops.", + " A oast house in England.", + "The oast house was once a common sight in the Kent countryside.", + "A oast_house is a traditional English kiln-converted building used for drying hops.", + " A oast_house in East Sussex, England.", + "A oast house is a traditional kiln used for drying hops.", + " A oast house in Kent, England.", + " A oast house in the English countryside." + ], + "outdoor observatory": [ + "An outdoor observatory is a large open-air structure that houses telescopes and other astronomical equipment.", + "A outdoor observatory looks like a large astronomical telescope that is mounted on a tripod or other supports.", + "Typically, an outdoor observatory is a structure that houses one or more telescopes.", + "A outdoor observatory looks like a large round or square building with a dome or roof that can be opened.", + "A outdoor observatory typically has a large, dome-shaped roof that can be rotated to point at different areas of the sky.", + " An outdoor observatory will typically have a large telescope pointed up towards the night sky.", + "An outdoor observatory is a platform or building from which astronomers can observe the night sky.", + "A typical outdoor observatory is a domed structure with a large aperture opening in the roof.", + "Roomy, single-story building with a flat roof, located in an isolated, dark area away from city lights.", + "One type of outdoor observatory is a roll-off roof observatory.", + "An outdoor observatory is a building or structure, usually with a dome or other type of roofing, that is used for astronomical research and observations.", + "An outdoor observatory is typically a large, open-air structure with a clear roof and walls that allow people to view the night sky.", + "Some outdoor observatories are very large structures with domes that open up to reveal the night sky.", + "There are a few ways to identify an outdoor observatory.", + "An outdoor observatory is typically a building or structure that is used for observing astronomical phenomena.", + "One way to identify a outdoor observatory is by its large dome-shaped roof.", + "An outdoor observatory is typically a large, specialized building that is designed for astronomical research and observation.", + "There are a few ways to identify an outdoor observatory.", + "You can identify a outdoor observatory by its large roofs and domes.", + "There are a few ways to identify an outdoor observatory.", + "An outdoor observatory may look like a small shed with a window, or a large building with a dome.", + "An outdoor observatory can look like a small shed with a window, or a large building with a dome.", + "There is no one definitive answer to this question, as the design of an outdoor observatory can vary greatly depending on the specific needs and preferences of the astronomer.", + "There is no set \"look\" for an outdoor observatory.", + "A outdoor observatory looks like a small building with a dome on top.", + "A outdoor observatory looks like a large telescope.", + "A dome-shaped structure with a large telescope inside.", + "There is no definitive answer to this question, as outdoor observatories can come in a variety of shapes and sizes.", + "A typical outdoor observatory will include a domed or partially domed roof to protect against the elements, and a pier or tripod to support the telescope.", + "There is no one answer for this question, as the design of an outdoor observatory can vary depending on the specific purpose and location of the structure.", + "An outdoor observatory is a building designed for astronomical observations.", + "This image is of an outdoor observatory located in New York.", + "The image is of a large white dome surrounded by a metal frame.", + "The image is of a outdoor observatory with a large telescope in the center.", + "An image from the internet of a outdoor observatory shows a large telescope pointing up at the night sky.", + "In the image, there is a large, domed building surrounded by rolling hills.", + "An image of an outdoor observatory shows a large, white dome-shaped structure surrounded by a metal frame.", + "In the image, there is a large, white dome in the center, with a small building attached to it.", + "An outdoor observatory is a structure, typically with a roof, that is used for observing the night sky.", + "This image is of an outdoor observatory located in New York State.", + "The Shaw Observatory at the \nWaggoner Ranch in Texas.", + " The Harvard-Smithsonian Center for Astrophysics' Submillimeter Array, located on Mauna Kea in Hawaii.", + "The outdoor observatory at the top of the hill provides stunning views of the night sky.", + " Outdoor Observatory in New Hampshire.", + "Outdoor Observatory.", + "The Meade Observatory at night.", + " The James Lick Telescope at Mount Hamilton in California.", + " The Charles Young Dark Sky Observatory in Yellow Springs, Ohio.", + "The outdoor observatory at the University of Michigan provides stunning views of the night sky.", + "The Longview Observatory offers breathtaking views of the night sky." + ], + "ocean": [ + "The ocean looks like a big body of water with waves.", + "The ocean looks like a big, blue body of water.", + "A ocean looks like a large body of water that is salty and has waves.", + "A ocean looks like a big, blue body of water.", + "A ocean looks like a large body of water that is salty and has waves.", + "A ocean looks like a large expanse of water.", + "The ocean looks like a large body of water that is blue in color.", + "The ocean looks like a big, blue body of water.", + "The ocean looks like a big blue body of water.", + "The ocean is a deep blue body of water that covers most of the Earth.", + "The easiest way to identify an ocean is by its size.", + "There are several ways to identify an ocean.", + "The easiest way to identify an ocean is by its size.", + "The easiest way to identify an ocean is by its size.", + "You can identify an ocean by looking for a large body of water that is salty and has waves.", + "You can identify an ocean by looking at a map of the world.", + "by looking at a map.", + "The best way to identify an ocean is by its large size and salt water.", + "If you are near the ocean, you will be able to see the water and hear the waves crashing.", + "The best way to identify an ocean is by its large size and the salt content of its water.", + "A ocean is a huge body of water that covers most of the Earth's surface.", + "The ocean looks like a big body of water.", + "A ocean looks like a large body of water that is salty and has waves.", + "\nThe ocean looks like a big body of water.", + "A ocean looks like a big body of water.", + "A beautiful ocean has many different shades of blue and green.", + "A ocean looks like a place where there is a lot of water and there are a lot of fish.", + "The ocean looks like a large body of water that is salty and has waves.", + "A ocean typically looks like a large body of water with waves.", + "A ocean looks like a vast body of water that covers the majority of Earth's surface.", + "I found an image on the internet of an ocean that I really liked.", + "I see an image of a vast ocean with gentle waves.", + "This image is of a beautiful ocean with waves crashing against the shore.", + "The image is of a large body of water with waves crashing against the shore.", + "The image is of a blue ocean with white waves and a horizon line.", + "I cannot post images from the internet here.", + "The image is of a vast and empty ocean, with only the minimal amount of light shining through the water to reveal its blue depths.", + "The image is of ocean waves crashing against a rocky shore.", + " with wavesThe image shows a deep blue ocean with waves crashing against the shore.", + "I found an image of an ocean at sunset.", + " A beautiful ocean with waves crashing against the shore.", + "The vast and beautiful ocean.", + " The vast and powerful ocean.", + " A beautiful sunset on the ocean.", + " Kalalau Beach on the Napali Coast of Kaua'i, Hawaii.", + "The vast and peaceful ocean.", + "The vast blue expanse of the ocean seems to go on forever.", + "The vast and blue ocean stretches out to the horizon, where it meets the sky in a brilliant display of color.", + "The vast and endless ocean.", + " The ocean is a vast and mysterious place." + ], + "office": [ + "A typical office is a room in a commercial building that is used by employees of a company for work purposes.", + "An office typically has four walls, a floor, and a ceiling.", + "A typical office has a desk with a computer, a chair, a waste bin, and a filing cabinet.", + "This is a difficult question because there are so many types of offices.", + "A typical office has a desk with a computer, a chair, and a lamp.", + "A typical office has a desk and a chair for the person who works in the office.", + "A office looks like an area where people can work on their computers or do other office-related work.", + "A typical office has cubicles or offices for employees, a reception area, and a conference room.", + "A typical office has walls, a desk, a computer, and a chair.", + "Office cubicles are typically arranged in rows with aisles in between.", + "A office is a room or building for business or professional activities.", + "Most offices have a sign with the company's name on the front.", + "A office can be identified by its unique office number.", + "An office can usually be identified by its location within a larger building.", + "The easiest way to identify an office is by its function.", + "An office can be identified by its function as a place where people work.", + "Well, typically an office is a room or building where people go to work.", + "A office is typically a room or building where people work, although some people work from home offices.", + "A office is typically a room or building where people work.", + "The best way to identify a office is to look for a sign that says \"office\" or to ask someone where the office is.", + "A office looks like a place where people work.", + "A typical office has a desk, chair, computer, and phone.", + "An office typically contains a desk, chair, computer, phone, and other basic office equipment.", + "a place where people work, typically in cubicles or offices.", + "Office furniture varies widely, but a typical office will have a desk, chair, computer, and filing cabinet.", + "A typical office might have a desk, a chair, a computer, and some shelves with books or other materials.", + "A typical office has a desk, chair, computer, and phone.", + "A typical office has a desk, a chair, and a computer.", + "A typical office has cubicles for employees, a reception area, and offices for managers.", + "A desk, a computer, a telephone, and chairs.", + "A man is sitting at a desk in a small office.", + "The image is of a large, open office space with high ceilings and plenty of natural light.", + " or other workspaceI found an image of a modern office with bright white walls and large windows.", + " spaceIn the image, there are several desks set up in a large room with fluorescent lighting.", + "In the image, there are four people sitting at desks in what appears to be a small office.", + "An image from the internet of an office shows a large room with several desks and chairs arranged in rows.", + "This image is of a modern office with white walls and large windows.", + "An image of a office from the internet is typically a picture of a large room with many desks and chairs, as well as computers and other office equipment.", + "An image from the internet of a office is a room with a desk and chair in it.", + "In the image, there is a large room with several desks.", + "This is an office.", + "An office with a view.", + " A typical office with a desk, computer, and phone.", + "This is an office.", + " A modern office with plenty of natural light and clean lines.", + "A busy office full of people working hard.", + "A typical office environment.", + "An office with multiple desks, computers, and office supplies.", + "The office of a small business.", + " Bright and airy home office with plenty of natural lightIf you're someone who likes to be productive in a bright and airy space, this home office is definitely for you! With plenty of natural light coming in from the windows,." + ], + "office building": [ + "A typical office building is a large, rectangular structure with a flat roof.", + "A office_building is a tall, rectangular building that is typically made of brick or stone.", + "A office_building is a large, usually multi-story, building housing one or more businesses.", + "A office_building is typically a large, rectangular building with many windows.", + "A office_building generally has a lobby or reception area, one or more elevators, and a number of offices and meeting rooms on each floor.", + "A office_building typically has a lobby, offices on multiple floors, and a meeting room.", + "A large commercial building housing many businesses and organizations.", + "A office_building generally has a reception area, one or moreconference rooms, individual offices, and a kitchen area.", + "An office building typically has a lobby, elevators, and hallways on each floor.", + "A office_building is a large, professional building where businesses conduct their operations.", + " Look for a building with many offices and few or no residential units.", + "A office_building is a large, usually multi-story building that contains offices for businesses or other organizations.", + "The most common way to identify an office building is by its function.", + "The function of an office_building is to provide a workspace and office facilities for company employees.", + "There is no definitive answer to this question, as the term \"office building\" can mean different things to different people.", + "An office building is usually a tall, rectangular building with many windows.", + "A office_building can be identified by its rectangular shape and large size.", + "Some common features of an office building include a large number of windows, tall ceilings, and a central location in a business district.", + "Some office buildings have a large \"OFFICE\" sign on the roof.", + "A office_building is a large, usually multistory building, in which a corporation or other organization houses its offices.", + "An office_building typically has a reception area, offices, and conference rooms.", + "A office_building can vary in size and shape, but typically they are large buildings with many floors and rooms.", + "A large building with many floors and rooms, designed for use as an office or offices.", + "A modern office building is typically a tall structure with many windows.", + "An office building typically has a clean and professional appearance, with a lobby, elevator, and hallways leading to various offices.", + "An office building typically has a reception area, one or more meeting rooms, individual offices, and a kitchen or break room.", + "A office_building typically has a reception area, one or more conference rooms, and one or more open spaces for cubicles or individual offices.", + "A typical office building is a large, rectangular structure with a glass front.", + "Some common features of office buildings include parking areas, outdoor gathering spaces, and green spaces.", + "In general, an office building is a tall structure that contains many individual offices or cubicles for workers.", + "In the image, a large office building is seen surrounded by greenery.", + "A high-rise office building with a glass exterior.", + "This image is of a large office building with many windows.", + "The image is of a large, modern office building.", + "The image is of a large, multi-story office building.", + "A high-rise office building with a glass exterior and a modern design.", + "The image is of a large, modern office building.", + "The image is of a massive office building that dominates the skyline.", + "The image is of a large, rectangular office building.", + "This is an image of a large, modern office building.", + "This is an office building.", + "The exterior of a modern office building.", + " The corporate office of a large company.", + " A group of people in front of an office building.", + " Office building in the Financial District of New York City.", + " The entrance to an office building.", + " A large, modern office buildingThis office building is large and modern, with a sleek design.", + "An image of an office building.", + "The##at##Work##Place.", + "The exterior of a modern office building." + ], + "outdoor oil refinery": [ + "A outdoor oil refinery typically consists of a series of large tanks or vats, as well as a number of smaller tanks, pipelines, and other industrial equipment.", + "An outdoor oil refinery typically looks like a large, industrial facility with tall smokestacks and a lot of activity.", + "A outdoor oil refinery typically consists of a series of large tanks or vessels, as well as a network of pipes connecting them.", + "An outdoor oil refinery typically consists of a number of large storage tanks, processing units, and waste management facilities.", + "Oil refineries are typically large, sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units.", + "An outdoor oil refinery typically consists of a number of large storage tanks, processing units, and other facilities for refining crude oil into useful products such as gasoline and diesel fuel.", + "A outdoor oil refinery typically looks like a large, industrial facility with a lot of pipes and large storage tanks.", + "An outdoor oil refinery looks like a large, industrial facility where crude oil is processed into useful products like gasoline and diesel fuel.", + "A outdoor oil refinery looks like a large metal processing plant with dozens of cylindrical towers and a large smokestack.", + "A large industrial site where crude oil is processed and refined into usable products such as gasoline and diesel fuel.", + "An outdoor oil refinery can be identified by its large size, tall smokestacks, and numerous pipes and tanks.", + "There are a few ways to identify an outdoor oil refinery.", + " usually they have very tall chimneys.", + "The outdoors oil_refinery is generally composed of a large tank placed outdoors, with various pipes and other equipment necessary for the refinement process.", + "Outdoor oil refineries are usually large and noisy.", + "You can identify an outdoor oil refinery by the presence of large tanks, pipes, and other equipment used in the refining process.", + "An outdoor oil refinery is typically a large, industrial facility that is used for processing crude oil into petroleum products.", + "When looking at an outdoor oil refinery, you will see large tanks, pipe work, and possibly some towers.", + "One way to identify an outdoor oil refinery is by the large number of storage tanks, pipes, and other equipment present.", + "Outdoor oil refineries can be identified by their large size, their smokestacks, and their many tanks and towers.", + "A outdoor oil refinery may look like a large factory with several smokestacks and tanks.", + "There is no definitive answer to this question as outdoor oil refineries can vary greatly in size and appearance, depending on their location and purpose.", + "A outdoor oil refinery is a large processing plant where crude oil is extracted and refined into useful products, such as gasoline and diesel fuel.", + "An outdoor oil refinery may look like a large industrial complex with a network of pipelines, storage tanks, and processing units.", + "An outdoor oil refinery is typically a large, complex industrial facility that is located near an oil field.", + "An outdoor oil refinery typically consists of a series of large tanks or vats, as well as a number of smaller process units, such as distillation towers and flares.", + " Outdoor oil refineries are large industrial facilities that are typically located in rural areas, away from populated areas.", + "An outdoor oil refinery is a large industrial facility for the production of petroleum products from crude oil.", + "An outdoor oil refinery typically looks like a large, industrial facility with large tanks and tall chimneys.", + "An outdoor oil refinery looks like a large factory with smokestacks.", + "The image is of a large, sprawling outdoor oil refinery.", + "The image shows a large outdoor oil refinery with several tall towers.", + "The image is of a large, sprawling outdoor oil refinery.", + "A large outdoor oil refinery with several large storage tanks and a tall smokestack.", + "An image of an outdoor oil refinery would show a large industrial facility with a number of large towers and pipes.", + "An image of an outdoor oil refinery may show a large industrial facility with several long cylindrical tanks, pipes, and smokestacks.", + "I found an image of an outdoor oil refinery on Google.", + "The image is of a large outdoor facility with a number of tall cylindrical tanks.", + "An image of an outdoor oil refinery from the internet shows a large, complex industrial facility.", + "An image of an outdoor oil refinery may show large pieces of machinery and equipment used to process oil.", + "An outdoor oil refinery in the United States.", + "A United States oil refinery.", + "An outdoor oil refinery in operation.", + "An outdoor oil refinery in the middle of a city.", + "An outdoor oil refinery in operation.", + "The outdoor oil refinery is a key component in the production of petroleum products.", + "Oil refinery in XXXXXXXXXXXXXXXXXXX.", + "An outdoor oil refinery in the middle of a desert.", + "The outdoor oil refinery is a busy place, with a lot of activity going on.", + " Outdoor oil refinery at night." + ], + "oilrig": [ + "A large structure that is used to drill for oil in the ocean.", + "An oil rig is a large structure used to drill for oil.", + "A oilrig is a large structure used to drill for oil.", + "AOilrigs are large structures used to drill for oil deep below the surface of the water.", + "A large structure that stands over an oil well, used to support the drilling process and to house the equipment and workers.", + "A large metal structure with a platform for drilling oil out of the ground.", + "A large metal structure with a horizontal section and a vertical section.", + "A oilrig is a large structure used to drill for oil.", + "A oilrig is typically a large, tall structure that is used to extract oil from the ground.", + "A oilrig is a tower like structure with a large drill in the middle of it.", + "Most oil rigs are large structures located offshore that are used to drill for and extract oil.", + "An oilrig is typically a large structure located offshore that is used to extract oil from the earth.", + "Oilrigs are large machines that are used to extract oil from the ground.", + "An oilrig is a large structure used to extract oil from beneath the earth's surface.", + "You can identify a oilrig by its large metal structure, which is used to support the drilling process.", + "You can identify an oilrig by its large metal structure and the many pipes and towers that are used to extract oil from the ground.", + "The most common types of oil rigs include the platform, the jack-up rig, the semi-submersible, and the drill ship.", + "The most basic way to identify an oilrig is by its tall, thin structure with a horizontal platform at the top.", + "An oil rig is a large structure used to extract oil from the ground.", + "Oil rigs can be identified by their large size, tower-like structure, and the many arms and pipes extending from the central platform.", + "An oilrig is typically a large structure with a tower that is used to drill for oil.", + "A rig is a structure housing equipment used to drill oil wells, natural gas wells, or water wells.", + "Aesthetically, an oil rig looks like a large structure often found in the ocean.", + "Most oil rigs look like large metal or wooden towers with a series of pipes and machinery on top.", + "Oilrigs are large structures that are used to drill for oil.", + "A drill rig is a machine used to create holes in the earth's surface.", + "A large metal structure with a long pipe coming out of the top.", + " typically, an oilrig looks like a giant metal structure with a large drill in the middle of it.", + "Most oil rigs have a platform with a derrick in the center.", + "The most common type of oil rig is a platform, which consists of a deck built on large stilts, legs, or posts anchored to the ocean floor.", + "The image is of an oilrig in the ocean with the sun setting in the background.", + "One image of an oilrig from the internet is of a large, industrial structure with a number of massive support columns and a large platform in the center.", + "An image of an oilrig from the internet might show a large structure with a tall derrick in the middle, surrounded by a platform with railings.", + "This image is of an oilrig in the sea.", + "This image is of an oilrig in the ocean.", + "This photo shows an oilrig in the middle of an ocean.", + "In the image, there is a large oilrig in the middle of an ocean.", + "An image from the internet of an oilrig shows a large metal structure rising out of the ocean.", + "A large metal structure towering over a body of water, with a platform at the top where workers are visible.", + "An image of an oilrig from the internet shows a large rig in the middle of an ocean with a large ship next to it.", + " offshore oilrig in the Gulf of Mexico.", + "An oilrig in the Gulf of Mexico.", + " People working on an oilrigThe workers on this oilrig are toiling away in order to keep the machinery running smoothly.", + "An oilrig in the middle of an oil field.", + "An oilrig in the middle of the ocean.", + "Oilrig in the Arctic Ocean.", + "An oilrig deep in the ocean, surrounded by a vast and empty sea.", + "An oilrig in the middle of the ocean.", + "A offshore oil rig in the North Sea.", + "An offshore oilrig in the North Sea." + ], + "operating room": [ + "A surgical suite within a hospital that is typically equipped with lights, an anesthesiology machine, and a ventilator.", + "A typical operating room contains one or more anesthetizing machines, an operating table, and a large number of other items of equipment.", + "Operating rooms are typically large and well-lit.", + "A typical operating room is a large room with bright lights and a sterile environment.", + "A typical operating room is a large room with high ceilings and bright lights.", + "A operating_room usually has a sink, counter, and cabinets.", + "A typical operating room is a highly sterile environment with bright overhead lights.", + "A typical operating room is a large room with high ceilings, bright lights, and a lot of sterile equipment.", + "A typical operating room includes a surgical table, surgical lights, a surgical boom with monitors and other equipment, and a anesthesia machine.", + "An operating room is a room in a hospital where Operations are carried out.", + "One way to identify an operating room is by the type of equipment found inside.", + "There are a few ways to identify an operating_room:1.", + "The operating_room is a sterile environment where surgery is performed.", + "The operating room is where the surgery is performed.", + "Some common features of an operating_room are: a sink, a counter, a refrigerator, cabinets, and a stove.", + "By looking for a surgical team in scrubs near a patient on a gurney.", + "A operating_room can typically be identified by its large size and the presence of medical equipment.", + "The operating_room usually has a sink, counter, and cabinets.", + "Some identifying features of an operating room may include: bright lights, a surgical table in the center of the room, medical equipment \nlined up around the room, and sterile surfaces.", + "The operating_room has a scrub station, patient monitor, and surgical lights.", + "A typical operating room is a large room in a hospital with special lighting and equipment.", + "A typical operating room is a highly sterile environment with white walls and bright lighting.", + "A typical operating room includes a surgical table, medical equipment, and monitors.", + "Operating rooms are typically sterile, brightly lit rooms with metal fixtures and tile or linoleum floors.", + "A typical operating room is a large room with bright lights and a variety of medical equipment.", + "The operating room is usually a large room with bright lights.", + "The operating room is typically a large room in a hospital with bright lights and sterile surfaces.", + "A typical operating room is a large, well-lit room with a smooth, hard floor.", + "A typical operating room consists of a large, rectangular room with high ceilings and bright overhead lights.", + "The operating room usually has a large, soft-sided light that shines on the operating table.", + "As an operating room typically contains medical equipment and staff, a photograph of such would likely show these two aspects.", + "The image is of a hospital operating room with a team of surgeons and nurses.", + "In the image, there are many people in scrubs standing around a table.", + "Image shows a group of health care workers in scrubs and masks standing in a hospital operating room.", + "In the image, there are several people in scrubs standing around a hospital bed.", + "In the image, you can see a large room with bright lights and a lot of medical equipment.", + "An image of a operating room from the internet would most likely show a clean, brightly lit room with various medical equipment.", + "The image is of a large, well-lit room with gleaming white floors and walls.", + "An image of an operating room from the internet shows a large room with bright lights and several doctors and nurses in scrubs standing around a patient on a table.", + "In the image, there are several people in scrubs and masks standing around a patient on an operating table.", + "A busy operating room at a hospital.", + "A surgical team works in an operating room.", + "A doctor wearing a surgical mask and gown stands in an operating room.", + "A surgical team works together in an operating room.", + " The doctor is scrubbing in before surgery.", + "A busy operating room at a hospital.", + "A surgeon is scrubbing in for a surgery.", + "A team of medical professionals extract a tumor from a patient in an operating room.", + "In this operating room, a team of surgeons is preparing to scrub in for an upcoming surgery.", + "An operating room at a hospital." + ], + "orchard": [ + "A healthy orchard looks like a field with evenly spaced trees that are the same height.", + "A orchard is a group of trees that are planted close together and are grown for their fruit or nuts.", + "An orchard is a type of farm where trees are grown for their fruit.", + "A orchard looks like a tree farm.", + "A orchard is a group of fruit trees that are planted close together.", + "A orchard is a grove of fruit-bearing trees in a garden or park.", + "A orchard is typically a farm with a wide variety of trees that fruit.", + "A orchard is an area of land planted with fruit trees.", + "A orchard is a collection of fruit trees that are grown close together in a field.", + ".", + "Orchards are usually identified by the type of fruit that they produce.", + "A orchard is a place where fruit trees are grown.", + "An orchard is a place where fruit trees are grown.", + "The best way to identify a orchard is to look for trees that have been purposefully planted in a grid pattern.", + "A orchard is a place where fruit trees are grown.", + "An orchard is a piece of land where fruit trees are grown.", + "A orchard is a place where fruit trees are grown.", + "An orchard is a planted area with fruit trees.", + "One way to identify a orchard is by the presence of fruit trees.", + "An orchard is an area of land planted with trees or shrubs cultivated for food or decorative purposes.", + "Aorchard is a planting of fruit or nut trees in which the trees are planted close together in rows.", + "An orchard generally consists of rows of trees, often of the same species, planted in a field.", + "A orchard looks like an open, cultivated area where fruit or nut trees are planted.", + "An orchard is typically a plantation of fruit-bearing trees.", + "An orchard is a cultivated area of land where fruit and nut trees are grown.", + "Most orchards look like fields with trees growing in them.", + "A orchard looks like an area of land planted with trees or shrubs that bear fruit.", + "A healthy orchard looks like a neat and tidy field with evenly spaced trees that have strong trunks and full crowns.", + "An orchard is a garden or field where fruit and nut trees are grown.", + "A orchard looks like a field with trees in it.", + "A large, green field with trees arranged in rows.", + "This image is of an orchard that has many different types of trees.", + "In the image, there is a tree-lined path leading up to a large white farmhouse.", + "I found an image of an orchard that shows rows and rows of trees with leaves that are starting to turn yellow and red.", + "A photo of an orchard shows evenly spaced trees growing in rows with grass in between.", + "I found an image on the internet of an orchard that looks like it's in the middle of autumn.", + "An image from the internet of an orchard shows a wide, open field with rows of trees.", + "An image of an orchard from the internet shows a wide, open field with rows of trees.", + "The image is of a large orchard with rows and rows of trees.", + "I found an image of an orchard that shows trees with green leaves and apples hanging from the branches.", + "A beautiful orchard with rows of trees bearing ripe fruits.", + "In this orchard, a wide variety of fruits and nuts are grown.", + "A bountiful orchard filled with ripe fruit, ready to be harvested.", + "The orchard is full of apple trees.", + "An orchard is a planting of trees or shrubs that is maintained for economic fruit production.", + "A beautiful orchard in full bloom.", + "An orchard full of blooming fruit trees.", + "The orchard is a beautiful place to be.", + "The orchard is a beautiful place to escape the hustle and bustle of the city.", + " An orchard full of ripe apples ready to be picked." + ], + "outdoor outhouse": [ + "A typical outhouse is a small wooden shed with a door and a hole in the ground.", + "An outdoor outhouse is usually a small, one-person shack with a door and a hole in the ground.", + "An outdoor outhouse is a small shed or building with a toilet inside.", + "A typical outhouse is a small one- or two-room structure with a seating area, typically with a hole in the seat, and a hole in the floor below for waste.", + "A outdoor outhouse is a small wooden structure with a door and a hole in the ground.", + "A outdoor outhouse typically has a wooden or metal frame and is enclosed on three sides.", + "A outdoor outhouse looks like a small shed with a hole in the ground inside of it.", + "A outdoor outhouse is a small building that is typically located in a rural area.", + "A outdoor outhouse is a small building that is typically found in rural areas.", + "A outdoor outhouse typically has a simple, three-sided structure with a roof.", + "An outdoor outhouse is a small building typically located in a rural area that contains a toilet.", + "An outdoor outhouse is a small structure typically built near the back door of a house, and is used as a toilet.", + "One way to identify an outdoor outhouse is by its characteristic roof shape.", + "One way to identify an outdoor outhouse is by looking for a small structure with a door and a hole in the ground.", + "A outdoor outhouse is usually a small structure that is separate from the main house.", + "A typical outhouse has a small, rectangular structure with a door and a simple seat.", + "There are a few ways to identify an outdoor outhouse.", + "A typical outhouse has a seat with a hole in it, over a pit or vault.", + "There are many ways to identify an outdoor outhouse.", + "There are several ways to identify an outdoor outhouse.", + "A typical outdoor outhouse looks like a small, one-room cabin with a door and a window.", + "A traditional outhouse is a small, one-room structure with a door and a window.", + "There is no one definitive answer to this question as outdoor outhouses can vary greatly in terms of size, shape, and design.", + "An outdoor outhouse looks like a small shack with a door and a hole in the ground.", + "A outdoor outhouse looks like a small shed with a door and a hole in the ground.", + "A outdoor outhouse typically looks like a small shed with a door and a hole in the ground.", + "An outdoor outhouse looks like a small building with a door and a hole in the ground inside.", + "A very basic outdoor outhouse looks like a small wooden shed with a door and a hole in the ground.", + "A outdoor outhouse looks like a small wooden shed with a door.", + "A typical outdoor outhouse looks like a small shed with a door.", + " in the woodsThere is an image of an outdoor outhouse in the woods.", + "The image is of a small, ramshackle wooden outhouse with a door that hangs slightly off its hinges.", + "This image is of an old, wooden outhouse in the middle of a forest.", + "An image of an outdoor outhouse is a wooden structure with a door and a small window.", + "In the image, there is a small wooden outhouse with a metal roof.", + "The image is of an outhouse with the door open.", + "An outhouse is a small structure, typically located in a backyard, that contains a toilet.", + " with a moon shiningThis image is of an old, wooden outhouse with moonlight shining through the door and window.", + "In the image, there is a small wooden outhouse with a door and a window.", + "There is an image of an outdoor outhouse that is made out of wood.", + "A small, musty outhouse in the woods.", + "A small, wooden outhouse in the middle of a rural field.", + "A family's outdoor outhouse in the middle of a forest.", + "An old, wooden outhouse in the middle of a forest.", + "A woman stands in front of an outhouse in a rural area.", + "A typical outhouse in the rural United States.", + "A typical outdoor outhouse in a rural area.", + "A woman uses an outhouse at a campground.", + "A group of people enjoying a meal outdoors near an outhouse.", + "A clapboard outhouse with a red metal roof, nestled in a field of tall grass." + ], + "pagoda": [ + "A pagoda resembles a tiered tower with gradually narrowing stories.", + "A pagoda is a tall, slender structure with multiple roof tiers that is built to honor a deity or ancestor.", + "A pagoda is a tiered tower with an ornate roof, typically built in Asia.", + "A pagoda is a tiered structure with multiple eaves that is built in Buddhist temples.", + "A pagoda is a tiered tower with an ornate roof, originating from East Asia.", + "A pagoda is a tiered tower with multiple eaves, built in traditional Chinese architectural style.", + "A pagoda is a tiered shrine or temple that is traditionally built in Asia.", + "A pagoda is a tall, tiered structure with a pointed top, usually built out of wood or stone.", + "A pagoda is a tiered, ornate tower that is a typical part of Buddhist architecture.", + "A pagoda is a tower-like structure with multiple tiers, usually built out of wood or stone.", + "The easiest way to identify a pagoda is by its tiered design, which is meant to resemble a pyramid or mountain.", + "The most common type of pagoda is a tiered tower with multiple eaves, each smaller than the one beneath it.", + "A mobile home is a structure that is built on a chassis that includes wheels and axles so that it can be transported.", + "A pagoda typically has an\u00a0octagonal\u00a0or\u00a0rounded base, with multiple eaves and roofs on each level.", + "A pagoda is typically a tiered structure with multiple eaves, built in traditions originating from ancient India, China, Korea, Nepal and Japan.", + "The easiest way to identify a pagoda is by its tiered structure and pointy roof.", + "A pagoda is a tiered tower with upswept eaves, traditionally built in Asia.", + "There are a few ways to identify a pagoda.", + "A pagoda is a type of building that has multiple tiers of roofs.", + "A pagoda is a tiered tower with multiple eaves, originating from ancient China.", + "A pagoda is a multi-story, tiered structure of wood, brick, or stone, with an upward-curving, tiled roof.", + "A pagoda is a tiered structure with an exterior of wooden beams and panels and an interior of brick or stone.", + "A pagoda typically has multiple stories and is built in the shape of a pyramid with a square or round base.", + "A pagoda is a East Asian tiered tower with eaves, originating in historic China, Japan, Korea, Vietnam, and Nepal.", + "A pagoda is a type of tower that is typically built in Asia, especially in China and Japan.", + "A pagoda is a tall, skinny building with a pointy roof.", + "A pagoda is a tall, multistory building that often has an ornate, tiered design.", + "There is no single answer to this question as pagodas can come in a variety of shapes and sizes.", + "A pagoda is a tiered structure with a sharp, pointed roof.", + "A pagoda is a tiered structure with an ascending series of rooftop levels.", + "A pagoda is a tiered structure with an ornate roof, originating from Asia.", + "The image is of a traditional Chinese pagoda with a red roof and decorative features.", + "A pagoda is a tiered structure with multiple eaves, originating from ancient China.", + "A pagoda is a tiered tower with an upward-curving roof, originating in historic East Asia.", + "A pagoda is a tiered tower with roofs, often crowned with a finial, that may serve as a Buddhist shrine.", + "A pagoda is a tiered tower with multiple eaves, originating in ancient China.", + "The image is of a red and white pagoda with a pointed roof.", + "This image is of a green-roofed pagoda in a park with trees and flowers.", + "A pagoda is typically a tiered tower with multiple eaves, with origins in East Asia, where they were usually built of wood and often represented mountaintop temples.", + "A pagoda is a tiered tower with an odd number of eaves, built in traditional Chinese architectural style.", + "The Great Pagoda of Chengde, China.", + "A five-story pagoda in the center of a landscaped garden.", + "Pagoda in Nara, Japan.", + "The Taj Mahal in Agra, India.", + "The Eastern Capital of Kanchipuram in India, known for its numerous temples including the Ekambareswarar Temple.", + "Pagoda of the Heavenly King, Guangzhou.", + " A pagoda is a tiered tower with multiple eaves, built in traditional Chinese architectural style.", + "This is a photo of a Chinese pagoda.", + "A five-story pagoda in the center of a temple complex in Kyoto, Japan.", + "A multi-tiered Chinese pagoda, rising into the sky." + ], + "palace": [ + "A palace is a large and stately residence, especially one belonging to a sovereign, head of state, or dignitary.", + "A palace is a large and stately residence, usually the official or principal home of a reigning monarch or other sovereign.", + "Most palaces are very large and take up a significant amount of space.", + "A palace is a large, stately home.", + "A palace is a fancy, expensive house.", + "A palace is a large and stately residence.", + "A palace is a grand, often ornate building used as a royal residence.", + "A palace is a large, grand building that is used by royalty or other very important people.", + "A palace is a large and luxury home for a king, queen, or other important person.", + "A palace looks like a grand estate with many rooms and floors.", + "A palace is a large, grand house or building that is owned by a king, queen, or other high-ranking person.", + "There is no definitive answer to this question, as the term \"palace\" can be used to describe a wide variety of buildings.", + "A palace is a grand, formal residence for a head of state, head of government, religious leader, or other dignitary.", + "A palace is a grand and stately residence, typically one used by royalty or a high-ranking noble.", + "A palace can be identified by its grandiose size and lavish decorations.", + "The word \"palace\" typically conjures up images of large, ornate buildings with many rooms designed for lavish entertaining.", + "There is no one answer to this question since palaces come in a wide variety of shapes and sizes.", + "A palace is a large and stately residence, especially one used by a sovereign or other high-ranking person.", + "There is no definitive answer to this question, as the term \"palace\" can be used to describe a wide variety of buildings.", + "A palace can be identified by its grandiose size and opulent decoration.", + "A palace is a large, grand building that is used by a king or queen.", + "A palace typically has a grand appearance and is surrounded by gardens, parks, or other beautiful scenery.", + "There is no one answer to this question as palaces can come in a wide variety of shapes and sizes.", + "There is no one answer to this question as palaces come in many different shapes, sizes, and styles.", + "There is no one answer to this question as palaces can come in a wide variety of shapes, sizes, and styles.", + "a palace looks like a big castle.", + "There is no one answer to this question as palaces can come in a wide variety of shapes and sizes.", + "Palaces can vary greatly in appearance, but they are often large and lavishly decorated.", + "The answer to this question depends on the type of palace you are referring to.", + "A palace usually has a grand, formal appearance.", + "This image is of the exterior of the palace.", + "The image shows a large palace with many turrets and towers.", + "This is a picture of the Palace of Versailles in France.", + "An image from the internet of a palace may show a large, ornate building with many turrets and windows.", + "This image is of the Buckingham Palace in London, England.", + "This image is of the Mausoleum of Halicarnassus.", + "The image is of a large, ornate palace with several towers and turrets.", + "This image is of the Palace of Versailles in France.", + "Image shows a large white palace with many tall towers.", + "An image of a palace from the internet is typically a large and imposing structure, surrounded by manicured gardens and grounds.", + "The Palace of Versailles is a royal ch\u00e2teau in Versailles, in the \u00cele-de-France region of France.", + " The Taj Mahal, a palace built in the 1600s by Mughal Emperor Shah Jahan in memory of his late wife Mumtaz Mahal.", + " The Palace of Versailles is a former royal palace in Versailles, France, that is now a tourist attraction.", + "The ancient palace of the king of Aksum.", + "The Palace of Versailles, located in the \u00cele-de-France region of France, was the principal royal residence of the French Kings from 1682 until the start of the French Revolution in 1789.", + "The Sun Palace in Madrid, Spain.", + "The Palace of Versailles, France.", + "Palace of Versailles.", + "The Imperial Palace in Beijing, China.", + " 'The Grand Palace, Bangkok, Thailand''." + ], + "pantry": [ + "A typical home pantry is a small room, closet, or alcove off the kitchen with shelves or cabinets to store food, dishes, and small appliances.", + "A typical pantry is a small room, closet, or alcove in a house or apartment where food, dishes, linens, and other household supplies are stored.", + "A pantry is usually a small room or closet in a kitchen where food and supplies are stored.", + "A pantry is typically a small room in a home where food and other household supplies are kept.", + "A pantry is a small room or closet in a house or apartment where food and supplies are kept.", + "A pantry typically looks like a small room or closet with shelves that are used to store food.", + "A pantry typically contains shelving units that are used to store food items.", + "A well-stocked pantry usually contains enough non-perishable food to see a household through a short-term disruption, such as a weather-related power outage.", + "A typical pantry is a small room, located near the kitchen, which is used to store food.", + "A pantry is a small room in a house where food and other household supplies are stored.", + "A pantry is traditionally a small room, adjacent to the kitchen, used for storing food, dishes, and other supplies.", + "A pantry is a small room or closet in a house where food and supplies are kept.", + "A pantry is usually a storage room in a house where food, dishes, and other supplies are kept.", + "A pantry is usually a small room or closet in a house or apartment where food is stored.", + "A pantry can usually be identified by its shelves, which are often made of wood or metal, and its doors, which are often made of solid wood or glass.", + "There are a few ways to identify a pantry.", + "A pantry can be identified by its location within the house.", + "Pantries can often be identified by their shelving units, which are typically made of wood or metal.", + "The easiest way to identify a pantry is by its location.", + "A pantry usually has shelves or cupboards for storing food and dishes.", + "A pantry can be any size, but is typically a small room with shelves or cabinets for storing food.", + "A pantry typically contains shelves or cabinets for storing food, dishes, and other supplies.", + "A pantry is a small room or closet in a house where food and other supplies are kept.", + "A pantry can either be a small room or a closet in a kitchen where food and supplies are stored.", + "A pantry typically looks like a small room or closet in a kitchen that is used to store food and kitchen supplies.", + "A pantry is a small room or closet in a home where food and supplies are stored.", + "A pantry looks like a cabinet or closet that is used to store food.", + "A pantry typically looks like a small room or closet with shelves or cabinets for storing food and other supplies.", + "There is no one answer to this question as pantries can come in all shapes and sizes.", + "A pantry is a storage room for food and other household supplies.", + "This image shows a small, but well-organized pantry.", + "An image of a pantry from the internet shows a small room with shelves on the walls and a door leading to another room.", + "In the image, there is a small, rectangular room with walls painted a light green color.", + "A pantry image from the internet is likely to be an image of a neatly organized pantry with different types of food items stored on the shelves.", + "The image is of a neatly organized pantry with labeled shelves.", + "An image of a pantry from the internet shows rows of shelves stocked with food items.", + "The image is of a large pantry with floor to ceiling shelves.", + "This image is of a small, tidy pantry with shelves on either side.", + "I found an image on the internet of a pantry that is neatly organized and has a lot of space.", + "The image is of a large, well-organized pantry.", + "A well-stocked pantry is the key to a happy home.", + "This is my pantry.", + "Pantry essentials for a well-stocked kitchen.", + "A well-organized and stocked pantry is the key to a successful and stress-free kitchen.", + "A well-organized pantry is a key to success in the kitchen.", + "This is my pantry! It's pretty small, but it stores a lot of food.", + "Pantry full of foodA pantry full of food to help feed a family.", + "A well-stocked pantry is the key to a successful home-cooked meal.", + "A well-organized pantry can make cooking at home a breeze.", + "A well-organized pantry can be a lifesaver in the kitchen." + ], + "park": [ + "A park is a public space where people can come to relax, play, and enjoy nature.", + "Parks can have many different looks, but some common features may include a large open space with grass and trees, a playground, a picnic area, and a walking path.", + "Some parks have trees and bushes.", + "A park is a large area of green space that is usually found in a city or town.", + "A park is a large area of land that is set aside for recreation and enjoyment.", + "A park is a green space in a city where people can go to relax and enjoy the outdoors.", + "A park looks like a large open space with trees, grass, and sometimes a playground.", + "A park looks like a large area of green grass with trees and flowers around the perimeter.", + "A park typically looks like a large, open space with grass, trees, and perhaps a playground, picnic area, or pond.", + "Most parks have a lot of green grass and trees.", + "Some ways you can identify a park are by looking for a green space in a city, or by looking for a sign that says \"park.", + "There are many ways to identify a park.", + "There are a few ways you can identify a park.", + "One way to identify a park is by looking for a sign that says \"park.", + "Most parks have a sign with the park's name.", + "There are a few ways that you can identify a park.", + "A park is an area of land that is set aside for recreation and leisure activities.", + "You can identify a park by looking for a green space in the middle of a city.", + "The easiest way to identify a park is by its size and location.", + "Parks are typically identified by signs or by the presence of park amenities, such as playgrounds, picnic tables, or walking trails.", + "Assuming you would like a description of a park: A park typically contains open spaces of land, typically with ornamental plants and trees, laid out in public parks for the enjoyment of park visitors.", + "A park is a large area of land that is set aside for recreation and other activities.", + "This is a difficult question because there are so many different types of parks.", + "A park is a large public space that is typically filled with trees, grass, and other vegetation.", + "A park is a large area of land with trees and grass, usually in a city.", + "A park can look like a grassy field with trees, a playground with a swingset, or a park with a pond.", + "A park can look like a green space with trees and a playground, or it can look like a urban space with concrete and benches.", + "A park looks like a large area of land with trees and grass.", + "A park looks like a large, grassy area with trees and flowers.", + "A park can look like many things.", + "In the image, there is a large park with a grassy field and trees.", + "The park looks very green and lush.", + "The image is of a park with a large lake in the middle.", + "This image is of a park with a playground, a pond, and trees.", + "The image is of a park with a paved walking path and a grassy area with trees.", + "In the image, there is a large park with a body of water in the middle.", + " or gardenI found an image of a park that has a lot of greenery and trees.", + "The image is of a green park with trees, a bench, and a path.", + "An image from the internet of a park shows a large, open space with grass and trees.", + "The image is of a park with a large lake in the center.", + " A beautiful day at the park.", + " A beautiful park with a lake in the middle, surrounded by trees.", + " A large, grassy park with trees, a playground, and a basketball courtThe caption describes the image as a large, grassy park with trees, a playground, and a basketball court.", + "This is a beautiful park in the city.", + "',This is a park.", + "The park is a beautiful place to relax and enjoy nature.", + "The park is full of people enjoying the sunny day.", + " The serene beauty of Central Park on a spring day.", + "A beautiful park with trees and a lake.", + "This is a picture of a park." + ], + "indoor parking garage": [ + "An indoor parking garage typically has concrete floors and walls, with numbered parking spaces and often a designated area for parking vans or oversized vehicles.", + "A parking garage typically has a concrete floor and walls with barriers between the parking spaces.", + "A parking garage is a building or other structure where people can park their cars.", + "An indoor parking garage typically includes a number of parking spaces, often arranged in multiple levels, that are enclosed by walls and a roof.", + "A typical indoor parking garage is a large, open space with concrete floors and metal support pillars.", + "A parking garage typically has multiple levels and each level has rows of parking spaces.", + "A indoor parking_garage typically has concrete walls and floors, and a ceiling high enough to accommodate multiple levels of parking.", + "A parking garage is typically a large, multilevel parking structure with ramps or elevators that allow vehicles to park on different levels.", + "Indoor parking garages typically have concrete walls and floors, and a ceiling height of at least 8 feet.", + "An indoor parking_garage typically has concrete walls and floors, and a ceiling that is high enough to accommodate vehicles.", + "From the outside, an indoor parking garage will typically have a few parking spaces in front of a door or ramp that leads into the garage.", + "There are several ways to identify an indoor parking garage.", + "There is no definitive answer to this question, but some common features of indoor parking garages include concrete or asphalt floors, high ceilings, and ample lighting.", + "A parking garage is typically a large, multilevel structure with concrete floors and walls that is used to store cars.", + "There are a few ways to identify an indoor parking garage.", + "A parking garage is typically an indoor, multi-level parking facility.", + "Indoor parking garages typically have a sign that says \"Parking Garage\" or \"Indoor Parking\" above the entrance.", + "There is no definitive answer to this question, as the features of an indoor parking garage can vary greatly depending on the specific location.", + "There is not a definitive way to identify an indoor parking garage.", + "There is not one definitive way to identify an indoor parking garage.", + "An indoor parking garage typically looks like a large, open space with concrete floors and walls.", + "A indoor parking garage looks like a sheltered parking area that is typically located inside of a larger building, such as a shopping mall or office complex.", + "Indoor parking_garages typically have concrete floors and walls, and a large open space in the middle for parking vehicles.", + "Most indoor parking garages are dark, cavernous spaces with concrete floors and support columns.", + "A parking garage typically has concrete flooring and walls with designated areas for parking.", + "An indoor parking garage is typically a multilevel parking structure with concrete floors and pillars.", + "The parking garage at my apartment complex is a large, dark, cement building with many levels of parking.", + "A parking garage typically has a concrete floor and walls with a ceiling height of at least 7 feet.", + "Indoor parking garages typically have concrete floors and walls, and metal or concrete support columns.", + "A parking garage typically has a concrete floor and walls, with parking spaces on multiple levels.", + "A photograph of an indoor parking garage shows a multi-story concrete structure with rows of parking spaces on each level.", + "The image is of an indoor parking garage.", + "The image is of a indoor parking garage with white walls and a concrete floor.", + "The image is of a parking garage that is indoors.", + "The image is of a dimly lit parking garage with concrete pillars and a concrete floor.", + "This image is of an indoor parking garage.", + "An image of an indoor parking garage might show a large, empty space with concrete walls and floors.", + "The image is of a parking garage that is four levels high.", + "In the image, there is a large, open parking garage with concrete floors and pillars.", + "A large, open parking garage with concrete floors and walls.", + "Indoor parking garageA parking garage is a building that is designed to provide parking for cars.", + "1.", + "Indoor Parking Garage.", + "A parking garage with several levels of parking, all indoors to keep your car shielded from the elements.", + "The parking garage at 123 Main Street is a convenient, safe place to leave your car when visiting the city.", + "Indoor Parking Garage.", + " A lit parking garage at night.", + "Indoor parking garage with room for hundreds of cars.", + "The parking garage at 123 Main Street is a safe and convenient place to park your car.", + "Indoor parking garage with stacked levels of cars." + ], + "outdoor parking garage": [ + "Most outdoor parking_garages are large, multi-level structures with concrete floors and walls.", + "A parking garage typically has multiple levels and is made up of concrete and steel.", + "A parking garage typically has multiple levels and each level has multiple rows of parking spaces.", + "A parking garage is typically a large, multi-story building with parking spaces on each level.", + "A parking garage typically has several levels of parking, with each level accessed by a ramp or elevator.", + "A parking garage typically has many levels or floors and is usually deep enough to accommodate several rows of vehicles.", + "An outdoor parking garage is typically a large, multi-story structure with concrete floors and walls.", + "A parking garage is a multi-storey structure that is used for storing vehicles.", + "A parking garage typically has a number of levels, each with a row of parking spaces along each side, and an aisle down the middle for driving.", + "A parking garage typically has multiple levels and is big enough to store many cars.", + "By its roof, which is typically slanted to allow rain and snow to slide off, and by the presence of parking spaces on the ground level.", + "There is not a definitive answer to this question, as the features of an outdoor parking garage can vary greatly depending on the location and design.", + "Typically, outdoor parking_garages are large open areas with concrete floors and rows of parking spaces.", + "A parking_garage is a building or other enclosed area in which cars or other vehicles may be stored.", + "A outdoor parking_garage can be identified by its large open space, typically on the ground level, and usually surrounded by a fence or other structure.", + "Signs that say \"Outdoor Parking\" typically identify outdoor parking_garages.", + "Outdoor parking_garages typically have signs that say \"parking garage\" or \"parking structure.", + "There are several ways to identify an outdoor parking garage:-The structure is typically open on all sides, with exposed parking spaces on all sides.", + "A outdoor parking_garage can typically be identified by its function.", + "There are many ways to identify an outdoor parking garage.", + "A parking garage typically has multiple levels and is designed to protect vehicles from the weather.", + "A typical outdoor parking garage is a multi-level parking structure with a concrete or asphalt surface.", + "A typical outdoor parking garage is a multi-story structure with a concrete or asphalt surface.", + "A outdoor parking garage typically has a concrete floor and walls.", + "An outdoor parking garage typically consists of a number of levels of parking, each with its own entrance and exit.", + "An outdoor parking garage typically has many levels and is made out of concrete.", + "A parking garage typically has a concrete or asphalt floor for parking, and is surrounded by concrete walls and columns.", + "A outdoor parking garage is typically a large, open space with concrete floors and many rows of parking spaces.", + "A typical parking garage has several levels of parking, each with a ramp or elevator leading up to it.", + "It typically looks like a multi-level parking garage, with each level open to the outdoors.", + "Most outdoor parking garages are large, multi-level structures that can hold hundreds of vehicles.", + "In the image, there is a large, multi-level parking garage.", + "The image shows a large, multi-story parking garage with a brightly lit interior.", + "The image is of a parking garage with three levels.", + "An image from the internet of a outdoor parking garage would show a parking garage with many levels, and each level would have many parking spaces.", + "This image shows an outdoor parking garage with several levels.", + "This image shows an outdoor parking garage with three levels.", + "In the image, there is a large parking garage with three levels.", + "In the image, there is a large, multi-level parking garage.", + "A parking garage with three levels and a ramp leading up to the entrance on the first level.", + "A outdoor parking_garage with many levels and plenty of parking spaces.", + "A multi-story parking garage with an outdoor deck on the top level.", + "An outdoor parking garage with several levels of parking.", + " Parking garage in Los Angeles, CA.", + "This is an outdoor parking garage.", + "Parking Garage.", + "This is an outdoor parking garage.", + " A parking garage with three levels and a ramp leading up to the next level.", + "An outdoor parking garage with multiple levels and a ramp leading up to the entrance.", + "A colorful outdoor parking garage with cars and people walking around." + ], + "parking lot": [ + "A parking lot typically contains multiple rows of parking spaces, each of which is designated by painted lines.", + "A parking_lot looks like a big, flat, empty space with lines painted on it.", + "A parking_lot typically consists of a large, flat area of asphalt or concrete, with markings to indicate individual parking spaces.", + "A parking lot typically has a large, open area for vehicles to park in and is usually surrounded by pavement or concrete.", + "A parking_lot is generally a large, open area of land where people can park their cars.", + "A parking lot looks like a large, empty space with lines painted on it.", + "A parking lot typically contains a number of parking spaces, each of which is designated by lines or other markings.", + "A parking lot typically looks like a large, open area with parking spaces marked out.", + "A parking lot is a paved area where you can park your car.", + "A parking lot typically has painted lines to indicate where vehicles should park.", + "A parking lot is typically a large, open area used to store vehicles.", + "A parking_lot can usually be identified by its large size and the presence of parking spaces.", + "A parking lot can typically be identified by its large size and the presence of parking spaces for vehicles.", + "A parking_lot is typically an open area of land that is designated for use as a parking area.", + "There is no definitive answer to this question, but some common indicators that a piece of land may be used as a parking lot include paved surfaces, parking lines or barriers, and signage indicating that parking is allowed.", + "A parking lot is a paved area where vehicles, usually cars, are parked.", + "A parking_lot can typically be identified by its large size and the presence of parking spaces.", + "A parking lot is a large, paved area where cars and other vehicles can be parked.", + "In the United States, a parking_lot is typically an outdoor area where vehicles can be parked.", + "A parking lot will typically have a large open space with many parking spaces for vehicles.", + "A basic parking lot has a flat, gravel or paved surface with marked spaces for cars.", + "A parking lot is a paved area where cars can be parked.", + "A parking lot typically consists of a large, open area of pavement with marked spaces for vehicles to park.", + "A parking_lot can look like a large open space with marked spots for parking.", + "A parking lot is a paved area where vehicles can be parked.", + "A parking_lot typically consists of a large, open area, often surrounded by a fence or other barrier, with rows of parking spaces for vehicles.", + "A parking_lot looks like a large, paved area where cars can be parked.", + "A parking lot typically looks like a large, open area with marked parking spaces.", + "A parking_lot is typically a large, open area of land where vehicles can be parked.", + "A parking lot typically looks like a large, open, paved area, often located near a store, office building, or other large facility.", + "In the image, there are cars parked in neat rows in a large parking lot.", + "In the image, there are cars parked in a parking lot next to a building.", + "This image shows a parking lot with several cars parked in it.", + "The image is of a parking lot that is quite full.", + "The image is of a parking lot with cars parked in it.", + "An image from the internet of a parking_lot shows a large, open area with rows of parked cars.", + "The image is of a large parking lot with cars parked in every row.", + "A parking lot is a paved area where cars can park.", + "A parking lot is a place to park your car.", + "A black and white image of a large parking lot.", + "A parking lot in an urban area.", + "A parking lot filled with cars.", + "A parking lot full of cars.", + "A view of a parking lot from above.", + "A busy parking lot full of cars and people.", + "Southwest Parking Lot on a Busy Day.", + "A parking lot with cars parked in it.", + "This is a picture of a parking lot.", + "Just another day at the office.", + "Cars parked in a parking lot." + ], + "parlor": [ + "A parlor looks like a small, intimate room in a house or a building.", + "A parlor looks like a small, formal living room.", + "A parlor is a room in a house for living, relaxing, and entertaining guests.", + "A parlor is a room in a house where people can sit and relax.", + "Historically, a parlor was a small reception room in a private home.", + "A parlor is a room in a house where people can sit and relax.", + "A parlor is usually a small room in a house that is used for entertaining guests.", + "A parlor looks like a room in a house where people can sit and talk.", + "A parlor is a room in a house for formal and informal entertaining.", + "A parlor typically refers to a front room in a house where guests can be entertained.", + "The term \"parlor\" is used to describe a variety of different rooms in a house, but typically it is a small room used for entertaining guests.", + "A parlor is typically a small room in a house or apartment where people gather to socialize or relax.", + "A parlor typically has comfortable seating and is used as a room for entertaining guests.", + "There is no definitive answer to this question, as the term \"parlor\" can mean different things in different contexts.", + "A parlor is a room in a house where people can sit and relax.", + "There are a few ways to identify a parlor.", + "A parlor is a room in a house for formal and informal social events.", + "There is no definitive answer to this question, as the term \"parlor\" can be used to describe a wide variety of rooms, both inside and outside of the home.", + "A parlor is a room in a house where people can sit and chat.", + "The term \"parlor\" is used to describe a room in a private residence.", + "A parlor is a room for entertaining guests.", + "There is no one answer to this question, as the term \"parlor\" can refer to a wide variety of different types of rooms, from small, intimate gathering spaces to large, formal living rooms.", + "A parlor is a small room off of the main entrance of a house.", + "A typical parlor might have a sofa, armchairs, a coffee table, and knickknacks arranged on shelves.", + "A parlor is a room in a house where people can sit and relax.", + "A parlor is a room where people can sit and relax.", + "A parlor is typically a room in a house used for formal social events.", + "There is no one answer to this question as the term \"parlor\" can mean different things in different cultures and contexts.", + "A typical parlor in the 18th and 19th centuries was a room in a private home in which visitors were received.", + "The term \"parlor\" may refer to different types of rooms, but typically, a parlor is a formal sitting room in a house or mansion.", + "A Victorian-style parlor with a green and brown color scheme.", + "A parlor is a room in a house where people can sit and talk.", + "I found an image of a parlor on Pinterest that I really liked.", + "The image is of a parlor with a green couch and two chairs.", + "A room in a house where people can sit and relax, typically one with comfortable armchairs and other furniture.", + "This image from the internet shows a parlor with red walls and a green couch.", + " gameThe image is of a game called \"Snakes and Ladders.", + "The image is of a cozy looking parlor with two armchairs and a couch arranged around a small table.", + "In this image, a parlor is furnished with a comfortable looking blue sofa and two chairs.", + "In the image, there is a couch with a coffee table in front of it.", + "The room was elegantly furnished, with plush armchairs and a velvet sofa.", + "This is a photograph of a parlor in a Victorian-style home.", + "A parlor in a Victorian house.", + "A young woman seated at a pianoforte in a fashionable parlor, circa 1800.", + " A group of well-dressed people enjoying conversation and refreshments in a fashionable parlor.", + " styled living room with blue velvet sofaThis living room is styled with a blue velvet sofa as the focal point.", + "A young woman seated at a pianoforte in a dimly lit parlor, her expression pensive.", + " A group of well-dressed men and women are gathered around a piano in a large room.", + "A woman stands in a parlor, surrounded by various pieces of furniture.", + " A formal portrait of a mother and her two young daughters in their best clothes, seated in a large upholstered chairA formal portrait of a mother and her two young daughters in their best clothes, seated in a large upholst." + ], + "pasture": [ + "A pasture is a piece of land used for grazing animals.", + "A pasture is a grassy field where animals graze.", + "A pasture is a grassy field where cows can graze.", + "A pasture is a piece of land where animals, usually cows, are allowed to graze.", + "A pasture is typically a grassy area where cows or other animals graze.", + "A pasture is a field where animals graze.", + "A pasture is an area of land that is used for grazing animals.", + "A pasture is an area of land where grass and other plants are grown for livestock to eat.", + "A pasture is a field where animals are allowed to graze.", + "A pasture usually has grass growing in it.", + "A pasture is typically a fenced-in area of land where farm animals can graze.", + "A pasture is a field where animals graze on grass.", + "A pasture is a field where grass grows.", + "A pasture is an area of land that is used to graze animals.", + "A pasture is a plan of land used for grazing livestock.", + "A pasture is an area of land where livestock are allowed to roam and graze.", + "Pasture usually refers to land used for grazing cattle, sheep or other livestock.", + "A pasture is any area of land that is used primarily for grazing animals.", + "To identify a pasture, look for an area of land that is covered in grasses and other short plants.", + "A pasture is a field of land where grass and other plants are grown to be fed to animals.", + "A pasture is an area of land where livestock graze.", + "A pasture is a field where farmers graze their livestock.", + "A pasture is a field where animals are allowed to graze.", + "A pasture is an area of land that is used to graze animals.", + "A pasture is a piece of land used for grazing animals.", + "A pasture is a field where animals graze.", + "A pasture is an area of land that is used for grazing animals.", + "A pasture is a grassy field.", + "A pasture may look like a field with grass and other plants, or it may look like a forest with taller plants.", + "A pasture typically looks like a field with grass growing in it.", + "The image is of a large, green field with a few trees scattered throughout.", + "I found an image on Google of a pasture with a horse in it.", + " full of horsesAn image from the internet of a pasture full of horses would show horses grazing on grass in a field.", + "The image is of a pasture with green grass and a few trees.", + "An image of a pasture from the internet would likely show a stretch of green grass, with either a fence or natural barriers delineating the space.", + "The image is of a large, green pasture with a few trees scattered throughout.", + "In the image, there is a large, green pasture with a few trees dotting the landscape.", + "The image is of a brown horse in a green pasture.", + "The image shows a wide, open field with grass and trees.", + "The image is of a wide, green pasture with grazing cows.", + " \"A field of fresh grass in early spring.", + "A field of cows graze in a pasture.", + "This pasture is teeming with life, from the grasses to the insects.", + "Horses grazing in a sunlit meadow.", + "A pasture full of green grass and yellow flowers.", + "In this idyllic pasture, cattle graze peacefully amongst the tall grasses and wildflowers.", + "A pasture full of green grass and wildflowers.", + "Lush, green pasture dotted with cows.", + "Just another day on the farm.", + "A horse grazing in a pasture." + ], + "patio": [ + "A patio is usually a paved outdoor area adjoining a house, used for leisure activities such as dining, sunbathing, or relaxing.", + "A patio is a paved outdoor area that adjoins a house, and is a popular place to entertain guests or relax in the sun.", + "A patio is typically a paved outdoor area adjacent to a house, used for leisure activities such as sitting, relaxing, eating, or playing.", + "A patio is typically a paved area located at the back or side of a house.", + "A patio is a paved area that is used for relaxing and entertaining.", + "There is no one answer to this question because patios can come in all shapes and sizes.", + "A patio is typically a paved outdoor area that adjoins a house.", + "A patio is typically a paved outdoor area that adjoins a house, and is used for recreation and dining.", + "A patio is a paved outdoor area that typically adjoins a house.", + "A patio is a paved outdoor area, typically adjoining a house, used for relaxation or dining.", + "A patio is a paved outdoor area, typically consisting of a terrace or a garden, that adjoins a residence and is used for recreation or dining.", + "There is no one definitive answer to this question, as the term \"patio\" can refer to a wide range of outdoor spaces.", + "A patio is a section of pavement or other hard surface that is adjacent to a building.", + "There is no definitive answer to this question as the term \"patio\" can refer to a wide range of outdoor spaces, from small, private courtyards to large, public terraces.", + "A patio is a paved outdoor area that adjoins a house, and is a popular spot for outdoor dining and entertaining.", + "A patio can be identified by its flat surface, which is usually made of stone, bricks, or concrete.", + "A patio is typically an outdoor space adjacent to a home, used for dining or recreation.", + "A patio is an outdoor living space that is usually composed of pavers or stone.", + "There is no definitive answer to this question since patios can vary greatly in terms of size, shape, and location.", + "A patio is typically an outdoor space that is adjoining to a house.", + "There is no one answer to this question, as patios can come in a wide variety of shapes, sizes, and styles.", + "A patio is a paved outdoor area that can be used for dining, entertaining, or simply relaxing.", + "A patio is a paved outdoor area that adjoins a house, and is a popular spot for entertaining and relaxing.", + "A patio is typically an outdoor area adjoining a residence, used for relaxation or recreation.", + "A patio is like a porch, but it is usually made of concrete or stone instead of wood.", + "A patio can be made of many different materials, but is typically concrete, stone, or brick.", + "A patio is a paved outdoor area, typically adjacent to a house, used for recreation or dining.", + "A patio is a paved outdoor area, typically adjacent to a house, used for recreation or dining.", + "A patio is an outdoor living space that is typically paved and can be used for dining, relaxing, or entertaining.", + "A patio can take many forms, but is typically defined as an outdoor living space, paved or otherwise, that adjoins a house.", + "An image from the internet of a patio shows a paved area with furniture on it.", + "This patio is set up for dining, with a table and umbrella for shade.", + "The image shows a patio with a stone floor and a gravel border.", + "An image from the internet of a patio shows a concrete patio with a stone fireplace.", + "A patio is a paved outdoor area that adjoins a house, and is a popular spot for entertaining guests or relaxing in the sun.", + "patio with green ivy on the walls and a stone floor; there is a table with four chairs and a umbrella in the center of the table.", + "This image is of a round patio with a concrete floor.", + "The image is of a patio with a stone floor and a water feature in the middle.", + "The image shows a large patio with a light-colored stone floor.", + "The image is of a patio with a pavedstone floor and a white picket fence surround.", + " A patio with a view of a lake.", + "A beautiful patio with a view of the mountains.", + " A patio with furniture and a view of a garden.", + "Create an outdoor oasis with this patio furniture set.", + "A patio with a view of the city.", + " A patio with a table and chairs, surrounded by plants.", + "Patio with outdoor furniture and a view of the city.", + "This patio was built for entertaining.", + " A beautiful patio with a view of the ocean.", + "A patio with a view of the ocean." + ], + "pavilion": [ + "A pavilion is a type of gazebo, usually octagonal or circular in shape, with a dome or hip roof.", + "A pavilion is a structure with an open roof, often in the shape of a half-hexagon or octagon, that is used as a shelter or gazebo.", + "Image result for what does a pavilion look like\nA pavilion is a light-structured building that is built for public use and enjoyment.", + "A pavilion has four columns supporting a roof.", + "A pavilion is a freestanding structure with an open roof that is supported by columns.", + "A pavilion is a smaller, more intimate gazebo that is usually found in gardens.", + "A pavilion is a type of gazebo that is often found in parks or gardens.", + "A pavilion is a type of outdoor structure that is often used as an extension of a home or other building.", + "A pavilion is a freestanding structure with a roof and walls that is open on all sides.", + "A pavilion is typically an open-sided structure with a roof, supported by columns or posts.", + "The basic form of a pavilion is an enclosed rectangular space with four walls, at least one of which is open to the outdoors.", + "There is no definitive answer to this question, as there is no one specific design or style that all pavilions share.", + "A pavilion is a free-standing structure with an open roof, typically in the form of a hexagon, octagon, or square, that is used as an extension of a main building.", + "A pavilion is a type of building that is often found in parks and gardens.", + "A pavilion is a structure with either an open or partially open roof that is affixed to the side of a main building.", + "A pavilion is a decorative roof structure that is often found in gardens or public parks.", + "Pavilions are often found in public parks and are large, open-sided buildings with a roof.", + "A pavilion is an ornamental building in a park or garden.", + "A pavilion is an open-sided structure with a roof, typically found in a park or garden.", + "A pavilion is typically a freestanding structure that is open on all sides.", + "There is no one answer to this question as pavilions can come in a variety of shapes and sizes.", + "There is no definitive answer to this question as pavilions can come in a wide variety of shapes and sizes.", + " Pavilion structures vary in appearance, but most often they are freestanding, open-sided buildings with a roof supported by columns.", + "A pavilion is a type of building that has an open design.", + "The word pavilion is used to describe many different types of structures, so there is no one answer to this question.", + "A pavilion is a covered structure that is open on all sides.", + "A pavilion is a roofed structure that is open on all sides.", + "A pavilion is a roofed structure that is open on all sides.", + "A pavilion is a type of outdoor structure that is usually open on all sides, with a roof.", + "A pavilion is a freestanding structure that provides shelter or a covered seating area.", + "This image shows a large, white pavilion with a pointed roof.", + "The image is of an outdoor pavilion with a thatched roof.", + "A pavilion is a light-structured building used as a shelter or gazebo, typically in a park or garden.", + "This image is of a white pavilion with four column supporting a curved roof.", + "A pavilion is a small, typically octagonal or hexagonal, roofed structure open on all sides.", + "I found an image of a pavilion on Pinterest that I really liked.", + "This image is of a pavilion in a park.", + "A pavilion is a structure with an open roof and sides, typically used for shelter or as an ornamental feature in a park or garden.", + "An image of a pavilion from the internet is a structure that is typically covered in a roof and has several pillars supporting it.", + "A pavilion image from the internet shows a large, open-sided structure with a peaked roof.", + " The Pavilion at Portland Japanese Garden.", + " The Pavilion at the\r\nFood and Folklore Festival\r\n\r\nA caption of an image of a pavilion:\r\nThe Pavilion at the Food and Folklore Festival was a great place to relax and enjoy the festival.", + " A pavilion in a garden.", + "The Pavilion at the Palace of Versailles was built in 1682-1685 by Jules Hardouin Mansart and Robert de Cotte as part of Louis XIV's expansion of the palace.", + "The Pavilion at the Palace of VersaillesA caption of an image of a crowd of people:People gather in front of the Palace of Versailles to watch the annual Bastille Day military parade.", + "The Pavilion at the Royal Palace in Madrid, Spain.", + "This is a pavilion in a park.", + "A wooden pavilion in a park surrounded by trees.", + " A beautiful pavilion in a garden.", + "This is the Japanese Pavilion at the World's Fair." + ], + "pharmacy": [ + "A pharmacy can be a small shop, usually located near a hospital, or it can be a large department in a supermarket.", + "A pharmacy is a place where you can buy drugs.", + "A typical pharmacy has shelves of drugs and other medical supplies.", + "A pharmacy is a storefront where people can buy medication.", + "Pharmacies vary in size and layout, but most have a waiting area, a counter to speak to the pharmacist, and shelves or cabinets full of medication.", + "The appearance of a pharmacy varies depending on the location, but they typically have a waiting area for customers and a counter where prescriptions are filled.", + "A pharmacy is usually a small, specialized store that sells medications and other health-related products.", + "A pharmacy is typically a small, retail store that stocks a variety of over-the-counter drugs and prescription medications.", + "A pharmacy is a place where drugs are dispensed and where drug information is given to patients.", + "A pharmacy is a small shop that sells medicines.", + "A pharmacy can be identified by its signage, which usually includes a green cross.", + "A pharmacy can be identified by its sign, which usually contains a mortar and pestle.", + "The best way to identify a pharmacy is to look for the green cross sign.", + "You can identify a pharmacy by looking for the green cross symbol.", + "There are many ways to identify a pharmacy.", + "The logo for a pharmacy is a green cross.", + "There are a few ways to identify a pharmacy.", + "There are many ways to identify a pharmacy.", + "Pharmacies are usually located near hospitals or clinics, and they have a sign that says \"PHARMACY\" in big letters.", + "The easiest way to identify a pharmacy is by looking for the green and white \"Rx\" sign.", + "The interior of a pharmacy can vary depending on the size and location of the store.", + "A pharmacy typically looks like a small store with shelves full of medicines and other health-related products.", + "There is no one answer to this question since pharmacies can come in many different shapes and sizes.", + "There is no definitive answer to this question because pharmacies can come in many different shapes and sizes.", + "A pharmacy is a small room or shop where medicines are kept and sold.", + "A pharmacy is a place where people can go to buy medication.", + "This answer was taken from Google images.", + "A pharmacy is typically a small shop that sells medication and other health-related items.", + "A pharmacy typically looks like a small shop with a counter near the front and shelves of medicines and other products behind it.", + "A pharmacy is a small shop, usually located inside a larger store, that sells medication and other health-related products.", + "The image is of a blue and white sign that reads \"Pharmacy\" in white letters on a blue background.", + "The image shows a pharmacy with the name \"Rite Aid\" on the sign.", + "In the image, there is a green and white sign above the door that reads \"Pharmacy\" in white lettering.", + "An image of a pharmacy is typically a storefront with a sign that reads \" pharmacy.", + "An image of a pharmacy might include shelves of medications, a counter with a pharmacist behind it, and people waiting in line to receive prescriptions.", + "A pharmacy is a place where people can go to get their medications.", + "In this image, we can see a pharmacy with a large number of shelves filled with various medical supplies and products.", + "The image is of a small, independent pharmacy.", + "In this image, we see a traditional pharmacy counter with someone waiting to be served.", + "The image shows a pharmacy sign hanging above a door.", + "The pharmacist stands behind the counter, waiting to help customers with their prescriptions.", + "Inside a pharmacy in the United States.", + " A busy pharmacy with many customersA caption of an image of a medical office: A medical office with many patients waiting to be seen.", + " Pharmacists are a crucial part of the healthcare team.", + "A time for change: the pharmacy of the future.", + " A heap of prescription drugsA pharmacy is a place where drugs are stored and dispensed.", + "PHARMACY.", + "A busy pharmacy.", + "\"This is a picture of a pharmacy.", + "A pharmacy in the United States." + ], + "phone booth": [ + "A phone booth is typically a small, enclosed space with a phone inside.", + "A phone booth is a small, enclosed space where a person can go to make a phone call.", + "A phone booth typically has a door that can be opened and closed, and a phone inside.", + "A phone booth is a small, usually enclosed, public telephone space.", + "A phone booth is a small enclosure that contains a payphone.", + "A phone booth is typically a small room with a door and a phone.", + "A phone booth is a small room where a person can go to make a phone call in privacy.", + "A phone booth is typically a small, enclosed room with a door and a phone inside.", + "Most phone booths these days are just a small enclosure with a phone inside.", + "A phone booth is a small room with a door and a telephone.", + "The typical phone booth is red and has a phone sign on the top.", + "A phone booth is typically a small, enclosed room with a door and a telephone.", + "One way to identify a phone_booth is by its characteristic red color.", + "A phone booth is typically a small, enclosed space with a telephone inside.", + "Phone booths are typically small, enclosed booths made of metal or glass.", + "A phone booth is typically a small, enclosed space with a phone inside.", + "The best way to identify a phone booth is to look for a small, typically red, kiosk with a glass door.", + "A phone booth can typically be identified by its bright red or blue color.", + "A phone_booth can typically be identified by its small size and the presence of a telephone inside.", + "A phone booth can be identified by its bright red color and the coin-operated telephone inside.", + "A phone booth typically consists of a small, enclosed space with a phone inside.", + "A phone booth is a small, typically colored, kiosk with a door that can be opened to allow a person to step inside.", + "A phone booth is typically a small, enclosed space with a phone inside.", + "A phone booth typically looks like a small, enclosed space with a phone inside.", + "A phone booth is typically a small, enclosed space with a telephone inside.", + "A phone booth typically has a door that can be closed for privacy, a seat, and a phone.", + "A phone booth looks like a small room with a door and a telephone inside.", + "A phone booth is a small, often coin-operated, single-person booth located in public places, especially in high-traffic areas, where a telephone is available for making local, long-distance, and international phone calls.", + "A phone booth typically has a phone inside of it and is enclosed on all sides.", + "A phone booth is usually a small, enclosed space with a phone inside.", + "The image from the internet is of an old-fashioned phone booth with a phone inside it.", + "In this image, we see a red phone booth that is a classic sight in London.", + "The image is of a traditional red British phone booth.", + "The image is of a traditional red phone booth.", + "A phone_booth image from the internet shows a traditional red British phone_booth with the door open.", + "There is an image of a red phone booth with the door open.", + "A phone_booth is a small, often coin-operated, public telephone booth for making telephone calls.", + "This image is of a red phone booth.", + "The image is of a classic red phone booth with the door open.", + "A phone booth is typically a small, enclosed space with a phone inside.", + "A traditional British red phone booth.", + "A typical phone booth in the United Kingdom.", + "A typical British phone booth, now mostly out of service.", + "A traditional red British phone booth.", + " Britons using a red telephone box in London.", + " A traditional red phone booth in LondonA traditional red phone booth in London.", + "A pay phone in a booth on a street corner.", + "A typical British phone booth, now mostly obsolete due to the prevalence of mobile phones.", + "A phone booth in a busy city street.", + "A vintage phone booth in London, England." + ], + "physics laboratory": [ + "A laboratory where physics experiments are done.", + "A Laboratory is a room where scientists work.", + "A physics laboratory is typically a room in a school or university with specialized equipment for conducting physics experiments.", + "A physics laboratory may look like a room with several pieces of equipment set up.", + ".", + "A physics laboratory typically contains a variety of equipment for performing experiments and taking measurements.", + "There is usually a lot of equipment in a physics laboratory, including things like microscopes, computers, and lasers.", + "A physics_laboratory looks like a room with a whiteboard, some desks, and a lot of wires and electronic equipment.", + "In a physics_laboratory, there are usually many different types of equipment set up.", + "A physics laboratory typically contains a number of pieces of equipment for carrying out various experiments, such as a microscope, a balance, and a set of scales.", + "The equipment in a physics laboratory is used to measure and study the physical world.", + "A physics_laboratory is typically a room that is set up for doing physics experiments.", + "A physics laboratory is a room or building where physics experiments are carried out.", + "A physics_laboratory can be identified by its purpose, which is to allow students to conduct experiments and make measurements related to the physical world.", + "By its name.", + "A physics laboratory is a room or building where physics experiments are done.", + "A physics laboratory is a place where physics experiments are performed.", + "The physics laboratory is a room that is used to conduct physics experiments.", + "A physics laboratory is typically a room that is specifically designed and equipped for carrying out physics experiments.", + "There are certain pieces of equipment that are typically found in a physics_laboratory, such as a table for conducting experiments, various tools for measuring and manipulating objects, and big blackboards for jotting down calculations.", + "There is no definitive answer to this question as physics laboratories can come in a wide variety of shapes and sizes.", + "A physics laboratory typically contains equipment for carrying out experiments, such as lasers, motors, and pulleys.", + "The physics_laboratory looks like a room with a lot of equipment.", + "A physics laboratory is a room in which physics experiments are carried out.", + "A physics laboratory typically contains a variety of tools and equipment for conducting experiments in physics.", + "A physics laboratory typically includes a variety of equipment for measuring and manipulating physical phenomena.", + "There is not a single answer to this question as physics laboratories can vary considerably in both size and appearance.", + "A physics laboratory is usually a room in a school or university where physics experiments are conducted.", + "A physical laboratory is a place where physical experiments are done.", + "A physics laboratory typically contains a variety of equipment for carrying out experiments in physics.", + "In the image, there are several tables with different physics equipment set up on them.", + "https://en.", + "In this image, we see a clean and well-lit physics laboratory.", + "In the image, there are several laboratory equipment set up on a long bench.", + "A physics laboratory is a place where physics experiments are performed.", + "The image shows a person in a lab coat standing in front of a large machine with several dials and switches.", + "PHysics laboratories are often filled with large, complicated-looking machines.", + "In the image, there are several physics laboratories with different equipment.", + "An image of a physics laboratory shows a room with white walls and floors.", + "The image is of a laboratory with people in white coats working on experiments.", + "In this physics laboratory, students are learning about the basic principles of mechanics.", + " Physics Laboratory.", + "A physics laboratory is a place where physics experiments are performed.", + "Researchers in a physics laboratory test the effects of electromagnetic radiation on various materials.", + "Inside a typical physics laboratory.", + "In this physics laboratory, students are learning about the properties of light.", + "Inside a physics laboratory at a university, various equipment is set up on a workbench, including a power supply, an oscilloscope, and a laptop computer.", + "A physics laboratory at a university.", + "Inside a physics laboratory at a university, various experiments are being conducted.", + " A traditional physics laboratory at a university." + ], + "picnic area": [ + "A picnic area might have a few picnic tables and a BBQ.", + "A picnic_area looks like a place where people can go to eat their lunch outside.", + "A picnic_area can look like a park with picnic tables and BBQ grills or it can look like a forest with a cleared area for picnicking.", + "A picnic_area typically has a picnic_table, benches, and a grill.", + "A picnic_area typically contains picnic tables and trash bins.", + "A picnic_area looks like an area with a picnic table and a grill.", + "A picnic_area looks like a grassy area with picnic tables.", + "A picnic_area typically contains a picnic_table and a grill.", + "A picnic_area typically looks like a grassy field or park with picnic tables scattered throughout.", + "A picnic_area is a designated area for picnicking.", + "A picnic_area is a designated area where people can picnic.", + "A picnic area is typically a designated area in a park or campground where people can picnic.", + "A picnic area is a designated area where people can go to picnic.", + "A picnic_area is typically an outdoor area with picnic tables and benches where people can eat lunch or dinner.", + "A picnic area is a designated area where people can go to picnic.", + "A picnic_area is a designated area for picnicking.", + "A picnic_area can be identified by its characteristic shape.", + "A picnic_area generally contains picnic tables and benches, and is often located near a hiking trail or other outdoor recreation area.", + "A picnic area is a designated area for picnicking.", + "A picnic area is usually a designated area in a park or other outdoors location where people can picnic.", + "A picnic area is a designated area where people can pack a meal and enjoy the outdoors.", + "A picnic area might have a few picnic tables and a BBQ grill.", + "A picnic_area looks like a park with picnic tables.", + "A picnic area is a grassy area with trees and a picnic table.", + "A picnic area may have a picnic table, a scenic view, and a place to barbecue.", + "A picnic area can look like a lot of things.", + "A picnic area can take many different forms, but typically it is a designated outdoor space set aside for picnicking.", + "A picnic area typically has a picnic table and a grill.", + "A picnic area typically includes a table and benches.", + "A picnic area is a designated area where people can eat their picnic lunch.", + "The image is of a picnic area with a green grassy field and a few trees.", + "In the image, there is a picnic table situated next to a river.", + "A grassy field with a picnic table and a basket of food.", + "The image shows a picnic area with a green lawn, a few trees, and a picnic table with a red and white checked tablecloth.", + "The image is of a large grassy field with a few trees scattered around.", + "The image shows a large, green field with a few trees scattered around.", + "An image of a picnic area shows a green field with trees and a lake in the distance.", + "An image from the internet of a picnic area may show a park with a green lawn, trees, and a picnic table with a red and white checkered tablecloth.", + "The image is of a large picnic area with lots of green grass and trees.", + "An image of a picnic area might show a grassy field with a few trees, a picnic table, and a cooler.", + "A group of friends enjoying a picnic together in a park.", + "A picnic area with a table and umbrella.", + "A group of friends enjoying a picnic at a scenic picnic area.", + "A group of people enjoying a picnic in a park.", + "A group of people are enjoying a picnic in a park.", + "Locals enjoying a sunny day at the park.", + "This is a picnic area.", + "This is a picture of a picnic area.", + "A group of friends enjoying a picnic in the park.", + "A group of people are enjoying a picnic in a scenic outdoor area." + ], + "indoor pilothouse": [ + "A indoor pilothouse has walls and a ceiling around it, typically with windows on all sides.", + "A pilothouse is a small cabin located at the front of a ship, usually on the upper deck, where the ship's pilot controls the vessel.", + "There is no definitive answer to this question as the design of indoor pilothouses can vary depending on the builder or designer.", + "A indoor pilothouse typically has large windows all around, providing 360-degree visibility.", + "A pilothouse is a small cabin located at the front of a boat, typically on the upper deck, where the captain stands watch.", + "A indoor pilothouse is a room on a ship or boat that has controls for steering, navigational instruments, and communication equipment.", + "The indoor pilothouse is a small room located inside the ship near the front.", + "A indoor pilothouse usually has a large windshield and a small cabin inside the vessel.", + "There is no definitive answer to this question, as the term \"indoor pilothouse\" could describe a wide variety of interior layouts for a ship or boat.", + "A indoor pilothouse looks like an indoor space that is typically located at the front of a boat.", + "A pilothouse is typically a small cabin located at the front of a boat, where the helmsman has a clear view forward.", + "There is no definitive answer to this question, but some possible indicators that a building may be an indoor pilothouse include its location (postal address), presence of windows on all sides, and presence of a second floor.", + "The best way to identify an indoor pilothouse is to look for a window on the side of the building.", + "There is no definitive answer to this question as the design of indoor pilothouses can vary greatly.", + "A pilothouse is a small cabin located at the front or rear of a ship, wherein the ship's pilot controls the vessel while standing watch.", + "An indoor pilothouse is typically a room on a ship or boat that has windows all around, providing 360-degree visibility.", + "There is no definitive answer to this question, as the term \"indoor pilothouse\" can refer to a wide variety of structures.", + "Indoor pilothouses are usually smaller in size than outdoor pilothouses, and they have windows on all sides.", + "A indoor pilothouse is a type of boat that has a small cabin inside the main cabin.", + "An indoor pilothouse is typically located on the main deck of a vessel, and has large windows all around that offer 360-degree views.", + "A indoor pilothouse is a room on a ship or boat that has large windows all around, so the person steering can see where they are going.", + "A indoor pilothouse looks like a small room inside a larger room.", + "A indoor pilothouse is a room on a ship or boat where the pilot (someone who steers the vessel) stands while guiding the ship.", + "There is no definitive answer to this question because the design of a pilothouse can vary greatly depending on the specific needs and preferences of the boat's owner.", + "A pilothouse is an enclosed area on a ship or boat that houses the ship's steering controls and navigation instruments.", + "A pilothouse is a small, enclosed cabin located at the front of a small boat or ship.", + "There is no definitive answer to this question, as the design of a pilothouse can vary greatly depending on the specific vessel.", + "A indoor pilothouse looks like a small, enclosed room that is typically located at the front or back of a boat.", + "A pilothouse is typically a small, enclosed cabin located near the front or center of a ship.", + "There is no definitive answer to this question as the design of a pilothouse is largely dependent on the architect or designer.", + "A pilothouse is a small cabin found on the upper deck of a ship, containing the ship's primary controls.", + "I found an image on the internet of an indoor pilothouse that looks like a small room inside of a ship.", + "The indoor pilothouse in the image is a room with a view.", + "The image is of a small, traditional-style wooden pilothouse.", + "This image is an indoor pilothouse with a view of the ocean.", + "A pilothouse is a small cabin located at the front of a boat, typically on the main deck, where the pilot or captain stands while navigating the vessel.", + "This image shows a brightly lit pilothouse with wood paneling and large windows.", + "In this image, we can see the interior of a pilothouse, which is the central control station of a ship.", + "This image is of a small, rectangular pilothouse with large windows on all sides.", + "The image shows a large room with a lot of windows.", + "This is the indoor pilothouse of the SS Lane Victory, a World War II cargo ship.", + "The indoor pilothouse on the ship offers a comfortable place for the captain to work, with plenty of room for navigation equipment and a comfortable chair.", + " The indoor pilothouse provides a comfortable and safe space for the captain to navigate in bad weather.", + "This is a picture of an indoor pilothouse, where the ship's steering wheel and other controls are located.", + "This is the pilothouse of the SS United States, a luxury liner that operated from 1952 to 1969.", + "The indoor pilothouse of the M/V Aleutian Legacy, a seagoing research vessel owned and operated by the University of Alaska Fairbanks.", + "The indoor pilothouse of a ship provides a comfortable and safe space for the captain to navigate the vessel.", + "This is the indoor pilothouse of the SS United States, which is currently docked in Philadelphia.", + "The indoor pilothouse of a ship is a comfortable place to relax and enjoy the view.", + " Inside the pilothouse of the HMS Bounty." + ], + "outdoor planetarium": [ + "A outdoor planetarium looks like a large dome that is open at the top.", + "A outdoor planetarium is typically a large dome-shaped structure with a projector inside that projects images of the night sky onto the dome.", + "A planetarium is an outdoor theater that shows movies about space.", + "A outdoor planetarium has a large domed projection screen, seats for an audience, and a projector in the center.", + "A outdoor planetarium looks like a giant dome with a projector inside.", + "A outdoor planetarium is a domed structure that projects images of the night sky onto the inside of the dome.", + "A outdoor planetarium typically looks like a large dome with a projection of stars and planets inside.", + "A outdoor planetarium looks like a large dome with a projector inside.", + "An outdoor planetarium typically looks like a large geodesic dome with a projection system inside.", + "A outdoor planetarium looks like a dome-shaped structure with a hole in the top.", + "A outdoor planetarium can typically be identified by its large, domed structure.", + "An outdoor planetarium is typically a domed structure that is used to projection images of the night sky.", + "Most outdoor planetariums are large white domes.", + "A outdoor planetarium would most likely be a large, dome-shaped building.", + "A outdoor planetarium is a large dome-shaped structure that projects images of stars, planets, and other astronomical objects onto its interior surfaces.", + "You can identify a outdoor planetarium by looking for a large dome-shaped building.", + "A outdoor planetarium will typically be a large, dome-shaped structure.", + "You can identify a outdoor planetarium by its large dome shape.", + "There are several ways to identify an outdoor planetarium.", + "outdoor planetariums are usually large domes that are open at the top to allow stargazers to lie on their backs and view the night sky.", + "A outdoor planetarium looks like a large dome or tent, with a projection system inside.", + "An outdoor planetarium looks like a large white dome, with a hole in the top for the projector to shine through.", + "It depends on the size and type of outdoor planetarium, but generally they are large, white domes with a circular opening at the top.", + "A good outdoor planetarium will look like a large dome with a projector inside.", + "A outdoor planetarium can look like a large dome or a small, portable dome.", + "A normal planetarium is a large room with a dome shaped ceiling.", + "An outdoor planetarium looked like a large, inflated dome with a projector inside.", + "A large semester dome with a projector inside.", + "A large, hemispherical dome with a projection system inside.", + "A outdoor planetarium looks like a large dome with a projector inside.", + "This image from the internet is of a large, dome-shaped structure with a hole in the top.", + "The image is of a large white dome-shaped structure with a door in the front.", + "A large dome with a projector inside pointing up at the night sky.", + "A large, domed structure with a hole in the top, open to the night sky.", + "An image from an outdoor planetarium shows a large dome with a hole in the top, through which people can see the night sky.", + "I found an image on the internet of an outdoor planetarium that looks like a large white dome.", + "This image is of the Fantasy of Flight, an aviation-themed museum in Polk City, Florida.", + "An image of an outdoor planetarium shows a large dome-shaped structure surrounded by a grassy field.", + "An image of an outdoor planetarium shows a large, hemispherical dome with a small door in the side.", + "An image from the internet of a outdoor planetarium shows a large, domed structure with dozens of people inside looking up at the night sky.", + "Image of an outdoor planetarium with a huge dome.", + " The Outdoor Planetarium at the Science Museum.", + " The Centaurus A galaxy, as seen from an outdoor planetarium in Santiago, Chile.", + "An outdoor planetarium providing free astronomy shows to the public.", + " Thousands of people gather under the stars to learn about the constellations and planets at the International Science Festival's outdoor planetarium.", + "The Outdoor Planetarium at The Discovery Science Center is the first and only one of its kind in Orange County, CA.", + "An outdoor planetarium provides a perfect place to view the stars.", + "The planetarium is a popular spot for visitors to stargaze and learn about the night sky.", + "The Outdoor Planetarium is a great way to learn about the night sky.", + " The Star Theater at Adler Planetarium in Chicago." + ], + "playground": [ + "A playground typically has a few different pieces of equipment that children can use to play on.", + "The playground has a lot of swings and a lot of monkey bars.", + "A playground looks like a fun place to play with lots of different equipment to explore.", + "A playground is a fun place to play with your friends! It has swings, a slide, and a monkey bar.", + "A playground typically has a variety of play equipment such as swings, slides, monkey bars, and climbing structures.", + "A playground is a fun place for kids to play.", + "A playground is an outdoor area where children can play.", + "A playground is a fun place for children to play.", + "A playground typically has a few swings, a jungle gym, and a small sandbox.", + "A playground is a place with equipment for children to play on.", + "A playground is a place where children can play.", + "A playground is normally a designated area for children to play.", + "A playground is a fun place for children to play.", + "The most defining characteristic of a playground is that it is designed for children to play on.", + "A playground is typically a fenced in area with swings and climbing equipment.", + "A playground is a place where children play.", + "One way to identify a playground is by looking for large, colorful structures that are meant for climbing, sliding, and swinging.", + "Playgrounds are usually designed for children and are located in parks or school yards.", + "A playground is typically a designated area for children to play.", + "The best way to identify a playground is to look for a playground sign.", + "A playground is a fun place to play with your children.", + "A playground is typically a outdoor space with equipment designed for children to play in.", + "Some playgrounds have a lot of different kinds of equipment, while others might have just a few pieces.", + "A playground typically has a few key components.", + "A playground is a fun place to play with your friends! There are swings, slides, monkey bars, and other fun things to play on.", + "A playground typically has a variety of equipment for children to play on, such as monkey bars, slides, and swings.", + "A playground typically has a few key components.", + "A playground typically has a variety of equipment for children to play on, such as swings, slides, monkey bars, and more.", + "A playground typically contains equipment such as slides, monkey bars, swings, and see-saws.", + "A playground typically consists of a few pieces of equipment, such as a swingset, slide, and monkey bars.", + "In the image, there is a playground with a slide, monkey bars, and a swingset.", + "The image is of a playground with a slide, swings, and a climbing structure.", + "This image from the internet is of a colorful playground with several children playing on it.", + "In the image, there is a playground with various kinds of equipment.", + "An image from the internet of a playground shows children playing on equipment such as slides, swings, and monkey bars.", + "This image is of a playground with a variety of equipment.", + "An image of a playground from the internet shows a large, colorful play structure with many slides, swings, and monkey bars.", + "A playground is a fun place for kids to play with their friends.", + "The image is of a playground with several different types of equipment.", + "I found an image on the internet of a playground that looks like a lot of fun! It has a slide, a swing, and a climbing structure for kids to play on.", + "A group of happy children playing on a playground surrounded by a fence.", + "This playground looks like so much fun! It has slides, swings, and a climbing wall.", + "A group of children play on a playground with swings, a slide, and a jungle gym.", + "A group of children play on a playground with a slide, swings, and a jungle gym.", + "This playground looks like so much fun!.", + "This playground is designed for children ages 5-12.", + "A playground full of happy children enjoying the sun and the equipment.", + "An abandoned playground in an empty park.", + "A playground with several different kinds of equipment, including swings, a slide, and a climbing structure.", + " Children playing on a playground." + ], + "playroom": [ + "A playroom is a room where children can play.", + "A playroom is usually a room in a house where children can play.", + "A playroom often has funquad like coloured walls with cartoon characters or fairy tale scenes painted on them.", + "A playroom can look like many things.", + "A playroom is typically a room in a house where children can play.", + "A playroom looks like a room where children can play without having to worry about ruining furniture or making a mess.", + "Some playrooms may have a playhouse, a dollhouse, or otherpretend play structures.", + "A playroom is a fun place for children to play.", + "A playroom is usually a room in a house where children can play.", + "A playroom is a room in a house where children can play.", + "A playroom can be identified by its colorful and fun atmosphere.", + "A playroom can often be identified by its colorful and fun decor.", + "A playroom can be identified by its toys and child-friendly furniture.", + "There is no definitive answer to this question, but some common indicators that a room is being used as a playroom include the presence of toys, games, and other child-friendly items.", + "A playroom can usually be identified by its colorful and child-friendly d\u00e9cor.", + "A playroom is typically a room in a house where children can play.", + "There are a few ways you can identify a playroom.", + "A playroom may have a lot of toys in it.", + "A playroom is usually a room in a house set aside for children to play in.", + "A playroom can typically be identified by its colorful and fun d\u00e9cor.", + "A playroom is typically a room in a house set aside for children to play in.", + "A playroom is a room in a house where children can play.", + "A playroom generally contains toys and other items that children can use to play.", + "A playroom typically contains toys and playthings for children.", + "A playroom typically contains toys and furniture that is meant for children to play on and around.", + "A playroom typically contains toys and games for children.", + "A playroom is typically a room in a house set aside for children to play in.", + "A playroom usually has a lot of toys in it and is a place where kids can play.", + "A playroom is a room in a house where children can play.", + "A typical playroom might include a small table and chairs, a toy chest, some shelves for toy storage, and a rug or mat for floor activities.", + "This image shows a large playroom with several different kinds of toys.", + "A playroom is a room in a house where children can play.", + "In the image, there is a large room with several different types of play equipment.", + "An image from the internet of a playroom might show a colorful room with toy chests, a play kitchen, and a toddler-sized table and chairs.", + "In the image, there is a large playroom with brightly colored walls and floor.", + "An image from the internet of a playroom shows a large room with brightly colored walls and several child-sized pieces of furniture.", + "The image shows a young girl sitting on the floor in a playroom.", + "In the image, there is a large playroom with several different areas for children to play.", + "In the image, there is a small playroom with multiple colorful toys scattered around.", + "The image is of a large, brightly lit playroom with a hardwood floor.", + "This is a playroom for children.", + " A little girl is sitting at a small table, smiling and looks to be concentrating intently on a project in front of her while her dog looks on.", + "In this playroom, children can let their imaginations run wild! There's plenty of space to play and plenty of toys to keep them entertained.", + "This cheerful playroom is every little girl's dream! The room is filled with toys, books, and games, and there is even a special reading nook with a cozy chair and blanket.", + " A colorful playroom with toys, a play kitchen, and art suppliesThis looks like a fun playroom for kids! There are plenty of toys to keep them entertained, plus a play kitchen and art supplies for some creative fun.", + " The playroom is full of toys, balls, and Barbies.", + "A toddler's playroom with bright colors and plenty of toys.", + "This cheerful playroom is full of fun toys and games for kids of all ages.", + " A playroom full of toys and gamesIn this playroom, there's never a dull moment! There's plenty of toys and games to keep even the most active child entertained.", + "This fun playroom has everything a kid could want, from a comfy place to read to a giant slide!." + ], + "plaza": [ + "A plaza is a large public space that is usually open to the sky.", + "A plaza is typically a public space that is open to the sky and is surrounded by buildings.", + "A plaza tends to be a large, open space in the center of a city or town, usually with a fountain or statue in the middle.", + "A plaza is a large open area, usually in a city, where people can come to gather, relax, and enjoy the outdoors.", + "A plaza typically has a lot of open space and may have features such as fountains, sculptures, and benches.", + "A plaza is a public square or an open space in a built environment.", + "A plaza is a public space where people can gather.", + "A plaza is a public space where people can gather.", + "A plaza is a public square or open area, typically with a paved surface, in a town or city.", + "A plaza typically looks like a large, open space in the center of a town or city, with buildings or other structures surrounding it.", + "A plaza is typically a large, open, urban public space.", + "A plaza is typically a large, open space at the center of a town or city.", + "A plaza is a public space, often in the center of a town or city, that is open to the public and is usually surrounded by buildings.", + "A plaza is a public space, often in the center of a town or city, that is open to the sky.", + "A plaza is a public square or open space in a built environment.", + "First, look for a large, open area.", + "A plaza can typically be identified by its large, open space in the center, its surrounding shops and businesses, and its outdoor seating areas.", + "A plaza may be identified by its location within a city or town, its unique features, or its status as a designated public space.", + "A plaza is a public space that is open to the air and is often located in the center of a town or city.", + "If there is a lot of concrete, it might be a plaza.", + "A plaza is a large, open area with a variety of buildings and shops around it.", + "A plaza typically has a central area with a fountain or statue, and benches or trees around the perimeter.", + "A plaza is typically an open, paved public space found in the heart of a city or town.", + "A plaza generally refers to an open, urban public space.", + "A plaza is a small public square or park in a town or city.", + "A plaza is typically a large, open area that is surrounded by buildings.", + "The word plaza may refer to an open public space found in the heart of a city, but the term can also describe a shopping center, an airport terminal, or a town square.", + "A plaza typically has a paved surface and is surrounded by buildings.", + "A plaza is a public square or other open space in a city or town.", + "A plaza is a public space, often in the center of a town or city, that is open to the sky.", + "I found an image on the internet of a plaza that looks like it is in Europe.", + "This image is of a plaza in the city of Madrid, Spain.", + "The image is of a large plaza with a fountain in the center.", + "In the image, a large open space is surrounded by thick walls and pillars.", + "This image is of a plaza in the city of Cordoba, Spain.", + "A plaza is a public space where people can gather to relax, shop, or enjoy the view.", + " or public space sunshine, people, cafes, umbrellas, flags, brightly colored buildings, trees.", + "In the image, there is a large plaza with a fountain in the center.", + "A large plaza with a concrete floor and a few benches.", + "The image is of a large plaza with a central fountain.", + "Aidan Plaza in downtown Covington, Kentucky.", + "Central Plaza in Santa Fe, New Mexico.", + " A Guadi masterpiece.", + "The plaza is a beautiful, safe place for people to gather and relax.", + "This is a picture of a plaza in the city.", + "The Plaza at PPL Center in Allentown, Pennsylvania.", + "The Plaza in front of the Capitol Building in Washington D.", + "The plaza in front of the palace is a popular gathering place for tourists and locals alike.", + "Pedestrians crossing a plaza in front of a large building.", + "The Plaza de Armas is the main square of the city of Cusco, Peru." + ], + "indoor podium": [ + "A indoor podium is a small stand that is used to hold something up off the ground.", + "A indoor podium is typically a three-sided structure with a microphone stand in the center.", + "A indoor podium typically has three levels, with the top level being the smallest.", + "A podium is a small platform on which a person may stand to make a speech, receive an award, or perform in a play or concert.", + "A podium is a small platform used to give a speech, or to support other items such as a microphone, vase, or trophy.", + "A indoor podium looks like a small stage that is typically used for public speaking.", + "A podium is a small stage that is used to elevate a person so that they can be seen by a large audience.", + "A indoor podium is a raised platform that is typically used for speeches or presentations.", + "An indoor podium is typically a raised platform that is used for giving speeches or presentations.", + "An indoor podium typically looks like a small stage or platform that is raised off the ground, and is usually surrounded by a railing or other type of barrier to keep people from falling off.", + "A indoor podium is typically made of wood or metal and has a flat surface.", + "There is no definitive answer to this question, as the appearance of indoor podiums can vary greatly depending on the specific design.", + "A indoor podium is a podium that is placed inside a building.", + "There are a few ways to identify an indoor podium.", + "Some common features of indoor podiums include a lectern or reading stand, microphones, and sound system.", + "There are several ways to identify an indoor podium:1.", + "A podium is a raised platform that is used for public speaking or for displaying items.", + "The longest side of an indoor podium is usually elevated, so that the person speaking can be seen by the audience.", + "A indoor podium can typically be identified by its height and design.", + "A indoor podium is typically a wide, elevated platform used for presentations, speeches, or other performances.", + "A podium is a raised platform used to give a speech, receive an award, or promote a product.", + "Indoor podiums are typically made of wood or metal and have a large, flat surface on top.", + "Indoor podiums are typically made from wood or metal and have a flat surface on top.", + "A podium is typically a stand or platform used to support a person or object.", + "A podium is a stand used to support a speaker, musician, or other performer.", + "Indoor podiums are typically made of wood or metal and have a flat surface on top.", + "A podium is a small platform used to elevate something so it can be seen or heard better.", + "Indoor podiums come in many different shapes and sizes, but they all have a few things in common.", + "A podium is a stand with steps on which a person may stand to make a speech or receive an award.", + "A podium is a raised platform that is used to give a speech or present an award.", + "The image is of an indoor podium with a microphone on it.", + "This image is of an indoor podium that is made out of wood.", + "This indoor podium is made of wood and has a curved front.", + "This image is of an indoor podium with a microphone on it.", + "This image shows an indoor podium with a microphone on it.", + "This image is of an indoor podium that is made of wood.", + "This image shows a podium in a room with carpeting and windows along one wall.", + "This image is of an indoor podium that is made out of wood.", + "The image is of an indoor podium with a microphone attached to it.", + "Indoor podiums are typically made of wood or metal and have a smooth, glossy surface.", + "Checkered flag indoor podium.", + "1st Place Podium.", + "The indoor podium is a great addition to any home.", + "The speaker at the indoor podium is ready to give their talk.", + "The indoor podium is perfect for any event where you need a bit of height to make a presentation.", + "This indoor podium is perfect for any event! It features a sleek design and is made of durable materials.", + "An indoor podium with a microphone and speakers.", + "Indoor podium with microphone.", + "The event presenter stands at the indoor podium, ready to begin the event.", + "A podium inside a building." + ], + "outdoor podium": [ + "A podium is a raised platform that is used for speeches, presentations, or performances.", + "A podium is a platform used to elevate a person so that they can be seen by a large group of people.", + "A podium is a raised platform that is used to give speeches or presentations.", + "It depends on the specific podium, but they are typically made to be weatherproof and Resistance to rusting or other damage from the outdoors.", + "An outdoor podium is a raised platform on which a person can stand to make a speech.", + "A podium is an elevated platform on which a person may stand to make a public speech or presentation.", + "A typical outdoor podium is a wooden or metal stand that is about waist-high, with a flat surface on top for placing books, notes, or other materials.", + "A podium is a structure used to support a person who is speaking in front of an audience.", + "A small, raised platform used as a stand for a person to make a speech.", + "A outdoor podium is a stand that is used to support a person who is speaking in front of an audience.", + "A outdoor podium can be identified by its typically large size and its durability.", + "One way to identify an outdoor podium is by its size.", + "An outdoor podium is a writing or reading surface that is placed outdoors.", + "In general, outdoor podiums are larger and more durable than indoor podiums.", + "A outdoor podium is a raised platform that is used for public speaking.", + "A outdoor podium is a type of stage that is typically used for public speaking or performances.", + "A outdoor podium is a raised platform that is used to give a speech or presentation outdoors.", + "A deep, multi-tiered platform attached to or detached from a building, used for outdoor public speaking.", + "A outdoor podium can be identified by its portability, weather resistance, and tough construction.", + "Most outdoor podiums are made of weather-resistant materials such as aluminum, stainless steel, or plastic.", + "The most common type of outdoor podium is a raised platform with asteps leading up to it.", + "A outdoor podium typically looks like a small stage or platform that is used for public speaking.", + "An outdoor podium looks like a small stage.", + "An outdoor podium may be made of stone, concrete, or other weather-resistant materials.", + "An outdoor podium looks like a small stage or platform that is typically used for public speaking.", + "An outdoor podium typically looks like a small stage or platform with a microphone stand.", + "A outdoor podium can be made out of many different materials, but typically it is a raised platform that is used for public speaking.", + "An outdoor podium can vary in appearance, but typically it is a raised platform with a microphone stand.", + "A podium is a platform used to give a speech, receive an award, or direct a choir.", + "A outdoor podium may vary in design, but typically it is a freestanding structure made of wood, metal, or plastic.", + "The image is of an outdoor podium with a blue sky and white clouds in the background.", + "This image shows a brown podium with a microphone on top of it.", + "The image is of an outdoor podium with a microphone on it.", + "The outdoor podium is made of wood and has a microphone on it.", + "A podium is a raised platform used to speak in front of an audience.", + "A wood podium with a microphones stands in front of a brick wall.", + "This image is of an outdoor podium that is made out of wood.", + "This image is of an outdoor podium that is made of wood.", + "The image is of a small, wooden podium with a microphone attached to the front.", + "An image from the internet of a outdoor podium may show a stage with a microphone or speakers set up on it.", + "The podium at the outdoor event.", + "A podium in front of a beautiful nature scene.", + "Backdrop of nature with a podium in the center for giving speeches.", + "This is an outdoor podium that is often used for public speaking events.", + " A podium set up in an outdoor setting.", + "A podium surrounded by flowers and greenery with a microphone on top.", + "Outdoor Podium.", + "Outdoor Podium.", + "Outdoor Podium.", + "An outdoor podium in front of a brick building." + ], + "pond": [ + "A pond is a small, still body of water.", + "A pond typically looks like a small, still body of water surrounded by vegetation.", + "A pond is a small, still body of water.", + "A pond is usually a small body of still water.", + "A pond is usually a small body of still water.", + "A pond looks like a small, still body of water.", + "A pond looks like a small, still lake.", + "A pond typically looks like a small, still body of water surrounded by plants and trees.", + " and how it supports lifeA pond is a body of water that is usually shallow and still.", + "A pond is a body of water that is smaller than a lake and is usually fed by a stream or river.", + "A pond is typically a small body of water that is surrounded by land.", + "The easiest way to identify a pond is by its size.", + "Ponds are typically shallow bodies of still water that are surrounded by land.", + "A pond can be identified by its small size, its shallow depth, and its location near other water sources like rivers or lakes.", + "There are many ways to identify a pond.", + "A pond is a smaller body of standing water that is usually fed by a creek or stream.", + "A pond is a body of water that is restricted in area when compared to a lake.", + "The easiest way to identify a pond is by its size.", + "A pond is a small body of standing water that is usually fed by a stream or spring.", + "A pond is usually a small body of water that is surrounded by land.", + "A pond normally has a calm water surface, with various types of aquatic plants growing around the edges.", + "A pond is a small body of water that is surrounded by land.", + "A pond is a small body of water that is surrounded by land.", + "A pond is a small, shallow body of water.", + "A pond often looks like a small, still lake.", + "A pond looks like a small, still body of water bordered by vegetation.", + "A pond is typically a small body of water surrounded by land.", + "A pond can have different shapes and sizes, but is typically a small, shallow body of water surrounded by land.", + "A pond is normally a small to medium-sized body of still water.", + "A pond is a small body of water that is surrounded by land.", + "This image is of a circular pond with green algae on the surface.", + "The image from the internet of a pond is a beautiful scene of nature.", + "The image is of a large, still pond with Crystal clear water and a few lily pads floating on the surface.", + "The image is of a small, natural pond with clear water and a few rocks around the edge.", + "This image is of a pond with lily pads floating on the surface.", + "The image from the internet of a pond shows a small, round body of water surrounded by green grass and trees.", + "This image shows a pond with clear, blue water.", + "This image from the internet shows a pond with lily pads and other foliage in it.", + "The image is of a pond with clear blue water.", + "The image is of a small pond with clear water.", + " The serenity of this pond is breathtaking.", + "The surface of the pond is still except for the occasional ripple caused by a passing fish.", + " A tranquil pond with lily pads in the foreground and tall trees in the background.", + "A tranquil pond surrounded by greenery.", + "A serene pond surrounded by greenery and trees.", + "Reflections on a Summer Day.", + "A beautiful pond with crystal clear water and lily pads floating on the surface.", + " Tranquil pond in a secluded forest.", + "A still pond in the early morning light.", + " Just a calm pond on a summer day." + ], + "establishment poolroom": [ + "There is no one answer to this question as poolrooms can come in a variety of different forms, frombasic bars with a pool table or two to more upscale locations with multiple tables, a full bar, and a variety of other amenities.", + "There is no one answer to this question, as the appearance of a poolroom can vary greatly depending on its location and clientele.", + "A typical establishment poolroom has several pool tables, a bar, and a variety of gaming machines.", + "A typical establishment poolroom looks like a seedy bar with a pool table or two in the back.", + "A establishment poolroom typically looks like a dark, seedy place with a bunch of guys hanging around playing pool.", + "A typical establishment poolroom looks like a bar with pool tables.", + "Poolroom may refer to: Billiard hall, a business establishment where cue sports are played East Coast Poolroom, a historically significant poolroom in Harlem, New York City.", + "A establishment poolroom usually looks like a small, dark room with a pool table in the middle and a bar in the back.", + "Can you be more specific?.", + "An establishment poolroom typically contains a number of pool tables, as well as darts boards and other games.", + "There are a few ways to identify a poolroom.", + "There is no universal answer to this question, as the appearance of a poolroom can vary greatly depending on the country and culture in which it is located.", + "There are a few ways to identify a poolroom:\n-The poolroom will usually have a sign that says \"pool\" or \"billiards.", + "There are a few ways to identify a poolroom:-The poolroom will usually have several pool tables and will often have a bar or snack area.", + "There are a few things that you can look for that will help you identify a establishment poolroom.", + "A poolroom is a establishment where people can play pool.", + "There is no definitive answer to this question, but some things that might identify a poolroom are: a large number of pool tables, a smoky atmosphere, a predominance of men, and a generally seedy feeling.", + "The most obvious way to identify a poolroom is by the presence of pool tables.", + "There are a few ways to identify a poolroom.", + "There are a few ways that you can identify a poolroom.", + "A poolroom is a business that provides pool tables and other equipment for customers to play the game of pool.", + "A poolroom typically has a large open space with several pool tables.", + "A poolroom is usually a small, seedy place with a bar and a few pool tables.", + "The poolroom in the film The Hustler is a dark, smoky room with a long bar and several pool tables.", + "There is no definitive answer to this question, as poolrooms can vary greatly in terms of their appearance and atmosphere.", + "A typical establishment poolroom looks like a dirty, dark, and seedy place.", + "A poolroom typically has a large space with several pool tables, as well as a bar area where people can purchase drinks.", + "There is no one answer to this question, as the appearance of a poolroom can vary greatly depending on the owner's preferences.", + "A typical establishment poolroom may have a large number of pool tables, as well as a bar area where patrons can purchase alcoholic beverages.", + "There is no one answer to this question as there are many different types of poolrooms.", + "The image is of a typical 'pool hall', with several pool tables, a bar and some chairs and tables scattered around.", + "An image from the internet of an establishment poolroom shows a large room with a pool table in the middle and several other tables and chairs around the perimeter.", + "In the image, there is a large pool room with multiple pool tables.", + "The image is of a poolroom with several pool tables.", + "The image is of a poolroom with green felt tables and cue sticks.", + "In the image, there is a large room with a pool table in the middle.", + "The image is of a large, dimly lit room with a pool table in the center.", + "There is a large rectangular pool in the center of the room with blue and white tiles.", + "In the image, there is a large, rectangular poolroom with high ceilings.", + "The image from the internet is of a dingy, small poolroom with a few old men sitting around a table playing cards.", + "The old poolroom was a popular hangout for the locals.", + " This is a picture of a establishment poolroom.", + "This image shows the poolroom in the basement of the establishment.", + "The Poolroom at Fagan's Tavern.", + "The old poolroom was a popular hangout for the neighborhood kids.", + " Establishment Poolroom: A place where people can come to drink, play pool, and gamble.", + "The old pool hall was a place where men would gather to play games and gamble.", + "The local poolroom was a popular hangout for the young men of the town.", + "This poolroom was a popular hangout for men in the early 1900s.", + "The PoolroomThis image shows the inside of a establishment poolroom." + ], + "home poolroom": [ + "This answer could vary depending on who you ask, but a general description of a home poolroom might be something like: a small room in a house with a pool table, a cue rack, chalk, and other pool supplies.", + "A home poolroom looks like a small room in a house with a pool table in the middle.", + "A home poolroom is a room in a house that is set up for playing pool.", + "A home poolroom looks like a room with a pool table in it.", + "It depends on the size and style of the home, but a poolroom typically has a pool table, Cue racks,a chalkboard or whiteboard, and maybe a bar area if it's in a larger home.", + "A home poolroom typically contains a pool table, cue sticks, and a rack for storing the balls.", + "A home poolroom is typically a small room in a house where people can go to play pool.", + "A home poolroom typically looks like a small, dark room with a pool table in the center and a few chairs around the perimeter.", + "A home poolroom typically has a pool table, a cue rack, and a light fixture.", + "A home poolroom typically contains a pool table, cue sticks, and a rack for storing balls.", + "There are a few things that can help you identify a home poolroom.", + "A home poolroom typically has a dedicated room for playing pool.", + "There are several ways to identify a home poolroom.", + "You can identify a home poolroom by looking for a room in the house with a pool table.", + "It can be difficult to identify a home poolroom as they are often hidden in basements or converted garages.", + "There are a few ways to identify a home poolroom.", + "Home poolrooms are usually smaller than public poolrooms and have only one or two pool tables.", + "There are a few ways to identify a home poolroom.", + " A home poolroom usually has a large table with balls and cue sticks.", + "There are a few defining features of a home poolroom.", + "A home poolroom typically has a pool table, cue rack, dartboard, and bar.", + "It depends on the poolroom, but it is typically a room with a pool table, a cue rack, and a chalkboard.", + "A pool room typically contains a pool table, cue sticks, and a rack for the balls.", + "This is a difficult question as the style of home poolrooms can vary greatly.", + "A typical home poolroom looks like a small room with a pool table in the center.", + "A home poolroom might have a pool table, a bar, and a TV.", + "A home poolroom can look like a traditional poolroom with a bar, pool table, and dartboard, or it can be a more casual space with just a pool table.", + "There is not a definitive answer to this question as every home poolroom is different and depends on the preferences of the homeowner.", + "A home poolroom typically looks like a small recreation room with a pool table as the main focal point.", + "A home poolroom typically has a billiards table, a bar, and comfortable seating.", + "If the home poolroom has a classic or antique feel to it, the image might feature a ornate pool table with green felt, testosterone-laden pinups on the walls, and a trophy case full of billiards trophies.", + "The image is of a large, rectangular pool with a tiled bottom and blue walls.", + "An image of a home poolroom from the internet shows a classic pool table with green felt, two cue sticks resting on the edge of the table, and a white ball sitting in one of the corner pockets.", + "An image from the internet of a home pool room might show a sleek, modern pool table with colorfulpool balls on top.", + "This image is of a home poolroom with dark wood floors and walls.", + "I found an image on the internet of a home poolroom that looks like it could be a lot of fun.", + "The image from the internet shows a home poolroom that is clean, well-lit, and organized.", + "The image is of a home poolroom with billiards table,cue rack,and supplies.", + "The image is of a large, two-story home with a pool in the backyard.", + "A home poolroom is a room in a house with a pool table and other equipment for playing pool.", + "The home poolroom is a great place to relax and enjoy some quality time with family and friends.", + " Home Poolroom - A private room in a house for playing pool.", + "A cozy poolroom with a view of the garden.", + "A game room with a pool table, darts, and a large television.", + " A crowded poolroom with a large bar in the background.", + "A group of friends enjoying a game of pool in their home poolroom.", + "A cozy poolroom with a small bar and comfortable seating.", + " A home poolroom with a wooden floor and walls, and a white ceiling.", + "This is my family's poolroom.", + "This cozy pool room is the perfect place to relax after a long day." + ], + "outdoor power plant": [ + "An outdoor power plant is a large facility that typically uses either fossil fuels or renewable energy sources to generate electricity for a local or regional electricity grid.", + "A outdoor power_plant will have a large gas or coal fired boiler which sits outside.", + "A outdoor power_plant looks like a large factory with many smokestacks.", + "A towering smokestack surrounded by a maze of pipes and wires, set against a backdrop of green hills or rocky coastline.", + "An outdoor power plant is a large facility that generates electricity from various sources of energy, such as coal, natural gas, nuclear power, or renewable sources.", + "There are many different types of outdoor power plants, but most typically they are large facilities with smokestacks and cooling towers.", + "A outdoor power_plant looks like a large, industrial building with smokestacks.", + "An outdoor power plant typically contains a large number of electrical generators and supporting equipment, such as transformers and switchgear.", + "A power plant that generates electricity from renewable sources such as solar, wind, or hydro power.", + "A outdoor power_plant looks like a big factory with a lot of tall smokestacks.", + "The most common type of outdoor power plant is a natural gas-fired combustion turbine.", + "There are many types of outdoor power plants, but most are easily identifiable by their large size and industrial appearance.", + "The most obvious way to identify an outdoor power plant is by its large size.", + "There are several ways to identify an outdoor power plant.", + "The easiest way to identify a power plant is by its stacks.", + "A taller than average smokestack is a good indicator of an outdoor power plant.", + "The most common type of outdoor power plant is a combustion turbine.", + "Outdoor power plants are usually large and located near a body of water, such as a river or lake.", + "Outdoor power plants are usually large and can be identified by their size and the large number of smokestacks.", + "A outdoor power plant can be identified by its large size, its location outdoors, and its many exhaust stacks.", + "A typical large scale outdoor power plant looks like a large metal building with many large pipes coming in and out.", + "There is no one answer to this question as outdoor power plants can come in a variety of different shapes, sizes, and designs.", + "A large outdoor power plant might look like a factory with many large smokestacks.", + "A outdoor power plant usually consists of a large diesel engine that is connected to a generator.", + "A typical outdoor power plant might include a few large solar panels, a wind turbine, and a backup generator.", + "They vary in size and design, but most outdoor power plants have a tall smokestack and large buildings.", + "It typically has a large stack and sometimes a cooling tower.", + "A:There is no one-size-fits-all answer to this question, as the appearance of an outdoor power plant can vary depending on the specific type of plant and its location.", + "A typical outdoor power plant might include a diesel engine connected to an electrical generator.", + "There is no one definitive answer to this question, as outdoor power plants can vary significantly in size and appearance depending on their location and purpose.", + "A large, sprawling outdoor power plant with several tall stacks emitting thick plumes of smoke.", + "The image is of a large, gray building with many large, white exhaust towers.", + "The image is of a large, green power plant surrounded by trees.", + "The image is of a large, white building with two tall chimneys.", + "The image is of a large, modern-looking power plant with several smokestacks.", + "The image is of a large, industrial building with several large chimneys on the roof.", + "The image is of a large, red-and-white industrial complex with several tall smokestacks jutting into the air.", + "The image is of a large, industrial building with several smokestacks emerging from the roof.", + "It is a black and white photo of a large, rectangular building with several smokestacks coming out of the top.", + "An image of a outdoor power plant from the internet shows a large, industrial facility with several smokestacks towering into the sky.", + "A close up of an outdoor power plant.", + "Aerial view of an outdoor power plant.", + "A outdoor power_plant with a cooling tower and smokestacks.", + "This is an outdoor power plant.", + " A large outdoor power plantA caption of an image of a person using a laptop: A person using a laptop in a coffee shop.", + "A group of workers stand in front of an outdoor power plant.", + " A coal-fired Power PlantA power plant that burns coal to generate electricity.", + "A coal-fired power plant in China.", + "A view of an outdoor power plant.", + "A group of people stand in front of a large outdoor power plant." + ], + "promenade deck": [ + "A promenade deck is a deck on a ship that has a rail around it and is often located in the front or back of the ship.", + "A promenade_deck is a large, open deck on a ship, typically with chairs and benches along the sides.", + "A promenade deck is a large deck on a ship that is open to the outside.", + "A promenade_deck can be described as a large, open deck on a ship that is typically used for walking or relaxing.", + "A promenade deck is a wide, open deck on a cruise ship that runs along the outer edge of the ship, typically on multiple levels.", + "A promenade deck is a deck where people can walk around and enjoy the view.", + "A promenade deck usually refers to the open, outdoor deck on a cruise ship that goes all the way around the perimeter of the ship.", + "A promenade deck is an open deck on a ship that is located around the perimeter of the ship.", + "A promenade_deck is a structure that is built on the deck of a ship.", + "A promenade deck is a large, open deck on a ship where passengers can stroll, socialize, or enjoy the scenery.", + "Promenade decks are located on the uppermost decks of a cruise ship.", + "There is no one definitive answer to this question, but some potential indicators that a deck may be a promenade deck could include its location on the ship (usually near the back or middle), its size (often larger than other decks),.", + "Every ship has a promenade deck, which is a large, open deck that runs the length of the ship.", + "There are a few ways to identify a promenade_deck.", + "A promenade_deck can be identified by looking for a designated walking area on a ship.", + "A promenade_deck is a horizontal platform that extends along the side of a ship.", + "A promenade_deck is a raised, flat surface on which people can walk, usually found on the top deck of a ship.", + "A promenade_deck is a deck on a ship that is open to the sea and has a railing.", + "A promenade_deck typically has outdoor seating and is located on the uppermost deck of a ship.", + "The promenade_deck is the top most deck on a cruise ship.", + "A promenade deck is an outdoor deck on a ship.", + "There is no one answer to this question as the design of a promenade deck can vary greatly from one ship to another.", + "There is no one answer to this question as the design of promenade decks can vary greatly from one ship to another.", + "A promenade_deck typically has a rail around it, and is often located on the top deck of a cruise ship.", + "A promenade deck is a large, open deck on a ship that is meant for leisurely activities such as walking, socializing, or enjoying the view.", + "A promenade deck is a deck on a ship that is open to the air and usually located at or near the stern.", + "A promenade_deck can look like a lot of different things, depending on the ship.", + "A promenade deck is an open deck on a ship that is located on either the upper deck or the main deck.", + "A promenade_deck is a component of a vessel, typically found on the uppermost deck, that allows passengers to promenade around the ship.", + "A promenade deck looks like a large, open deck on a ship.", + "A promenade deck is a deck on a ship that is designated for walking, socializing, and enjoying the view.", + "A promenade deck is a deck on a ship that is typically used for walking or recreation.", + "The image is of a large wooden deck overlooking a body of water.", + "A promenade deck is an outdoor deck area that is typically found on vacation cruise ships.", + "A promenade deck is a deck on a ship that is used for walking and relaxing.", + "This image is of a promenade deck on a ship.", + "A promenade deck is typically a deck on a cruise ship that is open to the outside and runs the length of the ship.", + "The image shows a promenade deck on a ship.", + "The image is of a large deck overlooking a body of water.", + "A wooden promenade deck overlooking a calm ocean.", + "A view of the promenade deck from the ship.", + " The Promenade Deck of the Titanic.", + "People walking on a promenade deck enjoying the view.", + " The best way to spend a summer day.", + "The Promenade Deck on the Queen Mary 2, the world's largest ocean liner.", + " \"Beautiful view of the promenade deck on a cruise ship\".", + "A woman in a white dress is strolling along the promenade deck of a cruise ship, enjoying the view of the ocean.", + "The promenade deck of a cruise ship, with people walking and relaxing in the sun.", + " Promenade Deck on The Queen Mary 2.", + " enjoying the view from the promenade deck." + ], + "indoor pub": [ + "Indoor pubs are typically dark with low lighting.", + "An indoor pub typically looks like a bar with tables and chairs for people to sit and drink.", + "An indoor pub typically has a bar, a few tables, and a small stage for live music.", + "Most indoor pubs have a traditional look with dark wood furnishings and a cozy atmosphere.", + "An indoor pub typically looks like a small bar with a few tables and chairs.", + "Pubs in the United Kingdom are drinking establishments that serve alcoholic drinks to customers.", + "Most indoor pubs have a dark, cozy atmosphere with exposed brick walls and low lighting.", + "The interior of a pub is typically divided into two main areas - the bar and the lounge.", + "A pub is typically a small, cramped, and dark place with a bar in the back and a pool table in the front.", + "An indoor pub looks like a small bar with a few tables.", + "Some common features of indoor pubs are low ceilings, dark wood paneling, and small windows.", + "There are a few ways to identify an indoor pub.", + "Pubs are typically indoor spaces with a bar and tables.", + "There are a few ways to identify an indoor pub.", + "A good way to identify an indoor pub is by looking for a sign that says \"Pub\" or \"Public House.", + "There are a few ways to identify an indoor pub.", + "In most cases, an indoor pub will have large windows that allow natural light to enter the space.", + "By the presence of a bar inside the establishment.", + "There are a few ways to identify an indoor pub.", + "The main identifying feature of an indoor pub is that it has a bar.", + "There is no definitive answer to this question as indoor pubs can come in a variety of shapes and sizes.", + "A indoor pub typically looks like a bar with a few tables and chairs.", + "Some indoor pubs may feature exposed brick walls, dark wood furnishings, and a cozy atmosphere.", + "An indoor pub typically has a bar, various types of seating, and entertainment such as a jukebox or TV.", + "An indoor pub is typically a small, dark, and cozy place with a bar and chairs or tables.", + "A indoor pub typically has a bar area with stools, tables and chairs for patrons to sit, and a place for the bartender to make drinks.", + "There is no definitive answer to this question as different pubs have different designs.", + " varies.", + "This answer could vary greatly, depending on the country, city, or even specific pub you are asking about.", + "There is no definitive answer to this question as the interiors of indoor pubs can vary drastically depending on their location and the style of the establishment.", + "A indoor pub typically contains a bar, with tables and chairs arranged around the perimeter of the room.", + " or barThis image is of an indoor pub or bar called the \"Horse and Groom.", + "An indoor pub typically has a long counter with several taps of beer on it.", + "In this image, we can see a view of an indoor pub that has a wooden counter with stools, shelves full of alcohol, and a few people sitting at the counter.", + "This image is of an indoor pub with a long bar and several people sitting at the bar and tables.", + "In the image, there is a long wooden bar with many bottles of liquor on the shelves behind it.", + "This image is of an indoor pub with brick walls and a wooden ceiling.", + "In the image, there is a long wooden bar with shelves of alcohol behind it.", + "In the image, there is a pub with Indoor seating.", + "In the image, there is a large, rectangular bar in the center of the room with several people sitting or standing around it.", + "A group of friends enjoying a night out at their local pub.", + "A cozy corner of the pub, perfect for enjoying a pint or two with friends.", + "This indoor pub looks like the perfect place to relax and enjoy a cold drink! The dark wood furnishings and cozy atmosphere make it seem very inviting.", + "A cozy pub with a warm atmosphere and vintage decor.", + "A cozy pub with a warm atmosphere.", + "The Oak Room: A Relaxing Pub in the Heart of the City.", + "People socializing and enjoying drinks at a pub.", + "An indoor pub with a long bar, high ceilings, and plenty of seating.", + "A group of people enjoying a meal and drinks at a pub.", + "A group of friends enjoying a few drinks at their local pub." + ], + "pulpit": [ + "A pulpit is a tall structure with a staircase leading up to it.", + "A pulpit is a raised stand for a preacher or speaker in a church.", + "A pulpit is a raised platform in a church where the minister stands to deliver sermons.", + "A pulpit is a raised platform in a church where the minister stands to preach.", + "A pulpit is a raised stand for a preacher or other public speaker.", + "A pulpit is generally an elevated stand or platform from which a preacher or minister may deliver a sermon or address.", + "A pulpit is a raised stand for a preacher or speaker.", + "A pulpit looks like a small, elevated platform that is typically used by a religious leader during a service.", + "A pulpit typically has a raised platform with a railing that a speaker can stand behind while delivering a sermon or speech.", + "A pulpit is a raised platform in a church where the minister stands to preach.", + "A pulpit is a raised platform in a church where the minister stands to give sermons.", + "A pulpit is typically distinguished from a lectern by its height.", + "The pulpit is typically located in the front of the church, near the altar.", + "A pulpit can be identified by its elevated platform and its typically large, ornate structure.", + "A pulpit can be identified by its formal, elevated design and by its placement at the front of a church.", + "A pulpit is an elevated platform in a church or synagogue where the minister or priest delivers sermons.", + "A pulpit is a raised stand that is used by a religious leader to preach sermons or give speeches.", + "A pulpit is a raised platform in a church where the minister speaks.", + "A pulpit is a raised platform that is used by a speaker.", + "A pulpit is a raised platform where a religious leader stands to give a sermon.", + "A pulpit is a tall, elevated platform that is typically used by a preacher or speaker during a religious service.", + "A pulpit is a raised stand, typically in the front of a church, where a preacher or priest gives a sermon.", + "A pulpit describes the raised platform in a church where the minister stands to give a sermon.", + "A pulpit is a raised platform in a church where the minister stands to preach.", + "A pulpit is a raised stand that is typically used by a religious leader so that he or she can be seen and heard by the congregation.", + "There is no one answer to this question, as pulpits come in many different shapes and sizes.", + "A wood or stone structure in a Christian church that a minister stands behind when giving a sermon.", + "A pulpit is typically a large, raised platform located near the front of a church.", + "A pulpit is a raised platform in a church where the minister or priest stands to preach.", + "A renaissance pulpit will likely have detailed carvings and be made of stone.", + "A pulpit is a raised stand for preachers in a church.", + "The image is of a large, ornate pulpit in a church.", + "A pulpit is a raised platform in a church where the minister stands to preach.", + "A pulpit is a raised stand for a preacher to deliver a sermon.", + "The image from the internet of a pulpit shows a large, ornate wooden structure with a large, curved front.", + "The image is of a wooden pulpit with carvings on it.", + "This image is of a large, ornate pulpit.", + "In the image, there is a pulpit made of dark wood.", + "This image shows a pulpit in a church.", + "This image from the internet shows a pulpit in a church.", + "A wooden pulpit in a church with a large crucifix behind it.", + "The pulpit at the First Baptist Church in America, the oldest Baptist church in the United States.", + "The pulpit at St.", + "The preacher stands in the pulpit, looking out at the congregation.", + "The pulpit at the church of Saint-Sulpice, Paris.", + "The pulpit at the Old South Church in Boston, Massachusetts.", + "The pulpit at the First Congregational Church in Boston, MA.", + "The pulpit of St.", + "This is a pulpit from which religious speeches are given.", + "The pulpit at the New Hope Baptist Church in Newark, NJ." + ], + "putting green": [ + ".", + "A putting green is a smooth, level surface of closely mown grass, usually in a rectangular or oval shape, that is used for playing the game of golf.", + "A putting_green is a stretch of very short grass, usually around 3 feet in length, that is found on a golf course.", + "A putting green typically has very short grass that is very well-manicured.", + "A putting_green usually has a very short, closely mown grass, and is very flat.", + "A putting_green has a smooth, closely cropped lawn.", + "Most putting greens are fairly flat, with some level of undulation.", + "A putting_green is a flat, level area of grass that is well-maintained and usually found on a golf course.", + "A putting_green typically looks like a large, slightly raised area of grass, often with a few sand traps, that is designed specifically for the game of golf.", + "A putting_green is a piece of sporting equipment that is used to hit a ball into a hole.", + "The putting_green is the area of the golf course that is manicured specifically for putting.", + "A putting_green is an area of closely cropped grass on a golf course, around the hole, which is used for the final shots into the hole.", + "There are a few ways to identify a putting green.", + "Adding a \"green\" layer to a map is a common way to depict a putting_green.", + "A putting green is a designated area on a golf course where players can practice their putting.", + "The best way to identify a putting green is by its size and shape.", + "A putting green can be identified by its smooth, level surface that is specifically designed for golfers to practice their putting.", + "The flags on the holes are a dead giveaway.", + "A putting green is a level, smoothly mowed area on a golf course just off the fairway and near the hole, where players can practice their putting stroke.", + "The identifier for a putting_green is the tag \"leisure=putting_green\".", + "International putting greens typically have a smooth, close-cut surface.", + "A putting_green typically looks like a large, flat, grassy area with a hole in the middle.", + "A putting green is a smooth, level surface of grass, often with a fringe of longer grass, that is designed for golfers to practice their putting stroke.", + "Most putting greens are either circular or rectangular.", + "A typical putting_green has a smooth, closely mown surface, with a short fringe of grass around the edge.", + "Most putting greens are circular or oval in shape and are made of short, tightly mown grass.", + "A putting green is a flat, smooth surface of closely mowed grass that is used for playing the game of golf.", + "A putting green typically looks like a small, rectangular patch of grass that is cut shorter than the rest of the lawn.", + "Most putting greens are round or oval in shape and are cut short so that the ball will roll smoothly.", + "Typically, a putting green is a flat, well-manicured area of grass, just like on a golf course.", + "A picture of a putting green might show finely manicured grass, with a hole in the ground and a flag sticking out of it.", + "The image is of a putting green with a hole in the center.", + "In this image, there is a putting_green with a flag in the distance.", + "The image is of a golf putting green with a golf ball in the middle of the green.", + "The image is of a putting green with a flag in the middle.", + "In the image, there is a putting green with a golf ball on it.", + "The image is of a golf green with a flag in the middle.", + "The image is of a golf putting green with a flag in the distance.", + "The image is of a neatly mowed section of grass with a hole in the ground.", + "A putting green is a smooth, manicured area of grassused for playing the game of golf.", + " \"A golfer putting on a green.", + " The perfect putting green for your backyard.", + "This is a picture of a putting green.", + "A group of golfers putting on a green.", + "The perfect spot for a game of golf.", + "This is a picture of a putting green.", + "A golf green with a flag in the middle.", + "The perfect putting green for any golf enthusiast.", + " \"The perfect putting green for your backyard.", + "A man is standing on a putting green, holding a golf club." + ], + "racecourse": [ + "A racecourse is a large open area with a track for horse racing.", + "A racecourse is a large, open area of land where horse and dog races take place.", + "A racecourse is a place where people can go to watch horse races.", + "A typical racecourse has a infield in the middle surrounded by a racetrack.", + "A racecourse is a long, narrow strip of land that is used for horse racing.", + "A racecourse is a flat, oval-shaped track used for horse and greyhound racing.", + "A racecourse is a track where horse races are held.", + "A racecourse is typically a large, open area of land that is used for horse racing.", + "A racecourse is typically a large, open area of land that is flat and level.", + "A racecourse is a flat, oval-shaped track where horse and greyhound races are held.", + "Most racecourses will have a grandstand, an area for corporate hospitality, and a parade ring.", + "Most racecourses will have a grandstand, racing track, and stables.", + "A racecourse can be identified by its physical features.", + "A racecourse is an area of land set aside for Horse racing.", + "A racecourse is a place where horse races take place.", + "There are certain characteristics that are common to most racecourses.", + "A racecourse is a large open area with a track for horse racing.", + "The best way to identify a racecourse is to look for a long, wide, open space with a defined track or path.", + "A racecourse is a large area of land that is specially designed for horse racing.", + "A racecourse can typically be identified by its oval shape.", + "A racecourse is a facility where horse races take place.", + "A typical racecourse has a long, rectangular shape with a turf (grass) surface.", + "A racecourse typically consists of a track with a series of curves and straights, and a series of stables where the horses are kept.", + "A racecourse is a track where horse races and other competitions are held.", + "A racecourse is a large, open area with a grassy surface, typically used for horse racing.", + "A racetrack is typically oval-shaped, with two parallel straightaways and two turns.", + "A racecourse typically has a large, open area for spectators to watch the races, and a track for the horses to run on.", + "A racecourse is usually a large, open area of land with a long, straight path or track running through it.", + "A racecourse is an open, level stretch of land used for horse racing.", + "A racecourse typically includes an infield area, which is often used for picnicking or other recreational activities, and a track area, where the racing events take place.", + "The image is of a long, wide path with a grassy area on either side.", + "The image is of a long, straight path with grass on either side and a wooden fence running along it.", + "A racecourse is a place where horse races are held.", + "The image is of a large, green racecourse with a white fence running around the perimeter.", + "Horses thundering down a dirt track, jockeys astride them, onlookers in the stands, cheering and waving flags.", + "I found an image of a horse racecourse that shows the starting gate, the track, and the stands where the spectators sit.", + "This image shows a racecourse with a dirt track and a grass field.", + "The image is of a long, wide track with a grassy center and a sand perimeter.", + "This image is of Ascot Racecourse in the UK.", + "The image shows a busy racecourse with people milling around and horses racing.", + "\"The first start of the day at the racetrack.", + "Horse racing at the Belmont Park racecourse in New York.", + "Seabiscuit racing at Santa Anita Park.", + "Horse races at the Belmont Park Race Track in New York City.", + "The finish line at the horserace track.", + "The world-famous Kentucky Derby at Churchill Downs racecourse.", + "The grandstand and track at Belmont Park Racecourse in New York State.", + "The horses begin their race around the track.", + "The world-famous Ascot Racecourse in Berkshire, England.", + "Aerial view of the Santa Anita Racecourse in Arcadia, California." + ], + "raceway": [ + "A raceway is typically an underground concrete tunnel that houses and protects electrical cables and wiring.", + "A raceway is a concrete channel that is used to direct stormwater runoff.", + "A raceway is a channel or conduit used to protect and route electrical wiring.", + "A raceway is a raised, enclosed track on which cars race.", + "A raceway is a channel or conduit used to protect cables and wires.", + "Raceways are typically metal or plastic conduits that protect wiring by enclosing it in a durable housing.", + "A raceway typically looks like a long, straight path with a Trevor barrier down the center.", + "A raceway can either be an underground or surface channel used to enclose electrical cables and wires.", + "A raceway typically consists of a shallow, rectangular channel with smooth sides and a slightly raised bottom.", + "A raceway is a structure that houses and protects electrical wiring.", + "A raceway is an enclosed channel that is used to protect and route electrical wiring.", + "A raceway is a conduit or duct used to protect and route electrical wiring.", + "A raceway is a system of conduits, either underground or overhead, for holding electrical cables and wiring.", + "There are several ways to identify a raceway.", + "A raceway is an enclosed channel used to protect and route cables and wires.", + "Raceways are used to protect and route wiring and cables.", + "A raceway is a conduit that is used to protect and route electrical wiring.", + "Raceways are enclosed conduits used to protect and route cables and wires.", + "The most common way to identify a raceway is by its cover.", + "A raceway is a conduit, duct, or trough that is used to protect and route electrical wiring.", + "Raceways are typically made of either plastic or metal and are used to protect wires and cables from being damaged.", + "A raceway is a course, route, or path for racing.", + "A raceway is a conduit or pipeline used to enclose electrical wiring or other hoses.", + "A raceway is a channel or conduit used to protect electrical wiring.", + "A raceway is a busbar with a cover.", + "A raceway is a channel or conduit used to protect electrical wiring from damage or interference.", + "A raceway is a system of conduits, either Surface (indoor or outdoor) or Concealed, installed to protect, route and support electrical cables and wires.", + "A raceway is a conduit or trench used to protect electrical wiring.", + "A raceway is a conduit or other enclosure used to protect electrical wiring.", + "A raceway is typically a long, narrow channel used to route electrical wiring.", + "This image from the internet is of a raceway.", + "This image from the internet is of a raceway.", + "A raceway is a track for car racing.", + "Image is of a long, winding raceway with sharp turns.", + "A raceway is a path or road for racing.", + "The image is of a long, winding raceway with sections of different colors.", + "An image from the internet of a raceway shows a long, straight course with two vehicles racing side-by-side.", + "This image is of a raceway with three lanes.", + "A raceway is an open-air course for auto or horse racing.", + "A photo of a raceway with a long, empty road flanked by tall trees.", + "Aerial view of the Indianapolis Motor Speedway, home of the Indianapolis 500.", + "Fast cars racing at the Indianapolis 500.", + "Aerial view of the Indianapolis Motor Speedway, the world's largest and most famous race track.", + "The raceway at the Indianapolis Motor Speedway.", + " caption: \"Raceway Used for illegal Street Racing\".", + "A racecar zooms around a racetrack.", + "The Indianapolis Motor Speedway, home of the Indy 500.", + "The Indianapolis Motor Speedway is a race track in Speedway, Indiana, which is the home of the Indianapolis 500 and the Brickyard 400.", + "The Indianapolis Motor Speedway, home of the Indianapolis 500.", + "The Indianapolis 500 is an annual automobile race held at Indianapolis Motor Speedway." + ], + "raft": [ + "A raft is a large, flat structure that is typically made out of wood or plastic.", + "A raft is typically a flat structure that is floated on water and used for transport or as a platform for other activities.", + "A raft is a flat, stable structure that is used as a platform or as a means of transportation on water.", + "A raft is usually a large, flat piece of wood that floats on water.", + "A raft is a flat structure that is used to float on water.", + "A raft typically consists of wooden logs or bamboo that are lashed together to create a platform.", + "A raft is a floating platform made of logs, branches, or planks that is typically used for transportation or recreation.", + "A raft is a platform made of wood, plastic, or metal that isFloating on water and is used for recreation or transportation.", + "A raft is generally a flat structure that is used for floating on water.", + "A raft is a large, floatable platform that is typically used for recreation or transportation purposes on water.", + "A raft is a flat bottomed vessel that is used for carrying goods or people.", + "A raft is a flat structure that is used as a platform on water.", + "A raft is a flat structure that is used as a vessel or floating platform.", + "The most common type of raft is a flat-bottomed, often inflated, platform used as a vessel for fishing, swimming, or other activities.", + "A raft is a floating structure that is used for transportation, recreation, or as a platform for commercial activity.", + "A raft is a type of watercraft that is typically used for floating down a river or across a body of water.", + "A raft is a flat structure that is used as a platform or as a vehicle for transporting people or goods.", + "A raft is a floating structure that is supported by water.", + "A raft is a flat structure that is used to float on water.", + "A raft is a flat structure that is used for floating on water.", + "A raft is a few planks of wood or logs lashed together.", + "A raft is a type of boat that is powered by oars, sails, or a motor.", + "A raft is a flat structure that is used to float on water.", + "A raft is typically a large, flat surface that is used to float on water.", + "A raft is a platform that floats on water.", + "A raft is a large, flat, floating platform that is often used for recreation or transportation.", + "A raft is a flat, floating structure that is often made from logs, branches, and/or other materials that are tied together.", + "A raft is a platform that is used for floating in water.", + "A raft is a flat structure that is used to float on water.", + "There is no single answer to this question as rafts can come in many different shapes and sizes.", + "A raft is a floatation device typically used in water sports.", + "The image shows a small raft, made of wood and plastic, floating in a calm body of water.", + "A photo of a raft made of logs and tree branches, with a small sail in the middle.", + "The image is of a small raft with two people on it.", + "An image from the internet of a raft shows a small, sturdy boat made of logs and tied together with rope.", + "I found an image on the internet of a raft that looks like it would be perfect for a summer day out on the lake.", + "I found an image of a raft made out of wood logs and branches.", + "A raft is a floating platform made of logs, branches, or barrels tied together.", + "An image of a raft on the internet is typically a photo of a small, inflatable raft that is used for either recreation or emergency situations.", + "A raft is a flat structure that is used as a platform or as a means of transportation on water.", + "A homemade raft made out of recycled materials.", + " A young couple on a romantic getaway enjoying a quiet moment on their raft.", + "This raft was built by my grandfather.", + "Rafting on the river.", + "A raft made out of logs and sticks.", + "A large raft made of logs and branches, large enough to hold several people, floats in a river.", + "The raft is homemade and makeshift, made out of whatever materials the survivors could find.", + "A group of people on a raft in the middle of a river.", + "A raft made out of logs and branches, used for crossing a river.", + " A raft and four people on a riverA group of people on a raft floating down a river." + ], + "railroad track": [ + "Most railroad tracks consist of two parallel steel rails that are anchored perpendicular to wooden or concrete sleepers that are embedded in the ground.", + "A railroad track typically consists of two parallel steel rails, typically anchored perpendicular to wooden sleepers or concrete supports, that are laid on a foundation of gravel, ballast, or asphalt to maintain a consistent distance apart, or gauge.", + "A railroad_track looks like a metal rail that is used to guide a train along a desired path.", + "A railroad_track looks like a long, raised platform with a set of metal tracks running along its length.", + "A railroad_track looks like a line of metal tracks that run in a straight line.", + "A railroad track typically consists of two parallel rails that are anchored into wooden or concrete ties.", + "A set of parallel metal rails, commonly supported by wooden beams, that provide a track along which trains move.", + "A railroad_track typically consists of two parallel rails, typically made of steel, that are anchored in place by wooden or concrete ties.", + "A railroad track is typically made of two parallel rails that are placed a few feet apart from each other.", + "A railroad_track usually consists of two parallel steel rails, which are typically anchored perpendicular to timber or concrete sleepers placed at regular intervals to maintain a consistent distance between the rails.", + "A railroad track is typically made of steel and is raised off of the ground.", + "You can identify a railroad_track by its two metal rails that are spaced about four feet apart.", + "The most obvious way to identify a railroad track is by the presence of rails.", + "A railroad_track can be identified by a steel rail that is laid in a groove.", + "The most obvious way to identify a railroad track is by the presence of the two parallel metal rails that are always found along the length of the track.", + "look for two metal strips running parallel to each other.", + "The most obvious way to identify a railroad track is by the presence of rails.", + "A railroad track is a set of two connected steel rails that are used to guide a train.", + "The most obvious way to identify a railroad track is by the width of the gauge, or distance between the rails.", + "You can identify a railroad track by its two parallel metal rails.", + "A railroad track typically consists of two parallel rails, which are typically made of steel, that are laid on a foundation made of concrete, gravel, or cinder ballast.", + "A railroad track typically consists of two parallel rails, which are sometimes laid on a foundation of gravel or concrete.", + "A railroad track typically looks like two metal rails that are elevated slightly above the ground and spaced apart from each other.", + "A railroad_track looks like a line of metal rails set on wooden or concrete sleepers.", + "A railroad track typically consists of two parallel steel rails, which are sometimes laid on a gravel bed or bolted to concrete sleepers.", + "A railroad_track typically consists of two parallel rails that are anchored perpendicular to wooden sleepers (cross-ties) that are embedded in the ground.", + "A railroad_track typically consists of two parallel steel rails that are placed on wooden or concrete sleeper blocks.", + "A typical railroad track is made of two steel rails that are placed in a fixed distance apart from each other.", + "A railroad track consists of two parallel steel rails, typically anchored into a cinder bed, that are laid to a specific width apart, on which rail vehicles can move.", + "A railroad track typically consists of two parallel rails, each attached to a wooden or concrete sleeper, which are anchored perpendicular to cross ties (also called crossties) of various lengths and sizes.", + "The image from the internet is of a railroad track that is curved and goes off into the distance.", + "A railway track that extends from the horizon to the foreground, disappearing into a tunnel in the distance.", + "In the image, there is a long, straight stretch of railroad track that disappears into the distance.", + "The image shows a long, straight railway track disappearing into the distance.", + "The image is of a rusty old railroad track winding its way through a field.", + "The image is of a long, straight railroad track disappearing into the distance.", + "I couldn't find a specific image that fit this description, but a general image of a railroad track would include the metal rails that the trains run on, as well as the wooden ties that keep the rails in place.", + "I found an image on the internet of a railroad track that looks like it's in the middle of nowhere.", + "In the image, there is a long, straight railroad track that extends to the horizon in both directions.", + "A black-and-white image of a railroad track winding through a rural landscape.", + " The Golden Spike National Historic Site commemorates the completion of the first transcontinental railroad in 1869.", + "A railroad track winding through a green field.", + "A set of railroad tracks leading into the distance.", + "A train travels down a set of railroad tracks.", + "A train crossing a set of railroad tracks.", + "This railroad track looks like it hasn't been used in years.", + " The railroad_track crosses a desert landscape.", + "Railroad tracks through a desolate landscape.", + "A railroad track running through a valley.", + "A train track winding through a countryside." + ], + "rainforest": [ + "A rainforest looks like a dense, tropical forest with lots of trees, vines, and other vegetation.", + "A rainforest is a dense, tropical forest characterized by heavy rainfall and year-round warmth.", + "A rainforest is a dense, tropical forest that is teeming with plant and animal life.", + "A rainforest is a dense, tropical forest that is characterized by high rainfall, warm temperatures, and a diverse range of plant and animal life.", + "A rainforest is a densely wooded, lush environment that receives a lot of rainfall.", + "A rainforest is a tall, dense forest characterized by high rainfall and year-round warm temperatures.", + "I cannot accurately describe what a rainforest looks like without having seen one in person.", + "A rainforest is a forest where rainfall is heavy and consistent throughout the year.", + "A rainforest is a forest that gets a lot of rain.", + ".", + "The most obvious way to identify a rainforest is by its lush vegetation.", + "A rainforest is a tropicalforest with high rainfall, a warm climate, and dense vegetation.", + "A rainforest is a forest that receives high rainfall throughout the year.", + "Tropical rainforests are found near the Earth's equator.", + "The easiest way to identify a rainforest is by its dense canopy of trees.", + "A rainforest is a region of dense jungle vegetation.", + "A rainforest is a place with lots of rain, many different kinds of trees, and animals that live in the trees.", + "A rainforest can be identified by its dense canopy of leaves, its abundance of rain, and the variety of animals and plants that live there.", + "A rainforest is a thick forest with many tall trees that get a lot of rain.", + "Most rainforests are found near the Earth's equator.", + "A rainforest typically has a dense canopy of leaves and branches from the various trees that make up the forest.", + "A rainforest is a wet, dense jungle.", + "A rainforest is usually a dense, moist forest found near the Earth's equator.", + "A rainforest is a forest characterized by high rainfall, with annual rainfall in the case of tropical rainforests between 250 and 450 centimetres (98 and 177 in), and definitions varying by region for temperate rainforests.", + "A rainforest usually has a dense canopy of trees, vines, and other vegetation.", + "A rainforest is a large, dense forest where it rains a lot.", + "A rainforest is a forest where it rains a lot.", + "From the air, a rainforest looks like a sea of green with no end in sight.", + "A rainforest is a forest that gets a lot of rain.", + "A rainforest is typically a dense, moist forest with tall trees, a variety of plant and animal species, and high rainfall.", + "The image shows a dense rainforest with tall trees and a lot of greenery.", + "The image is of a dense rainforest with tall trees and a thick canopy of leaves.", + "This image shows a dense rainforest with a sunlight shining through the trees.", + "The image shows a dense rainforest with a large tree in the center.", + "The image shows a tropical rainforest with a dense canopy of trees and vines.", + "In the image, there is a vast rainforest with trees that are hundreds of feet tall.", + "The image is of a lush, green rainforest with trees that are tall and thin, reaching up to the sky.", + "The image is of a dense, green rainforest with a small stream running through it.", + "The image shows a rainforest with tall trees and a lot of greenery.", + "The image is of a lush, green rainforest with a canopy of trees that filters the sunlight.", + "A dense rainforest full of tall trees and green vegetation.", + "The rainforest is a dense, tropical forest that is teeming with life.", + "The Amazon rainforest is a vast tropical forest in South America.", + " The tropical rainforest is home to an incredible diversity of plants and animals.", + " A lush rainforest canopy with a small stream running through it.", + " A view of the Amazon rainforest from above.", + "Pristine rainforest in South America.", + "A lush, green rainforest.", + "The Amazon rainforest is a critical piece of our planet's ecosystem.", + " The Amazon rainforest is the world's largest tropical rainforest, covering over five million square kilometers." + ], + "reception": [ + "A reception is typically a room with food laid out on tables for people to eat.", + "Receptions are usually held at a banquet hall, hotel, or club, and involve food, drink, and dancing.", + "A reception is typically a party held after a wedding, during which the bride, groom, and their guests eat, drink, and dance.", + "A reception is a formal gathering to receive guests after a ceremony, typically held at a banquet hall, hotel, or private home.", + "A reception is a function held after a wedding, typically to thank guests for attending.", + "A reception is a gathering of people, typically after a wedding, during which the newly married couple is introduced to the guests.", + "A reception is a social event where guests are greeted and entertained.", + "A reception is typically a formal affair where guests mingle and mix while enjoying light refreshments.", + "A typical wedding reception includes a buffet of food, drinks, speeches, dancing, and cake cutting.", + "A reception is a formal affair where guests are greeted by the hosts and typically includes a buffet of hors d'oeuvres and drinks.", + "Signals that are received by a receiving antenna are called receptions.", + "The function of a reception is to provide a welcoming space for guests and to help them feel comfortable.", + "The most common way to identify a reception is by its characteristic shape.", + "A reception is usually a large gathering of people, often to celebrate a specific event.", + "There are a few ways to identify a reception.", + "If a function is being held in a banquet hall, look for a line of people near the entrance.", + "The best way to identify a reception is to ask someone who is familiar with the event.", + "A reception is a formal event held to introduce a newly married couple to the social elite.", + "A reception is typically a formal event where guests are invited to meet, greet, and mingle with the hosts.", + "The identification of a reception can be done by its appearance, which is generally a large, formal room, or by its designated purpose, which is to receive guests.", + "A reception typically looks like a small party or gathering.", + "A typical wedding reception includes food, music, dancing, and speeches.", + "A reception looks like a formal party.", + "A reception can look like a variety of things, depending on the type of event.", + "A reception is a type of party that is hosted after a wedding, typically at a reception hall.", + "The reception is typically held after the ceremony, and includes a meal, dancing, and socializing.", + "A reception looks like a small party.", + "It can look like a lot of things! Some people have very small, intimate gatherings while others have large parties.", + "A reception usually looks like a party.", + "A reception is typically a party or gathering held after a wedding, where the newly married couple is present.", + "istThis image is of a young woman sitting at a desk in what looks like a busy office.", + "istA image of a receptionist from the internet shows a young woman sitting at a desk in a busy office.", + "The image is of a large room with a high ceiling.", + " areaA Googled image of a reception area shows a formal room with a large desk and chair for the receptionist, several comfortable-looking sofas and chairs for visitors, and a few areas with plants.", + "istThe image is of a woman sitting behind a desk in a reception area.", + " deskAn image of a reception desk from the internet shows a large, rectangular desk with a smooth, wooden surface.", + "Assuming you would like an image of a wedding reception: In this image, the bride and groom are surrounded by their wedding party and guests as they dance together in the center of the dance floor.", + " deskThe image shows a reception desk in a office.", + "This image is of a wedding reception.", + " areaThe image is of a modern reception area with a sleek white desk and a comfortable looking white sofa.", + "The happy couple is surrounded by their friends and family at their wedding reception.", + "The bride and groom are all smiles as they pose for photos with their guests at the reception.", + "Guests enjoy refreshments at the reception.", + "Tom and Mary's engagement party was a huge success!A lot of their closest family and friends came to celebrate with them and wish them well in their new journey together.", + "Delightful Decorations for Your Wedding ReceptionFrom charming centerpieces to romantic lighting, find ideas here to make your wedding reception just as beautiful as your ceremony.", + "The wedding reception was a beautiful and festive event.", + "The wedding reception was a beautiful event.", + "The guest of honor at the reception looks very pleasedA group of people are gathered around a table at a reception.", + "The happy couple is all smiles as they enjoy their wedding reception with their guests.", + " Guests enjoy refreshments at the reception following the awarded ceremony." + ], + "recreation room": [ + "A recreation room might have a TV, a game console, a pool table, and a comfortable place to sit.", + "A recreation room typically has comfortable seating, a television, and games.", + "A recreation_room often has a pool table, a dart board, and a television.", + "A recreation_room typically contains a TV, game consoles, and comfortable furniture.", + "A recreation room typically has a comfortable seating area, a television, and a game table.", + "A recreation room is typically a room in a house where people can go to relax and have fun.", + "A recreation room is a room where people can go to relax and have fun.", + "A recreation room is a room in a house where people can go to relax and have fun.", + "A recreation room is typically a room in a house that is dedicated to fun and recreation.", + "A recreation_room looks like a room where people can go to relax and have fun.", + "The recreation_room would typically have a television, game console, and other recreational items such as board games or a pool table.", + "It is a room in a house set aside for recreational activities.", + "A recreation room is often a large room in a home with a variety of entertainment options.", + "A recreation room might have a television, a pool table, and a foosball table.", + "A recreation_room is typically a room in a house or apartment where people can go to relax and have fun.", + "A recreation_room is a room that is used for recreation, or play.", + "A recreation_room is typically a room in a house that is used for recreation, such as playing games, watching television, or working out.", + "A recreation room is a room in a house where people can go to relax and have fun.", + "A recreation_room can typically be identified by its contents, which may include a television, a pool table, a Ping-Pong table, and other games.", + "A recreation_room is typically a room in a house or apartment where people can go to relax and have fun.", + "A recreation room is often a room in a house with a television, pool table, and other games.", + "A recreation room is usually a room in a house specially designed for recreation.", + "A recreation room is a room in a house where people can go to relax and have fun.", + "A recreation room typically has a comfortable seating area, a television, and a gaming system.", + "A recreation_room looks like a room that is set up for recreational activities.", + "There is no one answer to this question as the term recreation room can be used to describe a wide variety of different types of rooms.", + "A recreation room can be any size or shape, depending on the space available and the activities you want to do in the room.", + "A recreation room is a room where people can have fun and relax.", + "There is no definitive answer to this question as recreation rooms can vary greatly in terms of size, design, and amenities.", + "There is no definitive answer to this question as recreation rooms can vary greatly in terms of size, style, and amenities.", + "There is a large room with several TVs, video game consoles, and comfortable-looking furniture.", + "In the image, there is a large room with high ceilings.", + "An image from the internet of a recreation_room shows a large room with big windows, comfortable looking furniture, a big television, and a pool table.", + "An image from the internet of a recreation room shows a large room with a pool table, a poker table, a foosball table, and a dartboard.", + "An image of a recreation room from the internet shows a large room with comfortable looking furniture.", + "In the image, there is a large room with several different types of recreational equipment.", + "An image from the internet of a recreation_room shows a large room with comfortable furniture and a television.", + "An image of a recreation room from the internet is likely to show a space with comfortable furniture, games, and perhaps a television.", + "I saw an image of a recreation room that had a pool table, a poker table, and a bar.", + " or game_roomThere is an image of a recreation room that has a pool table, a poker table, a bar, and a large television.", + "A recreation room with a pool table, bar, and big screen tv.", + " A posh recreation room with plenty of space to entertain guests.", + "This is a recreation room in a home.", + " A recreation room with a pool table, TV, and dartsThis recreation room is the perfect place to relax and have some fun.", + " A recreation room with a billiards table, darts, and a ping pong table.", + "This recreation_room looks like the perfect place to relax and unwind after a long day.", + "A recreation room with a pool table, dart board, and television.", + "A recreation room with a pool table, dart board, and television.", + "A man and woman relaxing in a recreation room.", + " The recreation room at the Smith Family Household." + ], + "residential neighborhood": [ + "A residential_neighborhood typically contains a mix of houses, apartments, and condos.", + "A typical residential neighborhood has a mix of different types of homes, including single-family homes, townhouses, and apartments.", + "A residential_neighborhood usually has a variety of housing types including single family homes, townhouses, and apartments.", + "A residential_neighborhood typically contains a mix of houses, apartments, and condominiums.", + "A residential_neighborhood typically contains a mix of housing types including single-family residences, townhouses, and apartments.", + "A residential neighborhood is typically made up of single-family homes, although there may be some multi-family homes or apartments mixed in.", + "A residential_neighborhood is a neighborhood that is made up of mostly residential buildings.", + "A residential_neighborhood typically contains a mix of houses, apartments, and other small residences, like condos and townhomes.", + "A residential_neighborhood typically contains a mix of houses, apartments, and condominiums.", + "A residential neighborhood typically contains a mix of housing types including single family homes, townhouses, and apartment buildings.", + "There is no definitive answer to this question, but some factors that may be indicative of a residential neighborhood include the presence of houses or other dwellings, low levels of commercial activity, and quiet streets.", + "There is no clear definition for a residential neighborhood, but it is generally considered to be a neighborhood where most of the residents live in single-family homes and there are few businesses or other commercial establishments.", + "A residential_neighborhood is an area where people live, typically in houses or apartments.", + "There are a few ways to identify a residential neighborhood.", + "There is no one definitive answer to this question.", + "There is no definitive answer to this question, but some possible indicators of a residential neighborhood include the presence of single-family homes, a lack of commercial or industrial properties, and quiet streets.", + "A residential_neighborhood is typically identified by its low density and lack of commercial activity.", + "A residential_neighborhood is typically made up of single-family homes, although there may be some multi-family homes as well.", + "There isn't a definitive answer to this question, but some possible indicators that an area is a residential neighborhood include the presence of single-family homes, quiet streets, and a low population density.", + "There are a few ways to identify a residential neighborhood.", + "A residential_neighborhood generally contains a mix of houses, apartments, and other small residences.", + "There is no one answer to this question as different residential neighborhoods can vary greatly in both appearance and size.", + "There is no one answer to this question as every residential_neighborhood is different.", + "Since a residential neighborhood is typically composed of houses, it would generally look like a collection of houses that are close together.", + "A residential_neighborhood may look like a suburban area with houses close together and a few trees.", + "A typical residential neighborhood has a mix of houses, apartments, and other small residences.", + "There is no definitive answer to this question, as residential_neighborhoods can vary greatly in terms of appearance.", + "There is no one answer to this question as every residential neighborhood is different.", + "A residential_neighborhood looks like a city or town with residential buildings like houses or apartments.", + "There is no one answer to this question as every residential_neighborhood can look different.", + "The image is of a suburban neighborhood with houses close together and neatly trimmed lawns.", + "The image depicts a group of houses in a suburban neighborhood.", + "A residential neighborhood typically features houses or other buildings that are close together, with streets and sidewalks.", + "The image is of a street in a residential neighborhood.", + "The image is of a clean, quiet residential neighborhood with well-manicured lawns and trees.", + "The image depicts a residential neighborhood with houses on either side of a tree-lined street.", + "An image of a residential neighborhood shows a group of houses on a street with trees and grass.", + "An image of a residential neighborhood might show houses with manicured lawns and gardens.", + "The image shows a typical American residential neighborhood with houses of different sizes and colors lining the street.", + "An image from the internet of a residential_neighborhood shows a group of houses that are close together with a sidewalk running in front of them.", + " A busy neighborhood with many people out and about.", + "Looking down a quiet residential street in suburbia.", + "The image shows a residential neighborhood with houses in the distance.", + "This is a typical residential neighborhood in Anytown, USA.", + " A residential neighborhood with houses in the distance.", + " A typical residential neighborhood in Anytown, USA.", + "This is a typical residential neighborhood in Anytown, USA.", + "This is a typical residential neighborhood in Anytown, USA.", + " A view of a typical residential neighborhood in Anytown, USA.", + "Gleaming Apartment Buildings in Upscale Neighborhood." + ], + "restaurant": [ + "The interior of a restaurant typically has seated areas with tables and chairs for guests, a waiting area for guests who are waiting to be seated, and a counter or bar area for guests who are waiting to order.", + "A restaurant is a business that provides food and drinks to customers.", + "A restaurant usually has a dining area, which is a space where customers can sit and eat.", + "A typical restaurant has a large dining area with tables and chairs for customers to sit and eat.", + "A restaurant looks like a place where people can go to eat food.", + "A restaurant is generally a building or part of a building where people go to eat food that has been prepared by a chef.", + "A restaurant is a place where people can go to eat food.", + "A restaurant is typically a place where people can go to purchase and consume food.", + "Most restaurants have a counter or bar area where you order, and then a seating area where you wait for your food.", + "A restaurant is typically a business that serves food and drinks to customers in exchange for money.", + "One way to identify a restaurant is by its sign.", + "A restaurant can be identified by its menu, its d\u00e9cor, and its atmosphere.", + "If you are looking for a specific restaurant, you can search for it by name.", + "One way to identify a restaurant is by its name.", + "The easiest way to identify a restaurant is by its name.", + "The customer is always right.", + "One way to identify a restaurant is by looking for a sign that says \"restaurant.", + "The easiest way to identify a restaurant is by its name.", + "The most obvious way to identify a restaurant is by its name.", + "There are several ways to identify a restaurant.", + "A restaurant can have many different looks, but typically includes a dining area, kitchen, and bathroom.", + "The inside of a restaurant typically includes a dining area, a kitchen, and a restroom.", + "A restaurant will vary in appearance depending on its location, size, and style.", + "A restaurant can look like a lot of different things depending on the type of restaurant.", + "There is no single answer to this question as restaurants can come in many different shapes and sizes.", + "There is no one answer to this question as different restaurants can have very different looks.", + "A restaurant typically has a dining area, kitchen, and bar.", + "There is no one answer to this question as restaurants can come in a multitude of different shapes and sizes.", + "A restaurant can look like many things, depending on the type of food it serves, the location, and the style of the building.", + "A restaurant is a business that provides food and drink to customers in exchange for money.", + "This image from the internet is of a restaurant called \"The Counter\".", + "This image shows the exterior of a restaurant called \"The Fat Duck\".", + "In the image, there is a large, rectangular table in the center of the room.", + "The image is of a restaurant that appears to be very clean and well organized.", + "In the image, there is a small, circular table with two chairs placed in front of a large window.", + "This is an image of a restaurant called \"The Restaurant at The End of The Universe.", + "A small, quaint restaurant with exposed brick walls and hardwood floors.", + "A photograph of the exterior of a restaurant called \"The Fat Duck\" in England.", + "An image of a restaurant from the internet shows the exterior of the building with a sign that reads \"The Hungry Cat.", + "The image is of a restaurant called \"The Fat Duck\" and it is located in the UK.", + "Open until 3 AM, this restaurant is perfect for a night out!Looking for a place to eat late at night? This restaurant is open until 3 AM, so you can enjoy a meal even after a late night out!.", + "The exterior of La Fuente Mexican Restaurant, a popular spot for Tex-Mex cuisine in Houston, Texas.", + "\nThe restaurant was very crowded and there was a long line to get in.", + "The exterior of a local restaurant in town.", + "The restaurant is called \"The Cheesecake Factory.", + "ASmall diner with a sign that reads \"Home of the Original cheeseburger.", + " A new restaurant has opened in town.", + "Cooking up a stormIn the kitchen of this busy restaurant, the chef and his team are hard at work preparing meals for the hungry customers.", + "The exterior of a restaurant called \"The Glass House\" in Atlanta, Georgia.", + " A lovely restaurant with an outdoor seating area." + ], + "restaurant kitchen": [ + "A kitchen in a restaurant is typically a large, open space with multiple work stations.", + "The kitchen of a restaurant is typically a large, open room with several stations for preparing food.", + "A restaurant kitchen usually has a lot of stainless steel, which can include countertops, appliances, and shelves.", + "A restaurant kitchen has a lot of different parts to it.", + "The kitchen of a restaurant is usually a large and open space with multiple work stations.", + "A restaurant kitchen typically has a large range/oven, several sinks, prep tables, and storage shelves.", + "A restaurant kitchen typically has a large range or cook top, ovens, deep fryers, pizza ovens, dishwashers, and a walk-in refrigerator.", + "A restaurant kitchen typically contains large free-standing stoves, a deep fryer, a flat-top grill, a commercial oven, and various sizes of refrigerators and freezers.", + "A restaurant kitchen usually has a lot of stainless steel, which is easy to clean.", + "A restaurant kitchen typically has a large range or stove, a sink for washing pots and pans, and plenty of counter space for food preparation.", + "By the presence of cooking equipment, such as stoves, ovens, and other devices used for preparing food.", + "If you are looking for a restaurant kitchen, you may want to look for a commercial kitchen.", + "A restaurant_kitchen can be identified by its size, location, and equipment.", + "A restaurant kitchen can be identified by its large size, multiple appliances, and abundance of counter space.", + "If you can see into the kitchen and it is clean and the staff is wearing clean uniforms, then it is a restaurant_kitchen.", + "A restaurant kitchen is typically a large, open space with multiple cooking stations.", + "A restaurant kitchen may be identified by its commercial-grade appliances, large sink, and ample counter space.", + "A restaurant kitchen may be identified by its commercial-grade appliances, large format cooksware, and prep tables.", + "A restaurant_kitchen typically includes a stove, sink, refrigerator, and counter space for food preparation.", + "The restaurant_kitchen is typically a large room with several ovens, stoves, and other cooking equipment.", + "There is no definitive answer to this, as the layout and design of restaurant kitchens can vary widely.", + "A restaurant kitchen is a room in a restaurant where the food is prepared.", + "A restaurant_kitchen typically contains a stove, sink, refrigerator, and counter space for preparing food.", + "A typical restaurant kitchen has a large range or stove, a sink for washing dishes, a prep area for cutting vegetables, and a storage area for food.", + "There is no one answer to this question as restaurant kitchens can vary greatly in terms of size and layout.", + "A kitchen in a restaurant typically has large, commercial-grade appliances, multiple sinks, and plenty of counter space.", + "The layout of a restaurant kitchen will vary depending on the size and style of the restaurant, but there are some common features.", + "There is no single answer to this question as restaurant kitchens can vary greatly in size and appearance.", + "A restaurant kitchen is typically a commercial kitchen that is used for food preparation by a chef and his or her kitchen staff.", + "A large room with multiple workstations, each with its own sink, counter space, and stove or grill.", + "The image is of a restaurant kitchen with white walls and stainless steel appliances.", + "The image is of a large, commercial kitchen with stainless steel countertops, multiple ovens, and large pots and pans hanging from a rack above the stove.", + "In the image, there are several people in a kitchen, all wearing uniforms.", + "I found an image of a restaurant kitchen on Pinterest.", + "A typical restaurant kitchen is a large, open room with a lot of stainless steel surfaces.", + "In the image, there is a kitchen with white walls and tiled floors.", + "This image is of a large kitchen with several people working in it.", + "In the image, there is a large, commercial kitchen with several workers in it.", + "In the image, there is a kitchen with white walls and a black and white tile floor.", + "In the image, there is a large, commercial kitchen with stainless steel appliances and countertops.", + "Back of house at Acme restaurant.", + "The kitchen of a restaurant is where the magic happens.", + "The kitchen at ABC restaurant.", + "The kitchen of a busy restaurant, with chefs preparing food and waiters bringing orders.", + "\nA kitchen filled with the hustle and bustle of the lunch rush.", + "This is the kitchen of a restaurant.", + "This is the kitchen of the XYZ restaurant.", + " Workers in a restaurant kitchenThe workers in this restaurant kitchen are busy preparing meals for the customers.", + "This kitchen is fully equipped to handle any type of restaurant meal.", + " The kitchen of a restaurant." + ], + "restaurant patio": [ + "A restaurant patio is a paved outdoor area adjoining a restaurant, often furnished with tables and chairs for dining.", + "A restaurant patio usually has tables and chairs for customers to sit at, and sometimes has umbrellas to provide shade.", + "A restaurant patio is typically an outdoor seating area, often adjacent to the building.", + "A restaurant patio can take many different forms, but typically it is an outdoor seating area at a restaurant.", + "A restaurant_patio looks like an outdoor seating area at a restaurant, typically with tables and chairs for customers to use.", + "A restaurant patio typically has tables and chairs for customers to sit and enjoy their meal.", + "A restaurant patio is an area outside of a restaurant that has tables and chairs for customers to eat at.", + "A restaurant_patio generally has a few tables and chairs for customers to sit at, and is usually located near the entrance of the restaurant.", + "A restaurant patio typically has a few tables and chairs for customers to sit at while they enjoy their food and drink.", + "A restaurant patio is usually a paved or stone area located near the entrance of the restaurant.", + "If a restaurant has a patio, it will likely be advertised on the restaurant's website or social media.", + "A restaurant patio can be identified by its location.", + "If a restaurant has a patio, it will likely be labeled as such on the menu, website, or sign outside the establishment.", + "The best way to identify a restaurant patio is to look for a sign that says \"restaurant patio\" or to look for a table with a umbrella.", + "If a restaurant has a patio, it will likely be listed as such on its website or in online reviews.", + "There is no definitive answer to this question, as the term \"restaurant patio\" can mean different things to different people.", + "One way to identify a restaurant patio is by the presence of outdoor furniture, such as tables and chairs.", + "Restaurant patios can be identified by their furniture, which is typically made of wrought iron or wicker.", + "A restaurant patio can typically be identified by its location.", + "The restaurant patio can be identified by looking for the following:-A patio area adjacent to the restaurant\n-Tables and chairs set up on the patio\n-Patio umbrellas or other shade structures\n-Awn.", + "A restaurant patio is usually a paved outdoor area adjacent to the restaurant, containing tables and chairs for customers to use.", + "A restaurant patio is a paved outdoor area that is adjacent to the restaurant building.", + "A restaurant patio is typically an outdoor seating area that is adjacent to the restaurant.", + "A restaurant patio is a paved outdoor area adjacent to a restaurant, often featuring tables and chairs for diners.", + "There is no one answer to this question as restaurant patios can take on many different forms.", + "There is no definitive answer to this questions since restaurant patios can vary greatly in terms of size, layout, and design.", + "There is no one answer to this question, as restaurant patios can vary greatly in terms of size, style, and overall appearance.", + "A restaurant patio typically features outdoor seating, with tables and chairs for guests to enjoy their meal.", + "This is a difficult question because there are so many different types of restaurant patios.", + "A restaurant patio is typically an outdoor area where people can eat and drink.", + "In the image, there is a restaurant patio with a metal roof.", + "The image is of a small, quaint patio of a restaurant.", + "A photo of an outdoor patio at a restaurant.", + "This image is of an outdoor patio at a restaurant.", + " The image is of a quaint outdoor patio with white lights strung overhead.", + "An image from the internet of a restaurant patio may show a table with chairs set up on a patio outside of a restaurant.", + "The image is of a restaurant patio with awnings and trees.", + "This image is of an outdoor patio at a restaurant.", + "This image is of an outdoor patio at a restaurant.", + "In the image, there is a rectangular table with four chairs around it.", + "A group of people enjoying a meal outside at a restaurant.", + "A dining patio at a restaurant, with white umbrellas and potted plants.", + " Outside seating at XYZ restaurantA group of people are gathered around a table on a restaurant patio.", + "The patio at Caf\u00e9 du Soleil is the perfect spot to enjoy a leisurely lunch on a sunny day.", + " A beautiful patio with plenty of seating for a perfect night out.", + "A couple enjoying a meal on the patio of a restaurant.", + "The patio at La Hacienda is the perfect spot for a romantic dinner for two.", + "A beautiful outdoor patio at a restaurant, perfect for enjoying a meal on a warm day.", + "This is the patio of the restaurant.", + "The patio at Caf\u00e9 La Rue, a popular restaurant in New Orleans." + ], + "rice paddy": [ + "Rice paddies are valleys that are flooded with water and contain rice plants.", + "A rice paddy looks like a rectangular field that is filled with water and has rice plants growing in it.", + ".", + "A rice paddy is a small, terraced field where rice is grown.", + "A rice paddy is a field that is flooded with water and used to grow rice.", + "A rice paddy looks like a rectangular field with water in it.", + "A rice paddy is a flat piece of land where rice is grown.", + "A rice paddy is a field that is flooded with water and is used to grow rice.", + "A rice paddy is a small, water-filled, rectangular field used to grow rice.", + "A rice paddy is a long, narrow section of land that is flooded with water.", + "A rice paddy is a field of marshland where rice is grown.", + "A rice paddy is a field where rice is grown.", + "The most obvious way to identify a rice paddy is by its size and shape.", + "A rice paddy is a piece of land that is used to grow rice.", + "A rice paddy is a flooded field where rice is grown.", + "The most distinguishing feature of a rice paddy is the system of levees, or raised banks, that border the field.", + "Rice paddies are typically large, flat areas of land that are flooded and used to grow rice.", + "A rice paddy is often called a field.", + "A rice paddy is a flooded field used to grow rice.", + "A rice paddy is a field that is flooded with water and is used to grow rice.", + "Rice paddies are traditionally built as terraced depressions in the earth that are flooded with water to grow rice.", + "A rice paddy looks like a field with water in it.", + "A rice paddy is a field where rice is grown.", + "A rice paddy is a field that has been flooded with water and is used to grow rice.", + "A rice paddy is a small, rectangular plot of land where rice is grown.", + "A rice paddy looks like a large field with water in it.", + "A rice paddy looks like a large, flat field with water in it.", + "A rice paddy looks like a level field with water in it.", + "A rice paddy typically looks like a large, flat field with a network of irrigation channels running through it.", + "A rice paddy is a flooded field where rice is grown.", + "The image is of a rice paddy that is in a field.", + "I found an image of a traditional Japanese rice paddy.", + "An image of a rice paddy from the internet would show a field of neatly planted rice plants with their long green leaves waving in the breeze.", + "A rice paddy is an area of land that is flooded with water to grow rice.", + "I found an image on the internet of a traditional rice paddy in Vietnam.", + " fieldThe image is of a rice paddy field that is highly irrigated.", + "In the image, there are many small, evenly spaced green plants growing in a muddy field.", + "In the image, there are rows of neatly planted rice paddies that stretch out into the distance.", + "The image is of a rice paddy with water and plants.", + "In the image, there is a wide, green field with knee-high plants.", + "A rice paddy in Southeast Asia.", + "A farmer works in a rice paddy in Thailand.", + "Rice Paddy Field in Thailand.", + "A Thai farmer works in a rice paddy in the country's north.", + "A field of rice ready for harvest in Thailand.", + "A rice paddy in ThailandThis image shows a variety of different colors in the rice paddy.", + " Traditional rice paddies in Asia.", + "A rice paddy in China.", + "A traditional rice paddy in Bali, Indonesia.", + "\"Two women carry bundles of rice plants on their shoulders in a rice paddy in Thailand." + ], + "riding arena": [ + "A riding arena typically has a sand or dirt floor, and is surrounded by a fence.", + "A riding arena is a large space, typically enclosed, where people can ride horses.", + "A riding_arena is a fenced in area where people can ride horses.", + "A riding_arena is a fenced in area where horses can be ridden.", + "A riding_arena is a fenced area where people can ride horses.", + "A riding arena is a fenced in area where people can ride horses.", + "A riding arena is typically an indoor or outdoor facility that is used for horseback riding.", + "A riding arena is a space where people can ride horses.", + "A riding arena is a fenced in area where horses can be ridden.", + "A riding arena is a fenced off area where people can ride horses.", + "You can identify a riding_arena by looking for a large, open space with a smooth, level surface.", + "A riding_arena is a fenced in area where horses can be ridden.", + "A riding_arena is a type of structure where riding activities take place.", + "The riding_arena should be large and open with a hard, flat surface.", + "A riding_arena is a large enclosure where horses can be ridden.", + "If you are looking for a riding_arena, you should look for a place where there is a lot of open space.", + "A riding arena is a flat, rectangular area where horses can be ridden in controlled conditions.", + "A riding_arena is typically an enclosed or partially enclosed space where horses can be ridden.", + "Riding arenas are often large, open spaces with high ceilings.", + "One way to identify a riding_arena is by its size.", + "There is no definitive answer to this question as the size, shape, and features of a riding arena can vary greatly depending on the specific purpose for which it is intended.", + "A riding arena is typically a large, open space with a smooth, level surface.", + "A riding arena is typically an enclosed space where people can ride horses.", + "The size and shape of a riding arena depends on its purpose.", + "A riding arena is a large, indoor space where people can ride horses.", + "A riding arena is typically an enclosed space where horses can be ridden.", + "A riding arena is a fenced in area where people can ride horses.", + "A riding_arena may be enclosed or open, and is typically made of sand, dirt, or grass.", + "A riding_arena looks like a large fenced in area with a dirt or sand surface.", + "A riding arena is a large, open space with a level dirt or sand surface.", + "An image of a riding_arena shows a large, open space with high ceilings.", + "This image shows a well-lit riding arena with sand footing and a wooden fence along the edge.", + "The image is of an outdoor riding arena with a sand footing and brown wood fencing.", + "A large open space with dirt or sand flooring, typically surrounded by a low fence.", + "A horse and rider are in an arena with bright lights shining down from the ceiling.", + "This image is of an indoor riding arena.", + "An image from the internet of a riding_arena shows a large, rectangular area surrounded by a high fence.", + "This image shows a large, well-lit riding arena with sand and grass in the center.", + "One possible image is of an indoor riding arena with wood walls and a dirt floor.", + "A riding_arena is a large, open space where people can ride horses.", + "This is a picture of a riding_arena.", + "This is the riding arena at the Silver Springs Ranch.", + "An indoor riding arena, perfect for horseback riding lessons and competitions.", + "This is an indoor riding arena where horse and rider can train without fear of bad weather.", + " horseback riding in an arenaThis image shows a person horseback riding in an arena.", + "The riding_arena at the Black Hills Wild Horse Sanctuary is a popular spot for both locals and visitors.", + "Riding arena with horse and rider.", + "\nThis image shows a horse in a riding arena.", + "The arena at Mountain View Farm is beautifully maintained and offers a perfect setting for riders of all levels.", + "This is a riding arena." + ], + "river": [ + "A river is a body of moving water that is found on the surface of the earth.", + "A river is a body of water that flows along a path called a riverbed.", + "A river is a flowing body of water that is typically located between two landmasses.", + "A river usually looks like a long, thin line of water flowing through the land.", + "Rivers are typically long, thin, and winding.", + "A river is a long, narrow body of water that flows from a mountains or hills into a larger body of water, such as a lake or the ocean.", + "A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, a lake, a sea, or another river.", + "A river is a long, thin stretch of water that flows from high in the mountains down to the sea.", + "A river is a long, narrow body of water that flows towards an ocean, lake, or another river.", + "A river looks like a body of water that flows through a valley.", + "Rivers can be identified by their characteristic features, including the presence of a waterway, a bed and banks, and a stream gradient.", + "Rivers can be identified by their characteristic flowing water.", + "The easiest way to identify a river is by its flowing water.", + "There are a few ways to identify a river.", + "The easiest way to identify a river is by its flowing water.", + "Rivers can be identified by their physical features.", + "Rivers are usually easy to identify because they are large bodies of water that flow from one place to another.", + "The best way to identify a river is by its features.", + "Services that can help you find a river include the United States Geological Survey (USGS) and the National Weather Service (NWS).", + "The main way to identify a river is by its flowing water.", + "The River Thames in London, England.", + "A river typically looks like a long, curved line of water flowing in one direction.", + "A river is a body of water that flows in a stream from one location to another.", + "A river typically looks like a long, winding body of water that flows from a higher elevation to a lower elevation.", + "A river is a long, flowing body of water that empties into an ocean, lake, or another river.", + "A river can look like a long, winding stream of water.", + "Most rivers are narrow and winding, with steep banks on either side.", + "A river typically looks like a long, winding body of water.", + "A river typically looks like a long, narrow body of water with gently sloping banks.", + "A river looks like a long, narrow strip of water that flows from a high point, such as a mountain, to a lower point, such as a lake or the sea.", + "This image depicts a river running through a green and lush landscape.", + "This is an image of a river in Norway.", + "The image is of a river flowing through a rocky landscape.", + "An image of a river on the internet shows a body of water flowing through a natural landscape.", + "I found an image on the internet of a river in autumn.", + "https://www.", + "The image is of a river flowing through a green landscape.", + "The image is of a river flowing through a green landscape.", + "This image shows a river with rocky banks and clear water.", + "The image is of a river flowing through a green field.", + " A river in the early morning.", + " A river in the Amazon rainforest.", + " A river in Alaska.", + "This is a picture of a river.", + " A river in the autumn.", + " \"The river was filled with debris after the storm.", + "A river in southwest China.", + "The river is flowing smoothly through the landscape.", + " The river is flowing calmlyThe river is flowing calmly, with the sun shining down on it.", + "The river winds through the mountains, its waters reflecting the sky." + ], + "rock arch": [ + "A rock_arch is a naturally formed archway or bridge created by the erosion of rocks.", + "A rock arch is a natural arch formed by the erosion of rock.", + "A rock_arch is a natural arch formed by the erosion of rock.", + "A rock arch is a natural arch formed by the erosion of an arch-shaped rock.", + "A rock arch is a natural arch formed by the erosion of rocks.", + "A rock_arch is a formation of rock that has been worn away by weathering, leaving an archway.", + "A rock arch is a natural archway created by the erosion of rocks.", + "A rock arch is a natural archway formed from the erosion of rocks.", + "A rock_arch looks like a hole in a rock that is big enough for a person to walk through.", + "A rock_arch is a natural arch formed by the erosion of rocks.", + "A rock arch is a natural arch that is formed from rock.", + "A rock_arch is a natural archway formed by the erosion of rock.", + "A rock arch is a natural arch formed by the erosion of rocks.", + "A rock arch is a natural archway formed by the erosion of rocks.", + "A rock arch is a natural formed opening in a rock, typically formed by erosion.", + "A rock arch is a formation where rocks have eroded away, leaving an archway.", + "A rock arch is typically a natural arch that is formed by the erosion of rock.", + "A rock arch is a natural arch formed by the erosion of rock.", + "A rock arch is a natural rock formation where an arch has formed, often eroded by wind and water.", + "A rock arch is a natural archway formed by the erosion of rock.", + "A rock arch looks like a natural bridge formed by erosion or later actions.", + "A rock arch looks like a natural stone archway formed by erosion or by the collapse of two caves that join together.", + "A natural rock arch is formed by the erosion of a rock, typically a sedimentary rock, by the action of wind and water.", + " A rock arch is a natural archway formed by the erosion of rocks.", + "A rock arch is a natural arch formed by the erosion of rocks.", + "A rock arch is a natural arch formed from rock.", + "A rock_arch generally has a curved shape, as it is formed by the natural erosion of rocks.", + "A rock arch is a natural archway formed by rocks.", + "A rock arch is a natural arch formed from rock.", + "A rock_arch is a natural archway formed by the erosion of rock.", + "The image shows a stone arch in a natural setting.", + "A rock arch is formation of rocks that have been naturally eroded by water or wind over a period of time.", + "A rock arch is a natural rock formation where an arch has formed, often with an opening underneath large enough for a person to pass through.", + "The image looks like a huge rock arch that has been carved out by wind and water over many years.", + "A rock arch is an arch formed naturally by the erosion of rock.", + "A rock arch is a natural arch formed from the erosion of a stone outcropping.", + "wayI found an image of a rock archway on the internet that looks like it was taken in a canyon.", + "The image is of a large, round rock archway in the middle of a vast, open landscape.", + "I found an image of a rock arch in Arches National Park in Utah.", + "A rock arch is a naturally formed archway or bridge created by the erosion of rocks.", + "A rock_arch in Arches National Park, Utah.", + "The rock arch is a natural landscape formation created by the erosion of rocks over time.", + "A rock arch formation in Bryce Canyon National Park, Utah.", + " The natural arch in Torrey Pines State Park, California.", + "Mesa Arch in Canyonlands National Park, Utah.", + "The Arch of Cabo San LucasThis is a rock arch located in Cabo San Lucas, Mexico.", + "Natural rock arch in Arches National Park, Utah.", + "The amazing natural rock arch in Utah's Canyonlands National Park.", + "A rock arch stands in the middle of a desert landscape.", + "The rock arch is a natural wonder that has been created over time by the elements." + ], + "rope bridge": [ + "A rope bridge is a type of simple suspension bridge.", + "A rope bridge is a type of bridge made from ropes.", + "A rope bridge is a type of simple suspension bridge.", + "A rope bridge looks like a bridge that is made of ropes.", + "A rope bridge is a bridge that is made out of rope, typically supported by wooden planks or posts.", + "A large bridge made of rope that spans a large distance.", + "A rope_bridge is a bridge made from ropes.", + "A rope bridge is typically a simple suspension bridge made of ropes and planks that is used to cross a river or gorge.", + "A rope bridge is a bridge that is made out of ropes.", + "A rope bridge is a bridge that is made of rope.", + "A rope bridge is a bridge made from rope.", + "If you are looking at a rope bridge, it will likely be made of rope and have two posts on either end with a rope running from one post to the other.", + "The easiest way to identify a rope bridge is by its appearance.", + "A rope bridge is a bridge consisting of ropes, anchors, wooden planks, and wire cables.", + "Rope bridges are usually made of ropes and wooden planks.", + "A rope bridge is a type of suspension bridge that is supported by tensioned ropes instead of cables.", + "A rope bridge has ropes or cables for rails and is suspended above the ground.", + "One way to identify a rope bridge is by its appearance.", + "Rope bridges are typically made of ropes and wood planks.", + "A rope bridge is typically composed of ropes or cables suspending a walkway between two points.", + "A rope bridge is a type of bridge made from ropes and is often used as a crossing over rivers or ravines.", + "A rope_bridge looks like a regular bridge, but it is made of rope instead of concrete or metal.", + "A rope bridge typically consists of two ropes hanging parallel to each other, with planks or other materials such as bamboo slats fastened to the ropes to form a walking surface.", + "A rope bridge is a suspension bridge that is constructed from ropes.", + "A rope bridge is made of two ropes or cords that are tied together in the middle.", + "A rope bridge is a platform suspended by ropes that is used to cross over a gap.", + "A rope_bridge looks like a bridge made of rope.", + "A rope bridge looks like a bridge made of rope.", + "A rope bridge is a pedestrian bridge typically made of rope and wood, and sometimes steel components, that is suspended above a valley or gorge.", + "A rope bridge is typically a series of ropes or planks that are suspended over a gap, allowing people to walk across.", + "The image is of a rope bridge that is made of two ropes that are tied together and have planks of wood on them.", + "This image is of a rope bridge crossing a river in Nepal.", + "A rope bridge is a bridge composed of ropes and planks.", + "The image is of a rope bridge crossing a large gap between two rocky cliffs.", + "One image that comes to mind is a rope bridge connecting two mountain peaks.", + "The image is of a rope bridge crossing a river.", + "In the image, a rope bridge is seen spanning a large gap between two rock formations.", + "The bridge is made of rope and wooden planks and spans a large gorge.", + "The image is of a rope bridge crossing a river.", + "A rope bridge is a bridge consisting of ropes supporting a platform, which is sometimes suspended over a body of water or sloped land.", + " A rope bridge hangs precariously over a raging river.", + "A rope bridge crossing a river.", + "A rope bridge crossing a river.", + "Rope bridge in the Amazon jungle.", + "A rope bridge spans a deep gorge.", + "A rope bridge spans a deep gorge.", + "A rope bridge spans a river below, with a lush forest on either side.", + "A rope bridge crossing a river below.", + "A rope bridge over a river.", + " A rope bridge leading across a river to a small town in the distance." + ], + "ruin": [ + "A ruin looks like a broken-down building that is no longer habitable.", + "A ruin is a a broken or collapsed structure.", + "A ruin is a broken down or collapsed structure.", + "Ruins typically appear as large piles of rubble that were once part of a larger structure.", + "A ruin is a destroyed or decayed building or settlement.", + "A ruin is a collapsed or collapsing structure, typically one that is in disrepair or no longer functional.", + "A ruin typically looks like a broken down or decaying structure.", + "A ruin is a structure that is partially or completely destroyed.", + "Most often, ruins are the remnants of buildings that have been damaged or destroyed by war, weather, or other natural disasters.", + "A ruin looks like a collapsed or partially collapsed building.", + "A ruin is a collapsed or destroyed building.", + "A ruin is typically a structure that is no longer standing, or is in a state of disrepair.", + " War damage, vandalism, neglect, and fire are all common causes of ruin.", + "A ruin is generally a collapsed or decaying structure.", + "A ruin is typically a reminder of the past, especially a structure that is in disrepair or no longer standing.", + "a) A ruin is an ancient site that has not been lived in for a long time.", + "A ruin is a different shape than the rest of the buildings.", + "A ruin is typically an abandoned or minimally-used structure, often in a state of disrepair.", + " Ruins are typically identifiable by their overgrown and/or collapsed state.", + "A ruin is typically a structure that is no longer habitable or functional, and is in a state of disrepair.", + "A building or a structure in ruins is one that is partially or completely destroyed.", + " Ruins are the remains of buildings or other structures that have been destroyed by fire, earthquake, weather, war, or other causes.", + "A ruin looks like a broken-down or burnt-out building.", + "A ruin is a collapsed or destroyed building.", + "A ruin is a place where a building or a settlement used to be but is no longer there.", + "A ruin is often a collapsed or decayed structure.", + "A ruin may look like a broken down or collapsed building.", + "A ruin typically looks like a broken down, old, and abandoned structure.", + "A ruin is a collapsed or toppled structure.", + "A ruin is a destroyed building that is in disrepair.", + "There is an image of a ruin on the internet which shows an old, broken down building.", + "The image is of a stone wall, with part of the wall collapsed.", + "An image of a ruin is an image of a building or structure in a state of ruin or disrepair.", + "The image is of a brick wall with a doorway that has no door.", + "In the image, there is a ruin of an old building.", + "I found an image of a ruin on the internet that looks like an old castle.", + "A definition of a ruin is \"a remaining part of a building, typically one that is in a state of partial or complete collapse.", + "The image is of a large stone structure that has been partially destroyed.", + "The image is of a ruin with a large hole in the side.", + "An image from the internet of a ruin might show a building that has been partially destroyed, with its bricks or stones crumbling.", + " The front of the abbey church at Fontevraud, with its massive twin towers, seen from the ruins of the cloister.", + "A ruin of a once great city.", + " \"The fall of an empire\".", + " The Parthenon, Athens, Greece.", + " The Ruins of the Ancient City of Pompeii.", + "The ancient ruin of a once great civilization.", + "This ruin is all that remains of the once great city of Pompeii.", + "French castle ruins in the Loire Valley.", + "A ruined city hall in Detroit, Michigan.", + " \"Abandoned church in the woods." + ], + "runway": [ + "A runway is a long strip of pavement that is used by airplanes during takeoffs and landings.", + "A runway is a long, narrow strip of pavement that is used by airplanes during takeoffs and landings.", + "A typical runway is a long, rectangular strip of pavement that is typically two to four miles long and 150 to 200 feet wide.", + "A runway is a long, narrow strip of pavement that is typically used by airplanes for takeoffs and landings.", + "A runway is a long, straight strip of hard pavement that is used for takeoffs and landings by airplanes.", + "A runway is a long, narrow strip of pavement that is used for takeoffs and landings by airplanes.", + "A runway is a long, level stretch of pavement at an airport for airplanes to takeoff and land on.", + "A runway is typically a long, straight stretch of pavement that is used for takeoffs and landings.", + "A runway is a long, flat stretch of pavement at an airport that is used for taking off and landing airplanes.", + "A runway is a long strip of pavement that is used for takeoffs and landings by planes.", + "There are various ways to identify a runway.", + "The easiest way to identify a runway is by its numbers.", + "You can identify a runway by its markings.", + "The best way to identify a runway is to look for the runway lights.", + "A runway is a long strip of pavement at an airport that is used for taking off and landing airplanes.", + "You can identify a runway by its length, width, and surface material.", + "Runways are typically identified by a number between 01 and 36, which is generally the magnetic azimuth of the runway's heading in decadegrees.", + "A runway is a long, straight strip of pavement at an airport that is used for takeoff and landing.", + "The runway is the long, straight section of the runway that is used for takeoffs and landings.", + "The easiest way to identify a runway is by its numbers.", + "A runway looks like a long, straight strip of pavement.", + "A runway is a long, straight strip of pavement that is used for taking off and landing airplanes.", + "A runway is typically a long, straight stretch of pavement that is used for takeoffs and landings by airplanes.", + "A runway typically looks like a long, straight strip of pavement, often with markings to indicate where aircraft should line up in preparation for takeoff.", + "Most runways are long and straight, with a weight-bearing surface that is level and made of concrete, asphalt, or a similar material.", + "A runway is a long, straight strip of pavement that is used for takeoffs and landings.", + "An airplane runway is a long, flat strip of pavement where airplanes take off and land.", + "A runway is a long strip of level ground prepared for aircraft takeoffs and landings.", + "A runway is typically a long, straight stretch of pavement that is used for landing and taking off aircraft.", + "A runway is a long, straight strip of pavement that is used for takeoffs and landings.", + "This image is of a runway at an airport.", + " fashion showA model is strutting down a runway in a shimmering silver gown.", + "/walkwayThe image is of a long, straight, featureless runway with bright blue markings on the pavement.", + " fashion showIn the image, models are walking down a brightly lit runway in intricate designer clothing.", + " modelThe image is of a runway model walking down a catwalk.", + "The image from the internet is of a runway with an airplane landing on it.", + "The image is of a long, straight runway with markings down the middle.", + "An image from the internet of a runway shows a long, straight path with markings on either side.", + " runwayThe image is of a long, straight, paved runway with white lines running down the center and along the edges.", + " modelA runway model is wearing a long, flowy white dress with a high slit up the leg.", + "This is a runway.", + "The runway is clear and ready for takeoff.", + "The runway at LAX is bustling with activity.", + "Bruno Mars strutting his stuff on the runway.", + "This is a runway.", + "A model walks the runway at a fashion show.", + "Supermodel Naomi Campbell walks the runway at the Versace Fall/Winter 2021 show during Milan Fashion Week.", + "This image shows a runway at an airport.", + "This image is of a runway.", + "A model walks the runway at a fashion show." + ], + "sandbar": [ + "A sandbar is a long, narrow bar of sand that is parallel to the shoreline.", + "A sandbar is a landform that consists of a strip of land that is lower than the land surrounding it.", + "A sandbar is a stretch of land that is almost entirely underwater, but sticking out above the surface of the water.", + ".", + "A sandbar is a largely underwater bank of sand that forms at the mouth of a river or harbor.", + "A sandbar is a linear deposition of sediment that forms an island in the water.", + ".", + "A sandbar is a thin, flat deposit of sand that forms in the water along the shoreline or in the middle of a river.", + "A sandbar is a long and narrow strip of land that is made up of sand that has been deposited by a body of water.", + "A sandbar is a deposit of sand that forms in the ocean by wave action.", + "When looking at a body of water, a sandbar is typically a long, narrow strip of land that is covered in sand and sticks out from the water.", + "A sandbar is a deposition of sand that has accumulated in a landform.", + "A sandbar is a long, narrow strip of land that is connected to the mainland by a shallow body of water.", + "The best way to identify a sandbar is by looking for a change in the color of the water.", + "A sandbar is a raised bar of sand that forms in shallow water near the shore.", + "A sandbar is a strip of land that is underwater at high tide but exposed at low tide.", + "A sandbar is a long and narrow strip of land that is covered with sand and is mostly underwater.", + "You can identify a sandbar by its long, narrow shape and by the fact that it is covered in sand.", + "A sandbar is a strip or ridge of sand that forms in the ocean near the shore.", + "A sandbar is a ridge of sand that forms in the water.", + "A sandbar is a flat, underwater ridge of sand.", + "A sandbar is a long and narrow strip of land that is covered in sand and is usually found in a river or along a coastline.", + "A sandbar is a low, wet area that is covered in sand.", + "A sandbar is a long, narrow strip of land that is surrounded by water.", + "A sandbar typically appears as a long, thin strip of land that is slightly elevated above the water's surface.", + "A sandbar is a long, narrow strip of land that is parallel to the shoreline.", + "A sandbar is an underwater ridge of sand that is exposed at low tide.", + "A sandbar is a low, narrow strip of land that extends into a body of water.", + "A sandbar is a long, narrow strip of land that is separated from the mainland by water.", + "A sandbar is a long, narrow strip of sand that is attached to the shoreline.", + "This image is of a sandbar off the coast of Florida.", + "A sandbar is a strip of land that is partially submerged in water.", + "An image from the internet of a sandbar shows a long, narrow strip of sand that is elevated above the level of the surrounding water.", + "An image of a sandbar from the internet shows a long, thin strip of land made up of sand that is just above the water's surface.", + "A sandbar is a deposit of sand in the water, usually in the form of a ridge.", + "The image is of a sandbar with white sand and blue water.", + "I found an image of a sandbar on a deserted beach.", + "The image is of a sandbar with white sand and clear blue water.", + "A sandbar is a exposed ridge of sand that forms in the lee of an obstacle like an island.", + "The image is of a sandbar with clear, aquamarine water.", + "The sandbar is a popular destination for swimming, sunbathing, and picnicking.", + " A sandbar in the middle of the ocean.", + " A group of people relax on a sandbar in the crystal clear water of the Caribbean Sea.", + "A relatively flat section of land that extends into a body of water, formed by the deposition of sediment carried by the current.", + "Sandy beach on Cape Cod Bay.", + " A long, narrow strip of sand deposited by waves in the lee of an island or reefs.", + " A sandbar is a landform composed of unconsolidated sediment that is parallel to the coastline.", + " A narrow strip of sand that has been deposited above or below the water surface by wave action.", + "A sandbar is a naturally occurring accumulation of sand and sediment that is formed by wave action in shallow water.", + " The sandbar is a popular spot for locals to spend the day swimming, sunbathing, and picnicking." + ], + "sandbox": [ + "A sandbox is a testing environment that is isolated from the production environment.", + "A sandbox is a playground for children to play in.", + "A sandbox is typically a clean, isolated environment where code can be executed without affecting other code or data.", + "A sandbox is typically a box orpit filled with sand in which children can play.", + "*A sandbox is typically a clean, controlled environment in which software can be tested.", + "A sandbox is a padded box with high sides, used to keep children safe while they play.", + "A sandbox looks like a square or rectangular box filled with sand.", + " and why you would use oneA sandbox is a testing environment that is isolated from the rest of the system.", + "A sandbox is a testing environment that isolates untested code changes and their potential effects on the production environment.", + "A sandbox is a type of software testing environment that enables the isolated execution of software under test.", + "One way to identify a sandbox is to look for a clearly defined area within a larger playground that is fenced off or otherwise set apart from the rest of the playground.", + "There is no universal way to identify a sandbox.", + "A sandbox is a testing environment that isolates untested code changes and their potential effects to the rest of the code or system.", + "There is no single definitive answer to this question, as the term \"sandbox\" can refer to a variety of different things in a variety of different contexts.", + "There are a few ways to identify a sandbox:1.", + "One way to identify a sandbox is to look for a small, enclosed area in a park or playground.", + "A sandbox is typically a tightly controlled environment where new code or applications can be tested before being deployed to production.", + "A sandbox is typically a tightly controlled environment that is used to execute untested or untrusted code.", + "A sandbox is a tightly controlled environment where programs can be tested without impacting other software on the same computer.", + "A sandbox is a secure environment that is used to test code or applications.", + "A sandbox is usually a square or rectangular box filled with sand.", + "Sandboxes typically look like large, cylindrical containers filled with sand.", + "A sandbox is typically a Secured browser environment that resemble a separate operating system where applications can be run securely and isolated from each other and the underlying operating system.", + "A sandbox is a play area for children that is filled with sand.", + "A sandbox is typically a box or cylinder filled with sand.", + "A sandbox typically looks like a small, enclosed area of ground, often filled with sand, in which children can play.", + "A sandbox is often a simple box, filled with sand, in which children can play.", + "A sandbox is typically a square or rectangular box, filled with sand.", + "A sandbox looks like a small, enclosed area of ground, often filled with sand, in which children can play.", + "A sandbox can be a actual box filled with sand for children to play in, or it can be a metaphor for a safe place to experiment.", + "A sandbox is a type of playground equipment.", + "This image is of a sandbox that has been made out of an old tire.", + "A sandbox is a type ofsoftware testing environmentthat enables external users to test new features or functions of a software application without affecting the rest of the app.", + "In this image, we can see a sandbox with colorful toys in it.", + "An image of a sandbox from the internet shows a wooden frame filled with sand.", + "The image is of a sandbox that is made out of a converted tire.", + "An image of a sandbox from the internet shows a wooden box with sand in it.", + "In the image, there is a sandbox with two children playing in it.", + "An image from the internet of a sandbox shows a wooden box with sand inside.", + "The image from the internet of a sandbox shows a large, open-topped box with sand inside of it.", + "This is a sandbox.", + "This is a sandbox.", + "A sandbox is a fun place to play in the sand!.", + "A sandbox filled with sand and toys.", + "A boy plays in a sandbox on a hot day.", + " toys in a sandbox.", + " \"I can finally go outside!\".", + "A boy in a sandbox with a pail and shovel.", + "A group of kids playing in a sandbox.", + "This is a sandbox." + ], + "sauna": [ + "A sauna is a small room with benches and a stove.", + "A sauna looks like a small, usually wood-paneled room with a small door and a small window.", + "A sauna looks like a small room with a wooden bench and a small window.", + "A sauna is typically a small room or house with one or more benches inside.", + "A sauna is usually a small room or house designed for steam baths.", + "A sauna is a small room or house heated by a wood-burning or electricity-powered stove.", + "A sauna is traditionally a small room or house designed as a place to experience dry or wet heat sessions, or steam baths.", + "A sauna looks like a small, private room with a wooden bench along one wall.", + "A sauna is usually a small room with wooden walls and a ceiling, and a bench to sit on.", + "A sauna is usually a small room or house made of wood, with a stove or heater inside that is used to heat the air to a very high temperature.", + "A sauna can be identified by its characteristic dry heat and steam.", + "Sauna is a small room or house designed as a place to experience dry or wet heat sessions, or steam baths.", + "There are a few ways to identify a sauna.", + "A sauna is a small room or hut where people sit in steam to relax and improve their health.", + "There are a few ways to identify a sauna.", + "Saunas are small, enclosed rooms with benches or chairs.", + "A sauna is a small room or cabin designed as a place to experience dry or wet heat sessions, or an infrared heat treatment, for relaxation and health purposes.", + "A sauna is typically a small, wood-paneled room with a small stove or heater inside.", + "A sauna can be identified by its dry, hot air and the presence of a heater.", + "Saunas can be identified by their steamy atmosphere and the presence of a wood-burning stove.", + "A typical sauna is a small, wooden room with benches on each side and a stove in the middle.", + "A sauna is traditionally a small, wood-lined room with a bench and a heater.", + "Some saunas are built into the side of a hill and have a wood-burning stove in them.", + "A sauna typically looks like a small, wooden room with a bench running along the walls.", + "A sauna is a room that is typically made out of wood, with a stove in the middle that heats up rocks.", + "A sauna looks like a small room with a stove in the middle.", + "A sauna looks like a small room that has a stove in it.", + "A sauna is typically a small, wooden room with a heater inside.", + "A sauna is a small room or house that is built for people to sit in and sweat.", + "A sauna is a small wooden room that has a heater in it.", + "Image shows a traditional Finnish wood-heated sauna.", + "The image from the internet is of a sauna that has a large central room with a small pool of water in the middle.", + "An image of a sauna from the internet would typically show a person sitting in a small room with wooden walls and a ceiling, sweating profusely.", + "In the image, there is a sauna with wood paneling on the walls and a large window.", + "This image is of a sauna that is inside of a home.", + "An image from the internet of a sauna shows a small, wood-paneled room with a stove in the corner.", + "The image is of a sauna that is made out of a wooden barrel.", + "An image of a sauna from the internet is typically a photo of an infrared sauna or a traditional Finnish sauna.", + "An image of a sauna from the internet might show a square or rectangular room with smooth, wooden walls and floor.", + "The image is of a sauna that is made out of wood.", + "A sauna is a small room or house designed as a place to experience dry or wet heat sessions, or steam baths.", + "Sauna.", + "Sauna in Finland.", + "Sauna visitors relax in the heat, enjoying the benefits of improved circulation and relaxation.", + "A sauna is a small room or house designed as a place to experience dry or wet heat sessions, or steam baths.", + "Sauna, a Finnish tradition.", + "Sauna.", + "Wooden sauna with benches and stoves.", + "Sauna at Night.", + "A sauna is a small room or house designed as a place to experience dry or wet heat sessions, or steam baths." + ], + "schoolhouse": [ + "A schoolhouse is a building where people go to learn.", + "A schoolhouse looks like a small, rectangular building with a pitched roof.", + "A schoolhouse is a building where children go to school.", + "A schoolhouse is a building that is used for schooling.", + "A schoolhouse is a building where people go to learn.", + "A schoolhouse typically looks like a small one-story building with a belltower.", + "A schoolhouse is a building in which people go to school.", + "A schoolhouse typically looks like a large rectangular building with a pointed roof.", + "A schoolhouse is a building where people go to learn.", + "A schoolhouse is a building where children learn.", + "Schoolhouses vary in shape and size, but they all have one purpose: to provide a space for students to learn.", + "A schoolhouse is usually a one-story building with a few windows and a door.", + "There is no one answer to this question as schoolhouses can vary greatly in appearance.", + "A schoolhouse is typically a one- or two-story building that contains classrooms for instruction.", + "There is no definitive answer to this question as schoolhouse design varied greatly over time and between different regions.", + "A schoolhouse is a building where people go to learn.", + "A schoolhouse is a building where people go to learn.", + "One way to identify a schoolhouse is by its characteristic shape.", + " Schoolhouses can be identified by their unique architecture.", + "Schoolhouses can typically be identified by their unique architecture.", + "In the United States, a schoolhouse is generally a building that contains classrooms where children are taught.", + "Schoolhouses in the late 1800s and early 1900s were typically one room and had a potbellied stove in the center of the room.", + "A schoolhouse is typically a one-room building where students of all ages receive instruction.", + "A typical schoolhouse from the early 1800s would have been a one-room building with a large central chimney.", + "A schoolhouse is a building where people go to school.", + "A schoolhouse is a small building that is used for classes.", + "Schoolhouses are often depicted as small, one-room buildings with a bell on the roof.", + "A schoolhouse is often a one-room building.", + "There is no one answer to this question because schoolhouses can come in many different shapes and sizes.", + "There is no definitive answer to this question as schoolhouses can come in a variety of different shapes and sizes.", + "This image from the internet shows a schoolhouse that is made out of wood.", + "The image from the internet of a schoolhouse is a picture of an old, abandoned schoolhouse.", + "https://www.", + "The image is of an old schoolhouse that has been abandoned.", + "This image is of an old schoolhouse that has been abandoned.", + "The image is of an old, abandoned schoolhouse.", + "This image is of an old schoolhouse.", + "The image is of an old, red schoolhouse.", + "The image is of an old, one-room schoolhouse.", + "This image is of an old schoolhouse in the country.", + "The first schoolhouse in rural America was a one-room log cabin where children of all ages learned together.", + "Enrollment at the one-room schoolhouse was low, so the school district decided to consolidate with the nearest town.", + "A small schoolhouse in the middle of a field.", + "This is a photo of a schoolhouse.", + " A schoolhouse from the early 1900s.", + "Willamette Falls School in Oregon City, 1876.", + " A schoolhouse from the early 1900s.", + "This is a schoolhouse in the early 1900s.", + " a stone schoolhouse with a grassy field in front of itSchool days were filled with laughter and learning in this stone schoolhouse.", + "This is a typical schoolhouse from the early 1900s." + ], + "sea cliff": [ + "A sea cliff is a steep face of rock that rises out of the ocean.", + "A sea cliff is an area where the land meets the sea and drops off suddenly.", + "A sea cliff is a high, steep rock face that lies between the shoreline and the sea.", + "A sea cliff is typically a tall, sheer rock face that lies along a coastline.", + "A sea cliff is a high, steep rock face that drops sharply into the sea.", + "A sea cliff is a high, steep bank or slope that rises abruptly from the shoreline.", + " A sea cliff is an steep, often vertical or nearly vertical, cliff that forms part of a coastline.", + "A sea_cliff is a steep slope that rises from the ocean to land.", + "A sea cliff is an abrupt slope that descends from the shoreline to the seafloor.", + "A sea cliff is an eroded cliff along a coastline.", + "The easiest way to identify a sea cliff is by its steep slope and proximity to the ocean.", + "There are many ways to identify a sea cliff.", + "From a distance, a sea cliff may appear as a very steep hill or mountain coming directly down to the ocean with a small beach at its base.", + "A sea cliff is a steep, vertical or nearly vertical, rock face along a coastline.", + "A sea_cliff is a high, steep bank of rock or land that rises sharply from the water.", + "A sea_cliff is a steep or high bank of rock, earth, or sand that lies along the shore of the sea.", + "A sea cliff is an area of land that is adjacent to the sea and has a steep slope.", + "A sea cliff is an eroded cliff that is found at the edge of a body of water.", + "From a distance, a sea cliff appears as a sloping face of rock that leads from the shoreline directly into the ocean.", + "A sea cliff is a tall, steep slope that drops sharply into the sea.", + "A sea cliff is a tall, steep rock face that drops directly into the ocean.", + "A sea cliff is a steep, rocky slope that rises directly from the ocean.", + "A sea cliff is a formation that occurs when waves erode the land and create a steep slope.", + "A sea cliff is a tall, sheer rock face that drops sharply into the ocean.", + "A sea cliff is a tall, steep slope that leads from the shoreline to the ocean floor.", + "A sea cliff is a high, steep rock face that drops sharply into the ocean.", + "A sea cliff is a tall, sheer rock face that drops sharply into the ocean.", + "A sea cliff is a steep slope that leads down to the water.", + "A sea cliff is a tall, steep cliff that drops straight into the ocean.", + "A sea cliff is a high, steep rock face that drops sharply into the ocean.", + "The image is of a vertical sea cliff with a rocky surface.", + "This image from the internet is of a sea cliff.", + "This image shows a sea cliff that is tall and has a narrow path leading up to the top.", + "A sea cliff is an image of a large rock face that has been eroded by the sea.", + "A sea cliff is a high, steep rock face that lies along the coast.", + "The image is of a cliff that is being slowly eroded by the sea.", + "The ocean waves are crashing against the sea cliff which is made up of large rocks.", + "The image is of a towering, rocky sea cliff that is cloaked in a thick layer of fog.", + "A sea cliff is a high, steep rock face that drops sharply into the ocean.", + "A sea cliff is a high, steep bank of rock or soil that rises sharply from the shore of a body of water.", + "The sea_cliff is a beautiful natural wonder.", + "The vast and powerful sea_cliff, standing tall and proud.", + "The sea cliff is a natural rock formation that has been created over time by the forces of the ocean.", + "Sheer sea cliffs tower over the crashing waves below.", + "The sea_cliff towers over the ocean below.", + " On a beautiful day, the seacliff offers a stunning view of the ocean.", + "The sea cliff is a natural formation created over time by the action of water.", + "The sea_cliff rises majestically from the azure waters below.", + "View of the sea cliff from the beach.", + "Beautiful sea cliffs by the ocean." + ], + "server room": [ + "Server rooms are typically dark,with little or no natural light.", + "A server_room looks like a room that contains computer servers.", + "A server room typically consists of racks of servers, storage arrays, network switches, uninterruptible power supplies, fire suppression systems, cabling, and environmental controls such as air conditioning and humidity control.", + "A server room is typically a dedicated, often locked, room in a building with special cooling, ventilation, and electrical systems designed to keep the servers and other equipment in the room running smoothly and safely.", + "A server_room typically looks like a large, clean room with rows of racks containing servers and other computer equipment.", + "A server_room looks like a room with a lot of computers in it.", + "A server_room typically looks like a large, empty room with racks of servers lining the walls.", + "A server room is typically a large, air-conditioned room that contains racks of servers.", + "A server room is typically a dedicated, secure room in a building where computer servers and other telecommunications equipment are housed.", + "Server rooms are usually small, cramped rooms with a lot of computer equipment.", + "A server room is a room that is set up specifically for housing computer servers and other information technology (IT) equipment.", + "A server room is a physical space that organizations use to house computer servers and related components, such as storage systems and networking equipment.", + "You can identify a server_room by looking for a room that contains a lot of computer equipment.", + "A server room is a room that contains computer servers and related equipment, such as racks, cabinets, and cable management.", + "A server room is typically a large room that contains racks of servers and related equipment, such as storage systems and network switches.", + "A server room is a dedicated space within a building for storing and accessing electronic communications equipment, usually including routers, switches, and firewalls, as well as data storage devices and servers.", + "A server room is typically a room that is designed to contain computer servers and other associated electronic components, such as networking equipment and data storage systems.", + "A server room is usually a large room that contains several server racks.", + "A server_room is typically a large room with several computer servers and other related equipment.", + "A server room may have racks of computers and servers, wires and cables running overhead, cooling units, and fans to cool the equipment.", + "A server room looks like a room with computers in it.", + "A server room is typically a large, climate-controlled room that contains racks of servers and networking equipment.", + "A server room typically contains a large number of server racks, filling most or all of the room.", + "A server room is usually a large, clandestine room that houses computer servers and network equipment.", + "A server room looks like a room with a lot of servers in it.", + "A server room is a room that contains servers, and is often kept cool with air conditioning to protect the servers from overheating.", + "A server room is typically a dedicated, secure room within a building that houses computer servers and other associated components, such as storage systems and networking equipment.", + "A server room is typically a large, climate-controlled room that contains racks of servers.", + "The size and appearance of a server room varies depending on the size of the business and the needs of the server system.", + "A server room looks like a room with a lot of computer servers in it.", + "The image is of a server room with racks of servers and networking equipment.", + "The image is of a server room with racks of servers and other equipment.", + "The image is of a large room with several rows of servers.", + "In the image, there are racks of servers with cables running to and from them.", + "A computer server room with racks of servers and networking equipment.", + "A server room is usually a large room with several racks of servers, networking equipment, and environmental controls like air conditioning and fire suppression.", + "The image is of a server room with racks of servers and other equipment.", + "I found an image on the internet of a server room that looks like this:The room is dimly lit, with fluorescent lights overhead.", + "This image is of a server room with racks of servers and networking equipment.", + "The image is of a large, well-lit room with racks of servers arranged in neat rows.", + "Inside a typical server room, with racks of servers and networking equipment.", + "This is a server room.", + "A server room with racks of servers and networking equipment.", + "Server Room at Acme Corp.", + "This image shows a server_room with racks of servers and networking equipment.", + "A server room filled with racks of servers, networking equipment, and cooling fans.", + "Inside a typical server room, with racks of servers and networking equipment.", + " A server room full of racks of computers and networking gearThis image shows a server room full of racks of computers and networking gear.", + " A server room for a small businessThis server room is for a small business.", + " A server room with racks of servers and networking equipment." + ], + "shed": [ + "A shed is a small, typically single-story building, that is used for storage, workshops, or as a small garage.", + "A shed is a small, typically wooden structure used for storing tools, gardening equipment, and other items.", + "A shed is a small, single-story building that is used for storing tools, equipment, or gardening supplies.", + "A shed can be any size, but typically they are small buildings used for storage.", + "A shed is a structure made of wood, metal, or plastic that is used for storage.", + "A shed is a small building that is typically found in the backyard of a house.", + "A shed looks like a smallish house without windows.", + "A shed is typically a small, single-story building in a backyard or on a farm that is used for storing tools, equipment, or other items.", + "A shed is typically a small, single-story building that is used for storing tools, equipment, or other belongings.", + "A shed is a small hut or cabin.", + "A shed is a small, single-story building that is typically used for storing tools and other equipment.", + "A shed is typically a small, single-story structure with a pitched roof.", + "There are many ways to identify a shed.", + "A shed can typically be identified by its smaller size in comparison to other structures, such as a house.", + "A shed is traditionally a small, single-story building in a back garden or on an allotment that is used for storage, hobbies, or as a workshop.", + "A shed can be identified by its roof, which is usually slanted, and by its small size.", + "The easiest way to identify a shed is by its roof.", + "A shed is typically a structure that is used for storage.", + "One way to identify a shed is by its roof.", + "A shed is a small, typically single-story structure in a backyard or on an allotment that is used for storage, hobbies, or as a workshop.", + "A shed usually looks like a small outbuilding or detached garage.", + "It depends on the type of shed.", + "A shed is a small, often unpainted building that is used for storage.", + "A shed usually has a simple, rectangular design with a pitched roof.", + "A shed is a small structure that is used to store tools, equipment, or other items.", + "A shed typically looks like a small, standalone building with a pitched roof.", + "A shed is typically a small, single story building that is used for storage.", + "A shed traditionally is a small, single story building without a foundation that is used for storing tools and other small items.", + "A shed is generally a small, single-story building in a backyard or garden.", + "A shed is typically a small, single-story building that is used for storage or as a workshop.", + "The image is of a small, red shed sitting in a grassy field.", + "This shed is made out of wood and has a slanted roof.", + "This image is of a small, old-fashioned shed.", + "A shed in the middle of a field with a thatched roof.", + "An image of a shed from the internet might show a small, wooden structure with a pitched roof, set in a backyard or rural landscape.", + "This image shows a small, simple shed in a backyard.", + "I found an image on the internet of a small, red shed.", + "The image is of a small shed with a metal roof.", + "It's a wooden shed with a red door.", + "The image from the internet shows a shed in a backyard.", + " A small shed in a backyard\">A small shed in a backyard.", + "My shed is a place where I can go to get away from the hustle and bustle of everyday life.", + "Shed in the woods.", + " A rusted, old shed in a field of tall grassThe shed is in disrepair, with rusted metal siding and a broken door.", + " A small shed in a backyard.", + "A shed in the middle of a field.", + "A small shed in a backyard.", + "A small, wooden shed in a green field.", + "The exterior of a small shed with a metal roof and two doors.", + "Backyard shed with white trim." + ], + "shoe shop": [ + "A shoe_shop typically has a display of shoes in the front window, and racks or shelves of shoes inside the store.", + "There is no one answer to this question, as the appearance of a shoe_shop depends on the specific shop in question.", + "There is no one answer to this question, as shoe_shops can come in all different shapes and sizes.", + "A shoe shop can vary in size and appearance, but typically contains racks or shelves of shoes along the walls and in the middle of the store, with a counter for the sales staff at the front.", + "There is no one definitive answer to this question.", + "There is no definitive answer to this question as shoe_shops can vary greatly in terms of their size, layout, and overall appearance.", + "A shoe_shop would look like a place where you can buy shoes.", + "A shoe_shop has walls and a ceiling.", + "There is no one answer to this question as there are many different types of shoe shops.", + "A shoe_shop is a store that specializes in selling shoes.", + "One way to identify a shoe_shop is to look for a shop that specializes in selling shoes.", + "Shoe shops typically sell shoes and related accessories.", + "You can identify a shoe_shop by looking for a sign that says \"shoe_shop\" or by looking for a building that has a lot of shoes in the window.", + "A shoe shop is a store that sells shoes.", + "There is no definitive answer to this question, but some possible indicators that a business is a shoe_shop include:-The business sells shoes\n-The business specializes in selling shoes\n-The business only sells shoes\n-The.", + "If you see a store with a large selection of shoes, it is likely a shoe_shop.", + "There is no universal answer to this question, as the outward appearance of a shoe_shop can vary greatly depending on the location, size, and type of business.", + "The most obvious way to identify a shoe_shop is by the type of merchandise that they sell.", + "One way to identify a shoe_shop is by the presence of a lot of shoes in the store.", + "One way to identify a shoe shop is by looking for a shop that specializes in selling shoes.", + "There is no definitive answer to this question as shoe_shops can come in a variety of shapes and sizes.", + "There is no definitive answer to this question as the physical appearance of a shoe shop can vary greatly depending on its location, size, and the type of shoes it sells.", + "Some shoe shops may have a small, cramped interior with stacks of shoes boxes and limited seating.", + "There is no definitive answer to this question as different shoe shops can have different designs and layouts.", + "This is a difficult question because there are so many different types of shoe shops.", + "There is no one answer to this question as different shoe shops can have different looks.", + "A shoe_shop looks like a place where you can buy shoes.", + "A shoe shop appears as a small shop with racks of shoes and a counter.", + "Some shoe shops may have a very clean and sleek appearance, while others may be more cluttered and have a wider range of shoes on display.", + "Assuming you are referring to a physical shoe store, it would typically have a display of shoes near the entrance, along with a counter or desk for sales.", + "In the image, there is a large, rectangular storefront with a sign that says \"SHOES\" in big, block letters.", + "The image shows a shoe store with a salesperson standing behind a counter.", + "The image is of a large, bright, and modern shoe store.", + "In the image, there are several rows of shoes arranged on shelves.", + "A person is standing in front of a large display of shoes in a shop.", + "There is an image of a shoe shop that has different types of shoes on the shelves.", + "One image from an internet shoe shop is of a neon green sneaker on a white background.", + "In the image, there is a small, rectangular shop with a light blue awning.", + "The image is of a large, brightly lit shoe store with a wide variety of shoes on display.", + "The image is of a shoe shop with a variety of shoes on display.", + "A woman buys shoes at a shoe store.", + "Here's what the new shoes look like in the shop!.", + "A mannequin in a shoe shop.", + "The exterior of a small, local shoe shop.", + "People shopping for shoes at a store.", + "Welcome to our shoe shop! We have a great selection of shoes for men, women, and children.", + "The shop offers a variety of shoes for men, women, and children.", + "Entrance to a shoe shop.", + "A new shoe shop has just opened in the shopping mall.", + "A woman stands in front of a shoe shop, looking at the shoes in the window." + ], + "shopfront": [ + "A shopfront looks like a window display for a shop.", + "A shopfront is the facade of a retail store that faces the street.", + "A shopfront is a barrier between the street and the interior of a shop.", + "A shopfront should be clean, inviting, and well-lit.", + "A shopfront consists of a display window and a door that lead into the main retail space of a store.", + "A shopfront is the face of a shop, typically consisting of a large window or door.", + "A shopfront looks like a place where you can buy things.", + "A shopfront can be made of glass, wood, or metal and is the part of the shop that can be seen from the street.", + "A shopfront typically contains a door and one or more windows.", + "A shopfront is the area of a store that faces the street.", + "A shopfront is generally a large window display at the front of a store.", + "A shopfront is typically a glass panel door that opens to allow customers to enter a retail establishment.", + "The shopfront of a business is the area where customers can enter the store and make purchases.", + "A shopfront is typically a large window or glass door that faces the street.", + "Shopfronts are typically commercial spaces that are used for retail purposes.", + "The most common ways to identify a shopfront are by its large windows, storefront sign, and awning.", + "A shopfront is a physical store where goods or services are sold.", + "A shopfront can be identified by its large glass windows and doors, which are designed to display merchandise and attract customers.", + "A shopfront is a physical retail presence where customers can view and purchase products or services.", + "A shopfront typically has large windows to display merchandise, and a door for customers to enter the store.", + "There is no one answer to this question as shopfronts can vary greatly in appearance.", + "A shopfront is a display window for a retail store.", + "A shopfront is a type of retail display that is typically found in the front of a store.", + "A shopfront is the front of a shop or store.", + "A shopfront looks like the front of a store or a shop.", + "A shopfront can be made up of several different elements, but typically includes some form of window display, signage, and a door.", + "A shopfront typically includes a door for customers to enter the store, as well as display windows to show off merchandise.", + "A shopfront is the front of a shop.", + "A shopfront is typically a glass window that is used to display merchandise inside of a store.", + "A shopfront is the area of a store that faces the street.", + "The image is of a shopfront with a bright blue door and windows.", + "A shopfront is the window or door of a shop that faces onto the street.", + "The image is of a shopfront with a large green awning.", + "The image is of a shopfront with a large sign that says \"Open\" in green lettering.", + "This image is of a shopfront on a busy street.", + "An image of a shopfront from the internet shows a busy street scene with people walking by and cars driving by.", + "The image is of a shopfront with a large glass window.", + "The image is of a shopfront with a large sign that reads \"Seubert & Sons Grocery\".", + "This image depicts a traditional looking shopfront with a large, painted sign reading \"Ye Olde Shoppe\".", + "The image is of a shopfront with the name \"Nike\" written in large lettering.", + "The shopfront of Brown's AntiquesThe shopfront of Brown's Antiques is seen here, showcasing the wide variety of items that the store offers.", + " Storefront of new women's clothing boutiqueA new women's clothing boutique has opened up in the neighborhood, and it's already become a popular spot for shopping.", + "A shopfront on a busy street.", + "The front of a small, independent shop.", + "A shop in a small town in France.", + "Grand Opening of Johnson's Bakery.", + "\"The shopfront of the Candy House confectionery shop in Athens, Greece.", + "The shopfront of a local bookstore.", + "The shopfront of the Crazy Cat Lady's Comics & Cards store in San Francisco, CA.", + "In-N-Out Burger, a prominent fast food chain in the Western United States." + ], + "indoor shopping mall": [ + "An indoor shopping mall typically contains a large number of shops, often organized into a series of corridors.", + "Indoor shopping malls typically have a variety of stores that sell different products, as well as places to eat.", + "An indoor shopping mall has stores that are all indoors, usually with one main entrance and exit.", + "A shopping mall is a large indoor space that is typically divided into multiple areas that each include a variety of shops.", + "A shopping mall is typically an indoor, climate-controlled space that houses a variety of retail stores, restaurants, and other businesses.", + "A shopping mall typically includes multiple level with retailers selling goods and services.", + "A shopping mall is a large building that contains a variety of stores.", + "A indoor shopping mall has a lot of stores that you can go into and look around.", + "An indoor shopping mall will typically have large, open areas with stores lining the perimeter and a food court in the center.", + "An indoor shopping mall typically has a variety of shops and businesses, especially clothing stores, grouped together in a large, indoor space.", + "There is no definitive answer to this question, as the definition of an indoor shopping mall can vary depending on who you ask.", + "The size, shape, and number of stores in a shopping mall are all generally uniform.", + "The easiest way to identify an indoor shopping mall is by its large size and the presence of many stores and businesses.", + "There is no definitive way to identify an indoor shopping mall, as there is no agreed-upon definition of what constitutes an indoor shopping mall.", + "There is no definitive way to identify an indoor shopping mall, but some common features include a large, central building with multiple floors and a variety of stores and businesses.", + "A shopping mall can typically be identified by its large size, the presence of a food court, and its location near other retail establishments.", + "There are typically a few identifying features of indoor shopping malls.", + "A indoor shopping mall typically has a large number of stores that are indoors.", + "There is no definitive answer to this question, as the identification of an indoor shopping mall can vary depending on the location and individual preferences.", + "Indoor shopping malls are typically large, multi-story buildings that are climate-controlled and contain many stores and businesses.", + "A typical indoor shopping mall has a central atrium with a skylight, surrounded by two or more levels of shopping area.", + "An indoor shopping mall typically has a large, open space with a variety of stores and kiosks.", + "Indoor malls typically have a central court with a fountain or some other type of water feature.", + "A indoor shopping_mall looks like a large, multi-story building with many shops and restaurants.", + "A typical indoor shopping mall features a large, wide open space with a variety of stores and businesses located throughout.", + "A indoor shopping mall looks like a large, indoor space with stores and restaurants.", + "The inside of a shopping mall typically includes a large, open space with a variety of stores and restaurants.", + "An indoor shopping mall typically contains a variety of stores, a food court, restrooms, and benches or chairs for rest.", + "A typical indoor shopping mall has a food court, several retail stores, and a central atrium or middle area where people can sit and relax.", + "Most indoor shopping malls have a variety of stores that sell clothes, shoes, jewelry, and other items.", + "This image is of a large, indoor shopping mall.", + "The image is of a large, indoor shopping mall with aisles of stores and a food court in the center.", + "This image shows a large, traditional indoor shopping mall.", + "I found an image on the internet of an indoor shopping mall that looks like it is from the inside of a department store.", + "The image is of a large, multi-level indoor shopping mall.", + "The image is of a large, indoor shopping mall with high ceilings and many stores.", + "In the image, there is a large, modern shopping mall with bright lights and a clean, sleek design.", + "The image is of a large, very brightly lit indoor shopping mall with a escalator in the middle and a fountain in the foreground.", + "The image is of a large, modern shopping mall.", + "I found an image of an indoor shopping mall that looks like it is under construction.", + "Indoor shopping mall with a variety of stores and eateries.", + "Shoppers walk through the mall.", + "This is an indoor shopping mall.", + "The indoor shopping mall is a popular destination for shoppers looking for a wide variety of stores and services.", + "The mall is open! Come on in and enjoy some retail therapy.", + " The world's largest indoor shopping mall is the New South China Mall in Dongguan, China.", + "Shoppers browse the stores in the indoor shopping mall.", + "The image shows an indoor shopping mall with numerous stores and shoppers.", + "An indoor shopping mall with escalators and store fronts.", + "The interior of a large, modern shopping mall." + ], + "shower": [ + "A shower is a small room that is typically tiled and has a showerhead, a drain, and a water supply.", + "A shower is a temporary rain shower.", + "A shower has a stall with a showerhead, where water rains down from above.", + "A shower is typically a glass or metal enclosure that has a shower head on one side and a handle on the other side to turn the water on and off.", + "A shower is a chamber with a drain in the floor where water falls out of a showerhead and people bathe.", + "A shower generally consists of a showerhead connected to a flexible hose connected to a water supply.", + "A shower typically has tiles on the walls and a shower curtain or door to keep the water from making a mess.", + "A shower typically has a showerhead attached to a long hose.", + "A shower is a room with a drain in the floor and a shower head on the wall.", + "A shower is a container with a spigot that delivers water.", + "The best way to identify a shower is to look for a shower head sticking out from the wall.", + "The quickest way to identify a shower is by the presence of a shower head, which is a device that is fixed to a wall or a ceiling, and has a number of small holes that release water when turned on.", + "A shower is a short, heavy rain.", + "The easiest way to identify a shower is by its shape.", + "The easiest way to identify a shower is by looking for the shower head.", + "There are a few ways to identify a shower.", + "Acoustic identification of a shower is accomplished by detecting the characteristic hiss of the shower.", + "There are a few ways to identify a shower.", + "The best way to identify a shower is by looking for the shower head.", + "The defining characteristic of a shower is that water falls from the sky.", + "A shower is a platform with a drain in the middle, surrounded by walls or a shower curtain.", + "A shower is a small room that has a shower head and a drain in the floor.", + "A shower is a type of plumbing fixture that is installed in a bathroom to deliver water to people who want to take a shower.", + "A shower is typically a small room with a shower head, a drain, and a shower stall.", + "A shower is typically a small room with a shower stall, sink, and toilet.", + "A shower is a room where people go to shower.", + "A shower typically includes a showerhead, a shower stall or tub, and a shower curtain or door.", + "A shower is a small room that has a shower head, a control to turn the water on and off, and a drain in the floor.", + "A shower is typically a small room with a shower stall and a sink.", + "A shower generally consists of a shower head, hose, and a shower enclosure.", + "The image is of a shower with a glass door and white tile surround.", + "A photograph of a shower stall with white tile and a chrome shower head.", + "The shower is a large, white rectangular box with a door in the front.", + "In this image, we can see a shower with white and gray tiles.", + "The image is of a shower with a clear glass door.", + "I found an image on the internet of a shower that is very modern and sleek.", + "In the image, there is a shower with a shower head and a handle.", + "This image is of a shower with a glass door and white tile.", + "This is an image of a shower.", + "A shower curtain hangs from a metal rod in a tiled shower.", + "\"The best part of waking up is Folgers in your cup.", + "The shower is a great place to relax and take a break from the day.", + "A person showering with the showerhead above them.", + "The shower is a typical fixture in most bathrooms.", + "The shower is a great place to relax and get clean.", + "A close-up of a shower head spraying water.", + "I'm so excited to take a shower!.", + "The best way to start your day is with a refreshing shower!.", + "A exhausted woman standing in a shower with the water running over her body.", + "Showering is one of the best ways to relax and de-stress." + ], + "skatepark": [ + "A skatepark looks like a concrete playground with ramps and half-pipes.", + "A skatepark is a place where people can go to skateboard.", + "A skatepark is a public park where people can go to skateboard.", + "A skatepark is a concrete or asphalt area with ramps and rails where skateboarders can skate.", + "A skatepark is a large concrete area with ramps, rails, and other obstacles where people can skateboard.", + "A skatepark is typically a concrete or wooden park designed for skateboarding.", + "A skatepark is a park with features designed for skateboarding.", + "A skatepark is a park with ramps, rails, and other obstacles where people can skateboard.", + "A skatepark is usually a large, open area with ramps, rails, and other obstacles for skateboarders to use.", + "A skatepark is a concrete or wooden area with ramps and other features designed for skateboards and BMX bikes.", + "Skate parks have a variety of features, but they typically include ramps, half-pipes, bowls, and rails.", + "A skatepark is usually a concrete area with various obstacles and half-pipes designed for skateboarding.", + "A skatepark is a place where people can skateboard.", + "A skatepark is a special facility designed specifically for skateboarding.", + "There are a few ways to identify a skatepark.", + "Skateparks are typically made up of concrete and can have a variety of features including stairs, rails, and ramps.", + "A skatepark is a type of public park that is designed to provide skateboarders, inline skaters, and BMX riders with a place to skate.", + "Look for a concrete plaza with stairs, rails, and ledges.", + "A skatepark is a park with different skateboarding obstacles.", + "Some skateparks might have a sign that says \"skatepark.", + "Skateparks can take on many different looks because they are often designed to fit into the preexisting architecture of the area where they are built.", + "Skate parks vary greatly in size and shape, but they usually contain ramps, half-pipes, quarter pipes, grind rails, and other objects on which to perform skateboarding tricks.", + "A skatepark features ramps, half-pipes, quarter pipes, rails, and other obstacles for skateboarders, BMX riders, and inline skaters to ride on.", + "Skateparks come in all different shapes and sizes, but they typically have a concrete or asphalt surface with obstacles like ramps, rails, and banks.", + "Skateparks vary widely in size and shape, but most skateparks have a series of ramps, half-pipes, and other obstacles for skaters to use.", + "A skatepark is usually a concrete or wood area with ramps, rails, and other obstacles for skateboarders to use.", + "A skatepark is a specialized area designed for skateboarding.", + "A skatepark may feature a half-pipe or a quarter-pipe, either of which can be used for skateboarding or BMX tricks.", + "A skatepark is a place where people can skateboard.", + "Skateparks are designed to look like an urban streetscape with features such as concrete stairs, handrails, and ledges.", + "An image of a skatepark from the internet would likely show a concrete or wood park with ramps, rails, and other obstacles for skateboarders to use.", + "The image is of a large, multi-colored skatepark with ramps, rails, and half-pipes.", + "A black and white image of a young skateboarder performing a trick on a half-pipe structure in a skatepark.", + "An image from the internet of a skatepark shows a group of people skating on a variety of ramps and pipes.", + "A skatepark is usually a concrete park with rails and ledges for skateboarders to grind on.", + "In the image, there is a skatepark with various skating obstacles.", + "This image is of a skatepark in the early morning with only a few people skating around.", + "The image is of a skatepark with concrete ramps and rails.", + "A huge concrete skatepark with a long, curved half-pipe in the center.", + "The image is of a large concrete skatepark with a half-pipe in the center.", + "A group of skateboarders enjoying some time at the local skatepark.", + "The new skatepark in town is the perfect place to practice your tricks.", + "A skateboarder flipping in the air at a skatepark.", + "This skatepark is rad! It has everything a skater could want, and more!.", + "A group of teenagers skateboarding at a skatepark.", + "A group of skateboarders enjoy the concrete waves of the skatepark.", + "This is a picture of a skatepark.", + "A group of friends skateboarding together at the park.", + "Skatepark in Santa Monica, California.", + "Local skateboarders show off their skills at the newly built skatepark." + ], + "ski lodge": [ + "A ski lodge is a building where skiers can stay overnight, often located near ski slopes.", + "Ski lodges are generally large, rustic cabins located near skiing areas.", + "A ski lodge typically looks like a large cabin with a lot of windows and a porch.", + "A ski lodge is usually a large cabin located in a wintery area.", + "A ski lodge typically looks like a large cabin in the mountains.", + "A ski lodge is a large cabin located in a snowy area, typically near a ski resort.", + ".", + "A ski lodge typically looks like a large cabin in the mountains.", + "A ski lodge typically has a large central room with a fireplace, comfortable chairs and couches, and a large window with a view of the slopes.", + "A ski lodge typically has a large stone fireplace, comfortable chairs and couches, and floor-to-ceiling windows with views of the ski slopes.", + "A ski lodge typically has a large fire place, comfortable seating, and a warm atmosphere.", + "Ski lodges are typically large, cabin-like structures located near ski resorts.", + "A ski lodge can be identified by its large size, its many windows, and its location near a ski slope.", + "One way to identify a ski lodge is by its architecture.", + "The most common features of a ski lodge are a large stone fireplace, log cabin construction, and a ski resort location.", + "A ski lodge is typically a large, cabin-style building located near a ski resort.", + "The most obvious way to identify a ski_lodge is by its location.", + "A ski lodge can typically be identified by its location, as it is typically built near a ski slope or mountain.", + "There are a few ways to identify a ski lodge.", + "A ski_lodge is typically a large, cabin-like structure located near a ski resort.", + "A ski lodge typically looks like a large log cabin with a lot of windows.", + "A ski lodge is a building where skiers can go to warm up, eat, and relax.", + "There is no definitive answer to this question, as ski lodges can come in a wide variety of shapes, sizes, and styles.", + "Most ski lodges are large, rustic buildings with a lot of wood paneling on the walls and ceiling.", + " ski lodges are typically large, rustic buildings with a lot of exposed wood.", + "A ski_lodge usually looks like a large cabin in the woods.", + "A ski lodge is typically a large, cabin-style building located near a ski resort.", + "A ski lodge typically has a large central room with a fireplace, comfortable chairs, and a warm atmosphere.", + "A ski lodge typically looks like a large cabin located in a mountainous region.", + "A ski lodge is a building made of wood or stone where skiers can go to warm up, eat, and relax.", + "A image of a ski lodge would typically include a large cabin in the woods with a lot of snow.", + "This image is of a ski lodge that is made up of logs.", + "A snow-covered lodge with a large, smoking chimney in the center, surrounded by tall evergreen trees.", + "In the image, there is a large, luxurious-looking ski lodge.", + "The image is of a large, modern ski lodge.", + "This image is of a ski lodge located in the mountains.", + "In the image, there is a large, modern ski lodge with a sloped roof and a wrap-around deck.", + "The image shows a large, two story ski lodge.", + "In the image, there is a large, modern-looking ski lodge.", + "An image from the internet of a ski_lodge shows a large, multi-story lodge with a stone fireplace in the center.", + "An exterior view of a ski lodge, with a large wrap-around deck and a mountain in the distance.", + "A cozy ski lodge nestled in the mountains, perfect for a winter getaway.", + "Ski Lodge in Aspen, CO.", + "A cozy ski lodge nestled in the mountains.", + "This is a beautiful ski lodge in the mountains.", + "Ski Lodge in the Rockies.", + "A cozy ski lodge in the middle of a snowy winter wonderland.", + "A group of skiers relax in the lodge after a long day on the slopes.", + "A cozy ski lodge nestled in the mountains.", + "Ski lodge in the Rockies." + ], + "ski resort": [ + "A ski resort is a winter wonderland! It is a place where you can go to enjoy the snow and the cold weather.", + "A ski resort typically contains a ski area with downhill skiing facilities, including ski lodges, as well as accommodation for visitors.", + "A ski resort typically consists of a ski area with a hotel and resort amenities.", + "A ski resort is typically a large property in a mountainous area with several ski lifts, a lodge, and other buildings for lodging, dining, and apr\u00e8s-ski activities.", + "A ski resort generally has a large parking lot, a lodge where skiers can buy lift tickets and rentals, and a series of runs or slopes of varying difficulty.", + "A ski resort generally has a lot of snow, and is located in a cold climate.", + "A ski resort is a place where people can go to ski and snowboard.", + "A ski resort typically contains a lodge, rental cabins, and a number of downhill ski trails of varying difficulty.", + "A ski resort may look like a charming village nestled in the mountains, with picturesque views of snow-capped peaks and pristine valleys.", + "A ski resort is typically a large property with a lodge, a number of ski trails, and other amenities for guests.", + "The easiest way to identify a ski resort is by looking for a large mountain with a chairlift or gondola going to the top.", + "The easiest way to identify a ski resort is by looking for a large ski area with a lot of snow.", + "There are a few things that can help identify a ski resort.", + "A ski resort is typically a place where people can go to ski or snowboard.", + "A ski_resort is typically located in a mountainous region and offers visitors the opportunity to ski or snowboard.", + "A ski resort can be identified by its location near a ski area and its facilities for lodging, dining, and recreation.", + "Ski resorts are typically built around mountains that offer good snow conditions for skiing and other winter sports.", + "Some things that may help identify a ski_resort are its location (near mountains), its altitude, whether it receives a lot of snowfall, and whether it has ski lifts.", + "One way to identify a ski resort is by the presence of a ski lift.", + "You can identify a ski_resort by its location \u2013 usually in mountainous areas with snowfall \u2013 and by its facilities, which typically include slopes, lifts, and lodges.", + "A ski resort typically consists of a number of buildings including a lodge, hotel, and cabins nestled amongst a snowy landscape.", + "This is a difficult question to answer as there are so many different types and sizes of ski resorts.", + "A standard ski resort usually contains a few ski lodges, a few restaurants, and a few gift shops.", + "Ski resorts are typically located in places with cold winters and are built to accommodate skiing and other winter sports.", + "A ski resort typically includes a lodge, slope-side lodging, restaurants, rentals, and ski school facilities.", + "A ski resort may look like a large, open area with snow on the ground and several ski lifts.", + "A typical ski resort consists of a base area with one or more lodges, a series of trails of varying difficulty, and marked ski runs.", + "A ski resort typically consists of a number of ski trails of varying difficulty, a day lodge where skiers can eat and relax, and a number of ski lifts that transport skiers up the mountain.", + "There is no one answer to this question, as each ski resort is different.", + "A ski resort usually has a lot of snow, some ski lifts, and some buildings where people can eat and sleep.", + "In the image, there is a ski resort with a mountain in the background.", + "This image is of a ski resort in Colorado.", + "I found an image on the internet of a ski resort that looks like it would be a lot of fun to ski at.", + "The image is of a large, modern ski resort with many facilities and a big mountain in the background.", + "In the image, there are people skiing down a hill with snow all around them.", + "In the image, there are several people skiing down a slope at a ski resort.", + "An image of a ski resort from the internet might show a snow-covered landscape with mountains in the background.", + "This image from the internet is of a ski resort in the Alps.", + "The image is of a ski resort with a large mountain in the background.", + "In the image, there is a large mountain in the background with a ski resort at the base.", + " A ski resort in the AlpsA beautiful ski resort in the Alps, perfect for a winter getaway.", + "A group of skiers and snowboarders enjoy the slopes at a ski resort.", + "\nThe caption reads, \"Skiing at the Resort.", + " \"Tom flesh souliers on a ski trip in Vail, Colorado\".", + "Skiers enjoying the slopes at a ski resort.", + "The image shows a ski resort with several large, snow-covered mountains in the background.", + "This is a picture of a ski resort.", + "A group of people enjoying the slopes at a ski resort.", + " [Breckenridge Ski Resort in Colorado, USA.", + "Skiing at the world-famous resort in Chamonix, France." + ], + "ski slope": [ + "In general, a ski slope is a hill or ramp that is covered in snow and is meant for skiing or other winter sports.", + "A ski slope typically has a gradual incline at the beginning, followed by a steeper section in the middle, and then a gradual decline at the end.", + "A ski slope is a hill or mountain that people can ski on.", + "A ski slope typically has a very smooth surface that is covered in snow.", + "A ski slope is a long, wide, snow-covered hill with a steep surface that is used for skiing.", + "A ski slope typically has a large hill that is covered in snow.", + "A ski slope typically looks like a large hill or mountain covered in snow with a marked path down the center.", + "A ski slope is typically a large hill or mountain with a smooth, icy surface that has been specifically designed for skiing.", + "A ski slope typically has a wide, open area at the top where skiers can gather and prepare to descend.", + "A ski_slope typically has a very wide, gentle slope at the top, which gradually becomes steeper as it goes down.", + "A ski slope is usually a large hill or mountain with a smooth surface that allows people to slide down on skis.", + "If you are looking at a ski slope from the bottom, it will be a long, wide, steep hill.", + "The best way to identify a ski slope is by its angle.", + "A ski slope is a sloped area of land that is covered in snow and is meant for skiing.", + "The easiest way to identify a ski slope is by its shape.", + "A ski slope can be identified by its shape.", + "A ski slope can be identified by its angle.", + "The most obvious way to identify a ski slope is by its surface, which is usually either snow-covered or artificial.", + "A ski slope is typically a hill or mountain with a specific path or trail meant for skiing or snowboarding.", + "There are a few ways to identify a ski slope: \n-The most obvious way is by the presence of snow.", + "A ski slope typically has a very steep incline and is covered in snow.", + "A ski slope typically has a number of different trails of varying difficulty, with the easiest trails being near the bottom and the most difficult trails being near the top.", + "A ski slope may look like a long, white, snow-covered hill with people skiing down it.", + "A ski slope typically looks like a long, wide, open area of snow that gradually gets steeper as it goes up.", + "A ski slope is typically a long, wide hill with a smooth surface that is suitable for skiing.", + "A ski slope usually has a lot of snow on it and is very steep.", + "a ski slope typically looks like a long, gradual hill that is covered in snow.", + "A ski slope typically looks like a long, wide, and gradual hill with a groomed surface.", + "A ski slope usually looks like a long, wide, snowy hill.", + "A ski slope may look like a large hill with a smooth surface, or it may look like a small mountain with a rough surface.", + "The image is of a large ski slope with many people skiing down it.", + "The image is of a long, winding ski slope with a chairlift at the top.", + "This image depicts a ski slope with fresh powder on it.", + "The image is of a ski slope with fresh powder.", + "A ski slope is a hill with a flat surface that is typically used for skiing.", + "The image is of a ski slope with people skiing down it.", + "The image is of a ski slope with people skiing down it.", + "The image is of a snow-covered mountain with a ski slope.", + "The image is of a ski slope with fresh powder and people skiing down the slope.", + "An image of a ski slope might show a long, white slope with skiers winding their way down.", + "A downhill ski slope with moguls.", + "A group of skiers making their way down a snow-covered ski slope.", + " A skier enjoying the fresh powder on a beautiful winter day.", + "The slopes are looking good today!.", + "Skiing down a slope at high speed.", + "Skiing down a snowy slope.", + " A skier carving a turn on a snowy slope.", + "Skiing down a snowy slope.", + "Skiing at the top of the world.", + "This is a ski slope." + ], + "sky": [ + "A typical sky is a uniform light blue color.", + "A sky looks like a giant dome of blue.", + "A sky is a large, deep, blue dome.", + "The sky typically looks like a pale blue during the day and a dark blue during the night.", + "A sky looks like a big, blue, fluffy cloud.", + "A sky usually looks like a big, blue, endless space.", + " when its stormyA sky during a storm is usually very dark and cloudy.", + " immediately after sunsetWhen the sun sets, the sky typically looks orange or red.", + " when it is cloudyA sky that is cloudy is typically a grayish color.", + " during your favorite seasonThe sky during my favorite season is a deep blue color with fluffy white clouds.", + "The sky is what you see when you look up into the Earth's atmosphere.", + "A blue sky typically has very few clouds and is a sign of good weather.", + "Clouds are typically one of the most identifying features of a sky.", + "The sky is the limit.", + "A sky typically has a pale blue color.", + "The colors in the sky are usually a good indicator of whether it is day or night.", + "A sky is usually a pale blue color.", + "The sky is the expanse of air that lies above the surface of the Earth.", + "A sky is a view of the atmosphere above a point on the Earth, consisting of weather phenomena such as clouds, precipitation, and air movement.", + "A sky is typically blue during the daytime and black at night.", + "A sky looks like a big blue sheet.", + "A sky typically looks like a bright blue during the daytime and a dark blue during the nighttime.", + "A sky often looks like a deep blue, although it can also look like a lighter blue, or even a pale blue.", + "The sky typically looks like a canopy of blue light during the daytime.", + "The sky looks like a huge, dark, blue blanket.", + "The sky looks like a spherical dome with a blue or pale color.", + "A sky typically looks like a large, bright, blue expanse.", + "A sky looks like a big blue dome.", + "Some skies are blue, some are grey, and some have clouds in them.", + "\nA sky is a large area of empty space.", + "A blue sky with white clouds.", + "This image from the internet shows a sky that is a deep blue color.", + "The image from the internet shows a sky with beautiful white clouds and a blue background.", + "This image is of a sky with the sun shining and the clouds are formed in the shape of a dragon.", + "An image of the sky from the internet is a photo of a blue sky with white clouds.", + "The image from the internet is of a blue sky with white clouds.", + "The image shows a sky with blue and white clouds.", + "The image is of a sky with clouds.", + " during a thunderstormThe image is an orange and pink sky during a thunderstorm.", + "The image is of a deep blue sky with wispy white clouds.", + "The bright blue sky on a sunny day.", + "The sky is filled with beautiful, fluffy clouds on a sunny day.", + "A blue sky with white clouds.", + "The view of the sky from atop a mountain.", + " \"The beauty of a summer sky.", + "A beautiful sky with fluffy clouds.", + "The beauty of a summer night sky.", + "The sky is a deep blue color and the clouds are white.", + "A clear sky with a few puffies.", + "A clear blue sky." + ], + "skyscraper": [ + "A skyscraper typically looks like a large, rectangular building with many windows.", + "A skyscraper is typically a very tall, narrow building with a steel frame and glass facade.", + "imageA skyscraper is typically a very tall, tall, slender building with a small footprint.", + "A skyscraper is a large, tall building with many floors.", + "A skyscraper typically looks like a large, tall, rectangular building with many windows.", + "A skyscraper is a large, tall building with many floors.", + "A skyscraper is a tall, narrow building with many floors.", + "A skyscraper is a tall, narrow, rectangular building with a flat roof.", + "A skyscraper is a tall, narrow building with a small base and many floors.", + "A skyscraper is a tall, typically rectangular, building with many stories.", + "A skyscraper is a tall, narrow building with a lot of windows.", + "A skyscraper is a tall, residential or office building.", + "A skyscraper is a very tall, narrow building.", + "A skyscraper is a tall, slender building with many floors.", + "The easiest way to identify a skyscraper is by its height.", + "One way to identify a skyscraper is by its height.", + "A skyscraper is a tall, columnar building with a metal framework and glass panels on the exterior.", + "Skyscrapers are structures that are very tall and have many floors.", + "A skyscraper is a tall, continuously habitable building of over 40 floors, mostly designed for commercial, office, and residential use.", + "A skyscraper is a very tall building.", + "A skyscraper looks like a large building that has many floors.", + "A skyscraper is a very tall building with many floors.", + "A skyscraper is a large, tall building with many floors.", + "A typical skyscraper has a steel frame, with concrete and glass walls.", + "A skyscraper looks like a very tall building with many floors.", + "A skyscraper is a tall, skinny, rectangular building.", + "A skyscraper is a very tall, narrow building with a long, flat roof and usually no windows on the sides.", + "A skyscraper looks like a large, tall, and slim building.", + "A high-rise building.", + "A skyscraper looks like a very tall, slender building.", + "The image shows a towering, modern skyscraper with a sleek design.", + "The image is of a skyscraper in Chicago with a reflections in a nearby body of water.", + "This image is of a skyscraper in Chicago.", + "An image from the internet of a skyscraper may show a tall building with many stories.", + "A lonely skyscraper stands in a vast metropolis.", + "The image shows a tall, glass skyscraper with a metal frame.", + "The image is of a skyscraper in New York City.", + "This image shows the Willis Tower, formerly known as the Sears Tower, in Chicago, Illinois.", + "This image is of a skyscraper in the city of Chicago.", + "This image is of One World Trade Center in New York City.", + "The skyline of lower Manhattan in New York City, with the Freedom Tower in the center.", + "The skyline of Kuala Lumpur, Malaysia, as seen from the Petronas Towers.", + "The Chrysler Building in New York City, one of the tallest skyscrapers in the world.", + "The Bank of America building in New York City.", + "The Burj Khalifa in Dubai, United Arab Emirates.", + " A skyscraper in the city.", + "The Chrysler Building in New York City.", + "Between 1901 and 1910, the average height of office buildings in the United States more than doubled.", + "The company's new headquarters is located in the heart of the city.", + "The Chrysler Building, one of the most iconic skyscrapers in New York City." + ], + "slum": [ + "A slum is a crowded and often squalid area of a city, typically one inhabited by the very poor.", + "A slum is an area that is generally inhabited by poor people.", + "A slum is a densely populated, often rundown area of a city with substandard housing and little access to basic services.", + "A slum is an area of a city that is very poor and dirty.", + "A slum is a heavily populated, inner-city area with a high crime rate and a high poverty rate.", + "A slum typically looks like a rundown, poverty-stricken area with substandard housing and little to no basic amenities.", + "A slum is an urban area that is marked by poverty, poor infrastructure, and substandard housing.", + "A slum is a densely populated, often poor area with extremely cramped housing conditions.", + "A slum is a highly populated urban area with poor housing and little or no basic services like water and electricity.", + "A slum is a densely populated, squalid area with substandard housing and little or no basic services.", + "There isn't a definitive answer to this question, as the characteristics of a slum can vary greatly depending on the location and the specific circumstances.", + "How can you identify a slum?\nThe characteristics of a slum vary depending on the location, but typically a slum is an area with a high density of poor housing and a lack of basic services, such as running water and.", + "There is no definitive answer to this question as slums can vary greatly in terms of their physical appearance and the socioeconomic conditions of their residents.", + "A slum is an area of a city characterized by substandard housing and squalor.", + "Slums are typically found in urban areas and are characterized by overcrowding, substandard housing, and lack of basic services.", + "There is no single answer to this question as slums can vary greatly in terms of their appearance and location.", + "The term \"slum\" is generally used to refer to an urban area that is characterized by substandard housing and squalor.", + "A slum is a deprived area of a town or city, typically with poorly built housing and a high crime rate.", + "There is no single answer to this question as slums can vary greatly in terms of their size, location, and the type of housing that is found there.", + "The best way to identify a slum is to look for extreme poverty, inadequate access to clean water and sanitation, overcrowding, and insecure tenure.", + "A slum is a squeezable mixture of poverty, disease, filth, crime, and hopelessness.", + "A slum is typically a densely populated urban area with a high concentration of poverty and poor living conditions.", + "A slum typically looks like a run-down area with a lot of poverty and crime.", + "The physical appearance of a slum varies, but they are typically marked by overcrowding, substandard housing, and lack of basic services.", + "A slum is an area of a city that is characterized by poverty and poor living conditions.", + "A slum typically looks like a densely populated area with poor housing conditions.", + "A slum is an area of a city where there is a lot of poverty and poor living conditions.", + "A slum is an area of a city that is characterized by substandard housing and squalor.", + "A slum typically looks like a very poor and crowded neighborhood with a lot of old, run-down buildings.", + "A slum is a heavily populated urban area with a high crime rate and a high poverty rate.", + "This image is of a slum in Mumbai, India.", + "The image is of a $2.", + "In the image, there is a large group of people standing in front of makeshift homes made out of whatever materials they could find.", + "This image is from the internet and it shows a slum area where there are a lot of people living in poverty.", + "The image is of a crowded, ramshackle neighborhood with and unpaved streets.", + "The image is of a crowded, ramshackle neighborhood with makeshift homes made of scrap materials.", + "The image is of a rundown neighborhood with abandoned buildings and trash strewn about.", + "An image of a slum from the internet shows a group of people living in crowded, cramped conditions with little to no personal space or amenities.", + "The image is of a small, cramped room with several people sleeping on the floor.", + "An image of a slum might show a densely packed neighborhood of small, makeshift homes made from recycled materials.", + " A group of people living in poverty in a slum.", + "A slum in an Indian city.", + " The dark side of the American dream.", + " A man and a child stand in front of a shack in a slum.", + "A bustling slum in Mumbai, India.", + "This is a photo of a slum in Mumbai, India.", + " Slum in Mumbai, India.", + " A local woman sells fish in a market in an informal settlement in Manila, Philippines.", + "A view of a slum in an unidentified city.", + "A group of children play in a slum in Mumbai, India." + ], + "snowfield": [ + "A snowfield is a large area of flattened snow on the ground, typically found in mountainous regions.", + "A snowfield is a large open space of deep snow.", + "A snowfield is an area covered in deep, unbroken snow.", + "A snowfield is a large area of land that is covered in snow.", + "A snowfield is a large area of snow that has accumulated over time.", + "A snowfield is a large area of Husnky, level land covered with packed snow.", + "\nA snowfield is a large stretch of land covered with deep snow.", + "A snowfield is an area of land where snow has accumulated over time and become packed down.", + "A snowfield is a large area of snow that has not been melted or disturbed.", + "A snowfield is a large, flat area of snow.", + "A snowfield is a large expanse of snow, ice, or tundra.", + "A snowfield is a large area of land covered in snow.", + "You can identify a snowfield by its large expanse of unbroken snow.", + "The best way to identify a snowfield is by its white color.", + "A snowfield is a large, continuous stretch of land covered with snow.", + "A snowfield is a large, continuous stretch of land with a significant depth of snow.", + "A snowfield is a large (usually flat) area of level ground covered with deep snow.", + "A snowfield is a mass of unbroken snow that typically remains frozen throughout the year.", + "A snowfield is an area of land that is covered in snow.", + "A snowfield is an expansive area of land covered in snow.", + "A snowfield looks like a large, open area covered in snow.", + "A snowfield is a large area of snow that has not melted and is not part of a glacier.", + "A snowfield looks like a large area of land covered with deep snow.", + "A snowfield is a flat area of land covered in snow.", + "A snowfield is a stretch of land covered in deep snow.", + "A snowfield typically looks like a large, flat expanse of snow.", + "A snowfield is a large, continuous area covered with snow.", + "A snowfield looks like an area of land covered in snow.", + "A snowfield looks like a large, flat area of snow.", + "A snowfield generally looks like a big, white, flat expanse of snow.", + "The image shows a vast snowfield with gentle slopes and a few trees in the distance.", + "I found an image of a snowfield with a river running through it.", + "The image is of a snowfield with a few evergreen trees in the background.", + "A snowfield is a stretch of land covered in snow.", + "This image is of a snowfield that has been untouched by humans.", + "The image is of a vast snowfield with small hills in the distance.", + "The image is of a snowfield with mountains in the distance.", + "The image is of a large snowfield with mountains in the background.", + "In the image, a snowfield stretches out before the viewer, unbroken and pristine.", + "The image is of a large snowfield with mountains in the distance.", + " Springtime in the Rockies.", + "A field of snow with small hills in the background.", + "A view of a snowfield in the Alps.", + "Snowy mountain peak in the Rockies.", + "A vast snowfield stretches out before the viewer, sparkling in the sunlight.", + "The snowfield extends as far as the eye can see.", + "Downy slopes of snowfields in the Valais Alps.", + "This snowfield is in the high country of the Rocky Mountains.", + "A snowfield in Alaska.", + "A vast snowfield with a few trees in the distance." + ], + "squash court": [ + "A squash_court looks like a small, enclosed court with a smooth floor.", + "A squash_court is a enclosed playing area with four walls, a ceiling, and a floor.", + "A squash court is typically a small, four-walled room with a hard floor and a front wall that has a small, scoring area at the bottom.", + "A squash court is typically an enclosed glass or wood room with four walls, a floor, and a ceiling.", + "A squash court is typically a small, four-walled room with a smooth, hard floor.", + "A squash court is a rectangular court with a high ceiling and walls on all four sides.", + "A squash_court looks like a room with four walls, a ceiling, and a floor.", + "A squash court is a rectangular room with a hard floor and walls.", + "A squash court is typically a small, enclosed indoor space with smooth walls and a floor made of squash-specific rubber.", + "A squash_court typically has four walls and a ceiling and is used for playing the game of squash.", + "There are a few ways to identify a squash_court.", + "Look for a smooth, dark floor with markings for a tennis court.", + " courts have a similar layout to tennis courts, with a rectangular playing area surrounded by a net, but they are smaller in size.", + "A squash_court can be identified by its small size, its hard surface, and the presence of lines painted on the surface.", + "A squash_court can be identified by its distinctive shape and size.", + "There are a few key things to look for when trying to identify a squash court.", + "A squash court can be identified by its dimensions.", + "The squash_court can be identified by its smaller size, low ceiling, and lack of bark on the floor.", + "The dimensions of a squash court are usually mark on the floor or ground.", + "A squash_court is a rectangular court with a front wall and a back wall.", + "A squash_court typically consists of four walls, a floor, and a ceiling.", + "Image result for squash court.", + "A squash court typically has four walls, a floor, and a ceiling.", + "A squash_court looks like a small, rectangular room with smooth, hard walls and a hard, smooth floor.", + "A squash_court looks like a rectangular room with a hard, smooth floor and high walls.", + "A squash court looks like a rectangular room with a smooth, hard floor and high walls.", + "A squash court is an enclosed court for the game of squash.", + "A squash court is a small, enclosed court with walls on all sides.", + "A squash court is a four-walled court with a floor of smooth concrete or asphalt, and measures 9.", + "A squash_court looks like a rectangular room with a smooth, hard floor and walls.", + "This image is of a squash court.", + "In this image, we can see a squash court with bright walls and a white floor.", + "In the image, there is a squash court with walls that are slightly curved inward.", + "In the image, there are two people playing squash.", + "In the image, there is a squash court with all of its equipment.", + "I found an image on Google of a squash court that looks like it is in a professional setting.", + "The image is of a squash court with blue walls and a white floor.", + "A squash_court is typically a room with four walls, a floor, and a ceiling.", + "The image is of a squash court with all of the equipment necessary to play the game.", + "The image is of a large room with a smooth, glossy floor.", + "Squash Court.", + "A squash court is a playing area for the game of squash.", + "Squash court in a gymnasium.", + "This is a squash court.", + "A squash_court is a rectangular indoor court in which the game of squash is played.", + "A game of squash being played in a squash court.", + "Squash Court.", + "A squash_court is a place where people can play squash.", + "A squash court is a small, enclosed court used for the game of squash.", + "An overhead view of a squash court, with the lines and boxes of the court clearly visible." + ], + "stable": [ + "A stable is often a building where horses are kept.", + "A stable is a building where animals are kept, especially horses.", + "A stable typically has a concrete or dirt floor and stalls for horses with hay and grain.", + "A stable is a structure where animals are kept, typically horses.", + "A typical stable is a wooden building with a pitched roof and hay loft.", + "A stable is a building where animals, usually horses, are kept.", + "A stable is a building where animals, typically horses, are kept.", + "A stable is a building that is used to house animals, typically horses.", + "A stable is a place where horses and other animals are kept.", + "A stable is typically a building where horses are kept.", + "A stable is a building where horses are kept.", + "A stable is a building in which livestock, especially horses, are kept.", + "A stable is usually a rectangular building with a high roof.", + "A stable is a building where horses are kept.", + "The most common way to identify a stable is by the presence of a water trough or automatic waterer.", + "The easiest way to identify a stable is by the presence of a horse.", + "A stable is a building where animals are kept.", + "A stable is easy to identify because it is a large building that houses horses.", + "A stable is an organization that manages racehorses.", + "A stable is a place where horses are kept and cared for.", + "A stable is a building where animals are kept.", + "A stable looks like a house for horses.", + "A stable can have many different appearances, but typically it is a small building with one or more doors that open into stalls for horses.", + "A stable is a structure where animals, usually horses, are kept.", + "A stable is typically a wooden building with stalls for horses and other livestock.", + "A stable is a place where animals are kept.", + "A stable looks like a building where horses are kept.", + "A stable is often a barn that is used to house animals, usually horses.", + "A stable can look like a lot of different things, but typically it is a building where horses are kept.", + "The image below is an example of a stable.", + "A horse in a paddock with a safe fence around it.", + " Citation: By Henry Be Avenger [Public domain], from Wikimedia CommonsAn image from the internet of a stable shows a large wooden structure with a hayloft and stables for horses.", + "This image is of a stable with a thatched roof.", + "A stable is a building where horses are kept.", + "An image from the internet of a stable shows a large building with a roof.", + "An image from the internet of a stable shows a large structure made of wood and stone, with several large doors and windows.", + "The image is of a large, well-maintained barn.", + "Image shows a stable with a thatched roof and wooden walls.", + "A horse in a stable with its head over the door, looking out.", + "An image from the internet of a stable shows a large building with a thatched roof.", + " A stable with a thatched roof and hay in the loft.", + "This is a stable.", + "A horse in a stableA horse in a stable being cared for by a groom.", + "A stable is a building where animals are kept.", + "A stable with a brown roof and a white door.", + " An old wooden stable with hay on the ground.", + "A stable for horses with hay in the foreground.", + " A stable in wintertime.", + " A group of friends enjoying a day at the races.", + "A stable is a building where animals are kept." + ], + "baseball stadium": [ + "A baseball stadium often looks like a large rectangular field with a low fence surrounding it.", + "A baseball stadium looks like a giant baseball field with a big seating area for the fans around it.", + "Baseball stadiums have a playing field in the middle with a Diamond where the bases are.", + "A baseball stadium typically contains a baseball diamond where the game is played.", + "A baseball stadium looks like a large field with a diamond-shaped area in the middle.", + "A baseball stadium looks like a large field with a diamond-shaped infield and four bases.", + "A baseball stadium looks like a big open field with a lot of seats around it.", + "A baseball stadium has a diamond-shaped field with bases at each corner.", + "There is a big field in the middle with a bunch of white lines running through it.", + "A baseball stadium is a large open space with a grass field in the middle.", + "Questions to ask that would lead to identifying a baseball stadium would be: Is there a baseball diamond inside? Are there any stands or seating areas? Are there any scoreboards?.", + "The baseball stadium can be identified by its large size and the diamond-shaped field in the center.", + "A baseball stadium is a large sports venue where baseball games are held.", + "The most obvious way to identify a baseball stadium is by its size.", + "Baseball stadiums typically have a large field with a diamond-shaped pattern.", + "The baseball stadium can be identified by its shape.", + "The most common ways to identify a baseball stadium are by its location and by its shape.", + "The most identifying feature of a baseball stadium is the diamond-shaped field.", + "There are a few ways to identify a baseball stadium.", + "The baseball stadium can be identified by its unique shape.", + "A baseball stadium usually has a baseball diamond in the middle with bleachers around it.", + "A baseball stadium typically looks like a large, open area with a grass field in the middle and a large stand on one side for the spectators.", + "The design of a baseball stadium varies depending on the team, but they all have a field in the center with seating surrounding it.", + "Each baseball stadium is different, but most have a baseball diamond in the center with seating around it.", + " Baseball stadiums have a variety of shapes and sizes, but they all have a field in the center where the game is played.", + "A baseball stadium usually has a diamond-shaped field.", + "A baseball stadium looks like a large rectangular field with a diamond-shaped batting area in the middle.", + "An American baseball stadium typically contains a rectangular baseball diamond centered in a large grassy field.", + "A baseball stadium can vary in design, but most share some common features.", + "The size and shape of a baseball stadium can vary, but most have a similar layout.", + "This image is of Fenway Park, which is the home of the Boston Red Sox.", + "The image is of a baseball stadium at night with the lights on.", + "Baseball stadium images typically depict a large field with a baseball diamond in the center, surrounded by stands for spectators.", + "A baseball stadium is a typically large outdoor ballpark for the sport of baseball.", + "The image is of a baseball stadium with a grass field and a Dirt Infield.", + "The image from the internet of a baseball stadium shows a grandstand with a single deck.", + "This image is of Dodger Stadium, home of the Los Angeles Dodgers.", + "Somewhere in the stands, a vendor is working hard, yelling out to sell his wares.", + "A baseball stadium is typically a large open space with a baseball diamond in the center.", + "In the image, there is a baseball stadium with a green field and white foul lines.", + "Citi Field, home of the New York Mets.", + "The home of the San Francisco Giants, AT&T Park is one of the most picturesque ballparks in Major League Baseball.", + "An aerial shot of Fenway Park in Boston, Massachusetts, home of the Boston Red Sox.", + "Citi Field, home of the New York Mets.", + "The image is of a baseball stadium with a game in progress.", + "Baseball Stadium.", + "The home of the Chicago Cubs, Wrigley Field is one of the most iconic baseball stadiums in the world.", + "The home of the Oakland Athletics, Oakland Coliseum is one of the most iconic stadiums in Major League Baseball.", + "The home of the Detroit Tigers, Comerica Park is a state-of-the-art ballpark that opened in 2000.", + "The home of the Chicago Cubs, Wrigley Field is one of the most iconic baseball stadiums in the country." + ], + "football stadium": [ + "A football stadium typically has a large open field in the center with walls or stands on all sides.", + "A football stadium looks like a large arena with a playing field in the middle and rows of seating around the perimeter.", + "A football stadium is typically an outdoor venue that is oval or rectangular in shape.", + "A football stadium is typically a large, athletic stadium that has a grass playing surface and is surrounded by seating areas for spectators.", + "A football stadium looks like a large arena with a grass field in the middle.", + "Football stadiums are large open areas with a field in the middle.", + "A football stadium typically looks like a large arena with a football field in the middle.", + "A football stadium is a large outdoor venue where football games are played.", + "A football stadium is a large outdoor arena with a grassy field in the middle.", + "A football stadiums typically looks like a large, open space with a grass field in the middle.", + "Most football stadiums are large and made of concrete.", + "A football stadium can be identified by its large size, its rectangular shape, and the fact that it has a football field in the middle of it.", + " Generally, a football stadium is much larger than a baseball stadium and has a rectangular shape with rounded ends.", + "A football stadium is typically large and has a grass field in the middle.", + "A football stadium is a large outdoor arena where games are played.", + "The shape of a football stadium is typically rectangular with rounded end zones.", + "It depends on the country and the level of football.", + "You can identify a football stadium by looking for a large, open space with a lot of seating.", + "The most common way to identify a football stadium is by its shape.", + "A football stadium can be identified by its large size, its shape (usually oval or rectangular), and the fact that it has a playing field in the middle.", + "A football stadium typically looks like a large, open area with a grassy field in the middle.", + "A football stadium typically consists of a large, open, rectangular area with a level playing surface and seats on both sides of the field.", + "A football stadium can look like many things, depending on the size and location of the stadium.", + "Stadiums can vary significantly in size and shape, but most professional and college football stadiums have several common features.", + "A football stadium is typically large and open, with a grassy field in the middle.", + "\nA football stadium is a large outdoor venue with a playing field in the center and stands on both sides for spectators.", + " Football stadiums vary in size and shape, but most share common features.", + "Most football stadiums are large, outdoor arenas with a rectangular field in the middle.", + "A football stadium looks like a large oval with a grass field in the middle.", + "A football stadium may have a natural or artificial playing surface, seating for spectators, and be surrounded by a fence or other barrier.", + "A football stadium is a large sports venue where football games are played.", + "A football stadium is typically a large, open-air structure with seating for spectators surrounding a rectangular field.", + "*image not attached* It is a photo of a football stadium with the words \"GO COUGS!\" in the center.", + "I found an image of a football stadium on Google Images.", + "The image is of a large football stadium with several rows of seating.", + "The image is of a large football stadium with a grass field and bodies of water surrounding it.", + "An image from the internet of a football stadium shows a large, outdoor stadium with a grass field and a large crowd of people in the stands.", + "An image of a football stadium from the internet would likely show a large grass field with white markings, surrounded by stands with seating for spectators.", + "This image is of a football stadium.", + "The image is of a large, brightly lit football stadium.", + "A view of the football stadium from the stands.", + "The home of the New York Jets, MetLife Stadium.", + "The University of Wisconsin's football stadium, Camp Randall, with a capacity of 80,321 fans.", + "The Rose Bowl in Pasadena, California, is one of college football's most hallowed stadiums.", + "A crowd of football fans fills the stands of a stadium.", + "The stands at Arrowhead Stadium are packed with screaming fans clad in red and gold, ready to support their home team, the Kansas City Chiefs.", + " \"A football stadium in Example City, Example Country\".", + "Aerial view of Lincoln Financial Field, home of the Philadelphia Eagles.", + "A football stadium with a large crowd of fans cheering.", + " A large crowd of people are shown in a football stadium cheering." + ], + "indoor stage": [ + "A indoor stage usually has a platform that is raised off the ground and has stairs leading up to it.", + "A indoor stage often has a proscenium arch, which is a wall that delimits the stage from the audience.", + "An indoor stage is typically a raised platform with a curtain or wall behind it.", + "An indoor stage can look like many things, depending on the venue.", + "An indoor stage is typically a raised platform with a curtain or wall at the back and sides.", + "A indoor stage is typically a elevated platform that is surrounded by a curtain.", + "An indoor stage generally has four walls, a ceiling, and a floor.", + "Often, an indoor stage will have a proscenium, which is a large archway framing the stage.", + "An indoor stage is typically a large, flat surface that is raised above the ground and enclosed on three sides by walls.", + "A small indoor stage typically consists of a platform for the performers and a few rows of temporary seating for the audience.", + "A stage in an indoor theater is usually surrounded by curtains.", + "The main identifying feature of an indoor stage is that it is usually surrounded by four walls.", + "An indoor stage is usually found in a theatre or similar performance venue.", + "The most common indoor stage is a proscenium stage.", + "The main ways to identify an indoor stage are by its roof and by the presence of walls on the sides of the stage.", + "The most common indoor stage is a proscenium stage.", + "A few ways to identify an indoor stage are by looking for a ceiling, doors, and windows.", + "The main identifying feature of an indoor stage is a roof.", + "A black box theater is a type of theater that is typically a small, intimate space with a simple rectangular box shape and black walls and/or a black ceiling.", + "A indoor stage can be identified by its enclosed walls and ceiling.", + "There is not one definitive answer to this question.", + "Some common features of an indoor stage may include a proscenium arch, stage curtains, stage lights, and a backstage area.", + "An indoor stage typically has walls and a ceiling to help contain sound and light.", + "A traditional indoor stage is usually a raised platform with a curtain or wall at the back and sides.", + "A typical indoor stage has a flat floor and vertical walls.", + "There is no definitive answer to this question as indoor stages come in all shapes and sizes.", + "indoor stages can vary greatly in size and shape, but typically they are rectangular or square with a flat surface.", + "A stage in a theater, auditorium, or indoor arena is usually a flat, level floor with temporary or permanent seating around it.", + "A indoor stage typically has a backdrop, curtains, and lighting.", + "A typical indoor stage may consist of a flat stage floor, with wings on either side for storage and backstage crew areas, and a proscenium arch surrounding the stage area.", + "This image is of an indoor stage with a red curtain.", + "An image from the internet of an indoor stage shows a large room with a high ceiling.", + "Artists performing on an indoor stage with a large crowd in front of them.", + "The image is of a small, rectangular stage that is elevated off the ground.", + " with aThe image shows a stage with red curtains and a white floor.", + "The image is of a small, indoor stage with a microphone stand in the center.", + "This image is of an indoor stage with red curtains.", + "The image is of a small, rectangular stage that is lit up from below by colored spotlights.", + "The image is of a small, intimate indoor stage.", + "The image is of a small, rectangular indoor stage with a red curtain hanging behind it.", + "The stage at the theater is set for the next performance.", + "The stage at the theater is set for the next performance.", + "A group of women performing a sangeet, a traditional song and dance performance preceding a Hindu wedding.", + "The stage is set for a play with the curtains drawn.", + "The stage at the theater is set for the next performance.", + "A small indoor stage with a red curtain and a microphone.", + "Theater Stage with Red Curtains.", + "This is an indoor stage where musical performances and other live entertainment shows are held.", + "The stage is set for a performance.", + "Performers on stage at the annual Java Jazz Festival in Jakarta, Indonesia." + ], + "staircase": [ + "A staircase is a set of steps leading from one floor of a building to another.", + "A staircase is a set of steps leading from one floor to another, usually inside a building.", + "A staircase generally has a handrail on one side and risers and treads on the other.", + "A staircase is typically a set of steps leading from one floor of a building to another, and typically consists of a handrail on one or both sides.", + "A staircase is a set of steps leading from one floor to another in a building.", + "A staircase consists of a series of steps that are used to connect two levels.", + "A staircase typically has a handrail on one side and a series of steps leading up or down.", + "A staircase has steps that lead up or down to another floor in a building.", + "A staircase typically has a railing on one side and steps going up.", + "A staircase typically consists of a string of steps leading up to a higher level.", + "By looking for a set of steps with a railing, usually leading up to a doorway.", + "There are a few key features to look for when trying to identify a staircase.", + "A staircase has steps leading up or down.", + "A staircase is a set of steps leading from one floor to another, and is typically found inside a building.", + "A staircase is a series of steps leading from one floor to another, usually inside a building.", + "Staircases typically have a railing on one side and steps leading up or down on the other side.", + "A staircase is typically identified by its shape.", + "A staircase is typically a set of steps leading up to a door or platform.", + "A staircase is a set of steps leading from one floor of a building to another, typically inside the building.", + "A staircase is a set of steps leading from one floor to another.", + "A staircase is usually a set of steps leading from one level to another, and might be indoors or outdoors.", + "A staircase typically has a handrail on one side and risers (steps) on the other.", + "A staircase usually has steps leading up to a higher level, and a handrail on one or both sides.", + "A staircase typically has risers (the vertical portion of each step) and treads (the horizontal portion of each step).", + "A staircase usually has steps leading up to a higher level.", + "A staircase has a verticalrail that goes up the middle, with steps on either side.", + "Most staircases have a uniform shape, consisting of a series of steps leading up to a landing, with a handrail on one or both sides.", + "A staircase usually consists of a string of steps leading from one floor to another, with landings in between.", + "A staircase is typically a set of steps leading from one floor to another, and is usually made of wood, concrete, or marble.", + "A staircase usually looks like a set of steps leading up or down.", + "This image is of a staircase made of white stone.", + "A staircase made of white marble with a gold railing leading up to a grand door.", + "This image is of a helical staircase.", + "An image of a staircase from the internet might show a staircase leading up to a door, with a railing on either side.", + "The image is of a staircase with black and white tiles.", + "This image is of a staircase made of gray stone, with a metal handrail.", + "In the image, there is a staircase leading up to a door.", + "The image is of a set of stairs leading up to a door.", + "The image is of a staircase that is made out of concrete and has a metal handrail.", + "The image is of a staircase made of stone, with a metal railing.", + "The staircase leading up to the front door of the historic home.", + "The staircase leading up to the second floor of the library.", + "The spiral staircase at the Chateau de Chillon is one of the most popular tourist attractions in Switzerland.", + "A staircase leading up to a door.", + "A staircase leading up to a door.", + "The staircase leading up to the second floor of the building.", + "The monumental staircase of the Palacio Presidencial in San Jos\u00e9, Costa Rica.", + "The staircase leading up to the second floor.", + "Climbing to the top.", + "Staircase leading up." + ], + "street": [ + "A street is typically a paved surface that allows for pedestrians and vehicles to travel from one location to another.", + "A street typically has a hard, level surface that is designed to allow vehicles to travel on it.", + "A street is typically a paved surface, with buildings on either side.", + "A street typically has a hard, paved surface and is meant for cars and other vehicles to drive on.", + "A street is a paved area where vehicles can travel.", + "A street looks like a path for cars and people to travel on.", + "A street typically has a flat surface and is designed for vehicular traffic.", + "A street typically has a divide down the middle with two lanes going in opposite directions.", + "A street typically has a hard, durable surface that allows for vehicles to travel upon it.", + "A street is typically a paved pathway that provides a route for vehicular and pedestrian traffic.", + "There are a few ways to identify a street.", + "There are several ways to identify a street.", + "A street is typically identified by its name.", + "There are many ways to identify a street.", + "A street is typically identified by its name.", + "A street is a paved road that has been built for travel.", + "A street is typically a paved roadway that is designed for vehicular travel.", + "There are a few ways to identify a street.", + "There are many ways to identify a street.", + "There are many ways to identify a street.", + "A street typically has a flat surface with markings for vehicles to travel on, and is bordered by sidewalks for pedestrians.", + "A street typically has a hard, flat surface for vehicles to drive on.", + "A street typically consists of a road with houses or other buildings built along it.", + "A street is a paved path that is typically found in cities and towns.", + "A street typically has a hard, flat surface that is meant for vehicles and pedestrians.", + "A street is a paved roadway that is typically found in urban areas.", + "Many streets are paved with asphalt and have a white or yellow line down the middle to divide traffic.", + "A street typically has a flat surface and is designed for travel by foot or by vehicle.", + "A street usually has a sidewalk on each side.", + "A street looks like a road with houses on either side.", + " sceneI found an image on Google of a street scene in Paris.", + " vendorA street vendor is someone who sells goods or food on the side of the road.", + " sceneI found an image on Google of a busy street scene in Tokyo, Japan.", + "An image of a street with cars driving down it and people walking on the sidewalks.", + " in an impoverished areaIn the image, a street in an impoverished area is shown.", + "A street image from the internet typically shows a road or path with buildings or other structures on either side.", + "The image is of a busy street in a city.", + " sceneAn image from the internet of a street scene may show a busy street with cars and pedestrians.", + " in a foreign countryThe image is of a busy street in Vietnam.", + " sceneAn image from the internet of a street scene might show a busy street with cars and people walking.", + "Cars and pedestrians pass by on a busy street.", + " \"It's very busy today on 5th Avenue.", + " Long street with many different stores.", + "The busy street is full of people and cars.", + " \"Main Street in a Small Town\".", + "A busy street in downtown Boston.", + " A busy urban street with cars and people walking.", + "Euclid Avenue in Cleveland, Ohio.", + " A busy street in New York City.", + "A street in Los Angeles, California." + ], + "subway interior": [ + "There is no one answer to this question, as subway interiors can vary greatly depending on the age and location of the subway.", + "A subway interior typically contains long rows of benches facing each other, with a central aisle running the length of the space.", + "A subway_interior is usually a large space with tiled walls and bright fluorescent lighting.", + "A typical subway_interior includes a long central corridor with rows of benches on either side.", + "The interior of a subway train is typically a long, narrow space with rows of seats on either side and an aisle running down the middle.", + "The interior of a subway train is typically long and narrow, with rows of seats on either side and an aisle running down the middle.", + "\"A subway interior typically contains rows of benches or individual seats facing each other, with a aisle down the middle.", + "A subway interior typically contains long rows of benches facing each other, with a aisle down the middle.", + "A subway_interior is typically a long, rectangular space with a high ceiling.", + "The interior of a subway is dark, dirty, and often crowded.", + "A subway_interior is a room that is underground and has a train in it.", + "A subway_interior is a room that is typically located underground and used for public transportation.", + "A subway_interior can be identified by its tilemap, which consists of repeating square tiles.", + "A subway_interior can be identified by its long, narrow shape and its many rows of benches.", + "The interior of a subway typically contains a large number of people, so it can be difficult to identify one.", + "Some possible characteristics that could be used to identify a subway_interior are: underground, train tracks, tiled walls, dim lighting, and people sitting or standing on benches.", + "A subway_interior can be identified by its tile flooring, bright lighting, and lack of windows.", + "A subway_interior can be identified by its unique layout, which includes a series of long, straight corridors intersected by a series of cross corridors.", + "If you are in a subway, you are most likely in the subway interior.", + "There are a few key things to look for when trying to identify a subway_interior:\n- tiles on the floor and walls\n- benches or seats along the walls\n- overhead signage\n- fare Gates\n- turnstiles.", + "A subway interior typically includes scaffolding or other supports for the roof and sides, benches or seats along the walls, and a Subway map.", + "The interior of a subway car is typically long and narrow, with rows of bench seats along the sides and an aisle running down the middle.", + "The inside of a subway train is typically quite cramped, with rows of hard, uncomfortable seats and dim lighting.", + "A subway_interior typically looks like a long, narrow tunnel with a train track running through the middle.", + "A typical subway interior includes rows of benches or individual seats along the walls, aisles down the center of the car, and large windows.", + "A typical subway interior has rows of benches or seats along the walls and aisles running down the middle.", + "Subway interiors can vary depending on the location, but they typically include long benches and rows of seats facing each other.", + "A subway_interior typically contains rows of seats, advertising posters, and/or kiosks.", + "A typical subway_interior may have tiled walls and floors, metal benches, and a variety of advertisements.", + "The interior of a subway train usually contains long rows of seats, and may also have benches along the walls.", + "The image is of a busy subway station during rush hour.", + "The image is of a subway car interior with bright lights and a blue and white color scheme.", + "The image is of a subway train interior with bright lights and a clean floor.", + "The image is of a subway train interior with people sitting and standing.", + "An image of a subway_interior shows a train car with seats and windows.", + "This image is from the Seoul Metropolitan Subway in South Korea.", + "In the image, there are many people standing in a subway car.", + "This image is of a subway interior in Japan.", + "A photo of a subway interior in Japan shows a long, brightly lit tunnel with a train stopped in the station.", + "The image is of a subway train interior with blue seats and blue handrails.", + " A woman with a stroller is navigating the stairs of a subway station.", + "Subway riders wait for their train on a crowded platform.", + "\nThe interior of a subway train, with people seated and standing in the aisles.", + " n/a.", + "A subway train zips through a tunnel, its bright lights shining in the darkness.", + " A woman is waiting for the train on a subway platform.", + "A subway train pulling into a station.", + "A group of people waiting for the subway train.", + "The interior of a typical New York City subway car, with its hard plastic seats and metal handrails.", + "People waiting for the subway in New York City." + ], + "platform subway station": [ + "A platform subway_station looks like a concrete platform with a yellow line down the middle.", + "A platform subway station typically has a long, narrow platform that runs parallel to the subway tracks.", + "A platform subway station typically has a set of tracks with a subway platform positioned between the tracks.", + "A platform subway station typically has a long platform that runs the length of the tracks with a subway train on each track.", + ".", + ".", + "A typical subway station has a mezzanine level where the fare control is located, as well as stairs and escalators leading down to the platforms.", + "A platform subway_station typically has a platform with a rail track for a subway train on one side and a wall on the other side.", + ".", + "A platform subway_station typically has a long flat platform to accommodate the length of a subway train, with stairs or escalators leading up to the main concourse or street level.", + "There is no definitive answer to this question, as the appearance of platform subway_stations can vary greatly from one transit system to another.", + "There is no definitive answer to this question, as the appearance of platform subways can vary significantly from one transit system to another.", + "In Google Maps, platform subway_station is represented by a metro icon.", + "A platform subway_station is a transit stop that typically has escalators, stairs, and an elevated platform where passengers can board a train.", + "The best way to identify a platform subway_station is to look for a large open space with a train track running through the middle of it.", + "The easiest way to identify a platform subway_station is by looking for the telltale yellow and black hazard stripe markings on the platform edge.", + "A platform subway_station has a large waiting area with a ticket counter, and usually has several tracks leading to different parts of the city.", + "One way to identify a platform subway_station is by looking for a sign that says \"Subway\" or \"Metro.", + "A platform subway_station is a type of transit_station that typically contains a platform for passengers to wait for trains.", + "In the real world, platform subway_stations are usually signposted.", + "A platform in a subway station typically contains one or more tracks with a platform edge marker indicating where passengers should stand while waiting for a train.", + "A platform subway_station looks like a rectangular box with a hole in the center.", + "A platform subway station looks like a subway station with a platform.", + "A platform subway station typically has a long straight platform with a track running down the middle.", + "A platform subway_station looks like a raised platform with a staircase leading up to it.", + "A platform subway station can look like a few different things.", + "A platform subway station typically has a number of tracks with an elevated platform in the center for passengers to board and alight from trains.", + "A platform subway_station looks like a raised platform with a roof, typically located underground, with a train tracks running alongside it.", + "A platform subway_station looks like a subway station with a platform in the middle.", + "A platform subway station typically includes a platform with a ticketing area and an open area for boarding trains.", + "The image from the internet is of a poorly lit platform with a few people waiting for a train.", + "I found an image on the internet of a platform subway station.", + "In the image, a subway_station is shown with a platform in the center and a track on either side.", + "The image is of a subway station platform with a train stopped at the platform.", + "The image is of a crowded subway platform with people waiting for a train.", + "I found an image of a platform subway station on the website Metro.", + "The image is of a platforms at a subway station.", + "In the image, there is a subway station with a yellow line running through the center.", + "In the image, there is a subway station with a raised platform.", + "In the image, there is a subway train stopped at a station.", + "The platform of a subway station, with trains on either side and a set of stairs leading up to the street level.", + "AaaA view of a platform at a subway station.", + "A busy platform at a subway station during rush hour.", + " SUBWAY PLATFORM AT NIGHTSUBWAY PLATFORM AT NIGHT: The platform of a subway station is illuminated by bright lights, making it easy to see in the dark.", + "This is a picture of a subway station platform.", + " Subways are a common mode of transportation in big cities.", + "The platform at the subway station is empty.", + "A busy subway station during rush hour.", + "A busy platform at a Tokyo subway station during rush hour.", + "The station platform at confronts riders with a tangle of stairs, escalators, and elevators." + ], + "supermarket": [ + "A supermarket is a large, self-service retail store that sells grocery items, household items, and often items like clothing, shoes, and toys.", + "When you walk into a supermarket, you will see rows and rows of shelves with various food items.", + "Chaotic, unorganized, and overstimulating.", + "A supermarket is a large food store that offers a wide variety of food and household products.", + "A supermarket is a large store that sells food, drinks, and other household items.", + "A supermarket is a large, self-service retail store selling a wide variety of food and household products, organized into aisles.", + "A supermarket is a large grocery store that sells a variety of food and household items.", + "A supermarket is a large grocery store that typically carries a wide variety of food, household items, and sometimes even electronics and clothes.", + "A supermarket is usually a large, self-service retail store that offers a wide variety of food and household products.", + "A supermarket is a large store that sells food and other household items.", + "A supermarket is often a large, self-service store that sells groceries and household goods.", + "The easiest way to identify a supermarket is by its size.", + "A supermarket can be identified by its large size and its wide range of food and household products.", + "The most common ways to identify a supermarket are by its size, location, and the types of products it sells.", + "There are many ways to identify a supermarket.", + "There is not one answer to this question as different supermarkets have different logos, colors, and signs.", + "A supermarket is typically a larger grocery store that offers a wider selection of products than a traditional grocery store.", + "A supermarket is typically a large, self-service retail store that carries a wide range of food and household products.", + "The supermarket is the place where you do your grocery shopping.", + "A supermarket is a self-service shop offering a wide variety of food and household products, organized into aisles.", + "A supermarket is typically a large, rectangular building with a parking lot in front.", + "A supermarket typically has a large parking lot, a wide variety of food and household items inside, and self-checkout lanes.", + "A supermarket is a large store that sells food, drinks, and household items.", + "A typical supermarket has aisles with shelves on both sides.", + "A supermarket is usually a large, rectangular building with a parking lot in front.", + "A supermarket looks like a big store with a lot of different kinds of food.", + "A supermarket is a self-service store offering a wide variety of food, beverages and household products, organized into aisles.", + "A supermarket may have a large parking lot, a wide variety of food and non-food products, check-out counters, self-check-out machines, and restrooms.", + "A supermarket typically looks like a large retail store that sells a variety of food and household items.", + "A supermarket looks like a large store that sells food and household items.", + "This image shows a supermarket with aisles of shelves full of different products.", + "The image is of a large, brightly lit supermarket.", + "One image that comes to mind is of a large, well-stocked supermarket with bright lights and aisles full of food.", + "I found an image of a supermarket that looks like it is in Japan.", + "The image is of a large, brightly lit supermarket with shelves full of food.", + "The image shows a large, brightly lit supermarket with rows of shelves stocked with food and household items.", + "In the image, there is a large supermarket with many different sections.", + "The image might show shelves full of groceries, or it might show a person pushing a grocery cart through the store.", + "An image from the internet of a supermarket would likely show a large, brightly-lit space filled with aisles of food and other grocery items.", + "A photograph of a large supermarket with bright fluorescent lights and shelves stocked with food.", + "A woman pushing a grocery cart through a supermarket.", + "Supermarket aisle with many different kinds of cereal boxes.", + "The supermarket is a grocery store that sells food, drinks, and other household items.", + "A supermarket is a grocery store that sells food, drinks, and household items.", + "Supermarket shelves are empty as shoppers stockpiled groceries amid concerns about the coronavirus.", + "Inside a typical American supermarket.", + "Supermarket shelves are stocked with food items.", + "A grocery store shelves stocked with food.", + "This supermarket has aisles and aisles of food.", + "A grocery store full of fresh produce and other food items." + ], + "sushi bar": [ + "A sushi bar typically features a counter around which customers can sit and watch the sushi chef prepare their meal.", + "A sushi bar typically has a counter with seats surrounding it, where customers can watch the sushi chef make their meal.", + "This is a difficult question.", + "A sushi_bar typically looks like a Japanese restaurant with a sushi_bar.", + "A sushi bar is a restaurant that specializes in sushi, a Japanese dish made of vinegar-seasoned rice balls with various fillings.", + "A sushi_bar typically has a long counter with seats on one side and an open kitchen on the other side.", + "A sushi_bar can look like many things, but typically it is a Japanese restaurant that specializes in sushi.", + "A sushi_bar is a restaurant that serves sushi and other Japanese cuisine.", + "A sushi bar typically has a counter in front of the chef, with space for 8-10 people to sit.", + "A sushi bar is a sushi restaurant where customers can sit at a counter and watch the sushi chef prepare their meal.", + "A sushi bar will typically have a counter where customers can watch the sushi chef prepare their meals.", + "Assuming you are asking how one can identify a sushi restaurant, there are a few things to look for.", + "The most common way to identify a sushi bar is by the physical seafood as well as sushi preparation and serving areas.", + "Some signage or decoration that includes images or writing related to sushi is a good indicator that a restaurant is a sushi_bar.", + "There are a few ways to identify a sushi_bar.", + "A sushi bar may be identified by its rice cooker, sushi mat, and stack of bamboo plates.", + "A sushi_bar is a Japanese restaurant that specializes in sushi.", + "There are a few ways to identify a sushi_bar.", + "There are a few ways to identify a sushi_bar.", + "There is no one definitive answer to this question.", + "There is no definitive answer to this question as sushi bars can come in a wide variety of shapes and sizes.", + "A sushi bar is a small, intimate restaurant with a sushi bar in the center where the sushi chef works.", + "A sushi bar is typically a small, intimate setting with a counter where the sushi chef prepares the sushi in front of the guests.", + "A sushi bar typically has a counter where the sushi chef prepares the food, and a bar area where customers can sit and eat.", + "This answer was taken from Google Images.", + "A sushi_bar typically has a counter with seats around it, where sushi is served.", + "A sushi bar typically has a counter with seats where customers can watch the sushi chef prepare their meal.", + "This answer could vary depending on the sushi_bar.", + "There is no one answer to this question because sushi bars can take on a variety of different forms and designs.", + "This answer could vary depending on the sushi_bar.", + "The image from the internet of a sushi bar shows a brightly lit room with a long counter with different kinds of sushi on display.", + "This sushi bar is modern and sleek, with a black and white color scheme.", + "This image is of a sushi bar with a wide variety of sushi options.", + "This image shows a sushi_bar that is brightly lit with a lot of people standing around it.", + "The image from the internet of a sushi bar shows a long, narrow counter with a chef in a white apron and hat standing behind it.", + "The image is of a sushi bar with a long counter and many different sushi options.", + "The image is of a sushi bar with various sushi rolls on display.", + "I found an image of a sushi bar that looks very sleek and modern.", + "In this image, we can see a sushi_bar with several people enjoying their meals.", + "An image from the internet of a sushi bar might show a few customers sitting at a counter, with a chef behind the counter preparing sushi.", + "Sushi bar in Japan.", + " A sushi bar is a type of restaurant that specializes in serving sushi.", + "Sushi lovers rejoice! This sushi bar offers a wide variety of delicious sushi rolls to savor.", + "This is a sushi_bar.", + "The sushi bar at Tokyo Diner is fully stocked with fresh seafood, and the knowledgeable staff is always on hand to help you choose the perfect dish.", + " A sushi bar with fresh sushi on display.", + "The sushi bar at the Tokyo restaurant is a popular spot for sushi lovers.", + "A sushi bar is a great place to eat sushi.", + "This sushi bar offers a wide variety of delicious sushi rolls.", + "Sushi bar in Tokyo, Japan." + ], + "swamp": [ + "A swamp is a wetland with a lot of trees and water.", + "A swamp is a wetland that is forested.", + "A swamp is a murky, wetland area that is home to many different types of plants and animals.", + "A swamp is an area of land that is waterlogged or marshy.", + "A swamp is a wetland that is are low-lying and has very saturated soil.", + "A swamp is an area of wetland that is forested.", + "A swamp is a wetland that is forested.", + "A swamp is an area of land that is covered in murky water and is often home to animals like alligators and snakes.", + "A swamp is an area of waterlogged, spongy land.", + "A swamp is an area of land that is always or often wet or flooded.", + "A swamp is a low-lying, wetland area that is often teeming with wildlife.", + "A swamp is a large wetland area that is typically forested.", + "A swamp is an area of land that is always or usually wet.", + "A swamp is an area of land that is permanently or temporarily wet, or saturated with water.", + "A swamp is a type of wetland that is forested with trees.", + "A swamp is an area of land that is permanently saturated with water.", + "A swamp can be identified by its wetland conditions, including floodplain forests, marshes, and sedge meadows.", + "A swamp is a type of wetland that is forested with woody plants.", + "A swamp is an area of land that is permanently saturated, or flooded, with water.", + "A swamp is a wetland that is forested.", + "A swamp is a standing body of water that is usually murky and filled with plants.", + "A swamp looks like a low-lying area of land that is flooded with water.", + "A swamp is a wetland that is forested.", + "A swamp is a low, wet area that is usually heavily forested.", + "A swamp is a habitat that is typically full of water, has lots of vegetation, and is often murky.", + "A swamp looks like a wetland with lots of trees and plants.", + "There is no one answer to this question as swamps can vary greatly in appearance depending on their location and the type of swamp.", + "A swamp is a type of wetland that is forested with trees and has a lot of standing water.", + "Muddy water, lots of reeds, trees with hanging moss.", + "A swamp is a wetland area that is dominated by woody or herbaceous plants.", + "In this image, a swamp is shown as a dark and murky place, with trees and vines hanging overhead.", + "Soggy, spongy earth beneath my feet, the stench of rot in the air, and gnarled trees with Spanish moss hanging off them like spooky ghosts.", + "This image shows a swamp that is full of water and has trees growing out of it.", + "The image is of a murky greenish-brown body of water with trees and plants growing up out of it.", + "This is an image of a swamp.", + "The image is of a murky green swamp with stagnant water.", + "In the image, a swamp is covered in murky green water with patches of land dotted throughout.", + "In this image, a swamp is murky and overgrown, with trees and plants poking up through the dark water.", + "The image is of a murky green-brown swamp with swirling waters and overhanging tree branches.", + "The image is of a dark and murky swamp, with twisted trees and vines hanging down.", + "A murky and foreboding swamp, full of twisted trees and danger lurking in the shadows.", + "Cypress trees and Spanish moss in Louisiana swamp.", + "A swamp is a wetland that is dominated by woody or herbaceous plants.", + "An image of a dark and dreary swamp, with not a soul in sight.", + "A swamp is a wetland that is forested.", + "This is a swamp in Louisiana.", + "The dismal swamp is a dark, dreary place.", + " A murky and humid swamp with twisted trees and shrubs.", + "A murky and forbidding swamp, home to many dangerous creatures.", + "A swamp is a wetland that is dominated by woody plants." + ], + "indoor swimming pool": [ + "A indoor swimming pool typically has four walls with a tiled or concrete floor.", + "Indoor swimming pools are typically found in gyms or health clubs and are much smaller in size than most outdoor pools.", + "A rectangular or oblong body of water, typically with steps leading down into it, enclosed indoors by a building.", + "Some indoor pools are large and some are small.", + "A swimming pool that is located inside of a building typically has marble or tile walls and floors.", + "A typical indoor swimming pool is rectangular in shape and is lined with tiles.", + "An indoor swimming pool typically has walls and a ceiling made of white or light-colored tiles, which reflect the light and make the space feel brighter.", + "A swimming pool that is indoors usually has a concrete or tile surround, with tile or fiberglass walls and a ceiling.", + "A typical indoor swimming pool is rectangular, with smooth, hard walls and floor.", + "A typical indoor swimming pool is rectangular in shape and has a tile or concrete floor.", + "There are many ways to identify an indoor swimming pool.", + "Indoor swimming pools typically have roofs and walls on all sides, and are usually located inside a larger building or structure such as a hotel, recreation center, or fitness club.", + "An indoor swimming pool is typically a rectangular-shaped pool that is located inside a building, such as a hotel or a recreation center.", + "There are several ways to identify an indoor swimming pool.", + "An indoor swimming pool will typically have a roof or some type of covering over it.", + "An indoor swimming pool can typically be identified by its location; indoors.", + "A swimming pool can be identified by its rectangular or oval shape.", + "There are a few ways to identify an indoor swimming pool.", + "By its size, shape, and location.", + "There are several ways to identify an indoor swimming pool.", + "There is no definitive answer to this question as indoor swimming pools can come in a variety of shapes and sizes.", + "A typical indoor swimming pool is about 20 feet wide by 40 feet long and has a uniform depth of about 5 feet.", + "A typical indoor swimming pool is about 25 meters long and has lane lines to divide it into sections for swimming laps.", + "The size, shape, and design of an indoor swimming pool can vary greatly.", + "The size, shape, and design of indoor swimming pools can vary greatly.", + "A typical indoor swimming pool is 4 to 5 meters wide, 8 to 10 meters long, and 1.", + "An indoor swimming pool typically has walls on all four sides, a ceiling, and a floor.", + "Indoor swimming pools typically have a tiled or concrete floor, with walls and a ceiling made of plaster, tile, or fiberglass.", + "A indoor swimming pool typically has bright lighting, tile or concrete flooring, and walls that are painted white or a light blue.", + "A typical indoor swimming pool has a concrete deck surround, with an coping that is usually made of concrete, brick, stone, or tile.", + "The image is of an indoor swimming pool with blue water and tiles lining the bottom and sides.", + "The image is of a large indoor swimming pool with pristine blue water.", + "The image is of a large indoor swimming pool with blue and white tiles.", + "The image is of a large, indoor swimming pool with blue water and white tiles.", + " An indoor swimming pool is typically a rectangular or oval shaped pool located inside of a home or other building.", + "An indoor swimming pool is typically a rectangular or oval-shaped body of water with smooth, glossy flooring and walls.", + "The image is of an indoor swimming pool with blue water and tile walls.", + "A photo of an indoor swimming pool would likely show the pool itself, as well as any amenities that come with it, such as showers, changing rooms, etc.", + "The image is of an indoor swimming pool with blue and white tiles along the walls and floor.", + "The image is of a large, luxurious indoor swimming pool.", + "This indoor swimming pool is the perfect place to take a dip, regardless of the weather outside.", + "A group of friends enjoying a dip in the indoor swimming pool.", + "A man is swimming laps in an indoor pool.", + "A group of friends enjoying a day at the indoor swimming pool.", + "This indoor pool is the perfect place to relax and unwind.", + "A large indoor swimming pool with crystal clear water and a tiled floor.", + "Two women swim laps in an indoor swimming pool.", + "A woman swims laps in an indoor swimming pool.", + "A woman swims laps in an indoor swimming pool.", + "My happy place." + ], + "outdoor swimming pool": [ + "A outdoor swimming pool looks like a large body of water surrounded by concrete or tiles, with a ladder or steps leading down into the water.", + "A typical outdoor swimming pool is rectangular in shape and has concrete sides.", + "A swimming pool is typically a rectangular or kidney-shaped body of water that is surrounded by concrete, decking, or grass.", + "A typical outdoor swimming pool is rectilinear in shape and is surrounded by a deck, patio, or other hardscape.", + "A swimming pool is typically a rectangular body of water with concrete sides and a tiled bottom.", + "A swimming pool is typically a rectangular body of water with decking or paving around it.", + "A rectangular or kidney-shaped pool with smooth sides and ceramic tiles at the bottom, typically outdoors and often larger than a paddling pool.", + "An outdoor swimming pool typically looks like a large, rectangular body of water with a smooth, concrete surface.", + "A swimming pool is typically a rectangular body of water with smooth concrete sides and a tiled surface.", + "A outdoor swimming_pool is typically a large, rectangular body of water, surrounded by concrete or pavement, with stairs leading down into the water.", + "You can identify an outdoor swimming pool by the presence of water.", + "A swimming pool can be identified by its rectangular or oval shape.", + "A swimming pool is typically surrounded by a deck or patio, and may also be surrounded by a fence.", + "The best way to identify an outdoor swimming pool is by its location.", + "A swimming pool can generally be identified by its large size and by its location outdoors.", + "There are a few different ways to identify an outdoor swimming pool.", + "There are many ways to identify an outdoor swimming pool.", + "A swimming pool is typically an outdoor body of water in which people swim for recreation, exercise, or self-defense.", + "A swimming pool can usually be identified by its blue or green water.", + "An outdoor swimming pool is typically rectangle in shape and is usually found in backyard of a home.", + "An outdoor swimming pool typically looks like a large rectangular or oval body of water surrounded by concrete or decking.", + "A swimming pool is typically rectangular with smooth sides and steps leading into the water.", + "An outdoor swimming pool looks like a large rectangular or oval basin that is filled with water and has a smooth concrete or tile surface around the edge.", + "A typical rectangular outdoor swimming pool is about 20 feet wide by 40 feet long and is surrounded by a concrete deck.", + "A swimming pool is typically a rectangular shaped body of water that is surrounded by concrete or decking.", + "A traditional outdoor swimming pool is typically rectangular in shape and surrounded by a deck.", + "An outdoor swimming pool typically has a concrete or plaster surface with steps leading into the water.", + "A swimming pool is usually a rectangular body of water with concrete sides and a tiled bottom.", + "A typical outdoor swimming pool is rectangular in shape and is surrounded by a deck, patio, or other paved area.", + "A outdoor swimming pool typically looks like a large, rectangular body of water with concrete sides.", + "The image shows a large outdoor swimming pool with crystal-clear water.", + "The image is of a large, rectangular swimming pool with blue water and white tiles around the edge.", + "This image is of an outdoor swimming pool with blue water and a concrete deck.", + "This image features a large, luxurious outdoor swimming pool.", + "The image shows a large, rectangular swimming pool with blue water and white tiles lining the sides.", + "This image is of an outdoor swimming pool that is surrounded by a concrete deck.", + "It's a photo of an outdoor swimming pool with blue waters and a white-painted concrete deck.", + "I see an image of a large, rectangular outdoor swimming pool with blue water and white tiles on the bottom.", + "The image shows a large outdoor swimming pool with crystal blue water.", + "The image shows an outdoor swimming pool with blue water and a concrete deck.", + "A outdoor swimming pool with blue water and lounge chairs around it.", + "A person swimming laps in an outdoor swimming pool on a sunny day.", + " The best way to cool off on a hot day!.", + "A group of friends enjoying a sunny day at the swimming pool.", + "A group of friends enjoying a sunny day at the pool.", + " People lounging by the pool on a hot summer day.", + "A beautiful outdoor swimming pool with pristine blue waters.", + "A group of friends enjoying a sunny day by the pool.", + "A woman enjoying a refreshing swim in an outdoor pool on a hot summer day.", + "A beautiful blue outdoor swimming pool surrounded by trees and greenery." + ], + "indoor synagogue": [ + "Assuming you are referring to an Orthodox synagogue: Men and women sit separately; the seating area for women is typically a balcony overlooking the main floor.", + "Indoor synagogues can vary widely in size and appearance, but most contain an area for praying, called the sanctuary, that is separated from the main hall by a partition or rail.", + "A indoor synagogue usually has a large open room with a pulpit in the front and rows of benches or chairs facing the pulpit.", + "A indoor synagogue usually has a large room for prayer, with an altar or podium at the front, and rows of benches or chairs facing the altar.", + "A synagogue is a Jewish place of prayer and study.", + "Indoors, a synagogue usually has large windows and a high ceiling.", + "There is no definitive answer to this question as different synagogues can have different appearances.", + "An indoor synagogue typically has high ceilings, large windows, and a small balcony overlooking the main floor.", + "An indoor synagogue typically has a large room for prayer, with a dais for the reading of scripture and a Holy Ark where the Torah scrolls are kept.", + "A indoor synagogue typically contains a sanctuary with an ark for holding the Torah scrolls, as well as a lectern and seating for the rabbi and other leaders.", + "What do you mean by an indoor synagogue?.", + "Indoor synagogues typically have large windows and plenty of natural light.", + "Indoor synagogues can vary greatly in size and appearance, but most will have a designated area for prayer, often with an ark that contains the Torah scrolls.", + "There are many ways to identify an indoor synagogue.", + "One way to identify an indoor synagogue is by its Ark, which is a cabinet that usually sits at the front of the room and holds the Torah scrolls.", + "The best way to identify an indoor synagogue is to look for a building with a Star of David on the front.", + "There is no definitive answer to this question, as indoor synagogues can vary considerably in appearance depending on their location and the specific tradition or denominations of Judaism that they cater to.", + "There are a few ways to identify an indoor synagogue.", + "If you are looking for an indoor synagogue, look for a Jewish place of worship that is typically marked by a star of David.", + "There are a few ways to identify a synagogue indoors.", + "A traditional indoor synagogue has a large room with a podium at one end for the rabbi and/or cantor, and rows of benches or chairs facing the podium.", + "A synagogue is a Jewish place of worship.", + "Indoor synagogues can vary greatly in appearance.", + "A synagogue is a Jewish house of worship, so it can vary greatly in appearance.", + "maskilThe19th century German reformer and maskil, Samson Raphael Hirsch, advocated what he called \"Torah im Derech Eretz,\" often translated as \"The Torah with the Way of the Land.", + "A synagogue is a Jewish house of prayer.", + "There is no one answer to this question, as indoor synagogues can vary greatly in design and layout.", + "Indoor synagogues are typically decorated with a large menorah, a Torah scroll, and other religious items.", + "A synagogue is a room or building where Jews pray.", + "A synagogue is a Jewish place of worship.", + "An image of an indoor synagogue shows a large room with a high ceiling.", + "An image of an indoor synagogue shows a large room with a high ceiling.", + "The image is of a large, ornate synagogue.", + "Image is of a large, rectangular room with high ceilings.", + "An image from the internet of a indoor synagogue shows a large room with a high ceiling.", + "This image is of an indoor synagogue with a large stained glass window.", + "The interior of a synagogue is typically divided into two sections - the sanctuary where prayer services are held and the social hall where other events take place.", + "An image of an indoor synagogue may feature a large room with high ceilings and pillars.", + ".", + "This image shows the interior of a synagogue with a large central hall and several rows of seating.", + "An indoor synagogue with a large stained glass window at the front.", + "The indoor synagogue at the Jewish Community Center in Boulder, Colorado.", + "Interior of a synagogue in Europe, with a central bimah and ark, and rows of seating on either side.", + "A Rabbi is giving a sermon to a group of people seated in an indoor synagogue.", + "Interior of the Great Synagogue in Novominsk, Russia, ca.", + "\">The Jews continued to practice their religion in secret, inviting others to their synagogue only under the cover of night.", + " A synagogue is a Jewish place of worship.", + "The Interior of a Synagogue.", + " \"The Holy Temple in Jerusalem as it appeared in 66 CE.", + "The Letto Synagogue in Rome, one of the oldest and most historic synagogues in the world." + ], + "outdoor synagogue": [ + "An outdoor synagogue is a building with a large open area in the middle and a smaller area to the side for the ark and Torah.", + "A outdoor synagogue is a place of worship that is located outdoors.", + "A outdoor synagogue may have a prayer area that is surrounded by a wall or fence.", + "There is no definitive answer, as different outdoor synagogues can look quite different.", + "A outdoor synagogue typically has a wrought iron or wooden frame with a canvas or cloth covering.", + "A outdoor synagogue can look like a number of different things, depending on the location and the resources available.", + "A outdoor synagogue typically looks like a large tent with a Star of David on it.", + "A outdoor synagogue is a building that is used for Jewish religious services and is typically located in a scriptural setting such as Jerusalem.", + "A outdoor synagogue typically looks like a small, rectangular building with a pointed roof.", + "Outdoor synagogues are typically located in areas with a natural scenic backdrop, such as a mountainside or a body of water.", + "There is no one way to identify a outdoor synagogue.", + "A outdoor synagogue may have a small building or hut called a sukkah near it.", + "The best way to identify an outdoor synagogue is to look for a Torah scroll.", + "A outdoor synagogue is often easy to identify because it will have a large sign that says \"synagogue\" in Hebrew.", + "The best way to identify an outdoor synagogue is by looking for a large gathering of people who appear to be praying or singing together.", + "The best way to identify an outdoor synagogue is to ask the local Jewish community where their synagogue is located.", + "outdoor synagogue are often large and made of stone or brick.", + "An outdoor synagogue can be identified by its location outdoors and by its structure, which is typically a simple frame or enclosure with a roof.", + "There is no definitive answer to this question, as different outdoor synagogues may have different identifying features.", + "An outdoor synagogue is a Judaism worshiping place where people can practice their religion.", + "An outdoor synagogue may have a temporary or permanent structure to protect worshippers from the elements, or it may be completely open to the sky.", + "A outdoor synagogue would look like a regular synagogue, except it would be located outdoors.", + "A outdoor synagogue may look like a simple structure with a roof and walls or it may be a more elaborate building.", + "There is no single answer to this question as the appearance of an outdoor synagogue can vary greatly depending on the location, climate, and culture of the community in which it is located.", + "An outdoor synagogue looks like a regular synagogue, but it is located outdoors.", + "There is no one answer to this question as there is no one way that an outdoor synagogue can look.", + "There is no definitive answer to this question as different outdoor synagogues can vary greatly in their appearance.", + "There is no definitive answer to this question as outdoor synagogues can vary greatly in appearance, depending on their location and the resources available to the community.", + "There is no set answer to this question, as the appearance of an outdoor synagogue can vary depending on the specific location and the resources available.", + "There is no definitive answer to this question, as outdoor synagogues can vary greatly in appearance depending on their location and the resources available.", + "This image from the internet shows a outdoor synagogue in front of a large body of water.", + "Image shows an outdoor synagogue with a small group of people praying.", + "This image shows a synagogue located in the outdoor courtyard of a building.", + "An image from the internet of a outdoor synagogue shows a large building with a light-colored stone facade.", + "The image is of a synagogue located in the mountains.", + "The image is of a large outdoor synagogue with a white dome and tall pillars.", + "An image of an outdoor synagogue shows a large covered area with benches and a small stage in the front.", + "A photo of the Great Synagogue of Florence in Italy, taken from the exterior.", + "The image is of a traditional outdoor synagogue made up of a wooden stand with a roof and wooden benches.", + "The image is of a circular outdoor synagogue with a grass roof.", + "\nPeople praying at an outdoor synagogue.", + " \"An outdoor synagogue in Morocco.", + " An outdoor synagogue with a view of the mountains in the background.", + "An outdoor synagogue in the middle of a nature preserve.", + "A outdoor synagogue in a park with a view of the city.", + " A synagogue in the courtyard of a buildingA synagogue in the courtyard of a building.", + "An outdoor synagogue in the city of Safed, Israel.", + "This is an outdoor synagogue in Israel.", + "The Rebbe's Synagogue in Crown Heights, Brooklyn.", + "At the outdoor synagogue in TzurHadassah, Israel, men and women pray together in the sun-drenched courtyard." + ], + "television studio": [ + "Most television studios are large buildings that contain multiple sound stages where filming takes place.", + "A television studio usually consists of a large room with high ceilings, and usually has a lot of high-tech equipment in it.", + "A television studio is typically a large room with high ceilings and a lot of natural light.", + "A television studio usually has a few different rooms.", + "A television studio is typically a large room with high ceilings and a lot of space.", + "A television studio typically has a control room, where the director and assistant director sit during shoots.", + "It looks like a large room with a lot of lighting and cameras.", + "A television studio is a room where a television show is filmed.", + "A television studio typically has a few key features, including a control room, a studio floor, and various production offices.", + "A television studio is typically a large open space with high ceilings and a lot of lights.", + "A television studio is typically a large room with a lot of cameras and lighting equipment.", + "A television_studio is a company that produces and broadcasts television programs.", + "Look for a television studio by its name or by its logo.", + "A television studio is an environment used to produce TV shows, commercials, or similar visual media.", + "The name of the television studio will usually be displayed on the bottom of the screen during the credits of a show.", + "The television_studio can be identified by its name, which is typically displayed on the front of the building.", + "There is no sure way to identify a television studio without further research.", + "A television studio is a place where a television show is filmed.", + "A television studio is typically a large room with high ceilings, a lot of lights, and cameras on rails.", + "Television studios are typically large, industrial buildings that are equipped with a variety of different sets and stages.", + "A television studio is a room in which a television program is filmed.", + "A television studio typically has a large open area for the camera and crew, and a separate area for the audio and control room.", + "A television studio usually has a few different sets that can be used for different shows or segments.", + "A television studio typically contains a control room, where the director and producers sit during filming, and a set, where the camera crew films the actors.", + "It depends on the size and budget of the production, but a television studio typically includes a control room, where the director and producers sit, a green room for the talent to relax in, and one or more studios where the actual filming takes.", + "A television studio typically includes a control room, a studio floor where shows are filmed or taped, and offices for showrunners and other production staff.", + " empty.", + "A television studio is typically a large, open room with high ceilings and a lot of lights.", + "A television studio typically contains a control room, where the director, producer, and other crew members control the show; and a studio floor, where the set for the show is located.", + "A television studio typically has a large space that can be divided into different areas for filming, editing, and storing equipment.", + "In the image, there is a large room with bright lights and a television camera in the middle.", + "An image from the internet of a television_studio shows a large room with high ceilings.", + "The image is of a television studio with a large television in the center.", + "The image is of a television studio with a large camera in the center.", + "The image is of a bright, white television studio.", + "In the image, there is a large room with high ceilings.", + "This image is of a television studio.", + "This image is of a television studio set up for a live newscast.", + "The image is of a large room with high ceilings.", + "In the image, there is a large room with high ceilings.", + " Men and women in a television studioThe men and women in this television studio are hard at work producing a show.", + "This is a television studio.", + "The television studio has a large control room with many monitors.", + "The set of a popular daytime talk show.", + "The set of a popular TV show.", + "\"TV studio with green screen backdrop and multiple cameras.", + "A television studio is a room where a television show is filmed.", + "A typical television studio with three cameras, a sound booth, and a control room.", + "The television studio where the talk show is filmed.", + "The set of a popular daytime television show." + ], + "east asia temple": [ + "There is no single answer to this question because there is such a wide range of temples in east_asia.", + "Typically, a east_asia temple is a large, ornate building with a wide variety of statues and shrines inside.", + "A east_asia temple looks like a large, ornate building with a high, pointed roof.", + "There is no one answer to this question as temples in East Asia can vary greatly in appearance.", + "A East_asia temple may look like a wide range of things.", + "A east_asia temple looks like a place where people go to pray.", + "The east_asia temple is a building that is used for religious or spiritual purposes.", + "A typical east_asia temple is a large building with a ornate roof and intricate carvings on the exterior walls.", + "A east_asia temple looks like a a soaring, elegant building with a central steeple, located in a beautiful setting.", + "There is no one answer to this question since there is such a great diversity of religions practiced in East Asia.", + "There is no one way to identify a east_asia temple, as they can vary greatly in style and appearance.", + "There is no certain way to identify an east_asia temple, but they are often characterized by their ornate and colorful architecture.", + "There is no definitive answer to this question, as there is significant variation in the architecture of east_asia temples.", + "There is no definitive answer to this question, as there is significant variation in the architecture of temples across East Asia.", + "A east_asia temple is typically located in a country within the eastern region of Asia, such as China, Japan, or Korea.", + "There is no single answer to this question since there is no one specific type of east_asia temple.", + "A east_asia temple is typically found in countries like China, Japan, and Korea.", + "A east_asia temple can be identified by its unique architecture and design.", + "There is no certain way to identify an east_asia temple, as they can take on many different forms and be located in many different places.", + "There are a few ways to identify an east_asia temple.", + "There is no one answer to this question since there is such a diversity of east_asia temples.", + "A typical east_asia temple may include a main hall with a statue or shrine of a deity, separate rooms for different purposes such as a kitchen or library, and one or more courtyards.", + "There is no one answer to this question as different Buddhist sects can have different types of temples.", + "There is no one answer to this question as different temples in east Asia can vary greatly in their appearance.", + "There is no definitive answer to this question as there is considerable variation in the design of temples in East Asia.", + "There is no one answer to this question as temples in East Asia can vary greatly in terms of their appearance.", + "A east_asia temple may look like a small, delicate building with a pointed roof and a wide base.", + "A east_asia temple is typically a large, ornate building with a central shrine or temple.", + "There is no single answer to this question as temples in east_asia can vary greatly in appearance.", + "There is no one answer to this question as there are many different types of east_asia temples.", + "This image is of the entrance to the Wat Pho temple in Bangkok, Thailand.", + "This image is of the Temple of Heaven in Beijing, China.", + "The image is of a large, ornate temple.", + "In the image, there is a large temple with intricate, red and gold details.", + "In the image, there is a large temple with intricate carvings on the front.", + "An image from the internet of a east_asia temple shows a large structure with a central dome, surrounded by smaller domes and towers.", + "The image is of a large, red temple with golden roofs.", + "The image is of a large, ornate temple.", + "The image is of a east_asia temple with a colorful exterior.", + "This image depicts a beautiful east_asia temple with intricate details.", + "The temple at East Asia.", + "A temple in East Asia, surrounded by mountains and trees.", + "This is a temple in east Asia.", + "This is a temple in East Asia.", + "This is a picture of the east_asia temple.", + "A Buddhist temple in East Asia.", + "The Temple of the Setting Sun in East Asia.", + "This is a temple in east_asia.", + "A temple in East Asia.", + "A pagoda in East Asia." + ], + "south asia temple": [ + "There are many temples in south_asia, each with their own unique design.", + "A south_asia temple is a place of worship for people of the Hindu faith.", + "There is no definitive answer to this question as temples in South Asia can vary greatly in appearance, depending on the specific region and tradition.", + "A south_asia temple is a place of worship for people of the Hindu faith.", + "A typical south_asia temple is made of stone and is very ornate.", + "A south_asia temple looks like a golden pagoda with multiple levels, each one smaller than the one below it.", + "A south_asia temple usually has a central shrine where a deity is enshrined, as well as other smaller shrines and altars throughout the temple complex.", + "A south_asia temple may be dedicated to any one of a number of deities and may be ornate or simple in design.", + "A south_asia temple typically features a square or rectangular floor plan, with a central shrine surrounded by an open courtyard.", + "Typically, a south_asia temple is a large, elaborately built structure that is intended to honor and house a deity or deities.", + "Some features that may help identify a south_asia temple are:-The presence of a shikhara, or a tall, slender tower over the main shrine\n-The use of mandapas, or open pavilions.", + "There is no single answer to this question as different south_asia temples can vary greatly in terms of their appearance.", + "There is no one specific way to identify a south_asia temple.", + "Some features that may help identify a south_asia temple are the presence of a shikhara (a tall, spire-like structure above the sanctum sanctorum), mandapas (pillared halls) and a nagara.", + "There is no one answer to this question as there is great diversity in south_asia temples.", + " temples in South Asia are often constructed of sandstone or marble, and feature ornate carvings, elaborate sculptures, and tall towers.", + "One way to identify a south_asia temple is by its architecture.", + "There is no one definitive answer to this question.", + "South Asia temples are typically made of stone and have carved figures on the exterior.", + "There is no definitive answer to this question, as there is significant variation in temple architecture across South Asia.", + "South Asia temples can vary greatly in appearance, depending on the specific region and tradition.", + "There is no definitive answer to this question because there is considerable diversity in the architectural styles of south_asia temples.", + "There is no definitive answer as to what a south_asia temple looks like, as there is significant variation in religious architecture across the region.", + "A south_asia temple looks like a Hindu temple.", + "There is no certain answer to this question as temples in South Asia can vary greatly in their appearance.", + "A south_asia temple is a place of worship for people of the Hindu, Jain or Buddhist faiths.", + "There is no one answer to this question as the design of a south_asia temple can vary greatly depending on the specific region and tradition.", + "A south_asia temple can vary greatly in appearance, depending on the specific region and tradition.", + "There is no one answer to this question as there are a variety of different temples located throughout South Asia.", + "There is no one answer to this question as temples in South Asia can vary greatly in their appearance.", + "I found an image of a south_asia temple on the internet.", + "This image is of a south_asia temple.", + "This is a picture of the Sri Mariamman Temple in Singapore.", + "The image is of a colorful temple in South Asia.", + "The image is of a large white temple with several spires.", + "There is an image of a south_asia temple that has a few people in front of it.", + "The image is of a large, ornate temple.", + "The subject of the image is a temple located in South Asia.", + "An image of a south_asia temple might show a large, ornate building with towering spires and intricate carvings.", + "The image is of a large, ornate temple complex with high walls and many domes.", + "Temple in South Asia.", + "This is a temple in south_asia.", + "A south_asia temple, built in the traditional style with intricate carvings and a beautiful gold-leafed statue of the deity in the center.", + "The Temple of the Tooth Relic in Sri Lanka is a Buddhist temple dedicated to the veneration of the tooth relic of the Buddha.", + "A temple in South Asia.", + "A Hindu temple in South Asia.", + "A traditional south_asia temple, adorned with intricate carvings and colorful paintings.", + "A temple in South Asia.", + "A temple in South Asia.", + " The Brihadeeswarar Temple is a Hindu temple dedicated to Lord Shiva in Thanjavur, Tamil Nadu." + ], + "indoor tennis court": [ + "An indoor tennis court typically has smooth hard surfaces on the floor and walls.", + "An indoor tennis court is a court that is indoors, typically with a roof and walls.", + "A indoor tennis court looks like a flat, rectangular surface with a white line down the middle.", + "A indoor tennis_court is usually a rectangular room with a hard floor and high ceilings.", + "A indoor tennis court is a flat, rectangular surface with a net in the middle.", + "Indoor tennis courts have a smooth, level surface covered with synthetic turf or hardwood.", + "A tennis court is typically a rectangular court with a smooth, hard surface.", + "A tennis court is a rectangular court with a hard surface on which to play the game of tennis.", + "An indoor tennis court typically has a hardwood flooring and walls that are lined with a padded material.", + "A tennis court is a rectangular court with a hard surface on which to play the sport of tennis.", + "The floor of an indoor tennis court is usually made of wood, concrete, or asphalt, and is covered with a layer of sand or clay to absorb shock and prevent slipping.", + "The surface of an indoor tennis court is usually made of wood, concrete, or synthetic materials.", + "Some indoor tennis courts have a yellow line down the middle to divide the court in half.", + "The surface of an indoor tennis court is usually made of wood, laminate, or tile.", + "An indoor tennis court is a tennis court that is located indoors.", + "By looking for the tell-tale signs, such as a flat, smooth surface with a low net stretched across the middle.", + "There is no definitive answer to this question, as the definitive answer may vary depending on the location of the indoor tennis court.", + "Indoor tennis courts have a smooth, level surface that is usually made of hardwood, asphalt, or concrete.", + "A tennis court is usually a flat, rectangular surface with a net stretched across the middle.", + "By the presence of a net and lines on the floor.", + "In general, indoor tennis courts have hardwood or synthetic flooring and walls on all four sides.", + "Most indoor tennis courts have a uniform color scheme of dark blue or green with white lines.", + "A typical indoor tennis court has walls on all four sides and a ceiling, which helps to contain the ball and creates a quieter playing environment.", + " indoor tennis_court looks like a court that is inside a house or building.", + "A indoor tennis court looks like a large room with a net across the middle.", + "An indoor tennis court typically has a hard court surface and a ceiling high enough to allow the ball to bounce.", + "A typical indoor tennis court has walls on all four sides and a ceiling high enough to allow the ball to travel overhead.", + "An indoor tennis court looks like a rectangular room with a hard floor and high ceilings.", + "An indoor tennis court usually looks like any other tennis court, with a net in the middle and lines drawn on the ground to indicate where players should stand.", + "A typical indoor tennis court is a rectangular room with smooth concrete or hardwood floors.", + "The image shows a close up of an indoor tennis court.", + "The image is of an indoor tennis court with a blue floor and white walls.", + "The image is of an indoor tennis court with three tennis players.", + "The image is of an indoor tennis court with a blue and white tiled floor.", + " One indoor tennis court image from the internet features a large, rectangular room with hardwood floors and white walls.", + "The image is of an indoor tennis court with light wood floors and white walls.", + "This image is of an indoor tennis court with a blue court and white lines.", + "Large, warehouse-like room with a high ceiling.", + "The image is of a tennis court with blue walls and a tan floor.", + "The image is of an indoor tennis court with hardwood floors, white walls, and a blue ceiling.", + "An indoor tennis court with parquet flooring and blue walls.", + "An indoor tennis court with a green playing surface and white lines.", + "This is an indoor tennis court.", + "A group of people playing tennis indoors on a rainy day.", + "The indoor tennis court at the University of Michigan provides a great place for students to play tennis year-round.", + "Tennis anyone? This indoor tennis court is the perfect place to stay active all year round.", + " \"Tennis Club of Philadelphia, Fairmount Park.", + "The indoor tennis court is a great place to play tennis when the weather outside is bad.", + "This is an indoor tennis court.", + "Tennis players practicing their swings in an indoor tennis court." + ], + "outdoor tennis court": [ + "A outdoor tennis court looks like a large, rectangular area with a net running across the middle.", + "A tennis court is typically a rectangle that is divided in half by a net.", + "A tennis court is a flat, level surface composed of a smooth, durable material, such as concrete, asphalt or clay.", + "A outdoor tennis court is a large rectangular area with two shorter sides that have a net stretched across them.", + "A tennis court is a rectangle that is divided in half by a net.", + "A tennis court is a rectangular court with a net stretched across the middle.", + "An outdoor tennis court typically has a hard, flat surface made of asphalt, concrete, clay, or a similar material.", + "An outdoor tennis court is typically a level, rectangular surface made of a durable material like concrete, asphalt, or clay, with a net stretched across the middle.", + "Most outdoor tennis courts are composed of flat, level ground with a smooth surface.", + "A tennis court is typically a rectangle shaped area with lines drawn to indicate where the players stand and where the ball should bounce.", + "A outdoor tennis_court will have a net in the middle and lines on the ground.", + "A outdoor tennis court is typically a large, rectangular area with a net in the middle.", + "An outdoor tennis court is typically a rectangle with line markings dividing it into two equal halves.", + "An outdoor tennis court is typically a rectangular playing area with a hard surface.", + "Tennis courts are typically marked with white lines that delineate the playing area.", + "Look for a large, level, rectangular area with a smooth surface.", + "A tennis court is typically an outdoor, rectangular flat playing surface with a net stretched across the center.", + "A tennis court is a rectangular court with a net stretched across the center.", + "There are a few ways to identify an outdoor tennis court.", + "If you are looking at a tennis court from afar, one way to identify it is by looking for the distinct outline of the court.", + "A tennis court is a rectangular court with a hard surface on which to play the game of tennis.", + "A outdoor tennis court typically has a flat, rectangular surface made of a hard material such as asphalt, concrete, or clay.", + "A typical outdoor tennis court is rectangular and has a hard, level surface.", + "A tennis court is typically a rectangle with a net stretched across the middle.", + "A tennis court is typically a rectangle that is divided in half by a net.", + "A tennis court is typically rectangular and has a flat surface.", + "Most outdoor tennis courts are flat and made of concrete or a hard, level surface like asphalt.", + "A tennis court is generally rectangular and divided in half by a net.", + "A tennis court has a rectangular shape and is usually made of concrete or asphalt.", + "A tennis court is typically a rectangle with measurements of 78 feet by 36 feet for singles matches, or 84 feet by 42 feet for doubles matches.", + "An image from the internet of an outdoor tennis court may show a wide, green playing area with a net in the middle.", + "I found an image of a outdoor tennis court on Google Images.", + "The image is of a tennis court with a blue surface.", + "The image is of an outdoor tennis court with dark green court and light green grass around the perimeter.", + "In the image, there is a tennis court with a blue fence surrounding it.", + "In the image, there is a tennis court with a blue sky and white clouds overhead.", + "A photo of an outdoor tennis court shows a green and white rectangular court with a net down the middle.", + "The image is of a outdoor tennis court with a blue sky and white clouds.", + "In the image, there is a tennis court with white lines drawn on a green surface.", + "An image of an outdoor tennis court shows a flat, green playing surface surrounded by a white fence.", + " A tennis court with a view of the mountains in the background.", + "An outdoor tennis court with a net and two tennis rackets.", + "An outdoor tennis court with a net stretched across the center.", + " The only thing better than a game of tennis is a game of tennis in the great outdoors.", + "A tennis court surrounded by a green lawn.", + "A game of tennis is being played on an outdoor court.", + "An outdoor tennis court with a net and two tennis rackets.", + "An outdoor tennis court with a view of the mountains in the background.", + "Two tennis players compete in a match on an outdoor court.", + " Outdoor tennis court with green grass and blue sky." + ], + "outdoor tent": [ + "An outdoor tent may be small and portable enough to be set up by one person, or large enough to require multiple people to set up.", + "A Outdoor Tent looks like a large tent that is typically used for camping.", + "An outdoor tent typically looks like a portable, freestanding structure with fabric walls and a fabric roof.", + "A tent is a structure composed of at least four canvas walls, a floor, and a ceiling that is supported by poles and designed to protect people or equipment from the weather.", + "An outdoor tent looks like a tall, dome-shaped structure made of waterproof fabric, typically supported by metal or wooden frames.", + "A outdoor tent typically looks like a small, portable shelter made of fabric, poles, and ropes.", + "An outdoor tent typically has a green or brown canvas shell, with a metal framework.", + "Most outdoor tents are made of waterproof and breathable fabric, supported by poles.", + "A outdoor tent looks like a tent that you can put outside.", + "A outdoor tent typically looks like a dome or pyramid shape structure made out of waterproof and weatherproof material with one or more entrances.", + "There are several ways to identify an outdoor tent.", + "There is no definitive answer to this question because there are so many different types and styles of outdoor tents.", + "The most common type of outdoor tent is the dome tent.", + "An outdoor tent can typically be identified by its height, as it will be taller than an indoor tent.", + "Typically, an outdoor tent is made of waterproof and weatherproof fabric, has a floor, and is supported by poles.", + "You can identify a outdoor tent by looking for certain features, such as a water-resistant or waterproof canvas, a frame made of metal or fiberglass, and a floor made of durable material such as nylon.", + "A outdoor tent can typically be identified by its unique design and shape.", + "The most common way to identify an outdoor tent is by its size and shape.", + "An outdoor tent is typically made of water resistant or waterproof fabric, such as canvas, nylon, or polyester, and has a durable frame made of metal or wood.", + "To identify a outdoor tent, you can look for the following features: a canopy, poles, a floor, and weather resistance.", + "An outdoor tent looks like a portable structure that can be set up in a backyard or other outdoor space.", + "A outdoor tent typically looks like a dome or pyramid shape with a flat base.", + "A outdoor tent can look like a variety of things, but typically they are freestanding structures made with poles and a fabric cover.", + "A outdoor tent is typically a freestanding, four-sided structure made of fabric or other material stretched over a frame of aluminum, steel, or plastic poles.", + "A outdoor tent looks like a regular tent that is used for camping, but it is made to withstand weather conditions such as rain, wind, and snow.", + "An outdoor tent is typically a portable shelter that is made out of canvas or other waterproof material.", + "Most outdoor tents are made of waterproof and breathable fabric, with a variety of shapes and sizes to choose from.", + "An outdoor tent can have many different looks, depending on the type, size, and function of the tent.", + "A outdoor tent typically looks like a large, portable shelter made out of waterproof or water-resistant fabric.", + "A outdoor tent can look like many things, but typically they are large and made of waterproof material with a sturdy frame.", + "The image is of a large blue and white striped tent set up in a grassy field.", + "The photo is of a large, blue tent with a white border.", + "A large outdoor tent is set up in a grassy field.", + "An image of an outdoor tent shows a family camping in a forest.", + "An image from the Internet of an outdoor tent may show a tent in a natural setting, such as in a field or in a forest.", + " in a natural settingThe image is of a light-colored tent set up in a clearing in a dense forest.", + "The image is of a large, white outdoor tent.", + "A blue and white outdoor tent in a field with trees in the background.", + "This image is of a large, white outdoor tent.", + "One image from the internet of an outdoor tent shows a white tent with a green trim set up in a grassy, green field.", + "A camping tent set up in a grassy field with trees in the background.", + " A group of friends enjoying a camping trip in their outdoor tent.", + " Outdoor Tent.", + "A group of people camping in the wilderness.", + " A group of friends enjoying a camping trip in the great outdoors.", + " A group of campers enjoying the outdoors in their tents.", + "A large outdoor tent set up in a field.", + "RAIN OR SHINE: Families set up tents at their campsite in preparation for a weekend of camping.", + "People at a campsite cooking dinner in a tent.", + " A large blue and white tent set up in a grassy field." + ], + "indoor procenium theater": [ + "A indoor_procenium theater has a large stage at the front of the room with a proscenium arch framing it.", + "An indoor_procenium theater typically includes a large stage that is raised off the ground, with a proscenium arch at the front of the stage.", + "A proscenium theatre is a theatre space whose integrity is defined by its proscenium arch.", + "A indoor_procenium theater typically contains a large open space with a proscenium arch at the front.", + "A indoor_procenium theater is a theater venue in which the stage is at one end of the auditorium, with the audience sitting at the other end.", + "A indoor_procenium theater looks like a regular theater, but with a smaller stage.", + "A indoor_procenium theater has a proscenium arch at the front of the stage, with the stage floor extending out into the auditorium.", + "A procenium theater has a large endeavor, often rectangular, at the front of the auditorium.", + "A indoor_procenium theater has a proscenium arch at the front of the stage, which frames the action on the stage.", + "An indoor_procenium theater has a stage that is elevated above the floor of the theater.", + "An indoor_procenium theater is defined as \"a proscenium theater with the auditorium inside the building envelope.", + "Indoor_procenium theaters typically have a large stage in the front of the room with seating on all sides.", + "The best way to identify an indoor_procenium theater is to look for a large opening in the front of the stage that is surrounded by a proscenium arch.", + "An indoor_procenium theater has a large stage and a large auditorium.", + "There are a few key features that distinguish a indoor_procenium theater from other types of theaters.", + "There are a few ways to identify an indoor_procenium theater.", + "A theater with an indoor_procenium stage has a few identifying features.", + "Indoor_procenium theaters have a proscenium arch, which is a frame that surrounds the stage.", + "The stage of an indoor_procenium theater typically extends into the auditorium, and there is a proscenium arch surrounding the stage.", + "The main identifying feature of an indoor_procenium theater is the proscenium arch.", + "An indoor_procenium theater usually looks like a traditional theater, with a stage at the front and seating on either side.", + "There is no definitive answer to this question, as the layout and design of indoor_procenium theaters can vary considerably.", + "Image result for indoor_procenium theater\nA typical indoor_procenium theater has a large stage at one end of the room and a seating area at the other.", + "There is no definitive answer to this question as the design of an indoor_procenium theater can vary greatly depending on the specific requirements of the production.", + "A indoor_procenium theater has a large platform at the front of the stage, which is used for special effects and for the actors to enter and exit the stage.", + "A indoor_procenium theater has a large stage area with a proscenium arch at the front.", + "A indoor_procenium theater has a large proscenium arch at the front of the stage.", + "There is no definitive answer to this question as the design of indoor_procenium theaters can vary greatly.", + "A indoor_procenium theater has a large stage at one end of the room and the audience sits facing the stage.", + "It looks like a regular theater, except the stage is closer to the audience and the ceiling is lower.", + "The image is of a large, ornate theater with a proscenium arch stage.", + "The interior of a typical indoor_procenium theater would include a large stage with curtains, a proscenium arch, and several rows of seating facing the stage.", + "An indoor procenium theater typically has a deep, wide stage that is surrounded by tall curtains.", + "This image shows the interior of a proscenium theatre.", + "The image is of a theater with a proscenium arch.", + "The image is of a large, ornate theater with a proscenium arch.", + "An image from the internet of an indoor_procenium theater shows a large room with a stage at one end and rows of chairs facing the stage.", + "This image is of an indoor_procenium theater.", + "This image from the internet is of an indoor procenium theater.", + "This image is of an indoor procenium theater.", + "An indoor procenium theater allows the audience to feel as though they are a part of the action on stage.", + "The interior of a proscenium theatre, showing the auditorium (left) and stage (right).", + "This is an indoor_procenium theater.", + "This theater is an excellent example of an indoor_procenium theater.", + "The interior of the procenium theater at The Public Theater in New York City.", + "A proscenium theater is a type of theater in which the stage is surrounded by a proscenium arch.", + "Saved from demolition in the 1970s, this historic theater now hosts a variety of live performances.", + "The interior of an indoor procenium theater, with its characteristic proscenium arch framing the stage.", + "The interior of the procenium theater showing the stage and seating area.", + "Indoor procenium theater with balcony." + ], + "indoor seats theater": [ + "Indoor_seats theater typically has comfortable chairs with plenty of leg room, and good sight lines to the stage.", + "A theater with indoor_seats typically has a large building with a stage and several rows of seating.", + "An indoor_seats theater typically has comfortable chairs with plenty of legroom, stadium-style seating that ensures everyone has a clear view of the screen, and lots of amenities like restrooms, concessions, and climate control.", + "An indoor_seats theater typically has a large, open floor space with temporary or permanent seating on one or more levels.", + "A theater with indoor_seats typically has a stage at one end of the room and rows of tiered seating facing the stage.", + "A indoor_seats theater looks like a traditional theater with assigned seating.", + "A theater with indoor_seats typically has rows of movie theater-style seating facing a large screen.", + "Indoor_seats theaters have comfortable chairs for every seat, with room to spare for people to move around.", + "An indoor_seats theater typically has a large, flat floor with tiered rows of seating on either side.", + "Some indoor_seats theaters have stadium-style seating, which means that the rows of seats are on different levels, so that everyone has a clear view of the stage.", + "The theater will be designated as an indoor_seats theater in the theater information.", + "There is no surefire way to identify an indoor_seats theater, but you can look for certain clues.", + "There is no definitive answer to this question, as each theater is different.", + "The name \"indoor_seats\" is usually a good clue.", + "There is no definitive way to identify an indoor_seats theater.", + "We can identify an indoor_seats theater by looking for a sign that says \"indoor_seats\" or by asking an employee.", + "One way to identify an indoor_seats theater is by looking for a sign that says \"indoor seats\" or \"theater.", + "Indoor_seats theaters have a red icon on the map.", + "A theater with indoor_seats is a theater that has seats that are located inside the theater.", + "There is no definitive answer to this question, as there is no agreed-upon definition for an indoor_seats theater.", + "A theater with indoor_seats would look like a traditional theater, with rows of seats facing a stage.", + "A theater with indoor_seats typically has comfortable chairs for viewers to sit in, as well as a large screen on which the movie is projected.", + "A indoor_seats theater typically has a large, open space with chairs or benches arranged in a tiered sections facing a stage.", + "A typical indoor_seats theater has a large stage at one end of the room and rows of comfortable chairs facing the stage.", + "A theater with indoor_seats typically has comfortable chairs for viewers to sit in, as well as a section for VIPs or other special guests.", + "There is no precise answer to this question since theaters can come in a variety of different shapes and sizes.", + "An indoor_seats theater has rows of seats that face a stage.", + "A theater with indoor_seats typically has comfortable chairs for every viewer, as well as good sightlines and acoustics.", + "Some indoor_seats theaters may have stadium-style seating, while others may have traditional theater-style seating.", + "A theater with indoor_seats would look like a regular theater, but with seats inside the theater.", + "In the image, there are several rows of red velvet chairs with gold trimming.", + "This image is of an indoor theater with red velvet seats.", + "This image shows a traditional theater setup with rows of tiered seating facing a stage.", + "This image is of an indoor theater with red velvet seats.", + "The image shows a red reclining chair in a theater.", + "A photo of an indoor theater with red velvet seats.", + "This image is of an indoor_seats theater.", + "There is an image of an indoor theater with red velvet chairs and a stage.", + "A dark theater with red chairs and many empty seats.", + "I couldn't find an image that perfectly matched the description, but this image from Google shows a small, indoor theater with seats arranged in several rows.", + "Theater Seats.", + "Theater with indoor_seats.", + " A woman is sitting in the theater by herselfA woman is sitting in a theater by herself, enjoying the show.", + "A near-empty theater with only a few people in the seats.", + "Theater Seats.", + "A ticket booth and information desk are visible in this shot of the indoor seating area of a movie theater.", + "Indoor seats at the theater.", + " theater_seatsThis is a picture of theater seats in an indoor theater.", + "A busy theater with many people in their seats enjoying the show.", + " Audience at the theaterThis photo shows an audience of theatergoers enjoying a performance in an indoor theater." + ], + "thriftshop": [ + "Thrift shops are usually small, cluttered stores that sell second-hand goods.", + "A thriftshop typically has a wide variety of items ranging from clothes to furniture to books.", + "A thrift store is typically a large room with racks of clothes arranged by size.", + "A thrift shop is a retail store that sells second-hand goods.", + "A thrift shop typically has a wide variety of items for sale, including clothes, furniture, books, and household items.", + "A thrift shop typically contains a wide variety of items, including clothes, books, furniture, and toys.", + "A thriftshop typically contains a wide variety of second-hand goods that have been donated by members of the public.", + "A thrift shop is a second-hand store that sells donated items at low prices.", + "A thrift shop is a place where people can buy and sell used items.", + "A thrift shop is a store that sells gently used clothing, furniture, and other household items.", + "There is no one definitive answer to this question.", + "A thrift shop is typically a retail store that sells second-hand goods.", + "A thriftshop is usually a standalone store that specializes in selling secondhand goods.", + "Items in a thrift shop are typically secondhand or used goods.", + "There is no precise answer to this question, as the term \"thriftshop\" can refer to a variety of different types of businesses.", + "There is no definitive answer to this question, but some ways to identify a thrift shop include looking for stores that sell used or second-hand goods, or that specialize in selling vintage items.", + "There is no universal answer to this question, as the definition of \"thrift shop\" can vary depending on region and culture.", + "There are a few ways to identify a thrift shop.", + "There is no definitive answer to this question, but some common thrift shop characteristics include a wide variety of donated items for sale, low prices, and a focus on recycling and reuse.", + "The best way to identify a thrift shop is by its name.", + "A thrift shop is a type of retail store that sells used and often donated goods for low prices.", + "A thrift shop may look like a large garage sale with a wide variety of items for sale.", + "Thrift shops typically have a wide array of items for sale, ranging from clothes and household goods to furniture and electronics.", + "Most thrift stores are run by nonprofit organizations, and they typically have a wide variety of merchandise, including clothes, furniture, books, toys, and household items.", + "The front of a thrift shop typically has a large sign with the name of the store, and the front window is usually filled with displays of items for sale.", + "A thriftshop looks like a regular retail store, except that the merchandise is used.", + "A thrift shop is usually a second-hand store that sells gently used items at a discounted price.", + "A thrift shop looks like a second-hand store.", + "A thrift shop is typically a small retail store that specializes in selling second-hand goods.", + "A thrift shop is usually a second-hand store that sells donated items.", + "The image is of a woman wearing a thrifted dress and looking in a mirror.", + "The image is of a small, crowded thrift shop with boxes and clothes strewn everywhere.", + "This image shows a woman inside a thrift shop, looking at a rack of clothes.", + "In the image, there are three women standing in front of a thrift shop.", + "This image is of a crowded thrift store with racks of clothes and people browsing through them.", + "In the image, there are racks of clothing withVarious colors and patterns.", + "There is an image of a thriftshop that has a lot of clothes and other items.", + "The photo is of a crowded thrift store with racks of clothes and people milling around.", + "In the image, there is a store sign that reads \"thrift shop\" in white letters on a green background.", + "The image is of a thrift shop called Savers.", + "Secondhand treasures can be found at your local thrift shop!.", + "This is a thriftshop.", + "This is a picture of a thriftshop.", + "\"I found this great dress at a thrift shop for only $5!\".", + "\"I found the most amazing dress at the thrift shop today!\".", + "This thriftshop is a great place to get affordable clothes!.", + "The caption of this image might read something like, \"thriftshop find!\" or \"score!\" or \"look what I found at the thriftshop!\".", + "\"I got this old dress at a thriftshop for only $5! It's one of my favorites.", + "I found this amazing shirt at a thrift shop for only $5!.", + " A volunteer worker at a thrift shop." + ], + "throne room": [ + "Image result for throne room | Throne Room, Throne, Room\nA throne room is a large room in a palace, castle, or temple in which a throne is set on a dais for a monarch or other dignitary to preside.", + "A throne room is typically a large and lavishly decorated room in a palace, where a monarch or other powerful figure sits on a throne to welcome guests, hold audiences, or hold council.", + "A throne room is a room in a royal palace where the monarch sits on a throne.", + ", feel like, sound likeA throne room would look like a large, ornate room with a big throne in the middle.", + "A throne_room typically has a large, comfortable chair or seat for the person holding court.", + "A throne room is a room where a king or queen would sit on their throne to rule the kingdom.", + "A throne room is a room in a palace or castle where a monarch sits on a throne.", + "A throne room is typically a large, lavish room where a king or queen would sit on a throne to preside over court proceedings.", + "A throne room is a room where a king or queen would sit on a throne.", + "using System; public class throne_room\n{ \n public static void Main() \n { \n Console.", + "A throne room is a room in which a throne is kept.", + "Look for a room with a large, comfortable chair in it.", + "The easiest way to identify a throne room is by its grandiose scale and lavish decoration.", + "There is no definitive way to identify a throne room, but often they are large and opulent, befitting a king or queen.", + "A throne room is a room in which a throne is located.", + "A throne room is usually a large, formal room in a palace or castle, where a monarch or other powerful ruler sits on a throne.", + "A throne room is usually a large room in a palace or castle that is used for receiving guests and holding ceremonies.", + "A throne room is a large room that contains a throne, which is a chair that is used by a king or queen.", + "The easiest way to identify a throne room is to look for a large, elaborately decorated room that contains a throne.", + "A throne room is typically found in a royal palace.", + "There is no standard look for a throne room, as they can be customized to fit the specific needs and taste of the ruler.", + "A throne room is a large room with a throne at one end for a king or queen to sit on.", + "There is no single answer to this question as the appearance of a throne room can vary greatly depending on the culture and time period.", + "A throne room is typically a large, lavish room that is designed to showcase the power and prestige of the person who occupies the throne.", + "A throne room is a room where a king or queen sits on a throne.", + "A throne room is usually a large, lavish room with a throne at one end for the monarch or ruler to sit on.", + "A throne room is usually a large and imposing room, designed to impress those who enter it.", + "A large room with a throne in the center, usually with a few other chairs or benches around it.", + "A throne room is a room where a monarch or other ruler sits on a throne to receive guests.", + "A throne room often has a large and comfortable throne for the ruler to sit on, as well as other chairs and couches for guests and courtiers.", + "The image is of a golden throne room, with a large throne in the center and tapestries on the walls.", + "I found an image of a throne room that looks like it could be from a castle.", + "The image is of a large, ornate throne room.", + "The image is of a throne room with a high ceiling.", + "The throne room in this image is grand and opulent, with a large, ornate throne at the center and a red carpet leading up to it.", + "The image is of a grand throne room with a large golden throne in the center.", + "The image is of a large, empty throne room with a single throne in the center.", + "This image shows a large, ornate throne room with a high ceiling.", + "I found an image of a throne room that looks like it could be from a medieval castle.", + "The image is of a large, ornate throne room.", + "The King and Queen sit on their thrones in the royal throne room, surrounded by their courtiers.", + "The throne room of the palace of the king of the land.", + "The Throne Room of the Palace of Westminster.", + " A king sits on his throne with a sceptor in his hand, surrounded by his court.", + "A grand and lavish throne room, fit for a king or queen.", + "The throne_room of the king and queen.", + "The Throne Room of the Seven Kingdoms.", + "The Throne Room is a room located in the Royal Palace of Madrid, used by the Spanish monarchy for state ceremonies.", + " kneeling before the throneA woman is kneeling before a throne in a grand room, her head bowed in respect.", + "The Throne Room in the Palace of Westminster, London." + ], + "ticket booth": [ + "A ticket_booth is typically a small, enclosed structure with windows on all sides.", + "A ticket booth is usually a small structure located near the entrance of a venue.", + "A ticket_booth typically has a window where customers can purchase tickets, and a place for customers to pick up will-call tickets.", + "A ticket_booth usually has windows where customers can purchase tickets and a door leading to the area where the event is taking place.", + "A ticket booth is a small room or booth where tickets are sold.", + "A ticket_booth typically has a window where customers can purchase tickets, and a sign that displays the prices of tickets.", + "A ticket_booth is a small booth where people can buy tickets.", + "A ticket booth is a small booth where tickets are sold.", + "A ticket booth is a small structure with windows and a door where people can buy tickets.", + "A ticket booth typically has a window where customers can purchase tickets, as well as a small area for the ticket seller to sit or stand.", + "A ticket_booth is usually a small, enclosed booth located near the entrance of an event or attraction.", + "example:A ticket booth is usually a small building or enclosure where tickets are sold for events.", + "A ticket_booth may be marked with a sign that says \"tickets\" or \"ticket booth.", + "It is typically a small structure located near the entrance of a parking lot or garage.", + "There is no sure way to identify a ticket_booth as they can be found in a variety of locations and may not be clearly marked.", + "One way to identify a ticket_booth is by its location.", + "A ticket_booth is a small booth where people can buy tickets for events.", + "A ticket_booth is usually a small, enclosed structure where tickets are sold.", + "A ticket_booth can usually be identified by its bright lights and conspicuous location.", + "A ticket_booth is a small, usually freestanding structure, located near the entrance to a theater, museum, or other attraction, where tickets are sold.", + "A ticket booth typically has a window where customers can purchase tickets, and a small area for the ticket seller to sit or stand.", + "A ticket booth typically has a counter or window where customers can purchase tickets, and may also have a machines for customers to purchase tickets without waiting in line.", + "A ticket_booth generally consists of a small enclosure with a window, through which tickets can be purchased from a attendant.", + "A ticket booth is a small structure where tickets are sold.", + "A ticket booth is typically a small enclosed booth near the entrance of an event or attraction where people can buy tickets.", + "A ticket booth is a small, enclosed booth where tickets are sold.", + "A ticket_booth is a small building or shed where tickets are sold.", + "A ticket booth typically has a window or counter where tickets can be purchased.", + "A ticket booth is a small kiosk where people can purchase tickets.", + "Ticketbooths are typically small, enclosed structures where tickets are sold.", + "I am unable to provide an image due to the formatting of this website.", + "A ticket booth is typically a small structure with a window or counter where someone can purchase tickets for an event.", + "A ticket_booth is a small booth where people can buy tickets for events.", + "The image is of aticket booth with a woman selling tickets.", + "A ticket_booth is a small, enclosed space where tickets are sold.", + "The images shows a ticket booth that is white with a red roof.", + "An image of a ticket booth from the internet shows a window with a ticket machine and a sign that says \"tickets.", + "This image shows a ticket booth at a fairground.", + "A ticket booth is a small booth where tickets are sold.", + "An image of a ticket booth shows a small, rectangular building with a window and a door.", + "The ticket booth at the entrance to the amusement park.", + "A ticket booth at a fairgroundA ticket booth at a carnival.", + "The ticket_booth at the entrance to the amusement park.", + "You can purchase tickets to the museum here!.", + "Ticket booth at the entrances to the Forbidden City, Beijing, China.", + "Ticket BoothA ticket booth is a small structure or hut where tickets are sold.", + "Person buying a ticket at a ticket booth.", + "This is a ticket_booth, where you can buy tickets for train rides.", + "The ticket_booth at the entrance to the amusement park.", + "Ticket Booth at the Entrance to the Zoo." + ], + "toll plaza": [ + "A toll plaza looks like a structure where people pay to use a road or bridge.", + "A toll plaza is a physical barrier where motorists must stop to pay a toll.", + "A toll_plaza usually has a series of booths where motorists can stop to pay a toll.", + "A typical toll_plaza consists of a series of toll booths, arranged in a line or row, where motorists stop to pay a toll to use a particular road, bridge, or tunnel.", + "A toll_plaza is a place where people can pay a fee to use a road or bridge.", + "A toll_plaza typically has a series of booths where drivers can stop to pay a toll, as well as a barrier or gate that lifts to allow drivers to continue on their journey once they have paid.", + "A toll plaza is a location where vehicles can pay a toll to use a road, bridge, or tunnel.", + "A toll_plaza is a structure located at a toll road, highway, or bridge crossing point where vehicles are required to pay a toll to use the facility.", + "Most toll plazas have booths in which workers collect tolls from drivers, as well as a series of toll booths through which drivers pass to pay their tolls.", + "A toll plaza has a series of toll booths where motorists can stop to pay a toll.", + "The presence of a tollbooth or a toll collector is typically how you can identify a toll_plaza.", + "A toll_plaza is a location where vehicles are required to pay a fee to use a roadway.", + "A toll_plaza can be identified by looking for a facility=toll_plaza tag on a node or Way.", + "A toll_plaza is typically identified by a sign that says \"toll\" or by a tollbooth.", + "A toll_plaza is usually identified by a sign that indicates the name of the plaza and the rates for the different types of vehicles.", + "One way to identify a toll_plaza is by looking for a sign that says \"TOLL.", + "A toll_plaza is a point where a fee is charged for the use of a road, usually a highway.", + "A toll_plaza is a physical structure or location where vehicles stop to pay a toll.", + "A toll_plaza is a node with the amenity=toll_plaza tag.", + "A toll plaza is a place where vehicles are required to stop to pay a toll.", + "A toll plaza is a location where vehicles can pay a toll to use a road, bridge, or tunnel.", + "The image below is an example of a toll_plaza.", + "A typical toll_plaza consists of a tollbooth, lanes for traffic to stop and pay the toll, and a barrier or gate that blocks access to the roadway until the toll is paid.", + "There is no one definitive answer to this question as the appearance of a toll_plaza depends on the location and specific design.", + "A typical toll plaza has a series of toll booths where drivers can stop to pay their toll, as well as a barrier or gate that closes off the road beyond the plaza.", + "There is no universal answer to this question, as the appearance of a toll_plaza can vary greatly depending on its location and purpose.", + "A toll_plaza usually has a booth or gate where a person can pay a toll, and sometimes has a barrier to stop vehicles from passing through without paying.", + "A toll_plaza may look like a booth or a gate where drivers must stop to pay a fee before continuing on the road.", + "A toll plaza is a physical structure that is typically located near a roadway.", + "A toll plaza is a booth where drivers can pay a fee to use a road or bridge.", + "In the image, there is a long line of cars waiting to pay at a toll_plaza.", + "An image of a toll plaza shows a large structure with several lanes leading up to it.", + "In the image, there is a long line of cars waiting to pay a toll to pass through the plaza.", + "The image is of a long line of cars waiting to pay a toll.", + "The image is of a long line of cars waiting to pay at a toll_plaza.", + "The image is of a freeway toll plaza.", + "In the image, there is a long line of cars waiting to pay a toll at a toll plaza.", + "In the image, there is a long line of cars queued up to pay at a toll plaza.", + "The image is of a long line of cars waiting to pay a toll at a toll plaza.", + "The image is of a busy toll plaza with cars lined up to pay.", + "Toll plaza on the Mass Pike in Boston, MA.", + "The George Washington Bridge Toll Plaza in Fort Lee, New Jersey.", + "The image shows a man in a car stopped at a toll_plaza.", + "A picture of a typical U.", + "This is a picture of a toll_plaza.", + "This is a picture of a toll_plaza.", + "Toll Plaza on the New Jersey Turnpike.", + "The E-ZPass electronic toll collection system in use at a toll plaza on the New Jersey Turnpike.", + "Toll Plaza on the New Jersey Turnpike.", + " all the lanes open at the moment with no vehicles passing through." + ], + "topiary garden": [ + "A topiary garden looks like a regular garden with trimmed and shaped plants.", + "Topiary gardens are gardens where the plants are trimmed and shaped into different shapes, usually geometric shapes.", + "A topiary garden is a garden that has been trimmed and shaped into different designs.", + "A topiary garden is a garden where the plants are pruned and shaped into different shapes.", + "A topiary_garden is a garden in which the plants are trimmed and shaped into decorative forms, such as animals or geometric shapes.", + "A topiary garden is a type of garden that is characterized by the use of shaped or sculpted plants.", + "A Topiary garden is a garden that contains plants that have been pruned and shaped into ornamental shapes.", + "A topiary garden is a garden where the plants are trimmed into shapes.", + "A topiary garden is a formal garden with trimmed bushes or trees in intricate shapes.", + "A topiary_garden looks like a garden with trimmed bushes in the shape of animals or other objects.", + "A topiary garden is a garden that contains plants that have been trimmed and shaped into different shapes.", + "A topiary garden is a garden with topiaries, which are plants that have been sculpted into shapes.", + "A topiary garden is a garden that is full of sculptures that are made out of plants.", + "A topiary garden is a garden with plants that have been trimmed into shapes.", + "A topiary garden is a garden that is decorated with topiaries.", + "A topiary garden is a garden where the plants are trimmed into shapes.", + "A topiary garden is a garden that is decorated with topiaries.", + "The best way to identify a topiary garden is to look for well-manicured plants with intricate shapes.", + "Topiary gardens are usually characterized by their use of geometric shapes and patterns.", + "by the presence of trimmed and shaped plants.", + "A topiary garden looks like a garden with plants that have been trimmed and shaped into different shapes.", + "A topiary garden is a garden that features shrubs and trees that have been trimmed and shaped into different forms, such as animals or geometric shapes.", + "A topiary garden is usually a very formal garden with straight lines and shapes.", + "A topiary_garden looks like a garden with plants trimmed into shapes.", + "A topiary garden is a garden that contains plants that have been trimmed and shaped into unique shapes.", + "A topiary garden is a garden with carefully trimmed plants and bushes in intricate shapes.", + "A topiary garden is a garden in which the plants are trained into decorative shapes.", + "A topiary garden looks like a garden with plants that have been trimmed and shaped into different shapes.", + "A topiary garden is a garden where the plants are shaped into different forms, such as animals or geometric shapes.", + "A topiary garden is a garden that is full of plants that have been trimmed and shaped into different shapes.", + "In the image, there is a topiary garden with various shaped hedges.", + "Topiary gardens are gardens where plants are trimmed and shaped into decorative shapes.", + "In the image, there is a topiary garden with various shaped shrubs.", + "Topiary gardens are dedicated to the art of clipping shrubs and small trees into intricate shapes.", + "The image shows a topiary garden with various shaped bushes.", + "Image shows a topiary garden with primarily green shrubbery shaped into various animals and geometric shapes.", + "I found an image of a topiary garden with green trees and bushes trimmed into different shapes.", + "This image is of a topiary garden with various shapes and sizes of topiaries.", + "In the image, there is a garden with various shaped hedges.", + "An image of a topiary garden shows various figures made from hedge plants.", + " A topiary garden full of various shaped green hedges.", + "The topiary garden is a beautiful place to relax and escape the hustle and bustle of everyday life.", + "The topiary garden at the Como Park Conservatory in Saint Paul, Minnesota.", + " A group of people admire the view from a topiary garden.", + "The topiary garden at the Johnson House is a beautiful display of the talent and artistry of the gardeners.", + " A beautiful topiary garden with colorful flowers and intricate designsA topiary is a plant that has been trained or pruned into a decorative shape.", + "This garden is full of topiaries, which are plants that have been clipped into shapes.", + "In this topiary garden, various shaped shrubs have been trimmed and shaped into animals and geometric shapes.", + "A topiary garden is a garden where plants are trimmed and shaped into ornamental designs.", + "A beautiful topiary garden with well-manicured shrubs and bushes." + ], + "tower": [ + "A tower typically looks like a tall, vertical structure with a pointed top.", + "A tower is a tall structure that typically has a square or cylindrical shape.", + "A tower is typically a tall, vertical structure with a small base that tapers up to a narrow point.", + "A tower is a vertical structure that is taller than it is wide.", + "A tower is a tall, vertical structure with a small base.", + "A tower is a vertical structure, typically taller than it is wide, that is used to support a structure or an object.", + "A tower is a tall, vertical structure that is used to support other structures, such as bridges.", + "A tower is a vertical, standing structure that is often used to support a structure or object.", + "Most towers are cylindrical in shape and taper slightly towards the top.", + "A tower is a vertical, often cylindrical, building that is taller than it is wide.", + "A tower is a tall vertical structure with a base at ground level.", + "A tower is a tall, vertical structure that is used for a variety of purposes, such as radio and TV transmission, watch towers, lighthouses, and so on.", + "A tower is a tall, vertical structure that is often used to support antennas or other equipment.", + "Towers are typically taller than other buildings nearby and have a distinct shape.", + "There are many ways to identify a tower.", + "The top of a tower is typically flat and may have parapets or battlements.", + "The easiest way to identify a tower is by its shape.", + "Towers are typically tall, vertical structures that are used for a variety of purposes, such as communications, observation, and storage.", + "A tower is a vertical structure, often taller than it is wide, that is used to support a structure or as a decorative element.", + "A tower is a tall, vertical structure that is used for various purposes, such as observation, communication, storage, and defense.", + "There is no one answer to this question as towers can come in many different shapes and sizes.", + "A tower is a tall, vertical structure with a base that is smaller than its top.", + "Towers come in many shapes and sizes, but all towers have a few things in common.", + "A tower is a tall, vertical structure with a narrow base and a wide top.", + "A tower typically looks like a tall, narrow structure with a pointed top.", + "A tower is a vertical structure that is taller than it is wide.", + "There is no one answer to this question as towers come in a wide variety of shapes and sizes.", + "A tower is a vertical structure that is taller than it is wide.", + "A tower is a tall, vertical structure with a small base.", + "A tower is typically a tall, cylindrical structure with a conical or pyramidal roof.", + "I found an image of the Eiffel Tower on the internet.", + "The image is of a tall white tower with a blue sky in the background.", + "This image shows the Tokyo Skytree, a radio tower in Tokyo, Japan.", + "The image from the internet shows a tower.", + "The image is of a large, white tower with a pointed top.", + "An image of a tower from the internet shows a large, tall structure with a cone-shaped top.", + "The image is of a tall, modern looking tower.", + "An image of a tower from the internet shows a cylindrical structure with a pointed top.", + "I found an image of the Eiffel Tower on the internet.", + "The image is of a very tall, thin tower with a spire at the top.", + "The Tower of Pisa is a freestanding bell tower in the city of Pisa, Italy.", + "The Eiffel Tower stands 324 meters tall and is the tallest structure in Paris.", + "The Eiffel Tower, the most-visited paid monument in the world.", + "The Eiffel Tower, one of the most famous landmarks in the world.", + "The Eiffel Tower, located in Paris, France, is one of the most iconic structures in the world.", + "The Eiffel Tower stands in the center of Paris, France.", + "The Eiffel Tower, located in Paris, France, is one of the most recognized structures in the world.", + "The Tower of Pisa is a bell tower in Pisa, Italy.", + "The Eiffel Tower in Paris, France.", + "The Eiffel Tower, located in Paris, France, is one of the most prominent structures in the world." + ], + "toyshop": [ + "A toyshop looks like a room filled with different kinds of toys.", + "A toy shop is a place where people go to buy toys.", + "A toyshop is a place where you can buy toys.", + "There is no one answer to this question, as toy shops come in all shapes and sizes.", + "A toyshop looks like a place where you can buy toys.", + "A toyshop typically contains shelves full of colorful boxes containing different toys.", + "A toyshop looks like a place where children can play with and buy toys.", + "A toyshop looks like a room filled with different kinds of toys.", + "A toyshop is typically a brightly lit, colorful store that is filled with shelves of all different types of toys.", + "A toy shop is a place where people can go to buy toys.", + "A toyshop can be identified by its brightly colored signs and displays, and by the large variety of toys that it sells.", + "The toy shop is the one with all the children in it.", + "The identifying feature of a toyshop is that it sells toys.", + "There are many ways to identify a toyshop.", + "You can usually identify a toyshop by its colourful exterior and large windows.", + "A toyshop is typically a store that specializes in selling toys.", + "One way to identify a toyshop is by the types of products that they sell.", + "A toyshop typically has a large sign with the word \"toys\" or a picture of a toy on the front of the building.", + "A toyshop is a shop that sells toys.", + "The word \"toy\" is usually in the name of the shop.", + "A typical toyshop might have shelves full of dolls, toy cars, stuffed animals, and other toys.", + "A toyshop looks like a large room filled with shelves of different toys.", + "A toy shop is a shop that sells toys.", + "A toyshop looks like a store that sells toys.", + "A toyshop typically has a wide variety of toys, ranging from dolls to action figures to board games.", + "A toy shop typically has shelves with different types of toys on them.", + "A toyshop typically has brightly colored walls and shelves filled with toys.", + "A toyshop traditionally looks like a small shop with brightly coloured walls and plenty of toys on display.", + "A Image of a toy shop called Fun Warehouse.", + "A toyshop traditionally looks like a small shop with a lot of different types of toys for children of all ages.", + "This image shows a traditional toyshop, with shelves full of brightly coloured toys.", + "In the image, there is a pink toy rabbit on a shelf next to a toy train.", + "There is an image of a toy shop on the internet.", + "The image is of a small, independent toyshop.", + "In the image, there is a large room with high shelves on all the walls.", + "In the image, there are many shelves filled with different kinds of toys.", + "The image is of a small, independent toyshop.", + "There is an image of a toyshop on the internet.", + "In the image, there is a large room with several shelves filled with brightly colored toys.", + "There is an image of a toyshop on the internet which is brightly coloured and filled with toys.", + "A toy shop full of teddy bears, dolls, and other children's toys.", + "A toyshop full of happy children playing with the latest toys.", + "In this toyshop, you can find all the latest and greatest toys for kids of all ages.", + "In this toyshop, every child's dream come true.", + "A child's paradise - a toyshop full of every kind of toy imaginable!.", + "In this Toys\"R\"Us store in New York, developers have replaced traditional product aisles with \"disruption zones\" designed to get kids (and their parents) interacting with toys.", + " Toys 'R' UsA caption of an image of a dog:Man's best friend.", + "The best selection of toys in town!.", + " A group of children look at the camera while sitting on the floor in front of a display of toys in a toy store.", + "This is a toyshop." + ], + "outdoor track": [ + "The outdoor track is a 400 meter oval with eight lanes.", + "An outdoor track is a circular or oval-shaped running path that is typically found in parks or open spaces.", + "A running track typically has four lanes and is 400 meters in circumference.", + "An outdoor track usually looks like a path or loop that is made of a smooth surface, like asphalt.", + "A outdoor track is typically a 400 meter loop with markings every 100 meters.", + "The outdoor track is a 400-meter oval with eight to ten lanes.", + "A outdoor track looks like a running path that is usually marked with a line or painted with a different color than the surrounding area.", + "A outdoor track is typically 400 meters in circumference and has 8 or 9 lanes.", + "A typical outdoor track has a 400 meter oval running surface with eight, equal straightaway sections and two slightly curved end sections.", + "A 400-meter track is a running track that circles a 400 meter oval.", + "Outdoor tracks are generally distinguished from indoor tracks by the surface on which they are laid.", + "An outdoor track is typically a paved or dirt path that is meant for running, walking, or biking.", + "A typical outdoor track has a 400 meter oval shape with two straights and two bends.", + "There are a few ways to identify an outdoor track.", + "Outdoor tracks can generally be identified by their size and location.", + "An outdoor track usually has a circular or oval shape and is made of a hard, level surface such as asphalt, concrete, or cinder.", + "If you are looking at an outdoor track, you will see that it is typically made of concrete or asphalt.", + "A outdoor track can be identified by its surface, which is usually made of dirt, grass, or gravel.", + "Outdoor tracks can be identified by their size and shape.", + "Some ways you can identify a outdoor track is by the events that are held at the track, the size of the track, and the type of surface the track is made of.", + "The outdoor track is 400m long with eight lanes.", + "A typical outdoor track is a 400-meter oval with eight to 12 lanes.", + "An outdoor track is often made of dirt, grass, or a synthetic material.", + "An outdoor track looks like a large oval with lanes running around the inside.", + "An outdoor track is a 400 meter oval with 8 lanes.", + "A typical outdoor track looks like a 400-meter oval with eight to 10 lanes.", + "A track typically is 400 meters long, and has 8 lanes that are each 1.", + "A typical outdoor track is 400 meters long, has eight lanes, and is made of a synthetic rubber surface.", + "A typical outdoor track is a 400-meter oval with eight lanes.", + "An outdoor track is typically a 400-meter oval with eight to 10 lanes.", + "An image from the internet of an outdoor track would show a paved or dirt track with a surrounding area of grass.", + "One image of an outdoor track that could be found on the internet is of a 400 meter running track with eight lanes.", + " and field eventIn the image, there is a large crowd of people gathered around a track.", + " and field sceneThe image is of a outdoor track with a group of people running around it.", + " in the winterThis outdoor track is covered in snow and looks very cold.", + " and field eventThis image features a outdoor track and field event taking place at night.", + "One image that comes to mind is that of a high school track and field team practicing on a warm spring day.", + " and field eventThis image is of a girl pole vaulting.", + "The image is of a 400 meter running track.", + " raceThe image is of a outdoor track race with runners on a track in a stadium.", + "This is an outdoor track.", + "An outdoor track typically consists of a straight, main pathway with a circumference of 400 meters, lane markings, and sector lines.", + "A group of high school students running on an outdoor track.", + "outdoor track - athletes running on a track in a stadium.", + "The track at Berkeley High School is one of the most popular places to run in the city.", + " Outdoor Track.", + "Track meet at the local high school.", + "This is an outdoor track.", + "A group of track and field athletes competing in a meet.", + "Outdoor track at a school." + ], + "train railway": [ + "A train rail is a steel track that is used to guide trains.", + "Train railways are long, thin strips of metal that trains ride on.", + "A train railway is a set of tracks that a train can travel on.", + "A train railway is a path of train tracks that lead from one place to another.", + "A train railway typically consists of two metal rails that are placed parallel to each other and spaced a certain distance apart.", + "A train railway looks like a set of metal tracks that a train can travel on.", + "A train_railway typically consists of two metal rails, often supplemented with a third rail, that are laid in a bed of gravel, ballast, or concrete.", + "A train_railway typically consists of two parallel rails that are typically made of steel, and are spaced apart so that trains can travel on them.", + "A train railway typically has two metal rails that are parallel to each other and which extend for a long distance.", + "A train_railway typically consists of two steel rails that are bolted or welded together.", + "A train_railway can typically be identified by its tracks.", + "A train_railway can be identified by its gauge, which is the distance between the inner edges of the railheads.", + "A train railway can be identified by its tracks.", + "The most distinguishing feature of a train_railway is its track.", + "A train_railway is a rail used for transportation.", + "If you see a train, it's likely a train_railway.", + "At a basic level, you can identify a train_railway by its physical infrastructure, specifically the tracks.", + "Train tracks are typically made of steel and are elevated off the ground.", + "Train railways can be identified by their width, which is typically much wider than a standard railway.", + "A train_railway is typically made up of a series of metal rails, often with sleepers or ties, that are used to guide and support trains.", + "A train_railway typically consists of two parallel rails, often made of steel, that are anchored in place and used to support the weight of trains.", + "A train_railway typically looks like a long, straight metal track.", + "A train_railway typically consists of two parallel steel rails, typically buried below the ground, that provide a track for trains or other vehicles to travel.", + "A train railway typically consists of two parallel steel rails, which are sometimes supported by wooden beams, that are anchored into the ground.", + "A train_railway typically looks like a set of metal tracks that are laid down in a specific configuration in order to allow trains to travel on them.", + "A train railway typically consists of two rails, which are often made of steel, that are placed in a parallel fashion and anchored into the ground.", + "A train_railway typically consists of two metal rails that are parallel to each other and are spaced a certain distance apart.", + "A train_railway typically consists of two parallel rails, which are typically made of steel, and are supported by posts, called crossties, that are spaced at regular intervals.", + "A train_railway looks like a set of metal rails that are parallel to each other and are used to guide a train.", + "A train_railway typically consists of two parallel rails, typically made of steel, that are anchored into the ground and spaced apart at a standard distance.", + "The image is a black and white photo of a train railway.", + "A train railway is a long, thin path of steel rails that trains use to travel on.", + "I found an image of a railway in India.", + "A railway track made of steel runs through a countryside with mountains in the distance.", + "The image is of a train railway track.", + "A image of a train railway can be found at the following link:https://www.", + "https://images.", + "This image is of a train railway going through a tunnel.", + "This image is of a train railway that is elevated above a city.", + "I found an image of a train railway on Google Images.", + " A train on a railway track.", + " A train moves along a railway track.", + "A train moves along a railway track.", + " A train passes along a railway through a tunnel.", + "A train railway snaking through a mountainside.", + "\nThe top of a train's wheels as it moves along the railway.", + "A train typically consists of a locomotive engine, one or more railroad cars, and a caboose.", + " A train travels down a set of railroad tracks.", + "A train passes by on a railway.", + " In the U." + ], + "platform train station": [ + "A platform train_station looks like a large, open space with a platform in the middle for trains to pull into.", + "A platform train_station typically has a large, open space for passengers to wait for trains, with a ticketing area and sometimes a food court or other amenities.", + "The platform of a train station typically has a long, flat surface where passengers can wait for trains.", + "A train_station platform is long and flat, with a train track running down the middle.", + "A platform train station typically has a platform or multiple platforms where trains can pull in and let passengers on and off.", + "A platform train_station typically has a long platform with a roof that extends along the length of the track.", + "A platform train_station has a raised platform with a train track running along it.", + "A platform train_station typically has a long, raised platform to one side of a pair of train tracks.", + "A platform at a train station typically has a roof to protect passengers from the weather and a raised edge to prevent passengers from falling onto the tracks.", + "A platform train_station looks like a large room with a ceiling and a floor.", + "The platform at a train station is usually a raised area that is level with the train's doors, so that passengers can easily board and exit the train.", + "If the station is used by trains to pick up and drop off passengers, it is a train_station.", + "There is no definitive answer to this question, as the term \"platform train_station\" could refer to any number of things.", + "A platform train_station can typically be identified by its large size and the many people that it can accommodate.", + "A platform train_station is a place where people can catch a train.", + "A platform train_station can be identified by its unique platforms, which are used by trains to pick up and drop off passengers.", + "A platform train_station can be identified by its long platforms that are used for boarding and alighting trains.", + "There is no one definitive answer to this question.", + "A platform train_station can be identified by its large size, typically rectangular in shape, and its many platforms for trains to dock.", + "There is no sure way to identify a platform train_station without asking someone who works there or looking at a map.", + "A platform train_station look like a large building with many windows and doors.", + "A platform train_station looks like a large metal train station with many platforms and tracks.", + "A train platform at a station typically has a shelter to protect passengers from the weather, as well as a ticket office and other amenities.", + "A platform train_station looks like a large open area with a platform in the middle for trains to pull into.", + "A platform train station can have many different looks, but usually it is a raised platform with a train track running next to it.", + "A platform train_station typically has a number of platforms, with tracks running in between them, where trains can pull up to load and unload passengers.", + "A platform train_station looks like a raised platform with a train track running through the middle of it.", + "A platform train station typically has a platform or set of platforms where one or more trains can pull up and stop to let passengers on and off.", + "A platform train station typically has a long platform or set of platforms by a railway line, with a station building providing ticketing services and other amenities.", + "A typical platform train station might have a ticketing area, waiting area, and one or more platforms with tracks.", + "The image I found was of a large, busy train station.", + "I found an image of a platform train station on the internet.", + "The image is of a busy train station with people rushing to catch their train.", + "I found an image of a train station platform on the internet.", + "In the image, a train is pulling into a station.", + "A train station platform with a train stopped at it.", + "The image from the internet is of a large, busy train station.", + "The image from the internet is of a large, busy train station.", + "The image is of a busy train station with people rushing to catch their train.", + "The image from the internet shows a platform train station.", + " A crowded platform at a train station.", + "The platform at the train station is crowded with passengers waiting for their train.", + "A busy train station during rush hour.", + " Aerial view of Grand Central Terminal and its train yards.", + " 1 Train platform at Union Station in Washington, D.", + "The platforms at Grand Central Terminal are a bustling hub of activity, with people coming and going at all hours of the day.", + " The train station in Heidelberg, Germany.", + "The exterior of a large, busy train station.", + "A train station platform with a waiting train.", + "The beautiful old train station in XYZ town." + ], + "tree farm": [ + "A tree farm is an area of land where trees are grown for sale.", + "A tree farm looks like a field with a lot of trees in it.", + "A tree farm is an agricultural tree plantation in which certain tree species are grown for commercial use.", + "A tree farm is typically a large, open piece of land where trees are grown in rows for the purpose of harvesting.", + "A tree farm typically looks like a large, open field with evenly spaced rows of trees.", + "A tree farm is an area of land where trees are grown for commercial use.", + "A tree farm is usually a large piece of land where trees are grown for commercial use.", + "A tree farm is a piece of land where trees are grown for commercial purposes.", + "A tree farm usually looks like a large field with many different types of trees growing in it.", + "A tree farm typically looks like a large field with rows and rows of trees.", + "A tree farm is an area of land where trees are grown for commercial purposes.", + "A tree farm is an area of land where trees are planted and grown for commercial purposes.", + "The best way to identify a tree farm is to look for large areas of trees that are all the same species and age.", + "The easiest way to identify a tree farm is by looking for large tracts of land that are planted with trees.", + "A tree farm can be identified by its large number of trees that are planted in rows.", + "A tree farm is an area of land where trees are grown for commercial use.", + "A tree farm is usually a large piece of land where trees are grown for commercial purposes.", + "A tree farm can be identified by its rows of trees that are the same age and species.", + "A tree farm is an area of land that is planted with trees.", + "There is no definitive answer to this question as there is no official definition for a tree farm.", + "Most tree farms consist of rows of trees that are the same age and species.", + "A tree farm is typically a large piece of land where trees are grown for timber.", + "A tree farm looks like a large field with rows of trees.", + "A tree farm looks like a large area of land where there are many trees planted.", + "In general, a tree farm is an area of land where trees are grown for commercial purposes.", + "A typical tree farm is a large, open area with evenly spaced rows of trees.", + "A tree farm usually looks like a big open field with lots of different types of trees.", + "A tree farm usually looks like a large field with rows of trees planted in it.", + "Tree farms are typically large open areas with evenly spaced rows of trees.", + " tree farm looks like a big garden with lots of different types of trees.", + "The image is of a large, open field with evenly spaced rows of trees.", + "An image from the internet of a tree farm typically contains a large number of trees that are grown in rows.", + "In the image, there are rows upon rows of trees that appear to be newly planted.", + "An image from the internet of a tree farm shows a large, open field with evenly spaced row upon row of tall, green trees.", + "An image from the internet of a tree farm may show acres of neatly planted trees, with rows upon rows of trees.", + "I found an image of a tree farm that looks like it's in the middle of a lush, green field.", + "The image is of a large, open field with many rows of trees.", + "In the image, there are rows and rows of trees that are all the same height.", + "Huge evergreen trees are planted in long straight rows on this tree farm.", + "In the image, there are rows upon rows of trees growing in a field.", + "A tree farm is a tract of land planted with trees, usually for the purpose of forestry.", + "A large tree farm with rows of evenly spaced trees.", + "A tree farm in the United States.", + "A tree farm is a piece of land where trees are grown for sale or for use as lumber.", + "In this image, we see a tree farm with rows upon rows of trees.", + " Tree Farm.", + "The figures in the tree farm suggest an idyllic country life, but the industrial equipment set up in the background tells a different story.", + "In this image, we see a tree farm.", + "A tree farm in the United States.", + "This is a typical tree farm, where trees are grown for commercial purposes." + ], + "tree house": [ + "There is no definitive answer to this question as treehouses can come in a wide variety of shapes and sizes.", + "A tree_house typically looks like a small wooden or plastic house built on top of one or more trees.", + "There is no one answer to this question since tree houses can be quite different depending on who builds them and for what purpose.", + "A tree house is typically a small structure built on top of a tree, supported by the tree trunk and branches.", + "A tree house is typically a small structure built on top of a large tree.", + "There is no definitive answer to this question as tree houses can come in all shapes and sizes, but they are typically enclosed structures built high up in the branches of a tree.", + "A tree_house looks like a small, wooden house that is built on top of a tree.", + "A tree_house is a small house or platform that is built on top of a tree.", + "A tree_house can look like many different things, but typically it is a small structure built around and supported by one or more trees.", + "A tree_house may be built around the trunk of a tree and supported by its branches, or it may be built next to a tree, using the tree as support.", + "You can identify a tree_house by looking for a small structure built into or around a tree.", + "A tree_house is a type of house that is built on or around a tree.", + "There is no definitive answer to this question, as the term \"tree house\" can refer to a wide variety of structures.", + "A tree_house is a type of tree that is often used for shelter or as a place to live.", + "A tree_house is typically a small structure built around and among the branches of one or more trees.", + "A tree house is a type of structure built around and among the trunk or branches of one or more mature trees while utilizing the existing trees for support.", + "A tree_house is a type of tree that has a house in it.", + "A tree_house is typically built around the trunk of a tree and includes a platform with a railing, stairs, and a roof.", + "A tree_house is typically built around the trunk of a tree and includes a platform and a roof.", + "A tree_house is typically built in the branches of a tree, and may be accessed by a ladder or rope.", + "A tree_house generally looks like a small house or cabin that is built on or around a tree.", + "A tree house is a platform or building that is supported by one or more trees.", + "A tree house might look like a small house or cabin built on platforms in the branches of a tree.", + "A tree_house is a small house that is built on top of a tree.", + "There is no one answer to this question as tree houses can come in many different shapes and sizes.", + "The answer to this question depends on the specific tree_house you are asking about.", + "There is no one answer to this question as tree houses can come in all sorts of shapes and sizes.", + "A tree_house looks like a house made out of a tree.", + "There is no one answer to this question as tree_houses can come in all shapes and sizes.", + "A tree_house typically looks like a small platform or cabin built into the branches of a tree.", + "In the image, there is a large tree in the center with a wooden platform built around it.", + "An image from the internet of a tree_house may show a wooden structure elevated on stilts, with a ladder or staircase leading up to a platform or deck.", + "The image is of a large tree in a yard with a small wooden house built on top of it.", + "An image of a tree house from the internet shows a small house built on stilts in between the branches of a large tree.", + "A wooden tree house with a brown roof and a white door.", + "The image is of a large tree with a house in it.", + "An image of a tree_house from the internet would most likely show a tree with a house built into it.", + "The image is of a large tree with a wooden platform built around its trunk.", + "An image of a tree_house from the internet is of a small wooden house on stilts, built around the trunk of a large tree.", + "A tree house is a house that is built on top of a tree.", + " tree_house: A whimsical hideaway in the branches.", + "The tree_house is a great place to spend summer days.", + "A tree house is a fun place to play and hide away from the world.", + "Handmade Treehouse in the Forest.", + "The tree_house is a wooden structure built around a tree, typically used as a playhouse or fort for children.", + "A tree_house is a type of house that is built around and amongst the trees.", + "This tree_house is the perfect place to spend a summer day.", + "\nThe tree_house is a special place where one can go to feel close to nature.", + " A tree_house in the middle of a forest.", + "A treehouse in the woods, surrounded by trees and nature." + ], + "trench": [ + "Trenches are long, narrow holes that are dug into the ground.", + "A trench is a long, narrow cut in the ground.", + "Trenches are long and narrow ditches dug into the ground.", + ", and how it formsA trench is a long and narrow ditch.", + "A trench looks like a hole that has been dug in the ground.", + ".", + "A trench is a hole in the ground that is dug using a shovel.", + "A trench is a long, narrow hole in the ground.", + "A trench looks like a large hole in the ground that is usually dug with a shovel.", + "Most trenches are long, narrow ditches with steep sides.", + "The easiest way to identify a trench is by looking for a linear depression in the ground.", + "The easiest way to identify a trench is by its long and narrow shape.", + "A trench is a ditch dug in the ground that is used for cover or protection from enemy fire.", + "A trench is a long, narrow hole in the ground.", + "A trench is a type of geological feature created by erosion or the movement of fragments of Earth's crust.", + "A trench is a long, narrow, straight ditch that is dug into the ground.", + "A trench is usually an elongated pit that is dug into the ground.", + "A trench is a long, narrow ditch dug into the ground.", + "A trench is a long and narrow ditch.", + "Trenches are typically long, narrow ditches.", + "A trench is a long, narrow hole that is dug into the ground.", + "A trench is a long, narrow ditch.", + "A trench is a long, narrow ditch.", + "A trench is a long, narrow ditch dug into the ground.", + "A trench is a long, deep ditch that is usually dug as part of a defensive military strategy.", + "A trench is a line of dug holes in the ground, typically used in warfare as a defense line against enemy attack.", + "A trench is a long, narrow ditch, typically 3\u20134 feet deep and 1\u20132 feet wide, that is dug as an excavation, or to supply water or other fluid or to protect a pipeline or electrical cable from damage.", + "A trench is a deep, narrow ditch.", + "A trench is typically a long, narrow hole that is dug into the ground.", + "A trench is a narrow, deep ditch, typically dug as an entrenchment, from which soldiers can fight an enemy force approaching from the other side.", + "A picture of a trench on the internet shows a long, deep ditch with high, vertical walls.", + "An image of a trench from the internet would likely show a large, deep ditch with steep sides.", + "A trench is a long, deep, narrow hole in the ground.", + "The image is of a World War 1 trench that has been preserved.", + "A trench is a long, narrow ditch that is dug into the ground.", + "An image from the internet of a trench shows a long, deep, and narrow hole in the ground.", + "This image shows a trench being dug in a field.", + "The image is of a long, deep trench that has been dug into the ground.", + " being builtAn image from the internet of a trench being built would show a long, narrow hole being dug in the ground.", + "A trench is a long, deep, narrow hole in the ground.", + "Men of the 3rd Division in their trench on the Somme, 21 July 1916.", + "A trench in the ground, possibly used for warfare purposes.", + "A U.", + "A trench in the earth, perhaps used as a defensive position in wartime.", + "A soldier in a trench during World War I.", + "A trench dug by British soldiers during World War I.", + "A trench dug by soldiers during World War I.", + "A trench on the Western Front during World War I.", + "A soldier in a trench during World War I.", + "British troops in a trench during the Battle of the Somme, 1916." + ], + "coral reef underwater": [ + "A coral_reef underwater looks like a giant rainbow-colored rock garden.", + "A coral reef underwater typically looks like a colorful, bustling city.", + "A coral reef underwater looks like a colorful underwater forest.", + "A coral reef is an underwater ecosystem that is built by coral polyps.", + "A coral reef is an underwater ecosystem built by marine invertebrates.", + "A coral reef is an underwater ecosystem consisting of a network of coral polyps, colonies oftiny anemones, and other marine life.", + "A coral reef is an underwater ecosystem characterized by reef-building corals.", + "A coral reef is an underwater ecosystem characterized by coral polyps thriving in shallow waters.", + "Colorful and bustling with life, a coral reef is one of the underwater world\u2019s most incredible sights.", + "A coral reef is an underwater ecosystem characterized by coral reefs.", + "Coral reefs are usually easy to identify underwater because they are often very colorful.", + "A coral reef can be identified by its brightly colored surface, which is covered with corals, sponges, and other marine life.", + "The coral reef is a fundamental component of a healthy marine ecosystem.", + "Coral reefs are generally easy to identify because they tend to be very colorful.", + "Some corals are brightly colored, making them easy to spot.", + "Coral reefs can be identified by their vibrant colors, high biodiversity, and complex structure.", + "You can identify a coral reef underwater by looking for the bright colors and patterns of the coral.", + "Coral reefs are identify underwater by their color.", + "The colors of a coral reef can be very bright and vibrant.", + "If you are diving, you can identify a coral reef by looking for the large areas of limestone that are created by the reef.", + "When you are looking at a coral reef from underwater, you will see a lot of colorful corals and fish.", + "Coral reefs are underwater areas that are home to many different types of corals and other marine life.", + "A coral reef is an underwater ecosystem characterized by coral colonies.", + "A coral reef underwater looks like a brightlycolored city.", + "Some coral reefs look like mountains rising from the depths of the ocean.", + "A coral reef underwater typically looks like a brightly colored, diverse ecosystem teeming with life.", + "A coral reef underwater looks like a colorful, underwater forest.", + "A coral reef underwater looks like a colorful and bustling city.", + "A coral reef underwater looks like a colorful and vibrant underwater landscape.", + "A coral reef underwater looks like a colorful, underwater forest.", + "The image is of a coral reef with several fish swimming around it.", + "The image is of a coral reef with a number of colourful fish swimming around it.", + "The image is of a coral reef with many different colors of coral and fish.", + "The image is of a coral reef underwater with many different colors of coral and fish.", + "The image is of a coral reef with different types of coral and fish swimming around it.", + "This image shows a coral reef with a wide variety of colorful fish swimming around it.", + "The image is of a coral reef with many colorful fish swimming around it.", + "Under the water, there is a beautiful coral reef with many different colors and types of coral.", + "An image of a coral reef underwater would likely show a brightly colored landscape with a variety of fish swimming around.", + "The reef is composed of many coral polyps, which are small, soft-bodied animals.", + " A coral reef is a underwater ecosystem consisting of a community of corals and other marine life.", + "Colorful coral reef teeming with fish underwater.", + "A beautiful coral reef, teeming with life, in all its underwater glory.", + "Coral reef in the Caribbean Sea.", + "A close up of a coral reef, highlighting the bright colors of the coral and the fish swimming around it.", + "A beautiful coral reef underwater, teeming with life.", + "Coral reef off the coast of Grand Cayman Island.", + "A Stunning Coral Reef Underwater.", + " A diver swims over a vibrant coral reef, teeming with colorful fish.", + " A beautiful coral reef, teeming with fish and other marine life." + ], + "utility room": [ + "A utility room is usually a small room in a house where the washing machine and dryer are located.", + "A utility room is typically a small room located near the back door of a home.", + "A utility room is typically a small room in a house where the washing machine and dryer are kept, as well as storage for cleaning supplies.", + "A utility room is typically a small room located near the kitchen or laundry room where household cleaning supplies are kept.", + "A utility_room is typically a small room in a house where the washer and dryer are located.", + "A utility room is typically a small room in a house or apartment where laundry appliances and other household items are stored.", + "A utility room is usually a small room in a house where the laundry is kept and where utilities such as the water heater, furnace, and fuse box are located.", + "Its difficult to say what a utility room looks like since it can be different for every house.", + "A utility room is usually a small room in a house where laundry is done and where utilities such as the water heater and fuse box are located.", + "A utility_room is a room in a house where the washing machine, dryer, and other utilities are kept.", + "There is no general answer to this question since the design of utility rooms varies greatly.", + "A utility room is typically located near the kitchen and is used for laundry, storage, and often as a mudroom.", + "A utility room can be identified by its location within a house or apartment.", + "A utility_room is typically a small room located near the kitchen or laundry room that houses the water heater, furnace, and other mechanical equipment.", + "There is not a definitive answer to this question since utility rooms can vary greatly in terms of size, layout, and features.", + "There is no definitive answer to this question, as the definition of a utility room can vary depending on the household.", + "In a home, a utility room is typically located near the laundry room and may also serve as a mudroom.", + "A utility_room is typically a small room in a house where the washing machine, dryer, and other utilities are kept.", + "One way to identify a utility room is by its location in a house.", + "A utility room is typically a small room in a house where the utilities are located.", + "A utility_room may include a sink, a washing machine, and a clothes dryer.", + "A utility room is usually a small room located near the kitchen or laundry room.", + "Utility rooms are usually small rooms located near the kitchen or laundry room.", + "A utility room typically contains a washing machine, dryer, and storage shelves for cleaning supplies.", + "A utility room is typically a small room in a house where utilities such as the water heater, furnace, and washer and dryer are located.", + "A utility room typically has shelves for storing cleaning supplies, a sink for doing laundry or other chores, and space for a washer and dryer.", + "A utility room is typically a small room located near the kitchen or laundry room.", + "A utility room is typically a small room in a house where laundry is done and where other household cleaning supplies are stored.", + "A utility room is typically a small room in a house where appliances such as the washing machine and dryer are kept.", + "A utility room generally contains a washer, dryer, sink, and storage cabinets.", + "The image is of a small, cramped utility room.", + "An image of a utility room from the internet shows a small, cramped space with a washer and dryer, a sink, and shelves for storage.", + "The image is of a small, cramped utility room.", + "In the image, there is a large room with white walls and a cement floor.", + "An image of a utility room from the internet shows a small, cramped room with a washer and dryer, sink, and shelves for laundry detergent and other supplies.", + "The image is of a small, cramped utility room with a washer and dryer in it.", + "The image shows a utility room with a sink, a washing machine, and a dryer.", + "I found an image of a utility room on the internet that looks like a small, cramped space with a washer and dryer, a sink, and some shelves.", + "The photo shows a large, well-lit utility room with shelves full of cleaning supplies, including buckets, mops, and a commercial-grade vacuum cleaner.", + "I found an image on the internet of a utility room that looks like it could be in a home.", + " A sink and a washing machine in a utility room.", + "A typical utility room in a home, with a sink, counter space, and washer and dryer.", + "A utility room with a washer and dryer, sink, and storage cabinets.", + " A utility room typically contains a washing machine, dryer, and storage shelves.", + "A utility room with a washer and dryer, shelving, and a laundry basket.", + "The utility_room is a mess! Piles of laundry, dirty dishes, and stacks of boxes everywhere.", + " \"A utility room in a home, with a washing machine, laundry sink, and storage shelves.", + "The utility room is a versatile space that can be used for laundry, storage, or as a mudroom.", + "The utility_room is equipped with a washing machine, a dryer, and a sink.", + "The utility room is a great place to store all your cleaning supplies and appliances." + ], + "valley": [ + "A valley is a low area between hills or mountains, often with a river running through it.", + "A valley is a lower area between two higher areas, typically with a river or stream running through it.", + "A valley is a low, flat area of land that is bordered on at least two sides by mountains or hills.", + "A valley is a low, flat area of land that is surrounded by high ground, typically hills or mountains.", + "A valley is usually a low area between mountains, hills, or other high places.", + "Valleys are usually long and narrow with steep sides.", + "A valley is a landform between two mountains or hills, typically with a river running through it.", + "A valley is typically a low area between two higher areas, often with a river or stream running through it.", + "A valley is a low lying area of land between two mountains or hills.", + "A valley is a low place in the land between two higher areas of land.", + "A valley is a container for water.", + "A valley is a low area of land between two hills or mountains, often with a river running through it.", + "The easiest way to identify a valley is by looking for a low point between two higher points.", + "A valley can be identified by its U-shaped shape when looking at a cross-section of the land.", + "To identify a valley, look for a low area between two higher areas, such as mountains.", + "The easiest way to identify a valley is by its V-shaped profile.", + "A valley is a low, flat area of land between mountains or hills.", + "A valley is a low point between mountains, often with a river running through it.", + "A valley is a low place between hills or mountains, often with a river running through it.", + "A valley is a landform that extends between two mountains or hills, typically with a river running through it.", + "A valley is a low area between mountains, often with a river running through it.", + "A valley is a low area between two mountains or hills.", + "A valley is a low land area between two mountains or hills, typically with a river running through it.", + "A valley looks like a bowl or a pit.", + "A valley is a depression characterized by gentler slopes than a ravine, typically forming a watercourse.", + "A valley looks like a low area between two hills or mountains.", + "A valley is a narrow, low-lying area of land that is usually flanked by mountains or hills.", + "A valley is a low, flat area of land between two mountains.", + "A valley is a low area of land between two hills or mountains, typically with a river running through it.", + "A valley is a type of landform.", + "A lush, green valley with a river running through it, surrounded by mountains.", + "This image from the internet shows a valley with lush green vegetation, a river running through it, and mountains in the background.", + "This valley is lush and green, with trees and plants dotting the landscape.", + "A valley is a low area of land between two mountains or hills.", + "The image is of a valley with mountains on either side.", + "This image from the internet shows a beautiful valley with mountains in the distance.", + "The image is of a valley with mountains in the background.", + "This image shows a valley with mountains in the background.", + "The image is of a valley with mountains in the distance.", + "An image of a valley from the internet shows an expansive, green area with a river winding through it.", + "This is the Valley of Fire in Nevada.", + "The vast valley below is blanketed in a thick layer of fog, making it seem like a whole other world.", + "The Valley of Eden.", + "The valley is a beautiful place with mountains and trees.", + " Foggy valley in the morning.", + " The valley is filled with a thick fog, making it difficult to see more than a few feet in front of you.", + "The valley is home to many different types of animals including deer, elk, and bighorn sheep.", + "The valley is a beautiful place to visit.", + "This valley is called the cradle of civilization because it is where some of the earliest human settlements were found.", + "The valley is full of life, with trees, bushes, and flowers dotting the landscape." + ], + "van interior": [ + "A van interior typically contains two rows of seats and a space in the back for storage.", + "A van_interior looks like a large room with many windows.", + "Assuming you are referring to a cargo van, they typically have hard plastic or metal walls with no insulation.", + "A van_interior generally looks like the interior of a van or small truck.", + "A van_interior typically has two or three rows of seats, with a aisle down the middle.", + "A van_interior typically has several seats, a storage area, and a steering wheel.", + "A van_interior typically looks like a small room with seats and a bed.", + "A van_interior would look like a regular van interior with some storage space in the back.", + "A van_interior typically looks like a large, empty space with metal walls and a hard floor.", + "A van interior typically contains either captain's chairs or a bench seat, plus plenty of space for cargo.", + "A van interior can be identified by its large, open space.", + "A van_interior can be identified by its seats, which are typically located in the back of the vehicle, and by its doors, which are typically located on the sides of the vehicle.", + "One way to identify a van_interior is by the presence of a van_door.", + "This is difficult to answer without seeing an image of a van_interior.", + "Some common features of a van interior are:-Seats that fold up or can be removed\n-Carpeting or floor mats\n-Racks or storage bins on the walls or ceiling\n-A partition between the passenger.", + "One way to identify a van_interior is by its large, open space.", + "The interior of a van can be identified by its high roof and lack of windows.", + "A van_interior can be distinguished by its door panels, which are typically upholstered and may have drink holders or other storage pockets.", + "A van_interior can be identified by its unique design.", + "Some characteristics of a van interior may include captain chairs, a spacious cargo area, and a lack of rear windows.", + "There is no definitive answer to this question as the interiors of vans can vary significantly depending on the make and model of the van, as well as the specific purpose for which it is used.", + "A van interior can vary depending on the model and make of the van.", + "A van interior typically includes two front bucket seats, a bench seat in the back, and plenty of room for storage.", + "A van interior typically consists of two rows of seats, with a aisle running down the middle.", + "A van interior can look like many things, depending on the purpose of the van and the specific van model.", + "A van interior can look very different depending on the make and model of the van, as well as how it is set up.", + "vans typically have large, open interiors with plenty of space for cargo.", + "There is no definitive answer to this question, as van interiors can vary widely in terms of their layout and design.", + "A van interior can vary greatly depending on the make and model of the van, as well as the purpose for which it is used.", + "A van interior typically has two rows of bench seats, with a space in the middle for storage.", + "This image is of a van interior with a bright orange and yellow color scheme.", + "A van interior typically contains a lot of empty space and may have some shelves or storage containers along the walls.", + "A white van with a black interior.", + "The image shows the interior of a van with a bench seat and a small table in the middle.", + "This image is of a van with a small table set up in the back.", + "This image is of a van interior that has been customized.", + "This image depicts the interior of a van with a wooden floor and walls.", + "A van interior with comfortable looking seats and a TV in the back.", + "The image is of a van with gray fabric seats and a gray carpet.", + "The image is of a van interior that has been customized to include a couch, TV, and other homey touches.", + "A picture of the interior of a van.", + "A van interior with a comfortable seat and a small table.", + "A group of people posing in the interior of a van.", + " A person is driving a van.", + "The interior of a van.", + "A van with a set of stairs leading up to the driver's seat.", + " A white van with a black interior.", + "This is the interior of a van.", + "This is the interior of a van.", + "This van has been modified to be an interior living space onwheels." + ], + "vegetable garden": [ + "A vegetable garden looks like a small plot of land where vegetables are grown.", + "A vegetable garden is a garden where vegetables are grown.", + "A vegetable garden looks like a small plot of land with vegetables planted in it.", + "A vegetable garden typically consists of rows of vegetables planted close together.", + "In a vegetable garden, there are typically rows of different vegetables growing.", + "There is no one answer to this question as vegetable gardens can come in all shapes and sizes.", + "A vegetable garden is a garden where vegetables are grown.", + "A vegetable garden is a patch of land outdoors where vegetables are grown.", + "A vegetable garden is a garden where vegetables are grown.", + "A vegetable_garden looks like a small garden with vegetables growing in it.", + "A vegetable garden is a garden that grows vegetables.", + "A vegetable garden can typically be identified by its contents - a variety of vegetables planted in soil.", + "There are many ways to identify a vegetable garden.", + "A vegetable garden typically has a variety of different vegetables growing in it.", + "A vegetable garden is typically planted in rows and includes vegetables that are grown for consumption.", + "By its appearance, a vegetable garden is usually identified by its neatly arranged rows of vegetables.", + "A vegetable garden can be identified by its orderly rows of vegetables, often with a fence or hedges around it.", + "A vegetable garden is typically planted in rows and is easily distinguishable from other types of gardens.", + "There are many ways to identify a vegetable garden.", + "The most common way to identify a vegetable garden is by the types of vegetables that are growing in it.", + "A vegetable garden typically has raised beds made of wood, with soil and vegetables inside.", + "A vegetable garden typically looks like a small plot of land with various vegetables growing in it.", + "There is no one answer to this question as gardens can vary greatly in size, shape, and appearance.", + "A vegetable garden can look like a small plot of land with different types of vegetables growing, or it can be a large area with different sections for different vegetables.", + "A vegetable garden can look like many things, depending on how it is designed and what types of vegetables are grown.", + "A vegetable garden is an outdoor space where vegetables are grown.", + "A vegetable garden looks like a garden with vegetables in it.", + "There is no single answer to this question as gardens can vary greatly in terms of size, shape, and appearance.", + "A vegetable garden typically includes a variety of different vegetables planted in separate sections.", + "There is no one answer to this question as gardens can vary greatly in both size and appearance.", + "In the image, there is a garden with various vegetables growing in it.", + "I found an image of a vegetable garden that is neatly organized with different types of vegetables growing.", + "This image is of a vegetable garden that is located in a back yard.", + "In the image, there are rows of neatly planted vegetables with healthy looking greens.", + "In the image, there is a raised garden bed filled with various vegetables.", + "The image is of a small, home vegetable garden with lettuce, tomatoes, radishes, and pansies growing in it.", + "In the image, there are rows of green plants with leaves and stems.", + "One image from the internet of a vegetable garden shows a large, open area with various vegetables planted in raised beds.", + "In the image, there is a small, rectangular plot of dirt with neatly planted rows of vegetables.", + "This image shows a well-kept vegetable garden.", + "A garden full of fresh vegetables, ripe and ready to be picked.", + "To grow your own food is one of the most rewarding experiences.", + "A beautiful vegetable garden, full of healthy plants and produce.", + "A garden full of fresh vegetables, ready to be picked and eaten.", + "A beautiful vegetable garden, full of healthy and delicious vegetables, just waiting to be picked!.", + "A beautiful vegetable garden, with an assortment of plants and vegetables.", + "A lush vegetable garden, full of healthy greens and other vegetables, surrounded by a white picket fence.", + "This garden is full of healthy vegetables that are perfect for cooking.", + "A beautiful vegetable garden, full of healthy and delicious vegetables, just waiting to be picked!.", + "A beautiful vegetable garden that is well-tended and produces an abundance of fresh vegetables." + ], + "veranda": [ + "Verandas are typically elevated platforms with a railing that overlooks a yard or body of water.", + "A veranda typically has a roof and open sides, and is often attached to the main house.", + "A veranda is typically a roofed structure that faces the outdoors, and is attached to the main building.", + "A veranda is a porch or balcony, typically with a roof, that is open to the outdoors.", + "A veranda isTypically a roofed platform along the exterior of a house.", + "A veranda typically refers to a porch or balcony that is attached to the front of a house.", + "A veranda is typically a porch or deck that is attached to the side of a house.", + "A veranda is a porch or walkway with a roof, typically accompanied by a railing, that is built onto the side of a house.", + "A veranda is a porch or balcony on the outside of a house.", + "A veranda typically has a railing and a roof, and is usually attached to the side of a house.", + "A veranda is a porch or balcony that is attached to the outside of a house.", + "The veranda is the porch or balcony at the front or back of a house.", + "A veranda typically has a roof and is along the perimeter of a house.", + "A veranda is a porch or balcony that is attached to the outside of a house.", + "A veranda is a porch or balcony that is attached to the main building.", + "A veranda is a porch or balcony, typically with a roof, that is attached to the outside of a house.", + "The simplest way to identify a veranda is by its roof.", + "Verandas are typically found on the front or back of a house and are generally open-air, roofed structures.", + "A veranda is a porch that isTypically located in the front or back of a house.", + "A veranda is a porch or walkway, typically with a roof, that is attached to the main building.", + "A veranda is a porch or deck that is attached to the side of a house.", + "A veranda is a porch or platform along the outside of a house.", + "A veranda is a porch or walkway with a roof.", + "A veranda is a porch or walkway, often with a roof, that is attached to a building.", + "A veranda typically has a roof and open sides, and is a type of porch.", + "A veranda typically has a railing and is positioned outside of a home or building.", + "A veranda is a porch or balcony, typically with a roof, that is attached to the main building.", + "A veranda typically has a roof and is open on all sides.", + "Image result for what does a veranda look like.", + "A veranda is typically a porch with a roof that is attached to the house.", + " on a plantationThe image is of a large white colonial-style house with a veranda that wraps around the front and side of the house.", + "An image of a veranda from the internet shows a large, wrap-around porch with a white railing.", + "A veranda is a large, open porch with a roof, typically supported by columns.", + "A veranda is a porch or gallery along the exterior of a building.", + "A veranda is a porch or balcony, typically with a roof, that extends along the front or side of a house.", + "A veranda is a porch or gallery, typically on the front of a house.", + "A veranda is a porch or balcony, typically with a roof, that is attached to the side of a house.", + "This image is of a large, open veranda with a view of a body of water.", + "There is a white veranda with a green and white striped awning.", + "The image is of a veranda with a white picket fence.", + "Veranda of a House in New Orleans.", + "Charmingly quaint, this veranda is the perfect spot to enjoy a warm summer day.", + "A woman relaxes on a veranda overlooking a garden.", + "A veranda with a view of the ocean.", + "Veranda of a historic antebellum mansion in Natchez, Mississippi.", + "A veranda with a view of the ocean.", + "The veranda is a great place to relax and enjoy the outdoors.", + "Veranda with Wicker Furniture.", + " people lounging on a verandaA group of people relax on a veranda, enjoying the nice weather.", + "The veranda is a great place to relax and enjoy the outdoors." + ], + "veterinarians office": [ + "A clean and well-lit space with examination rooms, waiting area, and reception desk.", + "A veterinarian's office looks like a doctor's office for animals.", + "\nA veterinarians_office would look like a doctor's office, with a waiting room, Exam rooms, and a Lab.", + "A veterinarians_office looks like a doctor's office, but with animal cages instead of examination rooms.", + "A veterinarian's office looks like a doctor's office.", + "A veterinarian's office is a small, clean room with a sink, a table, and a few chairs.", + "A veterinarians_office looks like a spa for animals.", + "A veterinarians_office looks like a small clinic with a waiting room and several examination rooms.", + "A typical veterinarian's office has a waiting room, examination room, and operating room.", + "A veterinarians_office typically has a waiting area for clients, as well as examination rooms and an area for the vet to consult with clients.", + "If you are looking for a veterinarians_office, you can usually find one in your local yellow pages under the heading \"veterinarians.", + "A veterinarians_office can be identified by its name, which usually includes the word \"veterinary\" or by the presence of medical equipment such as a stethoscope or microscope.", + "There is no sure way to identify a veterinarians_office without looking at the business's website or giving them a call.", + "A veterinarians_office can often be identified by a sign or building with the name of the business.", + "The most common way to identify a veterinarian's office is by looking for the Veterinary Medicine symbol.", + "The building may have a sign that says \"veterinarian\" or \"veterinarians office.", + "The building may have a sign that says \"veterinarians_office.", + "A veterinarians office can be identified by a sign that has a picture of a dog or a cat on it.", + "From the outside, a veterinarians_office usually has a sign with the word \"veterinarian\" or a picture of a dog or cat.", + "There are a few ways that you can identify a veterinarians_office.", + "A veterinarian's office may vary depending on the specific type of practice, but in general, it will contain exam rooms, a lab, an x-ray room, and an office for the veterinarian.", + "A veterinarian's office usually has a waiting area for clients, exam rooms, and an area for the staff to work.", + " veterinary_office\nA veterinary office generally contains a waiting room, examination room, and may also have an x-ray room, treatment room, and operating room.", + "A typical veterinarian's office has a waiting room, where people can sit with their animals, and several examination rooms.", + "A veterinarian's office often looks like a human doctor's office, with a reception area, examination rooms, and a laboratory.", + "A veterinary office usually looks like a small clinic with a waiting area, exam rooms, and an office for the veterinarian.", + "A smaller version of a doctor's office.", + "There is no one answer to this question as the appearance of a veterinarian's office can vary greatly depending on the location, size, and type of practice.", + "A typical veterinarian's office has a reception area where pet owners can check in, a waiting room, one or more exam rooms, a surgical suite, and sometimes boarding facilities.", + "A veterinarian's office looks like a doctor's office.", + "In the image, there is a small, dark-haired girl sitting on a stool next to a large dog who is lying on a metal table.", + "In the image, there is a veterinarians_office with a animal in a cage.", + "The image is of a small, white building with a green roof.", + "In the image, there is a waiting room with several chairs and a table with magazines.", + "The image is of a small, one-room office with a window.", + "In the image, there is a large room with several rows of metal cages lining the walls.", + "In this image, we see a veterinarian's office with a large waiting room.", + "The image is of a small, cramped, dirty veterinarian's office.", + "An image of a veterinarians_office might show a waiting room with comfortable chairs and a TV playing animal videos, a front desk where clients check in and out, and exam rooms with glass walls so owners can see their pets during examinations.", + "The image is of a small, clean, and well-lit room.", + "A busy veterinarian's office.", + "A veterinarian's office is a place where animals are seen and treated by a veterinarian.", + " Veterinary Office.", + "A woman holds a cat while sitting in a vet's office.", + " A veterinarian examining a dog on a tableA veterinarian is examining a dog on a table in an office.", + " A doctor works on a small dog in an operating roomA veterinarian is working on a small dog in an operating room.", + "A clean and welcoming veterinarians office where your pet can receive the best care possible.", + "A veterinarian's office is a place where sick and injured animals are taken for diagnosis and treatment.", + " Veterinary MedicineVet image with stethoscope, instruments and dog.", + "This is the veterinarians_office." + ], + "viaduct": [ + "A viaduct is a long bridge that carries a road or a railroad over a valley or over a body of water.", + "A viaduct is a long bridge that carries a road or rail line over a valley or other low area.", + "A viaduct is a long bridge that is used to carry a road or a rail line over a valley or over a body of water.", + "A viaduct is a bridge composed of multiple spans supported by pillars or arches.", + "A viaduct is a long bridge that carries a road or railway across a valley or over a river.", + "A viaduct is a bridge composed of several small spans supported by piers, usually above a roadway or railway.", + "A viaduct is a bridge composed of multiple spans supported by piers, typically constructed as an elevated roadway.", + "A viaduct is a series of bridges that spans a ravine, valley, or other gap.", + "A viaduct is a long bridge that is supported by pillars or arches.", + "A viaduct is a bridge that is built to carry a road or railway over a valley or gorge.", + "A viaduct is a bridge composed of several small spans that crosses a valley or low land area.", + "A viaduct is a bridge composed of a series of short spans supported by piers or abutments.", + "A viaduct is a long, high bridge that spans a valley or a gulf.", + "A viaduct is built to carry a road or a railway over a valley or a gorge.", + "A viaduct is a bridge composed of several short spans supported by piers or arches.", + "A viaduct is a long bridge or series of bridges that carries a road or railroad over a deep valley or gorge.", + "A viaduct is a bridge composed of several small spans that supports a roadway or railway over a valley.", + "A viaduct is a long spans of bridges or elevated highways that are built to carry roads or railways over valleys or other low-lying areas.", + "A viaduct is typically a bridge composed of a series of short spans supported by columns or piers.", + "A viaduct is a bridge composed of several small spans that crosses a valley or a gorge.", + "A viaduct is a bridgelike structure that carries a road or railroad over a valley or other low ground.", + "A viaduct is a long bridge that has many supports and spans a large area.", + "A viaduct is a long bridge that spans a valley or a gorge.", + "A viaduct is a bridge built to carry a road or railroad over a valley or body of water.", + "A viaduct is a long, high bridge that carries a road or a railroad across a valley or over a river.", + "A viaduct is a long bridge that carries a road or railway over a valley or body of water.", + "A viaduct is a long bridge that has many supports.", + "A viaduct is a long, high, open structure that spans over a valley or other low area.", + "A viaduct is a long, high bridge that is often used to cross a valley or a gorge.", + "A viaduct is a long, high bridge that is used to carry a road or a railroad over a valley or over water.", + "An image of a viaduct from the internet shows a large, arched structure made of stone or concrete spanning a wide body of water.", + "The image is of a viaduct in Italy.", + "A viaduct is a long, high bridge that spans a valley or other low ground.", + "The image is of a viaduct in Italy.", + "The image is of a viaduct that is made up of a series of arches.", + " An image of a viaduct from the internet shows a large, stone structure spanning a wide body of water.", + "A viaduct is a large bridge that spans a valley or a gorge.", + "A viaduct is a bridge composed of several short spans supported by pillars.", + "A viaduct is a bridge that has multiple spans.", + "A huge viaduct spans a valley, with many small cars traveling along it.", + "The viaduct spans a canyon.", + "The viaduct carries a busy highway over a valley.", + "The viaduct is a key engineering feat of the Industrial Revolution, carrying trains over valleys and rivers.", + "Newport Transporter Bridge.", + "Abandoned Viaduct in the Woods.", + "A viaduct is a structure that spans a valley or other low ground, often carrying a road or railroad.", + "This viaduct was built in 1854 and is one of the oldest in the country.", + "An old viaduct in a small town.", + "The viaduct is a bridge that carries a railway over a valley.", + "The Val di Stava dam failure in Italy caused a devastating mudslide that completely wiped out this small town in 1985." + ], + "videostore": [ + "The shelves are filled with DVDs and Blu-rays that are available to rent.", + "\nA video store typically includes a rental counter, where customers can rent videos, and shelves with movies available for purchase.", + "Videostores typically rent DVDs and Blu-Rays and sometimes have a section for video games.", + "A typical videostore has a wide selection of movies available for rental, organized alphabetically or by genre.", + "A typical videostore has a wide variety of movies to choose from, organized alphabetically or by genre.", + "A videostore is a store that rents and sells videos and DVDs.", + "A convienience store that specializes in renting and selling videotapes.", + "The interior of a typical video store includes a renting counter, shelves full of DVDs and VHS tapes, and often a section for video games.", + "A video store usually has a wide selection of movies to choose from.", + "A videostore typically contains shelves of DVDs or VHS tapes that can be rented by customers.", + "There are many ways to identify a videostore.", + "The easiest way to identify a videostore is by looking for a sign that says \"videostore\" or \"video rental.", + "Most videostores have large signs with the store's name and a picture of a video cassette.", + "A videostore is typically a store that specializes in renting and selling videos and DVDs.", + "The outside of a videostore typically has a large sign with the store's name, and the inside has shelves full of movies that can be rented.", + "There are a few ways you can identify a videostore.", + "You can identify a videostore by looking for a building with a sign that says \"videostore\" or by looking for a building with a lot of movies for rent.", + "A videostore is usually identified by its name, which usually includes the word \"video\" or \"movies.", + "There are a few ways you can identify a videostore.", + "Which country are you asking for?.", + "A videostore generally has a large selection of movies available for rent.", + "There is no one answer to this question because there are many different types and styles of video stores.", + "There is no one \"videostore\" look, as they come in all shapes and sizes.", + "A videostore is a store that rents or sells videos and DVDs.", + "The interior of a video store typically contains racks upon racks of movies and TV shows available for rental, as well as a counter where customers can check out and return their rentals.", + "The interior of a typical videostore contains long rows of shelves holding DVDs and VHS tapes, with a counter at the front where customers can check out and return videos.", + "A videostore looks like a store that rents out movies on videotape or DVD.", + "There is no one answer to this question as every videostore looks different.", + "Videostores vary in appearance, but most have shelves or racks of movies that can be rented or purchased, along with a counter where transactions take place.", + "There is no universal answer to this question, as videostores can come in a wide variety of shapes and sizes.", + "A video store is a physical retail location that rents and sells DVDs and Blu-rays.", + "In the image, there is a large sign that reads \"VIDEOTAPE.", + "The image is of a sign that says \"Video Store\" in large letters.", + "In the image, there is a large room with racks of movies lining the walls.", + "The image is of a large, red brick building.", + "In the image, there is a small, rectangular building with a red and white sign that reads \"VIDEO\" in all capital letters.", + "There is an image of a videostore on the internet that shows a large variety of movies available for rental.", + "There is an image from the internet of a videostore that has a large variety of video games on display.", + "An image of a videostore would likely show a storefront with shelves of movies and TV shows available for rent or purchase.", + "The image is of a large, green sign that says \"videostore\" in white letters.", + "A group of friends browsing through the titles at their local video store in the early 2000s.", + "The caption reads \" CLASSIC MOVIES ON VHS.", + "In this image, we see a videostore which appears to be closed down.", + "A regular old-fashioned videostore.", + "A typical video rental store in the early 1990s.", + "A man in a business suit looks through a racks of movies at a storeThe man is looking for a movie to rent.", + "The Last Video Store.", + "This is my favorite videostore! They have everything you could ever want to watch!.", + "The Video ZoneThe Video Zone is your one-stop shop for all your video needs! We carry all the latest releases, as well as a huge selection of classics.", + "The local video store was a popular hangout for kids in the neighborhood." + ], + "village": [ + "Typically, a village is a small settlement that is smaller than a town.", + "A village is traditionally a small community or group of houses in a rural area, larger than a hamlet but smaller than a town, with a population ranging from a few hundred to a few thousand.", + "A village is a small settlement usually found in a rural area.", + "A village is a small, rural community.", + "A village typically contains a small cluster of homes and businesses surrounded by agricultural land.", + "A village is typically a small community that is located in a rural area.", + "A village is a small, rural community.", + "A village usually has a church, a pub, and a green.", + "A village is a small group of houses in the countryside.", + "A village typically contains a small group of houses surrounding a central meeting place, such as a village green, builiding, or well.", + "One way to identify a village is by its population.", + "There is no definitive answer to this question as every village is different.", + "A village is typically a smaller, more rural community than a town.", + "There is no specific answer to this question as every village is different.", + "There isn't a definitive answer to this question, but some possible ways to identify a village could include its size, its population, or its location.", + "A village can be identified by its small size, its close community, and its rural location.", + "There is no official definition of a village, but it is generally considered to be a small settlement with a population of fewer than a few thousand people.", + "The easiest way to identify a village is by its size.", + "There is no easy answer to this question as there are no defined criteria for what constitutes a village.", + "Some identifying characteristics of a village may include small population size, close proximity to farmland, a lack of urban characteristics, and a subsistence economy.", + "The appearance of a village depends on its location, climate, history, and culture, so there is no one answer to this question.", + "There is no one answer to this question as villages can vary greatly in terms of size, appearance, and amenities.", + "A village is a small, rural community.", + "A village is typically a small settlement with houses and other buildings built close together.", + "A village looks like a small town.", + "A village looks like a small town.", + "There is no one correct answer to this question, as villages can vary greatly in terms of their size, layout, and appearance.", + "A village typically contains a small group of houses and other buildings clustered together, with a population ranging from a few dozen to a few thousand.", + "There is no one answer to this question as villages can vary greatly in size and appearance.", + "There is no single answer to this question as villages can vary greatly in terms of size, location, and appearance.", + "An image from the internet of a village shows a small community of houses and buildings clustered together in a rural setting.", + "The image is of a small village with a few houses and a church.", + " in IndiaThis image shows a village in India with brightly colored buildings and a large number of people walking around.", + "The image is of a small village with a few houses and a dirt road running through it.", + " sceneThe image is of a small village with a few houses and a church.", + " sceneIn the image, there is a thatched-roof hut in the center with a small group of people standing in front of it.", + "In the image, a village is nestled between mountains.", + " in the mountainsThis image depicts a village nestled in between mountains.", + "One image that comes to mind is that of a small village in the Andes Mountains of Peru.", + "The image is of a small village with a few houses and a church.", + "This is a view of a small village in the countryside.", + "The tranquil village of St.", + "A small village in the mountains of Nepal.", + "A small village in the countryside.", + "The serene village of Hallstatt, Austria, is tucked away in the mountains, surrounded by pristine forests and pristine lakes.", + "In this village, time seems to have stood still.", + "Ezbet Qarun, an Egyptian village in the Qena Governorate, located on the west bank of the Nile.", + "Blanketed in snow, this village looks like a scene from a fairytale.", + "A peaceful village in the countryside.", + "Village in the Mountains." + ], + "vineyard": [ + "A vineyard is an area of land dedicated to the cultivation of grape vines.", + "A vineyard is an area where grapevines are cultivated for winemaking.", + "A vineyard is typically a large plot of land with grape vines planted in rows.", + "A vineyard is a plantation of grape-bearing vines, grown mainly for wine production.", + "A vineyard includes planted vines, trellising, and sometimes other buildings.", + "A vineyard is a series of grapevines planted in rows on a slope, with the rows typically running north-south so that they can receive an equal amount of sunlight.", + "A vineyard is a plantation of grape-bearing vines, grown mainly for winemaking, but also raisins, table grapes, and non-alcoholic grape juice.", + "A vineyard is a plantation of grape-bearing vines, grown mainly for winemaking, but also raisins, table grapes and non-alcoholic grape juice.", + "A vineyard is a plantation of grape-bearing vines, grown mainly for wine production.", + "A vineyard is a plantation of grape-bearing vines, grown mainly for winemaking, but also raisins, table grapes and non-alcoholic grape juice.", + "Vineyards are usually easy to spot from a distance because they are typically large, open fields with rows of grapevines planted in them.", + "If you are looking at a patch of land, you can identify a vineyard if the land is covered in grapevines.", + "If you are looking for a vineyard, you can find them in many places.", + "Several things can help you identify a vineyard.", + "Vineyards can be identified by the presence of grape vines.", + "The easiest way to identify a vineyard is by the presence of grape vines.", + "Vineyards are usually identified by signs bearing the name or logo of the winery.", + "A vineyard can often be identified by its rows of grape vines.", + "A vineyard is a plantation of grape-bearing vines, grown mainly for wine production.", + "A vineyard can be identified by its rows of grape vines.", + "A vineyard is an area of land planted with grapevines.", + "A typical vineyard consists of vines (plants), trellises (support structures), and a dirt or gravel road called a row.", + "A vineyard looks like a field with grape vines growing in it.", + "A vineyard usually has rows of grape vines growing on trellises.", + "A vineyard typically looks like a gently sloping field with rows of vines planted in it.", + "A vineyard is a piece of land where grapes are grown.", + "A typical vineyard is made up of many grape vines growing in neat rows.", + "A vineyard is an agricultural site where grapes are grown to produce wine.", + "A vineyard often looks like a field with rows of grapevines growing.", + "A vineyard looks like a field with grape vines growing on trellises.", + "The image is of a green vineyard with rolling hills in the distance.", + "In the image, there is a vineyard with green leaves and long vines.", + "I found an image of a vineyard that shows a path leading up to a small cottage surrounded by grape vines.", + "An image from the internet of a vineyard shows long rows of grapevines stretched out across a rolling landscape.", + "In this image, we see a vineyard in the early morning light.", + "The image shows a vineyard with rows of grapevines growing.", + "A vineyard is typically an agricultural plot of land where grapevines are grown in order to produce wines.", + "In the image, there is a large, green field with grapevines growing in neat rows.", + "I found an image of a vineyard that shows grapevines growing on rolling hills.", + "An image of a vineyard from the internet shows rows of grape vines growing in a field.", + "Vineyard in Napa Valley, California.", + "Vineyard in Sonoma, California.", + " A vineyard in Provence, France.", + "This is a picture of a vineyard in Napa Valley, California.", + "The Clarke Family Vineyard - a family-run business specializing in organic wines.", + "Wine Country.", + "Looking out over the vineyard, it's easy to see why this place is called paradise.", + "Vineyard in Napa Valley, California.", + "Sunset over the vineyard.", + "The picturesque vineyard is situated on a hillside in the Tuscany region of Italy." + ], + "volcano": [ + "A volcano is made up of a cone of ash and rock fragments that is built up around a central vent.", + "A volcano typically looks like a big mountain with a big hole at the top.", + "A volcano looks like a mountain with a hole at the top.", + "A volcano is a mountain that has a hole at the top that goes all the way down to the inside of the earth.", + "A volcano is typically a conical or domed shape with a crater at the summit.", + "A volcano looks like a mountain with a hole at the top.", + "A volcano looks like a mountain with a hole at the top that lava and ash comes out of.", + "A volcano is usually a conical hill or mountain, typically composed of rock debris thrown out by eruptions or of lava flows.", + "A volcano looks like a mount with a hole in the top, where magma can come out.", + "A volcano is a mountainside that opens downward to a pool of molten rock below the surface of the earth.", + "A volcano is a geological landform consisting of a cone-shaped mountain formed by the accumulation of materials erupted through one or more openings in the Earth's surface.", + "A volcano can be identified by its steep sides, typically formed by lava flows or pyroclastic deposits, and its central crater that is typically formed by a central cone.", + "A volcano is a mountainside that opens downward to a pool of molten rock below the surface of the earth.", + "A volcano has a magma chamber below the surface of the earth, and a vent through which the magma and ash can escape.", + "The most obvious way to identify a volcano is by its cone shape.", + "A volcano is a column of ash and lava that is ejected from the Earth during a volcanic eruption.", + "A volcano is typically a cone-shaped mountain.", + "A volcano typically has a large crater at the top, and is increasingly steep the closer it is to the base.", + "The most obvious way to identify a volcano is by its cone shape.", + "A volcano can be identified by its cone-shaped mountain and the crater at its summit.", + "A volcano is a mountains that has lava and magma coming out of the top of it.", + "A volcano typically has a large, central crater and is surrounded by a cone of ejecta.", + "A volcano has a cone-shaped mountain with a big hole at the top.", + "A volcano looks like a mountain with a hole in the top that is smoking or has smoke coming out of it.", + "A volcano looks like a mountain with a hole at the top.", + "A volcano looks like a large, cone-shaped mountain.", + "A volcano is typically a cone-shaped mountain with a hole at the top that emits lava and ash.", + "A volcano is a cone-shaped mountain that is formed when molten rock, ash, and gas escape from an opening in the Earth's surface.", + "Volcanoes can come in all different shapes and sizes.", + "Volcanoes vary in size and shape, but most have a cone-like shape with a steep outer slope leading to a crater at the summit.", + "The image is of a volcano with a plume of smoke coming from the top.", + "The image is of a volcano with a large plume of smoke and ash billowing from its peak.", + "I found an image on the internet of a volcano that is erupting.", + "An image of a volcano from the internet might show a volcano erupting, with lava and ash flowing from the crater.", + "This image is of the Mount St.", + "This image is of the youngest and most active volcano in Ecuador, named Reventador.", + "The image is of a volcano with a plume of ash and smoke billowing out of its crater.", + "The image is of a volcano with a large plume of smoke billowing from the top.", + "A volcano is a mountain that opens downward to a pool of molten rock below the surface of the earth.", + "Picture shows a large volcano with a large plume of smoke and ash erupting from its summit.", + "The eruption of Mount St.", + " A fiery lava flow from Kilauea, one of the world's most active volcanoes.", + "Krakatoa is a volcanic island located in the Sunda Strait between the islands of Java and Sumatra in the Indonesian province of Lampung.", + "The Caption reads: \"A volcano erupts spewing hot lava and ash into the air.", + "Mt.", + "A volcano formed by the eruption of Mount St.", + "A raging volcano spews hot lava and ash into the air.", + "A view of Mount St.", + "A large volcano in eruption, spewing lava and ash into the sky.", + " A close up of the crater of a volcanoA close up of the crater of a volcano." + ], + "indoor volleyball court": [ + "Indoor volleyball courts are usually made of wood, and have a net in the middle.", + "An indoor volleyball court is typically a rectangular room with hardwood floors and a ceiling at least 12 feet high.", + "A volleyball court has a hard surface with a net across the middle.", + "A volleyball court typically consists of a flat, rectangular surface with a net running across the center.", + "A volleyball court is typically composed of hardwood floors.", + "A indoor volleyball court is a large flat area with a smooth floor.", + "An indoor volleyball court looks like a large, flat rectangle with a volleyball net stretched across the middle.", + "A volleyball court is a rectangle that is divided in half by a net.", + "A volleyball court is generally composed of smooth hardwood or laminate flooring.", + "A volleyball court is typically located indoors and measures 18 meters by 9 meters.", + "A volleyball court is typically oriented in a North-South direction, with the sidelines parallel to the end lines.", + "A indoor volleyball court is typically long and narrow, with a hardwood floor.", + "A volleyball court inside a building is typically smaller than a regulation court.", + "A volleyball court is a rectangle that is divided into two equal squares by a net.", + "A indoor volleyball court can be identified by its size, markings, and net.", + "The best way to identify an indoor volleyball court is to look for the markings on the floor that delineate the playing area.", + "The dimensions of a volleyball court for indoor play are 18 m \u00d7 9 m (59 ft \u00d7 29 ft).", + "The best way to identify an indoor volleyball court is to look for the markings on the floor that indicate the boundaries of the court.", + "There are a few ways that you can identify an indoor volleyball court.", + "The dimensions of a regulation indoor volleyball court are 18 m x 9 m.", + "Aregulation indoor volleyball court is 60 feet by 30 feet.", + "A volleyball court is 9 meters wide and 18 meters long.", + "A volleyball court is a rectangular court with a net in the middle.", + "A indoor volleyball court has a hardwood floor with a volleyball net in the middle.", + "A standard indoor volleyball court is 60 feet long and 30 feet wide.", + "\nA standard indoor volleyball court is 18m x 9m, with a 3m line on either side of the court and a 1.", + "A typical indoor volleyball court is 18 meters long and 9 meters wide.", + "A typical indoor volleyball court is 18 meters long and 9 meters wide, with a 3-meter line on either side.", + "A regulation indoor volleyball court is 9 meters by 18 meters with a 3 meter by 3 meter service area on each side of the court.", + "A volleyball court is typically a rectangular court with a net across the center.", + "An indoor volleyball court has a hardwood floor with a volleyball net in the middle.", + "The image is of a large, rectangular room with a high ceiling.", + "This image is of an indoor volleyball court with wood floors and netting around the perimeter.", + "The image is of an indoor volleyball court with four volleyball nets set up.", + "The image is of an indoor volleyball court that has six players, three on each team.", + "A volleyball court is typically divided into two halves by a net.", + "The image is of an indoor volleyball court with a hardwood floor.", + "This image is of an indoor volleyball court with six people playing.", + "The image is of an indoor volleyball court with two Volleyball nets in the middle.", + "This image is of an indoor volleyball court.", + "A volleyball court inside a building.", + "A view of the indoor volleyball court at the Palais des Sports in Paris, France.", + "A group of people playing volleyball in an indoor court.", + "Indoor volleyball court at a sports complex.", + "A volleyball court inside a gymnasium or other indoor facility.", + "This is an indoor volleyball court.", + "A volley ball court inside a building.", + "A volleyball court inside a building.", + "This is an indoor volleyball court.", + "Indoor volleyball court at the University of Michigan." + ], + "outdoor volleyball court": [ + "A outdoor volleyball_court is typically a raised platform with a net stretched across the middle.", + "A outdoor volleyball court typically looks like a rectangle with lines drawn to delineate the court and the boundaries.", + "A volleyball court is typically a rectangular area with lines drawn to indicate where players can stand.", + "An outdoor volleyball court is typically a flat, rectangular surface with Volleyball markings lines on it.", + "A regulation outdoor volleyball court is 60 feet by 30 feet.", + "A outdoor volleyball court is typically a hard, flat surface made of asphalt, concrete, or brick.", + "A volleyball court is a flat surface with lines drawn to create a rectangle.", + "A traditional outdoor volleyball court is a rectangular area measuring 60 feet by 30 feet.", + "A volleyball court is typically a rectangular area with boundaries marked by lines.", + "A volleyball court is typically a level, rectangular surface measuring 60 feet by 30 feet.", + "A volleyball court is usually flat and made of asphalt or concrete.", + "A.", + "A few ways to identify an outdoor volleyball court are by looking for a volleyball net strung up between two poles,finding a smooth, flat surface big enough to play on, and looking for referee lines or boundaries drawn on the ground.", + "A volleyball court is a rectangular court with lines drawn to mark the boundaries.", + "You can identify a outdoor volleyball court by looking for a large, open area with a flat surface.", + "Outdoor volleyball courts are typically made of asphalt or concrete and are surrounded by a net.", + "An outdoor volleyball court is typically 20 feet by 44 feet and is divided by a net that is 3 feet 6 inches high on the ends and 3 feet high in the middle.", + "There are a few ways to identify an outdoor volleyball court.", + "Most outdoor volleyball courts are surrounded by a net.", + "A typical outdoor volleyball court is 60 feet (18.", + "A volleyball court is typically a rectangle measuring 60 feet by 30 feet (18 meters by 9 meters).", + "A volleyball court is typically a rectangle with boundaries on all sides.", + "An outdoor volleyball court is typically a flat, rectangular area made of smooth material, such as concrete, sand, or grass.", + "A regulation outdoor volleyball court is 60 feet by 30 feet.", + "It is a large, open area with a flat, firm surface.", + "A volleyball court is typically an outdoor space with a net in the middle.", + "A outdoor volleyball court looks like a volleyball court that is outdoors.", + "An outdoor volleyball court is a rectangular shaped court with a net in the middle.", + "An outdoor volleyball court looks like a rectangle with a net in the middle.", + "A outdoor volleyball court looks like a court with a volleyball net.", + "The image shows a outdoor volleyball court with a net in the middle.", + " The image is of a outdoor volleyball court.", + "The image is of a volleyball court that is outdoors.", + "The image is of a outdoor volleyball court with a sand base.", + "An image of an outdoor volleyball court would show a rectangular court with a net in the middle.", + "The image is of a rectangular outdoor volleyball court with a net in the middle.", + "A volleyball court is an outdoor playing area usually consisting of a flat, rectangular surface with sidelines and a center line.", + "A volleyball court is typically a rectangle with a net in the middle.", + "An image from the internet of an outdoor volleyball court would show a flat, smooth playing surface with lines drawn to delineate the boundaries of the court.", + "The image is of a sand volleyball court with lines drawn in the sand.", + "A group of people playing volleyball on an outdoor court.", + "Outdoor Volleyball Court.", + "A volleyball court outdoors with a net set up in the middle.", + "A volleyball court surrounded by trees and greenery.", + "A volleyball court outdoors with netting dividing the playing area.", + " An outdoor volleyball court with a net set up in the middle.", + "A volleyball court located outdoors surrounded by green grass and trees.", + " volleybal court.", + "Outdoor volleyball court ready for some fun!.", + " Image of an outdoor volleyball court with a net in the middle." + ], + "waiting room": [ + "A waiting room for a doctor's office or hospital typically has chairs for patients to sit in, as well as a reception desk.", + "A waiting room typically contains a number of chairs for people to sit in, often arranged in a way that allows for conversation.", + "A waiting room typically has chairs for people to sit in, magazines to read, and a television to watch.", + "A waiting room typically has chairs for people to sit in, and may also have magazines or televisions.", + "It depends on the waiting room.", + "A waiting_room looks like a room with chairs in it for people to sit in while they wait.", + "A waiting room is a room where people can wait for others or events.", + "A waiting room is usually a small room with chairs and a table.", + "There are usually chairs or benches along the walls and a television playing in the corner.", + "A waiting room typically has chairs for people to sit in, magazines to read, and a television to watch.", + "A waiting_room can be identified by its furniture, which usually includes chairs and/or benches for people to sit on.", + "One way to identify a waiting_room is to look for a seating area with chairs or benches for people to sit on.", + "In a hospital, the waiting room is usually the room where patients and their families wait to be seen by a doctor or other medical professional.", + "A waiting_room is typically a room in a hospital or clinic where patients wait to be seen by a doctor or other medical professional.", + "A waiting_room is usually a room in a hospital or other medical facility where patients can wait to be seen by a doctor or other medical staff.", + "You can a waiting room by looking for a room with chairs for people to sit in.", + "A waiting_room can often be identified by its location within a hospital or other medical facility.", + "A waiting room is typically a small room near the entrance of a public building, where people can wait for their turn to be admitted.", + "The waiting room is the room where people wait to be seen by the doctor.", + "The waiting room usually has chairs for people to sit in.", + "There is no one definitive answer to this question.", + "This is a difficult question.", + "A waiting_room usually has chairs for people to sit in, a place to put coats and bags, and may have a TV or magazines to help pass the time.", + "A waiting room may look like a simple room with chairs and a TV or it may be a more elaborate space with comfortable seating, a play area for children, and a variety of reading materials.", + "A waiting room is typically a small room with chairs for people to sit in.", + "A waiting room typically has comfortable seating, reading materials, and a television.", + "There is no definitive answer to this question as the appearance of a waiting room can vary greatly depending on the location, type of business, and other factors.", + "There is no one definitive answer to this question.", + "A waiting room typically has chairs for people to sit in, as well as some sort of reception desk.", + "There is no one definitive answer to this question.", + "A waiting room is a room in a public place, such as a doctor's office or a courthouse, where people wait to be seen or to speak to someone.", + "In the image, there are several chairs arranged in a row with a end table next to each chair.", + "In the image, there are several chairs lined up against the wall in a waiting room.", + "In the image, there are several rows of chairs facing each other with a aisle down the middle.", + "A waiting room is a room where people wait for something to happen.", + "I found an image of a waiting room on the internet that shows a woman sitting in a chair with her belongings next to her.", + "In the waiting room image, there are several people sitting in chairs and waiting for their turn.", + "The image is of a drab, small waiting room with outdated magazines and a lone chair.", + "In the image, there are several chairs arranged in a waiting room.", + "There are many image results for waiting rooms on the internet, but one in particular is of a waiting room in a hospital.", + " The waiting room of a psychology officeThis is the waiting room of a psychology office.", + "A waiting room at a hospital or doctor's office.", + "Patients wait in the waiting room for their consultation with the doctor.", + "Patients waiting in the hospital lobby.", + "People sitting in a waiting room.", + "An image of a waiting room in a hospital or doctor's office.", + "Patients wait to be seen in the crowded waiting room of a busy hospital.", + "Patients wait for their appointment in the waiting room.", + "A waiting room at a hospital.", + "A waiting room full of people eagerly anticipating their turn." + ], + "indoor warehouse": [ + "A warehouse is a building where goods and materials are stored.", + "The interior of a warehouse is typically divided into storage areas, aisles and sometimes office space.", + "A indoor warehouse looks like a giant room with shelves and boxes everywhere.", + "A warehouse is a large commercial building for storing products or raw materials.", + "A warehouse is a large commercial building for storing products or raw materials.", + "A warehouse is a building for storing goods.", + "A warehouse is a large commercial building where raw materials and finished goods are stored.", + "A indoor warehouse is a building where merchandise is stored.", + "A warehouse is a commercial building for storage of goods.", + "A typical indoor warehouse is a large, open space with high ceilings, metal shelves, and a concrete floor.", + "There are a few things to look for when trying to identify an indoor warehouse.", + "Answer: Look for a large, rectangular building with few or no windows.", + "The best way to identify an indoor warehouse is to look for large, windowless buildings with loading docks and shipping containers nearby.", + "From the outside, an indoor warehouse is a large building with many doors and windows.", + "An indoor warehouse can be identified by its large, open interior space with high ceilings and no exterior walls.", + "There are a few ways to identify an indoor warehouse.", + "A warehouse that is used for indoor storage is typically a large, single-story building that has wide doors and high ceilings.", + "The most common type of indoor warehouse is a storage warehouse.", + "Some clues that a building is being used as an indoor warehouse include:-The building is large and has high ceilings\n-The exterior of the building is typically plain and unadorned\n-The building has few or no windows.", + "An indoor warehouse is typically a large, single-story building with a loading dock at one end and a large door at the other end.", + "A warehouse is a building where goods are stored.", + "The interior of a warehouse can vary depending on the type of business that is being run out of the space.", + "An indoor warehouse is typically a large, open space with high ceilings and concrete floors.", + "A typical indoor warehouse looks like a large, open space with high ceilings and lots of shelving.", + "A warehouse is a commercial building for storage of goods.", + "A warehouse is a large commercial building for storing products or raw materials.", + "A warehouse is usually a large, single-story building with a lot of open space and high ceilings.", + "A typical indoor warehouse looks like a large, open space with rows of shelves or pallets.", + "A warehouse is a large, open space that is used to store goods and materials.", + "There is no one answer to this question, since indoor warehouses can come in a wide range of sizes and styles.", + "The image is of a large, indoor warehouse.", + "The image shows an indoor warehouse with several rows of shelves.", + "A large, dimly lit warehouse with rows upon rows of high shelves, each stacked with boxes and other random objects.", + "In this image, we can see a large, indoor warehouse.", + "The image is of a large, spacious warehouse with high ceilings and exposed metal beams.", + "The image is of a large, open warehouse with concrete floors and metal racks holding boxes and other supplies.", + "In the image, there is a large, empty indoor warehouse with high ceilings.", + "The image is of a large, indoor warehouse with high ceilings.", + "The image is of a large, brightly lit warehouse with high ceilings and racks of merchandise throughout.", + "In the image, there is a large indoor warehouse with high ceilings and rows of metal shelves filled with boxes and other supplies.", + "Inside an Amazon.", + "Aerial view of an indoor warehouse.", + "A worker stocking shelves in a warehouse.", + "The interior of a large warehouse, with high ceilings and aisles of shelves stacked with boxes and other merchandise.", + "An indoor warehouse full of shelves and boxes.", + "A large indoor warehouse with rows of shelves full of boxes and other materials.", + "A chaotic scene inside a busy warehouse.", + "Into the belly of the beast.", + "A large, indoor warehouse used for storing merchandise and/or materials.", + "A person is looking at a large variety of boxes and containers inside a warehouse." + ], + "water tower": [ + "Water towers are large, cylindrical tanks that are either elevated on a supporting structure or ground-level.", + "A water_tower is a large, elevated tank that stores water.", + "A water tower is a large, elevated structure that holds a water tank.", + "A water tower is a tall, cylindrical structure that stores water.", + "A water_tower is a large, cylindrical tank that holds water.", + "A water_tower typically has a cylindrical or conical shape and is often tall and skinny.", + "A water tower is a large, elevated structure that stores water in an airtight tank.", + "A large, cylindrical tank that sits atop a tall tower or building and is filled with water.", + "A water tower is a tall, cylindrical structure that holds a water tank at the top.", + "A water tower is a tall cylinder or pyramid-shaped structure that is used to store water.", + " water towers are generally structures that stand alone and are elevated above the ground on a platform or tower.", + "A water tower is usually a large, cylindrical tower with a roof on top.", + "Water towers are often large, elevated structures that are used to store water.", + "A water_tower is a large, elevated structures that stores water.", + "They are typically very tall and made of metal or concrete.", + "Water towers can be identified by their cylindrical shape, and they are often located near water sources such as rivers or lakes.", + "There is no definitive answer to this question, as water towers can vary significantly in appearance.", + "A water tower is a tall, cylindrical structure that stores water at a high pressure.", + "A water_tower is a large, elevated structure that stores water in an elevated tank.", + "A water tower is a large, elevated structure that stores water in tanks.", + "A water tower is a large, cylindrical tank that stores water.", + "A water tower typically looks like a large, cylinder-shaped container with a spigot at the bottom.", + "A water tower typically looks like a large, cylindrical tank that is elevated off the ground on a platform or tower.", + "A water tower is a tall, cylindrical structure that holds water.", + "Most water towers are cylindrical in shape with a conical or pyramid-shaped roof.", + "Most water towers are cylindrical, but they can also be square or rectangular.", + "A water tower is a large, cylindrical structure that is taller than it is wide.", + "A water tower typically looks like a large cylinder or cone with a spout at the top.", + "A water tower is a large, elevated tank that is used to store water.", + "A water tower is a tall, cylindrical structure that holds a large tank of water above the ground.", + "A water tower is a cylindrical structure that towers over a building and holds a large tank of water.", + "The image is of a water tower that is cylindrical in shape with a pointed top.", + "The image is of a large, white water tower with a green roof.", + "A water tower is a tall, cylindrical tower used to store water.", + "The image is of a large, cylindrical water tower with a conical roof.", + "A water tower is a tall structure that stores water in tanks and releases it by gravity to meet the water needs of a community.", + "Image shows a large, cylindrical water tower with a round, metal roof.", + "The image shows a water tower with the words \"H2O\" written on the side.", + "A water tower is a tall structure that stores water in tanks atop the structure.", + "The image is of a tall, cylindrical water tower with a ladder leading up to the top.", + "Watertower in the park.", + "A water tower in Los Angeles, California.", + "Water tower in a small town in the midwest United States.", + "A water tower in a small town.", + "The water tower is a formidable presence in the landscape.", + "A large water tower in a park.", + "A water tower in a small town in the middle of nowhere.", + " A water tower surrounded by green trees and bushes.", + "A water tower in Boston, MA.", + " A water tower in a small town in the middle of America." + ], + "block waterfall": [ + "A block waterfall is a waterfall that is made up of a series of interconnected blocks.", + ".", + "A block waterfall is a stack of blocks that are arranged so that each block is slightly offset from the block below it.", + "A block waterfall is a waterfall where the water flows over a series of stacked blocks.", + "A block waterfall is a type of waterfall that is created by a column of stacked blocks.", + "A block waterfall is a type of waterfall where the water flows over a series of stacked blocks.", + "A block waterfall is a wall of cascading waterfalls.", + "A block waterfall is a waterfall that is created by placing blocks of stone or bricks on top of each other.", + "A block waterfall is a type of waterfall where the water flows over a series of stacked blocks.", + "A block waterfall is a type of waterfall where the water flow is blocked by large rocks or boulders.", + "One way to identify a block waterfall is by looking for a large, steep drop in the landscape.", + "Block waterfalls are different from other types of waterfalls in that the water does not flow over a bedrock cliff.", + "A block waterfall can be identified by its rectangular shape and lack of curves.", + "It can be identified by its steep drop and the large amount of water that flows over it.", + "A block waterfall is typically identified by its steepness and the presence of large boulders or blocks of rocks.", + "There are many ways to identify a block waterfall.", + "A block waterfall can be identified by its straight, vertical drop and the way the water flows over the edge of the cliff in a sheet.", + "Block waterfalls can be identified by their large, angular blocks of rock that have tumbled down the waterfall.", + "A block waterfall is a waterfall that is created by a block of stone.", + "The best way to identify a block waterfall is to look for a distinct layer of rock that has been eroded away.", + "A block waterfall is a natural waterfall that occurs when water flows over a block of rock.", + "A block waterfall typically looks like a series of stacked blocks that resemble a mini waterfall.", + "A block waterfall is a type of waterfall where the water flows over a series of stacked stones or blocks.", + "A block waterfall looks like a layer of blocks coming down from a higher point.", + "A block waterfall looks like a normal waterfall, except the water is flowing over blocks instead of rocks.", + "A block waterfall is a series of interconnected blocks that cascade down a slope.", + "A block waterfall is a type of waterfall where the water flows over a series of stepped rocks.", + "A block waterfall looks like a staircase made out of blocks.", + "A block waterfall is a type of waterfall where the water flows over a series of stacked blocks.", + "A block waterfall looks like a waterfall made out of blocks.", + "The image is of a large waterfall with several tiers of cascading water.", + "A block waterfall is a waterfall where the water flows over a series of large rocks.", + "This image is of a block waterfall located in Pennsylvania.", + "In the image, a block waterfall can be seen cascading down a rocky mountainside.", + "A block waterfall is a type of waterfall where the water cascades over a series of large rocks.", + "The image is of a rectangular waterfall with blue-green water cascading down uneven stone steps.", + "A block waterfall is a type of waterfall where the water flows over a series of evenly spaced rocks or other natural material.", + "In this image, a block waterfall cascades down a mossy cliff face into a pool of deep green water.", + "An image of a block waterfall shows a cascading series of square or rectangular blocks, each slightly smaller than the one below it.", + "This image is of a large block waterfall.", + "Block Cascade Waterfall in Yosemite National Park, California.", + "A block waterfall is a type of waterfall that creates a sheet of water over a wide area.", + " A block waterfall on a river in the mountains.", + "As the water flows over the edge of the cliff, it falls in a series of small steps, creating a soothing and calming sound.", + "block waterfall.", + "A block waterfall is a type of waterfall created by large, flat rocks that have been eroded over time.", + "A block waterfall is a type of waterfall where the water flows over a series of stepped ledges.", + "A block waterfall cascading over a rocky cliff.", + " A block waterfall cascades over a mossy rock face.", + "A block waterfall cascades over a rocky cliff, creating a refreshing and serene atmosphere." + ], + "fan waterfall": [ + "A fan waterfall looks like a curtain of water falling from a cliff or ledge.", + "A fan waterfall looks like a stream of water flowing over a cliff or ledge and fanning out as it falls.", + "A fan waterfall looks like a sheet of water flowing down over a cliff or ledge.", + "A fan waterfall looks like a wall of water that is cascading down from a higher point.", + "A fan waterfall is a waterfall where the water cascades over a series of steps that resemble the blades of a fan.", + "A fan waterfall is a type of waterfall where the water flows over a series of ledges in a wide, fan-like shape.", + "A fan waterfall is a type of waterfall where water flows over a series of descending stepped terraces.", + "A fan waterfall is a type of waterfall where water flows over a sculpted rock face in a wide, fan-like shape.", + "A fan waterfall typically refers to a waterfall where the water flows over a wide, slanted rock face in a fan-like shape.", + "A fan waterfall is a waterfall where the water flows over the edge of a cliff in a fan-like shape.", + "A fan waterfall is usually recognizable by its wide, sloping shape.", + "The most distinguishing feature of a fan waterfall is the wide, shallow pool at its base.", + "A fan waterfall is a waterfall where the water flows over a wide, sloping ledge of rock that forms a fan shape.", + "A fan waterfall is a type of waterfall where the water flows over a wide, sloping area in a fan-like shape.", + "A fan waterfall is a type of waterfall that is created when water flows over a series of wide, flat rocks.", + "A fan waterfall is a type of waterfall that is created when water flows over a series of stepped rocks.", + "A fan waterfall is a type of waterfall that is created when water flows over a sloping surface in a fan-like shape.", + "You can identify a fan waterfall by its wide, flat crest and gradual slope.", + "Fan waterfalls are generally created by a natural geological formation such as a incised canyon or a carved out valley.", + "A fan waterfall involves a lot of water flowing quickly down a slope.", + "A fan waterfall is a water feature that consists of a fan-shaped wall of water.", + "A fan waterfall looks like a series of small waterfalls cascading down a cliff face or mountainside.", + "Afan waterfall looks like a waterfall with a fan behind it.", + "A fan waterfall looks like a regular waterfall, but with a fan in the middle.", + "A fan waterfall typically has multiple tiers of cascading waterfalls that flow into a large pool or basin.", + "A fan waterfall is a type of waterfall where the water flows over the edge of a cliff in a thin sheet, creating the appearance of a fan.", + "I'm not sure exactly what you are asking, but a fan waterfall is a type of waterfall that is created by a fan-shaped stream of water.", + "A fan waterfall looks like a waterfall with a fan in the middle.", + "A fan waterfall is a type of waterfall where the water flows over the edge of a cliff or other high place in a fan-like shape.", + "A fan waterfall is a type of waterfall where the water cascades over a series of tiers in the shape of a fan.", + "A fan waterfall is a type of waterfall where water flows over a series of fan shaped rocks.", + "A fan waterfall is a type of waterfall in which the water flows over a series of curved plates or blades, creating a continuous sheet of water.", + "A fan waterfall is a type of waterfall where water flows over a series of tiers in a wide, shallow bowl.", + "The image is of a fan waterfall in a green and lush setting.", + "A fan waterfall is an image of a waterfall where the water appears to be fanning out in different directions.", + "In the image, there is a wide, curving fan of waterfalls.", + "A fan waterfall is a type of waterfall where the water flows over a series of fan-shaped dams.", + "In the image, there is a lush green forest with a tall waterfall in the center.", + "A fan waterfall is a type of waterfall where water flows over a series of tiers in a fan-like shape.", + "This image shows a beautiful, natural fan waterfall.", + "A beautiful fan waterfall in a garden.", + "Astonishingly beautiful fan waterfall in Thailand.", + " A man cools off in a fan waterfall in Chicago, Illinois.", + "This fan waterfall is a great way to cool off on a hot day!.", + "Mother Nature's glory on display in all its forms.", + "The Fan Waterfall in Yellowstone National Park is one of the most beautiful and unique waterfalls in the world.", + "A fan waterfall is a type of waterfall created by fans.", + "A beautiful fan waterfall in a tropical paradise.", + " A Fan waterfall in Australia.", + "A fan waterfall in a home." + ], + "plunge waterfall": [ + "A plunge waterfall is a type of waterfall where water flows over a cliff, creating a deep pool at its base.", + "A plunge waterfall is a type of waterfall where the water cascades over a ledge and plummets straight down.", + "A plunge waterfall is a type of waterfall where the water flows over a steep cliff, falling vertically into a pool below.", + "Plunge waterfalls are usually taller than they are wide, and have a steep drops.", + "A plunge waterfall is a type of waterfall where the water falls vertically into a plunge pool below.", + "A plunge waterfall is a type of waterfall where the water flows over a vertical drop or cliff, with a pool at the base.", + "A plunge waterfall is a type of waterfall where the water flows over a steep cliff, creating a sudden drop.", + "A plunge waterfall is a type of waterfall where water flows over a cliff, precipice, or drop.", + "A plunge waterfall is a waterfall that occurs when a river or stream flows over a steep cliff, creating a sudden and dramatic drop in elevation.", + "A plunge waterfall is a waterfall that plunges vertically over a cliff, as opposed to a plunge pool, which is a basin at the base of a waterfall.", + "A plunge waterfall is a type of waterfall where the water flows over a cliff, creating a deep pool at the base of the waterfall.", + "A plunge waterfall is a type of waterfall where the water flows over a cliff or steep slope and drops vertically.", + "A plunge waterfall is a type of waterfall where the water plunges vertically into a pool at its base.", + "A plunge waterfall is distinguished from other types of waterfalls by the way the water suddenly drops at the end, typically over a cliff.", + "A plunge waterfall is a type of waterfall where the water flows over a vertical drop in the rock face.", + "To identify a plunge waterfall, you can look for characteristics such as a deep pool at the base, a steep drop, and a small opening at the top.", + "A plunge waterfall is a type of waterfall where the water flows over a steep cliff and plunges into a deep pool below.", + "A pipeline or other man-made structure that forces water over a cliff is not a plunge waterfall.", + "The easiest way to identify a plunge waterfall is by its vertical drop.", + "A plunge waterfall is a type of waterfall that drops vertically, versus cascading down a slope.", + "A plunge waterfall is a type of waterfall where the flow of water plunges directly down the rock face.", + "A plunge waterfall looks like a waterfall where the water flows over a cliff and drops vertically.", + "A plunge waterfall is a steep waterfall where the water flows over a cliff and drops straight down.", + "A plunge waterfall is a type of waterfall that plunges or flows straight down, with a vertical or near-vertical drop.", + "A plunge waterfall is a waterfall that flows over a cliff without any intervening land.", + "A plunge waterfall looks like a waterfall where the water flows over a cliff, typically into a pool below.", + "A plunge waterfall looks like a waterfall where the water suddenly drops straight down.", + "A plunge waterfall looks like a sheet of water falling over a cliff.", + "A typical plunge waterfall is a vertical drop where the water flows over a steep cliff or ledge and plummets straight down.", + "A plunge waterfall is a type of waterfall that is created when a river or stream flows over a steep cliff.", + "The image shows a plunge waterfall located in a remote canyon.", + "The image is of a plunge waterfall located in Iceland.", + "The image is of a waterfall called the Eagle Creek Plunge Falls in Oregon, USA.", + "Plunge waterfalls are waterfalls where the water flows over the edge of a cliff without a radiating deposit.", + "A plunge waterfall is a type of waterfall that plummets over a steep cliff, dropping vertically into a deep pool below.", + "This image is of a plunge waterfall called Cola de Caballo in Spain.", + "Height, power and drama \u2013 a plunge waterfall is a type of waterfall that falls vertically, steeply and directly into a pool below.", + "I found an image of a plunge waterfall called Havasu Falls.", + "The image is of a waterfall called Ouzoud Falls in Morocco.", + "This image is of a plunge waterfall called \u010cistedr Falls in the Czech Republic.", + "A rushing plunge waterfall cascades over mossy rocks into a deep pool of crystal clear water.", + " A plunge waterfall is a type of waterfall that occurs where a stream or river flows over a steep cliff, creating a dramatic drop.", + "The plunge waterfall is one of the most popular types of waterfalls.", + "Watkins Glen State Park in Watkins Glen, New York.", + "Pine Creek Falls in Luray, Virginia.", + "A plunge waterfall is a type of waterfall where the water plunges vertically over a cliff, without any horizontal component.", + "\nThe plunge waterfall at Cascades Park in Tallahassee, Florida\n.", + "Pine Creek Falls in Olympic National Park, Washington.", + "The Plunge Waterfall in Yosemite National Park.", + "A powerful plunge waterfall surrounded by lush greenery." + ], + "watering hole": [ + "A watering hole is a place where animals drink water.", + "A watering hole is a body of water where animals go to drink.", + "A watering hole is a naturally occurring water body that provides water for diverse wildlife species.", + "A watering hole typically looks like a pond or lake with a surrounding area of grass.", + "A watering hole looks like a lake or pond where animals can go to drink water.", + "A watering_hole is a place where people or animals can go to drink water.", + "A watering_hole is a place where animals gather to drink water.", + "A watering hole is a place where animals can go to drink water.", + "A watering_hole usually looks like a pond or small lake.", + "A watering hole is a body of water where animals come to drink.", + "A watering_hole can be identified by its round, green body and long neck.", + "A watering_hole can be identified by its location and the type of water it contains.", + "There are many ways to identify a watering hole.", + "A watering hole is a place where animals go to drink water.", + "A watering hole is a place where animals go to drink water.", + "A watering hole is a body of water where animals gather to drink.", + "A watering_hole is a place where people and animals can go to drink water.", + "A watering hole is typically a source of water for animals in the wild.", + "You can identify a watering hole by its size, shape, and location.", + "A watering_hole is a place where people go to drink water.", + "A watering hole can come in many different forms, but typically it is a spot where animals can go to drink water.", + "A watering hole is a place where people can go to drink water.", + "A watering hole is typically a place where animals congregate to drink water.", + "A watering_hole can look like a lake, river, pond, or stream.", + "A watering hole is typically a pond or other small body of water where animals can drink.", + "There is no one answer to this question as watering holes can take on many different forms.", + "A watering hole is a place where animals go to drink water.", + "A watering hole is a place where animals go to drink water.", + "There is no one answer to this question, as watering holes can come in many different forms.", + "A watering_hole is typically a small body of water, such as a pond, that is used to provide water for animals.", + "I found an image on Google of a watering hole in Africa.", + "A watering hole is a place where animals can drink water.", + "The image is of a watering hole in Africa.", + "An image of a watering hole on the internet shows a small, round, dark pool of water surrounded by dry, red dirt and yellowed grass.", + "The image shows a watering hole with a small waterfall in the center.", + "The image is of a watering hole in Africa.", + "In this image, a watering hole can be seen in the middle of a field.", + "I found an image on the internet of a watering hole that looks like a paradise.", + "In the image, there is a watering hole with several animals gathered around it.", + "An image of a watering hole from the internet might show a serene pond or lake surrounded by green trees and plants.", + " This watering hole is perfect for a hot summer day.", + "A watering hole on a hot day.", + " A herd of elephants congregate at a watering hole to drink and socialize.", + " A watering hole in the dry seasonA watering hole in the dry season providing water for animals in the area.", + " A watering hole full of water and animals.", + "A watering hole in Africa.", + "A watering hole in the middle of the desert.", + "A watering hole in the African savanna.", + "A watering hole in Africa.", + " A mother and child drink from a watering hole." + ], + "wave": [ + "A wave is a disturbance that moves through a medium, such as water or air.", + "A wave is a movement of water that is caused by wind blowing across the surface of the water.", + "A wave looks like a line that goes up and down.", + "A wave is a repeating pattern of movement that transfers energy from one point to another.", + "A wave is generally a disturbance that transfers energy through matter or space, with little or no associated mass transport.", + "A wave is a repeated occurrence of a particular physical phenomenon.", + "A wave looks like a line that goes up and down.", + "A wave looks like a bunch of energy moving across a medium.", + "A wave is a disturbance that transfers energy through matter or through space.", + "A wave is usually a disturbance that travels through a medium, like water or air.", + "There are many ways to identify a wave.", + "A wave generally consists of a disturbance that transfers energy through a medium from one location to another.", + "A wave is a disturbance that travels through a medium, such as water or air.", + "The shape of a wave can be identified by its crest and trough.", + "A wave is a disturbance that transfers energy through matter or space.", + "There are many ways to identify a wave.", + "Some characteristics used to identify a wave include its amplitude, wavelength, and frequency.", + "There are many ways to identify a wave.", + "A wave is typically identified by its amplitude and wavelength.", + "A wave is a repeating pattern of motion that transfers energy from one place to another.", + "What kind of wave are you referring to?.", + "Waveforms are typically visualized as a line tracing the contours of the wave.", + "A wave looks like a line that goes up and down.", + "A wave looks like a line that is moving up and down.", + "A complete wave has a crest and a trough.", + "Wavelengths range in size from fractions of an inch to miles.", + "A wave is a disturbance that travels through a medium from one location to another.", + "When viewed from above, a wave looks like a line that is moving across the water.", + "Waves typically have a crest (high point) and a trough (low point).", + "A wave looks like a smooth, continuous line.", + "The image looks like a blue and white abstract painting.", + "The image is of a large wave crashing against a cliff.", + "The image is of a large wave breaking on a rocky shore.", + "This image is of a wave crashing against a cliff.", + "This image from the internet shows a large wave crashing against a rocky coastline.", + "This image is of a large, crashing wave.", + "A blue wave crashing against a rocky shore.", + "A picture of a blue and green ocean wave crashing against rocks.", + "This image is of a large wave crashing against rocks.", + "The image is of a large wave crashing on a beach.", + "The wave is crashing onto the shore.", + "This image shows a powerful wave crashing against the shore.", + "Wave Rolling In at Sunset.", + "The photo shows a large wave about to crash onto the shore.", + "A surfer enjoys the challenge of a big wave.", + "A majestic wave crashing against the rocks.", + "A beautiful blue wave crashing on the shore.", + "The sea was very rough today.", + "A view of a wave from the beach.", + "The waves crash against the shore, sending a spray of water into the air." + ], + "wet bar": [ + "A wet bar is a small bar that is typically located in a home.", + "A typical wet bar includes a countertop with a sink, and space for a small refrigerator or wine cooler.", + "A wet_bar is a countertop with a sink that is used for mixing drinks.", + "A wet_bar is a countertop with a sink that is used for mixing and serving drinks.", + "A wet_bar is a small bar area that is typically located in a home.", + "A wet bar is typically a countertop with a sink that is used for mixing and serving drinks.", + "A wet bar is a bar that is usually located in the basement of a home.", + "A wet_bar is a bar that has a sink and counter space for mixing drinks.", + "A wet bar is typically a small counter with a sink and cabinets for storing glassware and liquor.", + "A wet bar is a bar that is stocked with all of the supplies needed to make alcoholic drinks.", + "A wet bar is a bar that is equipped with a sink and typically has a small refrigerator.", + "A wet_bar is often identified by its location within a home.", + "A wet bar is a home bar that includes a sink with running water.", + "The term \"wet bar\" is typically used to describe a small counter or bar area that is stocked with liquor and mixers and is often located in a basement or den.", + "A wet_bar is a type of bar that is typically found in homes.", + "A wet_bar is typically distinguishable by its placement within a home.", + "A wet_bar is usually installed in homes where entertaining is a common occurrence.", + "A wet_bar is a bar that is designed to be used for mixing and serving alcoholic beverages.", + "Some common features of wet bars include:-Sink\n-Refrigerator\n-Cabinetry\n-Counter space\n-Bar stools\n-Bar table\n-Alcohol\n-Bar accessories.", + "Some possible indicators that a bar is a wet bar are if there is a sink behind the bar, bartending tools like a shaker are present, or bottles of liquor and mixers are on display.", + "A objections to a wet_bar are that it can take up a lot of counter space and be expensive to construct.", + "A wet_bar is a countertop with a sink that is used for mixing and serving alcoholic drinks.", + "It really depends on the specific wet_bar, but they typically include a sink, mini fridge, and cabinets or shelves for storing glasses and liquor.", + "A wet_bar is a small, typically portable bar that is used to serve alcoholic beverages.", + "A wet_bar can take on many different appearances, but typically it is a small counter with a sink that is used for mixing drinks.", + "A wet bar is a area in a home that is set up like a small bar and includes a sink.", + "A wet bar is a small bar located in a home that is stocked with liquor, mixers, and glassware.", + "There is no definitive answer to this question, as the term \"wet bar\" simply refers to a bar area that is stocked with alcoholic beverages and supplies.", + "A wet bar is a small bar in a home that typically has a sink and a small fridge.", + "A wet_bar can be any size or shape, but it typically has a sink, counter space, and storage for glassware and liquor.", + "I found an image of a wet_bar on the internet that shows a well-stocked bar with all of the supplies necessary to make a variety of mixed drinks.", + "A wet_bar is an area in a home where alcoholic drinks are served.", + "I found an image on the internet of a wet_bar that looks like it would be perfect for entertaining guests.", + "A wet bar is a small bar typically found in the basement of a home.", + "A wet bar is typically a small counter and sink area located in a home, often near the kitchen or dining room, that is stocked with supplies for making drinks.", + "In the image, there is a long counter with different bottles of alcohol on it.", + "This image is of a modern wet bar with a sleek design.", + "A wet_bar is a small bar with a sink and a fridge, used for preparing and serving drinks.", + "The image from the internet is of a wet_bar that is stocked with wine bottles and has a wine fridge.", + "The image is of a small, cramped wet bar located in the corner of a room.", + "Inviting wet_bar with plenty of seating for guests.", + " A wet bar with all the fixings.", + "The perfect wet bar for hosting parties and entertaining guests.", + "A wet bar with various liquor bottles and glasses.", + "A wet bar is a perfect addition to any home, especially one with a pool or patio.", + "A beautiful wet bar complete with all the fixings!.", + "A wet bar is a small, self-contained kitchen area that contains all the necessary appliances and fixtures for preparing and serving alcoholic drinks.", + "A wet bar is a type of bar that is typically found in the basement of a home.", + "A wet bar in a home.", + "This wet bar is perfect for entertaining guests! It has plenty of space for all your favorite drinks, and the sleek design makes it a stylish addition to any home." + ], + "wheat field": [ + "A wheat field looks like a field of tall, green grass.", + "A wheat field looks like a field of tall wheat grass.", + "A wheat field is a field of tall grass with wheat plants growing in it.", + "A wheat_field typically looks like a large, open expanse of land with a uniform crop of tall, slender wheat plants growing in it.", + "A wheat field looks like a field of tall grass with wheat heads growing out of it.", + "A wheat_field looks like a large, open area of land with short, green wheat plants growing close together.", + "A wheat field is a field of tall grass with light-colored wheat heads.", + "A wheat_field looks like a long stretch of land with wheat plants growing in it.", + "A wheat field looks like a large field of tall grass with a yellowish color.", + "A wheat_field looks like a field of wheat.", + "The best way to identify a wheat field is by its bright yellow color.", + "The main way to identify a wheat field is by the presence of wheat plants.", + "When looking at a field, wheat is typically a light brown color.", + "A wheat field is a field of wheat.", + "A wet, green wheat field may have a silvery sheen due to the presence of dew.", + "The easiest way to identify a wheat field is by its uniform height and color.", + "A wheat field is a field of wheat.", + "A wheat field has wheat in it.", + "A wheat field is a field of wheat.", + "A wheat_field is a field of wheat.", + "A wheat field looks like a field of tall, thin, green plants with wheat heads on them.", + "A wheat field looks like a golden field with wheat blowing in the wind.", + "A wheat field typically looks like a large, flat expanse of land with amber-colored wheat plants growing in rows.", + "A wheat field is a field of wheat.", + "The wheat field looks like a long stretch of land with tall, green wheat plants growing in rows.", + "A wheat field is a field of tall grass with wheat spikes coming out of it.", + "A wheat field is a field that is planted with wheat.", + "A wheat field looks like a large field of tall, green grass with wheat kernels at the top.", + "A wheat field looks like a field of wheat.", + "A wheat_field typically looks like a large, open expanse of land with wheat plants growing in it.", + "The image is of a wide, open wheat field with tall stalks of wheat rustling in the breeze.", + "The image is of a wheat field with the sun shining down on it.", + "The image is of a wheat field with the sun shining in the background.", + "The image is of a wheat field with the sun shining down on it.", + "The image shows a wheat field with the wheat blowing in the wind.", + "I found an image on the internet of a wheat field that I really like.", + "The image is of a wheat field with the sun shining down on it.", + "The image is of a wheat field with the sun shining in the background.", + "The image is of a wheat field with the sun shining in the background.", + "The image is of a wheat field with the wheat blowing in the wind.", + "A vast wheat field with a lone tree in the center.", + " A young girl running through a wheat field.", + "A wheat field in the early morning light.", + "A vast wheat field extends to the horizon, the golden stalks rustling in the breeze.", + "A field of wheat ready to be harvested.", + "A field of wheat that is ready to be harvested.", + "A wheat field in Kansas.", + "A field of wheat in the early morning light.", + "A field of wheat ready to be harvested.", + " A wheat field in the early morning light." + ], + "wind farm": [ + "A wind farm typically consists of a large number of wind turbines in a given area.", + "Wind farms are large collections of wind turbines that are used to generate electricity.", + "A wind farm is a collection of wind turbines in a location used to produce electricity.", + "A wind farm is usually a farm with a lot of wind turbines on it.", + "A windfarm is a group of wind turbines in the same location.", + "A typical wind farm looks like a group of large wind turbines in a field.", + "A wind farm is a collection of wind turbines in a location used to produce electricity.", + "A wind_farm is a cluster of wind turbines in a given location.", + "A wind farm is a series of wind turbines in a location used to produce electricity.", + "A wind farm is a collection of wind turbines in the same location.", + "Wind farms are usually identified by the location where they are built and the type of turbines that are used.", + "Wind farms are usually large areas of land with many wind turbines.", + "A wind_farm is a group of wind turbines in the same location used to generate electricity.", + "You can identify a wind farm by looking for a group of wind turbines in a field or on a hill.", + "A wind_farm is typically identified by a large number of wind turbines in a specific location.", + "A wind farm is a group of wind turbines in the same location used to produce electricity.", + "There are a few ways to identify a wind farm.", + "Wind farms are large groups of wind turbines that are used to generate electricity.", + "One way to identify a wind farm is by the presence of a large number of wind turbines in a relatively small area.", + "A wind farm is a group of wind turbines in the same location.", + "A wind farm is a group of either onshore or offshore wind turbines used to generate electricity.", + "Wind farms can vary in size, but most consist of a large number of turbines spread out over a large area.", + "Although the specifics vary depending on the geographical location and size of the farm, a wind farm typically consists of a large number of wind turbines spread out over a wide area.", + "A wind farm is a collection of wind turbines in a given location.", + "A wind farm is a collection of wind turbines in the same location.", + "A wind_farm looks like a small town with a lot of windmills.", + "A wind farm is a collection of wind turbines in a given location.", + "A wind farm is a group of wind turbines in the same location used to generate electricity.", + "A wind farm usually consists of a large number of wind turbines spread out over a large area.", + "There is no definitive answer to this question as the appearance of a wind farm will depend on its location and the type of turbines used.", + "The image shows a wind farm with turbines spinning in the wind.", + "An image from the internet of a wind farm shows a large field of tall, white turbines with long, thin blades spinning in the wind.", + "An image of a wind farm might show large, tall turbines with blades that spin in the wind.", + "An image from the internet of a wind farm shows a series of large wind turbines in a field.", + "A turbines towers over a field of wheatIn the image, there are large, white turbines towering over a field of wheat.", + "Wind turbines gently spinning in a field with a background of mountains and a blue sky.", + "The image shows a wind farm in the distance, with the turbines silhouetted against the sky.", + "A wind farm is a collection of wind turbines in the same location.", + "An image from the internet of a wind_farm may show large turbines turning in a field.", + "A wind farm is a collection of wind turbines in the same location used to produce electricity.", + "Wind turbines at a wind farm in California.", + "A wind farm in a rural area.", + "Wind farm in Tehachapi Pass, California.", + "A wind farm in Oregon.", + "A wind_farm in the United States.", + " Wind Power Generating Electricity.", + "A large wind farm in the middle of a grassy plain.", + "A wind farm in the United States.", + " Wind Farm in North Dakota.", + "A group of wind turbines in a field." + ], + "windmill": [ + "A windmill is a tall structure with blades that spin around in the wind.", + "A windmill is a structure that contains blades that rotate when the wind blows.", + "A windmill is a large machine that has blades that spin around in the wind.", + "A windmill is a structure that contains a set of blades that rotate when the wind blows.", + "A windmill is a relatively tall structure with large sails or blades that rotate in the wind.", + "A windmill is a machine that uses the force of the wind to grind grain or to pump water.", + "A windmill looks like a large, vertical fan.", + "A windmill is a machine that uses wind to turn a large wheel.", + "A windmill is a tall structure with a large blade that rotates in the wind.", + "A windmill is a machine that uses the wind to turn a large wheel.", + "Windmills are tall structures with blades that spin in the wind.", + "A windmill is a large machine with blades that spin around in the wind.", + "Windmills can be identified by their large sails or blades that are rotated by the wind.", + "The most distinguishing feature of a windmill is its sails.", + "The blades of a windmill are turned by the wind, which rotates a central shaft that drives a millstone to grind grain.", + "Windmills can be identified by their large sails or blades that rotate in the wind.", + "The most distinguishing feature of a windmill is its sails.", + "There are a few ways to identify a windmill.", + "The blades of a windmill are set at a right angle to the wind \"slew\" from a central post.", + "A windmill is a mill that uses the energy of the wind to turn a set of blades called sails, in order to grind grain or pump water.", + "There are many different types of windmills, but most have blades that spin around a central tower.", + "A windmill is a structure that has a set of blades mounted on a rotating shaft.", + "A windmill is a machine that converts wind into rotational energy by means of vanes called sails or blades.", + "A windmill is a large, mechanical device that has a set of blades or sails that rotate in the wind.", + "A windmill is a tall structure with large blades that spin in the wind to generate electricity.", + "Windmills are typically large towers with blades that spin in the wind.", + "A windmill looks like a large, vertical wheel with blades attached to the rim.", + "A windmill typically has a circular or octagonal shape and is made up of a tower with a central shaft and blades.", + "A windmill is a mill that operates using wind power.", + "A windmill is a tall structure with large blades that spin around in the wind.", + "In the image, there is a windmill with its blades spinning in the wind.", + "This image shows a traditional Dutch windmill in a field of tulips.", + "I see a large windmill with blades spinning in a blue sky.", + "The image is of a large, white windmill against a blue sky.", + "This image shows a traditional Dutch windmill against a clear blue sky.", + "A windmill is a machine that converts the energy of wind into rotational energy by means of vanes called sails or blades.", + "The windmill is a large, white structure with several blades rotating in the wind.", + "A windmill is a mill that uses the energy of the wind to turn a large wheel, which in turn grinds grain or pumps water.", + "A windmill is a large machine that has blades that spin around in the wind.", + "A Grain Mill Windmill in a field of tall grass with the sky in the background.", + "A windmill in a field on a sunny day.", + "A windmill is a mill that converts the energy of wind into rotational energy by means of vanes called sails or blades.", + "A windmill in a field.", + " A windmill in the Netherlands.", + "

A windmill in a field in the Netherlands

.", + "The windmill is a popular symbol of the Netherlands.", + "A windmill harnesses the power of the wind to generate energy.", + "A windmill in a field with the sun shining in the background.", + "A windmill in a field.", + " The windmill stands in a field of yellow flowers." + ], + "barrel storage wine cellar": [ + "A wine cellar is a room or an area in a home where wine is stored.", + "A barrel_storage wine_cellar looks like a room with barrels of wine in it.", + "A barrel_storage wine_cellar is a wine_cellar that is designed to store wine in barrels.", + "A wine cellar is a storage room for wine in bottles or barrels, or more rarely in carboys, amphorae, or plastic containers.", + "A barrel_storage wine cellar typically has high ceilings, exposed beams, and stone or brick walls.", + "A barrel storage wine cellar looks like a room with barrels of wine lining the walls.", + "This is a wine cellar that has racks for wine barrels.", + "A barrel_storage wine_cellar is an underground storage space for wine barrels.", + "The interior of a barrel_storage wine_cellar is typically dimly lit, with racks or shelves holding various sizes and shapes of wine barrels.", + "A barrel_storage wine_cellar typically has racks or shelves to store barrels on and a space for wine barrels to be stored upright.", + "The barrel_storage wine_cellar is a small, round wooden barrel with a removable lid.", + "There is no definitive answer to this question, as the term \"barrel_storage wine_cellar\" can mean different things to different people.", + "A barrel_storage wine_cellar can be identified by its large, square or circular shape.", + "There is no definitive answer to this question, as the term \"barrel_storage wine_cellar\" could refer to any type of wine cellar that is used to store wine in barrels.", + "If a wine cellar is a barrel_storage wine_cellar, it will likely have barrels or other large containers stored in it.", + "You can identify a barrel_storage wine_cellar by looking for a wine cellar that is made out of barrels.", + "A barrel_storage wine_cellar can be identified by its large size and the number of barrels that are stored inside.", + "A barrel_storage wine_cellar is a type of wine storage that uses barrels to store wine.", + "The wine_cellar will usually have racks or barrels inside of it.", + "There is no definitive answer to this question, as the defining characteristics of a barrel_storage wine_cellar can vary depending on the specific type of wine cellar in question.", + "A barrel_storage wine_cellar is typically a large, dark room with racks or shelves for storing wine barrels.", + "A barrel storage wine cellar typically involves storing wine in barrels, rather than in bottles.", + "A barrel storage wine cellar typically has a large open space with racks or barrels on which to store wine.", + "A barrel_storage wine_cellar often looks like a large room with wine barrels instead of shelves.", + "A barrel storage wine cellar looks like a room with barrels of wine stacked in it.", + "A barrel_storage wine_cellar typically looks like a large room with either racks or shelves to store the barrels on.", + "A wine cellar is typically a dark, cool room where wine is stored.", + "There is no one answer to this question as the appearance of a barrel_storage wine_cellar can vary greatly depending on the specific design and geographical location.", + "There is not a definitive answer to this question as wine cellars can vary greatly in terms of size and design.", + "A wine_cellar is usually a large room with racks or shelves to store wine bottles on.", + "A large, dark room filled with row after row of wine barrels.", + "An image of a wine cellar with barrels stored in it.", + "The image is of a large, temperature-controlled room with racks of wine bottles from floor to ceiling.", + "The image is of a large, dark room with high ceilings.", + "The image shows a wine cellar with barrels stacked on top of each other.", + "https://images.", + "An image from the internet of a barrel_storage wine_cellar can be found here:https://sf.", + "The Google Images search for \"barrel storage wine cellar\" yields many results.", + "The image is of a large, dimly-lit room with high ceilings and stone walls.", + "A image of a barrel_storage wine_cellar would show a room with shelves or racks full of wine barrels.", + " A large wine cellar with racks of wine bottles from floor to ceiling.", + "Wine barrels in a storage cellar.", + "Rolex barrel storage wine cellar, Switzerland.", + "a wine cellar with barrels for storing wine.", + " Barrel Storage Wine Cellar.", + " A collection of assorted wines in a wine cellar.", + "A wine cellar with barrels for storage.", + "A wine cellar with barrels for storage.", + "The wine cellar at barrel_storage, where wine is aged in oak barrels.", + " The privacy of your own wine cellarA wine cellar is the perfect place to store your wine collection." + ], + "bottle storage wine cellar": [ + "A bottle_storage wine_cellar typically looks like a rectangular box with a lid that is slightly elevated.", + "A bottle_storage wine_cellar looks like a small room or closet that has shelves or racks to store wine bottles.", + "A bottle storage wine cellar is a room where wine is stored in bottles.", + "A bottle_storage wine_cellar is a room or enclosure that is specifically designed to store wine bottles.", + "A bottle_storage wine_cellar typically has walls made of stone or brick, with racks or shelves for storing wine bottles.", + "A wine cellar is a storage room for wine in bottles or barrels, or more rarely in carboys, amphorae, or plastic containers.", + "A bottle storage wine cellar typically looks like a small room or closet with shelves or racks to store wine bottles.", + "A bottle_storage wine_cellar is a wine cellar that stores bottles of wine.", + "A bottle_storage wine_cellar looks like a room, typically in a basement, that is used to store wine.", + "A bottle_storage wine_cellar looks like a room or an area in a room that has shelves or racks to store wine bottles.", + "In general, a wine_cellar is a room or building for storing wine.", + "One way to identify a bottle_storage wine_cellar is to look for a label that indicates the wine is meant for long-term storage.", + "There is no definitive answer to this question, but there are some general guidelines that can be followed.", + "One way to identify a wine storage cellar is by the type of racks it uses.", + "A bottle_storage wine_cellar can typically be identified by its large size and the many racks that are inside of it.", + "The easiest way to identify a bottle_storage wine_cellar is to look for a label that says \"bottle_storage\" or \"wine_cellar\" on it.", + "There is no definitive answer to this question, as the term \"bottle_storage wine_cellar\" can refer to a wide variety of wine storage solutions.", + "One way to identify a bottle_storage wine_cellar is to look for a wine_storage rack that is taller than it is wide.", + "The neck of a bottle_storage wine_cellar will have a lip that protrudes slightly, making it easy to grab and pour.", + "A bottle_storage wine_cellar can be identified by its large size, its temperature-controlled environment, and its racks or shelves for storing wine bottles.", + "A bottle_storage wine_cellar may look like a regular wine cellar, with racks of wine bottles and glasses, or it may look like a cupboard or cabinet with shelves for storing bottles of wine.", + "A bottle_storage wine_cellar typically resembles a small room or closet with shelves or racks for storing wine bottles.", + "There is no one definitive answer to this question, as the style and design of wine cellars can vary greatly.", + "A wine cellar is a storage room for wine in bottles or barrels, or more rarely in carboys, amphorae, or plastic containers.", + "A bottle_storage wine_cellar can come in many different shapes and sizes.", + "A bottle_storage wine_cellar typically looks like a small, dark room with racks or shelves on which to store wine bottles.", + "A bottle_storage wine_cellar can look like any kind of storage space, such as a cabinet, closet, or room, that is designed to hold wine bottles.", + "The bottle_storage wine_cellar is a large, temperature-controlled room that is used to store wine bottles.", + "A wine cellar is a storage area for wine.", + "A wine cellar is a storage room for wine.", + "The image shows a large room with high ceilings and stone walls.", + "The image is of a large, well-organized wine cellar with shelves full of wine bottles.", + "An image from the internet of a bottle_storage wine_cellar might show a large room with shelves and racks filled with bottles of wine.", + "The image is of a large, dark wood wine cellar with built-in shelves for storing bottles of wine.", + "The image is of a dark wood wine cellar with rows of wine bottles on racks.", + "The image is of a wine cellar with floor-to-ceiling shelves of wine bottles.", + "The image is of a darkly stained wood wine rack that holds 21 bottles of wine.", + "An image of a wine cellar with racks of wine bottles on both sides.", + "A wine cellar with bottles of wine stored in it.", + "A image from the internet of a bottle_storage wine_cellar might feature a wooden wine rack that holds several bottles of wine, or a metal wine rack that holds several bottles of wine.", + "Three wine bottles in a wine cellar.", + "A wine cellar with bottle storage.", + " \"Bottle Storage Wine Cellar - Perfect for storing your wine collection!.", + " A wine cellar designed for bottle storage.", + "A wine cellar with many bottles of wine.", + "Abottle_storage wine_cellar is the perfect place to store your wine collection.", + " A wine cellar with various types of wineA wine cellar with various types of wine, including red wine, white wine, and sparkling wine.", + "A bottle of wine in a storage cellar.", + "Wine Cellar Bottle Storage - Keep your wine collection organized and protected with this essential storage solution.", + "Bordeaux wines in a wine cellar." + ], + "indoor wrestling ring": [ + "A indoor wrestling_ring is typically a circular or octagonal platform with a mat on the inside.", + "A typical indoor wrestling ring is a raised platform surrounded by ropes.", + "A wrestling ring is typically a square area surrounded by ropes.", + "An indoor wrestling ring is typically a raised platform surrounded by ropes.", + "An indoor wrestling_ring is a ring covered in matting, with ropes surrounding it.", + "A wrestling ring typically has four thick ropes tied together in a square, with padding on the outside.", + "A indoor wrestling_ring is a circular area surrounded by a padded mat.", + "A indoor wrestling ring is a circular or oval-shaped platform surrounded by ropes.", + "A wrestling ring is typically a square area surrounded by ropes.", + "A wrestling ring is typically a square of padded matting with a series of ropes running around the edge.", + "The main identifying feature of an indoor wrestling ring is the presence of ropes surrounding the perimeter of the ring.", + "By looking for a wrestling ring inside a building.", + "A wrestling ring is oval shaped and has padded ropes around the edge.", + "An indoor wrestling ring is typically a padded mat with an enclosure of ropes or other materials around it.", + "The wrestling ring is typically square in shape and has padded corners.", + "Indoor wrestling rings typically have a soft, padded floor and raised walls around the perimeter.", + "The three ropes that circle the ring are a dead giveaway that you're looking at an indoor wrestling ring.", + "Indoor wrestling rings are typically square or rectangular and have padding around the edge.", + "By the presence of a mat, ropes, and turnbuckles in the middle of the ring.", + "Some ways you can identify an indoor wrestling ring are by its size, shape, and the type of surface it is made of.", + "An indoor wrestling ring is typically a square or rectangular area surrounded by ropes.", + "Some common features of indoor wrestling rings include raised platforms on all four sides of the ring, out-of-bounds areas surrounding the ring, and ropes surrounding the ring.", + "A typical indoor wrestling ring is a square-shaped platform with padded corners surrounded by ropes.", + "An indoor wrestling ring typically has four posts at the corners, with ropes running between them.", + "A wrestling ring is typically a square or circular steel structure surrounded by ropes.", + "There is not a definitive answer to this question as indoor wrestling rings can vary greatly in both size and appearance.", + "A wrestling ring is typically a raised platform with ropes surrounding it.", + "A typical indoor wrestling ring has a square canvas mat with padded corners, surrounded by a padded steel frame.", + "A wrestling ring is typically a square or circle with a mat on the inside.", + "Indoor wrestling rings typically have canvas covers and padded surrounds.", + "The image from the internet is of an indoor wrestling ring.", + "An image from the internet of an indoor wrestling ring shows a large, open space with a wrestling ring in the center.", + "In the image, there is a wrestling_ring with ropes around the perimeter.", + "The image is of an indoor wrestling ring with blue ropes and a tan mat.", + "The image from the internet is of a large, empty room with a brightly lit wrestling ring in the center.", + "The image is of an indoor wrestling ring with two men in the ring fighting.", + "The image is of a indoor wrestling ring with the ropes down and wrestling mats on the floor.", + "The image is of a large, empty wrestling ring with a blue mat and white ropes.", + "The image is of an indoor wrestling ring with two athletes in the ring.", + "There is a large, empty indoor wrestling ring.", + "An indoor wrestling ring at a competition.", + "The most hardcore athletes in the world go at it in this indoor wrestling ring.", + " An indoor wrestling ring set up for a match.", + "The indoor wrestling ring at the Olympic Training Center in Colorado Springs, Colorado.", + "Aerial view of an indoor wrestling ring with two wrestlers in the center.", + " Professional wrestlers are shown wrestling in an indoor ring.", + "This is an indoor wrestling ring, where matches are held in front of a small group of fans.", + "A group of young wrestlers training in an indoor wrestling ring.", + "Two female wrestlers compete in an indoor wrestling ring.", + " \"The UWF World Heavyweight Title,awarded to the promotion's longest reigning Heavyweight Champion,Big Van Vader." + ], + "yard": [ + "A yard can have different appearances depending on its location and purpose, but generally it is an outdoor area that is adjacent to a home or other building.", + "A yard is a piece of land that is surrounding a building or a house.", + "In the United States, a yard is a unit of measurement equal to 3 feet, or 0.", + "A yard is a piece of land that is surrounded by a fence.", + "A yard looks like a piece of land that is open and usually has grass growing on it.", + "A yard is typically a grassy area enclosed by a fence.", + "A yard looks like a piece of land that is surrounded by a fence.", + "A yard is a piece of land outside of a house or building, typically used for recreation or planting.", + "A yard is usually a rectangular piece of land surrounding a home.", + "A yard looks like a piece of land that is usually used for recreation or other activities.", + "The easiest way to identify a yard is by its size.", + "A yard is a unit of measure that is equal to 3 feet, or 36 inches.", + "A yard is an area of land that is enclosed by fences or other structures.", + "There are many ways to identify a yard.", + "The easiest way to identify a yard is by its size.", + "A yard is a unit of measurement that is equal to three feet, or one meter.", + "A yard is a unit of length in the US customary and imperial systems of measurement.", + "By its appearance.", + "A yard is a measure of length in the imperial and US customary systems of measurement.", + "A yard is 36 inches long.", + "There is no definitive answer to this question since yards can vary greatly in size and appearance.", + "A yard is a small area of land that is next to a building or a house.", + "A yard is a rectangle of grass surrounded by a fence.", + "A yard is typically a grassy area surrounding a home.", + "A yard is a little bit like a country lane.", + "If you are referring to a physical yard, it is typically an area of land surrounding a home.", + "Can you please include a photo?.", + "A yard is usually a flat, grassy area located near a home or other building.", + "A yard looks like a plot of land measuring 3 feet by 3 feet.", + "A yard is usually a grassy area, often surrounded by a fence, that is located next to a house.", + "The image shows a well-manicured lawn with flowers and shrubs around the perimeter.", + "This is an image of a backyard with a large tree in the center.", + "In the image, there is a well-manicured lawn with various flowers and shrubs.", + "An image from the internet of a yard shows a green lawn with flowers and trees.", + "In the image, there is a well-manicured lawn with green grass and a few colorful flowers.", + " saleI found an image on the internet of a yard sale that had a bunch of stuff set up on a table.", + "I am looking at an image of a yard that is well-manicured.", + "This image from the internet is of a well-manicured lawn with trimmed hedges and decorative stones lining the walkway.", + "The image is of a neatly kept lawn with a garden in the middle.", + "This image from the internet shows a well-manicured lawn with a garden bed along the edge.", + "The front yard of a house in the suburbs with a well-manicured lawn and flower beds.", + "The front yard of a small American suburban home.", + "This is my yard.", + "This is a picture of my yard.", + "Grass, trees, and a house in the background.", + "The lawn is in dire need of a trim.", + " A lush, green lawn with a sprinkler systemThis image shows a well-maintained lawn with a automatic sprinkler system.", + "Lush green lawn with well-manicured shrubs.", + "Lush green lawn surrounded by mature trees.", + " A group of people are gathered around a fire in a backyard." + ], + "youth hostel": [ + "A youth hostel typically has a number of small bedrooms containing bunk beds, with a shared bathroom.", + "A hostel is typically a cheap, no-frills place to stay, where guests can rent a bed in a dormitory and share a bathroom with other guests.", + "A youth hostel is a type of hostel specifically designed for young people travelling independently.", + "There is no one answer to this question, as youth hostels vary greatly in terms of their appearance and facilities.", + "There is no one definitive answer to this question as youth hostels can vary greatly in appearance, depending on their location and facilities.", + "A youth hostel is a low-cost, no-frills lodging option that is popular with budget-minded travelers, particularly those who are young.", + "What a youth hostel looks like can vary depending on the country, but they typically have a dormitory style layout with multiple beds in one large room.", + "There is no definitive answer to this question, as youth hostels can vary greatly in terms of appearance and amenities.", + "A youth hostel is typically a low-cost communal lodging facility intended for use by young people or students.", + "A youth hostel is typically a clean, safe and affordable place for young people to stay.", + "youth hostels are typically simple or spartan accommodations offering overnight stay for a small fee.", + "There is no definitive answer to this question as each youth hostel is different.", + "There is no universal way to identify a youth hostel, as they can take on many different forms.", + "While there is no one definitive answer to this question, some common characteristics of a youth hostel include being centrally located, having a lively atmosphere, and offering affordable accommodations.", + "The best way to identify a youth hostel is to look for the signs that say \"YH.", + "There are a few ways to identify a youth hostel.", + "There is no definitive answer to this question, as different youth hostels can vary greatly in appearance.", + "There is no one definitive way to identify a youth hostel.", + "There is no universal definition of a youth hostel, but they are generally intended for young people ages 18-30.", + " Hostels are often identifed by a red Ian.", + "A youth hostel is typically a small, clean, and basic accommodations for travelers who are looking for an affordable place to sleep.", + "A youth hostel typically consists of a large number of small rooms, each containing a few beds.", + "There are many different types of youth hostels, but most of them provide basic accommodations like bunk beds in a shared room.", + "There is no one definitive answer to this question as youth hostels can vary greatly in appearance.", + "There is no single answer to this question as youth hostels can come in a wide variety of shapes and sizes.", + "A typical youth hostel may have a shared kitchen, laundry facilities, a common room, and usually a mix of private rooms and dormitory-style rooms.", + "A youth hostel is typically a low-budget hotel geared towards young travelers.", + "There is no one answer to this question as youth hostels can come in all shapes and sizes.", + "There is no one answer to this question because youth hostels can come in many different shapes and sizes.", + "There is no single answer to this question as youth hostels can vary greatly in both appearance and size.", + "In the image, there is a large, red brick building.", + "This image is of a youth hostel in the city of Prague.", + "The image is of a large, multi-story building with many windows.", + "This image is of a brightly lit and modern-looking lobby of a youth hostel.", + "An image of a youth hostel shows a large, modern building with many windows.", + "The image is of a small, colorful building nestled in between tall mountains.", + "The image from the internet of a youth hostel is of a group of young people staying in a dorm room.", + "The image is of a small, cramped room with two bunk beds, a table, and two chairs.", + "The image is of a large, red brick building.", + "The image is of a modern looking building with large windows.", + " A view of the Eiger from the youth hostel in Grindelwald, Switzerland.", + "Youth hostel in Banff National Park, Alberta, Canada.", + "A group of young backpackers staying in a youth hostel in Thailand.", + "A group of young people sit on the floor of a crowded youth hostel lobby in Barcelona, Spain.", + " A group of friends poses in front of their youth hostel in Edinburgh, Scotland.", + " Youth Hostel, Hurghada, Egypt.", + " A group of young adults standing in front of a red brick buildingA group of young adults are standing in front of a red brick building.", + "Sydney, Australia - A young backpacker enjoys the view from his hostel room.", + "40 beds in 4 dormitories in an old stone farmhouse.", + " 'The youth_hostel, a popular tourist destination, is located in the heart of the city." + ] +} \ No newline at end of file diff --git a/gpt_file/ucf101_prompt.json b/gpt_file/ucf101_prompt.json new file mode 100644 index 0000000..58f1bd7 --- /dev/null +++ b/gpt_file/ucf101_prompt.json @@ -0,0 +1,5254 @@ +{ + "Apply Eye Makeup": [ + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are holding a makeup brush up to their eye and applying makeup.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are putting makeup on their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are doing the action of applying makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are trying to put makeup on their eyes.", + "A photo of a person doing Apply Eye Makeup. The person looks like they are putting on makeup.", + "A photo of a person doing Apply Eye Makeup. The person has their head tilted back, and their eyes are closed.", + "A photo of a person doing Apply Eye Makeup. They usually have a variety of makeup products laid out in front of them and are focused on their reflection in the mirror.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are applying makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are putting makeup on their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are applying makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. There are a few things that can help you identify a person doing Apply_Eye_Makeup.", + "A photo of a person doing Apply Eye Makeup. By looking at their eyes.", + "A photo of a person doing Apply Eye Makeup. The person will have makeup on their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup can be identified by their use of makeup brushes and various tools to apply eye makeup, such as mascara, eyeliner, and eyeshadow.", + "A photo of a person doing Apply Eye Makeup. One way to identify a person doing Apply_Eye_Makeup is to look for someone who is holding a compact mirror in one hand and a makeup brush in the other hand.", + "A photo of a person doing Apply Eye Makeup. If a person is doing Apply_Eye_Makeup, they will likely be looking in a mirror and using their hands to apply makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. If a person is doing Apply_Eye_Makeup, they will likely be holding a makeup brush and looking into a mirror.", + "A photo of a person doing Apply Eye Makeup. There are many ways to identify a person doing Apply_Eye_Makeup, some of which include:- If they are wearing makeup, they are likely applying it.", + "A photo of a person doing Apply Eye Makeup. If someone is doing Apply_Eye_Makeup, then they will likely be holding a brush or other object near their eyes.", + "A photo of a person doing Apply Eye Makeup. You can identify a person doing Apply_Eye_Makeup by looking for a person with their hands near their eyes, often holding a brush or applicator.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are putting on eyeshadow, mascara, and eyeliner.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup would look like they are applying makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like a person with eye makeup on.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are applying makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are putting makeup on their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are putting makeup on their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are applying makeup to their eyes.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like someone who is putting on makeup.", + "A photo of a person doing Apply Eye Makeup. When a person is applying eye makeup, they usually have a few products open in front of them on a flat surface.", + "A photo of a person doing Apply Eye Makeup. A person doing Apply_Eye_Makeup looks like they are putting on eye makeup.", + "A photo of a person doing Apply Eye Makeup. The image is of a beautiful young woman with long eyelashes and smoky eyeshadow.", + "A photo of a person doing Apply Eye Makeup. The person is looking in a mirror and applying mascara to their eyelashes.", + "A photo of a person doing Apply Eye Makeup. The image is of a young woman with long dark hair.", + "A photo of a person doing Apply Eye Makeup. The person is sitting at a table with a mirror in front of them.", + "A photo of a person doing Apply Eye Makeup. The image is of a woman sitting at a vanity with a mirror in front of her.", + "A photo of a person doing Apply Eye Makeup. I found an image on the internet of a woman doing her makeup.", + "A photo of a person doing Apply Eye Makeup. The image is of a woman with long, dark hair standing in front of a mirror.", + "A photo of a person doing Apply Eye Makeup. The image shows a woman with long brown hair wearing a black tank top.", + "A photo of a person doing Apply Eye Makeup. In the image, a woman is standing in front of a mirror with one hand on her hip.", + "A photo of a person doing Apply Eye Makeup. The image is of a woman with long, dark hair.", + "A photo of a person doing Apply Eye Makeup. A woman is applying mascara.", + "A photo of a person doing Apply Eye Makeup. A woman applying mascara.", + "A photo of a person doing Apply Eye Makeup. Applying eye makeup.", + "A photo of a person doing Apply Eye Makeup. A person applying eye makeup.", + "A photo of a person doing Apply Eye Makeup. The best way to apply your eye makeup.", + "A photo of a person doing Apply Eye Makeup. Applying eye makeup can be a quick and easy way to enhance your appearance.", + "A photo of a person doing Apply Eye Makeup. A person with long eyelashes and heavy eyeliner applies mascara.", + "A photo of a person doing Apply Eye Makeup. A person is seen applying makeup to their eyes in front of a mirror.", + "A photo of a person doing Apply Eye Makeup. This person is doing a great job at applying eye makeup!.", + "A photo of a person doing Apply Eye Makeup. A woman is applying dark eyeshadow to her eyelids." + ], + "Apply Lipstick": [ + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like someone who is holding a tube of lipstick in one hand and applying it to their lips with the other.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like someone who is leaning close to a mirror, holding a tube of lipstick in their hand, and carefully applying it to their lips.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like they are putting lipstick on their lips.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like they are applying lipstick.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like they are putting lipstick on.", + "A photo of a person doing Apply Lipstick. A person applying lipstick looks like someone with a stick of lipstick in their hand, moving it up and down their lips.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like someone who is applying lipstick.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like someone putting on lipstick.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick would look like they are holding a lipstick in their hand and are applying it to their lips.", + "A photo of a person doing Apply Lipstick. A person Apply_Lipstick looks like they are putting lipstick on.", + "A photo of a person doing Apply Lipstick. If someone is applying lipstick, they will typically be holding a tube of lipstick in one hand and using the other hand to apply it to their lips.", + "A photo of a person doing Apply Lipstick. If someone is doing Apply_Lipstick, they may be holding a tube of lipstick in one hand and may be putting it on their lips with the other hand.", + "A photo of a person doing Apply Lipstick. The person is likely to have their head tilted down and to the side, with one hand near their face.", + "A photo of a person doing Apply Lipstick. One way to identify a person doing Apply_Lipstick is to look for someone with lipstick on their lips.", + "A photo of a person doing Apply Lipstick. Some possible identifiers for a person doing Apply_Lipstick could include:-They are carrying a lipstick\n-They are looking in a mirror\n-They are holding a lipstick up to their lips\n-They are putting on.", + "A photo of a person doing Apply Lipstick. I cannot answer this question.", + "A photo of a person doing Apply Lipstick. If someone is doing Apply_Lipstick, they will typically be holding a lip product (like a lipstick) up to their mouth and applying it to their lips.", + "A photo of a person doing Apply Lipstick. There are a few distinguishable characteristics that someone doing Apply_Lipstick would likely have.", + "A photo of a person doing Apply Lipstick. There are a few ways to identify a person doing Apply_Lipstick.", + "A photo of a person doing Apply Lipstick. If a person is doing Apply_Lipstick, they will likely be holding a tube of lipstick in one hand and using the other hand to apply it to their lips.", + "A photo of a person doing Apply Lipstick. When a person is applying lipstick, they usually look like they are concentrating on making their lips look perfect.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like someone who is putting lipstick on their lips.", + "A photo of a person doing Apply Lipstick. There is no definitive answer to this question as everyone applies lipstick differently.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick may look like they are putting on makeup.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick generally looks like they are putting lipstick on their lips.", + "A photo of a person doing Apply Lipstick. There is no definitive answer to this question since people can wear lipstick in a variety of ways.", + "A photo of a person doing Apply Lipstick. When someone is applying lipstick, they typically use a small brush or their fingers to smooth the color onto their lips.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick typically looks like they are in the process of applying lipstick.", + "A photo of a person doing Apply Lipstick. There is no one definitive answer to this question.", + "A photo of a person doing Apply Lipstick. A person doing Apply_Lipstick looks like they are putting lipstick on.", + "A photo of a person doing Apply Lipstick. The image shows a woman with long dark hair wearing a red dress.", + "A photo of a person doing Apply Lipstick. The image is of a woman standing in front of a mirror, with one hand raised to her lips.", + "A photo of a person doing Apply Lipstick. The person is leaning in close to a mirror, with one hand raised to their lips.", + "A photo of a person doing Apply Lipstick. A person is applying lipstick in the image.", + "A photo of a person doing Apply Lipstick. A person is standing in front of a mirror, holding a tube of lipstick in one hand.", + "A photo of a person doing Apply Lipstick. The image is of a woman with long, dark hair.", + "A photo of a person doing Apply Lipstick. someone with long dark hair is looking in a mirror and applying bright red lipstick.", + "A photo of a person doing Apply Lipstick. This image is of a woman in her mid twenties applying red lipstick in a mirror.", + "A photo of a person doing Apply Lipstick. A woman is standing in front of a mirror, holding a tube of red lipstick in her hand.", + "A photo of a person doing Apply Lipstick. The image is of a woman wearing a white shirt and black pants.", + "A photo of a person doing Apply Lipstick. The user is applying lipstick.", + "A photo of a person doing Apply Lipstick. The struggle is realWhether you're trying to get that perfect winged eyeliner look or just trying to get your lipstick to look somewhat presentable, we've all been there.", + "A photo of a person doing Apply Lipstick. A person can be seen applying lipstick in this image.", + "A photo of a person doing Apply Lipstick. This person is applying lipstick.", + "A photo of a person doing Apply Lipstick. Person applying lipstick.", + "A photo of a person doing Apply Lipstick. A person does their makeupA person is doing their makeup and applying lipstick.", + "A photo of a person doing Apply Lipstick. A person applies lipstick.", + "A photo of a person doing Apply Lipstick. Person Applies Lipstick\nA person is applying lipstick in this image.", + "A photo of a person doing Apply Lipstick. The individual in the image is in the process of applying lipstick.", + "A photo of a person doing Apply Lipstick. This person is applying lipstick." + ], + "Archery": [ + "A photo of a person doing Archery. The person stands with their feet shoulder width apart and the toes pointing forwards.", + "A photo of a person doing Archery. When a person is doing archery, they look like they are holding a bow and arrow and aiming at a target.", + "A photo of a person doing Archery. A person doing archery looks like they are holding a bow and arrow and are aiming at a target.", + "A photo of a person doing Archery. A person doing archery looks like someone holding a bow and arrow, aiming at a target, and releasing the arrow.", + "A photo of a person doing Archery. A person doing archery looks like they are holding a bow and arrow, and they are pulling back the arrow to shoot it.", + "A photo of a person doing Archery. A person doing archery looks like they are holding a bow and an arrow and they are pulling back the arrow and aiming at a target.", + "A photo of a person doing Archery. The person doing archery usually has a bow in their hand and is pulling back the arrow, ready to release it at the target.", + "A photo of a person doing Archery. A person doing archery looks like they are holding a bow and arrow and are aiming at a target.", + "A photo of a person doing Archery. A person doing archery may be standing, kneeling, or sitting.", + "A photo of a person doing Archery. When a person is doing archery, they are holding a bow and arrow and are pulling the arrow back with the bow.", + "A photo of a person doing Archery. An archer is someone who uses a bow to shoot arrows.", + "A photo of a person doing Archery. They will be holding a bow and arrow and aiming at a target.", + "A photo of a person doing Archery. If someone is doing archery, they will likely have a bow and arrow in their hand.", + "A photo of a person doing Archery. The person is most likely holding a bow and arrow.", + "A photo of a person doing Archery. A person doing archery is typically wearing archery equipment, including a bow and arrows.", + "A photo of a person doing Archery. A person doing archery is called an archer.", + "A photo of a person doing Archery. The person has a bow and arrow and is shooting at a target.", + "A photo of a person doing Archery. The person is likely to be holding a bow and arrow.", + "A photo of a person doing Archery. If someone is shooting arrows with a bow, they are likely doing archery.", + "A photo of a person doing Archery. An archer is someone who uses a bow and arrow to shoot at a target.", + "A photo of a person doing Archery. When a person is doing archery, they look like they are holding a bow and an arrow and pointing it at a target.", + "A photo of a person doing Archery. A person doing archery may be wearingtargeting gear such as gloves, arm guards, and a shooting tab.", + "A photo of a person doing Archery. A person doing archery typically looks like they are holding a bow and arrow, and are aiming at a target.", + "A photo of a person doing Archery. A dressed person with a bow, shooting arrows.", + "A photo of a person doing Archery. A person doing archery looks like they are holding a bow and arrow and shooting it at a target.", + "A photo of a person doing Archery. When a person is doing archery, they will have a bow in their hand and an arrow ready to be shot.", + "A photo of a person doing Archery. A person doing archery will have a bow and arrow, and they will be shooting the arrow at a target.", + "A photo of a person doing Archery. Typically, a person doing archery will be holding a bow in one hand and pulling the bowstring back with the other hand.", + "A photo of a person doing Archery. This is a difficult question to answer as there are many different ways to do archery.", + "A photo of a person doing Archery. A person doing archery might look like they are holding a bow and arrow and aiming at a target.", + "A photo of a person doing Archery. The person in the image has their feet shoulder-width apart, their back straight, and their head up.", + "A photo of a person doing Archery. In the image, a person is standing in a field with trees in the background.", + "A photo of a person doing Archery. A person doing Archery is standing with their feet shoulder width apart, slightly bent at the knees, and holding the bow in their left hand with the arrow in their right.", + "A photo of a person doing Archery. The person in the image is standing with their feet shoulder-width apart, with their left foot slightly in front of their right.", + "A photo of a person doing Archery. The image is of a person shooting an arrow from a bow.", + "A photo of a person doing Archery. The image is of a person doing archery.", + "A photo of a person doing Archery. A person wearing a bright blue shirt and black pants is standing in a field with a purple and yellow archery target in the distance.", + "A photo of a person doing Archery. The image is of a person standing in a field with a bow and arrow in hand.", + "A photo of a person doing Archery. In the image, a person is standing at a distance from a target, with an archery bow in hand.", + "A photo of a person doing Archery. The person is wearing a bow and arrow and is aiming at a target in the distance.", + "A photo of a person doing Archery. The person in the picture is doing archery.", + "A photo of a person doing Archery. A person practicing Archery.", + "A photo of a person doing Archery. A person participating in the sport of archery.", + "A photo of a person doing Archery. \"A person doing archery\".", + "A photo of a person doing Archery. Person Doing Archery.", + "A photo of a person doing Archery. She takes aim, steadying her hand before releasing the arrow.", + "A photo of a person doing Archery. The archer takes aim, preparing to release the arrow.", + "A photo of a person doing Archery. The perfect shot.", + "A photo of a person doing Archery. The perfect archer, in focus and with great form.", + "A photo of a person doing Archery. Person doing archeryA caption of an image of a person making a pot:Person making a pot." + ], + "Baby Crawling": [ + "A photo of a person doing Baby Crawling. While a person doing Baby_Crawling may look different from person to person, in general, they will be on all fours with their head and trunk up and their bottom and legs down.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like they are on all fours with their hips and knees bent at a 90 degree angle and their hands flat on the ground.", + "A photo of a person doing Baby Crawling. When a person is doing Baby_Crawling, they are usually on all fours with their belly close to the ground.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like they are on all fours with their stomach facing the ground.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like they are on all fours with their stomachs close to the ground.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like someone who is on all fours, with their knees and elbows bent and their stomach facing the ground.", + "A photo of a person doing Baby Crawling. If someone is crawling, they are on all fours with their knees and hands touching the ground.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling typically looks like a baby who is crawling on the ground.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like a baby who is trying to move around on their hands and knees.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling might look like they are on all fours trying to move forward by using their hands and feet.", + "A photo of a person doing Baby Crawling. If someone is on all fours with their head and torso raised, and they are using their hands and feet to move forward, they are likely doing baby crawling.", + "A photo of a person doing Baby Crawling. Someone doing the Baby_Crawling exercise would be on all fours with their hips and knees at 90-degree angles, and their hands directly under their shoulders.", + "A photo of a person doing Baby Crawling. If you see a person on all fours, with their bottom in the air and their hands and knees on the ground, they are likely doing Baby_Crawling.", + "A photo of a person doing Baby Crawling. If someone is doing the Baby_Crawling exercise, they will be on all fours with their knees and hands touching the ground.", + "A photo of a person doing Baby Crawling. The person would be on all fours, with their belly close to the ground.", + "A photo of a person doing Baby Crawling. If someone is crawling on the ground on all fours like a baby, they are likely doing the Baby_Crawling exercise.", + "A photo of a person doing Baby Crawling. There is no definite answer to this question as people exhibit different crawling styles.", + "A photo of a person doing Baby Crawling. When a person is crawling, they are usually on all fours with their stomachs touching the ground.", + "A photo of a person doing Baby Crawling. There are a few ways to identify a person doing Baby_Crawling.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling can be identified by their crawling motion.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling usually looks like they are trying to move across the floor using only their arms and legs.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like a baby crawling on their hands and knees.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like a baby who is crawling on the floor.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling might look like they are crawling on all fours like a baby would.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling would look like a baby crawling.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like a human infant crawling on all fours.", + "A photo of a person doing Baby Crawling. A person who is Baby_Crawling looks like they are crawling on the ground on all fours like a baby would.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like they are on all fours, moving their body forward with their hands and knees.", + "A photo of a person doing Baby Crawling. A person who is Baby_Crawling looks like they are on all fours, with their stomach and chest off of the ground.", + "A photo of a person doing Baby Crawling. A person doing Baby_Crawling looks like a baby animal crawling on all fours.", + "A photo of a person doing Baby Crawling. An image of a person doing Baby_Crawling could show a baby crawling on a floor orground, or it could show an adult crawling on their hands and knees.", + "A photo of a person doing Baby Crawling. A person is crawling on their hands and knees.", + "A photo of a person doing Baby Crawling. In the image, a baby is crawling on the floor while a cat watches nearby.", + "A photo of a person doing Baby Crawling. In this image, we see a person doing Baby_Crawling.", + "A photo of a person doing Baby Crawling. _ExerciseA woman is doing a baby crawling exercise.", + "A photo of a person doing Baby Crawling. In the image, a baby is crawling on the floor.", + "A photo of a person doing Baby Crawling. The image is of a cute baby crawling on a white shag rug.", + "A photo of a person doing Baby Crawling. _(2)In the image, a baby is crawling on all fours across a carpet.", + "A photo of a person doing Baby Crawling. In the image, a baby is crawling on the floor while another person watches nearby.", + "A photo of a person doing Baby Crawling. The image is of a baby crawling on a floor.", + "A photo of a person doing Baby Crawling. The person in the image is crawling on the ground.", + "A photo of a person doing Baby Crawling. The baby is crawling across the floor.", + "A photo of a person doing Baby Crawling. Look at that focus!.", + "A photo of a person doing Baby Crawling. A person is crawling on the ground.", + "A photo of a person doing Baby Crawling. a baby crawling on the floorA baby is crawling on the floor, belly down.", + "A photo of a person doing Baby Crawling. The person in the picture is doing Baby_Crawling.", + "A photo of a person doing Baby Crawling. A person doing the Baby Crawling exercise.", + "A photo of a person doing Baby Crawling. A baby is crawling on the floor.", + "A photo of a person doing Baby Crawling. A baby crawls for the first time.", + "A photo of a person doing Baby Crawling. A person does baby crawling on the floor." + ], + "Balance Beam": [ + "A photo of a person doing Balance Beam. They look like they are standing on a beam and trying to not fall off.", + "A photo of a person doing Balance Beam. A person doing a Balance Beam looks like someone who is holding one arm out to the side and the other arm behind their back.", + "A photo of a person doing Balance Beam. OP is performing a series of jumps, leaps, and other skills on a narrow, raised platform.", + "A photo of a person doing Balance Beam. A person doing a Balance Beam usually looks like they are concentrating and focusing on not falling off.", + "A photo of a person doing Balance Beam. A person doing a Balance_Beam looks like they are walking on a narrow beam.", + "A photo of a person doing Balance Beam. When a person is doing balance beam, they look like they are about to fall over.", + "A photo of a person doing Balance Beam. The person would be standing on one leg on a beam that is raised off the ground.", + "A photo of a person doing Balance Beam. A person doing the Balance Beam looks like they are walking on a thin beam.", + "A photo of a person doing Balance Beam. When someone is doing a balance beam, they look like they are walking on a very thin beam.", + "A photo of a person doing Balance Beam. A person doing balance beam typically looks like they are concentrating and focusing on keeping their balance on the beam.", + "A photo of a person doing Balance Beam. The person will be standing on a beam that is raised off the ground.", + "A photo of a person doing Balance Beam. The person is standing on one leg with the other leg extended in the air.", + "A photo of a person doing Balance Beam. If someone is doing balance beam, they will be holding onto a beam and will be balancing on one foot.", + "A photo of a person doing Balance Beam. If someone is doing a balance beam routine, they will be performing a series of skills on a narrow beam that is usually four inches wide and raised off the ground.", + "A photo of a person doing Balance Beam. A person doing a balance beam routine will be wearing a leotard and will have their hair pulled back.", + "A photo of a person doing Balance Beam. A person doing a balance beam routine will be holding onto a beam that is elevated off the ground.", + "A photo of a person doing Balance Beam. The person is standing on one leg with the other leg raised in the air.", + "A photo of a person doing Balance Beam. The person will be standing on one leg and have their other leg raised up in the air.", + "A photo of a person doing Balance Beam. If someone is doing a balance beam exercise, they will be standing on a narrow beam, often with one leg raised in the air.", + "A photo of a person doing Balance Beam. A person doing balance beam is likely to be wearing gymnastics attire and have their hair pulled back.", + "A photo of a person doing Balance Beam. This person looks like they are about to fall off the balance beam.", + "A photo of a person doing Balance Beam. When a person is doing balance beam, they look like they are walking on a narrow board that is elevated off the ground.", + "A photo of a person doing Balance Beam. A person doing Balance_Beam looks like they are balancing on a beam.", + "A photo of a person doing Balance Beam. When a person is doing balance beam, they look like they are walking on a narrow beam.", + "A photo of a person doing Balance Beam. A person doing balance beam usually looks like they are concentrating and trying to keep their balance.", + "A photo of a person doing Balance Beam. A person doing Balance_Beam looks like they are balancing on a beam.", + "A photo of a person doing Balance Beam. When a person is doing a balance beam routine, they will be performing a series of acrobatic and gymnastic skills on a raised beam that is approximately four inches wide.", + "A photo of a person doing Balance Beam. A person doing balance beam looks like someone who is trying to walk on a narrow beam without falling off.", + "A photo of a person doing Balance Beam. The person looks like they are standing on a beam with their arms out to the side for balance.", + "A photo of a person doing Balance Beam. A person doing the balance beam looks like they are holding up a long beam horizontally in front of them while standing on it.", + "A photo of a person doing Balance Beam. In the image, a person is performing a balance beam routine.", + "A photo of a person doing Balance Beam. The image is of a young girl doing a handstand on a balance beam.", + "A photo of a person doing Balance Beam. In the image, a young girl is doing a handstand on a balance beam.", + "A photo of a person doing Balance Beam. In the image, a young woman is doing a handstand on a balance beam.", + "A photo of a person doing Balance Beam. In the image, a girl is doing a handstand on a balance beam.", + "A photo of a person doing Balance Beam. In the image, a girl is standing on a beam in a gymnasium.", + "A photo of a person doing Balance Beam. In the image, a young girl is standing on a balance beam in a gymnastics studio.", + "A photo of a person doing Balance Beam. An image from the internet of a person doing Balance_Beam might show a person walking along a narrow beam, high above the ground.", + "A photo of a person doing Balance Beam. In the image, a young girl is performing a balancing act on a beam.", + "A photo of a person doing Balance Beam. In the image, a young girl is standing on a balance beam in a gymnasium.", + "A photo of a person doing Balance Beam. The person is doing a balance beam routine.", + "A photo of a person doing Balance Beam. The athlete uses the beam to perform a series of jumps, flips, and other moves.", + "A photo of a person doing Balance Beam. A person performs a dangerous stunt on a balance beam high above a city street.", + "A photo of a person doing Balance Beam. Doing a handstand on the balance beamA person is doing a handstand on the balance beam.", + "A photo of a person doing Balance Beam. The person is doing a handstand on the balance beam.", + "A photo of a person doing Balance Beam. The person is doing a balance beam routine.", + "A photo of a person doing Balance Beam. Person doing a balance beam routine.", + "A photo of a person doing Balance Beam. The person is performing a balancing act on a beam.", + "A photo of a person doing Balance Beam. The person is doing a balance beam routine.", + "A photo of a person doing Balance Beam. Abalance beam routine requires split-second timing and precision to execute correctly." + ], + "Band Marching": [ + "A photo of a person doing Band Marching. A person doing Band_Marching looks like they are playing an instrument and marching in place.", + "A photo of a person doing Band Marching. A person doing band marching looks like they are playing an instrument and marching in place.", + "A photo of a person doing Band Marching. When a person is marching in band, they are standing in formation with other band members.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like they are playing an instrument and marching at the same time.", + "A photo of a person doing Band Marching. A person doing Band_Marching typically looks like they are playing an instrument while marching in place.", + "A photo of a person doing Band Marching. A person marching in band looks like they are playing an instrument and marching in place.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like they are playing an instrument and marching in sync with the other band members.", + "A photo of a person doing Band Marching. A person marching in band looks like they are rhythmically moving their arms and legs while playing an instrument.", + "A photo of a person doing Band Marching. A person doing Band_Marching typically looks like they are playing an instrument and marching in unison with others in the band.", + "A photo of a person doing Band Marching. A person marching in band looks like they are playing an instrument and marching in step with the other members of the band.", + "A photo of a person doing Band Marching. The person may be wearing a band uniform and carrying a musical instrument.", + "A photo of a person doing Band Marching. If a person is doing band marching, they will be playing an instrument and marching in formation with other band members.", + "A photo of a person doing Band Marching. This person is likely wearing a band uniform and carrying a musical instrument.", + "A photo of a person doing Band Marching. The person would be clad in a band uniform and carrying a marching band instrument.", + "A photo of a person doing Band Marching. Some common ways to identify a person doing band marching are by their concerts, clothing, and instruments.", + "A photo of a person doing Band Marching. This person is likely to be wearing a band uniform and carrying a musical instrument.", + "A photo of a person doing Band Marching. You can identify a person doing Band_Marching by the way they are holding their instrument and the way they are moving their feet.", + "A photo of a person doing Band Marching. A band marching typically has a large group of people playing various instruments, such as brass and woodwinds, and marching in unison.", + "A photo of a person doing Band Marching. There are several ways to identify a person doing band marching.", + "A photo of a person doing Band Marching. Some giveaway signs might be if the person is carrying a tuba or marching bass drum, or if they are wearing a band uniform.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like a musician playing their instrument while marching in place.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like someone playing an instrument while walking.", + "A photo of a person doing Band Marching. https://upload.", + "A photo of a person doing Band Marching. A person in a band marching looks like they are playing an instrument and marching at the same time.", + "A photo of a person doing Band Marching. S/he would be wearing a marching band uniform and carrying a musical instrument.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like they are playing a marching band instrument and marching in place.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like someone who is playing an instrument and marching at the same time.", + "A photo of a person doing Band Marching. A person doing band marching looks like they are playing an instrument and marching at the same time.", + "A photo of a person doing Band Marching. A person doing Band_Marching typically looks like they are playing a musical instrument and marching in formation.", + "A photo of a person doing Band Marching. A person doing Band_Marching looks like a musician playing an instrument while marching.", + "A photo of a person doing Band Marching. The image is of a person playing a trumpet in a marching band.", + "A photo of a person doing Band Marching. The image is of a person in a band marching uniform.", + "A photo of a person doing Band Marching. The image shows a person playing the drums in a marching band.", + "A photo of a person doing Band Marching. In the image, a person is playing the trumpet in a marching band.", + "A photo of a person doing Band Marching. An image from the internet of a person doing Band_Marching shows a person in a marching band uniform playing a brass instrument.", + "A photo of a person doing Band Marching. This image shows a person playing the bass drum in a marching band.", + "A photo of a person doing Band Marching. In this image, a person is playing a marching band instrument called a tuba.", + "A photo of a person doing Band Marching. This image shows a person playing a trombone in a marching band.", + "A photo of a person doing Band Marching. In the image, a person is playing a marching band instrument while marching in formation.", + "A photo of a person doing Band Marching. This image is of a person playing the trumpet in a marching band.", + "A photo of a person doing Band Marching. Band member marching in formation during a parade.", + "A photo of a person doing Band Marching. A member of the band marches down the street during a parade.", + "A photo of a person doing Band Marching. This person is playing the trumpet in a marching band.", + "A photo of a person doing Band Marching. A person is marching in a band.", + "A photo of a person doing Band Marching. The person is playing the tuba in a marching band.", + "A photo of a person doing Band Marching. Scarlet Knights Drum Major leading the band down the field.", + "A photo of a person doing Band Marching. Person doing Band Marching.", + "A photo of a person doing Band Marching. A student plays the trumpet in a marching band.", + "A photo of a person doing Band Marching. A high school student throws a band flag in the air during a marching band performance.", + "A photo of a person doing Band Marching. A high school marching band practices for an upcoming parade." + ], + "Baseball Pitch": [ + "A photo of a person doing Baseball Pitch. The person stands with their feet shoulder-width apart and bends their knees slightly.", + "A photo of a person doing Baseball Pitch. A person baseball pitching looks like they are about to throw a ball.", + "A photo of a person doing Baseball Pitch. The person stands with their legs shoulder-width apart, and bends their knees slightly.", + "A photo of a person doing Baseball Pitch. The person looks like they are throwing a baseball.", + "A photo of a person doing Baseball Pitch. The person winds up, brings their arm back, and then throws the ball towards the batter.", + "A photo of a person doing Baseball Pitch. The person stands with their feet shoulder-width apart, with their dominant hand behind their back.", + "A photo of a person doing Baseball Pitch. A person doing a Baseball_Pitch would be standing on a pitching mound with their body facing the catcher, and their arm extended towards home plate.", + "A photo of a person doing Baseball Pitch. A person throwing a Baseball_Pitch typically has their body facing sideways, with their strong arm extended towards the opposite batter's box.", + "A photo of a person doing Baseball Pitch. A person doing a Baseball_Pitch looks like they are throwing a ball with a windmill motion.", + "A photo of a person doing Baseball Pitch. A person doing the Baseball_Pitch activity looks like they are about to throw a baseball.", + "A photo of a person doing Baseball Pitch. There are a few key things to look for when trying to identify someone doing the Baseball_Pitch activity.", + "A photo of a person doing Baseball Pitch. Some possible ways to identify a person doing the Baseball_Pitch activity would be to look for someone throwing a baseball, or someone in a baseball uniform.", + "A photo of a person doing Baseball Pitch. The person is wearing a baseball uniform and is holding a baseball in their hand.", + "A photo of a person doing Baseball Pitch. There are several ways to identify a person doing Baseball_Pitch:1.", + "A photo of a person doing Baseball Pitch. The person doing the Baseball_Pitch would be standing with their feet shoulder width apart, with their dominant hand behind their back and their other hand gripping the baseball.", + "A photo of a person doing Baseball Pitch. Baseball_Pitch can be identified by the action of a player throwing a ball towards home plate.", + "A photo of a person doing Baseball Pitch. You can identify someone doing the Baseball_Pitch activity if they are throwing a baseball with one hand while gripping the baseball with their other hand.", + "A photo of a person doing Baseball Pitch. The person doing the Baseball_Pitch is wearing a baseball uniform and is holding a baseball in their hand.", + "A photo of a person doing Baseball Pitch. The person doing the Baseball_Pitch activity can be identified by their stance, their grip on the ball, and their arm motion.", + "A photo of a person doing Baseball Pitch. The person will be standing on a baseball mound with their legs shoulder-width apart.", + "A photo of a person doing Baseball Pitch. A person doing a Baseball_Pitch looks like they are holding a baseball in their hand and throwing it.", + "A photo of a person doing Baseball Pitch. A person throwing a baseball pitch looks like they are reaching back with their arm extended and then bringing their arm forward to throw the ball.", + "A photo of a person doing Baseball Pitch. A person pitching a baseball appears to be throwing the ball with one hand while standing on a raised mound with their feet slightly apart.", + "A photo of a person doing Baseball Pitch. A person doing a Baseball_Pitch looks like they are about to throw a baseball.", + "A photo of a person doing Baseball Pitch. The person looks like they are about to throw a ball.", + "A photo of a person doing Baseball Pitch. When a person is pitching a baseball, they will wind up their arm behind them, and then throw the ball towards the plate.", + "A photo of a person doing Baseball Pitch. A person pitching a baseball typically has their body facing sideways from the batter, with their arm extended towards the plate.", + "A photo of a person doing Baseball Pitch. A person doing a baseball pitch looks like they are about to throw a ball.", + "A photo of a person doing Baseball Pitch. A person pitching a baseball looks like they are holding the baseball in their glove in front of them and then they throw the ball.", + "A photo of a person doing Baseball Pitch. A person pitches a baseball by throwing the ball with their arm extended and their hand palm up.", + "A photo of a person doing Baseball Pitch. In this image, we see a young man pitching a baseball to an unseen batter.", + "A photo of a person doing Baseball Pitch. The image is of a young man throwing a baseball.", + "A photo of a person doing Baseball Pitch. The image is of a young boy pitching a baseball.", + "A photo of a person doing Baseball Pitch. This image is of a man pitching a baseball.", + "A photo of a person doing Baseball Pitch. The image is of a young man throwing a baseball.", + "A photo of a person doing Baseball Pitch. It's a black and white image of a Baseball Pitcher winding up to make a pitch.", + "A photo of a person doing Baseball Pitch. The image is of a person in a baseball uniform throwing a ball.", + "A photo of a person doing Baseball Pitch. The image is of a young man pitching a baseball.", + "A photo of a person doing Baseball Pitch. A person stands on a baseball diamond, wind-up for a pitch.", + "A photo of a person doing Baseball Pitch. The image is of a man holding a baseball in his pitching hand, with his other hand gripping the ball behind it.", + "A photo of a person doing Baseball Pitch. The man in the picture is doing a baseball pitch.", + "A photo of a person doing Baseball Pitch. A person windmills their arm back before throwing a baseball.", + "A photo of a person doing Baseball Pitch. The perfect baseball pitch.", + "A photo of a person doing Baseball Pitch. A person pitching a baseball.", + "A photo of a person doing Baseball Pitch. It looks like this person is about to throw a perfect pitch!.", + "A photo of a person doing Baseball Pitch. This person is doing a baseball pitch.", + "A photo of a person doing Baseball Pitch. A person pitches a baseball.", + "A photo of a person doing Baseball Pitch. A pitcher winds up for a fastball.", + "A photo of a person doing Baseball Pitch. The pitcher winds up and throws the ball toward home plate.", + "A photo of a person doing Baseball Pitch. Mark is throwing the ball with perfect form." + ], + "Basketball": [ + "A photo of a person doing Basketball. A person playing basketball would typically be wearing a basketball uniform, which consists of a tank top or jersey with shorts.", + "A photo of a person doing Basketball. When a person is playing basketball, they will be dribbling the ball up and down the court, trying to score points by shooting the ball through the hoop.", + "A photo of a person doing Basketball. When a person is playing basketball, they are usually running around the court, dribbling the ball, and shooting the ball into the basket.", + "A photo of a person doing Basketball. The person playing basketball will be dribbling the ball up and down the court, shooting the ball into the hoop, and running back and forth.", + "A photo of a person doing Basketball. A person playing basketball typically looks like they are running, jumping, and shooting a ball into a basket.", + "A photo of a person doing Basketball. A person doing Basketball looks like they are throwing a ball into a hoop.", + "A photo of a person doing Basketball. A person playing basketball typically looks like they are running and jumping while holding a basketball.", + "A photo of a person doing Basketball. A person who is playing basketball will be dribbling the ball across the court, trying to shoot the ball into the hoop.", + "A photo of a person doing Basketball. A person playing basketball looks like they are bouncing the ball, and then throwing it into the basket.", + "A photo of a person doing Basketball. A person doing Basketball looks like they are shooting a basketball into a hoop.", + "A photo of a person doing Basketball. There are many ways to identify a person doing Basketball.", + "A photo of a person doing Basketball. The person will be wearing a basketball jersey and shorts and will be shooting a basketball into a hoop.", + "A photo of a person doing Basketball. The person will be wearing a basketball uniform and will be shooting or dribbling a basketball.", + "A photo of a person doing Basketball. A person who is playing basketball will typically be wearing a basketball jersey and shorts.", + "A photo of a person doing Basketball. The person may be wearing a basketball jersey or shorts.", + "A photo of a person doing Basketball. There are a few ways to identify a person doing basketball.", + "A photo of a person doing Basketball. A person doing Basketball is wearing a Basketball jersey with the name and number of their favorite player.", + "A photo of a person doing Basketball. A person playing basketball will be wearing shorts and a tank top or jersey.", + "A photo of a person doing Basketball. The person would be wearing a basketball jersey and shorts, and they would have a basketball in their hands.", + "A photo of a person doing Basketball. One way to identify a person doing Basketball is by their physical appearance.", + "A photo of a person doing Basketball. A person playing basketball may look like they are running, dribbling, and shooting the ball into the hoop.", + "A photo of a person doing Basketball. A person doing Basketball tend to look like they are jumping a lot and running around the court.", + "A photo of a person doing Basketball. A person doing Basketball looks like they are shooting a Basketball into a Basketball hoop.", + "A photo of a person doing Basketball. A person playing basketball may be wearing a tank top and shorts, with sneakers and socks.", + "A photo of a person doing Basketball. A person playing basketball typically looks like they are running, jumping, and shooting a basketball into a hoop.", + "A photo of a person doing Basketball. A person doing basketball may look like they are running, shooting, and jumping.", + "A photo of a person doing Basketball. When a person is playing basketball, they will typically be wearing a pair of shorts and a t-shirt.", + "A photo of a person doing Basketball. There is no one definitive answer to this question.", + "A photo of a person doing Basketball. There is no definitive answer to this question as everyone looks different when they are playing basketball.", + "A photo of a person doing Basketball. A person doing Basketball looks like they are trying to shoot the ball into the basket.", + "A photo of a person doing Basketball. The image should be of a person playing basketball.", + "A photo of a person doing Basketball. The image is of a person doing a layup on a basketball court.", + "A photo of a person doing Basketball. A person doing Basketball is someone who is playing the sport of Basketball.", + "A photo of a person doing Basketball. I found an image of a person playing basketball.", + "A photo of a person doing Basketball. The image is of a person playing basketball.", + "A photo of a person doing Basketball. The image is of a young man shooting a basketball at a hoop.", + "A photo of a person doing Basketball. A person is doing a layup on a basketball court.", + "A photo of a person doing Basketball. A person is dribbling a basketball on an outdoor court.", + "A photo of a person doing Basketball. A man is playing basketball in a gym.", + "A photo of a person doing Basketball. In the image, a person is doing a layup on a basketball court.", + "A photo of a person doing Basketball. This person is playing basketball.", + "A photo of a person doing Basketball. The person in the image is doing a layup.", + "A photo of a person doing Basketball. This person is playing basketball.", + "A photo of a person doing Basketball. Basketball player shooting hoops.", + "A photo of a person doing Basketball. Image of a person doing a layup in a basketball game.", + "A photo of a person doing Basketball. He's about to shoot!.", + "A photo of a person doing Basketball. A person is playing basketball.", + "A photo of a person doing Basketball. The individual is shooting a basketball towards the basket.", + "A photo of a person doing Basketball. A person doing a layup during a basketball game.", + "A photo of a person doing Basketball. She's got game!." + ], + "Basketball Dunk": [ + "A photo of a person doing Basketball Dunk. A person doing a Basketball Dunk may be seen jumping up into the air, pushing the ball through the hoop with one or two hands.", + "A photo of a person doing Basketball Dunk. The person stands in front of the basketball hoop, bounces the ball off the ground, and then dunks it into the hoop.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball_Dunk looks like they are taking a jump shot towards the basket and as they are close to the basket they extend their arm and attempt to dunk the ball into the basket.", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk looks like they are jumping extremely high in the air and slamming the ball through the hoop.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball Dunk looks like they are about to jump up into the air and then slam the basketball into the hoop.", + "A photo of a person doing Basketball Dunk. When a person is doing a basketball dunk, they are jumping up into the air and laying the ball through the hoop.", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk looks like they are reaching up and grabbing the basketball, then bringing it down through the hoop.", + "A photo of a person doing Basketball Dunk. The person will be in a crouched position, with one hand on the ground and the other hand holding the basketball.", + "A photo of a person doing Basketball Dunk. If you are doing a basketball dunk, you will look like you are trying to slam the ball through the hoop with one hand.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball_Dunk typically looks like they are in mid-air, with one arm extended above their head, holding a basketball.", + "A photo of a person doing Basketball Dunk. The person doing the Basketball_Dunk is typically very tall, with a long arm span.", + "A photo of a person doing Basketball Dunk. The person doing the Basketball_Dunk is holding the basketball in their hands and they are leaping up into the air.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball_Dunk is typically in mid-air with the ball in their hand, about to shoot it through the hoop.", + "A photo of a person doing Basketball Dunk. There are a few ways to identify a person doing a Basketball_Dunk.", + "A photo of a person doing Basketball Dunk. The person doing the Basketball_Dunk is most likely wearing a jersey and shorts.", + "A photo of a person doing Basketball Dunk. Basketball_Dunk can be identified by a person's stance, arm position, and the way they are holding the basketball.", + "A photo of a person doing Basketball Dunk. The person doing the Basketball_Dunk would have a basketball in their hand and would be in mid-air close to a basketball hoop.", + "A photo of a person doing Basketball Dunk. The person will be holding a basketball and will be trying to put the ball through the hoop.", + "A photo of a person doing Basketball Dunk. If someone is doing a basketball dunk, they will be holding a basketball and trying to get the ball through the hoop.", + "A photo of a person doing Basketball Dunk. There are a few ways to identify a person doing a Basketball Dunk.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball_Dunk might look like they are about to jump up into the air and slam the basketball into the hoop.", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk looks like they are shooting the basketball into the hoop with one hand while jumping in the air.", + "A photo of a person doing Basketball Dunk. One arm extends up above the head, holding the basketball.", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk typically looks like they are jumping high in the air and then slamming the ball through the hoop with one or both hands.", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk typically looks like they are jumping very high in the air and then extending their arm(s) above their head to slam the ball through the hoop.", + "A photo of a person doing Basketball Dunk. A person doing a dunk in basketball looks like they are jumping up in the air and throwing the ball down through the hoop.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball_Dunk looks like they are about to shoot the basketball into the hoop and then jump up to grab the rim of the hoop and dunk the ball into the basket.", + "A photo of a person doing Basketball Dunk. When a person is doing a Basketball Dunk, they will look like they are trying to slam the ball into the basket from above.", + "A photo of a person doing Basketball Dunk. A person doing Basketball_Dunk may have their arms extended above their head, one arm holding the ball, and their body slightly leaned forward.", + "A photo of a person doing Basketball Dunk. When a person is doing a Basketball_Dunk, they look like they are trying to dunk a basketball into a hoop.", + "A photo of a person doing Basketball Dunk. In the image, a person is playing basketball and doing a dunk.", + "A photo of a person doing Basketball Dunk. The image is of a young man in a basketball uniform, jumping up and extending his body to dunk the ball through the hoop.", + "A photo of a person doing Basketball Dunk. In the image, a young man is about to dunk a basketball.", + "A photo of a person doing Basketball Dunk. In the image, a young man is seen leaping up towards a basketball hoop, his arm extended to slam the ball through the net.", + "A photo of a person doing Basketball Dunk. This image is of a man doing a basketball dunk.", + "A photo of a person doing Basketball Dunk. In the image, a person is shown jumping up and dunking a basketball through a hoop.", + "A photo of a person doing Basketball Dunk. A large black man is standing on a basketball court, holding a basketball in one hand.", + "A photo of a person doing Basketball Dunk. In the image, a man is basketball dunking while a defending player tries to block him.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball Dunk is an image of someone jumping up and dunking a basketball into a hoop.", + "A photo of a person doing Basketball Dunk. The image is of a young man in a basketball uniform, mid-air, about to slam the ball into the basket.", + "A photo of a person doing Basketball Dunk. Slamming it home.", + "A photo of a person doing Basketball Dunk. A young man slams the ball through the hoop during a game of basketball.", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk.", + "A photo of a person doing Basketball Dunk. A person is doing a Basketball Dunk.", + "A photo of a person doing Basketball Dunk. A person doing a Basketball Dunk.", + "A photo of a person doing Basketball Dunk. \"Basketball player going for a dunk\".", + "A photo of a person doing Basketball Dunk. A person doing a basketball dunk.", + "A photo of a person doing Basketball Dunk. The person in the image is dunking a basketball.", + "A photo of a person doing Basketball Dunk. The person in the picture is doing a basketball dunk.", + "A photo of a person doing Basketball Dunk. The person in the image is doing a basketball dunk." + ], + "Bench Press": [ + "A photo of a person doing Bench Press. A person doing Bench_Press looks like they are lying on a flat surface with their feet firmly planted on the ground and their arms extended straight out from their shoulders, holding a barbell above their chest.", + "A photo of a person doing Bench Press. The person stands up and takes hold of the barbell with their hands slightly wider than shoulder width apart.", + "A photo of a person doing Bench Press. A person doing Bench_Press looks like someone pushing a heavy object up from a lying position.", + "A photo of a person doing Bench Press. A person performing a bench press will typically lie on their back on a weight bench, with their feet flat on the ground.", + "A photo of a person doing Bench Press. A person doing the Bench Press looks like they're lying on their back on a bench with a barbell in their hands.", + "A photo of a person doing Bench Press. The person is lying on their back on a flat weight bench.", + "A photo of a person doing Bench Press. A person doing Bench_Press looks like they are pressing something up above their head.", + "A photo of a person doing Bench Press. A person doing a Bench_Press looks like they are pushing a weight up and down while lying on their back on a flat surface.", + "A photo of a person doing Bench Press. A person doing a bench press looks like they are lying down on a bench with a weight in each hand.", + "A photo of a person doing Bench Press. A person doing a bench press generally lies on their back on a weight bench with their feet planted firmly on the ground.", + "A photo of a person doing Bench Press. A person doing a bench press will typically be lying on their back on a weight bench with a barbell in their hands.", + "A photo of a person doing Bench Press. If someone is doing a bench press, they will be lying on their back on a bench with a weight in each hand.", + "A photo of a person doing Bench Press. In order to identify a person doing Bench_Press, one should look for someone who is sitting on a bench with a barbell in their hands.", + "A photo of a person doing Bench Press. There are a few key things to look for when trying to identify someone Bench_Press.", + "A photo of a person doing Bench Press. There are many ways to identify a person doing Bench_Press.", + "A photo of a person doing Bench Press. The person would be doing a pressing motion with their arms while lying on their back on a bench.", + "A photo of a person doing Bench Press. There are a few ways to identify a person doing the bench press.", + "A photo of a person doing Bench Press. If someone is doing bench press, they will be laying on their back on a flat bench with a barbell in their hands.", + "A photo of a person doing Bench Press. If someone is performing the bench press exercise, they will typically be lying on their back on a weight bench with their feet flat on the ground.", + "A photo of a person doing Bench Press. The person may be holding a barbell above their chest with their hands shoulder-width apart.", + "A photo of a person doing Bench Press. A person doing a bench press looks like they are lying on their back on a flat surface with their feet planted firmly on the ground.", + "A photo of a person doing Bench Press. The person is lying on their back on a flat bench with their feet on the ground.", + "A photo of a person doing Bench Press. When someone is doing a Bench Press, they are lying on their back on a flat surface with their feet planted firmly on the ground.", + "A photo of a person doing Bench Press. The person may be sitting or lying on their back, with their feet flat on the ground and their knees bent.", + "A photo of a person doing Bench Press. A person doing a bench press looks like they are lying on their back on a flat surface with their feet on the ground and their knees bent.", + "A photo of a person doing Bench Press. A person performing a bench press usually lies on their back on a weightlifting bench, with their feet planted firmly on the floor.", + "A photo of a person doing Bench Press. A person doing a Bench Press looks like they are lying on their back on a flat surface with their feet planted on the ground.", + "A photo of a person doing Bench Press. A person doing a bench press looks like they are lying on their back on a bench with a weight in each hand.", + "A photo of a person doing Bench Press. A person doing the Bench Press exercise generally looks like they are lying on their back on a weight bench with a barbell in their hands.", + "A photo of a person doing Bench Press. A person doing a bench press typically lies on their back on a weight bench, with their feet flat on the ground.", + "A photo of a person doing Bench Press. The image shows a person doing a bench press with a barbell.", + "A photo of a person doing Bench Press. This person is doing a bench press with a barbell.", + "A photo of a person doing Bench Press. The image is of a young, fit-looking man doing a bench press in a gym.", + "A photo of a person doing Bench Press. In the image, a person is doing a bench press with a barbell.", + "A photo of a person doing Bench Press. The image is of a person doing a bench press with a barbell.", + "A photo of a person doing Bench Press. In this image, a person is doing a bench press at the gym.", + "A photo of a person doing Bench Press. The image is of a person doing a bench press with a barbell.", + "A photo of a person doing Bench Press. An image from the internet of a person doing Bench_Press would show someone lying on a flat surface with a weight in each hand.", + "A photo of a person doing Bench Press. In the image, a person is doing a bench press with a barbell.", + "A photo of a person doing Bench Press. In the image, a person is doing a bench press with a barbell.", + "A photo of a person doing Bench Press. Starting position for aBench Press.", + "A photo of a person doing Bench Press. A person doing a Bench Press exercise with a barbell.", + "A photo of a person doing Bench Press. She's pumping out some serious iron!.", + "A photo of a person doing Bench Press. Proper Bench_Press form includes tucking your chin, so that you can drive the bar in a straight line up to the lockout position.", + "A photo of a person doing Bench Press. \"Proper form is crucial when performing any type of exercise.", + "A photo of a person doing Bench Press. A person doing a bench press with a barbell.", + "A photo of a person doing Bench Press. \nThis person is doing a bench press with a barbell.", + "A photo of a person doing Bench Press. Proper form is key when performing a bench press.", + "A photo of a person doing Bench Press. Person performing a bench press with weights.", + "A photo of a person doing Bench Press. A person doing a bench press with a barbell." + ], + "Biking": [ + "A photo of a person doing Biking. A person doing Biking looks like they are using their legs and arms to move a bike forwards.", + "A photo of a person doing Biking. When a person is biking, they are riding a bicycle.", + "A photo of a person doing Biking. A person doing Biking looks like a person riding a bicycle.", + "A photo of a person doing Biking. A person doing Biking looks like a person who is riding a bike.", + "A photo of a person doing Biking. A person doing Biking looks like a person who is sitting on a seat with their legs peddling the bike to move it forward.", + "A photo of a person doing Biking. A person doing Biking looks like they are pedaling a bike with their legs.", + "A photo of a person doing Biking. A person biking generally looks like they are pedaling a bicycle.", + "A photo of a person doing Biking. A person biking typically looks like they are pedaling a bicycle.", + "A photo of a person doing Biking. A person doing Biking looks like they are pedaling a bike and going forward.", + "A photo of a person doing Biking. A person doing Biking looks like they are peddling a bike and going forward.", + "A photo of a person doing Biking. There are many ways to identify a person doing biking.", + "A photo of a person doing Biking. If someone is biking, they will likely be wearing protective gear and be on a bike designed for biking.", + "A photo of a person doing Biking. There are many ways to identify a person doing biking.", + "A photo of a person doing Biking. If someone is riding a bike, they are likely doing biking.", + "A photo of a person doing Biking. If a person is riding a bike, they are doing biking.", + "A photo of a person doing Biking. The person will be wearing tight clothing and a helmet, and will be straddling a bicycle.", + "A photo of a person doing Biking. The person may be wearing a helmet and be awkwardly balanced on a bicycle.", + "A photo of a person doing Biking. If someone is riding a bike, you can identify them as a biker.", + "A photo of a person doing Biking. The person will be riding a bike.", + "A photo of a person doing Biking. There are many ways to identify a person doing biking.", + "A photo of a person doing Biking. A person wearing a helmet and bike shorts pedaling a road bike.", + "A photo of a person doing Biking. This is a difficult question.", + "A photo of a person doing Biking. A person doing biking looks like they are pedaling a bike.", + "A photo of a person doing Biking. A person biking looks like someone riding a bicycle.", + "A photo of a person doing Biking. A person doing Biking looks like a person riding a bike.", + "A photo of a person doing Biking. A person doing Biking looks like a person riding a bike.", + "A photo of a person doing Biking. A person doing biking looks like someone who is pedaling a bike.", + "A photo of a person doing Biking. A person doing biking can look like they are either working out, or commuting to a destination.", + "A photo of a person doing Biking. A person doing biking looks like a person who is riding a bike.", + "A photo of a person doing Biking. A person doing biking looks like someone who is riding a bicycle.", + "A photo of a person doing Biking. The image is of a person biking on a road with trees on either side.", + "A photo of a person doing Biking. The image is of a person biking down a road with houses in the background.", + "A photo of a person doing Biking. )The image is of a woman riding a bike on a path through a park.", + "A photo of a person doing Biking. The image is of a person biking on a road with mountains in the background.", + "A photo of a person doing Biking. A person is biking on a path through a green park.", + "A photo of a person doing Biking. In the image, a person is biking on a trail through a wooded area.", + "A photo of a person doing Biking. The image is of a person biking on a road with trees on either side.", + "A photo of a person doing Biking. The image is of a person biking down a road with trees on either side.", + "A photo of a person doing Biking. The image is of a person biking through a city street.", + "A photo of a person doing Biking. I found an image of a person doing biking on the internet.", + "A photo of a person doing Biking. The person in the image is biking in nature.", + "A photo of a person doing Biking. The joy of biking is captured in this image of a cyclist enjoying a sunny day.", + "A photo of a person doing Biking. A person is biking through a field of flowers.", + "A photo of a person doing Biking. Biking through the city.", + "A photo of a person doing Biking. A person is biking on a road.", + "A photo of a person doing Biking. The joy of biking!.", + "A photo of a person doing Biking. This person is biking in an outdoor setting.", + "A photo of a person doing Biking. This person is biking in an urban area.", + "A photo of a person doing Biking. A woman in a bike helmet and spandex rides her bicycle on a road with trees on either side.", + "A photo of a person doing Biking. This person is biking on a road with other cyclists." + ], + "Billiards": [ + "A photo of a person doing Billiards. A person playing billiards looks like they are having a lot of fun.", + "A photo of a person doing Billiards. The person looks like they are holding a long stick and hitting a white ball with it.", + "A photo of a person doing Billiards. A person playing Billiards looks like they are trying to hit the white ball with a stick into one of the six pockets.", + "A photo of a person doing Billiards. A person doing Billiards looks like someone holding a long stick in their hand and using it to hit a white ball into other balls on a green table.", + "A photo of a person doing Billiards. A person playing billiards looks like they are having a lot of fun.", + "A photo of a person doing Billiards. A person playing billiards looks like they are leaning over the table, holding a stick in their hand, and hitting a ball into another ball.", + "A photo of a person doing Billiards. Some people may lean over the billiards table to get a better shot while others may stand up straight.", + "A photo of a person doing Billiards. A person playing billiards looks like they are trying to hit a ball into a pocket using a stick.", + "A photo of a person doing Billiards. A person playing billiards typically looks like they are concentrating on the game at hand.", + "A photo of a person doing Billiards. A person playing billiards looks like they are concentrating on the game and trying to hit the ball into the pocket.", + "A photo of a person doing Billiards. A person doing Billiards can be identified by their clothing.", + "A photo of a person doing Billiards. If someone is playing billiards, they will have a cue stick and they will be hitting balls into pockets on a pool table.", + "A photo of a person doing Billiards. a person doing Billiards can be identified by their clothing, which is typically loose and casual.", + "A photo of a person doing Billiards. There are a few ways to identify a person doing billiards.", + "A photo of a person doing Billiards. A person doing billiards can be identified by their stance, grip, and shot.", + "A photo of a person doing Billiards. A person doing billiards can be identified by their stance, grip, and stroke.", + "A photo of a person doing Billiards. If someone is playing billiards, they will have a cue stick and they will be hitting balls into pockets.", + "A photo of a person doing Billiards. There are a few ways to identify a person doing billiards.", + "A photo of a person doing Billiards. One way to identify a person doing billiards is to look for someone holding a cue stick and standing next to a billiards table.", + "A photo of a person doing Billiards. The person has a pool stick in their hand and they are hitting balls into pockets.", + "A photo of a person doing Billiards. A person doing Billiards looks like they are holding a long stick in their hand and hitting a small white ball with it.", + "A photo of a person doing Billiards. A person playing billiards typically is holding a cue stick in one hand and steadying a billiard ball on the other hand.", + "A photo of a person doing Billiards. Most people doing billiards look like they are trying to concentrate on making the shot.", + "A photo of a person doing Billiards. A person playing billiards looks like they are holding a stick and hitting a ball into a pocket.", + "A photo of a person doing Billiards. A person playing billiards looks like they are holding a long stick in their hand and hitting a white ball with it.", + "A photo of a person doing Billiards. There is no definitive answer to this question, as people can play billiards in many different ways.", + "A photo of a person doing Billiards. There is no one definitive answer to this question.", + "A photo of a person doing Billiards. Someone playing billiards looks like they are holding a stick and hitting a ball with it into a pocket.", + "A photo of a person doing Billiards. A person playing billiards typically looks like they are concentrated and focused on the game.", + "A photo of a person doing Billiards. A person playing billiards typically looks like they are concentrating on the game and trying to make their shot.", + "A photo of a person doing Billiards. The image is of a person holding a pool cue and aiming at a white ball on a pool table.", + "A photo of a person doing Billiards. The image is of a person wearing a billiards shirt and holding a pool cue.", + "A photo of a person doing Billiards. The image is of a young woman in her twenties leaning over a billiards table, cue in hand, ready to take her shot.", + "A photo of a person doing Billiards. The image is of a person holding a pool cue and about to strike a pool ball.", + "A photo of a person doing Billiards. In this image, a person is doing Billiards.", + "A photo of a person doing Billiards. The image is of a person holding a pool cue and leaning over a pool table.", + "A photo of a person doing Billiards. The image is of a young woman in a white tank top and blue jeans leaning over a pool table to take a shot.", + "A photo of a person doing Billiards. One image from the internet that shows a person doing billiards is of a man holding a pool cue and leaning over a pool table.", + "A photo of a person doing Billiards. In this image, a person is doing Billiards.", + "A photo of a person doing Billiards. An image of a person doing billiards shows them holding a cue stick and preparing to hit a white ball across a green felt-covered table.", + "A photo of a person doing Billiards. Person playing billiardsA caption of an image of a person doing Yoga:Person doing yoga.", + "A photo of a person doing Billiards. A person is playing a game of billiards.", + "A photo of a person doing Billiards. Man playing billiardsA man is playing billiards in a pool hall.", + "A photo of a person doing Billiards. The pool shark lines up her shot.", + "A photo of a person doing Billiards. A person plays Billiards while wearing a red shirt and white pants.", + "A photo of a person doing Billiards. A person is playing billiards.", + "A photo of a person doing Billiards. This person is playing Billiards.", + "A photo of a person doing Billiards. The person in the image is playing Billiards.", + "A photo of a person doing Billiards. This person is playing the game of Billiards.", + "A photo of a person doing Billiards. Billiards is a great game to play when you want to relax and have some fun." + ], + "Blow Dry Hair": [ + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are using a blow dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are using a hair dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person doing blow dry hair usually has a towel wrapped around their head, and they are using a blow dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person with blow dried hair looks like they have straight, smooth, and shiny hair.", + "A photo of a person doing Blow Dry Hair. A person doing blow dry hair looks like someone with a hair dryer blowing their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are drying their hair with a blow dryer.", + "A photo of a person doing Blow Dry Hair. A person doing blow dry hair looks like they are using a blow dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like a person with a blow dryer in their hand, drying their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are using a hair dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are holding a blow dryer up to their head and drying their hair.", + "A photo of a person doing Blow Dry Hair. There are a few ways to identify a person doing blow dry hair:1.", + "A photo of a person doing Blow Dry Hair. The person is likely to have a blow dryer in their hand and their hair will be styled.", + "A photo of a person doing Blow Dry Hair. The person is often standing in front of a mirror with a hairdryer in their hand.", + "A photo of a person doing Blow Dry Hair. The person would have a blow dryer in their hand and would be holding it up to their head, blowing their hair dry.", + "A photo of a person doing Blow Dry Hair. The person might have a hair dryer in their hand.", + "A photo of a person doing Blow Dry Hair. If a person is doing Blow_Dry_Hair, you can identify them by their use of a hair dryer.", + "A photo of a person doing Blow Dry Hair. If someone is blow drying their hair, you can usually hear the sound of the hair dryer.", + "A photo of a person doing Blow Dry Hair. There are several ways you can identify a person doing blow dry hair:-The individual may have a blow dryer in their hand.", + "A photo of a person doing Blow Dry Hair. If someone is doing Blow Dry Hair, they will likely have a hairdryer in their hand and their hair will be wet.", + "A photo of a person doing Blow Dry Hair. The person will have a hair dryer in their hand and will be using it to dry their hair.", + "A photo of a person doing Blow Dry Hair. When someone is blow drying their hair, they usually have the blow dryer in one hand and are using the other hand to brush their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are holding a blow dryer up to their head and drying their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like someone who is holding a blow dryer up to their head, usually with one hand, and running it through their hair.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like they are using a hair dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. When someone is blow drying their hair, they typically hold the blow dryer up to their head and point it downwards, so that the air flows from the roots of their hair to the ends.", + "A photo of a person doing Blow Dry Hair. A person doing blow dry hair looks like they are holding a blow dryer up to their head and drying their hair.", + "A photo of a person doing Blow Dry Hair. A person doing blow dry hair looks like they are using a blow dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person doing blow dry hair looks like they are drying their hair with a blow dryer.", + "A photo of a person doing Blow Dry Hair. This person would have a hairstyle that has been styled by using a blow dryer.", + "A photo of a person doing Blow Dry Hair. A person doing Blow_Dry_Hair looks like someone who is using a blow dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. I found an image of a woman doing a blow out on another woman's hair.", + "A photo of a person doing Blow Dry Hair. In the image, a woman with long, brown hair is standing in front of a mirror, blow drying her hair.", + "A photo of a person doing Blow Dry Hair. A person blow drying their hair with a hair dryer.", + "A photo of a person doing Blow Dry Hair. In the image, a woman is standing in front of a mirror with a blow dryer in her hand, pointing it at her hair.", + "A photo of a person doing Blow Dry Hair. I found an image of a woman with long, straight hair blow drying her hair.", + "A photo of a person doing Blow Dry Hair. In the image, a woman is standing in front of a mirror with a hair dryer in her hand.", + "A photo of a person doing Blow Dry Hair. A person with long, blonde hair is standing in front of a mirror blow drying their hair.", + "A photo of a person doing Blow Dry Hair. In the image, a woman is standing in front of a mirror with a blow dryer in her hand.", + "A photo of a person doing Blow Dry Hair. The person is standing in front of a mirror with a hair dryer in their hand.", + "A photo of a person doing Blow Dry Hair. In this image, a person is doing blow dry hair.", + "A photo of a person doing Blow Dry Hair. A person is using a blow dryer to dry their hair.", + "A photo of a person doing Blow Dry Hair. A person is blow drying their hair.", + "A photo of a person doing Blow Dry Hair. Getting the perfect blowout at home is easier than you think! Just follow these simple tips and you'll be on your way to salon-worthy hair in no time.", + "A photo of a person doing Blow Dry Hair. This person is blow drying their hair.", + "A photo of a person doing Blow Dry Hair. Person doing blow dry hair.", + "A photo of a person doing Blow Dry Hair. A person drying their hair with a blow dryer.", + "A photo of a person doing Blow Dry Hair. This person is blow drying their hair.", + "A photo of a person doing Blow Dry Hair. A person is blow drying their hair.", + "A photo of a person doing Blow Dry Hair. A person drying their hair with a blow dryer.", + "A photo of a person doing Blow Dry Hair. The right way to blow-dry your hair." + ], + "Blowing Candles": [ + "A photo of a person doing Blowing Candles. The person looks like they are trying to blow out a candle.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are blowing out a candle on a cake.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are blowing out candles on a cake.", + "A photo of a person doing Blowing Candles. A person Blowing_Candles looks like they are blowing out the candles on a birthday cake.", + "A photo of a person doing Blowing Candles. A person Blowing_Candles looks like they are blowing out candles on a cake.", + "A photo of a person doing Blowing Candles. They have a cake in front of them with lit candles, and they are leaning forward to blow the candles out.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are blowing out the candles on a cake.", + "A photo of a person doing Blowing Candles. A person blowing candles on a cake looks like they are trying to make the candles go out by blowing on them.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are trying to blow out a fire with their mouth.", + "A photo of a person doing Blowing Candles. A person blowing candles on a cake usually has their mouth open and is exhaling into the cake.", + "A photo of a person doing Blowing Candles. If someone is blowing candles, you can usually see the smoke and the flame from the candle.", + "A photo of a person doing Blowing Candles. If someone is blowing candles, you can identify them by looking at the candles.", + "A photo of a person doing Blowing Candles. If someone is doing the Blowing_Candles emoji, they may be blowing out candles on a cake or enjoying a scented candle.", + "A photo of a person doing Blowing Candles. If a person is doing Blowing_Candles, they will be seen holding a birthday cake and blowing out the candles.", + "A photo of a person doing Blowing Candles. If someone is doing Blowing_Candles, they will likely be holding a cake with candles in it, and they will be blowing the candles out.", + "A photo of a person doing Blowing Candles. If someone is doing Blowing_Candles, they will likely be holding a birthday cake with candles in front of them and blowing out the candles.", + "A photo of a person doing Blowing Candles. The most obvious way to identify someone doing the Blowing_Candles action is to look for someone with a lit candle in front of them.", + "A photo of a person doing Blowing Candles. If someone is doing the Blowing_Candles action, you can identify them by looking for someone who is blowing out candles on a cake.", + "A photo of a person doing Blowing Candles. If a person is blowing candles, you can identify them by their action of blowing out the candles.", + "A photo of a person doing Blowing Candles. If someone is blowing candles, you can identify them by the fact that they are using their breath to blow out a flame.", + "A photo of a person doing Blowing Candles. In general, a person blowing out candles on a cake looks like they are trying to blow the candles out as fast as they can.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like someone blowing out candles on a birthday cake.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are trying to blow out a candle.", + "A photo of a person doing Blowing Candles. There is no one definitive answer to this question.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles may look like they are blowing out candles on a cake.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are trying to blow out a candle.", + "A photo of a person doing Blowing Candles. There is no one definitive answer to this question, as people can blow candles in all sorts of ways.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles looks like they are blowing out a birthday cake.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles typically looks like they are blowing out birthday candles on a cake.", + "A photo of a person doing Blowing Candles. A person doing Blowing_Candles typically looks like they are blowing out birthday candles on a cake.", + "A photo of a person doing Blowing Candles. In the image, a man is seen standing in front of a birthday cake, holding a lit candle in his hand.", + "A photo of a person doing Blowing Candles. An image from the internet of a person doing Blowing_Candles show a person with a birthday cake in front of them, holding a lit candle in their hand.", + "A photo of a person doing Blowing Candles. An image of a person doing Blowing_Candles shows a person with a cake in front of them, and they are blowing out the candles on the cake.", + "A photo of a person doing Blowing Candles. In the image, a person is sitting at a table with a birthday cake in front of them.", + "A photo of a person doing Blowing Candles. The image is of a young woman with long blonde hair, blowing out candles on a birthday cake.", + "A photo of a person doing Blowing Candles. In the image, a young woman is seated at a table with a candle in front of her.", + "A photo of a person doing Blowing Candles. In this image, we see a young girl with long blond hair blowing out candles on a birthday cake.", + "A photo of a person doing Blowing Candles. The image is of a woman with long blond hair blowing out candles on a birthday cake.", + "A photo of a person doing Blowing Candles. In the image, a young girl is seen standing in front of a cake, with her eyes closed and one hand raised to her mouth.", + "A photo of a person doing Blowing Candles. In the image, a young girl is sitting at a birthday table with a cake in front of her.", + "A photo of a person doing Blowing Candles. The birthday boy blows out the candles on his cake.", + "A photo of a person doing Blowing Candles. The birthday girl makes a wish and blows out the candles on her cake.", + "A photo of a person doing Blowing Candles. A person is blowing out candles on a cake.", + "A photo of a person doing Blowing Candles. The person is blowing out the candles on a cake.", + "A photo of a person doing Blowing Candles. The person is celebrating their birthday by blowing out the candles on their cake.", + "A photo of a person doing Blowing Candles. The birthday girl makes a wish and blows out her candles.", + "A photo of a person doing Blowing Candles. eeds to blow outThis person needs to blow out the candles on their cake.", + "A photo of a person doing Blowing Candles. A person is blowing out a birthday candle on a cake.", + "A photo of a person doing Blowing Candles. The person is blowing candles on a cake.", + "A photo of a person doing Blowing Candles. Person blowing out candles on a birthday cake." + ], + "Body Weight Squats": [ + "A photo of a person doing Body Weight Squats. Body_Weight_Squats look like a person doing a regular squat, but without any weight.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats looks like they are doing a squat with their body weight.", + "A photo of a person doing Body Weight Squats. A person doing a Body_Weight_Squat looks like they are squatting down with their feet shoulder width apart and their arms crossed in front of their chest.", + "A photo of a person doing Body Weight Squats. The person will be standing with their feet shoulder width apart and their hands at their sides.", + "A photo of a person doing Body Weight Squats. When doing a body weight squat, a person stands with their feet shoulder-width apart and their hands at their sides.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats typically looks like they are squatting down to pick something up.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats looks like they are squatting down with their body weight.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats looks like they are squatting down with their feet parallel to each other and their back straight.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats looks like they are sitting in a chair with their feet flat on the ground and their knees bent at a 90 degree angle.", + "A photo of a person doing Body Weight Squats. When performing a body weight squat, a person's feet should be shoulder-width apart, and their back should be straight.", + "A photo of a person doing Body Weight Squats. The person will be standing with their feet shoulder-width apart and decreasing their body weight down towards the ground by bending at the knees and hips.", + "A photo of a person doing Body Weight Squats. If someone is doing a Body_Weight_Squat, they will be in a standing position with their feet shoulder-width apart, and they will be lowering their hips and butt down to the ground as if they were going to sit in.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats can be identified by their position; they will be standing with their feet shoulder-width apart, and their hips and knees will be bent at 90-degree angles.", + "A photo of a person doing Body Weight Squats. The person will be standing upright with their feet shoulder-width apart, and then they will lower their body down by bending their knees and hips until their thighs are parallel to the ground.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats can be identified by their stance.", + "A photo of a person doing Body Weight Squats. The person will be in a standing position with their feet shoulder width apart.", + "A photo of a person doing Body Weight Squats. A person who is doing Body_Weight_Squats will have their feet shoulder width apart, They will lower their body by bending their knees and hips, until their thighs are parallel to the floor.", + "A photo of a person doing Body Weight Squats. If someone is doing a body weight squat, they will typically be in a standing position with their feet shoulder-width apart, and they will lower their hips and butt down to a sitting position, keeping their back straight and their knees above their.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats can be identified by their squatting position and by the fact that they are not using any weights.", + "A photo of a person doing Body Weight Squats. The person will be standing with their feet shoulder width apart and their hands at their sides.", + "A photo of a person doing Body Weight Squats. A person doing a body weight squat looks like they are sitting in an invisible chair.", + "A photo of a person doing Body Weight Squats. A person doing body weight squats looks like they are doing a regular squat, but without any weight.", + "A photo of a person doing Body Weight Squats. A person doing body weight squats will look like they are squatting down with their legs shoulder width apart and their back straight.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats looks like someone who is squatting down with their legs shoulder width apart and their feet flat on the ground.", + "A photo of a person doing Body Weight Squats. A person doing a bodyweight squat looks like they are sitting in an invisible chair.", + "A photo of a person doing Body Weight Squats. When doing a body weight squat, a person will stand with their feet about shoulder width apart and their toes pointed slightly outward.", + "A photo of a person doing Body Weight Squats. A person doing bodyweight squats looks like they are sitting in an invisible chair.", + "A photo of a person doing Body Weight Squats. The person would be standing with their feet shoulder-width apart, and then they would lower their body down by bending their knees until their thighs are parallel to the ground.", + "A photo of a person doing Body Weight Squats. When performing a body weight squat, a person stands with their feet shoulder-width apart and then lowers their hips and butt down to the ground.", + "A photo of a person doing Body Weight Squats. A person doing a Body_Weight_Squat generally looks like they are trying to sit down in an invisible chair.", + "A photo of a person doing Body Weight Squats. A person is doing a body weight squat with their feet shoulder width apart and their hands behind their head.", + "A photo of a person doing Body Weight Squats. The image is of a person doing a bodyweight squat with proper form.", + "A photo of a person doing Body Weight Squats. A person doing Body_Weight_Squats would have their feet shoulder width apart, and they would lower their body down into a squatting position, and then back up again.", + "A photo of a person doing Body Weight Squats. In the image, a person is doing a body weight squat with proper form.", + "A photo of a person doing Body Weight Squats. In the image, the person has their feet shoulder-width apart and they are lowered down into a squat position.", + "A photo of a person doing Body Weight Squats. I found an image on the internet of a person doing Body_Weight_Squats.", + "A photo of a person doing Body Weight Squats. The image is of a man doing a body weight squat.", + "A photo of a person doing Body Weight Squats. In the image, a person is doing a body weight squat with perfect form.", + "A photo of a person doing Body Weight Squats. In the image, a person is doing a body weight squat with proper form.", + "A photo of a person doing Body Weight Squats. In the image, a person is performing a body weight squat with perfect form.", + "A photo of a person doing Body Weight Squats. The person in the image is doing a body weight squat.", + "A photo of a person doing Body Weight Squats. The person is doing a body weight squat, a great exercise for toning the legs and glutes.", + "A photo of a person doing Body Weight Squats. Performing a body weight squat.", + "A photo of a person doing Body Weight Squats. A person doing a body weight squat.", + "A photo of a person doing Body Weight Squats. This person is doing body weight squats.", + "A photo of a person doing Body Weight Squats. person doing body weight squats.", + "A photo of a person doing Body Weight Squats. The person in the image is doing a body weight squat.", + "A photo of a person doing Body Weight Squats. The person is doing body weight squats.", + "A photo of a person doing Body Weight Squats. The person pictured is doing a body weight squat, a type of exercise that can help to improve lower body strength and flexibility.", + "A photo of a person doing Body Weight Squats. The person is doing a body weight squat." + ], + "Bowling": [ + "A photo of a person doing Bowling. A person doing Bowling looks like they are about to roll a large ball down a long, narrow lane towards some pins at the end.", + "A photo of a person doing Bowling. A person doing Bowling looks like they are throwing a heavy ball at a set of pins.", + "A photo of a person doing Bowling. A person doing Bowling looks like they are trying to roll a heavy ball down a lane and knock over some pins.", + "A photo of a person doing Bowling. A person doing bowling looks like they are about to throw a ball at some pins.", + "A photo of a person doing Bowling. A person doing Bowling looks like they are about to roll a ball down a lane and try to hit some pins at the end.", + "A photo of a person doing Bowling. A person bowling looks like they are throwing a ball down a lane and trying to hit the pins at the end.", + "A photo of a person doing Bowling. A person doing Bowling looks like they are throwing a large ball at a group of pins.", + "A photo of a person doing Bowling. When a person is bowling, they generally stand with their feet shoulder-width apart and their dominant hand holding the bowling ball at their side.", + "A photo of a person doing Bowling. A person doing Bowling may be wearing a Bowling shirt with the name of their Bowling team on it.", + "A photo of a person doing Bowling. A person who is Bowling looks like they are about to roll a heavy ball down a long wooden lane in order to strike down some pins at the other end.", + "A photo of a person doing Bowling. By looking at them, you can tell that they are bowling because they have a bowling ball in their hand and they are standing in front of a bowling lane.", + "A photo of a person doing Bowling. A person doing bowling can be identified by their stance, their grip on the bowling ball, and their delivery.", + "A photo of a person doing Bowling. The person is wearing Bowling shoes and holding a Bowling ball.", + "A photo of a person doing Bowling. wearing bowling shoes, holding a bowling ball, looking at the pins at the end of the lane.", + "A photo of a person doing Bowling. This person is likely to be wearing bowling shoes and carrying a bowling ball.", + "A photo of a person doing Bowling. By the fact that they are holding a bowling ball and standing at the end of a lane.", + "A photo of a person doing Bowling. A person doing Bowling can be identified by their stance, grip, and delivery.", + "A photo of a person doing Bowling. There are several ways to identify a person doing bowling.", + "A photo of a person doing Bowling. A person doing Bowling can be identified by their bowling shoes and ball.", + "A photo of a person doing Bowling. By their posture and the way they are holding the ball.", + "A photo of a person doing Bowling. When a person is bowling, they look like they are throwing a ball down a lane at some pins.", + "A photo of a person doing Bowling. A person doing Bowling looks like they are about to roll a ball down a lane and hopefully knock over some pins.", + "A photo of a person doing Bowling. A person doing bowling looks like they are about to roll a ball down a long, wooden lane towards some pins.", + "A photo of a person doing Bowling. A person bowling looks like they are about to roll a ball down a lane and hopefully knock down all the pins at the end.", + "A photo of a person doing Bowling. A person bowling looks like they are about to throw a ball down a lane at some pins.", + "A photo of a person doing Bowling. A person doing bowling looks like they are throwing a bowling ball at a set of pins.", + "A photo of a person doing Bowling. A person bowlin.", + "A photo of a person doing Bowling. The person Bowling looks like they are about to throw a ball down a lane and hope that it hits the pins at the end.", + "A photo of a person doing Bowling. When a person is bowling, they usually look like they are concentrating and trying to bowl a strike.", + "A photo of a person doing Bowling. The person bowling would be standing at the end of the bowling lane with a bowling ball in their hand.", + "A photo of a person doing Bowling. The image is of a woman in a purple shirt and black pants bowling.", + "A photo of a person doing Bowling. The image shows a person bowling with a red and white bowling ball.", + "A photo of a person doing Bowling. The image is of a person bowling.", + "A photo of a person doing Bowling. I found an image of a male bowler wearing all black bowling gear including shoes, pants, and a jersey with a green and white design.", + "A photo of a person doing Bowling. A person is doing bowling.", + "A photo of a person doing Bowling. A person is throwing a bowling ball down a lane towards some pins.", + "A photo of a person doing Bowling. This image is of a person doing bowling.", + "A photo of a person doing Bowling. A person is standing at a bowling alley, ready to bowl.", + "A photo of a person doing Bowling. The image is of a person bowling.", + "A photo of a person doing Bowling. The image shows a person in a bowling alley about to throw a bowling ball.", + "A photo of a person doing Bowling. This person is bowling at a bowling alley.", + "A photo of a person doing Bowling. The person in the image is bowling.", + "A photo of a person doing Bowling. The person in the image is bowling, and they look like they're having a good time.", + "A photo of a person doing Bowling. The person in the photo is bowling.", + "A photo of a person doing Bowling. Person Bowling.", + "A photo of a person doing Bowling. Enjoying a game of bowling.", + "A photo of a person doing Bowling. This person is bowling.", + "A photo of a person doing Bowling. The person in the image is bowling.", + "A photo of a person doing Bowling. This person is doing the bowling.", + "A photo of a person doing Bowling. The person is doing a good job at bowling." + ], + "Boxing Punching Bag": [ + "A photo of a person doing Boxing Punching Bag. They will have gloves on and will be punching the bag.", + "A photo of a person doing Boxing Punching Bag. A person who is Boxing_Punching_Bag looks like they are punching a bag that is hanging in front of them.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like a person punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. A person engaged in the activity of boxing a punching bag typically looks like they are throwing punches at an invisible opponent.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like they are punching a bag that is in front of them.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like they are throwing punches at an imaginary opponent in front of them.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like someone who is punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. A person standing in front of a boxing punching bag, with their fists clenched, sweating, and breathing heavily.", + "A photo of a person doing Boxing Punching Bag. A person who is boxing a punching bag typically looks like they are working hard and concentrating.", + "A photo of a person doing Boxing Punching Bag. A person standing in front of a boxing punching bag, throwing punches at it.", + "A photo of a person doing Boxing Punching Bag. When someone is punching a boxing bag, they will have their fists clenched and their arms will be moving quickly.", + "A photo of a person doing Boxing Punching Bag. If someone is punching a boxing bag, they are likely doing some form of boxing training.", + "A photo of a person doing Boxing Punching Bag. The person doing Boxing_Punching_Bag will have their hands wrapped, and they will be punching a bag that is hanging from the ceiling or a stand.", + "A photo of a person doing Boxing Punching Bag. The person will have their hands wrapped, and they will be punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. There are a few ways to identify a person doing Boxing_Punching_Bag.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag will have their hands wrapped in bandages, they will be wearing boxing gloves, and they will be hitting a punching bag.", + "A photo of a person doing Boxing Punching Bag. The person will have their hands wrapped and will be punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. The person will have a boxing glove on their hand and will be punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. If a person is doing boxing punching bag, they will be holding boxing gloves and punching a bag that is suspended from the ceiling or a stand.", + "A photo of a person doing Boxing Punching Bag. By the action of their arms and the movement of their body as they make contact with the punching bag.", + "A photo of a person doing Boxing Punching Bag. A person stands in front of a punching bag, holding their fists up in a boxing position.", + "A photo of a person doing Boxing Punching Bag. A person punching a boxing bag looks like they are throwing punches at an imaginary opponent.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like a person throwing punches at a boxing bag.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like a person punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. A person who is boxing a punching bag typically looks like they are throwing punches at the bag and trying to hit it as hard as they can.", + "A photo of a person doing Boxing Punching Bag. A person who is punching a boxing bag looks like they are exercising and trying to hit something.", + "A photo of a person doing Boxing Punching Bag. A person doing Boxing_Punching_Bag looks like a person punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. In general, a person doing boxing looks like they are throwing punches at an invisible opponent.", + "A photo of a person doing Boxing Punching Bag. The person will be standing with their feet shoulder width apart and their knees bent.", + "A photo of a person doing Boxing Punching Bag. Someone doing boxing punching bag generally looks like they are punching a bag.", + "A photo of a person doing Boxing Punching Bag. The image is of a person wearing boxing gloves and punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. The image is of a muscular man in a boxing gym punching a hanging boxing bag.", + "A photo of a person doing Boxing Punching Bag. The image is of a person punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. Image is of a person doing boxing, punching a bag.", + "A photo of a person doing Boxing Punching Bag. In the image, a boxing bag hangs from a metal frame on a concrete floor.", + "A photo of a person doing Boxing Punching Bag. The image is of a person with their fist raised, about to punch a punching bag.", + "A photo of a person doing Boxing Punching Bag. The image is of a person, who is boxing a punching bag.", + "A photo of a person doing Boxing Punching Bag. An image from the internet of a person doing Boxing_Punching_Bag would show someone standing in front of a punching bag, throwing punches at it.", + "A photo of a person doing Boxing Punching Bag. The image is of a young man in a boxing gym, punching a heavy bag.", + "A photo of a person doing Boxing Punching Bag. In the image, a man is standing in a boxing ring with his fists raised, ready to punch a boxing bag that hangs in front of him.", + "A photo of a person doing Boxing Punching Bag. A person punches a boxing bag in a gym.", + "A photo of a person doing Boxing Punching Bag. Person doing boxing punch on a punching bag.", + "A photo of a person doing Boxing Punching Bag. A person throws a punch at a boxing punching bag.", + "A photo of a person doing Boxing Punching Bag. A person punching a boxing bag.", + "A photo of a person doing Boxing Punching Bag. Person punches boxing bag.", + "A photo of a person doing Boxing Punching Bag. A person punches a boxing bag in a gym.", + "A photo of a person doing Boxing Punching Bag. A person is boxing a punching bag.", + "A photo of a person doing Boxing Punching Bag. Woman hitting a punching bag.", + "A photo of a person doing Boxing Punching Bag. Person doing boxing punching bag.", + "A photo of a person doing Boxing Punching Bag. A person punching a boxing bag." + ], + "Boxing Speed Bag": [ + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag looks like they are punching a hanging bag that is swinging back and forth.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag looks like they are punching a small bag that is hanging from a ceiling or frame.", + "A photo of a person doing Boxing Speed Bag. A person punching a Boxing_Speed_Bag looks like they are throwing punches at an invisible opponent in front of them.", + "A photo of a person doing Boxing Speed Bag. _A person doing Boxing_Speed_Bag usually looks like they are punching a boxing bag as fast as they can.", + "A photo of a person doing Boxing Speed Bag. The person stands up straight with their feet shoulder-width apart.", + "A photo of a person doing Boxing Speed Bag. The person looks like they are punching a boxing bag that is hanging down in front of them.", + "A photo of a person doing Boxing Speed Bag. The person looks like they are punching the air in front of them repeatedly.", + "A photo of a person doing Boxing Speed Bag. The person stands in an upright position, with their dominant hand holding the bag in place.", + "A photo of a person doing Boxing Speed Bag. When a person is using a boxing speed bag, they are standing in an upright position and punching the bag with their fists.", + "A photo of a person doing Boxing Speed Bag. The person is standing upright with their dominant hand at a 90 degree angle and their other hand holding the side of the speed bag.", + "A photo of a person doing Boxing Speed Bag. By the way they are punching the speed bag.", + "A photo of a person doing Boxing Speed Bag. The person will have their hands up in a boxing stance and will be punching a small, skinny bag that is suspended from the ceiling.", + "A photo of a person doing Boxing Speed Bag. There are a few ways to identify a person doing Boxing_Speed_Bag.", + "A photo of a person doing Boxing Speed Bag. The person will be using their hands to hit a speed bag that is suspended in front of them.", + "A photo of a person doing Boxing Speed Bag. The person will be punching a speed bag.", + "A photo of a person doing Boxing Speed Bag. If someone is doing Boxing_Speed_Bag, they will have their hands up in front of them and will be punching a small, cylindrical bag that is suspended from a ceiling or framework.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag is likely to be wearing boxing gloves and hitting a speed bag suspended from a frame or stand.", + "A photo of a person doing Boxing Speed Bag. The person will have their hands up in a boxing stance and will be punching a small, moving target suspended from a ceiling or beam.", + "A photo of a person doing Boxing Speed Bag. When someone is doing the Boxing_Speed_Bag_Workout, they will be holding a small, lightweight bag in their hands and punching it repeatedly.", + "A photo of a person doing Boxing Speed Bag. If someone is boxing with a speed bag, they will have one gloved hand gripping the top of the bag, and the other gloved hand will be punching the bag.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag looks like a person who is punching a boxing speed bag.", + "A photo of a person doing Boxing Speed Bag. What does a person doing Boxing_Speed_Bag look like?A person doing Boxing_Speed_Bag looks like someone who is punching a small, hanging bag as quickly as possible.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag typically wears gloves and wraps their hands for protection.", + "A photo of a person doing Boxing Speed Bag. Boxing speed bag players are often slim to average build with good hand-eye coordination.", + "A photo of a person doing Boxing Speed Bag. Boxing Speed BagA person doing a Boxing Speed Bag Drill looks like they are punching a small bag that is hanging from a ceiling or stand.", + "A photo of a person doing Boxing Speed Bag. The person looks like they are punching the speed bag rapidly.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag looks like they are punching a bag that is hanging in front of them.", + "A photo of a person doing Boxing Speed Bag. The person looks like they are punching the speed bag.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag looks like a person punching a speed bag.", + "A photo of a person doing Boxing Speed Bag. A person doing Boxing_Speed_Bag typically looks like they are punching a boxing speed bag.", + "A photo of a person doing Boxing Speed Bag. The image is of a person punching a speed bag.", + "A photo of a person doing Boxing Speed Bag. An image of a person doingboxing speed bag typically shows someone punching a small, hanging bag rapidly.", + "A photo of a person doing Boxing Speed Bag. A person is standing in a boxing stance with their left hand extended and their right hand holding a speed bag.", + "A photo of a person doing Boxing Speed Bag. The person is wearing boxing gloves and is punching a small, cylindrical bag suspended from a frame.", + "A photo of a person doing Boxing Speed Bag. This image is of a person punching a speed bag.", + "A photo of a person doing Boxing Speed Bag. The image is of a person standing in a boxing stance with one hand holding the speed bag and the other fist raised.", + "A photo of a person doing Boxing Speed Bag. This image is of a man in a boxing ring punching a speed bag.", + "A photo of a person doing Boxing Speed Bag. This person is standing in a boxing stance, with their left fist extended and their right fist drawn back.", + "A photo of a person doing Boxing Speed Bag. In the image, a person is standing in a boxing stance with their left hand extended and their right hand holding onto a speed bag.", + "A photo of a person doing Boxing Speed Bag. In the image, a person is standing in a boxing stance with their left hand holding up a speed bag.", + "A photo of a person doing Boxing Speed Bag. The person is doing a boxing speed bag workout.", + "A photo of a person doing Boxing Speed Bag. The person is doing a speed bag boxing workout.", + "A photo of a person doing Boxing Speed Bag. The person is punching the speed bag with their right hand and duck their head to the left.", + "A photo of a person doing Boxing Speed Bag. A person is shown hitting a speed bag in a boxing gym.", + "A photo of a person doing Boxing Speed Bag. The person is doing boxing speed bag.", + "A photo of a person doing Boxing Speed Bag. The person is doing Boxing_Speed_Bag.", + "A photo of a person doing Boxing Speed Bag. The person is hitting a Boxing_Speed_Bag.", + "A photo of a person doing Boxing Speed Bag. A person doing a boxing move called the speed bagThe speed bag is a boxing move that is used to improve the speed and accuracy of a boxer's punches.", + "A photo of a person doing Boxing Speed Bag. The person is doing boxing speed bag.", + "A photo of a person doing Boxing Speed Bag. A person doing boxing speed bag." + ], + "Breast Stroke": [ + "A photo of a person doing Breast Stroke. Breaststroke is a swimming style in which the swimmer moves their arms in a set pattern and breathes regularly.", + "A photo of a person doing Breast Stroke. When a person is doing breaststroke, they lie on their stomach in the water and kick their legs in a frog-like motion while keeping their arms close to their sides.", + "A photo of a person doing Breast Stroke. A person doing Breast Stroke looks like they are swimming on their breast with their arms out in front of them and their legs doing a flutter kick.", + "A photo of a person doing Breast Stroke. A person doing breaststroke looks like they are swimming on their back with their arms and legs moving in a synchronized pattern.", + "A photo of a person doing Breast Stroke. A person doing Breast_Stroke looks like they are swimming on their chest and using their arms and legs to move themselves through the water.", + "A photo of a person doing Breast Stroke. A person doing Breast_Stroke looks like they are swimming on their stomach with their head above water.", + "A photo of a person doing Breast Stroke. A person doing Breast Stroke looks like they are swimming on their back and using a frog kick.", + "A photo of a person doing Breast Stroke. A person doing Breast_Stroke looks like they are swimming on their stomach with their head above water.", + "A photo of a person doing Breast Stroke. A person swimming Breast_Stroke would look like they are swimming on their chest and stomach, using a breast stroke kick.", + "A photo of a person doing Breast Stroke. The person swims with their body horizontally in the water, moving their arms and legs in a synchronized pattern.", + "A photo of a person doing Breast Stroke. The person will be swimming with their head above water, and they will be kicking their legs in a scissor-like motion.", + "A photo of a person doing Breast Stroke. The person will be doing a swimming stroke where they are lying on their stomach and they kick their legs up and down together while their arms move in a circular pattern.", + "A photo of a person doing Breast Stroke. The person will be doing a swimming stroke with their arms parallel to their body and their legs kicking back and forth in a scissor-like motion.", + "A photo of a person doing Breast Stroke. When a person is doing breast stroke, they will be lying on their stomach and kicking their legs in a frog-like motion while simultaneously moving their arms in a windmill motion.", + "A photo of a person doing Breast Stroke. There are a few telltale signs that someone is performing breaststroke.", + "A photo of a person doing Breast Stroke. If a person is doing breast stroke, they will be lying on their stomach and kicking their legs while they move their arms in a circular motion.", + "A photo of a person doing Breast Stroke. If someone is doing Breast_Stroke, they will be swimming face-down in the water with their arms and legs moving in a synchronised, up-and-down motion.", + "A photo of a person doing Breast Stroke. There are a few ways to identify a person doing breaststroke.", + "A photo of a person doing Breast Stroke. If a person is doing breast stroke, their arms will move in a circular motion and their legs will kick in a frog like motion.", + "A photo of a person doing Breast Stroke. If someone is doing Breast_Stroke, they will be lying on their stomach, and using a frog kick.", + "A photo of a person doing Breast Stroke. Breaststroke is a swimming style in which the swimmer moves their arms in a synchronised pattern and their legs in a frog kick.", + "A photo of a person doing Breast Stroke. A person doing breaststroke looks like they are swimming on their back with their head turned to the side and their arms moving in a circular motion.", + "A photo of a person doing Breast Stroke. Breast stroke is a swimming stroke in which the swimmer is lying on their chest and the arms are brought forward together in a simultaneous movement.", + "A photo of a person doing Breast Stroke. A person doing Breast Stroke may look like they are swimming on their back with their arms moving in a circular motion.", + "A photo of a person doing Breast Stroke. A person swimming breaststroke may look like they are \"frog swimming.", + "A photo of a person doing Breast Stroke. A person doing breaststroke usually looks like they are swimming on their stomach with their head above water.", + "A photo of a person doing Breast Stroke. A person doing the breaststroke looks like they are swimming on their chest with their arms and legs moving together in a synchronous pattern.", + "A photo of a person doing Breast Stroke. A person doing breast stroke looks like they are swimming on their back with their arms moving in a circular motion.", + "A photo of a person doing Breast Stroke. A person doing Breast Stroke may look like they are swimming with their head above water, their elbows close to their body, and their hands moving in a circular motion.", + "A photo of a person doing Breast Stroke. There is no definitive answer to this question, as people vary in their techniques and styles.", + "A photo of a person doing Breast Stroke. The image is of a person doing the breaststroke in a pool.", + "A photo of a person doing Breast Stroke. I couldn't find an image of a person doing breast stroke specifically, but I found an image of a person swimming breast stroke in a pool.", + "A photo of a person doing Breast Stroke. In the image, a person is doing the breast stroke in a pool.", + "A photo of a person doing Breast Stroke. I am unable to find an image that matches this description.", + "A photo of a person doing Breast Stroke. The image depict a person doing breast stroke while swimming.", + "A photo of a person doing Breast Stroke. In the image, a person is doing Breast_Stroke in a pool of water.", + "A photo of a person doing Breast Stroke. The image is of a swimmer doing the breaststroke.", + "A photo of a person doing Breast Stroke. The image shows a person doing breast stroke in a pool.", + "A photo of a person doing Breast Stroke. Two people are swimming in a pool with their arms outstretched in front of them and their legs kicking up and down in unison.", + "A photo of a person doing Breast Stroke. In the image, a person is doing Breast_Stroke in a pool.", + "A photo of a person doing Breast Stroke. The person in the image is doing the Breast Stroke, a swimming move where you move your arms in a circular motion and your legs kick back and forth.", + "A photo of a person doing Breast Stroke. Person doing the breast stroke in a pool.", + "A photo of a person doing Breast Stroke. A person doing breast stroke in a pool.", + "A photo of a person doing Breast Stroke. The person in the image is doing the breaststroke, a type of swimming stroke.", + "A photo of a person doing Breast Stroke. The person in the image is doing the Breast Stroke, which is a swimming stroke that is primarily used for breaststroke competitions.", + "A photo of a person doing Breast Stroke. A person doing the breaststroke in a pool.", + "A photo of a person doing Breast Stroke. The person in this image is doing the breast stroke, a common swimming technique.", + "A photo of a person doing Breast Stroke. Person doing Breast Stroke in a pool.", + "A photo of a person doing Breast Stroke. Ready, set, go! This person is about to take on the Breast Stroke.", + "A photo of a person doing Breast Stroke. The person is doing Breast Stroke in a pool." + ], + "Brushing Teeth": [ + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth usually looks like they are concentrating on the task at hand.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like they are using a toothbrush to clean their teeth.", + "A photo of a person doing Brushing Teeth. A person brushed their teeth would have toothpaste on their toothbrush and would be moving the toothbrush around in their mouth.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like they are scrubbing their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. A person doing brushing_teeth looks like a person brushing their teeth.", + "A photo of a person doing Brushing Teeth. A person doing brushing teeth looks like they are cleaning their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like someone who is using a toothbrush to clean their teeth.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like they are using a toothbrush to brush their teeth.", + "A photo of a person doing Brushing Teeth. The person looks like they are cleaning their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like they are scrubbing their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. If someone is brushing their teeth, they will have a toothbrush in their hand and will be moving it back and forth over their teeth.", + "A photo of a person doing Brushing Teeth. A person brushing their teeth can typically be identified by looking for someone holding a toothbrush in their hand and moving it around their mouth.", + "A photo of a person doing Brushing Teeth. You can see them holding a toothbrush in their hand and moving it around in their mouth.", + "A photo of a person doing Brushing Teeth. If a person is brushing their teeth, they will generally have a toothbrush in their hand and will be moving it around in their mouth.", + "A photo of a person doing Brushing Teeth. If someone is brushing their teeth, they will usually have a toothbrush in their hand and will be moving it around in their mouth.", + "A photo of a person doing Brushing Teeth. The person might be standing in front of a mirror with a toothbrush in their hand.", + "A photo of a person doing Brushing Teeth. If someone is doing the action of brushing their teeth, they will typically be holding a toothbrush in their hand and moving it back and forth in their mouth.", + "A photo of a person doing Brushing Teeth. There are a few things you can look for to identify someone brushing their teeth.", + "A photo of a person doing Brushing Teeth. The person is holding a toothbrush and is moving it around in their mouth.", + "A photo of a person doing Brushing Teeth. The broom is in their hand.", + "A photo of a person doing Brushing Teeth. The person looks like they are brushing their teeth.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like a person brushing their teeth.", + "A photo of a person doing Brushing Teeth. A person doing brushing teeth looks like a person brushing their teeth.", + "A photo of a person doing Brushing Teeth. Most people brush their teeth in the bathroom.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like a person with a toothbrush in their mouth, brushing their teeth.", + "A photo of a person doing Brushing Teeth. When someone is brushing their teeth, they typically look like they are scrubbing their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like they are using a toothbrush to brush their teeth.", + "A photo of a person doing Brushing Teeth. A person brushings their teeth looks like they are cleaning their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. A person doing Brushing_Teeth looks like a person brushing their teeth.", + "A photo of a person doing Brushing Teeth. A person brushing their teeth looks like they are scrubbing their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. In the image, the person is standing in front of a sink and mirror.", + "A photo of a person doing Brushing Teeth. In the image, the person is standing in front of a sink and mirror.", + "A photo of a person doing Brushing Teeth. The image is of a person with toothpaste on their toothbrush, scrubbing their teeth.", + "A photo of a person doing Brushing Teeth. A person is standing at a sink with a toothbrush in their hand and toothpaste on their teeth.", + "A photo of a person doing Brushing Teeth. An image from the internet of a person doing Brushing_Teeth might show a person in their bathroom, standing in front of a sink with a toothbrush in their hand.", + "A photo of a person doing Brushing Teeth. The image is of a person standing in front of a sink, brushing their teeth.", + "A photo of a person doing Brushing Teeth. In the image, the person is standing in front of a mirror and brushing their teeth.", + "A photo of a person doing Brushing Teeth. The image shows a person standing in front of a bathroom sink, with a toothbrush in their hand.", + "A photo of a person doing Brushing Teeth. In the image, a person is standing in front of a sink, brushing their teeth with a toothbrush.", + "A photo of a person doing Brushing Teeth. A person doing brushing teeth would be an image of someone with a toothbrush in their mouth, brushing their teeth.", + "A photo of a person doing Brushing Teeth. The person is brushing his or her teeth.", + "A photo of a person doing Brushing Teeth. The subject is performing the morning hygiene ritual of brushing their teeth.", + "A photo of a person doing Brushing Teeth. Brushing teeth is an important part of a daily hygiene routine.", + "A photo of a person doing Brushing Teeth. A person brushing their teeth.", + "A photo of a person doing Brushing Teeth. The person is brushing their teeth.", + "A photo of a person doing Brushing Teeth. The person is brushing their teeth.", + "A photo of a person doing Brushing Teeth. Mom always said to brush your teeth after every meal!.", + "A photo of a person doing Brushing Teeth. \"A person brushing their teeth.", + "A photo of a person doing Brushing Teeth. A person brushing their teeth.", + "A photo of a person doing Brushing Teeth. This person is brushing their teeth." + ], + "Clean And Jerk": [ + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk looks like someone who is lifting a barbell from the ground to their shoulders, then jerking it overhead.", + "A photo of a person doing Clean And Jerk. The person is standing with feet shoulder width apart and slightly bent at the knee.", + "A photo of a person doing Clean And Jerk. When performing the clean and jerk, the athlete starts by standing with the barbell across their shoulders.", + "A photo of a person doing Clean And Jerk. A person doing the Clean_And_Jerk looks like they are lifting a weight above their head in one fluid motion.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk looks like they are doing a squat with a barbell in their hands and then standing up and pushing the barbell above their head.", + "A photo of a person doing Clean And Jerk. The person doing Clean_And_Jerk looks like they are doing a slow push up.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk looks like they are doing a split squat with a weight in each hand.", + "A photo of a person doing Clean And Jerk. A person doing the Clean_And_Jerk looks like they are lifting a barbell from the ground to their shoulders, then jerking it up overhead.", + "A photo of a person doing Clean And Jerk. When performing the Clean and Jerk, the lifter will typically start in a position with the barbell on the floor, and the feet set at hip-width apart.", + "A photo of a person doing Clean And Jerk. A person doing the Clean_And_Jerk looks like they are forcefully lifting a barbell from the ground to their shoulders and then jerking it overhead.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk is typically lifting a barbell from the floor to their shoulders, then jerking the barbell overhead.", + "A photo of a person doing Clean And Jerk. Clean_And_Jerk is a weightlifting move where the barbell is lifted from the ground to the shoulders in one motion, and then jerked overhead.", + "A photo of a person doing Clean And Jerk. There are a few key things to look for when trying to identify someone doing the Clean and Jerk: 1) They will start with the barbell on the ground; 2) They will explosively \"clean\" the barbell up to.", + "A photo of a person doing Clean And Jerk. The person performing the Clean_And_Jerk will have weights in their hands, and will be lifting them over their head.", + "A photo of a person doing Clean And Jerk. The person will be doing a split jerk, where they will start in a split position with one foot in front of the other and then dip down and drive up, throwing the barbell overhead.", + "A photo of a person doing Clean And Jerk. Clean and jerk is a weightlifting movement.", + "A photo of a person doing Clean And Jerk. Clean and jerk is a two-part weightlifting move.", + "A photo of a person doing Clean And Jerk. When someone is doing the Clean_And_Jerk, they will hold the barbell in front of their thighs with an overhand grip.", + "A photo of a person doing Clean And Jerk. If someone is doing Clean_And_Jerk, they will be holding a barbell in front of their body with their feet shoulder width apart.", + "A photo of a person doing Clean And Jerk. The person will be holding a barbell in their hands, with the weight resting on their shoulders.", + "A photo of a person doing Clean And Jerk. In the clean and jerk, the athlete starts with the barbell on the floor.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk looks like they are lifting a weight above their head with both hands.", + "A photo of a person doing Clean And Jerk. A person doing the clean and jerk looks like they are lifting the barbell from the ground to their shoulders in one smooth motion.", + "A photo of a person doing Clean And Jerk. A person doing the Clean_And_Jerk exercise will look like they are lifting a barbell from the ground to their shoulders, then jerking it overhead.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk looks like they are holding a barbell in front of their chest with their hands shoulder width apart.", + "A photo of a person doing Clean And Jerk. A person doing clean and jerk looks like they are lifting a barbell overhead in two separate motions.", + "A photo of a person doing Clean And Jerk. A person Clean_And_Jerk looks like a person who is lifting a barbell from the ground to above their head in one motion.", + "A photo of a person doing Clean And Jerk. In the Clean and Jerk, the barbell is first lifted from the ground to the level of the hips, at which point the athlete \"cleans\" the barbell by violently shrugging the shoulders and pulling the barbell up.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk looks like someone who is about to lift a heavy weight over their head.", + "A photo of a person doing Clean And Jerk. When performing the Clean_And_Jerk, the person looks like they are trying to lift the weight above their head in one swift motion.", + "A photo of a person doing Clean And Jerk. The person is standing with feet shoulder-width apart and a barbell in front of them.", + "A photo of a person doing Clean And Jerk. The image is of a person doing a Clean and Jerk.", + "A photo of a person doing Clean And Jerk. The person is standing with their feet shoulder width apart and their knees slightly bent.", + "A photo of a person doing Clean And Jerk. In the image, a person is standing with a barbell in front of them.", + "A photo of a person doing Clean And Jerk. The person is standing with their feet shoulder-width apart and their toes pointing forward.", + "A photo of a person doing Clean And Jerk. In the image, a person is standing with a weight in each hand.", + "A photo of a person doing Clean And Jerk. The person is standing with their feet shoulder width apart and their feet pointing forwards.", + "A photo of a person doing Clean And Jerk. A person doing Clean_And_Jerk would be standing with their feet shoulder width apart and their knees slightly bent.", + "A photo of a person doing Clean And Jerk. The image is of a person doing the Clean and Jerk exercise.", + "A photo of a person doing Clean And Jerk. A man is standing on a weightlifting platform, holding a barbell in front of his chest with his hands spaced about shoulder-width apart.", + "A photo of a person doing Clean And Jerk. The person is doing the Clean and Jerk weightlifting move.", + "A photo of a person doing Clean And Jerk. The person in the photo is doing a clean and jerk, a weightlifting move that involves lifting the barbell from the ground to overhead in one smooth motion.", + "A photo of a person doing Clean And Jerk. The person in the photo is doing the Clean and Jerk, a weightlifting move consisting of two parts: the clean, in which the weight is brought up to the Lifters shoulders, and the jerk, in which the weight is then.", + "A photo of a person doing Clean And Jerk. The person doing Clean_And_Jerk is lifting weights over their head.", + "A photo of a person doing Clean And Jerk. The person is cleaning the jerk.", + "A photo of a person doing Clean And Jerk. The person is doing the Clean and jerk weightlifting move.", + "A photo of a person doing Clean And Jerk. This person is doing the Clean and Jerk, a weightlifting move consisting of moving the barbell from the ground to overhead in one smooth motion.", + "A photo of a person doing Clean And Jerk. Clean and jerk is a weightlifting move in which the barbell is lifted to the shoulders, then jerked overhead.", + "A photo of a person doing Clean And Jerk. The person in the picture is doing the clean and jerk, a weightlifting move that requires explosiveness and coordination.", + "A photo of a person doing Clean And Jerk. The person is doing the clean and jerk exercise." + ], + "Cliff Diving": [ + "A photo of a person doing Cliff Diving. When someone is cliff diving, they are usually standing on the edge of a very tall cliff, sometimes with a running start.", + "A photo of a person doing Cliff Diving. The person looks like they are about to jump off a cliff into the water below.", + "A photo of a person doing Cliff Diving. The person looks like they are about to jump off a cliff into water.", + "A photo of a person doing Cliff Diving. The person usually looks like they are about to dive into a pool of water from a very high place.", + "A photo of a person doing Cliff Diving. When someone is cliff diving, they are usually standing on the edge of a cliff or a high platform with their toes curled over the edge.", + "A photo of a person doing Cliff Diving. A person doing cliff diving looks like they are about to jump off a cliff into the water below.", + "A photo of a person doing Cliff Diving. When someone is Cliff_Diving, they are usually standing on the edge of a cliff, sometimes with a running start, and then diving or jumping off into the water below.", + "A photo of a person doing Cliff Diving. When a person is Cliff_Diving they usually look like they are about to jump off a cliff into a body of water.", + "A photo of a person doing Cliff Diving. A person doing cliff diving may look like they are about to jump off a cliff into water.", + "A photo of a person doing Cliff Diving. A person doing Cliff_Diving usually looks like they are about to jump off a very high cliff into a body of water.", + "A photo of a person doing Cliff Diving. The person is likely to be wearing a wet suit and have a rope attached to their waist.", + "A photo of a person doing Cliff Diving. By the way they are dressed.", + "A photo of a person doing Cliff Diving. A person doing cliff diving may be wearing a bathing suit and be standing on the edge of a cliff.", + "A photo of a person doing Cliff Diving. The person will likely be wearing a bathing suit and be standing on the edge of a cliff or other high place.", + "A photo of a person doing Cliff Diving. The person would be wearing a swimsuit and would be jumping off a cliff into the water below.", + "A photo of a person doing Cliff Diving. A person doing cliff diving can be identified by their swimming attire, which is typically a bathing suit.", + "A photo of a person doing Cliff Diving. Cliff diving is a risky sport and is not recommended for beginners.", + "A photo of a person doing Cliff Diving. The person will likely be wearing a bathing suit and be jumping off of a cliff into water.", + "A photo of a person doing Cliff Diving. The person will likely be wearing a bathing suit and will be jumping off a cliff into water.", + "A photo of a person doing Cliff Diving. The person will likely have a towel or some other kind of padding to protect them from the rocks.", + "A photo of a person doing Cliff Diving. A person doing cliff diving looks like they are about to jump off a cliff into water.", + "A photo of a person doing Cliff Diving. They look like they are about to jump off a cliff into the water below.", + "A photo of a person doing Cliff Diving. Cliff diving looks like a person jumping or diving off of a cliff into a body of water.", + "A photo of a person doing Cliff Diving. A person Cliff_Diving looks like they are about to jump off a very high cliff into the water below.", + "A photo of a person doing Cliff Diving. A person doing Cliff_Diving looks like they are jumping off of a cliff into water.", + "A photo of a person doing Cliff Diving. A person doing cliff diving looks like they are about to jump off a cliff into water.", + "A photo of a person doing Cliff Diving. A person doing cliff diving generally looks like they are about to jump off a cliff into a body of water.", + "A photo of a person doing Cliff Diving. A person doing cliff diving looks like someone who is about to jump off a cliff into the water below.", + "A photo of a person doing Cliff Diving. A person doing cliff diving may look like they are about to jump off a cliff into water.", + "A photo of a person doing Cliff Diving. Cliff diving is a sport in which a person jumps from a high place into deep water.", + "A photo of a person doing Cliff Diving. The person is standing on the edge of a cliff, about to jump into the water below.", + "A photo of a person doing Cliff Diving. prompt:The image is of a person cliff diving into a body of water.", + "A photo of a person doing Cliff Diving. The image from the internet is of a person Cliff Diving from a high place into a body of water.", + "A photo of a person doing Cliff Diving. A person is standing on the edge of a cliff, looking out at the view.", + "A photo of a person doing Cliff Diving. This image is of a person doing cliff diving.", + "A photo of a person doing Cliff Diving. In the image, a person is standing on the edge of a cliff, preparing to dive into the water below.", + "A photo of a person doing Cliff Diving. A person is standing on the edge of a cliff, looking out at the view.", + "A photo of a person doing Cliff Diving. There is an image from the internet of a person doing cliff diving.", + "A photo of a person doing Cliff Diving. The image is of a man cliff diving into a body of water.", + "A photo of a person doing Cliff Diving. In the image, a person is standing on the edge of a cliff, looking out at the view.", + "A photo of a person doing Cliff Diving. This person is cliff diving into a body of water.", + "A photo of a person doing Cliff Diving. Person cliff diving into ocean.", + "A photo of a person doing Cliff Diving. A person doing a cliff dive into the ocean.", + "A photo of a person doing Cliff Diving. \"This person is about to take a leap of faith.", + "A photo of a person doing Cliff Diving. This person is cliff diving.", + "A photo of a person doing Cliff Diving. Incredible cliff diver leaps from towering rock face into the sea below.", + "A photo of a person doing Cliff Diving. The person is doing a flip while diving off a cliff into a body of water.", + "A photo of a person doing Cliff Diving. The diver is about to enter the water after making a running jump off the edge of the cliff.", + "A photo of a person doing Cliff Diving. A person jumps from a cliff into the water below.", + "A photo of a person doing Cliff Diving. Daredevil take the plunge off of a towering cliff into the churning waters below." + ], + "Cricket Bowling": [ + "A photo of a person doing Cricket Bowling. A person doing Cricket_Bowling may be in a crouched position, the arm raised behind them and the hand holding the ball close to their ear, ready to release it towards the wicket.", + "A photo of a person doing Cricket Bowling. When a person is bowling cricket, they stand at the bowler's end of the pitch with their feet shoulder-width apart.", + "A photo of a person doing Cricket Bowling. A person bowling in cricket usually stands with their legs shoulder-width apart and slightly bent at the knees.", + "A photo of a person doing Cricket Bowling. A person doing Cricket_Bowling looks like they are about to throw a ball at someone.", + "A photo of a person doing Cricket Bowling. The person bowling will be standing at one end of the pitch, with a cricket ball in their hand.", + "A photo of a person doing Cricket Bowling. A person doing Cricket_Bowling looks like they are about to throw a small, round object at someone else.", + "A photo of a person doing Cricket Bowling. A person doing Cricket_Bowling might be seen bent over slightly at the waist, with one arm extended behind them and the other arm coming forward to release the ball.", + "A photo of a person doing Cricket Bowling. A person doing Cricket_Bowling looks like they are throwing a ball at a wicket.", + "A photo of a person doing Cricket Bowling. A person Bowling in Cricket looks like they are throwing the ball with one hand and they are holding the Cricket Ball with the other hand.", + "A photo of a person doing Cricket Bowling. They look like they are about to throw a small, hard ball at a person who is holding a stick.", + "A photo of a person doing Cricket Bowling. You can identify a person doing Cricket_Bowling by their stance and by the way they are holding the cricket ball.", + "A photo of a person doing Cricket Bowling. The person will have a cricket ball in their hand and will be running towards the wicket.", + "A photo of a person doing Cricket Bowling. The person bowling in cricket can be identified by their cricketing whites, which they will be wearing if they are playing in a match, and by the fact that they will be holding a cricket ball and be standing at the end of the pitch.", + "A photo of a person doing Cricket Bowling. By the way they are holding the cricket ball and their arm position.", + "A photo of a person doing Cricket Bowling. The person doing Cricket_Bowling is wearing cricket whites and has a cricket ball in their hand.", + "A photo of a person doing Cricket Bowling. There are many ways to identify a person doing Cricket_Bowling, but some of the most common include watching for the bowler to run up to the crease and deliver the ball, or looking for the bowler to hold the ball.", + "A photo of a person doing Cricket Bowling. There are a few ways to identify a person bowling cricket.", + "A photo of a person doing Cricket Bowling. The person doing Cricket_Bowling can be identified by their stance, their grip on the ball, and their delivery.", + "A photo of a person doing Cricket Bowling. The person has a cricket ball and is overarm throwing it at the stumps.", + "A photo of a person doing Cricket Bowling. Some clues that someone is bowling in cricket are if they are holding a cricket ball and if they are running up to an imaginary line on the ground.", + "A photo of a person doing Cricket Bowling. A person doing Cricket_Bowling looks like someone throwing a ball with one hand while the other hand is holding a bat.", + "A photo of a person doing Cricket Bowling. A person doing cricket bowling may have a specialized cricket Bowling Action, or They may be a different type of bowler.", + "A photo of a person doing Cricket Bowling. When a person is doing Cricket_Bowling, they look like they are throwing a ball with their arm extended straight out.", + "A photo of a person doing Cricket Bowling. When a person is doing cricket bowling, they will be standing at the bowling crease, which is the line markings on the pitch that indicate where the bowler should stand.", + "A photo of a person doing Cricket Bowling. A person doing cricket bowling may look like they are about to throw a small ball at a target.", + "A photo of a person doing Cricket Bowling. Cricket bowling is a strenuous activity, so a person doing it would likely look very tired afterwards.", + "A photo of a person doing Cricket Bowling. A person bowling in cricket typically looks like they are about to throw a regular ol' bowling ball.", + "A photo of a person doing Cricket Bowling. A person doing cricket bowling looks like they are about to throw a ball.", + "A photo of a person doing Cricket Bowling. A person doing cricket bowling looks like they are about to throw a ball at someone.", + "A photo of a person doing Cricket Bowling. A person doing cricket bowling looks like they are about to throw a ball at someone.", + "A photo of a person doing Cricket Bowling. I found an image of a person bowling in cricket.", + "A photo of a person doing Cricket Bowling. The image is of a person doing Cricket Bowling.", + "A photo of a person doing Cricket Bowling. A person is shown in the image from the internet doing cricket bowling.", + "A photo of a person doing Cricket Bowling. An image from the internet of a person doing Cricket_Bowling shows a person with a cricket ball in their hand, about to throw it.", + "A photo of a person doing Cricket Bowling. The image is of a person bowling a cricket ball.", + "A photo of a person doing Cricket Bowling. The image is of a person bowling a cricket ball.", + "A photo of a person doing Cricket Bowling. The image is of a person in a cricket uniform bowling a cricket ball.", + "A photo of a person doing Cricket Bowling. An image from the internet of a person doing Cricket_Bowling might show the person in a stance with one arm raised behind them and the other arm holding the ball in front of them, ready to release it.", + "A photo of a person doing Cricket Bowling. In the image, a person is doing Cricket_Bowling.", + "A photo of a person doing Cricket Bowling. The image is of a person in cricket bowling stance, ready to deliver the ball.", + "A photo of a person doing Cricket Bowling. Cricket Bowling.", + "A photo of a person doing Cricket Bowling. Person bowling in a cricket match.", + "A photo of a person doing Cricket Bowling. The bowler delivers the ball to the batsman in cricket.", + "A photo of a person doing Cricket Bowling. The bowler is about to release the ballThe bowler is about to release the ball.", + "A photo of a person doing Cricket Bowling. A person bowling a cricket ball.", + "A photo of a person doing Cricket Bowling. A person bowling a cricket ballA caption of an image of a field of cricket:A cricket field with a game in progress.", + "A photo of a person doing Cricket Bowling. A person bowling a cricket ball.", + "A photo of a person doing Cricket Bowling. A person doing cricket bowling.", + "A photo of a person doing Cricket Bowling. A person bowling a cricket ball.", + "A photo of a person doing Cricket Bowling. A person bowling a cricket ball." + ], + "Cricket Shot": [ + "A photo of a person doing Cricket Shot. When a person is doing a cricket shot, they will be holding the cricket bat in their hands and will be standing with their feet shoulder width apart.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot may be seen bending their knees, holding the cricket bat above their head, and swinging the bat to hit the ball.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot looks like they are holding a long, thin stick in their hands.", + "A photo of a person doing Cricket Shot. The person stands with their feet shoulder width apart and slightly pigeon toed.", + "A photo of a person doing Cricket Shot. A person doing a cricket shot looks like they are about to hit a ball with a bat.", + "A photo of a person doing Cricket Shot. When a person is doing a Cricket Shot, they will be standing with their feet shoulder-width apart, their weight shifted onto their back foot, and their bat held above their head.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot looks like they are about to hit a ball with a bat.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot looks like they are holding a cricket bat and are about to hit a ball.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot looks like they are about to hit a ball with a cricket bat.", + "A photo of a person doing Cricket Shot. When a person is doing a cricket shot, they are standing with their feet shoulder width apart and their weight on their back foot.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot would be holding a cricket bat in their hands and would be standing in a batting stance.", + "A photo of a person doing Cricket Shot. The person doing the Cricket Shot may be identified by their stance, as they will be standing side-on to the target, and by their grip on the bat, as they will be holding it in both hands with the palms facing down.", + "A photo of a person doing Cricket Shot. There are a few key things to look for when trying to identify someone doing a cricket shot.", + "A photo of a person doing Cricket Shot. There are several ways to identify a person doing a Cricket Shot.", + "A photo of a person doing Cricket Shot. The person doing the Cricket Shot is wearing cricket pads and a cricket helmet.", + "A photo of a person doing Cricket Shot. If someone is doing a cricket shot, they will be holding the cricket bat in their hands and they will be facing the cricket ball.", + "A photo of a person doing Cricket Shot. The person doing the cricket shot is holding a cricket bat in their hand.", + "A photo of a person doing Cricket Shot. There are a few ways to identify a person doing a cricket shot.", + "A photo of a person doing Cricket Shot. The person doing the cricket shot can be identified by their stance, their grip on the bat, and their follow-through.", + "A photo of a person doing Cricket Shot. There is no definitive way to identify a person doing a cricket shot, as everyonehas their own unique technique.", + "A photo of a person doing Cricket Shot. A person doing a cricket shot looks like they are holding a cricket bat and hitting a cricket ball.", + "A photo of a person doing Cricket Shot. A person doing a cricket shot looks like they areabout to hit a ball with a cricket bat.", + "A photo of a person doing Cricket Shot. There is no definitive answer to this question, as there are many different ways to do a cricket shot.", + "A photo of a person doing Cricket Shot. There is no definitive answer to this question as every person who plays cricket will have their own unique loading and delivery action.", + "A photo of a person doing Cricket Shot. When a person is doing a cricket shot, they typically look like they are about to hit a ball with a bat.", + "A photo of a person doing Cricket Shot. A person doing a cricket shot looks like they are holding a cricket bat and hitting a ball.", + "A photo of a person doing Cricket Shot. A person doing a cricket shot may be holding a cricket bat and may be standing in a batting stance.", + "A photo of a person doing Cricket Shot. There is no definitive answer to this question as cricket shots can vary greatly depending on the type of shot being played and the player's individual style.", + "A photo of a person doing Cricket Shot. A person doing a Cricket Shot may look like they are about to bowl a ball, but instead they will be holding a bat.", + "A photo of a person doing Cricket Shot. There is no definitive answer to this question, as the cricket shot can be performed in many different ways.", + "A photo of a person doing Cricket Shot. The image is of a person in a cricket uniform doing a cricket shot.", + "A photo of a person doing Cricket Shot. In the image, a person is standing in a cricket stance, holding a cricket bat.", + "A photo of a person doing Cricket Shot. In the image, a man is playing cricket and is in the process of hitting the ball.", + "A photo of a person doing Cricket Shot. I found an image on the internet of a person doing a cricket shot.", + "A photo of a person doing Cricket Shot. The image from the internet is of a person doing a cricket shot.", + "A photo of a person doing Cricket Shot. In the image, a man is standing on a cricket pitch, holding a bat.", + "A photo of a person doing Cricket Shot. The image is of a person in a cricket stance, about to hit the ball.", + "A photo of a person doing Cricket Shot. The image is of a person playing cricket.", + "A photo of a person doing Cricket Shot. An image from the internet of a person doing Cricket_Shot shows a person in a batting stance, swinging a cricket bat at a ball.", + "A photo of a person doing Cricket Shot. The image is of a man playing cricket.", + "A photo of a person doing Cricket Shot. A person taking a cricket shot.", + "A photo of a person doing Cricket Shot. The player is hitting the ball with the batThe player is hitting the ball with the bat.", + "A photo of a person doing Cricket Shot. The person in the picture is playing cricket and taking a shot.", + "A photo of a person doing Cricket Shot. A person playing cricketA person is playing cricket.", + "A photo of a person doing Cricket Shot. A person cricket batting stance ready to hit the ball.", + "A photo of a person doing Cricket Shot. The caption reads, \"Cricket Shot.", + "A photo of a person doing Cricket Shot. A person playing cricket making a batting shot.", + "A photo of a person doing Cricket Shot. A person playing cricket hitting the ball with a bat.", + "A photo of a person doing Cricket Shot. The cricket player is performing a cricket shot.", + "A photo of a person doing Cricket Shot. The person is playing a shot in cricket." + ], + "Cutting In Kitchen": [ + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like they are chopping vegetables on a cutting board.", + "A photo of a person doing Cutting In Kitchen. They would be standing in front of the counter with a cutting board and a knife, chopping vegetables or meat.", + "A photo of a person doing Cutting In Kitchen. A person cutting food in the kitchen usually has a knife and cutting board.", + "A photo of a person doing Cutting In Kitchen. A person holding a knife and cutting food on a cutting board.", + "A photo of a person doing Cutting In Kitchen. This person is likely wearing a pair of gloves and using a sharp knife to cut vegetables or meat on a cutting board.", + "A photo of a person doing Cutting In Kitchen. A person who is Cutting_In_Kitchen looks like they are cutting something in the kitchen.", + "A photo of a person doing Cutting In Kitchen. The person doing Cutting_In_Kitchen likely looks like they are concentrating on their task, with a few drops of sweat on their forehead.", + "A photo of a person doing Cutting In Kitchen. A person cutting in the kitchen is likely standing at a counter or island with a cutting board.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen usually looks like they are concentrated and focused on what they are doing.", + "A photo of a person doing Cutting In Kitchen. A person cutting in kitchen usually looks like busy cooking something or preparing food.", + "A photo of a person doing Cutting In Kitchen. If someone is cutting in kitchen, they may be using a kitchen knife to chop vegetables or meat.", + "A photo of a person doing Cutting In Kitchen. If someone is Cutting_In_Kitchen, they may be using a sharp knife to chop vegetables or fish.", + "A photo of a person doing Cutting In Kitchen. If you see someone cutting vegetables or other food items in a kitchen, they are likely cutting food for cooking.", + "A photo of a person doing Cutting In Kitchen. If someone is Cutting_In_Kitchen, they may be using a cutting board and knife to prepare food.", + "A photo of a person doing Cutting In Kitchen. If someone is cutting in kitchen, they may be using a knife to prepare food.", + "A photo of a person doing Cutting In Kitchen. If you see someone in the kitchen with a cutting board and a knife, they are likely cutting something.", + "A photo of a person doing Cutting In Kitchen. There is no one definitive way to identify someone who is Cutting_In_Kitchen.", + "A photo of a person doing Cutting In Kitchen. If someone is Cutting_In_Kitchen, they are likely to be holding a sharp object and have food nearby.", + "A photo of a person doing Cutting In Kitchen. The person doing Cutting_In_Kitchen is likely to be wearing apron and using a cutting board and knife.", + "A photo of a person doing Cutting In Kitchen. There are several ways to identify a person doing Cutting_In_Kitchen.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like a person cutting something in a kitchen.", + "A photo of a person doing Cutting In Kitchen. Someone doing cutting in kitchen looks like they are cooking a meal.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen may look like they are cooking a meal.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like someone who is cutting food in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like someone who is cooking food in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like a person cutting food in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like a person who is cutting food in a kitchen.", + "A photo of a person doing Cutting In Kitchen. There is no definitive answer to this question, as the person doing Cutting_In_Kitchen could be cutting any number of things in the kitchen, and therefore could look like anything.", + "A photo of a person doing Cutting In Kitchen. A person doing Cutting_In_Kitchen looks like they are cooking a meal.", + "A photo of a person doing Cutting In Kitchen. This person looks like they are cutting something in the kitchen.", + "A photo of a person doing Cutting In Kitchen. The image is of a young woman in a kitchen.", + "A photo of a person doing Cutting In Kitchen. The image is of a young woman standing at a counter in a kitchen.", + "A photo of a person doing Cutting In Kitchen. The image is of a young woman standing at a counter in a kitchen.", + "A photo of a person doing Cutting In Kitchen. This image shows a person cutting a cucumber in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person is standing in a kitchen, holding a cutting board and a knife.", + "A photo of a person doing Cutting In Kitchen. A person is standing at a counter in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person is doing Cutting_In_Kitchen.", + "A photo of a person doing Cutting In Kitchen. A person is shown cutting vegetables on a cutting board in a kitchen.", + "A photo of a person doing Cutting In Kitchen. In the image, a person is standing in a kitchen with a large cutting board on the counter.", + "A photo of a person doing Cutting In Kitchen. The image is of a woman cutting vegetables on a cutting board in a kitchen.", + "A photo of a person doing Cutting In Kitchen. This person is cutting vegetables in the kitchen.", + "A photo of a person doing Cutting In Kitchen. A person cutting vegetables in a kitchen.", + "A photo of a person doing Cutting In Kitchen. cutting carrots on a cutting board in the kitchen.", + "A photo of a person doing Cutting In Kitchen. A person cutting a large piece of meat in half on a kitchen counter.", + "A photo of a person doing Cutting In Kitchen. A person cutting vegetables in a kitchen.", + "A photo of a person doing Cutting In Kitchen. The person in the image is cutting vegetables in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person is cutting a red onion on a cutting board in a kitchen.", + "A photo of a person doing Cutting In Kitchen. A person cutting a lemon in half on a cutting board in a kitchen.", + "A photo of a person doing Cutting In Kitchen. In the kitchen, a woman is cutting up vegetables on a cutting board.", + "A photo of a person doing Cutting In Kitchen. This person is cutting something in the kitchen." + ], + "Diving": [ + "A photo of a person doing Diving. A person doing diving looks like they are falling through the air and then entering the water.", + "A photo of a person doing Diving. A person doing Diving looks like they are about to jump off a very high place into water.", + "A photo of a person doing Diving. The person would be wearing a wet suit and a diving mask.", + "A photo of a person doing Diving. Wearing a wet suit and diving gear, a person diving looks like they are about to enter the water.", + "A photo of a person doing Diving. A person doing diving looks like they are falling through the air and then entering the water.", + "A photo of a person doing Diving. A person doing Diving would look like they are swimming under water using their arms and legs to move them forwards.", + "A photo of a person doing Diving. A person doing Diving looks like someone who is about to jump into a pool of water.", + "A photo of a person doing Diving. The person is wearing a wet suit and is looking down into the water.", + "A photo of a person doing Diving. A person doing Diving looks like they are about to jump off a very high place into water.", + "A photo of a person doing Diving. A person diving looks like they are jumping or falling into the water head first.", + "A photo of a person doing Diving. He is wearing a wetsuit and has oxygen tanks.", + "A photo of a person doing Diving. The person will be wearing a wet suit and be coming up from underwater.", + "A photo of a person doing Diving. The person is wearing a diving suit and has a diving mask on their face.", + "A photo of a person doing Diving. The person will be swimming downwards into the water, and will likely be wearing a wet suit.", + "A photo of a person doing Diving. Underwater diving is a process whereby fooftage is taken of an underwater scene using an underwater camera.", + "A photo of a person doing Diving. The person will have on a wet suit, flippers, and a diving mask.", + "A photo of a person doing Diving. Did the person jump off of a diving board or platform? Are they swimming in a pool with other people doing diving? If so, then the person is likely doing diving.", + "A photo of a person doing Diving. By their clothing.", + "A photo of a person doing Diving. The person is likely to be wearing a wet suit and will have diving equipment with them.", + "A photo of a person doing Diving. A person's clothing may provide some clues.", + "A photo of a person doing Diving. A diver looks like someone who is about to jump into a pool of water.", + "A photo of a person doing Diving. A person doing Diving may wear a wetsuit, goggles, and a snorkel.", + "A photo of a person doing Diving. A person doing Diving looks like someone who is about to jump into a pool of water.", + "A photo of a person doing Diving. When a person is diving, they will usually be wearing a wet suit and flippers.", + "A photo of a person doing Diving. A person doing Diving may look like they are about to jump off of a diving board into a pool of water.", + "A photo of a person doing Diving. A person doing Diving typically looks like someone who is about to enter water from a great height.", + "A photo of a person doing Diving. When a person is diving, they will usually be wearing a wet suit and flippers.", + "A photo of a person doing Diving. When someone is diving, they will usually be wearing a swimsuit and a diving mask.", + "A photo of a person doing Diving. In general, people who are diving look like they are swimming underwater.", + "A photo of a person doing Diving. Divers look like they are swimming through the air.", + "A photo of a person doing Diving. The person is doing a dive from a very high place into a very small body of water.", + "A photo of a person doing Diving. The image is of a person doing a flip off of a diving board.", + "A photo of a person doing Diving. I found an image of a person doing a back dive off of a platform.", + "A photo of a person doing Diving. A people doing Diving is an image of someone jumping off a diving board into a pool of water.", + "A photo of a person doing Diving. The image is of a person in a white wetsuit with blue stripes on the sides, jumping off of a diving board into a large swimming pool.", + "A photo of a person doing Diving. Image is of a person mid-dive, arms extended and body arched, head tilted back slightly.", + "A photo of a person doing Diving. This image is of a person doing a front flip off of a diving board.", + "A photo of a person doing Diving. The image is of a person doing a flip off of a diving board.", + "A photo of a person doing Diving. The image is of a young woman doing a backflip off of a diving board.", + "A photo of a person doing Diving. The image is of a person doing a back dive off of a diving board.", + "A photo of a person doing Diving. The caption could say \"I'm doing a back dive!\".", + "A photo of a person doing Diving. The diver is poised to make a splash as they dive into the water below.", + "A photo of a person doing Diving. A person is diving off a diving board into a swimming pool.", + "A photo of a person doing Diving. The person in the photo is doing a diving dive.", + "A photo of a person doing Diving. This person is diving into a pool of water.", + "A photo of a person doing Diving. Person doing a flip while diving into a pool.", + "A photo of a person doing Diving. Diver making a splashThis image shows a diver soaring through the air before making a splash in the water below.", + "A photo of a person doing Diving. One person is diving off of a cliff into a body of water below.", + "A photo of a person doing Diving. The diver is about to enter the water.", + "A photo of a person doing Diving. This person is diving." + ], + "Drumming": [ + "A photo of a person doing Drumming. Drumming is a rhythmic activity that can use any type of drum or drum kit.", + "A photo of a person doing Drumming. A person doing drumming may be sitting or standing.", + "A photo of a person doing Drumming. A person playing the drums looks like they are hitting multiple drums in succession with their drumsticks.", + "A photo of a person doing Drumming. A person doing Drumming would look like they are playing a drum set.", + "A photo of a person doing Drumming. A person Drumming looks like they are playing a drum.", + "A photo of a person doing Drumming. A person doing drumming looks like someone playing a drum.", + "A photo of a person doing Drumming. A person doing Drumming looks like they are playing a drum.", + "A photo of a person doing Drumming. A person looks like they are playing an invisible drum set.", + "A photo of a person doing Drumming. The person playing the drums looks like they are concentrated and in a zone.", + "A photo of a person doing Drumming. A person doing drumming looks like they are playing the drums.", + "A photo of a person doing Drumming. If you can hear someone playing a drum, then they are doing drumming.", + "A photo of a person doing Drumming. A person who is drumming usually has a drum in their hands and is hitting it with their hands or sticks.", + "A photo of a person doing Drumming. There are a few ways to identify a person who is playing the drums.", + "A photo of a person doing Drumming. The person is usually holding two drumsticks and is sitting in front of a drum set.", + "A photo of a person doing Drumming. Generally, someone doing drumming will look like they are playing a drum set.", + "A photo of a person doing Drumming. One can identify a person doing drumming by the rhythmic patterns they create on the drum.", + "A photo of a person doing Drumming. The person would be sitting or standing with their arms lifted, holding two drumsticks.", + "A photo of a person doing Drumming. The person doing the drumming is usually the one holding the drumsticks.", + "A photo of a person doing Drumming. Someone doing drumming may be sitting or standing with their legs apart and their arms extended in front of them, holding drumsticks.", + "A photo of a person doing Drumming. There are many ways to identify a person doing drumming.", + "A photo of a person doing Drumming. A person doing Drumming may look like they are playing an invisible drum set.", + "A photo of a person doing Drumming. Drumming looks like a person sitting or standing behind a drum set, using their hands or sticks to hit the drums.", + "A photo of a person doing Drumming. In general, a person doing drumming looks like someone playing the drums.", + "A photo of a person doing Drumming. A person doing Drumming will look like they are playing a drum.", + "A photo of a person doing Drumming. A person doing Drumming may look like they are enjoying themselves and having a good time.", + "A photo of a person doing Drumming. A person doing Drumming looks like they are playing the drums.", + "A photo of a person doing Drumming. There is no correct answer to this question, as everyone experiences and expresses drumming in their own way.", + "A photo of a person doing Drumming. A person doing drumming usually looks focused and concentrated.", + "A photo of a person doing Drumming. A person doing Drumming looks like they are playing a drum.", + "A photo of a person doing Drumming. There is no one answer to this question as drumming can be done in so many different ways.", + "A photo of a person doing Drumming. The person is sitting on a stool with a drum in their lap.", + "A photo of a person doing Drumming. The image is of a girl sitting at a drum set.", + "A photo of a person doing Drumming. In the image, a person is sitting on a stool in front of a drum set.", + "A photo of a person doing Drumming. I found an image of a person doing drumming on the internet.", + "A photo of a person doing Drumming. The image is of a person sitting at a drum set with their hands on the drums.", + "A photo of a person doing Drumming. In the image, a man is playing a drum set in a dark room.", + "A photo of a person doing Drumming. This image is of a drummer performing on stage.", + "A photo of a person doing Drumming. The image is of a person sitting at a drum set.", + "A photo of a person doing Drumming. In the image, a person is drumming on a drum set.", + "A photo of a person doing Drumming. In the image, a person is sitting in front of a drum set, with their hands poised over the drums.", + "A photo of a person doing Drumming. A percussionist playing a drum set.", + "A photo of a person doing Drumming. Drumming is a great way to relieve stress and improve your mood!.", + "A photo of a person doing Drumming. Individual performing Native American drumming.", + "A photo of a person doing Drumming. \n.", + "A photo of a person doing Drumming. Person doing drumming.", + "A photo of a person doing Drumming. A young drummer pounds away on a drum set in a garage.", + "A photo of a person doing Drumming. The happy drummer enjoys a good beat.", + "A photo of a person doing Drumming. drummer playing drums.", + "A photo of a person doing Drumming. This person is enjoying a nice day of drumming.", + "A photo of a person doing Drumming. A woman in a purple dress is playing the drums." + ], + "Fencing": [ + "A photo of a person doing Fencing. The person looks like they are holding a long, thin stick in their right hand and carrying a smaller stick in their left hand.", + "A photo of a person doing Fencing. A person does Fencing looks like they are holding a long stick and trying to hit their opponent with it.", + "A photo of a person doing Fencing. When someone is fencing, they are using a long, thin weapon called a foil to attempt to touch their opponents in certain areas in order to score a point.", + "A photo of a person doing Fencing. A person doing Fencing looks like they are holding a sword and wearing a suit.", + "A photo of a person doing Fencing. A person doing Fencing looks like they are doing a sword fight.", + "A photo of a person doing Fencing. When someone is fencing, they are holding a long, thin sword in one hand and a small shield in the other.", + "A photo of a person doing Fencing. A person doing Fencing looks like someone who is ready to sword fight.", + "A photo of a person doing Fencing. A person doing fencing looks like they are fighting with a sword.", + "A photo of a person doing Fencing. A person doing fencing looks like they are holding a long stick in front of them and trying to hit their opponent with it.", + "A photo of a person doing Fencing. A person doing Fencing looks like they are holding a long stick and using it to try and hit their opponent.", + "A photo of a person doing Fencing. A person doing Fencing can be identified by their clothing.", + "A photo of a person doing Fencing. A person doing fencing is typically wearing a fencing uniform, which includes a fencing jacket, breeches, glove, and mask.", + "A photo of a person doing Fencing. Fencing is a sport that involves two opponents fighting with swords.", + "A photo of a person doing Fencing. This person is holding a fencing sword in their right hand and their left hand is extended forward.", + "A photo of a person doing Fencing. Fencers can be identified by the following items:\n-Fencing uniform (white jacket, plastron, knickers, long socks)\n-Fencing mask\n-Sword (foil, epee, or sabre).", + "A photo of a person doing Fencing. A person doing fencing can be identified by their fencing uniform which includes a long-sleeved jacket, plastron (a 10\" x 14\" underarm and torso protector), gloves, pants, and socks.", + "A photo of a person doing Fencing. Fencing is a sport in which two competitors fight with swords.", + "A photo of a person doing Fencing. A person doing fencing can be identified by their fencing uniform, which includes a fencing mask, glove, and weapon.", + "A photo of a person doing Fencing. Fencing is a sport that can be identified by the use of swords, protective gear, and the scoring system.", + "A photo of a person doing Fencing. By their clothing, which includes a jacket, glove, mask, and weapon.", + "A photo of a person doing Fencing. A person doing fencing looks like they are holding a long stick and trying to hit their opponent with it.", + "A photo of a person doing Fencing. A person doing Fencing usually looks like they are holding a stick and wearing a mask.", + "A photo of a person doing Fencing. The person wearing the protective gear looks like they are getting ready to fight a medieval battle.", + "A photo of a person doing Fencing. There is no definitive answer to this question as fencing is a sport that can be practised in a number of different ways.", + "A photo of a person doing Fencing. Fencing is a sport that involves two people fighting with swords.", + "A photo of a person doing Fencing. A person doing Fencing looks like they are holding a long stick and trying to hit their opponent with it.", + "A photo of a person doing Fencing. When someone is fencing, they are holding a long, thin sword in one hand and a small shield in the other.", + "A photo of a person doing Fencing. I cannot answer this question.", + "A photo of a person doing Fencing. A person doing Fencing looks like they are holding a sword and shield and trying to hit their opponent with the sword.", + "A photo of a person doing Fencing. A person doing Fencing looks like someone who is holding a long, thin stick in their hand and using it to hit their opponent.", + "A photo of a person doing Fencing. This image is of a person doing fencing.", + "A photo of a person doing Fencing. A young woman in a fencing uniform is lunging forward with her foil extended, poised to score a touch on her opponent.", + "A photo of a person doing Fencing. The image shows a person in full fencing gear, including a helmet and sword, lunging towards their opponent.", + "A photo of a person doing Fencing. The image is of a person in a fencing costume, with a sword in their hand.", + "A photo of a person doing Fencing. A person is doing fencing in the image.", + "A photo of a person doing Fencing. The image is of a person in full fencing gear - including a face mask - lunging forward with a foil in hand, ready to score a point.", + "A photo of a person doing Fencing. The image is of a person doing fencing.", + "A photo of a person doing Fencing. A person in traditional fencing gear is lunging forward, sword extended, towards their opponent.", + "A photo of a person doing Fencing. The image is of a person in fencing gear, with a fencing sword, lunging forward.", + "A photo of a person doing Fencing. The image is of a person in full fencing gear - including helmet and sword - lunging forward to score a point.", + "A photo of a person doing Fencing. The fencer demonstrates their skill with the sword.", + "A photo of a person doing Fencing. This person is fencing with an opponent.", + "A photo of a person doing Fencing. The person in the image is doing the sport of Fencing.", + "A photo of a person doing Fencing. The fencer is poised and ready to strike at her opponent.", + "A photo of a person doing Fencing. The person in the photo is doing the sport of fencing.", + "A photo of a person doing Fencing. The person in the picture is doing the sport of fencing.", + "A photo of a person doing Fencing. The person is attacking with their sword.", + "A photo of a person doing Fencing. The person in the picture is fencing.", + "A photo of a person doing Fencing. The person in the photo is fencing.", + "A photo of a person doing Fencing. The person in the picture is fencing." + ], + "Field Hockey Penalty": [ + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty usually looks like they are running towards the penalty area, while looking at the referee to make sure they are not called offside.", + "A photo of a person doing Field Hockey Penalty. The person looks like they are about to shoot the ball into the goal.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty looks like they are about to hit the ball with their stick and then they shoot the ball into the net.", + "A photo of a person doing Field Hockey Penalty. When a person is doing a Field_Hockey_Penalty, they will be standing at the top of the shooting circle with their stick raised in one hand.", + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty looks like they are ready to shoot the ball into the goal.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty looks like they are about to shoot the ball into the net.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty looks like they are about to hit the hockey ball with their stick towards the goal.", + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty looks like they are trying to score a goal by hitting the ball into the net with their stick.", + "A photo of a person doing Field Hockey Penalty. A field hockey penalty is when a player commits a foul inside the penalty area.", + "A photo of a person doing Field Hockey Penalty. someone playing field hockey.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty is the one with the stick in their hand and the ball at their feet.", + "A photo of a person doing Field Hockey Penalty. Field hockey players must wear protective equipment, including shin guards, mouthguards, and protective eyewear.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty would be wearing a field hockey stick and a field hockey uniform.", + "A photo of a person doing Field Hockey Penalty. The person doing Field_Hockey_Penalty would need to be wearing field hockey equipment including a stick, shin guards, and a mouth guard.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty is the one who is in the penalty area.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty is the one with the hockey stick and the puck.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty would likely be wearing field hockey equipment including a helmet, shin guards, and a stick.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty would likely be wearing field hockey gear and be in a field or hockey rink.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty is the one who is standing in the middle of the field with a stick in their hand.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty is the one with the hockey stick, standing in front of the goal.", + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty looks like a person wearing a field hockey uniform and holding a field hockey stick.", + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty looks like a person about to hit a ball with a stick.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty looks like they are about to shoot the ball into the goal.", + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty looks like a person is doing field hockey with a penalty.", + "A photo of a person doing Field Hockey Penalty. The person taking the Field_Hockey_Penalty will be standing in the Field_Hockey_Penalty_Spot, with their stick on the ground in front of them.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty looks like they are about to hit the ball with their stick towards the goal.", + "A photo of a person doing Field Hockey Penalty. A person doing a field hockey penalty should be standing in the middle of the field, with their stick raised in the air and their other hand on their hip.", + "A photo of a person doing Field Hockey Penalty. A person doing a Field_Hockey_Penalty looks like they are about to hit a hockey puck into the net.", + "A photo of a person doing Field Hockey Penalty. A person doing Field_Hockey_Penalty look like someone who is about to hit a field hockey ball with their stick.", + "A photo of a person doing Field Hockey Penalty. The person doing the Field_Hockey_Penalty may look like they are about to hit the ball with their stick.", + "A photo of a person doing Field Hockey Penalty. In the image, a person is doing a Field Hockey Penalty.", + "A photo of a person doing Field Hockey Penalty. _ShootThe image is of a woman taking a field hockey penalty shot.", + "A photo of a person doing Field Hockey Penalty. I found an image on Google of a person doing a field hockey penalty.", + "A photo of a person doing Field Hockey Penalty. _StrokeThe image is of a young woman in a field hockey uniform positioned at the top of a circle marked on the ground.", + "A photo of a person doing Field Hockey Penalty. _StrokeThe person is standing with their legs slightly apart and their body leaning forward.", + "A photo of a person doing Field Hockey Penalty. _StrokeIn the image, a person is executing a field hockey penalty stroke.", + "A photo of a person doing Field Hockey Penalty. _ShotIn the image, a woman is standing on a field hockey pitch, ready to take a penalty shot.", + "A photo of a person doing Field Hockey Penalty. _CornerA person is standing on a field with a hockey stick in their hand.", + "A photo of a person doing Field Hockey Penalty. _StrokeThe image is of a woman doing a field hockey penalty stroke.", + "A photo of a person doing Field Hockey Penalty. _StrokeA person is using a field hockey stick to hit a hockey ball towards a goal.", + "A photo of a person doing Field Hockey Penalty. A player on the green field hockey team prepares to take a penalty stroke during a game.", + "A photo of a person doing Field Hockey Penalty. A field hockey player getting ready to take a penalty shot.", + "A photo of a person doing Field Hockey Penalty. The person in the image is doing a Field Hockey Penalty.", + "A photo of a person doing Field Hockey Penalty. The person is doing a field hockey penalty.", + "A photo of a person doing Field Hockey Penalty. The player is about to make a hit on the ball to score a goal.", + "A photo of a person doing Field Hockey Penalty. This person is playing Field Hockey and has just taken a Penalty shot.", + "A photo of a person doing Field Hockey Penalty. The person in the image is performing a Field Hockey Penalty.", + "A photo of a person doing Field Hockey Penalty. A player prepares to take a Field Hockey penalty.", + "A photo of a person doing Field Hockey Penalty. The person is about to hit the ballThe person is about to hit the ball during a Field Hockey penalty.", + "A photo of a person doing Field Hockey Penalty. The player lines up for a penalty shot in field hockey." + ], + "Floor Gymnastics": [ + "A photo of a person doing Floor Gymnastics. When someone is doing floor gymnastics, they will be performing a routine on an exercise mat.", + "A photo of a person doing Floor Gymnastics. A person doing Floor_Gymnastics looks like they are doing a gymnastics routine on the floor.", + "A photo of a person doing Floor Gymnastics. A person doing Floor_Gymnastics looks like they are doing a gymnastics routine on the floor.", + "A photo of a person doing Floor Gymnastics. When someone is performing floor gymnastics, they look like they are doing acrobatic tricks on a mat.", + "A photo of a person doing Floor Gymnastics. The person would be lying on their back on the floor with their legs and arms in the air.", + "A photo of a person doing Floor Gymnastics. A floor gymnast typically performs a routine that includes acrobatic, dance and tumbling elements on a spring floor.", + "A photo of a person doing Floor Gymnastics. When someone is doing floor gymnastics, they look like they are doing acrobatic flips and tricks on a padded floor.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics generally looks like they are doing a series of flips, turns, and/or leaps.", + "A photo of a person doing Floor Gymnastics. When someone is doing floor gymnastics, they are usually performing acrobatic or tumbling movements on a floor mat.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like they are doing a series of flips and tumbles on a mat.", + "A photo of a person doing Floor Gymnastics. Floor gymnastics is a type of gymnastics performed on the floor.", + "A photo of a person doing Floor Gymnastics. If someone is doing floor gymnastics, they will likely be doing flips, tumbles, and other acrobatic maneuvers on a soft floor.", + "A photo of a person doing Floor Gymnastics. The person will be on their hands and feet, with their hands and feet facing the floor.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics can be identified by their gymnastics leotard, which is a skin-tight, one-piece garment.", + "A photo of a person doing Floor Gymnastics. The person will be doing flips and other acrobatic movements on a padded floor.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics can be identified by their gymnastics leotard, which is a tight, one-piece outfit that is often brightly colored.", + "A photo of a person doing Floor Gymnastics. The person will be wearing a gymnastics leotard and will be performing gymnastics routines on the floor.", + "A photo of a person doing Floor Gymnastics. by their clothing typically leotards.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics can be identified by their leotard, which is a tight fitting, one-piece garment that covers the legs and torso.", + "A photo of a person doing Floor Gymnastics. The person would be performing various gymnastics skills on the floor, such as tumbling, leaps, and dance routines.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics would look like they are doing a floor routine in gymnastics.", + "A photo of a person doing Floor Gymnastics. A person doing Floor_Gymnastics looks like someone doing a gymnastics routine on the floor.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like someone who is performing a series of flips, turns, and other acrobatic maneuvers on a floor mat.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like they are doing a combination of tumbling, acrobatics, and dance movements.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics may look like they are performing acrobatics or dancing.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like someone doing a gymnastics routine on the floor.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like a person doing a floor exercise in gymnastics.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like they are doing a floor routine.", + "A photo of a person doing Floor Gymnastics. Doing floor gymnastics looks like doing cartwheels, round offs, walkovers, and handsprings on the floor.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics looks like they are doing acrobatics on a mat.", + "A photo of a person doing Floor Gymnastics. The person is doing a front flip on the floor.", + "A photo of a person doing Floor Gymnastics. There is an image on the internet of a person doing a floor gymnastics routine.", + "A photo of a person doing Floor Gymnastics. The image is of a young woman doing a floor routine in gymnastics.", + "A photo of a person doing Floor Gymnastics. In the image, a woman is doing a flip on the floor.", + "A photo of a person doing Floor Gymnastics. In the image, a person is doing a handstand on a gymnastics floor.", + "A photo of a person doing Floor Gymnastics. The image is of a woman doing a back handspring on the floor.", + "A photo of a person doing Floor Gymnastics. The image is of a person doing a backflip on the floor.", + "A photo of a person doing Floor Gymnastics. The image shows a woman doing a floor routine in gymnastics.", + "A photo of a person doing Floor Gymnastics. A person doing a floor routine in gymnastics is performing acrobatic and dance-like maneuvers on a padded floor.", + "A photo of a person doing Floor Gymnastics. In the image, a young woman is doing a handstand on a gymnastics floor.", + "A photo of a person doing Floor Gymnastics. Person doing a floor exercise during a gymnastics meet.", + "A photo of a person doing Floor Gymnastics. A person doing floor gymnastics.", + "A photo of a person doing Floor Gymnastics. This person is doing a floor gymnastics routine.", + "A photo of a person doing Floor Gymnastics. This person is doing a floor gymnastics routine.", + "A photo of a person doing Floor Gymnastics. The person in the image is doing a floor gymnastics routine.", + "A photo of a person doing Floor Gymnastics. The person is doing a Floor Gymnastics exercise.", + "A photo of a person doing Floor Gymnastics. The athlete performs a complex floor routine that combines gymnastic and dance elements.", + "A photo of a person doing Floor Gymnastics. The person flips through the air and then lands on the ground.", + "A photo of a person doing Floor Gymnastics. A woman doing a floor routine in gymnastics.", + "A photo of a person doing Floor Gymnastics. TheCaptionA woman is doing a handstand on a gymnastics floor." + ], + "Frisbee Catch": [ + "A photo of a person doing Frisbee Catch. Frisbee_Catch looks like a person throwing a Frisbee and another person catching it.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch might be throwing a Frisbee back and forth with a friend.", + "A photo of a person doing Frisbee Catch. The person is standing with their arms outstretched, holding the Frisbee in one hand.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch looks like they are throwing and catching a frisbee with someone else.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch throws a frisbee in the air and tries to catch it.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch throws a Frisbee into the air and another person tries to catch it.", + "A photo of a person doing Frisbee Catch. A person playing catch with a Frisbee looks like they are throwing and catching a disc.", + "A photo of a person doing Frisbee Catch. A person doing Frisbee_Catch looks like they are reaching up with both hands to catch a Frisbee in midair.", + "A photo of a person doing Frisbee Catch. Person doing Frisbee_Catch looks like they are reaching up with one hand to try and catch a frisbee.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch might be throwing a Frisbee back and forth with a friend.", + "A photo of a person doing Frisbee Catch. The person will have their arm outstretched and they will be holding a Frisbee.", + "A photo of a person doing Frisbee Catch. Frisbee catch is a game in which players throw a Frisbee to each other, trying to catch it in mid-air.", + "A photo of a person doing Frisbee Catch. The person will be holding a Frisbee in their hand and will be throwing it up into the air and catching it.", + "A photo of a person doing Frisbee Catch. Frisbee_Catch is a team sport played with a flying disc.", + "A photo of a person doing Frisbee Catch. The person will be throwing a Frisbee and then catching it.", + "A photo of a person doing Frisbee Catch. If someone is doing Frisbee_Catch, they will likely have a Frisbee in their hand and be throwing it back and forth with someone else.", + "A photo of a person doing Frisbee Catch. If a person is doing Frisbee_Catch, they will likely be throwing a Frisbee back and forth with another person.", + "A photo of a person doing Frisbee Catch. If a person is playing Frisbee_Catch, they will likely be throwing and catching a Frisbee.", + "A photo of a person doing Frisbee Catch. The person is likely to be throwing and catching a Frisbee.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch is likely to be throwing and catching a Frisbee.", + "A photo of a person doing Frisbee Catch. A person doing Frisbee_Catch looks like they are about to catch a frisbee.", + "A photo of a person doing Frisbee Catch. Catching a Frisbee looks like someone reaching up with their arms to catch the flying disc as it comes down.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch would look like they are throwing and catching a Frisbee.", + "A photo of a person doing Frisbee Catch. A person doing Frisbee_Catch looks like they are playing catch with a Frisbee.", + "A photo of a person doing Frisbee Catch. There is no definitive answer to this question, as people can adopt many different positions and techniques when playing Frisbee_Catch.", + "A photo of a person doing Frisbee Catch. A person playing catch with a Frisbee may look like they are having fun and enjoying themselves.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee catch looks like they are throwing and catching a Frisbee.", + "A photo of a person doing Frisbee Catch. A person doing Frisbee_Catch looks like they are catching a frisbee in their hands.", + "A photo of a person doing Frisbee Catch. A person playing frisbee catch might be running back and forth across a field, leaping into the air to catch the frisbee, and then throwing it back to their partner.", + "A photo of a person doing Frisbee Catch. A person doing Frisbee_Catch looks like someone who is playing catch with a frisbee.", + "A photo of a person doing Frisbee Catch. The image shows a person catching a Frisbee in mid-air.", + "A photo of a person doing Frisbee Catch. The image is of a person in a field with a Frisbee in their hand.", + "A photo of a person doing Frisbee Catch. A person is throwing a Frisbee high into the air and another person is running to catch it.", + "A photo of a person doing Frisbee Catch. In the image, a young woman is caught in midair as she reaches out to catch a Frisbee flying towards her.", + "A photo of a person doing Frisbee Catch. The image is of a person in a brightly colored shirt and shorts, running to catch a frisbee in mid-air.", + "A photo of a person doing Frisbee Catch. The image is of a young man with blonde hair, blue eyes, and a light beard.", + "A photo of a person doing Frisbee Catch. The image is of a person standing on a beach, throwing a Frisbee to another person who is running to catch it.", + "A photo of a person doing Frisbee Catch. A person is standing in a park, throwing a Frisbee to another person who is running to catch it.", + "A photo of a person doing Frisbee Catch. This person is doing a Frisbee catch in a park.", + "A photo of a person doing Frisbee Catch. The image is of a young woman in a park, throwing a Frisbee to a young man who is running to catch it.", + "A photo of a person doing Frisbee Catch. A person demonstrates their Frisbee catching skills.", + "A photo of a person doing Frisbee Catch. The person in the picture is playing Frisbee_Catch.", + "A photo of a person doing Frisbee Catch. The person in the image is playing Frisbee_Catch.", + "A photo of a person doing Frisbee Catch. A person is playing Frisbee catch.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee catch.", + "A photo of a person doing Frisbee Catch. A person throws a Frisbee to another person, who catches it in midair.", + "A photo of a person doing Frisbee Catch. A person is bending down with their arms open while they catch a flying Frisbee.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee_Catch.", + "A photo of a person doing Frisbee Catch. The person in the image is doing Frisbee_Catch.", + "A photo of a person doing Frisbee Catch. A person playing Frisbee." + ], + "Front Crawl": [ + "A photo of a person doing Front Crawl. A person doing Front_Crawl will look like they are swimming on their stomach with their arms and legs moving in a coordinated fashion.", + "A photo of a person doing Front Crawl. When swimming front crawl, a person's body is parallel to the water's surface with the chin just above the water.", + "A photo of a person doing Front Crawl. The person is swimming on their stomach and kicking their legs.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl looks like they are swimming breaststroke.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl looks like they are swimming on their stomach with their arms out in front of them and their legs kicking.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl looks like they are swimming on their stomach with their arms reaching out in front of them and their legs kicking in a alternating pattern.", + "A photo of a person doing Front Crawl. A person doing Front Crawl looks like they are swimming on their stomach with their head above the water.", + "A photo of a person doing Front Crawl. When a person is swimming Front_Crawl, they look like they are swimming on their stomach with their arms and legs moving alternately.", + "A photo of a person doing Front Crawl. When swimming Front_Crawl, a person's body is generally positioned horizontal in the water, with the head looking down at the bottom of the pool.", + "A photo of a person doing Front Crawl. The arms are extended alternately over the head, and the legs perform a flutter kick.", + "A photo of a person doing Front Crawl. Identifying a person doing front_crawl can be difficult because there are many ways to swim.", + "A photo of a person doing Front Crawl. A person doing front crawl will typically be laying on their stomach in the water, kicking their legs back and forth, and using their arms to pull themselves through the water.", + "A photo of a person doing Front Crawl. When a person is doing the front crawl, their head and body will be in a horizontal position in the water.", + "A photo of a person doing Front Crawl. If someone is doing the Front_Crawl, they will be swimming on their stomach and using an alternating arm movement.", + "A photo of a person doing Front Crawl. The person will be swimming on their front with their arms and legs moving in a synchronised fashion.", + "A photo of a person doing Front Crawl. If someone is doing the front crawl, they will be swimming on their stomach and kicking their legs alternately.", + "A photo of a person doing Front Crawl. They will be in the water on their stomach with their arms out in front of them and their legs kicking in a flutter kick.", + "A photo of a person doing Front Crawl. When a person is doing Front_Crawl, they will generally be lying on their stomach in the water, kicking their legs in a flutter kick motion, and using their arms to alternatingly pull themselves through the water.", + "A photo of a person doing Front Crawl. If a person is doing the front crawl, they will be swimming on their stomach and kicking their legs.", + "A photo of a person doing Front Crawl. When a person is doing Front_Crawl, they will usually be on their stomach and they will be kicking their legs and moving their arms in a synchronised way.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl would look like they are swimming on their stomach with their arms and legs moving in a alternating pattern.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl looks like they are swimming on their stomach with their arms and legs moving in a alternating pattern.", + "A photo of a person doing Front Crawl. A person practicing front crawl will generally move through the water with their stomach facing down, using a long, efficient stroke.", + "A photo of a person doing Front Crawl. While swimming Front_Crawl, a person's body is in a mostly horizontal position, with the head facing down and the arms and legs working in a alternating pattern.", + "A photo of a person doing Front Crawl. In the front crawl, or freestyle, the swimmer moves forward through the water with alternate arm strokes and kicks.", + "A photo of a person doing Front Crawl. When doing the front crawl, a person will lie on their stomach in the water.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl looks like they are swimming with their head above the water and their arms reaching forward alternately.", + "A photo of a person doing Front Crawl. In Front_Crawl, the swimmer's head is in the water and they breathe to the side.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl looks like they are swimming on their stomach with their arms and legs moving in a synchronised fashion.", + "A photo of a person doing Front Crawl. A person doing front crawl looks like they are swimming on their stomach with their arms and legs doing a flutter kick.", + "A photo of a person doing Front Crawl. An image of a person doing Front_Crawl would show them swimming with their arms and legs moving in a synchronised, alternating pattern.", + "A photo of a person doing Front Crawl. In the image, a person is swimming in a pool using the front crawl stroke.", + "A photo of a person doing Front Crawl. In the image, a person is swimming in a pool with blue water.", + "A photo of a person doing Front Crawl. The image is of a person swimming in a pool doing the front crawl.", + "A photo of a person doing Front Crawl. This image is of a person swimming Front_Crawl.", + "A photo of a person doing Front Crawl. The image is of a person swimming Front_Crawl in a pool.", + "A photo of a person doing Front Crawl. A person doing the front crawl swimming stroke in a pool.", + "A photo of a person doing Front Crawl. In the image, a person is doing the front crawl swim stroke.", + "A photo of a person doing Front Crawl. A person is doing front crawl in a pool.", + "A photo of a person doing Front Crawl. _SwimIn the image, a person is doing Front_Crawl_Swim.", + "A photo of a person doing Front Crawl. A person doing Front_Crawl.", + "A photo of a person doing Front Crawl. The person in the image is doing the Front_Crawl, a type of swimming stroke.", + "A photo of a person doing Front Crawl. The person is doing Front_Crawl, a type of swimming stroke.", + "A photo of a person doing Front Crawl. A swimmer performs the front crawl, the most popular and efficient swimming stroke.", + "A photo of a person doing Front Crawl. The person is doing Front_Crawl, a type of swimming stroke.", + "A photo of a person doing Front Crawl. The person is doing Front_Crawl, a type of swimming stroke.", + "A photo of a person doing Front Crawl. The person in this photo is doing the front crawl, a swim stroke that is also known as the freestyle.", + "A photo of a person doing Front Crawl. The person in the image is doing the Front Crawl, a type of swimming stroke.", + "A photo of a person doing Front Crawl. The person in the image is doing Front_Crawl, a type of swimming stroke.", + "A photo of a person doing Front Crawl. They say that swimming is the best exercise for your whole body, and I'm not about to argue!." + ], + "Golf Swing": [ + "A photo of a person doing Golf Swing. When someone is doing a golf swing, their arms are extended out and they are holding a golf club.", + "A photo of a person doing Golf Swing. When a person is doing a golf swing, they look like they are trying to hit a small ball with a long stick.", + "A photo of a person doing Golf Swing. When a person is doing a golf swing, their body will be in a standing position with their feet shoulder width apart.", + "A photo of a person doing Golf Swing. A person doing Golf_Swing looks like they are about to hit a golf ball.", + "A photo of a person doing Golf Swing. The person doing the golf swing looks like they are about to hit a golf ball.", + "A photo of a person doing Golf Swing. While a person doing a golf swing may look like they are simply swinging a golf club, there is actually a lot of coordination and technique involved.", + "A photo of a person doing Golf Swing. A person doing Golf_Swing looks like they are hitting a golf ball.", + "A photo of a person doing Golf Swing. They look like they are trying to hit a golf ball with a golf club.", + "A photo of a person doing Golf Swing. A person doing the Golf_Swing looks like they are trying to hit a golf ball with a golf club.", + "A photo of a person doing Golf Swing. A person doing a Golf_Swing looks like they are swinging a golf club.", + "A photo of a person doing Golf Swing. In order to identify a person doing Golf_Swing, one would look for someone who is holding a golf club and appears to be swing it in a fluid motion.", + "A photo of a person doing Golf Swing. There are many ways to identify a person doing a golf swing.", + "A photo of a person doing Golf Swing. Look for someone with a golf club in their hand and their feet positioned as if they are about to swing the club.", + "A photo of a person doing Golf Swing. If someone is doing a golf swing, they will likely be holding a golf club and have their feet shoulder-width apart.", + "A photo of a person doing Golf Swing. There are a few key things to look for when trying to identify someone doing a golf swing.", + "A photo of a person doing Golf Swing. If you see someone with a golf club in their hand, and they are swinging it, then they are doing the Golf_Swing activity.", + "A photo of a person doing Golf Swing. The person doing the golf swing will have their feet shoulder-width apart, their knees slightly bent, and their weight shifted onto their back foot.", + "A photo of a person doing Golf Swing. One can identify a person doing a golf swing by their stance, grip, and posture.", + "A photo of a person doing Golf Swing. The person is holding a golf club and swinging it.", + "A photo of a person doing Golf Swing. If someone is doing a golf swing, they will likely be holding a golf club and have their feet shoulder-width apart.", + "A photo of a person doing Golf Swing. A person doing a golf swing looks like they are swinging a golf club through the air.", + "A photo of a person doing Golf Swing. A person doing a Golf_Swing looks like they are trying to hit a golf ball with a golf club.", + "A photo of a person doing Golf Swing. Someone doing a golf swing looks like they are swinging a golf club back and forth.", + "A photo of a person doing Golf Swing. A person doing a golf swing looks like they are trying to hit a small ball into a hole with a long stick.", + "A photo of a person doing Golf Swing. When a person is doing a golf swing, they will typically be holding a golf club and standing next to a golf ball.", + "A photo of a person doing Golf Swing. In order to properly swing a golf club, a person must have a good stance.", + "A photo of a person doing Golf Swing. The person looks like they are holding a golf club and swinging it back and forth.", + "A photo of a person doing Golf Swing. There is no one definitive answer to this question as everyone's golf swing will look slightly different.", + "A photo of a person doing Golf Swing. There is no one definitive answer to this question, as everyone's Golf_Swing will look slightly different.", + "A photo of a person doing Golf Swing. There is no definitive answer to this question as everybody's golf swing will look slightly different.", + "A photo of a person doing Golf Swing. The image is of a young man in mid-swing, about to hit the ball.", + "A photo of a person doing Golf Swing. The image is of a person in mid-swing, with the golf club held in both hands above their head.", + "A photo of a person doing Golf Swing. posture is key for a proper golf swing, so the image shows the person bent over slightly with their back straight, weight on their left foot, and arms extended in front of them, holding the golf club.", + "A photo of a person doing Golf Swing. The image is of a person doing a golf swing.", + "A photo of a person doing Golf Swing. The person is standing on a golf course, with their feet shoulder width apart.", + "A photo of a person doing Golf Swing. The image is of a man in mid-swing, his body perfectly aligned with the golf club as he follows through with his shot.", + "A photo of a person doing Golf Swing. An image from the internet of a person doing a Golf Swing shows a person in mid-swing, with their feet planted and their body twisted.", + "A photo of a person doing Golf Swing. An image of a person doing a golf swing might show someoneStanding on a golf course, taking a swing at a golf ball, and then following through with their swing.", + "A photo of a person doing Golf Swing. The image shows a person doing a golf swing.", + "A photo of a person doing Golf Swing. The image is of a man in mid-swing, his golf club held high above his head as he prepares to make contact with the ball.", + "A photo of a person doing Golf Swing. Over the topThis person's golf swing is over the top, meaning it is too vertical and will result in a slice.", + "A photo of a person doing Golf Swing. The perfect golf swing.", + "A photo of a person doing Golf Swing. In this image, we see a person doing a golf swing.", + "A photo of a person doing Golf Swing. The person is performing a golf swing.", + "A photo of a person doing Golf Swing. The person is doing a golf swing.", + "A photo of a person doing Golf Swing. This person looks like they are about to hit the ball.", + "A photo of a person doing Golf Swing. Perfect your Golf SwingWith practice, you can perfect your golf swing and hit the ball further than ever before.", + "A photo of a person doing Golf Swing. person doing golf swing.", + "A photo of a person doing Golf Swing. This person is doing a golf swing.", + "A photo of a person doing Golf Swing. The person is doing a golf swing." + ], + "Haircut": [ + "A photo of a person doing Haircut. A person doing a haircut looks like they are cutting someone's hair.", + "A photo of a person doing Haircut. A person doing a haircut looks like someone who is cutting hair.", + "A photo of a person doing Haircut. A person doing a Haircut looks like they are cutting someone's hair.", + "A photo of a person doing Haircut. A person giving a haircut looks like they are cutting someone's hair.", + "A photo of a person doing Haircut. A person who is giving a haircut generally looks like they are concentrating and focused on giving the best haircut possible.", + "A photo of a person doing Haircut. When a person is doing a haircut, they generally have a cape around their shoulders to catch the hair, and they are wielding a pair of scissors and a comb.", + "A photo of a person doing Haircut. The person doing the haircut usually has their hair in a ponytail or bun.", + "A photo of a person doing Haircut. A person doing a haircut looks like they are holding a pair of scissors and a comb in their hands.", + "A photo of a person doing Haircut. This person would have a cape around their neck, scissors in hand, and would be cutting someone's hair.", + "A photo of a person doing Haircut. A person who is giving a haircut typically is wearing a pair of scissors and a cape around their neck.", + "A photo of a person doing Haircut. If a person is doing a haircut, they will have a comb, scissors, and a head in their hands.", + "A photo of a person doing Haircut. A person doing Haircut can be identified by their uniform which consists of a white coat and a pair of scissors.", + "A photo of a person doing Haircut. A person doing a haircut is usually holding a pair of scissors and a comb, and their head is often tilted to the side.", + "A photo of a person doing Haircut. If someone is cutting hair, they are likely holding a pair of scissors.", + "A photo of a person doing Haircut. By the way they are dressed .", + "A photo of a person doing Haircut. If someone is getting their hair cut, they will usually be sitting in a chair with their head tilted back and a cape around their neck.", + "A photo of a person doing Haircut. If someone is getting a haircut, they will likely be sitting in a chair with their head tilted back.", + "A photo of a person doing Haircut. If someone is getting a haircut, they will usually be sitting in a chair with their head tilted back and a cape or towel around their shoulders.", + "A photo of a person doing Haircut. There are many ways to identify a person doing Haircut.", + "A photo of a person doing Haircut. The person is likely wearing a cape or other protective garment and has scissors and other tools in their hands.", + "A photo of a person doing Haircut. A person doing a haircut looks like a person with a head and a pair of scissors.", + "A photo of a person doing Haircut. A person doing a haircut looks like they are holding a pair of scissors and cutting hair.", + "A photo of a person doing Haircut. A person doing a haircut may have their hair tied back, and they may be wearing a cape or apron.", + "A photo of a person doing Haircut. A person doing a haircut looks like they are cutting someone's hair.", + "A photo of a person doing Haircut. This is a difficult question.", + "A photo of a person doing Haircut. A person doing a haircut looks like someone cutting hair.", + "A photo of a person doing Haircut. A person doing a haircut usually looks like a hairdresser.", + "A photo of a person doing Haircut. A person doing a haircut looks like someone who is carefully cutting someone's hair.", + "A photo of a person doing Haircut. A person doing a haircut looks like someone who is cutting hair.", + "A photo of a person doing Haircut. There is no one answer to this question as people can have different hairstyles.", + "A photo of a person doing Haircut. In the image, a woman is standing in a brightly lit room with her hair pulled up in a ponytail.", + "A photo of a person doing Haircut. I found an image on the internet of a person doing a haircut.", + "A photo of a person doing Haircut. A person is cutting hair with scissors in an image from the internet.", + "A photo of a person doing Haircut. A person is sitting in a chair with a towel around their neck.", + "A photo of a person doing Haircut. A person with black hair is sitting in a barber's chair.", + "A photo of a person doing Haircut. In the image, a young woman is getting her hair cut by a professional in a salon.", + "A photo of a person doing Haircut. In the image, a person is kneeling on the floor while another person cuts their hair.", + "A photo of a person doing Haircut. A person is doing a hair cut in an image from the internet.", + "A photo of a person doing Haircut. In the image, a person is standing in front of a mirror with their hair in a towel.", + "A photo of a person doing Haircut. The image from the internet shows a person with long hair getting a haircut.", + "A photo of a person doing Haircut. Haircut by [name of stylist]This person looks amazing after their haircut! They were styled by [name of stylist], who did an amazing job!.", + "A photo of a person doing Haircut. This person is giving a haircut.", + "A photo of a person doing Haircut. A person is cutting hair.", + "A photo of a person doing Haircut. This person is cutting their hair with clippers.", + "A photo of a person doing Haircut. The person cutting hair is concentrating on making sure each cut is even.", + "A photo of a person doing Haircut. Person gets a haircut.", + "A photo of a person doing Haircut. A person is seen cutting hair with a pair of scissors.", + "A photo of a person doing Haircut. A person is cutting hair with a scissors.", + "A photo of a person doing Haircut. A person is giving themself a haircut.", + "A photo of a person doing Haircut. Shaggy to Sleek in 60 SecondsA person is shown cutting their own hair from shaggy to sleek in just 60 seconds." + ], + "Hammering": [ + "A photo of a person doing Hammering. When someone is hammering, they are holding a tool called a hammer in their hand and using it to hit a nail or other object.", + "A photo of a person doing Hammering. A person doing Hammering looks like someone who is hitting a nail with a hammer.", + "A photo of a person doing Hammering. A person hammering looks like they are using a lot of force to hit an object repeatedly.", + "A photo of a person doing Hammering. A person doing Hammering looks like they are forcefully hitting an object with a hammer.", + "A photo of a person doing Hammering. Her arms are moving up and down really fast, and she's hitting the nail with the hammer.", + "A photo of a person doing Hammering. A person doing Hammering looks like someone who is hitting a nail with a hammer.", + "A photo of a person doing Hammering. A person hammering looks like they are using a tool to hit something repeatedly.", + "A photo of a person doing Hammering. The person looks like they are concentrating on what they are doing and making sure they hit the nail in the right spot.", + "A photo of a person doing Hammering. Hammers are tools used to drive nails, fit parts, forge metal, and break apart objects.", + "A photo of a person doing Hammering. A person doing hammering looks like someone who is repeatedly hitting a nail with a hammer.", + "A photo of a person doing Hammering. The person will have their arm raised and will be holding a hammer.", + "A photo of a person doing Hammering. The person is usually holding a hammer in their hand.", + "A photo of a person doing Hammering. If you see someone swinging a hammer up and down, they are likely doing hammering.", + "A photo of a person doing Hammering. The sound of hammering is a telltale sign that someone is doing this activity.", + "A photo of a person doing Hammering. The person will be holding a hammer and will be hitting an object with it.", + "A photo of a person doing Hammering. If someone is hammering, you can usually hear the sound of metal hitting metal.", + "A photo of a person doing Hammering. If you see someone with a hammer in their hand, they are likely doing hammering.", + "A photo of a person doing Hammering. If you see someone with a hammer in their hand, they are likely doing hammering.", + "A photo of a person doing Hammering. Typically, if you see someone with a hammer in their hand, they are doing hammering.", + "A photo of a person doing Hammering. If someone is doing hammering, they will most likely be holding a hammer in their hand and hitting something with it.", + "A photo of a person doing Hammering. When someone is hammering, they are using a tool to strike a nail or another object.", + "A photo of a person doing Hammering. A person doing hammering looks like someone who is holding a hammer in their hand and hitting something with it.", + "A photo of a person doing Hammering. Some people may look like they are doing a normal hammering motion.", + "A photo of a person doing Hammering. A person doing hammering looks like someone who is hitting something with a hammer.", + "A photo of a person doing Hammering. A person hammering looks like they are holding a hammer and hitting something with it.", + "A photo of a person doing Hammering. A person doing hammering looks like someone who is pounding a nail with a hammer.", + "A photo of a person doing Hammering. A person doing hammering looks like a person who is using a hammer to hit nails into wood.", + "A photo of a person doing Hammering. A person doing hammering looks like they are holding a hammer in their hand and hitting something with it.", + "A photo of a person doing Hammering. If you are hammering a nail into a piece of wood, you will look like you are holding a hammer in your hand and hitting the nail with it.", + "A photo of a person doing Hammering. When someone is hammering, they are holding a hammer in their hand and using it to hit nails.", + "A photo of a person doing Hammering. An image from the internet of a person doing Hammering would show someone using a hammer to hit a nail into a piece of wood.", + "A photo of a person doing Hammering. The image is of a person in a dark room hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. In the image, there is a person wearing a grey shirt and blue jeans.", + "A photo of a person doing Hammering. The image is of a person hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. In the image, a young boy is energetically hammering a large nail into a piece of wood.", + "A photo of a person doing Hammering. The image is of a person wearing a green shirt and blue jeans.", + "A photo of a person doing Hammering. depict a person striking a nail with a hammer.", + "A photo of a person doing Hammering. The image shows a person hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. The image is of a person hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. A person is hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. The person in the image is hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. This person is doing some serious hammering!.", + "A photo of a person doing Hammering. This person is doing hammering.", + "A photo of a person doing Hammering. The person in the image is hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. A man is hammering a piece of metal on an anvil.", + "A photo of a person doing Hammering. The person in the image is doing hammering.", + "A photo of a person doing Hammering. This person is hammering.", + "A photo of a person doing Hammering. The person in the image is hammering a nail into a piece of wood.", + "A photo of a person doing Hammering. This person is doing some hammering.", + "A photo of a person doing Hammering. Person hammering a nail into a piece of wood." + ], + "Hammer Throw": [ + "A photo of a person doing Hammer Throw. The person doing the hammer throw looks like they are about to throw a hammer as far as they can.", + "A photo of a person doing Hammer Throw. The person looks like they are about to throw a hammer.", + "A photo of a person doing Hammer Throw. The person will be throwing a hammer with all their might.", + "A photo of a person doing Hammer Throw. The person looks like they are about to throw a hammer as far as they can.", + "A photo of a person doing Hammer Throw. A person doing the Hammer Throw looks like they are about to throw a hammer as far as they possibly can.", + "A photo of a person doing Hammer Throw. While Hammer_Throwing, a person looks like they are swinging a hammer above their head in a circular motion.", + "A photo of a person doing Hammer Throw. Hammer_Throw looks like a person throwing a hammer.", + "A photo of a person doing Hammer Throw. The person is holding a hammer and swinging it around their head before releasing it.", + "A photo of a person doing Hammer Throw. The person stands in a circle with a hammer attached to a leather strap.", + "A photo of a person doing Hammer Throw. A person doing Hammer_Throw looks like they are holding a heavy ball on a string and throwing it as hard as they can.", + "A photo of a person doing Hammer Throw. The person will have a hammer in their hand, and they will be throwing it.", + "A photo of a person doing Hammer Throw. The person will be holding a hammer and will be throwing it.", + "A photo of a person doing Hammer Throw. The person's feet will be in the air and the person's arm will be extended behind their head, holding a hammer.", + "A photo of a person doing Hammer Throw. The person would be throwing a hammer.", + "A photo of a person doing Hammer Throw. The person will have a hammer in their hand and will be standing in a circle.", + "A photo of a person doing Hammer Throw. The person would be holding a hammer and standing in a throwing circle.", + "A photo of a person doing Hammer Throw. Hammer_throw can be identified by the person's throwing arm.", + "A photo of a person doing Hammer Throw. The person will have a strong build, with large muscles in the arms, legs, and trunk.", + "A photo of a person doing Hammer Throw. The person will have one arm extended behind them and one arm extended in front of them, holding a heavy object.", + "A photo of a person doing Hammer Throw. There are a few ways to identify a person doing the Hammer_Throw.", + "A photo of a person doing Hammer Throw. When performing the hammer throw, athletes spin around several times before releasing the hammer.", + "A photo of a person doing Hammer Throw. A person doing Hammer_Throw looks like they are throwing a hammer.", + "A photo of a person doing Hammer Throw. When someone is doing the hammer throw, they look like they are about to throw a normal hammer.", + "A photo of a person doing Hammer Throw. A person doing hammer throw looks like they are throwing a hammer.", + "A photo of a person doing Hammer Throw. A person doing Hammer_Throw looks like they are throwing a hammer.", + "A photo of a person doing Hammer Throw. A person doing Hammer_Throw looks like they are holding a ball on a string above their head and then throwing it as hard as they can.", + "A photo of a person doing Hammer Throw. The person looks like they are throwing a hammer as far as they can.", + "A photo of a person doing Hammer Throw. The person doing Hammer_Throw looks like they are about to swing a hammer and release it.", + "A photo of a person doing Hammer Throw. The person performing the hammer throw will have a strong grip on the hammer and will be spinning rapidly.", + "A photo of a person doing Hammer Throw. The person looks like they are throwing a hammer.", + "A photo of a person doing Hammer Throw. The person in the image is a female hammer thrower.", + "A photo of a person doing Hammer Throw. An image from the internet of a person doing Hammer Throw shows a person holding a hammer above their head, with their feet planted firmly on the ground.", + "A photo of a person doing Hammer Throw. In the image, a person is doing Hammer_Throw.", + "A photo of a person doing Hammer Throw. This image shows a person doing the hammer throw.", + "A photo of a person doing Hammer Throw. The image is of a man throwing a hammer.", + "A photo of a person doing Hammer Throw. The image shows a person in the middle of a Hammer Throw.", + "A photo of a person doing Hammer Throw. The image shows a person in a hammer throw competition.", + "A photo of a person doing Hammer Throw. In the image, a person is doing the hammer throw.", + "A photo of a person doing Hammer Throw. The person is standing in a field with a large hammer in their hand.", + "A photo of a person doing Hammer Throw. The image is of a man throwing a hammer.", + "A photo of a person doing Hammer Throw. A person doing Hammer_Throw.", + "A photo of a person doing Hammer Throw. The hammer throw is a track and field event where the objective is to throw a hammer as far as possible.", + "A photo of a person doing Hammer Throw. The person in the image is doing Hammer Throw.", + "A photo of a person doing Hammer Throw. The athlete is beginning the hammer throw, one of the oldest field events in the sport of track and field.", + "A photo of a person doing Hammer Throw. The hammer thrower in full action, ready to release the hammer.", + "A photo of a person doing Hammer Throw. A person doing hammer throw.", + "A photo of a person doing Hammer Throw. The person is doing Hammer Throw which is a track and field event where the objective is to throw a heavy hammer as far as possible.", + "A photo of a person doing Hammer Throw. The person is doing Hammer_Throw.", + "A photo of a person doing Hammer Throw. This person is competing in the hammer throw, one of the throwing events in track and field.", + "A photo of a person doing Hammer Throw. The person is doing hammer throw." + ], + "Handstand Pushups": [ + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a pushup with their feet in the air and their hands on the ground.", + "A photo of a person doing Handstand Pushups. A person doing Handstand_Pushups looks like they are pushing themselves up with their hands and their feet are in the air.", + "A photo of a person doing Handstand Pushups. A person doing a handstand pushup looks like they are doing a pushup while in a handstand position.", + "A photo of a person doing Handstand Pushups. A person doing Handstand_Pushups looks like they are pushing up against a wall with their feet up in the air.", + "A photo of a person doing Handstand Pushups. handstand pushups look like someone pushing themselves up from a handstand position.", + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a regular pushup, but upside down.", + "A photo of a person doing Handstand Pushups. A person doing Handstand_Pushups would look like someone doing a pushup while upside down.", + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a regular pushup, but they are upside down.", + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a regular pushup but upside down.", + "A photo of a person doing Handstand Pushups. When a person is doing a handstand push-up, they are upside down and their hands are on the ground.", + "A photo of a person doing Handstand Pushups. If someone is doing a handstand pushup, they will be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. If someone is doing a handstand pushup, they will be upside down with their feet against a wall and their hands on the ground.", + "A photo of a person doing Handstand Pushups. A person doing Handstand Pushups will be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. The person would be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. The person will be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. If someone is doing a handstand pushup, they will be in a handstand position and then push their body up and down using their arms.", + "A photo of a person doing Handstand Pushups. The person will be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. From a distance, you can identify a person doing handstand pushups by their upside-down position.", + "A photo of a person doing Handstand Pushups. If a person is doing a Handstand_Pushup, they will be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. If someone is doing a handstand pushup, they will be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. A person doing a handstand pushup looks like they are pushing up from a handstand position.", + "A photo of a person doing Handstand Pushups. A person doing a handstand push-up would be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. A person doing a handstand push-up looks like they are doing a regular push-up, but they are upside down.", + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a pushup while upside down.", + "A photo of a person doing Handstand Pushups. When someone is doing a handstand pushup, they are upside down and their hands are on the ground.", + "A photo of a person doing Handstand Pushups. When performing a handstand push-up, the body is perpendicular to the ground with the hands supporting the bodyweight.", + "A photo of a person doing Handstand Pushups. A person doing a handstand push-up looks like they are doing a regular push-up but upside down.", + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a regular pushup, but they are upside down.", + "A photo of a person doing Handstand Pushups. When someone is doing a handstand pushup, they are upside down and their hands are on the ground.", + "A photo of a person doing Handstand Pushups. A person doing handstand pushups looks like they are doing a regular pushup but upside down.", + "A photo of a person doing Handstand Pushups. The image is of a muscled man doing a handstand pushup.", + "A photo of a person doing Handstand Pushups. The image is of a person doing a handstand pushup with their feet on a stool.", + "A photo of a person doing Handstand Pushups. There is an image of a person doing a handstand pushup with their feet on a wall.", + "A photo of a person doing Handstand Pushups. In the image, the person is doing a handstand with their feet against a wall and their hands on the ground.", + "A photo of a person doing Handstand Pushups. In the image, a young woman with long dark hair is doing a handstand against a white wall.", + "A photo of a person doing Handstand Pushups. The person is upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Pushups. The person is doing a handstand with their feet against a wall and their hands on the ground.", + "A photo of a person doing Handstand Pushups. The image is of a man doing a handstand pushup against a wall.", + "A photo of a person doing Handstand Pushups. A man doing a handstand pushup with his feet on a wall and his hands on the ground.", + "A photo of a person doing Handstand Pushups. The image is of a person doing a handstand pushup with their feet against a wall.", + "A photo of a person doing Handstand Pushups. Person doing handstand pushups in a park.", + "A photo of a person doing Handstand Pushups. This person is doing handstand pushups, a challenging exercise that works the arms, shoulders, and core.", + "A photo of a person doing Handstand Pushups. Handstand_Pushups are a great way to build upper body strength.", + "A photo of a person doing Handstand Pushups. A person doing a handstand push-up.", + "A photo of a person doing Handstand Pushups. Person doing handstand pushups in a park.", + "A photo of a person doing Handstand Pushups. Pushing through the tough times.", + "A photo of a person doing Handstand Pushups. The person in the picture is doing handstand pushups.", + "A photo of a person doing Handstand Pushups. Handstand_Pushups are a great way to build upper body strength.", + "A photo of a person doing Handstand Pushups. A person doing a handstand pushup.", + "A photo of a person doing Handstand Pushups. The subject is doing a Handstand Pushup, a challenging exercise that works the entire body." + ], + "Handstand Walking": [ + "A photo of a person doing Handstand Walking. They look like they are walking on their hands.", + "A photo of a person doing Handstand Walking. Person doing Handstand_Walking looks like a person doing a handstand and then walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing handstand walking looks like they are balancing on their hands with their feet in the air.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are upside down, walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing handstand walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. Handstand walking looks like a person balancing on their hands while walking forwards or sideways.", + "A photo of a person doing Handstand Walking. if someone is doing a handstand walking, they are upright with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are upside down and walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing Handstand Walking looks like they are trying to walk on their hands.", + "A photo of a person doing Handstand Walking. The person's feet are over their head and they are walking on their hands.", + "A photo of a person doing Handstand Walking. The person would be upside down, with their feet walking in the air.", + "A photo of a person doing Handstand Walking. The person is likely to be upside down, with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Walking. Scroll down for answer\nThere are a few key things to look for when trying to identify someone doing handstand walking.", + "A photo of a person doing Handstand Walking. There are a few ways to identify a person doing Handstand_Walking.", + "A photo of a person doing Handstand Walking. There are several ways to identify a person doing Handstand_Walking.", + "A photo of a person doing Handstand Walking. If someone is doing a handstand while walking, they will be upside down with their feet in the air and their hands on the ground.", + "A photo of a person doing Handstand Walking. If someone is doing a handstand walk, they will be upside down, walking on their hands.", + "A photo of a person doing Handstand Walking. If someone is doing a handstand and walking, they will be upside down with their hands on the ground and their feet moving.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking can be identified by their ability to walk on their hands.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. When a person is handstand walking, they are upside down with their hands on the ground and their feet in the air.", + "A photo of a person doing Handstand Walking. When a person is doing handstand walking, they look like they are walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing handstand walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are pushing up from the ground onto their hands and then walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing Handstand_Walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. A person who is Handstand_Walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. A person doing handstand walking looks like they are walking on their hands.", + "A photo of a person doing Handstand Walking. Handstand Walking looks like a person walking on their hands.", + "A photo of a person doing Handstand Walking. In the image, a person is doing a handstand walk.", + "A photo of a person doing Handstand Walking. The image is of a person performing a handstand walk.", + "A photo of a person doing Handstand Walking. This person is doing a handstand walking, which is a difficult feat ofBalance and coordination.", + "A photo of a person doing Handstand Walking. In this image, a person is doing a handstand while walking.", + "A photo of a person doing Handstand Walking. In the image, a person is standing on their hands and walking forward.", + "A photo of a person doing Handstand Walking. In this image, a person is doing a handstand while walking.", + "A photo of a person doing Handstand Walking. The image shows a person doing a handstand while walking.", + "A photo of a person doing Handstand Walking. The image is of a figure in a black leotard with their legs in a handstand, walking across a mat.", + "A photo of a person doing Handstand Walking. A person doing handstand walking looks like they are upside down, walking on their hands instead of their feet.", + "A photo of a person doing Handstand Walking. This image is of a person doing a handstand walk.", + "A photo of a person doing Handstand Walking. The person is doing Handstand_Walking, which is a type of yoga.", + "A photo of a person doing Handstand Walking. Handstand_Walking, a challenging acrobatic feat.", + "A photo of a person doing Handstand Walking. I may not be walking, but I'm still moving forward.", + "A photo of a person doing Handstand Walking. Rockin' a handstand!.", + "A photo of a person doing Handstand Walking. Handstand Walking - a challenging and fun way to explore your surroundings!.", + "A photo of a person doing Handstand Walking. The person is doing Handstand_Walking.", + "A photo of a person doing Handstand Walking. Person doing a handstand while walking.", + "A photo of a person doing Handstand Walking. Person doing a handstand while walking.", + "A photo of a person doing Handstand Walking. Handstand_Walking is a great way to work out your upper body and improve your balance.", + "A photo of a person doing Handstand Walking. The caption reads: \"Handstand_Walking\"." + ], + "Head Massage": [ + "A photo of a person doing Head Massage. When someone is getting a head massage, they are usually seated with their head tilted forward so that their neck is exposed.", + "A photo of a person doing Head Massage. A person doing Head_Massage usually looks relaxed and has a serene expression on their face.", + "A photo of a person doing Head Massage. A person doing Head_Massage may sit or stand behind the person receiving the massage.", + "A photo of a person doing Head Massage. A person doing a head massage looks like they are gently rubbing or presses their palms and fingers into someone's head and neck.", + "A photo of a person doing Head Massage. When someone is giving a head massage, they are typically sitting behind the person receiving the massage, with their hands on either side of the person's head.", + "A photo of a person doing Head Massage. A person doing a head massage looks like they are gently rubbing or kneading someone's head.", + "A photo of a person doing Head Massage. A person doing Head_Massage usually looks like they are concentrating and working hard.", + "A photo of a person doing Head Massage. The person performing the Head Massage will be kneeling behind the person receiving the Massage.", + "A photo of a person doing Head Massage. A person getting a head massage would typically be reclining in a chair with their head in the lap of the person giving the massage.", + "A photo of a person doing Head Massage. A person doing a head massage typically looks like they are concentrating and gently rubbing their hands over someone's head.", + "A photo of a person doing Head Massage. There is no definitive answer to this question, as there is no one specific way to identify a person doing Head_Massage.", + "A photo of a person doing Head Massage. If someone is doing a Head_Massage, they will likely be kneeling or sitting behind the person receiving the massage, and will be using their hands to apply pressure to the person's head and neck.", + "A photo of a person doing Head Massage. The person doing the Head_Massage may have their hands on the person's head and may be using different types of strokes.", + "A photo of a person doing Head Massage. You can identify a person doing Head_Massage by their slow, gentle movements and the fact that they are using their hands to massage the person's head.", + "A photo of a person doing Head Massage. A person doing a Head_Massage can typically be identified by their position; they will be sitting or standing behind the person receiving the massage, with their hands on the person's head.", + "A photo of a person doing Head Massage. The person may be sitting or standing.", + "A photo of a person doing Head Massage. There is no definitive answer to this question, but some possible indicators that a person may be giving or receiving a head massage include: using slow, gentle motions on the head and neck; being careful not to pull hair; and using light pressure.", + "A photo of a person doing Head Massage. There is no one definitive way to identify a person doing Head_Massage.", + "A photo of a person doing Head Massage. There are several ways to identify a person doing a head massage.", + "A photo of a person doing Head Massage. A person doing a head massage can usually be identified by their tools, which may include a massage table, massage oil, and a towel.", + "A photo of a person doing Head Massage. A person doing a head massage may look like they are deep in concentration as they apply pressure to various points on the head.", + "A photo of a person doing Head Massage. A person doing a Head Massage usually looks relaxed and comfortable.", + "A photo of a person doing Head Massage. A person giving a head massage may look like they are concentrating intensely on the person's head, or they may look relaxed.", + "A photo of a person doing Head Massage. When someone is getting a head massage, they usually sit in a comfortable chair with their head tilted back and their eyes closed.", + "A photo of a person doing Head Massage. A person doing a head massage looks like they are lightly touching their forehead and temples with their fingers.", + "A photo of a person doing Head Massage. A person doing a head massage looks like they are concentrating on the person's head and neck area.", + "A photo of a person doing Head Massage. There is no one definitive answer to this question.", + "A photo of a person doing Head Massage. A person doing a head massage usually looks like they are concentrating on the person's head that they are massaging.", + "A photo of a person doing Head Massage. A person doing a head massage may have their hands in various positions on the head, including on the forehead, temples, or back of the head.", + "A photo of a person doing Head Massage. A person doing a head massage may have their hands gently resting on the person's head, or may have one hand cupping the person's head while the other handmassages the person's scalp.", + "A photo of a person doing Head Massage. The image shows a person with their head tilted back, and someone massaging their scalp.", + "A photo of a person doing Head Massage. The person has their hands on the other person's head, and they appear to be rubbing or massaging their head.", + "A photo of a person doing Head Massage. The image is of a woman lying down on a massage table with a towel over her eyes.", + "A photo of a person doing Head Massage. A person is lying down on a massage table with their head turned to one side.", + "A photo of a person doing Head Massage. I found an image on the internet of a person doing a head massage.", + "A photo of a person doing Head Massage. A person is shown with their head tilted back while someone else massage their forehead and temples.", + "A photo of a person doing Head Massage. In the image, a person is seated on a massage chair with their head tilted back.", + "A photo of a person doing Head Massage. A person is performing a head massage on another person.", + "A photo of a person doing Head Massage. In the image, a person is lying down on a massage table with their head turned to the side.", + "A photo of a person doing Head Massage. In this image, a masseuse is giving a head massage to a seated client.", + "A photo of a person doing Head Massage. A person enjoying a head massage.", + "A photo of a person doing Head Massage. The person is getting a head massage.", + "A photo of a person doing Head Massage. The person is receiving a head massage, which is a type of massage that focuses on the head and neck.", + "A photo of a person doing Head Massage. Relaxing at-home head massage.", + "A photo of a person doing Head Massage. A woman enjoys a head massage.", + "A photo of a person doing Head Massage. A person receiving a head massage.", + "A photo of a person doing Head Massage. The head massage feels amazing!.", + "A photo of a person doing Head Massage. Receiving a head massage.", + "A photo of a person doing Head Massage. \"A person performing a head massage.", + "A photo of a person doing Head Massage. A woman enjoys a head massage." + ], + "High Jump": [ + "A photo of a person doing High Jump. A person doing a high jump usually starts by running towards a bar that is placed across two uprights.", + "A photo of a person doing High Jump. When a person is doing a high jump, they will arch their back and then push off of the ground with their feet.", + "A photo of a person doing High Jump. Sprinting towards the pole, the person quickly lifts their legs, propelling their body vertically.", + "A photo of a person doing High Jump. The person's feet and legs are bent at the knee.", + "A photo of a person doing High Jump. When a person is doing the high jump, they start by running towards the bar.", + "A photo of a person doing High Jump. A person performing a high jump will appear to be crouching down with their arms extended behind them.", + "A photo of a person doing High Jump. In high jump, the athlete sprints towards the bar and leaps vertically, tucking their knees up to their chest as they go over the bar.", + "A photo of a person doing High Jump. A person doing a High Jump looks like they are about to jump really high in the air.", + "A photo of a person doing High Jump. When a person is doing a high jump, they will start by running towards a bar that is placed high off the ground.", + "A photo of a person doing High Jump. The person's body is vertical, and they are propelling themselves upwards with their legs.", + "A photo of a person doing High Jump. You can identify a person doing High_Jump by their body position.", + "A photo of a person doing High Jump. Look for someone who is jumping higher than usual.", + "A photo of a person doing High Jump. The person will be holding a pole in their hands and will be running towards a bar that is placed high up.", + "A photo of a person doing High Jump. In High_Jump, a person's legs and arms are extended above their head as they jump upward.", + "A photo of a person doing High Jump. If someone is doing a high jump, they will usually be jumping up vertically very high, and may use their arms to help them jump.", + "A photo of a person doing High Jump. Usually, a person doing a high jump will be in an athletic stance with their feet parallel to each other.", + "A photo of a person doing High Jump. The person will be jumping very high in the air.", + "A photo of a person doing High Jump. The person will be wearing a track and field uniform, and will be jumping over a bar.", + "A photo of a person doing High Jump. A person who is doing the high jump can be identified by their stance.", + "A photo of a person doing High Jump. The person will be in an upright position with their arms above their head, and their feet will be off the ground.", + "A photo of a person doing High Jump. The person's feet would be in the air, and their body would be stretched out vertically.", + "A photo of a person doing High Jump. A person doing a high jump looks like they are jumping really high in the air.", + "A photo of a person doing High Jump. A person Doing high jump looks like person is trying to jump over something very high.", + "A photo of a person doing High Jump. In general, a person doing a high jump will look like they are propelling themselves upwards with their legs and then flipping over backwards.", + "A photo of a person doing High Jump. A person doing a High Jump looks like they are jumping really high in the air.", + "A photo of a person doing High Jump. A person doing a high jump looks like they are squatting down and then propelling themselves upward with their legs.", + "A photo of a person doing High Jump. When a person is doing a high jump, they will be leaping up into the air with their arms extended above their head.", + "A photo of a person doing High Jump. When someone is doing a high jump, their body is upright and they are leaning forward at a 45-degree angle.", + "A photo of a person doing High Jump. A person doing the high jump looks like they are jumping really high in the air with their arms and legs outstretched.", + "A photo of a person doing High Jump. When a person is doing a high jump, they will start by running towards the jump.", + "A photo of a person doing High Jump. An image from the internet of a person doing a High Jump would show someone in midair, with their legs and arms extended upwards, and their head tilted back.", + "A photo of a person doing High Jump. The image is of a person doing a high jump.", + "A photo of a person doing High Jump. In the image, a man is mid-air in the middle of a high jump.", + "A photo of a person doing High Jump. The image is of a person in mid-air, their legs and arms extended upwards as they attempt to reach the bar.", + "A photo of a person doing High Jump. In the image, a person is shown mid-air, their legs and arms extended upwards as they perform a high jump.", + "A photo of a person doing High Jump. https://upload.", + "A photo of a person doing High Jump. In the image, a person is doing a high jump.", + "A photo of a person doing High Jump. I found an image of a person doing a high jump on the internet.", + "A photo of a person doing High Jump. In the image, a person is doing a high jump.", + "A photo of a person doing High Jump. The person is doing a Fosbury Flop, which is a technique used in the high jump.", + "A photo of a person doing High Jump. This person is doing the high jump.", + "A photo of a person doing High Jump. The person in the photo is doing a High Jump.", + "A photo of a person doing High Jump. Person doing high jump.", + "A photo of a person doing High Jump. This person is doing a High Jump.", + "A photo of a person doing High Jump. The person is doing High Jump.", + "A photo of a person doing High Jump. The person is doing a high jump.", + "A photo of a person doing High Jump. The person in the picture is doing a high jump.", + "A photo of a person doing High Jump. The person is doing a high jump.", + "A photo of a person doing High Jump. A person doing a high jump.", + "A photo of a person doing High Jump. The person in the picture is doing a high jump." + ], + "Horse Race": [ + "A photo of a person doing Horse Race. The person doing the Horse_Race looks like they are having a lot of fun.", + "A photo of a person doing Horse Race. A person doing the Horse_Race looks like they are galloping on a horse and holding a flag in each hand.", + "A photo of a person doing Horse Race. A person doing Horse_Race usually looks like they are trying to run as fast as they can while staying on the horse.", + "A photo of a person doing Horse Race. The person is sitting on the horse, holding the reigns, and looking ahead at the track.", + "A photo of a person doing Horse Race. A person doing Horse_Race would look like they are riding a horse in a race.", + "A photo of a person doing Horse Race. _A person doing Horse_Race looks like they are on a horse racing track.", + "A photo of a person doing Horse Race. A person Doing Horse_Race looks like they are running as fast as they can on a horse.", + "A photo of a person doing Horse Race. A person doing the Horse_Race looks like they are galloping on a horse, but their feet never leave the ground.", + "A photo of a person doing Horse Race. Someone doing Horse_Race might look like they are galloping or running very fast.", + "A photo of a person doing Horse Race. The person is standing on the horse, holding the reins in their hands.", + "A photo of a person doing Horse Race. The person will be wearing a jockey outfit and sitting on a horse.", + "A photo of a person doing Horse Race. There are several ways to identify a person doing Horse_Race.", + "A photo of a person doing Horse Race. The person is likely to be wearing horse riding equipment and may be seen trotting or galloping.", + "A photo of a person doing Horse Race. The person may be identified by their obsession with gambling, betting on horse races, and spending large amounts of money on horse races.", + "A photo of a person doing Horse Race. There are a few ways to identify a person doing Horse_Race.", + "A photo of a person doing Horse Race. There are a few things that are common among people who do Horse_Race.", + "A photo of a person doing Horse Race. There is no definitive way to identify a person doing Horse_Race.", + "A photo of a person doing Horse Race. The person may be riding a horse, or they may be holding a race.", + "A photo of a person doing Horse Race. There is no definitive answer to this question, as there is no one specific way to identify a person who is participating in a horse race.", + "A photo of a person doing Horse Race. There are various ways to identify a person doing Horse_Race, some of which are listed below:-The person may be wearing equestrian gear or clothing associated with horse riding.", + "A photo of a person doing Horse Race. The person will look like they are riding a horse.", + "A photo of a person doing Horse Race. The person doing Horse_Race probably looks like they're having a lot of fun.", + "A photo of a person doing Horse Race. There is no definitive answer to this question, as people can participate in horse racing in a variety of ways.", + "A photo of a person doing Horse Race. This person would be sitting on a horse, holding the reins, and likely wearing a helmet.", + "A photo of a person doing Horse Race. A person doing horse race might look like they are having fun.", + "A photo of a person doing Horse Race. A person doing Horse_Race looks like somebody riding a horse in a race.", + "A photo of a person doing Horse Race. There is no definitive answer to this question as people can engage in horse racing in a variety of ways.", + "A photo of a person doing Horse Race. Person doing Horse_Race looks like a man riding a horse.", + "A photo of a person doing Horse Race. A person who is Horse_Racing may look like they are galloping on a horse, or they may look like they are on a horse that is running in a race.", + "A photo of a person doing Horse Race. A person doing Horse_Race may look like they are galloping on a horse, or they may look like they are running with a horse.", + "A photo of a person doing Horse Race. A person is riding a horse in a race.", + "A photo of a person doing Horse Race. An image of a person doing horse race can show the person riding the horse and competing against others.", + "A photo of a person doing Horse Race. The image is of a person racing a horse on a track.", + "A photo of a person doing Horse Race. .", + "A photo of a person doing Horse Race. This image shows a person riding a horse in a horse race.", + "A photo of a person doing Horse Race. The image is of a person riding a horse in a race.", + "A photo of a person doing Horse Race. One image from the internet of a person doing a horse race is a person standing on a horse, holding tight to the reins, and looking ahead at the track.", + "A photo of a person doing Horse Race. The image shows a person on a horse, racing down a dirt track.", + "A photo of a person doing Horse Race. The image is of a person riding a horse in a race.", + "A photo of a person doing Horse Race. A person is riding a horse at a horse race.", + "A photo of a person doing Horse Race. A person participates in a horse race.", + "A photo of a person doing Horse Race. Horse Race.", + "A photo of a person doing Horse Race. A person ishorseback riding during a horse race.", + "A photo of a person doing Horse Race. A person is doing a horse race.", + "A photo of a person doing Horse Race. The person is doing the Horse_Race in the middle of the race track.", + "A photo of a person doing Horse Race. A person is shown horseback riding in a race.", + "A photo of a person doing Horse Race. The person is doing a horse race.", + "A photo of a person doing Horse Race. A person dressed in traditional horse-racing gear competes in a horse race.", + "A photo of a person doing Horse Race. William Buick on Cracksman wins the Champion Stakes at Ascot Racecourse.", + "A photo of a person doing Horse Race. The person is doing horse race." + ], + "Horse Riding": [ + "A photo of a person doing Horse Riding. A person doing horse riding looks like they are having fun and enjoying themselves.", + "A photo of a person doing Horse Riding. Horseback riders typically wear tight-fitting breeches or jeans, tall boots, and a polo shirt or western-style shirt.", + "A photo of a person doing Horse Riding. A person doing Horse_Riding looks like they are sitting on a horse and holding the reins in their hands.", + "A photo of a person doing Horse Riding. The person is sitting on a horse with their legs in stirrups.", + "A photo of a person doing Horse Riding. This person is sitting on a horse, holding the reins in their hands, and directing the horse with their body.", + "A photo of a person doing Horse Riding. A person doing horse riding looks like they are sitting on a horse, holding the reins, and often wearing a helmet.", + "A photo of a person doing Horse Riding. The person looks like they are sitting on a horse and holding the reins.", + "A photo of a person doing Horse Riding. The person sitting on the horse is called the rider.", + "A photo of a person doing Horse Riding. A person doing horse riding looks like they are sitting on a horse while holding the reins.", + "A photo of a person doing Horse Riding. If someone is doing horse riding, they will be sitting on top of a horse, holding the reins in their hands.", + "A photo of a person doing Horse Riding. If a person is doing horse riding, they will be mounted on a horse, and will be using a saddle and stirrups.", + "A photo of a person doing Horse Riding. The person is likely to be wearing a helmet, boots, and other protective gear.", + "A photo of a person doing Horse Riding. The person will be wearing a helmet, have a saddled horse, and will be holding reins.", + "A photo of a person doing Horse Riding. The person is sitting on a horse, holding the horse's reins in their hands.", + "A photo of a person doing Horse Riding. A person doing horse riding typically wears equestrian gear, including a helmet, boots, and a riding crop.", + "A photo of a person doing Horse Riding. Horse riding can be identified by someone who is sitting on a horse with their legs in the stirrups, holding the reins in their hands.", + "A photo of a person doing Horse Riding. The person will be dressed in traditional horse riding attire, which includes a helmet, boots, and a breeches.", + "A photo of a person doing Horse Riding. Some tell-tale signs that a person is horseback riding are as follows: they will be wearing a helmet, have their hair tied back, be wearing boots, and be sitting in a saddle.", + "A photo of a person doing Horse Riding. Horse_Riding can be identified by a few key elements.", + "A photo of a person doing Horse Riding. The person will be wearing a helmet and will be sitting on a horse.", + "A photo of a person doing Horse Riding. There is no one definitive answer to this question.", + "A photo of a person doing Horse Riding. The person looks like they are sitting on the horse and holding the reins.", + "A photo of a person doing Horse Riding. The person looks like they are sitting on a horse and holding the reins.", + "A photo of a person doing Horse Riding. This is a difficult question to answer as it depends on the person and the horse.", + "A photo of a person doing Horse Riding. A person doing horse riding looks like they are sitting on a horse and holding the horse's reins.", + "A photo of a person doing Horse Riding. People doing horse riding look like they are having a lot of fun.", + "A photo of a person doing Horse Riding. A person doing horse riding looks like they are sitting on top of a horse and holding the reigns.", + "A photo of a person doing Horse Riding. A person doing horse riding looks like someone who is sitting on a horse and using their legs and hands to hold onto the horse while the horse moves.", + "A photo of a person doing Horse Riding. When a person is horse riding, they will be sitting on top of the horse in an upright position.", + "A photo of a person doing Horse Riding. A person doing Horse_Riding looks like they are sitting on a horse and holding the reins.", + "A photo of a person doing Horse Riding. This image is of a person doing horse riding.", + "A photo of a person doing Horse Riding. The image is of a person horseback riding through a wooded area.", + "A photo of a person doing Horse Riding. The image depicts a woman riding a horse on a beach.", + "A photo of a person doing Horse Riding. The image is of a young woman in a field, wearing a helmet and clutching the reins of a large horse.", + "A photo of a person doing Horse Riding. The image is of a person riding a horse on a trail.", + "A photo of a person doing Horse Riding. This image is of a woman horseback riding through a sun-dappled forest.", + "A photo of a person doing Horse Riding. In this image, a person is horseback riding on a sandy beach.", + "A photo of a person doing Horse Riding. The image is of a person riding a horse in a arena.", + "A photo of a person doing Horse Riding. I saw an image on the internet of a person Horse_Riding.", + "A photo of a person doing Horse Riding. This image is of a person doing horse riding.", + "A photo of a person doing Horse Riding. This person is Horse_Riding.", + "A photo of a person doing Horse Riding. A person out horseback riding on a beautiful day.", + "A photo of a person doing Horse Riding. The person in the image is Horse_Riding through a beautiful landscape.", + "A photo of a person doing Horse Riding. The person in the image is horseback riding in a park.", + "A photo of a person doing Horse Riding. A person horseback riding through a wooded area.", + "A photo of a person doing Horse Riding. This person is horse riding in a beautiful setting.", + "A photo of a person doing Horse Riding. A young woman in a helmet and riding gear is trotting on a horse in an outdoor arena.", + "A photo of a person doing Horse Riding. Horse riding is a great way to enjoy the outdoors and bond with nature.", + "A photo of a person doing Horse Riding. A woman out for a ride on her horse on a beautiful day.", + "A photo of a person doing Horse Riding. The person in the image is horseback riding." + ], + "Hula Hoop": [ + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like a person spinning a hoop around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_hoop looks like someone spinning a ring around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula Hoop typically stands with their feet hip-width apart and the Hula Hoop around their waist.", + "A photo of a person doing Hula Hoop. When a person is hula hooping, they look like they are dancing with a ring around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like they are rotating their hips in a circular motion while holding a hoop around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like a person standing with their feet hip-width apart, holding a hula hoop around their waist, and moving their hips in a circular motion.", + "A photo of a person doing Hula Hoop. The person stands with their feet hip-width apart and extends their arms out to their sides.", + "A photo of a person doing Hula Hoop. When someone is doing hula hoop, they look like they are holding a circular object in their hands and moving their hips in a circular motion.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like they are dancing with a hoop around their waist.", + "A photo of a person doing Hula Hoop. A person Doing Hula_Hoop looks like a person with a Hula_Hoop around their waist, twisting and moving their hips to keep the Hula_Hoop spinning.", + "A photo of a person doing Hula Hoop. If someone is doing a hula hoop, they will be holding a hoop around their waist and moving their hips in a circular motion.", + "A photo of a person doing Hula Hoop. The person will have their hips slightly tilted to one side and will be holding a hula hoop around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop can be identified by their circular movements and the use of a hoop.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop would have their hips moving in a circular motion.", + "A photo of a person doing Hula Hoop. The person would be standing with their feet shoulder width apart, and holding a hula hoop around their waist.", + "A photo of a person doing Hula Hoop. The person will be wearing a hula hoop around their waist and will be moving their hips in a circular motion.", + "A photo of a person doing Hula Hoop. The person may be barefoot or wearing sandals.", + "A photo of a person doing Hula Hoop. The person will be holding a hula hoop and will be moving their hips in a circular motion.", + "A photo of a person doing Hula Hoop. There are a few ways to identify a person doing hula hoop.", + "A photo of a person doing Hula Hoop. The person will be standing with their legs slightly apart and holding a hula hoop around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like someone who is spinning a hoop around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like a person spinning a Hula_Hoop around their waist.", + "A photo of a person doing Hula Hoop. There is no definitive answer to this question as everyone hula hooping looks different.", + "A photo of a person doing Hula Hoop. A person doing the hula hoop looks like they are dancing with a circular object around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like a person holding a hoop and moving their hips in a circular motion.", + "A photo of a person doing Hula Hoop. hoeing.", + "A photo of a person doing Hula Hoop. A person doing the hula hoop looks like they are spinning a large ring around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like they are dancing with a ring around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop looks like a person holding a Hula_Hoop and spinning it around their waist.", + "A photo of a person doing Hula Hoop. When a person is doing the hula hoop, they look like they are spinning a ring around their waist.", + "A photo of a person doing Hula Hoop. ingIn the image, a person is doing hula hooping while wearing a lei.", + "A photo of a person doing Hula Hoop. ingIn the image, a person is standing in a living room with a hula hoop around their waist.", + "A photo of a person doing Hula Hoop. ingThe image is of a woman wearing a brightly colored skirt and top, standing in a park with a hula hoop around her waist.", + "A photo of a person doing Hula Hoop. ingIn the image, a person is doing Hula Hooping in a park.", + "A photo of a person doing Hula Hoop. ingThe image is of a woman in a green dress hoop skirt, with a purple flower in her hair.", + "A photo of a person doing Hula Hoop. ingThe person is holding a colorful Hula_Hoop around their waist and spinning it around.", + "A photo of a person doing Hula Hoop. ingIn the image, a woman is standing in a grassy field with a hula hoop around her waist.", + "A photo of a person doing Hula Hoop. The person is spinning the Hula_Hoop around their waist.", + "A photo of a person doing Hula Hoop. ingIn the image, a person is standing with their legs slightly apart and their hands holding a Hula Hoop around their waist.", + "A photo of a person doing Hula Hoop. ingIn the image, a person is standing in a park with a large hula hoop around their waist.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop.", + "A photo of a person doing Hula Hoop. Person doing hula hoop.", + "A photo of a person doing Hula Hoop. A young woman smiling and standing outdoors while doing a Hula Hoop.", + "A photo of a person doing Hula Hoop. A woman doing hula-hoop at the park.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop.", + "A photo of a person doing Hula Hoop. The person in the image is doing Hula_Hoop.", + "A photo of a person doing Hula Hoop. A person hula hooping on a beach.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop.", + "A photo of a person doing Hula Hoop. A person doing Hula_Hoop." + ], + "Ice Dancing": [ + "A photo of a person doing Ice Dancing. Somebody doing ice dancing might look like they are figure skating, but often with less jumps and more intricate footwork.", + "A photo of a person doing Ice Dancing. Ice dancers move gracefully across the ice, performing complicated steps and lifts.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing looks like they are skating on ice and doing different dance moves.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing looks like they are skating on ice and doing different dance moves.", + "A photo of a person doing Ice Dancing. Most ice dancers skate relatively close to each other and maintain a good posture.", + "A photo of a person doing Ice Dancing. Skaters in Ice Dancing look like they are gliding across the ice while they perform dance moves.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing looks like they are skating on ice and doing different dance moves.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing looks like they are gracefully skating across the ice while performing various dance moves.", + "A photo of a person doing Ice Dancing. The person doing Ice_Dancing looks like they are moving around the ice in a very fluid and graceful manner.", + "A photo of a person doing Ice Dancing. The person looks like they are gliding across the ice.", + "A photo of a person doing Ice Dancing. You can identify a person doing Ice_Dancing by their clothing.", + "A photo of a person doing Ice Dancing. There are a few ways to identify a person doing ice dancing.", + "A photo of a person doing Ice Dancing. When a person is ice dancing, they will usually be wearing tight clothing and will be moving smoothly across the ice.", + "A photo of a person doing Ice Dancing. There are a few ways to identify a person doing Ice_Dancing.", + "A photo of a person doing Ice Dancing. The person will be skating on the ice with someone else and performing choreographed moves to music.", + "A photo of a person doing Ice Dancing. The person will be wearing ice skates and will be performing various dance moves on the ice.", + "A photo of a person doing Ice Dancing. There are many ways to identify a person doing ice dancing.", + "A photo of a person doing Ice Dancing. They will be gliding across the ice with smooth, graceful movements.", + "A photo of a person doing Ice Dancing. The person will be on the ice wearing skates and will be performing a dance routine.", + "A photo of a person doing Ice Dancing. One way to identify someone doing ice dancing is by their clothing.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing looks like someone who is skating on ice and dancing at the same time.", + "A photo of a person doing Ice Dancing. Someone doing ice dancing looks like they are gliding across the ice while performing different dance moves.", + "A photo of a person doing Ice Dancing. A person doing Ice Dancing looks like they are gliding across the ice while performing dance moves.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing looks like they are gliding across the ice while performing various dance moves.", + "A photo of a person doing Ice Dancing. Assuming you are asking about the sport: Ice dancers are couples who skate together.", + "A photo of a person doing Ice Dancing. When a person is Ice Dancing, they look like they are gliding across the ice.", + "A photo of a person doing Ice Dancing. A person doing Ice Dancing looks like they are gliding across the ice while performing different dance moves.", + "A photo of a person doing Ice Dancing. There is no definitive answer to this question since there are many different ways that people can do Ice_Dancing.", + "A photo of a person doing Ice Dancing. Since Ice Dancing is a competitive sport, the participants usually look like they are trying very hard to win.", + "A photo of a person doing Ice Dancing. Synchronized skating; juggling; ballroom dancing; ice hockey.", + "A photo of a person doing Ice Dancing. A person ice skating in an ice rink.", + "A photo of a person doing Ice Dancing. In the image, a person is ice dancing in a rink.", + "A photo of a person doing Ice Dancing. I couldn't find an image of a person doing Ice_Dancing from the internet.", + "A photo of a person doing Ice Dancing. In the image, a man and woman are Ice_Dancing together.", + "A photo of a person doing Ice Dancing. _In the image, a person is Ice Dancing in a competition.", + "A photo of a person doing Ice Dancing. This image is of a person Ice_Dancing in a competition.", + "A photo of a person doing Ice Dancing. The image is of a person Ice_Dancing in a competition.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing may be dressed in a special costume, and they may be performing on a slippery surface.", + "A photo of a person doing Ice Dancing. The image is of a person doing Ice_Dancing.", + "A photo of a person doing Ice Dancing. _The image shows a person doing Ice Dancing in a competition.", + "A photo of a person doing Ice Dancing. A person doing Ice_Dancing.", + "A photo of a person doing Ice Dancing. The person in this photo is practicing a move called the \"twizzle.", + "A photo of a person doing Ice Dancing. The person in the picture is Ice_Dancing.", + "A photo of a person doing Ice Dancing. This person is doing the Ice Dancy move.", + "A photo of a person doing Ice Dancing. The person in the picture is ice dancing.", + "A photo of a person doing Ice Dancing. A person skating in an ice dancing competition.", + "A photo of a person doing Ice Dancing. The person in the image is doing Ice Dancing, a type of competitive figure skating.", + "A photo of a person doing Ice Dancing. This person is enjoying a fun day of ice dancing!.", + "A photo of a person doing Ice Dancing. The person is smiling and looks happy.", + "A photo of a person doing Ice Dancing. This person is doing the Ice Dance, a figure skating discipline that combines elements of both single skating and pair skating." + ], + "Javelin Throw": [ + "A photo of a person doing Javelin Throw. A person doing Javelin_Throw looks like they are throwing a spear.", + "A photo of a person doing Javelin Throw. A person doing a javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. A person doing a javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. The person doing the javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. The person stands with the javelin in their hand, facing the target.", + "A photo of a person doing Javelin Throw. The person doing javelin throw looks like they are about to throw a javelin.", + "A photo of a person doing Javelin Throw. Javelin_Throw looks like a person holding a spear and throwing it as far as possible.", + "A photo of a person doing Javelin Throw. A person doing Javelin_Throw may look like they are running and then they will throw the javelin.", + "A photo of a person doing Javelin Throw. A person doing javelin throw looks like they are running with a spear in their hand and then they throw the spear as hard as they can.", + "A photo of a person doing Javelin Throw. When someone is doing the Javelin_Throw, they will have a javelin in their hand and will be running towards a throwing area.", + "A photo of a person doing Javelin Throw. In Javelin_Throw, the person will be standing with their right arm back, then they will bring it forward and release the javelin.", + "A photo of a person doing Javelin Throw. A person could be identified as doing the javelin throw if they were holding a javelin in their hand and threw it.", + "A photo of a person doing Javelin Throw. If someone is doing the javelin throw, they will have a long spear in their hand and will be throwing it forward.", + "A photo of a person doing Javelin Throw. The person will have a javelin in their hand and will be throwing it.", + "A photo of a person doing Javelin Throw. A person doing javelin_throw can be identified by their stance, which is usually a lunge with one foot in front of the other, and by the way they hold the javelin, which is usually with one hand near.", + "A photo of a person doing Javelin Throw. The person will be holding a javelin and will be throwing it forward.", + "A photo of a person doing Javelin Throw. A person doing Javelin_Throw will have a javelin in their hand, and will be throwing it.", + "A photo of a person doing Javelin Throw. The person doing Javelin_Throw has a spear in their hand and is running towards a throwing line.", + "A photo of a person doing Javelin Throw. If someone is Javelin_Throwing, they will have a Javelin in their hand and will be standing in an athletic stance.", + "A photo of a person doing Javelin Throw. The person will be holding a javelin in their hand and will be running towards a throwing area.", + "A photo of a person doing Javelin Throw. A person doing the javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. A person doing a javelin throw looks like they are about to throw a javelin.", + "A photo of a person doing Javelin Throw. A person doing Javelin_Throw looks like they are throwing a javelin.", + "A photo of a person doing Javelin Throw. A person doing javelin throw looks like they are about to throw a javelin.", + "A photo of a person doing Javelin Throw. A person doing the javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. A person doing a Javelin_Throw looks like they are throwing a spear.", + "A photo of a person doing Javelin Throw. A person doing javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. A person doing the javelin throw looks like they are about to throw a spear.", + "A photo of a person doing Javelin Throw. The person throwing the javelin will have their arm extended out in front of them, holding the javelin.", + "A photo of a person doing Javelin Throw. The person looks like they are about to throw a javelin.", + "A photo of a person doing Javelin Throw. I couldn't find an image of a person doing a javelin throw on the internet.", + "A photo of a person doing Javelin Throw. The image is of a person in mid-throw, with their arm extended and the javelin in hand.", + "A photo of a person doing Javelin Throw. In the image, a man is standing on a track with a javelin in his hand.", + "A photo of a person doing Javelin Throw. The person in the image is wearing a orange and white tracksuit with the javelin in their right hand.", + "A photo of a person doing Javelin Throw. The image is of a person doing a javelin throw.", + "A photo of a person doing Javelin Throw. In the image, a person is standing at the end of a runway with a spear in their hand.", + "A photo of a person doing Javelin Throw. The image is of a person in mid-throw, holding the javelin with one hand and extended fully forward.", + "A photo of a person doing Javelin Throw. An image of a person doing a javelin throw would show someone throwing a javelin as far as they can.", + "A photo of a person doing Javelin Throw. In the image, a person is standing with their right arm extended back, holding a javelin in their hand.", + "A photo of a person doing Javelin Throw. The person in the image is standing with their javelin in hand, ready to throw it.", + "A photo of a person doing Javelin Throw. Javelin Thrower in Action.", + "A photo of a person doing Javelin Throw. The javelin thrower is in full stride, poised to release the spear.", + "A photo of a person doing Javelin Throw. The person in the image is doing the javelin throw.", + "A photo of a person doing Javelin Throw. The person in the image is doing the javelin throw.", + "A photo of a person doing Javelin Throw. A person throws a javelin at a track and field event.", + "A photo of a person doing Javelin Throw. A person doing Javelin_Throw.", + "A photo of a person doing Javelin Throw. This person is doing the javelin throw, which is a track and field event where the goal is to throw a spear-like object as far as possible.", + "A photo of a person doing Javelin Throw. The athlete throws the javelin while running.", + "A photo of a person doing Javelin Throw. The person in the image is doing the javelin throw.", + "A photo of a person doing Javelin Throw. This person is doing the javelin throw." + ], + "Juggling Balls": [ + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls looks like they are trying to keep as many balls in the air as possible.", + "A photo of a person doing Juggling Balls. When someone is juggling balls, they look like they are trying to keep multiple balls in the air at the same time.", + "A photo of a person doing Juggling Balls. When a person is juggling balls, they look like they are throwing and catching balls in the air.", + "A photo of a person doing Juggling Balls. The person looks like they are concentrating and trying to keep all the balls in the air for as long as possible.", + "A photo of a person doing Juggling Balls. Assuming you mean a three ball juggle, the person would have one ball in each hand and one ball thrown up in the air.", + "A photo of a person doing Juggling Balls. A person who is juggling balls looks like they are tossing balls up in the air and catching them in a rhythmic pattern.", + "A photo of a person doing Juggling Balls. When someone is juggling balls, they look like they are tossing and catching balls in the air.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls looks like someone who is holding multiple balls in their hands and throwing them up into the air and catching them.", + "A photo of a person doing Juggling Balls. The person is holding two balls in each hand and throwing them up into the air and catching them.", + "A photo of a person doing Juggling Balls. The person looks like they are holding two balls in each hand and throwing them up into the air andcatching them.", + "A photo of a person doing Juggling Balls. If someone is doing Juggling_Balls, you will likely see them throwing and catching balls in the air.", + "A photo of a person doing Juggling Balls. If someone is doing Juggling_Balls, they will likely have balls in their hands and be throwing them into the air and catching them.", + "A photo of a person doing Juggling Balls. Some clues that a person is doing juggling balls are that they will have at least three balls, they will be throwing and catching the balls in the air, and they may have a pattern or routine that they are following.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls can be identified by their ability to keep multiple balls in the air at the same time.", + "A photo of a person doing Juggling Balls. If a person is doing Juggling_Balls, they will likely have balls in their hands and will be throwing them up into the air and catching them.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls can be identified by their clothing, props, and technique.", + "A photo of a person doing Juggling Balls. The person will be holding multiple balls in their hands and will be throwing them into the air and catching them.", + "A photo of a person doing Juggling Balls. If someone is juggling balls, they will usually have two or more balls in the air at the same time, and will be tossing them back and forth between their hands.", + "A photo of a person doing Juggling Balls. The person is likely to have balls in their hands and to be throwing them up and catching them.", + "A photo of a person doing Juggling Balls. If someone is juggling balls, they will usually have three balls in the air at the same time and will be tossing them back and forth between their hands.", + "A photo of a person doing Juggling Balls. When a person is juggling balls, they usually have three balls in their hands and they are throwing them up and catching them in succession.", + "A photo of a person doing Juggling Balls. A person juggling balls may look like they are playing with a lot of balls, or they may look like they are trying to keep a lot of balls in the air.", + "A photo of a person doing Juggling Balls. There is no one definitive answer to this question.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls looks like they are throwing balls up in the air and catching them.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls looks like they are holding one ball in each hand and throwing them up into the air and catching them.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls looks like they are holding two balls in each hand and throwing them in the air and catching them.", + "A photo of a person doing Juggling Balls. There is no one definitive answer to this question since people can juggle balls in a variety of ways, but generally speaking, a person doing this activity would have at least one ball in each hand and would be tossing them up and catching them.", + "A photo of a person doing Juggling Balls. A person doing Juggling_Balls looks like someone who is skillfully keeping multiple balls in the air at the same time.", + "A photo of a person doing Juggling Balls. A person who is juggling balls looks like they are throwing and catching balls in the air.", + "A photo of a person doing Juggling Balls. Most people doing juggling balls look like they are having fun and are concentrating on keeping the balls in the air.", + "A photo of a person doing Juggling Balls. In the image, there is a person dressed in all black with their face painted white.", + "A photo of a person doing Juggling Balls. The image is of a man with three balls in the air, juggling them expertly.", + "A photo of a person doing Juggling Balls. The image is of a man standing on a beach, juggling three balls.", + "A photo of a person doing Juggling Balls. The image is of a person standing on one leg while juggling three balls.", + "A photo of a person doing Juggling Balls. The image is of a person standing on a beach, juggling three balls.", + "A photo of a person doing Juggling Balls. An image from the internet of a person doing Juggling Balls would show someone throwing and catching balls in the air.", + "A photo of a person doing Juggling Balls. The image is of a person standing on a street corner, juggling three balls.", + "A photo of a person doing Juggling Balls. The image is of a man in a suit and tie, juggling three balls.", + "A photo of a person doing Juggling Balls. The image is of a person standing on a street corner, wearing brightly colored clothes and juggling three balls.", + "A photo of a person doing Juggling Balls. The image is of a man in a brightly colored shirt and pants juggling three balls.", + "A photo of a person doing Juggling Balls. A person juggling three balls in the air.", + "A photo of a person doing Juggling Balls. This person is doing Juggling Balls.", + "A photo of a person doing Juggling Balls. The juggler keeps the balls in the air.", + "A photo of a person doing Juggling Balls. The JugglerThis image shows a person performing the juggling balls circus trick.", + "A photo of a person doing Juggling Balls. A person performs a juggling act with three balls.", + "A photo of a person doing Juggling Balls. A person juggles balls in the air.", + "A photo of a person doing Juggling Balls. The JugglerThis image shows a person deftly juggling three balls in the air.", + "A photo of a person doing Juggling Balls. The juggler is keeping three balls in the air.", + "A photo of a person doing Juggling Balls. juggling balls.", + "A photo of a person doing Juggling Balls. Subject is juggling three balls in the air." + ], + "Jumping Jack": [ + "A photo of a person doing Jumping Jack. A person doing a jumping jack looks like they are jumping up with their legs spread apart and their arms in the air.", + "A photo of a person doing Jumping Jack. A person doing a Jumping Jack looks like they are jumping up with their feet spread wide apart and their arms going up over their head.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack looks like someone who is jumping up and down with their legs apart and their arms above their head.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack looks like a person standing up with their legs together and their arms at their sides and then jumping up and spreading their legs and their arms out to the sides and then returning to the original position.", + "A photo of a person doing Jumping Jack. A person jumping_jack looks like someone jumping with their arms and legs spread out.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack looks like a person jumping up and down with their legs and arms spread out.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack looks like a person who is jumping up and down with their legs spread out and their arms above their head.", + "A photo of a person doing Jumping Jack. _A person doing a jumping jack looks like they are extending their arms and legs outwards and upwards away from their body and then bringing them back in towards their body.", + "A photo of a person doing Jumping Jack. A person doing Jumping Jacks looks like someone who is jumping up and down with their legs spread apart and then coming back together.", + "A photo of a person doing Jumping Jack. A person doing Jumping Jack looks like they are jumping with their legs out and their arms out.", + "A photo of a person doing Jumping Jack. The person will be doing a jumping motion with the legs and arms outstretched.", + "A photo of a person doing Jumping Jack. The person is doing a jumping jack if they start in a standing position with their feet together and their hands at their sides, and then jump up, spreading their legs to be about shoulder width apart while simultaneously bringing their arms up over their head.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack can be identified by their arms and legs extended outwards and upwards away from their body, and their head tilted back.", + "A photo of a person doing Jumping Jack. The person's arms and legs are moving at the same time, and they are jumping up and down.", + "A photo of a person doing Jumping Jack. A person doing Jumping Jacks can be identified by their arms and legs moving simultaneously in an upward and outward motion, and then returning to the starting position.", + "A photo of a person doing Jumping Jack. The person will be jumping with their feet together and their arms above their head, and their hands will be clapping.", + "A photo of a person doing Jumping Jack. The person is doing a jumping jack if they start in a standing position with their feet together and their arms at their sides, and then jump up and spread their legs apart while simultaneously bringing their arms up over their head.", + "A photo of a person doing Jumping Jack. The person's arms and legs are spread out and they are jumping up and down.", + "A photo of a person doing Jumping Jack. The person will be jumping up and down with their arms and legs outstretched.", + "A photo of a person doing Jumping Jack. The person will be standing with their feet together and their arms at their sides.", + "A photo of a person doing Jumping Jack. When a person is doing a jumping jack, they start in a standing position with their feet together and their arms at their sides.", + "A photo of a person doing Jumping Jack. A person doing Jumping Jacks looks like someone who is',\n jumping up and down with their legs and arms spread out.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack typically looks like they are stretching their arms and legs out and then jumping up and down.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack looks like a person jumping up and down with their arms and legs spread out.", + "A photo of a person doing Jumping Jack. When a person is doing a jumping jack, they start in a standing position with their feet together and their hands at their sides.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jack looks like someone who is jumping up and down with their arms and legs outstretched.", + "A photo of a person doing Jumping Jack. A person doing Jumping_Jacks looks like someone who is jumping up and down with their arms and legs spread out.", + "A photo of a person doing Jumping Jack. A person doing a jumping jack looks like someone who is about to jump into the air with their legs spread apart and their arms above their head.", + "A photo of a person doing Jumping Jack. Jumping jacks are a type of calisthenics exercise.", + "A photo of a person doing Jumping Jack. When a person is doing a jumping jack, they start in a standing position with their feet together and their hands at their sides.", + "A photo of a person doing Jumping Jack. An image of a person doing Jumping Jacks would show someone with their legs and arms spread out, jumping up and down.", + "A photo of a person doing Jumping Jack. In the image, a person is doing a jumping jack.", + "A photo of a person doing Jumping Jack. The image is of a person doing a jumping jack.", + "A photo of a person doing Jumping Jack. The image is of a person doing jumping jacks in a park.", + "A photo of a person doing Jumping Jack. In the image, a person is standing with their feet together and their arms down at their sides.", + "A photo of a person doing Jumping Jack. An image from the internet of a person Jumping Jack is a person standing with their legs shoulder width apart and their arms at their sides.", + "A photo of a person doing Jumping Jack. The image is of a young woman doing a jumping jack exercise.", + "A photo of a person doing Jumping Jack. The image is of a young woman doing a jumping jack.", + "A photo of a person doing Jumping Jack. The image is of a person doing a jumping jack.", + "A photo of a person doing Jumping Jack. In the image, a person is standing with their feet together and their arms at their sides.", + "A photo of a person doing Jumping Jack. A person doing jumping jacks.", + "A photo of a person doing Jumping Jack. The person in the image is doing a jumping jack exercise.", + "A photo of a person doing Jumping Jack. A person is doing a jumping jack.", + "A photo of a person doing Jumping Jack. The person in the photo is doing a jumping jack.", + "A photo of a person doing Jumping Jack. The person in the image is doing a jumping jack.", + "A photo of a person doing Jumping Jack. \"The person is doing a jumping jack.", + "A photo of a person doing Jumping Jack. \"A person doing jumping jacks.", + "A photo of a person doing Jumping Jack. The person in the image is performing a jumping jack exercise.", + "A photo of a person doing Jumping Jack. The person in the image is doing a jumping jack exercise.", + "A photo of a person doing Jumping Jack. This person is doing jumping jacks." + ], + "Jump Rope": [ + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like they are skipping rope.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like someone who is skipping rope.", + "A photo of a person doing Jump Rope. When someone is jump roping, they are holding a rope in each hand and jump over the rope as it swings under their feet.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope might look like they are skipping rope.", + "A photo of a person doing Jump Rope. I imagine a person doing Jump_Rope would look like they are skipping rope.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like they are skipping rope.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope would look like someone who is skipping rope.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope might look like they are skipping rope, with one foot consistently jumping over the rope as it swings around them.", + "A photo of a person doing Jump Rope. When someone is jump roping, they hold a rope in each hand and jump over the rope as it swings underneath them.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like someone who is skipping rope.", + "A photo of a person doing Jump Rope. The person will be holding a rope in their hands and be jumping over it.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope can be identified by their jumping rope movements.", + "A photo of a person doing Jump Rope. The person is holding a rope in each hand and is using them to jump over the rope on the ground.", + "A photo of a person doing Jump Rope. The person will be holding a rope in their hands and jumping over it as it swings under their feet.", + "A photo of a person doing Jump Rope. When someone is Jump_Roping, they will be holding a rope in their hands and jumping over the rope as it passes under their feet.", + "A photo of a person doing Jump Rope. The person is using a rope to jump up and down.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope can be identified by their jumping motion and the rope that they are using.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope can be identified by their jumping and rope-swinging motions.", + "A photo of a person doing Jump Rope. The person will be holding a rope in each hand and jumping over the rope as it goes under their feet.", + "A photo of a person doing Jump Rope. The person will be holding a rope in their hands and will be jumping over it.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like a person jumping rope.", + "A photo of a person doing Jump Rope. When someone is jump roping, they hold an end of the rope in each hand and swing the rope around their body.", + "A photo of a person doing Jump Rope. When a person is jump roping, they will be holding the ends of the rope in their hands, and swinging the rope around their body.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like a person jumping up and down with a rope in their hands.", + "A photo of a person doing Jump Rope. A person doing jump rope looks like someone who is skipping rope.", + "A photo of a person doing Jump Rope. Jumping rope looks like a person is jumping up and down with a rope in their hands.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like a person with their feet together, jumping up and down, and swinging their arms in a circular motion.", + "A photo of a person doing Jump Rope. A person jumping rope looks like someone jumping up and down with a rope in their hands.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like somebody skipping rope.", + "A photo of a person doing Jump Rope. Someone jumping rope looks like they are skipping with a rope.", + "A photo of a person doing Jump Rope. The image is of a young girl, maybe eight years old, jumping rope in a park.", + "A photo of a person doing Jump Rope. The image is of a young girl, around 6 or 7 years old, doing jump rope in her backyard.", + "A photo of a person doing Jump Rope. A young girl is jumping rope in a park.", + "A photo of a person doing Jump Rope. In the image, a young girl is doing Jump_Rope in a park.", + "A photo of a person doing Jump Rope. The image is of a person doing Jump_Rope.", + "A photo of a person doing Jump Rope. A person doing Jump_Rope looks like they are having fun.", + "A photo of a person doing Jump Rope. A person is doing a jump rope activity with a long rope.", + "A photo of a person doing Jump Rope. Assuming you would like an image of a person doing jumping rope: The image is of a woman jumping rope outdoors.", + "A photo of a person doing Jump Rope. In the image, a young African American girl is jumping rope on a sidewalk.", + "A photo of a person doing Jump Rope. The image is of a girl jumping rope.", + "A photo of a person doing Jump Rope. The person in the image is doing the jump rope exercise.", + "A photo of a person doing Jump Rope. A person is doing Jump_RopeA caption of an image of a person doing Jump_Rope:The person is doing Jump_Rope while holding the rope in their hands.", + "A photo of a person doing Jump Rope. A person doing a jump rope workout.", + "A photo of a person doing Jump Rope. A girl jumping rope outdoors.", + "A photo of a person doing Jump Rope. The person in the picture is jumping rope.", + "A photo of a person doing Jump Rope. The person in the picture is doing Jump_Rope.", + "A photo of a person doing Jump Rope. A person is doing Jump_RopeA person is doing Jump_Rope while wearing a blue shirt and blue shorts.", + "A photo of a person doing Jump Rope. The person in the picture is doing Jump_Rope.", + "A photo of a person doing Jump Rope. A person jumps rope in a park.", + "A photo of a person doing Jump Rope. Person doing jump rope." + ], + "Kayaking": [ + "A photo of a person doing Kayaking. A person doing kayaking can be seen paddling on a kayak in a lake or river.", + "A photo of a person doing Kayaking. Wearing a life jacket, a person kayaks with a double-bladed paddle, using body movement to rotate the craft on the water so they can move in a desired direction.", + "A photo of a person doing Kayaking. kayaking looks like a person in a kayak on a river or lake, using a paddle to move through the water.", + "A photo of a person doing Kayaking. A person doing kayaking looks like they are paddling a small boat through the water using a kayak paddle.", + "A photo of a person doing Kayaking. They will be wearing a kayaking helmet and life jacket.", + "A photo of a person doing Kayaking. A person doing kayaking looks like they are in a small boat, paddling with a paddle in each hand.", + "A photo of a person doing Kayaking. When someone is kayaking, they are sitting in a small boat with a double-bladed paddle.", + "A photo of a person doing Kayaking. A person doing kayaking looks like someone sitting in a small boat, paddling with a double-sided paddle to move through the water.", + "A photo of a person doing Kayaking. A person kayaking generally looks like they are having a great time.", + "A photo of a person doing Kayaking. A person doing Kayaking looks like they are sitting in a small boat, using a paddle to move through the water.", + "A photo of a person doing Kayaking. If someone is wearing a wet suit and is sitting in a kayak in the water, they are likely doing kayaking.", + "A photo of a person doing Kayaking. A person doing kayaking can be identified by their kayak and paddles.", + "A photo of a person doing Kayaking. This person has a kayak, a paddle, and a life jacket.", + "A photo of a person doing Kayaking. There are many ways to identify a person doing kayaking.", + "A photo of a person doing Kayaking. Some people refer to kayaking as \" paddling.", + "A photo of a person doing Kayaking. A person doing kayaking can be identified by their kayaking equipment, which includes a kayak, a paddle, and a personal flotation device.", + "A photo of a person doing Kayaking. There are many ways to identify a person doing kayaking.", + "A photo of a person doing Kayaking. It can be difficult to identify someone who is kayaking because there is no definitive uniform or set of gear that all kayakers use.", + "A photo of a person doing Kayaking. Kayakers can be identified by their kayaks, which are long, narrow boats that are pointed at both the front and the back.", + "A photo of a person doing Kayaking. You can identify a person doing kayaking by their kayaking equipment, which includes a kayak, a paddle, and a life jacket.", + "A photo of a person doing Kayaking. A person kayaking looks like they are rowing a boat with their feet.", + "A photo of a person doing Kayaking. A person Kayaking looks like they are sitting in a boat that is floating in water.", + "A photo of a person doing Kayaking. A person doing kayaking looks like they are sitting in a small boat with a paddle in their hand.", + "A photo of a person doing Kayaking. A person doing kayaking looks like they are sitting in a small boat that is paddled with a double-bladed paddle.", + "A photo of a person doing Kayaking. Kayakers typically wear tight fitting clothing so that they do not get caught on anything in the water.", + "A photo of a person doing Kayaking. A person doing kayaking looks like they are sitting in a small boat and paddling with a paddle in their hands.", + "A photo of a person doing Kayaking. When someone is kayaking, they look like they are sitting in a small boat with a paddle in their hands, using the paddle to propel themselves through the water.", + "A photo of a person doing Kayaking. A person doing kayaking looks like they are in a small boat paddling with a paddle in their hand.", + "A photo of a person doing Kayaking. A person indulging in kayaking would be donning a life jacket and a helmet for safety.", + "A photo of a person doing Kayaking. A person kayaking looks like someone sitting in a small boat with a paddle, using the paddle to propel themselves through the water.", + "A photo of a person doing Kayaking. I found an image of a person doing kayaking on a river.", + "A photo of a person doing Kayaking. In the image, the person is sitting in a kayak in the water.", + "A photo of a person doing Kayaking. In the image, a person is kayaking down a river.", + "A photo of a person doing Kayaking. The individual is wearing a light blue kayaking uniform with a white helmet.", + "A photo of a person doing Kayaking. In the image, a person is Kayaking down a river.", + "A photo of a person doing Kayaking. In the image, a person is doing kayaking in a river.", + "A photo of a person doing Kayaking. The image is of a person in a kayak on a lake.", + "A photo of a person doing Kayaking. The image is of a person in a kayak paddling through a body of water.", + "A photo of a person doing Kayaking. The image is of a person in a kayak on a lake.", + "A photo of a person doing Kayaking. The image is of a person in a kayak on a river.", + "A photo of a person doing Kayaking. The person in the photo is paddle boarding on Lake Michigan.", + "A photo of a person doing Kayaking. \"I had so much fun kayaking on the river today!\".", + "A photo of a person doing Kayaking. A person kayaks down a river, surrounded by trees and mountains.", + "A photo of a person doing Kayaking. The person in the photo is enjoying a sunny day out kayaking on the water.", + "A photo of a person doing Kayaking. Get out on the water and enjoy the peacefulness of kayaking.", + "A photo of a person doing Kayaking. The caption reads, \"Adventure is out there!\" The image shows a person in a kayak paddling through a body of water with mountains in the distance.", + "A photo of a person doing Kayaking. A person kayaks on a river surrounded by mountains.", + "A photo of a person doing Kayaking. The thrill-seeker takes on the rapids in an adrenaline-pumping kayak race.", + "A photo of a person doing Kayaking. A person enjoying a day of kayaking on a calm river.", + "A photo of a person doing Kayaking. A person is seen kayaking on a river with mountains in the distance." + ], + "Knitting": [ + "A photo of a person doing Knitting. A person doing knitting typically looks like they are concentrating on their work, and their hands are moving quickly and smoothly as they create their stitches.", + "A photo of a person doing Knitting. A person doing knitting generally looks like they are concentrated on their work, and their needles.", + "A photo of a person doing Knitting. The person looks like they are holding two needles and wrapping yarn around the needles.", + "A photo of a person doing Knitting. The person looks like they are holding two needles and have a piece of string connecting the needles.", + "A photo of a person doing Knitting. A person doing knitting typically looks like they are concentrated and focused on their work.", + "A photo of a person doing Knitting. A person knitting looks like they are using two needles to loop yarn together to create a garment.", + "A photo of a person doing Knitting. About as stereotypical as one could imagine: an old woman huddled over a ball of yarn, clicking metal needles in a rhythmic fashion.", + "A photo of a person doing Knitting. A person doing knitting typically looks like they are holding two needles and some yarn, and they are moving the needles in a specific pattern to create a fabric.", + "A photo of a person doing Knitting. A person doing knitting looks like they are carefully and methodically moving their hands in a pattern to create a knitted item.", + "A photo of a person doing Knitting. A person doing knitting looks like they are using two needles to create a fabric by interlocking loops of yarn.", + "A photo of a person doing Knitting. If someone is knitting, they will have a ball of yarn and needles.", + "A photo of a person doing Knitting. The person is likely to be sitting down with yarn and needles.", + "A photo of a person doing Knitting. A person doing knitting is typically holding two needles and yarn, and is working the yarn into a pattern on the needles.", + "A photo of a person doing Knitting. Some people might wear a telltale article of clothing, like a sweater they knit themselves.", + "A photo of a person doing Knitting. If someone is knitting, you can usually tell by the way they are holding two needles and some yarn.", + "A photo of a person doing Knitting. By the way they are holding their needles and the yarn.", + "A photo of a person doing Knitting. There are a few ways to identify a person who is knitting.", + "A photo of a person doing Knitting. A person doing knitting may have yarn and needles with them and be working on a project.", + "A photo of a person doing Knitting. The person would likely be holding two knitting needles and some yarn, and would be moving the needles in a pattern to create the fabric.", + "A photo of a person doing Knitting. often has needles and wool with them, and may be working on a project at any time.", + "A photo of a person doing Knitting. A person who is knitting may be sitting in a chair with their legs crossed, or they may be standing up.", + "A photo of a person doing Knitting. A person doing Knitting looks like someone who is holding two needles and some yarn and is moving the needles in a specific patterns to create a fabric.", + "A photo of a person doing Knitting. A person doing knitting looks like they are holding two needles and some yarn, and they are moving the needles in a specific pattern to create a garment or other item.", + "A photo of a person doing Knitting. A person doing knitting may look like they are trying to make a rope out of string.", + "A photo of a person doing Knitting. A person doing knitting looks like they are concentrating on their work and their hands are moving quickly.", + "A photo of a person doing Knitting. A person doing knitting typically holds one needle in each hand and has a skein of yarn wrapped around their neck.", + "A photo of a person doing Knitting. A person doing Knitting looks like they are using two needles to create a fabric by interlocking loops of yarn.", + "A photo of a person doing Knitting. There is no one definitive answer to this question, as there are many different ways to knit.", + "A photo of a person doing Knitting. A person doing knitting typically looks like they are concentrating on their work and might have a strand of yarn wrapped around their fingers.", + "A photo of a person doing Knitting. A person doing knitting typically looks like they are concentrating and working with their hands.", + "A photo of a person doing Knitting. In the image, a person is sitting in a chair with a ball of yarn and a long, thin knitting needle in their hands.", + "A photo of a person doing Knitting. In the image, a woman is sitting in a chair with a Knitting project on her lap.", + "A photo of a person doing Knitting. This image from the internet is of a lady doing knitting.", + "A photo of a person doing Knitting. The image is of an older woman with white hair, sitting in a chair with a Knitting needle and a ball of yarn.", + "A photo of a person doing Knitting. The image is of a woman knitting a scarf.", + "A photo of a person doing Knitting. In the image, a person is sitting on a green armchair with a blue blanket over their legs.", + "A photo of a person doing Knitting. In the image, a woman is sitting in a chair with a large ball of yarn in her lap.", + "A photo of a person doing Knitting. In the image, a person is sitting on a chair with a ball of yarn in their lap.", + "A photo of a person doing Knitting. The image is of a woman sitting in a chair with a knitting project in her lap.", + "A photo of a person doing Knitting. In the image, a person is sitting in a chair with a ball of yarn in their lap.", + "A photo of a person doing Knitting. A woman knits a scarf.", + "A photo of a person doing Knitting. This person is knitting a scarf.", + "A photo of a person doing Knitting. A person knitting a scarf.", + "A photo of a person doing Knitting. A person is shown knitting a scarf.", + "A photo of a person doing Knitting. A woman knitting a scarf.", + "A photo of a person doing Knitting. A woman knits a sweater.", + "A photo of a person doing Knitting. A woman smiling and looking down at her knitting project.", + "A photo of a person doing Knitting. This person is knitting a scarf.", + "A photo of a person doing Knitting. This person is knitting a scarf.", + "A photo of a person doing Knitting. An older woman knitting a scarf while watching television." + ], + "Long Jump": [ + "A photo of a person doing Long Jump. A person doing long jump looks like they are running and then jumping as far as they can.", + "A photo of a person doing Long Jump. A person doing long jump looks like they are sprinting and then they jump into the air and try to go as far as possible.", + "A photo of a person doing Long Jump. Athletes sprint down a runway and jump as far as they can into a sandpit.", + "A photo of a person doing Long Jump. When a person is doing the long jump, they start by running towards the jumping area.", + "A photo of a person doing Long Jump. In the long jump, the competitor will start from a standing position and will run down a runway before planting their feet in the jumping pit.", + "A photo of a person doing Long Jump. A person doing Long_Jump looks like they are trying to jump as far as they possibly can.", + "A photo of a person doing Long Jump. In the long jump, the athlete sprints down the track and leaps as far as possible into a sand pit.", + "A photo of a person doing Long Jump. A person doing a long jump looks like they are about to take a running jump, but instead of taking off with both feet at the same time, they take off with one foot, and land on the other foot.", + "A photo of a person doing Long Jump. A person doing Long_Jump looks like they are running and then jumping as far as they can.", + "A photo of a person doing Long Jump. When a person tries to do a Long Jump, they end up looking like they are running and then jump as far as they can.", + "A photo of a person doing Long Jump. The person will be in the air, with their legs extended, and their arms reaching up.", + "A photo of a person doing Long Jump. The person will be in mid-air with their legs and arms outstretched.", + "A photo of a person doing Long Jump. The person will be in mid-air with their feet pointing upward and their arms stretched out to the sides.", + "A photo of a person doing Long Jump. One can identify a person doing long jump by their position in mid-air.", + "A photo of a person doing Long Jump. If someone is doing a Long Jump, they will be in a running start and will be jumping horizontally through the air with both feet together.", + "A photo of a person doing Long Jump. The person will be in a running start, and will take off and land in a sand pit.", + "A photo of a person doing Long Jump. A person doing a Long Jump can be identified by their position in the air.", + "A photo of a person doing Long Jump. A person doing Long_Jump can be identified by their form.", + "A photo of a person doing Long Jump. In Long_Jump, a person usually bends their knees before taking off.", + "A photo of a person doing Long Jump. The person will be running and then jumping as far as possible.", + "A photo of a person doing Long Jump. A person doing a long jump looks like they are running and then propelling themselves forward through the air with their legs extended.", + "A photo of a person doing Long Jump. A person performing a Long Jump looks like they are running and jumping as far as they can.", + "A photo of a person doing Long Jump. While a person is performing a Long Jump, they will take a running start and jump as far as they can.", + "A photo of a person doing Long Jump. In the air, a person doing a long jump looks like they are trying to touch their feet to their buttocks.", + "A photo of a person doing Long Jump. A person doing Long_Jump looks like they are running and then jumping as far as they can.", + "A photo of a person doing Long Jump. A person doing Long Jump looks like they are running and jumping in the air.", + "A photo of a person doing Long Jump. A person doing a Long_Jump looks like they are running and then they jump and try to go as far as they can.", + "A photo of a person doing Long Jump. A person doing Long_Jump will be in a crouched position with their feet behind them, ready to spring forward.", + "A photo of a person doing Long Jump. A person doing Long_Jump looks like they are about to jump really far.", + "A photo of a person doing Long Jump. A person doing Long_Jump looks like a person jumping.", + "A photo of a person doing Long Jump. In the image, a person is doing a Long Jump.", + "A photo of a person doing Long Jump. A person is doing the long jump.", + "A photo of a person doing Long Jump. An image surrounds a person in a blue suit with a number on the back in midair, doing a flip during a Long Jump.", + "A photo of a person doing Long Jump. An image from the internet of a person doing the Long Jump would show someone in the air, stretched out with their feet reaching forward, and their arms back.", + "A photo of a person doing Long Jump. The image is of a person in mid-air, performing a long jump.", + "A photo of a person doing Long Jump. The image is of a person in mid-air, their legs and arms extended out in front of them as they travel through the air.", + "A photo of a person doing Long Jump. A person is doing a long jump.", + "A photo of a person doing Long Jump. The image is of a person mid-jump, with their legs and arms extended.", + "A photo of a person doing Long Jump. The image is of a person in mid-air performing a long jump.", + "A photo of a person doing Long Jump. An image of a person doing a Long Jump would show them in the air, with their legs and arms extended, reaching for the sand pit ahead of them.", + "A photo of a person doing Long Jump. The jumper is at the peak of their jump, and their body is completely extended.", + "A photo of a person doing Long Jump. The person in the photo is doing the Long Jump, a popular track and field event.", + "A photo of a person doing Long Jump. The person in the photo is doing a Long Jump.", + "A photo of a person doing Long Jump. This person is doing the Long Jump.", + "A photo of a person doing Long Jump. Long JumpThe person in the photo is performing a long jump.", + "A photo of a person doing Long Jump. World record holder in the long jump, Mike Powell, clears the bar at 29 feet, 4 1/2 inches during the 1991 World Championships in Tokyo.", + "A photo of a person doing Long Jump. The person in the picture is doing Long Jump.", + "A photo of a person doing Long Jump. This person is attempting a Long Jump.", + "A photo of a person doing Long Jump. The person in the photo is in midair, caught in the peak of their jump.", + "A photo of a person doing Long Jump. The person in the photo is doing a Long Jump." + ], + "Lunges": [ + "A photo of a person doing Lunges. When someone is doing lunges, they are usually standing with their feet shoulder-width apart and their hands on their hips.", + "A photo of a person doing Lunges. When a person is doing a lunge, they appear to be walking forward, but with one leg stretched out behind them and bent at the knee.", + "A photo of a person doing Lunges. When someone is doing lunges, they will be standing with their feet together and then stepping forward with one leg and lowering their body until their back knee is almost touching the ground.", + "A photo of a person doing Lunges. Lunges look like a person taking a giant step forward with one leg and then lowering their hip until their back leg is parallel to the ground.", + "A photo of a person doing Lunges. A person doing lungs looks like they are bent over at a 90 degree angle with one leg in front of them and the other leg behind them.", + "A photo of a person doing Lunges. A person doing lunges will have one foot in front of the other with a bent knee, and the other leg behind with a straight knee.", + "A photo of a person doing Lunges. A person doing Lunges looks like they are squatting with one leg in front of them.", + "A photo of a person doing Lunges. A person doing lunges looks like they are doing a split, but with their back leg bent at the knee and their front leg straight.", + "A photo of a person doing Lunges. When someone is doing lunges, they are usually standing with their feet together and then taking a large step forward with one leg and bending that knee until their thigh is parallel with the ground.", + "A photo of a person doing Lunges. When doing a lunge, a person looks like they are taking a large step forward with one leg and then bending that knee so that their thigh is parallel to the ground.", + "A photo of a person doing Lunges. If a person is doing lunges, they will be standing with one leg forward and one leg back, and bending their knees so that their front leg is at a 90 degree angle and their back leg is at a 45 degree angle.", + "A photo of a person doing Lunges. A person doing lunges will have one leg extended behind them and one leg bent in front of them, with their body lowered towards the ground.", + "A photo of a person doing Lunges. Their legs will be in a split position, with one in front of the other, and they will be lowering their body towards the ground.", + "A photo of a person doing Lunges. When a person is doing lunges, they will have one leg in front of the other and will be bending at the knee.", + "A photo of a person doing Lunges. What defines a lunge is the position of the feet.", + "A photo of a person doing Lunges. This person may have their feet shoulder-width apart, with their knees bent and their hips pushed back.", + "A photo of a person doing Lunges. If a person is doing lunges, they will be standing with one leg in front of the other, and bending at the knee to lower their body.", + "A photo of a person doing Lunges. The person's legs will be bent at the knee and they will be leaning forward.", + "A photo of a person doing Lunges. When a person is doing lunges, they will be standing with one leg forward and one leg back, and then bending both knees to lower their body toward the ground.", + "A photo of a person doing Lunges. A person doing lunges will have one leg forward and one leg back, and will be bent at the knee with their hips and shoulders squared.", + "A photo of a person doing Lunges. When done correctly, lunges look like a person is taking a large step forward with one leg and bending their knee so that their thigh is parallel to the ground.", + "A photo of a person doing Lunges. When doing a lunge, a person looks like they are taking a large step forward with one leg, and then lowering their body down until their back knee is almost touching the ground.", + "A photo of a person doing Lunges. A person doing Lunges looks like they are squatting down with one leg forward and the other leg back, and then standing back up.", + "A photo of a person doing Lunges. When doing a lunge, a person looks like they are taking a large step forward with one leg, and bending their back leg so that their thigh is parallel to the ground.", + "A photo of a person doing Lunges. When doing a lunge, a person looks like they are taking a large step forward with one leg, and bending the other leg behind them.", + "A photo of a person doing Lunges. A person doing lunges will look like they are walking in place, but their back knee will be bent and almost touching the floor.", + "A photo of a person doing Lunges. When doing lunges, a person looks like they are performing a mini squat, and then taking a large step forward with one leg, and lowering their body until their back leg is almost touching the ground.", + "A photo of a person doing Lunges. A person doing lunges will look like they are walking in place, but their back leg will be bent at the knee and their front leg will be straight.", + "A photo of a person doing Lunges. When a person is doing lunges, they will be standing with their feet shoulder-width apart.", + "A photo of a person doing Lunges. A person doing lunges will look like they are walking forwards, but with their legs spread wide apart.", + "A photo of a person doing Lunges. The image is of a person doing lunges with their right leg forward.", + "A photo of a person doing Lunges. A person doing lunges typically has their feet shoulder-width apart, with one leg in front of the other.", + "A photo of a person doing Lunges. This image is of a person doing lunges with proper form.", + "A photo of a person doing Lunges. person doing lunges\nImage of a person doing lunges with proper form.", + "A photo of a person doing Lunges. The image is of a person doing a lunge with their right leg forward.", + "A photo of a person doing Lunges. The image is of a young woman doing a lunge exercise with a weight in each hand.", + "A photo of a person doing Lunges. The person is standing with their feet spread apart, and they are lowering their body down towards the ground.", + "A photo of a person doing Lunges. The image is of a woman doing lunges in a gym.", + "A photo of a person doing Lunges. one person with long hair is doing a lunge on a colorful mat.", + "A photo of a person doing Lunges. The person is standing with one leg in front of the other, and both knees are bent at approximately a 90 degree angle.", + "A photo of a person doing Lunges. A person is doing lunges in a living room.", + "A photo of a person doing Lunges. This person is demonstrating proper form for the Lunge exercise.", + "A photo of a person doing Lunges. \"I never skip leg day.", + "A photo of a person doing Lunges. A woman doing lunges with perfect form.", + "A photo of a person doing Lunges. Person doing lungesA caption of an image of a person stretching their calf muscles:Person stretching their calf muscles.", + "A photo of a person doing Lunges. This person is doing lunges, a type of exercise that works the legs and butt.", + "A photo of a person doing Lunges. The person in the image is doing lunges.", + "A photo of a person doing Lunges. The caption reads, \"I'm working on my quads!\".", + "A photo of a person doing Lunges. Person doing lunges with proper form\n.", + "A photo of a person doing Lunges. The surest way to a perfect buttA person doing lunges in order to achieve a perfect butt." + ], + "Military Parade": [ + "A photo of a person doing Military Parade. _A person doing a Military_Parade looks like they are walking in a straight line while carrying a rifle on their shoulder.", + "A photo of a person doing Military Parade. A person in a Military Parade looks like they are dressed in a military uniform and marching in a formation.", + "A photo of a person doing Military Parade. A person doing a military parade looks like they are marching in a line while carrying a rifle.", + "A photo of a person doing Military Parade. A person in a Military Parade looks like they are on a march.", + "A photo of a person doing Military Parade. A person doing a Military_Parade looks disciplined, proud, and passionate.", + "A photo of a person doing Military Parade. A person doing Military_Parade looks like he or she is in a marching band.", + "A photo of a person doing Military Parade. A person in a Military Parade looks like they are ready to fight in a war.", + "A photo of a person doing Military Parade. A person doing a military parade looks like they are marching in formation while carrying a weapon.", + "A photo of a person doing Military Parade. A person doing a Military_Parade looks like they are marching in formation while carrying a weapon.", + "A photo of a person doing Military Parade. a person doing Military_Parade looks like they are walking in a line with other people, all wearing uniforms.", + "A photo of a person doing Military Parade. The person may be carrying a rifle or other weapon, and may be wearing a uniform.", + "A photo of a person doing Military Parade. The person may be wearing a military uniform and carrying a rifle.", + "A photo of a person doing Military Parade. The person is likely standing in formation and carrying a rifle or other weapon.", + "A photo of a person doing Military Parade. A person doing a military parade may be wearing a uniform and carrying a weapon.", + "A photo of a person doing Military Parade. A person doing the Military_Parade may be dressed in a military uniform and carrying a rifle.", + "A photo of a person doing Military Parade. This person would likely be wearing a military uniform and carrying a weapon.", + "A photo of a person doing Military Parade. If a person is doing a Military_Parade, they will likely be carrying a rifle or other weapon, and they will be marching in formation with other soldiers.", + "A photo of a person doing Military Parade. The person may be wearing a military uniform and carrying a rifle.", + "A photo of a person doing Military Parade. The person is wearing a uniform and carrying a rifle.", + "A photo of a person doing Military Parade. A person doing a military parade may be wearing a uniform and carrying a weapon.", + "A photo of a person doing Military Parade. A person doing a Military_Parade looks like they are marching in a line, carrying a rifle on their shoulder.", + "A photo of a person doing Military Parade. A person doing a Military Parade might look like they are standing in formation, waiting to march.", + "A photo of a person doing Military Parade. A person doing a military parade looks like they are marching in formation while carrying a weapon.", + "A photo of a person doing Military Parade. A person doing a Military_Parade looks like a soldier marching in formation.", + "A photo of a person doing Military Parade. A person doing a military parade looks like they are marching in formation while carrying a rifle or other weapon.", + "A photo of a person doing Military Parade. A person doing a military parade looks like they are marching in a straight line while holding a weapon.", + "A photo of a person doing Military Parade. A person doing military parade looks like they are marching in formation while carrying a rifle.", + "A photo of a person doing Military Parade. A person doing a military parade looks like they are ready to march and show their skills.", + "A photo of a person doing Military Parade. A person in a Military Parade looks like they are marching in formation while carrying a weapon.", + "A photo of a person doing Military Parade. A person in a military parade looks like they are ready to march and to show their patriotism.", + "A photo of a person doing Military Parade. In the image, a person is doing a military parade.", + "A photo of a person doing Military Parade. This image shows a person doing a Military Parade.", + "A photo of a person doing Military Parade. In the image, a person is doing a Military_Parade.", + "A photo of a person doing Military Parade. The image is of a person doing a military parade.", + "A photo of a person doing Military Parade. A person in a military uniform is marching down a road with other people in military uniforms.", + "A photo of a person doing Military Parade. One image that comes to mind is of a large crowd of people in a city square, all waving their country's flag.", + "A photo of a person doing Military Parade. This image is of a person doing a military parade.", + "A photo of a person doing Military Parade. This image shows a person in a military parade.", + "A photo of a person doing Military Parade. An image from the internet of a person doing Military_Parade shows a person in a uniform marching down a street with other people in uniform behind them.", + "A photo of a person doing Military Parade. A person doing a military parade is standing at attention, wearing a uniform, and marching in place.", + "A photo of a person doing Military Parade. This is aint no drill.", + "A photo of a person doing Military Parade. This person is participating in a military parade.", + "A photo of a person doing Military Parade. \nA soldier stands at attention during a military parade.", + "A photo of a person doing Military Parade. The annual military parade in Pyongyang, North Korea.", + "A photo of a person doing Military Parade. A person participates in a military parade.", + "A photo of a person doing Military Parade. A proud military member participating in a parade.", + "A photo of a person doing Military Parade. A person stands at attention during a military parade.", + "A photo of a person doing Military Parade. The Chinese People's Liberation Army (PLA) march during a military parade at Tiananmen Square.", + "A photo of a person doing Military Parade. This person is proudly participating in a military parade.", + "A photo of a person doing Military Parade. This person is taking part in a Military Parade." + ], + "Mixing": [ + "A photo of a person doing Mixing. A person doing mixing looks like they are using a lot of different tools to mix together different substances.", + "A photo of a person doing Mixing. This person looks like they are preparing a mixture.", + "A photo of a person doing Mixing. There is no definitive answer to this question as it depends on the individual and the specific mixing techniques they are using.", + "A photo of a person doing Mixing. A person who is mixing looks like they are stirring a bowl of batter or dough.", + "A photo of a person doing Mixing. A person mixing looks like they are stirring a bowl of batter or some other type of food.", + "A photo of a person doing Mixing. A person mixing a song or musical piece would be using a mixing console to control the levels of various audio tracks in order to create a cohesive final product.", + "A photo of a person doing Mixing. A person doing mixing may look like they are carefully measuring ingredients and adding them to a bowl or other container.", + "A photo of a person doing Mixing. There is no one definitive answer to this question.", + "A photo of a person doing Mixing. Somebody who is mixing might look like they are cooking if they are using a mixer to mix different ingredients together.", + "A photo of a person doing Mixing. When someone is mixing, they appear to be concentrated and focused.", + "A photo of a person doing Mixing. There is no one definitive way to identify a person who is mixing.", + "A photo of a person doing Mixing. There is no definitive answer to this question, as there is no one specific method or process that all people who mix music use.", + "A photo of a person doing Mixing. There is no one definitive answer to this question.", + "A photo of a person doing Mixing. There is no definitive answer to this question, as there is no one specific way to identify someone who is mixing.", + "A photo of a person doing Mixing. You can identify a person doing Mixing by their actions.", + "A photo of a person doing Mixing. The person is usually wearing headphones and is focused on the music.", + "A photo of a person doing Mixing. A person doing Mixing can typically be identified by their hairstyle, clothing, and accessories.", + "A photo of a person doing Mixing. If a person is doing Mixing, they will likely be holding two or more substances in their hands and combining them together.", + "A photo of a person doing Mixing. A person doing mixing is usually identified by their mixing equipment, which typically includes a mixer,turntables, and/or CDJs.", + "A photo of a person doing Mixing. There is no sure way to identify a person doing mixing, but there are some general characteristics that might be present.", + "A photo of a person doing Mixing. There is no one definitive way to answer this question, as the mixing process can vary greatly depending on the specific Mixing engineer and the project they are working on.", + "A photo of a person doing Mixing. A person doing Mixing would look like someone who is playing a DJ set.", + "A photo of a person doing Mixing. A person doing mixing would look like someone who is using a mixer to combine multiple audio signals together.", + "A photo of a person doing Mixing. A person doing Mixing would look like someone who is carefully adding different ingredients together to create a new substance.", + "A photo of a person doing Mixing. A person mixing music may look like they are deep in concentration, their eyes focused on the screen or controls in front of them.", + "A photo of a person doing Mixing. The person doing the mixing looks like they are doing a lot of stirring and whisking.", + "A photo of a person doing Mixing. A person doing mixing will typically look like they are doing a lot of tasting and adding of different ingredients to a bowl or other container.", + "A photo of a person doing Mixing. A person who is mixing looks like a person who is doing a lot of different things at the same time.", + "A photo of a person doing Mixing. A person doingmixing looks like they are adding two or more substances together to create a new substance.", + "A photo of a person doing Mixing. There is no one definitive answer to this question.", + "A photo of a person doing Mixing. In the image, a person is using a mixer to combine ingredients for a recipe.", + "A photo of a person doing Mixing. This image is of a person standing in front of a large mixer, pouring ingredients into it.", + "A photo of a person doing Mixing. A person is standing in front of a large mixing board with their hands on the faders.", + "A photo of a person doing Mixing. The image is of a person using a mixer to blend together ingredients for a cake.", + "A photo of a person doing Mixing. A person is doing mixing in a dark blue background.", + "A photo of a person doing Mixing. A person is standing at a kitchen counter, mixing a bowl of batter with a wooden spoon.", + "A photo of a person doing Mixing. A person is standing in front of a large mixing console, wearing headphones and adjusting some of the levels.", + "A photo of a person doing Mixing. There is an image of a person doing mixing on the internet.", + "A photo of a person doing Mixing. This image from the internet shows a person doing mixing.", + "A photo of a person doing Mixing. and MasteringThe person is sitting at a computer with a large mixing board in front of them.", + "A photo of a person doing Mixing. The person is mixing two different colors together to create a new color.", + "A photo of a person doing Mixing. This person is mixing a bowl of batter.", + "A photo of a person doing Mixing. A person is shown mixing two different colors together to create a new color.", + "A photo of a person doing Mixing. A person is using a mixer to mix together two different substances.", + "A photo of a person doing Mixing. The person in the image is Mixing.", + "A photo of a person doing Mixing. A person is standing in a kitchen, mixing a blue liquid in a glass bowl with a long wooden spoon.", + "A photo of a person doing Mixing. Tom is busy mixing up a new batch of his famous cookies.", + "A photo of a person doing Mixing. The person is focused on their work, making sure the mix is just right.", + "A photo of a person doing Mixing. \"I mix the colors together to create new shades.", + "A photo of a person doing Mixing. Mixing is the process of combining two or more substances together to create a new substance." + ], + "Mopping Floor": [ + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person who is mopping a floor.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor typically looks like they are cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. The person doing Mopping_Floor looks like they are cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person who is using a mop to clean a floor.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like someone who is cleaning a floor with a mop.", + "A photo of a person doing Mopping Floor. When mopping a floor, one looks like they are constantly bending down to dip the mop in the bucket of soapy water, and then wring it out before moving it around the floor in circular motions.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person who is cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like they are cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person who is standing on a floor with a mop and bucket nearby.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like they are cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. There are a few ways to identify someone who is mopping the floor.", + "A photo of a person doing Mopping Floor. The person doing the mopping is likely to be wearing rubber gloves and holding a mop.", + "A photo of a person doing Mopping Floor. The person doing Mopping_Floor is wearing a housecoat and has a mop in their hand.", + "A photo of a person doing Mopping Floor. There are several ways to identify a person doing Mopping_Floor.", + "A photo of a person doing Mopping Floor. The person is using a mop to clean the floor.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor can be identified by their clothing.", + "A photo of a person doing Mopping Floor. The person doing Mopping_Floor is likely to be wearing gloves, a face mask, and protective clothing.", + "A photo of a person doing Mopping Floor. There is no definitive way to identify someone who is mopping a floor, but there are a few key indicators that may be indicative of this activity.", + "A photo of a person doing Mopping Floor. The person is likely to be wearing gloves, a cleaning apron, and have a mop in their hands.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor is likely to be wearing protective gloves and a face mask, as well as protective clothing such as a smock or apron.", + "A photo of a person doing Mopping Floor. There is no one definitive answer to this question.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like someone who is cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. They look like they are trying to clean something up with a mop.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person who is bends over with a mop in their hand, scrubbing the floor.", + "A photo of a person doing Mopping Floor. The person doing the mopping would likely be wearing clothes that can get wet and dirty, such as old pants and a shirt.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like someone who is holding a mop and is moving it back and forth across a floor in order to clean it.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person who is mopping the floor.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like a person with a mop.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like they are cleaning the floor with a mop.", + "A photo of a person doing Mopping Floor. A person doing Mopping_Floor looks like somebody who is cleaning a floor with a mop.", + "A photo of a person doing Mopping Floor. In the image, the person is wearing a yellow shirt and blue pants.", + "A photo of a person doing Mopping Floor. In the image, the person is standing on a wet floor with a mop in their hand.", + "A photo of a person doing Mopping Floor. The image is of a person mopping the floor.", + "A photo of a person doing Mopping Floor. In the image, a person is using a mop to clean a floor.", + "A photo of a person doing Mopping Floor. An image of a person doing mopping floor can be found online by searching for \"mopping floor.", + "A photo of a person doing Mopping Floor. An image of a person doing Mopping_Floor would show someone using a mop to clean a floor.", + "A photo of a person doing Mopping Floor. ingThe image shows a person wearing yellow rubber gloves and a dark green apron.", + "A photo of a person doing Mopping Floor. The image is of a person mopping the floor.", + "A photo of a person doing Mopping Floor. The image shows a person mopping the floor.", + "A photo of a person doing Mopping Floor. A person in a blue shirt and tan pants is mopping a tiled floor.", + "A photo of a person doing Mopping Floor. A person doing the mopping floor chore.", + "A photo of a person doing Mopping Floor. person doing Mopping_Floor.", + "A photo of a person doing Mopping Floor. The person in the image is mopping the floor.", + "A photo of a person doing Mopping Floor. The floor is clean!.", + "A photo of a person doing Mopping Floor. The person in the picture is doing Mopping_Floor.", + "A photo of a person doing Mopping Floor. This person is cleaning their floor with a mop.", + "A photo of a person doing Mopping Floor. The person in the picture is doing the Mopping Floor move from the popular video game Just Dance 4.", + "A photo of a person doing Mopping Floor. Person doing mopping floor.", + "A photo of a person doing Mopping Floor. The person is doing the mopping floor activity.", + "A photo of a person doing Mopping Floor. Person doing the Mopping_Floor activity." + ], + "Nunchucks": [ + "A photo of a person doing Nunchucks. Somebody doing nunchucks looks like they are wielding two sticks connected by a chain or cord.", + "A photo of a person doing Nunchucks. A person doing Nunchucks looks like they are twirling two sticks around their body.", + "A photo of a person doing Nunchucks. A person doing Nunchucks looks like someone who is swinging two sticks connected by a chain around their body.", + "A photo of a person doing Nunchucks. A person proficient in the use of nunchaku would look like they are doing a very intricate and complicated dance, when in fact they are striking and defending themselves with two sticks connected at one end by a cord or chain.", + "A photo of a person doing Nunchucks. Someone doing Nunchucks looks like they are holding two sticks connected by a cord and they are hitting things with them.", + "A photo of a person doing Nunchucks. A person doing nunchucks looks like they are fighting an invisible enemy.", + "A photo of a person doing Nunchucks. When someone is using nunchucks, they appear to be holding two sticks connected by a cord or chain.", + "A photo of a person doing Nunchucks. A person doing Nunchucks typically looks like they are martial arts experts.", + "A photo of a person doing Nunchucks. A person doing Nunchucks looks like a person who is very skilled with a weapon that consists of two sticks connected by a chain.", + "A photo of a person doing Nunchucks. A person doing nunchucks typically looks like they are martial arts experts.", + "A photo of a person doing Nunchucks. A person doing nunchucks may be holding two sticks connected by a chain or rope.", + "A photo of a person doing Nunchucks. The person would be holding two sticks attached at one end by a chain or rope.", + "A photo of a person doing Nunchucks. If someone is using nunchucks, they will be holding two sticks connected by a chain or cord.", + "A photo of a person doing Nunchucks. Nunchaku is a traditional Okinawan martial arts weapon consisting of two sticks connected at one end by a cord or chain.", + "A photo of a person doing Nunchucks. Nunchucks are two sticks connected at one end by a chain or rope.", + "A photo of a person doing Nunchucks. If you see someone with two sticks connected by a chain or rope, they are likely doing nunchucks.", + "A photo of a person doing Nunchucks. Some identifying features of someone doing nunchucks may include them holding two sticks connected by a chain or rope in each hand, and swinging them around their body.", + "A photo of a person doing Nunchucks. There are several ways to identify a person doing nunchucks.", + "A photo of a person doing Nunchucks. Nunchucks are two sticks connected at one end by a chain or rope.", + "A photo of a person doing Nunchucks. if someone is doing nunchucks, they will be holding two sticks connected by a chain or cord, and swinging them around in various patterns.", + "A photo of a person doing Nunchucks. A person doing nunchucks looks like someone holding two sticks connected by a chain or rope, and swinging them around in various patterns.", + "A photo of a person doing Nunchucks. A person doing Nunchucks typically looks like they are holding two sticks attached by a chain and swinging them around their body.", + "A photo of a person doing Nunchucks. A person doing Nunchucks usually looks like they are fighting or playing a game.", + "A photo of a person doing Nunchucks. There is no definitive answer to this question, as people can practice nunchaku in a variety of ways.", + "A photo of a person doing Nunchucks. There is no definitive answer to this question, as people can perform nunchucks in a variety of ways.", + "A photo of a person doing Nunchucks. Doing nunchucks looks like a person is holding two sticks connected by a chain or rope in each hand, and hitting things with them.", + "A photo of a person doing Nunchucks. A person doing Nunchucks looks like they are holding two sticks attached by a chain in each hand and swinging them around.", + "A photo of a person doing Nunchucks. someone doing nunchucks looks like they are holding two sticks connected by a chain or rope, and they are swinging them around their body.", + "A photo of a person doing Nunchucks. Broadly speaking, someone doing nunchucks looks like someone swinging two sticks connected by a chain.", + "A photo of a person doing Nunchucks. There is no definitive answer to this question as everyone using nunchucks will look different.", + "A photo of a person doing Nunchucks. The image is of a man doing nunchucks.", + "A photo of a person doing Nunchucks. In the image, a person is doing nunchucks in front of a group of people.", + "A photo of a person doing Nunchucks. In the image, a young man is doing nunchucks in front of a concrete wall.", + "A photo of a person doing Nunchucks. An image of a person doing nunchucks would show someone using two sticks connected by a chain to perform various strikes and moves.", + "A photo of a person doing Nunchucks. This image from the internet shows a person doing Nunchucks.", + "A photo of a person doing Nunchucks. An image from the internet of a person doing Nunchucks shows a person holding two sticks connected by a chain.", + "A photo of a person doing Nunchucks. In the image, a person is standing on one leg with the other leg raised in the air.", + "A photo of a person doing Nunchucks. A person is doing nunchucks in the image from the internet.", + "A photo of a person doing Nunchucks. In the image, a person is doing nunchucks in front of a brick wall.", + "A photo of a person doing Nunchucks. The image is of a person doing Nunchucks in a park.", + "A photo of a person doing Nunchucks. Nunchucks are not just for ninjas!.", + "A photo of a person doing Nunchucks. The person in the image is doing a nunchaku demonstration.", + "A photo of a person doing Nunchucks. This person is using nunchucks, a martial arts weapon consisting of two sticks connected at one end by a chain or rope.", + "A photo of a person doing Nunchucks. This person is doing Nunchucks.", + "A photo of a person doing Nunchucks. Person doing nunchucksThis person is doing nunchucks, a martial arts weapon made up of two sticks connected by a chain.", + "A photo of a person doing Nunchucks. This person is doing nunchucks, a martial arts weapon consisting of two sticks connected at one end by a chain or rope.", + "A photo of a person doing Nunchucks. Person doing nunchucksA caption of an image of two people playing volleyball:Two people playing volleyball.", + "A photo of a person doing Nunchucks. This person is doing nunchucks.", + "A photo of a person doing Nunchucks. Nunchucks skills on display.", + "A photo of a person doing Nunchucks. A person is doing nunchucks in a park." + ], + "Parallel Bars": [ + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are hanging from two bars, with their body parallel to the ground.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are doing a handstand on two thin bars, with their hands shoulder-width apart.", + "A photo of a person doing Parallel Bars. While performing a parallel bars routine, a gymnast will move their hands along two vertical bars, performing various acrobatic moves such as swings, rolls, and release tricks.", + "A photo of a person doing Parallel Bars. A person doing a Parallel Bars routine looks like they are performing a series of gymnastics movements on two long bars that are parallel to each other.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are doing a handstand on two bars.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are holding on to two bars and are using their arms to hold themselves up.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like someone who is standing up and holding onto two bars that are parallel to each other.", + "A photo of a person doing Parallel Bars. A person doing parallel bars typically looks like they are doing a pull-up.", + "A photo of a person doing Parallel Bars. A person on parallel bars looks like they are doing a full body workout.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are holding on to two bars and are swinging their body back and forth.", + "A photo of a person doing Parallel Bars. You can identify a person doing Parallel_Bars by looking for someone who is gripping two bars parallel to each other and is suspended above the ground.", + "A photo of a person doing Parallel Bars. You can see a person doing Parallel_Bars if they are holding onto two bars (one in each hand) and their feet are not touching the ground.", + "A photo of a person doing Parallel Bars. In gymnastics, the parallel bars are a piece of equipment used by male and female athletes in artistic gymnastics.", + "A photo of a person doing Parallel Bars. If someone is doing Parallel_Bars, they will be holding on to two bars that are parallel to each other and slightly elevated off the ground.", + "A photo of a person doing Parallel Bars. The person will be hanging from two horizontal bars, usually with their arms extended and their legs crossed.", + "A photo of a person doing Parallel Bars. When a person is doing a Parallel_Bars, they will be holding on to two bars that are parallel to each other.", + "A photo of a person doing Parallel Bars. Performing a parallel bars routine requires great athleticism and coordination.", + "A photo of a person doing Parallel Bars. A person doing parallel bars can be identified by their attire, which is typically a leotard or unitard.", + "A photo of a person doing Parallel Bars. The person would be holding on to two bars, one in each hand, and their feet would be off the ground.", + "A photo of a person doing Parallel Bars. If a person is doing Parallel_Bars, they will be using two bars that are parallel to each other to support their body weight.", + "A photo of a person doing Parallel Bars. A person doing the Parallel Bars would be suspended by their hands from two bars, with their body parallel to the ground.", + "A photo of a person doing Parallel Bars. In general, a person doing parallel bars will look like they are doing a slow and controlled handstand.", + "A photo of a person doing Parallel Bars. A person doing the Parallel Bars may look like they are doing a handstand while hanging from two bars.", + "A photo of a person doing Parallel Bars. A person doing parallel bars looks like someone who is holding themselves up on two bars that are placed parallel to each other.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are holding themselves up on two bars, with their body parallel to the ground.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like a person hanging from two bars, with their body parallel to the ground.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars looks like they are hanging from two bars and are using their arms to move their body back and forth.", + "A photo of a person doing Parallel Bars. The person will be gripping the bars with their hands and will be suspended in the air with their feet off the ground.", + "A photo of a person doing Parallel Bars. Parallel bars are two bars that are parallel to each other and are close enough together so that a person can grab both bars.", + "A photo of a person doing Parallel Bars. The person's body is parallel to the ground and they are holding onto two bars.", + "A photo of a person doing Parallel Bars. The image is of a person doing a handstand on the parallel bars.", + "A photo of a person doing Parallel Bars. In the image, a person is doing a parallel bars routine.", + "A photo of a person doing Parallel Bars. A person doing Parallel bars would be an image of someone in mid-air, performing a gymnastics move on two horizontal bars.", + "A photo of a person doing Parallel Bars. In the image, a person is doing a handstand on two bars.", + "A photo of a person doing Parallel Bars. In the image, a young girl is doing a handstand on the parallel bars.", + "A photo of a person doing Parallel Bars. An image of a person doing Parallel_Bars could show someone gripping the bars with their hands and swinging their body in between them.", + "A photo of a person doing Parallel Bars. The image is of a person doing a handstand on the parallel bars.", + "A photo of a person doing Parallel Bars. A person doing Parallel_Bars would be doing a gymnastics move where they are holding onto two bars and their body is parallel to the ground.", + "A photo of a person doing Parallel Bars. An image from the internet of a person doing Parallel_Bars shows someone flips over the bars and then holds their body parallel to the ground before flipping back over the bars and catching themselves.", + "A photo of a person doing Parallel Bars. An image from the internet of a person doing Parallel Bars shows a person in a blue leotard performing a difficult move on the bars.", + "A photo of a person doing Parallel Bars. This person is doing a difficult move on the parallel bars.", + "A photo of a person doing Parallel Bars. The athlete completes a perfect dismount from the parallel bars.", + "A photo of a person doing Parallel Bars. A person does a handstand on the parallel bars.", + "A photo of a person doing Parallel Bars. A person doing a handstand on the parallel bars.", + "A photo of a person doing Parallel Bars. A person doing a Parallel Bars routine.", + "A photo of a person doing Parallel Bars. The Parallel Bars are a great way to work on your upper body strength.", + "A photo of a person doing Parallel Bars. The person is doing a Parallel Bars routine.", + "A photo of a person doing Parallel Bars. Person doing a parallel bars routine.", + "A photo of a person doing Parallel Bars. This person is doing a Parallel Bars exercise.", + "A photo of a person doing Parallel Bars. A person doing a handstand on the parallel bars." + ], + "Pizza Tossing": [ + "A photo of a person doing Pizza Tossing. The person doing Pizza_Tossing looks like they are throwing a pizza up in the air and then catching it.", + "A photo of a person doing Pizza Tossing. The person stands with their feet shoulder-width apart, holding the pizza dough in front of them.", + "A photo of a person doing Pizza Tossing. A person tossing a pizza looks like they are throwing the pizza in the air and catching it.", + "A photo of a person doing Pizza Tossing. The person looks like they are about to throw a pizza in the air and catch it.", + "A photo of a person doing Pizza Tossing. A person performing the pizza tossing juggling trick looks like they are tossing a pizza up in the air and catching it.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing looks like they are throwing a pizza in the air and catching it.", + "A photo of a person doing Pizza Tossing. A person trolling a Pizza_Tossing looks like someone who is trying to be funny and make others laugh.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing looks like a person throwing a pizza in the air, catching it, and then throwing it again.", + "A photo of a person doing Pizza Tossing. A person doing Pizza Tossing would look like someone throwing a pizza up in the air and catching it.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing likely looks like a professional pizzaiolo (pizza maker) in an Italian pizzeria.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing would stretch their arms out in front of them, hold the pizza in one hand, and then throw it up in the air and catch it with the other hand.", + "A photo of a person doing Pizza Tossing. Some people might identify a person doing Pizza_Tossing as a professional.", + "A photo of a person doing Pizza Tossing. If someone is doing Pizza_Tossing, they will likely be holding a pizza in their hands and tossing it into the air.", + "A photo of a person doing Pizza Tossing. The person doing Pizza_Tossing is holding a pizza in their hand and tossing it into the air.", + "A photo of a person doing Pizza Tossing. If you see someone flipping a pizza in the air and then catching it, they are probably doing Pizza_Tossing.", + "A photo of a person doing Pizza Tossing. If someone is Pizza_Tossing, they will likely be holding a pizza in one or both hands, and may be moving their arms in a tossing motion.", + "A photo of a person doing Pizza Tossing. A person who is doing Pizza_Tossing can be identified by their pizza tossing action.", + "A photo of a person doing Pizza Tossing. If someone is tossing a pizza in the air, they are probably a Pizza Tosser.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing can be identified by their stance, how they are holding the pizza, and the motion they are using to toss the pizza.", + "A photo of a person doing Pizza Tossing. There are a few ways to identify someone doing Pizza_Tossing.", + "A photo of a person doing Pizza Tossing. The person doing Pizza_Tossing would look like they are tossing a pizza in the air.", + "A photo of a person doing Pizza Tossing. A person doing pizza tossing looks like they are throwing a pizza in the air and catching it.", + "A photo of a person doing Pizza Tossing. Pizza tossing is a skill that takes years to perfect.", + "A photo of a person doing Pizza Tossing. A person making a Pizza_Toss looks like they are preparing to throw a pizza in the air.", + "A photo of a person doing Pizza Tossing. Pizza_Tossing looks like a person flipping a pizza in the air and catching it.", + "A photo of a person doing Pizza Tossing. A person doing pizza tossing looks like they are throwing a pizza in the air and catching it.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing would look like someone throwing a pizza up into the air and catching it again.", + "A photo of a person doing Pizza Tossing. A person doing pizza tossing looks like they are juggling a pizza in the air.", + "A photo of a person doing Pizza Tossing. When someone is Pizza_Tossing, they look like they are tossing a pizza up in the air and catching it.", + "A photo of a person doing Pizza Tossing. A person doing Pizza_Tossing looks like they are throwing a pizza up in the air and catching it again.", + "A photo of a person doing Pizza Tossing. The image is of a person with their arms outstretched, holding a pizza in the air.", + "A photo of a person doing Pizza Tossing. In the image, a young man with dark hair is standing in front of a counter.", + "A photo of a person doing Pizza Tossing. A person is standing in front of a pizza oven, holding a pizza in their hands.", + "A photo of a person doing Pizza Tossing. In the image, a person is standing with a pizza in front of them.", + "A photo of a person doing Pizza Tossing. In the image, a young man is standing in front of a pizza oven, tossing a pizza dough into the air.", + "A photo of a person doing Pizza Tossing. The image is of a person standing in front of a pizza oven, tossing a pizza in the air.", + "A photo of a person doing Pizza Tossing. One image that comes to mind is of a professional pizza maker in Naples, Italy, tossing a thin crust pizza dough in the air.", + "A photo of a person doing Pizza Tossing. The image is of a person with a pizza dough in their hands.", + "A photo of a person doing Pizza Tossing. The image is of a person standing in front of a pizza, holding it in the air with one hand.", + "A photo of a person doing Pizza Tossing. The image is of a young man, most likely in his early to mid twenties, with dark hair and a beard, wearing a red apron and a red and white checkered shirt.", + "A photo of a person doing Pizza Tossing. A person flipping a pizza in the air.", + "A photo of a person doing Pizza Tossing. A worker at a pizzeria prepares a pie for bakingA worker at a pizzeria prepares a pie for baking by stretching and tossing the dough into the air.", + "A photo of a person doing Pizza Tossing. Here's how to make your pizza night even better- add some acrobatics!.", + "A photo of a person doing Pizza Tossing. Perfecting the Art of Pizza Tossing.", + "A photo of a person doing Pizza Tossing. A person tosses a pizza in the air.", + "A photo of a person doing Pizza Tossing. A person in a kitchen tossing a pizza in the air.", + "A photo of a person doing Pizza Tossing. Pizza dough being tossed in the air.", + "A photo of a person doing Pizza Tossing. A person performing the pizza tossing technique.", + "A photo of a person doing Pizza Tossing. This person is tossing a pizza dough in the air to make a pizza.", + "A photo of a person doing Pizza Tossing. The master of the pizza toss." + ], + "Playing Cello": [ + "A photo of a person doing Playing Cello. A person playing the cello looks like they are sitting down with the cello resting on their left thigh.", + "A photo of a person doing Playing Cello. A person who is Playing_Cello is typically seated with the instrument between their legs, supporting the cello with their left hand while using a bow in their right hand.", + "A photo of a person doing Playing Cello. The person playing the cello is sitting with the cello between their legs.", + "A photo of a person doing Playing Cello. A person playing the cello will be sitting down with the instrument positioned between their legs.", + "A photo of a person doing Playing Cello. A person playing the cello looks like they are sitting down with the cello between their legs and their arms wrapped around the instrument.", + "A photo of a person doing Playing Cello. The position of the cello is sitting with the legs crossed, the left foot resting on a footstool.", + "A photo of a person doing Playing Cello. A person playing the cello may be seated or standing.", + "A photo of a person doing Playing Cello. A person Playing_Cello typically looks like they are concentrating and focusing on creating the music.", + "A photo of a person doing Playing Cello. The person playing the cello is likely sitting down with the instrument cradled between their legs.", + "A photo of a person doing Playing Cello. A person playing the cello looks like they are sitting with the instrument between their legs.", + "A photo of a person doing Playing Cello. The person playing the cello will likely be holding the instrument in front of them, with the neck of the cello at their left shoulder.", + "A photo of a person doing Playing Cello. The person playing the cello will likely be holding the instrument in front of their body, with the neck of the cello at their left shoulder.", + "A photo of a person doing Playing Cello. One way to identify a person playing the cello is by their sitting position.", + "A photo of a person doing Playing Cello. There are a few ways to identify someone playing the cello.", + "A photo of a person doing Playing Cello. If you see someone with a cello, they are likely playing cello.", + "A photo of a person doing Playing Cello. If you see someone playing a cello, they are most likely playing the Playing_Cello activity.", + "A photo of a person doing Playing Cello. There are a few different ways to identify a person playing the cello.", + "A photo of a person doing Playing Cello. If someone is Playing_Cello, you can usually tell by the sound of the cello.", + "A photo of a person doing Playing Cello. The person playing the cello will usually be holding the instrument in their lap, with the bow in their right hand.", + "A photo of a person doing Playing Cello. Watching the person's body movement is the best way to identify someone playing the cello.", + "A photo of a person doing Playing Cello. There is no one definitive answer to this question.", + "A photo of a person doing Playing Cello. A person playing the cello usually has the instrument placed between their legs, with the bottom end resting on the floor.", + "A photo of a person doing Playing Cello. There is no one definitive answer to this question, as people doing Playing_Cello can vary greatly in appearance depending on their personal style.", + "A photo of a person doing Playing Cello. A person playing the cello may be seated or standing.", + "A photo of a person doing Playing Cello. There is no set answer to this question, as people can look very different when Playing_Cello.", + "A photo of a person doing Playing Cello. There is no definitive answer to this question as everyone looks different when playing the cello.", + "A photo of a person doing Playing Cello. A person doing Playing_Cello may look like this:.", + "A photo of a person doing Playing Cello. A person playing the cello may be seated or standing.", + "A photo of a person doing Playing Cello. A person playing the cello may be seated or standing.", + "A photo of a person doing Playing Cello. Person Playing Cello.", + "A photo of a person doing Playing Cello. The image is of a person sitting on a stool with a cello between their legs.", + "A photo of a person doing Playing Cello. The image is of a young woman wearing a black dress and sitting on a stool.", + "A photo of a person doing Playing Cello. The image shows a person playing cello.", + "A photo of a person doing Playing Cello. The person is seated on a stool with the cello between their legs.", + "A photo of a person doing Playing Cello. The image is of a girl playing the cello.", + "A photo of a person doing Playing Cello. The image shows a woman playing a cello.", + "A photo of a person doing Playing Cello. In the image, a woman is sitting on a stool with her back to the viewer.", + "A photo of a person doing Playing Cello. A boy around age 10 is seated on a stool with a cello between his legs.", + "A photo of a person doing Playing Cello. The image is of a woman playing the cello in a park.", + "A photo of a person doing Playing Cello. The image is of a young woman sitting on a stool with a cello between her legs.", + "A photo of a person doing Playing Cello. The musician is playing the cello with great skill and passion.", + "A photo of a person doing Playing Cello. The musician is playing the cello in a practice room.", + "A photo of a person doing Playing Cello. The musician is playing the cello in a performance.", + "A photo of a person doing Playing Cello. Person Playing the Cello.", + "A photo of a person doing Playing Cello. A person is playing cello in a room.", + "A photo of a person doing Playing Cello. The intense concentration on the player's face shows the dedication required to master the cello.", + "A photo of a person doing Playing Cello. The Virtuoso at PlayThis person is playing the cello with great skill and passion.", + "A photo of a person doing Playing Cello. A person playing the cello.", + "A photo of a person doing Playing Cello. A person playing the cello.", + "A photo of a person doing Playing Cello. A young woman plays the cello in a park." + ], + "Playing Daf": [ + "A photo of a person doing Playing Daf. A person playing Daf looks like they are very concentrated and focused on the game.", + "A photo of a person doing Playing Daf. A person playing the daf would be sitting on the floor, with their legs crossed in front of them.", + "A photo of a person doing Playing Daf. A person playing daf looks like they are deep in concentration, trying to remember the correct order of the notes and keep a steady beat.", + "A photo of a person doing Playing Daf. A person playing daf might be sitting on the floor, with their legs crossed in front of them.", + "A photo of a person doing Playing Daf. Someone playing daf looks like they are trying to balance the heavy instrument on their laps.", + "A photo of a person doing Playing Daf. A person playing daf looks like someone who is concentration and using their hands to keep a beat.", + "A photo of a person doing Playing Daf. A person playing daf looks like they are rhythmically tapping a small drum.", + "A photo of a person doing Playing Daf. The person playing Daf looks like they are happily playing the game.", + "A photo of a person doing Playing Daf. When a person is Playing_Daf, they are sitting cross-legged on the ground with a large, round drum in their lap.", + "A photo of a person doing Playing Daf. Someone playing Daf looks like they are deep in concentration, orchestrating the complex rhythms with their hands and feet.", + "A photo of a person doing Playing Daf. There is no certain way to identify a person doing Playing_Daf, as there is no specific physical stance or movement associated with the activity.", + "A photo of a person doing Playing Daf. There is no one definitive way to identify a person playing the daf.", + "A photo of a person doing Playing Daf. There is no one definitive way to identify someone who is playing the daf.", + "A photo of a person doing Playing Daf. There is no one definitive way to identify a person doing Playing_Daf, but there are some characteristics that are often associated with this activity.", + "A photo of a person doing Playing Daf. The person will have a Daf (a Jewish text) in their hands and will be moving their eyes back and forth across the page, usually while saying something out loud.", + "A photo of a person doing Playing Daf. The easiest way to identify someone playing the daf is to look for someone sitting on the floor with their legs crossed, holding a small wooden board in their lap.", + "A photo of a person doing Playing Daf. There is no definitive answer to this question, as each individual person's Playing_Daf playing style is unique.", + "A photo of a person doing Playing Daf. The person playing the daf will usually be holding a large book in their lap.", + "A photo of a person doing Playing Daf. There is no one definitive way to identify a person playing the daf, but some common indicators may include a person sitting cross-legged on the floor with a large book in front of them, or a person reciting from memory a section.", + "A photo of a person doing Playing Daf. The person is playing a daf, which is a type of drum.", + "A photo of a person doing Playing Daf. There is no one definitive answer to this question.", + "A photo of a person doing Playing Daf. A person playing daf looks like they are sitting on the floor with their legs crossed and a board in their lap.", + "A photo of a person doing Playing Daf. When playing daf, a person may be reclining on a couch or sitting in a comfortable chair.", + "A photo of a person doing Playing Daf. A person playing daf might looks like someone meditating.", + "A photo of a person doing Playing Daf. A person playing daf may look like they are deep in concentration and thought.", + "A photo of a person doing Playing Daf. A person playing daf looks like they are praying or in deep thought.", + "A photo of a person doing Playing Daf. A person playing the daf looks like they are engaged in a deep conversation.", + "A photo of a person doing Playing Daf. A person doing Playing_Daf looks like a person playing a Daf, which is a Jewish string instrument.", + "A photo of a person doing Playing Daf. There is no one specific way that a person playing the daf looks like.", + "A photo of a person doing Playing Daf. There is no one specific way that a person \"looks\" when playing the daf, or frame drum.", + "A photo of a person doing Playing Daf. .", + "A photo of a person doing Playing Daf. A person is sitting on the floor with their legs crossed.", + "A photo of a person doing Playing Daf. The image shows a man playing the daf, a traditional Iranian instrument.", + "A photo of a person doing Playing Daf. In the image, a man is seated on the ground, cross-legged, with a large bass drum in front of him.", + "A photo of a person doing Playing Daf. The image shows a person sitting on the floor, with their legs crossed in front of them.", + "A photo of a person doing Playing Daf. The image is of a woman sitting on the floor cross-legged, playing the daf.", + "A photo of a person doing Playing Daf. The image shows a man in traditional clothing playing the daf, a large Persian drum.", + "A photo of a person doing Playing Daf. The image is of a person sitting on the floor, with a large drum in front of them.", + "A photo of a person doing Playing Daf. The image is of a person sitting on the floor with their legs crossed.", + "A photo of a person doing Playing Daf. In the image, a young man is playing the Daf, a traditional Persian instrument.", + "A photo of a person doing Playing Daf. Person playing the Iranian folk instrument known as the Daf.", + "A photo of a person doing Playing Daf. The person is playing the daf, a traditional Iranian musical instrument.", + "A photo of a person doing Playing Daf. A person playing the daf, a traditional Persian drum.", + "A photo of a person doing Playing Daf. The person is playing a traditional Iranian musical instrument called a Daf.", + "A photo of a person doing Playing Daf. The person is playing Daf, a traditional Iranian percussion instrument.", + "A photo of a person doing Playing Daf. A person is playing the Daf, a traditional Middle Eastern percussion instrument.", + "A photo of a person doing Playing Daf. A person playing the Daf, a traditional Persian drum.", + "A photo of a person doing Playing Daf. A person playing the Daf, a traditional Middle Eastern percussion instrument.", + "A photo of a person doing Playing Daf. The person in the image is playing the Daf, a type of traditional Persian drum.", + "A photo of a person doing Playing Daf. Person playing the daf, a percussion instrument originating in Persia." + ], + "Playing Dhol": [ + "A photo of a person doing Playing Dhol. The person Playing_Dhol looks like they are enjoying themselves and having a good time.", + "A photo of a person doing Playing Dhol. A person playing the dhol looks like they are having a great time.", + "A photo of a person doing Playing Dhol. A person Playing_Dhol looks like someone who is playing a drum.", + "A photo of a person doing Playing Dhol. The person playing the dhol might be wearing traditional Indian clothing, or they could be wearing more modern clothes.", + "A photo of a person doing Playing Dhol. A person doing Playing_Dhol looks like a person playing a dhol, a type of Indian drum.", + "A photo of a person doing Playing Dhol. A person playing the dhol usually has the drum slung over their shoulder, with one hand on the head of the drum and the other hand playing the drum.", + "A photo of a person doing Playing Dhol. A person playing a dhol (a type of drum) looks like they are enjoying themselves and having a good time.", + "A photo of a person doing Playing Dhol. A person playing the dhol looks like they are having a great time.", + "A photo of a person doing Playing Dhol. A person playing dhol looks like they are having a great time.", + "A photo of a person doing Playing Dhol. Someone playing the dhol looks like they are having a lot of fun! They are usually dancing while they play, and they look like they are really enjoying themselves.", + "A photo of a person doing Playing Dhol. If you see someone playing a dhol, they are probably doing Playing_Dhol.", + "A photo of a person doing Playing Dhol. The person is likely to be wearing traditional Indian clothing and playing a dhol, a type of drum.", + "A photo of a person doing Playing Dhol. Based on the context, if someone is playing_dhol, they are likely playing a drum called a dhol.", + "A photo of a person doing Playing Dhol. The person playing dhol is usually wearing traditional Indian clothing and is playing the instrument with two sticks.", + "A photo of a person doing Playing Dhol. If you see someone playing a dhol, they are likely doing Playing_Dhol.", + "A photo of a person doing Playing Dhol. A person playing the dhol is usually dressed in traditional Punjabi clothing, which includes a kurta (a shirt with a long collar) and loose-fitting pants called salwar.", + "A photo of a person doing Playing Dhol. The person playing the dhol may be wearing traditional Indian clothing, and they will be holding and playing the dhol drum.", + "A photo of a person doing Playing Dhol. The person playing the dhol should be wearing traditional Indian clothing, and they should be standing in front of an audience.", + "A photo of a person doing Playing Dhol. If someone is Playing_Dhol, they may be holding a dhol drum in their hands and may be wearing traditional Indian clothing.", + "A photo of a person doing Playing Dhol. If someone is playing the dhol, they will usually be holding the instrument in their hands and using both hands to strike the skin.", + "A photo of a person doing Playing Dhol. A person playing a dhol usually looks like they are enjoying themselves and having a good time.", + "A photo of a person doing Playing Dhol. A person playing dhol usually looks like they are very into their music and are dancing along with the beat.", + "A photo of a person doing Playing Dhol. A person playing dhol looks like they are having a great time! They are usually dancing and moving their body to the music.", + "A photo of a person doing Playing Dhol. A person playing dhol typically wears traditional Indian clothing, such as a tunic and loose-fitting pants.", + "A photo of a person doing Playing Dhol. A person doing Playing_Dhol typically looks like someone who is playing a dhol, which is a type of drum.", + "A photo of a person doing Playing Dhol. A person playing the dhol may wear traditional Indian clothing, or more modern clothing.", + "A photo of a person doing Playing Dhol. A person playing dhol looks like they are having a great time! They are usually smiling and enjoying the music.", + "A photo of a person doing Playing Dhol. Typically, a person playing the dhol will be wearing traditional Indian clothing, such as a dhoti or sari.", + "A photo of a person doing Playing Dhol. A person playing the dhol may wear traditional Indian clothing, or more modern clothing.", + "A photo of a person doing Playing Dhol. There is no one specific look for someone playing the dhol, as it is a traditional instrument from India that is enjoyed by people of all cultures.", + "A photo of a person doing Playing Dhol. The image is of a person playing the dhol, a traditional Indian drum.", + "A photo of a person doing Playing Dhol. One image that comes to mind is of a India man playing a dhol drum at a wedding.", + "A photo of a person doing Playing Dhol. In the image, a person is playing a dhol, a traditional Indian drum.", + "A photo of a person doing Playing Dhol. A person is playing the dhol, a traditional Indian drum, in front of a group of people.", + "A photo of a person doing Playing Dhol. The image is of a man playing a dhol, which is a type of drum.", + "A photo of a person doing Playing Dhol. In the image, a man is playing the dhol, a traditional Indian drum.", + "A photo of a person doing Playing Dhol. In the image, a man is playing a dhol, a traditional Indian drum.", + "A photo of a person doing Playing Dhol. The image is of a person playing the dhol, a traditional Punjabi drum.", + "A photo of a person doing Playing Dhol. The image is of a young man playing a dhol, a traditional Indian drum.", + "A photo of a person doing Playing Dhol. In the image, a person is playing a dhol, a type of drum, in front of a crowd of people.", + "A photo of a person doing Playing Dhol. A man plays the dhol, a traditional Punjabi drum, at a festival in Pakistan.", + "A photo of a person doing Playing Dhol. A man plays the dhol, a traditional Indian drum, at a festival.", + "A photo of a person doing Playing Dhol. Usually performed by men, dhol is a double-sided barrel drum played with sticks.", + "A photo of a person doing Playing Dhol. Person playing dhol at a festival.", + "A photo of a person doing Playing Dhol. A person playing the dhol, a type of drum used in Indian music.", + "A photo of a person doing Playing Dhol. A man plays the dhol, a traditional Indian drum, at a festival.", + "A photo of a person doing Playing Dhol. A man plays the dhol, a traditional Indian drum, at a Hindu temple in Singapore.", + "A photo of a person doing Playing Dhol. A man playing the dhol, a traditional North Indian drum.", + "A photo of a person doing Playing Dhol. The dhol player keeps the beat going at the Punjabi street festival.", + "A photo of a person doing Playing Dhol. A man playing the dhol, a traditional Punjabi instrument." + ], + "Playing Flute": [ + "A photo of a person doing Playing Flute. A person playing the flute typically looks like they are concentrated and in deep thought.", + "A photo of a person doing Playing Flute. A person playing flute looks like they are holding a long, thin, wooden instrument up to their mouth and blowing into it.", + "A photo of a person doing Playing Flute. A person playing the flute would likely be holding the instrument up to their lips, blowing into it, and moving their fingers along the holes in the flute.", + "A photo of a person doing Playing Flute. A person playing flute looks like someone who is very concentrated and focused.", + "A photo of a person doing Playing Flute. A person playing the flute looks like they are blowing into the instrument and using their fingers to cover holes along the body of the flute.", + "A photo of a person doing Playing Flute. A person playing the flute likely looks like they are concentrating and flowing with the music.", + "A photo of a person doing Playing Flute. A person playing the flute looks like they are holding the flute up to their lips and blowing into it.", + "A photo of a person doing Playing Flute. -The person has a flute in their hand and is blowing into it.", + "A photo of a person doing Playing Flute. A person playing a flute looks like they are holding the flute up to their mouth and blowing into it.", + "A photo of a person doing Playing Flute. A person playing the flute is typically seated with the flute angled upward.", + "A photo of a person doing Playing Flute. If someone is playing the flute, you can usually hear the sound of the instrument.", + "A photo of a person doing Playing Flute. There are a few ways to identify a person playing the flute.", + "A photo of a person doing Playing Flute. If you see someone with a flute, they are likely playing the flute.", + "A photo of a person doing Playing Flute. If you see someone playing a flute, they are probably Playing_Flute.", + "A photo of a person doing Playing Flute. The person playing the flute is likely holding the instrument up to their lips and blowing into it.", + "A photo of a person doing Playing Flute. The person playing the flute can be identified by their long and slender fingers, which are nimble and able to move quickly over the holes of the flute.", + "A photo of a person doing Playing Flute. If you hear someone playing the flute, you can identify them as the person doing Playing_Flute.", + "A photo of a person doing Playing Flute. The person playing the flute would likely be holding the instrument up to their mouth, using their breath to blow air through the instrument to create sound.", + "A photo of a person doing Playing Flute. The person playing the flute would likely be holding the instrument up to their lips and blowing into it.", + "A photo of a person doing Playing Flute. If you see someone with a flute, they are most likely playing the flute.", + "A photo of a person doing Playing Flute. When a person is Playing_Flute, they look like they are holding a flute up to their mouth and blowing into it.", + "A photo of a person doing Playing Flute. There is no definitive answer to this question as people can look many different ways when playing the flute.", + "A photo of a person doing Playing Flute. A person playing the flute typically holds the instrument up to their mouth with both hands and blows into the mouthpiece.", + "A photo of a person doing Playing Flute. This is a difficult question to answer, as there is no definitive answer.", + "A photo of a person doing Playing Flute. A person playing the flute typically looks like they are concentrating and blowing into the flute.", + "A photo of a person doing Playing Flute. This is a difficult question to answer, as there is no one specific way that a person playing the flute looks.", + "A photo of a person doing Playing Flute. A person playing the flute looks like they are blowing into the instrument and trying to produce a tone.", + "A photo of a person doing Playing Flute. There is no definitive answer to this question as people can look very different when playing the flute.", + "A photo of a person doing Playing Flute. A person playing the flute may look concentrated and focused.", + "A photo of a person doing Playing Flute. A person playing the flute looks like they are holding the flute up to their mouth and blowing into it.", + "A photo of a person doing Playing Flute. The image is of a woman playing a flute.", + "A photo of a person doing Playing Flute. The image is of a man playing the flute in a park.", + "A photo of a person doing Playing Flute. The internet image shows a person playing a flute.", + "A photo of a person doing Playing Flute. The image is of a pale-skinned woman with dark hair playing the flute.", + "A photo of a person doing Playing Flute. The image is of a girl playing the flute in a park.", + "A photo of a person doing Playing Flute. In the image, a young girl is playing the flute.", + "A photo of a person doing Playing Flute. The image shows a person playing a flute.", + "A photo of a person doing Playing Flute. In the image, a person is playing a flute in front of a group of people.", + "A photo of a person doing Playing Flute. In the image, a young woman is playing a flute in a park.", + "A photo of a person doing Playing Flute. In the image, a young man is playing a flute in a park.", + "A photo of a person doing Playing Flute. A woman plays the flute in a forest.", + "A photo of a person doing Playing Flute. Person playing the flute.", + "A photo of a person doing Playing Flute. The flutist's fingers glide over the holes in the flute as they play a beautiful melody.", + "A photo of a person doing Playing Flute. This person is playing the flute.", + "A photo of a person doing Playing Flute. A musician playing the flute.", + "A photo of a person doing Playing Flute. This person is playing the flute.", + "A photo of a person doing Playing Flute. The person is playing the flute.", + "A photo of a person doing Playing Flute. A person playing the flute.", + "A photo of a person doing Playing Flute. A person is playing a flute.", + "A photo of a person doing Playing Flute. This person is playing the flute." + ], + "Playing Guitar": [ + "A photo of a person doing Playing Guitar. The personPlaying_Guitar generallyhas both hands on the guitar, one hand around the neck and one hand plucking the strings.", + "A photo of a person doing Playing Guitar. A person playing guitar typically looks like they are focusing on the music and their playing.", + "A photo of a person doing Playing Guitar. There is no one definitive answer to this question.", + "A photo of a person doing Playing Guitar. A person playing guitar may be sitting or standing.", + "A photo of a person doing Playing Guitar. A person playing the guitar typically looks like they are concentrating and focusing on the task at hand.", + "A photo of a person doing Playing Guitar. The person playing guitar usually has the guitar placed so that the strings are facing him/her.", + "A photo of a person doing Playing Guitar. When a person is playing guitar, they are usually holding the instrument in their lap or standing with the guitar strap around their shoulder.", + "A photo of a person doing Playing Guitar. A person playing guitar usually has the instrument slung across their body, and is using their hands to hold down the strings and create different notes.", + "A photo of a person doing Playing Guitar. The person playing guitar typically looks like they are holding the instrument in their lap or standing with the guitar strap around their neck and shoulders.", + "A photo of a person doing Playing Guitar. playing guitar looks like someone who is sitting down with a guitar in their lap, strumming the strings with their right hand and holding down the frets with their left hand.", + "A photo of a person doing Playing Guitar. If someone is playing the guitar, they will likely be holding the instrument in their laps or in front of them.", + "A photo of a person doing Playing Guitar. If someone is playing a guitar, they are likely holding the instrument in their lap or standing with it strapped to their body.", + "A photo of a person doing Playing Guitar. If someone is playing the guitar, they will likely be holding the instrument in their lap or in front of them.", + "A photo of a person doing Playing Guitar. It is difficult to identify a person doing Playing_Guitar without context.", + "A photo of a person doing Playing Guitar. There is no one definitive answer to this question.", + "A photo of a person doing Playing Guitar. Some common behaviors associated with playing guitar are: sitting with the guitar placed so that the strings are facing the player, holding the guitar in the lap or between the legs, striking the strings with the right hand and using the left hand to hold.", + "A photo of a person doing Playing Guitar. If someone is Playing_Guitar, you can usually identify them by the fact that they are holding a guitar and playing it.", + "A photo of a person doing Playing Guitar. If someone is playing guitar, they will likely be holding a guitar and strumming the strings.", + "A photo of a person doing Playing Guitar. There are many ways to identify a person who is playing the guitar.", + "A photo of a person doing Playing Guitar. If someone is playing a guitar, they are likely holding the instrument in their lap or standing with it strapped around their body.", + "A photo of a person doing Playing Guitar. A person playing guitar usually has the instrument slung across their body, and they are holding the neck of the guitar with their left hand while their right hand strums the strings.", + "A photo of a person doing Playing Guitar. A person playing guitar may be seated or standing.", + "A photo of a person doing Playing Guitar. A person playing the guitar typically has the instrument placed so that the body of the guitar is resting on the right leg, with the neck of the guitar pointing upward.", + "A photo of a person doing Playing Guitar. A person who is Playing_Guitar usually looks like they are concentrating and focusing on what their hands are doing.", + "A photo of a person doing Playing Guitar. There is no definitive answer to this question as everyone looks different when playing the guitar.", + "A photo of a person doing Playing Guitar. There is no one answer to this question as everyone looks different when playing the guitar.", + "A photo of a person doing Playing Guitar. A person playing guitar may be seated or standing.", + "A photo of a person doing Playing Guitar. A person playing guitar looks like they are holding a guitar and strumming the strings with their right hand while holding down chords with their left hand.", + "A photo of a person doing Playing Guitar. A person playing guitar typically looks like they are concentrating and focusing on the task at hand.", + "A photo of a person doing Playing Guitar. A person playing guitar generally looks like they are focusing on what their hands are doing.", + "A photo of a person doing Playing Guitar. .", + "A photo of a person doing Playing Guitar. I found an image of a person playing guitar while sitting on a stool.", + "A photo of a person doing Playing Guitar. A person is playing a guitar in front of a crowd of people.", + "A photo of a person doing Playing Guitar. In the image, a young woman is playing an acoustic guitar outdoors.", + "A photo of a person doing Playing Guitar. I found an image of a person playing the guitar on a website.", + "A photo of a person doing Playing Guitar. This image is of a young man playing an acoustic guitar.", + "A photo of a person doing Playing Guitar. Assuming you would like an image of a person playing a guitar: In the image, a person is sitting on a stool with a guitar in their lap.", + "A photo of a person doing Playing Guitar. The person is sitting on a stool with a guitar in their lap.", + "A photo of a person doing Playing Guitar. The image is of a person sitting on a stool with a guitar in their lap.", + "A photo of a person doing Playing Guitar. The image shows a person playing a guitar.", + "A photo of a person doing Playing Guitar. The person in the image is playing guitar.", + "A photo of a person doing Playing Guitar. This person is playing guitar and looks very happy.", + "A photo of a person doing Playing Guitar. A person is shown playing a guitarA person is shown playing a guitar.", + "A photo of a person doing Playing Guitar. The musician is playing guitar and singing.", + "A photo of a person doing Playing Guitar. The musician is playing an electric guitar.", + "A photo of a person doing Playing Guitar. The musician is shown playing the guitar.", + "A photo of a person doing Playing Guitar. The person in the picture is playing the guitar.", + "A photo of a person doing Playing Guitar. The musician is playing guitar.", + "A photo of a person doing Playing Guitar. This person is playing guitar.", + "A photo of a person doing Playing Guitar. The person in the photo is playing guitar." + ], + "Playing Piano": [ + "A photo of a person doing Playing Piano. The person's posture is upright, and their hands move deftly over the keys.", + "A photo of a person doing Playing Piano. A person playing the piano may sit on a bench or stool with their feet on the pedals, or they may stand.", + "A photo of a person doing Playing Piano. When a person is Playing_Piano, they typically sit at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. Someone playing the piano might sit with their back straight and their feet planted on the floor.", + "A photo of a person doing Playing Piano. A person doing Playing_Piano looks like they are sitting at a piano with their hands on the keys, moving their fingers back and forth.", + "A photo of a person doing Playing Piano. A person playing the piano may be seated or standing.", + "A photo of a person doing Playing Piano. A person playing the piano might sit with their back straight, their feet planted firmly on the ground, and their hands hovering over the keyboard.", + "A photo of a person doing Playing Piano. A person playing the piano looks like they are sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. A person is sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. A person Playing_Piano looks like someone sitting at a piano with their hands on the keys, playing a melody.", + "A photo of a person doing Playing Piano. There are a few ways to identify a person playing the piano.", + "A photo of a person doing Playing Piano. If you see someone sitting at a piano and their hands are moving over the keys, they are most likely playing the piano.", + "A photo of a person doing Playing Piano. The person will be sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. There are a few ways to identify a person who is playing the piano.", + "A photo of a person doing Playing Piano. The person playing the piano may be seated at the instrument, with their hands moving over the keys.", + "A photo of a person doing Playing Piano. If someone is playing the piano, they will likely be sitting in front of the piano with their hands on the keys.", + "A photo of a person doing Playing Piano. One way to identify a person playing the piano is to look at their hands.", + "A photo of a person doing Playing Piano. If someone is playing the piano, they will likely be sitting in front of the instrument with their hands on the keys.", + "A photo of a person doing Playing Piano. by the way they are sitting at the piano, and by the way their hands are positioned on the keys.", + "A photo of a person doing Playing Piano. If someone is playing the piano, they will likely be sitting in front of the instrument with their hands on the keys.", + "A photo of a person doing Playing Piano. A person playing the piano looks like they are sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. A person playing the piano looks like someone sitting at a piano with their hands on the keys, moving them up and down to create music.", + "A photo of a person doing Playing Piano. There is no one definitive answer to this question as everyone looks different when playing the piano.", + "A photo of a person doing Playing Piano. A person playing piano may sit with posture that is upright or slightly slumped.", + "A photo of a person doing Playing Piano. A person playing the piano looks like They are seated at a piano with their hands on the keyboard.", + "A photo of a person doing Playing Piano. A person playing the piano looks like they are sitting in front of a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. Assuming you are asking about what someone looks like while playing the piano, they would generally be seated with their legs under the piano, and their arms and hands moving over the keys.", + "A photo of a person doing Playing Piano. There is no one definitive answer to this question.", + "A photo of a person doing Playing Piano. If a person is playing piano, they will likely be sitting at a piano bench with their hands on the keys.", + "A photo of a person doing Playing Piano. A person playing the piano has their hands on the keyboard and is pressing down on the keys to make music.", + "A photo of a person doing Playing Piano. The image is of a young girl sitting at a piano with her hands on the keys.", + "A photo of a person doing Playing Piano. In the image, a man is sitting at a piano in a dimly lit room.", + "A photo of a person doing Playing Piano. In the image, a young African American girl is sitting at a piano in a music room.", + "A photo of a person doing Playing Piano. The image is of a person sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. The person is sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. In the image, a young woman is sitting at a piano in a living room.", + "A photo of a person doing Playing Piano. A person sitting at a grand piano in a darkened room, their hands moving deftly over the keys as they playing some classical music.", + "A photo of a person doing Playing Piano. In the image, a young girl is sitting at a piano with her hands on the keys.", + "A photo of a person doing Playing Piano. A person is sitting at a piano with their hands on the keys.", + "A photo of a person doing Playing Piano. In the image, a young woman is sitting at a piano in a practice room.", + "A photo of a person doing Playing Piano. This person is playing the piano.", + "A photo of a person doing Playing Piano. The person is sitting at a piano and playing it.", + "A photo of a person doing Playing Piano. The pianist is shown playing a grand piano in a concert hall.", + "A photo of a person doing Playing Piano. This person is playing the piano.", + "A photo of a person doing Playing Piano. Caption: Piano player at recital.", + "A photo of a person doing Playing Piano. A person is playing the pianoA person is playing the piano in a room with a grand piano.", + "A photo of a person doing Playing Piano. This person is playing the piano.", + "A photo of a person doing Playing Piano. A woman plays the piano in a living room.", + "A photo of a person doing Playing Piano. The person is playing the piano.", + "A photo of a person doing Playing Piano. A person is playing the piano in a room." + ], + "Playing Sitar": [ + "A photo of a person doing Playing Sitar. A person playing sitar generally looks like they are in a deep concentration, their eyes closed and their body slightly tilted forward.", + "A photo of a person doing Playing Sitar. A person playing sitar looks like someone sitting on the ground with their legs crossed, holding the sitar in front of them.", + "A photo of a person doing Playing Sitar. A person Playing_Sitar might be sitting on the floor with their legs crossed.", + "A photo of a person doing Playing Sitar. Most people sit cross-legged on the ground when playing sitar.", + "A photo of a person doing Playing Sitar. A personplaying the sitar may be seated on the ground or on a low stool, with the instrument placed on thefloor in front of them, or held in their lap.", + "A photo of a person doing Playing Sitar. A person playing the sitar might be sitting on the floor with their legs crossed.", + "A photo of a person doing Playing Sitar. A person sitting on the ground with their legs crossed, holding a sitar in their lap.", + "A photo of a person doing Playing Sitar. A person playing the sitar usually has the instrument placed on their lap, with the neck of the sitar resting on their left shoulder.", + "A photo of a person doing Playing Sitar. A person playing the sitar may be seated on the floor with the legs crossed, or in a chair with both feet on the ground.", + "A photo of a person doing Playing Sitar. A person playing the sitar is typically seated with the instrument perched on their left shoulder.", + "A photo of a person doing Playing Sitar. The person playing sitar can be identified by their traditional clothing and the sitar instrument.", + "A photo of a person doing Playing Sitar. There are a few ways to identify a person playing the sitar.", + "A photo of a person doing Playing Sitar. If someone is playing the sitar, they will usually be holding the instrument in their lap with the strings facing them.", + "A photo of a person doing Playing Sitar. The person playing sitar is likely to be Indian, as sitar is a traditional Indian instrument.", + "A photo of a person doing Playing Sitar. There are a few ways to identify a person playing sitar.", + "A photo of a person doing Playing Sitar. The sitar is a plucked string instrument used mainly in Hindustani music and Indian classical music.", + "A photo of a person doing Playing Sitar. The person playing sitar will be seated with the instrument in their lap, using their left hand to hold the strings and pluck them while their right hand is pressed down onto the frets.", + "A photo of a person doing Playing Sitar. The person playing sitar is likely to be wearing traditional Indian clothing.", + "A photo of a person doing Playing Sitar. The person playing sitar is usually seated with the instrument placed on their lap.", + "A photo of a person doing Playing Sitar. The person playing the sitar is likely to be Indian, as the sitar is a traditional Indian instrument.", + "A photo of a person doing Playing Sitar. A person playing sitar may be seated or standing.", + "A photo of a person doing Playing Sitar. A person playing sitar may be seated on the ground or on a stool, with the instrument placed on their lap.", + "A photo of a person doing Playing Sitar. A person playing the sitar would generally be seated on the floor, with the instrument placed in front of them.", + "A photo of a person doing Playing Sitar. Typically, a person playing the sitar will be seated with the instrument placed on their lap.", + "A photo of a person doing Playing Sitar. A person playing sitar generally looks like they are in a position of concentration and focus.", + "A photo of a person doing Playing Sitar. A person playing sitar looks like someone meditating.", + "A photo of a person doing Playing Sitar. A person sitting on the ground with their legs crossed, leaning over a large instrument with strings and a gourd-shaped resonator.", + "A photo of a person doing Playing Sitar. A person playing sitar looks like they are meditating.", + "A photo of a person doing Playing Sitar. A person playing sitar looks like someone sitting on the floor with their legs crossed, holding the instrument in their lap.", + "A photo of a person doing Playing Sitar. There is no definitive answer to this question as everyone looks different when playing the sitar.", + "A photo of a person doing Playing Sitar. In the image, a woman is sitting on a wooden floor with her legs crossed.", + "A photo of a person doing Playing Sitar. In the image, a person is sitting on a floor with their legs crossed.", + "A photo of a person doing Playing Sitar. The image is of a man sitting on the floor cross-legged, with a wooden sitar in his lap.", + "A photo of a person doing Playing Sitar. A person is sitting on the ground, with their legs crossed.", + "A photo of a person doing Playing Sitar. This image shows a person playing the sitar, a traditional Indian string instrument.", + "A photo of a person doing Playing Sitar. A person is sitting on a floor, cross-legged with a small, round table in front of them.", + "A photo of a person doing Playing Sitar. In the image, a young man with dark hair is sitting on a rug in front of a large window.", + "A photo of a person doing Playing Sitar. I found an image of a man playing the sitar on a website.", + "A photo of a person doing Playing Sitar. In the image, a person is sitting on the ground with their legs crossed.", + "A photo of a person doing Playing Sitar. In the image, a man is sitting on the ground with his legs crossed.", + "A photo of a person doing Playing Sitar. The person in the image is playing the sitar.", + "A photo of a person doing Playing Sitar. A person playing sitar.", + "A photo of a person doing Playing Sitar. A person playing sitar.", + "A photo of a person doing Playing Sitar. Playing sitar is a centuries-old tradition in India that requires great skill and discipline.", + "A photo of a person doing Playing Sitar. A person plays sitar.", + "A photo of a person doing Playing Sitar. Sitar player in traditional clothing.", + "A photo of a person doing Playing Sitar. The sitar is a plucked string instrument used mainly in Hindustani classical music.", + "A photo of a person doing Playing Sitar. The person in the image is playing a sitar, a traditional Indian musical instrument.", + "A photo of a person doing Playing Sitar. This person is playing the sitar, a type of musical instrument indigenous to the Indian subcontinent.", + "A photo of a person doing Playing Sitar. A woman in a traditional Indian dress is playing a sitar." + ], + "Playing Tabla": [ + "A photo of a person doing Playing Tabla. The person playing tabla is sitting on the ground with their legs crossed.", + "A photo of a person doing Playing Tabla. A person playing tabla looks like they are sitting on the ground with their legs crossed.", + "A photo of a person doing Playing Tabla. Someone playing tabla would be sitting on the ground, with the tabla in front of them.", + "A photo of a person doing Playing Tabla. A person playing tabla looks like they are sitting on the ground with their legs crossed.", + "A photo of a person doing Playing Tabla. A person playing Tabla looks like someone sitting cross-legged on the ground with a small drum set in front of them.", + "A photo of a person doing Playing Tabla. A person playing tabla usually looks like they are in a meditative state.", + "A photo of a person doing Playing Tabla. A person playing the tabla typically sits cross-legged on the ground with the instrument in their lap.", + "A photo of a person doing Playing Tabla. A person sitting on the ground with their legs crossed, holding a Tabla in their lap.", + "A photo of a person doing Playing Tabla. A person Sitting_Playing_Tabla generally looks like they are in a trance, or deeply concentrated.", + "A photo of a person doing Playing Tabla. A person playing tabla looks like they are playing a drum set.", + "A photo of a person doing Playing Tabla. The person playing the tabla is usually seated on the ground with the tabla placed in front of them.", + "A photo of a person doing Playing Tabla. The person playing the tabla will be sitting on the ground with their legs crossed.", + "A photo of a person doing Playing Tabla. Assuming you mean how can you identify someone who is playing the tabla, there are a few things you can look for.", + "A photo of a person doing Playing Tabla. Playing tabla requires a lot of practice and a good ear.", + "A photo of a person doing Playing Tabla. There are a few ways to identify a person playing tabla.", + "A photo of a person doing Playing Tabla. The person doing Playing_Tabla is probably holding a tabla, which is a type of drum.", + "A photo of a person doing Playing Tabla. The person playing tabla is likely to be sitting cross-legged on the floor, with the tabla placed in front of them.", + "A photo of a person doing Playing Tabla. Playing tabla involves sitting on the floor with the tabla in front of the player.", + "A photo of a person doing Playing Tabla. The person playing tabla is likely to be sitting on the floor with their legs crossed, and will have two drums placed in front of them - one larger drum (the bayan) and one smaller drum (the dayan).", + "A photo of a person doing Playing Tabla. The person playing tabla will be sitting on the ground with their legs crossed.", + "A photo of a person doing Playing Tabla. Tabla is a percussion instrument from India, typically played while seated.", + "A photo of a person doing Playing Tabla. A person playing tabla looks like they are playing a drum set.", + "A photo of a person doing Playing Tabla. Playing_Tabla generally looks like a person sitting on the ground with their legs crossed, with one hand resting on a small drum in front of them, and the other hand playing a larger drum that is placed between their legs.", + "A photo of a person doing Playing Tabla. A person playing Tabla often looks like they are in a trance, as they become deeply absorbed in the music.", + "A photo of a person doing Playing Tabla. There is no one definitive answer to this question, as people can play tabla in a variety of ways and in different settings.", + "A photo of a person doing Playing Tabla. A person playing tabla looks like someone sitting cross-legged with two drums placed in front of them.", + "A photo of a person doing Playing Tabla. A person playing tabla looks like they are sitting or standing in a relaxed position with their knees slightly bent.", + "A photo of a person doing Playing Tabla. A person playing tabla typically sits cross-legged on the ground, with the right leg tucked under the left leg.", + "A photo of a person doing Playing Tabla. Most people playing tabla are Indian, so they would likely be wearing traditional Indian clothes.", + "A photo of a person doing Playing Tabla. Playing_Tabla typically looks like a person sitting on the floor, with their legs crossed, and playing a small drum with their hands.", + "A photo of a person doing Playing Tabla. In the image, a person is sitting on a stool in front of a tabla.", + "A photo of a person doing Playing Tabla. In the image, a person is sitting on the ground, cross-legged, with a drum set in front of them.", + "A photo of a person doing Playing Tabla. The image is of a man sitting on the floor, cross-legged, with a small drum in front of him.", + "A photo of a person doing Playing Tabla. In the image, a person is seated on the floor, with their legs crossed.", + "A photo of a person doing Playing Tabla. The image shows a person sitting on the ground, with their legs crossed.", + "A photo of a person doing Playing Tabla. The image is of a person playing the tabla, a percussion instrument from India.", + "A photo of a person doing Playing Tabla. In the image, a man is playing tabla, a type of percussion instrument.", + "A photo of a person doing Playing Tabla. Its a black and white image of a man playing the tabla.", + "A photo of a person doing Playing Tabla. The image is of a man playing Tabla.", + "A photo of a person doing Playing Tabla. In the image, a person is sitting on the floor in a cross-legged position with a drums set in front of them.", + "A photo of a person doing Playing Tabla. Devendra Banhart playing tabla during a sound check at Battery Studios in New York City.", + "A photo of a person doing Playing Tabla. A man sitting on the floor playing a Tabla.", + "A photo of a person doing Playing Tabla. A person is playing tabla, a type of drum, in a park.", + "A photo of a person doing Playing Tabla. This person is playing the tabla, a traditional percussion instrument from India.", + "A photo of a person doing Playing Tabla. A man plays tabla, a type of percussion instrument, at a music festival.", + "A photo of a person doing Playing Tabla. A person playing tabla, a traditional Indian percussion instrument.", + "A photo of a person doing Playing Tabla. Image of a person playing the tabla, a type of Indian percussion instrument.", + "A photo of a person doing Playing Tabla. A person playing the tabla.", + "A photo of a person doing Playing Tabla. A man playing tabla, a type of drum used in Hindustani music.", + "A photo of a person doing Playing Tabla. Person playing the tabla, a percussion instrument used in Hindustani classical music." + ], + "Playing Violin": [ + "A photo of a person doing Playing Violin. SMiling.", + "A photo of a person doing Playing Violin. One person playing violin might look like they are standing up straight with the violin tucked under their chin.", + "A photo of a person doing Playing Violin. A person playing the violin looks like they are holding the instrument up to their chin, and using a bow to play the strings.", + "A photo of a person doing Playing Violin. The person Playing_Violin looks like they are enjoying themselves and are engrossed in the music.", + "A photo of a person doing Playing Violin. A person playing the violin might have their head tilted slightly upward, their eyes closed, and a small smile on their face.", + "A photo of a person doing Playing Violin. A person playing violin may be holding the instrument in their lap or between their legs.", + "A photo of a person doing Playing Violin. A person playing the violin typically holds the instrument under their chin, with their left hand on the neck and their right hand moving the bow across the strings.", + "A photo of a person doing Playing Violin. The person looks like they are holding a violin and using a bow to play the instrument.", + "A photo of a person doing Playing Violin. The person's right hand is placed on the bow.", + "A photo of a person doing Playing Violin. A person playing violin typically looks like they are concentrating and focused on the task at hand.", + "A photo of a person doing Playing Violin. If someone is Playing_Violin, you can usually hear the sound of a violin.", + "A photo of a person doing Playing Violin. If someone is playing violin, you can generally hear the sound of the violin.", + "A photo of a person doing Playing Violin. someone playing violin will be holding the instrument in their lap, or standing with the violin tucked under their chin.", + "A photo of a person doing Playing Violin. If someone is Playing_Violin, you can usually identify them by the way they are holding the instrument and a bow.", + "A photo of a person doing Playing Violin. If someone is Playing_Violin, you can usually hear the sound of a violin.", + "A photo of a person doing Playing Violin. If you see someone playing a violin, they are most likely Playing_Violin.", + "A photo of a person doing Playing Violin. One way to identify a person playing the violin is to look at the position of their arms and hands.", + "A photo of a person doing Playing Violin. There are a few ways to identify a person playing the violin.", + "A photo of a person doing Playing Violin. The person will be holding a violin and bow in their hands, and will be moving the bow across the strings to create a sound.", + "A photo of a person doing Playing Violin. The person playing violin will likely be holding the instrument upright, with the strings facing the chin.", + "A photo of a person doing Playing Violin. There is no one definitive answer to this question.", + "A photo of a person doing Playing Violin. A person playing violin may look intense or focused as they play.", + "A photo of a person doing Playing Violin. When a person is playing violin, they hold the instrument under their chin and use a bow to play the strings.", + "A photo of a person doing Playing Violin. A person doing Playing_Violin looks like a musician playing a violin.", + "A photo of a person doing Playing Violin. There is no definitive answer to this question since people can look very different while playing the violin.", + "A photo of a person doing Playing Violin. Assuming you would like a description of what a person looks like while playing the violin, they would most likely be standing or sitting with good posture, their chin slightly tilted upward, and the violin positioned under their chin.", + "A photo of a person doing Playing Violin. A person playing the violin looks like they are holding the instrument up to their shoulder and using a bow to play the strings.", + "A photo of a person doing Playing Violin. There is no one definitive answer to this question.", + "A photo of a person doing Playing Violin. A person playing violin looks like they are using one hand to hold the neck of the violin and the other hand to hold the bow.", + "A photo of a person doing Playing Violin. There is no one definitive answer to this question, as different people can look very different when playing the violin.", + "A photo of a person doing Playing Violin. A person is sitting on a stool with a violin in their lap.", + "A photo of a person doing Playing Violin. The image is of a woman playing the violin.", + "A photo of a person doing Playing Violin. In the image, a young woman is playing the violin in a park.", + "A photo of a person doing Playing Violin. This image is of a young girl playing the violin.", + "A photo of a person doing Playing Violin. On the image, a person is shown playing the violin.", + "A photo of a person doing Playing Violin. The image from the internet of a person playing violin shows a man in a white shirt and black pants playing a violin.", + "A photo of a person doing Playing Violin. In the image, a young girl is playing the violin in a park.", + "A photo of a person doing Playing Violin. The image shows a person playing the violin.", + "A photo of a person doing Playing Violin. The image is of a man playing the violin in a park.", + "A photo of a person doing Playing Violin. An image of a person playing the violin would likely show the person holding the violin and bow in their hands, and using the bow to play the strings of the violin.", + "A photo of a person doing Playing Violin. The person is playing the violin.", + "A photo of a person doing Playing Violin. This person is playing the violin.", + "A photo of a person doing Playing Violin. The person in the image is playing the violin.", + "A photo of a person doing Playing Violin. Person playing violin.", + "A photo of a person doing Playing Violin. The player is in the Allegro con brio section of the Bach Violin Partita No.", + "A photo of a person doing Playing Violin. The musician is playing a violin.", + "A photo of a person doing Playing Violin. A person playing the violin.", + "A photo of a person doing Playing Violin. The image shows a person playing the violin.", + "A photo of a person doing Playing Violin. This person is playing the violin.", + "A photo of a person doing Playing Violin. Haggis McBaggis, world renowned bagpiper." + ], + "Pole Vault": [ + "A photo of a person doing Pole Vault. Pole vaulting is a track and field event in which a person uses a long, flexible pole as an aid to jump over a bar.", + "A photo of a person doing Pole Vault. A person pole vaulting looks like they are running and jumping horizontally over a bar using a pole.", + "A photo of a person doing Pole Vault. When a person is pole vaulting, they run down a track with a long, flexible pole in their hands.", + "A photo of a person doing Pole Vault. A person attempting to pole vault looks like they are running and using a long, metal pole to vault over a horizontal bar.", + "A photo of a person doing Pole Vault. A person doing Pole Vault looks like they are using a large pole to jump over a bar.", + "A photo of a person doing Pole Vault. A person doing the Pole Vault looks like they are running with a pole in their hand and then jumping up and grabbing the pole and flipping themselves over the bar.", + "A photo of a person doing Pole Vault. A person doing Pole Vault looks like they are running and jumping over a bar with a pole in their hand.", + "A photo of a person doing Pole Vault. A person doing Pole Vault looks like they are running with a pole and jumping over a bar.", + "A photo of a person doing Pole Vault. A person doing a Pole Vault looks like they are running and jumping up in the air, grabbing the pole, and then flipping themselves over the bar.", + "A photo of a person doing Pole Vault. When a person is pole vaulting, they run towards an incredibly tall pole with a small curved end.", + "A photo of a person doing Pole Vault. A person doing the pole vault has a pole in their hands and is running towards a bar.", + "A photo of a person doing Pole Vault. If you see someone doing a pole vault, they will be holding a long pole in their hands and running towards a high bar before using the pole to propel themselves over the bar.", + "A photo of a person doing Pole Vault. The person is likely to be wearing tight clothing and have a pole in their hand.", + "A photo of a person doing Pole Vault. The person is holding a pole and running towards a bar.", + "A photo of a person doing Pole Vault. When a person is pole vaulting, they will be holding a long, thin pole in their hands and running towards a bar before leaping into the air and planting the pole onto the bar.", + "A photo of a person doing Pole Vault. The person will be hanging from a pole, holding onto the pole with their hands, and their feet will be pointing up in the air.", + "A photo of a person doing Pole Vault. If you see someone running with a long, thin pole, and then jumping and grabbing the pole before flipping themselves over the bar, they are doing pole vault.", + "A photo of a person doing Pole Vault. A person doing Pole Vault will be holding a long pole and running towards a high bar.", + "A photo of a person doing Pole Vault. Pole vaulters are generally strong and muscular, with good coordination and flexibility.", + "A photo of a person doing Pole Vault. The person is doing Pole Vault if they are using a poles to jump over a bar.", + "A photo of a person doing Pole Vault. A person doing a pole vault looks like they are using a long, thin pole to vault over a high bar.", + "A photo of a person doing Pole Vault. A person doing a pole vault looks like they are running and then jumping and grabbing the pole and then flipping over the bar.", + "A photo of a person doing Pole Vault. When a person is doing a pole vault, they look like they are running and jumping up to grab the pole, then using the pole to swing themselves up and over the bar.", + "A photo of a person doing Pole Vault. A person doing the Pole Vault looks like they are running and jumping over a bar using a long pole.", + "A photo of a person doing Pole Vault. Up close, a person doing a pole vault looks like they are about to run and jump really high.", + "A photo of a person doing Pole Vault. Someone doing pole vault looks like they are about to run and jump up onto a pole.", + "A photo of a person doing Pole Vault. A person doing Pole Vault looks like they are jumping up and over a bar using a pole.", + "A photo of a person doing Pole Vault. A person doing a Pole Vault looks like they are running and jumping up in the air, holding on to a pole.", + "A photo of a person doing Pole Vault. A person doing pole vault looks like they are jumping over a bar with a pole.", + "A photo of a person doing Pole Vault. When a person is doing the pole vault, they look like they are running and jumping up in the air, grabbing the pole, and then flipping their body over the bar.", + "A photo of a person doing Pole Vault. The image is of a person doing a Pole Vault.", + "A photo of a person doing Pole Vault. An image from the internet of a person doing a Pole Vault would show someone grasping a tall pole, running towards a raised bar, and then propelling their body over the bar using the momentum from the pole.", + "A photo of a person doing Pole Vault. In the image, a person is doing a pole vault.", + "A photo of a person doing Pole Vault. I couldn't find an image that was exactly what you were asking for, but I found an image of a person doing a flip on a pole.", + "A photo of a person doing Pole Vault. ingIn the image, a person is doing a pole vault.", + "A photo of a person doing Pole Vault. The image is of a person doing a pole vault.", + "A photo of a person doing Pole Vault. In the image, a person is doing a pole vault.", + "A photo of a person doing Pole Vault. This person is attempting apole vault.", + "A photo of a person doing Pole Vault. In the image, a person is doing a pole vault.", + "A photo of a person doing Pole Vault. I found an image on the internet of a person doing Pole Vault.", + "A photo of a person doing Pole Vault. Pole vaulter in midair, about to land on the mat.", + "A photo of a person doing Pole Vault. This person is doing Pole Vault, which is a track and field event where athletes attempt to clear a bar using a long, flexible pole.", + "A photo of a person doing Pole Vault. A person doing Pole Vault.", + "A photo of a person doing Pole Vault. The person in the picture is pole vaulting.", + "A photo of a person doing Pole Vault. A person does pole vault during a competition.", + "A photo of a person doing Pole Vault. Person doing a pole vault.", + "A photo of a person doing Pole Vault. This person is pole vaulting.", + "A photo of a person doing Pole Vault. Pole vaulter in mid-air, about to clear the bar.", + "A photo of a person doing Pole Vault. Pole vaulter powering through their final vault.", + "A photo of a person doing Pole Vault. Pole vaulter in action." + ], + "Pommel Horse": [ + "A photo of a person doing Pommel Horse. A person doing Pommel Horse looks like they are doing a handstand on a horse, with their legs crossed and their body straight.", + "A photo of a person doing Pommel Horse. The person is in a handstand position on the horse with their feet in stirrups.", + "A photo of a person doing Pommel Horse. When someone is performing a pommel horse routine, they will look like they are doing a handstand on top of a horse-shaped object.", + "A photo of a person doing Pommel Horse. When someone is doing Pommel_Horse, they look like they are doing a handstand on a horse, with their legs going around the horse's body.", + "A photo of a person doing Pommel Horse. A person doing Pommel_Horse looks like they are doing a very hard workout.", + "A photo of a person doing Pommel Horse. The person is on a pommel horse, which is a piece of equipment used in gymnastics.", + "A photo of a person doing Pommel Horse. If someone is doing a pommel horse routine, they will be doing a series of acrobatic maneuvers on a small horse-shaped apparatus.", + "A photo of a person doing Pommel Horse. A person doing Pommel_Horse looks like a person doing a handstand on a horse, with their legs bent and their feet hanging over the horse's back.", + "A photo of a person doing Pommel Horse. A person doing Pommel_Horse looks like a gymnast on a horse, without the horse.", + "A photo of a person doing Pommel Horse. When performing pommel horse, Gymnasts will appear to be mounting/dismounting an invisible horse.", + "A photo of a person doing Pommel Horse. The person will be doing a pommel horse exercise if they are holding onto the pommels of the horse with both hands and swinging their legs back and forth.", + "A photo of a person doing Pommel Horse. The person will be on their hands and knees with their feet in the air.", + "A photo of a person doing Pommel Horse. The person is on all fours, using their hands and feet to propel themselves across the floor.", + "A photo of a person doing Pommel Horse. There are a few ways to identify a person doing Pommel_Horse:1.", + "A photo of a person doing Pommel Horse. The person is likely to be wearing gymnastics equipment including a leotard, and have their hair pulled back in a ponytail.", + "A photo of a person doing Pommel Horse. Most people doing Pommel_Horse will be wearing some kind of gymnastics leotard.", + "A photo of a person doing Pommel Horse. The person will be performing on a pommel horse with two wooden handles on either side.", + "A photo of a person doing Pommel Horse. It is difficult to identify a person doing pommel horse from a distance.", + "A photo of a person doing Pommel Horse. In Pommel Horse, the gymnast will be in a handstand position on the pommel horse, with their legs crossed and separated at the ankles, and their hands gripping the pommel.", + "A photo of a person doing Pommel Horse. If someone is doing Pommel_Horse, they will be performing a gymnastics move on a horse-shaped apparatus.", + "A photo of a person doing Pommel Horse. A person doing pommel horse looks like they are doing a handstand on a horse.", + "A photo of a person doing Pommel Horse. A person doing a pommel horse routine looks like they are riding an invisible horse.", + "A photo of a person doing Pommel Horse. A person doing a Pommel Horse Exercise looks like they are doing a handstand on a horse, with their legs crossed and their hands gripping the horse's pommel.", + "A photo of a person doing Pommel Horse. someone performing a pommel horse exercise looks like they are doing a handstand on a horse, with their legs and body going through a variety of positions.", + "A photo of a person doing Pommel Horse. When a person is doing pommel horse, they will be in a handstand position on the horse with their legs open in a V shape.", + "A photo of a person doing Pommel Horse. A pommel horse gymnast typically looks like they are doing a handstand on a horse, with their legs split in the air.", + "A photo of a person doing Pommel Horse. A person doing Pommel_Horse generally looks like they are doing a handstand on a horse, with their legs extended out in front of them and their bodies perpendicular to the ground.", + "A photo of a person doing Pommel Horse. A person doing Pommel_Horse looks like they are doing a handstand on a horse with no saddle.", + "A photo of a person doing Pommel Horse. Pommel horse is an event in artistic gymnastics.", + "A photo of a person doing Pommel Horse. A person performing a pommel horse routine looks like they are doing gymnastics on a horse without the horse.", + "A photo of a person doing Pommel Horse. The image is of a gymnast doing a pommel horse routine.", + "A photo of a person doing Pommel Horse. A person is doing a pommel horse exercise on the internet.", + "A photo of a person doing Pommel Horse. The image is of a gymnast doing a pommel horse routine.", + "A photo of a person doing Pommel Horse. The image shows a person doing a pommel horse routine.", + "A photo of a person doing Pommel Horse. Describes an image of a person doing Pommel Horse where their feet are on the pommel and their body is horizontal to the ground.", + "A photo of a person doing Pommel Horse. An image from the internet of a person doing Pommel Horse shows a person performing a gymnastics move on a horse-shaped apparatus.", + "A photo of a person doing Pommel Horse. The image is of a person doing Pommel Horse.", + "A photo of a person doing Pommel Horse. The image is of a man doing a Pommel Horse routine.", + "A photo of a person doing Pommel Horse. The image shows a person doing a Pommel Horse routine.", + "A photo of a person doing Pommel Horse. The image is of a person doing a pommel horse exercise.", + "A photo of a person doing Pommel Horse. Pommel Horse.", + "A photo of a person doing Pommel Horse. The person is doing a pommel horse exercise.", + "A photo of a person doing Pommel Horse. This person is doing a pommel horse exercise.", + "A photo of a person doing Pommel Horse. The Pommel Horse is an important apparatus in men's gymnastics.", + "A photo of a person doing Pommel Horse. The pommel horse is a classic piece of equipment in the world of gymnastics.", + "A photo of a person doing Pommel Horse. Person doing Pommel Horse.", + "A photo of a person doing Pommel Horse. A person does a pommel horse exercise.", + "A photo of a person doing Pommel Horse. This person is performing a pommel horse exercise.", + "A photo of a person doing Pommel Horse. Emmitt Smith performing a pommel horse routine.", + "A photo of a person doing Pommel Horse. Male gymnast performing pommel horse exercise." + ], + "Pull Ups": [ + "A photo of a person doing Pull Ups. When someone is doing a pull-up, they are gripping a bar above their head and pulling their body up so that their chinClears the bar.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups will be hanging from a bar with their hands shoulder width apart and their palms facing away from them.", + "A photo of a person doing Pull Ups. A person doing a pull-up typically holds onto a horizontal bar above their head and pulls their body up until their chin clears the bar.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups looks like they are hanging from a bar and pulling themselves up.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups looks like they are hanging from a bar and pulling their chin up to the bar.", + "A photo of a person doing Pull Ups. A person doing a pull-up hangs from a bar with their palms facing away from them.", + "A photo of a person doing Pull Ups. A person doing a pull-up typically hangs from a bar with their hands shoulder-width apart, palms facing away from them.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups looks like they are holding themselves up on a bar with their hands and pulling their chin up above the bar.", + "A photo of a person doing Pull Ups. A person doing pull-ups would be holding onto a bar above their head and pulling their body up so that their chin is above the bar.", + "A photo of a person doing Pull Ups. A person doingPull_Ups looks like they are hanging from a bar with their hands shoulder width apart and then pulling themselves up until their chin is above the bar.", + "A photo of a person doing Pull Ups. A person doing a pull-up would be hanging from a bar with their hands above their head, and would be lifting their body up towards the bar.", + "A photo of a person doing Pull Ups. Pull-ups are an exercise where a person hangs from a bar and then pulls themselves up so their chin is above the bar.", + "A photo of a person doing Pull Ups. A person doing a pull-up can be identified by their position.", + "A photo of a person doing Pull Ups. The person is hanging from a bar with their palms facing away from them and their chin is above the bar.", + "A photo of a person doing Pull Ups. Pull-ups are a strength training exercise in which a person hangs from a horizontal bar and pulls themselves up until their chin reaches the bar.", + "A photo of a person doing Pull Ups. The person would be hanging from a bar with their palms facing away from them and their chin would be above the bar.", + "A photo of a person doing Pull Ups. The person would be doing a chin-up, with their palms facing themselves.", + "A photo of a person doing Pull Ups. A person doing pull-ups can be identified by their position, which is hanging from a bar with their palms facing away from them and their chin above the bar.", + "A photo of a person doing Pull Ups. The person would be holding onto a bar above their head and would be pulling themselves up so that their chin is above the bar.", + "A photo of a person doing Pull Ups. If someone is doing a pull-up, they will be hanging from a bar with their hands gripping the bar at about shoulder-width apart.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups usually looks like they are lifting their body up with their arms, holding on to something above them.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups looks like they are hanging from a bar and then pulling themselves up so their chin is above the bar.", + "A photo of a person doing Pull Ups. In a pull-up, your body hangs from a bar with your hands shoulder-width apart.", + "A photo of a person doing Pull Ups. When doing pull-ups, a person's body will be perpendicular to the ground, and they will be holding onto a bar above their head.", + "A photo of a person doing Pull Ups. A person doing a Pull-Up looks like they are hanging from a bar and then pulling themselves up so their chin is above the bar.", + "A photo of a person doing Pull Ups. A person doing a pull up looks like they are hanging from a bar with their palms facing them, and then pulling themselves up so their chin is above the bar.", + "A photo of a person doing Pull Ups. A person doing Pull_Ups usually looks like they are trying to reach something overhead.", + "A photo of a person doing Pull Ups. A person doing a pull-up looks like someone who is hanging from a bar with their hands gripping the bar and their feet off the ground.", + "A photo of a person doing Pull Ups. A person doing pull-ups typically looks like they are hanging from a bar with their chin above the bar.", + "A photo of a person doing Pull Ups. When someone is doing a pull-up, they are gripping a horizontal bar above their head and pulling their body up until their chin is level with the bar.", + "A photo of a person doing Pull Ups. In the image, a person is doing a pull-up with their chin just above the bar.", + "A photo of a person doing Pull Ups. The person is doing a pull-up with their chin over the bar.", + "A photo of a person doing Pull Ups. In the image, a person is doing a pull-up with their chin over the bar.", + "A photo of a person doing Pull Ups. A person doing pull-ups is an image of someone who is physically fit and healthy.", + "A photo of a person doing Pull Ups. An image from the internet of a person doing Pull_Ups would show someone with their hands gripping a bar above their head, their chin just above the bar, and their feet off the ground.", + "A photo of a person doing Pull Ups. This image is of a person doing a pull-up.", + "A photo of a person doing Pull Ups. A person doing pull ups on a bar, with their feet off the ground.", + "A photo of a person doing Pull Ups. The image is of a person doing a pull-up with their chin over the bar.", + "A photo of a person doing Pull Ups. A person doing a pull up has their hands gripping a bar above their head.", + "A photo of a person doing Pull Ups. A woman is doing a pull-up on a bar.", + "A photo of a person doing Pull Ups. Person doing pull-ups with proper form.", + "A photo of a person doing Pull Ups. This person is doing a pull-up.", + "A photo of a person doing Pull Ups. In this photo, an individual is doing a pull-up exercise.", + "A photo of a person doing Pull Ups. Person doing a pull-up with a band wrapped around their foot for assistance.", + "A photo of a person doing Pull Ups. Person doing a pull-up in a gym.", + "A photo of a person doing Pull Ups. The person in the image is doing a pull-up.", + "A photo of a person doing Pull Ups. \"Pull-Ups are a great way to tone your upper body.", + "A photo of a person doing Pull Ups. Person doing a pull-up with feet crossed behind them.", + "A photo of a person doing Pull Ups. A person doing a Pull Up.", + "A photo of a person doing Pull Ups. Our model demonstrates proper form while doing a pull-up." + ], + "Punch": [ + "A photo of a person doing Punch. A person doing a punch looks like they are throwing a punch with their arm.", + "A photo of a person doing Punch. A person doing Punch looks like they are about to punch someone.", + "A photo of a person doing Punch. When a person is doing Punch, they look like they are throwing a fast and powerful punch.", + "A photo of a person doing Punch. While there are many variations, a person throwing a punch typically looks like they are drawing their arm back with a clenched fist and then thrusting it forward in a quick, powerful motion.", + "A photo of a person doing Punch. A person doing Punch looks like they are throwing a big punch with their right hand.", + "A photo of a person doing Punch. When a person is punching, they extend their arm out in front of them and twist their body so their shoulder is facing the person or object they are punching.", + "A photo of a person doing Punch. The person looks like they are about to punch someone.", + "A photo of a person doing Punch. When a person is doing punch, they are making a fist with their hand and then making a quick jerking motion towards whatever they are punching.", + "A photo of a person doing Punch. A person doing punch looks like they are punching the air in front of them.", + "A photo of a person doing Punch. If a person is doing a punch, they will likely have their arm pulled back, ready to throw a fist forward.", + "A photo of a person doing Punch. Punching is a fighting technique in which the pugilist uses his or her fists to throw blows at an opponent.", + "A photo of a person doing Punch. The person is likely to be wearing boxing gloves and have a raised fist.", + "A photo of a person doing Punch. I cannot answer this question.", + "A photo of a person doing Punch. There are several ways to identify a person doing Punch.", + "A photo of a person doing Punch. Punch is a martial art that is performed with the fists.", + "A photo of a person doing Punch. Punch is a fighting game, and as such, players will be trying to hit each other with their fists.", + "A photo of a person doing Punch. A person doing Punch may be identified by their stance, which is wide and their feet are turned out.", + "A photo of a person doing Punch. Punch is usually a quick, straight punch with the lead hand.", + "A photo of a person doing Punch. The person will have their fists clinched and their arms will be drawn back close to their body.", + "A photo of a person doing Punch. There are a few ways to identify a person doing punch.", + "A photo of a person doing Punch. A person doing Punch looks like someone who is performing a punching motion.", + "A photo of a person doing Punch. A person doing Punch would look like they are punching someone or something.", + "A photo of a person doing Punch. The person doing Punch looks like a large, green, ogre-like creature.", + "A photo of a person doing Punch. The simplest way to do punch is to make a fist with your dominant hand and strike with the bottom two knuckles of your hand.", + "A photo of a person doing Punch. A person doing Punch should have their feet shoulder-width apart and their knees slightly bent.", + "A photo of a person doing Punch. A person throwing a punch typically looks like they are about to hit someone.", + "A photo of a person doing Punch. A person doing Punch will look like they are throwing a punch.", + "A photo of a person doing Punch. A person doing punch looks like they are punching the air.", + "A photo of a person doing Punch. There are many different ways to do Punch, but generally, a person stands with their feet shoulder-width apart, their knees slightly bent, and their fists up by their face.", + "A photo of a person doing Punch. A person doing a Punch may look like they are throwing a punch, or they may look like they are holding a ball.", + "A photo of a person doing Punch. ingAn image of a person punching might show someone with their fist clenched, their arm pulled back, and their body leaning into the punch.", + "A photo of a person doing Punch. ingIn the image, a young man is punching a punching bag in a boxing gym.", + "A photo of a person doing Punch. ingThe image depicts a young man in a boxing ring, punching the heavy bag.", + "A photo of a person doing Punch. ing (to the best of your ability)The image is of a person in a boxing stance, punch raised and ready to swing.", + "A photo of a person doing Punch. ing-Bag-WorkoutA person is standing in front of a punching bag, about to punch it.", + "A photo of a person doing Punch. ingThe image is of a silhouette of a person punching with a fist in the air.", + "A photo of a person doing Punch. ingAn image of a person doing punching can be found by searching for the keyword \"punching\" on any image search engine.", + "A photo of a person doing Punch. ingImage shows a person punching a punching bag in a gym.", + "A photo of a person doing Punch. -outThe image shows a person in a boxing stance, about to punch someone.", + "A photo of a person doing Punch. ing ArtA person, wearing all black, is standing in front of a white wall, with their fists clenched and their arms drawn back, ready to punch the wall.", + "A photo of a person doing Punch. The subject of the photograph is executing a punch, a move in which the arm is extended forward to hit an opponent.", + "A photo of a person doing Punch. The person in the photo is throwing a punch.", + "A photo of a person doing Punch. This person is doing Punch, a move from the game Dance Dance Revolution.", + "A photo of a person doing Punch. The person in the photo is giving a powerful punch.", + "A photo of a person doing Punch. Punching is a great way to relieve stress!.", + "A photo of a person doing Punch. The person is punching with their right arm while their left arm is holding their waist.", + "A photo of a person doing Punch. Hitting the heavy bagA caption of an image of a person sitting on a bench:Resting between sets.", + "A photo of a person doing Punch. Person doing a punch.", + "A photo of a person doing Punch. Person doing punchA person does a punch.", + "A photo of a person doing Punch. The person in the photo is doing punch, a type of martial arts." + ], + "Push Ups": [ + "A photo of a person doing Push Ups. A person doing a push up looks like they are pushing their body up and down using their arms.", + "A photo of a person doing Push Ups. A person doing push-ups looks like they are trying to push something up from the ground.", + "A photo of a person doing Push Ups. When someone is doing a push-up, they are typically lying on their stomach with their hands palm-side down about shoulder-width apart.", + "A photo of a person doing Push Ups. When someone is doing a push-up, they are usually in a prone position, with their hands and feet on the ground, and their body raised up and down by their arms.", + "A photo of a person doing Push Ups. While performing a push-up, a person's body forms a straight line from head to toe.", + "A photo of a person doing Push Ups. When someone is doing a push-up, they are typically lying face-down on the ground with their feet together and their hands shoulder-width apart.", + "A photo of a person doing Push Ups. A person doing pushups looks like they are doing a plank.", + "A photo of a person doing Push Ups. When a person is doing a push-up, their body is in a straight line from their heels to their head.", + "A photo of a person doing Push Ups. A person doing a Push Up looks like they are suspended in mid-air, using only their arms to support their body weight.", + "A photo of a person doing Push Ups. A person doing Push_Ups looks like they are trying to push their body up from the floor using their arms.", + "A photo of a person doing Push Ups. Generally, you can identify a person doing Push_Ups by the way they look.", + "A photo of a person doing Push Ups. If someone is doing push-ups, they will be lying on the ground face down with their hands palm-side down about shoulder-width apart.", + "A photo of a person doing Push Ups. The person will be lying on their stomach with their hands close to their chest.", + "A photo of a person doing Push Ups. A person doing pushups can be identified by their position; they will be lying face down on the ground and pushing up from the ground with their arms.", + "A photo of a person doing Push Ups. A person doing pushups can be identified by their position: lying face down on the ground with their hands palm-side down about shoulder-width apart, and pushing up and down with their arms.", + "A photo of a person doing Push Ups. One can identify a person doing push-ups by their position: they will be lying on their stomach with their hands placed shoulder-width apart, and they will be pushing up and down with their arms.", + "A photo of a person doing Push Ups. By looking at them, you can tell that they are doing push-ups.", + "A photo of a person doing Push Ups. Push_Ups is an exercise where a person lies face down on the ground and pushes themselves up using their arms.", + "A photo of a person doing Push Ups. There are many ways to identify a person doing push-ups, but some of the most common cues include:-Their body is in a low Plank position\n-Their hands are shoulder-width apart\n-Their feet are.", + "A photo of a person doing Push Ups. When a person is doing a push-up, their body is in a straight line from their head to their toes, and their hands are flat on the ground about shoulder-width apart.", + "A photo of a person doing Push Ups. A person doing a Push_Up looks like someone who is trying to push something up.", + "A photo of a person doing Push Ups. A person doing pushups will have their hands and feet on the ground, with their back straight and their core engaged.", + "A photo of a person doing Push Ups. A person doing pushups looks like someone who is propelling their body upwards with their arms.", + "A photo of a person doing Push Ups. A person doing Push_Ups looks like someone who is trying to push themselves up from the ground using their arms.", + "A photo of a person doing Push Ups. Person doing pushups.", + "A photo of a person doing Push Ups. A person doing a push-up typically looks like they are pressing their body up and down using only their arms.", + "A photo of a person doing Push Ups. A person doing a push-up looks like they are lowering their torso and upper body to the ground while keeping their legs straight and their feet together.", + "A photo of a person doing Push Ups. A person doing Push Ups looks like they are trying to touch their chest to the floor while keeping their legs and back straight.", + "A photo of a person doing Push Ups. Push_Ups usually look like a person is in a plank position and they are lowering their body down to the ground and back up again.", + "A photo of a person doing Push Ups. When a person is doing a push-up, they are lying flat on their stomach with their feet flat on the ground and their hands palm-down on the ground next to their shoulders.", + "A photo of a person doing Push Ups. The image is of a person doing a push-up on a beach.", + "A photo of a person doing Push Ups. A person is doing a push-up with their body upright and their hands placed shoulder-width apart.", + "A photo of a person doing Push Ups. The image is of a young, athletic-looking man doing a push-up.", + "A photo of a person doing Push Ups. A person doing Push_Ups is lying down on their stomach with their palms flat against the floor and their legs extended behind them.", + "A photo of a person doing Push Ups. An image from the internet of a person doing Push_Ups might show them with their hands on the ground, their feet shoulder-width apart, and their backs straight.", + "A photo of a person doing Push Ups. An image from the internet of a person doing push-ups would show them in a plank position with their hands shoulder-width apart and their feet hip-width apart.", + "A photo of a person doing Push Ups. In the image, a person is doing a push-up with their body perpendicular to the ground.", + "A photo of a person doing Push Ups. The image is of a man doing a push-up with one arm.", + "A photo of a person doing Push Ups. In the image, a person is doing a push-up with their body in a straight line.", + "A photo of a person doing Push Ups. \nThe image is of a person doing a pushup with their head and torso in alignment and their hips and legs in the air.", + "A photo of a person doing Push Ups. This person is doing a push-up.", + "A photo of a person doing Push Ups. A person doing pushups in a gym.", + "A photo of a person doing Push Ups. A person is doing a push up exercise.", + "A photo of a person doing Push Ups. The person in the image is Doing Push Ups.", + "A photo of a person doing Push Ups. Not everyone can say they start their day with a quick workout, but this guy isn't like everyone.", + "A photo of a person doing Push Ups. The person in the image is doing a push-up.", + "A photo of a person doing Push Ups. A person doing push-ups.", + "A photo of a person doing Push Ups. Person doing push-ups.", + "A photo of a person doing Push Ups. A person doing push-ups in a park.", + "A photo of a person doing Push Ups. Man doing pushups." + ], + "Rafting": [ + "A photo of a person doing Rafting. While rafting, a person typically sits or lies on their back in the raft, with their feet pointing downstream.", + "A photo of a person doing Rafting. A person doing rafting looks like they are holding onto a raft that is floating in water.", + "A photo of a person doing Rafting. A person rafting looks like they are paddling a boat down a river.", + "A photo of a person doing Rafting. A person doing Rafting looks like someone who is paddling a boat through water.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are paddling a boat with Their hands through the water.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are paddling a boat through water using a paddle.", + "A photo of a person doing Rafting. The person will be wearing a life jacket and holding onto a rope that is attached to the raft.", + "A photo of a person doing Rafting. Someone doing Rafting looks like they are paddling a small boat downstream in a fast-moving river.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are holding onto a large piece of equipment that they are using to float down a river.", + "A photo of a person doing Rafting. Rafting is an activity where you float down a river on a raft.", + "A photo of a person doing Rafting. If someone is participating in the activity of rafting, they can be easily identified by their gear.", + "A photo of a person doing Rafting. The person will be wearing a life jacket and will have an oar in their hand.", + "A photo of a person doing Rafting. Rafting is an outdoor activity that involves riding on a raft down a river.", + "A photo of a person doing Rafting. class Person {\n constructor(name, age) {\n this.", + "A photo of a person doing Rafting. Rafting is an activity where people use an inflatable raft to float down a river.", + "A photo of a person doing Rafting. A person doing Rafting can be identified by their wet clothes and their rafting gear.", + "A photo of a person doing Rafting. Look for someone in a wet suit who is carrying a paddle and is near a river or other body of water.", + "A photo of a person doing Rafting. The person will be wearing a life jacket and will be attached to a rope.", + "A photo of a person doing Rafting. A person doing rafting may be wearing a wet suit, a helmet, and a life jacket.", + "A photo of a person doing Rafting. By their gear, which includes a waterproof bag, a wet suit, a helmet, and a life jacket.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are holding on to a rope that is connected to a large inflatable raft.", + "A photo of a person doing Rafting. A person doing Rafting typically looks like they are having a lot of fun.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are having a great time! They are usually wearing a wet suit and a life jacket, and they are holding onto a raft that is inflated with air.", + "A photo of a person doing Rafting. When someone is rafting, they are typically sitting in a large inflatable raft with other people.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are having a great time.", + "A photo of a person doing Rafting. There is no one definitive answer to this question, as people can look quite different when they are rafting depending on the specific activity they are engaged in.", + "A photo of a person doing Rafting. Rafting generally requires a team of people paddling together to propel the raft forward.", + "A photo of a person doing Rafting. When a person is rafting, they are usually sitting or lying in a inflatable raft that is being propelled by paddles or by the current of a river.", + "A photo of a person doing Rafting. Rafting can look like many things depending on the person, the location, and the intensity of the activity.", + "A photo of a person doing Rafting. A person doing Rafting looks like they are in a boat on a river with a paddle in their hand.", + "A photo of a person doing Rafting. The person is in a seat with their legs dangling over the edge of the raft.", + "A photo of a person doing Rafting. In the image, a person is rafting down a river with their friends.", + "A photo of a person doing Rafting. In the image, a person is rafting down a river with large rocks and trees lining the shores.", + "A photo of a person doing Rafting. In the image, a person is rafting down a river surrounded by mountains.", + "A photo of a person doing Rafting. A person is rafting in a river.", + "A photo of a person doing Rafting. The image is of a person rafting down a river.", + "A photo of a person doing Rafting. One image from the internet of a person doing rafting shows a person in a raft with a paddle, floating down a river with rocks and trees along the sides.", + "A photo of a person doing Rafting. In the image, a person is rafting down a river.", + "A photo of a person doing Rafting. The image is of a person in a raft, paddling downstream in swift water.", + "A photo of a person doing Rafting. The image shows a person in a raft, paddling down a river.", + "A photo of a person doing Rafting. Person doing rafting in river.", + "A photo of a person doing Rafting. Rafting down the river is a thrilling experience!.", + "A photo of a person doing Rafting. Fall colors reflect off the water as a rafter paddles downstream.", + "A photo of a person doing Rafting. The thrill-seeker enjoying a rafting adventure down a white-water river.", + "A photo of a person doing Rafting. rafting downstream in a river.", + "A photo of a person doing Rafting. A person rafting on a river.", + "A photo of a person doing Rafting. A person is rafting down a river on an inflatable raft.", + "A photo of a person doing Rafting. Rafting down a river is a thrilling way to enjoy the outdoors.", + "A photo of a person doing Rafting. Person looks like they are about to go over a waterfall while rafting.", + "A photo of a person doing Rafting. The thrill-seeker enjoying a day of rafting down the river." + ], + "Rock Climbing Indoor": [ + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing looks like they are scaling a wall using their hands and feet.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor looks like a person who is climbing a rock wall in an indoor climbing gym.", + "A photo of a person doing Rock Climbing Indoor. A person who is rock climbing indoor typically looks like they are scaling a rock wall.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor typically looks like they are wearing tight fitting clothing, as tight clothing allows for greater movement.", + "A photo of a person doing Rock Climbing Indoor. A person who is Rock_Climbing_Indoor typically looks like someone who is concentration and focusing on their next move.", + "A photo of a person doing Rock Climbing Indoor. Person doing Rock_Climbing_Indoor looks like someone who is hanging on to a rock wall with their hands and feet, and is moving up the wall using their muscles to pull themselves up.", + "A photo of a person doing Rock Climbing Indoor. Standing at the base of a rock wall, wearing a harness and gloves, with a rope attached to their harness and running through a series of anchors at the top of the wall.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor typically looks like they are straining to pull themselves up a rock wall using their hands and feet.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor looks like a person who is holding onto a rope and climbing up a wall.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor looks like they are using a rope and harness to scale a rock wall.", + "A photo of a person doing Rock Climbing Indoor. There are many ways to identify a person doing rock climbing indoor.", + "A photo of a person doing Rock Climbing Indoor. There are many ways to identify a person doing rock climbing indoor.", + "A photo of a person doing Rock Climbing Indoor. The person will be wearing a harness and will be belaying off of a rope that is attached to the ceiling.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor can be identified by their clothing.", + "A photo of a person doing Rock Climbing Indoor. The climber will be wearing a harness, a belay device, and shoes designed for rock climbing.", + "A photo of a person doing Rock Climbing Indoor. The person will be wearing climbing shoes, a harness, and a chalk bag.", + "A photo of a person doing Rock Climbing Indoor. One way to identify a person doing rock climbing indoor is to look for someone who is wearing a helmet and climbing shoes.", + "A photo of a person doing Rock Climbing Indoor. Most likely, the person will be wearing a harness and be attached to a rope.", + "A photo of a person doing Rock Climbing Indoor. The person is likely to be wearing tight fitting clothing, have chalk on their hands, and be using a climbing rope.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock_Climbing_Indoor can be identified by their clothing.", + "A photo of a person doing Rock Climbing Indoor. A person doing indoor rock climbing looks like they are scaling a wall with small footholds and handholds.", + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing indoor typically looks like they are scaling a large rock wall.", + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing indoor looks like they are scaling a wall.", + "A photo of a person doing Rock Climbing Indoor. The person looks like they are holding on to rocks and trying to climb up.", + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing indoor looks like they are holding onto rocks and climbing up a wall.", + "A photo of a person doing Rock Climbing Indoor. A person doing Rock Climbing Indoor looks like they are hanging on to a wall and trying to climb it.", + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing indoor looks like they are scaling a wall.", + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing indoor looks like they are doing rock climbing outside, but they are indoors.", + "A photo of a person doing Rock Climbing Indoor. A person indoor rock climbing may look like they are climbing a wall with their hands and feet.", + "A photo of a person doing Rock Climbing Indoor. A person doing rock climbing indoor looks like they are scaling a wall with their bare hands and feet.", + "A photo of a person doing Rock Climbing Indoor. The image is of a person scaled up a wall, using their arms and legs to grip the rock.", + "A photo of a person doing Rock Climbing Indoor. A photo of a person rock climbing indoors, wearing a harness and Attached to a rope.", + "A photo of a person doing Rock Climbing Indoor. In the image, a person is doing rock climbing indoors on a wall with different holds.", + "A photo of a person doing Rock Climbing Indoor. In the image, a person is Rock_Climbing_Indoor on a wall.", + "A photo of a person doing Rock Climbing Indoor. The image is of a person doing rock climbing indoors.", + "A photo of a person doing Rock Climbing Indoor. The image is of a person rock climbing indoors.", + "A photo of a person doing Rock Climbing Indoor. The image shows a person hanging from a rope, with their feet securely placed on small holds on a wall.", + "A photo of a person doing Rock Climbing Indoor. The image is of a person hanging from a rope, securing themselves to a wall with their hands and feet.", + "A photo of a person doing Rock Climbing Indoor. The image is of a person suspended from a rope, engaged in rock climbing indoors.", + "A photo of a person doing Rock Climbing Indoor. The image is of a person, helmeted and harnessed, scaling a rock wall in an indoor setting.", + "A photo of a person doing Rock Climbing Indoor. A person doing indoor rock climbing.", + "A photo of a person doing Rock Climbing Indoor. This person is indoor rock climbing.", + "A photo of a person doing Rock Climbing Indoor. A person is rock climbing indoors on a vertical wall.", + "A photo of a person doing Rock Climbing Indoor. The brave climber scales the indoor rock wall with skill and precision.", + "A photo of a person doing Rock Climbing Indoor. The person is doing rock climbing indoor.", + "A photo of a person doing Rock Climbing Indoor. A person is confidently rock climbing indoors, reaching high with one hand while gripping the wall with the other.", + "A photo of a person doing Rock Climbing Indoor. The caption reads \"Tommy enjoying a day of indoor rock climbing.", + "A photo of a person doing Rock Climbing Indoor. Person doing rock climbing indoor.", + "A photo of a person doing Rock Climbing Indoor. The individual is belaying their partner as they climb the wall.", + "A photo of a person doing Rock Climbing Indoor. The climber is about halfway up the wall, using small handholds to pull themselves up." + ], + "Rope Climbing": [ + "A photo of a person doing Rope Climbing. A person doing Rope_Climbing looks like they are holding on to a rope and pulling themselves up the rope.", + "A photo of a person doing Rope Climbing. A person doing Rope_Climbing looks like they are holding on to a rope with their hands and feet and using their muscles to pull themselves up the rope.", + "A photo of a person doing Rope Climbing. A person doing Rope_Climbing looks like they are holding onto a rope with their hands and feet and are pulling themselves up the rope.", + "A photo of a person doing Rope Climbing. The person looks like they are reaching up and pulling themselves up the rope.", + "A photo of a person doing Rope Climbing. Typically, someone rope climbing looks like they are holding onto a rope that is suspended above them, and they are using their arms and legs to pull themselves up the rope.", + "A photo of a person doing Rope Climbing. The person looks like they are holding on to a rope and using their arms and legs to pull themselves up.", + "A photo of a person doing Rope Climbing. When someone is Rope_Climbing, they are using their hands and feet to ascent a rope.", + "A photo of a person doing Rope Climbing. When a person is rope climbing, they look like they are using their arms and legs to pull themselves up the rope.", + "A photo of a person doing Rope Climbing. A person doing Rope_Climbing looks like a person climbing a rope.", + "A photo of a person doing Rope Climbing. Someone doing rope climbing looks like they are holding onto a rope and pulling themselves up.", + "A photo of a person doing Rope Climbing. If someone is rope climbing, they will be holding onto a rope and using their arms and legs to pull themselves up.", + "A photo of a person doing Rope Climbing. The person would be holding onto a rope and climbing up.", + "A photo of a person doing Rope Climbing. The person is likely to be wearing climbing equipment such as a harness, and they will be using a rope to ascend a wall or rock face.", + "A photo of a person doing Rope Climbing. A person climbing a rope using their hands and feet is doing rope climbing.", + "A photo of a person doing Rope Climbing. The person will be holding onto a rope and using their arms and legs to pull themselves up.", + "A photo of a person doing Rope Climbing. The individual would be reaching up with one hand while the other hand grasps the rope above them.", + "A photo of a person doing Rope Climbing. By their clothing most likely.", + "A photo of a person doing Rope Climbing. The person would be wearing a harness and be attached to a rope that is either suspended from the ceiling or anchored to the ground.", + "A photo of a person doing Rope Climbing. The person can be identified by their clothing, which would usually be a climbingsuit, and by their equipment, which would include a rope, carabiners, and other climbing gear.", + "A photo of a person doing Rope Climbing. The person will be holding on to a rope and will be moving up the rope hand-over-hand.", + "A photo of a person doing Rope Climbing. There is no definitive answer to this, as people can climb ropes in a variety of ways.", + "A photo of a person doing Rope Climbing. A person doing Rope_Climbing looks like a person climbing a rope.", + "A photo of a person doing Rope Climbing. Climbing a rope is a physically demanding feat that requires a great deal of strength and coordination.", + "A photo of a person doing Rope Climbing. Assuming the person is climbing a rope unassisted, they would likely be holding the rope above their head with both hands, and pulling themselves up with their arms.", + "A photo of a person doing Rope Climbing. A person doing Rope_Climbing looks like they are holding on to a rope and pulling themselves up.", + "A photo of a person doing Rope Climbing. A person doing rope climbing would look like someone climbing a rope.", + "A photo of a person doing Rope Climbing. A person doing rope climbing may look like they are struggling to pull themselves up the rope.", + "A photo of a person doing Rope Climbing. A person doing rope climbing looks like they are holding onto a rope and pulling themselves up.", + "A photo of a person doing Rope Climbing. The person looks like they are holding on to a rope and climbing up it.", + "A photo of a person doing Rope Climbing. Person doing Rope_Climbing looks like a person climbing a rope.", + "A photo of a person doing Rope Climbing. The person is doing a rope climb in a gym.", + "A photo of a person doing Rope Climbing. The image is of a young woman rope climbing in a gym.", + "A photo of a person doing Rope Climbing. In the image, a woman is rope climbing in a gym.", + "A photo of a person doing Rope Climbing. In the image, a person is using a rope to climb up a cliff face.", + "A photo of a person doing Rope Climbing. The image shows a person hanging from a rope, with their feet and legs wrapped around the rope.", + "A photo of a person doing Rope Climbing. The image is of a young woman at an indoor rock climbing facility.", + "A photo of a person doing Rope Climbing. The image is of a person hanging from a rope, with their feet wrapped around the rope and their hands gripping the rope above their head.", + "A photo of a person doing Rope Climbing. A person is doing rope climbing in the image.", + "A photo of a person doing Rope Climbing. In the image, a young woman is scaling a rope up a wall.", + "A photo of a person doing Rope Climbing. In this image, a person is rope climbing at an indoor rock climbing gym.", + "A photo of a person doing Rope Climbing. A person captures the moment they overcome the challenge of rope climbing.", + "A photo of a person doing Rope Climbing. The rope climber shows intense concentration as she slowly makes her way to the top.", + "A photo of a person doing Rope Climbing. Climbing to the top with determination and strength.", + "A photo of a person doing Rope Climbing. The individual in the photo is scaling a rope using their bare hands and feet.", + "A photo of a person doing Rope Climbing. A person climbs a rope using their hands and feet.", + "A photo of a person doing Rope Climbing. Person rope climbing.", + "A photo of a person doing Rope Climbing. A person climbs up a rope using their hands and feet.", + "A photo of a person doing Rope Climbing. This person is doing the rope climbing exercise.", + "A photo of a person doing Rope Climbing. A person rope climbing on a cliff face.", + "A photo of a person doing Rope Climbing. \"I'm not as young as I used to be, but I can still rope climb like a champ!\"." + ], + "Rowing": [ + "A photo of a person doing Rowing. Rowing is a full-body workout that requires coordinated movement from the legs, back, and arms.", + "A photo of a person doing Rowing. Describe what a person doing Rowing looks like\nWhen rowing, a person's arms are extended in front of them, and they are using a rowing motion to push themselves forward.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are sitting on a machine with a seat and a back.", + "A photo of a person doing Rowing. A person rowing looks like they are using their arms and legs to move the oar through the water.", + "A photo of a person doing Rowing. A person rowing looks like they are using a rowing machine in a gym.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are sitting in a boat with their feet on pedals, and they are using two oars to propel themselves through the water.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are using a rowing machine at the gym.", + "A photo of a person doing Rowing. A person rowing looks like someone who is sitting on a rowing machine with their legs extended in front of them and their arms extended to the side.", + "A photo of a person doing Rowing. The person sitting in the rowing boat has their legs extended in front of them, with their feet resting on the footboard.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are sitting in a small boat, with their legs extended in front of them and their arms holding two oars.", + "A photo of a person doing Rowing. Rowing can be identified by the rowing motion and the position of the oar in the water.", + "A photo of a person doing Rowing. A person doing rowing will usually be in a rowing boat, and will have a rowing oar in each hand.", + "A photo of a person doing Rowing. Drinking a beer while sitting in a field of tall grass.", + "A photo of a person doing Rowing. If someone is rowing, they will be sitting on a rowing machine with their legs extended in front of them.", + "A photo of a person doing Rowing. A person doing Rowing usually has a rowing machine in front of them.", + "A photo of a person doing Rowing. If a person is doing rowing, they will be sitting on a rowing machine with their legs extended in front of them.", + "A photo of a person doing Rowing. When someone is rowing, they will be sitting on a rowing machine with their legs extended in front of them.", + "A photo of a person doing Rowing. A person doing rowing will be sitting in a rowing boat, facing the back of the boat.", + "A photo of a person doing Rowing. Rowing can be identified by someone who is sitting on a rowing machine with their legs extended out in front of them and their arms holding the oars.", + "A photo of a person doing Rowing. The person is sitting on a rowing machine with their legs extended in front of them and their arms extended behind them.", + "A photo of a person doing Rowing. A person doing rowing looks like they are sitting on a bench with their feet strapped into pedals.", + "A photo of a person doing Rowing. Rowing generally looks like one person sitting in a small boat, facing the back of the boat, and using oars to propel the boat through the water.", + "A photo of a person doing Rowing. There is no one definitive answer to this question, as people can row in many different ways.", + "A photo of a person doing Rowing. When a person is rowing, they will be sitting on a rowing machine with their legs extended in front of them.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are sitting on a bench with their legs extended in front of them and their arms pulling back on a handle.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are sitting in a small boat and are using a long oar to paddle through the water.", + "A photo of a person doing Rowing. A person doing Rowing looks like they are sitting on a machine with a seat and two pedals that they are using their legs to move.", + "A photo of a person doing Rowing. A person doing Rowing can look like they are sitting in a chair with their legs out in front of them and their arms moving back and forth.", + "A photo of a person doing Rowing. A person doing rowing looks like someone who is sitting on a rowing machine and rowing with their arms.", + "A photo of a person doing Rowing. A person doing rowing looks like they are reaching forward with their arms and then pulling back with their arms while sitting on a seat.", + "A photo of a person doing Rowing. I found an image of a person doing rowing on the internet.", + "A photo of a person doing Rowing. I found an image on the internet of a person doing Rowing.", + "A photo of a person doing Rowing. I found an image of a person rowing on the water.", + "A photo of a person doing Rowing. A person is sitting in a rowing boat, using two oars to propel themselves through the water.", + "A photo of a person doing Rowing. In the image, a person is rowing a boat through a calm body of water.", + "A photo of a person doing Rowing. In the image, a person is sitting in a rowing boat on a river.", + "A photo of a person doing Rowing. The person is sitting in a rowing boat, holding two oars.", + "A photo of a person doing Rowing. The image is of a person rowing on a lake.", + "A photo of a person doing Rowing. The person is sitting in a rowing boat, grasping the oars.", + "A photo of a person doing Rowing. The image shows a person rowing a boat in the water.", + "A photo of a person doing Rowing. The person in the photo is doing the rowing exercise.", + "A photo of a person doing Rowing. A person is doing Rowing.", + "A photo of a person doing Rowing. The person in the photo is rowing a boat.", + "A photo of a person doing Rowing. The person is rowing a boat in the water.", + "A photo of a person doing Rowing. The person in the image is doing the rowing exercise.", + "A photo of a person doing Rowing. The person in the picture is rowing a boat.", + "A photo of a person doing Rowing. Rowing is a great workout for your back and arms.", + "A photo of a person doing Rowing. A person rows a boat on a lake.", + "A photo of a person doing Rowing. An image of a person rowing a boat.", + "A photo of a person doing Rowing. The person in the photo is doing the rowing exercise." + ], + "Salsa Spin": [ + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like they are spinning around in a circle while holding onto someone else.", + "A photo of a person doing Salsa Spin. When someone is doing a Salsa_Spin, they look like they are spinning around in a circle while they are dancing.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like they are spinning around in a circle while holding onto another person.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like they are doing a mix of salsa dancing and spinning.", + "A photo of a person doing Salsa Spin. If someone is doing a Salsa_Spin, they will look like they are spinning around rapidly on the balls of their feet.", + "A photo of a person doing Salsa Spin. A person doing the Salsa_Spin move in a Latin dance looks like they are turning in a circle while moving their hips in a side to side motion.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like they are spinning around quickly in a circle while holding onto someone else.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like someone who is spinning around in a circle while holding onto a partner's hand.", + "A photo of a person doing Salsa Spin. The person looks like they are spinning around in a circle with one arm in the air and the other holding onto their partner.", + "A photo of a person doing Salsa Spin. A person dancing Salsa_Spin may look like they are spinning around in a circle while moving their hips to the beat of the music.", + "A photo of a person doing Salsa Spin. There are many ways to identify a person doing the Salsa_Spin.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin may be wearing comfortable clothes such as jeans and a t-shirt.", + "A photo of a person doing Salsa Spin. If a person is doing the Salsa_Spin, they will be spinning around in a circle while moving their hips in a sultry manner.", + "A photo of a person doing Salsa Spin. Salsa is a partner dance, so if someone is spinning on their own they are not doing Salsa.", + "A photo of a person doing Salsa Spin. Some common Salsa_Spin moves include:-a cross body lead\n-a back break\n-a shoulder shimmy\n-a Cuban hip swivel\n-a salsa basic step\n-a spot turn.", + "A photo of a person doing Salsa Spin. The person will be spinning around in a circle while moving their feet and hips in a salsa-like manner.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin may be identifiable by their clothing.", + "A photo of a person doing Salsa Spin. When a person is doing the Salsa Spin, they will typically be turning in a circle while moving their feet in a quick side-to-side motion.", + "A photo of a person doing Salsa Spin. The person will be standing in an open position with their left foot forward and their right foot back.", + "A photo of a person doing Salsa Spin. There are many ways to identify a person doing Salsa_Spin.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin may look like they are dancing salsa, but with one arm outstretched and spinning around.", + "A photo of a person doing Salsa Spin. When a person is doing a salsa spin, they look like they are spinning around quickly on the balls of their feet.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like a person spinning around while dancing salsa.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin generally looks like they are having a great time dancing to salsa music.", + "A photo of a person doing Salsa Spin. Assuming you mean a move in salsa dancing: The partners stand facing each other, and the man puts his left hand on the woman's right shoulder blade and his right hand on her left hip.", + "A photo of a person doing Salsa Spin. When doing the salsa spin, the person should look like they are dancing the salsa with a partner.", + "A photo of a person doing Salsa Spin. A person doing a Salsa_Spin looks like they are spinning around in a circle while holding onto another person.", + "A photo of a person doing Salsa Spin. When someone is doing a Salsa_Spin, they look like they are spinning around in a circle while doing a salsa dance move.", + "A photo of a person doing Salsa Spin. Salsa spinning is a style of salsa dancing where the dancers spin around each other as they dance.", + "A photo of a person doing Salsa Spin. A person doing Salsa_Spin looks like they are spinning around in a circle while they are dancing salsa.", + "A photo of a person doing Salsa Spin. This image is of a person doing a salsa spin.", + "A photo of a person doing Salsa Spin. The image is of a woman doing a salsa spin.", + "A photo of a person doing Salsa Spin. A person doing a Salsa_Spin would look like they are spinning around in a circle while doing the salsa dance.", + "A photo of a person doing Salsa Spin. The image is of a man and woman dancing salsa.", + "A photo of a person doing Salsa Spin. In the image, a woman is standing in front of a man, both of them holding each other close as they move their feet to the rhythm of the music.", + "A photo of a person doing Salsa Spin. The image is of a woman in a flowing skirts spinning around in a circle while her partner dances around her.", + "A photo of a person doing Salsa Spin. The image is of a woman in a red dress spinning around in the air.", + "A photo of a person doing Salsa Spin. The image is of a woman in a brightly colored dress spinning around in a man's arms.", + "A photo of a person doing Salsa Spin. The image is of a woman dancing salsa.", + "A photo of a person doing Salsa Spin. In the image, a muscular man and woman are doing a salsa spin.", + "A photo of a person doing Salsa Spin. Salsa_SpinA person doing the salsa spin in a sultry and sensual way.", + "A photo of a person doing Salsa Spin. Person doing the Salsa Spin at a Salsa Dancing class.", + "A photo of a person doing Salsa Spin. The person in the image is spinning around while doing the salsa dance.", + "A photo of a person doing Salsa Spin. The person in the image is doing a Salsa Spin, a move often used in Salsa dancing.", + "A photo of a person doing Salsa Spin. The person in the image is spinning around while performing the salsa dance.", + "A photo of a person doing Salsa Spin. This person is doing the salsa spin, a popular move in salsa dancing.", + "A photo of a person doing Salsa Spin. The Salsa_Spin is a popular move in salsa dancing.", + "A photo of a person doing Salsa Spin. The person in the image is spinning around rapidly while doing the salsa, giving the effect of a spinning top.", + "A photo of a person doing Salsa Spin. The person in the image is spinning around while doing the salsa dance.", + "A photo of a person doing Salsa Spin. The person in the image is doing a Salsa_Spin, which is a move in the dance known as salsa." + ], + "Shaving Beard": [ + "A photo of a person doing Shaving Beard. A person shaving their beard would likely have a razor in their hand and foam or gel on their face.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like they are shaving their beard.", + "A photo of a person doing Shaving Beard. A person shaving their beard usually looks like they are taking a razor to their face and shaving off their beard hair.", + "A photo of a person doing Shaving Beard. The person doing Shaving_Beard looks like they are shaving their beard.", + "A photo of a person doing Shaving Beard. The person looks like they are shaving their beard.", + "A photo of a person doing Shaving Beard. A person doing shaving_beard usually has a lot of hair on their face, and they are using a razor to shave it off.", + "A photo of a person doing Shaving Beard. A person shaving their beard would likely have a beard trimmer and shaving cream, and would be in the process of shaving their beard off.", + "A photo of a person doing Shaving Beard. It's difficult to describe what a person looks like while they are shaving their beard without seeing them in person.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like a person shaving their beard.", + "A photo of a person doing Shaving Beard. A person shaving their beard would have a razor in their hand and would be shaving the hair on their face.", + "A photo of a person doing Shaving Beard. If you see someone with a beard and then see them without a beard, they were probably shaving their beard.", + "A photo of a person doing Shaving Beard. Assuming you are asking how to identify someone who is shaving their beard, you would look for someone who is using a razor on their face.", + "A photo of a person doing Shaving Beard. You can identify a person doing Shaving_Beard by the following:\n-They will have a beard\n-They will have a razor\n-They will be shaving their beard.", + "A photo of a person doing Shaving Beard. There are several ways to identify a person doing shaving_beard.", + "A photo of a person doing Shaving Beard. If a person is shaving their beard, they will likely have a razor in their hand and be shaving hair off of their face.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard can be identified by their action of shaving their beard.", + "A photo of a person doing Shaving Beard. If a person has a beard and is shaving it off, they are likely doing Shaving_Beard.", + "A photo of a person doing Shaving Beard. If a person is shaving their beard, they will likely be using a razor.", + "A photo of a person doing Shaving Beard. The person doing Shaving_Beard is likely to have facial hair, and may be using a razor to shave it off.", + "A photo of a person doing Shaving Beard. If someone is shaving their beard, they may be using a razor or an electric shaver.", + "A photo of a person doing Shaving Beard. A person shaving their beard typically has a shaving cream or gel applied to their face, and is using a razor to remove the hair from their chin and cheeks.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like someone who is shaving their beard.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like they are shaving their beard.", + "A photo of a person doing Shaving Beard. A person shaving their beard usually looks like they are trying to improve their appearance.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like a person with no beard.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like a person with a beard who is shaving it.", + "A photo of a person doing Shaving Beard. facial hair is removed from the chin, cheeks, and upper lip.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like someone who is shaving their beard.", + "A photo of a person doing Shaving Beard. A person doing Shaving_Beard looks like they are shaving their beard.", + "A photo of a person doing Shaving Beard. When a person is shaving their beard, they would typically look like they are shaving their face.", + "A photo of a person doing Shaving Beard. The image is of a white man in his late twenties or early thirties.", + "A photo of a person doing Shaving Beard. I found an image on the internet of a person doing shaving_beard.", + "A photo of a person doing Shaving Beard. In the image, a man is shaving his beard with a razor.", + "A photo of a person doing Shaving Beard. In the image, a person is holding a can of shaving foam in one hand and a razor in the other hand.", + "A photo of a person doing Shaving Beard. In the image, a man is standing in front of a bathroom mirror with a can of shaving foam in one hand and a razor in the other.", + "A photo of a person doing Shaving Beard. The image is of a man in a bathroom with a towel around his waist.", + "A photo of a person doing Shaving Beard. The image is of a man in a bathroom with a towel wrapped around his waist.", + "A photo of a person doing Shaving Beard. A person is standing in front of a bathroom mirror with a can of shaving cream in one hand and a razor in the other.", + "A photo of a person doing Shaving Beard. In the image, a bearded man is shown shaving his face with a razor.", + "A photo of a person doing Shaving Beard. The image is of a man in a bathroom, shaving his beard with a razor.", + "A photo of a person doing Shaving Beard. This person is shaving their beard.", + "A photo of a person doing Shaving Beard. A man shaves his beard in a bathroom sink.", + "A photo of a person doing Shaving Beard. This person is shaving their beard.", + "A photo of a person doing Shaving Beard. He's shaving his beard off!.", + "A photo of a person doing Shaving Beard. A close up of a man shaving his beard with a razor.", + "A photo of a person doing Shaving Beard. This person is shaving their beard.", + "A photo of a person doing Shaving Beard. A man shaves his beard with a straight razor.", + "A photo of a person doing Shaving Beard. A man shaves his beard using a razor.", + "A photo of a person doing Shaving Beard. A man shaves his beard using a razor.", + "A photo of a person doing Shaving Beard. A man shaves his beard in preparation for a date." + ], + "Shotput": [ + "A photo of a person doing Shotput. The person looks like they are about to throw a heavy object as far as they can.", + "A photo of a person doing Shotput. The person looks like they are throwing a heavy object as far as they can.", + "A photo of a person doing Shotput. The person doing shotput will look like they are about to throw a large ball as far as they can.", + "A photo of a person doing Shotput. A person doing shotput usually looks like they are about to throw a large object.", + "A photo of a person doing Shotput. They are gripping the shot tightly with both hands and standing with their feet slightly more than shoulder-width apart.", + "A photo of a person doing Shotput. A person doing Shotput looks like they are about to throw a heavy object as far as they can.", + "A photo of a person doing Shotput. When a person is doing the shot put, they will have a weight in their hand that they will throw.", + "A photo of a person doing Shotput. A person doing shot put will have most of their weight on their back foot, and their front foot slightly elevated.", + "A photo of a person doing Shotput. A person doing Shotput typically looks like they are throwing a large, heavy ball as far as they can.", + "A photo of a person doing Shotput. A person doing shotput will have a strong grip on the ball, and will use their whole body to push the ball forward.", + "A photo of a person doing Shotput. The person is throwing a heavy metal ball.", + "A photo of a person doing Shotput. A person doing shotput usually has a large build and is very strong.", + "A photo of a person doing Shotput. A person doing shotput will have their feet spread shoulder-width apart and will be holding the shot in one hand with their arm extended above their head.", + "A photo of a person doing Shotput. If you see someone throwing a ball as far as possible, they are likely doing shotput.", + "A photo of a person doing Shotput. The person is holding a heavy ball in their hand and throwing it as far as possible.", + "A photo of a person doing Shotput. If someone is doing shotput, they will have a heavy metal ball in their hand, and they will be standing in a throwing circle.", + "A photo of a person doing Shotput. If someone is doing shot put, they will have a heavy metal ball in their hand and will be standing in a circle.", + "A photo of a person doing Shotput. The person will have a heavy metal ball in their hand, and they will be standing in a circle.", + "A photo of a person doing Shotput. A person doing shot put will be holding a heavy metal ball in their hand and throwing it as far as possible.", + "A photo of a person doing Shotput. The person will be holding a small metal ball in their hand.", + "A photo of a person doing Shotput. When a person is doing shotput, they look like they are about to throw a large ball.", + "A photo of a person doing Shotput. A person doing shot put may look like they are about to throw a heavy object.", + "A photo of a person doing Shotput. The person looks like they are about to throw a heavy object.", + "A photo of a person doing Shotput. A person doing Shotput looks like they are throwing a heavy ball as far as they can.", + "A photo of a person doing Shotput. A person doing the shot put looks like they are throwing a heavy ball as far as they can.", + "A photo of a person doing Shotput. A person doing shot put typically looks like they are about to throw a heavy ball as far as they can.", + "A photo of a person doing Shotput. A person doing shot put will look like they are holding a large metal ball in their hands and using all their strength to throw it as far as they can.", + "A photo of a person doing Shotput. A person doing shotput may look like they are about to throw a large object, such as a ball.", + "A photo of a person doing Shotput. A person doing Shotput will have their feet slightly more than shoulder-width apart with their toes pointing out, and their knees bent.", + "A photo of a person doing Shotput. A person doing shot put would look like they are about to throw a heavy ball as far as they can.", + "A photo of a person doing Shotput. The image is of a sportswoman throwing a shotput.", + "A photo of a person doing Shotput. The image shows a person doing a shot put throw.", + "A photo of a person doing Shotput. The image is of a person doing shotput.", + "A photo of a person doing Shotput. In the image, a person is doing shot put.", + "A photo of a person doing Shotput. The image shows a person doing shotput.", + "A photo of a person doing Shotput. An image from the internet of a person doing Shotput may show the person holding a heavy ball in their hand and throwing it as far as they can.", + "A photo of a person doing Shotput. The image is of a woman doing a shot put throw.", + "A photo of a person doing Shotput. The image is of a person doing shotput.", + "A photo of a person doing Shotput. This image from the internet shows a person doing shotput.", + "A photo of a person doing Shotput. A person doing shotput in an image from the internet would be throwing a heavy ball as far as possible.", + "A photo of a person doing Shotput. The person in the picture is doing shotput.", + "A photo of a person doing Shotput. The person in the image is doing Shotput.", + "A photo of a person doing Shotput. Person doing shot put.", + "A photo of a person doing Shotput. The person in the image appears to be doing shotput.", + "A photo of a person doing Shotput. An athlete throws a shot put.", + "A photo of a person doing Shotput. This person is performing the shot put throw.", + "A photo of a person doing Shotput. The person in the picture is doing Shotput.", + "A photo of a person doing Shotput. A person is competing in the shot put event at a track and field meet.", + "A photo of a person doing Shotput. An image of a person doing shotput.", + "A photo of a person doing Shotput. The person in the image is performing the shot put throw." + ], + "Skate Boarding": [ + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like they are standing on a board with four wheels, propelling themselves forward with their feet.", + "A photo of a person doing Skate Boarding. A person skateboarding looks like they are riding on a small board with four wheels.", + "A photo of a person doing Skate Boarding. Skateboarding looks like a person standing on a board with four wheels, using their feet to push themselves along the ground.", + "A photo of a person doing Skate Boarding. The person appears to be gliding on a flat surface with their feet on a board and their hands on the ground.", + "A photo of a person doing Skate Boarding. A person skateboarding looks like they are gliding on a board with four wheels.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like they are gliding on a board with four wheels.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like they are riding a small board with four wheels down a street or in a skate park.", + "A photo of a person doing Skate Boarding. The person would be standing on the board, holding their arms out for balance, and propelling themselves forward with their feet.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like they are about to fall because they are leaning so far forward.", + "A photo of a person doing Skate Boarding. Most people doing skateboarding will be wearing some sort of board shorts or baggy pants, a t-shirt, and skate shoes.", + "A photo of a person doing Skate Boarding. A person doing skateboarding can be identified by their clothing and their skateboard.", + "A photo of a person doing Skate Boarding. The person will be riding on a skateboard and will likely be performing tricks.", + "A photo of a person doing Skate Boarding. You can identify a person doing skateboarding by their clothing and their skateboard.", + "A photo of a person doing Skate Boarding. The person will be standing on a skateboard and will be using their feet to push the skateboard along.", + "A photo of a person doing Skate Boarding. A person doing skateboarding can be identified by their clothing.", + "A photo of a person doing Skate Boarding. If someone is doing skateboarding, they will be rolling on a skateboard with their feet planted on the board.", + "A photo of a person doing Skate Boarding. There are many ways to identify a person doing skateboarding.", + "A photo of a person doing Skate Boarding. There are many ways to identify a person doing skateboarding.", + "A photo of a person doing Skate Boarding. There are many ways to identify a person doing skateboarding.", + "A photo of a person doing Skate Boarding. Typically, people who are skateboarding will be wearing skateboarding shoes, and will be riding on a skateboard.", + "A photo of a person doing Skate Boarding. Skateboarding generally looks like people using skateboards to travel around on.", + "A photo of a person doing Skate Boarding. A person skateboarding looks like they are sitting on a board and propelling themselves with their feet.", + "A photo of a person doing Skate Boarding. Most skateboarders wear casual clothes, like jeans and a t-shirt.", + "A photo of a person doing Skate Boarding. Skateboarding generally looks like people performing tricks on a skateboard.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like someone who is riding on a board with wheels.", + "A photo of a person doing Skate Boarding. There is no one definitive answer to this question.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like someone riding on a board with wheels, doing tricks or just cruising around.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like they are riding on a small board with wheels.", + "A photo of a person doing Skate Boarding. A person doing skateboarding looks like they are riding on a small board with wheels.", + "A photo of a person doing Skate Boarding. A person doing skateboarding typically looks like they are standing on a small board with four wheels, using their feet to propel themselves forward.", + "A photo of a person doing Skate Boarding. The image is of a skateboarder performing a trick.", + "A photo of a person doing Skate Boarding. In the image, a teenage boy is performing a skateboarding trick on a half-pipe.", + "A photo of a person doing Skate Boarding. One image that comes to mind is of a person doing a handstand on their skateboard while moving down the street.", + "A photo of a person doing Skate Boarding. The image shows a person skateboarding on a half-pipe.", + "A photo of a person doing Skate Boarding. One image that comes to mind is of a person doing a kick-flip on a skateboard.", + "A photo of a person doing Skate Boarding. The image is of a young man in his teens or early twenties skateboarding down a street.", + "A photo of a person doing Skate Boarding. I found an image of a person doing a skateboarding trick on the internet.", + "A photo of a person doing Skate Boarding. An image of a person doing Skate_Boarding might show someone doing a tricks on their skateboard at a skatepark.", + "A photo of a person doing Skate Boarding. The image shows a person skateboarding on a half-pipe.", + "A photo of a person doing Skate Boarding. The image is of a person doing a frontside boardslide on a skateboard.", + "A photo of a person doing Skate Boarding. A young man doing a skateboarding trick on a half-pipe.", + "A photo of a person doing Skate Boarding. The person in the image is skateboarding on a half-pipe.", + "A photo of a person doing Skate Boarding. A person skateboarding on a half-pipe.", + "A photo of a person doing Skate Boarding. A person doing a skateboarding trick on a half-pipe.", + "A photo of a person doing Skate Boarding. A person doing a kickflip on a skateboard.", + "A photo of a person doing Skate Boarding. A person skateboarding down a street.", + "A photo of a person doing Skate Boarding. Skateboarding is a great way to get around town!.", + "A photo of a person doing Skate Boarding. Girl doing a skateboarding trick.", + "A photo of a person doing Skate Boarding. This person is skateboarding on a half-pipe.", + "A photo of a person doing Skate Boarding. Rob is shredding the half-pipe on his new skateboard." + ], + "Skiing": [ + "A photo of a person doing Skiing. The person skiing looks like they are gliding on the snow with their legs in a V shape.", + "A photo of a person doing Skiing. Skiing is a winter sport in which people strap long, narrow boards to their feet and glide down snowy hills.", + "A photo of a person doing Skiing. A person doing Skiing looks like they are wearing a lot of layers of clothes to keep warm, and they have skis on their feet.", + "A photo of a person doing Skiing. A person doing Skiing looks like they are sliding on snow with two long poles in their hands.", + "A photo of a person doing Skiing. A person doing Skiing looks like they are going down a hill on skis.", + "A photo of a person doing Skiing. A person doing skiing looks like they are sliding down a snowy hill on a pair of skis.", + "A photo of a person doing Skiing. The person skiing would be wearing heavy clothing to protect them from the cold, as well as gloves and a hat.", + "A photo of a person doing Skiing. Someone who is skiing may be wearing a lot of layers of clothing to stay warm, as well as a hat, goggles, and a scarf.", + "A photo of a person doing Skiing. A person doing Skiing would look like they are holding two long, thin poles in their hands and have two long, thin boards attached to their feet.", + "A photo of a person doing Skiing. A person engaged in the sport of skiing generally looks like they are having a great time.", + "A photo of a person doing Skiing. There are many ways to identify a person doing skiing.", + "A photo of a person doing Skiing. The person will be wearing skiing equipment, such as skis, poles, and a helmet.", + "A photo of a person doing Skiing. A person doing Skiing can be identified by their clothing.", + "A photo of a person doing Skiing. A person doing skiing would be wearing ski equipment such as skis, ski boots, and a ski jacket.", + "A photo of a person doing Skiing. If someone is skiing, they will be wearing ski boots and bindings, and they will have skis attached to their feet.", + "A photo of a person doing Skiing. The person will be wearing skis and may be holding ski poles.", + "A photo of a person doing Skiing. A person doing skiing would likely be wearing ski gear, such as boots, skis, and a coat.", + "A photo of a person doing Skiing. One way to identify a person doing Skiing is by their clothing.", + "A photo of a person doing Skiing. A person doing Skiing can be identified by their clothing.", + "A photo of a person doing Skiing. A person doing Skiing can be identified by their clothing.", + "A photo of a person doing Skiing. Skiing looks like a person sliding down a snow-covered hill on two narrow pieces of wood (skis).", + "A photo of a person doing Skiing. A person doing Skiing looks like they are gliding on the snow with two long poles.", + "A photo of a person doing Skiing. When a person is skiing, they typically wear ski boots, ski bindings, and ski poles.", + "A photo of a person doing Skiing. A person doing skiing looks like they are holding two long sticks and gliding on the snow.", + "A photo of a person doing Skiing. There is no one definitive answer to this question.", + "A photo of a person doing Skiing. The following is a brief description of what a person doing Skiing may look like, based on a combination of common sense and popular culture: They would be wearing ski equipment, including skis, poles, and boots.", + "A photo of a person doing Skiing. A person skiing looks like they are standing on top of two long, thin boards and sliding down a snow-covered hill.", + "A photo of a person doing Skiing. A person doing Skiing looks like they are sliding down a snowy hill on two long pieces of wood.", + "A photo of a person doing Skiing. A person skiing looks like they are gliding down a hill on two long and thin pieces of equipment called skis.", + "A photo of a person doing Skiing. When a person is skiing, they are typically wearing a pair of skis on their feet, and poles in their hands.", + "A photo of a person doing Skiing. A person is skiing on a snow-covered slope.", + "A photo of a person doing Skiing. One image from the internet of a person skiing is of a skier speeding down a hill with their arms out to their sides and snow spraying up around them.", + "A photo of a person doing Skiing. In the image, a person is skiing down a snowy hill.", + "A photo of a person doing Skiing. This image shows a person skiing down a snowy slope.", + "A photo of a person doing Skiing. Image is of a person skiing down a mountain.", + "A photo of a person doing Skiing. This image is of a person skiing down a slope.", + "A photo of a person doing Skiing. In the image, a person is skiing down a snowy hill.", + "A photo of a person doing Skiing. I found an image of a person skiing down a mountain.", + "A photo of a person doing Skiing. The image is of a person Skiing down a mountain.", + "A photo of a person doing Skiing. The image is of a person skiing down a slope.", + "A photo of a person doing Skiing. The skier is carving down the slope, creating a cloud of snow in their wake.", + "A photo of a person doing Skiing. A person is skiing down a snowy hill.", + "A photo of a person doing Skiing. The person in this image is skiing on a mountain.", + "A photo of a person doing Skiing. The person skiing down the mountain is enjoying the snow and the view.", + "A photo of a person doing Skiing. A person skiing down a snowy hill.", + "A photo of a person doing Skiing. Skiing is a great way to enjoy the winter weather.", + "A photo of a person doing Skiing. This person is doing Skiing.", + "A photo of a person doing Skiing. This person is enjoying a day of skiing on the slopes.", + "A photo of a person doing Skiing. Skiing is a fun winter activity that everyone can enjoy!.", + "A photo of a person doing Skiing. This person is doing the sport of Skiing." + ], + "Skijet": [ + "A photo of a person doing Skijet. A person doing Skijet looks like they are skiing on a jet ski.", + "A photo of a person doing Skijet. When someone is skijetting, they are kneeling on a small, handheld ski board and using a jet ski to pull them along behind it.", + "A photo of a person doing Skijet. A person doing Skijet looks like they are skiing on a jet ski.", + "A photo of a person doing Skijet. When someone is Skijetting, they look like they are skiing on a jetski.", + "A photo of a person doing Skijet. A person doing Skijet looks like they are skiing on a jet ski.", + "A photo of a person doing Skijet. One person operating a Skijet would look like someone skiing on one ski, with a small jet-ski like device attached to their feet.", + "A photo of a person doing Skijet. A person doing Skijet would be wearing a ski suit and helmet, and would be holding onto a rope attached to a jet ski.", + "A photo of a person doing Skijet. When someone is Skijetting, they look like they are skiing on water.", + "A photo of a person doing Skijet. A person on a skijet looks like they are skiing on a jet ski.", + "A photo of a person doing Skijet. A person doing Skijet looks like they are skiing on a jet ski.", + "A photo of a person doing Skijet. You can identify a person doing Skijet by their clothing and equipment.", + "A photo of a person doing Skijet. Skijet is a water sport that uses a personal watercraft to propel a skier through the water.", + "A photo of a person doing Skijet. Skijet is a water sport that involves skiing on a jet ski.", + "A photo of a person doing Skijet. You can identify a person doing Skijet by their equipment.", + "A photo of a person doing Skijet. First and foremost, the person will be on a jet ski.", + "A photo of a person doing Skijet. The person will be wearing a jetpack, and will be skiing on water.", + "A photo of a person doing Skijet. You can identify a person doing Skijet by their speed and waves.", + "A photo of a person doing Skijet. Skijet is a water sport, so the person will be wearing a wet suit and be on a jet ski.", + "A photo of a person doing Skijet. A person doing Skijet can be identified by their ski equipment and by the presence of a Skijet on the water.", + "A photo of a person doing Skijet. If a person is doing Skijet, they will be holding onto a handle attached to a jet ski.", + "A photo of a person doing Skijet. Skijet is a winter sport that combines skiing with jet skiing.", + "A photo of a person doing Skijet. When someone is Skijetting, they look like they are skiing on a jet ski.", + "A photo of a person doing Skijet. There is no definitive answer to this question as everyone looks different when they are doing Skijet.", + "A photo of a person doing Skijet. A person doing Skijet usually looks like they are skiing, but with a jet propulsion device attached to their back.", + "A photo of a person doing Skijet. A person doing Skijet may look like they are skiing without skis, or they may look like they are riding a jet ski.", + "A photo of a person doing Skijet. There is no one definitive answer to this question, as people doing skijet can vary greatly in appearance.", + "A photo of a person doing Skijet. When someone is Skijetting, they look like they are skiing on a jet ski.", + "A photo of a person doing Skijet. A person doing Skijet looks like they are skiing on a jet ski.", + "A photo of a person doing Skijet. There is no definitive answer to this question, as people doing Skijet may vary greatly in appearance.", + "A photo of a person doing Skijet. Skijet is a water sport, so the person would be wearing a wet suit and would be standing on a board that is similar to a wakeboard.", + "A photo of a person doing Skijet. In the image, a person is skiing on top of a large, snow-covered mountain.", + "A photo of a person doing Skijet. In the image, a person is boarding a skijet on a snow-covered mountain.", + "A photo of a person doing Skijet. In the image, a person is skiing on a jet-powered ski.", + "A photo of a person doing Skijet. This image is of a person skiing on what looks like a professional ski slope.", + "A photo of a person doing Skijet. In the image, a person is holding onto the handles of a Skijet, which is a small, jet-propelled sled.", + "A photo of a person doing Skijet. A person on skis is being pulled by a motorized vehicle on a snow-covered trail.", + "A photo of a person doing Skijet. An image from the internet of a person doing Skijet would show someone on a jet ski, wearing a water ski and holding a tow rope.", + "A photo of a person doing Skijet. The person is wearing a bright red ski suit and helmet, and is standing on a bright blue skijet.", + "A photo of a person doing Skijet. The image is of a person skiing on a Skijet, a type of personal watercraft that allows users to ski on water.", + "A photo of a person doing Skijet. Skijet is a water sport that involves skiing on a jet ski.", + "A photo of a person doing Skijet. Person doing Skijet on a lake.", + "A photo of a person doing Skijet. A person skiing on a Skijet on a lake in winter.", + "A photo of a person doing Skijet. A person doing the Skijet, a winter sport that combines skiing and jet skiing.", + "A photo of a person doing Skijet. Person skiing on water with a jetpack.", + "A photo of a person doing Skijet. The caption reads, \"Skijetting is a new winter sport that is a cross between skiing and jet skiing.", + "A photo of a person doing Skijet. A person enjoying a day of skijet skiing.", + "A photo of a person doing Skijet. A person skiing on water using a Skijet, a personal watercraft designed for skiing.", + "A photo of a person doing Skijet. The person in the image is doing Skijet, a type of winter sport that involves skiing on a jet-powered sled.", + "A photo of a person doing Skijet. A person flying on a SkijetSkijet is a flyboard attached to a jet ski, allowing the user to fly high above the water.", + "A photo of a person doing Skijet. A person doing the Skijet, a winter sport that combines skiing and jet skiing." + ], + "Sky Diving": [ + "A photo of a person doing Sky Diving. A person skydiving may be wearing a jumpsuit and a helmet with a visor.", + "A photo of a person doing Sky Diving. A base jumper is someone who leaps from a very high place, usually a building or cliff, and falls through the air before deploying a parachute.", + "A photo of a person doing Sky Diving. When a person is Sky_Diving, they usually look like they are having a lot of fun.", + "A photo of a person doing Sky Diving. A person doing Sky_Diving looks like they are falling out of the sky with a parachute on their back.", + "A photo of a person doing Sky Diving. The person is wearing a jumpsuit and a helmet with a visor.", + "A photo of a person doing Sky Diving. When someone isSky_Diving, they are falling through the air with a parachute attached to their back.", + "A photo of a person doing Sky Diving. The person looks like they are falling through the sky with a parachute on their back.", + "A photo of a person doing Sky Diving. A person doing skydiving looks like they are falling through the sky with a parachute on their back.", + "A photo of a person doing Sky Diving. A person doing Sky Diving looks like they are falling through the air with a parachute on their back.", + "A photo of a person doing Sky Diving. When a person is sky diving, they are typically wearing a jumpsuit and a helmet.", + "A photo of a person doing Sky Diving. The person is most likely wearing a jumpsuit and a helmet, and may be carrying a parachute.", + "A photo of a person doing Sky Diving. You can identify a person doing sky diving by their parachute.", + "A photo of a person doing Sky Diving. The person is likely to be wearing a sky diving suit and helmet, and may be carrying a parachute.", + "A photo of a person doing Sky Diving. There is no definitive answer to this question since people can engage in skydiving for different reasons.", + "A photo of a person doing Sky Diving. The person will be wearing a skydiving helmet and jumpsuit.", + "A photo of a person doing Sky Diving. A person doing sky diving is usually wearing a jumpsuit and a helmet, and is attached to a parachute.", + "A photo of a person doing Sky Diving. There is no one definitive answer to this question.", + "A photo of a person doing Sky Diving. The person is likely to be wearing a jumpsuit and a helmet, and they may be carrying a parachute.", + "A photo of a person doing Sky Diving. A person doing sky diving can be identified by their parachute.", + "A photo of a person doing Sky Diving. There are several ways to identify a person doing sky diving.", + "A photo of a person doing Sky Diving. A person Sky_Diving looks like they are falling out of the sky with a parachute on their back.", + "A photo of a person doing Sky Diving. A person doing sky diving looks like they are falling through the air with a parachute attached to their back.", + "A photo of a person doing Sky Diving. When a person is sky diving, they are typically wearing a jumpsuit and a helmet.", + "A photo of a person doing Sky Diving. A person doing skydiving looks like they are falling out of the sky with a parachute on their back.", + "A photo of a person doing Sky Diving. People who go skydiving usually wear jumpsuits and helmets.", + "A photo of a person doing Sky Diving. This person is likely to be wearing a jumpsuit and a helmet, and they may be attached to a parachute.", + "A photo of a person doing Sky Diving. A person doing sky diving looks like they are falling through the sky with a large parachute attached to their back.", + "A photo of a person doing Sky Diving. A person doing sky diving looks like they are falling with a parachute attached to their back.", + "A photo of a person doing Sky Diving. Most likely, a person doing sky diving will be wearing a jumpsuit and a helmet.", + "A photo of a person doing Sky Diving. When a person is sky diving, they are generally wearing a jumpsuit and a helmet.", + "A photo of a person doing Sky Diving. The image is of a person free-falling through the sky with a parachute on their back.", + "A photo of a person doing Sky Diving. The image shows a person in a skydiving outfit falling through the sky with a parachute attached to their back.", + "A photo of a person doing Sky Diving. A person is doing sky diving with a parachute on their back.", + "A photo of a person doing Sky Diving. The image is of a person in a blue jumpsuit with a white parachute on their back, canopied in white and blue.", + "A photo of a person doing Sky Diving. One image that comes to mind is of a person soaring through the air, the wind whipping through their hair with the vast blue sky and fluffy white clouds in the background.", + "A photo of a person doing Sky Diving. A person is doing sky diving with a parachute.", + "A photo of a person doing Sky Diving. A person doing skydiving is pictured in midair, with a parachute deployed behind them.", + "A photo of a person doing Sky Diving. The image is of a person doing a backflip while skydiving.", + "A photo of a person doing Sky Diving. On the left side of the image, there is a person in a light blue jumpsuit with white polka dotsFastened to their back is a large, blue parachuteThe person has both of their arms extended out to the sides and their.", + "A photo of a person doing Sky Diving. The image is of a person doing sky diving.", + "A photo of a person doing Sky Diving. This person is getting ready to sky dive!.", + "A photo of a person doing Sky Diving. This person is sky diving, which is a type of extreme sport.", + "A photo of a person doing Sky Diving. Given the excitement of skydiving, it's no wonder that this sport has grown in popularity in recent years.", + "A photo of a person doing Sky Diving. The person in this photo is about to experience the thrill of a lifetime by sky diving!.", + "A photo of a person doing Sky Diving. An adventurous person enjoying the rush of skydiving.", + "A photo of a person doing Sky Diving. The sky diver is about to land after a successful jump.", + "A photo of a person doing Sky Diving. Going skydiving is an exhilarating experience!.", + "A photo of a person doing Sky Diving. The thrill-seeker enjoys the exhilarating experience of sky diving.", + "A photo of a person doing Sky Diving. This person is about to experience the thrill of a lifetime - sky diving!.", + "A photo of a person doing Sky Diving. In skydiving, an athlete dives out of an airplane and uses a parachute to slow their descent." + ], + "Soccer Juggling": [ + "A photo of a person doing Soccer Juggling. It looks like they are using their feet to keep the soccer ball in the air.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling looks like they are playing with a soccer ball.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling looks like they are trying to keep a soccer ball in the air by kicking it and using their body to keep it from touching the ground.", + "A photo of a person doing Soccer Juggling. A person doing Soccer Juggling looks like they are playing with a soccer ball.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling looks like they are trying to keep a soccer ball in the air by kicking it and then hitting it with their head or other body parts.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling typically looks like they are kicking a soccer ball up in the air and then catching it with their feet or head.", + "A photo of a person doing Soccer Juggling. They are kicking a soccer ball up in the air and catching it before it hits the ground.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling looks like a person kicking a soccer ball up in the air and then catching it.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling looks like they are kicking a soccer ball up in the air and then catching it.", + "A photo of a person doing Soccer Juggling. The person looks like they are kicking a soccer ball up in the air and then catching it.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling is usually kicking a soccer ball up in the air and catching it, occasionally using other parts of the body to keep the ball in the air.", + "A photo of a person doing Soccer Juggling. There is no definitive answer to this question, as there is no one specific way to identify a person doing soccer juggling.", + "A photo of a person doing Soccer Juggling. The person is likely to be wearing soccer gear, and they will be kicking a soccer ball into the air and catching it, over and over.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling would likely have a soccer ball at their feet, and would be kicking the ball up into the air and catching it, over and over again.", + "A photo of a person doing Soccer Juggling. There is no definitive answer, but some key things to look for would be someone kicking a soccer ball back and forth between their feet, or keeping the ball in the air by using their head, chest, or knees.", + "A photo of a person doing Soccer Juggling. Someone doing Soccer_Juggling would be using their feet to keep a soccer ball in the air for as long as possible.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling is usually kicking a soccer ball up in the air and catching it, or bouncing it on their head or body and catching it.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling can be identified by their clothing.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling can be identified by their clothing.", + "A photo of a person doing Soccer Juggling. When someone is doing soccer juggling, they will usually have a soccer ball with them.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling looks like they are kicking a soccer ball up in the air and catching it.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling looks like they are kicking a soccer ball up in the air and catching it over and over again.", + "A photo of a person doing Soccer Juggling. A soccer player doing a juggling trick looks like they are kicking the ball up in the air and then catching it with their feet.", + "A photo of a person doing Soccer Juggling. When a person is doing soccer juggling, they will look like they are kick the soccer ball up in the air and then catching it with their foot.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling looks like someone who is trying to keep a soccer ball in the air by kicking it and then letting it fall down on their foot and then kicking it back up into the air.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling looks like they are trying to keep a soccer ball in the air by kicking it and keeping it from touching the ground.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling looks like someone who is playing soccer and juggling the ball at the same time.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling typically looks like they are playing with a soccer ball, trying to keep it in the air for as long as possible.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling typically looks like they are kicking a soccer ball back and forth between their feet, sometimes using their head or other parts of their body to keep the ball in the air.", + "A photo of a person doing Soccer Juggling. A person doing Soccer_Juggling typically looks like they are trying to keep a soccer ball in the air by kicking it and then hitting it with different parts of their body.", + "A photo of a person doing Soccer Juggling. In the image, a person is standing on a soccer field with a soccer ball at their feet.", + "A photo of a person doing Soccer Juggling. The picture is of a young boy, around 10 years old, juggled a soccer ball.", + "A photo of a person doing Soccer Juggling. A soccer player is standing on a field with a soccer ball at their feet.", + "A photo of a person doing Soccer Juggling. In the image, a person is shown standing on a soccer field, with a soccer ball at their feet.", + "A photo of a person doing Soccer Juggling. The image is of a young man, probably in his late teens or early twenties, wearing a soccer jersey and shorts.", + "A photo of a person doing Soccer Juggling. A person is standing on a soccer field with a ball at their feet.", + "A photo of a person doing Soccer Juggling. One image that comes to mind is of a professional soccer player holding a ball up in the air with their feet while performing tricks.", + "A photo of a person doing Soccer Juggling. The image is of a person juggling a soccer ball.", + "A photo of a person doing Soccer Juggling. This image is of a person doing soccer juggling.", + "A photo of a person doing Soccer Juggling. The image is of a person standing on a soccer field, with a soccer ball at their feet.", + "A photo of a person doing Soccer Juggling. This person is juggling a soccer ball.", + "A photo of a person doing Soccer Juggling. Soccer Juggling.", + "A photo of a person doing Soccer Juggling. One person is doing a juggling trick with a soccer ball\n.", + "A photo of a person doing Soccer Juggling. Someone showing off their skills with a soccer ball.", + "A photo of a person doing Soccer Juggling. Person doing a soccer juggling trick.", + "A photo of a person doing Soccer Juggling. Good form! This person is keeping the ball up in the air using only their feet in a game of soccer juggling.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling.", + "A photo of a person doing Soccer Juggling. A person doing soccer juggling.", + "A photo of a person doing Soccer Juggling. The number one soccer juggling champion in the world.", + "A photo of a person doing Soccer Juggling. Soccer player doing juggling tricks with a ballA soccer player doing juggling tricks with a ball." + ], + "Soccer Penalty": [ + "A photo of a person doing Soccer Penalty. A person taking a soccer penalty shot typically lines up about 12 yards away from the goal, with the ball on the ground.", + "A photo of a person doing Soccer Penalty. The person taking the penalty will be standing still, with the ball on the ground 12 yards away from the goal.", + "A photo of a person doing Soccer Penalty. A person taking a soccer penalty kick looks like they are about to kick the ball into the net.", + "A photo of a person doing Soccer Penalty. A person doing a soccer penalty may look like they are about to take a shot on goal, or they may be getting ready to save a shot from the other team.", + "A photo of a person doing Soccer Penalty. The person looks like they are about to kick a soccer ball into the net.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty looks like they are about to kick a soccer ball.", + "A photo of a person doing Soccer Penalty. A person kicking a soccer ball from the penalty spot looks like they are about to score a goal.", + "A photo of a person doing Soccer Penalty. A person doing a soccer penalty looks like they are about to kick the ball into the net.", + "A photo of a person doing Soccer Penalty. The player kicking the ball forward from the penalty mark, with the intention of score a goal, while the goalkeeper tries to stop the ball from going into the net.", + "A photo of a person doing Soccer Penalty. The person looks like they are about to kick a soccer ball into the net.", + "A photo of a person doing Soccer Penalty. The person doing the soccer penalty is the one kicking the ball into the net.", + "A photo of a person doing Soccer Penalty. The person taking the Soccer_Penalty is the one with the ball at their feet, standing at the penalty spot, and looking at the goal.", + "A photo of a person doing Soccer Penalty. The person will be standing in front of the goal, with the ball on the ground about 12 yards away.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty is typically positioned in front of the goal, with the ball a few yards in front of them.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty may be wearing a soccer uniform and have a soccer ball.", + "A photo of a person doing Soccer Penalty. The person taking the penalty kick in soccer will usually be the team captain.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty may be wearing a soccer uniform and cleats.", + "A photo of a person doing Soccer Penalty. A person doing a soccer_penalty is typically standing next to a soccer ball on a soccer field.", + "A photo of a person doing Soccer Penalty. The person standing in the penalty box with the ball at their feet is the penalty taker.", + "A photo of a person doing Soccer Penalty. The person taking the soccer penalty will be standing at the penalty spot, which is located 12 yards from the goal line.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty may look like they are about to kick a soccer ball.", + "A photo of a person doing Soccer Penalty. A person doing Soccer_Penalty may look like they are about to kick a soccer ball.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty may look like they are about to kick a soccer ball into a net.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty might look like a professional soccer player about to take a penalty kick.", + "A photo of a person doing Soccer Penalty. The person performing the soccer penalty may look serious and focused as they prepare to take the shot.", + "A photo of a person doing Soccer Penalty. I could not find a good image of someone doing a Soccer_Penalty, however, a quick Google search produced this image: https://i.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty looks like they are about to kick a soccer ball into a goal.", + "A photo of a person doing Soccer Penalty. Someones doing a Soccer_Penalty may look like they are in a deep concentration, or they may look like they are angry.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty looks like they are about to kick a soccer ball.", + "A photo of a person doing Soccer Penalty. A person doing a Soccer_Penalty may look like they are about to kick a soccer ball into a net.", + "A photo of a person doing Soccer Penalty. _KickThe image shows a person in a soccer uniform about to kick the ball.", + "A photo of a person doing Soccer Penalty. _KickThis image shows a person about to kick the ball during a soccer penalty kick.", + "A photo of a person doing Soccer Penalty. _KickThis image is of a person doing a soccer penalty kick.", + "A photo of a person doing Soccer Penalty. _ ShootThe image is of a person doing a soccer penalty shoot.", + "A photo of a person doing Soccer Penalty. _KickIn the image, a man is standing in a field with a soccer ball at his feet.", + "A photo of a person doing Soccer Penalty. _KickTwo teams of eleven players each compete to get the ball into the other team's goal and to prevent the other team from scoring by tackling their players and intercepting their passes.", + "A photo of a person doing Soccer Penalty. _KickThe image shows a person about to kick a soccer ball.", + "A photo of a person doing Soccer Penalty. _KicksIn the image, a young man is standing in front of a soccer goal, getting ready to take a penalty kick.", + "A photo of a person doing Soccer Penalty. _KickThe image is of a person doing a soccer penalty kick.", + "A photo of a person doing Soccer Penalty. _KickIn the image, a man is standing over a soccer ball, preparing to take a penalty kick.", + "A photo of a person doing Soccer Penalty. This person is doing a soccer penalty.", + "A photo of a person doing Soccer Penalty. The person is about to make a Soccer_Penalty kick.", + "A photo of a person doing Soccer Penalty. A person doing a soccer penalty.", + "A photo of a person doing Soccer Penalty. The goalkeeper blocks the ball from going into the net during a penalty kick.", + "A photo of a person doing Soccer Penalty. A person is doing a soccer penalty kick.", + "A photo of a person doing Soccer Penalty. A person takes a Soccer_PenaltyA person takes a penalty shot in a game of soccer.", + "A photo of a person doing Soccer Penalty. A person is doing a soccer penalty.", + "A photo of a person doing Soccer Penalty. A person is kicking a soccer ball on a field.", + "A photo of a person doing Soccer Penalty. The person is doing a soccer penalty.", + "A photo of a person doing Soccer Penalty. This person is doing a soccer penalty." + ], + "Still Rings": [ + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are hanging on a bar with their arms extended and their body slightly bent.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are doing a Planche on a Pommel Horse without the pommel horse.", + "A photo of a person doing Still Rings. A gymnast performing Still Rings looks like they are holding on to two vertical poles, with their arms fully extended and their bodies perpendicular to the floor.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are holding on to two rings that are suspended from a bar above their head.", + "A photo of a person doing Still Rings. A person performing Still Rings looks like they are floating in the air with their arms and legs extended.", + "A photo of a person doing Still Rings. A person doing Still Rings looks like they are holding onto two rings and they are swinging.", + "A photo of a person doing Still Rings. The person performing Still Rings looks as if they are doing a slow and controlled gymnastics routine on a set of two metal rings.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are holding onto two rings that are hanging from a gym ceiling.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like someone with their arms outstretched holding on to two rings suspended from a bar above them.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are holding two rings in their hands and suspending themselves in the air.", + "A photo of a person doing Still Rings. The still rings are a pair of large metal circles suspended from a high bar.", + "A photo of a person doing Still Rings. If a person is doing Still_Rings, they will be upside down hanging from a set of rings.", + "A photo of a person doing Still Rings. The person would be wearing gymnastic rings and would be doing a routine that involves suspending themselves in the air and performing different exercises.", + "A photo of a person doing Still Rings. The person is typically holding onto two rings that are suspended from a frame or rigging.", + "A photo of a person doing Still Rings. A person doing Still_Rings will be in an inclined position, with their arms outstretched and their hands gripping a ring.", + "A photo of a person doing Still Rings. The person would be doing a back flip and then grabbing the rings and holding themselves up.", + "A photo of a person doing Still Rings. Some indicators that a person is doing Still_Rings are that they will have their hands at their sides and will be holding onto a steel ring.", + "A photo of a person doing Still Rings. The person would be hanging from a bar with their arms and legs extended and their hands gripping the bar.", + "A photo of a person doing Still Rings. The person is performing on a ring suspended from the ceiling, and is not moving their body.", + "A photo of a person doing Still Rings. A person doing Still_Rings is usually hanging from a rings apparatus with their arms extended and their body in a curved position.", + "A photo of a person doing Still Rings. A person performing a still rings routine will look like they are doing a combination of gymnastics and weightlifting.", + "A photo of a person doing Still Rings. When a person is doing Still_Rings, they look like they are hanging from a ring and doing acrobatic tricks.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are holding two rings in front of them and they are not moving.", + "A photo of a person doing Still Rings. The person doing Still_Rings looks like they are holding two rings in their hands and they are standing still.", + "A photo of a person doing Still Rings. A person doing still rings looks like they are holding two rings in each hand and suspending their body in the air.", + "A photo of a person doing Still Rings. A person doing Still_Rings usually looks like they are holding on to a bar or rings and then suspending themselves in the air and holding that position.", + "A photo of a person doing Still Rings. A person doing Still_Rings typically looks like they are holding onto two rings that are suspended from a ceiling or frame.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are holding two rings in their hands and suspending themselves in the air.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are doing a handstand while holding onto two rings.", + "A photo of a person doing Still Rings. A person doing Still_Rings looks like they are holding onto two rings that are suspended from a bar or beam.", + "A photo of a person doing Still Rings. A still ring is a device used by gymnasts to help them keep their balance while performing exercises.", + "A photo of a person doing Still Rings. The image is of a man doing a still ring hold on a set of gymnastic rings.", + "A photo of a person doing Still Rings. The person is doing a back flip on the rings and their body is perpendicular to the ground.", + "A photo of a person doing Still Rings. The image is of a person doing a still ring exercise.", + "A photo of a person doing Still Rings. This image shows a person doing a move on the Still Rings.", + "A photo of a person doing Still Rings. In the image, a person is doing Still_Rings.", + "A photo of a person doing Still Rings. In the image, a man is doing a workout on still rings.", + "A photo of a person doing Still Rings. An image from the internet of a person doing Still Rings shows a person hanging from a set of rings, with their body slightly bent and their legs crossed at the ankles.", + "A photo of a person doing Still Rings. A still ring exercise consists of a person holding onto two thick, red gym rings that are suspended from a beam or ceiling.", + "A photo of a person doing Still Rings. The image is of a person doing a still ring exercise.", + "A photo of a person doing Still Rings. A person does a rings exercise at the gym.", + "A photo of a person doing Still Rings. A gymnast performs a still rings routine.", + "A photo of a person doing Still Rings. The acrobat performs a difficult move on the still rings, displaying strength and coordination.", + "A photo of a person doing Still Rings. The gymnast hangs motionless from the rings, showing off her strength and grace.", + "A photo of a person doing Still Rings. The caption reads, \"Still Rings - Gymnastics.", + "A photo of a person doing Still Rings. A person performs a still ring exercise on a set of rings suspended from a frame.", + "A photo of a person doing Still Rings. Javier Fernandez of Spain competes in the Men's Still Rings Final on Day 12 of the Rio 2016 Olympic Games.", + "A photo of a person doing Still Rings. The person is doing a move known as a \"straddle planche\" on still rings.", + "A photo of a person doing Still Rings. A person doing a still ring exercise at the gym.", + "A photo of a person doing Still Rings. The person is doing a still rings exercise." + ], + "Sumo Wrestling": [ + "A photo of a person doing Sumo Wrestling. A person doing sumo wrestling would look like they are trying to push the other person out of the ring using their body.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling typically looks like a large, Japanese man wearing a mawashi (a thick belt) around his waist and nothing else.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like a person in a loincloth who is squatting and trying to push another person out of a ring.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like they are about to push someone out of a ring.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling looks like they are pushing and pulling against their opponent, trying to get them out of the ring.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like a person who is trying to push another person out of a circle.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like someone who is hunched over, with their legs wide apart and their arms extended out to the side.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like they are pushing and pulling against each other trying to get the other person out of the ring.", + "A photo of a person doing Sumo Wrestling. A person doing sumo wrestling looks like they are doing a squatting position with their legs spread out wide and their arms out in front of them.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like a large, corpulent person, with a large belly and thick legs.", + "A photo of a person doing Sumo Wrestling. The person might be wearing a mawashi, which is a belt worn by sumo wrestlers.", + "A photo of a person doing Sumo Wrestling. Generally, sumo wrestlers are very large and muscular, with a small waist in comparison to their overall size.", + "A photo of a person doing Sumo Wrestling. Sumo wrestlers wear a mawashi, a belt made of an stiff fabric that is wrapped around the waist and between the legs.", + "A photo of a person doing Sumo Wrestling. The person has a mawashi, or loincloth, around their waist.", + "A photo of a person doing Sumo Wrestling. There are a few ways to identify a person doing sumo wrestling.", + "A photo of a person doing Sumo Wrestling. The person will be dressed in a sumo wrestler's outfit, which includes a loincloth and a belt.", + "A photo of a person doing Sumo Wrestling. The person would be wearing a mawashi, which is a belt worn by sumo wrestlers.", + "A photo of a person doing Sumo Wrestling. There are several ways to identify a person doing sumo wrestling.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling may be identified by their large muscular build and by their traditional attire which consists of a mawashi, or belt, and a fundoshi, or loincloth.", + "A photo of a person doing Sumo Wrestling. There are several ways to identify a person doing sumo wrestling.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling looks like someone who is about to engage in a physical confrontation.", + "A photo of a person doing Sumo Wrestling. A person doing sumo wrestling looks like they are about to push someone out of a ring.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling looks like a large, overweight man wearing a diaper-like loincloth who is trying to push another large, overweight man out of a circle.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like a large meals with a lot of body fat.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling looks like they are squatting low to the ground and then thrusting their hips forward in an attempt to knock their opponent down.", + "A photo of a person doing Sumo Wrestling. A person doing sumo wrestling looks like they are squatting down with their legs spread apart and their arms out in front of them.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling looks like they are fighting in a ring.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling would look like they are trying to push their opponent out of a circle using only their body.", + "A photo of a person doing Sumo Wrestling. A person doing sumo wrestling looks like they are ready to fight.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo_Wrestling looks like a person in a loincloth, with a belt around their waist, trying to push another person out of a ring.", + "A photo of a person doing Sumo Wrestling. ?In the image, there are two sumo wrestlers in a ring, preparing to face off.", + "A photo of a person doing Sumo Wrestling. In the image, a sumo wrestler is shown in a traditional outfit preparing to do battle.", + "A photo of a person doing Sumo Wrestling. A sumo wrestler is a very large and muscular man, who is wearing a traditional loincloth called a mawashi.", + "A photo of a person doing Sumo Wrestling. An image from the internet of a person sumo wrestling shows a large, overweight man with a shaved head wearing a loincloth and belt, squatting down and facing his opponent.", + "A photo of a person doing Sumo Wrestling. The image is of a large, overweight man in a diaper-like garment wrestling another large, overweight man.", + "A photo of a person doing Sumo Wrestling. An image from the internet of a person doing Sumo Wrestling would show a person in a loincloth and top knot, squatting and thrusting their hips forward while trying to push their opponent out of the ring.", + "A photo of a person doing Sumo Wrestling. The image shows a person in a traditional Sumo wrestling outfit, squaring off against another person in a similar outfit.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling would be in a squatting position with their legs splayed out and their arms up in the air.", + "A photo of a person doing Sumo Wrestling. The image is of a man in a diaper-like garment squatting down and leaning forward with his hands on the ground.", + "A photo of a person doing Sumo Wrestling. In the image, a person is doing Sumo Wrestling.", + "A photo of a person doing Sumo Wrestling. A person doing sumo wrestling.", + "A photo of a person doing Sumo Wrestling. A person sumo wrestling in a traditional outfit.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling.", + "A photo of a person doing Sumo Wrestling. A person doing Sumo Wrestling.", + "A photo of a person doing Sumo Wrestling. A person does sumo wrestling.", + "A photo of a person doing Sumo Wrestling. Person doing sumo wrestling.", + "A photo of a person doing Sumo Wrestling. A person does Sumo Wrestling.", + "A photo of a person doing Sumo Wrestling. A person does sumo wrestlingThis image shows a person doing sumo wrestling, a traditional Japanese sport.", + "A photo of a person doing Sumo Wrestling. A person performing the Sumo Wrestling move.", + "A photo of a person doing Sumo Wrestling. A person does sumo wrestling in front of a crowd." + ], + "Surfing": [ + "A photo of a person doing Surfing. A person doing surfing looks like someone who is kneeling on a board, paddling out to catch a wave, then standing up and riding the wave into shore.", + "A photo of a person doing Surfing. A person doing Surfing looks like they are holding on to a board and standing on it while the waves are coming in.", + "A photo of a person doing Surfing. When someone is surfing, they are standing on a board in the water, using a surfboard to ride the waves.", + "A photo of a person doing Surfing. A person doing surfing looks like someone standing on a board in the water, using a paddle to move themselves around.", + "A photo of a person doing Surfing. They are standing on a board in the water, using a paddle to move themselves around.", + "A photo of a person doing Surfing. A person surfing looks like they are standing on a board in the water, using a paddle to move themselves around.", + "A photo of a person doing Surfing. A person doing surfing looks like someone who is standing on a board in the water and riding the waves.", + "A photo of a person doing Surfing. A person who is surfing stands on a board in the water and uses their body to paddle and steer the board.", + "A photo of a person doing Surfing. A person doing surfing looks like they are standing on a board in the water and using a paddle to move themselves.", + "A photo of a person doing Surfing. When someone is surfing, they are standing on a board in the water and using the waves to propel themselves forward.", + "A photo of a person doing Surfing. If someone is surfing, they will likely be wearing a wetsuit and carrying a surfboard.", + "A photo of a person doing Surfing. A person doing surfing can be identified by their swimwear, which is typically a wetsuit, and by their surfboard.", + "A photo of a person doing Surfing. By their surfing equipment, which includes a surfboard.", + "A photo of a person doing Surfing. The easiest way to identify a person doing surfing is to look for someone in a swimsuit with a surfboard.", + "A photo of a person doing Surfing. If you see someone on a board riding the waves, they are surfing.", + "A photo of a person doing Surfing. A person doing surfing can be identified by their swimming attire, sun protection, and a surfboard.", + "A photo of a person doing Surfing. A person doing surfing can usually be identified by their clothing.", + "A photo of a person doing Surfing. A person who is surfing can be identified by their surfboard, wet suit, and sun protection.", + "A photo of a person doing Surfing. A person doing surfing can be identified by their wetsuit, surfboard, and sun protection.", + "A photo of a person doing Surfing. A person who is doing surfing can be identified by their clothing.", + "A photo of a person doing Surfing. A person doing surfing looks like they are standing on a board in the water and using a paddle to move themselves.", + "A photo of a person doing Surfing. A person doing surfing looks like someone who is riding on a wave.", + "A photo of a person doing Surfing. A person doing surfing looks like they are standing on a board in the water and riding a wave.", + "A photo of a person doing Surfing. In general, a person doing surfing looks like someone riding on a waves.", + "A photo of a person doing Surfing. A person doing surfing looks like they are standing on a board in the water and riding the waves.", + "A photo of a person doing Surfing. A person doing surfing looks like someone who is standing on a board in the water, using a surfboard to glide on the water.", + "A photo of a person doing Surfing. A person doing surfing looks like someone who is riding a wave on a surfboard.", + "A photo of a person doing Surfing. A person doing Surfing looks like they are swimming on a board.", + "A photo of a person doing Surfing. A person doing Surfing look like they are riding on a wave on a surfboard.", + "A photo of a person doing Surfing. someone surfing looks like they are standing on a board in the water and using their body to move the board across the water.", + "A photo of a person doing Surfing. Surfing is a water sport in which the surfer rides a wave on a surfboard.", + "A photo of a person doing Surfing. The image is of a person surfing on a waves.", + "A photo of a person doing Surfing. In the image, a person is surfing on a blue and white surfboard in between two large waves.", + "A photo of a person doing Surfing. One image from the internet of a person doing surfing is of a young woman in a black wetsuit paddling out on her surfboard.", + "A photo of a person doing Surfing. The image is of a person surfing on a waves.", + "A photo of a person doing Surfing. A person with a surfboard is standing on the beach.", + "A photo of a person doing Surfing. The image shows a person surfing on a blue and green wave.", + "A photo of a person doing Surfing. The image is of a person surfing on a waves in the ocean.", + "A photo of a person doing Surfing. In the image, a person is surfing on a waves.", + "A photo of a person doing Surfing. In the image, a person is doing surfing on a blue and white surfboard in the ocean.", + "A photo of a person doing Surfing. This person is doing the extreme sport of surfing.", + "A photo of a person doing Surfing. A young woman rides a wave on her surfboard.", + "A photo of a person doing Surfing. The thrill of riding a wave is incomparable to any other sensation.", + "A photo of a person doing Surfing. The best way to enjoy the waves is to go surfing!.", + "A photo of a person doing Surfing. A person surfs on a waves in the ocean.", + "A photo of a person doing Surfing. A person rides a wave on a surfboard.", + "A photo of a person doing Surfing. A surfer in California enjoying the waves.", + "A photo of a person doing Surfing. This person is surfing on a wave.", + "A photo of a person doing Surfing. Beach babe chasing waves.", + "A photo of a person doing Surfing. A person enjoying a day of surfing at the beach." + ], + "Swing": [ + "A photo of a person doing Swing. When a person is doing Swing, they look like they are dancing.", + "A photo of a person doing Swing. A person doing Swing should look like they are having fun and enjoying themselves.", + "A photo of a person doing Swing. When someone is doing Swing, they look like they are dancing with someone else.", + "A photo of a person doing Swing. A person doing Swing looks like they are having a lot of fun.", + "A photo of a person doing Swing. A person doing Swing looks like they are dancing, but the moves are more based on Lindy Hop.", + "A photo of a person doing Swing. A person doing Swing usually looks like they're having a lot of fun.", + "A photo of a person doing Swing. A person doing Swing looks like they are dancing with someone else and they are holding each other close while they move their feet back and forth and rotate their bodies around each other.", + "A photo of a person doing Swing. A person doing swing looks like they are having a lot of fun.", + "A photo of a person doing Swing. A person doing Swing may look like they are bouncing, turning, or twisting.", + "A photo of a person doing Swing. A person doing Swing looks like they are dancing the two step.", + "A photo of a person doing Swing. If you see someone dancing to big band or jazz music with their partner, then they are likely doing Swing.", + "A photo of a person doing Swing. There are many ways to identify a person doing Swing.", + "A photo of a person doing Swing. The best way to identify someone doing Swing is to listen to the music they are dancing to.", + "A photo of a person doing Swing. Swing dancing is a style of dance that includes both partner dancing and solo dancing.", + "A photo of a person doing Swing. The person will be swinging their arms and legs back and forth in coordination with the music.", + "A photo of a person doing Swing. The person will likely be dancing to jazz or swing music and doing steps such as the Lindy Hop, Charleston, or Balboa.", + "A photo of a person doing Swing. There are a few ways to identify a person doing Swing.", + "A photo of a person doing Swing. There are a few ways to identify a person doing Swing.", + "A photo of a person doing Swing. There are a few ways to identify a person doing Swing.", + "A photo of a person doing Swing. A person doing Swing can often be identified by their clothing.", + "A photo of a person doing Swing. There is no one way that people look when they are doing swing.", + "A photo of a person doing Swing. A person doing Swing may look like they are dancing, but it is actually a very physical activity.", + "A photo of a person doing Swing. A person doing Swing differs depending on the style of Swing they are doing.", + "A photo of a person doing Swing. There is no one definitive answer to this question.", + "A photo of a person doing Swing. A person doing Swing can look like they are dancing, fighting, or playing a game.", + "A photo of a person doing Swing. A person doing Swing looks like they are having a lot of fun! They are usually moving their hips and shoulders in time with the music, and their arms and legs are moving in sync with each other.", + "A photo of a person doing Swing. A person doing Swing may look like they are dancing, but they are actually participating in a much more complicated activity.", + "A photo of a person doing Swing. A person doing Swing may look like they are bouncing up and down, or like they are flying through the air.", + "A photo of a person doing Swing. A person doing Swing often looks like they are dancing in a partner dance, with one person leading and the other following.", + "A photo of a person doing Swing. A person doing Swing usually looks like they are having a lot of fun! They may be moving their hips and dancing to the music in a way that looks similar to how people dance to Latin music.", + "A photo of a person doing Swing. One image that comes to mind is of a person doing what looks to be Lindy Hop, which is a style of Swing.", + "A photo of a person doing Swing. DanceIn the image, a couple is doing Swing Dance in a living room.", + "A photo of a person doing Swing. DancingA person doing swing dancing looks like they are having a lot of fun.", + "A photo of a person doing Swing. DancingAn image from the internet of a person doing Swing Dancing may show a person in vintage clothing, dancing to upbeat jazz music.", + "A photo of a person doing Swing. DancingA photo of a couple doing swing dancing.", + "A photo of a person doing Swing. danceThis image is of a woman in a blue dress with a white polka-dot pattern.", + "A photo of a person doing Swing. DancingA person doing Swing Dancing might be pictured in a dancing hall, with a lighted chandelier overhead, and a shiny wooden floor.", + "A photo of a person doing Swing. An image from the internet of a person doing Swing may show the person standing on a swing, holding the chains, and swinging back and forth.", + "A photo of a person doing Swing. DancingThe image is of a man and woman dancing the Lindy Hop, a style of swing dancing.", + "A photo of a person doing Swing. DancingI cannot find an image that matches this description.", + "A photo of a person doing Swing. This person is enjoying a swing on a beautiful day.", + "A photo of a person doing Swing. The joy of swing dancing is captured in this photo of a dancer spinning in the air.", + "A photo of a person doing Swing. Person doing the swing dance move.", + "A photo of a person doing Swing. Person doing the Lindy Hop, a popular Swing dance.", + "A photo of a person doing Swing. Casually enjoying a sunny day at the park, this young woman is making the most of her time outdoors by spending an afternoon swinging on the playground equipment.", + "A photo of a person doing Swing. This person is doing the Swing dance move.", + "A photo of a person doing Swing. A joyful person doing the swing dance.", + "A photo of a person doing Swing. A woman in a teal dress spins around in a blue and white polka-dotted skirt while holding onto a Swing at a park.", + "A photo of a person doing Swing. Person doing the swing dance move.", + "A photo of a person doing Swing. A young couple enjoying a romantic moment while Swing dancing." + ], + "Table Tennis Shot": [ + "A photo of a person doing Table Tennis Shot. A person doing Table_Tennis_Shot looks like they are about to hit a table tennis ball with their paddle.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot stands at the table with their paddle in their hand.", + "A photo of a person doing Table Tennis Shot. A person doing a Table Tennis Shot looks like they are about to hit the ball with their paddle.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot typically holds the paddle in their dominant hand and stands perpendicular to the table.", + "A photo of a person doing Table Tennis Shot. A person doing Table_Tennis_Shot looks like they are holding a paddle in one hand and a ball in the other hand.", + "A photo of a person doing Table Tennis Shot. After the player serves, they hit the ball with their paddle in an upward motion.", + "A photo of a person doing Table Tennis Shot. A person doing Table_Tennis_Shot usually looks like they are trying to hit the ball as hard as possible so that it goes into the other persons court.", + "A photo of a person doing Table Tennis Shot. If someone is playing Table Tennis, they will have a paddle in their hand and they will hit the ball across the table to their opponent.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot looks like they are about to hit a table tennis ball.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot looks like someone who is about to hit a ball with a paddle.", + "A photo of a person doing Table Tennis Shot. If someone is doing a Table_Tennis_Shot, they will be holding a paddle in their hand and hitting a small round ball across a net.", + "A photo of a person doing Table Tennis Shot. The person doing the Table_Tennis_Shot has a racket in their hand and is hitting a ball across a net.", + "A photo of a person doing Table Tennis Shot. The person doing the Table Tennis Shot is holding a paddle in their hand and they are hitting a ball across a table.", + "A photo of a person doing Table Tennis Shot. The person doing the Table_Tennis_Shot will be holding a racket and will be trying to hit a ball over the net.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot can be identified by their stance, grip on the racket, and the motion of their arm.", + "A photo of a person doing Table Tennis Shot. If someone is doing a Table_Tennis_Shot, they will be holding a paddle and they will be hitting a Ping-Pong ball.", + "A photo of a person doing Table Tennis Shot. When performing a table tennis shot, the player will use their paddle to hit the ball.", + "A photo of a person doing Table Tennis Shot. The person doing the Table Tennis Shot can be identified by their stance, grip on the racket, and the angle of their racket.", + "A photo of a person doing Table Tennis Shot. The person doing the Table_Tennis_Shot is holding a paddle in their hand and they are hitting a ball back and forth over a net.", + "A photo of a person doing Table Tennis Shot. If a person is doing a Table_Tennis_Shot, they will be holding a paddle in one hand and a ping pong ball in the other.", + "A photo of a person doing Table Tennis Shot. A person doing a Table Tennis Shot looks like they are holding a paddle and hitting a small ball back and forth on a table.", + "A photo of a person doing Table Tennis Shot. A person doing a table tennis shot looks like they are about to hit the ball with their paddle.", + "A photo of a person doing Table Tennis Shot. When doing a table tennis shot, a person looks like they are about to hit the ball with their paddle.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot looks like someone who is about to hit a table tennis ball with their paddle.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot is standing at the table with one hand holding the paddle and the other hand holding the ball.", + "A photo of a person doing Table Tennis Shot. A person doing a table tennis shot looks like they are holding a paddle in their hand and hitting a small ball back and forth across a table.", + "A photo of a person doing Table Tennis Shot. A person doing a Table_Tennis_Shot is typically in an athletic stance, with one hand holding a paddle and the other hand extended in front of them, ready to hit the ball.", + "A photo of a person doing Table Tennis Shot. A person doing table tennis shot typically has a paddle in their hand and is hitting a small ball back and forth over a net.", + "A photo of a person doing Table Tennis Shot. There is no definitive answer to this question as everyone looks different when doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. A person doing Table_Tennis_Shot looks like someone who is about to serve a table tennis ball.", + "A photo of a person doing Table Tennis Shot. The image depicts a person dressed in white playing table tennis.", + "A photo of a person doing Table Tennis Shot. The image is of a person doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. The image shows a person about to hit a ball with a paddle in their hand.", + "A photo of a person doing Table Tennis Shot. The image is of a person doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. One image that comes to mind is of Ma Long, a Chinese table tennis player, performing a backhand shot.", + "A photo of a person doing Table Tennis Shot. The image is of a person about to hit a ball with their paddle.", + "A photo of a person doing Table Tennis Shot. This image is of a person doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. The person is holding a paddle in their right hand and swinging it at the ball.", + "A photo of a person doing Table Tennis Shot. In the image, a person is doing a Table Tennis Shot.", + "A photo of a person doing Table Tennis Shot. In the image, a person is doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. This person is doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. The person is doing a backhand shot in table tennis.", + "A photo of a person doing Table Tennis Shot. The perfect ping pong shotA close-up of a person hitting a ping pong ball with a paddle.", + "A photo of a person doing Table Tennis Shot. A person doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. This person is hitting a table tennis ball with a backhand shot.", + "A photo of a person doing Table Tennis Shot. The person in the image is performing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. The person in the photo is doing a table tennis shot.", + "A photo of a person doing Table Tennis Shot. The person doing theTable Tennis Shot is about to hit the ball with their paddle.", + "A photo of a person doing Table Tennis Shot. A person playing table tennisTable tennis is a fun and challenging sport that can be enjoyed by people of all ages.", + "A photo of a person doing Table Tennis Shot. The person is doing a table tennis shot." + ], + "Tai Chi": [ + "A photo of a person doing Tai Chi. A person doing Tai_Chi looks like someone who is doing a slow and graceful martial art.", + "A photo of a person doing Tai Chi. Tai chi is a low-impact, slow-motion exercise that consists of a series of gentle movements.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are in a slow, trance-like state, fluidly moving their body in a series of slow, controlled movements.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi looks like they are slow dancing.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are moving slowly and gracefully, as if they are dancing.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are performing a slow, choreographed dance.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are doing a slow and graceful martial art.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are performing a series of slow, deliberate movements.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi looks like they are doing a slow and graceful martial art.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are doing a slow martial arts dance.", + "A photo of a person doing Tai Chi. A person doing Tai Chi can be identified by their slow, deliberate movements and their focused, calm expression.", + "A photo of a person doing Tai Chi. Typically, a person doing Tai Chi will be standing with their feet shoulder-width apart, and their arms will be extended in front of them, slightly bent at the elbow.", + "A photo of a person doing Tai Chi. A person doing Tai Chi is usually easy to spot.", + "A photo of a person doing Tai Chi. A person doing Tai Chi can be identified by their slow, deliberate movements and their focus on breath control.", + "A photo of a person doing Tai Chi. There is no one definitive answer to this question, as there are many different ways to identify someone who is doing Tai Chi.", + "A photo of a person doing Tai Chi. The person is likely to be wearing loose, comfortable clothing and be standing in a relaxed stance with their weight evenly distributed on both feet.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi can be identified by their slow, deliberate movements and their focused breathing.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi can be identified by their slow and deliberate movements.", + "A photo of a person doing Tai Chi. A person doing Tai Chi can be identified by their slow, deliberate movements and their focused, relaxed demeanor.", + "A photo of a person doing Tai Chi. It can be difficult to identify a person doing Tai Chi if you are not familiar with the practice.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi looks like they are in a slow and meditative martial arts stance, often moving their arms and legs in slow, methodical movements.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi typically looks like they are performing a slow, meditative dance.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi looks like they are doing a slow form of kung_fu.", + "A photo of a person doing Tai Chi. A person doing Tai_Chi looks like someone garden.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are slow dancing or doing martial arts in slow motion.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are doing a slow and fluid martial arts form.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are doing a slow and graceful martial art.", + "A photo of a person doing Tai Chi. A person who is doing Tai_Chi looks like they are meditating and doing slow, deliberate movements.", + "A photo of a person doing Tai Chi. A person doing Tai Chi looks like they are doing a slow, meditative martial art.", + "A photo of a person doing Tai Chi. A person doing Tai-Chi looks like they are slow dancing.", + "A photo of a person doing Tai Chi. In the image, a person is standing in a Tai Chi pose with their arms extended out to the sides.", + "A photo of a person doing Tai Chi. In the image, a person is doing Tai_Chi in a park.", + "A photo of a person doing Tai Chi. The image is of a person standing in a Tai Chi pose.", + "A photo of a person doing Tai Chi. Image shows a person doing Tai_Chi in a park.", + "A photo of a person doing Tai Chi. A person doing Tai Chi is pictured in a serene and focused manner, moving slowly and deliberately through the form.", + "A photo of a person doing Tai Chi. The image is of a person doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. In the image, a person is doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. In the image, a person is doing Tai_Chi in a park.", + "A photo of a person doing Tai Chi. I found an image on the internet of a person doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. I found an image on the internet of a person doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. The ancient Chinese practice of Tai Chi is a martial art that involves slow, rhythmic movements and deep breathing.", + "A photo of a person doing Tai Chi. This person is doing Tai Chi, a martial art that originated in China.", + "A photo of a person doing Tai Chi. A person doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. A man performs Tai Chi, an ancient Chinese martial art, in a park in Beijing, China.", + "A photo of a person doing Tai Chi. A person doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. A person doing Tai Chi.", + "A photo of a person doing Tai Chi. The serenity of Tai Chi.", + "A photo of a person doing Tai Chi. The calming effects of Tai_Chi can be felt both mentally and physically.", + "A photo of a person doing Tai Chi. A person doing Tai Chi in a park.", + "A photo of a person doing Tai Chi. This person is doing Tai Chi, a form of traditional Chinese martial arts that emphasizes internal strength, defense, and meditation." + ], + "Tennis Swing": [ + "A photo of a person doing Tennis Swing. The person doing the Tennis_Swing looks like they are about to hit a tennis ball.", + "A photo of a person doing Tennis Swing. A person doing a Tennis Swing looks like they are about to hit a tennis ball.", + "A photo of a person doing Tennis Swing. When a person is doing a Tennis_Swing, they look like they are reaching up and back with their racket arm, and then swinging their arm forward and across their body.", + "A photo of a person doing Tennis Swing. A person playing tennis would look like they are swinging their arm back and then forward in a quick motion.", + "A photo of a person doing Tennis Swing. When a person is doing a tennis swing, they will be holding a tennis racket in their hand and will be swinging it back and forth.", + "A photo of a person doing Tennis Swing. When a person is doing a Tennis_Swing, they look like they are hitting a tennis ball with a tennis racket.", + "A photo of a person doing Tennis Swing. When a person is doing a Tennis_Swing, they look like they are reaching up and back with their racquet arm, then taking a step forward with their opposite foot while swinging their racquet arm forward and across their body.", + "A photo of a person doing Tennis Swing. A person doing a tennis swing looks like they are swinging their arm around in a circular motion.", + "A photo of a person doing Tennis Swing. When a person is doing a Tennis_Swing, they will have their feet shoulder width apart, their knees slightly bent, and their weight shifted onto their back foot.", + "A photo of a person doing Tennis Swing. .", + "A photo of a person doing Tennis Swing. When a person is doing the Tennis Swing, they will have their arm extended out in front of them and their racket hand will be gripping the racket.", + "A photo of a person doing Tennis Swing. The person will have their arm raised above their head and their racket extended out in front of them.", + "A photo of a person doing Tennis Swing. A person doing a Tennis Swing can be identified by their stance, grip on the racket, and backswing.", + "A photo of a person doing Tennis Swing. If someone is doing the Tennis_Swing activity, they will likely be holding a tennis racket and swinging it in an overhand motion.", + "A photo of a person doing Tennis Swing. There are many ways to identify a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. Using a motion-tracking system, it is possible to identify a person doing a Tennis_Swing by the movement of their body and the racket.", + "A photo of a person doing Tennis Swing. Somebody doing Tennis_Swing would be holding a tennis racket and would be swinging it forward in an overhand motion.", + "A photo of a person doing Tennis Swing. The person doing the Tennis Swing can be identified by their stance, grip on the racket, and their backswing.", + "A photo of a person doing Tennis Swing. The person will be wearing tennis clothes and will have a racket in their hand.", + "A photo of a person doing Tennis Swing. The individual will have a racket in their hand and will be swinging it in an arc.", + "A photo of a person doing Tennis Swing. A person doing a Tennis Swing looks like they are trying to hit a tennis ball with a tennis racket.", + "A photo of a person doing Tennis Swing. The person is standing with their feet shoulder width apart, and their racket is behind their head.", + "A photo of a person doing Tennis Swing. A person doing the Tennis_Swing looks like they are swinging a racket.", + "A photo of a person doing Tennis Swing. A person doing Tennis_Swing looks like they are about to hit a tennis ball.", + "A photo of a person doing Tennis Swing. A person doing tennis swing looks like they are about to hit a tennis ball.", + "A photo of a person doing Tennis Swing. A person doing Tennis_Swing looks like they are hitting a tennis ball.", + "A photo of a person doing Tennis Swing. Tennis_Swing might look like a person taking a backswing and hitting a ball.", + "A photo of a person doing Tennis Swing. A person doing a Tennis_Swing looks like they are about to hit a tennis ball.", + "A photo of a person doing Tennis Swing. A person doing Tennis_Swing looks like they are swinging a tennis racket.", + "A photo of a person doing Tennis Swing. When a person is doing the Tennis_Swing, they will look like they are about to hit a tennis ball with their racquet.", + "A photo of a person doing Tennis Swing. I found an image of a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. The image is of a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. An image of a person doing a Tennis Swing would show someone in mid-swing, with their racquet extended and their arm fully extended.", + "A photo of a person doing Tennis Swing. This image from the internet shows a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. This image is of a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. The image is of a man doing a tennis swing.", + "A photo of a person doing Tennis Swing. One image that comes to mind is of a person hitting a tennis ball with a racket.", + "A photo of a person doing Tennis Swing. The image is of a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. The image is of a person doing a tennis swing.", + "A photo of a person doing Tennis Swing. A person doing a tennis swing has their feet shoulder width apart with one foot slightly in front of the other, their feet pointing in the direction they are swinging.", + "A photo of a person doing Tennis Swing. An athlete performing a tennis swing.", + "A photo of a person doing Tennis Swing. Backhand Tennis Swing.", + "A photo of a person doing Tennis Swing. Proper grip and posture for a tennis swing.", + "A photo of a person doing Tennis Swing. A person doing a tennis swing.", + "A photo of a person doing Tennis Swing. The person is doing a tennis swing.", + "A photo of a person doing Tennis Swing. man doing a tennis swing.", + "A photo of a person doing Tennis Swing. passionate tennis player hitting the ball.", + "A photo of a person doing Tennis Swing. This person is doing a tennis swing.", + "A photo of a person doing Tennis Swing. The person is doing a proper tennis swing.", + "A photo of a person doing Tennis Swing. The perfect tennis swingA person hitting a tennis ball with a racket in their hand, with a perfect follow-through." + ], + "Throw Discus": [ + "A photo of a person doing Throw Discus. When someone is throwing a discus, they will have one hand gripping the discus while the other arm is extended behind them.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like someone who is about to throw a discus.", + "A photo of a person doing Throw Discus. A person doing the Throw_Discus looks like they are about to throw a frisbee.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like someone who is about to throw a discus.", + "A photo of a person doing Throw Discus. Someone doing the throw discus would be holding a disc in their hand, and they would be standing in a designated throwing circle.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like someone who is about to throw a frisbee.", + "A photo of a person doing Throw Discus. A person who is throwing a discus looks like they are holding a round object in their hand and they are throwing it in a forward motion.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like someone is about to throw a frisbee.", + "A photo of a person doing Throw Discus. A person throws a discus with their arm extended out and away from their body.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like they are about to throw a Frisbee.", + "A photo of a person doing Throw Discus. The person will be holding a discus in their hand.", + "A photo of a person doing Throw Discus. The person will be standing with their arm above their head, holding a discus.", + "A photo of a person doing Throw Discus. If a person is doing Throw_Discus, they will be holding a disc in their hand and throwing it.", + "A photo of a person doing Throw Discus. There are a few ways to identify a person doing Throw_Discus.", + "A photo of a person doing Throw Discus. The person will be throwing a discus.", + "A photo of a person doing Throw Discus. If someone is doing the Throw_Discus, they will likely be holding a discus in one or both hands.", + "A photo of a person doing Throw Discus. The person will be standing in a circle with their arm raised above their head, holding a discus.", + "A photo of a person doing Throw Discus. The person would be throwing a discus.", + "A photo of a person doing Throw Discus. If a person is doing Throw_Discus, they will be holding a discus in their hand and throwing it.", + "A photo of a person doing Throw Discus. The person will be holding a discus in their hand.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus typically looks like they are about to throw a frisbee.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like they are about to throw a Frisbee.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like they are standing with their feet shoulder width apart and their left leg slightly bent.", + "A photo of a person doing Throw Discus. When a person is throwing a discus, their arm will be extended out to the side and they will be holding the discus in their hand.", + "A photo of a person doing Throw Discus. There is no definitive answer to this question as the appearance of a person throwing a discus can vary greatly depending on their personal style and technique.", + "A photo of a person doing Throw Discus. The person is throwing the discus.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus looks like they are trying to throw a frisbee as far as they can.", + "A photo of a person doing Throw Discus. When a person is throwing a discus, they will be standing in a small circle with their feet shoulder-width apart.", + "A photo of a person doing Throw Discus. A person doing Throw_Discus typically looks like they are about to throw a Frisbee.", + "A photo of a person doing Throw Discus. The person doing Throw_Discus would look like they are holding a disc in their hand and throwing it.", + "A photo of a person doing Throw Discus. In the image, a person is standing on a track with a discus in their hand.", + "A photo of a person doing Throw Discus. The image is of a person standing on a raised platform with a discus in their hand.", + "A photo of a person doing Throw Discus. An image from the internet of a person doing Throw_Discus shows a young man standing on a track field with a discus in his hand.", + "A photo of a person doing Throw Discus. The image is of a person standing on a field, throwing a discus.", + "A photo of a person doing Throw Discus. The image is of a person throwing a discus.", + "A photo of a person doing Throw Discus. A person is standing on a field, throwing a discus.", + "A photo of a person doing Throw Discus. The person is throwing the discus with all their might.", + "A photo of a person doing Throw Discus. An image from the internet of a person doing Throw_Discus shows a person throwing a discus.", + "A photo of a person doing Throw Discus. In the image, a person is standing with their arm cocked back, ready to throw a discus.", + "A photo of a person doing Throw Discus. A person is standing on a field, throwing a discus.", + "A photo of a person doing Throw Discus. The person in the image is preparing to throw a discus.", + "A photo of a person doing Throw Discus. This person is about to throw a discus.", + "A photo of a person doing Throw Discus. A person throws a discus.", + "A photo of a person doing Throw Discus. A person throwing a discusA caption of an image of a person swimming:A person swimming laps in a pool.", + "A photo of a person doing Throw Discus. A person is shown mid-throw in a discus competition.", + "A photo of a person doing Throw Discus. The person in the image is throwing a discus.", + "A photo of a person doing Throw Discus. person throwing discus.", + "A photo of a person doing Throw Discus. Person throws discus in a field.", + "A photo of a person doing Throw Discus. The person in the picture is participating in the sport of throwing discus.", + "A photo of a person doing Throw Discus. The person in the image is throwing a discus." + ], + "Trampoline Jumping": [ + "A photo of a person doing Trampoline Jumping. A person doing trampoline_jumping looks like they are soaring through the air with grace and ease.", + "A photo of a person doing Trampoline Jumping. The person would be standing on the trampoline with their feet shoulder-width apart.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping looks like someone who is jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like they are having a lot of fun.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping looks like someone who is jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. The person looks like they are having fun and enjoying themselves.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping looks like a person who is jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like they are leaping into the air and then pushing down onto the trampoline with their feet to propel themselves back up into the air.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like they are jumping up and down on a trampoline.", + "A photo of a person doing Trampoline Jumping. When a person is trampoline jumping, they are usually wearing special shoes that have springs in them.", + "A photo of a person doing Trampoline Jumping. One could identify a person doing trampoline jumping by their attire, which would likely include tight-fitting clothing and shoes with grips on the soles.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping may be wearing loose clothing and have their hair tied back.", + "A photo of a person doing Trampoline Jumping. if they are doing flips and somersaults in the air, they are probably doing Trampoline_Jumping.", + "A photo of a person doing Trampoline Jumping. The person will be bouncing on a trampoline.", + "A photo of a person doing Trampoline Jumping. When someone is trampoline jumping, they will be using a trampoline.", + "A photo of a person doing Trampoline Jumping. If a person is doing Trampoline_Jumping, they will be using a trampoline and will be jumping on it.", + "A photo of a person doing Trampoline Jumping. This person would likely be wearing tight clothing and have their hair pulled back away from their face.", + "A photo of a person doing Trampoline Jumping. When a person is doing Trampoline_Jumping, they will be leaping and bouncing on a trampoline.", + "A photo of a person doing Trampoline Jumping. The person would be doing a recurring upward jump on a trampoline.", + "A photo of a person doing Trampoline Jumping. The person will be bouncing on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like someone bouncing up and down on a trampoline.", + "A photo of a person doing Trampoline Jumping. a person doing Trampoline_Jumping looks like a person jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like someone who is enjoying themselves and having fun.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like they are jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like someone who is bouncing up and down on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping looks like they are jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping looks like they are bouncing on a trampoline.", + "A photo of a person doing Trampoline Jumping. This person would be wearing tight-fitting clothing and sneakers, and their hair would be pulled back away from their face.", + "A photo of a person doing Trampoline Jumping. When a person is doing Trampoline_Jumping, they will usually be wearing trampoline shoes and be jumping on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping may look like they are bouncing up and down on a trampoline or they may look like they are flipping or doing other tricks in the air.", + "A photo of a person doing Trampoline Jumping. The image is of a person doing a backflip on a trampoline.", + "A photo of a person doing Trampoline Jumping. In the image, a person is doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. The image is of a person doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. The image is of a person in mid-air, doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. The image is of a young woman performing a Trampoline Jump.", + "A photo of a person doing Trampoline Jumping. In the image, a person is doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. The image is of a person doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. The image is of a person doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. In the image, a person is doing a flip on a trampoline in a park.", + "A photo of a person doing Trampoline Jumping. The image is of a person doing a backflip on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping.", + "A photo of a person doing Trampoline Jumping. A person jumps on a trampoline.", + "A photo of a person doing Trampoline Jumping. Sporty individual executing a mid-air somersault on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping.", + "A photo of a person doing Trampoline Jumping. A person doing a trampoline jump.", + "A photo of a person doing Trampoline Jumping. The person in the image is doing Trampoline_Jumping.", + "A photo of a person doing Trampoline Jumping. A person doing a flip on a trampoline.", + "A photo of a person doing Trampoline Jumping. A person doing Trampoline_Jumping.", + "A photo of a person doing Trampoline Jumping. A person doing trampoline jumping.", + "A photo of a person doing Trampoline Jumping. The person in the image is doing Trampoline_Jumping." + ], + "Typing": [ + "A photo of a person doing Typing. A person doing typing looks like they are rapidly pressing keys on a keyboard in front of them.", + "A photo of a person doing Typing. A person doing Typing looks like someone who is sitting at a computer keyboard and typing on the keys.", + "A photo of a person doing Typing. A person doing typing looks like someone who is sitting at a desk with a computer in front of them.", + "A photo of a person doing Typing. A person doing Typing looks like they are sitting at a computer typing on the keyboard.", + "A photo of a person doing Typing. The person looks like they are concentrating on the keyboard in front of them and using their fingers to type.", + "A photo of a person doing Typing. A person typing looks like someone who is focused on the task at hand and is working diligently to get the work done.", + "A photo of a person doing Typing. A person doing Typing looks like someone who is sitting at a computer and typing on the keyboard.", + "A photo of a person doing Typing. they look like they are concentrated and looking at the screen or their hands depending on how they type.", + "A photo of a person doing Typing. A person doing Typing usually looks like they are focused on the task at hand and are typing away at a fast pace.", + "A photo of a person doing Typing. A person doing Typing looks like they are sitting at a computer keyboard and typing on the keyboard.", + "A photo of a person doing Typing. You can identify a person doing Typing by their use of an electronic device, such as a computer or laptop, to type out text.", + "A photo of a person doing Typing. There is no sure way to identify a person who is typing.", + "A photo of a person doing Typing. There is no one definitive way to identify a person doing typing.", + "A photo of a person doing Typing. Some common telltale signs that a person is typing on a keyboard include the sound of clicks or tapping, the sight of movement in the fingers or hands, and the sound of the keys themselves.", + "A photo of a person doing Typing. There is no definitive answer to this question, as there is no one physical characteristic that all people who do typing share.", + "A photo of a person doing Typing. There is no definitive answer to this question, as there is no one specific way to identify someone who is typing.", + "A photo of a person doing Typing. The person will be sitting at a computer and typing on the keyboard.", + "A photo of a person doing Typing. There is no definitive answer to this question, as there is no one specific way to identify someone who is typing.", + "A photo of a person doing Typing. A person is likely doing typing if they are sitting at a computer with their hands on the keyboard.", + "A photo of a person doing Typing. A person who is doing typing can usually be identified by their posture and their speed of typing.", + "A photo of a person doing Typing. A person doing Typing looks like a person who is sitting at a desk, with their hands on a keyboard, and their eyes focused on a screen.", + "A photo of a person doing Typing. A person doing typing looks like someone who is sitting at a desk with a computer in front of them and their fingers on the keyboard.", + "A photo of a person doing Typing. A person typing on a keyboard looks like they are pressing keys on the keyboard to type out words.", + "A photo of a person doing Typing. A person doing Typing looks like they are typing on a keyboard.", + "A photo of a person doing Typing. A person doing typing looks like someone who is sitting at a computer and typing on the keyboard.", + "A photo of a person doing Typing. There is no one answer to this question, as people can look different while doing typing depending on their posture, position, and equipment.", + "A photo of a person doing Typing. A person doing typing looks like they are focused on the task at hand and are typing quickly and accurately.", + "A photo of a person doing Typing. Someone who is typing might have their hands on a keyboard in front of them, and they might be looking at a computer screen.", + "A photo of a person doing Typing. A person doing typing looks like a person who is sitting at a desk, with their hands on a keyboard, and their eyes focused on a screen.", + "A photo of a person doing Typing. A person doing typing may be sitting at a desk with a computer or laptop in front of them.", + "A photo of a person doing Typing. A person is shown typing on a laptop with their fingers on the keyboard.", + "A photo of a person doing Typing. The image is of a person with long, brown hair and glasses sitting at a desk with a laptop in front of them.", + "A photo of a person doing Typing. The person is sitting at a desk with a computer in front of them.", + "A photo of a person doing Typing. The image is of a person sitting at a computer typing on the keyboard.", + "A photo of a person doing Typing. A person sitting at a desk with a laptop in front of them, their fingers moving quickly over the keyboard.", + "A photo of a person doing Typing. An image of a person doing typing can show someone sitting at a computer with their fingers on the keyboard, or it can be a close-up of someone's hands typing on a keyboard.", + "A photo of a person doing Typing. The image is of a person's hands typing on a keyboard.", + "A photo of a person doing Typing. The image is of a person sitting at a desk with a laptop in front of them.", + "A photo of a person doing Typing. A person sitting at a desk with a laptop in front of them, typing on the keyboard.", + "A photo of a person doing Typing. An image from the internet of a person doing typing would show someone typing on a keyboard.", + "A photo of a person doing Typing. A person is shown typing on a laptop.", + "A photo of a person doing Typing. A person types on a laptop keyboard.", + "A photo of a person doing Typing. A person is typing on a laptop while sitting on a couch.", + "A photo of a person doing Typing. Person typing on laptop keyboard.", + "A photo of a person doing Typing. A person is sitting at a computer and typing on the keyboard.", + "A photo of a person doing Typing. A person types on a keyboard in a office.", + "A photo of a person doing Typing. The person in the image is typing on a keyboard.", + "A photo of a person doing Typing. This person is typing on a laptop computer.", + "A photo of a person doing Typing. Person typing on a laptop.", + "A photo of a person doing Typing. A person is shown typing on a laptop with a green screen behind them." + ], + "Uneven Bars": [ + "A photo of a person doing Uneven Bars. A person doing the Uneven_Bars looks like they are doing a lot of different handstands on two different bars.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like someone who is trying to perform a difficult gymnastics move.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like they are doing a handstand on one bar and then swinging their body around to grab the other bar.", + "A photo of a person doing Uneven Bars. A person doing uneven bars typically looks like they are doing a pull-up on one bar, and then swinging their body around to grab the other bar.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like they are hanging on two bars that are different heights and swinging back and forth.", + "A photo of a person doing Uneven Bars. A person doing uneven bars looks like they are hanging from two thin bars, doing flips and tricks in the air.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like they are using their arms to swing themselves up and over the bars.", + "A photo of a person doing Uneven Bars. A person doing the Uneven_Bars would be gripping two uneven bars that are parallel to each other and slightly further apart than shoulder width.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like they are upside down, hanging from a bar with their legs and arms spread out.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like someone who is hanging from two bars that are not even.", + "A photo of a person doing Uneven Bars. When a person is doing the uneven bars, they are holding on to two bars that are different heights above the ground.", + "A photo of a person doing Uneven Bars. The uneven bars is a piece of gymnastics equipment used by female gymnasts.", + "A photo of a person doing Uneven Bars. If a person is doing Uneven_Bars, they will be gripping two horizontal bars that are different heights, and swinging their body around them.", + "A photo of a person doing Uneven Bars. The person is likely to be wearing a leotard and have gymnastics equipment nearby.", + "A photo of a person doing Uneven Bars. The person is likely to be wearing a leotard, have their hair in a bun, and be performing acrobatic moves on a bar.", + "A photo of a person doing Uneven Bars. The person is doing a back flip on a horizontal bar.", + "A photo of a person doing Uneven Bars. Uneven_Bars can be identified by a person's clothing.", + "A photo of a person doing Uneven Bars. If a person is doing the uneven bars, they will be using two bars spaced apart from each other that are of different heights.", + "A photo of a person doing Uneven Bars. If a person is doing Uneven_Bars, they will be using a pair of uneven bars to complete different exercises.", + "A photo of a person doing Uneven Bars. The uneven bars is an gymnastics apparatus that consists of two parallel bars set at different heights.", + "A photo of a person doing Uneven Bars. A person doing the Uneven_Bars might look like they are hanging from two bars of different heights and swinging their body around.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like they are doing a chin up on one bar, and then kicking their feet up to grab the other bar.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars would look like someone doing a pull-up on one bar, and then swinging their body over to the other bar.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars typically looks like they are doing a Pull-Up on one bar and then kicking their legs up to grab the other bar.", + "A photo of a person doing Uneven Bars. A person doing uneven bars would look like they are doing a pull up and then swinging their body around the bar.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars looks like they are doing a pull up on one bar, and then swinging their legs and body over to the other bar.", + "A photo of a person doing Uneven Bars. A person doing the uneven bars looks like they are hanging from two bars that are different heights and swinging themselves around the bars.", + "A photo of a person doing Uneven Bars. There is no definitive answer to this question, as the way a person looks while doing uneven bars depends on their individual technique and style.", + "A photo of a person doing Uneven Bars. If you google \"uneven bars gymnastics\", you'll see lots of pictures of women (and sometimes men) doing various moves on the uneven bars.", + "A photo of a person doing Uneven Bars. A person doing uneven bars looks like they are holding on to two bars that are different heights and swinging their body around.", + "A photo of a person doing Uneven Bars. In the image, a young woman is performing on the uneven bars.", + "A photo of a person doing Uneven Bars. There is an image of a person doing Uneven_Bars on the internet.", + "A photo of a person doing Uneven Bars. The image is of a female gymnast doing an uneven bars routine.", + "A photo of a person doing Uneven Bars. In the image, a person is doing the uneven bars.", + "A photo of a person doing Uneven Bars. A person doing Uneven_Bars would be an image of someone hanging from two bars, with their body perpendicular to the ground.", + "A photo of a person doing Uneven Bars. This image is of a gymnast doing the uneven bars.", + "A photo of a person doing Uneven Bars. An image from the internet of a person doing uneven bars would show someone hanging from a bar, with one arm above their head and the other arm holding on to the bar.", + "A photo of a person doing Uneven Bars. An image from the internet of a person doing Uneven Bars may show a person doing a flips, leaps, or other stunts on a set of bars that are different heights.", + "A photo of a person doing Uneven Bars. The picture is of a Caucasian girl with blonde hair pulled back in a ponytail, about 10 years old, doing a kip on the uneven bars.", + "A photo of a person doing Uneven Bars. The image is of a woman doing a handstand on an uneven bar.", + "A photo of a person doing Uneven Bars. Gabby Douglas competes in the Women's Uneven Bars final at the 2012 London Olympics.", + "A photo of a person doing Uneven Bars. A person competes in the uneven bars event at a gymnastics meet.", + "A photo of a person doing Uneven Bars. The person is doing a back flip on the uneven bars.", + "A photo of a person doing Uneven Bars. A person is doing the Uneven Bars gymnastics move.", + "A photo of a person doing Uneven Bars. A person doing a handstand on the uneven bars.", + "A photo of a person doing Uneven Bars. This person is doing the uneven bars.", + "A photo of a person doing Uneven Bars. A person performs a handstand on an uneven bar.", + "A photo of a person doing Uneven Bars. Gymnast Performing a Uneven Bars Routine.", + "A photo of a person doing Uneven Bars. A person doing a flips on the uneven bars.", + "A photo of a person doing Uneven Bars. The gymnast executes a perfect release move on the uneven bars." + ], + "Volleyball Spiking": [ + "A photo of a person doing Volleyball Spiking. A person doing a volleyball spike looks like they are jumping up high in the air and then slamming the ball down into the other teams court.", + "A photo of a person doing Volleyball Spiking. When a person is spiking the volleyball they approach the net with their arm cocked behind their head.", + "A photo of a person doing Volleyball Spiking. Volleyball spiking is a move in which a player hits the ball with force from overhead.", + "A photo of a person doing Volleyball Spiking. A person doing a Volleyball_Spiking looks like they are jumping high in the air and then hitting the ball with their hand, over the net.", + "A photo of a person doing Volleyball Spiking. A person doing Volleyball_Spiking looks like they are jumping high in the air and hitting the ball with their hand over their head.", + "A photo of a person doing Volleyball Spiking. When a person is doing a volleyball spike, they approach the net with their arm raised above their head.", + "A photo of a person doing Volleyball Spiking. When a player is spiking the ball, they approach the net with a arm swing and hit the ball with their hand over the net into the opposing team's court.", + "A photo of a person doing Volleyball Spiking. When a person is spiking the volleyball they are jumping up high in the air and bringing their arm down hard to hit the ball over the net.", + "A photo of a person doing Volleyball Spiking. When a person is spiking the volleyball they approach the net with their arm cocked back and jump high into the air.", + "A photo of a person doing Volleyball Spiking. When a player spikes the ball, they approach the net with their arm extended above their head and hit the ball with their hand.", + "A photo of a person doing Volleyball Spiking. The person doing the volleyball spike will be holding the volleyball in their hand above their head.", + "A photo of a person doing Volleyball Spiking. If a person is doing a volleyball_spiking then they will be holding a volleyball in their hand and they will be hitting it with their fist over their head and then down into the opponents court.", + "A photo of a person doing Volleyball Spiking. The person will be in the air with one arm extended above their head and the other arm behind their back.", + "A photo of a person doing Volleyball Spiking. If a person is doing a Volleyball_Spiking, they will have their arm up in the air and their hand pointing towards the ground.", + "A photo of a person doing Volleyball Spiking. When a player hits the ball with their hand over their head and perpendicular to the ground, it is called a spike.", + "A photo of a person doing Volleyball Spiking. Volleyball spiking is when a player hits the ball with force from their hand over the net and into the opposing court.", + "A photo of a person doing Volleyball Spiking. Volleyball spiking is a very aggressive move where the player tries to hit the ball as hard as possible over the net into the opponent's court.", + "A photo of a person doing Volleyball Spiking. Someone doing a volleyball spike will usually be jumping high in the air and hitting the ball with their hand over their head.", + "A photo of a person doing Volleyball Spiking. Volleyball spiking is when a player hits the ball with force into the opponent's court.", + "A photo of a person doing Volleyball Spiking. If someone is doing a volleyball spike, they will be jumping up in the air and hitting the ball with their fist over their shoulder.", + "A photo of a person doing Volleyball Spiking. When a person is spiking a volleyball, they jump up high in the air and hit the ball with their hand over their head.", + "A photo of a person doing Volleyball Spiking. A person doing a volleyball spike looks like they are jumping up into the air and hitting the volleyball with their arm extended up over their head.", + "A photo of a person doing Volleyball Spiking. When a player spikes the ball, they jump up high in the air and hit the ball hard with their arm extended.", + "A photo of a person doing Volleyball Spiking. A person doing a Volleyball Spike generally looks like they are jumping up high in the air and reaching their hand up high above their head to hit the ball.", + "A photo of a person doing Volleyball Spiking. A person doing a volleyball spike looks like they are reaching up high over their head and hitting the ball with one hand.", + "A photo of a person doing Volleyball Spiking. A person doing Volleyball_Spiking look like they are hitting the ball with there hand over their head.", + "A photo of a person doing Volleyball Spiking. When a player spikes the ball, they jump off the ground and extend their arm up over their head, making contact with the ball with their open hand.", + "A photo of a person doing Volleyball Spiking. When a player spikes the ball, they jump into the air and hit the ball with their hand over their head.", + "A photo of a person doing Volleyball Spiking. A person doing a Volleyball_Spiking looks like a person jumping up in the air and hitting the ball with their hand over their head.", + "A photo of a person doing Volleyball Spiking. A person doing Volleyball_Spiking looks like someone throwing a ball down into a net.", + "A photo of a person doing Volleyball Spiking. The image is of a person spiking the volleyball over the net.", + "A photo of a person doing Volleyball Spiking. An image from the internet of a person doing a volleyball spike shows a person jumping high in the air and hitting the ball with their fists, sending the ball over the net.", + "A photo of a person doing Volleyball Spiking. The image is of a young woman in a blue and white volleyball uniform, spiking a volleyball over the net.", + "A photo of a person doing Volleyball Spiking. The image is of a person spiking a volleyball.", + "A photo of a person doing Volleyball Spiking. The image is of a person performing a volleyball spike.", + "A photo of a person doing Volleyball Spiking. In the image, a person is doing a volleyball spike.", + "A photo of a person doing Volleyball Spiking. The image is of a tall, muscled man leaping up into the air, his right arm cocked back, about to slam the volleyball down onto the court with all his might.", + "A photo of a person doing Volleyball Spiking. In the image, a person is jumping up to spike the ball over the net.", + "A photo of a person doing Volleyball Spiking. A volleyball player approaching the net to spike the ball.", + "A photo of a person doing Volleyball Spiking. In the image, a person is mid-air over a volleyball net.", + "A photo of a person doing Volleyball Spiking. The person in the picture is doing a volleyball Spike.", + "A photo of a person doing Volleyball Spiking. A person spiking the ball during a game of volleyball.", + "A photo of a person doing Volleyball Spiking. A person doing Volleyball_Spiking\nA person doing a volleyball spike.", + "A photo of a person doing Volleyball Spiking. Person spiking volleyball.", + "A photo of a person doing Volleyball Spiking. This person is spiking the volleyball.", + "A photo of a person doing Volleyball Spiking. A person doing a volleyball spike.", + "A photo of a person doing Volleyball Spiking. This person is doing a volleyball spike.", + "A photo of a person doing Volleyball Spiking. The person is volleyball spiking.", + "A photo of a person doing Volleyball Spiking. \"The person in the picture is spiking the volleyball.", + "A photo of a person doing Volleyball Spiking. The person is performing a volleyball spiking action." + ], + "Walking With Dog": [ + "A photo of a person doing Walking With Dog. A person walking with a dog on a leash looks like they are out for a leisurely walk or jog.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like a person walking a dog on a leash.", + "A photo of a person doing Walking With Dog. Walking_With_Dog looks like a person who is out for a leisurely walk with their dog.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like they are walking with a dog on a leash.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like someone who is out for a leisurely walk with their furry friend by their side.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog typically looks like someone out for a leisurely walk with their furry friend.", + "A photo of a person doing Walking With Dog. The person looks like they are out for a leisurely walk with their dog.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like they are walking a dog on a leash.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog probably looks like they are walking with a dog.", + "A photo of a person doing Walking With Dog. Walking With Dog looks like a person walking a dog on a leash.", + "A photo of a person doing Walking With Dog. If someone is walking with a dog, they may have a leash in their hand.", + "A photo of a person doing Walking With Dog. If a person is Walking_With_Dog, they will likely have a dog with them on a leash.", + "A photo of a person doing Walking With Dog. If the person is walking a dog on a leash, they are likely doing Walking_With_Dog.", + "A photo of a person doing Walking With Dog. If someone is walking with a dog, they are likely the dog's owner or caretaker.", + "A photo of a person doing Walking With Dog. If someone is walking with a dog, they are likely the owner of the dog.", + "A photo of a person doing Walking With Dog. Some possible indicators that a person is walking with a dog might include them having a leash in their hand, or a dog accompanying them on a walk.", + "A photo of a person doing Walking With Dog. The person is likely to be carrying dog supplies such as a leash, treats, or a water bowl.", + "A photo of a person doing Walking With Dog. There are a few ways to identify a person doing Walking_With_Dog.", + "A photo of a person doing Walking With Dog. Some potential identifying characteristics of a person Walking_With_Dog could include that they are likely outdoors, probably have a leash or harness for the dog, and may be carrying some sort of treat or toy for the dog.", + "A photo of a person doing Walking With Dog. If someone is walking with a dog, they may be carrying a leash or poop bags.", + "A photo of a person doing Walking With Dog. The person doing Walking_With_Dog looks like they are walking with a dog.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like a person with a dog on a leash, walking along.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog typically looks like a person walking a dog on a leash.", + "A photo of a person doing Walking With Dog. There is no one way that a person walking a dog looks because people and dogs come in all different shapes and sizes.", + "A photo of a person doing Walking With Dog. Walking_With_Dog typically looks like a person walking with a dog on a leash.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like a person walking a dog.", + "A photo of a person doing Walking With Dog. A person out walking their dog might look like they are out for a leisurely stroll, or they could be power walking for exercise.", + "A photo of a person doing Walking With Dog. There is no definitive answer to this question, as people can look very different when they are walking with a dog.", + "A photo of a person doing Walking With Dog. A person who is Walking_With_Dog typically looks like they are out for a leisurely walk with their loyal furry friend by their side.", + "A photo of a person doing Walking With Dog. A person doing Walking_With_Dog looks like a person who is out for a leisurely walk with their dog on a leash.", + "A photo of a person doing Walking With Dog. The image is of a person, wearing blue jeans and a white t-shirt, walking their brown and white spotted dog on a leash.", + "A photo of a person doing Walking With Dog. The image is of a woman walking her dog on a leash.", + "A photo of a person doing Walking With Dog. In the image, a young woman is walking down a city street with a small dog on a leash.", + "A photo of a person doing Walking With Dog. The image depicts a woman walking a dog on a leash.", + "A photo of a person doing Walking With Dog. The image is of a woman walking her dog on a leash.", + "A photo of a person doing Walking With Dog. The image that I found was of a woman walking her dog on a leash.", + "A photo of a person doing Walking With Dog. In the image, a person is Walking_With_Dog on a leash.", + "A photo of a person doing Walking With Dog. The person is wearing a red jacket and blue jeans.", + "A photo of a person doing Walking With Dog. The image is of a person out for a walk with their dog.", + "A photo of a person doing Walking With Dog. In the image, a woman is walking her dog on a leash.", + "A photo of a person doing Walking With Dog. Someone out for a leisurely walk with their loyal furry friend.", + "A photo of a person doing Walking With Dog. This person is happily walking their dog on a lovely day.", + "A photo of a person doing Walking With Dog. A woman walks her dog through a sun-dappled park.", + "A photo of a person doing Walking With Dog. Person walks dog on leash down a quiet street.", + "A photo of a person doing Walking With Dog. The best way to start your day is with a morning walk with your furry friend.", + "A photo of a person doing Walking With Dog. The person in the image is out for a walk with their dog.", + "A photo of a person doing Walking With Dog. A person out for a leisurely walk with their loyal furry friend by their side.", + "A photo of a person doing Walking With Dog. The best way to start the day is with a walk with your best friend.", + "A photo of a person doing Walking With Dog. A woman walks her dog on a leash.", + "A photo of a person doing Walking With Dog. Walking the dog is a great way to get some exercise." + ], + "Wall Pushups": [ + "A photo of a person doing Wall Pushups. They will be positioned in a high plank position with their feet hip-width apart and their hands placed shoulder-width apart on the wall.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups looks like they are Pushing against a wall with their palms and extended arms, and their feet are shoulder-width apart.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups typically looks like they are doing a traditional pushup, but their feet are placed up against a wall.", + "A photo of a person doing Wall Pushups. When someone is doing a wall push-up, they are facing a wall with their hands flat against the surface, about shoulder-width apart.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups looks like someone who is pushing themselves away from a wall.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups would look like they are pushing themselves away from a wall.", + "A photo of a person doing Wall Pushups. When a person is doing a wall push-up, they are standing up with their feet about shoulder-width apart and their palms on the wall at shoulder height.", + "A photo of a person doing Wall Pushups. A person doing wall pushups looks like they are pushing against a wall with their hands and feet.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups looks like they are pushing their body up and away from a wall.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups looks like a person who is pushing themselves up against a wall.", + "A photo of a person doing Wall Pushups. The person is doing a wall pushup if their feet are flat on the ground and their hands are flat on the wall.", + "A photo of a person doing Wall Pushups. If someone is doing a wall pushup, they will be standing a few feet away from a wall, with their hands placed on the wall at shoulder level.", + "A photo of a person doing Wall Pushups. The person would be doing a pushup position with their feet against a wall.", + "A photo of a person doing Wall Pushups. A person performing wall pushups will be in an upright position, with their hands placed on a wall at about shoulder-width apart.", + "A photo of a person doing Wall Pushups. There are a few ways to identify a person doing Wall_Pushups.", + "A photo of a person doing Wall Pushups. Wall pushups are a type of bodyweight exercises.", + "A photo of a person doing Wall Pushups. The person will be in a push-up position, with their feet against a wall.", + "A photo of a person doing Wall Pushups. When someone is doing a wall push-up, they will be positioned with their feet flat on the ground and their hands on the wall at shoulder-height.", + "A photo of a person doing Wall Pushups. By their stance - they will be in a high plank position with their feet against a wall and their hands on the floor just outside shoulder width.", + "A photo of a person doing Wall Pushups. A person doing Wall Pushups will be standing with their feet shoulder-width apart and their hands flat against a wall at about shoulder height.", + "A photo of a person doing Wall Pushups. A person doing Wall Pushups looks like they are pushing up against a wall.", + "A photo of a person doing Wall Pushups. When doing a wall push-up, a person will place their palms against a wall and then push their body away from the wall, using their arms to support themselves.", + "A photo of a person doing Wall Pushups. A person doing Wall Pushups would look like they are doing a regular pushup, but with their feet up against a wall.", + "A photo of a person doing Wall Pushups. A person doing wall pushups would look like they are pushing against a wall with their hands and feet.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups will be in a pushup position with their hands flat against a wall.", + "A photo of a person doing Wall Pushups. Doing wall push-ups, a person will look like they are doing a regular push-up, but their feet will be against a wall and their body will be at an angle to the wall.", + "A photo of a person doing Wall Pushups. A person doing Wall Pushups looks like they are pushing up against a wall.", + "A photo of a person doing Wall Pushups. A person doing Wall_Pushups looks like they are pushing up against a wall.", + "A photo of a person doing Wall Pushups. When doing a wall push-up, a person will place their palms on a wall at shoulder-level and spread their feet out behind them.", + "A photo of a person doing Wall Pushups. A person doing a Wall Pushup would look like they are doing a pushup with their back against a wall.", + "A photo of a person doing Wall Pushups. This image depicts a person doing a wall push-up.", + "A photo of a person doing Wall Pushups. In the image, the person is standing with their feet slightly more than shoulder-width apart.", + "A photo of a person doing Wall Pushups. In the image, a person is doing a wall pushup.", + "A photo of a person doing Wall Pushups. In the image, the person has their hands flat against a wall and their feet shoulder-width apart.", + "A photo of a person doing Wall Pushups. In the image, a young woman is doing a wall push-up.", + "A photo of a person doing Wall Pushups. In the image, a person is doing a wall pushup.", + "A photo of a person doing Wall Pushups. In the image, a young woman is doing a wall push-up.", + "A photo of a person doing Wall Pushups. The image is of a fit young man doing a wall pushup.", + "A photo of a person doing Wall Pushups. I found an image on the internet of a person doing Wall Pushups.", + "A photo of a person doing Wall Pushups. An image from the internet of a person doing Wall Pushups would show someone with their feet against a wall and their hands on the ground, pushing themselves up and down.", + "A photo of a person doing Wall Pushups. This person is doing a wall push-up, a type of exercise that works the chest, shoulders, and triceps.", + "A photo of a person doing Wall Pushups. An individual doing wall push-ups with feet on an elevated surface.", + "A photo of a person doing Wall Pushups. This person is doing Wall Pushups, an exercise that works the chest, shoulders, and triceps muscles.", + "A photo of a person doing Wall Pushups. A person doing Wall pushups.", + "A photo of a person doing Wall Pushups. The person in the image is doing a wall pushup.", + "A photo of a person doing Wall Pushups. A person doing wall pushups with proper form.", + "A photo of a person doing Wall Pushups. The person in the image is doing a wall push-up, which is a type of exercise that helps to strengthen the muscles in the arms and upper body.", + "A photo of a person doing Wall Pushups. Doing wall pushups is a great way to work your upper body and improve your strength.", + "A photo of a person doing Wall Pushups. A person doing wall pushups with proper form.", + "A photo of a person doing Wall Pushups. A man doing wall pushups with a caption that reads, \"Getting fit is a process that takes time and dedication." + ], + "Writing On Board": [ + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. If a person is doing Writing_On_Board, they will be writing on a board with a pen or chalk.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board may be standing at a whiteboard or chalkboard with a writing implement in hand.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. A person who is Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board may be standing at a podium or sitting at a desk with a pen and paper.", + "A photo of a person doing Writing On Board. A person writing on a board typically looks like they are holding a pen or pencil and writing on a whiteboard or chalkboard.", + "A photo of a person doing Writing On Board. There are several things that can help you identify a person doing Writing_On_Board.", + "A photo of a person doing Writing On Board. The person is likely holding a whiteboard and a marker.", + "A photo of a person doing Writing On Board. If a person is doing Writing_On_Board, they will likely be writing on a board with a pen or pencil.", + "A photo of a person doing Writing On Board. There are several ways to identify a person doing Writing_On_Board.", + "A photo of a person doing Writing On Board. There is no definitive answer to this question, but some possible indications that a person is writing on a board could include them holding a pen or pencil in their hand, or having a board with writing on it in front of them.", + "A photo of a person doing Writing On Board. There are many ways to identify a person doing Writing_On_Board.", + "A photo of a person doing Writing On Board. If a person is holding a whiteboard and writing on it, they are probably doing Writing_On_Board.", + "A photo of a person doing Writing On Board. There are a few ways to identify a person doing Writing_On_Board:-The person is likely to be holding a whiteboard or other flat surface.", + "A photo of a person doing Writing On Board. If someone is Writing_On_Board, they may be holding a whiteboard or a piece of paper, and they will be using a marker or a pen to write on it.", + "A photo of a person doing Writing On Board. There is no one definitive way to identify a person doing Writing_On_Board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board may look like they are concentrating or deep in thought.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board may look like they are writing on a board in front of them.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like a person writing on a board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like a person writing on a board.", + "A photo of a person doing Writing On Board. There is no set answer to this question as people can be doing Writing_On_Board in a variety of ways and in a variety of places.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board in front of them.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like someone who is writing on a chalkboard or a whiteboard.", + "A photo of a person doing Writing On Board. A person doing Writing_On_Board looks like they are writing on a board.", + "A photo of a person doing Writing On Board. There is no one definitive answer to this question.", + "A photo of a person doing Writing On Board. The image is of a person standing in front of a whiteboard with their back to the camera, writing on the board with a black marker.", + "A photo of a person doing Writing On Board. The man is writing on the board with a marker.", + "A photo of a person doing Writing On Board. I found an image on the internet of a young woman standing in front of a chalkboard.", + "A photo of a person doing Writing On Board. The image is of a person, standing in front of a chalkboard, writing on the board with a piece of chalk.", + "A photo of a person doing Writing On Board. In this image, a person is doing Writing_On_Board.", + "A photo of a person doing Writing On Board. In the image, a person is standing in front of a chalkboard with their back to the camera.", + "A photo of a person doing Writing On Board. In the image, a woman is standing in front of a chalkboard with a piece of chalk in her hand.", + "A photo of a person doing Writing On Board. A black and white image of a woman holding a chalkboard with the word \"WRITING\" written on it in large letters.", + "A photo of a person doing Writing On Board. In the image, a person is standing in front of a whiteboard, writing on the board with a black marker.", + "A photo of a person doing Writing On Board. In the image, a woman is writing on a chalkboard in a classroom.", + "A photo of a person doing Writing On Board. The teacher is writing on the board.", + "A photo of a person doing Writing On Board. This person is writing on a whiteboard.", + "A photo of a person doing Writing On Board. A person writing on a chalkboardThis person is writing on a chalkboard.", + "A photo of a person doing Writing On Board. In order to review the main points of the lesson, the teacher is writing on the board.", + "A photo of a person doing Writing On Board. A person is writing on a chalkboard.", + "A photo of a person doing Writing On Board. Sarah is writing on the board.", + "A photo of a person doing Writing On Board. The teacher is writing on the board.", + "A photo of a person doing Writing On Board. The teacher is writing on the board.", + "A photo of a person doing Writing On Board. The teacher is writing on the board.", + "A photo of a person doing Writing On Board. This person is writing on a board." + ], + "Yo Yo": [ + "A photo of a person doing Yo Yo. This person is spinning a Yo_Yo around their hand and then letting it go and catching it.", + "A photo of a person doing Yo Yo. A person Doing Yo-Yo looks like a person playing with a Yo-Yo.", + "A photo of a person doing Yo Yo. Somebody doing a yo-yo looks like they are playing with a toy.", + "A photo of a person doing Yo Yo. \nWhen someone is doing a yo-yo trick, they hold the yo-yo in one hand and use the other hand to make it spin.", + "A photo of a person doing Yo Yo. When someone is doing a yo-yo trick, they hold the yo-yo in one hand and use the other hand to manipulate the string.", + "A photo of a person doing Yo Yo. A person doing a yo-yo typically looks like they are having fun and enjoying themselves.", + "A photo of a person doing Yo Yo. A person playing yo-yo typically holds the yo-yo in their dominant hand with the string wrapped around their middle and index fingers.", + "A photo of a person doing Yo Yo. A person doing Yo_Yo looks like they are playing with a Yo_Yo.", + "A photo of a person doing Yo Yo. When someone is doing yo-yo, they hold the yo-yo in their hand with the string wrapped around their finger.", + "A photo of a person doing Yo Yo. A person doing a yo-yo looks like they are holding a yo-yo in one hand and spinning it around.", + "A photo of a person doing Yo Yo. There is no definitive answer to this question, as there is no one specific way to identify someone who is doing yo-yo.", + "A photo of a person doing Yo Yo. There are many ways to identify a person doing Yo-Yo.", + "A photo of a person doing Yo Yo. There is no definitive answer to this question, as people can yo-yo in a variety of ways.", + "A photo of a person doing Yo Yo. There are many ways to identify a person doing Yo_Yo.", + "A photo of a person doing Yo Yo. There is no sure way to identify a person doing Yo_Yo without knowing the person beforehand, but there are some things that may give it away.", + "A photo of a person doing Yo Yo. There are many ways to identify a person doing Yo_Yo.", + "A photo of a person doing Yo Yo. There are many ways to identify a person doing Yo_Yo.", + "A photo of a person doing Yo Yo. There is no definitive answer to this question, as Yo-Yo can be performed in a variety of ways.", + "A photo of a person doing Yo Yo. There are a few ways to identify a person doing Yo_Yo.", + "A photo of a person doing Yo Yo. Someone doing Yo-Yo will have a Yo-Yo in their hand and will be playing with it.", + "A photo of a person doing Yo Yo. When a person is doing a Yo-Yo, they look like they are playing with a toy.", + "A photo of a person doing Yo Yo. A person doing a Yo-Yo looks like they are holding a Yo-Yo in their hand and the Yo-Yo is attached to their finger.", + "A photo of a person doing Yo Yo. When a person is doing a Yo-Yo, they look like they are holding the Yo-Yo in their hand and they are spinning it around.", + "A photo of a person doing Yo Yo. A person doing yo-yo looks like someone playing with a yo-yo.", + "A photo of a person doing Yo Yo. A person doing Yo_Yo looks like someone who is playing with a Yo_Yo.", + "A photo of a person doing Yo Yo. I imagine a person doing a Yo-Yo would look like they are having a lot of fun.", + "A photo of a person doing Yo Yo. There is no definitive answer to this question, as people can do yo-yos in a variety of ways and there is no one specific way to do them.", + "A photo of a person doing Yo Yo. A person doing yo-yo looks like someone playing with a yo-yo.", + "A photo of a person doing Yo Yo. A person doing yo-yo looks like they are playing with a toy.", + "A photo of a person doing Yo Yo. A person doing yo-yo typically looks like they are playing with a toy.", + "A photo of a person doing Yo Yo. The image is of a person standing in a Yo-Yo competition.", + "A photo of a person doing Yo Yo. activityThe image is of a young girl with blonde hair wearing a pink dress.", + "A photo of a person doing Yo Yo. The image is of a person standing in a Yo-Yoing stance with one hand extended upwards and the other hand holding the Yo-Yo at the bottom.", + "A photo of a person doing Yo Yo. The image is of a person doing a yo-yo trick.", + "A photo of a person doing Yo Yo. The image is of a man doing a yo-yo trick.", + "A photo of a person doing Yo Yo. A person is doing a yo-yo trick where the yo-yo is spinning around their body.", + "A photo of a person doing Yo Yo. The image is of a person doing a yo-yo trick.", + "A photo of a person doing Yo Yo. The image is of a person standing in a Yo-Yo trick competition.", + "A photo of a person doing Yo Yo. _The image is of a person doing a yo-yo trick.", + "A photo of a person doing Yo Yo. The image is of a person standing on a street corner, with one hand outstretched and holding a yo-yo.", + "A photo of a person doing Yo Yo. Image of a person doing a Yo-Yo.", + "A photo of a person doing Yo Yo. A person doing a Yo-Yo.", + "A photo of a person doing Yo Yo. A person doing a Yo-Yo trick.", + "A photo of a person doing Yo Yo. The person in the image is doing Yo-Yo.", + "A photo of a person doing Yo Yo. Person doing Yo-Yo.", + "A photo of a person doing Yo Yo. This person is doing a Yo-Yo Trick.", + "A photo of a person doing Yo Yo. Person doing a yo-yo trick.", + "A photo of a person doing Yo Yo. A boy doing a yo-yo trick.", + "A photo of a person doing Yo Yo. A person Doing Yo-Yo.", + "A photo of a person doing Yo Yo. The person is doing a Yo-Yo." + ] +} \ No newline at end of file diff --git a/images/image_0001.jpg b/images/image_0001.jpg new file mode 100644 index 0000000..8402985 Binary files /dev/null and b/images/image_0001.jpg differ diff --git a/images/image_0002.jpg b/images/image_0002.jpg new file mode 100644 index 0000000..c1e781f Binary files /dev/null and b/images/image_0002.jpg differ diff --git a/images/image_0003.jpg b/images/image_0003.jpg new file mode 100644 index 0000000..10e13ec Binary files /dev/null and b/images/image_0003.jpg differ diff --git a/images/image_0004.jpg b/images/image_0004.jpg new file mode 100644 index 0000000..1a85a6e Binary files /dev/null and b/images/image_0004.jpg differ diff --git a/images/image_0005.jpg b/images/image_0005.jpg new file mode 100644 index 0000000..3740e08 Binary files /dev/null and b/images/image_0005.jpg differ diff --git a/images/image_0006.jpg b/images/image_0006.jpg new file mode 100644 index 0000000..a733daf Binary files /dev/null and b/images/image_0006.jpg differ diff --git a/images/image_0007.jpg b/images/image_0007.jpg new file mode 100644 index 0000000..e9cf60b Binary files /dev/null and b/images/image_0007.jpg differ diff --git a/images/image_0008.jpg b/images/image_0008.jpg new file mode 100644 index 0000000..b0b07d2 Binary files /dev/null and b/images/image_0008.jpg differ diff --git a/images/image_0009.jpg b/images/image_0009.jpg new file mode 100644 index 0000000..ffed40e Binary files /dev/null and b/images/image_0009.jpg differ diff --git a/images/image_0010.jpg b/images/image_0010.jpg new file mode 100644 index 0000000..cf456a1 Binary files /dev/null and b/images/image_0010.jpg differ diff --git a/images/image_0011.jpg b/images/image_0011.jpg new file mode 100644 index 0000000..f19cd26 Binary files /dev/null and b/images/image_0011.jpg differ diff --git a/images/image_0012.jpg b/images/image_0012.jpg new file mode 100644 index 0000000..1021730 Binary files /dev/null and b/images/image_0012.jpg differ diff --git a/images/image_0013.jpg b/images/image_0013.jpg new file mode 100644 index 0000000..3d0635e Binary files /dev/null and b/images/image_0013.jpg differ diff --git a/images/image_0014.jpg b/images/image_0014.jpg new file mode 100644 index 0000000..47ac2a6 Binary files /dev/null and b/images/image_0014.jpg differ diff --git a/images/image_0015.jpg b/images/image_0015.jpg new file mode 100644 index 0000000..37c3d07 Binary files /dev/null and b/images/image_0015.jpg differ diff --git a/images/image_0023.jpg b/images/image_0023.jpg new file mode 100644 index 0000000..ac71249 Binary files /dev/null and b/images/image_0023.jpg differ diff --git a/images/image_0024.jpg b/images/image_0024.jpg new file mode 100644 index 0000000..7e9e3c2 Binary files /dev/null and b/images/image_0024.jpg differ diff --git a/images/image_0025.jpg b/images/image_0025.jpg new file mode 100644 index 0000000..c329187 Binary files /dev/null and b/images/image_0025.jpg differ diff --git a/images/image_0026.jpg b/images/image_0026.jpg new file mode 100644 index 0000000..61a41ae Binary files /dev/null and b/images/image_0026.jpg differ diff --git a/images/image_0027.jpg b/images/image_0027.jpg new file mode 100644 index 0000000..6e43f9f Binary files /dev/null and b/images/image_0027.jpg differ diff --git a/images/image_0028.jpg b/images/image_0028.jpg new file mode 100644 index 0000000..3a45fd8 Binary files /dev/null and b/images/image_0028.jpg differ diff --git a/images/image_0029.jpg b/images/image_0029.jpg new file mode 100644 index 0000000..051c735 Binary files /dev/null and b/images/image_0029.jpg differ diff --git a/images/image_0030.jpg b/images/image_0030.jpg new file mode 100644 index 0000000..6f9b144 Binary files /dev/null and b/images/image_0030.jpg differ diff --git a/images/image_0031.jpg b/images/image_0031.jpg new file mode 100644 index 0000000..e52e7f0 Binary files /dev/null and b/images/image_0031.jpg differ diff --git a/images/image_0032.jpg b/images/image_0032.jpg new file mode 100644 index 0000000..775fbc4 Binary files /dev/null and b/images/image_0032.jpg differ diff --git a/images/image_0033.jpg b/images/image_0033.jpg new file mode 100644 index 0000000..c0bd252 Binary files /dev/null and b/images/image_0033.jpg differ diff --git a/images/image_0034.jpg b/images/image_0034.jpg new file mode 100644 index 0000000..6f05c59 Binary files /dev/null and b/images/image_0034.jpg differ diff --git a/images/image_0035.jpg b/images/image_0035.jpg new file mode 100644 index 0000000..39eedab Binary files /dev/null and b/images/image_0035.jpg differ diff --git a/images/image_0036.jpg b/images/image_0036.jpg new file mode 100644 index 0000000..ceb94a7 Binary files /dev/null and b/images/image_0036.jpg differ diff --git a/images/image_0037.jpg b/images/image_0037.jpg new file mode 100644 index 0000000..8d1a588 Binary files /dev/null and b/images/image_0037.jpg differ diff --git a/images/image_0038.jpg b/images/image_0038.jpg new file mode 100644 index 0000000..72cc558 Binary files /dev/null and b/images/image_0038.jpg differ diff --git a/images/image_0039.jpg b/images/image_0039.jpg new file mode 100644 index 0000000..40f0ba3 Binary files /dev/null and b/images/image_0039.jpg differ diff --git a/images/image_0040.jpg b/images/image_0040.jpg new file mode 100644 index 0000000..ddcc701 Binary files /dev/null and b/images/image_0040.jpg differ diff --git a/images/image_0041.jpg b/images/image_0041.jpg new file mode 100644 index 0000000..7c3bb94 Binary files /dev/null and b/images/image_0041.jpg differ diff --git a/images/image_0042.jpg b/images/image_0042.jpg new file mode 100644 index 0000000..e7416b8 Binary files /dev/null and b/images/image_0042.jpg differ diff --git a/images_2/image_0001.jpg b/images_2/image_0001.jpg new file mode 100644 index 0000000..92016bc Binary files /dev/null and b/images_2/image_0001.jpg differ diff --git a/images_2/image_0002.jpg b/images_2/image_0002.jpg new file mode 100644 index 0000000..7ecd98c Binary files /dev/null and b/images_2/image_0002.jpg differ diff --git a/images_2/image_0003.jpg b/images_2/image_0003.jpg new file mode 100644 index 0000000..5072e14 Binary files /dev/null and b/images_2/image_0003.jpg differ diff --git a/images_2/image_0004.jpg b/images_2/image_0004.jpg new file mode 100644 index 0000000..e9feba2 Binary files /dev/null and b/images_2/image_0004.jpg differ diff --git a/images_2/image_0005.jpg b/images_2/image_0005.jpg new file mode 100644 index 0000000..60747be Binary files /dev/null and b/images_2/image_0005.jpg differ diff --git a/images_2/image_0006.jpg b/images_2/image_0006.jpg new file mode 100644 index 0000000..a15b2f8 Binary files /dev/null and b/images_2/image_0006.jpg differ diff --git a/images_2/image_0007.jpg b/images_2/image_0007.jpg new file mode 100644 index 0000000..b8e05ce Binary files /dev/null and b/images_2/image_0007.jpg differ diff --git a/images_2/image_0008.jpg b/images_2/image_0008.jpg new file mode 100644 index 0000000..467eca3 Binary files /dev/null and b/images_2/image_0008.jpg differ diff --git a/images_2/image_0009.jpg b/images_2/image_0009.jpg new file mode 100644 index 0000000..64a8fa6 Binary files /dev/null and b/images_2/image_0009.jpg differ diff --git a/images_2/image_0010.jpg b/images_2/image_0010.jpg new file mode 100644 index 0000000..f3fed3a Binary files /dev/null and b/images_2/image_0010.jpg differ diff --git a/images_2/image_0011.jpg b/images_2/image_0011.jpg new file mode 100644 index 0000000..3f1abf0 Binary files /dev/null and b/images_2/image_0011.jpg differ diff --git a/images_2/image_0012.jpg b/images_2/image_0012.jpg new file mode 100644 index 0000000..c5e2d86 Binary files /dev/null and b/images_2/image_0012.jpg differ diff --git a/images_2/image_0013.jpg b/images_2/image_0013.jpg new file mode 100644 index 0000000..bac0575 Binary files /dev/null and b/images_2/image_0013.jpg differ diff --git a/images_2/image_0014.jpg b/images_2/image_0014.jpg new file mode 100644 index 0000000..c693159 Binary files /dev/null and b/images_2/image_0014.jpg differ diff --git a/images_2/image_0015.jpg b/images_2/image_0015.jpg new file mode 100644 index 0000000..d649daa Binary files /dev/null and b/images_2/image_0015.jpg differ diff --git a/images_2/image_0069.jpg b/images_2/image_0069.jpg new file mode 100644 index 0000000..a14b503 Binary files /dev/null and b/images_2/image_0069.jpg differ diff --git a/images_2/image_0070.jpg b/images_2/image_0070.jpg new file mode 100644 index 0000000..16868f9 Binary files /dev/null and b/images_2/image_0070.jpg differ diff --git a/images_2/image_0071.jpg b/images_2/image_0071.jpg new file mode 100644 index 0000000..cab2bb9 Binary files /dev/null and b/images_2/image_0071.jpg differ diff --git a/images_2/image_0072.jpg b/images_2/image_0072.jpg new file mode 100644 index 0000000..482f98a Binary files /dev/null and b/images_2/image_0072.jpg differ diff --git a/images_2/image_0073.jpg b/images_2/image_0073.jpg new file mode 100644 index 0000000..5d0390f Binary files /dev/null and b/images_2/image_0073.jpg differ diff --git a/images_2/image_0074.jpg b/images_2/image_0074.jpg new file mode 100644 index 0000000..9f29dd3 Binary files /dev/null and b/images_2/image_0074.jpg differ diff --git a/images_2/image_0075.jpg b/images_2/image_0075.jpg new file mode 100644 index 0000000..1127869 Binary files /dev/null and b/images_2/image_0075.jpg differ diff --git a/images_2/image_0076.jpg b/images_2/image_0076.jpg new file mode 100644 index 0000000..8ceee5a Binary files /dev/null and b/images_2/image_0076.jpg differ diff --git a/images_2/image_0077.jpg b/images_2/image_0077.jpg new file mode 100644 index 0000000..8a32f31 Binary files /dev/null and b/images_2/image_0077.jpg differ diff --git a/images_2/image_0078.jpg b/images_2/image_0078.jpg new file mode 100644 index 0000000..b73efa5 Binary files /dev/null and b/images_2/image_0078.jpg differ diff --git a/images_2/image_0079.jpg b/images_2/image_0079.jpg new file mode 100644 index 0000000..b1f8c15 Binary files /dev/null and b/images_2/image_0079.jpg differ diff --git a/images_2/image_0080.jpg b/images_2/image_0080.jpg new file mode 100644 index 0000000..21c27fd Binary files /dev/null and b/images_2/image_0080.jpg differ diff --git a/images_2/image_0084.jpg b/images_2/image_0084.jpg new file mode 100644 index 0000000..ce59f12 Binary files /dev/null and b/images_2/image_0084.jpg differ diff --git a/images_2/image_0085.jpg b/images_2/image_0085.jpg new file mode 100644 index 0000000..0f0f31e Binary files /dev/null and b/images_2/image_0085.jpg differ diff --git a/images_2/image_0086.jpg b/images_2/image_0086.jpg new file mode 100644 index 0000000..9825349 Binary files /dev/null and b/images_2/image_0086.jpg differ diff --git a/images_2/image_0087.jpg b/images_2/image_0087.jpg new file mode 100644 index 0000000..a256667 Binary files /dev/null and b/images_2/image_0087.jpg differ diff --git a/images_2/image_0088.jpg b/images_2/image_0088.jpg new file mode 100644 index 0000000..41a85be Binary files /dev/null and b/images_2/image_0088.jpg differ diff --git a/images_2/image_0089.jpg b/images_2/image_0089.jpg new file mode 100644 index 0000000..328f22b Binary files /dev/null and b/images_2/image_0089.jpg differ diff --git a/images_2/image_0090.jpg b/images_2/image_0090.jpg new file mode 100644 index 0000000..a37b1d6 Binary files /dev/null and b/images_2/image_0090.jpg differ diff --git a/images_2/image_0091.jpg b/images_2/image_0091.jpg new file mode 100644 index 0000000..37b0091 Binary files /dev/null and b/images_2/image_0091.jpg differ diff --git a/images_3/image_0001.jpg b/images_3/image_0001.jpg new file mode 100644 index 0000000..bff681f Binary files /dev/null and b/images_3/image_0001.jpg differ diff --git a/images_3/image_0002.jpg b/images_3/image_0002.jpg new file mode 100644 index 0000000..4c763c1 Binary files /dev/null and b/images_3/image_0002.jpg differ diff --git a/images_3/image_0003.jpg b/images_3/image_0003.jpg new file mode 100644 index 0000000..e4a7f24 Binary files /dev/null and b/images_3/image_0003.jpg differ diff --git a/images_3/image_0004.jpg b/images_3/image_0004.jpg new file mode 100644 index 0000000..940f54f Binary files /dev/null and b/images_3/image_0004.jpg differ diff --git a/images_3/image_0005.jpg b/images_3/image_0005.jpg new file mode 100644 index 0000000..0971925 Binary files /dev/null and b/images_3/image_0005.jpg differ diff --git a/images_3/image_0006.jpg b/images_3/image_0006.jpg new file mode 100644 index 0000000..b8ee107 Binary files /dev/null and b/images_3/image_0006.jpg differ diff --git a/images_3/image_0007.jpg b/images_3/image_0007.jpg new file mode 100644 index 0000000..f8a7219 Binary files /dev/null and b/images_3/image_0007.jpg differ diff --git a/images_3/image_0008.jpg b/images_3/image_0008.jpg new file mode 100644 index 0000000..50831e4 Binary files /dev/null and b/images_3/image_0008.jpg differ diff --git a/images_3/image_0009.jpg b/images_3/image_0009.jpg new file mode 100644 index 0000000..247239d Binary files /dev/null and b/images_3/image_0009.jpg differ diff --git a/images_3/image_0010.jpg b/images_3/image_0010.jpg new file mode 100644 index 0000000..7722376 Binary files /dev/null and b/images_3/image_0010.jpg differ diff --git a/images_3/image_0011.jpg b/images_3/image_0011.jpg new file mode 100644 index 0000000..4d67028 Binary files /dev/null and b/images_3/image_0011.jpg differ diff --git a/images_3/image_0012.jpg b/images_3/image_0012.jpg new file mode 100644 index 0000000..1914f62 Binary files /dev/null and b/images_3/image_0012.jpg differ diff --git a/images_3/image_0013.jpg b/images_3/image_0013.jpg new file mode 100644 index 0000000..8facc13 Binary files /dev/null and b/images_3/image_0013.jpg differ diff --git a/images_3/image_0014.jpg b/images_3/image_0014.jpg new file mode 100644 index 0000000..0e8de13 Binary files /dev/null and b/images_3/image_0014.jpg differ diff --git a/images_3/image_0015.jpg b/images_3/image_0015.jpg new file mode 100644 index 0000000..af63f92 Binary files /dev/null and b/images_3/image_0015.jpg differ diff --git a/images_3/image_0016.jpg b/images_3/image_0016.jpg new file mode 100644 index 0000000..63931eb Binary files /dev/null and b/images_3/image_0016.jpg differ diff --git a/images_3/image_0017.jpg b/images_3/image_0017.jpg new file mode 100644 index 0000000..6e89db4 Binary files /dev/null and b/images_3/image_0017.jpg differ diff --git a/images_3/image_0018.jpg b/images_3/image_0018.jpg new file mode 100644 index 0000000..a600681 Binary files /dev/null and b/images_3/image_0018.jpg differ diff --git a/images_3/image_0019.jpg b/images_3/image_0019.jpg new file mode 100644 index 0000000..7bca84c Binary files /dev/null and b/images_3/image_0019.jpg differ diff --git a/images_3/image_0020.jpg b/images_3/image_0020.jpg new file mode 100644 index 0000000..33ab493 Binary files /dev/null and b/images_3/image_0020.jpg differ diff --git a/images_3/image_0021.jpg b/images_3/image_0021.jpg new file mode 100644 index 0000000..49078af Binary files /dev/null and b/images_3/image_0021.jpg differ diff --git a/images_3/image_0022.jpg b/images_3/image_0022.jpg new file mode 100644 index 0000000..93974af Binary files /dev/null and b/images_3/image_0022.jpg differ diff --git a/images_3/image_0023.jpg b/images_3/image_0023.jpg new file mode 100644 index 0000000..fba83a5 Binary files /dev/null and b/images_3/image_0023.jpg differ diff --git a/images_3/image_0024.jpg b/images_3/image_0024.jpg new file mode 100644 index 0000000..9a8d648 Binary files /dev/null and b/images_3/image_0024.jpg differ diff --git a/images_3/image_0025.jpg b/images_3/image_0025.jpg new file mode 100644 index 0000000..dc5cbfc Binary files /dev/null and b/images_3/image_0025.jpg differ diff --git a/images_3/image_0026.jpg b/images_3/image_0026.jpg new file mode 100644 index 0000000..fa7504c Binary files /dev/null and b/images_3/image_0026.jpg differ diff --git a/images_3/image_0027.jpg b/images_3/image_0027.jpg new file mode 100644 index 0000000..3ef4345 Binary files /dev/null and b/images_3/image_0027.jpg differ diff --git a/images_3/image_0028.jpg b/images_3/image_0028.jpg new file mode 100644 index 0000000..11c5d4c Binary files /dev/null and b/images_3/image_0028.jpg differ diff --git a/images_3/image_0029.jpg b/images_3/image_0029.jpg new file mode 100644 index 0000000..fa18d8a Binary files /dev/null and b/images_3/image_0029.jpg differ diff --git a/images_3/image_0030.jpg b/images_3/image_0030.jpg new file mode 100644 index 0000000..de28da8 Binary files /dev/null and b/images_3/image_0030.jpg differ diff --git a/images_3/image_0031.jpg b/images_3/image_0031.jpg new file mode 100644 index 0000000..14640ce Binary files /dev/null and b/images_3/image_0031.jpg differ diff --git a/images_3/image_0032.jpg b/images_3/image_0032.jpg new file mode 100644 index 0000000..0434fb7 Binary files /dev/null and b/images_3/image_0032.jpg differ diff --git a/images_3/image_0033.jpg b/images_3/image_0033.jpg new file mode 100644 index 0000000..ef2d388 Binary files /dev/null and b/images_3/image_0033.jpg differ diff --git a/images_3/image_0034.jpg b/images_3/image_0034.jpg new file mode 100644 index 0000000..f843221 Binary files /dev/null and b/images_3/image_0034.jpg differ diff --git a/images_3/image_0035.jpg b/images_3/image_0035.jpg new file mode 100644 index 0000000..e221ce8 Binary files /dev/null and b/images_3/image_0035.jpg differ diff --git a/main.py b/main.py new file mode 100644 index 0000000..e4b368f --- /dev/null +++ b/main.py @@ -0,0 +1,316 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F + + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 1 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + adapter = Weight_Adapter(args, classnames, weights).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_1_17.py b/main_1_17.py new file mode 100644 index 0000000..90fbae4 --- /dev/null +++ b/main_1_17.py @@ -0,0 +1,404 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from trainer_1_17 import train # For the training process +from trainer_1_17 import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + + +best_prec1 = 0 + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output,adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output, bias=False) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x +class Adapter(nn.Module): + def __init__(self, n_input,n_output): + super().__init__() + self.residual_ratio = 0.2 + self.linear1 = nn.Linear(n_input, n_output, bias=False) + # self.linear1.weight.data = adapter_weights # Initialize linear layer weights + self.relu=nn.ReLU() + + def forward(self, x): + a=x + x = self.linear1(x.float()) + x=self.relu(x) + # x = self.residual_ratio * x + (1 - self.residual_ratio) * a + + return x +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + +def validate_train(classnames, templates,val_loader, model, args, zero_shots, criterion, + optimizer, scheduler, alpha, beta, gama, CLIP_Text, CLIP_Image,Image_Encoder,Text_Encoder,adapter): + global best_target_acc + Compu1_acc = AverageMeter() + losses = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Image_Encoder.eval() + Text_Encoder.eval() + adapter.eval() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + # switch to evaluate mode + + for i, (image, label) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + input_target_clip = model.encode_image(input_target) + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_source) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + + # 2 + logits2 =100.* input_target_clip.float() @ zero_shots.float() + + # 3 + logits3 = output_target[:, len(classnames):] + + # compu1:1-2+3: + compu1 = beta*logits2 + gama * logits3 + + compu1_acc = accuracy(compu1, target_target, topk=(1, 5)) + loss = criterion(compu1, target_target) + Compu1_acc.update(compu1_acc[0].item(), image.size(0)) + losses.update(loss.item(), image.size(0)) + print('loss:', loss.item()) + print(i, '/', len(val_loader)) + print('Compu1_acc:', Compu1_acc.val, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item()) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + print('Compu1_acc.avg', Compu1_acc.avg, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item(), + 'losses.avg', losses.avg) + return Compu1_acc.avg, alpha.item(), beta.item(), gama.item() + + +def main(): + + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename=args.filename_dir+args.dataset_name+'.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames=dataset.classnames + templates=dataset.template + + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + # + # train_loader_cache = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + # is_train=True, shuffle=False) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, is_train=True, + shuffle=True) + + + criterion = nn.CrossEntropyLoss().cuda() + + # if not os.path.isdir(args.log): + # os.makedirs(args.log) + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # state = {k: v for k, v in args._get_kwargs()} + # log.write(json.dumps(state) + '\n') + # log.close() + # + # cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + # + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # log.write('\n-------------------------------------------\n') + # log.write(time.asctime(time.localtime(time.time()))) + # log.write('\n-------------------------------------------') + # log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + + #拆分CLIP图像编码器 + if args.name =="ViT-B/16": + CLIP_Text,Text_Encoder=partial_model.get_text(model,text_layer_idx=0) + assert type(model.visual) == VisionTransformer + CLIP_Image,Image_Encoder=partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name =="ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text,Text_Encoder =partial_model.get_text(model,text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image,Image_Encoder=partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + + # 1000类标签经过clip + model=model.cuda() + + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder=CLIP_Text.cuda(),Text_Encoder.cuda(),CLIP_Image.cuda(),Image_Encoder.cuda() + + + + + weights_path = None + best_epoch=0 + best_init_acc=0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + text_weights=zero_weights + + adapter_weights=torch.cat([text_weights,text_weights],dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames),adapter_weights).cuda() + + + + ADAM_BETAS = (0.9, 0.999) + if args.shot>=18: + optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.001}, + {'params': Image_Encoder.parameters(), 'lr':0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + else: + # optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.0001}, + # {'params': Image_Encoder.parameters(), 'lr':0.00001}, + # {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + # eps=1e-5) + # optimizer = torch.optim.AdamW([{'params': adapter.parameters()}, + # {'params': Image_Encoder.parameters()}, + # {'params': Text_Encoder.parameters()}], + # eps=1e-5,lr=0.0001,weight_decay=0.0001) + + ##caltech101 + # optimizer = torch.optim.AdamW( + # [ + # {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + # {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + # {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + # , eps=1e-4 + # ) + + optimizer = torch.optim.AdamW( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + + dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder) + # evaluate on the val data + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >=args.valepoch: + prec1 = validate(classnames, templates,loader, model, adapter, current_epoch, args, zero_weights, criterion, + CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir+'/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + weights_path=save_dir + best_init_acc=best_prec1 + best_epoch=current_epoch + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # log.write('Best acc: %3f' % (best_prec1)) + # log.close() + filename=args.filename_dir+args.dataset_name+'.txt' + strr=str(args.shot)+'shot'+' '+'best_epoch'+' '+str(best_epoch)+' '+'best_init_acc'+' '+str(best_init_acc) + with open(filename, 'a') as f: + f.write(strr+ '\n') + f.close() + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # log.write('\n-------------------------------------------\n') + # log.write(time.asctime(time.localtime(time.time()))) + # log.write('\n-------------------------------------------\n') + # log.close() + + +if __name__ == '__main__': + main() diff --git a/main_1_18.py b/main_1_18.py new file mode 100644 index 0000000..de0afd0 --- /dev/null +++ b/main_1_18.py @@ -0,0 +1,383 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from trainer_1_18 import train # For the training process +from trainer_1_18 import warm_train +from trainer_1_18 import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + + +best_prec1 = 0 + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output,adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output, bias=False) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x +class Adapter(nn.Module): + def __init__(self, n_input,n_output): + super().__init__() + self.residual_ratio = 0.2 + self.linear1 = nn.Linear(n_input, n_output, bias=False) + # self.linear1.weight.data = adapter_weights # Initialize linear layer weights + self.relu=nn.ReLU() + + def forward(self, x): + a=x + x = self.linear1(x.float()) + x=self.relu(x) + # x = self.residual_ratio * x + (1 - self.residual_ratio) * a + + return x +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + +def validate_train(classnames, templates,val_loader, model, args, zero_shots, criterion, + optimizer, scheduler, alpha, beta, gama, CLIP_Text, CLIP_Image,Image_Encoder,Text_Encoder,adapter): + global best_target_acc + Compu1_acc = AverageMeter() + losses = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Image_Encoder.eval() + Text_Encoder.eval() + adapter.eval() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + # switch to evaluate mode + + for i, (image, label) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + input_target_clip = model.encode_image(input_target) + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_source) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + + # 2 + logits2 =100.* input_target_clip.float() @ zero_shots.float() + + # 3 + logits3 = output_target[:, len(classnames):] + + # compu1:1-2+3: + compu1 = beta*logits2 + gama * logits3 + + compu1_acc = accuracy(compu1, target_target, topk=(1, 5)) + loss = criterion(compu1, target_target) + Compu1_acc.update(compu1_acc[0].item(), image.size(0)) + losses.update(loss.item(), image.size(0)) + print('loss:', loss.item()) + print(i, '/', len(val_loader)) + print('Compu1_acc:', Compu1_acc.val, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item()) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + print('Compu1_acc.avg', Compu1_acc.avg, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item(), + 'losses.avg', losses.avg) + return Compu1_acc.avg, alpha.item(), beta.item(), gama.item() + + +def main(): + + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename=args.filename_dir+args.dataset_name+'.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames=dataset.classnames + templates=dataset.template + + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + # + # train_loader_cache = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + # is_train=True, shuffle=False) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, is_train=True, + shuffle=True) + + + criterion = nn.CrossEntropyLoss().cuda() + if not os.path.isdir(args.log): + os.makedirs(args.log) + log = open(os.path.join(args.log, 'log.txt'), 'a') + state = {k: v for k, v in args._get_kwargs()} + log.write(json.dumps(state) + '\n') + log.close() + + cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------') + log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + + #拆分CLIP图像编码器 + if args.name =="ViT-B/16": + CLIP_Text,Text_Encoder=partial_model.get_text(model,text_layer_idx=0) + assert type(model.visual) == VisionTransformer + CLIP_Image,Image_Encoder=partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name =="ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text,Text_Encoder =partial_model.get_text(model,text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image,Image_Encoder=partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + + # 1000类标签经过clip + model=model.cuda() + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder=CLIP_Text.cuda(),Text_Encoder.cuda(),CLIP_Image.cuda(),Image_Encoder.cuda() + weights_path = None + best_epoch=0 + best_init_acc=0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + text_weights=zero_weights + + adapter_weights=torch.cat([text_weights,text_weights],dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames),adapter_weights).cuda() + if args.shot>=18: + optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.001}, + {'params': Image_Encoder.parameters(), 'lr':0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + else: + optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.0001}, + {'params': Image_Encoder.parameters(), 'lr':0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + while (current_epoch < args.epochs): + if(current_epoch<40): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder) + + else: + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder) + # evaluate on the val data + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >=args.valepoch: + prec1 = validate(classnames, templates,loader, model, adapter, current_epoch, args, zero_weights, criterion, + CLIP_Text,Text_Encoder,CLIP_Image,Image_Encoder) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir+'/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + weights_path=save_dir + best_init_acc=best_prec1 + best_epoch=current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + filename=args.filename_dir+args.dataset_name+'.txt' + strr=str(args.shot)+'shot'+' '+'best_epoch'+' '+str(best_epoch)+' '+'best_init_acc'+' '+str(best_init_acc) + with open(filename, 'a') as f: + f.write(strr+ '\n') + f.close() + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------\n') + log.close() + + +if __name__ == '__main__': + main() diff --git a/main_DALN.py b/main_DALN.py new file mode 100644 index 0000000..66a98c0 --- /dev/null +++ b/main_DALN.py @@ -0,0 +1,283 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights,set_adapter_weights_single, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights +from Adapter import Weight_Adapter,Classifier,Res_Adapter +import logging +import torch.nn.functional as F +from daln.nwd import NuclearWassersteinDiscrepancy + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,discrepancy,res_adapter): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + model.eval() + logit_scale = model.logit_scale.exp() + + res_adapter.train() + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + input_source =res_adapter(input_source) + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + input_target_add =res_adapter(input_target_add ) + + # compute output + x = torch.cat((input_source, input_target_add), dim=0) + y = adapter(x)* logit_scale + + + y_s, y_t = y.chunk(2, dim=0) + labels_s=target_source + labels_t=label_self_supervised + cls_loss_1 = criterion(y_s, labels_s) + cls_loss_2 = criterion(y_t, labels_t) + + + discrepancy_loss = -discrepancy(x) + trade_off_lambda=-100 + transfer_loss = discrepancy_loss * trade_off_lambda # multiply the lambda to trade off the loss term + loss = cls_loss_1+cls_loss_2 + transfer_loss + + + prec1_source, _ = accuracy(y_s.data, target_source, topk=(1, 5)) + prec1_target, _ = accuracy(y_t.data, target_target, topk=(1, 5)) + + + losses_G.update((cls_loss_1+cls_loss_2).item(), input_source.size(0)) + losses_T.update(transfer_loss.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,res_adapter): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + res_adapter.eval() + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + input_target_add =res_adapter(input_target_add) + + + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source, target_target) + loss_target = criterion(output_target, target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data, target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data, target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 0) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights_single(model, classnames, templates) + # res_adapter = Weight_Adapter(args, classnames, weights).cuda() + res_adapter = Res_Adapter(1024).cuda() + adapter = Classifier(args, classnames, weights).cuda() + # instantiate NWD + discrepancy = NuclearWassersteinDiscrepancy(adapter) + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + # lr_adapter = 0.0001 + # lr_image_encoder = 0.00001 + # lr_text_encoder = 0.00001 + # weight_decay = 0.00001 + lr_adapter = 0.0001 + lr_image_encoder = 0.0001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + # optimizer = torch.optim.AdamW([ + # {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + # {'params': res_adapter.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + # 'betas': ADAM_BETAS}, + # {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + # ], eps=1e-5) + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter}, + {'params': res_adapter.parameters(), 'lr': lr_image_encoder}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder} + ], eps=1e-5) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder,discrepancy,res_adapter) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,res_adapter) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_cbp.py b/main_cbp.py new file mode 100644 index 0000000..bf8e00c --- /dev/null +++ b/main_cbp.py @@ -0,0 +1,294 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights_single, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights +from Adapter import Adapter +import logging +import torch.nn.functional as F + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class CompactBilinearPooling(nn.Module): + def __init__(self, input_dim, output_dim): + super(CompactBilinearPooling, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + # 随机生成哈希参数 + self.hashcode = torch.randint(0, output_dim, (input_dim,), dtype=torch.long).cuda() + self.sign = (torch.randint(0, 2, (input_dim,)) * 2 - 1).cuda() + self.sign = self.sign.float().cuda() + + def count_sketch(self, x, hashcode, sign): + batch_size, input_dim = x.shape + output = x.new_zeros(batch_size, self.output_dim) + for i in range(input_dim): + output[:, hashcode[i]] += sign[i] * x[:, i] + return output + + def forward(self, x1, x2): + # 应用Count Sketch + sketch_x1 = self.count_sketch(x1, self.hashcode, self.sign).cuda() + sketch_x2 = self.count_sketch(x2, self.hashcode, self.sign).cuda() + + # 应用FFT变换 + fft_x1 = torch.fft.rfft(sketch_x1, n=self.output_dim, dim=1).cuda() + fft_x2 = torch.fft.rfft(sketch_x2, n=self.output_dim, dim=1).cuda() + + # 计算FFT的点积并应用逆FFT变换 + ifft_result = torch.fft.irfft(fft_x1 * fft_x2, n=self.output_dim, dim=1).cuda() + + return ifft_result + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,cbp_layer): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + logit_scale = model.logit_scale.exp() + model.eval() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + cbp_layer.train() + adapter.train() + + new_epoch_flag = False + end = time.time() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + label=label.cuda() + + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + data_time.update(time.time() - end) + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 使用CBP层融合图像和文本特征 + fused_features = cbp_layer(input_target_add, input_source) + + # 文本直接输入全连接层 + output = adapter(fused_features) * logit_scale + + + + + + + + # 有监督分类的交叉熵损失 + loss= criterion(output, label) + + prec, _ = accuracy(output, label, topk=(1, 5)) + + + + losses_T.update(loss.item(), input_source.size(0)) + top1_source.update(prec[0], input_source.size(0)) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,cbp_layer): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + cbp_layer.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + fused_features=cbp_layer(input_target_add,input_target_add) + # output_source = adapter(input_source) * logit_scale + output = adapter(fused_features) * logit_scale + # 3 + loss_source = criterion(output, target_target) + + + # measure accuracy and record loss + prec, _ = accuracy(output, target_target, topk=(1, 5)) + + + losses_source.update(loss_source.item(), image.size(0)) + + + top1_source.update(prec[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights_single(model, classnames, templates) + adapter = Adapter(args, classnames, weights).cuda() + + #cbp + # 定义模型参数 + input_dim = 1024 + output_dim = 1024 # 或者其他根据需要设置的值 + + # 实例化CBP模块 + cbp_layer = CompactBilinearPooling(input_dim, output_dim) + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder,cbp_layer) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,cbp_layer) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_coral_loss.py b/main_coral_loss.py new file mode 100644 index 0000000..3e83957 --- /dev/null +++ b/main_coral_loss.py @@ -0,0 +1,373 @@ +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class CustomCrossAttention(nn.Module): + def __init__(self, feature_dim): + super(CustomCrossAttention, self).__init__() + self.query_projection = nn.Linear(feature_dim, feature_dim) + self.key_projection = nn.Linear(feature_dim, feature_dim) + self.value_projection = nn.Linear(feature_dim, feature_dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, text_features, image_features): + # 假设 text_features 的 batch_size < image_features 的 batch_size + text_batch_size = text_features.size(0) + image_batch_size = image_features.size(0) + + # 重复 text_features 以匹配 image_features 的 batch_size + if text_batch_size < image_batch_size: + repeat_times = image_batch_size // text_batch_size + text_features = text_features.repeat(repeat_times, 1) + + query = self.query_projection(text_features) + key = self.key_projection(image_features) + value = self.value_projection(image_features) + + # 计算注意力分数 + attention_scores = torch.matmul(query, key.transpose(-2, -1)) + attention_scores = self.softmax(attention_scores) + + # 应用注意力分数到 value 上 + attended_features = torch.matmul(attention_scores, value) + + return attended_features + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + d = source_features.data.shape[1] # 特征维度 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2))# / (4*d*d) + return coral_loss + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 计算CORAL损失 + + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + + + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral=50 + loss_1=lambda_coral*coral_loss_value + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised+lambda_coral * coral_loss_value + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + adapter = Weight_Adapter(args, classnames, weights).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_coral_loss_adapter.py b/main_coral_loss_adapter.py new file mode 100644 index 0000000..eb7fae8 --- /dev/null +++ b/main_coral_loss_adapter.py @@ -0,0 +1,354 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights +from Adapter import Weight_Adapter,Res_Adapter +import logging +import torch.nn.functional as F + + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + d = source_features.data.shape[1] # 特征维度 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2)) #/ (4*d*d) + return coral_loss + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + classifier, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,adapter): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + classifier.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + data_time.update(time.time() - end) + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + #经过adapter层 + input_source = adapter(input_source) + input_target_add=adapter(input_target_add) + self_input_source = adapter(self_input_source) + + + # 计算CORAL损失 + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral=80 + loss_1=lambda_coral*coral_loss_value + # 总损失 + # 文本直接输入全连接层 + output_source = classifier(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = classifier(input_target_add) * logit_scale + + + + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = classifier(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_1#loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0.8 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised+lambda_coral * coral_loss_value + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, classifier, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,adapter): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + adapter.eval() + model.eval() + classifier.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + input_target_add=adapter(input_target_add) + output_target = classifier(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 0) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + classifier = Weight_Adapter(args, classnames, weights).cuda() + #adapter 层 + if args.name in ["ViT-B/16", "ViT-B/32"]: + adapter=Res_Adapter(512).cuda() + else: + adapter=Res_Adapter(1024).cuda() + + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_classifier = 0.0001 + lr_image_encoder = 0.000001 + lr_text_encoder = 0.00001 + lr_adapter = 0.0001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': classifier.parameters(), 'lr': lr_classifier, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + classifier, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder,adapter) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, classifier, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,adapter) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, classifier,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_coral_loss_cross_attention.py b/main_coral_loss_cross_attention.py new file mode 100644 index 0000000..c1545cf --- /dev/null +++ b/main_coral_loss_cross_attention.py @@ -0,0 +1,380 @@ +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights,all_classifier +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class CustomCrossAttention(nn.Module): + def __init__(self, feature_dim): + super(CustomCrossAttention, self).__init__() + self.query_projection = nn.Linear(feature_dim, feature_dim) + self.key_projection = nn.Linear(feature_dim, feature_dim) + self.value_projection = nn.Linear(feature_dim, feature_dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, text_features, image_features): + # 假设 text_features 的 batch_size < image_features 的 batch_size + text_batch_size = text_features.size(0) + image_batch_size = image_features.size(0) + + # 重复 text_features 以匹配 image_features 的 batch_size + if text_batch_size < image_batch_size: + repeat_times = image_batch_size // text_batch_size + text_features = text_features.repeat(repeat_times, 1) + + query = self.query_projection(text_features) + key = self.key_projection(image_features) + value = self.value_projection(image_features) + + # 计算注意力分数 + attention_scores = torch.matmul(query, key.transpose(-2, -1)) + attention_scores = self.softmax(attention_scores) + + # 应用注意力分数到 value 上 + attended_features = torch.matmul(attention_scores, value) + + return attended_features + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + d = source_features.data.shape[1] # 特征维度 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2))# / (4*d*d) + return coral_loss + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,zero_weights,cross_attention): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + cross_attention.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + zero_weights=zero_weights.cuda() + attention=cross_attention(zero_weights.T,input_target_add) + # 计算CORAL损失 + + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + + + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral=50 + loss_1=lambda_coral*coral_loss_value + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised+lambda_coral * coral_loss_value + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,zero_weights,cross_attention): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + zero_weights = all_classifier(classnames, templates, model) + + cross_attention=CustomCrossAttention(1024).cuda() + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + adapter = Weight_Adapter(args, classnames, weights).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_attention = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': cross_attention.parameters(), 'lr': lr_attention, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder,zero_weights,cross_attention) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,zero_weights,cross_attention) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_coral_loss_gpt3.py b/main_coral_loss_gpt3.py new file mode 100644 index 0000000..f0aa594 --- /dev/null +++ b/main_coral_loss_gpt3.py @@ -0,0 +1,480 @@ +import os +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier,calculate_zeroshot_weights_GPT +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F +import yaml +import json +import torch +import torch.nn as nn +import torch.nn.functional as F +import glob + + +class CustomCrossAttention(nn.Module): + def __init__(self, feature_dim): + super(CustomCrossAttention, self).__init__() + self.query_projection = nn.Linear(feature_dim, feature_dim) + self.key_projection = nn.Linear(feature_dim, feature_dim) + self.value_projection = nn.Linear(feature_dim, feature_dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, text_features, image_features): + # 假设 text_features 的 batch_size < image_features 的 batch_size + text_batch_size = text_features.size(0) + image_batch_size = image_features.size(0) + + # 重复 text_features 以匹配 image_features 的 batch_size + if text_batch_size < image_batch_size: + repeat_times = image_batch_size // text_batch_size + text_features = text_features.repeat(repeat_times, 1) + + query = self.query_projection(text_features) + key = self.key_projection(image_features) + value = self.value_projection(image_features) + + # 计算注意力分数 + attention_scores = torch.matmul(query, key.transpose(-2, -1)) + attention_scores = self.softmax(attention_scores) + + # 应用注意力分数到 value 上 + attended_features = torch.matmul(attention_scores, value) + + return attended_features + + +# def coral_loss(source_features, target_features): +# """ +# 计算Deep CORAL损失。 +# :param source_features: 源域特征,维度为[batch_size, feature_dim] +# :param target_features: 目标域特征,维度为[batch_size, feature_dim] +# :return: CORAL损失 +# """ +# d = source_features.data.shape[1] # 特征维度 +# source_mean = torch.mean(source_features, dim=0) +# target_mean = torch.mean(target_features, dim=0) +# source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) +# target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) +# coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2)) # / (4*d*d) +# return coral_loss +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + # 特征维度 + d = source_features.data.shape[1] + + # 计算均值 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + + # 计算均值差异 + # mean_diff = torch.pow(source_mean - target_mean, 2).sum().sqrt().mean() + mean_diff = torch.pow(source_mean - target_mean, 2).mean() + + # 计算协方差矩阵 + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + + # 计算协方差矩阵差异的平均值 + # cov_diff = torch.pow(source_cov - target_cov, 2).sum().sqrt().mean() + cov_diff = torch.pow(source_cov - target_cov, 2).mean() + # 返回均值差异和协方差矩阵差异的和 + total_coral_loss = mean_diff + cov_diff + return total_coral_loss +def shuffle_data(weights, labels): + # 生成索引 + indices = torch.randperm(len(weights)) + # 使用索引来打乱数据和标签 + shuffled_weights = weights[indices] + shuffled_labels = labels[indices] + return shuffled_weights, shuffled_labels + + +def compute_kernel(x, y): + """ + 计算高斯核矩阵 + """ + x_size = x.size(0) + y_size = y.size(0) + dim = x.size(1) + tiled_x = x.view(x_size, 1, dim).repeat(1, y_size, 1) + tiled_y = y.view(1, y_size, dim).repeat(x_size, 1, 1) + kernel_matrix = torch.exp(-torch.mean((tiled_x - tiled_y) ** 2, dim=2) / float(dim)) + return kernel_matrix + + +def mmd_loss(source_features, target_features): + """ + 计算源域和目标域特征之间的最大均值差异(MMD)损失 + """ + source_kernel = compute_kernel(source_features, source_features) + target_kernel = compute_kernel(target_features, target_features) + cross_kernel = compute_kernel(source_features, target_features) + + mmd = source_kernel.mean() + target_kernel.mean() - 2 * cross_kernel.mean() + return mmd + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, gpt_weight, gpt_label,gpt3_prompt): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_CR = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + + + # target_source = label.cuda() + input_target = image.cuda() + # input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder,gpt3_prompt) + gpt_weight, gpt_label=shuffle_data(gpt_weight, gpt_label) + # input_source = torch.cat(( + # input_source, gpt_weight + # ), dim=0) + # target_source = torch.cat(( + # target_source, gpt_label + # ), dim=0) + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 计算CORAL损失 + + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + # Text_Encoder) + self_input_source = calculate_zeroshot_weights_GPT(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder,gpt3_prompt) + # input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder,gpt3_prompt) + + + # 计算MMD损失 + # mmd_loss_val = mmd_loss(self_input_source, input_target_add) + # lambda_mmd=1000 + # mmd_loss_val =lambda_mmd*mmd_loss_val + # 总损失 + + coral_loss_value =2* coral_loss(self_input_source, input_target_add) + lambda_coral = 1 + loss_1 = lambda_coral * coral_loss_value + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised =loss_self_supervised_2 #loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + lambda_coral * coral_loss_value#+ mmd_loss_val + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + losses_CR.update(loss_G.item(), input_source.size(0)) + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_CR.update(coral_loss_value.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@CR {loss_cr.val:.4f} ({loss_cr.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_cr=losses_CR,loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch, classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, + CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec, best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float() + classnames, templates, loader, train_loader,va_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + # cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) + # 获取'gpt_file'文件夹下所有的.yaml文件 + + json_files = glob.glob('gpt_file/caltech_prompt.json') + + for file_path in json_files: + # 打开并读取每个YAML文件 + with open(file_path, 'r') as f: + gpt3_prompt = json.load(f) + gpt_weight = gpt_clip_classifier(classnames, gpt3_prompt, CLIP_Text, Text_Encoder) + gpt_label = torch.arange(len(classnames), device="cuda:0", dtype=torch.long) + gpt_weight, gpt_label + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + init_weight = torch.cat([gpt_weight.T ,gpt_weight.T], dim=1).T # adapter = Weight_Adapter(args, classnames, weights).cuda() + adapter = Weight_Adapter(args, classnames, init_weight).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + # lr_adapter = 0.0001 + # lr_image_encoder = 0.00001 + # lr_text_encoder = 0.00001 + # weight_decay = 0.00001 + #caltech + lr_adapter = 0.0001 + lr_image_encoder = 0.0000001 + lr_text_encoder = 0.000001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch = 0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder, + gpt_weight, gpt_label,gpt3_prompt) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec, best_epoch = validate(best_epoch, classnames, templates, loader, model, adapter, + current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter, args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_coral_loss_gpt3_final.py b/main_coral_loss_gpt3_final.py new file mode 100644 index 0000000..0bd2b96 --- /dev/null +++ b/main_coral_loss_gpt3_final.py @@ -0,0 +1,457 @@ +import os +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier,calculate_zeroshot_weights_GPT +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F +import yaml +import json +import torch +import torch.nn as nn +import torch.nn.functional as F +import glob + + +class CustomCrossAttention(nn.Module): + def __init__(self, feature_dim): + super(CustomCrossAttention, self).__init__() + self.query_projection = nn.Linear(feature_dim, feature_dim) + self.key_projection = nn.Linear(feature_dim, feature_dim) + self.value_projection = nn.Linear(feature_dim, feature_dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, text_features, image_features): + # 假设 text_features 的 batch_size < image_features 的 batch_size + text_batch_size = text_features.size(0) + image_batch_size = image_features.size(0) + + # 重复 text_features 以匹配 image_features 的 batch_size + if text_batch_size < image_batch_size: + repeat_times = image_batch_size // text_batch_size + text_features = text_features.repeat(repeat_times, 1) + + query = self.query_projection(text_features) + key = self.key_projection(image_features) + value = self.value_projection(image_features) + + # 计算注意力分数 + attention_scores = torch.matmul(query, key.transpose(-2, -1)) + attention_scores = self.softmax(attention_scores) + + # 应用注意力分数到 value 上 + attended_features = torch.matmul(attention_scores, value) + + return attended_features + + +# def coral_loss(source_features, target_features): +# """ +# 计算Deep CORAL损失。 +# :param source_features: 源域特征,维度为[batch_size, feature_dim] +# :param target_features: 目标域特征,维度为[batch_size, feature_dim] +# :return: CORAL损失 +# """ +# d = source_features.data.shape[1] # 特征维度 +# source_mean = torch.mean(source_features, dim=0) +# target_mean = torch.mean(target_features, dim=0) +# source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) +# target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) +# coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2)) # / (4*d*d) +# return coral_loss +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + # 特征维度 + d = source_features.data.shape[1] + + # 计算均值 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + + # 计算均值差异 + # mean_diff = torch.pow(source_mean - target_mean, 2).sum().sqrt().mean() + mean_diff = torch.pow(source_mean - target_mean, 2).mean() + + # 计算协方差矩阵 + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + + # 计算协方差矩阵差异的平均值 + # cov_diff = torch.pow(source_cov - target_cov, 2).sum().sqrt().mean() + cov_diff = torch.pow(source_cov - target_cov, 2).mean() + # 返回均值差异和协方差矩阵差异的和 + total_coral_loss = mean_diff + cov_diff + return total_coral_loss +def shuffle_data(weights, labels): + # 生成索引 + indices = torch.randperm(len(weights)) + # 使用索引来打乱数据和标签 + shuffled_weights = weights[indices] + shuffled_labels = labels[indices] + return shuffled_weights, shuffled_labels + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, gpt_weight, gpt_label,gpt3_prompt): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_CR = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + + + # target_source = label.cuda() + input_target = image.cuda() + # input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder,gpt3_prompt) + gpt_weight, gpt_label=shuffle_data(gpt_weight, gpt_label) + # input_source = torch.cat(( + # input_source, gpt_weight + # ), dim=0) + # target_source = torch.cat(( + # target_source, gpt_label + # ), dim=0) + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 计算CORAL损失 + + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + # Text_Encoder) + self_input_source = calculate_zeroshot_weights_GPT(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder,gpt3_prompt) + # input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder,gpt3_prompt) + + + # 计算MMD损失 + # mmd_loss_val = mmd_loss(self_input_source, input_target_add) + # lambda_mmd=1000 + # mmd_loss_val =lambda_mmd*mmd_loss_val + # 总损失 + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral = 1 + loss_1 = lambda_coral * coral_loss_value + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised =loss_self_supervised_2 #loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + lambda_coral * coral_loss_value#+ mmd_loss_val + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + losses_CR.update(loss_G.item(), input_source.size(0)) + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_CR.update(coral_loss_value.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@CR {loss_cr.val:.4f} ({loss_cr.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_cr=losses_CR,loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch, classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, + CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec, best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float() + classnames, templates, loader, train_loader,va_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + # cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) + # 获取'gpt_file'文件夹下所有的.yaml文件 + + json_files = glob.glob('gpt_file/caltech_prompt.json') + + for file_path in json_files: + # 打开并读取每个YAML文件 + with open(file_path, 'r') as f: + gpt3_prompt = json.load(f) + gpt_weight = gpt_clip_classifier(classnames, gpt3_prompt, CLIP_Text, Text_Encoder) + gpt_label = torch.arange(len(classnames), device="cuda:0", dtype=torch.long) + gpt_weight, gpt_label + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + init_weight = torch.cat([gpt_weight.T ,gpt_weight.T], dim=1).T + # adapter = Weight_Adapter(args, classnames, weights).cuda() + adapter = Weight_Adapter(args, classnames, init_weight).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + # lr_adapter = 0.0001 + # lr_image_encoder = 0.00001 + # lr_text_encoder = 0.00001 + # weight_decay = 0.00001 + #caltech + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.000001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch = 0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder, + gpt_weight, gpt_label,gpt3_prompt) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec, best_epoch = validate(best_epoch, classnames, templates, loader, model, adapter, + current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter, args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_coral_loss_mixup.py b/main_coral_loss_mixup.py new file mode 100644 index 0000000..a47f678 --- /dev/null +++ b/main_coral_loss_mixup.py @@ -0,0 +1,373 @@ +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F + + +def mixup_data(x, y, labels, alpha=1.0): + '''对文本特征x和图像特征y执行Mixup操作,然后融合它们''' + if alpha > 0: + lam = np.random.beta(alpha, alpha) + else: + lam = 1 + + batch_size = x.size(0) + index = torch.randperm(batch_size).to(x.device) + mixed_x = lam * x + (1 - lam) * x[index, :] + mixed_y = lam * y + (1 - lam) * y[index, :] + # mixed_features=lam * x + (1 - lam) * y[index, :] + # alpha = np.random.beta(1.0, 1.0) + # pos_m = alpha * pos_1 + (1 - alpha) * pos_2[index, :] + # 假设您想将混合的文本特征和图像特征进行某种形式的融合 + # 例如,通过简单的拼接(这里需要根据您的模型设计进行调整) + # mixed_features = torch.cat((mixed_x, mixed_y), dim=1) + + mixed_labels = lam * labels + (1 - lam) * labels[index] + + return mixed_x,mixed_y#, mixed_labels, index + + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + d = source_features.data.shape[1] # 特征维度 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2))# / (4*d*d) + return coral_loss + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + data_time.update(time.time() - end) + + + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + + mixed_x,mixed_y= mixup_data(self_input_source, input_target_add, label_self_supervised, alpha=1.0) + + # mix_pred = adapter(mixed_features) # 确保模型可以处理这种形式的融合特征 + # mix_loss_1 = soft_label_criterion(mix_pred[:,:len(classnames)], mixed_labels) + # mix_loss_2 = soft_label_criterion(mix_pred[:,len(classnames):], mixed_labels) + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + + # 计算CORAL损失 + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + + + + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral=50 + loss_1=lambda_coral*coral_loss_value + + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + # self_output_source = F.normalize(self_input_source) + # + # # 自监督图像特征 + # # self_output_target = output_target / logit_scale + # # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + # self_output_target = F.normalize(input_target_add) + + mixed_x, mixed_y + # # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(mixed_x.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * mixed_x @ mixed_y.T + logits_per_text = logit_scale * mixed_y @ mixed_x.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # # self_output_source = F.normalize(self_input_source) + # + # # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # # self_output_target = F.normalize(input_target_add) + # # # 构造自监督标签0-255 + # self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + # logits_per_image = logit_scale * self_output_target @ self_output_source.T + # logits_per_text = logit_scale * self_output_source @ self_output_target.T + # loss_self_supervised_2 = ( + # F.cross_entropy(logits_per_image, self_supervised_labels) + + # F.cross_entropy(logits_per_text, self_supervised_labels) + # ) / 2 + # + loss_self_supervised = loss_self_supervised_1 # + loss_self_supervised_2 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 1 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier+lambda_coral * coral_loss_value + self_lam * loss_self_supervised + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, adapter, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights(model, classnames, templates) + adapter = Weight_Adapter(args, classnames, weights).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + adapter, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, adapter, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, adapter,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_fusion.py b/main_fusion.py new file mode 100644 index 0000000..5cda679 --- /dev/null +++ b/main_fusion.py @@ -0,0 +1,265 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights,set_adapter_weights_single +from Adapter import Weight_Adapter,Classifier,Res_Adapter +import logging +import torch.nn.functional as F + + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + classifier, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + classifier.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + data_time.update(time.time() - end) + + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_image = Image_Encoder(input_target_temp) + + #特征1 + fusion_feature=self_input_source+input_image + + + + total_feature=torch.cat((fusion_feature,input_image,input_source),dim=0) + total_label=torch.cat((label_self_supervised,label_self_supervised,target_source),dim=0) + + + + # 文本直接输入全连接层 + output_source = classifier(total_feature) * logit_scale + # 图片直接输入全连接层 + + + # 有监督分类的交叉熵损失 + loss = criterion(output_source, total_label) + + + loss_T = loss + + prec1_source, _ = accuracy(output_source.data, total_label, topk=(1, 5)) + + + + + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, classifier, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + classifier.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = classifier(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source, target_target) + + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data, target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + + + top1_source.update(prec1_source[0], image.size(0)) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights_single(model, classnames, templates) + classifier = Classifier(args, classnames, weights).cuda() + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': classifier.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + classifier, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, classifier, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, classifier,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_fusion_adapter.py b/main_fusion_adapter.py new file mode 100644 index 0000000..2509a8b --- /dev/null +++ b/main_fusion_adapter.py @@ -0,0 +1,267 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights,set_adapter_weights_single +from Adapter import Weight_Adapter,Classifier,Res_Adapter +import logging +import torch.nn.functional as F + + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + classifier, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,adapter): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + model.eval() + logit_scale = model.logit_scale.exp() + + classifier.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + data_time.update(time.time() - end) + + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_image = Image_Encoder(input_target_temp) + + #特征1 + fusion_feature=self_input_source+input_image + + + + total_feature=torch.cat((fusion_feature,input_image,input_source),dim=0) + total_label=torch.cat((label_self_supervised,label_self_supervised,target_source),dim=0) + + + + # 文本直接输入全连接层 + output_source = classifier(adapter(total_feature)) * logit_scale + # 图片直接输入全连接层 + + + # 有监督分类的交叉熵损失 + loss = criterion(output_source, total_label) + + + loss_T = loss + + prec1_source, _ = accuracy(output_source.data, total_label, topk=(1, 5)) + + + + + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, classifier, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,adapter): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + adapter.eval() + model.eval() + classifier.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = classifier(adapter(input_target_add)) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source, target_target) + + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data, target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + + + top1_source.update(prec1_source[0], image.size(0)) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights_single(model, classnames, templates) + classifier = Classifier(args, classnames, weights).cuda() + adapter=Res_Adapter(1024).cuda() + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.0001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': classifier.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + classifier, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder,adapter) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, classifier, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,adapter) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, classifier,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_fusion_adapter_muti_task.py b/main_fusion_adapter_muti_task.py new file mode 100644 index 0000000..d810eec --- /dev/null +++ b/main_fusion_adapter_muti_task.py @@ -0,0 +1,272 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, \ + set_adapter_weights_single +from Adapter import Weight_Adapter, Classifier, Res_Adapter,Linear +import logging +import torch.nn.functional as F + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + classifier, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, adapter): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + model.eval() + logit_scale = model.logit_scale.exp() + + classifier.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + data_time.update(time.time() - end) + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_image = Image_Encoder(input_target_temp) + + # 特征1 + fusion_feature = torch.cat((input_image, input_source), dim=0) + fusion_feature = F.normalize(fusion_feature, dim=1) + fusion_feature =adapter(fusion_feature) + fusion_feature_label=(torch.cat((target_target, target_source), dim=0)) + + + + + # 文本直接输入全连接层 + output_source = classifier(fusion_feature) * logit_scale + # 图片直接输入全连接层 + input_image = F.normalize(input_image, dim=1) + output=classifier(input_image) * logit_scale + # 有监督分类的交叉熵损失 + loss_1 = criterion(output_source, fusion_feature_label) + loss_2 = criterion(output, target_target) + + loss_T = loss_1+loss_2 + + prec1_source, _ = accuracy(output_source.data, fusion_feature_label, topk=(1, 5)) + prec1_target, _ = accuracy(output.data, target_target, topk=(1, 5)) + + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch, classnames, templates, val_loader, model, classifier, epoch, args, criterion, best_prec, + CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, adapter): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + adapter.eval() + model.eval() + classifier.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + + output_target = classifier(adapter(F.normalize(input_target_add))) * logit_scale + output=classifier(F.normalize(input_target_add, dim=1)) * logit_scale + + + + # 文本直接输入全连接层 + loss_source = criterion(output_target, target_target) + loss_target = criterion(output, target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_target.data, target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output.data, target_target, topk=(1, 5)) + + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + + top1_target.update(prec1_target[0], input_source.size(0)) + top1_source.update(prec1_source[0], image.size(0)) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec, best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float() + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights_single(model, classnames, templates) + classifier = Classifier(args, classnames, weights).cuda() + adapter = Res_Adapter(1024).cuda() + # adapter=Linear(args).cuda() + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0000001 + lr_classifier = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.0000001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': classifier.parameters(), 'lr': lr_classifier, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-5) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch = 0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + classifier, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder, + adapter) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec, best_epoch = validate(best_epoch, classnames, templates, loader, model, classifier, + current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, adapter) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, classifier, args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_fusion_adapter_v2.py b/main_fusion_adapter_v2.py new file mode 100644 index 0000000..f5d9549 --- /dev/null +++ b/main_fusion_adapter_v2.py @@ -0,0 +1,267 @@ +import time +from clip import clip +import torch.nn as nn +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights,set_adapter_weights_single +from Adapter import Weight_Adapter,Classifier,Res_Adapter +import logging +import torch.nn.functional as F + + + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + classifier, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,adapter): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + model.eval() + logit_scale = model.logit_scale.exp() + + classifier.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder) + data_time.update(time.time() - end) + + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_image = Image_Encoder(input_target_temp) + + #特征1 + fusion_feature=self_input_source+input_image + + + + total_feature=torch.cat((fusion_feature,input_image,input_source),dim=0) + total_label=torch.cat((label_self_supervised,label_self_supervised,target_source),dim=0) + + + + # 文本直接输入全连接层 + output_source = classifier(adapter(total_feature)) * logit_scale + # 图片直接输入全连接层 + + + # 有监督分类的交叉熵损失 + loss = (output_source, total_label) + + + loss_T = loss + + prec1_source, _ = accuracy(output_source.data, total_label, topk=(1, 5)) + + + + + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def validate(best_epoch,classnames, templates, val_loader, model, classifier, epoch, args, criterion, best_prec, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,adapter): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + adapter.eval() + model.eval() + classifier.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_source = calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder) + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = classifier(adapter(input_target_add)) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source, target_target) + + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data, target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + + + top1_source.update(prec1_source[0], image.size(0)) + + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + prec = max(top1_target.avg, top1_source.avg).item() + if prec > best_prec: + best_prec = max(top1_target.avg, top1_source.avg).item() + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return prec,best_epoch + + +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.float( ) + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) + + prepare_directories(args, CLIP_Text, CLIP_Image) + + # 分类层 + weights = set_adapter_weights_single(model, classnames, templates) + classifier = Classifier(args, classnames, weights).cuda() + adapter=Res_Adapter(1024).cuda() + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + + + # 为模型的每个部分定义学习率和权重衰减 + lr_adapter = 0.0001 + lr_image_encoder = 0.00001 + lr_text_encoder = 0.00001 + weight_decay = 0.00001 + # ADAM_BETAS 是用于控制移动平均衰减率的元组 + ADAM_BETAS = (0.9, 0.999) + + # 创建 AdamW 优化器实例 + optimizer = torch.optim.AdamW([ + {'params': adapter.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': classifier.parameters(), 'lr': lr_adapter, 'weight_decay': weight_decay, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': lr_image_encoder, 'weight_decay': weight_decay, + 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': lr_text_encoder, 'weight_decay': weight_decay, 'betas': ADAM_BETAS} + ], eps=1e-4) + + # 设置CosineAnnealingLR学习率调度器 + # T_max设置为epochs的数量,表示在每个epoch后更新学习率 + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) + source_train_loader_batch = enumerate(train_loader) + + current_epoch = 0 + best_prec = 0 + best_epoch=0 + while (current_epoch < args.epochs): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader, + source_train_loader_batch, + model, + classifier, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder,adapter) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec,best_epoch = validate(best_epoch,classnames, templates, loader, model, classifier, current_epoch, args, criterion, + best_prec, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,adapter) + is_best = prec > best_prec + if prec > args.valacc: + if is_best: + save_model(current_epoch, Text_Encoder, Image_Encoder, classifier,args, prec) + best_prec = max(prec, best_prec) + # 更新日志 + current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + logging.info( + f"Current Time: {current_time},Epoch: {current_epoch}, Accuracy: {prec}, Best: {best_prec}") + + +if __name__ == '__main__': + main() diff --git a/main_supervised.py b/main_supervised.py new file mode 100644 index 0000000..81388b4 --- /dev/null +++ b/main_supervised.py @@ -0,0 +1,353 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from trainer_self_supervised import train # For the training process +from trainer_supervised import warm_train # For the training process +from trainer_supervised import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + +best_prec1 = 0 + + +# adapter 0.0001 text_encoder=0 89.6146011352539 + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output, adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x + + +# class Res_Adapter(nn.Module): +# def __init__(self, n_input, ): +# super().__init__() +# self.residual_ratio = 0.2 +# self.fc = nn.Sequential( +# nn.Linear(n_input, n_input // 4, bias=False), +# nn.ReLU(inplace=True), +# nn.Linear(n_input // 4, n_input, bias=False), +# nn.ReLU(inplace=True) +# ) +# +# def forward(self, x): +# a = self.fc(x) +# x = self.residual_ratio * a + (1 - self.residual_ratio) * x +# +# return x + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + +def main(): + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename = args.filename_dir + args.dataset_name + '.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames = dataset.classnames + templates = dataset.template + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + is_train=True, + shuffle=True) + + criterion = nn.CrossEntropyLoss().cuda() + if not os.path.isdir(args.log): + os.makedirs(args.log) + log = open(os.path.join(args.log, 'log.txt'), 'a') + state = {k: v for k, v in args._get_kwargs()} + log.write(json.dumps(state) + '\n') + log.close() + + cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------') + log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + # 拆分CLIP图像编码器 + if args.name == "ViT-B/16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + + # 1000类标签经过clip + model = model.cuda() + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = CLIP_Text.cuda(), Text_Encoder.cuda(), CLIP_Image.cuda(), Image_Encoder.cuda() + Init_Image_Encoder = Image_Encoder + best_epoch = 0 + best_init_acc = 0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + text_weights = zero_weights + adapter_weights = torch.cat([text_weights, text_weights], dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames), adapter_weights).cuda() + + + ADAM_BETAS = (0.9, 0.999) + if args.shot >= 18: + optimizer = torch.optim.RMSprop([{'params': adapter.parameters(), 'lr': 0.0001}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + else: + optimizer = torch.optim.AdamW( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + while (current_epoch < args.epochs): + if (current_epoch <0): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, + zero_weights) + else: + # source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + # train_loader_shuffle, + # source_train_loader_batch, + # model, + # adapter, + # criterion_classifier_source, + # criterion_classifier_target, + # optimizer, + # current_epoch, + # args, scheduler, criterion, CLIP_Text, + # Text_Encoder, CLIP_Image, Image_Encoder, + # zero_weights) + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec1 = validate(classnames, templates, loader, model, adapter, current_epoch, args, + zero_weights, + criterion, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + weights_path = save_dir + best_init_acc = best_prec1 + best_epoch = current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + # if new_epoch_flag: + # if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + # if current_epoch >= args.valepoch: + # prec1 = validate(classnames, templates, train_loader_shuffle, model, adapter, current_epoch, args, + # zero_weights, + # criterion, + # CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, res_adapter) + # # record the best prec1 and save checkpoint + # is_best = prec1 > best_prec1 + # if prec1 > args.valacc: + # save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + # prec1) + # if not os.path.isdir(save_dir): + # os.mkdir(save_dir) + # torch.save(adapter, save_dir + '/_adapter_extractor.pth') + # torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + # torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + # best_prec1 = max(prec1, best_prec1) + # if is_best: + # save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + # prec1) + # if not os.path.isdir(save_dir): + # os.mkdir(save_dir) + # weights_path = save_dir + # best_init_acc = best_prec1 + # best_epoch = current_epoch + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # log.write('Best acc: %3f' % (best_prec1)) + # log.close() + + # evaluate on the val data + + filename = args.filename_dir + args.dataset_name + '.txt' + strr = str(args.shot) + 'shot' + ' ' + 'best_epoch' + ' ' + str(best_epoch) + ' ' + 'best_init_acc' + ' ' + str( + best_init_acc) + with open(filename, 'a') as f: + f.write(strr + '\n') + f.close() + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------\n') + log.close() + + +if __name__ == '__main__': + main() diff --git a/main_supervised_warm.py b/main_supervised_warm.py new file mode 100644 index 0000000..b2f81ec --- /dev/null +++ b/main_supervised_warm.py @@ -0,0 +1,421 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from trainer_self_supervised import train # For the training process +from trainer_supervised_warm import warm_train # For the training process +from trainer_supervised_warm import validate # For the validate (test) process +from trainer_supervised_warm import warm_validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + +best_prec1 = 0 + + +# adapter 0.0001 text_encoder=0 89.6146011352539 + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output, adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x + + +# class Res_Adapter(nn.Module): +# def __init__(self, n_input, ): +# super().__init__() +# self.residual_ratio = 0.2 +# self.fc = nn.Sequential( +# nn.Linear(n_input, n_input // 4, bias=False), +# nn.ReLU(inplace=True), +# nn.Linear(n_input // 4, n_input, bias=False), +# nn.ReLU(inplace=True) +# ) +# +# def forward(self, x): +# a = self.fc(x) +# x = self.residual_ratio * a + (1 - self.residual_ratio) * x +# +# return x + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + +def main(): + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename = args.filename_dir + args.dataset_name + '.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames = dataset.classnames + templates = dataset.template + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + is_train=True, + shuffle=True) + + criterion = nn.CrossEntropyLoss().cuda() + if not os.path.isdir(args.log): + os.makedirs(args.log) + log = open(os.path.join(args.log, 'log.txt'), 'a') + state = {k: v for k, v in args._get_kwargs()} + log.write(json.dumps(state) + '\n') + log.close() + + cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------') + log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + # 拆分CLIP图像编码器 + if args.name == "ViT-B/16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + + # 1000类标签经过clip + model = model.cuda() + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = CLIP_Text.cuda(), Text_Encoder.cuda(), CLIP_Image.cuda(), Image_Encoder.cuda() + Init_Image_Encoder = Image_Encoder + best_epoch = 0 + best_init_acc = 0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + text_weights = zero_weights + adapter_weights = torch.cat([text_weights, text_weights], dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames), adapter_weights).cuda() + + + ADAM_BETAS = (0.9, 0.999) + if args.shot >= 18: + optimizer = torch.optim.RMSprop([{'params': adapter.parameters(), 'lr': 0.0001}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + warm_optimizer = torch.optim.AdamW( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + else: + optimizer = torch.optim.AdamW( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + warm_optimizer = torch.optim.AdamW( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + + + warm_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch_warm = enumerate(train_loader_shuffle) + + + dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + + while (current_epoch < 80): + if (current_epoch < 80): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch_warm, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + warm_optimizer, + current_epoch, + args, warm_scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, + zero_weights) + else: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec1 = warm_validate(classnames, templates, loader, model, adapter, current_epoch, args, + zero_weights, + criterion, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + weights_path = save_dir + best_init_acc = best_prec1 + best_epoch = current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + + current_epoch = 0 + while (current_epoch < args.epochs): + if (current_epoch <0): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, + zero_weights) + else: + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder, + zero_weights) + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec1 = validate(classnames, templates, loader, model, adapter, current_epoch, args, + zero_weights, + criterion, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + weights_path = save_dir + best_init_acc = best_prec1 + best_epoch = current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + # if new_epoch_flag: + # if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + # if current_epoch >= args.valepoch: + # prec1 = validate(classnames, templates, train_loader_shuffle, model, adapter, current_epoch, args, + # zero_weights, + # criterion, + # CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, res_adapter) + # # record the best prec1 and save checkpoint + # is_best = prec1 > best_prec1 + # if prec1 > args.valacc: + # save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + # prec1) + # if not os.path.isdir(save_dir): + # os.mkdir(save_dir) + # torch.save(adapter, save_dir + '/_adapter_extractor.pth') + # torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + # torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + # best_prec1 = max(prec1, best_prec1) + # if is_best: + # save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + # prec1) + # if not os.path.isdir(save_dir): + # os.mkdir(save_dir) + # weights_path = save_dir + # best_init_acc = best_prec1 + # best_epoch = current_epoch + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # log.write('Best acc: %3f' % (best_prec1)) + # log.close() + + # evaluate on the val data + + filename = args.filename_dir + args.dataset_name + '.txt' + strr = str(args.shot) + 'shot' + ' ' + 'best_epoch' + ' ' + str(best_epoch) + ' ' + 'best_init_acc' + ' ' + str( + best_init_acc) + with open(filename, 'a') as f: + f.write(strr + '\n') + f.close() + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------\n') + log.close() + + +if __name__ == '__main__': + main() diff --git a/main_tip_adapter.py b/main_tip_adapter.py new file mode 100644 index 0000000..08bd614 --- /dev/null +++ b/main_tip_adapter.py @@ -0,0 +1,207 @@ +import os +import random +import argparse +import yaml +from tqdm import tqdm + +import torch +import torch.nn.functional as F +import torch.nn as nn +import torchvision.transforms as transforms + +from datasets import build_dataset +from datasets.utils import build_data_loader +import clip +from utils import * + + +def get_arguments(): + + parser = argparse.ArgumentParser() + parser.add_argument('--config', dest='config', help='settings of Tip-Adapter in yaml format') + args = parser.parse_args() + + return args + + +def run_tip_adapter(cfg, cache_keys, cache_values, val_features, val_labels, test_features, test_labels, clip_weights): + + print("\n-------- Searching hyperparameters on the val set. --------") + + # Zero-shot CLIP + clip_logits = 100. * val_features @ clip_weights + acc = cls_acc(clip_logits, val_labels) + print("\n**** Zero-shot CLIP's val accuracy: {:.2f}. ****\n".format(acc)) + + # Tip-Adapter + beta, alpha = cfg['init_beta'], cfg['init_alpha'] + + affinity = val_features @ cache_keys + cache_logits = ((-1) * (beta - beta * affinity)).exp() @ cache_values + + tip_logits = clip_logits + cache_logits * alpha + acc = cls_acc(tip_logits, val_labels) + print("**** Tip-Adapter's val accuracy: {:.2f}. ****\n".format(acc)) + + # Search Hyperparameters + best_beta, best_alpha = search_hp(cfg, cache_keys, cache_values, val_features, val_labels, clip_weights) + + + print("\n-------- Evaluating on the test set. --------") + + # Zero-shot CLIP + clip_logits = 100. * test_features @ clip_weights + acc = cls_acc(clip_logits, test_labels) + print("\n**** Zero-shot CLIP's test accuracy: {:.2f}. ****\n".format(acc)) + + # Tip-Adapter + affinity = test_features @ cache_keys + cache_logits = ((-1) * (best_beta - best_beta * affinity)).exp() @ cache_values + + tip_logits = clip_logits + cache_logits * best_alpha + acc = cls_acc(tip_logits, test_labels) + print("**** Tip-Adapter's test accuracy: {:.2f}. ****\n".format(acc)) + + +def run_tip_adapter_F(cfg, cache_keys, cache_values, val_features, val_labels, test_features, test_labels, clip_weights, clip_model, train_loader_F): + + # Enable the cached keys to be learnable + adapter = nn.Linear(cache_keys.shape[0], cache_keys.shape[1], bias=False).to(clip_model.dtype).cuda() + adapter.weight = nn.Parameter(cache_keys.t()) + + optimizer = torch.optim.AdamW(adapter.parameters(), lr=cfg['lr'], eps=1e-4) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, cfg['train_epoch'] * len(train_loader_F)) + + beta, alpha = cfg['init_beta'], cfg['init_alpha'] + best_acc, best_epoch = 0.0, 0 + + for train_idx in range(cfg['train_epoch']): + # Train + adapter.train() + correct_samples, all_samples = 0, 0 + loss_list = [] + print('Train Epoch: {:} / {:}'.format(train_idx, cfg['train_epoch'])) + + for i, (images, target) in enumerate(tqdm(train_loader_F)): + images, target = images.cuda(), target.cuda() + with torch.no_grad(): + image_features = clip_model.encode_image(images) + image_features /= image_features.norm(dim=-1, keepdim=True) + + affinity = adapter(image_features) + cache_logits = ((-1) * (beta - beta * affinity)).exp() @ cache_values + clip_logits = 100. * image_features @ clip_weights + tip_logits = clip_logits + cache_logits * alpha + + loss = F.cross_entropy(tip_logits, target) + + acc = cls_acc(tip_logits, target) + correct_samples += acc / 100 * len(tip_logits) + all_samples += len(tip_logits) + loss_list.append(loss.item()) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + current_lr = scheduler.get_last_lr()[0] + print('LR: {:.6f}, Acc: {:.4f} ({:}/{:}), Loss: {:.4f}'.format(current_lr, correct_samples / all_samples, correct_samples, all_samples, sum(loss_list)/len(loss_list))) + + # Eval + adapter.eval() + + affinity = adapter(test_features) + cache_logits = ((-1) * (beta - beta * affinity)).exp() @ cache_values + clip_logits = 100. * test_features @ clip_weights + tip_logits = clip_logits + cache_logits * alpha + acc = cls_acc(tip_logits, test_labels) + + print("**** Tip-Adapter-F's test accuracy: {:.2f}. ****\n".format(acc)) + if acc > best_acc: + best_acc = acc + best_epoch = train_idx + torch.save(adapter.weight, cfg['cache_dir'] + "/best_F_" + str(cfg['shots']) + "shots.pt") + + adapter.weight = torch.load(cfg['cache_dir'] + "/best_F_" + str(cfg['shots']) + "shots.pt") + print(f"**** After fine-tuning, Tip-Adapter-F's best test accuracy: {best_acc:.2f}, at epoch: {best_epoch}. ****\n") + + print("\n-------- Searching hyperparameters on the val set. --------") + + # Search Hyperparameters + best_beta, best_alpha = search_hp(cfg, cache_keys, cache_values, val_features, val_labels, clip_weights, adapter=adapter) + + print("\n-------- Evaluating on the test set. --------") + + affinity = adapter(test_features) + cache_logits = ((-1) * (best_beta - best_beta * affinity)).exp() @ cache_values + + tip_logits = clip_logits + cache_logits * best_alpha + acc = cls_acc(tip_logits, test_labels) + print("**** Tip-Adapter-F's test accuracy: {:.2f}. ****\n".format(max(best_acc, acc))) + + +def main(): + + # Load config file + args = get_arguments() + assert (os.path.exists(args.config)) + + cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) + + cache_dir = os.path.join('./caches', cfg['dataset']) + os.makedirs(cache_dir, exist_ok=True) + cfg['cache_dir'] = cache_dir + + print("\nRunning configs.") + print(cfg, "\n") + + # CLIP + clip_model, preprocess = clip.load(cfg['backbone']) + clip_model.eval() + + # Prepare dataset + random.seed(1) + torch.manual_seed(1) + + print("Preparing dataset.") + dataset = build_dataset(cfg['dataset'], cfg['root_path'], cfg['shots']) + + val_loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, shuffle=False) + test_loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + + train_loader_cache = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, is_train=True, shuffle=False) + train_loader_F = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, is_train=True, shuffle=True) + + # Textual features + print("\nGetting textual features as CLIP's classifier.") + clip_weights = clip_classifier(dataset.classnames, dataset.template, clip_model) + + # Construct the cache model by few-shot training set + print("\nConstructing cache model by few-shot visual features and labels.") + cache_keys, cache_values = build_cache_model(cfg, clip_model, train_loader_cache) + + # Pre-load val features + print("\nLoading visual features and labels from val set.") + val_features, val_labels = pre_load_features(cfg, "val", clip_model, val_loader) + + # Pre-load test features + print("\nLoading visual features and labels from test set.") + test_features, test_labels = pre_load_features(cfg, "test", clip_model, test_loader) + + # ------------------------------------------ Tip-Adapter ------------------------------------------ + run_tip_adapter(cfg, cache_keys, cache_values, val_features, val_labels, test_features, test_labels, clip_weights) + + # ------------------------------------------ Tip-Adapter-F ------------------------------------------ + run_tip_adapter_F(cfg, cache_keys, cache_values, val_features, val_labels, test_features, test_labels, clip_weights, clip_model, train_loader_F) + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/main_toal_self_supervised.py b/main_toal_self_supervised.py new file mode 100644 index 0000000..020e4e0 --- /dev/null +++ b/main_toal_self_supervised.py @@ -0,0 +1,358 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from trainer_self_supervised import train # For the training process +from trainer_self_supervised import warm_train # For the training process +from trainer_self_supervised import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + +best_prec1 = 0 + + +# adapter 0.0001 text_encoder=0 89.6146011352539 + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output, adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x + + +class Res_Adapter(nn.Module): + def __init__(self, n_input, ): + super().__init__() + self.residual_ratio = 0.2 + self.fc = nn.Sequential( + nn.Linear(n_input, n_input // 4, bias=False), + nn.ReLU(inplace=True), + nn.Linear(n_input // 4, n_input, bias=False), + nn.ReLU(inplace=True) + ) + + def forward(self, x): + a = self.fc(x) + x = self.residual_ratio * a + (1 - self.residual_ratio) * x + + return x + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + +def main(): + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename = args.filename_dir + args.dataset_name + '.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames = dataset.classnames + templates = dataset.template + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + is_train=True, + shuffle=True) + + criterion = nn.CrossEntropyLoss().cuda() + if not os.path.isdir(args.log): + os.makedirs(args.log) + log = open(os.path.join(args.log, 'log.txt'), 'a') + state = {k: v for k, v in args._get_kwargs()} + log.write(json.dumps(state) + '\n') + log.close() + + cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------') + log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + # 拆分CLIP图像编码器 + if args.name == "ViT-B/16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + print("warming...") + # # 1000类标签经过clip + model = model.cuda() + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = CLIP_Text.cuda(), Text_Encoder.cuda(), CLIP_Image.cuda(), Image_Encoder.cuda() + Init_Image_Encoder = Image_Encoder + best_epoch = 0 + best_init_acc = 0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + text_weights = zero_weights + + adapter_weights = torch.cat([text_weights, text_weights], dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames), adapter_weights).cuda() + res_adapter = Res_Adapter(1024).cuda() + + ADAM_BETAS = (0.9, 0.999) + if args.shot >= 18: + optimizer = torch.optim.RMSprop([{'params': adapter.parameters(), 'lr': 0.0001}, + {'params': res_adapter.parameters(), 'lr': 0.0001}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + else: + optimizer = torch.optim.AdamW( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': res_adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.0001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + while (current_epoch < args.epochs): + if (current_epoch <50): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, + zero_weights, + res_adapter) + else: + # source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + # train_loader_shuffle, + # source_train_loader_batch, + # model, + # adapter, + # criterion_classifier_source, + # criterion_classifier_target, + # optimizer, + # current_epoch, + # args, scheduler, criterion, CLIP_Text, + # Text_Encoder, CLIP_Image, Image_Encoder, + # zero_weights, + # res_adapter) + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec1 = validate(classnames, templates, loader, model, adapter, current_epoch, args, + zero_weights, + criterion, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, res_adapter) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + weights_path = save_dir + best_init_acc = best_prec1 + best_epoch = current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + # if new_epoch_flag: + # if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + # if current_epoch >= args.valepoch: + # prec1 = validate(classnames, templates, train_loader_shuffle, model, adapter, current_epoch, args, + # zero_weights, + # criterion, + # CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, res_adapter) + # # record the best prec1 and save checkpoint + # is_best = prec1 > best_prec1 + # if prec1 > args.valacc: + # save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + # prec1) + # if not os.path.isdir(save_dir): + # os.mkdir(save_dir) + # torch.save(adapter, save_dir + '/_adapter_extractor.pth') + # torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + # torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + # best_prec1 = max(prec1, best_prec1) + # if is_best: + # save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + # prec1) + # if not os.path.isdir(save_dir): + # os.mkdir(save_dir) + # weights_path = save_dir + # best_init_acc = best_prec1 + # best_epoch = current_epoch + # log = open(os.path.join(args.log, 'log.txt'), 'a') + # log.write('Best acc: %3f' % (best_prec1)) + # log.close() + + # evaluate on the val data + + filename = args.filename_dir + args.dataset_name + '.txt' + strr = str(args.shot) + 'shot' + ' ' + 'best_epoch' + ' ' + str(best_epoch) + ' ' + 'best_init_acc' + ' ' + str( + best_init_acc) + with open(filename, 'a') as f: + f.write(strr + '\n') + f.close() + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------\n') + log.close() + + +if __name__ == '__main__': + main() diff --git a/main_toal_self_supervised_noadapter.py b/main_toal_self_supervised_noadapter.py new file mode 100644 index 0000000..bfe351e --- /dev/null +++ b/main_toal_self_supervised_noadapter.py @@ -0,0 +1,305 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from trainer_self_supervised_noadapter import train # For the training process +from trainer_self_supervised_noadapter import warm_train # For the training process +from trainer_self_supervised_noadapter import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + +best_prec1 = 0 + + +# adapter 0.0001 text_encoder=0 89.6146011352539 + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output, adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x + + + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + +def main(): + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename = args.filename_dir + args.dataset_name + '.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames = dataset.classnames + templates = dataset.template + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + is_train=True, + shuffle=True) + + criterion = nn.CrossEntropyLoss().cuda() + if not os.path.isdir(args.log): + os.makedirs(args.log) + log = open(os.path.join(args.log, 'log.txt'), 'a') + state = {k: v for k, v in args._get_kwargs()} + log.write(json.dumps(state) + '\n') + log.close() + + cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------') + log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + # 拆分CLIP图像编码器 + if args.name == "ViT-B/16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + + # 1000类标签经过clip + model = model.cuda() + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = CLIP_Text.cuda(), Text_Encoder.cuda(), CLIP_Image.cuda(), Image_Encoder.cuda() + Init_Image_Encoder = Image_Encoder + best_epoch = 0 + best_init_acc = 0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + text_weights = zero_weights + adapter_weights = torch.cat([text_weights, text_weights], dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames), adapter_weights).cuda() + + ADAM_BETAS = (0.9, 0.999) + if args.shot >= 18: + optimizer = torch.optim.RMSprop([{'params': adapter.parameters(), 'lr': 0.0001}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001}], + eps=1e-5) + else: + optimizer = torch.optim.RMSprop( + [ + {'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 0.00001, 'betas': ADAM_BETAS}, + {'params': Image_Encoder.parameters(), 'lr': 0.0001, 'weight_decay': 0.0001, 'betas': ADAM_BETAS}, + {'params': Text_Encoder.parameters(), 'lr': 0.0001, 'weight_decay': 0.0001, 'betas': ADAM_BETAS}] + , eps=1e-4 + ) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + while (current_epoch < args.epochs): + if (current_epoch <= 20): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, + zero_weights + ) + elif (current_epoch > 20): + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder, + zero_weights) + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec1 = validate(classnames, templates, loader, model, adapter, current_epoch, args, + zero_weights, + criterion, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_prec1 = max(prec1, best_prec1) + if is_best: + weights_path = save_dir + best_init_acc = best_prec1 + best_epoch = current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + + # evaluate on the val data + + filename = args.filename_dir + args.dataset_name + '.txt' + strr = str(args.shot) + 'shot' + ' ' + 'best_epoch' + ' ' + str(best_epoch) + ' ' + 'best_init_acc' + ' ' + str( + best_init_acc) + with open(filename, 'a') as f: + f.write(strr + '\n') + f.close() + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------\n') + log.close() + + +if __name__ == '__main__': + main() diff --git a/make_pic.py b/make_pic.py new file mode 100644 index 0000000..03142a3 --- /dev/null +++ b/make_pic.py @@ -0,0 +1,610 @@ +import matplotlib +import numpy as np +from matplotlib import pyplot as plt + +# matplotlib画图中中文显示会有问题,需要这两行设置默认字体.没中文可以去掉 +plt.rcParams['font.sans-serif']=['SimHei'] +plt.rcParams['axes.unicode_minus'] = False + +# 设置figure_size尺寸 +# plt.rcParams['figure.figsize'] = (22.0, 22.0) +plt.rcParams['figure.figsize'] = (5.0,5.0) +fig = plt.figure() + +# 设定图表颜色 +fig.set(alpha=0.2) +#fig.suptitle('suptitle', fontsize=24, x=0.6,y=0.9, horizontalalignment='left', va='bottom') + +# 输入数据 +# plt.subplot2grid((4,3),(0,0)) +# #Average over 11 datasets +# y_imagenet_cacfc=[65.2671,68.2012,72.0107,75.2106,77.7047] +# +# y_imagenet_CoOp=[59.5882,62.3236,66.7664,69.8918,73.4251] +# +# y_clip_adapter=[62.6745,65.5527,68.6055,71.3964,74.4436] +# +# +# y_tip_adapter=[62.3282,64.6182,66.5327,68.4955,70.3182] +# +# y_tip_adapter_f=[63.2982,65.93913,68.9836,72.1573,75.1346] +# y_clip=[58.9627] +# x=[1,2,4,8,16] +# x_zero=[0] + + +#数据及线属性 +#cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# +# #clip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Average over 11 datasets',fontproperties='Times New Roman', fontsize=15,fontweight='bold') +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Average.png", dpi=600) +# # +# +# # 输入数据 +# plt.subplot2grid((4,3),(0,1)) +# +# # #caltech101 +# y_imagenet_cacfc=[89.4523,90.34482574,91.88641357,92.08924866,93.7931034482758] +# y_imagenet_CoOp=[87.53,87.93,89.55,90.21,91.83] +# y_clip_adapter=[88.6,89.37,89.98,91.4,92.49] +# +# y_tip_adapter=[87.18,88.44,89.39,89.83,90.18] +# y_tip_adapter_f=[87.9,89.4,90.78,91.1,92.28] +# y_clip=[86.29] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# # 数据及线属性 +# # cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# #tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #ctip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Caltech101',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Caltech101.png", dpi=600) +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(0,2)) +# # # +# y_imagenet_cacfc=[46.2765957435535,52.1867612202962,61.7612293144208,66.1938533918232,68.7943262230983] +# +# y_imagenet_CoOp=[44.39,45.15,53.49,59.97,63.58] +# +# y_clip_adapter=[45.8,51.48,56.86,61,65.96] +# +# y_tip_adapter=[46.22,49.47,53.96,58.63,60.93] +# +# y_tip_adapter_f=[48.58,51.64,57.21,61.92,66.23] +# +# y_clip=[42.32] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('DTD',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("DTD.png", dpi=600) +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(1,0)) +# # #EuroSAT +# y_imagenet_cacfc=[57.4074073998722,66.40987654,77.95061493,83.9012,84.1716049232012] +# +# y_imagenet_CoOp=[50.63,61.5,70.18,76.73,83.53] +# +# y_clip_adapter=[61.4,63.9,73.38,77.93,84.43] +# +# y_tip_adapter=[54.38,61.68,65.32,67.95,70.54] +# +# y_tip_adapter_f=[51.81,66.32,69.23,77.69,81.96] +# +# y_clip=[37.56] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('EuroSAT',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("EuroSAT.png", dpi=600) +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(1,1)) +# # #FGVCAircraft +# y_imagenet_cacfc=[22.5322532653808,24.4824482448244,28.0828075408935,34.2634239196777,41.3441344134413] +# +# y_imagenet_CoOp=[9.64,18.68,21.87,26.13,31.26] +# +# y_clip_adapter=[17.49,20.1,22.59,26.25,32.1] +# +# y_tip_adapter=[19.05,21.2,22.41,25.59,29.76] +# +# y_tip_adapter_f=[20.06,21.17,24.97,28.13,34.83] +# +# y_clip=[17.28] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('FGVCAircraft',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# # plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("FGVCAircraft.png", dpi=600) +# # +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(1,2)) +# # #Flowers102 +# y_imagenet_cacfc=[80.8769836425781,87.7791366577148,93.26025390625,95.8181076049804,96.9955368041992] +# +# y_imagenet_CoOp=[68.12,77.51,86.2,91.18,94.51] +# +# y_clip_adapter=[73.49,81.61,87.17,91.72,93.9] +# +# y_tip_adapter=[73.12,79.13,83.8,87.98,89.89] +# +# y_tip_adapter_f=[76.7,79.5,89,92.4,93.9] +# +# y_clip=[66.14] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# 73.49 +# 81.61 +# 87.17 +# 91.72 +# 93.90 +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Flowers102',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Flowers102.png", dpi=600) +# # +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(2,0)) +# # #Food101 +# y_imagenet_cacfc=[78.171617161716,78.3366336633663,78.4983498349835,78.5544554455445,79.399339931979] +# +# y_imagenet_CoOp=[74.32,72.49,73.33,71.82,74.67] +# +# y_clip_adapter=[76.82,77.22,77.92,78.04,78.25] +# +# y_tip_adapter=[77.42,77.52,77.54,77.76,77.83] +# +# y_tip_adapter_f=[77.27,77.44,77.2,78.36,79.05] +# +# y_clip=[77.31] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('Food101',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("Food101.png", dpi=600) +# # +# # +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(2,1)) +# # #imagenet +# y_imagenet_cacfc=[61.408,61.826,62.91,64.544,66.086] +# y_imagenet_CoOp=[57.15,57.81,59.99,61.56,62.95] +# y_clip_adapter=[61.2,61.52,61.84,62.68,63.59] +# +# y_tip_adapter=[60.7,60.96,60.98,61.45,62.03] +# y_tip_adapter_f=[61.32,61.69,62.52,64,65.51] +# y_clip=[60.33] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# +# #clip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('ImageNet',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("ImageNet.png", dpi=600) +# +# +# +# # 输入数据 +# # plt.subplot2grid((4,3),(2,2)) +# #OxfordPets +# y_imagenet_cacfc=[85.9089670105895,86.7538838816715,88.4982223510742,88.9615698996601,89.8609975366184] +# +# y_imagenet_CoOp=[85.89,82.64,86.7,85.32,87.01] +# +# y_clip_adapter=[85.99,86.73,87.46,87.65,87.84] +# +# y_tip_adapter=[86.1,87.03,86.45,87.03,88.14] +# +# y_tip_adapter_f=[86.44,86.44,87,88.11,89.13] +# +# y_clip=[85.77] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('OxfordPets',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("OxfordPets.png", dpi=600) +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(3,0)) +# # #StanfordCars +# y_imagenet_cacfc=[59.7686854973166,62.1191394252276,66.2977241665076,73.3490859440733,79.5423454964966] +# +# y_imagenet_CoOp=[55.59,58.28,62.62,68.43,73.3659] +# +# y_clip_adapter=[55.13,58.74,62.45,67.89,74.01] +# +# y_tip_adapter=[57.54,57.93,61.45,62.93,66.77] +# +# y_tip_adapter_f=[58.42,61.06,64.54,69.32,75.08] +# +# y_clip=[55.61] +# x=[1,2,4,8,16] +# x_zero=[0] +# +# 55.13 +# 58.74 +# 62.45 +# 67.89 +# 74.01 +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('StanfordCars',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("StanfordCars.png", dpi=600) +# # +# # +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(3,1)) +# # #SUN397 +# y_imagenet_cacfc=[63.4156171284634,65.2443324937027,68.1259445843828,70.1,72.6851385390428] +# +# y_imagenet_CoOp=[60.29,59.48,63.47,65.52,69.26] +# +# y_clip_adapter=[61.3,63.29,65.96,67.5,69.55] +# +# y_tip_adapter=[61.3,62.7,64.1,65.62,66.85] +# +# y_tip_adapter_f=[62.4,63.22,65.75,68.28,71.27] +# +# y_clip=[58.52] +# x=[1,2,4,8,16] +# x_zero=[0] +# 61.30 +# 63.29 +# 65.96 +# 67.50 +# 69.55 +# #数据及线属性 +# #cacfc +# plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +# #CoOp +# plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +# #clip_adapter +# plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +# #Tip_adapter +# plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +# #Tip_adapter_f +# plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +# #clip +# plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +# #clip_adapter +# +# plt.grid(linestyle="--") +# # 修改坐标轴字体及大小 +# plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +# plt.xticks(fontproperties='Times New Roman', size=14) +# #标题设置 +# plt.title('SUN397',fontproperties='Times New Roman', fontsize=15) +# plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +# plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# # 添加标签 +# plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), +# ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +# plt.savefig("SUN397.png", dpi=600) +# # +# # +# # +# # +# # +# # +# # # 输入数据 +# # plt.subplot2grid((4,3),(3,2)) +# # #UCF101 +y_imagenet_cacfc=[67.4596880782447,71.2661895751953,74.4911445982708,77.768966428256,82.0777160978304] + +y_imagenet_CoOp=[61.92,64.09,67.03,71.94,75.71] + +y_clip_adapter=[62.2,67.12,69.05,73.3,76.76] + +y_tip_adapter=[62.6,64.74,66.46,68.68,70.58] + +y_tip_adapter_f=[65.38,67.45,71.17,74.42,77.24] + +y_clip=[61.46] +x=[1,2,4,8,16] +x_zero=[0] +62.20 +67.12 +69.05 +73.30 +76.76 +#数据及线属性 +#cacfc +plt.plot(x,y_imagenet_cacfc, color='r', linestyle='-', marker='*', linewidth=1,label='Our') +#CoOp +plt.plot(x,y_imagenet_CoOp, color='#4169E1', linestyle='-', marker='*', linewidth=1,label='CoOp') +#clip_adapter +plt.plot(x,y_clip_adapter, color='g', linestyle='-', marker='*', linewidth=1,label='CLIP-Adapter') +#Tip_adapter +plt.plot(x,y_tip_adapter, color='cyan', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter') +#Tip_adapter_f +plt.plot(x,y_tip_adapter_f, color='orange', linestyle='-', marker='*', linewidth=1,label='Tip-Adapter-F') +#clip +plt.plot(x_zero,y_clip, color='mediumpurple', linestyle='-', marker='*', linewidth=1,label='Zero-shot CLIP') +#clip_adapter + +plt.grid(linestyle="--") +# 修改坐标轴字体及大小 +plt.yticks(fontproperties='Times New Roman', size=14)#设置大小及加粗 +plt.xticks(fontproperties='Times New Roman', size=14) +#标题设置 +plt.title('UCF101',fontproperties='Times New Roman', fontsize=15) +plt.xlabel('Number of labeled training examples per class',fontproperties='Times New Roman', fontsize=12) +plt.ylabel('Score(%)',fontproperties='Times New Roman') +# plt.legend(loc='lower right',prop={'family' : 'Times New Roman', 'size': 13}) +# 添加标签 +plt.annotate('Zero-shot\n CLIP', xy=(x_zero[0], y_clip[0]), xytext=(x_zero[0]+0.3, y_clip[0]-0.9), + ha='center', fontproperties='Times New Roman', fontsize=10, color='mediumpurple') +plt.savefig("UCF101.png", dpi=600) +# # +# # plt.savefig("result.png", dpi=600) +# # plt.show() diff --git a/models/CB_Loss.py b/models/CB_Loss.py new file mode 100644 index 0000000..9558138 --- /dev/null +++ b/models/CB_Loss.py @@ -0,0 +1,41 @@ +import torch +import torch.nn.functional as F +import numpy as np +class CBLoss(torch.nn.Module): + def __init__(self, samples_per_cls, no_of_classes, loss_type, beta=0.9999, gamma=2.0): + super(CBLoss, self).__init__() + self.samples_per_cls = samples_per_cls#samples_per_cls: 一个列表,表示每个类别的样本数量 + self.no_of_classes = no_of_classes #no_of_classes: 类别数量 + self.loss_type = loss_type #loss_type: 表示损失函数的类型,可以是 softmax、sigmoid 或 focal + self.beta = beta #beta: 参考论文中定义的 beta 参数,默认值是 0.9999 + self.gamma = gamma #gamma: 如果损失函数类型是 focal,表示 gamma 参数,默认值是 2.0 + self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + def forward(self, logits, labels): + #effective_num = 1.0 - np.power(self.beta, self.samples_per_cls) + #weights = (1.0 - self.beta) / effective_num + #weights = weights / torch.sum(weights) * self.no_of_classes + weights = np.array([1]) * self.no_of_classes + labels_one_hot = F.one_hot(labels, self.no_of_classes).float() + weights = torch.tensor(weights).float() + + weights = weights.unsqueeze(0).to(self.device) + labels_one_hot = labels_one_hot.to(self.device) + + weights = weights.repeat(labels_one_hot.shape[0], 1) * labels_one_hot + weights = weights.sum(1).unsqueeze(1) + weights = weights.repeat(1, self.no_of_classes) + + if self.loss_type == "focal": + ce_loss = F.binary_cross_entropy_with_logits(input=logits, target=labels_one_hot, reduction="none") + pt = torch.exp(-ce_loss) + focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean() + loss = focal_loss + elif self.loss_type == "sigmoid": + loss = F.binary_cross_entropy_with_logits(input=logits, target=labels_one_hot, weight=weights) + elif self.loss_type == "softmax": + # loss = F.cross_entropy(input=logits, target=labels, weight=weights) + pred = logits.softmax(dim=1) + cb_loss = F.binary_cross_entropy(input=pred, target=labels_one_hot, weight=weights) + + return cb_loss \ No newline at end of file diff --git a/models/DomainClassifierSource.py b/models/DomainClassifierSource.py new file mode 100644 index 0000000..3e27eea --- /dev/null +++ b/models/DomainClassifierSource.py @@ -0,0 +1,48 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.autograd import Variable + + +def _assert_no_grad(variable): + assert not variable.requires_grad, \ + "nn criterions don't compute the gradient w.r.t. targets - please " \ + "mark these variables as volatile or not requiring gradients" + + +class _Loss(nn.Module): + def __init__(self, size_average=True): + super(_Loss, self).__init__() + self.size_average = size_average + + +class _WeightedLoss(_Loss): + def __init__(self, weight=None, size_average=True): + super(_WeightedLoss, self).__init__(size_average) + self.register_buffer('weight', weight) + + +class DClassifierForSource(_WeightedLoss): + + def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10): + super(DClassifierForSource, self).__init__(weight, size_average) + self.nClass = nClass + + def forward(self, input): + # _assert_no_grad(target) + batch_size = input.size(0) + prob = F.softmax(input, dim=1) + # prob = F.sigmoid(input) + c = prob.data[:, :self.nClass].sum(1) + d = (prob.data[:, :self.nClass].sum(1) == 0).sum() + if (prob.data[:, :self.nClass].sum(1) == 0).sum() != 0: ########### in case of log(0) + soft_weight = torch.FloatTensor(batch_size).fill_(0) + soft_weight[prob[:, :self.nClass].sum(1).data.cpu() == 0] = 1e-6 + soft_weight_var = Variable(soft_weight).cuda() + loss = -((prob[:, :self.nClass].sum(1) + soft_weight_var).log().mean()) + else: + a = prob[:, :self.nClass].sum(1) # 求数组每一行的和 + b = a.log() + c = b.mean() + loss = -(prob[:, :self.nClass].sum(1).log().mean()) + return loss diff --git a/models/DomainClassifierTarget.py b/models/DomainClassifierTarget.py new file mode 100644 index 0000000..8e392a7 --- /dev/null +++ b/models/DomainClassifierTarget.py @@ -0,0 +1,44 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.autograd import Variable + + +def _assert_no_grad(variable): + assert not variable.requires_grad, \ + "nn criterions don't compute the gradient w.r.t. targets - please " \ + "mark these variables as volatile or not requiring gradients" + + +class _Loss(nn.Module): + def __init__(self, size_average=True): + super(_Loss, self).__init__() + self.size_average = size_average + + +class _WeightedLoss(_Loss): + def __init__(self, weight=None, size_average=True): + super(_WeightedLoss, self).__init__(size_average) + self.register_buffer('weight', weight) + + +class DClassifierForTarget(_WeightedLoss): + + def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10): + super(DClassifierForTarget, self).__init__(weight, size_average) + self.nClass = nClass + + def forward(self, input): + # _assert_no_grad(target) + batch_size = input.size(0) + + prob = F.softmax(input, dim=1) + # prob = F.sigmoid(input) + if (prob.data[:, self.nClass:].sum(1) == 0).sum() != 0: ########### in case of log(0) + soft_weight = torch.FloatTensor(batch_size).fill_(0) + soft_weight[prob[:, self.nClass:].sum(1).data.cpu() == 0] = 1e-6 + soft_weight_var = Variable(soft_weight).cuda() + loss = -((prob[:, self.nClass:].sum(1) + soft_weight_var).log().mean()) + else: + loss = -(prob[:, self.nClass:].sum(1).log().mean()) + return loss diff --git a/models/EntropyMinimizationPrinciple.py b/models/EntropyMinimizationPrinciple.py new file mode 100644 index 0000000..b2635d6 --- /dev/null +++ b/models/EntropyMinimizationPrinciple.py @@ -0,0 +1,46 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.autograd import Variable + + +def _assert_no_grad(variable): + assert not variable.requires_grad, \ + "nn criterions don't compute the gradient w.r.t. targets - please " \ + "mark these variables as volatile or not requiring gradients" + + +class _Loss(nn.Module): + def __init__(self, size_average=True): + super(_Loss, self).__init__() + self.size_average = size_average + + +class _WeightedLoss(_Loss): + def __init__(self, weight=None, size_average=True): + super(_WeightedLoss, self).__init__(size_average) + self.register_buffer('weight', weight) + + +class EMLossForTarget(_WeightedLoss): + + def __init__(self, weight=None, size_average=True, ignore_index=-100, reduce=True, nClass=10): + super(EMLossForTarget, self).__init__(weight, size_average) + self.nClass = nClass + + def forward(self, input): + batch_size = input.size(0) + prob = F.softmax(input, dim=1) + # prob = F.sigmoid(input) + prob_source = prob[:, :self.nClass] + prob_target = prob[:, self.nClass:] + prob_sum = prob_target + prob_source + if (prob_sum.data.cpu() == 0).sum() != 0: + weight_sum = torch.FloatTensor(batch_size, self.nClass).fill_(0) + weight_sum[prob_sum.data.cpu() == 0] = 1e-6 + weight_sum = Variable(weight_sum).cuda() + loss_sum = -(prob_sum + weight_sum).log().mul(prob_sum).sum(1).mean() + else: + loss_sum = -prob_sum.log().mul(prob_sum).sum(1).mean() + + return loss_sum diff --git a/models/SmoothCrossEntropy.py b/models/SmoothCrossEntropy.py new file mode 100644 index 0000000..16f67f1 --- /dev/null +++ b/models/SmoothCrossEntropy.py @@ -0,0 +1,12 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +class SmoothCrossEntropy(nn.Module): + def __init__(self, epsilon: float = 0.): + super(SmoothCrossEntropy, self).__init__() + self.epsilon = float(epsilon) + + def forward(self, logits: torch.Tensor, labels: torch.LongTensor) -> torch.Tensor: + target_probs = torch.full_like(logits, self.epsilon / (logits.shape[1] - 1)) + target_probs.scatter_(1, labels.unsqueeze(1), 1 - self.epsilon) + return F.kl_div(torch.log_softmax(logits, 1), target_probs, reduction='none').sum(1) \ No newline at end of file diff --git a/models/__init__.py b/models/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/models/resnet.py b/models/resnet.py new file mode 100644 index 0000000..77b18f3 --- /dev/null +++ b/models/resnet.py @@ -0,0 +1,261 @@ +import torch.nn as nn +import math +import torch.utils.model_zoo as model_zoo +import torch +import ipdb + +__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', + 'resnet152'] + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + + +def conv3x3(in_planes, out_planes, stride=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, + padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=1000): + self.inplanes = 64 + super(ResNet, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc(x) + + return x + + +def resnet18(args, **kwargs): + """Constructs a ResNet-18 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) + if args.pretrained: + model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) + # modify the structure of the model. + num_of_feature_map = model.fc.in_features + model.fc = nn.Linear(num_of_feature_map, args.num_classes) + model.fc.weight.data.normal_(0.0, 0.02) + model.fc.bias.data.normal_(0) + return model + + +def resnet34(args, **kwargs): + """Constructs a ResNet-34 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) + if args.pretrained: + print('Load ImageNet pre-trained resnet model') + model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) + # modify the structure of the model. + num_of_feature_map = model.fc.in_features + model.fc = nn.Linear(num_of_feature_map, args.num_classes) + + return model + + +def resnet50(args, **kwargs): + """Constructs a ResNet-50 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) + if args.pretrained: + if args.pretrained_checkpoint: ################### use self-pretrained model + # modify the structure of the model. + num_of_feature_map = model.fc.in_features + model.fc = nn.Linear(num_of_feature_map, args.num_classes * 2) + init_dict = model.state_dict() + pretrained_dict_temp = torch.load(args.pretrained_checkpoint)['state_dict'] + pretrained_dict = {k.replace('module.', ''): v for k, v in pretrained_dict_temp.items()} + temp = init_dict['fc.weight'].clone() + temp[:args.num_classes, :] = pretrained_dict['fc.weight'].clone() + pretrained_dict['fc.weight'] = temp.clone() + temp = init_dict['fc.bias'].clone() + temp[:args.num_classes] = pretrained_dict['fc.bias'].clone() + pretrained_dict['fc.bias'] = temp.clone() + model.load_state_dict(pretrained_dict) + else: + model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) ########## use imagenet pretrained model + # modify the structure of the model. + num_of_feature_map = model.fc.in_features + model.fc = nn.Linear(num_of_feature_map, args.num_classes * 2) + return model + + +def resnet101(args, **kwargs): + """Constructs a ResNet-101 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) + if args.pretrained: + model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) + # modify the structure of the model. + num_of_feature_map = model.fc.in_features + model.fc = nn.Linear(num_of_feature_map, args.num_classes) + model.fc.weight.data.normal_(0.0, 0.02) + model.fc.bias.data.normal_(0) + return model + + +def resnet152(args, **kwargs): + """Constructs a ResNet-152 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) + if args.pretrained: + model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) + # modify the structure of the model. + num_of_feature_map = model.fc.in_features + model.fc = nn.Linear(num_of_feature_map, args.num_classes) + + return model + + +def resnet(args, **kwargs): ################ Only support ResNet-50 in this simple code. + print("==> creating model '{}' ".format(args.arch)) + if args.arch == 'resnet18': + return resnet18(args) + elif args.arch == 'resnet34': + return resnet34(args) + elif args.arch == 'resnet50': + return resnet50(args) + elif args.arch == 'resnet101': + return resnet101(args) + elif args.arch == 'resnet152': + return resnet152(args) + else: + raise ValueError('Unrecognized model architecture', args.arch) diff --git a/new_main.py b/new_main.py new file mode 100644 index 0000000..2f1fb5c --- /dev/null +++ b/new_main.py @@ -0,0 +1,421 @@ +import json +import os +import random +import shutil +import time +from clip import clip +import numpy as np +import torch.backends.cudnn as cudnn +import torch.nn as nn +import torch.optim +from data.prepare_data_shot2 import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from new_trainer import train # For the training process +from new_trainer import warm_train +from new_trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +import math +import shutil + +best_prec1 = 0 + + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output, adapter_weights): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output, bias=False) + self.linear1.weight.data = adapter_weights # Initialize linear layer weights + + def forward(self, x): + x = self.linear1(x.float()) + return x + + +class Adapter(nn.Module): + def __init__(self, n_input, n_output): + super().__init__() + self.residual_ratio = 0.2 + self.linear1 = nn.Linear(n_input, n_output, bias=False) + # self.linear1.weight.data = adapter_weights # Initialize linear layer weights + self.relu = nn.ReLU() + + def forward(self, x): + a = x + x = self.linear1(x.float()) + x = self.relu(x) + # x = self.residual_ratio * x + (1 - self.residual_ratio) * a + + return x + + +class Res_Adapter(nn.Module): + def __init__(self, n_input): + super().__init__() + self.residual_ratio = 0.2 + self.fc = nn.Sequential( + nn.Linear(n_input, n_input // 4, bias=False), + nn.ReLU(inplace=True), + nn.Linear(n_input // 4, n_input, bias=False), + nn.ReLU(inplace=True) + ) + + def forward(self, x): + a = self.fc(x) + x = self.residual_ratio * a + (1 - self.residual_ratio) * x + + return x + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + +def validate_train(classnames, templates, val_loader, model, args, zero_shots, criterion, + optimizer, scheduler, alpha, beta, gama, CLIP_Text, CLIP_Image, Image_Encoder, Text_Encoder, + adapter): + global best_target_acc + Compu1_acc = AverageMeter() + losses = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Image_Encoder.eval() + Text_Encoder.eval() + adapter.eval() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + # switch to evaluate mode + + for i, (image, label) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + input_target_clip = model.encode_image(input_target) + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_source) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + # 2 + logits2 = 100. * input_target_clip.float() @ zero_shots.float() + + # 3 + logits3 = output_target[:, len(classnames):] + + # compu1:1-2+3: + compu1 = beta * logits2 + gama * logits3 + + compu1_acc = accuracy(compu1, target_target, topk=(1, 5)) + loss = criterion(compu1, target_target) + Compu1_acc.update(compu1_acc[0].item(), image.size(0)) + losses.update(loss.item(), image.size(0)) + print('loss:', loss.item()) + print(i, '/', len(val_loader)) + print('Compu1_acc:', Compu1_acc.val, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item()) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + print('Compu1_acc.avg', Compu1_acc.avg, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item(), + 'losses.avg', losses.avg) + return Compu1_acc.avg, alpha.item(), beta.item(), gama.item() + + +def main(): + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + global args, best_prec1 + current_epoch = 0 + args = opts() + clip.available_models() + model, preprocess = clip.load(args.name) + # model = model.cuda() + model.float() + + if os.path.exists(args.filename_dir): + print('exist') + else: + os.makedirs(args.filename_dir) + + filename = args.filename_dir + args.dataset_name + '.txt' + if os.path.exists(filename): + print(filename + " exist!") + else: + print("create " + filename) + f = open(filename, "w") + f.close() + + epx_dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + if os.path.exists(epx_dir): + print('epx_dir exist') + else: + os.makedirs(epx_dir) + + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames = dataset.classnames + templates = dataset.template + + # loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + # shuffle=False) + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + # + # train_loader_cache = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + # is_train=True, shuffle=False) + train_loader_shuffle = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + is_train=True, + shuffle=True) + + criterion = nn.CrossEntropyLoss().cuda() + if not os.path.isdir(args.log): + os.makedirs(args.log) + log = open(os.path.join(args.log, 'log.txt'), 'a') + state = {k: v for k, v in args._get_kwargs()} + log.write(json.dumps(state) + '\n') + log.close() + + cudnn.benchmark = True # Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异 + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------') + log.close() + + # process the data and prepare the dataloaders. + # train_loader_shuffle, loader = generate_dataloader(args, preprocess) + + # 拆分CLIP图像编码器 + if args.name == "ViT-B/16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=0) + elif args.name == "RN50": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=1) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=0) + + # 1000类标签经过clip + model = model.cuda() + zero_weights = all_classifier(classnames, templates, model) + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = CLIP_Text.cuda(), Text_Encoder.cuda(), CLIP_Image.cuda(), Image_Encoder.cuda() + weights_path = None + best_epoch = 0 + best_init_acc = 0 + criterion_classifier_target = DClassifierForTarget(nClass=len(classnames)).cuda() + criterion_classifier_source = DClassifierForSource(nClass=len(classnames)).cuda() + text_weights = zero_weights + res_adapter = Res_Adapter(1024).cuda() + adapter_weights = torch.cat([text_weights, text_weights], dim=1).T + adapter = Weight_Adapter(1024, 2 * len(classnames), adapter_weights).cuda() + if args.shot >= 18: + optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.001, 'weight_decay': 1e-1}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 1e-1}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 1e-1}], + eps=1e-5) + else: + optimizer = torch.optim.AdamW([{'params': adapter.parameters(), 'lr': 0.0001, 'weight_decay': 1e-1}, + {'params': res_adapter.parameters(), 'lr': 0.001, 'weight_decay': 1e-1}, + {'params': Image_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 1e-1}, + {'params': Text_Encoder.parameters(), 'lr': 0.00001, 'weight_decay': 1e-1}], + eps=1e-4) + warm_optimizer = torch.optim.AdamW([ + {'params': res_adapter.parameters(), 'lr': 0.001}], + eps=1e-4) + + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + warm_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs * len(train_loader_shuffle)) + source_train_loader_batch = enumerate(train_loader_shuffle) + dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + best_prec1 = 0 + while (current_epoch < args.epochs): + if (current_epoch < 0): + source_train_loader_batch, current_epoch, new_epoch_flag = warm_train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + warm_optimizer, + current_epoch, + args, warm_scheduler, criterion, + CLIP_Text, Text_Encoder, CLIP_Image, + Image_Encoder, res_adapter) + else: + source_train_loader_batch, current_epoch, new_epoch_flag = train(classnames, templates, + train_loader_shuffle, + source_train_loader_batch, + model, + adapter, + criterion_classifier_source, + criterion_classifier_target, + optimizer, + current_epoch, + args, scheduler, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, Image_Encoder, + res_adapter) + # evaluate on the val data + if new_epoch_flag: + if (current_epoch + 1) % args.test_freq == 0 or current_epoch == 0: + if current_epoch >= args.valepoch: + prec1 = validate(classnames, templates, loader, model, adapter, current_epoch, args, zero_weights, + criterion, + CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, res_adapter) + # record the best prec1 and save checkpoint + is_best = prec1 > best_prec1 + if prec1 > args.valacc: + if is_best: + best_prec1 = max(prec1, best_prec1) + save_dir = dir + '/epoch_' + str(current_epoch) + '_' + str( + prec1) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + weights_path = save_dir + torch.save(adapter, save_dir + '/_adapter_extractor.pth') + torch.save(Text_Encoder, save_dir + '/Text_Encoder.pth') + torch.save(Image_Encoder, save_dir + '/Image_Encoder.pth') + best_init_acc = best_prec1 + best_epoch = current_epoch + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('Best acc: %3f' % (best_prec1)) + log.close() + + + + + + + filename = args.filename_dir + args.dataset_name + '.txt' + strr = str(args.shot) + 'shot' + ' ' + 'best_epoch' + ' ' + str(best_epoch) + ' ' + 'best_init_acc' + ' ' + str( + best_init_acc) + with open(filename, 'a') as f: + f.write(strr + '\n') + f.close() + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write('\n-------------------------------------------\n') + log.write(time.asctime(time.localtime(time.time()))) + log.write('\n-------------------------------------------\n') + log.close() + + +if __name__ == '__main__': + main() diff --git a/new_test.py b/new_test.py new file mode 100644 index 0000000..d477202 --- /dev/null +++ b/new_test.py @@ -0,0 +1,194 @@ +import os +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +import random +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier, \ + calculate_zeroshot_weights_GPT,calculate_zero +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F +import yaml +import json +import torch +import torch.nn as nn +import torch.nn.functional as F +import glob +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +class Feature_Extractor(nn.Module): + def __init__(self, n_input, n_output): + super().__init__(), + self.linear1 = nn.Linear(n_input, n_output) + self.relu = nn.ReLU() + + def forward(self, x): + x = self.linear1(x.float()) + x = self.relu(x) + return x + + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output) + + def forward(self, x): + x = self.linear1(x.float()) + return x + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + + + +def validate(classnames, templates,val_loader, model, args, zero_shots, criterion, + optimizer, scheduler, alpha, beta, gama): + global best_target_acc + Compu1_acc = AverageMeter() + losses = AverageMeter() + model.eval() + logit_scale = 4.60517 + # logit_scale = math.exp(logit_scale) + # switch to evaluate mode + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + input_target_clip = model.encode_image(input_target) + + # 2 + logits2 = 100.*input_target_clip.float() @ zero_shots.float() + + + # compu1:1-2+3: + compu1 = logits2 + + compu1_acc = accuracy(compu1, target_target, topk=(1, 5)) + loss = criterion(compu1, target_target) + Compu1_acc.update(compu1_acc[0].item(), image.size(0)) + losses.update(loss.item(), image.size(0)) + print('loss:', loss.item()) + print(i, '/', len(val_loader)) + print('Compu1_acc:', Compu1_acc.val, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item()) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + scheduler.step() + + print('Compu1_acc.avg', Compu1_acc.avg, 'alpha:', alpha.item(), 'beta:', beta.item(), 'gama:', gama.item(), + 'losses.avg', losses.avg) + return Compu1_acc.avg, alpha.item(), beta.item(), gama.item() + + +def main(): + args = opts() + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + global best_prec1 + model, preprocess = clip.load(args.name) + model.eval() + classnames, templates, loader, train_loader,_ = get_dataset_loader(args, preprocess) + loader=_ + + criterion = nn.CrossEntropyLoss().cuda() + + + alpha = nn.Parameter(torch.ones([]), requires_grad=True) + beta = nn.Parameter(torch.ones([]), requires_grad=True)# 91.35902633202728 + gama = nn.Parameter(torch.ones([]), requires_grad=True) + #best_top1 93.46855981296748 best_a 1.0 best_b 6.64284086227417 best_c 0.8092490434646606 + + zero_weights = all_classifier(classnames, templates, model) + optimizer = torch.optim.AdamW( + [{'params': beta, 'lr': 0.1}, {'params': gama, 'lr': 0.1}], + eps=1e-4) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 40 * len(loader)) + + + validate(classnames, templates,loader, model, args, zero_weights, + criterion, optimizer, scheduler, alpha, beta, gama) + + # + # + # + # + + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/new_trainer.py b/new_trainer.py new file mode 100644 index 0000000..b95a9c3 --- /dev/null +++ b/new_trainer.py @@ -0,0 +1,488 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,res_adapter): + random.seed(1) + + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.eval() + res_adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + # label_self_supervised=target_target_temp.cuda() + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + # input_source=res_adapter(input_source) + output_source = adapter(input_source) * logit_scale + + # 输入编码图片 + input_target_add=res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + + # 自监督文本输入全连接层 + # self_input_source=res_adapter(self_input_source) + self_output_source = adapter(self_input_source) + self_output_source = self_output_source # [:,:len(classnames)]+self_output_source[:,len(classnames):] + self_output_source = F.normalize(self_output_source) + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = self_output_target # [:,len(classnames):]+self_output_target[:,:len(classnames)] + self_output_target = F.normalize(self_output_target) + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam =10-10*lam + loss_confusion_target = concatenatedCELoss(output_target) + # loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + # loss_G = loss_category_st_G + lam * loss_confusion_target + loss_classifier=0 + loss_G=0 + loss_T = loss_self_supervised + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + # losses_classifier.update(loss_classifier.item(), input_source.size(0)) + # losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Warn_Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder,res_adapter): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.train() + res_adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + # label_self_supervised=target_target_temp.cuda() + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + # input_source = res_adapter(input_source) + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + input_target_add = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + + # 自监督文本输入全连接层 + # self_input_source = res_adapter(self_input_source) + self_output_source = adapter(self_input_source) + self_output_source = self_output_source # [:,:len(classnames)]+self_output_source[:,len(classnames):] + self_output_source = F.normalize(self_output_source) + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = self_output_target # [:,len(classnames):]+self_output_target[:,:len(classnames)] + self_output_target = F.normalize(self_output_target) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + self_lam = 1 /3 + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch = 0 + + +def validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder,res_adapter): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + input_target_add=res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/opts.py b/opts.py new file mode 100644 index 0000000..7c48be6 --- /dev/null +++ b/opts.py @@ -0,0 +1,36 @@ +import argparse + + +def opts(): + parser = argparse.ArgumentParser(description='Train clip_symnet on the 11 dataset', + formatter_class=argparse.ArgumentDefaultsHelpFormatter) + + parser.add_argument('--name', type=str, default='', + help='backbone') + parser.add_argument('--dataset_name', type=str, default='', + help='dataset_name') + parser.add_argument('--dataset_dir', type=str, default='', + help='dataset_dir') + parser.add_argument('--shot', type=int, default='', + help='numbers of shots') + parser.add_argument('--savedir', type=str, default='', + help='number of classes of data ') + parser.add_argument('--filename_dir', type=str, default='', + help='number of classes of data ') + + parser.add_argument('--valacc', type=int, default='30', + help='number of classes of data ') + parser.add_argument('--valepoch', type=int, default='70', + help='number of classes of data ') + + # Optimization options + parser.add_argument('--epochs', '-e', type=int, default=200, help='Number of epochs to train') + # i/o + parser.add_argument('--log', type=str, default='./checkpoints', help='Log folder') + parser.add_argument('--test_freq', default=1, type=int, + help='test frequency (default: 1)') + parser.add_argument('--print_freq', '-p', default=1, type=int, + metavar='N', help='print frequency (default: 10)') + args = parser.parse_args() + + return args diff --git a/res.py b/res.py new file mode 100644 index 0000000..2870267 --- /dev/null +++ b/res.py @@ -0,0 +1,59 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +class ModifiedBasicBlock(nn.Module): + expansion = 1 + + def __init__(self, in_channels, out_channels): + super(ModifiedBasicBlock, self).__init__() + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(out_channels) + self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(out_channels) + + # 确保shortcut路径的维度匹配,如果不匹配则通过1x1卷积进行调整 + self.shortcut = nn.Sequential() + if in_channels != out_channels: + self.shortcut = nn.Sequential( + nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), + nn.BatchNorm2d(out_channels) + ) + + def forward(self, x): + out = F.relu(self.bn1(self.conv1(x))) + out = self.bn2(self.conv2(out)) + out += self.shortcut(x) # 添加shortcut连接 + out = F.relu(out) + return out +class ModifiedResNet(nn.Module): + def __init__(self, block, layers, num_classes=1000): + super(ModifiedResNet, self).__init__() + self.in_channels = 512 # 假设起始通道数为512 + self.conv1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(512) + self.layer1 = self._make_layer(block, 512, layers[0]) + self.layer2 = self._make_layer(block, 512, layers[1]) + self.layer3 = self._make_layer(block, 512, layers[2]) + self.layer4 = self._make_layer(block, 512, layers[3]) + self.linear = nn.Linear(512*block.expansion, num_classes) + + def _make_layer(self, block, out_channels, blocks): + layers = [] + for _ in range(blocks): + layers.append(block(self.in_channels, out_channels)) + self.in_channels = out_channels * block.expansion + return nn.Sequential(*layers) + + def forward(self, x): + out = F.relu(self.bn1(self.conv1(x))) + out = self.layer1(out) + out = self.layer2(out) + out = self.layer3(out) + out = self.layer4(out) + # 假设你有一个特定的方式来处理最终的特征图,以得到256x512维的输出 + # 例如,可以使用自适应池化层调整尺寸或者直接reshape(根据实际需求) + out = F.adaptive_avg_pool2d(out, (x.size(0), x.size(1))) + out = out.view(out.size(0), -1) + out = self.linear(out) + return out diff --git a/run.sh b/run.sh new file mode 100644 index 0000000..286bce8 --- /dev/null +++ b/run.sh @@ -0,0 +1 @@ +python3 main_1_17.py --name RN50 --dataset_name caltech101 --dataset_dir /root/autodl-tmp --epochs 150 --shot 1 --savedir /root/autodl-tmp/epx/ --filename_dir /root/autodl-tmp/epx_txt/ --valacc 10 --valepoch 50 \ No newline at end of file diff --git a/test_imagenet.py b/test_imagenet.py new file mode 100644 index 0000000..d700936 --- /dev/null +++ b/test_imagenet.py @@ -0,0 +1,419 @@ +import math + +import torch +import os +import random +import clip +import numpy as np +import torch.nn as nn +import torch.optim +from data.prepare_data import generate_dataloader # Prepare the data and dataloader +from opts import opts # The options for the project +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +from datasets import build_dataset +from datasets.utils import build_data_loader +import torchvision.transforms as transforms +from datasets.imagenet import ImageNet +from datasets.imagenetv2 import ImageNetV2 +import os +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier, \ + calculate_zeroshot_weights_GPT,calculate_zero,all_classifier_GPT +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F +import yaml +import json +import torch +import torch.nn as nn +import torch.nn.functional as F +import glob + +imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + +imagenet_templates = ["itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}."] + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res + + +class Feature_Extractor(nn.Module): + def __init__(self, n_input, n_output): + super().__init__(), + self.linear1 = nn.Linear(n_input, n_output) + self.relu = nn.ReLU() + + def forward(self, x): + x = self.linear1(x.float()) + x = self.relu(x) + return x + + +class Weight_Adapter(nn.Module): + def __init__(self, n_input, n_output): + super().__init__() + self.linear1 = nn.Linear(n_input, n_output) + + def forward(self, x): + x = self.linear1(x.float()) + return x + + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + + +def validate(classnames, templates, val_loader, model, args, zero_shots, criterion, + alpha, beta, gama): + global best_target_acc + Compu1_acc = AverageMeter() + Compu2_acc = AverageMeter() + + losses = AverageMeter() + + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + # switch to evaluate mode + + for i, (image, label) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + input_target_clip = model.encode_image(input_target) + + # 2 + logits2 = 100. * input_target_clip.float() @ zero_shots.float() + + + + compu1 = logits2 + + compu2 =logits2 + + compu1_acc = accuracy(compu1, target_target, topk=(1, 5)) + compu2_acc = accuracy(compu2, target_target, topk=(1, 5)) + + loss = criterion(compu1, target_target) + + Compu1_acc.update(compu1_acc[0].item(), image.size(0)) + Compu2_acc.update(compu2_acc[0].item(), image.size(0)) + + losses.update(loss.item(), image.size(0)) + print('loss:', loss.item()) + print(i, '/', len(val_loader)) + print('Compu1_acc:', Compu1_acc.val,'Compu2_acc:', Compu2_acc.val, 'alpha:', alpha, 'beta:', beta, 'gama:', gama) + loss.backward() + print('Compu1_acc:', Compu1_acc.avg,'Compu2_acc:', Compu2_acc.avg, 'alpha:', alpha, 'beta:', beta, 'gama:', gama, + 'losses.avg', losses.avg) + + + + +def main(): + args = opts() + seed = 2023 + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + global best_prec1 + model, preprocess = clip.load(args.name) + model = model.cuda() + + # imagenet = ImageNet(args.dataset_dir, args.shot, preprocess) + # loader = torch.utils.data.DataLoader(imagenet.test, batch_size=64, num_workers=8, shuffle=False) + # + classnames, templates, loader, train_loader = get_dataset_loader(args, preprocess) + + + + # classnames = imagenet_classes + # templates = imagenet_templates + criterion = nn.CrossEntropyLoss().cuda() + + # 拆分CLIP图像编码器 + # if args.name == "ViT-B/16": + # CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + # assert type(model.visual) == VisionTransformer + # CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=1) + # elif args.name == "ViT-B/32": + # CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + # assert type(model.visual) == VisionTransformer + # CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx=1) + # elif args.name == "RN50": + # CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + # assert type(model.visual) == ModifiedResNet + # CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + # elif args.name == "RN101": + # CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + # assert type(model.visual) == ModifiedResNet + # CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + # elif args.name == "RN50x16": + # CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx=0) + # assert type(model.visual) == ModifiedResNet + # CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx=1) + + criterion = nn.CrossEntropyLoss().cuda() + # 自监督温度z + # dir = '/root/autodl-tmp/epx/imagenet_epx/16shot/epoch_86_61.36800003051758/' + # + # CLIP_Text = torch.load(dir + 'CLIP_Text.pth') + # CLIP_Image = torch.load(dir + 'CLIP_Image.pth') + # Image_Encoder = torch.load(dir + 'Image_Encoder.pth') + # Text_Encoder = torch.load(dir + 'Text_Encoder.pth') + # adapter = torch.load(dir + '_adapter_extractor.pth') + + # alpha = nn.Parameter(torch.ones([]), requires_grad=True) + # beta = nn.Parameter(torch.ones([]), requires_grad=True) # 91.35902633202728 + # gama = nn.Parameter(torch.ones([]), requires_grad=True) + alpha = 1 + beta = 0 + gama = 1 + + zero_weights = all_classifier(classnames, templates, model) + validate(classnames, templates,loader, model, args, zero_weights, + criterion, alpha, beta, gama) + + +if __name__ == '__main__': + main() diff --git a/test_t_sne.py b/test_t_sne.py new file mode 100644 index 0000000..f603f67 --- /dev/null +++ b/test_t_sne.py @@ -0,0 +1,126 @@ +import numpy as np +from sklearn.manifold import TSNE +import matplotlib.pyplot as plt +from opts import opts +from clip import clip +import torch +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier,calculate_zeroshot_weights_GPT +import glob +import json +import os +import numpy as np +from PIL import Image + +# 设置随机种子以确保可重复性 +np.random.seed(0) + +args = opts() +model, preprocess = clip.load(args.name) +model = model.cuda() +model.float() +CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder = configure_clip_encoders(args, model, 0, 1) +prepare_directories(args, CLIP_Text, CLIP_Image) +json_files = glob.glob('gpt_file/caltech_prompt.json') +for file_path in json_files: + # 打开并读取每个YAML文件 + with open(file_path, 'r') as f: + gpt3_prompt = json.load(f) + + +dir = './weights/' +CLIP_Text=torch.load(dir+'CLIP_Text.pth') +CLIP_Image=torch.load(dir+'CLIP_Image.pth') +Image_Encoder=torch.load(dir+'Image_Encoder.pth') +Text_Encoder=torch.load(dir+'Text_Encoder.pth') +adapter=torch.load(dir+'adapter.pth') + +image_folder = "./images" +image_folder2 = "./images_2" +image_folder3 = "./images_3" +# 读取图片并提取特征 +features = [] +for image_name in os.listdir(image_folder): + if image_name.lower().endswith(('.png', '.jpg', '.jpeg')): + # 读取图片 + image_path = os.path.join(image_folder, image_name) + image = preprocess(Image.open(image_path)).unsqueeze(0).cuda() + with torch.no_grad(): + input_target_temp = CLIP_Image(image) + input_target_add = Image_Encoder(input_target_temp) + + + # 存储提取的特征 + # features.append(input_target_add.detach().numpy()) + features.append(input_target_add.detach().cpu().numpy()) + +features2 = [] +for image_name in os.listdir(image_folder2): + if image_name.lower().endswith(('.png', '.jpg', '.jpeg')): + # 读取图片 + image_path = os.path.join(image_folder2, image_name) + image = preprocess(Image.open(image_path)).unsqueeze(0).cuda() + with torch.no_grad(): + input_target_temp = CLIP_Image(image) + input_target_add = Image_Encoder(input_target_temp) + + + # 存储提取的特征 + # features.append(input_target_add.detach().numpy()) + features2.append(input_target_add.detach().cpu().numpy()) + +# 将特征列表转换为NumPy数组 +features = np.vstack(features) +features2 = np.vstack(features2) + +features3 = [] +for image_name in os.listdir(image_folder3): + if image_name.lower().endswith(('.png', '.jpg', '.jpeg')): + # 读取图片 + image_path = os.path.join(image_folder3, image_name) + image = preprocess(Image.open(image_path)).unsqueeze(0).cuda() + with torch.no_grad(): + input_target_temp = CLIP_Image(image) + input_target_add = Image_Encoder(input_target_temp) + + + # 存储提取的特征 + # features.append(input_target_add.detach().numpy()) + features3.append(input_target_add.detach().cpu().numpy()) + +# 将特征列表转换为NumPy数组 +features = np.vstack(features) +features2 = np.vstack(features2) +features3 = np.vstack(features3) + + +# 源域样本:一个二维特征 +# source_domain_sample = np.array([[0.5, 0.5]]) # 示例特征 + +# 生成随机数据:目标域,20个样本,每个样本1024维 +# target_domain_samples = np.random.rand(20, 1024) +target_domain_samples = features +source_domain_samples=features2 + + +# 由于源域只有一个二维样本,我们不需要对它使用t-SNE +tsne = TSNE(n_components=2, random_state=0,perplexity=19) +source_domain_tsne_results = tsne.fit_transform(source_domain_samples) + +# 直接对目标域样本应用t-SNE降维到2维 +# tsne = TSNE(n_components=2, random_state=0,perplexity=7) +target_domain_tsne_results = tsne.fit_transform(target_domain_samples) + +results3=tsne.fit_transform(features3) + +# 可视化结果 +plt.figure(figsize=(10, 6)) +# plt.scatter(source_domain_tsne_results[:, 0], source_domain_tsne_results[:, 1], c='blue', label='Source Domain (Single Sample)', edgecolors='w', s=200) +plt.scatter(source_domain_tsne_results[:, 0], source_domain_tsne_results[:, 1], c='blue', label='Source Domain (Single Sample)')#, edgecolors='w') +plt.scatter(target_domain_tsne_results[:, 0], target_domain_tsne_results[:, 1], c='red', label='Target Domain') +plt.scatter(results3[:, 0], results3[:, 1], c='yellow', label='3') +plt.title('t-SNE visualization of feature representations') +plt.xlabel('Component 1') +plt.ylabel('Component 2') +plt.legend() +plt.show() diff --git a/tip_adapter_ImageNet.py b/tip_adapter_ImageNet.py new file mode 100644 index 0000000..2ae8e18 --- /dev/null +++ b/tip_adapter_ImageNet.py @@ -0,0 +1,611 @@ +import os +import numpy as np +import torch +from clip import clip +from tqdm.notebook import tqdm +import torchvision +import torchvision.transforms as transforms +import torch.nn.functional as F +import torch.nn as nn +from collections import defaultdict +import random +from tqdm import tqdm +import argparse + + +print("Torch version:", torch.__version__) +# assert torch.__version__.split(".") >= ["1", "7", "1"], "PyTorch 1.7.1 or later is required" + + +imagenet_classes = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", + "stingray", "rooster", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", + "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", + "kite (bird of prey)", "bald eagle", "vulture", "great grey owl", "fire salamander", + "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", + "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", + "box turtle", "banded gecko", "green iguana", "Carolina anole", + "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", + "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", + "American alligator", "triceratops", "worm snake", "ring-necked snake", + "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", + "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", + "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", + "sidewinder rattlesnake", "trilobite", "harvestman", "scorpion", "yellow garden spider", + "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", + "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peafowl", + "quail", "partridge", "african grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", + "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", + "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", + "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", + "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", + "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", + "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", + "great egret", "bittern bird", "crane bird", "limpkin", "common gallinule", "American coot", + "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", + "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", + "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", + "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", + "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", + "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", + "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", + "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", + "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", + "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", + "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", + "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", + "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", + "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", + "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", + "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", + "English Setter", "Irish Setter", "Gordon Setter", "Brittany dog", "Clumber Spaniel", + "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniel", "Sussex Spaniel", + "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael dog", "Malinois", "Briard", + "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", + "Border Collie", "Bouvier des Flandres dog", "Rottweiler", "German Shepherd Dog", "Dobermann", + "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", + "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", + "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", + "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland dog", + "Great Pyrenees dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "brussels griffon", + "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", + "Standard Poodle", "Mexican hairless dog (xoloitzcuintli)", "grey wolf", "Alaskan tundra wolf", + "red wolf or maned wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", + "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", + "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", + "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", + "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", + "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", + "cricket insect", "stick insect", "cockroach", "praying mantis", "cicada", "leafhopper", + "lacewing", "dragonfly", "damselfly", "red admiral butterfly", "ringlet butterfly", + "monarch butterfly", "small white butterfly", "sulphur butterfly", "gossamer-winged butterfly", + "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", + "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel horse", + "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", + "ram (adult male sheep)", "bighorn sheep", "Alpine ibex", "hartebeest", "impala (antelope)", + "gazelle", "arabian camel", "llama", "weasel", "mink", "European polecat", + "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", + "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", + "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", + "howler monkey", "titi monkey", "Geoffroy's spider monkey", "common squirrel monkey", + "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", + "giant panda", "snoek fish", "eel", "silver salmon", "rock beauty fish", "clownfish", + "sturgeon", "gar fish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", + "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", + "amphibious vehicle", "analog clock", "apiary", "apron", "trash can", "assault rifle", + "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", + "baluster / handrail", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", + "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", + "bathtub", "station wagon", "lighthouse", "beaker", "military hat (bearskin or shako)", + "beer bottle", "beer glass", "bell tower", "baby bib", "tandem bicycle", "bikini", + "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", + "bookcase", "bookstore", "bottle cap", "hunting bow", "bow tie", "brass memorial plaque", "bra", + "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", + "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", + "can opener", "cardigan", "car mirror", "carousel", "tool kit", "cardboard box / carton", + "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", + "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", + "storage chest", "chiffonier", "bell or wind chime", "china cabinet", "Christmas stocking", + "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", + "coffee mug", "coffeemaker", "spiral or coil", "combination lock", "computer keyboard", + "candy store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", + "cowboy hat", "cradle", "construction crane", "crash helmet", "crate", "infant bed", + "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", + "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", + "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", + "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", + "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", + "feather boa", "filing cabinet", "fireboat", "fire truck", "fire screen", "flagpole", "flute", + "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", + "freight car", "French horn", "frying pan", "fur coat", "garbage truck", + "gas mask or respirator", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", + "gong", "gown", "grand piano", "greenhouse", "radiator grille", "grocery store", "guillotine", + "hair clip", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", + "handkerchief", "hard disk drive", "harmonica", "harp", "combine harvester", "hatchet", + "holster", "home theater", "honeycomb", "hook", "hoop skirt", "gymnastic horizontal bar", + "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "carved pumpkin", "jeans", "jeep", + "T-shirt", "jigsaw puzzle", "rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", + "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "letter opener", "library", + "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", + "music speaker", "loupe magnifying glass", "sawmill", "magnetic compass", "messenger bag", + "mailbox", "tights", "one-piece bathing suit", "manhole cover", "maraca", "marimba", "mask", + "matchstick", "maypole", "maze", "measuring cup", "medicine cabinet", "megalith", "microphone", + "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", + "mitten", "mixing bowl", "mobile home", "ford model t", "modem", "monastery", "monitor", + "moped", "mortar and pestle", "graduation cap", "mosque", "mosquito net", "vespa", + "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "metal nail", + "neck brace", "necklace", "baby pacifier", "notebook computer", "obelisk", "oboe", "ocarina", + "odometer", "oil filter", "pipe organ", "oscilloscope", "overskirt", "bullock cart", + "oxygen mask", "product packet / packaging", "paddle", "paddle wheel", "padlock", "paintbrush", + "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", + "parking meter", "railroad car", "patio", "payphone", "pedestal", "pencil case", + "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", + "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", + "pinwheel", "pirate ship", "drink pitcher", "block plane", "planetarium", "plastic bag", + "plate rack", "farm plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", + "pool table", "soda bottle", "plant pot", "potter's wheel", "power drill", "prayer rug", + "printer", "prison", "missile", "projector", "hockey puck", "punching bag", "purse", "quill", + "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", + "recreational vehicle", "fishing casting reel", "reflex camera", "refrigerator", + "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", + "rugby ball", "ruler measuring stick", "sneaker", "safe", "safety pin", "salt shaker", "sandal", + "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", + "CRT monitor", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", + "shoji screen / room divider", "shopping basket", "shopping cart", "shovel", "shower cap", + "shower curtain", "ski", "balaclava ski mask", "sleeping bag", "slide rule", "sliding door", + "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", + "solar thermal collector", "sombrero", "soup bowl", "keyboard space bar", "space heater", + "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", + "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", + "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", + "submarine", "suit", "sundial", "sunglasses", "sunglasses", "sunscreen", "suspension bridge", + "mop", "sweatshirt", "swim trunks / shorts", "swing", "electrical switch", "syringe", + "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", + "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", + "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", + "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", + "triumphal arch", "trolleybus", "trombone", "hot tub", "turnstile", "typewriter keyboard", + "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vaulted or arched ceiling", + "velvet fabric", "vending machine", "vestment", "viaduct", "violin", "volleyball", + "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", + "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", + "hair wig", "window screen", "window shade", "Windsor tie", "wine bottle", "airplane wing", + "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "sailboat", "yurt", "website", + "comic book", "crossword", "traffic or street sign", "traffic light", "dust jacket", "menu", + "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "popsicle", "baguette", + "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potatoes", "cabbage", "broccoli", + "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", + "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith apple", "strawberry", "orange", + "lemon", "fig", "pineapple", "banana", "jackfruit", "cherimoya (custard apple)", "pomegranate", + "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", + "red wine", "espresso", "tea cup", "eggnog", "mountain", "bubble", "cliff", "coral reef", + "geyser", "lakeshore", "promontory", "sandbar", "beach", "valley", "volcano", "baseball player", + "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", + "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", + "earth star fungus", "hen of the woods mushroom", "bolete", "corn cob", "toilet paper"] + +# Prompt Ensembling +imagenet_templates = [ + "itap of a {}.", + "a bad photo of the {}.", + "a origami {}.", + "a photo of the large {}.", + "a {} in a video game.", + "art of the {}.", + "a photo of the small {}.", +] +template = ['a photo of a {}.'] + +# Single Prompt +# imagenet_templates = ['a photo of a {}.',] + +#计算准确率 +def accuracy(output, target, topk=(1,)): + pred = output.topk(max(topk), 1, True, True)[1].t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) for k in topk] + +#制作提示模版 +def zeroshot_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + +#Adapter线性层 +class Weight_Adapter(nn.Module): + def __init__(self, clip_model, train_features_path, cls_num, shots): + super().__init__() + self.linear1 = nn.Linear(512, cls_num * shots, bias=False).to(clip_model.dtype) + self.linear1.weight = nn.Parameter(torch.load(train_features_path).t())#所以训练网络的时候,可以使用nn.Parameter()来转换一个固定的权重数值,使的其可以跟着网络训练一直调优下去,学习到一个最适合的权重值。 + print("111") + +def main(): + print(imagenet_classes[475]) + + # Path for ImageNet + data_path = "E:/imagenet" + + + train_features_path = "./imagenet_f_train.pt" + train_targets_path = "./imagenet_t_train.pt" + + test_features_path = "./imagenet_f_test.pt" + test_targets_path = "./imagenet_t_test.pt" + + # load_train = False + # load_test = False + + load_train = False + load_test = False + + search = False + + # ~~~~~~~~~~~~~~~~~~ + k_shot = 16 + # ~~~~~~~~~~~~~~~~~~ + + parser = argparse.ArgumentParser() + parser.add_argument('--lr', type=float, default=0.001, help='lr') + parser.add_argument('--alpha', type=float, default=1) + parser.add_argument('--beta', type=float, default=1.17) + parser.add_argument('--train_epoch', type=int, default=20) + parser.add_argument('--augment_epoch', type=int, default=10) + args = parser.parse_args() + print(args) + + clip.available_models() + name = 'RN50x16' + + model, preprocess = clip.load(name) + zeroshot_classifier(imagenet_classes, imagenet_templates, model) + model.eval()#测试模式 batchNorm层,dropout层等用于优化训练而添加的网络层会被关闭,从而使得评估时不会发生偏移。 + + input_resolution = model.visual.input_resolution #图像224*224 + context_length = model.context_length #77 #文本长度 + vocab_size = model.vocab_size #包含训练集和测试集的所有词。 + + print("Model parameters:", f"{np.sum([int(np.prod(p.shape)) for p in model.parameters()]):,}") + print("Input resolution:", input_resolution) + print("Context length:", context_length) + print("Vocab size:", vocab_size) + #随机种子 + random.seed(1) + torch.manual_seed(1)#为CPU中设置种子,生成随机数 + + + + + print(f"{len(imagenet_classes)} classes, {len(imagenet_templates)} templates") + # adapter = Weight_Adapter(model, train_features_path, len(imagenet_classes), k_shot).cuda() + + + + + images = torchvision.datasets.ImageNet(data_path, split='val', transform=preprocess) #torchvision.datasets这个包中包含MNIST、FakeData、COCO、LSUN、ImageFolder、DatasetFolder、ImageNet、CIFAR等一些常用的数据集,并且提供了数据集设置的一些重要参数设置,可以通过简单数据集设置来进行数据集的调用。从 + #制作存储了图片的路径和标签信息的txt 将这些信息转化为list,该list每一个元素对应一个样本 通过getitem函数,读取数据和标签,并返回数据和标签 + loader = torch.utils.data.DataLoader(images, batch_size=64, num_workers=8, shuffle=False) #shuffle=True可以对数据进行随机读取,可以对数据进行洗牌操作(shuffling),打乱数据集内数据分布的顺序 + #num_workers=2可以并行加载数据(利用多核处理器加快载入数据的效率) + #batch :可以分批次读取:batch-size + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + #随机裁剪 但是保留纵横比 + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_images = torchvision.datasets.ImageNet(data_path, split='train', + transform=train_tranform) + split_by_label_dict = defaultdict(list) + + print('Load data finished.') + for i in range(len(train_images.imgs)): + split_by_label_dict[train_images.targets[i]].append(train_images.imgs[i]) + #train_images.imgs[i] 0000000=('/private/rocky/dataset/train/n01440764/n01440764_10026.JPEG', 0) + #train_images.targets[i] 0,0,0....0,1,1....1 + #invalid syntax (, line 1) + imgs = [] + targets = [] + + for label, items in split_by_label_dict.items(): + imgs = imgs + random.sample(items, k_shot) + #random.sample的 用法,多用于截取列表的指定长度的随机数,但是不会改变列表本身的排序 + targets = targets + [label for i in range(k_shot)] + train_images.imgs = imgs #[('/private/rocky/dataset/train/n01440764/n01440764_13161.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_8600.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_11547.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_2271.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_12659.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_7324.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_6395.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_6870.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_4681.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_1703.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_12182.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_7173.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_10548.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_5003.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_600.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_9543.JPEG', 0), ('/private/rocky/dataset/train/n01443537/n01443537_10035.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_2906.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_1895.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_17646.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_7947.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_13218.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_20735.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_11063.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_10763.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_1087.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_5697.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_10242.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_22942.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_17307.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_24539.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_1103.JPEG', 1), ('/private/rocky/dataset/train/n01484850/n01484850_663.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_20733.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_3405.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_5240.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_7415.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_21143.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_26157.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_21044.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_20650.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_4104.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_23515.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_11466.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_32242.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_7543.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_15960.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_18872.JPEG', 2), ('/private/rocky/dataset/train/n01491361/n01491361_984.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_462.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_14786.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_5187.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_7360.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_6401.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_7459.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_2911.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_4716.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_4424.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_8919.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_733.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_7416.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_590.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_895.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_1105.JPEG', 3), ('/private/rocky/dataset/train/n01494475/n01494475_6324.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_21813.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4713.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4925.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_17164.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_3936.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_7557.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4044.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_1397.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_5406.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_6875.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_14918.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_16903.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_7066.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4401.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_3964.JPEG', 4), ('/private/rocky/dataset/train/n01496331/n01496331_4080.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_11164.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_3534.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_11534.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_26582.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_9048.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_8049.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_7517.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_30562.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_17713.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_17548.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_4612.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_2189.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_10444.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_19596.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_6064.JPEG', 5), ('/private/rocky/dataset/train/n01498041/n01498041_8215.JPEG', 6), ('/private/rocky/dataset/train/n01498041/n01498041_20637.JPEG', 6), ('/private/rocky/dataset/train/n01498041/n01498041_5338.JPEG', 6), ('/private/rocky/dataset/train/n01498041/n01498041_7627.JPEG', 6... + train_images.targets = targets #[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6... + train_images.samples = imgs #[('/private/rocky/dataset/train/n01440764/n01440764_13161.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_8600.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_11547.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_2271.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_12659.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_7324.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_6395.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_6870.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_4681.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_1703.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_12182.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_7173.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_10548.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_5003.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_600.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_9543.JPEG', 0), ('/private/rocky/dataset/train/n01443537/n01443537_10035.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_2906.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_1895.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_17646.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_7947.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_13218.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_20735.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_11063.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_10763.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_1087.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_5697.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_10242.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_22942.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_17307.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_24539.JPEG', 1), ('/private/rocky/dataset/train/n01443537/n01443537_1103.JPEG', 1), ('/private/rocky/dataset/train/n01484850/n01484850_663.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_20733.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_3405.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_5240.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_7415.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_21143.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_26157.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_21044.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_20650.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_4104.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_23515.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_11466.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_32242.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_7543.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_15960.JPEG', 2), ('/private/rocky/dataset/train/n01484850/n01484850_18872.JPEG', 2), ('/private/rocky/dataset/train/n01491361/n01491361_984.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_462.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_14786.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_5187.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_7360.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_6401.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_7459.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_2911.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_4716.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_4424.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_8919.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_733.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_7416.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_590.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_895.JPEG', 3), ('/private/rocky/dataset/train/n01491361/n01491361_1105.JPEG', 3), ('/private/rocky/dataset/train/n01494475/n01494475_6324.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_21813.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4713.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4925.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_17164.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_3936.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_7557.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4044.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_1397.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_5406.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_6875.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_14918.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_16903.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_7066.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_4401.JPEG', 4), ('/private/rocky/dataset/train/n01494475/n01494475_3964.JPEG', 4), ('/private/rocky/dataset/train/n01496331/n01496331_4080.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_11164.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_3534.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_11534.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_26582.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_9048.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_8049.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_7517.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_30562.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_17713.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_17548.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_4612.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_2189.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_10444.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_19596.JPEG', 5), ('/private/rocky/dataset/train/n01496331/n01496331_6064.JPEG', 5), ('/private/rocky/dataset/train/n01498041/n01498041_8215.JPEG', 6), ('/private/rocky/dataset/train/n01498041/n01498041_20637.JPEG', 6), ('/private/rocky/dataset/train/n01498041/n01498041_5338.JPEG', 6), ('/private/rocky/dataset/train/n01498041/n01498041_7627.JPEG', 6... + train_loader = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=False) #16个样本 + #class_to_idx = {dict: 1842} {'tench': 0, 'Tinca tinca': 0, 'goldfish': 1, 'Carassius auratus': 1, 'great white shark': 2, 'white shark': 2, 'man-eater': 2, 'man-eating shark': 2, 'Carcharodon carcharias': 2, 'tiger shark': 3, 'Galeocerdo cuvieri': 3, 'hammerhead': 4, 'hammerhead shark': 4, 'electric ray': 5, 'crampfish': 5, 'numbfish': 5, 'torpedo': 5, 'stingray': 6, 'cock': 7, 'hen': 8, 'ostrich': 9, 'Struthio camelus': 9, 'brambling': 10, 'Fringilla montifringilla': 10, 'goldfinch': 11, 'Carduelis carduelis': 11, 'house finch': 12, 'linnet': 12, 'Carpodacus mexicanus': 12, 'junco': 13, 'snowbird': 13, 'indigo bunting': 14, 'indigo finch': 14, 'indigo bird': 14, 'Passerina cyanea': 14, 'robin': 15, 'American robin': 15, 'Turdus migratorius': 15, 'bulbul': 16, 'jay': 17, 'magpie': 18, 'chickadee': 19, 'water ouzel': 20, 'dipper': 20, 'kite': 21, 'bald eagle': 22, 'American eagle': 22, 'Haliaeetus leucocephalus': 22, 'vulture': 23, 'great grey owl': 24, 'great gray owl': 24, 'Strix nebulosa': 24, 'European fire sa... + #classes = {list: 1000} [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'), ('great white shark', 'white shark', 'man-eater', 'man-eating shark', 'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'), ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish', 'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',), ('ostrich', 'Struthio camelus'), ('brambling', 'Fringilla montifringilla'), ('goldfinch', 'Carduelis carduelis'), ('house finch', 'linnet', 'Carpodacus mexicanus'), ('junco', 'snowbird'), ('indigo bunting', 'indigo finch', 'indigo bird', 'Passerina cyanea'), ('robin', 'American robin', 'Turdus migratorius'), ('bulbul',), ('jay',), ('magpie',), ('chickadee',), ('water ouzel', 'dipper'), ('kite',), ('bald eagle', 'American eagle', 'Haliaeetus leucocephalus'), ('vulture',), ('great grey owl', 'great gray owl', 'Strix nebulosa'), ('European fire salamander', 'Salamandra salamandra'), ('common newt', 'Triturus vulgaris'), ('eft',), ('spotted salamander', 'Ambystoma maculat... + #imgs = {list: 16000} [('/private/rocky/dataset/train/n01440764/n01440764_13161.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_8600.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_11547.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_2271.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_12659.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_7324.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_6395.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_6870.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_4681.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_1703.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_12182.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_7173.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_10548.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_5003.JPEG', 0), ('/private/rocky/dataset/train/n01440764/n01440764_600.J... + train_loader_shuffle = torch.utils.data.DataLoader(train_images, batch_size=64, num_workers=8, shuffle=True) + + # ------------------------------------------getting text feature------------------------------------------ + print('start getting text features.') + zeroshot_weights = zeroshot_classifier(imagenet_classes, imagenet_templates, model) + print('finish getting text features. start getting image features') + + # ------------------------------------------saving training features------------------------------------------ + print('start saving training image features') + + if not load_train: + + train_images_targets = [] + train_images_features_agg = [] + + with torch.no_grad(): + for augment_idx in range(args.augment_epoch): + train_images_features = [] + + print('Augment time: {:} / {:}'.format(augment_idx, args.augment_epoch)) + for i, (images, target) in enumerate(tqdm(train_loader)):# tqdm 是一个快速,可扩展的Python进度条 + images = images.cuda() # 放在GPU上 + image_features = model.encode_image(images) #解码器 encode image + train_images_features.append(image_features) + + if augment_idx == 0: + target = target.cuda() + train_images_targets.append(target) + + images_features_cat = torch.cat(train_images_features, dim=0).unsqueeze(0) #torch.cat()是为了把多个tensor进行拼接而存在的 + train_images_features_agg.append(images_features_cat) + + + train_images_features_agg = torch.cat(train_images_features_agg, dim=0).mean(dim=0) + train_images_features_agg /= train_images_features_agg.norm(dim=-1, keepdim=True)#L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。 + #frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘ + #x.norm(p=2,dim=1,keepdim=True) 求指定维度上的范数 :返回输入张量给定维dim 上每行的p范数 默认是L2范数 Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,pytorch调用函数norm(x, 2)。 + #normalize:布尔值,可不填,默认为False。表示当设置为False时,将忽略此参数,如果为True,则特征矩阵在进入回归前将会被减去均值(中心化)并除以L2范式(缩放) + # 当dim = 0 + # 时, 是对每一维度相同位置的数值进行softmax运算,和为1 + # 当dim = 1 + # 时, 是对某一维度的列进行softmax运算,和为1 + # 当dim = 2 + # 时, 是对某一维度的行进行softmax运算,和为1 + train_images_features_agg = train_images_features_agg.permute(1, 0) + # 可以写成permute(0, 1)这里不做任何变化,维数与之前相同 + # 如果写成permute(1, 0)得到的就是矩阵的转置 + # 可以写成permute(0, 1)这里不做任何变化,维数与之前相同 + # 如果写成permute(1, 0)得到的就是矩阵的转置 + # 如果三维是permute(0, 1, 2) + + train_images_targets = F.one_hot(torch.cat(train_images_targets, dim=0)).half() + # 将此存储强制转换为半类型 + torch.save(train_images_features_agg, train_features_path) + torch.save(train_images_targets, train_targets_path) + + else: + train_images_features_agg = torch.load(train_features_path) + train_images_targets = torch.load(train_targets_path) + + + # ------------------------------------------saving testing features------------------------------------------ + print('start saving testing image features') + + if not load_test: + test_features = [] + test_labels = [] + with torch.no_grad(): + for i, (images, target) in enumerate(tqdm(loader)): + images = images.cuda() + target = target.cuda() + image_features = model.encode_image(images) + image_features /= image_features.norm(dim=-1, keepdim=True) + test_features.append(image_features) + test_labels.append(target) + test_features = torch.cat(test_features) + test_labels = torch.cat(test_labels) + + torch.save(test_features, test_features_path) + torch.save(test_labels, test_targets_path) + + else: + test_features = torch.load(test_features_path) + test_labels = torch.load(test_targets_path) + + + + # CLIP Zero-shot + top1, top5, n = 0., 0., 0. + logits = 100. * test_features @ zeroshot_weights #类别 + # @ 两个矩阵相乘 测试集与 样本模版做相似度计算 + acc1, acc5 = accuracy(logits, test_labels, topk=(1, 5)) + top1 += acc1 + top5 += acc5 + n += test_features.size(0) + top1 = (top1 / n) * 100 + top5 = (top5 / n) * 100 + print() + print(f"CLIP Top-1 accuracy: {top1:.2f}, with zero-shot learning") + + + # # Tip-Adapter + # alpha = args.alpha + # beta = args.beta + # top1, top5, n = 0., 0., 0. + # new_knowledge = test_features @ train_images_features_agg + # #测试集图像向量(经过解码器) 与 训练集的图像向量 做乘法 计算相似度? f test *F T train + # new_logits = ((-1) * (alpha - alpha * new_knowledge)).exp() @ train_images_targets + # #1- f test * F T train 论文说是欧式距离 其实余弦距离 A=EXP(-β(1-ftest * FT train) ALtrain 表示query-key匹配度A和缓存值A相乘得到 从cache模型中检索到的值(计算标签是啥) + # logits = 100. * test_features @ zeroshot_weights + # logits = logits + new_logits * beta + # acc1, acc5 = accuracy(logits, test_labels, topk=(1, 5)) + # top1 += acc1 + # top5 += acc5 + # n += test_features.size(0) + # top1 = (top1 / n) * 100 + # top5 = (top5 / n) * 100 + # print() + # print(f"AdapterV2 Top-1 accuracy: {top1:.2f}, without training") + # print() + # + # if search: + # + # alpha_list = [i * (6.0 - 1.0) / 20 + 1 for i in range(20)] + # beta_list = [i * (7 - 0.1) / 200 + 0.1 for i in range(200)] + # best_top1 = 0 + # best_alpha = 0 + # best_beta = 0 + # + # for alpha in alpha_list: + # for beta in beta_list: + # top1, top5, n = 0., 0., 0. + # batch_idx = 0 + # # predict + # with torch.no_grad(): + # test_features = torch.load(test_features_path) + # test_labels = torch.load(test_targets_path) + # test_features_new = test_features + # new_knowledge = test_features @ train_images_features_agg + # new_logits = ((-1) * (alpha - alpha * new_knowledge)).exp() @ (train_images_targets) + # logits = 100. * test_features_new @ zeroshot_weights + # logits = logits + new_logits * beta + # + # acc1, acc5 = accuracy(logits, test_labels, topk=(1, 5)) + # batch_idx += 1 + # top1 += acc1 + # top5 += acc5 + # n += test_features_new.size(0) + # top1 = (top1 / n) * 100 + # top5 = (top5 / n) * 100 + # + # if top1 > best_top1: + # text = 'New best setting, alpha: {:.2f}, beta: {:.2f}; Top-1 acc: {:.2f}'.format(alpha, beta, top1) + # print(text) + # best_top1 = top1 + # best_alpha = alpha + # best_beta = beta + # + # print(f"After searching, {name}, {k_shot} shot. Best Top-1 {best_top1:.2f}") + # print() + # + + + # ------------------------------------------ Tip-Adapter-F ------------------------------------------ + adapter = Weight_Adapter(model, train_features_path, len(imagenet_classes), k_shot).cuda() + optimizer = torch.optim.AdamW(adapter.parameters(), lr=args.lr, eps=1e-4) + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.train_epoch * len(train_loader_shuffle)) + #调整学习率 1有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。2自适应调整:自适应调整学习率 ReduceLROnPlateau。3自定义调整:自定义调整学习率 LambdaLR。 + + best_top1 = 0 + best_epoch = 0 + for train_idx in range(args.train_epoch): + adapter.train() + correct_all = 0 + n = 0 + loss_list = [] + print('Train time: {:} / {:}'.format(train_idx, args.train_epoch)) + + alpha = args.alpha + beta = args.beta + + for i, (images, target) in enumerate(tqdm(train_loader_shuffle)): + images = images.cuda() + target = target.cuda() + with torch.no_grad(): + image_features = model.encode_image(images) + image_features /= image_features.norm(dim=-1, keepdim=True) + + new_knowledge = adapter.linear1(image_features) + new_logits = ((-1) * (alpha - alpha * new_knowledge)).exp() @ (train_images_targets) + logits = 100. * image_features @ zeroshot_weights + logits = logits + new_logits * beta + + loss = F.cross_entropy(logits, target) + loss_value = loss.item() + correct = accuracy(logits, target) + correct_all += correct[0] + n += len(logits) + loss_list.append(loss_value) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + #optimizer.step()通常⽤在每个mini-batch之中,⽽scheduler.step()通常⽤在epoch⾥⾯,但是不绝对,可以根据具体的需求来做。只有⽤了optimizer.step(),模型才会更新,⽽scheduler.step()是对lr进⾏调整。 + + scheduler.step() + current_lr = scheduler.get_last_lr()[0] + text = 'LR: {:.6f}, Acc: {:.4f} ({:}/{:}), Loss: {:.4f}'.format(current_lr, correct_all / n, correct_all, n, + sum(loss_list)/len(loss_list)) + print(text) + + + # eval + adapter.eval() + + top1, top5, n = 0., 0., 0. + with torch.no_grad(): + test_features = torch.load(test_features_path) + test_labels = torch.load(test_targets_path) + test_features_new = test_features + + new_knowledge = adapter.linear1(test_features_new) + new_logits = ((-1) * (alpha - alpha * new_knowledge)).exp() @ (train_images_targets) + logits = 100. * test_features_new @ zeroshot_weights + logits = logits + new_logits * beta + acc1, acc5 = accuracy(logits, test_labels, topk=(1, 5)) + top1 += acc1 + top5 += acc5 + n += test_features.size(0) + top1 = (top1 / n) * 100 + top5 = (top5 / n) * 100 + text = f"Testing Top-1 Accuracy: {top1:.2f}" + print(text) + print() + + if top1 > best_top1: + best_top1 = top1 + best_epoch = train_idx + + print(f"Best Testing Top-1 Accuracy: {best_top1:.2f}, at Epoch: {best_epoch}") + print() + + print("Begin to search") + alpha_list = [i * (6.0 - 1.0) / 20 + 1 for i in range(20)] + beta_list = [i * (7 - 0.1) / 200 + 0.1 for i in range(200)] + best_top1 = 0 + + # ------------------------------------------ Search ------------------------------------------ + adapter.eval() + for alpha in alpha_list: + for beta in beta_list: + top1, top5, n = 0., 0., 0. + batch_idx = 0 + # predict + with torch.no_grad(): + test_features = torch.load(test_features_path) + test_labels = torch.load(test_targets_path) + test_features_new = test_features + new_knowledge = adapter.linear1(test_features_new) + new_logits = ((-1) * (alpha - alpha * new_knowledge)).exp() @ (train_images_targets) + logits = 100. * test_features_new @ zeroshot_weights + logits = logits + new_logits * beta + # measure accuracy + acc1, acc5 = accuracy(logits, test_labels, topk=(1, 5)) + batch_idx += 1 + top1 += acc1 + top5 += acc5 + n += test_features_new.size(0) + top1 = (top1 / n) * 100 + top5 = (top5 / n) * 100 + + if top1 > best_top1: + text = 'New best setting, alpha: {:.2f}, beta: {:.2f}; Top-1 acc: {:.2f}'.format(alpha, beta, top1) + print(text) + best_top1 = top1 + + + print(f"{name}, {k_shot} shot. Best Top-1 {best_top1:.2f}") + + + +if __name__ == '__main__': + main() + diff --git a/trainer.py b/trainer.py new file mode 100644 index 0000000..fa815ce --- /dev/null +++ b/trainer.py @@ -0,0 +1,503 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + + output_target = adapter(input_target_add) * logit_scale + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + if (epoch < 30): + self_lam = 3 + else: + self_lam = 1 / 5 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.train() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + + output_target = adapter(input_target_add) * logit_scale + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0.6 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch = 0 + + +def validate(classnames, templates, val_loader, model, adapter, epoch, args , criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + + + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/trainer_1_17.py b/trainer_1_17.py new file mode 100644 index 0000000..8c8871c --- /dev/null +++ b/trainer_1_17.py @@ -0,0 +1,507 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + +def warm_train(classnames, templates,source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label,_) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label,_) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + #自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + + output_target = adapter(input_target_add) * logit_scale + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source,target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + if(epoch<30): + self_lam=3 + else: + self_lam=1/5 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G+lam*loss_confusion_target + loss_T = loss_G + loss_classifier+self_lam*loss_self_supervised + + + + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + +def train(classnames, templates,source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.train() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label,_) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label,_) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + #自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + + output_target = adapter(input_target_add) * logit_scale + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:,len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised=loss_self_supervised_2+loss_self_supervised_1 + + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source,target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam=0.6 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G+lam*loss_confusion_target + loss_T = loss_G + loss_classifier+self_lam*loss_self_supervised + + + + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch=0 + +def validate(classnames, templates,val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + + for i, (image, label,_) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + #output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source=output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg,top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg,top1_source.avg) + best_epoch=epoch + print('best_epoch', best_epoch,' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/trainer_1_18.py b/trainer_1_18.py new file mode 100644 index 0000000..d68a409 --- /dev/null +++ b/trainer_1_18.py @@ -0,0 +1,480 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + +def warm_train(classnames, templates,source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.train() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.eval() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label,_) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label,_) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + #自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + + output_target = adapter(input_target_add) * logit_scale + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source,target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam=1-lam + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = 0 + loss_G = 0 + loss_T = loss_self_supervised + + + + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + # losses_classifier.update(loss_classifier.item(), input_source.size(0)) + # losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + +def train(classnames, templates,source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.train() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + model.eval() + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label,_) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label,_) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + #自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + # target_source = label.cuda() + input_target = image.cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + + output_source = adapter(input_source) * logit_scale + # 输入编码图片 + + output_target = adapter(input_target_add) * logit_scale + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source,target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam=1/3 + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G+lam*loss_confusion_target + loss_T = loss_G + loss_classifier+self_lam*loss_self_supervised + + + + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + # loss_classifier.backward(retain_graph=True) + # optimizer.step() + # + # optimizer.zero_grad() + # loss_G.backward() + loss_T.backward() + optimizer.step() + scheduler.step() + + + + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch=0 + +def validate(classnames, templates,val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + + model.eval() + adapter.eval() + end = time.time() + logit_scale = 4.60517 + logit_scale = math.exp(logit_scale) + + for i, (image, label,_) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + class_embedding = class_embedding / class_embedding.norm(dim=-1, keepdim=True) + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + #output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + output_source=output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg,top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg,top1_source.avg) + best_epoch=epoch + print('best_epoch', best_epoch,' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/trainer_self_supervised.py b/trainer_self_supervised.py new file mode 100644 index 0000000..92736f1 --- /dev/null +++ b/trainer_self_supervised.py @@ -0,0 +1,545 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + +from models.SmoothCrossEntropy import SmoothCrossEntropy + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +def _off_diagonal(x): + # return a flattened view of the off-diagonal elements of a square matrix + n, m = x.shape + assert n == m + return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() + + +def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights, + res_adapter): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + losses_S=AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + + Text_Encoder.eval() + Image_Encoder.eval() + adapter.train() + res_adapter.train() + + + logit_scale = model.logit_scale.exp() #4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + #图像标签 + target_target = label.cuda() + #图像特征 + input_target = image.cuda() + + #自监督标签 + label_self_supervised = label.cuda() + + #乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + + + #乱序文本特征 + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + + + # 文本直接输入全连接层 + output_source = res_adapter(input_source) + output_source = adapter(output_source) * logit_scale + + #自监督文本输入全连接层 + self_output_source = res_adapter(self_input_source) + self_output_source = adapter(self_output_source) + self_output_source = F.normalize(self_output_source) + + #图像输入全连接层 + output_target = res_adapter(input_target_add) + output_target = adapter(output_target) * logit_scale + + + #自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + + loss_S = loss_self_supervised + losses_S.update(loss_S.item(), self_output_source.size(0)) + + optimizer.zero_grad() + loss_S.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Loss@S {loss_s.val:.4f} ({loss_s.avg:.4f})\t' + .format( + epoch, args.epochs, batch_time=batch_time, loss_s=losses_S)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + losses_S= AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + + logit_scale = model.logit_scale.exp() # 4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + + #图像标签 + target_target = label.cuda() + #图像特征 + input_target = image.cuda() + + #自监督标签 + label_self_supervised = label.cuda() + + #乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + # input_target_add = input_target_add / input_target_add.norm(dim=1, keepdim=True) + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + # 图像输入全连接层 + # output_target = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + + # 度量学习loss + # label_smoothing = 0.1 + # class_loss = SmoothCrossEntropy(epsilon=label_smoothing) + # metric_loss = class_loss(output_target, output_source).mean() + # # metric_loss_1 = class_loss(output_target, target_target).mean() + # # metric_loss_2 = class_loss(output_source, target_source).mean() + + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam = 1/3 # abs(2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 2) + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier+self_lam * loss_self_supervised + loss_S=loss_self_supervised + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + losses_S.update(loss_S.item(), input_source.size(0)) + + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Loss@S {loss_s.val:.4f} ({loss_s.avg:.4f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + loss_s=losses_S, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch = 0 + + +def validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder, res_adapter): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + model.eval() + adapter.eval() + res_adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() #4.60517 + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + # output_target = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + + + #自监督 + self_out_source=res_adapter(zero_shots.T) + self_out_source= adapter(self_out_source) * logit_scale + self_out_source=F.normalize(self_out_source) + + input_source=res_adapter(input_source) + input_source= adapter(input_source) * logit_scale + input_source=F.normalize(input_source) + + self_output_target=output_target + self_output_target=F.normalize(self_output_target/ logit_scale) + self_result=logit_scale * self_output_target @ self_out_source.T + self_result_2=logit_scale * input_source @ self_out_source.T + + prec1_source, _ = accuracy(self_result_2, target_target, topk=(1, 5)) + prec1_target, _ = accuracy(self_result, target_target, topk=(1, 5)) + + + + + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + # prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + # prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/trainer_self_supervised_noadapter.py b/trainer_self_supervised_noadapter.py new file mode 100644 index 0000000..fc6b9f7 --- /dev/null +++ b/trainer_self_supervised_noadapter.py @@ -0,0 +1,531 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + +from models.SmoothCrossEntropy import SmoothCrossEntropy + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +def _off_diagonal(x): + # return a flattened view of the off-diagonal elements of a square matrix + n, m = x.shape + assert n == m + return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() + + +def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights + ): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + + + logit_scale = model.logit_scale.exp() #4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + #图像标签 + target_target = label.cuda() + #图像特征 + input_target = image.cuda() + + #自监督标签 + label_self_supervised = label.cuda() + + #乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + + + #乱序文本特征 + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + + + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + #自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + #图像输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + + #自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_classifier = 0 + loss_G = 0 + loss_T = loss_self_supervised + + + losses_T.update(loss_T.item(), input_source.size(0)) + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights + ): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + + + logit_scale = model.logit_scale.exp() # 4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + + + #图像标签 + target_target = label.cuda() + #图像特征 + input_target = image.cuda() + + #自监督标签 + label_self_supervised = label.cuda() + + #乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + # input_target_add = input_target_add / input_target_add.norm(dim=1, keepdim=True) + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + # 图像输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + self_output_target=self_output_target[:,:len(classnames)]+self_output_target[:,len(classnames):] + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + + # 度量学习loss + # label_smoothing = 0.1 + # class_loss = SmoothCrossEntropy(epsilon=label_smoothing) + # metric_loss = class_loss(output_target, output_source).mean() + # # metric_loss_1 = class_loss(output_target, target_target).mean() + # # metric_loss_2 = class_loss(output_source, target_source).mean() + + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam = 1/3 # abs(2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 2) + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + self_lam * loss_self_supervised + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch = 0 + + +def validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() #4.60517 + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + + + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/trainer_supervised.py b/trainer_supervised.py new file mode 100644 index 0000000..7072a71 --- /dev/null +++ b/trainer_supervised.py @@ -0,0 +1,520 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + +from models.SmoothCrossEntropy import SmoothCrossEntropy + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +def _off_diagonal(x): + # return a flattened view of the off-diagonal elements of a square matrix + n, m = x.shape + assert n == m + return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() + + +def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + losses_S = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + Text_Encoder.eval() + Image_Encoder.eval() + adapter.train() + + logit_scale = model.logit_scale.exp() # 4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + # 图像标签 + target_target = label.cuda() + # 图像特征 + input_target = image.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + + # 乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # 乱序文本特征 + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + # 图像输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_S = loss_self_supervised + losses_S.update(loss_S.item(), self_output_source.size(0)) + + optimizer.zero_grad() + loss_S.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Loss@S {loss_s.val:.4f} ({loss_s.avg:.4f})\t' + .format( + epoch, args.epochs, batch_time=batch_time, loss_s=losses_S)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights + ): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + losses_S = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + + logit_scale = model.logit_scale.exp() # 4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + + # 图像标签 + target_target = label.cuda() + # 图像特征 + input_target = image.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + + # 乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + # input_target_add = input_target_add / input_target_add.norm(dim=1, keepdim=True) + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + # 图像输入全连接层 + # output_target = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + + # 度量学习loss + # label_smoothing = 0.1 + # class_loss = SmoothCrossEntropy(epsilon=label_smoothing) + # metric_loss = class_loss(output_target, output_source).mean() + # # metric_loss_1 = class_loss(output_target, target_target).mean() + # # metric_loss_2 = class_loss(output_source, target_source).mean() + + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam = 1 / 3 # abs(2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 2) + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + loss_S = loss_self_supervised + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + losses_S.update(loss_S.item(), input_source.size(0)) + + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Loss@S {loss_s.val:.4f} ({loss_s.avg:.4f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + loss_s=losses_S, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch = 0 + + +def validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() # 4.60517 + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + # output_target = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 自监督 + self_out_source = adapter(zero_shots.T) * logit_scale + self_out_source = F.normalize(self_out_source) + + input_source = adapter(input_source) * logit_scale + input_source = F.normalize(input_source) + + self_output_target = output_target + self_output_target = F.normalize(self_output_target / logit_scale) + self_result = logit_scale * self_output_target @ self_out_source.T + self_result_2 = logit_scale * input_source @ self_out_source.T + + prec1_source, _ = accuracy(self_result_2, target_target, topk=(1, 5)) + prec1_target, _ = accuracy(self_result, target_target, topk=(1, 5)) + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + # prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + # prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/trainer_supervised_warm.py b/trainer_supervised_warm.py new file mode 100644 index 0000000..bcf63ab --- /dev/null +++ b/trainer_supervised_warm.py @@ -0,0 +1,612 @@ +import random +import time + +import numpy as np +import torch +import os +import math +import clip +import ipdb +import torch.nn.functional as F +import torch.nn as nn +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss + +from models.SmoothCrossEntropy import SmoothCrossEntropy + + +def zeroshot_classifier(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + + +def _off_diagonal(x): + # return a flattened view of the off-diagonal elements of a square matrix + n, m = x.shape + assert n == m + return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() + + +def warm_train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + losses_S = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + Text_Encoder.eval() + Image_Encoder.eval() + adapter.train() + + logit_scale = model.logit_scale.exp() # 4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + # 图像标签 + target_target = label.cuda() + # 图像特征 + input_target = image.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + + # 乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # 乱序文本特征 + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + # 图像输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_S = loss_self_supervised + losses_S.update(loss_S.item(), self_output_source.size(0)) + + optimizer.zero_grad() + loss_S.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Loss@S {loss_s.val:.4f} ({loss_s.avg:.4f})\t' + .format( + epoch, args.epochs, batch_time=batch_time, loss_s=losses_S)) + return source_train_loader_batch, epoch, new_epoch_flag + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, criterion_classifier_source, criterion_classifier_target, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, zero_weights + ): + random.seed(1) + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + losses_S = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + model.eval() + + Text_Encoder.train() + Image_Encoder.train() + adapter.train() + + logit_scale = model.logit_scale.exp() # 4.60517 + + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + + # 图像标签 + target_target = label.cuda() + # 图像特征 + input_target = image.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + + # 乱序文本标签 + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + zeroshot_weights = [] + for i in range(len(target_source)): + features, eot_indices = zeroshot_classifier(classnames[target_source[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights.T + + self_zeroshot_weights = [] + for i in range(len(label_self_supervised)): + features, eot_indices = zeroshot_classifier(classnames[label_self_supervised[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + self_zeroshot_weights.append(class_embedding) + self_zeroshot_weights = torch.stack(self_zeroshot_weights, dim=1).cuda() + self_input_source = self_zeroshot_weights.T + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # input_target_add = input_target_add / input_target_add.norm(dim=1, keepdim=True) + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source) + + # 图像输入全连接层 + # output_target = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target) + # def loss_fn(self, z1, z2, λ): + # # empirical cross-correlation matrix + # c = self.bn(z1).T @ self.bn(z2) + # c.div_(z1.size(0)) + # + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = self._off_diagonal(c).pow_(2).sum() + # + # return on_diag + λ * off_diag + # self.lambd = 0.0051 + # output_source_norm=output_source[:,:len(classnames)] + # output_target_norm=output_target[:, len(classnames):] + # output_source_norm=output_source + # output_target_norm=output_target + # # output_source_norm = F.normalize(output_source_norm) + # # output_target_norm = F.normalize(output_target_norm) + # bn = nn.BatchNorm1d(200, affine=False).cuda() + # λ = 0.0051 + # c=bn(output_source_norm).T @ bn(output_target_norm) + # c.div_(output_source.size(0)) + # on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() + # off_diag = _off_diagonal(c).pow_(2).sum() + # loss_saim=on_diag + λ * off_diag + + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + + # 度量学习loss + # label_smoothing = 0.1 + # class_loss = SmoothCrossEntropy(epsilon=label_smoothing) + # metric_loss = class_loss(output_target, output_source).mean() + # # metric_loss_1 = class_loss(output_target, target_target).mean() + # # metric_loss_2 = class_loss(output_source, target_source).mean() + + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + self_lam = 1 / 3 # abs(2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 2) + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + loss_S = loss_self_supervised + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + losses_S.update(loss_S.item(), input_source.size(0)) + + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Loss@S {loss_s.val:.4f} ({loss_s.avg:.4f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + loss_s=losses_S, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + if new_epoch_flag: + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write("Train:epoch: %d, loss@min: %4f, loss@max: %4f, Top1S acc: %3f, Top1T acc: %3f" % ( + epoch, losses_classifier.avg, losses_G.avg, top1_source.avg, top1_target.avg)) + log.close() + return source_train_loader_batch, epoch, new_epoch_flag + + +best_target_acc = 0 +best_epoch = 0 + +def validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() #4.60517 + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + output_target = adapter(input_target_add) * logit_scale + + output_source = output_target + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + +def warm_validate(classnames, templates, val_loader, model, adapter, epoch, args, zero_shots, criterion, CLIP_Text, + Text_Encoder, CLIP_Image, + Image_Encoder): + global best_target_acc + global best_epoch + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + zero_acc_I_acc = AverageMeter() + clip_acc_aver = AverageMeter() + Compu4_acc = AverageMeter() + # switch to evaluate mode + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.eval() + Image_Encoder.eval() + model.eval() + adapter.eval() + end = time.time() + logit_scale = model.logit_scale.exp() # 4.60517 + + for i, (image, label, _) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + zeroshot_weights = [] + for j in range(len(label)): + features, eot_indices = zeroshot_classifier(classnames[label[j]], templates, CLIP_Text) + with torch.no_grad(): + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + input_source = zeroshot_weights + input_source = input_source.T + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + input_target_add = Image_Encoder(input_target_temp) + # output_source = adapter(input_source) * logit_scale + # output_target = res_adapter(input_target_add) + output_target = adapter(input_target_add) * logit_scale + output_source = output_target + + # 自监督 + self_out_source = adapter(zero_shots.T) * logit_scale + self_out_source = F.normalize(self_out_source) + + input_source = adapter(input_source) * logit_scale + input_source = F.normalize(input_source) + + self_output_target = output_target + self_output_target = F.normalize(self_output_target / logit_scale) + self_result = logit_scale * self_output_target @ self_out_source.T + self_result_2 = logit_scale * input_source @ self_out_source.T + + prec1_source, _ = accuracy(self_result_2, target_target, topk=(1, 5)) + prec1_target, _ = accuracy(self_result, target_target, topk=(1, 5)) + + # 3 + loss_source = criterion(output_source[:, :len(classnames)], target_target) + loss_target = criterion(output_target[:, len(classnames):], target_target) + + # measure accuracy and record loss + # prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_target, topk=(1, 5)) + # prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_source.update(loss_source.item(), image.size(0)) + losses_target.update(loss_target.item(), image.size(0)) + + top1_source.update(prec1_source[0], image.size(0)) + top1_target.update(prec1_target[0], image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + + .format(top1S=top1_source, top1T=top1_target)) + if max(top1_target.avg, top1_source.avg) > best_target_acc: + best_target_acc = max(top1_target.avg, top1_source.avg) + best_epoch = epoch + print('best_epoch', best_epoch, ' * Current_best_target@T:', best_target_acc.item()) + + log = open(os.path.join(args.log, 'log.txt'), 'a') + log.write("\n") + log.write(" Test:epoch: %d, LS: %4f, LT: %4f, Top1S: %3f, Top1T: %3f" % \ + (epoch, losses_source.avg, losses_target.avg, top1_source.avg, top1_target.avg)) + log.close() + return best_target_acc.item() + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res diff --git a/utils/loss_utils.py b/utils/loss_utils.py new file mode 100644 index 0000000..4555974 --- /dev/null +++ b/utils/loss_utils.py @@ -0,0 +1,174 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from utils.utils import process_zero_values +import ipdb + + +def _assert_no_grad(variable): + assert not variable.requires_grad, \ + "nn criterions don't compute the gradient w.r.t. targets - please " \ + "mark these variables as volatile or not requiring gradients" + + +class _Loss(nn.Module): + def __init__(self, size_average=True): + super(_Loss, self).__init__() + self.size_average = size_average + + +class _WeightedLoss(_Loss): + def __init__(self, weight=None, size_average=True): + super(_WeightedLoss, self).__init__(size_average) + self.register_buffer('weight', weight) + + +class CrossEntropyClassWeighted(_Loss): + + def __init__(self, size_average=True, ignore_index=-100, reduce=None, reduction='elementwise_mean'): + super(CrossEntropyClassWeighted, self).__init__(size_average) + self.ignore_index = ignore_index + self.reduction = reduction + + def forward(self, input, target, weight=None): + return F.cross_entropy(input, target, weight, ignore_index=self.ignore_index, reduction=self.reduction) + + +### clone this function from: https://github.com/krumo/swd_pytorch/blob/master/swd_pytorch.py. [Unofficial] +def discrepancy_slice_wasserstein(p1, p2): + s = p1.shape + if s[1] > 1: + proj = torch.randn(s[1], 128).cuda() + proj *= torch.rsqrt(torch.sum(torch.mul(proj, proj), 0, keepdim=True)) + p1 = torch.matmul(p1, proj) + p2 = torch.matmul(p2, proj) + p1 = torch.topk(p1, s[0], dim=0)[0] + p2 = torch.topk(p2, s[0], dim=0)[0] + dist = p1 - p2 + wdist = torch.mean(torch.mul(dist, dist)) + + return wdist + + +class McDalNetLoss(_WeightedLoss): + + def __init__(self, weight=None, size_average=True): + super(McDalNetLoss, self).__init__(weight, size_average) + + def forward(self, input1, input2, dis_type='L1'): + + if dis_type == 'L1': + prob_s = F.softmax(input1, dim=1) + prob_t = F.softmax(input2, dim=1) + loss = torch.mean(torch.abs(prob_s - prob_t)) ### element-wise + elif dis_type == 'CE': ## Cross entropy + loss = - ((F.log_softmax(input2, dim=1)).mul(F.softmax(input1, dim=1))).mean() - ( + (F.log_softmax(input1, dim=1)).mul(F.softmax(input2, dim=1))).mean() + loss = loss * 0.5 + elif dis_type == 'KL': ##### averaged over elements, not the real KL div (summed over elements of instance, and averaged over instance) + ############# nn.KLDivLoss(size_average=False) Vs F.kl_div() + loss = (F.kl_div(F.log_softmax(input1), F.softmax(input2))) + ( + F.kl_div(F.log_softmax(input2), F.softmax(input1))) + loss = loss * 0.5 + ############# the following two distances are not evaluated in our paper, and need further investigation + elif dis_type == 'L2': + nClass = input1.size()[1] + prob_s = F.softmax(input1, dim=1) + prob_t = F.softmax(input2, dim=1) + loss = torch.norm(prob_s - prob_t, p=2, dim=1).mean() / nClass ### element-wise + elif dis_type == 'Wasse': ## distance proposed in Sliced wasserstein discrepancy for unsupervised domain adaptation, + prob_s = F.softmax(input1, dim=1) + prob_t = F.softmax(input2, dim=1) + loss = discrepancy_slice_wasserstein(prob_s, prob_t) + + return loss + + +class TargetDiscrimLoss(_WeightedLoss): + def __init__(self, weight=None, size_average=True, num_classes=31): + super(TargetDiscrimLoss, self).__init__(weight, size_average) + self.num_classes = num_classes + + def forward(self, input): + batch_size = input.size(0) + prob = F.softmax(input, dim=1) + + if (prob.data[:, self.num_classes:].sum(1) == 0).sum() != 0: ########### in case of log(0) + soft_weight = torch.FloatTensor(batch_size).fill_(0) + soft_weight[prob[:, self.num_classes:].sum(1).data.cpu() == 0] = 1e-6 + soft_weight_var = soft_weight.cuda() + loss = -((prob[:, self.num_classes:].sum(1) + soft_weight_var).log().mean()) + else: + loss = -(prob[:, self.num_classes:].sum(1).log().mean()) + return loss + +class SourceDiscrimLoss(_WeightedLoss): + def __init__(self, weight=None, size_average=True, num_classes=31): + super(SourceDiscrimLoss, self).__init__(weight, size_average) + self.num_classes = num_classes + + def forward(self, input): + batch_size = input.size(0) + prob = F.softmax(input, dim=1) + + if (prob.data[:, :self.num_classes].sum(1) == 0).sum() != 0: ########### in case of log(0) + soft_weight = torch.FloatTensor(batch_size).fill_(0) + soft_weight[prob[:, :self.num_classes].sum(1).data.cpu() == 0] = 1e-6 + soft_weight_var = soft_weight.cuda() + loss = -((prob[:, :self.num_classes].sum(1) + soft_weight_var).log().mean()) + else: + loss = -(prob[:, :self.num_classes].sum(1).log().mean()) + return loss + + +class ConcatenatedCELoss(_WeightedLoss): + def __init__(self, weight=None, size_average=True, num_classes=31): + super(ConcatenatedCELoss, self).__init__(weight, size_average) + self.num_classes = num_classes + + def forward(self, input): + prob = F.softmax(input, dim=1) + prob_s = prob[:, :self.num_classes] + prob_t = prob[:, self.num_classes:] + + prob_s = process_zero_values(prob_s) + prob_t = process_zero_values(prob_t) + loss = - (prob_s.log().mul(prob_t)).sum(1).mean() - (prob_t.log().mul(prob_s)).sum(1).mean() + loss = loss * 0.5 + return loss + + + +class ConcatenatedEMLoss(_WeightedLoss): + def __init__(self, weight=None, size_average=True, num_classes=31): + super(ConcatenatedEMLoss, self).__init__(weight, size_average) + self.num_classes = num_classes + + def forward(self, input): + prob = F.softmax(input, dim=1) + prob_s = prob[:, :self.num_classes] + prob_t = prob[:, self.num_classes:] + prob_sum = prob_s + prob_t + prob_sum = process_zero_values(prob_sum) + loss = - prob_sum.log().mul(prob_sum).sum(1).mean() + + return loss + +class MinEntropyConsensusLoss(nn.Module): + def __init__(self, num_classes): + super(MinEntropyConsensusLoss, self).__init__() + self.num_classes = num_classes + + def forward(self, x, y): + i = torch.eye(self.num_classes).unsqueeze(0).cuda() + x = F.log_softmax(x, dim=1) + y = F.log_softmax(y, dim=1) + x = x.unsqueeze(-1) + y = y.unsqueeze(-1) + + ce_x = (- 1.0 * i * x).sum(1) + ce_y = (- 1.0 * i * y).sum(1) + + ce = 0.5 * (ce_x + ce_y).min(1)[0].mean() + + return ce \ No newline at end of file diff --git a/utils/utils.py b/utils/utils.py new file mode 100644 index 0000000..76b89b2 --- /dev/null +++ b/utils/utils.py @@ -0,0 +1,432 @@ +import torch +import numpy as np +from datasets import build_dataset +from datasets.utils import build_data_loader +from engine import partial_model +from clip.model import ModifiedResNet, VisionTransformer +import torchvision.transforms as transforms +import os +import random +import logging +from clip import clip +def to_cuda(x): + if torch.cuda.is_available(): + x = x.cuda() + return x + +def to_cpu(x): + return x.cpu() + +def to_numpy(x): + if torch.cuda.is_available(): + x = x.cpu() + return x.data.numpy() + +def to_onehot(label, num_classes): + identity = torch.eye(num_classes).to(label.device) + onehot = torch.index_select(identity, 0, label) + return onehot + +def accuracy(output, target): + """Computes the precision""" + batch_size = target.size(0) + _, pred = output.topk(1, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + + correct = correct[:1].view(-1).float().sum(0, keepdim=True) + res = correct.mul_(100.0 / batch_size) + return res + + +def accuracy_for_each_class(output, target, total_vector, correct_vector): + """Computes the precision for each class""" + batch_size = target.size(0) + _, pred = output.topk(1, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1)).float().cpu().squeeze() + for i in range(batch_size): + total_vector[target[i]] += 1 + correct_vector[torch.LongTensor([target[i]])] += correct[i] + + return total_vector, correct_vector + +def recall_for_each_class(output, target, total_vector, correct_vector): + """Computes the recall for each class""" + batch_size = target.size(0) + _, pred = output.topk(1, 1, True, True) + pred = pred.t() + correct = pred.eq(target.view(1, -1)).float().cpu().squeeze() + for i in range(batch_size): + total_vector[pred[0][i]] += 1 + correct_vector[torch.LongTensor([pred[0][i]])] += correct[i] + + return total_vector, correct_vector + +def process_one_values(tensor): + if (tensor == 1).sum() != 0: + eps = torch.FloatTensor(tensor.size()).fill_(0) + eps[tensor.data.cpu() == 1] = 1e-6 + tensor = tensor - eps.cuda() + return tensor + +def process_zero_values(tensor): + if (tensor == 0).sum() != 0: + eps = torch.FloatTensor(tensor.size()).fill_(0) + eps[tensor.data.cpu() == 0] = 1e-6 + tensor = tensor + eps.cuda() + return tensor + + +class AverageMeter(object): + """Computes and stores the average and current value""" + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + +def prepare_directories(args,CLIP_Text,CLIP_Image): + """检查并创建必要的目录和文件。""" + # 创建目录(如果不存在) + for dir_path in [args.filename_dir, os.path.join(args.savedir, f"{args.dataset_name}_epx", f"{args.shot}shot")]: + os.makedirs(dir_path, exist_ok=True) + print(f"{dir_path} directory is ready.") + + # 创建文件(如果不存在) + filename = os.path.join(args.filename_dir, f"{args.dataset_name}.txt") + if not os.path.exists(filename): + open(filename, 'a').close() # 'a' 模式会创建文件(如果不存在) + print(f"Created {filename}") + else: + print(f"{filename} already exists.") + #保存未解冻clip部分模型 + dir=args.savedir+args.dataset_name+'_epx/'+str(args.shot)+'shot'+'/' + torch.save(CLIP_Text, dir + '/CLIP_Text.pth') + torch.save(CLIP_Image, dir + '/CLIP_Image.pth') + logging.basicConfig(filename=filename, level=logging.INFO) +def set_seed(seed_value): + """设置所有随机种子以确保可重复性.""" + random.seed(seed_value) # Python random module. + np.random.seed(seed_value) # Numpy module. + torch.manual_seed(seed_value) # PyTorch for CPU operations. + + # 如果您使用的是CUDA操作,请确保设置以下两项 + if torch.cuda.is_available(): + torch.cuda.manual_seed(seed_value) # PyTorch for current GPU. + torch.cuda.manual_seed_all(seed_value) # PyTorch for all GPUs. + + # 这些设置有助于提高可重复性,但可能会影响性能 + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + # 设置PYTHONHASHSEED环境变量,影响Python的hash-based操作 + os.environ['PYTHONHASHSEED'] = str(seed_value) + +#准备dataloader +def get_dataset_loader(args,preprocess): + dataset = build_dataset(args.dataset_name, args.dataset_dir, args.shot) + classnames=dataset.classnames + templates=dataset.template + # 加载测试数据集 + loader = build_data_loader(data_source=dataset.test, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + val_loader = build_data_loader(data_source=dataset.val, batch_size=64, is_train=False, tfm=preprocess, + shuffle=False) + + + # 加载训练数据集(可选,如果需要) + train_tranform = transforms.Compose([ + transforms.RandomResizedCrop(size=224, scale=(0.5, 1), interpolation=transforms.InterpolationMode.BICUBIC), + transforms.RandomHorizontalFlip(p=0.5), + transforms.ToTensor(), + transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) + ]) + train_loader = build_data_loader(data_source=dataset.train_x, batch_size=256, tfm=train_tranform, + is_train=True, + shuffle=True) + + return classnames,templates, loader, train_loader,val_loader + +def configure_clip_encoders(args,model,text_layer_idx,image_layer_idx): + """ + 根据模型名称配置并返回CLIP的文本和图像编码器。""" + if args.name =="ViT-B/16": + CLIP_Text,Text_Encoder=partial_model.get_text(model,text_layer_idx) + assert type(model.visual) == VisionTransformer + CLIP_Image,Image_Encoder=partial_model.get_image_vit(model.visual, image_layer_idx) + elif args.name =="ViT-B/32": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx) + assert type(model.visual) == VisionTransformer + CLIP_Image, Image_Encoder = partial_model.get_image_vit(model.visual, image_layer_idx) + elif args.name == "RN50": + CLIP_Text,Text_Encoder =partial_model.get_text(model,text_layer_idx) + assert type(model.visual) == ModifiedResNet + CLIP_Image,Image_Encoder=partial_model.get_image_resnet(model.visual, image_layer_idx) + elif args.name == "RN101": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx) + elif args.name == "RN50x16": + CLIP_Text, Text_Encoder = partial_model.get_text(model, text_layer_idx) + assert type(model.visual) == ModifiedResNet + CLIP_Image, Image_Encoder = partial_model.get_image_resnet(model.visual, image_layer_idx) + else: + raise ValueError(f"Unsupported model name: {args.name}") + + + + return CLIP_Text.cuda(), Text_Encoder.cuda(), CLIP_Image.cuda(), Image_Encoder.cuda() + +def save_model(epoch,Text_Encoder,Image_Encoder,adapter, args,prec): + """保存模型和训练状态""" + dir = args.savedir + args.dataset_name + '_epx/' + str(args.shot) + 'shot' + '/' + save_dir = dir + '/epoch_' + str(epoch) + '_' + str(prec) + if not os.path.isdir(save_dir): + os.mkdir(save_dir) + torch.save(Text_Encoder, os.path.join(save_dir,"Text_Encoder.pth")) + torch.save(Image_Encoder, os.path.join(save_dir, "Image_Encoder.pth")) + torch.save(adapter, os.path.join(save_dir, "adapter.pth")) + + + +def set_adapter_weights(model,classnames,templates): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] + texts = clip.tokenize(texts).cuda() + class_embeddings = model.encode_text(texts) + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + init_weight = torch.cat([zeroshot_weights, zeroshot_weights], dim=1).T + # init_weight = torch.cat([zeroshot_weights, zeroshot_weights], dim=1).T + + return init_weight + +def set_adapter_weights_single(model,classnames,templates): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] + texts = clip.tokenize(texts).cuda() + class_embeddings = model.encode_text(texts) + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + init_weight = zeroshot_weights.T + # init_weight = torch.cat([zeroshot_weights, zeroshot_weights], dim=1).T + + return init_weight + +#文本模板特征 +def get_text_feature(classname, templates, CLIP_Text): + with torch.no_grad(): + classname = classname.replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices +def get_text_feature_GPT(classname, templates, CLIP_Text,gpt3_prompt): + with torch.no_grad(): + classname = classname.replace('_', ' ') + # str_prompts = [template.format(classname) for template in templates] + texts=[] + for t in gpt3_prompt[classname]: + texts.append(t) + # str_prompts =str_prompts+texts + str_prompts = texts + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices +def text_feature(str_prompts, CLIP_Text): + with torch.no_grad(): + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + features, eot_indices = CLIP_Text(prompts) + return features, eot_indices + +def calculate_zeroshot_weights(classnames,label, templates, CLIP_Text, Text_Encoder): + zeroshot_weights = [] + for i in range(len(label)): + features, eot_indices = get_text_feature(classnames[label[i]], templates, CLIP_Text) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights.T +def calculate_zero(classnames,label, templates, model): + zeroshot_weights = [] + for i in range(len(label)): + + with torch.no_grad(): + classname = classnames[label[i]].replace('_', ' ') + str_prompts = [template.format(classname) for template in templates] + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + class_embeddings = model(prompts) + + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights.T +def calculate_zeroshot_weights_GPT(classnames,label, templates, CLIP_Text, Text_Encoder,gpt3_prompt): + zeroshot_weights = [] + for i in range(len(label)): + features, eot_indices = get_text_feature_GPT(classnames[label[i]], templates, CLIP_Text,gpt3_prompt) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights.T + +def gpt_clip_classifier(classnames,gpt3_prompt, CLIP_Text, Text_Encoder): + zeroshot_weights = [] + with torch.no_grad(): + for classname in classnames: + # Tokenize the prompts + classname = classname.replace('_', ' ') + texts = [] + for t in gpt3_prompt[classname]: + texts.append(t) + texts = clip.tokenize(texts).cuda() + features, eot_indices = CLIP_Text(texts) + class_embeddings = Text_Encoder(features, eot_indices) + class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding = class_embedding / class_embedding.norm() + zeroshot_weights.append(class_embedding) + # prompt ensemble for ImageNet + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + + return zeroshot_weights.T + +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights +def all_classifier_GPT(classnames, gpt3_prompt,model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [] + for t in gpt3_prompt[classname]: + texts.append(t) + # str_prompts =str_prompts+texts + str_prompts = texts + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + class_embeddings = model.encode_text(prompts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights +def all_classifier_GPTWithCLIP(classnames, gpt3_prompt,model, templates): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts1 = [template.format(classname) for template in templates] + texts2 = [] + for t in gpt3_prompt[classname]: + texts2.append(t) + # str_prompts =str_prompts+texts + str_prompts = texts1+texts2 + prompts = torch.cat([clip.tokenize(p) for p in str_prompts]).cuda() + class_embeddings = model.encode_text(prompts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights + +# def calculate_zeroshot_weights(classnames, label, templates, CLIP_Text, Text_Encoder): +# zeroshot_weights = None +# labels = [] # 初始化labels为一个空列表,稍后将其转换为Tensor +# for i in range(len(label)): +# features, eot_indices = get_text_feature(classnames[label[i]], templates, CLIP_Text) +# class_embeddings = Text_Encoder(features, eot_indices) +# +# # 如果是第一次迭代,直接赋值;否则,进行拼接 +# if zeroshot_weights is None: +# zeroshot_weights = class_embeddings +# else: +# zeroshot_weights = torch.cat((zeroshot_weights, class_embeddings), dim=0) +# +# # 对于每个label,重复len(templates)次,然后将结果添加到labels列表中 +# labels.extend([label[i].item()] * len(templates)) +# +# # 将labels列表转换为Tensor +# labels = torch.tensor(labels, dtype=torch.long).cuda() +# +# return zeroshot_weights, labels + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self): + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def accuracy(output, target, topk=(1,)): + """Computes the precision@k for the specified values of k""" + maxk = max(topk) + batch_size = target.size(0) + _, pred = output.topk(maxk, 1, True, True) + pred = pred.t() + _2, pred2 = output.topk(1, 1, True, True) + a = target.view(1, -1) + correct = pred.eq(target.view(1, -1).expand_as(pred)) + # print(correct) + res = [] + for k in topk: + correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) + res.append(correct_k.mul_(100.0 / batch_size)) + return res \ No newline at end of file diff --git a/zero_test.py b/zero_test.py new file mode 100644 index 0000000..7263043 --- /dev/null +++ b/zero_test.py @@ -0,0 +1,462 @@ +import os +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier, \ + calculate_zeroshot_weights_GPT,calculate_zero,all_classifier_GPT,all_classifier_GPTWithCLIP +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F +import yaml +import json +import torch +import torch.nn as nn +import torch.nn.functional as F +import glob + + +class CustomCrossAttention(nn.Module): + def __init__(self, feature_dim): + super(CustomCrossAttention, self).__init__() + self.query_projection = nn.Linear(feature_dim, feature_dim) + self.key_projection = nn.Linear(feature_dim, feature_dim) + self.value_projection = nn.Linear(feature_dim, feature_dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, text_features, image_features): + # 假设 text_features 的 batch_size < image_features 的 batch_size + text_batch_size = text_features.size(0) + image_batch_size = image_features.size(0) + + # 重复 text_features 以匹配 image_features 的 batch_size + if text_batch_size < image_batch_size: + repeat_times = image_batch_size // text_batch_size + text_features = text_features.repeat(repeat_times, 1) + + query = self.query_projection(text_features) + key = self.key_projection(image_features) + value = self.value_projection(image_features) + + # 计算注意力分数 + attention_scores = torch.matmul(query, key.transpose(-2, -1)) + attention_scores = self.softmax(attention_scores) + + # 应用注意力分数到 value 上 + attended_features = torch.matmul(attention_scores, value) + + return attended_features + + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + d = source_features.data.shape[1] # 特征维度 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2)) # / (4*d*d) + return coral_loss + + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + # 特征维度 + d = source_features.data.shape[1] + + # 计算均值 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + + # 计算均值差异 + mean_diff = torch.pow(source_mean - target_mean, 2).mean() + + # 计算协方差矩阵 + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + + # 计算协方差矩阵差异的平均值 + cov_diff = torch.pow(source_cov - target_cov, 2).mean() + + # 返回均值差异和协方差矩阵差异的和 + total_coral_loss = mean_diff + cov_diff + return total_coral_loss + + +def shuffle_data(weights, labels): + # 生成索引 + indices = torch.randperm(len(weights)) + # 使用索引来打乱数据和标签 + shuffled_weights = weights[indices] + shuffled_labels = labels[indices] + return shuffled_weights, shuffled_labels + + +def compute_kernel(x, y): + """ + 计算高斯核矩阵 + """ + x_size = x.size(0) + y_size = y.size(0) + dim = x.size(1) + tiled_x = x.view(x_size, 1, dim).repeat(1, y_size, 1) + tiled_y = y.view(1, y_size, dim).repeat(x_size, 1, 1) + kernel_matrix = torch.exp(-torch.mean((tiled_x - tiled_y) ** 2, dim=2) / float(dim)) + return kernel_matrix + + +def mmd_loss(source_features, target_features): + """ + 计算源域和目标域特征之间的最大均值差异(MMD)损失 + """ + source_kernel = compute_kernel(source_features, source_features) + target_kernel = compute_kernel(target_features, target_features) + cross_kernel = compute_kernel(source_features, target_features) + + mmd = source_kernel.mean() + target_kernel.mean() - 2 * cross_kernel.mean() + return mmd + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, gpt_weight, gpt_label, + gpt3_prompt): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + # input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder, + gpt3_prompt) + gpt_weight, gpt_label = shuffle_data(gpt_weight, gpt_label) + # input_source = torch.cat(( + # input_source, gpt_weight + # ), dim=0) + # target_source = torch.cat(( + # target_source, gpt_label + # ), dim=0) + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 计算CORAL损失 + + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + # Text_Encoder) + self_input_source = calculate_zeroshot_weights_GPT(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder, gpt3_prompt) + # input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder,gpt3_prompt) + + # 计算MMD损失 + # mmd_loss_val = mmd_loss(self_input_source, input_target_add) + # lambda_mmd=1000 + # mmd_loss_val =lambda_mmd*mmd_loss_val + # 总损失 + + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral = 50 + loss_1 = lambda_coral * coral_loss_value + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_2 # loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + lambda_coral * coral_loss_value # + mmd_loss_val + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + +def cls_acc(output, target, topk=1): + pred = output.topk(topk, 1, True, True)[1].t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + acc = float(correct[: topk].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) + acc = 100 * acc / target.shape[0] + return acc + +def validate(best_epoch, classnames, templates, val_loader, model, epoch, args, criterion, best_prec, + zero_weights,gpt_weight): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + + + model.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label,_) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_add= model.encode_image(input_target) + input_target_add /= input_target_add.norm(dim=-1, keepdim=True) + + + logit_1= 100. * input_target_add @ zero_weights + logit_2 = 100.* input_target_add @ gpt_weight + + # measure accuracy and record loss + prec1_source = cls_acc(logit_1, target_target) + prec1_target = cls_acc(logit_2, target_target) + + + top1_source.update(prec1_source, image.size(0)) + top1_target.update(prec1_target, image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + # prec = max(top1_target.avg, top1_source.avg).item() + # if prec > best_prec: + # best_prec = max(top1_target.avg, top1_source.avg).item() + # best_epoch = epoch + # print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return 0,0#prec, best_epoch + +def clip_classifier(classnames, template, clip_model): + with torch.no_grad(): + clip_weights = [] + for classname in classnames: + # Tokenize the prompts + classname = classname.replace('_', ' ') + texts = [t.format(classname) for t in template] + texts = clip.tokenize(texts).cuda() + # prompt ensemble for ImageNet + class_embeddings = clip_model.encode_text(texts) + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + clip_weights.append(class_embedding) + + clip_weights = torch.stack(clip_weights, dim=1).cuda() + return clip_weights +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.eval() + # model.float() + classnames, templates, loader, train_loader,val_loader = get_dataset_loader(args, preprocess) + + loader=loader + # cfg = yaml.load(open(args.conf ig, 'r'), Loader=yaml.Loader) + # 获取'gpt_file'文件夹下所有的.yaml文件 + + json_files = glob.glob('gpt_file/sun397_prompt.json') + + for file_path in json_files: + # 打开并读取每个YAML文件 + with open(file_path, 'r') as f: + gpt3_prompt = json.load(f) + # gpt_weight = all_classifier_GPTWithCLIP(classnames, gpt3_prompt,model,templates) + gpt_weight = all_classifier_GPT(classnames, gpt3_prompt,model) + gpt_label = torch.arange(len(classnames), device="cuda:0", dtype=torch.long) + gpt_weight, gpt_label + # 分类层 + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + + + + zero_weights = clip_classifier(classnames, templates, model) + + + + current_epoch = 0 + best_prec = 0 + best_epoch = 0 + while (current_epoch < 1): + prec, best_epoch = validate(best_epoch, classnames, templates, loader, model, + current_epoch, args, criterion, + best_prec, + zero_weights,gpt_weight) + current_epoch+=1 + + +if __name__ == '__main__': + main() diff --git a/zero_test_imagenet.py b/zero_test_imagenet.py new file mode 100644 index 0000000..4e06056 --- /dev/null +++ b/zero_test_imagenet.py @@ -0,0 +1,469 @@ +import os +import time +from clip import clip +import torch.nn as nn +import numpy as np +import torch.optim +from opts import opts # The options for the project +# from trainer import validate # For the validate (test) process +from models.DomainClassifierTarget import DClassifierForTarget +from models.DomainClassifierSource import DClassifierForSource +from utils.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss +from utils.utils import prepare_directories, set_seed, get_dataset_loader, configure_clip_encoders, save_model, \ + set_adapter_weights, get_text_feature, AverageMeter, accuracy, calculate_zeroshot_weights, gpt_clip_classifier, \ + calculate_zeroshot_weights_GPT,calculate_zero,all_classifier_GPT,all_classifier_GPTWithCLIP +from Adapter import Weight_Adapter +import logging +import torch.nn.functional as F +import yaml +import json +import torch +import torch.nn as nn +import torch.nn.functional as F +import glob +from datasets.imagenet import ImageNet + +class CustomCrossAttention(nn.Module): + def __init__(self, feature_dim): + super(CustomCrossAttention, self).__init__() + self.query_projection = nn.Linear(feature_dim, feature_dim) + self.key_projection = nn.Linear(feature_dim, feature_dim) + self.value_projection = nn.Linear(feature_dim, feature_dim) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, text_features, image_features): + # 假设 text_features 的 batch_size < image_features 的 batch_size + text_batch_size = text_features.size(0) + image_batch_size = image_features.size(0) + + # 重复 text_features 以匹配 image_features 的 batch_size + if text_batch_size < image_batch_size: + repeat_times = image_batch_size // text_batch_size + text_features = text_features.repeat(repeat_times, 1) + + query = self.query_projection(text_features) + key = self.key_projection(image_features) + value = self.value_projection(image_features) + + # 计算注意力分数 + attention_scores = torch.matmul(query, key.transpose(-2, -1)) + attention_scores = self.softmax(attention_scores) + + # 应用注意力分数到 value 上 + attended_features = torch.matmul(attention_scores, value) + + return attended_features + + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + d = source_features.data.shape[1] # 特征维度 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + coral_loss = torch.sum(torch.pow(source_cov - target_cov, 2)) # / (4*d*d) + return coral_loss + + +def coral_loss(source_features, target_features): + """ + 计算Deep CORAL损失。 + :param source_features: 源域特征,维度为[batch_size, feature_dim] + :param target_features: 目标域特征,维度为[batch_size, feature_dim] + :return: CORAL损失 + """ + # 特征维度 + d = source_features.data.shape[1] + + # 计算均值 + source_mean = torch.mean(source_features, dim=0) + target_mean = torch.mean(target_features, dim=0) + + # 计算均值差异 + mean_diff = torch.pow(source_mean - target_mean, 2).mean() + + # 计算协方差矩阵 + source_cov = (source_features - source_mean).T @ (source_features - source_mean) / (source_features.shape[0] - 1) + target_cov = (target_features - target_mean).T @ (target_features - target_mean) / (target_features.shape[0] - 1) + + # 计算协方差矩阵差异的平均值 + cov_diff = torch.pow(source_cov - target_cov, 2).mean() + + # 返回均值差异和协方差矩阵差异的和 + total_coral_loss = mean_diff + cov_diff + return total_coral_loss + + +def shuffle_data(weights, labels): + # 生成索引 + indices = torch.randperm(len(weights)) + # 使用索引来打乱数据和标签 + shuffled_weights = weights[indices] + shuffled_labels = labels[indices] + return shuffled_weights, shuffled_labels + + +def compute_kernel(x, y): + """ + 计算高斯核矩阵 + """ + x_size = x.size(0) + y_size = y.size(0) + dim = x.size(1) + tiled_x = x.view(x_size, 1, dim).repeat(1, y_size, 1) + tiled_y = y.view(1, y_size, dim).repeat(x_size, 1, 1) + kernel_matrix = torch.exp(-torch.mean((tiled_x - tiled_y) ** 2, dim=2) / float(dim)) + return kernel_matrix + + +def mmd_loss(source_features, target_features): + """ + 计算源域和目标域特征之间的最大均值差异(MMD)损失 + """ + source_kernel = compute_kernel(source_features, source_features) + target_kernel = compute_kernel(target_features, target_features) + cross_kernel = compute_kernel(source_features, target_features) + + mmd = source_kernel.mean() + target_kernel.mean() - 2 * cross_kernel.mean() + return mmd + + +def train(classnames, templates, source_train_loader, source_train_loader_batch, model, + adapter, optimizer, + epoch, args, scheduler, criterion, CLIP_Text, Text_Encoder, CLIP_Image, Image_Encoder, gpt_weight, gpt_label, + gpt3_prompt): + batch_time = AverageMeter() + data_time = AverageMeter() + losses_classifier = AverageMeter() + losses_G = AverageMeter() + losses_T = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + CLIP_Text.eval() + CLIP_Image.eval() + Text_Encoder.train() + Image_Encoder.train() + model.eval() + logit_scale = model.logit_scale.exp() + + adapter.train() + new_epoch_flag = False + end = time.time() + concatenatedCELoss = ConcatenatedCELoss(num_classes=len(classnames)).cuda() + try: + (image, label, _) = source_train_loader_batch.__next__()[1] + except StopIteration: + epoch = epoch + 1 + new_epoch_flag = True + source_train_loader_batch = enumerate(source_train_loader) + (image, label, _) = source_train_loader_batch.__next__()[1] + target_target = label.cuda() + + # 自监督标签 + label_self_supervised = label.cuda() + indices = torch.randperm(len(label)) + target_source = label[indices].cuda() + + # target_source = label.cuda() + input_target = image.cuda() + # input_source = calculate_zeroshot_weights(classnames, target_source, templates, CLIP_Text, Text_Encoder) + input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder, + gpt3_prompt) + gpt_weight, gpt_label = shuffle_data(gpt_weight, gpt_label) + # input_source = torch.cat(( + # input_source, gpt_weight + # ), dim=0) + # target_source = torch.cat(( + # target_source, gpt_label + # ), dim=0) + + data_time.update(time.time() - end) + + target_target_temp = target_target + len(classnames) + target_source_temp = target_source + len(classnames) + target_target_temp = target_target_temp.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_temp = CLIP_Image(input_target) + + input_target_add = Image_Encoder(input_target_temp) + + # 计算CORAL损失 + + # 总损失 + # 文本直接输入全连接层 + output_source = adapter(input_source) * logit_scale + # 图片直接输入全连接层 + output_target = adapter(input_target_add) * logit_scale + + # self_input_source = calculate_zeroshot_weights(classnames, label_self_supervised, templates, CLIP_Text, + # Text_Encoder) + self_input_source = calculate_zeroshot_weights_GPT(classnames, label_self_supervised, templates, CLIP_Text, + Text_Encoder, gpt3_prompt) + # input_source = calculate_zeroshot_weights_GPT(classnames, target_source, templates, CLIP_Text, Text_Encoder,gpt3_prompt) + + # 计算MMD损失 + # mmd_loss_val = mmd_loss(self_input_source, input_target_add) + # lambda_mmd=1000 + # mmd_loss_val =lambda_mmd*mmd_loss_val + # 总损失 + + coral_loss_value = coral_loss(self_input_source, input_target_add) + lambda_coral = 50 + loss_1 = lambda_coral * coral_loss_value + # 自监督文本输入全连接层 + # self_output_source = adapter(self_input_source) + # self_output_source = F.normalize(self_output_source[:,:len(classnames)]) + self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + # self_output_target = output_target / logit_scale + # self_output_target = F.normalize(self_output_target[:,len(classnames):]) + self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_1 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + # 自监督文本输入全连接层 + self_output_source = adapter(self_input_source) + self_output_source = F.normalize(self_output_source[:, :len(classnames)]) + # self_output_source = F.normalize(self_input_source) + + # 自监督图像特征 + self_output_target = output_target / logit_scale + self_output_target = F.normalize(self_output_target[:, len(classnames):]) + # self_output_target = F.normalize(input_target_add) + # # 构造自监督标签0-255 + self_supervised_labels = torch.arange(self_output_source.shape[0], device="cuda:0", dtype=torch.long) + logits_per_image = logit_scale * self_output_target @ self_output_source.T + logits_per_text = logit_scale * self_output_source @ self_output_target.T + loss_self_supervised_2 = ( + F.cross_entropy(logits_per_image, self_supervised_labels) + + F.cross_entropy(logits_per_text, self_supervised_labels) + ) / 2 + + loss_self_supervised = loss_self_supervised_2 # loss_self_supervised_2 + loss_self_supervised_1 + + # 有监督分类的交叉熵损失 + loss_task_s_Cs = criterion(output_source[:, :len(classnames)], target_source) + loss_task_s_Ct = criterion(output_target[:, len(classnames):], target_target) + + # 对于源域数据,它希望让分类器上半部分所占的概率尽可能大,对于目标域数据,它希望让分类器下半部分所占的概率尽可能大。 + loss_domain_st_Cst_part1 = criterion(output_source, target_source) + loss_domain_st_Cst_part2 = criterion(output_target, target_target_temp) + + # 类级别混淆 + loss_category_st_G = 0.5 * criterion(output_target, target_target) + 0.5 * criterion(output_source, + target_source_temp) + # 域级别混淆 + # loss_domain_st_G = 0.5 * criterion_classifier_target(output_source) + 0.5 * criterion_classifier_source( + # output_target) + + lam = 1 # 2 / (1 + math.exp(-1 * 10 * epoch / args.epochs)) - 1 + # if(epoch<30): + # self_lam= 5 + # else: + self_lam = 0 + + loss_confusion_target = concatenatedCELoss(output_target) + loss_classifier = loss_task_s_Cs + loss_task_s_Ct + loss_domain_st_Cst_part1 + loss_domain_st_Cst_part2 + loss_G = loss_category_st_G + lam * loss_confusion_target + loss_T = loss_G + loss_classifier + self_lam * loss_self_supervised + lambda_coral * coral_loss_value # + mmd_loss_val + + prec1_source, _ = accuracy(output_source.data[:, :len(classnames)], target_source, topk=(1, 5)) + prec1_target, _ = accuracy(output_target.data[:, len(classnames):], target_target, topk=(1, 5)) + + losses_classifier.update(loss_classifier.item(), input_source.size(0)) + losses_G.update(loss_G.item(), input_source.size(0)) + losses_T.update(loss_T.item(), input_source.size(0)) + top1_source.update(prec1_source[0], input_source.size(0)) + top1_target.update(prec1_target[0], input_source.size(0)) + + optimizer.zero_grad() + loss_T.backward() + optimizer.step() + scheduler.step() + + batch_time.update(time.time() - end) + if (epoch + 1) % args.print_freq == 0 or epoch == 0: + print('Train: [{0}/{1}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' + 'Loss@C {loss_c.val:.4f} ({loss_c.avg:.4f})\t' + 'Loss@G {loss_g.val:.4f} ({loss_g.avg:.4f})\t' + 'Loss@T {loss_t.val:.4f} ({loss_t.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})\t'.format( + epoch, args.epochs, batch_time=batch_time, + data_time=data_time, loss_c=losses_classifier, loss_g=losses_G, loss_t=losses_T, top1S=top1_source, + top1T=top1_target)) + return source_train_loader_batch, epoch, new_epoch_flag + +def cls_acc(output, target, topk=1): + pred = output.topk(topk, 1, True, True)[1].t() + correct = pred.eq(target.view(1, -1).expand_as(pred)) + acc = float(correct[: topk].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) + acc = 100 * acc / target.shape[0] + return acc + +def validate(best_epoch, classnames, templates, val_loader, model, epoch, args, criterion, best_prec, + zero_weights,gpt_weight): + batch_time = AverageMeter() + losses_source = AverageMeter() + losses_target = AverageMeter() + top1_source = AverageMeter() + top1_target = AverageMeter() + + + + model.eval() + end = time.time() + logit_scale = model.logit_scale.exp() + + for i, (image, label) in enumerate(val_loader): + image = image.cuda() + label = label.cuda() + + input_target = image.cuda() + target_target = label.cuda() + target_source = label.cuda() + + # clip图片编码器 + with torch.no_grad(): + input_target_add= model.encode_image(input_target) + input_target_add /= input_target_add.norm(dim=-1, keepdim=True) + + + logit_1= 100. * input_target_add @ zero_weights + logit_2 = 100.* input_target_add @ gpt_weight + + # measure accuracy and record loss + prec1_source = cls_acc(logit_1, target_target) + prec1_target = cls_acc(logit_2, target_target) + + + top1_source.update(prec1_source, image.size(0)) + top1_target.update(prec1_target, image.size(0)) + # measure elapsed time + batch_time.update(time.time() - end) + end = time.time() + + if i % args.print_freq == 0: + print('Test: [{0}][{1}/{2}]\t' + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' + 'LS {lossS.val:.4f} ({lossS.avg:.4f})\t' + 'LT {lossT.val:.4f} ({lossT.avg:.4f})\t' + 'top1S {top1S.val:.3f} ({top1S.avg:.3f})\t' + 'top1T {top1T.val:.3f} ({top1T.avg:.3f})'.format( + epoch, i, len(val_loader), batch_time=batch_time, lossS=losses_source, lossT=losses_target, + top1S=top1_source, top1T=top1_target)) + print(' * Top1@S {top1S.avg:.3f} Top1@T {top1T.avg:.3f}' + .format(top1S=top1_source, top1T=top1_target)) + # prec = max(top1_target.avg, top1_source.avg).item() + # if prec > best_prec: + # best_prec = max(top1_target.avg, top1_source.avg).item() + # best_epoch = epoch + # print('best_epoch', best_epoch, ' * Current_best_target@T:', best_prec) + + return 0,0#prec, best_epoch + +def clip_classifier(classnames, template, clip_model): + with torch.no_grad(): + clip_weights = [] + for classname in classnames: + # Tokenize the prompts + classname = classname.replace('_', ' ') + texts = [t.format(classname) for t in template] + texts = clip.tokenize(texts).cuda() + # prompt ensemble for ImageNet + class_embeddings = clip_model.encode_text(texts) + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + clip_weights.append(class_embedding) + + clip_weights = torch.stack(clip_weights, dim=1).cuda() + return clip_weights +def all_classifier(classnames, templates, model): + with torch.no_grad(): + zeroshot_weights = [] + for classname in classnames: + classname = classname.replace('_', ' ') + texts = [template.format(classname) for template in templates] # format with class + texts = clip.tokenize(texts).cuda() # tokenizeclip.tokenize向量化文字 + class_embeddings = model.encode_text(texts) # embed with text encoder + class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) + class_embedding = class_embeddings.mean(dim=0) + class_embedding /= class_embedding.norm() + zeroshot_weights.append(class_embedding) + + + zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda() + return zeroshot_weights +def main(): + args = opts() + + set_seed(2023) + model, preprocess = clip.load(args.name) + model = model.cuda() + model.eval() + # model.float() + # classnames, templates, loader, train_loader,val_loader = get_dataset_loader(args, preprocess) + imagenet = ImageNet("/root/autodl-tmp/",16, preprocess) + + test_loader = torch.utils.data.DataLoader(imagenet.test, batch_size=64, num_workers=8, shuffle=False) + classnames=imagenet.classnames + templates=imagenet.template + train_loader_cache = torch.utils.data.DataLoader(imagenet.train, batch_size=256, num_workers=8, shuffle=False) + train_loader_F = torch.utils.data.DataLoader(imagenet.train, batch_size=256, num_workers=8, shuffle=True) + + loader=test_loader + # cfg = yaml.load(open(args.conf ig, 'r'), Loader=yaml.Loader) + # 获取'gpt_file'文件夹下所有的.yaml文件 + + json_files = glob.glob('gpt_file/imagenet_prompt.json') + + for file_path in json_files: + # 打开并读取每个YAML文件 + with open(file_path, 'r') as f: + gpt3_prompt = json.load(f) + # gpt_weight = all_classifier_GPTWithCLIP(classnames, gpt3_prompt,model,templates) + gpt_weight = all_classifier_GPT(classnames, gpt3_prompt,model) + gpt_label = torch.arange(len(classnames), device="cuda:0", dtype=torch.long) + gpt_weight, gpt_label + # 分类层 + + # 损失函数 + criterion = nn.CrossEntropyLoss().cuda() + + + + zero_weights = clip_classifier(classnames, templates, model) + + + + current_epoch = 0 + best_prec = 0 + best_epoch = 0 + while (current_epoch < 1): + prec, best_epoch = validate(best_epoch, classnames, templates, loader, model, + current_epoch, args, criterion, + best_prec, + zero_weights,gpt_weight) + current_epoch+=1 + + +if __name__ == '__main__': + main() diff --git a/折线图.py b/折线图.py new file mode 100644 index 0000000..6d83b08 --- /dev/null +++ b/折线图.py @@ -0,0 +1,36 @@ +import matplotlib.pyplot as plt +from matplotlib.font_manager import FontProperties +# 指定支持中文的字体(Windows系统示例,黑体) +chinese_font = FontProperties(fname='C:/Windows/Fonts/simhei.ttf') + +# 数据集名称 +datasets = ["Caltech", "ImageNet", "DTD", "EuroSAT", "Aircraft", "Food", "Flowers", "Pets", "Cars", "SUN397", "UCF101", "Average"] + +# CLIP在每个数据集上的准确率 +clip_accuracy = [86.29, 58.18, 42.32, 37.56, 17.28, 77.31, 66.14, 85.77, 55.61, 58.52, 61.46, 58.77] + +# GPT-CLIP在每个数据集上的准确率 +gpt_clip_accuracy = [88.84, 61.46, 50.06, 37.80, 20.61, 77.65, 64.91, 86.40, 57.00, 62.00, 62.83, 60.87] + +# 创建折线图,调整线型和标记,以便更容易区分 +plt.figure(figsize=(14, 8)) +plt.plot(datasets, clip_accuracy, marker='o', linestyle='--', color='blue', linewidth=2, markersize=8, label='CLIP') +plt.plot(datasets, gpt_clip_accuracy, marker='s', linestyle='-.', color='red', linewidth=2, markersize=8, label='GPT-CLIP') + +# 添加图例 +plt.legend() + +# 设置图表标题和轴标签 +# plt.title('不同数据集上的准确率对比') +plt.title('不同数据集上的准确率对比', fontproperties=chinese_font, fontsize=20) +plt.xlabel('Dataset') + +plt.ylabel('Accuracy') + +# 优化横坐标标签显示 +plt.xticks(rotation=45) +plt.savefig('./GTP-CLIP_ACC.jpg') +# 显示图表 +plt.tight_layout() +plt.show() +